
STRUCTURED
PROGRAMMING

ON THE AMSTRAD COMPUTERS
CPC 464,664 and 6128

Stephen Raven

MICRO PRESS

Structured Programming
on the

Amstrad Computers
CPC 464, 664 and 6128

Structured Programming
on the

Amstrad Computers
CPC 464, 664 and 6128

Stephen Raven

MICRO PRESS

First published in 1985 in the United Kingdom by
Micro Press
Castle House, 27 London Road
Tunbridge Wells, Kent

© Stephen Raven 1985

All rights reserved. No part of
this publication may be reproduced,
stored in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, recording or otherwise, without
the prior permission of the publishers.

British Library Cataloguing in Publication Data
Raven, Steve

Structured programming on the Amstrad CPC 464, 664 and 6128.
1. Amstrad CPC 664 (Computer)—Programming
2. Amstrad CPC 464 (Computer)—Programming
3. Amstrad CPC 6128 (Computer)—Programming
I. Title
001.64'2 QA76.8.A4/
ISBN 0-7447-0034-5

Typeset by MC Typeset, Chatham, Kent
Printed by Mackays of Chatham Ltd

Contents

Section A

Chapter 1

Chapter 2

Section B

Chapter 3

Chapter 4

Section C

Chapter 5

Chapter 6

Section D

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Introduction to the Amstrad CPC 464, 664
and 6128 1

The machine: its concept and breeding 3

Commanding the CPC 664/464 by programming it
with instructions 14

Familiarity breeds confidence 29

BASIC tools of the trade 39

Debugging programs - editing facilities on the
CPC 664/464 and how to use them 40

The principles of BASIC 45

Variable names and labels 47

Reacting to your CPC 664/464 - INPUT
statements 54

From little blocks to structured programs 63

Structured planning on CPC 664/464
applications 65

Diagrams make the mind clearer 73

Implementing the plan: 1 80

Implementing the plan: 2 88

aing it

Section E Handling text - the key to information
storage 101

Chapter 11 Strings, string variables and the $ symbol 103

Chapter 12 Manipulating strings to your advantage 108

Chapter 13 READ and DATA statements 116

Chapter 14 Extending variables - dimensional arrays 120

Chapter 15 Viewing the file, form fil, screen format, and
data entry 124

Chapter 16 Processing numerical variables - automatic record
updating 127

Chapter 17 Ideas for applications 132

Chapter 18 General principles and some reminders 139

Appendix 141

Index 149

Section A
Introduction to the
Amstrad CPC 464,664
and 6128

The CPC 6128

As this book was about to go to press, Amstrad launched the CPC 6128 home micro. Its
advantages over the 664 are that it has twice as much RAM, a different keyboard
(which isn't as good as the 664) and a new version of the CP/M business operating
system which allows it to run a wider range of business programs.

The good news is that programs written in BASIC on the 464 and 664 will run
without alteration on the 6128. This means that it should run all 664 disk based
programs and 99.5% of 464 cassette programs. It also means that you can use all of the
programming hints and tips in this book to teach you how to use your new 6128.

Although the 6128 is supplied with 128K of RAM, only 64K is available for BASIC
programs. This is because the BASIC on the 6128 was originally designed for the 464
and 664 which only have 64K available. To help you get around this problem, Amstrad
has included some extra BASIC commands which you can load from disk. These allow
you to use the 'spare' 64K of RAM either as somewhere to store extra screen images or
as a fast filing system. At the moment, you can't use the spare 64K to hold BASIC
programs.

All these extra commands are installed by running the 'Bankmanager' machine code
program supplied on your screen disk. If you want to use the spare RAM to hold extra
screen images, Bankmanager supplies you with two extra commands:

1SCREENCOPY' and 'BCREENSWAP' allow you to store up to four screen images in
the extra RAM and then switch them onto the screen. This could be useful for games
and animation, where you could set up new screens in the background and then
switch them in when needed. Each screen image is given a 'Block' number from 1 to 5.
To display an image you need to move it to Block 1.

ISCREENCOPY copies a whole screen image from a source Block to a target Block.
The previous contents of the target Block are always overwritten and lost. For example
if you want to save your display for later use, you would type something like
ISCREENCOPY,1,4'. This copies the image from Block 1 (which is always the display
screen) to Block 4 (which is part of the spare RAM).

ISCREENSWAP just swaps the contents of two Blocks - it doesn't overwrite
anything. For example ISCREENSWAP,1,4 would put the current screen image in Block
4 and the contents of Block 4 on the screen. Another ISCREENSWAP, 1,4 would swap
the images back to the way they started.

If you decide you want to use the spare 64K of RAM for storing data rather than
screen images, the Bankmanager supplies you with four extra BASIC commands as
follows:

IBANKOPEN allows you to specify how many characters will be in each record. The
maximum length is 255 characters. IBANKWRITE lets you write a record, IBANKREAD
lets you read a record and IBANKFIND does a string search to find a matching record
and returns the record number so that you can then do a IBANKREAD to recover the
data.

All the commands apart from IBANKOPEN need you to specify an integer variable to
hold the status code and a string variable to hold the data to be read or written to the
file.

Chapter One

The machine: its
concept and breeding

The computer is a very complex machine, able to respond in a
precise and an accurate manner to a series of instructions.

A series of instructions is placed within the computer by
means of a computer program. A program is defined as a list of
instructions that will cause the computer to do a clearly
defined job of work. This book is primarily concerned with
how to create programs for the Amstrad CPC 664 and the CPC
464 with a style and structure that will ensure your hopes and
objectives for your programming projects are fulfilled. Such
general principles are applicable to all computers but the
Amstrad CPC 664 and CPC 464 as machines have several
advantages for the purpose of creating well structured prog­
rams with the aim of being useful about the home.

The advantages are:

1) Both computers allow the user to communicate effectively
in a form of BASIC—the language we give instructions to
the computer by—that is easily read with a minimum of
code numbers and meaningless formulae.

2) The documentation with the computers is comprehensive
in its description of the commands available to the user to
communicate with the machine. Using those commands
together with this book, the extent of programming ability
in the BASIC language will only be limited by the
programmer's imagination.

3) The equipment supplied with the CPC 464, i.e. the cassette
recorder and monitor, means an economic purchase,
ensuring further demands on the household's TV set will
not be made. There are distinct disadvantages in using a
TV screen if you require to look up how to make Granny's

3

4 Structured Programming

Christmas Cake on your recipe database if someone else is
watching their favourite TV soap opera at that particular
moment.

4) The CPC 664 has a very distinctive advantage in terms of
having disk storage alongside the keyboard. This package
means not only an economic purchase, but also a time
saving element in loading and storing programs associated
with a disk system as compared to a cassette storage
system.

In order to give instructions to a computer they must be
presented in a very precise form, so that the computer can
understand and hence execute them. One of the purposes of
the keyboard is to deliver these instructions to the advanced
technology held inside the casing of the computer, rather like
giving instructions to another person, and then that person
carrying them out. This person would interpret the instruc­
tions and even fill in the bits he or she did not hear or
understand. Just like any computer the Amstrad CPC 664/464
cannot interpret instructions outside of its language format.
The instructions have to be delivered in a form, which is
known as the syntax, of the CPC 664/464 BASIC language
which obeys the rules written into the machine's specification.

To become a proficient CPC 664/464 user, developing useful
program applications with a style of program structure that
will guarantee successful implementation of your ideas, there
are two skills you must aspire to. The first is to be able to
communicate with the CPC 664/464 in its language, which is a
little like yours but more logical and definitely more precise in
its presentation. If you deliver an instruction that the CPC
664/464 does not understand it will respond with one of a
number of messages known as 'error messages' which will
provide you with a clue of why the CPC 664/464 cannot
understand your instruction and therefore cannot carry it out.
It is the informed use of these error messages that make up one
of the essential elements of a good CPC 664/464 program
creator.

The second skill you have to aspire to is the ability to
develop your thoughts in such a way that the application is
planned in minute detail, the whole structure is designed in
the form of blocks that when placed together will perform the

The machine 5

required task accurately and repeatedly. During this planning
stage pen and paper and the use of diagrams are the essential
tools. This is not to say do not use the CPC 664/464 to
experiment your ideas on, but always after trying the idea
return to planning the whole project before keying the
finished program into the computer.

As you type in your instructions, it would be very unusual if
you did not make some typing errors. The CPC 664/464 will
respond with 'error messages'. In order to learn quickly and
effectively, it will be necessary to swallow your pride and
accept that you have to keep within the limitations of the CPC
664/464's language. Use the 'error messages' Appendix VIII in
the CPC 464's User Instruction Manual; CPC 664 users should
refer to Chapter 7 Part 6 of their manual. Then correct the
mistakes in the instructions. Only then will you be able to
command the CPC 664/464 to follow your wishes.

A computer is patient since it will wait for you to make a
move; it will repeat the same response for ever if you do not
make any changes to the instructions held in its memory. If
such instructions include parts which the computer cannot
interpret, an 'error message' will be displayed on the screen.
The computer cannot miraculously correct the parts it cannot
interpret. It is essential to bear in mind that the computer will
not, or more precisely cannot, change its dialect of logical and
precise commands to your dialect which is, though I hate to
say it, typically human, containing numerous elements open to
various interpretations by the person listening to you.

A computer responds to lists of instructions, which are
known as programs; they are typified by having a logical
order, as each line of instructions begins with a line number,
ascending in magnitude as the program progresses. In order to
develop new skills we need to concentrate on the CPC
664/464's ability to respond to a single line of instructions
immediately: this is known as direct command mode. There
are several uses for this facility while actually creating a
program; it may also be used as an application even before you
have produced a program.

Set up your computer and switch the power on so that you
have the manufacturer's initialisation message on the screen.
Type in the letters C LS or c L s and press the <ENTER> key
(a blue key on the keyboard). The screen should now be

6 Structured Programming

cleared of the manufacturer's information, with only the word
READY and a yellow square (the text cursor) in the top left
hand corner. This is a very simple direct command that you
have caused the CPC 664/464 to execute. Note the CPC 664/464
allows you to enter its instructions in both upper or lower case
letters, an excellent feature of these machines.

From now on specific keys to be pressed will be placed
within these symbols <> e.g. <EI\ITER> means to press the
ENTER key.

The benefits of using direct command mode are:

1) Use of the direct command mode allows the machine user
to gain familiarity with the facilities available and insight
into their potential. (Try some BASIC commands out now.
Look at the BASIC keyword reference of your machine's
User Manual and remember to take note of the syntax
requirement, e.g. try PEN 4 <ENTER> to start with.)

2) Direct command mode develops an understanding of the
machine's logical workings and the speed of working, for
example, to do arithmetical calculations.

3) As the user's programming abilities develop, direct com­
mand mode enables the use of the CPC 664/464 as a jotting
pad, scribbling down ideas to try them out before entering
them into a program.

4) Use of the direct command mode will illustrate the
frustration of not being able to store the instructions for
long term use, as with a computer program.

The home micro's primaeval grandfather is the electronic
calculator. Just as we would expect with all technological
advances, more and more facilities are now available. The
home micro is no exception. Rather than merely having a
number of LED displays as a calculator does, displaying only
numbers, there are several output facilities which can respond
by sending all kinds of numbers, characters, and other
symbols to the monitor screen, to a cassette in the cassette
recorder and, if fitted, to a printer to provide paper copy of the
output. For these reasons the commands, for example of how
the answer to a calculation is to be displayed, have to be
explicit. The instructions to perform a calculation have to
include not only the sum itself, but in what form and to which
device—monitor, printer or cassette—where—the location on

The machine 7

the screen, etc.—and when—at what time and for how
long—the answer is to be displayed.

Now type in the instructions, exactly as they appear in
Figure 1.1 and remember to press the <ENTER> key once you
have finished each line. To print the + sign hold the
<SHIFT> key down and press the appropriate key.

PRINT 6+5 <ENTER>
’------------ This is a blank space» which mist be included.

PRINT. TAEK15) 23+4 <ENTER>
'------------ This is a blank space, which wust be included.

Figure 1.1 Direct command mode arithmetical calculations

The answers to the sum will appear on the screen, one line
below the instruction line.

Now experiment with the number inside the brackets. How
long is a line? What is the largest number you can place inside
these brackets? Try placing a sum (two numbers to be
calculated) inside the brackets. Do not forget to retype the rest
of the instruction exactly as in the original instruction.

You have now probably discovered that the TAB command
allows up to 80 characters or two lines of positioning on the
screen. Further arithmetical formulae can be used to position
the answer on the screen.

What type of message appears on the screen if the blank
spaces are omitted? If you had omitted the blank space after
the PRINT command one of two error messages would have
appeared on the screen. With only the PRINT statement used
the message would be 'Syntax error': the CPC 664/464 cannot
interpret your instructions as governed by the CPC 664/464
language rules. If the TAB command is also included, the error
message will depend on the number placed inside the
brackets, determining how the computer interprets your
instructions. If the number is less than 11 a 'Syntax error'
message will be printed on the screen. If the number is 11 or
greater 'Subscript out of range' will be printed on the screen;
this will be explained in greater detail later, but effectively the
CPC 664/464 is being confused in what it is being asked to do.

However, most syntax errors are the result of typing

8 Structured Programming

mistakes or the omitting of a blank space which is essential for
clarity of the instruction, i.e. the blank space has the effect of
terminating a CPC 664/464 BASIC command word.

The symbols the CPC 664/464 uses to do arithmetical
calculations are not the ones you are probably familiar with.
They are different only for reasons of legibility and therefore
will be more easily recognisable. A summary of important
symbols and arithmetical operators is shown in Figure 1.2.

Symbol
/
*
+

Arithmetical and Relational Operators
division
multiplication
addition

- subtraction

\ Integer division the result will
always be a whole number.

MOD Gives the remainder when an integer division is
carried out.

Î Exponentiation, raises the number to a power, ie.
1 2 is the square of four, answer 16

Figure 1.2 The CPC 664/464's arithmetical and relational symbols

= is equal to
< is less than
> is greater than
<= is less than or equal to
=> or >= is greater than or equal to
O is not equal to

All of the symbols and combinations in Figure 1.2, appear on
the keyboard. If it is the lower symbol on the key you can enter
it directly. If it is the upper symbol on the key you will have to
press and hold the <SHJFT> key down, while you press the
appropriate symbol key.

Experiment by doing further calculations of a more complex
nature. The CPC 664/464 performs its arithmetic in specific
order of calculation: all multiplication elements are performed
first, followed by the division, addition, and then subtraction
elements. As in traditional mathematics the use of brackets is

The machine 9

permissible and signifies that this part of the calculation is to
be performed before the rest of the sum is calculated.

Hand written expression CPC461's expression

(6+5)
(6x(5+6))

PRINT (6+5)/(6*(5+6))
0,166666667

-1L--L
6x11“ 6

Figure 1.3 Comparison of handwritten and CPC 664/464's arithmetical
expressions

Punctuation for the PRINT statement is important. Try this:

PRINT 3+2,3-2,3*2
PRINT 3+213-25312

CENTER)-
<ENTER>

Figure 1.4 Punctuation and the PRINT statement

Commas(,) when combined with the PRINT command
allow the output of information to be displayed in one of three
columns across the screen. The columns are filled consecutive­
ly from the left hand side; when all three columns are filled the
cursor automatically moves on to the next line.

Semi-colons(;) used while printing numbers will cause the
number to be printed with a blank space on either side of it.

If you happen to enter a letter instead of a number, you will
see on pressing the <ENTER> key a zero; you have created a
variable that has the value of zero, which is explained in
Chapter 5, 'Variables and the LET statement'. For the time
being try typing this into the CPC 664/464:

number=12:PRINT number <ENTER>

A colon(:) allows the CPC 664/464 user to combine a variety
of commands and statements on one line of instructions. A line
of instructions can consist of up to 255 characters, not merely a
line across the monitor screen.

Now let us experiment by typing the following commands
into your CPC 664/464, pressing the <ENTER> key, when-

10 Structured Programming

ever instructed to do so:

a) MODE 0 <ENTER>
b)MODE1 <ENTER>
c) MODE 2 <ENTER>

Press and hold down <SHIFT> and <CTRL>, while pressing
<ESC>

d)PEN4:PAPER2:BORDER3 <ENTER>
e)CLS <ENTER>

Repeat instructions (d) and (c) using different numbers. Find
any limitations there may be which produce an error message.
Try changing the MODE by typing either line («) or (c), again
experimenting with a range of numbers.

To reset the CPC 664/464 hold <SHIFT> and <CTRL> and
press <ESC>.

Extending the instruction line by the use of colons(:) can be
advantageous both for programming reasons and also for the
purpose of trying ideas out, in direct command mode, very
similar to using a note book or jotting pad.

FOR counters TO 10:PRINT " CPC464":NEXT

It would now appear that there are no limitations to the
extent of the instructions that can be given to the CPC 664/464.
Unfortunately this is not so; due to the construction of most
computers there is a limit to the number of characters that can
be used in any one instruction line. In the case of the CPC
664/464 the maximum is 255 characters. A long term disadvan­
tage with direct commands is the inability to store them in the
computer's memory for repeated use. Consequently the in­
structions have to be retyped every time the response is
required. By adding a line number the execution of the
instructions by the CPC 664/464 can be repeated as many times
as the user requires them to be executed, simply by typing the
command word RUN and hitting the <ENTER> key.

10 FOR counters TO 10:PRINT " CPC464":NEXT
RUN <ENTER>

The machine 11

Applications in direct command mode

The most obvious use for the CPC 664/464 in direct command
mode is that of a calculator, with the ability to calculate
complicated formulae with one swift press of a key. Follow
through the example in Figure 1.5.

PRINT "Afiourit invested = #25.00"! LET princip31=25 <ENTER>
PRINT "Rate of interest = 12Z"! LET rste=12 <ENTER>
PRINT "Tine (in years) = 2yrs"! LET tine=2 <ENTER>

LET interest=(princip31+r3te*tine)/100 <ENTER>
LET b313nce=princip31+interest <ENTER>

PRINT "The interest payable on this investnent is! ♦"{interest <ENTER>
PRINT "The new balsnce is.........! ♦"{balance <ENTER>

Figure 1.5 Calculator application in direct command mode

This demonstrates a useful and informative means of doing
a series of calculations. By examining this application, it
should be possible for you to see the principle that commands
such as PRINT only send information to the screen. It is
therefore also necessary to instruct the computer memory with
the same information as you are reading on the screen; this is
done by the use of such commands as the LET statement.

Let us now consider a different approach to the use of direct
command mode. Reset your CPC 664/464 by holding down
<SHIFT>, <CTRL> and pressing <ESC>.

By following the instructions in Figure 1.6 it will be possible
for you to design room layouts etc., using a range of the
graphics facilities available on the CPC 664/464.

MODE 0
WINDOW 1,20,1,4 ! PAPER 3 ! FEN 2 ! CLS
PRINT "l=Yel 2=Blue 0=Ersse"{ ! WINDOW 1,20,1,3
FEN 3 ! PAPER 1 ! CLS
ORIGIN 20,20,20,620,320,20
DRAW 600,0,2 ! DRAW 600,300 ! DRAW 0,300 ! DRAW 0,0

<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>
<ENTER>

Figure 1.6 Instructions in direct command mode

12 Structured Programming

Now experiment for yourself. If you get into too much of a
mess, reset the CPC 664/464 and start from the beginning of
the instructions in Figure 1.6.

To draw in lines use either of the draw statements. DRAW
uses absolute coordinates, where the position 0,0 is the bottom
left hand corner. The area available for your room plan designs
etc., has a maximum x coordinate of 600 and a y coordinate of
300.

CoMMcr.d Syntax
MOVE MOVE x coordinate, y coordinate
MOVER MOVER x value, y value cursor Moves relative to

previous cursor position
DRAW DRAW x coordinate, y coordinate, color
DRAW DRAWR x value, y value , color cursor Moves relative to

previous cursor position
color - a nuMber 1-yellow lines etc.

The colour will reMain until it is subsequently
changed, by a following DRAW or DRAWR statnent,
Erase by using color-0 ie. DRAWR 100,100,0 will
draw a line the sane colour as tire paper/background
diagonally 100 units up arid 100 units across.

The blue rectangle represents a drawing area, which has an mbximum x
coordinate of 600 and a y coordinate of 300. The MOVE and DRAW statMents positon
the cursor with respect to this grid. The HOVER and DRAWR statMents are the Most
useful, in that you can Mentally split the rectangle into a grid of 600 across,
300 up, 3dd or subtract the appropriate quantity to draw a line or Move the
cursor.

Figure 1.7 Instructions for using the direct command mode design screen

The DRAWR statement uses coordinates relative to the last
position of the graphics cursor, i.e. to draw a vertical line
upwards from the current position, use in the y coordinate's
position in the statement a value equivalent to the length of
the line required, while the value in the x coordinate's position
will be zero. To draw a vertical line downwards from the
current cursor position repeat the process, but include a minus
sign as a prefix to the y coordinate value.

To erase a line, repeat the previous set of commands causing
the unwanted line(s), having first moved the cursor to the start
of the section of unwanted line(s), and ending your DRAW or

The machine 13

DRAWR command with a zero.
Remember, if you have an idea, try it out. Experiment, see if

you can improve on this application. Once you have worked
through the rest of this book, return to this application and see
if you can convert it from direct command mode into a
complete program and therefore save it on cassette tape, ready
for repeated use.

Chapter Two

Commanding the CPC
664/464 by
programming it with
instructions

A computer application will consist of a series of instructions
held in its memory in order to carry out a very specific task.
These instructions will therefore be required on numerous
occasions, making it totally impractical to type them into the
CPC 664/464 every time they are required. Long term storage
of programs is an extremely valuable facility and when using
the CPC 464 the best method is to use the data recorder to the
right hand of the keyboard. The CPC 664 has a distinct
advantage because of the presence of a disk storage system, a
system which will enable very effective data file management
to be arranged. The example from the previous chapter would
not fit these requirements, having to be set up each time it is to
be used.

The application we are now going to consider is in fact a
suite of three programs that when used in conjunction with
each other can provide an effective and tidy method of storing
up to one hundred names and telephone numbers in the form
of a computer data file. Once this information has been created
and stored on data cassette, it will be possible to add further
names and numbers at a later date—up to the maximum
allowed—browse through your personalised telephone direc­
tory at the press of a key, select a first name or surname and
view all entries in your directory under that particular name.

Before we actually start the work of putting this program
into your CPC 664/464, you should bear in mind the following
points:

14

Commanding the CPC 464, 664 and 6128 15

1) The following program is a foundation, to develop and add
to as your programming ability spreads its wings.
Throughout each chapter hints and ideas will be made to
further improve the facilities available to the program
user.

2) The design and structure built into these programs was
initiated on paper before sitting down at the CPC 664/464
to key it in. If that approach was followed in this type of
book you would be reading about 'something' being
created while having no idea of the finished article. You
need to become acquainted with the product and be
effective in its use before you can work through the why's
and how's of its creation and application.

Turn on your computer and ensure that there is nothing
stored in its memory by using the <SHIFT>, <CTRL> and
<ESC> keys. When entering a program remember to press
the <ENTER> key at the end of each program line. Before you
start it is possible to put your computer into automatic line
numbering mode. The following command will start number­
ing lines at line 10 and every time the <EIMTER> key is
pressed will increase the line number by 10.

AUTO line number, increment <ENTER>
e.g. AUTO 10,10 <ENTER>

To leave automatic line numbering mode press the <ESC>
key. To return to automatic line numbering use the AUTO
command, but change the first number of the command to the
next line from the program listing that you require to enter
into the CPC 664/464's memory.

Part one: The option menu

The aim of this program is to be able to choose between
creating/adding to the telephone directory or using the
facilities available to look through the information stored in
the directory.

II REM Personalised Telephone Directory
28 REM Steve Raven March 1985
38 REM Part ore Option Menu

16 Structured Programming

M CLSJPEN 3
50 FOR display^! TO 22
68 PRINT TAB (display) "Telephone Directory"
70 NEXT
80 WINDOW 2,40,2,11
90 CLS5PRINTJPEN 2
100 PRINT"Do you require to*."
110 PRINT!PRINT"<A> Create or add to your directory "
120 PRINT!PRINT" Use your directory"
130 PRINT
141 PRINT "Press the appropriate <key>"
150 WINDOW 2,40,13,21
160 CLS¡PRINT¡PRINT
170 PRINT "Renenber you nust have created a "
180 PRINT
191 PRINT “directory before you can use it."
200 PRINT
211 WHILE K$O"A" AND KIO"B"
220 Kt=INKEY$
230 Kt=UPPER$(K$)
240 PEN 1
250 MEM)
260 IF K4="A" THEN RUN"Create"
270 IF K4="B" PfN RUN"Use"
280 END

Now carefully check what you have typed in, a few lines at a
time, by using the LIST command:

LIST 10-200 <ENTER>

This command will actually list all the lines you have typed in
and entered from line number 10 up to and including line
number 200. If a complete line is missing you merely have to
type it in and press <ENTER>. The next time you use the
LIST command it will appear in the listing. If you find a
typing mistake, for the time being retype the whole line again
and press the <ENTER> key. Later on we shall examine much
more effective methods of editing program lines, using the
facilities available on the CPC 664/464. Once all these lines
have been checked move on to check lines 210 to 280 by using
LIST 21 0—280 <ENTER>. Once you are satisfied that the
program is entered into memory correctly, type in the
command RUN and press the <ENTER> key.

Commanding the CPC 464, 664 and 6128 17

Remember you cannot actually expect the program to fulfil
its aim of loading one of the two programs it asks the user to
select, as you have not yet created them or stored them on the
particular form of storage you have with your computer, so use
this method to check that you have made no typing mistakes,
i.e. no 'error messages' will appear on the screen after the
command RUN has been entered if the program has been
entered exactly as in lines 10 to 280 above.

The program should execute its instructions, asking the
program user to select one of two options. You will find that
you will only be able to press the appropriate keys or the
<ESC> key to have any effect. This is known as validating the
program user's response to the questions asked, i.e. if this was
not the case the program would not do its stated task of either
creating or using the telephone directory. The reason we have
still maintained the use of the <ESC> key is so that we can
return to the program listing. If an 'error message' is
encountered type MODE1:LIST <ENTER> and recheck the
line that the error was reported on. Note that blank spaces are
important and retype the line as it is in the program listing. If
no 'error messages' appear then save the program on your
particular storage system. For CPC 464 system users follow the
instructions in the first list below. CPC 664 users should skip
the first and follow the second one. For further details consult
the CPC 464 user's manual. If after returning to the program
listing you want to view the instructions in the original colour,
type PEN 1 <ENTER>. If you do not change the MO D E before
using the command LIST, the program listing will appear in
one of the 'windows' set up by the program itself.

CPC 464 users:

1) Place the blank cassette in the data recorder, reset the tape
counter to zero, fast forward the tape so that the counter
reads 025.

2) Type the command SAVE "PHONEHOME", press
<ENTER> key.

3) Follow the instructions which appear on the screen.
4) Verify the program is saved on the cassette by rewinding

the cassette so that the tape counter reads 023, type the
command CAT, press PLAY on the recorder and the
<ENTER> key. The relevant information will appear on

18 Structured Programming

the screen as the option menu program is only one block in
length. The screen will read: PHONEHOME block 1 $
o k as long as the program is saved on the cassette.

5) If the response to the CAT command is not as above,
repeat the saving process.

CPC 664 users:

1) Place a new previously FORMATTED disk into the floppy
disk drive (consult the machine's manual on how to
FORMAT a disk).

2) Type the command SAVE "PHONEHOME" press
<ENTER> key.

3) Follow the instructions which appear on the screen.
4) Verify the program is saved on the disk by typing the

command CAT and pressing the <EI\ITER> key. The
screen will display all the files stored on that particular
disk.

5) If the list does not include the name PHONEHOME, repeat
the saving process until the required CAT response is
obtained.

Part two: Creating or adding to the directory

Part two of the telephone directory program creates the
directory or adds names and numbers to a previously created
directory.

Lines 10 to 190 consist of the program's initialisation and
main control element. These instruction lines can be consi­
dered as the foundation to the rest of the program, ensuring
the subroutines are executed in the right sequence and at the
appropriate time.

10 REM Create a telephone directory

20 REM or add new nartes arid northers
30 REM to a previously created

10 REM directory

50 REM Part two Create

60 :

70 t=100!coiriter=0:record=0

80 DIM narteldljSurnarieKt) tpboriel(t)
90 f$="Firstxiarte":si="Surri3rte"'.ph$="Phorie No."

Commanding the CPC 464, 664 and 6128 19

100 MODE II PEN 1

no :
120 cosue 210 ¡REM Option Menu

130 IF k.$="A" THEN GOSUE: 310

110 ¡REM add to directors

150 IF k»="C" THEN GOSUE: 620

160 ¡REM create directory

170 GOSUE: 960 ¡REM save directory

180 GOSUE: 1190 ¡REM use or finish

190 ENO

Program lines 210 to 300 relate to the subroutine which will
provide the program user with the information for him or her
to make a response.

210 FEM Option neou on screen
220 LOCATE 1,2:PRINT"Choose the facility you require:"

230 LOCATE 5,1! PRINT "<Or eate a NEW directory"

210 LOCATE 5,6!PRINT"<A>dd to an OLD directory"

250 LOCATE 1,8¡PRINT"Press either key <C> or <A>"

260 WHILE k$O"A" AND k,IO"C"

270 ki=INKEY$
280 HOPPER! (kt)

290 WEND

300 RETURN

The following program lines contain the instructions which
enable the computer to perform the first of the two facilities
available to the program user of this part of the application.
The REM statement line explains what it does.

310 REM Add new phone nos to directory

320 CLS
330 LOCATE 5,21¡PEN 5
310 PRINT"Insert data cassette in datacorder"

350 LOCATE 1,1
360 FOR delay=l TO 1500¡NEXT

370 CLS

380 OPENWdata"

390 WHILE EOF=0
100 INPUT49,nanet(counter)

110 INPUT*9,surnane$(counter)

120 TNFUTI9,phone$(counter)

130 FEINT counter,

20 Structured Programming

WO counter=counter+1

150 PEND

160 CLOSEIN

170 record=cocriter

180 WINDOW l,10,l,23:CLS

190 PRINT f$,s!,ph$
500 counter=0

510 WHILE counter<record
520 PRINT nanel(counter),surname!(counter),phone!(counter

530 counter=counter+l

510 WEND

550 WINDOW 1,10,21,21

560 PRINT"F'ress key <c> to continue"

570 WHILE klO"C"

580 k$=INKEY$
590 k$=UFftR$(k$)

¿00 WEN)

610 RETURN

CPC 664 USERS:
310 PRINT "Insert disk into floppy disk drive"

Lines 620 to 950 provide the program for the second facility
available in this part of the application.

620 REM create directory

630 WINDOW 1,10,1,25! CLS
610 PRINT SPR(10):PRINT"Inforn3tion Entry"!FRINT

650 PRINT f$,si,ph$

660 WILE counterdOO

670 record=counter+l

680 WINDOW 1,10,11,11
690 IF k$=CPfi$(32) THEN PEN 2

700 IF k$OCHRI(32) THEN PEN 5

710 k!=""
720 PRINT"Record Number! "Jrecord

730 WINDOW 1,10,5,9

710 PRINT SPACE!(80)

750 LOCATE 1,2

760 LINE INFUTi rone!(counter)

770 LOCATE 11,2

780 LINE INPUT! surname!(counter)

790 LOCATE 27,2

300 LINE INPUT: phone!(counter)

10 WINDOW 1.10,17,25

Commanding the CPC 464, 664 and 6128 21

820 PRINT'Press the (ENTER.;- key if data is correct"

830 PRINT!PRINT"If not press the (SPACE)- bar"
840 PRINT ÎPRINT'Tf END of DIRECTORY press the <E> key"

850 WHILE k$-(>CHR4(13) AND k$<>CHR4(69) ANO k$-OCHRI(32)

860 k$=INKEY$!k$=UPPER$(k$)

870 WEND

680 CLS

890 IF kl=CHR$(13) GOTO 930
900 IF k$=CHR$(69) GOTO 920

910 IF k$=CHR$(32) GOTO 680

920 counter=99

930 counter-counter+1

940 WEND
950 RETURN

Once the program user has added further names and
numbers or created a new directory, clearly the information
has to be stored in some form for use in conjunction with part
three of the application. The program lines 960 to 1180 perform
this function.

960 REM save the created directory

970 REM on data cassette
980 PEN 5

990 WINDOW 1,40,1,251 CLS

1000 WINDOW 1,40,11,11
1010 PRINT SPC(5)¡"Total number of records! "record

1020 WINDOW 11,30,20,24

1030 PEN 7! CLS
1040 PRINT SPC(l)"Save Directory"

1050 PRINT :PRINT"ori data cassette"

1060 WINDOW 1,40,1,8

1070 FEN 1

1080 LOCATE 1,1

1090 OPENOUT "data"

1100 counter=0

1110 WHILE counter(record

1120 FRINTf9,ri3He$(counter)

1130 PRINT19,surnanel(counter)
1140 FRINT19,phonel(counter)

1150 counter=co<jriter+l

1160 MEM)

1170 CLOSEOUT
1180 RETURN

22 Structured Programming

CPC 664 USERS:
970 REM on floppy disk drive

1050 PRINT! PRINT "or, floppy disk drive"

Lines 1190 to 1300 merely enable the program user to finish
using the program or to move on to part three of the
application and subsequently use that.

1190 REM Use directory or finish

1200 WINDOW 1,10,1,25! CLS
1210 PRINT!PRINT"FTess the appropriate <key>"

1220 LOCATE 5,5! PRINT"<Q>uit"

1230 LOCATE 5,10! PRINT" ILse the directory"

1240 WHILE kiO"Q" ANO k»O"U"

1250 k$=INKEY$

1260 k$=UFPER$(kl)
1270 WEND

1280 IF k$="Q" THEN CLS

1290 IF ki="U" THEN CLS! RUN"Use"
1300 RETURN

Repeat the process of checking the program lines for typing
mistakes by using the LIST command and retyping the
offending lines as appropriate.

If you want to check that the CPC 664/464 will execute the
program use the RUN command. To return to the program
listing always use this method: Press the <ESC> key, type
MODE 1 : LIST and press the <ENTER> key.

CPC 464 users: Once you are satisfied the program is as
presented on these pages position another blank cassette in
the data recorder and SAVE the program under the name
'Create' i.e. SAVE "Create" <EI\1TER> and verify it has
been saved correctly.

CPC 664 users: Once you are satisfied the program is as
presented on these pages place the disk in the floppy disk
drive and SAVE the program under the name 'Create' i.e.
SAVE "Create" <ENTER> and once the operation is
complete verify it has been saved by the use of the CAT
command.

Commanding the CPC 464, 664 and 6128 23

Part three: Using the telephone directory

The first section of the program, as in part two, is the
initialisation and main control element of the program.

10 REM Use Telephone Directory

20 REM Part three Use

30 :

t=10O
50 DIM na«el(t),sucna«et(t),phoriel(t)

60 counter=0
71 f$="FirstnBMe"!s$="Surnane'‘:phl="Phone No."

80 MODE 11PEN 1

90 :
110 COSUE: 200 ¡REM load data file

110 WHILE k.OI
120 COSUE: 380 ¡REM select facility

130 ON k. GOSU8 550,710,950,1230

HO WEND
158 REM 550-browse through directory

160 REM 710-select and search
170 REM 950-a*end a record

180 REM 1230-quit

190 END

Lines 200 to 370 present the routine of instructions that load
into the CPC 664/464 the data previously stored on cassette or
disk by the program user, i.e. the names and numbers in the
telephone directory.

200 REM load data file

210 CLS
220 LOCATE 10,10;PRINT"Use Your Directory"

230 LOCATE 5,21
210 PRINT'Tnsert data cassette in datacorder"

250 LOCATE 1,1
260 FOR' delay=l TO 2500¡NEXT

270 LOCATE 1,1! FEN 2

280 OFENIN"data"
290 WHILE EOF-O
30 0 INPUTt9, nanel (counter), surname! (counter), phone! (counter)

310 PRINT counter,

320 counter=counter+l

330 WEND

24 Structured Programming

340 CLOSEIN

350 record=counter

360 PEN 1

370 RETURN

CPC 664 USERS:
240 PRINT "Insert disk in floppy disk drive"

Lines 380 to 540 present on the screen the information the
program user will require to make an appropriate response.

380 REN select facilties

390 WINDOW 1,40,1,251 CLS

400 PRINT TAE:(8)"Facilities Available"

410 LOCATE 5,3

420 FRINT"Choose each option by pressing the"

430 PRINT"appropriate number and hit the <ENTER> key"

440 LOCATE 8,7

450 PRINT" :'1> E^rowse through directory"

460 LOCATE 8,9

470 PRINT"<2> Select and search"

480 LOCATE 8,11

490 PRINT"-'3: Atiend a record

500 LOCATE 8,13
510 PRINT"<4: Quit

520 LOCATE 8,15

530 INPUT k

540 RETURN

The remaining subroutines perform the facilities available to
the program user. The specific functions are indicated by the
REM statement on the first instruction line of each subroutine.

550 REM browse through directory

560 CLS

570 PRINT f$,s$,ph$

580 WINDOW 1,40,3,18

590 c=0

600 WHILE c<record
610 PRINT na«e$(c),surnanel(c),phonei(c)

620 page=c MOO 14

630 IF page-0 AND c>0 THEN G0SU8 1280

640 IF page=0 AM) c>0 THEN WINDOW 1,40,3,18! CLS

650 c=c+l

660 WEND

Commanding the CPC 464, 664 and 6128 25

670 WINDOW 8,32,20,23

680 FRINT"Erid of Directory"

¿90 GOSUE: 1280

700 RETURN

710 REM select and search

730 CLS
710 PRINT"Do you want to select by! "

750 PRINT!PRINT"<A> First none

760 PRINT*.PRINT" Surname"
770 WHILE k»O"A" AND kl<>“8"

780 k»=INKEY»

790 kKFRERKk»)

800 WEND

810 PRINT

815 nane»="zz"!5urr^ne»="zz"!f=0
820 IF kl="A" THEN INFUT"Which first nane^nartel

830 IF k$="B" THEN INFUT'Uich surname"Jsurnanel

M0 PRINTIPRINT " "¡fl,si,ph»

850 WINDOW 1,10,10,21

860 c=0
870 WHILE cCrecord

880 IF k$="B" THEN 900
890 IF nare$=nahe»(c) THEN f=l! PRINT c}nariel,surnarel(c),phonel(c)
90 0 IF surnanel=surnane»(c) THEN f=lt PRINT c}nanel(c),surnanel,phone»(c)

910 c=c+l

920 WEND
925 IF fOl THEN LOCATE 10,8!PRINT “ No Record Found "

930 GOSUE: 1280

910 RETURN

950 REM anend a record

960 CLS
970 PRINT"Please select record for amending by! "

980 GOSUE: 750

985 IF fOl THEN RETURN

990 WINDOW 1,10,22,21
1000 INFUT'Tnput the number of the record you want to change"In

1010 CLS! PRINT'Re type the whole record please."

1020 WINDOW 1,10,10,21! CLS

1030 PRINT nJnaneKn),surri3Mel(ri),phone»(n)

1010 LOCATE 2,1! INPUTJnaneKn)

1050 LOCATE 12,1! INPUT}surnanel(n)

1060 LOCATE 25,1! INPUT}phone»(n)

1070 WINDOW 1,10,1,25
1080 CLS

26 Structured Programming

1090 PEN 7

1100 FEINT"Save Directory on Data Cassette"

1110 LOCATE 1,22

1120 OPENQUy'data"

1130 c=0

1110 WHILE c<record

1150 PRINTS,r>arte*(c)

1160 PRINTi9,sorri3He$(c)

1170 PRINTt?,phorie$(c)

1180 c=c+l

1190 WEND

1200 CLOSEOUT

1210 FEN 1! PAPER 4
1220 RETURN

CPC 664 USERS:
1100 FEINT "Save Directory or. Disk"

1230 REM quit

1240 CLS

1250 LOCATE 10,10

1260 FEINT'That's All Folks'"

1270 RETURN
1280 REM press any key routine

1290 WINDOW 1,40,25,25

1300 PAPER 1! FEN 3

1310 CLS
1320 FEINT TA£:(8)"Press any key to continue"

1330 k$=INKEYI! IF k$="" THEN 1330

1340 PAPER 41 FEN 11 CLS

1350 WINDOW 1,40,1,25

1360 RETURN

CPC 464 users only: Once you are satisfied the program you
have typed into your computer is the same as that which
appears on these pages save it on a third cassette using SAVE
"Use" <ENTER>, etc. and again verify that it has been
saved correctly.

You should by now have three cassettes with the three parts
of the application stored separately, one program on each
cassette. Clearly the application is quite usable in this form as
long as the user is prepared to put in the appropriate cassette
when the CPC 464 is attempting to load that specific program.
In addition the user must not forget to place a blank cassette in
the recorder when loading or saving the name and telephone

Commanding the CPC 464, 664 and 6128 27

number information. For the purpose of convenience, it could
be worth while loading part one into the CPC 464 and saving it
on another blank cassette, loading part two and saving it
consecutively on the same blank cassette, and repeating the
process for part three. The result should be a second copy of
each program, but stored on the same cassette, which saves
having to keep changing the cassettes round. Note that the
names and telephone numbers data should, however, be
stored on a separate cassette.

If you were to use the CAT command with the program tape
in the recorder, the screen should display the information as
shown in Figure 2.1. The string ($) symbol illustrates that the
information stored on the cassette is of the program instruc­
tion type, rather than data type as in the names and numbers
stored on the other cassette; a * symbol illustrates data is
stored on the cassette.

Ready
CAT
Press FLAY then any key i
PHONEHOME
Create
Create
Use
Use

block 1 $ ok
block 1 $ ok
block 2 i ok
block 1 $ ok
block 2 $ ok

Figure 2.1 Screen display if using CAT command on program tape

CPC 664 users: Save this program on the same disk as
previously used and in the same manner; this time the file
should be labelled 'Use'. Once more verify it by using the
command CAT. All three programs should now be stored on
the one disk.

Reset your computer in the normal way as explained
previously. Type the command RUN followed by the file name
PHONEHOME inside inverted commas thus: RUN-
"PHONEHOME" <ENTER>.

28 Structured Programming

Telephone directory application operating
instructions

The first time you use the application it will be necessary to
create a directory so that the sequence of events will be: Load
part one by typing RUN "PHONEHOME" <ENTER>, press
<A>. The program should then load part two of the
application. Once loaded press <C>.

CPC 464 users: A very special word of warning: when using
either programs or data stored on cassette, always ensure the
tape is rewound to the position on the tape where the program
or data starts, before attempting to load it into the CPC 464's
memory.

Creating a directory

When entering names and numbers type the first name and
press <ENTER>, type the surname and press <ENTER>,
type the telephone number and press <ENTER>.

Once the user has created a directory, it will be possible to
load part one and then proceed directly on to part three of the
directory to use the facilities for looking at the various names
and numbers.

Section B
Familiarity Breeds
Confidence

Chapter Three

BASIC tools of the
trade

As a result of working through Chapter 2, it is likely that you
have now become familiar with a number of the words (i.e.
commands and statements) that make up the language pro­
grammers use to give instructions to the CPC 664/464. This
language is known as BASIC, or more precisely B.A.S.I.C.,
which is an abbreviation for Beginners All purpose Symbolic
Instruction Code. As in all languages there is a very definite
structure: each word not only fits neatly into a certain category,
but also has a specific format, which is referred to as the syntax
of the command.

By working our way through the three programs that make
up the telephone directory application, it is now possible to
consider in turn the consequence of each word, and its
syntactic requirements.

Part one, the option menu, is useful now for several reasons.
The first three lines all begin with the statement REM which is
an abbreviation for the English word remark; it instructs the
CPC 664/464 not to read the rest of this line, as it is merely a
line of comments and notes for the programmer to understand
various elements of the program, e.g. line 10 informs us of the
purpose of the actual application, line 30 explains the purpose
of the first program out of the suite of three.

10 REM Personalised Téléphoné Directory

30 REM Part One Option Menu

40 CLS ! FEN 3

50 FOR displ3y=l TO 22
60 PEINT TAE(display) "Téléphoné Directory"

70 NEXT

31

32 Structured Programming

Line 40 illustrates the use of commands that have an
immediate effect, commands in the true sense of the word,
orders that are carried out immediately. These types of words
are always very useful while working in direct command
mode, as you will remember from Chapter 1.

The block of lines from 50 to 70 is very important, illustrating
one of the most fundamental capabilities of any computer, i.e.
being able to repeat a specific task a given number of times.
The FOR statement sets up a variable (see Chapter 5 for details
of variables) to which in this case the programmer has given
the name 'display'. The contents of this variable initially is the
number 1. Line 60 instructs the CPC 664/464 to print on the
first row at the top of the screen, one column in from the left
hand side of the screen, i.e. display=l. Line 70 instructs the
CPC 664/464 to go back to the last line with a F 0 R statement in
it, in this case line 50, and the contents of the variable 'display'
is increased by one to the value of two. Line 60 now prints on
the second row down as the cursor moves to a new line/row
after each print command is executed. In addition, as the
variable 'display' is now equal to two, the CPC 664/464's
cursor begins printing two spaces in from the left hand side of
the screen. The whole process is repeated until the contents of
the variable 'display' is greater than the second number
specified in the FOR statement, i.e. once display=22 this block
of program is terminated, and the command on line 80 is
executed.

There are two important ways to adjust such a block of
program in order to count upwards in quantities greater than
one. The following will cause an increase of five each time the
block of program is repeated:

50 FOR display-1 TO 22 STEP 5

The following causes the FOR—NEXT block of program to
count downwards in steps of one:

50 F0RdispLay=21 TO 1 STEP-1

There is just one optional extra if as a programmer you find
it easier to trace which NEXT statement ties in with which
FOR statement. The NEXT statement can be written thus:

70 NEXT di splay

BASIC tools of the trade 33

The block of program from line 80 to line 200 of the option
menu creates two areas on the screen, changes the colour of the
printing, and prints up essential information for the program
user, suggesting that a certain response is required from him
or her. The block of program from line 210 to 250 validates the
response, ensuring the CPC 664/464 only responds to one of
the two choices open to the program user.

The two lines 210 and 250, just like a F 0 R—N EXT statement,
combine to ensure a repetition of a certain block of program.
The line:
210 WHILE K$<>"A" AND K$O"B"

reads 'While the variable named K-string does not have as its
contents the capital letter A and the capital letter B, the
program must execute the block of program up to the
appropriate WEND statement, i.e. line 250.' The expression
contained after the WHILE command on line 210 can of course
vary according to the requirements of the program.

The command IN KEYS on line 220 (read as in-key-string)
allows the program user to make his or her choice of the
options available by giving the variable K$ some contents, a
single character from the keyboard.

The function UPPER$(K$), line 230, is a very special
facility ensuring that it does not matter whether the program
user has the CPC 664/464 in upper or lower case mode, as the
contents of the variable K$ will be automatically changed into
upper case letters, i.e. capital letters.

Lines 260 and 270 of the option menu illustrate a fun­
damental capability of all computers, that of making a decision
based on a specific condition, i.e. the contents of a given
variable or variables.

260 IF K$="A" THEN RUN"Create"
270 IF K$ = "B" THEN RUN"Use"

Line 260 reads 'If the variable K-string has as its contents the
letter A then and only then will the data recorder or disk
system load and then execute the program which has been
stored on cassette with the program filename of " C r e a t e ".'
Line 270 reads similarly, but with a different variable contents
and a different program filename.

280 END

34 Structured Programming

The last line of part one is merely a convenient way of
terminating a program, in this case very much just for neatness
of programming, particularly as lines 260 and 270 will ensure a
direct continuation on to the execution of another program.

Let us now scan through the tools of BASIC that have been
used in parts two and three of the telephone directory
application to establish the various commands available to the
program creator. All of these can be fitted into the structures
shown by the use of the part One option menu program in the
preceding pages of this chapter. These structures being the use
of commands which take immediate effect, an appropriate
classification term is sequence type instructions, as they are
merely executed before the computer moves on to the next
instruction/operation. Repeating a task several times has been
shown by the use of F 0 R—N EXT and W H I L E—W END loops;
the typical classification term for these is repetition or iteration.
The third classification is the decision elements of creating a
computer program, where the machine can compare any given
condition to the state of a variable or variables, i.e. contents of
a variable, and respond accordingly, illustrated by the I F—
THEN commands. The classification term most commonly
used is selection, the computer performing a specific operation
as the result of a known condition being fulfilled.

GOSUB-RETURN is probably the most useful combination
of command words available to the CPC 664/464 program
creator who requires to develop professionally well structured
programs. The command would read 'Go to the subroutine at
line number'. The REM statement, which combines with the
GOSUB, should explain the subroutine's objective. Lines 120
to 190 show the fundamental control unit of part two of the
telephone directory application; thus the GOSUB command
instructs the computer to divert the execution of instruction
lines to the one specified, and to continue from that line
number until the command RETURN is encountered.

120 GOSUB 210 ¡REM Option Hew

130 IF kt="A" THEN GOSUB 310

HO ¡REM add to directory

150 IF kl="C" THEN GOSUB 620

160 ¡REM create directory

170 GOSUB 960 ¡REM save directory

BASIC tools of the trade 35

180 GOSUE: 1190
190 ENO

!REM use or finish

210 REM Option nenu on screen
220 LOCATE 1,2!F'RINT"Choose the facility you require;"
230 LOCATE 5,i:FEINT"<C>reate a NEW directory"

2^0 LOCATE 5,6 ¡FEINT "Add to an OLD directory"

250 LOCATE 1,8¡EOT"Press either key -X> or kA'"

260 WHILE kt:'; "A" AND kt " "C"
270 H-INFEYt
280 H-iJF'c'ER$(H

290 WEND

300 RETURN

On the execution of a RETURN command, the computer
diverts the execution of instruction lines to the line directly
after the initial GOSUB command. In this way the section of
program from line 120-190 can control which tasks the
program user requires to be carried out by the appropriate
selection of one of the program's subroutines. The second
block of program lines, 210 to 300, illustrates a typical
subroutine, beginning with a REM statement, defining the
subroutine's objectives in order to make the reading of the
program easier. The task is performed by the execution of the
succeeding program lines. The subroutine is terminated by the
RETURN command.

As in the instruction lines 130 and 150, both GOSUB and
RETURN commands can be executed as a result of a known
condition being fulfilled.

LOCATE and PRINT statements can be combined to
produce some very interesting and professional screen dis­
plays.

A brief mention should be made here (for further details you
should read Chapter 6) that the CPC 664/464 has a special
feature whereby, using the syntax PRINT #[a number from 0
to 7], it is possible to position up to 8 text cursors at any one
time, each cursor being known as an output stream. Initially
they all reside at the topmost left of the screen. If the
#number is omitted the default or number zero cursor is
assumed.

The command LOCATE is followed by the optional stream
n u m b e r; the syntax then consists of two numbers separated

36 Structured Programming

by a comma. The first of these represents the number of
columns from the left hand margin that the printing is to start;
the second number represents the number of rows down. In
the above example the stream has been omitted for clarity; it is
therefore assumed to be zero. The maximum number of rows
and columns is dependent on the screen MODE the computer
is currently in, i.e. 0, 1 or 2.

By combining the LOCATE and the PRINT command, as in
the example, reasonably professional screen displays can be
obtained.

PRINT SPC(number) and PRINT S PA C E$(number) are
further means of arranging the screen display by giving a
number of columns in from the left hand margin to print
spaces. Essentially both do the same job, but as far as the
computer is concerned the end result is attained from two
different directions. The command SPACES allows you to
create a variable with the contents of a given number of blank
spaces. For example, if F$ = SPACE$(5) each time F$ is
printed by a PRINT statement it will produce five blank
spaces. The SPC command acts more like a TAB command,
giving a start position for the PRINT command.

The command WINDOW is a very specific instruction. By
careful manipulation of the four numbers that follow the
WINDOW instruction the programmer can determine the next
area or section of the screen at which the succeeding print
statements will be displayed. Again this command, just like
the print statement, can benefit from the CPC 664/464's
capability of having eight different cursors available for print
detail on the screen. This in fact means you could conceivably
create eight windows on the screen and use a different cursor
to print information in each of them. Throughout the tele­
phone directory suite of programs I kept, for the purpose of
simplicity, to the default stream or cursor, and therefore
omitted the #number. The complete syntax would be:

WI N DOW#number,left sidelight side,top edge,bottom edge

For the aspiring programmer, the use of ASCII codes will
become more and more important. An ASCII code is a number
which enables the computer to code the information coming in
to it from the keyboard etc. The program lines in Figure 3.2 use

BASIC tools of the trade 37

top edge

R
0
W
s

«—leftside* «rightside

botton edge

COLUMNS

Figure 3. 1 Illustration of the syntax of the WINDOW command

an ASCII code number to decide whether the <SPACE BAR>
has been pressed. Here the instruction CHR$(32) relates to
the code that the computer generates when the space bar has
been pressed. Try this direct command: PRINT CHR$(69)
and press <EI\ITER>. What happens? A letter E should

690 IF kt=CHE'$(32) THEN PEN 2
700 IF WOCHRK32) THEN PEN 5

Figure 3. 2 The use of an ASCII code number within program lines

appear on the screen. In fact a different character is generated
by placing in the brackets any number between 33 and 255
inclusive. The code CHR$(32) is in fact the computer's code
for a blank space, which is so very important for separating
commands, etc. Remember the computer treats a blank space
just like any other character. Now experiment, starting with
the following examples:

5 MODE 0

10 FEN 6

38 Structured Programming

20 FOR c-1 TO 800

30 LOCATE 10,10

40 PRINT CHR$(225)

45 LOCATE 10,10

50 PRINT CHR$(224)

80 NEXT
90 LOCATE 1,1

100 FOR c=l TO 100

110 PRINT CHRi(207)+CHRI(206)+CHR$(217)+CHR$(218);

<20 NEXT

Try writing a short series of program lines, which will
include a F O R—N EXT loop, so that you will be able to examine
all the ASCII code numbers.

It is necessary to explain briefly the programmer's night­
mare which occurs when the instruction GOTO 'a given line
number' is used without very careful thought. It can tie the
program up in knots so use it only after an I F—T HEN
statement, e.g.:

IF account<100 THEN GOTO 90

Other commands and instruction words will be dealt with in
much greater depth in the appropriate section of this book. In
short, the family of commands INPUT and INPUT LINE are
concerned with enabling the program user to put information
or detail into the computer's available memory. In the case of
the telephone directory program these commands are used
prior to the storing of the information on data cassette or disk,
using the group of commands OPENOUT, PRINT#9 and
CLOSEOUT. The commands OPENIN, CLOSEIN,
I N P U T # 9 and EOF are concerned with retrieving data from a
data cassette or disk which is an essential element of any
useful application program.

Lines 1120 to 1200 demonstrate the format or syntax of using
program lines to place or store data onto a cassette tape or
floppy disk as storage of a data file:

1120 OFENOUTdata"

1130 c=0

1110 WHILE cCrecord
1150 FRTNT*9,na«el(c)

1160 FRINT$9,surnartel(c)

1170 FRINT*9,phonel(c)

BASIC tools of the trade 39

1180 c=c+l

1190 HEM)
1208 CLOSEOUT

Lines 280 to 340 demonstrate the syntax of using program
lines to retrieve data stored on tape or disk into the available
memory space in the computer.

28 0 OFEWteta"

290 WHILE EOF=0

300 INPUT*9,ri3Me$(counter)»surname!(counter),phonei(counter)

310 PRINT counter,

320 counter=counter+l

330 WEM)

340 CLOSEIN

Chapter Four

Debugging programs -
editing facilities on the
CPC664/464, and how
to use them

Use the program loading facility RUN"PHONEHOME" to load
and run the option menu program. Choose option A to load
and run the program named 'Create'. Once loaded press the
<ESC> key until the message 'Break in 270' appears on
the screen. Type MODE 1: LIST and press the <ESC> key.
The program known as 'Create', i.e. part two of the telephone
directory application, will scroll its way down the screen. Press
the <ESC> key and the computer will stop scrolling; press
any other key and it will restart scrolling the program listing.
Press the <ESC> key twice in succession and the scrolling of
the program listing will be terminated and the message
* B R E A K * will appear on the screen. The CPC 664/464 will be
in direct command mode waiting for further instructions from
the operator of the machine. Experiment with the syntax of the
LIST command by using the following alternatives:

LIST 100-150 ENTER.

LIST -100 CENTER/

LIST 150- ENTER

The number(s), in each expression relate to the line number of
the program currently held in the computer's memory.

One of the most frustrating problems with beginning to
program your own computer, is the constant problem of error
messages appearing on the screen which prevents a successful
conclusion being reached. Yet on the other hand, the solving of

40

Debugging programs 41

program errors, or in technical jargon debugging a program,
can be personally a very satisfying process and certainly a very
useful way of developing a sound understanding of the
underlying principles of programming a computer. The task is
to be thought of as a puzzle for which a different kind of
thinking is required to find the solution. It must be said
though that it is at this stage most people give up the task. The
only advice I can give is be patient, be prepared to experiment
with various formats and most importantly experiment with
your ideas of how the problem might work.

The logical order of operations when debugging a program
currently held in the CPC 664/464's memory is:

1) RUN the program through to the point of the first error
message, note the type and line number.

2) Type MODE 1 <ENTER>.
3) Type EDIT (line number of line with error in it).
4) Check against program listing that there are no typing

mistakes. If an error is found place cursor at the end of the
offending error using the left/right arrow keys and press
the key the appropriate number of times. Now
retype the word or phrase as it is meant to be.

5) Press the <EI\ITER> key.
6) Type RUN, press the <ENTER> key.

If this does not solve that particular error, you must now look
closer at the type of error it is, for example, messages such as
'Unexpected WEND' suggest that a line is missing from the
program that contains the matching WHILE command. A
message 'NEXT missing' suggests a missing line containing a
NEXT command later in the program after a F 0 R statement.
These types of errors will require the examination of a number
of program lines on either side of the offending error line.

One of the most common errors is that of 'Syntax error',
usually as a result of not leaving a blank space directly after a
command word.

The program will not respond with an error message, but
will not be doing what was planned if, for example, a variable
given the name 'display' in a subsequent line is changed by a
typing error to say 'dsly': a different variable has been created,
which actually has zero contents, with the resulting effect on

42 Structured Programming

the program. The term 'variable' will be explained in the next
chapter.

To summarise, the usual errors, when copying into your
computer from a printout of a program listing are as follows:

a) Typing differences within a specific line of program
instructions.

b) Not ensuring that the appropriate spaces preceed each
of the computer language's command words.

c) Missing out or not typing in a command word.
d) The omission of a complete line of program instruc­

tions.
e) Forgetting to press the enter key at the end of each line

of instructions (a very easy error to make).
f) Not typing the line number at the beginning of a line of

instructions, i.e. the line will have been entered in direct
command mode and will have effectively been left out of
the listing.

Looking to the future now, when you are creating your own
programs the problems of debugging will have a new angle to
them. In addition to syntactical or errors as result of clumsy
fingers, there will be errors in the logic of the program's
structure, and omissions or oversight as a result of being new
to the game. I have always found the best way of getting
around an error message is to examine the listing carefully,
talking your way through the instruction lines, one at a time.

Methods of altering program lines after they
have been entered in memory

Below are listed the simplest and most straightforward
methods of altering lines of instructions held in the computer's
memory. Make sure you are fully conversant with the LIST
command and all its capabilities.

1) Retype the whole line of instructions again, including the
line number.

2) Use the command EDIT 'line number', move the cursor to
the offending error by using the left and right arrow keys,
then use a combination of the <CLR> and keys

Debugging programs 43

to remove the error. Then type in the correct format. The
computer is set into automatic insert mode so there is no
need to create a space for your new command or additional
instructions.

3) Hold down the <SHIFT> key at the same time as pressing
the up arrow cursor key. The yellow square cursor will
reveal a second cursor which, when you press the
<COPY> key, will copy all the text that the second cursor
is passing over onto the screen at the position of the first
cursor. In this way it will be possible to copy those parts of
the instruction line that were previously correct and add
further instructions if need be. Once you are satisfied with
the program line press the <ENTER> key and the cursors
will be reunited together, one line below the last instruc­
tion line.

It will always be a good and fruitful exercise to type
programs into your computer, as long as it is done with care
and attention to what the program is doing and how it is doing
it. Examine programs carefully and, by using the editing
facilities, make changes and note the effect they have on the
RUNning of the program. Remember to make a copy of the
program on cassette or disk before you make any (possibly
disastrous) alterations. If you do happen to make changes that
make the program irretrieveable, simply reload the original
program from the copy you made initially.

Section C
The Principles of
BASIC

Chapter Five

Variable names and
labels

During the process of looking at the direct command mode
facility and the telephone directory as an application, it has
been necessary to give passing reference to the concept of
using variables to store information vital to the computer
operator's purpose at that particular time.

LET nuMber=6

Contents is
the box, in
nunber six.

put into the
this case the

A nane is given to the box
or variable, so that it can
recalled directly by its
none.

LET answer=(12+6)/4
ie 3nswer=18/4

=4.5

The contents is the result
of a short calculation

The answer to the sum can
now be recalled by Basking
the coMputer to print the
variable known as 'answer'

Figure 5.1 The contents of a variable represented as the contents of a box
47

48 Structured Programming

The most explicit way of viewing these stores of temporary
information, known as variables, is by visualising a box
within the computer's memory which has to be given a
name/label so that its contents can be looked at, used or
compared with the contents of other boxes, during the
execution of, for example, program instructions by referring to
each particular variable by its allotted name.

For a simple illustration of the use of such variable names,
try the following direct command examples:

LET a=12:PRINT a <ENTER>
LET number=34:PRINT number <EI\ITER>

A variable name can consist of any number of characters,
alphabetic or numeric, up to a maximum of forty, as long as it
is a continuous string with no blank spaces. It must also begin
with a letter rather than a number.

The LET statement is such a common occurrence as a
command in the BASIC language that most computers do not
require its use, i.e. it is an optional word while instructing the
computer to create a box with some contents. For example:

number=56.67 <ENTER>

If you now instruct the CPC 664/464 to PRINT the contents of
the box named 'number' it will respond by printing the
number 56.67, on the screen.

Further examples of the use of variables in direct command
mode:

wholenumber%=12.34:PRINT wholenumberX
<ENTER>

The CPC 664/464 will respond by printing the number 12 on
the screen. The % sign signifies that the particular variable
'box' has a contents purely of whole or integer numbers.

wholenumber%=12.79:PRINT wholenumberX
<ENTER>

The CPC 664/464 will respond by printing the number 13 on
the screen.

When using the % symbol as a suffix to a variable name, the
CPC 664/464 will automatically round off the contents of the
box with that name to the nearest whole number. This means

Variable names and labels 49

if the decimal places are less than 0.5 the number will be
adjusted to the nearest whole number below. If the decimal
places are above 0.5 then the variable contents will be adjusted
to the nearest whole number above or greater than the real
number.

aname$ = "Structured Prog ramming":PRINT
aname$ <ENTER>

A box, labelled with a name suffixed by a $ symbol, can have
as its contents any string of characters that have been
delimited by the use of quotation marks.

PRINT ANAMES <ENTER>

You will notice that the same response as with the previous
instruction will result. This is because the CPC 664/464 does
not distinguish between upper and lower case variable names.
This fact should be kept in mind for two reasons:

1) You cannot create two different variables with the same
name but merely in a different character case.

2) You must always use the same upper or lower case for the
variable throughout a program.

The arithmetical operation on lines 60 and 70 (Figure 5.2)
requires some explanation of its function. The function MOD
responds with the remainder of dividing the first number by
the second, i.e. 24 divided by 3=8 and no remainder. The
function \ responds with the integer answer, having
divided only by the whole number, leaving off any decimal
points, i.e. 28/3reads 28 divided by 3 is 9 and 1 remainder, the
integer division answer is 9.

The series of characters represented by Steve$ remains
constant and merely prints the string of characters 'twenty-
five'. Try the following command:

PRINT steve$ + steve$ <ENTER>

The result should be 'twenty-fivetwenty-five'. Note that there
is no space between the two strings of characters because the
instruction is literally to lump these two string variables
together as one. The addition sign when used in conjunction
with strings of characters has a different function to that when
used with numerical expressions.

50 Structured Programming

The instructions to the computer would be read as follows?
LET the box, named carol, have as its contents the number 24
LET the box, named stevei, have as its contents the string of characters
'twenty five'
LET the box, named graham, have in it the number 28

The aritmetic?
24+28=52
24 28=672
28 24=1.16666667

24 MOD 3=0
28 \ 3=9

The contents ofi
carol+graham=52
carol*graham=672
graham/carol=l. 6666667

csrol MOD 3=0
graham \ 3=9

steve$=twenty five

The CPC464X664 hss to be instructed in a very precise manner, it can then
perform the sane arithmetics! 3nd manipulative operations as above.

The Program The Screen Display on execution
of the program

10 carol=24}steve$="twenty five"
20 graham=28
30 PRINT csrol+grsham
40 PRINT caroligraham
50 PRINT graham/carol
60 PRINT carol MOD 3
70 PRINT graham \ 3=9
80 PRINT stevei
RUN

672
1.16666667
0
9
twenty five

Figure 5.2 Demonstration of the use of variables as stores of information

You will appreciate as you become a proficient programmer,
that variables are the mainstay of all programs. The use of
variables is very widespread, because they can do extremely
neatly a number of valuable tasks. Let us now survey the
telephone directory suite of programs to examine the use of
variables in situ, as it were.

Variable names and labels 51

Part one : The option menu

FOR variable =1 TO 5

PRINT variable;

NEXT

Figure 5.3 The use of a counting variable—the FOR—NEXT loop

The first variable we encounter is a very special one, being an
integral part of a FOR—NEXT loop. The contents of the
variable named 'display' is repeated, increasing by one whole
number until 'display' has a contents of twenty-two.

The option menu program lines 110 to 120 and 210 to 270
illustrate one use of a variable.

110 PRINT'D© you require to!"
Hi PRINT!PRINT"<A> Create or add to your directory "
120 PRINT?PRINT" Use your directory"

210 WHILE K$O"A" AND KIO"B"
220 K$=INKEY$
230 KMJPPERI(Kt)
240 PEN 1
250 WEND
261 IF K$="A" THEN RUN"Create"
270 IF Kt="B" THEN RUN"U5e"

52 Structured Programming

The variable illustrated, K$, neatly links the action asked for
and displayed on the screen for the program user to the
decision processes that are carried out within the computer's
memory. By the use of the command word IN KEYS, the
contents of the box named K$ is determined by the program
user. If the user presses the <A> key the program called
'Create' will be loaded and executed from the tape or disk,
as appropriate.

Part two : Creating a telephone directory

The following three program lines demonstrate a typical
starting point for a majority of programs: the setting up of
variables and the placing of contents within them.

71 t=100:c<xriter=0:record=0

80 DIM nanelfthsurnaneiCthphoneKt)

90 fi="Firstri8tte":sl="Surri3Me":phV:,,F'horie No."

650 PRINT f»,si,phi

Line 70 sets up the numerical variables, t being the maximum
number of telephone numbers/names to be stored in the
program. The variable counter will count the number of
records, and various other counting tasks throughout the
program that will begin at a value of zero. The variable
record will print on the screen the current record being
entered by the program user.

Line 80 illustrates a special form of variable known as a
dimensional array, which will be discussed in detail in Chapter
14. Simply, dimensional arrays are a range of variables that are
all linked in some way, yet they all require a unique way of
being identified. Therefore the variable name/label will be
constant but the number inside the brackets will be unique. In
this case 101 different boxes have been created by the use of
dimensionally assigning names(t), with t = 100. Thus:
name$(0),name$(1),name$(2)... and so on to
...name$(100). The variables could, if desired, be two-
dimensionally arrayed thus: name$(100,100), creating
a lattice work of coordinates, i.e. name$(0,1),
name$(0,3),name$(2,5). There are 10 000 variables

Variable names and labels 53

which could have been created if this method of allocation had
been used.

The program line 90 presents a useful technique of creating a
variable consisting of a word that will be used and repeated
throughout the program. Whenever the word is required time
and effort is saved by merely instructing the computer to print
the contents of the appropriate variable, as illustrated in
program line 650.

Another method of counting variables, is by the use of a
WHILE—WEND loop. This form of loop requires a physical
manipulation to make it count up or downwards, e.g. line 1150
in this example, until the condition in line 1110 is satisfied.

1100 counter=0
1110 WHILE counter<record
1120 PRINT09,naMe!(counter)
1130 PRINT091surname«counter)
1140 PRINT09,phone!(counter)
1150 counter=counter+l
1160 WEND

Part three: Using the telephone directory

The final method of placing contents into a variable is by
means of the INPUT command:

1130 PRINT ri}nane$(n),5urnane!(n),phonet(n)
1140 LOCATE 2,4) DffUTJnaneKn)
1050 LOCATE 12,4? INPUTisumaaeKn)
1060 LOCATE 25,45 DWTJphonel(n)

Chapter Six

Reacting to your CPC
664/464 -INPUT
statements

So far, we have explored the capability of the computer to store
information in the form of variables created within the
program itself, hinting only at the capability of the operator/
program user to place contents within a variable created from
within the program. A computer can only be truly useful when
it can take information from the operator/program user and
process it, and provide further information as a result. The
simplest way of doing this is for the computer to set up a
variable box, where the contents is determined by the program
user who responds to a question or series of options displayed
on the screen. The response therefore becomes the contents of
this particular variable.

A simple example might be:

10 INPUT "What is your first riame";n3mei

20 INPUT "What is your favourite number"¡number

30 FOR display^ TO number

10 PRINT name»,
50 color=display hC® 9

60 PEN color ! PAPER color+1

70 NEXT display

80 PRINT " Have a nice day' "

This is a rather meaningless example, but it illustrates the
important facts concerning the preliminary use of the INPUT
statement. The rules for variable types and the suffix used are
the same as if the information was being stored via a LET
statement.

The INPUT statement is very much like a PRINT state-

54

Reacting to your CPC 464, 664 and 6128 55

ment, as far as displaying on the screen, at the position of the
text cursor, anything the program creator places after the
INPUT command and inside quotation marks, as in program
lines 10 and 20 above. The one additional advantage is that it
will then wait for the listed variable to be given some contents
by the program user.

The CPC 664/464, have prompted the program user for some
information, sets about processing it according to the pro­
grammed instructions, in this case a FOR—NEXT loop, the
number of repeats of the printing and change of colour routine
being determined by the favourite number of the program
user. This type of use of input statements, setting up the
direction and format of the program to follow, is used
extensively and becomes essential if programs are to be used
for many different user requirements. For example, a program
may be designed to take telephone numbers, surnames and
first names, but another user may require surnames, addres­
ses, and telephone numbers. Both are essentially the same type
of program, both have three fields of information, but the
description of the fields varies. It is in this situation that a
series of INPUT statements becomes very useful, to design
the format and layout of just such a program application. The
information for the format of the file and its layout is then
stored on cassette data file, along with the personal details,
ready to be used the next time the program application is
required. This type of programming can be seen as creating
the instructions at a level known as first principles, allowing
the program user to personalise the programmed application
for his or her own requirements.

A skeleton program for such a purpose could be as follows:

II REM A information design application
110 counter=1
120 CLSJLOCATE 1,1
130 COSUB 170
HO GOSUB 170
150 GOSUB 360
160 END
170 REM Create information
180 INPUT "A title for this screen of information (max 30 characters)"Jtitle$
190 IF LEN (title$)>30 GOTO 180
200 INPUT "Hom many fields of information"JfieldZ

56 Structured Programming

210 DIM detail« fieldZ)
220 PRINT
230 PRINT "Wien entering information, DO NOT use'" PRINT "commas."
250 PRINT
250 PRINT "When entering information, make sure words do not straggle the
end of one line arid the beginning of another,1
260 PRINT
270 PRINT "Press the <ENTER> key when you have"} PRINT "completed each entry."
280 PRINT
290 WHILE counter<=fieldZ
300 PRINT "Field number"¡counter
310 INPUT "Enter details (max. of 255 characters)";detail«counter)
320 PRINT
330 comter=co».nter+l
340 PEND
345 CLS
358 RETURN
360 REM information display on screen
380 PRINT TAB(5> title»
390 PRINT
410 cointer=1
410 WHILE counter<=fieldZ
420 PRINT detail«counter)
430 PRINT
435 IF VPUS(H)>=17 THEN GOSUB 470
440 counter=counter+l
450 PEM)
460 RETURN
470 REM Press any key routine
480 LOCATE 1,24
490 PRINT "Press toy Key"
500 al=INKEY»
510 IF a«"" THEN 500
515 CLS
520 RETURN

As it stands at the moment the program enables the user to
design a series of sentences, words, etc. to be later displayed
on the screen in standard layout. Add to this program the
capability to save the parameters of the sentences or words
onto a data file stored on cassette or disk. The application
could be used to keep in an organised fashion information
such as cookery recipes, step-by-step guides to doing various
mechanical/maintenance tasks, all of which could then be

Reacting to your CPC 464, 664 and 6128 57

created and saved onto cassette/disk, to be recalled whenever
the information is required.

We now come to the central feature of all good programs,
that is, the ability of the program to interact with the program
user. By identifying three stages to any program that is
interactive with its user, the process of planning and creating a
program will be simplified, to the extent of being merely a
solving of problems in a logical order. The three stages that all
programs will involve are:

1) The program user reacting or responding to information,
usually displayed on the monitor's screen.

2) The program displaying information on the screen to
enable the user to respond, usually by hitting a key on the
keyboard.

3) The program containing within it lines of instructions
which carry out the processes that the screen display
instructs the program user can be carried out.

Consider these three points very carefully.
Points 2 and 3 are clearly the constituents of the program

itself, combining so that the stated aims of the application can
be achieved for the particular user of the program. By
deliberately separating elements of the program it becomes
apparent how it is possible to write programs that are clearly
out of tune. The details displayed on the screen bear no
relation to what is happening within the computer's memory.
For example, the screen could say 'hit the <SPACE BAR>'
and nothing happens. This would occur if the program only
had output i.e. print statements, and did not contain the
program lines to respond. A simple three line instruction will
clear the screen, locate the INPUT statement, and print the
prompt on the screen:
10 CLS
20 LOCATE 10,10
30 PRINT "Hit the <SF’ACE BAR>"

Unfortunately these instructions will not process any reaction
from the program user as the program lines simply do not
contain the capability to do so.

In order to demonstrate further such an approach let us now
consider two examples from the telephone directory applica-

58 Structured Programming

tion. Lines 110 to 540 below illustrate the relevant program
lines. Both examples follow the same guidelines, the display­
ing of instructions for the program user to read, with the
suggestion that he or she is then to respond accordingly. This
is effectively achieved by the use of the PRINT statement.

110 WHILE k<>1
120 GOSUB 380 tREM select facility
130 ON k GOSUB 550,710,950,1230
110 WEND

380 REM select facilties

390 WINDOW 1,10,1,25! CLS
100 F"RINT TAE:(8)"Facilities Available"

110 LOCATE 5,3

120 PRINT'Choose each option by pressing the"
130 F'RINT"appropriate amber and hit the <ENTER> key"

110 LOCATE 8,7
150 PRINT"<1> [¡rouse through directory"
160 LOCATE 8,9

170 FTINT"<2> Select and search"

180 LOCATE 8,11

190 PRINT"<3> Attend a record
500 LOCATE 8,13

510 PRINT"<1> Quit

520 LOCATE 8,15

530 INFOT t
510 RETURN

This example then uses an INPUT statement to give the
variable k contents of a number between 1 and 4 inclusive. In
this case the subroutine is then completed, and the program
control returns to line 130 for the response to be processed.
This line is a special line of instructions that works very much
like an I F—T HEN statement. If the contents of k is 1 then the
program control diverts to the subroutine beginning at line
550. If the contents of k is 2 then the program control diverts to
the subroutine beginning at line 710 and so on. Thus
immediately the three fundamental elements of a program
have been fulfilled.

1) The program user has had to interact with the program.
2) The program has displayed information on the screen so

that the user can make a response.

Reacting to your CPC 464, 664 and 6128 59

3) The program has been able to process the response and the
required action has been fulfilled subsequently in the
direction the program control has been diverted to.

It is now pertinent to throw in an additional point for
consideration. What would happen if the program user were to
respond with either a letter instead of a number or a number
less than one or greater than four? Try it and see what
happens! What should happen is that if you enter a letter and
hit <ENTER>, the computer's response will be:

?Redo from start

This is an inbuilt facility of the CPC 664/464 to repeat an
INPUT command if the program specifies numeric variable
but strings of characters are entered instead. If a number less
than one or greater than four is entered the screen will clear
and the whole option menu will be reprinted on the screen.
The reason is that lines 120 and 130 are positioned inside of the
WHILE—WEND loop, lines 110 and 140. Line 130, the ON-
GO S U B statement, will only divert the program control for the
variable contents relating to the number of subroutines listed
after the GO SUB command. So after an 'incorrect' user
response the program merely passes to line 140 and therefore
the repeat loop is executed once more, i.e. the option menu is
displayed, awaiting a program user response.

What happens if a very large number is entered, say several
hundreds of thousands? Unfortunately the computer's re­
sponse is an error message that interrupts the program and
returns the control to the user by showing the READY sign.
This is a very frustrating problem and the only remedy as the
program stands presently is to reRUN the program and load
the DATA tape again. There is a remedy in adding this
program line to your part three program:

35 ON ERROR GOTO 120

Remember that you will have to save the amended program
onto tape or disk as appropriate, otherwise the advantage of
this additional line will be lost. This program line enables the
program to override the effect of the computer encountering an
error, and instead of displaying a message in this case the part
three option menu is displayed, waiting for a user response.

60 Structured Programming

This avoids the need to reload the data from the DATA file tape
or disk.

The procedure of making your programs user foolproof is
often referred to as validating the program for the user. It is a
fundamental program skill and worth considering in depth.

The second example of screen display and user response
with program processing ability follows a similar format to
that in lines 110 to 540 with an important difference in the way
the program waits for the user to respond. Instead of using an
INPUT statement linked to an 0 N—G 0 S U B statement it uses a
combination of a WHILE—WEND loop with an INKEY$
statement which, instead of actually waiting for contents to be
placed in the variable thus named, merely places the last key
pressed as the contents of the variable.

80 WINDOW 2,40,2,11

90 CLS¡PRINT¡FEN 2

100 PRINT"Do you require to!"

110 FEINT! FEINT "<A> Create or add to your directory

120 PRINT! PRINT" Use your directory"

130 FEINT
140 PRINT "Press the appropriate <key>"

150 WINDOW 2,40,13,21
160 CLS¡PRINT¡PRINT

170 FEINT "Rertenber you Must have created a "

180 FEINT
190 FEINT "directory before you can use it."

200 FEINT

210 WHILE K$O"A" AND Kt</"E"

220 Ki=INKEY$

230 K$=UPFER$(KI)

240 FEN 1

250 WEND

260 IF K$="A" THEN RUN"Create"

270 IF K$="E:" THEN RUN"Use"

By stating in line 210 that the loop is to be repeated until the
contents of the variable K$ is either 'A' or 'B' the program
reads 'While k-string doesn't equal "A" or "B" repeat this
section of program instructions'. The problem of validation
has been solved merely by ensuring that the loop will be
repeated until one or other of the two required responses is

Reacting to your CPC 464, 664 and 6128 61

made by the program user. In more complicated response
sections line 210 could be extended to encompass more than
just two options. Once one of the 'correct' responses has been
made the program proceeds to carry out the loading of the next
program from cassette or disk, the name of the program having
been determined by the program user.

To complete this way of looking at application program
writing consider the program lines 730 to 940 and decide
which groups of lines would relate to

1) Screen display instructions.
2) Program waiting for the user's response.
3) Program processing instructions as a result of the user's

response.

730 CLS

740 PRINT"Do you want to select by!"

750 PRINT!PRINT"<A' First narte

760 PRINT! PRINT"!:; Surname"
770 WHILE k$O"A" ANO kK"E:"

780 kt=INKEY$
790 k$=UFPER$(k$)

800 WEND

810 PRINT

820 IF kl="A" THEN INPUT'Which first nane"Inane!
830 IF ki="E"' THEN INFt!T"Which surnane" [surnane!

840 PRINTIPRINT " "Jft.si.phi

850 WINDOW 1,40,10,21

860 c=0

870 WHILE c<record

880 IF k$="P" THEN 900
890 IF narte$=riawt(c) THEN f-l! PRINT c;rianet,surriane!ic),phonetic)

900 IF surnanei^sumaneKc) THEN f=l! PRINT cJnaneKc),surnane$,phoriet(c

910 c-c+1

920 WEND

925 IF fCl THEN LOCATE 1U,AIRIN’ No Record Found "
930 GOSUE: 1280

940 RETURN

Now compare your answer to that given in Figure 6!.
Hopefully they will be the same or similar.

62 Structured Programming
-- -------- -------------------------------------- Screen displaying instructions

730 CLS
741 PRINTDo you want to select byi "
750 PRINT!PRINT"<A> First nane
760 PRINT!PRINT" Surnane"
*-- Computer waits for valid response

770 HOLE kK>"A" AM) k!O"B"
780 kl=INKEYI
790 kl=UFfERI(kl)
800 MEND

• --——--- Computer processes response
810 PRINT
820 IF ki="A" THEN INPUT"WhicFi first nane"}nanei
830 IF kl="B" THEN INPUT'Which surnane^surnanel
• -- -----------------------------— Screen display for processed response

«0 PRINTIPRINT " ";fl,sl,ph*

850 WINDOW 1,40,10,21
-- --- Processing and display result of processing

860 c=0
870 WHILE c<record
880 IF kS=MB" THEN 900
890 IF rtanei=nanel(c) THEN f«U PRINT c}nanel,surnanel(c),phone«(c)
900 IF surnanel=surnanel(c) THEN Mt PRINT cJnaneKc) »surnanel,phone!(c)
910 c=c+l
920 WEND

• — Press Any Key routine
930 GOSUB 1280

Figure 6.1 The subroutine divided into specific task blocks: Part three—
search and select subroutine

While we are looking at this particular subroutine of part
three of the telephone directory, refer back to the original
listing and load the program into your computer. Use the
<ESC> key to break into the program and DELETE 720
<ENTER>. Now use the program several times, repeatedly
responding to the menu for the search and select option. What
happens once line 720 is removed? It is an important
processing point: once the option has been used previously in
that particular session, the program will work, but will not be
doing quite what is expected!

Section D
From Little Blocks to
Structured Programs

Chapter Seven

Structured planning on
CPC 664/464
applications

Once again let us see the personalised telephone directory as a
model, to guide us through the logical process of planning just
such an application. First, remember that when creating and
developing your own applications, the pen and paper work of
planning the application is the first stage. This book has
explained the process of creating a program from the situation
of the whole first, so that is possible for you to examine the
creation process from the creator's point of view. In other
words, when you have your own CPC 664/464 application
ideas you will visualise first exactly what you require, and
then create it. The scene has now been set, the whole
application has been examined and used, the parts must now
be singled out for close up analysis.

The idea must come first and this is a thought process. In the
case we are looking at the idea arose out of the need to hold a
hundred phone numbers with the ability to browse through or
select by surname or first name, and to remove that unsightly
mess of scraps of paper around the telephone.

Once the idea is formulated, what will be the major tasks of
the operator when using the application?

1) The creation of the initial directory.
2) The adding of new names and telephone numbers to a

directory previously created.
3) The use of the directory in terms of browsing, selecting,

and viewing the names and telephone numbers.
4) The editing of the names and numbers previously stored

in the directory.
65

66 Structured Programming

Among the tasks identified, 1 and 2 are clearly related and
therefore could be written into a program together, as they will
mutually use the same directory creation routines. The tasks
numbered 3 and 4 are related, in as far as to be able to edit a
record it is first necessary to select and view the record. It
would therefore appear to be most appropriate to divide the
application into two separate programs, one dealing with the
creation of the directory and the other dealing with the use of
the directory on a daily basis. The advantages are numerous;
the main ones being the simplicity involved. By keeping the
various tasks of the operator separate, the program creation is
easier and simpler to handle, and while using the directory the
reduced amount of program to be held in memory at any one
time means the loading, i.e. start up time, will be greatly
reduced. One of the frustrating elements of cassette storage is
the time of program loading, even with the CPC 664/464's
'speed write' facility. Therefore any programming aid to
shorten program loading time must be an advantage. This is
obviously not a consideration if a disk system is being used.
Once the decision has been made to develop a suite of
programs they must be preceded with a short routine to act as
a main menu for the operator to choose which program is
required. The same routine can also be used as a title page for
displaying the application's function and any essential in­
formation to ensure incorrect options are not chosen.

The programs that will be involved in the telephone
application will be/are:

1) Option menu - Screen display options to load the
appropriate program.

2) Create - Program to create and store the telephone
directory.

3) Use - Program to use the directory on a daily basis.

Planning the screen displays

The option menu will be considered first. The usual plan is to
produce a small graphic/illustrative title page followed by the
essential instructions to start up the program facilities.

Structured planning 67

Screen displays for telephone directory application

1) Title page for option menu:

Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory

Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory
Telephone Directory

Figure 7.1 Initial screen display of part one: option menu

2) Essential information to start up the program facilities:

68 Structured Programming

Telephone Directory

Do you require to!

<A> Create or add to your directory

 Use your Directory

Press the appropriate <key>

Telephone Directory

Refienber you nust have created a

directory before you can use it.

Telephone Directory

Figure 7.2 The options and initialisation instructions

3) Create or add to a telephone directory, a sub-menu for
initialisation of part two of the suite of programs:

Choose the facility you require!

<C>reate a NEW directory

<A>dd to an OLD directory

Press either key <C> or <A>

Figure 7.3 Part two offers two facilities—this screen display provides the
details

4) Date entry screen for creating or adding to the telephone
directory:

Structured planning 69

Information Entry

Firstname Surname Phone No.

Record Number! 1

Figure 7.4 Part two enables the user to enter name/phone number
information

5) The sub-menu to initialise the facilities available in part
three of the suite of programs:

Facilities Available

Choose each option by pressing the
appropriate number and hit return <ENTER>
key?

< 1> Browse through directory

< 2> Select and search

< 3> Amend a record

< 1> Quit

9

Figure 7.5 Part three provides four facilities—this screen displays these
options

Sequence, selection and repetition

For the time being, let us leave the application we are
considering and look at some essential theory that is required.
It is now prudent to look at three terms that can be applied to
virtually every action of any machine or living animal which
performs tasks in order to attain a specific goal.

70 Structured Programming

First we shall describe them, and then explain the ways in
which we can apply these terms not only at the level of
programming the CPC 664/464, but in addition apply them to
tasks performed in our everyday life.

Sequence—A specific task/job is merely executed and the
performer of the task then moves on to the next task.

Selection—A task/job has to be executed, but only if a given
condition is fulfilled before the task can be initiated. For
example, a question requiring a yes/no answer is posed; a yes
response will result in one task being executed, a no response
will result in another task being executed.

Repetition—A single task or a number of tasks, which can be a
series of sequence or selection type tasks, are to be repeated
until a specified condition is fulfilled. For example, a wheel­
barrow is to be filled with earth using a small bucket and
shovel; the bucket will be repeatedly filled with soil and
emptied into the wheelbarrow until the wheelbarrow is full to
a predetermined level.

We will now examine how these theoretical categories help in
the task of creating a program.

Sequences of tasks as applied to everyday living and program
creation

The concept of placing every activity in sequence is fun­
damental to the way in which most people organise their daily
activities. In essence, if a series of tasks are placed in a
sequence, a logical order is imposed upon their execution. For
example you cannot make your bed before you get up out of it.
You cannot watch TV until you have turned it on. Similarly, in
terms of using a computer application program such as a
telephone directory, you cannot use the directory to look up
someone's phone number until you have actually gone
through the process of creating the directory first. In terms of
the program creator relating to the program user, the screen
display providing the instructions must be displayed before
the a response can be made. Therefore, referring back to the
discussion in Chapter 6, the sequence of screen instructions/
computer waiting for user response/computer processing and

Structured planning 71

acting on response is a logical sequence of events that would
not make sense if executed in any other order.

Selection of tasks as applied to everyday living

Sequences become unrealistic in that they assume that there is
no interaction with the present situation, merely repeating the
same commands/instructions every time that particular sequ­
ence of events is called up to be executed.

Maintaining the same basic structure, but including a
question where the subsequent events are determined by the
answer to the question, enables a series of choices to be
invoked and therefore a number of possible avenues to be
explored. Selection is achieved by the process of deciding if a
given or known condition is fulfilled. Then and only then will
a particular sequence of events be performed. As an alternative
to the a=b conditional decision, the decision can be based on
several other conditional frameworks:

1) If A is less than or greater than B then perform this
sequence of events/operations.

2) If A is NOT equal to B then perform this task, sequence of
events or operations.

3) If a combination of conditions are required, e.g. equal to,
not equal to, less or greater than, they can be considered
by the use of the link words AND or OR.

4) AND means each and every condition must be fulfilled in
order to perform the task or sequence of events.

5) OR means that only any one condition is to be fulfilled
before the task or sequence of events is performed.

Repetition of tasks as applied to everyday living

In our everyday life we clearly repeat similar tasks hourly,
daily, weekly, monthly, and quite possibly yearly. Therefore to
talk in isolation of sequences of events, even if they do include
conditional decisions, without the concept of ever repeating
any task or sequence of operations, is not realistic. Essentially
tasks have to be repeated if a given or known condition is not
fulfilled, for example, most people go to school every weekday
(excepting holidays) between the ages of 5 and 16. This forms a

T1 Structured Programming

sequence of operations that is repeatedly carried out until a
condition is fulfilled. The opposite form of repetition is also
valid and must be considered, namely, repeating a particular
task as long as a condition is fulfilled. An example would be
the instruction that while it is raining and you are out of doors
wear a waterproof coat. An example at programming level
would be while a FOR—NEXT loop is counting, the screen
display will continue changing colour.

Repetition or, if you prefer, at programming level, loops of
program instructions can be unconditional or more usually
conditional on a state of affairs that will never be fulfilled.
Clearly these loops will repeat the sequence of tasks 'for ever'
or until the plug is pulled out. In most cases this situation is
undesirable in computer program terms and should be
considered carefully before creating a continuous loop within
a program.

Imposing a structure on the nature of computer
programs

By now you should be considering each and every program in
terms of small blocks doing a specific task, for example:

1) Screen information
2) Waiting for a 'user' response
3) Processing/acting on the user response

Each block itself is constructed from a sequence of operations
with a logical order imposed on it. To apply the block to the
current situation it is implemented with regard to the
fulfilment of several conditions which will determine the
actual avenue the sequence of operations will take and at what
points they will be repeated and hence terminated.

Each block will also be part of a much larger structure that
can be given a similar structure of sequences of blocks that, as
a result of conditions imposed, will follow different avenues
according to the user's responses, as well as repeating various
combinations of program blocks, to fulfil the stated aims of the
program itself.

Chapter Eight

Diagrams make the
mind clearer

When we think of computer experts using diagrams to
illustrate their programs the term flow chart springs to mind
and we immediately imagine great unwieldy squares, rectang­
les, and diamond shapes, with words written inside them, all
linked by a spaghetti of lines directing the user up, down,
across, and around the diagram. There is a definite concern
that it is not really very logical in its final form.

Here I am going to suggest an alternative approach to
drawing a diagram that can be followed from the top of the
page across and down, just as if you are reading a page of text.
A top-down approach to programming is currently a popular
technique and this form of diagram fits the requirements for
just such an approach.

Examine Figure 8.1 and try to identify a) sequence type
tasks, b) selection type tasks, and c) repetition type tasks. Start
reading at the start oval, travel down the vertical line until a
horizontal line is met, follow the instructions given, moving
horizontally. On completion of the horizontal line, travel back
to the last vertical line, and continue travelling downwards to
the next horizontal line of instructions. Follow them across and
down until all the instructions have been executed, dependent
on the meeting of given conditions and responses to the
decisions that have to be made.

Figure 8.1 illustrates the potential of top-down flow charts.
Note that it is possible to use the approach for everyday events
as well as at programming level.

Let us now break down the various diagrammatical ele­
ments by examining the following four Figures 8.2, 8.3, 8.4 and
8.5.

73

74 Structured Programming

<--- 1 Unpack equipment

start *)

Layout Equipment appropriately

Proceed to next chapter

i_ end)

Figure 8.1 Using a structured diagram to set up your CPC 664/464

Sequences of operations

The form for illustrating a sequence of operations is very
similar to the way they would be read. Do this operation, then
this operation and so on until the task is completed. There is
no consideration given to variation in conditions at any
particular time. It is assumed that these tasks are completed in
the same manner each and every time the sequence is
implemented. These diagrams are essentially summaries of
events. Not until we begin to use program language terms will

Diagrams make the mind clearer 75

we see the relevance of purely sequence type operations, for
example, direct command type instructions in Figure 8.6.

Figure 8.2 Illustration of a sequence of operations, imposing a logical order
onto them

Selection of operations

Figure 8.3 An explanation of a sequence of operations becomes more
realistic if built into it is the capacity for choice or conditional decisions.
Selection of one or more avenues a task may take can be easily represented

by this type of diagram

To provide a choice means that the user has to take one or
other of two routes on completion of whichever option is
chosen. In this example, Figure 8, the task is completed by
returning to the vertical line, the next statement being the end
command. If one now considers this proposition carefully it is

76 Structured Programming

not realistic: what would happen if the next bus stop was not
the one where a bus will stop to take the person to work? It is
painfully obvious that the choice segment of the task will have
to be capable of being repeated until a suitable bus is boarded
by the person travelling to work. The dropped U-shape in
Figure 8.4 demonstrates this inclusion which provides a touch
of further realism.

Developing the concept of repetition

If a certain outcome is needed before progressing to the next
set of operations, a method of repeating the task is required.
The first set of operations in Figure 8.5 demonstrates this
point.

This example illustrates the concept of multiple choice with
options being repeated throughout one's life at various times,
one or the other being followed as a set of operations. It is at
this point that the use of a series of symbols can permit the
development of further detail in subroutines. The symbol tells

Diagrams make the mind clearer 77

the user that part of the operation will be documented
elsewhere, labelled with the appropriate number.

Figure 8.5 By adding a third dimension of repetition, the ability to produce
a detailed and realistic analysis of operations becomes a simple logistical

exercise

Flow of control

We are now at the stage where we need to bring together the
diagram approach and apply it to the realities of keying the
program into the CPC 664/464. In terms of the diagram the
flow of control relates to the vertical and horizontal lines that
are travelled when a specific task is successfully achieved.
When dealing with a computer program, as mentioned in
Chapter 2, the flow of control is governed by the main control
section at the head of the program listing, terminated by the
END command. This section determines in which order and
whether each specific routine is executed.

78 Structured Programming

Using blocks of program—subroutines

By identifying each and every task/subroutine, then drawing
up a diagram of its structure, coupled with a diagram of the
main control section of the program, the task of creating the
actual program in the BASIC computer language is reduced to
an exercise in using the features available with the particular
language of the computer you are using.

The beauty of a program application such as the telephone
directory is that each facility available to the program user fits
neatly into a subroutine, with the addition of subroutines for
the option menu and elements such as the 'Press any key'
routine. Take some time now to consider the creation of
diagrams that, if followed by a program user would fulfil the
stated aim. Make sure you can do this at both a global level and
at a program language level. If you are short on ideas take

REMarks: documentation explaining the purpose of the program and other
essential details.

REMarks may also include a description of the variables
used in the program.

Intialisation of the CPC464, the micro may require certain changes for
your program to be effective ie MODE, KEY definitions, redefine characters
etc.

When using the CPC464 it is not necessary to set up the
variable names or place contents in them, however if the
program is RUN repeatedly it may be necessary to reset the
variables to their intial contents.

Main Control Element this section selects the various subroutines and
monitors the logical progress through the program. Each subroutine may be
used several times, just once, or purely as a result of the program users
response. The main control can have as many subroutines at its finger tips
as the program creator requires.

ie. subroutines / subroutine 4 - load data file

subroutine 3 - option menu/select facility

subroutine 2 - browse through telephone directory

subroutine 1 - select and search for person’s telephone no.

710 REM select and search
720 name$="zz":surname$="zz”
730 CLS
740 PRINT’’Do you want to select by: ’’
750 PRINT:PRINT” A First name

Figure 8.6 The blueprint for a structured computer program

Diagrams make the mind clearer 79

sections of part three of the telephone directory and draw up
diagrams in respect of their functions.

A blueprint for a structured program

Look at the program listing in Chapter 2. You should be able to
identify each of the sections portrayed in Figure 8.6. Use it as
suggested a blueprint for developing first a series of structured
diagrams to illustrate your program application. Ultimately
these should be capable of being transferred into the instruc­
tion lines that make up the program, containing all the
facilities you require in your application. Finally compare the
essential elements of the program and it should resemble the
structure illustrated above.

Chapter Nine

Implementing the Plan:

Using the telephone directory application as a model, we are
now in a situation of clearly understanding the aims and
objectives of the application as seen by the program creator
when the idea was first formulated. It is very important to be
able to visualise the finished product before embarking on the
keying in of the program into the computer.

The most logical method of developing this particular suite
of programs is by taking each program in the following order:

1) The 'Create a directory' part, including the 'Add to a
previously created directory', i.e. part two of the applica­
tion.

2) The 'Use the directory' part, the facilities available once
the program application is in full use, i.e. part three of the
application.

3) The option menu, to join the two main parts of the
program together and produce a title page for the applica­
tion.

This forms a logical sequence for approaching the writing of
the programs.

Creating a directory: part two of the application

What operations will the main control element of the program
have to perform? To answer this question, let us put into
practice the top-down approach diagrams discussed in the
previous chapter.

80

Implementing the plan: I 81

Figure 9.1 Create main control element—part two of the directory

The diagram in Figure 9.1 should now be self-explanatory.
The encircled numbers relate to the subroutines which are
illustrated in Figures 9.2 to 9.5. Each subroutine performs a
neatly structured and virtually self-contained task which,
when added to the whole program, works like a cog in a much
larger machine. The relationship between the main control
block of program and the subroutines can be seen very much
in terms of the subroutines being a pack of cards and the main
control block being a card player using his cards cunningly to
obtain a winning trick.

Link the diagrams in Figures 9.1 to 9.6 to the program
listings illustrated in Chapter 2. Remember the diagrams are

82 Structured Programming

the first stage of creating the program, from which the program
listing can be surmised.

The main control block of program, as mentioned previous­
ly, is the driving house of the program. Thus it can become
merely a list or sequence of calling subroutines into action in
an order which will ensure the desired end result, i.e. the
stated objective of the program. However, in the example we
are considering there are two routes a user can take by
selecting option A or C during the execution of the first
subroutine. As a result the program places the relevant letter as
contents of the variable which has been named/labelled k$.

Figure 9.2 Subroutine 1: Screen display and user option

The program control then reverts to the main control element
once more, where either the second or third routine is called
into action as a result of the user's choice of the options
available. On completion of either of these subroutines control
once more reverts to the main control block of program.

A subtle programming technique is employed to cut down
on the time spent keying in the program instructions. Notice
that subroutine two merely loads the previously created
directory from data cassette or disk, setting the relevant
variables that control the number of records stored etc. to hold
the appropriate contents. Changing the contents of k$ to the
letter C results in the automatic execution of the third

Implementing the plan: 1 83

Figure 9.3 Subroutine 2: Load and display OLD directory

84 Structured Programming

subroutine because once the task of loading the previously
created directory has been performed, the program is written
so that both adding and creating an entirely new directory use
the same program instructions, i.e. subroutine three. On

Figure 9.4 Subroutine 3: Create directory data entry

completion the new or added-to directory is saved onto
cassette or disk (subroutine four) and the user given the option
to finish or to load the next program (part three) and use the
directory immediately, i.e. subroutine five.

Implementing the plan: 1 85

Figure 9.5 Subroutine 4: Save data previously entered on cassette or disk

Notes on the subroutines of part two

Each diagram clearly relates to a specific task of the application
and should be easily readable by following each operation
across the page. The sequence of operations should follow
down the page.

The first two subroutines provide simple sequences of
events, with a number of repetitive operations which are
either terminated by the program user making the appropriate
response or by displaying the data i.e. names and phone
numbers on the screen or loading from the storage system to
the computer.

The repetitive loop, subroutine one, is a simple loop that

86 Structured Programming

Figure 9.6 Subroutine 5: Quit or load 'Use' program

allows the program to wait on the I N K E Y $ statement until the
appropriate key is pressed, i.e. a choice is made by the user.
BASIC command words within a diagram should be used
sparingly but effectively to demonstrate a particular operation
that is to be carried out. This is why each I N K E Y $ is generally
followed by the command word UPPERS.

Make your diagrams an intermediate step between the
screen display sketches and the program lines themselves.
Various lines of instructions should be identifiable, but
embedded in phrases and words that clearly explain the
operations to be carried out.

Variable names, as in subroutine one, again should be used
sparingly, but use them to demonstrate as in this case that
DI Mensional array type variables are repeatedly saved or
loaded from cassette or disk or printed on the screen until the
data held within that variable's dimension is used. For
example, the second repetitive loop, subroutine two, prints
every name and phone number held in memory on the screen.

Implementing the plan: 2 87

Subroutine three sees a further complication of the repeti­
tive loop of operations. The subroutine is initialised by screen
display and all the remaining operations are concerned with
the adding of names and phone numbers. The two decision
sections relate to the correctness of the record or the termina­
tion of the directory creation. The actual INPUT of data is
simply a sequence of operations which will be coupled with
various screen layout procedures when put into program
instructions.

Throughout a planning stage, relate to your screen display
sketches and visualise the need to alter colours. Whether this is
done by physically changing the ink or changing the text
cursor being used is really up to the individual likes and
dislikes of the programmer.

If you find it difficult to jump straight into the drawing up of
diagrams which include all the repetitive loops and the
decisions to be made, begin by listing the operations in a
preliminary diagram, a simple sequence of operations. Add to
this by making a second diagram, filling in some of the detail.
Which sequence of tasks will be repeated until a condition is
met? At which points will a 'Press any key' routine have to be
included? When will the computer be processing under its
own steam, such as loading data from a cassette or disk? Such
computer processing is generally assured by means of the
program instructions having a loop built into the program at
that particular point.

Chapter Ten

Implementing the plan:
2

By using part three of the telephone directory further com­
plications of programming and various techniques of signal­
ling operations can be examined. Briefly, two of the most
useful programming methods are: firstly, the creation of a
program loop consisting of several operations, any of which

Figure 10.1 Main control element of 'Use' program—part three of the
directory

88

Implementing the plan: 2 89

the user can choose as and when desired; and secondly, the
execution of an operation if and only if a certain other event
has taken place.

Using the directory: part three of the application

Figure 10.1 illustrates the main control element of the
program. The remaining figures illustrate the top-down
diagrams of the subroutines called by the main control
element. Once the variables have been created, and the screen
set, the telephone directory data is loaded from tape or disk by
a subroutine called by the main control element. Once this has
been completed a repetitive loop is entered into by the
program user. The only exit from this loop of program
instructions is by the user choosing the 'Quit' option, i.e. the
important variable k having a contents of 4. The relevant
program lines are:

110 WILE kO4
1Z0 COSUB 380 IREM select facility
130 ON k COSUB 550,710,950,1230
HO WEND

While the program is executing the 'Select facility' sub­
routine (program lines 380 to 540 of part three) the program
user chooses a number between 1 and 4 inclusive. This
numerical choice becomes the contents of the variable k. The
command ON k GOSUB is a special and very useful BASIC
instruction line. The GOSUB instruction can be followed by
any number of subroutines that the program user may require
to use. If the variable has as its contents '1', the first subroutine
is executed, if '2' the second subroutine is executed and so on.
The capability of this instruction line is particularly useful for
the function of reacting to a menu displayed on the screen. If
the variable content is not equivalent to any of the listed
subroutine positions then no subroutine is executed; it is
therefore necessary to nest the ON GOSUB line within the loop
to guarantee the program will execute only the facilities it is
asked to. The choice of options is therefore immediately
validated. Each facility will be executed; on its completion the
control is returned to the program loop enabling a further

90 Structured Programming

option to be made. If an incorrect key is hit the loop ensures
the program does not end but allows another choice to be
made.

Let us now consider each of the subroutines as they appear
in the program listing. The first subroutine called into action
by the main control element loads the data which will provide
the telephone directory information specific to each user.

Once again every operation that the computer executes from
the programmed instructions follows a set procedure. First the
screen is cleared and information to the user is supplied. The
subroutine specific program lines are now executed. Because
the data is to be loaded from a peripheral device, i.e. tape or
disk, a special data channel has to be opened. Once com­
munication is enabled the computer begins the repetitive
procedure of loading name, surname, and telephone number
and placing them in memory until all those from that user's
directory are loaded. The loop is then terminated because a

Implementing the plan: 2 91

code is sent from the disk or tape to signal the end of the data
file, i.e. EOF is the BASIC instruction. At this point in the
program the counting variable's contents is noted and remem­
bered by placing the same contents in the variable, record.
In order to close down the communication link the program
executes the sequence operation of CLOSEIN once the loop
has been terminated. The subroutine is now complete and the
program flow returns to the main control element with the
advantage of now having the user's telephone directory stored
in its memory.

Figure 10.3 Subroutine 2: Select facility and user response

Before the user can actually make a choice, he or she has to
be given the appropriate information. The 'Select facility'
subroutine provides this information and allows the user to
make the choice of facility to be executed. It is simply a
sequence of screen display instructions that are executed in a
logical order before returning to the main control element once
more. The screen is cleared, the information is PRINTed on
the screen and the program instruction INPUT waits for the
user to hit a key and press the <EI\ITER> key. This subroutine
will be repeated on numerous occasions as it is called from
within a repetitive loop in the main control element of the
program. If an incorrect choice is made the subroutine will be
repeated without another subroutine being executed first; if a
correct choice is made, i.e. keys 1 to 4, then one of the
following subroutines is executed before the 'Select facility'
subroutine is once again performed.

92 Structured Programming

The program facilities subroutines.

Browsing through the telephone directory

Figure 10.4 Subroutine 3: Browse through records

The browse facility prints on the screen all the names and
telephone numbers entered by the user. They appear in an
order known as key order, i.e. the order in which they were
entered while creating the directory.

If the screen were long enough to accommodate all the
directory on one screenful of information this subroutine
could be merely a sequence of operations with the repetitive
print of the directory's information. This is not possible so the
program has to perform a checking operation to ensure that

Implementing the plan: 2 93

only a full screen of information is displayed at any one time.
To continue on to the next screen of information the 'Press any
key' routine has to be executed, as in Figure 10.8.

The logical order once again is: clear the screen, set the
screen display, repeatedly print the names and numbers on the
screen; meanwhile check that the screen is full of information
or not, execute the appropriate operation. On completion of
the repetitive loop an 'End of directory' sign is displayed and
before the subroutine is terminated and control returned to the
main control element, the 'Press any key' subroutine is called
and executed.

Select and search subroutine

Again the subroutine follows a standard format of screen
display instructions waiting for the user to respond and then
processing the information.

The screen is cleared, information to assist the user in his or
her response is printed on the screen. A choice of key to press
is given. As a result the user is then asked for either surname
or first name, determined by the initial choice. The name by
which they want to search the directory by is then placed as
contents in one of two variables, i.e. n ame$ or surnames.
Note that both are similar to the variables we have referred to
directory data by, but without the trailing brackets containing
the usual variable (see Chapter 14). Once the name/surname is
entered, further screen display is added and the computer
processes whether the entered name/surname is the same as
any of those stored within the data of the directory. This is
achieved once again by comparing each of the names in the
directory with the entered name one at a time from within a
repetitive loop. If the names compared are found to be the
same the I F—T HEN statement is implemented and the flag
variable contents is changed to '1'. This means that the
instruction 'No record found' will not be displayed on the
screen. The second part of the I F—T HEN statement causes the
computer to print the related directory information on the
screen. This process is repeated by the use of a W H I L E—W END
loop combined with the counting variable c and the compari­
son of whether its contents is same as the number of records
stored as contents in the variable record.

94 Structured Programming

Figure 70.5 Select and search for matching records

Implementing the plan: 2 95

Once all the records have been tested/compared the loop is
terminated. A test is made to see whether any records were
found to be the same as the name/surname asked for, the use
of the flag variable f. In order to terminate the subroutine once
more the use of the 'Press any key' routine is implemented. On
the user responding to the 'Press any key' instruction the
program returns control to the main control element of the
program.

Amend a record subroutine

The screen is prepared once more for action. The job to be
done is explained by a simple screen instruction. It is
impossible to amend a record without first having found it, so
what would be easier than actually repeating the execution of
the select and search subroutine? To avoid printing exactly the
same instructions and to make them more relevant to the
situation the subroutine is begun at a line number later in the
block of program. The name is found or not found as the case
may be. The control of the program returns to the 'Amend'
subroutine from the 'Select' subroutine. If no records are found
the subroutine might as well finish, as you cannot change a
record that is not in the directory anyway. To continue let us
assume the record has been found. Each record found has a
number allocated to it and the program instruction asks the
user to INPUT the number of the record they wish to amend.
The record is amended by executing a series of sequence type
operations.

This record so far has only been amended while stored in the
computer's memory. In order to save it for long term use the
computer has to save it onto either tape or disk. The operation
is performed by saving the whole directory once more and this
is very time consuming, compared to only adjusting the single
record. To cover all the various forms of file handling is
unfortunately outside the scope of this book, but the planning
and structured design is the same.

The operations involved in saving data are: open com­
munication link, screen instructions, repetitive loop to save
each and every name, surname, and telephone number—if
there are twenty records on the directory this loop will be

96 Structured Programming

Figure 10.6 Subroutine 5: Amend a record

Implementing the plan: 2 97

repeated twenty times—, close communication link, return
program control to the main control element of the program.

Quit subroutine

Figure 10.7 Subroutine 6: Quit

This is a straightforward sequence of events: information is
printed on the screen and then control returned to the main
control element which terminates the whole program because
the variable k has a contents of 4. The screen is left displaying
the message 'That's All Folks'.

Press and key subroutine

This subroutine can operate in conjunction with any other as it
merely uses the bottom line of the screen. The program lines
wait for the user to respond indefinitely, whereupon the
subroutine is terminated and control is returned to the
program area that is called the 'Press any key' subroutine.

98 Structured Programming

Figure 10.8 Subroutine 7: Press any key subroutine

The option menu: part one of the application

For completeness Figure 10.9 illustrates the option menu
which enables the user to either create or use the telephone
directory. Examine it and try to talk your way through it. Then
compare it to the program listing, Chapter 2, or the program as
you have it on tape or disk.

Implementing the plan: 2 99

Figure 10.9 Program structure for part one of the telephone directory

Section E
Handling Text—The
Key to Information
Storage

Chapter Eleven

Strings, string variables
and the $ symbol

A string of characters can be one or more alphabetical,
numerical, or other keyboard symbols presented together.
Using direct command mode we can place on the screen a
string of characters thus: PRINT "6a b*GO 87" <ENTER>.
Similarly a readable sentence is also considered in terms of a
string of characters, thus: PRINT" This sentence is a
string of characters". Note that a blank space counts
as a character within a string. This is an important fact when
considering that when entering data into a database, such as
the telephone directory, each piece of information is actually
placed as contents in a string variable. Therefore if the user is
to place an additional blank space at the end of, say, the
surname, the computer will read that space into the string
variable along with the letters that make up the surname. Try
this with the telephone directory. Then try to select that
particular surname, but leave out the blank space—you will
find the program will not find the particular surname you
entered previously with the blank space on the end of it.

The contents of a string variable

The $ symbol when suffixed to a variable, enables characters
to be placed as contents within that variable. A simple
manipulation of these strings might be as shown in the lines
10 to 90 below. By using the + symbol, strings of characters can
be lumped together to make a longer string of characters, and
placed as contents in a new variable, labelled with a different
name.

103

104 Structured Programming

Figure 17.7 The contents of a string variable

11 WA firstnane is"}Al
20 TNPUT"A surname is"}BI
30 ZI=AI+BI
40 QI=AI+" "+BI
50 Yi=AI+CH?l(32)+BI
55 PRINT
60 PRINT Zl
70 PRINT
80 PRINT QI}" This is QI"
90 PRINT YI}M This is Yl"

The functions C H R $ and A S C

In the above program lines 40 and 50 the same result has been
achieved by different means. The second method, line 50, is
probably just a neater, more professional, more standardised
method. The command PRINT CHR$(13) has the same
effect as pressing the <ENTER> key. The function CHR$ is
an abbreviation for character code. Each character has a code
number referred to as an ASCII code. When ever possible use
the form of C H R $ (ASCII for the keyboard character) instead of
the character in brackets for PRINT, LET, IF—THEN and
WHILE conditions. The computer's processing speed will be
enhanced and the program as a whole will be more profession­
al in its execution. Unfortunately it will mean that to read

Strings, string variables and the $ symbol 105

through the program listing, it will be necessary to refer to a
table of ASCII codes.

The function ASC has the inverse effect, e.g. PRINT
ASC("E") <ENTER> will display on the screen the
number 69. The use of this function is a little more specialised.
It also can be used as part of the conditions set up in a W H I L E
loop and an I F—THEN statement.

Calculating the number of characters in a string

The length of a string can be determined by the BASIC
command word LEN with the particular string variable
concerned in brackets after it:

II INPUT "A surname is"}Bl
2» leogthAEN(BI)
30 PRINT"The surname "JBIJ" has "J length;“ letters in it,"

The immediate use for this command in terms of a database is
during the set-up and creation stage. As part of the set-up
procedure the program can ask the user to define each field of
information in terms of the title of the field and the maximum
length of the information to be placed in that particular field of
information. The advantage of this type of program structure is
that it simplifies designing the screen layouts for data entry
and browsing of data while using the database. The function
LEN would be used to test the length of each string as it was
entered at an INPUT stage. If it is less than the previously
determined length it would then be stored as an array variable
in the database. The structure would be:

10 c=l
20 Df'UT "Number of nanes"J number
30 INPUT"The nax, letters in the nawes"J length

DIM Nanel(nunber)
50 WHILE c<nurter+l
60 PRINT cj
70 INPUT" Nane";enter!
80 IF LEN(enterl)>length THEN 110
90 Na«el(c)=enter$
100 c=c+i:goto 120
110 PRINT "Wane toolong"
120 WEM)

106 Structured Programming

The use of UPPERS and LOWERS

Both are very useful functions but as a programmer one
generally has a preference and uses it to the exclusion of the
other. The function they perform is to adjust a string variable
contents of alphabetical characters to the form stipulated. Thus
UPPERS will convert all letters to the upper case form and
LOWERS will convert to the lower case form. The essential
advantage in any program is that a program then only has to
validate a user's response to one case. The program listing also
looks neater and more professional. In terms of the program
user it then does not matter whether the computer has its caps
lock facility on or off.

STRINGS and SPACES used for short cuts
To make a program more effective it is a great advantage to
make full use of the facilities the computer provides.
STRINGS is one such facility. Its format is STRING$(a
whole number,"characters ").

10 T$ = STRINGS (5, "repeat")

20 PRINT T$

RUN
Figure 11 .6

The same task can of course be fulfilled by the program lines
in Figure 11.7.

10 FOR C = 1 TO 5

20 PRINT "repeat";

30 NEXT

RUN Figure 11 .7

Strings, string variables and the $ symbol 107

A further development might be to replace the characters in
the STRINGS format with the function C H R $.

PRINT STRINGS (5, CHR$(69))

Figure 11 .8

The function SPACES is a special form of the STRINGS
function which produces a given number of blank spaces, for
example, PRINT SPACE$(5) will produce five blank
spaces. The use is for screen layouts, creating a TAB facility in
a 'word processing' program.

As your programming ability and range of knowledge
develops more functions will become available to you as tools
assisting the ease with which you will be able to perform
program tasks. My advice is to take it slowly and get used to
using the fundamental commands. When you are faced with a
seemingly insoluble problem, consult the BASIC keyword
reference of the computer; with a little imagination the
function will be there to complete the task you want the
computer to perform. A function can generally be broken
down into more fundamental program lines. As you become
confident browse through the BASIC keyword reference
provided with the computer to arm yourself with these tools.

Chapter Twelve

Manipulating strings to
your advantage

The magic of any computer program that is functional is its
ability to reliably and repeatedly carry out essentially boring
and repetitive tasks time and time again without becoming
inaccurate. For example, look for a person who has an address
of '1 Dodd Street' from a directory of 20 000 people. A well
designed program could come up with this answer within a
matter of seconds. The most commonly used procedures are
those of searching and sorting, and the CPC 664 and 464 both
offer various facilities to search and sort. These facilities are
effectively determined by the program user but the options
available have to be written into the program first.

The essence of searching for a particular name, or in
computer terms a string of characters, is by using the format
IF a$ = b$ THEN f ound$=a$: PR I NT founds. This
testing procedure is set within a loop such that every variable
in the list is tested against the required variable. When the two
strings of characters match they are printed on the screen. Just
such an example is used in the telephone directory suite:

710 REM select and search
720 nanet="zz":surnanel="zz"lf=O
730 CLS
740 PRTNT"Do you want to select by! "
750 PRINT !PRINT"<A> First nane
760 PRINT 5PRINT" Surname"
770 WHILE k$O"A" AND klO"?1
780 k$=INKEYI
790 k$=tFPER4(kl)
800 HEM)
810 PRINT
820 IF kt="A" THEN INFUT"Hhich first nane"Inane!

108

Manipulating strings to your advantage 109

830 IF k$="B" THEN INPUT"Which surname" Jsurnanel
MO PRINT¡PRINT " ";fl,s$,ph$
850 WINDOW 1,10,10,21
860 c=0
878 WHILE eCrecord
880 IF k8="B" THEN 900
890 IF na«e$=ri8Mel(c) THEN f=lt PRINT c}nartei,surnaae$(c),phone$(c)
900 IF surr>3Mei=surri3rte$(c) THEN f=l! PRINT c}nane$(c),surr>atte$,phone<(c)
910 c=c+l
920 WEND
925 IF fOl THEN LOCATE 10»85PRINT " No Record Found "
930 GOSUB 1280
900 RETURN

The essence of sorting is probably a little more complicated.
It centres around the ability to decide whether a string of
characters is 'less than' or 'greater than' another string. 'Less
than' translates to being alphabetically nearer to the letter 'A'
and 'greater than' translates to being nearer to the letter 'Z'.

The method the computer uses is to convert each character to
its ASCII number equivalent. If the string is of multiple
characters it will compare each character individually. There­
fore it is logical to say that the ASCII code in decimals for the
letter A is 65 and for Z is 90. The problem is that for lower case
letters the ASCII decimal codes range from 97 for 'a' and 123 for
'z'. Therefore if you require the sorting of either case to make
no difference, ensure that during the program routine you use
the UPPERS or LOWERS facility available on the CPC
664/464.

A very untidy but workable method of sorting three string
variables into alphabetical order is as shown below. It is not
validated to accept both upper or lower case letters, so it is
clearly not foolproof. However it serves as a useful demonstra­
tion of the procedure required to print a list in alphabetical
order.

2CLS
5c=l
8 PRINT "Three words» please"
9 PRINT "Type, separate each one by a cohna."
II INPUT }a$,b$,cl
12 PRINTiPRINT
15 PRINT "Alphabetical Order is!"

110 Structured Programming

17 PRINT
20 WHILE c<4
31 IF 3»<=bl WO sl<=c$ THEN ten»l=3$:f=l
*1 IF bK=cl AND bl<=3l THEN teflpl=b$!f=2
50 IF cK=3l AND c$<=bl THEN tw%>i=c»:f=3
60 PRINT tewpl
70 IF f=l THEN 3$="zzzrmzzz"
80 IF f=2 THEN b^=,,zzzzzzzzzz■,
85 IF f=3 THEN ('^="7777777777"
90 c=c+l
100 WEND
111 PRINT

The theory develops around finding the string nearest to the
letter 'A' position; that particular string is destroyed or more
accurately changed to consist of a series of z's, alphabetically
last. In this way the next in alphabetical order can be found,
printed on the screen, and is then altered to a series of z's. The
third in alphabetical order is then found, and so on.

The problem with this method is its laborious and time­
consuming task of writing into the program every single
combination for any more than three strings being sorted.

Many different methods of sorting have been devised. Each
has its own advantage: some account for upper and lower case
variables, some destroy the original variable's contents so that
it can be used again, others do not, some are much faster at
doing the task than others. All use a series of variable contents
manipulations from one variable to another.

The theory is straightforward: each item in the list is
repeatedly searched, using item one as its standard until it
finds an item in the list which is alphabetically closer to 'A';
that item then becomes the standard to test against. The
process is continued until the end of the list is reached. The
current standard is printed on the screen. The standard item is
j ">w disregarded and converted to the alphabetical position
do.. t to 'Z'. The standard becomes item number one again
and the process is repeated in once more. The process
continues until all the items have been alphabetically sorted
and listed on the screen.

There are other methods that use dimensional arrays and
actually alter the position, by changing the variable's subscript
number. The contents of the two variables are held in

Manipulating strings to your advantage 111

Figure 12.2 Alphabetical sorting procedures—the use of temporary stores

112 Structured Programming

temporary variables and then switched into order as a result.
The number of elements compared are then adjusted to make
sure that those already placed in order are not compared again.
Figure 12.1 visualises the sequence of events. The structured
diagram might be something like Figure 12.2, demonstrating
another very useful application for creating structured dia­
grams of a specific task. See if you can create your own
methods of searching and saving. Start from the point of
scribbling ideas in the form of a sketch diagram.

Figure 12.2 Structured diagram illustrating a sorting procedure

CPC 664/464 facilities available for use

There are several functions available that can be introduced
into the structure of a program that will enable greater
flexibility for the program user to determine the exact part or
section of a string that is required to be searched or sorted. The
functions involved are LEFTS, RIGHTS and MI D$.

The format of each is as shown in Figure 12.3, if it is taken

Manipulating strings to your advantage 113

that each uses the stated string variable and, using the stated
parameter, creates a string, usually as another variable which
is part of the original one. Whether it forms the start, middle or
end of the original string is determined by the actual function
used. LEFTS refers to the start of the original string, M I D$
the middle and RIGHTS the end. How many characters are
involved in the new string is determined by the parameters of
the function.

PRINT L£FT»(coMputer,3) <ENTER>

> COM

PRINT MID$(coMputer,4,3) <ENTER>

> put

PRINT RIGHTI(coMPuter,3) <ENTER>

> ter

Figure 12.3 Le f t $, M i d $, and R i g h t $

To demonstrate the fundamentals of these functions consid­
er the following program lines, type them into your computer
as a program and RUN the program.

10 INPUT "A word of three syllables"} word!
20 INPUT "Krich letter position does the 2nd syllable start"}start
30 INPUT "How «any letters does it have"{length
40 Hiddlet=fttD$(wordlfstartflength)
50 PRINT "The syllable is "{Middle»

An inside-the-string Search

The function INSTR is of a different nature; its format is as
shown in Figure 12.8 and can be used in the way shown in
Figure 12.9.

114 Structured Programming

10 CLS
20 DATA Steve,11 Freeware Close
30 DATA Andrew,3 Cattden Road
40 DATA Carol,! Dodd Street
50 DATA Elizabeth,82 Ashgrove Avenue
80 d=4
85 PRINT "Position of the word 'Close{PRINT
90 FOR c=l TO d
100 READ n8nel(c),streeti(c)
110 PRINT INSTR(5,street$(c),"Close")}
120 PRINT TAB(IO) streetl(c)
150 NEXT
160 PRINT

Figure 12.4 Use of the function INSTR

10 CLS
20 DATA Steve,11 Freenans Close
30 DATA Andrew,3 Cawden Road
40 DATA Carol,! Dodd Street
50 DATA Elizabeth,82 Ashgrove Avenue
60 INPUT "Start position of search"{start
70 INPUT "Number, Road natte or type"} sear chf or $
80 d=4
90 FOR c=l TO d
100 READ narte$(c),street$(c)
110 NEXT
120 FOR c=l TO d
130 search=INSTR(start,street!(c)»searchfor!)
140 IF search>0 THEN flag=llGOSUE 180
150 NEXT
160 IF flag=l THEN GOSUE 230
170 END
180 REM search routine
190 B=a+1
200 search$(a)=n8fle$(c)
210 searchl!(a)=street!(c)
220 RETURN
230 REM print criteria
240 CLS
250 PRINT searchfor!! PRINT
260 FOR b=l TO a

Manipulating strings to your advantage 115

270 PRINT sesrchKb) JCHR$(32)»se3rchl$(b)
280 NEXT
290 RETURN

Figure 12.5 Development of the use of the INSTR function

Now experiment.

Chapter Thirteen

READ and DATA
statements

The BASIC READ and DATA commands work together in all
instances. The command DATA is a method for storing
information which is used/manipulated from within the
program. To all intents and purposes it is information that will
remain the same every time the particular program is used.
The command READ will fetch the information from the
DATA statement and place the information stored in the
DATA statements as contents in the appropriate variables, as
in Figures 13.1 to 13.3.

50 DATA 1,12,13,11,11,19,18,17,16,15
60 READ nunber
65 MODE number! FEN number+2
70 FOR counter=1 TO 9
BO READ position
85 PRINT position}
90 FEINT TAB(position)"Screen Display"
100 NEXT

Figure 13.1 DATA and READ statements (i)

15 DIM word!(20)
50 DATA Delta,osear,gana,seals,"
55 DATA " ",Ceta,alpha,toggle,swim
60 WHILE wordl(count)<>"swin"
65 count=count+l
70 READ wordi(count)
90 WEND
100 FOR c=0 TO count
110 FEINT LEFT$(word$(c),l)}
120 NEXT

Figure 13.2 DATA and READ statements (ii)
116

READ and DATA statements 117

50 READ nunber
60 CLS
70 PRINT "A/C no.","Surrte"SPRINT
80 FOR c=l TO nuwber
90 READ rn.inber(ri3Me$
100 PRINT m.ifibertri3Me$
110 NEXT
120 PRINT
130 DATA 0
110 DATA 1423,Raven
150 DATA 6743,Sutton
160 DATA 2341,Snith
170 DATA 7453,Mills

Figure 13.3 DATA and READ statements (iii)

By sketching the above short programs, it is possible to
understand the nature and uses of the READ and DATA
commands. Examine the diagrams in Figures 13.4 to 13.6 and
note the absence of a mention of actual DATA statements.
There are two reasons. Firstly in a program DATA statements
can be placed anywhere in the program that is convenient, this
just happens to be usually at the beginning or the end.
Secondly, if a structured diagram is written carefully the need
for DATA statements will be fully documented at the point the
information is READ.

Figure 13.4 Diagram of program in Figure 13.1

118 Structured Programming

Figure 13.5 Diagram of program in Figure 13.2

Figure 13.6 Diagram of program in Figure 13.3

The use of these commands is straightforward and follows
these rules.

1) Each piece of information is separated by a commaQ.
2) Numerical and string information can be mixed in the

DATA statement.
3) When REA Ding DATA the numerical and string variables

must match the particular type.
4) The first READ variable will be the first DATA piece of

READ and DATA statements 119

information encountered in the program. The second
READ variable will be the second DATA piece of informa­
tion, and so on.

5) If you require to reset the REA Ding of DATA to a specific
DATA statement in the program the command word
RESTORE, followed by the appropriate line number, is
available.

One of the most practical uses of the REA D—D A T A facility is
to repeat a particular subroutine on numerous occasions
within a program, but with different parameters needed each
time to cause a different effect. Thus there might be five
different variables within this subroutine, but on each of the
fifteen times the subroutine is executed each variable has as its
contents a different number or string. It is a relatively simple
programming technique to include the fifteen combinations of
variable contents into fifteen DATA statements. At the start of
executing the subroutine a READ statement fetches the new
data and places it as contents into the variables concerned.

READ—DATA statements are a tool that can allow the
imagination to take flight. Start by experimenting with some
simple graphics, using variables and DATA statements to
supply the parameters to create the shapes or colours.

Have a go!

Chapter Fourteen

Extending variables
dimensional arrays

The simplest form of variable is as shown in Figure 14.1: the
variable is given a name/label and contents is placed in that
created variable.

13bel$="dog"
PRINT label»

> doq

A standard string variable

In order to produce the telephone directory and several other
of the short program examples it has been essential to use a
different form of variable. This type of variable is characterised
by a subscript or number within a bracket attached to the end
of the variable name/label, for example, Name$(2). Each of
the individually coded variables with the same label can hold
different contents. At the beginning of each program the
number of each of these variables that are going to be used has
to be stated or more technically dimensioned with the
command DI Invariable name/label(number of variables).
These variables are referred to as dimensional arrays.

As demonstrated in Figure 14.2, arrays can be seen very
much as a drawer in a filing cabinet. The label on the front of
the drawer states the number of records to be held in the
drawer (computer's memory). The drawer is then filled with
suspension files each with a numbered label. Each file contains
the content of that particular dimensioned variable. The

120

Extending variables - dimensional arrays 121

Figure 14.2 A filing cabinet analogy

beauty of this analogy is that, just like a personal file, each file
can contain numerous array variables, for example, name, date
of birth, address, etc.

Figure 14.3 The file contains numerous array variables

So far we have considered only singly dimensioned array
variables. Consider Figure 14.4 where instead of each piece of
information concerned with each personal file being held as
contents in different variables, a single variable can have a
second dimension. Thus Figure 14.4 demonstrates 100 person-

122 Structured Programming

DIM Per5on$(100,7)

Figure 14.4 Further complications to storage of information

al files each with 7 pieces of information. This can now be
taken a step further, as in Figure 14.5, where 100 personal files
can hold 7 different areas of information, each area having 3
fields of information. This is a beautiful way of creating a
program that can recall information accurately as it is orga­
nised very effectively. But do not get carried away: the
problem with this particular programming technique is its
extravagant use of the computer's memory.

Array variables can of course be both numerical and string
in nature. Do not confuse them. Do not place numbers in a
string array variable and expect to perform arithmetic with the
contents. You can perform string manipulations but not
arithmetic, and vice versa.

The structure of the program lines is:

10 DIM cell(3,3)
20 PRINT
25 FOR r=l TO 3
30 FOR c=l TO 3
10 PRINT cell(c»r)J
50 NEXT
60 NEXT

The use of array variables within a loop make it exceptionally
easy to load from and to a cassette or disk data file, print the
contents of the variables on the screen, and compare the

Extending variables - dimensional arrays 123

contents of each of the arrayed variables against a standard.
The uses of array variables are very extensive and probably
only limited by one's imagination in their application.

Chapter Fifteen

Viewing the file, formfil,
screen format, and data
entry

The cruz of producing a database program that can handle
large amounts of information for the user is the method in
which the information/data is put into the system to create the
file. The actual method of entering the data will be determined
by the programmed instructions, that is, whether the titles to
the file of information are standardised or determined by the
program user at the stage of setting up that particular file. This
procedure is known as defining the file, i.e. the file definition.
By a program employing this technique a simple database
program can have numerous different applications.

A file creation routine to define each file structure needs to
include the following questions to the user:

1) Number of fields of information? (maximum 6)
2) The title of field name one?
3) The title of field name two?
...and so on until the number of fields defined in question 1
have been given a title.

Each response of the user will be stored as the contents of a
variable and stored on cassette or disk for use as a database's
initialisation process for that particular application.

Professional software used in the world of commerce have
these type of facilities as standard. During the database set-up
procedure the user can define numerous options, and define
the nature of every aspect of the file from the number of fields
to which fields are displayed on the screen at any one time.

All of these professional file creation techniques can be
achieved by BASIC programming as long as they are thought-

124

Viewing the file 125

fully planned in a structured manner. The procedure would
typically be:

1) Decide exactly the facilities available for use with the
database.

2) Decide exactly the facilities that the user will be able to
define.

3) Create a structure that will enable the user's responses to
be stored as a data file.

4) Draw up the structure of the database program by means
of structured diagrams.

5) Write the program in terms of 'first principles'; thus where
the constants of the program are defined by the user the
appropriate variable name is substituted. When the
program is 'used' these will have been loaded from data
file when the program is initialised.

Technical terms often used

Formfil is a technique sometimes used in professional
software to set up the database's screen display. Essential­
ly the program user controls the position of the cursor to
define the position of information displayed on the screen.
Each field of data can be individually placed on the screen,
the cursor being positioned by the up, down, left, and
right cursor keys. In terms of BASIC programming, the
technique to produce this type of program would involve
the testing of the position of the cursor on each axis of the
screen, placing this information as contents into a variable.
Each field of the database would have a set of coordinates
to define its position on the screen, which would then be
used when viewing the data in conjunction with the
command LOCATE.

A screen mask is a conceptual term, describing the fields
of information as set out on the screen. Imagine a blank
form placed on the screen; the information contained, for
example, on each personal record would then be displayed
through this mask. By careful planning of the database
program several different screen masks can be set up in
order to view different aspects of each particular record.

126 Structured Programming

A record is a collection of related fields, an example
being the information contained about an individual
person in a personal file.

A file is a collection of records of a similar nature.
A field is a single piece of information within a record,

an example being the date of birth or street name.

Chapter Sixteen

Processing numerical
variables-automatic
record updating

Database applications such as a telephone directory are
primarily concerned with the manipulation of string/character
fields of information. In order to present a complete program­
ming picture let us now consider the potential of using
numerical fields within a database program. All numerical
fields can of course have arithmetic performed on their
contents. Imagine a screen of information contained within a
database concerned with an individual's monthly earning over
a one year period, as in Figure 16.1. The program user need
only enter his or her tax allowance and make twelve entries of
the amounts paid. The program will then calculate all the other
values concerned, place them as contents in the appropriate
variable, and subsequently display the results on the screen.

The program as shown in Figure 16.2 is merely the
framework of a major database. Clearly the program would
require a file handling facility to save the data entered by the
user on a disk or cassette tape. In its present form the twelve
monthly payments have to be entered one after each other
without turning the computer off.

Examine the program listing carefully. Try the program out
by keying it into your computer, RUN it, follow the instruc­
tions and watch it calculate the contents of the other fields.

For completeness follow the program while considering the
structured diagram shown in Figure 16.3.

The use of the arithmetic functions is straightforward. The
numerical variable names make up a formula. The contents of
each variable is substituted into the 'formula' and the
arithmetic is performed according to the rules of precedence:

127

128 Structured Programming

This Months Paynent*

January _____ Gross Pay
February _____
March _____ N.I. Deduct _____
April _____
May _____ Tax Allowance _____
June _____
July _____ Tax Deduct _____
August _____
September _____
October _____ Net Pay
November _____
December _____

Figure 16.1 Screen display of a Personal Earnings database

«—INPUT "Tax Allowance"
c=l
WHILE c<13

A INPUT paynent(c)

* grosspa^grosspay + paynent(c)
NI=grosspayi0.06
Tenpcal=Gross-NI

*- Taxable=Tenpc81-Allowance
*■ Taxdeduct=Taxablei0.333
*- NetPay=Tenp-Taxdeduct
■e c=c+l

WEND

Figure 16.2 The calculating part of a Personal Earnings database

1) The arithmetic is performed from the left to the right.
2) Every element placed within brackets has precedence in

the arithmetic, i.e. it is performed first.
3) All the multiplication elements are calculated.
4) All the division elements are calculated.
5) All the addition elements are calculated.
6) All the subtraction elements are calculated.

Processing numerical variables 129

Figure 16.3 Diagram of program in Figure 16.2

The 'formula' takes the form of a LET statement. The
variable which will have as its contents the result from the
formula calculation is placed on the left of the equals sign:

Pay=Hourls rateinunber of hours

Population of school=no. of staff+no. of pipils

In addition to performing the four basic operations of
addition, subtraction, multiplication and division there are
several further facilities or functions available. These functions
include numerous methods of rounding off numbers, convert­
ing negative numbers to positive ones, and calculating various

130 Structured Programming

trigonometrical functions either as degrees or radians. By the
use of the PRINT USING command a range of different
formats can be arranged. All of these facilities can be easily
incorporated in a numerical processing routine of a program.
Consult the computer's User Instruction Manual for details.

Programming functions are also useful. By incorporating a
formula C=C+1 within a F 0 R—N EXT loop a simple counting
machine has been achieved. This can then be taken a step
further by writing the formula as C=C+A, where 'A' is a value
INPUT by the user each time the FOR—NEXT loop is
performed. The initial contents of the variable C is zero. The
result is a totalling machine which will add together each of
the values INPUT by the user. Figure 16.4 demonstrates this
arrangement amply.

FOR b=l TO 10

Af=AH)

NEXT

Or

C=20

FOR b=l TO 10

Total=Total+C

C=C+1

NEXT sane as 20+21+22+23+24+25+26+27+28+29+30

Figure 16.4 Sample of an adding sequence

The possibilities are endless, governed only by the imagina­
tion of the application. Once again the execution of an idea, its
transformation into a program and subsequent application, is
dependent on copious planning. It is most important to make
sure that the processing routine is made to do the job it is
meant to do. Create the processing routine as a separate
element, the INPUT data as a separate routine, and the
presentation of the processed results as a separate routine. To

Processing numerical variables 131

make the task of processing easier use variable names that are
very relevant to the function in the routine.

The example processing routine, calculating yearly pay after
tax and national insurance deductions, is as set out in Figure
16.1 to 16.3, a running total system. This could be developed
into a system where all the data is put in to the memory
initially, the processing is then performed and the results
finally displayed on the screen which is a logical and
structured approach.

Chapter Seventeen

Ideas for applications

Applications for computers are as I see it the only way for the
further development of the home computer. Today many
people can manipulate their home computers to display
patterns of numerous colours, both moving and static, and to
animate characters around the screen, yet there are very few
who actually apply their skills to programming needs around
the home and small office. I guess the reason for this is not the
lack of possible applications, but uncertainty about where to
start.

To begin with, look at the ideas hinted at and examined in
depth in this book, plus the areas of maintaining a cash book
and other general accounting programs. Let us stay with the
calculating angle. The question currently being asked in
professional business software is 'what if?'. A condition or
possibility is set and the possible resulting effect is calculated

If I earn £_______ X_______ do I have enough money to
buy a new sports car?
Salary = £___________
Cost of Item = £
Deductions
Week 1 £ Week 2 £
Week 3 £ Week 4 £
Monthly Deductions £
Yearly Expenditure W = Week 1 + 2 + 3 + 4*12 = ?

M = Monthly * 12 = ?
Exp. Total = W + M
ANS = X - Exp. Total

If ANS > 0 BUY ITEM

Figure 17.1 Proposals of a 'What if?' dilemma

132

Ideas for applications 133

from the known facts previously entered into the program by
the user. Consider the proposals put forward in Figure 17.1

The potential of array variables can be exploited in either of
two areas: spreadsheeting or multi-dimensioned databases.

application

A spreadsheet

By the use of two dimensional arrays, one numerical and one
composed of characters, each with two dimensions, a matrix of
cells can be created, each cell linked to an appropriate area on
the screen. Figure 17.2 illustrates the theory. The blocks/
squares on the screen can each be designed by the user to
represent either the character variable or the numerical
variable assigned to it. The column and row numbers can
easily be displayed on the screen by a short program that
would be similar to that shown in Figure 17.3.

134 Structured Programming

i The use of PRINT USING ccmand will be essential i

DIM cell$(3,10),cell(3f10)
FOR row increase by one

FOR column increase by one
PRINT cell(colutvhrow)
NEXT

NEXT
Repeat process for cell$(colutm,row) for those cells that have

been previously signalled as haveing character contents

Enter values for calculation
Calculation performed
Answers arid totals displayed

Figure 17.3 Possible programming methods

Each cell could be designated as being either a character cell or
a numerical cell.

Each numerical cell could be assigned as an INPUT cell for
the user to place values into the calculating process, or
alternatively each numerical cell could have a LET formula
assigned to it. The formula would consist of arithmetical
manipulations of the cells designated as INPUT cells.

Clearly each area of the screen can only be assigned to either
character cells or numerical cells.

Think about the idea and then try to develop it into a
program application you could use.

A Multi-dimensioned database

By using an array variable Person$(10z10), we create a
card with 100 squares on it. The information held on it could
be a different person on each row. Each column could be
assigned to represent a different facet of information. Figure
17.4 demonstrates this approach.

Ideas for applications 135

Figure 17.4 A card of data—dimensioned array variables

NAME AGE STREET TOWN COUNTY SALARY

GRAHAM 29 1 High St Warwick Warks £9,000

A further development could be to make the array a
three-dimensional one, Person$(100,2,24), which
could be read as 100 people having two pages each with 24
pieces of information on them; or
Person$(100,1 ,12,15) which would mean 100 people
having one page, which has 15 pieces of information printed
on it and the last 12 pay cheques pinned to it. Pictorially this
would be demonstrated as in Figure 17.6.

The combinations are endless and applicable to hundreds of
different applications. The bones of each program would
follow these lines:

1) Set up the structure of the database.
2) Define the function of each field.
3) Put data into the database, save onto disk or tape for long

term storage.
4) Use the database to retrieve the information required.

File handling

By the use of cassette or disk files an exciting program could be

136 Structured Programming

Figure 17.5 Two pages of information with 24 fields on each

developed. Unfortunately a cassette system is very much
slower and will require manual manipulation to ensure the
correct data is read from the tape at the correct time in the
execution of the program. The theory goes that, for example, a
personal record is set up with 20 pieces of information. That
whole record is then stored onto either cassette or tape by
means of a data file. The procedure is then repeated for the
next person, and the next, and so on. Each time the informa­
tion is stored on either tape or disk. The beauty of it is that the
number of records that can be stored is limited only be the
number of tapes or disks you can afford to buy.

Ideas for applications 137

Figure 17.6 Pictorial demonstration of information held in dimensional
array variables

138 Structured Programming

Here is a small selection of possible directions. Take them,
think about them, apply them to your, particular needs. Begin
with a diagram and sketches until you are satisfied that the
program you have designed will fulfil the objectives you have
laid down.

Chapter Eighteen

General principles and
some reminders

When writing programs in BASIC you will normally find there
are several ways of obtaining the same result. There is no right
or wrong way in the majority of cases, so use the way you
personally find the neatest and the most comprehensible.

Get into the habit of using REM statements frequently.
Document your programs; you will only find out what I mean
by writing some programs, leaving them for two months and
then trying to read through them and understand the proce­
dures you have written into each of the programs.

Programming guidelines

Use I N K E Y $ commands embedded in W H I L E—W END loops
rather than INPUT statements, minimising the times the
program user has to press the <EI\ITER> key.

Use a main control element to direct the program from
GOSUB routine to GOSUB routine. Use minor GOSUB
routines for practical purposes such as 'Press any key'
routines.

Link the GOSUB call and the start of every subroutine with a
REM statement, to explain the function.

ON—GOSUB commands are very useful for driving a menu.
GOTO commands should be guardedly used. The direction

of the flow of control is important. Forward jumping is a
permissible action and will aid programming. Backward
jumping can lead to never-ending loops and should be
avoided as the control of the program's direction is taken away
from the program user.

Readability of a program is important. REM statements will
139

140 Structured Programming

help and so will the use of meaningful variable names. It is
only too easy to assign a single character name as a variable; I
am guilty of this myself. The important variables should be
identified by words relevant to their functions, and in
lower-case letters.

Validate your programs so that whenever the program user
has a choice of one or more keyed responses, pressing any of
the other keys will have no effect on the program. One simple
way of achieving this is to use: WHILE K$O"B" OR
K$<>"A" repeat the loop. Thus unless A or B have
been pressed the program lines within the WHILE—WEND
loop will repeat ad infinitum.

There will be from time to time system errors that will cause
BASIC to terminate execution of the program. However there
are ways to validate against the program 'crashing' completely.
This is done by the family of BASIC vocabulary that is
concerned with error trapping.

ERROR and ON ERROR commands will cause the BASIC to
perform some defined action on the result of a specific type of
error or on all types of errors. Each error type is signalled by a
specific code number. There are two variables ERR and ERL
which return the error code number and the program line
number where the error occurred, respectively.

When using DIMensioned array variables only assign as
many variables and dimensions as you are going to use.
Arrays take up a lot of memory space.

When keying in the program instructions use a method of
indenting the program lines which are inside a WHILE—
WEND or FOR—NEXT loop; this will allow easier reading as
one will be able to see where the repetitive parts of the
program structure are.

Finally, become familiar with the tools you have at hand. As
long as you take your time planning your programming
projects, you can never be too ambitious; simply remember
that you are using a home computer so memory space will
eventually run out. But that won't be for a long time.

Appendix

Appendix:

The Telephone
Directory
Part one : The option menu

10 REM Personalised Telephone Directors
20 REM Steve Raven March 1985
30 REM Part one Option Menu
40 CLSiPEN 3
50 FOR display=l TO 22
60 PRINT TAB (display) "Telephone Directory"
70 NEXT
80 WINDOW 2,40,2,11
90 cls:print:pen 2
100 PRINT"Do you require to!"
110 PRINT!PRINT"<A> Create or add to your directory "
120 PRINT!PRINT" Use your directory"
130 PRINT
140 PRINT "Press the appropriate <key>"
150 WINDOW 2,40,13,21
160 cls:print:print
170 PRINT "Remember you must have created a "
180 PRINT
190 PRINT "directory before you can use it."
200 PRINT
210 WHILE K»O"A" AND K»O"B"
220 K»=INKEY»
230 K«=UPPER»(K«)
240 PEN 1
250 WEND
260 IF K«="A" THEN RUN"Create"
270 IF Kt="B" THEN RUN"Use"
280 END

Part two : Creating or adding to the directory

10 REM Create a telephone directory
20 REM or add new names and numbers
30 .REM to a previously created
40 REM directory
50 REM Part two Create
60 !
70 t=l00’counter = 0 *record=0
80 DIM name*(t),surname*(t),phone*(t)
90 f*="Firstname"!s*="Surname"!ph*="Phone No."
100 MODE 1! PEN 1
110 !

143

144 Structured Programming

120 GOSUB 210 ¡REM Option Menu
130 IF k*="A" THEN GOSUB 310
HO ¡REM add to directory
150 IF k*="C" THEN GOSUB 620
160 1REM create directors
170 GOSUB 960 JREM save directory
180 GOSUB 1190 ¡REM use or finish
190 END
200
210 REM Option nenu on screen
220 LOCATE 1,2¡PRINT"Choose the facility you require!"
230 LOCATE 5,4IPRINT"<C>reate a NEW directory"
240 LOCATE 5,6iPRINT"<A>dd to an OLD directory"
25 0 LOCATE 1,8!PRINT"Press either key <C> or <A>"
260 WHILE k»O"A" AND k*O"C"
270 k*=INKEY*
280 k»“UPPER* (k*)
290 WEND
300 RETURN
310 REM Add new phone nos to directory
320 CLS
330 LOCATE 5,24¡PEN 5
340 PRINT"Insert data cassette in datacorder"
35 0 LOCATE 1,1
360 FOR delay=l TO 1500¡NEXT
370 CLS
380 OPENIN"data"
390 WHILE EOF=0
400 INPUT*9,narte*(counter)
410 INPUT*9,surnane*(counter >
420 INPUT*9,phone»(counter)
430 PRINT counter ,
440 counter=counter+1
450 WEND
460 CLOSEIN
470 record=counter
480 WINDOW 1,40,1,23¡CLS
490 PRINT f*,s*,ph*
500 counter=0
510 WHILE counter<record
52 0 PRINT nanel(counter),surna net(counter >,phone»(counter)
53 0 counter“counter+1
540 WEND
550 WINDOW 1,40,24,24
560 PRINT"Press key <c> to continue"
57 0 WHILE k»O"C"
580 k»=INKEY$
590 k«=UPPER«(k*>
600 WEND
610 RETURN
620 REM create directory
630 WINDOW 1,40,1,251 CLS
640 PRINT SPC(10>iPRINT"Infornation Entry"¡PRINT
650 PRINT f»,sS,ph*
660 WHILE counterClOO
670 record=counter+l
680 WINDOW 1,40,11,11
690 IF k»=CHR»(32) THEN PEN 2
700 IF k*OCHR»(32) THEN PEN 5
710 k*=""
720 PRINT"Record Nunbert "¡record
73 0 WINDOW 1,40,5,9
740 PRINT SPACES(80)

Appendix 145

750 LOCATE 1,2
760 LINE INPUT; nane»(counter)
770 LOCATE 14,2
780 LINE INPUT! surname»(counter)
790 LOCATE 27,2
800 LINE INPUT; phone»(counter)
810 WINDOW 1,40,17,25
820 PRINT"Press the <ENTER> key if data is correct"
830 PRINT!PRINT"If not press the <SPACE> bar"
840 PRINT:pRINT"If END of DIRECTORY press the <E> key"
850 WHILE k»OCHR»(13> AND k»OCHR»(69> AND k»OCHR»(32)
860 k»=INKEY*!k»=UPPER»<k»>
870 WEND
880 CLS
890 IF k»=CHR»<13) GOTO 930
900 IF k»=CHR»(69) GOTO 920
910 IF k»=CHR»<32> GOTO 680
920 counter=99
930 counter=counter+l
940 WEND
950 RETURN
960 REM save the created directory
970 REM on data cassette
980 PEN 5
990 WINDOW 1,40,1,25! CLS
1000 WINDOW 1,40,11,11
1010 PRINT SPC(5) ¡"Total nunber of records! "record
1020 WINDOW 11,30,20,24
1030 PEN 7! CLS
1040 PRINT SPC(l>"Save Directory"
1050 PRINT!PRINT"on data cassette"
1060 WINDOW 1,40,1,8
1070 PEN 1
1080 LOCATE 1,1
1090 OPENOUT "data"
1100 counter=0
1110 WHILE counter<record
1120 PRINT49,nane»(counter>
1130 PRINT49 »surname»(counter)
1140 PRINT#9,phone»(counter)
1150 counter=counter+l
1160 WEND
1170 CLOSEOUT
1180 RETURN
1190 REM Use directory or finish
1200 WINDOW 1,40,1,25! CLS
1210 PRINT!PRINT"Press the appropriate <key>"
1220 LOCATE 5,5! PRINT"<Q>uit"
1230 LOCATE 5,10! PRINT"<U>se the directory"
1240 WHILE k»<>"0" AND k»O"U"
1250 k*=INKEY»
1260 k»-UPPER»(k»>
1270 WEND
12B0 IF k»-"Q" THEN CLS
1290 IF k»-"U" THEN CLS! RUN"Use"
1300 RETURN

146 Structured Programming

Part three: Using the directory

10 REM Use Telephone Directory
20 REM Part three Use
30 !
40 t»100
50 DIM nane»<t>,surnane»(t),phone»(t)
60 counter=0
70 f»="Firstnane"!s»”"Surnatte"!ph»”"Phone No."
80 MODE ItPEN 1
90 :
100 GOSUB 200 !REM load data file
110 WHILE k<>4
120 GOSUB 380 JREM select facility
130 ON k GOSUB 550,710,950,1230
140 WEND
150 REM 1500-browse through directory
160 REM 2000-select and search
170 REM 3000-anend a record
180 REM 4000-quit
190 END
200 REM load data file
210 CLS
220 LOCATE 10,10:PRINT"Use Your Directory"
230 LOCATE 5,24
240 PRINT"Insert data cassette in datacorder"
250 LOCATE 1,1
260 FOR delay=l TO 2500¡NEXT
270 LOCATE 1,11 PEN 2
280 OPENIN"data"
290 WHILE EOF=0
30 0 INPUT*9,nanel(counter),surname»(counter),phone»(counter >
310 PRINT counter,
320 counter=counter+l
330 WEND
340 CLOSEIN
350 record=counter
360 PEN 1
370 RETURN
380 REM select facilties
390 WINDOW 1,40,1,25! CLS
400 PRINT TAB(8)"Facilities Available"
410 LOCATE 5,3
420 PRINT"Choose each option by pressing the"
430 PRINT"appropriate nunber and hit the <ENTER> key"
440 LOCATE 8,7
450 PRINT"<1> Browse through directory"
460 LOCATE 8,9
470 PRINT"<2> Select and search"
480 LOCATE 8,11
490 PRINT”<3> Ariend a record
500 LOCATE 8,13
510 PRINT"<4> Quit
520 LOCATE 8,15
530 INPUT k
540 RETURN
550 REM browse through directory
560 CLS
570 PRINT f»,s»,ph»
580 WINDOW 1,40,3,18

Appendix 147

590 c=0
600 WHILE .Crecord
610 PRINT nane*(c>,surnanei(c>,phone»<c>
620 page=c MOD 14
630 IF page=0 AND c>0 THEN GOSUB 1280
640 IF page=0 AND c>0 THEN WINDOW 1,40,3,18: CLS
650 c=c + l
660 WEND
670 WINDOW 8,32,20,23
680 PRINT"End of Directory"
690 GOSUB 1280
700 RETURN
710 REM select and search
730 CLS
740 PRINT"Do you want to select by! "
750 PRINT:PRINT"<A> First nane
760 PRINT:PRINT" Surnane"
770 WHILE k»O"A" AND k»O"B"
780 k»=INKEY»
790 k»=UPPER»(k*>
800 WEND
810 PRINT
815 nane*="zz"isurnane*="zz":f=0
820 IF k»="A" THEN INPUT"Which first nane“!nane«
830 IF k»="B" THEN INPUVWhich surnane" J sur nanel
840 PRINTtPRINT " "{ft,st,ph»
850 WINDOW 1,40,10,21
860 c=0
870 WHILE cirecord
880 IF k»="B" THEN 900
890 IF nane$ = nanel(c) THEN f = l! PRINT cinane*,surnane»(c> ,

phone*(c)
900 IF surnane»=surnane»(c> THEN f=l! PRINT c;nane»(c>,

surnane»,phc
910 c=c+l
920 WEND
925 IF fOl THEN LOCATE 10,8: PRINT " No Record Found "
930 GOSUB 1280
940 RETURN
950 REM anend a record
960 CLS
970 PRINT"Please select record for anending by: "
980 GOSUB 750
985 IF fOl THEN RETURN
990 WINDOW 1,40,22,24
1000 INPUT"Input the nunber of the record you want to change"Jn
1010 CLS! PRINT"Re type the whole record please."
1020 WINDOW 1,40,10,21: CLS
1030 PRINT n!nane»(n),surnane*(n>,phone»(n)
1040 LOCATE 2,45 INPUT}nane»(n)
1050 LOCATE 12,4: INPUT;surnane»<n)
1060 LOCATE 25,4: INPUT J phone»(n)
1070 WINDOW 1,40,1,25
1080 CLS
1090 PEN 7
1100 PRINF'Save Directory on Data Cassette"
1110 LOCATE 1,22
1120 OPENOUT"data"
1130 c-0
1140 WHILE cirecord
1150 PRINT*9,nane»(c>
1160 PRINT49,surnane»<c)
1170 PRINT»9,phone»(c)

148 Structured Programming

1180 c=c+l
1190 WEND
1200 CLOSEOUT
1210 PEN IS PAPER 4
1220 RETURN
1230 REM quit
1240 CLS
1250 LOCATE 10,10
1260 PRINT"That's All Folks!"
1270 RETURN
1280 REM press ana kea routine
1290 WINDOW 1,40,25,25
1300 PAPER i: PEN 3
1310 CLS
1320 PRINT TAB(8)"Press ana Kea to continue"
1330 k«=INKEYt: IF k»="" THEN 1330
1340 PAPER 4t PEN 11 CLS
1350 WINDOW 1,40,1,25
1360 RETURN

Index

addition 128,129
addition sign 49
advantages of CPC 664/464 3-4
alphabetical order 109-10
'amend a record' subroutine 95-7
applications for computers 132-6
arithmetical calculations 7-8
arithmetical operators 8
arithmetic functions 127
array variables 121-3,133,140
arrow cursor key 43
ASCII Codes 36-8,104-5,109
AUTO command 15
automatic insert mode 43
automatic line numbering
mode 15

BASIC language 3-4, 6, 8, 31, 34,
86
blank spaces 17, 36-7, 41, 48
browse facility 92

calculation 6
caps lock 106
cassette recorder 3, 6
cassettes 26
cassette storage systems 4, 66,
137-8
cassette tape 38
CAT command 17-18,22, 27
character cell 134
CHR$ (32) code 37
CHR$ function 104,107
CLOSE IN sequence 91
CLOSEOUT command 38
colons 9-10
colour 33, 55, 87
columns 36
commands 32
commas 9,36
conditional frameworks 71
"Create" program 33,40, 52

CTRL key 10-11,15
cursor 6, 9, 32, 35-6,125

data cassette 14
DATA command 116-117
DATA file 60,138
data file management 14
data recorder 14
DATA statement 116-19
DATA tape 59
debugging a program 41-2

order of operations 41
default stream 36
diagrams 73-9
dimensional arrays 52,110,120
DIM variable command 120
direct command mode 5-6,10,42,
47

applications 11
disk storage 4,14
division 128,129
DRAWR command 12,13
draw statements 12

editing facilities 43
EDIT Tine number' command 42
electronic calculator 6
END command 77
ENTER key 5-7, 9-10,15-16,104
equipment 3
'error messages' 4,17,42
errors 41-2,140
error trapping 140
ESC key 10-11,15,17,22,40 •

file creation 124
file definition 124,126
file handling 95,127,137-8
flag variable 95
floppy disk 38
flow chart 73
flow of control 77

149

150 Structured Programming

formfil 125
FOR-NEXT loop 32, 34, 38, 51, 55,
72,130,140
FOR statement 32, 41
FOR-NEXT statement 33

GOSUB command 34—5, 59, 89,
139
GOSUB-RETURN command 34
GOTO command 38,139

IF-THEN command 34, 38, 58, 93
INKEY$ command 33, 52, 60, 86,
139
INPUT cells 134
INPUT command 38, 53-5, 57-60,
139
inside-the-string search 113
INSTR function 113
instructions 3-5,14

number of characters 10
iteration 33

jumping 139

keyboard 4
K-string 33

LEFTS function 112-13
LEN function 105
LET statement 11, 48,129,134
LIST command 16-17, 22, 40, 42
LOCATE command 35-6,125
LOWERS facility 106,109
lower case 6, 33, 49,106,109-10,
140

memory 122
MID$ function 112-13
monitor 3
multi-dimensioned
databases 133,135
multiple choice 76
multiplication 128,129

NEXT command 32,141
'No record found' instruction 93
numerical cells 134
numerical fields 127

ON ERROR command 140
ON-GOSUB command 59-60,139
ON k GOSUB command 89

OPENOUT command 38
option menu 15-18, 31, 33, 40, 51,
59, 66, 99
output stream 35

PHONEHOME file 27
PLAY key 17
'Press any key' routine 93, 95, 98,
139
PRINT#9 command 38
PRINT command 7,9,11,35-6,58
printer 6
PRINT SPACES command 36
PRINT SPC command 36
PRINT USING command 130
processing routine 130
program loading 66
programs 3,5

interactive with user 57
punctuation 9

'Quit' option 89
quit subroutine 97
quotation marks 49, 55

readability of program 139
READ command 116-117
READ statement 117,119
READ variable 118-19
READY sign 59
record 52

definition 126
REM statement 19,24,31,34-5,
139
repetition 34, 70, 76
repetition of tasks 71
repetitive loop 89,91,93
RESTORE command 119
RETURN command 34-5
return key 42, 43
RIGHTS function 112-13
RUN command 10,16,22,27
RUN "PHONEHOME" facility 40

SAVE "Create" command 22
SAVE "PHONEHOME"
command 17-18
SAVE "Use" command 26
screen displays 66-72

planning 66
screen mask 125
screen MODE 36
scrolling 40

Index 151

searching 108
'select and search'
subroutine 93-5
'select facility'subroutine 89,91
selection 34,70
selection of tasks 71
semi-colons 9
sequence 70
sequences of operations 74-6, 85
sequences of tasks 70
sequence type instructions 34
SHIFT key 7,9-11,15,43
skills 4
software 124-5
sorting 108-10
space bar 37
SPACES command 36, 107
SPC command 36
'speed write' facility 66
spreadsheets 133-4
$ symbol 27,49,103-7
start up time 66
string variables 49,106,108

contents 103
strings 103

length 105
STRINGS facility 106-7
structured planning 65-72
subroutines 24, 35, 78, 86-7,
89-92, 95
subtraction 128,129
symbol key 9, 31
symbols 8

syntax 4,6
syntax errors 7, 41

TAB command 7, 36,107
telephone directory 14-15,31,34,
47, 65, 89-91

adding to 18-22
creating 18-22, 28, 52, 66, 80
part three 88
using 23-7, 53, 66

title page 66-7
top-down approach 73, 80
trigonometrical functions 130
two dimensional arrays 134
typing errors 5, 17

uppercase 33,49,106,109,110
UPPERS command 86,106,109
User Instruction Manual 5, 6,130

validating 17,60
variable 'display' 32
variables 42, 47-8, 50, 54

contents 47

WEND statement 33
WHILE command 33,41
WHILE-WEND loop 34, 53, 59-60,
93,139,140
WINDOW command 36
windows 36
'word processing' 107

STRUCTURED PROGRAMMING ON
THE AMSTRAD COMPUTERS 464,

664 and 6128

In order to give instructions to a computer, they must be
presented in a very precise form so that the micro can under­
stand and hence execute them.

The Amstrad CPC 6128, 664 and 464 computers have several
advantages for creating well-structured programs: they
communicate in a form of BASIC that is easily read, their
documentations are comprehensive, and both the 664 and
6128 have the distinct advantage in having disk storage — a
time-saving element in loading and storing programs.

The book takes the reader through every element of creating a
program. Planning by the use of Top Down diagrams is one of
the many features of the book. Sections are provided on:
Introducing the CPC 6128, 664 and 464, Familiarity Breeds
Confidence, The Principles of BASIC, From Little Blocks to
Structured Programs, and Handling the Text — The Key to
Information Storage.

The Author

Stephen Raven is a freelance Data Control Consultant. Prior
to that he was a lecturer in Computer Studies at Redbridge
Technical College in Essex.

ISBN Q-7MM7-003M-5

£9.95 9 780744 700343

■o
n
è A
o
o
A
cu
3
Q.
CD

bJ
00

C/5
r*
(Í

fO
s

Û)
<

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Structured programming on the AMSTRAD Computers CPC 464, 664 and 6128
	Contents
	SECTION A - Introduction to the Amstrad CPC 464, 664 and 6128
	1 - The machine: its concept and breeding
	2 - Commanding the CPC 664/464 by programming it with instructions

	SECTION B - Familiarity breeds confidence
	3 - BASIC tools of the trade
	4 - Debugging programs - editing facilities on the CPC 664/464 and how to use them

	SECTION C - The principles of BASIC
	5 - Variable names and labels
	6 - Reacting to your CPC 664/464 - INPUT statements

	SECTION D - From little blocks to structured programs
	7 - Structured planning on CPC 664/464 applications
	8 - Diagrams make the mind clearer
	9 - Implementing the plan: 1
	10 - Implementing the plan: 2

	SECTION E - Handling text - the key to information storage
	11 - Strings, string variables and the $ symbol
	12 - Manipulating strings to your advantage
	13 - READ and DATA statements
	14 - Extending variables - dimensional arrays
	15 - Viewing the file, form fil, screen format, and data entry
	16 - Processing numerical variables - automatic record updating
	17 - Ideas for applications
	18 - General principles and some reminders

	Appendix
	Index
	

✅ Raw HQ scan : Maxime CROIZER for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ Thanks to Rafa CPCMANIACO for lending the book

✅ 2020-11-28

