
MACHINE CODE
FOR BEGINNERS

ON THE
AMSTRAD

Steve Kramer

Machine Code for
Beginners on the Amstrad

Machine Code for
Beginners on
the Amstrad

Steve Kramer

MICRO PRESS

First published in 1984 in the United Kingdom by
Miero Press
Castle House
27 London Road
Tunbridge Wells, Kent

Reprinted 1985 (twice)

© Steve Kramer 1984

Ali rights reserved. No part
of this publication may be reproduced,
stored in a retrieval system, or transmitted
in any form or by any means, electronic,
recording or otherwise, for commercial gain,
without the prior permission of the publishers.

ISBN 0 7447 0025 6

Amstrad and CPC 464 are trademarks of
Amstrad Consumer Electronics PLC

Printed and bound in Great Britain by
MACKAYS OF CHATHAM LTD

Contents

Chapter 1 Introduction 1

Chapter 2 What is Machine Code and Why Use It? 3

Chapter 3 First Concepts
Hex Binary Assemblers and Mnemonics

8

Chapter 4 Flovv Charts 15

Chapter 5 Simple Machine Code Instructions
LD, CALL, RET, JP, JR

18

Chapter 6 Simple Maths
ADD, ADC, SUB, SBC, DEC, INC

44

Chapter 7 Flags, Conditions and Decision Making
CP, Z, NZ, C, NC, M, P, PE, PO, CCF,
SCF, DJNZ

68

Chapter 8 Logical Operations
AND, OR, XOR, CPL, NEG

83

Chapter 9 Using the Machine Stack
PUSH, POP and instructions with SP

92

Chapter 10 Using Instructions that Work on a Single Bit
SET, RES, BIT

102

Chapter 11 Rotâtes and Shifts, Multiplication and
Division
RL, RLA, RLC, RLCA, RLD, SLA, SLL
RR, RRA, RRC, RRCA, RRD, SRA, SRL

109

V

vi Machine Code for Beginners on the Amstrad

Chapter 12 Automated Moves and Searches
LDD, LDDR, CPD, CPDR
LDI, LDIR, CPI, CPIR

129

Chapter 13 Communicating with the Outside World
IN and OUT

141

Chapter 14 Other Instructions, Indexed Addressing
with the IX and IY Registers

145

Chapter 15 Programming Hints, and Using the Firmware
(How to Use Some of the More Useful
Functions of the Operating System)

159

Appendices A The Z80 Instruction Set Courtesy ZILOG
Inc. 164

B HexLoader 172
C Hex to Décimal Conversions MSB
D Hex to Décimal Conversions LSB

174

and Binary Nibbles 175
E Twos Complément Conversions 176
F Screen Map and Bit Map for Pixels 178
G Useful Call Addresses 181

Acknowledgements

With thanks to Bob and Carol for their pertinent questions, and
to Marcia for the cup of coffee.

Steve Kramer, 1984

Since this book was written before the disk drive and its
associated interface were available, for some of the listings
to operate correctly, it may be necessary for the disk
interface to be either disconnected or the disk drive not to
have been turned on.

Chapter One

Introduction

The Amstrad CPC 464 is perhaps the most exciting new computer
to appear since the Sinclair Spectrum. It offers many advanced
features from Basic which could previously only be accomplished
by vastly more expensive machines, as well as a capacity for
expansion at reasonable cost equal to that of almost any other
home computer.

The real breakthrough for the programmer, however, is
Amstrad's decision to document and release details of the
operating System. This is a hitherto unprecedented addition to
the documentation available for a home computer from the
manufacturer, and it offers a real opportunity for the user to leam
machine code programming the easy way, and get results almost
immediately, by the use of calls to the operating System.

No longer is there the chicken-and-egg situation, that if you do
not understand machine code you cannot use it, and if you
cannot use it you cannot find out how to understand it on your
computer, because you don't know how to make the computer
respond.

This book is intended for the beginner wishing to leam how to
use Machine Code on the Amstrad CPC 464. It will progress from
the concepts of programming in machine code, explaining the
instructions that the Z80 Central Processing Unit - or CPU for
short (the silicone chip that does ali the work in the computer) -
understands, and how to use them, as well as introducing some
of the routines in the operating System at various stages through
the text.

Two complété machine code novices hâve assisted in the
writing of this book, and their questions and problems form the
basis for its structure. They hâve also helped to ensure that no
information or detail which is so obvious to those in the know
that it is almost second nature, and fundamental to being able to
perform some function in programming, has been omitted. This

1

2 Machine Code for Beginners on the Amstrad

is so often the failing which can leave a novice stranded, like
directing someone to a place by telling them that it is on the
corner of the High Street by Woolworth's. If they don't know
which High Street or where the High Street is, it doesn't help
much.

Short listings are given to help in entering machine code
programs and to inspect and alter or move the contents of part of
the memory. It is strongly suggested however, that you buy the
Amstrad Assembler/Disassembler program. This will allow you
to enter the code as mnemonics (a sort of shorthand for the names
of the instructions the CPU understands) instead of by numbers.
It will also allow editing and is much nearer to BASIC in the way
that programs are entered.

Whilst it is obviously possible to sit down and read this book
from cover to cover, machine code is such a potentially confusing
subject, and so many new concepts are likely to be introduced,
that it is suggested you sit down in front of your computer and
enter and execute (preferably not by hanging) programs when
they appear in a Chapter. Only once you are sure that you follow
what is happening should you progress.

Extensive use is made of the machine operating system, in
order to allow results from programs to be seen immediately. The
ability to do this is thanks to the Amstrad Firmware Spécification
(Soft 158) which, although it would probably be almost totally
meaningless at this stage, will be a valuable addition to your
library once you have finished this book and understand the
concepts explained.

The Z80 CPU is one of the most widely used CPUs in the home
computer market and, until very recently, was often the main
CPU in many business machines. It offers access to the widest
variety of software in the world through the medium of CP/M
(short for Control Program for Microcomputers), and Amstrad
are providing CP/M with their disk drives. The Z80 is also
starting to appear as a second processor in business machines, as
well as being available as an add-on for the BBC model B, the
Commodore 64 and the Apple and its look-alikes. The skills that
you will leam from this book are therefore likely to be of use if you
have occasion to program other computers in machine code.

Chapter Two

What is Machine
Code and Why Use it?

The CPU in your Amstrad computer is basically a very stupid
créature, it runs ali your BASIC programs very well and does its
job excellently but it is stupid none the less. What makes it seem
so clever is the firmware, the programs that are running ali the
time the computer is switched on. In its unmodified version the
Amstrad is running an Operating System and the BASIC inter­
préter.

The operating System deals with such tasks as looking to see if
any keys are being pressed, loading from the cassette or putting a
character on the screen. You could imagine it as being in charge of
ali communications, and if it were not présent you would have no
way of knowing whether your computer was dead or alive,
because you could not give it any information and it could not teli
you anything.

The BASIC interpréter is literally that, it translates BASIC into
the language the CPU understands. Imagine for a moment that
someone tells you to tum to page 35. No problem, you just tum to
page 35, but what if you were told Now you are in
trouble, not only do you not know what to do, you probably don't
even recognise the form of the instruction.

This is like putting yourself into the position of the CPU and
giving it a BASIC command to execute. The CPU has no know­
ledge at ali of BASIC, but it goes even further than that. The
Chinese above uses one symbol to represent something that
when transferred into English takes several symbols, it says
Tsung. Still not much help is it even though you can read it?
Translated it means 'to sow seed without first ploughing the
ground'. This is similar to the difficulty the CPU would
experience if asked to deal directly with BASIC. One BASIC

3

4 Machine Code for Beginners on the Amstrad

instruction often represents many machine code instructions and
worse, the characters used by BASIC cannot be understood by the
CPU, which only recognises two states, 'on' and 'off'.

Fortunately the 'on's and 'off's are grouped into sets of eight,
which gives 256 different combinations. It is these combinations
that are used in machine code. You could think of them as the
Chinese characters shown earlier.

The problems do not end there however; since one character
represents a complété word and there are only 256 possible
combinations, the CPU would seem to be limited to a vocabulary
of only 256 words. This is nearly correct but, as in English, some
words are made up of more than one smaller word.

Key board, for example, would be likely to conjure up a picture
of a board in an hotel for hanging keys on, whereas a keyboard is
what you will find on your computer. Here the two words hâve
completely different meanings when together and when
sépara te. Some words however can hâve their meaning subtly
altered by the addition of a prefix, able, enable, and unable, or
justice and injustice, for example. In each case the latter part has
the same meaning but its direction is altered by the first part. The
Z80 CPU has some word structures which use these types of
construction. The problem of a limited vocabulary however
remains.

This limitation does not constrain the concepts that it is
possible to convey, but just means that more words are needed to
say what you want to say in some cases. The start of this
paragraph, for example, could hâve been written: This not
having many words does not put an end to being able to put over
ali the ideas that can be put over when there are many words . . .
same meaning but more words, rather répétitive and not very
good English.

Machine code therefore tends to require a lot of simple words,
or instructions to do the équivalent of one BASIC keyword, but
there is no limit to the ways in which machine code instructions
can be put together, and sometimes this means that machine
code requires less instructions than BASIC.

With BASIC every time you run a program the interpréter
checks each command and makes sure that it is valid, then it
translates it into a sériés of machine code instructions which the
CPU then executes, any results are then checked to make sure
they are what was expected and saved for further use. Ail this
takes time.

What is Machine Code and Why Use It? 5

With machine code however there is no error checking, no time
taken translating, and nothing is saved unless you tell the CPU to
save it.

To demonstrate the time saved, enter the BASIC program
below. First though, if your computer is already switched on,
tum it off and back on again to make sure everything is 'virgin'.

10 MM = 43903

20 MEMORY 43799

30 FOR N = 43800 T0 43809 : READ D : POKE N,D : A = A + D: NEXT

40 IF A O 1338 THEN CLS : PEN 3 : ? "DATA ERROR" : PEN 1 : EDIT

90

50 INPUT "PRESS ENTER TO START";A : B = 255

60 ? "A";: B = B - 1 : IF B <> 0 THEN 60

70 ?

80 CALL 43800

90 DATA 6,255,62,65,205,90,187,16,251,201

100 END

Note that ? is used instead of PRINT to save time.
Once you have entered the program type RUN and press the

enter key. If ail is well you will be asked to "PRESS EN 1ER TO
START", otherwise you will be presented with line 90 in 'edit'
mode, because you have made a mistake in typing in the DATA.

When the enter key is pressed 255 'A's will be printed by the
BASIC in line 60, hotly pursued by a further 255 'A's printed by
the machine code routine you have 'POKED' into memory with
line 30, and CALLed with line 80.

Whilst this is not a very exciting program it does show the
speed of machine code.

If you count the number of characters used by the machine
code routine (remembering that each item in the data statement is
one machine code character) you will find that there are ten, of
which the last, the 201, is only there to tell the program to retum
to BASIC. The BASIC program however uses thirty-seven
characters if you include the spaces and not the line number.
Even if it had been written without any unnecessary spaces it

6 Machine Code for Beginners on the Amstrad

would hâve taken the équivalent of twenty-five machine code
characters' worth of space.

You can check this for yourself if you wish by adding the
following Iines to your program:

110 PEN 3: FOR N = 520 T0 630 : A = PEEK (N)

120 ? A;: IF A = 32 THEN 150

130 IF A > 32 AND A < 129 AND B O 1 THEN FEN 2: ?: ?N

140 IF A > 32 AND A < 129THEN PEN 1: ? CHR$ (A);: FEN 3

150 NEXT

160 FEN 1

170 END

When run this will display the values held in the memory
locations where the BASIC program is held in red. If there is a
valid character represented by the number it will be displayed in
yellow. You will be able to identify the start of line 60 by looking
for the “PRESS EN 1ER TO START"; in line 50, following on until
you corne to 0 60 in red < in yellow and 0 in red. The 60 0 are the
line number and the number before the first 0 is the number of
characters in the line. The number in light blue at the start of each
line on the screen is the number of the first memory location in
the screen line.

The first thing you will notice is that the only characters that
hâve been stored in the same way as you put them in are "A"; ail
the remainder hâve been reduced to a sort of code that the
interpréter finds easier to handle. Every time you typeTiST it is
the interpréter that translates these numbers back into what you
entered.

The upshot of ali this is that the machine code program was not
only quicker, but also more economical in terms of memory used,
and these are the two main advantages of writing programs in
machine code. In fact a program in BASIC can run up to about a
hundred fîmes slower than its machine code équivalent.

The main disadvantages however are that programs are almost
totally incompréhensible and therefore difficult to debug, and
that they tend to be long in terms of the number of instructions
required, relative to BASIC or another high-level language.

What is Machine Code and Why Use It? 7

The comprehensibility of machine code is greatly aided by the
use of assembler and disassembler programs, and these are
discussed in the next Chapter, and while normally there is no way
to overcome the problem of the large number of instructions
required, with the Amstrad CPC 464, use can be made of sub-
routines in the operating System. Thanks to Amstrad's fore-
thought in making the details available, you have already been
able to do this if you entered the program earlier, and the major
proportion of the instructions for most programs have already
been written for you, by Locomotive Software, when they wrote
the operating System.

Chapter Three

First Concepts

Before embarking on the world of machine code, there are some
concepts that may be new to you and, as it is important that you
have at least a rudimentary understanding of these, they will be
briefly explained here.

Hex and Binary

Hex and Binary are different forms of counting, binary to base 2
and Hex to base 16. You have probably corne across binary before
at school and no doubt thought it was a pretty dumb way to
count. For the computer however it is the only way, as you have
no doubt realised by now. Due to the CPU only recognising the
two states OFF and ON the only way it can count is with binary,
ON corresponding to 1 and OFF to 0.

Each Binary Digit, or bit for short, has a fixed value according
to its position. The décimal System uses the same convention.
The right-most digit is the number of units, the next to the left,
the number of tens, the next is hundreds and so on. In binary,
since there can only be one or none, the values for the positions
have to be tailored, so any number can be given. If the same
position values were used as with décimal you would count one,
ten, eleven, one hundred, one hundred and one and so on.

Your Amstrad computer stores its information in sets of 8 bits,
called a byte, and it can also manipulate pairs of bytes (16 bits,
known also as a Word) as if they were representing a single
number, so the values assigned to each of 16 bit positions are
shown below.

BIT NUMBER

15 14 13 12 11 10 9 8 7 6543210

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

VALUE

8

First Concepts 9

With this combination it is possible to represent any number
from 0 to 65535 by a combination of Os and ls. Note that the least
significant bit is known as bit 0.

Sometimes it is wished to represent a négative value, and a
convention has been assigned to this. If you start with 0, which is
the same in any number base, and take 1 away you will get —1. Do
this with a binary number and you will change every bit, for as far
as you can go, to a 1, look at the example below which uses a 4 bit
number.
0000

-1 0 - 1 = 1 borrow

-1 0 - 1 = 1 borrow

-1 0 - 1 = 1 borrow

•1 0 - 1 = 1 borrow

1111

And the answer, because the subtraction is limited to 4 bits, is
1111 binary, or 15 décimal. The same will happen if you do the
subtraction with 8 bits, or 16 bits, the décimal answer will be 255
and 32767 respectively.

If you take another number away instead of 1 the same borrow
is made, and the left (most significant) bit will always be set (1)
whenever the resuit is a négative number. It is this last fact which
gives the due as to how to represent négative numbers.

If négative numbers are to be used, or may resuit from a
subtraction, it is the convention to use the most significant bit to
indicate the sign of a number. Set (1) when the number is
négative, and reset (0) for positive. This changes the range of
numbers which can be represented by a given number of bits. 16
bits can now show —32768 to +32767, and 8 bits from —128 to
+ 127. This technique for showing signed numbers in binary is
called two's complément, if you complément (change ls to Os and
vice versa) a binary number, and add 1, you will change the sign.

It will be up to you whether you use two's complément
notation for numbers in programs, or normal unsigned binary,
you can even use a mix of the two. The suggested représentation
for use with a particular instruction, will be shown used in the
text of the remainder of the book, and where either method can be
employed according to what end resuit is required, this will be
mentioned.

10 Machine Code for Beginners on the Amstrad

The GENS assembler lets you use binary numbers in a
program, if you prefix the binary number with a % sign.

But what of HEX? For the computer there is no problem
thinking in terms of ONs and OFFs Os and ls but try counting
yourself in binary or writing it down and checking it. You will
find it unbelievably awkward! Most of the time décimal will be
the easiest numbering System to use, but occasionally there will
be fîmes when it is easier to think in terms of binary. For
example, when you are wanting to put a number into one byte in
a spécial way. If you needed to have the number 9 (décimal) in
each half of a byte it would mean reverting to binary to work out
how. 1001 binary is 9 décimal, (1*8 + 0*4 + 0*2 + 1*1 = 9) so
you will need to have 1001 1001 to make each half of the byte
holding 9 décimal. The décimal value for this is:

1 * 128 + 0 * 64 + 0 * 32 + 1*16 + 1*8 + 0*4 + 0*2 + 1*1

which equals 153 décimal. Convoluted, isn't it?
It is possible to have any value from 0 to 15 held in each half of a

byte, giving 16 different values for each set of four bits. So, to
make it easy to operate on binary numbers in bytes a new
numbering System which uses base 16 is needed. If this was
available you could have just said 99 instead of going through the
rigours of discovering the décimal équivalent of what you
wanted. This base 16 numbering System is called HEXadecimal,
but as that is such a mouthful everybody just says HEX.

The first problem you will encounter is that whilst there are
already numbers to count from 0 to 9, what do you do with 10 to
15. Rather than leam new symbols for these values, the first six
capital letters of the alphabet are used. 10 décimal therefore
becomes A, 11 becomes B and so on to 15 which is F. The other
problem is that anybody else will think that you are using the
décimal System, so some way of signalling that a number is to
base 16 (a HEX number), is essential.

Unfortunately there is no set convention for this, your Amstrad
uses the & sign to signify that the number following is HEX, the
Firmware Spécification Manual uses £ and the GENS assembler
uses # and many other assemblers (probably including the
Picturesque offering) use either a lower or upper case h following
a number to show that a number is HEX. This is ail downright
confusing, but suffice it to say that if a number has anything
except a number in its make-up, it is likely to be HEX.

First Concepts 11

In this book ali HEX numbers are suffixed by a lower case h,
except in listings from the GENS assembler, where they are
prefixed by #.

ASCII

ASCII is short for the American Standard Code for Information
Interchange. This is really just a glorified name for numbers
representing letters, and operations. Appendix III of the Amstrad
User Instructions gives the full list of ASCII codes.

Address

Address is the terrn used to describe a memory location. Each
memory location has a unique address, starting from 0, for the
first location and going up to 65535 (FFFFh). It is often given as a
HEX number rather than a décimal number, and most assemblers
give the address of a^. instruction in the first columns of the
printout, when they assemble a program.

Assembler

Reference is made above to something called an assembler, but
what is an assembler?

An assembler is a program which allows you to program
machine code in a more recognisable form than numbers, in
mnemonics. (Take note! This is a good word for crossword
addicts and Scrabble fanatics alike.) Mnemonics are a sort of
shorthand way of writing the description of what a machine code
operation does, mnemonic means 'an aid to memory', and this is
what they are, because you wouldn't have a snowball's chance in
hell of remembering ali the numeric forms of instructions (unless
you are an Relander, or from northem Scandinavia, they believe
Hell is freezing cold and not hot). The assembler lets you write in
this shorthand description form, and then when you have
finished, it will translate (assemble) this into the Os and Is that the
computer understands.

12 Machine Code for Beginners on the Amstrad

Most assemblers also hâve an intégral Editor, to allow the
program to be written and modified easily. Without this
facility, if you had written a long program and you then found
that the nth instruction was wrong, you would hâve to rewrite
everything from there to the end again.

The program which you write, using the assembler, is called
the source code, and this can be saved to tape for later editing if
required, but is not needed to run a program once it has been
assembled by the assembler. The actual program which can be
run, or executed as it should really be called, is the object code.

This object code can also be saved to the tape, using the O
command from the GENS assembler or by saving it from BASIC.
When saving from BASIC the form of the command is:

SAVE "filename",B,start address,length,entry point

The entry point is the address at which execution is to start, if the
program is loaded by the RUN" command, and if not specified
the Amstrad will do a System reset when the program is loaded by
RUN".

An assembler will allow you to use what are known as 'labels'
instead of addresses when you are writing a machine code
program. This is an incredibly helpful, and almost Pascal-like
facility. (Pascal is a high-Ievel language like BASIC but designed
to be assembled like assembly language, the machine code that is
created will not run anywhere near as fast as that created by
assembly language, and it will also take up more room, but is still
a lot faster than BASIC.)

With Pascal instead of using GOSUB followed by a line
number, you give a name to a subroutine, and just place the name
in the program, when this name is met, the routine associated
with its name is executed. The assembler allows labels (short
names ended with a colon [:]) to be placed in the listing beside an
instruction, and when that label is referred to the address of the
instruction which it is beside, will be used instead. This is like
being able to give a subroutine a name, and thereafter you would
no longer need to know the line number where it started, but
could just write GOSUB and the name of the routine.

The assembler also allows Pseudo Operations, or Pseudo
Mnemonics as they are sometimes called. (Quite why one cannot
guess, because they are real mnemonics, but just don't become
machine code when assembled.) These are used to tell the

First Concepts 13

assembler to do something with the number which follows, and
the main ones are:

Which tells the assembler that everything following it is a
comment, and should be ignored. Just like a REM in
BASIC.

EQU EQUate, or EQUals. This allows you to use a label to
represent any number you chose. The label to be
EQUated should be put to the left of the EQU Pseudo Op,
terminated with a colon as always, and the number you
wish the label to equate to should be put to the right. For
example, LABEL: EQU #1234 will make the label LABEL
represent 1234h (4660 décimal) whenever it is used.

DEFB DEFine Byte. The byte at the address will be made to hold
the value which follows. For example, DEFB #20 will
make the byte at the address of the DEFB mnemonic hold
20h (HEX) when the program is assembled.

DEFW DEFine Word. This is the same as the mnemonic above,
but it will put a 16 bit number into two memory bytes.
The byte of the instruction, and the following byte.

DEFM DEFine Message. This allows letters to be placed after the
mnemonic, between inverted commas, which will have
their ASCII codes put into successive locations when
assembled.

DEFS DEFine Space. The number of memory locations given by
the number following the DEFS mnemonic will be
skipped by the assembler, when assembling the
program.

ORG ORiGinate. The number following the ORG mnemonic
will be the address of the next instruction when the
program is assembled.

ENT ENTry. The address at which execution should start, in
response to the assembler's J command.

The ORG mnemonic in a listing will give the start address for a
section of program, required by the HEX Loader program, and
the ENT mnemonic will be followed by the address which should
be CALLed from BASIC to run a machine code program.

An OPCODE is a machine instruction which tells the computer
what to do and this is sometimes followed by an OPERAND
which gives the information upon which the instruction is to be
executed.

14 Machine Code for Beginners on the Amstrad

Assembler Listings

Listings of machine code programs normally have five columns,
sometimes six if comments (preceded by a ; remember?) are used.
The first column gives the address of the start of the instruction,
normally in HEX.

The second gives the HEX version of the machine code
instruction, and it is this that should be entered if you are using a
HEX Loader, such as the one given in the Appendix, in pairs of
numbers.

The third is a line number, and of no use except when writing
the program.

The fourth is occupied by any labels, next to the instruction
which occupies the address referred to by the label, but the colon
which must terminate the label is not shown. This must be
entered if you are copying a program from a listing.

The fifth is the mnemonic form of the instruction, as entered by
the programmer, and what you enter if you are using an
assembler, after any labels in column four that are on the same
line.

The sixth column may be taken up by a comment.
Armed with this information you should be ready to proceed!

Chapter Four

Flow Charts

A flow chart is often used in the program design and develop­
ment stage; this is simply a symbolic représentation of the flow of
the program under development. There is a standard set of
symbols used for drawing flow charts and those that you are most
likely to employ are shown in Fig. 4.1 with their uses.

Terminator

CZD
Communication line

τ

Process/operation

Flow direction

Δ

<1 t>

V

Input/output

Figure 4.1

There are a number of further symbols, but they are not often
used. The purpose of a flow chart is to make clear the processes
that are being carried out by a program. Consider a very simple
example, a flow chart to load a program from tape into your
Amstrad computer.

This covers the essential operations, without going into too
much detail, as a flow chart should. There are many applications
where the flow chart is almost essential for analysing the actions
carried out, or necessary to be carried out, by a program. Often
they will enable you to find faults before they occur, as a glance at
a flow chart will let you see the overall principles of the program
under investigation.

15

16 Machine Code for Beginners on the Amstrad

Look at the example in Fig. 4.3, which shows the différence
between a BASIC WHILE loop and a BASIC FOR NEXT loop. It
should be immediately apparent what the main différence is.

Figure 4.2

Flow Charts 17

FOR/NEXTWHILE/WEND

c START

SET LOOP
DELIMITER

1

EXECUTE
PROGRAM

LOOP

s'LIN4ΙΤ''\ N

Y

C FINISH

Figure 4.3

Chapter Five

Simple Machine Code
Instructions

LD CALL RETJPJR

The CPU has fourteen registers, each of which can be thought of
as being similar to a BASIC integer variable. They are shown
below with their functions. Don't worry if this makes no sense
yet, ali is about to be revealed.

Z ΘΟ CPU REGISTERS

: 128 : 64:32:10:8:4:2: 1:128:64:32:16:8:4:2:1

Accumulator! A

11
F

ί
B

1

c
GENERAL ! ;

1

PURPOSE : D

•

E

REGISTERS !
H ; L

INTERRUPT : I
1

R

: XH IX XL
INDEX :
REGISTERS !

1
YH IY YL

stack :
POINTER :

SP

PROGRAM :
COUNTER :

PC

I

I

I

! Fl ag

Figure 5.1

18

Simple Machine Code Instructions 19

There are six general-purpose registers, and it is these that will
be considered in this chapter, along with the special-purpose Ά'
or accumulator register and the PC or program counter register.

Each of the general purpose registers B, C, D, E, H and L has
the capability of holding a number between 0 and 255, each being
made up of eight bits, and they can each be loaded in three basic
ways. To continue the analogy to a BASIC variable and help
explain each of the ways that a register can be loaded enter the
short BASIC program shown in Fig. 5.2. There is no need to delete
the first program if it is still there.

BINA

180 CLS
190 WINDOWttl, 1, 40, 1, 10
200 WIND0W#2, 1, 40, 13, 23
210 WIND0W#3, 1, 40, 12, 12
220 PEN#3, 2: PRINT#3 II DECIMAL
RY HEX"
230 INPUT#1, "ENTER A NUMBER "JA
240 IF A > 255 THEN PRINT#1, "INVALID IN
PUT, IT MUST BE BELOW 256": GOTO 230
250 A = INT (A)
260

II

270

PRINT#2,USING "######"; A; : PRINT#2
"J BIN$ (A,G); " "5 HEX$ (A,2)

PRINTttl : PRINT#2
280 GOTO 230

Figure 5.2

When you have typed the program in run it by typing RUN
180, and you will be asked to enter a number. The basic variable
Ά' in the program represents the Ά' register in the CPU. When
you enter a number if it is between 0 and 255 it will be printed in
Décimal, as you entered it; Binary as the computer handles it, and
in Hex.

Each number you enter is loaded into BASIC variable A, and
this is then used to provide the number for other duties in the
program. If you were to type in 77you would load A,77 when you
pressed enter.

20 Machine Code for Beginners on the Amstrad

Surprisingly the machine code instruction for this would be
spoken of as Load A,77. Easy, isn't it!

Unfortunately, however, the CPU does not understand this,
what it requires is 00111110 followed by 01001101. Or 3Eh
followed by 4Dh, 62 and 77 décimal. Now things are getting
difficult again and this is where the assembler program cornes in.
You can tell the assembler that the instruction is LD A,77. When
the assembler assembles the instruction it will do the translation
for you. Note that load has been shortened to LD, which saves
your fingers when typing machine code programs and is the
standard Z80 assembler convention.

If you now tum back to the program in Chapter 2 and look at
line 90, you will see that the third DATA item was 62. This will
give you a due about one of the instructions in the program, and
if you were to look up the ASCII code for a capital A (of which an
awful lot were printed by the program) you would find that it was
65. Things are probably beginning to dawn about now, and when
you find out that the code for instruction to load the B register
with a number is 00000110 in binary or 6 in décimal (and Hex for
that matter), and you remember that 255 As were printed you will
very likely be deafened by the moming chorus.

Who said machine code was difficult? The first two instructions
of the program, in assembler, are therefore:

LD B,255
LD A,65

Knowing this you can now change the number of times the
character is printed, and which character is printed. Tum first to
Appendix III in the Amstrad User Instruction book that came
with your computer. Page 1 will show you the codes for each of
the ASCII characters and the following pages the characters
created by ali the codes from 32 up to 255.

Now remove line 40, which checked that you had entered the
DATA correctly when you wrote the program. The checksum will
be wrong since you are going to change items in the DATA line.

Ali you need to do now is change the 255 for the number of
times the character is to be printed, the 65 for the code of the
character you want printed, and then RUN the program from the
start to see the resuit. Don't use any values below 32 for the code,
or you may get peculiar results.

If you replace the 255 with 0 you will find that the character in

Simple Machine Code Instructions 21

the A register is printed 256 fîmes. Remembering that each
register can only hold 8 bits and looking at the BASIC in line 40,
can you work out why this should be?

Think of the sequence of operations, A = 0 or 00000000b. 0 — 1
= -1 but 00000000b - 00000001b = 11111111b which is 255 in
binary.

You can check this by asking your computer. Type in ? BIN$
(—1) and you will get the answer 1111111111111111. As the
left-most eight digits are ail that a single register or memory
location can hold, this means that -1 décimal is equal to 255
when transferred through an 8 bit register. Confused? Then tum
back to Chapter 3 in this book and Appendix II page 2 on, in the
Amstrad Computer User's Instructions.

Each of the general purpose registers can be loaded in the same
way as the A and B registers. The code for each is as follows:

ASSEMBLER DECIMAL HEX BINARY

LD B,n 06 n 06 n 00 000 110 n

LD C,n 14 n 0E n 00 001 110 n

LD D,n 22 n 16 n 00 010 110 n

LD E,n 30 n IE n 00 OU 110 n

LD H,n 38 n 26 n 00 100 110 n

LD L,n 46 n 2E n 00 101 110 n

LD A,n 62 n 3E n

Figure 5.3

00 111 110 n

In each case the n represents any number, between 0 and 255
décimal (FFh or 11111111b) which is to be loaded into the chosen
register.

If you look closely at the binary codes for each instruction there
are two things that you may notice.

First, the two ends of the instruction are the same in ail cases. It
is these two sections that tell the CPU that it is a load instruction
involving a number being put into a register.

22 Machine Code for Beginners on the Amstrad

Second, the register is determined by bits 5, 4 and 3, and one
possible combination is missing. The three bits which décidé
which register is to be used are always the same for each register.
Whenever an instruction can be performed on any of the general
purpose registers three bits are used to tell the CPU which
register is to be used.

B is always 000
C is always 001
D is always 010
E is always 011
H is always 100
L is always 101
A is always 111

Figure 5.4

The missing combination, 110, is used for a spécial purpose
and this will be explained later in this chapter.

As well as being able to load a register direct with a number
from the following location in memory it is possible to load a
register with the contents of another register or from memory.

Think of the BASIC statement A — B. What this is doing is
telling the computer that you want the variable Ά' to be equal to
the variable 'B'.

If you enter the following Iines into your computer and execute
them by typing RUN 300 you will find that after line 320 B was
loaded with the same value as A, but A was not changed.

300 B = 10

310 ? "BEFORE :A=";A;" B=":B

320 A = B

330 ? "AFTER :A=";A;" B=";B

Figure 5.5

Having leamt that the machine code mnemonic équivalent to
line 300 is LD B, 10 what do you think is the équivalent to line 320?

It's pretty obvious isn't it? LD A,B and the same applies to ail
the other registers.

The actual instructions are made up in the same way as that for
loading a register with a number except that bits 7 and 6 are

Simple Machine Code Instructions 23

changed from 00 to 01, and the bottom three bits, instead of being
110 are used to identify the register from which the value is to be
taken.

The instruction is there-fore;

ASSEMBLER DECIMAL HEX BINARY

LD A,B 120 78 01 111 000

If you remember the three bits for each of the general purpose
registers or if you look back at them you should now be able to
give the binary instruction for loading any register from any
register.

Bits 7 and 6 will always be 01 bits 5, 4 and 3 will be the register
to be loaded and bits 0,1 and 2 the register to be loaded from.

LD H, A would therefore beOl 100111. What would LD A,H be?
Or LD B,D?

Now you have two ways in which you can put numbers into
registers and you are no doubt realising that the instructions are
really quite logical in the way that they are made up, and hence
not too difficult to follow.

Ali of the general purpose registers have spécial things that
they can do and these will be introduced at various stages in this
book. Unfortunately though, unlike BASIC variables, their
limitations as to use are fixed, not decided by the user, and are
much more subtle, or rather devastating in their effect.

Don't worry, the resemblance between the registers in the
CPU, and BASIC variables which has been emphasised, still
holds true, but whereas on the Amstrad, when you tum the
computer on, any variable can be used for any purpose, be it
string, integer or real, and each numeric variable could be used in
place of any other numeric variable, in Z80 machine code there
are things which can only be done with particnlar registers.

This is rather like the effect of adding the following line to the
program in Chapter 2: 21 DEFSTR A. Now when you RUN the
program you will get a type mismatch error when line 30 tries to
add numeric information to a variable that can only be a string. It
has already been explained that a general purpose register can
only hold an 8 bit value but, apart from this limitation, any can be
used to represent a number, as the B register in the program in
Chapter 2, or a letter, as the A register in the same program.

24 Machine Code for Beginners on the Amstrad

Were you to make the statement 8 = 9 it would be utter
balderdash, we ail know that 8 = 8 and 9 = 9. If you type into
your computer 8 = 9 followed by enter you do not get an error
message, but only because the computer has interpreted the first
8 as a line number, and if you list the program you will find line
number 8. If you change this to 8 8 = 9 and try to execute it, the
computer will point it out as a syntax error, the same applies if
you try to make a number equal to a variable, for instance by the
statement 8 = HL.

No matter what you do (short of redefining the key), typing ? 8
will always give the answer 8. But change this to ? PEEK (8) and
you will get the answer 195. This is because by adding the PEEK
fonction you are now asking the computer 'what is the contents
of the memory location at address 8?' instead of just 'what is 8?'.

When writing machine code there is no need for the PEEK
fonction, or the corresponding POKE command since you are
already at machine level. But it is still necessary to be able to
access memory locations.

The A register is explained in the next Chapter in its rôle as the
accumulator, but has some other spécial instructions which are
relevant to this chapter. This is due to it being the only 8 bit
register that can be loaded direct from a memory location, the
équivalent to the BASIC:

A = PEEK (nn)

where nn is any 16 bit number.
At first thought the machine code instruction to load the Ά'

register with the contents of the memory location at address 8
might be LD A,8, but you will immediately see that this would
put the value 8 into A, so a way of differentiating is required.

Each memory location can be thought of as a box, divided into
eight smaller boxes, and the PEEK fonction in BASIC goes some
way towards reinforcing this visualisation, by requiring brackets
- which look a little like a box - round the number of the box
which is to be inspected. (Ail right, very little like a box!)

You hâve probably already worked it out, and don't need to be
told, but just to confirm how clever you are; the machine code
mnemonic for 'with the contents of' requires brackets round
whatever is representing the address of the memory location.
Hence the instruction to load register Ά' with the contents of
memory at address 8 is LD A,(8) and to load into memory at

Simple Machine Code Instructions 25

address 40000 the contents of the Ά' register the instruction is LD
(40000),A-

If you don't have an assembler things become a little more
complicated, but not much.

instructions occupy a memory location and they are calculated by
the formula:

ASSEMBLER DECIMAL HEX BINARY

LD fl,(nn) 58 π n 3A n n 00 111 010 n n

LD (nn),A 50 n n 32 n n 00 110 010 n n

It is vital to remember that the 2 'n's in each of the above

ni = number MOD(256) and n2 = INT (number/256)

This is because of the internai operation of the CPU and there is
no alternative but to have the two bytes with the low byte before
the high byte. The opposite way to which you would expect. Ail
16 bit numbers are stored in memory in this manner, be they as
part of an instruction or just data in memory put there by the
CPU. ■

It should have been possible to use the above équation directly
on your computer to save having to work ni and n2 for each new
number, but due to considérable inconsistencies in Amstrad's
BASIC, which sometimes uses 2s complément notation and
sometimes normal integer représentation, the MOD function is
useless with values over 32767.

The following BASIC line however will do the job for you, and
you can add it to the program already in memory.

1010 N2= INT (NUMBER/256): NI = NUMBER - N2*256: ? “NI =“;N1;“

N2 =”;N2

If you now type

NUMBER = 40000: GOTO 1010 followed by [ENTER]

you should get the answer NI = 64 N2 = 156. So the full
instruction for each of the latest opcodes, with the address to be
loaded from and to as 40000 in each case, will be:

26 Machine Code for Beginners on the Amstrad

ASSEMBLER DECIMAL HEX

LD A,(40000) 58 64 156 3A 40 9C

LD (40000),A 50 64 156 32 40 9C

BINARY

LD A,(40000)

LD (40000),A

00 111 010 0100 0000 1001 1100

00 110 010 0100 0000 1001 1100

or for address 8;

ASSEMBLER

LD A,(8)

LD (8),A

DECIMAL

58 8 0

50 8 0

HEX

3A 08 00

32 08 00

BINARY

LD A,(8) 00 111 010 0000 1000 0000 0000

LD (8),A 00 110 010 0000 1000 0000 0000

You can test this out for yourself if you wish by changing the
program which printed the 'A's.

Line 60 has to be changed to:

60 ? CHR$ (PEEK (8));: A = A - 1: IF A O 0 THEN 60

And the second machine code instruction in the DATA statement
in line 90 must be changed from LD A,65 to LD A, (8).

This will make it read:

90 DATA 6,255,58,8,0,205,90,187,16,251,201

The checksum in line 40, if it is still there, must be changed to
1277.

Simple Machine Code Instructions T!

Most important line 30 must be changed to:

40 FOR N = 43880 TO 43870: READ D: POKE N,D: A = A + D: NEXT

This is because there is now one extra byte of code that needs to
be POKEd into memory.

If you added line 21 earlier (DEFSTR A) remember to remove it!
Now when you RUN the program, instead of getting 'A's you

should get\ s (backslashes).
Perhaps the next most useful thing about the general purpose

registers, is that each pair can be used together, that is as BC, DE
and HL. When used this way they can be treated as 16 bit
registers.

Whereas with a single register you are limited to numbers that
can be represented in eight bits, in other words between 0 and
255, with a register pair you can use any whole number from 0 to
65535, because you now hâve sixteen bits to play with. There are
however penalties to be paid for the ability to use registers in
pairs as if they were just one 16 bit register.

You hâve seen that, when used on their own, ALL general
purpose as well as the Ά' or accumulator registers can:

1) be loaded from any other general purpose register;
2) hâve a number loaded directly into them;

but that the Ά' register alone can be loaded directly from or to, a
numbered memory location, as in the LD A,(nn) or the LD (nn),A
instructions.

With register pairs however, there is no machine code instruc­
tion for LD rr,rr' (load one register pair with the contents of
another register pair). You can however load a number directly
into any register pair.

For those of you with an assembler, nothing could be simpler.
You probably don't even need to be told what the instruction is!
It's LD rr,nn; rr is any of the register pairs, BC, DE or HL and nn is
any 16 bit integer.

The instruction to put the value 40000 into the BC register pair
would therefore be:

LD BC,40000

or to put the value 8 into the HL register pair:

LD HL,8

28 Machine Code for Beginners on the Amstrad

If you remember the construction of the binary instructions to
load a number into a single register you almost certainly can
guess the first two bits of the binary instruction to load a register
pair. If you don't remember then tum back and have a look.

Right first time (I hope)! The first two bits are 00.
The remainder of the instruction is made up in much the same

way. After the initial 00 the next two bits are used to détermine
which register pair is to be loaded.

00 for the BC register pair.
01 for the DE register pair.
10 for the HL register pair.

(These two bit codes are always the same for each register pair,
and are used whenever an instruction can be performed on any of
the register pairs.)

The next bit is 0 and the last three bits are 001.
The full instruction for each register pair is therefore:

ASSEMBLER DECIMAL HEX BINARY

LD BC,nn 1 η n 01 n n 00 000 001

LD DE,nn 17 n n 11 n n 00 010 001

LD HL.nn 33 n n ΞΙ n n 00 100 001

ni and n2 are calculated in the same way as for the LD A,(nn)
instructions. Therefore:

ASSEMBLER DECIMAL HEX BINARY

LD BC,40000 1 64 156 01 40 9C 00 000 001 0100 0000 1001 1100

LD HL,8 33 8 0 21 08 00 00 100 001 0000 1000 0000 0000

Knowing how to load a register pair with a sixteen bit number
is a waste of time if there is no use for the register pair once
loaded. One of the most common uses of a register pair is as a
variable to point to a memory location.

In the BASIC earlier PEEK (8) was used to find the contents of
memory location 8, and the machine code équivalent using the
Ά’ register was explained. This type of instruction is very
limiting, especially if a sériés of locations need to be read from or
written to. In BASIC the way to handle the problem would be to

Simple Machine Code Instructions 29

use a variable. For example if the variable HL was made equal to 8
it would have been possible to use PEEK (HL) instead.

In machine code the same applies, but this is where the idio­
syncrasies of the Z80 CPU start to gain prevalence.

With a general purpose register, not only is it impossible to use
the LD r,(nn) or the LD (nn),r constructions, but only the HL
register pair can be used as a pointer. You have seen the elusive
110b code, missing from the sériés of three bit values used to
represent the general purpose registers, used at the end of a LD
r,n instruction code starting with 00b. Here it indicates that the
next byte (the one after the instruction) is to be used as a number.

Used in the middle of the LD r,n instruction or in the LD r,r'
instructions, beginning with 01b, it has a different interpré­
tation. It would be impossible for the 110b to have the same
meaning since, as has already been demonstrated earlier, a
number always has the same value. Ail that happened when it
was tried to change the value from BASIC was a syntax error. But
there is a way in which a number can be changed, and that is
when it is used as an address.

Wherever the 110b code is used in a load instruction in place of
a code representing a register, it is taken by the CPU to refer to the
memory location whose address is held in the HL register pair.

Therefore to load the D register with whatever is in memory
location 40000 you would write:

ASSEMBLY DECIMAL HEX BINARY

LD HL,40000 33 64 156 21 40 9C 00 100 001 0100 0000 1001 1100

LD D,(HL) 86 56 01 010 110

or to load the contents of memory at address 8 into the B register:

ASSEMBLY DECIMAL HEX

LD HL,8 33 8 0 21 08 00

LD B,(HL) 70 46

BINARY

00 100 001 0000 1000 0000 0000

01 000 110

Note the brackets round the HL in the assembly language instruc­
tion, meaning 'with the contents of the address at'.

It is perfectly in order to reverse this process and, instead of
loading a register with the contents of a memory location, load a

30 Machine Code for Beginners on the Amstrad

memory location with the contents of a register. The instruction
then becomes:

LD (HL),r

As with the LD r,(HL) any general purpose register or the Ά'
register can be used, and the binary instruction opcode is about
as predictable as it could be.

To load a register with the contents of the memory location at
address HL the opcode is:

[01] [the three bit code for the register] [110]

so, to load the memory location at address HL with the contents
of a register it becomes:

[01] [110] [the three bit code for the register]

You didn't really need this book to tell you that, did you?
If you change the DATA statement in line 90 of your BASIC

program to:

90 DATA 33,8,0,70,58,8,0,205,90,187,16,251,201

change the checksum in line 40 to 1127 and change the number
after the TO in line 30 to 43892 you can now see the LD B,(HL) and
the LD HL,nn in action. The BASIC équivalent would be to
change the end of line 50 from B = 255 to HL = 8 : B = PEEK
(HL).

When run the machine code routine will now load the HL
register pair with 8 and then load B with whatever is in location
HL. The start of the routine is now:

ASSEMBLY
LD HL,8
LD B,(HL)
LD A,(8)

DECIMAL
33 8 0
70
58 8 0

When the 110b code is used in the LD r,n opcode for the r part,
giving the binary opcode 01 110 110, this gives the assembly
language instruction: LD (HL),n which will put into memory at
address HL the number in the location following the instruction.

With the Ά' register it is possible to use any register pair as a
variable, or pointer. The assembly language instructions are
pretty obvious. They are LD A,(rr) or LD (rr),A where rr is any

Simple Machine Code Instructions 31

register pair. For example using the Ά' register it is quite
acceptable to write:

LD DE,8
LD A,(DE)

The opcode for LD A,(HL) has already been explained and you
have no doubt noticed that ail possible combinations of
instruction starting with 01 are allocated. It is necessary to use a
different construction for the instructions LD A,(BC) LD A,(DE)
LD (BC),A and LD (DE),A.

One due to how these instructions are made up is to be found
in the LD A,(nn) and LD (nn),A opcodes, and another is in the
codes for the register pairs.

Have you noticed that the 3 bit codes for the general purpose
registers share their high two bits with the 2 bit codes for the
register pairs that use them. B has the code 000 and C 001, BC the
code 00. D has the code 010 and E 011, DE is 01, H is 100 and L is
101, making HL 10.

The opcode for LD A,(nn) in binary is 00111010 and it has been
pointed out that, in the instructions to load a number into a
register pair, bits 5 and 4 tell the CPU which register pair to use.
The only opcode missing from the set is 11. Lo and behold! What
do we have in bits 5 and 4 of the LD A,(nn)? And what do you
suppose the instruction LD A,(BC) will be, in binary?

Weil done, but it didn't really require you to be a genius, did it?
The binary opcode for LD A,(BC) is 00 001 010, for LD A,(DE) it
would be 00 011010.

The opcode for LD A,(HL) is not 00 101 010, it is 01111110 and
was explained earlier, so what do you suppose happens in
response to 00 101 010? Stay tuned and ail will be revealed. First
though there is the question of the LD (rr),A opcodes to be
resolved, and be wamed! These are almost as complicated as the
LD A,(rr) opcodes.

LD (nn),A in binary is 00 110 010, again the missing 11b from
the set of codes for register pairs is présent in bits 5 and 4. Here, as
in the previous instructions, to change (nn) to (BC) or (DE) ail you
do is alter the 11b to 00b or 01b. The opcode for LD (BC),A is
therefore 00 000 010 and for LD (DE),A 00 010 010. But as with the
previous instructions the HL code 10b used to make the opcode
00 100 010 doesn't mean LD (HL),A.

Ail the above opcodes, which load the Ά' register from or to a

32 Machine Code for Beginners on the Amstrad

memory location pointed at by a register pair, are single byte
instructions. The codes 00 100 010 and 00 101 010, which use the
HL code 10, are made up of three bytes. The first is, of course, the
opcode. Either 00 100 010 or 00 101 010, and the next two are the
operand. (Remember, the operand is information needed for the
opcode to be able to perform its task.) These two opcodes are used
to load the HL register pair either to, or from, the memory
location addressed in the next two bytes. They work in the same
manner as the LD (nn),A which loads the A register to, and LD
A,(nn) instruction which loads the A register from, a memory
location addressed by the (nn).

Here are the assembly language and binary instructions in full.

ASSEMBLER BINARY

LD HL,(nn) 00 101 010 n n

LD (nn),HL 00 100 010 n n

Assume that the address (nn) is 8, as has been used in the
previous load instructions. This will make ni 0000 1000 and n2
0000 0000 in both the binary examples above and the assembler
will become:

LD HL,(8) and LD (8),HL

In the first case the HL register pair will be loaded with a sixteen
bit number from memory at the specified address, and in the
second the sixteen bit number in HL will be loaded into memory
at the specified address.

One problem though, only one memory address has been
defined by the operand, and a single memory location is only
eight bits, so how can a 16 bit number be condensed into eight
bits? The short answer is, it can't. The way the CPU copes with

M
E
M
O
R
Y

Figure 5.6

Simple Machine Code Instructions 33

this is to use the memory location specified, for the low byte, and
the memory location one above, for the high byte. Being logical,
because logic is what computers are ail about, the high byte
cornes from the H register and the low byte from the L register,
and the low byte is in the lower memory location.

The CPU always starts at the bottom and works up and this is
why, when you are loading machine code into memory, ail 16 bit
numbers are reversed. If you think of HL as high low, and
remember to start from the bottom and work up it may help you
to avoid any mistakes when writing code. When using an
assembler it does ali the reversais for you so, if you are using one,
there is no need to change numbers from their normal form.

The last load instructions to be explained in this chapter are
those which work in the same manner as above but for the BC and
DE register pairs. These are less used than the instructions using
the HL register pair because they use two bytes of memory to
hold the instruction. The assembly language for these instruc­
tions is just what you would expect:

LD BC,(nn) LD DE,(nn) LD (nn),BC and LD (nn),DE

If you east your mind back to when you were reading Chapter
2, you may recall that, in the analogy to English and Chinese
language words, it was shown how the addition of an extra word
coul'd change the meaning of a word. Weil, the opcodes for the
four instructions above ail hâve the prefix (in Hex) ED. (1110
1101b or 237 décimal but ED is much easier to remember.) Ali the
commente regarding the instructions just explained, using the
HL register pair, also apply to these instructions. It is considered
good practice to use instructions which use the HL register pair,
where possible, as these take half the amount of memory for the
opcode. The actual opcodes are made up as follows:

n

ASSEMBLER DECIMAL HEX BI NARY

LD BC,(nn) 237 75 n n ED 4B n n 1110 1101 01 001 01 1

LD DE,(nn) 237 91 n n ED 5B n n 1110 1101 01 ou 01 1

LD (nn),BC 237 67 n n ED 43 n n 1110 1101 01 000 01 1

LD (nn),DE r>3"7 33 n n ED 53 n n 1110 1101 01 010 01 1

n

n n

n n

n n

Figure 5.7

34 Machine Code for Beginners on the Amstrad

There is a summary of ali the instructions starting with LD at the
end of this Chapter, and a graphie représentation is given in
Zilog's summary in the appendix.

The Program Courtier

Ali the time your computer is tumed on, unless someone has
stopped the CPU for some reason, the program counter register is
chuntering away quite happily, with only one aim in life, which
is to get to the top and start again. Its purpose is to keep track of
the program being run, and it will always hold the address in
memory of the program instruction which is currently being
executed. When you first tum on the computer the PC is forced to
hold address 0, so that the first instruction is fetched from here.
This means that a program to set the computer into a known state
can be automatically executed at tum-on. This is known as a Cold
Start or Early Moming or Wake Up, and on the unexpanded
Amstrad this puts the computer into the BASIC programming
mode and displays the Amstrad and Locomotive copyright.

As already mentioned, the computer is always running a
program whenever it is switched on but, since the computer does
not know what it is going to be asked to do next, it is essential to
have some Control over the program counter. Imagine what it
would be like if the computer's memory were a piano keyboard,
and ail you could do was play each note in tum, from the bottom
of the keyboard to the top, and then start over again. Some
interest could be added by tuning the strings in the piano to play
a short tune, but this would soon become boring, and ali the
strings would need to be retuned every time a new melody was
required. This is similar to what would happen if the computer's
program counter could not be altered. The way the strings were
tuned would be the program, and each key a memory location.

Fortunately it is possible to alter the PC, and in BASIC this is
achieved by the GOTO and GOSUB and RETURN commands.
The GOTO forces the execution of the program to jump to the line
nominated, and the GOSUB calls a subroutine at the line chosen.
When the subroutine has completed its task, control is retumed
(by the RETURN command) to the main program, which carries
on at the instruction after the GOSUB.

The machine code équivalents to these BASIC commands

Simple Machine Code Instructions 35

perform exactly the same tasks but their names are slightly
different, as with the assembler LD mnemonic, which describes
the action performed by the équivalent BASIC command. (LD is
spoken as 'load', which you undoubtedly remembered.)

Can you guess what the machine code instructions are? GOTO
becomes JUMP and GOSUB becomes CALL, RETURN stays the
same. The retum instruction is abbreviated to RET when using
an assembler but CALL is written in full. Jump is a little more
complicated so this will be explained later in the Chapter, after the
use of CALL and RET has been defined.

The CALL and RET instructions exactly duplicate their BASIC
équivalents but, since machine code does not have line numbers,
the CALL is made to the address holding the start of the first
instruction of the subroutine.

The CALL instruction is made up of three bytes, the first is the
opcode, and the next two are the address of the subroutine to be
called. The two bytes holding the address are made up in normal
Z80 manner, low byte first. If you are using an assembler it will do
the calculation for you, as it did for the LD instructions.

The CALL and RET opcodes are as follows:

ASSEMBLY DECIMAL HEX BINARY

CALL nn 205 n n CD n n 11 001 101 n n

RET 201 C9 11 001 001

If you look back to Chapter 2 and look at the program you typed
in, or if you are in front of your computer and have entered the
programs so far, list line 90. You will find that the numbers
immediately after those that you have experimented with, are
205, 90,187.

You should now know what these are telling the CPU to do.
The 205 is a CALL instruction and the address CALLed can be
worked out by adding the next number to 256 * the third.

187 * 256 = 47872. 47872 + 90 = 47962 or BB5Ah

So now you know that the start of the routine you have written
first loads the A register with the code of the character to be
printed, then loads the B register with the number of times the
character is to be printed, and then CALLs a subroutine starting
at address 47872 (BB5Ah). This subroutine is part of the operating

36 Machine Code for Beginners on the Amstrad

System of the computer, and is probably the subroutine that you
will use more than any other. Amsoft hâve called it TXT
OUTPUT, and it will print the character whose code is held in the
Ά' register to the current window, at that window's current
cursor position. The subroutine will also obey Control codes, and
these are explained in Chapter 9 of the Amstrad User Instruction
book.

To give a brief example of how a control code is responded to
change line 90 to: 90 DATA 62,7,205,90,187,201 and change the
number after the TO in line 30 to 43885. If line 40 is still présent
then the checksum must be changed to 752. In assembly language
the program now reads:

LD A,7
CALL 47962
RET

When RUN ali that the machine code will do is sound the bell,
emitting a bleep from the computer. If you hear nothing try
tuming the volume up and typing CALL 43880 followed by
[ENTER]. This will call the machine code directly, instead of it
being called by the BASIC program.

Unlike load (LD) instructions it is not possible to nominate an
address by pointing to it with a register pair, the address to be
called must always be in the two bytes following the CALL
opcode. The RETum at the end of a subroutine will be to the
address immediately after the three bytes of the CALL (one byte
for the opcode and two for the operand).

To be able to make a RETum the CPU has to know where the
subroutine was CALLed from, and it accomplishes this by using
something called the Machine Stack, or just the stack for short. A
brief explanation of what this is, and how it is used when a CALL
or a RETum instruction is encountered in a program, follows. Use
of the stack will be discussed in detail in Chapter 9.

The stack can be compared to a spike on the ceiling, and each
byte of information being saved on it, can be thought of as a piece
of paper. When the piece of paper is put on the stack, the stack
grows downwards, and the only information that can be taken off
the stack is the piece on the bottom. In order to get something not
on the bottom location, everything below will hâve to be taken off
first.

The stack occupies an area of memory, and the address of the

Simple Machine Code Instructions 37

bottom of the stack is always held in the 16 bit Stack Pointer
register. The area of memory chosen for the stack must be
protected from being used by the program, because if corrupted
it would almost certainly cause the program to crash. Normally
this is achieved by placing the stack at the top of a large area of
free memory, as this allows it the maximum space to grow down
without trespassing on anything else.

Whenever a CALL instruction is encountered in a program, the
CPU, once it has found out the destination of the CALL, places
the address currently in the PC (the address of the next
instruction to be fetched) onto the stack, and replaces it in the PC
with the address of the subroutine. This causes the next
instruction to be fetched from the address of the CALL, and the
subroutine is then executed. At the end of the subroutine, when
the RET is executed, the CPU collects the retum address from the
stack, and puts it into the PC, thereby making program execution
continue at the address after the original CALL.

The diagrams overleaf shows the sequence of events when a
subroutine is CALLed and when the RETum is executed. The
assembler listing for the program is given in Fig. 5.8. The first
column is the memory address of the start of the instruction, in
Hex, thè second column is the Hex code of the instruction and the
third column is the actual assembler listing, again Hex numbers
have been used. The reason for the use of Hex numbers is that
they demonstrate much more clearly what is happening, since
each byte of memory or single register can hold a two digit Hex
number.

The example used is the program given above to sound the bell.
Every time anything is put onto the stack it grows down by two

bytes, and each time something is taken off the stack it shrinks by
two bytes. It is therefore very important to make sure that a
program does not put more onto the stack than it takes off. This
could make the stack either grow down so much that it starts to
use memory used to hold a program, or have the wrong inform­
ation on the bottom when something is to be taken off. Between
information being put onto the stack and its being required
again, there must be an equal number of things put onto and
taken off the stack. This is absolutely vital and cannot be stressed
too much, especially since there are instructions explained later,
other than CALLs and RETums which use the stack for Storage of
information. An imbalance of the stack is the single most

38 Machine Code for Beginners on the Amstrad

MEMORY

AB68

AB6A

BB5A

AB6D

THE STACK

STACK
-POINTER

STACK
-POINTER

STACK
<—POINTER

STACK
<—POINTER

STACK
<—POINTER

STACK
<—POINTER

Figure 5.8

Simple Machine Code Instructions 39

common cause for a program crashing. Unlike with BASIC, it is
often the case that ail one can do when a program crashes, is
switch off and start again.

Jumps

There are two types of jump instruction, the first one to be
explained imitâtes the BASIC GOTO almost exactly. With this
instruction the absolu te destination is given after the command.
Consider for example the BASIC command GOTO 100. There
must be a line in the program with the number Ί00' and when the
GOTO 100 is executed control is transferred to line 100. In
machine code, as you know, there are no line numbers, so instead
of transferring control to a line number control is transferred to an
address.

The mnemonic for this instruction is JP, short for JUMP, and it
is normally followed by two bytes giving the address to jump to.
The actual jump is made in exactly the same way as the CALL
instruction transfers control to a subroutine, except that, as there
is to be no RETum, the stack is not used. The mnemonic for this
type of jump is JP nn, and it allows a jump to any location in the
memory currently paged in. The instruction comprises three
bytes, constructed as the three bytes for a CALL instruction, but
the first byte, instead of being 11 001 101 for CALL, becomes 11
000 011 for JP. If the CALL in the last program is changed to a JP it
will become:

ASSEMBLER DECIMAL HEX BINARY

JP 47962 195 90 1B7 C3 5A BB il 000 011 0101 1010 1011 1011

The JP instruction can also be used with the HL register pair
containing the address to be jumped to. In this case the instruc­
tion only takes one byte and the jump is made to the address
contained in the HL register pair. If you recall how assembly
language represents 'contained in' you should already know the
mnemonic. The full opcode is given below:

ASSEMBLER DECIMAL HEX BINARY

JP (HL) 233 E9 11 101 001

40 Machine Code for Beginners on the Amstrad

This is one of the most useful instructions in the Z80 CPU and is
often used in conjunction with a CALL to achieve an équivalent
to an ON GOSUB command in BASIC. This is explained in the
next Chapter.

Most jumps are made to an instruction very close to the address
from which the jump is being made, and the Z80 CPU has an
instruction that allows a jump to be made to a location relative to
the address in the program counter. Surprisingly this instruction
is called a Jump Relative! In assembly language this is shortened
to JR.

The JR instruction consists of just two bytes, the first is the
opcode and the second, the distance of the jump from the address
the program counter expects the next instruction to come from,
in twos complément notation, as explained in Chapter 3. This
allows a jump to be made +127 to —128 relative to the PC. The
opcode for JR is:

ASSEMBLER DECIMAL HEX BINARY

JR n 24 n 18 n 00 011 000 n

Normally when using an assembler there is no need to calculate
the length of a JR. Instead a LABEL is used, either by making the
LABEL EQUal to the address to be jumped to in the program or,
more usually, by defining the LABEL within the program (EQU is
a pseudo operation and was explained in Chapter 3).

To help explain this consider the example below:

ADDRESS LABEL ASSEMBLER DECIMAL HEX

43880 <AB68hl· LD A,7 62 7 3E 07

43882 <AB6AhI PRINT: CALL 47962 205 90 187 CD 5A BB

43885 {AB6DhJ LD A, 65 62 65 3E 41

43887 •CAB6Fh> JR PRINT 24 249 18 F9

The 249 after the 24 opcode of the JR instruction tells the CPU to
transfer execution to an address —7 from the current PC. The PC
is already pointing to the next instruction since the read of the JR
n has been completed, and therefore contains the address 43889.
43889 — 7 = 43882. The jump will therefore be made to the start of
the CALL instruction.

Simple Machine Code Instructions 41

If the program had been:

ADDRESS LABEL ASSEMBLER DECIMAL HEX

43880 {AB68hI JR GO 24 5 18 05

43882 <AB6Ah, LD A,7 62 7 3E 07

43884 <AB6Ch> PRINT: CALL 47962 205 90 187 CD 5A BB

43887 IAB6Fhl· GO: LD A,65 62 65 3E 41

43889 <AB71hl· JR PRINT 24 249 18 F9

Then instead of the bell being sounded followed by 'A's until you
reset the computer, the JR GO would make the PC jump the LD
A,7 and the CALL 47962 and the first thing to be printed would be
an Ά'. Note that the jump is only 5 which skips the five bytes after
the JR GO.

It is possible to use calculated relative addressing with an
assembler, but this is unnecessary except with very long
programs where it is important to save space by not using labels.
The Highsoft Devpac slightly complicates matters, in the way the
GENSA3 assembler opérâtes. Jump distances are calculated
relative to the assembler's location counter and not the PC. This is
explained on page 2.6 of the manual which cornes with the
Devpac cassette. In essence the location counter will be at the start
of the JR instruction, when the calculation is made, and therefore
you will need to add 2 to the jump distance worked out the proper
way, to make the correct jump. The location counter is addressed
by use of the $ symbol. The JR PRINT instruction in the routine
above would be rewritten:

JR$-5

and not the more logical JR —7.
The Picturesque assembler, which is to be available shortly,

will employ the standard Z80 method of calculation, and the
instruction using this, therefore becomes the expected JR — 7.

If, as will most often be the case, except when space is at a
premium, you are using labels none of this will affect you, and
there is no need to worry about which assembler you are using.
Any relative jump to an offset indicated by a label, will always be
made to the instruction immediately following the label.

There is one last instruction to be described in this chapter, and

42 Machine Code for Beginners on the Amstrad

it is one of the simplest but most useful instructions available. It
enables the contents of the DE register pair to be exchanged with
the contents of the HL register pair. This is extremely useful if the
HL register pair is being used to point to an address in memory,
but is then needed for another purpose. You will find out why
this situation is likely to arise in the next chapter. As you might
expect the mnemonic for the instruction is: EX DE,HL the EX
being the abbreviation for EXchange. The full opcodes are given
below:

ASSEMBLER DECIMAL HEX BINARY

EX DE,HL 235 EB 11 101 011

If DE held 10 and HL 37 before the EXchange DE will hold 37 and
HL 10 afterwards.

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r — a single 8 bit register A, B, C, D, E, H or L
rr = a register pair being used as a 16 bit register
n = an 8 bit number 0 to 255
nn = a 16 bit number 0 to 65535
() round a number or register pair = the address at
PC = Program Counter
SP = Stack Pointer.

LD means LOAD

Any r can be loaded with any n. The instruction has the form LD
r,n.

Any r can be loaded from any other r. The instruction has the
form LD r,r'.

The A register can be loaded from an address in memory. The
instruction has the form LD A,(nn).

An address in memory can be loaded from the A register. The
instruction has the form LD (nn),A.

Both the above can use the contents of HL register pair instead
of nn. The instructions are LD A,(HL) and LD (HL),A.

Any rr can be loaded with any nn. The instruction has the form
LD rr,nn.

Simple Machine Code Instructions 43

Any rr can be loaded from any memory location and the
location 1 higher. The instruction has the form LD rr,(nn).

Any memory location and memory location +1 can be loaded
from any register pair. The instruction has the form LD (nn),rr.

It takes one less byte to do either of the above using the HL rr.
A subroutine is accessed by a CALL nn.
A CALL can be to any address in memory.
A subroutine is ended by a RET.
Both the above use the stack.
A jump can be made to any location in memory using the

instruction JP nn.
The HL register pair can be used to contain the nn, this reduces

the instruction from three bytes to one byte. The instruction then
takes the form JP (HL).

A relative jump can be made to a location within the range
+ 127 to —128 of the end of the jump instruction, which takes the
form JR n.

Sixteen bit numbers are held in memory in reverse order. If the
number is made into a 4 digit Hex number the two most signifi-
cant digits are stored in the memory location after the two least
significant digits. In a register pair they are stored in normal
order High Low.

Ail opcodes are listed in the Appendix with a symbolic
operation.

Chapter Six

Simple Maths

In the previous chapter you leamt about the instructions to load a
single register with an eight bit number or with the number held
in another single register, the LD r,n and LD r,r opcodes. There is
also a complété set of instructions for adding and subtracting,
and the opcodes for these follow very closely the LD r,n and LD
r,r' instruction forms.

You will recall that the Ά' register is also known as the
accumulator, and that there is a number of 'load' operations that
can only be performed using the accumulator. The Ά' register
really cornes into its own in 8 bit maths fonctions, as it is the only
register which can be used to contain the resuit of an 8 bit maths
operation.

Before going on to examine the true maths operations there are
two instructions which, although they are not strictly mathe-
matical, can be carried out using any of the general purpose
registers. These are an increase by 1, or a decrease by 1. Imagine a
general purpose register holding, for example, the value 99: An
increase by 1 would leave it holding 100, and a decrease by 1
would leave it holding 98. The assembly language for these
instructions is about as imaginative as a red tomato. To increase a
register by 1 has the instruction INC r with r being any general
purpose register; and to decrease by 1? You've guessed it! DEC r.

There is one case where an INC does not leave a register
holding a value one greater than before, and one where a DEC
does not leave it holding one less than before. As you know a
single register can only hold a value between 0 and 255, so what
do you think will happen if the register holds 255 when the INC
instruction is encountered?

Whenever the value that can be held in eight bits is exceeded
everything starts again from 0. This is rather like having a clock
with only one hand, numbered from 1 to 256 clockwise round its
face. If it is showing 255 o'clock (can you imagine a 256-hour day?

44

Simple Maths 45

We'd ail get old before our time!) after adding 1 hour it will be 256
o'clock but, as with the normal 24-hour clock like the digital clock
you may hâve on your video recorder or by your bed, it does not
show 24:00 at midnight but shows 00:00 instead. This is because
it is not 24 hours into the old day, it is 0 hours into the new.

If you still don't know the answer to what cornes after 255 try
thinking of the binary, which is 1111 1111. Increase this by
0000 0001 and the resuit is 1 0000 0000. The register can only hold
an 8 bit number, so what is in the register?

The other exception, as you hâve very likely realised, is when a

ASSEMBLER DECIMAL HEX BINARY

INC B 4 04 00 000 100

INC C 12 OC 00 001 100

INC D 20 14 00 010 100

INC E 23 IC 00 011 100

INC H 36 24 00 100 100

INC L 44 2C 00 101 100

INC (HL) 52 34 00 110 100

INC A 60 3C 00 111 100

Figure 6.1

ASSEMBLER DECIMAL HEX BINARY

DEC B 5 05 00 000 101

DEC r 13 0D 00 001 101

DEC D 21 15 00 010 101

DEC E 29 1D 00 011 101

DEC H 25 00 100 101

DEC L 45 2D 00 101 101

DEC (HL) 53 35 00 110 101

DEC A 61 3D 00 111 101

46 Machine Code for Beginners on the Amstrad

DEC instruction is enacted on a register containing 0. Using the
same System as above if you find it helps, what will the register
hold after the DEC is executed? In binary the register holds 0000
0000 before the DEC instruction. If you are at ail confused by this,
tum back to Chapter 3, and re-read the section on twos complé­
ment binary numbers.

The construction of the INC and DEC instructions is quite
straightforward.
As you can see in Fig. 6.1 bits 5, 4 and 3 nominate the register to
be used in the same way as they did in the load (LD) instructions.

To demonstrate the INC and DEC instructions enter the
following short program:

10 MM = HIMEM
20 MEMORY 43799
30 FOR N= 43800 TO 43811: READ D: POKE N
,D: A = A + D: NEXT
40 IF A O 1352 THEN CLS: PEN 3: PRINT "
DATA ERROR": PEN 1: EDIT 90
50 INPUT "PRESS ENTER TO START"; A: A= 3
2: B = 224
60 PRINT CHR« (A);: A= A+ 1: B = B- 1: IF

B O O THEN 60
70 PRINT : CALL 43800
90 DATA 6, 224, 62, 32, 205, 90, 187, 60
, 5, 32, 249, 201
100 END

Figure 6.2

The Hex and Assembly language versions of the machine code,
POKEd into memory by line 30 from the DATA in line 90, are
shown in Fig. 6.3.

Note that a new instruction has been introduced before the RET
at the end of the routine. This will be explained properly in the
next chapter, but you will probably be able to discem its meaning
if you examine line 60 of the BASIC. Briefly the NZ means Not
Zéro, and it relates to the answer to the last maths operation. The
instruction therefore means: if the resuit of the last maths
operation was not 0 then Jump Relative to the label 'PRINT'.

Simple Maths 47

HEX ASSEMBLER

06 E9 LD B,224

3E 20 LD A, 32

CD 5A BB PRINT: CALL 47962

3C INC A

05 DEC B

20 F9 JR NZ,PRINT

C9 RET

Figure 6.3

When RUN this will print the character set of the Amstrad CPC
464 onto the screen, starting with a 'space' and going right
through ali the characters shown in Appendix III of the Amstrad
User Instructions from page 2.

The instructions to add to the Ά' register or to subtract from the
Ά' register are almost equally straightforward, in their simplest
form. The mnemonic for a simple ADD is ADD, and for a simple
SUB tract it is SUB. As only the Ά' register can be used for 8 bit
maths it would seem unnecessary to specify which register is to
be used, and in the case of the SUB mnemonic this is indeed the
case. However the ADD mnemonic is also used to perform a 16
bit ADD using the HL register pair, as will be explained later.
With the ADD it is normal practice to state which register is to be
used, even though some assemblers do not require it. The
Devpac assembler will not accept an ADD without the register
being named, but it is likely the Picturesque assembler will
accept an ADD on its own.

If it is required to add a number to the A register the full
instruction is ADD A,n and to take a number away from the A
register the instruction is just SUB n. The other forms of the
instructions are:

ASSEMBLER DECIMAL HEX BINARY

ADD A,n 198 n C6 n 11 000 110

SUB n 214 n D6 n 11 010 110

48 Machine Code for Beginners on the Amstrad

You can see the ADD A,n instruction in use if you change the
BASIC program above as follows:

30 FOR N= 43800 TO 43812: READ D: POKE N,D: A= A+ D: NEXT

The 1352 in line 40 becomes 1491, and line 90 becomes

90 DATA 6,224,62,32,205,90,187,198,1,5,32,248,201

This has changed the INC A in the assembly listing to ADD A,1
and the length of the JR has also been changed otherwise the extra
byte would have made the jump go to the wrong destination.
When RUN there will be no différence in the resuit, but the code
takes one extra byte of memory.

To see the SUB instruction you can al ter these changes to the
BASIC program:

Change the 1491 in line 40 to 1730
line 55 becomes 55 A = 255: B = 224
In line 60 change A = A + ltoA = A- l

and line 90 is changed to

90 DATA 6,224,62,255,205,90,187,214,1,5,32,248,201

The assembly language is now:

HEX ASSEMBLER

06 E9 LD B, 224

3E FF LD A, 255

CD 5A BB PRINT: CALL 47962

D6 01 SUB 1

05 DEC B

20 F8 JR NZ,PRINT

C9 RET

Figure 6.4

As with the INC and DEC instructions when the resuit of an
ADD or SUB is 0 the Zéro flag is set, otherwise it is reset, showing
that the resuit is Not Zéro. If the execution of an ADD requires a
carry over to a ninth bit, because the answer is greater than 255 or,
in the case of a SUB instruction, when a borrow is needed from a

Simple Maths 49

ninth bit, due to the resuit being less than 0, there is a flag which
will tell you if the operation has had to make this carry over, and it
is called - predictably - the carry flag. The carry flag is always set
if a carry or borrow was needed by any maths instruction, and
reset if not. Note that the INC and DEC instructions do not affect
the carry flag.

As well as being able to ADD or SUB a number and the A
register it is also possible to perform these operations with
another register, giving the mnemonics ADD A,r and SUB r. The
other versions are:

ASSEMBLER

ADD A,r

SUB r

DECIMAL

128 - 135

144 - 151

HEX

80 - 87

90 - 97

BINARY

10 000 r

10 010 r

The r represents any general purpose register or the A register,
and the codes are the same as those shown in Chapter 5.

B == 000 H == 100
C == 001 L == 101
D == 010
E == 011 A == 111

The code 110 is again used to signify (HL). That is, with the
contents of the memory location whose address is held in the HL
register pair.

The SUB r and ADD A,r work in exactly the same fashion as the
ADD A,n and the SUB n, and affect the Zéro and Carry flags in the
same manner. The différence is, of course, that the r is used as a
BASIC variable might be used in place of a predefined number.

Knowing the above and remembering what you leamt in the
last chapter, it should be possible for you to write a short routine
in assembly language, which adds the contents of memory at
address 43894 to the contents of memory at address 43896 and
places the result in address 43898. When you have done this, if
you have an assembler you can type your routine in. If not you
will have to code it manually, using the information already
given, or by looking at the appendix giving the Z80 instruction
set. You can then use the loader program to enter it; the start
address should be 43850.

There are several ways in which this routine could be written,

50 Machine Code for Beginners on the Amstrad

and two are given at the back of this book in case you get stuck.
The acid test will be to see if the routine you write works, and a
subroutine which will allow you to do this is given below. It uses
some instructions that you do not know yet, and these will be
explained shortly, but you will probably understand one of them
immediately. The end of your program must be:

ASSEMBLER DECIMAL HEX

CALL 43800
RET

205 24 171 CD 18 AB
201 C9

This is the subroutine to print out the resuit, which is CALLed
from your routine (Fig. 6.5).

ASC:EME' F R DECIMAL HEX

ORG ‘13800 SET MEMORY TO AB17
ENT 43800 START ADDRESS AB 18
LD A,(43898) 58 122 171 3A 7A AB CHECK
LD L,A 111 6F
LD H,0 38 0 26 00
LD DE,-100 17 156 255 11 9C FF
CALL REDN 205 44 171 CD 046D

2C AB
LD E.-10 30 246 1E F6
CALL REDN 205 44 171 CD 2C AB
! n
1—1/ A,L 125 7D

JR PR IN 24 9 1 s 09 0420
REDN: LD A,0 62 0 3E 00
FNUM: INC A 60 3C

ADD HL, DE 19
JR C.FNUM 56 252 38 FC

HL, DE 237 82 ED 52
DEC A 61 3D

FRIN: ADD A, #30 198 48 C6 0409
30

CALL 47962 205 90 18^ CD 5A BB
RET 201 C9 ΓΜΓ| f)1?1

CHECKSUM 3966

Figure 6.5

This routine can be entered from the assembly language listing
if you have an assembler, or by using the Hex loader program
given at the end of the book, which you should have on tape
ready to load. If you feel brave, you can change the BASIC

Simple Maths 51

program you entered earlier in this chapter. You should be able to
do this for yourself but, as a small help, there are 35 bytes in the
listing, so the start of line 30 will be:

30 FOR N = 43800 TO 43834

Remember that your code will start at 43850, so when the
program loads your part N should start as 43850.

If you do change the BASIC, be sure to save your amended
version before you RUN it, just in case you have made an error
which causes the program to crash.

The first problem you will have once you have got your
machine code loaded into memory is how to get numbers into the
routine, for it to add. This is where we have to resort to BASIC
once more - until you get a bit further in the book!

400 INPUT "FIRST NUMBER";A: INPUT "SECOND NUMBER";B
410 ? A;"+";B;"=";
420 POKE 43894,A: POKE 43896,B
430 CALL 43850
440 GOTO 400

Figure 6.6

Now type GOTO 400 and the BASIC will ask you for the two
numbers, and then POKE them into memory ready for the
machine code. Your routine will then be CALLed by line 430 to do
the addition, and the resuit will be printed by the subroutine
given above. Press ESCAPE twice when you want to get out of the
loop which asks for numbers and ADDs them.

If you entered any pair of numbers that added up to more than
255, you would have found that the answer was given incorrectly.
You will remember the reason for this from earlier, and will
hopefully also recall that the carry flag is always set when this
happens. What is needed is a way to cope with numbers that will
not fit into one byte, and use the carry flag to indicate when a
carry needs to be dealt with.

If this is starting to confuse you, think for a moment what
happens when you add 9 + 6 + 8.

9 + 6 = 5 carry 1; so you increase the tens by one
5 (from above) + 8 = 3 carry 1; again you increase the tens by
one. This gives the resuit: two tens and three units or 23, which
is correct.

52 Machine Code for Beginners on the Amstrad

Now think what happens in your program when it does the
following binary addition:

=0101

1010 0101
+ 1011 0000

1
+0
= 1

(165)
(176)

Each column is added to the column above
in exactly the same way as when the
décimal sum above was carried out. But
this time, since the sum is in binary

01
+0
=01

and goes on quite long enough anyway,the
carry is shown added to the two numbers
in the next column, when it occurs.

101
+0
= 101

The only real carry, since up to 255 can
be held in a register without an
overflow, is at the end of the sum. Each
bit falling over the end here is worth

0101
+0

256 times the least significant bit.

0 0101
+ 1
=1 0101

11 0101
+ 1

=101 0101

101 0101
+0
+0
=101 0101

1101 0101
+ 1

= 0101 0101

If a register is used to store the
carrys when they occur it is counting in
units of 256.

What is needed is a sériés of bytes,
from which any overflow is automatical 1 y
added to the next byte.

This would act in exactly the same way
as normal addition in décimal, but to
base 256 instead of base ten.

In fact this is very easy to achieve and
does not require any thought on your
part. There are commande built into the
Z80 CF'U which automati cal 1 y add or
subtract with carry.

(85) carry 1 (worth 256)

These are called (surprise, surprise!) add with carry, and subtract
with carry. The mnemonics for the assembler, instead of being
ADDC and SUBC, are shortened to save you typing, becoming
ADC and SBC. When used in place of the ADD and SUB instruc­
tions the carry flag is included in the operation. For example,
consider the program in Fig. 6.7.

Imagine that 43894 holds 1010 0101 (165), 43896 holds 10110000
(176) and the remaining addresses ail hold 0000 0000 before the
program is run. The first part of the program will add 165 to 176,
there will be a carry and the A register will be left holding 85. This
will be stored in address 43898. The rest of the program will add 0

Simple Maths 53

LD HL,43396
LD A,(43394)
ADD A,(HL)
LD (43898),A

LD A,(43895)
INC HL
ADD A,(HL)
LD (43899),A

This will load the value -from address 43894
into the A register and ADD it to the
contents o-f the address pointed to by HL
(43896) and put the resuit into address
43898.
The process is then repeated with A holding
the contents o-f 43895 and HL pointing to
43897, the resuit going to address 43899.

Figure 6.7

to 0 and store the resuit in 43899. What a waste of energy! But
change the second ADD to ADC and what happens?

The first part of the program works the same as before, and
when the second section is executed the carry flag is set. When
this ADD with carry (ADC) is executed the calculation becomes
0 + 0 + carry, instead of just 0 + 0. The carry flag is set, so the
answer this time is 1, and it is 1 that is stored in address 43899.

By adding the instruction LD HL,(43898) to the end of the
program, the H register can be made to hold the high byte of the
answer, and L the low byte. So after executing the program HL
will hold 0000 0001 0101 0101b or 01 55 Hex. Look familiar? It
should, you will find it is the correct answer to the sum attempted
earlier.

Before going on to describe how to use the SBC instruction,
and the ADC for numbers greater than those that can be held in
two bytes, here are the numeric instruction codes:

ASSEMBLER DECIMAL HEX BINARY

ADC A,n 206 n CE n 11 001 110

SBC A,n 222 n DE n 11 011 110

ADC A,r 136 - 143 83 - 8F 10 001 r

SBC A,r 152 - 159 98 - 9F 10 OU r

As usual r can be any general purpose register, the A register or
(HL), the codes are the same as always. Note that the SBC needs
the register A defined. This is because, unlike the SUB instruc­
tion, the SBC can be used in another way, which will be
explained later.

You can now enter the program in Fig. 6.9 which will allow you

54 Machine Code for Beginners on the Amstrad

to experiment with the ADC and SBC instructions. If you have an
assembler you will be able to modify the program you wrote to
ADD the contents of two memory locations, otherwise you will
have to use the HEX LOADER program. The décimal listings are
no longer of any relevance since the programs are now starting to
become too long for entry by the 'DATA' method.

If you have used the assembler you can type R followed by
[ENTER] to execute it, otherwise you will have to type CALL
43850 followed by [ENTER]. The program will then add the ASCII
code of the next key you press to the contents of address 43896,
and save the answer in address 43898. The contents of address
43895 is then added with carry to the contents of address 43897,
and the resuit stored in address 43899.

A routine in the operating System is used to read the keyboard,
and this is called by the CALL 47896. This CALL waits for a key to
be pressed, and retums with the ASCII code for the key in the A
register.

Unless you have put something into the addresses added
together by the program the answer will always be the code for
the key you have pressed. You can check this by looking at the
codes in Appendix 3 of the Amstrad manual.

If you use the assembler type B followed by [ENTER], This will
retum you to BASIC. You can now put values into the addresses
that are being added, and then CALL 43850 to see the resuit.
Remember that you will have to press a key to give part of the
sum.

To add, for example, 220 and 89:

Type POKE 43896,220 [ENTER] CALL 43850 [ENTER]

Then press SHIFT and Y (capital Y has the ASCII code 89). The
answer displayed will be 309.

Or to add 23260 to 345 you would type:

POKE 43896,220 [ENTER] POKE 43897,90 [ENTER]
POKE 43895,1 [ENTER] CALL 43850 [ENTER]

Then press SHIFT and Y. You should get the answer 23605, but
you don't! Why not?

23260 is 5ADC in Hex and 345 is 159 in Hex. Remembering how
the Z80 stores numbers in reverse, and looking at the program
above, you will find that address 43896 and the keyboard provide

Simple Maths 55

ASSEMBLER HEX

SET MEMORY TO AB17
ORG 43850 START ADDRESS AB4A
ENT 43850 CHECK
LD HL,43896 21 78 AB
CALL 47896 CD 18 BB
ADD A, (HL) 86
LD (43898),A 32 7A AB 04C1
LD A,(43895) 3A 77 AB
INC HL 23
ADC A,(HL) 8E
LD (43899), A 32 7B AB
CALL 43800 CD 18 044A

AB
RET C9 END 0174

MORE? Y/N Y
ORG 43800 START ADDRESS AB18

CHECK
LD HL,(43898) 2A 7A AB
NOP 00
NOP 00
NOP 00
NOP 00
NOP 00
NOP 00
LD DE,-1000 11 0160

18 FC

MORE? Y/N N

CALL REDN CD 35 AB
LD
CALL

LD
CALL
LD
JR

DE,-100
REDN

E,-10
REDN
A,L
PRIN

11
CD

1E
CD
7D
18

9C FF
35 056F

F6
35

09

AB

AB

REDN: LD A,0 3E 0448
00

FNUM: INC A 3C
ADD HL, DE 19
JR C,FNUM 38 FC
SBC HL,DE ED 52
DEC A 3D

PRIN: ADD A, #30 C6 30 03F6
CALL 47962 CD 5A BB
RET C9 END 02AB

Figure 6.8

56 Machine Code for Beginners on the Amstrad

the low bytes of the sum (the DCh and the 59h) and addresses
43895 and 43897 provide the high bytes (5Ah and Olh).

DCh is 220 and 59h is 89 so the 220 is poked into 43896 and the
capital Y provides the 89 for the first part of the sum, these are
then added and the resuit placed in 43898. This should be 35h as
59h + DCh = 135h. The 1 is a carry and what is left is the 35h, or
53. If you look into address 43898 by typing:

? PEEK (43898) [ENTER]

you will see this is indeed the case. The lh and the 5Ah (the high
bytes of the sum) are 1 and 90 respectively, these are the numbers
that were poked into addresses 43895 and 43897 to be added with
carry in the second section of the program. 5Ah + Olh + carry
(which is set and therefore equal to 1) = 5Ch or 92. This should
be found in address 43899. Check it and see if it is correct.

The answer to the sum is 5C35h, 5Ch is 92, it is the high byte so
worth 256 * its face value which is 23552. The low byte is 35h, 53.
This is then added to the value of the high byte; 23552 + 53 =
23605 or 5C35h. So the sum is correct. Why then is the answer
being displayed incorrectly?

The answer to this will be found by an analysis of the second
section of the program above. This is the bit that does the
printing of the answer to the screen. (There is a monumental due
in the sériés of NOPs, no one in his right mind would waste space
if there was nothing to fill it later!)

There are two instructions (ADD HL,DE and SBC HL,DE) that
you are not familiar with, so these will be explained briefly first.
A fuller explanation follows later in this Chapter, and the ways the
instructions can be employed are examined in more detail in later
chapters.

As mentioned earlier, the only addition or subtraction instruc­
tion unique to the A register is the SUB instruction. The other
way in which these maths operations can be used, is with the HL
register pair being used as a 16 bit Accumulator. In ail cases the
HL register pair will hold the answer after the operation, in the
same way as the A register does after an 8 bit addition or
subtraction.

Unlike with the 8 bit instructions using the A register the
operand, in this case the number to be added to or taken away
from the HL register pair, can only be supplied from one of the
general purpose register pairs, or the SP (Stack Pointer) spécial

Simple Maths 57

purpose register. It is not possible to use a numeric operand (for
example, ADD HL,23456), a memory location (for example, ADC
HL,(23456)) or even a memory location addressed by a register
pair (for example, SBC HL,(DE)). The Stack Pointer will be dealt
with in detail in a later chapter. The available instructions are:

Figure 6.9

ASSEMBLER DEC!:mal HEX BINARY

ADD HL,BC 9 09 00 001 001

ADD HL, DE 25 19 00 OU 001

ADD HL, HL 41 29 00 101 001

ADD HL, SP 57 39 00 111 001

ADC HL,BC 237 74 ED 4A 11 101 101 01 001 010

ADC HL, DE 237 90 ED 5A 11 101 101 01 ou 010

ADC HL, HL 237 106 ED 6A 11 101 101 01 101 010

ADC HL, SP 237 122 ED 7A 11 101 101 01 111 010

SBC HL,BC 237 66 ED 42 11 101 101 01 000 010

SBC HL, DE 237 82 ED 52 11 101 101 01 010 010

SBC HL, HL 237 98 ED 62 11 101 101 01 100 010

SBC HL, SP 237 114 ED 72 11 101 101 01 110 010

In operation they are exactly the same as their équivalents for 8 bit
values, ADD A,B ADC A,B and SBC A,B, etc., except that they
operate on 16 bit values.

For example to ADD 55536 and 2000 (décimal), the Assembly
language program might look like this:

LD DE,55536
LD HL,2000
ADD HL,DE

After the program was executed the HL register pair would hold
the answer, 57536 (EOCOh EOh in H COh in L) and the DE register

58 Machine Code for Beginners on the Amstrad

pair would still hold 55536 (D8F0h D8h in D FOh in E) and the
carry flag would be reset. If the sum had been 55536 + 23605 then
the answer, instead of being 79141 (13525h) which cannot fit into
sixteen bits, would be 13605 (3525h), and the carry flag would be
set. The bit carried over from the sum has a value 65536 * the
value of the least significant bit of the register pair. This is 2’16,
whereas when a carry occurs after an 8 bit operation it is worth
256 * the least significant bit, which is 2’8.

Had the ADD been replaced by ADC the carry would have been
added in as well, again identical to the operation with the 8 bit
instructions.

The SBC instruction, when used with the HL register pair, can
also be made analogous to the 8 bit SBC with the A register. Due
to the absence of a SUB instruction for 16 bit operations, if the
carry flag is not required to be subtracted from the HL register
pair, it must be reset if it is set, otherwise the answer may be one
less than it should be.

There are instructions to Set the Carry Flag, and to
Complément the Carry Flag (SCF and CCF) but there is no
instruction to reset the carry flag. It is possible to achieve the
resetting of the carry flag by first setting it and then comple-
menting it (SCF followed by CCF) but this is long-winded and
the instruction AND A does the same job with one less
instruction. This is one of the logical operations which is
explained in Chapter 8.

Retuming at last to the problem of why the answer to the sum is
incorrect, and the analysis of the second half of the program,
where it has been established the problem résides.

The first section has placed the high byte of the answer in
address 43899 and the low byte in address 43898.

The first instruction of the second section is

LD HL,(43898)

this loads the contents of the address named in the instruction
into the L register, and the H register is loaded from the next
address.

After the instruction is executed L will therefore hold 35h and H
will hold 5Ch, making HL = 5C35h or 23605. This is correct so the
problem does not lie here.

Next there are six NOPs, these do No OPeration so the problem
is not here.

Simple Maths 59

Now the DE register pair is loaded with —1000 which is FC18h.
This looks peculiar but may be correct; what happens next?

A subroutine named REDN (short for REDuce Number) is
CALLed. This will be examined as a unit, broken into stages.

1) LDA,0
2) INC A
3) ADD HL,DE

4) JRC,FNUM

5) SBC HL,DE

6) DEÇA

7) ADD A, #30

A = 0
A = A + l
HL = 5C35h and DE = FC18h the first time
the subroutine is called. FC18h is 64536 in
décimal or -1000 if it is in 2s complément.
23605 + 64536 = 88141. The largest number
that can fit into sixteen bits is 65535 so a carry
occurs at 65536. 88141 - 65536 = 22605. 1000
has therefore been taken away from the HL
register pair.
FNUM (short for Find NUMber) is stage 2. So
each time there is a carry as a resuit of the
ADD HL,DE the A register is increased by 1.
In other words the A register counts the
number of times DE is ADDed to HL.
To get here there must have been no carry
from the ADD HL,DE at stage 3. It was not
therefore possible to subtract DE from what
was left in HL, and the answer is wrong. By
using the SBC instruction with a négative
value the end resuit is an addition. (Did your
teacher at school try to explain that a minus
and a minus are a plus? This proves it.) The
carry flag is known to be reset so it will not
affect the calculation.
Since DE has been added back by the
previous instruction, the count (in A) must
be reduced. A has now been increased the
number of times DE was taken from what
was in HL at the start of the subroutine. HL
now holds what HL held at the start of the
subroutine - (A * DE). In the case of this
example where DE was —1000 HL
= 605 and A = 23.
When using the Highsoft assembler the #
sign signifies that the next digits are to be

60 Machine Code for Beginners on the Amstrad

interpreted as a Hex number. A was 23 (17h)
so after adding 30h (48) it becomes 71 (47h).

8) CALL 47962 This is the tried and tested 'print the
character whose code is in the A register'
ROM routine.

9) RET The end of the subroutine.

The reason for the error in the answer to the test example
should now be apparent. If the resuit is greater than 9000 DE
(which is —1000) will be taken away from HL more times than
there are numbers, that is more than 9 times. The A register will
therefore hold a number in excess of 30h + 9 = 39h (57) when the
print routine is called. Numbers from 30h to 39h inclusive are the
ASCII codes for the numbers 0 to 9, which is how the answer is
printed, but codes above 39h are used for punctuation and letters.
The character with the ASCII code 71 is G, hence G was printed in
place of the numbers 2 and 3.

You can probably see what needs to be done to make the
routine work for any number that can be represented in sixteen
bits. The following instructions can be inserted in place of the
NOPs.

If you are using the assembler type

CALL 30004 [ENTER]

Then press L and [ENTER] to list the program. Next enter the
following instructions in place of the first two NOPs and delete
the remaining four NOPs, then press A [ENTER] [ENTER]
[ENTER] to reassemble the code.

For those of you using the HEX LOADER type

RUN and [ENTER]
SET MEMORY TO AB17

and

START ADDRESS AB1B

ASSEMBLER HEX

LD DE,-10000 11 F0 D8

CALL REDN CD 35 AB END 0386

MORE? Y/N N

Simple Maths 61

Now execute the program as before, and you should find that it
works for any two numbers whose sum can be held in sixteen bits
(<65535).

You can now change the first section of the program, the part
which adds the numbers starting at address 43850, to experiment
with the other 8 bit add and subtract instructions. As long as you
always use the (HL) to point to the address where the numbers
are held, and you do not use the instructions which have n or (nn)
as part of the assembler représentation, ail that will need
changing is the byte containing the instruction. Remember that
machine code is not like BASIC, you cannot insert instructions!

When you are happy that you understand what is happening
with each of the instructions read on.

You should now be reasonably conversant with 8 bit maths,
and if required it ought not to be an impossible task for you to
write a program which will add any two numbers or take any
number away from any other number, using solely 8 bit opera­
tions. How to output the resuit may still be a problem. If the
screen is to be used a modification of the program you are using at
the moment will give the desired resuit.

These sorts of tasks are where 16 bit maths really starts coming
into its own. To be able to add successfully any two 16 bit
numbers it is necessary to deal with 17 bit results, but to be able to
multiply any two 16 bit numbers a 32 bit resuit must be catered
for. The availability of 16 bit maths operators makes it worth
while allowing for 32 bit results, since no more instructions are
used than for twenty-four bits using 16 and 8 bit maths. This
gives the possibility of using numbers up to 4294967295 (2*32),
which is likely to be able to cope with anything short of the
national debt.

The limitation imposed by not being able to use 16 bit maths on
numeric operands is easily overcome. The first section of the
program in Fig. 6.8 used 8 bit maths, but it could have been
written as shown in Fig. 6.10.
This uses 21 bytes, which represents a saving of 1 byte over the
original. Whilst the resuit will almost certainly need to be stored
in memory for use at a later stage, it is available for immédiate use
in the HL register pair, whereas with the 8 bit routine the resuit
was never available except in memory. This necessitated the LD
HL,(43898) instruction in the 'print number' routine, which can
now be omitted, thereby saving a further three bytes.

62 Machine Code for Beginners on the Amstrad

HEXASSEMBLER

ORG 43850 SET MEMORY TO AB17

ENT 43850 START ADDRESS AB18

LD HL, (43895) 21 77 AB CHECK

LD A,(HL) 7E

INC HL 23

LD E,(HL) 5E

INC HL 23

LD D,(HL) 56

LD H, A 67

CALL 47896 CD 03EF

18 BB

LD L,A 6F

ADD HL, DE 19

LD (43898),HL 22 7A AB

CALL 43800 CD 18 AB 0432

RET C9 END 00C9

Figure 6.10

A further saving in memory usage can be made by using 16 bit
loads in place of the 8 bit loads where possible. This makes the
program as shown in Fig. 6.11.

The byte count is now reduced to only 19.
This sort of routine could be used to keep the score in an arcade

game, or for a multitude of other uses, but as it stands it is limited
by the fact that it cannot be called as a subroutine. This is because
set locations are used for the values to be added and the resuit to
be saved. If the routine was to be used for scorekeeping in a game
of Space Invaders, every different scoring invader would need a
separate routine. So if there were invaders that scored 10, 20, 50,
and 100 and a Mothership which scored 400, the routine would

Simple Maths 63

ASSEMBLER HEX

ORG 43850 SET MEMORY TO AB 17

ENT 43S50 ctART ADDRESS AB1S

LD HL,(43SR6) 21 79 AB CHECK

LD A, (43895) 3A 77 AB

LD D , A 57

CALL 47896 CD 1 s BB 0496

LD E, A 5F

ADD HL , DE 19

LD C43898),HL 22 7A AB

CALL 43800 CD 1 A AB

RET C9 END 0418

Figure 6.11

have to be written five times. A further problem would be that the
answer from one CALL would need to be made one of the parts of
the addition for the next CALL.

What is needed is a subroutine which will add two numbers
given by the program which calls it, and then retums the answer,
ready for saving by the main program. This can be written using
registers to carry information. Using the scénario above this
could be achieved by using HL to hold the score and DE to hold
the value of the raider hit. Then the subroutine to add the two
numbers together and print the score onto the screen would be
called, and on retum the resuit, in the HL register pair, would be
saved as the new score.

The routines in Figs 6.10 and 6.11 can also be used to subtract
two numbers, but the carry flag must be reset before the subtrac­
tion is made. If this is not done an incorrect resuit may be given.
The AND A instruction mentioned earlier is used to reset the
carry flag, in the example given in Fig. 6.12, which is a simple
rewrite of Fig. 6.11.

64 Machine Code for Beginners on the Amstrad

Figure 6.12

ASSEMBLER HEX

ORG 43850 SEI' MEMORY TO AB17

ENT 43850 START ADDRESS AB13

LD HL,(43896) 21 73 AB CHECK

LD A,(43895) 3A 77 AB

LD D, A 57

CALL 47896 CD IS BB 0496

LD E,A 5F

AND A A7

SBC HL, DE ED en vJZ

LD (43898),HL 22 7A AB

CALL 43800 CD 13 AB 05 IC

RET C9 END i

This will take DE away from HL and leave the resuit in HL.
It was mentioned earlier that, by using 16 bit instructions, it

was worth while allowing for 32 bit results. Can you write a
program which adds any two 16 bit numbers and stores the
correct resuit in memory as a 32 bit number? The answer should
be stored in successive memory locations, with the least signifi­
cant byte stored at address 43896 and the most significant at
address 43899.

Before starting to work out your program enter the following
routine which will allow the resuit to be displayed. It will also
give you some dues as to how to write your part.

Some things to remember, that may help, are:

1) The answer may be greater than that which can be held in a
register pair. Each part will therefore have to be stored in
memory when not being used.

2) The program is really only a rewrite of the first part of Fig.
6.8, using 16 bit maths in the place of 8 bit, and not relying
on an input from the keyboard.

Simple Maths 65

3) The program to print the number does a 32 bit subtract, and
a 32 bit ADD will be very similar.

4) The program to print the number is a 32 bit version of the
second part of the program in Fig. 6.8.

When you enter your addition program into the computer it
should start at address 43840 (AB40h) and finish with

CALL 43700 RET

The program for the assembler is listed in Fig. 6.13, taken
directly from the assembler to ensure accuracy. AU that you have
to enter is the column to the right of the line numbers, but
remember to put colons after the labels.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ;

20

FIG 6,14 A SUBROUTINE TO PRINT
32 BI T VALUES IN DECIMAL

AAB4 30 ORG 43700
AAB4 40 ENT 43700
AAB4 2A78AB 50 LD HL,(43896)
AAB7 223EAB 60 LD (43838),HL
AABA 2A7AAB 70 LD HL,(43898)
AABD 2240AB 80 LD (43840),HL
AAC0 110036 90 LD DE,#3600 ; THE LOW WORD AND
AAC3 0165C4 100 LD BC,#C465 ;

THE HIGH WORD OF -1,000,000,000
AAC6 CD0CAB 110 CALL REDN
AAC9 11001F 120 LD DE,#1F00 ; THE LOW WORD AND
AACC 010AFA 130 LD BC,#FA0A ;

THE HIGH WORD OF -100,000,000
AACF CD0CAB 140 CALL REDN
AAD2 118069 150 LD DE,#6980 ; THE LOW WORD AND
AAD5 0167FF 160 LD BC,#FF67 ;

THE HIGH WORD OF -10,000,000
AAD8 CD0CAB 170 CALL REDN
AADB 11C0BD 180 LD DE,#BDC0 ; THE LOW WORD AND
AADE 01F0FF 190 LD BC,#FFF0 ;

THE HIGH WORD OF -1,000,000
AAE1 CD0CAB 200 CALL REDN
AAE4 116079 210 LD DE,#7960 ;

THE LOW WORD AND THE
AAE7 01FEFF 220 LD BC,#FFFE ;

THE HIGH WORD OF -100,000
AAEA CD0CAB 230 CALL REDN
AAED 11F0D8 240 LD DE,-10000 ; THE LOW WORD AND
AAF0 01FFFF 250 LD BC,#FFFF ;

THE HIGH WORD OF -10,000

66 Machine Code for Beginners on the Amstrad

AAF3 CD0CAB 260 CALL REDN
AAF6 1118FC 270 LD DE,-1000
AAF9 CD0CAB 280 CALL REDN
AAFC 119CFF 290 LD DE,-100
AAFF CD0CAB 300 CALL REDN
AB02 1EF6 310 LD E, -10
AB04 CD0CAB 320 CALL REDN
AB07 3A3EAB 330 LD A,(43838)
ΑΒ0Α 1825 340 JR PRIN
AB0C 3E00 350 REDN LD A, 0
ΑΒ0Ε 3C 360 FNUM INC A
AB0F 2A3EAB 370 LD HL,(43838)
AB12 19 380 ADD HL,DE
AB13 223EAB 390 LD (43838),HL
AB16 2A40AB 400 LD HL,(43840)
AB19 ED4A 410 ADC HL, BC
AB1B 2240AB 420 LD (43840),HL
AB1E 38EE 430 JR C,FNUM
AB20 2A3EAB 440 LD HL,(43838)
AB23 ED52 450 SBC HL, DE
AB25 223EAB 460 LD (43838),HL
AB28 2A40AB 470 LD HL, (43840)
AB2B ED42 480 SBC HL, BC
AB2D 2240AB 490 LD (43840),HL
AB30 3D 500 DEC A
AB31 C630 510 PRIN ADD A,#30
AB33 CD5ABB 520 CALL 47962
AB36 C9 530 RET

Figure 6.13

Pass 2 errors: 00

THE CHECK-SUMS REGUIRED BY THE HEX LOADER ARE
03C9 0335 0364 03F6 0562 05D4 0575 04FB 0322 02DD 047D
04F7 0464 00C9

If you do get stuck writing the 32 bit addition program, there is
one possible solution elsewhere in the book. Try to follow what it
does and then rewrite it another way. It is also suggested that you
re-read the latter part of this chapter if you still have problems.

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
rr = a register pair being used as a 16 bit register
n = an 8 bit number

Simple Maths 67

nn = a 16 bit number
() round a number or register pair = the address at
PC = Program Counter
SP = Stack Pointer.

The INC r or DEC r adds 1 to or takes 1 from r. Both affect the
zéro flag according to the resuit. If the resuit is 0 then the flag is
set, otherwise it is reset.

INC rr and DEC rr operate as above, but they work on a register
pair as if they were one 16 bit register. These instructions do not
affect any flags.

The A or accumulator register is the only register that can
contain the resuit of an 8 bit maths operation.

Eight bit maths operations are:
SUB r SUB n SUB (nn) SUB (HL) which subtract from the A

register.
ADD A,r ADD A,n ADD A,(nn) ADD A,(HL) which add to the

A register.
SBC A,r SBC A,n SBC A,(nn) SBC A,(HL) which subtract with

carry from the A register.
ADC A,r ADC A,n ADC A,(nn) ADC A,(HL) which add with

carry to the A register.
The HL register pair must be used to contain the resuit of a 16

bit maths operation.
The 16 bit maths operations are:
ADD HL,rr which adds the contents of rr to the HL register

pair.
ADC HL,rr which adds with carry to the HL register pair.
SBC HL,rr which subtracts with carry from the HL register

pair.
If there is a borrow needed or a carry over from any maths

operation the carry flag will be set, otherwise it is reset. If the
resuit of a maths operation other than a 16 bit addition is 0 the
zéro flag is set, otherwise it is reset.

The instruction AND A is used to ensure the carry flag is reset
regardless of its previous condition, when the SBC instruction
does not require the carry in a 16 bit operation.

Chapter Seven

Flags, Conditions and
Decision
Making

In the last chapter the use of the carry flag in mathematical
operations was examined in some detail, and it was shown how
the resuit of a maths calculation affected this flag. The zéro flag
was also briefly introduced.

Both these flags are single bits in a spécial register known,
predictably, as the Flag Register. As you ail know there are eight
bits in a register, so what are the rest used for? Correct! There are
more flags to indicate other things. The flag register is made up as
follows:

1

1 S
I SIGN

| M/P

1

1 ZERO

1 Z/NZ

1 1

1 NOT 1

I USED |

I I

H
HALF

CARRY

1 1

1 NOT 1

I USED |

P/V
PARITY/

OVERFLOW
PE/PO

1 1

1 N i1 ADD/ 1
1 SUBTRACT |

I 1

1

c I

CARRY |

C/NC |

1__________
1 1 1 1 1 1 1 J

The letter at the top of each flag bit is the abbreviation used by
Zilog to identify the flag; it will be found in the Appendix of
instruction codes, as well as in most literature about the Z80. Next
is the full name of the flag, and last the programmer's means for
testing the condition of the flag. You will note, however, that
only four of the flags are accessible to the programmer; the
remainder are used intemally by the CPU.

Imagine the CPU in your computer as being a railway engine,
and the program as being the rails that the train is running along.
The train can be made to change the track it is running on by
switching points, and somewhere along the line there will be a
man in a signal box who will pull a lever to change the points. He
will know in advance where the train is going and which points

68

Flags, Conditions and Decision Making 69

to set in which direction. This is the sort of action taken by jurnps
and calls in a program. But what happens if the train is to go
different ways according to the amount of freight and to which
stations it is consigned?

The only way the signalman can know which way to switch the
points is if the train-driver lets him know. Problem! How to let
the signalman know. The train must not stop otherwise it will be
late, not to mention the fuel that will be wasted. So a System of
flags is devised, but the driver can only signal one thing at a time,
because he can only hold one flag, and he can only signal yes or
no, because he is going too fast to be able to use sémaphore.

With machine code it is the same, and it is the flags that form
the basis for ail decision making, and only yes or no to a spécifie
question can be signalled by a flag. Since there are only four flags
that can be employed, some thought has to be applied in order to
arrive at the decision required; it's a little like twenty questions.

It has already been shown that arithmetic operations affect
flags, but it is often the case that, when a test is required, it is
unacceptable to alter whatever is being tested. The score example
in the last chapter is a good instance of this. Consider the situa­
tion where a table of highest scores is being maintained, and the
score from the last game is being investigated as to eligibility. It
would be a bit daft if the only way to find out if the new score is
higher than that at the top of the table, is to subtract the old high
score from the one under investigation, and then test the carry
flag. If it is not set, that is no carry (NC), it is then known that the
new score was higher than the previous best.

Before criticising the change in tense, consider what will
happen when the new score is put at the top of the high score
table. Assume that the previous best is 15575 and the latest was
21024, when the test was made. The score that will be put at the
top of the table is 5449. Daft!

It will nearly always be possible in this situation to reclaim the
value previous to the test, but why should one have to? It would
be much nicer if there was a sort of 'dummy' subtraction to make
the test. An instruction to compare and set the flags, without
altering anything else. There is, and what's more it is called
compare! Fiendishly cunning, these Zilogians!?!

As usual the mnemonic is an abbreviated version of the
English, and compare is shortened to CP. It acts exactly like the
SUB instruction, but does not change the contents of any register

70 Machine Code for Beginners on the Amstrad

except the flag register. You will recall that the SUB instruction
only opérâtes with the A register, the CP also only opérâtes on the
A register.

Ail maths operations except the 16 bit ADD influence ali the
flags; the only usable flag affected by the 16 bit ADD is the carry
flag. It is therefore normally the case that a compare will not be
necessary after a maths operation, upon whose resuit a decision
dépends.

The compare instruction is, as you would expect, constructed
in the same way as 8 bit maths instructions, the only change is to
bits 5,4 and 3. These bits become 111 in place of what they would
have been for any other operation. For example:

ASSEMBLER BINARY

SUB n 10 010 110 n B 000

CP n 10 111 110 n C 001

D 010

SUB r 10 010 r r is. as usual E 011

CP r 10 111 r H 100

L 101

SUB (HL) 10 010 110 (HL) 110

CP (HL) 10 111 110 A 111

In the previous chapter two flags were introduced, the carry
flag and the zéro flag. These were utilised by the program, to
enable it to make decisions dépendent upon their condition. The
term used to describe instructions which act according to the
condition of a flag is, as always, boringly predictable. They are
known as 'conditional' instructions. In BASIC the "IF such-and-
such THEN so-and-so" statement is conditional, and the THEN
is so often followed by a GOTO that many BASICs, including
your Amstrad's, even allow the GOTO to be omitted.

In machine code things are much the same. The analogy
between the GOTO in BASIC and jump instructions in machine
code has already been emphasised, but this similarity goes even
further than has so far been pointed out. In the program in Fig.
6.3 a jump (JR) was made according to the condition of the zéro

Flags, Conditions and Decision Making 71

flag, and the carry flag was employed in the same way, by the
program in Fig. 6.5. This is almost identical to the IF . . . THEN
structure of BASIC.

The apparent lack of things that can be tested for is in fact no
real limitation, as a short analysis of the flags and the things that
they indicate will soon show. The carry flag will be examined
first, because you already have some expérience of it.

With the exception of INC and DEC instructions, any opera­
tion which causes an overflow from the register or registers being
operated on sets the carry flag, and conversely any operation
which could cause the carry flag to be set, will reset it if there is no
overflow.

To make this clearer a few examples are given below:

LD A,Û

DEC A Will re-set the carry flag , but LD A,C1

SUB 1 will set

LD B, 156

LD A, 100 LD BC,65000

ADD A, B Will set the carry flag, as will LD HL,5536

ADC HL,BC

LD BC, 65000

LD HL,5536 LD BC,5536

SBC HL,BC but LD HL,65000 LD A, 225

SBC HL,BC or ADD A,25

will 1 eave the flag reset.

In brief, any 8 bit addition which gives an answer over 255, or any
16 bit addition which cornes to over 65535 will set the carry flag, as
will any subtraction whose answer is less than 0. It is similar to a
BASIC > (gréater than) or < (less than).

Most of the instructions that affect the carry flag also set the
zéro flag if the resuit is 0, or reset the zéro flag if the answer is not
0. The only exception to this rule, with the instructions intro-
duced so far, is the 16 bit ADD HL. This opcode leaves the zéro
flag in the same condition as it was before the ADD HL was

Ί2 Machine Code for Beginners on the Amstrad

executed. The zéro flag can be thought of as being équivalent to
the BASIC = (equals).

This similarity is most profound when the CP instruction is
employed to set the flags. The zéro flag will always be set if there
is no différence between the contents of the A register and what
the A register is being compared with, and reset otherwise.

There are also a great many instructions that modify the zéro
flag and not the carry flag, but so far, as was pointed out at the
time, the 8 bit INC and DEC are the only two cases. From now on
as new instructions are broached, the way they al ter the flags
which are accessible to you, the programmer, will be detailed.

By testing just the carry and zéro flags after a well-thought-out
comparison (CP) it is possible to answer almost any questions
which can be answered yes or no. At first you will find that you
often get unexpected results but, once you leam to think like a
microprocessor, it will become second nature to ask the right
question and look at the correct flag.

Beware of the snap decision, or using two tests where different
flags may indicate both answers in response to one well-thought-
out test! Look at the following program which jumps to various
labels according to the value in the A register. What is being
sought is the code for the letter “A”, but more information is also
required.

1) Does the A register contain an ASCII code?
2) If it does THEN is it a code for a letter?
3) IF it is THEN is it the code for the first letter of the alphabet?

At this point you might think that it is safe to assume the A

CP 128
JR NC,NOTASC

Ail valid ASCII codes are below 128
If there is a carry the A register must hold a
value below 128. No carry and it must be 128
or over hence A does not hold an ASCII
code. So jump to the label NOTASC if NC
(no carry)

CP 32 AU ASCII letter codes are over 32. If there is
a carry A must hold a value below 32

JR C,NOTLET
CP 65
JR Z,ISA

Jump on carry to NOTLET (NOT LETter)
This could have been written CP “A"
IF there is no différence THEN the zéro flag
wiU be set so, jump on zéro.

Flags, Conditions and Decision Making 73

register holds an ASCII letter code and it is not A, but you would
be wrong. Look at Appendix III in your Amstrad manual and you
will find that whilst codes over 31 are ail 'printable' letters do not
start until code 65. So if you now change the instruction CP 32 to
CP 65, and delete the original CP 65, you have not only saved an
instruction but also avoided a misleading resuit. There are still a
number of things wrong. ASCII codes for letters do not continue
to code 127, ail codes over 122 are punctuation, as are codes 91 to
96 inclusive. Can you add the necessary instructions to jump to
the label NOTLET with these codes? Try to work out a solution
before reading on. One due, you will need an extra label ISLET
(ISLETter).

74 Machine Code for Beginners on the Amstrad

You should have added the following instructions:

CP 123
JR NC, NOTLET

; The first code that is not a letter
; No Carry means A must hold over 123 (the

Iast letter)
CP 91 ; The first non letter value after the

CAPETALS
JR C,ISLET ; If there is a carry then A must hold a value

below 91. Therefore as ail values below 65
have already been excluded, A must hold
the code for a CAPITAL LE!TER

CP 97
JR C,NOTLET

; The code for the first lower case letter
; Bearing in mind the previous instructions,

this decision can be made. JR NC,ISLET
would also have worked, Fut!

If you were testing for someone pressing "A" from the keyboard,
what happens if they have pressed a lower case “a”? Nothing!
This is the sort of thing that you must be very careful of,
whenever you are looking for an input from the keyboard, or
searching through text. The addition of one further instruction
will correct the program.

JR Z,ISA The zéro flag will be set if A contains 97 (the
code for“a”)

ISLET (the label for the address the program transfers control to if
the A register holds the ASCII code for a letter which is not “A" or
"a") should be placed at the end of the program. This avoids the
addition of another jump, because the program's flow will arrive
at this label naturally, if no jumps at ali have been made, and the
A register will be holding an ASCII letter code, not “A” or "a".

Enter this program into your computer and experiment with it
until you are happy that you understand how it works. Then
change it to look for another letter. For those of you using an
assembler it will be easy to make the modifications once you have
worked out your new coding. Those using the HEX LOADER will
have to completely rewrite the program, work out ali the jumps,
and re-enter it in its entirety.

This first section will allow the program to take input from the
keyboard, and the results of the program to be output to the
screen. It uses the same two routines in the operating System as
have been used before. Note the way the program prints out

Flags, Conditions and Decision Making 75

messages, and chooses which message to print. This is analysed
later.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

AAB4 10 ORG 43700
AAB4 20 ENT 43700
AAB4 CD18BB 30 START CALL 47896
AAB7 0604 40 LD B,4
AAB9 FEFC 50 CP 252
AABB C8 60 RET Z
AABC FE80 70 CP 128
AABE 3016 80 JR NC,NOTASC
AACO FE41 90 CP 65
AAC2 3811 100 JR C,NOTLET
AAC4 2811 110 JR Z, ISA
AAC6 FE7B 120 CP 123
AAC8 300B 130 JR NC,NOTLET
AACA FE5B 140 CP 91
AACC 3806 150 JR C,ISLET
AACE FE61 160 CP 97
AADO 3803 170 JR C,NOTLET
AAD2 2803 180 JR Z, ISA
AAD4 05 190 ISLET DEC B
AAD5 05 200 NOTLET DEC B
AAD6 05 210 NOTASC DEC B
AAD7 21EDAA 220 ISA LD HL,MESST
AADA 3E0A 230 LD A,«OA
AADC BE 240 LOOKMS CP (HL)
AADD 23 250 INC HL
AADE 20FC 260 JR NZ,LOOKMS
AAEO 10FA 270 DJNZ LOOKMS
AAE2 7E 280 PRINT LD A,(HL)
AAE3 CD5ABB 290 CALL 47962
AAE6 FEOA 300 CP «OA
AAE8 28CA 310 JR Z,START
AAEA 23 320 INC HL
AAEB 18F5 330 JR PRINT
AAED OA 340 MESST DEFB «OA
AAEE 41204C45 350 DEFM "A LE"
AAF2 54544552 360 DEFM "TTER"
AAF6 20425554 370 DEFM " BUT”
AAFA 204E4F54 380 DEFM " NOT"
AAFE 2041 390 DEFM " A"
ABOO ODOA 400 DEFW «OAOD
AB02 4E4F5420 410 DEFM "NOT "
AB06 41204C45 420 DEFM "A LE"
ABOA 54544552 430 DEFM "TTER”
ABOE ODOA 440 DEFW «OAOD
AB10 4E4F5420 450 DEFM "NOT "
AB14 41534349 460 DEFM "ASCI"

76 Machine Code for Beginners on the Amstrad

Pass 2 errors: 00

AB18 49 470 DEFM Il J II

AB19 0D0A 480 DEFW #0A0D
AB1B 594F5520 490 DEFM "YOU "
AB1F 50524553 500 DEFM "PRES"
AB23 53454420 510 DEFM "SED "
AB27 4121 520 DEFM " A ! "
AB29 ODOA 530 DEFW #0A0D

Figure 7.1

You will see that there is no separate Hex listing given for the
program in Fig. 7.1 and none of the programs in the remainder of
this book will have them. By this stage you should be familiar
enough with the HEX LOADER to be able to use the Hex listing
from the assembler. This is the column one from the left, starting
- in this case - CD18BB.

As usual, if you are using the HEX LOADER you enter the
program in pairs of Hex numbers. The addresses for SET
MEMORY, the START ADDRESS and the checksums are given
below.

SET MEMORY TO AAB3
START ADDRESS AAB4
Checksums; 05EA, 0380, 036C, 023A, 0567, 0395, 02DB, 0226,
02A5, 0248, 0264, 01C8

If you are using the assembler, there is no need to split the
messages into small blocks. This has been done because the
assembler only gives a Hex listing of the first four bytes on each
line. Line 350 could therefore be

DEFM "A LETTER BUT NOT A"

and Iines 360 to 390 inclusive would not be needed. The same
applies to the other messages.

There are a number of interesting points in this program which
are worth explanation.

With almost any machine code program, once it is running
there is no way of stopping the program unless you have given an
escape route. The program above goes round in a loop. When
called from BASIC by a 'CALL 43700' command, or from the
assembler by R, the program would continue giving its assess-

Flags, Conditions and Decision Making 77

ment of keys pressed on the keyboard until Doomsday, a
breakdown, or you reset or switched off the computer.

A means of escape has therefore been provided. The first check
the program makes on the code retumed in the A register, from
the WAIT KEY routine at 47896 is to see whether it holds 252, the
code retumed by the red ESC key, if so a RETum to the CALLing
program is made.

The next section of the program has already been explained,
and the four labels ISLET, NOTLET, NOTASC and ISA have now
been included. There are four messages that are printed
according to the assessment of the code in the A register, and
each message has been given a number, 1 to 4. The B register is
loaded with 4 at the start of each loop round the program, and is
decremented according to which label the program jumps to.
Should it jump directly to the label ISA then the B register will be
left holding four, but when the jump is to the label ISLET, the B
register will be decremented three times, and hold 1 when the
program arrives at the label ISA. This is used to décidé which of
the messages is to be printed.

The message table starting at the label MESST is then scanned,
and the B register decremented each time a byte holding OAh is
found until B holds 0. Rather than use two instructions, the
semi-automated DJNZ instruction is employed.

This instruction is constructed in exactly the same manner as a
JR NZ instruction, but it is the first of many Z80 instructions yet
to be introduced, that do the combined jobs of more than one
normal instruction.

The DJNZ instruction performs the équivalent of a DEC B
followed by a JR NZ instruction, but with a saving of 1 byte, and
without affecting any flags.

ASSEMBLER DECIMAL HEX BINARY

DJNZ n 16 n 10 n 00 001 010 n

As usual with a relative jump n is the jump distance, in 2s
complément, from the address of the next instruction.

Once the B register is decremented to 0, the program continues
and the message is printed from the byte following that holding
the OAh which caused B to reach 0, up to and including the end of
the message, marked by the next OAh. You will notice that each
end marker (OAh) is preceded by a byte holding ODh. The com­

78 Machine Code for Beginners on the Amstrad

bination of these perform a carnage retum and a line feed,
positioning the cursor ready for the next message. Control is then
retumed to the start of the program and the process is repeated for
the next key pressed.

The next flag to be examined is the sign flag, which indicates
whether the sign of the resuit of a maths operation is Plus or
Minus. This flag, and the Parity/Overflow flag, whose function
will be explained next, cannot be used in connection with a
relative jump (JR) instruction. It is time therefore to detail ali the
instructions which can be made conditional upon the setting of a
flag.

So far, with the exception of one instruction in the program in
Fig. 7.1, the only conditional branches have been made by
relative jumps. The full opcodes for both unconditional and
conditional relative jumps are shown in Fig. 7.2.

ASSEMBLER DECIMAL HEX BINARY

DJNZ n 1 6 n 10 n 00 010 000 Π

JR n 24 n 18 n 00 011 000 n

JR NZ, n 32 n 20 n 00 100 000 n

JR Z,n 4Θ n 28 n 00 101 000 n

JR NC, n 48 n 30 n 00 110 000 n

JR C, n 56 n 38 n

Figure 7.2

00 111 000 n

As you might expect an absolute jump JP can also be made
conditional on the setting of flags, as can the CALL and RET
instructions. These instructions are not limited like the relative
jumps, to using only the Carry and Zéro flags. They can use any of
the user accessible flags.

You will remember that each of the general purpose registers
has a three bit code, used to identify it in ali the instructions
which can use any general purpose register, by changing three
bytes in the instruction, according to which register is to be used.
The same System is employed by the Z80 to identify conditions.

NZ (not zéro)
Z (zéro)

000
001

Flags, Conditions and Decision Making 79

NC 'no carry) 010
C (carry) 011
PO (parity odd) 100
PE (parity even) 101
P (sign positive) 110
M (sign négative) 111

In each of the instructions below, cc represents the condition,
selected from those above, upon which the program is to branch.
The three bits denoted cc in the binary instruction, comprise
three bits from above according to the condition chosen.

ASSEMBLER BINARY

JP cc, nn 11 cc 010

CALL cc, nn 11 cc 100

RET cc 11 cc 000

JP NC,47962 therefore becomes 11 010 010 01011010 10111011
and CALL Z,47960 will be 11001100 01011000 10111011.

Obviously the sign flag can only indicate the sign of a resuit
correctly when 2s complément notation is being used. The flag is
meaningless as a sign flag when computations are in unsigned
binary, although it can still be useful as a test of bit 7. For
example: the A register contains a positive value of 254 after a
maths operation. The sign flag however will be set, erroneously
indicating a négative resuit. This is because the sign flag simply
reflects the State of bit 7 of the resuit. In future, instead of making
references to 2s complément notation, which is rather long
winded, the term 'signed' will be employed. This will reflect
that the sign flag correctly indicates the sign of the resuit of a
maths operation.

The sign flag is affected by ali 8 bit maths operations, including
CP (compare), 8 bit INC and DEC instructions, and the 16 bit
ADC and SBC instructions. None of the other instructions you
have leamt so far affects it in any way. As new instructions are
annotated their effect on flags will be detailed where it is useful,
and the effect of ali instructions on any flags is shown in the
appendix of opcodes.

The last flag that is of use to the programmer is the Parity/
Overflow flag. This flag has two distinct uses and cannot be used

80 Machine Code for Beginners on the Amstrad

for both purposes at the same time. It is either an overflow flag or a
parity flag, never both.

Ail instructions that affect the Zéro flag also affect the P/V flag,
and ali the instructions explained in this book so far that affect the
Zéro flag use the P/V flag in its rôle as an overflow flag.

The Overflow flag indicates that the execution of a signed
calculation has caused the resuit to exceed the range that can be
held in signed form. Confused? Not surprising, this is possibly
the most complicated concept so far, but once you get the hang of
signed overflows you will wonder what ali the trouble was about.
Consider the following short program:

LD A,-80
ADD A,-80

On completion the A register will hold 0110 0000 in binary, which
is 96 or 60h. This is a positive number (bit 7 reset) and not the
correct answer. In this example the carry flag will be set, allowing
you to pick up the fact that the resuit caused an overflow. But
what about the sum:

LD A,80
ADD A,80

This time the A register will hold the answer 1010 0000 in binary,
which is —96. Again not the correct answer but this time the carry
flag will not be set. Ostensibly, without knowing instinctively,
there is no indication of the sum going wrong. This is where the
Overflow flag cornes in. Any maths operation that causes a resuit
outside the arithmetic range for the instruction, that is -128
< = n < = 127 for an 8 bit operation, or -32768 < = nn
< = 32767 for a 16 bit operation will cause the overflow flag to be
set.

To test the overflow flag the mnemonics are PE and PO, a jump
will be made by PO if there has been an overflow, and by PE if
there has not. In fact PE stands for Parity Even and PO stands for
Parity Odd, and are used here, because no additional mnemonics
have been assigned to the flag, to separate its use as an overflow
flag and a parity indicator. It may help to remember which
mnemonic to use if you note that the mnemonic which will cause
a branch if there is an overflow is the only one to contain the
letter O.

Flags, Conditions and Decision Making 81

No overflow can be caused by adding two numbers with
different signs, and only numbers with different signs can cause
an overflow in subtraction.

Parity is determined by the number of bits in a byte that are set
to 1; if there is an even number then parity is said to be even. The
P/V flag, after an instruction which uses it as a parity flag, will
indicate the parity of the byte tested. The flag is set if the parity is
even and reset if the parity is odd. None of the instructions
introduced so far uses the P/V flag in its parity rôle. It will be
pointed out when a new instruction employs the P/V flag as a
parity flag.

There are two further instructions to be considered in this
chapter, SCF and CCF.

These are both completely straightforward in operation. SCF is
short for Set Carry Flag, and that is exactly what it does when
executed. CCF is short for Complément Carry Flag, and again that
is what it does. No, not by telling it what a nice carry flag it is, but
by changing its State. If the carry flag was set before the execution
of a CCF instruction it would be reset afterwards, and the
converse if the flag was reset before the CCF instruction.

The opcodes are as follows:

ASSEMBLER DECIMAL

CCF 63

SCF 55

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
rr = a register pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = contained in
cc = a condition
PC = Program Counter
SP = Stack Pointer

3F 00 111 111

37 00 110 111

82 Machine Code for Beginners on the Amstrad

The usable flags are CARRY ZERO SIGN and P/V.
The P/V flag has two separate uses, Parity and Overflow.
Overflow signais that the sign has changed on a signed arith-

metic operation, making the resuit wrong.
cc is C, NC, Z, NZ, PE, PO, M and P.
CP performs a dummy SUB on the A register, it sets flags, but

does not alter anything else.
JR can only be conditional on the Carry flag or the Zéro flag.
DJNZ does the équivalent of a DEC B and a JR NZ, but does not

affect any flag at ail.
CALL JP and RET can ali be made dépendent on any usable

flag.
No LD CALL JP JR or RET instruction affects any flag.

Chapter Eight

Logical Operations

The Z80 CPU is endowed with a set of logical operators almost
identical to that possessed by the Amstrad CPC 464's BASIC. This
is not really surprising, since it is the Z80 which does ali the work
of running BASIC. This makes the job of explaining the machine
code instructions AND OR and XOR much easier, since you are
no doubt already familiar, albeit unknowingly, with the way they
fonction, excepting their effect on flags. If you have not yet
become acquainted with these operators on the Amstrad, then
tum to Chapter 4 page 18 in the Amstrad User Instructions, where
you can read about them. The remainder of this chapter assumes
a working knowledge of Amstrad BASIC logical expressions.

The AND OR and XOR logical operators are classed as mathe-
matical, and can only be performed on 8 bit values using the A
register. If you look at the opcodes below, you will find that they
are made up identically to the other 8 bit maths instructions, with
bits 5, 4 and 3 changed according to the instruction. The
mnemonics do not require the A register to be stipulated since, as
with the SUB mnemonic, there is no other register which can
employ them.

The flags are affected by ali the logical operators, and are set
according to the contents of the A register after execution.
Obviously, since no resuit from an AND OR or XOR can ever
cause a resuit outside the range of 8 bit numbers ail these instruc­
tions reset the carry flag to 0. And because it would be impossible
to cause an overflow the P/V flag takes on its Parity rôle. The Sign
flag will reflect the State of bit 7 in the A register after the opera­
tion, and the Zéro flag will be set if the A register has no bits set
otherwise it will be reset.
Before being able to make efficient use of these logical operators
you will have to start thinking in binary. Only then do the many
and varied uses become apparent. At présent it is most unlikely

83

84 Machine Code for Beginners on the Amstrad

ASSEMBLER DECIMAL HEX BINARY

AND n 230 E6 1 1 100 110

AND r 160 - 167 AO - A7 10 100 r

XOR n 238 EE 11 101 110

XOR r 168 - 175 A8 - AF 10 101 r

OR n 246 F6 11 110 110

OR r 176 - 183 BO - B7 10 110 r

that you are thinking in binary, so you probably can't begin to
think what purposes these may be.

Consider the program in Fig. 7.1. Here tests had to be made
séparately for lower and upper case letters, and for the gaps
between the two types of letters. But in fact the only différence (in
binary) between the two sets of letters is the condition of bit 5. Ail
upper case letters have bit 5 reset, and ail lower case letters have
bit 5 set. Using the logical operator and it is possible to make
a lower case letter upper case, and by use of the logical operator or
an upper case letter can be made lower case. Can you work out the
full form of the instruction?

With the alterations to the program in Fig. 7.1 given below, the
answer to the question above can be demonstrated.

Change line 220 to:

AB3B C9

ADDRESS

AAD7

HEX Acer»

CALL

lELER

CD 2B AB EXTRA Checksum fc,; th is is (

Add the toll owi nq at the end c-f the ρι•-üqram

AB2B CD 5A BB CALL 47962

AB2E 00 NOP

AB2F 00 NOP

AE30 CD 5A BB CALL 47962

AB33 3E 20 LD A,32 ; THE CODE FOR SPACE

AB35 CD 5A BB CALL 47962

AB38 21 ED AA LD HL ,MESST

RET

Logical Operations 85

The checksums required by the HEX LOADER for this second
section are: 0422, 0463.

Now when the program is executed the character generated by
the code retumed by the key you press will appear twice,
followed by a space, before the program gives its verdict. The two
NOPs give space for you to put an AND OR or XOR instruction,
and then see the effect it has.

First change the two NOPs to:

ADDRESS HEX ASSEMBLER

AB2E F6 20 OR «20

The easiest way to do this if you are without an assembler is to
type POKE &AB2E,&F6: POKE &AB2F,&20 as a direct command.
Now execute the program again and try pressing various keys,
both with and without the shift key. (Remember to make sure
that the CAPS LOCK is not on Why oh why couldn't
Amstrad have put a light in the caps Iock key to indicate when it
was in use?)

You will find that ail upper case letters are changed to lower
case, numbers are left alone, as are lower case letters, and other
codes may or may not be changed, according to whether they had
bit 5 set originally. By incorporating this OR #20 instruction in
the main program, a lot of the tests using CP can be made
redundant. The revised version of the program in Fig. 7.1 is given
in Fig. 8.1. You will see that the sign flag has been used to indicate
when the code is not ASCII (bit 7 set, that is the value in A is 128
or over). The sign flag couldn't be used before because it would
not have given an indication of bit 7 of the code of the key pressed
without a CP 0 instruction, and this would have added a byte to
the length of the program, because the sign flag cannot be tested
by a JR instruction. Now that the logical opérator is being used
the test instruction that was necessary in the original program can
be thrown out, giving a net saving of one byte after the JR is
replaced by the JP.

Hisoit GENA3 Assembler.. Page 1.

Pass 1 errors: 00

1 ; FIG 8,1
2 ; AMMÉNDED VERSION 0F PROGRAM IN FIG 7,1

AAB4 10 ORG 43700
AAB4 20 ENT 43700

86 Machine Code for Beginners on the Amstrad

Pass 2 errors: 00

AAB4 CD18BB 30 START CALL 47896
AAB7 0604 40 LD B,4
AAB9 FEFC 50 CP 252
AABB C8 60 RET Z
AABC F620 90 OR #20
AABE FACDAA 100 JP M,NOTASC
AAC1 FE7B 120 CP 123
AAC3 3007 130 JR NC,NOTLET
AAC5 FE61 160 CP 97
AAC7 3803 170 JR C,NOTLET
AAC9 2803 180 JR Z, ISA
AACB 05 190 ISLET DEC B
AACC 05 200 NOTLET DEC B
AACD 05 210 NOTASC DEC B
AACE 21E4AA 220 ISA LD HL,MESST
AAD1 3E0A 230 LD A,«OA
AAD3 BE 240 LOOKMS CP (HL)
AAD4 23 250 INC HL
AAD5 20FC 260 JR NZ,LOOKMS
AAD7 10FA 270 DJNZ LOOKMS
AAD9 7E 280 PRINT LD A,(HL)
AADA CD5ABB 290 CALL 47962
AADD FEOA 300' CP «OA
AADF 28D3 310 JR Z,START
AAE1 23 320 INC HL
AAE2 18F5 330 JR PRINT
AAE4 OA 340 MESST DEFB «OA
AAE5 41204C45 350 DEFM "A LE”
AAE9 54544552 360 DEFM “TTER"
AAED 20425554 370 DEFM " BUT”
AAF1 204E4F54 380 DEFM " NOT"
AAF5 2041 390 DEFM " A"
AAF7 ODOA 400 DEFW «OAOD
AAF9 4E4F5420 410 DEFM "NOT "
AAFD 41204C45 420 DEFM "A LE"
ABOI 54544552 430 DEFM "TTER"
AB05 ODOA 440 DEFW «OAOD
AB07 4E4F5420 450 DEFM "NOT "
ABOB 41534349 460 DEFM "ASCI"
ABOF 49 470 DEFM "I"
AB10 ODOA 480 DEFW «OAOD
AB12 594F5520 490 DEFM "YOU “
AB16 50524553 500 DEFM "PRES"
ABIA 53454420 510 DEFM "SED "
AB1E 4121 520 DEFM " A ! "
AB20 ODOA 530 DEFW «OAOD

Table used: 110 from 184
Exécutés: 43700

Figure 8.1

Checksums: 0582, 05B8, 0215, Θ4Β6, 0439, 02A7, Θ22Β, Θ2Α2, 0251, 0268, 020D
0608, 0278

Logical Operations 87

The AND instruction could have been used in place of the OR
changing lower case to upper case instead, and the appropriate
modifications made to cater for this. In this case AND #DF would
remove any bit 5 that was set.

If the OR in the program in Fig. 8.1 is changed for XOR and the
changes given earlier to display the character represented by the
code both before and after the logical operation are incorporated,
you will find that upper case is changed to lower case and vice
versa. Be careful not to press any non-alphabetic keys, as the XOR
will make some of these into Control codes.

The AND instruction is usually employed to 'mask' bits. This is
the term used when a bit or bits are ignored, or made insig-
nificant. For example, if a program required each letter of the
alphabet to be represented by a number, with Ά' as 1 through to
'Z' as 26, without differentiating between upper and lower case.
Here the easiest solution would be to mask the top three bits of
the letter's code with an AND %00011111.

The OR instruction has the opposite effect, and could be used
to reclaim bits masked out by an AND. One of the more common
uses is to allow any writing to the screen to be carried out in 'over'
form, that is, bits from whatever previously occupied a character
square are only altered when they are overwritten. Another
common use is to reclaim masked bits or modify values. For
example, the programs used to print numbers held in registers or
memory, which started with the program in Fig. 6.5 and
developed to the program in Fig. 6.14, ali used the instruction
ADD A,#30 to transform a number into its ASCII code; this was
in fact doing the same operation as an OR #30, which is what
would have been used had you known the instruction at the time.
It would not save any memory but does make what is happening
much clearer.

The XOR instruction, like the OR, is often used for screen-
based operations, and your Amstrad uses it for 'Transparent'
mode printing (see Chapter 5, page 2 in the Amstrad User
Instructions). It is also often used when a bit or bits are to be
changed to the opposite of what they were.

Next in the list of logical operators is the complément instruc­
tion, which has the mnemonic CPL, and again there is a direct
équivalent in Amstrad BASIC. This instruction does the same job
as the BASIC NOT. As with ali the instructions in this chapter it
opérâtes on the A register only, and simply changes every bit to

88 Machine Code for Beginners on the Amstrad

the opposite state. In tact the resuit is identical to that achieved by
aXOR#FF.

A graphie démonstration of the CPL in use can be given by the
program shown in Fig. 8.2, which compléments ali the bits in the
screen map (the area of memory in which ali the information
about what is to be displayed on the screen is held). This will
invert the bits for both paper and pen and whilst in mode 2 this
will cause the screen to become a négative of its former self.

In modes other than 2 things are a bit more tricky. This is
because there are more than two colours available, and whilst in
mode 2, paper is set to 0 and pen to 1, which is differentiated by 1
bit in a byte; and 1 byte can therefore Control eight screen pixels,
each bit being 1 for a pixel set to ink 1 and 0 for a pixel set to ink 0.
Inverting these bits with a CPL instruction will therefore make ail
ink 1 ink 0 and ail ink 0 ink 1.

In mode 1 there are four colours to be differentiated between,
and this nécessitâtes two bits to dictate the colour for each pixel,
00 for ink 0, 01 for ink 1,10 for ink 2 and 11 for ink 3. Each byte can
therefore only control four pixels. If the PEN colour is set to 1, and
the PAPER colour to 0, after complementing the bits PAPER will
be 3 and PEN 2.

In mode 0 things become even worse: there are sixteen colours
to cope with, and now each pixel requires four bits, so one byte
can only control two pixels.

You have just found out (if you didn't already know) why the
resolution goes down as the colours go up. Unfortunately the bits
in a byte only correspond to the order you would expect in mode
0, in other modes they are a bit mixed up, and the pun is most
definitely intended. In mode 1, for instance, bits 3 and 7 control
the left-most pixel of the four controlled by a byte, bits 2 and 6 the
next, bits 1 and 5 the one from right-most and bits 0 and 4 the
right-most.

To make matters worse, even the order of the bytes which
control the screen is not what you would expect (unless you have
a decidedly odd mind!). Details of both the byte order and the bit
order for each mode are given in the screen map in the appendix.

The program given in Fig. 8.3 manipulâtes the screen in mode
1, changing the screen to a sériés of one-pixel-wide columns of
INK 0, INK 1, INK 2, and INK 3 when executed. Notice that the
bits for the ink colours are stored with the more significant bit in
the less significant bit position. Whoever thought out this screen
map must be a sadist!

Logical Operations 89

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 5 FIG 8,2
2 ; PROGRAM TO COMPLEMENT THE

SCREEN MEMORY AREA

Pass 2 errors: 00

AAB4 10 ORG 43700
AAB4 20 ENT 43700
AAB4 210OC0 30 LD HL,#C000
AAB7 7C 40 LOOP LD A,H
AAB8 B5 50 OR L
AAB9 C8 60 RET Z
AABA 7E 70 LD A,(HL)
AABB 2F 80 CPL
AABC 77 90 LD (HL) , A
AABD 23 100 INC HL
AABE 18F7 110 JR LOOP

THE CHECKSUMS REQUIRED BY THE HEX LOADER ARE
0421,010F

Figure 8.2

Hiso-ft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG 8,3
20 ; PROGRAM TO1 CREATE BANDS OF

INK 0,1,2, 3
AAB4 30 ORG 43700
AAB4 40 ENT 43700
AAB4 2100C0 50 LD HL,#C000
AAB7 7C 60 LOOP LD A, H
AAB8 B5 70 OR L
AAB9 C8 80 RET Z
AABA 3E5C 90 LD A,*01011100
AABC 77 100 LD (HL),A
AABD 23 110 INC HL
AABE 18F7 120 JR LOOP

Pass 2 errors: 00

THE CHECKSUMS REQUIRED BY THE HEX LOADER ARE
040E,010F

Figure 8.3

90 Machine Code for Beginners on the Amstrad

The CPL instruction does not affect any of the testable flags.
The last of the logical operators is the negate opcode, NEG in

assembler mnemonics, and in CB parlance as well. This instruc­
tion is the simplest of the logical operators. It takes the value in
the A register and changes its sign, by taking its twos complé­
ment. In other words A becomes 0 minus A.

The NEG instruction affects the flags exactly as if a normal SUB
had been executed. Carry, Zéro, Sign and P/V flags are ail
affected, and the P/V flag is used in the Overflow mode.

The opcodes are:

ASSEMBLER DECIMAL HEX BINARY

NEG 237 68 ED 44 11 101 101 01 000 100

CPL 47 2F 00 101 111

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
rr — a register pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = the address at
PC = Program Counter
SP = Stack Pointer

Ali the logical instructions work on the value in the A register.
AND OR and XOR can ail be used with r or n.
AND. Bits set in both the A register and the operand before

execution remain set in the A register after execution, ail other
bits in the A register are reset.

OR. Bits set in either the A register OR the operand before
execution are set in the A register after execution.

XOR. Bits that were set in either the A register OR in the
operand, but not in both, before execution are set in the A
register after execution.

Ali the above instructions reset the carry flag, and affect the
remaining flags according to the resuit in the A register. The P/V
flag is used to test parity.

Logical Operations 91

CPL and NEG do not need an operand.
CPL flips the bits in the A register, and does not alter any of the

testable flags.
NEG retums the twos complément of the value in the A

register. Flags are affected as by a SUB instruction.

Chapter Nine

Using the Machine
Stack

The machine stack has already been mentioned briefly, in
Chapter 5, where it was explained how a CALL instruction placed
the retum address on the stack, for collection later by a RETum
instruction. The importance of keeping a balance, between the
number of things pushed onto the stack and popped off again,
was stressed, and it was shown that, if a RETum was to be made
to the correct address, the next value to corne off the stack must be
the value pushed onto it by the CALL which it is desired to
RETum from.

To complicate matters there are also instructions which allow
the programmer to use the machine stack as a temporary store, in
the same way as the CALL instruction temporarily stores the
retum address ready for collection by the associated RETum.
Though it may not be totally disastrous if a RETum is made to the
wrong RETum address, a RETum made to what the processor
thinks is a retum address, but which is in reality just a number
which is stored on the stack, will almost certainly crash the
System.

The above paragraphe may seem to be belabouring the point,
but an imbalance of the stack is the single most common cause for
machine crashes, and even the most experienced programmers
sometimes get caught out. This is also the prime reason for
making sure that you SAVE any machine code program before
you try to run it. At least you won't then have to start completely
from scratch if it crashes.

You have probably realised what the mnemonics are for
pushing data onto the stack and popping it off again, by the
slightly strange choice of verbs used. The two instructions are:

92

Using the Machine Stack 93

ASSEMBLER

PUSH rr

POP rr

BINARY

11 rrO 101

11 rrO 001

As usual with instructions where rr is specified, any pair of
general purpose registers can be used, and the binary codes to
replace rr for each of the register pairs are, as you should know by
now:

BC = 00 DE = 01 HL = 10

Additionally, with the PUSH and POP instructions you can save
the A register and the flag register onto the stack, and POP them
off again. The only remaining code, 11, is used to denote that AF
is to be used.

When a PUSH is executed the contents of the register pair
nominated are copied into the next positions on the stack, and
the stack pointer is decremented by two, to point at the new
bottom of the stack. A POP does the reverse, copying the contents
of the top of the stack into the nominated register pair and
incrementing the stack pointer twice. This was shown for the
CALL and RET instructions, in Fig. 5.9. Exactly the same process
occurs when the stack is used by the PUSH and POP instructions,
but because instead of the program counter being POPped or
PUSHed off or on the stack, normal registers are used. The
program does not jump.

It is interesting to note that the binary instructions for CALL
and RET are almost identical to PUSH and POP, which is what
you might have expected, knowing how they use the stack.

(CALL 11 001101 RET 11001 001)
PUSH 11 rrO 101 POP 11 rrO 001)

A program which will show the last thing PUSHed onto the stack
and the address pointed to by the stack pointer is given overleaf.

The checksums required by the HEX LOADER are as follows:

0581, 05B6, 0561, 0580, 04F9, 02C7, 047C, 0403, 03A9, 0300,
013D

The majority of this program will be familiar to you, so there is no
need to explain that part, but you will see that a few changes have

94 Machine Code for Beginners on the Amstrad

been made. Instead of the A register counting from zéro, and
having to be altered to hold the ASCII code of the number to be
printed, it now starts by holding #30. The only time that it is
necessary to alter it is when the remainder from the subtractions
is printed, and this is now achieved by an OR.

One new instruction has been introduced, in line 110, but you
will know what this instruction does from the mnemonic. One
interesting point here, that you may have noticed, is that the
binary instruction for LD (nn),SP is 1110 1101 01 110 011 n n,
which fits neatly into the set of LD (nn),rr instructions listed in
Fig. 5.8. The two bit code for the 16 bit register pair, SP is 11, and
this holds true for the LD rr,(nn) instruction as well. So what, you
may ask, is the last remaining two bit code, 10 used for? It would
be logical if it stood for the HL register pair, as it does in ali other
cases, but there is already an instruction to LD HL,(nn) and to LD
(nn),HL.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 5 FIG 9,1
2 J PROGRAM TO SHOW WHERE THE STACK

POINTER
3 ; IS POINTING AND THE VALUE THAT

WILL BE
4 ; ACCESSED BY THE NEXT RETRIEVAL

FROM THE STACK
A410 10 ORG 42000
A410 20 ENT 42000
BB5A 30 PRIN EQU 47962
A410 El 60 PR0G1 POP HL
A411 E5 70 PUSH HL
A412 2234AB 80 LD (43828),HL
A415 CD5AA4 90 CALL PMESS1
A418 CD22A4 100 CALL PR0G2
A41B ED7334AB 110 LD (43828),SP
A41F CD61A4 120 CALL PMESS2
A422 11F0D8 130 PR0G2 LD DE,-10000
A425 CD41A4 140 CALL REDN
A428 1118FC 150 LD DE,-1000
A42B CD41A4 160 CALL REDN
A42E 119CFF 170 LD DE,-100
A431 CD41A4 180 CALL REDN
A434 1EF6 190 LD E,-10
A436 CD41A4 200 CALL REDN
A439 3A34AB 210 LD A,(43828)
A43C F630 220 0R #30

Using the Machine Stack 95

A43E C35ABB 230 JP PRIN
A441 3E30 240 REDN LD A,#30
A443 3C 250 FNUM INC A
A444 2A34AB 260 LD HL,(43828)
A447 19 270 ADD HL, DE
A448 2234AB 280 LD (43828),HL
A44B 38F6 290 JR C,FNUM
A44D 2A34AB 300 LD HL,(43828)
A450 ED52 310 SBC HL, DE
A452 2234AB 320 LD (43828),HL
A455 3D 330 DEC A
A456 CD5ABB 340 CALL PRIN
A459 C9 350 RET
A45A 0607 360 PMESS1 LD B,7
A45C 216EA4 370 LD HL,MESSI
A45F 1805 380 JR MLOOP
A461 0604 390 PMESS2 LD B,4
A463 2175A4 400 LD HL,MESS2
A466 7E 410 MLOOP LD A,(HL)
A467 CD5ABB 420 CALL PRIN
A46A 23 430 INC HL
A46B 10F9 440 DJNZ MLOOP
A46D C9 450 RET
A46E 0A0D 460 MESSI DEFW #0D0A
A470 2Θ535029ΪΡ 470 DEFM "(SP)=“
A475 2053503D 480 MESS2 DEFM “ SP="

Pass 2 errors: 00

Table used: 132 -from 196
Exécutés: 42000

Figure 9.1

Computers are logical - it does represent the HL register pair -
even though there is a shorter instruction that does an identical
job! (logical?) You can test this very easily if you are using an
assembler, change line 80 to read DEFB #ED and add the
following Iines:

81 DEFB %01100011
82 DEFB #34
83 DEFB #AB

Now re-assemble the program and execute it, you will find that it
operates exactly as before.

The program operates by POPping the value off the top of the
stack (yes it's called the top even though the top is at a lower
address than the bottom) into the HL register pair. This moves

96 Machine Code for Beginners on the Amstrad

the stack pointer to point at the previous item on the stack so, to
avoid altering the stack, the HL register pair is then PUSHed
back. The stack is now in exactly the same state as it was at the
start of the program, but the HL register pair now holds a copy of
the value on the top of the stack.

HL is then loaded into memory at address 43828 and the sub­
routine to print message 1 is called, then the subroutine to print a
number (named PROG2 here) is called, and this will print the
value copied from the top of the stack into memory. There have
now been two CALLs and two RETums, so the stack pointer is
pointing to the same address as it was at the start of the program.
It is this address which is now loaded into memory ready to be
printed by the print number subroutine. First PMESS2 is
CALLed to print message 2 and then the print number
subroutine is executed again. This time the print number sub­
routine is not CALLed, so the RET at the end will retum to BASIC
or the assembler according to how PROG1 was first accessed.

A dramatic démonstration of how the stack can be manipulated
to your advantage can be made by adding the following Iines at
the start of the program in Fig. 9.1. If you are using the HEX
LOADER set memory down to 41992 and use 41993 as the start
address.

A409 5 □ RG 41993
A409 6 ENT 41993
A409 2110A4 7 LD HL,PR0G1
A40C E5 B PUSH HL
A40D E5 9 PUSH HL
A4OE E5 10 PUSH HL
A40F E5 20 PUSH HL

Re-assemble the program again if you are using the assembler,
and then execute it. If you used the HEX LOADER note that the
program now starts at A409 (41993) and no longer at A410 (42000).

This time the program will loop round five times; the extra four
times are because of the PUSHes made onto the stack, which
cause the RETums to be made to PROG1 until the original retum
address surfaces.

The instructions detailed so far are the only ones that auto-
matically update the stack pointer when the stack is used. There
are however a number of instructions which allow the stack to be
manipulated, and information to be passed to and from it.

The first of the remaining opcodes which employ the stack or

Using the Machine Stack 97

the stack pointer to be considered are the LD instructions; this is
because they are the most straightforward, not in their operation,
because ali the instructions on the Z80 should be fairly easy for
you to understand now, but in the uses to which they may be put.

When you first tum-on your Amstrad CPC 464, part of the cold
start procedure initialises the stack pointer to an address in high
memory, address 49144 (BFF8h), and it is from here that the stack
grows down. It is quite possible that this address will be
acceptable for the bottom of the stack, and will not need to be
changed. There are, none the less, circumstances when it can be
bénéficiai, or even essential, either to change the stack pointer or
save it somewhere. Instructions are therefore provided to allow
this, one of which you have already used.

Please note that it is important to ensure that the stack pointer is
always initialised to point to an even numbered address, particularly
on the Amstrad, where banks of memory can be switched. If this is not
done it would be possible for half a stack item to be switched out, and
the other half remain. It is best to initialise it to point to an address
which is a multiple of 256 as this allows the maximum downward
growth before a memory page barrier is transversed.

Ali the 16 bit LD instructions can be used with the stack pointer
by making bits 5 and 4 11. The full range of normal LD instruc­
tions is:

BINARYASSEMBLER HEX

LD SP, nn 31 n n 00 110 001 n n

LD SP,(nn) ED 76 n n 1 1 101 101 01 111 011

LD (nn),SP ED 73 n n 1 1 101 101 01 110 011

Occasions where you may have to move the stack pointer could
be, for example: when there is an instruction which has priority
over anything else which may be going on in a program. The
RESET achieved by pressing the [CONTROL] [SHIFT] and [ESC]
keys on the Amstrad, is a good instance of this. When a priority
instruction is executed there can be no possibility of even making
sure that the stack is balanced, let alone knowing what is on the
top, so the stack will have to be re-initialised to a known location,
before any use of it can be made. Here LD SP,nn would be used.

Another good example is the program in Fig. 9.2. This is a
rewrite of the program in Fig. 8.3 using the PUSH instruction to

98 Machine Code for Beginners on the Amstrad

fill the screen memory area in a fraction of the time taken by the
original program. Here the SP is saved to memory, for later
restoration, and then loaded with address 0. The address below
this will be the first to be filled by any PUSH instruction, and
since one below 0 is — 1, and the SP can only hold 16 bit
numbers, this becomes FFFFh, the top of the screen memory
area. HL is then loaded with 5C5Ch (the same as A in Fig. 8.3 but
twice) ready to be used for the filling.

Pass 1 errors: 00

Hisoft GENA3 Assembler. Page 1.

1
2

5 FIG 9,2
; SCREEN FILL MK.2

88B8 10 ORG 35000
88B8 20 ENT 35000
88B8 ED73D188 30 LD (SPWD),SP
88BC 310000 40 LD SP,#0
88BF 215C5C 50 LD HL,#5C5C
88C2 0E20 60 LD C,#20
88C4 0600 70 BLOOP LD B, «0
88C6 E5 80 SLOOP PUSH HL
88C7 10FD 90 DJNZ SLOOP
88C9 0D 100 DEC C
88CA 20F8 110 JR NZ,BLOOP
88CC ED7BD188 120 LD SP,(SPWD)
88D0 C9 130 RET
88D1 0000 140 SPWD DEFW 0

Pass 2 errors: 00

Table used : 48 from 127
Exécutés: 35000

THE CHECK-SUMS FOR THE HEX LOADER ARE;
03C3 034B 038A

Figure 9.2

Next a double loop is set up; this is a variation on a technique
that is often used when something needs to be repeated more
than the maximum number of times that can be held in registers
for counting; it will be discussed fully in Chapter 16. Briefly what
happens is that each pass round the big loop BLOOP makes a full
complément of passes round the small loop SLOOP. (No, it
wasn't a sailing-ship sinking!) In this case the small loop loops
256 times for each of the 32 loops round the big loop. The PUSH

Using the Machine Stack 99

HL is therefore executed 32*256 times which is 8192, and since
each PUSH fills two memory locations a total of 16384 (4000h)
bytes are filled. Finally the SP is restored and a RETum made.

The SP can also be used in ali the 16 bit maths instructions, as
well as in 16 bit INC and DECs, again the instruction is made up
by making bits 5 and 4 of the instruction 11. So for example:

ADD HL,DE is, in binary 00 011 001 and
ADD HL,SP therefore, is 00 111 001
DEC BC is 00 001011 so DEC SP is 00111 011

The next instruction to be considered allows the data on the top
of the stack to be exchanged with the data in the HL register pair.
As always the mnemonic is exactly what one might expect. It is an
Exchange, so the first part of the mnemonic is EX, and the things
being exchanged are (SP) and HL so the full opcode is:

ASSEMBLER HEX BINARY

EX (SP), HL E3 11 100 011

This is one of the most useful instructions for use on the stack;
it can be used to redirect retums whilst within a subroutine or
even to add extra subroutines.

Consider the situation where a program has been written in
which part of a subroutine makes a number of 16 bit calculations
which are required by the main program in a particular order.
Naturally the results ail end up in the HL register pair, but this is
needed to perform the next calculation. So the resuit must be
saved in memory by some means. An LD (nn),HL instruction
would serve, but this uses three bytes for each instruction to save
a resuit and another three bytes each time the resuit is retrieved.
The easiest way to deal with this would be to save the results on
the stack, but the retum address from the subroutine is there, and
you have been wamed about the results of RETuming to a resuit!
So what is the solution?

The answer is often to exchange the RETum address on the top
of the stack with the resuit of the calculation, and then PUSH the
RETum address back on the top. This takes only two bytes, and
only one byte will be used to retrieve the resuit back in the main
program. The RETum will have removed its address already. The
section of program to place results below the RETum on the top of

100 Machine Code for Beginners on the Amstrad

the stack would look like this (assuming the resuit to be in HL on
entry to this section):

EX (SP),HL ; HL NOW HOLDS THE RETURN ADDRESS AND THE

RESULT IS ON THE TOP OF THE STACK

PUSH HL ; AND NOW THE RETURN ADDRESS IS BACK ON

THE TOP, WITH THE RESULT UNDERNEATH.

The last instruction involving the SP is a real oddball, from the
CPU's point of view. It is the only instruction which permits a 16
bit register to register load. The instruction is:

ASSEMBLER HEX BINARY

LD SP,HL F9 il 111 001

This instruction is frequently used when the address to which the
stack pointer should be pointing has been calculated, it saves
having first to place the contents of the HL register pair into
memory and then load the stack pointer from there.

There has been an awful lot to take in, in this chapter, so don't
worry if your head is reeling a bit. Go over the example programs
given, and try experimenting on your own. Remembering to save
before you run! You can't do any harm to the Amstrad, no matter
what your program does, so the worst that can happen is you will
have to switch off and start again. Count the uses of the stack
before executing a program, there should be an equal number of
PUSHes and POPs in each section or subroutine, and every CALL
must have a matching RETum.

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
rr — a register pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = the address at

Using the Machine Stack 101

PC = Program Counter
SP = Stack Pointer

The machine stack descends through memory as it grows.
The top of the stack is at the lowest memory address, and is

pointed to by SP.
PUSH places the contents of the register pair named onto the

top of the stack, and updates the SP to point to the new top.
POP does the reverse.
Any general purpose rr or the AF register pair can be PUSHed

onto or POPped off the stack.
Ail 16 bit maths operations or LD instructions can use the SP

register, as can INC and DEC.
The contents of the top of the stack can be EXchanged with the

contents of the HL register pair.
The SP can be loaded direct from HL.
Every PUSH must have a corresponding POP.
Every CALL must have a RETum.
The stack does not have to be POPped into the same register as

it was PUSHed from.

Chapter Ten

Using Instructions that
Work on a Single

The Z80 CPU is something of a rarity in the 8 bit microprocessor
field, because it permits a single bit, either in memory or in a
register, to be set (made binary 1) or reset (binary 0), without
affecting anything in the remainder of the byte containing the
manipulated bit. There are also instructions to test an individual
bit's status.

Why bother to have spécial instructions to do this? It is
possible to set any bit you wish by an OR, or reset any bit by
masking it with an AND. Equally tests can be made by these
same instructions.

For example, to set bit 5 in the A register without affecting any
of the other bits you would use:

OR %00100000

To reset bit 5 the instruction would be:

AND %11011111

If you wanted to test bit 5 then

AND %00100000

would set the zéro flag if bit 5 was zéro, or reset the zéro flag if bit
5 was not zéro.

In ali the following examples tb is the address of the byte to be tested
or manipulated.

The trouble with the AND and OR instructions is that the byte
to be opérated on must be in the A register. This means that, if the
byte was not there already, several instructions are needed in
order to:

102

Using Instructions that Work on a Single Bit 103

1) Save the A register if necessary (PUSH AF)

2) Get the byte intD the A register (LD A,(tb))

3) F'erform the operation (AND n)

4) Fut the modified byte back (LD (tb),A)

5) Restore A (POP AF)

A total of 10 bytes is used for this simple task. The count could
have been reduced by using the HL register pair to point to
memory as follows:

PUSH AF
LD HL,tb
LD A,(HL)
AND n
LD (HL),A
POP AF

The byte count for the program has now dropped to 9 (big deal!).
Your fingers will probably drop off too, from the amount of
typing.

The program to test a bit would be similar, but the A register
could not be saved by a PUSH AF because, when the A register
was restored, prior to testing the zéro flag to see the State of the bit
tested, the flag register would be restored also, thereby
destroying the flag settings from the test! The final LD (HL),A
must be omitted, as the test will have modified the byte in the A
register, and it must remain unaltered in memory.

An example program to test bit 5 is given below; it has a byte
count of 12.

LD (sb),A
LD HL,tb
LD A,(HL)
AND %00100000
LD A,(sb)

These programs have been given because, in spite of the fact you
will never use them, they are good examples of some of the traps
and pitfalls of programming, and give techniques for overcoming
them. They also serve to illustra te the need for the bit test, set and
reset instructions.

104 Machine Code for Beginners on the Amstrad

The bit set and reset instructions have the mnemonics SET and
RES respectively. The binary opcode and assembler mnemonics
are given below. In each case b should be replaced by the number
of the bit to be opérated on. 000 for bit 0 (the least significant)
through to 111 for bit 7.

ASSEMBLER BINARY

SET b, r 1 1 001 01 1 11 b r

RES b, r 11 001 011 10 b r

'r' is the usual set (000 for B 110 for (HL) 111 for A etc.). Ail "bit
level" operations are preceded by 11001011 (CBh).

The full instructions to set bit 5 in the B register and to reset bit
3 in the memory location addressed by HL would therefore be:

ASSEMBLER HEX

SET 5,B CB ES

RES 3,(HL) CB 9E

BINARY

11 001 011 11 101 000

11 001 011 10 011 110

None of the bit set and reset instructions affects any flag in any
way.

The instruction to test a bit takes the same binary form as the
SET and RESet instructions, it has the mnemonic BIT and should
really be read BIT? to make sense, even though no question mark
is used.

ASSEMBLER BINARY

BIT b,r 11 001 OU 01 b r

To test bit 2 in the H register, for example, the instruction
would be:

ASSEMBLER HEX BINARY

BIT 2,H CB 54 11 001 011 01 010 100

A BIT instruction will show the State of the bit tested with the
zéro flag, this will be set if the bit is 0 or reset if it is 1. The carry
flag is not changed by BIT instructions but ali the other flags,
apart from the zéro flag, are set in an unpredictable manner.

One of the uses of the bit level instructions is to allow packing

Using Instructions that Work on a Single Bit 105

of information. This is the technique whereby one byte is used to
hold details about more than one thing. An example of this would
be personnel records. Consider a company's database holding
the following details about personnel:

1) Male/Female
2) Married/Single
3) Children/Childless
4) Driving licence/No driving licence
5) Salaried/Hourly paid
6) Key holder/Not key holder
7) Security cleared/Not Security cleared.

Each of these items could be held in a single bit, since there are
only two possible answers to each question, yes/no. Yes could be
represented by 1 and no by 0, and seven bits of a byte would
suffice to hold ali the above information. The eighth bit is often
reserved to indicate that the byte is in use.

It would be possible to create records such as this by use of the
logical operations AND and OR, but it would be very awkward to
change a spécifie bit by this means once the record was set up.
The program given in Fig. 10.1 demonstrates this. It is not
suggested you must actually enter it, but try to follow what is
happening. The program will work correctly when information is
being input for the first time but for alterations the bit operations
are much easier.

A number of 'dirty tricks' have been employed in the program,
as well as many of the techniques and instructions you have
leamt so far. See if you can find where the Ύ at the end of
message 8 in line 1140 goes.

The bit in the C register, which is ORed with the A register to
show a yes to the question associated with the bit, is shifted left
by one bit by the ADD A,A instructions at the label SLA for each
question, and the same trick used to set the carry flag for each
item which was answered Ύ, when records are being output.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG 10,1
20 ; PROGRAM TO DEMONSTRATE PROBLEMS
30 ; OF USING OR TO SET BITS.

88B8 40 ORG 35000

106 Machine Code for Beginners on the Amstrad

88B8 50 ENT 35000
BB5A 60 PRINT EQU 47962
BB18 70 GETKEY EQU 47896
88B8 21438A 80 LD HL,FREE
88BB CD5689 90 NXTREC CALL CRLF
88BE CD5689 100 CALL CRLF
88C1 0609 110 LD B,9
88C3 CDFB88 120 CALL PR MSG
88C6 CD6389 130 CALL KEYIN
88C9 FE66 140 CP ”-f "
88CB 284E 150 JR Z,LSTREC
88CD 3E01 160 LD A, #1
88CF 77 170 LD (HL) , A
88D0 0607 180 LD B,7
88D2 0E02 190 LD C,2
88D4 CD5689 200 NXTBIT CALL CRLF
88D7 CDFB88 210 CALL PR MSG
88DA C5 220 PUSH BC
88DB 060A 230 LD B, 10
88DD CDFB88 240 CALL PR MSG
88E0 Cl 250 POP BC
88E1 CD6389 260 CALL KEYIN
88E4 FE79 270 CP Il y II

88E6 2005 280 JR ΝΖ,ΝΟ
88E8 7E 290 LD A,(HL)
88E9 B1 300 OR C
88EA 77 310 LD (HL) , A
88EB 1806 320 JR SLA
88ED FE6E 330 NO CP "n"
88EF 2802 340 JR Z,SLA
88F1 18E1 350 JR NXTBIT
88F3 79 360 SLA LD A, C
88F4 87 370 ADD A, A
88F5 4F 380 LD C, A
88F6 10DC 390 DJNZ NXTBIT
88F8 23 400 INC HL
88F9 18C0 410 JR NXTREC
88FB CD6C89 420 PR_MSG CALL SAVREG
88FE 217689 430 LD HL,MSGTBL
8901 CB7E 440 FNDMSG BIT 7,(HL)
8903 23 450 INC HL
8904 28FB 460 JR Z,FNDMSG
8906 10F9 470 DJNZ FNDMSG
8908 CD0F89 480 CALL NXTCHR
890B CD7189 490 CALL RESREG
890E C9 500 RET
890F 7E 510 NXTCHR LD A,(HL)
8910 E67F 520 AND 7.01111111
8912 CD5ABB 530 CALL PRINT
8915 CB7E 540 BIT 7,(HL)
8917 C0 550 RET NZ
8918 23 560 INC HL
8919 18F4 570 JR NXTCHR
891B 21438A 580 LSTREC LD HL,FREE

Using Instructions that Work on a Single Bit 107

891E CD5689 590 CALL CRLF
8921 CD5689 600 CALL CRLF
8924 0608 610 LD B, 8
8926 CDFB88 620 CALL PR MSG
8929 0601 630 PR_REC LD B, 1
892B E5 640 PUSH HL
892C CD5689 650 CALL CRLF
892F CD5689 660 CALL CRLF
8932 CD18BB 670 CALL GETKEY
8935 El 680 POP HL
8936 7E 690 LD A,(HL)
8937 23 700 INC HL
8938 A7 710 AND A
8939 C8 720 RET Z
893A 87 730 P_ITEM ADD A, A
893B CDFB88 740 CALL PR MSG
893E F5 750 PUSH AF
893F 3007 760 JR NC,NOT
8941 3E59 770 LD A, " Y "
8943 CD5ABB 780 CALL PRINT
8946 1805 790 JR NXTITM
8948 3E4E 800 NOT LD A, " N “
894A CD5ABB 810 CALL PRINT
894D 04 820 NXTITM INC B
894E CD5689 830 CALL CRLF
8951 Fl 840 POP AF
8952 28D5 850 JR Z,PR REC
8954 18E4 860 JR P ITEM
8956 F5 870 CRLF PUSH AF
8957 3E0D 880 LD A, #0D
8959 CD5ABB 890 CALL PRINT
895C 3E0A 900 LD A, #0A
895E CD5ABB 910 CALL PRINT
8961 Fl 920 POP AF
8962 C9 930 RET
8963 CD18BB 940 KEYIN CALL GETKEY
8966 CD5ABB 950 CALL PRINT
8969 F620 960 OR #20
896B C9 970 RET
896C E3 980 SAVREG EX (SP),HL
896D C5 990 PUSH BC
896E F5 1000 PUSH AF
896F E5 1010 PUSH HL
B970 C9 1020 RET
8971 El 1030 RESREG POP HL
8972 Fl 1040 POP AF
8973 Cl 1050 POP BC
8974 E3 1060 EX (SP),HL
8975 C9 1070 RET
8976 A0 1080 MSGTBL DEFB #A0
8977 53454355 1090 DEFM "SECURITY CLEARED?
8988 A0 1100 DEFB #A0
8989 4B455920 1110 DEFM "KEY HOLDER ?
899A A0 1120 DEFB «A0

108 Machine Code for Beginners on the Amstrad

899B 53414C41 1130 DEFM "SALARIED ? il

89AC A0 1140 DEFB #A0

Hisoft GENA3 Assembler. Page 3.

89AD 44524956 1150 DEFM "DRIVING LICENCE ?"
89BE A0 1160 DEFB #A0
89BF 4348494C 1170 DEFM "CHILDREN ? Il

89D0 A0 1180 DEFB #A0
89D1 4D415252 1190 DEFM "MARRIED ? II

89E2 A0 1200 DEFB #A0
Θ9Ε3 4D414C45 1210 DEFM "MALE ? II

89F4 A0 1220 DEFB #A0
89F5 0Α0Α 1230 DEFW #0A0A
89F7 464F5220 1240 DEFM "FOR NEXT RECORD PRESS AN
8A14 0788 1250 DEFW #8807
8A16 4620544F 1260 DEFM "F TO FINISH OR iANY OTHER
8A32 20544F20 1270 DEFM " TO GO ON”
8A3B 07A0 1280 DEFW #A007
8A3D 20592F4E 1290 DEFM " Y/N"
8A41 Α0Α0 1300 DEFW #A0A0
8A43 0000 1310 FREE DEFW #0000

Pass 2 errors: 00

Table used: 257 from 326
Exécutés: 35000

Figure Ί0.1

Chapter Eleven

Rotâtes and Shif ts

In the program given in Fig. 10.1 the C register was ORed with
the A register to set a single bit, signifying that the question
associated with the chosen bit had been answered in the affir­
mative. After retuming the byte in the A register to memory, the
C register was loaded into the A register, the A register added to
itself, and the resuit retumed to the C register. AU this was just to
move the one set bit in the C register left by one position, ready to
set the next bit if necessary. The label SLA was chosen because
the action of the section of program was a Shift Left Arithmetic.

Whenever a binary number is added to itself, doing in effect a
multiply by two, the bit pattern remains the same but is moved
one place to the left. The same occurs with any numbering System
when a number is multiplied by the base of the System.

For example:

Binary (base 2) 1010110 * 10 = 10101100 (10b is 2 décimal)
Décimal (base 10) 1234567 * 10 is 12345670
Hex (base 16) 789ABCD * 10 = 789ABCD0 (lOh is 16 décimal)

It is rather bothersome if every time it is required to shift the
contents of a byte, the A register has to be used. Additionally
there is the problem of what to do if a right shift is required, this
would be advantageous in the program in Fig. 10.1 as it would
allow the information to be displayed in the same order as it was
entered. At the moment the display routine again uses the ADD
A,A instruction, this time at the label Ρ-ΓΓΕΜ, to shift the bits
into the carry, signalling a yes or no.

There are in fact ways in which it would have been possible to
output in the same order as information was input. Shifting the
data byte in the A register immediately after the OR instead of the
C register would have worked, but this would have caused other
problème, since the shift has to be made even when, after a
négative response, no OR occurs.

109

110 Machine Code for Beginners on the Amstrad

What is really required is a set of instructions which will allow
shifting of registers, not only to allow the problems outlined
above to be overcome, but also because this will allow easy
division calculations.

Think back to the start of this chapter, where it was shown that
multiplying a number by the base of the number System shifted it
left by 1 digit; what happens in a divide? You guessed it! It shifts
the number right by 1, and the right-most number falls off the
end. Weil, near enough if you are thinking in computer terms for
bits in a byte, which has a finite size, of 8 bits. And what happens
whenever a number exceeds the range that can be held in a byte?
It sets the carry flag.

This is ali leading to the fact that the Z80 CPU does have
instructions to shift a byte left or right. They are called Shift Left
and Shift Right; original, isn't it? The Shift Left instruction
performs exactly the operation achieved by ADD A,A but is not
limited to use on the A register alone. The full instruction is called
Shift Left Arithmetic, SLA for short. The instruction is made up
from two bytes, the first is a prefix, CBh, and the second is the
opcode itself.

aSSF'MRL ER HEX

SLA r CB 20-27 11 001 011 00 100 r

1 1 I
! CARRY !z______! r

] FLAG "■] 7-6-5-4-3-2-1-0

J___________ L J---------------------------------------

0
I
I
I

Figure 11.1

r is, as usual, any of the general purpose registers, A or (HL); and
you should know the three bit codes by now.

Before going on to consider the right shifts there are a few
points to watch out for when using the left shift. As you are
already aware, the carry flag is set whenever the resuit of the shift
causes the most significant bit to fall out of the register. This is ail
very well if the byte being shifted is not a number, and is just
being used to indicate something, like in the program in Fig.
10.1. In this case the loss of the MSB does not matter, but if a
multiplication was being carried out (sorry about the pun, this

Rotâtes and Shifts, Multiplication and Division 111

time it was not intended) any bit which passes into the carry flag
is significant, and must be looked after.

This is normally easy to cope with, the carry must be taken into
the next most significant byte. The second part of the addition
program in Fig. 6.8 shows one way, by employing the instruction
ADC, to collect the carry into the next byte. This is straight-
forward for any unsigned number. A short subroutine to
multiply the value held in the A register by 2 would be:

Figure 11.2

MULT SLA A

LD (RESULT),A

LD A,(RESULT+1)

ADC A, A

LD (RESULT+1),A

RET

RESULT DEFW 0

The resuit will be placed in memory at address RESULT and
RESULTE 1 with the most significant byte in RESULTE 1, ready
for collection later as a 16 bit number. This subroutine can be
used repeatedly to multiply by more than two if required by
calling it with the A register holding (RESULT). Each successive
call will raise the value to the power of 2. For example:

LD A, 1

CALL MULT ; RESULT 1 s now z

LD A,(RESULT)

CALL MULT ; RESULT is now 4

LD A,(RESULT)

CALL MULT : RESULT is now S

Figure 11.3

And so on until the resuit exceeds 65535 (which it will after 16 calls
in the example above); the carry flag will be set on retum to the
main program.

112 Machine Code for Beginners on the Amstrad

This is not a very good program, but it does however serve to
illustrate how the Shift Left Arithmetic can be used to multiply.
When a négative signed number is being operated on by this
technique, the more significant byte of RESULT must be set to
11111111b before starting the calculation, otherwise the final
resuit will be positive.

There is no point in trying to improve the program yet, as
instructions which make things very easy are about to be
explained. First, though, the right shifts.

The right shift has two forms, the arithmetic shift and the
logical shift. The logical shift is exactly the same as the SLA but
moves to the right. This may not seem logical, but ail will be
revealed, so hang on!

The binary Shift Right Logical instruction is the same as the
Shift Left Arithmetic, but bits 5, 4 and 3 are changed. Ali the
instructions in this chapter are constructed in this manner, with
these three bits dictating the nature of the operation to be
performed. The prefix CBh is again présent for this instruction.

ASSEMBLER HEX BINARY

SRL r CB 38-40 11 001 011 00 111 r

The symbolic représentation is shown in Fig. 11.4.

0
r

7-6-5-4-3-2-1-0

I
K I CARRY |
' ci λ r· iFLAG I

I

I

Figure ΊΊ.4

At first glance this seems to offer the opportunity to change the
MULT subroutine to a subroutine which will divide by two. The
SLA will need to be replaced by an SRL instruction, and the order
of operations must be reversed, to start on the high byte. The first
problem is that there is no way of collecting the carry, out of the
bottom of the more significant byte, and using this when the less
significant byte is operated on. The SUB instruction cannot be
used, because this will always leave the A register holding 0. The
divide will therefore have to be restricted to an 8 bit integer. This
is shown in Fig. 11.5.

Rotâtes and Shifts, Multiplication and Division 113

DIVD SRL A

LD (RESULT+1),fi

RET

RESULT DEFW 00

Figure 11.5

Assuming the A register held 100 on entry (64h 01100100b) after
execution RESULT+1 will hold 50 (00110010b) which is correct. If
an odd number is divided the remainder would be présent in the
carry flag; remember the carry flag shows that 1 dropped off the
end. So if the above subroutine was called with 101 (65h
01100101b) afterwards RESULT+1 would hold 50 and the carry
flag will be set showing remainder = 1.

What happens if a négative signed number is divided?
Consider the resuit if DIVD was called with the A register holding
—26 (E6h 11100110b). After execution RESULT+1 will hold
01110011b or 73h 115 décimal, which is totally incorrect! The 0
introduced to fill the bit vacated by the shift is to blâme, because
bit 7 is the sign bit. The fact that this right shift cannot be used for
an arithmetic shift is, obviously, the reason for the instruction
being called a Shift Right (logical!).

The Shift Right Arithmetic, as you have no doubt guessed,
préserves the sign bit. When the subroutine above is rewritten
using the SRA instruction in place of the SRL the resuit after the
operation is 11110011b, —13 or F3h, which is correct.

SRA r CB 28-30 11 001 011 00 101 r

The symbolic représentation is shown in Fig. 11.6.

i
i r

7-6-5-4-3-2-1-0
J CARRY !
z I FLAG !

!

Figure 11.6

Now that you know how to shift right, and shift left, thereby
dividing or multiplying by two, the next step is to find out how to
multiply and divide numbers by numbers other than two. At this

114 Machine Code for Beginners on the Amstrad

stage assume that not only both parts, but also the resuit of a
calculation, can be accommodated in a single byte. This will start
things simply, and give you a chance to grasp the principles of
multiplication and division before getting into the really heavy
stuff. For unsigned calculations this means that for multiplication
the product must be less than 256, and for division that both the
divisor and the dividend must be less than 256.

The operation of multiplying is, in effect, simply a process of
adding the multiplicand to a resuit, which is 0 initially, the
number of times specified by the multiplier. This can be demon-
strated if you load the program given in Fig. 6.14 back into your
computer and then add the short program given in Fig. 11.7. This
multiplies together the codes of two keys, pressed on the key-
board, by you.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 5 FIG 11,7
20 9 A PROGRAM TO PERFORM AN 8X8 BIT

MULTIPLICATION
30 5 WITH AN 8 BIT RESULT, SIMPLE

ADDITION METHOD
A7F8 40 ORG 43000
A7F8 50 ENT 43000
BB18 60 GETKEY EQU 47896
A7F8 CD18BB 70 CALL GETKEY
A7FB 4F 80 LD C, A
A7FC CD18BB 90 CALL GETKEY
A7FF 47 100 LD B, A
A800 AF 110 XOR A 5 THIS WILL SET A TO 0
A801 81 120 ADLOOP ADD A,C
A802 10FD 130 DJNZ ADLOOP
ΑΘ04 3278AB 140 LD (43896),A
A807 C3B4AA 150 JP 43700

Pass 2 errors: 00

Table used : 72 -from 221
Exécutés: 43000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
0506 0483

Figure 11.7

Rotâtes and Shifts, Multiplication and Division 115

The vast majority of keys will cause the capacity of a single byte
to be exceeded, but many of the “control” codes are useful. These
are accessed by pressing the green [CONTROL] key and, whilst
still holding it down, another key.

[CONTROL] G will give the BEL code which is 7, and
[CONTROL] J will give the line feed code 10 (OAh), so executing
the program by a CALL 43000 or the R command if you are using
the assembler, will sit and wait for you to press the keys, and then
print out the resuit of multiplying them together. For example:
pressing [CONTROL] G followed by [CONTROL] J will give the
answer 70. Appendix III of the Amstrad User Instructions gives a
full list of the codes generated by various keys.

Whilst the method employed in Fig. 11.7 works perfectly well
for the types of multiplication that it can handle, there is another

Pass 1 errors: 00

Hiso-ft GENA3 Assembler. Page 1.

10 * FIG 11,8
20 i A PROGRAM TO PERFORM AN 8X8 BIT

MULTIPLICATION
30 5 WITH AN 8 BIT RESULT, SHIFT AND

ADD METHOD
A7F8 40 ORG 43000
A7F8 50 ENT 43000
BB18 60 GETKEY EQU 47896
A7F8 CD18BB 70 CALL GETKEY
A7FB 4F 80 LD C, A
A7FC CD18BB 90 CALL GETKEY
A7FF 47 100 LD B, A
A800 AF 110 XOR A ; THIS WILL SET A T
A801 CB38 120 ADLOOP SRL B
A803 3001 130 JR NC,NOADD
A805 81 140 ADD A,C
A806 CB21 150 NOADD SLA C
A808 20F7 160 JR NZ,ADLOOP
A80A 3278AB 170 LD (43896),A
A80D C3B4AA 180 JP 43700

Pass 2 errors: 00

Table used: 84 -from 230
Exécutés: 43000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
0550 0397 0200

Figure 11.8

116 Machine Code for Beginners on the Amstrad

way in which the same task can be performed, but potentially
much more efficiently. Needless to say, this uses Shifts and
Adds, in place of Adds alone.

The program in Fig. 11.7 would have to circle the addition loop
up to 127 times before the resuit is calculated, and this is for
answers below 256. Consider the time that this System will take to
arrive at the answer to a multi-byte calculation! Even with a 16 bit
(2 byte) limit on the resuit there can be up to 32767 loops. The
Smart Alecs out there will be saying: 'Oh no there won't! I would
enter it as 2*32767 and not 32767*2, and the maximum number
of loops possible if I always enter the higher number first will be
256, for 16 bit results.'

O.K., fair enough, but what happens when someone else uses
the program? Anyway, there is a much better way of doing
multiplication, the way one is taught at school for long division.
A binary and décimal long division are set out side by side below.
Look at what happens during a multiplication in binary, and for
that matter in décimal where the multiplier is made up from ones
and zéros.

BINARY DECIMAL

To calculate 00010011
00001011 *

10011
100110

0
10011000
11010001

19d multiplicand
1 ld multiplier

19
19

209

At each stage the multiplicand is moved (shifted) one place to
the left and if the multiplier is not 0 then the shifted multiplicand
is added to the resuit. When using the décimal System this will
only occur occasionally, but with binary it will always be the case,
as there can never be anything but Os and ls. By using this
method the additions are reduced to the minimum, because there
can never be more sums than there are non-zero columns in the
multiplier. For an eight digit number there can never be more
than eight additions and, for a sixteen digit number, there can
only be sixteen additions at most.

The program in Fig. 11.8 shows a method of multiplication
which duplicates the System above. Once the numbers to be
multiplied have been fetched and the resuit zeroed (the A register

Rotâtes and Shifts, Multiplication and Division 117

for the purposes of this program), the least significant bit of the
multiplier is checked. The shift right (SRL) at the label ADLOOP
puts the bit into carry so that it can be tested. Then, if the bit was
set, the multiplicand is added to the resuit. At the label NOADD,
the multiplicand is shifted one place to the left, exactly as
happened in the long multiplication laid out above. A check is
then made to see if there is any more to be done, and if so the
process is repeated with the new multiplicand, otherwise the
calculation is complété, and the resuit is put away for printing by
the subroutine.

Division is roughtly analogous to multiplication but has the
added complication that the calculation could go on for ever. The
example of this that everybody is aware of is the calculation for Pi
(π). The most powerful computers have been put to the task of
calculating Pi but as yet there is no sign of a true answer. In ail
probability there never will be one, after ail, who needs to know
what Pi is to several million décimal places?

Even in normal maths a recurring number is often arrived at by
a simple division, and with computers the normal way of dealing
with this is to give a quotient and a remainder. (The quotient is
the number of times the divisor can be subtracted from the
dividend without making the dividend négative.)

The équivalent to the multiplication program in Fig. 11.7 for
division is already very familiar to you. The programs you have
been using to print out the results to ali the maths you have done
so far, opéra te by successively dividing, by subtraction. Each
time the dividend becomes négative the divisor is restored
(added to the dividend) to become the dividend for the next
division. The proper term for the action which causes the
dividend to become négative is an 'overdraw'.

It has been shown how bits which Tall' out of a register, or
memory location, as a resuit of an instruction being executed,
drop into the carry flag, and that, for multiplication, a left shift
can save an enormous amount of time in a computation. This left
shift can be made to operate on as many bits as required by
collecting the bit from carry at subséquent stages of a shift.

To permit this more efficient shift method to be used for
division (as well as a great many other things) new operations are
necessary. This is because, of the whole répertoire of instructions
that have been explained so far, there is not a single one which
can collect a carry into the most significant bit, essential if division

118 Machine Code for Beginners on the Amstrad

is to be executed by the shift process instead of the répétitive
subtraction method. In fact the only way that the carry has been
able to be collected by a shift instruction is as shown below.

Most Sig.Byte CARRY Least S.Byte

7-6
0 0

SLA LSB O 0

ADC ΜΞΒ,ΜΞΒ O 0

•5-4-3-2-1-0
0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

7-6-5-4-3-2-1-0
10 1 10 10 0

0 11 0 1 0 0 0

0 110 10 0 0

Figure 11.9

This is really a bit of a cheat, because the ADC instruction is
being used to simulate a left shift with carry. It is the most
economical (in terms of memory and registers used) way of doing
this for an eight bit number. A 16 bit left shift can be accomp-
lished with a single instruction, using the same technique as
above, but with the ADD HL,HL or the ADC HL,HL
instructions.

The Z80 offers a considérable sélection of operations, specifi-
cally designed to make this sort of task Independent of the
accumulator registers (the HL register pair is really a 16 bit
accumulator, when used for maths operations). Ail these instruc­
tions use the carry flag, both to receive the bit shifted out of the
byte and also to provide the bit to be adopted into the position
vacated by the operation. Some take the bit from carry before
dropping the bit shifted out into carry, allowing the sort of shift
achieved by the ADC instruction above. Others put the bit
shifted out by their current operation into carry before adopting
the carry flag into the vacated bit. Either way they actually do a
sort of Rotation, either through carry or including carry.

This can be symbolised as shown in Fig. 11.10. Which as you
can see are proper full rotations, and indeed the instructions that
act in this manner have the straightforward name 'Rotate',
shortened to RR for Rotate Right and RL for Rotate Left. The two
functions given in Fig. 11.11, whilst giving the carry flag a copy of
the bit which went round and back into the other end of the byte,
do not actually take any new information in from the carry. These
are called Rotate Circular, and like the above they are shortened,
to RRC and RLC, the second R and the L being the direction.

Rotâtes and Shifts, Multiplication and Division 119

Figure 17.10

RRC

R LC

Figure 11.11

The accumulator (the A register) is again favoured with its own
spécial instructions, in addition to the standard opcodes which
do an identical job. The full instructions for each of the operations
given above are:

ASSEMBLER HEX BINARY

RL r CB 10 - 17 1 1 001 011 00 010 r

RLA 17 00 010 1 1 1

RR r CB 18 - 1F 1 1 001 011 00 01 1 r

RRA 1F 00 011 1 1 1

RLC r CB 00 - 07 1 1 001 011 00 000 r

RLCA 07 00 000 111

RRC r CB 08 - 0F 1 1 001 011 00 001 r

RRCA 0F 00 001 111

120 Machine Code for Beginners on the Amstrad

With the facilities offered by this new set of instructions the
gateway to fast division is flung wide open. The division carried
out in the number printing routine can never have a quotient that
runs to more than nine, so there is no great time lost by using the
subtract method, and ail the divisors were known in advance.
When writing a program where the divisor is not known in
advance it is essential to ensure that any attempt to divide by 0 is
intercepted. If this précaution is not taken an attempt to divide by
0 will cause the computer to hang up, the resuit is infinité, so the
division will go on for ever.

This test for zéro can be carried out in a number of ways. For an
8 bit divisor, the divisor can be put in the A register and tested by
an AND A, or for a 16 bit divisor, 1 byte of the divisor is put into
the A register and this is ORed with the other byte. Both these
methods will set the zéro flag if the divisor is 0.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG
DIVI

11,12
DE BY

A SHIFT AND ROTATE
0
X-

A7F8
A7F8
BB18

20
30
40 GETKEY

□ RG
ENT
EQU

43000
43000
47896

BB5A 50 PRINT EQU 47962
A7F8 0604 60 LD B,4
A7FA 2178AB 70 LD HL,43896
A7FD CD18BB 80 INLOOP CALL GETKEY
A800 FE80 90 CP #80
A802 2001 100 JR ΝΖ,ΝΟΤ 0
A804 AF 110 XOR A
A805 77 120 NOT_0 LD (HL),A
A806 23 130 INC HL
A807 10F4 140 DJNZ INLOOP
A809 CDB4AA 150 CALL 43700
A80C 213CA8 160 LD HL,D_MSG
A80F 7E 170 MSG_LP LD A,(HL)
A810 CD5ABB 180 CALL PRINT
A813 23 190 INC HL
A814 FE00 200 CP «00
A816 20F7 210 JR NZ,MSG LP
A818 217BAB 220 LD HL,43899
A81B AF 230 XOR A
A81C CB3E 240 SRL (HL)
A81E 0603 250 LD B, 3
A820 2B 260 DIV_LP DEC HL
A821 CB1E 270 RR (HL)
A823 10FB 280 DJNZ DIV_LP

Rotâtes and Shifts, Multiplication and Division 121

Exécutés: 43000

A825 F5 290 PUSH AF
A826 CDB4AA 300 CALL 43700
A829 3E20 310 LD A, 32
A82B CD5ABB 320 CALL PRINT
A82E 3E52 330 LD A, " R “
A830 CD5ABB 340 CALL PRINT
A833 Fl 350 POP AF
A834 CE00 360 ADC A, 0
A836 F630 370 OR #30
A838 CD5ABB 380 CALL PRINT
A83B C9 390 RET
A83C 20446976 400 D_MSG DEFM " D i v "
A840 69646564 410 DEFM " i ded"
A844 20627920 420 DEFM '■ by "
A848 74776F3D 430 DEFM Htwo="
A84C 2000 440 DEFW #0020

Pass 2 errors: 00

Table used : 134 -from 306

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
046C 0499 0486 041F 057D 0565 0503 0390 Ô1B7

Figure 11.12

Armed with these new instructions a division by two can be
performçd on any number of bytes by using a SRL or a SRA if the
dividend is signed, on the most significant byte, followed by a
RR on each of the less significant bytes in order. This is shown in
Fig. 11.12. To allow you to enter numbers to be divided an input
routine is provided, and this will take the ASCII code of the key
you press and use it as one byte of a 32 bit dividend. The code of
the first key pressed will become the least significant byte, and
each successive key will be the next most significant byte. Since
the Amstrad provides no way of generating an ASCII NUL code
from the keyboard the 0 key on the numeric keypad is inter-
cepted, and the NUL code 0 is used whenever it is pressed. Yes,
Appendix III of the Amstrad User Instructions does say the 0 is
generated by [CONTROL] A but they have also got two
[CONTROL] Cs. When used with the [CONTROL] key A retums
the code 1, B 2 and C 3, the. User Instructions are correct
thereafter.

Note how the flag register does not need to be saved before
using the DJNZ instruction, as this instruction does not corrupt

122 Machine Code for Beginners on the Amstrad

any flags (this is important because the carry flag is holding any
remainder at the end of DIV_LP), but that the flags and the A
register, which is holding 0 ready for the ADC, do need to be
saved after the division. Experiment with this program until you
are sure that you understand how the Shift and the Rotâtes
achieve the division. Note that the programs in Figs. 11.12 and
11.13 both require the 32 bit number printing routine given in
Fig. 6.13 (annotated) to print the number.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 5 FIG 11,13 A SHIFT AND ROTATE DIVID
A7FB 20 □ RG 43000
A7F8 30 ENT 43000
BB18 40 GETKEY EQU 47896
BB5A 50 PRINT EQU 47962
A7F8 210000 60 LD HL,0
A7FB 2278AB 70 LD (43896),HL
A7FE 227AAB Θ0 LD (43898),HL
A801 CD40A8 90 CALL GETVAL
A804 5F 100 LD E,A
A805 2156A8 110 LD HL,D MSG
A80B CD4CA8 120 CALL MSG_LP
A80B CD40AB 130 CALL GETVAL
A80E 4F 140 LD C, A
A80F 2164A8 150 LD HL.MSG2
A812 CD4CA8 160 CALL MSG_LP
A815 AF 170 XOR A
A816 0608 180 LD B,8
A81B CB13 190 DI V_LP RL E
ABIA 17 200 RLA
A81B 91 210 SUB C
A81C 3001 220 JR NC,NOADD
A81E 81 230 ADD A, C
A81F 10F7 240 NO _ADD DJNZ DIV LP
A821 47 250 LD B, A
A822 7B 260 LD A,E
A823 17 270 RLA
A824 2F 280 CPL
A825 CD33A8 290 CALL P NUMB
A82B 2168A8 300 LD HL,MSG3
A82B CD4CA8 310 CALL MSG LP
A82E 78 320 LD A, B
A82F CD33A8 330 CALL P_NUMB
A832 C9 340 RET
A833 E5 350 P_ NUMB PUSH HL
A834 D5 360 PUSH DE

Rotâtes and Shifts, Multiplication and Division 123

A835 C5 370 PUSH BC
A836 3278AB 380 LD (43896),A
A839 CDB4AA 390 CALL 43700
A83C Cl 400 POP BC
A83D DI 410 POP DE
A83E El 420 POP HL
A83F C9 430 RET
A840 CD18BB 440 GETVAL CALL GETKEY
A843 F5 450 PUSH AF
A844 CD33A8 460 CALL P_NUMB
A847 Fl 470 POP AF
A848 A7 480 AND A
A849 C0 490 RET NZ
A84A El 500 POP HL
A84B C9 510 RET
A84C 7E 520 MSG_LP LD A,(HL)
A84D CD5ABB 530 CALL PRINT
A850 23 540 INC HL
A851 FE00 550 CP #00
A853 20F7 560 JR NZ,MSG_LP
A855 C9 570 RET
A856 20446976 580 DMSG DEFM " Div"
A85A 69646564 590 DEFM " i ded"
A85E 20627920 600 DEFM “ b y ”
A862 2000 610 DEFW #0020
A864 3D0D 620 MSG2 DEFW #0D3D
A866 0A00 630 DEFW #000A
A868 2052 640 MSG3 DEFW #5220
A86A 2000 650 DEFW #0020

THE CHECK-SUMS REQUIRED BY THE HEX LOADE
R ARE
037A 04F4 04D4 0256 0430 0637 06AC

06D8 0692 03F0 024E 009C

Figure 11.13

Figure 11.13 gives the division équivalent of the program in
Fig. 11.9. The similarities are immediately obvious but this time
the loop has to be circled for every bit of the calculation. To start
with, the dividend is in the E register and the divisor is in the C
register, B is used as a counter, with the DJNZ instruction to
count the bits of the division. On each pass round the loop the
carry flag is rotated into E (the dividend), and the most significant
bit of E is rotated into carry. Initially the carry flag was reset, by

124 Machine Code for Beginners on the Amstrad

the XOR A instruction used to clear the A register, so 0 was
rotated into the LSB of E. The carry from E is then collected into
bit 0 (the least significant bit) of A register by the RLA
instruction.

Next an attempt is made to subtract the divisor from the A
register; if this causes a carry then the subtraction was not
possible, and the A register is immediately restored by adding
the divisor back. As with the multiplication routine this is exactly
the same process that you perform when doing a long division, as
is shown in Fig. 11.14 for dividing 85 by 2. Any carry generated
by or taken in by an operation is shown with an arrow indicating
the direction.

(1)
E

01010101
A

00000000
DIVLP RL E 0<-10101010<-0 00000000

RLA 0<-00000000<-0
SUB C K-l 1111110
JR NC,NO_ADD
ADD A,C 1<-00000000

NO ADD DJNZ DIVLP
< 2)

DIVLP RL E K-0101010K-1
RLA 0<-0000000 K-l
SUB C K-11111101
JR NCjNOADD
ADD A,C 1<-00000001

NOADD DJNZ DIV_LP
(3)

DIVLP RL E 0<-10101011<-l
RLA 0<-00000010<—0
SUB C 0<-00000000
JR NC,NO_ADD

NO_ADD DJNZ DIVLP
< 4)

DIV_LP RL E 1<-01010110<-0
RLA 0< -0000000 K-l
SUB C K-11111101
JR NC,NO_ADD
ADD A,C K-00000001

NOADD DJNZ DIV_LP
< 5 >

DIV_LP RL E 0C-1010110K-1
RLA 0<-00000010<-0
SUB C 0<-00000000
JR NC,NO_ADD

NOADD DJNZ DIVLP
C <£> >

DIVLP RL E l<-01011010<-0
RLA 0<—00000001<—1

Rotâtes and Shifts, Multiplication and Division 125

Figure 11.14

SUB C 1 .··■
X -11111101

JR NC,NO_ADD
ADD A,C 1< -00000001

NOADD DJNZ DIVLP
(7)

DIV_LP RL E 0<-10110101<-l
RLA 0< -00000010<-0
SUB C 0< -00000000
JR NC,NO_ADD

NOADD DJNZ DIVLP
(S)

DIV-LP RL E l<-01101010<-0
RLA 0< -0000000 K-l
SUB C 1< -11111101
JR NC,NO_ADD
ADD A,C 1< -00000001

NO ADD DJNZ DIV_LP
LD B,A B now 00000001
LD A,E 01101010
RLA 0< -1101010K-1
CPL 00101010

Which is 42d with a remainder in B of 1.

It is worth going over the process again and again until you are
absolutely certain that you completely understand the means by
which the division is perpétrated. This technique of division is
known as the restoring method, because of the restoration of the
subtraction in the event of a carry. There are other methods for
dividing but they are beyond the scope of this book. The restor­
ation method is both efficient and easily adapted to operate on
multiple bytes so will enable the programmer to carry out any
division required.

There is an interesting alternative use for the shift and rotate
instructions. Enter the short program in Fig. 11.15, and once you
have entered and saved it, set the Amstrad to mode 2 and put a
fair amount of gobbledegook onto the screen. If you are in BASIC
a few syntax errors will do the job, or the listing of the Hex loader.
Then execute it. If you are using the assembler the [W] command
will change the mode.

You will find that the whole screen is scrolled right, one pixel at
a time, by 1 character. Try changing the RR (HL) for other
opcodes explained in this chapter, and see whether you can
predict the resuit correctly. Note that the flag register is carefully
preserved by the program. What will happen if ali the PUSHes

126 Machine Code for Beginners on the Amstrad

and POPs are removed? Try it and see. Try also in other modes;
can you see why you get the curious effect in other modes? Fig.
11.16 gives the same program for scrolling to the left by 1 pixel;
can you see why ali the changes had to be made?

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG
20

11,14 SCREEN RIGHT SCROLL

A7F8 30 □ RG 43000
A7F8 40 ENT 43000
A7F8 0608 50 LD B, 8
A7FA F5 60 PUSH AF
A7FB 2100C0 70 SCREEN LD HL,#C000
A7FE Fl 80 PIXEL PÛP AF
A7FF CB1E 90 RR (HL)
A801 F5 100 PUSH AF
A802 23 110 INC HL
A803 7D 120 LD A,L
A804 B4 130 OR H
A805 20F7 140 JR NZ,PIXEL
A807 10F2 150 DJNZ SCREEN
A809 Fl 160 POP AF
A80A C9 170 RET

Pass 2 errors: 00

Table used: 38 from 143
Exécutés: 43000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
04B3 0527

Figure 11.15

A certain amount of judicious calculation with the aid of the
screen map in the appendix will allow you to move pièces of the
screen around at will. These routines are slow but when you
consider that 16,384 rotâtes have to be carried out for each pixel to
the left or right, and close to 132,000 instructions are executed for
a single screen shift by 1 pixel, you may begin to appreciate the
speed.

There are two further Rotate instructions, which are shown in
the appendix of opcodes. These are the décimal rotâtes. They are

Rotâtes and Shifts, Multiplication and Division 127

Exécutés: 4300®

Hi so-f t GENA3 Assemb1er. Page 1.

Pass 1 errors : 00

10 5 FIG 11,15 SCREEN LEFT SCROLL
20

A7F8 30 □ RG 43000
A7F8 40 ENT 43000
A7F8 0608 50 LD B, 8
A7FA F5 60 PUSH AF
A7FB 21FFFF 70 SCREEN LD HL,#FFFF
A7FE Fl 80 PI XEL POP AF
A7FF CB16 90 RL (HL)
ΑΘ01 F5 100 PUSH AF
A802 2B 110 DEC HL
A803 7D 120 LD A,L
A804 A7 130 AND A
A805 20F7 140 JR NZ,PIXEL
A807 7C 150 LD A, H
A808 FEC0 160 CP #C0
A80A 20F2 170 JR NZ,PIXEL
A80C 10ED 180 DJNZ SCREEN
A80E Fl 190 PDP AF
A80F C9 200 RET

Pass 2 errors : 00

Table used : 38 -from 141

THE CHECKSUMS REQUIRED ΒΥΊΉΕ HEX LOADER ARE
05E9, 05B2, 02B7

Figure 11.16

outside the scope of this book, and it is most unlikely that you
will ever have occasion to use them, except perhaps for operating
on the screen. For this purpose the symbolic représentation in the
appendix is sufficient. They are intended for use in circumstances
when binary coded décimal numbers are required, most often for
ancillary equipment such as the displays in digital docks. Binary
coded décimal is a System whereby four bits are used to hold a
value between 0 and 9 inclusive, only numbers between 0 and 99
can therefore be held in a byte, as opposed to 0 to 255 using the
normal Hex numerology. If you are really interested in leaming
about this sort of instruction you will need to fully comprehend
ali the concepts explained in this book, and then go on to read a
book such as Zaks' Programming the Z80 ISBN 0 89588 069 5.

128 Machine Code for Beginners on the Amstrad

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
m = any of r and (HL)
rr = a register pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = contained in
PC = Program Counter
SP = Stack Pointer

Ali shifts and ail rotâtes can be used on any of m.
The rotâtes have a spécial 1 byte opcode for use on the A

register; these spécial instructions only affect the carry flag.
Ail other rotâtes and shifts affect ali the usable flags according

to the contents of m after the operation.
The P/V flag is used to show parity.
The décimal rotâtes do not affect the carry flag.
For signed division the sign bit can be preserved by use of the

SRA instruction.
A circular rotate does not collect the bit put into carry before

execution of the instruction.
Right movements divide by 2.
Left movements multiply by 2.

Chapter Twelve

Automated Moves
and Searches

You will probably gather from the chapter heading that the Z80
CPU is well endowed with automated instructions, and you have
already leamt about one of them, the DJNZ instruction.

The remaining automated instructions fall into two distinct
areas. The block transfer and search group and the block input
and output group. The first of these groups will be explained
here, and the action of the second will become clear when you
read the next chapter.

Suppose for a moment that you wish to move the contents of an
area of memory to another area of memory. This could be to create
space in a sériés of records in a data-base program, to save a
screen, or part of it in another area or even to scroll the screen as
was done in Figs. 11.15 and 16. Assuming that you know how
long the block to be moved is, the program would probably look
something like Fig. 12.1.

Note how the EX DE,HL instruction is used to allow the
address in DE to be loaded from the A register, by temporarily
exchanging to put it into HL, and then swapping it back. This
could have been achieved equally well (if not better) by using an
LD (DE),A instruction, but it demonstrates the use of the
exchanges. If for example the A register was not easily available,
and less than 257 bytes were to be moved, the program could
easily be changed to use the C register and the DJNZ instruction
for the loop.

In this program BC is used as a Binary Counter and DE as the
DEstination address for the byte being moved. HL acts in its
normal rôle here, that is to point to the address of a byte to be
fetched into the A register. Whoever wrote the mnemonic
instruction set for the Z80 cértainly made it easy to remember

129

130 Machine Code for Beginners on the Amstrad

1 ! FIG 12,1 UP-WARD BLOCK MOVE BY
NORMAL MEANS

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

4E20 10 ORG 20000
4E20 20 ENT 20000
0000 30 ORIGIN EQU #????
0000 40 DEST EQU
0000 50 COUNT EQU #????
4E20 210000 60 LD HL,ORIGIN
4E23 110000 70 LD DE,DEST
4E26 010000 80 LD BC,COUNT
4E29 7E 90 LOOP LD A,(HL)
4E2A EB 100 EX DE, HL
4E2B 77 110 LD (HL),A
4E2C EB 120 EX DE, HL
4E2D 23 130 INC HL
4E2E 13 140 INC DE
4E2F 0B 150 DEC BC
4E30 78 160 LD A, B
4E31 B1 170 OR C
4E32 20F5 180 JR NZ,LOOP
4E34 C9 190 RET

Pass 2 errors: 00

Table used : 60 -from 147
Ex ecu tes: 20000

Figure 12.1

rôles normally played by register pairs; even they are
mnemonics!

Figure 12.1 works fine where the DESTination address in DE is
lower than the ORIGIN in HL, but if the destination is above the
origin, by less than the count of bytes to be moved, you will get
peculiar results. Enter the program and make ORIGIN EQUal to
COOOh and DEST EQUal to ClOOh, and set COUNT to EQUal
3EFF. The check sums for the Hex loader will be 036F 04CC 00C9,
and then execute it. You will find that the same pattern is
repeated several times on the screen. What the program did was
copy from the start of the screen memory, COOOh, to an address
lOOh later, and still on the screen. Ail was fine for the first FFh
locations, but thereafter what was copied was not the original
contents, but the contents of the start of the screen area, which
had been moved there by the first lOOh loops.

Automated Moves and Searches 131

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 ; FIG 12,2 DOWN-WARD BLOCK MOVE
BY NORMAL MEANS

4E20 10 ORG 20000
4E20 20 ENT 20000
FEFF 30 ORIGIN EQU #FEFF
FFFF 40 DEST EQU #FFFF
3EFF 50 COUNT EQU #3EFF
4E20 21FFFE 60 LD HL,ORIGIN
4E23 11FFFF 70 LD DE,DEST
4E26 01FF3E 80 LD BC,COUNT
4E29 7E 90 LOOP LD A,(HL)
4E2A EB 100 EX DE,HL
4E2B 77 110 LD (HL),A
4E2C EB 120 EX DE,HL
4E2D 2B 130 DEC HL
4E2E IB 140 DEC DE
4E2F 0B 150 DEC BC
4E30 78 160 LD A, B
4E31 B1 170 OR C
4E32 20F5 180 JR NZ,LOOP
4E34 C9 190 RET

Pass 2 errors: 00

Table used: 60 from 147
Exécutés: 20000

Figure 12.2

This would have been even more fun if you had been making
space in a sentence to add something. Consider what will occur
with the sentence below if a space is to be made after the 'bro' to
insert a 'w'. The sentence starts at address nn, so HL will be
loaded with nn + 12, which is where the space is required, and
DE will be loaded with nn + 13, because everything after the 'o' of
'bro' is to be moved on by one position. Since five characters are
to be moved BC will be loaded with 5.

How now bron cow.
How now bronncow.
How now bronnnow.
How now bronnnnw.
How now bronnnnn.
How now bronnnnnn

To start
after one move,
after two moves,
after three moves,
after four moves and
after the five moves.

132 Machine Code for Beginners on the Amstrad

It should now be clear what is going wrong, and the means to
overcome the problem should also be apparent if you think about
it. Before going on to correct the function of the program the first
of the automated block move instructions can be introduced. It
will replace Iines 90 to 180 inclusive of the assembler listing,
which did the LoaDing, the Incrementing and the Repeating.

Being used to the style of this book you know the instruction
mnemonic and what it is short for, as well as the operation
performed by it, so ail that is left to tell are the Hex and Binary
forms:

ASSEMBLER HEX BINARY

LDIR ED B® 11 101 101 10 110 000

There is also a reverse instruction, for moving blocks of memory
in the same manner, but starting from the highest address of both
the DESTination and the ORIGIN, as opposed to the lowest. Fig.
12.2 gives the long-winded form to move the same block of
memory to the same destination using the Decrementing move.
The instruction which could be used to replace Unes 90 to 180 in
this program is:

ASSEMBLER HEX BINARY

LDDR ED B8 11 101 101 10 111 000

Whilst the LDIR and the LDDR instructions perform the same
functions as shown in Figs. 12.1 and 2 they do not operate in the
same manner. The A register is not used to make the transfer and,
instead of employing the zéro flag to make the test for the BC
register pair reaching zéro, the P/V flag is used. This will always
be reset on completion of the instruction. No other testable flags
are affected in any way by any of the block move instructions.

If the data being moved must not be corrupted, the LDIR
instruction will always be safe to use when an area of memory is
being moved down, and the LDDR instruction should be
employed for any upward move. Obviously the LDDR instruc­
tion requires the HL register pair to contain the address at the top
of the area to be moved, and the DE register pair to hold the
highest address of the memory to be filled. Conversely, when the
LDIR instruction is employed, HL should hold the bottom

Automated Moves and Searches 133

address of the data's origin, and DE the bottom address of the
destination.

Both instructions can be employed to fill an area with an
identical byte, and a SCREEN FILL MK3 version of the program
in Fig. 9.2 using the LDDR instruction is given in Fig. 12.3. This
deliberately uses the 'overcopying' technique, by moving down
by 1 byte. Each byte filled is in tum used as the origin for the next
byte to fill. Note that the HL register pair starts at address FFFFh
not at OOOOh, because the BC is DECremented after the first
transfer.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 ; FIG 12,3 SCREEN FILI
4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 40 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,ORIGIN
4E23 11FEFF 70 LD DE,DEST
4E26 01FF3F 80 LD BC,COUNT
4E29 EDB8 90 LDDR
4E2B C9 100 RET

Pass 2 errors: 00

Table used: 49 f rom 132
Exécutés: 20000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE:
0659 01E!1

Figure 12.3

In ail the above examples the length of the block to be moved
was known, but it would be an awful shame if the full version of
the program had to be written whenever it was necessary to
include a test for the end being reached. This would end up as
shown in Fig. 12.4, supposing that 00 was used to mark the end.
BC is still employed to set a limit to the memory that may be
moved, otherwise in the event that there was no end marker for
some reason, the program would never end. Perhaps even worse,
the program itself might be written over, and a crash would
naturally follow. There are no 'mug traps' at ail when you are
writing machine code, you hâve to put them in yourself !

134 Machine Code for Beginners on the Amstrad

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 ; FIG 12,4 MOVE TO END MARKED BY 0
4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 40 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,ORIGIN
4E23 11FEFF 70 LD DE,DEST
4E26 01FF3F 80 LD BC,COUNT
4E29 7E 90 LOOP LD A,(HL)
4E2A 12 100 LD (DE) , A
4E2B 2B 110 DEC HL
4E2C IB 120 DEC DE
4E2D 0B 130 DEC BC
4E2E 78 140 LD A, B
4E2F B1 150 OR C
4E30 2804 160 JR Z,LIMIT
4E32 AF 170 XOR A
4E33 BE 180 CP (HL)
4E34 20F3 190 JR NZ,LOOP
4E36 C9 200 LIMIT RET

Pass 2 errors: 00

Table used: 72 from 147
Exécutés: 20000

Figure 12.4

Fortunately Zilog have even thought of this, and they have
provided a pair of instructions the same as LDIR and LDDR, but
without the Repeat, and you'll never guess what the mnemonics
are, will you?

ASSEMBLER HEX BINARY

LDD ED A8 1 1 101 101 10 101 000

LDI ED A0 11 101 101 10 100 000

It is not quite as simple to change Fig. 12.4 to incorporate the LDD
as it might seem at first glance, since the P/V flag is used to
indicate the BC register pair reaching zéro, instead of the zéro flag
in the original long program. Using LDD the condition upon
which the jump to LIMIT is made must be changed to PO, as the
flag is reset when BC = 0. This in tum leads to a further change
needing to be made. A relative jump does not have the facility to

Automated Moves and Searches 135

be made conditional upon the P/V flag, so the jump must there­
fore be changed to an absolute jump. Fig. 12.5 shows the
rewritten program incorporating the LDD instruction.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

1 ! FIG 12,5
0 MK 2

MOVE TO END MARKED BY

4E20 10 ORG 20000
4E20 20 ENT 20000
FFFF 30 ORIGIN EQU #FFFF
FFFE 40 DEST EQU #FFFE
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,ORIGIN
4E23 11FEFF 70 LD DE,DEST
4E26 01FF3F 80 LD BC,COUNT
4E29 EDA8 90 LOOP LDD
4E2B E2324E 171 JP PO,LIMIT
4E2E AF 173 XOR A
4E2F BE 174 CP (HL)
4E30 20F7 180 JR NZ,LOOP
4E32 C9 190 LIMIT RET

Pass 2 errors: 00

Table used: 72 from 141
Exécutés: 20000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
0659 0557

Figure 12.5

The next automated instructions, and the last to be dealt with
in this chapter, are the block search instructions. These follow
very closely the form of the block move opcodes but, as their
name implies, they are used to search blocks of memory for a byte
holding a spécifie value. To make the same analogies as were
made for the block moves Fig. 12.6 gives the long version of a
program to find a byte in memory containing 65 (the code for Ά')
starting the search at address FFFFh and looking through 3FFFh
bytes before giving up if no match is found. When the end of the
search loop is reached (the label DONE) the zéro flag will be set if
a match has been found, and reset if not.

You will see that there have been difficulties saving the A
register whilst the test for BC reaching 0 was made. It could not be
saved on the stack by a PUSH because the flags would have been

136 Machine Code for Beginners on the Amstrad

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 5 FIG 12,6 BLOCK SEARCH THE HARD WAY
4E20 20 ORG 20000
4E20 30 ENT 20000
FFFF 40 START EQU #FFFF
3FFF 50 COUNT EQU #3FFF
4E20 21FFFF 60 LD HL,START
4E23 01FF3F 70 LD BC,COUNT
4E26 3E41 80 LD A,65
4E28 BE 90 LOOP CP (HL)
4E29 2B 100 DEC HL
4E2A 0B 110 DEC BC
4E2B 2807 120 JR Z,DONE
4E2D 57 130 LD D, A
4E2E 78 140 LD A,B
4E2F B1 150 OR C
4E30 7A 160 LD A, D
4E31 20F5 170 JR NZ,LOOP
4E33 3F 180 CCF
4E34 C9 190 DONE RET

Pass 2 errors: 00

Table used : 59 From 143
Exécutés: 20000

Figure 12.6

saved as well, and this would hâve invalidated the test when the
POP was made before the jump. The flags would hâve been
restored with the A register before the resuit of the test could be
used. The D register has therefore been put into service as a
temporary store for A whilst the tests are made.

The resuit is a program which successfully does a ComPare
Décrément and Repeat through an area of memory, signalling the
resuit with the zéro flag when it has finished. The automated
instruction which would normally be used for this task, the
upward searching version of the same, and the non-repeating
versions are:

ASSEMBLER HEX

CPIR ED B1

CPDR ED B9

CPI ED Al

CPD ED A9

BINARY

11 101 101 10 1 10 001

11 101 101 10 11 1 001

1 1 101 101 10 100 001

1 1 101 101 10 101 001

Automated Moves and Searches 137

These instructions use the P/V flag to indicate that the count (in
BC) has reached zéro, just as the automated LD instructions
detailed earlier, but additionally the zéro flag is set to indicate a
match being found, or reset to show no match.

Figure 12.7 shows a rewritten version of Fig. 12.6 using the
CPDR instruction. CPIR INCrements the HL register pair after
each ComPare instead of its being DECremented, and the two
instructions without the R for Repeat, do the same but without
the repeat.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

4E20
4E20
FFFF
3FFF
4E20 21FFFF
4E23 01FF3F
4E26 3E41
4E28 EDB9
4E2A C9

Pass 2 errors: 00

10 ; FIG 12,7 BLOCK SEARCH USING CPDR
20 ORG 20000
30 ENT 20000
40 START EQU #FFFF
50 COUNT EQU #3FFF
60 LD HL,START
70 LD BC,COUNT
B0 LD A, 65
90 LOOP CPDR

1 90 DONE RET

Table used: 59 -from 132
Exécutés: 20000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE

Figure 12.7

It is easy to modify the program in Fig. 12.7 to look for a sériés
of memory locations in place of a single matching value, by
adding a small amount of extra code. One application might be to
look for an occurrence of a particular word or phrase in stored
data, or to look for 'keywords' having been input in an adventure
game. Figure 12.8 shows a program to do just this; it allows the
input of a string of characters to be searched for, terminated by
the [ENTER] key being pressed, and then retums the address of
the start of that string, if it occurs in memory.

Hiso-ft GENA3 Assembler. Page 1

1 errors 00Pass

10
20

5 FIG 12,8
; OF MATCHII

BLOCK SEA
MG LOCATIO

7530 30 ORG 30000
7530 40 ENT 30000
BB18 50 GETKEY EQU 47896
BB5A 60 PRINT EQU 47962
0000 70 START EQU #0000
7530 80 COUNT EQU 30000
7530 217575 90 LD HL,FREE
7533 E5 100 PUSH HL
7534 DI 110 POP DE
7535 CD18BB 120 INPUT CALL GETKEY
7538 77 130 LD (HL),A
7539 CD5ABB 140 CALL PRINT
753C 23 150 INC HL
753D FE0D 160 CP #0D
753F 20F4 170 JR NZ,INPUT
7541 210000 180 LD HL,START
7544 013075 190 LD BC,COUNT
7547 IA 200 LOOK LD A,(DE)
7548 D5 210 PUSH DE
7549 EDB1 220 CPIR
754B C5 230 PUSH BC
754C E5 240 PUSH HL
754D 2012 250 JR NZ,NOFIND
754F 13 260 NXT_CH INC DE
7550 IA 270 LD A,(DE)
7551 BE 280 CP (HL)
7552 23 290 INC HL
7553 28FA 300 JR Z,NXT_CH
7555 FE0D 310 FINI? CP #0D
7557 El 320 POP HL
7558 Cl 330 POP BC
7559 DI 340 POP DE
755A 20EB 350 JR NZ,LOOK
755C 2B 360 FOUND DEC HL
755D 227575 370 LD (FREE),HL
7560 C9 380 RET
7561 Cl 390 NOFIND POP BC
7562 El 400 POP HL
7563 DI 410 POP DE
7564 23 420 INC HL
7565 18F5 430 JR FOUND

Pass 2 errors: 00

Table used : 145 From 184
Exécutés: 30000

FOR STRING
USING CPIR

THE CHECK-SUMS REQUIRED
05A5 0378 04FD 042E

BY THE HEX LOADER ARE
055E 02E2

Figure 12.8

Automated Moves and Searches 139

10 PRINT "HELLO"
20 CALL 30000
30 N = PEEK (30069)+256*PEEK(30070) :PRINT N
40 PRINT CHR« (PEEK (N));CHR$(PEEK (N+1));CHR« (PEEK

(N+2));CHR$(PEEK (N+3))

This program can be changed to suit almost any search
function that you will ever require. Lines 120 to 190 of the
assembler listing can be changed to any input routine that is
required, and what is done after the search is complété can also be
altered to suit. As given, HL will hold either the address of the
start of the string searched for, or 0 if it wasn't found. For the
purposes of the démonstration program this is also stored in
memory, so that it can be accessed by the BASIC program.

The label FINI? is not used except to show that this is where the
check to see if a complété match has been achieved is made. Care
must always be taken to avoid a routine of this type finding a
match in its own sample, otherwise you will never get a 'Not
Found' even when there really isn't a copy.

One final most important thing about ali the automated instruc­
tions in this chapter, which you must be aware of to make use of
them, is the order of events. The HL register pair, and the DE
register pair where it is used, are INCremented or DECremented
before the BC register pair. They will therefore always point to
the next location in the sequence they were following, after they
hâve performed their task.

This can be seen by looking at Fig. 12.8 from the label NXT_
CH, where the next character of the string is checked. The
DE register pair has to be incremented to point to the next
character of the sample, but the HL register pair is already
pointing at the next character of the string being tested, on exit
from the CPIR loop. This is also the reason for DECrementing HL
before finishing the program at the label FOUND. Since it is
known that the BC register pair will hold 0 if the allocated amount
of memory has been searched and no match has been found, it is
this which is popped into the HL register pair at the label
NOFIND, saving two bytes even allowing for the INC which
allows it to be DECremented back to 0 after the jump to FOUND.

Experiment with this routine and then rewrite it to use the
CPDR instruction and see if you get the same results if you search
for the "HELLO" in the basic program.

140 Machine Code for Beginners on the Amstrad

Résumé

There now follows a very brief résumé of the instructions you
have leamt in this chapter:

r = a single 8 bit register A, B, C, D, E, H or L
rr = a register pair being used as a 16 bit register
n = an 8 bit number
nn = a 16 bit number
() round a number or register pair = contained in
PC = Program Counter
SP = Stack Pointer

LDIR loads the contents of address HL into address DE,
INCrements DE and HL, DECrements BC then, if BC is not 0,
repeats.

LDDR loads the contents of address HL into address DE,
DECrements DE and HL, DECrements BC then, if BC is not 0,
repeats.

LDI and LDD act exactly as the LDIR and LDDR instructions,
but without repeating.

CPIR ComPares the contents of the A register with the contents
of address HL, INCrements HL, DECrements BC and repeats
unless there was a match or BC became 0. If there was a match the
zéro flag will be set.

CPDR ComPares the contents of the A register with the
contents of address HL, DECrements HL, DECrements BC and
repeats unless there was a match or BC became 0. If there was a
match the zéro flag will be set.

CPI and CPD act exactly as the CPIR and CPDR instructions,
but without repeating.

For ali the above instructions the P/V flag is used to test for BC
reaching 0, and the flag is reset when it does, therefore the
condition test PO will jump on BC = 0.

Chapter Thirteen

Communicating with
the Outside World

Ali the instructions so far have been concemed with processing
information held within the computer. You may have wondered
how the computer gets this information to start with, or you may
have taken it for granted that when you press a key, your Amstrad
knows about it. In fact, if it wasn't specifically told to take infor­
mation in from outside its own little world of memory, screen and
processor, your computer would quite happily sit there, running
its programs or whatever, and totally ignore you. You could press
keys until you were blue in the face, or died of starvation, and it
wouldn't make a blind bit of différence to the computer. The only
thing that would worry it, would be having the power switched
off. Equally if a program required information to be given out
from a program to anything other than the screen the computer
has to be given the means to do it. The operating System provides
the means to access the existing items, such as the keyboard and
the Sound chip, which are outside the CPU's immédiate field of
vision, so you are very unlikely to need to access it yourself.

Without going too deep into the technical spécification of the
CPU and thereby switching to a new subject, here is a very basic
explanation of how it communicates outside its own boundaries.

You should by now be reasonably familiar with the binary
System, and how a sériés of ls and Os can make up a number. You
have also leamt that the computer represents a 1 having a switch
'on' and 0 its being 'off'. The Z80 CPU has forty pins, each of
which is used for a spécifie fonction. The two wires which join
the keyboard to the monitor act in a similar way. One line has two
wires which give power (electricity) to the computer, and the
other wire, which has six cores each of which goes to one pin on
the connector, sends the piefore information to the monitor.

141

142 Machine Code for Beginners on the Amstrad

Sixteen of the pins on the CPU are used to give the address with
which the CPU wishes to communicate, and eight are used to
send or receive the data. Other pins are used to indicate whether
the memory is to be used, or the outside world is to be communi-
cated with, and if the CPU is going to send information or expects
to receive it.

The sixteen pins which give the address are known as the
Address Bus. This is normally shortened to just A, and each pin is
referred to by the bit number which it gives. The pin which gives
bit 0 (0 or 1 décimal) is called AO, the pin which gives bit 1 (value 2
when set to 1) is called Al, and so on to A15 which gives bit 15
(32768 décimal when set). The eight pins through which data are
passed are called the Data Bus and these are known as DO to D7.
Figure 13.1 shows this, as well as some of the other pins.

When the CPU executes an instruction such as LD A, (3456) it
will signal that it wishes to use memory, and that it wishes to read

SOME OF THE PINS ON THE Z80

A0 —<------ ! !------------ D0
fil —<------ ! !
A2 --<------ ! !------------ DI
A3 —<------ ! !
A4 —<------i !------------D2
A5 —<------ ! !
A6 —<------ ! !------------D3
A7 —<------ ! !

! Z80 CPU 1
as —<—: :------------ D4
a<? —<—! :

Aie —<------ 1 î------------ D5

au —<—: :
A12 — <—: :------------D6
A13 —<—:
A14 —<------ ! :------------D7
Aïs —: :

RD —<—: :----->—MRËQ

__ > !

WR —< I :------------ IORD

RD signais a ReaD. WR signais a WRite. MREQ signais a Memory REQuest, in
other words memory is to be used. IORQ signais an Input or Output ReQuest.
The line over these pins signifies that they are active when low (binary 0).

Figure 13.1

Communicating with the Outside World 143

information from the address which it has put onto the Address
Bus. It will then read the contents of that address in memory
through the Data Bus.

If you want to use something other than memory you will have
to specifically teli the CPU that you want to send out or receive in
from somewhere else. This you do with an OUT or an IN instruc­
tion. There is quite a number of this type of instruction available
in the CPU but, because of the way the Amstrad has been
designed, only one IN and one OUT instruction are of any
interest.

The address for any outside correspondence with the CPU is
specified by the BC register pair, and the instructions are:

a^c’Cmoi et?

□UT (C),r 11 101 101 (EDh) 01 r 001

IN r,(C) 11 101 101 01 r 000

The B register provides A8 to A15 and the C register provides AO
to A7. Putting 1234h in BC will therefore set AO to A15 as

AO) 00010010 00110100 (A15

An address for a piece of extemal equipment is not normally
actually called an address, but is called a 'Port' instead. This
avoids confusion over whether an address is internai (that is, in
memory) or extemal. Anything being transferred through a port
is known as I/O, which is short for In/Out.

Due to the design of the Amstrad very few values can be used
for BC. The most likely use you will have for these instructions
will be for use with a peripheral device of some sort. If you are at
a level where you are building or controlling this type of equip­
ment, A8 to A15 of the address bus, and therefore the B register,
will have to hold either F8h F9h FAh or FBh. For ail these Iines A10
will be at logic 0 (low). As long as this line is low, and the bottom
eight bits of the address bus hold between EOh and FEh inclusive,
you will not interfère with any of Amstrad's allocations for
existing or future equipment for use with the CPC 464.

Further details of existing equipment already attached to the
Amstrad, using the INput and OUTputs, are available in the
Amstrad Programmées Reference Manual.

144 Machine Code for Beginners on the Amstrad

One quickie program which is of no practical use at ail, but
which shows the OUT instruction in use, is given in Fig. 13.2.
This allows you to switch the cassette motor on and off. The
cassette is on the other side of an interface circuit (UPD 8255)
which has three I/O channels. Channel A is accessed by port
F4xxh, channel B by port F5xxh and port F6xxh is channel C.
Control is via port F7xxh. In each the xx can be any value (and will
be held in the C register) but unless you use one of the unused
addresses for AO to A7, mentioned above, you will be asking for
trouble.

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

BB18
7530
7530
7530 01E0F6
7533 3E10
7535 ED79
7537 CD18BB
753A AF
753B ED79
753D C9

Pass 2 errors: 00

Table used: 35 -from

10 î FIG 13,2 PROGRAM TO TURN CASSETTE
20 ; MOTOR ON OR OFF
30 GETKEY EQU 47896
40 ORG 30000
50 ENT 30000
60 ON LD BC,#F6E0
70 LD A, #10
80 OUT (C) , A
90 CALL GETKEY

100 XOR A
110 OUT (C) , A
120 RET

137
Exécutés: 30000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
052B 02DE

Figure 13.2

Chapter Fourteen

Other Instructions

The Z80 CPU has two sets of general purpose registers, as well as
a second A register and flag register. With most computers you
can use the Z80 instructions to switch between the first and
second sets of general purpose registers, and/or the duplicate A
and F registers, whenever you wish. If you do not have an
intimate knowledge of the operating System, the Amstrad pre-
cludes the use of one complété set of these registers.

The instructions which allow you to change the set of registers
in use are shown in the appendix, but it is strongly suggested that
you forget their existence until you possess, and have mastered,
the Programmées Référencé Manual. This will be no easy task,
and one magazine recommended that one should 'take several
degrees in electronics and computer science' before trying to use
it. This was rather overstating the degree of proficiency needed
before you can make use of some of the information given there. If
you have managed to get this far, and assuming you are able to
understand the action and operation of the instructions that have
been explained, you will find an enormous wealth of usable data
therein.

Interrupts

Interrupts are the means by which the Amstrad can execute the
BASIC instructions such as EVERY and AFTER; they are
generated by the Amstrad at regular intervals. Every time an
interrupt is made the Z80 CPU reacts in one of three ways. These
are called Interrupt Modes shortened to IM to form the mnemonic.
The interrupt mode can be set to any of the three modes available
by a program but again due to the design of the Amstrad there is
only one mode which is worfhy of considération. The instruc­
tions to set the interrupt mode are given in the appendix.

145

146 Machine Code for Beginners on the Amstrad

The cold start sequence in the Amstrad, which clears the
memory and sets the early-moming wake-up state, also
initialises the interrupt mode to 1 (IMI). In this mode any
interrupt causes a spécial sort of CALL to address 56 (38h). The
program which starts here is known as the Interrupt Service
Routine and since it can be called into action at any point in the
main program, an interrupt service routine must save any
registers it is going to use before modifying them, and restore
them before retuming to the main program.

The spécial CALL generated by an interrupt, automatically
stops any further interrupts being acknowledged, so before
retuming from an interrupt service routine to résumé execution
of the main program the interrupts must be enabled, so that
future interrupts are not ignored. The instruction which allows
the interrupts to be enabled is called Enable Interrupts, and there
is also a corresponding instruction to Disable the Interrupts.

ASSEMBLER HEX BINARY

DI F3 11 110 011

El FB 11 111 011

Locomotive software have fortunately thought of the machine
code programmer and given a means by which interrupts can
easily be used. With most machines based on the Z80 you have to
use IM2 to gain access to the interrupts, and as you will see when
you read on, this is not the easiest of things to do. On your
Amstrad, once you have written the interrupt service routine, ail
you have to do is add a JP #B939 at the end, where you would
normally have put the RET instruction. To make the interrupt
routine active load the HL register pair with the start address of
your routine, and then LD (#39),HL. From now on every inter­
rupt will call your routine. To disable your interrupt routine the
instructions

ASSEMBLER

LD HL,#B939

LD (#39),HL

HEX

21 39 B9

22 39 00

should be used.

Other Instructions 147

Do not attempt to change the address at 39h in two steps,
because it is possible that an interrupt could occur half way
through the change, making the interrupt call the wrong address.

A brief description of IM2 is given below, and this will stand
you in good stead for the future. Do not attempt to use this mode,
or IMO without going into and understanding the detail given in
the Programmer's Reference Manual about using the interrupts.
The degrees will be helpful when you are trying to cope with this
part!

By setting IM2 it is possible to use the interrupts for your own
purposes, so long as you end your interrupt servicing routine by
re-enabling the interrupts before retuming to the CALLing
program and end with a RETI instruction.

Remember that you will hâve to reset the IMI mode and enable
the interrupts before you retum to BASIC unless you are using a
RST 56 (38H) within the interrupt routine.

The IM2 mode is somewhat convoluted and opérâtes as
follows: On receipt of an interrupt the CPU saves the address of
the next instruction in the program that it is executing on the
machine stack, and disables any further interrupts. It then looks
at the location pointed to by the data bus + (256 * the I register)
and jumps to the address which is contained in this location +
(256 * the contents of thé following location). For example: the I
register contains 10 (OAH) and the interrupting device places 200
on the data bus when it makes the interrupt.

10 * 256 = 2560. 2560 + 200 = 2760.

Therefore the address to be jumped to will be taken from the
contents of address 2760 + (256 * the contents of address 2816). If
2760 contained 90 and 2761 contained 187 then the address
jumped to would be 90 + (256 * 187) which is 47962.

Or if the I register was 187 and the interrupting device gave 90

187 * 256 = 47872. 47872 + 90 = 47962

47962 contains 207 and 47963 contains 0

0 + (207 * 256) = 52992.

So the jump will be to 52992.
This can be represented by imagining the interrupt as an

invisible instruction in the program being run. At the moment of
the interrupt the invisible instruction is executed as if it were a DI

148 Machine Code for Beginners on the Amstrad

followed by a CALL instruction in the address immediately prior
to address pointed to by the I register and the data bus, the
address being CALLed is in the next two bytes in the standard
Z80 low byte first order. The instruction, being invisible, cannot
place its own retum address on the machine stack, hence the
address after the last instruction executed in your program goes
onto the stack, and it is this address that will be retumed to after
the RETI instruction at the end of the interrupt service routine.

The RETI instruction must be preceded by an El instruction.
The reason for the DI being incorporated in the CALL performed
by the interrupt is to ensure that, should the interrupt service
routine be longer in execution time than the delay between two
interrupts, the program does not become tied up in a loop.

It is quite easy to write a program which changes the address
jumped to by an interrupt by loading the vector bytes (the two
addresses looked at to détermine where the jump is made to) with
the desired address within the program.

Whenever interrupt routines are used it is of vital importance
that any registers which are used by the interrupt routine are
preserved on entry, and restored before going back to the main
program, and that no attempt is made to pass data to and from the
interrupt routine in registers.

Typical uses of interrupt routines are for SPRTTE control and
constantly checking for keys being pressed within a program. If it
is known how often an interrupt will be generated it is easy to
calcula te the speed of movement for a SPR11E and, since it will be
independent from any other operation within the program, the
speed will normally remain constant.

Figure 14.1 gives a short program which, when executed from
INIT, will set up the standard interrupt to point to the label
START. Every interrupt thereafter the routine between START
and FINISH will be performed. This simply sets memory at
address 31100 to hold 123. To revert the interrupt to its original
address CALL the routine at the label DIS ARM.

Retum to BASIC if you were using the assembler, and before
using any of the machine code, try the following as direct
commande.

? PEEK (31100)

should retum 0

POKE 31100,10: ? PEEK (31100)

Other Instructions 149

should retum 10 and

POKE 31100,0: ? PEEK (31100)

should retum 0 again. Now type

CALL 30000

and try the above again.
If the interrupt routine is being executed correctly you will find

that no matter what you do ? PEEK (31100) will give 123 because
the interrupt routine is resetting this at every interrupt.

Now CALL 30007 to disarm your interrupt routine and try the
above again. Ail should now be back to normal.

One final point about interrupts: any machine code program
which can be run without being interrupted will run faster.
Disabling the interrupts will also disable any BASIC timing

Hiso-ft GENA3 Assembler. Page 1.

Pass 1 errors: 00

7530
7530
7530 211879
7533 223900
7536 09
7537 2139B9
753A 223900
753D 09
7918
7918 F5
7919 3E7B
791B 327C79
791E Fl
791F C339B9

Pass 2 errors: 00

Table used: 37 -from

1 ; FIG 14,1 DIVERTING THE INTERRUPT
10 ORG 30000
20 ENT 30000
30 INIT LD HL,31000
40 LD (#39),HL
50 RET
60 DISARM LD HL,#B939
70 LD (#39),HL
80 RET
90 ORG 31000

100 PUSH AF
110 LD A, 123
120 LD (31100),A
130 POP AF
140 JP #B939

142
Exécutés: 30000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
02E9 0124
and 057B -for the second part

Figure 14.1

150 Machine Code for Beginners on the Amstrad

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG 14,2 DELAY USING HALT
7530 20 ORG 30000
7530 30 ENT 30000
7530 FB 40 El
7531 06C8 50 LD B, 200
7533 76 60 LOOP HALT
7534 10FD 70 DJNZ LOOP
7536 09 80 RET

Pass 2 errors: 00

Table used : 24 ■from 136
Ex ecu tes: 30000

THE CHECK-SUMS REQUIRED BY THE HEX LOADER ARE
0415

Figure Î4.2

functions, as well as the AF 1ER and EVERY commands, but very
little else will be affected.

HALT:

ASSEMBLER HEX BINARY

HALT 76 01 110 110

(Note this was the missing code -from the LD r,r set.)

This seems like a suitable instruction to explain following the
last paragraph. The HALT instruction stops the CPU from doing
anything until the next interrupt is received. If executed when the
interrupts are disabled the computer will go completely to sleep,
so be sure that the interrupts are definitely on when the HALT
instruction is used.

The most common use of the HALT is to allow long delays to be
achieved without multiple loops in the delay program. Figure
14.2 shows a program which uses the HALT instruction for this
purpose.

You can see the time différence for the delay given by the HALT

Other Instructions 151

instruction if you POKE &7533,0, which replaces the HALT with
a NOP, and then execute the program again.

RST

The CPU has eight addresses that can be called by a spécial single
byte instruction, known as a ReSTart. The Amstrad uses most of
these for its own purposes, making them of no practical use to
you, the programmer. They have, however, left one ReSTart
available for your use. This is RST 30h.

The address following the RST is the address called, when the
instruction is executed. This acts in an identical manner to a
normal CALL and the routine called by a RST should be ended
with a RET, exactly as it would if a CALL had been used.

ASSEMBLER BINARY P t P t

RST P 11 t 111 ÿOh 000 20h 100

08h 001 28h 101

RST 30h 11 110 111 10h 0 1 0 3ôh 110

18h 011 38h 111

You will have noticed that the last ReSTart is the address used
by the interrupt routine, and the method employed to gain access
to the user ReSTart is almost identical to the manner in which the
interrupt was diverted.

The Cold Start routine sets RST 30h to jump back to the cold
start routine if it is used. If you are brave you can test this by
CALLing address 56 (38h); this will cause a System reset.

To change it to jump to your routine you must put a jump
instruction at address 30h to call your routine. You could, for
example, décidé that you were calling the PRINT routine at 47962
(BB5Ah) so often, that it would be worth while to use the RST
instead, saving 2 bytes for every CALL. To do this you would put
the code for JP into address 30h, and the address to be jumped to
in addresses 31h and 32h, in normal Z80 low byte first fashion.
Fig. 14.3 shows this being done, note that the RET in line 51 is
part of a comment and not an instruction.

152 Machine Code for Beginners on the Amstrad

Hiso-ft GENA3 Assembler. Page 1.

Pass 1 errors: 00

10 ; FIG 14,3 DIVERTING RST 30
7530 20 ORG 30000
7530 30 ENT 30000
7530 3EC3 40 LD A, #C3 ; the code

for jump
7532 215ABB 50 LD HL,#BB5A ; the address

of the routin
to call

51 ; RET would normally come here
7535 323000 60 LD (#30),A ; The remainder

of this is
just for

7538 223100 70 LD (#31),HL ; démonstration
purposes.

753B 3E48 80 LD A, 72
753D F7 90 RST #30
753E 3E65 100 LD A, 101
7540 F7 110 RST #30
7541 3E6C 120 LD A, 108
7543 F7 130 RST #30
7544 3E6C 140 LD A, 108
7546 F7 150 RST #30
7547 3E6F 160 LD A, 1 11
7549 F7 170 RST #30
754A C9 180 RET

Pass 2 errors: 00

Table used : 13 from 160
Exécutés: 30000

CHEC1 _ci imc REQUIRED BY THE HEX LOADER ARE
Û2EC 04B8 Ö40E

Figure 14.3

None of the instructions in this chapter so far, affects any flags
in any way.

Indexed Addressing

There are two registers of which no mention whatsoever has been
made so far; these are the IX and the IY registers. The I in each of
their names stands for Index. They are therefore Index X and
Index Y and, as with any normal index, they are used to tell where

Other Instructions 153

a particular piece of information can be found. As well as serving
as index registers they can also be used for anything that the HL
register pair can be used for.

'How,' you will ask, 'can a single register be used to replace a
register pair?' The answer is simple, they are not really single
registers but two 8 bit registers used in unison. The manu­
facturera of the Z80 CPU were unable to get reliable results from
these two pairs of registers, when used individually, so they do
not publish the instructions to use each register independently,
because any or ail of these instructions may not work.

On the Amstrad used for developing this book ali the single
register instructions that were tried on the Index register pairs
worked. Even though these instructions are not published it is
extremely easy to discover what they are, once you know how ail
the instructions that use these registers are made up. Those of
you who hâve an assembler will be reduced to almost the same
level of programming as those without, if you wish to employ the
two halves of the index registers separately. Apart from this,
there is no way that it can be guaranteed that a program using
these extra instructions will work on another Amstrad CPC464,
so it is probably best to leave well alone. Having got that out of
the way use of the index registers can be detailed.

Any instruction apart from ADC and SBC which uses the HL
register pair can be made to act on the IX register instead, by
simply placing DDh (221) in front of the instruction opcode for
HL or, to use the IY register, put FDh (253) in front of the HL
instruction. When the instruction is using the index register to
point to an address in memory an extra byte is needed after the
first byte of the original instruction. This extra byte gives a signed
displacement from the address pointed to be the register. This
probably seems a bit confusing; look at the examples below
before giving up.

The Hex instruction to LD HL,nn is 21, and this is followed by
two bytes which provide the 16 bit number nn. To change this
instruction so as to make it operate on the IX register you would
prefix it with DDh. The instruction in has now become:

LD IX,nn DD 21 n n

154 Machine Code for Beginners on the Amstrad

To make it operate on the IY register pair instead of the IX, the
instruction is:

ASSEMBLER HEX

LD ΙΥ,ππ FD 21 n n

Ail instructions which act directly on the index registers have the
same format. Some examples are given below.

ASSEMBLER HEX WITH IX WITH IY

LD (nn),HL 22 n n DD 22 n n FD 22 n n

PUSH HL E5 DD E5 FD E5

DEC HL 2B DD 2B FD 2B

JP (HL) E9 DD E9 FD E9

ADD HL,BC 09 DD 09 FD 09

This last instruction raises an interesting point. What do you
suppose will happen when the instruction: ADD HL,HL is
modified to act on the IX or IY register? This was the instruction
which could have been employed to perform a 16 bit left shift in
the multiplication programs in Chapter 11.

If the instruction became ADD IY,HL when prefixed by FDh
and ADD IX,HL when DDh was put in front it would not be a
direct replacement (albeit using one extra byte) for the instruction
using HL. In fact any reference to the HL register pair is altered to
refer to the index register when an opcode using the HL register
pair is preceded by either of the two index register préfixés. ADD
HL,HL becomes ADD IX,IX when prefixed by DDh or, with the
FDh prefix, ADD ΙΥ,ΙΥ.

So far no instruction which uses HL to point to memory has
been shown. This is because of the added complication of the
Indexed addressing. As previously mentioned there is an extra
byte needed to give a signed displacement from the actual
address pointed to by the register.

Suppose, for a moment, that you have written a Database
program, and each record has a sort of header, telling the length
of each piece of information in the record. Taking a very simple
example (which book and magazine writers seem to think ail

Other Instructions 155

micro-users will want, though heaven knows why!), the Address
Book.

There is no way in which you can say that the length of a
person's name, the number of Iines in the address and the length
of these Iines, or the phone number, will be the same as for
another person. This can be allowed for in two basic ways.

1) You allow each record to take up space which will allow for
the longest name and address.

2) You keep a record of the length of each line, and the number
of Iines, and also the total length of the record.

Method 1 is very wasteful on space, every record uses the same
amount of memory, but keeping track of the details of each record
using method 2 could be a problem. Not with the Index registers
though!

If you start the records at a known address, say 10000, you could
hâve an index at the start of each record such as that below.

ADDRESS DETAIL
10000/1 length of this record, in 16 bits
10002 length of the name
10003 length of address line 1
10004 length of address line 2
10005 length of address line 3
10006 length of address line 4
10007 length of address line 5
10008 length of phone number

If entry 1 was Martin Pudwick 14
27 New Road
Mudford
Sussex
0123 456789

10000 = 49 the total length of the record, in Z80 low byte
10001 = Ofirstform.
10002 = 14 name
10003 = 11 address 1
10004 = 7 address 2
10005 = 6 address 3
10006 = 0 address 4
10007 = 0 address 5
10008 = 11 phone number

156 Machine Code for Beginners on the Amstrad

Nine bytes will always be used for the index; so 49 + 9 = 58,
the start of the index for the next record will be at 10058. Now you
can make use of the index registers.

If IX is loaded with 10000 then (IX + 0) and (IX + 1) will be the
total length of the record, (IX + 2) will be the length of the name,
and so on. You can write your program to increase the total length
for every character added to any line of the record, and increase
the line being worked on in the index as well, then when you
want to move on to the next record, ail you have to do is add
(IX + 0) and (IX + 1) to the IX register, to have the details of this
record available, and ready for use by the same program, without
modification.

The instructions in assembler, to use the index registers with a
displacement, have exactly the form you would expect. Instead of
LD A,(HL) the instruction becomes LD A,(IX + d) when DDh is
placed before the original opcode, and LD A,(IY + d) when FDh
is used. d is any value from —128 to +127.

The displacement is mandatory for ail instructions which use
index registers to address memory, even when there is a 0
displacement, and the byte which holds this displacement
always cornes immediately after the first byte of the original
opcode. For example:

LD A,(HL) is 7Eh LD A,(IX + d) is DDh 7Eh d
INC (HL) is 34h INC (IY + d) is FDh 34h d

The rotâtes and shifts, as well as the bit set, reset and test group
of instructions already have a prefix, CBh, but this makes no
différence, the displacement byte still follows the first byte of the
opcode:

RLC (HL) is CBh 06h and RLC (IX + d) is DDh CBh d 06h
SET 4, (HL) is CBh E6h and SET 4,(IY + d) is FDh CBh d E6h

The same applies where a number is involved:

LD (HL),n is 36h n and LD (IX + d),n is DDh 36h d n

One further use for the index registers is for changing the axis
of the screen, to enable a screen dump to be output to the printer.
Printers require a byte to hold information vertically, whereas the
screen uses a byte horizontally. In mode 2 one byte holds the
information for eight pixels across the screen, an Epson printer
needs the eight pixels from the same position on the Y axis but

Other Instructions 157

from eight consecutive places on the X axis. A screen would need
to be rotated by 90 degrees before it could be copied directly to the
printer.

The most economical way of doing this is not to actually rotate
on the screen, but to reserve a space in memory and rotate each
byte in tum into that, until you have a screen character line ready
to be output to the printer, and then output it, and repeat for the
next character line. Figure 14.4 shows this being done for the
screen line starting at COOOh, in mode 2. Because not everyone
will have a printer, and even if they did many printers require
different control codes to be put into graphies mode, always
assuming they can be used for graphies printing, this program
opérâtes on the screen.

The screen map moves whenever the screen scrolls, so to make
sure it is set to start at COOOh, press W until you find yourself in
mode 2, if you are using the assembler, or enter mode 2 as a direct
command if you are using the HEX LOADER. Do not list to get
something on the screen but move the cursor to the top line and
write some characters there. Next, again without causing the
screen to scroll, press [ENTER]. You will get an error message;
don't worry. Now execute the program. You will find a copy of
the first character line appears on line 2, but each character is
rotated 90 degrees clockwise.

This program is completely relocatable so you can incorporate
it into a program of your own, if you are writing a screen dump or
some similar program. Note that screen dumps are easy in mode
2 but become quite tricky in other modes, because one bit does
not represent one pixel.

That just about finishes this book, and ail that is left is for you to
put into practice what you have leamt. The next chapter will give
you some hints, and the addresses to CALL to use some of the
operating System routines. The appendices are there to help you
with routines that you are writing, saving you from searching
high and low for a simple answer to a query.

If you are going to take up programming seriously it will help if
you buy a stencil for flow charts, both W. H. Smiths and Menzies
do them at about two pounds, so don't pay much more than this,
and an almost inestimable assistance can be given by a calculator
which can work in Hex and binary as well as the normal décimal
System. The Casio fx450 is quite excellent (as well as being half
the price of the Texas offering) and costs about twenty pounds.

158 Machine Code for Beginners on the Amstrad

1.Hisoft GENA3 Assembler. Page

Pass 1 errors: 00

1 5 FIG 14,4 1ROTATING THE SCREEN
n ; MODE 2

9C40 10 ORG 40000
9C40 20 ENT 40000
9C40 DD2100C0 30 LD IX,#C000
9C44 2150C0 40 LD HL,«C050
9C47 110008 50 LD DE,«800
9C4A 0650 60 LD B,80
9C4C DDE5 70 L00P3 PUSH IX
9C4E E5 80 PUSH HL
9C4F C5 90 PUSH BC
9C50 0608 100 LD B, 8
9C52 C5 110 L00P2 PUSH BC
9C53 E5 120 PUSH HL
9C54 DDE5 130 PUSH IX
9C56 0608 140 LD B,8
9C58 DDCB0006 150 LOOP RLC <IX+00)
9C5C CB1E 160 RR (HL)
9C5E 19 170 ADD HL, DE
9C5F 10F7 180 DJNZ LOOP
9C61 DDE1 190 POP IX
9C63 El 200 POP HL
9C64 DD19 210 ADD IX, DE
9C66 Cl 220 POP BC
9C67 10E9 230 DJNZ L00P2
9C69 Cl 240 POP BC
9C6A El 250 POP HL
9C6B DDE1 260 POP IX
9C6D DD23 270 INC IX
9C6F 23 280 INC HL
9C70 10DA 290 DJNZ L00P3
9C72 C9 300 RET

Pass 2 errors: 00

Table used : 48 from 147

THE CHECK-SUMS REQUIRED BY THE HEX LOADE
R ARE
0308 057A 0467 0586 0656 00C9

Figure 14.4

Many Rymans branches stock it but not many other places. This
calculator will also perform the logical AND OR XOR as well as
NEG and CPL (which they call NOT).

Chapter Fifteen

Programming Hints,
and Using the
Firmware

The Amstrad's operating System can be broken down into nine
fundamental areas. A few routines from each of these areas will
give you a good start in your programming. You have already
been introduced to two routines, 'text output' and 'wait key',
which have been referred to as 'GETKEY' and 'PRINT' respect-
ively. 'Text output' is part of the Key Manager, and 'wait key' is
one of the Key Manager routines. The other seven areas are:

The Graphies VDU
The Screen Pack
The Cassette Manager
The Sound Manager
The Kernel
The Machine Pack
The Jumper.

It is not the purpose of this book to go into detail of how these
sections are constructed, nor to describe the operating System.
The Programmées Reference Manual covers these in great detail,
but in order to get you started here are some pointers that you
may find helpful.

Access to the operating System is, for the greater part, given by
the programmer CALLing addresses which are located in RAM
(Random Access Memory), known as 'Jump-blocks'. A jump-
block is often made up from just a sériés of addresses, ready to be
loaded into the HL register pair, before a JP (HL) instruction. This
is shown in Fig. 15.1, as it is a useful technique which you may
wish to employ in your programs.

159

160 Machine Code for Beginners on the Amstrad

MAIN PROGRAM

LD A,ROUTNO ; number of the routine to be CALLed (0-25

CALL JUMP

REST OF MAIN PROGRAM

ADD A, A

LD D, 0

LD E,A

LD HL,JBSTRT

ADD HL, DE ; HL now contains the address memory

holding the address to be called

LD E,(HL)

INC HL

LD D,(HL)

EX DE,HL

JP (HL) ;jump to the subroutine, using the RET

at its end to return to main program

JBSTRTj ;the pairs of bytes holding the subroutine’s

addresses Z80 low byte, high byte fashion,

start here.

Figure 15.1

One reason for using jump-blocks is that it is possible to alter
the way ail uses of a particular routine are dealt with, by simply
changing the address in the jump-block, instead of having to go
through the program and alter every occurrence of a CALL to the
handling routine. They also have the advantage of allowing a
program to calculate its own actions.

Programming Hints, and Using the Firmware 161

A typical case where a jump-block would be advantageous is, if
a program was to use the printer, or a different window, for ali its
output, from that originally chosen. This could allow debugging,
and running on the screen, with the printer only used when
required. In BASIC you might use a PRINT statement followed by
a variable, which could be assigned to the stream number which
you wish to use at a particular time. With a machine code
program there is no operating System to keep track of variables,
and respond globally to resetting of one, hence the jump-block.

Your Amstrad cannot use the System above, because of the
ability to switch areas of memory between ROMs and RAM.
Unless the programmer were to actually check that the ROM
containing the routine to be CALLed was switched in, and switch
it in if not, there can be no guarantee that the right routine will be
accessed! Furthermore, if the screen needs to be read, the Upper
ROM, which occupies the same addresses, must be switched out.

Amstrad's solution to this is to dedicate a number of the
ReSTarts to CALLing ROM routines. These ensure that the
correct ROM is switched in and that the screen is available for
reading if required. They POP the retum address from the restait
instruction off the stack and then use this to look at the bytes
following the restait, which give the address of the routine to be
called and the ROM State to be set. The full details of how these
ReSTarts operate are given in the Programmées Reference
Manual, but it is unlikely that you will need to know any more
about the way they work, until you have done a great deal more
programming. Their actions are totally transparent to the user,
and ROM settings are restored to their status before the jump-
block was used, on retum to your program.

Any of the many routines available in the operating System can
be used by making a straightforward CALL to a jump-block. The
address retumed to by the retum at the end of the ROM routine,
is that put there by your call to the jump-block; there is NO retum
to the jump-block ReSTart.

There are two distinctly different jump-blocks, one which is
used by the basic interpréter, and the other is used by the
firmware, or operating system. You can alter either set by
changing the three bytes, starting with the RST address. If the
new routine to be accessed is in the firmware, copy the three
bytes in the jump table for new routine to replace the old entry. If
the new routine is your own simply replace the entry in the jump

162 Machine Code for Beginners on the Amstrad

table with a JP to the address of the routine you want to be
CALLed to handle the task, and as long as you end this routine
with a RET things will continue to happen 'correctly'. Changing
the main jump-block, which lies between BBOOh and BDCBh
inclusive, will not affect the workings of any routine in the
opéra ting System. Altering any en tries in jump-blocks outside
this area may have unforeseen side-effects. This is because
routines may use these other jump-blocks to call other routines,
which are necessary to complété a task.

If (when?) you get into such a pickle that you haven't a due
what is calling what, where, how, when and why, there is one
entry to the jump-block which is vital. This resets every jump to
its original destination! CALL BD37h.

The screen and the sound are dealt with by hardware as
opposed to software, and this makes it quite tricky to access
directly the functions you may wish to employ, as well as
rendering software keyboard scanning nigh-on impossible.
Fortunately there are inbuilt firmware facilities available to
perform these tasks for you. The joysticks can be read for any
combination of direction and fire button, enabling movement in
eight directions to be detected. Some of the fundamental
firmware jump addresses are given in the appendix.

Try always to use labels in your programs which relate to the
section which they are used for. Whilst excessive use of
commente is not only undesirable, but wasteful on space, do
remember that you may corne back to the source code at some
time in the future, without a due of how you organised the
program.

Please note that this book has made no attempt whatsoever to
teach any of the finer details of how the Z80 works, nor have
timing considérations been examined. The aim was to get you
started in programming, to understand the instructions set and
be able to use the firmware. If you wish to delve deeper into the
finer nuances of Z80 programming, or investigate the hardware
operation, books that can be recommended are:

1) For the programmer Programming the Z80 by Rodney Zaks.
2) For hardware design and expansion The Z80 Technical

Manual from Zilog and Z80 Applications by James Coffron.

The Zaks and Coffron books are both Sybex publications, and are
not cheap (over ten pounds each) so make sure they are what you
really want before buying.

Programming Hints, and Using the Firmware 163

Once you become adept at assembly language programming
you may wish to consider leaming other languages. Pascal is
probably the best 'second tongue' to leam for serious pro­
gramming, being almost BASIC-like in many respects, but
offering many of the facilities of assembler as well. It is a
compiled language like assembler, and a program written in
Pascal is normally very portable in its source code form. Many
computers hâve implémentations written for them, and a source
file can be compiled to run on any computer with a Pascal
compiler with the minimum of alteration. The main limitations
of Pascal are speed, assembler leaves it standing, and space,
where assembler is much more economical. Pascal itself is much
much faster than BASIC and the compiled code is less space
consuming than a comparable BASIC program. Many pro-
grammers use a combination of Pascal generated code and true
machine code, compiled from assembly language, where speed
or economy of space is at a premium.

Both Pascal and assembly language, once compiled, can be run
without the program used to write them being présent, and the
source code can be saved for further use as required, whilst only
the object code need be saved and Ioaded for using the program.
There is an implémentation of Pascal available for the Amstrad,
written by Highsoft.

Appendix A

The Z80
Instruction Set
Courtesy of ZILOG Inc.

Instruction Set

The Z80 microprocessor has one of the most powerful and
versatile instruction sets available in any 8-bit microprocessor. It
includes such unique operations as a block move for fast, efficient
data transfers within memory or between memory and I/O. It also
allows operations on any bit in any location in memory.

The following is a summary of the Z80 instruction set and
shows the assembly language mnemonic, the operation, the flag
status, and gives commente on each instruction. The Z80 CPU
Technical Manual (03-0029-01) and Assembly Language Pro­
gramming Manual (03-0002-01) contain significantly more details
for programming use.

The instructions are divided into the following categories:

□ 8-bit loads
□ 16-bit loads
□ Exchanges, block transfers, and searches
□ 8-bit arithmetic and logic operations
□ General-purpose arithmetic and CPU control
□ 16-bit arithmetic operations
□ Rotâtes and shifts
□ Bit set, reset, and test operations
□ Jumps
□ Calls, retums, and restarts
□ Input and output operations.

A variety of addressing modes are implemented to permit

164

Appendix A 165

efficient and fast data transfer between various registers, memory
locations, and input/output devices. These addressing modes
include:

□ Immédiate
□ Immédiate extended
□ Modified page zéro
□ Relative
□ Extended
□ Indexed
□ Register
□ Register indirect
□ Implied
□ Bit

8-bit Load Group

NOTES:

Mnemonic
Symbollc
Operation S Z H P/V N C

Opcode
76 543 210 Hex

No.of
Bytae

No.of M No.of T
Cycle· Statee Comment·

LD r, r' r - r' • · X • X . . . 01 r r' 1 1 4 r, r1 Req.
LD r, n r - n • · X • X • · · 00 r 110 2 2 7 000 B

— n — 001 C
LD r. (HL) r - (HL) • · X • X a a a 01 r 110 1 2 7 010 D
LD r, (IX+ d) r - (IX + d) • · X • X e e e 11 011 101 DD S 5 19 011 E

01 r 101 100 H
- d - 101 L

LD r. (IY + d) r - (IY + d) • · X • X a a · 11 111 101
01 r 110

FD 3 5 19 111 A

- d -
LD (HL), r (HL) - r • · X • X a a a 01 110 r 1 2 7
LD (IX + d), r (IX ♦ d) - r • · X • X a a a 11 011 101

01 110 r
DD 3 5 19

- d -
LD (IY♦d). r (IY + d) - r • · X • X a a a 11 111 101

01 110 r
FD 3 5 19

- d -
LD (HL), n (HL) - n • · X • X a a a 00 110 110 36 2 3 10

LD (IX+ d), n (IX + d) - n • · X • X a a a il 011 101 DD 4 5 19
00 110 110 36
- d -

LD (IY + d), n (IY + d) - n • · X • X a a a 11 111 101 FD 4 5 19
00 110 110 36
- d -

LD A, (BC) A - (BC) • · X • X a a a 00 001 010 0A 1 2 7
LD A, (DE) A - (DE) • · X • X a a a 00 011 010 IA 1 2 7
LD A, (nn) A — (nn) • · X • X a a a 00 111 010 3A 3 4 13

— n —
— n —

LD (BC), A (BC) - A • · X • X a a a 00 000 010 02 1 2 7
LD (DE), A (DE) - A • · X • X a a a 00 010 010 12 1 2 7
LD (nn), A (nn) — A • · X • X a a a 00 110 010 32 3 4 13

— n —
— n —

LD A. I A - I 1 1 X 0 X IFF 0 · 11 101 101 ED 2 2 9
01 010 111 57

LD A. R A - R 1 1 x 0 X IFF 0 · 11 101 101 ED 2 2 9
01 011 111 5F

LDI. A I - A • · X • X a a a 11 101 101 ED 2 2 9
01 000 111 47

LD R, A R - A • · X • X a a a 11 101 101 ED 2 2 9
01 001 111 4F

r. r' means eny of the requiers A. B. C, D. E, H. L.
IFF lhe content oi the interrupt enable flip-flop, (IFF)
copied into the P/V flaq

For an explanation ol flaq notation and symbols for
mnemonic tables, see Symbolic Notation section
lollowinq tables

166 Machine Code for Beginners on the Amstrad

16-bit Load Group

Mnemonic
Symbollc
Operation

LD dd, nn dd - nn

LD IX. nn IX - nn

LD IY. nn IY - nn

LD HL. (nn) H — (nn ♦ 1)
L - (nn)

LD dd, (nn) ddn — (nn+ 1)
dd[_ — (nn)

LD IX, (nn) WH - (nn* 1)
IXt - (nn)

LD IY, (nn) IYH - (nn* 1)
IYL — (nn)

LD (nn). HL (nn* 1) - H
(nn) - L

LD (nn), dd (nn ♦ 1) — ddn
(nn) — dd[.

LD (nn). IX (nn + 1) - IXh
(nn) — IX[_

LD (nn). IY (nn ♦ 1) — IYh
(nn) - IYl

LD SP. HL SP - HL
LD SP, IX SP - IX

LD SP. IY SP - IY

PUSH qq (SP - 2) - qq[_
(SP - 1) - qqH
SP — S° - 2

PUSH IX (SP - 2) - IXl
(SP- 1) - IXh
SP - SP - 2

PUSH IY (SP-2) - IYl
(SP - 1) - IYh
SP - SP - 2

POP qq qqH - (SP* 1)
qqL - (SP)
SP - SP + 2

POP IX IXH - (SP* 1)
IXl - (SP)
SP - SP ♦2

POP IY IYh - (SP* 1)
IYl - (SP)
SP - SP ♦2

Flag* No.of
C 78 543 210 Η·χ Bytes

• 00 ddO 001
- n -
— n -

• 1 011 101 DD
oc 100 001 21
- n -
— n —

• 1 111 101 FD
oc 100 001 2)

— n -
— n -

• 00 101 010 2A
- n -
— n —

• 11 101 10) ED
01 ddl 011

- n -
— n -

• 11 011 101 DD
00 101 010 2A

- n -
— n -·

• il 111 101 FD
00 101 010 2A
- n -
— n —

• 00 100 010 22
- n -

— n -
• 11 101 101 ED 4

01 ddO OU
- n -
— n -

• 11 0)1 101 DD 4
00 100 010 22

- n ■
— n -

• 11 111 101 FD 4
00 100 010 22

n -
n -

• 11 11) 001 F9
• 11 01) 101 DD 2

11 1)1 001 F9
• 11 :.. 101 FD 2

11 111 001 F9
• 11 qqO 101 1

• il 011 101 DD 2
11 100 101 E5

• 11 111 101 FD 2
11 100 101 E5

• 11 qqO 001 1

• 11 011 101 DD 2
:: 100 001 El

• 11 111 101 FD 2
11 100 001 El

No.of M No.of T
Cycles States Comment·

3 10 dd Pair
00 BC
01 DE

4 14 10 HL
1 1 SP

< 14

5 16

C 20

6 20

6 20

5 16

6 20

6 20

6 20

6
2 10

2 10
qq Pair

;. 00 BC
01 DE
10 HL

4 15 11 AF

15

3 10

• 14

4 14

NOTES: dd is any of the register pairs BC. DE. HL. SP.
qq is any of the.register pairs AF. BC. DE. HL.
(ΡΑ1Β)μ. (PAIRll reter to high order and iow order eight bits of 'he register pair respective.y

e g BC[_ · C. AF^ - A

Exchange, Block Transfer, Block Search Groups

HL - HL * 1
BC - BC-1
Repeat until
BC = 0

EX DE, HL DE - HL • · X • X . · · 11 101 011 EB : : 4
EX AF. AF' AF - AF' • · X • X • · · 00 001 000 08 . : 4
EXX BC - BC' • · X • X e e e 11 011 001 D9 : . 4 Reqiiter bank and

DE - DE' auxlliary register
HL - HL' bank exchange

EX (SP). HL H - (SP * 1)
L - (SP)

• · X • X • · · 11 100 011 E3 : 5 19

EX (SP). IX IXH - (SP*1) • · X • X • · · 11 011 101 DD 2 6 23
1XL - (SP) 11 100 on E3

EX (SP), IY IYH - (SP* 1) • · X • X e e e il 111 101 FD 2 6 23
IYL - (SP) © 11 100 011 E3

LDI (DE) - (HL) • · X 0 X t 0 · 11 101 101 ED 2 4 16 Load (HL) into
DE - DE + 1 10 100 000 A0 (DE), incrément
HL - HL+1 the pointers and
BC - BC-1 O decremen* the byte

counter (BC)
LDIR (DE) - (HL) • · X 0 X 0 0· 11 101 101 ED 2 5 21 If BC * 0

DE - DE * 1 10 110 000 B0 2 4 16 If BC « 0

NOTE © P/V (lag is 0 il the resuit of BC - 1 =0. otnerwise P/V ■ 1

Appendix A 167

Symbollc
Mnemonic Operation

LDD (DE) - (HL)
DE - DE - 1
HL - HL-1
BC - BC - 1

LDDR (DE) - (HL)
DE - DE - 1
HL - HL-1
BC - BC - 1
Repeat until
BC = 0

CPI A - (HL)
HL - HL+1
BC - BC - 1

CPIR A - (HL)

HL - HL * 1
BC - BC - 1
Repeat until
A » (HL) or
BC - 0

CPD A - (HL)
HL - HL-1
BC - BC - 1

CPDR A - (HL)

HL - HL-1
BC - BC - 1
Repeat until
A - (HL) or
BC - 0

10 111 001

S z
Flag» Opcode

76 543 210H P/V N C

©
. · X 0 x i o · 11 101 101

10 101 000

©
• · X 0 X 0 0 · 11 101 101

10 111 000

o ©

1 I X i X 1 1 · 11 101 101
10 100 001

©
1 1 X I XII· 11 101 101

10 110 001

9 ©
| I X 1 X t l . 11 101 101

10 101 001

Q 0
X i X 1 I · 11 101 101

No.of No.of M No.of T
Hex Byte· Cycle· State· Comment·

ED
A8

2 < 16

ED 2 5 21 If BC # 0
B8 2 16 If BC = 0

ED
A,

• 16

ED 2 5 - If BC # 0 and
A # (HL)

B1 2 16 I! BC = 0 or
A = (HL)

ED
A9

2 < 16

ED 2 5 21 If BC * 0 and
A * (HL)

B9 2 4 16 If BC = 0 or
A = (HL)

NOTES: Q P/V llaq is 0 il the resuit ot BC - I - 0. otherwise P/V · 1
θ P/V flag is 0 at completion oi instruction only.
Ο Z llaq is i if A » (HL1. otherwise Z ■ 0

8-bit Arithmetic and Logical Group

ADD A. r A - A + r 1 1 X
ADD A, n A - A + n 1 1 X

ADD A, (HL) A - A + (HL) 1 1 X
ADD A, (IX + d) A - A + (IX+ d) 1 1 X

ADD A, (IY + d) A - A + (IY + d) 1 1 X

ADC A, s A-A + . + CY 1 1 ! X

SUB· A - A-. 1 1 X

SBC A, · A - A - s - CY 1 : l X
AND s A - A λ s I 1 X

ORs A - A v « | 1 1 X

XOR s A - A · . 1 1 1 X
CP. A-. i ! t X
INC r r - r + 1 1 : i X
INC (HL) (HL) — (HL) + 1 1 1 1 X
INC (IX * d) (IX + d)- 1

(IX ♦ d) + 1
1 X

INC (IY + d) (IY + d)- l
(IY + d) +1

1 1 X

DEC m m - m-1 1 i i X

1 X

1 X

V

V
0 t

0 1

10 CT r
11 löööl 110

1 X V 0 1 10 löööl no

1 X V 0 1 11 011 101 DD
io löööl no
- d -

f X V 0 1 11 111 101 FD
io löööl no

- d -
1 X V 0 1 CT

t x V I 1 CT

i x V 1 i CT

1 X P 0 0 CT

0 X P 0 0 □3

0 X P 0 0 CT

i x V 1 i qui
i x V 0 · 00 r CT

1 X V 0 · 00 110CT

1 X V 0 · H 011 101 DD
oo liotiööl
- d -

i X V 0 · 11 111 101 FD
oo no CT
- d -

1 X V 1 · Q33

: 1 4 r Reg.

2 2 7 000 B

: 2 7

001
010
Oli

c
D
E

3 5 19 100 H

3 5 19

101
lii

L
A

(HL). (IX+ d)
(IY-d) as shown
(or ADD instruction
The indicated bits
replace the loppi m
the ADD set abcve.

m is any of r, (HL).
(lX*d). (IY*d)
as shown for INC.
DEC same format
and stales as INC.
Replace llOOl with
1101] in opcode

168 Machine Code for Beginners on the Amstrad

General-purpose Arithmetic and CPU Control
Groups

Mnemonic
Symbollc
Operation S Z

Fl agi Opcode
76 5*3 210 Hex

No.of
Bytea

No.of M No.of T
H P/V N C Cycle· Statea Commenta

DAA Converts acc. content 1
into pecked BCD
tollowing add or
subtract with pecked
BCD operends.

i x 1 X P 00 100 ni 27 1 1 Dectmel ad)ust
accumulator.

CPL A - A • X : X · 00 101 1)1 2F 1 1 4 Complément
accumulator (one’s
complément)

NEG A - 0 - A 1 1 X 1 X V 1 1 11 101 101 ED
01 000 100 44

2 2 8 Negate acc. (two's
complément)

CCF CY - CY e • X X X · 0 t 00 11) 1)1 3F 1 : ■1 Complément carry
flaq.

SCF CY - 1 · • X 0 X · 0 1 00 110 B) 37 I •1 Set carry llag
NOP No opération · • X • X · • · 00 000 000 00 1 ■;
HALT CPU halted • X • X · • · 01 110 110 76 1 ■·.
DI · IFF - 0 · • X e X · • · 11 110 011 F3 4
E! · IFF - 1 · • X • X · • · 11 111 011 FB : ■ 4
ΙΜ0 Set interrupt · • X * X · • · 11 101 101 ED

01 000 110 46
2 2 8

IM 1 Set interrupt · • X * X · • · 11 101 101 ED
01 010 110 56

2 2 8

IM 2 Set interrupt · • X X · B 101 101 ED
01 011 BO 5E

2 2 8

NOTES IFF indicates the interrupt enable llipflop
CY indicates the carry llipflop.
* indicates interrupts are not sampled at the end of El or DI

16-bit Arithmetic Group

ADD HL. m HL - HL + as • · X X X · 0 I 00 ssl 001

ADC HL. m HL - HL + as + CY 11 101 101 ED 2
01 ssl 010

SBC HL. m HL - HL-as-CY

ADD IX. pp IX - IX ♦ pp

Il 101 101 ED 2
01 ssO 010
11 011 101 DD 2
0) ppl 001

ADD IY. rr IY ~ 1Y ♦ rr 1) ni 101 FD 2
00 rrl 001

INC sa
INC IX

INC IY

DEC aa
DEC IX

DEC IY

IX - IX

IY - IY

IX - IX

IY - IY

00 ssO 011 1
11 OU 101 DD 2
00 100 011 23
11 111 101 FD 2
00 100 011 23
00 ssl 0)1 1
11 01) 10) DD 2
00 10) 011 2B
11 1)1 101 FD 2
00 101 0)1 2B

3 B ss Rej.

4 15
00 BC
01 DE

4 15

10 HL
B SP

4 15 δ'-πί9

15

0) DE
10 IX
B SP
rr Rey

6

00 BC
01 DE
10 IY
11 SP

2 10

2 10

6
2 10

2 10

X X X V 0

X X X V 1 I

X X X · 0 I

e · X X X · 0

NOTES ss is any oi the register pairs BC. DE. HL. SP
pp is any of the register pairs BC. DE. IX. SP
rr is any of the register pairs BC DE. IY. SP

Rotate and Shift Group

Rotate leit circuler
accumulator

Rotate leit
accumulator

Rotate right circuler
accumulator

Rotete right

RLC r

RLC (HL)

RLC (IX + d)
r.(HL).(IX + d).(IY + d)

11 001 OU CB 2
00 r
11 001 011 CB 2
oo lôôô] no

B 011 101 DD -1
Il 001 011 CB
- d -

00 IÖÖC1110

RLC (IY + d)

2 8

4 15

6 23

6 23

Rotate leit circuler
register r

r____ Reg
<O0 B
001 C
010 D
011 E
100 H
101 L
III A

X 0 X P 0

Appendix A 169

Mnemonic
Symbollc
Operation

Flag· Opcode No.of No.of M No.of T
S Z H P/V N C 76 543 210 Hex Byte· Cycle· State· Comment·

RL m

RRC m

RR m

SLA m

SRA m

SRL m

RLD

RRD

m-r.(HL).(IX + d),(lY *d)

lm·-Ci-r/iJ-1 .

m· r.(HL),(IX + d),(IY + d)
I X 0

m-r.(HL),(IX + d).(IY + d)
t X 0

N ’—111—I"}3 i 1 X 0

[cÿ]----- [7---- 0 0 | I X 0
m-r,(HL),(IX + d),(iY + d)

m-r,(HL),(IX + d),UY + d)
i X 0

0-[_7--- - ÎF]-· -[CŸJ i
m· i ,(HL)?(IX + d).(IY + d)

l X 0

f X 0
A <ML)

PÎtlîÎî!---- ,
1 X 0

- d -
00 jôocl 110

X P 0 t E3

X P 0 1 Fil

X P 0 i E2

X P 0 1 Θ

X P 0 i El

X P c i EED

X P 0 · 1) 10) 101
01 lûi ill

ED 2
6F

X 1 » . 1! 101 lui
01 100 III

ED 2
67

Instruction format

shown for RI.C's.

opcode replace
Eâ3 or Bl.C .

18 Rotate digit leit and
riqht betweer.
the accumulafcr
and location (HL)

18 The conten· of the
upper hait oi

unaftectcd

Bit Set, Reset and Test Group

(IX + d),
(IY + d)

BIT b. r Z - rb X i X 1 X X 0 · 11 001 011 CB 2 2 8 Reg
01 b r 000 B

BIT b, (HL) Z - (HL)b X i X 1 X X 0 · .. 001 011 CB 2 12 00) C
c. b 110 010 D

BIT b. (IX + d)b Z - (IX + d)b X Ii X 1 X X 0 · Il 011 101 DD 4 L 20 011 E
1. 001 011 CB 100 H
- d - 101 1.

01 b 1)0 i : i A
b Bit Tested

BIT b. (IY +d)b Z - (IY + d)b X li x :1 X X 0 · 111 101 FD 4 5 20 000 0
: : 001 CB 001

d - 010 2
01 b 110 011 3

100 4
101 5
110 t
11) 7

SET b. r rb - 1 • x «• X • • · 11 001 011 CB 2 2 8

El b r
SET b. (HL) (HL)b - 1 • ·• X «■ X • • · 11 001 011 CB 2 4 15

El b 110
SET b. (IX + d) (IX + d)b - 1 • X ·• X ; 1 011 101 DD 4 6 23

; i 001 011 CB
- d -

El b 110
SET b. (IY + d) (IY *d)b - 1 • ·• X ·• X • • · i : 111 101 FD 4 6 23

:. 001 011 CB
- d -

P b 110
RES b. m mb - 0 • X ·• X is To lorm new

m - r. (HL), opcode replace
[Π] of SET b. s
with [TC] Flags
and time states for
SET instruction.

NOTES: The notation rri^ ind.cates bit b (0 to 7) or location m

Jump Group

PC - PC + e

JP nn PC - nn • · X < > X · · • 11 000 011 C3 3 3 10

Condition
JP cc, nn • · X < > X · · • 11 cc 010 3 3 10 000 NZ non zéro

true PC - nn, - n — 001 Z zéro
- n - 010 NC non carry

011 C carry
100 PO panty odd
101 PE parity even
110 P sign positive

JR e PC - PC + e • · X <• X · · • 00 011 000 18 2 3 12 111 M sign négative
e-2 -

JR C, e If C = 0, • · X «• X · · • 00 111 000 38 2 2 7 If condition not met.
- e-2 -

If C = 1, 2 3 12 If condition is met.
PC - PC + e

JR NC. e If C = 1, • · X « > X · · • 00 110 000 30 2 2 7 If condition not met
continue e-2 -
If C x 0, 2 3 12 If condition is met.

170 Machine Code for Beginners on the Amstrad

Mnemonic
Symbollc
Operation

Flag· Opcode
C 76 543 210 Hex

No.of
Byte·

No.of M No.of T
Cycle· State· Comment·S Z H P/V N

JP Z. e If Z = 0 • · X · X · · • 00 101 000 28 2 2 7 Il condition not met.
continue
If Z = 1.
PC - PC + e

e-2 -
2 3 12 If condition is met.

JR NZ, e If Z = 1. • · X · X · · • 00 100 000 20 2 2 7 If condition not met.
continue
If Z = 0,
PC - PC + e

e-2 -
2 3 12 If condition is met.

JP (HL) PC - HL • · X · X · · • 11 101 001 E9 1 1 4

JP (IX) PC - IX • · X · X · · • 11 on ιοί DD 2 2 8
11 101 001 E9

JP (IY) PC - IY • · X · X · · • 11 111 101 FD 2 2 8
11 101 001 E9

DJNZ. e B - B- 1 • · X · X · · • 00 010 000 10 2 2 8 H B - 0.
If B = 0.
continue
If B * 0,
PC - PC ♦ e

e-2 -

2 3 13 Il B * 0.

NOTES, e re »·. ,h e rel-Hve rr.ide
e i· a signed two*s complément number in the range < - 126 129 >
e-.4 m the opcode provides an effective address of pc-» e as PC ;s >nciremented

Call and Retum Group

NOTE: ’RETN ioads IFF2 - IFP J

CALL nn (SP- 1) - PCh
(SP-2) - PCl
PC - nn

. . x « X · · • 11 001 101 CD 3 17

CALL cc, nn If condition • · X ·• X · · • 11 cc 100 3 3 10 If cc is false.
cc is taise - n -
continue,
otherwise same as
CALL nn

3 5 17 lf cc

RET PCl - (SP)
PCh - (SP+ Il

• · X « I X · . • il 001 001 C9 3 10

RET cc If condition • · X « • X · · • 11 cc 000 l 1 5 Il cc: is taise.

continu^*
: 3 II H cc: is true.

otherwise cc Condition
000 NZ non-zéro

RET 001 Z zéro

RETI Return from
interrupt

• · X <• X · · • 11
01

101
001

101
101

ED
4D

2 4 14

14

010
011
100

NC non-carry
C carry
PO parity odd

RETN· Return from
nor.-maskable

• · X < > X · ·
01

ICI
000

101
101

ED
45

2 ■' 101
110

PE parity even
P sign positive

interrupt 111 M sign négative

RST p (SP-1) - PCh
(SP - 2) - PCl

• · X < > X · · • Il 111 3 11
ÖÖÖ 00H

PCH -o 001 0ΘΗ
PCL - P 010 10H

011 1ΘΗ
100 20H
101 28H
110 30H
111 38H

Input and Output Group

Repeat until
B = 0

IN A. (n)

IN r, (C)

A - (n) · · X

X

• X

: X P 0 ·

11

11
01

011 011 DB

ED

2

2

3

3

11

12

n to Ao - Αγ
Acc. to Ag - A]5
C to Aq - Ai
B to Ag - Aïs

n -
r - (C)
if r - 110 only the
flags will be affected

(T)

101 101
r 000

INI (HL) - (C)
B - B-l
HL - HL * 1

X

©

X X X X 1 X 11
10

101 101
100 010

ED
A2

2 4 16 C to Aq - A7
B to Ag - A]5

INIR (HL) - (C)
B - B-l
HL - HL + 1
Repeat until
B-0

X :

Φ

X X X X 1 X 11
10

101 101
110 010

ED
B2

2

2

5
(If B*0)

4
(If B-0)

21

16

C to Ao - A7
B to Ag - Ajg

IND (HL) - (C)
B - B -1
HL - HL-1

X

©

X X X X 1 X 11
10

101 101
101 010

ED
AA

2 4 16 C to Ao - A7
B to Ag - A]5

INDR (HL) - (C)
B - B-l
HL - HL-1

X : X X X X 1 X 11
10

101 101
111 010

ED
BA

2

2

5
(If B*0)

4

21

16

C to Ao - A 7
B to Ag - A]5

(If B-0)

Appendix A 171

NOTE Q Z lla<7 .» h» upon inairui lion complrlion only

Mnamonlc
Symbollc
Opération S Z

Fl<w Ope ode No.oi
Byte·

No.of M No.of T
H P/V N C 76 543 210 Η·χ Cycle· State· Comment·

OUT (n), A (n) - A e • X e X e e e 11 010 011 D3 2 3 11 n to Aq - A7
- n - Acc. to Ag - A)5

OUT (C), r (C) - r • • X • X • · • 11 101 101 ED 2 3 12 C to Aq - A7

Φ
i x

01 r 001 B to Ag - A)5

OUTI (C) - (HL) X X X X 1 X 11 101 101 ED 2 4 16 C to Aq - A7
B - B- 1
HL - HL + 1 ®

10 100 011 A3 B to Ag - A)5

OTIR (C) - (HL) X 1 X X X X 1 X 11 101 101 ED 2 5 21 C to Aq - A7
B - B-l 10 110 011 B3 (If B#0) B to Ag - Aj5
HL - HL + 1 2 4 16
Repeat until
B - 0

©

(If B-0)

OUTD (C) - (HL) X I X X X X 1 X 11 101 101 ED 2 4 16 C to Ao - A7
B - B-l
HL - HL-1

10 101 011 AB B to Ag - A)5

NOTE: Q II lhe i■•■ull ol B - 1 ia zéro the Z flaq la aet. other»tae !t i» reaet
©Z II., ia aet upon inatruction completlon only.

©
OTDR (C) - (HL) X 1 X X X X 1 X 11 101 101 ED 2 5 21 C to Aq - A7

B - B- 1
HL - HL-1

10 ni on
2

(If B#0)
4 16

B to Ag - Aïs

Repeat until B = 0 (If B«0)

Summary of Flag Operation
Dy Do

Instruction S Z H P/V N c Comment·

ADD A, s ADC A. 1 ! 1 X 1 X V 0 : 8-bit add or add with carry.
SUB s. SBC A. ■. CP ». NEG I : X 1 X V 1 1 8-bit subtract, subtract with carry. compare and neqate accumulator.
AND 1 : X . X l·' 0 111 Loqical operationsOR ». XOR ■ 1 1 X 0 X P 0

0)

INC » 1 1 X : X V 0 • 8 bit incrément
DEC a 1 1 X 1 X V 1 • 8 bit décrément
ADD DD. sa • • X X X • 0 1 16-bit add.
ADC HL. ss 1 ; X X X V 0 : 16-bit add with carry.
SBC HL. sa 1 1 X X X V I 1 16-bit subtract with carry.
HLA, RLCA, RRA. RRCA • • X 0 X • 0 : Rotate accumulator
RL m; RLC m; RR m;

RRC m. SLA m;
SRA m.SRL m

1 1 X 0 X P 0 Rotate and shift locations.

RLD. RRD 1 1 X 0 X P 0 • Rotate diqit leit and riqht.
DAA : 1 X : X P • 1 Décimal adtust accumulator
CPL • • X 1 X ; • Complément accumulator
SCF • • X 0 X • 0 1 Set carry.
CCF • • X X X 0 1 Complément carry
IN r(C) 1 1 X 0 X P 0 • Input reqister indirect.
INI, IND, OUTI, OUTD X 1 X X X X ·(Block input and output. Z = 0 if B * 0 otherwi»e Z = 0.
1NIR. INDR; OT1R OTDR X 1 X X X X : • I
LDL LDD X X X 0 X 1 0 • Block transfer instructions. P/V = 1 if BC * 0, otherwise P/V ■ 0.
LDIR. LDDR X X X 0 X 0 c • 1
CPL CP1R; CPD. CPDR X 1 X X X 1 : Block search instructions. Z = 1 if A e (HL), otherwise Z « 0. P/V = 1

if BC * 0. otherwise P/V = 0.
LD A. 1, LD A. R 1 1 X 0 X IFF 0 • The content of the interrupt enable flip-flop (IFF) is copied into the P/V flaq.
BIT b, · X 1 X 1 X X 0 • The state of bit b of location s is copied into the Z flaq

Symbolic Notation

Symbol
S

Operation
Sign flag. S = 1 if the MSB of the resuit is 1.

Symbol
1

Operation
The flag is affected according to the resuit of the

Z
P/V

Zéro flag. Z = 1 if the resuit of the operation is 0.
Parity or overflow flag. Parity (P) and overflow •

operation.
The flag is unchanged by the operation.

H

(V) share the same flag. Logical operations affect
this flag with the parity of the resuit while
arithmetic operations affect this flag with the
overflow of the resuit. If P/V holds parity, P/V =
1 if the resuit of the operation is even, P/V = 0 if
resuit is odd. If P/V holds overflow, P/V = 1 if
the resuit of the operation produced an overflow.
Half-carry flag. H = 1 if the add or subtract

0
1
X
V

P

r

The flag is reset by the operation.
The flag is set by the operation.
The flag is a "don't care."
P/V flag affected according to the overflow resuit
of the operation.
P/V flag affected according to the parity resuit of
the operation.
Any one of the CPU registers A, B, C, D, E, H, L.

N

operation produced a carry into or borrow from
bit 4 of the accumulator.
Add/Subtract flag. N = 1 il the previous opera­

s

ss

Any 8-bit location for ali the addressing modes
allowed for the particular instruction.
Any 16-bit location for ali the addressing modes

H & N
tion was a subtract.
H and N flags are used in conjunction with the ii·

allowed for that instruction.
Any one of the two index registers IX or IY.

C

décimal adjust instruction (DAA) to properly cor­
rect the resuit into packed BCD format following
addition or subtraction using operands with
packed BCD format.
Carry/Link flag. C = 1 if the operation produced
a carry from the MSB of the operand or resuit.

R
n
nn

Refresh counter.
8-bit value in range < 0, 255 >.
16-bit value in range < 0, 65535 >.

Appendix B

1000 REM APPENDIX B
1010 REM HEXLOADER
1020 MODE 1
1030 ERX =1:LX=4
1040 PEN 2: PRINT"SET MEMORY TO";
1050 GOSUB 1270
1060 IF B > 43900 OR B < 2000 THEN ERX=1
s GOTO 1250
1070 MM = 43903: MEMORY B
1080 PAPER 2: PEN 0: PRINT "MEMORY SET T
O “; HEX*(HIMEM);" HEX"
1090 LX =4
1100 PRINT"INPUT START ADDRESS"5 :PAPER 3
1110 GOSUB 1270
1120 IF B <=HIMEM THEN ERX = 2: GOTO 125
0
1130 IF B > 43903 THEN ERX = 5: GOTO 125
0
1140 START ' BlPEN 3: PAPER 2: PRINT "ST
ART INPUT":PAPER 0
1150 STAD= B
1160 INAD =STAD : CHECK =0
1170 LX = 2
1180 WHILE INAD< STAD+10
1190 GOSUB 1270: POKE INAD,B:PEN 2: PRIN
T HEX* (INAD, 4),HEX*(B,2): PEN 1 : CHECK

= CHECK +B: INAD= INAD+1: IF INAD >= MM
- 2 THEN INAD = STAD +20

1200 WEND: IF INAD =STAD +20 THEN ERX =
4: GOTO 1250
1210 PAPER 3: PRINT "INPUT CHECK-SUM ":P
APER 0: LX = 4: GOSUB 1270
1220 IF CHECK OB THEN ERX = 3: GOTO 12
50
1230 IF FIN = 1 THEN PEN 2: PAPER 3: PRI
NT" FINISHED": PEN 1: INPUT " MORE? Y/N
"»A*: PAPER 0: A* = UPPER* (A4): IF ASC
(A») = 89 THEN FIN =0: GOTO 1080 ELSE EN

D
1240 STAD = INAD: PEN 0: PAPER 2:PRINT "
CHECK-SUM "JHEX* <B,4>Î" CORRECT ! CONTI
NUE INPUT": PEN 1: PAPER 0: GOTO 1160

172

Appendix B 173

1250 RESTORE 1390: PEN 3: PAPER lis FOR
NZ = 1 TO ERZ: READ D*:NEXT:PRINT D$; “
TRY AGAIN"; CHR« (7)
1260 PEN 1: PAPER 0:ON ERZ GOTO 1030,109
0, 1160,1030, 1090
1270 AZ= 0:B= 0
1280 PEN 1: INPUT ST«:PRINT CHRÎ (11);:S
T»= UPPERJ (ST$):IF ST$ = "END" THEN 1370
1290 IF LEN(ST*)<> LZ THEN 1360
1300 FOR NZ= 1 TO LZ
1310 AÎ=MID» (ST*,NZ,1): IF A*> “F" OR A»
< "0" OR(A«> "9" AND A»< "A") THEN 1360
1320 IF A*> "9" THEN AZ= ASC(A«):AZ= (AZ

AND &F)+9 ELSE AZ= VAL(A»)
1330 IF NZO LZ THEN B= B+ (AZ* 16-(LZ-N
Z)) ELSE B= B+ AZ
1340 NEXT
1350 RETURN
1360 PEN 3:PAPER 1: PRINT"INVALID INPUT,

TRY AGAIN"; CHR»(7): PEN 1 :PAPER 0: GOT
O 1270
1370 REM END
1380 FIN= 1: GOTO 1210
1390 DATA UNREALISTICALLY LOW OR HIGH,UN
PROTECTED MEMORY AREA,CHECKSUM DOES NOT
MATCH YOU WILL HAVE TO RE-ENTER FROM T
HE LAST CHECK, OUT OF MEMORY, TOO HIGH

Appendix C

Hex to Décimal
Conversion MS

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 e 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840

1 4352 4608 4864 5120 5376 5632 5888 6144 6400 6656 6912 7168 7424 7680 7936

2 8192 8448 8704 8960 9216 9472 9728 9984 10240 10496 10752 11008 11264 11520 11776 12032

3 12288 12544 12800 13056 13312 13568 13824 .14080 14336 14592 14848 15104 15360 15616 15872 16128

4 16384 16640 16896 17152 17408 17664 17920 18176 18432 18688 18944 19200 19456 19712 19968 20224

5 20488 20736 20992 21248 21504 21760 22016 22272 22528 22784 23040 23296 23552 23808 24064 24320

6 24576 24832 25888 25344 25600 25856 26112 26368 26624 26880 27136 27392 27648 27904 28160 28416

7 28672 28928 29184 29440 29696 29952 30208 30464 30720 30976 31232 31488 31744 32000 32256 32512

8 32768 33024 33280 33536 33792 34048 34304 34560 34816 35072 35328 35584 35840 36096 36352 36608

9 36864 37120 37376 37632 37888 38144 38400 38656 38912 39168 39424 39680 39936 40192 40448 40704

A 40960 41216 41472 41728 41984 42240 42496 42752 43008 43264 43520 43776 44032 44288 44544 44800

B 45056 45312 45568 45824 46080 46336 46592 46848 47104 47360 47616 47872 48128 48384 48640 48896

C 49152 49408 49664 49920 50176 50432 50688 50944 51200 51456 51712 51968 52224 52480 52736 52992

D 53248 53504 53760 54016 54272 54528 54784 55040 55296 55552 55808 56064 56320 56576 56832 57688

E 57344 57660 57856 58112 58368 58624 58880 59136 59392 59648 59904 60160 60416 60672 60928 61184

F 61440 61696 61952 62208 62464 62720 62976 63232 63488 63744 64000 64256 64512 64768 65024 65280

174

Appendix D

Hex to Décimal
Conversion LS

0

0

0

1

1 2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

A

10

B

11

C

12

D

13

E

14

F

15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

NIBBLES

HEX DEC BIN HEX DEC BIN
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 A 10 1010
■7 3 0011 B 11 1011
4 4 0100 C 12 1100
5 5 0101 D 13 1101
6 6 0110 E 14 1110
7 7 0111 F 15 1111

175

Appendix E

2s Complément Hex to
Décimal Conversion MS

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 e 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840

1 «96 4352 4608 4864 5120 5376 5632 5888 6144 6400 6656 6912 7168 7424 7680 7936

->4- 8192 8448 8704 8960 9216 9472 9728 9984 10240 10496 10752 11008 11264 11520 11776 12032

■?, 12288 12544 12808 13056 13312 13568 13824 14080 14336 14592 14848 15104 15360 15616 15872 16128

4 16384 16640 16896 17152 17408 17664 17920 18176 18432 18688 18944 19200 19456 19712 19968 20224

5 20488 28736 20992 21248 21504 21760 22016 22272 22528 22784 23040 23296 23552 23808 24064 24320

6 24576 24832 25888 25344 25600 25856 26112 26368 26624 26880 27136 27392 27648 27904 28160 28416

7 28672 28928 29184 29440 29696 29952 30208 30464 30720 30976 31232 31488 31744 32000 32256 32512

8 -32768 -32512 -32256 -32000 -31744 -31488 -31232 -30976 -30720 -30464 -30208 -29952 -29696 -29440 -29184 -28928

9 -28672 -28416 -28160 -27904 -27648 -27392 -27136 -26880 -26624 -26368 -26112 -25856 -25600 -25344 -25088 -24832

A -24576 -24320 -24864 -23808 -23552 -23296 -23040 -22784 -22528 -22272 -22016 -21760 -21504 -21248 -20992 -20736

B -28480 -2Θ224 -1°968 -19712 -19456 -19200 -18944 -18688 -18432 -18176 -17920 -17664 -17408 -17152 -16896 -16640

C -16384 -16128 -15872 -15616 -15360 -15104 -14848 -14592 -14336 -14080 -13824 -13568 -13312 -13056 -12800 -12544

D -12288 -12032 -11776 -11520 -11264 -11008 -10752 -10496 -10240 -9984 -9728 -9472 -9216 -8960 -8704 -8448

E -8192 -7936 -7680 -7424 -7168 -6912 -6656 -6400 -6144 -5888 -5632 -5376 -5120 -4864 -4608 -4352

F -4096 -3848 -3584 -3328 -3072 -2816 -2560 -2304 -2048 -1792 -1536 -1280 -1024 -768 -512 -256

Where a 16 bit signed number is négative, the value shown here
should be further reduced by the 8 bit unsigned value of the low 8
bits.

176

Appendix E 177

2s Complément Hex to Décimal Conversion LSB

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 « 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3 « 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

8 -128 -127 -126 -125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114 -113

9 -112 -111 -110 -109 -108 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97

A -96 -95 -94 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 -83 -82 -81

B -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65

C -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53 -52 -51 -50 -49

D -48 -47 -46 45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33

E -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17

F -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Appendix F

The Amstrad
Screen Map

The Screen map on the CPC 464 is not straightforward, by any
stretch of the imagination. The start address can change, and a
pixel is represented by different bits according to the current
mode.

The screen is always devoted to 16K of memory. Unless a
program has moved the start of the screen memory it will be at
COOOh (49152). The other possible start is 4000h (16384) but this
must be set by a program. It is unlikely that the screen memory
area will be moved so ali the following is based on the assumption
that the screen memory starts at COOOh.

The screen is always made up from 200 one-pixel-high Iines,
and eighty consecutive bytes from an address which is COOOh
plus a multiple of 80 always corresponds to a screen line, from the
left-hand side to the right. A character is always eight pixels
square, so it can be seen that, in mode 2, there is a one-to-one
ratio of bits to pixels. A set bit shows that the pixel is ink 1 and a
reset bit is ink 0.

Initially (before the screen has been scrolled) the top left of the
screen starts at COOOh. The first 80 bytes from the top line, the next
80 bytes do not form the second line. They are the top line of the
next character row, that is the ninth pixel line, the next 80 bytes
are the 17th pixel line, and so on for ali 25 character Iines. Only
after dealing with the first pixel Iines of ali 25 character Iines, are
the second pixel Iines specified.

Initially therefore the screen addresses for the first byte and last
byte of pixel Iines 1 to 24, will be as shown on opposite page.

There are routines provided in the operating System to allow
you to calculate addresses for a character position or for a pixel

178

Appendix F 179

ADDRESS ADDRESS

LINE No. LEFT RIGHT LINE No. LEFT RIGHT

1 C0Ô0 C04F 13 E050 E09F

7 C800 C84F 14 E850 E89F

3 D000 D04F 15 F050 F09F

4 D800 D84F 16 F850 F89F

5 E000 E04F 17 C0A0 C0DF

6 E800 E84F 18 C8A0 C8DF

7 F000 F04F 19 D0A0 D0DF

8 F800 F84F 20 D8A0 D8DF

9 C05O C09F 21 Ε0Α0 E0DF

10 C850 C89F 22 E8A0 E8DF

11 D050 D09F 23 F0A0 F0DF

12 D850 D89F 24 F8A0 F8DF

position, and the CALL addresses for these are given in
Appendix G.

The bits within each byte in modes other than 2, do not hâve a
one-to-one relationship with the pixels on the screen, as each
byte is required to encode more than two ink colours. The byte
order across the screen remains constant in ail modes but in mode
1 each byte provides the information for four pixels, and in mode
0 each byte only details two pixels.

Each byte represents pixels from left to right as follows:

Mode 1 ; from left to right
bits 3&72&6 1&5 0&4
Mode 0; from left to right
bits 1,5,3&7 0,4,2&6

The bits are given in order of significance and they encode the
ink colour in standard binary.

For example: Mode 1, byte address COOOh 00110101b will give
the first four pixels (top left of screen) in ink 1, 2, 3 and 4
respectively.

180 Machine Code for Beginners on the Amstrad

In mode 0 this would have given two pixels, the first in ink 4
and the second in ink 14. To give four pixels in inks 1,2,3 and 4 in
mode 0 would require two bytes set as follows:

01000000 10011000

When the whole screen is scrolled by the hardware this is
achieved by changing the offset of the starting pixel from the start
of screen memory by 80, and hence the address of the first (top
left) pixel could be COOOh + 80 to 80 * 25 mod 2048. Fortunately
the firmware provides routines to establish the start address (see
Appendix G).

Appendix G

Useful Call Addresses

The Key Manager

Expansion tokens are not expanded unless stated. The keyboard
buffer is not cleared unless stated.

HEX CALL CORRUPTED

REGISTERSADDRESS FUNCTION

ΒΒΘ0 COMPLETELY RESETS THE KEY MANAGER

CLEARS BUFFER

AF BC DE HL

ENABLES INTS

BB12 GET EXPANSION STRING. ON ENTRY A

TO BE EXPANSION TOKEN AND L THE

AF DE

CHARACTER NUMBER. ON EXIT A = CHAR

AND CARRY SET, ELSE NO CHAR AVAILABLE

BB18 WAITS FOR KEYPRESS, RETURNS CODE AF

IN THE A REGISTER

BB1B READS KEYBOARD, SETS CARRY FLAG IF AF

KEY PRESSED, AND RETURNS CODE IN A

CAN BE USED TO CLEAR BUFFER

181

182 Machine Code for Beginners on the Amstrad

BB1E TESTS IF KEY WHOSE NUMBER IS IN A AF HL. C

BB24

IS PRESSED. ZERO SET IF NOT PRESSED

GET JOYSTICK A&H = JOY 0 L = JOY 1

(bit 7 if CTRL

bit 5 if SHIFT)

AF HL

BIT SET IF ACTION TAKEN.

0,UP 1,DOWN 2,LEFT 3,RIGHT 4,FIRE2

5,FIRE1 6,UNALLOCATED 7,ALWAYS RESET

THE TEXT VDU

BB4E FULL INITIALISATION AF BC DE HL

BB5A PRINT CHARACTER IN A TO SCREEN ΝΟΝΕ

BB60 READ CHARACTER FROM CURRENT CURSOR AF

POSITION. A CONTAINS CHAR READ IF

VALID CARRY SET.

BB75 SET CURSOR TO CHARACTER COLUMN H AF HL

LINE L.

MOST OF THE OTHER FOSSIBLE ACTIONS FOR THE TEXT VDU CAN BE

ACHIEVED BY "PRINTING" CONTROL CODES, SEE CHAPTER 9 PAGE 2 OF

THE AMSTRAD USER INSTRUCTIONS.

GRAPHICS VDU

BB8A FULL INITIALISATION AF BC DE HL

BBC© SET GRAPHIC ORIGIN TO DE (X) HL (Y) AF BC DE HL

Appendix G 183

BBDE SET GRAPHICS PEN. A CONTAINS INK No. AF

BBEA PLOT DE (X), HL (Y) AF BC DE HL

BBF6 DRAW LINE FROM CURRENT ORIGIN TO AF BC DE HL

DE (X), HL (Y) AND UPDATE ORIGIN

BBFC WRITE CHAR AT GRAFHICS ORIGIN, A = AF BC DE HL

CHARACTER CODE, ORIGIN IS TOP LEFT

ORIGIN IS MOVED 8 PIXELS RIGHT.

THE SCREEN PACK

BBFF FULL INITIALISATION AF BC DE HL

BCÖ5 SET OFFSET. HL CONTAINS THE OFFSET AF HL

REQUIRED (EVEN NOs ONLY) OFFSET MOD

80 WILL SCROLL THE SCREEN

BC1A RETURNS IN HL THE ADDRESS OF THE TOP AF

LEFT OF THE CHARACTER POSITION H

(COLUMN) L (LINE). B HILL CONTAIN

THE NUMBER OF BYTES FOR A CHARACTERS

WIDTH

BC1D RETURNS IN HL THE ADDRESS OF PIXEL AF DE

DE (X) HL (Y>, WITH THE MASK IN C

AND PIXELS PER BYTE -1 IN B

THE NEXT FOUR CALLS ALL REQUIRE THE HL REGISTER PAIR TO CONTAIN

THE ADDRESS OF A SCREEN LOCATION, AND WILL RETURN THEIR RESULT

184 Machine Code for Beginners on the Amstrad

IN THE HL PAIR. MOVING OFF THE SCREEN IS NOT PREVENTED AND MUST

BE CHECKED FOR, AND PREVENTED.

BC20 RIGHT 1 BYTE AF

BC23 LEFT 1 BYTE AF

BC26 DOWN 1 PIXEL AF

BC29 UP 1 PIXEL AF

BC38 SET BORDER COLOURS TO B,C AF BC DE HL

BC3E SET FLASH PERIODS H,L AF HL

THE CASSETTE MANAGER

BC65 FULL INITIALISATION AF BC DE HL

The cassette manager requires detailed knowledge prior to its
use, such as is given in the Firmware Spécification Manual, as
do the Sound Manager and Kernel en tries. It is suggested that any
cassette or sound handling is done by retuming to BASIC, and
then using BASIC to perform the required functions. A CALL can
then be made to re-enter the machine code program. Note that
you must have CALLed the machine code program from BASIC
initially, to be able to retum to BASIC. You cannot use the “RUN”
command to load and exccute your machine code.

BD2B SENDS THE CHARACTER WHOSE CODE IS AF

IN THE A REGISTER TO THE CENTRONICS

(PRINTER) PORT. IF CHARACTER NOT

SUCCESSFULLY SENT AFTER ABOUT 0.4

Appendix G 185

SECS A RETURN IS MADE WITH THE CARRY

FLAG RESET. IF THE CARRY FLAG IS SET

ON RETURN CHARACTER SENT OK. BIT 7

IS IGNORED

BD37 RESTORE JUMP BLOCK TO ORIGINAL AF BC DE HL

The routines above will allow you to access some of the most
useful firmware functions. There are literally hundreds of further
routines available, some of which will save time and effort even
when using the routines given here. The Firmware Spécification
Manual gives fuller details of ali the firmware routines as well as
an overview of the hardware, and detailed examination of the
techniques employed by the firmware. If you find that you are
serious about machine code programming you have no better
recourse than to buy the Firmware Spécification Manual. (SOFT
158) from Amstrad.

Index

A register 19-20, 24-7, 30-1, 72-4,
109,119,122

accumulator 19-20,119
ADC 52-4,58,118
ADD 47-52, 53, 56-8, 70,104,109
ADD HL 71
Address 11
Address Bus 142-3
addressing modes 164-5
AFTER 145
Amstrad CPC 464 1

operating System 159-63
AND 58, 63, 83, 85, 87,102-3,104,

120
ASCII codes 11
Assembler/Disassembler

Amstrad 2
assemblers 10,11-13, 41

listings 14
Assembly Language Programming

Manual (Zilog) 164

B register 20-1
BASIC 3-4,12, 34, 40

interpréter 3
speed of 5-6

BC register pair 27-8, 33
binary code 8-10, 8-9, 83-5
BIT 104
bit, single

instructions 102-8
block move 129-34
block search instructions 134-9
block transfer and search instructions

129-39

C 79
C register 104,109
calculators 157-8
CALL 35-9,39,40-1,43,78,92-3,96,

100

CALL Addresses
30000 149
30004 60
30007 149
43000 115
43700 65
43700 76
43850 54
43880 36
47896 54
47962 35-6,41
summary 181-5

carry flag 49, 52-3,58, 63,68-82,110-
11,122

CCF 81
cold start routine 34,151
comments 13
communicating 141-4
compare 69-70
Complément Carry Flag 81
conditions

coding 78-9
CONTROL A 121
CONTROL C 121
CONTROL G 115
CONTROL J 115
CP 69-70, 72, 79
CPDR 136-7,139
CPIR 137,139
CPL 87-90
CPU 141-3
CPU registers 18-20

Data Bus 143
databases 104,154-6
DE register pair 27, 33, 42, 56-7, 63,

129-30
DEC 44-7, 71, 72, 79,139
decision making 68-82
DEFB 13
DEFM 13,76

187

188 Machine Code for Beginners on the Amstrad

DEFS 13
DEFW 13
Devpac assembler 47
DIVD 113
division 112-13,117-25
DJNZ 77,121,123,129

ED prefix 33
ENT 13
EQU 13,130
EVERY 145
EX 42
EXchange 42

Firmware Spécification 10
Flag Register 68,121
flags 68-82,83
flow charts 15-17

stencils 157
FOR/NEXT loop 17

GENS assembler 10,12, 41, 65
GOSUB 12,34
GOTO 34

HALT 150-1
Hex code 10-11
HEX LOADER 74-6, 96,157,172-3
Hex to Décimal conversion 174-6
Highsoft Devpac 41
HL register pair 27-33, 39, 42, 43,

56-7, 63, 95-6, 99,118,153-4

IM 145-51
ΙΜ0 147
IMI 146
IM2 147
IN 143
INC 44-7, 71, 72, 79
Indexed Addressing 152-8
INT 25
Interrupt Modes 145-51
Interrupt Service Routine 146
IX register 152-8
IY register 152-8

JP 39-40,43,78
JR 40-1,43,70-1
JUMP 35
jump blocks 159-62
jump instructions 39-42
Jump Relative 40-1, 43, 70-1

LD 42-3
LDD 134
LDDR 132-3
LDI 134
LDIR 132
Locomotive Software 146
logical operators 83-90

LSB 124

M 79
machine code

listings 14
nature of 3-7

machine stack
see stack

mathematics
16-bit 61-4
8-bit 44-67

memory banks
switching 97

memory locations 11
MOD 25
moves and searches

automated 129-39
multiplication 109-17

NC 79
NEG 90
négative numbers 9
no carry 69
numbers, négative 9
NZ 46,78

ON GOSUB 40
OPCODES 13, 31-2, 33
operating System

Amstrad 1, 3,159-63
OR 83,85,87,94,102-3,104,109,120
ORG 13
OUT 143-4
Overflow 80-1

P 79
P/V flag 79-81, 83,134-5
Parity 80-1
Parity/Overflow flag 79-81, 83,

134-5
Pascal 12,163
PC See Programme Counter
PE 79,80
peripheral devices 141-4
Picturesque assembler 10,41,47

Index 189

PO 79,80
POP 93,95-6,100
printers

screen dumps 156-7
Program Counter 34-42
programming, Z80 159-63
Programming the Z80 (Zaks) 127,162
Pseudo Operations 12-13
PUSH 93, 96, 97-9, 99,100,103

registers
CPU 18-20
loading 21-3
pairs 27-34

RES 104
RESET 97
ReSTarts 161
RET 35-9, 43, 78, 92-3, 96, 99,100
RETURN 34
RL 118,119
RLA 119,124-5
RLC 118
RLCA 119
rotates 118-25

décimal 126-7
RR 118,119,121
RRA 119
RRC 118
RRCA 119
RST 151-2
RUN 12

SAVE 12
SBC 52-4,58
SCF 81
screen dumps 156-7
screen map 88-90,126,157,178-80
screen scrolling 125-6
searches

automated 129-39

SET 104
Set Carry Flag 81
Shift Left 110
Shift Left Arithmetic 112,113
Shift Right 110
Shift Right Logic 112,117,121
shifts 109-13,125-7
sign flag 78-9
Sign flag 83
single bit instructions 102-8
SLA 109,110,112
SP 94,97-100
SRA 121
SRL 112,117,121
stack 36-9,92-101
stack pointer 96-100, 96-8
SUB 47-52,53
switching

memory banks 97

XOR 83, 85, 87,124

Z 78
Z80

CPU 1,141-3
CPU registers 18-20
instruction set 164-71
programming 159-63

Z80 Applications (Coffron) 162
Z80 CPU Technical Manual (Zilog)

164
Z80 programming 159-63
Z80 Technical Manual (Zilog) 162
zéro, testing for

in division 120
zéro flag 48, 49, 68-82, 83

; (comment) 13

Other titles available from Micro Press:

THE MICRO MAZE: A GUIDE TO
PERSONAL COMPUTING
Wynford James
07447 0000 0

20 GAMES FOR THE ORIC-1
Wynford James
07447 0003 5

QUALITY PROGRAMS FOR THE
BBC MICRO
Simon
07447 0001 9

QUALITY PROGRAMS FOR THE
BBC MICRO (Cassette)
Simon
07447 00116

15 GRAPHIC GAMES FOR THE
SPECTRUM
Richard G. Hurley
074470002 7

MASTERING THE TI-99
Peter Brooks
07447 00086

ADVANCING WITH THE
ELECTRON
Peter Seal
07447 00124

QUALITY PROGRAMS FOR THE
ELECTRON
Simon
0 7447 0004 3

MAKING THE MOST OF YOUR
SPECTRUM MICRO DRIVES
Richard G. Hurley
0744700051

GRAPHIC ADVENTURES FOR THE
SPECTRUM 48K
Richard G. Hurley
0 7447 00132

SPECTRUM SUPERGAMES
Richard G. Hurley
07447 0017 5

EDUCATIONAL GAMES FOR THE
BBC MICRO
lan Soutar
07447 00167

THE ATMOS BOOK OF GAMES
Wynford James
07447 0018 3

THE COMMODORE 64 BOOK OF
SOUND AND GRAPHICS
Simon
07447 0015 9

QL SUPERBASIC: A
PROGRAMMER'S GUIDE
John Wilson
0 7447 0020 5

THE QL BOOK OF GAMES
Richard G. Hurley
0 7447 0022 1

THE SPECTRUM OPERATING
SYSTEM
Steve Kramer
07447 00191

BASIC PROGRAMMING ON THE
AMSTRAD
Wynford James
0 7447 00248

BASIC PROGRAMMING ON THE
COMMODORE 64
Gordon Davis and Fin Fahey
0 7447 00264

MACHINE CODE FOR BEGINNERS
ON THE AMSTRAD

The Amstrad CPC 464 is perhaps the most exciting new
computer to appear since the Sinclair Spectrum. It offers
many advanced featuresfrom BASIC which could previously
be accomplished only by vastly more expensive machines.

This book is intended for the beginner wishing to learn how to
use Machine Code on the Amstrad CPC 464. It progresses
from the concepts of programming in Machine Code,
explains the instructions that the Z80 CPU understands and
how to use them, and introduces some of the routines in the
operating System. Short programs are given to help in
entering Machine Code programs, and to inspect and alter or
move the contents of part of the memory. Extensive use is
also made of the machine operating System allowing results
from programs to be seen immediately.

The Author
Steve Kramer has been working with computers for twelve
years. He acts as an Independent software consultant to a
number of software houses in the field of business appli­
cations. He is also the author of several games and home-use
programs written for popular micros.

GB i NET +007. IS

ISBN 0-?447-0025-b

00 79 5

9 780744 700251

	Machine Code for Beginners on the AMSTRAD
	Contents
	Acknowledgements

	1 - Introduction

	2 - What is Machine Code and Why Use it?
	3 - First Concepts

	4 - Flow Charts
	5 - Simple Machine Code Instructions
	6 - Simple Maths
	7 - Flags, Conditions and Decision making
	8 - Logical Operations
	9 - Using the Machine Stack
	10 - Using Instructions that work on a signel bit
	11 - Rotates and Shifts, Multiplication and Division
	12 - Automated Moves and Searches
	13 - Communicating with the Outside World
	14 - Other Instructions, Indexed Addressing with the IX and IY
	15 - Programming Hints, and Using the Firmware
	A - The Z80 Instruction Set Courtesy of ZILOG Inc.
	B - Hex Loader
	C - Hex to Décimal Conversion MSB
	D - Hex to Décimal Conversion LSB
	E - Twos Complément Conversions
	F - The Amstrad Screen Map
	G - Useful Call Addresses
	Index

	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ●

