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Chapter One

Introduction

The Amstrad CPC 464 is perhaps the most exciting new computer
to appear since the Sinclair Spectrum. It offers many advanced
features from Basic which could previously only be accomplished
by vastly more expensive machines, as well as a capacity for
expansion at reasonable cost equal to that of almost any other
home computer.

The real breakthrough for the programmer, however, is
Amstrad’s decision to document and release details of the
operating system. This is a hitherto unprecedented addition to
the documentation available for a home computer from the
manufacturer, and it offers a real opportunity for the user to learn
machine code programming the easy way, and get results almost
immediately, by the use of calls to the operating system.

No longer is there the chicken-and-egg situation, that if you do
not understand machine code you cannot use it, and if you
cannot use it you cannot find out how to understand it on your
computer, because you don’t know how to make the computer
respond.

This book is intended for the beginner wishing to learn how to
use Machine Code on the Amstrad CPC 464. It will progress from
the concepts of programming in machine code, explaining the
instructions that the Z80 Central Processing Unit — or CPU for
short (the silicone chip that does all the work in the computer) —
understands, and how to use them, as well as introducing some
of the routines in the operating system at various stages through
the text.

Two complete machine code novices have assisted in the
writing of this book, and their questions and problems form the
basis for its structure. They have also helped to ensure that no
information or detail which is so obvious to those in the know
that it is almost second nature, and fundamental to being able to
perform some function in programming, has been omitted. This
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2 Machine Code for Beginners on the Amstrad

is so often the failing which can leave a novice stranded, like
directing someone to a place by telling them that it is on the
corner of the High Street by Woolworth’s. If they don’t know
which High Street or where the High Street is, it doesn’t help
much.

Short listings are given to help in entering machine code
programs and to inspect and alter or move the contents of part of
the memory. It is strongly suggested however, that you buy the
Amstrad Assembler/Disassembler program. This will allow you
to enter the code as mnemonics (a sort of shorthand for the names
of the instructions the CPU understands) instead of by numbers.
It will also allow editing and is much nearer to BASIC in the way
that programs are entered.

Whilst it is obviously possible to sit down and read this book
from cover to cover, machine code is such a potentially confusing
subject, and so many new concepts are likely to be introduced,
that it is suggested you sit down in front of your computer and
enter and execute (preferably not by hanging) programs when
they appear in a chapter. Only once you are sure that you follow
what is happening should you progress.

Extensive use is made of the machine operating system, in
order to allow results from programs to be seen immediately. The
ability to do this is thanks to the Amstrad Firmware Specification
(Soft 158) which, although it would probably be almost totally
meaningless at this stage, will be a valuable addition to your
library once you have finished this book and understand the
concepts explained.

The Z80 CPU is one of the most widely used CPUs in the home
computer market and, until very recently, was often the main
CPU in many business machines. It offers access to the widest
variety of software in the world through the medium of CP/M
(short for Control Program for Microcomputers), and Amstrad
are providing CP/M with their disk drives. The Z80 is also
starting to appear as a second processor in business machines, as
well as being available as an add-on for the BBC model B, the
Commodore 64 and the Apple and its look-alikes. The skills that
you will learn from this book are therefore likely to be of use if you
have occasion to program other computers in machine code.



Chapter Two

What is Machine
Code and Why Use it?

The CPU in your Amstrad computer is basically a very stupid
creature, it runs all your BASIC programs very well and does its
job excellently but it is stupid none the less. What makes it seem
so clever is the firmware, the programs that are running all the
time the computer is switched on. In its unmodified version the
Amstrad is running an Operating System and the BASIC inter-
preter.

The operating system deals with such tasks as looking to see if
any keys are being pressed, loading from the cassette or putting a
character on the screen. You could imagine it as being in charge of
all communications, and if it were not present you would have no
way of knowing whether your computer was dead or alive,
because you could not give it any information and it could not tell
you anything.

The BASIC interpreter is literally that, it translates BASIC into
the language the CPU understands. Imagine for a moment that
someone tells you to turn to page 35. No problem, you just turn to
page 35, but what if you were told #. Now you are in
trouble, not only do you not know what to do, you probably don’t
even recognise the form of the instruction.

This is like putting yourself into the position of the CPU and
giving it a BASIC command to execute. The CPU has no know-
ledge at all of BASIC, but it goes even further than that. The
Chinese above uses one symbol to represent something that
when transferred into English takes several symbols, it says
Tsung. Still not much help is it even though you can read it?
Translated it means ‘to sow seed without first ploughing the
ground’. This is similar to the difficulty the CPU would
experience if asked to deal directly with BASIC. One BASIC

3



4 Machine Code for Beginners on the Amstrad

instruction often represents many machine code instructions and
worse, the characters used by BASIC cannot be understood by the
CPU, which only recognises two states, ‘on’ and ‘off’.

Fortunately the ‘on’s and ‘off’s are grouped into sets of eight,
which gives 256 different combinations. It is these combinations
that are used in machine code. You could think of them as the
Chinese characters shown earlier.

The problems do not end there however; since one character
represents a complete word and there are only 256 possible
combinations, the CPU would seem to be limited to a vocabulary
of only 256 words. This is nearly correct but, as in English, some
words are made up of more than one smaller word.

Key board, for example, would be likely to conjure up a picture
of a board in an hotel for hanging keys on, whereas a keyboard is
what you will find on your computer. Here the two words have
completely different meanings when together and when
separate. Some words however can have their meaning subtly
altered by the addition of a prefix, able, enable, and unable, or
justice and injustice, for example. In each case the latter part has
the same meaning but its direction is altered by the first part. The
Z80 CPU has some word structures which use these types of
construction. The problem of a limited vocabulary however
remains.

This limitation does not constrain the concepts that it is
possible to convey, but just means that more words are needed to
say what you want to say in some cases. The start of this
paragraph, for example, could have been written: This not
having many words does not put an end to being able to put over
all the ideas that can be put over when there are many words . . .
same meaning but more words, rather repetitive and not very
good English.

Machine code therefore tends to require a lot of simple words,
or instructions to do the equivalent of one BASIC keyword, but
there is no limit to the ways in which machine code instructions
can be put together, and sometimes this means that machine
code requires less instructions than BASIC.

With BASIC every time you run a program the interpreter
checks each command and makes sure that it is valid, then it
translates it into a series of machine code instructions which the
CPU then executes, any results are then checked to make sure
they are what was expected and saved for further use. All this
takes time.
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With machine code however there is no error checking, no time
taken translating, and nothing is saved unless you tell the CPU to
save it.

To demonstrate the time saved, enter the BASIC program
below. First though, if your computer is already switched on,
turn it off and back on again to make sure everything is ‘virgin’.

10 MM = 43903

20 MEMORY 43799

30 FOR N = 43800 TO 43809 : READ D : POKE N,D : A = A + D: NEXT

40 IF A <> 1338 THEN CLS : PEN 3 : ? "DATA ERROR" : PEN 1 : EDIT
0

50 INFUT "PRESS ENTER TO START";A : B = 2535

&0 ? "A"3: B=B -1 : IF B <> 0 THEN &0

70 ?

80 CALL 43800

90 DATAR 6,255,62,65,205,90,187,16,251,201

100 EN

Note that ? is used instead of PRINT to save time.

Once you have entered the program type RUN and press the
enter key. If all is well you will be asked to “PRESS ENTER TO
START”, otherwise you will be presented with line 90 in ‘edit’
mode, because you have made a mistake in typing in the DATA.

When the enter key is pressed 255 ‘A’s will be printed by the
BASIC in line 60, hotly pursued by a further 255 ‘A’s printed by
the machine code routine you have ‘POKED’ into memory with
line 30, and CALLed with line 80.

Whilst this is not a very exciting program it does show the
speed of machine code.

If you count the number of characters used by the machine
code routine (remembering that each item in the data statement is
one machine code character) you will find that there are ten, of
which the last, the 201, is only there to tell the program to return
to BASIC. The BASIC program however uses thirty-seven
characters if you include the spaces and not the line number.
Even if it had been written without any unnecessary spaces it
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would have taken the equivalent of twenty-five machine code
characters’ worth of space.

You can check this for yourself if you wish by adding the
following lines to your program:

110 PEN 3: FOR N = 520 TO 430 : A = PEEK (N)

120 ? As: IF A = 32 THEN 150

120 IF A > 32 AND A £ 129 AND B <> 1 THEN PEN 2: ?: 7N

140 IF A » 32 AND A < 129THEN PEN 1: 2 CHR$ (A)i: FEN 3: B = 0
150 NEXT

160 PEN 1

170 END

When run this will display the values held in the memory
locations where the BASIC program is held in red. If there is a
valid character represented by the number it will be displayed in
yellow. You will be able to identify the start of line 60 by looking
for the “PRESS ENTER TO START”’; in line 50, following on until
you come to 0 60 in red < in yellow and 0 in red. The 60 0 are the
line number and the number before the first 0 is the number of
characters in the line. The number in light blue at the start of each
line on the screen is the number of the first memory location in
the screen line.

The first thing you will notice is that the only characters that
have been stored in the same way as you put them in are “A”’; all
the remainder have been reduced to a sort of code that the
interpreter finds easier to handle. Every time you typelL1sT it is
the interpreter that translates these numbers back into what you
entered.

The upshot of all this is that the machine code program was not
only quicker, but also more economical in terms of memory used,
and these are the two main advantages of writing programs in
machine code. In fact a program in BASIC can run up to about a
hundred times slower than its machine code equivalent.

The main disadvantages however are that programs are almost
totally incomprehensible and therefore difficult to debug, and
that they tend to be long in terms of the number of instructions
required, relative to BASIC or another high-level language.
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The comprehensibility of machine code is greatly aided by the
use of assembler and disassembler programs, and these are
discussed in the next chapter, and while normally there is no way
to overcome the problem of the large number of instructions
required, with the Amstrad CPC 464, use can be made of sub-
routines in the operating system. Thanks to Amstrad’s fore-
thought in making the details available, you have already been
able to do this if you entered the program earlier, and the major
proportion of the instructions for most programs have already
been written for you, by Locomotive Software, when they wrote
the operating system.



Chapter Three

First Concepts

Before embarking on the world of machine code, there are some
concepts that may be new to you and, as it is important that you
have at least a rudimentary understanding of these, they will be
briefly explained here.

Hex and Binary

Hex and Binary are different forms of counting, binary to base 2
and Hex to base 16. You have probably come across binary before
at school and no doubt thought it was a pretty dumb way to
count. For the computer however it is the only way, as you have
no doubt realised by now. Due to the CPU only recognising the
two states OFF and ON the only way it can count is with binary,
ON corresponding to 1 and OFF to 0.

Each Binary Digit, or bit for short, has a fixed value according
to its position. The decimal system uses the same convention.
The right-most digit is the number of units, the next to the left,
the number of tens, the next is hundreds and so on. In binary,
since there can only be one or none, the values for the positions
have to be tailored, so any number can be given. If the same
position values were used as with decimal you would count one,
ten, eleven, one hundred, one hundred and one and so on.

Your Amstrad computer stores its information in sets of 8 bits,
called a byte, and it can also manipulate pairs of bytes (16 bits,
known also as a Word) as if they were representing a single
number, so the values assigned to each of 16 bit positions are
shown below.

BIT NUMBER
15 14 12 12 11 1 9 8 7 6 3 432149
I2768 146284 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 |
VALUE

8



First Concepts 9

With this combination it is possible to represent any number
from 0 to 65535 by a combination of Os and 1s. Note that the least
significant bit is known as bit 0.

Sometimes it is wished to represent a negative value, and a
convention has been assigned to this. If you start with 0, which is
the same in any number base, and take 1away you will get —1. Do
this with a binary number and you will change every bit, for as far
as you can go, to a 1, look at the example below which uses a 4 bit
number.

QOO0

I
—
o

|
-

1}

1 borrow 1

-1 9 -1=1 borrow 1

-1 6 -1

1 borrow 1
-1 ©-1=1 borrow 1

1111

And the answer, because the subtraction is limited to 4 bits, is
1111 binary, or 15 decimal. The same will happen if you do the
subtraction with 8 bits, or 16 bits, the decimal answer will be 255
and 32767 respectively.

If you take another number away instead of 1 the same borrow
is made, and the left (most significant) bit will always be set (1)
whenever the result is a negative number. It is this last fact which
gives the clue as to how to represent negative numbers.

If negative numbers are to be used, or may result from a
subtraction, it is the convention to use the most significant bit to
indicate the sign of a number. Set (1) when the number is
negative, and reset (0) for positive. This changes the range of
numbers which can be represented by a given number of bits. 16
bits can now show —32768 to +32767, and 8 bits from —128 to
+127. This technique for showing signed numbers in binary is
called two’s complement, if you complement (change 1s to Os and
vice versa) a binary number, and add 1, you will change the sign.

It will be up to you whether you use two’s complement
notation for numbers in programs, or normal unsigned binary,
you can even use a mix of the two. The suggested representation
for use with a particular instruction, will be shown used in the
text of the remainder of the book, and where either method can be
employed according to what end result is required, this will be
mentioned.
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The GENS assembler lets you use binary numbers in a
program, if you prefix the binary number with a % sign.

But what of HEX? For the computer there is no problem
thinking in terms of ONs and OFFs 0s and 1s but try counting
yourself in binary or writing it down and checking it. You will
find it unbelievably awkward! Most of the time decimal will be
the easiest numbering system to use, but occasionally there will
be times when it is easier to think in terms of binary. For
example, when you are wanting to put a number into one byte in
a special way. If you needed to have the number 9 (decimal) in
each half of a byte it would mean reverting to binary to work out
how. 1001 binary is 9 decimal, (1*8 + 0*¥4 + 0*2 + 1*¥1 = 9) so
you will need to have 1001 1001 to make each half of the byte
holding 9 decimal. The decimal value for this is:

1128 + 0%64 + 0%32 + 1*16 + 18+ 0*4 + 0*2 + 1*1

which equals 153 decimal. Convoluted, isn't it?

It is possible to have any value from 0 to 15 held in each half of a
byte, giving 16 different values for each set of four bits. So, to
make it easy to operate on binary numbers in bytes a new
numbering system which uses base 16 is needed. If this was
available you could have just said 99 instead of going through the
rigours of discovering the decimal equivalent of what you
wanted. This base 16 numbering system is called HEXadecimal,
but as that is such a mouthful everybody just says HEX.

The first problem you will encounter is that whilst there are
already numbers to count from 0 to 9, what do you do with 10 to
15. Rather than learn new symbols for these values, the first six
capital letters of the alphabet are used. 10 decimal therefore
becomes A, 11 becomes B and so on to 15 which is F. The other
problem is that anybody else will think that you are using the
decimal system, so some way of signalling that a number is to
base 16 (a HEX number), is essential.

Unfortunately there is no set convention for this, your Amstrad
uses the & sign to signify that the number following is HEX, the
Firmware Specification Manual uses £ and the GENS assembler
uses # and many other assemblers (probably including the
Picturesque offering) use either a lower or upper case h following
a number to show that a number is HEX. This is all downright
confusing, but suffice it to say that if a number has anything
except a number in its make-up, it is likely to be HEX.
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In this book all HEX numbers are suffixed by a lower case h,
except in listings from the GENS assembler, where they are
prefixed by #.

ASCII

ASCII is short for the American Standard Code for Information
Interchange. This is really just a glorified name for numbers
representing letters, and operations. Appendix III of the Amstrad
User Instructions gives the full list of ASCII codes.

Address

Address is the term used to describe a memory location. Each
memory location has a unique address, starting from 0, for the
first location and going up to 65535 (FFFFh). It is often given as a
HEX number rather than a decimal number, and most assemblers
give the address of a.. instruction in the first columns of the
printout, when they assemble a program.

Assembler

Reference is made above to something called an assembler, but
what is an assembler?

An assembler is a program which allows you to program
machine code in a more recognisable form than numbers, in
mnemonics. (Take note! This is a good word for crossword
addicts and Scrabble fanatics alike.) Mnemonics are a sort of
shorthand way of writing the description of what a machine code
operation does, mnemonic means ‘an aid to memory’, and this is
what they are, because you wouldn’t have a snowball’s chance in
hell of remembering all the numeric forms of instructions (unless
you are an Icelander, or from northern Scandinavia, they believe
Hell is freezing cold and not hot). The assembler lets you write in
this shorthand description form, and then when you have
finished, it will translate (assemble) this into the Os and 1s that the
computer understands.
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Most assemblers also have an integral Editor, to allow the
program to be written and modified easily. Without this
facility, if you had written a long program and you then found
that the nth instruction was wrong, you would have to rewrite
everything from there to the end again.

The program which you write, using the assembler, is called
the source code, and this can be saved to tape for later editing if
required, but is not needed to run a program once it has been
assembled by the assembler. The actual program which can be
run, or executed as it should really be called, is the object code.

This object code can also be saved to the tape, using the O
command from the GENS assembler or by saving it from BASIC.
When saving from BASIC the form of the command is:

SAVE “filename”’,B,start address,length,entry point

The entry point is the address at which execution is to start, if the
program is loaded by the RUN” command, and if not specified
the Amstrad will do a system reset when the program is loaded by
RUN".

An assembler will allow you to use what are known as ‘labels’
instead of addresses when you are writing a machine code
program. This is an incredibly helpful, and almost Pascal-like
facility. (Pascal is a high-level language like BASIC but designed
to be assembled like assembly language, the machine code that is
created will not run anywhere near as fast as that created by
assembly language, and it will also take up more room, but is still
a lot faster than BASIC.)

With Pascal instead of using GOSUB followed by a line
number, you give a name to a subroutine, and just place the name
in the program, when this name is met, the routine associated
with its name is executed. The assembler allows labels (short
names ended with a colon [:]) to be placed in the listing beside an
instruction, and when that label is referred to the address of the
instruction which it is beside, will be used instead. This is like
being able to give a subroutine a name, and thereafter you would
no longer need to know the line number where it started, but
could just write GOSUB and the name of the routine.

The assembler also allows Pseudo Operations, or Pseudo
Mnemonics as they are sometimes called. (Quite why one cannot
guess, because they are real mnemonics, but just don’t become
machine code when assembled.) These are used to tell the
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assembler to do something with the number which follows, and
the main ones are:

EQU

DEFB

DEFW

DEFM

DEFS

ORG

ENT

Which tells the assembler that everything following it is a
comment, and should be ignored. Just like a REM in
BASIC.

EQUate, or EQUals. This allows you to use a label to
represent any number you chose. The label to be
EQUated should be put to the left of the EQU Pseudo Op,
terminated with a colon as always, and the number you
wish the label to equate to should be put to the right. For
example, LABEL: EQU #1234 will make the label LABEL
represent 1234h (4660 decimal) whenever it is used.
DEFine Byte. The byte at the address will be made to hold
the value which follows. For example, DEFB #20 will
make the byte at the address of the DEFB mnemonic hold
20h (HEX) when the program is assembled.

DEFine Word. This is the same as the mnemonic above,
but it will put a 16 bit number into two memory bytes.
The byte of the instruction, and the following byte.
DEFine Message. This allows letters to be placed after the
mnemonic, between inverted commas, which will have
their ASCII codes put into successive locations when
assembled.

DEFine Space. The number of memory locations given by
the number following the DEFS mnemonic will be
skipped by the assembler, when assembling the
program.

ORiGinate. The number following the ORG mnemonic
will be the address of the next instruction when the
program is assembled.

ENTry. The address at which execution should start, in
response to the assembler’s ] command.

The ORG mnemonic in a listing will give the start address for a
section of program, required by the HEX Loader program, and
the ENT mnemonic will be followed by the address which should
be CALLed from BASIC to run a machine code program.

An OPCODE is a machine instruction which tells the computer
what to do and this is sometimes followed by an OPERAND
which gives the information upon which the instruction is to be
executed.



14  Machine Code for Beginners on the Amstrad
Assembler Listings

Listings of machine code programs normally have five columns,
sometimes six if comments (preceded by a ; remember?) are used.
The first column gives the address of the start of the instruction,
normally in HEX.

The second gives the HEX version of the machine code
instruction, and it is this that should be entered if you are using a
HEX Loader, such as the one given in the Appendix, in pairs of
numbers.

The third is a line number, and of no use except when writing
the program.

The fourth is occupied by any labels, next to the instruction
which occupies the address referred to by the label, but the colon
which must terminate the label is not shown. This must be
entered if you are copying a program from a listing.

The fifth is the mnemonic form of the instruction, as entered by
the programmer, and what you enter if you are using an
assembler, after any labels in column four that are on the same
line.

The sixth column may be taken up by a comment.

Armed with this information you should be ready to proceed!



Chapter Four

Flow Charts

A flow chart is often used in the program design and develop-
ment stage; this is simply a symbolic representation of the flow of
the program under development. There is a standard set of
symbols used for drawing flow charts and those that you are most
likely to employ are shown in Fig. 4.1 with their uses.

Terminator Process/operation Decision
Communication line Input/output Flow direction
A
z d >
v
Figure 4.1

There are a number of further symbols, but they are not often
used. The purpose of a flow chart is to make clear the processes
that are being carried out by a program. Consider a very simple
example, a flow chart to load a program from tape into your
Amstrad computer.

This covers the essential operations, without going into too
much detail, as a flow chart should. There are many applications
where the flow chart is almost essential for analysing the actions
carried out, or necessary to be carried out, by a program. Often
they will enable you to find faults before they occur, as a glance at
a flow chart will let you see the overall principles of the program
under investigation.

15
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Look at the example in Fig. 4.3, which shows the difference
between a BASIC WHILE loop and a BASIC FOR NEXT loop. It
should be immediately apparent what the main difference is.

SWITCH
COMPUTER
ON

INSERT
TAPE

REWIND
TAPE
PRESS
CONTROL +
SMALL ENTER

FINISHED

Figure 4.2



WHILE/WEND

START

SET LOOP
DELIMITER

EXECUTE
PROGRAM
LOOP

FINISH

ot )

Figure 4.3

Flow Charts

FOR/NEXT

START

0

SET LOOP
DELIMITER

Y

4
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EXECUTE
PROGRAM
LOOP

FINISH

. )




Chapter Five

Simple Machine Code
Instructions

LD CALL RET JP JR

The CPU has fourteen registers, each of which can be thought of
as being similar to a BASIC integer variable. They are shown
below with their functions. Don’t worry if this makes no sense
yet, all is about to be revealed.

Z 80 CPU REGISTERS

Accumulator! A : F i Flag

: B : Cc :
GENERAL H H H
FURFOSE i D : E H
REGISTERS | : :

H H H L !
INTERRUPT I H R ! REFRESH

H XH IX XL '
INDEX H H
REGISTERS | H

H YH 1Y YL :
STACK H SF H
POINTER H :
PROGRAM H PC :
COUNTER H H

Figure 5.1

18



Simple Machine Code Instructions 19

There are six general-purpose registers, and it is these that will
be considered in this chapter, along with the special-purpose ‘A’
or accumulator register and the PC or program counter register.

Each of the general purpose registers B, C, D, E, H and L has
the capability of holding a number between 0 and 255, each being
made up of eight bits, and they can each be loaded in three basic
ways. To continue the analogy to a BASIC variable and help
explain each of the ways that a register can be loaded enter the
short BASIC program shown in Fig. 5.2. There is no need to delete
the first program if it is still there.

180 CLS

190 WINDOW#1, 1, 4@, 1, 10

200 WINDOW#2, 1, 40, 13, 23

210 WINDOW#3, 1, 40, 12, 12

220 PEN#3, 2: PRINT#3, " DECIMAL  BINA
RY HEX "

230 INPUT#1, "ENTER A NUMBER ";A

240 IF A > 255 THEN PRINT#1, "INVALID IN
PUT, IT MUST BE BELOW 25&": GOTO 230

250 A = INT (A)

260 PRINT#2,USING "######"; A; : PRINT#2
, " "s BIN$ (A,B8)3; " "; HEX$ (A,2)
270 PRINT#1 : PRINT#2

280 GOTO 230

Figure 5.2

When you have typed the program in run it by typing RUN
180, and you will be asked to enter a number. The basic variable
‘A’ in the program represents the ‘A’ register in the CPU. When
you enter a number if it is between 0 and 255 it will be printed in
Decimal, as you entered it; Binary as the computer handles it, and
in Hex.

Each number you enter is loaded into BASIC variable A, and
this is then used to provide the number for other duties in the
program. If you were to type in 77 you would load A,77 when you
pressed enter.
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Surprisingly the machine code instruction for this would be
spoken of as Load A,77. Easy, isn’t it!

Unfortunately, however, the CPU does not understand this,
what it requires is 00111110 followed by 01001101. Or 3Eh
followed by 4Dh, 62 and 77 decimal. Now things are getting
difficult again and this is where the assembler program comes in.
You can tell the assembler that the instruction is LD A,77. When
the assembler assembles the instruction it will do the translation
for you. Note that load has been shortened to LD, which saves
your fingers when typing machine code programs and is the
standard Z80 assembler convention.

If you now turn back to the program in Chapter 2 and look at
line 90, you will see that the third DATA item was 62. This will
give you a clue about one of the instructions in the program, and
if you were to look up the ASCII code for a capital A (of which an
awful lot were printed by the program) you would find that it was
65. Things are probably beginning to dawn about now, and when
you find out that the code for instruction to load the B register
with a number is 00000110 in binary or 6 in decimal (and Hex for
that matter), and you remember that 255 As were printed you will
very likely be deafened by the morning chorus.

Who said machine code was difficult? The first two instructions
of the program, in assembler, are therefore:

LD B,255
LD A,65

Knowing this you can now change the number of times the
character is printed, and which character is printed. Turn first to
Appendix III in the Amstrad User Instruction book that came
with your computer. Page 1 will show you the codes for each of
the ASCII characters and the following pages the characters
created by all the codes from 32 up to 255.

Now remove line 40, which checked that you had entered the
DATA correctly when you wrote the program. The checksum will
be wrong since you are going to change items in the DATA line.

All you need to do now is change the 255 for the number of
times the character is to be printed, the 65 for the code of the
character you want printed, and then RUN the program from the
start to see the result. Don’t use any values below 32 for the code,
or you may get peculiar results.

If you replace the 255 with 0 you will find that the character in
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the A register is printed 256 times. Remembering that each
register can only hold 8 bits and looking at the BASIC in line 40,
can you work out why this should be?

Think of the sequence of operations, A = 0 or 00000000b. 0 — 1
= —1 but 00000000b — 00000001b = 11111111b which is 255 in
binary.

You can check this by asking your computer. Type in ? BIN$
(—=1) and you will get the answer 1111111111111111. As the
left-most eight digits are all that a single register or memory
location can hold, this means that —1 decimal is equal to 255
when transferred through an 8 bit register. Confused? Then turn
back to Chapter 3 in this book and Appendix II page 2 on, in the
Amstrad Computer User’s Instructions.

Each of the general purpose registers can be loaded in the same
way as the A and B registers. The code for each is as follows:

ASSEMBLER DECIMAL HEX BINARY

LD B,n 06 n 06 n 00 000 110 n
LD Cyn 14 n OE n 00 001 110 n
LD D,n 22 n 16 n 00 010 110 n
LD E,n 30 n 1E n 00 011 110 n
LD H,n 38 n 26 n 00 100 110 n
LD L,n 46 n 2E n 00 101 110 n
LD A,n 62 n ZEn 00 111 110 n

Figure 5.3

In each case the n represents any number, between 0 and 255
decimal (FFh or 11111111b) which is to be loaded into the chosen
register.

If you look closely at the binary codes for each instruction there
are two things that you may notice.

First, the two ends of the instruction are the same in all cases. It
is these two sections that tell the CPU that it is a load instruction
involving a number being put into a register.
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Second, the register is determined by bits 5, 4 and 3, and one
possible combination is missing. The three bits which decide
which register is to be used are always the same for each register.
Whenever an instruction can be performed on any of the general
purpose registers three bits are used to tell the CPU which
register is to be used.

B is always 000
C is always 001
D is always 010
E is always 011
H is always 100
L is always 101
A is always 111

Figure 5.4

The missing combination, 110, is used for a special purpose
and this will be explained later in this chapter.

As well as being able to load a register direct with a number
from the following location in memory it is possible to load a
register with the contents of another register or from memory.

Think of the BASIC statement A = B. What this is doing is
telling the computer that you want the variable ‘A’ to be equal to
the variable ‘B’.

If you enter the following lines into your computer and execute
them by typing RUN 300 you will find that after line 320 B was
loaded with the same value as A, but A was not changed.

300 B = 10
210 ? "BEFORE :A=";Ai" B="iB
J20A =B

330 ? "AFTER :A="3A;" B="iB
Figure 5.5

Having learnt that the machine code mnemonic equivalent to
line 300 is LD B,10 what do you think is the equivalent to line 320?

It’s pretty obvious isn’t it? LD A,B and the same applies to all
the other registers.

The actual instructions are made up in the same way as that for
loading a register with a number except that bits 7 and 6 are
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changed from 00 to 01, and the bottom three bits, instead of being
110 are used to identify the register from which the value is to be
taken.

The instruction is therefore;
ASSEMELER DECIMAL HEX BINARY

LD A,E 120 78 01 111 000

If you remember the three bits for each of the general purpose
registers or if you look back at them you should now be able to
give the binary instruction for loading any register from any
register.

Bits 7 and 6 will always be 01 bits 5, 4 and 3 will be the register
to be loaded and bits 0, 1 and 2 the register to be loaded from.

LD H, A would therefore be 01 100 111. What would LD A ,H be?
OrLDB,D?

Now you have two ways in which you can put numbers into
registers and you are no doubt realising that the instructions are
really quite logical in the way that they are made up, and hence
not too difficult to follow.

All of the general purpose registers have special things that
they can do and these will be introduced at various stages in this
book. Unfortunately though, unlike BASIC variables, their
limitations as to use are fixed, not decided by the user, and are
much more subtle, or rather devastating in their effect.

Don’t worry, the resemblance between the registers in the
CPU, and BASIC variables which has been emphasised, still
holds true, but whereas on the Amstrad, when you turn the
computer on, any variable can be used for any purpose, be it
string, integer or real, and each numeric variable could be used in
place of any other numeric variable, in Z80 machine code there
are things which can only be done with particnlar registers.

This is rather like the effect of adding the following line to the
program in Chapter 2: 21 DEFSTR A. Now when you RUN the
program you will get a type mismatch error when line 30 tries to
add numeric information to a variable that can only be a string. It
has already been explained that a general purpose register can
only hold an 8 bit value but, apart from this limitation, any can be
used to represent a number, as the B register in the program in
Chapter 2, or a letter, as the A register in the same program.
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Were you to make the statement 8 = 9 it would be utter
balderdash, we all know that 8 = 8 and 9 = 9. If you type into
your computer 8 = 9 followed by enter you do not get an error
message, but only because the computer has interpreted the first
8 as a line number, and if you list the program you will find line
number 8. If you change this to 8 8 = 9 and try to execute it, the
computer will point it out as a syntax error, the same applies if
you try to make a number equal to a variable, for instance by the
statement 8 = HL.

No matter what you do (short of redefining the key), typing ? 8
will always give the answer 8. But change this to ? PEEK (8) and
you will get the answer 195. This is because by adding the PEEK
function you are now asking the computer ‘what is the contents
of the memory location at address 8?" instead of just ‘what is 8?".

When writing machine code there is no need for the PEEK
function, or the corresponding POKE command since you are
already at machine level. But it is still necessary to be able to
access memory locations.

The A register is explained in the next chapter in its role as the
accumulator, but has some other special instructions which are
relevant to this chapter. This is due to it being the only 8 bit
register that can be loaded direct from a memory location, the
equivalent to the BASIC:

A = PEEK (nn)

where nn is any 16 bit number.

At first thought the machine code instruction to load the ‘A’
register with the contents of the memory location at address 8
might be LD A,8, but you will immediately see that this would
put the value 8 into A, so a way of differentiating is required.

Each memory location can be thought of as a box, divided into
eight smaller boxes, and the PEEK function in BASIC goes some
way towards reinforcing this visualisation, by requiring brackets
— which look a little like a box — round the number of the box
which is to be inspected. (All right, very little like a box!)

You have probably already worked it out, and don’t need to be
told, but just to confirm how clever you are; the machine code
mnemonic for ‘with the contents of’ requires brackets round
whatever is representing the address of the memory location.
Hence the instruction to load register ‘A" with the contents of
memory at address 8 is LD A,(8) and to load into memory at
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address 40000 the contents of the ‘A’ register the instruction is LD
(40000),A.

If you don’t have an assembler things become a little more
complicated, but not much.

ASSEMBLER  DECIMAL HEX EINARY

LD A, (nn) S8 nn ZAnn 00 111 010 nn

LD (nn),A S50 nn I2nn 00 110 010 n n

It is vital to remember that the 2 ‘n’s in each of the above
instructions occupy a memory location and they are calculated by
the formula:

nl = number MOD(256) and n2 = INT (number/256)

This is because of the internal operation of the CPU and there is
no alternative but to have the two bytes with the low byte before
the high byte. The opposite way to which you would expect. All
16 bit numbers are stored in memory in this manner, be they as
part of an instruction or just data in memory put there by the
CPU. -

It should have been possible to use the above equation directly
on your computer to save having to work n1 and n2 for each new
number, but due to considerable inconsistencies in Amstrad’s
BASIC, which sometimes uses 2s complement notation and
sometimes normal integer representation, the MOD function is
useless with values over 32767.

The following BASIC line however will do the job for you, and
you can add it to the program already in memory.

1010 N2= INT (NUMBER/256): N1 = NUMBER - N2#256: ? "N1 ="iN13"

N2 =";N2

If you now type
NUMBER = 40000: GOTO 1010 followed by [ENTER]

you should get the answer N1 =64 N2 = 156. So the full
instruction for each of the latest opcodes, with the address to be
loaded from and to as 40000 in each case, will be:
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ASSEMBLER DECIMAL HEX
LD A, (40000) 58 64 156 CZA 40 9C

LD (40000),A 50 64 156 32 40 9C
BINARY
LD A, (40000) 00 111 010 0100 0000 1001 1100

LD (40000),A 00 110 010 0100 0000 1001 1100

or for address 8:

ASSEMBLER DECIMAL HEX

LD A, (8) 58 8 0 ZA 08 00

LD (8),A 5080 I2 08 00
BINARY

LD A, (8) 00 111 010 0000 1000 0000 0000

LD 8),A 00 110 010 0000 1000 0000 0000

You can test this out for yourself if you wish by changing the
program which printed the ‘A’s.
Line 60 has to be changed to:

Loy 7
(=R

w]

HR$ (PEEK (8)):i: A=A - 1: IF A <> 0 THEN &0

And the second machine code instruction in the DATA statement
in line 90 must be changed from LD A,65 to LD A,(8).
This will make it read:

90 DATA 6,255,58,8,0,205,90,187,16,251, 201

The checksum in line 40, if it is still there, must be changed to
1277.
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Most important line 30 must be changed to:

40 FOR N = 43880 TO 43890: READ D: POKE N,D: A = A + D: NEXT

This is because there is now one extra byte of code that needs to
be POKEd into memory.

If you added line 21 earlier (DEFSTR A) remember to remove it!

Now when you RUN the program, instead of getting ‘A’s you
should get\s (backslashes).

Perhaps the next most useful thing about the general purpose
registers, is that each pair can be used together, that is as BC, DE
and HL. When used this way they can be treated as 16 bit
registers.

Whereas with a single register you are limited to numbers that
can be represented in eight bits, in other words between 0 and
255, with a register pair you can use any whole number from 0 to
65535, because you now have sixteen bits to play with. There are
however penalties to be paid for the ability to use registers in
pairs as if they were just one 16 bit register.

You have seen that, when used on their own, ALL general
purpose as well as the ‘A’ or accumulator registers can:

1) be loaded from any other general purpose register;
2) have a number loaded directly into them;

but that the ‘A’ register alone can be loaded directly from or to, a
numbered memory location, as in the LD A,(nn) or the LD (nn), A
instructions.

With register pairs however, there is no machine code instruc-
tion for LD rr,rr’ (load one register pair with the contents of
another register pair). You can however load a number directly
into any register pair.

For those of you with an assembler, nothing could be simpler.
You probably don’t even need to be told what the instruction is!
It's LD rr,nn; rr is any of the register pairs, BC, DE or HL and nn is
any 16 bit integer.

The instruction to put the value 40000 into the BC register pair
would therefore be:

LD BC,40000
or to put the value 8 into the HL register pair:
LD HL,8
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If you remember the construction of the binary instructions to
load a number into a single register you almost certainly can
guess the first two bits of the binary instruction to load a register
pair. If you don’t remember then turn back and have a look.

Right first time (I hope)! The first two bits are 00.

The remainder of the instruction is made up in much the same
way. After the initial 00 the next two bits are used to determine
which register pair is to be loaded.

00 for the BC register pair.
01 for the DE register pair.
10 for the HL register pair.

(These two bit codes are always the same for each register pair,
and are used whenever an instruction can be performed on any of
the register pairs.)

The next bit is 0 and the last three bits are 001.

The full instruction for each register pair is therefore:

ASSEMBLER  DECIMAL HEX BINARY

LD EC,nn 1 nn 0t nn 00 000 001 nn
LD DE,nn 17 nn 11 nn 00 010 001 nn
LD HL,nn I3nn 21 nn 00 100 001 n n

nl and n2 are calculated in the same way as for the LD A,(nn)
instructions. Therefore:

ASSEMBLER DECIMAL HEX EINARY

LD BC,40000 1 64 156 01 40 9C 00 000 001 0100 0000 1001 1100

LD HL,8 3280 21 08 00 00 100 001 0000 1000 0O00 0000

Knowing how to load a register pair with a sixteen bit number
is a waste of time if there is no use for the register pair once
loaded. One of the most common uses of a register pair is as a
variable to point to a memory location.

In the BASIC earlier PEEK (8) was used to find the contents of
memory location 8, and the machine code equivalent using the
‘A’ register was explained. This type of instruction is very
limiting, especially if a series of locations need to be read from or
written to. In BASIC the way to handle the problem would be to
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use a variable. For example if the variable HL was made equal to 8
it would have been possible to use PEEK (HL) instead.

In machine code the same applies, but this is where the idio-
syncrasies of the Z80 CPU start to gain prevalence.

With a general purpose register, not only is it impossible to use
the LD r,(nn) or the LD (nn),r constructions, but only the HL
register pair can be used as a pointer. You have seen the elusive
110b code, missing from the series of three bit values used to
represent the general purpose registers, used at the end of a LD
r,n instruction code starting with 00b. Here it indicates that the
next byte (the one after the instruction) is to be used as anumber.

Used in the middle of the LD r,n instruction or in the LD r,r’
instructions, beginning with 01b, it has a different interpre-
tation. It would be impossible for the 110b to have the same
meaning since, as has already been demonstrated earlier, a
number always has the same value. All that happened when it
was tried to change the value from BASIC was a syntax error. But
there is a way in which a number can be changed, and that is
when it is used as an address.

Wherever the 110b code is used in a load instruction in place of
a code representing a register, it is taken by the CPU to refer to the
memory location whose address is held in the HL register pair.

Therefore to load the D register with whatever is in memory
location 40000 you would write:

ASSEMBLY DECIMAL HEX EINARY
LD HL,40000 33 64 156 21 40 9C 00 100 001 0100 0000 1001 1100

LD D, (HL) 86 56 01 010 110

or to load the contents of memory at address 8 into the B register:

ASSEMELY DECIMAL HEX BINARY
LD HL,8 3280 21 08 00 00 100 001 0000 1000 0000 0000
LD B, (HL) 70 46 01 000 110

Note the brackets round the HL in the assembly language instruc-
tion, meaning ‘with the contents of the address at’.

It is perfectly in order to reverse this process and, instead of
loading a register with the contents of a memory location, load a
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memory location with the contents of a register. The instruction
then becomes:

LD (HL),r

As with the LD r,(HL) any general purpose register or the ‘A’
register can be used, and the binary instruction opcode is about
as predictable as it could be.

To load a register with the contents of the memory location at
address HL the opcode is:

[01] [the three bit code for the register] [110]

so, to load the memory location at address HL with the contents
of a register it becomes:

[01][110] [the three bit code for the register]

You didn't really need this book to tell you that, did you?
If you change the DATA statement in line 90 of your BASIC
program to:

90 DATA 33,8,0,70,58,8,0,205,90,187,16,251,201

change the checksum in line 40 to 1127 and change the number
after the TO in line 30 to 43892 you can now see the LD B,(HL) and
the LD HL,nn in action. The BASIC equivalent would be to
change the end of line 50 from B = 255 to HL = 8 : B = PEEK
(HL).

When run the machine code routine will now load the HL
register pair with 8 and then load B with whatever is in location
HL. The start of the routine is now:

ASSEMBLY DECIMAL

LD HL,8 3380
LD B,(HL) 70
LD A,(8) 5880

When the 110b code is used in the LD r,n opcode for the r part,
giving the binary opcode 01 110 110, this gives the assembly
language instruction: LD (HL),n which will put into memory at
address HL the number in the location following the instruction.

With the ‘A’ register it is possible to use any register pair as a
variable, or pointer. The assembly language instructions are
pretty obvious. They are LD A, (rr) or LD (1r),A where 1t is any
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register pair. For example using the ‘A’ register it is quite
acceptable to write:

LD DE,8
LD A,(DE)

The opcode for LD A,(HL) has already been explained and you
have no doubt noticed that all possible combinations of
instruction starting with 01 are allocated. It is necessary to use a
different construction for the instructions LD A,(BC) LD A,(DE)
LD (BC),A and LD (DE),A.

One clue to how these instructions are made up is to be found
in the LD A,(nn) and LD (nn),A opcodes, and another is in the
codes for the register pairs.

Have you noticed that the 3 bit codes for the general purpose
registers share their high two bits with the 2 bit codes for the
register pairs that use them. B has the code 000 and C 001, BC the
code 00. D has the code 010 and E 011, DE is 01, His 100 and L is
101, making HL 10.

The opcode for LD A, (nn) in binary is 00 111 010 and it has been
pointed out that, in the instructions to load a number into a
register pair, bits 5 and 4 tell the CPU which register pair to use.
The only opcode missing from the set is 11. Lo and behold! What
do we have in bits 5 and 4 of the LD A,(nn)? And what do you
suppose the instruction LD A,(BC) will be, in binary?

Well done, but it didn’t really require you to be a genius, did it?
The binary opcode for LD A,(BC) is 00 001 010, for LD A,(DE) it
would be 00 011 010.

The opcode for LD A,(HL) is not 00 101 010, it is 01 111 110 and
was explained earlier, so what do you suppose happens in
response to 00 101 010? Stay tuned and all will be revealed. First
though there is the question of the LD (rr),A opcodes to be
resolved, and be warned! These are almost as complicated as the
LD A, (rr) opcodes.

LD (nn),A in binary is 00 110 010, again the missing 11b from
the set of codes for register pairs is present in bits 5 and 4. Here, as
in the previous instructions, to change (nn) to (BC) or (DE) all you
do is alter the 11b to 00b or 01b. The opcode for LD (BC),A is
therefore 00 000 010 and for LD (DE),A 00 010 010. But as with the
previous instructions the HL code 10b used to make the opcode
00 100 010 doesn’t mean LD (HL),A.

All the above opcodes, which load the ‘A’ register from or to a
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memory location pointed at by a register pair, are single byte
instructions. The codes 00 100 010 and 00 101 010, which use the
HL code 10, are made up of three bytes. The first is, of course, the
opcode. Either 00 100 010 or 00 101 010, and the next two are the
operand. (Remember, the operand is information needed for the
opcode to be able to perform its task.) These two opcodes are used
to load the HL register pair either to, or from, the memory
location addressed in the next two bytes. They work in the same
manner as the LD (nn),A which loads the A register to, and LD
A,(nn) instruction which loads the A register from, a memory
location addressed by the (nn).
Here are the assembly language and binary instructions in full.

ASSEMELER BINARY
LD HL, (nn) 00 101 010 n n

LD (nn),HL 00 100 010 n n

Assume that the address (nn) is 8, as has been used in the
previous load instructions. This will make n1 0000 1000 and n2
0000 0000 in both the binary examples above and the assembler
will become:

LD HL,(8) and LD (8),HL

In the first case the HL register pair will be loaded with a sixteen
bit number from memory at the specified address, and in the
second the sixteen bit number in HL will be loaded into memory
at the specified address.

One problem though, only one memory address has been
defined by the operand, and a single memory location is only
eight bits, so how can a 16 bit number be condensed into eight
bits? The short answer is, it can’t. The way the CPU copes with
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this is to use the memory location specified, for the low byte, and
the memory location one above, for the high byte. Being logical,
because logic is what computers are all about, the high byte
comes from the H register and the low byte from the L register,
and the low byte is in the lower memory location.

The CPU always starts at the bottom and works up and this is
why, when you are loading machine code into memory, all 16 bit
numbers are reversed. If you think of HL as high low, and
remember to start from the bottom and work up it may help you
to avoid any mistakes when writing code. When using an
assembler it does all the reversals for you so, if you are using one,
there is no need to change numbers from their normal form.

The last load instructions to be explained in this chapter are
those which work in the same manner as above but for the BC and
DE register pairs. These are less used than the instructions using
the HL register pair because they use two bytes of memory to
hold the instruction. The assembly language for these instruc-
tions is just what you would expect:

LDBC,(nn) LDDE,(nn) LD (nn),BC and LD (nn),DE

If you cast your mind back to when you were reading Chapter
2, you may recall that, in the analogy to English and Chinese
language words, it was shown how the addition of an extra word
could change the meaning of a word. Well, the opcodes for the
four instructions above all have the prefix (in Hex) ED. (1110
1101b or 237 decimal but ED is much easier to remember.) All the
comments regarding the instructions just explained, using the
HL register pair, also apply to these instructions. It is considered
good practice to use instructions which use the HL register pair,
where possible, as these take half the amount of memory for the
opcode. The actual opcodes are made up as follows:

ASSEMELER DECIMAL HEX EINARY

LD EC, (nn) 237 73 n n ED 4B n n 1110 1101 01 001 O11 n n
LD DE, (nn) 237 91 n n ED SBE n n 1110 1104 01 011 011 n n
LD (nn),BC 237 67 n n ED 42 n n 1110 1101 01 000 O11 n n
LD ¢(nm),DE 237 83 n n ED 33 n n 1110 1101 01 010 011 n n

Figure 5.7
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There is a summary of all the instructions starting with LD at the
end of this chapter, and a graphic representation is given in
Zilog’'s summary in the appendix.

The Program Counter

All the time your computer is turned on, unless someone has
stopped the CPU for some reason, the program counter register is
chuntering away quite happily, with only one aim in life, which
is to get to the top and start again. Its purpose is to keep track of
the program being run, and it will always hold the address in
memory of the program instruction which is currently being
executed. When you first turn on the computer the PC is forced to
hold address 0, so that the first instruction is fetched from here.
This means that a program to set the computer into a known state
can be automatically executed at turn-on. This is known as a Cold
Start or Early Morning or Wake Up, and on the unexpanded
Amstrad this puts the computer into the BASIC programming
mode and displays the Amstrad and Locomotive copyright.

As already mentioned, the computer is always running a
program whenever it is switched on but, since the computer does
not know what it is going to be asked to do next, it is essential to
have some control over the program counter. Imagine what it
would be like if the computer’s memory were a piano keyboard,
and all you could do was play each note in turn, from the bottom
of the keyboard to the top, and then start over again. Some
interest could be added by tuning the strings in the piano to play
a short tune, but this would soon become boring, and all the
strings would need to be retuned every time a new melody was
required. This is similar to what would happen if the computer’s
program counter could not be altered. The way the strings were
tuned would be the program, and each key a memory location.

Fortunately it is possible to alter the PC, and in BASIC this is
achieved by the GOTO and GOSUB and RETURN commands.
The GOTO forces the execution of the program to jump to the line
nominated, and the GOSUB calls a subroutine at the line chosen.
When the subroutine has completed its task, control is returned
(by the RETURN command) to the main program, which carries
on at the instruction after the GOSUB.

The machine code equivalents to these BASIC commands
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perform exactly the same tasks but their names are slightly
different, as with the assembler LD mnemonic, which describes
the action performed by the equivalent BASIC command. (LD is
spoken as ‘load’, which you undoubtedly remembered.)

Can you guess what the machine code instructions are? GOTO
becomes JUMP and GOSUB becomes CALL, RETURN stays the
same. The return instruction is abbreviated to RET when using
an assembler but CALL is written in full. Jump is a little more
complicated so this will be explained later in the chapter, after the
use of CALL and RET has been defined.

The CALL and RET instructions exactly duplicate their BASIC
equivalents but, since machine code does not have line numbers,
the CALL is made to the address holding the start of the first
instruction of the subroutine.

The CALL instruction is made up of three bytes, the first is the
opcode, and the next two are the address of the subroutine to be
called. The two bytes holding the address are made up in normal
Z80 manner, low byte first. If you are using an assembler it will do
the calculation for you, as it did for the LD instructions.

The CALL and RET opcodes are as follows:

ASSEMBLY DECIMAL HEX BINARY
CALL nn 20 nn CDnn 11 001 101 n n

RET 201 c9 11 001 001

If you look back to Chapter 2 and look at the program you typed
in, or if you are in front of your computer and have entered the
programs so far, list line 90. You will find that the numbers
immediately after those that you have experimented with, are
205, 90, 187.

You should now know what these are telling the CPU to do.
The 205 is a CALL instruction and the address CALLed can be
worked out by adding the next number to 256 * the third.

187 * 256 = 47872. 47872 + 90 = 47962 or BBSAh

So now you know that the start of the routine you have written
first loads the A register with the code of the character to be
printed, then loads the B register with the number of times the
character is to be printed, and then CALLs a subroutine starting
at address 47872 (BB5Ah). This subroutine is part of the operating



36  Machine Code for Beginners on the Amstrad

system of the computer, and is probably the subroutine that you
will use more than any other. Amsoft have called it TXT
OUTPUT, and it will print the character whose code is held in the
‘A’ register to the current window, at that window’s current
cursor position. The subroutine will also obey control codes, and
these are explained in Chapter 9 of the Amstrad User Instruction
book.

To give a brief example of how a control code is responded to
change line 90 to: 90 DATA 62,7,205,90,187,201 and change the
number after the TO in line 30 to 43885. If line 40 is still present
then the checksum must be changed to 752. In assembly language
the program now reads:

LDA,7
CALL 47962
RET

When RUN all that the machine code will do is sound the bell,
emitting a bleep from the computer. If you hear nothing try
turning the volume up and typing CALL 43880 followed by
[ENTER]. This will call the machine code directly, instead of it
being called by the BASIC program.

Unlike load (LD) instructions it is not possible to nominate an
address by pointing to it with a register pair, the address to be
called must always be in the two bytes following the CALL
opcode. The RETurn at the end of a subroutine will be to the
address immediately after the three bytes of the CALL (one byte
for the opcode and two for the operand).

To be able to make a RETurn the CPU has to know where the
subroutine was CALLed from, and it accomplishes this by using
something called the Machine Stack, or just the stack for short. A
brief explanation of what this is, and how it is used when a CALL
or a RETurn instruction is encountered in a program, follows. Use
of the stack will be discussed in detail in Chapter 9.

The stack can be compared to a spike on the ceiling, and each
byte of information being saved on it, can be thought of as a piece
of paper. When the piece of paper is put on the stack, the stack
grows downwards, and the only information that can be taken off
the stack is the piece on the bottom. In order to get something not
on the bottom location, everything below will have to be taken off
first.

The stack occupies an area of memory, and the address of the
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bottom of the stack is always held in the 16 bit Stack Pointer
register. The area of memory chosen for the stack must be
protected from being used by the program, because if corrupted
it would almost certainly cause the program to crash. Normally
this is achieved by placing the stack at the top of a large area of
free memory, as this allows it the maximum space to grow down
without trespassing on anything else.

Whenever a CALL instruction is encountered in a program, the
CPU, once it has found out the destination of the CALL, places
the address currently in the PC (the address of the next
instruction to be fetched) onto the stack, and replaces it in the PC
with the address of the subroutine. This causes the next
instruction to be fetched from the address of the CALL, and the
subroutine is then executed. At the end of the subroutine, when
the RET is executed, the CPU collects the return address from the
stack, and puts it into the PC, thereby making program execution
continue at the address after the original CALL.

The diagrams overleaf shows the sequence of events when a
subroutine is CALLed and when the RETurn is executed. The
assembler listing for the program is given in Fig. 5.8. The first
column is the memory address of the start of the instruction, in
Hex, the second column is the Hex code of the instruction and the
third column is the actual assembler listing, again Hex numbers
have been used. The reason for the use of Hex numbers is that
they demonstrate much more clearly what is happening, since
each byte of memory or single register can hold a two digit Hex
number.

The example used is the program given above to sound the bell.

Every time anything is put onto the stack it grows down by two
bytes, and each time something is taken off the stack it shrinks by
two bytes. It is therefore very important to make sure that a
program does not put more onto the stack than it takes off. This
could make the stack either grow down so much that it starts to
use memory used to hold a program, or have the wrong inform-
ation on the bottom when something is to be taken off. Between
information being put onto the stack and its being required
again, there must be an equal number of things put onto and
taken off the stack. This is absolutely vital and cannot be stressed
too much, especially since there are instructions explained later,
other than CALLs and RETurns which use the stack for storage of
information. An imbalance of the stack is the single most
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MEMORY HEX ASSEMBLER FC THE STACK
STACK
AB 68 X ?? {--POINTER

AB&8 3EO7 LD  A,#07

STACK

i AB 6A| X ?? {--FOINTER

AB6A CDSAEB CALL #BBSA

X 7
AB &D L’ X-1 AB
STACK
X-2 6D {--POINTER
EB SA
BBSA The subroutine
is here. X 7
l?? 7 X-1 AB
STACK
X-2 6D <——-POINTER
Eararars Cc9 RET STACK
X 7 {--FOINTER
¥ x-1| ar
IAB 6Dl
X-2 6D
STACK
AB&D ce RET X+2 7 {-=POINTER
T x+1 | 77
X ??
X-1 AE
x-2 | D

Figure 5.8
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common cause for a program crashing. Unlike with BASIC, it is
often the case that all one can do when a program crashes, is
switch off and start again.

Jumps

There are two types of jump instruction, the first one to be
explained imitates the BASIC GOTO almost exactly. With this
instruction the absolute destination is given after the command.
Consider for example the BASIC command GOTO 100. There
must be a line in the program with the number ‘100" and when the
GOTO 100 is executed control is transferred to line 100. In
machine code, as you know, there are no line numbers, so instead
of transferring control to a line number control is transferred to an
address.

The mnemonic for this instruction is JP, short for JUMP, and it
is normally followed by two bytes giving the address to jump to.
The actual jump is made in exactly the same way as the CALL
instruction transfers control to a subroutine, except that, as there
is to be no RETurn, the stack is not used. The mnemonic for this
type of jump is JP nn, and it allows a jump to any location in the
memory currently paged in. The instruction comprises three
bytes, constructed as the three bytes for a CALL instruction, but
the first byte, instead of being 11 001 101 for CALL, becomes 11
000 011 for JP. If the CALL in the last program is changed to a JP it
will become:

ASSEMBLER  DECIMAL HEX BINARY

JP 47962 195 90 187 C3 SA BB 11 000 011 0101 1010 1011 1011
The JP instruction can also be used with the HL register pair

containing the address to be jumped to. In this case the instruc-

tion only takes one byte and the jump is made to the address

contained in the HL register pair. If you recall how assembly

language represents ‘contained in’ you should already know the
mnemonic. The full opcode is given below:

ASSEMEBLER DECIMAL HEX BINARY

JF(HL) 233 E9 11 101 001
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This is one of the most useful instructions in the Z80 CPU and is
often used in conjunction with a CALL to achieve an equivalent
to an ON GOSUB command in BASIC. This is explained in the
next chapter.

Most jumps are made to an instruction very close to the address
from which the jump is being made, and the Z80 CPU has an
instruction that allows a jump to be made to a location relative to
the address in the program counter. Surprisingly this instruction
is called a Jump Relative! In assembly language this is shortened
toJR.

The JR instruction consists of just two bytes, the first is the
opcode and the second, the distance of the jump from the address
the program counter expects the next instruction to come from,
in twos complement notation, as explained in Chapter 3. This
allows a jump to be made +127 to —128 relative to the PC. The
opcode for JR is:

ASSEMBLER DECIMAL HEX EBINARY

JR n 24 n 18 n 00 011 000 n

Normally when using an assembler there is no need to calculate
the length of a JR. Instead a LABEL is used, either by making the
LABEL EQUal to the address to be jumped to in the program or,
more usually, by defining the LABEL within the program (EQU is
a pseudo operation and was explained in Chapter 3).

To help explain this consider the example below:

ADDRESS LABEL ASSEMBLER DECIMAL HEX
42880 {ARLBh} LD A7 62 7 JE 07
43882 {ABGLAKX PRINT: CALL 47962 205 90 187 CD SA BE
42885 {AB6Dh? LD A,65 62 65 JE 41
43887 {AB&6Fh} JR  PRINT 24 249 18 F9

The 249 after the 24 opcode of the JR instruction tells the CPU to
transfer execution to an address —7 from the current PC. The PC
is already pointing to the next instruction since the read of the JR
n has been completed, and therefore contains the address 43889.
43889 — 7 = 43882. The jump will therefore be made to the start of
the CALL instruction.
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If the program had been:
ADDRESS LABEL ASSEMBLER DECIMAL HEX
47880 {AB&Bh} JR GO 24 5 18 05
43882 (AB&ALY LD A7 62 7 3E 07
43884 {ABLCh} PRINT: CALL 47962 205 90 187  CD SA BR
43887 {AB&Fh} 60: LD A,65 62 65 3E 41
43889 {AB71h} JR  PRINT 24 249 18 F9

Then instead of the bell being sounded followed by ‘A’s until you
reset the computer, the JR GO would make the PC jump the LD
A,7 and the CALL 47962 and the first thing to be printed would be
an‘A’. Note that the jump is only 5 which skips the five bytes after
the JR GO.

It is possible to use calculated relative addressing with an
assembler, but this is unnecessary except with very long
programs where it is important to save space by not using labels.
The Highsoft Devpac slightly complicates matters, in the way the
GENSA3 assembler operates. Jump distances are calculated
relative to the assembler’s location counter and not the PC. This is
explained on page 2.6 of the manual which comes with the
Devpac cassette. In essence the location counter will be at the start
of the JR instruction, when the calculation is made, and therefore
you will need to add 2 to the jump distance worked out the proper
way, to make the correct jump. The location counter is addressed
by use of the $ symbol. The JR PRINT instruction in the routine
above would be rewritten:

JR$ =5

and not the more logical JR —7.

The Picturesque assembler, which is to be available shortly,
will employ the standard Z80 method of calculation, and the
instruction using this, therefore becomes the expected JR — 7.

If, as will most often be the case, except when space is at a
premium, you are using labels none of this will affect you, and
there is no need to worry about which assembler you are using.
Any relative jump to an offset indicated by a label, will always be
made to the instruction immediately following the label.

There is one last instruction to be described in this chapter, and
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it is one of the simplest but most useful instructions available. It
enables the contents of the DE register pair to be exchanged with
the contents of the HL register pair. This is extremely useful if the
HL register pair is being used to point to an address in memory,
but is then needed for another purpose. You will find out why
this situation is likely to arise in the next chapter. As you might
expect the mnemonic for the instruction is: EX DE,HL the EX
being the abbreviation for EXchange. The full opcodes are given
below:

ASGEMELER DECIMAL HEX EINARY

EX DE,HL 235 EB 11 101 o011

If DE held 10 and HL 37 before the EXchange DE will hold 37 and
HL 10 afterwards.

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bit register A,B,C,D,E,HorL

T = aregister pair being used as a 16 bit register
n = an 8 bit number 0 to 255

nn = a 16 bit number 0 to 65535

() round a number or register pair = the address at
PC = Program Counter

SP = Stack Pointer.

LD means LOAD

Any r can be loaded with any n. The instruction has the form LD
r,n.

Any r can be loaded from any other r. The instruction has the
formLDr,r.

The A register can be loaded from an address in memory. The
instruction has the form LD A, (nn).

An address in memory can be loaded from the A register. The
instruction has the form LD (nn),A.

Both the above can use the contents of HL register pair instead
of nn. The instructions are LD A,(HL) and LD (HL),A.

Any rr can be loaded with any nn. The instruction has the form
LD rr,nn.
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Any rr can be loaded from any memory location and the
location 1 higher. The instruction has the form LD rr,(nn).

Any memory location and memory location +1 can be loaded
from any register pair. The instruction has the form LD (nn),rr.

It takes one less byte to do either of the above using the HL rr.

A subroutine is accessed by a CALL nn.

A CALL can be to any address in memory.

A subroutine is ended by a RET.

Both the above use the stack.

A jump can be made to any location in memory using the
instruction JP nn.

The HL register pair can be used to contain the nn, this reduces
the instruction from three bytes to one byte. The instruction then
takes the form JP (HL).

A relative jump can be made to a location within the range
+127 to —128 of the end of the jump instruction, which takes the
form JR n.

Sixteen bit numbers are held in memory in reverse order. If the
number is made into a 4 digit Hex number the two most signifi-
cant digits are stored in the memory location after the two least
significant digits. In a register pair they are stored in normal
order High Low.

All opcodes are listed in the Appendix with a symbolic
operation.



Chapter Six

Simple Maths

In the previous chapter you learnt about the instructions to load a
single register with an eight bit number or with the number held
in another single register, the LD r,n and LD r,r opcodes. There is
also a complete set of instructions for adding and subtracting,
and the opcodes for these follow very closely the LD r,n and LD
r,r’ instruction forms.

You will recall that the ‘A’ register is also known as the
accumulator, and that there is a number of ‘load’ operations that
can only be performed using the accumulator. The ‘A’ register
really comes into its own in 8 bit maths functions, as it is the only
register which can be used to contain the result of an 8 bit maths
operation.

Before going on to examine the true maths operations there are
two instructions which, although they are not strictly mathe-
matical, can be carried out using any of the general purpose
registers. These are an increase by 1, or a decrease by 1. Imagine a
general purpose register holding, for example, the value 99: An
increase by 1 would leave it holding 100, and a decrease by 1
would leave it holding 98. The assembly language for these
instructions is about as imaginative as a red tomato. To increase a
register by 1 has the instruction INC r with r being any general
purpose register; and to decrease by 1? You've guessed it! DECrr.

There is one case where an INC does not leave a register
holding a value one greater than before, and one where a DEC
does not leave it holding one less than before. As you know a
single register can only hold a value between 0 and 255, so what
do you think will happen if the register holds 255 when the INC
instruction is encountered?

Whenever the value that can be held in eight bits is exceeded
everything starts again from 0. This is rather like having a clock
with only one hand, numbered from 1 to 256 clockwise round its
face. If it is showing 255 o’clock (can you imagine a 256-hour day?

44
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We'd all get old before our time!) after adding 1 hour it will be 256
o’clock but, as with the normal 24-hour clock like the digital clock
you may have on your video recorder or by your bed, it does not
show 24:00 at midnight but shows 00:00 instead. This is because
it is not 24 hours into the old day, it is 0 hours into the new.

If you still don’t know the answer to what comes after 255 try
thinking of the binary, which is 1111 1111. Increase this by
0000 0001 and the result is 1 0000 0000. The register can only hold
an 8 bit number, so what is in the register?

The other exception, as you have very likely realised, is when a

ASSEMELER DECIMAL HEX BINARY

INC E 4 04 00 000 100
INC C 12 oc 00 001 100
INC D 20 14 00 010 100
INC E 28 1C 00 011 100
INC H 36 24 00 100 100
INC L 44 2C 00 101 100
INC (HL) 52 24 00 110 100
INC A 50 Iic 00 111 100

ASSEMELER DECIMAL HEX EBINARY

DEC E S 05 00 000 101
DEC C 13 oD 00 001 101
DEC D 21 15 00 010 101
DEC E 29 1D 00 011 101
DEC H 37 25 00 100 101
DEC L 45 2D 00 101 101
DEC (HL) 33 39 00 110 101
DEC A 61 ZD 00 111 101

Figure 6.1
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DEC instruction is enacted on a register containing 0. Using the
same system as above if you find it helps, what will the register
hold after the DEC is executed? In binary the register holds 0000
0000 before the DEC instruction. If you are at all confused by this,
turn back to Chapter 3, and re-read the section on twos comple-
ment binary numbers.

The construction of the INC and DEC instructions is quite
straightforward.

As you can see in Fig. 6.1 bits 5, 4 and 3 nominate the register to
be used in the same way as they did in the load (LD) instructions.

To demonstrate the INC and DEC instructions enter the
following short program:

10 MM= HIMEM

20 MEMORY 43799

30 FOR N= 43800 TO 43811: READ D: POKE N
,D: A= A+ D: NEXT

40 IF A <> 1352 THEN CLS: PEN 3: PRINT "
DATA ERROR": PEN 1: EDIT 9@

50 INPUT "PRESS ENTER TO START"; A: A= 3

2: B= 224

60 PRINT CHR$ (A);: A= A+ 1: B= B- 1: IF
B <> @ THEN 60

70 PRINT : CALL 43800

90 DATA &, 224, &2, 32, 205, 90, 187, 60
, 5, 32, 249, 201

100 END

Figure 6.2

The Hex and Assembly language versions of the machine code,
POKEd into memory by line 30 from the DATA in line 90, are
shown in Fig. 6.3.

Note that a new instruction has been introduced before the RET
at the end of the routine. This will be explained properly in the
next chapter, but you will probably be able to discern its meaning
if you examine line 60 of the BASIC. Briefly the NZ means Not
Zero, and it relates to the answer to the last maths operation. The
instruction therefore means: if the result of the last maths
operation was not 0 then Jump Relative to the label ‘PRINT".
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HEX ASSEMELER
08 E9 LD B,224
3E 20 LD A,32

CD SA BB FRINT: CALL 47962

3C INC A
05 DEC B
20 F9 JR NZ,PRINT
ce RET
Figure 6.3

When RUN this will print the character set of the Amstrad CPC
464 onto the screen, starting with a ‘space’ and going right
through all the characters shown in Appendix III of the Amstrad
User Instructions from page 2.

The instructions to add to the ‘A’ register or to subtract from the
‘A’ register are almost equally straightforward, in their simplest
form. The mnemonic for a simple ADD is ADD, and for a simple
SUBtract it is SUB. As only the ‘A’ register can be used for 8 bit
maths it would seem unnecessary to specify which register is to
be used, and in the case of the SUB mnemonic this is indeed the
case. However the ADD mnemonic is also used to perform a 16
bit ADD using the HL register pair, as will be explained later.
With the ADD it is normal practice to state which register is to be
used, even though some assemblers do not require it. The
Devpac assembler will not accept an ADD without the register
being named, but it is likely the Picturesque assembler will
accept an ADD on its own.

If it is required to add a number to the A register the full
instruction is ADD A,n and to take a number away from the A
register the instruction is just SUB n. The other forms of the
instructions are:

ASSEMBLER  DECIMAL HEX BINARY
ADD A,n 198 n Cén 11 000 110 n

SUB n 214 n D6 n 11 010 110 n
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You can see the ADD A,n instruction in use if you change the
BASIC program above as follows:

30 FOR N= 43800 TO 43812: READ D: POKE N,D: A= A+ D: NEXT

The 1352 in line 40 becomes 1491, and line 90 becomes
90 DATA 6,224,62,32,205,90,187,198,1,5,32,248,201

This has changed the INC A in the assembly listing to ADD A,1
and the length of the JR has also been changed otherwise the extra
byte would have made the jump go to the wrong destination.
When RUN there will be no difference in the result, but the code
takes one extra byte of memory.

To see the SUB instruction you can alter these changes to the
BASIC program:

Change the 1491 in line 40 to 1730
line 55 becomes 55 A = 255: B = 224
Inline 60 change A = A+ 1toA = A—1

and line 90 is changed to
90 DATA 6,224,62,255,205,90,187,214,1,5,32,248,201

The assembly language is now:

HEX ASSEMELER
06 E9 LD B, 224
ZE FF LD A, 255

CD SA BB FRINT: CALL 47952

D6 01 SUB 1
05 DEC B
20 F8 JR NZ,FPRINT
ce RET
Figure 6.4

As with the INC and DEC instructions when the result of an
ADD or SUB is 0 the Zero flag is set, otherwise it is reset, showing
that the result is Not Zero. If the execution of an ADD requirzs a
carry over to a ninth bit, because the answer is greater than 255 or,
in the case of a SUB instruction, when a borrow is needed from a
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ninth bit, due to the result being less than 0, there is a flag which
will tell you if the operation has had to make this carry over, and it
is called — predictably — the carry flag. The carry flag is always set
if a carry or borrow was needed by any maths instruction, and
reset if not. Note that the INC and DEC instructions do not affect
the carry flag.

As well as being able to ADD or SUB a number and the A
register it is also possible to perform these operations with
another register, giving the mnemonics ADD A,r and SUBr. The
other versions are:

ASSEMELER DECIMAL HEX EINARY
ADD A,r 128 - 135 80 - 87 10 000 r
SUE r 144 - 1351 {0 - 97 10 010 r

The r represents any general purpose register or the A register,
and the codes are the same as those shown in Chapter 5.

B = 000 H = 100
C =001 L =101
D = 010

E =011 A =111

The code 110 is again used to signify (HL). That is, with the
contents of the memory location whose address is held in the HL
register pair.

The SUB rand ADD A,r work in exactly the same fashion as the
ADD A,n and the SUB n, and affect the Zero and Carry flags in the
same manner. The difference is, of course, that the r is used as a
BASIC variable might be used in place of a predefined number.

Knowing the above and remembering what you learnt in the
last chapter, it should be possible for you to write a short routine
in assembly language, which adds the contents of memory at
address 43894 to the contents of memory at address 43896 and
places the result in address 43898. When you have done this, if
you have an assembler you can type your routine in. If not you
will have to code it manually, using the information already
given, or by looking at the appendix giving the Z80 instruction
set. You can then use the loader program to enter it; the start
address should be 43850.

There are several ways in which this routine could be written,
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and two are given at the back of this book in case you get stuck.
The acid test will be to see if the routine you write works, and a
subroutine which will allow you to do this is given below. It uses
some instructions that you do not know yet, and these will be
explained shortly, but you will probably understand one of them
immediately. The end of your program must be:

ASSEMBLER DECIMAL HEX
CALL 43800 205 24 171 CD 18 AB
RET 201 ce

This is the subroutine to print out the result, which is CALLed
from your routine (Fig. 6.5).

ASSEMELER DECIMAL HEX
ORG 43800 SET MEMORY TO AE17
ENT 43800 START ADDRESE AEL8
LD A, (43898) 58 122 171 IA 7A AB CHECK
LD L,A I B &F
LD H,0 8 0 26 00
LD DE,-100 17 1546 255 11 9C FF
CALL FREDN 205 44 171 Cp 246D
2C AR
LD E,-1¢ 0 248 1E F&
CALL REDN 205 44 171 CD 2C AR
LD AL 125 7D
JR PRIN 24 9 18 09 042D
REDN: LD A,C 52 ¢ IE 00
FNUM:  INC A &0 ZC
ADD HL.DE 25 19
JR C,FNUM 56 282 38 FC
SEC HL,D 237 82 ED 52
CEC A 51 K3
FRIN:  ADD A, #3C 199 48 Cs 0409
0
CALL 4796z 205 90 187  CD S5A BR
RET 201 £9 END ©ZDE
CHECESUM 27964
Figure 6.5

This routine can be entered from the assembly language listing
if you have an assembler, or by using the Hex loader program
given at the end of the book, which you should have on tape
ready to load. If you feel brave, you can change the BASIC
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program you entered earlier in this chapter. You should be able to
do this for yourself but, as a small help, there are 35 bytes in the
listing, so the start of line 30 will be:

30 FOR N = 43800 TO 43834

Remember that your code will start at 43850, so when the
program loads your part N should start as 43850.

If you do change the BASIC, be sure to save your amended
version before you RUN it, just in case you have made an error
which causes the program to crash.

The first problem you will have once you have got your
machine code loaded into memory is how to get numbers into the
routine, for it to add. This is where we have to resort to BASIC
once more — until you get a bit further in the book!

400 INPUT "FIRST NUMBER";A: INPUT "SECOND NUMBER";B
410 7 A3"+"3Bj"=";

420 POKE 43894,A: POKE 43896,B

430 CALL 43850

440 GOTO 400

Figure 6.6

Now type GOTO 400 and the BASIC will ask you for the two
numbers, and then POKE them into memory ready for the
machine code. Your routine will then be CALLed by line 430 to do
the addition, and the result will be printed by the subroutine
given above. Press ESCAPE twice when you want to get out of the
loop which asks for numbers and ADDs them.

If you entered any pair of numbers that added up to more than
255, you would have found that the answer was given incorrectly.
You will remember the reason for this from earlier, and will
hopefully also recall that the carry flag is always set when this
happens. What is needed is a way to cope with numbers that will
not fit into one byte, and use the carry flag to indicate when a
carry needs to be dealt with.

If this is starting to confuse you, think for a moment what
happens when youadd 9 + 6 + 8.

9 + 6 = 5carry 1; so you increase the tens by one

5 (from above) + 8 = 3 carry 1; again you increase the tens by
one. This gives the result: two tens and three units or 23, which
is correct.
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Now think what happens in your program when it does the
following binary addition:

1010 0101 (165)
+ 1011 0000 (176)

1 Each column is added to the column above
+0 in exactly the same way as when the
=1 decimal sum above was carried out. But

this time, since the sum is in binary

01 and goes on quite long enough anyway,the

+0 carry is shown added to the two numbers

=01 in the next column, when it occurs.

101 The only real carry, since up to 255 can
+0 be held in a register without an
=101 overflow, is at the end of the sum. Each

bit falling over the end here 1is worth
0101 256 times the least significant bit.
+0
=0101 If a register is used to store the
carrys when they occur it is counting in
0 0101 units of 256.
+1
=1 0101 What is needed is a series of bytes,

from which any overflow is automatically
11 0101 added to the next byte.

+1
=101 0101 This would act in exactly the same way
as normal addition in decimal, but to
101 0101 base 256 instead of base ten.
+0
+0 In fact this is very easy to achieve and
=101 0101 does not require any thought on vyour

part. There are commands built into the
1101 0101 180 CPU which automatically add or
+1 subtract with carry.
= 0101 0101 (BS) carry 1 (worth 256)

These are called (surprise, surprise!) add with carry, and subtract
with carry. The mnemonics for the assembler, instead of being
ADDC and SUBC, are shortened to save you typing, becoming
ADC and SBC. When used in place of the ADD and SUB instruc-
tions the carry flag is included in the operation. For example,
consider the program in Fig. 6.7.

Imagine that 43894 holds 1010 0101 (165), 43896 holds 1011 0000
(176) and the remaining addresses all hold 0000 0000 before the
program is run. The first part of the program will add 165 to 176,
there will be a carry and the A register will be left holding 85. This
will be stored in address 43898. The rest of the program will add 0
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LD HL,438%96 This will load the value from address 43894

L A, (42894) into the A register and ADD it to the

ADD A, (HL) contents of the address pointed to by HL

LD (42898),A (43896) and put the result into address
43898.

LD A, (42895) The process is then repeated with A holding

INC HL the contents of 43895 and HL pointing to

ADD A, {(HL) 43897, the result going to address 43899.

LD (42899),A

Figure 6.7

to 0 and store the result in 43899. What a waste of energy! But
change the second ADD to ADC and what happens?

The first part of the program works the same as before, and
when the second section is executed the carry flag is set. When
this ADD with carry (ADC) is executed the calculation becomes
0+ 0 + carry, instead of just 0+ 0. The carry flag is set, so the
answer this time is 1, and it is 1 that is stored in address 43899.

By adding the instruction LD HL,(43898) to the end of the
program, the H register can be made to hold the high byte of the
answer, and L the low byte. So after executing the program HL
will hold 0000 0001 0101 0101b or 01 55 Hex. Look familiar? It
should, you will find it is the correct answer to the sum attempted
earlier.

Before going on to describe how to use the SBC instruction,
and the ADC for numbers greater than those that can be held in
two bytes, here are the numeric instruction codes:

ASSEMELER DECIMAL HEX BINARY
ADC A,n 206 n CE n 11 001 110 n
SEC A,n 222 n DE n 11 011 110 n
ADC A,r 136 - 143 88 - 8F 10 001 r
SEC A,r 152 - 159 ?8 - 9F 10 011 r

As usual r can be any general purpose register, the A register or
(HL), the codes are the same as always. Note that the SBC needs
the register A defined. This is because, unlike the SUB instruc-
tion, the SBC can be used in another way, which will be
explained later.

You can now enter the program in Fig. 6.9 which will allow you
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to experiment with the ADC and SBC instructions. If you have an
assembler you will be able to modify the program you wrote to
ADD the contents of two memory locations, otherwise you will
have to use the HEX LOADER program. The decimal listings are
no longer of any relevance since the programs are now starting to
become too long for entry by the ‘DATA’ method.

If you have used the assembler you can type R followed by
[ENTER] to execute it, otherwise you will have to type CALL
43850 followed by [ENTER]. The program will then add the ASCII
code of the next key you press to the contents of address 43896,
and save the answer in address 43898. The contents of address
43895 is then added with carry to the contents of address 43897,
and the result stored in address 43899.

A routine in the operating system is used to read the keyboard,
and this is called by the CALL 47896. This CALL waits for a key to
be pressed, and returns with the ASCII code for the key in the A
register.

Unless you have put something into the addresses added
together by the program the answer will always be the code for
the key you have pressed. You can check this by looking at the
codes in Appendix 3 of the Amstrad manual.

If you use the assembler type B followed by [ENTER]. This will
return you to BASIC. You can now put values into the addresses
that are being added, and then CALL 43850 to see the result.
Remember that you will have to press a key to give part of the
sum.

To add, for example, 220 and 89:

Type POKE 43896,220 [ENTER] CALL 43850 [ENTER]

Then press SHIFT and Y (capital Y has the ASCII code 89). The
answer displayed will be 309.
Or to add 23260 to 345 you would type:

POKE 43896,220 [ENTER] POKE 43897,90 [ENTER]
POKE 43895,1 [ENTER] CALL 43850 [ENTER]

Then press SHIFT and Y. You should get the answer 23605, but
you don’t! Why not?

232601is 5ADC in Hex and 345 is 159 in Hex. Remembering how
the Z80 stores numbers in reverse, and looking at the program
above, you will find that address 43896 and the keyboard provide



REDN:

PRIN:

ASSEMBLER

ORG 43850

ENT 43850

LD HL,43896
CALL 47896

ADD A, (HL)

LD  (43898),A
LD A, (43895)
INC HL

ADC A, (HL)

LD  (43899),A
CALL 43800

ORG 43800

LD  HL, (43898)
NOP

NOP

NOP

NOP

NOP

NOP

LD DE,-1000

CALL REDN
LD DE,-100
CALL REDN

LD E,-10
CALL REDN
LD A,L
JR  PRIN
LD A,0

INC A
ADD HL,DE
JR  C,FNUM
SBC HL,DE
DEC A

ADD A,#30
CALL 47962
RET

HEX

Simple Maths

SET MEMORY TO AB17
START ADDRESS ABA4A

21 78 AB

cDh
86
32
3A
23
8t
32
CD

ce

18
7R
77

7B
18

MORE? Y/N
START ADDRESS AB18

BB

AB

AB

AB

AB

2A 7A AB

00
Q0
00
00
00
00
11

cDh
11
Ch

1E
CD
7D
18
3JE

3C
19
38
ED
3D
cé
CD
ce

18
35
9C
335

F6
35

09

00

FC

52

30
S5A

MORE? Y/N

Figure 6.8

FC

FF

AB

AB

BB

CHECK

04C1

044A

END 0174

Y

CHECK

0160

0S6F

0448

03Fé6

END 02AB

55
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the low bytes of the sum (the DCh and the 59h) and addresses
43895 and 43897 provide the high bytes (5Ah and 01h).

DCh is 220 and 5% is 89 so the 220 is poked into 43896 and the
capital Y provides the 89 for the first part of the sum, these are
then added and the result placed in 43898. This should be 35h as
5%h + DCh = 135h. The 1 is a carry and what is left is the 35h, or
53. If you look into address 43898 by typing;:

? PEEK (43898) [ENTER]

you will see this is indeed the case. The 1h and the 5Ah (the high
bytes of the sum) are 1 and 90 respectively, these are the numbers
that were poked into addresses 43895 and 43897 to be added with
carry in the second section of the program. 5Ah + 01h + carry
(which is set and therefore equal to 1) = 5Ch or 92. This should
be found in address 43899. Check it and see if it is correct.

The answer to the sum is 5C35h, 5Ch is 92, it is the high byte so
worth 256 * its face value which is 23552. The low byte is 35h, 53.
This is then added to the value of the high byte; 23552 + 53 =
23605 or 5C35h. So the sum is correct. Why then is the answer
being displayed incorrectly?

The answer to this will be found by an analysis of the second
section of the program above. This is the bit that does the
printing of the answer to the screen. (There is a monumental clue
in the series of NOPs, no one in his right mind would waste space
if there was nothing to fill it later!)

There are two instructions (ADD HL,DE and SBC HL,DE) that
you are not familiar with, so these will be explained briefly first.
A fuller explanation follows later in this chapter, and the ways the
instructions can be employed are examined in more detail in later
chapters.

As mentioned earlier, the only addition or subtraction instruc-
tion unique to the A register is the SUB instruction. The other
way in which these maths operations can be used, is with the HL
register pair being used as a 16 bit Accumulator. In all cases the
HL register pair will hold the answer after the operation, in the
same way as the A register does after an 8 bit addition or
subtraction.

Unlike with the 8 bit instructions using the A register the
operand, in this case the number to be added to or taken away
from the HL register pair, can only be supplied from one of the
general purpose register pairs, or the SP (Stack Pointer) special
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purpose register. It is not possible to use a numeric operand (for
example, ADD HL,23456), a memory location (for example, ADC
HL,(23456)) or even a memory location addressed by a register
pair (for example, SBC HL,(DE)). The Stack Pointer will be dealt
with in detail in a later chapter. The available instructions are:

ASSEMELER DECIMAL HEX BINARY

ADD HL,EC 9 09 00 001 001

ADD HL,DE 25 19 00 011 001

ADD HL,HL 41 29 00 101 001

ADD HL,SP 57 29 00 111 001

ADC HL,BC 237 74 ED 4A 11 101 101 01 001 010
ADC HL,DE 237 90 ED 5A 11 101 101 01 011 010
ADC HL,HL 237 106 ED 6A 11 101 101 01 101 010
ADC HL,SF 237 122 ED 7A 11 101 101 01 111 010
SBC HL,EC 237 66 ED 42 11 101 101 01 000 010
SBC HL,DE 237 82 ED 32 11 101 101 01 010 010
SBC HL,HL 237 98 ED 62 11 101 101 01 100 010
SEC HL,SF 237 114 ED 72 11 101 101 01 110 010

Figure 6.9

In operation they are exactly the same as their equivalents for 8 bit
values, ADD A,B ADC A,B and SBC A,B, etc., except that they
operate on 16 bit values.

For example to ADD 55536 and 2000 (decimal), the Assembly
language program might look like this:

LD DE, 55536
LD HL,2000
ADD HL,DE

After the program was executed the HL register pair would hold
the answer, 57536 (EOCOh EOh in H COh in L) and the DE register
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pair would still hold 55536 (D8FOh D8h in D FOh in E) and the
carry flag would be reset. If the sum had been 55536 + 23605 then
the answer, instead of being 79141 (13525h) which cannot fit into
sixteen bits, would be 13605 (3525h), and the carry flag would be
set. The bit carried over from the sum has a value 65536 * the
value of the least significant bit of the register pair. This is 2°16,
whereas when a carry occurs after an 8 bit operation it is worth
256 * the least significant bit, which is 2"8.

Had the ADD been replaced by ADC the carry would have been
added in as well, again identical to the operation with the 8 bit
instructions.

The SBC instruction, when used with the HL register pair, can
also be made analogous to the 8 bit SBC with the A register. Due
to the absence of a SUB instruction for 16 bit operations, if the
carry flag is not required to be subtracted from the HL register
pair, it must be reset if it is set, otherwise the answer may be one
less than it should be.

There are instructions to Set the Carry Flag, and to
Complement the Carry Flag (SCF and CCF) but there is no
instruction to reset the carry flag. It is possible to achieve the
resetting of the carry flag by first setting it and then comple-
menting it (SCF followed by CCF) but this is long-winded and
the instruction AND A does the same job with one less
instruction. This is one of the logical operations which is
explained in Chapter 8.

Returning at last to the problem of why the answer to the sum is
incorrect, and the analysis of the second half of the program,
where it has been established the problem resides.

The first section has placed the high byte of the answer in
address 43899 and the low byte in address 43898.

The first instruction of the second section is

LD HL,(43898)

this loads the contents of the address named in the instruction
into the L register, and the H register is loaded from the next
address.

After the instruction is executed L will therefore hold 35h and H
will hold 5Ch, making HL = 5C35h or23605. This is correct so the
problem does not lie here.

Next there are six NOPs, these do No OPeration so the problem
is not here.
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Now the DE register pair is loaded with —1000 which is FC18h.
This looks peculiar but may be correct; what happens next?

A subroutine named REDN (short for REDuce Number) is
CALLed. This will be examined as a unit, broken into stages.

1) LDA,0
2) INCA
3) ADD HL,DE

4) JR C,FNUM

5) SBC HL,DE

6) DEC A

7) ADD A,#30

A=0

A=A+1

HL = 5C35h and DE = FC18h the first time
the subroutine is called. FC18h is 64536 in
decimal or —1000 if it is in 2s complement.
23605 + 64536 = 88141. The largest number
that can fit into sixteen bits is 65535 so a carry
occurs at 65536. 88141 — 65536 = 22605. 1000
has therefore been taken away from the HL
register pair.

FNUM (short for Find NUMber) is stage 2. So
each time there is a carry as a result of the
ADD HL,DE the A register is increased by 1.
In other words the A register counts the
number of times DE is ADDed to HL.

To get here there must have been no carry
from the ADD HL,DE at stage 3. It was not
therefore possible to subtract DE from what
was left in HL, and the answer is wrong. By
using the SBC instruction with a negative
value the end result is an addition. (Did your
teacher at school try to explain that a minus
and a minus are a plus? This proves it.) The
carry flag is known to be reset so it will not
affect the calculation.

Since DE has been added back by the
previous instruction, the count (in A) must
be reduced. A has now been increased the
number of times DE was taken from what
was in HL at the start of the subroutine. HL
now holds what HL held at the start of the
subroutine — (A * DE). In the case of this
example where DE was —1000 HL
= 605and A = 23.

When using the Highsoft assembler the #
sign signifies that the next digits are to be
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interpreted as a Hex number. A was 23 (17h)
so after adding 30h (48) it becomes 71 (47h).
8) CALL 47962 This is the tried and tested ‘print the
character whose code is in the A register’
ROM routine.
9) RET The end of the subroutine.

The reason for the error in the answer to the test example
should now be apparent. If the result is greater than 9000 DE
(which is —1000) will be taken away from HL more times than
there are numbers, that is more than 9 times. The A register will
therefore hold a number in excess of 30h + 9 = 39h (57) when the
print routine is called. Numbers from 30h to 3%h inclusive are the
ASCII codes for the numbers 0 to 9, which is how the answer is
printed, but codes above 3%h are used for punctuation and letters.
The character with the ASCII code 71 is G, hence G was printed in
place of the numbers 2 and 3.

You can probably see what needs to be done to make the
routine work for any number that can be represented in sixteen
bits. The following instructions can be inserted in place of the
NOPs.

If you are using the assembler type

CALL 30004 [ENTER]

Then press L and [ENTER] to list the program. Next enter the
following instructions in place of the first two NOPs and delete
the remaining four NOPs, then press A [ENTER] [ENTER]
[ENTER] to reassemble the code.

For those of you using the HEX LOADER type

RUN and [ENTER]
SET MEMORY TO AB17

and

START ADDRESS AB1B

ASEEMBLER HEX
LD DE,-10000 11 Fo D8
CALL REDN CD 35 AB END 0386

MORE? Y/N N
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Now execute the program as before, and you should find that it
works for any two numbers whose sum can be held in sixteen bits
(<65535).

You can now change the first section of the program, the part
which adds the numbers starting at address 43850, to experiment
with the other 8 bit add and subtract instructions. As long as you
always use the (HL) to point to the address where the numbers
are held, and you do not use the instructions which have n or (nn)
as part of the assembler representation, all that will need
changing is the byte containing the instruction. Remember that
machine code is not like BASIC, you cannot insert instructions!

When you are happy that you understand what is happening
with each of the instructions read on.

You should now be reasonably conversant with 8 bit maths,
and if required it ought not to be an impossible task for you to
write a program which will add any two numbers or take any
number away from any other number, using solely 8 bit opera-
tions. How to output the result may still be a problem. If the
screen is to be used a modification of the program you are using at
the moment will give the desired result.

These sorts of tasks are where 16 bit maths really starts coming
into its own. To be able to add successfully any two 16 bit
numbers it is necessary to deal with 17 bit results, but to be able to
multiply any two 16 bit numbers a 32 bit result must be catered
for. The availability of 16 bit maths operators makes it worth
while allowing for 32 bit results, since no more instructions are
used than for twenty-four bits using 16 and 8 bit maths. This
gives the possibility of using numbers up to 4294967295 (2"32),
which is likely to be able to cope with anything short of the
national debt.

The limitation imposed by not being able to use 16 bit maths on

numeric operands is easily overcome. The first section of the
program in Fig. 6.8 used 8 bit maths, but it could have been
written as shown in Fig. 6.10.
This uses 21 bytes, which represents a saving of 1 byte over the
original. Whilst the result will almost certainly need to be stored
in memory for use at a later stage, it is available forimmediate use
in the HL register pair, whereas with the 8 bit routine the result
was never available except in memory. This necessitated the LD
HL,(43898) instruction in the ‘print number’ routine, which can
now be omitted, thereby saving a further three bytes.
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ASSEMBLER HEX
ORG 43850 SET MEMORY TO AE17
ENT 43850 START ADDRESS AE18
LD HL, (43893) 21 77 AR CHECE
LD A, (HL) 7E
INC HL 23
LD E, (HL) SE
INC HL 23
LD D, (HL) 96
LD H,A 67
CALL 47896 CD O3EF
18 EB
LD L,A 6F
ADD HL,DE 19
LD (43898), HL 22 7A AR
CALL 43800 CD 18 AE @432
RET C9 END @aC?
Figure 6.10

A further saving in memory usage can be made by using 16 bit
loads in place of the 8 bit loads where possible. This makes the
program as shown in Fig. 6.11.

The byte count is now reduced to only 19.

This sort of routine could be used to keep the score in an arcade
game, or for a multitude of other uses, but as it stands it is limited
by the fact that it cannot be called as a subroutine. This is because
set locations are used for the values to be added and the result to
be saved. If the routine was to be used for scorekeeping in a game
of Space Invaders, every different scoring invader would need a
separate routine. So if there were invaders that scored 10, 20, 50,
and 100 and a Mothership which scored 400, the routine would
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ASSEMELER HEX

ORG 438350 SET MEMORY TO AEL7

ENT 43850 START ADPDRESS ABIE

LD HL , (438%2&) 21 78 AE CHECK

LD A, (438935) IA 77 AR

LD D.,A 57

CALL 47896 CD 1€ ER G495

LD E.A 5F

ADD HL , DE 19

LD (43898)> , HL 22 7A AR

CALL 43800 CD 1g Ak

RET c9 END @418
Figure 6.11

have to be written five times. A further problem would be that the
answer from one CALL would need to be made one of the parts of
the addition for the next CALL.

What is needed is a subroutine which will add two numbers
given by the program which calls it, and then returns the answer,
ready for saving by the main program. This can be written using
registers to carry information. Using the scenario above this
could be achieved by using HL to hold the score and DE to hold
the value of the raider hit. Then the subroutine to add the two
numbers together and print the score onto the screen would be
called, and on return the result, in the HL register pair, would be
saved as the new score.

The routines in Figs 6.10 and 6.11 can also be used to subtract
two numbers, but the carry flag must be reset before the subtrac-
tion is made. If this is not done an incorrect result may be given.
The AND A instruction mentioned earlier is used to reset the
carry flag, in the example given in Fig. 6.12, which is a simple
rewrite of Fig. 6.11.
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ASSEMBLER HEX

ORG 438350 SET MEMORY TO AE17

ENT 43850 START ADDRESS AE18

LD HL, (43896) 21 78 AE CHECE

LD A, (43893) IA 77 AR

LD D,A 57

CALL 47896 CD 18 ER 0496

LD E,A SF

AND A A7

SBC HL,DE ED 52

LD (43898) ,HL 22 7A AEB

CALL 43800 CD 18 AE a51C

RET c9 END @aC9
Figure 6.12

This will take DE away from HL and leave the result in HL.

It was mentioned earlier that, by using 16 bit instructions, it
was worth while allowing for 32 bit results. Can you write a
program which adds any two 16 bit numbers and stores the
correct result in memory as a 32 bit number? The answer should
be stored in successive memory locations, with the least signifi-
cant byte stored at address 43896 and the most significant at
address 43899.

Before starting to work out your program enter the following
routine which will allow the result to be displayed. It will also
give you some clues as to how to write your part.

Some things to remember, that may help, are:

1) The answer may be greater than that which can be held in a
register pair. Each part will therefore have to be stored in
memory when not being used.

2) The program is really only a rewrite of the first part of Fig.
6.8, using 16 bit maths in the place of 8 bit, and not relying
on an input from the keyboard.
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3) The program to print the number does a 32 bit subtract, and
a 32 bit ADD will be very similar.

4) The program to print the number is a 32 bit version of the
second part of the program in Fig. 6.8.

When you enter your addition program into the computer it
should start at address 43840 (AB40h) and finish with

CALL 43700 RET

The program for the assembler is listed in Fig. 6.13, taken
directly from the assembler to ensure accuracy. All that you have
to enter is the column to the right of the line numbers, but
remember to put colons after the labels.

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

10 ;3 FIG 6,14 A SUBROUTINE TO PRINT
32 BIT VALUES IN DECIMAL

20
AAB4 30 ORG 43700
AAB4 40 ENT 43700

AAB4 2A7BAB 56 LD HL,(43896)
AAB7 223EAB 60 LD  (43838),HL
AABA 2A7AAB 76 LD  HL, (43898)
AABD 2240AB 80 LD  (43840),HL
AACO 110036 90 LD DE,#3600 ; THE LOW WORD AND
AAC3 ©165C4 100 LD  BC,#C465 ;
THE HIGH WORD OF -1,000,000,000
AAC4 CDOCAB 110  CALL REDN
AACY 11001F 120 LD DE,#1F@@ ;
AACC @10AFA 130 LD  BC,#FAOQA ;
THE HIGH WORD OF -100,000,000
AACF CDOCAB 140  CALL REDN
AAD2 118069 156 LD DE, #6980
AADS ©147FF 140 LD  BC,#FF&7
THE HIGH WORD OF -10,000, 000
AAD8 CDOCAB 170  CALL REDN
AADB 11COBD 180 LD  DE,#BDCO
AADE @1FOFF 190 LD  BC,#FFFe@
THE HIGH WORD OF -1,000,000
AAE1 CDOCAB  20@  CALL REDN
AAEA 116079 210 LD  DE, #7960 ;
THE LOW WORD AND THE
AAE7 @IFEFF 220 LD  BC,#FFFE ;
THE HIGH WORD OF -100,000
AAEA CDOCAB 230  CALL REDN
AAED 11FOD8 240 LD DE,-10000 ; THE LOW WORD AND
AAF@ O1FFFF 250 LD  BC,#FFFF ;
THE HIGH WORD OF -10,000

THE LOW WORD AND

THE LOW WORD AND

THE LOW WORD AND
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AAF3 CDeCAB 260 CALL REDN
AAF6 1118FC 270 LD DE, -1000
AAF9 CDOCAB 280 CALL REDN
AAFC 119CFF 290 LD DE,-100
AAFF CDOCAB 300 CALL REDN
ABO2 1EF6 310 LD E,-10
ABG4 CDOCAB 320 CALL REDN
ABO7 3A3EAB 330 LD A, (43838)
ABOA 1825 340 JR PRIN
ABOC 3E00O 3590 REDN LD A, 0
ABOE 3C 360 FNUM INC A
ABOF 2A3EAB 370 LD HL, (43838)
AB12 19 3890 ADD HL,DE
AB13 223EAB 390 LD (43838) ,HL
AB16 2A40AB 400 LD HL, (43840)
AB19 EDA4A 410 ADC HL,BC
AB1B 2240AB 420 LD (43840) , HL
AB1E 38EE 430 JR C, FNUM
AB20 2A3EAB 440 LD HL, (43838)
AB23 EDS52 450 SBC HL,DE
AB25 223EAB 460 LD (43838) , HL
AB28 2A40AB 470 LD HL, (43840)
AB2B ED42 4890 SBC HL,BC
AB2D 2240AB 490 LD (43840) , HL
AB3® 3D 500 DEC A
AB31 Cé30 510 PRIN ADD A, #30
AB33 CDSABB 520 CALL 47962
AB36 C9 530 RET

Figure 6.13

Pass 2 errors: 00

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
9IC9 0I5 0364 OIFL 9562 9SD4 @575 ©4FR 0I22  @2DD @47D
B4F7 0464  0OCY

If you do get stuck writing the 32 bit addition program, there is
one possible solution elsewhere in the book. Try to follow what it
does and then rewrite it another way. It is also suggested that you
re-read the latter part of this chapter if you still have problems.

Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bitregister A, B, C,D,E,Hor L
rr = aregister pair being used as a 16 bit register
n = an 8 bit number
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nn = a 16 bit number

() round a number or register pair = the address at
PC = Program Counter

SP = Stack Pointer.

The INC r or DEC r adds 1 to or takes 1 from r. Both affect the
zero flag according to the result. If the result is 0 then the flag is
set, otherwise it is reset.

INC rr and DEC rr operate as above, but they work on a register
pair as if they were one 16 bit register. These instructions do not
affect any flags.

The A or accumulator register is the only register that can
contain the result of an 8 bit maths operation.

Eight bit maths operations are:

SUB r SUB n SUB (nn) SUB (HL) which subtract from the A
register.

ADD A,r ADD A,n ADD A,(nn) ADD A,(HL) which add to the
A register.

SBC A,r SBC A,n SBC A,(nn) SBC A,(HL) which subtract with
carry from the A register.

ADC A,r ADC A,n ADC A,(nn) ADC A,(HL) which add with
carry to the A register.

The HL register pair must be used to contain the result of a 16
bit maths operation.

The 16 bit maths operations are:

ADD HL,rr which adds the contents of rr to the HL register
pair.

ADC HL,rr which adds with carry to the HL register pair.

SBC HL,rr which subtracts with carry from the HL register
pair.

If there is a borrow needed or a carry over from any maths
operation the carry flag will be set, otherwise it is reset. If the
result of a maths operation other than a 16 bit addition is 0 the
zero flag is set, otherwise it is reset.

The instruction AND A is used to ensure the carry flag is reset
regardless of its previous condition, when the SBC instruction
does not require the carry in a 16 bit operation.



Chapter Seven

Flags, Conditions and
Decision
Making

In the last chapter the use of the carry flag in mathematical
operations was examined in some detail, and it was shown how
the result of a maths calculation affected this flag. The zero flag
was also briefly introduced.

Both these flags are single bits in a special register known,
predictably, as the Flag Register. As you all know there are eight
bits in a register, so what are the rest used for? Correct! There are
more flags to indicate other things. The flag register is made up as
follows:

V4 H

SIGN I ZERO [ NOT I HALF ' NOT I PARITY/
I l USED | CARRY | USED | OVERFLOW | SUBTRACT |

I M/P | Z/NZ PE/PO I C/NC |

PV l N C |
AaDD/ | CARRY |

The letter at the top of each flag bit is the abbreviation used by
Zilog to identify the flag; it will be found in the Appendix of
instruction codes, as well as in most literature about the Z80. Next
is the full name of the flag, and last the programmer’s means for
testing the condition of the flag. You will note, however, that
only four of the flags are accessible to the programmer; the
remainder are used internally by the CPU.

Imagine the CPU in your computer as being a railway engine,
and the program as being the rails that the train is running along.
The train can be made to change the track it is running on by
switching points, and somewhere along the line there will be a
man in a signal box who will pull a lever to change the points. He
will know in advance where the train is going and which points

68
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to set in which direction. This is the sort of action taken by jumps
and calls in a program. But what happens if the train is to go
different ways according to the amount of freight and to which
stations it is consigned?

The only way the signalman can know which way to switch the
points is if the train-driver lets him know. Problem! How to let
the signalman know. The train must not stop otherwise it will be
late, not to mention the fuel that will be wasted. So a system of
flags is devised, but the driver can only signal one thing at a time,
because he can only hold one flag, and he can only signal yes or
no, because he is going too fast to be able to use semaphore.

With machine code it is the same, and it is the flags that form
the basis for all decision making, and only yes or no to a specific
question can be signalled by a flag. Since there are only four flags
that can be employed, some thought has to be applied in order to
arrive at the decision required; it’s a little like twenty questions.

It has already been shown that arithmetic operations affect
flags, but it is often the case that, when a test is required, it is
unacceptable to alter whatever is being tested. The score example
in the last chapter is a good instance of this. Consider the situa-
tion where a table of highest scores is being maintained, and the
score from the last game is being investigated as to eligibility. It
would be a bit daft if the only way to find out if the new score is
higher than that at the top of the table, is to subtract the old high
score from the one under investigation, and then test the carry
flag. If it is not set, that is no carry (NC), it is then known that the
new score was higher than the previous best.

Before criticising the change in tense, consider what will
happen when the new score is put at the top of the high score
table. Assume that the previous best is 15575 and the latest was
21024, when the test was made. The score that will be put at the
top of the table is 5449. Daft!

It will nearly always be possible in this situation to reclaim the
value previous to the test, but why should one have to? It would
be much nicer if there was a sort of ‘dummy’ subtraction to make
the test. An instruction to compare and set the flags, without
altering anything else. There is, and what’s more it is called
compare! Fiendishly cunning, these Zilogians!?!

As usual the mnemonic is an abbreviated version of the
English, and compare is shortened to CP. It acts exactly like the
SUB instruction, but does not change the contents of any register
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except the flag register. You will recall that the SUB instruction
only operates with the A register, the CP also only operates on the
A register.

All maths operations except the 16 bit ADD influence all the
flags; the only usable flag affected by the 16 bit ADD is the carry
flag. It is therefore normally the case that a compare will not be
necessary after a maths operation, upon whose result a decision
depends.

The compare instruction is, as you would expect, constructed
in the same way as 8 bit maths instructions, the only change is to
bits 5, 4 and 3. These bits become 111 in place of what they would
have been for any other operation. For example:

ASSEMBLER BINARY

SUE n 10 010 110 n R 000
CF n 10 111 110 n C 001

D 010
SUB r 10 010 r r is, as usual E 011
CF r 10 111 r H 100

L 101
SUB (HL) 10 010 110 (HL) 110
CP  (HL) 10 111 110 A 111

In the previous chapter two flags were introduced, the carry
flag and the zero flag. These were utilised by the program, to
enable it to make decisions dependent upon their condition. The
term used to describe instructions which act according to the
condition of a flag is, as always, boringly predictable. They are
known as ‘conditional’ instructions. In BASIC the “IF such-and-
such THEN so-and-so” statement is conditional, and the THEN
is so often followed by a GOTO that many BASICs, including
your Amstrad’s, even allow the GOTO to be omitted.

In machine code things are much the same. The analogy
between the GOTO in BASIC and jump instructions in machine
code has already been emphasised, but this similarity goes even
further than has so far been pointed out. In the program in Fig.
6.3 a jump (JR) was made according to the condition of the zero
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flag, and the carry flag was employed in the same way, by the
program in Fig. 6.5. This is almost identical to the IF . . . THEN
structure of BASIC.

The apparent lack of things that can be tested for is in fact no
real limitation, as a short analysis of the flags and the things that
they indicate will soon show. The carry flag will be examined
first, because you already have some experience of it.

With the exception of INC and DEC instructions, any opera-
tion which causes an overflow from the register or registers being
operated on sets the carry flag, and conversely any operation
which could cause the carry flag to be set, will reset it if there is no
overflow.

To make this clearer a few examples are given below:

LD A0
DEC A Will re-set the carry flag, but LD A0
SUE 1 will set it.
LD B,156
LD A,100 LD  BC,6S000

ADD A,B Will set the carry flag, as will LD HL, 55326

ADC HL,EC or
LD EC, 45000
LD HL,5536 LD EC,5536
SEC HL,EC  but LD HL,65000 LD A,225
SEC HL,EBC or ADD A,25

will leave the flag reset.

In brief, any 8 bit addition which gives an answer over 255, or any
16 bit addition which comes to over 65535 will set the carry flag, as
will any subtraction whose answer is less than 0. It is similar to a
BASIC > (greater than) or < (less than).

Most of the instructions that affect the carry flag also set the
zero flag if the result is 0, or reset the zero flag if the answer is not
0. The only exception to this rule, with the instructions intro-
duced so far, is the 16 bit ADD HL. This opcode leaves the zero
flag in the same condition as it was before the ADD HL was
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executed. The zero flag can be thought of as being equivalent to
the BASIC = (equals).

This similarity is most profound when the CP instruction is
employed to set the flags. The zero flag will always be set if there
is no difference between the contents of the A register and what
the A register is being compared with, and reset otherwise.

There are also a great many instructions that modify the zero
flag and not the carry flag, but so far, as was pointed out at the
time, the 8 bit INC and DEC are the only two cases. From now on
as new instructions are broached, the way they alter the flags
which are accessible to you, the programmer, will be detailed.

By testing just the carry and zero flags after a well-thought-out
comparison (CP) it is possible to answer almost any questions
which can be answered yes or no. At first you will find that you
often get unexpected results but, once you learn to think like a
microprocessor, it will become second nature to ask the right
question and look at the correct flag.

Beware of the snap decision, or using two tests where different
flags may indicate both answers in response to one well-thought-
out test! Look at the following program which jumps to various
labels according to the value in the A register. What is being
sought is the code for the letter “A”’, but more information is also
required.

1) Does the A register contain an ASCII code?
2) If it does THEN is it a code for a letter?
3) IFitis THEN is it the code for the first letter of the alphabet?

CP 128 All valid ASCII codes are below 128

JRNC,NOTASC If there is a carry the A register must hold a
value below 128. No carry and it must be 128
or over hence A does not hold an ASCII
code. So jump to the label NOTASC if NC
(no carry)

CP 32 All ASCII letter codes are over 32. If there is
a carry A must hold a value below 32

JR C,NOTLET Jump on carry to NOTLET (NOT LETter)

CP 65 This could have been written CP “A”’

JRZ,ISA IF there is no difference THEN the zero flag
will be set so, jump on zero.

At this point you might think that it is safe to assume the A
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register holds an ASCII letter code and it is not A, but you would
be wrong. Look at Appendix IIl in your Amstrad manual and you
will find that whilst codes over 31 are all ‘printable’ letters do not
start until code 65. So if you now change the instruction CP 32 to
CP 65, and delete the original CP 65, you have not only saved an
instruction but also avoided a misleading result. There are still a
number of things wrong. ASCII codes for letters do not continue
to code 127, all codes over 122 are punctuation, as are codes 91 to
96 inclusive. Can you add the necessary instructions to jump to
the label NOTLET with these codes? Try to work out a solution
before reading on. One clue, you will need an extra label ISLET
(IS LETter).
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You should have added the following instructions:

CP 123 ; The first code that is not a letter

JRNC, NOTLET ; No Carry means A must hold over 123 (the
last letter)

CP91 ; The first non letter value after the
CAPITALS

JR C,ISLET ; If there is a carry then A must hold a value

below 91. Therefore as all values below 65
have already been excluded, A must hold
the code fora CAPITAL LETTER
CPr97 ; The code for the first lower case letter
JRC,NOTLET ; Bearing in mind the previous instructions,
this decision can be made. JR NC,ISLET
would also have worked, but!

If you were testing for someone pressing ‘A’ from the keyboard,
what happens if they have pressed a lower case ““a”’? Nothing!
This is the sort of thing that you must be very careful of,
whenever you are looking for an input from the keyboard, or
searching through text. The addition of one further instruction
will correct the program.

JR Z,ISA The zero flag will be set if A contains 97 (the
code for ““a”’)

ISLET (the label for the address the program transfers control to if
the A register holds the ASCII code for a letter which isnot ““A” or
“a”’) should be placed at the end of the program. This avoids the
addition of another jump, because the program’s flow will arrive
at this label naturally, if no jumps at all have been made, and the
A register will be holding an ASCII letter code, not “A” or ““a”.

Enter this program into your computer and experiment with it
until you are happy that you understand how it works. Then
change it to look for another letter. For those of you using an
assembler it will be easy to make the modifications once you have
worked out your new coding. Those using the HEX LOADER will
have to completely rewrite the program, work out all the jumps,
and re-enter it in its entirety.

This first section will allow the program to take input from the
keyboard, and the results of the program to be output to the
screen. It uses the same two routines in the operating system as
have been used before. Note the way the program prints out
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messages, and chooses which message to print. This is analysed

later.

Hisoft GENA3 Assembler.

Pass

AAB4
AAB4
AAB4
AAB7
AAB?
AABB
AABC
AABE
AACO
AAC2
AAC4
AAC6
AACSB
AACA
AACC
AACE
AADO
AAD2
AAD4
AADS
AAD6
AAD7
AARDA
AADC
AADD
AADE
AAEO
AAE2
AAE3
AAES
AAESB
AAEA
AAEB
AAED
AAEE
AAF2
AAF6
AAFA
AAFE
ABOO
ABO2
ABO&6
ABOA
ABOE
AB10
AB14

1 errors:

CD18BB
0604
FEFC

c8

FEB0
3016
FEA41
3811
2811
FE7B
300B
FESB
3806
FEb1
3803
2803

05

03

05
21EDAA
3EOA

BE

23

20FC
10FA

7E
CDSABB
FEOA
28CA

23

18F5

oA
41204C45
54544552
20425554
204E4F54
2041
0DOA
4EA4F5420
41204CA45
54544552
0DOA
4EA4FS5420
41534349

00

10

20

30

40

S50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

START

ISLET
NOTLET
NOTASC
ISA

LOOKMS

PRINT

MESST

Page

DEFB
DEFM
DEFM
DEFM
DEFM
DEFM
DEFW
DEFM
DEFM
DEFM
DEFW
DEFM
DEFM

43700
43700
47896
B,4

252

z

128
NC,NOTASC
65
C,NOTLET
Z,1SA
123
NC,NOTLET
91

C, ISLET
97
C,NOTLET
Z,1SA

B

B

B
HL,MESST
A, #0A
(HL)

HL
NZ,LOOKMS
LOOKMS
A, (HL)
47962
#0A
7,START
HL

PRINT
#0A

" LE"
"TTER"

1] BUT "

n NDT 1]

" AH
#0A0D
IINOT n
IIA LE n
"TTER"
#0AOD
IINDT L
"ASCI"
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AB18 49 470 DEFM "I"
AB19 O0DOA 480 DEFW #O0AO0D
AB1B 594F5520 490 DEFM "YOU "
ABI1F 50524553 500 DEFM "PRES"
AB23 353454420 S10 DEFM "SED "
AB27 4121 520 DEFM "A'!"
AB29 ODOA 530 DEFW #0AOD

Pass 2 errors: 00

Figure 7.1

You will see that there is no separate Hex listing given for the
program in Fig. 7.1 and none of the programs in the remainder of
this book will have them. By this stage you should be familiar
enough with the HEX LOADER to be able to use the Hex listing
from the assembler. This is the column one from the left, starting
—in this case - CD18BB.

As usual, if you are using the HEX LOADER you enter the
program in pairs of Hex numbers. The addresses for SET
MEMORY, the START ADDRESS and the checksums are given
below.

SET MEMORY TO AAB3

START ADDRESS AAB4

Checksums; 05EA, 0380, 036C, 023A, 0567, 0395, 02DB, 0226,
02A5, 0248, 0264, 01C8

If you are using the assembler, there is no need to split the
messages into small blocks. This has been done because the
assembler only gives a Hex listing of the first four bytes on each
line. Line 350 could therefore be

DEFM “A LETTER BUT NOT A”

and lines 360 to 390 inclusive would not be needed. The same
applies to the other messages.

There are a number of interesting points in this program which
are worth explanation.

With almost any machine code program, once it is running
there is no way of stopping the program unless you have given an
escape route. The program above goes round in a loop. When
called from BASIC by a ‘CALL 43700’ command, or from the
assembler by R, the program would continue giving its assess-



Flags, Conditions and Decision Making 77

ment of keys pressed on the keyboard until Doomsday, a
breakdown, or you reset or switched off the computer.

A means of escape has therefore been provided. The first check
the program makes on the code returned in the A register, from
the WAIT KEY routine at 47896 is to see whether it holds 252, the
code returned by the red ESC key, if so a RETurn to the CALLing
program is made.

The next section of the program has already been explained,
and the four labels ISLET, NOTLET, NOTASC and ISA have now
been included. There are four messages that are printed
according to the assessment of the code in the A register, and
each message has been given a number, 1 to 4. The B register is
loaded with 4 at the start of each loop round the program, and is
decremented according to which label the program jumps to.
Should it jump directly to the label ISA then the B register will be
left holding four, but when the jump is to the label ISLET, the B
register will be decremented three times, and hold 1 when the
program arrives at the label ISA. This is used to decide which of
the messages is to be printed.

The message table starting at the label MESST is then scanned,
and the B register decremented each time a byte holding 0Ah is
found until B holds 0. Rather than use two instructions, the
semi-automated DJNZ instruction is employed.

This instruction is constructed in exactly the same manner as a
JR NZ instruction, but it is the first of many Z80 instructions yet
to be introduced, that do the combined jobs of more than one
normal instruction.

The DJNZ instruction performs the equivalent of a DEC B
followed by a JR NZ instruction, but with a saving of 1 byte, and
without affecting any flags.

ASSEMELER DECIMAL HEX BINARY

DINZ n 16 n 16 n 00 00l @19 n

As usual with a relative jump n is the jump distance, in 2s
complement, from the address of the next instruction.

Once the B register is decremented to 0, the program continues
and the message is printed from the byte following that holding
the 0Ah which caused B to reach 0, up to and including the end of
the message, marked by the next 0Ah. You will notice that each
end marker (0Ah) is preceded by a byte holding ODh. The com-
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bination of these perform a carriage return and a line feed,
positioning the cursor ready for the next message. Control is then
returned to the start of the program and the process is repeated for
the next key pressed.

The next flag to be examined is the sign flag, which indicates
whether the sign of the result of a maths operation is Plus or
Minus. This flag, and the Parity/Overflow flag, whose function
will be explained next, cannot be used in connection with a
relative jump (JR) instruction. It is time therefore to detail all the
instructions which can be made conditional upon the setting of a
flag.

So far, with the exception of one instruction in the program in
Fig. 7.1, the only conditional branches have been made by
relative jumps. The full opcodes for both unconditional and
conditional relative jumps are shown in Fig. 7.2.

ASSEMELER DECIMAL HEX EINARY

DJINZ n 16 n 10 n 00 010 000 n
JR n 24 n 18 n 00 011 000 n
JR NZ,n 32 n 20 n 00 100 000 n
JR Z,n 40 n 28 n 00 101 000 n
JR NC, n 48 n 30 n 00 110 000 n
JR C,n S6 n 38 n 00 111 000 n

Figure 7.2

As you might expect an absolute jump JP can also be made
conditional on the setting of flags, as can the CALL and RET
instructions. These instructions are not limited like the relative
jumps, to using only the Carry and Zero flags. They can use any of
the user accessible flags.

You will remember that each of the general purpose registers
has a three bit code, used to identify it in all the instructions
which can use any general purpose register, by changing three
bytes in the instruction, according to which register is to be used.
The same system is employed by the Z80 to identify conditions.

NZ (not zero) 000
Z (zero) 001
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NC /no carry) 010
C (carry) 011
PO (parity odd) 100
PE (parity even) 101
P (sign positive) 110
M  (sign negative) 111

In each of the instructions below, cc represents the condition,
selected from those above, upon which the program is to branch.
The three bits denoted cc in the binary instruction, comprise
three bits from above according to the condition chosen.

ASSEMELER EINARY
JP cc,nn 11 cc 210 nn
CALL cc,nn 11 cc 100 nn
RET cc 11 cc 000

JP NC,47962 therefore becomes 11010010 0101 1010 1011 1011
and CALL Z,47960 will be 11001 100 0101 1000 1011 1011.

Obviously the sign flag can only indicate the sign of a result
correctly when 2s complement notation is being used. The flag is
meaningless as a sign flag when computations are in unsigned
binary, although it can still be useful as a test of bit 7. For
example: the A register contains a positive value of 254 after a
maths operation. The sign flag however will be set, erroneously
indicating a negative result. This is because the sign flag simply
reflects the state of bit 7 of the result. In future, instead of making
references to 2s complement notation, which is rather long
winded, the term ‘signed’ will be employed. This will reflect
that the sign flag correctly indicates the sign of the result of a
maths operation.

The sign flag is affected by all 8 bit maths operations, including
CP (compare), 8 bit INC and DEC instructions, and the 16 bit
ADC and SBC instructions. None of the other instructions you
have learnt so far affects it in any way. As new instructions are
annotated their effect on flags will be detailed where it is useful,
and the effect of all instructions on any flags is shown in the
appendix of opcodes.

The last flag that is of use to the programmer is the Parity/
Overflow flag. This flag has two distinct uses and cannot be used
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for both purposes at the same time. It is either an overflow flag ora
parity flag, never both.

All instructions that affect the Zero flag also affect the P/V flag,
and all the instructions explained in this book so far that affect the
Zero flag use the P/V flag in its role as an overflow flag.

The Overflow flag indicates that the execution of a signed
calculation has caused the result to exceed the range that can be
held in signed form. Confused? Not surprising, this is possibly
the most complicated concept so far, but once you get the hang of
signed overflows you will wonder what all the trouble was about.
Consider the following short program:

LD A,-80
ADD A,-80

On completion the A register will hold 0110 0000 in binary, which
is 96 or 60h. This is a positive number (bit 7 reset) and not the
correct answer. In this example the carry flag will be set, allowing
you to pick up the fact that the result caused an overflow. But
what about the sum:

LD A,80
ADD A,80

This time the A register will hold the answer 1010 0000 in binary,
which is —96. Again not the correct answer but this time the carry
flag will not be set. Ostensibly, without knowing instinctively,
there is no indication of the sum going wrong. This is where the
Overflow flag comes in. Any maths operation that causes a result
outside the arithmetic range for the instruction, that is —128
< =n < =127 for an 8 bit operation, or —32768 < = nn
< = 32767 for a 16 bit operation will cause the overflow flag to be
set.

To test the overflow flag the mnemonics are PE and PO, a jump
will be made by PO if there has been an overflow, and by PE if
there has not. In fact PE stands for Parity Even and PO stands for
Parity Odd, and are used here, because no additional mnemonics
have been assigned to the flag, to separate its use as an overflow
flag and a parity indicator. It may help to remember which
mnemonic to use if you note that the mnemonic which will cause
a branch if there is an overflow is the only one to contain the
letter O.
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No overflow can be caused by adding two numbers with
different signs, and only numbers with different signs can cause
an overflow in subtraction.

Parity is determined by the number of bits in a byte that are set
to 1; if there is an even number then parity is said to be even. The
P/V flag, after an instruction which uses it as a parity flag, will
indicate the parity of the byte tested. The flag is set if the parity is
even and reset if the parity is odd. None of the instructions
introduced so far uses the P/V flag in its parity role. It will be
pointed out when a new instruction employs the P/V flag as a
parity flag.

There are two further instructions to be considered in this
chapter, SCF and CCF.

These are both completely straightforward in operation. SCF is
short for Set Carry Flag, and that is exactly what it does when
executed. CCF is short for Complement Carry Flag, and again that
is what it does. No, not by telling it what a nice carry flag it is, but
by changing its state. If the carry flag was set before the execution
of a CCF instruction it would be reset afterwards, and the
converse if the flag was reset before the CCF instruction.

The opcodes are as follows:

P TN T A s —_—
SnBEMBLER LECIMAL : ERREE

CCF 63 3F 00 111 111
SCF 55 37 200 110 111
Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bitregister A,B,C,D,E,HorL

rr = aregister pair being used as a 16 bit register
n = an 8 bit number

nn = a 16 bit number

() round a number or register pair = contained in
cc = acondition

PC = Program Counter

SP = Stack Pointer
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The usable flags are CARRY ZERO SIGN and P/V.

The P/V flag has two separate uses, Parity and Overflow.

Overflow signals that the sign has changed on a signed arith-
metic operation, making the result wrong.

ccis C,NC, Z,NZ, PE, PO, M and P.

CP performs a dummy SUB on the A register, it sets flags, but
does not alter anything else.

JR can only be conditional on the Carry flag or the Zero flag.

DJNZ does the equivalent of a DEC B and a JR NZ, but does not
affect any flag at all.

CALL JP and RET can all be made dependent on any usable
flag.

No LD CALL JP JR or RET instruction affects any flag.



Chapter Eight

Logical Operations

The Z80 CPU is endowed with a set of logical operators almost
identical to that possessed by the Amstrad CPC 464’s BASIC. This
is not really surprising, since it is the Z80 which does all the work
of running BASIC. This makes the job of explaining the machine
code instructions AND OR and XOR much easier, since you are
no doubt already familiar, albeit unknowingly, with the way they
function, excepting their effect on flags. If you have not yet
become acquainted with these operators on the Amstrad, then
turn to Chapter 4 page 18 in the Amstrad User Instructions, where
you can read about them. The remainder of this chapter assumes
a working knowledge of Amstrad BASIC logical expressions.

The AND OR and XOR logical operators are classed as mathe-
matical, and can only be performed on 8 bit values using the A
register. If you look at the opcodes below, you will find that they
are made up identically to the other 8 bit maths instructions, with
bits 5, 4 and 3 changed according to the instruction. The
mnemonics do not require the A register to be stipulated since, as
with the SUB mnemonic, there is no other register which can
employ them.

The flags are affected by all the logical operators, and are set
according to the contents of the A register after execution.
Obviously, since no result from an AND OR or XOR can ever
cause a result outside the range of 8 bit numbers all these instruc-
tions reset the carry flag to 0. And because it would be impossible
to cause an overflow the P/V flag takes on its Parity role. The Sign
flag will reflect the state of bit 7 in the A register after the opera-
tion, and the Zero flag will be set if the A register has no bits set
otherwise it will be reset.

Before being able to make efficient use of these logical operators
you will have to start thinking in binary. Only then do the many
and varied uses become apparent. At present it is most unlikely

83
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ASSEMELER DECIMAL HEX EINARY

AND n 230 E6 11 100 110
AND r 160 - 167 A0 - A7 10 100 r
XOR n 238 EE 11 101 110
XOR r 168 - 175 A8 - AF 10 101 r
OR n 246 Fé6 11 110 110
OR r 176 - 183 BO - B7 10 110 r

that you are thinking in binary, so you probably can’t begin to
think what purposes these may be.

Consider the program in Fig. 7.1. Here tests had to be made
separately for lower and upper case letters, and for the gaps
between the two types of letters. But in fact the only difference (in
binary) between the two sets of letters is the condition of bit 5. All
upper case letters have bit 5 reset, and all lower case letters have
bit 5 set. Using the logical operator and it is possible to make
alower case letter upper case, and by use of the logical operator or
an upper case letter can be made lower case. Can you work out the
full form of the instruction?

With the alterations to the program in Fig. 7.1 given below, the
answer to the question above can be demonstrated.

Change line 220 to:

ADDRESE HE> HEREMELER

AGDT CD 2B AB CALL EXTRA Checkswn oy this is 0147,
Acd the following at the end of the oroaram

AEDE CD S5A BB CALL 47962

ABZE 00 NOP

AEBZF 00 NOP

ARIO CD SA BB CALL 47962

ARIT 3E 20 LD A,32 ; THE CODE FOR SPACE
ABZIE CD 5A BB CALL 47962

ABIH 21 ED AA LD HL,MESST

AEIR ce RET
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The checksums required by the HEX LOADER for this second
section are: 0422, 0463.

Now when the program is executed the character generated by
the code returned by the key you press will appear twice,
followed by a space, before the program gives its verdict. The two
NOPs give space for you to put an AND OR or XOR instruction,
and then see the effect it has.

First change the two NOPs to:

ADDRESS HEX ASSEMBLER
AEBZ2E Fé6 20 OR #20

The easiest way to do this if you are without an assembler is to
type POKE &AB2E,&F6: POKE &AB2F,&20 as a direct command.
Now execute the program again and try pressing various keys,
both with and without the shift key. (Remember to make sure
that the CAPS LOCK is not on . ... Why oh why couldn’t
Amstrad have put a light in the caps lock key to indicate when it
was in use?)

You will find that all upper case letters are changed to lower
case, numbers are left alone, as are lower case letters, and other
codes may or may not be changed, according to whether they had
bit 5 set originally. By incorporating this OR #20 instruction in
the main program, a lot of the tests using CP can be made
redundant. The revised version of the program in Fig. 7.1is given
in Fig. 8.1. You will see that the sign flag has been used to indicate
when the code is not ASCII (bit 7 set, that is the value in A is 128
or over). The sign flag couldn’t be used before because it would
not have given an indication of bit 7 of the code of the key pressed
without a CP 0 instruction, and this would have added a byte to
the length of the program, because the sign flag cannot be tested
by a JR instruction. Now that the logical operator is being used
the test instruction that was necessary in the original program can
be thrown out, giving a net saving of one byte after the JR is
replaced by the JP.

Hisoft GENA3 Assembler. Page 1.

Pass | errors: 00

1 ; FIG 8,1
2 3 AMMENDED VERSION OF PROGRAM IN FIG 7,1
AABA4 10 ORG 43700

AAB4 20 ENT 43700
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AAB4 CD18BB 30 START CALL 47896
AAB7 0604 40 LD B, 4

AABY? FEFC 50 CpP 252

AABB C8 60 RET I

AABC F620 90 OR #20

AABE FACDAA 100 JP M,NOTASC
AAC1 FE7B 120 CP 123

AAC3 3007 130 JR NC,NOTLET
AACS FE61 160 CpP 97

AAC7 3803 170 JR C,NOTLET
AAC9? 2803 180 JR Z,ISA
AACB 05 190 ISLET DEC B

AACC 05 200 NOTLET DEC B

AACD 05 210 NOTASC DEC B

AACE 21E4AA 220 ISA LD HL, MESST
AAD1 3EOA 230 LD A, #0A
AAD3 BE 240 LOOKMS CP (HL)
AAD4 23 250 INC HL

AADS 20FC 260 JR NZ,LOOKMS
AAD7 10FA 270 DJINZ LOOKMS
AAD? T7E 280 PRINT LD A, (HL)
AADA CDSABB 290 CALL 47962
AADD FEOA 300° CpP #0A

AADF 28D3 310 JR Z,START
AAEL1 23 320 INC HL

AAE2 18FS5 330 JR PRINT
AAE4 OA 340 MESST DEFB #0A

AAES 41204C45 350 DEFM "A LE"
AAE9 54544552 360 DEFM "TTER"
AAED 20425554 370 DEFM " BUT"
AAF1  204EA4F54 380 DEFM " NOT"
AAFS 2041 390 DEFM " A"
AAF7 ODOA 400 DEFW #0AO0OD
AAF9 4EAFS420 410 DEFM "NOT "
AAFD 41204CA45 420 DEFM "A LE"
ABO1 54344552 430 DEFM "TTER"
ABOS O0DOA 440 DEFW #0A0D
ABO7 4EA4F5420 450 DEFM "NOT *
ABOB 41534349 460 DEFM "ASCI"
ABOF 49 470 DEFM "1I*®

AB10 ODOA 480 DEFW #0A0D
AB12 S594F5520 490 DEFM "YOU *
AB16 50524553 500 DEFM "PRES"
AB1A 53454420 310 DEFM "SED "
ABIE 4121 520 DEFM "A'"
AB20 O0DOA 530 DEFW #0A0D

Pass 2 errors: 00

Table used: 110 from 184
Executes: 43700

Figure 8.1

Checksums: 8582, 85B8, 0215, 84B6, 0439, 02A7, 622B, 62A2, 8251, 0268, 020D,
0608, 6278
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The AND instruction could have been used in place of the OR
changing lower case to upper case instead, and the appropriate
modifications made to cater for this. In this case AND #DF would
remove any bit 5 that was set.

If the OR in the program in Fig. 8.1 is changed for XOR and the
changes given earlier to display the character represented by the
code both before and after the logical operation are incorporated,
you will find that upper case is changed to lower case and vice
versa. Be careful not to press any non-alphabetic keys, as the XOR
will make some of these into control codes.

The AND instruction is usually employed to ‘mask’ bits. This is
the term used when a bit or bits are ignored, or made insig-
nificant. For example, if a program required each letter of the
alphabet to be represented by a number, with ‘A’ as 1 through to
‘Z’ as 26, without differentiating between upper and lower case.
Here the easiest solution would be to mask the top three bits of
the letter’s code with an AND %00011111.

The OR instruction has the opposite effect, and could be used
to reclaim bits masked out by an AND. One of the more common
uses is to allow any writing to the screen to be carried out in ‘over’
form, that is, bits from whatever previously occupied a character
square are only altered when they are overwritten. Another
common use is to reclaim masked bits or modify values. For
example, the programs used to print numbers held in registers or
memory, which started with the program in Fig. 6.5 and
developed to the program in Fig. 6.14, all used the instruction
ADD A, #30 to transform a number into its ASCII code; this was
in fact doing the same operation as an OR #30, which is what
would have been used had you known the instruction at the time.
It would not save any memory but does make what is happening
much clearer.

The XOR instruction, like the OR, is often used for screen-
based operations, and your Amstrad uses it for “Transparent’
mode printing (see Chapter 5, page 2 in the Amstrad User
Instructions). It is also often used when a bit or bits are to be
changed to the opposite of what they were.

Next in the list of logical operators is the complement instruc-
tion, which has the mnemonic CPL, and again there is a direct
equivalent in Amstrad BASIC. This instruction does the same job
as the BASIC NOT. As with all the instructions in this chapter it
operates on the A register only, and simply changes every bit to
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the opposite state. In fact the result is identical to that achieved by
a XOR#FF.

A graphic demonstration of the CPL in use can be given by the
program shown in Fig. 8.2, which complements all the bits in the
screen map (the area of memory in which all the information
about what is to be displayed on the screen is held). This will
invert the bits for both paper and pen and whilst in mode 2 this
will cause the screen to become a negative of its former self.

In modes other than 2 things are a bit more tricky. This is
because there are more than two colours available, and whilst in
mode 2, paper is set to 0 and pen to 1, which is differentiated by 1
bit in a byte; and 1 byte can therefore control eight screen pixels,
each bit being 1 for a pixel set to ink 1 and 0 for a pixel set to ink 0.
Inverting these bits with a CPL instruction will therefore make all
ink 1ink 0 and all ink 0 ink 1.

In mode 1 there are four colours to be differentiated between,
and this necessitates two bits to dictate the colour for each pixel,
00 for ink 0, 01 for ink 1, 10 for ink 2 and 11 for ink 3. Each byte can
therefore only control four pixels. If the PEN colour is set to 1, and
the PAPER colour to 0, after complementing the bits PAPER will
be 3 and PEN 2.

In mode 0 things become even worse: there are sixteen colours
to cope with, and now each pixel requires four bits, so one byte
can only control two pixels.

You have just found out (if you didn’t already know) why the
resolution goes down as the colours go up. Unfortunately the bits
in a byte only correspond to the order you would expect in mode
0, in other modes they are a bit mixed up, and the pun is most
definitely intended. In mode 1, for instance, bits 3 and 7 control
the left-most pixel of the four controlled by a byte, bits 2 and 6 the
next, bits 1 and 5 the one from right-most and bits 0 and 4 the
right-most.

To make matters worse, even the order of the bytes which
control the screen is not what you would expect (unless you have
a decidedly odd mind!). Details of both the byte order and the bit
order for each mode are given in the screen map in the appendix.

The program given in Fig. 8.3 manipulates the screen in mode
1, changing the screen to a series of one-pixel-wide columns of
INK 0, INK 1, INK 2, and INK 3 when executed. Notice that the
bits for the ink colours are stored with the more significant bit in
the less significant bit position. Whoever thought out this screen
map must be a sadist!
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Pass

AAB4
AAB4
AAB4
AAB7
AABB
AABY
AABA
AABB
AABC
AABD
AABE

Pass

1 errors:

2100C0
7C
BS

2 errors:

00

00

1
2

10
20
30
40
50
60
70
80
90
100
110

Page

FIG 8,2

Logical Operations

PROGRAM TO COMPLEMENT THE

SCREEN MEMORY AREA

ORG
ENT
LD
LD
OR
RET
LD
CPL
LD
INC
JR

Loop

43700
43700
HL, #C000
A H

L

z

A, (HL)

(HL) , A
HL
LOOP

THE CHECKSUMS REQUIRED BY THE HEX LOADER ARE
0421, 010F

Hisoft GENA3 Assembler.

Pass

AAB4
AAB4
AAB4
AAB7
AABSB
AABY
AABA
AABC
AABD
AABE

Pass

1 errors:

2100C0
7C

B3

cs8
3ESC
77

23
18F7

2 errors:

00

00

10
20

30
40
50
60
70
80
90
100
110
120

Figure 8.2

Page

; FIG 8,3

; PROGRAM TO CREATE BANDS OF
INK 0,1,2,3

ORG
ENT
LD
LD
OR
RET
LD
LD
INC
JR

LooP

43700

43700

HL, #C000
A, H

L

1
A,%01011100
(HL) ,A

HL

LOOP

THE CHECKSUMS REQUIRED BY THE HEX LOADER ARE
040E, 010F

Figure 8.3
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The CPL instruction does not affect any of the testable flags.

The last of the logical operators is the negate opcode, NEG in
assembler mnemonics, and in CB parlance as well. This instruc-
tion is the simplest of the logical operators. It takes the value in
the A register and changes its sign, by taking its twos comple-
ment. In other words A becomes 0 minus A.

The NEG instruction affects the flags exactly as if a normal SUB
had been executed. Carry, Zero, Sign and P/V flags are all
affected, and the P/V flag is used in the Overflow mode.

The opcodes are:

ASSEMRLER DECIMAL HEX EINARY
NEG 237 68 ED 44 11 101 101 01 000 100
CPL 47 2F 00 101 111

Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bitregister A,B,C,D,E, Hor L

T = aregister pair being used as a 16 bit register
n = an 8 bit number

nn = a 16 bit number

() round a number or register pair = the address at
PC = Program Counter

SP = Stack Pointer

All the logical instructions work on the value in the A register.

AND OR and XOR can all be used with r or n.

AND. Bits set in both the A register and the operand before
execution remain set in the A register after execution, all other
bits in the A register are reset.

OR. Bits set in either the A register OR the operand before
execution are set in the A register after execution.

XOR. Bits that were set in either the A register OR in the
operand, but not in both, before execution are set in the A
register after execution.

All the above instructions reset the carry flag, and affect the
remaining flags according to the result in the A register. The P/V
flag is used to test parity.
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CPL and NEG do not need an operand.

CPL flips the bits in the A register, and does not alter any of the
testable flags.

NEG returns the twos complement of the value in the A
register. Flags are affected as by a SUB instruction.



Chapter Nine

Using the Machine
Stack

The machine stack has already been mentioned briefly, in
Chapter 5, where it was explained how a CALL instruction placed
the return address on the stack, for collection later by a RETurn
instruction. The importance of keeping a balance, between the
number of things pushed onto the stack and popped off again,
was stressed, and it was shown that, if a RETurn was to be made
to the correct address, the next value to come off the stack must be
the value pushed onto it by the CALL which it is desired to
RETurn from.

To complicate matters there are also instructions which allow
the programmer to use the machine stack as a temporary store, in
the same way as the CALL instruction temporarily stores the
return address ready for collection by the associated RETurn.
Though it may not be totally disastrous if a RETurn is made to the
wrong RETurn address, a RETurn made to what the processor
thinks is a return address, but which is in reality just a number
which is stored on the stack, will almost certainly crash the
system.

The above paragraphs may seem to be belabouring the point,
but an imbalance of the stack is the single most common cause for
machine crashes, and even the most experienced programmers
sometimes get caught out. This is also the prime reason for
making sure that you SAVE any machine code program before
you try to run it. At least you won'’t then have to start completely
from scratch if it crashes.

You have probably realised what the mnemonics are for
pushing data onto the stack and popping it off again, by the
slightly strange choice of verbs used. The two instructions are:

92
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ASSEMBLER EINARY
PUSH rr 11 rro 101

POP rr 11 rro 001

As usual with instructions where 1 is specified, any pair of
general purpose registers can be used, and the binary codes to
replace rr for each of the register pairs are, as you should know by
now:

BC=00 DE=01 HL=10

Additionally, with the PUSH and POP instructions you can save
the A register and the flag register onto the stack, and POP them
off again. The only remaining code, 11, is used to denote that AF
is to be used.

When a PUSH is executed the contents of the register pair
nominated are copied into the next positions on the stack, and
the stack pointer is decremented by two, to point at the new
bottom of the stack. A POP does the reverse, copying the contents
of the top of the stack into the nominated register pair and
incrementing the stack pointer twice. This was shown for the
CALL and RET instructions, in Fig. 5.9. Exactly the same process
occurs when the stack is used by the PUSH and POP instructions,
but because instead of the program counter being POPped or
PUSHed off or on the stack, normal registers are used. The
program does not jump.

It is interesting to note that the binary instructions for CALL
and RET are almost identical to PUSH and POP, which is what
you might have expected, knowing how they use the stack.

(CALL 11001101 RET 11001 001)
PUSH 110101 POP 11 rr0 001)

A program which will show the last thing PUSHed onto the stack
and the address pointed to by the stack pointer is given overleaf.
The checksums required by the HEX LOADER are as follows:

0581, 05B6, 0561, 0580, 04F9, 02C7, 047C, 0403, 03A9, 0300,
013D

The majority of this program will be familiar to you, so there is no
need to explain that part, but you will see that a few changes have
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been made. Instead of the A register counting from zero, and
having to be altered to hold the ASCII code of the number to be
printed, it now starts by holding #30. The only time that it is
necessary to alter it is when the remainder from the subtractions
is printed, and this is now achieved by an OR.

One new instruction has been introduced, in line 110, but you
will know what this instruction does from the mnemonic. One
interesting point here, that you may have noticed, is that the
binary instruction for LD (nn),SP is 1110 1101 01 110 011 n n,
which fits neatly into the set of LD (nn),rr instructions listed in
Fig. 5.8. The two bit code for the 16 bit register pair, SP is 11, and
this holds true for the LD rr,(nn) instruction as well. So what, you
may ask, is the last remaining two bit code, 10 used for? It would
be logical if it stood for the HL register pair, as it does in all other
cases, but there is already an instruction to LD HL,(nn) and to LD
(nn), HL.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

15 FIG 9,1
2 ; PROGRAM TO SHOW WHERE THE STACK
POINTER
3 ; IS POINTING AND THE VALUE THAT
WILL BE
4 ; ACCESSED BY THE NEXT RETRIEVAL
FROM THE STACK
A410 10 ORG 42000
A410 20 ENT 42000
BBSA 30 PRIN EQU 47962
A410 E1 60 PROG1 POP HL
A411 ES 70 PUSH HL
A412 2234AB 80 LD  (43828),HL
A415 CD5AA4 90 CALL PMESSI
A418 CD22A4 100 CALL PROG2
A41B ED7334AB 110 LD  (43828),SP
A41F CD&61A4 120 CALL PMESS2
A422 11FOD8 130 PROG2 LD DE,-10000
A425 CD41A4 140 CALL REDN
A428 1118FC 150 LD DE,-1000
A42B CD41A4 160 CALL REDN
A42E 119CFF 170 LD DE,-100
A431 CD41A4 180 CALL REDN
A434 1EF6 190 LD E,-10
A436 CD41A4 200 CALL REDN
A439 3A34AB 210 LD A, (43828)

A43C Fb630 220 OR #30
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A43E C35ABB 230 JP PRIN

A441 3E30 240 REDN LD A, #30
A443 3C 250 FNUM INC A

A444 2A34AB 260 LD HL, (43828)
A447 19 270 ADD HL,DE
A448 2234AB 280 LD (43828) ,HL
A44B 38F6 290 JR C, FNUM
A44D 2A34AB 300 LD HL, (43828)
A450 EDS2 310 SBC HL,DE
A452 2234AB 320 LD (43828) , HL
A455 3D 330 DEC A

A456 CDSABB 340 CALL PRIN

A459 C9 350 RET

A45A 0607 360 PMESS1 LD B,7

A45C 216EA4 370 LD HL,MESS1
A45F 1805 380 JR MLOOP

A461 0604 390 PMESS2 LD B, 4

A463 2175A4 400 LD HL,MESS2
A466 T7E 410 MLOOP LD A, (HL)
A467 CDSABB 420 CALL PRIN

A46A 23 430 INC HL

A46B 10F9 440 DJNZ MLOOP
A46D C9 450 RET

A46E OAOD 460 MESS1 DEFW #0DOA
A470 285350293D 470 DEFM " (SP)="

A475 2053503D 480 MESS2 DEFM " Sp="
Pass 2 errors: 00

Table used: 132 from 196
Executes: 4200C

Figure 9.1

Computers are logical — it does represent the HL register pair —
even though there is a shorter instruction that does an identical
job! (logical?) You can test this very easily if you are using an
assembler, change line 80 to read DEFB #ED and add the
following lines:

81 DEFB %01100011
82 DEFB #34
83 DEFB #AB

Now re-assemble the program and execute it, you will find that it
operates exactly as before.

The program operates by POPping the value off the top of the
stack (yes it’s called the top even though the top is at a lower
address than the bottom) into the HL register pair. This moves
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the stack pointer to point at the previous item on the stack so, to
avoid altering the stack, the HL register pair is then PUSHed
back. The stack is now in exactly the same state as it was at the
start of the program, but the HL register pair now holds a copy of
the value on the top of the stack.

HL is then loaded into memory at address 43828 and the sub-
routine to print message 1 is called, then the subroutine to print a
number (named PROG?2 here) is called, and this will print the
value copied from the top of the stack into memory. There have
now been two CALLs and two RETurns, so the stack pointer is
pointing to the same address as it was at the start of the program.
It is this address which is now loaded into memory ready to be
printed by the print number subroutine. First PMESS2 is
CALLed to print message 2 and then the print number
subroutine is executed again. This time the print number sub-
routine is not CALLed, so the RET at the end will return to BASIC
or the assembler according to how PROG1 was first accessed.

A dramatic demonstration of how the stack can be manipulated
to your advantage can be made by adding the following lines at
the start of the program in Fig. 9.1. If you are using the HEX
LOADER set memory down to 41992 and use 41993 as the start
address.

A409 S ORG 41993
A409 6 ENT 41993
A409 2110A4 7 LD HL, PROG1
A40C ES 8 PUSH HL

A40D ES 9 PUSH HL

A40E ES 10 PUSH HL

A40F ES 20 PUSH HL

Re-assemble the program again if you are using the assembler,
and then execute it. If you used the HEX LOADER note that the
program now starts at A409 (41993) and no longer at A410 (42000).

This time the program will loop round five times; the extra four
times are because of the PUSHes made onto the stack, which
cause the RETurns to be made to PROG1 until the original return
address surfaces.

The instructions detailed so far are the only ones that auto-
matically update the stack pointer when the stack is used. There
are however a number of instructions which allow the stack to be
manipulated, and information to be passed to and from it.

The first of the remaining opcodes which employ the stack or
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the stack pointer to be considered are the LD instructions; this is
because they are the most straightforward, not in their operation,
because all the instructions on the Z80 should be fairly easy for
you to understand now, but in the uses to which they may be put.

When you first turn-on your Amstrad CPC 464, part of the cold
start procedure initialises the stack pointer to an address in high
memory, address 49144 (BFF8h), and it is from here that the stack
grows down. It is quite possible that this address will be
acceptable for the bottom of the stack, and will not need to be
changed. There are, none the less, circumstances when it can be
beneficial, or even essential, either to change the stack pointer or
save it somewhere. Instructions are therefore provided to allow
this, one of which you have already used.

Please note that it is important to ensure that the stack pointer is
always initialised to point to an even numbered address, particularly
on the Amstrad, where banks of memory can be switched. If this is not
done it would be possible for half a stack item to be switched out, and
the other half remain. It is best to initialise it to point to an address
which is a multiple of 256 as this allows the maximum downward
growth before a memory page barrier is transversed.

All the 16 bit LD instructions can be used with the stack pointer
by making bits 5 and 4 11. The full range of normal LD instruc-
tions is:

ASSEMELER HEX EINARY

LD SP,nn 31 nn 00 110 001 n n

LD SP, (nn) ED 76 n n 11 101 101 01 111 011 n n
LD (nn),SP ED 73 n n 11 101 101 01 110 011 n n

Occasions where you may have to move the stack pointer could
be, for example: when there is an instruction which has priority
over anything else which may be going on in a program. The
RESET achieved by pressing the [CONTROL] [SHIFT] and [ESC]
keys on the Amstrad, is a good instance of this. When a priority
instruction is executed there can be no possibility of even making
sure that the stack is balanced, let alone knowing what is on the
top, so the stack will have to be re-initialised to a known location,
before any use of it can be made. Here LD SP,nn would be used.

Another good example is the program in Fig. 9.2. This is a
rewrite of the program in Fig. 8.3 using the PUSH instruction to
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fill the screen memory area in a fraction of the time taken by the
original program. Here the SP is saved to memory, for later
restoration, and then loaded with address 0. The address below
this will be the first to be filled by any PUSH instruction, and
since one below 0 is —1, and the SP can only hold 16 bit
numbers, this becomes FFFFh, the top of the screen memory
area. HL is then loaded with 5C5Ch (the same as A in Fig. 8.3 but
twice) ready to be used for the filling.

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

1 ; FIG 9,2
2 ; SCREEN FILL MK.2

88B8 10 ORG 35000
8888 20 ENT 335000
88B8 ED73D188 30 LD (SPWD),SP
88BC 310000 40 LD SP, #0
88BF 215CS5SC 50 LD HL, #5C5C
88C2 OE20 60 LD C, %20
88C4 0600 70 BLOOP LD B, #0
88C6 ES 80 SLOOP PUSH HL

88C7 10FD 90 DJNZ SsLOOP
88C9 0D 100 DEC C

88CA 20F8 110 JR NZ,BLOOP
88CC ED7BD188 120 LD SP, (SPWD)
88D0 C9 130 RET

88D1 0000 140 SPWD DEFW O

Pass 2 errors: 00

Table used: 48 from 127
Executes: 35000

THE CHECK-SUMS FOR THE HEX LOADER ARE;
03C3 034B 038A

Figure 9.2

Next a double loop is set up; this is a variation on a technique
that is often used when something needs to be repeated more
than the maximum number of times that can be held in registers
for counting; it will be discussed fully in Chapter 16. Briefly what
happens is that each pass round the big loop BLOOP makes a full
complement of passes round the small loop SLOOP. (No, it
wasn'’t a sailing-ship sinking!) In this case the small loop loops
256 times for each of the 32 loops round the big loop. The PUSH
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HL is therefore executed 32%256 times which is 8192, and since
each PUSH fills two memory locations a total of 16384 (4000h)
bytes are filled. Finally the SP is restored and a RETurn made.

The SP can also be used in all the 16 bit maths instructions, as
well as in 16 bit INC and DECs, again the instruction is made up
by making bits 5 and 4 of the instruction 11. So for example:

ADD HL,DE is, in binary 00 011 001 and
ADD HL,SP therefore, is 00 111 001
DEC BC is 00 001 011 so DEC SP is 00 111 011

The next instruction to be considered allows the data on the top
of the stack to be exchanged with the data in the HL register pair.
As always the mnemonic is exactly what one might expect. Itis an
Exchange, so the first part of the mnemonic is EX, and the things
being exchanged are (SP) and HL so the full opcode is:

ASSEMEBLER HEX EINARY

EX (SP),HL E3 11 100 011

This is one of the most useful instructions for use on the stack;
it can be used to redirect returns whilst within a subroutine or
even to add extra subroutines.

Consider the situation where a program has been written in
which part of a subroutine makes a number of 16 bit calculations
which are required by the main program in a particular order.
Naturally the results all end up in the HL register pair, but this is
needed to perform the next calculation. So the result must be
saved in memory by some means. An LD (nn) HL instruction
would serve, but this uses three bytes for each instruction to save
a result and another three bytes each time the result is retrieved.
The easiest way to deal with this would be to save the results on
the stack, but the return address from the subroutine is there, and
you have been warned about the results of RETurning to a result!
So what is the solution?

The answer is often to exchange the RETurn address on the top
of the stack with the result of the calculation, and then PUSH the
RETurn address back on the top. This takes only two bytes, and
only one byte will be used to retrieve the result back in the main
program. The RETurn will have removed its address already. The
section of program to place results below the RETurn on the top of
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the stack would look like this (assuming the result to be in HL on
entry to this section):

EX (SP),HL 5 HL NOW HOLDS THE RETURN ADDRESS AND THE
RESULT IS ON THE TOP OF THE STACK
PUSH HL 3 AND NOW THE RETURN ADDRESS IS BACK ON

THE TOP, WITH THE RESULT UNDERNEATH.

The last instruction involving the SP is a real oddball, from the
CPU’s point of view. It is the only instruction which permits a 16
bit register to register load. The instruction is:

ASSEMELER HEX EINARY

LD SP,HL F9 11 111 001

This instruction is frequently used when the address to which the
stack pointer should be pointing has been calculated, it saves
having first to place the contents of the HL register pair into
memory and then load the stack pointer from there.

There has been an awful lot to take in, in this chapter, so don't
worry if your head is reeling a bit. Go over the example programs
given, and try experimenting on your own. Remembering to save
before you run! You can’t do any harm to the Amstrad, no matter
what your program does, so the worst that can happen is you will
have to switch off and start again. Count the uses of the stack
before executing a program, there should be an equal number of
PUSHes and POPs in each section or subroutine, and every CALL
must have a matching RETurn.

Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bitregister A, B, C,D,E,HorL

T = aregister pair being used as a 16 bit register
n = an 8 bit number

nn = a 16 bit number

() round a number or register pair = the address at
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PC = Program Counter
SP = Stack Pointer

The machine stack descends through memory as it grows.

The top of the stack is at the lowest memory address, and is
pointed to by SP.

PUSH places the contents of the register pair named onto the
top of the stack, and updates the SP to point to the new top.

POP does the reverse.

Any general purpose rr or the AF register pair can be PUSHed
onto or POPped off the stack.

All 16 bit maths operations or LD instructions can use the SP
register, as can INC and DEC.

The contents of the top of the stack can be EXchanged with the
contents of the HL register pair.

The SP can be loaded direct from HL.

Every PUSH must have a corresponding POP.

Every CALL must have a RETurn.

The stack does not have to be POPped into the same register as
it was PUSHed from.



Chapter Ten

Using Instructions that
Work on a Single Bit

The Z80 CPU is something of a rarity in the 8 bit microprocessor
field, because it permits a single bit, either in memory or in a
register, to be set (made binary 1) or reset (binary 0), without
affecting anything in the remainder of the byte containing the
manipulated bit. There are also instructions to test an individual
bit’s status.

Why bother to have special instructions to do this? It is
possible to set any bit you wish by an OR, or reset any bit by
masking it with an AND. Equally tests can be made by these
same instructions.

For example, to set bit 5 in the A register without affecting any
of the other bits you would use:

OR 9%00100000

To reset bit 5 the instruction would be:
AND %11011111
If you wanted to test bit 5 then
AND 9%00100000

would set the zero flag if bit 5 was zero, or reset the zero flag if bit
5 was not zero.

In all the following examples tb is the address of the byte to be tested
or manipulated.

The trouble with the AND and OR instructions is that the byte
to be operated on must be in the A register. This means that, if the
byte was not there already, several instructions are needed in
order to:
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1) Save the A register if necessary (PUSH AF)
2) Get the byte into the A register (LD A, (tb))
) Ferform the operation (aND n)
4) Fut the modified byte back (LD (tb),A)
5) Restore A (POP AF)

A total of 10 bytes is used for this simple task. The count could
have been reduced by using the HL register pair to point to
memory as follows:

PUSH  AF
LD HL,tb
LD A,(HL)
AND n

LD (HL),A
POP AF

The byte count for the program has now dropped to 9 (big deal!).
Your fingers will probably drop off too, from the amount of
typing.

The program to test a bit would be similar, but the A register
could not be saved by a PUSH AF because, when the A register
was restored, prior to testing the zero flag to see the state of the bit
tested, the flag register would be restored also, thereby
destroying the flag settings from the test! The final LD (HL),A
must be omitted, as the test will have modified the byte in the A
register, and it must remain unaltered in memory.

An example program to test bit 5 is given below; it has a byte
count of 12.

LD (sb),A
LD HL,tb

LD A,(HL)
AND %00100000
LD A,(sb)

These programs have been given because, in spite of the fact you
will never use them, they are good examples of some of the traps
and pitfalls of programming, and give techniques for overcoming
them. They also serve to illustrate the need for the bit test, set and
reset instructions.
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The bit set and reset instructions have the mnemonics SET and
RES respectively. The binary opcode and assembler mnemonics
are given below. In each case b should be replaced by the number
of the bit to be operated on. 000 for bit 0 (the least significant)
through to 111 for bit 7.

ASSEMELER EINARY
SET b,r 11 001 011 11 b r
RES b,r 11 001 011 10 b r

‘r’ is the usual set (000 for B 110 for (HL) 111 for A etc.). All ““bit
level” operations are preceded by 11 001 011 (CBh).

The full instructions to set bit 5 in the B register and to reset bit
3 in the memory location addressed by HL would therefore be:

ASSEMELER HEX RINARY
SET 5,B CB EB 11 001 011 11 101 000
RES 3, (HL) CB 9E 11 001 011 10 011 110

None of the bit set and reset instructions affects any flag in any
way.

The instruction to test a bit takes the same binary form as the
SET and RESet instructions, it has the mnemonic BIT and should
really be read BIT? to make sense, even though no question mark
is used.

ASSEMBLER EINARY
BIT b,r 11 001 011 O1 b r

To test bit 2 in the H register, for example, the instruction
would be:

ASSEMBLER HEX EINARY

BIT 2,H CB 54 11 001 011 01 010 100

A BIT instruction will show the state of the bit tested with the
zero flag, this will be set if the bit is 0 or reset if it is 1. The carry
flag is not changed by BIT instructions but all the other flags,
apart from the zero flag, are set in an unpredictable manner.
One of the uses of the bit level instructions is to allow packing
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of information. This is the technique whereby one byte is used to
hold details about more than one thing. An example of this would
be personnel records. Consider a company’s database holding
the following details about personnel:

1) Male/Female

2) Married/Single

3) Children/Childless

4) Driving licence/No driving licence

5) Salaried/Hourly paid

6) Key holder/Not key holder

7) Security cleared/Not security cleared.

Each of these items could be held in a single bit, since there are
only two possible answers to each question, yes/no. Yes could be
represented by 1 and no by 0, and seven bits of a byte would
suffice to hold all the above information. The eighth bit is often
reserved to indicate that the byte is in use.

It would be possible to create records such as this by use of the
logical operations AND and OR, but it would be very awkward to
change a specific bit by this means once the record was set up.
The program given in Fig. 10.1 demonstrates this. It is not
suggested you must actually enter it, but try to follow what is
happening. The program will work correctly when information is
being input for the first time but for alterations the bit operations
are much easier.

A number of ‘dirty tricks” have been employed in the program,
as well as many of the techniques and instructions you have
learnt so far. See if you can find where the ‘Y’ at the end of
message 8 in line 1140 goes.

The bit in the C register, which is ORed with the A register to
show a yes to the question associated with the bit, is shifted left
by one bit by the ADD A, A instructions at the label SLA for each
question, and the same trick used to set the carry flag for each
item which was answered “Y’, when records are being output.

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00
10 5 FIG 10,1
20 ; PROGRAM TO DEMONSTRATE PROBLEMS

30 3 OF USING OR TO SET BITS.
88B8 40 ORG 35000
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8888
BBSA
BB18
88B8
88BB
88BE
88C1
88C3
88C6
88C9
88CB
88CD
88CF
88Do
88D2
88D4
88D7
88DA
88DB
88DD
88EQ
88E1
88E4
88E6
88E8
88E9
88EA
88EB
88ED
88EF
88F1
88F3
88F4
88F5
88F6
88F8
88F9
88FB
88FE
8901
8903
8904
8906
8908
890B
890E
890F
8910
8912
8915
8917
8918
8919
891B

Machine Code for Beginners on the Amstrad

21438A
CD5689
CD5689
0609
CDFBS88
CD&6389
FEbb
2B4E
3E01
77
0607
QEQ2
CD5689
CDFBB88
cs
060A
CDFB88
c1
CD&6389
FE79
2005
7€

B1

77
1806
FEGE
2802
1BE1
79

87

4F
1eDnC
23
18ce
CD6C8Y
217689
CB7E
23
28FB
10F9
CDeF89
CD7189
c9

7E
E&TF
CDSABB
CB7E
ce

23
18F4
21438A

50

60

70

80

90
100
110
120
130
140
150
160
170
1890
190
200
210
220
230
240
250
260
270
2890
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
4590
460
470
480
490
500
S1e0
520
530
540
550
560
570
580

PRINT
GETKEY

NXTREC

NXTBIT

NO

SLA

PR_MSG

FNDMSG

NXTCHR

LSTREC

ENT
EQU
EQU
LD
CALL
CALL
LD
CALL
CALL
CP
JR

INC

LD

35000
47962
47896
HL, FREE
CRLF
CRLF
B,9
PR_MSG
KEYIN
llf "
Z,LSTREC
A, 41
(HL),A
B,7
c,2
CRLF
PR_MSG
BC

B, 10
PR_MSG
BC
KEYIN
Ilyll
NZ,NO
A, (HL)
C
(HL) , A
SLA
Ilnll
7,SLA
NXTBIT
A,C
A, A
c,A
NXTBIT
HL
NXTREC
SAVREG
HL, MSGTBL
7, (HL)
HL
7,FNDMSG
FNDMSG
NXTCHR
RESREG

A, (HL)
%01111111
PRINT

7, (HL)

NZ

HL
NXTCHR
HL, FREE



891E
8921
8924
8926
8929
892B
892C
892F
8932
8935
8936
8937
8938
8939
893A
893B
893E
893F
8941
8943
8946
8948
894A
894D
894E
8951
8952
8954
8956
8937
8959
895C
89SE
8961
8962
8963
8966
8969
896B
896C
896D
8964E
B96F
8970
8971
8972
8973
8974
8973
8976
8977
8988
8989
899A

CD5689
CD5689
0608
CDFB88
0601
ES
CD5689
CD5689
CD18BB
E1

7E

23

A7

cs

87
CDFB88
FS
3007
3ES9
CDSABB
1805
3E4E
CDSABB
04
CD5689
F1
28D35
18E4
FS
3EQD
CDSABB
3EQA
CDSABB
F1

ce9
CD18BB
CDSABB
F&620
c9

E3

CS

F3S

ES

c9

El

F1

C1

E3

ce

1]
53454355
AO
4B455920
A0
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590 CALL CRLF
600 CALL CRLF
610 LD B,8
620 CALL PR_MSG
630 PR_REC LD B,I

640 PUSH HL

650 CALL CRLF
660 CALL CRLF
670 CALL GETKEY
680 POP HL

690 LD A, (HL)
700 INC HL

710 AND A

720 RET 1

730 P_ITEM ADD A,A
740 CALL PR_MSG
750 PUSH AF

760 JR NC, NOT
770 LD A "Y"
780 CALL PRINT
7990 JR NXTITM
800 NOT LD A, "N"
810 CALL PRINT
820 NXTITM INC B

830 CALL CRLF
840 POP AF

850 JR Z,PR_REC
860 JR P_ITEM
870 CRLF PUSH AF

8890 LD A, #0D
890 CALL PRINT
900 LD A, #0A
910 CALL PRINT
920 POP AF

930 RET

940 KEYIN CALL GETKEY
950 CALL PRINT
960 OR #20

970 RET

980 SAVREG EX (SP),HL
990 PUSH BC
1000 PUSH AF
1010 PUSH HL
1020 RET
1030 RESREG POP HL
10490 POP AF
1050 POP BC
1060 EX (SP),HL
10790 RET
1080 MSGTBL DEFB #A@
1090 DEFM "SECURITY CLEARED?"
1100 DEFB #A0Q
1110 DEFM "KEY HOLDER ? "
1120 DEFB #A0

107
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899B 353414C41

89AC

Hisoft GENA3 Assembler.

89AD
89BE
89BF
89Do
89D1
B7E2
89E3
89F4
89FS
89F7
B8A14
8A16
8A32
8A3B
8A3D
8A41
8A43

A®

443524956
Ao
4348494C
A0
4D415252
Ao
4D414C4AS
A0

0A0A
464F5220
0788
4620544F
20544F 20
o7R0
203592F4E
AOAQ
0000

Pass 2 errors:

Table used:

Executes:

1130
1140

1150
1160
1170
1180
11990
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310 FREE

00

237 from
35000

Page

DEFM

DEFB

DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFW
DEFM
DEFW
DEFM
DEFM
DEFW
DEFM
DEFW
DEFW

326

Figure 10.1
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"SALARIED ? "
#A0

3.

"DRIVING LICENCE ?"

#A0

"CHILDREN ? "

#no0

"MARRIED ? "

#A0

"MALE ? "

#A0

#0A0A

"FOR NEXT RECORD PRESS AN
#8807

"F TO FINISH OR ANY OTHER
" TO GO ON"

#R007

" Y/N"

#A0OA0

#0000



Chapter Eleven

Rotates and Shifts

In the program given in Fig. 10.1 the C register was ORed with
the A register to set a single bit, signifying that the question
associated with the chosen bit had been answered in the affir-
mative. After returning the byte in the A register to memory, the
C register was loaded into the A register, the A register added to
itself, and the result returned to the C register. All this was just to
move the one set bit in the C register left by one position, ready to
set the next bit if necessary. The label SLA was chosen because
the action of the section of program was a Shift Left Arithmetic.

Whenever a binary number is added to itself, doing in effect a
multiply by two, the bit pattern remains the same but is moved
one place to the left. The same occurs with any numbering system
when a number is multiplied by the base of the system.

For example: '

Binary (base 2) 1010110 * 10 = 10101100 (10b is 2 decimal)
Decimal (base 10) 1234567 * 10 is 12345670
Hex (base 16) 789ABCD * 10 = 789ABCDO (10h is 16 decimal)

It is rather bothersome if every time it is required to shift the
contents of a byte, the A register has to be used. Additionally
there is the problem of what to do if a right shift is required, this
would be advantageous in the program in Fig. 10.1 as it would
allow the information to be displayed in the same order as it was
entered. At the moment the display routine again uses the ADD
A, A instruction, this time at the label P_ITEM, to shift the bits
into the carry, signalling a yes or no.

There are in fact ways in which it would have been possible to
output in the same order as information was input. Shifting the
data byte in the A register immediately after the OR instead of the
Cregister would have worked, but this would have caused other
problems, since the shift has to be made even when, after a
negative response, no OR occurs.

109
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What is really required is a set of instructions which will allow
shifting of registers, not only to allow the problems outlined
above to be overcome, but also because this will allow easy
division calculations.

Think back to the start of this chapter, where it was shown that
multiplying a number by the base of the number system shifted it
left by 1 digit; what happens in a divide? You guessed it! It shifts
the number right by 1, and the right-most number falls off the
end. Well, near enough if you are thinking in computer terms for
bits in a byte, which has a finite size, of 8 bits. And what happens
whenever a number exceeds the range that can be held in a byte?
It sets the carry flag.

This is all leading to the fact that the Z80 CPU does have
instructions to shift a byte left or right. They are called Shift Left
and Shift Right; original, isn’t it? The Shift Left instruction
performs exactly the operation achieved by ADD A,A but is not
limited to use on the A register alone. The full instruction is called
Shift Left Arithmetic, SLA for short. The instruction is made up
from two bytes, the first is a prefix, CBh, and the second is the
opcode itself.

ASSEMELER HEX BINARY
SLA r CB 20-27 11 e01 011 00 100 r
I | | | I |
| CARRY :< N r e 0 ]

i FLAG | | 7-6-54-3-2-1-0 : 1 |
| 1 1 1 l -
Figure 11.1

ris, as usual, any of the general purpose registers, A or (HL); and
you should know the three bit codes by now.

Before going on to consider the right shifts there are a few
points to watch out for when using the left shift. As you are
already aware, the carry flag is set whenever the result of the shift
causes the most significant bit to fall out of the register. This is all
very well if the byte being shifted is not a number, and is just
being used to indicate something, like in the program in Fig.
10.1. In this case the loss of the MSB does not matter, but if a
multiplication was being carried out (sorry about the pun, this
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time it was not intended) any bit which passes into the carry flag
is significant, and must be looked after.

This is normally easy to cope with, the carry must be taken into
the next most significant byte. The second part of the addition
program in Fig. 6.8 shows one way, by employing the instruction
ADC, to collect the carry into the next byte. This is straight-
forward for any unsigned number. A short subroutine to
multiply the value held in the A register by 2 would be:

MULT SLA A
LD  (RESULT),A
LD A, (RESULT+1)
ADC A,A
LD  (RESULT+1),A
RET

RESULT DEFW o
Figure 11.2

The result will be placed in memory at address RESULT and
RESULT+1 with the most significant byte in RESULT+1, ready
for collection later as a 16 bit number. This subroutine can be
used repeatedly to multiply by more than two if required by
calling it with the A register holding (RESULT). Each successive
call will raise the value to the power of 2. For example:

LD A,1
CALL MULT : RESULT is now 2
LD A, (RESULT)
CALL MULT : RESULT is riow 4
LD A, (RESULT)
CALL MULT : RESULT is now 8
Figure 11.3
And so on until the result exceeds 65535 (which it will after 16 calls

in the example above); the carry flag will be set on return to the
main program.
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This is not a very good program, but it does however serve to
illustrate how the Shift Left Arithmetic can be used to multiply.
When a negative signed number is being operated on by this
technique, the more significant byte of RESULT must be set to
11111111b before starting the calculation, otherwise the final
result will be positive.

There is no point in trying to improve the program yet, as
instructions which make things very easy are about to be
explained. First, though, the right shifts.

The right shift has two forms, the arithmetic shift and the
logical shift. The logical shift is exactly the same as the SLA but
moves to the right. This may not seem logical, but all will be
revealed, so hang on!

The binary Shift Right Logical instruction is the same as the
Shift Left Arithmetic, but bits 5, 4 and 3 are changed. All the
instructions in this chapter are constructed in this manner, with
these three bits dictating the nature of the operation to be
performed. The prefix CBh is again present for this instruction.

ASSEMELER HEX EINARY

SRL r CB 38-40 11 e01 011 @0 111 r

The symbolic representation is shown in Fig. 11.4.

| [ | |
r |y | CARRY |

| |

! | |

I 0 == 76543210 | FLAG |

! I ! P . |
Figure 11.4

At first glance this seems to offer the opportunity to change the
MULT subroutine to a subroutine which will divide by two. The
SLA will need to be replaced by an SRL instruction, and the order
of operations must be reversed, to start on the high byte. The first
problem is that there is no way of collecting the carry, out of the
bottom of the more significant byte, and using this when the less
significant byte is operated on. The SUB instruction cannot be
used, because this will always leave the A register holding 0. The
divide will therefore have to be restricted to an 8 bit integer. This
is shown in Fig. 11.5.
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DIVD SRL A
LD  (RESULT+1),A
RET

RESULT DEFW @@

Figure 11.5

Assuming the A register held 100 on entry (64h 01100100b) after
execution RESULT+1 will hold 50 (00110010b) which is correct. If
an odd number is divided the remainder would be present in the
carry flag; remember the carry flag shows that 1 dropped off the
end. So if the above subroutine was called with 101 (65h
01100101b) afterwards RESULT+1 would hold 50 and the carry
flag will be set showing remainder = 1.

What happens if a negative signed number is divided?
Consider the result if DIVD was called with the A register holding
—26 (E6h 11100110b). After execution RESULT+1 will hold
01110011b or 73h 115 decimal, which is totally incorrect! The 0
introduced to fill the bit vacated by the shift is to blame, because
bit 7 is the sign bit. The fact that this right shift cannot be used for
an arithmetic shift is, obviously, the reason for the instruction
being called a Shift Right (logical!).

The Shift Right Arithmetic, as you have no doubt guessed,
preserves the sign bit. When the subroutine above is rewritten
using the SRA instruction in place of the SRL the result after the
operation is 11110011b, —13 or F3h, which is correct.

SRA r CB 28-30 11 001 o011 @0 101 r

The symbolic representation is shown in Fig. 11.6.

r —-—1 CARRY

! |
| |

—>! 76543210 | | FLAG
| l

i |

Figure 11.6

Now that you know how to shift right, and shift left, thereby
dividing or multiplying by two, the next step is to find out how to
multiply and divide numbers by numbers other than two. At this
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stage assume that not only both parts, but also the result of a
calculation, can be accommodated in a single byte. This will start
things simply, and give you a chance to grasp the principles of
multiplication and division before getting into the really heavy
stuff. For unsigned calculations this means that for multiplication
the product must be less than 256, and for division that both the
divisor and the dividend must be less than 256.

The operation of multiplying is, in effect, simply a process of
adding the multiplicand to a result, which is 0 initially, the
number of times specified by the multiplier. This can be demon-
strated if you load the program given in Fig. 6.14 back into your
computer and then add the short program given in Fig. 11.7. This
multiplies together the codes of two keys, pressed on the key-

board, by you.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

A7F8

A7F8

BB18

A7F8 CD18BB
A7FB 4F
A7FC CD18BB
A7FF 47
ABOO® AF
AB01 81
ABO2 10OFD

ABO4 3I278AB
ABO7 C3B4AA

Pass 2 errors: 00

Table used: 72
Executes: 43000

10
20

30

49
1]

70
8o
90
100
110
120

FIG 11,7
A PROGRAM TO PERFORM AN 8X8 BIT
MULTIPLICATION
; WITH AN 8 BIT RESULT, SIMPLE
ADDITION METHOD
ORG 43000
ENT 43000
GETKEY EQU 47896
CALL GETKEY

LD ¢c,A
CALL BETKEY
LD B,A

XOR A 3 THIS WILL SET A TO o
ADLOOP ADD A,C

130 DJIJNZ ADLOOP

140 LD (43896),A

1590 JP 43700
from 221

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE

9506 0483

Figure 11.7
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The vast majority of keys will cause the capacity of a single byte
to be exceeded, but many of the ““control” codes are useful. These
are accessed by pressing the green [CONTROL] key and, whilst
still holding it down, another key.

[CONTROL] G will give the BEL code which is 7, and
[CONTROL] ] will give the line feed code 10 (0Ah), so executing
the program by a CALL 43000 or the R command if you are using
the assembler, will sit and wait for you to press the keys, and then
print out the result of multiplying them together. For example:
pressing [CONTROL] G followed by [CONTROL] ] will give the
answer 70. Appendix III of the Amstrad User Instructions gives a
full list of the codes generated by various keys.

Whilst the method employed in Fig. 11.7 works perfectly well
for the types of multiplication that it can handle, there is another

Hisoft GENA3 Assembler. Page 1.

Pass | errors: 00

10 ; FIG 11,8
20 ;5 A PROGRAM TO PERFORM AN 8X8 BIT

MULTIPLICATION
30 5 WITH AN 8 BIT RESULT, SHIFT AND

ADD METHOD
A7F8 40 ORG 43000
A7F8 50 ENT 43000
BB18 60 GETKEY EQU 47896
A7F8 CD18BB 70 CALL GETKEY
A7FB 4F 80 LD C,A
A7FC CD18BB 90 CALL GETKEY
A7FF 47 100 LD B,A
ABOO AF 110 XOR A ; THIS WILL SET A TO 0
AB01 CB38 120 ADLOOP SRL B
ABO3 3001 130 JR NC, NOADD
AB0S 81 140 ADD A,C
ABOGSL CB21 150 NOADD SLA C
AB08 20F7 160 JR NZ,ADLOOP
AB0A 3278AB 170 LD (43896),A
ABOD C3B4AA 180 JP 43700
Pass 2 errors: 00
Table used: 84 from 230

Executes: 43000

THE CHECK-SUMS REQUIRED RY THE HEX LOADER ARE
0S5 0397 02CC

Figure 11.8
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way in which the same task can be performed, but potentially
much more efficiently. Needless to say, this uses Shifts and
Adds, in place of Adds alone.

The program in Fig. 11.7 would have to circle the addition loop
up to 127 times before the result is calculated, and this is for
answers below 256. Consider the time that this system will take to
arrive at the answer to a multi-byte calculation! Even with a 16 bit
(2 byte) limit on the result there can be up to 32767 loops. The
smart Alecs out there will be saying: ‘Oh no there won’t! [ would
enter it as 2* 32767 and not 32767 * 2, and the maximum number
of loops possible if I always enter the higher number first will be
256, for 16 bit results.’

O.K., fair enough, but what happens when someone else uses
the program? Anyway, there is a much better way of doing
multiplication, the way one is taught at school for long division.
A binary and decimal long division are set out side by side below.
Look at what happens during a multiplication in binary, and for
that matter in decimal where the multiplier is made up from ones
and zeros.

EINARY DECIMAL
To calculate aoe1oo1l 19d  multiplicand
Q0001011 * 11d multiplier

10611 19
160110 19
%)
100110006
11616001 209

At each stage the multiplicand is moved (shifted) one place to
the left and if the multiplier is not 0 then the shifted multiplicand
is added to the result. When using the decimal system this will
only occur occasionally, but with binary it will always be the case,
as there can never be anything but 0s and 1s. By using this
method the additions are reduced to the minimum, because there
can never be more sums than there are non-zero columns in the
multiplier. For an eight digit number there can never be more
than eight additions and, for a sixteen digit number, there can
only be sixteen additions at most.

The program in Fig. 11.8 shows a method of multiplication
which duplicates the system above. Once the numbers to be
multiplied have been fetched and the result zeroed (the A register
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for the purposes of this program), the least significant bit of the
multiplier is checked. The shift right (SRL) at the label ADLOOP
puts the bit into carry so that it can be tested. Then, if the bit was
set, the multiplicand is added to the result. At the label NOADD,
the multiplicand is shifted one place to the left, exactly as
happened in the long multiplication laid out above. A check is
then made to see if there is any more to be done, and if so the
process is repeated with the new multiplicand, otherwise the
calculation is complete, and the result is put away for printing by
the subroutine.

Division is roughtly analogous to multiplication but has the
added complication that the calculation could go on for ever. The
example of this that everybody is aware of is the calculation for Pi
(7). The most powerful computers have been put to the task of
calculating Pi but as yet there is no sign of a true answer. In all
probability there never will be one, after all, who needs to know
what Pi is to several million decimal places?

Even in normal maths a recurring number is often arrived at by
a simple division, and with computers the normal way of dealing
with this is to give a quotient and a remainder. (The quotient is
the number of times the divisor can be subtracted from the
dividend without making the dividend negative.)

The equivalent to the multiplication program in Fig. 11.7 for
division is already very familiar to you. The programs you have
been using to print out the results to all the maths you have done
so far, operate by successively dividing, by subtraction. Each
time the dividend becomes negative the divisor is restored
(added to the dividend) to become the dividend for the next
division. The proper term for the action which causes the
dividend to become negative is an ‘overdraw’.

It has been shown how bits which ‘fall” out of a register, or
memory location, as a result of an instruction being executed,
drop into the carry flag, and that, for multiplication, a left shift
can save an enormous amount of time in a computation. This left
shift can be made to operate on as many bits as required by
collecting the bit from carry at subsequent stages of a shift.

To permit this more efficient shift method to be used for
division (as well as a great many ether things) new operations are
necessary. This is because, of the whole repertoire of instructions
that have been explained so far, there is not a single one which
can collect a carry into the most significant bit, essential if division
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is to be executed by the shift process instead of the repetitive
subtraction method. In fact the only way that the carry has been
able to be collected by a shift instruction is as shown below.

Most Sig.EBEyte CARRY Least S.BEyte

7-6-5-4-3-2-1-0 7-6-5-4-3-2-1-0

G000 00a0 5] 11106100

SLA LSE Da0000a0 1 91101 00e

ADC MSE, MSE 20000001 a 116061000
Figure 11.9

This is really a bit of a cheat, because the ADC instruction is
being used to simulate a left shift with carry. It is the most
economical (in terms of memory and registers used) way of doing
this for an eight bit number. A 16 bit left shift can be accomp-
lished with a single instruction, using the same technique as
above, but with the ADD HL,HL or the ADC HL,HL
instructions.

The Z80 offers a considerable selection of operations, specifi-
cally designed to make this sort of task independent of the
accumulator registers (the HL register pair is really a 16 bit
accumulator, when used for maths operations). All these instruc-
tions use the carry flag, both to receive the bit shifted out of the
byte and also to provide the bit to be adopted into the position
vacated by the operation. Some take the bit from carry before
dropping the bit shifted out into carry, allowing the sort of shift
achieved by the ADC instruction above. Others put the bit
shifted out by their current operation into carry before adopting
the carry flag into the vacated bit. Either way they actually do a
sort of Rotation, either through carry or including carry.

This can be symbolised as shown in Fig. 11.10. Which as you
can see are proper full rotations, and indeed the instructions that
act in this manner have the straightforward name ‘Rotate’,
shortened to RR for Rotate Right and RL for Rotate Left. The two
functions given in Fig. 11.11, whilst giving the carry flag a copy of
the bit which went round and back into the other end of the byte,
do not actually take any new information in from the carry. These
are called Rotate Circular, and like the above they are shortened,
to RRC and RLC, the second R and the L being the direction.
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RL C |[6e——/7——————==———=— 0 |¢
RR
3|7 -—-—mm e ————— 0 > | ¢
Figure 11.10
RLC C |« 7 o 0 | ¢—
RRC L_) ] mm 0 > C

Figure 11.11

The accumulator (the A register) is again favoured with its own
special instructions, in addition to the standard opcodes which
do an identical job. The full instructions for each of the operations
given above are:

ASSEMELER HEX RINARY

RL r CB 10 - 17 11 0061 011 00 010 r
RLA 17 00 010 111
RR r CB 18 - 1IF 11 o0l o011 00 011 r
RRA 1F %0 011 111
RLC r CB 00 - 07 11 0061 011 00 000 r
RLCA o7 00 000 111
RRC r CB 08 - OF 11 o001 011 00 001 r

RRCA oF 00 001 111
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With the facilities offered by this new set of instructions the
gateway to fast division is flung wide open. The division carried
out in the number printing routine can never have a quotient that
runs to more than nine, so there is no great time lost by using the
subtract method, and all the divisors were known in advance.
When writing a program where the divisor is not known in
advance it is essential to ensure that any attempt to divide by 0 is
intercepted. If this precaution is not taken an attempt to divide by
0 will cause the computer to hang up, the result is infinite, so the
division will go on for ever.

This test for zero can be carried out in a number of ways. For an
8 bit divisor, the divisor can be put in the A register and tested by
an AND A, or for a 16 bit divisor, 1 byte of the divisor is put into
the A register and this is ORed with the other byte. Both these
methods will set the zero flag if the divisor is 0.

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

10 ;3 FIG 11,12 A SHIFT AND ROTATE
DIVIDE BY 2
A7F8 20 ORG 43000

A7F8 30 ENT 43000
BB18 40 GETKEY EQU 47896
BBSA 5@ PRINT EQU 47962
A7F8 0404 60 LD B,4

A7FA 2178AB 70 LD  HL,43896
A7FD CD18BB 80 INLOOP CALL GETKEY
AB0O FEB@ 90 CP  #80

AB02 2001 100 JR  NZ,NOT_e@
AB0A AF 110 XOR A

A0S 77 120 NOT_@ LD  (HL),A
ABOL 23 130 INC HL

ABO7 10F4 140 DJNZ INLOOP
ABOY CDBA4AA 150 CALL 43700
ABOC 213CA8 160 LD  HL,D_MSG
ABOF 7E 170 MSG_LP LD A, (HL)
AB1@ CDSABB 180 CALL PRINT
AB13 23 190 INC HL

AB14 FE0Q® 200 CP 400

AB16 20F7 210 JR  NI,MSG_LP
AB18 217BAB 220 LD  HL,43899
AB1B AF 230 XOR A

AB1C CB3E 240 SRL  (HL)
ABLIE 0603 250 LD B,3

AB20 2B 260 DIV_LP DEC HL

A821 CBIE 270 RR  (HL)

AB23 10FB 280 DJNZ DIV_LP
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AB25 FS 290 PUSH AF
AB26 CDB4AA 300 CALL 43709
A829 3EZ20 310 LD A,32
A82B CDSABB 320 CALL PRINT
A8B2E 3ES2 330 LD A, "R"
A830 CDSABB 340 CALL PRINT
AB33 F1 350 POP AF
AB34 CE09Q 360 ADC A,9
AB36 Fb&30 370 OR #30
AB38 CDSABB 38e CALL PRINT
A83B C9 390 RET

AB3C 20446976 400 D_MSG DEFM " Div"
AB4O 69646564 410 DEFM "ided"
AB44 20627920 420 DEFM " by "
AB48 7477&6F3D 430 DEFM "two="
AB4C 2000 440 DEFW #0020

Pass 2 errors: 00

Table used: 134 from 306
Executes: 4300¢

Figure 11.12

Armed with these new instructions a division by two can be
performed on any number of bytes by using a SRL or a SRA if the
dividend is signed, on the most significant byte, followed by a
RR on each of the less significant bytes in order. This is shown in
Fig. 11.12. To allow you to enter numbers to be divided an input
routine is provided, and this will take the ASCII code of the key
you press and use it as one byte of a 32 bit dividend. The code of
the first key pressed will become the least significant byte, and
each successive key will be the next most significant byte. Since
the Amstrad provides no way of generating an ASCII NUL code
from the keyboard the 0 key on the numeric keypad is inter-
cepted, and the NUL code 0 is used whenever it is pressed. Yes,
Appendix III of the Amstrad User Instructions does say the 0 is
generated by [CONTROL] A but they have also got two
[CONTROL] Cs. When used with the [CONTROL] key A returns
the code 1, B 2 and C 3, the  User Instructions are correct
thereafter.

Note how the flag register does not need to be saved before
using the DJNZ instruction, as this instruction does not corrupt



122 Machine Code for Beginners on the Amstrad

any flags (this is important because the carry flag is holding any
remainder at the end of DIV_LP), but that the flags and the A
register, which is holding 0 ready for the ADC, do need to be
saved after the division. Experiment with this program until you
are sure that you understand how the Shift and the Rotates
achieve the division. Note that the programs in Figs. 11.12 and
11.13 both require the 32 bit number printing routine given in
Fig. 6.13 (annotated) to print the number.

Hisoft GENA3 Assembler.

Pass 1 errors:

A7F8
A7F8
BB18
BBSA
A7F8
A7FB
A7FE
AB01
AB04
ABOS
AB08
ABOB
ABOE
ABOF
AB12
AB1S
AB16
AB18
AB1A
AB1B
AB1C
ABIE
ABIF
AB21
AB22
AB23
AB24
AB25
AB28
AB2B
AB2E
AB2F
AB32
AB33
AB34

210000
2278AB
227AAB
CD40AS
SF
2156A8
CD4CAS
CD40A8
aF
2164A8
CD4CAS
AF
0608
CB13
17

91
3001
81
10F7
47

7B

17

2F
CD33A8
2168A8
CD4CAS
78
CD33A8
c9

ES

D5

10
20
30

S50
60
70
8o

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

Page

i FIG 11,13

GETKEY
PRINT

DIV_LP

NO_ADD

P_NUMB

ORG
ENT
EQU
EQU
LD

A SHIFT AND ROTATE DIVID
43000

43000

47896

47962

HL, @

(43896) , HL

(43898) , HL

GETVAL

E,A

HL,D_MSG

MSG_LP

GETVAL

c,A

HL,MSG62

MSG_LP

A
B, 8

E

C

NC, NO_ADD
A,C
DIV_LP
B, A

A,E

P_NUMB
HL,MSG3
MSG_LP
A,B
P_NUMB

HL
DE
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AB35 C5 370 PUSH BC
AB34 3278AB 380 LD  (43896),A
AB39 CDB4AA 390 CALL 43700
AB3C C1 400 POP BC

AB3D D1 410 POP DE

AB3E E1 420 POP HL

AB3F C9 430 RET

AB40 CD18BB 440 GETVAL CALL GETKEY
AB43 F5 450 PUSH AF

AB44 CD33A8 460 CALL P_NUMB
AB47 F1 470 POP AF

AB4B A7 480 AND A

AB49 Co 490 RET NI

AB4A E1 500 POP HL

AB4B C9 510 RET

ABAC 7E 520 MSG_LP LD A, (HL)
ABAD CDSABB 530 CALL PRINT
ABSe 23 540 INC HL

ABS1 FE@® 550 CP  #00

ABS3 20F7 560 JR  NZ,MSG_LP
ABSS C9 570 RET

ABS6 20446976 580 D_MSGE DEFM " Div"
ABSA 69646564 590 DEFM "ided"
ABSE 20627920 600 DEFM " by "
ABL2 2000 610 DEFW #0020
ABL4 3DOD 620 MSG2  DEFW #@D3D
ABLL 0A0O 630 DEFW #000A
ABLB 2052 640 MSG3  DEFW #5220
ABLA 2000 650 DEFW #0020

THE CHECK-SUMS RERUIRED BY THE HEX LOADE

R ARE

037A 04F4 04D4 0256 0430 0637 06AC
06D8 0692 03F® 024E 009C

Figure 11.13

123

Figure 11.13 gives the division equivalent of the program in
Fig. 11.9. The similarities are immediately obvious but this time
the loop has to be circled for every bit of the calculation. To start
with, the dividend is in the E register and the divisor is in the C
register, B is used as a counter, with the DJNZ instruction to
count the bits of the division. On each pass round the loop the
carry flag is rotated into E (the dividend), and the most significant
bit of E is rotated into carry. Initially the carry flag was reset, by



124 Machine Code for Beginners on the Amstrad

the XOR A instruction used to clear the A register, so 0 was
rotated into the LSB of E. The carry from E is then collected into
bit 0 (the least significant bit) of A register by the RLA
instruction.

Next an attempt is made to subtract the divisor from the A
register; if this causes a carry then the subtraction was not
possible, and the A register is immediately restored by adding
the divisor back. As with the multiplication routine this is exactly
the same process that you perform when doing a long division, as
is shown in Fig. 11.14 for dividing 85 by 2. Any carry generated
by or taken in by an operation is shown with an arrow indicating
the direction.

E A
1) 01010101 00000000
DIVLP RL E 0<-10101010<-0 00000000
RLA 0{-00000000< -0
SUB C 1<-11111110
JR  NC,NO_ADD
ADD A,C 1<-00000000
NO_ADD DJNZ DIV_LP
«2)
DIVLP RL E 1<-010101014-1
RLA 0<-00000001<~1
SUB C 1<-11111101
JR  NC,NO_ADD
ADD A,C 1£-00000001
NO_ADD DJNZ DIV LP
«(3)
DIV.LP RL E 0{-10101011<-1
RLA 0:-00000010<-0
SUB C 04-00000000
JR  NC,NO_ADD
NO_ADD DJINZ DIV_LP
4>
DIVLF RL E 1£-010161160<-0
RLA 0¢-00000001¢-1
SUB C 1<-11111101
JR  NC,NO_ADD
ADD A,C 1£-00e00001
NC_ADD DJNZ DIV_LP
(SO
DIV.LP RL E 0{-10101101<~1
RLA @< -00000010: -0
SUE C 0<-00000000
JR  NC,NO_ADD
NO_ADD DJNZ DIV_LP
(&)
DIVLF RL E 14-01011010<-0

RLA @ -00000001 -1
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SUB C 1<-11111101
JR  NC,NO_ADD
ADD A,C 1{-06a00001

NO_ADD DJNZ DIV_LP

<7

DIVLF RL E 0:-10110101<-1
RLA 0<-00200010< -0
SUB C a4 -00000000

JR  NC,NO_ADD
NO_ADD DJNZ DIV_LP

=}
DIV LP RL E 14-011010160<-0
RLA 0L-00eeann1< -1
SUB C 1<-11111101
JR  NC,NO_ADD
ADD A,C 14 -00000001
NO_ADD DJNZ DIV_LP
LD B,A B now 00000001
LD A,E 01101010
RLA 0<-11010101<-1
CPL aoleio1e

Which is 42d with a remainder in B of 1.

Figure 11.14

It is worth going over the process again and again until you are
absolutely certain that you completely understand the means by
which the division is perpetrated. This technique of division is
known as the restoring method, because of the restoration of the
subtraction in the event of a carry. There are other methods for
dividing but they are beyond the scope of this book. The restor-
ation method is both efficient and easily adapted to operate on
multiple bytes so will enable the programmer to carry out any
division required.

There is an interesting alternative use for the shift and rotate
instructions. Enter the short program in Fig. 11.15, and once you
have entered and saved it, set the Amstrad to mode 2 and put a
fair amount of gobbledegook onto the screen. If you are in BASIC
a few syntax errors will do the job, or the listing of the Hex loader.
Then execute it. If you are using the assembler the [W] command
will change the mode.

You will find that the whole screen is scrolled right, one pixel at
a time, by 1 character. Try changing the RR (HL) for other
opcodes explained in this chapter, and see whether you can
predict the result correctly. Note that the flag register is carefully
preserved by the program. What will happen if all the PUSHes
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and POPs are removed? Try it and see. Try also in other modes;
can you see why you get the curious effect in other modes? Fig.
11.16 gives the same program for scrolling to the left by 1 pixel;
can you see why all the changes had to be made?

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

10 5 FIG 11,14 SCREEN RIGHT SCROLL

20
A7F8 30 ORG 43000
A7F8 49 ENT 43000
A7F8 0608 50 LD B,8
A7FA F3 60 PUSH AF
A7FB 2100eCo 7@ SCREEN LD HL, #Co0e0
A7FE F1 80 PIXEL POP AF
A7FF CBIE 99 RR (HL)
ABO1 FS 100 PUSH AF
ABe2 23 110 INC HL
ABO3 7D 120 LD A, L
AB04 B4 130 OR H
ABOS 20F7 140 JR NZ,PIXEL
ABO7 10F2 150 DIJNZ SCREEN
ARBO? F1 160 POP AF
AgBeA C9 170 RET
Pass 2 errors: 00
Table used: 38 from 143

Executes: 43000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
94BZ 0527

Figure 11.15

A certain amount of judicious calculation with the aid of the
screen map in the appendix will allow you to move pieces of the
screen around at will. These routines are slow but when you
consider that 16,384 rotates have to be carried out for each pixel to
the left or right, and close to 132,000 instructions are executed for
a single screen shift by 1 pixel, you may begin to appreciate the
speed.

There are two further Rotate instructions, which are shown in
the appendix of opcodes. These are the decimal rotates. They are
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Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

10 5 FIG 11,15 SCREEN LEFT SCROLL

20
A7F8 30 ORG 43000
A7F8 40 ENT 43000
A7F8 0608 50 LD B,8
A7FA FS 690 PUSH AF
A7FB 21FFFF 70 SCREEN LD HL, #FFFF
A7FE F1 80 PIXEL POP AF
A7FF CB16 90 RL (HL)
ABO1 FS 100 PUSH AF
AB02 2B 110 DEC HL
AB03 7D 120 LD A, L
ABO4 A7 130 AND A
ABOS 20F7 140 JR NZ,PIXEL
ABO7 7C 150 LD A,H
AB08 FECO 160 CP #Co
ABOA 20F2 170 JR NZ,PIXEL
A8OC 10ED 180 DJIJNZ SCREEN
ABOE F1 190 POP AF
A8BOF C9 200 RET
Pass 2 errors: 00
Table used: 38 from 141

Executes: 43000

THE CHECKSUMS REQUIRED BY THE HEX LOADER ARE
05E9, 05B2, 02B7
Figure 11.16

outside the scope of this book, and it is most unlikely that you
will ever have occasion to use them, except perhaps for operating
on the screen. For this purpose the symbolic representation in the
appendix is sufficient. They are intended for use in circumstances
when binary coded decimal numbers are required, most often for
ancillary equipment such as the displays in digital clocks. Binary
coded decimal is a system whereby four bits are used to hold a
value between 0 and 9 inclusive, only numbers between 0 and 99
can therefore be held in a byte, as opposed to 0 to 255 using the
normal Hex numerology. If you are really interested in learning
about this sort of instruction you will need to fully comprehend
all the concepts explained in this book, and then go on to read a
book such as Zaks’ Programming the Z80 ISBN 0 89588 069 5.
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Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

= asingle 8 bitregister A,B,C,D,E,HorL
m = any of rand (HL)
T = aregister pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = contained in
PC = Program Counter
SP = Stack Pointer

All shifts and all rotates can be used on any of m.

The rotates have a special 1 byte opcode for use on the A
register; these special instructions only affect the carry flag.

All other rotates and shifts affect all the usable flags according
to the contents of m after the operation.

The P/V flag is used to show parity.

The decimal rotates do not affect the carry flag.

For signed division the sign bit can be preserved by use of the
SRA instruction.

A circular rotate does not collect the bit put into carry before
execution of the instruction.

Right movements divide by 2.

Left movements multiply by 2.



Chapter Twelve

Automated Moves
and Searches

You will probably gather from the chapter heading that the Z80
CPU is well endowed with automated instructions, and you have
already learnt about one of them, the DJNZ instruction.

The remaining automated instructions fall into two distinct
areas. The block transfer and search group and the block input
and output group. The first of these groups will be explained
here, and the action of the second will become clear when you
read the next chapter.

Suppose for amoment that you wish to move the contents of an
area of memory to another area of memory. This could be to create
space in a series of records in a data-base program, to save a
screen, or part of it in another area or even to scroll the screen as
was done in Figs. 11.15 and 16. Assuming that you know how
long the block to be moved is, the program would probably look
something like Fig. 12.1.

Note how the EX DE,HL instruction is used to allow the
address in DE to be loaded from the A register, by temporarily
exchanging to put it into HL, and then swapping it back. This
could have been achieved equally well (if not better) by using an
LD (DE),A instruction, but it demonstrates the use of the
exchanges. If for example the A register was not easily available,
and less than 257 bytes were to be moved, the program could
easily be changed to use the C register and the DJNZ instruction
for the loop.

In this program BC is used as a Binary Counter and DE as the
DEstination address for the byte being moved. HL acts in its
normal role here, that is to point to the address of a byte to be
fetched into the A register. Whoever wrote the mnemonic
instruction set for the Z80 certainly made it easy to remember

129
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Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

1 5 FIG 12,1 UP-WARD BLOCK MOVE BY
NORMAL MEANS

4E20 10 ORG 20000
4E20 20 ENT 20000
0000 30 ORIGIN EQU #7772
0000 40 DEST EQU #7777
0000 50 COUNT EQU #7772
4E20 210000 60 LD HL,ORIGIN
4E23 110000 70 LD DE, DEST
4E26 010000 80 LD BC, COUNT
4E29 T7E 90 LOOP LD A, (HL)
4E2A EB 100 EX DE, HL
4E2B 77 110 LD (HL) , A
4E2C EB 120 EX DE, HL
4E2D 23 130 INC HL

4E2E 13 140 INC DE

4E2F OB 150 DEC BC

4E30 78 160 LD A,B

4E31 B1 170 OR c

4E32 20F5S 180 JR NZ,LOOP
4E34 C9 190 RET

Pass 2 errors: 00

Table used: 60 from 147
Executes: 20000

Figure 12.1

roles normally played by register pairs; even they are
mnemonics!

Figure 12.1 works fine where the DESTination address in DE is
lower than the ORIGIN in HL, but if the destination is above the
origin, by less than the count of bytes to be moved, you will get
peculiar results. Enter the program and make ORIGIN EQUal to
C000h and DEST EQUal to C100h, and set COUNT to EQUal
3EFF. The check sums for the Hex loader will be 036F 04CC 00C9,
and then execute it. You will find that the same pattern is
repeated several times on the screen. What the program did was
copy from the start of the screen memory, C000h, to an address
100h later, and still on the screen. All was fine for the first FFh
locations, but thereafter what was copied was not the original
contents, but the contents of the start of the screen area, which
had been moved there by the first 100h loops.
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Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

1 3 FIG 12,2 DOWN-WARD BLOCK MOVE
BY NORMAL MEANS

4E20 10 ORG 20000
4E20 20 ENT 20000
FEFF 30 ORIGIN EQU #FEFF
FFFF 40 DEST EQU #FFFF
3EFF 50 COUNT EQU #3EFF
4E20 21FFFE 60 LD HL,ORIGIN
4E23 11FFFF 70 LD DE, DEST
4E26 ©O1FF3E 80 LD BC, COUNT
4E29 7E 90 LOOP LD A, (HL)
4E2A EB 100 EX DE, HL
4E2B 77 110 LD (HL),A
4E2C EB 120 EX DE, HL
4E2D 2B 130 DEC HL

4E2E 1B 140 DEC DE

4E2F 0B 150 DEC BC

4E30 78 160 LD A,B

4E31 B1 170 OR C

4E32 20F5 180 JR NZ,LOOP
4E34 C9 190 RET

Pass 2 errors: 00

Table used: 60 from 147
Executes: 20000

Figure 12.2

This would have been even more fun if you had been making
space in a sentence to add something. Consider what will occur
with the sentence below if a space is to be made after the ‘bro’ to
insert a ‘w’. The sentence starts at address nn, so HL will be
loaded with nn + 12, which is where the space is required, and
DE will be loaded with nn + 13, because everything after the ‘0’ of
‘bro’ is to be moved on by one position. Since five characters are
to be moved BC will be loaded with 5.

How now bron cow. To start

How now bronncow. after one move,
How now bronnnow. after two moves,
How now bronnnnw. after three moves,
How now bronnnnn. after four moves and
How now bronnnnnn after the five moves.
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It should now be clear what is going wrong, and the means to
overcome the problem should also be apparent if you think about
it. Before going on to correct the function of the program the first
of the automated block move instructions can be introduced. It
will replace lines 90 to 180 inclusive of the assembler listing,
which did the LoaDing, the Incrementing and the Repeating.

Being used to the style of this book you know the instruction
mnemonic and what it is short for, as well as the operation
performed by it, so all that is left to tell are the Hex and Binary
forms:

ASSEMBLER HEX EINARY

LDIR ED B® 11 101 101 10 110 000

There is also a reverse instruction, for moving blocks of memory
in the same manner, but starting from the highest address of both
the DESTination and the ORIGIN, as opposed to the lowest. Fig.
12.2 gives the long-winded form to move the same block of
memory to the same destination using the Decrementing move.
The instruction which could be used to replace lines 90 to 180 in
this program is:

ASSEMELER HEX EINARY

LDDR ED B8 11 101 101 10 111 000

Whilst the LDIR and the LDDR instructions perform the same
functions as shown in Figs. 12.1 and 2 they do not operate in the
same manner. The A register is not used to make the transfer and,
instead of employing the zero flag to make the test for the BC
register pair reaching zero, the P/V flag is used. This will always
be reset on completion of the instruction. No other testable flags
are affected in any way by any of the block move instructions.

If the data being moved must not be corrupted, the LDIR
instruction will always be safe to use when an area of memory is
being moved down, and the LDDR instruction should be
employed for any upward move. Obviously the LDDR instruc-
tion requires the HL register pair to contain the address at the top
of the area to be moved, and the DE register pair to hold the
highest address of the memory to be filled. Conversely, when the
LDIR instruction is employed, HL should hold the bottom
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address of the data’s origin, and DE the bottom address of the
destination.

Both instructions can be employed to fill an area with an
identical byte, and a SCREEN FILL MK3 version of the program
in Fig. 9.2 using the LDDR instruction is given in Fig. 12.3. This
deliberately uses the ‘overcopying’ technique, by moving down
by 1byte. Each byte filled is in turn used as the origin for the next
byte to fill. Note that the HL register pair starts at address FFFFh
not at 0000h, because the BC is DECremented after the first
transfer.

Hisoft GENA3 Assembler. Page 1.
Pass i errors: 00

1 ;3 FIG 12,3 SCREEN FILL MK 3

4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 40 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,ORIGIN
4E23 11FEFF 70 LD DE, DEST
4E26 OIFF3F 80 LD BC, COUNT
4E29 EDBSB 90 LDDR

4E2B C9 100 RET

Pass 2 errors: 00

Table used: 49 from 132
Executes: 20000

CHIME DEC TR Dy TUE DY L MATCD Ao
SUMS REQUTRED By THE HEY LOADER 4P

Figure 12.3

In all the above examples the length of the block to be moved
was known, but it would be an awful shame if the full version of
the program had to be written whenever it was necessary to
include a test for the end being reached. This would end up as
shown in Fig. 12.4, supposing that 00 was used to mark the end.
BC is still employed to set a limit to the memory that may be
moved, otherwise in the event that there was no end marker for
some reason, the program would never end. Perhaps even worse,
the program itself might be written over, and a crash would
naturally follow. There are no ‘mug traps’ at all when you are
writing machine code, you have to put them in yourself!
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Hisoft GENA3 Assembler.

Pass 1 errors:

Pag

e

1.

1 § FIG 12,4 MOVE TO END MARKED BY ©
4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 40 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 69 LD HL,ORIGIN
4E23 11FEFF 70 LD DE,DEST
4E26 O@IFF3F 80 LD BC, COUNT
4E29 7E 90 LOOP LD A, (HL)
4E2A 12 100 LD (DE),A
4E2B 2B 110 DEC HL
4E2C 1B 120 DEC DE
4E2D OB 130 DEC BC
4E2E 78 140 LD A,B
4E2F BI 150 OR c
4E30 2804 160 JR Z,LIMIT
4E32 AF 170 XOR A
4E33 BE 180 CP (HL)
4E34 20F3 190 JR NZ,LOOP
4E36 C9 200 LIMIT RET
Pass 2 errors: 00
Table used: 72 from 147
Executes: 20000

Figure 12.4

Fortunately Zilog have even thought of this, and they have
provided a pair of instructions the same as LDIR and LDDR, but
without the Repeat, and you'll never guess what the mnemonics
are, will you?

i
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LDD ED A8 11 101 101 10 101 000

LDI ED RO 11 101 101 10 100 000

It is not quite as simple to change Fig. 12.4 to incorporate the LDD
as it might seem at first glance, since the P/V flag is used to
indicate the BC register pair reaching zero, instead of the zero flag
in the original long program. Using LDD the condition upon
which the jump to LIMIT is made must be changed to PO, as the
flag is reset when BC = 0. This in turn leads to a further change
needing to be made. A relative jump does not have the facility to
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be made conditional upon the P/V flag, so the jump must there-
fore be changed to an absolute jump. Fig. 12.5 shows the
rewritten program incorporating the LDD instruction.

Hisoft GENA3 Assembler. Page 1.
Pass 1| errors: 00

1 5 FIG 12,5 MOVE TO END MARKED BY

0 MK 2

4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 49 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,ORIGIN
423 11FEFF 70 LD DE, DEST
4E26 OI1FF3F 80 LD BC, COUNT
4E29 EDAS 90 LOOP LDD
4E2B E2324E 171 JP PO,LIMIT
4E2E AF 173 XOR A
4E2F BE 174 CP (HL)
4E30 20F7 1890 JR NZ,LOOP
4E32 C9 190 LIMIT RET
Pass 2 errors: 00
Table used: 72 from 141
Executes: 20000
THE SUMS REQUIRED EY THE HEX LOADER ARE

Figure 12.5

The next automated instructions, and the last to be dealt with
in this chapter, are the block search instructions. These follow
very closely the form of the block move opcodes but, as their
name implies, they are used to search blocks of memory for a byte
holding a specific value. To make the same analogies as were
made for the block moves Fig. 12.6 gives the long version of a
program to find a byte in memory containing 65 (the code for ‘A’)
starting the search at address FFFFh and looking through 3FFFh
bytes before giving up if no match is found. When the end of the
search loop is reached (the label DONE) the zero flag will be set if
a match has been found, and reset if not.

You will see that there have been difficulties saving the A
register whilst the test for BC reaching 0 was made. It could not be
saved on the stack by a PUSH because the flags would have been
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Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

10 ; FIG 12,6 BLOCK SEARCH THE HARD WAY

4E20 20 ORG 20000
4E20 30 ENT 20000
FFFF 40 START EQU #FFFF
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL, START
4E23 O1FF3F 70 LD BC, COUNT
4E26 3EA41 8o LD A, 65
4E28 BE 9@ LOOP cp (HL)
4E29 2B 100 DEC HL

4E2A ©B 110 DEC BC

4E2B 28907 120 JR Z,DONE
4E2D 57 130 LD D,A

4E2E 78 140 LD A,B

4E2F Bl 150 OR c

4E30 7A 160 LD A,D

4E31 20FS 170 JR NZ,LOOP
4E33 3F 1890 CCF

4E34 C9 190 DONE RET

Pass 2 errors: 00

Table used: 99 from 143
Executes: 20000
Figure 12.6

saved as well, and this would have invalidated the test when the
POP was made before the jump. The flags would have been
restored with the A register before the result of the test could be
used. The D register has therefore been put into service as a
temporary store for A whilst the tests are made.

The result is a program which successfully does a ComPare
Decrement and Repeat through an area of memory, signalling the
result with the zero flag when it has finished. The automated
instruction which would normally be used for this task, the
upward searching version of the same, and the non-repeating
versions are:

ASSEMELER HEX EINARY

CPIR ED Bl 11 101 101 10 110 @01
CPDR ED B9 11 101 101 10 111 001
CPI ED Al 11 161 101 10 100 001

CPD ED A9 11 101 101 10 101 001
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These instructions use the P/V flag to indicate that the count (in
BC) has reached zero, just as the automated LD instructions
detailed earlier, but additionally the zero flag is set to indicate a
match being found, or reset to show no match.

Figure 12.7 shows a rewritten version of Fig. 12.6 using the
CPDR instruction. CPIR INCrements the HL register pair after
each ComPare instead of its being DECremented, and the two
instructions without the R for Repeat, do the same but without
the repeat.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1e § FIG 12,7 BLOCK SEARCH USING CPDR

4E20 20 ORG 20000
4E20 30 ENT 20000
FFFF 40 START EQU #FFFF
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL, START
4E23 QI1FF3F 70 LD BC, COUNT
4E26 ZEA4L 80 LD A, 65
4E28 EDB9 90 LOOP CPDR

4E2A C9 190 DONE RET

Pass 2 errors: 00

Table used: 59 from 132
Executes: 20000

THE C -5UMS REQUIRED BY THE HEX LOADER ARE
faRatain el

Figure 12.7

It is easy to modify the program in Fig. 12.7 to look for a series
of memory locations in place of a single matching value, by
adding a small amount of extra code. One application might be to
look for an occurrence of a particular word or phrase in stored
data, or to look for ‘keywords’ having been input in an adventure
game. Figure 12.8 shows a program to do just this; it allows the
input of a string of characters to be searched for, terminated by
the [ENTER] key being pressed, and then returns the address of
the start of that string, if it occurs in memory.
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Pass 1| errors: 00

10 5 FIG 12,8 BLOCK SEARRCH FOR STRING
5

20 OF MATCHING LOCATIONS USING CPIR
7330 30 ORG 30000
7530 49 ENT 30000
BB18 50 GETKEY EQU 47896
BBS5A 60 PRINT EQU 47962
0000 70 START EQU #0000
7530 80 COUNT EQU 30000
7530 217575 90 LD HL, FREE
7533 ES 100 PUSH HL
7534 D1 110 POP DE
7535 CD18BB 120 INPUT CALL GETKEY
7538 77 130 LD (HL),A
7539 CDS3ABB 140 CALL PRINT
753C 23 150 INC HL
753D FE@D 160 CP #0D
733F 20F4 170 JR NZ, INPUT
7541 210000 180 LD HL, START
7544 013075 190 LD BC, COUNT
7547 1A 200 LOOK LD A, (DE)
7548 DS 210 PUSH DE
7549 EDBI 220 CPIR
754B C5S 230 PUSH BC
754C ES 240 PUSH HL
754D 2012 250 JR NZ,NOFIND
754F 13 260 NXT_CH INC DE
7350 1A 279 LD A, (DE)
7551 BE 280 CP (HL)
7352 23 290 INC HL
7353 28FA 300 JR Z,NXT_CH
7555 FE®@D 310 FINI? CP #0D
7557 EI 320 POP HL
7558 C1 330 POP BC
7359 DI 340 POP DE
755A 20EB 3590 JR NZ,LOOK
755C 2B 360 FOUND DEC HL
755D 2275735 370 LD (FREE) ,HL
7560 C9 380 RET
7561 Ci 390 NOFIND POP BC
7562 EI 400 POP HL
7563 D1 410 POP DE
7564 23 420 INC HL
7565 18FS 430 JR FOUND

Pass 2 errors: 00

Table used: 145 from 184
Executes: 30000

THE CHECK-SUMS REQUIRED RBY THE HEX LOADER ARE
9SAS 0378 04FD ©42E @SSE O2ER

Figure 12.8
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16 PRINT “HELLO"

20 CALL 30000

30 N= PEEK (30069)+256*%PEEK(300790) :PRINT N

40 PRINT CHR$% (PEEK (N))3;CHR$( PEEK (N+1));CHR$ (PEEK
(N+2));CHR$ ( PEEK (N+3))

This program can be changed to suit almost any search
function that you will ever require. Lines 120 to 190 of the
assembler listing can be changed to any input routine that is
required, and what is done after the search is complete can also be
altered to suit. As given, HL will hold either the address of the
start of the string searched for, or 0 if it wasn’t found. For the
purposes of the demonstration program this is also stored in
memory, so that it can be accessed by the BASIC program.

The label FINI? is not used except to show that this is where the
check to see if a complete match has been achieved is made. Care
must always be taken to avoid a routine of this type finding a
match in its own sample, otherwise you will never get a ‘Not
Found’ even when there really isn’t a copy.

One final most important thing about all the automated instruc-
tions in this chapter, which you must be aware of to make use of
them, is the order of events. The HL register pair, and the DE
register pair where it is used, are INCremented or DECremented
before the BC register pair. They will therefore always point to
the next location in the sequence they were following, after they
have performed their task.

This can be seen by looking at Fig. 12.8 from the label NXT_
CH, where the next character of the string is checked. The
DE register pair has to be incremented to point to the next
character of the sample, but the HL register pair is already
pointing at the next character of the string being tested, on exit
from the CPIR loop. This is also the reason for DECrementing HL
before finishing the program at the label FOUND. Since it is
known that the BC register pair will hold 0 if the allocated amount
of memory has been searched and no match has been found, it is
this which is popped into the HL register pair at the label
NOFIND, saving two bytes even allowing for the INC which
allows it to be DECremented back to 0 after the jump to FOUND.

Experiment with this routine and then rewrite it to use the
CPDR instruction and see if you get the same results if you search
for the “HELLO" in the basic program.
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Résumé

There now follows a very brief résumé of the instructions you
have learnt in this chapter:

r = asingle 8 bitregister A,B,C,D,E,HorL

T = aregister pair being used as a 16 bit register
n = an 8 bit number

nn = a 16 bit number

() round a number or register pair = contained in
PC = Program Counter

SP = Stack Pointer

LDIR loads the contents of address HL into address DE,
INCrements DE and HL, DECrements BC then, if BC is not 0,
repeats.

LDDR loads the contents of address HL into address DE,
DECrements DE and HL, DECrements BC then, if BC is not 0,
repeats.

LDI and LDD act exactly as the LDIR and LDDR instructions,
but without repeating.

CPIR ComPares the contents of the A register with the contents
of address HL, INCrements HL, DECrements BC and repeats
unless there was a match or BC became 0. If there was a match the
zero flag will be set.

CPDR ComPares the contents of the A register with the
contents of address HL, DECrements HL, DECrements BC and
repeats unless there was a match or BC became 0. If there was a
match the zero flag will be set.

CPI and CPD act exactly as the CPIR and CPDR instructions,
but without repeating.

For all the above instructions the P/V flag is used to test for BC
reaching 0, and the flag is reset when it does, therefore the
condition test PO will jump on BC = 0.



Chapter Thirteen

Communicating with
the Outside World

All the instructions so far have been concerned with processing
information held within the computer. You may have wondered
how the computer gets this information to start with, or you may
have taken it for granted that when you press a key, your Amstrad
knows about it. In fact, if it wasn’t specifically told to take infor-
mation in from outside its own little world of memory, screen and
processor, your computer would quite happily sit there, runring
its programs or whatever, and totally ignore you. You could press
keys until you were blue in the face, or died of starvation, and it
wouldn’t make a blind bit of difference to the computer. The only
thing that would worry it, would be having the power switched
off. Equally if a program required information to be given out
from a program to anything other than the screen the computer
has to be given the means to do it. The operating system provides
the means to access the existing items, such as the keyboard and
the sound chip, which are outside the CPU’s immediate field of
vision, so you are very unlikely to need to access it yourself.

Without going too deep into the technical specification of the
CPU and thereby switching to a new subject, here is a very basic
explanation of how it communicates outside its own boundaries.

You should by now be reasonably familiar with the binary
system, and how a series of 1s and 0s can make up a number. You
have also learnt that the computer represents a 1 having a switch
‘on’ and 0 its being ‘off’. The Z80 CPU has forty pins, each of
which is used for a specific function. The two wires which join
the keyboard to the monitor act in a similar way. One line has two
wires which give power (electricity) to the computer, and the
other wire, which has six cores each of which goes to one pin on
the connector, sends the picture information to the monitor.

141



142 Machine Code for Beginners on the Amstrad

Sixteen of the pins on the CPU are used to give the address with
which the CPU wishes to communicate, and eight are used to
send or receive the data. Other pins are used to indicate whether
the memory is to be used, or the outside world is to be communi-
cated with, and if the CPU is going to send information or expects
to receive it.

The sixteen pins which give the address are known as the
Address Bus. This is normally shortened to just A, and each pin is
referred to by the bit number which it gives. The pin which gives
bit 0 (0 or 1 decimal) is called A0, the pin which gives bit 1 (value 2
when set to 1) is called Al, and so on to A15 which gives bit 15
(32768 decimal when set). The eight pins through which data are
passed are called the Data Bus and these are known as DO to D7.
Figure 13.1 shows this, as well as some of the other pins.

When the CPU executes an instruction such as LD A,(3456) it
will signal that it wishes to use memory, and that it wishes to read

SOME OF THE PINS ON THE 780

80 CPU |

RD signals a ReaD. WR signals a WRite. MREQ signals a Memory REQuest, in
other words memory is to be used. IORQ signals an Input or Output ReQuest.
The line over these pins signifies that they are active when low (binary 0).

Figure 13.1
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information from the address which it has put onto the Address
Bus. 1t will then read the contents of that address in memory
through the Data Bus.

If you want to use something other than memory you will have
to specifically tell the CPU that you want to send out or receive in
from somewhere else. This you do with an OUT or an IN instruc-
tion. There is quite a number of this type of instruction available
in the CPU but, because of the way the Amstrad has been
designed, only one IN and one OUT instruction are of any
interest.

The address for any outside correspondence with the CPU is
specified by the BC register pair, and the instructions are:

ASSEMELEF EINAFY
OUT (C),r 11 101 101 (EDh) @1 r 001

IN r,(C) 11 101 101 o1 r 000

The B register provides A8 to A15 and the C register provides AQ
to A7. Putting 1234h in BC will therefore set A0 to A15 as

A0) 00010010 00110100 (A15

An address for a piece of external equipment is not normally
actually called an address, but is called a ‘Port’ instead. This
avoids confusion over whether an address is internal (that is, in
memory) or external. Anything being transferred through a port
is known as I/O, which is short for In/Out.

Due to the design of the Amstrad very few values can be used
for BC. The most likely use you will have for these instructions
will be for use with a peripheral device of some sort. If you are at
a level where you are building or controlling this type of equip-
ment, A8 to A15 of the address bus, and therefore the B register,
will have to hold either F8h FOh FAh or FBh. For all these lines A10
will be at logic 0 (low). As long as this line is low, and the bottom
eight bits of the address bus hold between EOh and FEh inclusive,
you will not interfere with any of Amstrad’s allocations for
existing or future equipment for use with the CPC 464.

Further details of existing equipment already attached to the
Amstrad, using the INput and OUTputs, are available in the
Amstrad Programmer’s Reference Manual.
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One quickie program which is of no practical use at all, but
which shows the OUT instruction in use, is given in Fig. 13.2.
This allows you to switch the cassette motor on and off. The
cassette is on the other side of an interface circuit (UPD 8255)
which has three I/O channels. Channel A is accessed by port
F4xxh, channel B by port F5xxh and port Féxxh is channel C.
Control is via port F7xxh. In each the xx can be any value (and will
be held in the C register) but unless you use one of the unused
addresses for A0 to A7, mentioned above, you will be asking for
trouble.

Hisoft GENAJZ Assembler. Page 1.

Pass 1 errors: 00

10 ;3 FIG 13,2 PROGRAM TO TURN CASSETTE
20 ; MOTOR ON OR OFF

BB18 30 GETKEY EQU 47896
7530 40 ORG 30000
7530 50 ENT 30000
7530 OQ1EOF6 60 ON LD BC, #F6EQ
7533 3E10 70 LD A,#10
7335 ED79 80 out (C),A
7537 CD18BB 90 CALL GETKEY
753A AF 100 XOR A

753B ED79 110 out ((C),A
753D C9 120 RET

Pass 2 errors: 00

Table used: 35 from 137
Executes: 30000

THE CHECKE-SUMS REQUIRED RY THE HEX LOADER ARE
932B  ©2DE

Figure 13.2
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Other Instructions

The Z80 CPU has two sets of general purpose registers, as well as
a second A register and flag register. With most computers you
can use the Z80 instructions to switch between the first and
second sets of general purpose registers, and/or the duplicate A
and F registers, whenever you wish. If you do not have an
intimate knowledge of the operating system, the Amstrad pre-
cludes the use of one complete set of these registers.

The instructions which allow you to change the set of registers
in use are shown in the appendix, but it is strongly suggested that
you forget their existence until you possess, and have mastered,
the Programmer’s Reference Manual. This will be no easy task,
and one magazine recommended that one should ‘take several
degrees in electronics and computer science’ before trying to use
it. This was rather overstating the degree of proficiency needed
before you can make use of some of the information given there. If
you have managed to get this far, and assuming you are able to
understand the action and operation of the instructions that have
been explained, you will find an enormous wealth of usable data
therein.

Interrupts

Interrupts are the means by which the Amstrad can execute the
BASIC instructions such as EVERY and AFTER; they are
generated by the Amstrad at regular intervals. Every time an
interrupt is made the Z80 CPU reacts in one of three ways. These
are called Interrupt Modes shortened to IM to form the mnemonic.
The interrupt mode can be set to any of the three modes available
by a program but again due to the design of the Amstrad there is
only one mode which is worthy of consideration. The instruc-
tions to set the interrupt mode are given in the appendix.

145
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The cold start sequence in the Amstrad, which clears the
memory and sets the early-morning wake-up state, also
initialises the interrupt mode to 1 (IM1). In this mode any
interrupt causes a special sort of CALL to address 56 (38h). The
program which starts here is known as the Interrupt Service
Routine and since it can be called into action at any point in the
main program, an interrupt service routine must save any
registers it is going to use before modifying them, and restore
them before returning to the main program.

The special CALL generated by an interrupt, automatically
stops any further interrupts being acknowledged, so before
returning from an interrupt service routine to resume execution
of the main program the interrupts must be enabled, so that
future interrupts are not ignored. The instruction which allows
the interrupts to be enabled is called Enable Interrupts, and there
is also a corresponding instruction to Disable the Interrupts.

ASSEMELER HEX EINARY
DI F3 11 110 o011
EI FB 11 111 o11

Locomotive software have fortunately thought of the machine
code programmer and given a means by which interrupts can
easily be used. With most machines based on the Z80 you have to
use IM2 to gain access to the interrupts, and as you will see when
you read on, this is not the easiest of things to do. On your
Amstrad, once you have written the interrupt service routine, all
you have to do is add a JP #B939 at the end, where you would
normally have put the RET instruction. To make the interrupt
routine active load the HL register pair with the start address of
your routine, and then LD (#39),HL. From now on every inter-
rupt will call your routine. To disable your interrupt routine the
instructions

ASSEMELER HEX
LD HL,#B939 21 39 B9

LD (#39),HL 22 39 oo

should be used.
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Do not attempt to change the address at 3%9h in two steps,
because it is possible that an interrupt could occur half way
through the change, making the interrupt call the wrong address.

A brief description of IM2 is given below, and this will stand
you in good stead for the future. Do not attempt to use this mode,
or IM0 without going into and understanding the detail given in
the Programmer’s Reference Manual about using the interrupts.
The degrees will be helpful when you are trying to cope with this
part!

By setting IM2 it is possible to use the interrupts for your own
purposes, so long as you end your interrupt servicing routine by
re-enabling the interrupts before returning to the CALLing
program and end with a RETI instruction.

Remember that you will have to reset the IM1 mode and enable
the interrupts before you return to BASIC unless you are using a
RST 56 (38H) within the interrupt routine.

The IM2 mode is somewhat convoluted and operates as
follows: On receipt of an interrupt the CPU saves the address of
the next instruction in the program that it is executing on the
machine stack, and disables any further interrupts. It then looks
at the location pointed to by the data bus + (256 » the I register)
and jumps to the address which is contained in this location +
(256 * the contents of the following location). For example: the I
register contains 10 ()AH) and the interrupting device places 200
on the data bus when it makes the interrupt.

10 * 256 = 2560. 2560 + 200 = 2760.

Therefore the address to be jumped to will be taken from the
contents of address 2760 + (256 * the contents of address 2816). If
2760 contained 90 and 2761 contained 187 then the address
jumped to would be 90 + (256 * 187) which is 47962.

Or if the I register was 187 and the interrupting device gave 90

187 * 256 = 47872. 47872 + 90 = 47962
47962 contains 207 and 47963 contains 0
0+ (207 * 256) = 52992.

So the jump will be to 52992.

This can be represented by imagining the interrupt as an
invisible instruction in the program being run. At the moment of
the interrupt the invisible instruction is executed as if it were a DI
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followed by a CALL instruction in the address immediately prior
to address pointed to by the I register and the data bus, the
address being CALLed is in the next two bytes in the standard
7280 low byte first order. The instruction, being invisible, cannot
place its own return address on the machine stack, hence the
address after the last instruction executed in your program goes
onto the stack, and it is this address that will be returned to after
the RETI instruction at the end of the interrupt service routine.

The RETI instruction must be preceded by an EI instruction.
The reason for the DI being incorporated in the CALL performed
by the interrupt is to ensure that, should the interrupt service
routine be longer in execution time than the delay between two
interrupts, the program does not become tied up in a loop.

It is quite easy to write a program which changes the address
jumped to by an interrupt by loading the vector bytes (the two
addresses looked at to determine where the jump is made to) with
the desired address within the program.

Whenever interrupt routines are used it is of vital importance
that any registers which are used by the interrupt routine are
preserved on entry, and restored before going back to the main
program, and that no attempt is made to pass data to and from the
interrupt routine in registers.

Typical uses of interrupt routines are for SPRITE control and
constantly checking for keys being pressed within a program. If it
is known how often an interrupt will be generated it is easy to
calculate the speed of movement for a SPRITE and, since it will be
independent from any other operation within the program, the
speed will normally remain constant.

Figure 14.1 gives a short program which, when executed from
INIT, will set up the standard interrupt to point to the label
START. Every interrupt thereafter the routine between START
and FINISH will be performed. This simply sets memory at
address 31100 to hold 123. To revert the interrupt to its original
address CALL the routine at the label DISARM.

Return to BASIC if you were using the assembler, and before
usirg any of the machine code, try the following as direct
commands.

? PEEK (31100)
should return 0
POKE 31100,10: ? PEEK (31100)
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should return 10 and
POKE 31100,0: ? PEEK (31100)
should return 0 again. Now type

CALL 30000

and try the above again.

If the interrupt routine is being executed correctly you will find
that no matter what you do ? PEEK (31100) will give 123 because
the interrupt routine is resetting this at every interrupt.

Now CALL 30007 to disarm your interrupt routine and try the
above again. All should now be back to normal.

One final point about interrupts: any machine code program
which can be run without being interrupted will run faster.
Disabling the interrupts will also disable any BASIC timing

Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

1 5 FIG 14,1 DIVERTING THE INTERRUPT

7530 10 ORG 30000
7530 20 ENT 30000
7530 211879 30 INIT LD HL,31000
7533 223900 490 LD (#39),HL
7536 C9 S50 RET

7537 2139B9 60 DISARM LD HL, #B939
753A 223900 70 LD (#39) ,HL
753D C9 80 RET

7918 90 DRG 31000
7918 FS 100 PUSH AF

7919 3E7B 110 LD A, 123
791B 327C79 120 LD (31100),A
791E F1 130 POP AF

791F C339B9 140 JP #B939

Pass 2 errors: 00

Table used: 37 from 142
Executes: 30000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
G2E? 0124
and 95S7R for the second part

Figure 14.1
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Pass 1 errors: 00

10 § FIG 14,2 DELAY USING HALT

7530 20 ORG 30000
7530 30 ENT 30000
7330 FB 40 EI

7531 06C8 50 LD B, 200
7533 76 60 LOOP HALT

7534 10OFD 70 DJINZ LOOP
7536 C9 80 RET

Pass 2 errors: 00

Table used: 24 from 136
Executes: 30000

THE CHECE-SUMS REQUIRED EBY THE HEX LOADER ARE
9415

Figure 14.2

functions, as well as the AFTER and EVERY commands, but very
little else will be affected.

HALT:
ASSEMBLER  HEX EINARY
HALT 76 o1 110 110

( Note this was the missing code from the LD r,r set.)

This seems like a suitable instruction to explain following the
last paragraph. The HALT instruction stops the CPU from doing
anything until the next interrupt is received. If executed when the
interrupts are disabled the computer will go completely to sleep,
so be sure that the interrupts are definitely on when the HALT
instruction is used.

The most common use of the HALT is to allow long delays to be
achieved without multiple loops in the delay program. Figure
14.2 shows a program which uses the HALT instruction for this
purpose.

You can see the time difference for the delay given by the HALT
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instruction if you POKE &7533,0, which replaces the HALT with
a NOP, and then execute the program again.

RST

The CPU has eight addresses that can be called by a special single
byte instruction, known as a ReSTart. The Amstrad uses most of
these for its own purposes, making them of no practical use to
you, the programmer. They have, however, left one ReSTart
available for your use. This is RST 30h.

The address following the RST is the address called, when the
instruction is executed. This acts in an identical manner to a
normal CALL and the routine called by a RST should be ended
with a RET, exactly as it would if a CALL had been used.

ASSEMELER BINARY p t p t

RST p 11t 111 Qoh 00 20h 100
98h 001 28h 16l

RST 30h 11 110 111 16h @1 Ioh 114
18h @11 Z8h 111

You will have noticed that the last ReSTart is the address used
by the interrupt routine, and the method employed to gain access
to the user ReSTart is almost identical to the manner in which the
interrupt was diverted.

The Cold Start routine sets RST 30h to jump back to the cold
start routine if it is used. If you are brave you can test this by
CALLing address 56 (38h); this will cause a system reset.

To change it to jump to your routine you must put a jump
instruction at address 30h to call your routine. You could, for
example, decide that you were calling the PRINT routine at 47962
(BB5Ah) so often, that it would be worth while to use the RST
instead, saving 2 bytes for every CALL. To do this you would put
the code for JP into address 30h, and the address to be jumped to
in addresses 31h and 32h, in normal Z80 low byte first fashion.
Fig. 14.3 shows this being done, note that the RET in line 51 is
part of a comment and not an instruction.
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Hisoft GENA3Z Assembler. Page 1.
Pass 1 errors: 00

10 5 FIG 14,3 DIVERTING RST 30

7530 20 ORG 30000

7530 30 ENT 30000

7530 3EC3 40 LD A, #C3 ; the code
for jump

7532 215ABB 50 LD HL, #BBSA ; the address
of the routin
to call

51 3 RET would normally come here

7535 323000 60 LD (#30),A ; The remainder
of this is
just for

7538 223100 70 LD (#31) ,HL ; demonstration
purposes.

753B 3EA48 80 LD A, 72

753D F7 90 RST #30

753E 3E6S 100 LD A,101

7540 F7 110 RST #30

7541 3E&C 120 LD A,108

7543 F7 130 RST #30

7544 3E6C 140 LD A,108

7546 F7 150 RST #30

7547 3E&6F 160 LD A, 111

7549 F7 170 RST #30

754A C9 180 RET

Pass 2 errors: 00

Table used: 13 from 160
Executes: 30000

THE CHECK-SUMS REQUIRED BY THE

GR2EC e4p8 e4eb

Figure 14.3

None of the instructions in this chapter so far, affects any flags
in any way.

Indexed Addressing

There are two registers of which no mention whatsoever has been
made so far; these are the IX and the IY registers. The I in each of
their names stands for Index. They are therefore Index X and
Index Y and, as with any normal index, they are used to tell where
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a particular piece of information can be found. As well as serving
as index registers they can also be used for anything that the HL
register pair can be used for.

‘How,” you will ask, ‘can a single register be used to replace a
register pair?’ The answer is simple, they are not really single
registers but two 8 bit registers used in unison. The manu-
facturers of the Z80 CPU were unable to get reliable results from
these two pairs of registers, when used individually, so they do
not publish the instructions to use each register independently,
because any or all of these instructions may not work.

On the Amstrad used for developing this book all the single
register instructions that were tried on the Index register pairs
worked. Even though these instructions are not published it is
extremely easy to discover what they are, once you know how all
the instructions that use these registers are made up. Those of
you who have an assembler will be reduced to almost the same
level of programming as those without, if you wish to employ the
two halves of the index registers separately. Apart from this,
there is no way that it can be guaranteed that a program using
these extra instructions will work on another Amstrad CPC464,
so it is probably best to leave well alone. Having got that out of
the way use of the index registers can be detailed.

Any instruction apart from ADC and SBC which uses the HL
register pair can be made to act on the IX register instead, by
simply placing DDh (221) in front of the instruction opcode for
HL or, to use the IY register, put FDh (253) in front of the HL
instruction. When the instruction is using the index register to
point to an address in memory an extra byte is needed after the
first byte of the original instruction. This extra byte gives a signed
displacement from the address pointed to be the register. This
probably seems a bit confusing; look at the examples below
before giving up.

The Hex instruction to LD HL,nn is 21, and this is followed by
two bytes which provide the 16 bit number nn. To change this
instruction so as to make it operate on the IX register you would
prefix it with DDh. The instruction in has now become:

- CE |ME1! EF, ucy

A r
fin b Stk i et O oA

LD IX,nn DD 21 n n



154  Machine Code for Beginners on the Amstrad

To make it operate on the IY register pair instead of the IX, the
instruction is:

ASSEMELER HEX

LD IY,nn FD 21 n n

All instructions which act directly on the index registers have the
same format. Some examples are given below.

ECEMELER HEX WITH I¥ WITH T¥
LD (nn),HL 22 n n DD 22 n n FD 22 n n
PUSH HL ES DD ES FD ES
DEC HL 2B DD 2B FD 2B
JP (HL) E9 DD E9 FD E9
ADD HL,BC 09 DD @9 FD @9

This last instruction raises an interesting point. What do you
suppose will happen when the instruction: ADD HL,HL is
modified to act on the IX or IY register? This was the instruction
which could have been employed to perform a 16 bit left shift in
the multiplication programs in Chapter 11.

If the instruction became ADD IY,HL when prefixed by FDh
and ADD IX,HL when DDh was put in front it would not be a
direct replacement (albeit using one extra byte) for the instruction
using HL. In fact any reference to the HL register pair is altered to
refer to the index register when an opcode using the HL register
pair is preceded by either of the two index register prefixes. ADD
HL,HL becomes ADD IX,IX when prefixed by DDh or, with the
FDh prefix, ADD IY,IY.

So far no instruction which uses HL to point to memory has
been shown. This is because of the added complication of the
Indexed addressing. As previously mentioned there is an extra
byte needed to give a signed displacement from the actual
address pointed to by the register.

Suppose, for a moment, that you have written a Database
program, and each record has a sort of header, telling the length
of each piece of information in the record. Taking a very simple
example (which book and magazine writers seem to think all
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micro-users will want, though heaven knows why!), the Address
Book.

There is no way in which you can say that the length of a
person’s name, the number of lines in the address and the length
of these lines, or the phone number, will be the same as for
another person. This can be allowed for in two basic ways.

1) You allow each record to take up space which will allow for
the longest name and address.

2) You keep arecord of the length of each line, and the number
of lines, and also the total length of the record.

Method 1 is very wasteful on space, every record uses the same
amount of memory, but keeping track of the details of each record
using method 2 could be a problem. Not with the Index registers
though!

If you start the records at a known address, say 10000, you could
have an index at the start of each record such as that below.

ADDRESS DETAIL
10000/1 length of this record, in 16 bits

10002 length of the name
10003 length of address line 1
10004 length of address line 2
10005 length of address line 3
10006 length of address line 4
10007 length of address line 5
10008 length of phone number
If entry 1 was Martin Pudwick 14

27 New Road

Mudford

Sussex

0123 456789

10000 = 49 the total length of the record, in Z80 low byte
10001 = O first form.

10002 = 14 name

10003 = 11 address 1

10004 = 7 address 2

10005 = 6 address 3

10006 = 0 address 4

10007 = 0 address 5

10008 = 11 phone number
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Nine bytes will always be used for the index; so 49+ 9 = 58,
the start of the index for the next record will be at 10058. Now you
can make use of the index registers.

If IX is loaded with 10000 then (IX + 0) and (IX + 1) will be the
total length of the record, (IX + 2) will be the length of the name,
and so on. You can write your program to increase the total length
for every character added to any line of the record, and increase
the line being worked on in the index as well, then when you
want to move on to the next record, all you have to do is add
(IX+ 0) and (IX + 1) to the IX register, to have the details of this
record available, and ready for use by the same program, without
modification.

The instructions in assembler, to use the index registers with a
displacement, have exactly the form you would expect. Instead of
LD A,(HL) the instruction becomes LD A,(IX + d) when DDh is
placed before the original opcode, and LD A,(IY + d) when FDh
is used. d is any value from —128 to +127.

The displacement is mandatory for all instructions which use
index registers to address memory, even when there is a 0
displacement, and the byte which holds this displacement
always comes immediately after the first byte of the original
opcode. For example:

LD A,(HL) is 7Eh LD A, (IX + d) is DDh 7Eh d
INC (HL) is 34h INC (IY + d) is FDh 34h d

The rotates and shifts, as well as the bit set, reset and test group
of instructions already have a prefix, CBh, but this makes no
difference, the displacement byte still follows the first byte of the
opcode:

RLC (HL) is CBh 06h and RLC (IX + d) is DDh CBh d 06h
SET 4,(HL) is CBh E6h and SET 4,(IY + d) is FDh CBh d E6h

The same applies where a number is involved:
LD (HL),nis 36h n and LD (IX + d),n is DDh 36h d n

One further use for the index registers is for changing the axis
of the screen, to enable a screen dump to be output to the printer.
Printers require a byte to hold information vertically, whereas the
screen uses a byte horizontally. In mode 2 one byte holds the
information for eight pixels across the screen, an Epson printer
needs the eight pixels from the same position on the Y axis but
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from eight consecutive places on the X axis. A screen would need
to be rotated by 90 degrees before it could be copied directly to the
printer.

The most economical way of doing this is not to actually rotate
on the screen, but to reserve a space in memory and rotate each
byte in turn into that, until you have a screen character line ready
to be output to the printer, and then output it, and repeat for the
next character line. Figure 14.4 shows this being done for the
screen line starting at CO00h, in mode 2. Because not everyone
will have a printer, and even if they did many printers require
different control codes to be put into graphics mode, always
assuming they can be used for graphics printing, this program
operates on the screen.

The screen map moves whenever the screen scrolls, so to make
sure it is set to start at C000h, press W until you find yourself in
mode 2, if you are using the assembler, or enter mode 2 as a direct
command if you are using the HEX LOADER. Do not list to get
something on the screen but move the cursor to the top line and
write some characters there. Next, again without causing the
screen to scroll, press [ENTER]. You will get an error message;
don’t worry. Now execute the program. You will find a copy of
the first character line appears on line 2, but each character is
rotated 90 degrees clockwise.

This program is completely relocatable so you can incorporate
it into a program of your own, if you are writing a screen dump or
some similar program. Note that screen dumps are easy in mode
2 but become quite tricky in other modes, because one bit does
not represent one pixel.

That just about finishes this book, and all that is left is for you to
put into practice what you have learnt. The next chapter will give
you some hints, and the addresses to CALL to use some of the
operating system routines. The appendices are there to help you
with routines that you are writing, saving you from searching
high and low for a simple answer to a query.

If you are going to take up programming seriously it will help if
you buy a stencil for flow charts, both W. H. Smiths and Menzies
do them at about two pounds, so don’t pay much more than this,
and an almost inestimable assistance can be given by a calculator
which can work in Hex and binary as well as the normal decimal
system. The Casio fx450 is quite excellent (as well as being half
the price of the Texas offering) and costs about twenty pounds.
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Hisoft GENA3 Assembler. Page 1.
Pass 1 errors: 00

1 5 FIG 14,4 ROTATING THE SCREEN
H

2 MODE 2
9C40 10 ORG 40000
9C40 20 ENT 40000
9C40 DD2100Ce 30 LD I1X,#Co00
9C44 2150Ce 40 LD HL, #C05@
9C47 110008 5o LD DE, #8090
9C4A 0650 60 LD B, 80
9C4C DDES 70 LOOP3 PUSH IX
9C4E ES =1 PUSH HL
9C4F CS5 90 PUSH BC
9CS50 0408 100 LD B,8
9C52 CS 110 LOOP2 PUSH BC
9C53 ES 120 PUSH HL
9C54 DDES 130 PUSH IX
9C56 o0be8 140 LD B,8
9C58 DDCB@00s 150 LOOP RLC (IX+00)
9C5C CBIE 160 RR (HL)
9CSE 19 170 ADD HL,DE
9CSF 10F7 180 DJNZ LOOP
9C61 DDE1 190 POP IX
9C63 EI 200 POP HL
9Cé64 DD19 210 ADD IX,DE
9C66 C1i 220 POP BC
9C67 10E9 230 DJINZ LOOP2
9C69 C1i 240 POP BC
9C6A EI 2590 POP HL
9C46B DDE1 260 POP IX
9Cé6éD DD23 2790 INC IX
9C6F 23 280 INC HL
9C70 10DA 290 DJNZ LOOP3
9C72 C9 Joo RET

Pass 2 errors: 00

Table used: 48 from 147

THE CHECK-SUMS REQUIRED BY THE HEX LOADE
R ARE
0308 0O57A 0467 0586 0656 00C9

Figure 14.4

Many Rymans branches stock it but not many other places. This
calculator will also perform the logical AND OR XOR as well as
NEG and CPL (which they call NOT).



Chapter Fifteen

Programming Hints,
and Using the
Firmware

The Amstrad’s operating system can be broken down into nine
fundamental areas. A few routines from each of these areas will
give you a good start in your programming. You have already
been introduced to two routines, ‘text output’ and ‘wait key’,
which have been referred to as ‘GETKEY’ and ‘PRINT’ respect-
ively. ‘Text output’ is part of the Key Manager, and ‘wait key’ is
one of the Key Manager routines. The other seven areas are:

The Graphics VDU
The Screen Pack

The Cassette Manager
The Sound Manager
The Kernel

The Machine Pack
The Jumper.

It is not the purpose of this book to go into detail of how these
sections are constructed, nor to describe the operating system.
The Programmer’s Reference Manual covers these in great detail,
but in order to get you started here are some pointers that you
may find helpful.

Access to the operating system is, for the greater part, given by
the programmer CALLing addresses which are located in RAM
(Random Access Memory), known as ‘Jump-blocks’. A jump-
block is often made up from just a series of addresses, ready to be
loaded into the HL register pair, before a JP (HL) instruction. This
is shown in Fig. 15.1, as it is a useful technique which you may
wish to employ in your programs.

159
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MAIN PROGRAM
LD A,ROUTNO ; number of the routine to be CALLed (0-25
CALL JUMP

REST OF MAIN PROGRAM

JUMP: ADD A,A
LD D,®
LD E,A
LD HL,JBSTRT
ADD HL,DE ;HL now contains the address memory

holding the address to be called

LD E, (HL)
INC HL

LD D, (HL)
EX DE,HL

JP  (HL) jjump to the subroutine, using the RET
at its end to return to main program
JBSTRT: j;the pairs of bytes holding the subroutine’s
addresses 780 low byte, high byte fashion,

start here.

Figure 15.1

One reason for using jump-blocks is that it is possible to alter
the way all uses of a particular routine are dealt with, by simply
changing the address in the jump-block, instead of having to go
through the program and alter every occurrence of a CALL to the
handling routine. They also have the advantage of allowing a
program to calculate its own actions.



Programming Hints, and Using the Firmware 161

A typical case where a jump-block would be advantageous is, if
a program was to use the printer, or a different window, for all its
output, from that originally chosen. This could allow debugging,
and running on the screen, with the printer only used when
required. In BASIC you might use a PRINT statement followed by
a variable, which could be assigned to the stream number which
you wish to use at a particular time. With a machine code
program there is no operating system to keep track of variables,
and respond globally to resetting of one, hence the jump-block.

Your Amstrad cannot use the system above, because of the
ability to switch areas of memory between ROMs and RAM.
Unless the programmer were to actually check that the ROM
containing the routine to be CALLed was switched in, and switch
it in if not, there can be no guarantee that the right routine will be
accessed! Furthermore, if the screen needs to be read, the Upper
ROM, which occupies the same addresses, must be switched out.

Amstrad’s solution to this is to dedicate a number of the
ReSTarts to CALLing ROM routines. These ensure that the
correct ROM is switched in and that the screen is available for
reading if required. They POP the return address from the restart
instruction off the stack and then use this to look at the bytes
following the restart, which give the address of the routine to be
called and the ROM state to be set. The full details of how these
ReSTarts operate are given in the Programmer’s Reference
Manual, but it is unlikely that you will need to know any more
about the way they work, until you have done a great deal more
programming. Their actions are totally transparent to the user,
and ROM settings are restored to their status before the jump-
block was used, on return to your program.

Any of the many routines available in the operating system can
be used by making a straightforward CALL to a jump-block. The
address returned to by the return at the end of the ROM routine,
is that put there by your call to the jump-block; there is NO return
to the jump-block ReSTart.

There are two distinctly different jump-blocks, one which is
used by the basic interpreter, and the other is used by the
firmware, or operating system. You can alter either set by
changing the three bytes, starting with the RST address. If the
new routine to be accessed is in the firmware, copy the three
bytes in the jump table for new routine to replace the old entry. If
the new routine is your own simply replace the entry in the jump



162  Machine Code for Beginners on the Amstrad

table with a JP to the address of the routine you want to be
CALLed to handle the task, and as long as you end this routine
with a RET things will continue to happen ‘correctly’. Changing
the main jump-block, which lies between BBOOh and BDCBh
inclusive, will not affect the workings of any routine in the
operating system. Altering any entries in jump-blocks outside
this area may have unforeseen side-effects. This is because
routines may use these other jump-blocks to call other routines,
which are necessary to complete a task.

If (when?) you get into such a pickle that you haven’t a clue
what is calling what, where, how, when and why, there is one
entry to the jump-block which is vital. This resets every jump to
its original destination! CALL BD37h.

The screen and the sound are dealt with by hardware as
opposed to software, and this makes it quite tricky to access
directly the functions you may wish to employ, as well as
rendering software keyboard scanning nigh-on impossible.
Fortunately there are inbuilt firmware facilities available to
perform these tasks for you. The joysticks can be read for any
combination of direction and fire button, enabling movement in
eight directions to be detected. Some of the fundamental
firmware jump addresses are given in the appendix.

Try always to use labels in your programs which relate to the
section which they are used for. Whilst excessive use of
comments is not only undesirable, but wasteful on space, do
remember that you may come back to the source code at some
time in the future, without a clue of how you organised the
program.

Please note that this book has made no attempt whatsoever to
teach any of the finer details of how the Z80 works, nor have
timing considerations been examined. The aim was to get you
started in programming, to understand the instructions set and
be able to use the firmware. If you wish to delve deeper into the
finer nuances of Z80 programming, or investigate the hardware
operation, books that can be recommended are:

1) For the programmer Programming the Z80 by Rodney Zaks.
2) For hardware design and expansion The Z80 Technical
Manual from Zilog and Z80 Applications by James Coffron.

The Zaks and Coffron books are both Sybex publications, and are
not cheap (over ten pounds each) so make sure they are what you
really want before buying.
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Once you become adept at assembly language programming
you may wish to consider learning other languages. Pascal is
probably the best ‘second tongue’ to learn for serious pro-
gramming, being almost BASIC-like in many respects, but
offering many of the facilities of assembler as well. It is a
compiled language like assembler, and a program written in
Pascal is normally very portable in its source code form. Many
computers have implementations written for them, and a source
file can be compiled to run on any computer with a Pascal
compiler with the minimum of alteration. The main limitations
of Pascal are speed, assembler leaves it standing, and space,
where assembler is much more economical. Pascal itself is much
much faster than BASIC and the compiled code is less space
consuming than a comparable BASIC program. Many pro-
grammers use a combination of Pascal generated code and true
machine code, compiled from assembly language, where speed
or economy of space is at a premium.

Both Pascal and assembly language, once compiled, can be run
without the program used to write them being present, and the
source code can be saved for further use as required, whilst only
the object code need be saved and loaded for using the program.
There is an implementation of Pascal available for the Amstrad,
written by Highsoft.



Appendix A

The Z80

Instruction Set
Courtesy of ZILOG Inc.

Instruction Set

The Z80 microprocessor has one of the most powerful and
versatile instruction sets available in any 8-bit microprocessor. It
includes such unique operations as a block move for fast, efficient
data transfers within memory or between memory and I/O. It also
allows operations on any bit in any location in memory.

The following is a summary of the Z80 instruction set and
shows the assembly language mnemonic, the operation, the flag
status, and gives comments on each instruction. The Z80 CPU
Technical Manual (03-0029-01) and Assembly Language Pro-
gramming Manual (03-0002-01) contain significantly more details
for programming use.

The instructions are divided into the following categories:

O 8-bit loads

J 16-bit loads

00 Exchanges, block transfers, and searches
0O 8-bit arithmetic and logic operations

O General-purpose arithmetic and CPU control
(0 16-bit arithmetic operations

O Rotates and shifts

O Bit set, reset, and test operations
OJumps

O Calls, returns, and restarts

OInput and output operations.

A variety of addressing modes are implemented to permit

164
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efficient and fast data transfer between various registers, memory
locations, and input/output devices. These addressing modes
include:

O Immediate

O Immediate extended
(0 Modified page zero
O Relative

O Extended

O Indexed

O Register

O Register indirect
OImplied

O Bit

8-bit Load Group

Symbolic Flags Opcode No.of No.of M No.of T
Mnemonic Operation s 2z H PV N C 76 543 210 Hex Bytes Cycles States Comments
LDr ¢ r=r' e ¢ X e X o o o r r 1 1 4 r.r' _Reg.
LDr, n ren e e X o X o o o 00 r 110 2 2 7 000 B
-n- 001 C
LD r, (HL) r — (HL) e e X o X o o o ol r 110 1 2 7 010 D
LDr, (IX+d) r = (IX+d) e e X e X o o o 11 011 101 DD 3 5 19 o1l E
0l r 101 100 H
-d- 101 L
LDr, (IY+d) r~(IY+d) e o X o X o o o 11 111101 FD 3 5 19 111 A
0l r 110
-d-
LD (HL), r (HL) = r e ¢ X o X o o o 0l 110 r 1 2 7
LD (IX+d), r (IX+d) = r e e X o X o o o 11 011 101 DD 3 5 19
0l 110 r
-d -
LDAY4+d).r (IY+d) ~r e e X o X o o o 11 111 101 FD 3 5 19
01110 r
LD (HL), n (HL) = n e e X ¢ X o o o 00 110 110 36 2 3 10
-n-
LD(IX+d), n (IX+d) -~ n ¢ ¢ X o X o o o 11 011 101 DD 4 5 19
00 110 110 36
-d -
-n-
LD(IY+d),n (IY+d) = n e ¢ X ¢ X o o o 11 111 101 FD 4 5 19
00 110 110 36
-d -
-n-—
LD A, (BC) A - (BC) e e X o X o o o 00 001 010 OA 1 2 7
LD A, (DE) A - (DE) * e X o X o o o 00 011 010 1A 1 2 7
LD A, (nn) A ~ (nn) e e X ¢ X o o o 00 111 010 3A 3 4 13
-n-
-n-
LD (BC), A (BC) - A ¢ ¢ X e X o o @ 00 000 010 02 1 2 7
LD (DE), A (DE) — A e e X ¢ X o o 00 010 010 12 1 2 7
LD (nn), A (nn) = A * e X o X o o o 00 110 010 32 3 4 13
-n-—
-n-
LDAI A-1 t t X 0 X IFF 0 11 101 101 ED 2 2 9
01 010 111 87
LDAR A-R t 1 X 0 X IFF O 11 101 101 ED 2 2 9
0l 011 111 SF
DL A I-A e e X e X o o o 11 101 101 ED 2 2 9
01 000 111 47
LDR, A R-A e e X e X o o o 11 101 101 ED 2 2 9
01 001 111 4F

NOTES: r. r' means any of the reqisters A, B, C, D, E, H, L
1FF the content of the interrupt enable flip-lop, (IFF) s
copied into the P/V flag
For an explanation of flag notation and symbols for
mnemonic tables. see Symbolic Notation section
following tables
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16-bit Load Group

Symbolic Flags No.of No.ot M No.of T
Mnemonic Operation s 2z H P/VN C 78 543 210 Hex Bytes Cycles States Comments
LD dd, nn dd - nn e o X o X o s s 00dd0 00l 3 3 10 dd__ Par
-n- 00 BC
~n- 01 DE
LD IX. nn IX = nn e e X ¢ X e+ o 11 011 ICI DD 4 4 14 10 HL
00 100 001 21 1osp
—-—n =
-n-
LDIY, nn IY = nn e o X o X e o o 11111 101 FD 4 4 14
00 100 001 21
-—n-
—n-
LDHL, (nn)  H = (an+1) e o X e X s e e 0010100 2A 3 5 16
~ (nn) -—n-
P
LDdd, (nn)  ddy = (nn+ 1) e ¢ X e X e o 11101 101 ED 4 3 20
dd, ~ (nn) 0l ddl 011
—n-
-n-
LD IX. (nn) IXH = (nn+ 1) ¢ e X s X s e e 11011 101 DD 4 6 2
IXL = (nn) 00 101 010 2A
-n-
—n-
LD Y, (nn) IYH = (nn+ 1) e e X ¢ X & & o 1111101 FD 4 6 20
1YL = (nm) 00 101 010 2A
-n-
-n-
LD (nn). HL  (an+1) = H e e X e X s s e 00100010 22 3 5 16
(nn) = L -n-
-n-
LD (nn), dd  (nn+l) — ddy e X s X s e e 11101 101 ED 4 6 20
(nn) = ddf, 01 ddo 011
—n-
-n-
LD (nn), IX (nn+1) = IXH o o X o X o o o 11 011 101 DD 4 6 20
(nn) = IXL 00 100 010 22
-n-
-n-
LD (nn), IY (nn+1) — IYY e o X o X o o o 11 111 101 FD 4 6 20
(nn) = 1YL 00 100 010 22
-n-
-n-
LD SP, HL SP — HL o o X ¢ X e o 11 11) 001 F9 1 1 6
LD SP, IX SP « IX ¢ o X o X o o o 11 011 101 DD 2 2 10
11 111 001 F9
LD SpP, 1Y SP ~ 1Y e o X o X o o o 11 111 101 FD 2 2 10
11 111 001 F9 qq Pair
PUSH qq (SP-2) - qqL e e X e X e o o 11 qq0 101 1 3 1 W BC
(SP-1) = agHq 01 DE
SP = 5P -2 10 HL
PUSH IX (SP-2) - IX o o X o X s o o i1 011 101 DD 2 4 15 1 AF
(SP-1) = IXH 11100 101 ES
SP — SP -2
PUSH 1Y (SP-2) = IYp e o X o X o o o 11 111 101 FD 2 4 15
(SP-1) = 1YY 11 100 101 ES
SP = SP -2
POP qq qqH = (SP+1) o o X o X e o o 11 gg0 001 1 3 10
qq, — (SP)
P — SP +2
POP IX IXH = (SP+ 1) e o X ¢ X o o o 11 011 101 DD 2 4 14
IXp ~ (SP) 11 100 001 El
SP - SP +2
POP 1Y IYH = (SP+1) e o X o X o o o 11 111 101 FD 2 4 14
1YL - (SP) 11 100 001 El
SP - SP +2

NOTES.  dd 1s any of the reqister pairs BC. DE. HL SP
Qq 15 any of the reqister pairs AF. BC. DE. HL
(PAIR)y, (PAIR)| reter 10 high order and jow order eight bits of “he reqister pair respective'y
eg BCL=C AFy = A

Exchange, Block Transfer, Block Search Groups

EX DE, HL DE - HL e o X e X o o o 11 101 011 EB 1 1 4
EX AF, AF AF —~ AF' e o X o X o o o 00 001 000 08 1 1 4
EXX BC -~ BC’ e o X o X o o 11 011 001 D9 1 1 4 Register bank and
DE - DE' auxiliary register
HL - HL' bank exchange
EX (SP), HL H = (SP+1) e o X o X o o o 11 100 011 E3 1 5 19
L - (SP)
EX (SP), IX IXH = (SP+1) e o X o X o o o 11 011 101 DD 2 6 23
IXp - (SP) 11 100 011 E3
EX (SP), IY IYH - (SP+1) e o X o X o o il 111 101 FD 2 6 23
1YL - (SP) 11 100 011 E3
- o
LDI (DE) -~ (HL) e o X 0 X 1 0 11 101 101 ED 2 4 16 Load (HL) into
DE = DE+1 10 100 000 AO (DE), increment
HL = HL+1 the pointers and
BC -~ BC-1 decrement the byte
@ counter (BC)
LDIR (DE) — (HL) e« ¢ X 0 X 0 0 o 11 101 101 ED 2 5 21 IfBC # 0
DE — DE+1 10 110 000 BO 2 4 16 IfBC =0
HL = HL+1
BC - BC-1
Repeat until
BC =

NOTE: (D P/V fiag 15 0 i the result of BC -1 = 0. otherwise P/V = |
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Symbolle Flags Opcode No.of No.of M No.of T
Mnemonic Operation s z H P/VN C 76543 210 Hex Bytes Cycles States Comments
@)
LDD (DE) ~ (HL) e ¢ X 0 X 1 0 e 11101101 ED 2 4 16
DE - DE-1 10 101 000 A8
HL ~ HL- 1
BC — BC-1
@
LDDR (DE) ~ (HL) « + X 0 X 0 0 e 100 ED 2 s 21 HBC %0
DE ~ DE-1 B8 2 4 16 BC =0
HL = HL- 1
BC - BC- !
Repeat until
BC = 0
Q O]
Crl A - (HL) Pt X 1 X 1 1 e 11100100 ED 2 4 16
HL = HL+1 10 100 001 Al
BC — BC-1
€] 0}
CPIR A - (HL) L1 X 1 Xt e 11100100 ED 2 s 2 1{ BC # 0and
A+ (HL)
HL = HL+1 10 110 001 B 2 4 16 11BC = Gor
BC - BC- 1 A = (HL)
Repeat until
A = (HL)or
BC = 0
Q 6}
CPD A - (HL) 1 X o Xt 1. 11 101 101 ED 2 4 6
HL - HL-1 10 101 001 A9
BC — BC- !
Q 6}
CPDR A - (HL) t o1 X 1 X 1 1 e 11101101 ED 2 s 21 1{ BC # 0and
A = (HL)
HL - HL-1 10 111 001 B9 2 4 16 1{BC = Oor
BC - BC-1 A = (HL)
Repeat until
A = (HL)or
BC = 0
NOTES: (D P/V tlag 15 0 if the resuit of BC~ 1 = 0. otherwise P/V = |
P/V flag 1s O at completion of instruction only
@2llag it A = (HL), otherwise Z = 0
bit Arithmeti i
8-bit Arithmetic and Logical Group
ADD A, r A-A+r X o X Voo 1 1 4 1 Reg
ADD A, n A-A+n t1 X 1 X Vo0 2 2 7 00 B
00 C
0i0 D
ADD A, (HL) A = A + (HL) X o1 X Voo 1 2 7 o E
ADD A, (IX+d) A = A + (IX+d) X 1 X Voo oD 3 5 9 100 H
ol L
1l A
ADD A, (IY+d) A = A + (IY +d) X 1 X Voo D 3 5 19
ADCA,s A~ A+s+CY X o1 X Voo sisanyolr n
SUB's A-A-s X 1 X Vo R X d)
(1Y + 4! as show
SBCA s A-A-5-CY X o1 X Voo for ADD :nstruction
AND s A-Ans t 1 X 1 X P 0O The indicated by
ORs A-AVs t 1 X 0 X P OO
XORs A-Aes t 1 X 0 X P 0O
CPs A-s X 1 X Voo
INCr r=r+ ! t 1 X 1 X Vo0 e 0 r 1 1 4
INC (HL) (HL) —(HL)+1 tor X 10 X Voo e 0000 1 3 il
INC (IX+d)  (IX+d) - t 1 X 1 X V 0o e 1101100 DD 3 6 23
(IX+d)+1
INC(IY+d)  (IY+d) — X 1 X Voo . 3 6 23
(¥+d)+1
DECm me-m-1 X 1 X VL. m s any of r. (HL)

(IX+d). (IY +d}
as shown for INC
DEC same format
and states as INC.
R 5

ace [ ith

in opcode
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General-purpose Arithmetic and CPU Control
Groups

Symbolic Flags Opcode No.of No.of M No.of T
Mnemonic Operation s 2z H P/V N C 76 543 210 Hex Bytes Cycles States Comments
DAA Convertsacc. content 1t X 1 X P e 00 100 11 27 1 1 4 Decimal adjust
into packed BCD accumulator

following add or
subtract with packed

BCD operands
CPL A-RA e e X 1 X s 1 e 001001 2F 1 1 4 Complement
accumulator (one's
complement)
NEG A-0-A t 4 X 1 X V. 1 1 11100100 ED 2 2 8 Negate acc. (two's
_ 01 000 100 44 complement)
CCF cYy - CY e e X X X e 0 1 00INI3F 1 1 4 Complement carry
flag
SCF CY -1 e e X 0 X e 0 1 0010137 1 1 4 Set carry flag
NOP No operation e e X e X e s e 0000000000 1 ! 4
HALT CPU halted e e X e X e e ¢ 0110107 1 1 4
DI » IFF - 0 ¢ o X e X o o o 11 110 011 F3 1 1 4
El IFF - | e o X o X e e o 110N FB ! 1 4
MO Set interrupt e o X e X e e o 11101100 ED 2 2 8
mode 0 01 000 110 46
M1 Set interrupt © e X e X e e o 1110110l ED 2 2 8
mode 1 01 010 110 56
M2 Set interrupt e e X o X e o o 11 101 101 ED 2 2 8
mode 2 01 011 110 SE
NOTES:  IFF indicates the interrupt enable flip-tlop
CY indicates the carry flip-flop
# indicates interrupts are not sampled at the end of El or DI
16-bit Arithmeti
6-bit Arithmetic Group
ADDHL,ss  HL — HL+ss e ¢ X X X * 0 1 00ssl 00 1 3 1 ss_Reg
0 BC
ADCHL.ss  HL — HL+ss+CY 11 X X X V 0 1 1li0110lED 2 4 15 0i DE
01 ssl 010 10 HL
T
SBCHL s  HL — HL-ss-CY P X X X Vo1 ot 1100l ED 2 4 15
0! ss0 010
ADDIX,pp  IX = IX + pp « ¢ X X X e 0 1 Ol DD 2 4 15 pp_ Heg
0! ppl 000 00 BC
0l DE
101X
1 sp
ADDIY,rr IY = IY 4 rr e ¢ X X X e 0 1 1IN0} FD 2 4 15 rr Reg
00 rrl 001 00 BC
0! DE
01y
1nosp
INC ss s —ss 4 1 e s X e X s s o 00500l 1 1 6
INC IX IX = IX + 1 e o X e X e e e 1101101 DD 2 2 10
00 100 011 23
INC 1Y I¥ = 1Y + 1 e o X o X s s o ILULIW0IFD 2 2 10
00 100 011 23
DEC ss ss — a5 1 e+ X e X s s e 00ssl Ol 1 1 6
DEC IX X~ 1X-1 e o X e X s s o 11011101 DD 2 2 10
00 101 011 2B
DEC 1Y Y- 1y-1 e e X e X s e o 1110 FD 2 2 10
00 10i 011 2B
NOTES: 85 15 any of the reqister pairs BC. DE. HL. SP.
PP 1s any of the register pairs BC. DE, IX. SP
rr 15 any of the register pairs BC. DE. 1Y, SP
Rotate and Shift Group
RLCA @G —=) v x 0o x e 01 o o | 4 Rotate lef circular
A accumulator
RLA e ¢ X 0 X ¢ 0 1 00 010 11117 1 1 4 Rotate left *
accumulator
RRCA e ¢ X 0 X e 0 1 0000111 OF 1 1 4 Rotate ight circular
accumulator
RRA e e X 0 X + 0 1 0001 IF 1 1 4 Rowte nght
A accumulator
RLCr t 1 X 0 X P O t 1100101l CB 2 2 8 Rotate left circular
X 00 ) register ¢
. . 5 ot Reg
RLC (HL) 1 X 0 X P 0 1 1i 00l Ol CB 2 4 15 B
00 0] 10 Wl C
RLC (IX+d) L0 11X 0 X P 01 1101 101 DD 4 6 24§
r.(HL).(IX + d).(IY + d) 1i 001 011 CB o H
-4 -
oL
00 po) i 10 1A
RLC (IY +d) t 1 X 0 X P O 1 liiillol FD 4 6 2

11 001 il CB
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Symbolic Flags Opcode No.of No.of M No.of T
Mnemonlc Operation s z H PVN 76 543 210 Hex Bytes Cycles States Comments
-4 - Inst tion format
Instruction format
— 00 5 10 and states are as
RLm o)—{7—0}  y x 0 x P oo crown for RLC's
mer (HLL(X +d). (1Y +d) To form new
| peode replace
RRC m &) v x 0o x P o L.
- mer(HLL(X+d) (1Y +d) e o
RR m t1 X 0 X P O
SLA m LoX 0 ox P oo
SRA m ek led 0 x oox e e [
mer HL)X + d) Y + d)
SKL m 0} +e] v v x 0 x P oC ()|
X+ d) (1Y +di
— -
RLD PoroX o0 X P 11101 101 ED 5 15 Rotate digat lef: and
01 103 6F right betweer;
the accumulator
3 and locatior: (HL)
RRD S7-afa-o] o X 0o x P o0 1110 Wl ED 5 18 The conten' of the
N e Cl 100 111 67 upper halt o
the accu
unal i
i R d
Bit Set, Reset and Test Group
BITb, r -1 Xt X 1 X X 0 11001 OII CB 2 2 8 r Re
o o b or 000
BIT b, (HL) - (HL)p Xt X 1 X X 0 100l 01l CB 2 3 12 Wl C
o ol b 110 010 D
BITb, (IX+d)p 2~ (K+dlp X 1 X 1 X X 0 11011 101 DD 4 5 20 onE
11 001 011 CB 100 H
- d - 01 L
o b 110 1 A
. b BitTested
BIT b, (IY+d)p Z — (IY +d)p, Xt X 1 X X 0 11 111 101 FD 4 S 20 000 0
11 00i 011 CB 001 1
-4 - 0 2
ol b 110 ol 3
100 4
01 5
10 6
nm o7
SETb. r [ c e X e X e e 11001 01l CB 2 2 8
Mo -
SETb (HL)  (HL)p - | e e X e X e e 11001 01l CB 2 4 15
b 10
SET b, (IX+d) (IX+d)p = | e e X e X o e 11011 101 DD 4 6 23
11 001 01} CB
- d -
m b tio
SETb, (IY+d) (IY+d)p — | coe X e X e e 11111100 FD 4 6 23
11 001 011 CB
- d -
o 10
RES b, m mp - 0 e e X e X s e ] To form new
m =« (HL), opcode replace
(IX+d), [[] of SETb. s
aY+d with [, Flags
and time states for
SET instruction
NOTES:  The notation my, inducates bit b (0 to 7} or location m
1P on PC — nn « e X e X e e oo C3 3 3 10
- h -
- n - cc__ Condition
JP cc, nn It condition cc 1s « e X e X e o 1l cc 010 3 3 10 000 NZ nonzero
true PC ~ nn, - n - 01 Z zero
otherwise - n - 010 NC non-carry
continue 0ll C carry
100 PO parity odd
101 PE parity even
110 P sign positive
Re PC - PCre e e X e X o o 00011 000 18 2 3 12 11l M sign negative
Ce-2 -
IRC. e HCc =0 e e X e X s 00 111000 38 2 2 7 It condition not met
continue —e-2 —
IC =1 2 3 12 If condition 15 met
PC - PCre
JRNC. o HC =1 TR S S 00110000 30 2 2 7 It condition not met
continue e-2 -
liC =0, 2 3 12 If condition is met

PC — PC+e
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Machine Code for Beginners on the Amstrad

Symbolic Flags Opcode No.of No.of M No.of T
Mnemonic Operation z H  P/V N C 76543 210 Hex Bytes Cycles States Comments
Pze z=0 . « X o e o 001010028 2 2 7 1i condition not met
continue - e-2 —~
Uz =1 2 3 12 If condition is met.
PC — PC+e
IRNZ, e 1z =1, . e X o s+ s 0010000020 2 2 7 1t condition not met
continue —e-2 -
1z =0, 2 3 12 1t condition 18 met
PC — PC+e
1P (HL) PC - HL . « X e o o 11101001 B8 1 1 4
1P (IX) C - X . « X e e s LlONIDD 2 2 8
11 101 001 E9
P (1Y) C — 1Y . e X o o o 11 111 101 FD 2 2 8
11 101 001 E9
DINZ, e B-B-1 . « X o + o 000000 10 2 2 8 1iB=0
1iB =0 —e-2-
continue
1B =0, 2 3 13 UB=0O
PC - PC+e
NOTES. e represents the extension in the relative acdressing mode.
e is & signed two's complemen: number in the range < - 126 129 >
©-2 in the opcode provides ar, effective address of pc + e as PC is incremented
by 2 prior to the additior. of e
CALL nn (SP-1) — PCy . e X o e o l10OL1001CD 3 5 17
(SP-2) — PCL. - n -
PC = mn - n -
CALLce, nn If condition . © X e e e 1l ccl00 3 3 10 Itces false.
cc is false - n -
continve, R 3 5 17 lccistrue.
otherwise same as
CALL nn
RET PCL - (SP) . « X e e+ s 11001001 CO I 3 10
PCH — (SP+ 1)
RET cc 1t condition . e« X e e e 1l ccO0 1 | 5 liccusfalse
cc is false
continue, 1 3 Il lfccstrue.
otherse cc___ Condition
ar 900 NZ non-zero
RET 0012 zero
RETI Return from . e X o e o 1l (1)31 01 D 2 4 14 g;? SL L’:r';y""’
interrupt ol 1101 4D
RETN! Return from . e X o s e 1LIC1I01ED 2 4 IR e fonivd odd
non-maskable 01 000 101 45 110 P sign positive
interrupt 111 M sign negative
RST p (SP-1) = PCH . o X e e e ot 1 1 3 11 t p
(SP-2) - PCL. 000 O0H
PCy - 0 001 O8H
PCL - p 010 10H
11 18H
100 20H
101 28H
110 30H
11 38H
NOTE: 'RETN loads [FF; = IFF)
INA, () A=) . « X e o o llONOIDB 2 3 1 ntoAg ~ A7
- n - Acc. to Ag ~ As
Nt (C) £ =(C) 1 t X P O e 11101101 ED 2 3 12 ClohAg~ Ay
if £ = 110 only the ol r 000 BtoAg ~ Ajs
flags will be affected
0]
INI (HL) - (©) X X X X 1 X 1110010 ED 2 4 16 Clohg~ Ay
B-B-1 10 100 010 A2 BloAg ~ Ajs
HL - HL + 1 @ :
INIR (HL) = (©) 1 X X X 1 X 11101101 ED 2 5 21 CloAg ~ Ay
B-B-l 10 110 010 B2 (1§B#0) BtoAg ~ Als
HL = HL + 1 2 4 16
Repeat until (It B=0)
B=0
0}
IND (HL) = (©) 1 X X X 1 X 11101100 ED 2 4 16 CloAg~ A7
B—B-1 10 101 010 AA BtoAg -~ Ajs
HL - HL-1 @
INDR (HL) = (©) 1 X X X 1 X 1110110 ED 2 5 21 CtoAg ~ A7
B-B-1 10 111,010 BA (1 B#0) BtoAg ~ Ajs
HL - HL-1 2 4 16
Repeat until (I B=0)

B=0
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Symbolic Flags Opcode No.ot No.of M No.of T
Mnemonic Operation s z H P/V N C 76 543 210 Hex Bytes Cycles States Comments
OUT (n), A (n) = A e ¢ X o X o o o 11 010 011 D3 2 3 n ntoAg ~ A7
- n - Acc. toAg ~ A5
ouT(©.r (C)=r e e X e X e e ¢ 11101100 ED 2 3 12 CtoAg ~ A7
o ol r 00l BtoAg ~ A)s
OuTI (C) = (HL) X ¢+ X X X X I X 11 101 101 ED 2 4 16 CtoAg ~ A7
B-B-1 10 100 011 A3 BtoAg ~ A5
HL = HL + | @
OTIR (C) ~ (HL) X 1 X X X X 1 X 111010 ED 2 5 21 CtoAg ~ A7
B~-B-1 10 110 011 B3 (It B#0) BtoAg ~ A5
HL = HL + 1 2 4 16
Repeat until (i B=0)
B=0
(0] .
OUTD (C) = (HL) X ¢+ X X X X 1 X 11 101 101 ED 2 4 16 CtoAg ~ A7
B-B-1 10 101 011 AB BtoAg ~ A5
HL = HL-1
NOTE: (D) If the result of B~ 1 1s zero the Z flag s set, otherwise it 1s resat
(@ 2 1lag 18 set upon instruction completion only
0]
OTDR (C) — (HL) X I X X X X 1 X 111010 ED 5 21 CtoAg ~ A7
B-B-1 10 111 011 (1t B#0) BtoAg ~ Als
HL - HL-1 4 16
Repeat until B = 0 (I B=0)
NOTE (D2 tlag s set upon imstruc tion completion only

Summary of Flag Operation

Dy Dy
Instruction s z H P/V N C  Comments
ADDA,s: ADCA, s to1 X 1 X Vo0 1 8-bit add or add with carry
SUBs: SBC A, 5. CPs; NEG 1 X 1 X Vo 1 8-bit subtract. subtract with carry, compare and negate accumulator.
AND s t 1t X 1 X P 0 0 }
OR's. XOR s i1 X 0 X P 0 of Logwaloperations
INC s 11 X t X V 0 e  B8bitincrement
DEC s X o X Vo1 e 8-bit decrement
ADD DD, ss e s X X X e 0 1 16-bit add.
ADC HL, ss 1 X X X vV o0 1 16-bit add with carry.
SBC HL, ss 1 X X X v ] 16-bit subtract with carry
RLA, RLCA, RRA; RRCA e o X 0 X e 0 1  Rotateaccumulator
RL m; RLC m; RR m; 1 X 0 X P 0 1 Rotate and shift locations
RRC m; SLA m;
SRA m; SRL m
RLD; RRD 1 1 X 0 X P 0 ¢ Rotatedigt left and right
DAA 1 X 1 X P e Decimal adjust accumulator
CPL e« e X 1 X e 1 s  Complement accumulator
SCF e« + X 0 X e 0 | Setcarry
CCF e ¢ X X X e 0 1 Complement carry
INr(C) 1 1 X 0 X P 0 e Input register indirect
) .
N Roe BT OToR R .} Block input and output. Z = 01 B # 0 otherwise Z = 0
Lol TooR - S :} Block transter instructions. P/V = 1 if BC # 0, otherwise P/V = 0.
CPI; CPIR; CPD, CPDR X t X X X t 1 o  Blocksearchinstructions. Z = 1 1f A = (HL), otherwise Z = 0. P/V = |
1 BC # 0, otherwise P/V = 0.
LDA I.LDA R 1 1 X 0 X IFF 0 e  Thecontent of the interrupt enable flip-flop (IFF) is copied into the P/V flag.
BITb, s (B X 0 e The state of bit b of location s is copied into the Z flag

Symbolic Notation

Symbol
S

Z
PV

H&N

Operation
Sign flag. S = 1 if the MSB of the result is 1.
Zero tlag. Z = 1 if the result of the operation is 0.
Parity or overflow flag. Parity (P) and overflow
(V) share the same flag. Logical operations affect
this flag with the parity of the result while
arithmetic operations affect this flag with the
overflow of the result. If P/V holds parity, P/V =
1 if the result of the operation is even, P/V = 0 it
result is odd. If P/V holds overflow, P/V = 1 if
the result of the operation produced an overflow.
Half-carry flag. H = 1 if the add or subtract
operation produced a carry into or borrow from
bit 4 of the accumulator.
Add/Subtract flag. N = 1 if the previous opera-
tion was a subtract.
H and N flags are used in conjunction with the
decimal ad)just instruction (DAA) to properly cor-
rect the result into packed BCD format following
addition or subtraction using operands with
packed BCD format.
Carry/Link flag. C = 1 if the operation produced
a carry from the MSB of the operand or result.

Symbol
1

<x—C e

o

Operation
The flag is affected according to the result of the
operation.
The flag is unchanged by the operation.
The flag is reset by the operation.
The flag is set by the operation.
The flag is a "don't care.”
P/V flag aftected according to the overflow result
of the operation.
P/V flag affected according to the parity result of
the operation.
Any one of the CPU registers A, B, C, D, E, H, L.
Any 8-bit location for all the addressing modes
allowed for the particular instruction.
Any 16-bit location for all the addressing modes
allowed for that instruction.
Any one of the two index registers IX or IY.
Refresh counter.
8-bit value in range < 0, 255 >.
16-bit value in range < 0, 65535 >.
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1000 REM APPENDIX B

1010 REM HEXLOADER

1020 MODE 1

1030 ER%Z =1:L%=4

1040 PEN 2: PRINT"SET MEMORY TO";

1050 GOSUB 1270

1060 IF B > 43900 OR B < 2000 THEN ERV=1
: GOTO 1230

1070 MM = 43903: MEMORY B

1080 PAPER 2: PEN ©: PRINT “MEMORY SET T
"3 HEX$(HIMEM);" HEX"

1090 L% =4

1100 PRINT"INPUT START ADDRESS";:PAPER 3
1110 GOSUB 1270

1120 [F B <=HIMEM THEN ERXZ = 2: G0OTO 123

0

113e IF B > 43903 THEN ERZ = 5: G60TO 125

0

1140 START = B:PEN 3: PAPER 2: PRINT *"ST

ART INPUT":PAPER ©

1150 STAD= B

1160 INAD =STAD : CHECK =0

1170 L%= 2

1180 WHILE INAD< STAD+10

1190 GOSUB 1270: POKE INAD,B:PEN 2: PRIN

T HEX$ (INAD,4),HEX$(B,2): PEN 1 : CHECK
= CHECK +B: INAD= INAD+1: IF INAD >= MM
= 2 THEN INAD = STAD +20

1200 WEND: IF INAD =STAD +20 THEN ERX =

4: GOTO 1250

1210 PAPER 3: PRINT “INPUT CHECK-SUM ":P

APER 0: L% = 4: GOSUB 1270

1220 IF CHECK <> B THEN ERX = 3: GOTO 12

90

1230 IF FIN = 1 THEN PEN 2: PAPER 3: PRI

NT" FINISHED": PEN 1: INPUT * MORE? Y/N
“3A$: PAPER 0: A$ = UPPERS$ (A$): IF ASC
(A$) = 89 THEN FIN =0: GOTO 1080 ELSE EN

D

1240 STAD = INAD: PEN ©0: PAPER 2:PRINT "

CHECK-SUM ";HEX$ (B,4)3;" CORRECT ! CONTI

NUE INPUT": PEN 1: PAPER ©0: BOTO 1160
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1250 RESTORE 1390: PEN 3: PAPER 1:: FOR

N% = 1 TO ERZ: READ D$:NEXT:PRINT D$;*"

TRY AGAIN"; CHR$ (7) )

1260 PEN 1: PAPER 0:0N ER% 60TO 1030,109

0,1160,1030,1090

1270 A%= 0:B= @

1280 PEN 1: INPUT ST$:PRINT CHR$ (11)3:S

T$= UPPER$ (ST$):IF ST$= "END" THEN 1370

1290 IF LEN(ST$)<> L% THEN 1360

1300 FOR N%= 1 TO L%

1310 A$=MID$ (ST$,N%Z,1):IF A$> “F* OR A$

< "0" OR(A$> "9" AND As$< "A") THEN 1360

1320 IF A$> "9" THEN AX= ASC(AS$):A%= (A%
AND &F)+9 ELSE AZ%= VAL (A$)

1330 IF N%<> L% THEN B= B+ (A%* 16~ (L%-N

%)) ELSE B= B+ AX

1340 NEXT

1350 RETURN

1360 PEN 3:PAPER 1: PRINT*INVALID INPUT,
TRY AGAIN"; CHR$(7): PEN 1:PAPER @: GOT

0 1270

1370 REM END

1380 FIN= 1: BOTO 1210

1390 DATA UNREALISTICALLY LOW OR HIGH,UN
PROTECTED MEMORY AREA,CHECKSUM DOES NOT
MATCH YOU WILL HAVE TO RE-ENTER FROM T
HE LAST CHECK, OUT OF MEMORY, TOO HIGH

Appendix B
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Hex to Decimal

Conversion MSB

)
0 )
1 1095
2 819
3 1
4 15384
5 1048
& M
7 wn
8 8
9 38
A 19
B 4565
cC o
D S
E M
)

25

4352

8448

12544

16548

2073

4832

28928

33024

30

1216

45312

49408

33504

37600

6169

4508

8704

12809

16896

20992

25088

29184

33286

MM

414n

43568

49564

53760

37836

61952

768

1864

8960

13636

148

perLll

2944

33536

7832

41728

4382

49924

Helb

58112

52208

1624

5120

9216

13312

17408

21564

25600

29696

313192

37888

41984

16080

50176

um

38368

62464

1280

3376

un

13568

17664

21750

25836

29952

J4048

38144

1536

5632

97128

13824 .

17926

22018

34364

o400

42496

46592

30668

4784

58886

62976

1192
3888

9984

34560
38656
2752
46848
36944
35040
39136

63232

174

30726

34816

38912

43008

47104

51260

5296

992

63488

2304

b4de

10494

14592

18588

22784

26880

30976

35672

39168

43264

2360

6636

10752

14848

18944

23046

M3

3123

35328

MLV

43520

47616

33868

39904

64600

216

6912

11608

15104

19260

2329

mn

31488

35584

39596

3778

418712

31968

56064

60160

64256

Jen

7168

11264

15360

19456

23552

27848

MU

35846

39936

44932

9128

byei]

56320

50416

84512

31328

N

11520

15616

19712

23868

27964

32000

36096

8192

1288

48384

52480

36576

60672

64768

3564

7680

1176

15872

19968

24064

28166

32256

36352

6448

Wi

48640

32736

36832

66928

55024

3840

7936

12032

16128

024

2328

28416

312

36608

0704

14860

48896

32992

57088

61184

65280



Appendix D

Hex to Decimal
Conversion LSB

[} [J 1 ? 3 4 3 b 1 8 9 19 11 12 13 1" 13
1 16 17 18 19 20 il n 3 u el 2% 7 2 9 3 M
2 ) I M 3 M 37 38 39 L} i Q2 [N " 5 % 7
3 L1} 9 50 51 32 3 b 55 5 3 38 39 1] 6! 82 [M
4 o 65 b6 67 [ 69 ] n n 3 " 3 16 n 8 "
S 80 Bl 82 83 84 85 86 87 88 89 9% 91 9 93 94 %N
6 9% 9 98 99 160 101 162 103 104 103 166 167 108 169 116 1
7 12 13 114 13 116 1" 118 119 120 121 122 123 124 125 126 127
8 128 19 130 131 132 133 134 133 136 137 138 139 149 14t 142 1
9 1 143 6 147 148 19 150 151 132 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 178 m m M 174 175
B 176 1 178 m 180 181 182 183 184 185 186 187 188 189 19¢ 191
C 192 193 194 193 196 197 198 19 206 201 200 00 2 25 06 207
D 208 09 0 w3 M us U m 218 9 20 2 3
E pl} e I T VU | bosl 230 il W pal} b5 TS URRY S Y A I

ra
A
3

F o Wl u2 M M u W KN u3 U9 250 51 23 254 255

NIBBLES

HEX DEC  BIN HEX DEC  BIN
(<] 4 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 A 10 1010
2 3 0011 B 11 1011
4 4 0100 C 12 1100
S 5 o101 D 13 1161
6 6 0110 E 14 1110
7 7 0111 F 15 1111
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Appendix E

2s Complement Hex to
Decimal Conversion MSB

[ 1 2 3 4 S -} 7 8 9 A B C D E F

[} 625 512 T8 1624 1286 1536 1792 2048 2304 2566 2816 3672 3328 I@4 3840
1 49 4352 A8 ASWd 5126 5376 5632 BB 6144 6400 6656 6912 TI68  TAZ4 7680 793
2 8192 B8 8704 8960 9216 9472 9728 9984 16240 10496 16752 11668 11264 11520 11776 12032
3 12298 12544 12800 13056 13312 13568 13824 14080 (4336 14592 14848 15164 15360 15616 13872 16128
4 16384 16640 14896 17152 17408 17464 17926 18176 18432 18688 18944 19200 19456 19712 19968 20224

S 20480 26736 20992 2U248 21504 21760 22016 22272 22528 22784 23048 2329 20532 23008 24064 24329
-} U576 24832 25088 25344 25406 25836 26112 26368 26624 26880 27136 27392 27648 2798 28160 28416
7 28672 28928 19184 29M40 2949 29952 30208  3eds4 36720 30976 31232 31488 31744 32600 12256 32512
8 12768 -32512 -32256 -32008 31744 31488 -31232 -30976 -30720 -36A64 -36208 -29952 -29696 -29440 -29184 -28928
9 28572 28416 -28166 -27904 27648 -27392 -27136 -26880 -26624 -26368 -26112 -25856 -25600 -23344 -25088 -24832
A 24576 -24320 -24064 -23808 -23552 2329 -2304 -22784 22528 -22272 -22016 -21760 -21504 -21248 -20992 -2073%

B 20480 20224 -19948 -19712 -19456 -19200 -18944 -184B8 -18432 -18176 -17920 -17664 -17408 -17152 -16896 -16646

c -16394 -16128 -15872 -15616 15366 -1S104 14848 -14592 -14336 -14680 -13824 -13568 -13312 -13036 -12000 -125M4
D 12288 -12032 11776 -11520 -11264 -11008 -10732 -10496 -16240 -9994 -9728 -9472 -9216 -B9c0 -B704 -BME
E 8192 <7936 -76B0  -7TA20  -T168  -6912  -bbSH  -5A68 -6144 5888 -5632 -53378 -5120 -ABe4  -4608 4332
F 409 -840 -3584  -3328 3072 2816 2566 2304 2048 -1792 -1536  -1260 1024 -M8  -§12  -2%

Where a 16 bit signed number is negative, the value shown here
should be further reduced by the 8 bit unsigned value of the low 8
bits.

176



AppendixE 177

2s Complement Hex to Decimal Conversion LSB

(4 1) ! 2 M ] 5 b 7 8 9 16 1 12 13 " 13
1 16 17 18 19 2 A 2 3 u bol 2% 7 2 il 30 3
2 Y 3 M 35 36 37 38 39 L) L)} 2 M 1] 3 1] 7
3 8 9 30 i 5 3 b1l 5 36 7 58 59 60 b1 62 63
4 4 63 b 67 48 &9 ] n n I " 75 i) n 78 ]
3 80 81 82 83 (1] 85 86 87 88 89 90 91 9 9% u %
6 9% 9 9 9 160 101 162 103 104 103 106 197 108 109 110 1
7 1 1 1 115 116 17 g 19 126 12 122 13 1IN 15 126 127
8 -8 -2 <16 -1 <14 123 <122 -1 -1¢ <19 -8 -17 -ne 1S -l -1l
9 SH20 -1 <18 109 -108 -167  -166 165 -1e4 103 -182 161 -106 -9 -9 -9
A 9% 9% - -5 -2 -9 9% -89 -8 87 86 -85 -84 63 -2 -8
B - -9 -® -7 - -1 .M - - -1 -7 -9 68 b7 b 63
c R U S V) 4 -9 -8 -7 % 55 - -5 -2 - -6 -9
D 48 47 46 5 -4 -8 -2 -4 LTS A IV A T B
E YA -9 -8 - - -’ - -no-wo-n W -9 -8 -



Appendix F

The Amstrad
Screen Map

The Screen map on the CPC 464 is not straightforward, by any
stretch of the imagination. The start address can change, and a
pixel is represented by different bits according to the current
mode.

The screen is always devoted to 16K of memory. Unless a
program has moved the start of the screen memory it will be at
C000h (49152). The other possible start is 4000h (16384) but this
must be set by a program. It is unlikely that the screen memory
area will be moved so all the following is based on the assumption
that the screen memory starts at CO00h.

The screen is always made up from 200 one-pixel-high lines,
and eighty consecutive bytes from an address which is C00Ch
plus a multiple of 80 always corresponds to a screen line, from the
left-hand side to the right. A character is always eight pixels
square, so it can be seen that, in mode 2, there is a one-to-one
ratio of bits to pixels. A set bit shows that the pixel isink 1and a
reset bit is ink 0.

Initially (before the screen has been scrolled) the top left of the
screen starts at CO00h. The first 80 bytes from the top line, the next
80 bytes do not form the second line. They are the top line of the
next character row, that is the ninth pixel line, the next 80 bytes
are the 17th pixel line, and so on for all 25 character lines. Only
after dealing with the first pixel lines of all 25 character lines, are
the second pixel lines specified.

Initially therefore the screen addresses for the first byte and last
byte of pixel lines 1 to 24, will be as shown on opposite page.

There are routines provided in the operating system to allow
you to calculate addresses for a character position or for a pixel
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ADDRESS ADDRESS
LINE No. LEFT RIGHT LINE No. LEFT RIGHT
1 Cooo Co4F 13 EQSO EO9F
2 C800 C84F 14 EBS@® EB9F
3 DOGO DO4F 15 FO50 FO9F
4 DB®@® DB4F 16 FB850 FB9F
] EQ00 EOAF 17 CoAOG CODF
) EB0O EBA4F 18 C8AG CBDF
7 FOO0 FO4F 19 DOA® DODF
8 FB80G FB4F 20 DBAG DBDF
9 CoSo Co9F 21 EOAG EODF
19 C850 C89F 22 EBAG EBDF
11 DOSO DO9IF 23 FOAOG FODF
12 DB85@ D89F 24 F8A® FBDF

position, and the CALL addresses for these are given in
Appendix G.

The bits within each byte in modes other than 2, do not have a
one-to-one relationship with the pixels on the screen, as each
byte is required to encode more than two ink colours. The byte
order across the screen remains constant in all modes but in mode
1 each byte provides the information for four pixels, and in mode
0 each byte only details two pixels.

Each byte represents pixels from left to right as follows:

Mode 1; from left to right
bits 3&7 2&6 1&5 0&4
Mode 0; from left to right
bits 1,5,3&7 0,4,2&6

The bits are given in order of significance and they encode the
ink colour in standard binary.

For example: Mode 1, byte address C000h 00110101b will give
the first four pixels (top left of screen) in ink 1, 2, 3 and 4
respectively.
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In mode 0 this would have given two pixels, the first in ink 4
and the second in ink 14. To give four pixelsininks 1,2,3and 4in
mode 0 would require two bytes set as follows:

(01000000 10011000

When the whole screen is scrolled by the hardware this is
achieved by changing the offset of the starting pixel from the start
of screen memory by 80, and hence the address of the first (top
left) pixel could be C000h + 80 to 80 * 25 mod 2048. Fortunately
the firmware provides routines to establish the start address (see
Appendix G).



Appendix G

Useful Call Addresses

The Key Manager

Expansion tokens are not expanded unless stated. The keyboard
buffer is not cleared unless stated.

HEX CALL CORRUPTED
ADDRESS FUNCTION REGISTERS
BBOO COMPLETELY RESETS THE KEY MANAGER AF BC DE HL

CLEARS BUFFER ENABLES INTS
BB12 GET EXPANSION STRING. ON ENTRY A AF DE

TO BE EXPANSION TOKEN AND L THE
CHARACTER NUMEBER. ON EXIT A = CHAR

AND CARRY SET, ELSE NO CHAR AVAILABLE

BB18 WAITS FOR KEYPRESS, RETURNS CODE AF

IN THE A REGISTER

BB1E READS KEYBOARD, SETS CARRY FLAG IF AF
KEY PRESSED, AND RETURNS CODE IN A
CAN BE USED TO CLEAR BUFFER
181
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BELE TESTS IF KEY WHOSE NUMBER IS IN A AF HL. C

1S FRESSED. ZERO SET IF NOT PRESSED (bit 7 if CTRL

bit 5 if SHIFT)

BE24 GET JOYSTICK A%H = JOY @ L = JOY 1 AF HL
BIT SET IF ACTION TAKEN.
o,UP 1,DOWN 2,LEFT 3,RIGHT 4,FIRE2

S5,FIRE1 &6,UNALLOCATED 7,ALWAYS RESET

THE TEXT VDU

BRE4E FULL INITIALISATION AF BC DE HL
EESA FPRINT CHARACTER IN A TO SCREEN NONE
BB&O READ CHARACTER FROM CURRENT CURSOR  AF

POSITION. A CONTAINS CHAR READ IF

VALID CARRY SET.

BB75 SET CURSOR TO CHARACTER COLUMN H AF HL

LINE L.

MOST OF THE OTHER POSSIBLE ACTIONS FOR THE TEXT VDU CAN
ACHIEVED BY "PRINTING" CONTROL CODES, SEE CHAFTER 9 PAGE 2

THE AMSTRAD USER INSTRUCTIONS.

GRAFPHICS VDU

BB8A FULL INITIALISATION AF BC DE HL

BBCO SET GRAFHIC ORIGIN TO DE (X) HL (Y) AF BC DE HL

BE

OF
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BBDE SET GRAPHICS PEN. A CONTAINS INK No. AF
BBEA FLOT DE (X), HL (Y) AF BC DE HL
BBF& DRAW LINE FROM CURRENT ORIGIN TO AF BC DE HL

DE (X), HL (Y) AND UPDATE ORIGIN

BBFC WRITE CHAR AT GRAFHICS ORIGIN, A = AF BC DE HL
CHARACTER CODE, ORIGIN IS TOP LEFT

ORIGIN IS MOVED 8 PIXELS RIGHT.

THE SCREEN PACK

BEFF FULL INITIALISATION AF BC DE HL

BCOS SET OFFSET. HL CONTAINS THE OFFSET  AF HL
REQUIRED (EVEN NOs ONLY) OFFSET MOD

80 WILL SCROLL THE SCREEN

BC1A RETURNS IN HL THE ADDRESS OF THE TOP AF
LEFT OF THE CHARACTER POSITION H
(COLUMN) L (LINE). B WILL CONTAIN
THE NUMBER OF BYTES FOR A CHARACTERS

WIDTH

EC1D RETURNS IN HL THE ADDRESS OF PIXEL AF DE
DE (X) HL (Y), WITH THE MASK IN C

AND PIXELS PER BYTE -1 IN B

THE NEXT FOUR CALLS ALL REGQUIRE THE HL REGISTER PAIR TO CONTAIN

THE ADDRESS OF A SCREEN LOCATION, AND WILL RETURN THEIR RESULT
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IN THE HL PAIR. MOVING OFF THE SCREEN IS NOT PREVENTED AND MUST

BE CHECKED FOR, AND PREVENTED.

BC20 RIGHT 1 BYTE AF

BC2Z LEFT 1 BYTE AF

BC26 DOWN 1 PIXEL AF

BC29 UP 1 PIXEL AF

BC38 SET BORDER COLOURS TO B,C AF BC DE HL
BC3E SET FLASH PERIODS H,L AF HL

THE CASSETTE MANAGER

BC&S FULL INITIALISATION AF BC DE HL

The cassette manager requires detailed knowledge prior to its
use, such as is given in the Firmware Specification Manual, as
do the Sound Manager and Kernel entries. It is suggested that any
cassette or sound handling is done by returning to BASIC, and
then using BASIC to perform the required functions. A CALL can
then be made to re-enter the machine code program. Note that
you must have CALLed the machine code program from BASIC
initially, to be able to return to BASIC. You cannot use the “RUN"
command to load and exccute your machine code.

BDZE SENDS THE CHARACTER WHOSE CODE IS AF

IN THE A REGISTER TO THE CENTRONICS
(PRINTER) FORT. IF CHARACTER NOT

SUCCESSFULLY SENT AFTER ABOUT 0.4
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SECS A RETURN IS MADE WITH THE CARRY
FLAG RESET. IF THE CARRY FLAG IS SET
ON RETURN CHARACTER SENT OK. BIT 7

IS IGNORED

BD37 RESTORE JUMP BLOCK TO ORIGINAL AF BC DE HL

The routines above will allow you to access some of the most
useful firmware functions. There are literally hundreds of further
routines available, some of which will save time and effort even
when using the routines given here. The Firmware Specification
Manual gives fuller details of all the firmware routines as well as
an overview of the hardware, and detailed examination of the
techniques employed by the firmware. If you find that you are
serious about machine code programming you have no better

recourse than to buy the Firmware Specification Manual. (SOFT
158) from Amstrad.






Index

Aregister 19-20, 24-7,30-1, 724, CALL Addresses
109, 119, 122 30000 149
accumulator 19-20, 119 30004 60
ADC 52-4,58,118 30007 149
ADD 47-52,53,56-8,70, 104, 109 43000 115
ADDHL 71 43700 65
Address 11 43700 76
Address Bus 142-3 43850 54
addressing modes 164-5 43880 36
AFTER 145 47896 54
Amstrad CPC464 1 47962 35-6, 41
operating system 15963 summary 181-5
AND 58, 63, 83, 85, 87, 102-3, 104, carry flag 49, 52-3, 58, 63, 68-82, 110~
120 11,122
ASCII codes 11 CCF 81
Assembler/Disassembler cold start routine 34, 151
Amstrad 2 comments 13
assemblers 10, 11-13, 41 communicating 1414
listings 14 compare 69-70
Assembly Language Programming Complement Carry Flag 81
Manual (Zilog) 164 conditions
coding 789
B register 20-1 CONTROLA 121
BASIC 3-4,12,34,40 CONTROLC 121
interpreter 3 CONTROLG 115
speed of 5-6 CONTROL]J 115
BC register pair 27-8, 33 CP 69-70,72,79
binary code 8-10, 8-9, 83-5 CPDR 136-7,139
BIT 104 CPIR 137,139
bit, single CPL 87-90
instructions 102-8 CPU 141-3
block move 129-34 CPU registers 18-20

block search instructions 134-9
block transfer and search instructions ~ DataBus 143

129-39 databases 104, 1546
DE register pair 27,33, 42,567, 63,
Cc 79 129-30
Cregister 104, 109 DEC 44-7,71,72,79,139
calculators  157-8 decision making 68-82
CALL 35-9,39,40-1,43,78,92-3,96, DEFB 13
100 DEFM 13,76
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DEFS 13

DEFW 13

Devpac assembler 47
DIVD 113

division 112-13,117-25
DJNZ 77,121,123,129

ED prefix 33
ENT 13
EQU 13,130
EVERY 145
EX 42
EXchange 42

Firmware Specification 10

Flag Register 68, 121

flags 68-82, 83

flow charts 15-17
stencils 157

FOR/NEXT loop 17

GENS assembler
GOSUB 12,34
GOTO 34

10, 12, 41, 65

HALT 150-1

Hex code 10-11

HEX LOADER 74-6, 96, 157, 172-3

Hex to Decimal conversion 1746

Highsoft Devpac 41

HL register pair 27-33, 39, 42, 43,
56-7, 63,95-6,99, 118, 1534

IM  145-51

IMO 147

IM1 146

M2 147

IN 143

INC 44-7,71,72,79
Indexed Addressing 152-8
INT 25

Interrupt Modes  145-51
Interrupt Service Routine 146
IXregister 152-8

IY register 152-8

JP 39-40, 43,78

JR 40-1,43,70-1

JUMP 35

jump blocks 159-62

jump instructions 3942
Jump Relative 40-1, 43, 70-1

LD 42-3

LDD 134

LDDR 132-3

LDI 134

LDIR 132

Locomotive Software 146
logical operators  83-90
LSB 124

M 79

machine code
listings 14
nature of 3-7
machine stack

see stack
mathematics

16-bit 614

8-bit 44-67
memory banks
switching 97
memory locations 11
MOD 25
moves and searches
automated 129-39
multiplication 109-17

NC 79

NEG 90

negative numbers 9
no carry 69
numbers, negative 9
NZ 46,78

ON GOSUB 40
OPCODES 13, 31-2, 33
operating system
Amstrad 1, 3, 159-63
OR 83,85,87,94,102-3,104, 109, 120
ORG 13
OUT 1434
Overflow 80-1

P 79

P/V flag 79-81, 83, 134-5

Parity 80-1

Parity/Overflow flag 79-81, 83,
134-5

Pascal 12, 163

PC See Programme Counter

PE 79,80

peripheral devices

Picturesque assembler

1414
10, 41, 47



PO 79,80
POP 93, 95-6, 100
printers

screen dumps  156-7
Program Counter 34-42
programming, Z80 159-63
Programming the Z80 (Zaks)
Pseudo Operations  12-13
PUSH 93, 96, 97-9, 99, 100, 103

registers

CPU 18-20
loading 21-3
pairs 27-34
RES 104
RESET 97
ReSTarts 161
RET 35-9,43,78,92-3,96,99, 100
RETURN 34
RL 118,119
RLA 119,124-5
RLC 118
RLCA 119
rotates 118-25
decimal 126-7
RR 118,119,121
RRA 119

RRC 118
RRCA 119
RST 151-2
RUN 12

SAVE 12
SBC 524,58
SCF 81
screen dumps 1567
screen map 88-90, 126, 157, 178-80
screen scrolling 1256
searches
automated 129-39

127,162

Index 189

SET 104

Set Carry Flag 81

Shift Left 110

Shift Left Arithmetic 112, 113
Shift Right 110

Shift Right Logic 112, 117, 121
shifts 109-13, 125-7
sign flag 78-9

Sign flag 83

single bit instructions
SLA 109, 110, 112
SP 94, 97-100

SRA 121

SRL 112,117,121
stack 36-9,92-101
stack pointer 96-100, 96-8

SUB 47-52,53
switching
memory banks 97

102-8

XOR 83, 85,87, 124

Z 78
Z80
CPU 1, 1413
CPU registers  18-20
instruction set 16471
programming 15963
Z80 Applications (Coffron) 162
Z80 CPU Technical Manual (Zilog)

164
Z80 programming 159-63
780 Technical Manual (Zilog) 162
zero, testing for
in division 120
zero flag 48,49, 68-82, 83

; (comment) 13
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use Machine Code on the Amstrad CPC 464. It progresses
from the concepts of programming in Machine Code,
explains the instructions that the Z80 CPU understands and
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