
GRAPHICS
PROGRAMMING

TECHNIQUES ON THE
AMSTR AD CPC 464

Wynford James

Graphics Programming Techniques on
the Amstrad CPC 464

Graphics Programming
Techniques on the
Amstrad CPC 464

Wynford James

MICRO PRESS

First published in 1985 in the United Kingdom by
Micro Press
Castle House, 27 London Road
Tunbridge Wells, Kent

© Wynford James 1985

All rights reserved. No part of
this publication may be reproduced,
stored in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, recording or otherwise, without
the prior permission of the publishers.

British Library Cataloguing in Publication Data

James, Wynford
Graphics programming techniques on the
Amstrad CPC 464.
1. Amstrad CPC464 (Computer)----- Programming
2. Computer graphics
I. Title
001.64'43 QA76.8.A4

ISBN 0-7447-0027-2

Typeset by MC Typeset, Chatham, Kent
Printed and bound by Mackays of Chatham Ltd.

Contents

Index 160

Introduction vii

Chapter 1 Basic Graphics 1

Chapter 2 Codes and Characters

Chapter 3 Graphs and Charts

Chapter 4 Patterns and Pictures

Chapter 5 Animation . . . 101

Chapter 6 . . . and Artistry 125

Chapter 7 Transformations 148

Introduction

This book will introduce you to some of the graphics
programming techniques that you can use on the Amstrad
CPC464. There are chapters on animation, both of characters
and line-drawings, the production of graphs and bar charts,
and pattern-drawing, to name a few.

Each chapter contains sample programs, many of them
useful in their own right. For example, Chapter 2 contains a
program which allows you to design your own characters
on-screen and save them to a file; Chapter 3 includes routines
to enable the simple construction and shading of pie-charts;
Chapter 4 contains a drawing program that enables you to
sketch on the screen, 'blow up' any part of the drawing and
add detail, and save the resulting picture to a file.

Throughout the book I have assumed some knowledge of
Basic and familiarity with loops, decisions and subroutines.
Although beginners will enjoy using many of the programs as
they stand, they will probably learn more from this book if
they first read my previous publication, Basic Programming on
the Amstrad (also available from Micro Press).

For the benefit of those who already have some experience
of Basic but have not read my earlier book, Chapter 1 contains
some material from that volume which serves to introduce the
fundamental graphics commands available on the Amstrad.

Chapter One

Basic graphics

The screen display

In the real world there are many varieties of paper for different
uses. An architect does not design houses on a notepad, and a
novelist does not use foolscap paper to write stories. In
computing the screen display is the equivalent to a sheet of
paper, and it is useful to be able to change the display to suit
the purpose.

The command mode followed by the number 0, 1 or 2
selects one of the three screen displays allowed on the
Amstrad. Each mode allows a different number of characters
per line to be displayed on-screen, a different number of
colours to be displayed simultaneously, and a different degree
of graphics resolution (the 'fineness' with which lines can be
drawn).

Figure 1.1 The three screen modes available on the Amstrad CPC 464.

Mode Number of lines Characters per line

0 25 20
1 25 40
2 25 80

Someone typing in a lot of text at the keyboard finds it useful
to be able to see as much of it as possible on-screen. Mode 2 is
best for this purpose — the Amstrad can print 25 lines with 80
characters in each line in mode 2.

The Amstrad automatically reverts to mode 1 when reset or
switched on. Mode 1 has 25 lines with 40 characters per line.
Mode 1 gives the most easily readable characters, and you can
consider it as the 'working' mode when you are giving
commands to the Amstrad. It is much easier to read text in
mode 1!

1

2 Graphics Programming Techniques on the Amstrad CPC 464

Mode 0 gives 25 lines with just 20 characters per line. This
mode is the best one to use if you want to produce colourful
graphics, as it allows 16 different colours to be used on-screen
simultaneously.

In any of the modes, text can be positioned anywhere on the
screen by using text coordinates:

The position (10,12) is referred to as a character position, and
XX and YY are the TEXT COORDINATES for that position. The
first number is called the X COORDINATE of the character
(how far along it is) and the second number is the Y
COORDINATE (how many lines down the screen it is). In this
case, LOCATE 10,12 causes the Amstrad to start printing at
the 10th column along, and the 12th line down. You can use the
command C LS to clear the screen after running the program.

Line 20 of the program tells the Amstrad to begin printing
what follows at the specified text coordinates. The coordinates

1 2 39 40

Figure 1.2 The screen display in mode 1.

Basic graphics 3

vary according to the mode, as each mode can print a different
number of characters on one 'line' on-screen.

Clearly, if we could only print at character positions the
prospects for reasonable graphics would be pretty bleak. Mode
2 has 25 lines, each of 80 characters, but trying to construct a
reasonable picture by printing characters to the appropriate
position gives rather poor results. Fortunately, each character
position can be subdivided still further, into smaller elements
called PIXELS. Much finer lines can be drawn using individual
pixels rather than character positions. Just as the number of
characters per line varies from mode to mode, the size of a
pixel varies from mode to mode.

However, the text coordinate system is inadequate to
describe the location of pixels, because each character position
is itself composed of several pixels. The Amstrad therefore
uses a different coordinate system to describe pixel positions,
and locates them by using GRAPHICS COORDINATES.

The graphics screen

The graphics coordinate system is coincident with the text
coordinate system, but it does not operate in quite the same

Figure 7.3 The graphics screen, showing the point (200,300).

4 Graphics Programming Techniques on the Amstrad CPC 464

way. The graphics screen is divided up into 640 points
horizontally and 400 points vertically. We can identify the
position of any point on the screen by describing how far
along and how far up the screen the point is.

The position of the point in Figure 1.3 is (200,300).
Notice that these GRAPHICS COORDINATES are measured
from the bottom of the screen, and that the BOTTOM left hand
point on the screen has the coordinates (0,0). This can be a
bit confusing, because text coordinates work in a completely
different way, with the TOP left hand character position
having the coordinates (1,1)! Notice also that because the
numbering of points begins with 0, the top right hand point
has the coordinates (639,399) and NOT (640,400) as
you might imagine.

The following program demonstrates two of the basic
graphics commands available on the Amstrad:

Here we are using the GRAPHICS CURSOR to draw lines on
the screen. Normally the graphics and text cursor remain
together, but as soon as we use a graphics command the
invisible graphics cursor is used.

The MOVE command in line 20 causes the graphics cursor
to move invisibly to the point (124,156). The DRAW
command makes the cursor move from its position at
(124,156) to the new coordinates (300,300) drawing
a line between the two points. The remaining DRAW com
mands in lines 40 and 5 0 draw the two other sides of a
triangle.

In general terms, we can say that MOVE x , y causes the
graphics cursor to move to the point x,y without drawing a
line. DRAW x , y causes a line to be drawn from the last point
visited by a MOVE or a DRAW to the point x,y. It is easy to
draw quite complex pictures by storing the x and y coordinates
for the points in DATA statements and then reading them:

Basic graphics 5

2 9 REM draw p i c t >j r e w 11 h 5 e ■- 1 a s o f M 0 v E s

a nd DRAWS

39 WHILE :<> 0

90 READ >',2

50 READ *1, yi

6 0 M 0 v E x , V

79 D R A W x 1 , y 1

SB LOCATE 1 , 2 9 : p R I N T X ; * " ; y ; : T$=» " : 0H1L

E r $ = » " : - I - IN KEV J- : WEND

90 WEND

130 END

110 D ATA 3 0 8 , 1 6 2 , 34 4? 179 ,■ 3 “-+■ 4 ? 179,36B,> 2 1 6

, 3 6 0 , 216 , 3 6 9, 2 6 W, ■j 6 9 ■ 260 ,' 3 6 ? 319

12S DATA 36B,31B, 3 3 6 , 39 9,> 336 , 399,292■ 356

■ 292 , 35 6 , 298,352, 9 8 ,> 352 ,> 2 1 2 . 392

13B DATA 212,392, B B ,> 3 1 6 ,> 2 0 B , 316, 19 6, 296

, 196 7 2 4 b j 280,219, 0 0 , 219 ,> 216 ■ 179

190 DATA 216,179, E '“i j>16 6:> 3 1 6 , 19 8-3S B, 1 9 B

, 3 00 . 19 8,2 7 2,> 1 9 8
15B DATA 272,> 19 B,2 5 6 • 198,299,200,299,210

, 299 ,209,329,>209,329,208,329,198

168 DATA 256,> 2 3 8 .-268,232,2 6 8,232,2 8 8,2 3 2

, 2 8 8 T’ T ■? C: X ■■ X. X. 7 / O ? X. H- X. 7 X. 6 - X.

170 DATA 18 y > 2 S * > 3U0; 296,30W-2't'6, 329 ? 1 h 6

,329,286,288,282,269,282,252,299

IBS DATA 252,299,232,280,232,280,269,280

,196,28S,180,296,180,296,172,266

190 DATA 172,266,192,236,369,236,389-266

,389,266,380,299,380,299,369,282
260 DATA 320,398,332,329,312,329,312,352

, 288,359,292,326,272,359,28S,326,269,398

210 DATA 229,399,216,339,269,399,268,228
: X. O O ’ X. X b ■ X. / X 7 X X C ? X / X. ■ X. X ’A* ? X. / 6 • X. X. O ’ X. / C ’ X. X '■+

, 2 8 S,219, 2 8 0,2 3 S,2 8 0,230,289,212

223 DATA 288,212,289,239,288,228,288,229

230 DATA -1,-1

Many impressive effects can be produced simply by using the
two statements MOVE and DRAW. Curves can be built up from
straight lines by moving the ends of the lines by a fixed
amount each time:

1 MODE 1
1 S = 1 0 0 ’■ V = 10 0
2 9 m :■< i u M - 3 9 S

6 Graphics Programming Techniques on the Amstrad CPC 464

30 =■ c 5 P 5135=10

4 S FOR n u rr i b e ■ = 2 T 0 m a x i m u -m

5 2 MOVE x + n u m b e r , y

6 2 DR fill x m o 1 rri u rfi, y + n u fii b s r
70 MOVE x , y + n u m b e r
8 0 DRAW x + n u ffi b e r ■ y t m ci x 1 m u m

9 0 NEXT

The resolution of the different modes

Although the graphics screen is divided into 640 horiontal and
400 vertical points, the Amstrad cannot really tell all these
points apart. The graphics screen is the same for all the modes,
but in some of the screen modes the Amstrad is better able to
tell points apart than others. Run the above program again
after editing line 1 0 to be:

The drawing remains the same, but the lines are much thicker
and the picture looks more 'chunky'. Now try:

1 0 M 0 D E 2

2 0 2 , 3 3 H

2 0 B > 3 9 9

221 2S0
ul 1 -2 ■’

2 2 2- 1 22
2 2 2 - 3 ’ 9
2 0 3,0

2 3 3 .■ 3 9 9

This time the lines are very fine. Mode 2 is called the HIGH
RESOLUTION MODE, because when using mode 2 the
Amstrad can distinguish between 640 points horizontally and
200 points vertically, which results in very fine lines when
DRAW is used.

In mode 2 the Amstrad cannot tell the difference between
points that are vertically too close. It would treat the points
(10,10) and (10,11) as being exactly the same. In fact
both mode 1 and mode 0 have the same vertical resolution of
200 points as mode 2, but their horizontal resolutions are much
worse. Type:

Basic graphics 7

10 M 0 D E

2 2 ■’ 0 U E 2 0 0 3 2 0

7 g DRAW 200 T :Z:

-0 M 2 y £ 2 0 1 2 S 0

50 n R A w 231 3 9 9

6 0 M 0 V E 7 0 2 1 O 0

7 0 DRAU 702 3 9 9

3 0- M 0 0 E 2S3 0

9 0 2 R A w 2S3 3 9 9

and run the program again. Mode 1 is the MEDIUM RESOLU
TION MODE, and in mode 1 the Amstrad can only show 320
separate horizontal points. This means that, for example,
(200,300)and(201,300) are both treated as the same
point. Now type:

IS M 0D E S

and run the program for the third time. Mode 0 is the LOW
RESOLUTION MODE, and can only identify 160 different
horizontal points.

You may wonder why on earth anyone would choose to use
a screen mode that produces 'chunky' drawings when the high
resolution mode 2 is available. The main reason is that
although mode 0 is low resolution, it can display drawings in
up to 16 different colours on the screen at the same time.
Modes 1 and 2 are much worse, as Figure 1.4 demonstrates.

Figure 1.4 The different graphics resolutions and numbers of colours
available in the different modes.

Mode Graphics resolution Number of colours on-screen simultaneously

0 160x200
2 1

1 320x200 4

2 640x200 16

The Amstrad has a limited amount of memory. It can only
record a certain amount of information about the screen in the
RAM. As with many things in computing, there is a trade-off
here. The RAM can be used to record details of many points of
two possible colours, fewer points of four possible colours, or
very few points with 16 possible colours. The Amstrad gives
you the choice and you must select the mode which seems to
suit your purposes best.

8 Graphics Programming Techniques on the Amstrad CPC 464

The PLOT statement

Each of the lines drawn in the previous programs was actually
made up from a number of pixels. The Amstrad can display
individual pixels on the screen, although a single pixel is
rather difficult to see in mode 2! In fact each pixel is really
made up of a number of points, but none of the modes is
accurate enough to identify every point on the screen. A pixel
in each of the modes is the smallest 'block' of points on screen
that can be located in the different modes.

Figure 1.5 The size of a graphics pixel in each of the modes.

It may seem strange to have more points identified on the
screen than can be displayed in any of the modes. The main
reason for doing this is that it leaves room for future
improvements in the graphics resolution without having to
change the coordinate system completely.

PLOT works in the same way as MOVE or DRAW — the
PLOT command must be followed by the x and y coordinates
of the pixel to be plotted. This program plots six separate pixels
on the screen:

M A C
5 I ' J L-'t

p I A T : i f7; pl

PLOT 320,2 0 0

PLOT 324,200

PLOT 328,200
4 0

5©

Basic graphics 9

332■2i30

4 8 0’200

In mode 0, the resolution is so low that the four pixels plotted
in lines 3 0 to 6 0 merge to form a line, in mode 1 all the pixels
can be seen, and in mode 2 the pixels are so fine that you may
not be able to see them at all.

Adding colour

When the Amstrad is switched on, the micro is set to print

INK number Colour

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Black
Blue
Bright blue
Red
Magenta
Mauve
Bright red
Purple
Bright magenta
Green
Cyan
Sky blue
Yellow
White
Pastel blue
Orange
Pink
Pastel magenta
Bright green
Sea green
Bright cyan
Lime green
Pastel green
Pastel cyan
Bright yellow
Pastel yellow
Bright white

Figure 1.6 The 27 I NK colours that can be used on the Amstrad CPC 464.

10 Graphics Programming Techniques on the Amstrad CPC 464

yellow text and graphics on a blue background in all the
modes. In fact there are 27 different colours which can be
displayed on the screen, although some of them are a bit
difficult to tell apart. Each colour has a number, called the INK
number, and whenever we refer to a colour we use this
number rather than the name of the colour itself.

At this stage it is important to realise that the computer does
not actually use the whole of the screen while it is printing or
doing graphics. The Amstrad actually works within a large
rectangle around which there is a border of unused screen.
Although the Amstrad does not use this border, it is kept the
same colour as the rest of the screen. The border is not really
part of the computer memory because it is never used by the
Amstrad for printing or drawing graphics.

The BORDER can be
any colour in any mode

The colours used in
the text area depend
on the mode

Figure 1.7 The BORDER area on your monitor or TV

The border can be set to be ANY colour in ANY mode. There
are never any restrictions on the colour of the border. Mode 2
can only display two colours at once WITHIN the main screen
rectangle, but its border can be ANY colour. Type:

10 MODE 2

20 BORDER 0

Refer back to Figure 1.6 and you will see that 0 is the INK
number for the colour black. By typing BORDER 0 you are
telling the Amstrad to set a black border. Set the border to a
few other colours — any number from 0 to 26 can be used, so
there are 27 possible border colours altogether. BORDER 26
gives a white border, for example.

Basic graphics 11

The border can be set in modes 0 and 1 in exactly the same
way. You will find that if you set a border and then change
mode, the border remains set to its new colour. When the
Amstrad is switched on or reset the border becomes blue,
BORDER 1.

PEN and PAPER colours

The colours used within the main screen rectangle can also be
changed. Here the question of RAM becomes important, and
there are restrictions on the number of colours that can be
displayed simultaneously on the screen at any one time.

We can change the colour the Amstrad 'writes' with by
using the PEN command. Type:

M 0 D E 0

PEN 4

From Figure 1.6 it might appear that this will give magenta
characters, but the colours in the main screen work rather
differently to those for the border! Choosing P E N 4 actually
causes the Amstrad to print in white. Think of P E N 4 as being
filled with white ink. Typing:

P E N 5

chooses a pen full of black ink. You can even have:

P E N 1 4

which gives you flashing blue/yellow ink!
There are 16 pens available for use in any mode and Figure

1.8 shows the colour number for the INK that the pens use.
Note that the SAME pen can write with a DIFFERENT ink in
another mode. This means that a program that works perfectly
well in mode 0 may well give a blank screen in mode 2! The
pen you have chosen may have the same colour as the
background in mode 2. As you can see, the 16 pens aren't
much use in mode 2, because 8 of them write in yellow and the
other 8 in blue. We will see later how to change the inks that
can be used in each mode.

The background colour can be changed as well by using the
PAPER command. Reset the micro by holding down [CTRL]
and [SHIFT] and pressing [ESC] then switch to mode 0. Type:

12 Graphics Programming Techniques on the Amstrad CPC 464

PhF'ER 3

and the next characters printed will be printed on a red
background. The whole of the inner screen area can be
changed to this new colour by using the C LS command. The
Amstrad clears all of the main screen to the new paper colour.

Figure 1.8 The PEN and PAPER colours for the different modes. In mode 0,
choosing P E N or P A P E R 14 or 15 gives a flashing colour alternating between

the two colours shown.

PEN or PAPER
number

Mode
0

Mode
1

Mode
2

0 1 1 1
1 24 24 24
2 20 20 1
3 6 6 24
4 26 1 1
5 0 24 24
6 2 20 1
7 8 6 24
8 10 1 1
9 12 24 24

10 14 20 1
11 16 6 24
12 18 1 1
13 22 24 24
14 1/24 20 1
1 5 16/11 6 24

PAPER in mode 0 comes in the same 16 colours as the pens.
P E N 1 4 gave flashing blue/yellow ink, and PAPER 14 gives
a flashing blue/yellow background. Figure 1.6 can be used to
help you select both the pen and paper colours. For example, to
get red characters on a white background in mode 0, type:

I N K 3
PAPER 4

PEN and PAPER commands can, of course, also be used in
programs:

Basic graphics 13

5B PRINT “Red on b1 ack ”

7 S P E N 6

S0 PAPER 3

90 PRINT "Blue on red"

10 S LOCATE 4,1 9

110 PEN 5

120 PAPER 6

133 PRINT "Block on blue"

148 REM pen and paper back to normal

150 PEN 1
160 PAPER 0

Change line 1 0 and try running this program in the other two
modes. You'll find you get some funny results, because the
PENS contain different INKS in the other modes.

Here is another example:

IS MODE 0

2S r edpen i nmode0 = 3-

33 blackpaperinmode@ = 5

4S PEN redpeninmodeS

50 PAPER b1ackpaperinmodeS
X p p 1 c

7S LOCATE 8,12

80 P RINT "Don e 1 "

9 0 REM P e n and p ape r bac k to n or m a 1

190 PEN 1

110 PAPER 6

The last two lines restore normal PEN and PAPER colours so
you are not left with some unreadable mixture like yellow on
white.

One frequent problem when playing around with the
colours is that you can end up being unable to read anything
on the screen, because the pen being used has the same colour
ink as the background. As we have just seen, in a program this
difficulty can be avoided by setting the pen colour back to
normal before the program ends. Alternatively, set up one of
the function keys on the Amstrad so that it restores normal
PEN and PAPER colours when it is pressed:

KEY 128,CHR$(13)+"INK 0,1:INK 1,24'+CHR$(13)

14 Graphics Programming Techniques on the Amstrad CPC 464

Exercises

1) Write a program that selects a random point on the screen
and draws a line to another random point in a random
colour. The process is repeated from the new point and
continues until 100 lines have been drawn.

2) Using MOVE and DRAW statements, draw a picture of a
rocket. Give the rocket a name of your own choice which is
printed along its length.

3) Print "Different hues" in the middle of the mode 0
screen, with every letter being in a different colour.

Graphics and colour

Drawing pictures with coloured lines is easy on the Amstrad.
The commands MOVE and DRAW, used on their own, always
result in lines drawn using PEN 1 for whatever mode you are
in. All the graphics programs so far have produced lines drawn
with PEN 1. PEN 1 contains INK number 24 in all modes, so
the lines have all been bright yellow.

To get a different colour line, we must use an extension of
the DRAW command. Reset the Amstrad, and type:

M0 V E 10 0,10 0
DRAW 300.300,2

The Amstrad draws a line from (100,100) to
(300,300) using PEN 2, which contains INK number 20,
bright cyan, in mode 1. Type:
M f) i i p- 7 g ra , 3 g g

DRAW 400,0,3

and a red line is drawn with PEN 3 from (3 00,3 00) to
(400,0). PEN 3 uses INK number 6, red, in mode 1.

The commands are just as easy to use in a program. Again,
remember that a program that works in one mode may not
work in another because of the different INKS the PENS have
in different modes. This program draws a rectangle in mode 1,
with one side in yellow, one in cyan, and the other two in red:
10 M0 DE 1
2 0 MO VE 130,10 0

3 Q DRAW 4S0.100

40 DRAW 400,300,3

Basic graphics 15

5© DRAW 100,300:. 2

63 DRAW 180,100,3

Notice that at line 30 no PEN is specified, so the Amstrad
automatically uses PEN 1, which draws a yellow line. After
running the program once, run it again. You may be surprised
to find that there is no longer a yellow line!

Whenever the Amstrad encounters a graphics command like
DRAW, with no PEN specified, it will use the current PEN to
obey the command. The first time the program is run, the
Amstrad uses PEN 1 at line 30. After the program has been
run, the last PEN used is PEN 3. This is now the current PEN
colour, so when the program is run the second time, P E N 3 is
used at line 30 where no PEN is specified. The advantage of
this is that once PEN has been set in a draw command, all lines
drawn after that are automatically drawn in that same colour
unless a new PEN number is introduced:

10 M 0 DE 1

20 M o VE 0 0 . i 0 0

3© D R AW 4 0 0,20 © , 2

AS D R AW 1 0 0 , 3 5 0

5 0 D R AW 0 0,10 0

Try running this program in mode 2, where PEN 2 holds a
different colour INK.

Mode 0 is by far the best mode to use to produce a colourful
graphics display if you are not too concerned about the
resolution:

10 M 0 D E 0

20 X = g : y = 0

3 0 C O 1 O LI >-= 1

4 0 FOR C ount=0 TO 350 STEP 4

50 MOVE x + c o li n t . y

6 0 DRAW x + 3 5 0 , y + c o li n t, c o 1 o u r

7 0 MOVE x , y + c o u n t

8© DRAW x + c o li n t , y + 3 5 g

9 0 C 0 10 LI :clo.r + l MOD 16

100 NEXT

Changing the INK

So far we have only been able to see some of the colours that

16 Graphics Programming Techniques on the Amstrad CPC 464

the Amstrad can produce. There are only 16 pens available,
and yet Figure 1.6 shows that there are 27 INKS we can use.
The Amstrad allows us to change the I N K in each P E N so that
we can choose any combination of colours for a particular
mode.

The number of colours that can be used on-screen at the
same time in any mode does NOT change, however. Although
we can have bright red text on a white background in mode 2,
these are the ONLY colours we could have on-screen at that
time. We are ALWAYS limited to two colours in mode 2, four
in mode 1, and 16 in mode 0.

When the Amstrad is switched on or reset, it reverts to mode
land uses PAPER 0, which is blue (INK number 1) in all the
modes, and PEN 1, which is yellow (INK number 2 4) in all
the modes. Reset the computer now, and type:

T Ki L-' I i
X 11 I •. x

All the text on-screen changes colour from yellow to bright red
instantly. The INK command needs two numbers. The first
number is the number of the PEN or PAPER whose ink is to
be changed. The second number gives the colour INK which
is to be used instead.

The command INK 1,6 told the Amstrad to change the
INK in PEN 1 to INK number 6, bright red. ANYTHING
previously printed or drawn using PEN 1 has its colour
changed from the old to the new INK. So to turn all the text
blue type:

I N K 1 ■ 2

and what was bright red now becomes bright blue. How
would we return the text to normal? Perhaps you can work it
out for yourself. Type:

Normally P E N 1 uses I N K 2 4 in all the modes, as you can see
if you look back at Figure 1.8.

It is equally easy to change the PAPER colour. At the
moment the Amstrad is using PAPER 0, which is blue. Let's
change this to white:

Basic graphics 17

Perhaps the text's a bit difficult to read. Try:

or perhaps:

The PAPER in all modes is usually blue, INK number 1. Now
try to turn everything back to normal yourself.

We don't need to have already used aPEN or PAPER colour
to change it. Reset the Amstrad and type:
T NJ !/ “7

Nothing SEEMS to happen. If we now go on to choose P E N 3
in mode 1, Figure 1.8 suggests that text will be printed using
IN K 6, bright red. But we have just used the INK command to
change the INK used by PEN 3 to INK 0, black. Type:

PEN 3

and all the text is printed in black. Type:

1 N K 3 , 6

and now PEN 3 and all the text it printed is set to INK
number 6, bright red. This colour change remains even if you
change mode — try it.

It is even possible to set a colour so that it flashes between
two different colours! Try:
IN K 1,3,26

to see the text printed using P E N 1 changing from I N K 3, red,
to INK 26, white, and back again.

A suitable selection of flashing INKS in a program can be
used to give the illusion of movement. For example, we can set
PEN 1 to produce flashing yellow/red INK, and PEN 2 to
give flashing red/yellow INK. By printing alternate characters
with alternate PENS we can give a 'rippling' effect which
suggests the colour is moving along the line:
10 MODE 1
2 0 IN K 1,3,12

38 INK 2,12,3

4 0 pen c o1ou r = 1
50 FOR TO 4 0

18 Graphics Programming Techniques on the Amstrad CPC 464

60 IF pence 1our = i THEN pence 1 our = 2 ELSE

P e n c o 1 a u r = 1
70 PEN pencilour

80 LOCATE x, 13

90 PRINT CHR$(143);

100 NEXT

One obvious advantage of the INK command is that it enables
us to choose any colour combinations from the 27 INKS. Even
in a two colour mode like mode 2 we can brighten things up by
using red text on a white background, instead of being
restricted to just the colours yellow and blue which are
available at switch-on. This program lets you see the more
than 700 combinations of colour you now have in mode 2:

10 M 0DE 2
20 FOR x=0 TO 27

3 '3 C L S

4 © I N K 0 , x

50 FOR X=0 TO 27

SO IF x<>y THEN INK . ,y:FRINT "Ink ";y

70 respo n =. e $ = " "

8© WHILE r e s pon se$ = “ "

9 0 n e 5 p o n s e $ = I N K E V $
100 WEND

110 NEXT

120 NEXT

Exercises

1) Display your name in flashing characters on the screen.
Choose the right colour background so the letters seem to
appear and disappear.

2) Draw a picture of a fire using appropriate colours for the
lines. (You may find it effective to make use of flashing
colours.)

3) Draw a red crab lying on a sandy yellow beach. Choose the
PENS and IN K s so that the colours are the same no
matter what mode is chosen when the program is run.

Chapter Two

Codes and characters

The Amstrad CPC464 character set

The Amstrad can display a wide range of characters on-screen.
As well as the familiar alphabetic and numeric characters, it
can also produce crotchets, quavers, and even stick men, as
you can see if you run this brief program:

10 MODE 1

20 FOR code=32 TO 255

3 0 PRINT 0 H Rt (co de) ;
40 NEXT

The Amstrad associates every character with a code number,
called the ASCII code. This code number can range from 0 to
255. Codes 0 to 31 have special meanings to the computer, such
as 'Move the cursor back one space' or 'Change the INK
colour'. Codes 32 to 255 are for the lower and upper case
alphabet, numbers, punctuation, etc. Line 3 0 of the program
tells the Amstrad 'Print the character that has the following
ASCII code'. Figure 2.1 shows some of the more useful ASCII
codes.

Figure 2.1 Some of the more useful ASCII codes.

Characters ASCII codes

Various special codes 0-31
A space 32

0-9 48-57
A-Z 65-90
a-z 97-122

The characters with codes 0 to 31 can be displayed if they are
preceded by the character with an ASCII code of 1:

19

20 Graphics Programming Techniques on the Amstrad CPC 464

IS MODE 1
2S FOR code=0 TO 31

3S PRINT CHR$(1)CHR$(code);

40 NEXT

This clearly gives us a reasonable amount of choice when
deciding which characters to use within a program. However,
there are many circumstances where the Amstrad character set
may not contain the character we need, for example in foreign
language or mathematical work, or in a games program. In
these cases we can use the facility available on the Amstrad to
create our own USER-DEFINED CHARACTERS. Before we
find out how to do this, it will be useful to look at how the
Amstrad stores characters and why this method of storage
limits us to only 256 predefined characters with ASCII codes 0
to 255.

Bits, bytes and binary

How does the Amstrad store information? To look at it in a
simplified way, we can view the computer as containing
thousands of switches, each of which can be set to be 'on' or
'off'. In the Amstrad, these 'switches' are set together in blocks
of eight. If we represent an 'off' switch by 0 and an 'on' switch
by 1, we can show all the possible combinations of 'switches'
as in Figure 2.2.
00000000
0 0 0 0 0 0 0 1
0000001 0
0 0 0 0 0 0 1 1

1111110 1
11111110
11111111

Figure 2.2 The 256 possible combinations of 8 'switches'.

You will perhaps not be surprised to see that there are
altogether 256 ways in which the 'switches' can be set. Each of
the numbers is a BINARY NUMBER, composed only of the
digits 0 and 1. The digits are binary digits, or BITS for short.
Any combination of 8 bits is referred to as a BYTE.

Codes and characters 21

Binary is a way of counting in twos, just as we count in tens,
and each of the binary numbers is equivalent to a number in
our own system of counting. It is relatively easy to convert any
binary number into the more familiar decimal numbers, as we
shall see in a moment.

The byte is the fundamental unit of information storage on
the Amstrad. Many of the limitations of the machine arise
because an 8-bit byte can be 'set' in just 256 different ways.
Only 256 predefined characters are provided, because each
character can be given an ASCII reference code that can be
stored in a single byte. A program line can be from 0 to 255
characters long, as its length is stored in one byte. If 257
predefined characters were provided, or a line could be longer
than 255 characters, the information would have to be stored in
two bytes, and this would use up a lot of extra memory on the
computer.

Each of the predefined characters has an ASCII code
associated with it, but this in itself is not enough to enable the
Amstrad to produce the required character on the screen.
Every character is built up on an 8 X 8 grid, as for example the
upper case 'A'.

Figure 2.3 An upper case letter 'A'.

Each square on the grid will be either 'on' or 'off' (lit or unlit)
when displayed on the screen . . . sounds like binary numbers,
doesn't it? And with good reason, because the 8x8 grid is
another consequence of the 8-bit byte. Each row of the grid can
be stored as a byte, and the complete description of an entire
character can thus be stored in 8 bytes.

22 Graphics Programming Techniques on the Amstrad CPC 464

letter 'A'.

0 0 0 1 1 0 0 0
0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 1 0
0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0

Figure 2.4 The 8-byte binary character definition of the

Binary numbers are cumbersome to work with, because they
are lengthy and it is easy to insert or delete extra Os or Is by
mistake. The binary values for the bytes can be converted to
decimal simply by adding together the figures at the top of the
column for any squares in a row that are shaded. The Amstrad

2 6 3 1
8 4 2 6

0 0 0 1
0 0 11
0 110
0 110
0 111
0 110
0 110
0 0 0 0

8 4 2 1

10 0 0
110 0
0 110
0 110
1110
0 110
0 110
0 0 0 0

16+8 = 24
32+16+8+4= 60
64+32+4+2 = 102
64+32+4+2 = 102

64+32+16+8+4+2 = 126
64+32+4+2 = 102
64+32+4+2 = 102

= 0

Figure 2.5 The character definition of the letter 'A' using decimal numbers,

can simplify this process considerably by doing the work for
you! The command PRINT STR$ (number) will convert a
number into its decimal string equivalent. Binary numbers
must begin with '&X', otherwise the Amstrad will take the
number to be a very large decimal number that happens to be
made up of Os and Is! Let's confirm that our calculations above
were correct:

1@ M0DE 1

2 S n u m b e r = 1

30 WHILE numbers

40 INPUT "Input the binary number, prece

d e d by & X. ",number

50 PRINT "This is the decimal number "ST

R t (number)

60 WEND

Codes and characters 23

You may need occasionally to convert decimal numbers to
birtary. The Amstrad will do this for you as well:

10 MODE 1

20 number=i

30 WHILE number; 0

40 INPUT "Input the decimal number ".num

ber

5 0 PRINT "This is the bin a r y number « g t kj

% (number)

60 WEND

A point to note with both these conversions is that the end
result is a STRING. You cannot carry out arithmetic on strings,
and if you wish to do so you will first have to convert the string
into a number:

ber

1 0 MODE 1

2 0 number=i

30 WHILE number>0

40 INPUT "Input the decimal number ",nu

60 WEND

50 PRINT "This is the bina r y n u m b e r " g, I w
i (n u m b e r)
54 REM VOL con’./ e r t s a s tring t o a n u m e r i
c value

55 n u m e r i c = y ft L (BIN $ (n u m b e r))

56 PRINT "This is the number " - numeric

Defining your own characters

We now know the values for the eight bytes the Amstrad uses
to describe the letter 'A'. Any of the 16 characters with ASCII
codes 240 to 255 can automatically be redefined, so let's change
character 240 to the letter 'A':

10 MODE 1
20 REM SYMBOL define s c h a r a c t e r
30 SYMBOL 240,24,60: 102,102,126,102
0

40 PRINT CHR$(240)

SYMBOL in line 3 0 tells the Amstrad we want to define a new
character. The first number, 240, gives the ASCII code of the

24 Graphics Programming Techniques on the Amstrad CPC 464

character, and the eight numbers following define each 'row'
on the character grid.

If we need to redefine more than 16 ASCII codes, we must
use the SYMBOL AFTER statement:

IS MODE 1
20 SYMBOL AFTER 65
30 SYMBOL 65,231 ,195,153,153,129, 153, 153

, 255
40 PRINT CHR$(65)

Line 20 tells the Amstrad that we wish to be able to redefine
any ASCII code of 65 or greater. Line 30 redefines ASCII code
65, for the uppercase A, so that points that were lit become
unlit, and vice versa, as you can see if you try a capital A! The
previous character definition has now been lost. It can be
regained either by resetting the machine or, less drastically, by
using another SYMBOL AFTER statement, at which point all
characters are reset to their original definitions:

10 MODE 1

20 SYMBOL AFTER 65
30 SYMBOL 65,231,195,153,153,129,153,153

, 255
40 PRINT CHR$(65)

50 SYMBOL AFTER 70

Hexadecimal

We have seen that the Amstrad can easily convert binary
numbers to decimal to make life easier. Although we are all
familiar with decimal numbers, in computing it has become
traditional to use the HEXADECIMAL system, which involves
counting in 16s.

Hex numbers are usually written preceded by to avoid
any confusion with decimal numbers. It is worth getting used
to hex. The value of any byte can be shown using just two
characters in the hexadecimal system. We could describe the
letter A just as easily using hexadecimal numbers:

10 MODE 1
20 SYMBOL 240,SIS,S3C,S66,S66,&7E,S66,S6

6,0
30 PRINT CHR$(240)

Codes and characters 25

Hexadecimal equivalent

0
1

Decimal number

0
1

10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 1 1

30 1E

100 64

255 FF

Figure 2.6 Some decimal numbers and their hexadecimal equivalents.

Because the Amstrad works with bytes many apparently
meaningless decimal numbers assume significance if they are
shown in hex. For example, you will find that the Amstrad will
reject any line number greater than 65 53 5. This seems a
quite arbitrary decimal number, but when converted into hex
it becomes & F F F F and the reason for the restriction becomes
clear: 6 5 5 3 5 is the largest number that will fit into two bytes.
The use of two bytes means that there are 256 X 256 = 65536
different line numbers available, from 0 to 6 5 5 3 5. Allowing
greater line numbers would require three bytes to store every
line number, and storing a line number as a single byte would
restrict us to line numbers from 0 to 2 5 5.

The Amstrad makes it easy to convert from decimal to hex:
IS MODE 1

20 number’ = 1
30 WHILE n u m b e r > 0
40 INPUT " I n p u t t h,e decimal n u m b e r “ , n u m

ber

50 PRINT "In hexadecimal this is "HEXt(n
umber)

60 WEND

Conversion from hex to decimal involves the use of PRINT
STR$ (number) again, but this time to signify that the
number concerned is a hex number it is preceded by

26 Graphics Programming Techniques on the Amstrad CPC 464

10 MODE 1
20 numbers 1

3Q WHILE number;-0

40 INPUT "input the hexadecimal number.

preceded by & " , number-

50 PRINT "This is the decimal' number
T R $(number)

60 WEND

Games

User-defined characters really come in useful in games
programs. This program defines a 'dog' character which is
then printed in a variety of random positions on the screen:

IB MODE 0

20 SYMBOL 240,0,4,7,132,124,130,130,0
30 FOR randomdogs=l TO 30

4B randomx=lNT (19*RND (1)+1)

50 randomy=INT (24*RND (1)+1)

6 0 p e n c o1o u r =IN T(1 5 * R N D(1) +1)

70 PEN pencolour

30 LOCATE r a n d o m x,r a nd o my

90 PRINT CHRK240)

IBB NEXT

To move the dog around on-screen we must print a space at its
present position to erase the old character, and then print to
the new position:

10 MODE 0

20 SYMBOL 240,0,4,7,132,124,130,130,0

30 dogt=CHR$(240)

40 PEN 1

5 0 d o g x = 13:d o g y = 10

6 B r e s p o n s e $ = " "

7 0 WHILE response? <)■ " e “

3 0 n e w y = d o g y:ne w x = d ogx

90 r e s p o n s e $ = IN K EY ?

100 IF response? =“a“ AND d o g y } 1 THEN new

y = d o g y - 1
110 IF responses“z" AND dogy<25 THEN ne

w y = d o g y + 1
120 IF response?:","

x=dogx-l

AND d o g x} 1 THEN new

Codes and characters 27
130 IF respon s e $ = " . ” A N D dogx<20 THEN ne
w x = d o g x + 1
140 IF dogx < > n e w x 0 R dog y Onewy THEN LOC
ATE d o g x,dog y :PRINT II I! . . dog x = fi e w x : dog y =
n e w y

150 LOCATE dogx.dogy

160 PRINT dog$

ITS WEND

Animation can be made more interesting by defining a series
of characters, each of which is only printed if movement takes
place in a particular direction. We can modify the above
program to illustrate this, although rather than define four new
characters I have used the predefined characters with ASCII
codes 240 to 243. These are all arrows, pointing in different
directions:

10 MODE 0

30 arrow$=CHR$(240)

40 PEN 1

50 a r r o w x = 1 3 .■ a r r o w y = 1 0

60 response!:”
70 WHILE responselO'e’

30 newy=arrowy:newx=arrowx

90 response$=INKEY$

100 IF responsels'a" AND arrowy>i THEN n

e w y = a r r o w y - 1 : arc o w $ = C H R t (.2 4 0)
110 IF r es p o ns e $ =“z" AND arrowy<25 THEN

n e w y = a r r o w y + 1 .- a r r o w $ = c H R $ (2 41)
120 IF response!:',1 AND arrowx) 1 THEN n

e w x = a r r o w x- 1:a r row $ = C H R $ (242)

130 IF response!:-, ■ AND arrowx<20 THEN

newx=arrowx+l:arrow$ = C H R $(243)
140 IF arrowxonewx OR arrowy<>newy THEN

LOCATE arrowx,arrowy:PRINT “ ";:arrowx=
n e w x : a r r o w y = n e w y
150 LOCATE a r r o w x , a r r o w y
160 PRINT arrow!
170 WEND

The above skeleton program can serve as the basis for many
games.

One of the problems with user-defined characters is that it is
a tedious business designing characters by hand, and often the

28 Graphics Programming Techniques on the Amstrad CPC 464

result when displayed on the screen is very different to the
planned effect. The character-designing program on the
Amstrad 'welcome' tape suffers from a major defect in that it
fails to display the SYMBOL definition needed to recreate a
character.

The following program enables you to create characters
on-screen. It displays the SYMBOL definition needed to
produce the character and gives you the option of saving that
data to a file. This gives you the opportunity of setting up your
own 'library' of user-defined characters which can be used in
future programs:

IS MODE 1

20 DEF I NT c,n,x,y

2 9 RE M set up array s t o ho1 d ch ara c ter c

ode
3 0 DIM code (3 , 8 > , =■ ymb ■; 8)
4 S INK 3,20,6

5 0 n a e t = " ? 7 r 7 7 7 "

0 n u m b e r = 2 4 S

69 REM d 15p 1 ay ' emp t y ■’ a h <3r a<: t er

70 GOSUB 1000

sion of space bar
18 0 IF response$=" " THEN G 0 8U B 7 0 0 0:G0 S

80 G OSUB 3000:GOSUB 4 0 0 0

8 9 R EM scan k ey b0ar f 0 f* f 8 S P 0 Fl = &

?0 r e s p 0 n s e $ = " ”

100 WHILE n e s p 0 n se $ < ;• “ e 11

110 new x = x:ne w y = y

120 r e s p 0 n s e $ = L 0 W E R $ (I N K E V S)

129 REM next Four 1 i nes mo v e c u r s 0 r u p / d

0 w n / left/right

130 IF response$=“a “ A N D y > starty THEN r,

ewy = y- 1
140 IF nesponse$="z ” AND y< s t art y + 7 THEN

new y = y + 1

150 IF response$=", ■ AND x> startx THEN n

e w x = x - 1

160 IF response$=“. “ AND x< startx+7 THEN

n e w x = x + 1

169 REM update posi t i 0 n if necessary

170 IF fiewx < > x 0R n e w y <) y T HEN GOSUB 200

•i f.i / 7 REM change cola ur of pc i F! t 0 Fl d 8 P F 8 S

Codes and characters 29

iJB 3080

189

i f

REM

' o ’

output s y m

p r e s s e d

b o 1 definition to file

190 IF response-^" o" THEN GOSUB 5 0 0 0:G 0S

IJB 1000 -■ GOSUB 3000 :GOSUB 4000

199 REM input symbol definition from f i 1
p i f ■’ i pressed
200 IF r e b p o n s e $ = " i" THEN GOSUB 6©©0: G 0 S
IJB 3000 ■■ G05UB 4000

210 PEN 14

220 LOCATE x,y
230 PRINT CHR$(203);

240 WEND

2 5© END

999 REM empty symbol definit ion
10 00 CLS

101© S ¥M B 0 L n u m b er,0,0,0,0,0 , 0,0,0

1020 PEN 1

1030 FOR c0un t = 1 TO 8

1040 FOR count 1 = 1 TO 8

1050 code(c 0 unt,c 0 u n 11)=1

1060 NEXT

107© NEXT

1079 REM print 3x8 empty squares to repr

esen t blank ch ar a c t e r

1080 s t a r t x = 2 : s t a r t y = 2

1090 FOR x = startx TO start x +
1100 FOR y = s tarty TO s t a r t y + 7

1110 L 0 CATE x ,y
•i 1 r @ PRINT CHR$(233);

11 3 0 NEXT

1140 NEXT

11 5 0 x = s t a r t x : y = s t a r t y
1 160 RETURN

19 99 REM p r1nt c0rrect col 0ur charac t e r

at old position on cursor mo v e
2 000 LOCATE x,y

2010 code x = x-star t x +1:code y = y-start y + 1

202 0 PEN code(codex,codey)

20 30 PRINT CHR$(233);

2040 x = n e w x : y = n e w y
20 5© RETURN

2999 REM convert code array to 8 decima 1

n u m b er s f o r 5 Y M B 0 L d e f i n i t i on
3000 FOR c0unt =1 TO 8

30 Graphics Programming Techniques on the Amstrad CPC 464

3010 symb$= ” £X "

3S20 FOR count1 = i TO 8

30 3 0 symb$=symb$+MID>(8TR$(code(count1,c

ount)-l),2,l)

3040 NEXT

3050 symb(count)= UAL(symbt)

3060 NEXT

3070 SYMBOL number,symb (1) , symb (2) , =ymb (

3) , s y m b (4) , 5 y m b (5 > , 5 y m b (6) , s y m b (7) , s y m b (

3080 PEN 1

3090 LOCATE 1 , s t ar t y +1 0
3100 PRINT "Symbol i 5: ";C H R $ (n u m b e r) ;

3110 LOCATE 1 , s t a r t y +12

3120 PRINT "S V M B 0 L " ; n u m b e r ; s y m b (1) ; s y m b
(2) ; s y m b (3) ; 5 y m b (4) ; s y m b (5) ; -■ y m b (6) ; s y m b
/ *7. - sy'mb (8) •

313 © R E T U R N

4 000 P £ M X

4 010 LOCATE 1 ,st ar ty + 15

4 020 PRINT “S y m b o1 name: “ ; n a m e $

4 0 3 0 LOCATE 1 ,sta r ty + 17

404 0 PRINT "S y mbo 1 number: " ;nu m b e r

4050 RETURN

4999 REM s ave character definition to f i

le

5 0 0 0 LOCATE 1 1 1

50 1 © PEN 1

5020 INPUT “Name of symbolname$

5030 OPENCUT name $

504 0 WRITE tt9 ,names,number,sy m b(1) ,s y m b(

2) , s y m b (3 ;■ , s y m b (4) , s y m b (5) , s y m b (6) , s y m b

7) , s y m b (S)
5050 CLOSEOUT

5059 REM update SYMBOL name and number f
or next definition
50 6 0 n a m e $ = ” 7 7 7 7 7 s "

5 0 70 n u m b e r = n u m b e r + 1

5080 RETURN

5999 REM input character definition from
file

6000 LOCATE 1 ? 2 1
6010 PEN 1

6020 INPUT '’Nome of symbol 9?namei
60 3 0 OPEN IN n a m e $

Codes and characters 31

dex,codey)=2 ELSE code(codex,codey)=1
7020 RETURN

6 0 4 S I NPUT ft9 , na m e t•number,sy m b « 1) , s y m b

2) , sy m b (3) , s y m b (4) , s y m b (5) , s y m b (6) , s y m b

7) - 5 ymb (3)
6 0 5 0 CLOSE IN

6060 CLS

6069 REM turn s y m b a rr ay into b i n a ry fo
con v■ersion to code array

6 07S F 0 R c o u n t = 1 T 0 S

60 3 0 e y m b $ = BIN t (5 y m b (c o u n t))
i n Q ra length = |_E N (s y m b $;

6 1 S 0 s y m b $ = 3T R IN Gl(8-length, “ 0 “) + s y m b s

6 i 1 S F 0 R c o u n 11 = 1 T 0 8

612 0 L 0 CATE s tar tx + cc u n 11 -1 , s t arty + ao u n

— 1
6130 c o d e =h L (MIDI (s y m b $, c o u n 11 , 1)) +1

6140 PEN code

b 1 3 0 PRINT CHRX233);

6160 code(count!,count)= c ode
6170 NEXT

6130 NEXT

6190 R E T U R N

6999 REM toggle colour at cursor positi

n o n depression of space bar

7000 codex® x-st a r t x+1:code y = y-s t a rty +1
7010 IF c o de(c od e x , c o d ey)= 1 THE N code (c

Exercises

1) Design a 'spider' character and write a program that
redefines the full stop key to produce your arachnid friend.

2) Write a program to enable you to move your spider about
on-screen. You might like to use some of the pattern
drawing routines from the last chapter to produce some
suitable webbing.

3) Improve the previous program by designing up-, down-,
left-, and right-facing spiders, and print the correct
character when movement is made in a particular direc
tion.

Multiple characters

In mode 1 a single character is not very large, and it may be

32 Graphics Programming Techniques on the Amstrad CPC 464

preferable to create a larger figure built up from several shapes.
The individual characters can be joined together to make up a
single string if the figure is completely horizontal:

10 MODE 1

19 REM define 3 ch a racters fo r 1 o rrv
20 SYMBOL 240,0,0,96,96,96,127,18,12

30 SYMBOL 241,0,0,0,0,0,255,0,0

40 SYMBOL 242,248,132,132,255,255,255,72

, 48

50 lorry$=CHRt (240) + CHR5 (241') + CHR$ (242)

60 LOCATE 18,13

70 PRINT lorry$

The 'lorry' character can easily be placed under the control of
the keyboard, although for the sake of realism let's just move it
in one direction only — to the right:

9 S P R IN T 1 o r r y t

1 0 MODE 1
20 REM define 3 characters for lorry

30 SYMBOL 240,8,0,96,96,96,127,18,12

40 SYMBOL 241,0,0,0,0,0,255,0,0

5 0 SYMBOL 242,243,132,132,255,255,255,72

, 4 8

6 0 lorry$ = CHR$ (240)+ CHRS (241)+ CHRS(242)

70 x = 1 y = 1 3

where the left end was

100 r e ■=■ p o ns e $ = “ ”

109 R E M = c a n k e y b o a r d !J H c i 1 e ’ p r e s s e d
110 WHILE responses! > ft e «

120 new x = x

130 r e s p o n s e $ = L 0 W E R $ (INKEY $)
140 IF respon.set = “ . ” THEN n e w x = x + 1
149 REM if lorry has m o v e d print a s pace

THEN LOCATE x,y:PRINT " ”150 IF newx < > x

; lor r y $

168 x = n e wx

170 WEND

Notice what happens when the figure gets too close to the
right-hand edge: the whole figure is automatically printed at
the start of the next line. The Amstrad will not print any
character that moves the text cursor outside the text window. If

Codes and characters 33

Figure 2.7 The four ASCII codes for cursor movement.

ASCII code Action

8 Cursor moves back a character
9 Cursor moves forward one character

10 Cursor moves down a line
11 Cursor moves up a line

a character does fall into one of these positions, the computer
moves the text cursor to an allowed position, using the
following rules:

1) If the cursor moves beyond the right edge of the screen, it
is moved to the first position on the next line.

2) If the cursor moves beyond the left edge of the screen, it is
moved to the last position on the previous line.

3) If the cursor goes off the top of the screen, the screen scrolls
down a line, and the cursor remains on the new top line.

4) If the cursor goes off the bottom of the screen, the screen
scrolls up a line, and the cursor remains on the new bottom
line.

Although only the front of the lorry falls into an illegal
category, the computer is printing the lorry as a single string,
and regards the whole string as being printed at an illegal
position. Consequently as soon as the lorry reaches an x text
coordinate of 39, which would make the front 'poke out' into
an illegal cursor position, the Amstrad prints the ENTIRE
string at the beginning of the next line. This is important to
remember, as it means that the size of a multiple character
affects the positions at which it can be safely printed
on-screen. In this case, the maximum x text coordinate that can
be used is 38.

Printing a vertical figure might seem more difficult, because
surely each part of the figure will need a different LOCATE
statement to print it? Here we can take advantage of the fact
that four of the lower ASCII codes do nothing but move the
cursor in particular directions. By including cursor move
commands we can describe a vertical figure by a single string.
These cursor move characters are not printed by the Amstrad

34 Graphics Programming Techniques on the Amstrad CPC 464

top$

mi d$

bo t $

The ‘rocket’ could be printed as a single string composed of:
top$+ CHR$(8) + CHRS(8) + CHR$(10)

moves cursor back and down
ready to print next character

+ mid$+ CHR$(8) + CHR$(8) + CHR$(10)

same cursor movement again

+ bot$

Figure 2.8 A vertical multiple character created using cursor moves,

but serve only as instructions to the text cursor where to move
next.

The 'rocket' can be printed to the screen using a single
LOCATE statement:

•I <
X .

IS
-* ro i 7

MODE 1

REM de f i ne 3 - h ar ac t er? f o r r o c « e
SYMBOL 240,0.24,24,24,24,36,36,36

3S S V MB 0 L 241,36,36,36,3 6,36,3 6,36,3 6

40 S Y M B 0 L 2 4 2-66, 10 7. 1 2 9 , 1 2 9 - 10 9, ■ C; 3 - 1 ~

Codes and characters 35

e where the bo11cas was-

5 0 r o c i< e t J - C H R $ (24 8) + C H R i (8) + C H R $ (1 0) - C H
R J (241) + C H R $ (8) + C H R $ (1 0) + C H R t (. 2 4 2)
6 0 '< = 20-. y = 20

70 LOCATE x,y
8 0 P RI N T r o c k e t $

90 re 5 po ns e $ = “ “

100 REM '= can k ey boar d until ■' e ’ pressed
110 WHILE r e s p ons e $ <> " e “ AND y) l
12 0 new y = y

13 0 r e s p o n s e $ = L 0 W E R $ (I N K E V $)

140 IF response$=“a" THEN n ew y = y-1
150 REM it rock e t has m o v e d p r i n t a s p a c

1 60 IF newy (> y THEN L0CATE x, y + 2 : P RINT ”

“■LOCATE x, n e w y : P RIN T r o ck e t $
176 y=newy

180 WEND

Unfortunately the Amstrad displays a peculiar habit when
dealing with strings containing cursor moves. The above
figure is clearly vertical, and no part of it lies in an illegal
position. However, the computer considers it to be a string 7
characters long and hence will not allow the 'rocket' to be
printed to any x text coordinate greater than 34. You can
demonstrate by changing line 60 to:

1 0 M 0 0 E 1
1 9 REM det 1 Pi L? 3 c h a r a c t e r s f o r r 0 c k e t
20 8 ? M B 0 L 240 , A , 3 6 , 36
30 SYMBOL 241,'36,36,36,36,36, 36,3 6,3 6
40 8 Y M 8 0 L 24 2 ,-66,129,129,129, 12 9, 1 5 3,19 5

1 2 9

50 rocket$=CHRI(24S)+CHR$(S)+CHR$(IS)+ CH

Rt(241)+ CHR4(8)+ CHR$(1Q)+ CHR»(242)
i g ;< = 3 5 : y = g 0

70 LOCATE x,y

S 0 P RI N T r o c k. e t $

9 0 r e s pons e J = "”

100 REM scan keyboard until ■' e ■' pressed

110 WHILE r e s p o nse $■ < > “ e “ A ND y > 1

1 2 © n e w y = y

130 responsei=L0WER$(INKEYS)

14 0 IF r e s p o n s e $ = " a “ THEN newy = y- 1

150 REM it n o c k e t has m o \> e d print a s p a c

e where the bottom w a s

36 Graphics Programming Techniques on the Amstrad CPC 464

160 IF newy<>y THEN LOCATE x , y + 2 : PR I NT ’’

" :L0CATE x,newy:PRlNT rockets

170 y = ne wy

183 WEND

We can use cursor moves to create more complex figures, but it
is important to be aware of the restrictions this places on
positioning. For all but the simplest of figures it is probably
better to print by a series of LOCATE statements. This brief

•? n M /"I Pi C »

1? REM def 1 n e 7 c h ci r ci c t e r s f 0 r r 0 c k e

20 8 v M B 0 L 240 ■. 0 ■ 2 4,2 4,2 4 ■ 2 4,3 6,3 6 • 3 6

30 8 Y M B 0 L 24 1:. 3 6 ,36,36,3 6,3 6,36,3 &,3
4 3 SYMBOL l_ M- 4- :. 6 6 , 12?, 129, 129, 129, 153

, 12 9

4? RE M def i n e US i h g c u r s 0 r m o v e -s

50 r oc k e t$=CHR$ (240) + CHR$ (8) + CHRS (1 0) + CH

(241) + CHRT (8) + CHRf- (10) + CHRT (242)

5 9 R E M t h i s w ci y w e c a n ' t u e e x c o o r d i n ci t e

s 5 r e ci t e r t h q n 34

6 0 x = 1 : y = 2 Q
7S LOCATE 3,23

S 0 F RIN T ” C h ci r a c t e r def i n e d u s 1 n g c u r s o r

m o v e e “
98 FOR ycoord=y TO 1 STEP -1

10 © L 0 CATE x , y c oor d + 3

11© PRINT ” ”

120 LOCATE x.ycoard

130 PRINT r.ockett

14 0 N EX T

14? REM w ait f o r k e y d e p r e s s i o n b e f o r e c

o n t1 n u 1 r g d e m o

1 5 0 r e -5 p o n •=• e 1 = " "

16 0 WHILE * e s p o n se $= " "

170 response$= L0WER$(INKEYt)
18.0 WEND

198 CL5
1 ? ? REM t h i =■ w ci y w e c a n p r 1 n t t o A N Y x c

c o r d i n ci t e

2 g-g x = 3 6 - y - 2 0
210 LOCATE 7,23

2 20 PR I NT " Chcir cic te r def 1 ned u5 i ng L0CAT

E f o r e c, c h p a r t11

Codes and characters 37
2 7 REM P i n t e□ ch p□ r t of cht* roc k e t w

th, s e p a r ate |_ 0 CATE st a t e m e n t s
23 0 FOR ycoord=y TO 1 STEP -1
240

2 5 0
LOCATE x , 7 c 0 o r d
PRINT CHR$(240)

26S
27S

LOCATE y.ycoord+1
PRINT CHR$(241)

280 LOCATE x,ycoord+2

2'90
29 9

P R I M T C H R f (2 4 2)

REM delete old r o c k e t b a =. e

3 0®

3 1 S

LOCATE x,ycoord+3

PRINT " "
NEXT

More interesting effects can be achieved if two slightly
differing figures are defined, and then displayed alternately.
We can use this idea to produce a 'snake' which wriggles its
way across the screen:
1 0 M 0 0 E 1

1? REM define 2 'snake' characters

2® SYMBOL 240,0,0,32,80,81,74,130

3S SYMBOL 241,0,0,0,132,74,81,88,32

40 s n a k e11 = C H R $(2 4 0)

5 0 s na k e 2 $ = C H R$(241)

6 0 s n a k e $ = s n a k e 1 $

70 y=13

89 FOR -=1 TO 3 9

8 9 RE M tog g 1 e pr inti ng o f c r,a r ac t e r b e t w
ssn ons STKikf? orid ths oth&r-

9 0 IF 5 n a k e t = s n a k e 1 $ THE N s n a k e $ = s n a k e 2 $
ELSE sna k e$ = sna k e 1 $

100 L0CATE K,y

12 9 REM Pr- i n t spce to d e1 st e e — o k ' -■ t

i 1

110 P R IN T " " ;s nak e$

1 IP RE M deloy - othe r w x s e x t's a 11 □ve r

t o o q u i c k 1 y 1

12 3 o 1 d t i rfi e = T I M E

13 0 WHILE TIME<oldtime+1 0

1*0 WEND

15S NEXT

We could similarly define two 'lorry' images which vary
slightly to give the impression that the vehicle is jolting its

38 Graphics Programming Techniques on the Amstrad CPC 464

way along. Or we could make the earlier 'dog' wag its tail as it
strolls about:

een one dog and the other-

90 IF dog$=dogli THEN dog$=dog2$ ELSE do
gS = dogi$.

10 M 0 DE 1

1? REM d e fine 2 ' d o g 1 c h a r a c t e r 5

2 0 SYMBOL 240. 0,132,13 5, 1 32,124.130.130.

0
■z 0 SYMBOL 241, g , "7 .*1. "7 J. , J. 9 _: ,124,130,65,0

40 doglS=CHRS- ■(240)

50 d o g 21 = C H R $:(241)

60 d o g $ = d o g 1 S

7 0 y=13

80 FOR >'. = 1 TO 7 9

39 REM toggle P r i n 11 n g o f character betw

100 LOCATE x,y

109 R E M P ri n t space to delete old dog

I I O PRINT " «;dogs

119 REM del ay - ot he r w i 5 e 11 ' s o 11 o v e

too quick!y!
■’ O pi o 1 d 11 m e = T I Mfr

130 WHILE TIME<oldti m e + 3 0

140 WEND

1 5 0 N E X T

Exercises

1) Create your own multiple-character version of a bus, and
drive it across the screen.

2) Design two circular characters with a cross-piece at
differing angles, and print them alternately to the screen to
give the impression of a rolling wheel.

3) Add the rolling wheels to your bus as it is moved across
the screen.

Improving the resolution

Although a number of amusing games can be devised using
only the text screen, there are clearly limitations imposed. The
best text resolution is available in mode 2, and even this has
just 25 lines of 80 characters. In contrast, the worst graphics
resolution is 160 by 200 points. Fortunately, the Amstrad

Codes and characters 39

allows text characters to be printed to a graphics position, and
this means we can produce smoother animation, and give the
user finer control in games. More seriously, it means that
graphs and charts can be accurately labelled at any point rather
than at the closest text position.

The switch from text to graphics coordinates brings other
changes as well. After a TAG (Text At Graphics) command has
been given, characters can no longer be printed following a
LOCATE statement. Instead the graphics command MOVE
must be used to position the graphics cursor. The text
character is tagged to the cursor by its TOP LEFT corner. This
program moves a single character 'Space Invader' to demons
trate the principle:

IS MODE 1

19 REM define space invader

2S SYMBOL 240,24,60,126,219,255,255,165,

165

3 0 i n v a d e r $ = C H R $ (2 4 3)

40 graphicsx=100:graphicsy=20©

4 9 REM J oin t ex t ta graphics cur scr

50 TAG

6 g p g R = 9 r a p h i c s x t g 6 © S

7 S M 0 M E ■ ■ g r a p h i c s y

7 3 REM pr int space to rub ou t □id i nvade

r f i r s t
79 REM om it the s emi-co1on at y oar p-eri 1
S3 PRINT " " i nvader$;

90 NEXT

The semi-colon at the end of the PRINT statement is vital.
One important consequence of using TAG is that control
characters (i.e. those with ASCII codes 0 to 3 1) are printed to
the screen rather than being obeyed. The cursor moves
involved in printing the 'Invader' in the above program
become visible if the semi-colon is omitted. We can also see
the effect using the 'rocket' as an example.:

10 MODE 1
1 9 RE M define 3 ■- har ac 6 e r s f c r r oc k e t
23 SYMBOL 240,0,24,24,24,24,36,36:36

3 0 S y m B0 L 2 41,36,36.,36,3 6,3 6,36,3 6, 3 6

4 3 S Y M B 0 L 2 4 2,66, 129, 129, 1 ~ 9 , 1 2 9 , i .5 3 , 1 9 5

,12'9

40 Graphics Programming Techniques on the Amstrad CPC 464

—■ 0 r— k e t* = C H R i1 \ ~ 4 V ■ 4 H R * *■ d ■ t C H R * - 1 V > t*•_' m

R*(241) + C H Ri (S)+ CHR i(10)+ C HRi (2 4 2)
60 TAG

7B graphic=x=300:graphicay=1©R

80 FOR y = g r aphiesy T0 350

S 9 REM rub out old r coke t base

9 0 M 0 ’J E g r a p h i c s x , y -24
100 PRINT " »,

10? REM pririt n ew r oc k e t (wha t a mes s ;

lie M0 VE g r a P h1csx,y

120 PRINT rocket*;

13S NEXT

Not quite what we wanted! The problems created by cursor
moves for both text and graphics mean it is usually easier to
stick to figures that are simple. Figures built up from a series of
horizontal characters can be printed after a single MOVE
statement, because the graphics cursor automatically moves
through the width of a single character after printing and is
thus correctly positioned to produce the next character. We can
see this with the earlier 'lorry' figure, which consisted of a
single string:

10 M 0 DE 1

19 REM define 3 cHorocters for lorry

20 SYMBOL 240,.0,0,96,96,96,127,18,12

21 SYMBOL 241,.0,0,0,0,0,255,0,©

SYMBOL 242, / Q ••TO • T •"? c c. c. c c c

, 48
30 lorry*=CHR*(240)+CHR*(241)+CHR*(242)

40 graphicsx=0:graphicsy=200

49 REM join text to graphics cursor

50 TAG
6 0 FOR x = gr aph i csx T0 600

70 MOVE x,graphicsy
7 9 REM print space 10 rub out bac k of 1 c

r r y
30 PRINT ‘ "lorry*;

90 NEXT

The 'rocket' would have to be printed with a succession of
MOVE statements, because each character is above the pre
vious ones:

10 MODE 1

Codes and characters 41

, 129

1 9 REM define 3 characters f □ r p Q <2 k e t
-n 0 SYMBOL 240,3,24,24,24, 2 7 36, 36, 3 6
7 0 SYMBOL 241,36,36,36,36 , y. a 7 z , 3 6 , 3 6
M- 0 SYMBOL 242,66,129,129, 129 , 12 9 , 1 5 7 , | Q c.

50 r o c k e 11 o p $ = C H R $ (2 4 ©)
51 rocketmid$=CHR$(241)
c -n
■J 4. r- o c k e t b o t $ = C H R $ (24 2)
6© T /\

! H'j

7 0 g r o p h i c 5 ;< = 3 © s : g r a p h i c sy = 10
80 F 0 R y = grciphics y T 0 3 5 3
89 REM rub out old rock e t bos
93 MOVE grophicsx,y-48

100 PRINT ” " ;

11 3 M 0 V E g 'r 0 P h i C =•, ¥
123 P RI N T r o c k e 11 o p $;
121 M0 VE 9 raPhi c =. x,y-16
•i P RIN T r o c k e t m i d $;

1 2 3 M 0 V E g r Cl phi c s ¥ , y -30
124 PRINT r0 c k e t b 0tJ;

138 NEXT

TAG can be switched off within a program using the T A G 0 F F
command. TAG is automatically switched off at the end of a
program.

Faster movement

You have probably noticed that there is an inevitable price to
be paid for this smoother movement of figures: the program
runs more slowly. Single character animation is faster, but
there are a number of other ways in which we can ensure that
the program runs as rapidly as possible.

First, we can speed the program up by using integers (whole
numbers) wherever we can. This enables the computer to carry
out calculations more quickly. It might seem that we have only
used integers in the previous programs — however, the
Amstrad treats all numbers as decimals internally unless it is
informed otherwise. We can declare particular variables as
integers by using the D E F I N T statement:

1 DEF I NT g,x

The Amstrad will now treat any numeric variables beginning

42 Graphics Programming Techniques on the Amstrad CPC 464

with either g, x or y as integers. The difference in speed
becomes apparent if we time the same program with and
without the use of integers:

, 48
30 lorry$ = OHR$ (240)+ C H R ♦ (241)+ C H R $ (242)

40 g r a p h i c s x = 0:3 r op h i c = y = 2 3 0

4? REM Join text to graphics cursor

50 TAG
55 5tarttime = TIME

6G F 0 R x = 3 r a p h x c s x T 0 6 0 3

7 0 M 0 V E x , 9 r a ph i cs y
7 9 rem print = pa ce to rub out & ack o f 1c
T- T-

8 0 P R I N T " "1 0 r r y $:

X U E FIN T g . x, i

1 0 MODE 1

1? REM define 3 c har ac t ers for 1o rry

2 0 SYMBOL 240, 0,0,96,96,96,127,IS,12

21 SYMBOL 241, 0,0,0,0,3,25 5,0,0

SYMBOL 242, 248,132,132,255,255,255

9 r t o t a 111 m e = T I M E

100 TAGOFF

110 L0CATE 1’20

12 0 PRINT "Time taken was " (t o t a 11 i m e-5t

a r 11 i m e) / 300" second s"

A second way of speeding up movement is to take note of the
minimum displacement which the Amstrad can successfully
display in each mode. There is little point in moving a
character horizontally by a single x coordinate in mode 0
because the resolution is so low that printing will take place to
exactly the same spot. Move at least four units in mode 0 and
two units in mode 1. Vertical resolution is the same in all three
modes, but the minimum movement that can be displayed is
of 2 units.

Lastly, plan characters so that they have an empty border
surrounding them. This ensures that movement in any
direction does not leave a trail. The second 'Space Invader'
shown in Figure 2.9 will leave lines which need to be erased
whenever it is moved. This deletion slows the program down.

Codes and characters 43

Figure 2.9 Two 'Space Invader' characters: the first is more useful as its
border automatically erases the previous image.

What comes next?

Most games programs involve identifying what is present in a
nearby screen position — has the racing car hit the wall, and
did the laser strike the Space Invader? By using the TEST
(x , y) command we can discover the PEN used at any given
graphics position. By carefully choosing the colour of the
characters used in a game we can ensure the program behaves
differently if we move to a position containing a point of a
particular colour. All spiders might be pink, for example, and if
we try to move our fly to a spot which proves to be pink the
game ends abruptly:

1 P EM s peed thin gs u P

5 DEF I NT c,x.y
IS MODE 0

19 pEM define Fly □ n d s p i d e ■ c h C F G C b 9 F ’=•

2 0 SYMBOL 240,0,36 ,9 0,93,P 0,3 i, 0,0
3 0 SYMBOL 241-145, 82 ,52,31,248- 44,74-137
4 0 f 1 y t = C H P $ (2 4 D)

50 s p i d e r $ = 2 H R $ (2 1)
60 GOSUB 1003
7 0 x f 1 y = 3 © S : y f 1 y = 2 S S

3 0 x n e w = x F 1 y : y n e w = y F 1 y

9 O x t e s t = x f 1 y : y t e s t = y F 1 y
10 0 MOVE x f1y,y F1y:p L 0 T x F 1 y , y F 1 y , 1

110 G 0 S U B 2 0 0 0

120 response$=“":fly de o d = 0

44 Graphics Programming Techniques on the Amstrad CPC 464

129 REM keep scanning keyboard until the

F1 y ’ 5 dead

13S WHILE r e s pons e $ = ” " OR Flydead = 0

140 xnew = xF1y:ynew = yF 1 y

1 5 0 r e s p o n s e $ = L 0 W E R i (I N K E ¥ t)
159 REM position Cxtest.ytest) to colour

-check depends on direction of move

16 0 IF r e s p o n s e $ = “ a " THEN y n e w = y F 1 y + 2 : >' t

e s t = xn e w +16;ytest=ynew+g

17 3 IF response$ =’z“ THEN y n e w = y Fly-2:x t

e s t = x n e w +1 6 : y t e s t = y n e w - 2 4

18 0 IF r e s p o n s e $ = ” . ” THEN xn e w = x F1y + 4:xt
e s t = x n e w + 4 s ■- y t e s t = y n e w - 8

190 IF r-esponse$= ” - “ THEN xnew=xF1y-4;xt

es t
200

= x n e w -1 6 ■; y t e s t = y n e w -8

newOyFly THEN GOIF x new <> x Fly or y
!JB 2 0 0 0

2 1 0 WEND
220 MODE -!

230 END
r*i r*.7 7 7 R E M S E* 7 I J p p 1 n k c o 1 o u r

S M 0 V r AX W 1/ 1 ‘D

101 0 DR ft W 0 , 0,11
■1 |7! '7 a T c "EJ i H ■ j
102 9 REM d r a w 10 s Pide r s a t r a n d o m

1 0 3 0 FOR sp i d e r s = 1 TO 10
1040 spiderx=INT(600*RND(1)+20)
1050 spidery = INT (300*RND (1)+20)

1060 MOVE spiderx , spidery-

1070 PRINT spidert;

1080 NEXT

109@ RETURN
1'999 REM test colour at centre oF next c

Kara c ter P o s i t i o n

2000 co 1 o u r = T E 8 T (x t e s t, y t e s t)

2 0 0 8 REM i F it’s pink. the Fl y' s dead

2 0 0 9 REM not p e r F ec t - w e c a n m i s s t h e s

Pide r i F the pci n t m i s s e s the bod y•
■-> ra ■) p IF c o1ou r = 11 THE N F 1 y d e a d = 1 ; 8 0 U N D 7

n e w

, 2000

2019 REM prmt spider to new position

2020 xF 1 y = xnew:yF1y = y

2050 MOVE xFly,y Fly-

2060 PRINT Fly$;

2070 RETURN

Codes and characters 45

We can easily extend the game by introducing a time element:

1 2 @ r e s p o n s e $ = ” ■ : f 1 y d e a d = 0

‘■r Q P P i Q h t C O P Pi E? P

12 7 REM a ■=• q u i c k 1 y □ s possible , s o s e i
P st n r t time

123 oldtime=TIME

12? REM keep sc c< n n i n g k e y b o a rd until the

f 1 y ' s d e a d o r the c o r n e r ' s r e a c h e d
13 0 WHILE (response$="" OR f1ydead = 0) AN

D(xfiy<600 OR yfiy<300)
140 xnew=xfly:ynew=yfly

150 response$=LOWER$(INKEYS?

15? REM position (xtest,ytest) to colour

-check depends on direction of move

16 0 IF response$ = " o " THEN

e s t = x n e w + 1 6 y t e s t = y n e w + g
170 IF response$="z" THEN

e s t = x n e w + 1 6 : y t e s t = y n e w - 2 4

180 IF response$=‘." THEN

y n e w = y f 1 y + 2: x t

y n e w = y f 1 y - 2': x t

x n e w = x f 1 y + 4 : x t
e s t = x n e w + 4 8 : y t e s t = y n e w - 8

1 ? 0 IF response$=“ " THEN x n e w = x f1y-4:x t

e s t = x n e w - 1 6 - y t e s t = y n e w - 8

200 IF xnewOxfly OR ynew<>yfly THEN GOS

UB 2000

210 WEND

215 TAGOFFzCLS

2 20 IF f1ydeod = 0 THEN PRINT “Time taken

w a = : " T IM E - o 1 d t i m e

230 END

A useful variation of the TEST command is the T E S T R
command which tests the PEN present at a position relative to
the present position. For example, TESTR (10,-5) ex
amines the point which is 10 units to the right of the present
point and 5 units down from it. This program demonstrates its
use. You must guide the 'car' around the racing track. Don't go
off the black 'road'!

IS MODE 0
20 GOSUB 1000

30 GOSUB 2000

40 END
1000 PAPER 12

46 Graphics Programming Techniques on the Amstrad CPC 464

1010
■j rr, q1 $ d. <2
•i p Q

10 30

1040
1 n < f|

1060

1-070

1080

1 0 9 ©

1100
110?

1110

1120

1121

1130

1140

1141

1150

1160

1 170

1180

1190

1200

c u r
1210

1220
•} 7 Ci1 iL J d

1 c. ‘f b

12 50

1260

1280

1290

17 00

13 2 0

1330

1340

1360

13 70

1380

1400

1408

p c m n

C L S

REM dr c<w ’ t r ac k '

s i d e x = 3 - s i d e y = 7

F0 R y = s i d ey T0 side y + 11

LOCATE 5 i d 8 x ,y
PRINT CHRt(143)CHR?(143) ;

LOCATE side x +15.' y
p R IN ' C H R ? 14 3) C H R i 1 + .y ?

N E X T

FOR count=-l TO 1

LOCATE s t a r t k , =. ta r- t y + c o u n t

PRINT STRING? (S,CHR$(143));

LOCATE startx,starty-1

LOCATE startx,starty +15+count

PRINT STRING? (8, CHR? (143)) ;

NEXT

TAG
c o 1 o u r - g

leftx = 32::right x = .5 76

boty=i50:: t o p y = 3 3 S

c h a n g e y = 6 ch a n g e x = 3 2
PLOT leftx+changex, topy + c ha n g ey.col

FOR c o u n t = 1 TO 4

ychan g e = ch a n g e y * coun t

x c h a n g e = c h a n g e x * c o u n t
MOVE leftx+xchange,topy+ychange

PRINT CHR? (143);

GOSUB 1600

MOVE rightx-xchange,topy+ychange

PRINT C H R ? (1 4 3) ;

GOSUB 1680
M 0 V E 1 e f t x + x c hange.b ot y-y c ha n g e + 8

PRINT CHR?(143);

G 0 S UB 1600
M0 V E right x-xcha n g e ,b o ty-yc hang e + 8

PRINT CHR? (143?;

GOSUB 1600

NEXT
REM 2 c a r symbols, o n e f o r u p/ d o w n

Codes and characters 47

0

1420 SYMBOL 241,0,90,126,24,24,126,90,0
14 3 0 s i d e * = C H R *• (2 4 0)

14 4 0 up$ = C HR $ 2 4 1)

14 50 c a reside*

1460! Carx=400:Cary=338

14 70 PLOT car x+16 >car y-4,3

1480 MOVE carx,cary

1490 PRINT car$;

1500 RETURN

1600 FOR count 1 = 1 TO 4

1610 MOVER -32,-16

1620 PRINT CHR* (143:' ;

1630 NEXT

1640 RETURN

1999 REM scan keyboard for key depress io

n
2000 carhit=0

2010 changex=0:chongey=0

2820 WHILE carhit=0
2030 response*=L0WER* (INKEY*O

2040 IF respon$e»="a” THEN changex=0:cha

n g e y = 2 : c a r * = u p * : t e s t x = -16 -• t e s t y = 2

2050 IF response*:"z" THEN changex=0:cha

ngey=-2:car*=up*:testx=-16:testy=-16

2060 IF response*®" THEN changex=4:cha

n g e y = 0:c a r * = s i d e *:t e s t x = 0:testy=-8

2070 IF response*=",' THEN chanaex = -4:ch

angey = 0:car* = side*:testx = -36:t e s t y = - 8

2079 REM Space Bar stops car

2080 IF response*!" " THEN changex = 0 cha

n g e y = 0
2089 REM only draw car again when it has

been moved
2090 IF changex <}0 OR changey(}0 THEN GO

SUB 3800

2100 WEND

2110 RETURN

P e rf e ct (but slow)

2997 REM te s t c olour of Pi xel next to pr

e s e n t P o s i 11 o n

2998 REM test colour of pixel next t o pr

e s e n t pos i 11 o n
2999 REM in next char a c t e r row./ c o 1 u m n i B

3000 colourpen = TESTF: (testx, testy)

48 Graphics Programming Techniques on the Amstrad CPC 464

3009 REM if not INK 0 then car is off th

e track

3010 IF colourpen()0 THEN carhit=1:SOUND

7,500

3020 carx=carx+changex:cary=cary+changey

3030 MOVE c or x,cary

3040 PRINT carl;

3050 RETURN

Exercises

1) Add a few obstacles on the racing track — yellow bales of
hay or the burnt-out remains of a car.

2) Create a multiple-character green caterpillar that ambles
slowly across the screen.

3) Add some red berries which are printed at random
positions on-screen. If the caterpillar eats a berry, it turns
blue and dies.

4) Add keyboard controls so that you can attempt to guide
the caterpillar on its perilous journey by moving it
vertically so that it avoids the berries. The creature is safe
if it reaches a rich swathe of green grass on the right of the
screen.

Chapter Three

Graphs and charts

In the last chapter we looked at the lighter use of graphics, in
games, but there are much more serious applications, even on
a microcomputer. The last few years have seen a proliferation
of sophisticated software suitable for small businesses, and
many of these programs take as their aim the presentation of
information in a more easily understood manner. Rather than
providing endless lists of facts and figures, the software
manipulates the data and from it produces graphs, bar charts,
pie charts, or a combination of all three. The use of colour and
high-resolution graphics makes it easy to display trends or
highlight particular features. The computer has the added
advantage in that it can rapidly recalculate and display a new
graph or chart to illustrate the consequences of, for example, a
drop in sales revenue.

We shall concentrate in this chapter on software to produce
the three most familiar forms of data presentation: graphs, bar
charts and pie charts. At this stage in the book it is important
to be aware of some of the rules-of-thumb that should be used
when planning software.

First, it is unwise to attempt to write a program as a whole. It
is much easier to develop, debug and amend a program if it is
written in MODULES, short sections of the program that have
a specific purpose, i.e. to draw the axes of a graph, or colour a
bar on a bar chart.

Second, a program is very inflexible if it is tied to specific
values. A program to draw the axes for a particular graph
might work very well. But if it contains lines like:

100 MOVE 308,390
110 DRAW 308,120

120 DRAW 6 3 0,12'0

it becomes difficult to use again, and producing a new graph
49

50 Graphics Programming Techniques on the Amstrad CPC 464

may well involve rewriting the program. It is far better to use
VARIABLES on all possible occasions. This has many advan
tages: variable names are more meaningful than strings of
numbers in MOVE and DRAW commands, and the program is
easier to understand and modify if we return to it after many
months and wish to change it.

Additionally, the use of variables means that we can write a
general purpose program that will produce a graph for any set
of data — the only changes necessary will be to the data itself.
There will be no need to edit program line after program line to
take account of the new circumstances.

Writing a program of this form involves more thought
initially, and the software may take longer to develop. It is well
worth the extra trouble. By adopting this approach we avoid
writing numerous programs to carry out basically the same
tasks.

Point and line graphs

The first question that arises when drawing graphs is that of
the resolution required. On the Amstrad we have a choice of
modes, each with differing horizontal resolutions and the
same vertical resolution. In general it is better to draw a graph
with many points in mode 2, to take advantage of the high
resolution. Unfortunately we are limited to only two colours in
mode 2. If the number of points to be plotted is fewer than 300
mode 1 gives a reasonable compromise between the demands
of resolution and colour: it offers 320 individually addressable
points horizontally, along with a choice of four colours.

The Amstrad has been designed so that a change of mode
does not affect the range of the graphics coordinates. The
program that follows will thus run equally well in any of the
modes, although clearly the resolution will vary.

We will begin by developing a (very brief!) program. For the
moment the graph will be drawn using the entire screen and
we will leave the problem of labelling until later. We will write
the program as a series of subroutines. This gives us more
flexibility, and makes it possible to plot several sets of data on
a single graph, or draw multiple graphs, without any radical
alterations to the program:

Graphs and charts 51

1 ’i.' m r, r.- r
! 1 Ur’ U. 1

E. f?! f7;4 •j ■'■'i 1 ; R

7 p p »7.V Z' & P O P

4 Fl E M D

4 9 9 R E M p P w c< e -■
5 S S y p o i n s = 399

510 * P o 1 - t s = 6 3 9

5 2 0 M 0 V E S , y 9 o i n t s

530 DRAW 0,0,1

•J L! DRAW x pom t = - £s
c c■J O rn i n x = 700

p- /! T* O X X = 4000
c 7 A d i f F x = rn a x x - rn i n x

5 3 £ m i n y = 100

J ? 0 m x y = 1 0 S 0

6 0 0 d i f f y = m a y y - m i n y
6 1 0 p g i n t x = d i f f / x P a i n <- =.
l r* p P o i n t y = d i f f y / y P o i n t =•

6 9 0 RETU R N

799 REM rea d point s f r o m d a t o. o n d P 1 □ “

h- e i r P G S i t i a n
o p p READ noofp o int s

8 05 r, t mL- * i 1 X (Ti G G f p O i n t5) ,y(noof PG 1 fl t S

816 FOR counts! TO noofp oint ■=

8 15 READ x (aaunt) : x d i =■ p 1 = (x (co U f! t) -min

/ p 0 1 n t

820 READ y (. o ij n t) : y d i s p 1 = (y (r* n »j n t) -min

/ P a i r1t y

82 5 P L 0 T x d i 5 p 1, y d 1 s p 1

8 30 NEXT

99S RETU R N

1000 DAT A 5,200,10 0,1000,200 , 1 500 , 300 ,

00,6 00,4 000,1000

Line 5 20 draws the axes of the graph. The origin is placed at
the bottom left corner of the screen. It is essential that we know
the minimum and maximum values of the data, so that the
graph can be scaled to ensure that all the points are on-screen.
These values are stated explicitly in lines 5 50 to 600,
although we shall see later that the computer can itself derive
this information from the data provided. Once the Amstrad
has found the difference between the minimum and maximum
values, it can calculate how much each unit along the x and y
axis will have to represent for all the data to fit on, lines 610

52 Graphics Programming Techniques on the Amstrad CPC 464

and 620. The origin will represent the point (min x, min y)
and the top right corner of the screen will be (max x, max y).

Finally, the program reads in the x and y coordinates for the
data, scales the points and plots them, lines 800 to 830. The
data in this case is already ordered from the lowest to the
highest x coordinate. Randomly ordered data will be dealt with
at a later stage.

You may care to run the program a few times with changed
values for max x and max y to see the effect it has. Doubling
max x will 'squash' the graph towards the left, as the program
leaves room for higher values of x that might be present in the
data. Doubling max y 'squashes' the graph downwards. The
variables min x and min y give similar effects when changed. If
you dislike the fact that the corner of the graph is
(100,200) and not (0,0), change min x and min y to 0.
(Note that this wastes part of the screen area as there are no
points displayed here.) Remember that the data at line 1000
falls within a particular range — if you change the values of
min x etc. too radically you will lose some points from the
graph!

Running the program reveals a few problems — the graph
and points are rather difficult to see. A few modifications can
improve the situation:
10 MODE 1

20 GOSUB 500

30 GOSUB 8S®

40 END

4 9 9 REM draw a X. e 5

500 y p o i n t s = 7 9 P

5 1 0 x: pci t •= = 6 7 9

5 20 MOVE 0,yp ■7: i n tS
53B DRAW 3,0, 1

540 D R h W x P o i n t •=. • 0
550 m i n x = 2 0 >7

560 6 a x x = 4 g g g

5 7 S d i f f x - tn c x x - i n x
5S0 "i i ri y = 1 0 7

5 9 0 fflc x y=13 3 3

600 d i F F y = rn a x y - rn i ci y
610 P c i n t x = d i F f x / x p o i n t s
620 P o i n t y = d i f F y / y p o i n t =■
6 90 RETURN

Graphs and charts 53

h-5

799 REM r e c< d p o i n

heir P c< s i t1 O Ti

80S READ n o o F p o i <;

805 DIM X (T? G O f P 0 i

806 READ P e n ; □ 1 o U

807 INK 0 , p a p e r c r>

30 8 I N K 1 , P e n c o 1

809 PAPER 0:PEN 1

810 FOR c o u n t = 1 T

815 READ x (c o u n t)

/ P O i n t x

3 20 READ y (caunt)

/ P 0 i n t y

825 PLOT X d i 3 p 1 , y

ur

O i S p

0 nocfpoints

: x d i s p 1 = (x (cOU Ti t m i n)

d i s p 1 = (y (c ou n t) - y m i n)

p i p O U

990

10SS

00 ,

NEXT

RETURN

DATA 5,0,24,208,IS

2500,600,4000,1000

3 S S

The colours used to draw the graph are now specified in the
DATA statement. We could go even further and specify the
MODE here, but let's stick to mode 1! The points can be made
more visible by plotting a cross or square at each position. This
is easily done using relative moves:

1 S
k!

f7»
■J

4 0 E M r,
■' X U--

' r~t r~,•+ 7 7 REM dr aw ax
3 >3 <3 y p a i n t s=3 9 9

5 1 S x p a i n t s = 6 3 9

5 20 M. 0E 0 , X PCi

5 3 0 D RAW S,S,1

5 4 0 DRAW xp a i n t

5 5 0 m i n x = 2 0 0

560 m ci x x — if 0 ij ij

570 d i f f x = m u x x -

580 m i n y = 1 0 R

590 m a x y = 1 0 S 8

630 d i F F y = m a x y -

610 paintx=diFF

620 P a i n t y = d i F F

6 9S RETURN

79 9 REM read pa

/-n

, 0

rn

i n t s

pe
po i

f

n t s
Ti t

54 Graphics Programming Techniques on the Amstrad CPC 464

P o =• i t i o n

READ n o o f p o int s

DIM (n o o f p o i n t

READ

I N K 0 ..

I N K 1 ,
PAPER

C r 0 5 S

he i

300

8 8 5
806

80 7

80S
8 09

810

81 1

814

815

/ points

828 READ y

/point y

PLOT '■<

MOVER

DRAWR

MOVER

DRAWR

MOVER

NEXT

RETURN

y (n o o F p o i n t =■)

Penco1our,pa perco i □ ur

papercol o u r

pencolou r
0 : P E N 1

= 10

= 10
cou n t = 1 T 0 n oofp o int s

x (c ci u n t) : y. d i s p 1 = (x (c o u n t) - m i n x

d i 5 P1

no

o u n t) - rn i n

825

830

840

850
360

8 70

380

990

1000 DATA 5,0,24,200,100,1000,200,1500,

00,2500,600,4000,1000, 1 M

The movement to create one 'arm' of the cross is given as two
variables rather than in the data because the size of such a
marker is likely to remain fixed from run to run of the program.
You may care to make the cross smaller or larger to your own
taste: you need only change two lines.

The program will be more useful if there is an option to join
the points. This can be indicated by setting a variable 'flag' to
one of two values to show whether the points are to be plotted
separately or joined:

IS

■ • ‘U

3 0

49

499

590

5 1 0

53 0

540 DRAW

i.

Graphs and charts 55

5 =, p p j = 2 0 g

5 6 0 rn o >■ x = 40 0 g
5 7 0 d i F Fx = mox x-minx

5 S 0 m i n y = 100
=, 9 p m o x = i "■ m p

6 0 0 d i F F y - rfi a x y - m i n y

6 1 © P o i n t x = d i F F x / x p o i n t s

6 2 © P 0 i n y = d i F F y / y p o i n t =■

£ ? © R E T U R N

7 9 9 REM read p o i n t s F r o m d o t o a n d p 1 o t t

heir p o s i t1 o n

860 READ nooFpoints

8 9 5 D IM x (n o a F p o i n t =■) , y (n oof p o i n t s)

806 READ Penco10ur,papercolour

80 7 INK S,p a p e rco1our
808 INK 1, p e n c o 1 o u r

/ point x

809 PAPER 0:PEN 1

810 c r o s s x = 1 0

o 1 1 c r Ci s s y = 10

312 f 1 a g = 1

314 F 0 R c o ij n t = 1 T 0 n o o F p o i n t s
815 READ x <co u n t) : x d i s p • 1 = (x (c o u n t) - m i n x

816 x (c o u n t) = x d i s p I
8 20 READ y (co a n t) :y d i s p1=(y■count)-miny

/ P 0 i n t y

821 y (c o ij n t) = y d 1 s p 1
O n =. P 1 :nf T V .-4 4 c r-, 1 ,-4 4 ■= FT 14_ -J

"Z •'7i r‘ i i r” , •• — _ . . * .* - —. M
C- w

8 4 0 D R A W R 2 * ■- r o s s x , - 2 * •- r o s s y
8 5 0 M0UER - 2«• c r os s x , 0

860 D R A W R 2 m r o s s x , 2 * c r o s s y

870 M 0 UER -c r o s s x,-c n o s sy
Q “T /
o / ■+ REM iF flag set connect point t□ pr

v i o u s o n e

8 7 5 IF F1 ag = 1 AND count > 1 THEN DRAW x (c0

>j n t - 1; , y c o u n t - 1 j

380 N EXT

990 RETURN

1000 DATA 5.0,24,200,100,1000,200,1580,3

00,2500,600,4000,1000

The major deficiency in the program is the lack of labelling. As
the graph is 'tied' to the bottom left corner of the screen there
is no room for labelling, and it seems as if the program will

56 Graphics Programming Techniques on the Amstrad CPC 464

require drastic modification. In fact the use of variables and
the Amstrad's ability to alter the graphics origin make it
remarkably easy to move the axes:
10 M0DE 1

2 9 G 0 8 U B 5 S S

•3 S G 0 5 U B 3 0 0

^99 R E M d r a w a x e s

•5 0 Q ox = 10 0 : □ y = 5 0
.5 Fl 5 0 RI GI N o x , o y

■5 1 0 y point s — 3 9 ’? ~ o y

515 x P o i n t =■ = 6 3 9 - o x
5 2 $ Mftl!F A . v d n i n <- =.
C. 1 n pop ~ J
c / rr,
■J »+ D R A W x p o i n t s , 0
C. c. j7: •-/ -J ’L! m i n >; = j g g

5 6 :S m ci x x = 4 0 0 6

5 7 3 d i F f x = m ci x x: - m i n x
C f» FTr■J C min y =100
c p p rn a x y = 10 0 0

6 00 d1F Fy = m axy-min y

6 10 P 0 i n t x = d i F F x / x p 0 1 n t s

6 2 0 P 01 n t y = d i F F y / y p 0 i n t s

RET IJ R N

79? R E M r e a d points F r0m d at a and pl 0 t
heir■ p 0 S i t1 O Ti

8 010 REA D n 0 0 F p 0 i n t 5

805 DIM x (n ooFpoints) ,y (n ooFpoints)

3 0i 6 READ pencolour,paperc 010 u r
80 7 INK 0,papercolour
308 I N K 1 , P e n c 010 u r

809 PAPER 0:PEN 1

810! c r 0s s x = ie
p ■' 1

812 F l.ag=l

814 FOR count=i TO noofpo 1 n t s

8 1 5 READ x (ccunt; :xd i 5 p1 = (x (c 0 ci nt) -mi n x
/ P O i n t x

816 X (C 0 U n t) = X d 1 =■ p 1

A 2 0 READ y (0 u n t) : y d i s p 1 = (y (c0 u nt)-mi ny

/ P o i r« x ¥

321 y (c a u n t) = y d i s p 1
O *? «=.'-J VJ PLOT x d 1 =■ p 1 , y d i 5 p 1

330 MOVER -crossx,crossy

Graphs and charts 57

v i o u s o n e

375 IF flag=l AND count}! THEN DRAW x(co
U Ti t - 1) , y (C 0 U Ti t - !)

850 NEXT

990 RETURN

IS00 DATA 5,8,24,200,100,1000,200,1500,3

00■2500,600,4000,1000

840 D R A W R 2 * c r o s s x, - 2 * c r o s s y

8 50 M 0 V ER -2*crossx,0

860 DRAWR 2»crossx,2*cros5y

870 M0 VER -crossx,-c ro ssy
l~l —I ,■
□ / •■+ REM if flag set connect point

Lines 510 and 515 must be modified because we are no
longer using the entire screen for the graph. The remainder of
the program can remain exactly as it is: all lines drawn and
points plotted will be relative to the new origin, as you can see
if you run the program. Give ox and oy new values and you
can see that the shape of the graph remains the same no matter
where you put the origin, although its size will obviously vary.

We now have room to mark intervals on the axes and label
them. This is not something which can be completely
automated. Labelling the y axis should pose no problem —
hopefully we have chosen an origin which leaves sufficient
room for the labels!

Clearly, if we have room on the x axis for 10 marks we could
instead choose to use a smaller number, such as 5. The
maximum number of intervals marked is limited by two
factors: the resolution of the mode, and the width of the
characters to be printed beneath each mark. The computer can
calculate whether a suggested interval will result in printed
characters overlapping, but it cannot really select a reasonable
interval less than this for itself. Humans have a taste for graph
intervals of 0.5, 10, 20, 25, 100, etc., depending on the
circumstances. We shall leave selection of this interval as a
human function: the Amstrad will reject unreasonable values.

The labelling can be broken into two parts: marking the
intervals with 'ticks', and printing and characters. The first
action cannot proceed if the subsequent printing will overlap.
We must inform the computer of the maximum length of the
strings which will be printed so that it can calculate whether
the strings can be successfully fitted in beneath the x axis:

58 Graphics Programming Techniques on the Amstrad CPC 464

h 6 o r i 9 i n

503 REM hide graph until labelling c o m p 1
e te

504 I N K 0 - 2 4: I N K 1 7 4-
628 REM n u rn b e r o f ' t i c k s ■' t o b e m a r k e d g

n x a n d y o x e
£ Q
w L. 7 REM n fl !■ P c his i T: c 1 u d e s a ' t i c k ’ C h t

u x e £

700 x t i c k = 6

702 y t ic k= 8

703 REM each 'tick' is labelled

i g h e r than the previous one

6 3 0 x r a n g e = 5

6 4 0 y r a n g e = 10

649 R E M 9 r a p h i c s d i s t a n c e fa e t w e e n e a c h

tick

6 5 O x w i d t h = IM T (x p c i n t s / x r a n g e)

:j o u y height=l N T y P a i n t s / y r a n g e >

668 P' £ M rn x rp i_i rn h AT :-q .'■•■Per | p h g J- F p nr» 4.

e r s to be printed on x a x1s
6 6 9 REM you may have to change this for

y o u r own d a t a

670 m a x x strings?

673 REM size of character in terms 0f gr

a p h i cs points for- mode 1

674 REM change charwidth to 32 if progra

m is run in mode 0 , 8 if mode 2

675 c h a r w i d t h = 1 6

676 c h a r h e i g h t = 16

67? REM ca1cu1 a te max 5t r1 ng 1 eng th i n t

e r m 5 of graphi cs p0 i n ts

680 g r a p h x s t r i n g = c h a r w 1 d t h k m a x x s t r 1 n g
688 REM do not label axes if numbers are

1o 0 wide 10 fit
6 8 9 REM or if d i s t a n c e be t w e e n ' 11 c k 5 ■' n
y> r- t- r~ •-t > > — wer than 1 cKarac ter

O7U IF xwidth<graphxstring OR xwidth<cha

r w i c rh THEN RETURN

691 REM ditto for y axis

6?2 m a x y s t r i n g = 4

694 g r a p h y s t r 1 n g = c h a r w i d t h « m a x y s t r i n g
6 9 6 t f 0 x < g r ap hy s t r1n g 0 R y height < c h ar he
iZh-

699 ?EM 1 eng th 0 f ■' t i c k s ' when dr awn on

x v a 1 u e h

Graphs and charts 59

i c k ’

704 x v a 1 u e = d i f f x / x r o n g e
706 t A r- i H
707 REM do it x ran g e times to g i ve the r
e g u i r e d n u m b e r O F ' 11 c k s 1
70S F 0 R c o u n t = 0 T 0 x r a n g e
71S M 0 V E 0,8
711 REM mo v e a long x a x i s to star t Of ' t

/ X >4.

7 ‘ *l
/ A

M0UER xw i d t h*c0unt,0

REM draw 11ck

714
■7 r*.Q
7 2 P

D R A W R 0 . - x 11 c k

NEXT
R E M d 1 110 f 0 r y a x 1 s

730 y v a 1 u e = d i f f y / y r a n g e

7 32

■ »x

F 0 R c 0 u n t = 0 T 0 y r a n g

M 0 VE S.0

7 3 6 M0 VER 0,yheigh t*c0un

7 3 8 r. p p y p _ y tick,©
7 c.x

7 p
N E X T

RET URN

As with the printing of the crosses at points on the graph, you
may prefer your 'ticks' to be more or less obtrusive. Their size
can be changed by amending the appropriate lines.

Rather than carry out a recalculation of the tick positions
when printing the x and y values, we can slot the printing
routine in at the appropriate point when the ticks are drawn:

7S8 FOR cour>t = 0 TO xrange

7±S MOVE S.0

7 1 i REM mo e a 1 o n g x a x i s to st a r t o f ' t

i c k ■

712 M 0 U E R x w i d t h # c o u n t , 0

313 P E M d f ci w tic k
714 DRh'JR 0,-xtick

7 15 REM 9et to correct position to print

num b er r-e1a t ive to 'tick'
716 MOVER -charwidth/2,-xtick

718 number$ = STRt(minx + count*xva 1 u e)

719 REM truncate value if it's too long

to fit

7 20 numb e r$ = MIDS(numbers,2 > maxxstring)

7 22 1 e n g t h = (_ E N (n u m b e r s)

72 3 REM strip off decimal point if it en

60 Graphics Programming Techniques on the Amstrad CPC 464

d s i n o n e
7 2 4 IF MI DS (numbers, 1 eng th) = “ THEN num

b e r -3t = MI D$ (numbers,1, length-1)
7 2 6 PR I NT n u m b e r s ;
728 N b X. T
7 7 Q REM i t t O F O 1- y 3 x i ■=.

73 8 y v a lu e = d i F f y / y r a nge
7 7. 7 F 0 R c o u n t = 8 T 0 y r a n g e
7 34 M0 VE S • S

736 MOVER 0,yheightwcounb

738 DRAWR -ytick.6

7 4 0 MO VER - g r aphy s bring, chorheight./2
742 numberS = S TRS(miny+count«yva1 ue)

7 4 4 n u m b e r $ = M I D t n u m b e r $, 2 , m a x y s t r i n g)

7 4 ,5 1 5 Fl Q t h = L E N (' Fi U H’s b E T $?
7 4 8 IF MID S (numbers, length .is"." THEN num

b e r s = M I D t (n u m b e r S , 1 , length-1 ;
74'? REM Pad s ho r t number s ou t 5o they a 1

7.50 IF LEN (numbers)<maxystring THEN numb

e r S = S T R I N G t (m a x y 5 t r i n g - L E N (n u m b e r S) , " ")

4- rn b13 ■$

7 5 2 P RIN T numb e rs ;
754 NEXT

7 P 0 RETURN

We would also want to label the axes and give the overall
graph a title. Again we must assume that the origin has been
sensibly chosen so that there is room for the characters!

= <=.

7 C.

REM 1 a b e

x 1 a b e 1 S =

y 1 a b e 1 S =

REM Find

11 Mice p o p u 1 a t i

Cheese

label

e o ten

length

on

1

i n
1 ri

i

i ng

c points

x 1 a b 1 e n g t h = L E N

R E M F i n d

1 a b e 1 , t o

(x: labels

t o 1 e a v es p a c e P r i n t

e n ■= ij r e e n b r e di

t □ r t7 6

/ b u
i S

loblength)/

j c t e rs from a x
i n t

x 1 a b

label

7 6 4 ?+•

b e 1 $;
r ■>

E N j be

Graphs and charts 61

/ / u y 1 a b s t a r b = (¥ P a i n t s *y Tableng t H) / £

771 REM e a c h C h ft r a c t e r must be p P 1 ft t & d S

e p a r a tel y a s b h i =• i S ft p p r ft1 la k-.

777 F 0 R c o u n A- — '1- ~ A TO LEN { y 1 Ci b S 1 £)
7 7 T REM e x t r o c t C h ft P ft C ter from 1 ft b & 1

774 cncir t = M I D t (/label! , count, 1)

7 7 5 REM move left 2 char actens fr om y ax
is numbers to print character

776 MOVE -charwidth*(maxystring+2)-ylabs

t a r t - c h a r h e i g h t * (c o u n t -1)

778 PRINT char$;

7SS NEXT

790 RETURN

The program is not complete, because it will only work on
previously ordered data. This is adequate for many purposes,
e.g. measurement of rainfall over a period of time or fluctua
tions in the state of your bank account over the months
(though you might need a negative axis here!). If the data
values are to be sorted into ascending order it will no longer be
adequate just to read the values, scale them and plot them
immediately. Each value will have to be stored so that the
computer can compare all the values, and, if necessary,
re-order them. All the data is read into an array and then
sorted:

614 FOR . h ! ! P r = 1 TO n o o f points

815 READ X (C O U Ti t) : d i S P 1 = (X (c o u n t) - m i n X)

/ pci n t

816 x (c 0 u n t) = X d i S p 1 A
820 READ ./ (c o U nt) : y d 1 s p 1 = (y (c o u n t)-min y)

/ P □ 1 n t y
p 7 1 y (c o a hi t) = y d i 5 P n

8 2 5 M F ¥ Tn u ; <
82? REM A- a k e each x a r r a y V a 1 ue in tun n

830 FOR c O (J fl t = 2 TO n o o f p o i n t s
340 F 0 R y a 1 u e = c o u n t TO 2 >“ T ER -1
p c QD J 14? IF x (V ft 1 U 6 i <. X (a 1 u e - 1) THEN G 0 S U B •t C.

A •-?

CiCrt CCJ 94 T— LSE ft 1 u e

8 8 S
m r y r

62 Graphics Programming Techniques on the Amstrad CPC 464

151 @ (v '• 1 u e) = x (v i u s - 1) : y (v o 1 ue) = y (v q 1 u
e -1)
1 5 2S x (o 1 ue - >) = t empx : y (v a 1 ue -1) = t empy

1530 RETURN

A few other lines must be modified as the coordinates are no
longer read directly from data and plotted.
The sort used here is known as an INSERTION SORT. The first
two x coordinates are ordered and the third coordinate then
inserted into its correct position with regard to the first two.
The process is then repeated with the insertion of the fourth
coordinate and so on until the coordinates are all ordered from
lowest to highest.

Sorting of numeric and string variables is a topic in its own
right within computing. If you are sorting several hundred
numbers you may find the above process too slow, and you
may prefer to use another sort. For example the bubble sort is
particularly useful when the data is already partially ordered.
Ultimately, really rapid sorting of a large set of data can only be
achieved using a machine code routine.

One advantage of sorting the data into x coordinate order is
that it gives us an opportunity of letting the computer calculate
for itself the values of min x, and min y, max x and max y:

33 0 FOR coun t = 1 T0 noof points

890 PLOT x(count),y(count)

9S0 M0VER - crossx,crossy
910 D R A WR 2*c r oss x,- 2 * c r oss y

920 M0VER - 2 * crossx,R

938 DRAWR 2«crossx,2*crossy

940 M0VER - cros s x , -crossy

9 5 3 R EM if fla g set c onnset p o i nt to or e

v i - u s o n e
960 IF flog=l AND count>l THEN DRAW x(cc

u n t - 1) , y (c o u n t - 1)

970 NEXT

99S RETURN

9 9 9 REM this t ime datci is disordered

1000 DATA 5»S>24>1000.200,4000,1000,200,
10042500,600,15 00,300

The program still has a few weaknesses, which you can
attempt to rectify in the exercise following, but it is adequate
for most purposes.

Graphs and charts 63

Exercises

1) What changes need to be made if the program is to run
successfully in modes 0 or 2? What values which vary with
the mode could usefully be replaced by variables?

2) At present the y axis is always drawn on the left of the
graph, and the x axis at its base. Modify the program so
that when the data includes some positive coordinates and
some negative ones the x and/or y axes are drawn through
(0,0).

3) Modify the program so that successive sets of data within
the same range can be displayed on the same graph in
different colours. Don't repeat sections of the program to
draw the other lines: identify the parts of the program you
need to use and call them as subroutines.

4) Modify the program so that two graphs with different
scales are displayed on the upper and lower halves of the
screen. (You will need to amend the value of the variable y
points and change the origin twice.)

5) Extend the program so that the data for the graph can be
read in or saved to a file.

Bar charts

Drawing a bar chart is much easier now that we have a
program to draw a graph, because we have solved most of the
problems in the previous section. The process is simplified
further because we are only dealing with the y coordinates:
once we know the number of data elements it is easy to
calculate the width of each bar. Additionally the data is already
ordered, so there is no reason to sort it. The similarities to the
previous program point up the advantages of extensive use of
variables and subroutines:
10 MODE 1
2 0 G 0 8U B 5 0 0

3S GOSUB 80S

40 END
49 9 REM dr o w a ;< e s

50 0 ox = 100:0y = 50

503 REM hide graph until labelling oompl

64 Graphics Programming Techniques on the Amstrad CPC 464

6 5 S xwidth=IN T (xpoints/xrange)
6 60 yheight =I NT(ypoints/yrange)
z, *7 "Z PFM -■ i Z n F ~ p •*} p *■ a p i p ♦- a t- p -5 q F q p

aP h i cs pa 1 n t s f q r mode i
674 REM change charwidth to 32 if progra

m i s r un i fi mode 0, 3 if" mode 2

675 c h a r w i d t h = 1 6

676 c h a r h e i g h t = 1 6
692 m a x y s t r i n g = 4

694 graphystring=charwidth*m axystring

696 IF o x < g r a p h y s t r i ng OR y h e i g h t<cha r h e

ight THEN RETURN

6 99 REM 1 e n g t h □ F ‘‘ *■ i c k s ' w h e n dr awn 0n

a x e s
70S x 11 c k = 6

702 v <- ’ k — 0

7 03 REM each ’ 1 c k ■’ 1 s 1 a b e lied xv a 1 u e h

i ghe r t han the p r e v i 0 u s 0 n e

7 0 6 TAG

707 REM do it X p ange times to g1v e the r

e q u i r e d n u m b e r 0 F 'ticks'

7 30 y ' a 1 u e = d i f F y /yrange
77? F 0 R counts 0 TO y r a n g e

734 MOVE 0,0

/ 0 0 MOVER 0,yhe 1 g h t * c 0 u n t

73 8 D R ftWR -y ti c k ,0

Graphs and charts 65

740 M0VER -graphy s t r ing,c h a r h e i g h t/2

•• *+ C_ n u m b e r s = E T R S (m i n y + c a u n t» y v a 1 u e)

7 4 4 n u m b e r t = M I D S (n u m b e r $, 2 > n i a x y s t r i n g)

7 4 6 1 e n g t h = L E N (n u m b e r $)
7 4 S I F MI D S (n ij m b e r s , 1 e n g t h) = ,! . " THE N n u m

b e r S = M ID S (n u m b e r S , 1 , 1 e n g t h - 1 ;•
/ 4 7 RE M Pa d s hor t num be rs o u t s o the y a 1

1 t o u c h a ■' t i c x '

7 5 E IF L EN (numbert) < maxys t r i n g THEN num6

ers = 5 T R IN G S (m a x y s t r i n g -1_ E N (n u ~ b e r S) , " ”)

+ n u m b e r s
7 5 7 P R IN T n u m b e r s ;

7 54 NEXT

7 55 REM labels for axes

7 56 x 1 a b e1 s="Mice po pu 1 atio n"

758 y 1 a b e 1 s = ” C h e e s e e a t e n i n g m "

7 c* 9 REM find label length in terms of gr

aph i c p o i n t =■

760 x 1 ab1eng th = LEN(xlabels)#c har w i d t h
T L !/ X REM f i n d =• p a c e t o lea v e b e f o r e p r i n t

i n g 1 nbo 1 . *■ n s= n -■ U r i ■> i c. r e n t n e d

773 REM extract character from label

7 74 c h a r $ = M ID $ (y1 flbelt,co u n t, 1)

775 REM in o v e left 2 c h a r a c t e r s f r o m y a x

is numbers to print character

“7 Z *7
/ W 4_ x 1 a b s t a r t = (x pom t s - x 1 a b 1 e n g t h) / 2

763 REM move down 2 characters from x a

1 s to print label

764 M0 v E x1 abs tar t.-2«charheigh t

766 PRINT xlabels;

767 REM ditto for y axis label

768 y 1 a b1e n g t h = L E N(ylabels)*char h e i g h t
7 7 y 1 a b s t a r t = (y p o i n t s + y 1 a b 1 e n g t h) / 2
"7 "7 •* REM each character mu5t be printed

epa ra tely a s this is a v e r t i c a 1 label
7 7 7 FOR count=l TO LEN(ylabelj)

776 M 0 V E - c h a r w i d t h * < m a x y s t r i n g + 2)i ,ylabs

t a r t -cha rheight w(co unt-1)

778 PRINT chars;

7 80 NEXT

7 90 RETURN

799 REM read points f rom da ta and Plot t

h e i r P o s 111 o n

8 00 DIM y (n o o f b a r s)

66 Graphics Programming Techniques on the Amstrad CPC 464

data this time - width is fixed
1000 DATA 10,0,24,350,190,760,440,990,12

4,846,545,666 > 222

806

307

80S

309

814

315

319

Q i—' :-
!—1 !?!

READ pencolour,popercolour

INK 0,papercolour

IN K 1 , p e n c o 1 o u r

PAPER 0:PEN 1

F0R coun t = 1 TO noof bar s

READ y

REM height of bar scaled according t

8 25 N E X T
8 29

830

REM reduce ber width to leove spcce

e e r? b Ci r s

b O r w i d t h = X w i d t h — 4

8 4 0

3 50

860

3 7 0

880

F 0 R c o u n t = 1 T 0 n o o f b a r s
M A I J £ 0 , f7?

DRAWR S?y(count),1

DR A WR b ar width,@

D R A U* R 8 ? — y (c o u r11 j

390
399

bar

O X = o X + X W i d t h

REM shift origin ready to draw next

900

910

9 9©

99 9

ORIGIN ox,oy

NEXT

RETURN

REM height of bars only required as

Subroutine 800 draws each bar as a series of relative moves
with respect to the origin. By shifting the origin a fixed
distance between the drawing of each bar we can use a loop to
draw a succession of bars.

The final display is more impressive if the bars are shaded
different colours. Unfortunately the Amstrad has no command
to fill a graphics area with colour, so the bars must be shaded
by drawing single lines as rapidly as possible. In the last
chapter we identified some ways of speeding a program up,
and we can usefully apply some of that knowledge here:
830 barwidth=xwidth-4
3 3 5 c o 1 o ij r = 2

34 0 FOR count= 1 TO noofbars

844 REM colour alternate bars differentl

Graphs and charts 67

34 5 IF colours’ THEN colour=2 ELSE c o 1 ou
r = 3

84 8 REM bcirs can be Filled mor e r a p i d 1 y
t ci k i ng reso 1 u i on i n to accoun t
84? R E M = o u s e ci STEF b ci s e d o n t h e a h a r c
. t e r wid th F o r the ffl oh §

850 FOR bar=0 TO bar width STEP c h a r w i d t h
/ 8
8 6 8 M 0 v E 8 + b c; r , g

8 7 0 D R A w R 0 .• j ; - o - Fi t J , c z 1 o j -
8 80 N E X T

8?0 O= C x + x w. i d t h
8 ? ? REM shift origin r eady t o d r a w n e x t
b c. r

? 0 0 0 R I G I N o '< , q y

?1S NEXT
??0 RETURN

The lines are drawn vertically rather than horizontally because
most bars will be higher than they are wide, and this means it
takes fewer vertical lines to shade them in. Really rapid
colour-fill is only possible with machine code routines.

An interesting variation on the bar chart is to draw 'solid'
bars to give a three-dimensional appearance:

e p e r o r s hall o w e r b a r s

830 b Cl r w i d t h = X W i d t h - 4
831 R E N b c< r s i d e i s t h e X W i d t h O F the = i
de o F the b ci r

332 REM b ci r t o p i s t h e y h e i g h t O F the b Q
c k o F the b a r ci b □ v e the F ro n t
333 REM Put v ci lues o F your own t O get de

b a r s i d e = b a r w i d t h / 4 : b a r t o p = b a r = i d e334

335
340

844

c o 1 o ij r =
FOR
REM

T 0 n o o F b a r s

a 11 e r nci t e be.r s di F Ferent1

¥

34 5

r = 3

846

348

IF co1our=3 THEN

Fill

EL 8 E c o 1 o ij

c o u n t = 1

c o 1 o u r

o 1 o u r = 0

t h 1 S t i m e w e h J : 1 n t h e b o
r i

S O t h 9R E M34?

h+borside

3 5 S F 0 R b a r = 0 T 0 b a r w 1 d t h + b a r s

b a r w i d tSi

oe TERi

68 Graphics Programming Techniques on the Amstrad CPC 464

hnr width/S

859 REM draw end of line in another cola

u r - helps outline the bar

86 0 PLOT 0 + b a r,0,i

869 REM draw line up to highest point on

b ar at t hi s x c oor d inate

87 0 DRAWR 3,y (co u nt)+ b ar to pcoun t,ao1ou r
8 71 REM 6raw other end of 1 ine in a dif f

e r e n t colou r

872 PLOTR 3,3,1
8 7 3 REi-1 nex t 1 i ne mus t be dr aw n a little

h i g h e r
S 7 9 REM and so on un t i1 t he he i ght of th

e b a r b a c k i s r e a c h e d
3 7 5 b a r t o p c o u n t = b a r t o p c o u n t + c h a r w i d t h / 3 :

IF bartopcount>bar top THEN bartopcount = b

a r t o p

383 NEXT
8 81 REM now d raw o utline o f b ar in anot h

e r c o 1 o u r

382

8 8 3
889

885

886

88 7
888

8 90

899

b a r

y = y (count) :MOVE 0,0

D R A W R

DRAWR

DRAWR

MOVER

DRAWR

DRAWR

o x = o x + x w i d t h

REM shift origin ready to draw ne

S , y , 1
b a r w i d t h , 3

3 , - y

3 , y
b a r s i d e , b a r t o p

3 , - y - b a r t o p

9 0 3 0 R I GIN o x,o y

91S NEXT

990 RETURN

Exercises

1) Make changes to the program so that it runs correctly in
mode 0 or 2.

2) Modify the program so that it draws a horizontal bar chart
rather than a vertical one.

3) Extend the 3D bar chart so that a succession of bars may be
drawn, each set 'in front of' the previous set.

Graphs and charts 69

Pie charts

A pie chart has little in common with graphs or bar charts, and
here we must develop a completely new program although
again we will use subroutines. The resolution is important for
the pie chart, as it involves the accurate drawing of a circle, but
the use of colour gives a pie chart more impact, so we shall
again compromise and use mode 1.

The program to produce our first pie chart simply draws a
circle and divides it into sectors of the appropriate size, each
with a coloured outline:
10 MODE 1

20 G0 b lJ B 10 0 O
3B GOSUB 2S0 0

4 S G 0 S U B 3 Q 0 0

50 END

99 9 REM read from date c ircle centre coo

r d i n a t e =■ p 1 u s radius

1S@0 READ centre x,c e n t r e y

1010 READ radius

102 0 READ numbe rof v a lues

10 30 DIM ' a 1 u e (n u m b e r o f v a 1 u e s) , angle (n u m

b e r o f v a 1 u e s)

1039 REM add values together so circle c

an be div i ded appropriately

10 4 0 to ta 1o fv a 1 u e s = 0

1050 FOR count=l TO numberafva1ues

10 60 READ a 1 u e i c o u n t)
10 7 0 t o t a 1o f va 1 u e s = t o t a 1 o fva 1u e s + v a 1u e (c

aunt)

10 8 0 N E X T

1090 RETURN

110 0 DATA 2 0 0;2 0 0, 1 2 8;4■ 1;2i3 ? 4
199 9 REM ca 1cu1 ate ang1e f or each sector

2000 F0R coun t = 1 T0 numberafva lues

2010 angle (count; =2*P I 1 tie (cou n t) / t o t a

1o f v a lues
2020 NEXT

2030 RETURN

3 8 2 0 =■ t e p s i z e = PI / 6 0

3 S 3 0 c o 1 o u r = 1

70 Graphics Programming Techniques on the Amstrad CPC 464

3B39 REM in mode 0 change noofcolours to

15 (background excluded)

3040 noofcc1 ours = 3

3 0 5 S F 0 R c o u n -t = 1 T 0 n u m b e r o F v a 1 u e b
3059 REM calculate end angle far sector

30£S e n d a n g1e = s t a r t a n g1e + an g1e(c ount)

3 u 6 9 R E M c h a n g e c o 1 o u r f o r e a c h s e c t o r

3 0 7 0 c o 1 o u r = 1 + (c o 1 o u r + 1) M 0 D n a o F c o 1 o u r s

3 0 7 9 R E M m a k e s u re F i r s t a n d 1 a s t s e c t o r

s a re di F f e r e n t c o1o u r s

3 0 8 © I F c o u n t = n u m b e r o F v a 1 u e s A M D n u tn b e r c

F va 1u es M0 D no o Fc a 1o ur s = 1 THEN c o1our = 1 +

(c o 1 o u r +1 > m a n n o o f c o 1 a u r s

3 0 9 0 M 0 v E c e r t r s x , c e n t r e y : ERA W c e n t r e x + r
a d i u s * S I N (s t a r t a r> g 1 e) , c e n t r e y * r a d 1 u s * C 0 5

(b t a r t a n g 1 e) , c o 1 o u r

3099 REM draw sector

3100 FOR ang1e = star t angle T 0 endangle ET

EP stepsize

3110 DRAW centrex+rodius*5IN(angle),cent

r e y + r a d i u s0 S (a n g 1 e j

3120 NEXT
3129 REM update start angle For next sec

t o r

3130 s t a r t a n g 1 e = e n d a n g 1 e
3140 NEXT

31 5 S R E T U R N

Subroutine 1000 reads the values from DATA, and finds their
sum. This is needed to find the angle of the sector representing
that particular value in the pie chart, subroutine 2 000. Each
sector is outlined in a different colour, subroutine 3000.

Running the program reveals that for a pie chart with a large
radius the chart is drawn rather slowly. We can speed things
up by making the centre of the circle the new origin: this
makes the calculation more rapid:

3 S 0 0 0 RI G I N c e n t r e x , c e n t r e y

3 0 9 0 M 0 V E 0 ; : D R A W r a d i u s * S I N (=■ a r <: a n g 1 e
) ■ n a d i u s * C 0 S < -■ a r t a n g 1 e) , col o u n

3 B 9 9 R E M d r a w s e c t o r

3 IDE F 0 R a n g i = = ■=. y a c t a n g 1 e T 0 c n d a n g 1 e 5 T

E P s ■- e p s i z s

3110 DRAW r a d i u s * ■= I N (a n g 1 e) , r a d i u s * C 0 S (a
n g 1 e)

Graphs and charts 71

The need to calculate the sine and cosine of angles slows things
down, but this is one occasion when we really can't use
integers instead! However, just to demonstrate that there is
more than one way to crack an egg (or draw a pie chart), here is
a much faster program. This only calculates a single sine and
cosine, and then uses these values to determine the next point
on the circumference:
200 0 rodvci1 = ro d i u s * 4

2 0 Q 5 F 0 R c o u n t = 1 T 0 n u m b e r o f v c< 1 u e s

2 01 0 ci n g 1 e ■ c o u n t) = r a d v a 1 x v ci 1 u e ■: c o u n t) / t o

t a 1 o f • ■ a 1 u e s

203 0 RET UF N

3 0 0 0 0 RIGI M centre x , c e r t r e _•
7 0 p q p £ m 1 c n p •= use o F? 1 y i Fi tr E q E F E W i tr h tr h

L c p p h n h — S P E E d E ic J "

312? REM d r a w line to c e n t r e f o r t h i s s e

c t o r

3130 MOVE 0,0:DRAW x , y

-
ri7c

p r / r 0 d •••/
i n = 51 N i 2 * P I

a 1 ?

. r =0 x I 7 E 0 —!_ v S

7 7 “■ x 1 = r a d i us : y i = 0
7 f7s 7 p R E M i Fi T Q d E 0 0 h 0 0 Q E r- ~ “ F - - 7= ■J F =• 4 0

• c. (b a c k g r- -ry •_? ,-j p 7. =J d E d)
7 04 0 noo F c o 1 o u r s = 3

0 050 FOR c o u n t = 1 T 0 n u m b e ~! F V 0 1 u p s
7 0 6 ? REM 0 h 0 F; q E 0 0 1 0 ism F n r e 0 h ■=. E 0 t c= r
7 0 70 0 0 1 o u r = 1 + (c o 1 o □ r + 1) M ■■) p. Fi O O F

- r? X o u r =•
7 079 REM m ci k e •= u r e f i r =• t 0 nd 1 0 s •C S ecto r

s a r e d i F f e r- e n t c o 1 o •j r s
7 030 IF 0 a u n t = n ij m her O f V Cl 1 'J E S A N D n u m b e r a
f v 0 1 1J E E M 0 D nooFcolo u r 5 = 1 THEN o 1 o u r = i +

- <j ± 0 U •: -*■ 1 > h U L‘ • * □ u r c u X U 1 =

7 Li 7 7 R E M draw sectc r

Z 100 F OR c o u n 11 = 1 T 0 a n g 1 e (- ! ! 1“ t

7 110 X = X 1 * t h e c o s - y 1« t h e s i n
7 1 12 y = x 1 * t h e •= i n + y 1 * theca s

■u 114 FLO' T1 x,y,colour
0> 116 xl = ; y 1 = y
7
_/ 120 HEX T

72 Graphics Programming Techniques on the Amstrad CPC 464

3140 NEXT

3150 RETURN

The pie chart is more impressive if each sector is coloured, and
the first program is easily modified to do this. The simplest
method is to draw lines successively from the centre to each
point on the circumference:
•f p c m b H S d P« P P C Q Q rn t> p f O r p 1 I"

310 9 REM this time d r a w f r o tn c e n tre tu c
i •- c u m f e r e n c e

110 M u v t. □ :■ E : D R A y r a d i u s *- S I N ■-< ", 3 1 s j , r c< d
1 Lt s « C 0 5 < o n 31 e)

This runs even more slowly, but unfortunately unless extreme
ly small steps are taken some pixels within a sector are not
touched by the lines, and remain in the background colour.
One way of speeding things up is to colour-fill only alternate
sectors, leaving some sectors in the background colour. This
approach can result in further time improvement if the values
are read into an array and then sorted into ascending order. By
judicious rearrangement of the order in which the sectors are
plotted, we can ensure that only the smaller sectors within the
circle are colour-filled. However, this rather defeats the object
of using mode 1, and the labelling of the sectors is vital,
otherwise the pie-chart can be very confusing!

It is possible to speed the program up still further by
calculating the coordinates of the circumference and storing
them in an array, and using the array values when the
pie-chart is drawn. This is not an approach to take if you are
short of memory, because the arrays required are very large.
This is easier to do with the alternative pie-chart program:
10 MODE 1
2 0 GO SUB 10 00

3 0 G 0 S U B 2 0 0 0

40 GOSUB 3000
5 0 END

999 REM can u P 1 a c e s
here - speeds it u p

1000 DEF I NT o,c:n-r.'

1005 READ c en tr ex,cen tr e y

Graphs and charts 73

1010 READ radius
1S20 READ numberoFvo1ues
1030 DIM value(nufflberofvolues) ,angle(nui8

b e r o f v o 1 u e =■)
1 03 9 REM add v a 1 ues t oge ther so c i r c 1 e c

an be di v i d e d appropr i a tel y

1040 tota1oFva1ues=G
10 5 U FOR ■- o u n t = 1 T 0 n u m b e r o F v a 1 u e s

1060 READ value(count)
10 70 to ta1o F va1ues = to ta1oFva1ues+vo1ue(c

o u n t)

1080 NEXT
1090 RETURN
1100 DATA 200,200,120>4,1>2;3,4
■| 9 9 g 9 g m r Q g v t-, i e F F e c t s s peed C F d r a w i n g

a n d e x t e n t o F s h a d i n g
19 9 9 p p m s- r y g i u 5 s 3 f o r a F a s t e r d r a w i

n g w 1th a F e w p i x e 1 s u n s h a d e d

2 000 '<"a d v a1= r a g iu s* 10

2001 t o to n g1e=0

2005 F 0 R co u n t =1 T 0 numbsr o F va lues
2010 angle(count)=radval*va 1ue(count) zta

t a 1oFv a lues
2015 — -ang1 e = t o t ang1e + ang1e (count)

2028 NEXT

2030 RETURN
3000 ORIGIN centrex,centre/

3010 DEFINT c
3020 countangle=0

3030 colour=l
3033 REM only need to calculate one sm

and cos this method

3034 REM makes it Faster
3035 thesin=SIN(2*PI/radva1):theoos=C08<

2 * PI / r a d v a 1)
3036 x.l=r adius : y 1=0
3 03 7 REM ca1acu1 ate coord i nates o F ci r cu

m F e r e n c e p o i n t s

3038 GOSUB 4000
3 03 9 REM i n made 0 change noo F c o 1 our s t a

1 5 (b a c k g r o u n d e x c 1 u d e d)

304 0 no oF c o1o u r s = 3
3 050 FOR coun t = 1 TO numbenoFva 1ue =
3069 REM change colour For each sector

74 Graphics Programming Techniques on the Amstrad CPC 464

39 70 co1o u r = 1+(colour+ DMOD n oofc o1our s
307? REM make sure first and last sector

s are different colours
3030 IF count=numberofvalues AND numbero

fva 1 ues MOD noofco1ours = 1 THEN colour=i+

i colour + i)MOD noofcolours

309? REM draw sector

310 0 FOR countl=countangle TO countangle

tangle(count)

3114 MOVE 0’0:DRPW x (coun11) ,y (coun11) ,c

o 1 o u r

3120 NEXT
3124 REM update start position for next

sect o r

3125 countangle=countangle+angle(count)

3140 NEXT

3150 RETURN

3997 REM normally this calculation would

be carried out
3998 REM at some convenient point in a 1

anger program

399? REM when the delay due to calculati

on would not be obvious

4000 DIM x(t ot angle), y.(to tangle)

4010 FOR count=1 TO totangle

4020 x=xl*thecos-yl*thesin

4030 y=xi*thesin+yi*thecos
4 0 4 0 x(c o u n t)= x

4050 y(count)=y

4 060 x1 = x:y1= y

4070 NEXT
4080 RETURN

The above programs demonstrate the difficulty of ensuring
that an area is completely filled with a colour. This only
becomes certain if we use a colour-fill method which plots
individual points, as we shall see in the next chapter.

Exercises

1) Extend the pie-chart program so that each sector is
suitably labelled.

2) Modify the program so that several pie-charts with the

Graphs and charts 75

same radius are drawn on-screen. (This is definitely an
occasion to use arrays as it avoids the need to recalculate
the circumference points for each circle.)

3) Write a program that superimposes successively smaller
pie-charts on top of each other, with the sectors being
colour-filled.

Chapter Four

Patterns and pictures

In Chapter 1 we saw how easy it is to produce patterns just by
using a combination of MOVE and DRAW commands:

a r m s

1 0

20

M 0 DE 1

< = 320:y = 200

2 3 R E M 1 m a x i m Lt m ‘ g i v e s length of shape's

IIS NEXT

29 REM try changing it and stepsize
3 0 m a x i m u m = 2 0 0

4 0

50

6 0

70

8®
9 0

stepsize=5

FOR coun t = 0 TO maximum STEP stepsize

MOVE x-count,?

DRAW x,y +(maximum-count)

DRAW x + c o u n t ,y

DRAW x,y- (m axim um-c ount)

10(3 DRAW x-c ou n t , y

'Curve-stitching' is a common activity in maths lessons in
schools: many striking effects can be produced by simply
connecting a series of points with straight lines. This program
uses this principle by first drawing a polygon with a given
number of sides and then joining each vertex to every other
one:

10 MODE 1

2 0 r a d i u s = 15 0

3 0 x = 3 2 0 : y = 2 0 O

■-> E IN P U T " H o w m o n y s ide s h a s the f i g u re go t"

side s

50 CLS

dO s t e p s i ze = 2 > FI/side s

7s DIM x (Sides) ,y (sides)

8 @ c o u n t = 0

9 0 0 R I G I N x , y

76

Patterns and pictures 77

100

110

120

130

r a d
140

1 50
•! e c
X ■-/ w

160

170

130

190

2 00

2 1 0

This

155

160

170

173

174

175

MOVE 0? radius

FOR ang1e = 0 TO 2*PI STEP stepsize

DRAW radius*51N(angle) .r ad i us *COS(ang1e)

x (c o u n t) = r a d i u s # 5 I N (angle) : y (c a u n t) =

i u s * C 0 S i a n g 1 e)

c o u n t = c o u n t + 1

N E X 7
D R h W O ■ r a d i u s

F 0 R c o u n 11 = 1 T 0 s i d e s - 1

FOR cou n 12 = c ount1 + 1 T 0 sides

M 0 V E x (c o u n t1) , y (c o u n t1)

DRAW x (c o u n 12) > y (counts)

NEXT

N E X T

is even more impressive if we add colour:

c o 1 o u r = 1 : D R A W 0 - r a d i u s , c o 1 o u r

F0R coun t1 — 1 T0 s i d e s — 1

FOR coun t2=count1 + 1 TO sides

REM experiment with the colours in line 175

REM change the MOD to get different effects

coloursi+(colour+l) MOD 3

Figure 4.1 An example of curve-stitching.

78 Graphics Programming Techniques on the Amstrad CPC 464

130 MOVE x (c o u n 11) ,y(coun 11)

190 DRAW x (counts) ,y(counts)
200 NEXT

213 NEXT

In this chapter we shall see how much more elaborate patterns
can be produced. Many of these are based round the use of the
sine and cosine functions. Don't be put off by the maths — the
programs are complete as they stand although there is plenty
of opportunity for you to investigate their effects by substitut
ing your own values for crucial variables.

Moire patterns

The use of the ORIGIN command and relative MOVEs makes
it easy to draw symmetrical patterns on the Amstrad. This
program uses the centre of the graphics area as the origin. The
pattern is created by connecting points along the new x axis to
points at the top and bottom of the screen. Each x coordinate is
multiplied by a factor so that the lines converge or diverge:
10

19

2 3

30

for speed

p a 11 e r n

r1 = 3;fo cto r

a 1 i n e
j

'l 0 T

M 0 V E 0
DRAWR

MOVER

DRAWR

DRAWR

MOVER

DRAWR

NEXT

Notice the DE FI NT in line 2 0, which helps speed the
program up. It will not always be possible to define all the
variables as integers, because many of the patterns in this

Patterns and pictures 79

section are produced using sine and cosine functions, which
give decimal values.

The factors in line 40 can be anything you want, although
avoid any greater than about 15, as this leaves the lines too far
apart to produce a discernible pattern. The striking Moire
patterns which appear on the screen are the result of the
Amstrad leaving some pixels in the background colour, and of
lines overlapping in places. Experiment with different factors,
and try running the program in the other modes. You can
produce a nicely woven carpet by adding these lines:

3 5 colourl=l:colour2=1

.7O F0R count = S TO 2 0 0

80 MOVE a,0:MOVER counfactor 1,0

90 D R A W R -count*fcictord,200,CDlourl

10© Mo vER -count * fcat or 2*2,©

110 D R A W R - c o u n t *• f a c t o r d . - 2 0 S , c o 1 □ u r 2

1 2 Q 0 R h 0 R c o u n t * f a c t o rd. -20 0 , c o 1 o u r 1
130 MOVER connoctor2*2,©

140 DRAWR count*factord,200>co 1 ou~2

150 colGijri = i+(CQlouri + l)MOD 4:cdour2=l

+ (1 our2 + 1) MOD 4
160 NEXT

Line 15 0 ensures that the lines will be drawn using a cycle of
the foreground colours available in mode 1. The MOD com
mand gives the remainder after division: 5 MOD 4 is 1, for
example. We add one to the resulting value to avoid getting the
background colour: 4 MO D 4 would otherwise produce 0, and
we would end up with a pattern containing lines that couldn't
be seen against the background. In this case, lines 3 5 and
15 0 combine to give a warm orange carpet. The PEN colour
used in the D R A W R commands is always either 1 (yellow) or 3
(red). The closeness of the lines (which depends on the factors
in line 40) determines whether the carpet appears orange or
covered in yellow/red stripes.

By adjusting the values of the variables colour 1 and colour 2
and by changing the modulus division in line 1 5 0 to 2 or 3 a
variety of effects can be achieved: patterns with diagonally
opposite quarters in differing colours, or consisting of com
binations of certain colours only. Running the program in
other modes will give surprising results unless you adjust the
range of colours that are used, as indicated in line 8 5.

80 Graphics Programming Techniques on the Amstrad CPC 464

Lissajous figures

Lissajous figures are created using the same approach we have
previously used to draw a circle. Then we kept the radius
constant and took the sine and cosine of the same angle to give
a point on the circumference. By varying the angle used we can
draw numerous patterns:

2 0

30

4 0

5 0

60

70

m n n ri i V L-’ C. j.

0 R I G I N x c n i 9 i n , y 0 r i g 1 n

MOVER 100:0

FOR 0ng1s = 0 TO 32 STEP PI/30

DRAW 100*C0S(ang le) , 100*SIN(angle*0,8

NEXT

An alternative is to calculate the points on two curves and
connect them with straight lines:

10

20

MODE 1

x □ r 1 g i n = 3 2 0 : y 0 r i g i n = 2 0 ©

30

4 S

50

ORIGIN xorigin , yorigm

MOVER 100,0
FOR angle=0 TO 6.4 STEP PI/35

c Ci MOVE 2®0*SIN(angle) , 100*COS (ang 1 e ;•

6 0

7 0

DRAW 100*COS(angle) ,200*SIN (angle)

NEXT

Here is another example:

10
A

M 0 D E 1

3© ORIGIN x0 rig in,y 0 r i g i n

5© F 0 R angle = g t 0 6.4 S T E P PI/3 5

■J □
60
7 0

MOVE 300*S I N (ang 1 e) ,5©*COS(a ng 1e)

DRAW 1 © * C 0S(angle/5) ,200 *SIN(angle*©)
M C V T! X C. f

Let's add colour:
1 ©

30

4 ©

M 0 D E 1

1 X s : - j X iii • J : 1 5 1 1 : — ^2 U LJ
0 R IG IN x o r i g i n , y o r i gi n

colour=i

5 0 FOR angle=0 TO 20 STEF PI/30
C T
•_/ ' IF angle)!© THEN colour=3
c c. M U V E 4- 0 U -■ I N k ’-4 1 i g 1 f d U * C V -• C4 H g 1 6 /

Patterns and pictures 81

6 0 D R ft W 1 0 0 * C 0 S < a n g 1 e * 3) >20 0 « S I N (a n g 1 e / 3

) ,c o1 o ur
70 NEXT

As with the earlier programs, try using another mode. The sine
and cosine functions which produce the patterns are largely
the result of experiment and the results initially may seem
rather unpredictable. However you will soon become aware of
the effect of changing the variables, and you may care to
investigate what happens if more complex functions are used,
perhaps involving the squaring of the sine/cosine or their
multiplication/division by other factors.

Spirals

We can create a spiral by taking our circle-drawing program
and modifying it so that the radius constantly changes:

10 MODE 1

20 GOS-UB 100 0

100 END

1000 xorigin=315:yorigin=i90

1010 ORIGIN x o r i g i n , y o r i g i n

102 0 c o 1 o u r = 1
1029 REM spiral's radius will increase b

y this va 1 u e each time a point is p 1 o 11 e

d

1030 increaseradius=0.5

1040 stepsize=PI/30

1048 REM endangle determines how many ci

rcuits of spiral are drawn

1049 REM more than 40 tends to go o f f - s c

r e e n

1050 e n d a n g 1 e = 4 0

1059 R E M s Pi ra 1 begins w it h r a d iu s Of 1

1060 s t a r t r a d i u s = 1
1070 GOSUB 2000

1900 RETURN

2000 MOVE 0,0

2010 FOR a n g1e = 0 TO endangle STEP s tepsi

z-e
2014 REM draw lines using alternate PENS

2020 DRAW startradius*5IN (angle) ,st a r t r a

d i u s * COS(angle),colour

82 Graphics Programming Techniques on the Amstrad CPC 464

2030

iUS

startradius=startradius+increaserad

2040

2050

NEXT

RETURN

With the addition of a few lines we
inside each other:

can draw several spirals

1090

1099

us o
1100

1 1 1 0

draw n

r a d i u s

W i

OF

The spiral can be animated so that it appears to rotate simply
by plotting the points in different colours and then using the
INK command to
ground colours:

flash between the background and fore-

f !?>

20 GOSUB 1000
a o >_ u RE M set INKs s o

o n e colour a n d a no

29 REM alternate f 1

IN K s 1 a n d 2

; u INK 1,1,2 0

4 0 INK 2,2©,1

50 r e = p o n s e $ = " ”

60 WHILE r e = p o n s e $ =

70 r e s p o n 5 e $=IN K E Y $

80 WEND

90 INK 1,24:1 N K 2, L.'

« «

the

I N K 1 i

IMK 1,22

REM draw lines using alternate

IF colour=l THEN colour=2 ELSE

Patterns and pictures 83

This is a useful technique which we will meet again later.

Repetitive patterns

Many 'wallpaper' designs can be produced simply by replicat
ing a figure.

10 MODE 1
■ pi r A C i i p •i •“ i7|
_ ’i; 'j w- — :-f D X 'w -D -U
4 0 END

998 REM data for d r a w i n g an oct ag o n

999 REM tr y some o t h e r s h c< p e s

1 0 0 0 X S t a r-1 = O : y s t c< r t = 0

13 1S r ci d i u s = 4 S

102S 5 i d e s = 8
■■ nir - i- o p c. 4 B - x P T / 5 i d 0 S

1 U 4 t_i C 0 1 0 J " =

1 S 5 0 L> v b 'J E 3 0 S 3
10 30 RET u R bi
29 9 8 FEM ■ - 11 s s - •"?er w 11 h co p i es o f g i v

2 9 9 9 REM s t o P s w h e n c o o r d i n a c e o f ■_ e n t r e
f , r X _ c T*- p p

3 010 WHILE c e n t r sx < 6 3 9 0 R c e n t r e y 3 9 9
3 © 2 0 0 RIGIN c e n t r e x , c e n t r e y

3 0 3 0 M 0 V E 0 ■ ci d i J =

3040 FOR angle=0 TO 2*PI STEP stepsize

30 5 0 DRAW r od i us « b IN t ci n g 1 e) ,radi u ■=■ * C 0 S < a
n g 1 e ;> .colon r

3060 NEXT
3069 REM shift in x direction

30 70 cent r e x scent r e x + r a d i u =■« 2

3079 REM if it's off-screen, move up and

s t a r t a g a i n

303 0 IF centrex:639 AND centrey <399 THEN

c e n t r e x = x s t a r t: c e n t r e y = c e n t re y + r a d i u s « 2

3090 WEND

3100 RETURN

More elaborate results occur if a second set of figures are
superimposed on the first — these may be completely different
figures or larger or smaller versions of the first:

84 Graphics Programming Techniques on the Amstrad CPC 464

3 0 G 0 S U B 2 0 0 ©

1 9 9 9 R E M d a t a f o r d r a x i n g a h e x a g o n

2080 xs tart = 40:ystart = 4©

2 01 0 r a d i u 5 = 40

2 0 2 S s i d & s = d

2 S 3 0 5 t e p s i z e = 2 * P I / s ide s

2 0 4 0 cciq u’= 2

2 2 5 0 G 0 5 U B 3 0 9 6

2960 RETURN

The rows can also be staggered by beginning each row in one
of two alternative positions:

3 0 7 9 RE M if it's ci f f - s c r e e n , m o v e u p a n d

s t a r t a y a i n
3 08B IF cent r e x > 6 3 9 A N D c & n t r e y <399 THE N

GOSUB 4O00

3090 WEND

3109 RETURN

3 9 9 9 REM 51 a g g er s t ar t o f each r ow o f po

1 y g o r< s

4 000 IF xstart=B THEN xstart = radius ELSE

x s t a r t = 0

4010 cen trex=xs tar t: cen t rey=centreytradi

us«2

4020 RETURN

Rotating shapes

It is a relatively simple task to modify the circle-drawing
program so that it can draw any polygon. This can be
incorporated as a subroutine into a program that will enlarge
and rotate a given basic shape, creating a spiral pattern:

IS MODE 1

2 S G 0 S U E 1 9 9 9

3 9 G 0 S U B 1 5 U 0

40 END

999 REM reoa data for polygon

1000

1010

1020

103 0

104S

READ sides

READ radius

READ centrex.centrey

READ r ad iu s c range,a nglechange

c o 1 o u r = 2

Patterns and pictures 85

1050 s t e p s 1 z e = 2 * PI / side s

13 60 s tar tang 1e = 0: f i n i shang1e = 2*PI

1076 RETURN
1500 ORIGIN centres,centrey

1508 REM keep drawing polygon until 1 t ‘ s

t Q C big

1509 REM f or all sample p o1y gons in d a t a

f h 1 S 1 s w h e n r a d i u s > 2 0 0
1510 WHILE ra dias <20 0
15 2 0 ■ 10 V E r a a i u s » 5 I N (. s t a rt a n g 1 e} < r a d i u s x
2 5 s t r. r - c ' g 1 e)
1 5 3 O F 0 R a ‘ g 1 e - s to r t a n g 1 e T 0 f i r i s h a n g 1 e

5 T E F = t e psize
1 5 4 0 D R A W r a d i j ■ ■ S I N ' a n g 1 e) , r x □ ■= y q q S ('■
■ g 1 e • . ■ ’ 1 -■ -
155S NEXT
1 5 6 E D R ft W -• g i u s k 0 I N s t a r t a n g 1 e > r a a _ u s -
C 0 S (s t a - t □ n g i e ?
15 69 RE M inc rease r ag i u s
15 7 0 r a d i u s - r a d i u s + r a d i u s c h a n g e

15 79 REM r ot ate s tart so next pely gon is

a t a n a n g 1 e t o t h i =■ o n e

1 5 S B s t a r t a n g 1 e = s t a r t a n g 1 e + a n g 1 e c h a n g e

1590 finish a n g 1 e = f i rr i s h a n g 1 e + a n glee h a n g e

1600

1 6 1 0

2000
2010

2020

2030

2040

205 0

2060

WEND

RETURN

DATA

DATA

DATA

DATA

DATA

DATA

DATA

"7

4

6
6
5

S

:■

20
2 0

3 0

20

2 0

10

10

200

200

200

2 00

200

200

200

H-
1

6
5
c

1

10

6

1
10

7
J ? !

? »

? ?

j

>

} ? !

» J

!

Run the program as it stands. The DATA lines from 2 000
onwards give data for a variety of figures. Delete the first
DATA line and run the program again to see the effect of
varying the number of sides in the figure and the rate at which
it is enlarged and rotated. Repeatedly delete the new first
DATA line and re-run the program to see the remainder of the
examples.

Some very impressive effects can be achieved by judicious
use of colour:

Figure 4.2 The type of pattern that can be produced by rotating a
basic shape.

10 MODE 1
2 B G 0 S U B 1 S D 0
2 9 R E M u 1 ft e r n c, ft e fl g 3 i n g c □ 1 o u f •= " □ ■- o c
i n t s in T N KE 2 ftN D 3
3 0 G 0 S U B 1 5 2 0
ft 0 INK 2,1,20
50 INK 3,22,1
5 9 R E M w a i ft f □ f « e y d e p f e 3 3 i c n
6 0 r e 3 p o n 3 e * = " ’
7 0 WHILE f e s p 3 n 3 e * = " E:
3 0 f e = p o n s e $ = IN K E V 1

9 0 WEN I?
9 9 R E M r s s t o f e ft a n o f m n i
10 0 INK 2,2 G
110 IN K 3,6
12S END
150ft REM set INK 3 3 C m g q ■=. T t,| y

Patterns and pictures 87

15 85 IN K 3,28

1 5 9 4 RE M a 11 e r a tel y d r a w e a c h p o 1 y g c n u
s i n g IN K 2 c r r j.j K 3
1595 IF colour=2 THEN colour=3 ELSE cola

□ r - 2

Pressing any key once the figure has been drawn gives a really
mind-boggling effect as the colours switch between fore
ground and background!

Exercises

1) Create a modified version of the polygon vertex-joining
program by drawing two polygons and joining their
vertices.

2) Investigate the effect of the following on the Moire pattern
program: changing the STEP of the FOR. . .NEXT
loop; superimposing a second pattern using different
factors and colours; shifting the origin to create a patch
work of patterns next to each other.

3) Modify the rotating polygon program so that the number
of sides of the polygon varies during the course of the
program. Alternate between, for example, a triangle and a
pentagon; or cycle through the polygons, adding a new
side with each rotation of the figure until a limit of say 20
sides is reached when the cycle begins again.

Sketching on the screen

An alternative to letting the computer create the pattern is to
devise a program that allows the user to draw and manipulate
shapes on the screen, and this is the topic we shall examine in
the remainder of the chapter. To make the software relevant to
the widest possible audience, all line-drawing etc. is carried
out from the keyboard, but the programs that follow are
readily modified if you wish to use joysticks.

Throughout this section we shall use mode 0 as it offers the
greatest range of colours. Our first module contains the most
essential feature of any line-drawing program: it enables us to
plot points on the screen and draw lines in different direc
tions:

88 Graphics Programming Techniques on the Amstrad CPC 464
IS MODE S

2 S >- = 3 2 9 - y = 20S

38 c o1o u r=i

4S M 0 VE x,y

50 PLOT x,y,colour

60 GOSUB 1S00

70 END
997 REM -c a n k e y board — E Ti d i f '

ed

1000 WHILE response^;, n p ••

1 0 1 0 r e =■ p c n s e t = IN K E Y $

1019 REM draw lire command S : UP/

, le f t / rights, / .

1020 IF re5pon5e$ ="a" THEN y = y + 2

1030 IF response!:’:1 THEN y=y-2

1040 IF response!:’," THEN x = x - 4

1050 IF response!:" THEN x = x + 4

106B PLOT x,y,c o1 our
1 7 17j y r h i

10S0 RETURN

A point is initially plotted at the coordinates specified in line
4 0. The I N K E Y $ in line 6 0 checks the keyboard to see if any
key is currently being pressed. (Movement is indicated by
depression of a/z for up/down, and ,/, for left/right.) The
coordinates of the point are updated accordingly, and the
position of the new point is plotted.

Note that the structure of this brief program makes it very
easy to add extra commands. Movement of the point is
presently confined to up/down/left/right, but by adding lines
within the loop from 5 0 to 110 we could make diagonal
movement possible.

As it stands, the program only allows continuous lines, and
it is impossible to move to a new position without drawing a
line. We can add options so that the point can be plotted in
either the foreground or background colour by pressing 'f' or
'b' respectively:

1051 IF response$=“f" THEN colours!

1052 IF response!="b" THEN colours

Unfortunately once we select the background colour, the point
is no longer visible, which makes it difficult to move to a new

Patterns and pictures 89

position with any confidence! We can get round this by
plotting the point twice:

35 foregroundcolour=i

1005 PLOT x,y,colour
10 6 0 PLOT >:,y, foregroundcolour

If the background colour is selected, the point at the present
x,y position will be plotted invisibly at line 5 5, and then again
in the foreground colour at line 100. As a result, the point
flashes on and off, and acts as a cursor identifying its present
position.

We can allow a change of foreground colour either by
selecting a colour by the depression of a particular key, or by
cycling through the colours as we did in an earlier program:

1053 IF response$="c“ THEN co lour = 1+(co 1

our +1) MOD 3

This gives a choice of just three of the foreground colours, all of
which produce easily visible lines.

It is sometimes difficult to see the colour of the point, and
the accurate plotting of rectangles and the like is not straight
forward using only the naked eye to gauge distances. We could
simply print this information on the screen, but we shall take
this opportunity to introduce the WINDOW command, which
confines all text to a specified area:

• “? C-P T M T » - V - a ;
x ■ n. 1 < x ; - J ■ f

The four numbers following the WINDOW command specify
first the x text coordinates making up the left and right
boundaries of the window, and then the y text coordinates
comprising the top and bottom of the window. In this case all
further text will be printed to two lines at the bottom of the
screen:

HEN colour=l+(col

90 Graphics Programming Techniques on the Amstrad CPC 464

1068 PLOT x,y, foregroundcc1our

1865 GOSUB 2888

1S70 WEND

1080 RETURN

2S0S IF sidedour <> coiour THEN LOCATE 9

1:PRINT colour

2S30

2 0 4 0

2 0 5 3

2S10 IF G 1 d x < > x THEN LOCATE 4,2 : P R I N T x

2S20 IF 01 d y <} y THEN LOCATE 12,2:PRINT

o 1 d c g 1 g u r = c o 1 o u r

o 1 d x = -.old y =

RETURN

Lines can now be accurately positioned on-screen, because the
program supplies a continual update of the present PEN
colour of the point and its x and y coordinates. Note that the
Amstrad still considers the text window to be part of the
graphics screen. You will find that you can plot points over the
text!

There are still a number of flaws in the program. Lines can
only be erased by drawing them again in the background
colour. This gives rise to another problem when the point, set
to the background colour, crosses a line that has already been
drawn — part of the line is erased. This might seem an
intractable problem, but is surprisingly easy to solve, although
we shall have to call on our knowledge of binary to do it.

Exercises

1) The drawing program does not contain any checks to see if
the point plotted is off the screen. Modify the program so
that it is impossible to move off the screen or draw in the
text window.

2) Extend the range of colours that can be used to 16. Use the
INK command so that the colours that can be displayed
are not just the default colours for mode 0, but are initially
chosen from the full 27 colours available.

3) Add some extra commands so that diagonal lines can be
drawn.

Using EXOR

In an earlier chapter I commented on the value of an

Patterns and pictures 91

understanding of binary/hex, and we shall see now and later
in the book why this is especially relevant where many
graphics operations are concerned.

It is important to remember that the screen display itself is
actually a representation of part of the computer memory. All
the characters printed, and each graphics line drawn is
produced as a result of particular binary values being stored in
the memory locations which the Amstrad examines to con
struct the screen display.

Any line drawn on the screen causes the bytes (the 8-bit
binary values) at the relevant memory locations to be changed.
The value at a location determines whether a pixel should be lit
or unlit, and if lit, what colour it should be. In fact, the colours
for each pixel are derived from an individual byte in a way
which is not obvious, but which need not concern us here. For
the purposes of the discussion which follows we shall use a
simplified model of the byte/pixel relationship, and assume
that the value of a single byte stored in memory indicates to
the Amstrad the value of a single pixel to be displayed on the
screen.

Suppose that we are dealing with only four colours, and the
bytes representing the screen memory thus all have one of the
four values shown in Figure 4.3.

Binary code Colour

00000000 Blue
00000001 White
00000010 Yellow
00000011 Red

Figure 4.3 Possible binary representations the computer might use to
indicate four different colours.

If the screen was completely blue, all bytes would be
00000000; if it was completely white, they would all be
00000001, and so on. Drawing a white line on the screen
has the effect of changing the bytes at the positions concerned
so that they are all 00 000001 drawing a yellow line at the
same position makes their value 00000010.

Earlier we noted that the lower ASCII codes give special
commands to the Amstrad, such as 'Move the cursor back one
space' or 'Turn off the screen'. One of these codes influences

92 Graphics Programming Techniques on the Amstrad CPC 464

the way in which the Amstrad treats graphics points.
The Amstrad can be set so that it plots any points on-screen
using the Exclusive Or option (EXOR or XOR for short).
Without this option, the Amstrad simply replaces the old value
bytes concerned by the new value. For a line drawn in yellow,
all the bytes on the line become 00000010, for example.
Using the EXOR option makes the Amstrad plot all points by
combining the old value of each byte with the new value
according to a fixed set of rules.

Let's examine an individual byte on the screen so that we
can see why the program produces the results that it does. To
begin with, the byte has the value 00000000, i.e., it
indicates a pixel in the background colour, blue, as in Figure
4.4. A line is drawn across this point in yellow (a byte of
00000010), as in Figure 4.5.

A point in the background colour, blue.00000000

Figure 4.4

00000000
00000010

A blue point and
a yellow line crossing that point

Figure 4.5

Because the Amstrad has the EXOR option set, it does not
simply replace the byte 00000000 (for blue) by the byte
00000010 (for yellow). Instead it combines the value of the
two bytes. If corresponding bits are different, the result is 1; if
corresponding bits are the same, the result is zero, so we end
up with a yellow point, precisely what we would have
expected had we not used the EXOR option!

00000000
EXOR00000010

00000010

A blue point and
a yellow line crossing that point
gives a yellow point

Figure 4.6

However, suppose we now plot an identical yellow line over
the line we have just drawn. The effect this time is rather

Patterns and pictures 93

unexpected, see Figure 4.7. Because the bits making up the old
byte and the new byte are exactly the same, the EXOR option
results in a byte of 00000000 — i.e., the line disappears, as it
has been drawn in blue, the background colour. Drawing

00000010 A yellow point and
EXOR00000010

00000000
a yellow line crossing that point
gives a point in the background colour, blue.

Figure 4.7

another yellow line returns us to the situation of Figure 4.4,
and the line will reappear.

00000001 A white point
EXOR00000010 crossed by a yellow line

Figure 4.8

What happens if a yellow line is drawn on top of a white
line? The EXOR option results in a red line, as in Figure 4.9.
But again, drawing the line a second time in the same colour
restores everything to its original state, as in Figure 4.10.

00000001 A white point
EXOR00000010

00000011
crossed by a yellow line
gives a red point

Figure 4.9

00000011
EXOR00000011

00000000

A red point
crossed by a red line
gives a point in the background colour, blue.

Figure 4.10

The EXOR option might not seem very useful, but the graphics
effects we have just seen are invaluable in any drawing
program. Lines can be drawn and erased without affecting
other lines; we can experiment and move lines to various
positions before fixing them permanently using normal draw
ing. All that we need do is ensure that any temporary line or
point is plotted twice using EXOR so that all its traces are
removed.

94 Graphics Programming Techniques on the Amstrad CPC 464

Drawing diagrams

Before we begin to design a new drawing program to take
advantage of the graphics EXOR option, let's summarise the
extra features that could usefully be included:

1) lines can be temporary or fixed permanently;
2) lines can be erased;
3) drawings can be saved;
4) standard shapes such as circles, rectangles, etc. can be

drawn;
5) parts of the drawing can be translated, enlarged or

otherwise transformed.

The last two features will be discussed in a later chapter. We
have just discovered how to draw temporary lines, so 1)
presents no problem. The easiest way to implement both 2)
and 3) is by saving the coordinates of all fixed lines in an array.
This makes it simple to identify a line and delete it. It also
makes it easy to save the drawing to a file: we simply save the
list of coordinates stored in the array and use them to
reproduce the drawing at a later date.

We will use a modular approach so that the program can be
extended without problem:

10 MODE ©
20 DIM x (100) ,y(100)

30 stortx=320:starty=200

43 x = 3 20■y—200

5S foregroundcolour=i

60 PRINT CHR$ (23) ;CHRt (1) ;

70 g o sub 1300
S S G 0 S iJ B 2 3 3 3

9 9 9 p £ “ Jr ci w line

1000

1 0 1 0

10 2 0
2 3 0 0

PLOT x•y,fo r e gr oundc o1□ur

DRAW st ci r t x , =• tart y
R E T U R N

WHILE nesponset<)"e"

2310

2023

2330

2 0 4 0

2350

GO SUB 1000

nesponset=LOWERt (INKEYt)

IF response$= • c< ‘ THEN y = y + 2

IF response$=’z" THEN y = y - 2

IF response^"," THEN x = x - 4

Patterns and pictures 95

P e r m a n e n t1 y

3030 PRINT CHR$(23);CHR$(0);

3010 GCSUB 1S0S

3019 REM bock to EXOR drawing

3020 PRINT C H R $(2 3) ; C H Rt(1) ;

3S3S countscou n t +1

3040 x(count)sx:y(count)sy

3 S 5 @ s t a r t x = x -. s t a r t y = y

3 S 6 9 RET UR N

2068 IF response$=*.* THEN x = x + 4

2070 IF response$=“ " THEN GOSUB 3000

2 3 3 0 GOSUB 1003

2090 WEND

2100 RETURN
299 9 REM set graphics to normal to draw

Line 20 sets up two arrays to hold the coordinates for up to
100 points. (This figure is arbitrary and may be increased.) The
coordinates of the present point are given by the values of the
variables x and y. The values of start x and start y give the
coordinates of the last point 'fixed'. These coordinates must be
available so that we can draw a permanent line between the
two points if we wish.

Subroutine 2000 is the driving module of the program. It
scans the keyboard for input and successively draws and
erases a line from (x, y) to (startx, starty).

If you run the program you will find that, as you move the
point around, the Amstrad draws a flickering yellow line from
it to the point (startx, starty), subroutine 1000. This techni
que of allowing a line to be stretched is referred to as
'rubber-banding' — you can probably see why!

Pressing the Space Bar fixes the line permanently via
subroutine 3000. Line 3000 returns the graphics drawing
mode to normal, draws the line permanently, and then
switches back to the EXOR option for drawing to continue.
The coordinates x and y of the present point are stored in the
arrays x() and y(), and startx and starty are given new values so
the next line will be drawn from where the current one ends.

We can modify the program so that we can chose whether to
draw a line or not:

55 linedraw=0

96 Graphics Programming Techniques on the Amstrad CPC 464

999 REM draw line (or not, if linearaw=0

1630 PLOT x,y,f o r e gr oundco 1 our

1835 IF linedraw=0 THEN RETURN

1016 DRAW st a r t x - s t a r t y
1320 RET !J R N

2073 IF responses:'

n e d r a w = 1
THEN GOSUB 3333:11

2371 IF responses=‘l" THEN IF 11 n e d r a w = 3
THEN 1i nedr aw = 1 ELSE 1i nedraw = 0

Line 2071 uses the 'I' key as a toggle to switch between
line-drawing and no line-drawing. When Linedraw = 0 no
line is drawn, as subroutine 1000 terminates before (x,y) can
be joined to (startx, starty). Running the program now reveals
that we no longer have to draw the first line beginning at
(startx,starty), but can move the point to anywhere we wish
before 'fixing' it by pressing 'f'.

Deleting any line is a little tricky. We shall instead only allow
the deletion of the last line drawn, indicated by pressing the
'd' key:

2072 IF responses“d“ THEN GOSUB 4000

399S REM doesn't work if you to try to d

e 1 e t e a non-existent line

3999 REM we'll sort that out in the next

program!
4006 x = x(count) :y = y(count)

4310 count=count-1

4020 startx=x(count):starty=y(count)

4030 GOSUB 1003

4040 RETURN

This does allow deletion of any line, but only at the cost of
deleting all lines drawn subsequently.

If you find the keyboard response a bit sluggish, you might
like to add the following lines:

1 DEF I NT c,f,1,o,s,x,y

2 SPEED KEY 2,2

39 SPEED KEY 10,5

We have noted before that using integers speeds a program
up. SPEED KEY is followed by two numbers, the start delay
and the auto-repeat period, in l/50th second units. These two

Patterns and pictures 97

values determine how rapidly the Amstrad responds to a key
depression. When a key is pressed, the computer waits for a
time equal to the start delay before repeating the character.
Thereafter it is repeated at intervals governed by the auto
repeat period. It is vital that you set SPEED KEY to normal at
the end of the program. Over-rapid response to key presses
can make it virtually impossible to type a coherent instruction!

Having created a drawing masterpiece it would be nice to
save it. To do so we need to modify the program slightly.
Recording the coordinates of all the points is no longer
adequate, as we also need to know whether a point is joined to
the previous one or not:

20 DIM * (100) ,v ■100; ,1<100)

3030 count=count+i

3040 x (c o u n t) =: y (c o u n t) = y

3045 1(count)=1inedraw

3 S 5 O s t a r t x = x : s t a r t y = y

306S RETURN

4000 x = x(count) :y = y(count):1i nedraw = 1 (co

u n t)

The arrays x() and y() hold the coordinates of all the points; a
third array 1() is introduced to indicate whether a point is
joined to the previous one. Whenever a point is fixed, l(count)
is used to record the current condition of Linedraw. If this
is zero, line-drawing has been switched off, and the current
point is not connected to the one before. Any value other than
zero shows that line-drawing is switched on and the present
point must be connected to the earlier one.

2074 IF re5ponset="i" THEN GOSUB 7000

20 75 IF r e s p o n s e $ = " o ” THEN GOSUB 8000

6000 CLG

6 010 St a r x = x (1) : 5 t Q r t y = y (1)

6 0 20 F0 R va 1 u e = 2 T0 coun t

603 8 x = x i v a i u e: y = y < v a 1 u e ;

6 0 40 li n e d r a w = 1 (v a 1 u e ;
6850 GOSUB 1300

606S st a r t x = x : 5 t a r t y = y
6070 NEXT

6030 x = 320 ■ y = 200 : 1 i nedraw = g

6090 RETURN

7000 MODE 1

98 Graphics Programming Techniques on the Amstrad CPC 464

7S1S PRINT"To load data From o coordinat

6 file*

7020 IMPUT’What is the File name’;Filet

7930 OPEN IN Filet

7 @ 4 0 counts0

7S5S WHILE NOT EOF

706S c □ u r> t = c o u n t ♦ 1

7B70 INPUT « 9 , x <count) , y (count) ,1(coun t)

708Q WEND

7090 CLOSE IN

7100 MODE 0

7110 WINDOW 1,20,25,25

7120 stortxsx(count):storty=y(count)

713 0 x=stortx: y = s t a r t y

7140 GOSUB 600S

7150 RETURN

8800 MODE 1

8010 PR I NT“To save a picture to a File"

8020 INPUT‘Please name the File,",Filet

3030 OPENOUT Filet

8040 counters@

8S50 WHILE counter<=count

8060 WRITE #9,x(counter),y(counter) ,1 (co

u n t e r)

8070 counter=counter*1

8 S 3 0 W E N D

8090 CLOSEOUT

8100 MODE 8

8110 WINDOW 1,20725,25

3120 GOSUB 6008

8 133 PET !J R N

Subroutine 8000 writes all the coordinate and connection
data from the three arrays to a file, and then uses subroutine
6000 to recreate the drawing. If we can save the data, we also
need to be able to load it back in, and this is handled by
subroutine 7000. There is no need to switch to mode 1 in
these subroutines, but doing so makes all the messages easier
to read! The load routine is called on depression of 'i' (input
from a file) and the save routine is called on depression of 'o'
(output to a file). You may prefer to substitute your own keys.

Our basic drawing program is almost complete. Let's just
add a colour option:

Patterns and pictures 99

2073 IF responsets's" THEN GOSUB 5600

5000 WINDOW 1,20.25,25

5010 INPUT’Scale";scale
5018 REM scale all values by scale Facta

r
5019 REM make present cursor coordinates

new screen centre

5020 FOR value=l TO count
503 0 x (value)=scale*(x(value)-x)+320

5040 y (value)=scale*(y(value)-y)+200

5050 NEXT
5060 GOSUB 6000

5070 RETURN

Adding colour does create a problem, because to delete the
same line it must be drawn again using EXOR and the correct
colour. Otherwise, as we saw earlier, a white line drawn on a
yellow line will not erase the original line but merely change
its colour! Fortunately we don't need to set up yet another
array for the colour — this information is already stored in 1()
and can be used when lines are deleted or when a picture is
drawn using data loaded from a file.

Let's conclude the chapter with a demonstration of the
flexibility of the core program. The addition of the following
routine enables you to create a drawing, then enlarge it (or
reduce it) so that greater detail can be added:

2070 IF response^" " THEN GOSUB 3000:11

nedraw=foregroundcclour

2ST* I? respon se j = " c • THEN F cregrcundca 1

our = i +(Foregroundcolour+i) M0D 3

304 5 IF 1 i n e d r a w; g THEN l(count)=foregro

•J n d c o 1 o u v-
+ 825 IF lir.edraw>0 THEN foregroundcolour

= 11n e d r aw

Pressing 's' calls subroutine 5 000, which requests a scale
factor by which the drawing is to be enlarged or reduced. For
example, typing '2' will cause the picture to be redrawn at
twice its present size, '0.1' reduces it to a tenth of its size, and
so on.

100 Graphics Programming Techniques on the Amstrad CPC 464

The routine takes advantage of the fact that the Amstrad will
accept x and y coordinates for PLOT, MOVE and DRAW
commands even when these coordinates lie beyond the screen
boundary. The computer will 'draw' these lines, but they will
only be seen if they happen to cross the graphics area depicted
on the screen — i.e., some of the points on the line have x
coordinates lying between 0 and 639 and y coordinates
between 0 and 399.

Once you have chosen a scale factor, the Amstrad multiplies
all the coordinates in the arrays x() and y() by that scale factor.
The current position of the cursor is used as the centre of
enlargement. The new drawing is centred around
(320,200), which is also taken as the new position of the
cursor.

Using integers may appear to be a good way of speeding up
the program, but it is a disadvantage here as it limits the
choice of scale factors to whole numbers only.

Exercises

1) Add a few lines at the end of the drawing program to
restore key response speed etc. to normal.

2) Introduce checks so that the drawing program does not
allow movement off-screen.

3) The 'delete line' routine has a flaw in that it is possible to
delete lines back to the starting position, at which point
the program crashes. Introduce checks to prevent this.

4) Add a routine to the program to allow the user to select a
comfortable start delay and auto-repeat for the keys.

5) Add a routine to the program so that the coordinates of the
cursor are continuously displayed on the screen.

6) (more difficult) Introduce selective deletion of lines so that
lines other than the last can be erased. (You will need to
cycle through all the lines erasing/redrawing them at the
touch of a key until the required line is reached, which
should then be permanently deleted. Remember to reflect
this line deletion in the data stored in the arrays, otherwise
the line will magically reappear when the array values are
loaded back from a file!)

Chapter Five

Animation ...

Moving line-drawings

In the last chapter EXOR was introduced, and we saw how it
could be utilised in the drawing/deleting of lines. We shall
now see how EXOR and related commands can be used to
improve the quality of animation.

One method of animation is to successively draw and then
delete a figure from the screen. This is the most primitive
approach, but provided the figure concerned is not too
complex, the speed of the computer produces an acceptable
result. This program moves a rectangle across the screen by
drawing and then deleting it at each position:

101

102 Graphics Programming Techniques on the Amstrad CPC 464

A simple modification moves the rectangle diagonally:

4 -3 y i r> c = 4 : y i r, c = 2

8 0 y - y + x i n c .- y = y + y i c

With the addition of another couple of lines we can even
'bounce' the figure around the screen:

S 2 I F y ’■ 0 0 R y > 3 9 9 THE N y 1 n c = - y i n c : y = y + 2

* y i n c

9 0 WEND

4 5 cont i nue=-i
5 0 w HILE o r: t1 n u e = 1

5 9 R E M d r a w t h e r e c t c n q i e
6 0 c o 1 o U r = 1 : G 0 S ij B 10 0 0

6 9 REM delete the re ct oogle

7'3 c o 1 o u r = 0 : G 0 S U B 1 S 0 S
■’* r< / 7 R E M u p d a t e x , y C O 0 r d i r- 3 e ■=

i f t h e y a re off-s c r e e n
S3 x = x + x i n c : y = y + y i n c

SI IF x(0 OR x>639 THEN xinc =

X i nc

The results are not so good when more lines are involved.
Suppose we try to animate a line-drawing of a dog. To bring
some life to the program we draw the figure in two slightly
different positions. The computer will first draw the dog in
one position, then delete it, then draw the dog in the
alternative position. After deleting the second image the
coordinates are updated and the whole cycle is repeated. To
simplify the alternation between the two sets of image
coordinates it is easiest to store them in an array:

Figure 5.1 Using the same figure in two different positions to
improve animation.

Animation . . . 103

10 MODE 1
2 3 G03 U B 1U00
33 GOSuB 20S0
4 S END

X 6 d C d

-8 * E • ’ '■?-' = i ‘ 2 f e > ■=- 0 f 26 a a o r d i n a t e s
- cc pr - - - ■; - -rd •„ - g 2 i rn fl g & =• Q f t h e d a g

.117 ' ’ ’' ■ x 2 - -.12 2
x _ 1 2 - 1 p - ~ ■-
10 2 0 READ x < l o j ■’ , y (Q 0 Li H t J

1 0 3 S N E x T
1340 RETURN
1S5S DATA 0,0,23:40, 20-40. 1 0 ,93,10. 3 0,2.
123,20,10,35,50,35,5 3,10,3 S , 1 0 .80,7 0,8 0
1062 DATA 60-0.30,40 , 3 0 , 4 3 "7 0 , 30 , S3 ,10-9
5,5 S•95■5S, 7 3,3 3,73- 80,93, 14 0 , 9 0 : 14 0,110
, 120, 110. 120,30, 1 10
1070 DATA 5,10,25,40 -- 2 5? 4 0 , 1 c. 3 0 - 1 5 ,30,1
g,l^A,0.15.30,50,30, 5 3, 15, 8 3 , 1 5 , 8 0 , 75 , 80
1330 DATA 75,80,85,4 3,8 5 ■ 4 0 - 65 ,10,7 5,8 0 ■
R0,50,93,50,60.15-75 - y E,10 3, i 7 0 , 1 0 0 .130,
12 0. 113. 123, 110,90, 1 Fi 2-
19RR REM =4zae = = ixe 1 d r a a / d e I 5 t S d 0 5

2 0 3 E 1 ■’ - 0
2 0 1 0 2 1 '3 = 0
2 0 2 2 WHILE x a; ± xinc

: *i. T d’

2 0 30 IF F 1 a g = 8 THEN S t Li r t =■ 1 : F 1 Li d = 1 ELSE
5 1- Ci r- 6 = 27-’ Fl A 9 = S
2 3 3 9 R E M d " « d o g
2 3 4 3 c o 1 o u r = 1 ; G 0 3 U S 3000
2049 REM delete dag
2 3 5 0 a o 1 o u r = D : G <2 3 U B 3 0 S ©
2 3 5 9 R E M R: o ' ■' e t a n e a P a s i ' L 0 n t o 6 r c< w n-e

O Li '■

3 3 3 ‘S
3 S 4 0

2 3 6 0 x i n c ~ ;< i n c y 2 2
2370 WEND
2083 RETURN
2 y r 9 R E M d r a w d □ g a s o 3 e r i e s a F a o n n e z t
1 n g p o i n t =■
3 0 3 0 R 0 R o ci a 6 = '= t ■ r t T z S 6 Ci r c + 2 5 STEP 2
3 0 1 0 M C! v E x 1 c o u n t) + x i r o , y (c o u r, t;
3320 r, p q i.i x - l; ■■-> :r - i > p x . n, x t c o u rs t + i) , c o 1

NEXT
RETURN

104 Graphics Programming Techniques on the Amstrad CPC 464

In this case the whole process is too slow and it is clear that the
figure is being deleted and then redrawn to another position.
A different approach is required.

We can make use of a facility we touched on in Chapter 3:
the ability of the computer to change the range of colours
available in a mode by using the INK command. If we draw a
figure using a P E N that has been set to the background colour,
the figure can be made to appear instantly simply by switching
the I N K to the foreground colour.

The following program uses this method to display alter
nately two rectangles drawn at different positions on-screen.
Every time a key is pressed, the INK colours are changed so
that the previously displayed rectangle is set to the back
ground colour and the other rectangle to the foreground colour
so that it becomes visible:

1 0 M u D E 1
2.0 = 1 0 0 : y = 1 s s
3S « d = 5 0 : y d = 1 0S
7 Q R E M -B e t p EN 1 pu d u 2kground o o 1ou ’
4 0 INK 1 A
4 7 R E M d r u w u “j 8 ^octdpgle u5*-p PE’-

- '•: - 5 r' - -■ r- -z _ ~ 1 . u ■
-.3 : : 1 : : 1 0 I _ E _ ’ ’ Z
- 3 • = 3 0. ■ : ? 3
’ 0 d - 1 0 0 -. y d - = 0
7 9 REM set RE N 2 t c - : k ground c □ 1 uur
S3 INK 2,1

E ? R E M d r u w s e : a n d ~ e 2 i u n g 1 - u s 1 n g E N 2
i r b uK g t o u - d 2 o 1 o u *

9 0i C □ 1 O U T = 0 ■ 22 22 P d f: 0i 0
1 0 0 u O ‘P t i P U 6 = 1
1 S 9 R E M r e p e c< t e d 1 y d i ■. p 1 u _ ■■ u ~ ; i 1 L e ' p *
=- =■ e d
1 10 U H I 0 E e =• p o H •= e ’■

•1 •e !i
1 19 REM s W 1 C c h P E N 1 - c F - - s g r o Li n d
- PEN 2 ■- Q b u •- - g r □ u ~
1 2 u I N K 1 ■ J H-
1 3S I M K E 1
1 39 REM W a i •> F 'J r k 2 y d e p r 5 5 5 1 o -
■! 40 e s r 0 T‘: P 1 = .7

1 50 WHIL E r 8 8- p n s p j = y‘ »:■

6 0 r e 5 p □ •f? e * = p r R t • I N K E ' 3 I

Animation . . . 105

170 WEND
•• “• fl
X / 7 R E M 5 * 1 c c h p E N 2 t zz f □ P g r a
r: F E N 1 t r- b O c •5 r O u 7 d
1 80 I N K 1 , 1

1F9 I N K 2 ; 4
2 S S ■■ e = p o n e = >i

2SF R E M 7 1 T Q r K p y d e p r- c.- c c 1 C Ti

210 WHILE e '=■ - Q n S e $ _ •:

2 2 S r e =■ p o p e $ = L 0 W E R *■ (I N K E Y

230 W E N D
240 WEND
2 4 t R E M 7 e •=. o r p n o r m a 1 c c- 1 o u r =•
25S I N K 1 , 2 T-
2 8 INK 2, 2 0
? 7 7 END
1 0 2 3 M 0!,' E X

1013 DRfiwR x d r s - □ 1 zz u ■ *
1 3 2 0 DRPWR 2
13 3 3 D R h W R - X d S
1 3 3 D R p W R 0 -
1 0 5 0 R E T U R N

This gives a clear display because the figures have already
been drawn and are displayed instantly. We could extend this
idea and animate a sequence of drawings by drawing them in
the background colour and then successively displaying them.
In this a method we could use to animate the line-drawing of
the dog? Not as it stands, because when the figures overlap,
we have a problem, as you can see by running this program:

■ ? F E - H i s r i. r? e s e c '■ n d *■ s z t ■ -g 1 e □ v a r 1 z

P ■=■

5 3 z = 12 0: y = 1 S S

Part of one rectangle is missing where the figures overlap. This
is because the line is present in both figures, and setting the
INK for one rectangle to the background colour causes it to
disappear for the other.

Providing there is no overlap of lines, changing the I N Ks
gives smooth and rapid animation. It is especially useful in
mode 0, where we have 16 different colours. Up to 15 different
images can be drawn in the background colour and then
displayed in succession by switching the relevant I N K to the
foreground colour and then to the background colour once

106 Graphics Programming Techniques on the Amstrad CPC 464

again. For example, here we have a figure which expands and
then shrinks again:

10 MODE 3

19 REM start position for corner of r e c t

angle

20 startx=26S:starty=130

29 REM length of its sides

30 1 engthz = 20: 1sngthy = 20

3 9 REM difference in size for successive

rectangles

4S incx = 8:1ncy = 6

50 startink = 1:endink = 1 5

60 GOSUB 1000

70 GOSUB 2000

80 END

99S REM draw 15 rectangles in background

colour

99? REM put one inside the other

100 0 FOR count = s tar t i nk tq end i nk.

1016 IN K a aunt,1

1 0 2 u m o v e x = c o u n t*i n c x

1030 mo ve y = c o u nt * i n c y

1040 s i d e x = 1e n g t h x + 2 * m ove x

10 50 s i d e y = 1 e n g t h y + 2 * m ov e y

I860 MO V E stortx-mov ex,s t a r t y-m ove y

1070 DRAUR s i d e x , 0 , c o u n t

1080 DRAWR g,side y

1090 DRAWR -side x 3

1100 DRAWR 0 , - s i d e y

111© NEXT

112© RETURN

1g99 REM cy c1e through IN Ks di sp1 ay i ng o

n e rectangle at a time

2000 c o n t i n u e = 1

2010 startink=1:nextink=2

2019 REM continue forever

2020 WHILE continues

2029 REM wait for any k ey depression

2 038 r e s p o n s e t = “ "

2040 WHILE responset="“
2050 r e s p□n s e $ =IN K E Yt

2060 WEND

206? REM switch previous rectangle to ba

ckground

Animation . . . 107

211 @ n e x b1 n k = (n e x bi n k * 1) M 0 D 1 6

2120 IF nextin k = g THEN nex t in k = 1

2130 WEND
2143 RETURN

2070 IN K s b a r t i n k , 1
207? REM s w 1t c h n e x b r e c b a n g 1 e to F oregn
o u r< d
2S3S I N K n e x t i n k , 2 4

2 S3 8 REM i n crem ent IN K 5 s a o n n e x t c y c 1 e
p r e s e t> t IN K

2S8? REM b e c o m e s b a c k g r o u n d a n d n e w I N K
becomes Fore gr o u nd

2 0 ? 0 = b a r t i n k = (= ban b i n k + i) M Q Q 18
2100 IF e b o r b i n k = g THEN s t o r b 1 r k = 1

Using this method is particularly effective if the display is
cyclical, as in this case. It does have its limitations, however —
avoiding overlapping lines is not always possible.

We have already seen an example of an instance where
drawing a line does not disturb any lines already present — we
use the EXOR option. Perhaps the same approach will work
here:

1 5 P R I N T C H P 1 : 2 3 / C H R1 (1 > ;

2 6 5 P R I N ’ 2 H F 1 ■' 2 3 i 2 H R t ' 2 ') ;

This is a partial success — both rectangles are completely
visible, but the shared points appear in the wrong colour, red.
We can see the reason for this result if we examine the way in
which colours are represented in mode 1.

Only four colours can be displayed simultaneously in mode
1, because the colour of each point is determined by a 2-bit
code. As there are just four differing combinations of two bits,
only four colours are possible. These codes will never change,
although we could use the INK command so that the computer
would interpret any of the codes as indicating a different
colour. For example, it would display a pixel coloured red
rather than yellow if we used an INK 1,6 command.

00000000 Blue
00000001 Yellow
00000010 Bright cyan
00000011 Red

Effectively, the colour at any
point is shown using a 2-bit
code, and this is used from
now on.

Figure 5.2 The binary codes for the four colours in mode 1.

108 Graphics Programming Techniques on the Amstrad CPC 464

In this particular case we are drawing two rectangles, one
using INK 1 (code 01) and the other INK 2 (code 10).
Remember the effect of EXOR. It combines the old bit
combination with the new one according to a simple rule: if
the bits are the same the result is 0; if the bits are different the
result is 1. Where the two rectangles overlap we will get the
result shown in Figure 5.3. Code 11 indicates PEN 3, normally
set to red in mode 1, and so the line is displayed in red. This

EXOR
01 A point on a yellow line
I 0 crossed on a cyan line
II gives a red point

Figure 5.3

suggests a way around our problem. If we use the INK
command to re-set PEN 3 so that it produces yellow rather
than red, the overlapping area will no longer be visible:

11 REM set INK 3 to yellow

12 INK 3,24
261 REM restore INK 3 to normol at end

262 INK 3,6

Although the rectangles overlap, they can both be displayed
alternately by switching the INK colours. This forms the basis
for an approach which produces much smoother animation:

1) The first figure of the animation is drawn in the fore
ground colour and displayed;

2) The second figure is drawn using a PEN that has been set
to the background colour;

3) The IN Ks are switched so that the second figure is
displayed and the first hidden;

4) The first figure is deleted from its old position;
5) A new figure is drawn in the background colour;
6) The I N Ks are switched so that the new figure is displayed

and the second hidden;

. . . and so on, until the animation is complete. The only
difficulty arises when the figures overlap in places: we then
need to draw or erase one figure without affecting the other.
Let's examine this problem more closely.

We will suppose that we are working in mode 1, and the two
successive figures are drawn using PEN 1 and PEN 2

Animation . . . 109

respectively. This gives us this interpretation of the meaning
of the four 2-bit colour codes. We do not need to concern
ourselves with the actual colours that will be shown on the
screen, as the INK command enables us to choose the colour
which will be produced by any particular PEN. We will
instead concentrate on these 2-bit codes, and the effects we
wish to have on them.

To erase any line drawn using PEN 1, we need to convert
the code 01 to 00, the background colour code. We could do
this by EXO Ring every point on the line with 0 1. However,
some points on the line might overlap points with a line from
the second figure, and so have the code 1 1. EXO Ring these
points with 0 1 gives the result shown in Figure 5.5. Any
overlap point would end up in the colour for P E N 2, which is
what we want. EXOR only seems the answer however — it
fails in one situation. If a point lies at the intersection of two
lines, erasing one line with EXOR will delete the point, but
erasing the second line with EXOR will bring it back again!

EXOR

EXOR

01 A point on a yellow line
01 crossed by a yellow line
00 gives a point in the background colour, blue

Figure 5.4

11 A point on both lines
01 crossed by a yellow line
10 gives a point on the cyan line

Figure 5.5

We could achieve the correct result a slightly different way, so
we take this opportunity to introduce yet another of the
line-drawing modes available on the Amstrad.

The computer can be set so that it A N Ds the code for a point
with its new code. This is achieved by using the control code
PRINT CHR$(23) CHR$(2); which causes all subsequent
graphics commands to use AND.

01001101
AND 11100100

01000100

Figure 5.6 An example of the effect of AND.

The effect of AND is that a bit is set to 1 only if the
corresponding bits in the first AND second code are both 1;

110 Graphics Programming Techniques on the Amstrad CPC 464

otherwise the code is set to 0. We can delete points drawn
with PEN 1 by AN Ding with the code 10, as in Figure 5.7.
This also leaves overlap points in the correct colour, as in
Figure 5.8. Similarly, points drawn with PEN 2 can be deleted
by AN Ding with the code 0 1, as in Figure 5.9.

AND

AND

01 A point on a yellow line
1 0 crossed by a cyan line
00 gives a point in the background colour, blue.

Figure 5.7

11 A point on both lines
10 crossed by a cyan line
10 gives a point on the cyan line.

Figure 5.8

10 A point on a cyan line
AND 01 crossed by a yellow line

00 gives a point in the background colour, blue.

Figure 5.9

Let us now turn to drawing without disturbing points
already plotted. Suppose we are drawing using PEN 1. The
desired results at various points are shown in Figure 5.10.

Figure 5.10

Colour code at point Desired code after line drawn with
PEN 1 passes through point

00000000
0 0 0 0 0 0 0 1
00000010
0 0 0 0 0 0 1 1

00000001
00000001
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

Neither EXOR nor AND gives the required outcome. There is a
further graphics drawing mode which we have not yet met —
the 0 R mode. This is set by the control codes PRINT
CHR$(23) C H R$(3) ; and gives a bit result of 1 if either
one bit OR its corresponding bit is 1. We can draw with PEN
1 by ORing with the code 01. We can draw with PEN 2 by
ORing with the code 1 0, as in Figure 5.12.

We can now identify a sequence of graphics-drawing modes

Animation . . . Ill

OR
01001101
11100100
11101101

Figure 5.11 An example of the effect of 0 R

00 01 10 1 1
OR 10 OR 10 OR 10 OR 10

10 1 1 10 1 1

Figure 5.12

and colours that will draw/delete as required, as demonstrated
in this program, which moves a triangle across the screen:

10 MODE 1

2 0 INK 3,24

30 DEF I NT c,s,c ? x j y
40 X = 1 0 0 : >' = 10 0
50 xi=100:yl=20 S

60 C C 1 0 u r = 1 : c o 1 o u r 1 =

70 ty p e = 3:shade = 1
80 gosue 1000

90 G 0 SUB 2 0 0 0

100 t y p e = 3 s h a d e = 2

110 WHILE *<639
•1 ■“* p
X '4/ x = x + 4 ; x 1 = x { + 4

130 GOSUB 2000

140 G0SUB 1000

150 X = X - 4 : X 1 = X 1 — **
1 6 0 GOSUB 2000: x = x + 4 : x 1 = x 1 + 4

170 IF shade = 2 THEN s h ad e = 1 ELSE s h a d e = 2

180 WEND

189 REM INKS ba c k t o n o r m a 1
1 90 INK 1,24

200 INK 2,20

210 IN K 3,6

220 E N D

9 93 REM swap IN K s a r ound: foreground bee

cme s back g r ound
999 REM background becomes foreground

1000 IF co1our =1 THEN c o 1 o u r = 2 4 : c o 1 our 1 =

1 ELSE co1 our = 1:co1our1 = 24

1010 INK 1,c o1our

1020 INK 2,colouri

1030 RETURN

112 Graphics Programming Techniques on the Amstrad CPC 464

1998 REM routine dele tes/draws when t r ia

n g 1 e is hidden
1999 REM (ie when it is in the backgroun

d c o 1 o u r)

2000 PRINT CHR$(23);CHR$(type);

2010 MOVE x,y

2620 DRAW xl,yl,shade

203S DRAW ti+50>yl

20 4 0 DRAW *+53,Vl

205’0 DRAW >:,y
2060 IF type=2 THEN type=3 ELSE type=2

20 70 RET UR N

Line 100 temporarily moves the coordinates for the triangle
back to the previous position, so that it can be erased while it
is in the background colour. Line 120 switches between the
colours needed to draw/delete, and 2030 switches between
0 R and AND line-drawing.

We can apply the technique to our original animation of the
dog:
10 MODE 1
14 REM speed it up - use integers

15 DEF I NT c,s,t,x,y

1 3 0 u2 S Q 0 5 U 8

30 GOSUB

40 PRINT

2000

5 0 END
0 H R t (2 3) C H R 4 (0))

99 8 REM read in 2 sets o f 2 6 coord ina tes

999 REM for drawing 2 images of the dog

1008 DIM (ID©) , y (130)

1010 F0R coun t =1 T0 52
1320 REA D x (c o u n t) , y (c o u n t)

1038 NEXT

1043 RETURN
1058 DATA 0,0:20,40,20,40,10,80,10,80,0,

120,20,10,35,50,35,50,10,30,10,30,70,88

1060 DATA 60,0,30,40,80,40,70,80,30,10,9

5,5 3,9 5,5 G,70,80,70,80,90, 14 0,90, 140, 110

,120,110,120,30,110
1070 DATA 5,10,25,40,25,40,15,30,15,30,1

0, 120,0,15,3©,50,30,50, 15,80, 15,80,75,80

1030 DATA 75,30,85,40,35,40,65,10,75,80,

9 0,5 0,90,5 0,60,15,75,80,10 0,130,10 0, 13 0,

128,110,128,118,90,100

Animation . . . 113

•< Q .“t
X 7 7 7 REM set INK

EX Oh

2S30 IN K 3,24

2010 c 010 <j r = 1 : c 0 1

2020 typ e = 3:shade

292? REM draw fig

2030 GOSUB 4000
7 R A p a H- v_> GOSUB 5800
7 n 5. n t y p e = 3 : s h a d e

206S x 1 n a - g

2073 WHILE x(1)+ x

207? REM update x

f i g ciire

2380 •>/ i p 7 x V i T» 7 4- ’7 |7.

2089

o 1 o u r

REM draw rew

2 0 9 0 GOSUB 5000

2 0 9 9 REM switch I

2100 GOSUB 4000
*-. •» Of.
A A C T

r-. 1— M -j 1 A »-. ■
HC-l'l •-« w * w •- w r-

b ci c k g r 0 u n d c 01 0 u
2' 11 0 x i n c = x i n c - 2 0
o f •"? ra — -i. A LU GOSUB 5000
7 i 79 REM set xinc

e ri t f i g u r e

2130 x i n c = x 1 n c + 2 0

2140 IF s ha d e = 2 T1

2150 WEND

2160 RETURN

2999 REM d raw dog
4 Tt n r~i

a r- dint s

3000 FOR c 0 u n t = 51.

3310 M0 VE x(caunt
3 0 2 0

de

DRAW x(c 0 u n t■

3030 NEXT

3043 RETURN

T ’7 7 F” M _ A .-A T7. AS! — *■' i •— ■ : Ji

Z000
— - ..

iOi 0 T r-.- I-' " •- » ■ —■

as a series of c0 nneat

r t TO s t a r t + 2 5 STEP 2
+ x i n 7 , y (a 0 u n - ;

114 Graphics Programming Techniques on the Amstrad CPC 464

'S y 1 ~ t

1 9 9 9; P P M •./ y " y i j p - 1 C = ’ft C d 5 y d e <- r. e ’ 9 9

1 n g r d els t i r- g
5000 PRINT CHR$:23)CHRi(type):
5010 IF type + shade^ THEN ? c c ’ : = 1 ELEE s
t a r t = 2 7
502© GOEUB 3S00
5030 IF t y p e = 2 THEN p y p e = 3 ELSE tyPe = 2
5 S H- L RETURN

This gives a much smoother animation.

Exercises

1) Draw a series of circles in different positions in different
I N Ks and produce a 'bouncing ball' animation by switch
ing each circle between the foreground and background
colours.

2) Create two alternative 'keep fit' images of a stick figure
touching its arms to its sides and then putting them out
straight.

Creating foreground and background colours

Let us now consider another consequence of this manipulation
of I N Ks. This program draws two overlapping rectangles, but
this time they are both colour-filled, one in yellow and the
other in blue:

- - s q - - j -

10 M v D E 1
19 R E M y k e y e 1 1 q y c h e
u r
2S I NN -? y 4

3 0 P RI N T y H R t y —) ChR 1
4 0 X = 1 -• y = ■J. 0 0
50 X d = c j d = 1 0
EG I NK 1 ■■ *

■’D 0 1 Q □ r- - 1 G n 5 u B 10 0 y
3 0 X = 1 y 0 y = 1 2 0
-' 0 X. d = 1 S S d = c S
10?ii IN K y ! y 3
i 10 1 □ u r = y G a l: B 1 0 00

Animation . . . 115

1 2 2 2‘ ' - h ■
1 3 - 3 P E ~ - ■ F' ■

.23 PRINT 2 H R ?- 2 3 2 p R $ 0 :
13S END
9 9 9 PEN t i •» ■» h o 1 e ’ e ■- ■- a 9 1 e i
1300 FOR 1- C O O d = x TO Step

ISIS N 0UE c □ c ~ d , y

132S 2 9 3 2 F : 7 1 y -

If you run the program you will not be surprised to see that
one rectangle obscures part of the second. What is perhaps
surprising is that it is the yellow rectangle, which is drawn
first, which hides part of the blue one, which is drawn second!
This is the consequence of line 2 0, where we have essentially
said 'Make any overlapping area of the two colours appear as
yellow'. We have decided that yellow will be the foreground
colour and blue the background, and in any case where blue
and yellow overlap, yellow takes priority.

If we change line 2 0 so that any overlapping area is
displayed in blue, the blue rectangle now hides part of the
yellow one:

20 INK 3-2S

This ability to give colours a priority is very useful in games.
By suitable setting of the I NKs we can arrange the colours so
that a figure can pass over background features without
erasing them. More impressively, the figure can pass BEHIND
areas drawn in the foreground colour, emerging intact from
the other side, as we shall now demonstrate.

In Chapter 2 we looked at one of the simplest ways of
producing smooth animation, by using TAG and printing the
character to its new position. The effect when there is a figure
in the background is not unexpected:

10 MODE 1

23 x=230:y=130

29 REM draw and f i 11 re c tangle

3S F 0 R c o o r d = x TO X + 1 0 0 STEP 2

4 0 M0 VE x ooord,y

50 DRfiWR 0,100,1

6S NEXT

70 x p r i n t = 0 : y p r i n t = 180

116 Graphics Programming Techniques on the Amstrad CPC 464

7? REM text ar graphics cursor

83 TAG

8 ? REM P r i n t c haracter t o s u c c e s s i ,v e p o s

i t i o n s

?0 F0R xcoord= xpr i nt TO 4 00 STEP 2

108 MOVE >< c o o r d
110 PRINT CH Pt (

120 NEXT

138 END

The character wipes out part of the background as it moves.
Using a character with no 'border' on the left-hand side gives
even worse results:

10? REM character with no left-hand bond

er: a n a r r o w
110 PRINT CHR$(243);

The solution is to use TAG in combination with EXOR
printing. However, simply printing the character is not
enough:

10 M 0 DE 1
S3 x=23@:y=13S
2? REM draw and fill rectarg 1 e

3 Q F 0 R x c o o r d = x T 0 x + 1 8 8 STEP 2

40 MOVE xcoord,y

50 DRAWR 0,130:1

60 NEXT
70 x p r i n t = 8:y print = 18 8

71 REM EXOR 'Printing on

75 PRINT CHR.t ■(23) CHRt (1) ;

80 TAG
8? REM print charac ter to successive pos

i t i o n =•
?8 FOR xcoor d = xpr i n t TO 4 83 STEP 2

18 8 M 0 V E x c o o rd,y p r i nt

110 PRINT CHR$(243>?

128 NEXT
12? REM switch normal printing on

138 TAGOFF

140 PRINT CHR$(23)CARS(8);

158 END

This is even more of a mess! The reason for this rather odd
result is that the character is being EXO Red with another

Animation . . . 117

version of itself printed one pixel to the right — the resulting
combination after EXO Ring does not give the original charac
ter.

Let's devise our own arrow character with a border on the
left, as in Figure 5.13. The arrow will be printed at the start
position on-screen. Thereafter successive characters will be
E X 0 R printed one pixel to the right of the present position.
We must therefore define a second character which when
EXO Red with the original will result in a copy of the original
displaced rightwards by one pixel. This is easier to understand
in a diagram (see Figure 5.14).

Figure 5.13 A character with a border on the left.

We can find the character definition for the E X 0 R arrow by
examining the original arrow definition row by row and
working out what value this needs to be EXO Red with to
reproduce the arrow. This is easier to do using binary, as can
be seen in Figure 5.15, where we find the first number that will
be needed in the E X 0 R character definition. So the first line of
the EXOR character needs to be 2 4. We could continue in a
similar vein, but in fact there is a quicker way of doing it.
EXO Ring any binary number with a second gives a particular
result. EXOR the original number with the result gives the
second number back again. So we can find the new definition
more quickly simply by EXO Ring every line of the original
with the same line displaced one pixel rightwards, as in Figure
5.17. We can incorporate both the characters into a program to
demonstrate that the EXOR approach successfully leaves the
background intact:

118 Graphics Programming Techniques on the Amstrad CPC 464

original
arrow

character
(hidden)

I
I

I
I

second character
superimposed one
pixel to the right

T
I

l _ 1- _ 7 _ -1 __l_
1 1 1 1 1 • 1

—1 —. —1 —1 —1
1 I 1 1 1 1 1
1 1 1

. _ 1_ _ L _ J. _ _ '
i i i r i 1
1 1 1 . i 1 i

I 1 1 i
r- —

- - r - I- -

Figure 5.14 EXO Ring with a second character to create a copy of the first
displaced one pixel to the right.

I

_ _ L
I

Figure 5.16

00001000 Binary for first row of arrow character (8)
EXOR 00011000 needs to be EXO Red with this binary

number (24)
00001000 to give the first code displaced to the right

(8)

Figure 5.15

00001000
EXOR 00001000

00011000

Binary for first row of arrow character (8)
result we want after EXO Ring (8)
so we must EXOR with this number (24)

Animation . . . 119

00001100

00001100
00010100

Binary for second row of arrow character
(12)
result we want after EXORing (12)
so we must EXOR with this number (20)

00001110
EXOR 00001110

00010010

Binary for third row of arrow character
(14)
result we want after EXORing (14)
so we must EXOR with this number (18)

the same for the remaining rows of the character definition

Figure 5.t7 Finding the character definition required to produce a copy of
the arrow character displaced one pixel to the right following EXO Ring

34 REM define o r r o * c h a r o c t er f i r s t p r i n

ted

35 SYMBOL 240,3, 1 14,127, 127.’ ■i / -t r~:14, 1 , c

86 REM define EX OR a r r o w c h a r a c t e r
O *7 5 V M B 0 L 2 41,24 , 2 0 .» 1 O ? > 129 , 18,20,24
90 F 0 R x c o o r d = x p r i r I- T pt 4 0 •“ T EP 2
1 & 13 M 0 V E x c o o r d •. y P r -» ’n -5-

This opens the way to all sorts of impressive effects in games
programs. By combining TAG, EXOR and changing the I N Ks,
we can create a range of games characters that behave in
different ways. Perhaps the player's 'man' can move across any
yellow blocks on-screen, but not the blue ones; the fearsome
'ghosts' in pursuit can only cross the blue blocks; and the
'super-ghost' is not stopped by anything as it rushes in pursuit
of the 'man'.

It is important to remember if you intend to create a
character that it is still vital to have a one-pixel border, as the

120 Graphics Programming Techniques on the Amstrad CPC 464

character will otherwise leave a trail when it moves. The
border should be placed on the opposite side of the character
to the direction in which movement will occur. In the arrow
example a border was needed on the left because we were
moving right.

If you intend to move a figure in more than one direction
you will need to define an appropriate E X 0 R character for
each direction of movement, and use that character for
printing whenever a movement is made in that direction.

There is no need to confine yourself to single characters
(although they are easier to handle). This program creates a
three character 'car' and its three character E X 0 R equivalent.
The car is moved across the screen, driving behind the yellow
blocks and in front of the cyan blocks:

c o 1 o u r

IS MODE 1

ZB GOSUB 1000

3S GOSUB 2090

4S GOSUB 3S0S

5 0 T h G 0 F F

6 0 P R I N T 0 H R $ (Z 3) C H R $ (0) ;

7 0 END

998 R E M o v e r 1 a p .3 r ess will be in INK 3,

W h i ch is set to yellow

9 9 9 REM this mokes yellow the f o r e g r o u n d

100© INK 3,24

1 0 1 0 y =10S:co 1 our = 1

1020 FOR x=10S TO 500 STEP 50

1030 GOSUB 400S

1040 NEXT

1S50 RETURN

2B0S SYMBOL 240,0,15,28,124,127,15,12,0

201S SYMBOL 241,0,255,120,120,255,255,0,

©
2020 SYMBOL 242,0,128, 192,254,254,72,48,

S

2 030 SYMBOL 243,0,16,36.132,128,55,20,0

2040 SYMBOL 244,0,0,137,137,0,1,0,0

2050 SYMBOL 245,0,128,64,2,2,216,80,0

2S60 car$ = CHR$ (240)+CHRt(241)+ CHR$(242)

2070 exo r c a r $ = C H R $ (243) + 0 H R $ (244) + C H R i- (2

45)

Animation . . . 121

23 3 0 RETURN
3000 PRINT CHRi (23)CHRt (1) ;

30 IS T A La

3S20 x. p r i n t - 0 : Y P r i n t = 1 1 6
3S3S F 0 R x c o ord s x p r in t T 0 5 5 S S TER 2

30 4® MOVE x c oord,yprint

3053 IF xco ord=>:print THEN PRINT car$

L5E PRINT e x o ” c " t ;
3S5 5 r j. = ; WHILE r t = “ " : r j = T N K E Yi : W E N D
3S6 0 NEXT

30 78 RETURN

4 0 0 0 IF o u r =1 THEN c o 1 o u r = 2 ELSE c

u r = 1

4010 FOR <: oord=x TO x+30 STEP 2

4020 MOVE x Z n r d ■ y
4 0 3 0 DRfiWR S • 1 3 S , c o 1 o u r

4 S 4 0 NEXT

4 0 50 RETURN

Line 1000 is necessary to set the overlap area of cyan car and
yellow block to be yellow. Change the line to INK 3,6 (the
normal colour for P E N 3) and you will see the car turn red as it
passes the yellow block.

The effect is spoiled by the fact that the car reverts to the
background colour when passing over the cyan blocks. This is
because both colours being EXO Red are cyan, and EXO Ring
any binary number with itself always gives 0, the current
background colour.

0010 A cyan point
EXOR 0010 being overwritten by another cyan point

0000 gives a point in the background colour, blue

Figure 5.18

We could get around this problem by drawing the cyan blocks
in a different colour and setting the right INK so that the
overlap of car and block would not give this change in colour.
The problem here is that we have only four colours in mode 1,
and we are rapidly using up all the colours available! There is
much more latitude in mode 0, where 16 different colours can
be used, and we can redefine the PEN colours to give the
desired effect.

122 Graphics Programming Techniques on the Amstrad CPC 464

10 MODE 0

998 REM I NK 3 to ve 11 o w so cyan /yello w o

v e r 1 op g iVes yellow

999 REM so yellow is foreground c o 1 o u r

19 3 S INK 3,24

1001 R E M I M K 6 t o c y a n =. o c y a n / white ov e

r 1 a p g i v e s c y a n

1002 REM so white is background c o 1 o u r

100 3 INK 6,20

2 071 MOVE 0,0

2072 DRAW 0,0,2

4 0 0© IF c o 1 a u r =1 THEN colour=4 ELSE cola

u r = 1

In mode 0 each colour is represented by four bits. The car is
E X 0 R printed using P E N 2, and this can overlap either with a
yellow block (drawn with PEN 1) or a red block (drawn with
PEN 4). We therefore need to reset PEN 3 to show yellow (so
that the car appears to go behind the yellow blocks) and P E N 6
to show cyan (so that the car goes in front of the red blocks),
lines 1000,1001. You can reverse the priority so that the car
goes in front of the yellow blocks and behind the cyan by
putting:

9 93 R E M I N K 3 to c y g n s o c y a n y ells w o

rlap g i v e s c y a n

9 9 9 REM s o y e 11 o w 1 s b a c k g r o u n d c o 1 o u r

1300 IN K 3,2 0

1001 REM I N K 6 t o W h i 11, = o c y a n / w Hite

e r lap g i *v e s w Kite

1002 REM S C w Kite i 5 fareground c o 1 □ur

1003 I N K A ~ 6

0010
EXOR 0001

001 1

0010
EXOR 0100

0110

The cyan car
overlapping a yellow block
produces the code for PEN 3, red

The cyan car
overlapping a white block
produces the code for PEN 6, cyan

Figure 5.19

Animation . . . 123

0000
0001
0010
0011
0100
0101
0111

Blue - far background colour
Yellow - near background colour
Cyan - midground colour
Cyan - midground hiding near background
White - foreground colour
White - foreground hiding near background
White - foreground hiding midground hiding background

Figure 5.20 Creating background, midground and foreground colours by
setting appropriate INKS

One slight complication here is that TAG causes printing to
take place using the current graphics foreground colour. We
can't use a PEN command to change that colour any more,
because after a TAG the computer changes the colour only
when obeying a graphics command.

Before the car can be printed in cyan, the graphics colour
must be switched from white to cyan, and to do this we need
to issue a graphics instruction. This is the reason for lines
2 071 and 20 7 2 — without them the car is printed using the
current graphics colour, white.

Mode 0 offers plenty of scope for extending the foreground/
background idea, because of the range of colours available. We
can, for example, set up background, midground and fore
ground colours, as in Figure 5.20. Here the fourth bit set to 1
indicates the presence of yellow, the near background colour;
the third bit set to 1 shows the presence of cyan, the
midground colour; and the second bit set to 1 indicates white,
the foreground colour. Other combinations of bits show one
colour obscuring another.

By E X 0 R drawing, we can draw or delete lines in any of the
colours without disturbing overlapping or hidden lines in
other colours. For example, let's see the effect of EXOR on a
white foreground line hiding a cyan midground line which in
turn hides a yellow background line. Let's first delete the
white line (see Figure 5.21). What if we had deleted the cyan
midground line? (see Figure 5.22.)

0111
EXOR 0100

0011

White point hiding cyan hiding yellow
on deletion of the white foreground
the cyan midground is revealed

Figure 5.21

124 Graphics Programming Techniques on the Amstrad CPC 464

0111 White point hiding cyan hiding yellow
EXOR 0010 on deletion of the cyan midground point

0101 the white foreground now only hides the
yellow background

Figure 5.22

By examining the results of deleting one line from other
combinations we can determine the INK commands we need
to use to allow deletion of any of the lines without apparent
disturbance to the others. This can be seen in the following
program, which draws and fills in a white foreground
rectangle on a cyan midground rectangle, resting in turn on a
yellow background rectangle:

IS MODE B
20 GOSUB 1300

3 B G 0 5 U B 2 S 0 B

40 GOSUB 3030

53 PRINT CHR$(23)CHR$!0):

6S MODE 1

7S END
99 9 REM s e t PE Ns t0 P r 0duc e □p p r 0p r 1 a t e

I N K s

1 2 3 3 I N K 3 ■ 2 3
1010 INK 5;26

1320 INK 6,26

1033 INK 7,26

1343 RETURN

1 ? 9 p R E M d r ■ j w 3 r e c t c< q 1 e e 0 n t0 p a f e

h other
2 Q 0 0 x y e 11 a w = 10 3 y y e 11 o w = 4 S : sideyellow = 3
0 0

2 S 1 9 —y o n = 1 5 0 • y c y u r: = g g ■=. ide c y c< r, = 2 2 B

2 0 2 9 >' w hi t e = 2 6 S ; y w h 1 t e = 1 2 0 : 5idewhite=14 S

202? REM set EXOR graphics

2S3S PRINT 2HR4(23)CHRt(1):
2 0 4 g o o 1 0 u r = 2 ; x - x y ell c x : y = y y ell:,. e 1 d e = e

1 d e y ell: w

e w h i t e

2 3 50 GO SUB 4 03:0

2 3 6 B c a 1 □ u r = 2 ■ ■ = x c y a n : ■ - y C y X : EidS-EidSC

y n

2 0 P 0 GOSUB 400S

2 S 8 8 C01O U r- 4 : X = X WhitS: y = y w h 1 - E : E 1 d e = E i d

Animation . . . 125

2 0 9 0 G v S U B - G 0 E
21S0 RETURN
3006 WINDOW 1,20,25,25
3009 REM i n P u t c q- m p d r< d s
3810 w HILE ~esP ons si ‘ " e ”
3 0 2 0 I N P U T “ C c m m ci n d (y / c / w / e / " , r e s p o n s e $
3S29 R E M d r o w qr delete ye 11 o w :*■ e c t a ogle
3030 IF r e s f c n5e $ = " y « THEN co 1 o- u r = j : x = x y
ell o w : y = y y e 11 c w : s i d e = s i d e y e 11 □ w:GCiSUB 46
30
3 03 9 REM d d- w q - delete c y xn r ec t a n g 1 e
3 0 4 0 IF r e e p o n e e $ = “ c " THE N c o 1 o u r = 2 : >- = v c
y a n: y - y c y a n -. = i d e = s ide c y a n : G Q 5 U B 4 S S C
3 Q 4R E M d r o w o r delete w h i t e r e c t a n g 1 e
3 S 5 © I F r e s p o n s e i = ” w ” THE N cO10 U T = 4 : X= X w

h 1 t e : y = y whide: 5id e = S 1 d e w H i x e ; G 0 S U B 4 S S S'
3 S 9 0 W E N D
3 90 0 RETURN
4 O 0 E F C! R -- O tj “ d = X TO x + eid e STEP 4
4010 N 0 v E c o o r d , y
4 0 2 0 D R A W R 0 , s i d e , C 0 1 o u r
40 39 NEXT
4 04 0 RETURN

Line 30 2 0 enables you to draw/delete the yellow, cyan or
white rectangle by inputting the letter y, c or w respectively (e
to end). The effects in this program may surprise you — you
can delete or draw the yellow background rectangle and leave
the two rectangles that rest upon it completely untouched!

Exercises

1) Define a 'boat' using one or more characters, as well as an
appropriate EXOR character so that it can be moved
smoothly across the screen.

2) Extend the previous program by sailing the 'boat' across
some blue water, where it travels in front of a number of
large and menacing reefs that push up out of the water.

3) Add some grassy hills which the boat sails behind.
4) Sail another boat in the opposite direction. When the boats

meet, one passes behind the other.
5) Change the order of priority of the colours in the rectangle

program so that yellow becomes the foreground colour and

126 Graphics Programming Techniques on the Amstrad CPC 464

white the background. Only the yellow rectangle should
be visible at the start, and the white one should only
appear after the other two have been erased.

6) Add a fourth rectangle in a colour which becomes the new
foreground, white now being a fore-midground colour
and cyan a back-midground colour. Adjust the INKs so
that any of the rectangles can be drawn or erased without
affecting the others.

Chapter Six

... and artistry

In Chapter 4 we developed a program that enabled the user to
draw on the screen and save the resulting picture in a file for
future use. In this chapter we shall develop the program
further and extend its facilities, so that standard shapes can be
drawn and coloured in.

Selecting options from the MENU

The earlier program relied entirely on keyboard input. Most
programs of this type operate by displaying a MENU on
screen. This is a display showing the range of options
currently available to the user. Typical options might be to
rescale the drawing, select a new colour for shading, or draw a
circle or rectangle (see Figure 6.1).

Selections are made from the menu by moving the cursor to
the appropriate position on the screen. The computer notes the
position of the cursor and implements the choice indicated by
that position. This approach makes the program a lot easier to
use if the menu meanings are obvious: it is no longer
necessary to remember which key on the keyboard changes
the line colour, which indicates you wish to draw a circle, and
so on.

However, unless an alternative input device such as a
joystick is available, some controls must still be operated by
key depression: the most obvious being the movement of the
cursor and the fixing of a point. Additionally we shall leave the

Figure 6.1 A typical menu for a drawing program.

127

Load
or

save

Change
colour

Shade Clear
screen

Scale o z z

128 Graphics Programming Techniques on the Amstrad CPC 464

line-on/line-off choice as a keyboard control — it would be a
tedious business to have to move to the menu every time this
was changed.

Our new program will include options for selecting line
colour (any of eight colours, including the background colour)
and choosing to draw either single lines, a circle, a triangle or a
rectangle. A further menu option will be a 'toggle' between
colour-fill and no colour-fill, so that the user can either shade a
closed figure in the current foreground colour or leave it
empty.

Selection of a choice from the menu is shown by pressing
the 'f' (fix point) key once the cursor is in the right place. The
computer will beep to acknowledge the choice. It can be a bit
difficult to remember whether the circle-drawing mode is in
operation or what the current foreground colour is, so we will
provide a reminder. This will take the form of a character at the
bottom left corner of the screen, which will always reflect the
current situation. The menu itself will also be shown along the
bottom of the screen, although its positioning is a matter of
personal taste — you may prefer to run it down the left-hand
side or along the top.

As before, we begin with a basic program:
10 MODE 0

20 GC SUB 1000

30 GOSUB 2000

4 0 ENO

1000 = t a r t x = 320; s t a r t y = 2 "• 3

1 0 1 0 x = 51 a r t x : y = s t a -t y

1020 foreg r o u nd c o 1 our = 1

1030 linedr av-g

1037 REM P'i n t s y m bo 1 a t b o 11 o m i = f t 0

S h n «

1S33 REM current situation - i n f o $ •r t a r t

S Ci E y e 11 a w 1i n e

1039 REM bee a use a t start IN K u s e d i •=■ y e

1 1 o w a n d c u r s o r d r a w s 1 i n e c

104 0 info $ = cH R $(47s
10 5S LOCATE 1,24

1 S 6 0 PRINT infot ;

10 7 0 menux = 5:m e nu y = 24

107? REM define triangle, a n d c o 1 o u r - f 11

1 / n o - co 1 our-fill symbols

. . . and artistry 129

10S0 SYMBOL 240,0,2,6. 10 , 13,34,66,254

1090 SYMBOL 241,255,12 9 , 1 29, 129, 129, 129,

129, '".EC

1099 REM P r int sa m p 1 es o f c o 1 o u r s f r o o p

ENs 3 to 7

1 100 L 0 2 ATE men u >:, ~ e n u y

1110 PRINT CHRJ-(241) ;

1120 F 0 R - " 1 o u r = 1 T 0 7

1 133 p P N a 0 1 o u r

1143 PRINT CHRJ(143);

11 5 3 NEXT

1160 PEN 1

1169 REM print symb o1s for line, circle,

rec tangle, triangle. r? o - colour-fill

1170 PRINT CHR$(47)CHRi ;7?>(232)CHRt

(243) CHRJ- (241) ;

1133 PRINT >2HR$ (23) CHR$ ' 1) ;

1933 RETURN

199? REN Plot cursor at start position

20SS GOSUB 3090

2009 REN repeat until ' e ' pressed

2 S13 WHILE re s P o n s e $ < > * e ’

2S19 REN delete cursor via EXOR

2320 GOSUB 3030

2029 REM sea n k e y b card for i r, p u t

2S30 GOSUB 4303

2 0 3 9 REM d raw cu r so r

2043 G05UB 3303

290S WEND

2910 RETURN

2 9 9 9 REM routine t o d ra w. delete lines

3030 PLOT x , y , f o r e g r o u n d c a 1 o u r

3013 IF linedraw=0 THEN RETURN

3 0 23 DRAW s t a r t >■ , = t a r t y

3030 RETURN

39 9 9 REM rou1ine toscan keyboard for inp

u t and i m p1e m ent choice

4 0 00 response| = LOWER$ (I NKEY t')

4313 IF r esp on se1 = "a " THE N y = y + 2
4 02 3 IF res p o n se $= • z " the N y = y _ —r

4 3- 3 0 IF r e s p a n s e $ = “ , 11 THE N X = X _ *+
4 04 0 IF r e s po n s e $=•. ■ THE N X — X
4048 REM Space Bar de p r ess i o n fixes p o i n

130 Graphics Programming Techniques on the Amstrad CPC 464

4 04 9 REM if y c o o r d i n a t e high e n o u g h c n

s c r e e n

4B50 IF response^" « fiND y>31 THEN GOSU

B 5 Q 9 0: linedr a w = f o re grou n dc o1our

4©5 9 REM o-therwise Space Bar indica t es m

e n c h o i c e

4060 IF responses* " AND y<32 THEN GOSH

B 6 006

4©69 REM line draw on/off togg1e
4 S 70 IF r esp o n s e $ = • 1 * THEN IF linedr a w = 0

THEN linedraw = for e g roundcolour ELSE 1i n

e d r a w = Q

4 960

4 99?

5 009

501S
5 020

5630

5900

5999

m e n u

RETURN

REM permanent

PRINT

GOSUB
P R I N T

s t a r t x = x :

RETURN

REM me n u

f i X i n g

CHRt- (23/ CHR5- (S)

300 0

CHR$ (23? CHRt (1 /

starty = y

of line

reject if not on

6000 IF x(12S OR x>543 OR y<16 THEN RETU

R N

6010 SOUND 7,408

6019 REM x coord< 3 84 shows o co lour chan

ge is needed

6020 IF x<3S4 THEN foregroundco1 our = TEST

(x , v ? : GOSUB. 7000 : RETURN

6029 REM check x coordinate to deduce ch

o i c e

6 83© IF x < 4 1 6 THEN i n r o $ = C H P $ (47) ; GOSUB
7 00 0 : RETURN

6 0 4 0 IF x<44H THE N info$=CHR$(79) : GOSUB
7000: RETURN

6 S 5 B I F x< 43 0 THEN X n r o t- = c HRS (2 3 2/ : GOSUB
7803 :RETURN

6 0 6 0 IF x<512 THEN inf o$ = CHR$(2 40? :GOSUB
7000:RETURN

6069 REM must

ill toggle

be co 1 our - f i 11/r-o-co 1 our - f

6073 GOSUB 1500©
6080 RETURN

7800 PEN foregroundco1 our

7010 LOCATE 1,24

. . . and artistry 131

702 0 PRI NT inf o$

7S30 RET lJ R N

15000! REM coming up soon1

1 5 S1 E RET IJ R N

This enables us to move the cursor and to make choices from
the menu — although at present only the colour change
actually works!

A menu choice is indicated if the y coordinate of the cursor
is less than 32 when a point is fixed. Lines 40 50 and 4060
could be combined into a single I F . . .THEN .
ELSE statement, but are kept separate for clarity. Subroutine
6000 checks that the x coordinate is within the menu area,
and then implements the choice depending on that coordinate.
Subroutine 7000 prints the character i nf o$ to the bottom
left corner of the screen: this string variable is changed
whenever a new menu selection is made, so that it is always
the right colour and symbol.

Adding the standard shapes is relatively straightforward,
but we must think carefully about how these choices are
implemented. Circle-drawing is not very fast, as we saw in
Chapter 3, and so it would be unwise to continually draw/
delete a potential circle using EXOR, as the program would be
unacceptably slow. Once the circle option is selected, it
operates as follows: the first point fixed is taken to be the
centre of the circle; the point next fixed is taken as a point on
the circumference of the desired circle; the circle is drawn with
a radius equal to the distance between the two points.

EXOR drawing of a triangle or rectangle is feasible as only a
few lines are involved, but the two options need to work
slightly differently. Once the first point on a triangle has been
fixed, we still have no idea where the remaining points will be,
but this is not the case with the rectangle. Once the first corner
has been fixed, the position of the remaining corners depend
entirely on where the diagonally opposite corner is placed. The
rectangle option therefore involves the fixing of just two
points. The first point is taken to be one corner of the
rectangle, and the second that of the corner diagonally
opposite.

Both the triangle and rectangle drawing options involve the
movement of the cursor, but whereas previously EXOR

132 Graphics Programming Techniques on the Amstrad CPC 464

r------------------

I I
I 1

1 I

1 I 1

I I

' I I
1 I 1
>------------------.--------------------------------- J

I

* - fixed point
O - some of the possible positions

of the diagonally opposite corner
— - unfixed lines

Figure 6.2 Fixing the position of a rectangle by identifying just two corners,

drawing has only involved a single line, here we need to draw
and delete a number of lines simultaneously. These options
would therefore need to be entirely separate subroutines that
call the censor movement subroutine but not the line draw/
delete subroutine used the rest of the time. We shall settle for a
simpler approach where selection of the triangle or rectangle
option results in the shape being drawn only once an
appropriate number of points have been fixed. This is less
attractive than the constant display of the (potential) triangle
or rectangle by E X 0 R drawing, but this is left as an exercise for
the reader.

4 ? ? 9 REM chec k f or c i r c 1 e/ rec t ong 1 e / tri o

ng 1 e ® e n u c h o i c e
5000 PRINT CHR$; 23? CHRtUBj ;

5301 IF circleiS THEN GOSUB SSSS

5002 IF rectangle}0 THEN GOSUB 9000

500 3 IF t r i c< n g 1 e > 0 THEN GOSUB 1000 0
5S1S GOSUB 30S©

. . . and artistry 133

\
\
\
\
\
\
\
\
\

* - fixed point
O - unfixed point

— - unfixed lines
--------- fixed lines

Figure 6.3 Before the third corner of a triangle is fixed, two of its sides could
be in any position.

5 020 PRINT C H R $ < 2 3) C H R t- (1) ;
5030 startx = x:st art y = y

5900 RETURN

5999 REM menu choice - reject if not on

m e n u
6600 IF x<12S OR x>543 OR y<16 THEN RETU

RN
6010 SOUND 7,400

6019 REM x coord < 3 8 4 shows a colour chan

ge is needed

6 02 0

(x , y)

IF x

: GOS

<384 THEN foregroundcolour=TEST

UB 7000:RETURN

6029 REM c h e c k x coordinate to deduce ch

o i c e

6030 IF x < 4 1 6 THEN info$=CHR$(47):GOSUB

7000: RETURN

6 04 0 IF x < 4 4 8 THEN info$=CHR$(79):GOSUB

7 0 0 0 : c i r c le = l :RETURN

6050 IF x <48© THEN info$ = CHR$ (232) :GOSUB

134 Graphics Programming Techniques on the Amstrad CPC 464
7 0 0 0 : r e c t a n g 1 e = 1 ; R E T U R N

6060 IF x(512 THEM info$=CHR$(240):GOSUB

7000:t r i a ng1e =1:RETURN
606? REM must be colour-fill/no-co1 our-f

ill toggle

6070 GOSUB 15000

6080 RETURN

7000 PEN f oregroundco1 our

7010 LOCATE 1,24

7020 PRINT infos

7025 IF *<384 THEN RETURN

7 029 REM new menu cHoice - cancel pr e vio

u s ch oice
7030 cir c1e = 0

7940 t r i a n g 1 e = 0

7 0 5 0 rectangle=@

7060 RETURN
7??? REM circle-drawing r o u t ine: centre

and pa i nt on circumfer enc e requi r e d

S000 IF circle^ THEN circ1e = 2 RETURN

8S0? REM if we get here we have 2 points-

needed and can find radius
8010 xd- ABS (x-st ar t x) :y d = A B S (y-s tart y)

g020 radius = 5QR (x d * x d + yd«•y d)

8 0 3 0 M 0 VE start x,start y + r a d i us
8040 FOR angle=0 TO 2*PI STEP PI/60

8050 DRAW startx + radius*SIN (angle) ■start

y + r a d i u s w C 0 S (a n g 1 e)

8860 NEXT
8070 DRAW s t nr t x , s tar ty-t-r adius

8088 PLOT startx,starty,0

80S? REM set flag back to 1 for next cir

c 1 e
3 0 ? 0 c i r c 1 e = 1

8108 RETURN
3 ? ? ? REM rectangle-drawing routine: t wo

c or ne r s required
9 S 0 0

URN

PS 10

9020

90 30

9S40

9 B 5 0

IF rectangle=l THEN rectang 1e = 2:RET

M 0 V E s t a r t x , s t a r t y
D R A W R x - s t a r t x , 0 , f o r e g r o u n d c o 1 o u r

D R A W R 0 , y - s t a r t y

DRAWR startx-x,0

DRAUR 3,star ty-y

. . . and artistry 135

9S59 REM set fl a g bock to 1 for r>ex t rec

t a n g i e

9 g 6 g r e c t angles 1

907Q RETURN

9999 REM triangle-drawing routine: three
Po i n ts requirej

1030 3 IF triangles! THE N trin n g 1 e = 2 :x:1= x

.■ y i=y ; return

1001© IF triongle=2 THEN triongle=3:RETU

RN

1002© MOVE x-i

13030 DRAW startx.starty.foregroundcolou

r

10040 DRAW xl., yl

10050 DRAU x,y

100 5 9 REM set flog bock to 1 For next tr

i a ri g 1 e

10060 triong1e=1

10070 return

15003 REM corning up soon1
15010 RETURN

The selection of the circle-, rectangle- or triangle-drawing
option is indicated by setting a flag to 1. Subroutine 7000 is
extended so that selecting any option sets the flag for the
others to 0 — otherwise the computer might try to draw a
triangle AND rectangle, for example! Line 70 2 5 is included
because we don't want to reset the flags if the menu choice has
only involved a change of colour.

As the three figure-drawing options will only be im
plemented once the right number of points have been fixed,
the check for these options is placed within the point-fixing
routine, subroutine 5 000. If the flag for a particular option is
greater than zero, the appropriate subroutine is called, lines
5001-5003.

The figure-drawing subroutines at 800 0, 9000 and
10000 all have one thing in common. If the number of points
fixed since the option was selected is not yet great enough, the
flag is increased in value by 1 to indicate another point fixed,
and the subroutine then ends, lines 8000, 9000, 10000
and 10010. Effectively the flag is also used as a counter to
show how many points have been fixed. Two points must be

136 Graphics Programming Techniques on the Amstrad CPC 464

fixed before the circle or rectangle options can work, and three
points are needed before the triangle option can operate.

Once the right number of points has been fixed the
subroutine draws the figure and sets the flag back to 1. This
means that once, for example, the circle-drawing option has
been chosen, circle will continue to be drawn until another
option is chosen from the menu. Don't forget this — it's very
easy to try to draw a line while in rectangle or triangle mode,
with unexpected results!

The structure of the program means that you could use the
same approach to add further figure-drawing options to the
menu, to make it easy to draw ellipses, diamonds, etc.

Exercises

1) Extend the range of colours displayed by the menu to 10 of
your own choosing.

2) Introduce a 'clear screen' command onto the menu. This
clears the entire graphics area to the current foreground
colour.

3) Add a new figure-drawing option which allows the
drawing of arcs. You will need to specify three points: the
centre of the circle of which the arc is part, and the start
and end of the arc.

Colour it in

We now come to the colour-fill routine. The Amstrad does
have a command that enables large areas to be filled with a
colour, the WINDOW command, but unfortunately this is
related to text coordinates only. We must therefore devise our
own method for colouring a graphics area.

It is clear that to be completely sure of filling a closed figure
with colour we will have to examine the state of every point
within the figure. We will tackle the problem in stages, first
devising a routine that will colour every point on a line and
then extending it.

Suppose we choose an arbitrary point within our figure. We
can colour all points that lie on the same line in two stages.
First, the point to the left of the present position is examined

. . . and artistry 137

•<--

direction of plotting

O - start point
• - plotted point
@ - edge point in non-background colour

Figure 6.4

using TEST. If it is in the background colour, the point is
plotted in the present foreground colour. This point becomes
the new 'start' point, and the point to its left is examined. The
process is repeated until a point in a non-background colour is
encountered — this must be the edge of the figure (see Figure
6.4).

Effectively a line has been drawn from the initial point
leftwards to the boundary of the shape. The remaining points
on the line can be coloured by repeating the whole procedure
from the start point, only this time points to the right are
successively examined. The following routine carries out the
line-filling using the procedure described:

IS MODE 0

19 REM draw your own shape here - th i s i

5 a t r i a rig le

lines from t he m

20 MOVE 2 0 © , 1 0 0

36 DRAW 453,350

4 0 DRAW 340,480
53 DRAW 230,100

54 REM choose 10 random points and plot

55 FOR court t = l TO 10

59 REM random point within the triangle

60 rand = INT(RND (1) * 2 3 0) :xhere=210 + rand:y

h e r e = 11S + r a n d

70 foregroundcolour=l:yfi11=yhere

79 REM fill points to left of the point

30 xinc=-4:xfill=xhere

90 GOSUB 1S300

93 REM naw points to right -

t s tart point i t s e 1 f
d o n 1 t f o r g e

138 Graphics Programming Techniques on the Amstrad CPC 464

99 REM so begin one place to left
10© x i nc = 4 : x F i 11 =xhere-4

11® GOSUB 1S0S0

120 NEXT

130 END

17 999 REM check po in t by po i n t to the 1 e
ft o r ri g h t

1 3 S 0 0 t=0:WHILE t = E

18S10 x f111=x f111 + xinc

13020 t = T E S T ■ x F _ 5
X X

-
X y F i 1 1)

18023 REM if t= 0 p 0 i Ti t is i Ti b G c k g r o u n d

colour

13029 REM and s o u S t be Plott e d

18030 IF t=© TH EN p L T f
V I •• • ill, y f ill,Foreg

r o u n d c o 1 o u r

18040 WEND

13050 RETURN

Subroutine 1 8 0 0 0 is called twice with different increments to
the x coordinate: initially the increment is —4 (examining
points to the left) and then +4 (examining points to the right).
(Note that this increment will vary with the mode — the
resolution in mode 1 is higher and an increment of +/—2
would be required.)

You can confirm for yourself that the routine always works
by drawing a different shape at the start and setting x here and
y here to any coordinates within the figure.

What happens if the point lies outside the figure? Unfortu
nately the TEST command is of little help here, and one of the
Amstrad's other capabilities works against us. If the initial
point is not within a closed figure, the Amstrad will carry on
examining points to the left, even when they go off-screen!
The TEST command regards a point off-screen as being in the
background colour, and the computer, treating its examination
of points as unfinished, will carry on taking 4 from the x
coordinate even if the x coordinate has become —1000!

There are several ways around this. We can include a test on
the value of xfill:

5 9 RE M '■ cs r-. d o re p o i n t deliberatel y outside
b b p h T- * p nip

1S0G© t = © : WH I LE =0 AND x F i 1 1 > 0 AND xF i 1

1 <639

. . . and artistry 139

This obviously slows the program down, as the x coordinate
for every point must be tested. An alternative approach which
is faster is to draw a 'frame' around the edge of the screen. The
computer will stop plotting points when it reaches the edge of
the screen as the next point is in a non-background colour.

Our routine for filling in single lines is now complete. How
can we extend it so that it fills a figure? One way is to examine
the points immediately above and below the line we have just
filled. If a point is in the background colour, its coordinates can
be stored in an array to make sure it serves as the starting point
for another line drawn later (see Figure 6.5).

0©OOOOO
@000000

o•••••••
@0000000

these points have their coordinates
stored in an array so they can
be coloured later

O - points in background colour
• - plotted point
@ - edge point in non-background colour

Figure 6.5

It might seem that we need only continue testing points
until we find one in the foreground colour, but some shapes
require the testing of every point, as in Figure 6.6. Only some
of the vertical parts of the figure would be coloured unless
every point above the line was checked. The checking of every
point is rather time-consuming, and we here have to make a
choice between efficiency and perfection. Do we want a fast
colour-fill routine which sometimes fails, or a slower routine
which will always colour the points within a shape, no matter
how convoluted it is?

An imperfect routine which nonetheless successfully fills
many shapes involves the checking of only 4 points:

c o 1 o u r e d p o i n t s

1 S M A r> F 0

1 4 REM array to hold coordinates of nc

15 D I M < 3 SB) , y (3 B 0)

19 REM dray your own shqp e here
20

33
s tart x = 1 5 E : s t art y =150.
M0 V E st a r t >;, s t a r t y

40 DRAWR 100:3

140 Graphics Programming Techniques on the Amstrad CPC 464

- - - - most recently plotted line
1 - points just above the line here will be coloured
2 - points just above the line here are already coloured, so checking will go

no further
3 - points here are uncoloured and will remain so unless every point above

the plotted line is checked

Figure 6.6
50

60
7S
7 8
t

D R A W R

DRAWR

DRAWR
REM x

7 9 REM w i t H i n the s h a p e
80 >; = 2gg:y = 2g0

9© foregroundcolour=t

1S0 Q05UB 15090

110 PRINT CHRt >(23) CHR$ (0) 5

999 END

15008 begin=2:fini3H=i

15910 xFill=:x : y f i 1 l=y

1 5 0 2 0 x (2) = ■< : y (2) = y

15030 PRINT CHR$(23)CHR$(0) ;

1504© PLOT x,y,8

. . and artistry 141

15 9 5 0 G 0 S U B 16 S @ S
1 =. g i f GOSUB 17300

15070 PRINT CHRt(23)CHRt(1);
15080 IF circ1e>R OR rect ang1e> © 0 R tri a

n g 1 e > f') THEN FL0T x , y , f oregroundco 1 our

1 5S90 RETURN

15999 REM check colour of present point

16000 X h E r E — X f ill : y h 8 F 6 = Y f i 1 1
16S10 IF TEST(xfill,yfill)<>0 THEN RET UR
M
i M

16 020 x i n c = - 4
16029 REM check co1our of all points to
tie 1 e, F t-

16030 G 0 SUB IS© 0 ©

16040 x f i 1 1 = x h e r e - 4 : y f i 1 1 = y h e r e
16049 REM check colour of all points to

11 = r i gh t

16050 x i n c = 4

160*0 GOSUB 18000
16070 R E T U R N
1 9 9 9 REM keep checking points in list u

n t i 1 the y're all done
•? “? p p p WHILE begin ■; (finish+1) m 0 r- 3 g 1?

17010 x F i 1 1 = x (b e g i n) : y fills y (b e g 1 n)
17820 begins(begin+1)MOD 300

1 7030 GOSUB 16000

1704 0 WEND

1 7 0 5 0 R E T U R N

17 9 9 9 REM check p01nt by point to the 1e
ft or r i g h t

18000 t=0:WHILE t=0

18010 X f 1 1 1 = X f 1 1 1 + X 1 Fi C

13020 t = T E 5T(x fill,y f111>

18030 IF t = 0 THEN PL 0 T xf 11 1 ,y f11 1 ,f 0 r e g

r o u n d c 0 lour
18040 IJ r MF w u. < w L-

18050 x fi 11 = x fill-xinc:yfill=yfiii-2
18059 REM if point on line below.is net

colour e d, save 11
1806 8 IF TEST (xf i 11 , yf i x ! :i =0 then GOSUB

19000

18870 yfillsyfill+4
1307? REM if point on line shove i

colonr e d , sav e it
n o t

142 Graphics Programming Techniques on the Amstrad CPC 464

1808S IF TE5T(xfill,y f ill)=0 THEM GOSUB

193 00

188 93 R E T U R N

18999 REM store c o□rdi notes c f u nco1oure

d pci nt so it can be c o 1 o u r e d late r

19003 f i n i s h = (F i n i s h + 1) MOD 303

19010 X(finish)=Xfill: y(f i n i s h)= y f ill

19020 R E T U R M

Try running the program with a variety of different shapes. It
only examines points diagonally above and below the ends of
the present line. As a number of lines will be filled, the
coordinates of their ends are saved in the arrays x(), y(). Two
pointers, 'begin' and 'finish' indicate positions in the array;
'begin' gives the number of the array elements containing the
(x,y) coordinate of the next point to be examined, and 'finish'
gives the number of the next 'free' array elements in which the
coordinates of new non-coloured points can be stored.

For example, after the first line has been drawn, it is quite
likely that the four points above and below the line will be
found to be in the background colour, and their coordinates
will therefore be stored in the arrays x() and y(). Subroutine
17000 successively examines each point whose coordinates
are in the array, and subroutine 16000 sets up the examina
tion of points on either side of this. The points are coloured in
subroutine 18000, until a point not in the background colour
is found, line 18030, when the search ends. Lines 18050 to
18080 then check the colour of the points diagonally above
and below the end-point, and subroutine 19000 stores them
if it turns out they are in the background colour.

Lines 17000 and 19000 contain a MO D because the arrays
are treated as circular. Obviously we cannot know how many
coordinates the computer needs to store, and 300 seems a

*
0 • • •

*

*

• • • @
*

® - edge points
• - plotted points making up the line
* - points whose colour is checked

Figure 6.7

. . . and artistry 143

reasonable number. A large and complicated figure might
require more, however, but we can avoid having to set up an
even larger array by re-using the earlier elements. This will not
result in any loss of data: by the time we need to use the lower
array elements again they will have been examined and are no
longer needed.

The routine fills 90% of a circle, but fails towards the top and
bottom where the arc contains short horizontal lines. These are
examined and found not to be background points, and the
program abandons the colour-fill because it appears to have
reached a boundary line. We can avoid this problem with very
little deterioration in speed simply by examining two more
points:

19 REM r e c t ang1e with a v e r 11 c o 1
20 s t a r t = 1 5 @ : s t a r t y = L5@

3 0 M OVE 5 t a r t x , =■ t o r t y

4 0 DRAWR 100,0

5 0 D R 4 U R 0,100

5 5 D R A W R -10.0

5 6 DRAWR 0 , 5 0

5 7 DRAWR - 6 0,0

58 DRAUR 0 , - 5 2

60 DRAWR -3S , 0

7@ DRAWR 0,-100

1 6 0 0 0 x h e r e = Fill: y h e r e = y fill

i 6 0 1 0 IF TEST(xf i 11 , y f i 11) < > 0 THEN RET UR

N
16020 X. i f! C = — 4

16029 R E M c h e c k c o 1 o u r o f Ci 11 P a i n t ■=. t c
tie left

160 3 3 GOSUB 18300

16031 REM keep c o o r d i n a t e s O F left end o
F lme
16332 leftx=xfill

16040 x f i11=xhere-4 .- y f 111 - r h ? r e

16049 REM check colour of all points to

t i s r i g h t

1 6 0 5 S i n c = 4

16060 GOSUB 1S000

16061 REM keep coordinates of ri gh t end

o F li n e

160 6 2 rightx: = xFill

144 Graphics Programming Techniques on the Amstrad CPC 464
16 06 3 R E M f i n d mid-poin t o f 1 i ’■ e o n d c h e
c k

i 60S** REM P O i H t s a b □ v e and be 1 ow m i d - P 01
n t a =• we 1 1

16 06^ X f 1 11 = (1 e f t x + r i g h t X) 2 : y f 1 1 1 = y h e r e

1606 6 ▼ fx r TEST (x fill , y f i 11)=R THEN GOSUB
X 7 cJ-
1 6 3 6 7 y f i 11 = yhe r e *- 2
16065

19008

t r- T E 5 T (x f i 11 , y f i 11)= 0 THE N G 0 S U B

1 6 c 6 9 PPM t h i s 1 =• n ; t p e r f e c t, b u t i t ■' s b
e tr t ■

1 6 0 7 0 rn p -r ; ; r. x;
u r. >-4

This successfully fills circles, and only fails on shapes with
vertical branches which join the main region at a horizontal
line. The position of the initial point makes a difference as to
how much of the region is coloured. If any failure occurs the
remaining area can be filled by using a new start point, so the
routine seems to offer a good compromise between speed and
perfection. It can be incorporated into the main program as
follows:

15 DIM x (300) ,j (30S)
5031 IF fill=l AND circle=0 AND rectangl

e=0 AND triangle=0 THEN GOSUB 15000

6069 REM must be colour — fill/no-colour-f

ill toggle

6S7S IF fill=l THEN fi11=0:fi11$=CHR$(24

1) ELSE fill=l:fill$=CHR$(233)

6030 LOCATE 17,24

6090 PRINT fillt-;

6100 RETURN

8091 IF f i11 = 1 THEN x=startx:y=starty:GO

SUB 15000

9061 IF Fill=l THEN x=(x+startx)/?:y=(y+

starty)/2:GOSUB 15000

10061 IF fill=l THEN x=(x+startx+x1)/3:y

= (y + starty + yl)/3 .-GOSUB 15803

10071 REM then add the fill routine from

line 15000

18072 REM to line 19020

Colour-fill is implemented beginning at any point fixed after

. . . and artistry 145

the option has been chosen. Colour-fill may be operating at the
same time as the circle-, rectangle-, or triangle-drawing
options, in which case the figure is drawn and automatically
filled in by the computer choosing a start point within the
figure, lines 8091,9061, and 10061. The other possibility
is that colour-fill is being used to fill some other shape, and
this is catered for in 5 031. Note that you must switch
colour-fill off if you wish to be able to draw lines — the
program will otherwise interpret the fixing of a point as the
position for start of colour-fill and try to fill the screen with
colour!

Exercises

1) As individual points are plotted in the colour-fill routine,
it is easy to use combinations of colour to fill a figure by,
for example, toggling between different foreground col
ours at line 1803 0. Add a menu option to allow
colour-fill with a mixture of any two colours selected from
the rest of the menu.

2) A flaw in the present program is that colour-fill stops as
soon as any point not in the background colour is
encountered. This would make it impossible to colour-fill
any shape that has been drawn on an area already
colour-filled — a blue door could not be coloured against
the background of a red house, for example. Modify the
program so that colour-fill fills any figure, no matter what
other colours are present.

3) Extend the colour-fill algorithm in the direction suggested,
so that it will work perfectly for any shape.

Save the masterpiece

Now that we can create a colourful picture it would be nice to
save it. In Chapter 4 we stored details of the coordinates of
points and lines in several arrays which were then saved as a
file. The same approach could be applied here although the
program would require some modification: we would need to
know if points were used in the circle- or rectangle-drawing
options, and we would also have to note if a figure was

146 Graphics Programming Techniques on the Amstrad CPC 464

colour-filled or not.
An alternative is to save a copy of the entire screen display

instead. When we want to view or extend the latest master
piece, it can be loaded back onto the screen and we can carry
on drawing using the usual menu options. This method has
the advantage that it can be used with the program as it stands.

Saving the screen is only a particular example of the facility
that the Amstrad has for saving a copy of a section of computer
memory. As we have noted previously, the screen display is a
representation of part of the computer RAM. By saving the
appropriate memory locations we effectively store a copy of
the screen on tape.

The Amstrad needs some information to save a copy of the
memory: where the section of memory starts and how long (in
terms of bytes) the section is. This information is also saved,
and so there is no need to provide it when loading back into
the computer.

The routine for loading and saving are easily incorporated
into the program, being called from the keyboard by depress
ion of 'i' (for input) or 'o' (for output) respectively:

4980 IF response|=“i" THEN GOSUB 11800

4099 IF response*=“o* THEN GOSUB 12000

1099? REM set up window so that picture

is not disturbed

1100© WINDOW 1,29,24:,25:PEN 1
11010 PRINT "To load a picture w

11020 INPUT "Picture name"; p i c tune *
11030 LOAD picture*
11040 CLS

11049 REM set window to whole screen

print menu a gai n
11950 WINDOW 1,20,1,25

11060 GOSUB 1090

11070 RETURN

12000 WINDOW 1,29,24, ••PEN 1

12010 PRINT "To save a picture"

12020 INPUT "Picture na me•;picture*

12029 REM save Picture from top left

a t i o n to bottom right
12039 SAVE Picture*,B,&C990,&3FCF

12049 CLS

12059 WINDOW 1,29,1,25

. . . and artistry 147

12060 GOSUB 1006
12070 RETURN

Subroutine 12 000 carries out the saving of a screen file. It is
vital that the picture is not overwritten by messages as the
screen is saved, so a window is set up at the bottom of the
screen, temporarily obliterating the menu. Line 1 2 030 saves
the picture: B ‘indicates a binary file (the format required for
saving a section of memory), 8C000 is the hexadecimal
address of the start of screen memory, which happens to be
83 F C F bytes long. Once the file has been saved the menu is
redrawn and the program continues.

Subroutine 1 1000 loads a picture, and is very similar to the
save routine, although the LOAD command at 1 1030 has a
much simpler format. Loading a picture is quite intriguing:
the picture is not built up from top to bottom as one might
imagine, but as a series of widely separated 'strips' across the
screen. This is a reflection of the complexity of the screen
organisation, where numerically consecutive memory loca
tions are often several screen lines apart.

Exercises

1) Add a 'zoom' option to the menu, so that the picture can
be redrawn to a different scale. (You may prefer not to
colour-fill any scaled figure, to speed things up.)

2) Add a routine which allows you to input text from the
keyboard, and then position it on-screen.

3) Modify the program so that any of the non-flashing
colours in mode 0 are available for drawing.

Chapter Seven

T ransformations

Transforming a shape

In earlier chapters we have seen how points can be moved and
then fixed once they are in the desired position on-screen.
However, we may well wish to move not a single point, but a
complete figure, and the movement may not always involve
simply shifting the entire figure one pixel in the required
direction. In many situations it is useful to be able to carry out
a series of TRANSFORMATIONS on a figure.

We have already met the simplest transformation —
TRANSLATION, which is the movement of a point or number
of points in a single direction. Essentially all our keyboard
controls to move up, down, left or right cause the translation of
the point or character concerned one pixel in that direction. We
can easily extend the previous program so that entire figures
can be transformed:

1 REM based on the 'drawing progam' of c

h a p t e r 4.

2 REM ahan g e/a d d the following 1in es

3 REM to the earlier program

4 REM nate all other options will work b

u t y o u 0 a r ' t

5 REM change the co1our af the f1gure

6 REM a d d t h a t f o r y o u r self ‘

63 REM read data for figure

6 4 RE M f1gur e 1s fl ag - set to 1 w h en f1

g u r e 1s mo v e d

65 f1gure=S:movef1ag=0:GOSUB 9000

2009 REM on1 y delete point if we're not

m o vi ng a fig ur e

2S1@ IF figured THEN GObliB 1808

2065 REM fix figure by pressing space Ba

r

148

Transformations 149

2070 IF respon=e$=" " THEN IF Figure=0 T

HEN GOSUB 3000:1iredrawsForegroundco1 our

ELSE Figures©

2077 REM draw./delete F i g u r e i F Flag set
2080 IF Figure=l THEN GOSUB 10000 ELSE G
OSUB 1000

2083 REM draw Figure when ’ F' pressed
2085 IF response$ = " F “ THEN GOSUB 1000; IF
moveflagsg THEN GOSUB 11000:moveF1ag=1

2086 IF responsejs“F" THEN x=x(nooflines

) : o 1 d x = x : y = y (n o o F 1 i n e s) : o 1 d y s y : F i g u r e = 1

8 999 REM read data For Figure
9000 READ nooFlines

9010 FOR ccuntl=l T 0 n o o F 11 n e s
9020 READ x (count!) , y (c o u n 11) , (c o u n 11)
9030 NEXT

9040 RETURN

9049 REM dot a t o d r aw hexagon
9050 DATA 7 , 300, 100 ,0,400, 100, 1 , 490,190,
1,400
■i

, 23© .-1,300,280 ,1,210,190, 1 ,300,100,

9997 REM only draw/ delete f igu r e From o1

d P O £ i 11 O r{

9998 REM i F it has been moved
9999 REM translation routine

10000 IF oldxsx AND oldysy THEN RETURN

10009 REM delete old Figure

10010 GOSUB 11000

10019 REM calculate change in position

10020 changexsx-oldx:changey=y-oldy

1003 0 o1d x = x:o1d y = y

10039 REM update all coordinates

10040 FOR 1oop =1 TO nooFlines
10050 IF changex=0 THEN y(1oop)=y(1oop)+

changey ELSE x(loop)sx(loop)tchangex

10060 NEXT

1006? REM draw Figure to new position

1007© GOSUB 11000

10080 RETURN

10999 REM draw Figure routine
11000 FOR 1oop = 2 TO nooFlines

11010 IF 1 (1 o o p))■ 0 THEN MOVE x(loop),y(l

oop) : DRAU x (1 oop- 1) , y (1 oop -1) , 1 (loop)

11020 NEXT

11030 RETURN

150 Graphics Programming Techniques on the Amstrad CPC 464

Translation is the simplest transformation to program, but it is
a 'one-off' in the sense that the approach used is not applicable
to any other transformations such as the rotation of a figure. A
more generalised method is to use MATRICES.

Matrix transformations

We can rotate, enlarge or reflect any figure that we can draw
simply by multiplying the coordinates of all the points on that
figure by an appropriate matrix. I will give a brief resume of
matrix multiplication, although an understanding of it is not
essential to use the programs that follow.

Two matrices can be multiplied by multiplying the numbers
in every row of the first matrix by the numbers in every
column of the second matrix, as in Figure 7.1. The answer on
the right is achieved by adding together the results of the
multiplication of each element in the row of the first matrix by
the elements in the columns of the second. The first matrix
might contain more than one row or more than two columns,
but in this case we are considering the transformation of a
single point with just two coordinates.

(3 5) /2 4\ = (3x2 + 5x1 3x4 + 5x2)
I1 2)

= (11 22)

Figure 7.1

A variety of different matrices of the second form can be
used to, for example, rotate a point clockwise by 10 degrees, or
enlarge a figure by a factor of 1.5, etc. Because the result of the
matrix multiplication has the same form as the original
2-element matrix, we can transform the new figure still further
if we desire, by multiplying it by a different transformation
matrix as in Figure 7.2.

(11 22) /1 2> = (11x1 + 22x3 11x2 + 22x2)

r 2I
= (77 66)

Figure 7.2

Transformations 151

= (77 66)

/2 4\ ,1 2\ = /2x1 + 4x3 2x2 + 4x2\
|l 2| I 3 2j (1x1 + 2x3 1 x2 + 2x2]

= (14 12,1 7 6(

(3 5) ,14 10, = (3x14 + 5x7 3x12 + 5x6)
I 7 6|

Figure 7.3

In fact we can simplify the process still further. We could get
the same result by first multiplying our two transformation
matrices together, and using this new matrix to carry out the
transformation of the original point all in one go, as in Figure
7.3.
The main disadvantage of using 2x2 transformation matrices
is that it is not possible to represent translation as a 2x2
matrix. This prevents us from adopting a completely general
approach. Whereas we could reduce the whole series of
matrices needed to enlarge, rotate and reflect a figure to a
single matrix, translation stands outside the system. We can
extend the matrices to 3x3, in which case translation can be
incorporated using an appropriate matrix. As we are already
familiar with one approach to translation, we shall retain the
2x2 matrices at the cost of having to treat translation as a
special transformation not amenable to the same matrix
manipulation as the other transformations.

Rotation

Two matrices can be used to rotate a point respectively either
clockwise or anticlockwise about the origin, as in Figure 7.4.
Comparing the results of the multiplication we can see that the
only difference is in the signs of the matrix products. If we
denote clockwise rotation by setting the variable 'rotate' to —1,
and anticlockwise rotation by setting 'rotate' to 1, we have a
single equation that produces the coordinates for rotation in
either direction, as in Figure 7.5.

Triangle 1 is rotated clockwise to 2 by 30 degrees by:

Triangle 1 is rotated anticlockwise to 3 by 20 degrees by:

,3 4 l cos 30 -sin 30\ = ,4.6 2.0
4 4 sin 30 cos 301 5.5 1.5

\3 6/ \ \5.6 3.7/

and rotation anticlockwise by degrees:

3 4, / cos 20 sin 20> = 1.5 4.8,
4 4 | |-sin 20 cos 201 2.4 5.1

\3 6 '0.8 6.7'
In a imore general form rotation clockwise by 0 degrees is given by

(X y) cos 0 -sin 0^ = (xcosH + ysin0 - xsin0 + ycos0)
I sin 0 cos 0/

(x y) / cos 0 sin 0\ = (xcos0 + ysinO - xsinB + ycosB)
-sin 0 cos 0

Figure 7.4

newx = oldx x cos0 + rotate x oldy x sin0
newy = -rotate x oldx x sin0 + oldy x sin0

Figure 7.5

We can extend the previous program that enabled us to
translate a figure so that it can also be rotated:

Transformations 153

r e

2083 REM draw F i g u r e w h e n F •’ pressed

2S84 REM t u r n f i g u r e w Hen ' 4- ‘ pressed

2085 IF r e s p o n s e $ = M F " 0 R n e s p o n s e $ = " t" T

HEN G0 5 U B 1 0 0 0 - T C fT? O V e f 1 a g = J/! T HEN GOSUB

11000:moV eflag = 1

l- S o a i r e s p □ n s e ? = “ f " 0 R r e S P □ n s e $ = " t “ f

H E N x = >' (n 0 G f 1 i i" e S) : O 1 d X = x : V = y (n c o f 1 i n e s

:01dy=y:I F res P o n s e ?• = " f5 THEN f i g u r e = 1

2087 IF r e s p g n G x n b n THEN GO □ UB 12000

12 0 0 0 REM we' 1 1 use t his in a minute!

12007 REM S e b C 0 8 a n d 8 I N t r> c c e p t d e g F

ees

1 2 Q 0 8 R E M r o t a ti o n i s t c- de g f e e i n b e f V

g 1 =

1 200? REM F G r C+ d i F F e r ent i •r- 4- e r v a 1 c h a n g

e lines 1 2 U 2 @ ? 3 0 > 1 0 S

12010 DEG

12020 tra Ti 5 F o r mx = C08 (5

12030 tra n s f o r m y 1 = C 0 S (5)

120 4 E1 r- o t s t c< p $ _. « «

12049 REM c o n t i n ij e t u n n i n g f i ■3 u r e u n t i 1
' t' p r ess e d a g Ci i n
120 58 W HI L E F 0 t S t 0 p ? < h .j> n

1206 0 rot stop? =L0WER$ (INKEY $)

1206? REM s e b ■ rotate •’ t O i nd i cate dire c
ti on of t u r t?

1207 0. r o t a b e = S

12079 REM t u r f. a n t i - a r c 1 o c k w i S e i F ■’ a

0 F ‘ C '' P r e s 5 e d

12080 IF r o b 5 b o p ? = " a ” THE N r o t a t e = - 1

12090 IF r o t s t n p $ z “ r “ THEN r o r a t e = 1
12100 IF r o t a t e(> 0 TH P M A A C tn :J Vp UB 11000:tra y-

s f o rmy = 51 N (5) 4 rotate t r a n s f or h xl=-SIN (5 ■;

« r o t a t e : G 0 8 U B 13000:G 0 SUB 1 © ©

1211© WEND

12119 REM f e s b o r e a r i g i n a 1 PO i n b
f •*? ! "> <7» A A C HP, '? ft Q i/i■u ■-/
1213© RET U R N

12998 REM gene r a 1 t r a n s F o r ni G b i o n r o u 11 n P

12999 REM (e x c p p 7 F □ F the s pe i a 1 case Q

f t r a n s 1 a t i o n)

1300© FOR loop = 1 TO n o o f 1 i n e s

13010 xl= X (1OO P) - c e n t r e h : y 1 = y (loop)-o e n t

154 Graphics Programming Techniques on the Amstrad CPC 464

13020 x (1 o o P) = t r ci c s f a r m x w x 1 + t r a n s f o r m y w y
1 + c e n t r e x
130 3 0 y (1 o o P) = t ’■ a n 5 f o r m x i w x 1 + t r a n s f o r m y 1

•11 c e n t r e y

1304 0 N E X T

1 3 0 5 0 R E T U R N

Note that rotation is about (0,0) only. It is more useful to be
able to choose our own centre of rotation, and this is fairly easy
to cater for:

subroutin e

12000 GOS UB 14 00 0

13997 REM to s e t centre for rotation

13 9 9 8 REM no t i C E similar ity to 2030-60

139 99 REM c o u 1 d be r e w r i 11 e n as ano ther

14 0 00 cent re $ =’”

14010 GOSUB 1000

14019 REM scan keyboard until cent

e d b y 1 r '

14020 WHILE centre$<)T"

14030 G0SU B 1000

14 04 0 centret = LOWER$ CINKEYt)

14049 REM move centre up/down/left

/ 8 t C

14 0 50 IF cen tr e$ = " a " THEN y = y + 2
14060 IF cent r e $ = ” z " THEN y = y - 2

14 0 70 IF centre$=“!" THEN x = x-4

14080 IF centre$=“.“ THEN x=x+4
14090 G0SUB 1000

14100 WEND

1410? REM record centre coordinates and

delete point

14110 cen t r ex = x cen t rey = y : GOSUB 1000

14120 RETURN

Enlargement and reduction

We saw in an earlier chapter that enlargement or reduction of a
figure was relatively straightforward, although at the time we
had no control over the centre of enlargement. Using the
matrix method we can introduce some interesting enlarge
ments involving a variation in the scale factor in the x and y
directions, which will stretch the figure concerned along its x
or y axis, as in Figure 7.6. Let's add this facility to our program:

Transformations 155

8 -

7-

6 -

5-

4 -

3 -

2 -

1 -

----------- 1------------ 1------------ 1------------- 1------------ 1------------ 1------------ 1------------ 1------------ 1------------- r-

01 23456789 10

Triangle 1 can be enlarged to 2 by:

Differing values on the diagonal result in ‘stretches' parallel to one of the axes:

In a more general form, scaling or stretching is given by:

(xy) /n1 0 j
>0 n2J

(n1 xx n2 x y)

Figure 7.6

207 7 REM d r a w /' d e 1 e t e Figure if fl a g set
2085 IF figure=l THEN GOSUB 19000 ELSE G

■0 SUB 10 0 0

2SS2 REM scale figure when 's' pressed

208 3 REM d r aw f i g ur e whe n ■ F' p r e s s e d

2084 REM turn figure wher ' t’ p r esse d

288 5 IF response1= “ f " 0R re s p ar.se$ = • t “ o

R response$ =“s“ THEN GOSUB 10 0 0 : IF movef

1 a 9 = 9 THE N G 0SU B 1100 0:ma ve F1 a g = 1

2086 IF respQnse|="f“ 0 R res parse$ =“t“ o

R r e s p a n s e s = “ s " THEN '< =x(rooflines) : o 1 d ;■<

156 Graphics Programming Techniques on the Amstrad CPC 464

= x ; y = y (r- o o f 1 i n e s) : o 1 d y = y : IF res P O n s e $ = " F

" THE N Figune=l

208 7 IF res P on s e $ = " t" THEN GO SUB 120 00
20 8 8 I F r e s p o n s e $ = “ s* THEN GO SUB 15 000
15300 RE M we'll use this i n □ m i n u t g
15010 t r a n s F o r m y = 3
15023 tr an s formx 1 = Q
15830 s c a 1 e s t o p t = ' "

1 5 0 3 9 R E M c o n t1 n u e s c a ling f i g u r e until
P r e 5 s e d

WHILE scalestop $< > ’ s "

sea 1estops = LOWERt(INKEYS)

REM

REM

80
REM

scale factors can be changed b

m □d i fy i ng the v slues in lines

IF s ca lestcp$=3e then

' s '

15040

15350

15357

y
15058

15078

150 59

11 n g

150 60

15069

s e d

150 7S

1,1:tnans f o r a y 1 = 1 , i

15 0 7 9 REM redo ct ion by

d

1 5 0 8 0 I F s c a 1 e s t o p $ = ' r

3.9; t rans Fo rm y1=0,9

15090

GO SUB

15100

1 5 11 3

1 5120

IF transFormx<>0

13080:GOSUB
WEND

GOSUB 1030

R E T U R N

As before, it is better
enlargement/reduction:

ii

S .9 if presse

THEN

THEN

11000

if we can

GOSUB 11000:

select the centre of

n

1 . 1 if ‘ e ' pres

t r a n s f o r m x =

■ r >

t r a n s f c r m x =

15000 GOSUB 14000

Reflection

Reflection in the x or y axis can be carried out using the
matrices shown in Figure 7.7. As with rotation, these are
essentially the same matrix. We can only see the reflection if
we move the axes, of course, otherwise the result will be drawn
off-screen!

Transformations 157

(xy) (J -?)
(xy) (-; ?)

(x -y) (reflection in the x axis)

(-x y) (reflection in the y axis)

Figure 7.7

2081 REM mirror image when 'm ■' pressed

2082 REM scale figure w h e n ■' s ■' pre s s e d

2083 REM draw figure when ' f ■' P r e s s e d

2084 REM turn figure when ■'t ■’ P r e s s e d

208 5 IF T esponse$ =* f " OR re s p o n s e $ = " t “

R r e s p o n s e $ = H s “ 0 R r e s p o n s e $ = “m" THEN G

SUB 1000: IF movef1ag=0 THEM GOSUB 11000

m o v e f 1 a g = 1
■—r 086 IF r e s p o n se$ = ” f ” OR p e s F’O n s e $ = ” t11

R •r- t* = p p. v-i <= e $ - “ s " 0 R r e s p o n s — II m“ THEN x

x n o ft f 11 n e s) : o 1 dx = X : y = y (n c □ f 11 n e s) : o 1 d y

y F r e s p o n set = " f II THE N f 1 g u r e ~ 1
9 0 Q •? IF r e s p o n set = H t " THE N ij 0 s UB 12000
n 0 p 8 IF r e s p o n s e $ = u s “ THEN G OS UB 15000

X 5 9 7 6 REM the a x i s of ref ■» X 8 C t 1 on can on

y be horizontal

a n s f o r m y 1 = 1

16060 WEND

15997 REM or vert i ca 1 — i n dicate its P o s

i t i o n b y

x J 7 7 k_‘ REM moving the point and then pre ■=
c > X ' o r ' y '

15999 REM to s e 1 e at the a x i s

16000 GOSUB 14000

16010 a x i s $ = ” ”

16020 WHILE a x i s t <>" x“ ftND axis$<' \ II II

16030 a x i s %■ = L 0 W E R t (IN K E V t)
16040 IF ax is$ = " x " THE N tr an s f or ni x = 1 : t r a

n s f o r m y 1 = - 1

16 0 5 u IF a x i s $ = " y " THEN transforn1 X = — 1 : c F

16070 G0 S U B 110 00 :GOSUB 13000:GOSUE! 1108

16 03 S G 0 5 U B 13 0 0
16090 R E T U R N

Reflection in a specified line is trickier, and involves other
transformations.

158 Graphics Programming Techniques on the Amstrad CPC 464

Shearing

Shearing involves a movement parallel to the x or y axis: the
amount of shear at a point depends upon the distance from the
shear axis:

2034 REM 'push' figure (shear) when ’p’

pressed
2085 IF response** " f " OR response** " t • 0

R response**“s • OR r e s p o n s e * ■ " m " OR resp
onse*="p" THEN GOSUB 1000;IF moveflag=0

THEN GOSUB 11000:mover lag* 1

2086 IF response** " f ’ OR response**"t“ 0

R response**"s" OR response**"m’ OR resp
onse*="p“ THEN x = x (noof1ines) :oldx = x:y = y

16998 REM shear routine very similar to

(n o o f 1 i n e s) : o 1 d y = y : IF response**" f " TH

f i g u r e = 1

2037 IF response**■ t" THEN GOSUB 12000
2388 IF response**“ s " THEN GOSUB 15000
2089 IF response**" m “ THEN GOSUB 16000
2090 IF response**" P " THEN GOSUB 17000
2095 WEND

reflection
16999 REM again these could be combined

to one routine
17000 GOSUB 14000

17010 a xis * =““
17017 REM shear by 1 unit for

distance

17018 REM from the axis - you

his too much

17019 REM if so make 17020,30

17020 transform**!

17030 transformy1=1

17039 REM scan keyboard until

s selected

every unit

m a y f i n d t

fractional

x or y ax i

17040 WHILE axis*O“x* AND axis*O"y"

17050 axis*=LOWER*(INKEY*)

17060 IF axis*="x“ THEN transformx1=0:tr

ansformy=l

17070 IF axis*="y" THEN transformx1=1:tr

ansformy=0

17080 WEND

Transformations 159

Exercises

1) The transformations in the program are all carried out on a
figure whose coordinates are read from DATA statements.
Add routines to the transformation program so that you
can first draw a figure on-screen and then transform it.

2) Modify the program to include an option so that the
previous positions of the figure remain on-screen when it
is transformed. (This can produce some interesting pat
terns.)

3) The various transformation matrices can also be used to
good effect to produce patterns. We touched on this in
Chapter 4, when we saw that repetitive rotation and
enlargement of a figure gives some striking results. Write a
program which allows you to specify a transformation or
series of transformations to be carried out on a figure. You
are also able to choose the number of times the transforma
tion will be repeated on the new figure which is drawn.
Once you have completed your specification, the computer
carries out the transformations repeatedly, and displays all
the figures which result. You might like to draw each
figure in a different colour for a better effect.

4) CAD (Computer-Aided Design) programs often contain
standard shapes on a menu. The user can 'pick up' the
shape from the menu, when it becomes attached to the
cursor, move it to a position, and then fix the shape. Write
a simple CAD program which simplifies the drawing of a
house. Include as standard shapes several types of door
and window. (Add enough detail so that each of these are
different, but not so much that it takes an inordinately
long time to be redrawn at a new position.)

Index

AND 109-110
animation 26-28, 82,101-114
ASCII codes 19, 33, 91-92

background colours 114—126
bar charts 63-68

shaded 66-67
3 dimensional 67-68

bit 20-22
BORDER 10
byte 20-26

character set 19-20
characters

multiple 34—41
user-defined 23-24,26-31

circle drawing 69-71
colour-fill

for a line 72,136-138
for a closed figure 139-145

colours available 7
colours, priority of 114—126
coordinates 2

graphics 3-4
text 2

DEFINT 41
DRAW 4
drawing on screen 87-100

enlargement 99-100,154—156
EXOR 90-100,107-111,116-126

faster programs 41-43
flashing colours 12
foreground colours 114-126

graphs, point and line 50-62

hexadecimal 25-26
high resolution 6

INK, changing 15-17
INK, in animation 104-114
INK numbers 9

INKs, priority of 114-126
INKEY$ 88
integers, use of 41-42

Lissajous figures 80-81
LOCATE 2,33-35
low resolution 7

matrices 150-151
medium resolution 7
menus 127
midground colours 123-125
MODE 1
modular programming 49
Moire patterns 78-79
MOVE 4

OR 110-114

PAPER colours 11
patterns 76-87
PEN colours 11
pie charts 69-75
pixel 8
PLOT 8
polygon drawing 84-85

reflection 156-157
resolution 42
rotation 84-87,151-154

saving
a file 97-98
a screen 145-147

scaling 99-100,154-156
shearing 157-158
SPEED KEY 96-97
spirals 81
strings 31-37
SYMBOL 23-24
SYMBOL AFTER 24

TAG 39-41
TAGOFF 41
TEST 43-45

160

Index 161

TESTR 45-48
transformations 148-159
translation 148-150

variables, use of 49
vertical resolution 42

WINDOW 89

Other titles available from Micro Press:

15 GRAPHIC GAMES FOR THE
SPECTRUM

Richard G. Hurley
0 7447 0002 7

GRAPHIC ADVENTURES FOR
THE SPECTRUM 48K

Richard G. Hurley
0 7447 0013 2

SPECTRUM SUPERGAMES

Richard G. Hurley
0 7447 0017 5

MAKING THE MOST OF YOUR
SPECTRUM MICRO DRIVES

Richard G. Hurley
0 7447 0005 1

THE SPECTRUM OPERATING
SYSTEM

Steve Kramer
0 7447 0019 1

MASTERING THE TI-99

Peter Brooks
0 7447 0008 6

ADVANCING WITH THE
ELECTRON

Peter Seal
0 7447 0012 4

QUALITY PROGRAMS FOR THE
ELECTRON

Simon
0 7447 0004 3

THE ATMOS BOOK OF GAMES

Wynford James
0 7447 0018 3

QL SUPERBASIC: A
PROGRAMMER'S GUIDE

John Wilson
0 7447 0020 5

THE QL BOOK OF GAMES

Richard G. Hurley
0 7447 0022 1

QUALITY PROGRAMS FOR THE
BBC MICRO

Simon
0 7447 0001 9

EDUCATIONAL GAMES FOR
THE BBC MICRO

Ian Soutar
0 7447 0016 7

INTERFACING AND ROBOTICS
ON THE BBC MICRO

Ray Bradley
0 7447 0023 X

BBC MICRO DISK DRIVES

R. D. Bagnall
0 7447 0028 0

BASIC PROGRAMMING ON THE
AMSTRAD

Wynford James
0 7447 0024 8

MACHINE CODE FOR
BEGINNERS ON THE AMSTRAD

Steve Kramer
0 7447 0025 6

THE COMMODORE 64 BOOK OF
SOUND AND GRAPHICS

Simon
0 7447 0015 9

BASIC PROGRAMMING ON THE
COMMODORE 64

Gordon Davis & Fin Fahey
0 7447 0026 4

PLUS/4 MAGIC FOR BEGINNERS

Bill Bennett
0 7447 0031 0

GRAPHICS PROGRAMMING
TECHNIQUES ON THE AMSTRAD

CPC 464
Good graphics are central to many programs and this book
describes how you can exploit the excellent facilities offered by the
Amstrad CPC 464 to the full. The example programs include
routines which you can readily incorporate into your own software.

Areas covered include arcade games and the animation of simple
figures, drawing and saving of colourful pictures, the construction
of bar charts and pie charts, the scaling and transformation of
shapes, and many other exciting applications. Every chapter
includes suggestions for further programming based on the
examples provided.

The Author
Wynford James writes education material (including software) for a
major microcomputer company. Prior to that he was a technical
author for ICL. He has also taught mathematics and was actively
involved in the development of computer studies throughout his
school.

Amstrad and CPC 464 are trademarks of Amstrad Consumer Electronics PLC

gb 4. net +007•^5

ISBN 0-7447-0DB7-2

II 0 0 7 9 5

9 780744 700275

	Graphics programming techniques on the Amstrad CPC 464
	Contents

	Introduction

	Basic graphics

	The screen display

	Adding colour

	Codes and characters

	The Amstrad CPC464 character set

	Games

	Graphs and charts

	Point and line graphs

	Bar charts

	Pie charts

	Exercises

	Patterns and pictures

	Moire patterns

	Lissajous figures

	Spirals

	Repetitive patterns

	Rotating shapes

	Exercises

	Sketching on the screen

	Animation ...

	Moving line-drawings

	Creating foreground and background colours

	... and artistry

	Selecting options from the MENU

	Colour it in

	Save the masterpiece

	Transformations
	Transforming a shape

	Index

	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

