GRAPHICS
PROGRAMMING
TECHNIQUES ON THE

AMSTRAD CPC464

Wynford James

MICRO PRESS

Graphics Programming Techniques on
the Amstrad CPC 464

Graphics Programming

Techniques on the
Amstrad CPC 464

Wynford James

MICRO PRESS

First published in 1985 in the United Kingdom by
Micro Press

Castle House, 27 London Road

Tunbridge Wells, Kent

© Wynford James 1985

All rights reserved. No part of

this publication may be reproduced,

stored in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, recording or otherwise, without
the prior permission of the publishers.

British Library Cataloguing in Publication Data

James, Wynford
Graphics programming techniques on the
Amstrad CPC 464.
1. Amstrad CPC464 (Computer)
2. Computer graphics
I. Title
001.64'43 QA76.8.A4

ISBN 0-7447-0027-2

Programming

Typeset by MC Typeset, Chatham, Kent
Printed and bound by Mackays of Chatham Ltd.

Contents

Introduction vii

Chapter 1 Basic Graphics 1
Chapter 2 Codes and Characters 19
Chapter 3~ Graphs and Charts 49
Chapter 4 Patterns and Pictures 76
Chapter 5 Animation ... 101
Chapter 6 ... and Artistry 125
Chapter 7 Transformations 148

Index 160

Introduction

This book will introduce you to some of the graphics
programming techniques that you can use on the Amstrad
CPC464. There are chapters on animation, both of characters
and line-drawings, the production of graphs and bar charts,
and pattern-drawing, to name a few.

Each chapter contains sample programs, many of them
useful in their own right. For example, Chapter 2 contains a
program which allows you to design your own characters
on-screen and save them to a file; Chapter 3 includes routines
to enable the simple construction and shading of pie-charts;
Chapter 4 contains a drawing program that enables you to
sketch on the screen, ‘blow up’ any part of the drawing and
add detail, and save the resulting picture to a file.

Throughout the book I have assumed some knowledge of
Basic and familiarity with loops, decisions and subroutines.
Although beginners will enjoy using many of the programs as
they stand, they will probably learn more from this book if
they first read my previous publication, Basic Programming on
the Amstrad (also available from Micro Press).

For the benefit of those who already have some experience
of Basic but have not read my earlier book, Chapter 1 contains
some material from that volume which serves to introduce the
fundamental graphics commands available on the Amstrad.

Chapter One

Basic graphics

The screen display

In the real world there are many varieties of paper for different
uses. An architect does not design houses on a notepad, and a
novelist does not use foolscap paper to write stories. In
computing the screen display is the equivalent to a sheet of
paper, and it is useful to be able to change the display to suit
the purpose.

The command mode followed by the number @, 1 or 2
selects one of the three screen displays allowed on the
Amstrad. Each mode allows a different number of characters
per line to be displayed on-screen, a different number of
colours to be displayed simultaneously, and a different degree
of graphics resolution (the ‘fineness” with which lines can be
drawn).

Mode Number of lines Characters per line
0 25 20
1 25 40
2 25 80

Figure 1.1 The three screen modes available on the Amstrad CPC 464.

Someone typing in a lot of text at the keyboard finds it useful
to be able to see as much of it as possible on-screen. Mode 2 is
best for this purpose — the Amstrad can print 25 lines with 80
characters in each line in mode 2.

The Amstrad automatically reverts to mode 1 when reset or
switched on. Mode 1 has 25 lines with 40 characters per line.
Mode 1 gives the most easily readable characters, and you can
consider it as the ‘working’ mode when you are giving
commands to the Amstrad. It is much easier to read text in
mode 1!

2 Graphics Programming Techniques on the Amstrad CPC 464

Mode 0 gives 25 lines with just 20 characters per line. This
mode is the best one to use if you want to produce colourful
graphics, as it allows 16 different colours to be used on-screen
simultaneously.

In any of the modes, text can be positioned anywhere on the
screen by using text coordinates:

The position (10,12) is referred to as a character position, and
XX and YY are the TEXT COORDINATES for that position. The
first number is called the X COORDINATE of the character
(how far along it is) and the second number is the Y
COORDINATE (how many lines down the screen it is). In this
case, LOCATE 10,12 causes the Amstrad to start printing at
the 10th column along, and the 12th line down. You can use the
command CLS to clear the screen after running the program.

Line 20 of the program tells the Amstrad to begin printing
what follows at the specified text coordinates. The coordinates

12 39 40

24
25

Figure 1.2 The screen display in mode 1.

Basic graphics 3

vary according to the mode, as each mode can print a different
number of characters on one ‘line’ on-screen.

Clearly, if we could only print at character positions the
prospects for reasonable graphics would be pretty bleak. Mode
2 has 25 lines, each of 80 characters, but trying to construct a
reasonable picture by printing characters to the appropriate
position gives rather poor results. Fortunately, each character
position can be subdivided still further, into smaller elements
called PIXELS. Much finer lines can be drawn using individual
pixels rather than character positions. Just as the number of
characters per line varies from mode to mode, the size of a
pixel varies from mode to mode.

However, the text coordinate system is inadequate to
describe the location of pixels, because each character position
is itself composed of several pixels. The Amstrad therefore
uses a different coordinate system to describe pixel positions,
and locates them by using GRAPHICS COORDINATES.

The graphics screen

The graphics coordinate system is coincident with the text
coordinate system, but it does not operate in quite the same

399 I

|

|

|

300 |---—------+

1(200,300)

|

|

|

|

|

|

|

|

|

!

|

|

|

1

0 |

0 200 639

Figure 1.3 The graphics screen, showing the point (200,300).

4 Graphics Programming Techniques on the Amstrad CPC 464

way. The graphics screen is divided up into 640 points
horizontally and 400 points vertically. We can identify the
position of any point on the screen by describing how far
along and how far up the screen the point is.

The position of the point in Figure 1.3 is (200,300).
Notice that these GRAPHICS COORDINATES are measured
from the bottom of the screen, and that the BOTTOM left hand
point on the screen has the coordinates (@ ,@). This can be a
bit confusing, because text coordinates work in a completely
different way, with the TOP left hand character position
having the coordinates (1,1)! Notice also that because the
numbering of points begins with @, the top right hand point
has the coordinates (639 ,399) and NOT (640 ,400) as
you might imagine.

The following program demonstrates two of the basic
graphics commands available on the Amstrad:

Here we are using the GRAPHICS CURSOR to draw lines on
the screen. Normally the graphics and text cursor remain
together, but as soon as we use a graphics command the
invisible graphics cursor is used.

The MOVE command in line 2@ causes the graphics cursor
to move invisibly to the point (124 ,156). The DRAW
command makes the cursor move from its position at
(124 ,156) to the new coordinates (300 ,300) drawing
a line between the two points. The remaining DRAW com-
mands in lines 4@ and 50 draw the two other sides of a
triangle.

In general terms, we can say that MOVE x ,y causes the
graphics cursor to move to the point x,y without drawing a
line. DRAW Xx , ¥ causes a line to be drawn from the last point
visited by a MOVE or a DRAW to the point x,y. It is easy to
draw quite complex pictures by storing the x and y coordinates
for the points in DATA statements and then reading them:

)

e}

P

o
IR

[ae)
[

%

5
+

()

5

Basic graphics

ing the

ilt up from

Curves can be bu

straight lines by moving the ends of the lines by a fixed

Many impressive effects can be produced simply by us
amount each time

two statements MOVE and DRAW.

6 Graphics Programming Techniques on the Amstrad CPC 464

R~ S R

The resolution of the different modes

Although the graphics screen is divided into 640 horiontal and
400 vertical points, the Amstrad cannot really tell all these
points apart. The graphics screen is the same for all the modes,
but in some of the screen modes the Amstrad is better able to
tell points apart than others. Run the above program again
after editing line 1@ to be:

[T o
R T
i

- P

m

The drawing remains the same, but the lines are much thicker
and the picture looks more ‘chunky’. Now try:

L I ROV

B I W) B A

A1

P
r=g=

PG
S A SR L

This time the lines are very fine. Mode 2 is called the HIGH
RESOLUTION MODE, because when using mode 2 the
Amstrad can distinguish between 640 points horizontally and
200 points vertically, which results in very fine lines when
DRAW is used.

In mode 2 the Amstrad cannot tell the difference between
points that are vertically too close. It would treat the points
(10,10)and (10,11) as being exactly the same. In fact
both mode 1 and mode 0 have the same vertical resolution of
200 points as mode 2, but their horizontal resolutions are much
worse. Type:

Basic graphics 7

[I

-

T Uk il Dy

and run the program again. Mode 1 is the MEDIUM RESOLU-
TION MODE, and in mode 1 the Amstrad can only show 320
separate horizontal points. This means that, for example,
(200,300) and (201 ,300) are both treated as the same
point. Now type:

1@ MODE €

and run the program for the third time. Mode 0 is the LOW
RESOLUTION MODE, and can only identify 160 different
horizontal points.

You may wonder why on earth anyone would choose to use
a screen mode that produces ‘chunky’ drawings when the high
resolution mode 2 is available. The main reason is that
although mode 0 is low resolution, it can display drawings in
up to 16 different colours on the screen at the same time.
Modes 1 and 2 are much worse, as Figure 1.4 demonstrates.

Mode Graphics resolution | Number of colours on-screen simultaneously

0 160x200 2
1 320x200 4

2 640x200 16

Figure 1.4 The different graphics resolutions and numbers of colours
available in the different modes.

The Amstrad has a limited amount of memory. It can only
record a certain amount of information about the screen in the
RAM. As with many things in computing, there is a trade-off
here. The RAM can be used to record details of many points of
two possible colours, fewer points of four possible colours, or
very few points with 16 possible colours. The Amstrad gives
you the choice and you must select the mode which seems to
suit your purposes best.

8 Graphics Programming Techniques on the Amstrad CPC 464
The PLOT statement

Each of the lines drawn in the previous programs was actually
made up from a number of pixels. The Amstrad can display
individual pixels on the screen, although a single pixel is
rather difficult to see in mode 2! In fact each pixel is really
made up of a number of points, but none of the modes is
accurate enough to identify every point on the screen. A pixel
in each of the modes is the smallest ‘block” of points on screen
that can be located in the different modes.

o [] [) []
Mode 0 4 x 2 pixel
[] ° [] L]
[] []
Mode 1 2 x 2 pixel
[] L]
[
Mode 2 1 % 2 pixel
[]

Figure 1.5 The size of a graphics pixel in each of the modes.

It may seem strange to have more points identified on the
screen than can be displayed in any of the modes. The main
reason for doing this is that it leaves room for future
improvements in the graphics resolution without having to
change the coordinate system completely.

PLOT works in the same way as MOVE or DRAW — the
PLOT command must be followed by the x and y coordinates
of the pixel to be plotted. This program plots six separate pixels
on the screen:

=3}

[I I % I

Basic graphics 9

~
SNT

i

(Y]

S

F t
=3

Lt
I
v

[l
L
1
e

=

In mode 0, the resolution is so low that the four pixels plotted
in lines 3@ to 6@ merge to form a line, in mode 1 all the pixels
can be seen, and in mode 2 the pixels are so fine that you may
not be able to see them at all.

Adding colour

When the Amstrad is switched on, the micro is set to print

INK number Colour

0 Black

1 Blue

2 Bright blue

3 Red

4 Magenta

5 Mauve

6 Bright red

7 Purple

8 Bright magenta

9 Green
10 Cyan
11 Sky blue
12 Yellow
13 White
14 Pastel blue
15 Orange
16 Pink
17 Pastel magenta
18 Bright green
19 Sea green
20 Bright cyan
21 Lime green
22 Pastel green
23 Pastel cyan
24 Bright yellow
25 Pastel yellow
26 Bright white

Figure 1.6 The 27 INK colours that can be used on the Amstrad CPC 464.

10 Graphics Programming Techniques on the Amstrad CPC 464

yellow text and graphics on a blue background in all the
modes. In fact there are 27 different colours which can be
displayed on the screen, although some of them are a bit
difficult to tell apart. Each colour has a number, called the I NK
number, and whenever we refer to a colour we use this
number rather than the name of the colour itself.

At this stage it is important to realise that the computer does
not actually use the whole of the screen while it is printing or
doing graphics. The Amstrad actually works within a large
rectangle around which there is a border of unused screen.
Although the Amstrad does not use this border, it is kept the
same colour as the rest of the screen. The border is not really
part of the computer memory because it is never used by the
Amstrad for printing or drawing graphics.

()

<«1— The BORDER can be
any colour in any mode

T4 The colours used in
the text area depend

the mode
- J

Figure 1.7 The BORDER area on your monitor or TV

The border can be set to be ANY colour in ANY mode. There
are never any restrictions on the colour of the border. Mode 2
can only display two colours at once WITHIN the main screen
rectangle, but its border can be ANY colour. Type:

18 MODE 2
@ BORDER @

Refer back to Figure 1.6 and you will see that @ is the INK
number for the colour black. By typing BORDER @ you are
telling the Amstrad to set a black border. Set the border to a
few other colours — any number from 0 to 26 can be used, so
there are 27 possible border colours altogether. BORDER 26
gives a white border, for example.

Basic graphics 11

The border can be set in modes 0 and 1 in exactly the same
way. You will find that if you set a border and then change
mode, the border remains set to its new colour. When the
Amstrad is switched on or reset the border becomes blue,
BORDER 1.

PEN and PAPER colours

The colours used within the main screen rectangle can also be
changed. Here the question of RAM becomes important, and
there are restrictions on the number of colours that can be
displayed simultaneously on the screen at any one time.

We can change the colour the Amstrad ‘writes’” with by
using the PEN command. Type:

MOGDE @

PEN 4

From Figure 1.6 it might appear that this will give magenta
characters, but the colours in the main screen work rather
differently to those for the border! Choosing PEN 4 actually
causes the Amstrad to print in white. Think of PEN 4 as being
filled with white ink. Typing:

PEN =
chooses a pen full of black ink. You can even have:
FEN 14

which gives you flashing blue/yellow ink!

There are 16 pens available for use in any mode and Figure
1.8 shows the colour number for the INK that the pens use.
Note that the SAME pen can write with a DIFFERENT ink in
another mode. This means that a program that works perfectly
well in mode 0 may well give a blank screen in mode 2! The
pen you have chosen may have the same colour as the
background in mode 2. As you can see, the 16 pens aren't
much use in mode 2, because 8 of them write in yellow and the
other 8 in blue. We will see later how to change the inks that
can be used in each mode.

The background colour can be changed as well by using the
PAPER command. Reset the micro by holding down [CTRL]
and [SHIFT] and pressing [ESC] then switch to mode 0. Type:

12 Graphics Programming Techniques on the Amstrad CPC 464

PRFER 2

and the next characters printed will be printed on a red
background. The whole of the inner screen area can be
changed to this new colour by using the CLS command. The
Amstrad clears all of the main screen to the new paper colour.

PEN or PAPER Mode Mode Mode

number 0 1 2
0 1 1 1

1 24 24 24

2 20 20 1

3 6 6 24

4 26 1 1

5 0 24 24

6 2 20 1

7 8 6 24

8 10 1 1

9 12 24 24

10 14 20 1
1 16 6 24
12 18 1 1
13 22 24 24
14 1/24 20 1
15 16/11 6 24

Figure 1.8 The PEN and PAPER colours for the different modes. In mode 0,
choosing PEN or PAPER 14 or 15 gives a flashing colour alternating between
the two colours shown.

PAPER in mode 0 comes in the same 16 colours as the pens.
PEN 14 gave flashing blue/yellow ink, and PAPER 14 gives
a flashing blue/yellow background. Figure 1.6 can be used to

help you select both the pen and paper colours. For example, to
get red characters on a white background in mode 0, type:

PEN and PAPER commands can, of course, also be used in
programs:

m)
1

Basic graphics 13

FRINT "Black on bBius?®
REM rern and parer back €o normal
FEN 1

PAPER B

Change line 10 and try running this program in the other two
modes. You'll find you get some funny results, because the
PENs contain different INKs in the other modes.

Here is another example:

i@ MODE @

20 redreninmodeld=3I.

I@ bBlackpaperinmode@=5

0 PEN redpeninmoded

S0 PAFER blackparerinmodeg@
LD DT

‘! o b

7@ LOCRTE &.1Z2

S8 PRINT *Done!

78 REM Pen and FaFer baCkK o normal
138 PEN 1

1168 FPAFER &

The last two lines restore normal PEN and PAPER colours so
you are not left with some unreadable mixture like yellow on
white.

One frequent problem when playing around with the
colours is that you can end up being unable to read anything
on the screen, because the pen being used has the same colour
ink as the background. As we have just seen, in a program this
difficulty can be avoided by setting the pen colour back to
normal before the program ends. Alternatively, set up one of
the function keys on the Amstrad so that it restores normal
PEN and PAPER colours when it is pressed:

KEY 128,CHR$(1I3)+"INK @,1:INK 1,24"+CHRS$ (13}

14 Graphics Programming Techniques on the Amstrad CPC 464
Exercises

1) Write a program that selects a random point on the screen
and draws a line to another random point in a random
colour. The process is repeated from the new point and
continues until 100 lines have been drawn.

2) Using MOVE and DRAW statements, draw a picture of a
rocket. Give the rocket a name of your own choice which is
printed along its length.

3) Print"Different hues" in the middle of the mode 0
screen, with every letter being in a different colour.

Graphics and colour

Drawing pictures with coloured lines is easy on the Amstrad.
The commands MOVE and DRAW, used on their own, always
result in lines drawn using PEN 1 for whatever mode you are
in. All the graphics programs so far have produced lines drawn
with PEN 1. PEN 1 contains INK number 24 in all modes, so
the lines have all been bright yellow.

To get a different colour line, we must use an extension of
the DRAW command. Reset the Amstrad, and type:

The Amstrad draws a line from (100,100) to
(300 ,300) using PEN 2, which contains I NK number 20,
bright cyan, in mode 1. Type:

and a red line is drawn with PEN 3 from (300,300) to
(400 ,0). PEN 3 uses INK number 6, red, in mode 1.

The commands are just as easy to use in a program. Again,
remember that a program that works in one mode may not
work in another because of the different INK's the PENs have
in different modes. This program draws a rectangle in mode 1,
with one side in yellow, one in cyan, and the other two in red:

MOnE
[RRNEERE 4

i

O

R4

S VS I O I
L6

£
Eg

(IS I

(1%}

Basic graphics 15

o
)

Notice that at line 3@ no PEN is specified, so the Amstrad
automatically uses PEN 1, which draws a yellow line. After
running the program once, run it again. You may be surprised
to find that there is no longer a yellow line!

Whenever the Amstrad encounters a graphics command like
DRAW, with no PEN specified, it will use the current PEN to
obey the command. The first time the program is run, the
Amstrad uses PEN 1 at line 3@. After the program has been
run, the last PEN used is PEN 3. This is now the current PEN
colour, so when the program is run the second time, PEN 3 is
used at line 30 where no PEN is specified. The advantage of
this is that once PEN has been set in a draw command, all lines
drawn after that are automatically drawn in that same colour
unless a new PEN number is introduced:

Try running this program in mode 2, where PEN 2 holds a
different colour INK.

Mode 0 is by far the best mode to use to produce a colourful
graphics display if you are not too concerned about the
resolution:

S

N e
[RN

Changing the INK

So far we have only been able to see some of the colours that

16 Graphics Programming Techniques on the Amstrad CPC 464

the Amstrad can produce. There are only 16 pens available,
and yet Figure 1.6 shows that there are 27 INKs we can use.
The Amstrad allows us to change the INK in each PEN so that
we can choose any combination of colours for a particular
mode.

The number of colours that can be used on-screen at the
same time in any mode does NOT change, however. Although
we can have bright red text on a white background in mode 2,
these are the ONLY colours we could have on-screen at that
time. We are ALWAYS limited to two colours in mode 2, four
in mode 1, and 16 in mode 0.

When the Amstrad is switched on or reset, it reverts to mode
1 and uses PAPER @, which is blue (INK number 1) in all the
modes, and PEN 1, which is yellow (INK number 24) in all
the modes. Reset the computer now, and type:

MK 1L £

T A
i - 3

All the text on-screen changes colour from yellow to bright red
instantly. The INK command needs two numbers. The first
number is the number of the PEN or PAPER whose ink is to
be changed. The second number gives the colour INK which
is to be used instead.

The command INK 1,6 told the Amstrad to change the
INK in PEN 1 to INK number 6, bright red. ANYTHING
previously printed or drawn using PEN 1 has its colour
changed from the old to the new INK. So to turn all the text
blue type:

INE 1.2

and what was bright red now becomes bright blue. How
would we return the text to normal? Perhaps you can work it
out for yourself. Type:

TR 4 ~
POEE Y FO R S

Normally PEN 1 uses INK 24 in all the modes, as you can see
if you look back at Figure 1.8.

It is equally easy to change the PAPER colour. At the
moment the Amstrad is using PAPER @, which is blue. Let’s
change this to white:

Basic graphics 17

Perhaps the text’s a bit difficult to read. Try:

REEOE L, &

FAR IR A i B]

or perhaps:

TRIY oL T

FAEE Y e i

The PAPER in all modes is usually blue, INK number 1. Now
try to turn everything back to normal yourself.

We don’t need to have already used a PEN or PAPER colour
to change it. Reset the Amstrad and type:

T AL =z e

Nothing SEEMS to happen. If we now go on to choose PEN 3
in mode 1, Figure 1.8 suggests that text will be printed using
INK 6, bright red. But we have just used the I NK command to
change the INK used by PEN 3 to INK @, black. Type:

FEN 3

and all the text is printed in black. Type:

and now PEN 3 and all the text it printed is set to INK
number 6, bright red. This colour change remains even if you
change mode — try it.

It is even possible to set a colour so that it flashes between
two different colours! Try:

to see the text printed using PEN 1 changing from INK 3, red,
to INK 26, white, and back again.

A suitable selection of flashing INKs in a program can be
used to give the illusion of movement. For example, we can set
PEN 1 to produce flashing yellow/red INK, and PEN 2 to
give flashing red/yellow INK. By printing alternate characters
with alternate PENsS we can give a ‘rippling’ effect which
suggests the colour is moving along the line:

i@ MODE 1

20 INK L,
3@ IMNK Z-
4D penco
& FOR X

18 Graphics Programming Techniques on the Amstrad CPC 464

THEM rencolour=2 ELSE

One obvious advantage of the I NK command is that it enables
us to choose any colour combinations from the 27 INKs. Even
in a two colour mode like mode 2 we can brighten things up by
using red text on a white background, instead of being
restricted to just the colours yellow and blue which are
available at switch-on. This program lets you see the more
than 700 combinations of colour you now have in mode 2:

S8 Fo LG

2@ IF = THEM IME FRIMT "Ink "
70 recponceg=*"

2@ WHILE responsesg=®t®

?2 recsponze¢=IMNKEY$

1eg WEND

1189 NEXETY

128 NEXT

Exercises

1) Display your name in flashing characters on the screen.
Choose the right colour background so the letters seem to
appear and disappear.

2) Draw a picture of a fire using appropriate colours for the
lines. (You may find it effective to make use of flashing
colours.)

3) Draw ared crab lying on a sandy yellow beach. Choose the
PENs and INKs so that the colours are the same no
matter what mode is chosen when the program is run.

Chapter Two

Codes and characters

The Amstrad CPC464 character set

The Amstrad can display a wide range of characters on-screen.
As well as the familiar alphabetic and numeric characters, it
can also produce crotchets, quavers, and even stick men, as
you can see if you run this brief program:

i@ MODE 1

20 FOR code=32 TO 2535
3@ PRINT CHR$i(code);
48 NEXT

The Amstrad associates every character with a code number,
called the ASCII code. This code number can range from 0 to
255. Codes 0 to 31 have special meanings to the computer, such
as ‘Move the cursor back one space’ or ‘Change the INK
colour’. Codes 32 to 255 are for the lower and upper case
alphabet, numbers, punctuation, etc. Line 30 of the program
tells the Amstrad ‘Print the character that has the following
ASCII code’. Figure 2.1 shows some of the more useful ASCII
codes.

Characters ASCII codes
Various special codes 0—31
A space 32
0—9 48-57
A-1 65—90
a-z 97—122

Figure 2.1 Some of the more useful ASCII codes.

The characters with codes 0 to 31 can be displayed if they are
preceded by the character with an ASCII code of 1:
19

N
(o]

Graphics Programming Techniques on the Amstrad CPC 464

=

MODE 1

FOR code=3 To 24

PRINT CHR${(1:CHR%(c0ode);
NEXT

L7 I O I
DS

£

This clearly gives us a reasonable amount of choice when
deciding which characters to use within a program. However,
there are many circumstances where the Amstrad character set
may not contain the character we need, for example in foreign
language or mathematical work, or in a games program. In
these cases we can use the facility available on the Amstrad to
create our own USER-DEFINED CHARACTERS. Before we
find out how to do this, it will be useful to look at how the
Amstrad stores characters and why this method of storage
limits us to only 256 predefined characters with ASCII codes 0
to 255.

Bits, bytes and binary

How does the Amstrad store information? To look at it in a
simplified way, we can view the computer as containing
thousands of switches, each of which can be set to be ‘on’ or
‘off’. In the Amstrad, these ‘switches’ are set together in blocks
of eight. If we represent an ‘off” switch by @ and an ‘on’ switch
by 1, we can show all the possible combinations of ‘switches’
as in Figure 2.2.

[SESESRS
[SESESES]
[SESE SRS
T eees
[SESESES]
[SESR SN
e
e se

111
111
111111

_
—_
-

-
-
-

-___s

1
0
1
Figure 2.2 The 256 possible combinations of 8 ‘switches’.

You will perhaps not be surprised to see that there are
altogether 256 ways in which the ‘switches’ can be set. Each of
the numbers is a BINARY NUMBER, composed only of the
digits 0 and 1. The digits are binary digits, or BITS for short.
Any combination of 8 bits is referred to as a BYTE.

Codes and characters 21

Binary is a way of counting in twos, just as we count in tens,
and each of the binary numbers is equivalent to a number in
our own system of counting. It is relatively easy to convert any
binary number into the more familiar decimal numbers, as we
shall see in a moment.

The byte is the fundamental unit of information storage on
the Amstrad. Many of the limitations of the machine arise
because an 8-bit byte can be ‘set’ in just 256 different ways.
Only 256 predefined characters are provided, because each
character can be given an ASCII reference code that can be
stored in a single byte. A program line can be from 0 to 255
characters long, as its length is stored in one byte. If 257
predefined characters were provided, or a line could be longer
than 255 characters, the information would have to be stored in
two bytes, and this would use up a lot of extra memory on the
computer.

Each of the predefined characters has an ASCII code
associated with it, but this in itself is not enough to enable the
Amstrad to produce the required character on the screen.
Every character is built up on an 8 X 8 grid, as for example the
upper case ‘A’.

Figure 2.3 An upper case letter ‘A’.

Each square on the grid will be either ‘on” or “off” (lit or unlit)
when displayed on the screen . . . sounds like binary numbers,
doesn’t it? And with good reason, because the 8 X 8 grid is
another consequence of the 8-bit byte. Each row of the grid can
be stored as a byte, and the complete description of an entire
character can thus be stored in 8 bytes.

22 Graphics Programming Techniques on the Amstrad CPC 464
00

sesessses
SN S
[NN
SeS,eSe -
Seemee =
[N W . N Q.
[NN Y
sessssss

0

Figure 2.4 The 8-byte binary character definition of the
letter ‘A’.

Binary numbers are cumbersome to work with, because they
are lengthy and it is easy to insert or delete extra Os or 1s by
mistake. The binary values for the bytes can be converted to
decimal simply by adding together the figures at the top of the
column for any squares in a row that are shaded. The Amstrad

1
2 6 31

8 4 26 84 2 1

0011000 16+8 = 24
2021111080 32+16+8+4 = 60
211001180 64+32+4+2 = 102
21100110 64+32+4+2 = 102
11111180 64+32+16+8+4+2 = 126
211001180 64+32+4+2 = 102
1100110 64+32+4+2 = 102
0 000O0ODO0CO = 0

Figure 2.5 The character definition of the letter ‘A’ using decimal numbers.

can simplify this process considerably by doing the work for
you! The command PRINT STR$ (number) will convert a
number into its decimal string equivalent. Binary numbers
must begin with ‘&X’, otherwise the Amstrad will take the
number to be a very large decimal number that happens to be
made up of Os and 1s! Let’s confirm that our calculations above
were correct:

i@ MODE 1

29 rnumber=l

3@ WHILE number:g

48 IMPUT "Input £he binary numbker, prec
ded by &X. ",number

S PRINT "This ige the decimal numbker "5T
R¢ (number:

& WENE

-
mn

Codes and characters 23

You may need occasionally to convert decimal numbers to
binary. The Amstrad will do this for you as well:

15 MCDE 1

28 number=1i

I8 WHILE number;p

4@ INPUT *Input the decimal number *,num
ber

3@ PRINT "Thiz 13 the Linagary number *BIN
¢ inumber:

53 WEND

A point to note with both these conversions is that the end
result is a STRING. You cannot carry out arithmetic on strings,
and if you wish to do so you will first have to convert the string
into a number:

i3 MOCDE 1

28 number=]

I8 WHILE number: 3

40 INPUT "Input tke Jdecimal number ", num
oer

5@ PRIMT "This= 2
3 inumber:

%4 REM AL convertz a =tring L0 o numeri
o wvalue

EE numeric=UALiBINt (numbar:)

56 PRINT “Thics is the number *,numeric
S8 WEND

the binary number "BIM

Defining your own characters

We now know the values for the eight bytes the Amstrad uses
to describe the letter ‘A’. Any of the 16 characters with ASCII
codes 240 to 255 can automatically be redefined, so let’s change
character 240 to the letter ‘A”:

18 MODE 1

2@ REM SYMBOL defines characker

IB SYMBOL 248.24.40.102.102.126,1082.182,
@

49 PRINT CHR$ (243}

SYMBOL inline 30 tells the Amstrad we want to define a new
character. The first number, 240, gives the ASCII code of the

24 Graphics Programming Techniques on the Amstrad CPC 464

character, and the eight numbers following define each ‘row’
on the character grid.

If we need to redefine more than 16 ASCII codes, we must
use the SYMBOL AFTER statement:

1@ MODE i
2B SYMBCOL RFTER &5
3@ SYMBOL 65.231.195.153,153,129.153,153

e c
LA)

4@ PRINT CHR$%(&635)

Line 20 tells the Amstrad that we wish to be able to redefine
any ASCII code of 65 or greater. Line 3@ redefines ASCII code
65, for the uppercase A, so that points that were lit become
unlit, and vice versa, as you can see if you try a capital A! The
previous character definition has now been lost. It can be
regained either by resetting the machine or, less drastically, by
using another SYMBOL AF.TER statement, at which point all
characters are reset to their original definitions:

18 MODE &
2@ SYMBOL AFTER &5
30 SYMBOL 65.,221,195,153,153,12%,153,153

» 255
4@ PRINT CHR${&65:
58 SYMBOL AFTER 78

Hexadecimal

We have seen that the Amstrad can easily convert binary
numbers to decimal to make life easier. Although we are all
familiar with decimal numbers, in computing it has become
traditional to use the HEXADECIMAL system, which involves
counting in 16s.

Hex numbers are usually written preceded by ‘&’ to avoid
any confusion with decimal numbers. It is worth getting used
to hex. The value of any byte can be shown using just two
characters in the hexadecimal system. We could describe the
letter A just as easily using hexadecimal numbers:

i@ MODE 1

B SYMBOL Z24D.518,&830C,5664,866.87E:854:56
’5 7 D

3G PRINT CZHR${248:

Codes and characters 25

Decimal number Hexadecimal equivalent

0 0

1 1
10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
30 1E
106 61.1
255 FF

Figure 2.6 Some decimal numbers and their hexadecimal equivalents.

Because the Amstrad works with bytes many apparently
meaningless decimal numbers assume significance if they are
shown in hex. For example, you will find that the Amstrad will
reject any line number greater than 65535. This seems a
quite arbitrary decimal number, but when converted into hex
it becomes & F F FF and the reason for the restriction becomes
clear: 65535 is the largest number that will fit into two bytes.
The use of two bytes means that there are 256 X 256 = 65536
different line numbers available, from @ to 65535. Allowing
greater line numbers would require three bytes to store every
line number, and storing a line number as a single byte would
restrict us to line numbers from @ to 255.

The Amstrad makes it easy to convert from decimal to hex:

MGEDE i

number
WHILE number:Q
INPUT "Input the decimal number *,num

R S I o Y
[B G e I

o
m
3

38 PRINT "In kexadecimal this is "HEYX$:in
umber:
&8 WEND

Conversion from hex to decimal involves the use of PRINT
STR$ (number) again, but this time to signify that the
number concerned is a hex number it is preceded by ‘&’:

26 Graphics Programming Techniques on the Amstrad CPC 464

i3 MGCGDE 1

26 number=l

I8 WHILE number:0

40 IMPUT "Input the hexadecimal number,
Freceded by A ®",number

5@ FRINT *"This is the decimal number " .S
TR$ (number

&@ WEND

Games

User-defined characters really come in useful in games
programs. This program defines a ‘dog’ character which is
then printed in a variety of random positions on the screen:

18 MODE @

2B SYMBOL 240:@0.4.7:.122,124.136,136.8@
I3 FOR randomdoges=1 TG¢ 38

4R randomA=INT (19%RND(1)+1)

3B randomy=INT (24*RND(L1)Y+12

&8 pPencolour=INT{(15#RND (1) +1)

70 PEN Pencclour

28 LOCATE randomx,randomy

PO PRINT CHR$%(Z240:

1@@ MNEXT

To move the dog around on-screen we must print a space at its
present position to erase the old character, and then print to
the new position:

1@ MODE @

Z@ SYMBOL 24@
I0 dog$=CHRS ¢
48 PEN 1

50 dogx=13:4d40Qy=1@

4@ responses=""

78 WHILE responcets{:"e?®

830 newy=dogy:new<=deogx

$0 respcnses=INKEY$

10@ IF response$="a" AND d039y;1 THEN new
y=dogy-1

116 IF responses=‘z' AND dogy (25 THEN ne
wy=dogy+1

126 IF response$="." AND dogx>1 THEN new
R=dogx-1

-
rJ
¥
e
(]
-
Y]
m
[

B 4.7,132,
TaR?

i/

Codes and characters 27

138 IF responses="," AND 4Hogx{2@ THEN ne
WrA=doOgx+ 1

14@ IF dogx{:news« OF
RTE dogx.dogy:PRINT
newy

158 LOCATE dogx,dogy
1468 PRINT dog9%

178 WEND

‘irnewy THEN LGC

PV dogR=newsdogy =

Animation can be made more interesting by defining a series
of characters, each of which is only printed if movement takes
place in a particular direction. We can modify the above
program to illustrate this, although rather than define four new
characters I have used the predefined characters with ASCII
codes 240 to 243. These are all arrows, pointing in different
directions:

1@ MODE @

ID arrow$=CHR$ (2408

4@ PEN 1

S8 arrowx=lZ:-arrcwy=19

5@ responseg=""

70 WHILE recsponcseg¢{:"e"

38 NAWY=Arrowy:News=arrows
?0 response$¢=INKEVYS$

1868 IF response$=*a" AND arrows:1 THEM =n
EWY=ArroWy-1:arrows=CHR$ (243
110 IF responseg="z" AND arrowy {25 THEN

NEWY=Qrrowy+1:arrows=CHR$ (241

128 IF responsesg="," AMD arrowx:l THEN n©
EWXZArTOWA-1:arroWwsd=CHR$ (242

138 IF responses¢=*," AQAND arrowx{2& THEN
NeWX=AQTrTrowX+1 :arrTows=CHR$ (243

140 IF arrowx{;newx OR arrowy:>newy THEN
LOCATE arrowx,arrcwy :FPRINT ¥ *::arrgowxs=
NEWN: ArroWy=newy

158 LOCATE arrowx,arrcwy

168 PRINT arrowsg

170 WEND

The above skeleton program can serve as the basis for many
games.

One of the problems with user-defined characters is that it is
a tedious business designing characters by hand, and often the

28 Graphics Programming Techniques on the Amstrad CPC 464

result when displayed on the screen is very different to the
planned effect. The character-designing program on the
Amstrad ‘welcome’ tape suffers from a major defect in that it
fails to display the SYMBOL definition needed to recreate a
character

The following program enables you to create characters
on-screen. It displays the SYMBOL definition needed to
produce the character and gives you the option of saving that
data to a file. This gives you the opportunity of setting up your
own ‘library’ of user-defined characters which can be used in
future programs:

1@ MODE 1

@ DEFINT o,n0,0,

DY REM set Uup arrays ©o Rold character o
cde

I DIM codedi2,.8y,.symE g}

4 z -

gt 2 " 7

LB number=2

L% REM display SMEEY Raracrer

TR OGGSUBR LE2D9

2@ GOSUBR ZGEE:So5UBR LQ0C

29 REM scan Keyboard for TESpONSE

*g responseE=""

128 WHILE recsponcet¢ :ve"

112 nNews<=<x:newy=y.

128 recsronced=L0OWERS (INKEY$)

12% REM nex+t four lines move CuUrsor up/d

cwn//lef e/ ghi

13 IF response$="a" AGND vyrstarty THEN &

ewy=y5-1

14@ IF response$="z" AND v(starty+7 THEN
rnewy=y+1

15@ IF response2$="," AND =:stavritx THEN n©
ewr=x-1

160 IF responses$="," AND x{startx+7 THE
newx=x+1

146% REM update position 1f necessary

178 IF mewx:i:*x OR ' SOSUR ZRF
@

i7% REM crange colour of point oOn gepres
zion of space bar

18@ IF responset=" " THEN GOSUR 708@86:G0%

Codes and characters

iJB ZI0ER
189 REM cutputr symbol definition 0 fFile
if '0’' precscsed
17@ IF responses="0" THEMN SOSUE G025
g 1025 : GOJJB IPBPB:G05UB 4038
symbEol definition fFrom fFil

@@ IF responses$
Ug 208B8:GCSUB 48088
21@ PEN 14

220 LOCATE =, v

Z3@ PRINT CHR$:(2E83):

24 WENMD

25@ END

799 REM empty symbol definition
1882 CLS

lgig SYMBOL numbeer,3,08.08.8.0.3,0,8
1222 FPEN 1

16368 FOR count=] To 2

"
»
~‘
T
m
bd
I
)
N
o
m
o
@
@
)
("]
)
n

1048 FOR countl=]l T& 5
1@5@ code{count,countii=i

1868 NEXT

187@ NEXT

1879 FREM Print 35 em
ecent blank character
1@8E srartx=2:starty=2
1890 FOR X=startx TC sta
i110@ FOR y=sktarty T0O 3

i

Pty sguares to regr

i

(]

[y

i
[

[Py T T S GG Y

Lno$-
(&}

JZI D~

i

1

1]

i9 REM praint correct colour charaoter

ut old pJSzt1Dn ohn SUrsor move

e LOCATE =.v¥

@10 codex=<-staritx+]l:codey=y-skarty+il

2028 PEN codei{codex,codey:

2826 PRINT CHR$ (2330

R4 X=newr:y¥=newy

Z2@&@ FETURN

2999 REM convert code ar
riumbers For SYMBOL J2
I@eE FOR count=1 TO 2

29

30 Graphics Programming Techniques on the Amstrad CPC 464

Inie
Ry
1331
ount)
In40
1650
ID4LB
387@

- -

symbé¢="5x"

FOR counti=]i TO £
symbe=symb$+MIDE (STRE (
-1y.2.1:

NEXT
symb{count)=UAL (s
NEXT

mbt:

-

mb{4},35Y

3 1 2J

g

IBsD PEN I

3878 LOCATE l,starty+1@

2180 PRINT *sSymbol is: ";CHR
Ji1i@ LOCATE 1l,starty+lZ

2128 PRINT "SWMBGQL ";number;
(Z2yssymb(Zrisymbigrisymb (5
(FriEvmb (S

T13@ RETURN

4382 PEM 1

481G LOCATE Ll.sztarty+15

4@Z2B PRINT “Symbol name: “;n
@2E LOCATE l.starty+l7

4842 PRINT “Symbol number: *

4@5@ RETURN

4999 REM sawve character defi
le

Zp@gm LOCATE 1.24

5018 PEN 1

32 INPUT "Name of symbol":s

5830
504

QPENCUT nameg
wRITE ﬁ?!nameisnumt‘er:

<

2y, EymE (3, Symbi4) , SYME(S), S
7). s¥mE (3

b CLOSECSUT
EE59 REM update SYMBOL
cr next derfimniftion
50408 name$="77777"
5978 number=znumber+i
S@Eg@ FRETUEREN
59%9 REM input
File

name

character def

£Eee LOCRTE 1.701

521483 PEN 1

HEZE INPUT '"HName of svymbeol®;
£33 CGFENIN namesg

cde (countl, o
ymbi{2),symb{
Yymb (7)) ,Symb(

$(number:;

symb{ir;esymb
symb (& s¥mE

ameg¢
ynumber
Fi

nitrion tc

namasg

ymb {1l ,.symb{
ymb (&5, s¥mE(

and number ¢

inition From

nama2%$

Codes and characters 31

s&@gw INPUT HY . nameg,number,s=ymbe (i ,symb
Sis,eymb (T ,symbE (&) ,symb{(8)Y,symb (&, SymE
Ty.3¥ymb {33
42510 CLOSEIN
d@s@ LS
58869 REM turn s¥mb array into binary for
canversion to code array
4B7E FOR coun¥=1 TO &
4852 =ymbe¢=BIN$2isymb(CouUnt;
@28 lengrh=l EN{zvmb$
- P =ymbBE=CTRIMNMGCE({8B-lenger, "A":4+<SsvmE%
FOR counzi=i 7o 2
LOCATE stare=+counecl-i,starcy+oount
-1
5136 Deisymbe,countcl,l:i+1
L£L148
&5158@ {233
L1462 1,ccunty=code
&1i7@
£1EB
£17@
5972 REM t0ggle <£cClour at <SuUrsor pdsitin
noon T crn Cf space bar
7008 g arktM+l:codey=sy-scarty+1
7818 IF codeicocdex,codey)=1 THEN ccdeicc
dex,codey)=2 ELSE c¢ode{condex,codey;=1

7B28 RETURN

Exercises

1) Design a ‘spider’ character and write a program that
redefines the full stop key to produce your arachnid friend.

2) Write a program to enable you to move your spider about
on-screen. You might like to use some of the pattern-
drawing routines from the last chapter to produce some
suitable webbing.

3) Improve the previous program by designing up-, down-,
left-, and right-facing spiders, and print the correct
character when movement is made in a particular direc-
tion.

Multiple characters

In mode 1 a single character is not very large, and it may be

32 Graphics Programming Techniques on the Amstrad CPC 464

preferable to create a larger figure built up from several shapes.
The individual characters can be joined together to make up a
single string if the figure is completely horizontal:

i@ MODE 1

1% REM d4define I ckaracters fFor lovrry

2B SYMBCL 24B8,8,8,94,%4,%946,127,18,12

3@ SYMBOL Z41,08.€.6.8.0.,255.6.,0

& SYMBOL 242.248,132,132,255,255,255,72
48

5@ 1orry$=CHR${(Z4B8)+CHR$ (241 +CHR$ (242
& LOCARTE 18,13

7 PRINT lorryg

The ‘lorry’ character can easily be placed under the control of
the keyboard, although for the sake of realism let’s just move it
in one direction only — to the right:

18 MOQCE 1

Z& REM define I characters for lorry

I8 SYMBCL 248,8,8,%4,94,94,127,18,12

4@ SYMBOL Z241.8.0.0,06,8.Z255,6.@

58 SYMBGCGL 242,2423,12Z2,1322,255,255,2585,72
» 48

A8 1OovTry$=CHR${Z240:+CHR$(Z41)+CHR® (242

7B H=l:rvy=13

S8 LOCATE W, ¥

3 FRIMT lorryg

iG@E responsefg=

187 REM scan keyboard until ‘e’ presssd

118 WHILE responseg{;"e"

128 newM=x

13@ responze$=L OWERS(INKEYS$:

145 IF responseg="," THEN newx==x+1

149 FEM 1if lorry has moved pPrinkt o space
Wwhere the lef+t end wWacs

158 IF newwx{:x THEM LOCATE #.y:PRINT =
;iorry g

150 H=nNoWxK

172 WEND

Notice what happens when the figure gets too close to the
right-hand edge: the whole figure is automatically printed at
the start of the next line. The Amstrad will not print any
character that moves the text cursor outside the text window. If

Codes and characters 33

ASCII code Action
8 Cursor moves back a character
9 Cursor moves forward one character]
10 Cursor moves down a line
11 Cursor moves up a line

Figure 2.7 The four ASCII codes for cursor movement.

a character does fall into one of these positions, the computer
moves the text cursor to an allowed position, using the
following rules:

1) 1f the cursor moves beyond the right edge of the screen, it
is moved to the first position on the next line.

2) If the cursor moves beyond the left edge of the screen, it is
moved to the last position on the previous line.

3) If the cursor goes off the top of the screen, the screen scrolls
down a line, and the cursor remains on the new top line.

4) If the cursor goes off the bottom of the screen, the screen
scrolls up a line, and the cursor remains on the new bottom
line.

Although only the front of the lorry falls into an illegal
category, the computer is printing the lorry as a single string,
and regards the whole string as being printed at an illegal
position. Consequently as soon as the lorry reaches an x text
coordinate of 39, which would make the front ‘poke out’ into
an illegal cursor position, the Amstrad prints the ENTIRE
string at the beginning of the next line. This is important to
remember, as it means that the size of a multiple character
affects the positions at which it can be safely printed
on-screen. In this case, the maximum x text coordinate that can
be used is 38.

Printing a vertical figure might seem more difficult, because
surely each part of the figure will need a different LOCATE
statement to print it? Here we can take advantage of the fact
that four of the lower ASCII codes do nothing but move the
cursor in particular directions. By including cursor move
commands we can describe a vertical figure by a single string.
These cursor move characters are not printed by the Amstrad

34 Graphics Programming Techniques on the Amstrad CPC 464

‘—_, top$

mid$

The ‘rocket’ could be printed as a single string composed of:
top$ + CHR$(8) + CHRS(8) + CHR$(10)

moves cursor back and down
ready toprint next character
+mid$ + CHR$(8) + CHR$(8) + CHR$(10)

same cursor movement again

+ bot$

Figure 2.8 A vertical multiple character created using cursor moves.

but serve only as instructions to the text cursor where to move
next.

The ‘rocket’ can be printed to the screen using a single
LOCATE statement:

i@ MODE 1

1% REM defi
28 SYMBCOL 2
I8 SYMBOL 2
42 Sw¥MBSL 2

-
ra
O

Codes and characters

58 rocker$=CHR$ {243 +CHR$ (5 +ZHR$ (10 +TH
-ﬂup$f8;+CHR$iiE)+ HRE (242

. M
Al
ra
+

LG T

28 PRINT ‘u:hnt;

93 responceg=""

18@ REM scan keybdard until ‘' greassed
119 WHILE rezponseg :"e" AQND vl

1260 newy=y

12@ responses=LOWRERS I INKEY$)

1412 F responze¢="a" THEN newWwy=y-1

15@ FEM 1f rvocket khas moved print o sgac

e where the bottcocm wWas

160 IF newy{:y THEM LOCATE =,¥+Z:PRINT
“ILOCATE ®,newy:PRINT rockets

178 yv=newy

18D WEND

35

Unfortunately the Amstrad displays a peculiar habit when
dealing with strings containing cursor moves. The above
figure is clearly vertical, and no part of it lies in an illegal
position. However, the computer considers it to be a string 7
characters long and hence will not allow the ‘rocket” to be
printed to any x text coordinate greater than 34. You can

demonstrate by changing line 60 to:

12 MCooDE §

19 REM 4define T okargcters for rocked

28 SYMBCOL Z243,0,24,24,.24.24,34.34,34

2@ SYMBOL 241,3&6.38,346,35:36,38,34,.36

4B SYMB(242,44, 129,129,129,129,153,195
2129

5@ TOCKetr3=CHR% (240 +CHRE (2 +CHR${(1G) +CH
RE (241 +CHR$ (B +CHR$ (1B 1+ HRE (242

s w=3L:¥y=20

79 LOCRTE =, ¥

2@ FRINT vrock2t$

@ responseg=t"

16@ REM scan keybkoard until ‘e’ pressed

118 WHILE responze¢i:"e* AND v»i

126 newy=y

138 resPponses=LOWERS {INKEY$:

L4 IF responses="a" THEN newy=y-1

15@ REM 1f rocke+r has mowved Print a spac
& Wwhere the boktom wWas

36 Graphics Programming Techniques on the Amstrad CPC 464

140 IF newy{>vy THEN LOCATE X.¥+2:PRINT "
"LLOCATE ®,newy:PRINT rocketg

1768 v=newy

159 WEND

We can use cursor moves to create more complex figures, but it
is important to be aware of the restrictions this places on
positioning. For all but the simplest of figures it is probably
better to print by a series of LOCATE statements. This brief
program demonstrates the two approaches:

B
-
=

0l
1

T
-t
e
RIS
-l - i
PR~
b .ch.'.T‘
= "
&7 REM
< M K Wt
SR roco
R
[S 4
=20 DM =
2 "'E?' =
s greag ki
. -—i - T
& REloY =S
- ~ TE b Eacierd
£ i o S R
g ' R Zha 24 LSinNg ZWrTsSov

™

~
C4 -
1R3AR N
- - e -
. -
iiy PF.\.
iz8 Lo cord
Y =
13@ PRI (= 3
L4 MNE:
149 REM woir For kKey depression befores o
e e ™o
mmtiTud
‘\':'E [»
1468 WHILE responces=""
178 responses=LOWERS (INKEY$:
g WENCE
;T T
- =t -
199 REM rthis Wway WE SAan praint o AHY = o
Z B =@
-~ it
R 723
Zoe "CRoracter 4definsd using LOC5T
E s =Re¥e - U

Codes and characters 37

3

g TooH

m

E toWi

r—
<

T

-1

.l
)

KA I TN

RS R RN B S 4

G

0 QM
£ G

8}
Ay

L

L O P I I o T OO R R ST 0 T O T £ S S o |

Yy =
(]

Lial

More interesting effects can be achieved if two slightly
differing figures are defined, and then displayed alternately.
We can use this idea to produce a ‘snake” which wriggles its
way across the screen:

1&g MODE 1

1% FEM define I ‘snake’ Choracoers
2B SYMBOL Z4B.8,8,32,88,31.74,1382
3@ SYMBOL 241.0.0.2.132,74.21.86.2Z2
8 snakel3=CHR$ (240

58 snakeZ$=CHR$ {241

40 snaket=csnakei}

=

S o ¥=13Z

33 FOR ==L 7o 3%

1d
i
o
(1]
B
-

T REM £o0ogSg5le prinneing oOfF oharact

agn one snoake and

oW

~Q

s
*e
-4
XI
m
=
wm
(]
o
m
W
]
(1]
a
g
.
m
[
-

‘ & t0 delete Trnake's Do
il

118 PRINT * Y":staka2t

P19 REM delay - otrmerwWwize it'=z £ll ocwver
200 guUickly!

128 cilidtime=TIME

138 WHILE TIME{Sldtime+ig

= b
o

==

=R

m m I e
‘-I l:; ~

We could similarly define two ‘lorry’ images which vary
slightly to give the impression that the vehicle is jolting its

38 Graphics Programming Techniques on the Amstrad CPC 464

way along. Or we could make the earlier ‘dog’ wag its tail as it
strolls about:
i3 MoGDE 1
REM define I

i
= o~ -
SYMBOL D4

oy
-Q

Y]
|

3]

[
=)
s3]

SYMBOL Z4i.
dog13=CHR% {
d532%=CHR*$
dca3=dos5i$

Y|
[N O &

20 O tn g
ECRARC R
l“v
"
-
.

"
]
T
-
i
P
1
-
u
]
o
m
e
¥

oo
Q6
2
m

i X
oo
(]
o=
(4]
[

PR} (R

0
]
[oa}
T
1R
W]
oo
w
a8
0
w
b
e
" T 5
X
m

187 REM print

space o dele2te 2314 459
112 PRINT * *;dass
117 REM delay - otherwiss 1t'3 Sll ower
oo QUickly!
12@ oldrime=TIME
120 WHILE TIME{cldtime+Ip

13
158 NEXT

Exercises

1) Create your own multiple-character version of a bus, and
drive it across the screen.

2) Design two circular characters with a cross-piece at
differing angles, and print them alternately to the screen to
give the impression of a rolling wheel.

3) Add the rolling wheels to your bus as it is moved across
the screen.

Improving the resolution

Although a number of amusing games can be devised using
only the text screen, there are clearly limitations imposed. The
best text resolution is available in mode 2, and even this has
just 25 lines of 80 characters. In contrast, the worst graphics
resolution is 160 by 200 points. Fortunately, the Amstrad

Codes and characters 39

allows text characters to be printed to a graphics position, and
this means we can produce smoother animation, and give the
user finer control in games. More seriously, it means that
graphs and charts can be accurately labelled at any point rather
than at the closest text position.

The switch from text to graphics coordinates brings other
changes as well. After a TAG (Text At Graphics) command has
been given, characters can no longer be printed following a
LOCATE statement. Instead the graphics command MOVE
must be used to position the graphics cursor. The text
character is tagged to the cursor by its TOP LEFT corner. This
program moves a single character ‘Space Invader’ to demons-
trate the principle:

1@ MODE &

1% REM 4define spqace inwade?r
-, i) ~ 1 VAT = C -~ B = P
28 SYMBOL 24B.2%4,.40,124,21%.255:255:.14%5,
—
P =)
I8 i
42 3
A o
47 R
ew T
P B 51 H
s F
e oM
72 EEM mwade
™ £ . ore -
firet
% REM oCmit the semi-IClon SF o y2oUrT Fgeral
S22 PR “orinvadenrg
P& MEX

The semi-colon at the end of the PRINT statement is vital.
One important consequence of using TAG is that control
characters (i.e. those with ASCII codes @ to 3 1) are printed to
the screen rather than being obeyed. The cursor moves
involved in printing the ‘Invader’ in the above program
become visible if the semi-colon is omitted. We can also see
the effect using the ‘rocket’ as an example.:

12 MODE &

17 REM defins 3
23 SYMBGL IZ48.@
e SYMBOL 24613
3 SYMBOL I242.5
129

40 Graphics Programming Techniques on the Amstrad CPC 464

5& rock
R {241
58
7@
285 FOR c

37 REM rub Dut old rccocketr =ase

P8 MOVE grarFrmics

1@8g PRINT ° "

1@% REM print new PooESE (What o mMes
112 MOME graphicss,y

126 PRINT rockets;

123 NEXT

ur

Not quite what we wanted! The problems created by cursor
moves for both text and graphics mean it is usually easier to
stick to figures that are simple. Figures built up from a series of
horizontal characters can be printed after a single MOVE
statement, because the graphics cursor automatically moves
through the width of a single character after printing and is
thus correctly positioned to produce the next character. We can
see this with the earlier ‘lorry’ figure, which consisted of a
single string:

1@ MODE 1

1% REM defing 2 charactevrzs FOor 1o0T:

20 SYMBCL 24B.02,0.%4,94.,94,127.18,12

21 S¥YMBO2L 241.,0.8.0,68,0,.255.,.0.68

22 SYMBOL 242,248,132,132,055,255,255,7C

3@ 1lorry$=CHR$ (24@)+CHRS$ (241 +THR$ 242
4P graphicex=P:3rarhicsy=280

49 REM Join text to graphics cursaor

58 TAG

4@ FOR =<=graphicsx TO &0

70 MOVE #,3raphicesy

79 REM print space t0 TUub Out back 2f 12
iy

3@ PRINT * "lorryé;

TR OMHEXT

The ‘rocket” would have to be printed with a succession of
MOVE statements, because each character is above the pre-
vious ones:

1@ MODE 1

Codes and characters 41

19 FEM define I P
2B SYMBOL 240,83 i
I8 SYMBOL 241,73 T4
&3 SYMBOL 247, 4 Z.125
» 127

39 roCkettope=CHRS (243!

Sl rocketmidi=CHRE(Z41)

52 rocketrbot$=0HRS (240

&8 TAS

7@ graphics«“=30G:9raphi 1R

BA FCOR y=g9raphicsy TO 3I5@

839 REM rub out 5l1d rocker pass

28 MOUE graphices,y—-45

188 PREINT ;

118 MOVE graphicss

128 PRINT rocketr:

1zl MOYE ararh

122 PRINT

i2Z MOUE gr

iZ4 PRINT

138 NEXT

TAG can be switched off within a program using the TAGOF F
command. TAG is automatically switched off at the end of a
program.

Faster movement

You have probably noticed that there is an inevitable price to
be paid for this smoother movement of figures: the program
runs more slowly. Single character animation is faster, but
there are a number of other ways in which we can ensure that
the program runs as rapidly as possible.

First, we can speed the program up by using integers (whole
numbers) wherever we can. This enables the computer to carry
out calculations more quickly. It might seem that we have only
used integers in the previous programs — however, the
Amstrad treats all numbers as decimals internally unless it is
informed otherwise. We can declare particular variables as
integers by using the DEFINT statement:

i DEFINT 3,x.¥

The Amstrad will now treat any numeric variables beginning

42 Graphics Programming Techniques on the Amstrad CPC 464

with either g, x or y as integers. The difference in speed
becomes apparent if we time the same program with and
without the use of integers:

} DEFINT g9.x.¥%

&

18 MQCDE &

19 REM define I charackters

26 SYMBOL 240.2,8.94,%96.%4

21 SYMBOL I41.E.06.8,68.82,25

22 SYMBOL 242,248.122,132, 72
» 43

3@ lorry$=CHR3 (240 +CHR$ (241 +CHR$ (262
40 graphicex=0:2raphicsy=230

4% REM Join text 0 graphics curson

32 TAG

5% sravrttime=TIME

A5 FOR ¥=graphicss TO £B2

TH OMOUE s« ,graphissy

7% REM orint Toace to rTuUbE DUt BOCE SoF 1o
oy

2 ror o vlorryd

@ .

?5 tortalrtame=TIME

132 TAGSOFF

118 LOCZRTE 1.Zd@

128 PRINT "Time taken was "i(totaltime-=i
arttime) /3IPR"seconds "

A second way of speeding up movement is to take note of the
minimum displacement which the Amstrad can successfully
display in each mode. There is little point in moving a
character horizontally by a single x coordinate in mode 0
because the resolution is so low that printing will take place to
exactly the same spot. Move at least four units in mode 0 and
two units in mode 1. Vertical resolution is the same in all three
modes, but the minimum movement that can be displayed is
of 2 units.

Lastly, plan characters so that they have an empty border
surrounding them. This ensures that movement in any
direction does not leave a trail. The second ‘Space Invader’
shown in Figure 2.9 will leave lines which need to be erased
whenever it is moved. This deletion slows the program down.

Codes and characters 43

Figure 2.9 Two ‘Space Invader’ characters: the first is more useful as its
border automatically erases the previous image.

What comes next?

Most games programs involve identifying what is present in a
nearby screen position — has the racing car hit the wall, and
did the laser strike the Space Invader? By using the TEST
(x ,y) command we can discover the PEN used at any given
graphics position. By carefully choosing the colour of the
characters used in a game we can ensure the program behaves
differently if we move to a position containing a point of a
particular colour. All spiders might be pink, for example, and if
we try to move our fly to a spot which proves to be pink the
game ends abruptly:

-0

LN ks
c
m m
n

m
n
0

24 Thin3s 4o

—,
g
-~
L]

w
Y

LS 28
m

[xa]
8

~

<)
-0
m o
[V

L
-
v

A (]

Gl F) b b
-z
T =
=

m o
C
~r

T B |
<

[B IR
N

[
oo

"

]
T

i

b
L
m

"

]

M a3 M

&
E
=
£
k=
>

nom
i

o

ol
|

~
Rt

Saaa

oneet="":flydead=g

44 Graphics Programming Techniques on the Amstrad CPC 464

129 REM HeeSp scanning kKevboard uUntil the
Fly's dead

138 WHILE response$="" OR flydead={

1483 =“news=xfly:vynew=yFfly

158 responses=LQWERS ({INKEYS:

159 REM pPositicon (#tecst,ytesty o colour

~-ohesk depend n direction of move

w® 0

fa R U N

168 IF responcset="a" THEN ynew=syfly+2:
23z ANBW+iLH:YyEBSE=yNew+s

1780 IF responses="2" THEN vnew=syfly-2:+¢%t
stz HNBW+]l Sy rest=ynew-24

1283 IF recsponseg="," THEM =new=xFfly+4: =%
SSEz<N2W+4T: Yy r=ynew-§

P

s I Y
BT R (R VI
W®on

c
{2 IF respons =*."' THEMN *new=xfly-4:»¢t
23r=Mnew-1&rytest=ynew-2
228 IF HAnew{:HfFly OR ynew{:ryfly THEHN 505
HB Zafa
213 WEND
ZZ@ MODE i
220 ENG
7% REM =S2ft uUp pinE Colour
135 G,0
1Eie @.@, 11
1228
1@2% REM draw 1@ spiders ot random
1B3ID FOR spiders=1l TC 18
1840 spiderx=INT(&8B8xRND (1) +26E)
1850 zridery=INT(IQD#RND (LY +28;
1@&eE MOVE spider<,spidery
1378 PRINT =piderg;
1@8a MNMEX
iBF8 RETURHN
1959 REM test colour at cenkre oOf next o
haracter oosition
colour=TEST ixtest,yEe2st)

% REHM 1f it'=s pink the Fly’'s dead

Gi REM noY perfect - We Zan miss the S
pider if the point misses the body
2@i@ IF colour=11 THEM flydead=i:SoUND 7
2BEB
Z@19 REM print s=pider £9 nN2Ww pPOS1t10N
Z2BR2R HFfly=H=new:yFrly=ynew
2858 MOVE =Ffly.yfly
2R42 PRINT Flyé¢:
2G7e FETURMNM

Codes and characters 45

We can easily extend the game by introducing a time element:

i ol)
1T = o sEE U
F s
128
1T keyboard until the
Fly srner’s reached
128 WHILE <(responses$="" QR flydead=@; AN
CixFly 44808 GR ¥fFly{32@0@:
148 Hn2w=xfly:»¥ne g

158 rezponse$=LOWERS (INKEY$:

152 REM pPOziticn (xtest,yktest) +0 20lour
-check depends on direction of mowve

146@ IF responset="a" THEN ynew=syfly+2:xt:
ecst=xnew+li:ytest=ynew+s

1768 IF responseg="z2" THEN ynew
ect=xnew+l b yrest=ynew-24%

18@ IF responses=".," THEN xnNew=Xfly+d4:x*t
est=rnew+4B:vyttecst=ynew-g

17@ IF responses$=*,% THEN xnew=xfly-4:-*
est=rHnew-1l46:ytecst=ynew-2

2068 IF =xnewd{ xfly OR yMew{;yfly THEMN G055
e Zoze

Z1e WEND

215 TAGOFF:CLS

2@ IF Flydead=@ THEN PRINT "Time ftoken
was: "TIME-cldtime

238 END

¥YEly—=2c

ra
«
+

L |

A useful variation of the TEST command is the TESTR
command which tests the PEN present at a position relative to
the present position. For example, TESTR (10 ,-5) ex-
amines the point which is 10 units to the right of the present
point and 5 units down from it. This program demonstrates its
use. You must guide the ‘car’ around the racing track. Don’t go
off the black ‘road”!

1@ MCDE @

20 S0SUR 1285
3@ GOSUB Z@a&e
&8 END

i8@8 PRPER iZ

46 Graphics Programming Techniques on the Amstrad CPC 464

]
&

[T G A IO W WER o

bk ek et ek et i b pek i peh i i

[I I e S e T el el

n
[

s ped et R e e et

(Y [S Y I 7 I B I OO T T T % % T 0

Bt ek e pet

bt pei e R S et

B

Ry

(s}

() €9
[T T %
RIS

Bi
a3a
240
o3
&0
are
SE6
a5
b)
i85
i69
el D
Liid

% T OO I % I SR u.n T s TRy I

(5T o

LY Y W) [S)

0w
OO0

2ia
-\-:\B
3

FoAN T 0 MO

MM OO A @M B 6 G men

o o+ 4
m S0

<
n

S
O

Ll
[k}

s
=M orTom
=
2

D
T
58

O =G
Sidex=3:3idey
FOR w=sidey 7
LOCARTE =sidex,
PRINT CHR$:{14
LOCATE sidex+
FREINT CHR%i{14

o m

L)

B o B it BT}

QCATE

RINT F
LOCATE staresx
LOCHTE startx
PRINY STRINGE
NEXT

TAG
Colour=@

1 I2:righ
=] 15@: ropy
changey=4&:Ccha
PLOT lefitx+coh

o

i
|

- . e s 4
[E-lde_';*il

& 7
4

i

4

=

[)]

Starty

‘8. CHR$ (! H
cEtarty -1
sErarty+15+ooUnt
(2, CHR$ (1435 5

L
=

"
n

“l

=338
ngex=3I2
angex, rofpy+okang2y,c01

FORE count=1 7O &
yohange=schangey*oount
MoRAnNge=chanNgexx¥count:

MCQUE lerftx+xchange, topy+ychange
PRINT CHR$® (143}

GOGSUBR 14BE

MOUE tTight<-+“Change, topy+y~ochange
PRINT CHR$ (1432

GOSUB 14@0

MOUE 1e ohange,borty-yCchangs2+§
FPRINT CHR$ (1432

GOSUR 1480

MOUE rightH-<“ohange,becty~-yohange+2
PRINT CHR$ (1435

GOSUE 1400

NE®T

REM 2 cay symbEols, ONe for LUp/SdowWwn

mert
REM o2ne f

SYMBAOL

efFr-/Tigdkt movement
182,344,124, 1246.36,1B2

Codes and characters

@

1420 SYMBOL 241.08.90,106,24.24,124,%0.0
1430 cide$=CHRE (2

1448 UP$=CHRS (I41"

1450

1460

1479 z
1426

1498 T

150 uR

1600 FOR counti=i TG &
1618 MOVER -32,-14

1420 PRINT CHR$ (143);

163@ NEXT

14643 RETURN

1999 REM scan keyboard for key depressio
n

200@ cAarhit=g

281iR changex=@:changey=§

2B2@ WHILE coarkit=g

203D responset=LOWERS (INKEY ¢!

2040 IF responses$="a" THEN changex=@:cha
ngey=2:car¢=ups:testx=-l4&:testy=2

2@5@ IF response$="T" THEN changex=@:Cha
ngey=-2:C0arg=ups: testx=-1&:testys-14
@&s@ IF responses="," THEN changex=4:Cchg

ngey=P:car¢=csidet: test¥=Q: tecty=-£
2¢7@ IF responses$=","' THEN changex=-4%
angey=p:cars=side¢: testx=-3I4: testy=-1
2877 REM Space Bar stops car
2PBY IF respoinses=" " THEN changex=@:cha
ngey=@

2837 REM only draw car asqain when it kas
been mcoved
2670 IF changex<{;@ OR changey{:;@ THEN GO
SUB I0213

21@@ WEND
21182 RETURN
2997 REM test colour OFf pixel
esent positicn
2?98 REM test colour oOf pixel n
esent pOsSi1ciCn

2999 REM in next character row/ /column is
rperfect (but slow:

3@ colourpen=TESTR{testx, t2sty)

tCk

(=)

ot}
]
X

o
D g
(9]

pr

]
X
o
g
u]
hs)
5

47

48 Graphics Programming Techniques on the Amstrad CPC 464

IBBAT REM if not INK B then car is off ¢h
2 Lrack

381@ IF colourepen(}@ THEN carhit=1:S0UND
7,588

JAZ20 carx=carx+changex:cary=cary+changey

3838 MOUE carx,cary

3640 PRINT cars;

IBSB RETURN

Exercises

1) Add a few obstacles on the racing track — yellow bales of
hay or the burnt-out remains of a car.

2) Create a multiple-character green caterpillar that ambles
slowly across the screen.

3) Add some red berries which are printed at random
positions on-screen. If the caterpillar eats a berry, it turns
blue and dies.

4) Add keyboard controls so that you can attempt to guide

the caterpillar on its perilous journey by moving it
vertically so that it avoids the berries. The creature is safe
if it reaches a rich swathe of green grass on the right of the
screen.

Chapter Three

Graphs and charts

In the last chapter we looked at the lighter use of graphics, in
games, but there are much more serious applications, even on
a microcomputer. The last few years have seen a proliferation
of sophisticated software suitable for small businesses, and
many of these programs take as their aim the presentation of
information in a more easily understood manner. Rather than
providing endless lists of facts and figures, the software
manipulates the data and from it produces graphs, bar charts,
pie charts, or a combination of all three. The use of colour and
high-resolution graphics makes it easy to display trends or
highlight particular features. The computer has the added
advantage in that it can rapidly recalculate and display a new
graph or chart to illustrate the consequences of, for example, a
drop in sales revenue.

We shall concentrate in this chapter on software to produce
the three most familiar forms of data presentation: graphs, bar
charts and pie charts. At this stage in the book it is important
to be aware of some of the rules-of-thumb that should be used
when planning software.

First, it is unwise to attempt to write a program as a whole. It
is much easier to develop, debug and amend a program if it is
written in MODULES, short sections of the program that have
a specific purpose, i.e. to draw the axes of a graph, or colour a
bar on a bar chart.

Second, a program is very inflexible if it is tied to specific
values. A program to draw the axes for a particular graph
might work very well. But if it contains lines like:

186 MOVE 2@8,37€C
LiB DRAW 20828, 128
126 DRAW &£38.,1Z728

it becomes difficult to use again, and producing a new graph
49

50 Graphics Programming Techniques on the Amstrad CPC 464

may well involve rewriting the program. It is far better to use
VARIABLES on all possible occasions. This has many advan-
tages: variable names are more meaningful than strings of
numbers in MOVE and DRAW commands, and the program is
easier to understand and modify if we return to it after many
months and wish to change it.

Additionally, the use of variables means that we can write a
general purpose program that will produce a graph for any set
of data — the only changes necessary will be to the data itself.
There will be no need to edit program line after program line to
take account of the new circumstances.

Writing a program of this form involves more thought
initially, and the software may take longer to develop. It is well
worth the extra trouble. By adopting this approach we avoid
writing numerous programs to carry out basically the same
tasks.

Point and line graphs

The first question that arises when drawing graphs is that of
the resolution required. On the Amstrad we have a choice of
modes, each with differing horizontal resolutions and the
same vertical resolution. In general it is better to draw a graph
with many points in mode 2, to take advantage of the high
resolution. Unfortunately we are limited to only two colours in
mode 2. If the number of points to be plotted is fewer than 300
mode 1 gives a reasonable compromise between the demands
of resolution and colour: it offers 320 individually addressable
points horizontally, along with a choice of four colours.

The Amstrad has been designed so that a change of mode
does not affect the range of the graphics coordinates. The
program that follows will thus run equally well in any of the
modes, although clearly the resolution will vary.

We will begin by developing a (very brief!) program. For the
moment the graph will be drawn using the entire screen and
we will leave the problem of labelling until later. We will write
the program as a series of subroutines. This gives us more
flexibility, and makes it possible to plot several sets of data on
a single graph, or draw multiple graphs, without any radical
alterations to the program:

Graphs and charts 51

13 1
o

12 505

4@ END

£3F RE O¥es

5 YPoOi 197

5. MPp oL =429

3 MOME @.¥POinEs

5 DRAW 2.8 1

= DRAW %Fpoind

b c2aa

57 MOLA=-MmiNH

= ¥y=18E

SR ¥=1@R

LEE Aiffyv=mAaxy-—miny

L1R PointrA=

AT POinLY=

£FE RETURN

739 REM vead points from data and plox »
neir PCExtiCﬂ

@@ READ £35

235 oIM =(¢ T tey , Yy inoOOfFRCinES

i@ FOR caunt:l To nosFPoinks

E1S RERD =icount: ¥dicspl=siN{0OUNEr =Mminmx:
APD1InNkxR

gZ@ RERD Ty HdiEPl= (Y {CoUNEI=Mminy)
SROINtY

Q5 PLOT #4displ,v¥displ

S5I2 NEXT

796 RETURM

18gg DATR S.2@@.1@e, 166,268,156, 26,25
3D, 490, 4322, 1022

Line 52@ draws the axes of the graph. The origin is placed at
the bottom left corner of the screen. It is essential that we know
the minimum and maximum values of the data, so that the
graph can be scaled to ensure that all the points are on-screen.
These values are stated explicitly in lines 550 to 600,
although we shall see later that the computer can itself derive
this information from the data provided. Once the Amstrad
has found the difference between the minimum and maximum
values, it can calculate how much each unit along the x and y
axis will have to represent for all the data to fit on, lines 610

52 Graphics Programming Techniques on the Amstrad CPC 464

and 620. The origin will represent the point (min x, min y)
and the top right corner of the screen will be (max x, max y).

Finally, the program reads in the x and y coordinates for the
data, scales the points and plots them, lines 8@0 to 83@. The
data in this case is already ordered from the lowest to the
highest x coordinate. Randomly ordered data will be dealt with
at a later stage.

You may care to run the program a few times with changed
values for max x and max y to see the effect it has. Doubling
max x will ‘squash’ the graph towards the left, as the program
leaves room for higher values of x that might be present in the
data. Doubling max y ‘squashes’ the graph downwards. The
variables min x and min y give similar effects when changed. If
you dislike the fact that the corner of the graph is
(100,200) and not (@ ,0), change min x and min y to 0.
(Note that this wastes part of the screen area as there are no
points displayed here.) Remember that the data at line 1000
falls within a particular range — if you change the values of
min x etc. too radically you will lose some points from the
graph!

Running the program reveals a few problems — the graph
and points are rather difficult to see. A few modifications can
improve the situation:

FoinNtHE=
: Foimby
&8 RETURMN

735
hes
200
295
2@¢
207
208
309
1@
115 READ
FE=Ir B!
aze

REM rTecd
r
READ

CIM

w

(il

rtm 0

EUNLUS Y U
a0 W0

@R o

@ e

FCSificn
no2fPpiDa

“inoofepoin

I
uw

o1t

=

P 1]

o
v

-4

[y

NOCFPO1
yiAdiSspl=

Graphs and charts

data and ploy ¢
gofpointe:
Silour

ints

(= {CcouUntE==min:}

L L .
(N LCDUMNT; —yYMaIn:
s 3 ~ - " -
LEGE, ZEE, 150G, 3

53

The colours used to draw the graph are now specified in the
DATA statement. We could go even further and specify the
MODE here, but let’s stick to mode 1! The points can be made
more visible by plotting a cross or square at each position. This
is easily done using relative moves:

12 MODE 1

2@ GCSUBE 581
I8 SOSUBR 28E
&3 END

4%% REM draw
588 yPROints=]
ZifE HApDints=4&
328 B,¥pP
238 DRAW &.&.
549 DRAW »poi
S5 mins<=Z2@8
368 + D0
S7a

588

578

5210

£180 .
£20 pointy=di
478 RETURN
77% REM reaad

SARE
e

I

35
cints
1

i
mte, R

=

and plot %

54 Graphics Programming Techniques on the Amstrad CPC 464

heir poesiticn

266 FEAD noofpoints

8RS DIM ={(nocfpoints) ,y (noofpoints:

3E6s& READ pencolour,paFpersolour

SR7 IMK B.papercolour

28 IMNK 1.pencolour

50T PAPER B:PEN

2i@ orossHE=ig

s11 crcesy=1{3

214 FOR count=}] TO noofpoints

Bl5 RERD #{count): :xdispl=is{county—min’
AP0ointx

826 READ v i{count::@ydi- CoDUN T -Mm1Ny
Spointy

825 PLOT “displ.sdispl

522 MOUYER -Ccrosss,orcesy

240 DRAWR CZ#Oross<,-Z#CrDsS3y

258 MCVER

34E DRAWR ¥

570 MOUER

338 NEXLT

9B RETURN

lg@e@ DATR S.@.24,.2600, 10,1000, 26068, 150G, 2
80,2500, 4008.4006, 1088

The movement to create one ‘arm’ of the cross is given as two
variables rather than in the data because the size of such a
marker is likely to remain fixed from run to run of the program.
You may care to make the cross smaller or larger to your own
taste: you need only change two lines.

The program will be more useful if there is an option to join
the points. This can be indicated by setting a variable ‘flag’ to
one of two values to show whether the points are to be plotted
separately or joined:

@ MODE 1

3 G0SUB 3522

G GOSUB 368
ENC

j-d;’l 12

3 @

(WL U TR TR W T S S W [O I S

=
ETE diffx=ma<<-—-mins-
8@ miny=100

ZTE =3

L33 difrfy=m

LA10 Po1InTE=

SC2E POoinEYsdirfy
$7@ RETURN

79% REM read Points
hEi1r PGSiticn

Sg@E FEAD noofpoints
285 DIM xinocfroint
ze FERD Pencolour,

©

INK @,papercclsc
INK 1,pencolour
PAFER B:PEN 1

w0l

ur)
3 m

O) O Un

21@ crossk=14@

S1l croceey=13

212 fFlag=i

2i4 FOR count=i{ TO
215 READ =icounmbt: =
‘POiNkx

2146 Hicountr=<dicpl
32@ RERD wi{count) @y
JEointy

271 yicountis=ydispl
825 PLOT =#Adispl,ydi
2z MOVER -ovso Vi
245 DRAWR Zsoro -
25@ MOVER - =
240 DRAWR 2

876 MOVER -2

874 REM 1if flag =zet
Yious one

275 I 1 AND <
unt-1 k-1
3aa oM

S8

l“d

DQTQ S5,8,26,20
B3, 4BBB. 18

nr3
1k E
fFrom da
Sr,y(noo
paperTcol

ur

nDo2fFPOLIN
di

e e B
displ=1y
== 1

=i

e R
-TGor

o D

G.106.
B3

bt
(]

SEl=(x¢

Graphs and charts

rooang PloE T

FECinktz

g

5
Oy =m A

{oouUNt-mz
FCQinie tOo FTE

T 4 e -
0@, 2e88,1580,3

55

The major deficiency in the program is the lack of labelling. As
the graph is ‘tied” to the bottom left corner of the screen there
is no room for labelling, and it seems as if the program will

56 Graphics Programming Technigues on the Amstrad CPC 464

require drastic modification. In fact the use of variables and

the

Amstrad’s ability to alter the graphics origin make it

remarkably easy to move the axes:

=

[e
[

(3]

e
(]

Q
)

(&
&y

)
n g

m &

Lol [0 et et
.

Lnoon e o LnoLnon
N

c

=

5&
573
s
s59E

g

06
-

A1

P ol
P o)
s
ATD
-

A
hei

m
[}

B85
e
as

-
D7

-

AT e @

[s B

L LR o S T B v I I B s I 0 L IO I I s R ¢ A B R 1))
[A]

L2 T S T O T o I % I o B e e L |
[}

[I A IS

MODE 4
LOSUBE SR
GOSUBE 368
[l N oY
ot E
FEM draw a
ox={BPB3:cyv=53
CRIGIN ox,o¥
¥ROINES FE-oy
[5 e
XKpoint 27
'EOB. o
[1
-~ - Y
SR ; mcs &
L nEs,. &

=MaFE~Mi
lea
=125a
=MAHY -Mmi

FREM re2ad points fFrom data and pior &
[N =R~ B - R By

FRERD noofpoints

OIM xinoofpointe),y {noCcfFpoints}
FERD Pencolour,papercnlour

INK #@.papercolour

IMKE 1.P2ncolour

PAPER B:PEN 1

Crossx=i

crosey=id

Flag=1

FOR cCcount=1 TO noofpoints

READ =icount) ®Hdispl=s (A (oount:—mimnx:
inEx

iSPl=iy (COUNE) —Minys

[

11}

Graphs and charts 57

243 CRAWR -2#Ccrocssy

258 MOVER ; @

S48 CRAWR 2uCTOESYy

278 MOVER CTrOS3Y

574 FEM 1 COGNTMECt POint ¢C0 Fre
WiDuWs one

275 IF flag=1 AND count>l THEN DRAW ®={co
. , eoUT et

Lines 510 and 515 must be modified because we are no
longer using the entire screen for the graph. The remainder of
the program can remain exactly as it is: all lines drawn and
points plotted will be relative to the new origin, as you can see
if you run the program. Give ox and oy new values and you
can see that the shape of the graph remains the same no matter
where you put the origin, although its size will obviously vary.

We now have room to mark intervals on the axes and label
them. This is not something which can be completely
automated. Labelling the y axis should pose no problem —
hopefully we have chosen an origin which leaves sufficient
room for the labels!

Clearly, if we have room on the x axis for 10 marks we could
instead choose to use a smaller number, such as 5. The
maximum number of intervals marked is limited by two
factors: the resolution of the mode, and the width of the
characters to be printed beneath each mark. The computer can
calculate whether a suggested interval will result in printed
characters overlapping, but it cannot really select a reasonable
interval less than this for itself. Humans have a taste for graph
intervals of 0.5, 10, 20, 25, 100, etc., depending on the
circumstances. We shall leave selection of this interval as a
human function: the Amstrad will reject unreasonable values.

The labelling can be broken into two parts: marking the
intervals with ‘ticks’, and printing and characters. The first
action cannot proceed if the subsequent printing will overlap.
We must inform the computer of the maximum length of the
strings which will be printed so that it can calculate whether
the strings can be successfully fitted in beneath the x axis:

58 Graphics Programming Techniques on the Amstrad CPC

464

5683 REM hide garaph until labelling compl

ete

204 IME B2.246:IMNK 1.24

£22 REM number ofF ‘¢icks' o be marked ¢
1 < and ¥ axes

£2% RBEM nobte this ludes o 1ok ot &

ke origin

L£IF #“vrange=E

L4l yrange=ig

&6% REM graphics distance betwsen sach

L S al A

58

558

&&2 ! oF numb

ers ri i

£56% REM you may ave to Cchangde this for

YoUr own data

£78 MaxKstring=4

473 REM =ize 0f character in terms oOF gr

aphics pointse for mode |

474 REM chkange charwider €0 IZ 1if progara

m is TUn in mode G, £ if mode

478 charwidEth=14&

&74& Charheight=14

479 REM calculate max string length in &

erms of STraphics pointes

488 graphHstring=okarWidih: sing

488 REM dc nct l1akel axes if numbers are
00 wWide o fit

&23% REM or if diztance bertween En o

arrower than 1 oka ter

&78 IF Hwidtrhigrap . Ering QR #widthi{cha
Fuwideh THEMN RETURHN

&71 REM itkD For ¥y oo

idth*maxystring

FEE Hrtick=4
7B2 yeick=2
783 REM e=ac

H
w
T
o
]
(x)
J
jal

O

-

he previcus o

OR vheight{char

R otick’ iz labkelled xwvalues h
n

Graphs and charts 59

704 wwalue=diffx/=<ranges

784 TRG

@7 REM 4do0 it =<vangae timesz t£0 give the T
gequired number of ‘ticCks

7m3 FOR count=@ T0O =<range

718 MoyE @, a3

711 REM mowe 4Qlcong » axis t0 start oSF o
ick”

718 MOUER =wWwidth¥count,{

712 REM draw ©ick

7i4 DRAWR @.-xcick

28 NWEXT

T OREM ditro For oy oqamxis

738 ywalue=diff 1

732 FOR 2 x ==

-1
(LI B Y 9 I W T o O O I

ra

)

™

CRAWR —-ytick,d

u
0y o

-4

MNEXT

RETURMN

As with the printing of the crosses at points on the graph, you
may prefer your ‘ticks’ to be more or less obtrusive. Their size
can be changed by amending the appropriate lines.

Rather than carry out a recalculation of the tick positions
when printing the x and y values, we can slot the printing
routine in at the appropriate point when the ticks are drawn:

7 T2 sArangs
711l REM mowe along « Gx1iT Y0 stars of ok
1<
71 FISUTE L
=i
k
REM ge £ print

. Y k2 Correct position
number relative o Ttick’
1& MOVER -charwidirn/ /2,-xtick
718 numbert=STR¢$ (minx+counexxvalue:
7192 REM truncate walue if it's +50 1ong
o fik

2@ number$=MID% numbers$, 2, max<string)
2 length=LEN(numbers:
2 REM strip o2fFf decimal point if ir 2n

2

7

60 Graphics Programming Techniques on the Amstrad CPC 464

de in one

724 IF MID$inumber4,12ngthi="," THEMN num
bers=MIDs inumbert,l.lenath

FZ6& PRINT numbers;

1

G

h

T34

738

TIO

wd et

Ta0 -grarhystring, charheight /2

742 numberg=STRE(MiIiny+countcsyvalue:
744 number$t=MIDt numbert,Z,.maxystring:
744 lengbth=l EMiniumbeT$

748 IF MID$ (numbers,length)=*," THEN num
Eerd=HIng (N t,12ng¢h

743 EEM pad TUmMESTS 2UY ST they il
738 IF LEMN nume
2r4=CTRINGE ot
i %

75 8] cumber§

TE

We would also want to label the axes and give the overall
graph a title. Again we must assume that the origin has been
sensibly chosen so that there is room for the characters!

.

J
T nLa o in
o0

REM lakelsz for Gxes
©labelg="M

wn

1
-

en in gm"

752 ylabels$="_ 2s

785 REM find label 1engtch 1in termes of ar
ApF1S PO1INETS

TAR Xxlablengthk=LEN{(xlabelt)#scharwidsh
751 REM fi

1inNg labkel,

TE£Z2 #labek

783 REM mo

~ i O~

RN
r
1
X
D
m
LY

Graphs and charts

TF@ ¥la &= z

771 REM P ted =
eparate = o =1
FFIZ OFOR n T Ee2l

772 REM extrac character from label

774 orRart=MIDEylabelst,count, 1

7?75 REM mowve left I characters fFroan ¥ GF
i numbers 0 Print character

774 MOQUE -charwidith* (maxysering+2y.,.yvlabs
tart—-charheights {count-1;

778 PRINT chart:

TEE NEXT

TSR ORETURN

61

The program is not complete, because it will only work on
previously ordered data. This is adequate for many purposes,
e.g. measurement of rainfall over a period of time or fluctua-
tions in the state of your bank account over the months
(though you might need a negative axis here!). If the data
values are to be sorted into ascending order it will no longer be
adequate just to read the values, scale them and plot them
immediately. Each value will have to be stored so that the
computer can compare all the values, and, if necessary,
re-order them. All the data is read into an array and then

sorted:
214 FOR count=1 TO noofpoints
515 READ # at 1SRl (X {(CouUnty —Mminx=}
APoinkx
214 Micountr=xdicpl
22@ READ vy (count):ydispl={(y (count)-miny:
SRpoiney
221 ¥ i« 1
825 NEXT
37% REM < array value in surn
233 FOR e noofpoints
546 FOR ne TG 2 STERP -1
538 IF 3 (value-1) THEN S0SUB 1S
& ELSE
WEXT
HE
R ol sround =0

m
X
Ut
=
o
n
X,
[
i
1
N
)M
<
P
-
]

62 Graphics Programming Techniques on the Amstrad CPC 464

A few other lines must be modified as the coordinates are no
longer read directly from data and plotted.

The sort used here is known as an INSERTION SORT. The first
two x coordinates are ordered and the third coordinate then
inserted into its correct position with regard to the first two.
The process is then repeated with the insertion of the fourth
coordinate and so on until the coordinates are all ordered from
lowest to highest.

Sorting of numeric and string variables is a topic in its own
right within computing. If you are sorting several hundred
numbers you may find the above process too slow, and you
may prefer to use another sort. For example the bubble sort is
particularly useful when the data is already partially ordered.
Ultimately, really rapid sorting of a large set of data can only be
achieved using a machine code routine.

One advantage of sorting the data into x coordinate order is
that it gives us an opportunity of letting the computer calculate
for itself the values of min x, and min y, max x and max y:

28e FOR
298 PLCT

MOVER

= c
?eE RE B

Y% BEM thizs fime dat disordersd
1988 DATA S5.8.24, 1031 4ABB, 1086, 288
i6BE.Z5068,.4806,1506, 3

The program still has a few weaknesses, which you can
attempt to rectify in the exercise following, but it is adequate
for most purposes.

Graphs and charts 63

Exercises

1)

2)

What changes need to be made if the program is to run
successfully in modes 0 or 2? What values which vary with
the mode could usefully be replaced by variables?

At present the y axis is always drawn on the left of the
graph, and the x axis at its base. Modify the program so
that when the data includes some positive coordinates and
some negative ones the x and/or y axes are drawn through
(0,0).

Modify the program so that successive sets of data within
the same range can be displayed on the same graph in
different colours. Don’t repeat sections of the program to
draw the other lines: identify the parts of the program you
need to use and call them as subroutines.

Modify the program so that two graphs with different
scales are displayed on the upper and lower halves of the
screen. (You will need to amend the value of the variable y
points and change the origin twice.)

Extend the program so that the data for the graph can be
read in or saved to a file.

Bar charts

Drawing a bar chart is much easier now that we have a
program to draw a graph, because we have solved most of the
problems in the previous section. The process is simplified
further because we are only dealing with the y coordinates:
once we know the number of data elements it is easy to
calculate the width of each bar. Additionally the data is already
ordered, so there is no reason to sort it. The similarities to the
previous program point up the advantages of extensive use of
variables and subroutines:

1@
29
£{z

40

80
~a

Mm n &
(s}

D S

MODE 1
GOSUE
GOSUB
END
REM draw
CH=133:0yv
e

FPEM h14d

woon
=@
O

() (]
1

4
[
]

won oD

PR Uunt1l labesiling compl

L1 GNP By

64 Graphics Programming Techniques on the Amstrad CPC 464

[- i - = L TR -
SGe INWNK @,24:INE 1.2+
S25 GREICZIHM

i@ 32

R LT

SR = 2

= fmmim b
32@ FEoints

= -~

-t

number

LV
mfﬁm

T ¥ 1415 ONly *Yhis

£2% REM =range giwves number of bars

438 READ noofbars:srange=noofbars

L4413 yrange=syT

449 REM graphics distance kberween eack
Eick!

Q58 HKwidEmR=INTi{xpPOints/<xrange;

L6418 pocinte,/yrange:

AT7Z BEM size of rackeT in E9rTms SfF ar

xi=4a
&74 if
Hil 1
475
o

o
RUURET LN Y |
) o

»

5 strin strinsg

LT 4L (3T aph: hticharhe

iaht THEN RETURN

4%% REM l2ngth oOF ‘Hic¥s’ when 4drawn on

axes

TEE Rtick=4

7E2 wvEick=g

783 REM 2ach ‘fick’ 13 1abelled “wvalus h

igher than tthe previous ane

THE TARG

787 REM 40 1t wrange times 0 giwve the T
re

in

4 number of ‘tick
¥waiue=diffy /yrange
FOR count=@ T¢ yrange
MOVE @.@

MOUER @.yheightscount
DRAWR -ytick.R

~J w4) m
[
-

D 2N DV |

[N % I N I CN Y s |

4o
o Cr

Graphs and charts

740 MOVER

oumb

1]

- -
e MM

leng
IF #™

]
']
-
T & F4 o 1D

75 IF LEMN
er$=STRIN
+numbers
752 PRINT numberg;
754 NEXT
755 REM labelszs for axecs
75& Xxlabelfg="Mice popUlartion®
758 ylabelg="Cheece eaten 1in gm®
75% REM find labkel length in terms of gr

i

1 ;2 ArWidEh

e Fare printe
al rred

& Xlabstart={<points-* gth;: /2
763 REM mowve down 2 charv From Mo oax
i€ &0 print label
F&4 MOVE “labsta
7&5 PRIKT #iabel
767 REM di Q
748 ylabl
TTE vylabs:?
771 OREM =ack =
2parately af thi
772 FOGR count=
773 REM esxtract
774 char$=MIDs (vlab £, 1
775 REM move lef&t 2 characters from ¥ ax

i€ numbere £o pPrint characecer

7746 MOUVE -—-ocharwidths ima<ystring+2Z).,v¥labks
tart-charhei1ghits H

778 PRINT chars;

750 NEXT

77@ FETUERMN

799 REM reoad points from 4data and plot ¢

T

i POSitiCn
8@ DIM ¥ i{nDofkars:

= o 00

@

66 Graphics Programming Techniques on the Amstrad CPC 464

8R¢& READ pencolour,papercolour

2@7 INK @.papercolour

208 INK 1l,pencolour

3@%? PAFPER G:FPEN 1

Bl4 FOR coune=1 TQ noocfbars

215 FERD ¥

317 FREM g according &

n

-1 ¢

-

)

A
S&a

S4B

a7@ Bay

258 DRAWR B,-wi{count:

370 OXK=0H+<width

399 REM shift origin ready +0 draw next
5GT

78 CRIGIN 2K.0:

FiE NEXT

77@ RETURN

7?29 REM khe2i1ght of bars only required as
data this time - width is fixed

128 DATA 18.2.24,356,170@.7540,44E,79760, 12
4,844,545,644,222

Subroutine 8@ draws each bar as a series of relative moves
with respect to the origin. By shifting the origin a fixed
distance between the drawing of each bar we can use a loop to
draw a succession of bars.

The final display is more impressive if the bars are shaded
different colours. Unfortunately the Amstrad has no command
to fill a graphics area with colour, so the bars must be shaded
by drawing single lines as rapidly as possible. In the last
chapter we identified some ways of speeding a program up,
and we can usefully apply some of that knowledge here:

2328 barwidth=xwidth-4%

235 colour=2

840 FOR count=1 T¢ noofbars

44 REM colour alterncte bars differentl

Graphs and charts 67

THEHM c<colcocur=Z2 ELSE colou

[

T
r o
]
i
v

540 M

= o r z

SE8E N

9’2: 2 <~wi1dih

22? R 1f T ori1gin ready o o 4draw nesr
Bor

FaR CRIGIN ox.oy

QLB NEXT

770 RETURHN

The lines are drawn vertically rather than horizontally because
most bars will be higher than they are wide, and this means it
takes fewer vertical lines to shade them in. Really rapid
colour-fill is only possible with machine code routines.

An interesting variation on the bar chart is to draw ‘solid’
bars to give a three-dimensional appearance:

I bEarwidth=vwWidth-4
23! REM barzide 13 ke = owidith of bRs oz
42 oFf the bar
332 EEM barktor 1t the v heigrt oFf the bO
Sk of the bar abowve the front
322 REM pPut wvwalues oOF your gWwWn *to get de
eper or challower bars
2324 barzidesbarwidth 4 bartop=barcsids
o7TC
il ud wt
348 1 T4 noofears
244 Glzernate bGre 4differentl
4% IF colour=32 THEM Colour=2 ELSE colou
r=3
1N ERe Bo
T barwidi
ae STEF =

68 Graphics Programming Techniques on the Amstrad CPC 464

harwiden /8

259 REM draw 1in2 in another <olo

ur - helps the bar

&0 FPLOT @+

349 REM dra P point on
sar at ki rd

2768 DRAWR & 3 ME L, oolour

371 REM dr=z = irn o diff

2rent ocolour

S7C2 PLOTR 2,8.1

273 REM nea: ine muUust bBe drgwn o litble
?":i'-_-’-her

74 REM the keigkit 0OF &
bar bac

TE martcpoount=bartopoounkt+oharWideh S
F bartcpcoount:bartzopr THEM bartopcocount=kb
reop

25 HWEXT

21 RE? draw odtiline oF kBEav o 1n o ancthk
(== B

Y=y {Z0UNET)
CRAWR &,%,1
DRAWRE Barwideh, &
DRAWR B,-%

MOQUER 8.5

DRGWR barside,bartor
DRAWR @.,-¥-bartop
oX=OM+HWwidER

REM z=hiftr origin ready 9 draw nexrt

oo oo

-3 Qo

PO}

[Bin IR LI N o BRSNS) B S W [G]

0D) XG0 0D 03 00 D CO 00 0T 0D 03 D e O3 o

g CRIGIN 2.0
18 NEXT
7% RETURN

Exercises

1) Make changes to the program so that it runs correctly in
mode 0 or 2.

2) Modify the program so that it draws a horizontal bar chart
rather than a vertical one.

3) Extend the 3D bar chart so that a succession of bars may be
drawn, each set ‘in front of’ the previous set.

Graphs and charts 69

Pie charts

A pie chart has little in common with graphs or bar charts, and
here we must develop a completely new program although
again we will use subroutines. The resolution is important for
the pie chart, as it involves the accurate drawing of a circle, but
the use of colour gives a pie chart more impact, so we shall
again compromise and use mode 1.

The program to produce our first pie chart simply draws a
circle and divides it into sectors of the appropriate size, each
with a coloured outline:

1@ MODE &
28 GoSUR 1023
I GOSUR e
&3 Gosde I
S& END
9% FEM read from data Civcle censtre 200
rdinates plus radius
1880 FEAD centre=,centrs:
12313 READ radius
18z FERD viumberofwalues .
1836 0IM walueinumberofvalues:,angle (numn
Earofyvalusas:)
1837 REM add walues together so Ccircle o
an be ivided appraopriately
1@4E toralofwalues=@
1258 FOR count=i TO numbercfwalues
1848 REARD walus{couns:
1378 totalofvalues=totalofvalues+value (o
Sunt;
12383 WEXT
1878 RETURN
1188 CARTA ZO06@.2Z88,1Z28,5.1,2,3,:4%
19?89 REM calculate anale for each sector
= @ FOFR <Counc=1 TO numberofwaluss
analeicount:;=2xPIxvaluei{count: 7tota
1
WEXT
RET
REM
ze
Soloursl

70 Graphics Programming Techniques on the Amstrad CPC 464

IE3F REM in mode @ <change noofoolours to
15 (background excluded;

IAGE noof drs=3

IR5E FOE T

857 REM 1 e

IRLB endangle=star

3 T REM ng fagind

2z oo -0l i a

I RE? ire fivsy and lasit seofor

s are d

I@3e IF =
F lues +

1ou

Inge

a]

{247

Iae? EEM Y

188 FOR ongle TS sndangle =7

EF stepsice

311i@ DRAW centrex+radiusxsIN{angle: cent
rey+radius#00Ss{angle;

I1z@ NEXT

3179 RFEM wpdare start angle For nex: sSeo
car

313@ srartangle=endangle

Ii48 MNEXT

158 FETURMN

Subroutine 1000 reads the values from DATA, and finds their
sum. This is needed to find the angle of the sector representing
that particular value in the pie chart, subroutine 2000. Each
sector is outlined in a different colour, subroutine 3000.

Running the program reveals that for a pie chart with a large
radius the chart is drawn rather slowly. We can speed things
up by making the centre of the circle the new origin: this
makes the calculation more rapid:

~
]

sy Tagius 0

N

g

il M

-
W s

bt pt
i

Graphs and charts 71

The need to calculate the sine and cosine of angles slows things
down, but this is one occasion when we really can’t use
integers instead! However, just to demonstrate that there is
more than one way to crack an egg (or draw a pie chart), here is
a much faster program. This only calculates a single sine and
cosine, and then uses these values to determine the next point
on the circumference:

radval=radius«d

FOR count=1

=] = b

A
@ Cres, cemETa,
E4EE = e ornly 1rntegsSrs Witk br
1= Ehod =d= it iz
2 DEFTINT
IH3IS thesiv=SIN2#0I Sradunl ctesos=000
TP I Sradueal
3z Tosl=ra
IE3IF REM g ot "o foolours b

BoCokgrou ludesd
I647 MOoOFIolours=3
IR53 FOR count=] 7o numbe
34 REM crange Colour FO e o
TEFE colour=l+io0lours Ml ours
IA7Y REM make surese first s2ector
s are difrerent coloures
IP2G IF count=numbeerofyvaluss AND numberao
Fvwalues MOD noorcoclours=1 THEKN cclour=1+
foTlour+ Ll MOD noofoolours
1555 FEM draw secikoT
J188 FOR countli=] 7o angle{count
I11l6 ®=xlwthecos-ylsthesain
2112 y=xl¥thesin+ylxtheons
I114 PLOT w,y.Ccolour
Ille HKl=x:ywi=y
2129 NEXT
312% REM draw line o0 c2nkr2 FOr this sSe
ctor
J13@ MOVE ©.@:DRAW «.¥

72 Graphics Programming Techniques on the Amstrad CPC 464

43 NEXT
0 RETURN

ot

ol 0
A,
nog

The pie chart is more impressive if each sector is coloured, and
the first program is easily modified to do this. The simplest
method is to draw lines successively from the centre to each
point on the circumference:

LN IR I I
[
m
AN

RO Sl A

X

T

[ag
"l

()

m
o
(L

U e D Mo
S

oMo

This runs even more slowly, but unfortunately unless extreme-
ly small steps are taken some pixels within a sector are not
touched by the lines, and remain in the background colour.
One way of speeding things up is to colour-fill only alternate
sectors, leaving some sectors in the background colour. This
approach can result in further time improvement if the values
are read into an array and then sorted into ascending order. By
judicious rearrangement of the order in which the sectors are
plotted, we can ensure that only the smaller sectors within the
circle are colour-filled. However, this rather defeats the object
of using mode 1, and the labelling of the sectors is vital,
otherwise the pie-chart can be very confusing!

It is possible to speed the program up still further by
calculating the coordinates of the circumference and storing
them in an array, and using the array values when the
pie-chart is drawn. This is not an approach to take if you are
short of memory, because the arrays required are very large.
This is easier to do with the alternative pie-chart program:
1@ MODE i
20 50SUBR 102D
1@ GOSUB Zoma
B3 GCOSUR IBRe
5@ END
REH

-
-
(B
o
u

in Mmany P

m

Graphs and charts 73

1818 RERD radius
18320 REAQAD rnumberofvGlues

- ,

DIM walue (numberocfva

values:

{ryum

T
]
i BV

0 m
ol

1329 REM add wa ethey o Civole o
arn be 4divided tely
1@4GH totalof
1853 FOR count=1 numbEeTofYGlUEes
10868 REARD valiue(cl 3
13768 totalofvalues=totalofvalues+value(c
ouUNED
P
i

<

j=radval v

-
-~

2ERE FOR count=1 T numbes
2 t unty SEo
.

o~ k 1 PR
G158 o ie+ang

Ammm WE

bl ND

oy
E
2@38 RETUDN
Flc
c

2006 ORIGIN ceEntres,centrey
I9i@ CDEFINT <

37@ countangle=@g
IR3p colour=tl

2333 REM oOnly need cula

a g
Q
[y}
V]
[
N
T
g
[u]

e sin

and cos this method

I@34 REM makes it faskter

I35 thesin=SIN{(ZxPIsradvall i theccs=C0%¢

cEPIsTAadvali;

IRT45 Hl=radius:yl=R

I@37 REM calaculates coordinates of oircou
e c

2 8 oh< UrE Eo

B luded:

If4H nooFo0lours

3358 FOR count=1 numbercfvalues

IE&s? REM changes colour for 2ach s2ot0v7

74 Graphics Programming Techniques on the Amstrad CPC 464

IR70 colour=l+(colour+i MO0 nocfcolours
3@7? REM make sure first and last sectonr
s are difrferent colours

3088 IF count=numberofvalues AND numbero
Fvalues MOD noofcolours=1 THEN colour=i+
fcolour+i;MOD noofoolours

IP?¢ REM draw sector

2106 FOR ocountl=countangle T) countangle
+angle(count:

Ill4 MOVE 9.8:DRAW x(countl),y(countl),o
clour

31268 MEXT

3124 REM update start po
sectar

¢1;5 countangle=countangle+angle (count;
314648 NEXT

3153@ RETURN

3997 REM normally this calculation would
be carried out

3978 REM at some convenient point in a 1
onger program

3997 REM when the delqy due to calculati
on would not be obvicus

@@ DIM x(rDotangle),y{totangle)

4P1B FOR count=1 TO totangle

4020 MX=Xl¥thecos-yl*xthesin

4030 y=xlxthesin+yls#thecos

4@Q4@0 Xicounti=x

4B5B y(countrsy

@80 Xl=x:¥l=v¥

4070 NEXT

4a@2% RETURN

iktion for next

The above programs demonstrate the difficulty of ensuring
that an area is completely filled with a colour. This only
becomes certain if we use a colour-fill method which plots
individual points, as we shall see in the next chapter.

Exercises

1) Extend the pie-chart program so that each sector is
suitably labelled.
2) Modify the program so that several pie-charts with the

Graphs and charts 75

same radius are drawn on-screen. (This is definitely an
occasion to use arrays as it avoids the need to recalculate
the circumference points for each circle.)

Write a program that superimposes successively smaller

pie-charts on top of each other, with the sectors being
colour-filled.

Chapter Four

Patterns and pictures

In Chapter 1 we saw how easy it is to produce patterns just by
using a combination of MOVE and DRAW commands:

Y =208

Z8 REM ‘maximum’ gives length OF s=hape’s
tarms”’

29 REM ¢ry Changing it and StepsiTe

I@ maximum=2Ge@E

43 stepcsize=5
5B FOR count=@ TO maximum STEP stepsize
43 MOVUE =-count,y

70 DRAW =x,y+(maximum-count)

52 DRAW =+count, vy

6 DRAW <. y-{mMGRimuUm--ouUunt:

190 DRAW #-count,y

11@ NEXT

- =

‘Curve-stitching’ is a common activity in maths lessons in
schools: many striking effects can be produced by simply
connecting a series of points with straight lines. This program
uses this principle by first drawing a polygon with a given
number of sides and then joining each vertex to every other
one:

1@ MODE 1
20 radius=1510
IR «=32@0:v=266G

S INFPUT"HoW many =ides has the figure got'";
s == 1des

g CIM =%z SidES

2@ Ccounkt=@

PR ORIGIN =,V

76

Patterns and pictures 77

1@@ MOVE @.,radius
11@ FOR angle=@ TO Z#P1 STEP stepsize
120 DRAW radiusx*SIM(angle),radius*»20S{angl

1368 =i{county)=radius«SIM{angle: :y {oouUunetr =
radiuss ngle

1412

150

e e

L~.J--iv

1&0 -1

178 f = oo osides
188 MOUE = (:‘_“D!_l‘l’w‘:‘ poa oy foountl

198 DRAW =<i{icountl),y(countl:

288 MNE=T

D WMEY T

- Fay

This is even more impressive if we add colour:

our=1:0DRAW @.radius,.colour

cunti=1 T3 si1des-1

i codntZ=countl+l TO sides

172 REM experiment with the coloure in line {75
174 REM change the MOD tO get different effecks
1735

colour=l+(colour+l) MCD 3

Figure 4.1 An example of curve-stitching.

78 Graphics Programming Techniques on the Amstrad CPC 464

1308 MOVE x{counktl).¥ (countl)

198 DRAW X (countl),y(countl),colour

2@@ NEXT

2183 NEXT

In this chapter we shall see how much more elaborate patterns
can be produced. Many of these are based round the use of the
sine and cosine functions. Don’t be put off by the maths — the
programs are complete as they stand although there is plenty
of opportunity for you to investigate their effects by substitut-
ing your own values for crucial variables.

Moire patterns

The use of the ORIGIN command and relative MOV Es makes
it easy to draw symmetrical patterns on the Amstrad. This
program uses the centre of the graphics area as the origin. The
pattern is created by connecting points along the new x axis to
points at the top and bottom of the screen. Each x coordinate is
multiplied by a factor so that the lines converge or diverge:
1@ MODE

1
Py
17 REM uss nitegers for spesd

T]
+ 3
3

3

v}

-

4

=

T

n

]

30 e

-
7 ORIGIN =origin,yori
£ m

REM loop Jdraw 4 =¥m

DRAWR -countxfacrord, 2@@
MOUER -COUnt#fGotor2#2.03

DRAWR —-countsfactord, -206

DRAWR countxfactord,-209

MOUWER cCountxfactor2x2,0

DRAWR count#factord, 208

158 NEXT

Notice the DEFINT in line 2@, which helps speed the
program up. It will not always be possible to define all the
variables as integers, because many of the patterns in this

L Py e B
© o

,_
£

Patterns and pictures 79

section are produced using sine and cosine functions, which
give decimal values.

The factors in line 4@ can be anything you want, although
avoid any greater than about 15, as this leaves the lines too far
apart to produce a discernible pattern. The striking Moire
patterns which appear on the screen are the result of the
Amstrad leaving some pixels in the background colour, and of
lines overlapping in places. Experiment with different factors,
and try running the program in the other modes. You can
produce a nicely woven carpet by adding these lines:

TI5 coclourli=j:colour2=i

@ FOR counc=@ TO Zag

280 MOUVE B3,8:MOMER countsxractctori.s
2 DRAWR -count=xractord,Z@@,colourtd

—CouUnEsfaoEoT el

-1

Line 150 ensures that the lines will be drawn using a cycle of
the foreground colours available in mode 1. The MOD com-
mand gives the remainder after division: 5 MOD 4 is 1, for
example. We add one to the resulting value to avoid getting the
background colour: 4 MOD 4 would otherwise produce @, and
we would end up with a pattern containing lines that couldn’t
be seen against the background. In this case, lines 35 and
150 combine to give a warm orange carpet. The PEN colour
used in the DRAWR commands is always either 1 (yellow) or 3
(red). The closeness of the lines (which depends on the factors
in line 40@) determines whether the carpet appears orange or
covered in yellow/red stripes.

By adjusting the values of the variables colour 1 and colour 2
and by changing the modulus division in line 15@ to 2 or 3 a
variety of effects can be achieved: patterns with diagonally
opposite quarters in differing colours, or consisting of com-
binations of certain colours only. Running the program in
other modes will give surprising results unless you adjust the
range of colours that are used, as indicated in line 85.

80 Graphics Programming Techniques on the Amstrad CPC 464
Lissajous figures

Lissajous figures are created using the same approach we have
previously used to draw a circle. Then we kept the radius
constant and took the sine and cosine of the same angle to give
a point on the circumference. By varying the angle used we can
draw numerous patterns:

[sa]

(&3]

m

32 STEF F1/30
188=205(angler, 1P@#SIN(anglexd, g

[}
m
EL
p vl
¥

S W T S N 6 Y
[sal

-4
(5]

MEXT

An alternative is to calculate the points on two curves and
connect them with straight lines:

16 MODRE 1

2@ <0rigin=3I@:yOorigin=ZEe

I ORIGIN =Horigin,yorigan

4@ MOVER 108&.@

5@ FOR angle=@ T0O &.4 STER FPISZG

55 MOUE 2B@xSIN(angle), 108#20S(angle;
&@ DRAW 1@8@#C0S5{angle), Z@A@xSIN{angla;
T OMNEXET

Here is another example:

19 i

TE T 11 T

28 = QiN=I26

z0 o] T TN T

P) (R A PO A

5@ FOR angle=3& 1725

=5 A6 I S ianale:

50 % 205 «SIM{anglex’
7@

1

= = TG -

- ~) < O

- N Tt s

36 ORIGIN =ori

4@ colour=i

5@ FOR angle=@ STER FI/3E

53 IF angleris colour=3

55 MOUE Z8@#SIN =R e, Cosiangle;

Patterns and pictures 81

in

B DRAW 180#00S(anglex3),20@%SIN{anale 2
Slour

9 NEXT

~
q

=

I

As with the earlier programs, try using another mode. The sine
and cosine functions which produce the patterns are largely
the result of experiment and the results initially may seem
rather unpredictable. However you will soon become aware of
the effect of changing the variables, and you may care to
investigate what happens if more complex functions are used,
perhaps involving the squaring of the sine/cosine or their
multiplication/division by other factors.

Spirals

We can create a spiral by taking our circle-drawing program
and modifying it so that the radius constantly changes:

1@ MODE 1

20 G0SUp 13902

1@@ END

1686 xorigin=315:yorigin=196
1918 ORIGIN #Oorigin,yorigin
18268 colour=1l

1829 REM spiral’s radiuse will increase b
¥ khic wvalue each +ime & gpoint is plotte
d

1822 increazeradius=3, &

1046 stepsize=F1/30

1048 REM endangle determines kow many o4
roulte of spivral are drown

184% REM more than 43 terde to 90 off-zo
reen

185686 =2ndangle=4@

1259 REM s=pPpiral begin:s with radius of |
1460 startradiucs=]

1070 GOSUBR Zo@m@

1980 RETURN

Z@oe MOVE a.@

20160 FOR angle=0@ TO endangle STEP stepsi
e

2014 REM draw lines using alternate PENS
2A20 DRAW startradiusx*SIN(angle),starery
dids*05(angle;: ,colour

82 Graphics Programming Techniques on the Amstrad CPC 464

2R3@ startradius=startradius+increaserad
ius

2848 NEXT

2050 RETURN

With the addition of a few lines we can draw several spirals
inside each other:

i Within orevis
2, BB2g1T:S oF 13
28 startradi
B LOSUBR ZB23
?¢ REM last spiral drawn within previno
agne, begins with radius of 2@
11868 startradius=2@
1118 GOSUBR 2908

The spiral can be animated so that it appears to rotate simply
by plotting the points in different colours and then using the
INK command to flash between the background and fore-
ground colours:

1@ MODE I

28 GOoSUR 1BBE

70 REM =2t INKES SC points flash between
ane colour and anothe

79 REM alternate Flnzhzng'ror pOoinits in
INKz 1 and I

I INE 1.1.Z28

43 INKE 2,28.1

55 re;paﬂsei=“"

£ WHILE responzse¢=""

G P:spanae$=INkE”£

20 WEND
7@ INK 1,Z24:IMK 2,20
188 ENC

1A83 REM make both IHNES used appear the
same colour

1ES4 REM =2t IME 1 fo give Same Co1cu S
s INK 2

15 INE 1.Z&

@14 REM draw lines uzsing alrternats FEMS
2815 IF colour=]1 THENWN colour=2 ELSE colco
ur=1

Patterns and pictures 83

This is a useful technique which we will meet again later.

Repetitive patterns

Many ‘wallpaper’ designs can be produced simply by replicat-
ing a figure.

s
o

drawing an oo
otrher shape

<

" = of fair
ST ROLYS0N ST LWN
1318 ragiucs=44
1@28 s3i1des=g
1RIR =te ize=_xPl /z=ides
ideg ool t=C
1REE 5 2355
insE = M
IF¥YE RE! 1113 scovresev wiith COF1S8S OF 341
en SolV3or
IFF? OREM stops When CJoovdiNiaoe S Coenove
off-soreer
IgEE Ccentrex
IBLE WJHILE < re !
3GZ@ ORIGIN centr By
18322 MOVE §.radius
Ia4E EOF ansle=@g To TsPI ETER ok
IB5@m DRAW rTadiuszxsIMNiangle:,radi i
ngle:,colour
IBAB NEXT
IR4% REM shift in » directidn
IR378 centrex=centrex+radiuss’
Ia?9 REM 1if t's Off-zcireen, mowe Up ang
start again
3@8@ IF cenrtrex:s53% AWD centrey {399 THEN
centrex=xstart:centrey=centrey+radiusxz2
7@ WEND

[Y]
(RS
(o]

(]

RETLRN

More elaborate results occur if a second set of figures are
superimposed on the first — these may be completely different
figures or larger or smaller versions of the first:

84 Graphics Programming Techniques on the Amstrad CPC 464

Iy
L
r
m
e
[

{4}

BET

The rows can also be staggered by beginning each row in one
of two alternative positions:

YEM if 1k = off-zsoreEn move up andg
F 3% AHD centrey {279 THEH
WE
RE
> BL sktart of sachk TCowW OFf pPo
Qons
g& IF =starit=F THEHW =start=radius ELSE
reEbtarit=iR
LALE Ccesntrex=sxKShtart:ioentrey=CoenETey4radi
S ED
4@28 HETURN

Rotating shapes

It is a relatively simple task to modify the circle-drawing
program so that it can draw any polygon. This can be
incorporated as a subroutine into a program that will enlarge
and rotate a given basic shape, creating a spiral pattern:

50

1
i

@G

43 EHD

%% FEM ve2ag d4data for polyaon

1888 READ =sides

1818 FERD rodius

18282 REEQL centre:;

1228 READ radiu Range
i1BaB coclour=C

ifA50 stepsice=Z¥PIl. s1id

1340 cstarecangle=@g:-fini

1076 RETUEREN

is@ge ORIGIMN centrex,ce

1535 REM keep drawing
to0 big

1567 REM for all sampl
TR1S 1Z wWwher

X

A

Patterns and pictures 85

=33

shangle=2#pP71

mETey

colygon until 1€ ¢
e oly¥ygons 1in dara

= iehangle
=
1z Todid §
an TaZ IS
A e
S&8F 2aSe roadiuds
1578 Gdius+radiusohanae
i57F te SEtart To nexy POlyS0On 1%
at 0 thiz one
1888 star le=staritangle+aonglechange
1598 fFainicshangle=finizshangale+anglechansge
1668 WEND
14518 RETURHN
- CRTR 3.26.386.260&,5.1
DATR 3,2R,308,208.32.18
ODRTH %!3@13@Q’:@@'4*3
CRTAR &, 28,3RE,288.1,4
DATR &.28,32808,206,4&,1
DATH B,18.286,288,5,18
DATHR S.1@,386.,286.5.,2

Run the program as it stands

. The DATA lines from 2000

onwards give data for a variety of figures. Delete the first
DATA line and run the program again to see the effect of

varying the number of sides in

the figure and the rate at which

it is enlarged and rotated. Repeatedly delete the new first
DATA line and re-run the program to see the remainder of the

examples.
Some very impressive effect
use of colour:

s can be achieved by judicious

86 Graphics Programming Techniques on the Amstrad CPC 464

Figure 4.2 The type of pattern that can be produced by rotating a
basic shape.

Patterns and pictures 87

P EEE TR

PR S itwr

1594 HEM 1 draw 24aom polygon o
inig INK 2 or INK 2

159&% IF colour=2 THEN <9olour=I ELSE ©0lc
ur=z2

Pressing any key once the figure has been drawn gives a really
mind-boggling effect as the colours switch between fore-
ground and background!

Exercises

1) Create a modified version of the polygon vertex-joining
program by drawing two polygons and joining their
vertices.

2) Investigate the effect of the following on the Moire pattern
program: changing the STEP of the FOR. . .NEXT
loop; superimposing a second pattern using different
factors and colours; shifting the origin to create a patch-
work of patterns next to each other.

3) Modify the rotating polygon program so that the number
of sides of the polygon varies during the course of the
program. Alternate between, for example, a triangle and a
pentagon; or cycle through the polygons, adding a new
side with each rotation of the figure until a limit of say 20
sides is reached when the cycle begins again.

Sketching on the screen

An alternative to letting the computer create the pattern is to
devise a program that allows the user to draw and manipulate
shapes on the screen, and this is the topic we shall examine in
the remainder of the chapter. To make the software relevant to
the widest possible audience, all line-drawing etc. is carried
out from the keyboard, but the programs that follow are
readily modified if you wish to use joysticks.

Throughout this section we shall use mode 0 as it offers the
greatest range of colours. Our first module contains the most
essential feature of any line-drawing program: it enables us to
plot points on the screen and draw lines in different direc-
tions:

02}
[e e}

Graphics Programming Techniques on the Amstrad CPC 464

colour=j}
MOVE =, ¥
PLOT <.y.<colour
GOSUE 13

NS

o

RS
YO @meea e

r
4
"
1
s}
3
1]
T
[}
V]
3
a
!
(]
1
[V
2
o
o
3
m
W
w

s
Y
@
(M
E
m X
wou

I
o
m

T e
Ho- 0
=
1w >N
m

X
R [s]

e

DTwaam

s I

oo

a" THEN y=y+Z
="z* THEN y=y-2
" THEN x=x-4
"Lt THEN x=x34

[a]
o D D -

())
L I ¢ T B GRS T T By |

Q0

MM M M aem

wonm oo

D030
O R R
[}

[

Xom oy T3

B e I e M N 5
(W

Il
L
(¥]

=
K

|

o
L]
¥
]

¢ I i n IR S U Y R ol o |

mimr-

-

0

A point is initially plotted at the coordinates specified in line
40.The INKEY$ in line 6@ checks the keyboard to see if any
key is currently being pressed. (Movement is indicated by
depression of a/z for up/down, and ,/, for left/right.) The
coordinates of the point are updated accordingly, and the
position of the new point is plotted.

Note that the structure of this brief program makes it very
easy to add extra commands. Movement of the point is
presently confined to up/down/left/right, but by adding lines
within the loop from 50 to 110 we could make diagonal
movement possible.

As it stands, the program only allows continuous lines, and
it is impossible to move to a new position without drawing a
line. We can add options so that the point can be plotted in
either the foreground or background colour by pressing ‘f" or
‘b’ respectively:

1351 IF recsponses$="f* THEN colour=]
1@5%7 IF responses$="b* THEN colour=g

Unfortunately once we select the background colour, the point
is no longer visible, which makes it difficult to move to a new

Patterns and pictures 89

position with any confidence! We can get round this by
plotting the point twice:

315 foregroundcolour=s]
1RRS PLOT *,y.colour
19483 PLCT »,y,foregroundcolour

If the background colour is selected, the point at the present
x,y position will be plotted invisibly at line 55, and then again
in the foreground colour at line 1@@. As a result, the point
flashes on and off, and acts as a cursor identifying its present
position.

We can allow a change of foreground colour either by
selecting a colour by the depression of a particular key, or by
cycling through the colours as we did in an earlier program:

1853 IF responseg="c* THEN colcour=l+(ceol
our+l1y MOD I

This gives a choice of just three of the foreground colours, all of
which produce easily visible lines.

It is sometimes difficult to see the colour of the point, and
the accurate plotting of rectangles and the like is not straight-
forward using only the naked eye to gauge distances. We could
simply print this information on the screen, but we shall take
this opportunity to introduce the WINDOW command, which
confines all text to a specified area:

bt s
B2 I W W |

(s

The four numbers following the WINDOW command specify
first the x text coordinates making up the left and right
boundaries of the window, and then the y text coordinates
comprising the top and bottom of the window. In this case all
further text will be printed to two lines at the bottom of the
screen:

1351 IF responce¢= " THEN colcocur=sforegr
ouUngo2lourT

1352 IF respons2s=*bt* THEN foregroundcol
cur=colour:colour=g2

1852 IF response$="C" THEN colour=1+i{col
our+ir MOD 2

90 Graphics Programming Techniques on the Amstrad CPC 464

s - 3 : ¢ % -
= y Foregroundoclour

-
o

Lines can now be accurately positioned on-screen, because the
program supplies a continual update of the present PEN
colour of the point and its x and y coordinates. Note that the
Amstrad still considers the text window to be part of the
graphics screen. You will find that you can plot points over the
text!

There are still a number of flaws in the program. Lines can
only be erased by drawing them again in the background
colour. This gives rise to another problem when the point, set
to the background colour, crosses a line that has already been
drawn — part of the line is erased. This might seem an
intractable problem, but is surprisingly easy to solve, although
we shall have to call on our knowledge of binary to do it.

Exercises

1) The drawing program does not contain any checks to see if
the point plotted is off the screen. Modify the program so
that it is impossible to move off the screen or draw in the
text window.

2) Extend the range of colours that can be used to 16. Use the
INK command so that the colours that can be displayed
are not just the default colours for mode 0, but are initially
chosen from the full 27 colours available.

3) Add some extra commands so that diagonal lines can be
drawn.

Using EXOR

In an earlier chapter I commented on the value of an

Patterns and pictures 91

understanding of binary/hex, and we shall see now and later
in the book why this is especially relevant where many
graphics operations are concerned.

It is important to remember that the screen display itself is
actually a representation of part of the computer memory. All
the characters printed, and each graphics line drawn is
produced as a result of particular binary values being stored in
the memory locations which the Amstrad examines to con-
struct the screen display.

Any line drawn on the screen causes the bytes (the 8-bit
binary values) at the relevant memory locations to be changed.
The value at a location determines whether a pixel should be lit
or unlit, and if lit, what colour it should be. In fact, the colours
for each pixel are derived from an individual byte in a way
which is not obvious, but which need not concern us here. For
the purposes of the discussion which follows we shall use a
simplified model of the byte/pixel relationship, and assume
that the value of a single byte stored in memory indicates to
the Amstrad the value of a single pixel to be displayed on the
screen.

Suppose that we are dealing with only four colours, and the
bytes representing the screen memory thus all have one of the
four values shown in Figure 4.3.

Binary code Colour
Q0000000 Blue
00000001 White
00000010 Yellow
0000011 Red

Figure 4.3 Possible binary representations the computer might use to
indicate four different colours.

If the screen was completely blue, all bytes would be
000OO0OO0; if it was completely white, they would all be
P0O@POO0B1, and so on. Drawing a white line on the screen
has the effect of changing the bytes at the positions concerned
so that they are all 00000001 drawing a yellow line at the
same position makes their value 00000010.

Earlier we noted that the lower ASCII codes give special
commands to the Amstrad, such as ‘Move the cursor back one
space’ or ‘Turn off the screen’. One of these codes influences

92 Graphics Programming Techniques on the Amstrad CPC 464

the way in which the Amstrad treats graphics points.

The Amstrad can be set so that it plots any points on-screen
using the Exclusive Or option (EXOR or XOR for short).
Without this option, the Amstrad simply replaces the old value
bytes concerned by the new value. For a line drawn in yellow,
all the bytes on the line become 000@00010, for example.
Using the EXOR option makes the Amstrad plot all points by
combining the old value of each byte with the new value
according to a fixed set of rules.

Let’s examine an individual byte on the screen so that we
can see why the program produces the results that it does. To
begin with, the byte has the value 00000000, ie., it
indicates a pixel in the background colour, blue, as in Figure
4.4. A line is drawn across this point in yellow (a byte of

0B00OO10), as in Figure 4.5.

00000000 A point in the background colour, blue.
Figure 4.4

00000000 A blue point and

00000010 a yellow line crossing that point
Figure 4.5

Because the Amstrad has the EXOR option set, it does not
simply replace the byte 0000000 A (for blue) by the byte
PB0OOO10 (for yellow). Instead it combines the value of the
two bytes. If corresponding bits are different, the result is 1; if
corresponding bits are the same, the result is zero, so we end
up with a yellow point, precisely what we would have
expected had we not used the EXOR option!

00000000 A blue point and
EXORQQO0O0010 a yellow line crossing that point
00000010 gives a yellow point
Figure 4.6

However, suppose we now plot an identical yellow line over
the line we have just drawn. The effect this time is rather

Patterns and pictures 93

unexpected, see Figure 4.7. Because the bits making up the old
byte and the new byte are exactly the same, the EXOR option
results in a byte of 00000000 — i.e., the line disappears, as it
has been drawn in blue, the background colour. Drawing

00000010 A yellow point and
EXOROOOO0010 a yellow line crossing that point
00000000 gives a point in the background colour, blue.
Figure 4.7

another yellow line returns us to the situation of Figure 4.4,
and the line will reappear.

00000001 A white point
EXOROOOO0010 crossed by a yellow line
Figure 4.8

What happens if a yellow line is drawn on top of a white
line? The EXOR option results in a red line, as in Figure 4.9.
But again, drawing the line a second time in the same colour
restores everything to its original state, as in Figure 4.10.

00000001 A white point
EXOROOO00010 crossed by a yellow line
0000011 gives a red point
Figure 4.9
00000011 A red point
EXOROOOO0011 crossed by a red line
0000000 gives a point in the background colour, blue.
Figure 4.10

The EXOR option might not seem very useful, but the graphics
effects we have just seen are invaluable in any drawing
program. Lines can be drawn and erased without affecting
other lines; we can experiment and move lines to various
positions before fixing them permanently using normal draw-
ing. All that we need do is ensure that any temporary line or
point is plotted twice using EXOR so that all its traces are
removed.

94 Graphics Programming Techniques on the Amstrad CPC 464
Drawing diagrams

Before we begin to design a new drawing program to take
advantage of the graphics EXOR option, let’s summarise the
extra features that could usefully be included:

1) lines can be temporary or fixed permanently;

2) lines can be erased;

3) drawings can be saved;

4) standard shapes such as circles, rectangles, etc. can be
drawn;

5) parts of the drawing can be translated, enlarged or
otherwise transformed.

The last two features will be discussed in a later chapter. We
have just discovered how to draw temporary lines, so 1)
presents no problem. The easiest way to implement both 2)
and 3) is by saving the coordinates of all fixed lines in an array.
This makes it simple to identify a line and delete it. It also
makes it easy to save the drawing to a file: we simply save the
list of coordinates stored in the array and use them to
reproduce the drawing at a later date.

We will use a modular approach so that the program can be
extended without problem:

MODE @
DIM
sktart
fore
A48 PRIN
T GOSUR igag
Sa SR 2922
7 e
FFT? REM draw line
iBEE PLOT #.y,.foregroundcoolour
' P DRAW startx,scGrey
“E RETURMN
Z8R& WHILE responseg(;*s®
2218 G0SUB 1338
2@z2@ r2sponse$=LOWERS (INKEVY$)
28268 IF recsponze3$="G° THEN y=y+2
“@4E IF responses="z" THEN y=v-2
2B58 IF responze¢="," THEN x=X-4%

Patterns and pictures 95

206@ IF responses="," THEN x=x+4
28783 IF recsponses=*“ " THEN GOCSLUBE 2283
Z@2@ GosUB Loee

2B98 WEND

18@ RETURN

299% REM set graphics to normal to draw
ceTmanently

3220 PRINT CHR$%(22);CHR$(@):

I GCSUR 1595

3819 REM back o EXQR drawing

IRZ2F PRINT CHRE(Z3::;CHR$ (1

IR3IE count=oount+?

I94R

igs5a

1245

Line 20 sets up two arrays to hold the coordinates for up to
100 points. (This figure is arbitrary and may be increased.) The
coordinates of the present point are given by the values of the
variables x and y. The values of start x and start y give the
coordinates of the last point ‘fixed’. These coordinates must be
available so that we can draw a permanent line between the
two points if we wish.

Subroutine 20080 is the driving module of the program. It
scans the keyboard for input and successively draws and
erases a line from (x, y) to (startx, starty).

If you run the program you will find that, as you move the
point around, the Amstrad draws a flickering yellow line from
it to the point (startx, starty), subroutine 1@0@@. This techni-
que of allowing a line to be stretched is referred to as
‘rubber-banding’ — you can probably see why!

Pressing the Space Bar fixes the line permanently via
subroutine 3000. Line 3000 returns the graphics drawing
mode to normal, draws the line permanently, and then
switches back to the EXOR option for drawing to continue.
The coordinates x and y of the present point are stored in the
arrays x() and y(), and startx and starty are given new values so
the next line will be drawn from where the current one ends.

We can modify the program so that we can chose whether to
draw a line or not:

55 linedraw=n

96 Graphics Programming Techniques on the Amstrad CPC 464

?3% REM draw line (or not, 1f linegraw=g

1886 PLOT %.¥,70

" THEN GOSUB 39882:11

2871 IF response$=*1" THEN IF linedraw=@
THEN linedraw=1 ELSE linedraw=3

Line 2071 uses the ‘I’ key as a toggle to switch between
line-drawing and no line-drawing. When Linedraw=0 no
line is drawn, as subroutine 1000 terminates before (x,y) can
be joined to (startx, starty). Running the program now reveals
that we no longer have to draw the first line beginning at
(startx,starty), but can move the point to anywhere we wish
before ‘fixing’ it by pressing ‘f'.

Deleting any line is a little tricky. We shall instead only allow
the deletion of the last line drawn, indicated by pressing the
‘d’ key:

2872 IF recsponse$="'d" THEN GOSUB 4600
3798 REM doesn’t work if you £0 try *+o d
elete G non-existent line

39299 REM we'’ll sort that Out in th2 nex:
program! _

4@86 X=X{count):y=y{count)

4818 count=count-i

4@28 sStartx=x(Count):starty=y(count)
$¢BI0 GCSUB 1000

¢@4e@ RETURN

This does allow deletion of any line, but only at the cost of
deleting all lines drawn subsequently.

If you find the keyboard response a bit sluggish, you might
like to add the following lines:

i DEFINT €.f,1,0,5,%,¥
2 SPEED KEY 2,2
8% SPEED KEY 16,5

We have noted before that using integers speeds a program
up. SPEED KEY is followed by two numbers, the start delay
and the auto-repeat period, in 1/50th second units. These two

Patterns and pictures 97

values determine how rapidly the Amstrad responds to a key
depression. When a key is pressed, the computer waits for a
time equal to the start delay before repeating the character.
Thereafter it is repeated at intervals governed by the auto-
repeat period. It is vital that you set SPEED KEY to normal at
the end of the program. Over-rapid response to key presses
can make it virtually impossible to type a coherent instruction!

Having created a drawing masterpiece it would be nice to
save it. To do so we need to modify the program slightly.
Recording the coordinates of all the points is no longer
adequate, as we also need to know whether a point is joined to
the previous one or not:

The arrays x() and y() hold the coordinates of all the points; a
third array 1() is introduced to indicate whether a point is
joined to the previous one. Whenever a point is fixed, I(count)
is used to record the current condition of L inedraw. If this
is zero, line-drawing has been switched off, and the current
point is not connected to the one before. Any value other than
zero shows that line-drawing is switched on and the present
point must be connected to the earlier one.

2874
2875
sgea
5818

)
= m

[I
L]

m -

-
=

D Y 3

R LN I N L B S 08 I
J S b Y { B A T I =)

s o B I S e i v
G-

e e O O e (e O
[o I ey I i By I G

=
T DX Zown

@@ G

98 Graphics Programming Techniques on the Amstrad CPC 464

F21E PRINT"TO 1oad data from 4 coordinat
e fFile®
T@ZE@ INPUT"WhRar iz the File name’:fileg
JB3IE GPEMNIN Fileg
@HE count=a
TESB WHILE NOT EoF
AR CouNnE=COunh+l
TRTE INFUT 8F,%iCOUnt) , vyi{CcoOuUNE) . 1{-cunt;
7REH WEND
TEPG CLOSEIN
7188 MCDE B
7118 WINGOW 1,28,25.2E
TiZD startMsxM{COUNt: i SEQrEy=vVioOunt:
Fi3@ M=sSTAart¥iyT=srarky
Fi4B GLSURBR £0002
728 RETURN
SERE MODE 1
2RLiA PRINT"T2 sawvwe Q picture to o fFilen
SB22 INPUT*Pleaze vame the fFile,*.,fileg
3E3IE OPENQUT files
3B4B cocunter=m
BESEE WHILE counteri=count
BR4E WUHRITE H#9.=icounter),y{countery,licno
Untear;
ER7E Ccounrer=counters!
WEND
CLOSE
MOGDE |
2118 WINKDC 125,258
2126 &S05UB
2122 RETURH

Subroutine 8000 writes all the coordinate and connection
data from the three arrays to a file, and then uses subroutine
6000 to recreate the drawing. If we can save the data, we also
need to be able to load it back in, and this is handled by
subroutine 7@@@. There is no need to switch to mode 1 in
these subroutines, but doing so makes all the messages easier
to read! The load routine is called on depression of ‘i’ (input
from a file) and the save routine is called on depression of ‘0’
(output to a file). You may prefer to substitute your own keys.

Our basic drawing program is almost complete. Let’s just
add a colour option:

Patterns and pictures 99

2@73 IF responsets="s* THEN GOSUB 5806
$98E6 WINDCOW 1.28,285,25

5018 INPUT®*Scale*;scqQle

SB1E REM scale all values by <scale facte
r

5@19 REM make present curscr coordinates
new screen centre

502@ FOR wvalue=1 70O count

$SP38 x (valuey=scalex{x(value)-x)+328
5640 Y{value)=scalexiyi{valu2)-y)+2606
5858 NEXT

5860 GOSUB 646880

5878 RETURN

Adding colour does create a problem, because to delete the
same line it must be drawn again using EXOR and the correct
colour. Otherwise, as we saw earlier, a white line drawn on a
yellow line will not erase the original line but merely change
its colour! Fortunately we don’t need to set up yet another
array for the colour — this information is already stored in 1()
and can be used when lines are deleted or when a picture is
drawn using data loaded from a file.

Let’s conclude the chapter with a demonstration of the
flexibility of the core program. The addition of the following
routine enables you to create a drawing, then enlarge it (or
reduce it) so that greater detail can be added:

2@?@a IF r=2seonse$=* " THEN GCSUB ZI@EE: 1z

nedraw=foregroundcclaur

2 IF rezponse$="1* THEN IF lirnedraw=g
{ linedraw=foregroundoolour ELSE 1ir

= =3

z IF reczcconsef='of THEN foregroundcool

cur=i+{foregroundcolour+i; MOD 2

3 IF linedraw:@ THEN licounti=fgregro

Undcolour

4 IF linedraw;@ THEN foregrcocundoolour

Pressing ‘s’ calls subroutine 5@0@0@, which requests a scale
factor by which the drawing is to be enlarged or reduced. For
example, typing ‘2" will cause the picture to be redrawn at
twice its present size, ‘@ . 1’ reduces it to a tenth of its size, and
so on.

100 Graphics Programming Techniques on the Amstrad CPC 464

The routine takes advantage of the fact that the Amstrad will
accept x and y coordinates for PLOT, MOVE and DRAW
commands even when these coordinates lie beyond the screen
boundary. The computer will ‘draw’ these lines, but they will
only be seen if they happen to cross the graphics area depicted
on the screen — i.e., some of the points on the line have x
coordinates lying between 0 and 639 and y coordinates
between 0 and 399.

Once you have chosen a scale factor, the Amstrad multiplies
all the coordinates in the arrays x() and y() by that scale factor.
The current position of the cursor is used as the centre of
enlargement. The new drawing is centred around
(320 ,200), which is also taken as the new position of the
cursor.

Using integers may appear to be a good way of speeding up
the program, but it is a disadvantage here as it limits the
choice of scale factors to whole numbers only.

Exercises

1) Add a few lines at the end of the drawing program to
restore key response speed etc. to normal.

2) Introduce checks so that the drawing program does not
allow movement off-screen.

3) The ‘delete line’ routine has a flaw in that it is possible to
delete lines back to the starting position, at which point
the program crashes. Introduce checks to prevent this.

4) Add a routine to the program to allow the user to select a
comfortable start delay and auto-repeat for the keys.

5) Add a routine to the program so that the coordinates of the
cursor are continuously displayed on the screen.

6) (more difficult) Introduce selective deletion of lines so that
lines other than the last can be erased. (You will need to
cycle through all the lines erasing/redrawing them at the
touch of a key until the required line is reached, which
should then be permanently deleted. Remember to reflect
this line deletion in the data stored in the arrays, otherwise

the line will magically reappear when the array values are
loaded back from a file!)

Chapter Five

Animation...

Moving line-drawings

In the last chapter EXOR was introduced, and we saw how it
could be utilised in the drawing/deleting of lines. We shall
now see how EXOR and related commands can be used to
improve the quality of animation.

One method of animation is to successively draw and then
delete a figure from the screen. This is the most primitive
approach, but provided the figure concerned is not too
complex, the speed of the computer produces an acceptable
result. This program moves a rectangle across the screen by
drawing and then deleting it at each position:

12 MGDE L
o0 W=V EAGE
20 «di =
T REHM ioT Sao
Fokime
LI Hami=4
SG OWHILE ={&3%
SR REM draw the r

colour=l GOSLE
) REM delete the =]
TE oocolour=@: S0EUR

i=HH I

JEND

END

REM commands o draw recrtangls

oy
F ST

jRT T = g i
i@ DRAWR 5
13 DRAWR ©,-vydistance
i@ RETURN

101

102 Graphics Programming Techniques on the Amstrad CPC 464

A simple modification moves the rectangle diagonally:

~ -
-
v ’d]

With the addition of another couple of lines we can even
‘bounce’ the figure around the screen:

45 Ccontinue=i
50 WHILE comeinue

57 REM draow th

4B Ccolour=1:43
&% REM deletse
TH colour=3:4
7% REM uwupdatre
if they are o
=

The results are not so good when more lines are involved.
Suppose we try to animate a line-drawing of a dog. To bring
some life to the program we draw the figure in two slightly
different positions. The computer will first draw the dog in
one position, then delete it, then draw the dog in the
alternative position. After deleting the second image the
coordinates are updated and the whole cycle is repeated. To
simplify the alternation between the two sets of image
coordinates it is easiest to store them in an array:

Figure 5.1 Using the same figure in two different positions to
improve animation.

103

Animation . . .

"
A
o
]

on

¥

-

104 Graphics Programming Techniques on the Amstrad CPC 464

In this case the whole process is too slow and it is clear that the
figure is being deleted and then redrawn to another position.
A different approach is required.

We can make use of a facility we touched on in Chapter 3:
the ability of the computer to change the range of colours
available in a mode by using the INK command. If we draw a
figure using a PEN that has been set to the background colour,
the figure can be made to appear instantly simply by switching
the INK to the foreground colour.

The following program uses this method to display alter-
nately two rectangles drawn at different positions on-screen.
Every time a key is pressed, the INK colours are changed so
that the previously displayed rectangle is set to the back-
ground colour and the other rectangle to the foreground colour
so that it becomes visible:

£) N

SRR

A1 s o

...........

==

R A

Animation ... 105

This gives a clear display because the figures have already
been drawn and are displayed instantly. We could extend this
idea and animate a sequence of drawings by drawing them in
the background colour and then successively displaying them.
In this a method we could use to animate the line-drawing of
the dog? Not as it stands, because when the figures overlap,
we have a problem, as you can see by running this program:

)

fae] R - - = R = : i . - - =
RE “ 31T Tiame ToooT o Sobarmals oase

5
b LS Sy

-0 oan
[Y]

VTN . e = Y T

e I

Part of one rectangle is missing where the figures overlap. This
is because the line is present in both figures, and setting the
INK for one rectangle to the background colour causes it to
disappear for the other.

Providing there is no overlap of lines, changing the INKs
gives smooth and rapid animation. It is especially useful in
mode 0, where we have 16 different colours. Up to 15 different
images can be drawn in the background colour and then
displayed in succession by switching the relevant INK to the
foreground colour and then to the background colour once

106 Graphics Programming Techniques on the Amstrad CPC 464

again. For example, here we have a figure which expands and
then shrinks again:

17 posiktion fFor corner of reck
ang

28 : 126

29 of 1fts zides

R4s] clengthy=203

I3 ence in sizZze for sSucceszzive
iad

40

58 =15

58

Fé

28

79 rangales in background
o

9 n2 incide the other

i t=sktogrtink T endindk

i .1

i3 unt

i3 x COUTES

1348 cidex=lengt

185G sidey=1engt i

18548 MOWUE starts-movex,starty-movey
1578 DRAWR sidex,@,count

1888 DRAWR &G,:zidey

1a9@ R idex. &

1122 sigey

ii1E

112E

1957 ¥yole through INK:S displaying o
ne r le ot o time

zaaa nue=j]

2818 nk=l:nextink=2

@1 s ntinue forever

282 continues

28z7 1+ for o any ¢ depression

233 ce¢=""

204E responseg=""

2Rs58 se¢=INKEYS

Zasa

&Y REM switoh preyvicus rectangie o ba
ckground

Animation ... 107

S
34

e =

b
P o I 2
n

e}

5
bn TS S T By M

m

e lil

m m

¥ b

2 -y of
pe

o
-
i
pe
1
4

1Y Iy B Y]
¥
mmmm

Z
[oo |

-4

n

Using this method is particularly effective if the display is
cyclical, as in this case. It does have its limitations, however —
avoiding overlapping lines is not always possible.

We have already seen an example of an instance where
drawing a line does not disturb any lines already present — we
use the EXOR option. Perhaps the same approach will work
here:

This is a partial success — both rectangles are completely
visible, but the shared points appear in the wrong colour, red.
We can see the reason for this result if we examine the way in
which colours are represented in mode 1.

Only four colours can be displayed simultaneously in mode
1, because the colour of each point is determined by a 2-bit
code. As there are just four differing combinations of two bits,
only four colours are possible. These codes will never change,
although we could use the I NK command so that the computer
would interpret any of the codes as indicating a different
colour. For example, it would display a pixel coloured red
rather than yellow if we used an INK 1,6 command.

00000000 Blue Effectively, the colour at any
00000001 Yellow point is shown using a 2-bit

00000010 Bright cyan code, and this is used from

00000011 Red now on.

Figure 5.2 The binary codes for the four colours in mode 1.

108 Graphics Programming Techniques on the Amstrad CPC 464

In this particular case we are drawing two rectangles, one
using INK 1 (code @1) and the other INK 2 (code 10).
Remember the effect of EXOR. It combines the old bit
combination with the new one according to a simple rule: if
the bits are the same the result is @; if the bits are different the
result is 1. Where the two rectangles overlap we will get the
result shown in Figure 5.3. Code 11 indicates PEN 3, normally
set to red in mode 1, and so the line is displayed in red. This

01 A point on a yellow line

EXOR 10 crossed on a cyan line
11 gives a red point

Figure 5.3

suggests a way around our problem. If we use the INK
command to re-set PEN 3 so that it produces yellow rather
than red, the overlapping area will no longer be visible:

11 REM 32t INK I t0 vellow

12 INK Z,2%

741 REM restore INK 3 t0o normal at end
242 INK 2,6

Although the rectangles overlap, they can both be displayed
alternately by switching the INK colours. This forms the basis
for an approach which produces much smoother animation:

1) The first figure of the animation is drawn in the fore-
ground colour and displayed;

2) The second figure is drawn using a PEN that has been set
to the background colour;

3) The INKs are switched so that the second figure is
displayed and the first hidden;

4) The first figure is deleted from its old position;

5) A new figure is drawn in the background colour;

6) The INKs are switched so that the new figure is displayed
and the second hidden;

and so on, until the animation is complete. The only
d1ff1culty arises when the figures overlap in places: we then
need to draw or erase one figure without affecting the other.
Let’s examine this problem more closely.
We will suppose that we are working in mode 1, and the two
successive figures are drawn using PEN 1 and PEN 2

Animation ... 109

respectively. This gives us this interpretation of the meaning
of the four 2-bit colour codes. We do not need to concern
ourselves with the actual colours that will be shown on the
screen, as the INK command enables us to choose the colour
which will be produced by any particular PEN. We will
instead concentrate on these 2-bit codes, and the effects we
wish to have on them.

To erase any line drawn using PEN 1, we need to convert
the code @1 to @0, the background colour code. We could do
this by EXORing every point on the line with @1. However,
some points on the line might overlap points with a line from
the second figure, and so have the code 11. EXORing these
points with @1 gives the result shown in Figure 5.5. Any
overlap point would end up in the colour for PEN 2, which is
what we want. EXOR only seems the answer however — it
fails in one situation. If a point lies at the intersection of two
lines, erasing one line with EXOR will delete the point, but
erasing the second line with EXOR will bring it back again!

01 A point on a yellow line
EXOR 01 crossed by a yellow line
00 gives a point in the background colour, blue
Figure 5.4
11 A point on both lines
EXOR 21 crossed by a yellow line
10 gives a point on the cyan line
Figure 5.5

We could achieve the correct result a slightly different way, so
we take this opportunity to introduce yet another of the
line-drawing modes available on the Amstrad.

The computer can be set so that it ANDs the code for a point
with its new code. This is achieved by using the control code
PRINT CHR$(23) CHR$(2); which causes all subsequent
graphics commands to use AND.

21001101
AND 11100100
01000100

Figure 5.6 An example of the effect of AND.

The effect of AND is that a bit is set to 1 only if the
corresponding bits in the first AND second code are both 1;

110 Graphics Programming Techniques on the Amstrad CPC 464

otherwise the code is set to @. We can delete points drawn
with PEN 1 by ANDing with the code 1@, as in Figure 5.7.
This also leaves overlap points in the correct colour, as in
Figure 5.8. Similarly, points drawn with PEN 2 can be deleted
by ANDing with the code @1, as in Figure 5.9.

01 A point on a yellow line
AND 10 crossed by a cyan line
00 gives a point in the background colour, blue.
Figure 5.7

11 A point on both lines

AND 10 crossed by a cyan line
10 gives a point on the cyan line.
Figure 5.8
10 A point on a cyan line
AND 01 crossed by a yellow line
00 gives a point in the background colour, blue.
Figure 5.9

Let us now turn to drawing without disturbing points
already plotted. Suppose we are drawing using PEN 1. The
desired results at various points are shown in Figure 5.10.

Colour code at point Desired code after line drawn with
PEN 1 passes through point

00 00O0O0OO0DQO0 D000 O0OO0OOGOI

O 0000O0GOA1 O 000O0O0O0NI1

O 000O0OCODI1TO0 O 00O0O0GCOITAN

0000011 o0 0O0O0COTN1TA1
Figure 5.10

Neither EXOR nor AND gives the required outcome. There is a
further graphics drawing mode which we have not yet met —
the OR mode. This is set by the control codes PRINT
CHR$(23) CHR$(3); and gives a bit result of 1 if either
one bit OR its corresponding bit is 1. We can draw with PEN
1 by ORing with the code @1. We can draw with PEN 2 by
ORing with the code 1@, as in Figure 5.12.

We can now identify a sequence of graphics-drawing modes

Animation ... 111
01001101
OR 11100100
11101101
Figure 5.11 An example of the effect of OR

00 01 10 11

OR 10 OR 10 OR 10 OR 10

10 11 10 11

Figure 5.12

and colours that will draw/delete as required, as demonstrated
in this program, which moves a triangle across the screen:

@ MoODE 1

D OINK 3,24

@ DEFINT 2.3,b,H,¥
@ =

»=18B:y =
XK1=106: ¥

[
b

RS T I N L B S %) I o
&~}

B coclour=l:colouri=24%
@ rype=2%:shaoade=1

B Gosy 1B313

2 GOSUR Zgas

i93 I:eha

116

128

13@

142 xS

180 <=x-4:+i=

149 GOSUBR 2882

17@ IF shade=s shade=72
123 WENC

18% REM INK:z kack 2 normal

198 INK 1,2«

Z@g INK Z.Z€

210 INK 3,4

2@ END

98 REM swap IMNKs arosund fForeground bBa0
cmes background

999 REM backSround becomes foreground
1890 IF colour=! THEN colour=Z24:colouris
1 ELSE colour=sl:colouri=>g

1813 INK 1,coclour

1826 IHNK Z,co1lourd

1938 RET

RN

112 Graphics Programming Techniques on the Amstrad CPC 464

~0
Rl

i b
o0 Mmool

oo
0w
@ Qe

AR
o
e i

H5 I i

]
15

RV

Line

FEM routine deletes,/draWws When tria
iz hidden

REM ‘i@ when it is in th2 backaroun
lour:;

PRIMNT

MR$ 22y CHR$ityPe)
MOUE :
DRANW

-

vpe=3I ELSE type=:Z

100 temporarily moves the coordinates for the triangle

back to the previous position, so that it can be erased while it
is in the background colour. Line 120 switches between the
colours needed to draw/delete, and 2030 switches between
OR and AND line-drawing.

We

can apply the technique to our original animation of the

18 HMOD

14 REM egers

15 DEF

z8 GOS

15 Go0%

4B PRI

s3 END

295 QFE! coordinates

299 RE! of the 403

G !:1 :’:;

iBle Fof

1228 RE

1BI8 NDHT

1643 RETURI

1AEE DATR G.8.28, &, 18,868,068,

128,28,18,.35,358,35, ! P L 1@,28,78,88

1640 DATA 48.0,86.48.28.40.76,88.368.18&.7

< 35,50.70,20, 70,8090, 140,90, 140,110
18,120, 86, 110

?.128.8,15.30,50.36.50,15.2860,15,88.75,828

188 DATA 75,80.85,40.235,408.45.18:75,86;

‘?*3'5i3x°‘_«5@-:‘:0,iiv”5~’:‘-!3vl'5"13@‘i!31_,13@

12,118,128, 118.,98,188

Animation . . .

REM =et INK I to correct colour for

2F INKE Z.24
J <! colour=si:oolo
Bz type=I:shade=j]
2@2% REM draw figurs Qt starts position
2838 SCGSUR +BBE
2@4E GOSUB ZGEE
285 type=l:shade=
2E&B =inc=g
ZB78 WHILE 7
ZB7? REM u o PCESiticn FCOT new
Figure
SRR Hinc=HiTIo+DR
ZER29 FREM draw new figure in background o
clour
2858 GoSUB 5886
22?9 REM switoh IHMES
2i@@ GosuUR 4aee
218% REM =231gtg provizus figurs Whilg in
sackaround colour
2118 Hinc=winc-20
2128 50SUBR S5B2BE
Z1Z2% FEM set xinc back £0 value For pres
ent fFigure
130 Hinc=xinc+ IR
2146 IF shode=Z THEN shoade=1 ELSE shades=s
<
21568 WEND
2149 RETURN
2%7% RFEM 4raw d4dog Aas a4 series of connect
£ TO zeart+I5 STER C
ot

-’
[}
)

113

114 Graphics Programming Techniques on the Amstrad CPC 464

This gives a much smoother animation.

Exercises

1) Draw a series of circles in different positions in different
INKs and produce a ‘bouncing ball” animation by switch-
ing each circle between the foreground and background
colours.

2) Create two alternative ‘keep fit’ images of a stick figure
touching its arms to its sides and then putting them out
straight.

Creating foreground and background colours

Let us now consider another consequence of this manipulation
of INKs. This program draws two overlapping rectangles, but
this time they are both colour-filled, one in yellow and the
other in blue:

Animation ... 115

NI

[A W B

If you run the program you will not be surprised to see that
one rectangle obscures part of the second. What is perhaps
surprising is that it is the yellow rectangle, which is drawn
first, which hides part of the blue one, which is drawn second!
This is the consequence of line 2@, where we have essentially
said ‘Make any overlapping area of the two colours appear as
yellow’. We have decided that yellow will be the foreground
colour and blue the background, and in any case where blue
and yellow overlap, yellow takes priority.

If we change line 20 so that any overlapping area is
displayed in blue, the blue rectangle now hides part of the
yellow one:

This ability to give colours a priority is very useful in games.
By suitable setting of the INKs we can arrange the colours so
that a figure can pass over background features without
erasing them. More impressively, the figure can pass BEHIND
areas drawn in the foreground colour, emerging intact from
the other side, as we shall now demonstrate.

In Chapter 2 we looked at one of the simplest ways of
producing smooth animation, by using TAG and printing the
character to its new position. The effect when there is a figure
in the background is not unexpected:

1@ MODE U

28 ®=237@:¥=1320

2% REM draw ang fi1ll rectangls
IB FOR w#coord=x TO =+128 STER 2
48 MOWE wcoord,:

532 CRAWR 2.1i38,1

&8 NEXT
7B APrint=p:ypPrint=189

116 Graphics Programming Techniques on the Amstrad CPC 464

79 REM tex+ ar araphics cursor

B2 TAS

3% REM pPrint characier $0 SUcCCBSEive POS
itions

[I e

b bt Rt i Q)
(3 I Nt s I S T R Y]

[ka}

The character wipes out part of the background as it moves.
Using a character with no ‘border” on the left-hand side gives
even worse results:

189 REM character Wwith no lefr-kang bord
€r: an arrTow

118 PRINT CHR$(243::

The solution is to use TAG in combination with EXOR
printing. However, simply printing the character is not
enough:

i@ MOoDE 1

2B #=238

&F REEM Y i1l vecrangls
I3 FOR Hcooordg=x To #A+1810 STER Z
48 MOU oor

52 CORA

&G MEX

7R oRprint=R:

71 OREM EXOR

73 PRINT CHR

gg TAG

32 REM pPrin

itigons

%6 FOR Hooordss<fprint TO 408 STEP 2
198 MOQUE HooorTd,ypTinmt

118 FRINT CHR$:Z43::

128 NEXT

129 REM switcok normal prinking on
13I8 TAGOFF

148 FRINT CHRE$:(Z3:CHR$(E:

158 ENC

This is even more of a mess! The reason for this rather odd
result is that the character is being EXORed with another

Animation ... 117

version of itself printed one pixel to the right — the resulting
combination after EXORing does not give the original charac-
ter.

Let’s devise our own arrow character with a border on the
left, as in Figure 5.13. The arrow will be printed at the start
position on-screen. Thereafter successive characters will be
EXOR printed one pixel to the right of the present position.
We must therefore define a second character which when
EXORed with the original will result in a copy of the original
displaced rightwards by one pixel. This is easier to understand
in a diagram (see Figure 5.14).

Figure 5.13 A character with a border on the left.

We can find the character definition for the EXOR arrow by
examining the original arrow definition row by row and
working out what value this needs to be EXORed with to
reproduce the arrow. This is easier to do using binary, as can
be seen in Figure 5.15, where we find the first number that will
be needed in the EXOR character definition. So the first line of
the EXOR character needs to be 24. We could continue in a
similar vein, but in fact there is a quicker way of doing it.
EXORing any binary number with a second gives a particular
result. EXOR the original number with the result gives the
second number back again. So we can find the new definition
more quickly simply by EXORing every line of the original
with the same line displaced one pixel rightwards, as in Figure
5.17. We can incorporate both the characters into a program to
demonstrate that the EXOR approach successfully leaves the
background intact:

118 Graphics Programming Techniques on the Amstrad CPC 464

_—l-—T——l__r_—l__ - __)~--I

| | | 1 1 | l '

—J—-r——l——l——F—T——l——l— o

! I

e

| 1 |

1 | | | | | |

_.l'.__.__.L_.'__.L_ I B

.. | | 1 | T + | '

original —3»f 'L b1 I L _{

arrow _"',“‘|“|‘|‘|-T'"+— -7
character ! _1 second character

(hidden) ,' N <«— superimposed one

1

.__:__lL_T_.t_Jl---:— 1~ pixel to the right

| |
it e el bl B Rl

L L_ .
L d e e e e e e e e - o -

I | |

1 | 1

1 1

] |]

| : |

1

! v

| ! 1

| 1

; after

I

-—— (_..._.._

result is the original
- arrow moved one pixel
to the right

Figure 5.14 EXORing with a second character to create a copy of the first
displaced one pixel to the right.

00001000 Binary for first row of arrow character (8)
EXOR 00011000 needs to be EXORed with this binary
number (24)
00001000 to give the first code displaced to the right
(8)
Figure 5.15
00001000 Binary for first row of arrow character (8)
EXOR 00001000 result we want after EXORing (8)
fo011000 so we must EXOR with this number (24)

Figure 5.16

0001100
EXOR
00001100
00010100

00001110
00001110
00010010

EXOR

Animation ... 119
Binary for second row of arrow character
12)

result we want after EXORing (12)

so we must EXOR with this number (20)

Binary for third row of arrow character
(14)
result we want after EXORing (14)

so we must EXOR with this number (18)

the same for the remaining rows of the character definition

Figure 5.17 Finding the character definition required to produce a copy of
the arrow character displaced one pixel to the right following EXORing

54 REM definge Srrow Charaoter fFirst prin
ted

35 avM z 2.

24 REM ine E:

37 SVMB Z6i. 24

7L FCFR crd=xp

188 MO “o0 d.

188 REM print normal arrow ak fFirst posi
rion

189 REM then EX)OR arrow ussSd +3 cocreate 2
CTOW 1N Tew position

118 IF Hcoordg=sxprint THEN FRINT CHRE${Z4E
;3 ELSE PRINT CHR$ (241

126 NEXT

129 REM Switchk mormal printing on

138 TAGOFF

148 PRINT CHR$(ZI:CHR$ (G ;

158 END

This opens the way to all sorts of impressive effects in games
programs. By combining TAG, EXOR and changing the INKs,
we can create a range of games characters that behave in
different ways. Perhaps the player’s ‘man’ can move across any
yellow blocks on-screen, but not the blue ones; the fearsome
‘ghosts’ in pursuit can only cross the blue blocks; and the
‘super-ghost’ is not stopped by anything as it rushes in pursuit
of the ‘man’.

It is important to remember if you intend to create a
character that it is still vital to have a one-pixel border, as the

120 Graphics Programming Techniques on the Amstrad CPC 464

character will otherwise leave a trail when it moves. The
border should be placed on the opposite side of the character
to the direction in which movement will occur. In the arrow
example a border was needed on the left because we were
moving right.

If you intend to move a figure in more than one direction
you will need. to define an appropriate EXOR character for
each direction of movement, and use that character for
printing whenever a movement is made in that direction.

There is no need to confine yourself to single characters
(although they are easier to handle). This program creates a
three character ‘car’ and its three character EXOR equivalent.
The car is moved across the screen, driving behind the yellow
blocks and in front of the cyan blocks:

15
T
Fag o4
ip
L
48
T
-
S8
78
Y78 :
wWhi
759 nd
ool
igE@ INK 3,24
1818 y=1@@:coloursl
1@Z@ FOR ==18@ TC 568 STEP 5@
1838 G0SUBE 4880
1@49 MNEXT
4 - -
1B5SB RETURN
CEEE SYMBOL Z48.EB.15,28,1024,127.18.12:8
Rl oy ot - o oTe 4omm g T AnE g
2RIe SYMBOL Z241,5.,2535,1ZB,128,255: 255,48,
(4] :
= g g = : 3 -~ -
ZEZ@ SYMBOL 262,8.128,1%92,254,254,72,48,
5
ZB3I@ SYMBOL 263.,8,14,34.132.12
b) g i En WA 7 E - vl
2841 SYMBOL 244,0,8,127,.1327.8,
2B4B cOorT$=CHR$ (242 +CHRE (241, +
ZE7E exorcar$=CHR$ (243 +CHRS (D
FAR Y

Animation ... 121

[y A |
U

a0

]
d)
v
R
N
1]
=

U s T s B

5~
RN

DT
-4 Z
N
A

i 0

LR I I O o I N I 0|

12
-
-y
v
|

>
)
4w M
0o [n}

LI TR VN
LN
[w]

=

Ll

FETURHN

Line 1000 is necessary to set the overlap area of cyan car and
yellow block to be yellow. Change the line to INK 3,6 (the
normal colour for PEN 3) and you will see the car turn red as it
passes the yellow block.

The effect is spoiled by the fact that the car reverts to the
background colour when passing over the cyan blocks. This is
because both colours being EXORed are cyan, and EXORing
any binary number with itself always gives @, the current
background colour.

0010 A cyan point
EXOR 0010 being overwritten by another cyan point
0000 gives a point in the background colour, blue
Figure 5.18

We could get around this problem by drawing the cyan blocks
in a different colour and setting the right INK so that the
overlap of car and block would not give this change in colour.
The problem here is that we have only four colours in mode 1,
and we are rapidly using up all the colours available! There is
much more latitude in mode 0, where 16 different colours can
be used, and we can redefine the PEN colours to give the
desired effect.

122 Graphics Programming Techniques on the Amstrad CPC 464

Mo

YR e
m

[
)

LU R e |

)l
]
D oe4 M T

m

)

D Do)

-

[IR o B

PRI

T T e

DE
EM

L BERY
fr

10

W

[<

e

m

V]
DL T I YL S B Y|

E oMo
i

[T i G e o
o]

T D

(W

i
g

LI U

11
Qoo

+a

[}]
X

[

SO]

¥21l1l0W 50 Cy¥an/ye
Cow
i3 foregroung C010UT

In mode 0 each colour is represented by four bits. The car is
EXOR printed using PEN 2, and this can overlap either with a
yellow block (drawn with PEN 1) or a red block (drawn with
PEN 4). We therefore need to reset PEN 3 to show yellow (so
that the car appears to go behind the yellow blocks) and PEN 6
to show cyan (so that the car goes in front of the red blocks),
lines 1000 ,100 1. You can reverse the priority so that the car
goes in front of the yellow blocks and behind the cyan by

putting:
778 REM I
GF give
REM 3
B IME
@i REM
riae 3i
1862 REM
1883 INK
0010
EXOR 0001
2011
0010
EXOR 0100
D110

[} '1; [

=

Ooom

o

.,
P

SY4an S0 oyanSryellow ouwe
it background Colour
White =O Syan/white o4y
i foreground CcOLlouv

The cyan car
overlapping a yellow block
produces the code for PEN 3, red

The cyan car
overlapping a white block
produces the code for PEN 6, cyan

Figure 5.19

Animation ... 123

o000 Blue - far background colour

0001 Yellow — near background colour

0010 Cyan — midground colour

0011 Cyan — midground hiding near background

0100 White — foreground colour

0101 White — foreground hiding near background

8111 White — foreground hiding midground hiding background

Figure 5.20 Creating background, midground and foreground colours by
setting appropriate INKs

One slight complication here is that TAG causes printing to
take place using the current graphics foreground colour. We
can’t use a PEN command to change that colour any more,
because after a TAG the computer changes the colour only
when obeying a graphics command.

Before the car can be printed in cyan, the graphics colour
must be switched from white to cyan, and to do this we need
to issue a graphics instruction. This is the reason for lines
2071 and 2072 — without them the car is printed using the
current graphics colour, white.

Mode 0 offers plenty of scope for extending the foreground/
background idea, because of the range of colours available. We
can, for example, set up background, midground and fore-
ground colours, as in Figure 5.20. Here the fourth bit set to 1
indicates the presence of yellow, the near background colour;
the third bit set to 1 shows the presence of cyan, the
midground colour; and the second bit set to 1 indicates white,
the foreground colour. Other combinations of bits show one
colour obscuring another.

By EXOR drawing, we can draw or delete lines in any of the
colours without disturbing overlapping or hidden lines in
other colours. For example, let’s see the effect of EXOR on a
white foreground line hiding a cyan midground line which in
turn hides a yellow background line. Let’s first delete the
white line (see Figure 5.21). What if we had deleted the cyan
midground line? (see Figure 5.22.)

0111 White point hiding cyan hiding yellow
EXOR 0100 on deletion of the white foreground
0011 the cyan midground is revealed

Figure 5.21

124 Graphics Programming Techniques on the Amstrad CPC 464

20111 White point hiding cyan hiding yellow
EXOR 0010 on deletion of the cyan midground point
6101 the white foreground now only hides the

yellow background

Figure 5.22

By examining the results of deleting one line from other
combinations we can determine the INK commands we need
to use to allow deletion of any of the lines without apparent
disturbance to the others. This can be seen in the following
program, which draws and fills in a white foreground
rectangle on a cyan midground rectangle, resting in turn on a
yellow background rectangle:

)
P
i7 5
5] i
I ~
s 5 o
z
15 z
i3
&
v
o = R ol - - =
2kt PERMS to Brodidce
i)
[R b
z T
o P i

4

T

IN

o X

H R

y 3= - - e 1 = = - o - 3 = - -

REM 4raw 2 el rangles o0 TopE Of =00
-

w

L

|
¥
[
u
+
()
L‘::
g
pod
+
b}
¥
"

LiZwWIZT1oe=E
Tids=c i dem

1
31
H

-
(L
n
"

u
b

(A8

[&

=

&

+
[sY]
[S O I N B

3y

Animation ... 125

e 11 ke

P
C

pe 0 I S T S

-
v
-
DN
¥

(]
c T

Y]
[

)
LN |
[w]

| B B VLR i s X

b4 0
m m
1]

5E de
IF ="
s de=
&6 W
HORET
& FOR < T{ o =+zide STEF &
3 OMoUE gy
& DREWR G.=si1d2.ooilour
B OHEXT
& RETURH

Line 3020 enables you to draw/delete the yellow, cyan or
white rectangle by inputting the letter y, ¢ or w respectively (e
to end). The effects in this program may surprise you — you
can delete or draw the yellow background rectangle and leave
the two rectangles that rest upon it completely untouched!

Exercises

1) Define a ‘boat’ using one or more characters, as well as an
appropriate EXOR character so that it can be moved
smoothly across the screen.

2) Extend the previous program by sailing the ‘boat” across
some blue water, where it travels in front of a number of
large and menacing reefs that push up out of the water.

3) Add some grassy hills which the boat sails behind.

4) Sail another boat in the opposite direction. When the boats
meet, one passes behind the other.

5) Change the order of priority of the colours in the rectangle

program so that yellow becomes the foreground colour and

126 Graphics Programming Techniques on the Amstrad CPC 464

6)

white the background. Only the yellow rectangle should
be visible at the start, and the white one should only
appear after the other two have been erased.

Add a fourth rectangle in a colour which becomes the new
foreground, white now being a fore-midground colour
and cyan a back-midground colour. Adjust the INKs so
that any of the rectangles can be drawn or erased without
affecting the others.

Chapter Six

. . . and artistry

In Chapter 4 we developed a program that enabled the user to
draw on the screen and save the resulting picture in a file for
future use. In this chapter we shall develop the program
further and extend its facilities, so that standard shapes can be
drawn and coloured in.

Selecting options from the MENU

The earlier program relied entirely on keyboard input. Most
programs of this type operate by displaying a MENU on-
screen. This is a display showing the range of options
currently available to the user. Typical options might be to
rescale the drawing, select a new colour for shading, or draw a
circle or rectangle (see Figure 6.1).

Selections are made from the menu by moving the cursor to
the appropriate position on the screen. The computer notes the
position of the cursor and implements the choice indicated by
that position. This approach makes the program a lot easier to
use if the menu meanings are obvious: it is no longer
necessary to remember which key on the keyboard changes
the line colour, which indicates you wish to draw a circle, and
so on.

However, unless an alternative input device such as a
joystick is available, some controls must still be operated by
key depression: the most obvious being the movement of the
cursor and the fixing of a point. Additionally we shall leave the

Load
or Ch?nge Shade | C'@" | gcale O D A /
save | colour screen

Figure 6.1 A typical menu for a drawing program.

127

128 Graphics Programming Techniques on the Amstrad CPC 464

line-on/line-off choice as a keyboard control — it would be a
tedious business to have to move to the menu every time this
was changed.

Our new program will include options for selecting line
colour (any of eight colours, including the background colour)
and choosing to draw either single lines, a circle, a triangle or a
rectangle. A further menu option will be a ‘toggle’ between
colour-fill and no colour-fill, so that the user can either shade a
closed figure in the current foreground colour or leave it
empty.

Selection of a choice from the menu is shown by pressing
the ‘¥ (fix point) key once the cursor is in the right place. The
computer will beep to acknowledge the choice. It can be a bit
difficult to remember whether the circle-drawing mode is in
operation or what the current foreground colour is, so we will
provide a reminder. This will take the form of a character at the
bottom left corner of the screen, which will always reflect the
current situation. The menu itself will also be shown along the
bottom of the screen, although its positioning is a matter of
personal taste — you may prefer to run it down the left-hand
side or along the top.

As before, we begin with a basic program:

s R i

i@ MODE @

TR ST

o (X RV R3S] i

b ¥ o} A a RSNl =] ~

S LY o

48 EHD

igam =ra

1R1G

Al g R

S mT

Lo

TATA

P S-S e

I tar Sur i
1837 s
Shl‘xiﬁi

HES A e Siruavion - 1nfo% SEaTi
= as ne

1839 32 ot start INE dsed iz ye
llow T o drows linec

184E {47

1358 PaEs

i@sa infog;

TEF7R menus=S:menuy=24

179 REM 4Hdefine +trigangle and Ccolour-f311
17no r—f:111 symbols

and artistry 129

(&9}

o

U

e
ros

L

(cn]
-4
~
-4

[

7 REM Pr2

-

m
L

n

[
)
L.
o
L
g
[
0

v
X

.=

k

[
-

-~
H

WEND

=980

s3]

3
X
'8

(]

)
[ak]

FETURN

£

implement

and

ut

4QEE

130 Graphics Programming Techniques on the Amstrad CPC 464

13
-+

hU

iin
L 1h

E

oundcolour ELS

a7

0

SrmMmoan:

[
=

&

?%? EREM

o

[
[a]

4

menu

L
4

Py

URN

RET

"
)

i o

nate to deduce

oordaiy

~

ko

cice

So5UB

a@7a

. and artistry 131

FAaZ@ PRINT infot

7RIBR RETURN

FEM <coming up s32on!
RETURHN

This enables us to move the cursor and to make choices from
the menu — although at present only the colour change
actually works!

A menu choice is indicated if the y coordinate of the cursor
is less than 32 when a point is fixed. Lines 4050 and 4060
could be combined into asingle IF . . . THEN . . .
ELSE statement, but are kept separate for clarity. Subroutine
6000 checks that the x coordinate is within the menu area,
and then implements the choice depending on that coordinate.
Subroutine 7@0@0 prints the character info0$ to the bottom
left corner of the screen: this string variable is changed
whenever a new menu selection is made, so that it is always
the right colour and symbol.

Adding the standard shapes is relatively straightforward,
but we must think carefully about how these choices are
implemented. Circle-drawing is not very fast, as we saw in
Chapter 3, and so it would be unwise to continually draw/
delete a potential circle using EXOR, as the program would be
unacceptably slow. Once the circle option is selected, it
operates as follows: the first point fixed is taken to be the
centre of the circle; the point next fixed is taken as a point on
the circumference of the desired circle; the circle is drawn with
a radius equal to the distance between the two points.

EXOR drawing of a triangle or rectangle is feasible as only a
few lines are involved, but the two options need to work
slightly differently. Once the first point on a triangle has been
fixed, we still have no idea where the remaining points will be,
but this is not the case with the rectangle. Once the first corner
has been fixed, the position of the remaining corners depend
entirely on where the diagonally opposite corner is placed. The
rectangle option therefore involves the fixing of just two
points. The first point is taken to be one corner of the
rectangle, and the second that of the corner diagonally
opposite.

Both the triangle and rectangle drawing options involve the
movement of the cursor, but whereas previously EXOR

132 Graphics Programming Techniques on the Amstrad CPC 464

* — fixed point
O - some of the possible positions
of the diagonally opposite corner
- - - —unfixed lines

Figure 6.2 Fixing the position of a rectangle by identifying just two corners.

drawing has only involved a single line, here we need to draw
and delete a number of lines simultaneously. These options
would therefore need to be entirely separate subroutines that
call the censor movement subroutine but not the line draw/
delete subroutine used the rest of the time. We shall settle for a
simpler approach where selection of the triangle or rectangle
option results in the shape being drawn only once an
appropriate number of points have been fixed. This is less
attractive than the constant display of the (potential) triangle
or rectangle by EXOR drawing, but this is left as an exercise for
the reader.

49%% REM ChecCk Fovr Civclesrecrtanglesiria
nole me i a¥u] &

G FRINT CH

1 IF Zircl B Zges

EAAIZ IF rTeora = F THEMN GoSu TEHTE
R ! E FE N i [ERR RN »\J‘._
S5BRT IF trian 23 THEN GOSUB 123813
ZGE1E SoSUBR I&

... and artistry 133

* — fixed point

O - unfixed point
- - - —unfixed lines
—— - fixed lines

Figure 6.3 Before the third corner of a triangle is fixed, two of its sides could
be in any position.

S2328 PRINMT CHR$(ZZIZCHR% (L)

EA3E srtart<=x:starty=sy

ST8E8 RETLURN

5929 REM menu CohOise - raject 1if not on
menu

AEEE IF =<¢128 OR =:543 OR ¥<{(1& THEN FRETU
RN

s@18 SOUND 7. 488

&B1% REM =% coordd{384 =hows & COlouUur Cohan
ge ic needed

4028 IF x{384 THEN forsgroundcslour=TEST
(%, ¥y :GOSUR 7BB2:RETURN

4A2F REM check x coordinate to deduce ch
cice

4B3@ THEN info3=CHR$(47) :GOSUR
TEED:

L@4Q THEN info$=CHR%{77):G05UR
7888 : CRETURHN

SEEE THEN info$=CHR$(Z3Z:G05UB

134 Graphics Programming Techniques on the Amstrad CPC 464

73RB:rectangle=1{:RETURN

@s@ IF %4512 THEN info$=CHR${Z4@) :GHS5UR
7@m9:triangle=1:RETURN

T REM must be colour-fill/no-colour-F
1 tcggle

o

O
. 0D
U

5878 G2%UBR iLaae
4D2R RETURN
7EE PEN foregroundcolour
7ol LG2ATE 1,24
FEIZE PRINT 1infog
FRZE IF #{Z84 THEN FETURN
FTHZY REM new menu Shoice - Ccancel prewis
UE Choice
e circle=g
Ta4 triangle=sa
7EER rectangle=g
B4 RETURN
7999 REM circle-drawing routine: C20tre
and point on circumference refuirad
Z28EE IF <ircle=] THEN circle=2: RETURN
523G REM if we 3et here we have 2 points
needed and <can find radius
S31R “d=fPS{(x-startx: yd=Q(BS(y-starty:
SEaza Tdius=SRR i idexd+ydeydr
2RI MOUE startx,starty+radius
2048 FOR angle=@ TO IZ«#PI STEF FI/&E
2852 DRAW startx+radiucxSIN{(angle},start
y+roadiusxdss{angle:;
8245 NEX
2@7@ DR sktartx,starkty+radius
FLOT stare=,startkty, @
Z2@Ee% REM ss+ flag back £o 1 For nexk oir
clie
2@7E civrole=]
5128 RETURN
39%% REM rectangle-droawing rourine: Twd
corners regquired
TEAR IF r2corangle=i THEN rectangle=Z:RET
RN
2! MAOWUE s Earte, S Ay
FRADE DRAWR ®-stcartx,?,foregroundcolour
ZEIE DRAOWR E.,y-Starity

FRLE «EQ R starcs-%,03

FES@ DRAWR @.starty-¥

... and artistry 135

FES5T REM =set rlag back o | For next rec
ransla

IR&T Tectangle=i

YEOTE RETURYN

2999 FRE rrigngle-d4rawing roudtins three
coi = requared

1@gees IF rriargle=] THEN rriangls=2:=l=x
cyl=v RETURMN

18@1@ IF friangle=Z2 THEN frianale=3:RETY
RN

i3

ia F#,starty,foregroundoolou
-

flag back *2 | FOr next &r

Iu}

1,

3

un

]

(W}
bl

The selection of the circle-, rectangle- or triangle-drawing
option is indicated by setting a flag to 1. Subroutine 70080 is
extended so that selecting any option sets the flag for the
others to @ — otherwise the computer might try to draw a
triangle AND rectangle, for example! Line 7025 is included
because we don’t want to reset the flags if the menu choice has
only involved a change of colour.

As the three figure-drawing options will only be im-
plemented once the right number of points have been fixed,
the check for these options is placed within the point-fixing
routine, subroutine 50080. If the flag for a particular option is
greater than zero, the appropriate subroutine is called, lines
5001-5003.

The figure-drawing subroutines at 8000, 9000 and
10000 all have one thing in common. If the number of points
fixed since the option was selected is not yet great enough, the
flag is increased in value by 1 to indicate another point fixed,
and the subroutine then ends, lines 8000, 9000, 10000
and 10010. Effectively the flag is also used as a counter to
show how many points have been fixed. Two points must be

136 Graphics Programming Techniques on the Amstrad CPC 464

fixed before the circle or rectangle options can work, and three
points are needed before the triangle option can operate.

Once the right number of points has been fixed the
subroutine draws the figure and sets the flag back to 1. This
means that once, for example, the circle-drawing option has
been chosen, circle will continue to be drawn until another
option is chosen from the menu. Don’t forget this — it’s very
easy to try to draw a line while in rectangle or triangle mode,
with unexpected results!

The structure of the program means that you could use the
same approach to add further figure-drawing options to the
menu, to make it easy to draw ellipses, diamonds, etc.

Exercises

1) Extend the range of colours displayed by the menu to 10 of
your own choosing.

2) Introduce a ‘clear screen’ command onto the menu. This
clears the entire graphics area to the current foreground
colour.

3) Add a new figure-drawing option which allows the
drawing of arcs. You will need to specify three points: the
centre of the circle of which the arc is part, and the start
and end of the arc.

Colouritin

We now come to the colour-fill routine. The Amstrad does
have a command that enables large areas to be filled with a
colour, the WINDOW command, but unfortunately this is
related to text coordinates only. We must therefore devise our
own method for colouring a graphics area.

It is clear that to be completely sure of filling a closed figure
with colour we will have to examine the state of every point
within the figure. We will tackle the problem in stages, first
devising a routine that will colour every point on a line and
then extending it.

Suppose we choose an arbitrary point within our figure. We
can colour all points that lie on the same line in two stages.
First, the point to the left of the present position is examined

... and artistry 137
© ®© @0 06 06 0 O

<

direction of plotting

O - start point
@ — plotted point
© — edge point in non-background colour

Figure 6.4

using TEST. If it is in the background colour, the point is
plotted in the present foreground colour. This point becomes
the new ’start” point, and the point to its left is examined. The
process is repeated until a point in a non-background colour is
encountered — this must be the edge of the figure (see Figure
6.4).

Effectively a line has been drawn from the initial point
leftwards to the boundary of the shape. The remaining points
on the line can be coloured by repeating the whole procedure
from the start point, only this time points to the right are
successively examined. The following routine carries out the
line-filling using the procedure described:

]

1 REM this 15 4 program in its own right
2 REM althoughk the subroutines estc will
I REM be incorporated into our main prog
ram

1@

i% W EROGFEE REeTS - this i
I CRA

4G CR

38 oOR

54 REM choose (@ random points and plob
lines From them

55 FOR count=i TOo 13

59 REM random point wWwithkhifn the ¢rigrgle
q@ vAnNd=INT(RKHD {1 #230 :xhere=21Q@+rand: v
here=li@+rand

7@ foregroundooloursliyfill=yvkers

77 REM Fill rcinte €0 left of the pocint
88 ®ino=-4:xfill=xhers

FE SCSUB 12832

& REM mnSw Foints €0 Tight - donfit fForgs
£ ztarts point it=elf

138 Graphics Programming Techniques on the Amstrad CPC 464

79 REM sCc begin one ploce o lefr
182 inc=4:4fill=xhere-4
1i@ ‘B 12EEE
128
126
17%%% REM ohm2ck point by POiNt £0 the 12
F T right
13886 t=0:WHILE t=@&
183168 =Fill==Fill+xanc
1836826 *=TEST{(<f1ll,¥F1ill:
28 FEM if %= point is in packaround

[I
[]
0 <

1

REM and so must b2 plottred
938 IF =9 THEN PLOT =®#f1ll,yfill,foreg
21

3D 000 QW A
. (]

s T SR S D I)

Subroutine 180080 is called twice with different increments to
the x coordinate: initially the increment is —4 (examining
points to the left) and then +4 (examining points to the right).
(Note that this increment will vary with the mode — the
resolution in mode 1 is higher and an increment of +/-2
would be required.)

You can confirm for yourself that the routine always works
by drawing a different shape at the start and setting x here and
y here to any coordinates within the figure.

What happens if the point lies outside the figure? Unfortu-
nately the TEST command is of little help here, and one of the
Amstrad’s other capabilities works against us. If the initial
point is not within a closed figure, the Amstrad will carry on
examining points to the left, even when they go off-screen!
The TEST command regards a point off-screen as being in the
background colour, and the computer, treating its examination
of points as unfinished, will carry on taking 4 from the x
coordinate even if the x coordinate has become —1000!

There are several ways around this. We can include a test on
the value of xfill:

delikberately 2utside

AND =F1i11:@ AND =f11

... and artistry 139

This obviously slows the program down, as the x coordinate
for every point must be tested. An alternative approach which
is faster is to draw a ‘frame’ around the edge of the screen. The
computer will stop plotting points when it reaches the edge of
the screen as the next point is in a non-background colour.

Our routine for filling in single lines is now complete. How
can we extend it so that it fills a figure? One way is to examine
the points immediately above and below the line we have just
filled. If a point is in the background colour, its coordinates can
be stored in an array to make sure it serves as the starting point
for another line drawn later (see Figure 6.5).

o O000O0

0000000 these points have their coordinates
V00000000 stored in an array so they can
00000000 be coloured later

O - points in background colour
@ - plotted point
@ - edge point in non-background colour

Figure 6.5

It might seem that we need only continue testing points
until we find one in the foreground colour, but some shapes
require the testing of every point, as in Figure 6.6. Only some
of the vertical parts of the figure would be coloured unless
every point above the line was checked. The checking of every
point is rather time-consuming, and we here have to make a
choice between efficiency and perfection. Do we want a fast
colour-fill routine which sometimes fails, or a slower routine
which will always colour the points within a shape, no matter
how convoluted it is?

An imperfect routine which nonetheless successfully fills
many shapes involves the checking of only 4 points:

MODE &
i4 REM arvay 9 hold coordinates of pnon-
cured poinks

OIM

[
o
bt

m o0
: o
m
g

LN W I S 2
[]
-
et
r

@
Lo
R
€I
x

140 Graphics Programming Techniques on the Amstrad CPC 464

- - =— most recently plotted line
1 — points just above the line here will be coloured
2 — points just above the line here are already coloured, so checking will go
no further
3 — points here are uncoloured and will remain so unless every point above
the plotted line is checked

Figure 6.6
DRAWR -1ga@.&
2 CRAWR 2.,-1086
TR REM % and y¥ are cocordinakes oF 4 poin

i
P

1

i
]
s
=
.=!
s
-2
=
b

Ry

SRRy

. and artistry 141

158843

1E5E&E

15879 CHRS$ (15

i5@380 { rectangle:f@ OR kria
nglesid TH ¥, foregroundcolour
15@9@ RETURHN

159%% REM check 2olour of pressnt point
1LERD HRere=xfill:yhere=syFfill

i481@ IF TEST(xfill Filly{:@ THEN RETUR
il’

156828 =ino=-4

18827 FREM check 2louys oOfF all points =5
tic left

18@38 GOoSUR (gaeam

1454840 Hfill=sxhere-4:vfFill=yhere

16845 REM Check of 4all points 0
ti1s right

i B xinc=4

168353 GCESUB 122685

16876 RETURMNM

1499% REM keep checking points in list o
Titil they' ™ all

17688 WHILE begi inish+13MOD ZEE
17818 =fFill=x{begin;:¥fill=y{begin:
17@26 beginzikegin+i:Mol I@e

17933 SOSUR 1&4£228

176848 WEND

17252 RETURM

i FEM ch2ck PO1nt by POint to the 12
£ right

1266E r=@:WHILE

1BB1B XF1ll=xF1ll+=1n

13268 t=TESTiNf111l.y }

18838 IF =B THEN PLOQOT ~Fi1ll,yfill,fores

rFouUnNdCcolour
18843 WEND

18@5m HFill:HFill-ﬂiﬁC:“Fill:ffi‘l—z
128959 REM if point oon line below i gk
coloured, ave it

188468 IF TEST(®Fill.¥filli=@ THEN GOSUR
15868

18870 ¥Fill=v¥fFill+d

18877 REM if point on line abkowe iz nor
coloured, zave it

142 Graphics Programming Techniques on the Amstrad CPC 464

12688 IF TEST(xfFi1ill,¥fFf1il1l3=@ THEN SOSUB
192818

123878 RETURH

182%9% REM store coordingies of uncolours
4 point o it carn be ccocloured later
ieaanm 'ih1=h=171n1=h+1'M"D 0@

196815 (fFinicshy==FfFill:y(finichr=yrill
iz@z@ RETQRH

Try running the program with a variety of different shapes. It
only examines points diagonally above and below the ends of
the present line. As a number of lines will be filled, the
coordinates of their ends are saved in the arrays x(), y(). Two
pointers, ‘begin” and ‘finish’ indicate positions in the array;
‘begin’ gives the number of the array elements containing the
(x,y) coordinate of the next point to be examined, and ‘finish’
gives the number of the next ‘free” array elements in which the
coordinates of new non-coloured points can be stored.

For example, after the first line has been drawn, it is quite
likely that the four points above and below the line will be
found to be in the background colour, and their coordinates
will therefore be stored in the arrays x() and y(). Subroutine
17000 successively examines each point whose coordinates
are in the array, and subroutine 160080 sets up the examina-
tion of points on either side of this. The points are coloured in
subroutine 18@@0, until a point not in the background colour
is found, line 18@30, when the search ends. Lines 18050 to
18080 then check the colour of the points diagonally above
and below the end-point, and subroutine 19000 stores them
if it turns out they are in the background colour.

Lines 17000 and 19000 contain a MOD because the arrays
are treated as circular. Obviously we cannot know how many
coordinates the computer needs to store, and 300 seems a

0000 ... 000

@ - edge points
@ - plotted points making up the line
* — points whose colour is checked

Figure 6.7

... and artistry 143

reasonable number. A large and complicated figure might
require more, however, but we can avoid having to set up an
even larger array by re-using the earlier elements. This will not
result in any loss of data: by the time we need to use the lower
array elements again they will have been examined and are no
longer needed.

The routine fills 90% of a circle, but fails towards the top and
bottom where the arc contains short horizontal lines. These are
examined and found not to be background points, and the
program abandons the colour-fill because it appears to have
reached a boundary line. We can avoid this problem with very
little deterioration in speed simply by examining two more
points:

—
~Q

!

G T
@0

CRAWR

[Y B N

LnoLn Lo (o
R

b
GG

(3]
20 N T o L i B 40 e A

-

[
;
b

- et

Q
m
—

By

—

4

.:,
2

L
i
e
bt
mn
[N
o

5
LI Y

[
s O

(G UGS
(e |

5 s
m

Q
m
X
x
1]
ok
mn
v
Q

)
-3
[nk
-
o |
)

+

n

0n
(%]

al
P
o

M
g

10

]
Q.

(]

RO N S
oo

o

Q. E -

-5

5o e
0)
b
[

—

1}

o

T

0w

|'n (=

|

"
[(]

Zolour o

pral
m
3
¥
ng
m
[y}
X,
[N
o
b
R
U1}

=]

P i S
[S SR o S\ Sy
[T
©n
[e}
12
Ty
T
b I
(]
]
¥

]
(3]
"]
ca
=

u
C
= (0

[0 I o S =
- oo O

]
[
D

[} (=
T
o]

[)
(W)

i

[VE

-

i

[N

r

D

(U}

W]

N

i

P

Iv}

T

ad

D

3

[o8

"
I\
S
.
bt
e

.

r
.

o

144 Graphics Programming Techniques on the Amstrad CPC 464

FEM find mid-point of lins and chre
is88464 REM pPoints sbove and below mid-poi
mE g8 Wwell
16B&3 ®Ffill={leftx+rights 2:¥fill=yhers
16@8& IF TEST!#Ffill,¥Filli=@ THEN GZSUB
1 o

i
=
4
4

This successfully fills circles, and only fails on shapes with
vertical branches which join the main region at a horizontal
line. The position of the initial point makes a difference as to
how much of the region is coloured. If any failure occurs the
remaining area can be filled by using a new start point, so the
routine seems to offer a good compromise between speed and
perfection. It can be incorporated into the main program as
follows:

15 DIM % (380:,y(IRA}

5831 IF fill=]1 AND circle=@g AND rectang:
=8 AND triangle=F§ THEN GOSUBR 15086

4869 REM must be colour-fill- no-colour-f
ill taoggle

58768 IF fill=1 THEN fili=@:Fill$=CHR$ (24
1y ELSE fill=1:fill1¢$=CHR$¢(223:
&888 LOCATE 17.Z24

ABF8 PRINT Fillg;
51088 RETUFRN
8891 IF Fill=1 THEN K=starex:y=starty: G0
SUB 15828
P51 IF fill=]1 THEN X=(x+Startx) /2:y={
starty:r /2:G0SUR 15088

18861 IF fill=]1 THEN H=(x+startx+x1)./3I:y
={y+Starty+x13 /3:50SUP 15663

168871 REM then o e fi

line 15088
iegv7Z REM =

<

+

i1l rourine from
o line 19@CZ0

Colour-fill is implemented beginning at any point fixed after

... and artistry 145

the option has been chosen. Colour-fill may be operating at the
same time as the circle-, rectangle-, or triangle-drawing
options, in which case the figure is drawn and automatically
filled in by the computer choosing a start point within the
figure, lines 8091, 9061, and 1006 1. The other possibility
is that colour-fill is being used to fill some other shape, and
this is catered for in 5031. Note that you must switch
colour-fill off if you wish to be able to draw lines — the
program will otherwise interpret the fixing of a point as the
position for start of colour-fill and try to fill the screen with
colour!

Exercises

1) As individual points are plotted in the colour-fill routine,
it is easy to use combinations of colour to fill a figure by,
for example, toggling between different foreground col-
ours at line 18030. Add a menu option to allow
colour-fill with a mixture of any two colours selected from
the rest of the menu.

2) A flaw in the present program is that colour-fill stops as
soon as any point not in the background colour is
encountered. This would make it impossible to colour-fill
any shape that has been drawn on an area already
colour-filled — a blue door could not be coloured against
the background of a red house, for example. Modify the
program so that colour-fill fills any figure, no matter what
other colours are present.

3) Extend the colour-fill algorithm in the direction suggested,
so that it will work perfectly for any shape.

Save the masterpiece

Now that we can create a colourful picture it would be nice to
save it. In Chapter 4 we stored details of the coordinates of
points and lines in several arrays which were then saved as a
file. The same approach could be applied here although the
program would require some modification: we would need to
know if points were used in the circle- or rectangle-drawing
options, and we would also have to note if a figure was

146 Graphics Programming Techniques on the Amstrad CPC 464

colour-filled or not.

An alternative is to save a copy of the entire screen display
instead. When we want to view or extend the latest master-
piece, it can be loaded back onto the screen and we can carry
on drawing using the usual menu options. This method has
the advantage that it can be used with the program as it stands.

Saving the screen is only a particular example of the facility
that the Amstrad has for saving a copy of a section of computer
memory. As we have noted previously, the screen display is a
representation of part of the computer RAM. By saving the
appropriate memory locations we effectively store a copy of
the screen on tape.

The Amstrad needs some information to save a copy of the
memory: where the section of memory starts and how long (in
terms of bytes) the section is. This information is also saved,
and so there is no need to provide it when loading back into
the computer.

The routine for loading and saving are easily incorporated
into the program, being called from the keyboard by depress-
ion of ‘i’ (for input) or ‘0’ (for output) respectively:

4888 IF response$="1i" THEN G{SUBR ll@eag
4093 IF responces=*0* THEN GCSUB 1280886
18799 REM 32t Up WwWindow S0 that picture

is not disturbed

1100@ WINDOW 1.2@.24.23:PEN 1

11@1@ PRINT "To 1oad & picrure?®

11828 INPUT “"Picture name";pictures
11638 LOAD pPicrures

11848 CLS

11849 REM s=et window o whole screen andg
print menu again

118538 WINDOW 1.22.1.25

11849 GOSUBE 1998

1187@ RETURN

128080 WINDOW 1.28.24,25:FEN i

12819 PRINT *To save G picture*

120268 INPUT *Picture name*;pictures
1282¢ REM save picture from top left 1o0c¢

ation +D bortom right

12823 SAVE pictures,B,ACR0R,AIF0F

12842 CL5S

12850 WINDGW 1.28.1.25

... and artistry 147

128466 GOSUB 1@0@
12878 RETURN

Subroutine 120080 carries out the saving of a screen file. It is
vital that the picture is not overwritten by messages as the
screen is saved, so a window is set up at the bottom of the
screen, temporarily obliterating the menu. Line 12030 saves
the picture: B indicates a binary file (the format required for
saving a section of memory), &C@00 is the hexadecimal
address of the start of screen memory, which happens to be
&3 FCF bytes long. Once the file has been saved the menu is
redrawn and the program continues.

Subroutine 11000 loads a picture, and is very similar to the
save routine, although the LOAD command at 11030 has a
much simpler format. Loading a picture is quite intriguing:
the picture is not built up from top to bottom as one might
imagine, but as a series of widely separated ‘strips’ across the
screen. This is a reflection of the complexity of the screen
organisation, where numerically consecutive memory loca-
tions are often several screen lines apart.

Exercises

1) Add a ‘zoom’ option to the menu, so that the picture can
be redrawn to a different scale. (You may prefer not to
colour-fill any scaled figure, to speed things up.)

2) Add a routine which allows you to input text from the
keyboard, and then position it on-screen.

3) Modify the program so that any of the non-flashing
colours in mode 0 are available for drawing.

Chapter Seven

Transformations

Transforming a shape

In earlier chapters we have seen how points can be moved and
then fixed once they are in the desired position on-screen.
However, we may well wish to move not a single point, but a
complete figure, and the movement may not always involve
simply shifting the entire figure one pixel in the required
direction. In many situations it is useful to be able to carry out
a series of TRANSFORMATIONS on a figure.

We have already met the simplest transformation —
TRANSLATION, which is the movement of a point or number
of points in a single direction. Essentially all our keyboard
controls to move up, down, left or right cause the translation of
the point or character concerned one pixel in that direction. We
can easily extend the previous program so that entire figures
can be transformed:

1 REM based on the ‘drawing progam’ of o
hapter &
2 REM change/add the following lines
I REM &t the eqrlier program
4 FEM note all ofkRer oPpELIONS will Work b
gt you oan’ ik
S REM ChO
& REM odd
2% REM T2
A4 REM Fi
SUTS 13 m
&5 figures
238% REM
jai ng O
IF £
REM

Transformations 149

270 IF response¢=" " THEN IF figure=@ T
HEN GOSUB 3BPD:linedraw=foregroundcolour
ELSE figure=

2877 REM draw/delete figure if flag s
2888 IF Figure=]1 THEN GCSUBR 18080 ELSE 4
DSUR 1@ae

et

2883 REM draw figure when ’'f’ pressed

2@85 IF respconses="f" THEN GOSUB 1BGBO:IF
moweflag=0 THEM GOSUBR 110606:moveflag=1]
2084 IF responze¢='FY THEN ¥®=xX(nooflines
y:0ldX=X:y=y(nooflines): :0ldy=sy:figure=}]

2799 REM read data ror figure

Y288 READ nooflines

903168 FOR ccuntl=1 TO nooflines

7826 REARD =x{(countlj),y{countlr,licountiy
PRIB NEXT

P48 RETURHN

7049 RFEM data to draw hex<agon

°@5@ DATA 7,320, 189,3,488,1@@,1,4?8.198,
1.4B0,280.1.3@00,288.1.:216.170.1.30848.1aa,

4

297 REM only draw/sdelete figure from o1
d pocsition

2?97?28 REM if it has been mowved

9929 REM translation routine

180606 IF oldx=x QAND oldy=y THEN RETURN
12999 REM delete old figure

188160 GOSUB lleeoe

10017 REM calcoculoate change in position
182D changex=x-cldx:changey=y-aldy
18030 nldX=x:Dlgdy=Y¥

1B@I? REM update all coordinates

18046 FOR loop=1 T0 nooflines

19850 IF changex=9 THEN Y (loop)=y(loccpi+
changey ELSE X {100P)=x«{l0OF)+changex
iBBL&BR NEXT

168467 REM draw figure £0 new pasiktion
18878 GGSUR 11386

1@@2&a RETURN

10999 REM draw figure routine

1188BP FOR loop=2 TC noocflines

11818 IF 1{lo0cp);@ THEN MOVE x{locp),¥ (1l
copPl :DRAW #(locop-1),v{locop-1),1(loCp:;
11828 NEXT

11238 RETURHN

150 Graphics Programming Techniques on the Amstrad CPC 464

Translation is the simplest transformation to program, but it is
a ‘one-off” in the sense that the approach used is not applicable
to any other transformations such as the rotation of a figure. A
more generalised method is to use MATRICES.

Matrix transformations

We can rotate, enlarge or reflect any figure that we can draw
simply by multiplying the coordinates of all the points on that
figure by an appropriate matrix. I will give a brief résumé of
matrix multiplication, although an understanding of it is not
essential to use the programs that follow.

Two matrices can be multiplied by multiplying the numbers
in every row of the first matrix by the numbers in every
column of the second matrix, as in Figure 7.1. The answer on
the right is achieved by adding together the results of the
multiplication of each element in the row of the first matrix by
the elements in the columns of the second. The first matrix
might contain more than one row or more than two columns,
but in this case we are considering the transformation of a
single point with just two coordinates.

12

(3 5) (2 4) = (3x2 + 5x1 3x4 + 5x2)

= (11 22)

Figure 7.1

A variety of different matrices of the second form can be
used to, for example, rotate a point clockwise by 10 degrees, or
enlarge a figure by a factor of 1.5, etc. Because the result of the
matrix multiplication has the same form as the original
2-element matrix, we can transform the new figure still further
if we desire, by multiplying it by a different transformation
matrix as in Figure 7.2.

(11 22) (1 2 = (11x1 + 22x3 11x2 + 22x2)
13

= (77 66)

Figure 7.2

Transformations 151

LCH
I

2x1 + 4x3 2X2 + 4x2
(1><1 + 2%3 1X2 + 2X2)

7%

(3x14 + 5x7 3x12 + 5x86)

@

|

- Y

BN

"y

Vo
Il

I

(77 66)
Figure 7.3

In fact we can simplify the process still further. We could get
the same result by first multiplying our two transformation
matrices together, and using this new matrix to carry out the
transformation of the original point all in one go, as in Figure
7.3.

The main disadvantage of using 2X2 transformation matrices
is that it is not possible to represent translation as a 2x2
matrix. This prevents us from adopting a completely general
approach. Whereas we could reduce the whole series of
matrices needed to enlarge, rotate and reflect a figure to a
single matrix, translation stands outside the system. We can
extend the matrices to 3X3, in which case translation can be
incorporated using an appropriate matrix. As we are already
familiar with one approach to translation, we shall retain the
2X2 matrices at the cost of having to treat translation as a
special transformation not amenable to the same matrix
manipulation as the other transformations.

Rotation

Two matrices can be used to rotate a point respectively either
clockwise or anticlockwise about the origin, as in Figure 7.4.
Comparing the results of the multiplication we can see that the
only difference is in the signs of the matrix products. If we
denote clockwise rotation by setting the variable ‘rotate’ to —1,
and anticlockwise rotation by setting ‘rotate’ to 1, we have a
single equation that produces the coordinates for rotation in
either direction, as in Figure 7.5.

152 Graphics Programming Techniques on the Amstrad CPC 464
7 -

6

T T T T T T

0 1 2 3 4 5 6

Triangle 1 is rotated clockwise to 2 by 30 degrees by:

~ 4

34 cos 30 —sin 30 = 46 2.0,
(4 4) (sin 30 cos 30) (5.5 1.5
36 ‘ 5.6 3.7,
Triangle 1 is rotated anticlockwise to 3 by 20 degrees by:
3 4 cos 20 sin 20 = 1.5 438
(4 4) (—sin 20 cos 20) (2.4 5.1
3 6 0.8 6.7

In a more general form rotation clockwise by 6 degrees is given by:

(xy) [cosB —sin©

sin 6 cos 0

= (xcosB + ysinB — xsin® + ycos6)

and rotation anticlockwise by degrees:

(xy) cos 8 sinB) = (xcosO + ysin® — xsinB + ycosH)
—sin® cos 0
Figure 7.4
newx = oldx X cosf + rotate x oldy X sinf
newy = —rotate X oldx X sinf + oldy X sinf

Figure 7.5

We can extend the previous program that enabled us to
translate a figure so that it can also be rotated:

Transformations 153

@83 REM draw rigure when Ff' pressed
2@84 REM turn figure when '%° precced
THE2E IF vesponseg="F" OR rEsponssg=tir 7
HEN S0SUBR 18 T IF THEW &
iitREg - movaeflag=l

2ags IF responiseEd="f F="r"
HEH == SFlid R ¥z Filines
:01ldy ra23 $=*F % THEMN r13J“E=i
2887 1 sSpon £" THEN GOSUB 12838
1ZoeE we 'l EHis 1N A m;n:te!
12887 LR SIN tC 4 degr
225

1Z2A8A2 REM roftaticn 12 Gt B degres inbery
als

iZ@ge? REM fovr o dif ShRang
e linees 1 7, 1@

12816 DEG

12328 transrormE=008(5;

128348 transformy 1=C0S ({5}

120848 rotstopg=""

1204% REM continue turning figurs unvil
fhd presesed again

12658 WHILE vorstopgir"et

12048 rotstorps=LOWERS (INKEYS:

12604% REM ser ‘rotate’ 0 indicar2 direc
tion of fur

i
o
T

e,

2B7% REM turn anti- or olockwise if

or ‘¢ Fresced

1281 IF T3k "ot THEM rofate=-1
1286 IF o THEM rotatesi

1218 IF rox THEM SOSUB li@gge:ftran
sFormy=SIN{Sisrotate:trancsform=i=-SIN(5:
¥vorare: GOSUR 13688 G05UE 118

12118

1Ty

12115

4T TR Y

P QEUSEN U -’

12138 FRE

12972 RE DLt NS
12999 RE caze o
foryranslarion:

13688 FOR 1DDP=‘ T3 nnoflines

13813 yi=y (loopi—-Ccent
r E '~,'l'

154 Graphics Programming Techniques on the Amstrad CPC 464

13828 <{loop:=rtransformes<l+transfiormy sy
l+cencrex

123838 ¥iloDpi=transforn Wl
sy lscencrey

13848 NEXT

132538 RETUERN

Note that rotation is about (@ ,@) only. It is more useful to be
able to choose our own centre of rotation, and this is fairly easy
to cater for:

12068 GOSUE 14@0E
£ s

13927 REM o 2t centre for roktation
129298 REM notice similarity to I2AID-40
139%9% REM could be rewriteten as another
subraoutine

14@0@ cenktreg=""

14812 GOSUBR 1282

14819 REM scan keyboard until centre fFix
ed by ‘f’

14020 WHILE <entreg :"f"

14222 SGSUB 1988

14046 centres=_QCWERS$ {INKEY$)

14049 REM move centre up/down/left /right
=% ¥

1405@ IF centre¢g="a" THEMNM

14F4 IF centreg="z" THEHN

14078 IF centreg="." THEN

14@82 IF centreg¢="_." THEN

i4@9¢ GOSUR 1ZEe

14128 WEND

141@9 REM record centre coordinates and
delete point

14118 centrex=x:centrey=y:G0SUR 106&
14120 RETURN

Enlargement and reduction

We saw in an earlier chapter that enlargement or reduction of a
figure was relatively straightforward, although at the time we
had no control over the centre of enlargement. Using the
matrix method we can introduce some interesting enlarge-
ments involving a variation in the scale factor in the x and y
directions, which will stretch the figure concerned along its x
ory axis, as in Figure 7.6. Let’s add this facility to our program:

Transformations 155

T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10

Triangle 1 can be enlarged to 2 by:

31 (20 =62
(51) 02) 10 2
32 \ 6 4

Differing values on the diagonal result in ‘stretches’ parallel to one of the axes:
31 10 =33

(5 1) (o 3| 5 3)
32 36

In a more general form, scaling or stretching is given by:

(xy) (31 02) = (M xx n2xy)
n

Figure 7.6
@77 REM drawsdelete figurs if fFlag set
2@88 IF fFigure=1 THEMN SOSUUB 18382 ELSE 3
QSUB 1@eh
ZEB8Z REM scale figure wWhen S pressed
P83 FEM draw figure when £ presczed
2G84 REM turn figure wWhen v preoessed
ZBEE IF recponceg=Yf* OF recponseg='Er O
R oresponses="s" THEN GOSUB 1@686:IF movef
1a3=2 THEWN GCSUB 1i@@@:moveflag=i
2ABs IF response$(="fFt OFR recponseg=¥rt 0
R oresponsefs="s" THEN =< (noocflines;:old-

156 Graphics Programming Techniques on the Amstrad CPC 464

=¥:¥=yincocflines: :oldy=y:IF rTesponce$="¢f
*OTHEN figures

SEET F ore: ="' THEN SOSUBR LZ@aa

2 IF re =" THEM GOSUB 158883
15EEE REM rhisS in G MinLEs
1581ig tran

1528 rtranst

15873 scalest

18@39 REM continue sSo£Gling fFigure dntil
iz’ ocrecsed

15848 WHILE {yvg

i5B53 scale: ' INKEY$:

i5G&57 REM = $ san be changed b
¥

15R52 REM modifying the values in lines
15872,68

15852 REM rtransformx S8+ 0 indicate soa
113

i

W e

1
1

i

g

15888 IF =calestged="r" THEN transformss
F,.F:eransformyli=5, %

15@%2& IF transform=<>@ THEN GOSUR 118686:
SGSUR 138BRR2:G0SUB 116008

15188 WEND

15118 GOSUB 1B3g

15128 RETURN

As before, it is better if we can select the centre of
enlargement/reduction:

138688 GOSUR l4E@E

Reflection

Reflection in the x or y axis can be carried out using the
matrices shown in Figure 7.7. As with rotation, these are
essentially the same matrix. We can only see the reflection if
we move the axes, of course, otherwise the result will be drawn
off-screen!

Transformations 157

(xy) ((1)) = (x —y) (reflection in the x axis)

0
1

(xy) (—1 O) = (—xy) (reflection in the y axis)
0o 1

Figure 7.7

Z@gl REM mairror image When ‘m’ pressed
P82 REM scale figure when ‘€' precssed
@83 REM draw figure2 wh2n ‘f’ pressed
2PR4 REM turn fFigure when ‘&' precced
Z@85 IF r2sponses="f" QR rvesponz2d=tt’ O
R responze¢="z% QR responzes="m* THEM 50¢
SUB 1886:IF moweflag=E THEM GOCSUBR 116GG
mowverlag=1

268¢& IF responses="f" (R responses="ic"
R resgponcset="s" (R rezponzeg="m* THEM ==
<insoflines t¥=yinocoflines:y ol
¥:IF TESF THEM rFfigure=]

Z@gr IF v vtOTHEN S0OSUB

2828 IF responicse$="z" THEN GQOSUBR

159748 REM the 4xis oOf refl2oti10on

¥ be horizontal

15997 REM or wertical - indicaxte2 1ts FOS
icicn by

15992 REM mowing the point and then pres
s '®’ oar y!

158999 REM to select the axis

14009 GOSUB 14288
16016 axisg=""
1488260 WHILE a#i1cs${:"#" AND axistiy"x"

14830 axicst=LOWER$ (INKEYS$:

168408 IF adis¢="=" THEMN transform<=1:tro
neformy i=-1

146B58 IF axis$="v" THEN transform<=-1i:tr
ansformyi=1

1685 WEND

15872 505UB 11868:50%UB 136@26:G05UB 11le@
5

14825 503%UB 1305

1ABTE RETURY

Reflection in a specified line is trickier, and involves other
transformations.

158 Graphics Programming Techniques on the Amstrad CPC 464

Shearing

Shearing involves a movement parallel to the x or y axis: the
amount of shear at a point depends upon the distance from the
shear axis:

2884 REM ’push’ figure (cshear) when ’'p’
pressed

2085 IF responseg¢="f*" QR responses=z"t* 0

R response$="s" QR resronses="m" OR resp

onses$="p" THEN GOSUB 16600:IF moveflag=0Q
THEN GOSUB 116886:moveflags]

2886 IF response¢="f" QR responses="t" 0

R response¢="s" (OR responsess"m" QR reser

onse2¢="pY THEN Xx=X{nooflines): :0ldx=x:y=Yy
{(ncoflines):0ldy=y:IF response¢="f" THEN
Figure=}

2887 IF responses="t" THEN GOSUB 12000

2828 IF responses='s* THEN GOSUB 15020

2@2% IF responses="m* THEN GOSUBR 14006@

2698 IF response¢="p" THEN GOSUB 178060

2075 WEND

169983 REM shear routine very similar o

reflecticon

156979 REM again these could be combained
tD one routine

17002 GOSUR lseee

17818 axisg=41"

17817 REM shear by 1 unit for every unit
di=“nnce

7012 REM from the axis - ¥

€ too much

619 REM if 50 make 17826,30 fractional

7A2H transformx=1]

?763@ rransformyli=i

783279 REM scan keyboard until x Or ¥y axi

u may find %

Q

17840 WHILE oaxis¢{:*%" AND axics${;"v"
178580 axics$s=LOWERS$ (INKEVYS

1704@ IF axis$="x" THEN transformx1=@:tr
ansformy=1

178708 IF oxiss$="y"* THEN transformxi=1:¢tr
ansfrormy=9

178868 WEND

Transformations 159

Exercises

1)

3)

4)

The transformations in the program are all carried out on a
figure whose coordinates are read from DATA statements.
Add routines to the transformation program so that you
can first draw a figure on-screen and then transform it.
Modify the program to include an option so that the
previous positions of the figure remain on-screen when it
is transformed. (This can produce some interesting pat-
terns.)

The various transformation matrices can also be used to
good effect to produce patterns. We touched on this in
Chapter 4, when we saw that repetitive rotation and
enlargement of a figure gives some striking results. Write a
program which allows you to specify a transformation or
series of transformations to be carried out on a figure. You
are also able to choose the number of times the transforma-
tion will be repeated on the new figure which is drawn.
Once you have completed your specification, the computer
carries out the transformations repeatedly, and displays all
the figures which result. You might like to draw each
figure in a different colour for a better effect.

CAD (Computer-Aided Design) programs often contain
standard shapes on a menu. The user can ‘pick up’ the
shape from the menu, when it becomes attached to the
cursor, move it to a position, and then fix the shape. Write
a simple CAD program which simplifies the drawing of a
house. Include as standard shapes several types of door
and window. (Add enough detail so that each of these are
different, but not so much that it takes an inordinately
long time to be redrawn at a new position.)

Index

AND 109-110

animation 26-28,82,101-114
ASClIl codes 19, 33,91-92
background colours 114-126
bar charts 63-68
shaded 66-67
3 dimensional
bit 20-22
BORDER 10
byte 20-26

67-68

character set 19-20
characters

multiple 34-41

user-defined 23-24,26-31
circle drawing 69-71
colour-fill

foraline 72,136-138

for a closed figure 139-145
colours available 7
colours, priority of 114-126
coordinates 2

graphics 3-4

text 2

DEFINT 41
DRAW 4
drawing on screen 87-100

enlargement 99-100, 154-156
EXOR 90-100,107-111, 116-126

faster programs 41-43
flashing colours 12
foreground colours 114-126

graphs, point and line 50-62

hexadecimal 25-26
high resolution 6

INK, changing 15-17
INK, in animation 104-114
INK numbers 9

INKs, priority of 114-126
INKEY$ 88

integers, use of 41-42
Lissajous figures 80-81
LOCATE 2,33-35

low resolution 7

matrices 150-151
medium resolution 7
menus 127
midground colours
MODE 1
modular programming 49
Moire patterns 78-79
MOVE 4

123-125

OR 110-114

PAPER colours 11
patterns 76-87

PEN colours 11

pie charts 69-75

pixel 8

PLOT 8

polygon drawing 84-85

reflection 156-157
resolution 42
rotation 84-87,151-154

saving

afile 97-98
ascreen 145-147
scaling 99-100, 154-156
shearing 157-158
SPEED KEY 96-97
spirals 81

strings 31-37
SYMBOL 23-24
SYMBOL AFTER 24

TAG 39-41
TAGOFF 41
TEST 43-45

160

Index 161

TESTR 45-48 variables, use of 49
transformations 148-159 vertical resolution 42
translation 148-150

WINDOW 89

Other titles available from Micro Press:

15 GRAPHIC GAMES FOR THE
SPECTRUM

Richard G. Hurley
07447 0002 7

GRAPHIC ADVENTURES FOR
THE SPECTRUM 48K
Richard G. Hurley

0 7447 0013 2

SPECTRUM SUPERGAMES
Richard G. Hurley

07447 0017 5

MAKING THE MOST OF YOUR
SPECTRUM MICRO DRIVES
Richard G. Hurley

0 7447 0005 1

THE SPECTRUM OPERATING
SYSTEM

Steve Kramer

0 7447 0019 1

MASTERING THE TI-99

Peter Brooks

0 7447 0008 6

ADVANCING WITH THE
ELECTRON

Peter Seal

07447 0012 4

QUALITY PROGRAMS FOR THE
ELECTRON

Simon

0 7447 0004 3

THE ATMOS BOOK OF GAMES
Wynford James

07447 0018 3

QL SUPERBASIC: A
PROGRAMMER’S GUIDE

John Wilson
0 7447 0020 5

THE QL BOOK OF GAMES
Richard G. Hurley
0 7447 0022 1

QUALITY PROGRAMS FOR THE
BBC MICRO

Simon
0 7447 0001 9

EDUCATIONAL GAMES FOR
THE BBC MICRO

lan Soutar

0 7447 0016 7

INTERFACING AND ROBOTICS
ON THE BBC MICRO

Ray Bradley

0 7447 0023 X

BBC MICRO DISK DRIVES

R. D. Bagnall

0 7447 0028 0

BASIC PROGRAMMING ON THE
AMSTRAD

Wynford James

0 7447 0024 8

MACHINE CODE FOR
BEGINNERS ON THE AMSTRAD
Steve Kramer

0 7447 0025 6

THE COMMODORE 64 BOOK OF
SOUND AND GRAPHICS
Simon

0 7447 0015 9

BASIC PROGRAMMING ON THE
COMMODORE 64

Gordon Davis & Fin Fahey

0 7447 0026 4

PLUS/4 MAGIC FOR BEGINNERS

Bill Bennett
0 7447 0031 0

GRAPHICS PROGRAMMING
TECHNIQUES ON THE AMSTRAD
CPC 464

Good graphics are central to many programs and this book
describes how you can exploit the excellent facilities offered by the
Amstrad CPC 464 to the full. The example programs include
routines which you can readily incorporate into your own software.

Areas covered include arcade games and the animation of simple
figures, drawing and saving of colourful pictures, the construction
of bar charts and pie charts, the scaling and transformation of
shapes, and many other exciting applications. Every chapter
includes suggestions for further programming based on the
examples provided.

The Author

Wynford James writes education material (including software) for a
major microcomputer company. Prior to that he was a technical
author for ICL. He has also taught mathematics and was actively
involved in the development of computer studies throughout his
school.

Amstrad and CPC 464 are trademarks of Amstrad Consumer Electronics PLC

68 £ NET +007.95
ISBN 0O-7447-0027-2

“ 00795

9 "780744"700275

GRAPHICS PROGRAMMING TECHNIQUES ON THE AMSTRAD CPC464 James -m

https://acpc.ne/

	Graphics programming techniques on the Amstrad CPC 464
	Contents

	Introduction

	Basic graphics

	The screen display

	Adding colour

	Codes and characters

	The Amstrad CPC464 character set

	Games

	Graphs and charts

	Point and line graphs

	Bar charts

	Pie charts

	Exercises

	Patterns and pictures

	Moire patterns

	Lissajous figures

	Spirals

	Repetitive patterns

	Rotating shapes

	Exercises

	Sketching on the screen

	Animation ...

	Moving line-drawings

	Creating foreground and background colours

	... and artistry

	Selecting options from the MENU

	Colour it in

	Save the masterpiece

	Transformations
	Transforming a shape

	Index

	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

