for the

MINDBENDING GAMES

for the

AMSTRAD CPC464

Philip Laird

MINDBENDING GAMES

First published in 1984
by EXCALIBUR PUBLICATIONS
The Glass House, 9-13 Wensum Street Norwich NR3 1LA
and distributed by Andrew Beshara
© Philip Laird 1984
ISBN 0948102004

All rights reserved. No part of this book may be reproduced or stored by any means whatsoever, whether mechanical or electronic, except for private or study use as defined by the Copyright Act. All enquiries should be addressed to the publishers.

This edition is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

Illustrations by Gillian Frances
Typeset and produced by Margaret Helps \& Associates, Norwich

Printed in Great Britain by Morris Printing Co Ltd, Norwich

CONTENTS

INTRODUCTION 1
FOR NEWCOMERS TO HOME COMPUTING 3
THE PROGRAMS
RED KNIGHT 5
ALLEYCAT 13
SOLITAIRE 23
FOUR-IN-A-ROW 31
TOWERS OF HANOI 41
IMPROVING YOUR PROGRAMMING SKILLS 49

INTRODUCTION

The original listings in this book should provide you with many hours of fun and amusement. Great care has been taken with presentation to ensure that the quality of the programs, their screen displays, colour, sound and errortrapping match in full measure the standards you have come to expect from more expensive cassette-based software.

The programs have been fully tried and tested to exacting standards to ensure that they provide excellent and broadly based entertainment free from programming errors. In short, I believe that if you take the time and trouble to type in each listing you will be pleasantly surprised at the results.

Each game or puzzle is fully described and illustrated, and notes are provided to guide you as to what each program does and how it works.

The main listings in this book employ many multistatement lines and single-letter variables. This is done to save memory and for the sake of programming efficiency. The final chapter is devoted to those who seek to develop their programming skills. In that endeavour I have offered a number of suggestions designed to help plan a program and see it develop in a structured and intelligible manner. In that chapter an additional and less complex program listing has been included, with full-name variables and few multi-statement lines, to facilitate a fuller understanding of the methods and techniques described.

If you have familiarised yourself with the CPC464 microcomputer you will have discovered just how fast and versatile its BASIC is. Some interesting commands have been included, hitherto unavailable on most home micros.

The programs to be found in this volume are in many ways machine-specific. The WINDOW command, for example, is frequently employed for text formatting; interrupt commands are used to produce various effects, along with a number of other unusual and useful features of Locomotive BASIC.

All that remains now is for you to turn over the page, switch on your micro and start typing. If, however, you are new to home computing you should first read the notes that follow. The tips that you will find there should save you hours of unnecessary frustration.

Philip Laird
October 1984
Norwich

FOR NEWCOMERS TO HOME COMPUTING

Your Amstrad CPC464 manual gives full instructions on how to set up the computer and monitor. If you have not already familiarised yourself with your micro it is strongly recommended that you start by reading the Foundation Course in your manual, at least as far as page F2.4. In addition, the following notes should prove helpful.

When typing in programs accuracy is essential. Far from being inconsequential, punctuation and spelling are very important. Each comma, semi-colon, colon, quote mark, etc. is in fact an instruction to your computer to perform a specific task, and inaccurate typing will lead either to a syntax error or it will scramble the screen display. To eliminate errors in typesetting each program listing has been reproduced directly from a working program via a computer printer, and what you type should match exactly the listings that appear on the following pages.

When first switched on your computer will be in MODE 1 , that is to say it will display up to 40 characters in each line of text. The programs in this book are presented in the same manner to facilitate checking.

Computers make a distinction between the number \emptyset (zero) and the letter O, and between 1 (one) and the letters I and 1 (lower case L). Do not confuse these. To assist you, this is how these characters appear in the listings:

One last cautionary note before you start. Even the very best of computers is known to 'crash', that is to say it can
get such a bad headache that only a full reset (switching off and on) will restore its sanity. Occurrences of this kind should be rare, but remember that even momentary failure of the electricity supply would have the same effect. Be sure therefore to SAVE an unfinished program periodically and thereby minimise the risk of much wasted effort.

RED KNIGHT

You would be hard pressed to find many games more challenging than this. I have known several people who have spent days (literally!) trying to solve this puzzle without success, though managing to come very close to a solution.

The game is a derivative of chess. The computer will display a chess board, but instead of the traditional sixteen pieces and pawns you have just one piece, a red knight.

You choose the square on which the knight will start and from then on, using the knight's move in a game of chess, you try to visit each square on the board once (and once only!).

Easy? Not a bit of it! It would not be surprising if this puzzle kept you up into the early hours tearing out your hair with frustration. Be assured, though, it can be done, and to prove it, a demonstration option has been included.

As with all the games in this book the program is very user-friendly. Full instructions are given within the program, and the computer will at all times display messages to indicate the sort of information it expects. Moves are effected very simply by keying a letter followed by a number (or vice versa) to denote the active square. Squares already visited are marked so that you may see at a glance which squares remain to be covered. All illegal moves will be rejected, and the computer will recognize a situation in which you cannot make a valid move. The moves you make will be recorded on screen so that if you do succeed you could make a note of the order in which you made them.

For those unfamiliar with the game of chess the diagram overleaf illustrates the way in which a knight moves.

From the diagram you will see that the piece moves two squares, horizontally or vertically, and then another square, vertically or horizontally.

PROGRAM NOTES

Lines 90-200 set up the screen display; 220-370 form the main program loop; 390-540 the end-of-game routine and $560-690$ the routine for entering a move and checking its validity.

The routine at 700-830 initialises the main variables. The important one to note here is array $\mathrm{S}(11,11)$ which is used to store information relating to the status of each square on the board and to enable the computer to recognize areas off the board. Note also KN $\$$ which stores the user-defined graphics for the knight, read from DATA statements at the end of the listing.

Lines 840-930 form the Introduction and Instructions, and 940-1000 comprise a routine for drawing the title border.

RED KNIGHT

NO．MOUES： 25

10 REM
$2 \emptyset$ REM
RED KNIGHT
$3 \varnothing$ REM
$4 \varnothing$ GOSUB $7 \varnothing \varnothing$
$5 \varnothing$ GOSUB $84 \varnothing$
6Ø INK 3，$\wp: P E N$ 3：LOCATE 1，8：PRINT＂WOULD YOU LIKE A DEMONSTRATIQN？＂：PRINT TAB（？）＂ Press［Y］or［N］＂：INK 1，15：INK 3，21：P RINT CHR中（フ）
 D Dकくン＂N＂THEN フ』
80 REM
90 REM
SCREEN DISPLAY

INK 2，6：INK 3，6：CLS：SQU＝ø
110 FOR $I=1$ TO 22 STEP 3
120 Q $\$=5$ TR\＆$(8-(I \backslash 3)$ ）：PEN 2：WINDOW 1，1，I + 1，I＋1：PRINT MID\＄（Q $\$, 2,1)$ ；
13 FOR J＝2 TO 23 STEP $3: S Q U=N O T ~ S Q U$
140 WINDOW $J, J+2, I, I+2:$ IF SQU THEN PRINT STRING $\$(9, C H R \$(\& 8 F))$ ：ELSE PRINT SFC（9） ；
150 NEXT：SQU＝NOT SQU：NEXT
$16 \Leftrightarrow$ FOR $I=1$ TO 8：WINDOW $I * 3, I * 3,25,25: F R$

INT CHR事（96＋I）；：NEXT
179 MOVE 16，399：DRAW 16，16，2：DRAW 399，16 ，2：DRAW 399，399，2：DRAW 16，399，2
189 MOVE 432，399：DRAW 432，88，2：DRAW 639，
88，2：DRAW 639，399，2：DRAW 432，399，2
190 WINDOW 29，39，2，22：PEN 3：PRINT＂M
V E $S^{n}: W I N D O W$ 28，40，21，25：PAPER 1：FEN σ ：
PRINT＂RED KNIGHT＂；：PAPER $\varnothing: P R I N T: P E N$
3：PRINT＂NO．MOVES：g＂SPC（13）；
200 BORDER $\varnothing:$ INK \varnothing, \varnothing ：INK 1，15：INK 2，25：I
NK 3，21：PAPER ©：PEN $3: P R I N T$ CHR事（7）
210 REM
$22 \varnothing$ REM
－ーーーーーーーーーーー
PLAY
23め IF D $\ddagger={ }^{2} Y^{\prime \prime}$ THEN FOR $I=\emptyset$ TO $3 \varnothing \varnothing: N E X T$
240 IF M THEN $F 1=F: R 1=R: P 1=P: Q 1=Q$
25め．IF D\＄＝＂Yn THEN IF $f \times>0.5$ THEN I串＝MID
क（DEMO中， $2 *(M+1)-1,2)$ ELSE Iक＝MIDक（DEMO中，
127－M＊2，2）
$25 \emptyset$ IF $D \$=" N "$ THEN GOSUB 56． 5 ELSE GOSUB
620
270 E\＄＝INKEY\＄：E\＄＝LOWER末（E\＄）：IF E末＝＂q＂OR Q市＝＂q＂THEN 399
$280 S(Q, P)=1$
290 PEN 1：IF M＞1 THEN WINDOW F1，F1＋2，R1， R1＋2：PAPER $-2 *((P+Q) / 2=(P+Q) \backslash 2):$ PRINT＂＊＊ ＊＊＊＊＊＊＊＂；
30＠WINDOW $F, F+2, R, R+2: I F(P+Q) / Z=(P+Q) \backslash$
2 THEN PAPER \varnothing ELSE PAFER 2
31．ஏ PRINT KNक；：PEN 3：PAPER \varnothing ：WINDOW $x, x+$ $1, y, y: P R I N T$ I $\$$ ；：WINDOW $39,40,23,23:$ PRINT USING＂\＃\＃＂；M；
 ／12））$+0.51,7,5$
$330 n=n-1$ ：IF $n=\varnothing$ THEN $\quad 0=0+1: n=12$
$34 \varnothing y=y+1:$ IF $(y+12) / 16=(y+12) \backslash 16$ THEN $x=$ $x+3: y=4$
359 REM
3G® REM CHECK IF FURTHER MOVE POSSIBLE
$37 \varnothing$ IF $M<65$ AND $(S(Q+2, P+1)=\emptyset$ OR $S(Q+2, P$ $-1)=\varnothing$ OR $S(Q+1, P+2)=\emptyset \quad O R S(Q+1, P-2)=\varnothing Q R$ $S(Q-1, P+2)=\varnothing \quad O R \quad S(Q-1, P-2)=\varnothing$ OR S $(Q-2, P$ $+1)=\varnothing$ OR $S(Q-2, P-1)=\varnothing)$ THEN $22 \varnothing$
38．REM
$39 \varnothing$ REM
END OF GAME
4øø WINDOW 28，4 $0,24,25:$ PEN $\varnothing: C L S: P R I N T$ C
HR末（フ）：：IF E\＄＝＂q＂OR Q\＄＝＂q＂THEN 46．
419 PAPER 2：IF D\＄＝＂Y＂THEN PRINT＂EVERY
SQUARE COVERED ！＂；：GOTO 45ळ
420 IF M＜48 THEN PRINT＂NEVER MIND！Tr
y again＂；：GOTO 45Ø
430 IF M＜64 THEN PRINT＂A GOOD TRY！＂SPC（ 14）：：GOTO 45め
44ø PRINT＂WELL DONE ！＂SPC（14）；
459 FOR I＝g TO 4øøळ：NEXT：PRINT CHR虫（7）
460 PAPER 1：PRINT＂Another game？［key γ o $r \mathrm{NJ}{ }^{\prime \prime}$
 ND Q $Q<{ }^{\prime}{ }^{\prime \prime}$ Y＂THEN $47 \varnothing$
48め IF $Q \neq=" N "$ THEN PAPER ळ：PEN 2：MODE 1：
END
49．PAPER 2：PRINT＂INSTRUCTIONS？［KEY Y O R NJ＂CHR末（フ）；
5ØØ Qक्\＄＝INKEYक：Q\＄＝UPPER末（Qक）：IF Qकく〉＂N＂A ND Q中く＞＂Y＂THEN 5．øø
51ø PAPER Ø：PEN 3：PRINT＂ANOTHER GAMEFOL LOWS ．．．＂CHRक（7）；：IF Qक＝＂Y＂THEN RUN $52 \varnothing$ CLEAR：GOSUB $77 . \emptyset$
530 GOSUB 94．
$54 \varnothing$ GOTO 6．
55.0 REM \qquad SUBRROTINES \qquad INPUT OF MOVE \qquad
579 I古＝＂＂：WINDOW 28，40，24，25：CLS：PEN 2：I $F \mathrm{M}=\varnothing$ THEN PRINT＂START SQUARE？＂；ELSE P RINT＂NEXT SQUARE ？＂；
58．IF INKEYまく〉＂＂THEN 58ø
59ø Q\＄＝INKEYक：IF Qक＝＂＂THEN $59 . \varnothing$

6ø．Q\＄＝LOWER\＄（Q\＄）：I\＄＝I\＄＋Q\＄：PRINT Q\＄；：IF Q $\$={ }^{*} q^{n}$ THEN RETURN
61.9 IF LEN（Iゅ）く＞2 THEN 58%

620 IF VAL（I $\$$ ）$=\varnothing$ THEN $P=A S C$（I \ddagger ）－ $95: Q=V A L$ （RIGHTक（Iक，1））+1
639 IF VAL（Iक）＜＞め THEN $Q=V A L(I \$)+1: P=A S C$
 I\＄，1）
640 IF $P\langle 2$ OR $P>9$ OR $Q<2$ OR $Q>9$ THEN 579
650 F＝P＊3－4：R＝28－Q＊3：IF $M=\emptyset$ THEN $M=1: R E T$ URN
66.9 REM
67.0 REM＿＿＿CHECK IF SQUARE IS FREE \qquad 68.6 IF $S(Q, P)$ OR（NOT $(A B S(Q 1-Q)=2$ AND $A B$ $S(P 1-P)=1)$ AND NOT（ABS $(Q 1-Q)=1$ AND ABS（P 1－P）＝2））THEN PEN 1：CLS：PRINT＂NOT POSSIB LE！＂CHRक（フ）：FOR J＝Ø TO 999：NEXT：GOTO 57． $69.0 \mathrm{M}=\mathrm{M}+1$ ：RETURN
7.00 REM \qquad INITIALISE \qquad
$71 \varnothing$ RANDOMIZE TIME
720 SYMBOL AFTER \＆F7
73® SYMBOL \＆F8，$\varnothing, \varnothing, \varnothing, 18,27,31,63,127:$ SYM BOL \＆F9，$\varnothing, \varnothing, \varnothing, \theta, \varnothing, \varnothing, 128,192$
740 SYMBOL \＆FA，$, 1,3,7,7, \varnothing, \varnothing, \varnothing: S Y M B O L \& F$ B，223，255，255，247，239，159，63，127
750 SYMBOL \＆FC，16．0，96，208，176，96，298，176 ，112：SYMBOL \＆FD，$\varnothing, 1,1,1, \varnothing, \varnothing, \varnothing, \varnothing$
760 SYMBOL \＆FE，255，255，255，255，255，$\varnothing, \varnothing, \varnothing$ ：SYMBOL \＆FF， $240,240,240,240,240, \varnothing, \varnothing, \varnothing$
$77 \varnothing$ DIM S（11，11）：$M=\varnothing: f x=$ RND：$n=3: 0=-3: x=2$ 9：y＝4
$78 \emptyset$ DEMO $=$＂a8b6a4c3dif2h1g3h5g7e8c7a6b4a 2cle2g1h3g5h7f8d7b8c6a7b5a3b1d2f1h2g4h69 8e7c8d6b7a5b3a1c2e192h4g6h8f7d8e6＋4d3b2c 4e5f3d4f5e3d5f6e4c5＂：KNま＝＂＂
790 FOR I＝248 TO 255：KN\＄＝KN\＄＋CHR\＄（I）：NEX T

8øø FOR I＝ø TO 11：FOR J＝ø TO 11：IF I＜2 0 R I＞9 OR J＜2 OR J＞9 THEN $S(I, J)=-1$
81ø NEXT：NEXT
82ø BORDER $\varnothing:$ INK $\varnothing, \varnothing:$ INK 1，\varnothing INK 2，\varnothing ：INK 3， $0:$ MODE 1
83ø RETURN
$84 \varnothing$ REM
INTRODUCTION \qquad
850 GOSUB 94ø
860 PEN 2：PRINT＂＊RED KNIGH T＊＂
870 PEN 3：PRINT＂In this puzzle you h ave oneknight on an empty chess board．＂ 88ø PRINT＂Using the knight＇s move in agame of chess you must try tovisit e ach square on the boardonce，and once on ly．＂：PRINT
$89 \varnothing$ PRINT＂The game will end when you can
－not make a legal move，but youmay quit at any time during thegame by pressing ［Q］．＂：PRINT
9øØ PEN 2：PRINT＂＊NOW PRESS A KEY TO P LAY＊＂；
91月 INK 1，15：INK 2，25：INK 3，21：PRINT CHR （ 17 ）；
92の IF INKEYま＝＂＂THEN 92.0
930 CLS：RETURN
940 REM＿－＿＿
DRAW TITLE BORDER＿－＿－＿
95ø PAPER $0: P E N 1$
96！FOR I＝2 TO 38 STEP 3
97．WINDOW I，I＋2，2，4：PRINT KNक；：WINDOW I ，I＋2，23，25：PRINT KN\＄；
98ø IF I＜23 THEN WINDOW 2，4，I，I＋2：PRINT KN\＄；：WINDOW 38，4ø，I，I＋2：PRINT KN\＄；
990 NEXT：WINDOW 6，36，6，21
1øøø RETURN：REM \qquad

ALLEYCAT

This delightful game was written with younger children in mind, but the charm and the fascination that it holds will surely appeal to all ages.

The player is invited to choose a number of cats (between two and eight) which the computer will display in an ordered row. To the left of this row of cats is a space (or a dustbin, if you prefer to imagine it that way!).

The cats themselves are a rather motley crew, some black, some ginger, some a dirty brown, but all of them toms, and each with its distinctive number.

The idea of the game is to reverse the order in which the cats sit so that number 1 ends up on the right and the highest number on the left, with the space finishing up on the far left. For example, if you start with eight cats your starting position would be:

space	cat							
-	1	2	3	4	5	6	7	8

and the final position:

space	cat							
-	8	7	6	5	4	3	2	1

The rules of the game are straightforward, though solving the puzzle is not as easy as you might think.

A cat may jump into the space if it is sitting next to it, or a cat may jump over one other cat to occupy the space. So taking the example printed above you would start by moving either cat number 1 or cat number 2 into the space. No other cat may move at this stage because cats may not
jump over more than one of their number. Suppose therefore that you wanted to move cat number 2 . Simply press 2 on the keyboard and the new position would look like this:

cat	cat	space	cat	cat	cat	cat	cat	cat
2	1	-	3	4	5	6	7	8

Now the second move gives you a wider choice: you may move any of cats $2,1,3$ or 4 , again by pressing the chosen number on the keyboard. The computer will reject illegal moves, and throughout the game the number of moves taken will be displayed.

Full instructions are included with the listing, and if you so require, the computer will demonstrate a solution to the puzzle.

PROGRAM NOTES

Lines 60-140 set up the screen display; 150-210 offer the choice between the demonstration and player mode, and line 240 checks the validity of an entered move.

Lines 210-310 move the individual cats to an appropriate sound accompaniment. At line 330 the computer establishes whether the puzzle has been solved and, if not, returns execution of the program to the beginning of the main program loop. The end-of-game sequence is held in lines 340-400.

Lines 420-670 initialise the main variables. Note the array $n(8)$ which stores the position of the cats. The strings k1\$ and k2\$ together store the image of the large tomcat whilst $\mathrm{c} \$$ holds the graphics for the smaller (and more active) cats. Note too the use of DEFINT to define integer variables to promote the speed of program execution.

Lines 690-930 set up the title page, introduction and game instructions. Lines 1140 et seq hold data used for defining the various cats.

$1 \varnothing$ REM
$2 \varnothing$ REM ALLEYCAT：A program for children
$3 \varnothing$ REM
$4 \varnothing$ RUN 42ø
$5 \varnothing \mathrm{n}=\varnothing$ ：q＝ø：v＝ø
6＠FOR $i=1$ TO 8：n（i）＝i：NEXT
7ø WINDOW 19，4ø，1，4：CLS：PEN 1：IF 2事＝＂P＂ THEN PRINT＂How many cats？＂；：PEN 2：PRINT， ，＂Choose a number in therange 2 to 8．＂C HRक（7）ELSE i\＄＝＂8＂：GOTO 9Ø
$8 \varnothing$ i $\$=$ INKEY我：IF $i \$=n$ THEN $8 \varnothing$
99 $c=A S C(i \neq)-43:$ IF $c<2$ OR $c>8$ THEN $8 \varnothing$ 1⿹勹口 CLS：PEN 1：PRINT：PRINT＂＂STRING\＄（\＆1 З，CHR末（\＆9A））
118 FOR $i=40$ TO（41－4＊C）STEP -4
$12 \varnothing$ PEN 3－（（i\4－（1g－c））MOD 3）：WINDOW i－ 3，i，19，23：PRINT c\＄；i\4－（1ळ－c）；
130 NEXT

140 WINDOW i－3，i，19，23：PEN 1：PRINT 5\＄；：I F zo＝＂P＂THEN 19.0
150 WINDOW 19，4 $0,1,1:$ PRINT＂＊＊DEMONST RATION＊＊＂；：WINDOW 22，49，9，13：ZONE 9：FRI NT＂Choose a speed ．．．＂，，＂PRESS［1］F ast＂，，＂［2］Medium＂，＂［3］Slow＂；
160 i $\ddagger=I N K E Y क: I F$ i $\$=" "$ THEN 16.6
17め $v=A S C(i \$)-49: I F \quad v<0$ OR $v>2$ THEN $16 \varnothing$ ELSE CLS
 $\mathrm{i}=\varnothing$ TO v＊2．Ø日：NEXT：GOTO $22 \varnothing$
199 WINDOW 22，46，24，25：PEN 1：PRINT LEFTक （j\＄，19）＂（Press［Q］to Quit）＂；：WINDOW 19， 40，1，1：PRINT＂MOVE WHICH CAT ？＂；
 N 200
21． $\mathrm{IF} \mathrm{i} \$=" \mathrm{Q}$＂THEN $35 \varnothing$
$220 k=A S C(i \neq)-48: I F k<1$ OR $k>c$ THEN $2 \varnothing \varnothing$
230 FOR $i=\varnothing$ TO $\vee * 1 \varnothing 日 \sigma: N E X T: I F ~ z \$=" F "$ THE
N CLS
249 IF ABS $(n(k)-q)>2$ THEN PEN 2：PRINT＂
＊＊NOT POSSIBLE＊＊＂；：FOR $i=\varnothing$ TO 2の日ø：N EXT：CLS：PEN 1：GOTO 13¢
250 WINDOW 10，14，6，8：FEN 1：PRINT STRING $\$$ （\＆F，CHRक（R8F））；
260 WINDOW $37+4 * q-4 * 5,49+4 * q-4 * 5,19,23: F$
EN 3－k MOD 3：PRINT c击；k；
27め WINDOW $37+4 * n(k)-4 * 5,49+4 * n(k)-4 * 5,1$ 9，23：PEN 1：PRINT 5\＄；
280 SOUND $2, k * 5 \varnothing, 20,7$
290 WINDOW 10，14，6，8：PRINT b\＄；
$3.0 \varnothing r_{1}=r_{1}+1: r=n(k): n(k)=q: q=r: p=\varnothing$
31ø WINDOW 22，40，3，3：PEN 2：PRINT＂MOVES
SO FAR：＂；：PRINT USING＂\＃\＃\＃＂；n；
320 FOR $j=1$ TO $c: I F\left(r_{1}(j)+j\right)\langle \rangle(c+1)$ THEN $p=1$
33E NEXT：IF p OR q＞＠THEN 186
$34 \varnothing$ IF z 㖣＂P＂THEN CLS：WINDOW 19，40，1，1：

PEN 1：PRINT＂YOU DID IT IN ．．＂；PPRINT USING＂\＃\＃\＃＂；n；
35月 WINDOW $10,4 \varnothing, 24,25:$ PRINT RIGHT\＄\ddagger j $\$, 3$ 1）＂ANOTHER GAME？（Key［Y］or［N］）＂CHRक（ 7）$;$ ：IF $i \Phi=" Q "$ THEN WINDOW 19，4风，1，2：CLS
 ND i\＄く＞＂N＂THEN उ6．
3フ円 CLS：IF $\mathrm{i} \$=" N "$ THEN $39 \varnothing$ ELSE WINDOW 1 ，4®，24，25：FEN 2：PRINT j\＄×\＄CHR\＄（7）；
 ND zकく〉＂P＂THEN 3B母
39円 CLS：WINDOW 1，40，19，25：CLS：WINDOW 22， $40,1,3: C L S: I F i \$=n \gamma "$ THEN 5
40Ø WINDOW 26，49，13，14：PRINT＂G O D D B Y E ！＂：FOR $\mathrm{i}=\varnothing$ TO Bøøळ：NEXT：PEN 1：MODE 1： END
41Ø REM
$42 \varnothing$ REM
INITIALISE
430 SYMBOL AFTER \＆EE
$44 \varnothing$ SYMBOL \＆EF，\＆ $4, \& 1 C, \& F, \& F, \& 7, \& 3, \& 3, \& J$
 \＆FF
466 SYMBOL \＆F1，\＆$, \& 1 C, \& 38,878, \& F 8, \& F 9, \& F$日，\＆F\＆
478 SYMBOL \＆F2，\＆ $7, \& 7, \& F, \& 71,87, \& 7, \& 3, \& \in$
489 SYMBCIL \＆F $3, \& 8 C, \& F F, \& F 3, \& F F, \& F 3, \& C C, \&$ FF，\＆FF
490 SYMBOL \＆F4，\＆78，\＆F8，\＆F9，\＆E7，\＆F9，\＆F9，\＆ F1，\＆．C 1
5． $80,8 C 0$
$51 め$ SYMBOL \＆F6，\＆，\＆F，\＆1F，\＆ $3 F, \& 3 F, \& 3 F, \& 3 F$ ，8：3F
$52 ¢$ SYMBCL \＆F7，\＆F1，\＆FC，\＆FE，\＆FF，\＆FF，\＆FF，\＆ FF，\＆FF
530 SYMBCL \＆F8，\＆ED，\＆F $6, \& 76, \& 76, \& 70, \& F 9, \&$ $F \varnothing, \& E \emptyset$
540 SYMBOL \＆F9，\＆ $5 F, \& 1 E, \& C, \& 7, \& \varnothing, \& 6, \& \varnothing, \& 0$
$55 \varnothing$ SYMBOL \＆FA，\＆FF，\＆ $\mathcal{F} F, \& 3 E, \& F F, \& \emptyset, \& \theta, \& \varnothing$, 8.0

S60 SYMBOL \＆FE，\＆FF，\＆ $2 F, \& 1 F, \& F め, \& \varnothing, \& 6, \& 0$, 8.0
$57 \varnothing$ SYMBOL \＆FC，\＆E $, \& C \theta, \& \theta, \& \varnothing, \& \varnothing, \& \square, \& \theta, \& \varnothing$ 580 SYMBOL \＆FD，\＆FF，\＆FF，\＆FF，\＆ F，\＆FF
$59 \not 5$ SYMBOL \＆FE，\＆FF，\＆FF，\＆FF，\＆FF，\＆AA，\＆55，\＆ AA，\＆ 25
6めळ SYMBOL \＆FF，\＆AA，\＆55，\＆AA，\＆ $55, \& F F, \& F F, \&$ FF，\＆FF
616 DIM $n(8): D E F I N T c-r$

630 FOR $i=\emptyset$ TO 15：READ $k \ddagger: k \Phi={ }^{\circ} \& "+k \$: \subset \ddagger=c$ \＄＋CHR叓（VAL（K事））：NEXT
640 FOR $i=13$ TO 136：READ $k \$: k \$=" \& "+k=: i \$$

650 FOR $i=137$ TO 267：READ $k \neq: k \neq " \& "+k \neq: i$

 \＄＋CHR虫（VAL（Kक））：NEXT
 5616731542354247626826435784334636485786 57＂：X $=$＝＂FRESS［D］DEMONSTRATION OR［F］ TO PLAY＂
680 REM
690 REM＿－＿－＿－＿－＿INTRODUCTION＿－＿－＿－＿－
7øø MODE $\varnothing:$ BORDER $\varnothing:$ INK $\varnothing, \varnothing:$ INK $1, \varnothing:$ INK
2， $0:$ INK $3, \varnothing$
710 WINDOW 2，18，1，25：PAPER Ø：PEN 1：PRINT ：PRINT＂ALLEYCAT＂：PRINT：PRINT：GOSUB 88ø

720 WINDOW 2，2 $2,25,25:$ PRINT＂a children＇s puzzle＂；：INK 3，15
730 FOR $i=0$ TO 99
$740 j=I N T(R N D * 27): k=I N T(R N D * 27): m=I N T$（RN D＊27）：IF $j=k$ OR $j=m$ OR $k=m$ THEN $74 \varnothing$
75＠BORDER INT（RND＊27）：INK $\neq j: I N K 1, k: I$

NK 3；m：NEXT
76．BORDER 16：INK $\varnothing, 16: I N K$ 1，\varnothing ：INK 3， 3 フフø FOR $\mathrm{i}=\varnothing$ TO 5øøø：NEXT：INK $\varnothing, 26:$ INK 1 ， 26：INK 2，26：INK 3，26：BORDER 15，ø
789 MODE 1：WINDOW 1，17，1，25：GOSUB 88ø 790 WINDOW 19，46，1，25：PEN 3：PRINT＂ALLEY CAT＂：PRINT
8＠ø FRINT＂This puzzle presentsyou wit h a row of catsnumbered 1 to 8 ，whichyou must try to rearrange in the revers eorder．Cat number 1 ，therefore，wille nd upon the right，and catnumber 8 on the left．＂：PRINT
81ヵ PRINT＂To the left of thecats is
a space．A catnext to this space mayjum P into it，or a catmay jump over 1 othe rcat to fill the space．This space ends o r theleft，where it starts．＂：PEN 2
82ø FOR $i=1$ TO 13 STEP 4：WINDOW $i+1$ ；$i+4$ ， 18，23：PEN 3－i MOD 3：PRINT C虫；：NEXT 830 WINDOW 1，40，24，25：PEN 1：PRINT j\＄×加； 840 INK 1，0：INK 2，15：INK 3，3：BORDER 26：P RINT CHRक（フ）；

ND z梠〉＂P＂THEN 850
86め WINDOW 19，40，1，23：CLS：WINDOW 2，17，18 ，23：CLS：WINDOW 1，40，24，25：CLS：GOTO 5ø
87ヵ REM
880 REM \qquad PRINT BIG TOM［k1中／k2中］ \qquad
890 PRINT K1 ${ }^{9}$ ；
900 FOR $i=1$ TO 131
$910 k \$=M I D \$(k 2 \$, i, 1): I F A S C(k \$)>\& 8 F$ AND
ASC（k\＄）$\langle>\& F D$ THEN PEN 3 ELSE PEN 1
920 PRINT k क；：NEXT
93.6 RETURN

940 REM－DATA FOR LITTLE CATS（UDGS）－
$95 \varnothing$ DATA EF，Fの，F1，29，F2，F3，F4，F5，F6，8F，F $7, F B, F 9, F A, F B, F C$
96.8 REM

970 REM DATA FOR BIG TOM (UDGs)
98.0 DATA 87,20,20,20,20:REM
k1 ${ }^{\text {o }}$
990 DATA $84,20,20,2 \varnothing, 20,20,20,20,20,2 \varnothing, 2$ Ø, 88, 85, 20, 29, 20, 2.
1000 DATA $89,84,20,20,20,20,20,20,20,20$, $20,8 \mathrm{~F}, 85,20,20,20,20$
$1.01 \varnothing$ DATA $82,8 F, 8 B, 8 C, 2 \varnothing, 2 \varnothing, 2 \varnothing, 2 \varnothing, 8 C, 8 C$, 8F, 8F, 8D, 20, 20, 20,20
1.02. DATA $20,8 F, 85,8 F, 8 F, 8 \mathrm{C}, 8 \mathrm{C}, 8 \mathrm{~F}, 87,83$, 8F, 8F, 8F, $84,2 \varnothing, 2 \varnothing, 2.0$
103. DATA $20,8 B, 8 F, 86,8 B, 8 F, 8 F, 8 F, 89,8 E$, 8F, 8F, 87, 8F, $2 \varnothing, 2 \varnothing, 2 \varnothing$
$184 \varnothing$ DATA $2 \varnothing, 8 A, 8 F, 8 F, 8 A, 8 F, 8 F, 87,8 A, 8 F$, $8 \mathrm{~B}, 8 \mathrm{~F}, 85,8 \mathrm{~F}, 85,2 \varnothing, 2 \varnothing$
1050 DATA 29, 8A, 8F, 88, 8E, 8F, 8F, 8C, 8F, 85, $20,8 \mathrm{~F}, 85,8 \mathrm{~A}, 8 \mathrm{D}, 2 \varnothing, 2 \varnothing$
106.8 DATA $20,8 F, 87,8 A, 8 F, 3 F, 8 F, 8 F, 8 F, 8 D$, 84, 8A, 8F, 8A, 8F, 8F, 84: REM K2
1070 DATA $2 \varnothing, 8 F, 89,8 F, 8 F, 8 F, 3 F, 8 F, 8 F, 8 F$, 8D, CF, E $7, C F, 8 F, 8 F, 2 \varnothing$
1080 DATA $8 A, 89,8 F, 8 F, 8 F, F D, F D, F D, F E, C F$, FF,FF, CF, CF,FF,FD, 2D
1690 DATA 20,8F,8F,8F,8F,8F,8F,8F, D8, CF, FE,FE, D8, $8 \mathrm{~F}, 87,2 \varnothing, 29$
1100 DATA $20,82,8 F, 8 F, 8 F, 8 F, 8 F, 8 F, C F, D A$, D8, DA, CF, 8F, 81, 2ब, 20
$111 . \mathrm{DATA} 2.9,2 \varnothing, 83,8 F, 8 F, 8 F, 8 F, 8 F, C F, C F$, CF, CF, CF , $8 F, 2 \varnothing, 2 \theta, 2 \varnothing$
$112 \varnothing$ DATA $2 \varnothing, 2 \varnothing, 2 \varnothing, 2 \varnothing, 8 B, 8 F, 8 F, 8 F, 8 F, C F$, CF, CF,FF, $81,2 \varnothing, 2 \varnothing, 2 \varnothing$
1130 DATA $20,20,20,20,20,20,82,83,8 F, 8 F$, 87,81
114ø DATA 8F, 8F, 8F, 87, 8F, 8F, 8B, 8F, 85, 8F, 85, 29, 8F, 85, 8A: REM

口 \ddagger

$115 \varnothing$ REM

SOLITAIRE

Several variations exist of this popular game, but perhaps the best known and loved is this version which many of you will remember from your early days. Time is always a good test of a game's addictive quality, and I think it fair to say that with the time this puzzle has been around SOLITAIRE has passed that test par excellence.

A peg occupies each of the 32 holes bar the centre position. You move by selecting a peg to jump over another into an unoccupied position, and in doing so you remove the intervening peg. The object is to remove all but the last peg in this fashion and, if like the computer you are a perfectionist, you should aim to deposit the last peg in the centre hole.

A cursor will flash to indicate the active square, and you position this over the peg you wish to jump. Cursor movement is effected simply by using the four cursor keys. To make your move you press a cursor key to indicate the direction of your jump whilst at the same time pressing SHIFT. This method of communicating with the computer should prove far less tiresome than entering letters and numbers for each move. Moves will be recorded on screen and an option to exit from the program has been included. Sound is also there to enliven the proceedings! A demonstration mode is incorporated to show you that solutions do exist.

PROGRAM NOTES

Lines 50-260 set up the screen display. Lines 360-610 contain two subroutines to control the computer's and the player's moves.

Lines 610-670 check the validity of a move, and 690780 execute it. The routines between lines 800-860 detect whether any valid moves remain.

A subroutine at line 870 causes the cursor to flash, and is called by the interrupt command EVERY at line 180.

Lines 920-990 initialise the main variables. Note the array $a(8,8)$ which is used to identify the status of each 'hole' on the board, and to enable the computer to recognize areas which lie outside the playing zone. The dimensioned string $\mathrm{D} \$(3)$ stores four different correct sequences for the demonstration mode.


```
10 REM
```

\qquad

```
                SOLITAIRE
                            ------------
2 0 ~ R E M
30 MODE 1:BORDER 16:INK 0,16:INK 1,26:IN
K 2,0:INK 3,6
40 GOSUB 920
50 REM
_-_----
                SCREEN DISPLAY
                            ---------
60 REM _
70 WINDOW 1,23,1,23
80 PAPER @:CLS:PAPER 2:FEN 1
90 FOR i=1 TO 23 STEP 22:FOR j=1 TO 23
```

1の日 LOCATE $j, i:$ IF $(j+3) / 3=(j+3) \backslash 3$ THEN P RINT CHR $\$(96+j \backslash 3)$ ELSE PRINT＂＂；
110 LOCATE $i, j:$ IF $(j+3) / 3=(j+3) \backslash 3$ THEN P RINT USING＂\＃＂；8－j\3；ELSE PRINT＂＂；
$12 \varnothing$ NEXT：NEXT
13＠FOR $i=2$ TO 20 STEP 3：FOR $j=2$ TO 20 s
TEP 3
$14 \varnothing$ WINDOW $\mathrm{j}, \mathrm{j}+2, \mathrm{i}, \mathrm{i}+2$
$15 \varnothing$ IF（ $\mathrm{i}<8$ OR $\mathrm{i}>14$ ）AND（ $\mathrm{j}<8 \mathrm{OR} \mathrm{j}>14$ ）T
HEN PAPER 2：CLS ELSE PAPER 1：PEN 2：PRINT

E）；
168 NEXT：NEXT
170 WINDOW P，P，q，q：PAPER 3：PRINT＂＂
$18 \varnothing$ EVERY $2 \varnothing$ GOSUB $87 \varnothing$
199 WINDOW 26，4の，1，23：PAPER 2：CLS：PEN 1：
PRINT Rक＂SOLITAIRE＂，Rक：WINDOW 26，49，5 ，23：LOCATE 1，18
2．0ø $9=g+1$ ：IF $g=1$ THEN GOSUB $1 \varnothing \varnothing \varnothing$
210 REM
220 REM CHOICE OF MODE：COMPUTER／PLAYER 23.0 PRINT＂DO YOU WANT THE COMPUTER TO MAKE THE MOVES？＂，＂KEY［Y］OR［N］＂CHR\＄（ 7）；
 ND Iकく〉＂Y＂THEN 24！
25ø CLS：PRINT＂M O V E S＂：LOCATE 1，14： PRINT Rक＂GAME＂SPC（5）CHR $\ddagger(\& 18) ;:$ PRINT U SING＂\＃\＃＂；g；：PRINT CHRक（\＆18）Rक＂PEGS＂，＂ REMOVED＂CHR末（\＆18）；：PRINT USING＂\＃\＃＂； t：：PRINT CHR $\$$（\＆18）R末CHR ${ }^{(\& 18)}$ ；
$269 \mathrm{c}=1$－（IS＝＂N＂）：ON c GOSUB 36め，489
279 REM \qquad END OF GAME \qquad
28． $\mathrm{V}=1$ ：WINDOW 1，40，25，25：PAPER \varnothing ：EI：IF e THEN 31风
299 IF I\＄＝＂N＂THEN PEN 3：IF $t<31$ THEN PR INT＂＊NO LEGAL MOVES LEFT＊＂ELSE FRINT＂
＊WELL DONE！＊＂
300 FOR $i=\varnothing$ TO 9：FOR $j=1$ TO 6：SOUND 1，s j），7，5：NEXT：NEXT
31ø CLS：PEN 2：FRINT＂WOULD YOU LIKE ANOTH ER GAME？［Y］OR［N］＂CHRक（T）；
 ND Iकく〉＂N＂THEN 32.6
33＠IF I $\$=" N "$ THEN MODE 2：INK $\varnothing, \varnothing: I N K 1$ ， 25：BORDER $\varnothing: P A P E R ~ \varnothing: P E N ~ 1: E N D$
34＠MODE 1：INK 3，6：GOSUB 95ø
350 GOTO 5．
360 REM
COMPUTER＇S MOVES
$37 \varnothing$ RANDOMIZE TIME：$d=I N T(R N D * 4)$
38e FOR $t=\varnothing$ TO $3 \varnothing$
39．WINDOW P，P，q，q：PAPER 1：PEN 2：PRINT P \＄； $\mathrm{v}=\varnothing$
40． $\mathrm{nl}=\mathrm{n}: \mathrm{pl=p:q1=q}$
$410 \mathrm{p}=(\operatorname{ASC}(\mathrm{MID} \Phi(d \$(d), t * 4+1,1)))-66: q=(A$ SC（MIDक（d末（d），$t * 4+2,1)))-66$
$420 \mathrm{p} 2=(\mathrm{ASC}(\mathrm{MID} \$(d \Phi(d), \mathrm{t} * 4+3,1)))-66: \mathrm{q} 2=$ （ASC（MID\＄（d\＄（d），$t * 4+4,1))$ ）－66
43ø $n=a(q / 3, p / 3): P 1 \$=\operatorname{CHR} \$(128-74 *(n 1=1)-$ $15 *(n 1=g)): P \$=\operatorname{CHR} \$(128-74 *(n=1)-15 *(n=\varnothing)$ 1
44 ${ }^{1}$ WINDOW p1，p1，q1，q1：PAPER 1：PEN 2：PRI NT P1क；：WINDOW p，p，q，q：PRINT CHRक（\＆18）Pक CHR\＄（ 8 18）；
45ø FOR $i=\varnothing$ TO 5． 5 ：NEXT
468 GOSUB 62.0
47＠NEXT：RETURN
480 REM \qquad PLAYER＇S MOVES \qquad
49.0 WHILE INKEY（63）$=-1$ AND e

5øø DI：WINDOW p，p，q，q：PAPER 1：PEN 2：PRIN T P
$51 \varnothing n 1=n: p 1=p: q 1=q: v=\varnothing$
520 IF INKEY $\ddagger=1 "$ THEN 52 の
$53 \varnothing p=p-3 *(\operatorname{INKEY}(1)=\varnothing)+3 *(\operatorname{INKEY}(8)=\varnothing): q=$ $q-3 *(\operatorname{INKEY}(2)=\varnothing)+3 *(\operatorname{INKEY}(\varnothing)=\varnothing)$

54．0 p2＝（INKEY（8）＝32）－（INKEY（1）＝32）：q2＝（I $\operatorname{NKEY}(9)=32)-(\operatorname{INKEY}(2)=32)$
E5＠IF $p<3$ OR $p<9$ AND（ $q<9$ OR q＞15）OR p >15 AND（ $q<9$ OR q＞15）OR $p>21$ OR $q<3$ OR $q<9$ AND（ $p<9$ OR $p>15$ ）OR $q>15$ AND（ $p<90$ $R \quad p>15)$ OR $q>21$ THEN $p=p 1: q=q 1: G 0 T 0$ 52ø 560 IF $p=3$ AND $p 2=-1$ OR $p=21$ AND $p 2=1$ OR $\mathrm{q}=3$ AND $\mathrm{q} 2=-1$ OR $\mathrm{q}=21$ AND $\mathrm{q} 2=1$ THEN $52 \varnothing$ 57ø $n=a(q / 3, p / 3): P 1$ क＝CHRक $(128-74 *(n 1=1)-$ $15 *(n 1=0)): P$ 象 $=\operatorname{CHR}$（ $128-74 *(n=1)-15 *(n=\varnothing)$ ）
E8g DI：WINDOW p1，p1，q1，q1：PAPER 1：PEN 2： PRINT P1क；：WINDOW P：P，q，q：PRINT P\＄；：EI 59 g IF $A B S(p 2)=1$ XOR $A B S(q 2)=1$ THEN GOSU B 620
6.0 WEND

619 RETURN
620 REM \qquad CHECK VALIDITY OF MOVE \qquad
$630 n 2=a((q / 3+2 * q 2),(p / 3+2 * p 2)): n 3=a((q)$ $3+q 2),(p / 3+p 2))$
64． $1 F n=1$ AND $n 2=-1$ AND $n 3=1$ THEN 68の
65の v＝1：WINDOW 26，40，25，25：PAPER の：PEN 3 ：PRINT＂！NOT PERMITTED！＂；
66Ø FOR $i=\varnothing$ TO 4：SOUND 1，s（i），7，5：NEXT：F OR $i=\varnothing$ TO 5．．区：NEXT：DI：CLS
670 RETURN
680 REM
EXECUTE MOVE
69の a（q／3，p／3）＝－1：a（（q／3＋q2），（p／3＋p2））＝－ 1：a（ $(q / 3+2 * q 2),(p / 3+2 * p 2))=1$
7ø0 $p 3=p+3 * p 2: q 3=q+3 * q 2: p x=p 2: q x=q 2: I F I$ \＄＝＂N＂THEN $t=t+1$
71ø p2＝p＋6＊p2：q2＝q＋6＊q2
720 DI：WINDOW $p, p, q, q: P A P E R 1: P E N 2: P R I N$ T＂＂；：WINDOW p3，p3，q3，q3：PRINT＂＂；：WINDO W p2，p2，q2，q2：PRINT CHRक（\＆CA）；
$73 \varnothing$ REM
$74 \varnothing$ REM \qquad PRINT MOVE
750 WINDOW $x, x+2, y, y: P A P E R ~ 2: P E N ~ 1: P R I N T$

CHR\＄（96＋p／3）；：PRINT USING＂\＃＂；8－q／3；：FR INTCHR末（240－（qx＜）－1）－（ABS $(p x)=1)-(p x=1)$ ， ）：WINDOW 37，38，22，22：PRINT CHR串（\＆18）；：P RINT USING＂\＃\＃＂；t－（I井＝＂Y＂）；
 ／12）） $1+0.5):$ SOUND $1, s(t), 7,5$ $770 n t=n t-1:$ IF $n t=\varnothing$ THEN oct＝act＋1：nt＝12 $780 p=p 2: q=q 2: y=y+1:$ IF $y=17-(x=36)$ THEN $x=x+4: y=7$
79.0 REM

800 REM－FURTHER LEGAL MOVES EXIST？ $810 \mathrm{e}=\varnothing$
829 FOR $i=1$ TO $7:$ FOR $j=1$ TO 7
$83 \varnothing$ IF $a(i ; j)\rangle 1$ OR $e=1$ THEN $85 \varnothing$
849 IF $a(i-1, j)+a(i, j)+a(i+1, j)=1$ OR $a(i$ $, j-1)+a(i, j)+a(i, j+1)=1$ THEN $e=1$
$85 \emptyset$ NEXT：NEXT
860 RETURN
$87 \emptyset$ REM＿＿＿FLASHING CURSOR \＆TEXT \qquad
889 IF I事＝＂Y＂THEN RETURN
$890 \mathrm{n}=\mathrm{a}(\mathrm{q} / 3, \mathrm{p} / 3): \mathrm{P}=\mathrm{d}=\operatorname{CHR}$ 事（128－74＊（n＝1）－15 ＊（ $n=(\pi)$ ）
90Ø IF v THEN $z=$ NOT z ：INK $3,6-2 \oiint *(N O T z)$ ELSE PRINT CHR叓（\＆18）P手；
91.0 RETURN

929 REM \qquad INITIALISE
930 DIM a $(8,8), 5(31), \mathrm{D}$（3） 3 ： $5(\emptyset)=237$
940 FOR $i=\varnothing$ TO $3:$ READ D末（i）：NEXT
950 e＝1：$n=-1: n t=6:$ act＝ø：$p=12: q=12 ; t=g: v=$ 1：$x=28: y=7: z=\varnothing$
96．0 P中＝＂＂：R中＝STRING牛（\＆F，CHR虫（\＆9A））
97．0 FOR $i=1$ TO 7：FOR $j=3$ TO 5：a（i，j）＝1：N EXT：NEXT
980 FOR $i=3$ TO 5：FOR $j=1$ TO 7：a（i，j）＝1：N EXT：NEXT： $\mathrm{a}(4,4)=-1$
990 RETURN
10めØ REM \qquad INTRODUCTION
1010 PRINT＂This is the traditional
game, where the object is to remove a 11 thepegs except thelast one (which sho uld end up in the middle)."
$162 \varnothing$ PRINT"You move a pegby jumping ove ranother t o a space beyond. The peg jumped over is then removed.":PRINT

104.6 IF INKEYक="n THEN 104@

1050 PRINT:PRINT:PRINT" You move the cursor -the flashing square -over the p eg you want to move by using the cur sor keys ["CHRक(\&F2)CHR $\$(\& F 1)$ CHR $\$(\& F \emptyset$) CHRक (\&F3)"].":PRINT:PRINT

1060 PRINT"You then press[SHIFT] and th erelevant cursorkey to show the directio n of your jump. ":PRINT 1070 PRINT"-PRESS ANY KEY-"CHRक(7);
1080 IF INKEY\$="" THEN 1 198. 1090 FOR $\mathrm{i}=1$ TO 14:PRINT:NEXT $11 \varnothing \varnothing$ RETURN: REM \qquad 1110 DATA NHBCTKABQEBCQNBAKECBQEBCQTBAWQ ABNQCBWKBCWQABHQCBKWBAKNBCQWABKWBAKHBCEK CBNKABEQBAEKCBNQBANKABHKBCHQCBNQCBTNABKN CBQKBCTQABNTBA
1120 DATA NTBAHQCBKWBAKNBCQWABKHBCEKCBNK ABEQBAEKCBTKABQEBCQNBAKECBQEBCQTBAWQABNQ CBWKBCWQABNKBCNQCBTQBATKABNKABHNCBQNABK:W BAKQBAHKCBNHBC
1130 DATA TNABQTBAWQABNQCBWKBCHQCBKWBAKN BCQWABKWBAKHBCEKCBNKABEQBAEKCBTKABQEBCQN BAKECBQEBCKNCBQNBAQHABKHBCKNBCNTBANKBCWQ ABQQABKTBAHNCB
$114 \varnothing$ DATA HNCBKHBCEKCBNKABEQBATKABQEBCQN BAKECBQEBCQTBAWQABNQCBWKBCWQABHQCBKWBAKN BCQWABKWBAQNABKNBCKTCBQTBAQNBANHBCNQBAEK: CBKKCBQHBCTNAB
$115 \varnothing$ REM \qquad

FOUR-IN-A-ROW, sometimes known as 'Connect Four', is fast becoming a golden oldie. This version for the CPC464 simulates the game for two players that you may be familiar with.

Each player is provided with a number of counters (represented by distinctive orange and cyan diamonds) which in turn and one by one are 'dropped' into any of seven columns. Each counter falls to the lowest vacant spot in a column, and once there is not removed during the game. The object of the game, as the name implies, is to achieve a row of four of your own counters, and that row may be vertical, horizontal or diagonal. Naturally you will be hindered by your opponent who will be doing his or her best to block your efforts.

If you are unfortunate enough to have no-one to play with, you may instead pit your wits against the computer.

The program incorporates a full graphic screen display and will inform you as to whose turn it is, the number of counters dropped so far and the last column used. Each new position will be tested to recognize a winning combination. At the end of a game, use is made of the interrupt command EVERY to flash the winning player's counters.

PROGRAM NOTES

Lines 80-180 set up the screen display, and this routine is followed in lines 190-240 by the main program loop. Lines 250-370 comprise a subroutine for the player's input and a check on its validity. The routine between lines $380-$ 450 effect the dropping of a counter with interesting sound effects. Lines 460-730 hold a check for winning combinations at every move, and is followed by the end-of-game routine at 740-900.

The lengthy routine from 910-1300 calculates the computer's next move when in the one-player mode. The subroutine at line 1310 comes into operation at the completion of a game and will flash the winning player's counters. The introduction to the game is stored at 13501440 , and the following routine at line 1450 initialises the main variables. Note the two important arrays in line 1520 : $P(7)$ which holds the status of each column, and $S(43)$ the status of each position on the matrix.

18 REM \qquad FOUR IN A ROW －＿－＿－＿－＿－＿
20 REM
$3 \varnothing$ GOSUB $145 \varnothing$
4の BORDER $\varnothing:$ INK $\varnothing, 25:$ INK 1，1：PAFER $\varnothing: P E N$ 1：MODE \varnothing
5ø LOCATE 3，11：PRINT LEFTक（L\＄，16）：PRINT＂ FOUR IN A ROW＊：PRINT TAB（3）LEFTक（L $\$$
，16）：FOR I＝ø TO 3øøø：NEXT
6．INK ø，ø：INK 1，15：INK 2，21：INK 3，1ø：MO
DE 1：GOSUB 135．
7Ø INK 1，\varnothing ：INK 2，\varnothing ：INK 3，\varnothing
$3 \varnothing$ REM \qquad SCREEN DISPLAY
99 LOCATE 13，2：PEN 2：PRINT＂FOUR IN A
ROW＂
1．9の MOVE 152，392：DRAW 488，392，2：DRAW 438
，369，2：DRAW 152，360，2：DRAW 152，392，2
11＠MOVE 152，346：DRAW 488，346，2：DRAW 488
，56，2：DRAW 152，56，2：DRAW 152，346，2
12ø WINDOW 4，7，11，14：PRINT＂MOVE＂CHRक（\＆FC
）CHRक（ \＆9A）CHR
${ }^{\prime} \mathrm{CHR} \Phi(\& D 1) \mathrm{CHR} \Phi(\& F E) \mathrm{CHR} \ddagger(\& 9 A) \mathrm{CHR} \$(\& 9 A) \mathrm{CHR}$
乎（\＆FF）；
139 WINDOW 34，36，11，14：PRINT＂COL＂CHR事（8，F C）CHR末（ 29 A ）CHR末（\＆FD）CHR\＄（\＆D3）＂r，＂CHR\＄（\＆D 1 ）CHRक（ \＆FE）CHRक（ \＆9A）CHRक（\＆FF）；
140 WINDOW $11,30,25,25$
150 FGR I＝11 TO 29 STEP 3：I $=5 T R 末(I \backslash J-2)$
：FOR $J=5$ TO 23 STEP 3
169 WINDOW I，I＋1，J，J＋1：IF Jく23 THEN PRIN
T C \ddagger ；ELSE PAPER 2：PEN $\varnothing:$ PRINT LEFT ${ }^{(1)}$（I
2）：PAPER $\varnothing: P E N ~ 2$
17＠NEXT：NEXT
189 INK 1，15：INK 2，21：INK 3，2．0
190 GOSUB 25ø
2øø C1＝C1＋1：IF C $1=43$ THEN $74 \varnothing$
219 IF B1＝2 THEN 190
22め GOSUB 918
$230 \mathrm{C} 1=\mathrm{C} 1+1:$ IF C1＝43 THEN 740

240 GOTO 196
250 REM \qquad PLAYER \qquad
26．0 WINDOW 11，30，25，25：PEN 1－（2＊（P1＝2））
27め IF $B 1=1$ THEN IF P1＝1 THEN PRINT＂
Your turn！＂；ELSE PRINT＂I＇m thinking
．．．＂；
2Eあ IF BI＝2 THEN PRINT＂Player＂P1＂－your turn＂；
29．0 I $\ddagger=I N K E Y क: I F I \$=" "$ THEN 29.8
3बの $A=A ૬ C(I \$)-48: I F A<1$ OR $A>7$ THEN 290
3i＠IF $P(A)<\emptyset$ THEN FRINT＂Column＂A＂is
full！＂；：FOR I＝ø TO 999：NEXT：GOTO 27め

330 GOSUB $38 \varnothing$
$34 \varnothing$ S（ $(P(A) / 3) * 7+A)=P 1$
350 GOSUB $46 \varnothing$
36．$P(A)=P(A)-3:$ IF $G=1$ THEN 740
$37 \varnothing \mathrm{~J}=\mathrm{P} 1: \mathrm{P} 1=0: 0=\mathrm{J}:$ RETURN
380 REM \qquad DROP COUNTERS
$39 \varnothing$ FOR $I=\varnothing$ TO $P(A): W I N D O W ~ A * 3+8, A * 3+9$ ，I $+5+(I)$ ）， 21
4＠ø IF I THEN IF $(I+3) / 3=(I+3) \backslash 3$ THEN PR INT Dक；ELSE PEN 2：PRINT Cक；
$41 \varnothing$ PEN 1－（2＊（P1＝2））：PRINT E中；
420 IF $P 1=1$ THEN SOUND $1,2 \emptyset \emptyset+I * 5 \emptyset, 5,15 \mathrm{E}$ LSE SOUND 1，95．6－I＊5． 5,15
430 NEXT
440 WINDOW 5， $6,13,13:$ PRINT USING＂＊\＃＂；C1 ；：WINDOW 35，35，13，13：PRINT LISING＂\＃＂；A； 45．RETURN
460 REM
WIN ROUTINE
$47 \varnothing G=\varnothing: \operatorname{IF} P(A)<9$ THEN IF $S(((P(A) / 3)+1)$ $* 7+A)=P 1$ AND $S(((P(A) / 3)+2) *>+A)=P 1$ AND
$S((1 P(A) / 3)+3) *>+A)=P 1$ THEN $G=1$
$48 \varnothing G 1=1: I=\varnothing:$ IF $A=7$ THEN $51 \varnothing$
$49 \varnothing I=I+1: I F S((P(A) / 3) * 7+A+I)=P 1$ THEN G $1=61+1$

568 IF $\operatorname{NOT}(S((P)(A) / 3) * 7+A+I)<>P 1$ OR $A+I=$ 7）THEN 49め
$51 \varnothing$ I $=\varnothing$ ：IF $A=1$ THEN $54 \varnothing$
520 $\mathrm{I}=\mathrm{I}+1$ ：IF $\mathrm{S}(\mathrm{P}(\mathrm{A}) / 3) * 7+A-\mathrm{I})=\mathrm{P} 1$ THEN G $1=G 1+1$
$53 \varnothing$ IF NOT（S（ $\mathrm{P}(\mathrm{A}) / 3) * 7+A-\mathrm{I})<>\mathrm{PI}$ OR A－I＝ 1）THEN 52.5
$54 \varnothing$ IF G1＞＝4 THEN G＝1
55ø G1＝1：I＝ø：IF $A=\varnothing$ OR $P(A)=15$ THEN 59の
$56 . \int \mathrm{I}=\mathrm{I}+1: \mathrm{IF} \mathrm{S}((\mathrm{P}(A) * 7 / 3)+A+8 * I)=P 1$ THEN $G 1=G 1+1$
$57.8 X=I+A+1: Y=I N T(()(P(A) *>/ 3)+A+8 *(I+1)$
$1-I-A-1) / 71$
58．IF NOT（S（ $(P(A) *>13)+A+I * 8)<>P 1$ OR（N
OT（ $(X<8)$ AND $(Y(6))))$ THEN $56 \varnothing$
$59 \varnothing$ I＝\varnothing ：IF $A=1$ OR $P(A)=\varnothing$ THEN $63 \varnothing$
$6 \emptyset \varnothing I=I+1: I F S((P(A) * 7 / 3)+A-I * 8)=P 1$ THEN $G 1=G 1+1$
$61 \varnothing X=A-I-1: Y=I N T(()(P(A) * 7 / 3)+A-8 *(I+1)$ $1+I-A+1) / 71$
62.6 IF NOT（S（ $(P(A) * フ / 3)+A-I * 8)\langle>P 1$ OR（N OT（ $(X>\theta)$ AND（Y＞－1））））THEN $6 \varnothing 日$
$63 \varnothing$ IF G1＞＝4 THEN G＝1
64Ø I＝Ø：G1＝1：IF $A=\varnothing$ OR $P(A)=15$ THEN 68Ø
$65.6 \mathrm{I}=\mathrm{I}+1: \mathrm{IF} \mathrm{S}(\{\mathrm{P}(A) * 7 / 3)+A+I * 6)=\mathrm{P} 1$ THEN $G 1=G 1+1$
6S．6 $X=A-I-1: Y=I N T(()(P(A) * 7 / 3)+A+6 *(I+1)$
）$-A+1+1) / 71$
$6>\varnothing$ IF NOT（S（ $(P(A) * フ / 3)+A+I * G)<>P 1$ OR（N OT（ $(X>\varnothing)$ AND（Y（G））））THEN $65 \varnothing$
$68 \varnothing \mathrm{I}=\varnothing$ ：IF $A=7$ OR $P(A)=\varnothing$ THEN 720
$699 \mathrm{I}=\mathrm{I}+1: \mathrm{IF} \mathrm{S}(\mathrm{P}(\mathrm{A}) * 7 / 3)+\mathrm{A}-\mathrm{I} * 6)=\mathrm{P} 1$ THEN $G 1=61+1$
$7.00 X=A+I+1: Y=I N T((()(P(A) * フ / 3)+A-6 *(I+1)$
）$-A-I-1 \mid / 71$
$71 \varnothing$ IF NOT（S（ $(P(A) *>(3)+A-I * 6)<>P 1$ OR（N QT（ $(X<8)$ AND（Y＞－1））））THEN 69＠ 72．IF G1＞＝4 THEN $G=1$

フミ® RETURN
749 REM \qquad END OF GAME
750 WINDOW 11，30，24，25
76．IF C $1=43$ THEN PEN 2：PRINT $n^{* *}$ G GAME DRAWN＊＊＊＂；：GOTO 8ø®
77＠PEN 1－（2＊（P1＝2））
789 IF $\mathrm{B} 1=1$ THEN IF P $1=1$ THEN PRINT ${ }^{*}{ }^{*} * *$
YOU WIN！$*^{* * *}$ ；ELSE PRINT＂＊＊＊I WIN！＊＊＊＂；
79ø IF B1＝2 THEN PRINT＂＊＊PLAYER＂P1＂WINS ！＊＊＂；
8．ø J＝ø：Qゅ＝＂＂：PEN 2：PAPER $\varnothing:$ PRINT＂ANOTHE R GAME？［Y／N］＂；
81め EVERY 20 GOSUB $131 \varnothing$
820 WHILE Qकく〉＂N＂AND Q末〈〉＂Y＂
830 Q $\$=$ INKEY虫：$Q \$=$ UFPER\＄（ $Q \$$ ）
840 WEND
85 \varnothing PRINT REMAIN（ \varnothing ）：INK 1，15：INK 2，21：I NK 3，29：IF Qक＝＂N＂THEN INK 1，24：PEN 1：MO DE 1：END
86の PEN 1：PAPER Ø：PRINT＂KEY［1］vs．comp uter $O R$［2］vs．player＂；

889 B1＝ASC（Q中）－48：IF B1＜1 OR B1〉2 THEN 8 $7 \varnothing$
89ø CLS：ERASE P，S：GOSUB $145 \varnothing$
9्欠 PEN 2：GOTO 12．X
910 REM＿＿＿COMPUTER＇S MOVES
929 WINDOW 11，30，25，25：PEN 3：PRINT＂Think ing ．．．＂；

E E 事 $=\mathrm{B}$ क
94の $K 1=K 1+1: A=K 1: I F P(K 1)=-3$ THEN 98风
$\left.950 \mathrm{~S}\left(\mathrm{P}\left(\mathrm{K}_{1}\right) / 3\right) * 7+K 1\right)=\mathrm{P} 1$
96.0 GOSUB $46 \varnothing$
$97 \varnothing \mathrm{I} 1=-K 1 *(G=1): S((P(K 1) / 3) * 7+K 1)=\varnothing$
980 IF NOT（I 1 ＞0 OR K1＝7）THEN 940
990 IF $G=\varnothing$ THEN 1.050

```
10.0 A=K1
101\varnothing GOSUB 380
102.0 S((P(A)/3)*7+A)=P1:P(A)=P(A)-3
1030 GOTO 740
1940 GOTO 13@め
1050 K1=\varnothing
1@\sigma0 K1=K1+1:A=K1
1@7\emptyset IF P(K1)=-3 THEN 11ø\emptyset
1.08\varnothing J=P1:P1=0:0=J:S((P(K1)/3)*7+K1)=P1:
GOSUB 460
1\varnothing9@ J=P1:P1=0:0=J:I1=-K1*(G=1):S((P(K1)
(3)*7+K1)=\emptyset
11ळ\varnothing IF NOT(II>0 OR KI=7) THEN 1.66.0
111\varnothing B=\varnothing
112\varnothing A=K1:IF I1 THEN 1170
113\varnothing A=INT (RND*7) +1
1140 IF C 1=2 AND P(5)=15 THEN A=5
1150 IF C 1=2 AND P(3)=15 THEN A=3
116\varnothing IF P (A)=-3 THEN 1120
117\emptyset IF II>\varnothing THEN 1260
118\varnothing B=B+1:P(A)=P(A)-3:A1=A:K1=\varnothing:G=K1
119\varnothing J=P1:P1=0:0=J:K1=K1+1:A=K1:IF P(K1)
<\emptyset THEN 122.\varnothing
12\emptyset\varnothingS((P(K1)/3)*7+K1)=P1:GOSUB 46\varnothing
121\emptysetS((P(K1)/3)*7+K1)=@
122.0 J=P1:P1=0:0=J
123\varnothing IF NOT(G=1 OR K1=7) THEN 119\emptyset
124.0 P(A1)=P(A1)+3:IF G=1 THEN A1=A ELSE
A=A1
```

1250 IF $B<>5$ AND $G=1$ THEN 1120
$126 \varnothing$ GOSUB 38ø
$12705((P(A) / 3) * 7+A)=P 1: G 05 \cup B 466$
$128 \varnothing$ IF $G=1$ THEN $74 \varnothing$
$1290 \mathrm{~J}=\mathrm{P} 1: P 1=0: 0=\mathrm{J}: P(A)=P(A)-3$
1300 RETURN
1310 REM
FLASH WINNING COLOUR
1326 IF $C 1<43$ THEN $J=N O T$ J: INK $P 1-(P 1=2)$
, ABS ($15-5 *(P 1=2)) * J)$
$133 \varnothing$ SOUND $1, \varnothing, 4 \varnothing, 15$
1340 RETURN
135め REM＿．＿－＿INTRODUCTION＿－＿
136．INK \varnothing, \varnothing ：INK 1，$:$ INK 2，\varnothing ：INK 3，1 $\varnothing: P E$ N 1
1370 LOCATE 1，4：PRINT Lक＂＊＂，＂FOUR IN A ROW＂SPACE（12）＂＊＂L\＄：PRINT
1380 PEN 2：PRINT＂The object of this gam e is to form a rowof four counters，whic h may be vertical，horizorital or diagonal ＂：PRINT
139．6 PRINT＂You drop one counter at a ti me by press－ing a number from 1 to 7 ，
taking turnswith your opponent．＂：PRINT：P RINT
14めø PEN 1：PRINT L末＂NOW PRESS［1］TO PL
AY WITH THE COMPUTER＊OR PRESS［2］TO FL
AY AGAINST A FRIEND＊＂L $\$$
141め INK 1，15：INK 2，21：INK 3，1ø：PRINT CH R末（7）

1438 B1＝ASC（I\＄）－48：IF B1＜1 OR B1〉2 THEN 1429
1446 CLS：RETURN
145.6 REM

INITIALISE
146．0 RANDOMIZE TIME
1470 SYMBOL AFTER \＆FB
$148 \varnothing$ SYMBOL \＆FC，\＆$\varnothing \& \varnothing, \& \varnothing, \& F F, \& F F, \& C \varnothing, \& C \varnothing$ ， KCD
1490 SYMBOL \＆FD，\＆．0，\＆O，\＆O，\＆FF，\＆FF，\＆ $3, \& 3, \&$ 3
15の日 SYMBOL \＆FE，\＆C $, \& C \varnothing, \& C \varnothing, \& F F, \& F F, \& \varnothing, \&$ 0，\＆． 0
15185 SMBOL \＆FF，\＆ $3, \& 3, \& 3, \& F F, \& F F, \& 8, \& 0, \&$ \emptyset
152め DIM P（7），S（43）
 $R \Phi(\& D 4): B \$=C H R \$(\& C C)+C H R क\left(\&_{<} C D\right)+C H R \$(\& C D)$

＂：L末＝STRING古（\＆28，CHR末（\＆9A））
$1540 \mathrm{C} 1=1: 0=2: \mathrm{P} 1=\mathrm{C} 1: \mathrm{G}=0:$ ZONE 11
1550 FOR $I=\varnothing$ TO 43
$156 \varnothing \mathrm{~S}(\mathrm{I})=\varnothing$ ：IF $\mathrm{I}<7$ THEN P（I＋1）＝15
1570 NEXT
158.6 RETURN：REM

TOWERS OF HANOI

This mindbender is fast becoming very popular amongst those who enjoy a good brainteaser which demands no small amount of concentration. As with other games of its type there are levels of skill ranging from the very easy to the unimaginably difficult.

The game is believed to have originated in Hanoi and to have been devised by Buddhist monks as an aid to concentration. The player is presented with three rods. On the first of these is placed a number of discs of different size, largest at the bottom and smallest at the top. These discs must be transferred to the third rod, one by one, and in a way that no disc is ever placed on one of smaller size. To complete the task you will find it necessary to make use of the middle rod.

Difficulty increases exponentially with each additional disc employed, and you may choose between two (very easy) to eight (extremely hard). The computer will display the minimum number of moves necessary to solve the problem, which is calculated as

2 to the power of the number of discs, less 1.
If therefore you chose the maximum eight discs the minimum number of moves necessary would be

$$
2 \uparrow 8-1(=255)
$$

You may of course exit from the game if you become too frustrated (key[Q] to do so), and you may if you wish watch the computer perform the moves for you. In the demonstration mode you will be offered a choice of speed. At the faster of the two, the computer will move eight discs according to the rules in well under a minute. See how long it takes you to do the same!

An additional timing feature has been included to demonstrate the use of interrupts in Locomotive BASIC. In the previous listing the command EVERY was used to perform a different task. In the running of this program you will be timed, although no time limit is imposed for completion of moves.

PROGRAM NOTES

Lines $80-330$ set up the screen display and offer the user a choice between manual effort and a demonstration. Lines $350-490$ control the player's inputs, and the three subroutines at 570-710 erase and print the discs and otherwise update the visual display.

In the demonstration mode lines 710-900 calculate the computer's moves. Lines 910-940 operate the clock, called by an interrupt command.

The routine at 950-980 initialise the main variables. Note the arrays $n(3)$ and $d(8,3)$ which are used to record the status of each rod (a maximum of eight discs on three rods). The dimensioned string $\mathrm{d} \$(8)$ holds a graphic representation of the discs.

$1 \varnothing$ REM
$2 \varnothing$ REM TOWERS OF HANOI：a classic puzzle
$3 \varnothing$ REM－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－
4ø BORDER 15：INK $\varnothing, 15:$ INK 1，1：PAPER $\varnothing:$ PE N 1：MODE \varnothing
$5 \varnothing$ LOCATE 3，12：PRINT＂TOWERS OF HANOI＂
$6 \varnothing$ RUN 950
70 REM
$8 \varnothing$ REM
SCREEN DISPLAY \qquad
$9 \varnothing$ INK 1，$\varnothing:$ INK 2，\varnothing
1の日 WINDOW 5，35，1，17：PEN 2：PRINT 1\＄＂T O WERSOFHANOI＂l\＄
11』 WINDOW 6，34，5，17：PEN 1：PRINT＂＂CH R\＄（ \＆F 4 ）；TAB（15）CHR\＄（\＆F4）；TAB（25）CHRक（\＆F4 ）；
12ه FOR $\mathrm{i}=2$ TO 10：LOCATE 5， $\mathrm{i}:$ PRINT CHR ${ }^{(1)}$
 NEXT
13＠WINDOW 6，34，15，17：PEN 2：PRINT STRING
 ＂2＂STRING\＄（\＆9，CHR\＄（\＆8F））＂3＂STRINGक（\＆4，CH R末（\＆8F））STRING末（\＆1D，CHR末（k8F））；
140 WINDOW 5，35，23，25：PRINT 1\＄SPACE\＄（29）
1中；
150 MOVE 64，7：DRAW 64，393：MOVE 568，393：D RAW 560，7
16．INK 1，24：INK 2，21
170 WINDOW 6，34，24，24：PEN 1：PRINT＂How many discs？（2 to 8）＂；CHRक（7）；
18.0 i $\$=$ INKEY \ddagger ：IF $1 \Phi="$＂THEN $18 \varnothing$

190 ᄃ＝ASC（i\＄）－48：n＝c：nn＝ø：m＝0：5ec＝0：IF c ＜2 OR c＞8 THEN $18 \varnothing$
20ø WINDOW 6，34，19，19：PEN 2：PRINT i\＄＂DI SCS＂CHRक（\＆EE）＂MIN NO OF MOVES：＂；：PRINT LISING＂\＃\＃\＃＂； $2 \uparrow$ ri－1；
219 WINDOW 6，34，21，21：PRINT＂MOUES TAKEN Ø TIME Ø．øø＂；

22．0 FOR $i=1$ TO $n: F O R j=1$ TO $3: d(i, j)=\varnothing: n$ （j）＝$:$ ：NEXT：NEXT：$y=1$
238 FOR $i=1$ TO n
24＠$n(y)=i: d(n(y), y)=n+1-i$
250 GOSUB 65
268 NEXT
27＠WINDOW 6，34，24，24：PEN 1：PRINT＂Shall I make the moves？［Y／N］＂；CHR ${ }^{(7)}$ ）
28＠iक＝INKEYक：i $\$=$ UPPERक（iक）：IF iकく〉＂Y＂A ND iकく〉＂N＂THEN 28ø
290 $5=\varnothing: c c=A S C(i \$): I F c c=78$ THEN 34．
3Gø PRINT＂Fast or slow speed？［F／S］＂ ；CHR末（7）；
$31 \varnothing \mathrm{i} \ddagger=I N K E Y \ddagger: i \$=U P P E R \Phi(i \phi): I F i \phi\langle \rangle " F " A$ ND i\＄くン＂S＂THEN $31 \varnothing$
32ø $5=(i \neq=" F "): C L S: I F 5$ THEN PRINT＂
See this for speed！＂；
33ø EVERY 5ø GOSUB 91ø：GOTO フ2ø
$34 \varnothing$ REM
350 REM \qquad PLAYER OPTION
360 PEN 3：PRINT＂Press［Q］to quit p lay＂；：FOR i＝ด TO 2めgの：NEXT
37．0 EVERY 50 GOSUB 910
38．0 DI：WINDOW 6，34，24，24：CLS：PEN 1：PRINT ＂Move from which rod？．．．＂；：EI
 R iक＞＂3＂）AND iक〈〉＂Q＂THEN 39．0
4øの IF $i \$=" Q$＂THEN nn＝め：GOTO 5めळ
$41 \varnothing x=V A L(i \$): I F n(x)<=\varnothing$ THEN DI：WINDOW 6，34，24，24：CLS：PEN 3：PRINT＂Rod＂x＂ is empty！＂；：EI：FOR $i=\varnothing$ TO 999：NEXT：GOTO 38.0

42g DI：WINDOW 32，34，24，24：PRINT x；：EI：FO R $\mathrm{i}=\mathrm{C}$ TO 5の日：NEXT
430 DI：WINDOW 6，34，24，24：CLS：PEN 2：PRINT ＂．．．to which rod？＂；：EI
44ø iक＝INKEYक：i\＄＝UPPERक（iक）：IF（i\＄く＂1＂0 R i\＄＞＂3＂）AND i कく〉＂ 0 ＂THEN $44 \varnothing$

$46 \varnothing y=V A L(i \$): I F y=x$ THEN $44 \varnothing$ ELSE DI：WI NDOW 32，34，24，24：PRINT y ；：EI
$47 \varnothing$ IF $n(y)=\varnothing$ OR $d(n(x), x)<d(n(y), y)$ TH EN 48Ø ELSE DI：WINDOW 6，34，24，24：CLS：PEN 3：PRINT＂Not permitted！Try again．＂；：
EI：FOR $i=\varnothing$ TO 999：NEXT：GOTO 38．0
$43 \varnothing$ GOSUB 57.9
496 IF $n(3)<n$ THEN 380
506 REM \qquad END OF GAME
51ø WINDOW 6，34，24，24：CLS：PEN 1：PRINT＂
ANOTHER GAME ？［Y／N］＂；CHRक（7）；

ND i\＄く〉＂N＂THEN 529

54，9 WINDOW 6，34，19，21：CLS：WINDOW 6，9，6，1 4：CLS：WINDOW 11，19，6，14：CLS：WINDOW 21，29
，6，14：CLS：WINDOW 31，34，6，14：CLS
$55 \varnothing$ FOR $i=1 \varnothing$ TO $3 \varnothing$ STEP $1 \varnothing:$ WINDOW $i, i, 6$ ， 14：PAPER 1：CLS：NEXT：PAPER Ø：GOTO 17．
$56 \varnothing$ REM
570 REM
SUBROUTINES \qquad
58\％GOSUB 68\％
$590 n(y)=n(y)+1: d(n(y), y)=d(n(x), x)$
G0．0 GOSUB 65%
$610 \mathrm{~d}(\mathrm{n}(x), x)=\varnothing: n(x)=n(x)-1: n n=n r_{1}+1$
62ø DI：WINDOW 18，2ø，21，21：PEN 2：PRINT US
ING＂\＃\＃\＃＂；nn；：EI
$63 \varnothing$ IF NOT 5 THEN FOR $i=\varnothing$ TO 999：NEXT
640 RETURN
650 REM \qquad PRINT DISCS \qquad
$660 d=d(n(y), y): h=y * 1 \varnothing-4: v=15-n(y)$
$67 \varnothing$ DI：WINDOW $h, h+8, v, v: P E N$ 3：PRINT LEFT क（dई（d），4）；：PAPER 1：PRINT CHR $\$(\& 83)$ ；：PAP ER \quad ：$:$ PRINT RIGHT事（d末（d），4）；：EI：RETURN $68 \varnothing$ REM \qquad ERASE DISCS \qquad
$690 \mathrm{~d}=\mathrm{d}(\mathrm{n}(x), x): h=x * 10-4: v=15-n(x)$
 N 780
73es REM
$740 p=1: q=2$ ： $\cos 3 B 84 \varnothing$
75．$p=1: q=3$ ：GOSUB 84め
76』 $p=2: q=3:$ GOSUB 34．
779 IF $n(3)=n$ THEN 5øø ELSE GOTO 749
789 REM
799 $\mathrm{p}=1: \mathrm{q}=3: \operatorname{GOSUB} 849$
$8 \varnothing \varnothing$ IF $n(3)=n$ THEN 50ø
81ळ $p=1: q=2:$ GOSUB 84
82の $p=3: q=2:$ GOSUB 84．
330 GOTO $78 \varnothing$
840 REM
$85 \varnothing x=p: y=q:$ IF $n(p)=\varnothing$ THEN $x=q$
869 IF $n(p)=\varnothing$ OR $n(q)=\varnothing$ THEN 88Ø
$87 \varnothing$ IF $d(n(p), p)>d(n(q), q)$ THEN $x=q$
88ø IF $x=q$ THEN $y=p$
89% GOSUB 57%
900 RETURN
910 REM＿＿＿TIME LAPSE ROUTINE \qquad
920 IF $n(3)=n$ OR $n n=0$ THEN RETURN
930 sec＝sec＋ 0.01 ：IF sec $>=0.6$ THEN $m=m+1$ ： sec $=\varnothing$
940 WINDOW 29，34，21，21：PEN 2：PRINT USING ＂\＃\＃\＃．\＃\＃＂；（m＋sec）；：RETURN
95． 1 REM
INITIALISE \qquad
 （ $228, \mathrm{CHR}$（ 89 A ））
97の FOR $i=1$ TO 8：FOR $j=1$ TO 8：READ $n: d \$($ i）$=d \$(i)+C H R क(n): N E X T: N E X T$
980 FOR $\mathrm{i}=\emptyset$ TO 20日の：NEXT
990 REM
INTRODUCTION \qquad
18Gめ MODE 1：INK 2，15：INK 3，15：PEN 3

1010 PRINT 1क＂
TOWERSOF
H A N O I＂，lid；
1020 PEN 2：PRINT＂This is a game which i s believed to haveoriginated in Hanoi，d evised by Buddhistmonks as an aid to con centration．＂：PRINT
$103 \varnothing$ PRINT＂The rules are straightforwar d，althoughthe solution may not be．＂：PR INT
1 1． 40 PRINT＂There are three rods or colu mns．On thefirst of these a number of discs isplaced．Each is of differen t size，withthe smallest at the top and the largestat the bottom．＂：PRINT 1059 PRINT＂All these discs must be tr ansferred tothe third rod or column，one by one，andin a way that no disc li es on one ofsmaller size．When discs are moved，therefore，it will be neces sary to makeuse of the middle rod．＂ $196 \varnothing$ PEN 3：PRINT 1中＂－PRESS THE SPACE BAR WHEN YOU ARE READY－＂l\＄；
1ఠ7．BORDER Ø：INK Ø，Ø：INK 1，24：INK 2，21： PRINT CHR\＄（フ）；
1.089 IF INKEY\＆〈〉＂＂THEN 1.980

109め CLS：1中＝LEFTक（1中，31）：GOTO 9め 11.00 REM \qquad DATA FOR DISCS［dक（）］
1110 DATA $128,128,123,136,129,128,128,12$ $8,128,128,128,131,131,128,128,128$
$112 \varnothing$ DATA $128,128,13 \varnothing, 131,131,129,128,12$ $8,128,128,131,131,131,131,128,128$ 1136 DATA $128,130,131,131,131,131,129,12$ $8,128,131,131,131,131,131,131,128$
1149 DATA 13．6，131，131，131，131，131，131，12 9，131，131，131，131，131，131，131，131

$115 \varnothing$ REM

IMPROVING YOUR PROGRAMMING SKILLS

You may well have developed some ideas of your own that you feel would be suitable subjects for your computer to handle. However much you enjoy typing-in listings from books and magazines, it is far more rewarding to write a program of your own and get it to work. If you are stumped for ideas there is no harm in taking someone else's raw material and developing that into something that bears your own hallmark. Either way you are sure to derive greater pleasure and satisfaction from your task than you would otherwise experience.

The purpose of this chapter is to help you translate an idea into a working program, and for this purpose I shall take an idea of my own which I have developed into a game called PROVERBS.

So how would you begin? Suppose you were writing a short note or a précis. You would no doubt pick up your pen and simply write it without the aid of any notes. If, however, you wished to write a more substantial piece an essay or an article perhaps - you would probably want to note down the raw material with subject headings, and give some thought to an ordered presentation. Unless you possessed unusual clarity of thought coupled with a highly retentive memory, failure to draw up such a plan would almost certainly lead to an unstructured mess, difficult and confusing to read.

It is the same with writing a computer program. In fact a logical approach to the task is of supreme importance here because a computer will take absolutely nothing for
granted. Your machine will do precisely what you command it to do - no more and no less.

Suppose that we want to write a game in which a player has to guess a well-known proverb selected randomly from a list of such proverbs held by the computer in its memory. Step by step, this is how it might be planned:

1. Define likely variables: a turn counter and a game counter, and strings to hold a chosen proverb, player's guess, etc.
2. Decide how many proverbs the computer can choose from, and what they are going to be.
3. Select one of these proverbs randomly. Ensure that the same proverb is not chosen again during the same game.
4. Give the player a clue as to the identity of the selected proverb.
5. Invite the player to enter a guess, either the whole proverb or a single letter.
6. Examine the player's input:
a. Has the whole proverb been entered correctly?

Yes? Then go to step 9 .
No? Then...
b. Has the player entered a letter?

No? Then go to step 5 .
Yes? Then...
c. Has this letter been chosen before?

Yes? Then display a message to this effect and go to step 5.
No? Then proceed to step 7.
7. Does the inclusion of this new letter complete the proverb?

Yes? Then go to step 9.
No? Then proceed to step 8.
8. Examine the hidden proverb, letter by letter, to see if the entered letter occurs there. If it does, every occurrence of that letter must be displayed in its correct position on screen.
9. Increment by one the number of turns taken.
10. Re-print the string holding the clue to the proverb (if the whole proverb has been guessed correctly or the last letter entered completes the proverb, this string will hold the whole proverb).
11. If the string holding the clue is different from the proverb then go to step 5 to repeat the sequence.
12. Display the number of turns (guesses) taken to complete the proverb.
13. Are all the proverbs exhausted?

No? Then clear the display and go to step 3.
Yes? Then...
14. Does the player want another game session?

Yes? Then run the program again.
No? Then...
15. End.

Here then is an outline of the program, setting down in logical sequence what we expect the computer to do. You may find it helpful to draw up a flowchart to hold this information, but this is by no means essential. It is, however, a good idea to draw up a representation of the screen display so that you have a clear idea of what a program will look like when it is RUNning. Ideally this should be done on a sheet of graph paper, or you could use the 'Text and Window Planner' to be found in Appendix VI of the user manual.

Now to the task of converting the plan to a form the computer will understand and execute. So back to step 1 where we have to decide what variables will be required to store changing information relating to the program. When formulating your own programs do not worry unduly if you later find that you need more variables than you originally allocated: additional variables may easily be added at a later stage in a program's development. For the purposes of this program I have designated the following key variables to hold the information stated:

	This is actually an array of 16 strings, all having the same name, but differentiated from one another by a numerical suffix or subscript. The numbers range from \emptyset to 15 , and each string will hold a different proverb.
guess\$	A string of dots and spaces representing the arrangement of words in the chosen proverb. This will serve as a clue for the player. As the game progresses dots will be replaced by letters as they are guessed.
try\$	Holds the player's guess at each turn. This may be the whole proverb or it may consist of a singleletter guess.
go\$	Stores information relating to proverbs already used to prevent duplication.
letter\$	Used to record letters of the alphabet already tried. It will appear on the display to remind the player of previous guesses.
rule \$	Holds 40 [-] characters and exists for the purposes of creating a neat screen display.
game	Counts the number of games.
turn	Counts the number of guesses in each game
col	Holds column number calculated according to length of a proverb, and is used to determine print start position on the screen.
repeat	A check variable. This is set to \emptyset or 1 depending upon whether a condition is false (\varnothing) or true (1). It is employed to obviate the bad programming practice of jumping out of loops (FOR. . .NEXT, WHILE. . .WEND).
a	Is a loop control variable.
r	Holds a random number used to select a particular proverb from one of 16 held in the array proverb $\$$.

Note that where appropriate I have used variable names which roughly correspond to the function they perform. This is particularly useful in a program's development, especially if you leave a program unfinished and return
to it at a later date. It is surprisingly easy to forget what a variable is supposed to do when work on a listing is resumed. Having said that I will also say that the longer a program is, the more memory it will occupy and, of course, it follows that SAVEing and LOADing times will be correspondingly longer. Once a program is completed and has been fully tested and errors eliminated (i.e. it has been debugged) you may want to shorten variable names in order to save memory. You should also bear in mind that the speed at which a program runs is determined to some extent by the amount of memory that it occupies. Moreover, speed of execution will also be improved by the use of integer variables (refer to chapter IV, page 6, of the user manual for an explanation of these). With the program in hand, as with most other programs in this book, speed is not of paramount importance, and to save repetitive typing of [\%] symbols I have not made use of them.

A further point to bear in mind when writing a program is to make good use of REM statements. REM is a keyword that the computer will ignore, but it is there to help you, the programmer, remember what each part of a program does.

Here then is the start of our program.

```
1\varnothing REM ----------- PROVERBS -------------
2\emptyset REM
3\emptyset REM ---------- INITIALISE
4\varnothing MODE 1:BORDER Ø: INK Ø,\varnothing:INK 1,25:PEN
1:PAPER G
50 RANDOMIZE TIME
6Ø DIM proverb$(15):rule$=STRING$(40,CHR
$(154))
70 game=\:go$="Q"
8\emptyset FOR a=\emptyset TO 15
90 READ proverb$(a)
1gG NEXT a
```

Line 40 sets the display to 40 columns of text and determines the colours that are going to be used. In this mode we could use four colours in all, but two here will suffice. Line 50 sets the random number seed to ensure a different sequence of proverbs in each game. Lines 60-100 initialise variables. In line 60 sixteen strings are dimensioned $(\emptyset$ to $15)$ and these will store the sixteen proverbs chosen. The FOR.. .NEXT loop in lines 80-100 'fill' these strings, one by one, with the proverbs which will be entered next in lines of DATA statements. I will adhere to the convention whereby data is stored in a block at the end of a listing, and as this is not a very long program I have chosen as a starting point line 1000.

```
IC@g DATA STRIKE WHILE THE IRON IS HOT
1010 DATA PRACTICE MAKES PERFECT
1\varnothing2\varnothing DATA A STITCH IN TIME SAVES NINE
103\varnothing DATA MAKE HAY WHILE THE SUN SHINES
104\varnothing DATA PRIDE GOES BEFORE A FALL
1050 DATA MANY HANDS MAKE LIGHT WORK
106g DATA TOO MANY COOKS SPOIL THE BROTH
1070 DATA LOOK BEFORE YOU LEAP
1030 DATA SPARE THE ROD AND SPOIL THE CH
ILD
109.0 DATA TIME AND TIDE WAIT FOR NO MAN
1100 DATA BETTER LATE THAN NEVER
1110 DATA EVERY CLOUD HAS A SILVER LININ
G
112.0 DATA POUR OIL ON TROUELED WATERS
1130 DATA EMPTY YESSELS MAKE THE MOST NO
ISE
1140 DATA THERE'S NO SMOKE WITHOUT FIRE
1150 DATA GREAT OAK'S FROM LITTLE ACORNS
GROW
```

You may, if you wish, test what you have typed so far by adding
remembering，of course，to key ENTER after each com－ mand．If you try this，the program will stop at line 999， apparently without doing anything else．But now type，as a direct command，
？proverbs $\$(15)$
and you should now see

GREAT OAKS FROM LITTLE ACORNS GROW

displayed on your monitor．（If you do not get this，please check your typing．）
＊
Now on to the screen display and some PRINT statements．

```
119 REM -------- SCREEN DISPLAY
```


$13 \varnothing$ PRINT rulés TAB(13)"P R o VER B $\mathrm{S}^{\prime \prime}$
,rulés
$14 \varnothing$ PRINT" Can you guess the following
proverb?
150 PRINT:PRINT" Each dot represents a
letter. Enter"TAB(4)"the whole proverb
if you think younTAB(3)"know what it is,
otherwise a letter."
16. LOCATE 1,25:PRINT rule象;

These lines are largely self－explanatory，but note the use of the TAB function to position text on the screen，in much the same way that you would use a typewriter tabulator． The next step is to select a proverb．

```
\(17 \varnothing\) REM -- SELECT A PROVERB AT RANDOM --
189 \(r=I N T\) (RND*16): repeat=o
\(19 \varnothing\) FOR \(a=1\) TO LEN(эロ串)
2风ฏ IF \(r=A S C(M I D \$(g o \ddagger, a, 1))-65\) THEN repe
at=1
210 NEXT a
22.1 IF repeat=1 THEN \(18 \varnothing\)
```

Variable r in line 180 will now hold a random number between \emptyset and 15 inclusive．Line 190 signals the start of another FOR．．．NEXT loop designed to check whether the random number has been chosen before．The string go $\$$ will store this information．If any number has previously been selected the check variable repeat will be set to 1 （line 200） and the computer will be referred back to line 180 at line 220．You may think this is a rather cumbersome way of doing things，but remember that computers take nothing for granted，and it is bad programming practice to jump out of incomplete loops．

If the check at line 220 is passed，execution continues at line 230 ．

239 90 $=$ CHR末 $(r+65)+90 \ddagger$
240 cal $=1+(40-\operatorname{LEN}(p r o v e r b \$(r)))$ ） 2
250 FOR $a=1$ TO LEN（proverb $\phi(r)$ ）
25の IF MIDक（proverb\＄（r），a，1）＞＂＠＂THEN gu
 proverbま（r），a，1）
279 N：EXT a
Line 230 adds the current random number（stored as a letter）to the string holding details of previously generated numbers（go\＄）．Line 240 sets the variable col to indicate where the proverb shall be printed according to its length． Strictly speaking col is not necessary，but it serves to centre the text and therefore enhance the quality of the screen display．The loop that begins at line 250 inserts dots and spaces into the string that serves as a clue for the player （guess\＄）．

Line 290 signals the start of a different type of loop．

```
\(22 \emptyset\) REM ------ MAIN PROGRAM LOOF ---.-.
290 WHILE guess\$く?proverb\$(r)
3.0. LOCATE col, 13:PRINT guessi
310 LOCATE COl,:6:INPUT"n,try象
32g LDCATE 1,16:PRINT SPACE \(\$(4.6)\)
```

```
3Зの try古=UPPERक(try古)
340 IF tryक=proverbs(r) THEN guess名=try$
:30TO 490
35\varnothing try$=LEFTक(try$,1)
36\varnothing IF try名く"A" OR try$>"Z" THEN 31\varnothing
37.}\mathrm{ repeat=ø
38@ FOR a=1 TO LEN(letter-$)
39\varnothing IF MIDक(letter虫a,1)=trv$ THEN repea
t=1
4OC NEXT a
41@ IF repeat=0 THEN 450
42\emptyset LOCATE 3,25:PRINT"YOU'VE ALREADY TRI
巨D '"try尔", TRY AGAIN!";
43% FOR a=@ TO 999:NEXT a.
440 LOCATE 1,25:PRINT ruleक;:GOTO 31\varnothing
45@ letter*=1etter$+try$
4G@ FOR a=1 TO LEN(proverb$(r))
470 IF try$=MID$(proverb$(r),a,1) THEN M
ID末(gues5$;a,1)=try名
48\varnothing NEXT a
490 turrm=turn+1
S@G IF guess$<>proverbक(r) THEN LOCATE 1
,23:PRINT"Letters tried: "letter.क;
51@ WEND
```

This is the main program loop．While FOR．．．NEXT loops process instructions a given number of times（the number and range being stated after the control variable），WHILE．．． WEND instructs the computer to repeat the loop until the condition specified after WHILE becomes false．In fact， should that condition be found to be false at the outset，the loop will be skipped altogether．In line 290 two strings are being compared：guess $\$$ ，which holds the player＇s guess（es） and proverb $\$(r)$ which holds the hidden proverb．Even－ tually the two will be identical，at which time control of the program will pass to the final sequence following line 510．How long that takes will depend upon the player＇s skill or intuition．

Line 310 invites the player's guess which is then stored temporarily in try\$. The line following cancels that text on the screen because it will very shortly be transferrea to guess $\$$ in line 340 or 470 . Line 330 ensures that the player's input is converted to uppercase letters to facilitate a valid comparison. Line 340 makes the first of two comparisons, and establishes whether or not the player has correctly guessed the whole proverb. If he or she has, control of the program will pass very quickly to the final sequence. If the player fails to guess the whole proverb, or simply enters a single letter, line 350 ensures that only the first character of the input string is considered, and line 360 will reject any character which is not also a letter of the alphabet.

The FOR.. NEXT loop between 380 and 400 checks to see if the input letter has already been used. If it has, a message to that effect is displayed and the program is referred back to the INPUT command in line 310. If the letter concerned has not been tried previously, that letter is added to the list at line 450. The loop following (460480) examines the hidden proverb to see if the new letter occurs there. If it does, the appropriate dots are converted to the letters they represent. Line 490 increments the count of guesses (turn), and 500 re-prints the growing list of guesses.

Now comes the final sequence.

```
52% REM ----- END OF GAME SEQUENCE -----
53.0 game=game+1
540 LOCATE col,13:PRINT guess$
550 LOCATE 1,23:PRINT" YOU GOT IT IN"tur
n": PRESS THE SPACE BAR "
56.| IF INKEY&<>" " THEN 560
570 CLS:IF game<l6 THEN 120
58\varnothing LOCATE 1,11:PRINT "You have now comp
leted all the proverbs.","Do you want to
```

```
    try guessing them again,"," this tim
e in a different order?";TAB(11)"(Press
[Y] or [N])"
590 try古=INKEY$;tr>直=UPPER古(try$)
60日 IF try主く\rangle"N" AND try方〈\rangle"Y" THEN 590
G1@ IF try炒Y" THEN RUN
E20 CLS:END
```

This last part completes the game．Line 530 increments the game counter，and if all the proverbs have been guessed the player is informed in line 580 that this is so．Line 540 ensures that the entire proverb is now displayed，and the line following informs the player as to the number of guesses taken．If further proverbs remain to be guessed then line 570 will send control back to the point where a new proverb is chosen after initialising the relevant variables（line 120）．

$$
*
$$

If，after playing the game，you want a new set of proverbs， simply change any or all of the DATA statements．If，how－ ever，you wish to add more data you will also need to increment the number 15 in lines 60， 80 and 180，and the number 16 in line 570.

PROUERBS

Can you guess the following proverb？
Each dot represents a letter Enter the whole proverb if you think you know what it is，otherwise a letter．
．IME ．N．．I．E W．I．OR NO M．N

Letters tried：MCIUWPOEGNR

PROVERBS is not a particularly complex program, but it does, I believe, illustrate a number of useful programming techniques. You may have a more complex idea to mind, in which case a rather different approach would be appropriate. A logical approach to such a program would be to create a number of subroutines, each performing a specific function and each clearly labelled by REM statements. Each routine could be called with the command GOSUB from within a small controlling (main) program. Each subroutine would be terminated with the command RETURN. You would thus have a series of GOSUB commands issued in a sequence corresponding to the order in which you wanted to use each routine. The strong advantage of this approach lies in its clarity and the ease with which each separate area of the program may be tested.

One final note. When you write a program you will know what the computer expects you to do when the program is running. You cannot, however, expect others to know instinctively unless you are there personally to tell them, unless the program includes all the necessary instructions and appropriate prompts. You will also need to guard against erroneous inputs, whether entered accidentally or intentionally. Remember, therefore, to include the necessary checks on the validity of input data. You would be amazed at the number of 'professional' programs that lack them.

This chapter is little more than an introduction to what is becoming a vast subject. The world of computing is a fascinating one, and it is my hope that these pages have provided you with some knowledge and inspiration to explore further what is undoubtedly a very enjoyable and rewarding hobby.

ALL THE PROGRAMS IN THIS BOOK

 are also available on cassette, price $£ 3.50^{*}$ (including UK postage and packing). Orders, accompanied by remittances, should be sent toEXCALIBUR PUBLICATIONS
The Glass House
9-13 Wensum Street
Norwich, Norfolk NR3 1LA
England

Please allow 28 days for delivery.

Overseas customers:
please add $£ 0.50$ to cover additional postage costs. Wherever possible remittances should be in sterling.
*Special offer price applicable to orders received by 30 June 1985.
If ordering after that date
please check price and availability.

EXCALIBUR PUBLICATIONS

is a fast expanding publishing house specialising in books about home computing.

If you have written original programs you feel are worthy of publication, or you have an original contribution of substance to make in the field of home computing, send your cassette or manuscript to us for free and considered evaluation.

All work accepted for publication will be supported by full advertising and international distribution.

We pay generous royalties to authors.

EXCALIBUR PUBLICATIONS
The Glass House, 9-13 Wensum Street, Norwich Norfolk NR3 1LA, England

 for the
 $$
\text { ATHSTRAD } 484
$$

Superb games of originality for all the family!

Here in one volume you will find challenging programs for you to put into your microcomputer. Each game has been produced to professional standards with full colour graphics and sound. All these programs represent excellent value in themselves and will provide hours and hours of fun for all the family.
Many programming hints are included together with a chapter to help you improve your programming skills. A complete and entertaining sample game is included to illustrate structure in program-writing.

ISBN 0948102004
£2.95 net

SNICN3GGNIW

 hittys //agerame/

[FAH] Be doulment a teté práservé numériquement à das fins édurativas et dêtudes, at non commercielas.
[ENGU This doeument has heen digitally praserved for adurational and study purposes, not for commervial purposes.

