
BUSINESS
reOGKÂMMING

BUSINESS PROGRAMMING
on your

AMSTRAD CPC 464

BUSINESS PROGRAMMING
on your

AMSTRAD CPC 464

PETER JACKSON
with

Peter Goode

Phoenix Publishing Associates Ltd
Bushey, Herts

Copyright © Peter Jackson 1985
All rights reserved.

First published in Great Britain in 1985 by

PHOENIX PUBLISHING ASSOCIATES LTD
14, Vernon Road, Bushey, Herts. WD2 2JL

ISBN 0 9465 7633 5

The publishers would like to express their special thanks
to SCREENS MICROCOMPUTER DISTRIBUTIONS of MOOR PARK

for their assistance in
supplying hardware to the authors.

Printed in Great Britain by
Billing & Son Worcester

Cover design, graphics and production by
Denis Gibney Graphics

Chesham and Chorleywood
Typesetting by

Prestige Press (UK) Ltd
Chesham, Bucks.

CONTENTS

Page
Introduction... 8

1 COMPUTERS Friends or Foes? 10

2 Basic Programming... 16

3 PRINCIPLES of Programming 31

4 ADJUSTER Adjusting a Sales Trend 53

5 GRAPHPLOTTER Plotting Graphs and Charts....... 65

6 FORECASTER Sales Forecasting............................ 80

7 CONTACTS Customer Records 93

8 WHO’S Selling What?.. 104

9 SALESTREND, The Sales Manager’s Package 139

INDEX 150

INTRODUCTION

This book is for people interested in ways of applying personal
computers to real life business problems. It is set in the context of
sales and marketing management where, despite the relative lack
of micro-computer literature, there is plenty of scope for finding
better solutions to well known problems. Since some sort of selling
activity takes place in all businesses, the book will also be of
interest to general managers and to those who work alongside
sales and marketing personnel.

The early chapters which comprise an introduction to Basic
programming and a discussion of some of the principles of
programming, lead in to the main part of the book. This is made up
of five chapters, each of which presents a program related to a
particular aspect of sales or marketing management. The
chapters follow the same format, the problem is introduced, the
program is described in general terms and then in detail with
references to the complete listing at the end of the chapter.

Chapters are ordered so that, where appropriate, sections from
the earlier programs are incorporated in the rather longer ones
which follow. This arrangement avoids unnecessary duplication of
text but means that the book should be read in chapter order on the
first occasion.

Programs are written in locomotive Basic for use on the Amstrad
CPC 464 computer. The last two programs in the book are
databases and require a disc drive.

The final chapter contains an outline description of a
comprehensive management package. Each sub-section of the
package has already been the subject of an earlier chapter. The
chapter discusses and outlines how these sub-sections can be put
together into the complete package. The reader is invited to carry
on where the book leaves off.

To obtain the maximum potential from the listings in this book we
recommend that a disc drive be used with the ‘Contacts’ and
‘Who’s’ programs.

COMPUTERS
Friends or Foes?

How do you feel about computers? If you are a salesman, you will
have mixed feelings. Your main contact with a computer is likely to
be something called “Actual sales versus target. Territory 12.
Representative Joe Soap” which you meet at the monthly
performance review. The review takes place between you, the
manager and a 3 inch high pile of green and white paper. The
manager turns the paper round and round trying to find out where
it starts, unable to cope with pages which are all stuck together and
half of which are upside down. Eventually he starts “The computer
says that you are under target on...........”.

Maybe the factory is run with a computer. If so, the customer you
know as The Bridgend Gasket Company will be listed as BRDGD
GSKT and have a number like E67043263. When you want to
know what has happened to their last order, no one will talk to you
unless you remember the customer’s computer name. Once over
this problem, they look him up in another great pile of paper (or, if
they are on the leading edge of technology on a television screen).
They tell you that the order is due to be dispatched at the end of
week 621. Once, long ago, you passed this information straight on
to the customer and you can still remember the harshness with
which he pointed out that there are usually only 52 weeks in the
year. Now you know that 621 is in fact the 21 st June because that
is the way the Americans write the date!

Then of course there is the stop list. What fun you had telling the
buyer at Leyfords that his line was shut down because they had
not paid for the last three months supplies. “I’m sure the accounts
department could not have made a mistake but..........perhaps I
should check------- . It could be a problem with the computer..........

Friends or Foes 11

Yes, most salesmen have mixed feelings about computers.

But there is another side. You walk through the drawing office and
find that most of the high stools and drawing boards have gone.
The draftsmen have got computer terminals and drawings are
appearing from automatic drafting machines. Down in the
machine shop, they are sticking tape cassettes into the machine
tools and then leaving them to work themselves. The accountants
no longer add anything up - it is all done on the computer. Maybe
half of you thinks you are missing out on something good as you
write the customer’s name and address at the top of your call
report for the hundredth time, or sort through the record cards you
keep in a shoebox.

If you are a Sales Director, the problem is more serious because
your colleagues are the people in charge of all this new equipment.
The Finance Director has figures on everything and they are right
because they all come out of a computer. The Production Director
also has a computer. His computer is not quite as right as the
Finance Director’s when it comes to money but his physical
quantities are 100% correct because they come straight from
production control. Even the Personnel Director has a thing he
calls a package which gives information on productivity and
something called added value.

At the monthly board meeting you normally discuss why the
month’s results differ from the forecast (“made by the whole
Management Team” stresses the M.D.). Surprise, surprise it turns
out that orders are down on forecast and worse still, the mix was
such that production were unable to make even the reduced sales
requirement. Prices seem to have drifted lower and the Finance
Director is convinced it is because something is amiss with the
quantity discounts. You counter by saying that you have not yet
seen all the sales reports for last month but orders are always poor
in August and indeed the budget is supposed to take this into
account. You ask what has happened to last month’s backlog and
even mention a few customers who you know are screaming
about the lateness of their orders. All to no avail, your “for
instances” and “I remembers” are no match for the piles of solid
data and the incontrovertible facts at your colleagues’ fingertips.
Once again the meeting closes with a pretty clear signal from the
M.D. that he is none too pleased with the sales department.

12 Friends or Foes

SALESMEN AND COMPUTERS

There are a number of reasons why the Data Processing
revolution seems to have by-passed selling.

- Until recently computers were big, expensive things which lived
in offices. You had to be in the office to use them. Good salesmen
stay away from the office.

- The sort of data most useful to sales people is fundamentally
different from that used by accountants, who have traditionally had
control over Data Processing. Sales are about trends over time.
Salesmen see products in terms of the markets they serve, not as
things which go through the same production processes. They
look for buying patterns and, for example, want to separate
customers who buy once a month from those who buy once a year.
Sales people need data which goes back a long way in time so
they can look for signs that market share is changing, that new
products are making inroads and customers have stopped buying.
Accountants, on the other hand are most interested in last month.
They will report the previous month and cumulative year-to-date
for comparison but fundamentally once a month is over, the
figures are relegated to history, at least until the year end.

- Computers are normally installed to save cost by eliminating
repetitive clerical labour. If better information is also obtained then
that is a welcome spin off but it is rare for it to be the main
justification for the investment. Outside the order entry
department, a sales office does not offer much scope for reducing
costs by using computers.

- Sales personnel tend not to be numerate. In their career
development, they rarely get sent on the sort of training courses
where their colleagues are introduced to computers and their
application.

But all this is beginning to change. As everyone knows, computers
are getting less expensive and, even more important for
salesmen, they are now portable. Managements are more
prepared to buy computers to improve performance rather than
reduce cost. The idea of equipping key personnel with their own
computer is becoming commonplace in the technical field. There

Friends or Foes 13

certainly are problems with software but they are not insuperable
and there is little doubt that software will be written once the
demand is established.

But still salesmen are very much behind in the trend. The main
problem, lies in the “computer illiteracy” of the “average” sales
person. Engineers are provided with their own machines mainly
because they look as if they will make good use of them. Now, if
the truth is told, few non-specialist engineers are computer
experts until they get their hands on their own machine. The
important thing is that they know enough to get started - by and
large, salesmen don’t.

COMPUTER AMATEURS VERSUS PROFESSIONALS

Ever since computers were invented they have been shrouded in
mystery for all but a privileged few. No one outside the circle of
experts has been able to say anything about computers without
being overwhelmed by a torrent of incomprehensible jargon.
Fierce executives well able to take on the cleverest of their
subordinates tend not to be around when a row is brewing in
“D.P.”. If, as can happen, a new computer system takes twice as
long to enter an order as it used to take to do it by hand, this is
accepted as the price to be paid for progress and the reason for
spending even more money. Incompetence may be suspected but
it is a brave man who sets out to prove it. And why? The reason is
obvious. Unlike virtually all other business activities, the average
person has not the slightest idea what computers are supposed to
do. And that is saying something! I After all most people don’t know
the first thing about selling but it does not stop them passing
opinions about the efficiency of the sales force.

Perhaps the most valuable benefit to come from the widespread
use of personal computers is that ordinary folk will be able to pass
judgment on the work of computer professionals. This process is
starting: you occasionally hear unfavourable comparisons being
made between the screen display produced by “professional”
software as compared with computer games. People are
beginning to ask why the customer name has to be compressed
into 12 characters, why the column headings cannot be put at the
top of each page, and so on

14 Friends or Foes

Greater familiarity will also encourage managers to get involved in
systems analysis - that is when all the main characteristics of the
system are sorted out and specified before the programs are
written. The traditional approach is quaintly democratic. The
computer expert goes around asking people what they would like
but since nobody has the slightest idea what is available, the
answers are meaningless. For the expert, the great advantage of
the approach is that he can be sure that if he asks 20 people what
they want, he will get 20 different answers. He is therefore free to
install what HE thinks they need. Furthermore if the system fails to
work he can go through his notes and find some obscure
requirement which he can claim as the root cause of all the
difficulty. No one installs anything other than a computer in this
amateurish way and the nonsense will stop just as soon as line
managers take proper command of what is going on.

PERSONAL COMPUTING AND THE SALESMAN

Quite apart from the benefits to be gained from being able to make
use of and to influence the computing activities of others,
salesmen are particularly well placed to use what is called
“personal” computing. The distinction between “personal”
computing and “data processing” is not really to do with machines
- it is about what is done with the machine. A small firm which uses
a micro-computer to calculate its payroll is “processing data”.
Personal computing is about using computers to improve the way
an individual does his job - particularly where the job involves
decision taking and judgment.

Salesmen can make their job a lot easier if they use information
properly. Sales training emphasises the importance of knowing
the market, the customer’s business, the competition etc. Equally
the main aims of sales management are to plan calling programs
so as to get an optimal balance between coverage and cost, to
identify and follow up key prospects, to analyse order patterns, to
detect changes in buying pattern etc.

There are many manual record systems designed to help in the
processes of keeping informed but they are all time consuming
and repetitive. On the other hand, this is just the sort of thing that
can be done on a small computer.

Friends or Foes 15

With the recent appearance of really small portable computers, it
is now possible to give salesmen the ability to work out a
complicated quotation or a series of alternatives “right there in the
customer’s office”. Obviously there are pitfalls but the benefits are
enormous if they can be overcome.

At a more mundane level, it is now possible to write a good quality
letter at home using a computer as a word processor. Reports can
be done in the same way and if required they can be stored on
“floppy disc” and posted into the office for printing. For the brave,
there are devices which will send the data down a telephone line
straight into another computer at the office.

2
Basic Programming

Introduction:

Before you can start programming, you must become familiar with
two different sets of instructions:

-The programming language

and

- The operating system

Programming languages (of which Basic is one) are systems of
instruction which enable a computer to do complex tasks. The
program is the link between the rather limited abilities of the
computer and the complexities of the real world. Indeed it is the
ability to be programmed which distinguishes a computer from its
close relative, the electronic calculator.

The second set of instructions, the operating system, has the
entirely different purpose of controlling the interface between the
computer and its peripherals. That is, it is concerned with starting
and stopping the machine, loading and saving data, routing the
output to the monitor, printer etc. There must be a link between the
operating system and the programming language so that
operating system instructions can be given directly by the program
but apart from this the two systems are very different. Normally,
the operating system is tailored for a particular machine whilst the
programming language is essentially the same, regardless of the
machine it goes on.

Basic Programming 17

At the early stages of getting to know your computer, you may well
find that the operating system is more of a problem than the
programming language. In part this is because the programming
language has been around a lot longer than the operating system
and an enormous amount of development work has been put into
it whereas the operating system will have been written within the
last few years. A more fundamental reason however is that the
operating system deals with the interface between the “pure”
electronics of the computer and the hybrid electro-mechanical
world of keyboards, printers and tape recorders. In the case of
personal computers, the problems are exacerbated by the fact
that many of the peripheral devices were not originally designed to
be part of a computer at all. There is no easy answer to these
problems - it is not a matter of clever mathematics or logical
thinking; it is much more akin to finding out how to work a new
washing machine - a task which is easy or difficult depending on
who designed it and who wrote the operating manual.

Programming languages are entirely different. In the case of
Basic, there are millions of people around the world who use the
language on both large and small machines. The language is
supported by an extensive literature and considerable effort has
been put into devising quick and effective ways of teaching people
to use it. In addition to the instructions sold with the computer,
there are many excellent manuals which give comprehensive
descriptions of the commands together with examples of how they
should be used and what happens if they are used incorrectly.

This chapter is not intended to repeat the contents of a full Basic
programming manual, but rather to highlight some parts of the
language which play a particularly important role in the programs
described in later chapters.

Fundamental ideas:

The comparison between computers and calculators which has
already been mentioned, provides a convenient start on ground
familiar to everyone. In their ability to do arithmetic, there is little
difference between the two devices. Both of them will add,
subtract, multiply, divide, cope with decimals and negatives etc.

18 Basic Programming

Some calculators have memories which allow you to enter a
number and then recall it for use in a subsequent calculation.
Computers also have memories but their memories can store not
one but hundreds of different numbers. Imagine a calculator with
many different memories - you put in a number, store it, put in
another number, do a calculation, store the answer in a different
memory, retrieve the first number, do another calculation............
. How do you remember which number is in which store? The
answer is with considerable difficulty unless you invent some
system for organising and controlling the memory and its contents.
Computers have such a facility, calculators do not.

Now it is the computer’s large memory capacity which allows it to
store not only data which has been fed in but also a list of
instructions, the program, saying what is to be done with the data.
Furthermore, this memory facility enables both data and program
instructions to be transferred to and from the computer and such
peripherals as tape recorders and printers.

To summarise, it is the existence of a sizeable memory which
distinguishes a computer from a calculator and the whole
business of programming and giving operating system
instructions is concerned with the way in which this memory is
controlled and organised.

Variables

Memory is made up of hundreds of individual storage elements
(think of them as pigeon holes) in which data can be stored. The
storage system is controlled by giving each pigeon hole a name.
This name defines the pigeon hole and, once given, the name
cannot be changed (unless you set everything back to zero and
start all over again). A variable is named and assigned its initial
value by means of the LET command:

LET K - 20 or simply K= 20
(which is interpreted as the same command)

This command names (or “labels”) a vacant pigeon hole as K and
assigns it a value of 20. If you refer to K in subsequent discussions
with the computer, it goes off and finds the pigeon hole labelled K.

Basic Programming 19

So for example, if you tell it to:

PRINT K

You get the response:

20

The computer is equally happy to assign a letter to a pigeon hole
but it must have some way of distinguishing a letter which is to go
into memory from another letter which is a pigeon hole label. The
distinction is made by a convention which requires that letters
destined for a memory location must be placed between quotation
marks like this: “K”. Further, the name of the variable must be
followed by a $ sign to distinguish it from variables which have a
numeric value. Letter variables are known as STRINGS and they
are defined in the following way:

LET K$ = “A” or simply K$ = “A”

Now if you enter the instruction:

PRINT K$

You get the response:

A

So proving that K is not the same as K$.

Arithmetic and algebra:

Computers and calculators handle mathematics in much the same
way. If you wanted to use a calculator to multiply 100 x 50 and then
divide the answer by 25, you would first enter 100 then an X sign,
then 50, then 4- sign, then 25 and the answer would appear.

With a computer, all the instructions are entered before calculation
takes place. This means that the complete set of instructions must
be entered into the computer before the calculation can start and
once the computer does start, the instructions cannot be altered.

20 Basic Programming

Complete instructions from beginning to end are needed. The
variables must be defined, assigned opening values and a list
provided of all the operations which are to be performed. The
program for doing the calculation given above looks like this:

10 LETA = 100
20 LET A = A*50 (where * = multiply)
30 LET A = A/25 (where I = divide)
40 PRINT A

If you were to insert a print instruction after each operation (that is
put an instruction PRINT A as Lines 15 and 25) the computer
would behave exactly like a calculator in that it would display the
answer at each stage of the calculation. However this sort of
display is redundant on a computer because the instructions are
already entered in the program and once it is running there is
nothing to be gained by looking at the partially processed data.

Consider Line 20 in detail. Note first that it is not a conventional
equation. A is not equal to A*50 in the usual sense (if it were, 1
would equal 50 which is nonsense). Line 20 is an instruction which
says “LET pigeon hole A (which currently holds the number 100)
be changed so that it now holds whatever is the result of
multiplying A by 50.” In other words, it replaces the contents of
pigeon hole A with whatever lies on the right hand side of the
equals sign. This is important because it means that the left and
right hand sides of an equals sign cannot be swapped over as in
conventional algebra. The two instructions below are not the
same:

10 LET A= B
20 LET B = A

In Line 10, the contents of A are replaced with whatever is the
value of B. In Line 20, it is the other way round, B is replaced by A.
By using ‘replacement’ to switch from one variable to another,
together with the full range of algebraic functions provided by the
Basic language, complex calculations can quite easily be set out
in the form of a program.

Basic Programming 21

There is one important rule which must be borne in mind.
Computers cannot cope with ambiguity. They interpret
instructions strictly in accordance with the rules of the computer
language being used. It is therefore essential to make absolutely
clear what instructions are to be carried out. A human calculator
copes with instructions like the two given below by understanding
the context in which the formula is to be used:

10 LET A = A‘B-C

20 LET B = B - C/A

Computers cannot understand context. Their interpretation of
algebra is governed by something called the “rule of precedence”
which tell them precisely how they are to interpret the instructions.
The programmer has to make sure that the instructions he writes
are in line with these rules. There are two choices (1) to learn the
rules of precedence or (2) to use brackets to make absolutely clear
what is meant. The bracket solution is much the easiest - it is one
thing less to learn at the cost of a bit more typing! The addition of
a pair of brackets renders the expressions completely
unambiguous:

10 LET A = (A*B)-C

OR 20 LET B = B - (C/A)

Logic:

In addition to the normal arithmetical functions, computers have
facilities for handling logical statements or “truth tables”. That is,
they can evaluate logical statements and say whether they are
“true” of “false”. The answer is given by the value assigned to the
expression. If it is true, the value is 1 and if it is false, the value is
0. The statement (D>2) has the value 1 if D is 3 or more and the
value 0 if D is 2 or less. (> meaning greater than.)

Logic statements can be combined with conventional arithmetic
as in the following example:

10 LETP = P * (D>2)

22 Basic Programming

Here, P = P * 1 if D is greater than 2 and P = P * 0 if D is 2 or less.
Note that the avoidance of ambiguity using brackets is just as
important as in straightforward algebraic instructions.

String arithmetic:

String variables can be added in much the same way as numerical
variables as in the following example:

10 LET A $ = “BOY” : LET B$ = “ AND GIRL”

20 LET C$ = A$ + B$

30 PRINT C$

The result is boy and girl.

Strings also have their own set of instructions which enable them
to be manipulated in ways that have no equivalent in numerical
form. The following program strips the initials from a name
(provided there are always two initials!).

10 LET A$ = “D.J.BLOGGS”

20 LET L = LEN (A$) : REM L IS THE NUMBER OF
CHARACTERS IN A$.

30 LET A$ = RIGHTS (A$, L-4): REM A$ IS THE RIGHT (L-
4) CHARACTERS OF A$. REMEMBER THAT FULL
STOPS ARE ALSO CHARACTERS.

40 PRINT A$

The result is Bloggs.

Rather surprisingly, one of the most useful applications of string
arithmetic is in handling numbers as, for example, when a decimal
number has to be turned into an integer.

10 LET A = 46.3467

Basic Programming 23

20 LET A$ = STR$(A) : REM A$ IS THE STRING
EQUIVALENT OF 46.3467.

30 LET A$ = LEFTS (A$, 2)

40 LET A = VAL(A$)

Line 40 converts A$ back into the numerical variable A which has
the value 46.

Arrays:

An array is a systematic list giving the values of a number of
variables which are members of the same “family”. For example,
the sales of a “family” of products could be put into an array in the
following way:

Sales of Product 1 = 20
Sales of Product 2 = 30
Sales of Product 3 = 45
Sales of Product 4 = 50

The four numbers which form the column on the right hand side of
the equals sign are the array. That is:

20
30
45
50

In Basic, arrays are given names in much the same way as is done
with variables - this one is called array A. An array is distinguished
from other variables by putting the number of elements it contains
in brackets after the name. So array A is written as A(4). The
number in brackets is called the dimension of the array and each
element is defined by its “subscript” - that is its number in order
from the top of the array. The elements of array A are defined as
follows:

A(1) = 20

24 Basic Programming

A(2) = 30
A(3) = 45
A(4) = 50

Arrays provide a way of grouping together variables which are
going to be subjected to the same operation in a program. Thus
instead of laboriously writing out the same instruction for product
1 then product 2 then product 3 and so on, it is only necessary to
give one instruction referring to the array as a whole.

As with variables, arrays can be made up of strings as well as
numbers but numbers and strings cannot be mixed in the same
array. A string array has the distinguishing $ sign after the name,
for example A$(4).

Matrices:

A matrix is just a series of arrays put side by side. Matrices are a
convenient way of handling arrays which themselves are part of a
larger “family”. For example, instead of a single array of product
sales, there could be a set of sales figures for each of a series of
months.

Sales of products 1 to 4 in Jan.
Sales of products 1 to 4 in Feb.
Sales of products 1 to 4 in Mar.

There are 12 numbers in all - that is 4 products multiplied by 3
months. In matrix form this is represented by A(4,3). This
represents a “grid” comprising 4 “rows” and 3 “columns” each of
which contains a number. (Think of it as an egg box if you like - 4
rows, 3 columns holding a dozen eggs). Sales of product 1 in
month 1 (Jan) are given by A(1,1); sales of product 3 in month 2
are given by A(3,2).

As you would expect, a string matrix is written as A$(,).

Basic Programming 25

Loops and branches:

As we have seen, the instructions for getting a computer to do
arithmetic are very similar to those used in conventional algebra.
The main difference is that the instructions are “strung together”
into a program before calculation starts.

This is however only part of the computer programming story.
Conventional algebra was invented to match human capabilities
and these are not the same as computer capabilities. So it is not
surprising that there are programming techniques which do not
have a direct equivalent in conventional algebra.

These techniques are all aimed at getting a better return on the
effort of writing a program than simply “automating” the instruction
sequence used by a human being.

If you think of a computer program as a road map for a journey
around the country, the human approach would be to draw up the
route so that the number of miles which had to be travelled were
minimised. A computer on the other hand would try to maximise
the number of times it went over the same bit of road, the reason
being that the “cost per mile” (the time taken to do a calculation)
for a computer is very very little but the “cost per new set of
instructions” (the amount of memory taken up by each new
instruction - not to mention the cost of the programmers time) is
high.

One result of this is the idea of LOOPS - unknown in conventional
algebra but central to computer programming. They come in a
number of different forms - the more important of which are
described below:

For/next loops:

This type instructs the computer to repeat a calculation for a set
number of times. There are two instructions, FOR which is at the
start of the loop and NEXT which is at the finish. Their use is
illustrated in the following simple program for printing the numbers
0 to 9:

26 Basic Programming

10 FORN = 0TO9

20 PRINT N

30 NEXTN

40 END

The loop starts at Line 10 which in effect says “you aren’t getting
out of this loop until something happens to make the value N
greater than 9”. Line 20 prints the value of N, which is 0 on the first
circuit and Line 30 says “every time you get down to me I will add
one to the number represented by N and send you back to the start
of the loop at Line 10”. This process continues until N has gone
from 0 to 9 in steps of 1. When N becomes 10, Line 10 detects that
N is no longer within the range 0 to 9 and finishes the loop by a
jump to the next statement after NEXT N, in this case Line 40,
END. Note that the value of N which triggers the end of the loop is
10 and not 9. You can check this is you inset a Line 35 PRINT N.

One of the main uses of loops like this is to manipulate matrices
and arrays. The example below multiplies each element of array
A(4) by 2:

10 FOR N = 1 TO 4

20 LET A(N) = A(N)*2

30 NEXTN

The same principles can be applied to matrices. The following
example multiplies each element of the top row (row 1) in A(4,3) by
4:

10 FORM - 1 TO3

20 LET A(1,M) = A(1,M)*4

30 NEXTM

Basic Programming 27

And to multiply the whole of the matrix by 4:

10 FOR N 1 TO 4

20 FOR M = 1 TO 3

30 LET A(N,M) = A(N,M)*4

40 NEXTM

50 NEXTN

This last program contains two “nested” loops - the N loop in
Lines 10 and 50 and the M loop in Lines 20 and 40.

Loops must not be allowed to cross. When a FOR statement sets
up a loop in one variable, the NEXT statement which follows must
refer to this same variable. The following program has crossed
loops and will not work:

10 FOR N = 10 TO 20

20 FOR J = 30 TO 40

30 PRINT A(N,J)

40 NEXTN

50 NEXT J

The capabilities of a loop are extended by the STEP instruction
which allows any regular counting sequence to be set up. For
example:

FOR N = 1 TO 9 STEP2

causes N to take the values 1,3,5,7 and then 9, it steps from 1 to
9 with an interval of 2.

FOR N = 9 to 1 STEP-2

causes N to work from 9 to 1 in steps of -2. i.e. 9, 7, 5, 3, 2,1.

28 Basic Programming

GOTO:

The FOR/NEXT instruction specifies the number of times the
program is to go around the loop. GOTO can be used to set up a
loop in which the exit is controlled by a logical comparison
statement. The following program adds blank spaces in order to
make a string up to a uniform length of 9 characters:

10 INPUT A$: REM A$ CANNOT EXCEED 9 CHARS.

20 IF LEN(A$) = 9 THEN GOTO 50

30 LET A$ = “ ”+A$

40 GOTO 20

50 PRINT A$

The loop is set up in Line 20 which differentiates strings which are
less than 9 characters long from those which are already 9
characters long. If they are in the latter group, the program jumps
to Line 50 where the string is printed. If the string is less than 9
characters long, a blank space is put in front of the string and it is
returned to line 20 to see whether it is now the correct length. If it
is still not long enough the process is repeated. When A$ has been
made up to 9 characters, an exit is made from the loop and A$ Is
printed at Line 50.

GOSUB........ RETURN:

GOSUB is very much like GOTO in that it causes an immediate
branch to a specified line. However GOSUB goes an extra stage
beyond GOTO. Once the branch has been made, the computer
returns to the original point of departure immediately it encounters
a RETURN statement. In other words GOSUB/RETURN provides
a means of looping out of a main program, through a subsidiary
program (called a SUBROUTINE) and back to the main program.
The example below uses a subroutine to create strings of uniform
length:

10 IF LEN(A$) < 9 THEN GOSUB 1000

Basic Programming 29

20 PRINT A$

30 END

1000 REM CREATE UNIFORM STRINGS

1010 LET A$ = “ ”+A$

1020 IFLEN(AS) - 9THEN GOTO 1040

1030 GOTO 1010

1040 RETURN

Lines 10 and 20 are part of the main program. Line 10 branches to
line 1000 if A$ is less than 9 characters long. From 1000 to 1030,
the string is made up to a length of 9 characters and then Line 10
40 causes a return to the mainstream program at Line 20

IF--THEN-GOTO:

The single IF — THEN instruction only handles two states, (e.g. IF
BLACK IS WHITE GOT0100 covers two cases black is white and
black is not white). However, by using more than one such
statement, multiple choices can be handled. This is illustrated in
the following example where different values of variable R
represent the colours of a traffic light. The program converts these
numbers into colours.

10 IF R = 1 THEN GOTO 50

20 IF R=2 THEN GOTO 60

30 IF R=3 THEN GOTO 70

40 GOTO 80: REM PROGRAM ENDS IF R IS NOT 1,2, OR
3.

50 PRINT“RED”:GOTO 80

60 PRINT"AMBER”: GOTO 80

30 Basic Programming

70 PRINT“GREEN”

80 END

Imagine that R is the outcome of some automatic control system
which takes the value of either 1, 2 or 3. Lines 10 to 30 say that
depending on the value of R, the program is to branch to one of the
specified lines. R=1 causes a branch to Line 50; R=2 causes a
branch to Line 60 and R=3 causes a branch to Line 70. At each of
these lines the program prints out the appropriate colour. If R is not
one of the specified numbers, something is wrong and Line 40
causes a branch to Line 80, END.

IF-THEN-GOSUB can be used instead of IF-THEN-GOTO.
Bear in mind, however, that the program will RETURN to the next
instruction after the GOSUB and this may interfere with the
choices which follow.

ON--GOTO:

ON-—GOTO can be used instead of multiple IF---THEN
commands when, as in the above example, the choice of branch
is determined by the same variable (R in this case).

To use ON—GOTO in the above example, Lines 10 to 30 are
deleted and a new Line 10 substituted as follows:

10 ON R GOTO 50,60,70

When R=1, the program branches to Line 50, when it is 2, it
branches to Line 60 and when it is 3, it branches to Line 70.

The main limitation of ON---GOTO is that if the variable (R in this
case), takes a value which has not been specified, the program
crashes. In the traffic light example, R can take a value other than
1,2 or 3 and this possibility must be catered for in the program. The
multiple IF—THEN solution does this by allowing unspecified
values of R to “fall through” to Line 40. If ON—GOTO is to be used
instead, non-specified values of R must be trapped before Line 10
by:

8 IF (R<1) OR (R>3) THEN GOTO 40

3
PRINCIPLES

of Programming

Introduction:

At the highest level, computer programming is an art form, an
elegant blend of mathematics, logic and economy. A good
program is like one of those algebra proofs they taught at school.
Each stage is a perfect link in a chain of logic. It cannot be
improved by adding an extra step and if a single step is removed,
the whole thing is invalid. So it is with programming, the aim is to
use the minimum number of steps (statements) consistent with
there being no logical flaws (“bugs”) in any of the program’s
branches.

Fortunately, this level of perfection is not required just to write a
program which works. In straightforward programs, the only price
you pay for a lack of elegance is a microscopic decrease in the
speed of the calculation and increased use of computer memory
which, unless it exceeds what is available, is of no serious
consequence.

However, below a certain standard, the whole exercise of writing
a program becomes irritating, frustrating and thoroughly
unrewarding. There is of course, no official standard but there are
many areas where, by exercising a degree of discipline and prior
thought, the task of writing a program is greatly eased.

32 Principles of Programming

Definition of variables:

It is almost impossible to unravel a program when you are not sure
of the definition of each variable. Imagine a program which begins
with variable Z being used for the number of days in the month;
halfway through Z becomes the sales per day; and at the end Z is
a counter in a loop. It can easily happen if you are writing a long
program over a lot of evenings. To avoid the problem, the.right
thing to do is to note each variable definition as a “REM”
statement at the start of the program. Another approach is to
define each variable the first time it appears in the program. If even
this cramps your style too much, the absolute minimum is to make
a clear distinction between variables used as counters In loops
and the rest (i.e. use single letters as counters and double letters
as true variables).

Flags:

Flags are variables which are used as indicators of a particular
state. Suppose a program is needed to calculate prices in a
number of different currencies. The logic of the program is the
same, regardless of currency but at certain stages, different
constants are applied depending on which currency is being
considered. A convenient approach is to set a flag at the start of
the program indicating the currency being considered. (That is, a
variable FL is set to 1 for Pounds, 2 for Marks and so on). When the
program reaches a stage where there is a different treatment for
each currency, the flag is used to identify which treatment is to be
applied. So the program might say “if FL=1 then price =X
whereas if FL=2 then price = 1.2 X”.

In any but the most simple programs, flags need to be kept under
strict control. In particular it is very important that they are set back
to 0 just as soon as they have finished the task they are intended
to perform. Otherwise and particularly if the program goes around
a lot of loops and in and out of subroutines, a redundant flag is
almost certain to get in the way of the intended logic.

As with counters, it is a good idea to give flags recognisable names
- make them 2 characters long and always start with F (i.e. FA,
FB,........ FL etc.)

Principles of Programming 33

Subroutines:

The BASIC language does not make a big thing out of
subroutines. They are only defined by a line number (not a name
as in many other languages) and they can go anywhere in the
program. Consequently, they can easily be relegated to the status
of being just another “chunk” of program which for some vague
reason is not part of the mainstream. This is not what subroutines
are supposed to be. They should be self-contained blocks of logic,
pulled out from the main program because they are used more
than once. To enforce this principle, it is a good idea to start each
subroutine with a “REM” statement which states exactly what it
does.

It is generally bad practice to exit from a subroutine part-way
through (that is before getting to the RETURN statement) (a)
because this makes it difficult to follow the logic and (b) because
the computer can get into a mess if it does not know that you have
finished with the subroutine. It only finds this out when it
encounters a RETURN statement.

Line numbering:

It is much easier to follow a program if you use a line numbering
system which distinguishes different parts of the program from
each other by a change in number. For example you could use
lines 10 to 100 for variable definitions, lines 500 to 1000 for string
definitions, lines 2000 onwards for the main program and start
subroutines at 6000,7000 etc. You can write or buy a program for
automatic line re-numbering so you do not have to work out the
whole scheme before you start but merely keep things in order as
you go along.

A point of detail which can cause a lot of trouble if ignored is that
the main program should conclude with an END instruction. If it
does not, the program will run on into the subroutines and almost
certainly produce some unexpected results.

34 Principles of Programming

Handling strings:

Except in short, simple programs, it is not a good idea to mix long
string statements with the program instructions. It makes the
program awkward to follow and gaps tend to appear when the
program is edited.

These problems are overcome by using string variables in the
program itself and defining them separately either at the start of
the program or as they arise. An additional benefit of this approach
is that the programmer builds up an inventory of phrases which
can sometimes be used on more than one occasion.

Handling numbers:

It is normally necessary to format numbers at the input and output
stages of a program. Such operations can become cumbersome
if they are done with numerical variables and when this happens
you should consider changing over to strings. String arithmetic
provides a different set of instructions which often justify the effort
involved in converting into and out of strings. For example, when
data from a complete calculation has to be displayed as a table,
the length of the numbers usually has to be restricted to some
maximum number of characters. Overall length can be limited by
taking the first L characters using a LEF$(A$) statement. Another
common need is to right justify a column of figures. To do this it is
first necessary to convert the number to strings and then find the
one which is longest (L=LEN (A$)). The rest of the numbers are
then made up to the length of the longest by putting blanks in front
ofthemA$=“ ” + A$.

Handling matrices and arrays:

Operations on matrices and arrays generally treat all elements in
the same way and are usually carried out using loops. The
following simple example calculates the % change in sales
between two periods.

Principles of Programming 35

Two sets of sales figures for 20 products and 10 territories are
given by matrix S(20,10) for the first period and by matrix T(,)for
the second period. The % change is yet another matrix l(,). To
begin with, consider one element (1,1), which contains sales of
product 1 in territory 1. The % change in sales is calculated as
follows:

1(1,1) = ((T(1,1)-S(1,1))*100)/S(1,1)

To do this same calculation for all 200 product/territory
combinations, the formula is encased in two loops which together
count their way through the matrices extracting each element in
turn:

10 FORM = 1 TO 10

20 FOR N = 1 TO 20

30 LET l(N,M) = ((T(N,M) - S(N,M)) * 100) / S(N,M)

40 NEXTN

50 NEXTM

Problems arise in loops if the counters can take positive, zero or
negative values in response to values assigned to variables.

Consider the program below which filters out all the numbers over
10 in an array of numbers, C(N), arranged in ascending order.

10 INPUT A

20 FOR N = 1 TO 9: A = A+1: C(N) = A: NEXT N

30 FOR N = 1 TO 9

40 IF C(N) > 10 THEN GOTO 60

50 NEXTN

60 PRINT N

36 Principles of Programming

If there are no numbers less than N (i.e. set A to 0 in Line 10), the
N loop counts from 1 to 9 with the result that Line 60 prints N, the
number of elements less than 10, as 10, whereas the answer
should be 9. If there are 5 numbers less than 10, (i.e. set A to 5),
the loop is stopped at Line 40 and the correct answer N=5 is
printed at Line 60.

Next, consider the program below which works out the change in
sales, D(), from one month to the next. The period over which the
calculation is to be done is defined by A and B.

10 LET S(4) = 16: LETS(3) = 13: LET S(2) = 4: LET S(1) = 1

20 INPUT A: REM START OF SERIES

30 INPUT B: REM END OF SERIES

40 FORN = ATOB

50 LET D(N) = S(N) - S(N-1)

60 NEXTN

70 FOR N = 1 TO 4: PRINT D(N): NEXT N

If A takes the value 0 or 1, the program ‘crashes’ as it attempts to
find a zero or negative element of S(). Thus if months are
numbered 1, 2, 3, etc., the program will not cope with an A=1
entry.

As will be evident, these simple program can easily be corrected
by re-aligning subscripts and line counters. In more complex
programs, the danger is that a re-alignment to solve a problem in
one section may create a new problem somewhere else.

Chains:

There are occasions when the program’s logic dictates that the
matrix or array must be operated on in a sequence which cannot
be created using a loop. For example, instead of listing an array in
sequence from 1 to 6 in steps of 1, it may be necessary to count
in a completely irregular sequence such as 6, 2, 5,4,3,1.

Principles of Programming 37

In such a case, an entirely different technique is used in which the
counting sequence is defined by another array used as the
indexing device. The technique is illustrated in the example below
which extracts and prints elements from some previously defined
array Z$(6) in the irregular sequence given above:

10 LET C(6) = 2

20 LET C(2) = 5

30 LET C(5) = 4

40 LET C(4) = 3

50 LET C(3) = 1

60 LETC(1) = 0

70 LET H = 6

80 IFH = 0 THEN GOTO 120

90 PRINT Z$(H)

100 LETH = C(H)

110 GOTO 80

120 END

The first time around, Line 90 prints Z$(6). Line 100 then sets
H=C(6) which has the value of 2. The next time around, Line 90
prints Z$(2). The circuit is repeated until Z$(3) is printed and H is
set to C(1) which is zero in Line 100. This causes the loop to be
stopped in Line 80.

Array C(6) (which would normally appear in subscript order
beginning with C(1) and ending with C(6)) is called a chain. The
values of each element of C are called pointers. The head of the
chain is given in Line 60 which sets H to 6 and the end of the chain
is when H=0 at C(1).

38 Principles of Programming

This idea of pointers can be developed into a very versatile tool for
manipulating the order in which matrices and arrays are listed. Its
particular virtue is that, instead of actually altering the position of
each element using the rather cumbersome nested loop routine
described earlier, only the chain array itself needs to be altered if
the sequence of the matrix or array is to be rearranged. The
primary store of data, that is the data matrix itself, remains the
same.

Chains are particularly useful when a number of straightforward
and independent sorting operations have to be done. A typical
example is the creation of a series of tabulated reports from the
same basic data with the data listed in a different order for each
report. Instead of sorting the whole matrix, printing it, resorting it,
printing it again and so on........print instructions are given directly
by a series of chain arrays which define the order in which the data
for each report are to be extracted from the matrix and printed.

User friendliness and idiot proofing:

The most obvious and the important criteria forjudging the quality
of a program are whether it can be used and whether it is reliable.
Or, in the peculiar jargon of computing, whether the program is
“user friendly” and “idiot proof”.

The following examples illustrate what is meant by these phrases:

- The program asks you to enter some information (the date
perhaps). You enter it and the screen goes blank. You wait and
nothing happens. What do you do? Wait some more or assume
the data you entered was not accepted and start the program all
over again. The answer is: you don’t know. It is not a user friendly
program.

- The program asks you to enter the number of customers in a
particular territory. For some reason, you think you should enter
the territory name and then the number of customers. You type in
N.W. 34, press return. After a short while there is a bleep and an
error message appears. What has happened is that the computer
expected you to enter a number, you entered a letter, the letter

Principles of Programming 39

was accepted but later on, the program “crashed” because it tried
to treat a string variable as an arithmetic variable. The program, is
not idiot proof.

Virtually all problems of this sort occur when data are being
entered into the computer and the only way of avoiding them is to
take great care with arrangements for interfacing with the
keyboard.

Of course if you are writing programs which you intend only to use
yourself, you do not have to be too concerned about how the
general public will take to them. You may well think idiot proofing
is quite unnecessary since no idiot is going to go near them. But
bear in mind that what is obvious when you are writing a program
is not always so 6 months or a year afterwards when you come to
use it again.

The problem with writing user friendly programs is their size. As
you will see, it can take line after line of program to make
absolutely sure that all eventualities have been neatly catered for
at just one data entry point. Indeed, with the exception of scientific
and engineering applications, it is normal for the greater part of a
program to be taken up with routines for entering data and for
guiding the operator as to what he is being asked to do.

To illustrate the issues involved, consider the problem of assigning
a numerical value to the variable X where the value of X is
restricted to an integer number between 1 and 99.

The simplest approach is to use the INPUT command:

10 INPUT X

and to check that the input has actually taken place, add the lines:

20 CLS

30 PRINT X

40 END

40 Principles of Programming

Type RUN and the computer will wait at Line 10 for the value of X
to be entered. Enter 22 (say) and the program moves on to clear
the screen and print the value of X - that is 22.

But of course the program is equally happy to accept 220, -220 or
22.22 - it does not know that it is supposed to accept only integer
numbers between 1 and 99. If, however, a letter is entered instead
of a number, the program does object. It refuses to accept the
entry and prints an error message. The variable X has to be
equated to a number, not a letter.

The program would be greatly improved if the operator were told
what he had to enter. This can be done quite simply by inserting an
instruction in Line 10 as follows:

10 PRINT “ENTER AN INTEGER NUMBER BETWEEN 1
AND 99”;: INPUT A

Now typing RUN causes the program to print the instruction in Line
10 and then wait for the input as before. The program is rather
more user friendly but nothing has been done to make it idiot proof.

As was mentioned earlier, the problem with Line 10 is that if a letter
is entered, it is immediately rejected. But that is only part of the
problem. The process of rejection does not take place within the
program, it takes place in the computer itself (or to be more
accurate in the BASIC language program built into the computer).
This means that the programmer no longer determines what
happens. Control passes to the computer and there is no way of
over-riding it. Clearly this is undesirable and such situations must
be avoided.

A better approach is to arrange for the computer to accept any
entry regardless of whether it is correct or not and sort out the
problem entries within the program itself. The first objective can be
met by putting the entry into the form of a string. This is done by
substituting X$ for X in Line 10. The computer now regards
everything as a string and so will accept any keyboard entry
without complaint. The second objective of building restrictions
into the program itself so that unacceptable entries are rejected, is
met by the following two lines:

Principles of Programming 41

12 IFVAL(X$)<1 or VAL(X$)>99 THEN GOTO 10

14 IF VAL(X$) <> INT (VAL(X$)) THEN GOTO 10

Line 12 rejects the entry if its value is not between 1 and 99. This
includes entries which are not numbers at all, since BASIC
evaluates non-numeric strings as 0. Line 14 rejects non-integers
by comparing the value of the entry with its integer value. If they
are not the same, the entry cannot have been an integer. Rejected
entries cause the program to branch back to Line 10 for the
operator to re-enter. Finally, since the object is to enter a value for
X, X$ is evaluation and set equal to X as follows:

16 LET X = VAL(X$)

The program cannot now be defeated by idiotic entries. If the entry
is not right, it returns to the start and waits for the next one.
However, the operator may still be unable to understand why his
entries are not being accepted. He needs a prompt to say why he
is not getting anywhere. This
following modification:

can be accomplished by the

12 IF VAL (X$)<1 OR
“OUTSIDE THE RANGE”:

VAL(X$)>99 THEN PRINT
GOTO 10

14 IF VAL (X$) <> INT (VAL(X$)) THEN PRINT “NOT AN
INTEGER”: GOTO 10

Now, if the entry is not accepted, an error message appears to tell
the operator why.

The program now meets all the logical requirements but the
screen display is quite unworkable. If unaceptable data are
entered, the screen becomes a jumble of error messages, input
prompts and the entries themselves. The screen display itself
must be got under control.

This is done by fixing the location of each print statement with
PRINT instructions as shown below:

5 CLS

42 Principles of Programming

10 LOCATE 1,5: PRINT “ENTER A NUMBER BETWEEN
1 AND 99”;

11 INPUT X$

12 IF VAL(X$)<1 OR VAL(X$)>99 THEN LOCATE 2,16 :
PRINT “OUTSIDE THE RANGE”: GOTO 10

14 IF VAL(X$) <> INT (VAL(X$)) THEN LOCATE 2, 16 :
PRINT “NOT AN INTEGER”: GOTO 10

16 LETX-VAL(XS)

20 CLS

30 LOCATE 1,9 : PRINT “THE ENTRY IS :”;X

40 END

This is a lot better but still not right. If an entry is rejected and the
program goes back to Line 10, the rejected entry remains at the
end of the line with the cursor over the first number which was
entered - like this:

ENTER A NUMBER BETWEEN 1 AND 99 222

It would be much better if the original entry were removed. To do
this, the start of the program must be reorganised so Lines 12 and
14 return to a new Line 10. Line 10 erases any previous entry by
overprinting the screen locations where the number appears, with
a line of blanks.

There is a similiar problem with the error messages. If a Line 12
error is followed by a Line 14 error, the Line 14 message does not
obliterate the Line 12 message. It is O.K. the other way round (i.e.
a Line 14 error followed by a Line 12 error) because the Line 12
message is longer than the Line 14 message. One solution is to
artificially lengthen the Line 14 message by adding a line of blanks
after INTEGER.

The full program is now:

5 CLS

Principles of Programming 43

8 LOCATE 1,6: PRINT “ENTER A NUMBER BETWEEN 1
AND 99”;

10 LOCATE 32, 6 : PRINT “ LOCATE 32, 6

11 INPUT X$

12 IF VAL (X$) <1 OR VAL (X$) >99 THEN LOCATE 2,16
: PRINT “OUTSIDE THE RANGE”: GOTO 10

14 IF VAL (X$) <> INT (VAL(X$)) THEN LOCATE 2,16 :
PRINT “NOT AN INTEGER ”: GOTO 10

16 LETX = VAL(X$)

20 CLS

30 LOCATE 1,9 : PRINT “THE ENTRY IS :”;X

40 END

This is now a reasonably respectable data entry program but note
how it has progressively grown from 4 lines to 10. And all it does
is enter a number! Anyone could be forgiven for giving up on the
whole idea of user friendliness if this sort of effort is needed every
time a number has to be entered.

Thankfully, this is not necessary because all data entry routines
tend to follow a similar pattern. This makes them ideal candidates
for standardising and packaging into subroutines.

Towards a universal data entry subroutine

The INPUT subroutines which follow are designed to fulfill the
function of a universal data entry subroutine. They work on the
following principles:

- Data is requested by a line of text on the screen. For example
“Enter your name:”.

44 Principles of Programming

- The operator can always respond to the request in one of three
ways:

1) He can press the RETURN key to signify he wants help. Hethen
gets a prompt message telling him what he is supposed to be
doing.

2) He can signal an intention to exit from the program by pressing

3) He can enter the data which has been requested. The program
checks that the input meets the specification and if it does not, it
displays an error message and returns to request the information
again

Four versions of INPUT are listed on pages 46 and 48. Lines 10 to
70 and 300 to 390 are common to all versions. Only Lines 100 to
200 vary. They cater for the four different types of data entry listed
below:

- Number Input (INPUT NUMBERS)

- Spacebar entry (as in press spacebar to continue) (INPUT
SPACEBAR)

- Yes or No (INPUT YES OR NO)

- Letter input (INPUT LETTERS)

These programs are intended to be arranged as subroutines
which are called by the main program immediately after a request
for data entry has been made. A typical main program segment
might be:

3022 LOCATE 1,6: PRINT “ENTER CUSTOMER
NUMBER”;

3024 LET D = 6: GOSUB 10: REM SUBROUTINE INPUT
STARTS AT LINE 10

Subroutine INPUT receives the data input, checks its validity and
returns the data to the main program via RETURN.

Principles of Programming 45

Back in the main program, the four categories of output (that is
HELP, VALID DATA, INVALID DATA & EXIT) are distinguished
from each other by a flag RF, called the return flag, which can take
the value of either 0,1,2 or 3.

The next lines in the main program use the value of RF to sort the
four different categories of output and to call up the appropriate
response, as follows:

3025 IF RF = 1 THEN GOTO 3030

3026 IF RF = 2 THEN GOTO 3032

3027 IF RF = 3 THEN GOTO 3034

3028 REM RF=0 PROVIDES A PROMPT AND THEN
ROUTES BACK TO 3022

3030 REM RF=1 MEANS ENTRY IS VALID - CARRY ON
TO NEXT STAGE

3032 REM RF=2 MEANS AN INVALID ENTRY- EXPLAIN
REASON AND GO BACK TO 3022

3034 REM RF=3 BRANCHES TO EXIT ROUTINE

Now consider the subroutines themselves. The purpose of INPUT
NUMBERS is to enter a series of numbers, including the decimal
point and minus sign. In addition, the program provides facilities
for restricting the range and types of numbers which are to be
admitted.

46 Principles of Programming

5 REM INPUT DATA ENTRY PROGRAM
10 TV=O:TS=" ":CH=O
20 AS=INKEYS: IF ASO"" THEN GOTO 20
25 AS=INKEYS: IF A$="" THEN GOTO 25
30 IF AGO(AS) =13 AND CH=0 THEN RF=0:G0T0

390
50 IF ASC(AS)=127 THEN GOTO 330
60 IF ASC(A$)=13 THEN RF=1:GOTO 380
70 IF AGO(AS)=64 AND CH=O THEN RF=3:G0T0

390
310 TS=TS+AS:PRINT AS;:CH=CH+1
320 GOTO 20
330 IF CH=O THEN GOTO 20
340 CH=CH-1: PRINT CHRS(8);" ";CHR$(8);
350 IF CH=O THEN TS="":G0T0 20
360 TS=LEFTS (TS, L.EN (TS)-1)
370 GOTO 20
380 TV=VAL(TS)
390 RETURN

5 REM INPUT NUMBERS
100 IF CH>D THEN RF=2:G0T0 390
110 IF AS="-" AND CH=0 THEN GOTO 310
120 IF A$="." THEN GOTO 310
130 IF AS>=-0" AND AS<="9" THEN GOTO 310

Once the subroutine has been called, the computer waits at Line
20 for a key to be pressed. When this happens, variable A$ is set
to the input character and it is the ASCII value of A$ which
determines the action to be taken. Lines 30, 60 and 70 cause a
branch out of the main program if A$ is one of the permitted control
characters by which the operator signals either that he wants help,

Principles of Programming 47

has finished entering data, or wishes to exit. Line 100 checks that
the number of characters entered does not exceed the maximum
permitted by variable D, set in the main program at Line 3024. This
is done by comparing D with CH, a counter which indexes forward
by one each time a character is entered. If D is exceeded, an
RF=2 exit occurs via Line 390. Line 110 accepts a minus sign but
only if it is the first character. Line 120 accepts a decimal point and
finally Line 130 checks that the entry is a number from 0 to 9.

If the entry has still not caused the program to branch, Line 300
loops back to the start of the subroutine at Line 20, so ensuring that
the computer does not register any character other than those
specified in the program.

If the entry was a valid character it will have branched to Line 310
where T$ accumulates each entry as it is made and CH is
advanced by one, before returning to Line 20 to wait for the next
entry. When the operator has finished entering the number, he
presses RETURN. This entry is picked up at Line 60 and causes
a branch to Line 380 after setting RF to 1. TV is set to the value of
the accumulated string T$ and Line 390 returns to the main
program with RF=1 signifying that a valid entry has taken place.

Now look at what happens if the operator requests a prompt by
pressing RETURN (alone). Line 30 detects that A$ is RETURN
(ASCII code 13) and that it is the first character to be entered
(CH=0). This causes Flag RF to be set to 0 and there is an
immediate jumping to RETURN at Line 390. This time RF=0
signifies that a prompt has been requested.

In a similar way, if the operator presses @, Line 70 detects that A$
is ASCII code 64 and sets RF to 3 before jumping to RETURN.

If the operator begins entering data and then chooses to alter it, he
presses the arrow key to back space in the normal manner. Line
50 detects the left arrow key entry. Line 330 looks to see whether
a character has already been entered and if not (CH=0), the entry
is ignored. If characters are present, Line 340 carries out a
backspace in the following way. First, the value of CH is set back
one unit. The cursor is then moved back one space and whatever
has been printed at that location is erased (PRINT “ ”;). Erasing

48 Principles of Programming

the entry causes the cursor to move forward and so it has to be
moved back once again. Line 350 caters for the case where all the
entries have been erased and stops CH going negative. Line 360
removes the latest entry from the accumulator T$ before returning
to get another character via Line 370.

Letter entry is treated in much the same way in INPUT LETTERS.
In this case the check in Line 110 is set to admit characters A to Z
but nothing else.

5 REM INPUT LETTERS
100 IF CH>D THEN LET RF=2:GOTO 390
110 IF A$> = “A” AND A$< = “Z” THEN GOTO 310

INPUT SPACE BAR is considerably simpler-there is no need to
include CH since only one character is entered and the left arrow
correction routine is superfluous. They are only kept in to retain
consistency.

5 REM INPUT SPACE BAR
100 IF AS “ ” AND CH = 0 THEN LET RF=1 :GO TO 390

The last of the subroutines is INPUT Yes or No listed below.

5 REM INPUT YES OR NO
100 IF A$=“Y” AND CH=0 THEN LET T$=“1”: GOTO
310
110 IF A$=“N” AND CH=0 THEN LET T$=“2”: GOTO
310

Principles of Programming 49

Obviously, versions of INPUT can be written to cater for any logical
restriction on data entry. If integer numbers must be entered, the
decimal point can be rejected. If it is considered necessary to
restrict the input so only one decimal point can be entered, this can
be done by a flag as follows:

120 IF A$ = AND DF = 0 THEN LET DF = 1: GOTO
310

122 IF A$ = AND DF <> 0 THEN GOTO 20

It would be quite possible to arrange that the different versions of
INPUT took the form of subroutines within the main INPUT
subroutine and call them up using a flag set in the main program.
However, unless space is really at a premium it is probably better
to keep it simple. Nested subroutines are not all that easy to follow.

Sorting:

The natural way of writing a program is to try and duplicate the way
you would solve the problem if you were doing it without a
computer, (perhaps with the help of a calculator). As a general
rule, there is nothing wrong with this approach — indeed what else
are you going to do? But there are occasions where the way you
would solve even a very simple problem is just not appropriate for
a computer. A good illustration of this is provided by the problem
of sorting.

Imagine a list of data comprising the numbers 5,4,6,7,3. which are
to be put into a descending order. If you were solving the problem
in your head, you would scan the numbers and pick out the largest,
then the next largest and so on ... until all the numbers had been
put into the right order. A computer finds that rather difficult to do
— it cannot compare more than two things at once. What it has to
do therefore, is to compare the first two numbers and find out

50 Principles of Programming

which is the bigger; then take the next two numbers and compare
them; and so on......... The programmer’s task is to harness this
limited ability to the task of producing a ranked list.

The way it is done is to use a “Bubble sort”; a technique which
uses the computers ability to compare two numbers by a
sequence which works progressively through the whole list. The
sequence begins by taking the first pair of numbers and putting
them in size order (that is in a descending sort, it puts the larger
number first). In this particular list, the first two numbers (5 and 4)
are already in order. The next stage is to discard the larger number
and to take the second pair of numbers (that is 4 and 6). Once
again they are ranked in order and this time the order is reversed
to 6 and then 4. Discarding 6 brings in the next number to get the
pair 4 and 7; ranking them changes the order to 7 then 4. The next
and last pair in the sequence is 4 and 3 which are already in the
right order. This list is now 5,6,7,4,3. — better but not right. Indeed
the only one of the list that is right is the last number: 3. If 3 were
not the smallest number it could not have ended up at the bottom
of the list.

The next stage is to repeat the sort of pairs for the whole list all over
again except that this time, the last number (i.e. the smallest which
is in the right place) is left off. This produces another ranking where
again only the last number is definitely in the right place. If this
process is repeated enough times, all but the “top” two numbers
will be in the right order — and the computer has no problem,
sorting these last two numbers in the right order. In the general
case, the number of sorting cycles which have to be gone through
is one less than the number of items in the list.

The program shown at the end of the chapter provides a Bubble
sorting routine for both ascending and descending orders. It is
arranged to handle strings and illustrates how names can be
ranked in order by using “string arithmetic”. Line 420 is where
the basic pair comparison takes place. C$(K) is compared with CS
(K+1) to see which is the larger. What actually takes place is a

Principles of Programming 51

comparison of the code numbers of the first character of each of
the two strings. Since the code assigns numbers to letters in an
ascending order from A to Z (the code for A is 65 and for Z it is 90),
the comparison of the two strings identifies their alphabetic order.

The data to be sorted are entered in Line 800, using a DATA
statement and are then read into the array C$(), where N is the
number of data items. It would be possible to enter numbers
instead of letters but the numbers would first have to be entered as
strings (i.e. “1”, “2”, etc). Note that sorting would still be done by
the “string arithmetic” described above so the numbers would be
sorted on the value of the first character and only a list of numbers
all less than 10 would be correctly sorted in numerical order. To
sort numbers properly, C$() must be changed into a numeric
array C() and the program rewritten to use numerical variables.

The choice between ascending and descending sorts is made in
Lines 300 and 350 and the Bubble sort itself begins at Line 400
where a loop (counter K) is set up to repeat the sorting cycle (N-1)
times. The comparison of each pair of entries is carried out in
another loop set (or nested) inside the first loop which starts at Line
450. This loop counts “backwards” from K down to 1 in steps of -1.
The determinant of whether the sort is to ascend or descend is the
way the pair comparison is specified. Line 470 (C$(J) >= etc.)
ranks in ascending order and Line 490 (C$(J)<= etc.) ranks in
descending order. The outcome of the comparison of pairs is
either that the two numbers are in the right order, in which case the
program moves onto look at the next pair of numbers, or that they
are in the wrong order and must be “swapped over”. This is done
in Lines 500 and 520 where T$ is a temporary store of one of the
values. The sort ends when the cycle of comparisons has been
completed at Line 550. Finally, the ranked list is printed out and
Line 610 signifies that the computation has finished.

52 Principles of Programming

100
ISO
230
240
250
260
270
280
290
300
□fît
350

360
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
580
590
600
610
800
OE

REM SORTING ROUTINE
DIM C$(100>
N=7
REM READ DATA INTO 0$ ARRAY
FOR J = 1 TO N
READ C$(J>
NEXT J
REM DESCENDING OR ASCENDING SEARCH
PRINT:PRINT:PRINT
INPUT"IN WHAT ORDER DO YOU WISH TO S
" , A$
IF A$O"A" AND A$O"D" THEN GOTO 290

REM SORT BEGINS HERE
FOR K=1 TO N--1
IF A$="A" THEN GOTO 440
IF C$(K)>=C$(K+1) THEN GOTO 540
IF A$="D" THEN GOTO 450
IF C$(KX=C$(K+1) THEN GOTO 540
FOR J=K TO 1 STEP -1
IF A$="A" THEN GOTO 490
IF C$(J)>=C$(J+1) THEN GOTO 540
IF A$="D" THEN GOTO 500
IF C$(J)<=C$(J+1) THEN GOTO 540
T$=C$(J)
C$(J)=C$(J+1)
C$(J + 1)=T$
NEXT J
NEXT K
REM SORT ENDS
FOR L=1 TO N
PRINT C$(L>
NEXT L
PRINT "NORMAL TERMINATION"
DATA JOHN,BILL,MARY,CAROL,FRED,SUE,J

4
ADJUSTER

Adjusting a Sales Trend

Introduction:

Figures which show trends in performance over time are always
good for raising the temperature of a conversation between
business colleagues. To some, a rising sales graph is the just
reward for exceptional effort, whilst to others it merely indicates
that the customers have started buying again. A sudden dip may
herald an anticipated disaster or it may merely reflect that people
have not got back from the Christmas break.

This sort of uninformed interpretation of figures does little to aid
comprehension. It may be the opinion is right but if so, it owes
nothing to the figures under examination. If trends in figures are to
be made to give up the information they contain they must be
analysed first and discussed later.

A more cynical but no less realistic point of view is summarised by
the old adage about lies, damned lies and statistics. If people are
going to hold forth with instant opinions as to how well you are
doing, it is no bad thing to be prepared with an alternative set of
figures which demonstrates there are other interpretations which
are equally valid. If the going gets really tough, you may even want
to turn your attention to analysing some of the opposition’s figures!

A comprehensive discussion of trend analysis is way outside the
scope of this book — the subject is a branch of Statistics and has
its own specialised literature and computer software. However,
there is a lot of mileage to be got from simple analyses of trend
data taking account of factors with which everyone is familiar, such
as inflation and the effect of the different number of working days
in the month. Adjust a sales trend for these two factors and it will
almost certainly tell a different story. Things may not look any
better than they did before but they will be easier to explain.

54 Adjuster

ADJUSTER takes a trend of monthly sales figures and adjusts it to
take account of either inflation, working days or both inflation and
working days.

The idea is that you enter a sales trend of up to 36 monthly figures
together with a price index and the number of working days in each
month. To adjust the figures for inflation, you convert all the sales
figures into what they would have been if prices had remained the
same throughout the period. In other words, each sales figure is
adjusted by the ratio of “the price ruling at the start of the trend”
divided by “the price ruling when the sales were made”. Or, in
mathematical notation:

ADJUSTED SALES IN MONTH 10 = SALES IN MONTH 10
* (PRICE INDEX IN MONTH 1/PRICE INDEX MONTH 10)

If the price index in month 1 is 100 and the price index in month 10
is 200 then prices have doubled over 10 months. Therefore, to
adjust sales in month 10 back to the level they would have been in
month 1, you multiply by 100/200.

To adjust for the different number of working days in the month,
you work out what sales in the month would have been if the month
had contained one twelfth of the number of working days in a year.
In other words, the sales are converted to what they would have
been if all months were exactly the same length. It is a two stage
calculation — the first stage is to calculate the average number of
working days per month and the second stage is to multiply each
months sales by the ratio “actual number of working days/average
number of working days”. Again, in mathematical notation:

AVERAGE NUMBER OF WORKING DAYS = SUM OF
EACH MONTHS WORKING DAYS/NUMBER OF MONTHS

ADJUSTED SALES IN MONTH = SALES IN MONTH *
(ACTUAL WORKING DAYS/AVERAGE WORKING DAYS)

To adjust for both inflation and working days you simply feed the
adjusted sales figure from the inflation calculation into the working
days calculation in place of “sales in the month”.

Adjuster 55

Program description

SALES HAVE BEEN ADJUSTED FOR:

INFLATION & WORKING DAYS

ORIGINAL SALES ADJUSTED SALES INDEX
235 242 100/22
280 317 100/20
230 283 102/18
260 261 102/22
33 25 102/28

310 259 104/26

ADJUSTER incorporates the full procedure for data entry
described in Chapter 3 with subroutines 7000, 8000 and 8500
handling the different categories of data entry.

Subroutine 9000 is a standard “help” routine called from the main
program in response to an RF=0return from one of the data entry
subroutines. Subroutine 9500 is a standard “exit” routine called in
response to an RF=3 return. The bottom lines on the screen are
reserved for prompt messages. The way the prompt and exit
routines work can be seen at the start of the program. Line 1004
asks for the number of months data and calls subroutine 7000 so
as to enter a number (D=2 limits the entry to 2 characters). Lines
1005 to 1007 handle the return from the subroutine and provide
three branches depending on the value of RF. RF=0 “falls
through” to Line 1008 where subroutine 9000 is called. This
subroutine displays the prompt B$ (which has just been defined).
Note Lines 9002 and 9014 which twice clear the bottom two lines
of the screen (a) before the prompt is given (there may already be
something written there) and (b) after the prompt has been acted
upon.

56 Adjuster

RF=1 is the exit route for a valid entry (to the extent that the entry
is a number and contains 2 characters) and it is routed to Line 10
18 where a further check is made. If the entry fails this check, an
error message is printed (Line 1020) and the entry routine is
started again. If all is well the data which has been entered is
assigned to variable NM in Line 1018 before continuing on to the
next stage at Line 1102.

RF=3 is the exit routine which calls subroutine 9500 in Line 1012.
Subroutine 9500 first checks that the operator really does want to
exit. (He may have pressed the wrong key by accident). If an exit
is wanted, the program exits in Line 9508. If an exit is not wanted
the program routes to RETURN and thence back to the start of the
data entry routine via Line 1014.

Having established the number of months data which are to be
entered, the arrays are dimensioned in Line 1102, ready for the
main body of data to be entered in a for/next loop which begins in
Line 1104 and ends at Line 1162. The loop counts from 1 to NM
(the number of months) and one month’s data are entered at each
step of the loop. The three items of data making up an entry (that
is, sales, price index and working days) are entered in much the
same manner as before, beginning at Line 1108. Sales data are
stored twice, first in array S(M) and then in A(M) (Line 1124). (The
reason for this apparent duplication will become evident later).
The price index entry starts at Line 1126 and the working days
entry starts at Line 1144.

Having entered all the data, the operator is asked to specify which
of the three possible analyses are to be carried out. The question
is asked and answered in Lines 1200 to 1224. Depending on the
answer, flag AC is set to be either 1, 2 or 3 and the program
branches to the appropriate calculation.

The inflation adjustment calculation is in subroutine 5000 and the
working days adjustment is in subroutine 6000. The calculations
they perform were described at the start of the chapter.

Note that there are now two sets of sales data to be stored — the
“raw” data and the “adjusted” data so another array is needed.
This second array is A(M) which, for convenience was made equal
to S(M) in Line 1124.

Adjuster 57

The data adjustment completed, printing starts at Line 1300. The
selection of the correct title is made between Line 1304 and 1312.
Line 1314 underlines the title and Line 1316 prints the column
headings (which are arranged to be the same regardless of the
analysis which has been chosen). Printing is done in a for/next
loop beginning at Line 1318 and ending at Line 1330. Up to 36
(NM) lines may have to be printed and clearly they will not all fit on
to one screen. The listing has therefore to be stopped when the
screen fills up and control passed to the operator until he calls for
another “screenful” of figures. This exercise is controlled by the
two variables L and M which are set to 1 and 10 respectively in
Line 1302. If there are less than 10 readings (that is 10 > NM), M
is set to the number of readings. Once into the loop at Line 1318,
the first 10 lines are printed and when the end of the loop is
reached, Line 1332 checks whether all the readings have been
printed in the first circuit. If they have not the operator is asked to
press the space bar to print another screenful of data. To do this
the two variables are indexed forward by 10 in Line 1346 and if the
number of readings left to be printed are less than 10, M is once
again set to NM. The print cycle begins again at Line 1304. The
process continues until all the readings have been printed. Within
the print loop, flag AC which takes the value 1,2 or 3 depending on
the choice made earlier (Line 1321), calls up the correct
“adjusted” figures. Line 1328 arranges for both the price index and
the number of working days to be printed when AC=3 (the inflation
and working days adjustment) has been selected.

When printing is finished, the operator can choose to go through
the whole print routine again or exit (Line 1348 onwards). Lines
1367 and 1368 route either to the exit, Line 9508, or to the start of
printing at Line 1302.

1000 REM SALES ADJUSTER
1002 MODE 2
1003 LOCATE 14,1:PRINT"ADJUSTER":LOCATE
13,2:PRINT"=========="
1004 LOCATE 6,6:PRINT "HOW MANY MONTHS D
ATA ? LOCATE 28,6:D=2:DE=0:GOSU
E< 7000

58 Adjuster

1005 IF RF=1 THEN GOTO 1018
1006 IF RF=2 THEN GOTO 1012
1007 IF RF=3 THEN GOTO 1012
1008 B$="ENTER INTEGER NUMBER BETWEEN 1
AND 36":GOSUB 9002
1010 GOSUB 1004
1012 GOSUB 9500
1014 GOTO 1004
1018 IF TV>0 AND TV<37 THEN NM=TV:GOTO 1
102
1020 LOCATE 2,16:PRINT "ENTRY OUTSIDE RA
NGE":GOTO 1004
1100 REM ENTER SALES, PRICE INDEX AND W.

DAYS
1102 DIM S(NM),P(NM),W(NM),A(NM)
1104 FOR M=1 TO NM
1106 CLS:LOCATE 2,6:PRIMT"ENTER DATA FOR

MONTH "5M
1108 LOCATE 2,8:PRINT"SALES ": LOC
ATE 13,8:D=5:DE=1:GOSUB 7000
1109 IF RF=1 THEN GOTO 1122
1110 IF RF=2 THEN GOTO 1120
1111 IF RF=3 THEN GOTO 1116
1112 B$="ENTER A NUMBER SMALLER THAN 100
000":GOSUB 9002
1114 GOTO 1108
1116 GOSUB 9500
1118 GOTO 1106
1120 LOCATE 2,16:PRINT"ENTRY OUTSIDE RAM
GE -- TRY AGAIN": GOTO 1108
1122 LOCATE 2,16:PRINT"

II
1124 S(M)=TV:A(M)=TV
1126 LOCATE 2,9:PRINT"INDEX ":LOC
ATE 13,9: D=3: DE=O: GOSUE< 7000
1127 IF RF=1 THEN GOTO 1138
1128 IF RF=2 THEN GOTO 1142
1129 IF RF=3 THEN GOTO 1134
1130 B$="ENTER A NUMBER BETWEEN 100 AND
999":GOSUB 9002
1132 GOTO 1126
1134 GOSUB 9500
1136 GOTO 1106
1138 LOCATE 2,16:PRINT"

Adjuster 59

1140 IF TV>99 AND TVC1000 THEM P(M)=TV:G
070 1144
1142 LOCATE 2,16:PRINT"ENTRY OUTSIDE RAM
GE - TRY AGAIN":GOTO 1126
1144 LOCATE 2,10:PRINT"W.DAYS
LOCATE 13,10:D=2:GOSUB 7000
1145 IF RF=1 THEN GOTO 1156
1146 IF RF=2 THEN GOTO 1160
1147 IF RF=3 THEN GOTO 1152
1148 B$="ENTER A NUMBER BETWEEN 10 AND 3
1":GOSUB 9002
1150 GOTO 1144
1152 GOSUB 9502
1154 GOTO 1106
1156 LOCATE 2,16:PRINT"

1 158 IF TV>9 AND TVK32 THEN W(M)=TV:GOTO
116:2

1160 LOCATE 2,16:PRINT"ENTRY OUTSIDE RAM
GE - TRY AGAIN":GOTO 1144
1162 NEXT M
1200 REM CHOOSE WHICH ADJUSTMENT TO MAKE
1202 CLS:LOCATE 2,6:PRINT"ENTER HOW DATA

ARE TO BE ADJUSTEED"
1204 LOCATE 4,8:PRINT"1) INFLATION"
1206 LOCATE 4,10:PRINT"2) WORKING DA YS "
1208 LOCATE 4,12:PRINT"3) INFLATION AND
WORKING DAYS"
1210 LOCATE 2,14:PRINT"ENTER THE APPROPR
IATE NUMBER "; :D=1:GOSUB 7000
1211 IF RF=1 THEN GOTO 1222
1212 IF RF=2 THEN GOTO 1224
1213 IF RF=3 THEN GOTO 1218
1214 B$="ENTER A NUMBER BETWEEN 1 AND 3"
:GOSUB 9002
1216 GOTO 1202
1218 GOSUB 9502
1220 GOTO 1202
1222 IF TV>0 AND TV<4 THEM AC=TV:GOTO 12
26
1224 LOCATE 2,16:PRINT"ENTRY OUTSIDE RAM
GE - TRY AGAIN": GOTO 1202
1226 REM MAKE ADJUSTMENTS
1227 IF AC=1 OR AC=3 THEN GOSUB 5000
1228 IF AC=2 THEN GOSUB 6000

60 Adjuster

1230 IF ACO3 THEN GOTO 1302
1232 GOSUB 6000
1300 REM PRINT OUTPUT
1302 L=1:M=1O:IF M>NM THEN M=NM
1304 CLSSPRINT"SALES HAVE BEEN ADJUSTED
FOR "
1305 IF AC=1 THEN GOTO 1308
1306 IF AC=2 THEN GOTO 1310
1307 IF AC=3 THEN GOTO 1312
1308 PRINT"INFLATION":GOTO 1314
1310 PRINT"WORKING DAYS":GOTO 1314
1312 PRINT"INFLATION AND WORKING DAYS"
1314 PRINT"==========================="
1316 PRINT"ORIGINAL SALES ADJUSTED SALE
S INDEX"
1318 PRINT:FOR N=L TO M
1320 PRINT S(N),,A(N>,, , ;
1321 IF AC=1 THEN GOTO 1324
1322 IF AC=2 THEN GOTO 1326
1323 IF AC=3 THEM GOTO 1328
1324 PRINT P(N):GOTO 1330
1326 PRINT W(N):GOTO 1330
1328 PR I NT P (N) ; " " ; W (M)
1330 NEXT N
1332 IF M=NM THEN GOTO 1348
1334 PRINT: PRINT: PRINT"PRESS <SPACE> BAR

TO CONTINUE":GOSUB 8000
1346 L=L+10:M=M+10:IF M>NM THEN M-NM
1347 GOTO 1304
1348 LOCATE 2,18:PRINT"DO YOU WANT TO:

1354 B$="ENTER 1 TO START LISTING AGAIN"
:GOSUB 9002
1356 GOTO 1348
1358 GOSUB 9502
1360 GOTO 1348

ABLE
1) LOOK AT THE T

NTER
1350

2) EXIT --------E
1 OR 2--------
D=l:GOSUB 7000

1351 IF RF=1 THEN GOTO 1362
1352 IF RF=2 THEN GOTO 1366
1353 IF RF=3 THEN GOTO 1358

Adjuster 61

1362 LOCATE 2,16:PRINT"
II

1364 IF TV>0 AND TV<3 THEN GOTO 1367
1366 LOCATE 2,16:PRINT"ENTRY OUTSIDE RAM
GE - TRY AGAIN":GOTO 1348
1367 IF TV=1 THEN GOTO 1302
1368 IF TV=2 THEM GOTO 9508
1370 END
5000 REM INFLATION.ADJUSTMENT
5002 FOR M=1 TO NM
5004 A (M) =A (M) *(P(1) /P (M))
5005 A(M)=INT(A(M))
5006 NEXT M
5008 RETURN
6000 REM WORKING DAYS ADJUSTMENT
6002 TD=O
6004 FOR M=1 TO NM
6006 TD=TD+W(M)
6008 NEXT M
6010 FOR M=1 TO NM
6012 AD=TD/NM
6014 A(M)=A(M)*(AD/W(M))
6016 A(M)= INT(A(M))
6017 NEXT M
6018 RETURN
7000 REM NUMBER INPUT
7002 TV=0:T$="":CH=O
7004 A$=INKEY$:IF A«<>" " THEM GOTO 7004
7005 A$=INKEY$:IF A$="" THEN GOTO 7005
7006 IF ASC(A$>=13 AND CH=O THEN RF=O:GO
TO 7042
7010 IF ASC(A$)=127 THEM GOTO 7030
7012 IF ASC(A$)=13 THEN RF=1:GOTO 7040
7014 IF ASC(A$)=64 AMD CH=O THEM RF=3:G0
TO 7042
7016 IF CH=D THEN RF=2:G0T0 7042
7018 IF A$="E" THEN RF=4:G0T0 7042
7020 IF A$>="0" AND A$<="9" THEN GOTO 70
26
7022 IF DE=1 AMD A$="." THEN GOTO 7026
7024 GOTO 7004
7026 T$=T$+A$:PRINT A$;:CH=CH+1
7028 GOTO 7004
7030 IF CH=O THEN GOTO 7004
7032 CH=CH-1:PRINT CHR$(8) ; " "5CHR$(8);

62 Adjuster

7034
7036
7038
7040
7042
8000
8002
8004
8005
8034
8500
8502
8504
8505
8506
8508
8510
8512
8514
9000
9002

II

9004

8000
9006
9008
9010
9012
9014

II

9016

IF CH=0 THEN T$="": GOTO 7004
T$=LEFT$(T$,LEN(T$)-1)
GOTO 7004
TV=9AL(T$)
D=0:RETURN
REM SPACE BAR INPUT
TV=O:T$="": CH=O
A$=INKEY$:IF A$=" " THEN GOTO 8004
A$=INKEY$:IF A«<>" 11 THEN GOTO 8005
RF=1:TV=1:RETURN
REM YES OR NO INPUT
RF=O:CH=O
A$=INKEY$:IF A$<>"" THEN GOTO 8504
A$=INKEY$:IF A$-"" THEN GOTO 8505
IF ASC(A$)=64 THEN RF=3:G0T0 8514
IF A$="Y" THEN RF=1:TV=1: GOTO 8514
IF A$="N" THEN RF=1:TV=2:GOTO 8514
GOTO 8504
PRINT A«:RETURN
REM HELP ROUTINE
LOCATE 1,16:PRINT"

LOCATE 1,16:PRINT B$:PRINT "
PRESS <SPACE> TO CONTINUE" : GOSLJB

IF RF=1 THEN GOTO 9014
GOTO 9002
GOSUB 9502
GOTO 9002
LOCATE 1,16:PRINT"

RETURN

Adjuster 63

9500 REM ESCAPE (@> ROUTINE
9502 CLS:LOCATE 1,16:PRINT"DO YOU WANT T
0 EXIT (Y/N> ?":GOSUB 8500
9503 IF RF=1 THEN GOTO 9506
9504 IF RF=2 OR RF=3 THEN GOTO 9502
9506 IF TV=2 THEN GOTO 95.10
9508 CLS:LOCATE 11,11:PRINT"THE END":LOC
ATE 10, 12: PR I NT " ========= . END
9510 CLS:RETURN

In conclusion:

When the program is running, take a look at the following 12
months worth of data. What sort of year does it look like? Is it
getting better or worse? Is it seasonal? Has the rapid growth of the
first quarter run out of steam for the rest of the year?

Month Sales Price Index Working days
Jan 83 100 16
Feb 94 100 18
Mar 109 100 21

Apr 106 102 20

May 95 102 18

Jun 106 102 20

July 114 104 21

Aug 97 104 18

Sept 114 104 21

Oct 115 106 21

Nov 110 106 20

Dec 94 106 17

Now run the data through ADJUSTER.

The program would be greatly improved by the inclusion of a
facility for storing the data on tape or on disc at the end of the

64 Adjuster

program. A further refinement would be a facility for adding an
extra month’s data onto the data file so that a monthly trend
analysis could be done on an on going basis, keying the
information in only once. Ways of adding these features will
become apparent from the chapters which follow.

5
GRAPHPLOTTER

Plotting Graphs and Charts

Introduction:

Ingenious screen displays have become the hallmark of personal
computing. Indeed the standard of display on a personal computer
can be considerably higher than that achieved by some
commercial “mainframe” programs. Graphics are particularly
important in personal computer programs because of the
interactive nature of the tasks they perform and their reliance on
screen output as opposed to printing.

At least in principle, graphics programming is a very
straightforward business — all you have to do is to join points on
the screen with lines. However, in practice, you need to know
something about how a computer draws graphics and the features
of your particular machine before tackling graphics programming.

The screen may be regarded as a sheet of fine graph paper
containing many little squares, called pixels, formed by the
coincidence of vertical and horizontal lines. The Amstrad CPC 464
follows the normal convention for numbering the coordinates of a
graph, that is it calls the top left hand corner 0,0. A point 1Q40 (X
coordinate followed by Y coordinate) is 10 pixels in from the left
hand side of the screen and 40 pixels up from the bottom.

The Amstrad CPC 464 comprises 640 by 400 pixels and in the
highest resolution mode, each pixel can be used as a separate
division.

66 Graphplotter

There is a comprehensive range of graphics commands which are
fully described in the Amstrad Manual. Two graphics commands
are used in this program, PLOT and DRAWR. PLOT plots the
absolute co-ordinates of a point. For example, PLOT 8,12 plots a
point 8 pixels in from the left hand side and 12 pixels up from the
bottom. DRAWR draws a line from the last specified position to the
new set of co-ordinates. For example, DRAWR 12,6 draws a line
from 8,12 such that it ends 12 pixels to the right and 6 pixels above
the first point at true co-ordinates 20,18.

Program description:

To illustrate what GRAPHPLOTTER does, imagine a graph of 12
month sales data. The chart comprises a horizontal line (X-axis)
with 12 equally spaced divisions along its length representing
each month. The vertical axis (Y-axis) is scaled from 0 to the

GRAPHPLOTTER

Graphplotter 67

maximum value of monthly sales (or perhaps from the minimum
sales value to the maximum value) and each division represents a
sales amount. Sales in a particular month are plotted by finding the
month to which the data refers along the X-axis and the sales
amount along the Y-axis. The resulting point can be described by
its co-ordinates (i.e. (1,20) means sales of 20 units in month 1;
(12,60) means sales of 60 units in month 12).

GRAPHPLOTTER starts by entering the data from which the
graph is to be plotted. Since there are a lot of figures to be entered,
a relatively sophisticated data entry routine is provided. Its main
feature is that is allows errors to be corrected without having to
start data entry all over again.

Lines 1000 to 1026 enter the number of data points (that is the
number of months), in the same way as was described in earlier
chapters.

The main data entry routine is designed so that data are entered
at the bottom of the screen and the numbers scroll from bottom to
top. Thus each new entry goes “underneath” the previous one. If
an error is made, the operator can edit “then and there” by
pressing the E key. The routine starts at line 1032 where a loop in
J is set up to count from 1 to NM (the number of entries). On the
first entry (J=1), the program jumps to Line 1042 and the entry is
assigned to D() at Line 1066. The data are printed on screen line
21 (see program Line 1044). Data entry is controlled by the familiar
subroutines described in Chapter 3 except that in this program, RF
can take one of four values; RF=4 being the E (edit) key. Flag FY
is zero. (When it becomes equal to 1 at a later stage, this signifies
the checking routine has been invoked). Assuming a valid entry,
the J=1 to NM loop indexes forward at Line 1068 and the program
starts again at Line 1032.

Imagine now that D() contains a number of entries in which case
J is no longer equal to 1 and Lines 1036 to 1040 come into play.
These lines list the entries already stored in array D(). The listing
is so arranged that the latest entry appears at screen line 20—that
is one line above the data entry line. The effect of this is to produce
a “column” of entries with the first entry at the top of the column
and the last entry just above the data entry line. The new entry is
printed on line 21 and so takes its place at the bottom of the

68 Graphplotter

column. As data are entered, the height of the “column” of
numbers grows until it reaches the top of the screen. Line 1036 in
conjunction with 1038 ensures that when this occurs, only that part
of the “column” which will fit on the screen is listed. Thus when
J=17, N runs from 1 to 16 and the screen is just filled with lines of
data. When J is greater than 17, N goes to zero but zero values are
rejected in Line 1038 with the effect that, after J exceeds 17, the
loop always runs from 1 to 16 and the number of entries appearing
on the screen stays within capacity.

The EDIT routine resides in subroutine 6000 which is called by an
E keyboard entry via Line 1072. The aim of the subroutine is to set
up an “auxiliary” data entry routine. JJ is set equal to J and
‘remembers’ how many data points had been entered at the time
E was pressed. Lines 6000 to 6008 locate the cursor alongside the
top of the “column” of numbers. The RF exits from subroutine 700
0 are used somewhat differently here. RF=0 (RETURN on its
own) signals that the existing entry is correct and does not need
editing. If RF is zero, the cursor is moved down one position by
reducing counter JJ by one in Line 6013. (Note that when JJ gets
to 1, the edit routine has to finish because the cursor has
descended to the data entry line). If a correction is made, it
appears as an RF=1 entry and the value of the appropriate
element of array D() is set to the new value of TV in Line 6018.

With data entry complete, the next stage is to offer the operator an
opportunity to check over the data. This is done by going through
the data entry routine again but this time with flag FY set to the
value 1. FY is set to 1 in Line 2014 in response to the question “do
you want to correct the entries?” in Line 1080.

The checking routine uses the same screen display as the data
entry routine. However, instead of waiting at the end of the prompt
line for data to be entered, in the checking mode the program
prints out the entry which has already been made. The operation
is controlled by flag FY, which equals 1. FY first becomes effective
in Line 1046 where it causes the 7000 subroutine to be entered not
at its start but part way through at Line 7004. Values for CH and T$,
derived from the data being held in D() are fed into the
subroutine. The effect is to “fool” it into believing that a data entry
is already in progress. As a result, the subroutine prints the value

Graphplotter 69

of T$ and places the cursor immediately ahead waiting for the next
entry of A$ (Line 7004). If no change is necessary, the operator
immediately presses return and exits from subroutine 7000 with
RF at 1 and TV taking the value it was given in Line 1046 — that
is the original value of D(). If a change is needed, subroutine 700
0 behaves just as it does during normal data entry. The operator
backspaces, puts in new data, presses RETURN and exits from
subroutine 7000 with RF at 1 and TV containing the revised entry.
This is then transferred to D() in Line 1066. Note the remote
possibility of an RF=0 exit which is handled like a RETURN only
entry by Line 1053.

With data entry concluded, the next stage is to start working out
the shape of the graph. This follows much the same procedure as
you would adopt if you were doing the job by hand. Maximum and
minimum values of (Y) are calculated by the first stage of a bubble
sort in Lines 2520 to 2550 and are displayed for the operator to
choose how he wants the graph to be plotted. The operator is not
allowed to choose values for the Y-axis which lie inside the
maximum to minimum of the data since otherwise there is a
possibility of the graph “going off the screen”. (Line 2584 and
2604).

The next stage of setting out the graph begins at Line 3000 where
the screen positions of the line representing the Y-axis are
calculated. The objective is to arrange the scale so that the Y-axis
line runs from Y max to Y min with a maximum of 10 subdivisions
along its length. In addition, the interval between the divisions
must be a whole number. It will be apparent that “something has
to give” if all these requirements are to be met. The “something”
is the upper value of the axis (that is Y max). The calculation
stages are set out below. They appear much more complicated
than they really are. It is almost exactly the same procedure as you
follow when drawing a graph by hand.

1. Calculate (Y max. - Y min.) as specified by the operator. (Line
3002).

2. If (Y max. - Y min.) is more than 10 units, divide the scale by
5. (Line 3006). If that does not produce an integer number
then go back and divide the length by 2. If that still does not
produce an integer, add 1 to Y max and repeat the process

70 Graphplotter

(Line 3010). As an example, suppose the operator set Y -max
to 12 and Y -min to 1. (Y max. - Y min.) is 11, which is too big.
First 11 is divided by 5 but this does not produce an integer.
Next, it is divided by 2 but once again 11/2 is not an integer.
Y-max is then increased by 1 to 12 and the process is
repeated. This time 12 is divisible by 2 and as 6 is less than
11 (Line 3004), this becomes the value of ND (the number of
scale divisions).

3. The position of Y min (that is the origin of the graph) is fixed
at a point 35 pixels from the bottom of the screen. After
allowing for a top margin, 400 pixels are available for the Y-
axis. Line 3014 calculates the number of pixels per division
(which must be an integer number). Line 3018 calculates the
Y-axis scale in terms of the number of pixels per value of Y
and so fixes the position of the other end of the Y-axis.

4. The X-axis is less complicated. The origin is positioned 5
pixels in from the left hand side of the screen, leaving 640
pixels in the horizontal plane for the rest of the graph. The
number of pixels per X-axis division is calculated in Line
3016.

Having established the dimensions of the graph in terms of pixels,
the lines themselves can be drawn on the screen. Line 4006 draws
a vertical line along the left hand side of the screen to represent the
Y-axis. Its length is (Yl * ND). That is the number of divisions
multiplied by the number pixels per division. Lines 4008 to 4012
draw in horizontal marker lines at each division of the Y-axis.
There are ND+1 of these and they are 5 pixels in length. The X-
axis is plotted in much the same way from Lines 4014 to 4022.

The final stage is to plot in the data points. This is done in the loop
starting at Line 5002. Line 5004 takes the data points in pairs and
draws a line between each pair. The X coordinate is the
expression 5+N*XI where XI is the number of pixels in each X-axis
division. The Y coordinate is the expression (D(N+1)*SC+35)
where D(N+1) is the value of the data point and SC is the scale in
number of pixels per unit.

Line 5008 prints out the key scaling dimensions of the graph in the
“text window” at the bottom of the screen. Line 5020 tells the
operator he can now either exit or start the program again and Line
5032 puts his choice into effect.

Graphplotter 71

1000 REM GRAPHPLOTTER
1002 FY=O
1004 MODE 2:PRINT "GRAPHPLOTTER": PRINT" =

1006 LOCATE 1,3:PRINT"ENTER NUMBER OF DA
TA POINTS , AN INTEGER BETWEEN 2 AND 36"
1008 LOCATE 25,5:D=6:GOSUB 7000
1009 IF RF=1 DR RF=2 THEN GOTO 1020
1010 IF RF=3 THEN GOTO 1016
1012 B$="INTEGER NUMBER BETWEEN 2 AND 36
"8GOSUB 9000
1014 GOTO 1006
1016 GOSUB 9500
1018 GOTO 1006
1020 IF TVC36 AND TV>2 THEN GOTO 1024
1022 LOCATE 2,16:PRINT"INTEGER NUMBER BE
TWEEN 2 AMD 36 ?" : GOTO 1008
1024 LOCATE 2,16:PRINT"

II
1026 NM=TV:DIM D(NM)
1028 CLS:PRINT"DATA ENTRY"
1030 PRINT"PRESS ’E’ TO EDIT"
1032 FOR J=1 TO MM
1034 IF J=1 THEN GOTO 1042
1036 FOR N=18-J TO 16
1038 IF N>0 THEN LOCATE 17,N+4:PRINT SPC
(23): LOCATE 17, N+4: PRINT D (¿J-(17-N))
1040 NEXT N
1042 LOCATE 2,21
1044 PRINT "ENTER No. ";JLOCATE
.18,21 : PRINT" ":LOCATE 18,21
1046 IF FY >0 THEN T$=STR$(D (J)) :CH=LEN(T
$):PRINT T$;:D=6:GOSUB 7004:GOTO 1050
1048 D=6:GOSUB 7000
1049 IF RF=1 THEN GOTO 1064
1050 IF RF=2 THEM GOTO 1062
1051 IF RF=3 THEN GOTO 1058
1052 IF RF=4 THEN GOTO 1072
1053 IF FY=1 THEN GOTO 1064
1054 B$="ENTER VALUE OF Y CO-ORDINATE": G
OSUB 9000
1056 GOTO 1042
1058 GOSUB 9500
1060 GOTO 1042

72 Graphplotter

1062 LOCATE 2,16:PRINT"NUMBER GREATER TH
AN SIX CHARS":GOTO 1042
1064 LOCATE 2,16:PRINT"

1066
1068
1070
1072
1074
1076
1078
1080
RECT
1082
1083
1084
1086
1088
1090
1092
1080
RECT
1082
1083
1084
1086
1088
1090
1092
1094
1096
2000
2002
2004

D(J)=TV
NEXT J
GOTO 1076
GOSUB 6000
GOTO 1034
IF FY=1 THEN FY=O
CLS
LOCATE 1,2:PRINT"D0 YOU WANT TO COR
THE ENTRIES ?";
GOSUB 8500
IF RF=1 OR RF=2 THEN GOTO 1094
IF RF=3 THEN GOTO 1090
B$="ENTER ’Y’ OR ’N’":GOSUB 9000
GOTO 1076
GOSUB 9500
GOTO 1076
LOCATE 1,2:PRINT"DO YOU WANT TO COR
THE ENTRIES
GOSUB 8500
IF RF=1 OR RF=2 THEN GOTO 1094
IF RF=3 THEN GOTO 1090
B$="ENTER ’Y’ OR ’N’" :GOSUB 9000
GOTO 1076
GOSUB 9500
GOTO 1076
IF TV=1 THEN GOTO 2000
IF TV=2 THEN GOTO 2500
REM CHECKING ROUTINE
CLS
PRINT "CHECK ON ENTRY": PRINT"======

2006
2008
2010
2014
2500
2510
2520
2530
2540
2550

PRINT"IF O.K. - <RETURN>"
PRINT"IF WRONG - REENTER"
PRIMT"PRESS ’E’ TO EDIT"
FY=1:GOTO 1032
REM CALCULATE YM AND YN
YM=O:YN=D(1)
FOR N=1 TO NM
IF D(N)>YM THEN YM=D(N)
IF D(NXYN THEN YN=D(N>
NEXT N

Graphplotter 73

2559 CLS
2560 LOCATE 2, 2:PRINT"ENTER THE MIN AND
MAX VALUES FDR THE Y-AXIS"
2562 LOCATE 2,4:PRINT"THE LARGEST ENTRY
IS ";ym
2564 LOCATE 2,6:PRINT"THE SMALLEST ENTRY

IS "5YN
2566 LOCATE 2,8: PRINT"ENTER Y--MAX

II N ¡1
2568 D=8:GOSUB 7000
2569 IF RF=1*THEN GOTO 2582
2570 IF RF=2 THEN GOTO 2580
2571 IF RF=3 THEN GOTO 2576
2572 Bi85 "TH IS IS TO SET THE Y-AXIS MAXIM
UM AND MINIMUM":GOSUB 9000
2574 GOTO 2566
2576 GOSUB 9500
2578 GOTO 2566
2580 LOCATE 2,16:PRINT"NUMBER GREATER TH
AM 8 CHARS"?sGOTO 2566
2582 LOCATE 2,16s PRINT"

II
2584 AM=TV: IF AMCYM THEN LOCATE 2,16:PRI
NT"Y MAX < LARGEST ENTRY - TRY AGAIN":GO
TO 2560
2586 LOCATE 2,10:PRINT"ENTER Y-MIN

II N
■I

2588 D=8:GOSUB 7000
2589 IF RF=1 THEN GOTO 2602
2590 IF RF=2 THEN GOTO 2600
2591 IF RF=3 THEN GOTO 2596
2592 B$="THIS IS TO SET THEE Y-AXIS MAXIM
UM AND MINIMUM":GOSUB 9000
2594 GOTO 2586
2596 GOSUB 9500
2598 GOTO 2586
2600 LOCATE 2,16:PRINT"NUMBER GREATER TH
AN 8 CHARS";:GOTO 2586
2602 LOCATE 2,16:PRINT"

II
2604 AN=TV:IF AN>YN THEN LOCATE 2,16:PRI
NT"Y MIN > SMALLEST ENTRY - TRY AGAIN":G
OTO 2586
3000 REM CALCULATE NUMBER OF DIVISIONS I
N Y-AXIS

74 Graphplotter

3002 ND=AM-AN
3004 IF ND< 11 THEN GOTO 3014
3006 ND=ND/5:IF (ND-INT(ND))<0.001 THEN
GOTO 3004
3008 ND=ND*5/2:IF (ND-INT(ND))<0,001 THE
N GOTO 3004
3010 AM=AM+1
3012 GOTO 3002
3014 YI=INT(400/ND)
3016 XI=INT(640/(NM-1))
3018 SC=(YI*ND)/(AM-AN)
4000 REM PLOTTING Y-AXIS
4002 MODE 2
4004 PLOT 5,35
4006 DRAWR O,YI*ND
4008 FOR N=0 TO ND
4010 PLOT 2,YI*N+35
4011 DRAWR 5,0
4012 NEXT N
4014 REM X-AXIS
4016 PLOT 5,35
4017 DRAWR XI*(NM-l),0
4018 FOR N=0 TO NM-1
4020 PLOT 5+N*XI,35
4021 DRAWR 0,-3
4022 NEXT N
5000 REM PLOT POINTS
5002 FOR N=0 TO NM-2
5004 PLOT 5+N*XI,(D(N+l))*SC+35:DRAWR XI
,(D(N+2)-D(N+l))*SC
5006 NEXT N
5008 LOCATE 2,24;PRINT"Y-MAX =";AM:LOCAT
E 2,:25;PRINT"Y-MIN = "; AN;"Y-AXIS SCALE "
; (AM--AN)/ND;
5020 LOCATE 1,2SPRINT"ENTER 1 TO START A
GAIN OR 2 TO EX IT"; :D=1:GOSUB 7000
5021 IF RF=1 THEN GOTO 5032
5023 IF RF=3 THEN GOTO 5028
5026 GOTO 5020
5028 GOSUB 9500
5030 GOTO 5020
5032 IF TV=1 THEN GOTO 1000
5033 IF TV=2 THEN GOTO 5028
6000 REM EDIT ROUTINE
6002 JJ=J:IF JJ>16 THEN JJ=17

Graphplotter 75

6006 LOCATE 22,21-JJ : PRINT"CORRECTION"
6008 LOCATE 22,22-JJ:D=6:GOSUB 7000
6009 IF RF=1 THEN GOTO 6016
6010 IF RF=2 THEN GOTO 6022
6011 IF RF=3 THEN GOSUB 9500:GOTO 6002
6013 JJ=JJ-1:IF JJ< = 1 THEN GOTO 6024
6014 GOTO 6008
6016 REM
6018 D(J-JJ+l)=TV:GOTO 6013
6020 REM
6022 LOCATE 2,16:PRINT"IF WRONG - REENTE
R":GOTO 6008
6024 RETURN
7000 REM NUMBER INPUT
7002 TV=O:T*="":CH=O
7004 A*=INKEY*:IF A*<>"" THEN GOTO 7004
7005 A*=INKEY*:IF A*="" THEN GOTO 7005
7006 IF ASC(A*)=13 AND CH=O THEN RF=O:GO
TO 7042
7010 IF ASC(A*)=127 THEN GOTO 7030
7012 IF ASC(A*>=13 THEN RF=1:GOTO 7040
7014 IF ASC(A*)=64 AND CH=O THEM RF=3:G0
TO 7042
7016 IF CH=D THEM RF=2:G0T0 7042
7018 IF A*="E" THEN RF=4:G0T0 7042
7020 IF A*>="0" AND A*<="9" THEN GOTO 70
26
7022 IF DE=1 AND A*="." THEN GOTO 7026
7024 GOTO 7004
7026 T*=T*+A*sPRINT A*;:CH=CH+1
7028 GOTO 7004
7030 IF CH=O THEN GOTO 7004
7032 CH=CH-1: PRINT CHR*(8);" ";CHR*(8)j
7034 IF CH—0 THEN T*="":GOTO 7004
7036 T*=LEFT*(T*,LEN(T*>-1)
7038 GOTO 7004
7040 TV=VAL(T*)
7042 D=0:RETURN
8000 REM SPACE BAR INPUT
8002 T V=0:T*="":CH=O
8004 A*=INKEY*:IF A*=" " THEN GOTO 8004
8005 A*=INKEY$:IF A*<>" " THEM GOTO 8005
8034 RF=1 :TV=1 : RETURN
8500 REM YES OR' NO INPUT
8502 RF-O:CH=O

76 Graphplotter

8504 A$=INKEYS:IF A*<>"" THEN GOTO 8504
8505 A$=INKEY$:IF A$="" THEN GOTO 8505
8506 IF ASC(A$)=64 THEN RF=3:G0T0 8514
8508 IF A$="Y" THEN RF=1 :TV=1:GOTO 8514
8510 IF A$="N" THEN RF=1
8512 GOTO 8504

:TV=2:G0T0 8514

8514 PRINT AS:RETURN
9000 REM HELP ROUTINE
9002 LOCATE 1,16:PRINT"

9004 LOCATE 1,16:PRINT B$:PRINT
SPACE?- TO CONTINUE":GOSUB 8000
9006 IF RF=1 THEN GOTO 9014
9008 GOTO 9002
9010 GOSUB 9502
9012 GOTO 9002
9014 LOCATE 1,16:PRINT"

"PRESS

9016 RETURN
9500 REM ESCAPE ROUTINE
9502 MODE 2:LOCATE 1,16:PRINT"DO YOU WAN
T TO EXIT (Y/N) ?":GOSUB 8500
9503 IF RF=1 THEN GOTO 9506
9504 IF RF=2 OR RF=3 THEN GOTO 9502
9506 IF TV=2 THEN GOTO 9510
9508 CLS: LOCATE 11,11 : PRINT"THE END":LOC
ATE 10,12:PRINT"=========":END
9510 CLS:LOCATE 1,16:PRINT"

": RETURN

Graphplotter 77

Modifications:

The snag with a point-to-point graph, particularly if it is displayed
on a domestic TV is that the line is very ‘fuzzy’. This is because the
computer can only display horizontal or vertical lines, a diagonal
line is actually made up of a series of small steps. A better
graphical display is provided by using only horizontal and vertical
lines and displaying changes as steps rather than attempting to
draw lines directly from point-to-point.

Two examples of improved graphs are shown on the following
pages.

78 Graphplotter

The GRAPHPLOTTER 1 modification produces a step graph. The
changes take place in Lines 3016, 4017, 4018 and 5004. One
extra X-axis division is needed to plot a step graph and this is done
by changing NM-1 to NM in Lines 3016,4017 and 4018. Line 5004
first draws the horizontal and then the vertical portion of the step.

GRAPHPLOTTER 1

3016 XI=INT(640/NM)
4017 DRAWR XI*NM,0
4018 FOR N=0 TO NM
5004 PLOT 5+N*XI,D(N+l)*SC+35:DRAWR XI,0
:DRAWR O,-SC*(D(N+l>-D(N+2))

Graphplotter 79

Having obtained a step graph, the area under the plot can be filled
in to produce a bar chart. This is done by drawing lines close
together and parallel to the horizontal portion of the step graph.
GRAPHPLOTTER 2 illustrates the technique. Note the STEP 3
command in Line 5003 which has the effect of reducing the degree
of shading by drawing in every third line, so making the screen less
brilliant and also speeding up the rate at which the graph is drawn.

GRAPHPLOTTER 2

3016 XI = INT(640/MM)
4017 DRAWR XI*NM,0
4018 FOR N-0 TO NM
5002 FOR N=0 TO NM-1
5003 FOR M=5+N*XI TO 4+XI+N*XI STEP 3
5004 PLOT M,35:DRAWR O„D(N+1)*SC
5005 NEXT M

6
FORECASTER

Sales Forecasting

Introduction:

Sales forecasting is a vitally important aspect of sales
management. It requires knowledge, judgment, skill and luck if the
outcome is to be in line with the forecast. Computers can only
make a small contribution to the total task of preparing a
considered forecast but, nonetheless, the contribution can be of
considerable help. There is one proviso, the forecaster must
understand what the computer is doing.

FORECASTER uses an exponential smoothing model to extend
the trend exhibited by a set of data on into the future. The
forecasting model requires at least six periods of actual data from
which to calculate the trend and it produces a forecast for six
periods into the future.

The program incorporates GRAPHPLOTTER from the previous
chapter, using it to display the output. Actual data are entered, a
forecast is calculated and actual and forecast sales are displayed
as a graph. The reliability of the forecast can be improved by
feeding “raw” sales data into ADJUSTER to eliminate the effects
of inflation and working days before using them as the basis for a
forecast.

The forecasting model.

The model requires that a minimum of six months past data is
available. To make a forecast, it progresses from the oldest data
to the newest data in period by period stages.

Forecaster 81

Each period, the model estimates future sales and compares the
estimate with what actually happened. If the forecast is different
from the actual, the model uses the error to adjust its forecast for
the next period. This process of forecasting, comparing the result
with what actually happened, and then adjusting is carried out at
least 5 times.

FORECASTER

When complete, the model has worked itself up to the most recent
period from where it projects forward to give a forecast of the next
six periods sales.

A simple example illustrates the main ideas of this process of
forecasting, adjusting and projecting forward.

Assume that monthly sales for, say, February have been forecast
to be 200 units. Suppose that actual sales in February turn out to
be 220 units, 20 units higher than forecast. (This discrepancy is
the error referred to above.) Having observed sales higher than
forecast, the old forecast must now be adjusted to give a forecast
for March.

82 Forecaster

This is done by taking the old forecast and adding to it some
fraction of the error, say 1/2 of the error. (Notice that if the forecast
had exceeded actual sales, the error would have been negative
and the effect would have been to lower the new forecast). The
resulting new forecast is 200 + 1/2 * 20 = 200 + 10 = 210 units
and it is this figure which is projected forward as the sales in
March.

The table below shows the main steps:

MONTH ACTUAL
SALES

F’CAST
SALES

ERROR NEW
F’CAST

Feb.
Mar.

220 200
210*

20 210

The second table shows how a complete forecast is made using 6
months data covering the period from January to June. Notice that
to start the process off, the forecast for the second month (in this
case February) is assumed to be the same as the first month
(January) - there being no basis for forecasting anything else with
only one month’s data.

Jan.
Feb.

200
220 200 20 210

Mar. 208 210 -2 209
April 191 209 18 218
May 210 218 -8 214
Jun. 228 214 14 221

Having worked through the actual sales from January to June, the
model forecasts that sales from July onwards will be at the rate of
221 units per month. This method of adjusting the forecast in
proportion to the size of the error is called Single Exponential
Smoothing. Its purpose is to smooth out random variations and
isolate the main pattern in the sales.

Double Exponential Smoothing takes this process a stage further
by incorporating an estimate of trend into the forecast. As the
name suggests, a second stage of exponential smoothing is
applied to the sales forecast obtained by single exponential
smoothing. The single and double smoothed values are then

Forecaster 83

combined to give a final forecast, which reflects upward or
downward trends in sales.

The forward forecasts produced by Double Exponential
Smoothing incorporate an estimate for the rate of change in sales
and therefore each month’s forecast is different. In contrast,
Single Exponential Smoothing assumes no underlying trend and
therefore, it gives the same forecast for each of the months ahead.

The important judgment you have to make in choosing between
the single and double exponential models, is whether a trend
really is present in the data.

In both models, the number of months used to create the forecast
is dependent on the amount of data in the data base. If there are
between 6 and 11 months available, the models use the last 6
months data. If there are 12 or more months available, the models
use the last 12 months data.

The fraction of the error which is added to the old forecast at each
stage of the forecasting sequence is called the smoothing
constant. It can take any value between 0 and 1. If a large
smoothing constant is used, the effect is to emphasise the most
recent data so the model becomes very sensitive to change. Thus
if sales in one month suddenly shoot up, the forecasting model will
behave as if this is an established trend and will forecast that it will
continue for ever.

Program description

FORECASTER first parts company from the previous program
GRAPHPLOTTER at Line 2017 which asks the operator if he
wants to forecast. If yes, he is then invited to choose between a
single or double exponential forecast and flag FO is set to either 1
or 2. Line 2031 checks that sufficient data (i.e. a minimum of six
periods) has been entered. If there is not enough, the operator is
told that he cannot have a forecast. The next stage is to enter the
smoothing constant (CO in Lines 2048 to 2062. Note flag DE in
Line 2048 which admits a decimal point. CO must be between 0
and 1 and if the entry is not within these limits, it is rejected in Line
2060 and the program returns to Line 2048 for another entry.

84 Forecaster

Data entry is now complete and the forecasting model, located in
subroutine 8750, is called up in Line 2064.

The principles of the model have already been described.

Lines 8752 and 8754 set K, the number of periods used for the
forecast to either 6 or 12 depending on how much data is available.
Lines 8760 to 8764 set the starting values of P(), the single
exponential means, R(), the double exponential means and Q(),
the single exponential forecasts.

The forecast is calculated between Lines 8768 and 8792. Lines
8794 to 8806 align the forecast values with the data matrix D()
and Line 8804 stops the forecast from going negative on the
grounds that negative sales are a rarity! Finally Line 8808 resets
the number of periods in D() to 6 more than were originally
entered, so as to provide space for the forecast.

Returning now to the main program, the graph plotting routine
from Line 2500 to Line 5009 is the same as was used in
GRAPHPLOTTER except that the whole of the screen is used for
the graph and text is printed separately. The way this is arranged
is the operator presses the space bar when he has finished looking
at the graph, Line 5007, the screen clears and the scale details are
printed at Line 5009.

The program ends by offering a choice, Line 5020, between:

1) Seeing the graph again.

2) Returning to the start of the program to enter new data.

3) Exiting from the program altogether.

Forecaster 85

1000 REM FORECASTER
1002 FY=O:FL=O:DE=1
1004 MODE 2 : PR I NT " FORECASTER " : PR' I NT " ====

1006 LOCATE 2,5:PRINT"ENTER NUMBER OF DA
TA POINTS (INTEGER NUMBER BETWEE.
N 2 AND 36)"
1008 LOCATE 26,9:PRINT" ":LOCATE 26
,9:D=4:GOSUB 7000
1010 IF RF=1 OR RF=2 THEN GOTO 1020
1011 IF RF=3 THEN GOTO 1016
1012 B$="INTEGER NUMBER BETWEEN 2 AND 36

11 " :GOSUB 9000
1014 GOTO 1006
1016 GOSUB 9500
1018 GOTO 1006
1020 IF TV<36 AND TV>2 AND TV-INT(TV> TH
EN GOTO 1024
1022 LOCATE 2,16:PRINT"INTEGER NUMBER BE
TWEEN 2 AND 36":GOTO 1008
1024 LOCATE 2,16sPRINT"

II
1026 NM=TV:DIM DCNM+6)
1028 CLS:PRINT"DATA ENTRY" : PRINT"——===

1030 PRINT" (PRESS ’E’ TO EDIT)"
1032 FOR J= 1 TO NM
1034 IF J-l THEN GOTO 1042
1036 FOR N=21-J TO 19
1038 IF N>0 THEN LOCATE 1,N+1sPRINT"

":LOCATE 1
7,N+l: PRINT
D(J-(20-N)>
1040 NEXT M
1042 LOCATE 2,21
1044 PRINT"ENTRY No, "; J ; " ,... "s
LOCATE 18,21
1046 IF FY>0 THEN T$=STR$(D(J)>:CH-LEN
$)sPRINT
1048 D-6

’ T$;:D=6:GOSUB 7004:GOTO 1049
>: GOSUB 7000

1049 IF RF-1 THEN GOTO 1064
1050 IF RF=2 THEN GOTO 1062
1051 IF RF-3 THEN GOTO 1058
1052 IF RF-4 THEM GOTO 1072

86 Forecaster

1053 IF FY=1 THEN GOTO 1064
1054 B$="ENTER THE Y-COORDINATE OF THE P
DINT ":GOSUB 9000
1056 GOTO 1042
1058 GOSUB 9500
1060 GOTO 1042
1062 LOCATE 2,16:PRINT-NUMBER GREATER TH
AN SIX CHARS !":GOTO 1042
1064 LOCATE 2,16:PRINT"

II
1066 D(J)=TV
1068 NEXT J
1070 GOTO 1076
1072 GOSUB 6000
1074 GOTO 1034
1076 IF FY=1 THEN FY=O
1078 CLS
1080 LOCATE 2,1:PRINT"DO YOU WANT TO COR
RECT THE ENTRIES ?";
1082 GOSUB 8500
1083 ON RF GOTO 1093,1093,1090
1086 B$="IF Y THEN EDIT. IF N THEN CARRY
ON":GOSUB 9000

1088 GOTO 1078
1090 GOSUB 9500
1092 GOTO 1078
1093 ON TV GOTO 2000,2016
2000 REM CHECKING ROUTINE
2002 CLS
2004 PRINT "CHECK ON ENTRY" : PR I NT "========

’—as — 11
2006 PRINT "IF O.K. THEN <RETURN)"
2008 PRINT"IF WRONG RE-ENTER"
2010 PRINT-PRESS ’E’ TO EDIT"
2014 FY=1:GOTO 1032
2016 REM TO FORECAST OR NOT
2018 CLS:PRINT"DO YOU WANT A FORWARD FOR
ECAST' ?":IF FL=1 THEN PRINT"YOU CANNOT D
0 A FORECAST WITH LESS THAN SIX DATA POI
NTS"
2019 GOSUB 8500
2020 IF RF=1 THEN GOTO 2029
2021 IF RF=3 THEN GOTO 2026
2024 GOTO 2018
2026 GOSUB 9500

Forecaster 87

2028 GOTO 2018
2029 ON TV GOTO 2031,2500
2031 IF NM<6 THEN FL=1:GOTO 2018
2032 CLSSPRINT"DO YOU WANT": PRINT"1) A 8
INGLE EXPONENTIAL FORECAST

2) A D
DUBLE EXPONE
NTIAL FORECAST": LOCATE 1,17:PRINT"ENTER
1 OR 2 :D=1:GOSUB 7000
2034 IF RF—1 THEN GOTO 2044
2035 IF RF=3 THEN GOTO'2040
2036 B$="SEE TEXT FOR AN EXPLANATION OF
THE DIFFERENCE":GOSUB 9000
2038 GOTO 2032
2040 GOSUB 9500
2042 GOTO 2032
2044 FO=TV
2046 IF TV<1 OR TV>2 THEN GOTO 2032
2047 CLS
2048 LOCATE 2,2:PRINT"ENTER THE SMOOTHIM
G CONSTANT (A NUMBER BETWEEN 0 AMD

1)":LOCATE 6,4:D=4: DE-1 :GOSUB 7000
2049 DM RF GOTO 2060., 2062,2056
2052 B$="THE CONSTANT CAM BE UP TO 4 CHA
RS LONG":GOSUB 9000
2054 GOTO 2048
2056 GOSUB 9500
2058 GOTO 2048
2060 IF TV>0 AND TVCI THEN DE=O:CO=TV:GO
TO 2064
2062 LOCATE 2,16:PRINT"CONSTANT IS OUTSI
DE PERMITTED RANGE":GOTO 2048
2064 CLS:GOSUB 8750
2500 REM CALCULATE YM AMD YM
2510 YM-O:YN=D(1)
2520 FOR N=1 TO NM
2530 IF D(N)>YM THEN YM=D(N)
2540 IF DCNXYN THEN YN=D(N)
2550 NEXT N
2558 CLS
2560 LOCATE 1,2:PRINT"ENTER THEE MIN AND
MAX VALUES FOR THE Y-AXIS"
2562 LOCATE 1,4:PRINT"THE LARGEST ENTRY
IS ";YM

88 Forecaster

2564 LOCATE 1,6:PRINT"THE SMALLEST ENTRY
IS ";YN

2566 LOCATE 1,8:PRINT"ENTER Y-MAX
":LOCATE 13,8

2568 D=6:GOSUB 7000
2570 ON RF GOTO 2582,2580,2576
2572 B$="THIS IS THE TOP OF THE AX IS": GO
SUB 9000
2574 GOTO 2566
2576 GOSUB 9500
2578 GOTO 2566
2580 LOCATE 2,16:PRINT"NUMBER GREATER TH
AN SIX CHARS.":GOTO 2566
2582 LOCATE 2,16:PRINT"

II
2584 AM=TV:IF AMCYM THEN LOCATE 2,16:PRI
NT" Y-MAX < LARGEST ENTRY -- TRY AGAIN": GO
TO 2560
2586 LOCATE 2,16:PRINT"THE GRAPH WILL AP
PEAR NEXT PRESS <SPACE> WHEN YO
U WANT TO CONTINUE":PRINT:PRINT"ENTER Y-
MIN

":LOCATE 13,17
2588 D=6:GOSUB 7000
2590 ON RF GOTO 2602,2600,2596
2592 B$="THIS IS THE BOTTOM OF THE Y-AXI
S":GOSUB 9000
2594 GOTO 2586
2596 GOSUB 9500
2598 GOTO 2586
2600 LOCATE 2, 16: PRINT"NUMBER GREATER' TH
AN SIX CHARS":GOTO 2586
2602 LOCATE 2,16:PRINT"

2604 AN=TV:IF AN>YN THEN LOCATE 2,16:PRI
NT"Y-MIN > SMALLEST ENTRY TRY AGAIN"
3000 REM CALCULATE NUMBER OF DIVISIONS I
N Y--AXIS
3002 ND=AM-AN
3004 IF ND< 11 THEN GOTO 3014
3006 ND=ND/5:IF (ND-INT(ND))<0.001 THEN
GOTO 3004
3008 ND=ND*5/2:IF (ND-INT(ND))<0.001 THE
N GOTO 3004
3010 AM=AM+1

Forecaster 89

3012 GOTO 3002
3014 Y1=INT(400/ND)
3016 X1=INT(640/(NM-1))
3018 SC=(Y1*ND)/(AM-AN)
4000 REM PLOTTING Y-AXIS
4002 MODE 2
4006 PLOT 5,35:DRAWR O,Y1*ND
4008 FOR N=0 TO ND
4010 PLOT 5,35+Yl*NsDRAWR -2,0
4012 NEXT N
4014 REM X-AXIS
4016 PLOT 5,35:DRAWR Xl*(NM-l),0
4018 FOR M=0 TO NM-1
4020 PLOT 5+N*X1,35:DRAWR 0,-3
4022 NEXT N
5000 REM PLOT POINTS
5002 FOR N=0 TO NM-2
5004 PLOT 5+N*X1,35+D(N+l)*SC:DRAWR XI, <
D(N+2)-D(N+l))*SC
5006 NEXT N
5007 IF INKEYSO" " THEM GOTO 5007
5008 CLS SPRINT "THE COORDINATES OF THE GF:
APH AREAS FOLLOW"
5009 PRINT:PRIMT"Y-MAX "?AM;" Y-M
IN ";AN:PRINT"Y-AXIS SCALE = "?(AM-AN)/M
D
5020 LOCATE 1,16:PRINT"ENTER 1 TO SEE GR
APH AGAIN 2 TO ENTER MEW DATA

OR 3 TO EXIT :",':D=1:GOSUB 7000
5021 IF RF=1 THEN GOTO 5031
5023 IF RF-3 THEM GOTO 5028
5024 B$="IF YOU PRESS 2 OR 3 YOU WILL LO
SE THE DATA"GOSUB 9000
5026 GOTO 5020
5028 GOSUB 9500
5030 GOTO 5020
5031 ON TV GOTO 4002,5034,5028
5034 RUN
6000 REM EDIT ROUTINE
6002 L=JsIF L>19 THEN L=20
6006 LOCATE 23,21-L:PRINT"CORRECTION"
6008 LOCATE 23,22-L:D=6:GOSUB 7000
6009 ON RF GOTO 6016,6022,9300
6012 L=L-1:IF L<2 THEN GOTO 6024
6014 GOTO 6008

90 Forecaster

6016 LOCATE 1,16
6018 D(J-L+l)=TV:GOTO 6012
6020 REM
6022 LOCATE 1,16:PRINT"NUMBER GREATER TH
AN SIX CHARS:GOTO 6008
6024 LOCATE 2,21-L:RETURN
7000 REM NUMBER INPUT
7002 TV=O:T$=" ":CH=O
7004 A$=INKEY$:IF A$<>"" THEN GOTO 7004
7005 A$=INKEY$:IF A$="" THEN GOTO 7005
7006 IF ASC(A$)=13 AND CH=0 THEN RF=O:GO
TO 7042
7010 IF ASC(A$)=127 THEN GOTO 7030
7012 IF ASC(A$)=13 THEN RF=1:GOTO 7040
7014 IF ASC(A$)=64 AND CH=O THEN RF=3:G0
TO 7042
7016 IF CH=D THEN RF=2:G0T0 7042
7018 IF A$="E" THEN RF=4:G0T0 7042
7020 IF A$>="0" AMD A$<="9" THEM GOTO 70
26
7022 IF DE=1 AND A$="." THEN GOTO 7026
7024 GOTO 7004
7026 T$=T$+A$: PR I MT A$; : CH=CH+1
7028 GOTO 7004
7030 IF CH=O THEM GOTO 7004
7032 CH=CH-1:PRINT CHR$(8);" ";CHR$(8);
7034 IF CH=O THEN T$="":GOTO 7004
7036 T$=LEFT$ (T$, LEN (T$)-■ 1)
7038 GOTO 7004
7040 TV=VAL(T$)
7042 D=0:RETURN
8000 REM SPACE BAR INPUT
8002 T 0=0:T$="":CH=O
8004 A$=INKEY$:IF A$=" " THEN GOTO 8004
8005 A$=INKEYS:IF A$K>" " THEN GOTO 8005
8034 RF=1:TV=1:RETURN
8500 REM YES OR NO INPUT
8502 RF=O:CH=O
8504 A$=INKEY$:IF ASO"" THEN GOTO 8504
8505 A$=INKEY$:IF A$="" THEN GOTO 8505
8506 IF ASC(AS)=64 THEM RF=3:GDT0 8514
8508 IF A$="Y" THEN RF=1:TV=1:GOTO 8514
8510 IF A$="N" THEN RF=1:TV=2:GOTO 8514
8512 GOTO 8504
8514 PRINT AS:RETURN

Forecaster 91

B750 REM FORECASTING MODEL.
8752 IF NMC12 THEN K=6
8754 IF NM>=12 THEN K=12
8756 DIM Pi 12):DIM 0(19)
8758 DIM R(12):DIM S(19)
8760 P (1) =D (NM--K >
8762 R(1)=P(1)
8764 0(2)=P(l)
8766 REM SMOOTHING
8768 FOR H=1 TO K-l
8770 A=NM-K+H
8772 F' (H+l) =P(H)+C0*(D(A) -P (H))
8774 0(H+2)=P(H+l)
8776 R(H+l)=R(H)+C0*(P(H+l)-R(H))
8778 A-2*P(H+l)-R(H+l)
8780 B=CO*(P(H+l)-R(H+l))/(1-CO)
8782 S(H+2)=A+B
8784 NEXT H
8786 FOR H=1 TO 6
8788 0(K+H+l)=P(K)
8790 S(K+H+1)=A+B*(H+2)
8792 NEXT H
8794 FOR H=1 TO 6
8796 IF F0=2 THEN GOTO 8802
8798 D(NM+H)=0(K+H+l)
8800 GOTO 8804
8802 D(NM+H)=S(K+H+l)
8804 IF D(NM+H)<0 THEM D(NM+H)=0
8806 NEXT H
8808 NM=NM+6
8310 RETURN
9000 REM HELP ROUTINE
9002 LOCATE 1,16:PRINT"

9004 LOCATE 1,16:PRINT B$:PRINT"PRESS <S
PACE> TO CONTINUE":GDSUB 8000
9006 IF RF==1 THEM GOTO 9014
9008 GOTO 90O2
9010 GOSUB 9502

92 Forecaster

9012 GOTO 9002
9014 LOCATE 1„16:PRINT”

9016 RETURN
9500 REM ESCAPE ROUTINE
9502 CLS:LOCATE 1,16:PRINT"DO YOU WANT T
O EXIT (Y/N) ?":GOSUB 8500
9503 IF RF=1 THEN GOTO 9506
9504 IF RF=2 OR RF=3 THEN GOTO 9502
9506 IF TV=2 THEN GOTO 9510
9508 CLS:LOCATE 11,11:PRINT"THE END”:LOC
ATE 10,12:PRINT"========":END
9510 CLS:RETURN

CONTACTS
Customer Records

Introduction:

As the name suggests, a database program converts a computer
into an information store. Once in the store, data can be retrieved
for examination and there are provisions for entering or deleting
data as requirements change.

Thus far, a computer database is merely an electronic equivalent
of a filing cabinet. As such it may well only offer marginal benefits
as compared with tried and tested manual systems. What makes
a computer database different and such an enormous
improvement over manual systems is that the process of retrieving
the information can be programmed. That is, the computer can be
instructed to work its way through the database sorting the data in
whatever way the programmer chooses. This ability to handle and
analyse data is only limited by the way the data fed into the
computer was coded in the first place.

The need to sort information is central to virtually all administrative
and clerical tasks. Wherever you look people are telling other
people to:

- List all the people who have not paid their motor car tax.

- List all the debtors who are more than 3 months overdue.

- List all the customers who have not ordered anything for 6
months.

and so on.

94 Contacts

With manual systems, the answers are found by sorting decks of
cards or worse still, going through lists of entries in a ledger. With
a computer database the task is done electronically in a fraction of
the time.

Database programs fall into two main categories - programs
aimed at a particular application and general purpose systems.
The most common applications of database programs are in
accountancy and bookkeeping. General purpose systems are
written to be as flexible as possible and they normally contain their
own system (in effect a high level language) for enabling the
operator to specify how the data are to be manipulated, how files
are to be organsied and how output is to be formatted.

CONTACTS

Contacts 95

CONTACTS is a simple database program specifically intended to
store information on a salesman’s contacts. It stores single entries
comprising company name, contact name and telephone number.
Entries can be loaded into the database in any order and new
entries can be added as each new contact is made. Data are
sorted using the very common technique of “keyword” searching.
This Is a rather clever way of enabling the operator to dictate the
scope of the search he wants carried out. The idea is that the
computer searches for all the entries which begin with the
keyword. The scope of the search is determined by the length of
the keyword. If it comprises just one letter, it will pick out many
more entries than if it is 10 letters long.

To find the name(s) of the contact(s) at a particular firm, you enter
an appropriate keyword. CONTACTS then searches the database
and lists out the entries which it finds. Keyword searching really
comes into its own if there are entries which have part of their
name in common. If for example there are a number of branches
of the same firm [say Jones Ltd. (Leeds), Jones Ltd. (Wakefield)
and Jones Ltd. (Barnsley)] all Jones branches will be listed if the
keyword is “Jones” whilst “Jones Ltd. (L” will pick out just the
Leeds branch.

CONTACTS ON FILE ARE:

JONES BROS CONTACT
JIM RUSSELL TEL NO. 01 6542134
JONES BROS CONTACT
BILL SMITH TEL. NO. 01 2542134
JONES BROS (LEEDS) CONTACT
DAVE PETERS TEL. NO. 063 6754356
JONES BROS (MAN) CONTACT
DES HUMPHREYS TEL. NO. 021 4563245
END OF SEARCH
DO YOU WANT TO DO ANOTHER SEARCH?
(Y OR N)

96 Contacts

Program description

The program is made up of four main sections:

-The main menu.

- Data entry, where the contact information is entered.

- Search, where the entries beginning with the keyword are
identified and listed.

- Data deletion, where the entries which are no longer
wanted are erased.

Since there are only a few keyboard entries, the subroutines for
data entry have been simplified.

The main menu:

The program starts at Line 102 where F$ () - the array in which
the data are to be stored, is given the dimension B. (B is set to 200
but you can of course change it if you wish). Lines 106 and 108 are
the program title.

Data are permanently stored on a disc and are loaded into the
program at the start. However, when the program is being used for
the first time, this file has yet to be created and if an attempt were
made to load a non-existent file, the program would ‘crash’. Lines
112 to 118 get over this problem, by asking whether a file exists. If
it does, it is loaded (subroutine 5500); if not the loading routine is
by-passed.

Lines 126 to 139 display the menu options and record the choice
that is made. Note that the value of T$ can only be 1,2 or 3. If it is
anything else, the program goes back to the start through Line
140. The flag FM is set to 1 if option 3 (DELETE) is chosen.

Data entry:

One complete entry comprises three pieces of information. The

Contacts 97

firm’s name, the name of the contact and his telephone number.
These three separate pieces of information are combined and
saved as one element of the array F$().

The program for entering data begins at Line 1000. Lines 1006 to
1018 collect the data on one contact in the form of three strings N$,
C$ and Q$. Next, the three strings are combined into a single
string, R$, with each piece of information separated by a dividing
string like this:

“CONTACT....”

Variable D limits the length of the data entry strings (N$ etc). The
first string is limited to 20 characters and the last two to 10. The
dividing strings contain 25 characters so the maximum length of
one whole entry is 65 characters - that is rather less than two lines
on the 40 column screen.

NO in Line 1020 is a counter which registers the number of entries
by advancing by one every time an entry is made. Provided there
is room in the array, R$ becomes F$(NO), that is, the NOth
element of the array F$(), in Line 1026. When NO is equal to the
dimensions of F$(), the file is full and Line 1022 prevents any
more entries being accepted. To do this, the program assumes
that data entry is finished and proceeds to by-pass Lines 1026 to
1030.

When an entry has been completed, there is a choice between
making another entry or finishing with data entry altogether and
returning to the main menu. The first branch (RF=1), Line 1032,
returns to the start of the data entry routine at Line 1002. The
second branch (RF=2) first saves the complete record F$() on
disc in subroutine 5000 before returning to the main menu.

Search:

The search routine begins by asking for a “keyword” (Lines 2004
to 2008), finding its length, LE, (Line 2008) and then scanning
through F$ to find entries whose first LE characters are identical to
S$. The search takes place in a loop which runs from 1 to NO,

98 Contacts

between Lines 2012 and 2016. Each element of F$(N) is extracted
in turn (Line 2014), its first LE characters are isolated and the
resultant string compared with S$. If the first LE characters of
F$(N) are the same as the keyword, the program branches to
subroutine 6000 which prints F$(N) in full (Line 6008). If they are
not the same, the program ‘drops through’ Line 2014 to 2016 and
advances the loop to pick up the next entry in F$(N).

There are a number of special conditions which have to be catered
for. It is quite possible to find more entries under a particular
keyword than the screen can cope with. If this were to happen, the
screen would scroll so causing lines of output to be lost from the
top of the screen. To avoid this, scrolling is brought under operator
control in Lines 6000 to 6008 by restricting the number of entries
which can be printed to 5. (This is the number of entries that can
be conveniently fitted onto the screen if they are all 2 lines in
length. If L becomes greater than 5, the program is stopped until
the operator presses the space bar at which point the counter L is
set back to 0 and the screen is cleared with a clear screen or ¿J
command (Line 6007). The flag FL in Line 6008 caters for the
eventuality that there are no entries which match the keyword in
the whole of F$(N). FL is set to 0 at the start of the search routine
in Line 2002. When an entry has been found, FL is set to 1 in Line
6008. If at the end of the search, FL is still 0 the “no-one there”
message in Line 2018 is triggered.

The flag FM (Lines 2015 and 2026) can be ignored for the
moment. It is part of the DELETE routine which is described later.
FM has the value 0 during the search routine.

Searching ends by asking “do you want another search”, Line
2020. If the answer is Y (yes), the program returns to the start of
the search routine at Line 2000. If N (no), it returns to the main
menu at Line 122.

Delete:

Deletion is a branch of the search routine. Option (3) in the main
menu leads onto Line 142 where flag FM is set to 1. Thereafter, the
operator specifies the name to be deleted and the search is done
by the same program as is used for Option (2). When the first entry

Contacts 99

is found (Line 2015), FM flags the program into subroutine 3000.

Lines 3002 and 3004 ask whether this particular entry is to be
deleted or not. If it is to be deleted, the particular value of F$() is
set to (the nul value) in Line 3006. If the entry is not to be
deleted, the program returns to Line 2016 and initiates another
loop in the search routine. If a deletion has taken place, the
remaining entries in F$() have to be moved up to eliminate the
space left by the deletion. This is done in Lines 3008 to 3016. The
value of N gives the position of the F$() entry which has just been
deleted. Line 3010 assigns to F$(N) the value of F$(N+1) (that is
the entry immediately following the one which has just been
deleted). This process is repeated for all the elements between N
and the end of the entries at NO using the for/next loop in Lines
3008 to 3012. When the ‘reshuffle’ has been finished, there is one
entry at the very end of the array which should not be there. It is
deleted in Line 3014. Finally, since an entry has been deleted, NO
(the number of entries) is reduced by one (Line 3016).

The program now returns to the search routine and goes around
the search loop until all the entries have been found. DELETE
again parts company from the search program at Line 2026 when
the operator signifies that no more searches are needed and the
program branches into subroutine 5000 where the disc record is
rewritten. Finally the operator is returned to the main menu via
Line 2028.

100 Contacts

10 REM CONTACTS DATA BASE PROGRAM
12 LET NO=O
14 REM C$=C0NTACT NAME STRING
16 REM D =STRING LENGTH
20 REM F$=FILE DATA
22 REM FM=FLAGS DELETE INSTRUCTION
24 REM L -PAGE COUNTER
26 REM LE=LENGTH OF SEARCH STRING
28 REM M AND N ARE COUNTS IN FDR / NEXT
LOOPS
30 REM N$=NAME STRING
32 REM N0=NUMBER OF FILE ENTRIES
34 REM R$=RECORD
36 REM RF=FLAGS EXIT FROM DATA ENTRY SUB
ROUTINE
38 REM S$=SEARCH STRING
40 REM Q$=TELEPHONE NUMBER STRING
42 REM T$=TRANSFER STRING FROM DATA ENTR
Y SUBROUTINES
100 REM CONTACTS FILE
102 B=200:DIM F«(B)
106 CLS:LOCATE 11,11:PRINT"CONTACTS"
108 LOCATE 10,12:PRINT"========"
110 REM LOAD CONTACTS
112 LOCATE 1,14:PRINT"D0 YOU ALREADY HAY
E A CONTACTS FILE ?"
114 LOCATE 1,16:PRINT"Y OR N "?
116 GOSUB 8500
118 IF TV=1 THEN GOSUB 5500
122 REM MAIN MENU
124 CLS:FM=O
126 LOCATE 1,3:PRINT "DO YOU WANT TO :"
128 LOCATE 2,5:PRINT"1) ENTER A NEW CON
TACT"
130
II

LOCATE 2,6:PRINT"2) SEARCH THE FILE

132
T"

LOCATE 2,7:PRINT"3> DELETE A COMTAC

134 LOCATE 1,10:PRINT"ENTER THE APPROPRI
ATE NUMBER ":LOCATE 31,10
135 D=l:GOSUB 7000
136 IF T$<"1" OR T$>"3" THEN GOTO 134
139 IF T$="l" THEN GOTO 1002

Contacts 101

140 IF T$="2" THEN GOTO 2000
141 IF T$="3" THEN GOTO 142
142 FM=1:GOTO 2000
1000 REM PRINT CONTACTS
1002 REM ENTER CONTACT INFORMATION
1004 CLS:PRINT"ENTER CONTACT DETAILS":PR
INT"====================="
1006 LOCATE 2,6: PR I NT " NAME...........D=20
:GOSUB 7000
1008 N$=T$
1010 LOCATE 2,8:PRINT"CONTACT........ ";:D=10
:GOSUB 7000
1012 C$=T$
1014 LOCATE 2,10:PRINT"TEL. NO.D=1
0:GOSUB 7000
10.16 Q$=T$
1018 R$=N$+" CONTACT..."+C$+" TEL. NO..
.."+Q$
1020 NO=NO+1
1022 IF NOCB+l THEM GOTO 1026
1024 LOCATE 2,11:PRINT"FILE FULL. YOU CA
NNOT ENTER ANOTHER CONTACT. ENTER N
TO RETURN TO THE MENU":GOTO 1031
1026 F$(NO)=R$
1028 LOCATE 2,20:PRINT"DO YOU WANT TO EN
TER ANOTHER CONTACT ?"
1030 LOCATE 2,22:PRINT"Y OR N";
1031 GOSUB 8500
1032 IF TV=1 THEN GOTO 1002
.1034 GOSUB 5000
1036 GOTO 122
2000 REM SEARCH ON NAME
2002 FL=O:L=O
2004 CLS:PRINT"SEARCH":PRIMT"======"
2006 LOCATE 2,4:PRINT"ENTER NAME " ; : D==2
0:GOSUB 7000
2008 S$=T$:LE=LEN(S$)
2010 LOCATE 2,6:PRINT"CONTACTS ON FILE A
RE : "
2012 FOR N-l TO NO
2014 G$=F$(N):IF LE>LEN(G$) THEN GOTO 20
16

102 Contacts

2015 IF LEFTS(GS,LE)=SS THEN GOSUB 6000:
IF FM=1 THEN GOSUB 3000
2016 NEXT N
2018 PRINT"END OF SEARCH";:IF FL=O THEN
PRINT"..............NO-ONE THERE"
2020 PRINT:PRINT"DO YOU WANT TO DO ANOTH
ER SEARCH ? (Y OR N)"
2022 GOSUB 8500
2023 IF TV=1 THEN GOTO 2000
2026 IF FM=1 THEN GOSUB 5000
2028 CLS:GOTO 122
3000 REM DELETE CONTACTS
3002 PRINT"DELETE ? (Y OR N)":GOSUB 8500
3004 IF RF=2 THEN GOTO 3018
3006 FS(N)=""
3008 FOR M=N TO NO
3010 FS(M)=FS(M+l)
3012 NEXT M
3014 FS(M)=""
3016 NO=NO-1
3018 RETURN
5000 REM SAVE CONTACTS FILE
5010 OPENOUT"!CONS"
5020 PRINT #9, NO
5030 FOR M=1 TO MO
5040 PRINT #9,FS(M)
5050 NEXT M
5060 CLOSEOUT
5070 RETURN
5500 REM LOAD CONTACTS FILE
5510 OPENIN'1 ! CONS"
5520 INPUT #9 , NO
5530 FOR M=1 TO NO
5540 INPUT #9,FS(M)
5550 NEXT M
5560 CLOSEOUT
5570 RETURN
6000 REM PRINT CONTACT LIST
6002 IF L<5 THEN GOTO 6008
6004 PRINT"PRESS SPACE BAR TO CONTINUE"
6006 AS=INKEYS:IF ASO" " THEN GOTO 6006
6007 L=O:CLS
6008 PRINT FS(N):FL=1

Contacts 103

6010 L=L+1:RETURN
7000 REM DATA ENTRY ACCEPTS ALL KEYBOARD

CHARACTERS
7002 T$= "":CH=O
7004 A$=■INKEY$: IF A«<>" THEN GOTO 7004
7005 A$=•INKEY$sIF A$='"11 THEN GOTO 7005
7006 IF CH>D THEN GOTO 7032
7008 IF ASC(A$)=13 AND CH>0 THEN GOTO 70
“T9

7010 IF ASC(A$)=127 THEN GOTO 7018
7012 IF A$>=" " AND A$<:="z" THEN GOTO 70
28
7016 GOTO 7004
7018 IF CH=O THEN GOTO 7004
7020 CH=CH-1:PRINT CHR$(8);" "5CHR$(8)j
7022 IF CH=O THEN T$=n,,:GOTO 7004
7024 T$=LEFT$(T$,LEN(T$)-1)
7026 GOTO 7004
7028 T$=T$+A$SPRINT A$;:CH=CH+1
7030 GOTO 7004
7032 RETURN
8500 REM YES OR NO INPUT
8502 RF=O:CH=O
8504 A$=INKEY$5lF A«<>"" THEN GOTO 8504
8505 A$=INKEYt>: IF A$=" " THEN GOTO 8505
8508 IF A$="Y" THEN RF=1:TV=1: GOTO 8514
8510 IF A$="N" THEN RF=1:TV=2:GOTO 8514
8512 GOTO 8504
8514 PRINT A$:RETURN

8
WHO’S

Selling What?

Introduction:

CONTACTS (Chapter 7) is a very simple database program. Each
record is held as a single string and when the records are sorted,
they remain in the same form as they were entered. That is, the
program sorts on just one “Field”; it only searches for the contact
name and not the company name or telephone number.

For more general applications, a database program must be able
to reorganise raw data and display it in the different forms needed
for analysis. Thus a database program has three main functions:
to set up and maintain ongoing files of data (the database), to
reorganise the data and to provide a means of displaying output in
a form specified by the operator.

In this program, data are recorded as each sale takes place. When
an analysis is required, WHO’S produces tables showing different
arrangements of the original data. The data are rearranged using
the ‘chain array’ technique described in Chapter 3.

The database comprises a number of sales data files each of
which contains a complete record of a month’s transactions. Part
of this record comprises data which are unique to the transaction
itself (the sales amount) but most of it also appears on other
transactions, (i.e. the date, salesman name etc). Instead of
duplicating these common data throughout the files, they are
stored in full only once, in ‘directories’ which are referenced by an
entry in the sales data file. Thus instead of entering the salesman’s
name each time a transaction is recorded, all that is entered is a
numerical code which refers to an entry in the salesman directory.

Who’s 105

Each time a transaction is entered, the following data are stored on
the sales data file:

- The date the sale was made.

- The salesman’s number (cross referenced to a name file).

- The customer number (cross referenced to a name file).

- The product code (cross referenced to a description).

- The amount of the sale.

Three directory files contain the following:

- Salesman names

- Customer names.

- Product names (or descriptions).

WHO’S

CHOOSE PRIMARY SORTING CATEGORY
DO NOT ENTER 1 FOR PRIMARY FIELD

1) DATE
2) SALESMAN
3) CUSTOMER
4) PRODUCT

106 Who’s

To analyse the database, the operator specifies the period he
wishes to examine by entering the year and month of the start and
finish dates. The program then loads the contents of the
appropriate sales data files into memory. Next, the operator
chooses the fields on which the data are to be analysed. For
example, he might choose to analyse by customer and then by
date, in which case the data would first be divided into sales by
customer (all sales to customer 1, then all sales to customer 2 and
so on) and secondly ranked in date order within each customer
category. (All customer 1 transactions listed in date order followed
by customer 2 transactions in date order and so on.)

The quantity of data which can be analysed at any one time is of
course determined by the amount of computer memory available.
Since a number of different files have to be fitted into memory, the
space assigned to each file must be maintained in some sort of
balance. Clearly, it is not desirable to have room for hundreds of
customers and only a few transactions. The best arrangement
depends on the characteristics of the particular business being set
up on the database. File size is determined by the values of the
constants and the dimensions of the arrays and matrices set in the
first few lines of the program.

The issue of “idiot proofing” is of major importance in this type of
program. Should the user be prevented from putting the wrong
disc in the disc drive? What happens if he calls for a data file which
does not exist? All eventualities can be catered for but they
considerably lengthen and complicate the program. WHO’s takes
a compromise position by protecting against likely operator errors
but it stops short of preventing deliberate attempts to ‘fool’ the
machine.

The structure is outlined on the following flow chart:

WHO’S SIMPLIFIED BLOCK DIAGRAM

108 Who’s

Program description:

WHO’S begins with a menu offering a choice between:

1) ENTER A SALES RECORD

2) PRODUCE AN ANALYSIS OF SALES

3) DELETE REDUNDANT DATA

4) ENTER NAMES IN DIRECTORIES

5) SET UP NEW DATABASE

6) QUIT

Set up:

Option (5) is only used when an entirely new database is to be set
up. Its purpose is to ‘open’ the directory files into which data will be
loaded at a later stage. This avoids a situation where the computer
is unable to “find” a file when it is asked to save the first directory
entries. SET UP creates dummy files each of which contains a
single entry (the number -999999) as an indication that the file is
newly created.

Option (5) calls subroutine 6000 which, after warning the operator
that any files he may have on the disc will be erased, creates three
files SADIR (salesman directory), CUDIR (customer directory)
and PRDIR product directory). Each file is given a single -999999
entry.

Making the directories

Option (4) loads data into the three directories. Initially, the file
contains no data (just a -999999). However, once the database is
in use, the directory will contain a list of names which may need to
be amended and added to as time goes on. The maximum number
of entries which can be held in each directory is determined by the
value assigned to variables NS, NC and NP in Lines 102 to 106.

Who’s 109

Option (4) calls subroutine 6500 the first stage of which sets up a
loop which opens and then reads each of the three directory files,
SADIR, CUDIR and PRDIR. An ‘empty file is recognised if the first
entry is -999999 in which case it is immediately closed, Line 6514.
If the file already contains records, the first entry is the number of
records on file (NR). These are read into any array B$() in Lines
6516 to 6520.

What follows is very similar to the data entry routine used in
GRAPHPLOTTER (Chapter 5). The N loop which runs from Line
6516 to 6520 counts the number of records to be entered into array
B$() so that at the end of the loop, B$() contains the NR records
which have been loaded from the existing file. At this point flag FY
is set to 1 (Line 6524). These “old’ records will form the first part of
the new directory so, before entering new data they must be
displayed and an opportunity provided to amend them. The
contents of B$() are displayed by feeding each element of B$()
into the input subroutine 8550 as if they were keyboard entries.
This is done by setting T$ and CH to the value of the appropriate
element of B$() in Line 6542 and then entering the input
subroutine at Line 8554. Subroutine 8550 then takes over and
treats the entry as if it were a partially completed keyboard entry
and waits to receive another value of A$. To amend an entry, the
operator back spaces and enters new data. A RETURN entry
causes an RF=1 exit from subroutine 8550 so transferring the
contents of T$ to B$() and placing the original or amended data
in the new directory.

When all the old entries (NR of them) have been displayed,
J<NR+1 (Line 6542), ceases to be effective and the next entry
falls through to Line 6544 which cancels editing (FY=0) and
Increases the value of NR to NT so allowing the edit routine to be
used on the new data about to be entered. Note that NT was set to
the maximum capacity of the directory in Line 6504.

If, at any stage in the data entry routine, the operator wishes to edit
his entry, he presses the * key. This causes an RF=4 exit from
subroutine 8550 which in turn enters subroutine 6750. Subroutine
6750 works through the entries so far made (of which there are L),
feeding each one into the data entry routine (subroutine 8550).

110 Who's

Entries can be (1) accepted (press return for an RF=0 exit, which
triggers another circuit of the loop in Line 6764) or (2) amended, in
which case the return is through RF=1 and the appropriate
element of B$() is assigned the new value or finally (3) they can
be incorrect, in which case RF=2 leads into Line 6772 for a prompt
before returning to Line 6758. When editing is complete, the
program exits from subroutine 6750, returns to Line 6572 and
thence to Line 6532 to pick up the next entry in the directory.

The operator signals that he has finished data entry by pressing
the key. This causes an RF=5 exit from subroutine 8550 (Line
6551) and he is once again asked if he wishes to edit. If he does,
the program repeats the whole of the directory entry routine by
returning to Line 6530 after setting FY to 1. The effect of this is to
display the new values B$() so that the operator can add to or
amend his entry. When he indicates that data entry is finally
complete, (i.e. he does not want to correct Line 6578), he triggers
an exit to Line 6606 where the first directory file SADIR is created.

When the file has been made, new values for D$ and J$ are
entered (Line 6622) and the whole process repeated for CUDIR
and PRDIR, the remaining directory files. When all three directory
files have been saved, the operator is returned to the main menu
in Line 6626.

Entering sales data:

Sales data can be entered on an on going basis as and when they
become available. As a transaction is entered, each item of
information is routed to the appropriate column of a five column
matrix R$(,). The first column (column 1) contains the date, the
second the salesman’s number, the third the customer number,
the fourth the product number and the fifth the sales amount. Sales
records are accumulated in a file, the name of which comprises the
year and month the data were entered. (For example, FILE 8309
covers year 83, month 9).

Who’s 111

WHO’S

The data entry routine starts in Line 1500 by loading the contents
of the three directories (salesman, customer and product) into
arrays S$(), C$() and P$() under the control of flag FL. The
number of entries in each directory is held in N(1) to N(3).

The next stage is to ask the operator whether this is the first entry
in the month. If the answer is Y (yes), a flag (FL) is set to 1 (Line
1552). This flag triggers the creation of a dummy (-999999) file
once the year and month of the date has been entered via Line
1582 which calls subroutine 8900.

The date entry routine follows the familiar pattern described in
earlier programs. In WHO’s, the part of the routine which handles
the entry of the year and month is put into subroutine 8700. Note
that where necessary, the month and day numbers are artificially
made up to two characters. (Lines 1578 and 8740).

112 Who’s

Once the date has been entered, the transaction details are
entered in an M loop starting at Line 1590. The number of
transactions which can be entered in one “go” being limited by the
value of A. (Which can be set to any value up to the dimension of
R$(,), itself set in Line 114).

Line 1586 to Line 1688 follows the usual pattern. Flag FY, set to
zero at the start, becomes 1, if the edit mode is selected later on.
Flag DE is used to control the admission of the decimal point in
subroutine 7000. The Salesman, Customer and Product codes
are handled by asking the operator to enter the appropriate
reference number (e.g. the salesman’s number). When the
number is entered, the complete directory entry (i.e. the
salesman’s name), held in S$(), is displayed alongside the
reference number. This first takes place in Line 1620. Note the
check to see if the number lies within the directory’s range which
first occurs in Line 1618. There is an opportunity to edit at the end
of data entry (Line 1724) when the operator is asked whether he
wishes to correct the entries. If he does, flag FY is set to 1 and the
upper limit on the M loop (variable A) is set to NE, the number of
entries, and the program then returns to the start of the routine at
Line 1590. Finally, the NE entries in R$(,) are saved on a file
whose name is the year and month entered at the start of data
entry (Line 2000).

A new file is now made by first loading all the data which are
already on file into R$(,) just ‘behind’ the data which have just
been entered for the first time. To do this the counter N is set to
start at NE+1, the first vacant element, and to finish at NE+NR,
which is now the total number of records. The final stage is to re­
make the file by saving all the elements of RE$(,) from 1 to NT
on the disc. (Lines 2030 to 2048)

Sales analysis:

Option (2) calls subroutine 3000, the purpose of which is to
analyse the sales records and produce an operator selected,
tabular listing of the transactions which took place between two
specified dates.

The first stage is to enter the two dates, the start and finish, which
determine which of the appropriate monthly files should be loaded
into memory. This is done between Lines 3000 and 3054. The start

Who’s 113

and finish dates (year and then month) are entered using
subroutine 8700. The start date is converted to equivalent
numerical variables T and D which count the date forward until it
becomes equal to the finish date, Lines 3048 to 3054. Each file
whose date lies between the start and finish is opened and its
contents loaded into R$(,) using NT and NE to position the data.

Since R$(,) will contain data from more than one monthly file,
Line 3042 adds the year and month to the transaction day held in
R$(N,1) as each file is read.

With the data in place, the next stage is to analyse it. To explain
this requires a further look at how chains are used.

Chain sorting:

Suppose that the operator has chosen to sort the data into the
product categories contained in column 4 of R$(,). To do this,
each row of the matrix must be repositioned so that column 4 is in
a descending numerical order. This is illustrated in the diagram
below where the matrix:

ROW DATE SALESMAN CUSTOMER PRODUCT AMOUNT

1 02 4 2 1 20.05

2 02 2 4 1 40.00

3 04 1 17 2 100.00

4 04 6 14 1 55.20

5 06 3 2 2 45.00

6 08 5 1 2 33.24

Must be resorted into the following table:

114 Who’s

ROW DATE SALESMAN CUSTOMER PRODUCT AMOUNT

1

1

1

2

2

2

The use of a separate CHAIN array makes it possible to avoid the
cumbersome process of repositioning the entire matrix. Instead,
an array of pointers indicates the order in which the rows have to
be listed to achieve the correct sequence.

The simple program listed below shows how this is done:

10 LET C(4) = 2

20 LET C(2) = 1

30 LETC(1) = 6

40 LET C(6) = 5

50 LET C(5) = 3

60 LET C(3) = 0

70 LETH =4

80 IFH = 0THEN120

90 FOR M = 1 TO 5: PRINT R$(H,M): NEXT M

100 LETH = C(H)

110 GOTO 80

120 END

Who’s 115

The chain array is defined in Lines 10 to 60. It is then used to
extract the appropriate rows of matrix R$(,) by a process which
begins at Line 70. The first entry of H, the head of the chain, starts
the sequence. At Line 100, each value of C() ‘points’ to the next
row to be printed. C(4) points at row 2; C(2) points at row 1 and so
on. Chaining is terminated when the zero value of C(3), the tail of
the chain, is detected in Line 80. This program forms the basis of
the printing routine used in WHO’S from Line 3116.

How then is such a chain created? Look at column 4 of matrix
RE$(,). The first element of the chain array, the head, must refer
to one of the rows containing Product 1. That is either rows 1,2 or
4. These rows can be identified by a simple search through the
column using the program listed below:

10 FOR R = 1 TO 6

20 IF R$(R,4) = “1” THEN H = R

30 NEXTR

40 PRINT H

When the program has finished running, the value of H will be the
last row in the matrix which contains a 1 in column 4, that is, row
4. This fixes the position of the head of the chain. The first link in
the chain is the value of C(4) which is set equal to (i.e. pointed to)
the number of the next row in order. This row is either another “1 ”
row or, failing that, the next highest value. Provided there is
another 1 entry in the column, it will be found between rows 1 and
3 as follows:

10 FORR = 1 TO 3

20 IF RE$(R,4) = “1” THEN C(4) = R

30 NEXTR

40 PRINT C(4)

116 Who’s

The result is C(4)=2 and if the process is repeated once more for
R=1 to 2, then C(2)=1. This exhausts the “1” entries in the list.
When the program is run again C(1) takes a zero value. Now look
for the next highest value in column 3, in this case 2. Running the
program with this new value, the head of the chain is 6, C(6)=5,
C(5)=3 and C(3) is zero. The full result is as follows:

LIST“1” LIST “2”

H = 4 H = 6

C(4) = 2 C(6) = 5

C(2) = 1 C(5) = 3

C(1) = 0 C(3) = 0

To create a single array listing the entire column, the C(1) link is set
equal to the H of list 2 (just like joining a bicycle chain) with the
following result:

or in proper order:

H = 4 H = 4

C(4) = 2 C(1) = 6

C(2) = 1 C(2) = 1

C(1) = 6 C(3) = 0

C(6) = 5 C(4) = 2

C(5) = 3 C(5) = 3

C(3) = 0 C(6) = 5

This is the original sequence that was used to create the correct
order of R$(,) at the start of the section.

Who’s 117

However, the earlier arrangement of 2 chains, each terminating in
a zero entry, is more useful since it provides a convenient way of
signalling that one category has finished and another is about to
start. The link between the two chains can be made as follows:

IF C() = 0 THEN H = 6: REM THE NEW HEAD VALUE

Finally, it is convenient to incorporate the information on the heads
of the chains in the chain arrays themselves rather than to define
them separately. To do this, the subscripts are rearranged so that
the head of each chain is assigned to one of the first elements of
the array. Thus in this case, C(1) and C(2) hold the heads of the
two chains and the rest of the array is assigned to C(3) through to
C(8). Similarly, RE$(,) now begins with two empty rows and the
data lies between rows 3 and 8.

The full program for generating the chains is shown below:

10 FOR N = 1 TO 2 : REM CATEGORIES “1” AND “2”

20 LETC(N) = 0

30 NEXTN

40 FOR N = 3 TO 8 : REM THE NUMBER OF ROWS

50 FOR L = 1 TO 2 : REM NUMBER OF CATEGORIES

60 IF VAL(RE$(N,4) = L THEN 80: REM COLUMN 4 IS
BEING SORTED

70 NEXTL

80 LET C(N) = C(L)

90 LET C(L) = N

100 NEXTN

110 FOR N = 1 TO 8: PRINT C(N): NEXTN

As a result, chain array C() has the following values:

118 Who’s

C(1) = 6

C(2) = 8

C(3) = 0

C(4) = 3

C(5) = 0

C(6) = 4

C(7) = 5

C(8) = 7

C(1) gives the head of the first chain as row 6. The pointer
sequence is 6 to 4 to 3 to 0 (the end of the first chain).

C(2) gives the head of the second chain as row 8. Row 8 points to
7,7 to 5 and 5 to 0 (the end of the second chain). Adjusting for the
subscript change described earlier, it will be seen that this
sequence ranks the original matrix R$(,) in product code order.
This program forms the basis for WHO’S subroutine 8600.

To alter the position of one link in the chain, three array elements
must be repositioned.

To illustrate this, return to the “1 ” category chain generated earlier
and reproduced below as the column headed ORIGINAL. To
change the position of the second entry, it is necessary to
exchange the values of C(4) and C(2) and then to make C(2)
return to the chain by pointing it at 6. The result is shown below in
the column marked NEW.

NEW ORIGINAL

H = 4H = 4

C(4) = 1 C(4) = 2

C(1) = 2 C(2) = 1

Who’s 119

C(2) = 6 C(1) = 6

C(6) = 5 C(6) = 5

C(5) = 3 C(5) = 3

C(3) = 0 C(3) = 0

When these same arrays are put into their correct subscript
sequence, they look like this:

NEW ORIGINAL

H = 4 H = 4

C(1) = 2 C(1) = 6

C(2) = 6 C(2) = 1

C(3) = 0 C(3) = 0

C(4) = 1 C(4) = 2

C(5) = 3 C(5) = 3

C(6) = 5 C(6) = 5

Put in more general terms, the sequence for exchanging two rows
(1 and 2) is as follows:

NEW ORIGINAL

H (START LINK) H

C(H) = 1 C(H) = 2

C(1) = 2 C(2) = 1

C(2) = F (FINISH LINK) C(1) = F

And the exchange is accomplished by the following program lines:

120 Who’s

10 REM HISTHE START LINK AND F THE FINISH LINK.

20 LET P = H

30 LETH = C(H)

40 LETF = C(H)

50 LET X = C(P) : REM X HOLDS THE VALUE WHILST
THE CHANGEOVER IS MADE.

60 LET C(P) = C(H)

70 LET C(H) = C(F)

80 LET C(F) = X

90 LET C = F

This program forms part of the bubblesort in WHO’S subroutine
8800.

Returning now to the main WHO’S program at Line 3058, the
operator is asked to specify two fields on which the data are to be
analysed. Flag FL controls the order in which the two fields are
entered. Any two fields can be chosen, for example, a first sort into
products followed by a sort into customers. The operator enters
the two fields in order and they become the values of M1 and M2
in Lines 3086 and 3088. The only restriction is that the date cannot
be chosen as the first sorting field (Line 3066).

The next stage is to sort the whole of R$(,) on the first field, M1,
in subroutine 8600. However, before it is called, subroutine 8600
must be ‘told’ how many rows it will have to sort and how many
categories they are to be sorted into. The first of these parameters
is NT, the total of the individual transactions read in from the sales
data files and the second is the number of entries in the directory
which relates to the first field chosen for sorting. This latter number
(NR) is extracted from the directory file using Subroutine 5000

Who’s 121

Subroutine 8600 has already been described in detail. Note that in
the full program listing, the subscripts of the chain array, C(), are
arranged so that they ‘offset’ the data matrix R$(,) by NR
places. This device enables the first NR elements in C() to be
used to store the heads of each chain (NR of them) without having
to leave an equivalent number of rows of R$(,) blank. Note also
the counter, N(), in Line 8612 which records the number of items
in each category in preparation for the bubblesort which follows.

On exiting from the first sort, the program moves immediately into
the second sort on the field defined by M2. This is a bubblesort
within each of the NR categories established in the first sort. It
takes place in subroutine 8800 which is called NR times, each time
with a different chain head being entered as the variable R.

Having completed the second sort, the final stage is to print the
output by applying the chain array to matrix RE$(,). This is done
from Line 3118 onwards, using the chain array to list out R$(,)
as was described earlier in the chapter. Variable A handles screen
scrolling by counting the number of lines which are printed and the
N loop counts through the NR categories into which the data are
now sorted. Once a screenful of data has been printed, control is
returned to the operator at Line 3136. He presses the space bar to
initiate another circuit of the printing routine.

Delete redundant data:

Option (3) calls subroutine 4000 which is very similar to the earlier
part of the analysis routine. The time period covering the files to be
deleted is specified, they are identified and then deleted.

122 Who’s

100 REM Who’s selling what
102 NS=20
104 NC=50
106 NP=20
108 FL=0
110 DIM N(20)
114 DIM R$(100,5),B«(50),C(150),8$(20),C
$(50),P$(20)
116 DE=0
1000 REM MAIN MENU
1002 MODE 1
1004 LOCATE 5,1:PRINT "WHO’S SELLING WHA
T " : PR I NT " ==================:== ■■
1006 LOCATE 1,10; PRINT "D ENTER A SALES
RECORD":PRINT"2) PRODUCE ANALYSIS OF SA

LES":PRINT"3) DELETE REDUNDANT DATA":PRI
NT "4) ENTER

NAMES IN DIRECTORIES":PRINT"5) SET UP A
NEW DATABASE":LOCATE 1,15:PRINT"6) QUIT

1008 LOCATE 1,18:PRINT"ENTER OPTION NUMB
ER ":LOCATE 21,18:D=1:GOSUB 7000
1009 IF RF=1 THEN GOTO 1017
1010 IF RF=2 THEN GOTO 1023
1011 IF RF-3 THEN GOTO 1015
1012 I$="ENTER 5 IF THIS IS THE FIRST RLJ
N":GOSUB 9000
1014 GOTO 1008
1015 GOSUB 9500
1016 GOTO 1008
1017 IF TVCI OR TV>6 THEM GOTO 1023
1018 IF TV=6 THEN GOSUB 9500:GOTO 1000
1020 ON TV GOSUB 1500,3000,4000,6500,600
0
1023 LOCATE 2,21 : PRINT"ENTRY OUTSIDE RAN
GE - TRY AGAIN":GOTO 1008
1500 FL=O
1501 IF FL=1 THEN GOTO 1506
1502 IF FL=2 THEN GOTO 1508
1504 D$="SADIR": GOTO 1514
1506 D$="CUDIR": GOTO 1514
1508 D$="PRDIR": GOTO 1514
1510 REM ENTER AN EXPENSE ITEM
1514 OPENIN D$
1518 INPUT #9,NR:N(FL+1)=NR

Who’s 123

1520 FOR N=1 TO NR
1522 IF FL=1 THEN GOTO 1526
1523 IF FL=2 THEN GOTO 1528
1524 INPUT #9,S$(N): GOTO 1530
1526 INPUT #9,C$(N): GOTO 1530
1528 INPUT #9,P$(N)
1530 NEXT N
1532 CLOSEIN
1534 IF FL=2 THEN GOTO 1538
1536 FL=FL+1:GOTO 1501
1538 REM ENTER AN EXPENSE ITEM
1540 CLS:PRINT"Is this the -first entry t
his month < Y or N) ?":GOSUB 8500
1541 IF RF=1 THEN GOTO 1552
1543 IF RF=3 THEN GOTO 1548
1544 I$="If so then a new file must be m
ade so enter Y":GOSUB 9000
1546 GOTO 1540
1548 GOSUB 9500
1550 GOTO 1540
1552 IF TV=1 THEN FL=1
1554 REM ENTER AN EXPENSE ITEM
1556 REM ENTER DATE
1558 CLSSPRINT"ENTER THE TRANSACTION DAT
E" : PRIMT"=========================="
1560 GOSUB 8700
1562 LOCATE 1 16 : PR I NT "DAY (1 TO. 31)

he sales record":GOSUB 9000
1568 GOTO 1562
1570 GOSUB 9500
1572 GOTO 1562
1574 LOCATE 1,21 : PRINT"=================

: LOCATE 16., 16: D=2: GOSUB 7000
1563 IF RF=1 THEN GOTO 1574
1564 IF RF=2 THEN GOTO 1576
1565 IF RF=3 THEN GOTO 1570
1566 I«:="This date- will be recorded on

1576 IF TVCI OR TV>31 THEN LOCATE 1,, 21 :P
RI NT "NUMBER OUTSIDE RANGE -- TRY AGAIN" :G
OTO 1562
1578 IF LEN(T$)=1 THEN T$=
1580 Y$=T$:REM DAY
1582 IF FL=1 THEN GOSUB S900:FL=0

124 Who’s

1586 REM SALES RECORD ENTRY
1588 FY=0:A=20
1590 FOR M=1 TO A
1592 R$(M,I)=Y$
1594 CLS:PRINT"SALES RECORD": PRINT"=====

1596 LOCATE 1,11 : PRINT"SALESMAN NUMBER
"-.LOCATE 18,11

1598 IF FY=1 THEN T$=STR$(VAL(R$(M,2))):
CH.=LEN(T$): PRINT T$; :GOSUB 7004: GOTO 160

1600 D=2:GOSUB 7000
1601 IF RF=1 THEN GOTO 1616
1602 IF RF=2 THEN GOTO .1614
1603 IF RF=3 THEN GOTO 1610
1604 IF FY=1 THEN GOTO 1616
1606 I$="A number between 1 and "+STR$(N
S):GOSUB 9000
1608 GOTO 1596
1610 GOSUB 9502
1612 GOTO 1596
1614 LOCATE 1,19:PRINT "Entry outside ra
nge - try again":GOTO 1596
1616 LOCATE 1,19:PRINT"

1618 IF TV>N(1) THEN GOTO 1614
1620 LOCATE 18,11: PR' I NT S$ (TV) : R$ (M, 2) =T
$
1622 REM R$(M,2) is the salesman number
1624 LOCATE 1,12:PRINT"GROSS SALES

"-.LOCATE 18,12
1626 IF FY=1 THEN T$=STR$(VAL(R$(M,5))):
CH=LEN(T$): PRINT T$;:DE=1:D=7:GOSUB 7004
: GOTO 1629

:GOSUB 9000
1636 GOTO 1624
1638 GOSUB 9502

1628 D=7:DE=1 :GOSUB 7000
1629 IF RF=1 THEN GOTO 1644
1630 IF RF-2 THEN GOTO 1642
1631 IF RF=3 THEN GOTO 1638
1632 IF FY=1 THEN GOTO 1644
1634 I$="Sales amount 7 characters ma

Who’s 125

1640 GOTO 1624
1642 LOCATE 1,19:PRINT"ENTRY OUTSIDE RAN
GE - TRY AGAIN":GOTO 1624
1644 DE=O:LOCATE 1,19:PRINT"

II
1646 R$(M,5)=T$:REM GROSS AMOUNT
1648 LOCATE 1,13:PRINT "CUSTOMER No.

":LOCATE 18,13
1650 IF FY=1 THEN T$=STR$(VAL(R$(M,3))):
CH=LEN (T$) : PR I NT T$: D=2 : GOSUB 7004 : GOTO

1654
1652 D=2:GOSUB 7000
1653 IF RF=1 THEN GOTO 1668
1654 IF RF-2 THEN GOTO 1666
1655 IF RF=3 THEN GOTO 1662
1656 IF FY-l THEN GOTO 1668
1658 I$="A number between 1 and "+STR$(M
C):GOSUB 9000
1660 GOTO 1648
1662 GOSUB 9500
1664 GOTO 1648
1666 LOCATE 1,19:PRINT"ENTRY OUTSIDE RAN
GE - TRY AGAIN":GOTO 1648
1668 LOCATE 1,19:PRINT"

1670 IF TV>N(2) THEN GOTO 1666
1672 LOCATE 18,13: PR I NT C$(TV):R$(M, 3) -~T
$
1674 REM R$(M,3) is the customer number
1676 LOCATE 1,14:PRINT"PRODUCT NUMBER

LOCATE 18,14
1678 IF FY=1 THEN T$=STR$(VAL(R$(M,4))):
CH-LEM(T$):D=2: PRIMT T$; :GOSUB 7004: GOTO

1681

P):GOSUB 9000
1688 GOTO 1676
1690 GOSUB 9500
1692 GOTO 167¿>

1680 D-2:GOSUB 7000
1681 IF RF=1 THEN GOTO 1696
1682 IF RF”2 THEN GOTO 1692
1683 IF RF=3 THEN GOTO 1690
1684 IF FY=1 THEM GOTO 1696
1686 1$ = "A number between 1 and "+STR$(N

126 Who’s

1694 LOCATE 1,19:PRINT"ENTRY OUTSIDE RAN
GE - TRY AGAIN":GOTO 1676
1696 LOCATE 1,19:PRINT"

II
1690 IF TV>N(3) THEN GOTO 1694
1700 LOCATE 18,14: PRI NT P$ (TV) : R$ (M4) -T
$
1702 REM R$(M,4) is the product number
1704 IF FY—1 THEN GOTO 1720
1706 LOCATE 1,19:PRINT "WANT TO ENTER AN
OTHER SALE (Y or N) ?" 5:GOSUB 8500
1707 IF RF-1 THEN GOTO 1717
1709 IF RF-3 THEN GOTO 1714
17.10 IT-"If M you will save data and ret
urn to the menu": G0SUB 9000
1712 GOTO 1706
1714 GOSUB 9500
1716 GOTO 1706
1717 IF TV-1 THEN GOTO 1720
1718 IF TV-2 THEN NE-M:M-A
1720 NEXT M
1724 LOCATE 1,21 :PRINT"Do you want to co
rrect. the (Y or N) ?"
1726 GOSUB 8500
1727 IF rf-1 THEN GOTO 1738
1729 IF RF-3 THEM GOTO 1734
1730 I$="IF Y THEN YOU WILL GET THE LIST
AGAIN, PRESS RETURN TO GET FI

RST ENTRY":GOTO 9000
1732 GOTO 1724
1734 GOSUB 9500
1736 GOTO 1724
1738 IF TV-1 THEM FY-1:A-ME:CLS:PRINT "I
F O.K. THEN RETURN": PRINT"IF WRONG THE R
E -ENTER": GOTO 1590
2000 REM MAKE FILE ENTRIES
2006 OPENIN W$+Z$
2010 INPUT #9,NR
2012 IF MR—999999 THEN NR-O: NT-NE: GOTO
2028
2014 NT-NR+NE
2016 N-ME+1

Who’s 127

2018 FOR M=1 TO 5
2020 INPUT #9,R$(N,M)
2022 NEXT 1*1
2024 IF N=NT THEN GOTO 2028
2026 N=N+1;GOTO 2018
2028 CLOSEIN
2030 dPENOUT W$+Z4>
2034 PRINT #9,NT
2036 N=1
2038 FOR M==.l TO 5
2040 PRINT #9,R$(N,M)
2042 NEXT 1*1
2044 IF N=NT THEN GOTO 2048
2046 N=N+1:GOTO 2038
2048 CLOSEOUT
2050 GOTO 1002
2052 CLS:LOCATE 1,21 : PRINT"THIS IS THE F
IRST ENTRY THIS MONTH": LOCATE 1,1
2054 GOTO 1004
3000 REM SALES ANALYSIS
3002 REM ENTER DATE
3004 FL=O
3006 CLS:IF FL=1 THEN PRINT" ENTER THE F
INISH DATE":GOTO 3009
3008 PRINT"ENTER THE START DATE"
3009 PRINT"====================="
3010 GOSUB 8700
3012 IF FL=1 THEN GOTO 3016
3014 V$=W$:G$=Z$:FL=1: GOTO 3006
3016 X$=W$:H$=Z$:FL=O
3018 REM LOAD THE CHOSEN FILES
3020 T=VAL() :D=VAL(G$)
3022 NE= 1 : NT=O : W$=:: Z $=G$
3024 OPENIN W$+Z$
3028 CLS:LOCATE 6,1 : PRINT"DATA IS BEING
LOADED"
3030 INPUT #9,NR
3032 NT=NT+NR
3034 FOR N=1 TO NR
3036 FOR M=1 TO 5
3038 INPUT #9,R$(N,M)
3040 NEXT M

128 Who’s

3042 R$(N,1)=W$+Z$+R$(N,1)
3044 NEXT N
3046 CLOSEIN
3048 NE=NT+1
3050 D=D+1:IF DM2 THEN T=T+1:D=1
3052 W$-STR$(T):Z$=STR$(D):Z$=RIGHT$(Z$,
LEN(Z$)-1): IF LEN(Z$)=1 THEN Z$="O"+Z$
3054 IF W$=X$ AND Z$=H$ THEN GOTO 3058
3056 GOTO 3024
3058 REM SORT ON CATEGORY
3060 REM ENTER CATEGORY AMD NUMBER OF EM
TRIES IN CAT.
3062 CLS:PRINT”CHOOSE PRIMARY SORTING CA
TEGORY":IF FL=O THEM GOTO 3066
3064 CLSSPRINT"CHOOSE SECONDARY SORT CAT
EGORY"sGOTO 3068
3066 LOCATE 1,21 : PRINT"DO NOT ENTER 1 FO
R PRIMARY FIELD"
3068 LOCATE 1,4:PRINT"!) DATE"sPRINT"2)
SALESMAN": PRINT"3) CUSTOMER": PR INT " 4) PR
□DUCT"
3070 LOCATE 1, 11 : PRINT"ENTER SORTING FIE
LD ? ":LOCATE 24,11
3072 D=l:GOSUB 7000
3073 IF RF=1 THEN GOTO 3084
3074 IF RF=2 THEN GOTO 3090
3075 IF RF=3 THEN GOTO 3080
3076 I$="THIS DETERMINES THE WAY THE LIS
T IS ORDERED":GOSUB 9000
3078 GOTO 3062
3080 GOSUB 9500
3082 GOTO 3062
3084 LOCATE 19,1:PRIMT"

3086 IF FL--0 THEN Ml-TV:FL=1: GOTO 3064
3088 M2=TV:FL=O:GOTO 3092

Who’s 129

3090 PRINT" ILLEGAL NUMBER -- REENTER":FL=
0:G0TO 3062
3092 M=M1:REM FIRST SORT
3093 IF M=1 THEN GOTO 3090
3094 IF 1*1=3 THEN GOTO 3098
3095 IF M=4 THEN GOTO 3100
3096 D$="SADIR":GOSUB 5000: GOTO 3102
3098 D$="CUDIR":GOSUB 5000:GOTO 3102
3100 D$="PRDIR":GOSUB 5000
3102 CLS:LOCATE 6,11: PRINT"DATA IS BEING

SORTED FOR PRINTING"
3104 GOSUB 8600
3106 REM SORT ON SECOND CATEGORY
3108 M=M2
3110 FOR N-l TO NF:
3112 GOSUB 8800
3114 NEXT N
3116 CLS
3118 PR I MT "DATE S:'MAN OUST PROD

SALES"
3120 A=0
3122 FOR N=1 TO NR
3126 R=C(N)
3128 IF R=0 THEN GOTO 3156
3130 T$"=R$ (R--NR, 1) : PR I NT US I NG " !+#### " 5 V
AL(LEFTS(T$,6));:PRINT " "5 : FOR L=2 TO
4 : PR I NT US I NG " " ; VAL (RS (R MR1.)) ? :
NEXT L:PRINT

US I NG " . ## " ; VAL.. (RS (R NR', 5) ')
3132 PRINT: A=-A+l
3134 IF AC 10 THEM GOTO 3150
3136 LOCATE 1,21 : PRINT"PRESS SPACE BAR T
0 CONTINUE":GOSUB 8000
3138 IF RF-1 THEN GOTO 3148
3139 IF RF=3 THEM GOTO 3144
3140 I$="THE SCREEN WILL FILL UP' WITH TH
E NEXT PART OF THE LISTING":GOSUB 9000
3142 GOTO 3136
3144 GOSUB 9500
3146 GOTO 3136
3148 A-O:CLS

130 Who’s

3150 R—C(R)
3152 IF R-0 THEN GOTO 3156
3154 GOTO 3120
3156 A—A+1:NEXT N
3158 LOCATE 1,19:PRINT"WANT ANOTHER ANAL
YSIS (Y or N) ?";:GOSUB 8500
3160 IF RF-1 THEN GOTO 3170
3161 IF RF—3 THEN GOTO 3166
3162 CLS:LOCATE 1,19: PRINT"THERE IS SOME
THING WRONG WITH THE DATA. CATALOG AMD C
HECK THE ENTRIES":LOCATE 1,1:GOTO 1004
3164 GOTO 3158
3166 GOSUB 9500
3168 GOTO 3158
3170 IF TV-2 THEM GOTO 1002
3171 IF TV-1 THEN GOTO 3174
3174 GOTO 3000
4000 REM DELETE REDUNDANT DATA
4002 REM ENTER DATE
4004 FL—0
4006 CLS: IF F'L-0 THEN PRINT "CHOUSE DATE

TO DELETE FROM"¡GOTO 4008
4007 PRIMT"CHOOSE DATE TO DELETE TO"
4008 PR I NT " = = = = = === = =: = = — = = = =: = = = = =: = = = ="
4010 GOSUB 8700
4012 IF FL-1 THEN GOTO 4016
4014 V$=W$:G$=Z$:FL-1:GOTO 4006
4016 X$=W$:H$=Z$:FL—0
4018 REM DELETE THE SELECTED FILES
4020 T-VAL(V$):D-VAL(G$)
4022 ME-1:NT-0:W$=V$:Z$=G$
4024 ¡ERA @(W$+Z$)
4028 NE-MT+1
4030 D-D+1:IF D>12 THEN T=T+1:D=1
4032 W$—STR$(T):Z$=STR$(D):IF LEN(Z$)-1
THEN Z$=”O"+Z$
4034 IF (W$-X$) AMD (Z$-H$) THEN GOTO 40
38
4036 GOTO 4024
4038 GOTO 1002

Who’s 131

5000 REM LOOK IN FILE TO FIND NAME
5004 OPENIN D$
5008 INPUT 49,NR
5016 CLOSE IN
5018 RETURN
6000 REM SET UP A NEW DISK
6002 CLS:PRINT "ANY F ILES ON THE DISK WI
LL BE• DELETED"
6004 PRINT:PRINT"THE ASSUMPTION IS THAT
YOU ARE STARTING AGAIN WITH NEW DATA"
6005 PRINT"DO YOU WANT TO CONTINUE ?"
6006 GOSUB 8500
6007 IF RF=1 THEN GOTO 6018
6008 IF R'F—3 THEN GOTO 6014
6010 I$="THE ASSUMPTION IS THAT YOU ARE
STARTING AGAIN WITH NEW DATA":GOSUB 9000
6012 GOTO 6002
6014 GOSUB 9500
6016 GOTO 6002
6010 IF TV=1 THEN GOTO 6022
6019 IF T9=2 THEN GOTO 1002
6020 GOTO 6002
6022 FL=O
6023 IF FL=1 THEN GOTO 6020
6024 IF FL=2 THEN GOTO 6030
6025 IF FL=3 THEN GOTO 6048
6026 D$="SADIR": GOTO 6034
6020 D$="CUDIR": GOTO 6034
6030 D$="PRDIR"
6034 OPENOUT D$
6036 PRINT 49,-999999
6042 CLOSEOUT
6044 FL=FL+1
6046 GOTO 6023
6048 GOTO 1002
6500 REM ENTER RECORDS IN DIRECTORY
6502 CL.S:FY=O
6504 D$-"SADIR":J$="S/MAN No. ":MT-NS
6508 OPENIN D$
65.12 INPUT 49, NR

132 Who’s

6514 IF NR=-999999 THEN NR=O:GOTO 6522
6516 FOR N=1 TO NR
6518 INPUT #9,B$(N)
6520 NEXT N
6522 CLOSEIN
6524 IF NR>0 THEN FY=1
6526 CLS:PRINT"RECORD ENTRY":PRINT"===--

6528 PRINT"(PRESS RETURN FOR NEXT ENTRY
)":PRINT"(WHEN FINISHED PRESS * TO EDI

T OR . TO CONTINUE)"
6530 FOR J=1 TO NT
6532 IF J=1 THEN GOTO 6540
6534 FOR N=21-J TO 19
6536 IF N>0 THEM LOCATE 1,N+l:PRINT"

" : LO
CATE 14,N+1:PRINT B$ (J - (20--N))
6538 NEXT N
6540 LOCATE 1,21:PRINT J*;J:LOCATE 14,21
:PRINT " ":LOCATE 14,21
6542 IF FY=1 AMD JCNR+l THEN T$=B$(J):CH
=LEN(T$):PRINT LEFT*(T*,CH);:T*-LEFT*(T*
,CH):D=9:G0SUB 8554:GOTO 6547
6544 FY=O:NR=NT
6546 D=9:G0SUB 8550
6547 IF RF—1 THEN GOTO 6562'
6548 IF RF=2 THEN GOTO 6560
6549 IF RF=3 THEN GOTO 6556
6550 IF RF=4 THEN GOTO 6570
6551 IF RF=5 THEN GOTO 6574
6552 IF FY=1 THEN GOTO 6562
6553 I*="ENTER NAME (UP TO 9 CHARS)":G
OSUB 9000
6554 GOTO 6540
6556 GOSUB 9500
6558 GOTO 6540
6560 LOCATE 1,18:PRINT "ENTRY LONGER THA
N 9 CHARS"; GOTO 6532

Who’s 133

¿>562 LOCATE 1, 18 : PR I MT "

6564 B$(J)=T$
6566 NEXT J
6568 GOTO 6574
6570 GOSUB 6750
6572 GOTO 6532
6574 IF FY=1 THEN FY=O
6576 CLS
6578 LOCATE 1,2¡PRINT"DO YOU WANT TO COR
RECT THE ENTRIES (Y or N) ?";
¿>580 GOSUE< 8500
6582 IF RF=1 THEN GOTO 6592
6583 IF RF=3 THEM GOTO 65813
6584 I$="IF Y THEN YOU WILL GET THE LIST

AGAIN. PRESS RETURN TO GET THE FIRST E
NTRY":GOSUB 9000
6586 GOTO 6574
6588 GOSUB 8500
6590 GOTO 6574
6592 IF TV=2 THEN GOTO 6606
6594 REM CHECKING ROUTINE
6596 CLS
6598 PRIMT"ENTER NAME UP TO 9 CHARS"sPRI
NT " =:====: == = =====s=:== = = = = =: "
6600 PRIMT"IF O.K. THEM RETURN"
6602 PRINT: PRINT" IF WRONG - REENTER"
6604 FY=1:GOTO 6530
6606 OPEMOUT D$
6610 PRINT #9,J-1
6612 FOR N=1 TO J
6614 PRINT #9,B$(N)
6616 NEXT N
6618 CLOSEOUT
6620 IF FL=1 THEN GOTO 6624
6621 IF FL=2 THEN GOTO 662¿>
6622 FL=1:D$="CUDIR":J$="CUST. No.":NT-M
C:GOTO 6508
6624 FL=2:D$="PRDIR":J$="PROD. No.":NT=N
P¡GOTO 6508

134 Who’s

6626 GOTO 1002
6750 REM EDIT ROUTINE
6752 L=J:IF L>19 THEN L=19
6756 LOCATE 24,21-L:PRINT "CORRECT/N"
6758 LOCATE 24., 22-L: D=9: GOSUB 8550
6760 IF RF=1 THEN GOTO 6766
6761 IF RF~2 THEN GOTO 6772
6762 IF RF=3 THEN GOSUB 9500:GOTO 6774
6764 L=L-1:IF L<=1 THEM GOTO 6774
6765 GOTO 6758
6766 LOCATE 2,21
6768 B$ (J-L+l) =T$: GOTO 6764
6770 REM
6772 LOCATE 23,2:PRINT"TYPE THE MAMES, U
P TO 9 CHARS":GOTO 6758
6774 LOCATE 1,21-L:RETURN
7000 REM NUMBER INPUT
7002 TV=O:T$=" ":CH=O
7004 A$=INKEY$:IF A$<>"" THEN GOTO 7004
7005 A$=INKEY$:IF A$="" THEN GOTO 7005
7006 IF ASC(A$)=13 AMD CH=O THEN RF=O:GO
TO 7042
7010 IF ASC(A$)=127 THEN GOTO 7030
7012 IF ASC(A$)=13 THEM RF=1:GOTO 7040
7014 IF ASC(AT)—224 AND CH=O THEM RF=3:G
OTO 7042
7016 IF CH=D THEN RF=2:G0T0 7042
7018 IF A$="E" THEN RF=4:G0T0 7042
7020 IF A$>="0" AND A$<="9" THEN GOTO 70
26
7022 IF DE=1 AND A$="THEN GOTO 7026
7024 GOTO 7004
7026 T$=T$+A«:PRINT A$;:CH=CH+1
7028 GOTO 7004
7030 IF CH=O THEN GOTO 7004
7032 CH=CH-1 : PRINT CHR$(8) ; " ";CHR*(8);
7034 IF CH=O THEN T$="": GOTO 7004
7036 T$=LEFT$(T$,LEM(T$)-1)
7038 GOTO 7004
7040 TY=YAL(T$)
7042 D=0:RETURN

Who’s 135

8000 REM SPACE BAR INPUT-
8002 TV=O:TS=" ":CH=O
8004 AS=INKEYS:IF AS=" " THEN GOTO 8004
8005 AS=INKEYS:IF ASO" " THEN GOTO 8005
8034 RF=1 :TV=1 : RETURN
8500 REM YES OR NO INPUT
8502 RF=O:CH=O
8504 AS= INKEYS: IF ASO"" THEM GOTO 8504
8505 AS=INKEYS:IF AS-"" THEN GOTO 8505
8506 IF ASC(AS)=224-THEN RF=3:G0T0 8514
8508 IF AS="Y" THEN RF=1:TV=1: GOTO 8514
8510 IF AS="N" THEN RF=1:TV=2:GOTO 8514
8512 GOTO 8504
8514 PRINT AS:RETURN
8550 REM LETTER ENTRY
8552 TV=O:TS="":CH=O
8554 AS=INKEYS: IF ASO"" THEN GOTO 8554
8555 AS=INKEYS:IF AS="" THEN GOTO 8555
8556 IF AS="*" AND CH=O THEN RF=4:G0T0 8
592
8558 IF ASC(AS)=13 AND CH=O THEN RF=O:GO
TO 8592
8560 IF AS="." AND CH=O THEN RF=5:G0T0 8
592
8562 IF ASC(AS)=224 THEN RF=3:G0T0 8592
8564 IF ASC(AS)=127 THEN GOTO 8580
8566 IF ASC(AS)=13 THEN RF=1:GOTO 8592
8570 IF CH>D THEN RF=2:G0T0 8592
8572 IF ASC(AS)>47 AMD ASC(AS)<123 THEN
GOTO 8576
8574 GOTO 8554
8576 TS=TS+AS: PRINT AS; :CH=CH+1
8578 GOTO 8554
8580 IF CH=O THEN GOTO 8554
8582 CH=CH-1 : PR I NT CHRS (8) ; " " ; CUE'S (8) ;
8584 IF CH=O THEN TS="":GOTO 8554
8586 TS=LEFTS (TS, L.EN (TS) -1)
8588 GOTO 8554
8592 RETURN

136 Who’s

8600 REM SORT ON CATEGORY
8602 FOR N=1 TO NR
8604 C(N)=O:N(N)=O
8606 NEXT N
8608 FOR N=NR+1 TO NT+NR
86.1.0 L=1
3611 IF R$(N-NR,M)=" " THEN GOTO 8614
8612 IF (VAL(R$(N-NR,M))=L) THEN N(L)=N(
O-i-l: GOTO 8616
8614 L=L+1:IF LONR THEN GOTO 8611
8616 C(N)=C(O
8618 C(L)=N
8620 NEXT M
8622 RETURN
8700 REM ENTER DATE
8702 LOCATE 2,8:PRINT"YEAR (TWO NUMBERS

) ".-LOCATE 23,8:D=2:GOSUB 70
00
8703 IF RF=1 THEN GOTO 8716
8704 IF RF=2 THEN GOTO 8714
8705 IF RF=3 THEN GOTO 8710
8706 I$="NUMBER BETWEEN 82 AMD 90":GOSUB

9000
8708 GOTO 8702
8710 GOSUB 9500
8712 GOTO 8702
8714 LOCATE 1,21 : PRINT"ENTRY OUTSIDE RAM
GE - TRY AGAIN":GOTO 8702
8716 LOCATE 1,21:PRINT"

II

8718 IF TV<82 OR TV>90 THEM LOCATE 1,21:
PRINT"NUMBER OUTSIDE RAMGE - TRY AGAIN":
GOTO 8702
8720 W$=STR$(TV>: REM YEAR
8722 LOCATE 1, 10: PR I NT "MONTH (TWO NUMBE­
RS) ":LOCATE 23,10:D=2:GOSUB 700
0
8723 IF RF=1 THEN GOTO 8734
8724 IF RF=2 THEN GOTO 8736
8725 IF RF=3 THEN GOTO 8730
8726 I$="NUMBER BETWEEN 1 AND 12":GOSUB
9000

Who’s 137

8723 GOTO 8722
8730 GOSUB 9500
8732 GOTO 8722
8734 LOCATE 1,21s PRINT"

8736 IF TV<1 OR TV>12 THEN LOCATE 1,21;P
PINT "NUMBER OUTSIDE RAMGE -- TRY AGAIN": G
OTO 872.2
8738 Z$=STR$ (TV) : Z$=RIGHT$ (Z$, L.EN (Z$) -1)
: REM MONTH
8740 IF LEN(Z$)=1 THEN Z$="O"+Z$
8742 RETURN
8800 REM BUBBLESORT ON CATEGORY
8802 FOR 8=1 TO N(N)-1
8804 0=0
8806 R=M
8808 FOR L=1 TO N(N)--S
8810 P=R
8812 R=C(R)
8814 J=C(R)
8816 IF J=0 THEM GOTO 8838
8818 IF (VAL(R$(R-NR,M)) <=VAL (R$ (J--NR, M)
)) THEN GOTO 8832
8820 0=1
8822 A=C(P)
8824 C(P)=C(R)
8826 C(R)=C(J)
8828 C(J)=A
8830 R=J
8832 NEXT !...
8834 IF 0=0 THEM GOTO 8838
8836 NEXT S
8838 A=0:RETURN
8900 REM SETUP MAIN FILE
8902 CL.S
8908 QO$=W$-FZ$r. OPENDUT QOT>
8912 PRINT #9,,-999999
8914 CLOSEOUT
8916 RETURN

138 Who’s

9000 REM HELF ROUTINE
9002 LOCATE 1,16: PRINT"

9004 LOCATE 1,16:PRINT I$:PRINT "PRESS S
PACE TO CONTINUE":GOSUB 3000
9006 IF RF=1 THEN GOTO 9014
9008 GOTO 9002
9010 GOSUB 9502
9012 GOTO 902
9014 LOCATE 1,16:PRINT"

9016 RETURN
9500 REM. <COPY> PRESSED ESCAPE ROUTINE
9502 CLS:LOCATE 1,16:PRINT"DO YOU WANT T
0 EXIT (Y/N) ?":GOSUB 8500
9503 IF RF--1 THEM GOTO 9506
9504 IF RF=2 OR RF=3 THEM GOTO 9502
9506 IF TV=2 THEN GOTO 9510
9508 CLS: LOCATE 11,11: PR I NT " THE EMI)" :: LOG
ATE 10,12:PRINT"========"■END
9510 CLS:LOCATE 1,16:PRIMT"

: RETURN

9
SALESTREND

The Sales Manager’s Package

Introduction:

The programs described in the previous chapters each tackle one
aspect of sales management. However, for day to day use, it
would clearly be preferable to have a single program, containing
all these same features, which would cover all the sales
manager’s needs.

The precise arrangement of such a program depends very much
on the role the manager occupies, the scope of his job and which
aspects of it are the most important. This last chapter contains an
outline description of how such a program can be built up from the
elements which have already been described in earlier chapters.

The program is a comprehensive database which provides the
basis of a system for monitoring performance in the market place.
It makes use of the computer’s inherently superior data handling
facilities to create and maintain an ongoing record not just of total
performance, but also the performance of the constituent
elements of the business. The program also provides
comprehensive facilities for data analysis which enable the
manager to explore the underlying causes of changes in
performance within his business.

Without the backup provided by a reliable and detailed database,
it is near impossible to muster the sort of rational explanations and
arguments neeeded to support management action and to provide
convincing back-up to those vital reports ‘up the line’.
Furthermore, an up to date analysis of recent results must be to
hand when subordinates’ performance is being appraised since,

140 Sales Trend

without such a framework, there is no limit to the number and
ingenuity of the explanations which can be put forward to explain
bad (or good) results.

Such a comprehensive system for logging and analysing data is
beyond the scope of manual systems. Equally, it is normally not
possible to achieve the required immediacy of access to up to date
information from a system housed on a central mainframe
computer. It is an ideal application for a personal computer.

General description:

The database is held on file as a series of matrices, one for each
period, which in this example, contain data on the performance of
each product in each territory. Of course, the matrices could
equally well be set up to hold data on the value of inquiries or of
orders received or other regularily produced statistics.

The basic scheme is illustrated below:

Sales Trend 141

Each column contains the sales by product in a single territory.

Each row contains the sales by territory of a single product.

To examine the sales of a particular Product/Territory over time,
the program works its way through the monthly records to create
a new file. This file is made up of a sequence of sales statistics
taken from the same cell of each monthly record.

Having assembled the basic data, the program has to present it in
such a way that trends in the performance of the individual
product/territory cells can be examined over time. This provides a
powerful framework within which to track down the causes of
differences in performance and the interrelationships between
trends apparent in different parts of the business. The approach is
illustrated in the following examples:

142 Sales Trend

Suppose the performance of one particular product is giving
concern. The first step would be to look at how total sales divide
between territories. Now suppose that the poor performance turns
out to be associated with only two territories. It looks as if the cause
of the exceptional result is connected more with the two territories
than with features which relate to the product itself. To confirm this
proposition, it would be helpful to see how the exceptional
territories had performed with other products and perhaps to
compare their total sales with totals elsewhere.

A more difficult problem is seasonality. Difficult if only because it
provides the rather hazy basis for remarks such as “We never sell
much in January but it will pick up by April”. Whether or not this
view is reasonable, can be determined by examining past trends.
If there is a seasonal pattern, then is it also likely to influence sales
of other products and in other territories? If only some areas are
seasonal, then is the characteristic associated with products or
territories? And so on........

A purpose built marketing database is of enormous value in sales
forecasting since its structure is an accurate reflection of the
mechanisms by which sales are actually generated. The
procedure for forecasting is to divide the business into its logical
constitutents and to forecast each one forwards into the future.
The total forecast is the sum of the constituents.

The elements of the program:

It will be evident that the main elements of the program have
already been described in earlier chapters. ADJUSTER provides
the means of taking account of inflation and the effect of working
days. GRAPHPLOTTER covers the problem of scaling the graph
and plotting a series of data points. FORECASTER contains the
exponential smoothing model needed to project trends forward in
to the future and finally, WHO’S gives a method of creating files
and extracting selected periods for subsequent analysis. The
main task remaining is how to fit the programs together within the
confines of the computer.

Sales Trend 143

However, before moving on, mention should be made of an
important programming feature which has not been covered in
earlier chapters, namely how to display data as a table. A15 by 15
matrix is too large to fit onto the screen and so only part of it can be
displayed at any one time. An ideal solution would be a
‘spreadsheet’ display which scrolls the screen in both the vertical
and the horizontal planes. However, if this type of display is
programmed in Basic it will be too slow for practical application. A
less ambitious approach is to accept the computer’s existing
scrolling arrangements for the vertical plane and to gain
something of the same spreadsheet effect by dividing the
horizontal axis into sections. Under this scheme, the 15 by 15
matrix is divided into smaller matrices (say five 15 by 3 matrices),
one of which is displayed in full at any one time. In addition to the
15 by 3 matrix, column and row totals, which are an important part
of the data presentation, must also be accommodated along two
sides of the display.

When the display first appears, matrix number 1 (plus totals) is
displayed. To move on to number 2, the operator presses the right
arrow key and the matrix is printed. Another right arrow keystroke
causes matrix number 3 to appear. To return to an earlier display,
the operator presses the left arrow key. The display arrangements
are controlled by two counters, one on the left arrow key and one
on the right, both of which count the number of times their
respective keys are pressed. The counters can take only the
values 0, 1 or 2. If the left arrow key is pressed when matrix
number 1 is being displayed, that is with the left arrow counter at
0, the counter remains at 0 and matrix number 1 is redisplayed.
Similarly, at the other end of the display with the right arrow
counter at 2, another key press causes matrix number 2 to be
displayed again and the counter remains at 2. Other single key
commands are provided to move on to another month’s data and
to exit from the data display on to the next part of the program.

Program structure:

Clearly there are many ways of arranging the detailed structure of
a marketing database to suit the particular features of the business
and the manager’s requirements. However there are a number of

144 Sales Trend

design issues and programming problems which are likely to
appear regardless of the detailed configuration.

The program naturally divides into two main sections, data entry
and data analysis. The first is relatively straightforward; it reads in
the sales figures each month, positions them in the matrix,
calculates totals and makes a data file. The second program is
more involved. It has to extract data from the data files, analyse it,
adjust for inflation, forecast and display the results either as a
graph or as a table.

There should not be a problem with memory capacity in the data
entry section since only one month’s data has to be held at any one
time. A 15 by 15 product/territory matrix should be large enough
for most applications. On the other hand, in the analysis section, it
will almost certainly be necessary to compromise between the
amount of data which can be handled and the variety of analysis
options offered.

SALESTREND’S biggest memory problems occur in the sections
which use graphics. With graphics, the 32k normally available for
BASIC is reduced by some 22k leaving room for only a small
amount of program and data. It is therefore essential to arrange
the program so that the main body of data is held on a ‘dump’ file
and the graphics program is called after the operator has decided
on a limited number of displays.

The program’s structure is outlined on the flow diagram overleaf:

SALES TREND - SIMPLIFIED BLOCK DIAGRAM

146 Sales Trend

The main menu offers a choice between:

- Data entry (which enters the monthly sales data).

- Data analysis (which produces a display of a selected part of the
database).

- Set up (used when the database is first set up to record the main
parameters of the database).

- Delete (used to remove unwanted data files).

Set up:

The set up program maintains a record of the size of the data
matrix (i.e. the number of products and territories) since is is
essential that each monthly data file should contain the same
number of data items.

Data entry:

The data entry program should be designed so that data can be
entered relatively easily with a clear display and opportunities
provided for editing mistakes both as they are made and as part of
subsequent data checks. One approach is to enter just one
column of data at a time (e.g. all the product sales in territory 1)
using a routine similar to that used in GRAPHPLOTTER. When all
the data have been entered, the program should calculate totals
and then display the complete table for final approval prior to
saving it. It is useful to provide an opportunity for printing out the
data so the operator has a permanent record on file.

The program for driving the printer will be quite long and should be
arranged either as a subroutine or as a separate program called
from the main menu. There needs to be some sort of ‘scrolling’
arrangement since 15 colums of data will probably not fit onto the
printer. If the print program is intended to support different output
formats and even different makes of printer, it will be necessary to
input print constants (number of lines, single sheet/continuous
stationery etc.) at the start of the program.

Sales Trend 147

Data analysis:

To begin data analysis, the operator specifies which part of the
database he wishes to examine. This is done by entering the
following:

- Start and finish dates.

- The identity of the products $ind territories to be examined.

- Whether or not to adjust for inflation and working days.

- Whether a forecast is needed.

Entries must be carefully checked at this stage to ensure that they
do not result in non-existent files being called or the memory
capacity being exceeded. As memory usage is determined by a
number of different operator-determined parameters, the
formulation of the constraints needs close attention.

The program then reads the chosen files and extracts the data
which relate to the selected products and territories, from each
monthly file, putting it into memory in the form of a matrix of
product/territory sales over time. If required, the data are adjusted
for inflation and working days and again, if required, projected
forwards using an exponential smoothing model like the one
described in ADJUSTER.

The precise arrangement of data display will depend on the
particular application of the program. Inevitably it is a compromise
between a number of conflicting objectives. If the primary display
is to be a graph, it is highly desirable to provide a means of easy
reference to the numerical data on a secondary display. (No-one
really believes a graph if they cannot see where it came from.) The
graphical display itself has to be designed with some care. If all the
product/territory variables are ‘dumped’ on the screen altogether,
it will be impossible to distinguish one from another. If they are put
up one after the other, the same problem will occur as the screen
fills up. To get graphs up one at a time, each graph can be drawn
and then deleted by redrawing it with the colour changed to black.
Finally, to enable trends of different products and territories to be
compared, the operator has to be able to select the graphs and
specify the order in which they appear on the screen.

148 Sales Trend

These multiple and conflicting requirements cause some nice
programming problems. The displays have to be arranged so the
operator can switch from one to the other using simple commands
(preferably single keyboard entries) without either getting the
graphs out of sequence or finding that the numerical data does not
tie up with the display.

The basic scheme is to present the operator with display options
in the form of a menu and then to put the whole display program
into a loop. The operator starts by choosing between different
alternatives on offer, then works through the chosen display
before returning to the starting menu. There must also be an exit
from the display back into the main program so that new data can
be extracted from the database.

As with data entry, it is almost certain that hard copy of the analysis
results will be required to provide a record of management
decisions. Text output can be obtained by printing the data matrix
using the same sort of program as was described under the data
entry heading. For graphics output, there are three choices:
photograph the screen, use a dot matrix printer or an X-Y plotter.
Essentially, a dot matrix printer works off some sort of ‘screen
dump’ in which the screen is scanned pixel-by-pixel. The printer
makes either a dot or leaves a blank depending on what is present
on the screen. An X-Y plotter is programmed in much the same
way as graphs are drawn on the screen by defining the
coordinates of the points which the pen is to join together.

Sales Trend 149

In Conclusion

In the opening chapter “Computers — Friends or Foes”, we drew
attention to the disadvantageous position sales managers can be
in if they do not have adequate factual information at their
fingertips.

In the subsequent chapters our aim has been to present programs
which enable the reader to collect factual data and present it in a
managerial context.

This final chapter has been intended as an introduction to a more
advanced type of programming, using the elements of the
previous chapters.

The task of building up SALESTREND from it’s constituent parts
is to show how a sales manager can compete with accounting and
production colleagues when it comes to explaining what is going
on in the ‘marketing mix’.

If, as is likely, you now have ideas for other programs not covered
in this book, you will require some understanding of how the
machine has been designed and programmed. This, in turn,
implies a tentative step into computer technology beginning with
the appropriate sections of your computer manual and moving
onto specialist books and periodicals.

As it is always easier to get started by having a firm base to work
from we hope that the programs supplied in this book will provide
you with your foundation and that you will set to and start writing
your own programs.

We hope that in a very short space of time you will be able to go to
the next management meeting and say “ My computer says....... ”

INDEX

A

Adjusting Sales Trends ...53 to 64
Algebra ... 19,20
Arrays .. 23, 34, 56
ASCII Codes ... 46, 47, 49
Arrow Key ...47
Automatic Line Renumbering ...33

B

Basic ... 16, 33
Branches ... 25, 29,30

41,47, 55
Bubble Sort ... 50,69,121
Bugs ..31

C

Cassette Storage .. 63, 64
Chains ... 36, 37, 38

104,113 to 119
Change in Sales Program .. 36
Checking Routines .. 68
Column Entry Routine ...67
Column Printing Routine .. 57
Computer Control ..40
CONTACTS Program ... 100 to 103
Counters .. 32, 35, 37

47

D

Data Analysis .. 148,149
Data Bases ...93 to 103
Data Entry ..47,146
Data Entry Program ...42 to 49
Data Entry Routine .. 56, 67
Data Entry Subroutines ... 43 to 49

109
Data Erasing ..47, 48
Data Points ...70
Data Processing .. 12,13
Data Sorting .. 49 to 52
Data Storage ..63, 64
Defining Flags .. 32
Defining Variables ..20
Definition of Variables ... 32
Delete Redundant Data Routines ... 121
Delete Routine ... 98, 99
Directory Files ... 108,109
Disc Storage ..63, 64

E

EDIT Routine ... 68,109
ENTER ... 42
Entering Sales Data ... 110,111,112
Error Messages .. 38, 39, 41
EXIT ...42
EXIT Routine .. 45, 55, 56
Exponential Smoothing ... 80 to 84
Exponential Smoothing Routine .. 83

F

Flags .. 32, 45, 47
49, 98, 120

Flags (Defining) ...32
FOR/NEXT ... 25 to 28
Forecasting Model Routine .. 84
FORECASTER Program ..84 to 92

G

GOSUB .. 28 to 30
GOTO ... 27, 28, 30
Graphics ...65
GRAPHPLOTTER Modifications 77 to 79
GRAPHPLOTTER Program ... 71 to 77
Graphplotting ... 65 to 79

H

Handling Numbers .. 34
Handling Strings ..34
HELP ..45, 55

Idiot Proofing ... 38, 39, 40
IF/THEN ... 29, 30
Indexing Device ...37
INPUT ...39, 40
Input Letters ...44, 48
Input Numbers Routine .. 44,46
Input Space Bar .. 44, 48
Input Subroutines .. 43, 49
Input Yes or No ... 44,48,49
Integer ... 22,39,40

42
Invalid Data .. 45

L

LEN .. 22, 44
LET ... 18,41
Letter Variables .. 19
Line Numbering ...33
Logic ..21
Loops and Branches ... 25 to 28

34 to 36
51,56

M

Matrix and Matrices .. 24, 34, 35
140,141,142

Memory .. 18,144
Menu .. 96,108,146
Microfloppy Loading .. 96
Monthly Sales Graphs ...66
Multiple Choice ..29

N

Nested Loops ... 27, ,28, 51
Nested Subroutines .. 49
NEXT .. 26
Non Integers .. 41
Number Comparison Sequence 50, 51,52
Numeric Arrays ..51
Numeric Variables ... 23, 34, 39

51

O

Operating System ... 16,17
Output ... 45
Overprinting ... 42

P

Peripherals ...16
Personal Computing ... 14,15
Pigeon Hole .. 18,19, 20
Pixels ... 65, 66, 70
Pointers ... 37, 38
PRINT/AT .. 19,41,42

43
Printers ... 148
Product - Sales Program .. 35 to 37
Program Crash ..39
Program Elements .. 142,143
Programming Language .. 16,17
Prompt .. 55

R

Re-aligning .. 36
REM .. 32, 33
RETURN ... 28, 30, 33,

47
Rule of Precedence ..21
RUN .. 40

S

Sales Adjuster Example ... 63
Sales ADJUSTER Program ... 57 to 64
Sales Adjusting .. 53 to 64
Sales Analysis Routine .. 112,113
Sales Contacts ... 93 to 103
Sales Data Directory ... 104 to 106

110
Sales Forecast Tables ..82
Sales Forecasting .. 80 to 93
Sales Trend Flowchart ..145
Screen Scroll Routine ...98
Search Routine ..97
Set Up Routine ...108
Sorting .. 49
SORTING Routine Program ..49 to 52
STEP .. 27
Step Graphs .. 77 to 79
STOP ... 29, 30, 33
String Array .. 24
String Handling ..34
String Matrix ... 24
String Variables ...22 to 24

34
Subroutines ...28, 33
Subscript .. 23, 37

T

Territory Sales Files .. 140 to 142
TextWindow .. 20

U

User Friendly ... 38 to 40

V

VAL ... 41 to 43
Valid Data ...45
Variables ... 18 to 22
Variables (Definition of) ...32

W

Who’s Flowchart... 107
Who’s Menu... 108
WHO’S SELLING Program .. 121 to 138

ISBN 0 9465 7624 6

A wide ranging selection of programs
to make full use of

the colour and sound
available to you.

Arcade style games
to test your reaction skills and

mental agility.

Adventures
to make you face dragons and dungeons

to save the princess

Brainteasers
to make you skip through minefields

and worse.

This is the
AMSTRAD PROGRAM BOOK

with something for everyone.

Now Available

From all good bookshops
or direct from

Phoenix Publishing Associates Limited
14, Vernon Road, Bushey, Herts WD2 2JL

at £5.95 plus 55p post and packing

AWAN
PR@@RAMMHN

TFQHJNH M
ON THE

AM§TE3A@ P @;@(35@;L
ISBN 0 9465 7632 7

This title will introduce new owners to machine code
programming, graphics, sound and c o l o r on their
Amstrad. Example programs will be given throughout
the book in addition to a wide collection of time-saving
routines plus a special section on important ROM

routines.

The Author
Keith Hook is an experienced user of the 280 chip (as
used in the Amstrad) and is a regular contributor to

Personal Computer News.

Publishing date: June 1985

Available from all good Bookshops
or direct from

Phoenix Publishing Associates Limited
14 Vernon Road, Bus fey, Herts WD2 2JL.

at £7.95 plus 55p post and packing

PHOENIX
CRIB CARD

FOR THE

AMSTRAD CPC 464
ISBN 0 9465 7635 1

‘Crib Cards’ are handy, easy to refer to
programming aids. The cards, which measure 9 x

4 inches and come in individual protective
polythene sleeves, have 12 faces to view in a

concertina fold.
Contents include

Keywords, Colour, Sound, Data, Input/Output,
Error Messages,

Logical/Arithmetical Operators, Basic Commands
etc.

They have ‘Everything at your Fingertips’.

Publishing date: May 1985

Available from good bookshops and computer shops
or direct from

Phoenix Publishing Associates Limited
14, Vernon Road, Bushey, Herts WD2 2JL.

Retail Selling Price £1.99

Illll I I l l l l l I I

BPAINTEASERS
for the

AMSTRAD CPC 464
Programs to puzzle and amuse

Here at last is a collection
of programs worthy of the title Brainteasers.

Built around a competition element
you will be asked questions requiring

logic,
general knowledge

and mathematical skills in your answers.

All of the programs will exploit
the graphics capabilities of your machine and,

if you can face up to it
some of the programs

will contain your IQ rating
at the end of the program

To be published February 1984
£5.95

Available from all good bookshops
or direct from

Phoenix Publishing Associates Ltd.,
14 Vernon Road, Bus fey, Herts WD2 2JL

at £5.95 plus 55p post and packing

BUSINESS
PROGRAMMING

on your

AMSTRAD CFC464 i.
This book is designed for

people in business
who have asked themselves the question

“How could I use our home computer
to help me with my day to day work

without having to spend a fortune on software?
Could I write my own programs

to handle sales forecasts,
customer record cards, graphs

and reduce my paper work load?”
The answer is YES

This book will show how it can be done.
Using basic

the user will be shown
how to program,

build own files systems using examples,
design a “Data Base”

which will form the core
for countless record systems.

The Author
Peter Jackson is a highly experienced businessman

who has served in senior management roles
with English Electric and Tube Investments.

He now has his own successful software company
and is a visiting lecturer

at the London Business school.

PHOENIX
PUBLISHING
ASSOCIATES

PHOENIX

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Business programming on your AMSTRAD CPC 464
	CONTENTS

	INTRODUCTION

	1 - Friends or Foes?
	2 - Basic Programming
	3 - PRINCIPLES of Programming
	4 - ADJUSTER Adjusting a Sales Trend
	5 - GRAPHPLOTTER Plotting Graphs and Charts
	6 - FORECASTER Sales Forecasting
	7 - CONTACTS Customer Records
	8 - WHO’S Selling What?
	9 - SALESTREND The Sales Manager’s Package
	INDEX
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-03

