
W ADVANCED
PROGRAMMING

kTECHNIQUES

► nN THE 11111111111111111111 ■*
AM STR AD CPC 464

- -KEITH-HOOK- -

ADVANCED PROGRAMMING
TECHNIQUES

ON THE AMSTRAD CPC 464

ADVANCED PROGRAMMING

TECHNIQUES
ON THE AMSTRAD CPC 464

KEITH HOOK

Phoenix Publishing Associates Ltd
BUSHEY, HERTFORDSHIRE.

Copyright © Keith Hook 1985
All rights reserved

First published in Great Britain in 1985 by

PHOENIX PUBLISHING ASSOCIATES LTD.
14, VERNON ROAD, BUSHEY, HERTS. WD2 2JL

ISBN 0 9465 7632 7

AMSTRAD and AMSOFT are trademarks of Amstrad Consumer
Electronics PLC
ZEN ASSEMBLER is a trademark of AVALON SOFTWARE/KUMA
COMPUTERS LTD

Printed in Great Britain by
Garden City Press, Letchworth

Cover Design by
Ivor Claydon Graphics

Typesetting by First Page Ltd, Watford.
Production by Denis Gibney Graphics, Chesham

CONTENTS

CHAPTER PAGE

Introduction ... 7

1 Basic BASIC .. 9

2 Representing Memory Locations 17

3 Strings and Things ... 42

4 Array! Array! ... 61

5 Pokeing Around ... 89

6 A Choice Remark ... 112

7 Sound Advice ... 119

8 Amstrad Sprites ... 140

9 Bits and Pieces ... 158

Appendix One:

Useful system jump block routines 164

Appendix Two:

Inks and luminance value 172

To Patricia, my wife,
for her undying support.

7

INTRODUCTION

The Amstrad CPC 464 has been designed to allow the
programmer access to an excellent and powerful pro
gramming language: Locomotive Basic.
This book is written in the hope that it will be of use to
programmers who want to get the most from their
computers . In essence this book is meant to be a
cookbook of ideas developed around Amstrad’s Basic
interpreter.

This book is not designed to teach the novice all aspects
of Basic programming but supplement an assumed level
of knowledge gleaned from the instruction manual.

If you have at least a nodding aquaintance with Basic,
this book will allow you to progress through the numer
ous examples, to an advanced level of programming by
showing you how to interface simple machine code
routines to your Basic programs. Don’t worry if you don’t
understand all the instructions that are described - jump
in at the deep end! The best way to learn is by practical
example; the understanding will follow later.

Within the pages of this book you will find a considerable
amount of reference material that you may choose to
study now, or at a later date, and you won’t need a degree
in computer studies to apply your new found knowledge.

The material in this book will show you how to trap the
powerful routines lying deep within the Amstrad’s ROM.
The majority of these routines can be harnessed from

8

Basic, and will allow you to produce programs that are a
mixture of machine code and Basic. This hybrid way of
programming the Amstrad will enable you to do things
from basic you thought were impossible - Load a
machine code program into an Array and run the
array, or give the CPC 464 8 sprites to control. This
book will show you how.

There is nothing difficult or mysterious about the meth
ods suggested. Of course, there are rules, and some of
you will not yet have attempted to take the giant step
beyond Basic but with a little application all things are
possible. I reiterate, jump in with both feet !

Although it is not the intention of this book to teach
Assembly language, it will give you a good insight, and I
hope, a push toward investigating a completely new
world of programming.

In order to take advantage of the computer’s operating
system you must have a good knowledge of how the
computer operates, and therefore some of you may think
the opening chapters a little elementary. However, I
urge you to read them, you never know, you may even
discover you don’t know it all !

9

Chapter One

Basic BASIC

I am not going to insult your intelligence by starting this
book with long explanations on how to wire up the plug,
or connect the monitor - if you’ve bought the computer
there is no doubt you are already using it. However, to
really get to grips with what we are about, you need to
understand Basic, it’s commands, and how the
Operating System works.

Basic programs are composed of Basic Lines, and
Basic Lines are made up from Basic Statements. The
CPC464 allows you to program with Multi-statement
Basic Lines. A statement is a command that tells the
computer to carry out some specific action. The Amstrad
contains, within it’s ROM [Read Only Memory], a
Basic Interpreter which translates [interprets] each
Basic statement into Machine Code instructions. The
Z.80 processor used by the CPC464 can perform these
machine code instructions in millionths of a second
which means that Basic statements are interpreted very
rapidly.

Basic can never match the execution speeds of machine
code programs. On the other hand, writing and
debugging machine code is not easy. Even the smallest
program can take hours to de-bug, and the slightest error
can send your program on a journey to nowhere and
leave you staring at a blank screen. To efficiently de-bug
machine language routines it is sometimes necessary
to play Computer with your code, testing each section
with pen and paper until the area of the mistake is
located.

10

With most programs a happy medium can be struck. The
bulk of the program can be written in Basic with
machine code subroutines taking care of the program
sections that need extra speed. For instance, the speed of
a sort routine can be increased by a factor of 1000 by
writing the actual sort in machine code. The latter is
only one example: graphics,animation, and sound can
also be greatly enhanced by this method of program
ming. You can also perform many more functions by
writing sections of machine code to interface with your
Basic program - the Amstrad doesn’t support sprites
but by the time you finish this book you will be using
them on your computer!

Overview of Locomotive Basic

You can input into your computer in two ways: Program
Mode and Direct Mode.

In the Direct Mode you can enter commands direct from
the keyboard, and as soon as you press the ENTER key
the command will be executed immediately.

CLS:X=3:Y=X+1:PRINT Y <ENTER>

If you have typed the above line correctly the screen
should now be displaying the answer 4. Examples of
other direct commands are:

RUN,NEW,AUTO.

The Programming Mode differs in that commands are
entered into the computer prefixed by a Line Number.
Pressing the ENTER key inserts the line into the
current program without executing the instructions.

11

AUTO 10,10 <ENTER>

10 CLS

20 X=3:Y=X+1

30 PRINT Y

[Direct Model

If you now RUN the program you will see that the end
result is exactly the same as in the Direct Mode with
the screen displaying the answer.

When you typed the Direct Command, RUN, Basic
automatically stepped through the program lines per
forming each task as it was encountered. Basic always
executes a program line number by line number in the
correct order except when a GOTO or GOSUB causes it
to branch to another higher or lower line number. The
program will continue to run until it either runs out of
line numbers, or an END statement is encountered
which will cause the program to terminate.

10 CLS

20 INPUT " NAME PLEASE ";N$

30 PRINT "HELLO ";N$

40 INPUT "DO YOU LIKE YOUR CPC464 ";AN$

50 IF AN$ = "YES" THEN GOTO 80

60 PRINT "OH DEAR ! I’M SORRY ABOUT THAT ";N$

70 GOSUB 120: GOTO 100

80 PRINT "I’M VERY PLEASED YOU DO ! "

90 PRINT "BYE “;N$: GOSUB 120

12

100 CLS

110 END

119 REM DELAY LOOP TO STOP SCREEN CLEARING TOO FAST

120 FOR I = 1 TO 500

130 NEXT

140 RETURN

This short program illustrates program flow within a
computer. PROGRAMS FLOW FROM START TO
FINISH WITH STATEMENT LINES NUMBERED
IN ASCENDING ORDER. It is possible to alter the
flow of the program as we have done in line 50 by testing
if the answer [AN$] to the question was YES. If the
answer was positive program flow was re-directed to line
80 and skipped over lines 60 & 70.

In the previous program we have used lines numbered in
multiples of 10. Why 10 ? Well, we could have used any
line numbering, 1,2,3,4 or 1,3,5,7, it is, however, advis
able to keep line numbering simple and uncluttered. If
you use multiples of 10 you can always add further lines
if you find it necessary. After adding lines to your
program the line numbers will not be in even increments
but on the Amstrad you can always ‘tidy’ the program by
using the RENUM function. Go on, try it. Type RENUM
100,10,5 <ENTER>. Have you noticed that when you
now list the program the line numbers have changed to
100,105,110.... and are incremented in multiples of 5,
and the program starts with line number 100 ?

You will use within your programs two types of
operands: CONSTANTS and VARIABLES.

13

Constants are set values that never change. The value
of Pi is a constant. There are two types of constants:
Integer or non-decimal figures like 1,12,100,1111, and
Real constants like 3.333, 1.00789.

Variables are exactly what the name implies - they are
variable. Variables are simply names that the program
uses to set aside memory locations for storing numbers
and character strings. The Amstrad allows you to specify
a variable name up to a length of 40 characters. Exam
ples of variable names are X,Y,A5,BA,CAGE,NAME.
Locomotive Basic also allows the programmer to specify
the type of variable at the start of the program:
INTEGER [%],REAL [!], and STRING [$].

Integer Variables hold numbers in the range -32768 to
32767 and can be created by DEFINT statement, or
suffixed with % as in X%.

Real Variables are created using DEFREAL or cre
ated within the program by !. Examples of Real Vari
ables are: 1.35E+38 [1.35*10 + 38], 6.35E'20 [6.35*1O'20].
The number range of this type of variable is large
enough to suffice even the most hardened number
cruncher. [1.7E+38 down to 2.9E‘39].

Real Numbers use up five bytes of memory space. This
observation is important. The default assignment for
all variables is REAL. You should get into the habit of
DEFINING your variables at the very start of your
program - unless you are going to use variables that
require a high degree of accuracy then use DEFINT.
E.g.

DEFINT A,C,E-N,P-Z

14

The above example will result in all variables with the
exception of B,D,O being DEFined as Integer. The
computer can operate many times faster on integers,
and so your programs will RUN FASTER!

Another type of variable is the String Variable. In a
nutshell they are simply strings of alphabetical
,numerical, or special characters that have some
significance within the computer. Strings are donated
by placing the Dollar sign [$] after the variable name:
E$=”ME”:L$=”YOU”:X$=CHR$(13)..

The CPC464 is capable of manipulating strings in many
ways and the ability to handle strings provides one of the
more powerful functions of the computer.

Another type of variable used within Basic is the
Subscripted Variable. This is a very powerful, and
important variable that will allow you to keep ordered
lists, or store and access data in a random fashion. As
you become more proficient in your programming you
will find yourself using this type of variable more and
more.

A typical example of a subscripted variable is: X(l)
where X is the variable with a subscript of one.
Another example is: X(6) meaning X subscript 6. All
subscripted variables that carry the same name e.g.
A(1),A(2).... A(20) etc constitute an Array.

Arrays are created by DIMensioning them at the start
of your program - this is not strictly true, but it is good
programming practice to dimension arrays at the start of
your program - e.g DIM X(12) would dimension an
array from X(0) through to X(12). The subject of arrays
is too important to dismiss in a few short lines, and we
shall discuss it fully in a later Chapter.

15

Locomotive basic includes a complete set of built in
Functions. These functions can perform certain spe
cialised computations: RANDOM and RND allow
generation of random numbers - essential for games and
simulation. Mathematical functions include: FIX
(truncation), CINT(integer), INT(whole number),
SIN(Sine of angle) ,CREAL(converts to real num
ber).

Error checking in programs is taken care of by
ERROR,ERR,ERL, ON ERROR GOTO, and
RESUME. Used in concert these commands let you test
your error trapping routines by simulating an error
condition with ERROR while ON ERROR GOTO sets
up the line number of your error routine, and RESUME,
resumes program execution after an error has occurred.

The computer includes a Line Editor which is invoked
with the EDIT command. The Editor allows each
individual line to be called up, the cursor positioned
within the line, and characters can then be removed,
corrected or inserted. A COPY facility further enhances
the Edit Mode by allowing the characters under the
Copy Cursor to be copied, and inserted at the Edit
Cursor position. TRON and TROFF (Trace On,Trace
Off), turn the TRACE facility on, or off. TRON displays
each line number on the screen as it is executed, thus
allowing you to examine program flow. You can test this
for yourself by giving the direct command >TRON
<ENTER>. Now RUN program number 2. Answer the
prompts with ”Yes” then re-RUN the program, but this
time answer the prompt with ”No”.

Did you notice how the program flow was redirected
when you ran the program a second time ? TRON is a
very valuable debugging aid when you have a large
program in memory, and it doesn’t respond as you
expected it to.

16

STOP allows you to insert a Break Point, and stop
program execution at any point. After STOP you can
examine the contents of variables,arrays etc., while
CONT will continue program execution after the STOP,
providing the program has not been altered.

CLEAR sets all variables to zero, and all strings to ” ”
[null]. Arrays are also erased, and all loops are
abandoned.

NEW deals a death blow to any resident Basic program,
and wipes it from memory then re-initialises the Basic
Interpreter.

17

Chapter Two

REPRESENTING MEMORY
LOCATIONS

In this chapter we are going to consider the subject of
decimal, binary, and hexidecimal numbers, and how
they are stored in the Amstrad computer. No! Don’t skip
this section - the subject is far easier to understand than
you might think. A little time spent learning the ground
rules will be rewarded a hundred fold in your later
attempts at programming.

BINARY NUMBERS

A memory location in the Amstrad computer has an
“address” - the address can be any integer from 0 through
to 65535. Memory locations store data and commands
that are used by the computer to RUN your program.
However, even though you may be dealing with decimal
numbers within your program, the computer can only
operate with binary numbers - all your decimal and
hexidecimal numbers are converted (internally) into
binary before being stored in the computer’s memory.

These binary numbers are known as machine code
instructions. Each of these instructions is actually a set
of binary bits arranged in a certain order which repre
sent a state of ON [1] or OFF [0]. The computer
recognises the ON\OFF patterns and acts accordingly.

18

If you understand how decimal,hexidecimal, and binary
numbers interact you will be capable of writing more
efficient programs, and performing operations from
Basic that are not mentioned in the manual. E.g. Bit
testing, or compacting data, to name but two.

One memory location can store 8-binary digits. One
binary digit is called a bit , and 8 bits make up one
byte.

ONE MEMORY LOCATION = 8 BITS = 1 BYTE

When counting in decimal we use the digits 0 to 9. To
carry on counting after 9 we must go back to 0 and carry
a 1 into the “Tens” column, and so on thereafter.

We know that 152 = 1 x 100 + 5 x 10 + 2 x 1, and we can
also write 152 in it’s expanded form by expressing it as,
1 x 102 + 5 x 101 + 1 x 10°, think back to your school
days: any number raised to the power of zero [10°]
= 1.

The binary system uses only digits 0 & 1. When we count
in binary the same rules apply as in the decimal system,
but this time, after counting to 1 we go back to 0 and
carry 1 into the next column left. The binary number
0111 can be written as

[2 x 23 + [2 x 1] + 1 or 1 x 22 + 1 x 2‘ + 1 x 2° =7

In binary, each position represents a power of 2 rather
than a power of 10.

1011 = 1 x 2’ + 0 x 2’ + 1 x 21 + 1 x 2°
= 8 + 0 + 2 +1= 111O

19

The 8 binary digits (bits) are numbered 0 to 7 from right
to left. If we now examine the notation of one byte, you
will see how easy it is to calculate the equivalent decimal
number using this positional notation.

Positional notation ==> 27 2“ 2" 2* 2’ 22 2* 2°

Binary Number ====== -=> : i : i1 1 1110 11: o : : o 11Illii i : ! 1 :
Zk Zk Zk Zk Zk Zk Zk

Bit Number-------------- = ==> 7 6 5 4 3 2 1 0

The above binary number in decimal10 =

1 x 2’ + 1 x 2* + 0 x 2’ + 0 x 2* + 0 x 2’ * 1 x 22 + 1 x 2‘ + 1

= [2 x 23 7 times + [2 x 21 6 times + 2 x 2 + 2 + 1

= 128 + 64 + 4 + 2 + 1 = 199

You can see quite clearly from the above example that as
you move to the next bit position left, the previous value
doubles.....

POSITIONAL VALUE ====>
BIT NUMBER ===========>

128 64 32 16 8 4 2 1
7 6 5 4 3 2 1 0

If all the positional values are added together, we find
that one byte can hold a maximum value of 255 or 1111
1111.

Positional notation can be extended to two or more bytes.
When two bytes (16 bits) are used in this way, much
larger numbers can be represented.

20

Table 2.1
TABLE OF VALUES FOR TWO BYTE BINARY
NOTATION

DECIMAL BINARY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

254 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
256 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1024 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

24576 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
24577 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

32000 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

You will notice in table 2.1 we only use 15 bits which
allows a maximum value of 32767 to be stored in two
bytes - the reason for this anomaly will be discussed a
little later in this chapter. This method of storing
numbers is known as integer format. With integers,
you are not allowed to use numbers greater than 32767.
Test it for yourself by typing in the following short
program.

10 CLS

20 DEFINT I ’ I IS NOW AN INTEGER VARIABLE

30 INPUT " INPUT ANY NUMBER I

40 PRINT I

50 GOTO 30

21

Run the program and try answering the prompt with
different values for I. Now try giving I a value greater
than 32767. What happened? The computer responded
with O/V ERROR meaning that you tried to assign a
number to integer I that was out of range.

Table 2.2

POWERS OF 2

2° = 1 2° = 256

21 = 2 2* = 512

22 = 4 2XO = 1024

23 = 8 2n = 2048

2* = IS 212 = 4096

2= = 32 213 = 8192

2® = 64 21*4 = 16384

27 = 128 2XO = 32768

Terminology:

It was once fashionable to compare binary digits with
light bulbs or electric switches where 1 represented the
switch being set to the on position, and 0 represented the
switch being reset to the off position. This terminology
is still used today - if a bit is 1 we say the bit is set, and if
a bit is 0 we say the bit is reset.

22

We shall now be dealing with three number systems:
Binary,Decimal,and Hexidecimal. To distinguish
between the three systems we shall use the following
subcripts: binaryB , decimalD, hexidecimalH- From now
on, if you see 32456D you will know the number is
decimal,and AC00H is hexidecimal.

BINARY ARITHMETIC

Binary addition and multiplication are very easy
operations to understand. As there are only two digits (0
& 1) to deal with in binary, you only have four per
mutations to learn for addition, and four for multipli
cation.

Addition

0 + 0 = 0 : 0+1 = 1 : 1+0=1 : 1 + 1 = 10

0x0 = 0 : 0x1=0 : 1x0 = 0 : 1 x 1 = 1

From the above you can
remember is 1 +1 = 0 and

see that the
carry 1.

only rule to

Carry line 11 1 0

15o = 1 1 1 1

6d = 0 1 1 0

Answer 21» 10 10 1

23

Method: 0 + 1 = 1, one goes in the answer. 1 + 1 = 10,
put 0 in answer line and carry 1. 1 + 1 = 10 + carry 1 =
11, put 1 in the answer and carry 1. 1 + 0 - 1 + carry =
10, put 0 in answer and carry 1. Put carry in answer line.

Binary addition table

■
a + ! 0 1 ;

a
a o : 0 1 !
a a 1
a a a

1 i : i io :

Multiplication

Multiplication only consists of adding a value to itself a
given number of times:- 4x3 = 4 + 4 + 4 = 12:6x5 = 6
+ 6 + 6 + 6 + 6 = 30

Let’s take a look at binary multiplication and you will
see that a couple of interesting facts emerge.

Binary multiplication Table

24

Mui tipi icand 1

Multiplier 0

0

1 0

1 0 1

0 0 0 0

Product 0 111

010 = 10D

110 = 6D

0 0 0 Partial answer

10

0 " 11

10 = 60d

Fact 1: Whenever a 1 appears in the multiplier, the
multiplicand is copied into the partial answer column. If
an 0 appears in the multiplier, the multiplicand is not
copied.

Fact 2: On each step the partial answer is shifted one
place to the left - even if the multiplier contains an 0.

Fact 2 provides us with a quick method of multiplying
binary numbers for powers of 2 (2,4,8,16 etc).

2x2=4 2 = 0000 0010 shifted one place left = 0000 0100 = 4

2xB=2x2x2 2 = 0000 0010 shifted two places left = 0000 1000 = 8

Binary division

Binary division is simplicity itself as you can see at a
glance if one number will divide into another. Division
can also be performed by successive subtraction until a
negative remainder is encountered. Division is the
inverse of multiplication, so an easy way of dividing
with multiples of 2 is to use the inverse of Fact 2, i.e.
shift one place right.

25

8/4=2..4=2x2 so shift 2 places right

8d = 0000 1000

shifted right once = 0000 0100 = 4D

shifted right twice = 0000 0010 = 2D

LOGICAL OPERATIONS

An often neglected feature of the computer is its ability
to perform logical operations. Amstrad’s Basic instruc
tion set is very powerful and provides a full set of logical
operations that can be called on from Basic.

In Boolean Algebra there can be only two answers, or
states: TRUE [1] and FALSE [0]. If the result of a
logical operation is true the computer sets the byte to all
ones. If the result is false the 8 bits are reset to zeros.

Logical operations are not hard to grasp, after all, we use
the AND statement frequently within our Basic
programs.

10 IF X = 3 AND Y = 1 THEN GOTO 30 ELSE GOTO 100

Whenever you program the computer with an IF,
THEN, ELSE statement you are actually using a logical
expression.

In the previous example if X = 3 and Y = 1 then the
condition is true and the program will jump to line 30.
Any other values in X and Y will result in the program
branching to line 100.

Logical expressions in the form: IF G THEN GOTO 100
are also allowed in Amstrad Basic. Whenever G<>0 the

26

program will always jump to line 100. IF G AND 16 is
also allowed - this very useful shorthand will save a lot of
typing.

The use of AND,OR, and NOT is not restricted to simple
relational expressions as mentioned above.
AND,OR,and NOT can also be used for Boolean oper
ations, bit manipulation, and bit comparision.

NOT

The NOT expression forms the complement of the num
ber by inverting each bit of the byte.

NOT 12 => = -13

NOT -2 => = 1

NOT 0 => = -1

NOT 0 ======> 0000 0000

1111 1111 = -1

AND

The AND operation is used to mask out certain bits of a
byte.

27

12 AND 4 => = 4

0000 1100 = 12d

AND 0000 0100 = 4d

0000 0100 = 4d

25 AND 12 => = 8d

0001 1001 = 25d

AND 0000 1100 = 12d

0000 1000 = 8O

4 AND 2 => = 0D

0000 0100 = 4d

AND 0000 0010 = 2d

0000 0000 = On

You can test the above result for yourself using Basic.

PRINT 4 AND < ENTER)-

28

OR

The OR operation is frequently used to set certain bits
without affecting other bits of the byte(s).

4 OR 2 => =6

0000 0100 = 4d

OR 0000 0010 = 2d

0000 0110 = 6d

-1 OR -2 => = -1

XOR (Exclusive OR)

XOR is often used to set

3 OR 3 => = o

4 OR 2 => = 6

1111 1111 = -1D

OR 1111 1110 = -2d

ini nil = -Id

byte to zero.

0000 0100 = 4d

XOR 0000 0010 = 2d

0000 0110 = 6d

29

Table 2.3
LOGICAL OPERATIONS ON BITS

NOT ! 0 1
: i o

AND ! 0 1
0 ! 0 0
1 ! 0 1

OR ! 0 1
0 ! 0 1
1 ! 1 1

XQR_1 0 1
o : o’ 1

1 ! 1 0

Table 2.4
LOGICAL OPERATIONS

NOT TRUE

NOT FALSE

= FALSE

= TRUE

TRUE AND TRUE = TRUE

TRUE AND FALSE = FALSE

FALSE AND TRUE = FALSE

FALSE ANS FALSE = FALSE

TRUE OR TRUE = TRUE

TRUE OR FALSE = TRUE

FALSE OR TRUE = TRUE

FALSE OR FALSE = FALSE

TRUE XOR TRUE = FALSE

TRUE XOR FALSE = TRUE

FALSE XOR TRUE = TRUE

FALSE OR FALSE = FALSE

30

DECIMAL TO BINARY

It is sometimes necessary to convert from decimal to
binary. The process is simply a matter of repeatedly
dividing by 2 and storing the remainder in a special
column.

Convert 26 to binary

26 remainder = 0.......................

13 remainder = 1

6 remainder = 0.......... :

o remai nders = 1 : :

1:... Most significant digit

110 10

The division is continued until we get a 0 or a 1 as the
final answer. The binary number is obtained by placing
the final result in the left most column follwed by the
remainders read from bottom to top. Easy isn’t it ?

If you are unfamiliar with the binary system Listing
One will help you to see how binary numbers relate to
decimal values.

LISTING ONE:
1 MODE IsPAPER O:CLS ' BOOLEAN BIT SETTING

10 WINDOW #1,8,30,3,3

20 WINDOW #2,8,34,5,5

30 WINDOW #3,8,34,7,7

31

40 WINDOW #4,8,34,8,8

50 LOCATE #1,1,1

60 CLS#1:INPUT#1,"INPUT YOUR NUMBER";A

70 LOCATE #2,1,1

80 PEN#2,2:INK 2,5:PRINT#2,"Y0UR NUMBER = ";A

30 LOCATE #3,1,1:PEN#3,5:INK 5,24

100 PRINT #3,"BIT 01 234567"

110 LOCATE #4,6,1:PEN#4,6

120 FOR 1= 0 TO 7

130 IF A AND 2~I THEN PRINT#4,"1 ELSE PRINT#4,"0

140 NEXT

150 GOTO 50

HEXIDECIMAL NUMBERS

Once you have learned the rudiments of the binary
system, hexidecimal numbers are not difficult. In
hexidecimal we need the digits 0 to 15. Normal convent
ions substitute A B C D E F for the digits 10 to 15. In
this notation, the decimal number 13 becomes DH.

Hexidecimal numbers allow us to manipulate binary
numbers in a more manageable fashion. Large binary
numbers look similar to each other and spotting the
difference between 11110101 00101110 and 1110101
00101010 in a list of binary numbers is not easy.
Consider the default address of the Amstrad’s screen. In
decimal this address is 49152D, and in binary, 1100 0000
0000 0000. In hexidecimal the address is C000H.

32

It is obvious from this example that the easiest number
to remember is the hexidecimal form.

Two HEX (short for hexidecimal) digits make up one
byte (8 bits), and one hex digit makes up 4 bits (often
called a nibble). By splitting our binary numbers into
groups of 4 it is relatively simple to convert them to
hexidecimal notation.

Table 2.5

HEXIDECIMAL CODING

BINARY I DECIMAL ! HEX

0000 ! 0 : o
0001 ! 1 : 1
0010 : 2 : 2
0011 : 3 : 3
0100 ! 4 ! 4
0101 ! 5 : 5
0110 : 6 : 6
0111 ! 7 : 7

1000 ! 8 : 8
1001 ! 9 : 9
1010 : io : a
1011 : n : b
1100 ; 12 : c
1101 : 13 : d
1110 : 14 : e
1111 ! 15 : f

33

Let’s now take a look at the binary number 1110 1100
0100 1101 = 60493d If you look at the hex values in
table 2.5 you can see how to convert the value to hex by
equating each set of 4 bits to the equivalent hex digit.

E C 4 D

1110 1100 0100 1101

= 163 x
= 60493d

14 + 162 x 12 + 161 x 4 + 13

Hexidecimal addition

Addition with hexidecimal numbers is very similar to
adding decimal numbers, except that we are counting to
16 before carrying 1 into the next column left.

100
ACOIh

1FC3„

...Carry line.......... ... 1110
DACB,
2BB0,

CBC4hAnswer................. , .. 1067B,

To help you with your hexidecimal addition, take a look
at Table 2.6. If you want to add CH to BH look up C in the
left-hand column and move over the columns of figures
until you find the intersection with B in the top column,
and you will find the answer is 17H- If you were actually
adding these two digits, you would put 7 in the answer
line and 1 in the carry line.

APOA-2

34

Table 2.6
HEXIDECIMAL ADDITION

ii ■nmeonto>iocDvicncnAtdN)H*o n

II
II ■n m o n w 3> 10 CD vl CD Ul A CD bd »— o

1 fl
1 O II

II 1 ii
II 1 ii
II FA 1 ii
II o -n m e n CD 3> to CD vl CD cn A Cd to 1 »-* ii
II 1 ii
II 1 ii
II F* FA ii ii
II F* o •n m o n CD 5> tO CD vj CD cn A Cd bd 1 to ii
II ii ii
II ii ii
II F* FA FA n ii
II h) FA o m CD n CO > tO CD Vl CD cn A to ii to ii
II n ii
II ii ii

1 F* FA FA FA 1 ii
1 CO N) FA o •n m CD rj CO > tO CD Vj cn tn A ii A ii

II ii ii
1 ii ii

II F* FA FA FA FA ii ii
1 A w K) FA o •n m CD n CO > <0 CD VI CD cn ii cn ii

II ii ii
1 ii ii
1 F* FA FA FA FA >-» ii ii
1 tn A co hO FA o ■n m CD O CO > to CD vl CD n cn ii

II ii n
II ii ii

1 F* FA FA F* FA w H* ii ii
1 cn cn A co to o ■n m CD n CO > co CD vl ii v| ii
1 ii ii

II ii ii
1 F* FA FA FA FA ii ii
1 xj CH U1 A co bd >-> O -n m CD o co > tO CD ii 00
1 ii n
1 ii ii
1 F* FA FA FA FA i-* t-* >-* >-• ii ii
1 CO x| cn Ul A tD bd >-* o •n m o o co 3> to ii

It
to ii

II1
1

II
II

II
II

1 F* FA FA FA FA H i-* II II
1 uO 03 x| 01 cn A CO bo ►-* o •n m e n CO > II

II
> II

11
1

II
II

II
II

1 F* FA FA FA FA >-* ►-* II II
1 3> U3 co XI 01 Cn A CO bO o •n m CD n co II

1
co II

11
1

II
II

II
II

1 FA FA FA FA FA H* >-* ►-» >-» II II
1 co > CO co XI CD tn A CD bO >-» o ■n m o o II n II
1 II II
1 II II
1 F* FA FA FA F* H* >-* H* II II
1 n w 3> co co vj CD cn A Cd bd H* o •n m co II o II
1 II II
1 II II
1 F* FA F* FA FA >-k H* H* H* H ►-» II II
1 u n co > u3 CD Vj CD cn A to bD h* o m II m II
1 II II
1 II II
1 FA FA FA FA FA »-» i-* II II
1 m o n co 3> tO CD v| CD cn A to bd o •n II •n II

35

Let us now consider how the Amstrad actually stores the
numbers in it’s memory.

All Z.80 based computers store their numbers in what is
termed Least Significant Byte [LSB], Most Signifi
cant Byte [MSB] format. In simple terms; they store
their numbers back to front ! The reason for this is not
obvious, but take my word, using this method with very
large numbers results in a memory saving of more than
60%.

If we wanted to store the decimal number 60493 in
memory location 65450, we first have to convert it into
two values: LSB & MSB. Once these values have been
calculated we put the Lsb into 65450 and Msb into
65451. To find the Lsb & Msb values we can use the
following, easy to learn, formula:

Msb = INT (Number/256)

Lsb = Number - 256 * Msb

Using the above formula we can now convert our decimal
number 60493.

Msb = INK60493/256) = 236D = EC„

Lsb = 60493 - 256 * Msb = 77D = 4DH

If we were working in Basic, we could put this number
into memory by using the POKE command.

POKE 65450,Lsb

POKE 65451,Msb

36

It is important to understand this rule. Later, when we
start Poking machine code instructions into memory,
we must know how to store and retrieve them correctly.

How a two byte number is stored in memory:

Bit positions 7 6 5 4 3 2 1 0

Address 65450 : o ;I 1 .: o :: o :: 1 :: 1 :1 0 : 1 ; LSB
Address 65451 : 1 i: 1 ;i 1 i: o :I 1 :: 1 :1 0 : o : MSB

Earlier, we said that REAL variables used five bytes
of memory; this type of variable is stored in memory in
exactly the same manner as integers, but obviously, the
number is spread over five bytes.

Memory allocation for REAL numbers

Lowest memory Address

Highest memory address

! LSB ! BYTE

! NXT SIG ! BYTE

! NXT SIG ! BYTE

! MSB ! BYTE

! EXPONENT ! BYTE

The exponent portion is expressed as a power of 2,
allowing the range 10+38 to 10'39.

37

NEGATIVE VALUES

Up to this point we have been discussing 8 and 16-bit
integers. These are referred to as “unsigned integers”.
However, there is a lot more to computing than manipu
lating this type of numeric data - what about negative
values ? A computer wouldn’t be much of an asset if it
could not perform normal mathematical functions.
Clearly, to work with positive and negative values, we
need some way to tell which integer is positive, and
which is negative. To do this we have to abide by a set of
rules that is used in the majority of digital computers on
the market today.

In a “signed 8-bit integer”, bit 7 (most significant bit) is
treated as the “sign bit”. If bit 7 is set (1) then the
number is negative. If bit 7 is reset (0) then the
number is a positive value,or at least, equal to zero.

0100 1111 = 79d lioo ini = -7%

Whenever we use unsigned integers, the largest number
we can work with in one byte is 255D or 1111 1111b, and
the smallest is zero. The largest number we can repre
sent as a signed 8-bit integer is 127D or 0111 1111b, and
the smallest value is -127D , 1111 mis

using this method of representing 8-bit values soon
poses a problem: we cannot use normal conventions for
adding two signed numbers. Study the following
example:

0100 1111 = 79d

+ 1000 1101 = -13d

1101 1100

38

The answer (-92D) is obviously wrong ! It should be +66D

Two’s Complement representation.

To overcome this anomaly, some brilliant brain, in the
distant past, discovered the rule of two’s complement.
There is nothing mysterious about two’s complement
representation, and it is quite simple to calculate.

Rule a The two’s complement of a positive 8-bit binary
number is the number itself.

Rule b The two’s complement of a negative 8-bit value
is calculated by obtaining the One’s complement of the
positive value, and adding one.

Calculating the complement of a number is just a matter
of changing all the l’s to 0’s, and all the 0’s to l’s.

Find the two’s complement of 16D

16 = 0001 0000

1110 1111One’s complement

1Add 1

1111 00002's complement.

Find the 2’s complement of 102D

102 = 0110 0110

1001 1001One’s complement

1Add 1

1001 101,0...........................2’s complement

39

If we use the logical operator NOT we can vary rule b) to
read:

1) NOT number
2) Add 1

let us now use our original example, and add +79D to
-13d we will see that this method works correctly.

NOT 13d = -14d. -14d = Uli 0010B

1111 0010 + 1 = 1111 0011 3.» eomPI-m-nt.

0100 1111 = +79o

+ 1111 0011 = -13z.„ comPI-m.ot,

0100 0010 = +66o

+66 is the correct answer I

Add (-3) to (-2)

3d = 0000 0011b 0000 0010bD

complement 1111 1100 1111 1101

add 1 1 1

1111 1101 mi mo

+
-2 =1111 mo3.w

-3 = mi noi3..

comP I •mwrrb

comP I

<n nil ion

40

The carry from bit 7 is ignored completely, and our
result is 1111 1011 which should be the 2’s complement
of-5. We can test this quite easily by working in reverse.

NOT 1111 1011 = 0000 0100
1add 1

0000 0101 = 5d

Therefore 1111 1011 is the correct result for adding the
two negative numbers.

The range of numbers that can be stored in a 8-bit 2’s
complement representation is +127D down to -128D. (see
table 2.7)

Table 2.7 2’s COMPLEMENT CODES

! + ! 2’s complement 1 __ 1
1 1 2’s complement 1

: 127 1 0111 1111 1-128 1 1000 0000 I
: 126 1 0111 1110

1
1-127 :
1 1

1000 0001 1

: 64
1
1 0100 0000

1 1

: -64 :
1

noo oooo :
: 63 i ooii mi

1
: -63 :
1 1

1100 0001 1
1

: 32
1
: ooio oooo

1 1

i -32 : mo oooo :
: 31 i oooi mi i -31 :

1 1

1110 0001 I

: 16
l
1 0001 0000

1 1

: -16 i
1

1111 OOOO I

: 15 : oooo nil : -is : nil oooi :
: 14 I 0000 1110

1
: -14 :
1 1

nil ooio :
1

: 9
1
: oooo iooi

1 1
: -3 : nil oni :

: 8 : oooo iooo : -8 : nil iooo
: 7 : oooo oni : -7 i nil iooi :
: 6 : oooo ono

1
: -6 :
1 1

nil ioio :
1

: 3
1
1 0000 0011

1 1
: -3 : nil noi :

: 2 1 0000 0010 : -2 i nil mo :
: 1 1 0000 0001 : -1 : nil nil :
: o : oooo oooo 1 1

1 1
11

41

Even though we have only discussed 8-bit integers,
everything we have said also applies to 16-bit integers.
The number range for unsigned 16-bit integers is 0 -
65535d, and for 16-bit 2’s complement representation
-32768 through to + 32767 . You should now realise why
bit 15 was left unused in table 2.1 - it was to allow for the
sign bit.

We have covered quite a lot of ground in this chapter, so
don’t worry if you haven’t fully understood what has
been discussed. You can always refer back to this chapter
at a later stage, and a lot of it will sink in automatically
as you progress through this book.

42

Chapter Three

Strings & Things

In the previous chapter we discussed the use and storage
of numeric variables. Well, in this chapter we are going
to talk about another type of variable, the STRING
VARIABLE.

The Amstrad can not only manipulate numerical values,
but is a master at juggling with letters and text. Strings
are simply strings of data that can be constructed from
numbers, letters,special control characters,and graphic
codes.

Normally, strings are created from ASCII characters.
ASCII stands for American Standard Code for Inform
ation Interchange. This is a standard that has been
adopted, by most of the computer industry, to do exactly
what it says - allow micros to interchange printable
characters in a standard format.

Ascii is coded into 7 bits (0 to 6), and we have already
seen in the last chapter that 7 bits can hold a number in
the range 0 to 127D 0000 0000 to 0111 1111b- This
suggests that 128 different codes can be defined from one
byte, and these 128 characters form the standard Ascii
character set. Graphic characters are allowed by
setting bit 7 which allows a further 128 characters to be
defined 128 to 255D , 1000 0000 - 1111 1111B.

43

Table 3.1

THE ASCII CHARACTER CODES

CODE CHARACTER 1 CODE CHARACTER ! CODE CHARACTER

0 1
1 43 + 1 86 V

1 1
1 44 ! 87 W

2 Cursor off ! 45 - : 88 X
3 Cur sor on ! 46 • : 89 Y
4 I

1 47 / : 90 Z
5 1

1 48 0 : 91 C
6 1

1 49 1 : 92 \
7 Sound Bell 1 50 2 : 93]
8 Backspace/Erase1 51 3 : 94
9 Cursor ==> 1 52 4 : 95
10 Cursor Down 1 53 5 : 96 t

11 Cursor Up 1 54 6 : 97 a
12 Home Cursor\Cls! 55 7 : 98 b
13 Carriage Return! 56 8 : 99 c
14 57 9 : ioo d
15 1 58 : : 101 e
16 1

1 59 r ! 102 f
17 1 60 < : 103 g
18 Erase to E.O.L ! 61 = ! 104 h
19 1 62 > I 105 i
20 Erase to E.O.W ! 63 ? : 106 J
21 1 64 @ I 107 k
22 I

1 65 A : 108 1
23 1 66 B : 109 m
24 1 67 C : no n
25 68 D : in o
26 1 69 E I 112 p
27 esc : 70 F ! 113 q
28 ! 71 G : 114 r
29 i

i 72 H : 115 s
30 Home ! 73 I :I 116 t
31 1 74 J : 117 u
32 Space ! 75 K : ns V

33 1 I 76 L 1: 119 w
34 II 1 77 M 1 120 X

35 * 78 N 1 121 y
36 $: 79 o i 1 122 z

37 •/. : 80 p ; 1 123 {
38 & : 81 q i 1 124 11
39 » 82 r I 1 125
40 < : 83 S 1 1 126
41) : 84 t : 1 127
42 * : 85 U 1 1

44

Although we have said that characters with Ascii codes
0-127 form the standard codes, this is not strictly true.
Certainly , the displayable codes, 32 (space) up to 122 (z)
are standard, but the codes form 0 to 31, known as
Control Codes, differ from computer to computer. See
Table 3.1

Diagram 3.1

MEMORY ALLOCATION

0000-------->

016F„-------->
Firmware Area I

_________________________ II
Start of Basic I

Text Storage Area I

Simple Variables I
(Bui I ds Up) I

Arrays & String I
Descriptors I

(Bui I ds Up) I

FREE AREA

STRING WORK AREA
(Bui I ds Down)

HIMEM

ACOOh

B100h----------------------- >

C000h------------------------- >

! SYMBOLS !
! CASSETTE BUFFER I
I__ I
I I

SYSTEM VARIABLES I
__ I

I

SYSTEM JUMP I
TABLE I

STACK

DEFAULT

SCREEN

45

String Variables store their data in the actual Basic line,
unless they have been changed in some way after being
defined, in this case they are moved into the String
Work Area , and a pointer to their address is stored in
the string descriptor block,the way this data is stored
is shown in Dia 4.1. The default starting address for
Basic is 016FH, this is where Basic lines are stored as
you type them in from the keyboard. The number of
bytes used by a string is dependant on the length of the
string, in characters, and the length of the string name;
each character in the string uses one byte as does each
character in the string name.

Dia 3.2

String Descriptor Block

I_________________________________I_______ I________________________ I_____________________________________ I_____________________________________ I
I III I I
i String Name ! 02 I Length I LSB Address I MSB Address !
• ———— I _______ • 'I III I I

A$ =“TEST" stored as:

I____ ______________ __ __ __________ I________________I I_____________________________________ I____________________________________ I
I III I I

I Cl„ : 02 : 04h ! LSB Address I MSB Address
I___ ____________________________ I __ ____________I________________ '_______________________________________ I II III I I

: = "A" or 41h with high bit set = C1H

String variables cannot be operated on in the same
manner as numeric variables - after all, who would want
to use an expression, Y$ = “KEITH”:X$ = “YOU”:IF
Y$/X$ = “HELLO” THEN GOTO? this sort of
statement is meaningless when applied to a string.

Strings can, however, use the + (plus sign). Two or more
strings can be linked together with the + sign, and this
operation is termed CONCATENATION.

46

10 W$= "Hello" : X$ =" I’m You"

20 Y$ ="r New Am" : Z$ ="strad"

30 PR$ = W$+X$+Y$+Z$

40 PRINT PR$ ===> I'm Your New Amstrad

Strings may be compared in the same manner as
numeric variables are compared, and the operators
employed are exactly the same as those used with
numbers.

< Less Than

> Greater Than

<> Not Equa1

<= Less than or Equal to

>= Greater than or equal to

How strings are compared with each other lies in the use
of Ascii codes. If you try the following program you
should get the drift.

10 CLS

20 X$=INKEY$

30 IF X$="" THEN GOTO 20

40 LOCATE 1,1:PRINT X$;" = ";ASC(X$)f" ASCII CODE"

50 GOTO 20

47

ASC

The ASC function returns the Ascii value of the string
e.g.

10 X$= "A":PRINT ASCCX$) returns 65D

10 PRINT ASC("z") returns 122D

When comparing two or more strings, Basic compares
the Ascii value of each character in the string. For
example: AB$ will be greater than AA$, and AC$ will
be less than AX$. Also note that “a” is greater than “A”.
(See Table 3.1)

When strings are of unequal length the shorter string is
less than the longer string: “LOCATE”<“LOCATED”.

Earlier, we saw how strings could be concantenated by
using the + sign, we are not, however, allowed to
TRUNCATE by using the - (minus) sign. We have to
truncate indirectly by using LEFT$,RIGHT$,IN$,or
MID$ functions. These functions allow us to access part,
or the whole of the string, starting in the middle,from the
left, or from the right, while the INSTR function lets us
search for a portion of a string starting from a place
specified in the parameters.

LEFT$

This function returns the first n characters starting
from the left of a string variable.

10 A$ ="AMSTRAD"

20 B$=LEFT$(A$,3)

30 PRINT B$

RETURNS B$ = "AMS

48

RIGHTS

The RIGHTS function returns the last n characters
starting from the right of the string variable.

10 A$="AMSTRAD"

20 B$=RIGHT$(A$,4)

30 PRINT B$

Returns B$ “STRAD”.

MID$

MID$ is used to take part of a string of length n starting
at position p.

10 A$="THIS DEMONSTRATES THE MID$ FUNCTION

20 B$=MID$(A$,G,12)

30 PRINT B$

Returns B$ “DEMONSTRATES”

The MID$ function can also be used on the right side of
the argument to modify a specified string.

10 A$ ="N0W IS THE TIME FOR ALL GOOD MEN TO COME

TO THE AID OF THE PARTY"

20 B$=MID$(A$,21,12)

30 PRINT B$

Returns B$ “ALL GOOD MEN”

49

INSTR

This function allows a string to be searched for any
occurance of another string. If the substring does exist
INSTR returns the starting position of the
substring.

When using this function it should be noted that the
whole substring must be contained in the search
string, or the function will return a zero.

LET A$="ABCDEFG"

INSTR(A$,"EFG")

INSTR(A$,"FGH")

INSTR(2,A$,"ABCD")

INSTR(2,A$,"DEF")

resul11 returned = 5

r esLt 1 t returned = 0

resulIt returned = 0

resu 1 t returned = 4

The last example searched for the substring “DEF”
starting from the second position in the search string and
returned a value that informs us substring “DEF” starts
at position 4 in the search string.

CHR$

In an earlier part of this chapter we used the ASC
function to convert from a character to it’s equivalent
Ascii code. The CHR$ function lets us convert in the
opposite direction: it converts from Ascii code to a
character.

CHR$ permits us to use unprintable characters
within our programs, and it is an extremely powerful
function.

50

“Why do we want to print the unprintable ?” I hear you
ask.

Have you no sense of adventure ?

If you look at Table 3.1 you will see that some of the
codes are used to move the cursor in different directions
on the screen. Or, tell me, how do you print the sound of a
bell ? With CHR$(7), of course ! Go on, try it.

10 CLS:LOCATE 1,24:PRINT "XXXXXXXXXXXXXXXXXXXXXXXXX

XXXXX";

20 PRINT CHR$(7)

30 FOR 1=1 TO 100:NEXT

40 GOTO 20

See what I mean ? You have just printed your first
unprintable character, and the CHR$ function allows us
to do some clever things in our programs. Line 10 is there
to show that even though it is sounding the bell, it is
actually printing to the screen.

CHR$(n) can also be used to compare single character
strings:

10 INPUT A$

20 IF A$ = CHR$C65) THEN PRINT "YES!" ELSE PRINT "NO!"

30 GOTO 10

You can even use it in tandem with another function.
Try to work through the following program.

51

10 X$="A"

20 INPUT A$

30 IF A$ = CHR$(ASC(X$)) THEN PRINT "YES" ELSE

PRINT "NO"

40 GOTO 40

It does exactly the same as the previous program!

LEN

The LEN function will return the character length of a
string and is a very useful function to have around when
working with strings.

10 X=O:LINE INPUT A$

20 FOR I = 1 TO LEN(A$):X=X+1

30 NEXT

40 PRINT "A$ IS";X;" CHARACTERS IN LENGTH"

50 GOTO 10

LOWERS

LOWERS will turn any upper case characters (capital
letters) into lower case characters.

52

10 LINE INPUT X$

20 FOR I = 1 TO LEN(X$)

30 IF MID$(X$,I,l)=CHR$(30) OR MID$(X$,I,1)=32

OR I = 1 THEN GOTO 50

40 MID$(X$,I,1)=LOWER$(MID$(X$, I, 1))

50 NEXT I

60 GOTO 10

UPPERS

This function performs in the same way as LOWERS but
in reverse.

HEX$ and BINS are useful for converting from one
number system to another, and could be used within a
program that converts between number bases.

10 INPUT X

20 PRINT "BINARY IS ";BIN$(X)

30 PRINT "HEXIDECIMAL IS ":HEX$(X)

40 GOTO 10

Two functions we haven’t yet mentioned are SPACES
and STRINGS. Both of these statements are valuable
aids when padding out a string, or filling in a display
with fill characters.

53

With STRINGS you can create a string of identical
characters.

10 X$=CHR$C129)+CHR$(132)

20 PRINT STRING*(40,X$)

10 FOR I = 1 TO 24

20 PRINT STRING$(40,140)

30 NEXT

Did you notice how quickly the screen filled up with
characters ?

Finally, we have two really powerful string functions:
VAL and STR$.

VAL converts a string variable, or expression into a
numeric expression represented by the characters in a
string argument - in fact, it eVALuates it. The string
must be numeric, and if it is a real number it must
contain a decimal point or exponent (E).

B$ ="100.SO" sPRINT VAL(B$)

B$="999999999":PRINT VAL(B$)

B$="9999999999":PRINT VAL(B$)

B$="ABC45": PRINT VAL(B$)

B$="45ABC64":PRINT VAL(B$)

B$="lE-3":PRINT VAL(B$)

======> returns 100.60

======> returns 999939999

=======> returns 1E10

=======> returns 0

=======> returns 45

=======> returns 0.001

54

Notice from the above examples that VAL only
operates on LEADING numeric data. Processing of
the string evaluation terminates at the first non-E
character. When strings consist of alphanumeric cha
racters with the letters preceding the numerical data,
the VAL function returns a zero.

10 A$=INKEY$

IF A$="" THEN GOTO 10

30 X=VAL(A$)

40 IF X<1 OR X>9 THEN GOTO 10

50 PRINT "YOU PRESSED A NUMBER BETWEEN 1 & 9"

60 GOTO 10

STR$ is a very potent statement that converts a numeric
expression, or variable into a string. This function is
invaluable in text processing and data input routines:
numbers can be turned into strings, the data can be
edited and turned back into a numeric value with VAL,
or printed to the screen/printer, and printed in a pre
determined format.

One point to keep in mind, however, is when numeric
data is turned into a string a leading blank is inserted
to allow for the sign. Also, PRINT A prints the value
with a trailing blank, and PRINT STR$(A) prints the
value without a trailing blank.

A = 1650:PRINT LEN(STR$(A)) will return 5

A = -1650:PRINT LEN(STR$(A)) wiI I return 5

55

10 X=120.62:Y=-120.62

20 PRINT STR$(X);LEN(STR$(X))

30 PRINT STR$(Y);LEN(STR$(Y))

40 PRINT STR$(X)+STR$(Y)

50 PRINT STR$(X+Y)

60 PRINT STR$(Y)+STR$(X)

Non-printable, or control characters are useful for screen
formatting, and for moving the cursor to another print
zone without using the LOCATE command. For
instance, how many times have you seen, or used,
yourself, Basic code that resembles the following:

10 LOCATE 3,5:INPUT "CHOOSE A NUMBER BETWEEN

1 & 10";X

20 IF X>10 OR X<1 THEN LOCATE 3,5:PRINT "

30 LOCATE 3,5:PRINT "ILLEGAL INPUT";

40 FOR I = 1 TO 100:NEXT

50 LOCATE 3,5:PRINT " ";

60 GOTO 10

56

The same routine can be re-written using control codes.

10 LOCATE 3,5:INPUT "CHOOSE A NUMBER BETWEEN

1 & 10" ;X

20 IF X<1 OR X> 10 THEN PRINT CHR$(11);CHR$(18);

ELSE GOTO 100

30 LOCATE 3,5:PRINT "ILLEGAL INPUT"

40 FOR 1=1 TO 100:NEXT

50 PRINT CHR$(11);CHR$(18);:GOTO 10

100 PRINT CHR$(11);CHR$(8);:LOCATE 3,5:PRINT "O.K"

110 GOTO 10

The above program asks for an input in the range 1 to 10.
If the input is incorrect, the line is cleared by using
CHR$(11) which moves the cursor up one line (a carriage
return followed you pressing the ENTER key),CHR$(18)
then clears to the end of the line before printing the next
message.

If you study Table 3.1 you will see that control codes
support turning the cursor on/off, and you can place it
anywhere within a given window simply by using the
other control codes.

Control characters can also be embedded within strings
to add some special effects to your graphic characters.
This is especially helpful when you need to move a
character, that stretches over two vertical character
positions. Try this:

57

10 X$=CHR$ (240) +CHR$ (10) +CHR$ (8) +CHR$ C 8) +CHR.$ (242)

+CHR$ C 8)+CHR$(243)+CHR$(10)+CHR$(8)+CHR$(8)

+CHR$(241)

20 LOCATE 20,20: PRINT X$

PSST! DO YOU WANT TO KNOW A SECRET ?

Before we leave the subject of strings and their useful
ness when using graphics, I’m going to show something
very different that you will not find in books or manuals.
If you are a novice don’t worry about the commands we
haven’t discussed, try the program - you will understand
how it works before you finish the book.

TRY THIS PROGRAM

10 CLS

20 X$=STRING$(40," ")

30 PK = @X$

40 AD = PEEK(PK+2)*256+PEEK(PK+l)

50 FOR I = AD TO LEN(X$)+AD

60 POKE 1,238

70 NEXT

80 FOR I = 1 TO 24

90 PRINT X$;

100 NEXT

58

The above program brings together important points we
have discussed in the previous chapter, and uses some of
the string functions from this chapter.

The implications of the above program may not be
obvious to you at this moment, but I can assure you, this
is a very clever way to point your graphics at strings.

The program starts by setting up a dummy string (X$)
with 40 spaces. You can set up any dummy string as long
as you use a string with a length equal to the number of
characters you are going to store in it. Line 30 gets the
actual address of the string. The “@variable name”
will return the address of any variable that is currently
initialised under Basic. When used with strings it
returns the address of the descriptor block, starting with
the address that holds the string length (see Dia 3.3).
Line 40 allows for this by looking at this address +2
which is the Msb of the address where the string is
stored. The correct address is calculated by multiplying
the Msb by 256 and adding the Lsb - remember Chapter
Three ? Line 50 ascertains the length of X$, and Line 60
fills the memory locations, occupied by the string, with
graphic character 238 by POKING it into memory. Lines
80 & 90 are added just to prove that it does work.

In the previous example program we formed a string
from graphic characters and control codes, but wasn’t it
long winded to define the string ? Using the method
above, you can set your graphic characters and codes into
DATA statements, READ them into a variable, and then
POKE them into the string, you can even replace one
character within the string, or the whole string, if you
wanted to. These strings also print to the screen very
quickly, and are an asset to a Basic program when speed
is essential.

59

Now, don’t go away - we have a few more tricks to
discover, but before we start the next chapter I’ll let you
sit back and digest the last program.

You know, if you really think about it, there is nothing to
prevent a machine code subroutine replacing the the
graphic characters, and then calling the routine from
AD (Line 40). Using this method no Memory command
would have to be initialised. Of course, any routine
would have to be written so that it could run in 255
bytes, but a lot of useful routines can be written to do just
that.

JUST TO WHET YOUR APPETITE - TRY THIS

10 CLS

20 X$= STRING*(22," ")

30 DATA &21,&01,&01,&CD,&75,&BB,&01,&EB,&03

40 DATA &C5,&3E,&EE,&CD,&5D,&BB,&Cl,&0B,&79

50 DATA &B0,&20,&F4,&C9

60 PK = @X$

70 AD = PEEK(PK+2)*256+PEEK(PK+l)

80 FOR I = AD TO AD+LEN(X*)-1

90 READ T

100 POKE I,T

110 NEXT I

120 CALL AD

60

Don’t worry about understanding this program, it is
included to demonstrate that all things (well, nearly
all!) are possible with the Amstrad computer.

The DATA lines 30,40, and 50 contain a short machine
code routine to fill the screen with a graphics character.
The data represents the actual machine code. AD
contains the starting address of the actual string data, so
when you CALL AD you are calling the machine code
routine. This routine can be saved along with the basic
program, it requires no setting of MEMORY, and Basic
will never overwrite it.

61

Chapter Four

ARRAY! ARRAY!

During the course of this chapter we shall be talking
about the READ,DAT A, and DIM,statements and how
they are organised under Locomotive Basic. At the end of
the chapter we shall look at another far more powerful
way of utilising arrays.

One of the most common uses of the computer is for
processing data, and the simplest form of data structure
available to us in Basic is the Data List, or list of data.
Lists are something we are all familiar with - a shopping
list, a list of names, a software list etc.

To create a list in Basic we use the DATA statement.
We can include as many names, or items, as we wish in
data statements and the only restriction is the amount of
memory we have available.

10 DATA JANUARY,FEBRUARY,MARCH,APRIL

20 DATA SUMMER,AUTUMN,WINTER,SPRING,X

50 DATA 3,456,255,8,1064,34,10111000,-1,NUMBERS

To make use of our data statements we use the READ
command which tells the computer to read ONE value

62

from a data list - DATA & READ are always used
together. If we add the following lines to the program
above, we can get a good idea of how the two statements
operate.

50 READ AS

60 IF AS = “X" THEN GOTO 90

70 PRINT AS

80 GOTO 50

90 READ A

100 IF A = -1 THEN GOTO 130

110 PRINT A

120 GOTO 90

130 READ AS

140 PRINT AS

150 END

Line 50 tells the computer to read an item from the data
list. In line 60 the program checks to see if A$ = “X”
- “X” is put in the data list to check on how far the
data pointer has moved along the list. The next items
after “X” are intended to be numeric values, and this is
one way of ensuring that you know what data is going
into which variable. As long as A$ is not equal to “X” the
contents of A$ are printed to the screen, and the process
is repeated. When A$ is equal to “X”, program flow is

63

directed to line 90 where the same read process is
repeated but this time using the numerical variable A. A
similar test is performed to check when A = -1 in order to
allow the next item in our data list, which is a string
value,to be read into A$.

The computer uses a data pointer to keep track of the
items in the data list which is to be Read. Every time a
READ is performed the pointer moves to the next item
in the list.

10 DATA 1,2, 3,4,5,6

30 FOR I = 1 TO 7

40 READ A

50 NEXT I

1 2 3 4 5 6
A. A

1=1 : :
Data pointer :

Here :

1=3 Pointer Here..: 1=7 DATA EXHAUSTED ERROR

The above program, when run, results in a Data
Exhausted in 10 error message. This is because the
program tried to read more items than there were in the
data list. If we add line 60 RESTORE 10 and re-run the
program, the error condition does not arise because we
have told the Amstrad to restore the data pointer to
the very first data item in line 10. RESTORE n will
reset the pointer to the beginning of a specific Data
Line, and the command is useful when we need to access
the data in the list more than once.

64

RESTORE 10

The above statement would reset the Data Pointer to
the beginning of the data in Line 10 and the first READ
A would result in A = 1.

We can have any number of items in a Data List as long
as they are separated by commas. As we have already
seen,data types can be mixed (strings and numeric data).

More than one Data Item can be read from a Data List
by a single READ statement, and no restrictions are
place on the number as long as there are enough items in
the list. Data statements can be placed anywhere in the
program, and Basic will skip over them in search of the
next program line.

10 CLS

20 DATA AjDyCyDyE

30 DATA D,E,",",F

40 READ X,Y,Z

50 END

One point to remember when using more than one
variable in a READ statement is: the data pointer still
increments one place for each variable.

65

10 DATA KEITH,0282,57427,ALBERT,0256,37754,

PHOENIX,01,24356

20 DATA GORDON,574,69812,BOOTS,0652,57341,

DOCTOR,00,57977

30 CLS

40 FOR I = 1 TO 6

50 READ N$,C,T

60 PRINT N$; "TELEPHONE ";C;"-";T

70 NEXT

Care must also be taken to ensure that the correct
variable reads the correct type of data otherwise errors
will be generated.

We are now ready to probe an area of computing that
most novice programmers find difficult to comprehen-
d...... ARRAYS!

Arrays are the most powerful data structures we have
available when programming in Basic. An array is
basically (pardon the pun!) an ordered list, and this list
(array) can be one-dimensional,two-dimensional, or
multi-dimensional. Each item in the array is numbered
so that it can easily be located. The number of Dimen
sions relates to how the data is accessed.

Arrays use subscripted variables which can be any of
the types we have already mentioned, string or
numerical, but are followed by a subscript which is
enclosed in brackets.

APOA-5

66

A (9)

Variable..: :......Subscript

The number, in brackets, is the label to one of the
elements in the array, and the brackets tell the
computer that the variable is a subscripted variable.
Thus you can store, and retrieve, data from one specific
element in an array by telling the computer which
variable, and which subscript.

A(0),A(l),A(2)......A(10) are all elements of ARRAY A

A typical example of a one dimensional array is a
software list, if you write down all the software titles you
have collected for the CPC 464, you have created a
one-dimensional array. I know we said the same thing
about Data Lists, but there is a difference: A READ
statement can only access data in a sequential manner,
and Data statements cannot be modified without
actually editing the Basic program. An array, on the
other hand, can be accessed in a random fashion,
and the data can easily be modified or changed.

The computer stores arrays in Ram in a consecutive
manner as shown in Dia 4.1

Dia 4.1

Lowest RAM address A(0)

A(l)

A(3)

Highest RAM address AC4)

67

ARRAY A is stored in memory in exactly the same
order as it’s subscripts, with A(0) being the lowest
memory address, and A(4) occupying the highest
memory location.

10 CLS

20 FOR I = 0 TO 3

30 ACI) = I

40 NEXT

50 FOR I = 1 TO 3

60 PRINT " THIS IS AC-jACI);")”

70 NEXT

This program will print out each element of array A with
it’s correct subscript value as stored in memory.

Another way to enter value into an array is to use the
READ and DATA statements.

10 CLS

20 FOR I = 0 TO 10

30 READ AC I)

40 NEXT

50 INPUT X

60 PRINT A(X)

70 GOTO 60

80 DATA 365,400,1,67,32,56,BBS,3.33,40000

68

The above program demonstrates how it is possible to
access data that is stored in an array, in a random
fashion. Once the data has been read into the array it is
no longer necessary to use the RESTORE command.
Data can be retrieved from any element, as many times
as is necessary, and in whatever order you choose.

In the above example, notice that we have increased the
number of subscripts to 10. This is the largest subscript
we are allowed to use without taking other steps to
increase the size of the array. Attempting to read data
into A(ll),say, would result in a B.S ERROR (Bad
Subscript), error message - this is the Amstrad’s way of
telling us that we have tried to access an element that
didn’t exist.

To create an array of more than 11 elements (subscripts
0 -10), we must use the DIM statement. DIM A(20) tells
the computer to reserve 21 locations (0-20) for the
storage of the subscripted variable A.

Accessing data by means of an array can be likened to an
index system. By using two or more arrays, complex,
inter-related data structures can be constructed. Let’s
say we wanted to create a list of all our friends, and store
them in the computer, we can do this quite easily by
creating an array ,and writing all our friend’s names into
data statements.

10 DIM FR$(100)

20 READ B

30 FOR I = 0 TO B

40 READ FR$(I)

50 NEXT

69

500 DATA 12,KEITH,BARRY,TREFOR,GEOFF,HARRY,PETER,

NORMAN

510 DATA PAT,MIKE,SHIRLEY,KATHY,COLIN

The above program provides a way of creating a list of all
our friends. By placing a value at the very beginning of
the data, we can easily add data without having to edit
the main part of the program - each time we add a new
friend’s name, we only need to increment the first data
value. This program is fine, but all it will do is print out
our friend’s name. The information can be extended by
creating more arrays and extra data statements.

10 DIM FR$(100),AD$(100),TWN$(100)

20 READ B

30 FOR I = 0 TO B

40 READ FR$(I),AD$(I),TWN$(I)

500 4,KEITH, 20 Chapel St,Burn Iey,BARRY,

4a Ascough Close,Burn Iey

510 GEOFF,36 Peyton PI ace,Amsham,HARRY,

67 Darlington Ave,Fictown

If we wanted to find one of our friend’s addresses, we
simply search the name array which will give us an
index into the address array.

70

110 PRINT "NAME NOT FOUND"

60

70

INPUT "FRIENDS NAME ";X$

READ B

80 FOR I = 0 TO B

90 IF X$ = FR$(I) THEN GOTO 130

100 NEXT

120 GOTO £0

130 PRINT FR$(I);"’S ADDRESS IS AD$(I);TWN$(I)

140 I - B

150 END

Line 140 makes I — B because we jumped out of the FOR
NEXT loop before the loop had terminated. Although it
isn’t necessary to do this, it is good programming
practice to terminate FOR NEXT loops.

From the above demonstration you can see that strings
arrays can be manipulated in the same manner as
numerical arrays. The demonstration program is very
simple, complex data structures can be designed to hold
more information, but the principle remains the same.

Encounters of the second kind.

One-dimensional arrays are easy to understand because
we can compare them, as we did, with something con
crete like a list of names. Two- dimensional arrays are
also easy to visualise; as the name implies, two- dimen
sional arrays can be used to represent any two-dimen
sional state e.g : A CHESS BOARD.

71

The elements of a two-dimensional array are addressed
by two subscripts.

One Element of Array A = A(1 , 8)

1st Subscript : ;

2nd Subscript............... :

A two-dimensional array can be visualised as a table
made up of Rows & Columns. In general, the first
subscript is the Rows and the second subscript the
Columns.

A(1 , 8)

ROW 1..: :............. COLUMN 8

DIM A(3,8) tells the computer to reserve enough space
in Ram for an array 4 columns by 9 rows - 36 storage
boxes.

10 DIM A(3,8)

20 FOR ROW = 0 TO 3

40 FOR COL = 0 TO 8

40 A(ROW,COL) =COL+ROW

50 NEXT COL

60 NEXT ROW

12

Dia 4.2

Columns ------- ----- > 0 1 2 3 4 5 6 7 a

Rows.......... 0 ! 1 1 1

1 ! 1 1 1

2 ! 1 1

1
1

3 ! A
1

! ! !
1

1

1I
■ a

A(3,0)

1
11
11

A(2,4)

A Two-dimensional Array

From Dia 4.2 you can see that whenever we want to pick
a particular location within the array, we can refer to it
by it’s Row & Column numbers.

TO READ values into a two-dimensional array we have
to use a NESTED FOR,NEXT LOOP, and we need to set
one of the loops equal to the number of Rows, and one
equal to the number of columns.

The program before Dia 4.2 is an example of a nested
For,Next Loop. In the example, ROW first equals zero,
and COL equals zero. Location A(0,0) is filled with value
of Col (0), and COL is then incremented by one, and
A(0,l) is filled with value of COL (1). When COL is equal
to 8, ROW is incremented by one, and the next Row is
filled until COL — 8 again, and the pattern is repeated
until ROW = 3. Let’s prove this by re-writing the above
program to print out the values in each memory location
to the screen.

73

LISTING TWO

10 CLS

20 DIM AC3,8)

30 FOR ROW = 0 TO 3

40 FOR COL = 0 TO 8

50 A(ROW,COL) =COL

60 NEXT COL

70 NEXT ROW

80 FOR ROW = 0 TO 3: PRINT "Row ";ROW;"= "

90 FOR COL = 0 TO 8

100 PRINT A(ROW,COL);

110 NEXT COL

120 PRINT

130 NEXT ROW

Listing two provides us with a good example of how a
two-dimensional array can be related to a specific object.
I am sure most of you will have played Connect Four, or
are familiar with the general rules. Listing two follows
the original game very closely with the Amstrad taking
the role of your opponent - it plays a pretty good game !

To play the game you are asked to choose a column
between 1 & 8. If your choice is legal the computer then
places your piece in the chosen column. The computer
will analyse the board before making it’s choice. The
game continues until either player manages to place four
pieces in a vertical,horizontal, or diagonal row, or until
no more space is available on the playing board.

74

CONNECT FOUR

TG$(5,5)

1 2 3 4 5 6 7 8

From Dia 4.3 it is obvious that the Connect Four board is
very well suited to a two-dimensional array TG$(8,8).
You will notice within the program we have not used
TG$(0,0), it still exists in memory but it is our perogative
not to use it if we so choose.

In the game of Connect Four the counters are placed on
the board in a bottom to top manner - this is why the
rows are numbered 8 to 1 (Dia 4.4). The row data is read
into DN(8) array with the highest Y position first so that
DN(1) holds the Y position for the 20th line on the
screen, and DN(2) holds the Y position for line 18 on the
screen. The X position is calculated by multiplying the
player’s choice of column by 3, and adding 7 to LOCATE
the cursor at the correct print position.

Array TG$(8,8) is used to keep a copy of the screen in
memory, and whenever a counter is placed on the board
the position is logged in the TG$ array. The computer
looks through this array when checking if a move is
legal, or deciding where to place it’s counter.

lb

Array R(8) is used to keep track of how many pieces are
occupying positions in a particular column.

CONNECT FOUR

Dia 4.4

R(3)=4

The array G(16) holds the evaluation functions that
are used by the computer when deciding which move to
make. You can experiment with them by trying different
values, and watching how the changes affect play.

If you really want to analyse the program, now is a good
time to try the TRON function. Switch it on and follow
the program by looking at the listing and checking
program flow as the line numbers are printed on the
screen. You can even stop the program by pressing ESC
ESC,and examining some of the variables.

LISTING 2
5 DEFINT A-C,D,H,I,J-T,V-Z
10 DIM TG$(8,8),A(4),R(8),K(4),JC4), Gd6), DN(8), TH$(8)
20 REM AMSTRAD CPC 464
30 REM "CONNECT 4" FOR COMPUTER AND ONE PLAYER
40 MODE lsGOSUB 390:G0SUB 1130:B0RDER 0:INK 0,0:INK 1,26:INK 2,
50 LET TH$=STRING$(8,CHR$(230))
60 MODE 1:GOSUB 470:GOSUB 280
70 GOTO 540
80 REM *********** MAIN CALCULATING ***********
'90 SOUND 1,100,8
100 0$=H$:IF X$=H$ THEN 0$=C$
110 Y=1:YY=O:S=O:GOSUB 160
120 Y=1:YY=1:GOSUB 160
130 Y=O:YY=1:GOSUB 160
140 Y=-l:YY=1:GOSUB 160
150 RETURN
160 XX=1:A=1:Q=0:S=S+1
170 M=0
180 FOR 1=1 TO 3:H=X+I*YY:N=R+I*Y
190 IF HKl OR NCI OR H>8 OR N>8 THEN GOTO 250
200 G$=TG$(N,H):IF M=0 THEN 230
210 IF G$=0$ THEN I=3:GOTO 260
220 Q=Q+1:GOTO 250
230 IF G$=X$ THEN A=A+1:GOTO 250
240 M=1:GOTO 210
250 NEXT I
260 IF XX=O THEN ACS)=A:K(S)=Q:RETURN

21:INK 3,6

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

XX=0:YY=-YY:Y=-Y:G0T0 170
REM ********* DRAW BOARD *********
PEN 2:PAPER 3:J=49:F0R 1=10 TO 32 STEP 3:L0CATE I,22:PRINT CHRS(J)+" ":J=J+1:NEXT
PAPER 0
FOR 1=136 TO 520 STEP 48:PLOT I,40:DRAW I,328:NEXT
FOR 1=40 TO 328 STEP 32:PLOT 136,I:DRAW 520,I:NEXT
LOCATE 15,2:PEN 3:PRINT"CONNECT FOUR":PEN 1:RETURN
REM ********* MAIN INPUT ROUTINE *********
LOCATE 10,25:PRINT SPACES(30);:PEN 2:LOCATE 10,25:PRINT MESS;
INS=INKEYS:IF INS="" THEN 360
RETURN
REM ********* DEFINE CHARACTERS **********
SYMBOL AFTER 90:FOR 1=93 TO 96:READ N1,N2,N3,N4,N5,N6,N7,N8
SYMBOL I,N1,N2,N3,N4,N5,N6,N7,N8:NEXT
DATA 7,31,57,127,126,59,28,7,224,248,156,254,126,220,56,224
DATA 3,15,153,185,255,191,152,7,192,240,153,157,255,253,25,224
HS=CHRS(93)+CHR$(94)
CS=CHRS(95)+CHRS(96)
RETURN
REM ********* INITIALISE VARIABLES *****
DATA 20,18,16,14,12,10,8,6
FOR 1=1 TO 8:READ DN(I):NEXT
REM ******** VALUES BELOW CONTROL COMPUTER EVALUATIONS ********
REM ******** TRY CHANGING THEM AND SEE HOW IT EFFECTS PLAY ***********
DATA 1,120,505,1E22,1,880,3000,1E30,1,80,1000,1E16,1,475,3050,1E14
FOR 1=1 TO 16:READ G(I):NEXT
RETURN

■o

540 SOUND 1,100,15:SOUND 0,50,7:MESS="Do you want to go first?":GOSUB 350
550 IF INS="Y" OR IN$=,,y" THEN 580
560 IF IN$O"N" AND INS<>"n" THEN 540 ELSE X=INT(RND*8)+l:G0T0 390
570 REM ******** HUMAN ROUTINE *******
580 PRINT CHRS(7):LET MESS="Pick a number (1 to 8)":GOSUB 350
590 X=INT(VAL(INS)):IF X=0 THEN 580
600 IF X>=1 AND X<=8 THEN 620
610 GOTO 580
620 R=R(X):IF R>7 THEN 580
630 R(X)=R+1:R=R+1:E=X*3+7:F=DN(R):TGS(R,X)=H$
640 LOCATE E,F:PEN 2:PRINT HS;
650 X$=H$:SOUND 1,100,7:GOSUB 90
660 FOR 1=1 TO 4:IF ACIX4 THEN NEXTzGOTO 710
670 1=4
680 INK l,6,0:PEN IzLOCATE 10,25:PRINT SPACESC30):LOCATE 12,25:PRINT"<« OK YOU WIN! >>>"
690 FOR BB=1 TO 4000:NEXT::INK l,26:G0T0 1120
700 REM ******** COMPUTER THINKING *******
710 P6=0:MESS="Thinking....":LOCATE 10,25:PRINT SPACESC30)
720 LOCATE 10,25:PRINT MESS;:Z1=23:Z2=25:LOCATE Z1,Z2:PEN 2:PRINT THS;
730 U=O:J=1:FOR P=1 TO 8:R=R(P)+1
740 IF R>8 THEN 940
750 E=1:XS=CS:F=O:X=P
760 GOSUB 90
770 FOR L=1 TO 4:J(L)=O:NEXT
780 FOR 1=1 TO 4:A=A(I):IF A-F>3 THEN I=4:GOTO 990
790 Q=A+K(I):IF Q<4 THEN GOTO 810
800 E=E+4:J(A)=J(A)+1

00

810 NEXT I
820 FOR 1=1 TO 4:W=J(I)-1: IF W=-l THEN 840
830 Z=8*F+4*SGN(W)+I:E=E+G(Z)+W*G(8*F+I)
840 NEXT I
850 IF F=1 THEN 870
880 F=1:X$=H$:GOTO 760
870 R=R+1:IF R>8 THEN 900
880 GOSUB 90
890 FOR 1=1 TO 4:IF A>3 THEN E=2 ELSE NEXT I
900 IF E<U THEN 940
910 IF E>U THEN 0=1:GOTO 930
920 0=0+1;IF RND>1/O THEN 940
930 U=E:P6=P
940 LOCATE Z1,Z2:PEN 3:PRINT CHR$(231);:Z1=Z1+1:SOUND 1,500,14:NEXT P
950 IF P6O0 THEN 980: ELSE LOCATE 10,22: PEN 1:PRINT CHR$(5);
960 LOCATE 5, 25: PRINT"''"'"'"'"''It ’ s a draw’'"'"'"'"''"
970 FOR a=l TO 1000:NEXT:GOTO 1120
980 X=P6
990 LOCATE 10,25:PEN 1:PRINT"I'm going in col urnn"; X; "
1000 R(X)=R(X)+1:R=R(X)
1010 TG$(R,X)=C$
1020 X$=C$
1030 E=X*3+7:F=DN(R):SOUND 0,100,23,15
1040 FOR 1=1 TO 3:LOCATE E,F:PRINT" ";:FOR BB=1 TO 100:NEXT BB:LOCATE E,F
1050 PEN 3:PRINT C$;:FOR BB=1 TO 100:NEXT BB:NEXT I:SOUND 1,17,23,8
1060 GOSUB 90
1070 FOR 1=1 TO 4:IF A(I)<4 THEN NEXT I:GOTO 580

1080 1=4
1090 LOCATE 5,25
1100 FOR 1=1 TO 8:PEN 2:L0CATE 10,25:PRINT"«« SORRY I WIN »»"; :FOR BB=1 TO 500:NEXT BB
1110 LOCATE 10,25:PEN 3:PRINT"\\\\ HA! HA! HA! ////":FOR BB=1 TO 500:NEXT BB:NEXT I
1120 FOR a=l TO 100:NEXT:RUN
1130 BORDER 13:INK 0,13: INK 1,0:INK 2,24:INK 3,26:CLS
1140 CLS:PEN 1:LOCATE 14,1:PRINT"INSTRUCTIONS":LOCATE 14,2:PEN 3:PRINT STRING$(12,CHR$(208))
1150 PRINT:PEN 2:PRINT"CONNECT FOUR";:PEN 1:PRINT":"
1160 REM N.B. 1 is control/O
1170 PRINT:PRINT" The game consists of placing your markers on a board with the
intention of trying to get four of your
markers in a row."
1180 PRINT:PRINT" Either: Diagonally

Vertical Iy
or Horizontally"

1190 PRINT:PRINT" The computer will try to out wit you so be on your guard."
1200 PRINT:PRINT" Now press "+CHR$(34)+"ENTER"+CHR$(34)+" to start."
1210 IF INKEY$=CHR$(13) THEN RETURN ELSE 1210

o
00

81

BEYOND THE THIRD DIMENSION

We have now reached the point where the faint hearted
give up and fall by the way-side - they lose the ability to
come to terms with the extra dimensions. Don’t be one of
the majority, take some time to understand arrays, and
you will soon realise multi-dimensional arrays are very
useful programming tools that can be used to advantage,
and are not as difficult to work with as they are believed
to be.

As an example, consider the case of a friend of mine,
Stephen Crew. Steve is a hardware merchant and runs a
very successful retail business,S.CREW IRON
MONGERS LTD.

As you can imagine, there are hundreds of small,
different items that are stocked by an ironmonger, but
Steve’s biggest problem was keeping track of how many
screws he had in stock. He kept a range of screws from
l/16th of an inch to 8 inches in l/16th of inch increments.
Steve is a tidy sort of chap and he keeps the screws in
drawers similar to Dia 4.5

Dia 4.5

82

Stephen is a logical thinking sort of fellow,and it wasn’t
long after he purchased an Amstrad computer that he
realised he could write a program to keep a record of all
his screws by simply using an array to hold all the data.
His screws were kept in two cabinets each holding 4
drawers, and each draw contained every size up to 1 inch
increments so that drawer one had screws from l/16th of
an inch to 1 inch. Drawer two had screws from 1 l/16th of
inch to 2 inches, and so on up to drawer eight which had
screws from 7 l/16th of an inch up to 8 inches.

Steve had never used multi-dimensional arrays, but this
was how he started his program.

SCW (4, 4, 4, 2)
: : : Cabinet
: Col :
: :.Draw

Row.:

70 SCW(ROW,COL,DRAW,CAB)=STK

80 NEXT COL

10 DIM SCW(4,4,8,2)

20 FOR CAB = 1 TO 2

30 FOR DRAW = 1 TO 8

40 FOR ROW = 1 TO 4

50 FOR COL = 1 TO 4

60 READ STK

83

90 NEXT ROW

100 NEXT DRAW

110 NEXT CAB

500 DATA 3600,2000,4000,12000,1200,4560,2389,1907

510 DATA 1200,1324,5279,567,1290,4317,2345,6732

520 DATA

Once he had filled the array with the stock figures, Steve
knew that he could find the amount of stock by accessing
the correct element of the array.

Element SCWCl,1,1,1) held the l/16th screws.

Element SCWCl,1,2,1) held the 1 l/16th screws.

Element SCWCl, 1,4,2) held the 7 l/16th screws.

ANOTHER AMSTRAD SECRET
In the last chapter we discussed, and indeed proved, that
a machine code program could be loaded into a string and
then called from Basic. One draw-back with this method
is that parameters have to be passed by defining a
specific memory location to allow the routine to grab’
them e.g. by Poking the parameter, and Peeking the
result. You have witnessed how easy it is to use arrays
once the initial ground rules have been absorbed, imag
ine then, how easy it would be to pass arguments to a
machine code subroutine by simply loading an element
of an array with the argument : A(l,3) = &FF.

Type in the following program and run it.

10 DEFINT A-Z :DIM A(12) ’ Working in

integers only

20 FOR I = 0 TO 12

30 READ A(I)

40 NEXT

50 Ad) = 8

60 AC4) = 16

70 GOSUB 1000

80 Ad) = 7

90 A(4) = 34

100 GOSUB 1000

110 Ad) = 13

120 A(4) = 8

130 GOSUB 1000

140 Ad) = 12

150 AC4) = 9

160 END

500 DATA &3E00,&0000,&FEF5,&3E07

510 DATA &0000,&2000,&E602,&5F3F

85

520 DATA &FEF1,&300E,&4B04,&34CD

530 DATA &C9BD

1000 CALL ©A(0):RETURN

After running the above program, if you are a novice,
you will be very puzzled by it; experienced programmers
will realise that this way of initialising machine code
subroutines opens up a whole new ball game’.

However, let’s start from scratch. The data statements
are copies of a machine code routine that by-passes
Basic’s sound commands and allows us to access the
sound registers direct. Don’t worry, at this moment, how
it works, we shall be dealing with the sound chip in
greater detail in a later chapter. Basic lines 50 to 150
deal with passing parameters to the routine, and line
1000 locates the start of the array in memory then runs
the machine code section which has been stored in the
array ! The advantages of using arrays rather than
strings for saving and running machine code routines
are twofold: memory is not limited to 255 bytes, which
means that larger machine code sections can be used.
Parameters can be passed from within Basic quite easily
by loading values into the corresponding elements of the
array. Also, if a large amount of data is required by the
assembly routine, another array can be set up, and the
address of this new array can be passed to the machine
code array by using the @ variable format.

Because this method is novel, there are certain rules that
must be obeyed when setting up the array to accept the
code. For the impatient, I will now explain how this
method works.

The Basic programmer who wishes to return to this
subject later, can skip to the next chapter.

86

Setting up the array:

Listing three is the actual assembly listing used when
writing the above routine.

LISTING THREE

Demonstration of using machine code within a
Basic Array then running the array.
Assembled using KUMA’S ZEN EDITOR ASSEMBLER.

1 00 NOP ;alignment
2 3E00 LD A,00
3 00 NOP ;alignment
4 F5 PUSH AF
5 FE07 CP 07
6 3E00 LD A,00
7 00 NOP ;aligment
8 00 NOP ;alignment
9 2002 JR NZfSKIP
10 ES3F AND 3FH
11 5F SKIP: LD E,A
12 Fl POP AF
13 FEOE CP OEH
14 3004 JR NC,BACK
15 4B LD C,E
IS CD34BD CALL 0BD34H ;SEND SOUND VAL
17 C9 BACK: RET
18 00 END

When using this method the assembly routine must be
re-locatable. The reason for this is simple: Basic arrays
are stored, in memory, immediately in front of the simple
variable list - whenever the variables are changed or

87

added to the arrays are moved up in memory, which
means that a Call to another section of code within the
routine will no longer call at the correct address. Jumps
(JPs) must also be avoided.

After you have assembled your code, work out where you
need to insert your arguments and insert NOPS. Each
element of the array will take a two byte value (one
word). Try to arrange for the locations that will receive
the arguments from Basic to fall on even numbered bytes
within the finished routine. Also, if the length of the code
is not divisable by two, insert NOPs until it will.

Object Code from Listing Three

Byte No. Object Code

0000 00 NOP <----- -Nop inserted for alignment
0001 3E00 LD A,00
0003 00 NOP <---—Nop inserted to receive argument.
0004 F5 PUSH AF
0005 FE07 CP 07
0007 3E00 LD A,00
0009 00 NOP<...... —NOP inserted to receive argument.
000A 00 NOP <—--NOP inserted to make sure
000B 2002 even length code
000D E63F
000F 5F
0010 Fl
0011 FE0E
0013 3004
0015 4B
0016 CD34BD
0019 C9

If the NOPs had not been inserted in bytes 0,3,9,and A,
the data would not have aligned after being put into the
array. Don’t forget that the Object code is put into Data
statements by reversing normal Z.80 conventions and
putting MSB first, LSB last. Consequently the first
value for the Basic Data Line is &3E00 - the Z.80 will
reverse them into the correct order when Basic loads

88

them into the array’s memory locations. Using the above
object code the Data is calculated as:
&3E00,&0000,&FEF5......... &C9BD.

You can check that the code is aligned by reading the
data into the array, and then typing in the Direct Mode
PRINT HEX$(A(0)). If you are using Kuma’s ZEN
invoke the monitor by CALLING 16384 then disass
embling from the memory location returned by PRINT
HEX$(
A(0)). The code should exactly match the original Object
Code.

One further point, all arrays must be integer arrays,
otherwise the code will not align as expected. Once you
have mastered this technique all other methods of
interfacing code seem antiquated, and many possibilities
are open to the ingenious programmer: A routine that
could SORT a Basic array into ascending order - 1000
8-byte records in 9.6 seconds!

89

Chapter Five

POKEING AROUND

It’s now time for us to take a look inside the computer.
No. Put the screw-drivers away ! I am speaking meta
phorically. We shall look inside the computer with the
aid of two Basic commands that may have had you
puzzled in an earlier chapter, PEEK & POKE.

With the aid of PEEKS and POKES we can access
memory locations directly, and the statements can be
used to great advantage in our programming.

Although the following example is little, or no use to us,
here is a way, using a Poke, to make the Amstrad get
it’s ‘Knickers in a twist’.

10 DEFINT A-Z

20 CLS

30 INPUT "CHOOSE A NUMBER ";X

40 PRINT "YOUR NUMBER IS “;X

50 Y = RND(50t2)+l

£0 PRINT "I AM GOING TO ADD ";Y; "TO YOUR NUMBER ";X

70 POKE @X,RND(100t2)+l

80 PRINT "THE ANSWER IS ";X

90

Before we start using Peeks and Pokes it is necessary to
understand the difference between Rom and Ram. Also,
to utilise the two commands to our advantage we must be
aware of what happens within the computer.

ROM and RAM

Rom or “Read Only Memory” is that part of memory
which can only be read - you cannot alter the contents of
Rom, and Poking has no effect. Ram or “Random
Access Memory”, on the other hand, can be read or
overwritten - you can Peek and Poke Ram. Random
means that we can access memory locations directly as
opposed to “sequential” which only allows us to start at
the beginning and read each location in turn - 0,1,2....100
etc.

When looking into memory the situation is further
complicated by the fact that it is impossible to tell
whether we are looking at Rom or Ram, and it becomes
essential to understand which part of memory is Rom
and which part is Ram. We must also be careful of what,
and where, we Poke: some blocks of memory are used by
the system and if we use Pokes in a careless manner it is
very easy to cause the computer to crash. Although we
cannot harm the computer with our pokeing, if the
system does crash our only recourse is to switch off and
start again. This course of action is not at all satisfac
tory, especially if we have just finished typing a long
program into memory, so remember, whenever you use
Pokes within your program, save it to tape before
attempting to run it. If the computer then crashes you
have the comfort of knowing that you can reload the
program - it saves a lot of typing!

91

Dia 5.1
Memory Organisation

! Basic
! Rom

Screen !
Memory !

--<C000h

! Jump Blocks !
B900„ >-------------------------------------

!System Variables!
! Symbol after !
! Etc !

ACOOh >--
I I

Free Memory
Space

! Array Storage !

!Simp Ie Variables

■ i

I Program Statement I...............................
! Table ! :
* 1 :

Start Of Basic 016F„ >!--------------------------------- ! Firmware :
! ! Rom :
! Used by system ! :

<4000„

<==0000

Organisation of memory is complicated by the fact that
the computer has 64K of RAM and 32K of ROM. The
Z.80 CPU is only capable of addressing 64K of memory,
which means that some method of switching memory
must be employed. The CPC464 gets around the problem
by splitting the Rom into two sections: The Firmware
Rom and The Basic Rom.

92

The Firmware Rom is located from 0000 to 4000Hin the
lower part of memory, and is responsible for managing
such things as the Programmable Sound generator,PPI.
The Basic Rom is at the top of memory from C000H
through to FFFFh (49152d - 65535D). This means that
whenever the computer needs to access the Basic Inter
preter it has to switch out the Screen Ram. However,
this switching in and out of memory does not affect the
screen display but,further writing to the screen can not
take place until the Screen Ram has been re-enabled.

The two Roms may be enabled and disabled separately.
You have already been told that we cannot Poke into
Rom, so it doesn’t matter if the Rom is enabled at the
location we are pokeing as no harm will be done to
the system.

System Variables.

Roms can never change their memory contents, and in
an ever changing environment such as a Basic program,
the computer must have some method of storing various
pieces of information, e.g length of Basic program
current cursor position, top of Basic etc. The Amstrad
keeps track of this sort of program information by
allocating a block of memory starting at AC00H
(44032d). This area of memory is very critical and
extreme caution should be exercised when pokeing in
these regions.

The Program Statement Table.

The Program Statement Table contains the source
statements of the actual Basic Lines that have been
typed in from the keyboard, or loaded from tape. The
starting address of this table is fixed at 016FH (367D) but
it’s ending address will vary with the size of the program
currently in memory. As program lines are added or
deleted the end of the PST is altered accordingly.

93

As each line of Basic program is entered from the
keyboard it is scanned for reserved words and,if any
are found, they are Tokenised, and stored in a
compressed format. Tokens are a way of saving memory.
It is far more economical to store the Token 8EH for the
Basic command DEFINT because this method saves five
bytes of memory. A Basic program has many lines, and
most lines have multiple statements, so the saving on
memory is vast - as much as 20%. Unfortunately, the
Token Tables are situated in the Basic Rom so we
cannot look at them by using Peeks. Table 5.2 is printed
below so you can see how the Tokens relate to the
different Keywords.

BASIC TOKENS

TABLE 5.2

KEYWORD TOKEN KEYWORD TOKEN

ABS FFOO AFTER 80
ASC FFO1 ATN FF02
AUTO 81 BINS FF71
BORDER 82 CALL 83
CAT 84 CHAIN 85
CHAIN MERGE 85 AB CHRS FF03
CINT FF04 CLEAR 86
CLG 87 CLOSEIN 88
CLOSEOUT 89 CLS 8A
CONT 8B COS FFO5
CREAL FF06 DATA 8C
DEF FN 8D DEFINT 8E
DEFREAL 8F DEFSTR 90
DEG 91 DELETE 92
DIM 93 DRAW 94
DRAWR 95 EDIT 96
ELSE 97 END 98
ENT 99 ENV 9A
EOF FF4D ERASE 9B
ERR FF41 ERL E3

94

ERROR SC EVERY SD
EXP FF07 FIX FF08
FOR SE FRE FFOS
GOSUB 9F GOTO AO
HEX* FF73 HI MEM FF42
IF Al INK A2
INKEY FFOA INKEY* FF43
INP FFOB INPUT A3
INSTR FF74 I NT FFOC
JOY FFOD KEY A4
KEY DEF FF75 LEFT* DB
LEN FFOE LET A5
LINE INPUT AG A3 LIST A7
LOCATE AS LOG FFOF
LOG 10 FF10 LOWER* FF11
MAX FF7G MEMORY AA
MERGE AB MID* AC
MIN FF77 MODE AD
MOVE AE MOVER AF
NEW Bl NEXT BO
ON GOSUB B220 ON GOTO B2A0
ON BREAK GOSUB B39F ON BREAK STOP B3CE
ON ERROR GOTO B2SC ON SQ GOSUB B5SF
OPENIN B6 OPENOUT B7
ORIGIN B8 OUT BS
PAPER BA PEEK FF12
PEN BB PI FF44
PLOT BC PLOTR BD
POKE BE POS FF78
PRINT BF RAD Cl
RANDOMIZE C2 READ C3
RELEASE C4 REM C5
RENUM CG RESTORE C7
RESUME C8 RETURN CS
RIGHT* FF7S RND FF45
ROUND FF7A RUN CA
SAVE CB SGN FF14
SIN FF15 SOUND CC
SPACE* FF16 SPEED INK CD A2
SPEED KEY CD A4 SPEED WRITE CD DS
SQ FF17 SQR FF18
STOP CE STR* FF1S
STRING* FF73 SYMBOL CF

95

SYMBOL AFTER CF 80 TAG DO
TAGOFF DI TAN FF1A
TEST FF7C TESTSR FF7D
TIME FF46 TROFF D2
TRON D3 UNT FF1B
UPPERS FF1C VAL FF1D
VPOS FF7F WAIT D4
WEND D5 WHILE D6
WIDTH D7 WINDOW D8
WINDOW SWOP DS E7 WRITE D9
XPOS FF47 YPOS FF48
ZONE DA = EF

< F2 + F4
- F5 * F6
/ F7

As soon as a program enters the RUN mode control is
passed over to the Execution Driver which scans each
statement for Tokens and, if one is found, the Execution
Driver passes control to the routine that deals with the
command or function. When the computer spots a Token,
eg. GOTO, it knows immediately which routine and the
location of the routine in memory. The secret lies in the
way the Tokens are allocated to the various Basic
statements.

The Basic Rom contains a Verb Action List which holds
the addresses for all the routines used by the various
Basic commands. To find the correct address the
computer has to calculate the displacement into the list
according to the value of the Token. The very first Token
is 80h (AFTER), and all other Tokens are increments of
this number. For example, Closeout has a Token value
of 89h, and to find the address of the Closeout routine the
computer deducts 80H from the token and adds this to
the start address of the Verb Action List. The Execution
driver now extracts the address from this location and
jumps to the actual routine that will carry out the
Closeout command.

96

Following on from the Program Statement Table is the
Variable List Table (VLT). This table contains the
names and values for all variables currently initialised
with the Basic program. The list is divided into three
sections: Simple variable names,String Pointers,
Subscripted variables. This table also alters as vari
ables are declared or deleted.

Structure of a Basic Line as represented in memory

!0G 100 I0A 100 lActual Basic statements & tokens!:

: :.2 byte Line Number Start of next line

Number of bytes in Basic line (2 bytesi

The Variable Type Table (VTT) is stored as a fixed
length table starting at AE0CH (44556D). This table is 26
bytes in length with each byte corresponding to a letter
of the alphabet (A-Z). At switch on the VTT is initialised
by Basic to 05H in each of the twenty six locations. The
05h markers denote Real values which is Basic’s default
setting. If a Basic program starts with a DEFINT
statement,any variable included within the statement
will have the 05H markers replaced by the integer
marker 02H. A Basic statement: X!= 33.3333 is accepted
because the type marker follows the variable name.
However, if the interpreter comes across the statement Z
- 765.8993 Basic checks the VTT to see if the entry
under Z corresponds to the Real marker (05H)-

Now is as good a time as any to try out a few Peeks in the
Amstrad’s secrets. The following program will allow you
to take a look at the VTT, and you will see how the
entries alter for each type of variable.

97

10 CLS

20 GOSUB 150

30 CLS

40 DEFINT A-Z

50 GOSUB 150

60 CLS

70 DEFSTR

80 GOSUB 150

90 CLS

100 DEFREAL

110 GOSUB 150

120 END

150 FOR I7.=&AE0C TO &AE0C+25

160 PRINT PEEKCI7.);

170 NEXT

180 INPUT "PRESS ’Enter’ FOR NEXT PEEK";

190 RETURN

We can use Pokes to put our machine code routines into
memory. Indeed, we used this method in a previous
chapter when we pointed a short routine at a string.
Poke can also be used to pass parameters to a machine
language routine from within our Basic program. For
example, if we had a machine code program to move a
blob around the screen, by using a static memory

APOA-4

98

location to store the current position of the blob, we could
Peek the position back to the Basic program, or change
the position from Basic by Pokeing the new value into
the fixed memory location.

Example of Pokeing to sequential addresses

10 X = START ADDRESS

20 Y = END ADDRESS

30 FOR I = X TO Y

40 READ A

50 POKE I, A

60 NEXT

70 END

80 DATA 34,56,&45,&65,12

Routine to Poke Data to different addresses

10 READ ADR,CODE

20 IF ADR = -1 AND CODE = -1 THEN END

30 POKE ADR,CODE

40 GOTO 10

50 DATA ADRI,00,ADR2,&CD,ADR3,&F0,ADR4,&45,-1,-1

99

Where ADR1,ADR2 etc represent memory locations. A
check for ADR and CODE = -1 is to ensure that the end
of data has been reached. The reason CODE is also made
to =-l is simply that it is possible for an address to be -1
as we shall now discover.

Two Rules for PEEK and POKE

In Chapter 3 we unearthed the method of how the
Amstrad stores 2-byte numbers: Least Significant Byte
First, Most significant Byte Last. Whenever we read a
16-bit (2-byte) value from memory we have to correct for
this anomaly by using the following formula:

RULE 1

VALUE = MSB*256 + LSB
OR

PEEK(AD)+PEEK(AD+1)*256 = VALUE

RULE 2

If we are using decimal numbers to represent our
addresses we must use the following rule for all memory
locations over 32767D

POKE ADDRESS = (DECIMAL ADDRESS - 65536)

The reason for this rule is related to unsigned 16-bit
integers and the two’s complement of a number. (See
Chapter 3). In decimal, addresses range from 0 to 65535.
However, signed integers, as used by the computer, can
only be in the range -32768 to +32767, but the signed
integer -1 = FFFFH while the unsigned integer FFFFH
= 65535d, and this is where the confusion starts. Take a
look at the following list.

100

32767O = 7FFFH

32768d = SOOOh

3276% = 8001H

65535d = FFFFh

-32768d = 8000h

-3276% = 8001H

-6553% = FFFF„

From the above it is clear that all positive integers over
32767 are equivalent to their negative numbers. X%,
which is an integer variable, will only accept numbers
from -32768 to +32767, so to Poke above this limit we
must use the negative equivalent. If you don’t
understand this rule go back and re-read Chapter 3.

Listing 4 will allow you to Peek anywhere in Ram. It will
display the memory location followed by whatever is in
that location. If the value in memory has an equivalent
Ascii value it will be printed, otherwise the program will
print the actual value in that memory location. This
program is not a disassembler but it will allow you to
investigate a few interesting points of Locomotive Basic.

After typing in the program,look at locations from
AC00h (44032d) up to C000H. This is the area of memory
we discussed a little earlier. Also look at 016FH (367D),
you will see some very interesting characters. You will
see the lines of the program you are running.

Unfortunately, because of the way the Roms are struc
tured, you cannot Peek into them - to do this you need a
disassembler. A disassembler is a program that
automatically disassembles values into their correct Z.80

101

instructions. Of course, to understand the disassembly
you need to have an elementary knowledge of machine
code. Listing 5 is an example of a disassembly. This
listing was produced with Kuma’s ZEN which is also an
Editor/Assembler. The first numbers in the listing are
the memory locations,and the next values are the actual
machine language instructions. The last column is the
machine code instructions disassembled into mnemonics.

LISTING 4

10 DEFINT A-Z

20 INPUT "STARTING ADDRESS ";SA

30 INPUT "END ADDRESS ";EA

40 CLS:FL=O

50 FOR L=SA TO EA

60 PK = PEEKCL)

70 GOSUB 200

80 NEXT

90 PRINT:INPUT "ANOTHER RUN ";A$

100 IF A$="Y" THEN GOTO 40 ELSE GOTO 20

200 IF PK<33 GOTO 250

210 IF PK>122 GOTO 250

220 IF FL = 0 THEN PRINT L; " "; CHR$(PK);:GOTO 240

230 PRINT CHR$(PK);

240 FL=1:RETURN

250 GOSUB 300:PRINT L; " ";PK

102

2G0 FL=0

270 RETURN

300 IF FL=1 THEN PRINT:RETURN

310 RETURN

During the course of the next chapter,as we utilise some
of the Amstrad’s built in commands, we shall be using
machine code programs to illustrate the text. To take
advantage of the advance features of the CPC464 a
knowledge of assembly language is essential. Teaching
this method of programming is beyond the scope of this
book but it will be prudent to spend a few paragraphs
explaining the rudiments of the language.

MEMORY ADDRESS

: ...MACHINE CODE INSTRUCTIONS.

ACFE 211010

AD01 CD75BB

AD04 01E803

Understanding the above program is difficult. To work
out what the program does we would need an index of all
the different Operation Codes used by the Z.80 CPU.
Now take a look at the same program written with an
editor/assembler.

1 ORG OACFEH

2 LD HL,1010H

3 CALL 0BB75H

4 LD BC,1000H

103

This is called a source listing and obviously if you knew
what the different statements meant you would be able
to guess what the program was supposed to do.

Once the source code has been written we can tell the
assembler to Assemble the code into machine language
instructions, and within a few seconds it would produce a
listing similar to the following:-

LISTING 5

1 ORG OACFEH

2 ACFE 211010 LD HL,1010H

3 ADO1 CD75BB CALL 0BB75H

4 AD04 01E803 LD BC,1000H

Please note that the assembler used to write the routines
in this book is Kuma’s ZEN. Assemblers work in dif
ferent ways, so if you are using another product, your
listings may vary slightly from the examples shown
here.

We use an assembler to write assembly language pro
grams written in Z.80 mnemonics, which are easy to
understand logical instructions. The assembler turns
this program called a source program into machine
code instructions that the computer can understand. The
resultant code is called the object code.

SOURCE CODE ==^> ASSEMBLER ===> OBJECT CODE

104

The Z80 processor contains two sets of internal, general
registers, and six special purpose registers. Take a look
at the following:-

Z80 REGISTERS

1 A : f ! A’ i F’: ALTERNATE
GENERAL 1 B 1 C I B’ : c’: GENERAL
REGISTERS i

i
Q

I X
I

1
1

—
1 —

1

i
I

L
U

I-II
1

1 i—
 i—

I I IX
 IO

i -
1

- —
i —

i

L
U

I 111
1

1

—
1 —

1

REGISTERS

: ix : iy : sp : pc ! i : r !

SPECIAL PURPOSE REGISTERS

A,B,C,D,E,F,H,and L are the normal general registers
and the registers designated ’ are the alternate register
set, which can only be accessed by the two instructions
EX AF,AF’ AND EXX - these two instructions exchange
the contents of the main set with that of the alternate
set. Only one set of registers can be used at one time.
Following the two sets of 8Bit registers are four 16Bit
registers : IX,IY,SP,PC. Registers I & R are very
seldom used in most normal programming applications.

The A register is also refered to as the accumulator
because all of the arithmetic instructions, and most of
the other instructions use the contents of the A register
as an operand. In fact, this is where most of the transfers
take place.

The F register is also called the Flag register. The F
register sets, or re-sets, bits internally to indicate a true
or false type of condition and is never used for comput
ations.

105

The Program Counter or PC is a 16 bit register that
points to the current memory location which hold the
instruction to be executed. Another 16 bit register is the
SP or Stack Pointer. This register keeps a check on the
position of the STACK in RAM. Two 16 bit registers
with very powerful programming possibilties are the
index registers; IX & IY.

Each of the 8 Bit registers can be used separately or in
set pairs [BC,DE,HL] and treated as 16 Bit registers.

Assemblers have their own set of rules, but they aren’t
difficult to learn:-

DB or DEFB =====> Define Byte.... ...DB #FA,’T’,’ONE’

DW or DEFW =====> De fine Word.......... ..DW #4007 or Label

DS or DEFS =====> Define Space.... ..DS 245 reserve 245 bytes

DM or DEFM =====> De fine Message.. ..DM ’ANOTHER GAME ?’

All the above are known as Pseudo operations and are
used by the assembler, not the CPU, to carry out
predefined functions.

LABELS are used to reference one instruction to
another. For example: JP Z,AGAIN. A label can be
compared with a line number in Basic; e.g IF A = 0
THEN GOTO 100.

The semi-colon ; is used in the same way as the REM
statement in Basic, and the assembler ignores all that
follows. It is good programming practice to get into the
habit of documenting your program. Believe me, when
you look at your code after a few months you will find it
hard to understand what you had in mind at the time you
wrote the program.

106

The convention used by most assemblers is as follows:-

Label Op Code Operand Remarks

START: LD A, (DE) ;F'ut score in A reg.

A common CPU operation is the compare instruction -
CP in Z80 mnenomics. This works in a similar way
to the Basic statement:-

10 IF A = 10 OR A > 10 OR A < 10 THEN GOTO 100

It allows you to make decisions then act accordingly by
branching out of one routine, or jumping into another
part of your program. The result of a compare is
checked by testing the state of the bits in the F register.

BIT 7 6 5 4 3 2 1 0
S Z - H - P/V N C

X
 o = CARRY FLAG : N = ADD/SUBTRACT FLAG C BCD OPERATIONS I

= HALF CARRY FLAG C BCD OPERATIONS I : P/V = PARITY OVERFLOW
Z = ZERO FLAG : S = SIGN BIT

Bits 3 & 5 are not used. The Half Carry and N flags are
used for Binary Coded Decimal operations, and we are
not concerned with them at this point.

107

The Carry Flag, if set, denotes a CARRY (C), and if
reset denotes a NO CARRY (NC) condition. This flag is
directly affected by an addition or subtraction. It should
be understood that all CP operations compare the value
contained in the A register with the next operand,
which can be a value in a register or an absolute
value:

CP C ; compare value in A with value in C

CP #32 ; compare value in A with 32 hexidecimal

What is actually happening during a compare operation
is the value of the compare operand is subtracted from
the value contained in the A register.

LD Af#40 ; Load A reg with 40 Hex

CP L ; VALUE OF A - VALUE OF L

You can see, from the above,that a compare operation is
essentially an arithmetic operation on the A register,
and, as such, the result will affect the Carry Flag.

The Zero flag is set [1] whenever the result of an
arithmetic operation results in zero. If the Carry &
Zero flags are used in tandem, any possibility can be
tested. Consider the following Basic statement:-

10 LET A = VALUE
20 IF A = 10 THEN GOTO 40
30 IF A> 10 THEN GOTO 50
40 GOTO 40

108

Translating this into assembler:

LD A,VALUE ; put value in f
CP 10 ; compare value
JR Z, EQUAL ; i f value in A
JR NC,GREATER ; i f carry f1ag

LOOP:JR LOOP ; value in A is

reg.
in A to 10.
= 10 then goto Equal.
not set goto Greater.

not equal to, and is less than 10

The No Carry situation will arise if A = 10 or A > 10
and so it is always wise to compare the A register with a
value 1 greater than the value you wish to test for.

CP 10

JR NC,NEXT

If the carry is not set then A is definitely greater
than 9 but could be equal to 10.

This is the reason we tested for Zero before testing the
carry flag in the previous example.

The four situations can be summarised as follows:-

N Value in A reg > or = to compared value
C Value in A reg < compared value
Z Value in A reg = compared value
NZ Value in A reg not equal compared value

Also note that the value in the A register is not affected
and is left unchanged by the compare.... the subtraction
takes place in theory only. The Sign Bit: In 2’s comple
ment notation,if the 7th bit is a 1 then the number is
negative, and if bit 7 is - 0 then the number is

109

positive. The sign bit reflects the state of this seventh
bit. The other flags will be discussed as the situation
arises, but the three already discussed are the most
important.

ADDRESSING MODES

Any detailed review of a CPU will always mention its
addressing modes. This is where the Z80 comes into its
own: the wide variety of addressing modes available on
this CPU makes life really easy for the programmer.
Addressing modes will create no serious problem to you.
You will soon become familiar with the most useful, and
to help you, here are the most common ways of
addressing the Z80.

Immediate Addressing:

In Basic a similar instruction would be : LET A — 3

LD A,03 or LD HL,5007 (known as immediate extended
addressing)

You are loading a register or a register pair with
immediate data.

Register Addressing:

This is exactly what it says: One register is loaded from
another.

LD A,C ; Load A from C

Indirect Register Addressing:

In this mode of addressing, the location of the operand is

no

held in one of the register pairs; BC,DE or HL. A
translation in Basic would be:

In assembler:

10 LET BC = 14390
20 LET A = PEEK(BC)

LDA,(BC) ; load A register with the value in
the RAM/ROM location
pointed to by the BC register pair.

LD HL,14390 ;
LDA,(HL) ;
LD DE,56789 ;
LD(DE),A ;

J

make HL point to address 14390
put value in A register.
point DE registers to location 56789
load memory location pointed to by DE
registers with
value in A register.

Indexed Addressing:

This is a really powerful addressing mode. It allows you
to retrieve, or store data, from tables set up in memory.
We can make IX or IY registers point to an address then
add an offset within the range of -128 to +127.

If the IX register points to memory address 3C00 Hex we
can LD A,(IX+15) which would load the A register with
the contents of memory location COF hex. LD A,(IX+00)
would load the A register from memory location 3C00
hex.

Implied Addressing:

This mode means that the register is not named in the
mnemonic, but is implied by it.

ADD E ;The contents of the E register are added to

the contents of the ;A register.

SCF ; Set Carry Flag.

Ill

Protocol:

LD A,(HL) LD A FROM LOCATION POINTED TO BY HL.
Data flow.... A <====== HL <========= Memory Location.
Data always flows from RIGHT to LEFT LD A,36

DJNZ

The DJNZ instruction works in tandem with the B
register and is used in a similar manner to a FOR NEXT
LOOP in Basic.

LOOP:

LD B,100

DEC HL

LD (HL),A

DJNZ LOOP FOR I = 1 TO 100:

PRINT I:NEXT

112

Chapter Six

A Choice Remark

Chapter Two saw us dealing with binary numbers and
powers of two. Understanding the binary number system
can help us with our programming in all sorts of ways,
and it certainly makes life a lot easier when dealing with
graphics.

Each location or print position on the Text Screen is
made up of 8 pixel by 8 pixel squares. Mode 1 has 40
print positions on each of the 25 lines which makes a
total of (40*25*8) 1000 pixels used by the Text screen.
When a character is printed on the screen it covers one of
these 8 by 8 pixel positions, the parts that we see are the
lit pixels and the blank parts of the character are the
unlit pixels.

All characters, Ascii or graphics, follow this same
format of 8 x 8 pixel squares. The character can be a
solitary lit pixel (Full stop) or 64 lit pixels which should
as a solid block on the screen. This method of displaying
graphics relates very well to the binary number system.
If we treat each lit pixel as a 1 (on) and each unlit pixel
as a 0 (off), we can convert each design into a set of data
for sending to the computer with the Symbol command.

When converting Data into lit and unlit pixels for
displaying on the screen the computer uses the same

113

Positional Notation as used for numbering the bits of a
byte.

2T 2° 2° 2* 2 3 22 21 2°
Byte Format: --

!l!l!O!O!l!O!l!l!

CHARACTER MATRIX OF X

27 2° 2° 2* 93 2= 2X 21

0 ! 1 !! !

1 ! ! t t-t! ! 1 11 !ttt! ! !

2 ! ! 1 1! Illi

3 Illi 1 Illi

4 ! ! !ttt!1 1 Illi

5 ! !tt*! ! 1 !! ! !

6 ! ttt! m! ! 1 1 ! ! -tXt! !

7 1 1 1 1 1 Illi

To convert a character design into data we simply add all
the positional values of the Is (lit pixels) in each
horizontal line, and the result is the number used to
reproduce that line.

27 2a 2” 2* 23 2s6 21 21

0 ! ! t-t*! 1 • !ttt!Xtt! ! = 128 +64 + 4 + 2 = 198

1 ! !! 1 1 ! ! = 64 + 4 = 68

2 1 ! 1 !ttt! ! ! ! = 32 + 8 = 40

Part of the X design

114

Symbol 128, 198,68,40 would create the top three
lines of the X and assign the value to character 128.

Larger patterns can be created by using two or more
matrices butted together to give 16 * 16 pixel characters
- in fact you can use all 255 characters and create a
unique and exclusive design.

10 CLS

20 DATA 175,215,175,213,172,212,172,212

30 DATA 252,0,80,248,112,32,0,0

40 DATA 192,248,254,254,30,28,60,56

50 DATA 56,112,112,112,126,49,65,126

60 CHR=128

70 FOR I = 0 TO 3

80 READ A,B,C,D,E,F,G,H

90 SYMBOL CHR,A,B,C,D,E,F,G,H

100 NEXT

120 X$ =CHR$(128)+CHR$(130)

130 Y$=CHR$(129)+CHR$(131)

140 LOCATE 12,12

150 PRINT X$;CHR$(8):CHR$(8);CHR$(10);Y$

160 GOTO 160

The above code uses two control characters CHR$(8) &
CHR$(10) to backspace the cursor and perform a line

115

feed so that the Y$ will be printed immediately under
the X$. This will give the effect of printing a single
character 16 pixels across by 16 pixels deep.

Movement can be achieved, in it’s simplest form, by first
printing the character, then over printing it with a
space, the print position is then incremented and the
same procedure repeated. Some kind of a delay loop must
be used so that movement appears fluid.

Print character
Delay
Print space-------

Print character
Delay

> Print space -----

Print character
Delay

> Print space

10 CLS: Y=1

20 FOR X = 1 TO 39

30 LOCATE X,Y

40 PRINT "A";

50 FOR J = 1 TO 80: NEXT

60 PRINT CHR$(8);" ’ BACKSPACE PRINT POSITION

70 NEXT

Animation can be simulated by designing two separate
patterns and printing them alternately to the screen.
Again, a delay loop will have to be used to give a smooth
and realistic animation. If the above method of
movement is also employed, the appearance of a man
walking or a bird flying etc., can easily be achieved.

The way the Amstrad’s screen is mapped in memory
makes it virtually impossible to read directly from the
screen using the Peek statement. This is an unfortunate

116

situation as it is sometimes desirable to know what
character is at the cursor position. The following pro
gram will provide you with the facility to Peek the
Amstrad screen at the current cursor position and
returns the value in integer variable PK%. PK% must
be defined before calling the routine otherwise unpredic
table results will occur. The program also introduces yet
another way of storing machine code routines.

1 GOTO 10:REMtttttttt*tttt

10 CLS:DEFINT A-Z:PK=O:AD=&017B

20 DATA &DD,&6E,&00,&DD,&66,&01,&E5

30 DATA &CD,&60,&BB,&E1,&77,&C9

40 FOR I = AD TO AD+12

50 READ DTA:POKE I,DTA

60 NEXT

70 LOCATE 4,12:PRINT "A"

80 LOCATE 4,12:CALL AD,@PK

90 LOCATE 1,1:"PRINT PEEK VALUE IS ";PK

100 GOTO 100

The program gets whatever character is at the current
cursor location and puts it into variable PK. by exam
ining the contents of PK you have effectively Peeked the
screen.

This method uses a REM statement to store the machine
code driver, whenever you use this method you must set
up Line 1 exactly as shown in the above program

117

except that you must put as many * in the REM
statement as there are bytes in your machine code
program. If you set up the line exactly your machine code
will always start at &017B1, and can be called from
this location.

One final point. Always make sure you save your
program before attempting to RUN it, as it will be
impossible to edit it afterwards. If you try to list the
program after running, you will get a SYNTAX
ERROR. This can be overcome by typing LIST 10 -
which will then list all the lines from line 10.

This is a very versatile method of storing short machine
code subroutines, and providing you follow the instruc
tion above,the program will be self contained and cause
no problems.

THE AMSTRAD SCREEN MAP

Line 1 C000H.....................C04FH
C800h.....................C84Fh
D000h.....................D04Fh
11800n.....................D84FH
E000h.....................E04Fh
E800[[.....................E84FH
F000h.....................F04Fh
F800H....................F84Fh

Line 2 C050H......................C09FH
C850h......................C89Fh
D050H.....................D09Fh
D850h......................D89Fh
E050h......................E09Fh
E850h......................E89Fh
F050h......................F09Fh

118

Line 3 COAOH......................COEFH
• •• •

F8A0H......................F8EFH

Line 4 COFOH.......................C1BFH
• •• •
• •• •

F8F0h.......................F93Fh

Line 5 C140H.......................C18FH
• •• •
• •• •

F940h.......................F98Fh

Line 25 C780H........................ C7CFH
CF80h........................ CFCFh
D780h........................ D7CFh
DF80h........................ DFCFh
E780h........................ E7CFh
EF80h........................ EFCFh
F780h...................... F7CFh
FF80h........................ FFCFh

119

Chapter 7

SOUND ADVICE

A really exciting innovation of the Amstrad computer is
the way it has been designed to allow the programmer
easy access to modify the operating system. Entry to the
system is via a series of Jump Blocks placed in high
memory starting at B900H

The Jump Blocks contain a series of vectors to the more
useful routines contained in the Firmware Rom. The
lower Rom, as we have already intimated, is responsible
for controlling the hardware and related routines. By
using the vectors so kindly supplied by the brains at
Locomotive Software we can take advantage of the Rom
routines instead of having to write thousands of lines of
our own. Because the Jump Blocks are in Ram we can
easily make slight alterations, or modify the routines in
a more drastic manner, by re-vectoring the addresses
within the Jump Block.

To take full advantage of these routines it is advisable to
purchase a copy of Amstrad’s “The Complete CPC 464
Operating System” (Soft 158). The book is expensive
but it contains a wealth of information on the operating
system, and is virtually the Amstrad programmer’s
Bible. There are over 189 different entries in the Jump
Blocks, and it is well beyond the scope of this book
to deal with each individual call.

120

To demonstrate the usefulness of the Jump Blocks
let’s write a small routine to print a message on the
screen. Not very enterprising, I agree, but it will illus
trate how easy it is to utilise the Rom routines.

ORG OAOOH

SETCUR: EQU 0BB75H

PRINT: EQU 0BB5DH

?

START: LD HL,0104H

CALL SETCUR

LD HL,MESS

AGAIN: LD A,(HL)

CP OFFH

JR Z,FINISH

PUSH HL

CALL PRINT

INC HL

JR AGAIN

FINISH: RET

MESS: DB "THIS IS A TEST PROGRAM FOR THE

AMSTRAD",OFFH

121

The program calls on two entries from the Jump Block:
BB75h and BB5DH. At the very start of the program the
two addresses are given labels with the actual addresses
EQUated immediately on entering the routine.

SETCUR BB75h

The routine called from this address moves the cursor to
a new location as specified in the HL register pair. H
must contain the required column and L the desired row.

PRINT BB5Dh

Prints the character contained in the A register at the
current cursor position.

The program starts by loading the HL register pair with
the desired cursor position (LOCATE 1,4)- The HL
registers are then pointed to the address of the message
buffer (LD HL,MESS), and a loop is set up (AGAIN) to
load the A register with the characters pointed to by HL.
A test is carried out to determine if the contents of the
Accumulator are equal to FFH - this is the flag byte. We
have used a similar method in Basic for detecting the end
of Data. If the character is not FFH the PRINT routine is
invoked to display the message on the screen. Program
flow then jumps back to the AGAIN loop to search for
the next character. Once the FFH marker is found the
routine terminates by returning to the calling program.

122

LISTING 5

The assembled program.

1 □RG OAOOOH
SETCUR: EQU 0BB75H

Q vJ PRINT: EQU 0BB5DH
4 j
5 AO 00 210401 START: LD HL,0104H
6 A003 CD75BB CALL SETCUR
7 A006 2116A0 LD HL,MESS
8 A009 7E AGAIN: LD A,(HL)
9 AOOA FEFF CP OFFH

10 AOOC 2807 JR Z,FINISH
11 AOOE E5 PUSH HL
12 AOOF CD5DBB CALL PRINT
13 AO 12 oo INC HL
14 AO 13 18F4 JR AGAIN
15 AO 15 89 FINISH: RET
IS AO 16 54484953 MESS: DB "THIS IS
16, A01A 20495320
16 AO IE 41205445
IS A022 53542050
16 A026 524F4752
16 A02A 414D
17 A02C FF DB OFFH
IE) END

Once we have assembled the program we can
install it in a number of ways:

a] By loading it into protected memory and C ALL-
ing it from the Basic program.

b] By saving the machine code in Basic Arrays
and Pokeing it into protected memory, then
calling it from within the Basic program.

123

c] By loading it into a string, and Calling the
Address of the string.

d] If the code is re-locatable we can load it into a
Basic Array as described in Chapter 5, and
run it by calling the
Address of the Array.

On this occasion we shall place the instructions into
Data statements, and Poke them into memory, then Call
the routine from Basic.

10 CLS

20 FOR I = &A000 TO &A02C

30 READ DTA

40 POKE I,DTA

50 NEXT

60 CALL &A000H

70 FOR I = 1 TO 500:NEXT

80 CLS:GOTO 60

90 DATA &21,&04,&01,&CD,&75,&BB,&21,&16,&A0

100 DATA &7E,&FE,&FF,&28,&07,&E5,&CD,&5D,&BB

110 DATA &23,&18,&F4,&C9,&54,&48,&49,&53,&20

120 DATA &41,&20,&54,&45,&53,&54,&20,&50,&52

130 DATA &4F,&47,&52,&41,&4D,&FF

Now that we have sampled the way a Jump Block can
be used to our advantage, let’s move on to do something
more useful, and at the same time, design a routine to
give our programs more appeal.

124

SOUND

It is not our intention to dwell on the inbuilt sound
routines as they are adequately covered in the Concise
Basic Manual published by Amsoft. We are going to
design our own sound routines and create 3 new Basic
commands to allow us to take full advantage of them.

It would be nice to have a less complicated way to
produce sounds on the computer. The program we are
about to design will give us this facility. When we have
finished the overlay, we will be able to use 3 new
commands:

ISOFF, IPLAY, and ISND.

To write this program we must first understand how the
system utilises the sound chip, and how the AY8912
Programmable Sound Generator operates. Obviously,
without knowing this information, it would be impos
sible to write an effective routine to interface with the
chip.

AY8912 Programmable Sound Generator [PSG]

The PSG is a Large Scale Intergrated Circuit [LSI]
which can produce a wide variety of sounds under
software control. Once a sound has been sent to the chip
the computer is free to carry out other tasks,until such
time as the sounds or registers need updating.

The chip uses three,independently controllable, sound
channels A,B,C which can produce pure tone signals or
white noise. The frequency response of the PSG ranges
from the sub-audible at the lowest frequency to post-
audible at the highest frequency. Some sounds may be
beyond reproduction on the inbuilt sound amplifier of the
Amstrad, and may only become apparent when the
system is connected to an external hi-fi system.

125

The basic blocks within the PSG are as follows:

Tone
Generator
Noise
Generator
Mixers

Produces the tone frquencies for each
channel.
Produces random frequency modulated
noise.
These combine the outputs from the
Tone Generators with that of the Noise
Generator, and there is one for each
channel.

Amplitude Provides either fixed level sound or a
variable volume (amplitude) sound. The
variable sound is controlled by the
Envelope Generator.

Envelope
Generator

Produces an envelope pattern which
can be used to amplitude-modulate
the output from each of the Mixers.

The various operations of the PSG are controlled
via 16 Registers [Rn], and their functions within the
PSG are listed as follows.

THE PSG REGISTERS

Ro
Ri
R2
R3
r4
Rs

High notes value for channel A
Low notes value for channel A
High notes value for channel B
Low notes value for channel B
High notes value for channel C
Low notes value for Channel C

r6
r7

Noise value
Mixer channel - Tone ON/OFF Noise
ON/OFF I/O Enable

r8
Ro
Rio

Volume for channel A
Volume for channel B
Volume for channel C

126

Rn

R12

R13

High tone envelope period
Low tone envelope period
Envelope shape.

REGISTERS 8-9-10

These registers control the volume of the sound depen
ding on which bits are set [1]. Control of the channels is
by 5 bits only (0 to 4) and the remaining 3 bits are not
considered by the PSG.

.-X

• • ■

Control Bit :.................. Volume 0-15

If BIT 4 is set [1], then control is passed to the Envelope
Generator which gives a variable level of sound
combined with the differing waveforms.

When BIT 4 is reset [0], control is by the value passed in
registers 8,9,& 10. All this means is: if you pass a value
between 0 to 15 then the volume level is that value,with
0 the lowest,and 15 the highest volume. When the value
in these registers is 16 the volume varies under control of
Register 13 - 16 sets BIT 4.

REGISTERS 0,1,2,3,4,5

These registers control the pitch of the note produced.
The lower channel of each pair uses BITS 0-7 and
governs the Fine Tune (just using the lower channel
produces high pitched notes). The higher channel of each

127

pair uses 4 BITS 0 to 3, and controls the Coarse Tune
(low pitched sounds). When the values of the two reg
isters are combined, the result is a 12-bit,value and the
note produced as listed in your Basic Manual for that
value.

7 6 57 6 5 4 4

Ixxx I xxxIxxxIxxxI 1 ! 0 I 1 I 0 I

AZ Not Used > A Coarse Tune
: Registers

1 - 3 - 5 :

Fine Tune Registers
0-2-4

< Resulting 12-Bit Value >

The combined value is equivalent to the note value
used in Basic

REGISTER 6

Register 6 works in a similar manner to the above
registers but this particular register controls the noise
generator. The register only uses 5 bits (0 to 4), and the
higher the value in the register the lower the resulting
frequency of the white noise. The range of values that
can be input to this register is 0 to 31D.

7 6 5 4 3 2 1 0 Bits

ix!xixi0!l!l!l!0l

< Not Used >: :
:< 5-Bit Value >:

128

REGISTER 7

As far as we are concerned, this is the most important
register to master, as this register mixes noise and tone
for registers 8,9,& 10.

The register is also bit specific and if you study Table 7.1
you should easily understand how different values affect
the final output on channels A,B, and C.

7 6 5 4 3 2 1 0

T-x-Tx-T’’T_T_o T"T~T_ i~T_ i_7~o~:

Bit

Not : Noi se
used : Enable

Tone
Enab Ie

:xix:c:b:a:c:b:a:

< REGISTER 7 BIT ACTIONS >

BIT SET Cl] = OFF BIT RESET CO! = ON

TABLE 7.1

Result .'ChannelIs 1 Bits 5 4 3 2 1 0 1 Resu 11 I Channel i

Noise on A B C 0 0 0 0 0 0 Tone On A B C
Noise on - B C 0 0 1 0 0 1 Tone On - B C
Noise on A - c 0 1 0 0 1 0 Tone On A - C
Noise on - - c 0 1 1 0 1 1 Tone On - - C
Noise on A B - 1 0 0 1 0 0 Tone On A B -
Noise on - B - 1 0 1 1 0 1 Tone On - B -
Noise on A - - 1 1 0 1 1 0 Tone On A - -
Noise OFF A B c 1 1 1 1 1 1 Tone OFF A B c

To enable the noise on Channel B,and the sound on
Channels A & C,you need to look in the tables and
combine the necessary values. E.g 101010B — 42D

129

Bits 6 and 7 control the Input/Output register. This
register is used by the computer for keyboard scanning
and does not concern us. The range of values that can be
passed is in the range 0 to 255D, and remember that the
bit must be re-set [0] to enable the channel.

REGISTER 13

This register uses 4 bits (0 to 3). The register only affects
the overall sound when a value of 16 is placed into
registers 8,9,or 10. Any other value less than 16 will not
allow the amplitude to be placed under register 13’s
control.

7 6 5 4 3 2 1 0

ix:x!X!X!i;i:i:o :<—Hold
___________ _____ _____________________________ /x________Zs___________________________

Continue
Attack :

:Al ternate

HOLD

When Bit 0 is 1 the envelope is limited to one cycle.

ALTERNATE

If Bit 1 is set then the envelope counter reverses
direction after each cycle.

ATTACK

When set to 1 = Attack else = DECAY.

CONTINUE

When Bit 3 is set the cycle pattern will be defined by the
Hold bit.

APOA-5

130

ENVELOPE GENERATOR

c
o
N
T

N
U
E

A
T
T
A
C
K

A
L
T
E
R
N
A
T
E

H
O
L
D

0 0 X X

/I
0 1 X X

1 0 0 0

1 0 0 1 \
1 0 1 0

1 0 1 XI
1 1 0 0 AA'XAAAAA'XAAA/VVXAA
1 1 0 1 A~
1 1 1 0

1 1 1 1
A...
'll__ ENVELOPE PERIOD 1 CYCLE

REGISTERS 11 and 12

Control of the envelope period is by way of these two
registers. Combined, the two channels use 16 bits (2
bytes) and can have a value in the range 0 - 65535D.
Register 12 controls the Fine Tune (high pitched notes),
and Register 11 controls the enveloped period of the
Coarse Tune (low pitches).

In a nutshell, these two registers control the time the
note is sustained, or decayed,when under control of the
Envelope Generator. Skillful use of the two registers
can produce some interesting sound effects from the
bouncing of a ping-pong ball to the sound of a racing car.

131

ADDING THREE NEW SOUND COMMANDS TO
BASIC

After the program in Assembly Listing One has been
installed in the computer, Basic will be able to respond to
3 new commands: IPLAY, ISND, and ISOFF.

FORMAT FOR :PLAY

IPLAY,<Channel>,<Octave>,<Note>,<Volume>

MIDDLE C = OCTAVE 4

Channel = 1 to 3

Octave = 1 to 8

Note = 1 to 12

Vo1ume = 1 to 15

NOTES:

8 — C,h*rP

8 = D.h.rP

10 ~ F»h*rP

11 = G.h.rP

12 A»h«rP

FORMAT FOR :SND

ISND,<Register Number>,<Value>

Registers = 0 to 13
Value = 0 to 255

ISOFF Turn all sound channels off

132

1
2
nvJ
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

; *********************
(ASSEMBLY LISTING ONE
;*********************

TO BASIC

ORG 42000
LOAD 42000

SEND: EQU 0BD34H ;JP TABLE CALL
OFF: EQU 0BCA7H (JP TABLE CALL

A410 011AA4 LD BC.COMTAB (COMMAND TABLE
A413 21BEA4 LD HL,BUF (REQUIRED BY BASIC
A416 CDD1BC CALL 0BCD1H (LOG ON NEW COM TAB
A419 C9 RET ; LOGGED ON NOW

A41A 25A4 COMTAB: DEFW NMETAB
A41C C331A4 JP SND ; SND COMMAND
A41F C347A4 JP PLAY (PLAY COMMAND
A422 C3C3A4 JP SOFF (SOUND| OFF CALL

(Define table of new commands
;so that Basic knows what to
;expect.
;****************************

A425 534E NMETAB: DEFB "SN"
A427 C4 DB "D"+80H
A428 504C41 DB "PLA"

A42B D9 DB "Y"+80H
A42C 534F46 DB "SOF"

A42F C6 DB "F"+80H
A430 00 DB OOH

;********************************
; SND ROUTINE STARTS HERE
; DIRECT ACCESS THROUGH CFU TO
(SOUND CHIP REGISTERS
;*********************************

COMPARE WITH MAX+1

A431 DD7E02 SND: LD A,(IX+02H) (GET REGISTER NO

A434 F5 PUSH AF (REGISTER ON STACK

A435 FE07 CP 07H (COMPARE CARRIES OVER
A437 DD7E00 LD A, (IX+OOH) ;VALUE

A43A 2002 JR NZrNAND (FROM ABOVE COMPARE
A43C E63F AND 3FH (MAKE SURE 10111111

A43E 5F NAND: LD E,A (VALUE NOW IN E REG

A43F Fl POP AF (REGISTER OFF STACK

A440 FEOE CP OEH (13 IS MAXIMUM VALUE

A442 304B JR NC,REST (>= 14 IS TOO BIG

A444 C39DA4 JP 0UT2 (SO GO BACK

r
;*********************************
;START OF PLAY COMMAND ROUTINE
(FORMATTED AS CHAN/OCT/NOTE/VOL
;*********************************

r

133

61 A447 DD7E06 PLAY: LD A,(IX+06H) (GET CHAN AND
62 A44A F5 PUSH AF (SAVE IT
63 A44B DD7E04 LD A,(IX+04H) (GET OCT
64 A44E F5 PUSH AF (AND SAVE IT
65 A44F DD7E02 LD A,(IX+02H) (GET NOTE
66 A452 B7 OR A (CHECK NOT 0
67 A453 283A JR Z,REST (IF IT IS JP
68 A455 CB27 SLA A (MULTIPLY BY 2
69 A457 5F LD E,A (NOW IN E REG
70 A458 1600 LD D,00 (DE = NOTE
71 A45A 21A2A4 LD HL,TABLE (POINT HL
72 A45D 19 ADD HL, DE ;HL NOW = NOTE
73 ;IN TABLE
74 A45E 5E LD E,(HL) (GET LSB
75 A45F 23 INC HL (ALIGN TO GET
76 A460 56 LD D,(HL) (MSB IN D
77 (***** DE NOW = CORRECT NOT VAL
78 A461 Cl POP BC (GET OCTAVE OFF
79 ;STACK
80 A462 0E00 LD C,00
81 A464 05 DEC B
82 A465 2806 JR Z.SKIP ; IF B = 0 SKIP
83 A467 CB3A ROTA: SRL D (ELSE ALIGN NOTE
84 (FOR CORRECT
85 (OCTAVE
86 A469 CB1B RR E
87 A46B 10FA DJNZ ROTA (DO IT AGAIN
88 (UNTIL B = 0
89 A46D Fl SKIP: POP AF (GET CHAN IN A
90 A46E F5 PUSH AF (SAVE IT AGAIN
91 A46F CB27 SLA A ; ALIGN TO REG
92 ; if CHAN = 1 THEN
93 ; *2 = REGISTER 2
94 ; FOR COARSE TUNE VAL
95 A471 3D DEC A (LESS 1 NOW CORRECT
96 A472 CD96A4 CALL 0UT1 (GO SEND IT
97 A475 DD7E00 LD A,(IX+OOH) (GET VOL
98 A478 FE10 CP 10H (MAKE SURE NOT MORE
99 A47A 3802 JR C,0K (THAN 16

100 A47C 3E10 LD A, 10H ;IF IT IS MAKE IT 16
101 A47E 5F OK: LD E,A (PUT IT IN E REG
102 A47F D5 PUSH DE (SAVE IT ON STACK
103 A480 1E38 LD E,38H (MAKE SURE REG 7 HAS
104 A482 3E07 LD A,7 ; TONE CHANNELS ON
105 A484 CD9DA4 CALL 0UT2 (GO SEND IT
106 A487 DI POP DE (GET VOL BACK
107 A488 Fl POP AF (GET CHANNEL BACK
108 A489 C607 RETRST: ADD A,7 (ALIGN TO CORRECT
109 (REGISTER 8,9 or 10
110 A48B CD9DA4 CALL 0UT2 (GO SEND IT
111 A48E C9 RET (BACK TO BASIC!
112 A48F Fl REST: POP AF
113 A490 Fl POP AF
114 A491 1E00 LD E,00
115 A493 C389A4 JP RETRST
116 A496 6F 0UT1: LD L,A
117 A497 4A LD C,D
118 A498 CD34BD CALL SEND

119 A49B 2D DEC L

120 A49C 7D LD A,L

134

121 A49D 4B 0UT2: LD C,E
122 A49E CD34BD CALL SEND
123 A4A1 C9 RET
124 A4A2 0000 TABLE: DEFW 0000
125 ; *********** Tabl e of i
126 A4A4 EEOE DEFW OEEEH
127 A4A6 4D0D DEFW 0D4DH
128 A4A8 DAOB DEFW OBDAH
129 A4AA 2F0B DEFW 0B2FH
130 A4AC F709 DEFW 09F7H
131 A4AE E108 DEFW 08E1H
132 A4B0 E907 DEFW 07E9H
133 A4B2 180E DEFW 0E18H
134 A4B4 8E0C DEFW 0C8EH
135 A4B6 8F0A DEFW 0A8FH
136 A4B8 6809 DEFW 0968H
137 A4BA 6108 DEFW 0861H
138 A4BC 0000 DEFW 0000H
139 »
140 I
141 BUF: DEFS 4
142 r
143 ?
144 A4C2 00 NOP
145 A4C3 CDA7BC SOFF: CALL OFF
146 A4C6 C9 RET
147 A4C7 00 NOP
148 END

If we use the code as listed we simply load it into
protected memory, CALL 42000D, and then use the new
commands from within our Basic program. There is,
however, a disadvantage in using this method: every
time we wanted to use the commands with a Basic
program, we would have to load the routine into protec
ted memory as a separate file, which is not a very
satisfactory way of utilising the program.

The most useful method of using the program is to create
a Basic loader by turning all the machine code into Data
statements and Pokeing them into memory. If we use
this method, any future programs can take advantage of
the sound utility by merging with the Basic loader.

To create a set of Data we simply look at the Object
code in the third column, and place each pair of Hex
numbers into a Data statement.

135

10 DATA &01,&lA,&A4,&21,&BE,&A4

The program makes three calls to the system via the
Jump Block,BD34h,BCA7h,and BCD1H. The most
interesting of these calls is BCD1H. Basic provides for
the addition of new Basic commands in the form of:
ICommand,<param>,<param<,.... A new command
must always be prefixed with a ”1” which is the elongated
version of the colon situated above the @ on the
computer keyboard. You can test this by typing PLAY
<ENTER>, and you will get a Syntax Error, error
message. Now type IPLAY <ENTER>, and the
computer will respond with an Unkown Command
error.

To make sure that the computer does not reject our new
commands the resident Rom must be informed that we
intend to use the new keywords, and we do this by
Logging On the new words via BCD1H.

To Log On a new command word the first part of the
program must follow the following format:

LD BC, Address of our JUMP TABLE

LD HL, Address of a 4 Byte Buffer (required by Rom)

CALL 0BCD1H ; LOG ON NEW COMMANDS

Our Jump Table must be set up as follows:

TABLE: DEFW Address of New Basic Commands

JP BASIC ROUTINE 1

JP BASIC ROUTINE 2

JP BASIC................ETC

136

NEWWORDS:DEFM “FLA"

DEFB "Y"+80H

DEFM "SN"

DEFB "D"+80H

DEFB 00 ; Marks end of table.

Adding 80H to the last character in each command word
sets the high bit (7) of the character i.e Ascii Y + 80H =
D9h. This convention is required so that the resident
Rom can recognise the end of each new keyword.

Basic extensions can also pass parameters. They are
passed to the handling routine by the IX register in the
form:

I PLAY, Paraml,Param2,ParamS,Param4

(IX + 00) points to last parameter.

(IX+ nn) points to the first param.

/s. /K Zv Zv

• • ■
■ ■ ■

(IX+03)...: : : :...> (IX+00)
: (IX+01)
(IX+02)

That’s all there is to it! You can add as many new
commands as you wish within the capabilities of
memory.

Note: The first line of the Basic program must have a
Memory statement that sets the top of Basic one byte
below the routine start address. The Sound routine

137

has used A410H (42000D) for the start address and this
allows enough room to move the Matrix Table from
Rom to Ram with the Symbol After command.

LISTING 6

Listing 6 is the Basic Driver program and this can be
used with any program you wish. Once the Driver
program has been run you can use the new commands in
the Direct Mode to experiment with the sound reg
isters.

10 CLS
20 FOR I = &A410 TO &A4C7
30 READ DTA
40 POKE I, DTA
50 NEXT
60 GOTO 290
70 DATA &01,&lA,&A4,&21,&BE,&A4,&CD,&D1,&BC
80 DATA &C9, &25, &A4, &C3, &31, &A4, &C3, M7, &A4
90 DATA &C3,&C3,&A4,&53,&4E,&C4,&50,&4C,&41
100 DATA &D9,&53,MF,M6,&C6,&00,&DD,&7E,&02
110 DATA &F5,&FE,&07,&DD,&7E,&00,SZ20,&02,£<E6
120 DATA &3F,&5F,&Fl,&FE,&0E,&30,MB,&C3,8{9D,«<A4
130 DATA &DD,&7E, W6,&F5,&DD,&7E,&04,&F5,&DD
140 DATA &7E,&02,&B7,&28,&3A,&CB,&27,&5F,&16
150 DATA &00, &21, &A2, &A4, & 19, &5E, &23, &56, ?<C 1
160 DATA &0E,&00,&05,&28,&06,&CB,&3A,&CB,&1B
170 DATA M0,&FA,&Fl,&F5,&CB,&27,&3D,&CD,&96
180 DATA M4,&DD,&7E,&00,&FE,&10,&38,&02,&3E
190 DATA &10,&5F,&D5,&lE,&38,&3E,&07,?<CD,&9D
200 DATA &A4,&D1,&F1,&C6,&07,&CD,&9D,&A4,&C9
210 DATA &F1,&F1,&1E,&OO,&C3,&89,&A4,&6F,MA
220 DATA &CD, &34, &BD, &2D, &7D, MB, &CD, &34, &BD
230 DATA &C9, &00,00, &EE, &0E, MD, &0D, &DA, &0B
240 DATA &2F, &0B, &F7, &09, &E 1, &08, &E9, &07, ?< 18
250 DATA &0E,&8E,&0C,&8F,&0A,&68,&09,&61,&08
260 DATA &00, &00, &00, &00, &00, &00, &00, &CD, &A7
270 DATA &BC,&C9,&00
280 ’ mmmmmmmm***********
290 'REST OF PROGRAM CAN START HERE

138

DEMONSTRATION PROGRAMS

Now that you have your three new commands try typing
in the following short programs, and you will soon see
how versatile they are, and how they will enhance your
future programs.

Demonstration One

10 FOR I = 48 TO 192

20 ISND,7,254

30 ISND,8,20

40 ISND,0,1

50 NEXT

60 ISND,6,0

70 ISND,7,7

80 ISND,8,30

90 ISND,9,30

100 ISND,10,30

110 !SND,12,56

120 ISND,13,0

130 FOR I = 1 TO 1000:NEXT

140 ISOFF

150 GOTO 120

139

Demonstration Two

10 INPUT "PRESS ANY KEY TO DETONATE"

20 ISND,6,0

30 ISND,7,7

40 ISND,8,16

50 ISND,9,16

60 ISND,12,56

80 ISND,13,0

90 GOTO 10

Demonstration Three

10 INPUT "PRESS ANY KEY TO FIRE"

20 ISND,6,15

30 ISND,7,7

40 ISND,8,16

50 ISND,9,16

60 ISND,10,16

70 ISND,12,16

80 ISND,13,0

90 GOTO 10

140

Chapter 8

AMSTRAD SPRITES

THE AMSTRAD DOES NOT HAVE SPRITES ! By
the time you have finished this chapter this statement
will no longer be true. The following program will allow
us to create up to 8 pseudo-sprites,and Peek the
Amstrad screen.

A sprite must be able to move around the screen in all
directions without destroying the background design -
moving over the background rather than on it. Also, as it
is almost impossible to Peek the Amstrad screen, we
must include in our Basic extension a routine that will
overcome this problem so that sprite collisions can be
detected.

Assembly Listing 2 is included so that you can see
how the program is designed. Try to follow it
through, it will give you some good ideas for new
commands of your own.

The method of using the program is as before: Type in
Listing 7, save it to tape. Now type in Listing 8,save it,
then run the program. The demonstration module will
show you what is possible with these routines - it is not
meant to be an elite piece of programming, and I am sure

141

you will be able to improve it,which is the very reason it
is included.

LISTING 7

2 ’Sprite_loader.Bas

5 SYMBOL AFTER 32

10 MEMORY MC39

20 FOR ADD = MC40 TO ME 19

30 READ VL:POKE ADD,VL

40 NEXT

50 CALL MC40

60 RUN"

100 DATA Ml, &49, MC, M1, &AE, MD, MD, M 1, MC

110 DATA &54, MC, M3, M3, MC, M3, &5E, MD, M3, ME, MD
120 DATA &50,&55,&D4, &43, M2, M3, MO, M2, M3, M3, M2

130 DAT A ME, MO, MO, MO, MD, &7E, M2, M2, M2, MD, MD, MD, MD

140 DATA MD, ME, M>0, ME, MF, M9, MD, ME, MO, ME, MJO

150 DATA MA, M4, MD, ME, M9, MO, MD, &77, M2, MD, &78, MB
160 DATA M2, MB, MD, MD, ME, MO, MD, M6, Ml, M5, MD, &75, MB

170 DATA MD, ?<7E, M4, ME, MO, MO, &18, ME, ME, MD, ?<77, &O4
180 DATA MD, MF, MB, MD, M3, MB, M2, &AD, MD, MD, ME, M3

190 DATA MD, MO, MB, Ml,M3,&1D,MD,MD, ME, M>5, MD,MD, MB
200 DATA ME, ME, MD, MF, MB, MD, M3, MB, M2, MD, MD
210 DATA MD, ME, M3, MD, MO, MB, M1, MD, ME, M2, ME, M1
220 DATA MB, &1D, ME, M2, M8, M5, ME, M3, M8, &1B, ME, M>4

230 DATA M8, M5, ME, M5, M8, & 10, ME, M6, M8, M1, ME, M>7
240 DATA M8, ME, ME, M8, M8, & 11, M9, M5, &18,&17,&24

250 DATA &18,&14, MD, & 18, & 11, MC, & 18, ME, MD, M5, & 18, MA
260 DATA MC, M5, & 18, M6, MD, M4, & 18, M2, MC, M4, MC, ME, MO 1

270 DATA &38, M2, ME, M9, &30, &1 E, MD, ME, Ml, &38, & 19
280 DATA ME, MA, MO, M5, MD, M5, MJO, MD, M4, Ml

290 DATA MD, M6, M1, MD, ME, MO, MD, M5, MB, MD, MO, MB

300 DATA MD, M7, M5, MD, M6, M1, MD, ME, MO, MD, M5, MB

310 DATA MD, ME, M)6, MD, MD, MB, MA, &AB, MD, MD, M5, MB

320 DATA ME, MO, MD, MF, MB, MA, &AD, MD, MD, MO, MB

330 DAT A M9,&3A, &B2, ’<9D, &3D, &07, &07, ?4J7, ?<4F, ’<06, &(JO

340 DATA MD, &21, M3, MD, MD, M9, M9, MD, ME, M>8, ME, M9

350 DATA MO, M2, M2, MD, MD, &4D, MD, MD, ME, M2, MD, M7

360 DATA MO, MD, ME, M4, MD, M7, MJ 1, MD, ME, MO

370 DATA MD, M7, M3, MD, ME, M6, MD, M7, M6, MA, M2, MD

380 DATA MD, M7, M7, ME, MO, MD, M7, M4, M9, MD, ME, MO

390 DATA MF, MD, ME, M2, M7, MC, ME, MO 1, M8, ME, &29, MO
400 DATA MD, ME, M>1, M8, MD, M5, MB, MD, MO, MB

410 DAT A M2, M3, MD, M9, MO, MO, MO, MO, MO, MO, MO

420 DATA MO, 00,00,00,00,00,00,00,00

142

430 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

440 DAT A 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
450 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

4G0 DATA 00,00,00,00,00,00,00,00,00
470 DATA &CD,&78,&BB,&22,&AB,&9D,&FD,&6E,&00,&FD,&66,&01

480 DATA &CD,&75,&BB,&FD,&7E,&05,&CD,&5D,&BB,&3E,&FF
490 DAT A &FD, &77, &00, &AF, &FD, &77, &01, &2 A, «< AB, &9D, &CD, S.75

500 DATA &BB,&C9,&00

LISTING 8

1 'SpriteDenio.Bas
f

3 'SET UP PARAMETERS mmmm
10 DEF I NT A - Z: CLS:BORDER 9,9: ADD = &9DB3 ' Start Of SPRTBLE
11 INK 3,17
20 PK = &9DF3
30 FOR I =0 TO 56 STEP 8
40 POKE ADD+I,&FF
41 POKE ADD+I+4,0
42 NEXT
43 BUL =0:INVB =0
49 'DEFINE CHARACTERS
50 SYMBOL 249,&81,&42,&3C,&5A,&66,&3C,&42,&81
60 SYMBOL 250,&3C,&3C,&3C,&3C,&7E,&7E,&FF,&FF
70 SYMBOL 251,&10,&10,«<0,«<10,&10,&0,8<10,8<10
80 SYMBOL 252,&10,&10,&8,&8,&10,&10,&8,&8
85 PEN 1: FOR I = 3 TO 23
86 FOR J = 1 TO 3:X = INT(RND*39+1)
87 LOCATE X,I
88 PRINT
89 NEXT:NEXT
90 ICRSPR,1,249,10,2,3
100 ICRSPR,2,249,16,2,3
110 ICRSPR,3,249,23,2,3
120 ICRSPR,4,249,30,2,3
130 1CRSPR,5,250,20,24,2
140 FOR I = 1 TO 5: I PUT,I,1:NEXT ' Display cannon & invaders
149 'Main Program Loop **************
160 POKE PK,O:FL = INT(RND*9)
165 IF FL = 2 THEN GOSUB 3000:GOTO 190
170 IF FL = 5 THEN GOSUB 4000
190 IF INKEY(8) = 0 THEN 230
200 IF INKEY(l) = 0 THEN 250
210 IF BUL <> 0 THEN 1000
220 IF INKEY (47) = 0 THEN 2000
225 GOTO 1000
230 I PUT,5,1:GOTO 1000
250 I PUT,5,5:GOTO 1000

143

1000 IF INVB <> 0 THEN 1500
1010 B = INT(RND*4+1)
1020 B=B-1: B=ADD+(B:t8) + l ’ Align to correct sprtble reference
1030 A = F'EEK(B) ’ Horizontal pos of inv
1040 A = A+l:ICRSPR,6,252,A,3,1:IPUT,6,7
1049 ’Check human bullet
1050 INVB = l:G0T0 1800
1500 CHK=PEEK(&9DDB):CHK1=PEEK(&9DDC):IF CHK >=25 THEN I PUT, 6,
0:INVB =0: GOTO 1800
1505 CHK = CHK+1
1510 ISCRN,CHK1,CHK:IF PEEK(PK)=250 THEN 1520 ELSE IF PEEK(PK)
=251 GOTO 1515
1511 I PUT,6,7:GOTO 1800
1515 I PUT,6,0: I PUT,7,0:INVB=0:BUL =0:G0T0 160
1520 I PUT, 6,0:I PUT, 5,0
1530 INVB =0:BUL=0:IPUT,7,0
1540 LVE = LVE -1: IF LVE =0 THEN GOTO 5000
1550 FOR 1= 1 TO 500:NEXT
1560 ICRSPR,5,250,24,20,2
1570 GOTO 160
1.800 POSL =PEEK(&9DE3):P0SH=PEEK(&9DE4): IF POSL = 1 THEN BUL
= 0:I PUT,7,0:GOTO 160

1805 POSL = POSL -1
1810 ISCRN,POSH,POSL
1820 IF PEEK(PK)=249 THEN 1830 ELSE IF PEEK(PK) = 252 THEN 1825

1821 IPUT,7,3:G0T0 160
1825 I PUT, 7,0: I PUT,6, 0: BUL=0: INVB=O:GOTO 160
1830 FOR I = 0 TO 40 STEP 8
1840 IF PEEK(ADD+I+1) <> PEEKC&9DE4) THEN NEXT:GOTO 160
1850 TMP = ADD+I+7
1870 INV =F'EEK(TMP)
1880 I PUT,7,3
1900 I PUT,7,0
1910 I PUT,INV,0
1920 SCRE=SCRE+20
1930 IF SCRE = 80 THEN 5000
1940 BUL=O:GOTO 160
2000 BUL =1:X=O
2010 X=0
2020 X=PEEK(&9DD3)-1:Y=PEEK(&9DD4)
2030 ICRSPR,7,251,Y,X,2:I PUT, 7,3
2040 GOTO 160
3000 FOR 1= 1 TO 4
3010 I PUT,1,5
3020 NEXT
3030 RETURN
4000 FOR 1= 4 TO 1 STEP -1
4010 I PUT,1,1
4020 NEXT
4030 RETURN
5000 STOP

144

Driver Program Notes:

IPUT

Will enable you to move a sprite,specified in the first
parameter, in any direction,as nominated in the second
parameter.

!PUT,<Sprite Number>,<Direction>

The sprite number can be 1 to 8, and the direction can be
1 to 8 with the sprite moving in the direction as shown in
Table 8.1. Note: if a zero is placed in the <Direction> it
will cause the sprite to be cleared from the screen and
then place #FF [Sprite Not Created Marker] & 00 [First
time routine entered Flag], in the Sprite Table. You
must then re-create the sprite before you can display it
on the screen. This is helpful when a collision with
another object is detected and you wish to blank the
sprite and leave the screen as before.

ICRSPR

To create a sprite you must use this command. The
routine then stores the information into the correct entry
point of the Sprite Table. The syntax for this command
is:-

ICRSPR,<Sprite No>,<Patt No>,<X pos on
screen>,<Y pos>,<Colour>

This command must be used to create your sprite before
invoking the IPUT command. The sprite can now be
displayed on the screen at the location specified in
ICRSPR by issuing a IPUT,<Sprite No>,l command.

ISCRN

The ISCRN command peeks the screen and places the

145

result in location 9DF3H- Use the following syntax
when invoking this command:-

!SCRN,<X position>,<Y position>

A typical basic line may look like this:-

10 ISCRN,3,5: LET PK = PEEK(&9DF3) Variables
can be used with all commands e.g.

!SCRN,X,Y or !CRSPR,3,249,X,Y,3

This section of code can be detached and used as a
Screen Peek utility with any other basic program.

SPRITE TABLE

The sprite table starts at location 9DB3H. The method of
finding the correct displacement into the table is as
follows:-

Sprite Table+(Sprite Number - 1 * 8):

If you wished to check in which direction sprite 3 is
moving you would use the following: &9DB3+(3-l*8+2)
to find the correct entry point.

The Sprite Table entries are as follows:

Byte 1 Y Position
Byte 2 X Position
Byte 3 Direction
Byte 4 Ink
Byte 5 Flag
Byte 6 Basic Character
Byte 7 Sprite Pattern
Byte 8 Sprite Number.

APOi-6

146

One point to note is,when two sprites collide erase the
last sprite first by using the IPUT command followed by
the sprite with which the collision occurred.

Listing 7 caters for most situations that could arise in
your programming. By typing it in, and then studying
how it works, you will gain a working insight on how to
use these commands. The source listing can be used as a
matrix with which you can create your own routines, and
I would be interested to hear from any user who has
found other commands which they have found useful.

Table 8.1

Movement of the sprite is in the direction as spe
cified by the following arguments:

3
2 4

1 5

8 6
7

So that : PUT,1>5 will move sprite 1 to the left.

147

;ASSEMBLY LISTING 2

»

f

f

Program to add 3 New commands
to Amstrad CPC 464.

»
ORG 40000
ENT $
LD BC,COMTAB
LD HL.BUF
CALL ttBCDl ;Log on New command table.

COMTAB:
i

DEFW NMETAB
JP PUT
JP CRSPR {Additional new command
JP SCRN ;Additional new command

NMETAB: DEFB "PU"

DEFB "T"+#80 ;#80 tells Amstrad Basic last
DEFB "CRSP" {letter in command name
DEFB "S"+#80 ; It sets BIT 7 HIGH.
DEFB "SCR"
DEFB "N"+#80
DEFB #00 {End of table marker.
DEFS #02 ;Padding.

PUT: LD A, (IX+02) ;Sprite Number
LD (SPRNO),A
CALL FINDISP {Find displacement into sprite table.

{Returns with IY pointing to first entry.
LD A,(IY+00) ;L Position.
CP #FF ;#FF signifies not yet created.

RET Z {Back to Basic if not created.
LD A, (IX+OO) ;PUT direction.
CP #00 {00 means erase sprite ttnew action

JP Z,BLANK
CP #09 {Test if >8
RET NC ;Jmp back to basic if yes.
LD (IY+02),A {Else save in sprite table.
CALL #BB78 ;Get current Basic csr pos.
LD (BASPOS).HL {Save it.
LD L, (IY+00) ;Y POS
LD H,(IY+01) ;X POS
PUSH HL ; Save
CALL #BB75 jMve csr to our current position.

LD A,(IY+04) {Check flag byte in sprite table.

CP #00
JR NZ.SKIP {If not zero sprite has already been moved.

LD ,#FE {#FE is flag to say routine has

LD (IY+04),A {Already been entered and

CALL #BB9F {is also signal to write in transparent mode

CALL #BB93 {Find current ink

LD (INK1),A {save it.
LD A, (IY+03) ;Get our ink
CALL #BB90 {Change to it.

POP HL {Get csr position back.

JP REINIT

148

SKIP: LD A,(IY+05J ;Character that was in sprite pos,
CALL #BB5D ;Put it back on screen.
LD A,#FE ;Transparent mode flag.
CALL #BB9F ;Send i t.
CALL #BB93 ;Current ink
LD (INK1),A ;Save it
LD A,(IY+03) ;0ur ink from sprite table.
CALL #BB90 ;liake sure we write in it.
POP HL ;Csr posit our routine.
LD A,(IY+02) ;Direction byte
CP #01
JR Z.LEFT
CP #02 ; Left Diagonally & up ?
JR Z,LDIAU
CP 03
JR Z,UP

CP #04 ; Right diagonally & up ?
JR Z,RDIAU
CP #05 ; Right ?
JR Z,RIGHT
CP #06 ; Right diagonally & down ?
JR Z, RDIAD
CP #07 ; Down ?
JR Z,DWN
CP #08 ; Left diagonally & down ?
JR Z,LDIAD
RET ; Return if non of these.

LEFT: DEC H
JR RESTOR ; Decrement column position.
RIGHT: INC H
JR RESTOR ; Increment column position.
UP: DEC L
JR RESTOR ; Decrement Row position.

DWN: INC L
JR RESTOR ; Increment Row position.

LDIAU: DEC L
DEC H
JR RESTOR

LDIAD: INC L
DEC H
JR RESTOR

RDIAU: DEC L
INC H
JR RESTOR

RDIAD: INC L
INC H

RESTOR: LD A,H ;Get X pos
CP 01 ;1st x pos
JR C.REINT2 ;JP if less than
CP 41 ;Last X pos+1
JR NC,REINT2 ;JP if greater than
LD A,L ;Now do same for Y pos.
CP #01
JR C.REINT2
CP 26
JR NC,REINT2
LD (IY+OO),L ;Save new X pos
LD CIY+01),H ;Save new Y pos

149

REINIT: LD HL, CIY+OO) {Get our new positiion
CALL #BB75 {Move csr to it
CALL #BB60 {so we can read char on screen.
LD (IY+05),A {and save it in sprite table.

REINT2: LD HL, CIY+OO)
CALL #BB75
LD A,CIY+06) ;Get sprite character.

CALL *BB5D ;write it to screen

LD HL, (BASPOS) ;Get Basic's position

CALL #BB75 ;Mve csr to it
LD A, #00 {Flag for opaque mode.

CALL #BB9F {Let Basic know we are now writing opaque.

LD A, (INK1) {Basic’s ink.

CALL #BB90 ;Send it.

1

RET ; JP back to main program.

»
FINDISP: LD A, (SPRNO) {Get sprite

DEC A {ALIGN tSEE NOTES
RLCA ;t2
RLCA ;*4
RLCA {t8
LD C,A
LD B,#00
LD IY,SPRTBL
ADD IY,BC ; IY now points to correct entry.
RET

i

CRSPR:
!
LD A, (IX+08) ;Sprite no
CP 09 {Check if legal
RET NC {because only 8 allowed.
LD (SPRNO),A ;save it for FINDISP
CALL FINDISP {find start in table for this sprite number
LD A, (IX+02) ;X pos
LD CIY+OO),A {save in our table.
LD A, (IX+04) ;Y pos
LD (IY+01),A
LD A, (IX+OO) {Co 1 our
LD (IY+03),A
LD A, (IX+06) {Pattern
LD (IY+06),A
LD A,(SPRNO)
LD (IY+07),A
LD A, #00 {FLAG
LD

i

(IY+04),A
RET {Return to main program.

SCRN: LD A, (IX+OO) ;X pos
LD L,A r
LD A, (IX+02) ;Y pos
LD H,A
LD A,H {padding.
CP 01
RET C
CP 41 ;We've been through this before.

RET NC
LD A,L
CP 01
RET C

150

CP
RET
CALL
CALL
LD
RET

J

26
NC
#BB75
#BB6O
(PEEK),A

;Update csr
;Read screen
;save it so we can peek it.
;That's al 1 folks.

BASPOS: DEFW OOOO
INK1: DEFB 00
BUF: DEFS #04
SPRNO: DEFB 00
SPRTBL: DEFS 64
PEEK: DEFB 00

BLANK: CALL #BB78 ;Csr pos
LD (BASPOS),HL ;Save it
LD HL, (IY+00) ;0ur position
CALL #BB75 ;Send it
LD A, (IY+05) ;Basic's character
CALL #BB5D ;Send it to screen
LD A,#FF ;Sprite not created flag
LD (IY+00),A ;Put it in sprite table
XOR A ;Zero A reg
LD (IY+04),A I fag
LD HL,(BASPOS)
CALL #BB75 ;Make sure csr back to basi
RET
END

151

If we take advantage of the fact that we can create new
commands for Basic, we can add useful routines as they
take our fancy. New routines can be added to an existing
utility simply by adding the new names to the Name
Table, the addresses to the Jump Table, and tagging
the new listing to the end of the existing program.

Some versions of Basic provide the command PRI
NT®,nn where nn is a screen address. This provides
an easy way of formatting the screen when using lots of
text. Assembly Listing 3 provides this facility on the
CPC464. The program also incorprates two other useful
commands: PEEK & POKE to the screen.

The Amstrad’s screen has 1000 print positions (25 lines x
40 columns), which would normally be addressed by
using the LOCATE x,y command. Once the new pro
gram is installed each print position can be accessed by
simulating the PRINT@ command. The syntax for our
new command is: l.,<address> and a Basic line would
be similar to this, 10 l.,41:?”This is using a new
command at position 41.” When using this new
command, the screen is mapped as Dia 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

41

81

121

161

201

241

281

321

361

401

441

481

521

561

601

641

681

721

761

801

841

881

921

961

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

80

120

160

200

240

280

320

360

400

440

480

520

560

600

640

680

720

760

800

840

880

920

960

1000

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

152

To print a message starting at location 41 the Basic
statement would be:-

10 l.,41:?”This starts at location 41.”. The address can
be a number in the range 1 - 1000 or a variable which
will allow you to format neat displays. The following
statements are all that you need to keep track of the
cusrsor position, and easily control the printing zones.

CR = Cursor position.

CURSOR UP:

CURSOR DOWN:
CURSOR FORWARD:
BACKSPACE CURSOR:
MOVE TO TOP OF SCREEN:

(SAME COLUMN)
MOVE TO BOTTOM OF

SCREEN (SAME COLUMN)
CURSOR TO BEGINNING
OF SAME LINE
CURSOR TO BEGINNING

OF NEXT LINE.

CURSOR TO BEGINNING
OF PREVIOUS LINE

CR = CR + 40 *(CR-40>0)

CR = CR - 40 *(CR+40<1000)
CR = CR - (CR+K1000)
CR = CR + (CR-l>0)

CR = CR-INT(CR/40)*40

CR = CR-INT(CR/40)*40+960

CR = INT(CR/40)*40

CR = -((CR>=960)*CR)-(CR<960)*
(INT(CR/40)*40+40)

CR = -((CR<40)*CR)-(CR>=40)*
(INT(CR/40)*40-40)

10 CLSzCR = 1

20 l.,CRz?"Line 1,Column 1"

40 CR = CR -INT(CR/40)*40+960

50 I.,CR:?"Line 25,Column 1"

Once you have grasped the idea, using this method of
formatting print statements is far superior to using the

153

LOCATE x,y statement - you can always check the
cursor and move it to whatever location you desire by
using the above formulas.

IVPOKE,<ADDRESS>,Value

Value is in the range 0 to 255 and corresponds to Ascii
control characters,normal charcaters, and graphic
blocks.

IVPOKE allows you to poke values to the screen. Screen
mapping is exactly as that used in the previous
command, and addresses lie in the range 1 to 1000. To
gain an insight into the advantage of this command try
the following demonstration.

10 CLS

20 LOCATE 25,40:PRINT "K";

30 GOTO 30

NOW TRY THIS:

10 CLS

20 IVPOKE,1000,122

30 GOTO 30

Did you notice the difference ? The screen didn’t scroll!
This provides a useful way of writing to the screen
without causing the screen to roll upward.

154

10 CLS

20 l.,l:?"TEST"

30 IVFOKE,1000,122

40 PRINT " VPOKE"

50 GOTO 50

Notice in the last demonstration that the cursor position
remained at the last print position even though we
poked the screen at the very last location.

lVPEEK,<address>,@PK

This command works in a similar way to the 1POKE we
used in an earlier chapter, it allows you to peek at the
screen in any of the locations 1 to 1000. The value of the
PEEK is transferred into variable PK.

10 DEFINT P:PK=O

20 CLS

30 I.,500:?"XYZ"

40 IVPEEK,500,@PK

50 PRINT PK

60 I VPEEK, 503, @F'K

70 PRINT PK

When using this statement the variable @PK must be
initialised to integer format, and must have been
defined (PK=0) at the start of the program, or at least
before the IVPEEK is used.

155

The assembly listing

The program starts by initialising the new commands
and then logging on to the Basic Interpreter. Once this
has been done the program exits back to Basic and the
routines lie dormant until required by the Basic
program.

IVPEEK uses two parameters, address, and @PK.
When this section of the code is called, the parameters
are passed to it with the IX register pointing to the last
parameter, which in this case is @PK. Each parameter
uses two bytes so, (IX+00) & (IX+01) hold the value of
the last parameter (
PK), and (IX+02) & (IX+03) hold the value of the
address. One important point to note with this routine is,
whenever a variable in the form variable (@PK) is
passed to a program, it is the ADDRESS OF THE
VARIABLE that is passed, NOT the value of the
variable. This means that once your extension routine
has the variable’s address it can change the value
according to circumstances, and on returning to Basic,
the variable will then contain the new value.

Once IVPEEK has the screen address it saves the
current cursor location then aligns the cursor to the
IVPEEK position by calling the Divide routine to
convert the address to X,Y positions. The screen is then
read and the character value is placed in variable PK’s
memory address. Before the routine returns to Basic, the
original cursor position is restored.

IVPOKE works in exactly the same manner as IVPOKE
except that a character is written to the screen. The
character maybe any valid Ascii or graphic code in the
range 0 to 255.

The Divide routine is useful for interfacing with other
programs and an explanation of how it works will allow
you to gain an insight into how you can use it within
your own programs.

156

Divide works by successive subtraction - Chapter Two
stated that another way to divide was to subtract the
divisor as many times as possible before a negative value
is encountered.

The D&E registers are loaded with 40D which is equal to
the number of print positions on one screen line. Because
the first screen location is 1,1 (LOCATE 1,1) the B
register is loaded with an offset of 1 which aligns the
final answer to the correct position. OR A clears the
Flag register so that a M (minus) can be detected when
the HL register pair reaches a negative value. E.g

If HL = 81D
Then after SBC HL,DE

HL = 41 and the program loops back
to do it again. SBC HL,DE

HL =1 at this point the M flag has
not been set so the program
loops back again

SBC HL,DE
HL = -39

This sets the M flag and the program jumps to EXIT
where ADD HL,DE restores HL to the remainder -39
+40 = 1. HL now contains the remainder (1) which is in
fact the X position. The Rom routine expects to have H
= X position and L=Y position so H is loaded from L and
L is loaded from B which was incremented each time a
subtraction took place that didn’t result in the M flag
being set. (Every time 40 is successfully subtracted from
HL without the M flag being set means that the print
position is incremented one line of 40 characters.)

If you want to run the utility from within a Basic
program you must load each byte (2 digits) into Data
statements and Poke them into memory starting at
location 40000D. The program is then initialised by
CALL 40000. The three new commands can now be used

157

from the keyboard or from within a program. MEMORY
39999d must be the first statement within your Basic
program to prevent Basic overwriting the routines.

To use the program as a separate file simply type in
Assembly Listing 3 using an Editor/Assembler,
assemble the completed listing and save the object file to
tape. (Save the source file also, just in case you made a
typing error.) Before loading the program into memory
type MEMORY 39999D, and after loading, invoke the
routine by CALL 40000D.

This program made extensive use of the IX register and
it would be prudent at this stage to explain the use of this
16 bit register. The IX & IY registers are 16 bit
registers known as the Index registers. They allow
the programmer an easy way of indexing memory
locations and can have a range of -128 to +127.

LD IX,3C00H

IX -03 points here = = = = = = = >

IX+00 points here ========>

IX+04 points here ========>

2FFD = CAh
2FFE
2FFF = 32h
3C00 = FFh
3C01
3C02
3C03
3C04 = 3Fh

LD A,(IX+04) would result in the A register containing
3Fh.
LD A,(IX-03) would result in the A register containing
CAh.
You should be able to see how handy these two registers
are for accessing data from a table, and this is the reason
that the Amstrad uses the IX register to point to data
when passing parameters from Basic.

158

Chapter 9

Bits & Pieces

We have already discussed the virtues of logical oper
ations in Chapter 3. In this chapter we shall take a look
at ways of utilising them in our Basic programming. We
shall also take a look at another useful command that is
often neglected by Basic programmers, DEF FN.

There are quite a few Basic operations that are Bit
specific, that is, they operate in different ways depen
ding on which bit is set within the byte. This will become
obvious when we write a program to give us 3 new
commands for using the Programmable Sound Generator
in a later chapter - all the sound registers operate in
different ways depending on the bit pattern within the
byte.

A good example of how Basic operates with bits is the
JOY(O) statement, which returns an integer value
depending on which movement has been made by the
operator. If the joystick has been moved to the left the
value returned will be 4. However, if the operator
pressed the fire button at the same time, the value
returned by JOY(O) will be 20.

159

TABLE 9.1

JOY(O)

BIT JOYSTICK MOVEMENT
0 SET UP
1 SET DOWN
2 SET LEFT
3 SET RIGHT
4 SET FIRE2
5 SET FIRE1

From Table 9.1 we can see that if the value returned by
the function is 2 then the operator has moved the joystick
DOWN and Bit 1 will be set.OOOlOB =2D. By testing for
other values it is possible to check for multiple
movements of the joystick.

20 = joystick moved LEFT AND FIRE BUTTON
PRESSED
5 = joystick moved UP AND LEFT.

Using logical operations it is a simple matter to check
the actual status of the bits rather than checking the
value returned.

The ability of the Amstrad to set,reset,and test any bit
from Basic allows us to use very sophisticated program
ming techniques, and a look at the methods employed to
manipulate bits is a worthwhile exercise.

TO TEST ANY BIT A IN A TWO BYTE INTEGER N

We would use the following formula:
IF N AND 2’ A THEN GOTO 20 ELSE RETURN

160

To test Bit 4

IF N AND 2'4 THEN GOTO 1200

TO SET ANY BIT A IN A TWO BYTE INTEGER N

Formula:

N - N OR 2'A

If we wanted to set bit 7 our program line would be:

ION = NOR 2'7

TO RESET ANY BIT A IN A TWO BYTE INTEGER
N use the following:

N = N AND NOT 2'A

To reset Bit 9:

N = N AND NOT 2'9

Bit manipulation can be used to its full advantage when
we wish to calculate the remainder of any integer value
divided by the power of 2. The remainder of N/4 is
calculated by: N AND NOT -4.

10 X = 345

20 X= X/16

30 PRINT "THE REMAINDER OF X/16 IS ";X AND NOT -16

We can also check if a number is odd or even by using the
above formula.

161

10 INPUT "PICK A NUMBER";N

20 IF N AND NOT -2 THEN GOTO 40

30 PRINT "NUMBER IS EVEN ":GOTO 10

40 PRINT "NUMBER IS ODD ": GOTO 10

The same type of operations can be used to good advan
tage on strings.

TO TEST BIT N IN A ONE BYTE STRING X$

10 IF ASC(X$)AND 2^N THEN GOTO IOC

TO SET BIT N IN A ONE BYTE STRING X$

10 X$=CHR$(ASC(X$)0R2AN)

Example: Set Bit 3 in X$

X$=CHR$(ASC(X$)OR 2A3)

TO RESET BIT N IN A ONE BYTE STRING X$

X$=CHR$(ASC(X$)AND NOT 2AN)

In the preceding string operations we have used the ASC
function to return the integer values of the character
stored in x$. After performing a set,reset, or test we then
used the CHR$ to restore the value back to a one byte
string.

162

10 CLS

20 INPUT X$

30 FOR I = 0 TO 7

40 PRINT "BIT NUMBER ";I;

50 IF ASC(X$)AND 2AI THEN PRINT "YESI,:GOTQ 70

60 PRINT "NO"

70 NEXT

To set up more than eight conditional tests we first need
to calculate how many conditions are required. We can
then create a string to the length calculated by using the
following formula:

String Length = INT(Number of Conditions/8)+l

The string can be set to all zeros by:

X$ = STRING$(String Length,0)

It is, of course, possible to set all the bits to ones by
substituting 255.

X$ = STRING$(String Length,255)

Using this type of Bit manipulation a template of “Yes”
“No” conditions can be created to match the conditions
required within the program. With a string of maximum
length you can create 255*8 on/off conditions !

Using the Bit manipulating functions can be further
enhanced by including them in a DEF FN statement.
Once you have initialised the function you can call it
simply by using the function name. This saves a lot of
typing and makes our programs easier to read.

163

DEF FN TEST(ARGS,ARG) = (ASC(MID$(ARG$,

INT(ARG/8+l))AND 2"'(ARG- FN TEST(n$,n) INTiARG

/8)*8))<>0

The above Function will test any bit ARG in string
ARG$. Whenever we want to call on this function,once it
has been defined, we just call it by name e.g

FN TEST(n$,n)

If we wanted to test BIT 6 in P$ we call the function and
substitute the desired arguments.

FN TEST(A$,6)

The FN command is one of the most useful tools we have
at our disposal. With a little imagination Function
statements can be made to do absolutely anything, and
the advantage of this command is: once you have tested a
Function you can use it within as many programs as you
wish.

Most of us have, at sometime, created or used a
Hexidecimal conversion type program. Just consider the
power of the following function.

10 DEF FN D!(H$) = INSTR("123456789ABCDEF,,,MID$

(A$, 1,1)) *4096+ I NSTR (" 123456789ABCDEF ", MI D$ (A$2,

1)) *256 + INSTR (" 123456789ABCDEF ", MI D$ (A$, 3,1))

*16+INSTR("123456789ABCDEF",MID$(A$,4,1))

20 INPUT X$

30 PRINT XS^HEX" = FN D!(X$);" DECIMAL"

40 GOTO 20

164

APPENDIX ONE

USEFUL SYSTEM JUMP BLOCK ROUTINES

BB06h

Scans the keyboard until an input is detected. Returns
with character in A register.

PUSH AF
LD HL,BUFFER
LD (HL),A
POP AF

;Save AF registers CALL 0BB06H
;Point HL at a Buffer and....
;Store character in there.

BB1Eh

SCAN:

Check if a key has been pressed.
A = KEY NUMBER
NZ=KEY PRESSED

Z =KEY NOT PRESSED

LD A,171 ;Check for key 171
CALL OBB1EH
JR Z,SCAN ; Key not pressed so go and

check again.

165

BB5Dh

Write a character to the screen.
A = CHARACTER TO WRITE

You must save BC,DE,HL as these register are
corrupted on exit from this routine.

PUSH BC
PUSH DE
PUSH HL
LD A,32 ;send a space to current cursor position.
CALL 0BB5DH
POP HL
POP DE
POP BC

BB60h

Find which character is displayed at the current cursor
position.

Returns with character in A register.

CALL 0BB60H
CP ”T”
JR NZ,NO

BB75h

Move cursor to a new screen position.
ENTRY CONDITIONS

H = COLUMN
L = ROW

AF & HL CORRUPT ON EXIT.
PUSH AF
LD HL,0202H
CALL 0BB75H

166

BB78h

Returns with
Get current cursor position.
: H - Column

L = Row

BB81h

Turn cursor on

BB84h

Turn cursor off.

BB90h

Change ink colour.

ON ENTRY A = INK NUMBER
CORRUPTS AF & HL ON EXIT

LD A,2 ; Ink 2
CALL 0BB90H

BB96h

Set paper colour.

ON ENTRY A = NUMBER OF INK
CORRUPTS A & HL ON EXIT

LD A,2 ; Ink 2
CALL 0BB96H

167

BBAEh

Get the start of the USER DEFINED MATRIX TABLE.

A = CHARACTER NUMBER OF THE FIRST ITEM IN
TABLE.
HL = ADDRESS OF FIRST BYTE IN TABLE.

BBCOh

Move graphic cursor to new position.

ON ENTRY DE = X CO-ORDINATE.
HL = Y CO-ORDINATE.

AF,BC,DE.HL ALL CORRUPT ON EXIT.

bbdeh

Set graphics pen to ink colour in contained in A register.

LD A,3 ; Ink 3
CALL OBBDEH

BBE4h

Set graphics screen paper to ink contained in A register.

LD A,1 ; Ink 1
CALL 0BBE4H

168

BBEAh

Plot a point.
ON ENTRY DE = X CO-ORDINATE.

HL = Y CO-ORDINATE.

AF & BC CORRUPT ON EXIT.

BBF6h

Draw a line from current graphic cursor position.

DE = X CO-ORDINATE OF ENDPOINT.
HL = Y CO-ORDINATE OF ENDPOINT.

BBFCh

Print a character on the graphics screen at current
cursor position.

ON ENTRY A = CHARACTER.

BC,DE,HL CORRUPT ON EXIT.
Character written with top left hand corner at the
current graphic position.

BBOE u

Select a screen mode.
LD A,1 ; Mode 1
CALL OBBOEH

ON EXIT BC,DE,HL CORRUPTED.

169

BC14h

CLS

ON EXIT AF.BC.DE.HL CORRUPTED.

BC32h

Set ink to a new colour.

ON ENTRY:
A = INK NUMBER
B = FIRST COLOUR.
C = SECOND COLOUR.

ON EXIT AF.BC.DE,HL CORRUPTED.

BC38h

Set Border colours.

ON ENTRY:

B = FIRST COLOUR
C = SECOND COLOUR.

ON EXIT AF.BC.DE,HL CORRUPTED.

BC5FH

Draw a horizontal line.

ON ENTRY:

DE = X CO-ORDINATE START
BC = X CO-ORDINATE END.
HL = Y CO-ORDINATE END.

170

BC62h

Draw a vertical line.

ON ENTRY:

A = INK NUMBER
DE = X CO-ORDINATE.
HL = Y CO-ORDINATE START
OF LINE.
BC - Y CO-ORDINATE END OF
LINE.

BCD1h

Log on a new Basic command.

ON ENTRY:

BC = NEW COMMAND TABLE.
HL = POINTER TO A 4 BYTE
BUFFER.

BD2Bh

Send a character to the line printer.

ON ENTRY:
A = CHARACTER TO SEND.

If Character sent to printer successfully Carry [C]
Flag set.

LD A,41
SEND: CALL 0BD2BH

JR NC, SEND ; if not sent try again.

BD34h

171

Send data to PSG.

ON ENTRY:

A = REGISTER NUMBER.
C = DATA TO SEND (0-255)

172

APPENDIX TWO

INKS AND LUMINANCE VALUE

LUMINANCE INK LUMINANCE INK

0 BLACK 13 WHITE

1 BLUE 14 PASTEL BLUE

2 BRIGHT BLUE 15 ORANGE

3 RED 16 PINK

4 MAGENTA 17 PASTEL MAGENTA

5 MAUVE 18 BRIGHT GREEN

6 BRIGHT RED 19 SEA GREEN

7 PURPLE 20 BRIGHT CYAN

8 BRIGHT MAGENTA 21 LIME

9 GREEN 22 PASTEL GREEN

10 CYAN 23 PASTEL CYAN

11 SKY BLUE 24 BRIGHT YELLOW

12 YELLOW 25 PASTEL YELLOW

26 BRIGHT WHITE

PHOENIX
CRIB CARD

FOR THE

AMSTRAD CPC 464
ISBN 0 9465 7635 1

‘Crib Cards’ are handy, easy to refer to
programming aids. The cards, which measure 9 x

4 inches and come in individual protective
polythene sleeves, have 12 faces to view in a

concertina fold.
Contents include

Keywords, Colour, Sound, Data, Input/Output,
Error Messages,

Logical/Arithmetical Operators, Basic Commands
etc.

They have ‘Everything at your Fingertips’.

Publishing date: May 1985

Available from good bookshops and computer shops
or direct from

Phoenix Publishing Associates Limited
14, Vernon Road, Bushey, Herts WD2 2JL.

Retail Selling Price £1.99

ISBN 0 9465 7633 5

Now that Amstrad have launched a disc and printer system the
possibilities for small business users is greatly extended with the
80 column screen available on the mono system. This title will
offer the reader the opportunity to construct their own small
business package using Sales Forecast, Graph Plotter, Sales
Adjuster, Customer Record and Database programs which are
given in the book. Full details are also given on how to adapt
the programs to suit personal needs.

The Author

Peter Jackson is a highly experienced businessman who now
has his own software company and is a visiting lecturer at the

London Business School.

Available from all good bookshops
or direct from

Phoenix Publishing Associates Limited
14, Vernon Road, Bushey, Herts WD2 2JL.

at £7.95 plus 55p post and packing

FOR THE

/wsraao ©re
ISBN 0 9465 7634 3

A collection of programs worthy of the title ‘Brainteasers’. All of
the programs exploit the graphics capabilities of the Amstrad
CPC 464 and many of the items contain an IQ rating at their
conclusion. This collection has already been published for
other computers and has been reviewed as ‘an enjoyable book
- far from the run of the mill - fresh programs never seen
anywhere else before.’ All programs have full details of how to

change the lines to help ‘budding’ programmers.

The Author

Genevieve Ludinski is an experienced programmer and
technical author with her own software house specialising in

educational material.

Publishing date: February 1985

Available from good bookshops
or direct from

Phoenix Publishing Associates Limited
14 Vernon Road, Bushey, Herts WD2 2JL.

at £5.95 plus 55p post and packing

A wide ranging selection of programs
to make full use of

the colour and sound
available to you.

Arcade style games
to test your reaction skills and

mental agility.

Adventures
to make you face dragons and dungeons

to save the princess

Brainteasers
to make you skip through minefields

and worse.

This is the
AMSTRAD CPC 464 PROGRAM BOOK

with something for everyone.

Now Available

From all good bookshops
or direct from

Phoenix Publishing Associates Limited
14, Vernon Road, Bushey, Herts WD2 2JL

at £5.95 plus 55p post and packing

ADVANCED PROGRAMMING TECHNIQUES

ON THE AMSTRAD CPC 464

This book is designed to open up whole new worlds
of programming opportunities for Amstrad users.

Here you will find routines and facilities which will
save you hours of unnecessary typing and help you

speed up your own games and utilities. Full
explanations are given of the techniques used to
create these unusual programming aids which

include how to store machine code programs in rem
statements, arrays and strings!!

Highlights of this unique book are programs for:
Creating sprites

Developing a completely new sound system
Generating graphics

This book will help you get even more than you
thought possible from your Amstrad.

THE AUTHOR
KEITH HOOK has spent fifteen years in computer studies, has
written several books on the subject and is a regular contributor

to PERSONAL COMPUTER NEWS.

ALSO FROM PHOENIX
THE AMSTRAD PROGRAM BOOK

Peter Goode
BRAINTEASERS FOR THE AMSTRAD

Genevieve Ludinski
BUSINESS PROGRAMMING ON YOUR AMSTRAD

Peter Jackson

ISBN O-nMLS-VLBB-?

90000

PHOENIX PUBLISHING
ASSOCIATES LTD 9 780946 576326

X

	Advanced programming techniques on the AMSTRAD CPC 464
	CONTENTS
	INTRODUCTION
	1 - Basic BASIC
	2 - Representing Memory Locations
	3 - Strings & Things
	4 - Array! Array!
	5 - Pokeing Around
	6 - A Choice Remark
	7 - Sound Advice
	8 - Amstrad Sprites
	9 - Bits & Pieces
	APPENDIX ONE : Useful system jump block routines
	APPENDIX TWO : Inks and luminance value
	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ● 2020-06-25

