
T - • TA- •

lichard Meadows
Cassell
COMPUTING

PROGRAMMING THE
AMSTRAD CPC464

PROGRAMMING THE

AMSTRAD CPC464

Richard Meadows

Cassell

Cassell Ltd: 1 St Anne's Road,
Eastbourne, East Sussex, BN21 3UN

British Library Cataloguing in Publication Data

Meadows, R.G.
Programming the Amstrad CPC464.
1. Amstrad CPC464 (Computer)—Programming
I. Title
001.64'2 OA76.8.A4

ISBN: 0-304-31250-9

Typeset by Phoenix Photosetting, Chatham
Printed and bound in Great Britain by Mackays of Chatham Ltd

Copyright © 1985 by Cassell Ltd.
All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying or otherwise, without written permission from the publisher.

Last digit is print no: 987654 3 21

CONTENTS

Preface vii

1 Getting started 1

2 Beginning to write and run programs 18

3 Interacting with your program 34

4 Decision making, repetition, jumping and subroutines 43

5 Standard functions and applications 62

6 Basic graphics, drawing and plotting 79

7 Applications of arrays and files in programs 102

8 Some practical programs 119

Answers to exercises 129

Appendix I: BASIC keywords 142

Appendix II: Standard functions 147

Index 150

PREFACE

This book has been written to act as a practical guide to using and programming
the Amstrad CPC464 microcomputer. No prior knowledge of computing is
assumed, nor is it needed to follow the text.

The aim of the book is to give both newcomers, as well as the more
experienced users, enough knowledge and understanding of the machine to
enable them to write their own programs. At all stages, new concepts are
thoroughly explained and backed by practical program examples. Coverage
extends from the basics of the CPC464 computer and its operation to easy-to-
understand, but nevertheless powerful, programming techniques.

Richard Meadows Totteridge, London
January 19S5

Richard Meadows is Head of the Department of Electronic and
Communications Engineering at the Polytechnic of North London. He is an
experienced lecturer and has written on a wide range of subjects, from popular
home computing to advanced electronics. He is married with three children,
and lives in Totteridge, North London.

Dedication

Alexis, Piers and James

GETTING STARTED

1.1 INTRODUCTION

This introductory chapter is designed to familiarise the newcomer with using
the Amstrad CPC464 computer to gain experience in using the keyboard,
correcting mistakes if they are made, and seeing how to use some BASIC
commands.

We start straightaway to learn how to communicate directly with the CPC464
by typing in one of the most important commands in BASIC, the PRINT
instruction. Using PRINT we can see how to use the computer as a calculator,
how to display characters, words, symbols; and how to provide different
formats for the display of results on monitor or tv screen.

At the end of the chapter we take an introductory look at the screen display
modes and the colour facilities available on the CPC464.

1.2 SETTING UP AND MEANING OF SPECIAL KEYS

If you are not already familiar with setting up the CPC464 computer, fig. 1.1
summarises how to do this.

Fig. 1.1 Setting up the Amstrad CPC464 computer.

2 Programming the Amstrad CPC464

Simply set up as shown; switch on the monitor (power switch at front); switch
on the computer (slide switch on right hand side)—the red light on the
computer top panel shows you are on. Virtually immediately the caption shown
in fig. 1.2 appears on the screen. Adjust, if necessary, the brightness control
(right hand side of monitor) for a clear display.

Art3trad 64K Microcomputer <vl>

Al 984 Amstrad Consumer Electronics pic
and Locomotive Software Ltd.

BASIC 1.0

ieady

Fig. 1.2 Display obtained on monitor when first switching on. Presence of cursor (the small
square under Ready) shows the computer is 'ready' for immediate use.

You are now ’Ready’ to start. The ’Ready" condition is always indicated Dy
the presence of the screen cursor—the small square directly under the R of
Ready on the display.

The CPC464 computer has a full-size QWERTY keyboard that we will be
using immediately to communicate with the computer. However, some keys
have special functions and it is important to remember these:

The ENTER key, see fig. 1.3(a): This key is used to ENTER direct
commands and program line statements into the computer for processing.

Getting Started 3

The SHIFT keys, see fig. 1.3(b): The keyboard has two shift keys; pressing
SHIFT and an alphabetic key generates the upper case (capital) characters; in
the case of other keys, the character engraved on the top part of the key will be
generated, e.g. pressing SHIFT and the ; key generates the + symbol.

The CAPS LOCK key, see fig. 1.3(c): The CAPS LOCK key is switched on by
pressing it down. When on it will generate upper case characters for the
alphabetic keys, but continues to generate lower case characters (the character
on the lower part of the key) for all other keys unless the SHIFT key is also
pressed. CAPS LOCK is switched off by pressing the key again.

ENTER
ENTER SHIFT

(a) the ENTER keys:
used to ENTER commands,
statements, etc.

(b) the SHIFT key:
when pressed upper case characters are
generated

CAPS
LOCK

(c) the CAPS LOCK key:
when down (or 'on') upper
case alphabetic characters are
generated but lower case for
all other keys

DEL

(d) to DELETE:
deletes previous character
(to left of cursor) and may be used
repeatedly

CLR

(e) 'CLeaRs', i.e. deletes the
character under the cursor and like DELete may be used repeatedly.

CTRL SHIFT ESC

(f) To RESET the computer (i.e. clear the computer memory for a fresh start):
press CTRL, SHIFT and ESC keys in order, holding each
down until ESC key is pressed.

ESC

(g) ESCape key: (1) When pressed once will cause computer to pause
when executing a program; the program
can be restarted by pressing any other key.

(2) When pressed twice, program execution is halted;
'Break' message is displayed on screen. The cursor
is also displayed and the computer is 'ready' for
further commands.

Fig. 1.3 Function of special keys on the CPC464 computer.

4 Programming the Amstrad CPC464

The DEL and CLR keys (see fig. 1.3(d) and (e)) are used for deleting or
clearing characters when errors have been made.

To RESET the computer (see fig. 1.3(f)): press CTRL, SHIFT and ESC keys
in order, holding each key down until the ESC key is pressed. This action
RESETs the computer completely, clearing the computer's memory and any
characters on the screen, and returns the Amstrad caption and cursor to the
display of fig. 1.2.

The ESC key (see fig. 1.3(g)); when pressed once, it will cause a pause in
program execution; when pressed twice, it will halt or 'Break' program
execution and return the cursor to the screen.

1.3 USING THE COMPUTER AS A CALCULATOR

Here we explain how to use the computer as a calculator in its direct mode—
'direct' because the computer acts on a typed-in command immediately. We
will be using the BASIC PRINT command and the arithmetic symbols

+ , the + key, for addition
- , the — key, for subtraction
* , the * key , for multiplication
/ , the / key, for division

All we need to do to perform a calculation is to type in PRINT, press the
space bar to leave a space, and then the calculation using the arithmetic
symbols and number keys (see fig. 1.4). The calculation is performed
immediately the ENTER key is pressed and the result is displayed on the screen.
Never type in ENTER, just press the ENTER key. Always remember to leave a
space between PRINT and the calculation. If you do not the computer will
respond with the message "syntax error". If you make any mistakes use the
DEL key (see next section) or simply press ENTER and start again.

One further point, you can use the ‘print’ command in either lower or upper
case, i.e. print and PRINT are identical. The computer makes no distinction
between commands written in lower or upper case.

Examples

(1) To find 87 + 593
Action: type in
print 87 + 593 (and then press ENTER)

Getting Started 5

Fig. 1.4 Positions of arithmetic +, *, / keys.

The display obtained is shown in fig. 1.5.
Note the calculation is performed and displayed immediately the ENTER key

is pressed. The result is displayed followed by ‘Ready’ and the cursor. The
computer is now ready for further calculations.

6 Programming the A ms trad CPC464

Amstrad 64K Microconputer <vl>

®1984 Anstrad Consumer Electronics pic
and Locomotive Software Ltd.

BASIC 1.0

Ready
print 87+593

680
Ready

Fig. 1.5 Screen display after initial switch on and on entering the print command: print 87 + 593.

(2) To find 68.72 - 29.35
Action: type in
print 68.72 - 29.35 [ENTER]
39.37 . . .answer displayed.

Note: use the full stop key for the decimal point and always remember to
complete your print command by pressing ENTER; [ENTER] denotes this
action.

(3) To find 46.7 x 51.23
Action: type in
print 46.7 * 51.23 [ENTER]
2392.441 . . .answer displayed.

(4) To find 83.4 - 27.9
Action: type in
print 83.4/27.9
2.989247 . . .answer displayed.

Getting Started 7

(5) To find 52.6 + 3.4 x 5.21 - 842 + 63
Action: type in
print 52.6 + 3.4 * 5.21 - 842 / 63
56.9489207

By now if you have tried all the calculations you will be almost at the bottom of
the monitor screen. Any further work will still be accommodated by the display
automatically scrolling upwards.

Use of ? for print

We can use the ? key as shorthand for the print command, e.g.
? 47.3 + 42.9 and PRINT 47.3 + 42.9
are identical. A further advantage in using ? for print is that you do not have to
leave a space between ? and the calculation. In programs ? can also be used for
print and will be listed as such in the program listing.

Exercise problems 1.1

To gain some more practice try these:
(1) 456 + 876.
(2) 75 x 67 x 32.
(3) 452.78 + 45.3.
(4) 22.4 x 56.2 - 13.7 x 28.9.
(5) 0.01672 -h 0.00034.

1.4 CLEARING THE SCREEN AND CORRECTING MISTAKES

Clearing the screen

Simply type in cis, followed as always by pressing ENTER to action the
command, i.e.
cis [ENTER]
This will clear the whole of the screen and Ready followed by the cursor will
appear at the top of the screen.

Correcting mistakes: use of arrow, CLR and DEL keys

The forward and backward arrow keys can be used to position the cursor
anywhere in a line. You can then use the CLR key to delete the character under
the cursor or the DEL key to delete a character immediately to the left of the
cursor. Holding down CLR or DEL keys will cause successive deletions; CLR
effectively deletes characters to right of cursor continuously, DEL to the left.

8 Programming the Amstrad CPC464

Insertions can be made by first positioning the cursor to the wanted position
using the arrow keys and then simply typing in. The rest of the line to the right
of the cursor automatically scrolls sideways to make room for the insertions.

For example, find 877.663 + 998.456
Acfiozt: print877.663;998.446B
We have in fact (deliberately) made 3 mistakes:
(1) Second decimal place figure in 998.446 should be 5.
This can be corrected by pressing backward arrow once to bring cursor over the
6, then DEL key (deletes the 4), then the 5 key (inserts a 5).
(2) The ; should be +. Correct this by positioning cursor over; , press CLR (to
clear ;) and + key for + insertion.
(3) Space between print and calculation missing : position cursor to just before
the ‘t’ in print and simply press space bar to enter space. Now press ENTER and
the calculation will be executed.

1.5 PRINT ". . .string. . ." commands, separators, tab and print using

In this section we explain further uses of the print command including :
(1) The PRINT . ." command which is used to instruct the computer to
display characters, words, symbols, etc. typed within the double quotation
marks. (Note: the characters enclosed within the quotation marks are known as
strings in computer terminology.)
(2) The use of the semi-colon (;) in a PRINT instruction. A semi-colon acts as a
separator which provides an immediate display with no interleaving spaces
between successive string items or a single space between numeric items.
(3) The use of the comma (,) in a PRINT instruction. A comma instructs the
computer to print out successive items spaced 13 columns apart, i.e. the first
item begins at column 1, the second item at column 14, the third at column 27
and so on; if an item exceeds 13 characters then a multiple of 13 columns is
used.
(4) The TAB command.
PRINT TAB(n) "..... "
will cause n character spaces to be left before ‘printing' a string or result.
(5) PRINT using to format the results of calculations.
Print using takes the form,
PRINT USING "###.##"; (number, calculation, etc)
and allows you to specify the form of the result. The “tt##.##" sets the form of
the result. In our example it is set to 3 places in front of the decimal point and
two behind. If the result to be printed exceeds the allocated number of #s in front
of the decimal point, the result is still displayed but with a % symbol to indicate
that the format is insufficient.

Getting Started 9

Examples

(1) The command,
PRINT “Happy Birthday" [ENTER]
instructs the computer to display the words (the string) within the quotation
marks. On pressing the ENTER key, the string is immediately displayed on the
screen.

(2) Examples showing use of semi-colon and comma:
PRINT "a"; "b";"c" [ENTER]
abc . .displayed
PRINT "a", "b","c" [ENTER]
a b c . . .displayed
T T t

column 1 column 14 column 27

(3) Next let us see how we can combine the display of both strings and the
results of a calculation in a single PRINT statement.

Suppose we wish to display:
58.6 x 3.29 = (answer here)
on the screen.

Action: type in,
print "58.6 x 3.29 =" ; 58.6 * 3.29 [ENTER]

this instructs the
computer to ‘print’
the string within the
quotation marks

this instructs computer
to work out and display
result of calculation

typing in ; means answer
will be displayed one space only
to right of = sign in string

Thus after pressing ENTER, the following is displayed on the screen:
58.6 x 3.29 = 192.794

(4) Examples of use of TAB:
PRINT TAB(5) "a" [ENTER]

a . . .i.e. ‘a’ displayed 5 spaces from left-hand side of the screen.
PRINT TAB(5) "a"; TAB(10) "b"; TAB(15) "c" [ENTER]

a b c . . .display obtained.

10 Programming the Amstrad CPC464

(5) Print using example:
The computer will give results to 8 or 9 significant figures and this, more than
often, is far too many. For example,
PRINT 104.79*52.6/33.7 [ENTER]
163.559466 . . .answer displayed.
We can format our result to a given form to a defined number of decimal places
using:
PRINT USING "###.###"; 104.79*52.6/33.7
This command will display the result to 3 decimal places, so on pressing (as
always!) the [ENTER] key we obtain the display,
163.559

Exercise problems 1.2

Try these. For the calculation try also to display the calculation ‘string’ as well
as the result.
(1) Calculate 56.7 -r 3.3 and display on the screen
(a) just the result,
(b) the string "56.7/3.3 = " as well as the result,
(c) the result to two decimal places.

(2) Try typing in the following:
mode 0 [ENTER]
print "BASIC = Beginners All-purpose Symbolic Instruction Code"
followed by, as always, ENTER. Try the same with mode 2 and also mode 1 for
the first command.

(3) Calculate the following and display the answers of a single screen line:
4.62 x 3.8 , 57.33 6.3 , 42378.6 - 33499.7.

(4) Type in the command.
print PI [ENTER]
This will display ti to 9 significant figures.
What commands will display it to 1,2,3 and 4 decimal places?

1.6 FURTHER CALCULATIONS

Here we consider some further calculations involving the use of:
f key for finding powers (j' is the lower case character on the £ key)

SQR (X) for finding square roots
Brackets () keys for more involved problems.

Getting Started 11

To find powers: use of f key

Examples

(1) Find 863
Action: type in
print 86 t 3 [ENTER]

t_ f key pressed (see £ key); note display of the ‘upward arrow’ key
on the screen is A

636056 . . .answer displayed.

(2) Find 1.0852"
Action:
print 1.085 f 20 [ENTER]
5.112046 . . .answer displayed.

(3) Find 5.414
Action:
print 5.4 f 1.4 [ENTER]
10.60111 . . .answer displayed.

To find square roots: use of SQR(X)

CPC464 BASIC supports a number of standard functions, which we consider in
some detail in chapter 5. SQR(X) is one of them. It computes the square root of
the number, or numeric expression, A, enclosed by the brackets.

Examples

(1) Find V2079.36
Action: type in
print SQR(2079.36) [ENTER]
45.6 . . .answer displayed.
Note that the () brackets—uppercase on keys 8 and 9 of main keyboard—
must be used.

We could, of course, use the f key, i.e.
print 2079.36 t 0.5 [ENTER]
45.6 . . .answer displayed.

(2) Find V0.00987
Action:
print SQR(0.00987) [ENTER]
9.934787E-2 . . .answer displayed.
Note 9.935E- 2 = 9.935 x KF2 = 0.09935

12 Programming the Amstrad CPC464

Using brackets

When working out calculations involving several different operations, e.g.
addition, and/or multiplication, division, finding powers, etc., we must instruct
the computer with the correct order. The computer acts according to the usual
rules of precedence:
(1) It evaluates terms contained in brackets first.
(2) It carries out multiplication and division (from left to right) before addition
and subtraction.

Examples

(1) Evaluate 5.6 x 2.3

10.2 - 9.4 x 0.7
We must enter the expression into the computer using brackets to group the
numerator terms together and likewise the denominator, i.e.
Action:
print (5.6*2.3)/(10.2 - 9.4*0.7) [ENTER]
3.5580111 . . .answer displayed.

(2) Evaluate 61.4-29.5

4.8(56.2 + 33.6)
Action:
print (61.4 - 29.5)/(4.8*(56.2 + 33.6)) [ENTER]

* must be
inserted

outer brackets to hold together
the total denominator

7.400705E —2 . . .answer displayed.

(3) Evaluate / 21.7 V to 2 decimal places.

\3.8 + 6.5/3.5 /
Action:
print USING ; (21,7/(3.8 + 6.5/3.5J) J 5 [ENTER]
830.45 . . .answer displayed.

Exercise problems 1.3

Try working out these:
(1) V(5.62 x 3.98)
(2) 1500 (12.6 + 9.4)2

Getting Started 13

(3) 39.6 2
(4) 5.6(41.6 + 33.4)

(144.5 - 96.2)

(5) /4.7 + 3.6 x 2.9 V

\ 36.2 + 45.8 /

1.7 SCREEN DISPLAY: MODES 0, 1 AND 2

The CPC464 computer can be operated in any one of three modes which dictate
the size of character display on the screen, and if using a colour monitor or tv,
the number of colours you can select.

When you first switch on, the computer automatically defaults to mode 1,
known as the normal mode. In mode 1 the screen can be considered as far as
character unit size is concerned as consisting of 40 columns and 25 lines or rows,
see fig. 1.6(b). Try typing 12345 etc. and completely fill a line of screen—note
that you can display up to a maximum of 40 characters per line. In mode 1, four
colours are available at any one time for screen background (paper) and
character display (pen). The default colours—as you have obviously seen
already—are blue for paper and bright yellow for characters.

To change mode simple type in
mode n [ENTER]
where n = 0 for the large character and multi-colour mode ; n = 1 for the
normal mode; and n = 2 for the high resolution mode.

Thus if you type in,
mode 0 [ENTER]
the screen clears and you enter the ‘large’ character mode—you see this
immediately by the larger Ready and cursor sizes on the display. In mode 0 the
screen has 20 columns but still 25 lines, see fig. 1.6(a). Thus compared with
mode 1 the character width is effectively doubled with up to a maximum of 20
characters per line compared with 40 for the normal mode. Sixteen colours may
be used for paper and pen at any one time in mode 0.

Now type in,
mode 2 [ENTER]
The screen immediately clears and the display changes to mode 2, the high
resolution mode. In the high resolution mode there are 80 columns—so it is
possible to have up to 80 characters per line—but still as for modes 0 and 1,25
lines. Mode 2 can be useful in programming where line statements have more
than 40 characters since such longer statements can still be contained in a single
screen line. Only two colours are available at any one time in mode 2.

14 Programming the Amstrad CPC464

—*- Column number
(a) mode 0

20 columns by 25 lines,
1 6 colours available,
160 x 200 pixels
'multi-colour, large
character size mode'

(b) mode 1
40 columns by 25 lines,
4 colours available,
320 x 200 pixels
'normal mode'

(c) mode 2

80 columns by 25 lines,
2 colours available,
640 x 200 pixels,
'high resolution mode'

Fig. 1.6 The three screen modes available for the CPC464 computer for screen display.

Getting Started 15

1.8 INTRODUCTION TO COLOUR: BORDER, PAPER, PEN AND INK
COMMANDS

Fig. 1.7 Screen areas: border, paper (main screen background) and pen (character colours).

If you are using a colour monitor or a colour tv (in conjunction with the
Amstrad MP1 power supply and modulator unit) you can set the colour of
screen border, the central screen background (the 'paper') and that of the
character display (the ‘pen’) using simple commands.

You have a choice of 27 colours although only a selection of these are
available for display at a given time:
in mode 0 : up to 16 colours are available at any one time,
in mode 1 : up to 4 are available,
in mode 2 : only 2 are available.
For the ‘green’ only GT64 Amstrad monitor, the ‘colours' are displayed as
various shades of green.

When you first switch on, the display is automatically in mode 1 (the default
mode) with a blue screen (paper plus border) and bright yellow characters
(pen).

To set the border colour use the command,
border (ink number) [ENTER]
where the ink number is taken from the ‘ink number colour reference chart’ of
fig. 1.8. For example,
border 26 [ENTER]
will change the border colour from blue (default) to ink colour no. 26, which
you will see from fig. 1.8 is bright white. Any one of the 27 colours can be used

16 Programming the Amstrad CPC464

Fig. 1.8 Ink number colour reference chart.

Ink no. Colour Ink no. Colour Ink no. Colour

0 black 10 cyan 20 bright cyan
1 blue 1 1 sky blue 21 lime green
2 bright blue 12 yellow 22 pastel green
3 red 13 white 23 pastel cyan
4 magenta 14 pastel blue 24 bright yeilow
5 mauve 15 orange 25 pastel yellow
6 bright red 16 pink 26 bright white
7 purple 17 pastel magenta
8 bright magenta 18 bright green
9 green 19 sea green

for border. To see each one of these colours try entering in the following short
program. Type in each line and at the end of each line always press [ENTER].
To run the program, type in
RUN [ENTER]’

The program uses the border command at line 50 and runs consecutively
through the available ink colours from ink number 0 to 26.

10 REN *** PROGRAM TO SHOW 27 COLOURS ***
20 REM ** AVAILABLE ON THE AMSTRAD CPC 464 O
30 CLS
40 FOR ink.no = 0 TO 26
50 BORDER ink.no
60 PRINT "ink number of border =";ink.no
70 FOR delay = 1 TO 4000 : NEXT delay
80 CLS
90 NEXT ink.no

Paper and pen commands

The colour of the screen background—the paper—can be set using the paper
command and referencing the paper/pen number table of fig. 1.9 as follows:
paper (paper number) [ENTER]
cis [ENTER]
The paper command sets the screen colour as dictated by the paper number and
mode being used (i.e. according to the reference table of fig. 1.9). The cis
command clears the screen to this colour. For example, for mode 1
paper 3 [ENTER]
cis [ENTER]
changes the screen to bright red.

Getting Started 17

Fig. 1.9 Paper (screen) and pen (characters) colour reference chart. Screen and character colours
may be changed using the paper, pen and ink commands.

Paper/pen no.
'Ink-well no.'

Mode 0
1 6 colours,
20 columns

Mode 1
4 colours,

40 columns

Mode 2
2 colours,

80 columns

0 blue blue blue
1 bright yellow bright yellow bright yellow

2 bright cyan bright cyan blue
3 bright red bright red bright yellow

4 bright white blue blue
5 black bright yellow bright yellow

6 bright blue bright cyan blue
7 bright magenta bright red bright yellow

8 cyan blue blue
9 yellow bright yellow bright yellow

10 pastel blue bright cyan blue
11 pink bright red bright yellow

12 bright green blue blue
13 pastel green bright yellow bright yellow

14 flashing blueyellow bright cyan blue
15 flashing pink-«->- sky blue bright red bright yellow

The character colour may be changed using the pen command and again
referencing the table of fig. 1.9 for the pen number colour, i.e.
pen (pen number) [ENTER]
so pen 2 [ENTER]
will change, for modes 0 and 1, the character colour to bright cyan. Note paper
and pen numbers are identical. They can be thought of as ‘ink-well’ numbers
containing various ink colours.

Use of ink command

The paper and pen colours can be changed directly using the ink command
which takes the form:
ink (present paper/pen no. of colour) , (ink no. of new colour) [ENTER]
Thus, for example, if we first reset by pressing CTRL, SHIFT and ESC keys
(holding each down until ESC is pressed), then we return to the default
position: mode 1, blue screen (border plus paper) and bright yellow characters
(pen), i.e. paper no. = 0 (blue), pen no. = 1 (bright yellow). Now if we wish to
change the paper to, say, bright green (ink no. = 18) and pen to orange (ink no.
= 15) we use,
for the paper colour change: ink 0,18 [ENTER]
for the pen colour change: ink 1,15 [ENTER]

2
BEGINNING TO WRITE AND RUN
PROGRAMS

2.1 INTRODUCTION AND SUMMARY

In this chapter we begin to write simple but complete programs on the CPC464
computer.

We introduce the chapter with a brief discussion of what a program is, the
form a BASIC program takes, and some important points to be noted in
program construction.

We then consider some of the important BASIC commands and instructions
that will be used to form our program statements, to execute the program, and
to display a listing of the program contents.

We consider also the meaning of variables and allowable identifiers that may
be used within programs for handling data; how a program may be edited; and
finally how a program may be saved and how a program stored on a cassette
may be loaded and 'run'.

2.2 SOME INTRODUCTORY COMMENTS ON PROGRAMMING

So far we have, with one exception, been entering direct commands into the
computer. These commands have been directly executed by the computer with
an immediate action such as display of results, change of colour, etc. Clearly we
are very limited in using only direct commands to solve our problems or
execute all but the simplest of tasks. The idea of a program is to tie our set of
commands together in a complete self-contained package which we can ‘run’ at
one go.

What is a program? A program consists of a complete list of consecutive
instructions designed to solve a particular problem or execute a given number
of tasks.

To provide an immediate idea of the form taken by a simple BASIC
program, consider the following example:

Beginning To Write and Run Programs 19

10 CLS
20 PR I NT
30 PRINT
35 PRINT
40 PRINT
50 PR INI-
60 PRINT
70 PRINT
80 PRINT
90 PRINT
100' PRINT
110 PRINT
120' PRINT
130' PRINT

"Bank and public holidays 1986"
II xL* vV \Lr iJL \L* tLr d/ dv >£r iXr iXr lAr 1X" dr dr dz II

Zp* Zp Zp. zp, ^p. ^p, Zp ?p z^ z^ zj. ^p. Zp ^p ^p Zp,

"Bank hoiiday,Wednesday 1 January"
"Good Friday, Friday 28 March "
"Easter Monday,31 March "
"May day holiday, Monday 5 May "
"Spring bank holiday, Monday 26 May"
"Summer bank holiday, Monday 25 Augus
"Christmas day, Thursday 25 December
"Boxing day, Friday 26 December"

H

This simple program consists of a list of 14 instructions, each instruction
typed in as a separate line statement. A line statement is an instruction to the
computer to perform a specific operation.

Each line statement must always be preceded by a line number, the value of
the numbers dictating the order in which the program will be executed, i.e. line
statement 10 will be executed first, followed by 20, 30, 35, 40 . . . 130 in the
above example. Any ascending order sequence can be used for the line
numbers. We chose 10, 20 . . . 130 but we could have used 1,2, 3, 4, 5, etc. or
15,26,48, 115,207 ... in fact any sequence in the range 1 to 65535 (65535 is the
maximum line number for the CPC464 computer).

In typing in a program from the keyboard, each line statement is entered into
the computer by pressing the ENTER key. The action of ENTER is to store the
line in the computer. No further action is taken until the program is
commanded to RUN. This is different from using the computer in the direct
mode, where, for example
PRINT "Monday, Tuesday, Wednesday" [ENTER]
would produce immediate (direct) execution and cause
Monday, Tuesday, Wednesday
to be displayed on the screen.

Thus if a line is not preceded by a line number then the line statement is
interpreted as a direct command and the computer processes the statement
immediately. When the statement is preceded by a number then the statement
becomes part of a program.

Now try typing in the program. Remember to press the ENTER key at the
end of each line. The program can be run by typing in the direct command
RUN [ENTER]
which causes execution of lines 10, 20, 30, 35, 40, 50 . . . 130 ascending order
and produces immediately the following display on the screen:

20 Programming the Amstrad CPC464

Bank and public holidays 1986
Ar A* Ar A Ar Ar Ar Ar Ar A’ Ar A Ar Ar Ar Ar A* A' Ar Ar Ar Ar Ar Ar A' Ar Ar Uz A-

Bank hoiiday,Wednesday 1 January
Good Friday, Friday 28 March
Easter Monday,31 March
May day holiday, Monday 5 May
Spring bank holiday, Monday 26 May-
Summer bank holiday, Monday 25 August
Christmas day, Thursday 25 December
Boxing day, Friday 26 December

Before proceeding further, let us briefly review some basic points to be
considered in writing a program.
(1) Ensure that you have an exact understanding of what you want your program
to do. Define your problem as clearly as possible.

This is perhaps obvious, but absolutely essential as your first step for any
serious problem solving using a computer. Note what information you are
given—this will constitute the data input to your program (we see how to input
information using INPUT and READ-DATA statements in the next chapter).
Define clearly what information output you require from your program.
(2) Develop general ideas for your program solution. Think out a suitable
sequence for your instructions.

Draft a logical sequence of the actions required to solve your problem. From
these form the basis of what type of line statements (or, as we shall see in
chapter 4, what subroutines) are needed to effect your solution.
(3) Type in the program line statements.

Remember that each statement must be preceded by a number and that the
computer acts on these statements in ascending number order. It is a useful tip
to separate consecutive lines by 10, e.g. use 10, 20, 30 . . . etc., so that if you
subsequently need to insert lines in your program you have plenty of space to
do so.

All line statements must, of course, be written according to the syntax (the
‘grammar’ rules) dictated by the version of BASIC language being used on the
CPC464. If these are not followed exactly the program will not run. In practice
the program is continuously monitored as each line is typed in. After each line
is entered, the computer scans it for errors and will display an error message, if
any should be present, giving guidance as to the type of error detected.
(4) Feed in any data (when and where necessary) to the program.

This may be done interactively using INPUT statements or by storing data
within the program itself using READ . . . DATA statements.

Beginning To Write and Run Programs 21

2.3 SOME FUNDAMENTAL BASIC COMMANDS AND STATEMENTS

Let us now review some of the important BASIC commands and statements
that we will be using to run and write our programs.

Z X

RUN
LIST
NEW
AUTO
RENUM
DELETE
CLS
100 SUM = 20.2
1 10 PRINT N, SUM . . .
120 REM *........

v__________________________________ y
□

Fig. 2.1 Fundamental BASIC commands and statements.

1 First some fundamental direct mode commands:

RUN tells the computer to execute or 'RUN' our program; the processing
starts, in the absence of any number typed in after RUN at the lowest number
line statement in our program.

Although RUN can be used within a program, its normal use is to start
program execution by typing RUN as a direct mode command.

RUN 40 would start execution at line statement number 40.
LIST displays the program currently stored in the computer on the screen.
LIST 10-100 will list the group of program statements starting at 10 and

ending at 100.
LIST 50 - will list from line 50 to the end of the program.
LIST — 70 will list from start to line 70.
LIST 90 will list specified line 90.
NEW clears all programs stored in the computer—it allows us to start afresh

or ‘a-new’.
AUTO automatically assigns for us line numbers in steps of 10, i.e. 10,20,30,

40 . . . during the writing of our program; pressing the ESC (ESCAPE) key
cancels the automatic line numbering.

22 Programming the Amstrad CPC464

RENUM renumbers program line statement numbers starting at 10 with
increments of 10, i.e. line numbers would be renumbered 10, 20, 30, . . .

RENUM 100,10, 200 renumbers program lines from ‘old' line number 10, to
give it a new number 100 and increments subsequent lines by 200; the general
form of the command is:

RENUM (new line number) , (old line number) , (line increment)
DELETE 50 deletes line 50.
DELETE -100 deletes all lines up to and including line 100.
DELETE 200— deletes all lines from 200 to end of program.
DELETE 20 - 80 deletes range of lines, in this case lines 20 to 80 inclusive.
CLS clears the screen; useful to include this as first line statement in a

program to ensure screen is cleared and results can be clearly displayed starting
from top of the screen.

To BREAK or abort program execution:
If you wish to force a halt to program execution:

press ESCape key twice.
If you just wish program execution to pause:

press ESCape key once and then to restart, press any other key.

2 Some fundamental program statements

(1) Assignment statements: the LET statement
100 LET X = 98.2 or equivalently
100 X = 98.2
This statement assigns to the variable X the value 98.2. The use of the keyword
LET is optional in BASIC and therefore may be omitted. Thus the two
assignment statements given above are identical.

The use of the = sign in a LET statement does not have quite the same
significance of equality as in normal algebra or arithmetic. For example, the
program
100 SUM = 527
110 X = 243
120 SUM = SUM + X
130 PRINT SUM
RUN (ENTER)
770 . . .result obtained
i.e. the result yielded on running the program is SUM = 527 + 243 = 770.
Statement 120 is nonsense in normal algebraic terms (unless X = 0). In
computing, however, the assignment statement = sign means LET left hand
variable take the value of the right hand expression’ or more briefly 'is given the
value of. Thus statement 120 is read as: let the variable SUM take the value of
the original SUM value (i.e. 527) plus the value of X (i.e. 243).

Beginning To Write and Run Programs 23

(2) Output statements: the PRINT statements
We have already used PRINT in direct mode usage. PRINT is used in an
identical way in program statements. For example,
120 PRINT X instructs the computer to display the value currently assigned to
X on the screen
140 PRINT "SOLUTION = ";X displays the words within the quotation marks,
i.e. the string, immediately followed by the value of X
160 PRI NT ‘prints' a blank line and is very useful in separating results for clear
display.

(3) The REMark statement
10 REM cash-flow program is used to include a REMark or comment, e.g. to
put in program title or any helpful explanatory note; it is for our convenience
only—it is passed over during the execution of the program.

(4) Use of the colon :
More than one statement may be written on a single line by separating the
individual statements by a colon, i.e. :

For example, the program
10X = 242
20 Y = 251
30 Z = 363
40 PRINT X + Y + Z
could be condensed to
10 X = 242: Y = 251: Z = 363
20 PRINT X + Y + Z
or even into a single line,
10 X = 242: Y = 251: Z = 363: PRINT X + Y + Z

(5) Use of CLS as a program statement:
10 CLS will clear the display on the screen (just as the direct command would)
and is very useful in a program to ensure clear presentation of results.

2.4 EXAMPLE OF WRITING AND RUNNING SOME SIMPLE
PROGRAMS

(1) Try writing a program to display the names and phone numbers of your
friends.

Here is the form the program could take:

10 REM TH Friends Phone Nos. >K*>K
15 CLS
20 PRINT "Jane" TAB(15)"44 0138 98"
30 PRINT "Harry"TAB(15)"78 54 8769"

24 Programming the Amstrad CPC464

40 PRINT "Mary " TAB(15)"887 98 2385"
50 PRINT "Fred " TAB(15)"101 77390"
60 PRINT "The Bell" TAB(15) "33 43432 78"
70 PRINT "Rev. Greene"TAB(1 5)"2740 1092"

Remember each line statement has its own line number and must always be
‘entered’ by pressing the ENTER key. Try using AUTO for automatic line
numbering.

To execute the program type in RUN followed by pressing the ENTER key,
i.e.
RUN [ENTER]
You will, of course, obtain the following display

J ane
Harry
Mary
Fred
The Bel 1
Rev. Greene

44 0138 98
78 54 8789
887 98 2385
101 77390
33 43432 78
2740 1092

The program is easy to understand:
Line statement 10 contains REM (REMark), a remark statement to ‘remind’ us
what our program does.
Statement 15 uses CLS to clear the screen.
Statements 20 to 70 instruct the computer to ‘print’ the names and phone
numbers; we have also used the tab instruction to line up the start of the
numbers, i.e. tab(15) causes the numbers to be displayed commencing at
column 15.

If you now type in,
LIST [ENTER]
you will obtain a re-display of the program listing.

If you follow this by,
NEW [ENTER]
you will clear the program from the computer memory, although not the
display on the screen. Check this by typing in,
CLS [ENTER]
LIST [ENTER]
The CLS command clears the screen. The LIST command lists the program
currently stored in the computer. Since no ‘list’ appears the program was in fact
cleared by the NEW command.

Note the BASIC keywords run, list, print, cis, etc. can be entered in either
lower or upper case letters. The computer makes no distinction. Your program
listing, however, will always display keywords as upper case characters.

Beginning To Write and Run Programs 25

(2) Try displaying your initials in the three screen modes: mode 0 (large
character), mode 1 (normal), mode 2 (high-resolution).

Here is a program which displays each mode presentation in turn. Again the
program is virtually self-explanatory, except for lines 40,70 and 100. These are
all identical and are an example of the use of a FOR loop (see chapter 4). They
are included to produce a delay of 2 to 3 seconds so you can see the display for
each mode. Note also the use of the colon, which enables us to include more
than one instruction in a single line statement.

10 REM Initials in different modes
20 MODE O SPRINT
30 PRINT "R G M"sPRINT "*****«"sPRINT
40 FOR n = l TO 2000s NEXT ns REM delay
50 MODE 1
60 PRINT "R G M"sPRINT "******":PRINT
70 FOR n = l TO 2000s NEXT n:REM delay
80 MODE 2
90 PRINT "R G M "sPRINT"******"sPRINT
100 FOR n=l TO 2000s NEXT ns REM delay
110 MODE 1

(3) Here is an example of a simple program to calculate the area of a triangle:

10 REM Simple area calculation
20 CLS
30 PRINT "area of tri angle"sPRINT
40 PRINT "A = (b x h)/2"
50 b=45.6 :h=33.8
60 PRINT "A = ";b*h/2
70 PRINT
80 PRINT "for b=";b,"h~" ; h

Again the program should be reasonably easy to understand. Line 50 assigns b
the value 45.6 and the second statement (separated by the colon) assigns h the
value 33.8. Line 60 displays the result for area, A.

On running the program, you will obtain the following display:

area of trianqle
A =(b x h>/2
A = 770.64

for b= 45.6 h= 8

26 Programming the Amstrad CPC464

Fig 2.2 Area of triangle, A = Vzb x h.

2.5 VARIABLES AND IDENTIFIERS

When we assign values to quantities to be used in our programs we need a ‘box’
or storage location to hold these values. In computer terminology we talk about
a variable (the word used for the quantities we wish to process etc. in our
programs) and an identifier (the name we use to ‘identify’ or label our ‘variable’
box).

The term variable refers to any element or quantity in a program whose value
may (or may not) be changed in the execution of the program. Variables are
used to provide storage locations in the computer to hold the data the variables
represent.

Each variable we use in a program must be given a unique identifier. The
variable identifier may be thought as the name of the ‘container’ used to store
the data value currently assigned to the variable. Once a value is assigned to a
given variable, the value remains fixed at this value and stored in its ‘container’,
but may be changed when or if any subsequent program statement assigns the
variable a new value.

In the version of BASIC used on the CPC464 computer there are essentially
three main classes of variables.

1 Real or numeric variables

These are used to store numbers (with or without decimals) in floating point
form within the computer to 8 to 9 significant figure accuracy within the range
for CPC464 computer : — 10-38 to + 1038.

Identifiers for real variables must always begin with an alphabetic letter and
can be followed by any sequence of letters or number digits. For the CPC464 a
full stop symbol can be included. The total character length for an indentifier
must not exceed 40.

Obviously no BASIC keywords, e.g. print, list, cis, etc., can be used as
variable identifiers. All keywords, system commands, etc. are regarded as
reserved words and must never be used except in their correct context. Note
also that spaces, punctuation marks (other than the full stop) and arithmetic
symbols cannot be used in identifiers. For example.

Beginning To Write and Run Programs 27

a maxvalue Z237 GREATEST
area min. point interest least
xll last, value POPULAR no. of. terms
are all valid identifiers for real (number) variables; the following, however, are
not:
max value
x + y
input
first, value?

. . . invalid, spaces cannot be used in identifiers

. . . invalid, arithmetic symbols cannot be used

. . . invalid, BASIC reserved word

. . . invalid, ? cannot be used

2 Integer variables
These are used to store whole number values, i.e. integers. The range for the
CPC464 computer is —32768 to +32767. Integer variable values occupy less
space in the computer memory and so can be used in preference to real
variables in programs that do not require decimal information.

Integer variables are distinguished from real variables by including the %
symbol as the last character of the identifier. Integer variable identifiers follow
exactly the same syntax rules as for real variables but must always end with %,

e-g-
index% represents an integer variable identifier
index represents a real (floating-point) variable identifier

3 String variables (non-numeric variables)

These, as their name implies, are used to store ‘strings’ of characters, i.e.
letters, numbers, symbols, etc. String variable identifiers are distinguished
from numeric variables by always ending in the $ (dollar) symbol. It is the $
symbol that ‘tells’ the computer that it is handling string variable data. Apart
from the $ symbol, string variable identifiers are formed using the same general
rules: they must start with a letter, may then be followed by any sequence of
letters, numbers or full stops (up to a maximum including the $ symbol of 40),
e.g.
name$ nameandaddress$
x11$ SUBJECT3$
are valid string variable identifiers.

We use assignment statements to assign values to string variables in the same
way as for numeric variables but we must enclose the actual value being
assigned (the string) within double quotation marks, as shown for example in
the following short program:

IO REM O String variable example 1 O
20 CLS
30 name$="Richard"
40 bl ank$=" "

28 Programming the Amstrad CPC464

50 addreES*="4260 Brasilia Cresent, Clifton"
60 PRINT name*
70 PRINT address*
80 PRINT
90 PRINT name*;blank*;address*

On running the program, we obtain the display

Ri chard
4260 Brasilia Cresent, Clifton

Richard 4260 Brasilia Cresent, CliftonRichard

String variables can be combined to form larger strings using the + symbol.
For example, in the following program at line 60:
total$ = name$ + blank$ + address$
assigns the string variable total$ the value:
"Richard 4260 Brasilia Cresent, Clifton"
Try running the program to verify this.

10 REM O String variable example 2 O
20 CLS
30 name*="Richard"
40 blank*=" "
50 address*="4260 Brasilia Cresent, Clifton"
60 total$=name$+blank*+address*
70 PRINT total*

Note for all variable classes: upper and lower case usage

Identifiers written in either lower or upper case letters are treated as identical in
BASIC. Thus, for example, the following pairs of identifiers are treated by the
computer as the same:
X , x ; N% , n% ; name$, NAME$
Do not fall into the trap of thinking they can be used for two different
variables—they are indistinguishable as far as program execution is concerned.

Identifiers are used to identify not only variables but, as we shall soon see, for
arrays, user-defined functions, loops, file-names, etc.

One final point—always try to choose meaningful identifiers for the variables
used in your programs. This adds extra clarity to the program listing. It helps in
understanding what your program is about, is especially useful in tracing errors
and for future reference, and invaluable for others who may use your
programs.

Beginning To Write and Run Programs 29

2.6 USING A PRINTER TO OBTAIN HARD COPY

If you are lucky enough to have a printer—the CPC464 may be used directly
with a parallel printer with Centronics interface, the Epson MX, RX and FX
series of printers being ideal—you can easily obtain a hardcopy print-out of
your programs listings and also direct your program output to the printer as
well as or instead of the monitor screen.

The listing command is simply,
LIST #8 [ENTER]
The # symbol (uppercase symbol on key 3) denotes the ‘channel’ and 8 the
channel number used by the computer to transmit the program listing data to
the printer.

The same channel is also used to output the PRINT statement data from
within the program to the printer.
PRINT statements for printer output take the form
100 PRINT #8,“Results follow:"
110 PRINT #8, 56.2*39.7
i.e. #8, is added to the PRINT instruction to direct the output to the printer.

2.7 EDITING PROGRAMS: THE EDIT COMMAND AND USE OF COPY

The CPC464 has excellent editing facilities for correcting mistakes and making
changes in a program listing.

The mistakes in any given line statement can always be rectified by typing the
line in again with, of course, the errors removed. On pressing ENTER the new
line automatically replaces the original. This method, however, is rather
laborious especially as the CPC464 provides two very easy-to-use methods.

Use of the EDIT command

Suppose we wish make a correction or modification to, say, line 100 in a
program. Type in the command,
EDIT 100 [ENTER]
Line 100 will be then displayed on the screen with the cursor at the beginning of
the line. The cursor is then positioned using the forward (or backward) cursor
arrow keys to where required in the line and deletions made using either CLR or
DEL keys. If text is to be inserted space is made automatically as you key in by
the portion of the line to the right of the cursor scrolling to the right. After
completing the changes to the line, enter the line into the program by pressing
the ENTER key. If no errors are detected the line replaces the old line in the
program list. If errors are still present these will be detected by the computer
and it is not possible to move off the line until these are removed.

30 Programming the Amstrad CPC464

Fig. 2.3 Keys involved in EDITing programs: cursor position, COPY, CLEAR and DELete keys.

Use of COPY cursor

First list your program or, if the program exceeds 20 or so lines, list the sections
you wish to edit. Hold down the SHIFT key and press the upward arrow (f)
cursor key until the 'copy' cursor is positioned at the beginning of the line to be
edited. Note that the ‘main’ cursor remains in position at the end of the listing,
so we now have two cursors on the screen.

Now press the green COPY key until the copy cursor is at the position where
you wish to make a change. Note as you press the COPY key the main cursor
also moves, copying the line as it goes. Make your changes and note that these
are included in the main line but not at the copy cursor position, which remains
stationary. After completing your changes move on again by pressing COPY
and finally press ENTER. The ‘main’ line then replaces the original line in the
program, provided the latter contains no errors. As with the EDIT command
process you cannot move the COPY cursor off the line until all errors in the
main line are removed. If no errors are detected the ‘main’ line enters the
program and the copy cursor disappears.

Beginning To Write and Run Programs 31

2.8 SAVEing AND LOADing PROGRAMS

1 The SAVE command (cassette tape)

To save the program currently stored in the computer simply use the command,
SAVE “program name” [ENTER]
Note that the program name is the name you give to the program and it will be
stored and accessed under this name. The name must be included within the
quotation marks and can be any combination of characters including spaces up
to 16. Once the SAVE command is entered the computer responds with the
following message display on the screen,
Press REC and PLAY then any key
Press the RECord and PLAY buttons of the cassette firmly down until both are
locked in position. As soon as you press any other key, the cassette tape starts
and copying commences as indicated by a further message on the screen:
Saving program name block 1
When copying is complete the cassette tape stops. Ready is displayed and the
cursor returns to the screen. Finally press the STOP/EJECT button.

2 The LOAD command

To load a program stored on cassette tape, place the cassette containing the
program in the cassette unit of the computer, rewind to the beginning of the
tape or, if you know the ‘count’ number on the cassette revolution counter
where the program starts, rewind to this, and then enter the command:
LOAD “program name” [ENTER]
The computer immediately responds with the screen message:
Press PLAY then any key
As soon as the PLAY button is pressed and locked down and then any other key
pressed the cassette tape will start moving and a search for the program
initiated. In this search the computer will display all other program titles it finds
before reaching and then loading the requested one. Thus messages of the form
Found Statistics 1
Found Graphics Demo
might be displayed, but as soon as the required program is reached, we are
notified so by the message
Loading program name block 1
and when the loading is fully complete, Ready is displayed and the cursor
returns to the screen.

To check the fact that the program has been copied from tape to computer,
type in the LIST command. The program can, of course, be run once we know it
has been ‘loaded’ by the usual RUN command.

To load and automatically run a program stored on tape you can use the
single command:

32 Programming the Amstrad CPC464

RUN “program name” [ENTER]
The computer responds with (as before):
Press PLAY then any key
and the loading processes commence with the search, the load and then an
automatic RUN without the need of any further commands.

Exercise problems 2

(1) Write programs to display the following:
(a) names and dates of birth of family and friends
(b) a list of common items and their prices
(c) a football league table.

(2) Write a program to calculate the volume of
(a) a rectangular block (cuboid) (see fig. 2.(a))
v = bxlxd, for b = 2.27,1 = 5.74, d = 1.86
(b) a cylinder (see fig. 2.4(b))
v = 7tr2h , for r = 8.63 , h = 12.4 and where it = 3.142 (or use Pl, which holds an
accurate value for it in the CPC464).

I
h

(b)

Fig. 2.4 (a) Cuboid: v = b x I x J; (b) Cylinder: v = nrh.

(3) Write a program which displays the result of the following calculations:
(a) 3.4 x 5.67 — 6.21 x 4.98
(b) 5.372 + 4.462
(c) pvc , where p = 525, v — 72, c = 1.4

Beginning To Write and Run Programs 33

(4) Write a program to find the average value of the following weights:
20.7 kg, 14.5 kg, 12.9 kg, 13.6 kg

(5) Write a program to calculate the compound interest on
(a) £1000 invested for 5 years at 11%
(b) £25 invested for 32 years at 7.5%
The compound interest formula is
1 = P(\+R/100)N - P
where / = interest, P = sum invested, 7?=rate %, A'=number of years
invested.

INTERACTING WITH YOUR PROGRAM

3.1 INTRODUCTION AND SUMMARY

So far the programs we have considered have contained all the necessary
information within the actual program with no need to reference any outside
source to complete their relatively simple tasks. To enable us to interact with a
program during its execution and, for example, be able to enter values from the
keyboard, BASIC provides the INPUT statement. We consider the application
of INPUT statements in this chapter.

To enable us to store a number of values such as a list of data, BASIC
provides the READ . . . DATA statements. The use of these statements is
normally much more convenient than writing individual assignment statements
for each variable especially for a long list of items. READ . . . DATA statements
are also considered in this chapter.

Frequently we may wish to STOP program execution and make, for
example, a check before allowing it to continue. The use of STOP statements
and the CONTinue command is considered. In using READ . . . DATA
statements we may also wish to go back to the beginning of the DATA list at
some point in the sequence of program execution; to do this BASIC provides
the RESTORE statement, the use of which we finally consider.

3.2 INPUT STATEMENTS

INPUT statements are used to input values to the computer directly from the
keyboard. They have the basic format;
20 INPUT (variable identifier)
20 INPUT ". . .string message. . ." ; (variable identifier)

The use and action of INPUT statements is illustrated in the following
program examples.

(1) This program finds the square and cube of any number you input from the
keyboard.

Interacting With Your Program 35

10 REM ^Square and cube o-f any no. n input from
keyboard %

20 INPUT n
30 PRINT n*n,n--3

When we execute the program by typing
RUN [ENTER]
the computer steps over the REMark statement 10 and executes 20 the input
statement. At this point a ? is displayed and the cursor reappears on the screen
indicating that it is waiting for us to enter in the value we wish to assign to n.
Enter a number, e.g. 34.8:
? ■ 34.8 [ENTER] “

T
cursor
Program execution continues immediately and line 30 computes and displays
the results for 34.82 and 34.83:
1211.04 and 42144.192.

The following version makes the program much more informative to the user
by including a string message in the input statement:

10 REM * To calculate square and cube of a
number *

20 INPUT "Enter number,, n = ";n
30 PRINT n*n,n--3

On running the program, line 20 now instructs the computer to display the
words within the quotation marks (the string message) followed by the cursor,
i.e.
Enter number, n = ? ■
Now enter in a number, followed as always by pressing the ENTER key. The
results for n2 and n2 will be displayed immediately on the next line of the
screen.

(2) This program acts as a conversion calculator for converting the weight in
kilograms input from the keyboard to pounds.

10 REM To convert kilos to lbs lit
20 INPUT "Enter weight in kilos";kilos
30 PRINT kilos; "kg = ";2.2046*ki1 os; "1bs"

On running the program:
RUN [ENTER]
Enter weight in kilos? 8 [ENTER] ... (8 entered)
8 kilos = 17.6368 lbs . . . (result displayed)

36 Programming the Amstrad CPC464

(3) We can input more than one value by either using a series of input
statements, e.g.

or more concisely using a single input line statement:

10 INPLJT "ENTER VALUE FOR A" ; A
20 INPUT "ENTER VALUE FOR B" ;B
30 INPUT "ENTER VALLIE FOR C" ;C
40 PRINT "A+B+C = ";A+B+C

10 INPUT "VALUES FOR A,B,C=";A,B,0
20 PRINT "A+B+C =";A+B+C

On running the first version, the program execution pauses at each of the line
statements, 10, 20 and 30 awaiting for us to enter values for A, B, C
respectively, i.e.
RUN [ENTER]
ENTER VALUE FOR A? 47 [ENTER]
ENTER VALUE FOR B? 42 [ENTER]
ENTER VALUE FOR C? 18 [ENTER]

. . .(47 entered for A)
. . .(42 entered for fi)
. . .(18 entered for C)

A+B + C=107 .. .result displayed
On running the single input statement version, the computer pauses at line 10
and we enter the values for A, B, C in order and separating each value by a
comma, i.e.
RUN [ENTER]
VALUES FOR A, B, C, = ? 47, 42, 18 [ENTER]
A + B + C = 107

(4) To find the volume of (for example) a cylinder, using INPUT statements to
input the dimensions.

10 REM Of Volume o-F cylinder O*
20 CLS
30 INPUT "Enter radius, r=";r
40 INPUT "Enter height, h=";h
50 PRINT "Volume =" ; PI *r"-2*h
60 PRINT "-For r=";r,"h=";h

RUN [ENTER]
Enter radius, r = ? 2.4 [ENTER]
Enter height, h = ? 6.8 [ENTER]
Volume = 123.049901
For r = 2.4, h = 6.8 . . .display of results obtained

Interacting With Your Program 37

3.3 READ . . . DATA STATEMENTS

If we wish to use data from within the program rather than input values from
the keyboard, which for a long list may tend to be very tedious, we can use
READ . . . DATA statements. For example, suppose we wish to incorporate a
list of prices of several items in a program, we can utilise READ . . . DATA
statements as follows:

100 READ i temname$,number,cost,ref.not
110 DATA desk,32,68.75,GH473-01

The values of the variables itemname$, number, cost, ref.no$ in the READ
statement 100 are assigned the values in the exact corresponding order as given
in the DATA statement of 110. So after execution of line 100, data would have
been taken from the DATA statement and assigned as follows:
itemname$ = "desk" , number = 32 , cost = 68.75
ref.no$ = "GH473 - 01". [Note values for string variables need not be
enclosed within quotation marks in a DATA statement.]

Each READ statement in a program consists of READ followed by a list of
variable identifiers, each identifier being separated from the next by a comma.

Each DATA statement is a list of values and/or expressions, each value
separated being separated by a comma. DATA statements may be put
anywhere you wish in a program—normally at the beginning or at the end if this
is convenient—since the computer ignores any DATA statements until it meets
a READ statement.

The first time the computer in executing the program meets a READ
statement it takes for the first variable value the first data value from the DATA
list, for the second variable the second data value, and so on, working its way
through the whole of the DATA statement lists.

If the number of items in the READ and DATA statements do not match, e.g.
if there are more variables in the READ statements than values in the DATA
statements, then the computer will display an error message immediately it
tries to READ a value which is not there.

Program examples for READ-DATA statements

(1) This simple program illustrates the basic function of READ . . . DATA
statements

5 CLS
10 READ A, EEC
20 PRINT "FIRST TERM A=" ;A
30 PRINT "SECOND TERM B="i;B
40 PRINT "THIRD TERM C="?C
50 DATA 111,222,333

38 Programming the Amstrad CPC464

RUN [ENTER]
FIRST TERM A = 111
SECOND TERM B = 222
THIRD TERM C = 333 . . .display obtained on screen, showing that/I is
assigned the first value in the DATA statement list. B the second and C the
third.

(2) This program works out the average value of a number of items listed in the
DATA statements.

10 REMO* To -Find average of list of values ***
20 CLS
30 READ a,b,c,d,e,f,g
40 READ h,i,j,k,1,m,n
50 sum=a+b+c+d+e+f+g
60 sum=sum+h+i+j + k + 1 +m+n
70 PRINT "average = ";
SO PRINT USING"##. ##"; sum./ 14
90 DATA 23,87,90,65,43,6,82
100 DATA 55,87,52,68,8,29,80

RUN [ENTER]

average = 55.36 . . .display of results obtained
(3) This program uses READ . . . DATA statements to assign data to a list of
items. It then works out sub-total and total cost of all items and displays the list
and results on the screen.

10 REM ** List cost program **
20 CLS
30 PRINT "ITEM";TAB(12)"NUMBER";
40 PRINT TAB(20)"UNIT COST";TAB(30)"SUB-TOTAL"
50 PRINT
60 READ i teml$, nd , uni tcost 1
70 cost 1=nol*unitcost1
80 PRINT iteml$; TAB (13) nd ;
90 PR I NT TAB (20) uni tcost 15 TAB (30) cost. 1
100 READ item2$,no2,unitcost2
110 cost2=no2*unitcost2
120 PRINT item2$;TAB(13)no2;
130 PRINT TAB(20)unitcost2; TAB(30)cost2
140 READ item3$,no3,unitcost3
150 cost3=no3*uni t.cost.3
160 PRINT item3$;TAB(13)no3;

Interacting With Your Program 39

170 PRINT TAB (20) uni tcost3il TAB (30) cost3
180 sum-costl+cost2+cost3
190 PRINT
200 PRINT "total sum = *";sum
210 DATA desk units,126,52.19
220 DATA tables,550,39.66
230 DATA chairs, 1216,9.95

On running the program you will obtain the following display on the screen:

ITEM NUMBER UNIT COST SUB-TOTAL

6575.94
21813
12099.2

total sum = 40488. 14

3.4 THE USE OE THE STOP STATEMENT AND THE CONTinue
COMMAND

Frequently we may wish to stop program execution at a given line and, for
example, make a check on the results so far obtained before allowing the
execution to continue. This is especially useful in checking intermediate results
in a lengthy program.

For stopping execution of a program at a given line, BASIC provides the
STOP statement:
100 STOP
This statement stops execution of the program at line 100 and will return the
computer to the command mode.

The CONTinue command allows a program which has been interrupted by a
STOP statement (or by a BREAK action) to be resumed at the next line after
the STOP statement. For example, consider the

*To ‘BREAK’ program execution, press ESCape key twice. This action will return cursor to
screen.

10 REM *** STOP and CONTinue demo
20 CLS
30 READ A,B
40 PRINT (A-32)*5/9, B*4.2
50 STOP­
60 READ C,D,E
70 PRINT (C+D)*A-E

40 Programming the Amstrad CPC464

80 STOP
90 PRINT"excution CDNTinues"
100 x = C-D+B/e
500 DATA 70,450,12.3,67,90,23.6
510 DATA 67.9,90.87,32,76,89.08

RUN [ENTER]
21.1111111 1890
Break in 50
CONT [ENTER]
5461
Break in 80

On running the program, execution starts from the beginning, READs in
DATA for A, B at line 30, outputs results at line 40 and then is stopped by the
STOP statement at line 50. Program execution can be restarted from line 60 by
typing in the direct mode command CONT. A further READ is made at line 60,
results output at line 70 and then execution stopped at line 80 by a second STOP
statement.

3.5 USE OF THE RESTORE STATEMENT WITH READ . . . DATA

In the ‘normal’ use of READ . . . DATA statements the computer works from
the beginning of the first DATA statement (the one with the lowest line
number) when it meets the first READ statement and then subsequently works
through all the DATA lists until it reaches the end.

This sequence can be ‘restored’ by using RESTORE statements which have
the form:
100 RESTORE
100 RESTORE (line number)

The first RESTORE statement (with no line number after RESTORE) forces
any subsequent READ statement to start reading data from the first value of the
first DATA statement (lowest number) in the program. When a specified line
number is given after RESTORE, then any subsequent READ statement takes
its data from the first DATA statement at or immediately following the specified
line number in the RESTORE statement.

For example, let us work through the following program:

10 REM *** RESTORE demo ***
20 CLS
30 READ A,B,C
40 PRINT A,B,C
50 RESTORE
60 READ X,Y,Z

Interacting With Your Program 41

70 PRINT X,Y,Z
80 READ A,B,C
90 PRINT A,B,C
1OO DATA 1,2,3,4,5,6

3
3
6

. . .(display of A, B, C at line 40)

. . . (display of X, Y, Z at line 70)

. . .(display of A, B, C at line 90)
3, i.e. the first

RUN [ENTER]
1 2
1 2
4 5

At line 30 the READ statement assigns A = 1, B — 2 and C =
three values in the DATA list of line 100. Thus at line 40 we obtain the display:
1 2 3

Line 50, the RESTORE statement, returns us to the beginning of the DATA
list. Thus at line 60, the READ statement assigns A = 1, Y = 2, Z = 3 and line 70
produces the display (again):
1 2 3

At line 80, however, the READ statement ‘pointer’ is at the fourth item in the
DATA list and hence this READ statement assigns A = 4, B = 5, C = 6 and this
is confirmed by the action of display statement 90:
4 5 6

Finally, consider a second example:

10 REN *** SECOND RESTORE demo m
20 CLS
30 READ A,B,C
40 PRINT A;B;C,(A+B+C)/3
50 RESTORE 2000
60 READ A,B,C,D
70 PRINT A;B;C;D,(A+B+C+D)/4
80 RESTORE 1000
90 READ A,B,C,D,E,F,G
100 READ H,I,J,K,L,M
110 PRINT
120 PRINT
1000 DATA
2000 DATA
3000 DATA

H; I; J;K;L?M
1,2,3,4,5,6
10,20,30,40
100,200,300

is the display obtained.
At line 50 the RESTORE statement ‘restores’ the read pointer to the first value

RUN [ENTER]
1 2 3 2
10 20 30 40 25
1 2 3 4 5 6 10 20 30 40 100 200 300

42 Programming the Amstrad CPC464

in DATA statement 2000. Thus the READ statement at line 60 assigns A = 10,
B = 20, C = 30, D = 40. In the absence of 50 RESTORE 2000,DATA would
have been taken from the next value in line 1000, i.e. A = 4, B = 5. C = 6 and
then from line 2000, D = 10.

At line 80, the RESTORE 1000 statement returns the read pointer to the
beginning of DATA list 1000, so the READ statement 100 starts reading in its
data from the first value in 1000 and continuing with 2000 to work right through
the complete DATA statements.

Exercise problems 3

(1) Write a program using READ DATA statements to find the average value of
the following 20 numbers:
52, 14, 37, 67, 73, 11,75, 89, 19, 24, 61, 49, 12, 33, 47, 55, 16, 71,81, 92.

(2) The following program using the INPUT statement could also be used to find
averages:
10 REM ** TO FIND AVERAGE OF VALUES INPUT FROM KEYBOARD**
20 INPUT "ENTER VALUE"; VALUE
30 COUNT = COUNT + 1
40 SUM = SUM + VALUE
50 PRINT "AVERAGE SO FAR ="; SUM/COUNT
60 GOTO 20

Try running the program.
This program has a GOTO statement at line 60 and in fact will never stop!

This statement ‘ jumps' execution back to 20 so the whole sequence 20, 30, 40.
50 is repeated followed again by the GOTO 20 at line 60 which returns
execution to 20, forming a closed loop; bad programming practice! When you
finished entering values you can BREAK the loop and return to the command
mode by pressing the ESCape key twice.

BASIC has better ways of exiting loops: to be considered in the next chapter.

(3) Using INPUT statements write programs to convert
(a) feet and inches to metres (1 inch = 2.54 cm.)
(b) pounds and ounces to kilograms (lib = 0.4536 kg).

4
DECISION MAKING, REPETITION,
JUMPING AND SUBROUTINES

4.1 INTRODUCTION AND SUMMARY

So far, in virtually all the programs we have considered, the computer executes
the individual line statements in exact ascending sequence, e.g. line statement
10 before 20, 20 before 30, and so on.

We now consider the BASIC statements available for the important tasks of
(1) making decisions as to alternative courses of action and ‘jumping’ within a
program
(2) repeating a section of program statements a controlled number of times
(3) repeating a group of statements while some condition is satisfied
(4) selection of one of several different courses of action
(5) using subroutines

We commence the chapter by explaining the use of IF statements and test
expressions used in making decisions. We then consider the FOR and WHILE
constructs used for repetition and the use of Boolean logic expression for
forming more comprehensive test condition expressions. Finally we consider
the use of GOTO and GOSUB. In all cases the application of these statements is
illustrated in practical program examples.

4.2 IF STATEMENTS FOR CHOICE OF ACTION

The choice of one or two different courses of action in a program is made using
statements of the form:
100 IF (test expression) THEN (statement(s) to be executed)
100 IF (test expression) THEN (statement line number)
100 IF (test expression) THEN (statement(s)) ELSE (statement(s))
100 IF (test expression) THEN (line no. Nl) ELSE (line no. N2)

The IF . . . THEN and IF . . . THEN . . . ELSE statements are the fundamental
‘decision-making’ statements in BASIC. Flowcharts illustrating their action
are shown in fig. 4.1. IF the test expression is satisfied, i.e. yields a TRUE

44 Programming the Amstrad CPC464

Preceding part of program

(a) IF (test expression) THEN
statement(s)

TRUE
IF (test expression)
^-<THEN line no^-'

FALSE

110....
120....
130....

Line no...........

(b) IF (test expression) THEN line no.

(c) IF (test expression) THEN (statement(s) 1) ELSE
(statement(s)2)

Fig. 4.1 Flowchart illustration of IF statement actions.

value, THEN the statement(s) following THEN are executed; if a line number
follows THEN, execution is transferred to this line and any interleaving lines
are skipped over. The action of the IF . . . THEN . . . ELSE statement is very
similar. IF the test expression is satisfied THEN the statement(s) following
THEN are executed or program execution is transferred to line number ‘NT if a
line number follows THEN. IF the test expression is not satisfied, i.e. yields a
FALSE value, THEN the statement(s) following ELSE are executed or
program execution is transferred to line number ‘N2’.

The test expressions used in making the decisions are formed using the

Decision Making, Repetition, Jumping and Subroutines 45

comparison operators listed in table 4.1 below. Comparison expressions can
also be used in conjunction with the Boolean operators (AND, OR, NOT—see
section 4.5) for forming test expressions.

Table 4.1 Table of comparison operators, symbols and meaning

Symbol Meaning

= equality; e.g. the expression A = B checks whether the value of the left-hand
term A is equal to the value of the right-hand term B

<>
< =
>=

inequality; e.g. AoB checks whether A is unequal to B
less than or equal to; e.g. A<=B checks whether A is less than or equal to B
greater than or equal to; e.g. A> = B checks whether A is greater than or equal to
/j

<
>

less than; e.g. A<B checks whether A is less than B
greater than; e.g. A>B checks whether A is greater than B

Comparison expressions such as A>B, A<B, X<>Y . . . etc. always
provide one of two results, either TRUE or FALSE. In CPC464 BASIC a
comparison expression which is satisfied and therefore yields a TRUE result is
assigned the numerical value —1; an expression yielding a FALSE result is
assigned the value of 0.

IF statements: examples of use

(1) This example shows the IF statements being used with a string variable in
the test expression. Try running the program. IF you enter red or green or
amber the appropriate IF statement will be actioned.

10 REM *** IF...THEN demo 1 ***
20 CLS
30 INPUT "Enter traffic light col our" ; 1 i ght$
40 IF 1 ight$="red" THEN PRINT "STOP"
50 IF light$="green" THEN PRINT "GO"
60 IF .1 ight$="amber" THEN PRINT "CAREFUL !"

(2) A simple example of the IF . . . THEN . . . ELSE statement.

10 REM *** IF.. .THEN...ELSE demo ***
20 CLS
30 INPUT "Enter your temperature" 5 temp
40 IF temp>102 THEN 50 ELSE 70
50 PRINT "send for doctor"
60 END
70 PRINT "take 2 aspirins and stay in bed"

(3) A more comprehensive and useful example which you can adapt to write
your own program for ‘finding addresses’.

46 Programming the Amstrad CPC464

Note the use of END. This effectively ‘ends’ execution of the program after
carrying out its required task, i.e. finding the address from the name you input
from the keyboard. If you do not include END, then execution will proceed at
the next line and continue until it meets an END statement or the end of the
program.

10 REM*** IF...THEN demo 2 ***
15 CLS
20 PRINT "finding Addresses":PRINT
30 nl$="Fred":n2$="Joe"
40 n3$="Alice":n4$="Rose"
50 PRINT "Addresses are availabe forPRINT
60 PRINT nl$,n2$,n3$,n4$
70 PRINT"To find address enter Christian name"
80 INPUT name$
90 PRINT
100 IF name$="Fred" THEN 1000
200 IF name$="Joe" THEN 2000
300 IF name$="Al ice " THEN 3000
400 IF name$="Rose" THEN 4000
500 PRINT "name not 1i sted"
510 END

4.3 REPETITION A CONTROLLED NUMBER OF TIMES: THE FOR
LOOP

1000 PRINT "Fred Smith"
1010 PRINT "16 Orange Avenue"
1020 PRINT "Chelmsford, Essex >1

1030 END
2000 PRINT "Joe White"
2010 PRINT "Christmas Hotel, Malta,
2020 END
3000 PRINT "Alice Springs"
3010 PRINT "Shaw-Hoo House"
3020 PRINT "West Road, Hastings"
3030 END
4000 PRINT "Rose Browne"
4010 PRINT " Block 20, Hawke’ s Bay,
4020 END

FOR type statements, or really FOR loops, provide the means for repeating the
actions performed by a group of line statements a controlled number of times.

The FOR loop takes the following form:

Decision Making, Repetition, Jumping and Subroutines 47

100 FOR (variable identifier) = (start value) TO (end value)

120 ? 8rouP °f statements to be
130 1 repeatedly executed

170 NEXT (variable identifier)
On entering the FOR loop the variable identifier (control variable for the

loop) is set to the start value-, the group of statements terminated by NEXT
(variable identifier) are executed with this value and when completed the value
is incremented by 1 and the process repeated continuously until the control
variable value reaches the end value. By including STEP in the first line, i.e.
100 FOR (identifier) = (start val.) TO (end val.) STEP (increment)
the control value may be incremented by any value: whole, decimal, positive or
negative rather than by just 1.

A flowchart diagram illustrating the action of the FOR loop is shown in fig.
4.2.

YES

Fig. 4.2 Flowchart illustration of FOR loop action.

FOR loops: examples of their use

(1) On running the following simple FOR loop program:

10 REM *** FOR loop demo 1
20 CLS
30 FOR n=l TO 6
40 PRINT n; "Co-f-fee p1 ease
50 NEXT n

48 Programming the Amstrad CPC464

i.e. RUN [ENTER]
you will obtain the display

1 Coffee please !
2 Coffee please !
3 Coffee please !
4 Coffee please !
5 Coffee please !
6 Coffee please !

Statement 30 instructs that n should be changed consecutively from 1 to 6 in
steps of 1. Thus statement 40 is executed 6 times with n incremented by 1 at the
end of each cycle.

(2) This program utilises the FOR loop to display a table of squares, cubes and
fourth powers of the numbers from n = 1 to 10.

10 REM *** FOR loop demo 2 Of
20 MODE 2
30 PRINT "n", "n--2", "nz-3" , "n""4"
40 PRINT
50 FOR n = l TO 10
60 PR I NT n, nA2, n '•3, nz-4
70 NEXT n
80 FOR delay=l TO 10000s NEXT delay
90 MODE 1

On typing,
RUN [ENTER]
we obtain the display:

n □ 2 n""3 n'4

1 1 1 1
4 8 16

t; 9 27 81
4 16 64 256
V"J 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

Decision Making, Repetition, Jumping and Subroutines 49

Note, we have used mode 2 (line 20), the high resolution mode with 80
columns. This ensures that the output of statement 60 is contained on a single
line of the screen. We have also used at line 80 the FOR loop as a delay so as to
hold the display for 10 or so seconds before changing back to mode 1 with the
subsequent clearance of the screen.

(3) This program illustrates the use of STEP. The FOR loop statement at line 40
uses a 0.1 step value; the second FOR loop at line 120 uses a negative step value
of -0.5

10 REM *** FOR demo with STEP ***
20 PR I NT " x " , " x ■■■■2 " , ” x -■3 "
30 PRINT
40 FOR x=O TO O.7 STEP O.l
50 PRINT -2,-Z-
60 NEXT x
70 PRINT
□0 PRINT "With negative step value"
90 PRINT
100 PRINT "n","1/n"
110 PRINT
120 FOR n= 5 TO 1 STEP -0.5
130 PRINT n,l/n
140 NEXT n

On running the program, you will obtain the following display:

0 0 0
0. 1 0. 01 0.001
0. 2 0. 04 0. 008
0. 3 0. 09 0.027
0.4 0.16 0.064
0. 5 0. 25 0. 125
0.6 0. 36 0.216

With negative step value

n .1 /n

4. 5
0. 2
O„222222222
0.254

50 Programming the Amstrad CPC464

1.5
1

0.285714286

0.4
0. 5
O.666666667
1

(4) This program utilises the FOR loop to draw up a table showing how a given
sum invested at a given rate grows annually over a period of 10 years.

The program is set with
p = sum invested = £100
r — interest rate, % = 8.25
and uses the compound interest formula:
a = p(l + r/100)"
where a = amount = sum invested + interest
n = number of years

10 REM Oft compound interest calc. Of
20 CLS
30 PRINT "year","interest","total"
40 PRINT
50 FOR n=l TO 15
60 p ~ 100 s r=8.25: a=p * (1 +r /100) '" n
70 PRINT n,USING"####.##";a-p;
80 PRINT TAE<(26) ; USING"###.##"; a
90 NEXT n

On running the program with the above values you will obtain the following
display:

year i nterest total
1 8.25 108.25

17. 18 117.18
t; 26.85 126.85
4 37.31 137.31
5 48. 64 148.64
6 60.90 160.90
7 74. 18 174.18
8 88.55 188.55
9 104.10 204.10
10 120.94 220.94
1 1 139.17 239.17
12 158.90 258.90

Decision Making, Repetition, Jumping and Subroutines 51

13
14
15

180.26
203.38
228.41

280.26
303.38
328.41

Try modifying the program so you can input your own values forp and r. For
example, include
24 INPUT "Enter sum invested" ; p
28 INPUT "Rate of interest" ; r
and change line 60 to
60 a = p*(1+r/100) J n

4.4 REPETITION UNDER CONDITIONS: THE WHILE LOOP

Fig. 4.3 Flowchart illustration of WHILE loop.

CPC464 BASIC provides a very useful form of repetitive control which allows a
group of statements to be repeated WHILE a test condition is satisfied.

The WHILE loop takes the form:
100 WHILE (test condition expression)
110
120
130

group of statement(s) to be
• executed WHILE test expression

is satisfied

170 WEND
180 .. .

The test condition expression following WHILE determines whether or not
the statement(s) grouped between WHILE and WEND are executed. This
expression is evaluated at the beginning of each cycle. If it yields a TRUE value

52 Programming the Amstrad CPC464

the following statements are executed, if not they are skipped and execution
transfers to the statement immediately following WEND. Remember the
statements between WHILE and WEND should eventually produce a result to
alter the test condition expression to FALSE, otherwise your program will be
trapped in the loop forever!

Fig. 4.3 shows a flowchart representation of the WHILE loop.

WHILE loops: examples of their use

(1) The following program uses the WHILE . . . WEND loop to READ fifty
marks from the DATA statements. WHILE n<5() it READs and sums the
marks. After READing the fiftieth data value it exits the loop and displays the
mark average.

10 REM *** WHILE...WEND demo ***
20 CLS
30 n=0:sum=0
40 WHILE n<50
50 READ mark
60 sum=sum + mark
70 n=n+l
80 WEND
90 PRINT
100 DATA
110 DATA
120 DATA

"Aveage mark
67, 83
23,41,
55, 98
81,54,
66, 99

130 DATA
140 DATA

";USING"##.##";sum/50
,23,78,45,12,88,43,39,10
65,9,76,22,18,67,90,76

,0,43,12,87,44,31,74,11
78,25,54,89,67,50,23,14

,41,36,12,54,82,45,36,89

(2) This program is a minor modification of the one above.
It contains two additional statements in the WHILE loop to count the number

of ‘passes’ and ‘failures’ (see lines 52 and 56). Note for both programs that the
test condition at line 40 must be ‘evaluatable’ before entry to the WHILE loop
for the first time. For this reason we initialise n to zero (see line 30). Also ensure
all other variables, i.e. sum, pass, fail, are initialised before entry to the loop.

10 REM *** WHILE...WEND demo ***
20 CLS
30 n=0:sum=0
35 pas5=0: -f ai 1 =0
40 WHILE n<50
50 READ mark
52 IF mark>=40 THEN pass=pa5s+l

Decision Making, Repetition, Jumping and Subroutines 53

56 IF mark<40 THEN fail=fail+l
60 sum=sum + mark
70 n=n+l
80 WEND
90 PRINT
92 PRINT
96 PRINT
100 DATA
110 DATA
120 DATA
130 DATA
140 DATA

"Average mark =";USING"##.##' sum/50
"no.of passes =";pass
"no. of failures =";fail
67,83,23,78,45,12,88,43,39,10
23,41,65,9,76,22,18,67,90,76
55,98,0,43,12,87,44,31,74,11
81,54,78,25,54,89,67,50,23,14
66,99,41,36,12,54,82,45,36,89

On running the program you will obtain (for the above data):

Average mark = 50.50
no. of passes = 32
no. of failures = 18

(3) This simple program utilises the WHILE loop to keep a running total of
values entered from the keyboard. Exit from the WHILE loop is obtained by
entering 0.

10 REM *** Simple WHILE loop deme OK
20 CLS
30 sum=0
TETI— PRINT TAB(28)"sum so f ar "
40 INPUT "First vaue";x
50 WHILE x<>0
60 sum=sum+x
70 PRINT TAB(28)sum
80
90

INPUT "next value";x
WEND

Try running the program. You will find that the ‘running’ total is displayed
from column 28 (for mode 1, approximately three-quarters across the screen to
the right).

The following program is a modification of the above. It provides running
total output displays to the window on the screen (the window being defined in
line 20, from column 28 to 40 and from top row 1 to row 25 of the screen) and
also a hardcopy output to the printer. These outputs are channelled via #5 for the
window (see lines 30 and 70) and via the printer channel #8 for the printer (see
lines 35 and 75).

54 Programming the Amstrad CPC464

10 CLS
20 WINDOW #5,28, 40,1,26
30 PRINT #5,"sum so f ar"
35 PRINT #8,"sum so Far"
40 INPUT "first value";x
50 WHILE x < >0
60 sum=sum+x
70 PRINT #5,sum
75 PRINT #8,sum
80 INPUT "next value";x
90 WEND

4.5 BOOLEAN OPERATORS AND LOGIC EXPRESSIONS FOR
FORMING TEST CONDITIONS

In the IF . . . THEN statement it is often very useful to use what are called
Boolean expressions to instruct the computer to make decisions. ‘Boolean’
refers to a very simple form of logic and is a method of joining together two or
more conditions to form a decision-making statement.

Boolean-logic expressions are used essentially to form the test expressions for
decision making in IF . . . type statements.

A Boolean expression, just like the comparison expressions considered in
section 4.2, can take only one of two values: TRUE or FALSE. In CPC464
BASIC the TRUE value is numerically equal to 1 (or —1 for comparison
expressions) and the FALSE value is 0.

In addition to the comparison operators, four Boolean or logic operators:
NOT, AND, OR, XOR
are used to create Boolean expressions, which are invaluable in forming test
condition expressions. Their meaning is as follows:

NOT is the logical NOT or logical negation, e.g. NOT A is TRUE if A is
FALSE and is FALSE if A is TRUE.

AND is the logical AND, e.g. A AND B is TRUE if and only if A and B are
both TRUE; if A and/or B are FALSE, A AND B is assigned a FALSE value.

OR is the logical OR, e.g. A OR B is TRUE if either or both A and B are
TRUE; if A and B are both false A OR B is assigned a FALSE value.

XOR is the logical EXCLUSIVE OR, e.g. A XOR B is TRUE if either A or
B is TRUE; if A and B are both TRUE or both FALSE A XOR B is FALSE.

Precedence

The order of precedence of these operators in evaluating Boolean expressions
is as follows:

Decision Making, Repetition, Jumping and Subroutines 55

highest NOT
AND
OR, XOR
= ,<>,< = ,> = ,<,>

A simple Boolean expression consists of a series of Boolean values separated
by AND, OR, XOR or preceded by NOT. For example, suppose A, B, C, D
are variables which are assigned either TRUE or FALSE (i.e. either 1 or 0)
values using comparison type expressions, then,
A AND B AND C AND D is TRUE if and only if A, B, C, D are all assigned
TRUE values
A AND NOT D is TRUE if A is TRUE and D is FALSE
A OR C OR D is TRUE if one or more of the variables is assigned TRUE
C XOR D is TRUE if either C or D is TRUE, otherwise it is FALSE.

Examples

(1) The following program illustrates the meaning of the fundamental AND,
OR and XOR operators. Enter various combinations of 0 and Is for the
variables A and B, the results of
F1 = A AND B
F2 = A OR B
F3 = A XOR B
are displayed.

10 REM W Boolean ex pressi on s demo
20 CLS
30 INPUT "A and B, 0 or 1";A, B
40 PRINT:PRINT
50 PRINT "For A = "A;" and B = ";B
60 PRINT:PRINT
70 PRINT "AND example u 11

80 Fl= A AND B
90 PRINT "Fl = A AMD B=";F1
100 PRINT:PRINT
110 PRINT "OR example:"
120 F2~ A OR B
130 PRINT "F2 = A OR B =";F2
140 PRINT:PRINT
150 PRINT "XOR example:"
160 F3- A XOR B
170 PRINT "F3 = A XOR B = ";F3

56 Programming the Amstrad CPC464

(2) This example illustrates the formation of test conditions using a combination
of Boolean and comparison operators (see lines 30 and 80). These expressions
are used respectively in lines 50 and 90 as the test condition expression in IF
statements. Try running the program to see how it works.

IO REM Boolean expression demo *0
20 INPUT "a,b";a,b
30 state1= a>10 AND b<20
40 PRINT "state! =";statel
50 IF statel THEN PRINT "OK" ELSE PRINT “Not

sati sf i ed "
60 PRINTS PRINT
70 INPUT "c,d" ;c,d
BO state2= c=100 UR d<=0
90 IF state2 THEN PRINT "state2 is satisfied"

(3) The following program illustrates the use of a logic expression in the control
of a WHILE loop. The program could be regarded as a control simulation
exercise for a machine or process, i.e. WHILE A = 1 AND B = 1 AND C = 1
keep the process running, but make checks on the A, B, C control values. If a
fault occurs exit from the WHILE loop and display which fault(s) have
occurred.

Once again try running the program.

10 CLS
20 PRINT "IF A,B,C TESTS O.K. ENTER 1"
30 PRINT "for each test state,IF NOT ENTER 0"
4© PRINT
50 A=1:B=1:C=1:REM Initial conditions set as OK
60 WHILE A=1 AND B=1 AND C=1
70 PRINT "ALL. CONDITIONS O.K."
80 PRINT "CONTINUE RUNNING"
90 INPUT "A,B,C VALUES";A,B,C
100 CLS
HO WEND
120 IF A=0 THEN PRINT "FAULT A; CHECK OIL"
130 IF B=0 THEN PRINT "FAULT B: INSUFFICIENT

COOLANT"
140 IF C=0 THEN PRINT "FAULT CzPLJMP NOT WORKING"

4.6 GOTO COMMANDS AND STATEMENTS

In many program solutions we frequently wish to ‘jump’ the normal ascending
order of line statement execution and transfer to a higher or lower line rather

Decision Making, Repetition, Jumping and Subroutines 57

than proceed to statement immediately following. We have already seen how
this is done in IF and WHILE type statements. For example,
100 IF x>0 THEN 200
would transfer execution to line 200 if x is greater than 0. This statement can
also be written including GOTO, i.e.
100 IF x>0 THEN GOTO 200
which has the identical effect. The inclusion of GOTO, however, is not
necessary in IF statements.

GOTO is one of the two BASIC ‘jump’ instructions. It can be used as a direct
mode command in a similar manner as RUN (line number) to start the
execution of a program at a given line. For example,
GOTO 200 [ENTER]
would start the execution of a program at line 200.

Examples: use of GOTO

(1) This short program illustrates the use of GOTO for holding a display,
without the 'Ready' caption reappearing. At the end of the program line 70,
70 GOTO 70
forms a continuous closed loop. When you wish the program to be halted, press
the ESCape key twice. This will break program execution and return the cursor
to the screen.

IO REM *** GOTO demo ***
20 MODE O
30 LOCATE 4,12
40 PRINT "BUY THIS BOOK"
50 PRINT:PRINT
60 PRINT "I**** R G M *****"
70 GOTO 70

(2) This program allows you to continually convert feet and inches to metres.
At line 60 you are asked to INPUT the number of feet and inches. Remember to
separate the ‘ft’ and ‘in’ values by a comma and as always press ENTER. The
computer will then effect the calculation and display the result, whilst line 120:
120 GOTO 40
transfers you back for another calculation. To exit from the program ENTER
— 999 for ‘ft’ and any value for ‘in’. The IF statement at line 70 will THEN END
the program.

10 REM W GOTO example O*
20 CLS
30 PRINT "Feet and inches to meters conversion"
40 PRINT

58 Programming the Amstrad CPC464

50 PRINT "enter no, of feet and inches"
60 INPUT ft,in
70 IF ft=-999 THEN END
80 m=(12*ft+in)*0.0254
90 PRINT ft;"feet";in;"inches =";
100 PRINT m;"meters"

120 GOTO 40

The ON . . . GOTO statement

We can also use the ON . . . GOTO statement:
ON (select variable) GOTO (line number 1) , (line number 2), . . .
This type of statement causes program execution to jump to one of the specified
line numbers according to the value of the select variable. Transfer to the first
line number specified after GOTO will be made if the value of the select
variable value is 1; transfer to the second specified line number if the value is 2,
and so on. Any number of line numbers may be specified provided they can be
placed on the same logical line.
For example,
100 ON n GOTO 200, 300, 400
If the value of n is 1 then program execution will jump to line 200; if n = 2
execution jumps to 300; if n = 3 then execution jumps to 400; if we input a
higher value for n, e.g. 4, program execution would proceed to the line
immediately following the ON . . . GOTO statement.

The following program illustrates a practical example of the use of the ON
. . .GOTO statement.

10 REM *** ON... GOTO example ***
20 CLS
30 PRINT " Ski Holiday Tarri ffs "
40 PRINT "Resorts on file:"
50 PRINT "La FTagne... Enter 1 "
60 PRINT "Verbi er.....Enter *2 II

70 PRINT "Sol 1Enter 3"
80 PRINT "Les Arcs.... Enter 4"
90 INPUT "your selection = "; n
100 PRINT
110 IF n >4 THEN PRINT "Incorrect entry":GOTO 40
120 PRINT
130 ON n 1GOTO 140,170, 200, 220
140 PRINT "High season ff' 2500 per week "
150 PRINT "Low season FF 1700 per week "
160 END
170 PRINT "High season SF 1000 per week "

Decision Making, Repetition, Jumping and Subroutines 59

ISO PRINT "Low season SF 700 per week"
190 END
200 PRINT "All seasons AS 6600"
2.10 END
220 PRINT "December FF 2200 per week "
230 PRINT "Christmas and New Year"
240 PRINT "special IO day package FF 3200"
250 PRINT "Jan, Feb FF 2400 per week"
260 END

4.7 GOSUB STATEMENTS AND SUBROUTINES

The action of GOSUB statements are similar to GOTO statements but contain
in addition a RETURN. They are used to transfer program execution to a given
section of the program which contains a subroutine designed to execute a
certain task. After executing the subroutine execution is returned, by a
RETURN statement which must form the last line of the subroutine, to the line
statement immediately following the GOSUB statement. The use of
subroutines have important advantages in programming. The subroutine need
only be written once and can be ‘called’ into action as many times as is required
in the main program.

The general form of a GOSUB . . . RETURN construct is given below
100 G 0 S U B 600--------------------------------

P-> 110 . . .
120 .. .

600 first line of subroutine <
610 '
620

. . .statements to be executed to perform task of subroutine

650
— 660 RETURN . . .returns execution to line immediately

following GOSUB statement, i.e. in this
case line 110

The GOSUB line number statement transfers processing of a program to the
line number specified and is used, for example, to go to a subroutine which
follows from that line number. A RETURN statement acts to terminate the
subroutine statements and return processing back to the line statement
immediately following the GOSUB statement.

We can also use the ON . . . GOSUB statement:
ON (select variable) GOSUB (line number 1) , (line number 2) , . . .

60 Programming the Amstrad CPC464

which is fundamentally the same as the ON . . . GOTO statement considered ii
the last section, but differs in that program execution always returns to the firs
statement immediately following the ON . . . GOSUB statement afte
execution of the subroutine.
For example,
100 ON X GOSUB 500, 600
110 .. .

500 REM * subroutine 1 *

590 RETURN: REM* End of subroutine 1*
600 REM * Subroutine 2 *

750 RETURN : REM * End of subroutine 2 *
When X = 1 at line 100, program execution jumps to the subroutine at line 501
and after execution of the subroutine returns to line 110, the line immediately
following the ON . . . GOSUB statement.

If X = 2 at line 100, execution would then jump to execute the subroutint
commencing at line 600 and then return at the end of the subroutine (line 750
to line 110.

The following example illustrates a practical example of using GOSUB. Th<
program plots a horizontal bar chart for the sales figures contained in DATZ
statement, line 5000. The subroutine used to plot bars is contained in th<
section lines 1000 to 1060.

10 REM #** Use of GOSUB: Bar Chart m
20 CLS
30 PRINT " 5 10 15 20 25"

40 PRINT "U.K. sales":GOSUB 1OOO
50 PRINT "French sales" :GOSUB
60 PR INI- "U.S.A. sales" :GOSUB
70 PRINT "German sales" :GOSUB

1 ooo
1000
1000

80 PRINT "African sales":GOSUB 1000
90 PRINT "Italian sales":GOSUB 1OOO
1OO PRINT "Swedish sales":GOSUB 1000
110 PRINT "Australian sal es" : G0SUE< 1000
120 END

Decision Making, Repetition, Jumping and Subroutines 61

1000 REM ** Subroutine for plotting bar"
1010 READ sales
1020 FOR n=l TO sales
1030 PRINT "*";
1040 NEXT n
1050 PRINT " sales; "x 100000"
.1060 RETURN
5000 DATA 14,19,12,24,5,17,13,7

Here is the bar chart display obtained on running the program:

5 10 15 20 25

U.K. sales
************** $ 14 x 100000
French sales
******************* $ 19 x 100000
U.S.A, sal es
************ $ 12 x 100000
German sales
************************ $ 24 x 100000
African sales
***** $ 5 x 100000
I tai .i an sal es
***************** $ 17 x 100000
Swedish sales
************* $ 13 x 100000
Australian sales
******* $ 7 x 100000

EXERCISE PROBLEMS 4

(1) Write a program that will display a message only if the correct password
4401326019 is keyed in.

(2) Write a program that will print out a standard memo a given number of
times. This number is to be input from the keyboard.

(3) Write a program that READs up to 50 values contained in data statements
and determines their average.

(4) Write a program that will select five different courses of action depending
on whether 1,2, 3, 4 or 5 is keyed in.

(5) Write a subroutine that will determine the maximum and minimum values
in a list of data contained in DATA statements. Incorporate this subroutine in a
program which displays these values for the first 10, the first 20, and the total
list.

STANDARD FUNCTIONS AND
APPLICATIONS

5.1 INTRODUCTION AND SUMMARY

A wide variety of standard functions are provided in CPC464 BASIC. In thi:
chapter we describe the form and explain the meaning and use of those
functions used in handling numbers, for providing values for mathematica
functions and also those used to process characters and strings. We als<
consider how we can define and use our own ‘user-defined’ functions.

5.2 STANDARD FUNCTION FOR SQUARE ROOTS: SQR(X)

SQR(X), where X is any positive number or expression, will compute the
square root of the value X within the brackets. For example,

(1)
PRINT SQR (1197.16) [ENTER]
34.6 . . . square root of 1197.16 is displayed on screen

(2)

10 INPUT "Value of x" ; x
20 PRINT SQR(x)

RUN [ENTER]
Value of X = 57.76 [ENTER] . . . note we enter 57.76
7.6 . . . square root of 57.76 displayed

(3)

10 INPUT "Values of a,b,c";a,b,c
20 x-a+b+c
30 y=b*c
40 PRINT x,y,x/y,SQR(x/y)

Standard Functions and Applications 63

RUN [ENTER]
Values of a, b, c? 23.6, 8.96, 4.28 [ENTER]
36.84 38.3488 0.960656 0.980131
. . . results displayed, i.e. x = a + b + c, y = b x c, x/y, V(x7y)

We can, of course, use the key to find any power or root (see also chapter
1, section 1.6):
PRINT 2.25 f 0.5
PRINT 46 f 2
PRINT 112.6 f 4
PRINT 59.3 | 0.68
PRINT 48 t - 1.8

. . . gives square root of 2.25
gives square of 46
. . gives 112.6 raised to the power of 4
. . . gives 59.3 raised to power 0.68

. . . gives 48“18 = _L_ = 9.41382E-04
4818

5.3 STANDARD FUNCTIONS FOR ABSolute, INTeger, ROUNDing AND
SiGN OF NUMBERS

ABS(X) provides the absolute value (i.e. magnitude) of the value of the
number or arithmetic expression X specified within the brackets.

For example,
PRINT ABS (44.67)
PRINT ABS (-44.67)
PRINT ABS (32 + 49)
PRINT ABS (32 - 49)

. . . displays 44.67
. . . displays 44.67, i.e. the magnitude of—44.67

. . . displays 81

. . . displays 17 , i.e. 32- 49 = -17 = 17
CPC464 BASIC provides four functions for ‘rounding’ numbers:
ROUND (x,r) provides the value of x to r decimal places.

For example,
PRINT ROUND (5.759345,2) gives
5.76 . . . i.e. x specified to 2 decimal places
PRINT ROUND (8.934527E-3,4) gives
0.0089 . . . i.e. x to 4 decimal places
PRINT ROUND (897.56*34.62/29.42,1)
1056.2 . . . i.e. x to 1 decimal place

INT(X) provides the value of X to the nearest smallest whole number.
For example,
PRINT INT (11.8) ... displays 11
PRINT INT (-11.4) ... displays-12
PRINT INT (8.4 * 6.3) . . . displays 52, as 8.4 x 6.3 = 52.92
PRINT INT (-8.4 * 6.3) . . . displays -53

FIX(X) removes any decimal part of X and returns the whole number part.
For example,
PRINT FIX (11.9) ...returns 11
PRINT FIX (-11.9) ... returns-11
Note INT (-11.9) returns -12, i.e. rounds to smallest whole number.

CINT(X) converts the value of A' to a rounded whole number in the INTeger
range -32768 to +32767 of the CPC464.

64 Programming the Amstrad CPC464

For example,
PRINT CINT (119.72) ... returns 120
PRINT CINT (-119.72) . . . returns -120
PRINT CINT (98890.87) . . . returns “Overflow" message, i.e. 9889(
exceeds the CPC464 INTeger range

Sign of numbers, SGN(X)
The SiGN function is used to determine the sign of the value of the variable oi
numeric expression X. SGN(X) returns -1 if A' is less thanO, returnsOif X = 0.
and returns +1 if X is greater than 0, e.g.

5.4 GENERATION OF RANDOM NUMBERS

SGN (52.6)
SGN (0)
SGN (-10.7)

. . . returns +1
. . . returns 0

. . . returns -1

RND(N) generates a pseudo random number in the range 0 to 0.999 999 999.
For example, each time the following program is run it generates 10 random
numbers

10 FOR n = 1 TO 10
20 PRINT n,RND(22)
30 NEXT n

Here is a typical print-out:

1
S'

0.182127052
O,729726442
0.526303542

4
5
6
7
8
9
10

0.671128625
5.51433E-02
0.598122045
1.17327E-02
0.177665838
0.596751153
0.814979649

Using the FIX or INT standard functions you can generate random whole
numbers in any range as illustrated by the following program.

10 REM Generation o-F random nos O*
20 PRINT ' ’ 0 to 1"; TABUS)"0-99";
30 PRINT TAB(22)"0-499";TAB(32)"0-999"

Standard Functions and Applications 65

40 PRINT
50 FOR n=l TO 10
60 x =RND (n) : x 100=F I X (100*x)
70 x500=FI X(500*x):x1000=FIX(1000*x)
80 F'R I NT x ; TAB (15) ; x 100;
90 PRINT TAB(22 > ;x500;TAB(32);x1000
100 NEXT n

Here is a typical display:

0 t o 1 0-99 0-499 0-999

0.879326445 87 439 879
0.516902614 51 258 516
7.14947E-02 7 -y kt •J'iJ 71
9.12086E-02 9 45 91
0.68626697 68 343 686
0.122103377 12 61 J *7*7
0.862517284 86 431 862
0.264316374 26 132 264
0.790767248 79 395 790
0.441823238 44 220 441

This program can be used to check the ‘randomness’ of the CPC464 random
generator. It counts the number of Is, 2s, 3s, 4s, 5s and 6s generated for a total
of 600 random numbers. Your counts should be approximately 100 each. Try
running the program, it only takes about 12 seconds.

100 IF x=6 THEN c6=c6+l

10 REM Random numb
20 CLS
30 FOR n = l TO 600
40 x=INT(6*RND(n)+1)
50 IF x = 1 THEN cl=cl+l
60 IF x sz*? THEN c2=c2+l
70 IF x =7; THEN c3=c3+l
80 IF x =4 THEN c4=c4+l
90 IF x =5 THEN c5=c5+l

110 NEXT n
120 PR INI-
130 PRINT "no. of l’s =";cl
140 PRINT "no. of z. s — ; cz.
150 PRINT "no. of 3’s =";o3
160 PRINT "no. of 47s =";c4
170 PRINT "no. of 5’s =";c5
180 PRINT "no. of 6’s = ";c6

66 Programming the Amstrad CPC464

Random numbers are extremely useful in making tests, e.g. sorting and
statistics, which we consider later. They are also widely employed in games.
Here is a simple example:

10 REM t** Simple game ***
xJJ CLS
30 F‘RINT"This is a simple game, you versus the CPC"
35 PRINT
40 F‘RINT"It involves tossing an imaginary die!"
45 PRINT
50 PRINT "Input what number between 1 AND 6"
60 PRINT"you think the CPC will generate"
65 PRINT
70 INPUT "My guess is";n
SO CPC.no =INT(RND(4)*6)+1
90 IF n = CPC.no THEN 120
95 PRINT
100 PRINT"Hard luck!";" the CPC no. was ";CPC.no
110 PRINT: GOTO 130
120 F'RINT"Well done, your guess was right"
130 PRINT"If you want another go, type yes"
140 F'RINT"if not, type no"
150 INPUT answer*
160 IF answer$="yes" THEN 70
170 END

5.5 TRIGONOMETRIC FUNCTIONS

Standard functions are available for the following trigonometric functions:
SIN (x) ... gives sin x
COS (x) . . . gives cos x
TAN (x) . . . gives tan x
ATN (x) ... gives arc tan x or tan-1 x, with x, with x given in radians
within the range -jt/2 to +rc/2. The value of x (the default value) is in radians
unless set to the degrees mode using DEG. If a DEG statement or command is
used then x is set to degrees, e.g.

10 DEG
20 x=60
30 F'R I NT SIN (x) , COS (x) , TAN (x)
40 PRINT ATN(1):REM tan 45 degrees - 1

Statement 10 sets the degree mode, so the output from line 30 will give sine,
cosine and tangent of 60°; line 40 will give arctan (1), i.e. 45°.

Once called into operation DEG sets the degree mode until instructed by
CLEAR which clears all variables, or by using RAD, or more drastically by using
NEW which deletes the entire program.

Standard Functions and Applications 67

The RAD command or statement sets the radian mode. Remember the
relationship between angles expressed in radians and degrees is
x radians = x degrees x jt/180

Fig. 5.1 The three basic trigonometric functions, (a) Definitions of sine, cosine and tangent of an
angle:

sin 0 = P, cos 9 = B, tan 0 = —
H H B

(b) Waveforms for sine, cosine and tangent.

68 Programming the Amstrad CPC464

The CPC464 stores the value of it to 8 decimal places as pi or Pl, e.g.
print pi . . . returns the value 3.14159265

Fig. 5.1 gives the basic definitions and the waveforms for sin, cos and tan.
Using the CPC464 graphics facilities we can easily display waveforms (see
example 4 following in this section and chapter 6).

Trigonometric functions: program examples

(1) This program produces a table of sin x values from 0° to 360° in steps of 20°.

10 REM *** Tab! e of sin x ***

20 CLS
30 PRINT x deg.. " ;TAB(1 5) 1 ' si n
40 PRINT
50 DEG
60 FOR x—0 TO 360 STEP 20
70 PRINT x , SIN(x)
80 NEXT x

RUN [ENTER]

deg. s i n x

0
20

0
0.342020143

40 0.64278761
60 0.866025404
80 0.984807753
100 0.984807753
120 0.866025404
140 0.64278761
160 0.342020143
180 0
200 -0.342020143
220 -0.642787609
240 -0.866025404
260 -0.984807753
280 -0.984807753
300 -0.866025404
320 -0.642787609
340 -0.342020143
360 0

(2) This program applies the Sine Rule (see fig. 5.2) to calculate the sides BC
and AB given the angles A and C and the third length AC.

Standard Functions and Applications 69

10 REM W Sine Rule example ***
20 CLS
30 INPUT "enter two known angles";A,C
40 INPUT "known side length";AC
50 B=180-A-C
<SO DEG
70 BC=SIN(A)*AC/SIN(B)
SO AB=SIN(C)*AC/SIN(B)
90 PRINT "BC =";ROUND(BC,2)
100 PRINT "AB =";ROUND(AB,2)

Try running the program, e.g. by inputting A = 32°, C = 75° and AC = 64.4.
The results obtained for the two sides are: BC = 35.69, AB = 65.05

(3) This program applies the second very useful rule, the Cosine Rule (see fig.
5.3).

Fig. 5.3 Cosine Rule: a2 = ft2 + c2 — 2bc cos A.

10 REM O* Application of Cosine Rule
20 CLS
30 INPUT "Two sides and included angle";b,c,A

70 Programming the Amstrad CPC464

40 DEG
50 BC=SQR (b--2+c--2-2*b*c*C0S (A))
60 PRINT "a ;ROUND(BC,4)

On running the program with the following data: b = 112, c = 58.6, A = 47°,
you will obtain a = 83.8199.

(4) This program pre-empts the next chapter on graphics but is fairly easy to
understand. The origin is set by the ORIGIN statement to be in the centre of the
screen. PLOT instructs the computer to plot points and DRAW to draw lines.
This program plots a sinewave y = sin x from -320° to +320°. The display
obtained is shown in fig. 5.4.

10 REM ** drawing a sinewave **
20 CLS
30 PRINT "sinewave y=sin x from x=-320 to 320 degrees"
40 ORIGIN 320,200
50 PLOT -320,0
60 DRAW 320,0
70 PLOT 0,-200
80 DRAW 0,200
90 FOR x=-320 TO 320
100 DEG:y=SIN(x)
110 PLOT x,y*100
120 NEXT x

Sine wave y = sin x from x = —320 to 320

k__ 7

Fig. 5.4 Display obtained on running sinewave program of example 4.

Standard Functions and Applications 71

5.6 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Fig. 5.5 Plot of exponential function e'.

EXP(X) gives e raised to the power X. i.e. gives values of the exponential
function, el where e = 2.7182818 . . .

LOG(x) gives the natural logarithm of x, where a must be greater than zero.
LOG10(x) gives the common logarithm (log to base 10) of x ; x must be

greater than zero.

Exponential and log functions: examples

(1)
PRINT EXP (2.4) [ENTER]
11.0231764 . . . value of e2 4 obtained

(2)
PRINT EXP(1.6) + EXP(-1.6) [ENTER]
5.15492894 . . . value of el 6+e16 displayed

(3) The following program produces a table of logc and logm for x = 1 to 10.
The log values have been rounded to 5 decimal places.

10 PRINT " x " ," ioge"," 1og10"
20 PRINT
30 FOR x = l TO 10
40 PRINT x ,ROUND(LOG(x),5),ROUND(LOG10(x) ,5)
50 NEXT x

x logo log 10

1 0 0
*7 0.69315 0.30103

1.09861 0.47712
4 1.38629 O.60206

72 Programming the Amstrad CPC464

5
6
7
8
9
10

1.60944
1.79176
1.94591
2.. 07944
2.19722
2.. 30259

0.69897
0.77815
0.8451
0.90309
0.95424
1

5.7 USER DEFINED FUNCTIONS

The BASIC language also allows us to define our own functions—user defined
functions—as follows:
100 DEF FN identifier (parameter list) = expression for result
The function must have an identifier, just as a variable, and the parameter list is
used to feed data values to be used in computing the function result, i.e. the
value returned by the function.

A user defined function can be ‘called’ or ‘invoked’ at any time in a program
simply by writing FN identifier (parameter list values). The function definition,
however, should be written outside any loops in which it is called and certainly
always before it is first used. Function definitions are therefore usually written
early on a program.

The definition and function ‘calls’ are illustrated in the following examples.

User defined functions: program examples

(1) This program contains the definitions of two functions:
FNA(r) = 4rrr2 and FNV(r) = 4nr3/3
to calculate respectively the surface area and volume of a sphere of radius r.

Calls are made to the functions: at line 50 to calculate the area for r = 5.6; at
line 60 to calculate the volume for r = 24; and at line 100 to calculate area and
volume for a value of r input from the keyboard.

10 REM * * * User defined functions
15 REM * for surface area and volume of a sphere
20 CLS
30 DEF FNA(r)=4*PI*r-'2
40 DEF FNV(r) =4*PI*r--3/3
50 PRINT "Area = "; FNA(5.6);" for r - 5.6"
60 PRINT "Volume =";FNV(24);" for r = 24"
70 PRINT:PRINT
80 INPUT "Radius =";r
90 PRINT "for r = ";r
100 PRINT "Ar ea ="? FNA(r);" Volume =";FNV(r)

Standard Functions and Applications 73

(2) This program contains the function,
FNI (p,r,t)
which is used to calculate compound interest. The program calls the function in
a FOR loop to calculate a table of interest values for t = 1 to 10 years; the values
for the sum invested p and interest rate r are input from the keyboard.

10 REM W User defined interest -function
20 CLS
30 DEF FNI(p,r,t)=p*(1+r/100)-t-p
40 INPUT "Sum .invested and rate Z";p,r
50 PRINT "year","interest"
60 PRINT
70 FOR t = l TO 10
80 PRINT t„ROUND(FNI(p,r,t),2)
90 NEXT t

The display obtain when inputting p = 500, r = 12.5 is

year

1

4
5

7
8
9
10

i nterest

62.. 5
132.81
211.91
300.9
401.02
513.64
640.35
782.89
943.25
1123.66

5.8 STANDARD FUNCTIONS FOR STRINGS: STRING SLICING

BASIC provides also several useful functions for processing strings. In this
section we consider string ‘slicing’ functions, i.e. functions that can remove
characters from a string to form a smaller string.

The LEFT$ function

The LEFTS function is used, as its name suggests, to obtain the first N
characters of a string starting from the left. A LEFTS instruction takes the form;
LEFTS (A$,N)
which would produce a string consisting of the first N characters of A$. Its
action is illustrated by running the following short program.

74 Programming the Amstrad CPC464

10 REM *** LEFTS(AS,N) demo ***
20 aS="123456789"
30 bS~"abcde-f ghi jkl mnopqrstuvwxyz "
40 PRINT LEFTS(aS,4)
45 PRINT
50 PRINT LEFTS(bS,13)

The display obtained is

1234 «----------------------- first 4 characters of a$ starting from left

abcde-f ghi ,j kJ. m <— first 13 characters of b$

The RIGHTS function

The RIGHTS function is used to obtain the last N characters of a string, ending
with the rightmost character. For example, the display obtained when running
the following program:

10 REM *** RIGHTS(AS,N) demo **»
20 PRINT RIGHTS("Meadows R G",3)
30 PRINT
40 aS="ABCDEFGHIJ"
50 PRINT RIGHTS(aS,6)

is

R G <---------------------------- last 3 characters of “Meadows RG“

Ef- GHIJ <--------------------------- last 6 characters of a$

The MID$ function

The MID$ function allows any portion of a string to be obtained. It takes the
general form,
MID$ (A$, M, N)
where the whole numbers (integers) M and N define that the string so formed
consists of N characters starting from the A/th character from the left. For
example,

10 REM *** MIDS(AS,M,N) demo ***
20 PRINT MIDS("1234abcB9",5,3)

would produce the output
abc
i.e. a 3 character string starting from the Sth character from the left.

Standard Functions and Applications 75

5.9 THE LEN FUNCTION FOR DETERMINING THE ‘LENgth’ OF A
STRING

The LEN standard function gives the length, i.e. the number of characters, in a
string. For example
(1)
PRINT LEN “How many characters in this string?" [ENTER]
35 ... result displayed.
Remember all characters including spaces, punctuation marks, etc. in the
string count as part of its ‘length’.

(2)

10 REM *** LEN(a$) demo m
20 a$="R G Meadows"
30 PRINT LEN(a$)
40 PRINT
50 PRINT LEN ("123456789abcdeF")

RUN [ENTER]
11 ... result for LEN(a$)
15 ... result for LEN("123456789abcdef“)

5.10 THE VAL AND STR$ FUNCTIONS

The VALue function converts a ‘number’ string into the actual number which
can then be assigned, for example, to a numeric variable.

The STR$ function is the inverse; it converts numeric data into a string.
The following short program demonstrates their action.

10 REM *** VAL and STR$ demo ***
20 a$="4453"
30 n=VAL(a$)
40 PRINT a$,n,n*n
50 PRINT
60 b$=STR$(n)+STR$(n)
70 PRINT b$

RUN [ENTER]

4453

4453 4453

4453 19829209

76 Programming the Amstrad CPC464

The first line of output (line 40) displays
a$ (i.e. “4453”) n (i.e. 4453) and n*n
Clearly the VAL function has converted the string "4453" into the number
4453.

The second line of output represents the string b$ formed by combining the
strings "4453" and "4453".

5.11 CHARACTER SETS AND CODES: CHR$ AND ASC STANDARD
FUNCTIONS

The characters, i.e. letters; digits 0, 1, 2, ... ; punctuation marks; and
arithmetic symbols that appear on the CPC464 keyboard form part of what is
known as the character set of the CPC464 computer. The total set also includes
many graphics type characters.

Each character is assigned a number code. The function CHR$ () converts
this code number to its character equivalent in the character set of the Amstrad
CPC464 computer.

The following program displays a portion of the CPC464 character set from
n = 33 to n = 126. This range covers most of the keyboard characters.

10 F'RINT "Code no n ", "Character , CHR$ (n) "
20 F'RINT
30 FOR n-33 TO 126
40 F'RINT n,CHR$(n)
50 NEXT n

You will obtain a line by line display if you run the program. The corresponding
table is shown in fig 5.6

The remainder of the set extends from n = 127 to n = 255 and consists of
graphics-type symbols. Modify line 30
30 FOR n = 127 to 255
to see the actual characters displayed. Remember you can press the ESC key
once to pause the program execution (and the display) and press any other key
for continue.

One of the most commonly used codes for transmitting information between
computers and associated devices such as printers etc. is the ASCII code. The
decimal equivalent of the ASCII code of a character can be found using the
ASC("X") function.

The ASC function returns the code for the character A" within the quotation
marks or if a string is present the first character of the string. Obviously the
character must be a member of the ASCII set. For alphabetic characters, digits,
punctuation marks, etc. the CPC464 code is identical to the ASCII codes.

Standard Functions and Applications 77

Code no. CHR$(n) Code no. CHR$(n) Code no. CHR$(n)
n Character n Character n Character

1 65 A 97 a
34 •> 66 B 98 b

67 (7 99 c
36 $ 68 D 1 oo d
37 7. 69 E 1 01 e?
38 & 70 F 102 f
39 71 G 103 q
40 (72 H 1 04 h
41) 7 3 I 105 i.
42 * 74 J 106 j
43 +• 75 K 107 k
44 76 L. 1 08 1
45 - 77 M 109 rT>

46 78 M 1 1 0 n
47 79 □ 1 1 1 o
48 0 80 F’ 1 12 P
49 1 81 □ 1 13 q
50 2 82 R 1 1 4 r
51 3 83 8 115
52: 4 84 T 1 1 6 t
53 5 85 U 1 .1 7 LI

54 6 86 V 1 1 8 V

55 7 87 w 1 .1.9 w
56 8 88 X 1 20 !■:
5 7 9 89 Y 121 7

58 : 90 T
■' 122 z

59 91 i: 123 C
60 92 124 l
61 9"-. ■] 1 25
62 94 126
63 95
64 i.i) 96

Fig. 5.6 Part of character set for CPC464 computer.

For example,
(1)
PRINT ASC("A") [ENTER]
65 ... ASCII and CPC464 code for A
(2)
PRINT ASC("a") [ENTER]
97 ... ASCII and CPC464 code for a
(3)
PRINT ASC("+") [ENTER]
43 ... code for + symbol
(4)
PRINT ASC("676")
54 ... code for 6, the first character of the string
(5)
PRINT ASC ("String here") [ENTER]
83 ... code for S

78 Programming the Amstrad CPC464

Exercise problems 5

(1) Use the functions ROUND, INT and FIX appropriately to
(a) round the following to the nearest whole number
4.69, 587.3, -199.9, 0.678, -0.989
(b) specify the following to an accuracy of 2 decimal places
58.632998, -9.9989, 0.46798, V58.67

(2) Write a program to display a list of 16 random numbers in the range 1 to 55.
Use it to generate a treble-chance forecast!

(3) Write functions that will return the following values
(a) the average of 3 quantities
(b) the volume of a cylinder, given
V = nr2h
where r = radius and h = height of cylinder

(4) Use the LEN function to determine the lengths of the strings
(a) "42 Lynton Avenue, London, NW55"
(b) A$ = "A stitch in time, saves 9"
(c) A$ + B$, where A$ = "123456789" and B$ + "abcdefghijklmnopq"

(5) (a) Find the ASCII (and CPC464 codes) for
Z , ;9 - = * !
(b) Find the characters corresponding to the following CPC464 codes:
118,35,59,86,249,251

6
BASIC GRAPHICS, DRAWING AND
PLOTTING

6.1 INTRODUCTION AND SUMMARY

The CPC464 computer incorporates excellent and easy-to-use graphics
facilities. In this chapter we consider their use.

We start by explaining the graphics coordinate system and the use of the
graphics commands: PLOT, DRAW and ORIGIN. With these commands, as
their name suggests, we can plot points, draw lines, set the origin and compose
our own computer-aided drawings.

We also consider the use of both screen and graphic cursor commands to
LOCATE and MOVE the respective cursors to any position on the screen and
their use to label our figures. Applications of graphics to drawing basic shapes,
defining and using WINDOWS, and plotting curves, waves and our own graphs
are also included.

6.2 THE GRAPHICS SYSTEM AND BASIC KEYWORDS PLOT, DRAW,
ORIGIN

1 The graphics coordinate system

The graphics coordinate system is shown in fig. 6.1. The origin, the (0,0) point,
is at the bottom left hand corner of the screen ‘page’. The horizontal or x-axis
runs from 0 to 640 units. The vertical or y-axis runs from 0 to 400 units.

The units used in the graphics system are called pixels. A pixel is essentially
the smallest possible element making up a ‘picture’; it is a dot used to form
points, lines, etc. We used the pixel units to define the position of points in the
graphics system.

2 PLOT and PLOTR for plotting points

PLOT and PLOTR are used to plot points, i.e. to ink in points with respect to the
graphics coordinate system so they are visible on the screen.

80 Programming the Amstrad CPC464

Origin

□

Fig. 6.1 The graphics coordinate system.

r '

(0,200)
/

• (200,200)

(500*350)

(0,0) (320,0) (600,0)

z L \

Fig. 6.2 The PLOT x, y command for plotting points with respect to graphics origin.

Basic Graphics, Drawing and Plotting 81

The command,
PLOT x,y [ENTER]
plots a point with respect to the graphics origin, i.e. x pixel units along the
x-axis and y pixel units along the y-axis. For example (see fig. 6.2);
PLOT 0,0 . . . inks in the point (0,0) at the origin
PLOT 320,0 . . . plots a point half way along the x-axis
PLOT 200,200 . . . plots a point located 200 units from the origin along
the x-axis and then 200 units vertically upwards.

The command,
PLOTR xr,yr [ENTER]
plots a point relative to the current graphics cursor position. For example,
suppose we have set the graphics cursor at the absolute point (200,100) by the
command
PLOT 200,100 [ENTER] . . . point A in fig. 6.3
then to plot a second point a further 300 units away in the x direction and 190
units in the y we can use,
PLOTR 300,190 [ENTER] . . . point B in fig. 6.3

□

Fig. 6.3 The PLOTR xr, yr command lor plotting points relative to the last cursor position.

3 DRAW and DRAWR for drawing lines

The command,
DRAW x,y [ENTER]
draws a straight line on the screen from the current graphics cursor position to
the absolute position specified by x, v. For example, suppose we set the graphics
cursor at the origin by the command.

82 Programming the Amstrad CPC464

PLOT 0,0 [ENTER]
then the command,
DRAW 250,300 [ENTER]
draws the line from (0,0) to (250,300), i.e. line OA in fig. 6.4

x

A

B

0

□

Fig. 6.4 The DRAW x, y and DRAW xr, yr commands for drawing straight lines.

The ‘relative’ DRAW command,
DRAWR xr,yr [ENTER]
draws a line from the current graphics cursor position to a point a further xr
units away in the x-axis direction and yr units in the y-axis direction, e.g.
DRAWR 250,-100 [ENTER]
draws the line AB in fig. 6.4.

The following two programs illustrate the application of the PLOT, DRAW
and DRAWR graphics keywords.

This program ‘draws’ the triangle shown in fig. 6.5.

IO REM m Drawing a triangle
CLS
F'LOT 0,0
DRAW 500,0
DRAWR' 0,400
DRAW 0,0

Basic Graphics, Drawing and Plotting 83

k__________________________________ 7

Fig. 6.5 Drawing a triangle.

This program allows you to draw any size of rectangle, with the lower left­
hand corner at the origin (0,0) and with dimensions input from the keyboard.

10 REM #0 Drawing a rectangle
20 REM O Dimensions input from keyboard **
30 CLS
40 PLOT 0,0
50 INPUT "Enter length (not exceeding 630)";].
60 INPUT "and hei ght (not exceedi ng 390) " ; h
70 CLS
SO DRAW 1,0
90 DRAWR 0,h
100 DRAWR --1,0
110 DRAW 0,0
120 GOTO 120

4 ORIGIN

The graphics coordinate system origin can be changed by the command,
ORIGIN, X,Y, [ENTER]
which will set the new origin at the point X pixel units horizontally and Y pixel
units vertically from the original (0,0) point at the bottom left-hand corner of
the screen page.

84 Programming the Amstrad CPC464

V__ y

Fig. 6.6 Changing the position of the origin using the command ORIGIN X, Y.

For example, the command
ORIGIN 320,200 [ENTER]
will set a new origin at the centre of the screen. The PLOT and DRAW
commands will then plot points and draw lines with respect to this new origin,
e.g. see fig. 6.6.
PLOT -320,0 [ENTER]
DRAW 320,0 [ENTER]
PLOT 0,-200 [ENTER]
DRAW 0,200 [ENTER]

. . . plots point K
. . . draws the new x-axis

. . . plots point L
. . . draws the new y-axis

6.3 DRAWING AND LABELLING SOME BASIC FIGURES

In this section we use the basic graphics keywords to draw some common
geometrical figures. We combine these drawings with showing how we may
attach character labels using the following screen and graphic cursor
commands:

(1) LOCATE (column number, line number) . . . used to locate the
screen character cursor to a given column-line position on the screen

Basic Graphics, Drawing and Plotting 85

Column number

Fig. 6.7 Column-row structure for screen modes. Used for screen cursor LOCATION and also
for defining WINDOW dimensions and position (see section 6.5).

86 Programming the Amstrad CPC464

In mode 0 the screen is considered as divided into 20 columns and 25 lines or
rows (see fig 6.7(a)). Thus the command,
LOCATE 12,15 [ENTER]
places the screen cursor 12 columns across the screen and 15 lines down the
screen, so if we followed this command by,
PRINT"*''[ENTER]
the star symbol (*) will be displayed at this position.

In mode 1, the normal mode, the screen is divided into 40 columns and 25
lines, so
LOCATE 20,20 [ENTER]
PRINT"*****" [ENTER]
will display ***** starting at column 20, line 20, as shown in fig. 6.7(b).

Mode 2, the high resolution mode, is considered to be divided into 80
columns by 25 lines (see fig. 6.7(c)).

(2) MOVE and MOVER
Just as LOCATE is used to position the screen character cursor, the keywords
MOVE and MOVER are used to position the graphics cursor.

MOVE x,y positions graphics cursor to the point x pixels units horizontally
and y pixel units vertically with respect to the graphics origin.

MOVER xr,yr positions the graphics cursor xr and yr pixel units from the
current graphics cursor position

MOVE and MOVER are essentially identical to PLOT and PLOTR but
without actually plotting the point.

(3) TAG is used in conjunction with MOVE and MOVER to attach or ‘tag’ a
character string to be displayed starting at a specific graphics coordinate
location. For example,
MOVE 320,200 [ENTER]
will position graphics cursor at the centre of the graphics system.
TAG [ENTER]
will now direct any subsequent display to start at this position, so
PRINT "centre-point"; [ENTER]
would cause centre-point to be displayed starting at the graphics position
320,200. Note the PRINT statement should be terminated by a semi-colon (;).
If this is omitted the control character —» J, will be displayed following the
string.

TAG is cancelled by TAGOFF.

Drawing some common figures: program examples

(1) The following program ‘draws’ the four basic types of triangles. LOCATE is
also used to label the drawings.

Basic Graphics. Drawing and Plotting 87

5 REM *** Drawing Triangles * * *
10 CLS
20 PLOT 0,200
30 DRAW 640,200
40 PLOT 320,0
50 DRAW 320,400
60 LOCATE 5,12
7 0 P R .1. N T '' R ight-angled"
80 PLOT .10,240
90 DRAWR 250,0
100 DRAWR 0,150
110 DRAW 10,240
120 LOCATE 25,12
130 PRINT "Scalene"
140 PLOT 340,240
150 DRAWR 200,0
160 DRAWR -140,150
170 DRAW 340,240
180 LOCATE 5,23
190 PRINT "Obtuse"
200 PLOT 30,60
210 DRAW 140,60
220 DRAWR 150,100
230 DRAW 30,60
240 LOCATE 25,23
250 PRINT "Isosceles"
260 PLOT 350,60
270 DRAWR 200,0
280 DRAWR -100,125
290 DRAW 350,60

On running the program you will obtain the display shown in fig. 6.8
(2) This program displays regular polygons (many-sided figures). On running
the program you are asked to enter the number of sides. Try running the
program. With n=3 you will obtain a triangle; n=4, a square; n = 5, a pentagon;
n=6, a hexagon (see fig. 6.8), and so on. If you choose a high value of n, say
over 30, the figure will closely resemble a circle.

10 REM *** drawing polygons W
20 CLS
30 INPUT "Enter number of sides";n
40 ORIGIN 320,200
50 PLOT 150,0
60 FOR s=l TO n
70 = 150* COS (2 * PI * s / n)

88 Programming the Amstrad CPC464

80 y=150*SIN(2*PI*s/n)
90 DRAW x,y
.100 NEXT s
110 LOCATE 17,12
120 PRINT "n =";n

□

Fig. 6.8 Display produced by triangle program.

Fig. 6.9 Display produced by polygon program for n = 6.

Basic Graphics, Drawing and Plotting 89

(3) This program demonstrates the use of MOVE. It begins by drawing a square
of side 20 with the left-hand corner at the origin. You can then ‘MOVE’ the
square to be drawn at any other position within the graphics coordinate system.

10 REM KM MOVE demo KKK
20 CLS
30 MOVE 0,0
40 DRAWR 0,20 5DRAWR 2D,0
50 DRAWR' 0, -20 5 DRAWR -20,0
60 INPUT "Enter distance x to be moved";x
70 INPUT "Enter distance y to be moved";y
SO MOVE x,y
90 GOTO 40

(4) This program can be used for drawing ellipses or circles.

10 REM KKK Drawing an ellipse KKK
20 CLS:ORIGIN 320,200
30 INF'UT " 1 enqth of semi -ma jor axis " ; a
40 INPUT"ecc:entri ci t.y" ; e
50 b=eKa
60 FOR x=-a TO a
70 y=b / a * SC1R (a'-2..x" 2)
SO PLOT x,y
90 PLOT x,-y
1O(i NEXT x

Enter in the length of the semi-major axis and the eccentricity (which is 1 for
circles) and then the program will plot the ellipse. A typical display is shown in
fig. 6.10.
(5) The following two programs attempt to draw in perspective. The first one
draws a box (see fig. 6.11(a)), and the second a cylinder (see fig. 6.11(b)).

IO REM MK Drawinq a box or cuboid ***
15 CI...S
20 PLOT 50,50
30 DRAWR 100,OsDRAWR 0,100
40 DRAWR -100,05 DRAWR 0,-100
50 MOVE 150,50
60 DRAWR 71,715DRAWR 0,100:DRAW 150,150
70 MOVE 50,150
SO DRAWR 71,715 DRAWR’ 100,0

10 REM KKK Drawing a cylinder KKK
20 CLS5 ORIGIN 320,300
30 INPUT "Radius of cylinder";a
40 INPUT "and height."; h
50 CLS

90 Programming the Amstrad CPC464

bO FOR x=-a TO a
70 y= 0.5*SQR (a "'2-x -■2)
80 PLOT x,y
90 PLOT x, -y
100 NEXT x
110 ORI0IM 320,300—h
120 FOR x=-a TO a
130 y= 0.5*SQR(a-'-2-x ■-■2>
140 PLOT x,y
150 PLOT x,-y
160 NEXT x
170 MOVE -a,Os DRAW -a,h
180 MOVE a,0:DRAW a,h

(b)

Fig. 6.10 Display produced by ellipse program.

□

Fig. 6.11 Displays produced by (a) box and (b) cylinder programs.

Basic Graphics, Drawing and Plotting 91

6.4 APPLICATIONS TO CURVE AND WAVE PLOTTING

We can also use numerical or mathematical expressions rather than just pure
numbers in PLOT statements, in much the same way as used in the last section
to trace out an ellipse. This allows a direct and very easy way of plotting curves
of mathematical equations, functions and waves.

The following program examples illustrate how this is done.

1 Sketch of a parabola

Plot of a parabola

•
y = x 12

•

• •

• •

• •

• •

• •

• •

• •
• . • X• •

V__7
□

Fig. 6.12 Display obtained on running parabola program.

The program listed below plots the curve of the parabola y=x2 over the range
-20^x=S20. Note that the origin has been moved to the centre of the horizontal
axis (see line 40) and a scale magnification factor of 16 has been used for x
values (see line 90). Thex and y axes are drawn in using DRAW statements and
the actual plotting is accomplished by the FOR loop (lines 100 to 130).

The display obtained on running the program is shown in fig. 6.12.

10 REM Parabola plot
20 CLS
30 PRINT "Plot of a parabola
40 ORIGIN 320,0
50 PLOT -320,0

92 Programming the Amstrad CPC464

60 DRAW 320,0
70 PLOT 0,0
80 DRAW 0,400
90 xscale"16
100 FOR x=-20 TO 20
110 y=x*x
120 PLOT x *x seale,y
130 NEXT x
140 MOVE 10,360: TAG: PRINT ‘'y=x ""2" ;
150 MOVE 300,20:PRINT "x";
160 GOTO 160

Note the 'Ready' caption has been removed from the display by the inclusion
of line statement 160. To ‘break’ program execution and return the cursor to
the screen, press the ESC key twice.

2 Drawing spirals

The following program plots two spirals, the first ‘travelling inwards' and the
second ‘growing outwards’. The tightness of the spirals is governed by the value
given to n in line 50. The number of spiral turns is governed by the end value of 5
in line 140. On running the program the first spiral is displayed (see fig. 6.13).
This is followed by a short delay and then the plot of the second spiral is
displayed.

A

V__ 7

Fig. 6.13 Display from first part of ‘Drawing spirals' program.

Basic Graphics, Drawing and Plotting 93

IO REM *** Drawing spirals ***
2G CLS
30 ORIGIN 320,200
40 PRINT "Spiral travelling inwards"
50 n=100
60 FDR s=0 TO 400
70 x = 200 *EXP(-s/n)*COS(2* PI * s / n >
SO y= 200*EXP(-s/n) *SIN(2*F’I*s/n)
?0 PLOT x,y
100 NEXT s
110 FOR delay=l TO 5000s NEXT delay
120 CLS
130 PRINT "Spiral growing outwards"
140 POR s=0 TO 400
150 x = 5*EXP(s/n>*C0S(2*PI*s/n)
160 y= 5»EXP(s/n)*SIN(2*PI»s/n)
170 PLOT , y
ISO NEXT s

3 Plotting sinewaves: Fourier analysis illustration

Although an advanced topic, readers might be interested in trying this program
which demonstrates the power of the Amstrad graphics.

The program illustrates graphically an example of an application of a famous
theorem known as Fourier’s theorem. The latter effectively states that any
periodic waveform can be considered to be made up a series of sinewaves
whose frequencies are multiples (harmonics) of the waveform frequency. For
example, the unit amplitude square wave shown in fig. 6.14(a) can be expressed
as a series of cosine waves, i.e.
square wave, y=4/n [cos x—!6 cos 3x+'/s cos 5x—'/? cos 1x+. . .]

+ 1
. v

0

- 1
X

(a)

Fig. 6.14 Fourier analysis of a square wave: wave can be considered as made up of a number of
cosine waves, (a) Square wave, (b) Fundamental, third and fifth harmonic components.

94 Programming the Amstrad CPC464

The first three component waves of the series are:
4/n COS X
4/3n COS 3x
4/5n COS 5,f

. . . the fundamental
. . . the third harmonic
. . . the fifth harmonic

10 1REM LU Fourier Illustration ***
20 CLS
30 i□RIGIN 0,300
40 PLOT 0,0 .-DRAW 600, 0
50 'c=4/PI
60 DEG
70 FOR x = l TO 600
SO y=3O5Kc*COS (x)
90 PLOT x,y
100 NEXT x
110 ORIGIN 0,200
120 PLOT 0,0:DRAW 600,0
130 FOR x=l TO 600
140 y=30*c* (COS (x) -l/3*C0S(3*x))
150 PLOT x,y
160 NEXT x
170 ORIGIN 0,100
180 PLOT 0,0:DRAW 600, o
190 FOR x=l TO 600
200 y=30*c*(COS(x) -1/3*COS(3*x)+l/5*C0S(5*x))
210 PLOT x,y
220 NEXT x

The program plots out three waveforms:
the fundamental (see fig. 6.15(a))
the sum of the fundamental and the third harmonic (see fig 6.15(b))
the first 3 terms of the Fourier series, i.e. sum of the fundamental and third and
fifth harmonics (see fig 6.15(c)).
Try running the program and then modifying it to include further terms, e.g.
the 7th, 9th, etc. harmonics, and investigate how accurately a square wave can
be represented by means of a given number of Fourier components.

6.5 USING WINDOW

The CPC464 computer has the very useful facility of defining areas of the
screen—i.e. WINDOWS—which we can use to send data for display in a given
area.

Basic Graphics, Drawing and Plotting 95

□

Fig. 6.15 Display produced by 'Fourier Illustration’ program.

. . . column number defining left-hand side of window
. . . column number defining right-hand side of window

. . . line number defining top of window
. . . line number defining bottom of window

A window can be created using the statement,
100 WINDOW #n, left col.no., right col.no., top line no., bottom line no.
where #n defines the internal channel which we select to send our PRINT output
data to the WINDOW; n can take the values 1, 2, 3, 4, 5, 6 or 7
left col. no.
right col. no.
top line no.
bottom line no.
For planning your window size and position use the column-line grids for
modes 0, 1 and 2 given in fig. 6.7.

The following two programs illustrate how windows are defined and how
data may be directed to a given screen window.

The first program creates 4 different size windows when working in mode 1,
as shown in fig. 6.16. If you are working with colour you will note that each
window has its own page and pen colour. The PRINT #n, statements are also
used to direct output display to the desired windows.

10 REM W Window demo W
15 REM ** Creation of 4 wi ndows
20 CLS
30 BORDER 0
40 WINDOW #1,1,10,14,25

96 Programming the Amstrad CPC464

50 PAPER #1,35CLS #1
60 PRINT #1, "window 1"
70 WINDOW #2,11,40,13,25
80 PAPER #2,1:CLS #2
90 PEN #2,3
100 PRINT #2:PRINT #2,"window 2 here"
110 PRINT #2 :PRINT #2
120 FOR n-1 TO 20
130 PRINT #2,CHR$(250);
140 NEXT n
150 WINDOW #3,1,20,1,13
160 PRINT #3,"Window 3 here"
170 PAPER #3,2:CLS #3
180 PEN #3,0
190 PRINT #3,"Window 3 here"
200 WINDOW #4,21,40,1,13
210 PRINT #4,"Window 4 here"
220 GOTO 220

Border
Window 3 here Window 4 here

Window 1 Window 2 he re

k ____________________________ 7
□

Fig. 6.16 Display produced by 'window demo' program.

The second program creates two WINDOWS—one for outputting a table of
results and the other alongside for plotting a graph of the results. Note that the
high resolution mode, mode 2, is used for the results table display.

Basic Graphics, Drawing and Plotting 97

10 REM *** window application demo ***
20 REM * results table + graph display *
30 CLS
40 MODE 2
50 WINDOW #1,1,20,1,25
60 PRINT #1, ".t ";" v "
70 PRINT #1
SO FOR t=0 TO 5 STEP 0.25
90 PRINT #1,USING "#.##";t;
100 PRINT #1,TAB(8);INT(400*(1-EXP(-t)))
110 NEXT t
120 WINDOW #2,21,80,1,25
130 ORIGIN 200,0
140 PLOT 0,0:DRAW 400,0
150 PLOT 0,0:DRAW 0,400
160 FOR t=0 TO 5 STEP 0.25
170 PLOT 80*t,400*(1-EXP(-t)>
180 NEXT t.
190 GOTO 190

The display obtained on running this program is shown in fig. 6.17.

□

Fig. 6.17 Display of tabic of results and graph plot produced by the second “window demo'
program.

98 Programming the A ms trad CPC464

6.6 PLOTTING YOUR OWN GRAPHS

In this final section three examples of programs that can be used to plot your
own graphs are presented.

1 Program to plot x,y points with data in DATA statements

In this program the data for each x,y point is included in pairs in the DATA
statements at lines 150 to 180. A FOR loop is used to both READ the x,y values
and PLOT the respective points. Both x and y axes are also drawn and labelled.
The range of points is limited in this case to the graphics coordinate system, i.e.
x from 0 to 640 and y from 0 to 400.

10 REM 444 To plot, a graph 444
20 CLS
30 REM 4** READing and PLOTting the points 4*4
40 FOR n = l TO 14
50 READ x,y
60 PLOT x,y
70 NEXT n
80 REM 44 drawing x axis 44
90 MOVE 0,0:DRAW 630,0
100 MOVE 600,20:TAG:PRINT "x",“
110 REM 44 drawing y axis 44
120 MOVE 0,0:DRAW'0,400

130 MOVE 20,370:PRINT "y";
140 REM 444 x,y data -For the point 444
150 DATA 10,30,50,100,102,168,160,225
160 DATA 210,270,275,305,356,322,401,300
170 DATA 445,271,470,226,515,174,552,103
180 DATA 572,60,595,15

The graph plot obtained on running this program is shown in fig. 6.18.

2 Program to plot x,y points with data INPUT from keyboard

This program is similar to the first but allows points to be INPUT directly from
the keyboard. After completing your entries, input -999. This will break the
input loop and immediately commence plotting. [Note arrays considered in the
next chapter are used to store the x, v data.]

10 REM 444 To plot a graph 444
20 REM 444 x,y values INPUT -From keyboard 444
30 CLS

Basic Graphics, Drawing and Plotting 99

90 PRINT

40 DIM x (50) :DIM y(50)
50 n=1
60 INPUT "x value of point" ; x (n)
70 IF x (n) =-■999 THEN 120
80 INPUT "y value of point" 5 y (n)

100 n=n+l
110 GOTO 60
120 CLS
130 REM O drawing x axis **
140 PLOT 0,0:DRAW 630,0
150 MOVE 600,20:TAG:PRINT "x";
160 REM O drawing y axis **
170 PLOT 0,0:DRAW 0,400
.180 MOVE 20, 370: PRINT "y";
190 REM plotting the point
200 FOR t = l TO n-1
210 PLOT x (t),y(t)
220 NEXT t
230 GOTO 230

□

Fig. 6.18 Output display for first ‘To plot a graph' program.

100 Programming the Amstrad CPC464

3 x-y graph plotting with automatic scaling

This program has an automatic scaling facility so we are not restricted to the
range 0-640 for x and 0-400 for y. As the x-y data is being entered the values
are stored and IF statements are used to find the maximum and minimum
values. This information is then used to set the scale factors for x and y and the
position of the origin.

IO REM *** Graph plotting * **
20 REM ** Automatic scaling O
30 xmin = l E+10:ymi n = lE+l0
40 x max =- 1E+10: ymax =-■ 1E+10
50 DIM x(50>s DIM y(50)
6O CL.S
70 n = l
80 INPUT "x value of point";x(n)
90 IF x(n)=-999 THEN 180
100 INPUT "y value of pointy(n
.110 PRINT
120 IF x (n) >xmax THEN x max =x(n)
130 IF y(n)>ymax THEN ymax =y(n)
140 IF x (n)<xmi n THEN xmin=x (n)
150 IF y(n)<ymin THEN ymi n=y(n)
160 n=n + l
170 GOTO SO
180 x f =640 / (x m ax -■xmi. n)
190 y-f =400/ (ymax-•ymi n)
200 ORIGIN -xmi.n» x f,-ymi n *yf
210 CLS
220 FOR t = l TO n-■1
230 F'LOT x(t)*xf, y(t)*yf
240 NEXT t

Exercise problems 6

(1) Display the following on the screen:
(a) a rectangle with corners at (50,50) , (50,300) , (500,300) and (500,50)
(b) a right-angled triangle with a base of 400 units and a height of 250.

(2) Write programs to
(a) draw a circle centre (320,200) and radius 150
(b) draw an ellipse centre (200,200), semi-major axis length 100 and
eccentricity 0.7.

Basic Graphics, Drawing and Plotting 101

(3) Write a program to display the 'house' shown in fig. 6.19.

(4) Write programs to plot the following functions:
(a) y = cos x from x = —320° to + 320°
(b) y = 400e“v from x = 0 to 5.

(5) Write a program that will plot the following points:
(0,30) , (30,75) , (60,120) , (90,156) , (120,198) , (150,224) , (180,237) ,
(210,228) , (240,201) , (270,150) , (300,126) , (330,70) , (360,25).

7
APPLICATIONS OF ARRAYS AND FILES
IN PROGRAMS

7.1 INTRODUCTION AND SUMMARY

The subject of arrays and files is very often considered as rather advanced and
really the domain of the more experienced programmer. However, with
CPC464 this is really not so—arrays, which are essentially easy-to-access
storage ‘boxes’ for the values we wish to enter, use and process in our
programs, and files, which allow us to keep permanent records of input data,
results, etc., are very easy to use. They provide much greater scope for writing
more interesting programs and allows us to extend our activities to a very much
wider field of applications.

In this chapter we first explain the meaning of arrays and explain how they
may be generated using the DI M statement. We then consider how they may be
used: how data may be fed in, processed and output. We consider also
application to sorting numerical and alphabetic information in order. Finally
the idea of a file for keeping permanent records is introduced and we explain
how a file can be created and accessed using the cassette datacorder of the
Amstrad CPC464.

7.2 ARRAYS: THEIR MEANING AND DECLARATION USING THE DIM
STATEMENT

So far we have used individual variables in our programs. Each variable we
used was given a name—its identifier—and this identifier was used to identify a
storage location, a ‘box’ or ‘container’, to store the data assigned to the variable
at a convenient place in the computer’s memory. An array is used in the same
way and allows us to declare a whole number of storage locations using a single
DIMension line statement.

Fig. 7.1 provides a pictorial representation which should help you in
understanding the concept of an array as a means of storing not one but several
different items of data. Every element in the array can be used to store data and
can be individually accessed.

Applications of Arrays and Files in Programs 103

x(O,2)

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

x(O,3) x(0,4) x(O,5)x(O,1)

x(1,1)

x(2,1)

x(3,1)

x(4,1)

x(1,2)

x(2,2)

x(3,2)

x(4,2)

x(1,3)

x(2,3)

x(3,3)

x(4,3)

x(1,4)

x(2,4)

x(3,4)

x(4,4)

x(1,5)

x(2,5)

x(3,5)

x(4,5)

Fig. 7.1 Pictorial representation of arrays: each 'box' in the array can be considered as an individ­
ual storage location for an array element variable, (a) Example of a one-dimensional array,
generated using the DIMcnsion statement: 100 DIM x (10). (b) Example of a two-dimensional
array, generated using the DIMcnsion statement: 120 DIM x (4,5). (c) Example of a three-
dimensional array, generated using the DIMcnsion statement: 140 DIM A (3,3,2).

A(0,0,2) A(0,1,2) — A(0,2,2)

A(O,2,1)
T------1------

— A(O,3,1)
I------ X-

A(1,3,2)
------ T-----

A(O,O,O) — A(0,1,0) — A(0,2,0) — A(0,3,0)

X- ✓

A(1,0,0) — A(1,1,0) Ad,2,0) — A(1,3,0)

i 1

A(2,0,0) A(2,1,0) A(2,2,0) — A(2,3,0)

i

A(3,0,0) A(3,1,0) A(3,2,0) — A(3,3,0)

Each array we use in a program is given its own general identifier, just as we
assign names or identifiers to variables. Thus we can give for an associated
group of variables a collective name—the array identifier—rather than a whole
list of different identifiers. We can easily refer to an individual element (i.e.
storage location or ‘box') by the array identifier plus number subscript(s), the
number(s) specified within the brackets in fig. 7.1

The use of arrays saves a great amount of writing space in preparing
programs and is very useful for inputting, processing and outputting large
volumes of information.

Arrays are created in programs using the DIMension statement:

104 Programming the Amstrad CPC464

100 DIM array identifier (N) ... for 1-dimensional arrays
200 DIM array identifier (N1, N2) ... for 2-dimensional arrays
300 DIM array identifier (N1, N2, N3) ... for 3-dimensional arrays
The numbers N, Nl, N2, N3 within the brackets specify the overall size or
DIMensions of the array, i.e. the total number of elements (storage locations
for variable values) in the array. When the computer ‘sees' a DIM statement it
puts aside memory space for the array elements as specified by the numbers
within the brackets.

Arrays can be defined for numeric data (real and integer) and for strings. The
array identifiers for integer data must end with the % symbol and for strings
with the $ sign, just as for ‘normal’ variables.

Examples of the DIM statement

(1) One-dimensional arrays
The statement,
100 DIM x (10)
defines a one-dimensional array. The array identifier is x and the ‘dimension’ of
the array is 10. A dimension of 10 creates 10+1 = 11 elements (see fig. 8.1(a)).
Each element is identified by the array identifier and a subscript or index
enclosed within brackets. The subscripts run from 0 to the number specified in
the DIM statement. Thus the above statement creates the following 11
elements:
x(0) , x(l) , x(2) , x(3) , x(4) , x(5) , x(6) , x(7) , x(8) , x(9) and x(10).
for ‘number’ data.

The statement,
110 DIM name$ (20)
would create a string array, identifier name$, dimension 20 and therefore
consisting of 20+1 elements for string variable data storage.

(2) Two-dimensional arrays
The statement,
120 DIM x (4,5)
creates a two-dimensional array for numeric (real) variable data consisting of a
total of (4+1) x (5 + 1) = 30 elements (see fig. 7.2 (b)). In this case each
element is identified by a pair of subscripts, the first of which can be thought as
specifying the row and the second as specifying the column of the element in the
array.

(3) Three-dimensional arrays
The statement,
140 DIM A (3,3,2)
creates a three-dimensional array, identifier in this case A, which consists of a
total of (3+l)x(3 + l)x(2+l)=48 elements for real variable data.

Applications of Arrays and Files in Programs 105

7.3 PROGRAM EXAMPLES ILLUSTRATING USE AND APPLICATION
OF ARRAYS

Basically arrays are used, just like individual variables, for storing and
processing information. Values for the array elements can be input from the
keyboard using the INPUT statement or READ in from DATA statements
within the program.

The following examples illustrate some basics concerning the handling and
application of arrays
(1) This example illustrates how data can be READ into the array elements and
how the stored data in the elements may be accessed and displayed

10 REM >KK* Array demo 1 *UK
20 REM * READing DATA into an array *
30 CLS
40 DIM number (.10)
SO FOR i = 0 TO 10
60 READ number'd)
70 NEXT i
80 REM * Displaying contents of array #
90 PRINT "item no.","number"
100 FOR i = 0 TO 10
110 PRINT i,number(i)
120 NEXT i
200 DATA 21,72,34,45,51,67,78,83,90,11,212

Line 40 defines a 10+1 element array. The FOR loop, lines 50 to 70, READs in
data to each of the 11 array elements. The display of this information is
produced by the FOR loop, lines 100 to 120. Thus on running the program the
following list will be displayed.

item no,, number
0 21
1 72

4

6
7
8
9
10

34
45
5.1
6)7
78
83
90
11
212

106 Programming the Amstrad CPC464

(2) This second example illustrates the use of both numeric and string arrays,
defined respectively at lines 40 and 45. Once again FOR loops are used to READ
in and PRINT out the array element data

arrays *

10 REM Mi Array demo 2 Ofc
20 REM * READinq DATA into an array
30 CLS
40 DIM number(10)
45 DIM name$(10)
50 FOR i = 0 TO 10
60 READ name?(i),number (i)
70 NEXT i
80 REM * Displaying contents of both
90 PRINT "item no."," name"," number"
95 PR I NT
100 FDR i = 0 TO 10
110 PRINT i,name$(i),number(i)
120 NEXT i
200 DATA sport car ,21,saloon IL
210 DATA saloon 2L,34,saloon 3L,
220 DATA saloon XL,51,estate 1 . 51
230 DATA estate 3L,78,hatch-back
240 DATA tyre T1,90,tyre t2,ll
250 DATA battery,212

RUN [ENTER]

numberitem no., name

0 sport car­ 21
1 saloon IL 72

saloon 2L 34
p; saloon 3L 45
4 saloon XL 51
nr U estate 1.5L 67
6 estate 3L. 78
7 hatch-back 83
8 tyre T1 90
9 tyre t.2 1 1
10 battery

Applications of Arrays and Files in Programs 107

(3) This program is a modification of (1) and (2) to include a full list of 3 items
(name, number and price) and also to work out the total value of the items.

Three arrays price (10), number (10), name$(10) are defined at lines 35, 40
and 45 respectively. A FOR loop and the READ statement is used to feed in
values to the respective elements from the DATA statements 200 to 250. The
FOR loop at lines 100 to 120 PRINTS out the information and at the same time
makes a continuous calculation of number (z) x price (z) (see line 115) to
determine the total value (sum) of all items on the list.

115 sum=sum+number (i) *pr i ce (i)
120 NEXT i
13.0 PRINT

10 REM W Array demo 3 03
20 REM ♦ READing DATA into an array *
30 CL8
t cr' uJ DIM p r i c e (10)
40 DIM number(10)
45 DIM name$(10)
50 FOR i = 0 TO 10
60 READ name!(i),number(i),pr i ce(i)
70 NEXT i
80 REM * Displaying contents of all arrays *
85 sum=0
90 PRINT "item no."," name","number ";TAB(35)"price
95 PRINT
100 FDR i = 0 TO 10
110 PR I NT i , name$ (i) , number (i) ; TAE-i (34)price(i)

140 PRINT "Total value =";sum
200 DATA sport car ,21,5450,saloon IL,72,3985
210 DATA saloon 2L,34,5675,saloon 3L,45,7950
220 DATA saloon XL,51,11250,estate 1.5L,67,5950
230 DATA estate 3L,78,8750,hatch-back,83,6980
240 DATA tyre T1,90,23.50,tyre t2,11,38.90
250 DATA battery,212,36.55

RUN [ENTER]

pricenumberitem no. name

0 sport (car 21 5450
1 saloon IL 72 3985

'■7 saloon 2L 34 5675
7; saloon 3L 45 7950
4 saloon XL. 51 1125'
5 estate 1.5L 67 5950

108 Programming the Amstrad CPC464

Total value = 3196601.5

6 estate 3L 78 8750
7 hatch-back 83 6980
8 tyre T1 90 23.5
9 tyre t2 1 1 38. 9
10 battery S? | S' 36.55

is the display obtained on running the program.

(4) The following example illustrates the READing in and display of numerical
data using a two-dimensional array. Once again we use FOR loops but in this
case one FOR loop within another one. The T loop sets the row while the
loop runs across the row reading the various columns. Try running the
program. You will obtain 6 rows (i.e. 5+1) of 5 columns (4+1) of the data
contained in the DATA statements

10 REM ** * Two-dimensional array example ***
20 CLS
30 DIM x (5,4)
40 REM ** READincj in DATA **
50 FOR i = 0 TO 5
60 FOR j = 0 TO 4
70 READ x < i , J)
80 NEXT ,j
90 NEXT i
100 REM * * Display of Array Element values O
110 FOR i = 0 TO 5
120 FOR j = 0 TO 4
130 PRINT x (i , j) ;
140 NEXT j
150 PRINT
160 NEXT i
200 DATA 34.6,82.8,67.8,21.8,63.7
210 DATA 90.8,76.4,62.7,23.8,41.4
220 DATA 78.3,55.5,45.3,67.2,11.9
230 DATA 66. 8,98.5,72.5,81.9,45.8
240 DATA 76.5,43.9,73.6,64.8,92.7
250 DATA 21.7,34.6,83.7,61.3,56.4

(5) Here is an example of the use of arrays with strings: a simple French-
English vocabulary test.

Arrays are used to store the English and corresponding French words. On
running the program you are asked to type in the French word for a given
English one. The computer tells you if you are right. If you are wrong, the
computer gives the correct French word.

Trying running the program and then perhaps extend it for more words.

Applications of Arrays and Files in Programs 109

10 REM II* English to French test W
20 REM M READinq in English words O
30 CLS
40 DIM English*(8)
50 FOR i = 0 TO 8
SO READ English* Ci)
70 NEXT i
80 REM READing in French words O
90 DIM French*(8)
100 FOR j = 0 TO 8
110 READ French*(.j)
120 NEXT j
130 N=0
140 IF n>8 THEN END
150 PRINT "Enter French word for ";English*(N)
160 INPUT answer*
170 IF answer* = French*(N) THEN 180 ELSE 220
180 PRINT "Well done, you’re correct"
190 N=N+1
200 PRINT
210 GOTO 140
220 PRINT "Sorry, you’re wrong"
230 PRINT "The French word -for "
240 PRINT English*(N);" is ";French*(N)
250 PRINT "***************"
260 N=N+1
270 PRINT
280 GOTO 140
290 DATA
300 DATA
310 DATA
320 DATA

man,dog,hand,tree,sea,wi nd
thanks,wi ne,bread
homme,chi en,mai n,arbre,mer
mere i,vi n,pai n

vent

7.4 SORTING NUMERICAL DATA IN ORDER

An important and very interesting application for which the computer is ideally
suited is in the sorting of data in order.

The following program segment may be used to sort numerical data in
ascending order:

500 REM m Bubble sort routine W
510 FOR k = 1 TO n-1
520 FOR 1 = k+1 TO n
530 IF ;•: (1) > x(k) THEN 570

110 Programming the Amstrad CPC464

5 4 O t. emp=x (1)
550 x (1) = x (k)
5 6 O x(k) = temp
570 NEXT 1
580 NEXT k

The data to be sorted is first fed into an array a(/z) consisting of elements x(l),
x(2) . . . x(n). The above routine is then brought into action. It starts by
comparing the first data itemx(l) with its neighbour x(2) and if the first item is
greater then the two values are ‘swopped’ in position in the array. The
comparison-swop action then continues with first and third elements and so on
until the minimum value heads the list, i.e. ,r(l) stores the minimum value. The
routine is then repeated with the second item in the list and so on to the last
term, so at the end of the second sort sequence the first two terms are in order.
Execution then moves on to the third term etc. and the whole comparison­
swop action repeated until we finally end up with all elements in ascending
order. A pictorial representation for the simple case of sorting five values in
ascending order is illustrated in fig. 7.2.

The ‘bubble sort’ routine, so called because the data ‘bubbles’ up or down in
the sort, may be easily changed to sort in descending order. Simply change the
greater than symbol (>) in line 530 to the less than symbol (<), i.e.
530 IF x(l) < x(k) THEN 570

The following program shows the application of the bubble sort method to
sort 30 numbers contained in DATA statements:

IO REM iff Sorting numbers i n order ***
20 REM O First storing numbers in an array
30 DIM x(30)
40 FOR i = 1 TO 30
50 READ x(i)
60 NEXT i
70 n=30 sREM no.of terms to be sorted
80 GOSUB 500
90 REM JKsK display of ordered numbers
100 FOR i = 1 TO 30
110 PRINT x(i);
120 NEXT i
130 END
500 REM Ml SORT subroutine
510 FOR k = 1 TO n-1
520 FOR 1 = k + 1 TO n
530 IF x(1) > x(k) THEN 570
540 temp-=x (1)
550 x (.1) =■■ x (k)

Applications of Arrays and Files in Programs 111

= temp
1
k:

x (k)

NEXT
NEXT
RETURN
DATA 89,34,87,9,3
DATA 9,32,71,94,6
DATA 4,87,41,76,4

On running the program you will obtain within 10 or so seconds a display of
the numbers in ascending order, i.e.
1 4 8 9 9 10 12...

Before sort (stored values in array)

Before sort: initial position of
values stored in the array

After 1st sort: items 1 and 2 swopped:

After 2nd sort items 1 and 3 swopped:

After 3rd sort items 1 and 4 unchanged:

After 4th sort items 1 and 5 swopped:

Now begin with 2nd item and
continue'swop' procedure:

1 st two items now in order,
continue with swop procedure
from item 3

1 st three items now in order,
final swop:

SORTED DATA

Fig. 7.2 Pictorial representation of 'bubble-sort' method.

112 Programming the Amstrad CPC464

7.5 SORTING IN ALPHABETIC ORDER

It is a straightforward matter to adapt a numerical sort routine to sort string
variable data (e.g. names) into alphabetic order.

Firstly the arrays to hold the data must obviously be defined as string variable
arrays so include the $ sign in the array identifier. Secondly use the ASC
standard function to convert the first letter of the string variable value to its
number code. By doing this number comparison may be made. Remember:
ASC (X$(I)) returns the ASCII code for the first character of the string variable
X$(l) value; and that these codes are ordered and cover the ranges,
65,66, . . . 90 for A,B, . . . Z
97,98, . . . 122 for a,b, . . . z

Thus modifying the numeric bubble-sort routine to a form for sorting string
data in alphabetic order leads to:

500 REM *** ALPHABETIC SORT subroutine
510 FOR k = 1 TO n--1
520 FOR 1 = k + 1 TO n
530 IF ASC (x $ (1)) :> ASC(x$(k)) THEN 570
540 temp$=.x $ (1)
550 x $ (1) = x $ (k)
560 x $ (k) = t emp$
570 NEXT 1
580 NEXT k

The following program illustrates its use. Array x$(30) is used to store up to
30 names, each name being stored in one of the array elements x$(1), x$(2). . .
x$(30). Since there are only 10 names in our example only 10 elements are
required.

10 REM m Sorting in ALPHABETIC order ***
20 REM First: storing numbers in an array M
25 CLS
30 DIM x$(30)
40 FOR i = 1 TO 10
bo READ x $ (i)
60 NEXT j.
70 n = 10 :: REM no.of names to be sorted
80 G0SUB 500
90 REM ** display of ordered numbers **
100 FOR i = 1 TO 10
110 PRINT x$(i)
120 NEXT i
130 END

Applications of Arrays and Files in Programs 113

500 REM *** ALPHABETIC SORT subroutine ***
510 FOR k = 1 TO n-1
520 FOR' 1 = k+1 TO n
530 IF ASC(x$(l)) > ASC(x$(k)) THEN 570
540 temp$=x$(1>
550 x$(l) = x$(k)
560 x$(k) = temp$
570 NEXT 1
580 NEXT k
590 RETURN
600 DATA White,Brown,Smith,Jones,Avis
610 DATA Cl ark,Yeabsly,Dennis,Mead,Law

On running the program you will obtain the names listed in alphabetic order,
i.e.

Avi s
Brown
Clark
Denni s
Jones
Law
Mead
Smi th
White

7.6 USING FILES IN PROGRAMS

In all our programming work so far we have INPUT data to be processed by our
program directly either from the keyboard or by using READ statements and
OUTPUT the required results to the monitor or tv display for a ‘soft copy’ or
for a ‘hard copy’ to a printer. As soon as the program has been executed all
keyboard entered data and any intermediate results are effectively lost. How
can we store, for example, input data on a permanent basis and feed it directly
into our program when required, rather than using the keyboard or DATA
statement as the source? How can we store data obtained from one part of a
program for processing in another (without, of course, using arrays, which,
although ideally suited to this task, may take up excessive and valuable
memory space in the computer)? How can we store our output data which may
be required for subsequent use as input data to another program?

These problems may be overcome by storing input, output and intermediate
‘transferable’ data in files in an auxiliary memory device, i.e. on the magnetic

114 Programming the Amstrad CPC464

tape of a cassette or, if you are lucky enough to have a disc drive unit, on disc.
We can then, for example, prepare our input data independently, save it on
tape and ‘read in’ the data when required in program execution. Likewise if we
wish to save our output ‘PRINT’ results we can direct these to be ‘written’ to a
cassette tape or disc.

The CPC464 handles sequential files where the individual items of data can
only be accessed in the order in which they are stored. A sequential file can only
be examined one element at a time, starting from the beginning. Unlike an
array, whose individual elements can be directly or ‘randomly’ accessed, data
in a sequential file cannot. File size, however, is not specified and a hie may be
allowed to expand, within the limits of available memory storage space, to any
size.

With these introductory ideas in mind, let us now see how easy it is to use hies
with the CPC464 and its cassette recorder-player.

To create a file and write to a file on cassette

(1) Place cassette tape in the CPC464 datacorder and note counter (trip meter)
reading for future reference.
(2) To ‘open’ a file ready for writing data to, use a statement of the form,
100 OPENOUT " name of file"
(3) To write, i.e. output data, to the file use statements of the form,
110 PRINT #9, "strings"
120 PRINT #9, x, y, z
e.g. 130 PRINT #9, 47.25
will store 47.25 as the first number item of the file. Note in the Amstrad CPC464
channel 9 (i.e. #9) is reserved for transmitting information to and from files
stored on cassette tape.
(4) Finally you must always remember to ‘close’ your file when all entries are
completed. This is accomplished by a statement of the form,
140 CLOSEOUT

To access and INPUT data from a cassette file

(1) Place cassette on which file is stored in the CPC464 datacorder and
preferably wind on to beginning of wanted file.
(2) To open the file for ‘INPUTing’ from, use the statement,
150 OPENIN "name of file"
(3) To input data from the file, use statements of the form,
160 INPUT #9,x ... for numeric data
160 INPUT #9, x$... for string data

These statements will assign x or for strings x$ the first data element stored
on the file.
(4) Finally, you must close your file when you have completed all your input of
data. This is simply done by the statement,
170 CLOSEIN

Applications of Arrays and Files in Programs 115

Examples: using files

(1) This basic program demonstrates how to open a new file and output data to
the file. The second part of the program accesses the file just created and inputs
the data to the computer from the file and displays the file data on the screen.

IO REM Of Opening a file demo Mi
20 CLS
30 PRINT "Cassette in place ?"
40 PRINT "note trip count number for ref"
50 PRINT
60 OPENOLJT "data 1"
70 FOR n = 1 TO 20
SO PRINT #9,n
90 NEXT n
.100 CLOSEOUT
105 PRINT:PRINT
110 REM O# Inputting from file "data 1" NT
120 PRINT "Rewind cassette to beginning"
130 PRINT "of file 'data 1’ just created"
135 PR I NT "then.. . . "
140 OPENIN "data 1"
150 FOR n = 1 TO 20
160 INPUT #9., X
170 PRINT x
ISO NEXT n
190 CLOSEIN

Statement 60 opens a new file which we called data 1. Up to 16 characters can
be used for file names and spaces may be included. Data is written to this file
using a FOR loop and the PRINT #9,. . . statement (see lines 70,80,90). In this
example we are just outputting the numbers n from 1 to 20. The file is closed at
line 100.

The second part of the program (essentially lines 140 to 190) inputs the data
stored in file data 1 to the computer and using the simple PRINT statement and
FOR loop each item is displayed on the screen.

(2) The second example given below is similar except that the data to be stored
in the file results 1 is input from the keyboard (see line 50). Each of the 10
‘results’ input is saved in the file results 1.

The results I file is opened for ‘reading from’ at line 160. As well as inputting
the ‘results’ on file and displaying each one on the screen, their sum is
computed (see line 200). Finally the average of the 10 results is displayed.

116 Programming the Amstrad CPC464

10 REM *** File demo 2 444
20 CLS
30 0P E N 0IJ T '' r e s u 1t s 1 ''
40 FOR n =■■■ 1 TO 10
50 INPUT "Recorded result";;-:
60 PRINT #9,;-;
70 NEXT n
80 CLOSEOUT
9 O F' R1N I s P R1N i
.100 REM *** Inputting from File "results 1" 444
1 10 F'RINT "Ensure cassette i s rewound so file"
120 PRINT " "results 1’ can be accessed "
130 PF: I MT
140 F' RIN T '' R e s u 11 s a r e i nput on following"
150 PRINT "the instruct i on s. . . PRINT
1 60 OPENIN "results 1"
1 70 FOR n = 1 TO 10
1 80 INPUT #9,x
190 PRINT
200 sum -= sum +
210 NEXT n
*2 210 CLOSEIN
230 PRINT
240 PRINT "Averaqe of resu11 s =";sum/10

(3) EOF function: End Of File
All files are terminated by an ‘End-Of-File’ character so when in reading data
from a file this is reached, it can be recognised by the computer and used to
terminate the reading. The EOF function is very useful in this respect,
especially, as is usually the case, when we do not know the exact number of
items in the file.

Thus rather than using a FOR loop for inputting data from a file we can use
the WHILE loop with the condition, "WHILE NOT EOF" to control the input.
For example, the FOR loop in example (2) may be replaced by:

170 while: NOT EOF-
180 INPUT #9, ;■
190 PRINT ;<
200 sum = sum + X

210 WEND

(4) Here is an example of keeping a telephone directory on file. The first part of
the program allows you to create the file and enter names and numbers. Last
‘terminating’ name is zzz. The second half allows you to display the list.

Applications of Arrays and Files in Programs 117

10 REM Phone no. file W
20 REH ** Greatinq list O
30 CLS
4 0 0 P E N D U T " p h o n e list"
SO INPUT "surname and phone no„";name.no$
60 WHILE name.no$ <> "ccz"
7 0 IN P L I T " s u r n a m e a n d p hi o n e n o „ " ; n a m e. n o $
8 0 P RIN T # 9, r i a m en o *•
90 WEND
100 CLOSEOUT
110 REM O To display list from file
120 PRINT;PRINT
130 PRINT "Ensure file in position on cassette"
140 0P E N1N ' ' p h o n e 1 i s t'1
15 0 IN P U T # 9n a m e n o $
160 CLS
17 0 F‘ RIN T n a m e. n o $; P RIN T # 8, n a m e $
180 WHILE n ame.no$ <> "zee"
.19 0 IN P U T # 9, n a m e „ n o $
200 PRINT name,, noui ; PRINT #8,name.no$
210 WEND
220 CLOSE IM

Exercise problems 7

(1) Write a program which allows you to enter 10 named items and their prices
from the keyboard and then display a list of the complete set of items and
prices.

(2) Modify the above program so that your display contains item, price,
number of items, sub-total of value (i.e. number x price) and, at the end, the
complete value of all items.

(3) Using a two-dimensional array write a program which will display a
complete table of results for 32 students each having sat the same 4
examinations.

(4) Write a program using arrays to store your data and the graphics commands
PLOT, DRAW, ORIGIN, etc., which can plot an x-y graph to a suitable scale.

As a guide to forming the program, you might consider the following
approach:
(a) Define arrays for the x.y data to be stored, and provide input statement so
that the data may either be INPUT or READ.
(b) Input the x,y data for each point to be plotted.

118 Programming the Amstrad CPC464

(c) Decide on a suitable scale factor and origin.
(d) Draw in the x and y axes using DRAW statements.
(e) Plot your points using the PLOT statement.

(5) Design a program that can accept up to 50 numbers in the range 0 to 100 and
sort them in numerical order and display the following:
(a) the maximum, minimum and middle (mode) value
(b) The data values in the following bands:
band 1: 0 to 25; band 2: 26 to 50; band 3: 51 to 75; band 4: 76 to 100.

(6) Write a program that accepts names and phone numbers from the keyboard
and then prints out the complete name-phone number list.

(7) Modify the last program so that your print-out of names is in alphabetical
order.

8
SOME PRACTICAL PROGRAMS

8.1 INTRODUCTION AND SUMMARY

This final chapter presents a number of programs for general use. They are ail
simply constructed using the BASIC statements of previous chapters and easy
to understand. All the programs can be run directly to perform their tasks but
can also be easily modified to provide any extra facility you might need.

The programs included cover the following applications: conversion of
weights, lengths, currency, etc.; production of standard letters, multiple
copies; checking bills; calculation of tax; interest and return on investments;
loan repayment calculations.

8.2 A CONVERSION PROGRAM FOR COMMON MEASURES

To convert units
Xto Y

multiply by
X Y

To convert units
YtoX

multiply by

4.0469 x 10 3 acres square kilometres 247.1
2.8317 x 10 2 cubic feet cubic metres 35.315

0.3048 feet metres 3.2808
4.546 gallons litres 0.21998

0.7457 horse power kilowatts 1.3410

25.4 inches millimetres 0.03937

1.6093 miles kilometres 0.62137
0.35402 miles/gallon kilometres/litre 2.8247
0.56825 pints litres 1.7598

0.45359 pounds kilograms 2.2046
0.83613 square yards square metres 1.1960

1016 tons kilograms 9.8421 x 10 4

Fig. 8.1 C (inversion table lor some common quantities.

120 Programming the Amstrad CPC464

The table of fig. 8.1 summarises the conversion factors for converting some
commonly used quantities from one system of units (e.g Imperial) to another
(e.g. metric). Rather than remember these, why not use the following program
which effects conversions automatically?

>■.

10 REM *** Canversi on of units program LU
20 CLS
30 PRINT " To convert 3 ”
40 PRINT " 1 gallons t o 1itres...enter 1"
50 PRINT " 2 litres to gal 1ons. ..enter 2"
60 PRINT " 3 pounds toi kilos...enter 3"
70 PRINT " 4 kilos to pounds...enter 4"
80 PRINT " 5 -feet and inches to meters...enter
90 PRINT " 6 meters to feet and inches...enter 6"
100 PRINT "7 degrees C to F...enter 7"
110 PRINT "8 degrees F to C...enter 8"
120 INPUT "now enter your choice ";n
130 PRINT
140 □N n GOTO 160,180 ,200,220,240,280,320,340
150 PRINT " i ncorrect entry GOTO 120
160 INPUT "enter no. of galls to be converted 11 II fl
170 PRINT x ; ” qal1s =■■ ";x*4.546;" litres”: END
180 INPUT "enter no. of litres ";x
190 PRINT x;" litres = "5x*0.21998;" galls":END
200 INPUT "enter no. of pounds ";x
210 PRINT x;" pounds = ";x*0.4536;" kilos":END
220 INPUT "enter no. of kilos ";x
230 PRINT x;" kilos = ; x *2.2046;" pounds":END
240 INPUT "enter no. of feet ";f
250 INPUT "enter no. of i nches ";i

PRINT
PRINT
INPUT
PRINT
PRINT
PRINT
INPUT
PRINT
INPUT
PRINT
END

degrees F":END

On running the program you will first be asked to input the conversion
required—the program caters for 8 cases but more, of course, may be added.
After this all you have to do is input the quantity and the conversion is carried
out immediately.

Some Practical Programs 121

8.3 PROGRAMS FOR CURRENCY CONVERSIONS

£$£$£
Fig. 8.2

Here are two useful programs for converting pounds sterling to other
currencies and vice versa.

The first program provides a direct means of carrying out the conversion but
does require you to enter the exchange rate first.

10 REM KO Currency conversion iff
20 REM Wf Short program MT
30 CLS
40 F'RINT "Enter 1 for fto foreign"
50 F'RINT "Enter 2 for conversion back to £ "

60 INPUT n
70 IF n >2 THEN PRINT "incorrect entry"sGOTO 40
80 PRINT:: PRINT
90 INPUT "Current exchange rate fl=";rate

100 IF n=l THEN 120
110 IF n==2 THEN 150
120 INPUT "Mo. of pounds
130 F'RINT "f pounds;" = "; pounds^rate

140 END
150 INPUT "Amount of foreign currency";A
160 PRINT A;" currency = £ " ; ROUND (A/rat.e2)

170 END

The second program contains all the required data within the program for 18
European and American countries. On running the program the 18 countries
and corresponding exchange rates are displayed. Update this information if
required by amending the DATA statements.

To carry out your conversion all you have to do is to input the country’s name
(remember, begin this with a capital letter), select 1 or 2 for type of conversion
and then input the amount. The result is displayed immediately.

10 REM Currency conversion program ***
20 REM Display of data stored tti
30 DIM land$(18): DIM rate(18)
40 CLS

122 Programming the Amstrad CPC464

50 PRINT "Country";TAB(20)"Exchange rate"
60 PRINT
70 FDR n = l TO 18
80 READ 1and$(n),rate(n)
90 PRINT land$(n);TAB(20)rate(n)
100 NEXT n
110 PRINT
120 PRINT "Add data if country not included"
130 REM conversion calculations ***
140 PRINT
150 INPUT "Country required ";country^
160 FOR n = l TO 18
170 IF land*(n)=country$ THEN p=n
180 NEXT n
190 CLS
200 PRINT "enter 1 for f to foreign"
210 PRINT "enter 2 for foreign to "
220 INPUT ”1 or 2";k
230 INPUT "amount of money";A
240 IF k = l THEN 260
250 IF k=2 THEM 280
260 PRINT "£ ";A;" = ";A«rate(p)
270 END
280 PRINT A;" foreign currency = £";ROUND(A/rate(p),2)

290 END
300 DATA Austria,25.40,Belgium,73,Canada, 1.57
310 DATA Denmark,13.08,France,11.14,Germany,3.62
320 DATA Greece,160,Ireland,1.175,I taiy,2240
330 DATA Mai ta, 0. 615,Hol 1 and,4.09,Norway,10.56
340 DATA Portugal, 197,Spain,198,Sweden, 10. 42
350 DATA Switzerland,2.99,USA,1.1875,Yugoslavia,295

8.4 PRODUCING MULTIPLE COPIES, STANDARD LETTERS, ETC.

Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam

Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam
Dear Sir Dear Madam

Fig. 8.3

It is a fairly easy matter to construct programs to print out multiple copies of
memos, standard letters, etc. Obviously you require access to a printer to direct
your program output to be ‘printed’ as hard copy. The CPC464 has a standard
Centronics parallel port interface and it is a simple matter to connect up a
printer. Amstrad supply their own model. The Epson RX, MX and FX series of
printers are also excellent choices.

Some Practical Programs 123

Here are two useful programs. The first provides a means of obtaining a
given number of copies of a general note. All ‘note’ PRINT statements are
directed to the printer using PRINT #8, ". . .output to printer". Remember
channel 8 (#8) is the internal channel used to communicate from the CPC464
computer to the printer.

10 REM O* Production of number of copies
20 CLS
30 INPUT "number of copies required";n
40 PRINT "Printing /display follows"
50 FOR x = l TO n
60 PRINT #8:PRINT #8
70 PRINT #8,"-- -- "
80 PRINT #8,"*** SALES 11 April at ST0WHAM W
90 PRINT #8,.........
100 PRINT 48, detai 1 s here.........."
110 PRINT #8, "...............
120 PRINT 48,"--------------------------- end------ --------------------- "
130 NEXT x

The second program illustrates how a standard letter can be produced with
the ability to insert common information such as dates, times, places, names,
etc. A further advantage is that names to whom the letter is to be sent can be
entered from the keyboard, stored in an array and inserted automatically as the
letter is being printed.

The program has been written to output all PRINT data to the screen so you
can first check the letter contents and ensure all input data has been correctly
inserted. When the checks have been made and the program is operating
correctly change all the relevant ‘letter’ PRINT statements to the printer output
form, i.e. PRINT #8,

10 REM Standard letter ***
20 CLS
30 PRINT "enter the following for inclusi on:"
40 PRINT
50 INPUT "Date of send i ng letter"; date$
60 INPUT­ "Date of planned meeti ng" ;mdate$
70 INPUT " Ti me of meet i ng" ;11 ime$
80 INPUT "Room to be? used" ;room$
90 REM Entering people’s names
100 DIM name$(10)
110 FOR n = l TO 10
120 PRINT "name";nINPUT name$(n)
130 NEXT n
140 FOR n=l TO 10

124 Programming the Amstrad CPC464

150 PRINT:PRINT
160 PRINT TAB(20);"CPC 464 Computers Inc"
170 PRINT TAB(20);" Ipswitch, Suf-folk"
180 PRINT:PRINT TAB(25);date$
.190 PRINT "Dear ";name$(n);","
200 F'RINT:PR'INT " The next introductory course
210 PRINT "is on ";mdate$;" ."
220 PRINT "The time of the class is ";1time$
230 PRINT "and will be in ";room$;" II

240 PRINT
250 PRINT TAB(25);"G P L Alexis"
260 PRINT TAB(21);"Chief Instructor 11

270 PRINT:PRINT
280

II
h h 1N 1 " - ""

290 PRI NT:PRINT:PRIMT
300 NEXT n

Here is the framework of a program which allows you to check your domestic
bills. You are asked to input the relevant data, such as present and previous
meter readings, rate in the pound levied, etc. and you can store constant data
such as standing charge, unit cost, VAT, etc. in DATA statements.

Three examples are included: house rates, and electricity and gas bills.

10 REM *** Bill checking program ***
20 CLS
30 PRINT "Enter ... 1 -For house rates"
40 PRINT "Enter ...2 -for el ectr i ci ty"
50 PRINT "Enter ...3 for gas"
60 INPUT n
70 IF n>3 THEN PRINT "incorrect entry":GDT0 60
BO ON n GOTO 90., ISO, 290
90 REM House rates ***
100 rateable.value=467
110 CLS: PRINT "rate bill check"
120 INPUT "Current rate in pound";r

Some Practical Programs 125

130 F'RINT: F’RINT "Annual rates =" ; rateabl e. val ue*r
140 END
150 REM *** Electricity bill check ***
160 CLS: F'RINT "Electricity bill check"
170 INF'UT "Current meter reading";now
180 INF'UT "Previous meter reading";1ast
190 unit.cost=4.94
200 standing.charge=6.37: vat.=0
210 PRINT (now-last);" units at " ;unit.cost;" P = ";
220 F'RINT (now-1 ast) *uni t. cost / 100
230 PRINT "Standing charge =";standing.charge
240 total =st.andi ng. charge* (now-1 ast) *uni t. cost/ 100
250 F'RINT "vat at " ; vat; " 7. = " ; vat *total / 100
260 PRINT "-- "
270 F'RINT "Total payable =";total*(1+vat/100)
280 END
290 REM *** Bas bill check ***
300 CLSsPRINT "Bas bill check": PRINT
310 ther m. -f act or = 1.032
320 F'RINT "Enter present and previous meter readings"
330 INPUT now,last
340 unit.c=35.2: st and. c=9.9: vat_=0
350 PRINT (now-last);" units at ";unit.c;" =
360 PRINT (now-1ast)*unit.c/100
370 total = (now-1ast)*uni t.c/100+stand.c
380 F'RINT "Standing charge = stand.c
390 F'RINT "vat at "; vat; " 7. = total *vat/100
400 PRINT: PRINT "—--------------------------- ------------------------------"
410 F'RINT "Total payable ="; total *(1+vat /100)

8.6 CALCULATION OF INCOME TAX

This program enables income tax to be easily calculated. It contains the rates
for the 84/85 tax year so these will require updating when the tax rates are
changed. All you have to do is enter gross income and total allowances; the
program then displays the total tax due.

10 REM >K)K* Income tax program O*
20 CLS
30 REM **# Tax bands 84-85 ***
40 PRINT "taxable income","tax rate"
50 PRINT
80 PRINT "1-15400",TAB(30);" 30 7. "
70 PR I NT " 15401 -18200 " , TAB (30) ; " 40 7. "
80 PR I NT " 18201 -23100 " , TAB (30) ; " 45 7. "
90 PRINT "23101-30600",TAB(30);" 50 7. "
100 PRINT "30601-38100", TAB (30) ; " 55 7. "
110 PRINT "over 38100", TAB (30) ; " 60 7. "

126 Programming the Amstrad CPC464

b 1 = 15400
b4=30600
PR INI-
PRINT
INPUT
INPUT
tax i nc=income-al 1 ow

b2=18200 s b3=23100
b5=38100

PRINT
"Enter your gross taxable income
i ncome
"and your allowances "fallow

11 >1 ft

SEND

190 IF taxinc>0 AND taxinc<=15400 THEN1 250
200 IF tax i nc >15400 AND taxinc<=l8200 THEN 270
210 IF tax inc >18200 AND t ax inc <=23100 THEN 290
220 IF tax inc>2310© AND t ax .i n c < =30600 THEN 310
230 IF t a x i n c >3060O AND t ax inc <=38100 THEN 330
240 IF tax i nc >38100 THEN 350
250 tax =taxi nc*0.3
260 FRINTSPRINT "Tax due =";tax SEND
270 tax =4620+(tax inc-bl)*0.4
280 PR I NTsPRINT "Tax due=";tax:END
290 tax =5740+(tax inc-b2)*0.45
30© PR I NTs PRINT "Tax due=";tax :END
310 tax =7945+ (tax i nc -b3)*0.5

PRINTS PRINT "Tax due=";tax
tax = l1895+(tax i nc-b4)*0.55
PRINTsPRINT "Tax due=";tax
tax = 15820+(taxi nc-b5)*0.6
PRINTsPRINT "Tax due=";tax

SEND

END

8.7 CALCULATION OF INTEREST AND RETURN ON INVESTMENT

Two useful programs for calculations of interest and value of investment are
given below.

The first can be used to calculate how your money grows in a regular monthly
savings plan provided by most Building Societies, Banks and Insurance groups.
You input whatever monthly sum you wish to save monthly, the current
interest rate and the time in years for your savings plan. The program displays
the accrued value of your savings at 6 months intervals. Interest is assumed to
be compounded every 6 months, as is usually the case for most savings plans.
For this reason use is made of the MOD operator (see line 110). MOD provides
the remainder after division of two numbers. Thus n MOD 6 = 0 when n = 6,
12, 18, etc., and hence line 110 is only actioned when n is a multiple of 6.

IO REM *** Interests Reqular Savings ***
20 CLS
3() INPUT "Amount to be saved each month"; pm
40 INPUT "Rate of interest. X";r
50 INPUT "Period of i n vestment " t

Some Practical Programs 127

60 PRINT "months","accrued value"
70 PRINT
80 FOR n = l TO 12*t.
90 p--p+pm
100 .1 =i +p>Kr / 1200
110 IF n MOD 6=0 THEN p=p + i:i =0sPRINT n,p
120 NEXT n
130 PRINT:PRI NT
140 PRINT "Total val Lie of investment"
150 PRINT "after I! u X. „ ||

•1 q years = ";p

This second program provides a table of values showing how a lump sum
investment grows. All you have to do on running the program is input the lump
sum invested, rate of interest, number of years of investment and whether
interest is compounded every 6 or 12 months.

10 FaEM O* Lump sum i nves tment O*
20 CLS
3 0 INPUT "Lu m p s i.i m 1 n v e s t e d " ; p
40 I NF' UT "Rate? of interest 7»";r
50 INPIJT "Total no. of years invested";t
60 PRINT
70 PRINT "If i n t er es t c omp ou nded ev er y 6 mon th s"
80 PRINT "enter...,6; if every 12 months. enter,.
90 I NF'UT q
100 PRINT
110 PRI NT " mon t h " ; TAB (8) " c ap 1 t a 1. va 1. ue " ;
12 0 PRINT T A B (2 3) " i n t e r e s t. for"
130 PRIMT TAB(26)"period "
140 PRINT
150 FOR n = l TO 12*t
1 6 0 a = p * (1 + r / 1200)
170 1=1+(a—p)
180 IF n MOD q =0 THEN 190 ELSE 220'
190 p=p+i
200 P RIN T n; T A B (8) R 0 U N Dtp, 2) ; T A B (2 3) RO I. J N D (1
210 1=0
220 NEXT n

8.8 A LOAN REPAYMENT PROGRAM

The program given below allows you to work out immediately the state of how
your loan repayments are progressing. Repayments are assumed to be made on
a regular monthly basis.

On running the program you are first asked to input the amount of the loan,
the monthly repayment you wish to make, and the interest rate you are going to

128 Programming the Amstrad CPC464

be charged. The program then provides a display of a table of total repay­
ments made and outstanding debt on a month by month basis until the loan is
paid off.

10 REM Mt Loan repayment program ***
20 CLS
30 INF'UT "Enter total loan"; loan
40 INF'UT "Enter rate 7. p.a. charged";r
50 INF'UT "Enter proposed monthly repayment";repay
60 IF loan*r/1200>repay THEN 70 ELSE 90
70 PRINT "Repayment is insufficient to cover."
SO F'RINT "Increase repayment":GOTO 50
90 mon t h=0: F'R I NT; F'R I NT
.100 F'RINT "month" ; TAB (10) "total repaid";
110 F'RINT TAB(25)"outstanding debt"
120 WHILE loan>0
130 month=month+l
.140 loan-loan* (1+r/1200)-repay
150 F'RINT month , repaylmonth , ROUND (1 oan , 2)
160 WEND
170 F'RINT "Loan is paid off in "
180 F'RINT month;" months"
190 PRINT
200 PRINT "Total repayments =";repay*month+loan

ANSWERS TO EXERCISES

Exercise 1.1

(1) 1332
(2) 160800
(3) 9.99514349
(4) 862.95
(5) 49.17647

Exercise 1.2

d)(a)
PRINT 56.7/3.3 [ENTER]
17.1818182 . . . answer displayed
(b)
PRINT "56.7/3.3=";56.7/3.3 [ENTER]
(c)
PRINT USING "##.##";56.7/3.3 [ENTER]
17.18 . . . result displayed
(3)
PRINT 4.62*3.8,57.33/6.3,42378.6-33499.7 [ENTER]
4.62 9.1 8878.9 . . . results displayed
(4)
PRINT USING "#.#";PI [ENTER]
3.1 ... result displayed
PRINT USING "#.##";PI [ENTER]
3.14 ... result displayed
PRINT USING "#.###";PI [ENTER]
3.142 ... result displayed

Exercise 1.3

(1) 4.72944
(2) 726000

130 Programming the Amstrad CPC464

(3) 6.37690E-04
(4) 8.695652
(5) 6.294135E-03

Exercise 2

(l)(a)

10 F:EM * * * names an cl b i r t h dates * *:
20 ELS
30 PRINT "Name","Birth date II

40 PRINT
50 PR I NT "John","10.11.67"
60 PRINT "Mary","14. 7.69"
70 PRINT "Peter"," 2. 3.74"

(b)

10 REM til Items and price 1 i st ***

20 CLS
30 PR I MT " i tern" "F'r i ce"
40 PRINT
50 PRINT "Butter ","0.92 per kilo"
60 PRINT "Cheese","1.14 per lb"
70 PRINT "Bacon","1.25 per k i 1 o "

(c)

10 REM O# League table * * *
20 CLS
30 MODE 2
40 PRINT TAB(20)"* * * Nor t h Division 1 m"
50 PRINT
60 PR I NT TAB (20) " P " ; TAB (24-) "W";TAB(28) "D";
70 PRIMT TAB(32)"L";TAB(36) "F";TAB(40) "A" ;
80 PR I NT TAB (44) " Pc. i n t s "
90 PR I NT
100 PRINT "Woodside Rovers";TAB(20)"41";TAB(24)"22"
11O PRIMT TAB(2B)"13";TAB(32)"6";TAB(36)"82";
120 PRINT TAB(40)"31";TAB(44)"79"
130 PRINT "Old Pol vonians";TAB(20)"41";TAB(24)"20";
140 PRINT TAB(28) " 14";TAB(32)"7";TAB(36)"71";
1SO PRINT TAB(40)”39";TAB(44)"74"

Answers to Exercises 131

(2)(a) and (b)

10 REM * * * Vol. Lime? of cuboid O *
20 CLS
30 b=2.27
40 1=5.74
50 d=1.86
60 PRINT "volume =";b*l*d
70 PRINT "-------------------------------------- "
80 REM * * * Volume of cylinder ***
90 PRINTSPRINT
100 r=8.63
1.10 h = 12.4
120 PRINT "Volume of cylinder =" ; 3. 142*r *r *h
130 PRINT "-- -<

(3)

10 REM ##* Calculations probem 3 *#*
20 CLS
30 PRINT "Answer 1 =";3.4*5.67-6.21*4
40 PRINTS PRINT
50 PRINT "Answer 2 = ";5.37--2+4.46--2
60 PRINTS PRINT
70 p=525
80 v=72
90 c — 1. 4
1001 PRINT "Answer 3 = ";p*v"’c

(4)

10 REM T-N Simple average program ***
20 CLS
•30 sum=2o. 7+14.5+12. 9+13.6
40 PRINT "Average =";sum/4
50 PRINT "------------------- --—.....

Answer = 15.425

132 Programming the Amstrad CPC464

(5)

IO REM W Compound interest program U'*
20 CLS
30 p = 1000:t =5:r = 11
4© a=p*(l+r/100)-t
50 PRINT "Interest = ";USING "###.;a-p
60 PRINT "for p=";p,"t=";t,"r=";r
70 PRINT: PRINT-
BO p=25:t=32:r=7. 5
90 PRINT "Interest =";USING a-p
100 PRINT "for p=";p,”t=";t,"r=";r

Answers=(a) 685.06, (b) 227.06

Exercise 3

(1)

IO REM O* Calculating average W
20 CLS
30 READ x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10
40 READ x 11, x 12, x 13, x 14, x 15, x 16,, x 17, x 18
50 READ xl9,x20
6 0 sum- x 1 + x 2+x 3+x 4+x 5+x6+x7+x8+x9+ x 10
70 sum=sum+x 11 +x 12+x 13+x 14+x 15+x 16+x 17
80 sum=sum+x18+x19+x20
90 PRINT "Average =";sum/20
100 DATA 52,14,37,67,73,11,75,89,19,24
110 DATA 6.1,49, 12,33,47,55,16,7.1,81,92

Answer=48.9

(3)

10 REM >X>Kf Conversion program ***

20 CLS
30 PRINT "to convert -Feet and i n to metres"
40 INPUT "Enter feet,inches"; ft, i n
50 m= (12*ft+in)*2.54/100
60 PRINT ft;" feet ";in;" in = " « m; " metres"
70 PR I NT :PRINT
80 PRINT­ "To convert lbs and oz to kilos"
90 INPUT "Enter 1bs,oz";1b,oz
1 DO kg= (1 b +oz / 16) *0.4536
HO PRINT lb;" lb "; oz; "oz = ";kg;" kg"

Answers to Exercises 133

Exercise 4

(1)

10 REM Ml password * * #
20 CLS
30 INPUT "Enter passwordpass$
40 IF pass* = "440132601'?" THEN 60
50 PRINT "Incorrect password":END
60 PRINT "Secret message begins, code 2/56#"
70 PRINT "01000110 10001101’00001010"

SO PRINT "01011101 01010101 7.7. 47/42/18 end"

(2)

10 REM %%% To print copies of memo IM
20 CLS
30 INPUT "No. copies required";n
40 FDR x = l TO n
50 PRINT "To all club members"
60 PRINT "WOW*********#***"
70 PRINT
SO PRINT
90 PRINT

"The annual General Meeting"
"will take place
11 ’

95 PRINTsPRINT sPRINT
100 NEXT x

(3)

10 REM III READ and find average Ml
20 CLS
30 INPUT "no. of terms";no.terms
40 FOR n=l TO no.terms
50 READ x
60 sum=SLtm+x
70 NEXT n
SO PRINTS PRINT
90 PRINT "Average =";sum/no.terms
100 DATA .12,65, 98,23,90,34,77,41,32,88
110 DATA 65,89,43,23,9,48,76,83,21,34

134 Programming the Amstrad CPC464

(4)

10 REM *** Selection of courses of action
20 CLS
30 PRINT "Enter 1... f or act i on A 11

40 PRINT­ "Enter 2... f or acti on B II

50 PRINT "Enter 3... ■F or act i on C II

60 PR I NT "Enter 4. . f or act.i on D II

70 PRINT­ "Enter 5... f or act i on E II

80 INPUT n
90 IF n >5 THEN PRINT "i ncorrest entry":GOTO 80
100 F'R I MT: F'R I NT
110 ON n GOTO 120
120 PRINT "Action
130 PRINT­ "Act i on
140 PRINT "Action
150 PRINT "Action
160 PRINT "Action

(5)

130, 140, 150, 160

A. . . . ":END
B. ..„":END
C. . . .":END
D. . .." :END
E. ...END

10 REM to determine Max and Min values W
20 CLS
30 no.terms=10 :GOSUB 80
40 no.terms=20sGOSUB 80
50 INPUT "No. of terms to be readno.terms
60 GOSUB 80
70 END
80 REM ** Subroutine for Max and Min O
90 x ma x = -1E+10: x m i n = 1E +10
100 FOR' n = l TO no. terms
110 READ x
120 IF x.Xxmax THEN xmax=x
130 IF x<xmin THEN xmin==x
140 NEXT n
150
160
170
180

F'RINT "For
F'RINT "Max
F'RINT "Min
PRINT; F'RINT

no.terms;" terms"
value =";xmax
value =";xmin

190 RESTORE
200 RETURN
210 DATA 23,45,78,45,33,29,56,23,45,66
220 DATA 34,89,34,71,34,41,56,78,98,21
230 DATA 121,86,4,67,98,34,67,92

Answers to Exercises 135

Exercise 5

(2)

10 REM To generate 1 <S random
20 REM *** i n range 1 to 55 ***
30 CLS
4G FOR n = l TO 16
50 y=RND(n)
60 PRINT INT(55*y)+1
70 NEXT n

(3)

10 REM O* User defined functions W:
.15 CLS
20 REM O function for average of 3
30 DEF FNAVERAGE(a,b,c)=(a+b+c)/3
40 a=78.54:b=42.74:c=82.64
50 PRINT FNAVERAGE(a,b,c)
60 PR I NT FNAVERAGE (88.7,33. 3, 666)
70 PRINT FNAVERAGE(4,6,5)
80 PRINT:PRINT
90 REM M volume of cylinder O
100 DEF FN vol (r,h)=PI*r#r*h
110 r=7:h=21:PRINT FN vol(r,h)
120 PRINT FN vol (4,5,8.9)

(4)(a) 30
(b) 25
(c) 26

Exercise 6

(l)(a)

(5)(a) 90 44 59 57
45 61 42 33

(b) v # ■ V
little man little man walking

10 REM Mi Drawing a rectangle
15 CLS
20 MOVE 50,50
30 DRAW 50,300
40 DRAW 50,300

136 Programming the Amstrad CPC464

50 DRAW 500,300
60 DRAW 500,50
70 DRAW 50,50

(b)

10 REM KKK Drawing right angled triangle Hi
15 CLS
20 MOVE 0,0
30 DRAW 400,0
40 DRAWR’ 0,250
50 DRAW 0,0

(2)(a)

10 REM * K K Drawing a circle W*
20 CLS
30 ORIGIN 320,200
40 DEG
50 FOR n = l TO 360
60 x = 150KC0S(n)
70 y=150*SIN(n)
SO PLOT x,y
90 NEXT n

60 y=b/a*SG!R(a--2-x--2)
70 PLOT x,y
80 PLOT x, --y
90 NEXT x

10 REM KKK Drawing an ellipse KKK
20 CLS
30 ORIGIN 200,200
40 a=100s b=70
50 FOR x=-a TO a

(3)

10 REM KKK Drawing house Hi
20 CLS
30 ORIGIN 0,0
40 MOVE 20,0
50 DRAW 600,0
60 DRAWR O,150

Answers to Exercises 137

70 DRAWR -580,0
80 :DRAW 20,0
90 MOVE 20,150
100 DRAW 310,300
110 DRAW 600,150
120 x=60: y=40
130 GOSUB 230
140 x-200:y=40
150 GOSUB 230
.160 x=500:y=40
170 GOSUB 230
.180 MOVE 350,0
190 DRAWR 0,100:DRAWR 80,0 :DRAWR 0,-100
200 MOVE 500,200
210 DRAWR 0,100:DRAWR 30,0 :DRAWR (1,-110
220 END
230 REM ** Drawing window **
240 MOVE x,y
250 DRAWR' 40,0: DRAWR 0 , 40
260 DRAWR -40,0:DRAW x •> y
270 RETURN

(4)

10 REM *** To plot cos x * * *
20 CLS
30 ORIGIN 320,200
40 MOVE -320,0: DRAW 320,0
50 DEG
60 FOR x—— 320 TO 320
70 F'LDT x , 100*COS (x)
80 NEXT x
90 REM *** Short delay ***
100 FDR d = l TO 5000s NEXT cl
110 REM *** To plot y=400ex p (-x) ***
120 CLS
130 ORIGIN 0,0
140 MOVE 0,0:DRAW 600., 0
150 FOR' x = 0 TO 5 STEF 0.1
160 PLOT 100*x, 400*EXP (-x)
170 NEXT x

138 Programming the Amstrad CPC464

(5)

10 REM O* To plot graph using given points *1*
20 CLS
30 ORIGIN 0,0

Exercise 7

40 MOVE 0, 0: D R A W 600, 0
50 MOVE 500,25: TAG; PR I NT " x -ax is";
60 MOVE 0,0;DRAW 0,400
70 MOVE 25,350:PRINT "y-axis";
80 FOR n =1 TO 13
90 READ x , y
100 PLOT
110 NEXT n
120 DATA 0,30,30,75,60,120,90,156,120,198
130 DATA 150,224,180,237,210,228,240,201
140 DATA 270,150,300,126,330,70,360,25

(1)

10 REM W To enter and display .list OT
20 CLS
30 DIM item$(10):DIM price(10)
40 FOR n=l TO 10
50 INPUT "name of item";name$(n)
60 INPUT "price of itern";price(n)
70 NEXT n
80 CLS
90 PRINT "i tem";TAB(15)"pr i ce"
100 PRINT
110 FOR n = l TO 10
120 PRINT name$(n);TAB(15)price(n)
130 NEXT n

(2)

10 REM O* Problem 2: display list...etc W
20 CLS
30 DIM item$(10):DIM price(10)
40 DIM no(10)
50 FOR n=l TO 10
60 INPUT "name of item";name$(n)
70 INPUT "price of itern";price(n)

Answers to Exercises 139

80 INPUT "no.of iterns";no(n)
90 NEXT n
100 CLS
110 PRINT "itern";TAB(15)"price";
120 PRINT TAB(22)"no.iterns";TAB(30)"value"
130 PRINT
140 FOR n=l TO 10
150 PRINT name!(n);TAB(15)price(n);
180 PRINT TAB(22) no(n);TAB(30)price(n)*no(n)
170 sum=sum+price(n)*no(n)
180 NEXT n
190 PRINT:PRINT
200 PRINT "Total value =";sum

(3)

10 REN W Display of exam results
20 CLS
30 class.size=3
40 DIM namel(class.size)
50 DIM marks(32,4)
60 FOR n = l TO class.size
70 INPUT "name ";name$(n)
80 FOR j=l TO 4
90 PRINT "mark " ; j ; :INPUT marks(n,j)
lOO NEXT j
110 NEXT n
120 FOR' n=l TO cl ass. size
130 PRINT name®(n);TAB(12);
140 FOR j=l TO 4
150 PRINT marks(n,.j);
160 NEXT j
170 PRINT
180 NEXT n

(4) See section 6.6, example 3.

10 REM * * * Solution problem 5 Hi
20 CLS
30 INPUT "No. of terms";no.terms
40 DIM x(50)
50 FOR n-1 TO no.terms
60 READ x(n)

(5)

140 Programming the Amstrad CPC464

70 NEXT n
80 REM *** Sort routine IH
90 FOR k=l TO no.terms-1
100 FOR l=k + l TO no. terms
110 IF x(l)>x(k) THEN 150
120 temp =x(l)
130 x(1)—x(k)
140 x(k)=temp
150 NEXT 1
160 NEXT k
170 F'RINT: F'RINT
180 F’RINT "Max value = "; x (no.terms)
190 F'RINT "Min value =";x(l)
200 mi d-1NT(n o.t er ms/2)
210 F'RINT "Mid value =";x(mid)
220 F'RINT: F'RINT
230 n=l
240 F'RINT "Values in 0 - 25 band:"
250 WHILE x (nX=25
260 F'RINT x(n);
270 n=n+l
280 WEND
290 F'R I NT: F'R I NT: F'R I NT "Values in 25 -50
300 WHILE x(n)>25 AND x(n)<=50
310 F'R I NT x (n) ; : n=n +1: WEND
320 F'RINT: F'RINT: F'RINT "Values in 51 -75
330 WHILE x(n)>50 AND x(n)<=75
340 F'RINT x (n) ; :n=n+l:WEND
350 F'RINT: F'RINT: F'RINT "Values in 76 -100
360 WHILE x(n)>75 AND x(n)<=100

band:"

band:"

band:"

370 F'R I NT x (n) ; : n =n +1: WEND
380 DATA 78.23,67,34,23,90,2,61,9,12
390 DATA 44,82,38,67,12,31,8,44,72,56
400 DATA 17,74,93,11,67,52,83,91,62,10
410 DATA 97,32,34,63,73,39,93,32,31,13
420 DATA 56,28,94,34,81,76,7,82,9,43

(6)

10 REM tO Name and phone no.
20 CLS
30 DIM name.not(50)
40 INF'UT "No. ot names"; nmax
50 FOR n=l TO nmax

list m

Answers to Exercises 141

60 INPUT "Name and phone no. " name. no$ (n)
70 NEXT n
£30 CLS
90 PRINT "Names and phone numbers"
100 PRINT
110 FOR n=l TO nmax
120 PRINT name.nat(n)
130 NEXT n

(7) Use above program with addition of alphabetic sort routine of section 7.5.

APPENDIX I

SUMMARY OF BASIC KEYWORDS USED IN DIRECT COMMANDS AND
PROGRAM STATEMENTS

AUTO is a direct command which automatically assigns line numbers in
steps of 10 commencing with 10, i.e. 10, 20, 30 ; pressing the ESC key
cancels the automatic line numbering

AUTO 100,20 automatically generates line numbers starting at 100 with
increments of 20

BORDER ink number sets the colour of the screen border; ink number
table is given in fig. 1.8

CAT displays the names of all files stored on the tape cassette currently in
the datacorder (Amstrad integral cassette player)

CLOSEIN is used in conjunction with files to ‘close’ the file when
required input data has been read into computer from the file stored on
cassette (see section 7.6)

CLOSEOUT ‘closes’ a file when all the data from the computer has been
written to the file (see section 7.6)

CLS clears the screen display
CONT ‘continues’ program execution after it has been halted by STOP

or END statements or a BREAK command; execution CONTinues at the
next line after the STOP or END statements or where BREAK was made (see
section 3.4)

DATA stores data within a program; a DATA statement may appear
anywhere within a program; see also READ and section 3.3

DEF FN defines a ‘user-defined’ function (see section 5.7)
DEG sets the ‘degree’ mode and is useful for finding sin x, cos x, tan x

where x is specified in degrees; if DEG is not used the radian measure is
assumed

DELETE is a direct command used to delete program lines
DELETE 100 deletes line 100
DELETE -100 deletes all lines up to and including 100

Appendix 1 143

DELETE 100- deletes all lines from 100 to end of program
DELETE 100 — 300 deletes range of lines specified
DIM allocates memory space in the computer for arrays (see section

7.2)
DRAW x,y draws a straight line on the screen from the current graphics

cursor position to the absolute position specified by x,y (see section
6.2)

DRAWR xr,yr draws a straight line from the current graphics cursor
position a further (relative) xr units horizontally and yr units vertically (see
section 6.3)

EDIT line number is a direct command used to call a specific line in the
program for editing (see section 2.7)

END an END statement is used to 'end' program execution and return
cursor to the screen; END is implicit in Amstrad BASIC as execution reaches
the last line statement so that the last line need not contain END; useful,
however for ‘ending’ execution after jumping in a program

EOF End-Of-File function used to check whether file input from cassette
is at the end-of-file (see section 7.6)

ERASE array identifier ERASEs an array in a program when no longer
required so that the memory space may be reclaimed for other use

FOR . . . TO . . . NEXT repeatedly executes a group of statements a
specified number of times (see section 4.3)

FRE determines the size of the computer memory which currently
remains unused by the BASIC; used as follows
FRE (number) . . . where number = 0 say, returns unused memory
size;
FRE (" ") ... forces a ‘garbage’ collection before returning value for
unused memory space

GOSUB . . . RETURN transfers program execution to a subroutine;
subroutine is then executed and ‘return’ made to line immediately following
GOSUB statement (see section 4.7)

GOTO can be used both as a direct mode command and as a BASIC
statement to cause a jump in program execution (see section 4.6)

IF... THEN IF statements are used to make decisions in
programs, i.e. to conditionally determine

IF . . . THEN . . . ELSE branch points in a program (see section 4.2)
INK changes the paper and pen colours (see section 1.8 and figs. 1.8 and

1-9)
INPUT inputs values to the computer directly from the keyboard (see

section 3.2) or in the form INPUT#9,xorx$from a file stored on cassette (see
section 7.6)

LET is used in assignment statements, e.g.
10 LET x=7.98 ; no longer required and LET can always be omitted (see
section 2.3)

144 Programming the Amstrad CPC464

LIST is a direct command used to list the entire program currently stored
in the computer

LIST #8 directs listing of program to printer (see section 2.6)
LIST —100 displays (lists) program from beginning to line 100
LIST 100— displays program from line 100 to end of program
LIST 100—400 lists program statements between lines 100 and 400
LOAD "program name" ‘loads’ program from cassette to computer;

program name is specified within the quotation marks (see section 2.8)
LOCATE ‘locates’ or positions the character cursor to a given position on

the screen (see section 6.3)
MERGE "file program" ‘merges’ a program from cassette with the

program currently stored in the computer; the name of the file program to be
merged is specified within the quotation marks

MODE n changes screen mode; mode number
«=0 for large character, multi-colour mode,
n = l for normal 40 column mode,
n=2 for high resolution 80 column mode
(see section 1.7)

MOVE x,y moves the graphics cursor to the graphics coordinates
absolute position x,y (see section 6.3)

MOVER xr,yr moves the graphics cursor to the position xr,yr relative to
the currect graphics cursor position (see section 6.3)

N EW is a direct command which clears the currently stored program and
variables from the computer’s memory, and allows us to start ‘a-new’

NEXT is used as a delimiter at the end of a FOR . . . TO . . . NEXT loop
(see section 4.3)

ON n GOSUB . . . statements cause program execution to jump to a
subroutine according to the value of the select variable n (see section 4.7),
return is made after completion of subroutine to line immediately following
ON . . . GOSUB . . . statement

ON n GOTO has a similar action to ON . . . GOSUB, executing transfer
to a given line number according to the value of the select variable n (see
section 4.6)

OPENIN "filename" is used in conjunction with files on cassette; opens
the file, whose name is specified within the quotes, ready for inputting data
from the file to the computer (see section 7.6)

OPENOUT "filename" opens an output file on cassette for outputting
data to; name of file so created is specified within quotes (see section
7.6)

ORIGIN X,Y changes position of graphics origin by X pixels horizontally
and Y pixels vertically from ‘normal’ origin position at the bottom left-hand
corner of the screen (see section 6.2)

ORIGIN X,Y , left, right, top , bottom defines new origin and graphics
window, all positions defined in graphics pixels

Appendix I 145

PAPER paper number sets the colour on the screen background (see
section 1.8 and fig. 1.9)

PEN pen number sets the colour of the screen characters, line drawings,
etc. (see section 1.8 and fig. 1.9)

PI the CPC464 stores j to 9 significant figures as PI, i.e. PRINT PI
returns 3.14159265

PLOT x,y plots the point (x,y) with reference to graphics coordinate
system (see section 6.2)

PLOTR xr,yr plots the point relative to the current graphics cursor
position (see section 6.2)

PRINT. . . is the BASIC output command ; Amstrad BASIC allows the
use of ? as shorthand for PRINT

PRINT 52.6*4.9 outputs the results of calculations as a display on the
screen (see sections 1.3 and 1.6)

PRINT . .string" displays the characters within the quotation marks
(i.e. the string) on the screen (see section 1.5)

PRINT #8,. . . directs output to printer (see section 2.6)
RAD sets the radian angular measure mode (see section 5.5)
READ x fetches data from DATA statements and assigns it to variable x

(see section 3.3)
REM REMark statements are used to include comments in the program;

such statements are skipped over in program execution. N.B. A single quote
character ' in a line which is not part of a string expression is equivalent to
:REM

RENUM automatically renumbers program line statements starting at
10 in increments of 10

RENUM 50,20 renumbers line statements starting at 50 with increments
of 20 (see section 2.3)

RESTORE RESTORES the position of the READ pointer to the first
data item in the first DATA statement (see section 3.5)

RESTORE line number RESTORES pointer to beginning of the DATA
statement specified by the line statement number (see section 3.5)

RETURN is used in conjunction with GOSUB statements to RETURN
program execution, after subroutine has been completed, to line statement
immediately following the GOSUB call (see section 4.7)

RUN is a direct command to start execution of the current program from
the beginning (see section 2.3)

RUN line number executes current program starting at the specified line
number

SAVE "program name" SAVEs the program currently in the computer
on cassette; the program will be saved under the name specified within the
quotation marks (see section 2.8)

STOP STOPs program execution at a particular line; execution may be
resumed using the CONTinue command (see section 3.4)

146 Programming the Amstrad CPC464

TAG is used in conjunction with graphics keywords MOVE and MOVER
to attach or ‘TAG’ a character string at a specific place in the graphics
coordinate system (see section 6.3)

TAGOFF cancels the TAG operation; subsequent text is then sent to the
previous character (screen) cursor position at the point at which TAG was
invoked

WHILE . . . WEND loop is used to repeatedly execute a group of
statements WHILE some test condition is satisfied (see section 4.4)

WINDOW #n, left column no., right column no., top line no., bottom line
no. creates a text window on the screen (see section 6.5)

APPENDIX II

SUMMARY OF STANDARD FUNCTIONS AVAILABLE ON THE AMSTRAD
CPC464

Function BASIC
symbol

Examples Action

Absolute value ABS(x) ABS (-9.8) = 9.8
ABS (99.7)=99.7

Returns, i.e.
determines, the absolute
value or magnitude of x

ASCII code ASC("X") ASC("a")=97
ASC("Word")=87

Returns ASCII code
number of the first string
character

Arctan ATN(x) ATN(1)='74 radians
=45°

Returns arctan or tan-1
in radians specifying
value between —Ta and
+%; if DEG command
used, returns tan-1 in

degrees between -90°
and +90°

Character CHR$(N) CHR$(97)=a Converts Amstrad code
function CHR$(119)=w number N to its

equivalent character
Cosine COS(x) COS(PI/4) = 0.7071 Returns cosine of x

where x is in radians; if
the DEG command has
been invoked then x is
specified in degrees

Exponential EXP(x) EXP(2.1)=8.1662 Returns ev where
e=2.7182818

Hexadecimal
conversion

HEX$(N) HEX$(65532) = FFFC Converts the decimal
number N to
hexadecimal (base 16)
number

148 Programming the Amstrad CPC464

Function BASIC
symbols

Examples Action

Integer INT(x) INT(42.7)=42
INT(—1.4)=—2

Returns the value of x
rounded to the nearest
smallest integer

String slicing LEFT$(A$,N) LEFT$("Amstrad",3) Produces the first N
from LEFT —>"Ams" characters of a string

starting from LEFT
String LENgth LEN(A$) LEN("ABC34") = 5 Determines the LENgth

ofthe string (i.e. number
of characters in string)

LOG (base e) LOG(x) LOG(2.0) = 0.6931 Returns the natural
logarithm (log to base e)
of x, x >0

LOG to base 10 LOG10(x) LOG10(3.0) = 0.4771 Returns logarithm to
base 10 (common log) of
x , x>0

LOWER case LOWER$(A$) LOWER$("BRAIN") Converts a string
conversion ->brain containing one or more

upper case characters to
the same string but all
lower case characters

MAXimum MAX (no. list) MAX(3,1,5,0.6) = 5 Determines the
MAXimum value in the
list of numbers or
numerical expressions

String slicing MID$(A$,M,N) MID$("abcdefgh",4,2) Produces a ‘sub’ string of
from MIDdle —>de N characters starting

from the Wth character
from LEFT

MINimum MIN (no. list) MIN(3,1,5,0.6) = 0.6 Determines the
MINimum value in list

(PI) n PI PRINT PI yields n as
3.14159265

Random
numbers

RND(N) RND(47) generates random
number in range
0.000 ... to 0.999999999

String slicing RIGHT$(A$,N) RIGHT$("ABCDEFG",3) Produces sub-string of
from RIGHT ^EFG last N characters, i.e. N

RIGHTmost characters
ROUNDing to ROUND(x,N) ROUND(9.6745,2) = 9.67 Rounds number or
a no. of decimal
places

ROUND(9.6745,1) = 9.7 expression x to N
decimal places

SiGN SGN(x) SGN(4.2) = 1
SGN(0)=0
SGN(—47)= —1

Determines the sign of x;
returns — 1 if x negative,
0 if x=0 and 1 if x is
positive

Appendix ll 149

Function BASIC
symbols

Examples Action

Sine SIN(x) SIN(1) = 0.84147098
DEG:PRINT SIN(45)
->0.7071068

Calculates sine of x
where x is in radians; if
DEG command has been
invoked then x is
specified in degrees

SPACE SPACE$(N) SPACE$(10) creates 10
spaces

Creates N spaces

SOuaRE root SQR(x) SQR(2.0) = 1.41413562 Determines square root
of number or expression

String STR$(x) STR$(45.12)
-,"45.12"

Converts number or
numerical expression x
to a decimal number
string

TABulate TAB(N) PRINT TAB(8) "8 spaces
in’’
^8 spaces>8 spaces in

Tabulate function which
will cause N character
spaces from margin to be
left before ‘printing’ a
string or numerical result

Tangent TAN(x) TAN(PI/4) = 1
DEG: PRINT TAN(45)
->1

Calculates tan x where x
is in radians; range
limited to -200,000 to
+200,000; if DEG
command has been
invoked then x must be
specified in degrees

Upper case UPPER$(A$) UPPER$("Richard") Converts all characters
conversion -^RICHARD in a string to upper case

characters
VALue VAL (A$) VAL("987.3")

^987.3 (numeric value)
Converts a ‘number’
string to the actual
number

INDEX

ABS(X) function 63, 147
AND operator 54-6
Arithmetic keys 4, 5
Arrays 102-4

program examples 105-9
Arrow keys 7, 10-11.29, 63
ASCII codes 76-7
ASC(X) function 76-7, 147
Assignment statements 27-8
ATN(x) function 66, 147
AUTO command 21,24,142

BASIC keywords 21-3,142-6
Bill-checking program 124-5
Boolean expressions 54-6
BORDER ink colours 15, 16, 142
Box drawing 89, 90
Brackets 11, 12-13
BREAK in program execution 4, 22, 39, 42,

92
Bubble sort 109-11,112

Calculator use 4-7
CAPS LOCK key 3
CAT command 142
Character sets 76-7
CHR$(n) function 76, 147
CINT(X) function 63
CLEAR command 66
Clearing of screen 7
CLOSEOUT/CLOSEIN statements 114, 142
CLR key 3, 4, 7
CLS command 22, 23. 24, 142
Colon!:) 23
Colours of screen display 15-17
Comma (,) 8, 9
Comparison operators 45, 55. 56
Compound interest programs 50-1.73.

126-7
CONT command 39-40, 142
COPY key 30

Correcting of mistakes 7-8
COS(x) function 66. 69-70, 147
Currency conversion program 121-2
Cylinder drawing 89-90

DATA statements 37, 38. 40-1.98. 142
Decision-making statements 43-6, 54-6
DEF FN command 72, 142
DEG command 66. 142
DEL key 3,4,7
DELETE commands 22, 142-3
DIM statements 102-4, 143
DRAW command 70, 81-3, 143
DRAWR command 82-3. 143

EDIT command 29-30. 143
Ellipse drawing 89, 90
END statement 46. 143
ENTER key 2,3.4,19
EOF function 116, 143
ERASE 143
ESC key 3,4,21
Exponential functions 71
EXP(X) function 71,147

Files 113-17
FIX(X) function 63, 64
Flowcharts 44,47,51
FOR. . .TO. . .NEXT loops 46-51. 143
Fourier’s theorem 93
FRE command 143
Full stop (.) 6
Function keys 2-4
Functions defined by user 72-3

GOSUB. . .RETURN statements 59-60,
143

GOTO commands 56-9, 143
Graph plotting 98-100
Graphics system 79, 80

Index 151

Hard copy 29
HEX$(N) function 147
High-resolution mode 13, 14, 96

Identifiers 26-8
IF. . .THEN. . .ELSE statements 43-6, 143
Income tax program 125-6
INK colours 15-16.17,143
INPUT statements 34-6, 98-9, 143
Integer variables 27
INT(X) function 63, 64, 148

Jump instructions 56-60

Keyboard 2-4
Keys, see Arithmetic keys; Arrow keys;

CLR key; Copy key; DEL key

LEFTS function 73-4, 148
LEN function 75. 148
LET statement 22, 143
Letter program 123-4
Line numbering 19, 20. 24
Line statements 19, 20, 24
LIST command 21,24, 144
LOAD command 31-2,144
Loan repayments program 127-8
LOCATE command 84-6. 144
LOGIO(x) function 71.148
Logarithmic functions 71
Logic operators 54-6
LOG(x) function 71,148
Lower/upper case letters 4,24, 148, 149

MAX function 148
MERGE command 148
MID$ function 74,148
MIN function 148
Modes 13-14, 144
MOVE command 86. 89, 144
MOVER command 86. 144
Multiple-print program 122-3

NEW command 21,24.66
NOT operator 54-5
Numeric variables 26-7

ON. . .GOSUB statement 59-60. 144
ON. . .GOTO statement 58, 144
OPENOUT/OPENIN statements 114, 144
OR operator 54-6
ORIGIN command 70, 83-4. 144

PAPER colours 16-17,145
Parabola plotting 91-2
Pen colours 16—17
Phone number program 116-17
PI 10,68,145.148

Pixels 14,79,80
PLOT command 70, 79-81, 145
PLOTR command 79, 81, 145
Polygon drawing 87-8
PRINT command 8, 9, 145
PRINT command 7,23,145

? as shorthand 7. 145
PRINT USING command 8, 9-10, 145
Printers 29
Program, definition of 18
Program editing 29-30
Program examples 23-5,119-28
Programming, introduction to 18-20

RAD command 66. 67, 145
Random number generation 64-6
READ. . .DATA statements 34, 37-9, 40-1,

98, 145
Ready condition 2
REM statement 23, 24, 145
RENUM command 22, 145
Repetition statements 46-54
Reserved words 26. 142-9
RESET keys 3, 4
RESTORE statement 40-2, 145
RETURN statement 59. 145
RIGHTS function 74, 148
RND(N) function 64-6, 148
ROUND (x,N) function 63. 148
RUN command 21, 24. 145

SAVE command 31,145
Savings interest programs 50-1, 73. 126-7
Scaling of graphs 100
Screen display 13-17
Screen modes 14, 85
Semi-colon (;) 8,9,86
Sequential files 114
Setting up 1-2
SGN(X) function 64, 148
SHIFT key 3
Sinewave plotting 70, 93-4
SIN(x) function 66, 68-9, 149
Sorting

alphabetic order 112-13
numeric order 109-11

SPACE$(N) function 149
Spiral drawing 92-3
SQR(X) 11,62-3,149
Standard functions 62-71,73-7, 147-9
Start up 2
STEP command 49
STOP statement 39-40, 145
STR$ function 75-6. 149
String slicing functions 73-4
String variables 27-8
Subroutines 59-60
Syntax errors 4,20

152 Programming the Amstrad CPC464

TAB(N) function 8, 9, 149
TAG command 86. 146
TAGOFF command 86, 146
TAN(x) function 66. 149
Triangle drawing 86-7, 88
Trigonometric functions 66-70
True/false testing 44-5, 51-2, 54

Units conversion program 119-20
Upper/lower case letters 4. 24. 28. 148, 189

User-delined functions 72-3

VAL function 75-6, 149
Variables 26-8

Wave plotting 70, 91-4
WHILE. . .WEND loops 51-4, 146
WINDOW command 94-7, 146

XOR operator 54-6

PROGRAMMING THE AMSTRAD CPC464

Make the most of your Amstrad with this practical
guide to using and programming the CPC464. You
don't need any computing experience to follow the
text, which begins with the basics of the Amstrad and
its operation and extends to graphics, colour and
easy but powerful programming techniques — giving
both newcomers and more experienced users
enough knowledge and understanding of their
machine to write their own programs.
Throughout the book new concepts are explained
simply with the help of practical program examples.
There are plenty of clear program listings, appendixes
of BASIC keywords and standard functions — plus
eight original Amstrad programs for your home and
business use!

9

(D
0)
Q.

O
■o
O

O

	Programming the AMSTRAD CPC 464
	CONTENTS
	PREFACE
	1 - GETTING STARTED
	2 - BEGINNING TO WRITE AND RUN PROGRAMS
	3 - INTERACTING WITH YOUR PROGRAM
	4 - DECISION MAKING, REPETITION, JUMPING AND SUBROUTINES
	5 - STANDARD FUNCTIONS AND APPLICATIONS
	6 - BASIC GRAPHICS, DRAWING AND PLOTTING
	7 - APPLICATIONS OF ARRAYS AND FILES IN PROGRAMS
	8 - SOME PRACTICAL PROGRAMS
	ANSWERS TO EXERCISES

	APPENDIX I

	APPENDIX II

	INDEX

	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

