
USING YOUR
AMSTRAD CPC464

Garry Marshall

J

Using your Amstrad CPC464
Made Easy

Garry Marshall

Arrow Books

Using your Amstrad CPC464 Made Easy
Garry Marshall

Arrow Books Limited
17-21 Conway Street, London W1P 6JD
An imprint of the Hutchinson Publishing Group
London Melbourne Sydney Auckland
Johannesburg and agencies throughout
the world
First published 1984

© Newtech Publishing 1984

This book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the
publisher's prior consent in any form of binding or
cover other than that in which it is published and
without a similar condition including this condition
being imposed on the subsequent purchaser.

Set in 12pt Stymie medium

Printed and bound in Great Britain
by Commercial Colour Press, London E7

ISBN 0 09 938800 6

CONTENTS

List of Figures v
Foreword vi
About the Author viz

1. Introduction to the Amstrad 1
Communicating with the Amstrad 1
What the Amstrad can do 2
Applications for the Amstrad 4
Should you write you own programs or

buy them? 5
Summary 6

2. Getting started 8
Getting the Amstrad ready for use 8
The keyboard 11
Giving commands to the Amstrad 15
More commands 21
Expanding the computer 29
Summary 31

3. Writing simple BASIC programs 33
First programs 33
Editing 40
More BASIC instructions 42
Making it easier to write programs 48
Saving and loading programs with a cassette

player 54
Summary 56

iii

4. Graphics and sound 58
GRAPHICS 58
Other instructions for graphics 73
SOUND 77
Summary 85

5. Applications for the Amstrad 86
Word processing 86
Word processing in general 87
Who needs a word processor? 90
A word processing session 92
A glossary of word processing terms 95
Summary 96
Databases 97
Filing cards and a database 99
Summary 101
Spreadsheets and'Amscalc' 102
An example of spreadsheet usage 105
Summary 108

Index 109

iv

LIST OF FIGURES
• • •

• ••

••
•

•
•••

•
C

O
 00

 *J

O
T <

/l A
 05

 tQ

I—

I—

rn
 cn

 if*
 co

Figure No.

2.1 The Amstrad initial display 9
2.2 The Amstrad properly connected and ready to

use 10
The Amstrad's keyboard 12
The graphics screen of the Amstrad 27
A shape created with DRAW 28
The sockets at the back of the Amstrad 30

A second shape created by DRAW 40

Communication between program and
subroutines 63
A pattern of hexagons 65
A 'honeycomb' pattern 67
Some patterns to draw 68
The keys used by the artist's drawing program 69
The directions associated with the keys in
Figure 4.5 69
Flowchart for artist's drawing program 71
Flowchart for missile launcher program 76
The notes of one octave on a piano keyboard
and their values for use with SOUND 78

4.10 The keys on the Amstrad keyboard used by
the music-playing program 84

v

Foreword

The main aim of this book is to provide, in the easiest
terms possible, an introduction to the Amstrad
CPC464. After guiding you through the process of get
ting started, it gives an appreciation of the uses to which
the Amstrad CPC464 can be put and then an expla
nation of how it can be made to carry out these tasks. In
this way it provides answers to the key guestions "How
do I use it?" and "What can I use it for?"

The book has three parts. The first is very much an
introduction to the computer. It deals with how to get
the computer ready for use, how to tell it what to do, and
the kinds of things that you can tell it to do. It also des
cribes other items that can be connected to the
computer and used in conjunction with it. The Amstrad
CPC464 has a number of sockets where various things
can be plugged into it, and is well eguipped in this way
to provide the basis of an expanding system.

The second part of the book deals with how to tell the
computer what to do using its own language, that is,
how to program the Amstrad CPC464 in BASIC. The
third part explores the uses to which the computer can
be put by making use of programs that have already
been written by someone else. If a program is already
available to make the computer do something that you
want it to do, then it is only sensible to make use of it
rather than writing a similar program from scratch
yourself. These two parts correspond to the two main
ways of using the computer. Either you can tell it what to
do youself, which is interesting, challenging and edu

vi

cational, but time consuming. Or you can use a pro
gram that already exists to make the computer carry out
a particular task that you need.

Whichever way you choose to use the Amstrad, and
there is room for both ways, you will find that it is an
acguisition that is of immense value. It can be used for
profit, for education and for entertainment, and can
come to play a part in many different aspects of life. This
book can help to get you started and then guide you
along the road to using the Amstrad to its fullest.

About the Author
Garry Marshall is Principal Lecturer in the Department
of Electronic and Communications Engineering at the
Polytechnic of North London. He is a regular contribu
tor to computer magazines, including Computing
Today and devises a computer puzzle each week for The
Observer. He has written 9 books, the majority on com
puting, including Learning to Use the PET (Gower),
Programming with Graphics (Granada) and Program
ming Languages for Micros (Newnes).

vii

Chapter 1

Introduction to the
Amstrad

The Amstrad is, of course, a personal computer.
Outwardly, it has the appearance of a typewriter key
board, although it has a few extra keys that an ordinary
typewriter does not. When it is ready to use, the
Amstrad will do nothing until you tell it to or, in some
other way, make it. This is because there is almost no
limit to the different things that the Amstrad can do, and
so it must be told what it is to do before it can be made to
do it. Like any other computer, the real strength of the
Amstrad lies in its versatility. It is not like a kettle, which
can only heat water, or a washing machine which can
only perform its simple function. It has many uses.

A conseguence of the computer's versatility is that it
is not guite as easy to use a computer as it is a kettle or a
washing machine. It is necessary to know how to tell a
computer what it is that you want it to do. It is also neces
sary to know what the computer itself is capable of
doing, particularly if you want to take full advantage of
it and to be sure that it is being used for all the things that
it is capable of doing for you. This means not only that
we must be aware of the computers' capabilities but also
that we must know how to communicate our needs to it.

Communicating with the Amstrad
You communicate with the Amstrad by using its key

board. Although it is obviously not necessary to be a
skilled typist to key in the short words that are the most

1

commonly used commands, you will find that as you
progress with the use of the computer there is more and
more to type and that if you can type 'properly' it will
take much less time than if you use one finger 'hunt and
peck' keying. So you communicate with the computer
by typing at its keyboard and, correspondingly, it
communicates with you by showing you what it is doing
on the television screen.

Also, when you tell the computer what to do, you
cannot use just any words that you choose as you could if
you were telling another person what to do. The
meaning of "Pass it to me" would, in most circum
stances, be quite clear to the person being addressed
but to a computer, with no knowledge of the context in
which the command was given, the meaning 'it' would
not be apparent, and so the command would not be
understood and, therefore, could not be obeyed. For
just this kind of reason, the instructions that are given to
a computer must be expressed in its own language.
They will then have absolutely clear and precise
meanings to the computer and it will be able to obey
them without fail. The computers' own language is
known as BASIC. (It stands for Beginners All-purpose
Symbolic Instruction Code). And if the prospect of
learning another language is off-putting, remember
that you have learnt at least one already and that BASIC
is really only a small part of one of them (English) that is
specially adapted for telling computers to do the kinds
of things that they can do.

What the Amstrad can do
So what can the Amstrad CPC464 do? In essence it

can store and process information. It can also communi
cate information, but to do this it must first be connected
to the item it is to communicate with or to a means of
communication such as the telephone network. By

2

itself, then, the Amstrad can store and process informa
tion, but this begs the question of what information is.
Information may be numbers or letters. It can also be
special symbols or strings of letters, that is, words or
sentences. In fact, as far as the Amstrad is concerned,
information is anything that can be typed at its
keyboard.

Some examples may help to illustrate the forms that
information can take and the ways in which it is pro
cessed. A word processing program accepts and stores
text typed at the keyboard, and so in this case the
information that is stored is words, sentences and para
graphs, although the basic elements are letters and
punctuation marks. Once it is stored the information
can be processed in any way that the word processor
permits. Most word processors can arrange the text in
lines of a specified length, make the right hand edge of
the text neat and tidy by carrying the last word on each
line to finish precisely at the end of the line (this is done
by putting extra spaces between the words of each line
to push the end of the line across to the necessary posi
tion) and arrange the presentation of the end of each
paragraph by leaving a specific number of blank lines
between one paragraph and the next and indenting the
beginning of the new paragraph. As a second example,
a database program can store information so that it can
be retrieved again in much the same way as it can in a
filing system. A company may use it to keep the records
of all its transactions and an individual can use it to keep
the details of all the videotapes in his or her collection.
In this case the information can consist of words, for the
title of a videotape, and numbers, for the value of a
transaction. The information can be processed by
sorting all the records into a particular order or to select
all the records meeting a particular criterion. To give a
third example, a program for an adventure game must

3

contain descriptions of the various places that can be
visited during the game, and these must be stored so
that a picture of each can be displayed complete with its
treasure and its hazards when it is visited during the
course of the game. In this case, the information consists
of the descriptions which, in turn, are composed of
letters and numbers.

Applications for the Amstrad
The consideration of information has, incidentally,

brought out some typical examples of the uses to which
the Amstrad can be put: games, for entertainment and
relaxation, word processing for anyone who has to deal
with words, whether in writing lettters, producing
documents or in writing a book, and databases for any
application reguiring the storage and retrieval of
information. It is notable in all these cases that the appli
cations are direct developments of previous practice
and that using a computer for them brings with it defi
nite improvements. Computer games are much more
attractive and compulsive than their non-computer pre
decessors. Among the reasons for this are that the
computer games are faster moving, more colourful and
more realistic than their predecessors. The word pro
cessor is the development of the typewriter that has
been made possible by the new technology. It makes
many aspects of document production much easier than
before, including the correction of mistakes, the
presentation of documents and the communication of
documents. Database programs show to considerable
advantage over conventional filing systems. They make
the retrieval of information much guicker and easier,
particularly when large amounts are involved. There
are also slightly unexpected advantages. For example,
when recording the details of a company's transactions,
the preferred order in which records are stored will be

4

different for different people. The accountant will want
one order, perhaps the most profitable first and the least
profitable last. A Salesman will want a different order,
perhaps just his clients in the order that he deals with
them. It is clear that in a conventional filing system the
papers can only be stored in one order. But when the
records are stored in a computer it can rapidly sort them
into the particular order that best suits the current
users.

Other applications for the computer include plann
ing with the use of a special program called a
spreadsheet', education, using the computer to present
or to allow the exploration of a body of knowledge; and
problem solving in science and engineering.

Should you write your own programs or buy them?
But no matter what use the computer is put to, it must

be instructed as to how to behave. If it is used to solve a
problem it must be told how to find the solution: if it is to
process words it must be told how to do that. In all these
cases, the computer must be given a program, that is a
set of instructions that tell it how to perform the task in
guestion. When the program is run by the computer it
automatically carries out all the instructions in the pro
gram it has been given one by one. When it has carried
out all the instructions in the program it will inevitably
have completed the task. Its ability to be programmed is
the secret of the computers' versatility. Giving it one
program enables it to do one thing. Subseguently giving
it another program can make it do another, perhaps
guite different, task.

If you know exactly what you want your Amstrad to
do, you can write a program in BASIC to tell it how to do
the task as soon as you are familiar with BASIC. On the
other hand, if you can find a program already written by
someone else that makes the Amstrad do what you want

5

it to then you can buy the program. Programs specially
written for the Amstrad are supplied by Amsoft. This
shows that you do not have to be able to write programs
in BASIC to be able to use your Amstrad. But if you can
write programs you will naturally acguire more famil
iarisation with the Amstrad and with its capabilities.

Undoubtedly, the only way to get the computer to do
exactly what you want is to write your own programs.
Besides making the computer a really personal tool, this
activity proves for many a rewarding and absorbing
matter. With a lesser knowledge of BASIC than is
necessary to write reasonably sophisticated programs it
is possible to amend other peoples' programs so that
they approach more closely what you want of them.
With no knowledge of BASIC you can only use other
peoples' programs to tell your computer what to do.
Any owner of an Amstrad wanting to learn about his
computer should learn to program it in BASIC. But it
can also be used to advantage with general purpose
programs that can be bought from suppliers such as
Amsoft for applications such as word processing and
information storage. Both a knowledge of BASIC and
some commercial programs are needed so that you can
enjoy, and employ, your Amstrad to the full.

Summary
The Amstrad is a small, rather powerful personal

computer. Like any other personal computer, it is
extremely versatile and capable of achieving many dif
ferent tasks. To make it carry out a particular task it must
be given a program, that is, a list of instructions, that
tells it how to do that task. But when one task is com
pleted it can be given another program to enable it to
carry out another, perhaps guite different, task. Its pro
grams must be written in a special computer language
called BASIC. By mastering BASIC, the users of the

6

Amstrad can write programs to make the computer per
form any task that they would like done. Programs for
specific tasks can also be brought. But whether the
Amstrad runs the users' own programs or purchased
programs, it can be used for many activities from games
through education to business applications such as
word processing and the storage and retrieval of
information.

7

Chapter 2

Getting started

This chapter deals with all the matters that you need to
know about how to get started with the Amstrad.
Actually getting the Amstrad ready to use in the first
place is just about as easy as it is with a television set,
consisting of little more than plugging it in. After des
cribing how to prepare the Amstrad for use we examine
the keyboard and the purposes of the various keys on it.
Then a few of the more common commands for the
Amstrad are introduced for, as we know, the Amstrad
does nothing until we tell it what it is that we want it to
do. Finally, we examine the various items that can be
plugged into the sockets at the back of the computer,
thereby expanding the capabilities of the computer and
enabling it to become the heart of a guite large system.

Getting the Amstrad ready for use
The Amstrad is much simpler than most computers to

set up for use. The monitor should be plugged into the
mains. You will notice that there are two leads coming
out of the front of the monitor. One of these is the power
lead and the other takes signals from the computer to
the monitor so that a display appears on the screen.
Plug the two leads into the computer. It is guite clear, if
you look at the back of the computer, where they plug
in, as there are only two sockets of the right size. Now
turn on the monitor by pressing the button at the bottom
right hand corner, and the computer by sliding the

8

switch at the back right hand end. A message should
now appear on the screen. This is shown as Figure 2.1.
The properly connected Amstrad should now appear
as in Figure 2.2.

The meaning of the various items that appear on the
screen in the initial display is as follows.

Amstrad 64K Microcomputer <vl>
•1984 Amstrad Consumer Electronics pic

and Locomotive Software Ltd.
BASIC 1.0

Figure 2.1 The Amstradinitial display.

Amstrad 64K Microcomputer (vl)

The name of your new computer. The next two lines
are the copyright and name of the manufacturer.

9

BASIC 1.0

The language used by this model of the computer.
This identifies the version of BASIC that the Amstrad
provides to its users for writing programs.

Figure 2.2 The Amstrad properly connected and
ready to use.

Ready indicates that the Amstrad is ready to accept a
communication from its user, perhaps in the form of a
command or a program.

■ The solid sguare is known as the cursor. It indi
cates, by its position, where the next character to be
typed at the keyboard will appear on the screen.

10

The keyboard
The keyboard of the Amstrad has 74 keys, including

the long space bar at the bottom of the keyboard. Most
of the keys are black, but some are green, one red and
two blue, the distinction between the sets being that the
black keys cause a character to be displayed on the
screen while, in general, the green keys are used to
change the effect of pressing a black key. The red key
will stop the computer if pressed once (to restart press
another key) and if pressed twice will "BREAK" the pro
gram. The blue keys tell the computer that you have
finished writing a message, which should now be
"entered" into the computer memory. The keys are
arranged as shown in Figure 2.3, with the black keys set
in rows in the same way as on a typewriter keyboard, in
what is known as the QWERTY layout after the first few
keys along the top row of letters. The keys all have a full
movement. It is guite possible for a trained typist to type
at a rapid rate on the keyboard.

When used, the keyboard gives essentially the same
effect as a typewriter keyboard, but with some differen
ces. Considering the black keys first, keys marked with
just a letter will initially produce the corresponding
letter at the position of the cursor on the television
screen. Most other black keys have two symbols marked
on them, and pressing any of these keys will place the
lower of the two symbols on the screen. To give an
example, pressing the key marked with a figure eight
below a bracket will cause the eight to be displayed.
Turning now to the first of the green keys, holding down
one of the SHIFT keys which are located at either end of
the second row of keys from the bottom of the keyboard,
and then pressing one of the keys marked with two
symbols will cause the upper symbol to appear on the
screen. So holding down a SHIFT key and then pressing
the key marked with an eight and a bracket will cause

11

Figure 2.3 The Amstrad's keyboard.

the bracket to be displayed. Hold down a SHIFT key
and press a letter key, this will create a capital letter. If
you want to use capitals all the time you can press CAPS
LOCK. This will make all the letters appear in upper
case, but will still display the lower item of two item
keys. That is, if you press '8' an eight will still appear. If
you now press CTRL and CAPS LOCK, this will work in
the same way as SHIFT LOCK, that is, the letters will be
in upper case, but the key marked '8' will produce the
other character on the key, that is the bracket.

The key marked CTRL is referred to as the control
key. If you press it and CAPS LOCK together again the

12

board will return to normal. This is typical of the way
that the control key is used to cause the computer to
switch from one mode of operation to another, and then
back again.

At this stage, we know how to type capital and small
letters, numbers, punctuation marks and any of the
other symbols that appear on the keys. Pressing the long
bar at the bottom of the keyboard gives a space. Just by
pressing the appropriate keys we can make any char
acter appear on the screen. No matter what symbol we
type, it appears at the position marked by the cursor and
then the cursor moves one position to the right ready to
position the next character to be typed. When a line on
the screen has been filled, the cursor automatically
moves to the beginning of the next line so that the next
character to be typed is placed there. By typing some
text you can watch the lines that you type build up on the
screen. Since all the keys repeat, merely holding down
a key will quickly fill a line or more with the character
marked on that key. But the Amstrad will not accept
anything you type that consists of 256 or more char
acters. If you go on to key the 256th character, the
Amstrad will make a beep. You will also find that when
you are typing on the bottom line of the screen and
reach its end, the contents of the screen all automati
cally move up by one line, or 'scroll' upwards, to leave
the cursor at the beginning of a blank bottom line. The
previous top line vanishes. So, when typing at the
Amstrad's keyboard, characters appear on the screen
in essentially the same way as they would appear on
paper when using a typewriter. In fact, the Amstrad
makes it rather easier because there is no need to per
form the equivalent of the typewriter's carriage return
to start on a new line, or to change the paper when a
page is full.

13

The functions of the keys that have not been men
tioned so far are as follows.

The keys marked with arrows. These keys, posi
tioned in pairs on either side of the space bar, are for
moving the cursor around the screen. They move it in
the directions marked on the keys so that text can be
positioned anywhere on the screen by moving the
cursor to the position at the beginning of the text by
using these keys before typing the text itself.

ENTER. This key terminates a line of text and at the
same time sends it to the computer for the computer to
act on. If, for example, a command has been typed then
pressing ENTER will send it to the computer which will
then obey it.

DEL. This key deletes the symbol that has just been
typed and, more generally, the key to the left of the cur
sor's position. It allows typing errors to be corrected as
soon as they are made.

CTRL. We have seen that holding down CTRL and
pressing CAPS LOCK causes the Amstrad to switch
between giving capital letters and small letters. By con
trast, holding down CTRL and pressing P always causes
a 'beep'.

COPY. If shift is pressed the cursor can be moved
using the arrow keys, but this is a second cursor called
COPY CURSOR. When it has reached a position you
wish to COPY, press the COPY key and a copy will
appear at the position of the original cursor. By stop
ping the copy and typing in new letters you can then
EDIT your program.

NUMBERS. A second set of number keys is provided for
your convenience.

14

Giving commands to the Amstrad
We give commands to the Amstrad just by typing the

correct words, and the Amstrad will obey them as soon
as we press ENTER. If you issue a command the
computer cannot understand, it will say

Syntax error

The first command we will introduce is for clearing
the screen so that we can start work in a position
eguivalent to that of someone starting to write with a
clean sheet of paper. To clear the screen, all that is
necessary is to type

CLS

and press ENTER. Try it!
Since we have already seen that computers store

information, process it and display the results, let us see
next how we can tell the computer to do these things.
We can instruct the computer to store an item in its
memory by using a command starting with the word
'LET'. Then we write a name, which can be any name we
choose as long as it starts with a letter and consists of
letters and numbers only. This will be the name under
which the item is stored. Then we write an eguals sign
(-) and finally the item that is to be stored.

To store the number 2.5 under the name 'number', we
write

LET NUMBER = 2.5

and as soon as we press ENTER it is done. The word
'let' can be omitted, so that we can write just

15

NUMBER = 2.5

but for the moment we will retain 'LET' to show consis
tency with the other commands that we can give, all of
which have a characteristic key word associated with
them.

A word, that is, a string of letters, or indeed any
sequence of characters, can be stored in nearly the
same way. The difference is that we must tell the
computer that we are storing something that is not a
number, and we do this by placing a dollar sign ($) at the
end of the name we choose. Additionally, the word to be
stored must be enclosed in quotation marks. By doing
these things we can store the word 'AMSTRAD' under
the name A$ by

LET A$ = "AMSTRAD"

or, as before, just by

A$ = "AMSTRAD"

A complete sentence can be stored just as easily by

LET SENTENCES = "LET'S USE THE AMSTRAD"

or

SENTENCES = "LET'S USE THE AMSTRAD"

If we have a whole number to store, we can store it in
the same way as any other number, but it takes up less
space in memory if we store it under a name that ends
with a percentage sign (%). So, we could write

LET TWO = 2

16

but it is better to have

LET TWO % = 2

____________ SUMMARY BOX 1 ____________
Storing information

LET name = item

1. The effect of the command is to store the item of
information 'item' under the name 'name'.

2. LET may be omitted.

3. 'name' must start with a letter and then can be foll
owed by any letters or numbers.
It must end with $ if anything other than a number is
being stored.
It should end with % if a whole number is being
stored.

4. 'item' can be a number or a string of characters
enclosed in quotation marks.

Now that we know how to store items of information in
the computer's memory, we can look at how to process
them. In its simplest forms, processing can also be done
with the LET command. If we consider numbers first, we
can write arithmetic expressions exactly as we would in
ordinary arithmetic, and using brackets, except that the
usual multiplication sign is replaced by an asterisk (*)
and the usual division sign by a slash (/). And on the
right hand side of the eguals sign in a LET command, we
can write an arithmetic expression rather than just a
number. The computer obeys such a command by
finding the value of the arithmetic expression and stor
ing it under the given name. If we type

17

LET X = 2 * 3 + 1.5

and press ENTER, the computer will calculate 7.5 as
the value of the arithmetic expression on the right and
store this number under X, the name given on the left.
After this command, typing

LETY = X - 1.1

causes 6.4 to be stored under Y because the value of
the expression on the right is the number stored under X
less 1.1, and this is stored under the name given on the
left.

____________ SUMMARY BOX2____________
Dealing with numbers

LET name = arithmetic expression

1. The effect of the command is to find the value of
'arithmetic expression' and to store it under 'name'.

2. LET may be omitted.

3. 'name' is any name under which a number may be
stored.

4. 'arithmetic expression' is any properly written arith
metic expression that involves names under which
numbers are stored, numbers and the arithmetic
operators +, —,*,/.

Words and character strings can also be processed
using the LET command, and we will give one simple
example of how this can be done. The plus sign can be
used with words, as well as with numbers, although in
this case it takes a very different meaning from its usual
arithmetic one. The result of 'adding' one character

18

string to another is a single character string consisting
of the first string followed at once by the second. Thus,
after

LET A$ = "BASIC"

and

LET P$ = "ALLY"

the value of A$ + P$ is "BASICALLY", and the effect
of

LET Q$ = A$ + P$

is to store the single word "BASICALLY" under the
name Q$.

_____________ SUMMARYBOX3 _____________
Dealing with words

LET name = word expression

1. The effect of the command is to find the value of
'word expression' and to store it under 'name'.

2. LET may be omitted.

3. 'name' is any name under which a word may be
stored.

4. 'word expression' is any number of words or names
under which words are stored all separated by plus
signs.

5. The value of 'word expression' is the single word con
sisting of all the individual words in the expression
one immediately after the other

19

The command for displaying information on the
screen begins with the word 'PRINT'. When followed by
a string of characters inside guotation marks it will print
these characters on the screen. By typing

PRINT "THIS IS CLEVER"

and pressing ENTER, we cause the message

THIS IS CLEVER

to appear on the screen.
But if PRINT is followed by a name, or a list of names,

it causes the items stored under these names to be dis
played on the screen. In this way, we can examine items
that we have stored in the computer's memory and also
the results of processing them. So, after giving the
commands

LETF = 1.2
LETG = 2 * F + 0.1
LET A$ = "BASIC"
LET B$ = A$ + "ALLY"

we find that

PRINT G

gives 2.5, that

PRINT B$

gives BASICALLY, and that

PRINT A$, F, B$

gives BASIC 1.2 BASICALLY

20

____________ SUMMARY BOX 4 ____________
DISPLAY

PRINT character string
and

PRINT list of names

1. The effect of PRINT followed by a string of characters
inside quotation marks is to display the string of
characters.

2. The effect of PRINT followed by a list of names is to
display successively the items stored under each
name in the list.

More commands
The commands that have been explained in the pre

vious section for storing, manipulating and displaying
information are much the same on any computer. In this
section we shall examine some commands that are much
more specific to the Amstrad.

So far, the Amstrad's display has shown yellow letters
and symbols on a blue background, giving the same
appearance as yellow letters printed on blue paper. But
the Amstrad is a colour computer, and we can change
the colours of its display. The commands that are pro
vided for this are PEN and PAPER. As you have prob
ably guessed, PEN is for changing the colour in which
letters and symbols are displayed on the screen, and
PAPER is for changing the background colour against
which they are displayed. The names of these
commands are easy to remember because PEN has the
same effect as if you change the colour of the ink in your
pen when writing on paper, and PAPER gives the same
effect as changing the colour of the paper you are
writing on. We must tell the Amstrad what colour we
want to change to, and this is done by following PEN and

21

PAPER by a number from 0 to 26 which represents a
colour.

Before we can learn more about the Amstrad's colour
capabilities we must learn about its MODES. The
computer will work in any one of three modes, Mode 0,
Mode 1 and Mode 2. When you switch on the machine is
automatically in Mode 1. This mode has a screen of 40
letters wide, as you may have discovered if you have
typed to the end of a line. In Mode 0 the screen is only 20
letters wide so that each of the letters is twice as wide as
in Mode 1. In Mode 2 the screen is 80 letters wide so that
to fit them all in they have to be half the width of the
Mode 1 letters.

Now to change mode you just type MODE 2, for
example, and the mode will have been changed. In
Mode 0 you can have up to 16 of the 27 colours on the
screen at the same time. In Mode 1 you can have four
different colours on the screen and in Mode 2 you can
have only two colours on the screen.

SUMMARYBOX5
MODES
MODEO
MODE 1
MODE 2

1. The effect of this command is to change the mode of
the computer.

2. The modes have the following properties.
MODE 0 20 columns

MODE 1 40 columns

MODE 2 80 columns

Up to 16 colours on the
screen at one time

Up to 4 colours on the
screen at one time

Up to 2 colours on the
screen at one time

22

We can now return to COLOUR!
The 27 colours available are as follows:

Colour number Colour Colour number Colour

0 Black 14 Pastel Blue
1 Blue 15 Orange
2 Bright Blue 16 Pink
3 Red 17 Pastel Magneta
4 Magenta 18 Bright Green
5 Mauve 19 Sea Green
6 Bright Red 20 Bright Cyan
7 Purple 21 Lime Green
8 Bright Magenta 22 Pastel Green
9 Green 23 Pastel Cyan

10 Cyan 24 Bright Yellow
11 Sky Blue 25 Pastel Yellow
12 Yellow 26 Bright White
13 White

Now each of these colours is put into an ink-well so
that you can dip your pen in and write on the screen.
The ink-wells have different contents in each mode, and
the contents are as follows:

Ink-well
number

Colour number in well
Mode 0 Mode 1 Mode 2

0 1 1 1
1 24 24 24
2 20 20 1
3 6 6 24

23

4 26 1 1
5 0 24 24
6 2 20 1
7 8 6 24
8 10 1 1
9 12 24 24

10 14 20 1
11 16 6 24
12 18 1 1
13 22 24 24
14 Flashing 1,24 20 1
15 Flashing 16,11 6 24

So we have 15 ink-wells and 27 colours. How can we
get to the other colours? Well, the command INK will
change the contents of one of the ink-wells. First we
specify the well we are going to change and then we say
what colour we are going to put in that well. So the
command INK 3,9 will, in Mode 1, take the bright red
ink out of ink-well number number 3 and put in green
ink!

How do we get the ink from the well into our pen and
onto the screen? This time we use the command PEN
and the number of the ink-well we wish to use (note, it is
the well number and not the colour number). So from
the Table above we can see that PEN 2 will write in
colour 20 when we are in Mode 1, which is Bright Cyan.
Now, to change the colour of the paper we are writing
on we again use the ink-well numbers. So try typing
PAPER 3 and the paper will change to the colour of
ink-well number 3, which contains colour 6 which is
Bright Red.

Type CLS and you will see this better.

24

If you have typed this correctly you will notice a
Dorder suddenly appear around the paper. The colour
of the border can also be changed, but this time we use
the colour numbers, not the ink-well number. So typing
BORDER 26 will change the colour of the BORDER to
colour 26, that is Bright White.

There is one more trick to learn. If we use three
numbers after the command INK then the ink-well will
change from one of the colours to the other and back
again. If the well we are changing is the one we are
using for PEN or PAPER then either the writing or the
background will flash between these two colours.

_____________ SUMMARY BOX 6_____________
PEN number

PAPER number
1. The effect of PEN is to set the colour in which char

acters appear on the screen and of PAPER is to set the
colour of the background on which they appear.

2. 'Number' must be a number from 0 to 15. Each corre
sponds to the ink-well of that number as specified in
the above table.

____________ SUMMARY BOX 7____________
INK number, number

1. The effect of INK is to put the colour represented in
the above table as specified by the second 'number'
into the ink-well specified by the first 'number'.

2. If a third number is placed after the second the con
tents of the well will flash between the colour speci
fied by the second and third numbers respectively.

25

____________ SUMMARY BOX 8 ____________
BORDER number

1. The effect of BORDER is to change the colour of the
border to the colour specified in the above table by
'number'.

Before preceeding any further it is necessary to learn
a new command. If you press down the CTRL key, the
SHIFT key and the ESC key at the same time the
computer will be reset to the same condition as when
you first turned it on. This is necessary when trying out
the various colour commands and the commands which
we will consider next.

The Amstrad also allows you to create drawings on its
screen. In this way you can create pictures or graphics.

In the computer's memory are various shapes which it
can create on the screen. We have seen some of these,
in the form of letters of the alphabet. However there are
many more shapes than these. To see all the shapes,
type in the following: —

10 FOR N = 32 TO 255
20 PRINT N;CHR$(N)
30 NEXT N

(Press ENTER)
(Press ENTER)
(Press ENTER)

Now type RUN. You have just written a program!
The canvas provided by the Amstrad consists of a

rectangular array of boxes. The boxes are arranged in
rows and columns, and the number of columns
depends, as we have already seen, on the MODE we are
using. In Mode 1 there are 40 columns, numbered from
1 to 40. In all modes there are 20 rows, numbered from 1
to 20. If we do not tell the computer where to print a

26

character it will print it at the present cursor position. It
we have just cleared the screen, using CLS this will be
at the top left hand corner, position 1,1 that is row 1 and
column 1. When you made the program you had written
run, it printed a series of numbers and characters. The
numbers were the computer's way of remembering what
each character was to be. To make character number
250, say, appear, we tell the computer to print
CHR$(250). This is a little man, as you will have seen
from the program.

So, if we type: CLS:PRINT CHR$(250) a man will
appear at position 1,1. To make him appear elsewhere
we use the command LOCATE.
LOCATE will move the cursor and then print at the new
location.

640 columns ------------ *■

Column number 639

400
rows

Row
number

0
0

399

Figure 2.4 The graphics screen of the Amstrad.

So, LOCATE 20,1 :PRINT CHR$(250) will print a man at
column 20 and row 1. That is, the top row and half way
along. Remember, if you now change to mode 0 which

27

only has 20 columns he will be at the right hand side,
and if in mode 2 he will only be a quarter of the way
across.

It is however a bit clumsy to only be able to print at 800
box positions when we might want to draw a line. If it
had to be drawn in boxes it would appear a bit disjoin
ted. Now, each character in the screen is actually made
up of 64 smaller boxes, and each of these boxes can be
further subdivided. In all there are 640 columns and 400
rows of the smaller boxes, called PIXELS. We can, in
GRAPHICS MODE, light up any one of these pixels so
that we can draw smooth pictures.

Figure 2.5 A shape created with DEA W.

The command to light up any one pixel is the
command PLOT X, Y. This will light the pixel at the posi
tion x,y. Try PLOT 320,200, which is the centre of the
screen. Note the the cursor does not move, and the
script on the screen is still at the same positon as is was
before you started. This is because you have moved not
the cursor you are used to but the GRAPHICS
CURSOR.

You can draw a line using the command DRAW.
DRAW X,Y will draw the line from the current position
of the graphics cursor (and you can move this using the
PLOT command) to the new position x,y.

28

____________ SUMMARY BOX 9 ____________
GRAPHICS

LOCATE number 1, number 2

1. Moves the Text cursor to the new position in column
'number 1' and row 'number 2'. Printed characters
will appear at the new position.

2. The number of columns depends of the MODE you
are working in, as previously specified. The number
of rows is 25. Position 1,1 is the top left hand corner of
the screen.

___________ SUMMARY BOX 10 ____________
PLOT number 1,number 2

DRAW number 1,number 2
1. PLOT will light the pixel at the graphics position

column 'numberl' and row 'number 2'
DRAW will light all the pixels in a line from graphics
position with column number 1 and row 'number 2'.

2. In graphics there are 640 columns and 400 rows.
Graphics position 0,0 is the bottom left hand corner
of the screen.

Expanding the computer
There are several sockets at the back of the Amstrad

at which items of equipment can be connected to it.
They are shown in Figure 2.6. The sockets are all clearly
labelled. Perhaps the best way to describe how the
Amstrad can be expanded is to examine in turn the uses
intended for these sockets. We will consider the sockets
taking them in order from left to right as they appear
when viewing the Amstrad from behind. The uses of
the two sockets at the extreme left that are labelled

29

MONITOR and 5V DC have already been covered in
the course of describing how to get the Amstrad ready
for use. The purposes of the others are listed below.

Figure 2.6 The sockets at the back of the Amstrad.

Floppy Disk. If you have tried to load a program
using the built in cassette recorder you may have won
dered why it took such a long time. The information the
computer requires is stored on the tape as a magnetic
message, in the same way as your music tape stores
information which is decoded by your ordinary casette
recorder. The use of disks, which are rather similar in
appearance to a 45 rpm record, will speed up this load

30

ing process to a remarkable degree. Although you may
be prepared to wait while a program loads, if you want
to use the computer for a database program, where
information is constantly being sent to and recovered
from a storage medium, then it is essential to use disks
rather than to rely on cassettes.

Printer. This socket is for the connection of a printer
to the Amstrad. It provides a standard, so-called Cen
tronics, connection so that any printer of this type can
be connected at once to the Amstrad. If the computer is
to be used, for example, for word processing, then it is
clearly essential to have a printer attached to the Ams
trad so that the documents that are produced can be
printed. It also allows a printed copy of the program that
is in the computer to be made so that the printed copy
can be taken away from the computer and examined at
leisure, perhaps to correct or amend the program.

User Ports. The main item which will be attached to
this socket will be loysticks. If you intend to use your
computer for playing arcade type games, then you will
obtain a much more realistic effect if you use joysticks.
AMSOFT produce a joystick especially for use with
your Amstrad computer.

I/O. When generating sound from your Amstrad,
you can feed this through your stereo using the auxili
ary input socket and the I/O socket at the back of the
computer.

Summary
The Amstrad is made ready for use by a simple pro

cedure that involves plugging it into a monitor. The
procedure is foolproof because the cables that are
supplied can only be plugged into the sockets for which
they are intended. From the keyboard a full range of
letters, numbers and symbols can be typed. Generally,
they are typed at the black keys, although the green

31

keys must be used to modify the effects of the black keys
in order to allow the full range of characters to be pro
duced. The green keys all have special purposes, but
the CTRL key in particular can be used in conjunction
with other keys to produce effects ranging from making
a beep to changing the colours of the display. Once the
keyboard is mastered, commands can be typed for the
Amstrad, and this chapter has introduced commands
for handling information, for changing the colours in
the display and for creating graphics. We are now
ready to start to write programs.

32

Chapter 3

Writing simple BASIC
programs

We can now begin to write some simple programs of our
own, because the commands that we met in Chapter 2
provide us with a small BASIC vocabulary. As we pro
gress, we shall see that the programs we can create
using only the commands with which we are familiar are
guite restricted. But BASIC provides more facilities
than we have met, and as we feel the need to do extra
things with our programs we shall find that BASIC
supplies us with the means to do it. In this way, we shall
introduce more of the features of BASIC as they are
needed to create programs for performing particular
tasks. This approach brings out the reasons that BASIC
possesses the features that it does as well as illustrating
the uses to which they can be put.

First programs
As we know, a program is a list of instructions. In

BASIC, an instruction is a numbered command, that is,
a command preceded by a number. The number is
usually referred to as a line number. An instruction is
entered, in exactly the same way as a command, by
typing it and pressing the ENTER key. But the computer
reacts differently when it receives a program instruc
tion to when it receives a command. Whereas a
command is obeyed at once, an instruction is stored.
The computer stores a program by storing all the indi
vidual instructions of the programs. The reasons for

33

storing the program are that once it is stored the
computer can execute it as often as you like (in contrast
to a command, which must be typed every time it is
issued) and that it can be corrected or amended just by
changing the necessary instructions rather than by re
typing it all.

When the instructions of a program are being entered
they can be typed in any order because the Amstrad
automatically stores them in the order given by their
line numbers, placing the instruction with the lowest
line number first, that with the next lowest second, and
so on up to the last instruction, which has the highest
line number. When the Amstrad executes the program
that is stored in it, it does so by taking the instructions
one by one, in the same order in which they are stored,
and obeying the command part of each.

_____________SUMMARY BOX 11 ______________
A program

1. A program is a list of instructions.
2. An instruction is a line number followed by a

command.
3. Instructions are stored in the increasing order of

their line numbers.

4. A program is executed by obeying its instructions
one by one in the order given by their line numbers.

We can now write a program, and since it is the first
one, we will make it do the simple task of storing two
numbers, finding the difference between them and dis
playing the result. Although this task is small enough
for us to plan a way of doing it in our heads, we shall put
the planning down on paper because we shall soon
come to tasks that do need guite careful planning before

34

we can begin to write the programs that tell the
computer how to carry them out. If we were telling the
computer how to do this task by giving it commands, we
should begin by storing two numbers in the computer.
This can be done by

LET FIRST = 6.8
LET TWO = 2.3

We could find their difference with

LET SUB = FIRST - TWO

Storing a caption to identify the result would be a good
idea, and could be done by

LET C$ = "THE DIFFERENCE IS"

so that we could display the result with

PRINT C$,SUB

We have given five commands, which have been
sufficient to accomplish the task. These commands give
us the basis of our program. All we have to worry about
now is making sure that the computer stores them in the
right order so that they will be executed in the proper
order when the program is run. To do this we must add
line numbers to the commands, to turn them into pro
gram instructions, making sure that the command that
we gave first gets the lowest line number, that which we
gave second the next lowest, and so on. It might seem
natural to use the numbers 1, 2, 3. . . as line numbers,
but we shall use 10, 20, 30 and so on. The reasons for this
will become apparent later on, but it is basically so that
there are gaps between the line numbers in case we
want to add some extra lines to the program.

35

From this, we get our first program as:

10 LET FIRST = 6.8
20 LET TWO = 2.3
30 LET SUB = FIRST - TWO
40 LET C$ = "THE DIFFERENCE IS"
50 PRINT C$;SUB

Each line is entered just by typing it and pressing
RETURN. To see the program that is stored in the
computer at any time, you give the command

LIST

and, as soon as you press ENTER, the program that is
stored in the computer is displayed on the screen. To
execute the program that is stored in the computer, give
the command

RUN

If the program that is given above has been typed
exactly as it is presented, after typing RUN and pressing
ENTER you will see the line

THE DIFFERENCE IS 4.5

before the 'READY' message and the cursor are dis
played again. If you do not get this line, and in particu
lar if you get

Syntax error

do not worry, it is probably because what you have
typed is not exactly the same as the program that is listed
above. See if you can find where your program differs

36

and if it does simply retype the line or lines that are dif
ferent and then run the program again.

___________ SUMMARY BOX 12___________
Examining and executing a program

LIST
RUN

1. The command LIST causes the program that is stored
in the computer to be displayed on the screen.

2. The command RUN causes the program that is stored
in the computer to be executed

Our first program should illustrate that when the
computer runs the program stored in it, it selects the
command parts of the program instructions one by one,
in the order given by the line numbers, and obeys them.
The end result is exactly the same as when the
commands are typed individually in the same order, but
in either case the order is important. To get the
commands in the wrong order would be to give the
computer the wrong method for carrying out its task. Of
course, the computer completes its task much more
guickly by running its stored program than it does when
we have to type the commands individually .

A program to store these words and then to display a
phrase made up from them can be written along the
same general lines as the first program. Although it will
deal with words rather than numbers, it will store, pro
cess and display them in the same pattern. Before we
start to enter the new program we should give the
command

NEW

37

to clear the previous program from the Amstrad's
memory. If we do not do this, we may well end up with
parts of the old program mixed up with the new one,
giving a stored program that is neither one thing nor
another.

___________ SUMMARYBOX13 ___________
Clearing a program

NEW

1. This command clears the computers memory of the
program that is stored in it, and should be used
before entering a new program.

Our second program is:

10 LET A$ = "STORE "
20 LET B$ = "THE "
30 LET C$ = "PROGRAM "
40 LET Z$ = A$ + B$ + C$
50 PRINT Z$

Running this program will give the display

STORE THE PROGRAM

Note that each word is stored with a space following it.
If this is not done, when the words are 'added' by line 40,
the result will be a string of letters with no gaps and all
the words will run on from each other. It is easy to make
this program produce another phrase. Typing

40 LET Z$ = B$ + C$ + A$

will cause this line 40 to replace the previous one, and
when the amended program is run it will give the
display

38

THE PROGRAM STORE

Our third program is a graphics program. We can
write a program that creates the shape of Figure 2.5 by
incorporating the commands that we gave in Chapter 2
for producing this shape into a program. The resulting
program is:

10CLS
20 INK 1,26
30 INK 0,3
40 PLOT 320,200
50 DRAW 420,200
60 DRAW 420,100
70 DRAW 320,100
80 DRAW 320,200
90 DRAW 370,230

100 DRAW 420,200

The consequence of putting the instructions in the
wrong order can be demonstrated graphically with this
program, for by changing the line numbers of a few
instructions to give the following program:

10CLS
20 INK 1,26
30 INK 0,3
40 PLOT 320,200
50 DRAW 420,200
60 DRAW 370,230
70 DRAW 320,100
80 DRAW 420,100
90 DRAW 320,200

100 DRAW 420,200

39

Vie find that the shape it produces is that shown in
Figure 3.1 which is quite different from that given by the
original program.

Figure 3.1 A second shape created by DBA W.

Editing
Now that you have typed a few programs, it is worth

considering how to correct any mistakes that may occur
during typing. These methods of correcting errors
apply to the text of programs or to anything else that you
enter. They are worth knowing because they are the
easiest and quickest ways to correct the errors that
inevitably occur while typing.

Whatever you are typing, you can correct a mistake if
you notice it as soon as it is made by deleting it with the
DEL key. The DEL key always deletes the character to
the left of the cursor, and if the mistake that you want to
correct is not at the end of the text then, with the cursor
at the end of the text, you can always delete all the char
acters up to the erroneous one and then start typing
again from there. For this reason it is probably still
preferable to abandon an improperly typed command
and retype it properly, particularly as most of the
commonly used commands are quite short.

When correcting or changing a program, there are
several methods that can be used. Any instruction can
be replaced simply by typing a new version of the
instruction and giving it the same line number. An

40

instruction can be inserted at any point in a program by
giving it a line number between those of the two instruc
tions betwen which it is to be placed. An instruction can
be deleted just by typing its line number and pressing
RETURN. But if a fairly long instruction contains just a
simple error, then it is better to use COPY to copy the
correct part and to type only the correction rather than
to retype the whole instruction. Earlier in this book we
did mention briefly the use of the COPY key. There are
in fact two main ways to edit a line.

EDIT
If you type EDIT and then a line number the line will

appear with the cursor over the first character. This is
the EDIT cursor. To leave a letter or character as it is,
move the cursor over it, using the arrow keys. To delete
a character, move one place to the right of the character
you wish to delete and press the DEL key. To enter a new
character just move to the correct position and type in
the new character.

COPY
Use SHIFT and the arrow keys to make the EDIT

cursor appear. Move the cursor to the start of the line
you wish to edit. Now press COPY for each of the letters
you wish to keep. If you wish to remove a letter, move
over it using the SHIFT and the arrow key rather than
the copy key. To enter a new character just type it in as
you reach the correct position.

____________ SUMMARYBOX14 _____________
Editing text

The DEL key deletes the character to the left of the
cursor.

41

___________ SUMMARY BOX 15____________
Editing a program

1. An instruction is inserted just by typing it and press
ing ENTER.

2. An instruction is deleted by typing its line number
and pressing ENTER.

3. An instruction is replaced by entering a new instruc
tion with the same line number.

4. COPY can be used to edit instructions.

5. The command EDIT followed by a line number will
cause the instruction with that line number to be dis
played conveniently for editing together with the
EDIT cursor.

More BASIC instructions
In this section, we shall introduce some more BASIC

instructions. The ones we have met already allow us to
give rather simple programs to the computer, but if we
are to write programs for more advanced tasks we shall
need instructions that are capable of rather more than
those we have met so far. As a basis for introducing the
new features and for showing why we need them we
shall consider the problem of writing a standard letter to
send to one of our friends on her birthday. A simple
program to do this using only the commands that we
have met already is given below. It stores the lines of the
letter one by one, then clears the screen and displays
the lines one by one. The program is:

10 LET A$ = "DEAR NANCY"
20 LET B$ = "THIS IS TO WISH YOU A HAPPY

BIRTHDAY"

42

30 LET C$ = "AND MANY HAPPY RETURNS OF
THE DAY"

40 LET D$ = "LOVE"
50 LET E$ = "GARRY"
60 CLS
70 PRINT A$
80 PRINT B$
90 PRINT C$

100 PRINT D$
110 PRINT E$

When this program is run, it displays on an otherwise
clear screen

DEAR NANCY
THIS IS TO WISH YOU A HAPPY BIRTHDAY
AND MANY HAPPY RETURNS OF THE DAY
LOVE
GARRY

As soon as you have written this program, it may strike
you that the same greeting could be sent to any of your
friends if only you could change NANCY to another
name. In fact, if you could give the name of the friend
whose birthday it is to the computer, it could produce a
personal greeting merely by inserting the name in the
appropriate place in the otherwise standard letter. By
providing the INPUT instruction, BASIC allows infor
mation, such as the name of a friend, to be given
directly to a program for purposes such as this.

In a program, when the computer reaches an instruc
tion such as

10 INPUT N$

it first prints a guestion mark on the screen and then
waits for you to type in something from the keyboard

43

and to press ENTER to show that you have finished. The
question mark is displayed as a way of reminding you
that you should type something to give to the computer.
What you type is then accepted and stored, in this case
under the name N$. The computer then goes on to deal
with the next instruction. The INPUT Instruction also
allows you to display a message rather than just a
question mark, so that you can tell the computer to
display a suitable message to remind you of what you
are supposed to type. In this case we could use:

10 INPUT "NAME OF FRIEND";N$

This makes the computer display:

NAME OF FRIEND?

and await your response, accepting it for storage
under N$ when you press ENTER.

With the use of this instruction, we can write the pro
gram for producing a birthday greeting to any of our
friends as:

10 LET A$ = "DEAR "
13 INPUT "NAME OF FRIEND";N$
17 A$ = A$ 4- N$
20 LET B$ = "THIS IS TO WISH YOU A HAPPY

BIRTHDAY"
30 LET C$ = "AND MANY HAPPY RETURNS OF

THE DAY"
40 LET D$ = "LOVE"
50 LET E$ = "GARRY"
60 CLS
70 PRINT A$
80 PRINT B$
90 PRINT C$

44

100 PRINT D$
110 PRINT E$

Note that to get this program we need only edit line 10
of the previous program and insert lines 13 and 17.
Further if we had not left a gap between the numbers
used for line numbers there would have been no way to
insert these extra lines.

____________ SUMMARYBOX16____________
Entering data from the keyboard

INPUT name
or

INPUT character string; name

1. When executed this instruction causes a question
mark or, if it is given, 'character string' followed by a
question mark, to be displayed and then the
computer waits for a response to be typed.

2. The response, which is terminated by typing ENTER,
is stored under 'name'.

BASIC provides another way of including information
in a program with its READ and DATA instructions. You
may wonder why yet another way of handling informa
tion is needed. The comparison of BASIC with ordinary
English is helpful in answering this. In English there are
usually several ways of saying much the same thing,
except that each way has its own shade of meaning and
emphasis that makes it particularly well suited to a given
situation. The same is true with BASIC, where a particu
lar way of telling the computer to carry out some action,
and in this case of telling it how to record information,
will be more suitable than another. Being able to choose

45

from different methods of telling the computer to do
what we want allows us to pick the one that is most suita
ble or most convenient.

Various items of data can be made available to the
computer when it is runnning a program by placing
them in a DATA statement in the program. A DATA
statement consists of the word DATA followed by the
items, all of which are separated by commas. We can
place the four words 'HAPPY', 'BIRTHDAY', 'TO' and
'YOU' in a a DATA statement in this way:

DATA "HAPPY", "BIRTHDAY", "TO", "YOU"

The order of the items is important, for the first READ
statement that is obeyed by the computer in a program
reads the first item of data from the DATA statement, the
second READ instruction that is obeyed reads the
second item, and so on. If we cannot fit all the items of
data into one DATA statement, or if we choose not to,
then we may use several DATA statements, and the line
numbers of the DATA statements indicate the order of
the items of data in a quite natural way. The following
program will read the words from a DATA statement
and display them in the order in which they appear:

10 READ A$
20 PRINT A$
30 READ B$
40 PRINT B$
50 READ C$
60 PRINT C$
70 READ D$
80 PRINT D$
90 DATA "HAPPY", "BIRTHDAY", "TO", "YOU"

But the words could equally well have been given in
four DATA statements as:

46

90 DATA "HAPPY"
100 DATA "BIRTHDAY"
110 DATA "TO"
120 DATA "YOU"

as this presents the items of data in exactly the same
order as they appeared in the single DATA statement
used originally.

It is probably clear from this that another way of
making the computer produce our birthday greeting to
Nancy that uses READ and DATA is:

10CLS
20 READ A$
30 PRINT A$
40 READ B$
50 PRINT B$
60 READ C$
70 PRINT C$
80 READ D$
90 PRINT D$

100 READ E$
110 PRINT E$
120 DATA "DEAR NANCY"
130 DATA "THIS IS TO WISH YOU A HAPPY

BIRTHDAY"
140 DATA "AND MANY HAPPY RETURNS OF THE

DAY"
150 DATA "LOVE"
160 DATA "GARRY"

__ SUMMARYBOX17__
Including data in a program

READ name
DATA data list

47

1. When executed, a READ instruction reads an item of
data from 'data list' and stores it under 'name'.

2. A DATA statement may contain a 'data list' consist
ing of several items of data separated by commas. A
program may contain several DATA statements.

3. The items in a DATA statement are ordered from left
to right. When there is more than one DATA
statement in a program the order of the items starts at
the first item in the statement with the lowest line
number, and finishes at the last item in the statement
with the highest line number.

4. The first time that a READ statement is executed in a
program, the first item of data is read, the second
READ statement to be executed reads the second
item, and so on.

Making it easier to write programs
The briefest look at the previous two programs shows

that they are very repetitive. Further, if we want to make
the computer produce longer messages, writing the
program that tells the computer how to go about it will
become very boring. The fact that the programs are
repetitive suggests that we ought to be able to simplify
them. After all, our aim is to make the computer carry
out tasks for us, but there is little advantage in this if it
takes as much effort to tell the computer how to do them
as it would for us to do them ourselves.

In the previous two programs, pairs of instructions
such as:

READ A$
PRINT A$

are repeated over and over. Really, we would like to
write down the pair of instructions once only. If we

48

could do this and then tell the computer that as soon as it
has obeyed them once it should go back and do them
again, we should be able to tell the computer to do a
good deal of work by writing only a few instructions.

BASIC provides us with a primitive means of doing
this in the form of the GOTO instruction. It takes the
form of the word 'GOTO' followed by a line number,
and when it is obeyed it causes the Amstrad to go to the
instruction with the specified line number and to obey
the command in that instruction next. By using this
instruction, our birthday greeting can be produced by
the much shorter program:

10CLS
20 READ A$
30 PRINT A$
40 GOTO 20
50 DATA "DEAR NANCY"
60 DATA "THIS IS TO WISH YOU A HAPPY

BIRTHDAY"
70 DATA "AND MANY HAPPY RETURNS OF THE

DAY"
80 DATA "LOVE"
90 DATA "GARRY"

The program works very well except for one thing
which you will notice when you run it. Although the
program produces the greeting we expect, it then dis
plays:

DATA exhausted in 20

We do not really want this message to appear at the
end of the output from our program (it certainly has
nothing to do with Nancy's birthday). If you thought that
the GOTO instruction was rather too good to be true,

49

you may feel that your worst fears are confirmed. But at
least we should investigate a little further to find the
cause of this unwanted message.

When the computer runs the previous program line
20 causes it to read an item from the DATA statement,
line 30 then causes it to print what it has just read, and
line 40 causes the computer to go back to line 20 to read
another item. Even after the last item of data has been
read, line 40 still sends the computer back to line 20 to
read another one. Since there are no more items of data
to read, the computer cannot do what we have told it to
do, and it automatically sends us a message to indicate
its protest. The message 'DATA exhausted in 20' actu
ally means 'there were no more data items to be found
when the READ instruction with line number 20 was
being carried out'.

This occurrence is typical of what can happen when a
GOTO instruction is used by itself. The error has
caused the computer to stop in this instance, but if we
enter the program

10 PRINT "THE COMPUTER WILL NOT STOP."
20 GOTO 10

then running this program will cause the computer to
keep displaying the sentence from line 10 for ever. To
stop it, we must take some action ourselves. There are
two possibilities: we can either press ESC twice or press
SHIFT, CTRL and ESC together (which will wipe the
memory clean!).

____________ SUMMARYBOX18 ____________
Changing the order in which

instructions are obeyed.
GOTO line number

50

1. The effect of this instruction is to cause the computer
to go to the instruction with the line number given by
Tine number' and to obey it next. The computer then
carries on with the program by obeying the instruc
tion following it.

2. When used to jump back to an instruction with a
lower line number, it must be used with care as it
creates a loop from which there is no escape.

Having seen that the GOTO instruction when used by
itself is potentially quite dangerous, we should mention
that BASIC provides other instructions with which it
can be used quite sensibly. We shall return to this
shortly.

We started with a program to send a birthday greet
ing to a particular person, and then made the program
more useful so that it could send a birthday greeting to
any of our friends. It would be even more useful if it
could be used to send any greeting to any person. We
shall now develop the previous program to make it do
this. First, the program must ask for the name of the
person to whom the greeting is to be sent, and then it
must ask for the greeting itself. After that it must read
the other parts of the message and display them. But we
can make the program use the same simple repetitive
format if we place dummy items in the data such as
NAME to represent any name and GREETING to repre
sent any greeting. As long as the computer can replace
NAME when it reads it by DEAR followed by the name
we have given it in response to an INPUT instruction
and, similarly, can replace GREETING by the greeting
we have given it, the task we have set the computer can
be carried out.

Before we can tell the computer how to do this, we
must introduce a further BASIC instruction. We need to

51

tell the computer something like 'if you have read
'NAME' then replace it by 'DEAR' followed by the name
we just gave you'. And for purposes such as this, BASIC
provides us with an instruction involving the words IF
and THEN. This instruction allows us to describe to the
computer how to make decisions in much the same way
as we should describe decision-making in ordinary
English. The instruction takes the form of the word 'IF'
followed by a test, the word 'THEN' and finally another
BASIC command. The test can be a comparison of two
values to see if they are equal or to see if they differ.
(Other comparisons can also be made, and they are
given in the Summary Box.) The command following
'THEN' can be almost any BASIC command. When an
instruction of this type is carried out, the test is made,
and if it is satisfied the command following 'THEN' is
obeyed, otherwise nothing more is done and the
computer moves on to the next instruction. In this way,
we can let the computer decide whether or not to carry
out a command by looking at the result of a test.

The instruction that tells the computer to display
'THREE' only if the value stored under X is 3 is:

IF X = 3 THEN PRINT "THREE"

The instruction that recognises when 'NAME' is stored
under A$ and replaces it by 'DEAR' followed by the
name stored under N$ is:

IF A$ = "NAME" THEN LET A$ = "DEAR " + N$

By using this conditional, IF-THEN, instruction, we
can write our program to send any of our friends any
greeting as:

10 INPUT "FRIEND'S NAME"; N$
20 INPUT "GREETING"; G$

52

30 CLS
40 READ A$
50IFA$ = "NAME" THEN LET A$ = "DEAR " + N$
60 IF A$ = "GREETING" THEN LET A$ = G$
70 PRINT A$
80 GOTO 40
90 DATA "NAME", "GREETING", "LOVE",

"GARRY"

When this program is run, its output is similar to this:

FRIEND'S NAME? JOANNE
GREETING? HAPPY NEW YEAR

The screen then clears before displaying

DEAR JOANNE
HAPPY NEW YEAR
LOVE
GARRY
DATA exhausted in 40

There's that exhausted DATA again! However, we
now have the ability to overcome the problem using the
IF. . . THEN command. We shall put in an extra line:

75 IF AS = "GARRY" THEN GOTO 75

Note that this time we have purposely made the
computer go on repeating line 75 forever so as not to
spoil our display.

____________ SUMMARY BOX 19 _____________
Making decisions

IF test THEN command

53

1. The 'test' can compare two values for equality (=) for
non-equality (<>). It can also see if one value is
greater than (>) or less than (<) another.

2. The 'command' can be any BASIC command or
sequence of commands.

3. When executed, the 'command' is obeyed only if the
'test' is satisfied.

Saving and loading programs with a cassette player
We now turn to the use of the cassette player with the

Amstrad. Its main uses are to copy the program that is
stored in the computer onto a cassette, so that the pro
gram is saved in a permanent form, and to put a pro
gram that has previously been saved on cassette into the
computer. The reasons for doing this are that when the
computer is unplugged everything in its memory is lost,
including any program stored there. If you have pre
viously keyed in a long program, it would be discourag
ing to know that the next time you needed the same
program you would have to type it in all over again. By
saving it on a cassette, you can load it again directly
from there. Also, if you buy a program a copy of it must
be given to you in some form. You could be given a
listing of it on paper but, again, you would have to type
what is, in all probability, a lengthy program. If it is
supplied on a cassette it can be loaded from the cassette
player. A disk drive can be used with its disks to load
and save programs in just the same way, and it is much
guicker. But the Amstrad has a built in cassette player
while disk drives are rather expensive.

For recording programs it is better to use a short CIO
or C15 cassette than the longer C60 and C90 tapes. The
magnetic tape itself is thicker and conseguently less
liable to stretch than it is on a longer tape, making it less
likely for the recording of a program to be corrupted. It

54

is also quicker to locate a program on a shorter tape,
and it results in the waste of much less time should the
computer not find the program you want on a cassette
for any reason. The Amstrad's commands for saving and
loading a program on a cassette are SAVE and LOAD.

The procedure for saving the program that is stored
in the computer by copying it on a cassette is as follows:

* Wind the tape forward a short way so that it is well
past the plastic reader.

* Type the command.

SAVE "PROGRAM"

'PROGRAM' is the name that the program will be
saved under when you give this command, but you may
choose any name you like.

* Press the RECORD and PLAY buttons on the cass
ette recorder and then the ENTER key on the
Amstrad.

* The message Saving "PROGRAM" block 1 will
appear above the display area. The READY message
will appear with the cursor when the program has been
saved, and you should then stop the cassette player.

By following this procedure you make a copy of the
program that is stored in the computer on a cassette.
The program itself remains in the computer.

The procedure for loading a program that has pre
viously been recorded on a cassette into the computer is
as follows:

* Place the cassette containing the program in the
cassette player, and rewind the tape.

* Type

55

LOAD "PROGRAM"

If the program was saved under a name other than
PROGRAM, then you must use that name. If you just
want to load the first program on a cassette (and this is a
good reason for recording only one program per side
on a cassette), you can type

LOAD ""

* Press the ENTER key on the Amstrad and then press
the PLAY button on the cassette player.

* The message Loading "PROGRAM" Block 1 will
appear while the program is being loaded. The READY
message and cursor will reappear when the program is
loaded.

___________ SUMMARY BOX20___________
Loading and saving programs

LOAD "name"
SAVE "name"

1. The effect of LOAD is to copy the program called
"name" from a cassette tape into the computer.

2. The effect of SAVE is to copy the program in the
computer onto cassette tape under the name "name".

Summary
A BASIC program is a seguence of instructions, and

an instruction is a numbered command, with the
number showing the position of the instruction in the
seguence and the order in which it must be stored and
executed. We have written our first programs by noting
that a program for a particular task can be constructed

56

by placing numbers in front of each of a set of
commands that we know can cause a task to be accom
plished. This must be done in such a way that they
remain in the same order as before. The means pro
vided by the Amstrad for editing text are described.
They are particularly useful when editing or correcting
a program.

By means of an extended example based on writing a
program to produce a letter, we see how extra facilities
are needed to make the program more generally useful
and that, in every case, BASIC provides the facilities we
need. In this natural way, BASIC's facilities for hand
ling data, for repetition and for making decisions are
introduced. After this, we have met many, although by
no means all, of the instructions of BASIC.

Finally, we look at how the cassette player can be
used in conjunction with the Amstrad. It allows us to
store the program that is stored in the computer so that
we do not lose it when the computer is unplugged, as we
would otherwise. It also allows us to load programs that
are recorded on cassette into the computer so that we
have a convenient way to load the programs that we
have previously saved and that we have bought.

57

Chapter 4

Graphics and sound

The Amstrad is well-equipped for producing both
colour graphics and sound. We have already seen a
little of its ability to produce highly detailed colour
graphics, and it can produce a wide range of sounds,
musical and otherwise, through its internal loud
speakers. The Amstrad's BASIC posesses quite a
number of BASIC instructions for graphics and for
sound production. We shall meet some of them and see
how they can be used in this chapter.

GRAPHICS
We have alrealy met some of the commands that are

used in connection with high-resolution graphics. PEN
and PAPER set the foreground and background colours
of a graphics display. PLOT and DRAW are used,
respectively, to position the graphics cursor and to
draw a line from the graphics cursor to a point of
specified distance away.

We shall start by writing a graphics program that can
be adapted easily to draw any shape because it reads a
description of the shape from a DATA statement. By
changing the DATA statement only, the program can
draw any shape at all. The DATA statement gives the
number of lines that have to be drawn to make the
shape, and then the same number of pairs of numbers
each showing where each line must be drawn to. The
program is:

58

10CLS
20 INK 1,26
30 INK 0,3
40 LETC = 0
50 PLOT 150,200
60 READ N
70 READ COL, ROW
80 DRAW COL, ROW
100 LET C = C + 1
110 IF C<NGOTO 70
120 DATA 4,300,200,300,50,150,50,150,200

Under the name C a count is kept of the number of
lines that have been drawn so far, and the program plots
lines repeatedly until the correct number have been
drawn. As it is presented, the program causes a sguare
to be drawn.

This program shows that it is sometimes useful to have
a form of repetition using GOTO for situations in which
the number of repetitions reguired is known in
advance. BASIC provides us with this in the form of the
pair of instructions FOR and NEXT. The advantage of
using this pair of instructions in the appropriate
situation is that it provides a counter that is automati
cally incremented, thereby saving us the trouble of
writing the instructions for it ourselves. When this form
of repetition is used, the instructions to be repeated are
placed between a FOR and a NEXT instruction, and
FOR must be followed by a name under which a counter
can be stored together with the starting and finishing
values for the count. To illustrate this, the previous pro
gram can be rewritten using FOR and NEXT as:

10CLS
20 INK 1,26
30 INK 0,3

59

40 PLOT 150,200
50 READN
60 FOR C = 1 TO N
70 READ COL, ROW
80 DRAW COL, ROW
90 NEXT C
100 DATA 4,300,200,300,50,150,50,150,200

This program has two instructions fewer than the pre
vious one because the instructions for maintaining the
counter are no longer needed.

___________ SUMMARYBOX21 ___________
Fixed numbers of repetitions
FOR name = start TO finish

block of instructions
NEXT name

1 The effect of this instruction pair is to cause 'block of
instructions' to be executed a fixed number of times.

2 A counter is stored under 'name'. It starts with the
value 'start' and is incremented each time the block of
instructions is obeyed. The final repetition is done
with the value 'finish' stored under 'name'.

3 The total number of repetitions is 'finish' — 'start' +1.

So far with the PLOT and DRAW commands we have
used only two numbers to follow them. We can use three
numbers, and in this case the third number will decide
the ink-well colour we use for the line. If we choose the
paper number we will not be able to see what we have
drawn. Another way of looking at this is to say that if we
draw a line using one colour and then draw the same

60

line using the paper colour the line will first be drawn
and then it will disappear. One application of this
'unplotting' is in animation. We can make a shape
appear to move across the screen by plotting it in one
position, unplotting it and then moving the position
across the screen before repeating the process. A
program to do this with our sguare is:

10CLS
20 INK 2,19
30 INK 0,3
40 LET COL = 100
50 PLOT COL, 100
60 DRAW COL, 150,2
70 DRAW COL + 50,150,2
80 DRAW COL + 50,100,2
90 DRAW COL, 100,2
100 DRAW COL, 150,0
110 DRAW COL + 50,150,0
120 DRAW COL + 50,100,0
130 DRAW COL, 100,0
140 LET COL = COL + 1
150 IF COL< 550 GOTO 50

The movement can be speeded up by increasing the
number of columns that the shape moves across the
screen from the one set by line 140 to, say, three by
changing line 140 to:

140 LET COL = COL + 3

The way that we have written the group of four DRAW
instructions twice in succession in almost identical form
seems rather unnecessary. Again, BASIC provides a
means of avoiding this, and of passing work from the
programmer to the computer. By providing the subrou

61

tine facility, BASIC allows us to write a set of instruc
tions as a self-contained unit which can then be called
from a program as often as it is needed. The BASIC
words that are used in this context are GOSUB followed
by a line number to call the subroutine to cause the
computer to return to the main program and resume at
the instruction following the GOSUB. The previous
program can now be rewritten, making use of a subrou
tine starting at line 200 to plot the shape, as:

10CLS
20 INK 2,19
30 INK 0,3
40 LET COL = 100
50 PLOT COL, 100
60 LETF = 2
70 GOSUB 200
80 LETF = 0
90 GOSUB 200
100 LET COL = COL + 1
110 IF COL< 550 GOTO 50
120 END
200 DRAW COL, 150,F
210 DRAW COL + 50,150,F
220 DRAW COL + 50,100,F
230 DRAW COL, 100,F
240 RETURN

We have introduced the END instruction in line 130.
This simply marks the end of the program, and it is
necessary here to prevent the computer from going on
to execute the instructions in the subroutine when it has
completed those in the program. Using a subroutine
makes the program easier to recall than before,
showing more clearly that the repetitive part of the pro
gram positions the cursor, plots a shape, unplots it and

62

then changes the position. The effect of the GOSUB and
RETURN instructions in this program in communicating
between the program and the subroutine is illustrated in
Figure 4.1.

Subroutine

Figure 4.1 Communication between program and
subroutines.

Having seen that a subroutine containing graphics
commands can be used to draw a shape at a specified
position, we can further illustrate the usefulness of the
subroutine by creating patterns based on a single
shape. We have chosen a hexagon as the shape because
it can be used to build some interesting patterns. The
following program calls the subroutine starting at line
500 which can draw a hexagon. It is used once to place a
hexagon in the centre of the screen.

First we must learn another new instruction for draw
ing graphics. You may have tried to follow the shapes
we have drawn and found it a bit difficult because we
were relating everything back to the corner of the
screen. We can make this a lot easier by using the
command DRAWR instead of DRAW. When we used
DRAW we drew a line from our current cursor position

63

to the new position relative to the corner. With
DRAWR we draw a line from our present position to a
number of graphic columns and rows relative to our
present position. This makes it much easier to visualise
what is happening, and thus easier to make up pictures.
If we want to go up or right we can use positive numbers
and if we want to go left or down we can use negative
numbers.

10 CLS
20 INK 1,19
30 INK 0,3
40 PLOT 320,200
50 GOSUB 500
60 END
500 DRAWR 0,-30,1
510 DRAWR 27,-15,1
520 DRAWR 27,15,1
530 DRAWR 0,30,1
540 DRAWR -27,15,1
550 DRAWR -27,-15,1
560 RETURN

Knowing that the subroutine works, we can now draw
a row of hexagons by repeatedly drawing hexagons
across the screen. This can be done by:

10 CLS
20 INK 1,19
30 INK 0,3
40 FOR COL = 1 TO 6
50 PLOT COL‘54,100
60 GOSUB 500
70 NEXT COL
80 END
500 DRAWR 0,-30,1

64

510 DRAWR 27,-15,1
520 DRAWR 27,15,1
530 DRAWR 0,30,1
540 DRAWR -27,15,1
550 DRAWR -27,-15,1
560 RETURN

We can now fill the screen with hexagons to give the
pattern shown in Figure 4.2 by repeatedly plotting rows
of hexagons. The program for this is:

10CLS
20 INK 1,19
30 INK 0,3
40 FOR ROW = 1 TO 6
50 FOR COL = OTO 11
60 PLOT COL*54, ROW‘60
70 GOSUB 500
80 NEXT COL
90 NEXT ROW
100 END
500 DRAWR 0,-30,1
510 DRAWR 27,-15,1
520 DRAWR 27,15,1

65

530 DRAWR 0,30,1
540DRAWR -27,15,1
550 DRAWR -27,-15,1
560 RETURN

In this pattern there are six rows each with 12 hexa
gons, and 72 hexagons are drawn, which means that the
subroutine has been called 72 times. By calling the
subroutine, we have saved ourselves an immence
amount of work: first imagine writing out the six DRAW
instructions for a hexagon 72 times! The pattern is a very
interesting one, and can be seen as alternate rows of
hexagons and diamonds or as rows of interlocking
larger hexagons. The pattern can be amended guite
easily to give the 'honeycomb' pattern shown in Figure
4.3. To create it, we basically need only to displace
alternate rows by a small amount. The program for the
'honeycomb' pattern is:

10CLS
20 INK 1,19
30 INK 0,3
40 FOR ROW = 1 TO 6
50 FOR COL = OTO 11
60PLOTCOL*54 + ROW*27, ROW*45
70 GOSUB 500
80 NEXT COL
90 NEXT ROW
100 END
500 DRAWR 0,-30,1
510 DRAWR 27,-15,1
520 DRAWR 27,15,1
530 DRAWR 0,30,1
540 DRAWR -27,15,1
550 DRAWR -27,-15,1
560 RETURN

66

All these programs follow a very similar pattern, and
although we have numbered them all neatly, they can
all be obtained by starting from the first program for
plotting a single hexagon and inserting or amending
lines. But it is the use of the subroutine that makes the
developments possible.

___________ SUMMARY BOX22___________
The Subroutine

GOSUB line number
RETURN

1 The instruction GOSUB causes the computer to go to
the subroutine starting at the line number Tine
number'.

2 The subroutine must end with the instruction RETURN
which causes the computer to return to the instruction
following GOSUB and to obey that instruction next.

Figure 4.4 shows some patterns that you might care to
create on the Amstrad. You need to identify the pattern
and its constituent shapes, but then the drawing pro
grams will take forms very similar to the ones we have
just written.

67

Figure 4.4 Some patterns to draw.

Still using the same few graphics commands, we can
write an 'artist's program' which allows its user to create
drawings on the screen. We shall write the program so
that it responds to certian keys by drawing a short line in
the direction suggested by the positions of the keys. The
keys to be used are shown as they are situated on the
keyboard in Figure 4.5 and the corresponding direct
ions in which they cause a line to be drawn are shown in
Figure 4.6. In this way, pressing the A key, for example,
when the program is running will cause a line to be
drawn up the screen, and lines can be drawn in direct
ions at any multiple of 45 degrees from this.

We could use an INPUT instruction in the program to
detect which key is being pressed, but this would not
only temporarily halt the program but would also cause

68

Figure 4.5 The keys used by the artist's drawing
program.

Figure 4.6 The directions associated with the keys in
Figure 4.5.

a distraction by displaying its prompt. Instead, we shall
introduce a new command, of the kind that is used in
many computer games, which simply scans the key
board to see if a key is being pressed at the instant that it
is being executed. If a key is being pressed it reports
which it is, and if no key is being pressed it reports that.
The instruction is the INKEY$, and when executed it
gives the single character that corresponds to the key
that is being pressed or, if no key is being pressed, it
gives nothing. It can be used as in

69

LET A$ = INKEY$

to store under the name A$ either the single character
or no charcter.

___________ SUMMARYBOX23___________
Scanning the Keyboard

INKEY$

1 INKEY$ gives the character that corresponds to the
key that is being pressed when it is executed. If no key
is being pressed, it gives nothing.

A description of our program is given in the
flowchart of Figure 4.7. Points at which a decision must
be made are shown by diamonds: these will correspond
to IF - THEN instructions in the program. The program
based on this plan is:

10 CLS
20 INK 0,13
30 INK 1,19
40 PLOT 320,200
50 LET A$ = INKEY$
60 IF A$ = "E" THEN DRAWR 0,1,1: GOTO 50
70 IF A$ = "R" THEN DRAWR 1,1,1: GOTO 50
80 IF A$ = "D" THEN DRAWR 1,0,1: GOTO 50
90 IF A$ = "C" THEN DRAWR 1, -1,1: GOTO 50
100 IF A$ = "X" THEN DRAWR 0, -1,1: GOTO 50
110 IF A$ = "Z" THEN DRAWR - 1, -1,1: GOTO 50
120 IF A$ = "S" THEN DRAWR -1,0,1; GOTO 50
130 IF A$ = "W" THEN DRAWR -1,1,1: GOTO 50
140 GOTO 50

70

Figure 4.7 Flowchart tor artist's drawing program.

This program allows any detailed shape to be drawn
on the screen, but it produces a drawing as one long
trace. This is because we have used 1 as the third
number in all the DRAW instructions. But we can
modify the program so that is can move the cursor with
out drawing if we amend the program slightly so that the
third number can be changed. We choose the P key,
only because it is at the opposite side of the keyboard to
all the other control keys, to make the program switch
between drawing lines and just moving the cursor when
the other control keys are pressed. The amended pro
gram is:

71

10 CLS
20 INK 0,13
30 INK 1,19
40 PLOT 320,200
50 LET F% = 1
60 LET A$ = INKEY$
70 IF A$ = "P" THEN LET F% = 1 - F%: GOTO 60
80 IF A$ = "E" THEN DRAWR 0,l,F%: GOTO 60
90 IF A$ = "R" THEN DRAWR 1,1,F%: GOTO 60
100 IF A$ = "D" THEN DRAWR l,0,F%: GOTO 60
110 IF A$ = "C" THEN DRAWR 1, - 1,F%: GOTO 60
120IF A$ = "X"THEN DRAWR 0, - 1,F%: GOTO 60
130 IF A$ = "Z" THEN DRAWR -1, - 1,F%:

GOTO 60
140 IF A$ = "S" THEN DRAWR -l,0,F%: GOTO 60
150 IF A$ = "W" THEN DRAWR - 1,1,F%:

GOTO 60
160 GOTO 60

Line 70 causes the program to change its mode of
operation when P is pressed by changing the value
stored under F% from 1 to 0 or from 0 to 1. The way in
which it does this is something of a programming 'trick'.
When the value stored under F% is 1, the effect of LET
F% = 1 - F°/o is to store 1 — 1, that is 0, under F. But if
the value stored under F% is 0, the effect of this instruc
tion is to store 1-0, that is 1, under F%. Since we begin
by storing 1 under F% with line 50, each time P is
pressed the value stored under F% swtiches between 1
and 0. In turn this affects all the DRAW commands,
making them switch between plotting in the foreground
colour (visibly) or in the background colour (invisibly).
For this reason the program is also able to unplot, or
erase, parts of the picture that have already been
created.

72

It should also be noted that in both of the artist's draw
ing programs given above, we have placed two
commands after the THEN in the IF - THEN instructions
and that they are separated by a colon. Referring back
to the Summary Box for making decisions will Temind
you that we may place a seguence of commands after
'THEN'. When we do this, the commands must be sepa
rated by a colon. In fact, we can place more than one
command on any program line as long as a colon is used
to separate them. But although this makes the program
listing shorter it also makes it more difficult to read and
is not recommended until a thorough familiarity with
BASIC, and writing programs with it, has been
acguired.

Other instructions for graphics
The Amstrad provides a number of instructions for

graphics apart from those we have met already. They
are given, with their purposes, in the following table. In
this section, we shall examine a few other graphics.

The remaining graphics
instructions

Instructions Purpose of instruction

MOVER

MOVE

ORIGIN

PLOTR

Moves the graphics cursor to a new
location relative to the previous
position.
Moves the graphics cursor to a new
position relative to the origin.
Moves the origin of the graphics
window. Can also be used to set up
a graphics window.
Similar to PLOT but works relative
to the previous position of the
graphics cursor.

73

SYMBOL,
SYMBOL
AFTER
TAG,
TAGOFF

TEST

WINDOW

Allows you to define your own
’ characters rather than just using

, those defined when you switch on.

} Allows text to be written at the
graphics cursor position. TAGOFF
switches this function off.
Reports the colour of the screen at
the current graphics cursor posi
tion.
Sets the size of the Text window.

We have already seen how to draw a square on the
screen. The other common shape used is a circle. To
draw a circle we can use quite simple maths.
The following program will draw a circle on the
screen: —

10CLS
20 FOR X = 1 TO 360
30 DEG
40 PLOT 320,200
50 PLOT 320 + 100*COS(X),200 + 100*SIN(X)
60 NEXT X

This circle has its centre at the middle of the screen
(point 320,200) and a radius of 100. We have told the
Amstrad that we are using degrees not radians.

If we wanted a spiral instead of a circle we should
have to gradually reduce the radius. This can be done
with the following program.

10CLS
15Y = 200
20 FOR X = 1 TO 360
25 IF X/10 = INT(X/10) THEN Y = Y -1

74

30 DEG
40 PLOT 320,200
50 PLOT 320 + Y*COS(X),200 + y*SIN(X)
60 NEXT X
70 IFY>OGOTO 20

This program has introduced a neat trick for making
something happen every so often. The command INT
only gives the whole number part. Thus INT(2.5) will
give 2 while INT(3) will give three. So, in the program
X/10 is only the same as INT(X/10) if X/10 is a whole
number. This will only happen every ten numbers. The
program has therefore told the computer to take one
away from Y if X is divisible by ten.

TEST is used to examine a dot on the screen. It must
be given the column and the row of the dot. It gives a
number, which is the ink colour of the dot. It is very
useful in games programs, for example to determine
whether a missile strikes a target. We shall illustrate its
use with a program that displays a random scattering of
potential targets and a missile launcher, and then
launches a missile when the F key is pressed. If the mis
sile strikes a target then an explosion results, but if it
passes harmlessly off the screen the program simply
ends. A flowchart for this program is given in Figure
4.8.

The program generates the random positions for the
targets by using RND. This generates at random a
number from 0 up to, but not including, 1. Multiplying it
by, say, 200 gives a random number from 0 up to, but
not including, 200. For a row number, we need a whole
number, that is an interger, since it does not make sense
to talk about row ten-and-a-half. BASIC, as we have
seen, provides us with INT for finding the whole number
part of a number and INT (2.5), for example is 2. In this
way, we can generate at random a whole number from 0

75

Figure 4.8 Flowchart for missile launcher program.

to 199 for use as a row number by INT(RND(l)*200). In
similar fashion, if we only want row numbers from 50 to
189, we can generate them at random with
INT(RND(l)*140) +50. The program for this is:

10 CLS
20 INK 1,19
30 INK 0,3
40 PLOT 10,200
50 DRAWR 0,-10,1
60 DRAWR 10,5,1
70 DRAWR -10,5,1
80 FOR K = 1 TO 15

76

90 X = INT(RND(l)*440) + 40
100 Y = INT(RND(l)*300) + 50
110 TAG
115 PLOT X,Y
120 PRINT CHR$(250);
130 TAGOFF
135 NEXT K
140 ROW = 195
150 COL = 30
160 IF INKEY$ = "F" THEN GOTO 180
170 GOTO 160
180 IF TEST (COL +1, ROW) = 1 THEN GOTO 300
190 PLOT COL,ROW
210 COL = COL + 1
220 IF COL> 480 THEN STOP
230 GOTO 180
300 INK 1,3,19: INK 0,19,3
310 TAG
320 PRINT "X";
330 TAGOFF
340 END

The only new instruction in the program is STOP in
220, which when executed causes the computer to stop
the execution of the program.

SOUND
The Amstrad can produce sounds that are very musi

cal and flexible. Its sound generator has three channels,
each of which can produce either a tone (a single note)
or noise. Any channel or combination of channels can
be activated. This means that it can play single notes,
two-note and three-note chords,and combinations of
notes and noise. The duration and volume of notes can
be controlled, as can their envelope, that is, their attack
— sustain — release pattern. With these facilities, the

77

Amstrad is a considerable music generator able to
synthesise a wide range of sounds and to simulate
various musical instruments and we will present a few
programs using the SOUND instruction.

451 402 338 301 268

Figure 4.9 The notes of one octave on a piano key
board and their values for use with SOUND.

When the SOUND command is used, it must be foll
owed by between two and seven numbers. These give,
in this order, Channel status, Tone period, Duration,
Volume, Volume envelope, Tone envelope and Noise
period. We shall only use 1 for the channel number.

Before going any further with generating sound on
your Amstrad it is worth pausing to consider these seven
numbers and the effects they can produce.

Channel status. The Amstrad has three different
voices, so that it can play three notes at the same time.
The first number after the SOUND command tells the
computer which voice you are going to use. In addition,
you can tell the Amstrad to use more than one voice, to
hold, or to let two different voices rendezvous with each
other. The numbers needed and their effects are shown
in the following table.

78

Number Effect

1 Send a sound to channel A
2 Send a sound to channel B
4 Send a sound to channel C
8 Rendezvous with channel A
16 Rendezvous with channel B
32 Rendezvous with channel C
64 Hold
128 Flush

To obtain an effect, just use the appropriate number.
If the effect is to be a combination of the above, then add
the numbers together. A couple of examples might be
helpful.

4 = Send the following sound to channel C
3 = Send the following sound to channels A and B

(1+2)
97 = Send the following sound to channel A, rendez

vous with channel C and hold (1 -I- 32 + 64)

Tone period. The second number decides the fre-
guency of the note. This number must be between 0 and
4095. For the technically minded, the freqency is given
by:

Frequency = 125000/period

The above two numbers must follow any sound
command. The remaining numbers can be left out, and
if they are the default number, shown below, will be
chosen by the Amstrad.

79

Duration. This tells the computer how long each note
is to be, in hundredths of a second. If you do not put the
number in the note will be 1/5 of a second long.

Volume. How loud is the note to be. Normally any
number between 0 and 7, with 4 chosen as the default.
The higher the number the louder the note.

Volume envelope. An envelope is something
wrapped round a letter. In the same way this number
wraps around your note. Notes usually change their
volume as they play. This command allows you to have a
note which starts off soft, gets louder, and then fades
away. If you include a volume envelope number then
the volume numbers can be between 0 and 15 with 12 as
the default.

The envelope number must be between 0 and 15 and
refers to an envelope you have made using the ENV
command, explained below.

Tone envelope. Much the same as the volume
envelope, but instead of changing the volume, this
changes the tone as the note plays. This is what makes
different instruments sound different. The number must
be between 0 and 15 and refers to an envelope you have
described using the command ENT, explained below.

Noise period. Specifies the noise to be added to the
sound, unless you want a pure note. The number must
be between 0 and 15, with the lowest number being no
sound, and also being the default number.

ENV. This command tells the Amstrad to make an
envelope for your volume, part of the sound command.
It takes the following form

ENV N,P1,Q1,R1,P2,Q2,R2,P3,Q3,R3,P4/Q4,R4,P5,
Q5,R5

80

The first number between 1 and 15 is the envelope
number and is the same number as in your Volume
Envelope section of the sound command.
There then follow up to 5 sections, as shown. You do not
have to use all the sections but each has the following
form.

Pl As you start the note you must go in steps, from
quiet to loud and back again. This is just like
going up the stairs. This first number tells the
Amstrad which step you are on. Number from 0
to 127.

QI How big is each step? It could jump straight to
the top (to loud) or be a very small step, followed
by a larger one. Step sizes can be from — 128 to
+ 127.

R1 How long do you want to wait on each step? A
number from 0 to 255.

ENT. This command is very like the ENT command,
but for tone not volume. The command takes the form:

ENT S,T1,V1,W1,T2,V2,W2,T3,V3,W3,T4,V4,W4,
T5,V5,W5

The sections are also similar to the ENV command as
follows:

S Envelope number from 1 to 15
T Step number from 0 to 239
V Step size — from — 128 to +127
W Pause time from 0 to 255

81

We will not be going deeply into the envelope
commands, but if you wish to make your Amstrad sound
like different instruments, it will be important to
experiment with different envelopes. Try some at
random, and every time you obtain a sound which you
want to keep, make a note of all the envelope numbers
you have used. One of the best places to learn good
envelope commands from is games printed out in maga
zines. It is good practice to build up your own library of
envelopes.

Now that we have seen the basic parts of the sound
command, we will try and write some music to play on
the Amstrad.

The freguency of middle C is 261.626. We can pro
duce a note with a frequency of almost this by using a
period of 478. The difference is 0.046 per cent and I
doubt if many people could detect that difference!

The scale of middle C is given in the following table

C 478
D 426
E 379
F 358
G 319
A 284
B 253
C 239

The programs presented below take, perhaps sur
prisingly, the same forms as the graphics programs
given earlier. First we can write a program to play a
short sequence of notes, all of which are in the same
octave giving:

82

10 READ M
20 FOR K = 1 TO M
30 READ N
40 SOUND 1,N,40
50 NEXT K
60 DATA 8,478,426,379,358,319,284,253,239

To change the tune we need only change the data at
line 60.

60 DATA 11,319,319,319,284,253,284,
319,253,284,284,319

However, all the notes are of the same length, and we
should add a command to tell the Amstrad to alter the
length. This can be added to the data command. In
addition, you will have noticed that the first three and
some later notes are slurred. We can overcome this
problem by adding the instruction 'for one hundredth of
a second play nothing'!

The finished program is:

10 READ M
20FORK= 1TOM
30 READ N,D
40 SOUND 1,N,D
50 NEXT K
60 DATA 14,319,50,0,1,319,50,0,1,319,50,284,50,

253,100,284,100,319,50,253,50,284,50,0,1,
284,50,319,200

In English, the data line reads:

Play note 319 for 50/100 seconds
Play note 0 for 1/100 seconds
Play note 319 for 50/100 seconds
Play note 0 for 1/100 seconds, etc.

83

Figure 4.10 The keys on the Amstrad's keyboard used
by the music-playing program.

We can convert a part of the Amstrad's keyboard to a
stand-in for a piano keyboard so that we can play tunes
on the computer by entering an appropriate program.
We have chosen keys from the bottom two rows of the
keyboard as shown in Figure 4.10 to play the notes of
one octave. Referring to Figure 4.9 will show that the
keys used start at C and have positions that correspond
to those of the keys on a piano. The program will have
the same 'shape' as the artist's drawing program, the
flowchart for which is shown in Figure 4.7. The program
is:

10 LET A$ = INKEY$
20 if A$ = "C" THEN SOUND 1,478
30 if A$ = "F" THEN SOUND 1,451
40 if A$ = "V" THEN SOUND 1,426
50 if A$ = "G" THEN SOUND 1,402
60 if A$ = ”B" THEN SOUND 1,379
70 if A$ = "N" THEN SOUND 1,358
80 if A$ = "J" THEN SOUND 1,338
90 if A$ = "M" THEN SOUND 1,319
100 if A$ = "K" THEN SOUND 1,301
110 if A$ = THEN SOUND 1,284

84

120 if A$ = "L" THEN SOUND 1,268
130 if A$ = THEN SOUND 1,253
140 GOTO 10

For the first time it is important whether you use capi
tal letters or lower case. The computer treats them dif
ferently, and will not accept that 'A' is the same as 'a'. If
you type the above program as shown then make sure
when you RUN it that you press CAPS LOCK.

Summary
The Amstrad has considerable facilities for graphics

and sound. These are explained and the Amstrad's
capabilities in these areas are explored in writing pro
grams that incorporate them. While these programs are
being developed, the opportunity is taken to introduce
more of the features of BASIC as they are needed. In
particular, the subroutine is introduced. This is some
thing that is particularly important when writing
lengthy programs as it allows them to be divided into
parts which can be written separately and which can
impose some structure on the programs. With the
graphics instructions that have been introduced for
creating shapes it is possible to create displays to almost
any specification.

The instructions for creating sounds are also
explained. There are fewer of them than for graphics,
and some knowledge of music theory is necessary to
appreciate to the full the ways in which they can be
used. Programs that use these instructions are pre
sented for playing music. Interestingly, they call on
program structures which are the same as those used by
the graphics programs.

85

Chapter 5

Applications for the
Amstrad

There are plenty of programs available for the Amstrad
that are ready to run and to make the computer do some
thing useful for you. The most notable supplier of pro
grams for the Amstrad is Amsoft. A lot of the programs
that can be bought are for games, but in this chapter we
are more concerned with programs that are for profit
than those that are for pleasure. Amsoft supplies a pro
gram for word processing called Amsword, and a
spreadsheet program called Amscalc. With a word pro
cessing program the Amstrad can be used to produce
documents, a database program allows it to store
information so that any item or items can be retrieved
with ease, even when there is a great deal stored, and a
spreadsheet is for planning or, indeed, any application
where information is presented in tabular form. In this
chapter we shall look at these three applications in gen
eral and examine the uses to which they can be put.

Word processing
When 'Amsword' is loaded into the computer from its

cassette, the Amstrad is converted to a word processor.

At this stage the word processor is ready to use, and
the user familiar with word processing will probably
have little difficulty in proceeding to explore Ams-
word's capabilities. But we shall take time out to explain
what word processing is all about. We shall also explain

86

many of the special terms that are used in word process
ing. This will enable those who are either new to word
processing or with a limited experience of it to come to
Amsword with a general appreciation of what it can do,
and with a knowledge to the relevant vocabulary, to
guide their expectations of how to use Amsword to
advantage. It is worth reiterating the point that the act of
loading a word processing program has converted the
Amstrad from a general-purpose computer to a
specialist word processor.

Word processing in general
Word processing is making use of the capabilities of a

computer to store, process and print words. The
computer has to do this in a way that satisfies any writer
in applications ranging from writing a letter to creating
a fair sized document to writing a book. Although the
computer itself will still be performing much the same
basic operations as when it handles numbers or creates
graphics, loading a word processing program into it
gives it the ability to recognise and handle words, sen
tences, paragraphs and pages in any text that it is given.
It can then handle any of these as distinct units.

The computer does not understand the text that it is
given in the way that a person would, and it would be
overestimating the ability of a word processing pro
gram to think that it gave the computer this power. Such
a misunderstanding could also lead to expecting more
from a word processing program than it could ever
deliver. A word processor simply provides the
computer with some rules that allow it to recognise
words, sentences and the other grammatical units. One
rule, as an example, is that a number of consecutive
letters followed by a space constitute a word, with the
space indicating the end of the word. A second rule is
that several words followed by a full stop make up a sen

87

fence, although the word processor must also be aware
that a question mark and an exclamation mark can ter
minate a sentence as well as a full stop.

A word processing program allows its users to type at
the keyboard of a computer in just the same way as a
typist does at a typewriter. The text that is typed is auto
matically stored in the computer's memory at the same
time as it is displayed on the computer's screen.
Because the text has been stored it is possible for the
computer to process or manipulate it in any of a variety
of ways. The particular ways that are available depend
on the word processor that is used, but there are certain
operations that are common to almost all of them.

A word processor automatically arranges for the text
that is typed to be neatly laid out, both on its screen and
when it is printed. The precise form of the layout can be
prescribed by the user. Among the factors affecting the
layout that the user can select, or change, are the length
of the lines of text, the positions of the right and left mar
gins, and the presentation at the beginning of a new
paragraph. Many word processors display the text on
their screens in the prescribed way as the text is typed.
Later, when it is printed, using a printer attached to the
computer, it will appear in exactly the same form. This
means that the document being produced can be
checked to ensure that it is perfect while it is on the
computer's screen and before it is committed to paper.
It can then be printed for the first time with the confi
dence of knowing that it is correct. To print the docu
ment, all that is necessary is to give the appropriate
command to the word processor.

With other word processors, the text is not displayed
exactly as it will be printed. This may be because the
number of characters that can be displayed on one line
of the screen is less that the number that is printed on a
line on paper. Special characters, such as those to mark

88

the end of a paragraph, may be shown on the screen as
special symbols although they will not be printed on
paper when the document is printed: they will give a
particular effect — in this case to cause a new para
graph to begin. In the end it does not really matter how a
word processor displays its text, because the user will
adapt to the way that it works and learn to take advan
tage of all its facilites.

If the user finds mistakes in the text when reading it on
the screen, it is obvious that he or she must be able to
correct them. Word processors allow corrections to be
made to the text that has been entered by deleting,
replacing or inserting letters so that simple errors such
as spelling mistakes can be corrected. But they also
allow whole stocks of text, such as a paragraph, to be
inserted, deleted or even to be moved from one place in
a document to another.

It is evident that text must always be typed, to enter it,
before it can be handled by a word processor. The
better the user is at typing, the faster documents can be
entered and the more use will be made of the word pro
cessor. These seemingly obvious points are made to
bring out the importance of the Amstrad having a
'proper' keyboard. Without it, touch typing would be
impossible. As a second matter, although we are accus
tomed to thinking of documents as being printed on
paper, when using a word processor there may be no
need to use paper at all. Because the Amstrad can
communicate via its EXPANSION socket a document
can be passed from one computer to another in elec
tronic form. Documents can egually well be exchanged
after recording them on. cassettes. Either way, docu
ments can be passed to another computer for storage
and display so that their contents can be communicated
and read without committing them to paper at all.

89

By these means, the Amstrad together with Amsword
provides the ability to produce perfectly correct docu
ments and the means to communicate them, perhaps as
electronic mail, without the need for paper.

Who needs a word processor?
Word processing makes the production of documents

easier in various ways. It is interesting, and informative,
to consider who can benefit by using a word processor
and to examine the ways in which they can use a word
processor to advantage.

The rapid and simple production of perfect docu
ments is one major advantage of word processing that
benefits all its users. All the corrections and amend
ments to a document that are needed can be made
before it is ever printed. Word processors can also pro
duce refinements that enhance the appearance of a
document such as underlining words, placing headings
centrally on a line, and placing the columns of a table in
neat alignment. A letter can be arranged after it has
been typed at the word processor, for example, to make
it fit onto one page rather than running on to a second
page that contains just one line to be followed by a
signature. The word processor can make the
rearrangement automatically if it is told to make the
length of the lines in the document a little greater than
they were previously. Anyone writing letters can bene
fit from this, but there are further benefits that can help
many other groups of users, including students writing
essays, authors writing books and businessmen produc
ing reports and publicity releases.

A second very real benefit can be obtained by anyone
producing quantities of letters that may all be slightly
different, but which consist in the main of standard par
agraphs drawn from a fixed repertoire. With the stand
ard paragraphs stored by the word processor, any of

90

these letters can be produced simply by calling up the
necessary paragraphs in the correct order and making
a tew insertions, such as the recipient's name, to perso
nalise it. There is no longer any need to type each letter
individually. The insertions can be made using the edit
ing facilities of the word processor. Documents of this
kind have to be produced routinely by, for example,
lawyers, estate agents and insurance salesman.

The authors of magazine articles and books, and
students who have to write essays, are among those
familiar with the task of creating a polished text after
producing several draft versions. This process involves
writing a first draft, crossing out parts of it, inserting
others perhaps by cutting and pasting bits of paper, and
then rewriting the whole if it becomes too untidy or
unreadable. This gives a second draft on which the
whole process may be repeated to give a further draft,
and so on. This can be very time-consuming, and if
each draft is typed afresh, there is a danger of introduc
ing errors into the parts that are already satisfactory.
With a word processor, amending, revising and
polishing a draft are all much easier. There is never any
need to retype an entire document as the word process
or's editing facilities are sufficient to allow one version
to be converted to the next. The new version is always
displayed at once. In this way, the current version of the
document is always available and perfectly legible, but
previous versions can be saved in case the editing is not
done properly or its results are not satisfactory.

It will take anyone who is accustomed to working with
hand-written drafts a little time to become accustomed
to using a word processor instead. But the almost uni
versal experience of those who have made the transition
is that to use a word processor is a much more rapid and
convenient way of creating a finished document.

91

A word processing session
We now describe a typical word processing session

with a view to illustrating how it proceeds in practice. At
the same time, we shall introduce some of the termino
logy of word processing.

On the assumption that you have some text to turn into
a document, once your word processor is ready to
accept text you can sit down and start to type it. The
words that you type will appear on the screen as you
type them. They are also being stored in the computer's
memory. Nothing unexpected happens until a line on
the screen is filled. Then the first word that makes the
line too long to fit on the screen is automatically placed
at the beginning of the next line. This is known as word
wrap. It is worth stressing that there is no need to press
ENTER at the end of each line as the eguivalent of a
carriage return on a typewriter: in fact, it is wrong to do
so. The word processor manages the creation of the
lines itself. At the same time as the new line is being
started, some word processors can adjust the previous
line so that its final word finishes exactly at the end of the
line. This is done by inserting extra spaces to push the
end of the line across to the required position, and it
gives the document a neat vertical margin at the right of
the page as well as at the left. The process is known as
justification.

Continuing to type gives successive lines, all of which
are treated in the same way. When the end of a para
graph is reached, ENTER should be pressed at the end
of its final sentence. This causes the word processor
automatically to create the gap between paragraphs
and to indent the beginning of the next paragraph. This
is part of the formatting of every document that is
carried out by a word processor, as are the positioning
of the right and left margins and the line spacing. At all
times the document is displayed on the screen (although

92

not necessarily exactly in the form which it will be
printed, as we have already explained) so that the user
can see what he has typed.

The word processor provides a particular format for
the documents it produces by default. If the user prefers
a different format, any aspect of it can be changed after
giving the appropriate command to the. word
processor.

When sufficient text has been entered, the word pro
cessor may indicate that the end of a page has been
reached and start on a new one. The pages of the final
document can be numbered: they can also be given a
header , that is, a line of text to be placed at the top of
each page as in the running title seen at the top of the
page in many book. Sometimes it is also possible to give
each page a hooter , which is the same as a header
except that it appears at the bottom of each page.

If words can be underlined or emboldened, to
emphasise them, this is usually done in one of two ways.
Either a special symbol is typed before and after the
words in question, or a special mode is entered before
the words are typed and is left afterwards.

On reaching the end of a document, or even after
typing a certain amount of it, you will want to go back
and check it to ensure that everything has been typed
correctly, to see that there are no spelling mistakes, and
that everything is to your liking. The process of correc
ting a document is known as editing, and before you can
do it you must give the editing command. Editing is one
area where word processing really comes into its own
and shows to considerable advantage over using a
typewriter.

If your document can be displayed on the screen in its
entirety during editing, then you first move the cursor to
the position on the screen where a change is needed by
using the cursor movement keys. Then letters can be

93

deleted, inserted or replaced at this position by press
ing the key that initiates the necessary action. Whole
sentences and paragraphs can be deleted or moved just
as easily. A display at the top of the screen provides a
reminder of the letters that can be used during editing
for all the different purposes. As soon as any editing
operation is completed, the word processor re- formats
the text to take account of the changes that have been
made.

If the document is too large to fit on the screen, the
screen acts as a window through which a part of the
document can be seen. Pressing the appropriate keys
causes the screen window to move up and down the
document or, looking at it in another way, causes the
document to scroll up and down beneath the screen.
Since a part of a document can only be edited if it is
being displayed, a large document is edited by first
bringing the part to be changed into the display area
and then proceding in the way just described. The posi
tion of the cursor along a line is usually indicated or a
ruler line, which is a line that appears above the dis
played text that also shows that character positions on a
line, the positions of the margins and the tab stops.

When you have finished editing a document, you will
want to save it or to print it, or even to do both. Either is
done by giving the appropriate command. This is done
by returning to the main command menu, or list of
commands, and issuing one of the commands displayed
there. A document can be saved on cassette or disc
depending on whether you have a cassette player or
disc drive attached to the computer for storage pur
poses. The document can be printed as long as a printer
is attached to the computer.

There are several other commands that can be given
to Amsword or, indeed, to any other word processor.
You will probably find with any word processor that you

94

do not need all the commands that are provided. The
ones mentioned already and a few others that satisfy
your particular needs will usually be sufficient. But it is
a good idea to be aware of all the commands that your
word processor possesses, for if you are not you may not
know that your word processor is perfectly capable of
doing something that you need, especially when a new
reguirement emerges.
A glossary of word processing terms
This section provides a brief summary of the key terms
encountered in word processing. Most of the terms were
introduced in the previous section, but some others
have been added for completeness. Not all the terms
relate to features provided by Amsword, but then Ams
word is not the only word processor available for the
Amstrad, and it may be that you need facilities that
Amsword does not have.

Back-up. A spare copy of a document that is
recorded in case anything untoward should happen to
the current document or if the results of editing the
document prove unsatisfactory.

Centring. Automatically placing a heading or a line
of text symmetrically in the centre of a line.

Command. Issued when in a special command
mode, it tells the word processor to carry out one of the
functions of which it is capable.

Deleting. Removing letters or words from the text.
File. The form in which a document is stored on a

cassette or disc.
Footer. A fixed line of text appearing at the bottom of

each page of a document.
Format. The way in which the text of a document is to

be arranged by the word processor.
Header. A fixed line of text appearing at the top of

each page of a document.

95

Help facility. Provides information on how to use the
word processor and its commands so that assistance is
always immediately available and there is no need to
refer to a manual.

Insertion. The ability to insert text at any point in a
document.

Justification. Justified text is arranged evenly at both
the left and the right margins.

Line spacing. The vertical spacing between lines.
Typing is usually double spaced.

Marker. A mark placed in the text which will not show
when the document is printed and which serves to
identify a block of text so that it can be moved, for
example.

Menu. A list of items, such as commands, from which
one may be selected.

Page break. Indicates to a printer that it must start to
print on a new sheet of paper.

Ruler. A line usually placed above the displayed text
on which margin and tab settings are shown, and with
the aid of which they can be changed. It also shows the
position of the cursor along a line.

Search and replace. A useful editing facility with the
aid of which the word processor can search for occur
rences of a specified word or phrase and, optionally
replace them by another one.

Tabulation. Moving along a line to a fixed position
(the tab stop). It is useful for setting out tables or in any
work where vertical alignment is needed.

Word wrap. Placing words that will not fit at the end
of one line at the beginning of the next one.

Summary
This section provides a general introduction to word
processing. Although there is a good deal more to word
processing than has been covered here, it should pro

96

vide sufficient information for the reader to acquire an
appreciation of the capabilities of word processing, and
to proceed with confidence. A really detailed account
of Amsword is, of course, provided with the program.
Databases
A database is an organised and integrated collection of
data. It is also rather more than this, for a collection of
data has no value unless we can make some use of it.
This means that the data in a database must be
organised in such a way as to allow us to do the things
that we want with it. Operations typical of those that we
might want to carry out with a collection of data are to
select particular items of data from it according to some
criterion, to search it for all the items that meet a given
condition, to update items, and to sort the items into
some special order. If a database if organised in this
way, then from a collection of raw data we can extract
useful, and even valuable information.

The data in a database is organised, essentially, by
ensuring that all the items are stored in the same struc
tured fashion. If possible, this should take advantage of
any relationships between different items of data. A
database becomes integrated by ensuring that all items
are stored in the same way and also by avoiding any
duplication of items. This allows access to any item of
data in the database in a natural way by using its rela
tions to other items.

Anyone can benefit from a database program, for we
all have the need to store information and to retrieve it,
whether in keeping records, running a business or look
ing after our finances. Typical personal uses are to keep
the details of a record collection, a stamp collection or a
collection of programs for the computer. Keeping
records of all the financial transactions relating to one's
annual tax return would also be possible. For edu
cational purposes it could be used to keep an account of
all the work that is due to be handed in, and of all the

97

topics taught on a particular syllabus. In a small busi
ness, or for that matter a large one, it could be used for
stock control by recording the quantities of each item
held in stock and updating them as necessary.

The ways in which the items in the database may need
to be accessed will be broadly the same in all these
cases, although in some instances particular operations
may be needed more frequently than others. When
using a database to hold the details of a record collec
tion, a typical requirement might be to display all the
details of a particular record, or to find the shelf location
of a particular record. When used for stock control, the
updating of the quantities held will be a common
requirement, but if the levels at which goods should be
re-orderd are also held in the database, then re
ordering can take place without fail if a stock level can
be compared with the re-order level. A businessman
who keeps the names and addresses of his customers in a
database can print this information on envelopes to
address them automatically. If other information is
recorded about each customer, then it is posssible to
select a particular group. By including their ages, all
those under 30 can be selected for a special offer. By
including the balance of their account it could be
ensured that no more goods were supplied to any cus
tomers in the red.

From this discussion we can see that a database pro
gram has two distinct parts. The first must allow the data
to be entered. The second must allow the user to exam
ine and retrieve the data in any way that may be
required. In the entry phase the database program
should allow its users to structure their data in a way that
is suited to the application. For the second phase the
program should supply the facilities to enable the user
to carry out all the necessary operations on the stored
data. These operations include selection, searching

98

and sorting as we have seen and commands for these
activities should be provided.

As the final point in this section, we can illustrate how
a database gives considerable advantages over a col
lection of information recorded in a conventional
fashion. Almost every house in the country contains a
database, although it is printed on paper, in the form of
the details of the week's television and radio program
mes. This is a database in the sense that it is an
organised and integrated collection of data about radio
and television programmes. From the printed record it
is easy to find the programme that will be broadcast at a
particular time, not quite so easy to find at what time a
given programme will start, and less easy still to find all
the programmes of a particular kind that will be broad
cast during the week and when they begin. But if the
programme information were all stored in a database
program, rather than being printed on paper, each of
these selections would be equally easy to find. By giving
the appropriate command to the database program it
would retrieve the reguired information straight away.

Filing cards and a database
We begin by examining the way that information is

recorded on filing cards and then recovered from a
card box full of filing cards. This is because the way that
a database program is used is entirely analagous to
using a filing card system. Writing the information on
the cards corresponds to storing the data in the data
base program. Retrieving information by examining
the cards corresponds to recovering information from
the database program. The idea is that by using the
database program on a computer, the recovery of the
information is made easier and quicker, particularly if
there is a great deal of it.

99

To deal with a concrete example, suppose that we
decide to create a file containing the week's television
programmes, with the details of each individual pro
gramme recorded on a file card. We must first decide
how to record the information about a programme on a
file card. The details that we are likely to want are its
title, its type, the day it is shown, the starting time and
the channel on which it is being shown. We can now
design a file card. When we have filled in a card for
every programme, we shall have a box full of cards that
records the week's programmes.

The information to be stored has been structured by
deciding carefully which details to record. It is clear
that other items can be placed on each card just as easily
as the ones we have chosen, and that an item on each
card can be crossed out if we are no longer interested in
it. But the time spent on getting the design for the cards
right in the first place is well spent. It is also obvious that
a file card on which the details of a stamp in a stamp
collection were recorded would not be stored in the
same box as the cards containing television programme
details. A separate box would be kept for these so that it
could be filled with similar cards for each stamp and
eventually record the entire stamp collection.

When a card for every television programme has
been filled in and our box for them is full we have com
pleted the data entry stage and completed our data
base. Now it can be examined to recover any
information we want about the week's television pro
grammes. We can find what is being shown at 8 o'clock
on Tuesday evening by flicking through all the cards
and noting those that give a match to our requirements
under DAY and TIME. We shall find more than one card
like this because there is more than one channel broad
casting programmes. We can find the time at which the
news is shown by flicking through the cards to find

100

'news' under TYPE and then reading the entry under
TIME. We can find what is on now by looking for an
entry under TIME that matches the time now and
reading the entry under TITLE. We can find how many
sports programmes there are by counting the cards with
'sport' under TYPE. We could even decide to sort the
cards into an order that suited us, perhaps with the pro
gramme titles in alphabetical order.

These operations, and particularly the sorting, will
take a considerable length of time. At the least, we must
rifle through every card, while re-ordering a large pack
of cards to sort them into a new order could be a very
lengthy affair. Although a computer database will oper
ate in essentially the same way when it carries out the
same operations, the computer's speed of operation
ensures that everything is done much more guickly. In
addition, once the data is entered, it is the computer
that does all the work rather than us.

When using a database program, it first allows us to
design, as the eguivalent of a file card, a record. After
this, the details of each record can be entered as the
equivalent of filling in file cards. Each item of informa
tion within a record is known as a field. It corresponds to
a single entry on a file card. When a record is entered, it
is stored in the computer's memory. A collection of
records stored in this way is called a file. A file is
equivalent to a box of completed cards. A file can be
stored permanently on cassette or disc. A database pro
gram can be used to create any number of files, so that
we could create one file for television programmes,
another for stamps and as many others as we needed.

Summary
This section has introduced the idea of a database and

described the uses to which it can be put. All in all, this

101

section provides a general introduction to databases
which shows in general terms how an individual's needs
for storing and retrieving information can be met.

Spreadsheets and 'Amscalc'
By running a spreadsheet program, a computer pro

vides its users with the electronic eguivalent of pencil,
sheets of paper and a calculator. A spreadsheet can be
used for preparing tables of numbers, and for perform
ing calculations on them, so that the effects of changing
one value or another in the tables can be investigated.
In this sense, a spreadsheet is an 'electronic worksheet'.
The advantages it brings when compared to pencil and
paper methods are speed, convenience and the ability
to handle large amounts of data with ease. By allowing
the rapid and direct investigation of many alternatives
that can occur in a given situation, particularly in a
complex one, the spreadsheet becomes an ideal tool for
planning and forecasting.

The user of a spreadsheet program is initially pre
sented with a blank sheet. The sheet provides a number
of positions at which entries can be made, and these are
arranged in rows and columns. Each position in this
tabular arrangement is known as a 'cell', and our entry
is made in a cell by moving the cursor onto that cell,
typing the entry and pressing ENTER to show that it is
complete. The entries can be numbers or text, and there
is one other possibility, as we shall see. But by placing
numbers or text in the appropriate cells a table such as
the following can be prepared. Text provides headings
and labels for the table and numbers the entries in the
table itself.

102

A small table
Quarterly profits

Sales Costs Profit

First guarter 1500 1000 500
Second guarter 1600 800 800
Third quarter 1400 800 600
Fourth quarter 2000 1100 900

Although a spreadsheet allows tables like this to be
prepared rapidly and conveniently, this only begins to
hint at its capabilities. What makes it much more useful
is that a formula can be associated with any cell. When
this is done the spreadsheet does not display the for
mula: it calculates a value from the formula and displays
that. This ability helps even in preparing a table as small
as ours, for the entries in the third column are the differ
ences of those in columns one and two. So in this case
the table could also be prepared by entering the for
mula 'cell in column 1 — cell in column 2' each time the
cursor is positioned on the cell in the third column. We
could also display the annual profit in a cell somewhere
by placing the formula for the sum of the entries in
column three in that cell.

When our table is prepared by placing numbers in
the third column, we have a once-and-for-all table that
serves to display the figures but can do nothing more.
But if the entries in column three are formulae we have a
much more useful table for when the number in one of
the cells in columns one and two is changed, the entry in
column three having this cell in its formula changes cor
respondingly. So will the total profit cell. Whatever
figures are placed in the table for sales and costs, the

103

spreadsheet will automatically calculate and update the
display of the quarterly profit, and of the total profit.

All spreadsheets have this property of re-calculating
and updating the values of formulae whenever a change
is made to a cell that is involved in a formula. This means
not only that calculations are left to the spreadsheet,
which can do them more reliably than us, but also that
the spreadsheet can rapidly display any and all changes
in a complex situation, whereas we might neglect some
of them.

When our table is prepared by using formulae, it can
be used to present the quarterly figures of any company
in any year. All that is necessary is to enter the neces
sary figures in columns one and two. In this way it is a
general model for a quarterly table. It can also be used
to show the effects that result from having different
figures in the columns where data must be entered. This
illustrates, in a small way, that a spreadsheet is ideal for
investigating the effects of changing data values. It will
provide immediate answers to 'what if ?' questions about
the data that are of the kind that need to be answered
when planning ahead to prepare budgets, make fore
casts and plan investment.

In fact, by using a spreadsheet, models of a wide
range of activities can be created, including a com
pany's operations, a proposed enterprise and an invest
ment portfolio. The ways in which future activities may
proceed can then be examined quantitatively, and
coherent plans can be prepared based on an analysis of
the possible occurrences. Creating a model requires a
knowledge of the initial data items that are needed, but
its essence lies in deriving the formulae to represent the
situation. As an illustration, when modelling a business
we might expect the fixed costs of the business and its
income from sales to be provided as data items and, cor
respondingly, to be entered as data items on a spread

104

sheet. The overall costs of the business may be given by
the costs associated with making the items that have
been sold plus the fixed costs. The overall costs can then
be calculated from a formula, and can be entered on the
spreadsheet in that way. The formula would give the
overall costs as some fraction of the income from sales
plus the fixed costs. The fixed costs, despite being
calculated from a formula, can in turn be incorporated
in a further formula for the profit.

When modelling any complex situation, the spread
sheet will have to support a very large table. It is impos
sible to display a large sheet on the screen in its entirety
and in this circumstance the screen acts as a 'window'
through which a part of the sheet can be seen. By
moving the window, any part of the sheet can be seen.

An example of spreadsheet usage
In this section, we give an example to show how a

spreadsheet can be used. It is guite a small scale
example because it is not practical to develop a large
one in a book. A spreadsheet really comes into its own
with a large sheet, but a small example can illustrate the
basic ideas behind constructing and using one.

The example deals with a personal investment portfo
lio. Anyone who has shares in, say, three companies
can create the following work sheet to show their
holding in each company, its current price and the cur
rent value of the holding. The holding is a number of
shares, the price is expressed in pence and the value of
the holding is in pounds.

This table can be entered as numbers and text only,
but since column three depends on columns one and
two it is preferable to enter formulae in column three.
There is no alternative to entering the numbers in
columns one and two, for the holdings and the prices
represent the basic data.

105

Company Holding Price Value

Sainsbury 200 276 552
ICI 500 602 3010
Amersham 250 268 670

Total 4232

When a spreadsheet program presents its initial
blank sheet, the columns are normally labelled with
numbers and the rows with letters. The rows are
labelled, from the top downwards, by A A to AZ, then
BA to BZ and so on for as long as necessary towards ZZ.
Similarly, the columns are labelled from left to right by
1,2,3 and so on. The user can fix the size of the sheet to
be used by giving the number of rows and columns for
it. Any cell can be identified by giving its row letters
and column number. The cell at the top left is cell AA1,
and the cell to its right is AA2. We can position our table
in the following way:

AA
1
Company

2
Holding

3
Price

4
Value

AB Sainsbury 200 276 552
AC ICI 500 602 3010
AD Amersham 250 268 670
AE
AF Total 4232

To do this, we position the cursor on each cell in turn
and type the appropriate text, number or formula.

106

Since the value of a holding is obtained by multiplying
the number of shares held by the price per share, to give
it in pence, and then dividing by 100, to convert it to
pounds, we have the formula we need for the column
headed 'Value'. In cell AB4 we must put the formula
AB2 * AB3/100, in AC4 the formula AC2 * AC3/100
and in AD4 the formula AD2 * AD3/100. Since these
formulae are all very similar, and this occurrence is
typical in spreadsheet usage, there is usually a facility
for copying them, to save typing each individually. The
total is obtained by placing the formula AB4 + AC4 +
AD4 in cell AF4.

This worksheet can be extended to allow us to keep
track of the gains and losses on our share holding. By
adding in column 5 a new set of entries headed 'Cost' we
can show the original cost of each share (in pence). This
will have to be entered as data. But then we can use a
formula to show the gain in column 6. The formulae we
need are, for AB6, AB4 - (AB2 * AB5)/100, for AC6,
AC4 - (AC2 * AC5)/100, and for AD6, AD4 - (AD2
* AD5)/100. Again, the formulae show a pattern. We
can show the total gain in AF6 with the formula AB6 +
AC6 + AD6. The resulting table is:

1 2 3 4 5 6
AA Company Hold- Price Value Cost Gain

ing

AB Sainsbury 200 276 552 251 50
AC ICI 500 602 3010 599 15
AD Amersham 250 268 670 242 65
AE
AF Total 4232 130

107

Now, as the share price changes or as our holding in a
company changes, all we have to do is change the rel
evant data, and the spreadsheet automatically recalcu
lates the other values in the table that alter in
conseguence. Of course, a completed sheet can be
saved to be reloaded, into the computer later, saving us
the trouble of entering it all over again.

Summary
This section provides an introduction to spreadsheets

and their applications in general. A spreadsheet is an
'electronic worksheet' that can be used to display
tables, and to investigate the conseguences of changing
any entries in the table. By allowing the investigation of
various alternatives in a given situation, it is an ideal
tool for planning and forecasting. Although Amscalc
does not possess all the refinements of other spread
sheets it does provide the basic spreadsheet functions.

108

INDEX

Amscalc 86 Disk drive 30
Amsword 86 DRAW 28
Applications 4 DRAWR 63
Arithmetic Duration 80

expression 18
E EDIT 41

Back-up 95 Editing 40
BASIC 2 ENT 81
BORDER 25 ENTER 14

ENV 80
CAPS 11 Envelope 80
Cassette 54 ESC 26
Centring 95 Expansion 29
Channel 78
Character F File 95
String 16 Footer 93
Circle 74 Format 95
CLS 15 FOR-NEXT 59
Colour 23
Command 17 G GOSUB 62
Communication 2 GOTO 49
COPY 14 Graphics 26
CTRL 14
Cursor 10 H Header 95

Database 97 I IF—THEN 53
DEL 14 INK 24
Delete 95 INKEY$ 69
Disk 30 INPUT 43

109

Insertion 96
Instruction 33
INT 75

J Joystick 31
Justification 92

K Keyboard 11

L LET 15
LIST 36
LOAD 56
LOCATE 27

M Marker 96
MODE 22
MOVE 73
MOVER 73

N NEW 37

O Origin 73

P PAPER 21
PEN 21
Pixel 28
PLOT 28
PLOTR 73
PRINT 20
Printer 31
Process 2
Program 33 Word processing 3

R READ
Ready
RETURN
RND
Ruler
RUN

45
10
63
75
96
26

S SAVE 55
Screen 2
Scroll 94
SHIFT 11
SOUND 77
Spiral 74
Spreadsheet 102
STOP 77
Store 2
String 16
Subroutine 62
Symbol 74
Syntax error 15

T Tabulation 96
TAG 74
TAGOFF 74
Tape 54
TEST 74
Tone 79

U User ports 31

V Volume 80

W Window 74

no

USING YOUR AMSTRAD CPC464
by Garry Marshall

The aim of this book is to introduce the
newcomer to the use of the Amstrad

CPC464 computer. It is divided logically
into three main areas: first, an introduction
to the hardware; second an introduction
to BASIC; and third an introduction to the
software. The reader can learn how to use

the Amstrad CPC464, quickly and easily
and at the same time discover its unique

capabilities.

Features of the hardware
Inside the computer

Expanding the computer
Features of Amstrad’s BASIC

Graphics
Sound
Colour

Word processing on the Amstrad
Databases on the Amstrad

Spreadsheets on the Amstrad

£3.95
N]ARewtech Production isbn □-oei-[i3aaoo-b

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

9

978009938800500395

mu iiiiiiiiiiiiiiiiii ilium

§

§

<3

•u ex4*
I

Q

ARROW

MÉMOIRE ÉCRITE

https://acpc.me/

Document numérisé
avec amour par :

	Using your Amstrad CPC 464 (Garry_MARSHALL)
	Contents
	List of Figures
	Foreword
	About the Author
	1. Introduction to the Amstrad
	Communicating with the Amstrad

	What the Amstrad can do

	Applications for the Amstrad

	Should you write your own programs or buy them?

	Summary

	2. Getting started
	The keyboard

	Giving commands to the Amstrad

	More commands

	Expanding the computer

	Summary

	3. Writing simple BASIC programs
	First programs

	Editing

	EDIT

	COPY

	More BASIC instructions

	Making it easier to write programs

	Summary

	4. Graphics and sound
	GRAPHICS
	Other instructions for graphics

	The remaining graphics instructions

	SOUND

	Summary

	5. Applications for the Amstrad
	Word processing

	Word processing in general

	Who needs a word processor?

	A word processing session

	Summary

	Filing cards and a database

	Summary

	Spreadsheets and 'Amscalc'

	An example of spreadsheet usage

	Summary

	Index
	Scan by ACME (https://acpc.me)

