
GETTING STARTED
-------- WITH--------

■ÄIK
THE BEGINNERS GUIDE TO COMPUTING

I
yi

rVx

íol^

r i \V o
f^nCT

a// !

’ÏJ
1

/

f
f

J

''S’?

l\

fed^; ■7~
' #1

JOHN PARRY

GETTING STARTED
WITH
BASIC

The beginners guide to computing

John Parry

Phoenix Publishing Associates Ltd
Bushey, Herts

Copyright © John Parry 1984
All rights reserved

First published in Great Britain
PHOENIX PUBLISHING ASSOCIATES LTD

14 Vernon Road, Bushey, Herts. WD2 2JL

ISBN o 9465 7615 7

Printed in Great Britain by
Billing and Sons Ltd

Cover design by
Ivor Claydon-Graphics

Typesetting by
Sunsetters, Rickmansworth

CHAPTER

Introduction

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

CONTENTS

Why Call It a Program

Lining Up Numbers

Variable Things

Dots and Dashes

Lets and Loops

Fors and Nexts

Its and Thens

Stringing Along

Arraying Things

Functioning Properly

Reading Data

Subroutines

Looking Back

Working Through

Winding Up

Index

PAGE

7

9

17

25

32

38

46

55

64

70

79

87

96

104

115

129

139

INTRODUCTION

This is a book for the absolute beginner. It assumes that your
knowledge of computers is utterly negligible.

It starts at the very beginning and explains carefully the
meaning of all technical terms used. It is not intended to turn
the reader into a “computer whizz-kid" but it will enable the
ordinary person to use and understand a micro-computer.
There is a great deal of satisfaction to be obtained from
learning how to control a computer - much more than from
playing games sold on luridly labelled cassettes.

The handbooks for new motor cars used to explain such
details as how to depress the clutch pedal before moving the
gear lever to engage each successive gear. Nowadays the
makers can assume that how to drive a car is common
knowledge and they don’t have to tell you that the pedal in the
middle is the brake and the one on the right is the accelerator.
The same situation does not exist in computers. There are
striking differences between the machines in the high street
shops which, while presenting no problem if you already know
what it’s all about, can cause hours of frustration to the
newcomer struggling with a manual. You will have to consult
your machine’s manual for some points but since it was
written by someone who had to cover every facet of the
machine’s operation you may well find that the answer to your
problem is buried in a wealth of incomprehensible detail.

Because of the need to make sure that nobody gets left behind
we have had, particularly in the first few chapters, to discuss
some elementary ideas at length. We do not apologise if this is
tedious - it is the only way to make sure that owners of all
machines will find what they need to know.

8 Introduction

A very large number of people feel that an increasingly
important field of technological advance is passing them by
because they “don’t understand computers”. I am often asked
“What do you do with it?” by those in this position. The answer
in my case is that I use a computer for fun -because I like them.
However I hope this book will help in meeting two objectives:
to allow everyone to become familiar with how a computer
works and to enable as many people as possible to enjoy
finding out about them.

1
Why Call It a Program ?

“When I use a word”, said Humpty-Dumpty. “It
means exactly what I choose it to mean, no more

and no less".

- Carroll, “Alice in Wonderland. ”

WHY PROGRAM?

I have an automatic washing machine. On the front there is a
knob known as the ‘programmer’. You can turn this knob to a
surprisingly large number of settings to select one of the
machine’s ‘programs’. (Sorry about the spelling. The British
Computer Society says we must leave off the ‘me’.) These
programs amount to a number of lists of sequences of
operations. The machine is capable of several different
activities, for example, ‘fill cold’, ‘fill hot’, ‘normal action tumble’,
’gentle action tumble’, ‘pump out’, ‘spin’. Each program is a
succession of such operations in a logical order to produce
the desired result.

A computer, like the washing machine, is also capable of a
number of operations but since it works not on washing but on
numbers and text it is useful for number and text
processing rather than clothes processing. Such operations
as PRINT and + are appropriate for the things the computer
works on rather than ‘spin’ or ‘rinse’. A more significant
difference between the two machines is that in the case of the
washing machine the manufacturer has provided the
programs, and has provided every program I am likely to need,
but the computer manufacturer sends his product out into the

10 Why a Program?

world unprogrammed. The users are expected to supply the
programs for themselves. There are two ways to do this, you
can either buy them in a shop or, far more satisfying, make up
your own. It is with this second option that this book is
concerned.

To summarise, a program isa list of instructions stored inside a
machine which can be used to co-ordinate and organise the
machine’s activities to produce some useful result. Computers
are machines capable of working on numbers and letters but
are sold without programs inside them.

LANGUAGES

You may have gained the impression from the previous
section that manufacturers have been less than fair to the
public in selling machines in such a form that they are
incapable of doing anything. This is in fact far from true. To
revert to the washing machine consider the operation ‘fill hot’.
It is not as simple as it seems. To do it the machine must turn
on the hot water valve and keep testing the depth of water until
some pre-assigned level is reached, then turn the valve off. The
other operations also consist of several such elementary
actions. The designer of a program to wash for example ‘fast
coloureds’ has to string together a list of items like ‘fill hot’. He
can assume that the machine contains the necessary wires
and relays to make the various parts of ‘fill hot’ happen. The
program is easy to compose because if he wants to fill with hot
water he can tell the machine to get on with it and not worry
about the details. It is the word ‘tell” in this sentence that gives
us a lead into the word ‘language’ when used in relation to
computers. You may (or may not) have heard such words as
BASIC, COBOL and PASCAL. These are all programming
languages and it is in these languages that the stored lists of
instructions for computers are written. Learning a language
sounds a rather alarming prospect to the average English
person (I don’t know about the Welsh or Scottish) but now I
can let you into the big unspoken secret. All these languages

Why a Program? 11

consist simply of a very small number of the words you use
every day. The meanings are a bit more precise but that’s all
there is to it. I have no intention of learning German - the idea
of all that vocabulary and word endings is far too off-putting
-but learning a computer language offers no such horrors. It is
merely a question of remembering which English words are
allowed and putting them in the right order.

BASIC

The overwhelming majority of computers use a language
called BASIC and it is this language which will be used in this
book. It contains only a small number of words which you will
soon learn. You will have a little more trouble with what might
be called the grammar. If a foreigner says “I am living in
England since three years” we can all guess what he means
but we are much cleverer than a computer is. We know he has
made a mistake or two but we can work out what he is trying to
say. Computers are arranged so that if you make a mistake of
this type in your instructions to them they don’t even attempt
to do what they have been told. In fact computer language
designers work on the assumption that you are certain to
make mistakes and go to some trouble to make sure that when
you do you find out about it quickly, and in a way which
enables you to decide what was wrong as easily as possible.

It is absolutely impossible to damage your computer by giving
it incorrect instructions. If you programmed your own
washing machine you would certainly do stupid things like
trying to spin when full of water, and you would be afraid to go
out when it was running for fear of coming home to find the
kitchen floor awash, but there is no corresponding danger
with a computer. If you could do any harm to a computer by
making similar mistakes the manufacturers would be
beseiged by people quite rightly demanding their money
back. They are not because every possible inappropriate thing
you might do (except pushing it off the edge of the desk) has
been allowed for.

12 Why a Program?

GETTING STARTED

Let’s assume that you have got your computer home, plugged
it in to the power point and to the TV set, fiddled with the TV
controls to get a good picture, everything has gone according
to plan and you are wondering what to do next.

THE CURSOR

The computer is operated by typing on a keyboard and
watching what happens on the screen. Most of what appears
on the screen is what was typed on the keyboard but some, the
interesting bit, is what the computer decides to put there. A
cursor is a thing on the screen to show you where what you
type next will be put. (It may be a solid black or white block or a
horizontal line level with the bottom of the letters.) When you
type something the cursor usually moves to the right ready for
what you type next but if you have filled the width of the screen
the cursor will jump to the left hand end of the line below. Most
machines have a cursor which flashes all the time to make it
easy to find on the screen.

KEYBOARDS

The first thing to do is to get used to using the keyboard. These
are regrettably very varied. You may have one which looks
almost the same as a typewriter with a shift key to change
small letters into capitals and a long bar along the bottom to
get a space but you may well have rubber keys with a
bewildering number of different things written on, above and
below them. I suggest you play with it to see what happens.
There is a number of possibilities so you will have to be patient
while I try to cover them all.

Basically what you type on the keyboard appears more or less
exactly on the screen just as if you were using a typewriter and
the screen was the paper. If you are used to a typewriter the
way the shift and shift lock keys work may surprise you. A

Why a Program? 13

typewriter provides small letters on all the letter keys but
capitals if shift is held down while another key is pressed. The
shift key also alters the effect of the other keys so that you get
either a 2 or quotation marks by pressing the same key. On
some computers SHIFT has the typewriter effect on the non­
letter keys but changes capital letters to small rather than small
to capital. There may well be a key marked CONTROL, or
some abbreviation for it which works like another shift key and
gives the other keys a third meaning which will have some
surprising effects on the screen but, as I stressed before, can’t
do any harm.

The Sinclair ZX81 and Spectrum computers put whole words
on the screen when you press a single key or a single key
preceded by one or more shift keys. If you look at the screen
the cursor changes to show the effect the keys are going to
have. This system is frustrating at first but saves time when you
get used to it. It is explained in the manual but trial and error is
probably a more effective way to make progress.

CORRECTING MISTAKES

There will certainly be a key for rubbing out mistakes, possibly
marked ‘DEL’ for DELETE or ‘BS’ for back space though it may
require the shift key to be held down to produce this effect. If
you are typing and you notice a mistake you can press this key
and what you typed last will vanish. You can press the
DELETE again to remove what you typed before and thus
work your way back to the mistake. Then you can type into the
space created by moving back and replace the error with what
you really meant.

LINES

On an electric typewriter there is a key for ‘carriage return’.
When the typist finishes whatever is required on one line this
key is pressed to move the paper so that the next letter typed
will be at the start of a new line. Those of us with manual

14 Why a Program?

typewriters have to reach up and push the carriage back for
ourselves. There will be a similar key somewhere on the right
hand side of your computer keyboard marked ‘RETURN’ or
‘NEW LINE’ or‘ENTER’ or something similar. You will find that
it has rather more effect on the computer than the other keys.
The way the computer is arranged to make giving it
instructions simple is that the computer does not attempt to
understand what you type as you type it. It just puts what you
type onto the screen. This gives you a chance to see what you
are typing and to correct any errors. When you are satisfied
that the line contains exactly what you want (which may be
only a single word but^may in some machines stretch over
several screen lines) you press the ‘RETURN’ key. This is the
signal to the computer that you have completed what you
wanted to say and you want the computer to look at what you
have typed.

If you typed something meaningless to the computer, say your
name, then there are two possible ways it can deal with the
problem. In most cases your name is left on the screen and the
computer puts a message on the next line to say it doesn't
understand. This may well be ‘syntax error” or some other bit of
‘computerese’. No harm has been done and you can type
something else. Alternatively some machines try to help by
leaving the cursor on the line when you press RETURN so that
you can use thé rub out key to correct it. If you eventually alter
the line till it is one that the computer understands you can
press the RETURN key, the computer accepts the line, and
you can type another. You will notice that the word ‘line’ is
used rather loosely. There are two possible meanings.
Logically a line is that length of screen between the left and
right hand sides, but we tend to use the word to mean what
you typed between presses of the RETURN key. Since some
computers can only put a smallish number of letters across the
width of the screen, perhaps as few as thirty-two, and you
might wish to type more than thirty-two letters before pressing
RETURN it is usual for the cursor to jump automatically to the
left hand end of a new line of the screen when you have typed

Why a Program? 15

your way to the right hand side. However everything typed up
to pressing RETURN is called a line even if it is long enough to
stretch over more than one line of the screen. Don’t worry if
you can’t follow this straight away - you will not need to think
about it because it will become automatic very rapidly.

I must stress again that errors are normal. The makers of
computers go to a lot of trouble to protect you from yourself by
not letting the computer follow meaningless instructions
which cannot be what you meant to say. The quality of the
error messages may well leave something to be desired
because they are tryi ng to save space i nside the com puter but
it is the computer’s job to help you to type correct instructions.

PRINT

We haven’t got as far as writing programs yet but it is time to
get the computer to do something meaningful.

Use your keyboard to get this on the screen

PRINT “HELLO”

then press the RETURN key.

You will see the word HELLO appear on the screen. PRINT is
the first word of the BASIC language you have learned. It tells
the computer to write onto the screen whatever appears after
the word PRINT. You will find that you can write any message
you like.

PRINT “TOMORROW IS TUESDAY”

will print the words between the quotation marks in the same
way. Notice the quotation marks. If you leave them out you will
get an error message which means that the computer did not
know what to do.

16 Why a Program?

The most important thing to be remembered from this chapter
is that the computer doesn’t bite if it doesn’t like you. You can do
what you like, apart from physical abuse, and it just keeps
replying with error messages which are it’s way of trying to
help. You may be quite extraordinarly unlucky and type
something it understands which causes it to do something
which at present is not particularly sensible (similar to the
washing machine leaving the inlet valve open even though it’s
full of water). If this happens and, for example, the keyboard
ceases to have any effect, you can always unplug it and start
again from scratch - the computer won’t mind, it’s much more
patient than you.

2
Lining Up Numbers

“I've got a little list,
And they’d none of them be missed. ’’

W. S. Gilbert - “The Mikado”

Chapter one introduced the idea that a computer is a machine
for processing numbers and text. It is an extreme example of a
product which is made without any decision having been
made about what it is to be used for. This is called ‘deferred
design’. The washing machine contains programs of
instructions for all the different sorts of washing you might
want to do but you can put your own programs into your
computer so that the same computer can, for example, play
chess or keep accounts for a business. What it does depends
on the program of instructions you put into it.

DOING SUMS

So far we have used one word of the BASIC language in which
these instructions are written. It was the word PRINT and it
tells the computer to put things on the TV screen. Before trying
to store programs it will be useful to find out more about
PRINT. Use your keyboard to set this on the screen.

PRINT 5+9

When you press the RETURN key after the 9 you will see 14 on
the screen. This is the result of adding the 5 and the 9 together.

18 Lining Up Numbers

The computer worked this out in the instant between your
pressing the RETURN key and the 14’s appearance on the
screen but you certainly didn’t notice any delay. You will find
that the computer is equally rapid if you do

PRINT 1234+9876

This is another use of the instruction PRINT. It tells the
computer to work out whatever it finds to the right of the word
PRINT and put the answer on the screen. Of course if what it
finds on the right of the PRINT does not contain any arithmetic
the answer will be what it found, as in

PRINT 7

or

PRINT “CHRISTMAS”

As well as adding you can subtract. Try

PRINT 13—8

and

PRINT 5476—345

Your keyboard will not have a normal multiplication sign
because of the possibility of confusion with the letter X so the
★ is used instead.

PRINT 7*6

will, as you would expect, print the answer 42.

For division the sign / is used so that

PRINT 200/5

Lining Up Numbers 19

will give the answer 40.

If you have had trouble in making the above examples work
there are several possible reasons. One is confusion between
the letter capital O and the number zero 0. If you type

PRINT 403*17

when you mean

PRINT 403*17

then the computer will not understand you.

Notice that long numbers where you might usually use a
comma to group the figures into threes must be typed without
the commas. If you want to give the number ‘two hundred and
fifty thousand’ to the computer then you must type

250000

not

250,000

THINGS TO DO

I suggest that you use PRINT to work out as many arithmetical
answers as you have time for in the way I have shown you. It
will get you familiar with the keyboard and used to the way
your machine behaves when you make the inevitable
mistakes. Some suggestions follow.

(1) Work out the number of hours in a week. (Don’t forget that
the times sign is a *.)

(2) How far have you driven if the mileage recorder of your car
goes from 47,563 to 56,102 in a year? (Don’t forget to leave out
the commas.)

20 Lining Up Numbers

(3) One inch is 2.54 centimetres so to change a metre, which is
100 centimetres, to inches you have to divide 100 by 2.54
(Don’t forget that the divide sign is / and take care not to mix up
the 0, zero, with the capital letter O.)
(4) Find the average age of a group of old age pensioners
whose ages are; 67,73,81 and 69. To do this you will have to
add these numbers together and divide the result by 4. One
way to do this would be to use

PRINT 67+73+81+69

making a note of the answer, which is 290, and then use

PRINT 290/4

but it would be better to do it all in one so like this.

PRINT (67+73+81+69)74

The brackets force the computer to do the arithmetic in the
brackets first.

If you did

PRINT 67+73+81+69/4

then it would divide 69 by 4 first and add the answer onto the
other three numbers, which is not what we wanted.

(5) To change a temperature in Fahrenheit to the same
temperature expressed in Centigrade you take away 32 then
multiply the result by 5 and divide by 9. Change 98 degrees
Fahrenheit to Centigrade. You will have to use brackets to
make the computer do the subtraction before it does the
multiplication.

The answer should be 36.6666

Lining Up Numbers 21

A PROGRAM

So far we have used the computer just like a calculator. You
told it what to do and the answer appeared straight away. The
whole point of a program is that you store instructions inside
the computer and then get it to follow the instructions later.

Type this

10 PRINT “SUNDAY”

When you press RETURN the instruction will not be obeyed.
You will not see SUNDAY on the screen as you would from

PRINT “SUNDAY”

The reason for the difference is the 10. This is called a line
number. When you type a bit of BASIC with a line number in
front the computer remembers it but does not obey it. You can
show that it has remembered by typing

LIST

followed as usual by the RETURN key.

This is your second word of BASIC and it tells the computer to
make a LIST of your program on the screen. In this case the
program contains only one instruction so the list is quite short
but you can easily add some more by typing

rw20 PRINT “MONDAY’
30 PRINT “TUESDAY’rjj

Now when you type

LIST

you will see all three lines on the screen.

22 Lining Up Numbers

People using Sinclair machines may be surprised at all this
mention of LIST because these computers work in an unusual
way. In most computers LIST is the only way to find out what
program has been stored in the computer but the Sinclair
version of BASIC automatically shows a list of some or all of
your program every time you type a new line. LIST is still
available though and you will need it when you write longer
programs.

I am assuming that you have typed the three lines numbered
10, 20 and 30 as shown above and made sure, with LIST if
necessary, that they are safely stored inside the computer.

What we need now is a way to tell the computer to obey the
instructions of the program. The word for this is RUN.

If you now type

RUN

followed by the usual RETURN you will see on the screen

SUNDAY
MONDAY
TUESDAY

Typing RUN so as to make the machine follow the instructions
of a program is called ‘running a program’ and when the
machine is obeying instructions of a program it is said to be
‘running’. You might like to extend the program to make it print
the other four days of the week as well.

LINE NUMBERS

You may have wondered why I chose to number the lines 10,
20 and 30 rather than 1, 2 and 3. Going up in in tens is usual
because very often one needs to insert another line between
two existing lines and this would be impossible if we needed to
use a number between 1 and 2 as line numbers have to be

Lining Up Numbers 23

whole numbers. However, you could use any number from 11
to 19 to set an extra line between line 10 and line 20.

Suppose you had stored these lines in the computer, as shown
by LIST

10 PRINT “JANUARY”
20 PRINT “MARCHI”

If you were now to type a new line

15 PRINT “FEBRUARY”

then typing LIST would show

10 PRINT “JANUARY
15 PRINT “FEBRUARY’
20 PRINT “MARCH

rjj

'99

I”

You will notice that the computer is intelligent enough to
arrange the lines inside itself in order of the line numbers
regardless of the order in which they were typed. When you
run the program it follows the order of the line numbers so that
it does the lowest numbered line first and the highest
numbered last. (Unless you want something different-this will
be explained later.).

You will find that sometimes you wish to remove a line from the
stored program, either because you have changed your mind
about what you want the program to do or because it contains
a mistake. Suppose your program contained a line like this

120 PRINT “DECMBER”

then if you typed

120

24 Lining Up Numbers

and pressed RETURN immediately, then you would find, by
using LIST, that line 120 was no longer in the program.

You are more likely to want to replace the line with the correct
one, however, and you could do so by typing a new line with
the same number.

120 PRINT “DECEMBER”

would replace the existing line 120 with the new version.

If you wish to remove a complete program from your
computer then one possibility would be to remove the lines
one at a time by the method above but there is a BASIC word,
NEW, which has the desired effect all at once. I should use it
cautiously if I were you because it is surprising how often you
change your mind.

We have now covered four words of BASIC, PRINT, LIST,
RUN and NEW. As I said earlier they are everyday English
words which have a precise meaning. They will soon become
very familiar.

EXPERIMENTING WITH PROGRAMS

You have now learned how to store, amend and delete
programs from your computer and how to make it follow the
instructions of a program. It will be a good idea to practise by
writing programs to put on the screen, for example, the days of
the week and months of the year as suggested above. You
could also write programs to list the names of the members of
your family and friends. This is not particularly ambitious as
programs go but will develop your facility at entering, editing
and running programs.

3
Variable Things

"O Woman! in our hours of ease,
Uncertain, coy, and hard to piease.

And variabie as the shade
By the quivering aspen made;"

- Scott, “Marmion”.

MEMORY

We have seen how a computer is a machine which follows
instructions stored inside itself and you have learned how to
store and edit these instructions. Obviously the computer
must contain something which could be described as
‘memory’ otherwise it would not be able to remember the lines
of program you typed. You will have seen the abbreviation
‘RAM’ mentioned when computers are described as having for
example ‘48K RAM’. It stands for ‘RANDOM ACCESS
MEMORY’ and the number gives an indication of how large a
program the computer has room for.

This memory has another purpose however. It is used for
storing words and numbers while the computer is working on
them. Storing words will be covered later but we will now deal
with how numbers are stored.

You can imagine that the inside of your computer contains a
large number of pigeonholes each with a label. Each
pigeonhole has room for exactly one number to be put into it
and there are BASIC instructions for putting a number in and
looking at the number put in previously. For labels we use the
letters of the alphabet and sometimes longer names. This
makes some of BASIC look rather like an algebra textbook

26 Variable Things

which most people, (understandably you may well think), find
rather off putting, so I will resist my inclination to use letters
like X, Y and Z as all the alphabet is available. There is some
slight similarity to the concept of using letters in algebra but
you need no mathematical knowledge beyond what is needed
to cope with everyday life to understand what follows. It is a
historical accident as much as anything that has put the idea
into the public mind that computers are something to do with
mathematics and that you need to be a mathematician to use
them. It’s just not true.

LET

Type this

LET H=12

remembering to press RETURN as usual.

The word LET is the BASIC instruction which is used to put a
number into a pigeonhole. In this case it has been used to put
the number 12 into the pigeonhole labelled H. You can show
that it is in there by typing

PRINT H

When you press RETURN you will see the number 12 on the
screen. PRINT H does not mean “print the letter H”, but “print
the number in the pigeonhole labelled H”. This is the reason
for the quotation marks in the previous chapter. If you want the
computer to print the letter H you would have to use

PRINT “H”

rather than

PRINT H

Variable Things 27

This can be a little confusing at first so please make sure you
see the difference. The H in the second case is the label on a
pigeonhole, in this case a pigeonhole with 12 in it, whereas in
the first case the computer doesn’t need to care about the
meaning of what it finds between the quotation marks - it only
has to print what it finds there.

VARIABLES

To avoid using the word ‘pigeonhole’ all the time it is usual to
use ‘variable’ as the name for them and to call the labels
‘variable narnes’. This is appropriate, as you will find later,
because the reason they are useful is that the number stored in
a variable can vary as your program runs.

You saw in chapter 2 how to use PRINT to make the computer
do arithmetic as in

PRINT 7*12

You can do exactly the same things with the numbers stored in
variables as you can with numbers typed on the keyboard. You
just have to mention the name of the variable instead of a
number. If you have put the number 12 into H by using LET as
described above then

PRINT 7*H

will tell you exactly the same answer. 7*H means ‘seven times
the number in H’. You will be able to predict the outcome of
typing

PRINT 9*H
PRINT 17—H

and

PRINT H*H

28 Variable Things

If you try

PRINT H*H*H*H*H

then the computer will work it out more quickly than you could
yourself. (It’s 248832.)

A PROGRAM

Suppose] petrol costs £1.84 per gallon. The program that
follows tells you the cost of a list of numbers of gallons. It is not
a very ambitious program but it shows the idea.

10LETC=1.84
20 PRINT C
30 PRINT 2*C
40 PRINT 3*C
50 PRINT 4*C
60 PRINT 5*C
70 PRINT 6*C

When you type RUN after entering the program and using
LIST if necessary to check that it is correct the computer puts
the cost of each number of gallons from 1 to 6 on the screen. If
you had a printer the list could be given to the pump attendant
in a (very primitive) garage. The advantage of putting the
variable name C into the program in lines 20 to 70 rather than
the number 1.84 is not only that it is easier to type. If you
wanted a list for two star petrol instead of four star it would only
be necessary to change one line, line 10, to

10LETC=1.79

and when you used RUN again you would get the correct
prices. Because C is a variable the number in C can be
changed to make the same program do a different job.

Variable Things 29

Variables are important because they allow the possibility of
writing programs in such a way that they can be used to work
on different numbers each time they are used. A program
which prints pay slips has to use different numbers, obtained
from clock cards and tax tables, for each employee. If the
program worked on fixed numbers it would be almost useless.

Most people buy petrol by value rather than by volume so that
what you need to know is how many litres you can get for £1,
£2, £3 and so on. You might like to write a program to find these
numbers. It would have to start with a line to put the price of
one litre into a variable, say P for price, using LET. The lines
following would divide each amount of money by the number
in this variable. It will be necessary to use 100,200,300 and so
on for the amounts of money since you will want to put the
price of a litre in pence. Don’t forget that the sign for divide is /
and remember the possibility of confusion between the capital
O and the 0.

INPUT

The instruction LET as used so far always puts the same
number into a variable. It would be preferable to tell the
computer what number we wanted used while a program is
running because then we would not need to change a line of
program to make the program work on a different number.
The BASIC word for giving a number to a running program is
INPUT. Type this program. Remember first to type NEW to
clear the memory of previous programs.

10 INPUT N
20 PRINT 16*N

Check with LIST that this is the program in your computer.

The purpose of the program is to calculate the total cost of any
number of 16p stamps. The INPUT works like this. When you
type RUN the computer as usual obeys the instructions in

30 Variable Things

order of the line numbers until it gets to the INPUT. Then it
stops and waits for the user to type. Most computers put a
question mark on the screen to show that the program is
waiting for you to type something. When RETURN is pressed
the computer puts the number typed into the variable
mentioned in the INPUT instruction, in this example N, which
is being used to hold the number of stamps, and continues
with the next line of the program.

Type RUN and you will be able to find for example that 5
sixteen pence stamps cost 80p. You will have to type RUN
again for a second go when you might find that 137 stamps
cost 2192p. Obviously it would be a good idea to change line
20 to

20 PRINT 16*N/100

so that the answer comes in pounds and pence.

When INPUT is used the computer has as usual to be ready to
deal with errors. What if you typed something that wasn’t a
recognisable number? There are lots of possibilities. You
might type ‘TUESDAY’ or ‘SEVEN’ or ‘4.3.67’ or you might just
press return without pressing any other key first. The last case
might be assumed by the computer to be 0 but the others
require it to take some sensible action. Some BASICS ask the
user to try again by putting a message like ‘?REDO FROM
START on the screen and waiting for another attempt. In
others the return key refuses to take effect and you can use the
RUB OUT key to correct your number. Eventually you can
press return on a valid number and it will be used.

Almost all versions of BASIC have an improvement on the
INPUT instruction which enables the program to tell the user
what he or she is expected to type. This is done by putting
some words in quotation marks after the word INPUT and
followed by a semi-colon. The following program asks you the
length, width and price per square metre of a rectangular
carpet and tells you what it will cost.

Variable Things 31

10 INPUT “LENGTH”;L
20 INPUT “WIDTH”;W
30 INPUT “PRICE PER SQ. M.”;P
40 PRINT L*W*P

When you RUN this program you will see the advantage of
using INPUT in this way. When the computer wants you to
type the length the word LENGTH appears on the screen so
you know what is expected. You are then asked for the width
and price of one square metre by lines 20 and 30. Line 40
multiplies the length by the width to get the area and multiplies
the result by the price of a square metre so it can print the price
of the whole carpet.

You will no doubt be able to think of a number of ways to use
programs similar to the one above. The idea can be applied to
such calculations as those required for gas and electricity bills,
rates and income tax.

This chapter has introduced some very simple but extremely
powerful ideas. The concept of a variable and of telling your
computer numbers while it is running a program open a whole
range of possibilities which may well not have occurred to you.
People familiar with computers tend to treat these elementary
notions as if they were obvious when talking to the newcomer
to computing which is a possible explanation of the glassy­
eyed bewilderment that an explanation of even the simplest
program often elicits. I would strongly advise that you re-read
the first three chapters and practise the examples thoroughly
before moving on. It is much easier to understand new ideas if
the foundations are thoroughly understood.

4
Dots and Dashes

“Printing has destroyed education"

Disraeli - "Lothair”

This chapter does not introduce any important new aspects of
BASIC. Of necessity it has been impossible to tie up all the
loose ends in the story so far. We will attempt to answer a few
questions that may have occured to you and show some
refinements.

COMMAS

The PRINT instruction is probably the most used word in
BASIC because the object of a program is to set the computer
to show the user some results. Up to this point we have used it
to print only one item for each PRINT

PRINT “HELLO
PRINT 19*21

I”

and

PRINT X

all PRINT only the one object mentioned after the word
PRINT.

All versions of BASIC allow you to PRINT more than one item
by putting a comma between the items. The table of petrol

Dots and Dashes 33

prices could have been improved by getting the computer to
put the number of gallons and price on the same line as in

PRINT 3,3*C

The effect of the comma is to cause the second item, the
number 3*C, to be printed several spaces to the right of the
first item, the number 3. This works if the item is a word in
quotation marks as well so that

PRINT “THREE”, 3*C

would cause the word THREE to be put on the left and the
cost of the three gallons on the right of it.

In the same way one could make both items to be printed
words in quotation marks. If you wanted headlines for the
columns of the table the first thing to do would be to PRINT the
words GALLONS and PRICE. You could use a line like this to
do it.

PRINT “GALLONS”, “PRICE'

The result of including these improvements would be a
program like this.

10 INPUT “COST OF A GALLON PLEASE”;C
20 PRINT “GALLONS”, “PRICE'
30 PRINT “ONE”,C
40 PRINT “TW0”,2*C
50 PRINT “THREE”,3*C
60 PRINT “FOUR”,4*C

and so on.

You will find if you run a program on these lines that the
commas have the effect of putting the things PRINTed by
each line neatly under each other to make columns. The

34 Dots and Dashes

precise effect of a comma varies in the different versions of
BASIC but the most usual effect is to move the point at which
printing will next be done fourteen positions across. If you
have used a typewriter with the ability to set tabs you will
recognise the system. On such a typewriter you can press the
tabulator key and the carriage jumps so that the next item
typed will be in a pre-set column. Putting a comma into a
PRINT line is like asking the computer to press its tab key
when it gets to the comma. It is difficult to be precise about this
because computers are very different in the number of letters
on each line so that in some cases there are only two tab
positions and thus two columns but you may have as many as
five.

You might like to try the effect of a line like

PRINT “TOM”,“DICK”,“HARRY”

to see what happens.

SEMI-COLONS

Sometimes you need to PRINT items next to each other rather
than spaced out as they would be if you use a comma in the
PRINT instruction. This is done as follows.

PRINT “COST IS ”;6*C

This line would cause the number worked out by doing 6 times
the number in the variable C to be printed after a space after
the IS. I put a space between the S of IS and the closing
quotation marks so as to make sure the number didn’t start
straight after the S which looks a bit untidy.

BLANKS

If you want to PRINT a blank line to separate two lines printed

Dots and Dashes 35

on the screen then it can be done by using a PRINT with
nothing following it. If a program contained lines like these

r«10 PRINT “PETROL PRICE TABLE’
20 PRINT
30 PRINT “GALLONS’’,“COSr

then a blank line would appear on the screen between the
words PRINTed by lines 10 and 30.

VERY LARGE NUMBERS

Inside a computer a fixed amount of memory is used for each
number whether the number is small, say 0, or large, like a
million. This means that there is a largest number your
computer is capable of using. This limitation is not likely to be
a problem however since the size of it will be about

170,000,000,000,000,000,000,000,000,000,000,000,000

that is 17 followed by thirty-six 0’s.

If the computer has to PRINT a large number the space taken
up by printing it in this form would be very large and such
numbers are very hard to read so a different system is used.
Try this

DDiMT oaoiiaaa^ûiMiaaaa

The result written in the normal way would be

81000000000000

but the result shown on the screen will be

8.1E13

36 Dots and Dashes

The 13 in this system tells you how far the computer has put
the decimal point from where it ought to be. In this case it has
put a point between the 8 and the 1 and it has to be moved 13
places to the right.

In the same way

8.1E-13

would be PRINTed instead of

0.00000000000081

Most people are unlikely to use such large or small numbers
but you may well see them if you make mistakes.

VARIABLE NAMES

All versions of BASIC allow you to use the letters of the
alphabet as the names of variables. I n the last chapter we used
H, C and P but could have used any of the other letters. Almost
all versions let you use longer names as well. You will recall
that a variable name is just the label on a pigeonhole for
putting a number in. When a program is running a new
pigeonhole is created each time a new variable name is
encountered in the program so it is not too difficult for the
designers of BASIC to make longer names possible. Thus
instead of using C to store the cost of a gallon of petrol we
could have used COST or even COSTOFAGALLON (you
can’t put spaces in). This is supposed to make programs easier
to understand but I have found that it causes trouble because
people learning BASIC forget which words are part of BASIC,
like LET, PRINT and LIST, and which are variable names
invented by the programmer. You will almost certainly be
advised to use long names by your machine’s manual but I will
use single letters throughout this book.

Dots and Dashes 37

POWERS

There is another arithmetic operation as well as addition,
subtraction, multiplication and division. It is called ‘raising to a
power’. The sign for this is *. If you use the line

PRINT 2*5

the result will be 32 because

2*2*2*2*2

is five twos multiplied together

This will be of use to some readers but if you are not familiar
with the idea you won’t need to worry about it again.

BINARY NUMBERS

You may have been intimidated by clever eleven year olds who
have been taught things like.

1001 +11100 = 100101

This sort of thing has been introduced by maths teachers
because it is ‘relevant to computers’. They are right in a way
because inside the computer everything is done by 1 ’s and 0’s
rather than the ordinary digits 0,1,2,3... 9. However the reason
for inventing such languages as BASIC was to avoid the need
for messing about with how the machine actually works. A
driving instructor who started his first lesson with the details of
the carburettor or the geometry of the Ackerman steering
principle would not help you to drive the car from one place to
another and this situation is similar. Using BASIC avoids the
complications and lets you drive the machine.

5
Lets and Loops

“To business that we love we rise betime, And go to
‘t with delight"

Shakespeare -"Anthony and Cleopatra"

MORE ON LET

When the LET instruction was introduced we used it to put a
number into a variable, as in

LET H=12

or

LET A=1

The effect of these instructions, you will remember, is to put
the number on the right of the equals sign into the pigeonhole,
or variable, whose name appears on the left of it. The LET
instruction is in fact more versatile than this and it is now time
to show you how much more it can do. It is difficult, at this
stage, to demonstrate practical examples because other parts
of BASIC are needed as well but if you are prepared to take
this on trust you will find that it helps later.

Firstly you can put on the right of the equals sign anything that
the computer can work out. This means that possible program
lines containing the LET instruction include

330 LET H=24*7*52

Lets and Loops 39

or

100 LET T=(98.4-32)*5/9

or

227 LET A={10000/35)*1.84

I have put a line number in front of these instructions because
you are not likely to want to use LET in this way except as part
of a program. You may have guessed what these LET’S were
intended to do. The line 330 works out the number of hours in
a year putting the number into H. Line 100 was to change 98.4
degrees Fahrenheit, blood temperature, to Centigrade, and
put the resulting number into T. The line numbered 227
calculated the cost of petrol for 10000 miles driving at 35 miles
per gallon if a gallon of petrol costs £1.84.1 have used brackets
to make the computer do the sums in the right order where
there is more than one arithmetical operation in a line. Of
course it would have been equally possible to put each of the
expressions on the right of a PRINT as in

227 PRINT (10000/35)*1.84

but this would result in the number appearing on the screen. If
you use a LET then the number gets put into a variable instead.
You will see later why this might be a useful thing to do.

It is also possible for LET to use the number in a variable as
one of the numbers for its arithmetic, as well as numbers typed
into the line. A program might contain lines like

500 LET D=P>1.47

or

230 LET C=(F-32)*5/8

40 Lets and Loops

The first of these multiples the number in P by 1.47 and puts
the result into D. The number in P is left unchanged but D will
contain a new number. If we had arranged for P to contain a
number of pounds and the exchange rate was 1.47 dollars for
each pound then D will contain the number of dollars you can
get for that number of pounds. The second example converts
any temperature from Fahrenheit to Centigrade. If we put a
number like 98.4 where the F is then the line would only
convert this one temperature but by using the variable F one
can put the desired number into F beforehand and use this line
to change it to Centigrade.

So far we have shown how to put a completely new number
into the variable on the left of the equals sign but the final use
of LET is slightly different. Consider this line

70 LET N=N+1

The letter N appears on both sides of the equals sign. What
happens when this line is RUN is that the number in N gets
bigger by one. The right hand side tells the computer to add
one onto the number in N and the left tells it where to put the
answer - in this case into N, so the effect of the line is to
increase N by one. You would need to do this if the computer
was counting things. If the number in N increases by one every
time something happens then provided N started off
containing 0 it will contain the number of times the event has
occured.

In the same way programs often contain lines like

190 LET C=C—1

or

430 LET P=P*2

Lets and Loops 41

The first of these reduces the number in C by one while the
second doubles the number in P.

I hope you have been able to take in all this information about
LET without too much trouble. These ideas will be repeated
continually in the rest of the book so there will be plenty of
revision but you will find it easier to move on if you are quite
sure of it now.

PAYING THE RATES

A program follows which uses the LET Instruction to do some
calculations concerning rates. Most readers will know that
every property has a number called the “rateable value” which
is fixed by the valuation officer and which is used to work out
how much should be paid on that property. Every year the
local councils decide on a sum of money called “the rate”
expressed as a number of pence per pound of rateable value.
To find out what you have to pay you multiply the rateable
value of the house by the rate. It is possible to pay either in two
six-monthly instalments or to pay ten instalments at monthly
intervals. The program asks for the two numbers needed to
work out this year’s rates then asks how many instalments you
are going to pay and tells you how much they will be. Here is
the program.

10 PRINT “PROGRAM TO CALCULATE RATES’
20 INPUT “RATABLE VALUE IN POUNDS”;V
30 INPUT “THIS YEAR’S RATE IN PENCE’’;P
40 LET M=V*P/100
50 INPUT “HOW MANY PAYMENTS’’;N
60 LET l=M/N
70 PRINT
80 PRINT “RATES THIS YEAR ARE: "¡M
90 PRINT “PAYABLE BY ”;N;“ PAYMENTS’
100 PRINT “OF ”;l

>n

>99

42 Lets and Loops

I have used V for the rateable value and P for the rate in pence.
In line 30 these are multiplied and the result divided by 100 to
change it from pence to pounds. The number of instalments is
put into N by line 50 so that the rates payable, in M, can be
divided by this number to give the size of each payment. You
will notice that I have used a blank PRINT to get a blank line
and have included words to show what the numbers PRINTed
mean. The semi-colons are to make the numbers come next to
the words when they appear on the screen. You may wish,
when you have RUN the program, to improve the appearance
of the way it gives its results by changing the form of the
PRINT instructions in lines 90 and 100.

LOOPS

Every program so far has done one job once only. You may
well have felt that a sledgehammer approach has been used to
crack a rather insubstantial nut in almost every case and I
would have to agree. The reason is simple. One almost never
writes programs with the intention of using them only once.
The whole power of computers lies in their ability to repeat the
same task frequently, rapidly and automatically. Now that you
are familiar with the notion of a variable and the use of the LET
instruction you are in a position to appreciate how this can be
done. One more BASIC word will be needed. The word is
GOTO.

I mentioned earlier that when you RUN a program it obeys the
instructions in order of the line numbers unless you want
something different. The instruction GOTO is one of the ways
to change the order of working. Consider this program (but
don’t RUN it yet).

10 PRINT “PHOENIX PUBLISHING ASSOCIATES”
20 GOTO 10

The word GOTO in line 20 is followed by a line number, here
the line number 10. The GOTO does nothing except tell the

Lets and Loops 43

computer what to do next. The effect of this is that after
printing the words in line 10 the computer gets to line 20 which
sends it back to line 10 again. Obviously this cycle will be
repeated indefinitely unless something interrupts it. Now you
can change the PRINT instruction to your own name and
watch the screen fill up

What actually happens when you RUN such a program
depends, I’m afraid, on which computer you are using. There
are two main possibilities. One is that when the screen fills the
printing on the top line vanishes off the top, all the rest of the
screen moves up a line, and the next line to be PRINTed goes
into the blank line thus created at the bottom. This is called
‘scrolling’. Since each line printed consists of the same words
you see a flickering effect. In other cases the program stops
running when the screen is full giving you a chance to read
what is on the screen. When satisfied you can press any key
and printing will continue till you have had another screenful.
Some machines have a key which can be pressed to change
between the two systems.

In either case there is certain to be a way to interrupt the
program so you can do something else. It may be marked
ESC, for ‘escape’ or possibly BRK or BREAK. Also fairly
common is ‘control C’. This means pressing the C key while
holding down the CONTROL key. You will undoubtedly have
this information available in the manual supplied with your
machine somewhere. I am sorry to have to resort to this advice
but there is a sad lack of standardisation. If all else failed you
could unplug the computerand start again but if you fell back
on this you would of course lose your program.

The word ‘loop’ means a piece of program with a backward
jump at the end causing the piece of program to be repeated
when it is RUN. A ‘jump’ here means an instruction which
changes the order in which instructions are obeyed. You now
know one jump instruction, GOTO.

44 Lets and Loops

Here is another program with a loop.

10 LET N=1
20 LET V=11
30 PRINT N;“ TIMES ELEVEN MAKES ”;V
40 LET N=N+1
50LETV=V+11
60 GOTO 30

As you might have realised by looking at line 30 the program
PRINTS an eleven times table. The first time it gets to line 30
the number in N is one and the number in V is eleven so it tells
you that

1 TIMES ELEVEN MAKES 11

Lines 40 and 50 increase the number in N by one and the
number in V by eleven. So when the GOTO in line 60 sends the
computer back to line 30 you will see

2 TIMES ELEVEN MAKES 22

This cycle will be repeated indefinitely until it stops because
you interrupt by pressing a key, or on some machines, till the
screen is full.

Your petrol program should now look like this.

PRICE OF PETROL

This program will tell you how many litres of petrol at 40.5p
you can get for each number of pounds.

10 LET P=40.5
20 PRINT 100/P
30 PRINT 200/P
40 PRINT 300/P
50 PRINT 400/P

Lets and Loops 45

60 PRINT 500/P
70 PRINT 600/P
80 PRINT 700/P

and so on.

The improved petrol price table can be produced like this.

10 INPUT “PRICE OF ONE GALLON”;P
20 LET C=P
30 PRINT N;“ GALLONS COST ”;C
40 LET N=N+1
50 LET C=C+P
60 GOTO 30

If you choose a variable to contain the number of gallons and
another to contain their cost you can write a program using
the pattern of the one above to tell you the cost of each
number of gallons. Similar possibilities will occur to you.

6
Fors and Nexts

“Birds in their little nests agree
With Chinamen but not with me."

Belloc - “On Food"

The parts of BASIC covered so far have, I hope, been easy to
understand if you have studied the examples carefully. By now
you will be familiar with your keyboard and will have become
used to setting up the computer and how it behaves. You will
have lost the initial fear of the computer which makes so many
people act as if they were trying to learn lion-taming or hang­
gliding and will be treating your computer with something like
the attitude you show to the vacuum cleaner or TV set. You
may perhaps have been disappointed by the rather limited
scope of the uses to which your computer has so far been put.
I’m afraid that this is unavoidable. The advanced features of
BASIC, which make impressive programs possible, depend
on the elementary parts.

So far we have learned the use of the BASIC instructions
PRINT, INPUT, LET and GOTO. Each of these words has its
own rules in the grammar of BASIC. PRINT has to be followed
by something printable and can either be typed after a line
number so that it is part of a program or without a line number
so it is obeyed at once. INPUT on the other hand has to be part
of a program and must be followed by a variable name. LET is
more complicated because it needs a variable name then an
equals sign then something to be worked out. GOTO only
needs a line number after it.

Fors and Nexts 47

FOR AND NEXT

The next BASIC words are more powerful and therefore need
more explanation of the rules for their use. Unlike all the other
words so far they must both be present in a program. If you
use FOR in a program there has to be a NEXT later. If this is not
the case then either the computer will not behave as you
expected or it will give you a ‘mistake’ message when you RUN
your program - in just the same way as using a left hand
bracket, (, forces you to use a right hand bracket,), later.

The purpose of using FOR and NEXT is to cause the part of the
program between them to be repeated a number of times
when the program is RUN. Here is an example.

10 FOR N=1 TO 10
20 PRINT “WE ARE DOOMED”
30 NEXT N

This very short program causes the PRINT instruction in line
20 to be obeyed ten times so that you see the words enclosed
by the quotation marks on the screen ten times. You will notice
that the variable name N is mentioned after the word FOR in
line 10 and after the word NEXT in line 30. Any variable name
could have been used but it has to be the same one both times.

The part of line 10 after the equals sign controls how often the
part of the program between the FOR and the NEXT will be
used. Here the equals sign is followed by ‘1 TO 10’ which, as
you would expect, means ten times. If you replaced line 10
with

10 FOR N=1 TO 5

then the words would be printed five times.

48 Fors and Next

In the example shown the part of the program repeated, line 20,
had the same effect every time it was used, you saw “WE ARE
DOOMED” every time. It is much more useful to make the
repeated part do something slightly different each time by
mentioning the variable in the FOR and the NEXT in it. To
make this clear try this program.

10 FOR N=1 TO 10
20 PRINT N
30 NEXT N

Lines 10 and 30 are the same as before so they cause line 20 to
be used ten times but this time line 20 PRINTS the number in
N. The way a FOR — NEXT loop works is to increase the
number in the control variable, in this case N, each time the
computer gets to the NEXT. This means that the first time line
20 is obeyed the number in N is 1, the next time it is 2, the next
time 3 and so on until it reaches 10. This explains why the
numbers 1,2,3 ... 10 were PRINTed by the program.

We have, up to this point, used a control variable which started
at one. There is no particular reason for this. Try

10 FOR A=10 TO 20
20 PRINT A,5*A
30 NEXT A

The numbers printed by this program are the number in A and
five times that number. Line 10 causes this number to run from
ten to twenty. Five times the number will be 50,55,60,65 and
so on up to 100. The program prints a five times table. Notice
that there are eleven lines printed, not ten. ‘10 TO 20’ includes
both these numbers so there are eleven of them.

This should enable you to understand the following program
which once again prints our petrol price table.

10 PRINT “PETROL PRICE TABLE”
20 PRINT

Fors and Nexts 49

30 PRINT “GALLONS”, “COST’
40 FOR G=1 TO 20
50 PRINT G,G*1.84
60 NEXT G

I have made the program print the cost of each number of
gallons from one to twenty. You might like to make it print a
table for petrol at any price rather than just using £1.84 every
time. You would need to start with an INPUT to ask the user for
the price of one gallon.

The numbers in the FOR instruction which tell the computer
the bottom and top numbers for the control variable can
themselves be variables. Below is a version of the program
which asks the user, when the program is RUN, to type how
many gallons the table is to go up to.

10 INPUT “HIGHEST NUMBER OF GALLONS”;H
20 FOR G=1 TO H
30 PRINT G,G*1.84
40 NEXT G

Line 10 asks for the top number of gallons and puts it in H. In
line 20 the FOR contains H as the highest number to use so
you can make the program print whatever number of lines you
like.

I expect you will be able to predict the results from the next
program before you RUN it.

10 INPUT “FIRST NUMBER”;F
20 FOR N=F TO F+10
30 PRINT F,F*F
40 NEXT N

It illustrates the fact that you can use F+10 as the top limit for
the number in N in the loop controlled by the FOR instruction.

50 Fors and Nexts

This program always prints eleven lines on the screen each
line containing a number and the result of multiplying the
number by itself. RUN it several times using different answers
to the FIRST NUMBER question to convince yourself that you
understand what is happening. In fact, you could put anything
the computer could work out as the limits, though you may not
yet see a reason for wanting to.

STEP

The FOR — NEXT system for making loops is even more
versatile when you know about an optional extra which can be
included. To make a table to convert the Fahrenheit
temperatures in a recipe book to the Centigrade ones on the
dial of the oven one might use a program like this.

10 FOR F=200 TO 800
20 LET C=(F—32)*5/9
30 PRINT F,C
40 NEXT F

If you use this program it tries to PRINT 601 temperatures, first
200 degrees then 201 degrees and so on up to 800. For
cooking you would be quite happy with a table going up in
steps of 50 rather than 1 and you could get it like this.

10 FOR F=200 TO 800 STEP 50
20 LET C=(F—32)*5/9
30 PRINT F,C
40 NEXT F

Only one alteration has been made, the addition of STEP 50
after the 800 in line 10. This causes the number in F to increase
not by one as it normally would but by 50 so that the numbers
used will be 200, 250, 300 and so on, which is much more
useful.

Fors and Nexts 51

The step does not have to be a whole number. One might want
a table going up in steps of a half or any other fraction. The
following program makes a table for converting distances in
miles from one to ten to Kilometres but does it in steps of half a
mile. One mile is 1.8 Kilometres.

10 PRINT “MILES”,“KILOMETRES’
20 FOR M=1 TO 10 STEP 0.5
30 PRINT M,M*1.8
40 NEXT M

You could use the same approach to make a table for
converting Kilometres to miles. One Kilometre is 0.625 miles.
Try the effect of using different steps. You could get the
program to ask you the top and bottom limits and the step to
be used first, the limits and the step would have to be variables.

Sometimes we need the control variable to decrease rather
than increase. This can be done by making the step a negative
number.

The program

10 FOR N=10 TO 1 STEP —1
20 PRINT N
30 NEXT N

prints the numbers ten to one in ‘rocket count down’ fashion.

The rest of this chapter will consist of examples of how what
you have learned may be used. Loops have applications which
may well not have occurred to you. I’m afraid some of them
may seem rather artificial but the ideas will be useful when you
incorporate them into larger programs.

A ‘NUMBER CRUNCHER’
All programs so far have apparently worked instantly. You type
RUN and as soon as you press RETURN you see at once what
the program does. The computer is fast but its operations are

52 Fors and Nexts

by no means instantaneous. Now that we know about loops
we can give the computer plenty to do so we will have to wait
for it to finish. Consider this program

10 LET S=0
20 FOR N=1 TO 50
30 LET S=S+N
40 NEXT N
50 PRINT S

The program works out the total of

1+2+3+4+5+, .+47+48+49+50

Line 30 was used to add the number in N onto the number in S
and this happened 50 times with N running from 1 to 50. Since
S started off at 0 it will contain the total after fifty additions. Run
the program using different numbers in place of the 50 to
familiarise yourself with how long things take. This idea of
adding by using a running total will be useful later.

DELAYS

It is sometimes necessary to make the computer wait for a
fixed length of time between using one part of a program and
the next. If you had printed some instructions on the screen
you would want to give the user time to read them before
moving on to the next part of the program. You can make the
computer wait by using a FOR — NEXT loop which does
nothing. Try this.

i”

10 PRINT “STARTING
20 FOR D=1 TO 100
30 NEXT D
40 PRINT “FINISHED

You will find that by using a different number from 100 in line
20 you can vary the length of the delay. You might find it

Fors and Nexts 53

necessary to use a number as big as 1000 to make the delay
suitable.

NESTED LOOPS

You can put one FOR — NEXT loop inside another. Suppose
you wanted to PRINT a word across the screen like this.

GORDON
GORDON

GORDON
GORDON

GORDON

Precisely how many will fit depends on the width of the screen
so I will use numbers that work with mine. You could do it like
this.

10 FOR L=1 TO 14
20 FOR S =1 TO L
30 PRINT “
40 NEXT S
50 PRINT “GORDON”
60 NEXT L

The FOR and NEXT in lines 10 and 60 make the computer
repeat lines 20 to 50 fourteen times. I have chosen the letter L
for the control variable and made it run from one to fourteen
because I wanted the program to print fourteen lines. Each line
has to start with a number of spaces and the number of spaces
has to increase for each successive line. These spaces are
printed by the FOR — NEXT in lines 20 and 40. You will notice
that you can PRINT blank spaces by putting them in quotation
marks. I have put a semi-colon after the spaces in the PRINT
because we wanted the next thing PRINTed to come
immediately afterwards on the screen rather than on the next
line as it otherwise would. To make sure we got more spaces

54 Fors and Nexts

on successive lines I made the control variable S run from 1 to
L. This has the desired effect because L is increasing for each
line. When the computer gets to line 50 the spaces have been
printed so we can print the name.

7
Ifs and Thens

"It is the stars,
The stars above us, govern our conditions”

Shakespeare - “King Lear”

Anyone who has played chess against a machine will recall
the uncanny feeling that the machine has a mind of its own,
especially when it starts to win. You can’t avoid the impression
that the computer is thinking just as another person would.
Programs which appear to think require the computer to make
decisions and behave differently according to circumstances.
Our programs up to this point have not used the decision
making ability of BASIC.

IF — THEN

You need to know about two more BASIC words, IF and
THEN. These are another pair which, like FOR and NEXT,
must both appear. You can’t have one without the other. Look
at this program line.

200 IF A=0 THEN GOTO 100

When the computer gets to this line one of two things will
happen. If the number in A is 0 then the next line to be used will
be line 100 and work will continue from there but if the number
in A is not 0 then the next line after line 200 will be used. The
computer’s next action has been determined by the number in
A.

56 Ifs and Thens

The equals sign in A=0 here has a different meaning from that
we have used so far. In

LET A=0

the equals sign tells the computer to put a number into A, but
in

IF A=0 THEN ...

the equals sign is asking the computer to compare the number
in A with 0. A=0 here is not an instruction to do something but
a condition which may or may not be true. The IF tells the
computer to work out whether it is true and the THEN tells it
what to do if it is.

Many programs use a ‘menu’ of the Chinese Restaurant
variety to ask the user what he or she wants to do - you make a
choice by numbers. A program might start like this.

IW

|W

10 PRINT “TEMPERATURE CONVERTER
20 PRINT “DO YOU WANT TO CONVERT:’
30 PRINT “ 1.FAHRENHEIT TO CENTIGRADE”
40 PRINT “ 2.CENTIGRADE TO FAHRENHEIT’
50 INPUT “NUMBER PLEASE”;C
60 IF C=1 THEN GOTO 100
70 IF C=2 THEN GOTO 200

At line 100 there would be a program to do the first job and at
line 200 a program to do the second.

When you write programs using IF in this way you have to take
care to think about what will happen if the condition is not true
as well as making sure the correct thing happens if it is. In the
example above you would have to think about what happens if
the user types a 3 as his answer to the NUMBER PLEASE?
question. Neither condition will be true in lines 60 and 70 so the
computer will obey the instruction in the next line after line 70.

Ifs and Thens 57

If this is line 100 the machine behaves just as if 1 had been
typed in answer to the question. Possibly the best thing to do
here is to assume that the 3 must be a mistake and give the
user another chance to make a choice. You could do this with
a line 80 which simply said

80 GOTO 20

This would mean that the question would be repeated until
either 1 or 2 were given as the answer. This results in the
following program. I suggest that you type it and RUN it.

10 PRINT “TEMPERATURE CONVERTER”
20 PRINT “DO YOU WANT TO CONVERT:’
30 PRINT “ 1.FAHRENHEIT TO CENTIGRADE”
40 PRINT “ 2.CENTIGRADE TO FAHRENHEIT’
50 INPUT “NUMBER PLEASE”;C
60 IF C=1 THEN GOTO 100
70 IF C=2 THEN GOTO 200
80 GOTO 20
100 INPUT “CENTIGRADE”;C
110 PRINT C;“ C =“;32+C*9/5;” F
120 GOTO 220
200 INPUT “FAHRENHEir’;F
210 PRINT F;“ F =“;(F—32)*5/9;” C’
220 END

l»

You will see a new BASIC word END in line 220. It was
necessary to prevent the computer from doing line 200 after
printing an answer in line 110 as it normally would. END tells
the computer to stop work on the program.

CONDITIONS

Other conditions exist as well as equals.

58 Ifs and Thens

means “is bigger than’
means “is less than’
> means “is not equal to’

On each side of these signs you have to put the numbers to be
compared. These may be actual numbers like the 0,1 and 2
mentioned above, variable names like the A or anything the
computer could work out. You could, if you wanted to, use a
condition like

IF2*B A+1 THEN...

After the THEN in these instructions the computer needs to be
told what to do if the condition is true. Up to now I have used
GOTO as the thing to be done but any instruction may be used
as in

IF N=B THEN LET N Ø

or

IF R<0 THEN PRINT “RATE OF INTEREST MUST BE
POSITIVE’

or

IF M<e THEN END

STOP CODES

It is very often useful to set a program to repeat something until
you decide you have had enough. As an example suppose you
had a list of amounts of money in pounds which each needed
to be changed into French Francs. You won’t want to keep
typing RUN for each new number of pounds. The solution is to
use a special number like 0 to show that you have reached the
end of the list. Suppose £1 is worth 11.75 Francs. This program
will do the job.

Ifs and Thens 59

10 PRINT “POUNDS TO FRANCS AT 11.75”
20 PRINT
30 INPUT “HOW MANY POUNDS”;P
40 IF P=0 THEN GOTO 80
50 LET F=P*11.75
60 PRINT P; “ POUNDS = '’;F;“ FRANCS’
70 GOTO 20
80 END

>»

Line 40 checks whether the number of pounds typed, in P, is 0.
If it is not the rest of the program converts it to Francs and
prints the result, otherwise line 80 is reached so the program
stops. Notice that line 70 sends the computer back for a new
number of pounds after each conversion.

MUGPROOFING

Almost all useful programs involve taking different action
according to circumstances so IF and THEN are very
frequently used. One application you may not have thought of
is to protect the user from himself by checking that what is
typed in answer to INPUT instructions is sensible. Good
programs are written on the assumption that errors by the user
are normal and take precautions against them. Consider a
program which needs to ask the user for a date of birth. It
might start like this.

>n

10 PRINT “PLEASE TYPE YOUR DATE OF BIRTH”
20 PRINT “AS NUMBERS’
30 PRINT
40 INPUT “DAY”;D
50 INPUT “MONTH”;M
60 INPUT “YEAR”;Y

The rest of the program might, for example, be concerned with
astrology. As it stands there is ample scope for blunders by the
user. The day should be a number in the range 1 to 31 but if

60 Ifs and Thens

say, 1000, were typed the program would use it. The month
should be a number from 1 to 12 but any other number would
be accepted. The same considerations apply to the year. This
sort of thing gives computers a bad name.

The solution is to use IF to detect silly numbers and ask again if
they are found. You will be able to follow the following
modified version.

10 PRINT “PLEASE TYPE YOUR DATE OF BIRTH”
20 PRINT “AS NUMBERS”
30 PRINT
40 INPUT “DAY”;D
41 IF D<1 THEN GOTO 40
42 IF D>31 THEN GOTO 40
50 INPUT “MONTH”,M
51 IF M<1 THEN GOTO 50
52 IF M>12 THEN GOTO 50
60 INPUT “YEAR”;Y
61 IF Y<1884 THEN GOTO 60
62 IF Y>1983 THEN GOTO 60
70 PRINT “USING THE DATE OF BIRTH’
80 PRINT D;“/”;M;“/”;Y

I”

When this is RUN each question will be repeated until a
sensible answer is given because after each answer has been
typed IF is used to send the computer back to the line where
the question is asked if the answer was outside a sensible
range. I have allowed for users aged, in 1984, between 2 and
100. There is an error not detected, the user who types, for
example 0.5 as an answer. This will have to wait for a later
chapter.

THINGS TO DO

If you ran the temperature program at the start of this chapter
you will have perhaps been irritated by the need to type RUN

Ifs and Thens 61

and select option 1 or option 2 before each temperature. You
could modify the program so that once a selection has been
made the question FAHRENHEIT? or the question
CENTIGRADE? is repeated and answers given until the user
indicates an end by typing 0 as in the pounds and Francs
program. In this case however the GOTO should send the
machine to give the 1 or 2 choice again in line 30. Thiscreates
a problem of how to let the user abandon the program when
no more conversions are required. One way would be to treat
any number other than 1 or 2 as indicating that the program is
to stop. A change to line 80 will effect this.

According to my copy of the 1984-1985 PAYE coding guide,
income tax is payable at 30% on the first £14600 of taxable
income, 40% on that portion between £14600 and £17200 and
at higher rates on any taxable income above this. Taxable
income apparently means the balance after subtracting
allowances. A single person has an allowance of £1785 and a
married man an allowance of £2795. Thus a simplified system
for working out someone’s tax might go as follows.

1. Find their income.
2. Find the allowance (single or married).
3. Subtract allowance from income

If the result is less than 0 then no tax and stop.
4. If the balance is less than £14600 then tax is 30% of the

balance and stop. (This is the end for most of us).
5. Subtract £14600 from the balance. Tax is 30% of

£14600
6. If the new balance is less than £2600 (difference

between £14600 and £17200) then extra tax is 40% of
this balance and stop.

7. And so on. (I suspect that th is part of the system will be
of interest to few readers.)

62 Ifs and Thens

This sort of procedure is ideal for programming by the use of
IF and THEN. The program must first establish whether the
user is single or married, by asking for a 1 or 2 answer and then
ask for an annual income. A succession of IFs will be needed
to decide which part of the calculation is required. The form of
the program is suggested by the procedure described. To
work out 30% of something you multiply it by 0.3.

USING TAPES

By now you will be writing programs long enough to want to
keep. Some people are lucky enough to be using a computer
equipped with magnetic disc drives but most of us have to
make do with cassette tapes. The instructions in BASIC for
using them are different on the various machines but some
advice is common to all.

Always use short tapes. It saves endless tiresome fiddling
about looking for your program and winding from end to end if
you use Cl2 or CIS rather than C30 or C45.

Always set the tape counter on the recorder to zero with the
tape at the start and make a note of the counter position when
you switch to record which must not be on the first few inches
of tape. If you record on the non-magnetic leader part your
program will be lost.

Save two copies of each program until you have established
definitely that the system is working. Using a cassette recorder
for programs can be completely reliable but it never is at first
because there is so much scope for mistakes.

It sometimes helps to remove the playback lead when
recording. Try this if your computer cannot find what you have
recorded or if it tells you, with a message like BAD DATA that it
cannot understand it. You can establish whether anything has
been recorded at all by listening to the tape with the leads
removed from the recorder.

Ifs and Thens 63

The most important advice is to persevere and not blame the
equipment. Check and re-check that the leads are in the right
holes and you have tried all variations of volume level.

8
Stringing Along

“The chief defect of Henry King,
IVas chewing little bits of string"

Belloc. - “Henry King”

We have seen how you can use BASIC for calculations and
how they can be organised. Perhaps the majority of computer
applications involve working not mainly with numbers but with
words. You may well have felt that programs up to this point
coul have been improved if words could have been used rather
than numbers for answering questions. We had to ask the user
to select from a list of options by typing a number to show this
choice. If we could ask for a word to be typed the computer
would seem much more friendly to the user.

STRINGS

The word ‘string’ is used to mean a list of characters. In a
BASIC program they are always enclosed in double quotation
marks. We use the word ‘string’ rather than ‘word’ because all
characters can be used as well as letters. (Except possibly
double quotation marks). Thus possible strings include,

'99

■PNK 435 W”
‘25/1/47”
‘74LS123”

“THURSDAY’
“A”
“I

u*

Stringing Along 65

Strings, as you see, may consist of different numbers of
characters. There is probably a maximum number of
characters allowed in a string, usually 255, which is only rarely
a problem but you may see an error message like ‘LONG
STRING ERROR’ later if you accidentally exceed it. It is also
possible to have an ‘empty’ string with no letters in it. This is
written

STRING VARIABLES

The word ‘variable’ was introduced as the name for a
pigeonhole for keeping a number in. These are called ‘numeric
variables’. Also available are ‘string variables’ which are
similarly like pigeonholes but are for keeping a string in.
Because of the need to avoid confusion, both for you and for
the computer, between string and numeric variables the
names of string variables always have to have a dollar sign on
the end. Thus Z stands for a number but Z$ stands for a string.

A surprisingly large number of the things which can be done
with numberscan be done with strings. If a program starts with
the line

10 INPUT “PLEASE TYPE YOUR NAME”;N$

then, as with a similar INPUT using N rather than N$, the
computer will wait for the user to type. When the user presses
RETURN to show the end of what he or she wants to type the
computer continues with the next line having put into the
string variable N$ whatever was typed. For number INPUTS
there are errors by the user which might be detected here by
the computer but since N$ may contain any list of characters
whatever is typed will be stored in N$. Later in the program the
computer could address the user by name with a line like

250 PRINT “THANK YOU ”;N$

66 Stringing Along

and the name typed into N$ earlier would be printed. Notice
the space between the end of THANK YOU and the quotation
marks. We want the computer to PRINT.

THANKYOU GORDON

rather than

THANKYOUGORDON

Strings can be compared in the same way as numbers. A
game playing program might start with

10 PRINT “DO YOU WANT TO BE BLACK OR WHITE”
20 PRINT
30 INPUT “CHOICE”;C$
40 IF C$=“B” THEN GOTO 100
50 IF C$=“W” THEN GOTO 200
60 PRINT “PLEASE TYPE B OR W”
70 GOTO 10

The INPUT in line 30 puts whatever the user types into the
string variable C$. If this is a B or a W then lines 40 or 50 will
cause the parts of the program which play the game to be
done next. If the computer gets to line 60 then something different
from B or W must have been typed so a helpful message is
printed and line 70 causes the question to be asked again. This
procedure will be repeated till a valid reply is obtained.

The signs > and < which we met earlier for comparing the
sizes of numbers also have a meaning for strings but they work
on alphabetical order for strings rather than on size as they do
for numbers. Thus the condition

and

7 8

Stringing Along 67

is true because 7 is less than eight, but

“SEVEN” “EIGHT’

is not true because the word SEVEN does not come before the
word EIGHT in alphabetical order.

‘Alphabetical order’ as far as the computer is concerned
means more than it does in everyday language. All the
characters on the keyboard have a position in it. In fact all
characters have a number and these numbers are used to
decide what order strings are in. The letters A to Z are usually
numbered 65 to 90. You may not see a use for this yet, but think
about this improvement on the first example of this chapter.

it

10 INPUT “PLEASE TYPE YOUR NAME”;N$
20 IF N$ < “A” THEN GOTO 50
30 IF N$ > “Z” THEN GOTO 50
40 GOTO 100
50 PRINT “TRY AGAIN”
60 GOTO 10

The object of this is to prevent the program from continuing till
the user has typed a word for his or her name which at least
begins with a letter of the alphabet. If what were typed into N$
came before A or after Z then lines 20 or 30 cause line 50 to
print the TRY AGAIN message. If on the other hand the
computer gets to line 40 then what was typed must have been
in the range A to Z, inclusive, so it might be a name. This would
prevent the use of a name like 007 or +++++.

ADDING STRINGS

Addition, subtraction, multiplication and division make sense
with numbers but of these only addition may be used with
strings. This will have many applications when you know more

68 Stringing Along

about BASIC. For the moment I hope you will find the
following helpful. Suppose you use

10 INPUT “PLEASE TYPE YOUR NAME’’;N$

Later you will want the program to print N$ so as to address the
user by name. If you make line 20 do this

20 LET N$=“ ”+N$+““ ”

then the effect of line 20 is to add spaces onto the front and end
of the name typed and leave the new string in N$ so that later
you can use

550 PRINT “GOODBYE”;N$; “AND THANKYOU”

and spaces will appear between the end of GOODBYE and the
name and between the end of the name and the start of AND.
This improves the appearance of the sentence without having
to worry about putting spaces in the PRINT line.

A PROGRAM

The applications of string which we have introduced so far
have been as improvements to other programs. When you
know more BASIC you will find them useful but here is a
program which allows you to investigate how your computer
deals with the concept of alphabetical order.

10 INPUT ““FIRST WORD”;F$
20 INPUT ““SECOND WORD”;S$
30 IF F$<S$ THEN GOTO 70
40 LET X$=F$
50 LET F$=S$
60 LET S$=X$
70 PRINT F$,X$

stringing Aiong 69

The program asks for two words, in lines 10 and 20. Line 70
prints the same two words but line 30 first checks whether the
words are in alphabetical order. If they are line 70 is used at
once but if not lines 40,50 and 60 swap them over. This is done
by copying the first word into the variable X$. The second is
then copied into the space previously occupied by the first.
The word in X$ is now copied into the space occupied by the
second. The net effect of this is that they have exchanged
positions. The use of a temporary variable in this way is often
convenient for changing places.

Run the program and test it with pairs of words like for
example PRICE and PRITCHARD. You will find that the usual
alphabetical order applies. If you try 007 and A you will find
that digits come before letters in the computer’s order. You
might like to investigate the position of the various punctuation
marks.

9
Arraying Things

"Solomon in all his glory was not arrayed like
one of these."

Matthew 6:29.

A PROBLEM

‘A firm employs thirty salespeople. Each month they are paid
commission of 5% of that amount by which their sales for the
month exceed the average of all thirty’. A program is required
to calculate commissions each month.

How are we going to tackle this? The first thing to do is to
make sure you understand the problem. The following steps
will be needed.

1. Add together all 30 sales figures.
2. Divide by 30 to get the average.
3. For each salesperson compare their sales with the

average.
4. If they have exceeded the average their commission is

5% of the difference, otherwise they receive nothing.

The first step will require the use of an INPUT instruction thirty
times to get all thirty numbers into the computer. We will have
to use a FOR — NEXT loop to do this because the only
alternative would look like this.

10 INPUT “SALES NO r;A
20 INPUT “SALES NO 2’’;B
30 INPUT “SALES NO 3”;C

Arraying Things 71

40 INPUT “SALES NO 4”;D

and so on.

This approach is ruled out on three grounds. Firstly it is very
tiresome to type thirty lines like this. Secondly it makes the
program difficult to alter if the number of salesmen changes
and thirdly we are going to run out of letters of the alphabet to
use as variable names. The third objection can be overcome in
most versions of BASIC by using longer variable names but
the first two are sufficient to force us to use something like this.

10 FOR S=1 TO 30
20 INPUT M
30 NEXT S

This is useless as it stands. The user is not told what number
the computer is expecting so errors like entering the same
number twice are almost certain; and worse, since each
number goes into M, the number previously in M will be
replaced by the next number so that at the end of this FOR
—NEXT loop, when S has reached 30, M will contain the sales
of the thirtieth salesman and all the others will have been lost.
We can get round the first problem like this.

10 FOR S=1 TO 30
20 PRINT “MONTHS SALES FOR NUMBER ’;S
30 INPUT M
40 NEXT M

The user will be prompted by line 20 where the number of the
required salesman will appear on the screen to ask for his sales
to be typed, however we still haven’t solved the problem of
losing each number in M because the next input over-writes it
by being stored in the same place.

You may well have guessed an answer to the problem. Since
we need to know the total sales of all thirty salesmen so we can

72 Arraying Things

work out the average we could keep a running total as we
INPUT them. This leads to a program starting like this.

10 LET T=0
20 FOR S=1 TO 30
30 PRINT “MONTHS SALES FOR NUMBER ”;S
40 INPUT M
50 LET T=T+M
60 NEXT M

Line 10 starts the running total in T at 0, and line 50 adds each
monthly sales number onto the number in T after it has been
INPUTed. As a result when we get to the line after line 60 the
total of all thirty sales will be in T ready to be divided by thirty to
get the average. This will be done with a line

70 LETT = A/30

and we are ready for the next task - working out the
commission for each salesman.

Now we really are stuck. We have worked out the average
sales but we have lost the sales figures. You can’t decide what
a salesman’s commission should be unless you know what his
sales were and the program doesn’t know them because
during the process of INPUTing the figures it merely added
each figure onto a running total and then lost it.

It is because of this problem - the need to have lots of numbers
inside the computer simultaneously - that computer
languages use the idea of an ‘array’. I will explain the concept
and then return to the salesman problem.

ARRAYS

Variable names used so far have been A, H, M and so forth. The
array allows us to increase the number of variable available
enormously by using for example A(20), X(79), P(600). The

Arraying Things 73

number in brackets indicates that what is intended is just one
variable out of a number. The same program might use A(1),
A(2), A(3), A(4) and so on up to A(1000) or even more if the
computer has enough memory. You can do almost everything
with one of the numbers of an array that you can do with an
ordinary variable.

PRINT A(23)

and

INPUT A(23)

and

LET A(23)=3.1416

and

IF A(23)=1 THEN

all do what would have been done if A had been mentioned
instead of A(23) except that the number used will be the one
stored in a pigeonhole called A(23) rather than the one stored
in a pigeonhole called A.

If you are going to use array variables in a program then you
must warn the computer in advance of the fact that it needs to
set aside space to store the numbers. You do this by putting a
DIM instruction at the start of the program. This looks like this.

10 DIM A(100)

This warns the computer that A(1), A(2), A(3) up to A(100)
may be used later. 100 is called the ‘dimension’ of the array A,
hence the BASIC word DIM. If the program tries to use, say,
A(105), then there will be an error message such as ARRAY
SUBSCRIPT ERROR.

74 Arraying Things

How large an array is possible depends on the amount of
memory in your computer. Try typing (without a line number)

DIM A(5øee)

and you may well see a message like OUT OF MEMORY. If
you have 48k RAM and an efficient system you may not see
this unless you try something as big as

DIM A(10000)

but there is an upper limit for every machine.

Why does this concept help? All we have done is to create as
many variables as we like subject to the amount of memory in
the computer. The reason that arrays are so useful is that the
number in bracket can itself be a variable. I am lost in
admiration of whoever thought of this first - without it
computers would be very much less powerful. RUN this
program.

10 DIM V(100)
20 FOR N=1 TO 100
30 LET V(N)=N*N
40 NEXT N

Nothing appears to happen because there are no PRINTS or
INPUTS but if you do for example, type in:

PRINT V(21)

You will see the number 441. While the program was running it
put into each of the hundred variables V(1) to V(100) a
number obtained by multiplying the number in brackets by
itself. Thus V(3) will contain 9, V(4) will contain 16, V(5) will
contain 25 and so on up to V(100) which will contain 10000; all
this from a four line program. It is the use of V(N) in line 30
which is so effective. Because the FOR - NEXT loop causes

Arraying Things 75

V(N) to be used 100 times with a different number in N every
time the small program does a tremendous amount of work.

You might like to try this program to get you used to using
arrays in this way.

10 DIM Q(10)
20 FOR N=1 TO 10
30 INPUT “NUMBER PLEASE ”;Q(N)
40 NEXT N
50 FOR L=10 TO 1 STEP -1
60 PRINT Q(L)
70 NEXT L

The program INPUTS ten numbersand PRINTS them in reverse
order. Line 30 is used ten times and stores the number it
INPUTS in Q(1), Q(2), Q(3) and so on because N is running
from 1 to 10. Lines 50 to 70 print them in reverse order by
making L run from 10 down to 1 and PRINTing Q(L). I have
deliberately chosen to use N for the first loop and a different
letter, L, for the second to clarify a point which often causes
confusion. Line 30 uses Q(N) and line 60 uses Q(L) but they
both refer to the same numbers, the ten numbers INPUT by
line 30. The point is that N and L both contained numbers in
the 1 to 10 range so both Q(N) and Q(L) stand for the same
variable.

It would have been possible to obtain the same effect by using

10 DIM 0(10)
20 FOR N=1 to 10
30 INPUT “NUMBER PLEASE”;Q(N)
40 NEXT N
50 FOR L=1 TO 10
60 PRINT 0(11-L)
70 NEXT L

76 Arraying Things

Here I have made L in lines 50 to 70 run from 1 to 10 rather than
from 10 to 1 but have changed line 60 to PRINT Q(11 -L). Since
L is running from 1 to 10 the result of taking it from 11 will make
it run from 10 to 1. The contents of the brackets in an array
variable may be anything that may appear on the right of a LET
instruction. You could use A(2*N+1) for instance.

Now we are in a position to solve the problem posed at the
start of this chapter. We must store the thirty numbers in an
array so that when we come to work out the commissions they
will still be available. The first thing to do is to ask the user for
the thirty numbers which will be added onto a running total as
it is typed.

The old version was

10 FOR S=1 TO 30
20 PRINT “MONTHS SALES FOR NUMBER ”;S
30 INPUT M
40 NEXT M

But now we will use

10 DIM M(30)
20 LET T=0
30 FOR S=1 to 30
40 PRINT “SALESMAN NO ”;S
50 INPUT M(S)
60 LET T=T+M(S)
70 NEXT S

The DIM has been put in at the start to make room for numbers
for the thirty salesmen in the array M so that their sales figures
can be INPUT by line50 into M(1), M(2), M(3)... upto M(30).
This is done by using M(S) when S is running from 1 to 30. The
line which accumulates the running total in T now has to add
M(S) onto the total rather than M.

Now we can work out the average in the same way as before

Arraying Things 77

with

80 LET A=T/30

but we will this time be able to work out the value of each
salesman’s commission because their sales are waiting in
M(1), M(2), M(3)...

We had better put the results in two columns with the
salesman’s number in the first column and his commission on
the right so the next thing to do is PRINT headings with

90 PRINT “SALESMAN”,“COMMISSION”

Now we need to run through all thirty comparing their sales
with the average and working out the commission for those
who are going to get any. The neatest way to do this is

100 FOR S=1 TO 30
110 LET 0=0
120 IF M(S)<A THEN GOTO 140
130 LET C=0.05*(M(S)-A)
140 PRINT S,C
150 NEXT S

The FOR — NEXT makes sure that all thirty are dealt with by
makingSgofrom 1 to 30. Ineach case the commission will be
put into variable C. Line 110 sets this to 0 every time, line 120
decides whether this man’s sales are above average. If they are
not the GOTO send the computer to line 140 where the
salesman’s number, in S, and his commission, in C, are
printed. If the jump does not take places because he is going to
get some commission then the number in C is changed by line
30 to 5% of the excess of his sales over the average.

78 Arraying Things

AN IMPROVEMENT

The program now solves the problem posed at the start of this
chapter. If you had to work out the commissions each month
you could run it, the computer would ask you to type each
salesman’s sales and the list of commissions would be printed.
This solves the problem but it is not the best possible program
because it only works for thirty salesmen. A good program
should be as versatile as possible so here is a final version
which asks the user how many salesmen are to be used each
time it is run.

10 INPUT “HOW MANY SALESMEN”;N
20 DIM M(N)
30 LET T=0
40 FOR S=1 to N
50 PRINT “SALESMAN NO ’’;S
60 INPUT M(S)
70 LET T=T+M(S)
80 NEXT S
90 LET A=T/N
100 PRINT “SALESMAN” “COMMISSION”
110 FOR S=1 TO N
120 LET 0=0
130 IF M(S)<A THEN GOTO 140
140 LET C=0.05*(M(S)-A)
150 PRINT S,C
160 NEXT S

The first line asks how many salesmen’s figures are to be
processed and puts the number into N. From there on every
reference of 30 has been replaced with N. You would be able
to test the program using a small number for N to make sure it
worked before spending a long time typing numbers for the
whole sales force.

10
Functioning Properiy

"Chance favours only the prepared mind"

Louis Pasteur

Many people buy a personal computer with no other intention
but to play games with it and a lucrative industry has grown up
to supply games programs. The essence of many games is the
element of chance. Without the random deal of the cards or fall
of the dice many games would lose much of their appeal. All
versions of BASIC provide some means of generating random
numbers but they have serious applications as well as uses in
game playing. If a computer system were going to be used to
control traffic lights it would be highly desirable for reasons of
safety to test the program thoroughly before lettig it loose on
the roads. A program would be written using random numbers
to simulate the random arrival of traffic at junctions so that the
likely effect of the light control program on traffic flows could
be investigated.

RANDOM NUMBER

A random number means a number chosen in such a way that
you can’t predict beforehand what it is going to be.
Unfortunately there is more than one possible way in which
your BASIC may give a random number. Probably the most
common is where

LET X=RND

80 Functioning Properly

sets X to a number in the range 0 to 0.999999 inclusive. It may
be necessary to use

LET X=RND(1)

to produce exactly the same effect. The 1 in brackets in these
versions is used by the computer to select where to start in a
list of random numbers inside the computer. You don’t need to
understand this yet - just use RND(1) whenever you want a
random number.

One other possibility is that

LET X=RND(100)

sets the contents of X to a random whole number in the range
1 to 100.

I suggest that you try this program to find out what your
computer does.

10 FOR N=1 to 5
20 PRINT RND(1)
30 NEXT N

It is quite likely that this will produce a list of numbers like

0.897654
0.56432
0.126542
0.990077
0.101265

If the program doesn’t work try removing the (1) then you
should obtain asimilar result. If not try making it (100), though
any other largish number would do in place of the 100, and
you will find that your computer uses the third method. You
will have to bear this in mind reading what follows. I shall use

Functioning Properly 81

the RND(1) convention, you will have to make the appropriate
alterations.

In the line

LET P=RND(1)

we have introduced a new concept in BASIC. By using the
word RND we have told the computer to produce a number by
some method, in this case a random method. BASIC contains
a number of similar methods for producing numbers all
invoked by mentioning their three letter name. You can put the
three letter name, as we have seen; in PRINT instructions and
LET instructions and also wherever a number might have
been used. These number creating devices are called
‘functions’. A large number of functions are available though
some have rather specialised uses.

Readers with mathematical inclinations will recognise such
functions as SIN, COS and LOG, if you know about these you
will know what to do with them - if not don’t worry they won’t
be mentioned again in this book.

INTEGER
One function which will be of use is INT. This stands for
‘integer part’. ‘Integer’ merely means ‘whole number’. If you try

PRINT INT(3.4)

the number PRINTed will be 3 because 3 is the whole number
below 3.4. in the same way

PRINT INT(15.9)

will produce 15. Notice that INT creates not the nearest whole
number to the number in brackets but the whole number

82 Functioning Properly

below it. This rule also applies to negative numbers so that

PRINT INT(-5.7)

will PRINT not -5 but -6 since -6 is below -5.7.

The number in brackets may be variable so that a line like

120 LET A=INT(P)

will set the contents of variable A to the whole number next
below the number in P.
The random number produced by a dice is a whole number in
the range 1 to 6 but the random numbers created by RND can
be used to simulate that. Since RND creates a number from 0
to 0.999999 multiplying it by 6 will give a number from 0 to a
bit less than 6. This is progress but we need a whole number,
we need to use INT. Since this would make a number from 0 to
5 we must add 1 to get a number from 1 to 6. The result is

LET D=1+INT(6*RND(1))

which puts into the variable D a number which could have
been selected by a dice.

The following program could be used for a game played with
two dice to dispense with the need to throw the dice.

10 LET A=1+INT(6*RND(1))
20 LET B=1+INT(6*RND(1))
30 PRINT A,B
40 INPUT ‘‘MORE”;Z$
50 IF X$O“N” THEN GOTO 10

Lines 10 and 20 create the two numbers and line 30 PRINTS
them. Line 40 waits for the user to type something. Line 50
makes sure that if anything other than N for No was typed the
process will be repeated. If you needed the total of the two

Functioning Properly 83

dice, rather than the individual number, you could change line
30 to

30 PRINT A+B

You might like to use RND to write a similar program for ‘head
or tail’ games rather than dice games. You need to print
“HEADS” half the time and “TAILS” the other half. Since half
the random numbers created by RND(1) are above 0.5 and the
other half are below (as near as makes no matter) you can
comparea random number with 0.5 to decide whether to print
HEADS or TAILS.

A STATISTICAL PROGRAM

Dedicated ‘Monopoly’ players will have noticed that the
numbers 2 to 12 which you get when you add the numbers on
two dice do not occur with equal frequency. Seven happens
most often and two and twelve are much less likely. This
program simulates the throwing of two dice a large number of
times and shows how often each possible total occurred. It
illustrates an application of an array which we have not yet
come across.

10 DIM F(12)
20 FOR N=1 TO 100
30 LET A=1+INT(6*RND(1))
40 LET B=1+INT(6*RND(1))
50 LET T=A+B
60 LET F(T)=F(T)+1
70 NEXT N
80 PRINT “TOTAL” “OCCURENCES”
90 FOR M=2 TO 12
100 PRINT M,F(M)
110 NEXTM

84 Functioning Properly

The array F created by line 10 is going to be used to contain
the frequency with which each of the possible totals came up.
F(2) will hold the number of 2’s, F(3) the number of 3’s and so
on. Line 20 makes sure that the dice will be rolled 100 times.
This is done by lines 30 and 40 and the total of the two is
worked out by line 50. Line 60 does the counting. By adding
one to F(T) when T is one of the numbers 2 to 12 we will be
recording the fact that the total was whatever number was in T.
After this has been done the NEXT line causes the process to
be repeated.

Lines 80 to 110 print the results. After printing headings for the
columns we let M run from 2 to 12 printing M and F(M) each
time. You will find the total 7 happens about six times as often
as 2 or 12. If you experiment by changing the 100 to bigger
numbers, say 1000 or 10000 you will have to be quite patient
while you wait for the computer to produce its results.

ROUNDING

When you use BASIC to work out a number it very often
produces its answer correct to a greater accuracy than you
need. One kilogram is 2.205 pounds so to make kilograms to
pounds conversion table you could use

10 PRINT “KILOS” “POUNDS’
20 FOR K=1 TO 10
30 LET P=K*2.205
40 PRINT K,P
50 NEXT K

This has given three decimal places in the number of pounds
which is unnecessary for buying potatoes. One solution which
may occur to you is to change line 30 to

30 LET P=INT(K*2.205)

Functioning Properly 85

This has the disadvantage that it gives you the whole number
below the correct value which is satisfactory for 17.1 pounds
but for 17.9 pounds we would prefer 18 since it is closer. If you
add 0.5 before using INT the result will be what we need.
Adding 0.5 to 17.1 makes 17.6 so the INT of it is still 17 but
adding 0.5 to 17.9 gives 18.4 which has an INT of 18 as
required. If you make line 30

30 LET P=INT(2.205*K + 0.5)

then you get the number of pounds correct to the nearest
whole number.

This idea can be extended to correct a number to any required
accuracy. Here is a petrol price table program for petrol at 39.7
pence per litre.

10 PRINT “LITRES”,“COST’
20 FOR L=1 TO 20
30 LET C=L*39.7
40 NEXT L

This gives the cost of each number of litres in pence with a
decimal point. We would prefer the numbers in £ and pence
correct to the nearest penny. You can do it by changing lines
30 to

30 LET C=(INT(L*39.7+0.5))/1OO

The INT makes the number of pence into the nearest whole
number and the /100 changes the result to £ and pence.

ANOTHER MUGTRAP

Another use for the INT function is for testing whether or not a
number is a whole number. Suppose a program needs to ask

86 Functioning Properly

the user for a number and we wish to make sure that only valid
numbers are accepted. If you were writing the ultimate football
pool predictor program it would, I suppose, have to ask you for
each Saturday’s results. You would not want the program to
accept, for example, a score of 2.7 goals because it is
impossible, as would be a negative number or to accept say
100 goals because it never happens. The part of the program
which asks for a score would contain a line like

200 INPUT “SCORE”;S

To prevent the acceptance of negative numbers the next line
could be

210 IF S<0 THEN GOTO 200

and to prevent ridiculously large numbers you could use

220 IF S>30 THEN GOTO 200

but to prevent fractions you need to compare the number the
user has typed with the whole number below it. This can be
done by

230 IF INT(S)<>S THEN GOTO 200

The INT of a whole number is the same number and therefore
acceptable so the condition will be true only for input numbers
showing a fraction part. Thus if the number in S is a whole
number the computer moves on to the line 230, otherwise it
will be sent back to line 200 to ask again.

11
Reading Data

“The months in succession come round
and you don’t find two Mondays together"

l/V. S. Gilbert - “Trial by Jury"

READ AND DATA

Up to now we have used two methods for providing
information for the computer to use in programs.

The first is INPUT

INPUT A

and

INPUT A$

Put a number or a string of characters into A or A$

The second is LET. You could do

LET A=3.142

or

LET A$=“CIRCLE”

to do the same job.

88 Reading Data

The reason for using one rather than the other is that LET puts
the same information into the variable every time the program
is RUN whereas INPUT causes the program to stop so that the
user can type in the information. To give a specific example if
you wrote a program to check your electricity bill every three
months it would be sensible to use INPUT to give it the meter
readings, which will be different every time, but you could use
LET to set the price of one unit and the standing charge, which
are fixed (we hope).

Often a program uses a large amount of ‘built in’ information. A
program for printing a calendar for any year will need to use
the number of days in each month. Suppose you decided to
keep the month lengths in an array called M. There are 31 days
in January, 28 in February, 31 in March, disregarding the leap
year problem for the moment, so you might start the program
like this.

10 DIM M(12)
20 LET M(1)=31
30 LET M(2)=28
40 LET M(3)=31
50 LET M(4)=30

and so on.

This means typing twelve very similar lines. When you find
yourself doing this there is usually a neater way using FOR
and NEXT. You might think of this.

10 DIM M(12)
20 FOR N=1 TO 12
30 INPUT M(N)
40 NEXT N

It is not a solution because using INPUT means that we will
have to type all the month lengths every time we RUN the
program. We need two new BASIC words, READ and DATA.

Reading Data 89

The start of the program could be,

10 DIM M(12)
20 FOR N=1 TO 12
30 READ M(N)
40 NEXT N
50 DATA 31,28,31,30,31,30
60 DATA 31,31,30,31,30,31

READ puts a number into the variable mentioned after it just
like INPUT does but differs in that the number is not taken
from the keyboard. Instead the computer looks for a DATA
statement in the program and takes the number from there. A
DATA statement, there are two examples in the program
above, consists of the word DATA followed by a list of
numbers separated by commas. When each number has been
used the computer remembers that it has been used so that
next time READ occurs it takes the next unused number. The
DATA statements are used in order of their line numbers. You
will notice that I put the lengths of the twelve months of the
year into two DATA statements. This has the advantage over
using only one that if you make a mistake it is easier to put it
right.

To get yourself used to the idea I suggest that you use the
following program which was written for changing speeds in
miles per hour into Kilometres per hour. The interesting
speeds are the various speed limits in force.

10 READ M
20 LET K=M*8/5
30 PRINT M,K
40 GOTO 10
50 DATA 30,40,50,70

The GOTO in line 40 sends the computer back to line 10 so
that the job will be repeated but because the computer

90 Reading Data

remembers that the number 30 in the DATA has been used it
will read the number 40 into M next time. Thus you see a table
showing the four speeds in both units. When the computer
tries to make a fifth READ it finds that no DATA remains and
the program stops, giving you a message like

OUT OF DATA IN 10

because line 10 was the READ when no more data could be
found.

STRING ARRAYS

The calendar program mentioned above would need to use
the names of the months as well as their lengths. Up to now we
have used arrays of numbers, like the lengths of the months,
but not of strings. You can use string arrays in just the same
way provided you remember that the names have to have a
dollar sign like the names of ordinary string variables. These
lines show how.

10 DIM M$(12)
20 FOR N=1 TO 12
30 READ M$(N)
40 NEXT N
50 DATA “JANUARY”,“FEBRUARY” “MARCH”
60 DATA “APRIL”,“MAY”,“JUNE’
70 DATA “JULY”,“AUGUST”,“SEPTEMBER
80 DATA “OCTOBER”,“NOVEMBER”,“DECEMBER

»W

I”

This puts the twelve names into M$(1) to M$(12) so that if, for
example, you were to use M$(7) later it would contain JULY.

It is in the handling of strings that the versions of BASIC show
the most annoying differences. You may find that your
computer uses a slightly different convention in which the DIM
statement needs to contain information not only on the
number of strings in the array, which was twelve here, but also

Reading Data 91
on how long each string is to be. In such BASICS all the strings
in an array have to be the same length. This is not a great
restriction because the right hand end of each one can be
packed with spaces. If you are using a computer which works
like this then the first line would have to be

10 DIM M$(12,9)

This tells the computer that M$ is to contain twelve strings and
that their length is to be nine characters. The longest month,
SEPTEMBER, has nine letters so they will all fit.

We can use the ideas of this chapter to make an attempt at a
calendar printing program. The idea is to ask the user two
things, whether it is a leap year and the day on which the first of
January falls, and use this to list all 365 (or 366) days. It is
possible to calculate both items of information from the
number of the year but I want to keep things simple and
concentrate on how the arrays work. The program starts by
setting up arrays to contain the names of the months, the
names of the days and the lengths of the months. Here is the
first part.

r»

10 DIM M$(12),D$(7),M(12)
20 FOR N=1 TO 12
30 READ M$(N)
40 NEXT N
50 DATA “JANUARY”,“FEBRUARY”,“MARCH”
60 DATA “APRIL”,“MAY”,“JUNE’
70 DATA “JULY’,“AUGUST,“SEPTEMBER”
80 DATA “OCTOBER”,“NOVEMBER”,“DECEMBER
90 FOR N=1 TO 7
100 READ D$(N)
110 NEXTN
120 DATA “SUNDAY”,“MONDAY”,“TUESDAY”
130 DATA “WEDNESDAY”,“THURSDAY”,“FRIDAY’
140 DATA “SATURDAY’
150 FOR N=1 TO 12

»»»

'99

'99

92 Reading Data

160 READ M(N)
170 NEXT N
100 DATA 31,28,31,30,31,30
190 DATA 31,31,30,31,30,31

There is only one new point here. In line 10 three arrays have
been mentioned in one line. You can tell the computer about
as many arrays as you like after the word DIM. Next we must
sort out the problem of the leap year.

200 INPUT “IS IT A LEAP YEAR (Y/N)”;A$
210 IF A$=“N” THEN GOTO 250
220 IF A$=“Y” THEN GOTO 240
230 GOTO 200
240 LET M(2)=29

This asks the question and according to whether Y or N is
typed does or does not alter the length of February, stored in
M(2), to 29. If the reply is not Y or N the question will be
repeated until it is.

Now we must find out which day the year starts on. We will
need a number for this but will have to ask the user to type one
of the day names so it will be necessary to check what the user
types against the seven names in D$ to find which position in
D$ it occupies. If what was typed is not found the user will have
to be asked to try again.

250 INPUT “WHICH DAY IS JAN 1”;X$
260 LET P=0
270 FOR N=1 TO 7
280 IF X$=D$(N) THEN LET P=N
290 NEXT N
300 IF P=0 THEN GOTO 250

p is going to hold the number in the week, 1 for Sunday, 2 for
Monday and so on, of the day the user typed. Line 260 sets it to
0 so that if the computer gets to line 300 without having

Reading Data 93

matched the user’s answer, in X$ with one of the correct
names the question will be asked again because P will still be
0. If on the other hand a match was found by line 280 P
contains the required number.

Now we can PRINT the calendar. It will be necessary to use a
loop twelve times to run through all twelve months. For each
month the number of lines printed will be the number of days
in that month. To get the day names right P will be increased
by one every time we print a day but if P gets above seven,
because a Saturday has been printed, then P will need to be
changed to 1 because the next day will be a Sunday.

310 FOR N=1 TO 12
320 PRINT
330 PRINT “---------------------
340 PRINT
350 FOR S=1 TO M(N)
360 PRINT D$(P),S
370 LET P=P+1
380 IF P>7 THEN LET P=1
390 NEXT S
400 NEXT N

n

You will notice that this starts with a FOR and ends with a
NEXT to go through all twelve months. For each month the
name of the month is printed first, with some dashes and
blanks to improve its appearance, then there is another FOR
— NEXT to run through all the days of the current month. The
upper limit on the FOR — NEXT is M(N) to make sure the
correct number of days is printed. The PRINT line has to print
the name of the day, which is one of the names in D$, and the
number of the day in the month, which is in S because S is the
number in the FOR — NEXT loop running from one to the
month length.

94 Reading Data

I hope you will type in the calendar program and understand it.
It would be wild optimism to expect however that it will work
first time. It is very difficult to avoid typing errors in a forty line
program and even an apparently slight error can cause a
program to fail so check very carefully because the error
message from the computer may not be very helpful. You may
have to dip into your machine’s manual to look for details on
how precisely the string arrays work in your BASIC.

Don’t forget that you can use PRINT to find out how far the
program got before things went wrong. Suppose you type
RUN and the machine says

OUT OF DATA IN 160

Looking at line 160 we see that the computer was trying to
READ a number into M(N). It looked for a number in a DATA
statement but they had all been used up. It would be sensible
to use

PRINT N

to see how many numbers it did find. Almost certainly you will
see 12 indicating that it has found eleven numbers but couldn’t
find a twelfth. Possibly you have missed one of the twelve
month lengths but it could be that a comma is missing so that
30,31 for example has been READ as 3031 so that you have
3031 days in November and no number left for December.
The most effective way to solve such problems is careful
thought but you must bear in mind that such errors as a
missing comma can have surprising effects.

IMPROVEMENTS

A better version of the program will ask the user for the year
number and do its own calculations to decide if it’s a leap year
(easy) and which day is the first of January (hard). Also we will
be able to print each month in table form with the day names

Reading Data 95
as column headings and the weeks in rows rather than just
giving a list of the days.

12
Subroutines

“I shall return."

General Douglas MacArthur.

We have encountered one BASIC word, DATA, wnich has the
unusual property that it is part of a program but does not give
the computer anything to do - it is not an instruction. A line
beginning with the word DATA merely sits in your program
waiting for a line with READ in it to be used. All the other words
cause something to happen, DATA just waits. If the computer
gets to a DATA line while it is running the line is ignored.

REMARKS

There is another BASIC word with the same property, that is
not doing anything, it is REM, short for REMARK. The point is
that in all but the shortest programs you need to put messages
to yourself to remind you what various parts of the program do
or how they work. A line beginning with REM may contain
anything you like, it will appear when the program is listed but
have no other effect whatever. If a program contains a large
number of good quality comments, as REM lines are called,
then it is very much easier to understand it and improve it.

At the start of a program it is normal to include comments
giving its name, purpose, author and similar information. To
make the information stand out it is usual to put blank REM
lines and underlining. Please remember that the sole purpose

Subroutines 97

of this is so you will see it when the program is listed. It doesn’t
make the computer do anything and will be ignored when the
program is RUN. Here is an example.

10 REM ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
20 REM
30 REM FOOTBALL POOL PREDICTOR
40 REM
50 REM (VERSION 3.4 19/5/84)
60 REM
70 REM COPYRIGHT GORDON BENNET 1984
80 REM
90 REM ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

Later in this program there will be sections to perform the
various tasks the program will need to do. Each one should
have a REM to indicate its purpose. They would in this case no
doubt include such things as

200 REM ★★★ ASK FOR SATURDAY’S RESULTS

and

400 REM ★★★ TOTAL LAST SIX SCORES

and

1000 REM ★★★ CALCULATE PROBABILITY OF DRAW

The fact that the author of a program has put in such REMs is
of course no guarantee that the program will in fact do what he
wanted but it will make it much easier to sort out the problems.

LONG PROGRAMS

All the programs in this book have been comparatively short.
You can more or less take it all in at one reading. This is

98 Subroutines

because they were each intended to illustrate a programming
point rather than to perform a practical job. Useful programs
tend to be much longer. A computer with 16K of memory can
contain hundreds of lines of program and 48K or 64K
machines are not uncommon. Writing a long program is a
different problem from writing a short one. More planning is
required and you have to test the different parts separately
because mistakes are more difficult to find when programs are
longer. One of the ways to facilitate this is the use of REM lines
to separate the sections when you list the program but there is
another - the subroutine.

SUBROUTINES

I suggest that you read this now without worrying too much
about the details and return to it when you find you need to, as
you will later. It is much easier to come to grips with a difficult
idea under the pressure of necessity.

A subroutine is part of a program which is written to do a
specific job and written in such a way that it can be used
whenever required. There are two new BASIC words, GOSUB
and RETURN. Suppose you decide to improve the way your
program shows its results by printing the following.

100 PRINT
120 PRINT
130 PRINT

nw

The three lines print a line of dashes separated by blank lines.

You might need to do this many times at different places in a
long program and you would find yourself typing the same
three lines over and over again. To avoid this you could make
the three lines into a subroutine like this.

Subroutines 99

1000 REM LINE OF DASHES SUBROUTINE
1010 PRINT
1020 PRINT M

99

1030 PRINT
1040 RETURN

When in the program you needed to print a line of dashes you
would use GOSUB to do it like this.

230 GOSUB 1000

and

550 GOSUB 1000

and

710 GOSUB 1000

When the computer gets to such instructions while the
program is running these work like GOTO in that line 1000 will
be used next. Why not use GOTO then? The reason is that
when the dashes have been printed we want work to resume
from the line after the GOSUB. If you use GOTO you will have
to end the subroutine with another GOTO to send the
computer back again. This won’t do because you would have
to know what line number to jump back to. Since we will wish
to use the subroutine at different lines in the program the line
to return to is different each time. GOSUB causes the
computer to remember from which line it came when it jumps
to a subroutine so that RETURN can cause it to jump back to
the correct place. This system is intelligent enough for one
subroutine to be able to invoke another by itself containing a
GOSUB so that the computer has to simultaneously
remember two places to RETURN to. It is even possible for a

100 Subroutines

subroutine to call itself by containing a GOSUB to its own first
line. This is called ‘recursion’. If I were you I should avoid it till
you are thoroughly familiar with using subroutines in a
straightforward way.

To summarise, a subroutine is part of a program invoked, or to
use a bit of computer jargon, ‘called’ by the word GOSUB
followed by the number of its first line. It ends with the word
RETURN which causes a jump back to the line after the line
where the GOSUB was.

A NOTE FOR BBC USERS

The BBC and Electron computers have a version of the
subroutine called a ‘procedure’. These have several
advantages one of which is that the programmer gives them
names. This means that they can be called by name rather
than having to remember the number of the first line as one
would with the ordinary subroutine. The details will be found
in the instructions under DEFPROC, PROC and ENDPROC.
However GOSUB and RETURN, as described above, are also
available.

PARAMETERS

The word ‘parameter’ is one which has been picked up from
‘computerese’ so that one can hear it in use by politicians and
other experts every day. It is usually difficult to decide what
they think it means but in programming it has a definite
significance.

The subroutine used to introduce the idea earlier did the same
job every time it was used. It printed a line of dashes. You will
recall that the reason for using it was to avoid the need to write
the bit of program which prints a line of dashes every time we
needed the job done. Consider a program concerned with
prices. It might frequently be necessary to print a price correct
to two decimal places, to make it an exact number of pence.
Here is a subroutine to do the job.

Subroutines 101

2000 REM SUBROUTINE TO PRINT X TO 2 DP
2010 PRINT (INT(100*X+0.5))/100
2020 RETURN

There is a snag. It is probable that the number you wanted
printing would on one occasion be in a variable P, later in Q
and at another place in the program in B. If you changed the
subroutine to make it print P you would need a different
subroutine later for printing Q. This defeats the object of
having subroutines which was to enable us to use the same bit
of program more than once.

This is why the subroutine was specifically written to print the
number in X. You use it like this. If you want the number in P
printed you use two lines.

340 LET X=P
350 GOSUB 2000

Later, when you want Q printed, you use

570 LET X=Q
580 GOSUB 2000

Whenever you want to print a number to two decimal places
you copy it intoX, using LET, and then call the subroutine with
GOSUB. The function of the X is to carry a value into the
subroutine. X is called a ‘parameter’ of the subroutine, in this
case it is an input parameter.

OUTPUT PARAMETERS

In a program which asks the user to type something, and most
of them do, one might use a subroutine to do the asking. As an
example consider a program which might be used by a
teacher for dealing with homework marks. At various places in
the program the user would have to be asked to type a number
which must be a whole number in the range 0 to 10 inclusive.
Each time it will be necessary to check that the number typed

102 Subroutines

meets these conditions so it would be a good idea to write a
subroutine to do the job to avoid having to write the checking
part over and over again. Here is a possible subroutine.

I”

3000 REM TO GET A WHOLE NUMBER IN
3010 REM THE RANGE 0 TO 10 FROM THE USER.
3020 REM THE NUMBER IS RETURNED IN N
3030 INPUT “NUMBER PLEASE”;N
3040 IF N=INT(N) THEN GOTO 3070
3050 PRINT “FRACTIONS NOT ALLOWED’
3060 GOTO 3030
3070 IF N > —1 THEN GOTO 3100
3080 PRINT “MUST BE POSITIVE’
3090 GOTO 3030
3100 IF N < 11 THEN GOTO 3130
3110 PRINT “MUST BE 10 OR LESS’
3120 GOTO 3030
3130 RETURN

>99

The subroutine checks that the number is a whole number, is
above -1 and less than 11. If it fails any of these tests the user is
told why and asked to type the number again. This is repeated
until an acceptable number has been typed in which case the
RETURN is reached. The subroutine sends the computer
back to the line after the GOSUB which called it with the
number in the variable N. N is an output parameter used to
return a value to the calling part of the program.

TO SUM UP

I hope you have been able to follow the logic of this chapter
but I expect you have felt that the discussion of subroutines
and parameters has been rather detached from reality. It will
seem more positive when we use the ideas in programs. The
way in which subroutines are used in BASIC is something
which has attracted much adverse criticism by people who

Subroutines 103

prefer the language PASCAL in which the programmer is
more or less forced to structure a program as a collection of
subroutines from the start. In BASIC you can do a lot of useful
work without ever using a subroutine but, as I mentioned
earlier, in some circumstances-they are very useful.

13
Looking Back

“Them that asks no questions isn't told a lie."

Kipling - "A Smuggler’s Song”

RECAPITULATION

You will recall that there are two sorts of variable in BASIC,
number variables and string variables. Number variables are
places for storing numbers while string variables are for
storing words, or more correctly, string of characters, since all
the symbols on a keyboard, including punctuation and digits
as well as letters, are allowed. The names of string variables are
distinguished by a dollar sign on the end of them. This means
that a program may contain statements like

LET N=17

and

LET N$=‘‘EDWARD BEARin

but that

LET N=“CHRISTOPHER ROBIN”

would cause an error message because you can only put
numbers into N, as would

Looking Back 105

LET N$=6

because you can only put words into N$.

On the other hand you could use

LET N$=“SIX”

because SIX is a word in this sense rather than a number. You
could also have

LET N$=“0Or

This puts the string 007 into N$ rather than the number 7. I
hope this isn’t confusing! To clarify consider these two short
programs.

10 LET N=7
20 LET M=5
30 PRINT N+M

10 LET N$=“00r
20 LET M$=“005”
30 PRINT N$+M$

If you think about them you will realise that the first prints the
number 12 but the second prints the string 007005.

STRING FUNCTIONS

We have used the concept of a function in INT. This function
works on one number, its argument, and produces another
number, a returned value. Thus in

LET X=INT(Y)

the argument is the number in Y and a value is returned in X. In
this case both the argument and the returned value are

106 Looking Back

numbers but there are functions for which one or both are
strings.

The function LEN, short for length, returns a number, the
number of characters in a string argument. Try this program.

10 INPUT “WORD PLEASE”;W$
20 PRINT W$;“ HAS "¡LENÍWS);“ LETTERS’

When you RUN it it asks you for a word. If you type TUESDAY
it prints 7. If you type ABRACADABRA it prints 11. If you press
return without typing anything else it should print 0. Each time
LEN is telling you the number of letters in the string W$. Notice
that the argument, that is the contents of the brackets after the
LEN, has to be a string. If you tried

PRINT LEN(7)

you would get an error message, possibly something like
TYPE MISMATCH, because 7 is a number, but

PRINT LEN(“7”)

like

PRINT LENfS”)

will both cause 1 to be printed because both these strings are
of length 1.

A QUIZ PROGRAM

We are going to develop a program which asks the user
questions, accepts answers, and states whether the answers
are right or wrong. You could call this a quiz or an educational
program. One way to do this is to use the multiple choice
system so that the questions look like this.

Looking Back 107

WHO IS THE PRIME MINISTER?

1. MR. WILSON.
2. MRS. THATCHER.
3. MR. LLOYD-GEORGE.
4. MR. BALDWIN.

ANSWER?

The user is expected to type one of the numbers 1, 2, 3 or 4.
This approach is relatively easy to program but you might well
think it less than satisfactory. GCE examining boards are
increasingly using such tests so that they can be marked by
computer but we will attempt something better.

If we ask the same question a number of possible answers is
acceptable. For example MRS. THATCHER, MARGARET
THATCHER, MAGGIE THATCHER or even THE RT. HON.
MARGARET THATCHER should all be considered correct.
What we need to do is search through the user’s answer
looking for THATCHER. If it is there then the answer is right.
The same approach can allow for spelling mistakes to some
extent. If we were to ask

WHO IS THE LEADER OF THE LABOUR PARTY?

then mis-spelling of KINNOCK such as KINNOCH or
KINNOK could be taken as indicating that the user knew the
answer. We need to search for a string, KIN say, and accept the
answer if it is there. This will accept mis-spelling of the correct
answer but reject answers such as HATTERSLEY or FOOT.

In order to do this we will store the questions in DATA lines in
the program, following each question with the string which
has to be present in an answer if it is to be marked right. For the
two questions discussed so far this means that the program
will contain the lines.

108 Looking Back

1000 DATA “WHO IS THE PRIME MINISTER”
1010 DATA “THAT”
1020 DATA “WHO IS LEADER OF THE
LABOUR PARTY’
1030 DATA “KIN”

rw

This method makes it easier to increase the number of
questions in the quiz.

BASIC VERSIONS

String handling is an area where BASIC versions differ. If you
look at your machine’s instruction book you may well find
references to LEFT$, RIGHTS and MID$. These are fairly
common but the popular Sinclair machines use a different
method to produce the same results. I will deal with the first
method first and describe the Sinclair variation afterwards.

MICROSOFT VERSION

LEFTS, RIGHTS and MIDS are functions which are like LEN in
that they require a string as an argument. They also need a
number. You will see that the names all have a dollar sign on
the end. This indicates that the value returned is a string rather
than a number as is the case with LEN.

The easiest way to show what they do (if you haven’t guessed
from the names) is to use the program.

10 LET A$=“ABCDEFGH
20 PRINT LEFT$(A$,3)
30 PRINT RIGHT$(A$,4)
40 PRINT MID$(A$,3,4)

I”

Line 20 prints the string ABC. LEFT$(A$,3) means the leftmost
three characters of A$. In line 30 the string printed is EFGH
because RIGHT$(A$,4) is the rightmost four characters of A$.
MID$ is more complicated. The MID$(A$,3,4) in line 40 will

Looking Back 109

print CDEF, a string obtained from A$ starting at the third
character and containing four characters.

SINCLAIR VERSION

The Spectrum keyboard does not have LEFT$, RIGHTS, or
MID$ on it but the machine is capable of producing the same
effect. If you want part of a string you can get it out like this.

LET X$=A$(3 TO 7)

This sets X$ to a string withlfive letters taken from A$, starting
at the third and ending at the seventh. Run this program to try it
out.

10 LET A$=“SIR CLIVE SINCLAIR”
20 PRINT A$(4 TO 7)
30 PRINT A$(TO 5)
40 PRINT A$(13 TO)

Line20 will print “ CLI’, the fourth to seventh letters of A$. Line
30 has no starting number in the brackets. The computer will
assume that 1 is intended and print ‘SIR C’. Line 40 does not
contain a finishing number so the last one will be assumed and
‘NCLAIR’ is printed.

THE QUIZ

Now we can start the quiz program. A FOR — NEXT loop will
be used to repeat the process of asking a question and
checking the answer.

10 FOR N=1 TO 10
20 PRINT “*★★★★(QUESTION NUMBER “¡N;” ★★★

30 PRINT
40 READ Q$,A$

110 Looking Back

These lines start the loop and print a heading for the question.
Since the loop control variable is N the number in N will be 1
for the first question, 2 for the second question and so on. This
is why line 20 tells the computer to print ‘question number N’. I
have made N run from 1 to 10 to allow forten questions but this
could easily be changed. Line 30 prints a blank line and line 40
READS the question and the right answer from the DATA lines.
You will notice that it is possible to READ two items with one
READ line. This will put the first item of DATA, which will be a
question, into Q$, and the second item found, an answer, into
A$.
Now we must ask the question and give the user a chance to
type an answer. This is easily done.

50 PRINT Q$;
60 INPUT T$

The question was in Q$ so line 50 prints it. I have put a
semi-colon so that the cursor will be on the same line as the
question when the user is given an opportunity to reply by line
60.

We now have three strings in the computer. The question is in
Q$ and we shan’t need it again but we will need to compare
the user’s answer in T$ (we have used T for Try) with the right
answer in A$. If the user’s answer is shorter than the right
answer there’s no need to do any more since the answer must
be wrong. This situation is dealt with by

70 IF LEN(T$)<LEN(A$) THEN GOTO

I haven’t put a line number in after the GOTO because we
don’t know yet how long the rest of the program is going to be.
It can be filled in later.

If the user’s answer is equal to or longer than the right answer
we will have to do some comparing. You might think of
something like

Looking Back 111

IF T$=A$ THEN

but this won’t do. The user’s answer in T$ might be
MARGARET THATCHER but the right answer in A$ is going
to be something like THAT. As explained earlier this will cope
with the possibility of alternative right answers and most
mis-spelling.

It will be necessary to compare THAT with successive
bunches of four characters from MARGARET THATCHER to
see if any four match. “THAT’ will first be compared with
“MARG” then with “ARGA”, then with “RGAR”, then with
“GARE” and so on. Eventually “THAT gets compared with
“THAT” and we decide that the user’s answer was correct.
Here I have of course been using the Right Honourable Lady
merely as an example. We must write our program in such a
way that it works for any strings.

You can do it like this.

80 LET F=0
90 FOR P=1 TO LEN(T$)—LEN(A$)
100 IF A$=MID$(T$,P,LEN(A$)) THEN LET F=1
110 NEXTP

The variable F which is set to 0 in line 80 is being used as what
is called in programmer’s jargon a ‘flag’. Lines 90 to 110 do the
comparing setting F to 1 if a match is found. Thus if we get to
line 120 with F still equal to Ø .we will know that there was no
match.

Lines 90 to 110 require some explanation! P is running from 1
upwards so as to start with the first letter of T$. It does not
however need to run up to the last letter of T$ because we are
taking bunches of letters equal in length to the user’s answer.
Hence the top limit for P is LEN(T$)—LEN(A$). Line 100
compares A$ with such a bunch of letters. MID$ has been used
to extract the correct bunch. It has to start at the Pth letter and

112 Looking Back

its length has to be the same as the length of A$.
MID$(T$,P,LEN(A$)) does this. You will recall that
MID(X$,3,4) takes four letters of XS starting at the third.

Now all we need to do is tell the user if the answer was right or
wrong. These lines will do it.

120 IF F=0 THEN GOTO 150
130 PRINT “RIGHT’
140 GOTO 160
150 PRINT “WRONG”
160 NEXT N

If F still contains 0 the answer was wrong so line 50 causes a
jump to print the fact. Otherwise it must have been right and
the computer will get to line 130. The NEXT N in line 160 sends
the computer back to line 10 to repeat the whole process with
a new question.

All that remains is to fill in the line number we left blank in line
70. It needs to jump to line 150 because the answer given was
wrong so line 70 becomes

70 IF LEN(T$)<LEN(A$) THEN GOTO 150

The program is now complete. All we need to do is invent
some questions and try it out.

Here is the complete program.

10 FOR N=1 TO 4
20 PRINT “★★★★★ QUESTION NUMBER “;N;” ★★★★★”
30 PRINT
40 READ Q$,A$
50 PRINT Q$;
60 INPUT T$
70 IF LEN(T$)<LEN(A$) THEN GOTO 150
80 LET F=0
90 FOR P=1 TO LEN(T$)—LEN(A$)

Looking Back 113

I”

100 IF A$=MID$(T$,P,LEN(A$)) THEN LET F=1
110 NEXTP
120 IF F=0 THEN GOTO 150
130 PRINT “RIGHT”
140 GOTO 160
150 PRINT “WRONG”
160 NEXT N
1000 DATA “WHO IS THE PRIME MINISTER”
1010 DATA “THATCH
1020 DATA “WHO IS LEADER OF THE LABOUR
PARTY’
1030 DATA “KIN”
1040 DATA “WHO WROTE ‘PARADISE LOST’
1050 DATA “MILT
1060 DATA “WHO WAS THE SECOND HUSBAND OF
MRS. WALLACE SIMPSON
1070 DATA “SIMPS’

'99

m

I”

I have included four questions. I suggest you supply your own.

The Sinclair version needs to use the bracket convention for
extracting parts of strings. This only affects line 100 but I have
included other minor alterations. Here it is.

10 FOR N=1 TO 4
20CLS
30 PRINT “★★★★★ QUESTION NUMBER “;N;” ★★★★★’
40 PRINT
50 READ Q$,A$
60 PRINT Q$
70 INPUT T$
80 IF LEN (T$)<LEN (A$) THEN GO TO 160
90 LET F=0

100 FOR P=1 TO LEN (T$)—LEN (A$)
110 IF A$=T$(P TO P+LEN (T$)—1) THEN LET F=1
120 NEXT P
130 IF F=0 THEN GOTO 160

99

114 Looking Back

140 PRINT “RIGHT”
150 GO TO 170
160 PRINT “WRONG”
170 NEXT N
1000 DATA “WHO IS THE PRIME MINISTER”
1010 DATA “THATCH”
1020 DATA “WHO IS LEADER OF THE LABOUR
PARTY”
1030 DATA “KIN”
1040 DATA “WHO WROTE ‘PARADISE LOST ”
1050 DATA “MILT”
1060 DATA “WHO WAS THE SECOND HUSBAND OF
MRS. WALLACE SIMPSON
1070 DATA “SIMPS’

I”

14
Working Through

LORD SANDWICH: "You will either die at the rope’s
end, or of the pox. "

MR JOHN WILKES: “That must depend on
whether I embrace your lordship’s principles or

your lordship’s mistress.”

The best way for an author to annoy readers is to use
expressions like ‘this is left as an exercise for the reader’ or ‘it
will be readily apparent that..In this chapter we will give
answers to the problems that have been suggested in the text.
In most cases the solution given is only one of a number of
possibilities. We also include a number of programs intended
as examples of how to use BASIC to achieve practical results.

THINGS TO DO WITH PRINT (Page 19)

The number of hours in a week is given by

PRINT 7*24

The distance the car has been driven is given by

PRINT 56102 — 46563

The number of inches in a metre can be found by

PRINT 100/2.54

To change 98 degrees Fahrenheit to Centigrade you can use

116 Working Through

PRINT (98—32)*5/9

DAYS OF THE WEEK (Page 15)

You can list the days of the week like this

10 PRINT “SUNDAY”
20 PRINT “MONDAY”
30 PRINT “TUESDAY”
40 PRINT “WEDNESDAY’
50 PRINT “THURSDAY”
60 PRINT “FRIDAY’
70 PRINT “SATURDAY’

rj,

PRICE OF PETROL (Page 28)

This program will tell you how many litres of petrol at 40.5p
you can get for each number of pounds.

10 LET P=40.5
20 PRINT 100/P
30 PRINT 200/P
40 PRINT 300/P
50 PRINT 400/P
60 PRINT 500/P
70 PRINT 600/P
80 PRINT 700/P

and so on.

(Page 33)

The improved petrol price table can be produced like this.

10 INPUT “PRICE OF ONE GALLON”;P
20 LET C=P
30 PRINT N;“ GALLONS COST ”;C
40 LET N=N+1

Working Through 117

50 LET C=C+P
60 GOTO 30

(Page 35)

A better version using FOR and NEXT might look like this.

10 INPUT “PRICE OF ONE GALLON’’;P
30 PRINT “GALLONS”,“COST
40 FOR G=1 TO 20
50 PRINT G,G*P
60 NEXT G

INCOME TAX (Page 61)

The income tax program could be as follows. I have kept it
shorter than it could have been by not going as far as the
highest tax bands.

10 PRINT “TAXABLE INCOMES UP TO £21800 ONLY!”
20 INPUT “PLEASE TYPE YOUR ANNUAL INCOME”;!
30 PRINT “ARE YOU 1. A MARRIED MAN”
40 PRINT “ OR 2. NOT A MARRIED MAN”
50 INPUT “1 OR 2”;R
60 LET A=0
70 IF R=1 THEN LET A=2795
80 IF R=2 THEN LET A=1785
90 IF A=0 THEN GOTO 30
100 LET T=0
110 LET B=l—A
120 IF B < 0 THEN GOTO 240
130 IF B
140 LET T=0.3*B
150 GOTO 240
160 LET T=0.3*14600
170 LET B=B—14600
180 IF B
190 LET T=T+0.4*B

14600 THEN GOTO 160

2600 THEN GOTO 210

118 Working Through

200 GOTO 240
210 LET T=T+0.4*2600
220 LET B=B—2600
230 LET T=T+0.45*B
240 PRINT “INCOME TAX ”;T

HEADS OR TAILS (Page 83)

Here is the program for use in dice games. I have included ★’s
in the PRINT lines to make the results stand out.

10 IF RND(1)<0.5 THEN GOTO 40
20 PRINT “★★★★★★ HEADS ★★★★★★★’
30 GOTO 50
40 PRINT “★★★★★★ TAILS ★★★★★★★”
50 INPUT “MORE”;A$
60 IF A$ “N” THEN GOTO 10

PRINTING A CALENDAR (Page 90)

The improved calendar program follows. It asks the user
which year is required and uses this to decide whether it is a
leap year and to decide on which day of the week the first of
January falls. The dates are printed in seven columns one for
each day of the week. To make this happen it is necessary to
print a number in an exact number of spaces for which two
more functions came in useful.

The functions STR$ and VAL are for changing a string to a
number and a number to a string so that

LET N$=STR$(1234)

sets N$ to the string “1234”. On the other hand

LET N=VAL(“1234”)

sets N to the number 1234. If you try to find VAL for a string

Working Through 119

which is not understandable as a number, for example

LET N=VAL(“12A”)

then N will be set to zero. This is used by lines 70 and 80 to
make sure the user gives a genuine number as the year for
which a calendar is required.

10 REM ★★★ CALENDAR PRINTER
20 DIM M$(12),D$(7),M(12)
30 REM ★★★ GET YEAR INSISTING ON A NUMBER
40 REM WITH FOUR DIGITS
50 INPUT “WHAT YEAR”;Y$
60 IF LEN(Y$)O4 THEN GOTO 50
70 LET Y=VAL(Y$)
80 IF Y=0 THEN GOTO 50
90 REM ★★★ CALCULATE DAY OF FIRST OF
JANUARY
100 LET X=Y+INT(Y/4)+6
110 LET P=1+INT(7*(X/7—INT(X/7)))
120 REM ★★★ READ DAY NAMES
130 FOR 1=1 TO 7
140 READ D$(l)
150 NEXT I
160 DATA “SUN”,“MON”,“TUE” “WED”,“THU”,“FRI”,“SAT’
170 REM ★★★ READ MONTH NAMES AND LENGTHS
180 FOR 1=1 TO 12
190 READ M$(I),M(I)
200 NEXT I
210 DATA “JANUARY”,31,“FEBRUARY”,28,“MARCH”,31
220 DATA “APRIL”,30,“MAY”,31,“JUNE”,30
230 DATA “JULY”,31,“AUGUST”,31,“SEPTEMBER”,30
240 DATA “OCTOBER”,31,“NOVEMBER”,30,“DECEMBER”,31
250 REM CHECK FOR LEAP YEAR & SET
260 REM FEBRUARY LENGTH TO 29 IF SO
270 IF INT(Y/4)OY/4 THEN GOTO 300
280 IF INT(Y/400)=Y/400 THEN GOTO 300

tf w, ”;Y$

120 Working Through

290 LET M(2)=29
300 REM ★★★ MONTH PRINTING LOOP STARTS
HERE
310 GOSUB 600
320 FOR 1=1 TO 12
330 PRINT
340 PRINT “
350 REM ★★★ PRINT DAY HEADINGS
360 FOR J=1 TO 7
370 PRINT D$(J);“
380 NEXT J
390 PRINT
400 REM ★★★ MOVE OUT TO POSITION OF FIRST
DAY
410 IF P=1 THEN GOTO 460
420 FOR K=1 TO P—1
430 PRINT “
440 NEXT K
450 REM ★★★ DAY LOOPS STARTS HERE
460 FOR K=1 TO M(l)
470 REM ★★★ PRINT THE NUMBER IN K SO THAT
480 REM IT OCCUPIES EXACTLY 5 SPACES
490 PRINT RIGHT$(“ ”+STR$(K),5);
500 LET P=P+1
510 REM ★★★ REM IF SATURDAY MOVE TO SUNDAY
520 REM ON A NEW LINE
530 IF P < 8 THEN GOTO 560
540 LET P=1
550 PRINT
560 NEXT K
570 GOSUB 600
580 NEXT I
590 GOTO 660
600 REM ★★★ PRINT A LINE OF DASHES WITH A
610 REM BLANK LINE ON EITHER SIDE
620 PRINT
630 PRINT'!((

Working Through 121

n

640 PRINT
650 RETURN
660 END

If you type this program you will have to be careful with the
number of spaces between quotation marks, the number
matters because they are used to keep the columns straight.
The easiest way to get it right is to run the program and adjust
it to correct the faults.

As listed above the calendar fits nicely on a 48 column screen.
If your computer fits less than 48 characters on a line you will
have to make each line narrower. I got it to fit the 32 column ZX
Spectrum by reducing the number of spaces between
quotation marks in lines 330, 340, 370 and 430. It was also
necessary to print each date in four spaces rather than five. In
Sinclair Basic this can be done by replacing line 490 with the
lines

490 LET Z$=“ ”+STR$(K)
491 PRINT Z$(LEN(Z$)—3 TO);

A DATA PROCESSING PROGRAM

The following program is for maintaining a list of names, each
with a number. It can sort the list either in order of the numbers
or in alphabetical order of the names. A program of this type
would be of use to a teacher who had to sort mark lists but I am
sure you will think of your own applications.

The program uses a ‘menu’ system to allow the user to select
what he or she wants to do. The options are selected by
number. You will see that program is divided up into sections
by the REM lines so that you will be able to work out how it
works. You may wish to improve the program by including
options to use the tape recorder to save the information and
subsequently read it in again.

122 Working Through

99

Iff

I”

10 REM EXAMPLE PROGRAM ON
SORTING ★★★★
20 PRINT “THIS PROGRAM ASKS YOU FOR A’
30 PRINT “LIST OF NAMES EACH WITH A NUMBER
40 PRINT
50 PRINT “IT WILL SORT THE LIST EITHER BY”
60 PRINT “NAME OR BY NUMBER”
70 PRINT
80 INPUT “HOW MANY NAMES”;M
90 IF M > 2 THEN GOTO 120
100 PRINT “TRY AGAIN’
110 GOTO 80
120 DIM N$(M),N(M)
130 REM ASK FOR NAMES AND NUMBERS
★★★★
140 FOR 1=1 TO M
150 GOSUB 1000
160 NEXT I
200 REM ★★★★★★ OFFER MENU
★★★★★★★★★★★★★★★★★★★
210 PRINT “DO YOU WANT TO:”
220 PRINT
230 PRINT
240 PRINT
250 PRINT
260 PRINT
270 INPUT “1/2/3/4/5”;C
280 IF C<1 THEN GOTO 200
290 IF C>5 THEN GOTO 200
300 IF COI THEN GOTO 400
310 REM ★★★★★★★★★★★ PRINT WHOLE LIST
★★★★★★★★
320 FOR 1=1 TO M
330 PRINT l,N$(l),N(l)
340 NEXT I
350 GOTO 200
400 IF C<>2 THEN GOTO 600

1.LIST YOUR DATA”
2.SORT YOUR DATA’
3.AMEND’
4.GIVE UP”
5.START AGAIN

U

99U

I”M

«
I”M

Working Through 123

410 REM ★★★★★★★★★★★ SORT THE LIST
★★★★★★★★★★★
440 INPUT “1.BY NAME OR 2.BY NUMBER ”;S
450 FOR l=1 TO M
460 FOR J=1 TO 1—1
470 IF SOI THEN GOTO 500
480 IF N$(J)>N$(J+1) THEN GOSUB 2000
490 GOTO 520
500 IF S<>2 THEN GOTO 520
510 IF N(J)>N(J+1) THEN GOSUB 2000
520 NEXT J
530 NEXT I
540 GOTO 270
600 IF C<>3 THEN GOTO 700
610 REM ★★★★★★★★★ AMEND A RECORD
★★★★★★★★★★★★★★
620 PRINT
630 INPUT “WHICH ONE”;I
640 IF KI THEN GOTO 630
650 IF l>M THEN GOTO 630
660 GOSUB 1000
670 GOTO 200
700 IF C<>4 THEN GOTO 800
710 REM ★★★★★★★★★★ USER WANTS TO GIVE UP
★★★★★★
720 INPUT “ARE YOU SURE ”;A$
730 IF A$=“Y” THEN END
740 GOTO 200
800 REM ★★★★★★★★★★ USER WANTS TO RESTART
★★★★★★
810 INPUT “ARE YOU SURE”;A$
820 IF A$=“Y’’ THEN GOTO 80
830 GOTO 200
1000 REM ★★★ SUBROUTINE ASKS FOR RECORD
NO I ★★
1010 PRINT
1020 PRINT “RECORD NUMBER”;!

124 Working Through

1030 INPUT “NAME’’,N$(I)
1040 INPUT “NUMBER”;N{I)
1050 PRINT N$(I),N(I)
1060 INPUT “CORRECT’;C$
1070 IF C$<>“Y” THEN GOTO 1010
1080 RETURN
2000 REM ★★★ SUBROUTINE SWAPS RECORDS J &
J+1
2010 LET X$=N$(J)
2020 LET N$(J)=N$(J+1)
2030 LET N$(J+1)=X$
2040 LET X=N(J)
2050 LET N(J)=N(J+1)
2060 LET N(J+1)=X
2070 RETURN

HANGMAN

The following program plays the familiar hangman game.
There seems to be some doubt as to the rules but in this
version a letter is only inserted once if guessed correctly even if
it occurs more than once in the word. If you try to guess the
word and you guess wrongly you lose a life.

The RESTORE instruction in line 40 tells the computer to start
using the DATA lines from the beginning rather than carrying
on from where it has got to as it normally would. This is
necessary because the user is given the opportunity to play
the game again when it finishes.

10 REM ★★★★★★★★ HANGMAN ★★★★★★★★★★★★★★
20 REM
30 REM ★★★★ SELECT WORD ★★★★★★★★★★★★★★
40 RESTORE
50 LET P=1+10*RND(1)
60 FOR 1=1 TO P
70 READ W$
80NEXT I

Working Through 125

.U99

U 99

”;L;” LIVES LEFT

100 REM ★★★★ PREPARE FOR NEW WORD ★★★★★
110 REM ★ SET UP BLANK WORD
120 LET B$—
130 FOR 1=1 TO LEN(W$)
140 LET B$=BS+“-”
150 NEXT I
160 REM ★ SET UP NUMBER OF LIVES
170 LET L=10
180 REM ★ SET UP WORKING COPY OF WORD
190 LET C$=W$
200 REM ★★★★ LETTER LOOP STARTS HERE ★
210 PRINT
220 PRINT“ ”;B$;“
230 INPUT “LETTER OR GUESS”;G$
240 IF LEN(G$)>1 THEN GOTO 500
250 REM ★ SEARCH COPY OF WORD FOR GUESSED
LETTER
260 LET P=0
270 FOR 1=1 TO LEN(C$)
280 IF G$=MID$(C$,I,1) THEN P=l
290 NEXT I
300 IF P>0 THEN GOTO 390
310 PRINT “SORRY - LIFE LOST’
320 LET L=L-1
330 IF L>0THEN GOTO 200
340 PRINT “YOU ARE HANGED’
350 PRINT “ THE WORD WAS
360 INPUT “ANOTHER GO”;A$
370 IF A$=“Y” THEN GOTO 10
380 GOTO 999
390 REM ★ INSERT CORRECT GUESS IN BLANKS
400 LET T$=LEFT$(B$,P-1)
410 LET T$=T$+G$
420 LET T$=T$+RIGHT$(B$,LEN(B$)-P)
430 LET B$=T$
440 REM ★ REMOVE FOUND LETTER FROM COPY
450 LET T$=LEFT$(C$,P-1)

I”

n

126 Working Through

460 LET T$=T$+“*’
470 LET T$=T$+RIGHT$(C$,LEN(C$)-P)
480 LET C$=T$
490 GOTO 200
500 REM USER HAS ATTEMPTED TO GUESS
THE WORD
510 IF GOW THEN GOTO 310
520 PRINT
530 GOTO 350
1000 DATA “AMBIDEXTROUS” “HAEMOPHILIA”
1010 DATA “INTERFERENCE” “REACTIONARY”
101020 DATA “PARASITE”,“SUPERSTRUCTURE ’
1030 DATA “SYMPHONY”,“OSTRICH’
1040 DATA “INDIVIDUAL”,“FREQUENCY’
1050 DATA “DOWNSTAIRS”,“CHICANERY”

ti WELL DONE - CORRECT”

I”

f99

•w

MORTGAGE PROGRAM

The next program prints a table showing your position at the
end of each year of paying a mortgage. The subroutine at line
1000 is concerned only with printing the money neatly and if
you wished you could replace lines 290 to 330 simply with one
line.

290 PRINT Y,IA

The point is that most versions of BASIC will not print columns
of figures with the decimal points under each other. This
subroutine shows one possible way to improve the
appearance of the numbers.

10 REM ★★★ PAYING A MORTGAGE ★★★★★★
★★★★★★★
20 REM
30 REM ★ ASK FOR DETAILS
40 INPUT “RATE OF INTEREST”;R
50 INPUT “AMOUNT OF LOAN”;A

Working Through 127

60 INPUT “HOW MUCH TO PAY EACH MONTH’’;P
70 REM ★ START AT YEAR0
80 LET Y=0
100 REM ★ PRINT HEADINGS
110 PRINT “YEAR”,“INTEREST’,“MONEY OWED”
200 REM ★ CALCULATE POSITION AFTER THIS
YEAR
210 REM ★ CALCULATE YEARS INTEREST
220 LET l=R*A/100
230 REM* ADD INTEREST AND SUBTRACT
PAYMENTS
240 LET A=A+I -12*P
250 REM * ADVANCE THE YEAR
260 LET Y=Y+1
21^ REM* PRINT ALL THESE TO THE NEAREST P
280 PRINT Y,
290 LET X=l
300 GOSUB 1000
310 LET X=A
320 GOSUB 1000
330 PRINT
340 REM * CHECK FOR END
350 IF A>0 THEN GOTO 200
360 PRINT “DEBT PAID OFF
370 END
1000 REM *** SUBROUTINE PRINTS X IN POUNDS
1010 REM *** AND PENCE
1020 REM * ROUND X TO 2 DECIMAL PLACES
1030 LET X=(INT(100*X+.5))/100
1040 LET X$=STR$(X)
1050 REM * IF X IS A WHOLE NUMBER ADD A POINT
1060 IF X=INT(X) THEN LET X$=X$+“.”
1070 REM * IF POINT IN RIGHT PLACE PRINT NOW
1080 IF MID$(X$,LEN(X$)-2,1)+“.” THEN GOTO 1120
1090 REM * IF NOT ADD A 0 AND TRY AGAIN
1100 LET X$=X$+“0

M »

i”

128 Working Through

1110 GOTO 1080
1120 PRINT RIGHT$(“
1130 RETURN

’’+X$,10),

15
Winding Up

“This darned machine will drive me mad,
I wish that they would sell it.
It never does just what I want,

But only what I tell it."

Anon.

AIMS

This book claims, as promised at the beginning, to be only an
introduction - but a very thorough one - to how to use BASIC.
If you were a complete newcomer at the start but have read the
text carefully and used the examples on your computer you
will be able to use the common BASIC keywords easily and be
able to spot the cause of the usual error messages. You will be
able to understand the details of other people’s programs and
be able to adapt program listings from books and magazines
to run on your machine provided they do not use non­
standard language features which the author has regretably
not seen fit to explain. You will have picked up some ideas
about how to set about using the computer on your own
problems but you would probably be apprehensive about
starting some major programming job and worried that you
have chosen an inappropriate and lengthy method when a
simpler one is available. There are books to give advice but in
this area precept is no substitute for experience. Use a
computer whenever you get a chance.

Students often say, “I’ve learned BASIC but I don’t seem to be
able to write programs”. The difficulty they, and possibly you,
find is that understanding how the language works is not the

130 Winding Up

same as being able to use it. If you were given a Swedish
grammar and dictionary and told to translate today’s ‘Times’
leader into Swedish by lunchtime you would be unlikely to
produce something that ABBA would regard as acceptable.
Using a language effectively requires experience and practice.
You will find if you persist with BASIC and write simple
programs whenever an opportunity arises that it will get very
much easier. At first it is difficult to decide what is a simple
problem to program and what is a difficult one. Here again
only experience will help - but one useful rule is: “if it’s hard,
give up”. I justify contradicting the “if at first you don’t succeed
...” maxim by saying that all programs should be simple, or at
least constructed of simple pieces joined together. If you find
yourself lost in the complexity of what you are trying to do you
must break it into smaller bits. A large program should consist
of understandable chunks each no larger than you can see on
the screen at once.

DEBUGGING

Inevitably you will write programs that don’t work. There are
two sorts of‘bug’, a word used by computer jargon enthusiasts
for any sort of mistake. The first sort will be detected by your
computer when you try to run the program and it tells you that
you have made a mistake in the syntax of BASIC. You will
soon learn to avoid these. More difficult are the variety of bug
which causes the computer to do something but not to do
what you wanted. You told it to do something silly and it did.
Here is a list of some common causes of trouble.

1. Inverted logic in conditions. Think hard about such lines as

IF X = 100 THEN ...

could you possibly have meant

IF X O1M THEN ...

Winding Up 131

2. Forgetting to initialise variables. If as in, for example, the quiz
program discussed earlier the variable S is used to hold the
player’s score one might put

LET S=0

early in the program to start the score at zero. If at the end the
user is given a chance to play the game again then does S get
reset to zero for the second attempt? If not the score will grow
illogically large.

3. Reversed order in LET. The line

LET A$=Y$

copies the contents of Y$ into A$. The present contents of A$
are lost. It is terribly easy to get this the wrong way round.

4. ‘Off by one’ errors. The following program fragment was
intended to use READ five times to get five values into the
array W$

100 LET C=1
110 READ W$(C)
120 LET C=C+1
130 IF C<5 THEN GOTO 110

I n fact it only READ’S four words because when C is increased
from four to five in line 120 the fact that it has reached five will
prevent the bckward jump in line 130.

5. Forgetting trivial cases. A program which works
successfully for ‘normal’ numbers may collapse when
confronted with 0 or 1. The following program fragment was
intended to change a word (in W$) from capital to small letters.

.ÍÍ99200X$=‘
210 FOR 1=1 TO LEN(W$)
220 LET X$=X$+CHR$(ASC(MID$(W$,l,1))+ASC(‘‘a”)
—ASC(“A’’))
230 NEXT A
240 LET W$=X$

132 Winding Up

It works except for the case where W$ happens to be an empty
string, that is W$=“”. LEN(W$) will then be 0 so that when the
FOUR-NEXT tries to extract the first letter of W$ it doesn’t exist.
You will certainly make all the above mistakes and more! One
can easily fall into the trap of becoming convinced that the
computer has ‘gone wrong’ - it won’t do what you want. This is
a mistake, it’s always your fault, and the satisfaction to be
gained by getting your own programs to work is enormous.
Good Luck.

Appendix

A list of common BASIC keywords.

This is a quick reference guide. It is not comprehensive and of
necessity does not give full details. I have included a number of
words which are not covered in the text of the book but which
you may well encounter.

X and X$ are used here to stand for any variable and string
variable.

[expression] stands for a number or something the computer
can work out which produces a number.

eg

7

or

X

or

2*X

or

Winding Up 133

(-B+SQR(B*B-4*A*C))/(2*A)

[string expression] stands for a string or something the
computer can work out which produces a string.

eg

I”“FRED’

or

A$

or

A$+“FRED”

or

“!”+Z$+“!”

ABS A function which returns it argument unchanged if it is
a positive number but makes it positive if it is negative.

LET X=ABS([expFession])

ASC A function with a string argument which returns a
number. The argument should be only one character and the
number returned is the number it has been given in what is
called the ASCII code. This is the American Standard Code for
Information Interchange which gave all characters a number
for use in teleprinters. A is a number 65 and Z is number 90.

LET X=ASC([string expression])

CHR$ A function which returns a single letter string and
requires a number argument. It returns the character of which
the number is the ASCII code. (See ASC)

134 Winding Up

CLEAR Is used by some BASICS to create space for string
variables. If you get a message like ‘out of string space’ this is
the word to look up.

CLS Clears the screen in some BASICS.

CONTINUE In some versions this word is used to re-start a
program if you have interrupted it with a break key on the
keyboard while it was running.

Has no effect on the running program. LinesDATA
beginning with DATA exist to provide values for READ to use.

This word warns the computer that you intend to useDIM
array variables so that it can have space ready.

DIM X([expression])
DIM X$([expression])

FOR Causes a portion of program to be used a number of
times. It must be used in conjunction with a subsequent line
beginning with NEXT

FOR X=[expression] TO [expression]
FOR X=[expression] TO [expression] STEP [expression]

GOSUB Tells the computer which line number to use next
but to remember the line number of the GOSUB for use when
RETURN is encountered.

GOSUB [line number]

GOTO Tells the computer which line number to use next.

GOTO [line number]

Causes the computer to decide what to do nextIF
according to whether a condition is true.

IF [condition] THEN [some other keyword]

Winding Up 135

INT A function which returns the next whole number below
its argument, or its argument unchanged if the argument is
already a whole number.

LET X=INT([expression])

INPUT Causes the computer to wait for the user to type.

INPUT X
INPUT X$

LEFTS A function which returns a string and which requires
a string argument and one number argument.

LETX$=LEFT$(Y$,I)
sets X$ to the leftmost I characters of Y$

LET Moves a value to a variable.

LET X=[expFesslon]
LET X$=[string expression]

LIST Lists the current program. In most machines it may be
followed by a line number to start at.

This word is sometimes provided to PRINT on aLPRINT
printer, if you have one rather than on the screen.

MID$ A function which gives a string result and requires a
string argument and two number arguments.

LET X$=MID$(Y$,I,J)
sets X$ to J characters of Y$ starting with the characters in
position number I.

NEXT Used in conjunction with FOR.

NEXTX

PEEK A function provided because of the inadequacy of
some versions of BASIC. Its argument is a number which has

136 Winding Up

to be what is called an address and it returns the number the
computer has stored in that address. BASIC was invented
precisely so that you wouldn’t have to do things like this.

PI This looks like a variable name but isn’t. In some BASICS
you can use it to provide the maths teacher’s favourite number
3.14159.

POKE Allows you to over-ride BASIC and force the
computer to store a number at a particular address inside
itself. As in the case of PEEK it shouldn’t be necessary. If you
use it be careful. You can’t do any physical damage but you
might, for example, cause the keyboard to stop working and
have to unplug the computer and start again.

POKE [address],[expression]

PRINT Prints the print items following on the screen.

PRINT [expression or string expression]
PRINT prints a blank line

Optionally several items can be printed separated by commas
to space them out or semi-colons to pack them together.

READ Puts values into variables taking the values from
DATA lines.

READ [variable]

Optionally several variables may be present separated by
commas.

REM Has no effect whatever. Lines beginning with REM are
only present so that they will be seen when the program is
listed to provide information to the programmer.

Winding Up 137

RESTORE Causes the next READ to take values from the
first DATA in the program rather than carrying on from where it
has got to.

RETURN Causes the next line used to be the one after the
last GOSUB used.

RIGHTS A function which returns a string result and
requires a string argument and a number argument.

LET X$=RIGHT$(Y$,I)
sets X$ to the rightmost I characters of Y$.

RND A function which returns a random number. An
argument is required by some versions of BASIC to tell the
computer where to start in its random number table. In most
BASICS random numbers are in the 0 to 1 range.

RUN Causes the computer to follow the instructions of the
program starting at the first. In most machines RUN may
optionally be followed by a line number to start at.

STR$ A function with a number argument which returns a
string. The returned string is what would appear on the screen
if the number were printed.

LET X$=STR$([expFe8sion])

SQR A function which returns the square root of its
argument.

LET X=SQR([expression])

The expression cannot have a negative value.

USR This is a function often provided to allow you to leave
the safety of BASIC and use programs written in other
languages. Avoid using it by accident.

138 Winding Up

VAL A function with a string argument which returns a
number. The string should be one which would look like a
number if printed, for example “231”, though for practical
purposes it will be a string variable. The returned value is the
value of the number it looks like.

LET X~VAL([string expression])

If the string expression doesn’t look like a number it returns
zero.

INDEX

ABC
Adding strings
Alphabetical sort program
Appendix
Arrays
ASC
Astrology Program

................... 123

..................... 67

............... 68,69
132,133,134,135
............... 72,73
................... 133
............... 59,60

BASIC
BBC Computers ...
Binary numbers
Blanks
Brackets
Break
Calendar program ..
Cassette
CHR
CLEAR
CLS
Commas
Conditions
Continue
CONTROL
Conversion Programs
Correcting mistakes
Cursor

.................................. 10,11

...................................... 100

.. 37

.................................. 34,35

.. 47

.. 43
90, 91,92, 93, 94, 95,118,119
.. 62
...................................... 133
...................................... 134
...................................... 134
.................................. 32,33
....................... 57,.58, 66, 67
...................................... 134
.................................. 13,43
............................. 19, 20, 31
.. 13
.. 12

DATA
Data processing program
Debugging
Delays
DELETE
DIM
Division sign

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 107,134
...................................... 121,122,123,124
.. 60,130,131,132
... 52
... 13,30
.. 73,76,88,134
... 18

Editing
END
ENTER
Error messages
ESCAPE

............. 23, 24, 30

......................... 57

......................... 14
30, 47, 62, 67, 73, 94
......................... 43

140 Index

FOR/NEXT 47, 48, 49, 50, 51,52, 70, 71, 93,134

GOTO
GOSUB

42, 43,55, 56, 57, 61,99,134
....................... 99,100,134

Hangman program 124,125

IF — THEN
INPUT ...
INT

 55, 56, 57, 58, 60, 62, 73,134
29, 30, 31,49, 65, 70, 71, 72, 73, 74, 75,135
.................................... 81,84,85,86,135

Jump instructions 43

Keyboards

Languages .
LEFT
LEN
LET
Line numbers
Lines
LIST
Loops
LPRINT

.. 10,103

... 108,135

... 110,111,112
26, 28, 29, 38, 39, 40, 41, 42, 56, 73,104,105,135
.. 21,22
.. 13
... 21,22,23,135
.................................... 42,43,44,50,51,75,93
.. 135

Memory
MID
Mortgage program
Mug-proofing ...,
Multiplication sign

NEW
New line
Nested loops
NEXT
Number cruncher program

............... 25,74
108, 111, 112,135
,.. 126,127,128
... 59,60,61,85
..................... 18

24
14
53

135
52

Output paramaters
Out of data
Paramaters
PEEK
Petrol program
PI
POKE
Powers
PRINT

... 101,102

... 94

... 100,101

... 135

.................................... 28,44,48,49,116

... 136

... 136

... 37
9,15,17,18,19, 20, 21, 26, 27, 32,115,136

Index 141

Program 9

Quiz program
Quotation marks

106,107,109,110, 111, 112,113,114
.................................. 15, 33, 65, 66

RAM (Random access memory)
Rates program
READ/DATA
Recursion
REM ..
Restore
RETURN
RIGHT
RND ..
Rounding figures
RUN ..

.. 25,74

.. 41,42
87, 88, 89, 90, 91,92, 93, 94, 95,136
.. 100
.................................... 96,97,136
.. 124,137
................................ 14,18, 98, 99
.. 108,137
....................... 79,80,81,118,137
........................... 36,81,82,84,85
.. 22,137

Sales commission program
Scrolling
Semi-colons
SHIFT
Sinclair machines
SQR
Statistical program
STEP
Stop codes
String handling
Strings
STR
Subroutines

............................. 70,71,77,78

............................ 43

............................. 34,35,53,68

.. 13

.............................. 22,109,113

.. 137

.. 83

.. 50,51

.. 58

.. 108
64, 65, 66, 67, 68, 69, 90,105,106
.. 137
...................................... 98,101

Tabulating
Tapes ...
Tax conversion program
Temperature conversion programs

.... 33,34

......... 62
61,117,118

56, 57,115

USR 137

VAL ...
Variables

.. 138
27, 36, 38, 39, 48, 65, 74,104,105

Whole number sub-routines 102

BRAINTEASERS FOR YOUR COMPUTER

A unique series of books designed for
the 15 plus age group to test logic,

general knowledge, maths and
reflexes with a twist, as many of

the programs will show your IQ rating.

BRAINTEASERS FOR THE BBC/ELECTRON

BRAINTEASERS FOR THE SPECTRUM

BRAINTEASERS FOR THE COMMODORE 64

BRAINTEASERS FOR THE VIC 20

BRAINTEASERS FOR THE DRAGON 32

Available through good bookshops
or direct from

PHOENIX PUBLISHING ASSOCIATES LTD
14, VERNON ROAD, BUSHEY, HERTS

at £5.95
plus 55p post and packaging

MACHINE TITLES
also available from PHOENIX

THE TEXAS PROGRAM BOOK (£5.95)
A wide ranging collection of games, puzzles, utilities and

business programs.

GETTING STARTED WITH THE
TEXAS TI99/4A (£5.95)

The essential guide to the first-time users. Contains
many useful hints and example programs.

THE ATARI 600 XL PROGRAM BOOK (£5.95)
A wide ranging collection of games, puzzles and routines.

GETTING STARTED WITH THE
ATARI 600 XL (£5.95)

An essential guide for the new user. Covers the special uses
of ATARI BASIC.

THE COMMODORE 64 PROGRAM BOOK (£5.95)
THE ORIC PROGRAM BOOK (£5.95)

THE AQUARIUS PROGRAM BOOK (£4.95)
All titles contain a variety of program listings covering

games, adventures, puzzles and working utilities.

All the quoted titles are available from good bookshops
or direct from

PHOENIX PUBLISHING ASSOCIATES LTD
14, VERNON ROAD, BUSHEY, HERTS

(please add 55p post and packaging)

BUSINESS PROGRAMMING
ON YOUR HOME COMPUTER

A new series of titles aimed at Sales/Marketing
personnel who have asked themselves the question:

“How could I use my home computer
to help me with my day to day work,

without having to spend a fortune
on pre-packaged software?”

The books are written for the first timer and show how to
use a variety of programs including a database for a filing
system, sales graph plotting, sales forecasting and

customer record systems.

TITLES AVAILABLE ARE:

BUSINESS PROGRAMMING
ON YOUR SPECTRUM

(available now)

BUSINESS PROGRAMMING
ON YOUR COMMODORE 64

(Publishing 28th September 1984)

BUSINESS PROGRAMMING
ON YOUR BBC MICRO
(Publishing 28th September 1984)

All titles are available from good bookshops
or direct from

PHOENIX PUBLISHING ASSOCIATES LTD
14, VERNON ROAD, BUSHEY, HERTS.

at £7.95 plus 55p post and packaging.

GETTING STARTED WITH BASIC
THE BEGINNERS GUIDE TO COMPUTING

If you have decided to begin ‘Computing’ and are too proud,
or embarrased, to ask your friends, colleagues or your own

children to help you then this book is for you.
Using ‘BASIC’, the common language of home computers,

through examples such as calculating your
mortgage payments, filing your address list, working out

petrol consumptions, and much more, you will move steadily
forward from beginner to confident user.

‘nov71 can understand what my children are doing-and
talking about’

Liz Bisset, mother
‘I wish I had started with a book like this’

Andy Thomson, Sales Manager
‘I could feel my fear of computers vanishingas I worked

through the book’
Nina Duncan, student

z o <Z5
s o I K
2
X
(£ O
Z o
ÛÎ
I-

D

o o I
co o co
z o

PHOENIX
PUBLISHING
Associates

ISBN D-THLS-VblS-?
90000

œ o 9 780946 576159
z o
(/) ÜJ £5.95

o
m

o
CZ)

:ö
m
o
S

OD
en

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	GETTING STARTED WITH BASIC
	CONTENTS
	INTRODUCTION
	1 - Why Call It a Program ?
	2 - Lining Up Numbers
	3 - Variable Things
	4 - Dots and Dashes
	5 - Lets and Loops
	6 - Fors and Nexts
	7 - Ifs and Thens
	8 - Stringing Along
	9 - Arraying Things
	10 - Functioning Properiy
	11 - Reading Data
	12 - Subroutines
	13 - Looking Back
	14 - Working Through
	15 - Winding Up
	INDEX

	

✅ Raw HQ scan : KailoKyra for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ Thanks to Rafa CPCMANIACO for lending the book

✅ 2021-12-02

