
Bells
and Whistles
on the cpc^i
Amstrad464 a
Jeremy Vine

Bells
and Whistles
on the
Amstrad

Dedication

For Michael and Rosalind

Bells
and Whistles
on the
Amstrad

Jeremy Vine

Shiva Publishing Limited

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CW5 5ES, England

© Jeremy Vine, 1984

ISBN 1 85014063 4

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording and/or otherwise, without the prior written permission
of the Publishers.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net price
given by the Publishers in their current price list.

An interface was used to produce this book from a
microcomputer disc, which ensures direct reproduction of
error-free program listings.

Typeset by Wordsmith Graphics Limited
Printed by Devon Print Group, Exeter

Contents

Preface 7

1 What Can I Do? 9

3 A Sound Statement 11

3 Sounds Abound! 15

4 A Musical Interlude 25

5 The Sound of Music 33

6 The Volume Envelope 37

7 The Tone Envelope 43

8 Whiz Bang Wallop! 49

9 Music Maestro Please 57

10 Dig that Beat! 63

11 Bells and Whistles 65

Appendix A Amstrad BASIC Keyword Summary 67

Appendix B Sound Parameters 75

Appendix C Volume Envelope Parameters 77

Appendix D Tone Envelope Parameters 79

Appendix E Frequency, Pitch and Note Table 81

Appendix F The Sound Chip—Technical Notes 85

‘I wander’d by the brookside.
I wander’d by the Mill .-

I could not hear the brook flow.
The noisy wheel was still:

There was no burr of grasshopper.
No chirp of any bird:

But the beating of my own heart
Was all the sound I heard.'

Richard Monckton Milnes. Baron Houghton (1809-1885)

Preface

The vast appeal of home micros lies in their effects on our senses.
Not only do we depend on seeing and hearing to live normal lives,
we also find enjoyment in many of the things we see and hear.
This is an area in which computers can excel. Arcade and
home-computer games rely on their visual effects for their
popularity—and the Amstrad is second to none in this. But
computer effects are not merely visual. Micros can also produce
unusual, varied and exciting sounds. And that is what this book is
all about.

The Amstrad CPC 464 has a built-in sound chip which is capable
of producing remarkable sounds. The BASIC commands to
produce these sounds may on first sight seem complicated and
off-putting, but I intend to show how easy it really is to produce
sound on the Amstrad—you can achieve amazing results with a
little thought. I have made few assumptions about the
programmming ability of the reader, and all programs have been
written with beginners in mind. However, to get the most out of
your programming in sound you should at least have a rudimentary
knowledge of BASIC.

The fundamentals of sound and music are introduced, and you
will discover how to produce special noise effects such as
explosions, as well as the sound of different musical instruments.
You can also play your Amstrad as a piano keyboard, and
programs are included that will play everything from musical
scales to ragtime. But the real thrill is when you are able to create
your own sounds, and by the end of the book you should be doing
just that.

I finish on a personal note. This is my third book, and it is with
gratitude that I acknowledge the constant support and encourage
ment of my family and friends through the long hard weeks. A
special mention goes to my friends in the magazine world, and in
particular Tony Quinn of Acorn User, who published my first few
hundred words and has helped me ever since.

London, 1984 Jeremy Vine

About the author

Jeremy Vine was educated at William Ellis Grammar School,
Highgate, London, and at the City of London Polytechnic, where
he achieved a BSc in Psychology. Jeremy first became involved
with computers while studying for his degree and has never since
been far away from one. When Jeremy left the polytechnic, he
worked freelance for Acorn User magazine, before joining Acorn
Computers Limited. During' this period, he also studied for an
MSc in Neurophysiology. Now, having left Acorn, Jeremy is
working full-time as a freelance writer. As well as his books for
Shiva, he is a regular contributor to several computing maga
zines, which has brought him a consultant editorship. His
spare-time interests are tennis, piano, photography and, of
course, home-computing.

viii

1 What Can I Do?

When you first bought your Amstrad, your chief reason for doing
so may have been games playing, educational use, word
processing or perhaps even business use. But the chances are you
didn’t buy the CPC 464 solely because it had a sound generator.
You were probably aware that it could produce sounds, but may
have thought they were limited to beeps and crashes. But having
bought this book you will now realise that the Amstrad can do
much more than just go ‘beep’! In fact, the use of its powerful
sound facilities can add an extra dimension to all its other
applications.

The Amstrad is a versatile machine, and the sound facilities are
every bit as versatile and outstanding as the rest of the machine.
But then one couldn’t expect less from a hi-fi manufacturer! After
all, can you imagine Amstrad building a quiet machine?

The book follows two distinct lines of thought. Firstly it teaches
you the rudiments of sound generation and music. If you don’t
already play a musical instrument or read music, there is an
introduction to this which will give you enough basic knowledge
to program music int.o the Amstrad.

The second major aim of the book is to acquaint you
thoroughly with the commands that control the sound effects.
The area of sound and music is vast, and the' commands within
the BASIC language have been well designed to enable the
BASIC programmer to control every aspect of sound production.

So, what can you do? The answer is almost anything—music of
all kinds is at your fingertips. For those who prefer noises and
sound effects, the Amstrad has ample ability to mimic the sounds
we hear around us every day. Examples are given in the book of
telephones ringing, alarms, explosions—and whistles! These and
many other effects are covered, with the aim of encouraging you
to experiment and discover your own special effects.

All the program listings show the BASIC keywords in
upper-case (capital) letters, but you can type all your listings in

9

lower case if you like, as the Amstrad will convert the keywords
to upper case automatically.

And now the fun begins. Sit back, relax and switch on your
Amstrad. Soon you will hear, not just the tap of the keyboard as
you use the computer, but music. Your adventures in sound are
about to begin!

10

2 A Sound Statement

Creating a sound on the Amstrad is really very easy, but to get
the most out of the sound generator built into the machine you
need a detailed knowledge of all the relevant sound commands.
These commands are admittedly quite complicated, but they are
well worth the effort.

Before we tackle the first keyword, an introduction to the
fundamental principles of sound is needed. This will give you a
firm footing from which to understand what is happening within
each part of a sound command.

SOUND PRINCIPLES

Sound is all around us. Imagine any sound you like—a loud bang,
a soft beep, or something more interesting! Whatever the sound
is, it will consist of features common to all sounds. These features
are the basic building blocks of sound: the amplitude, pitch and
duration.

Amplitude

Amplitude is the volume level of a noise or sound. On the
Amstrad this volume can be controlled by the user and is set in
the range 0 to 7, from soft to loud. But merely setting the whole
sound to loud or soft is not enough. It is easy to tell if a single
steady note is loud or not, but within most sounds there is also
variation in amplitude, although this is not always as noticeable.
Now this is not as difficult as it might seem.

When a piano key is struck the sound heard has a more
complicated amplitude than just loud or soft. At the beginning of
the note there is an increase of volume, called the attack phase of
the sound. At the end of the note there is a decrease in the

11

volume level, known as the decay phase. Other instruments
produce their distinctive sound by building up the volume more
slowly or quickly (a lesser or greater attack rate) before reaching
their maximum amplitude. You need not worry about this at
present, as we will cover it in more detail in Chapter 6, when we
look at the ENV statement, which is responsible for altering the
attack and decay rates of a given sound.

So the amplitude of a sound is not as simple as it seems at first.
And there is more! The volume level is also affected by other
factors. The duration of a sound can vary, and this in itself can
alter the volume perceived by the listener. A sound which lasts
for only a fraction of a second will seem quieter than a much
longer sound. It is by altering parameters in this and other ways
that we can create a range of sounds.

Pitch

Simply speaking, this is whether a sound is high or low. Without
getting too technical the pitch of a note is defined as its
frequency—that is, the number of sound waves per second.
Sounds are all about us, but as humans we can only hear sounds
within a certain range of frequencies. A classic example of a real
sound that we cannot hear is a dog whistle. Because dogs can hear
sounds of a higher frequency than humans, they hear the sound of
the whistle even though we cannot hear it ourselves. So just
because we cannot hear a sound does not mean it doesn’t exist!

When we talk about pitch we are usually referring to frequency
in terms of musical scales, like those of the high and low notes of
a piano keyboard. Now the notes on a piano are fixed at given
pitches and intervals, but on the Amstrad we have to define the
pitches ourselves. Using the ENT statement, pitch can be
controlled very exactly—and you can even define how it is to
vary! Yet again think of a musical instrument. When a note is
played, on some instruments the pitch can be altered by means of
vibrato (a pulsating effect). The tone envelope (ENT) allows you
to do something similar. In this way we can create a range of pitch
effects covering a spectrum of sound. We will return to pitch in
later chapters when we make our own sounds and explain musical
effects.

Duration

The duration of a note is simply the length of time it is played. All
pieces of music have rules as to the length of the notes to be

12

played (see Chapter 4) and the speed at which the music will be
heard. It is these variations in duration that produce the different
forms of rhythm we are accustomed to, from waltzes to rock and
roll.

With the sound commands of the Amstrad, the length of a note
can be specified or changed.

With all these facilities at our fingertips we have the basis for
generating a wide range of sounds. However, the sound gener
ator of the Amstrad has more to offer than just the ability to alter
these three main variables.

Sound channels

So far we have spoken of sound as a single note or series of notes.
But when we listen to a piano being played it is not a series of
single notes that we hear. The pianist will usually play a number
of notes at the same time, in synchronisation, to form chords and
harmonies. And this facility is also available to us on the
Amstrad.

The Amstrad has not just one channel on which sound can be
produced, but three. The programmer can determine whether
these channels are played in unison with each other or separately.
These three channels are referred to as A, B and C. As we shall
see later, we can not only use them to play in three synchronised
parts, but also assign a different sound to each channel.

Besides generating musical notes the Amstrad can produce
other sounds, namely so-called ‘white noise’ effects. It is these
sounds which often form the basis of the ‘space invader’ explosion
effects so commonly heard within arcade games. These sounds
can also be used to create percussion effects as a background to
music.

White noise is simply random noise, containing all the available
frequencies mixed together. One channel can be assigned to this
sound effect. Whereas you can play three different musical notes
at the same time by assigning each to a separate channel, you can
use only one noise at a time.

The Amstrad stores the commands to play sounds in ‘queues’,
each channel having its own queue. Within each queue there is
room for up to five different commands, of which one is active
(the command being played) whilst up to four more can be
waiting. You can think of the queue rather like someone serving
food onto a plate. In front of the person is a stack of five plates.
The one at the top of the stack is at the front of the queue, and it
is this one which is being dealt with. Once the food has been
placed on the plate (processing the command), the next plate in

13

line is served, and so on. The whole point of this is to allow the
Amstrad to continue with other processing tasks while carrying
out the commands in the sound queue, only returning to pick up
more sound commands when the queue is exhausted.

SOUNDS COMPLICATED?

Now all of the above may be completely straightforward to you,
or it may be confusing. Whichever state you feel in after reading
this chapter, you will find that you are well catered for in this
book. We will be coming across everything I have mentioned as
we work through these ideas in more detail to uncover a wealth of
material that will transform your Amstrad into a machine that can
perform wonders of entertaining sound.

Now let us take a look at the first BASIC command that allows
us to program the Amstrad to produce a sound.

14

3 Sounds Abound!

Well, I’ve talked about all these wonderful facilities the Amstrad
has, but how do we actually start producing the sounds? The first
thing to do is to turn the volume dial, on the right-hand side of
your keyboard, to maximum. Throughout the book leave the
volume at this setting (unless it causes rifts in the happy family
home!). Now type in the following line (not forgetting to press
the ENTER key at the end):

SOUND 1,478

You will hear a quick, fairly soft tone (in fact this tone is middle
C, lasting for a duration of one-fifth of a second). The numbers
after the keyword SOUND indicate various parameters. In all,
the SOUND command can have up to seven different parameters
associated with its use. If you want to see what they are at this
stage, take a look at Figure 3.1.

So far we have only used two of these parameters—the only two
that you have to use. They are as follows:

SOUND C,P

Let’s look at each in more detail.

THE CHANNEL PARAMETER

The first parameter, C, indicates the channel(s) the sound(s) will
be played through and its status. For the moment we will not
concern ourselves with the status but with allocating a sound to a
particular channel. In the case of the above example the channel
number we have specified is 1 and this means that channel A will
be used. In Chapter 2 I mentioned that three sound channels

15

existed. Now there are many different possible values that can be
used for C (the range is in fact 1 to 255) but for the moment we
will concentrate on accessing the three sound channels individual
ly. Table 3.1 shows the values to be used for each sound channel.

Table 3.1 Sound channel values(l): Accessing the three sound
channels.

Therefore the command SOUND 2 would indicate that channel B
should be used. Don’t type in SOUND 2—at least two para
meters are needed to produce a sound! I will come back to the
other possible values later on in the chapter.

THE PITCH PARAMETER

The second parameter, P, is the tone or pitch of the sound. In the
above example I used the number 478 which, as I indicated, is the
pitch for middle C. How do I know that? Well, as you know, each
note has its own frequency value, and in Appendix E you will find
a table of pitch and frequency values and the musical notes
associated with them. The parameter P accepts a number in the
range 0 to 4095; the value you enter can be equivalent to a
recognized musical note, such as 379 which would produce the
musical note E—but it doesn’t have to be! You can use any

16

a> Q. o
> c <D
a>
E j
o
>

V V Y V V Y Y
SOUND C , P , D , V , VE , TE , NP

Y Y Y Y Y Y Y
SOUND 1 , 568 , 100 , 15 , 1 , 1 , 0

Figure 3.1 The sound parameter.

frequency within the range shown. Do note, however, that the
value you enter must be the number given for the pitch and not
the frequency. You can see that each frequency value given has
an equivalent pitch number.

Try changing the value of P to see how the pitch changes. For
example, type the following:

SOUND 1,956

SOUND 1,478
SOUND 1,60

All of these values are the note C played at different pitches. You
will notice one thing which might seem odd. As the number
decreases in value, the pitch increases (that is, the tone is higher).
This is unexpected, but it is a feature of the Amstrad that you
must remember, otherwise you may get very confused!

If you set the pitch parameter to zero (P = 0) then no
frequency will be set. This can be of use when we create ‘white
noise’ effects.

17

THE DURATION PARAMETER

Let’s move on now and look at the next parameter, D, which is
the duration of the sound or the length of time a note is played.
Type the following line:

SOUND 1,568,100

This will play the note A on channel A for one second. The third
parameter is measured in units of one-hundredth of a second, so
in the example, 100 = one second. Any value that is greater than
zero represents a duration of time. However, the duration
parameter can also be used in two other ways.

The first is when D equals zero. This tells your Amstrad that
the duration is specified and controlled by the volume envelope
(ENV) associated with the sound channel. If this is not clear don’t
worry! I will explain this in detail when I come to the ENV
command.

The other kind of value you can use for D is a negative number.
This also refers to the ENV command and instructs the machine
to play the relevant volume envelope a given number of times,
the number being equal to the negative value specified by the
programmer. For instance, the value -3 would repeat the volume
envelope 3 times.

Experiment with the values in the D parameter to get an idea
of how the length of a sound can be changed. Table 3.2
summarizes the values that can be used in the duration
parameter.

Table 3.2 The effects of numeric value on the duration
parameter.

Value Effect

Default: 20

Range: -32768 to + 32767

> 0

» 0

< 0

Length of SOUND in 1/100ths second

Duration controlled by the volume envelope (ENV)

Number of times volume envelope is repeated

18

If no duration is specified, as in the first example of this chapter,
then a default value of 20 is used by the Amstrad, causing the
sound to last for one-twentieth of a second.

THE VOLUME PARAMETER

On to the fourth parameter, which is the volume, V. Type in
Program 3.1 and run it.

Program 3.1

10 FOR volume = 0 TO 7

20 SOUND 1,478,25,vo lume

30 NEXT

The sound level increases each time around the loop, so that
when ‘volume’ equals 7 the tone is at its loudest. The range of
values can be between 0 and 7, where 0 equals no volume and 7 is
the loudest.

If the volume envelope (ENV) is specified, then the value can
be in the range 0 to 15 where the positive integer number (i.e.
greater than zero) refers to the volume envelope being used (i.e.
ENVelope number 1 etc).

These first four parameters form the heart of the SOUND
statement, and even with them alone we can create some good
music. In Chapter 5 we will see how we can generate music using
just these parameters. However, there are still three further
parameters we can use if we wish. The next two are involved with
the envelope commands ENV and ENT, which are explained in
Chapters 6 and 7 respectively. For now I will explain how they fit
into the SOUND command, but a detailed account will be given
in those two chapters.

USER-DEFINED ENVELOPES: ENV AND ENT

The fifth parameter, VE, is entered when a volume envelope
(ENV command) has been defined. The volume envelope allows
the programmer to define how the volume varies within a given
sound.

The value that can be entered here can be in the range 0 to 15,
though if 0 is used then no volume envelope is set. The positive

19

values refer to the envelope to be used. For example, if VE - 4
then ENVelope number 4 would be used.

The sixth parameter, TE, the tone envelope (ENT command),
works in a similar fashion except it refers to the variation of tone
within a sound. The range of values is 0-15, the same as for VE.

These options, when used, add new dimensions to the sound
statement and—as we shall see—are the core of the different
sound effects we can generate.

And finally ...

THE NOISE PARAMETER

I have mentioned previously that we can use ‘white noise’ effects
on the Amstrad. The final parameter, NP, the noise period,
specifies whether noise is to be used. If this parameter is not used
or the value is zero then no noise is created. But if the value is in
the range 1 to 31 then noise is added to the specified sound
channel. To see the effect of this parameter, type in Program 3.2.

Program 3.2

10 ENV 15,43,-68,3

20 FOR volume = 0 TO 7

30 SOUND 1,478,25,volume,15,0,0

40 NEXT

When you run the program you will hear short on and off tones.
Note that I have used all seven parameters. The VE parameter
has been set to 15 to use ENVelope 15 which is defined in line 10.
As before, you can pass over this command for the time being.
The sixth parameter, TE, is set to zero as I haven’t defined a tone
envelope. The final parameter is set to zero, which means that no
noise is being added to the sound channel. So at the moment this
parameter is having no effect on the sound being produced.
However, we can change this by altering that final value. Change
line 30 to read:

30 SOUND 1,478,25,volume,15,0,10

Hear the effect? If you want to hear the difference this makes
between a tone and a noise type the two following lines:

SOUND 1,478,100,15

20

SOUND 1,478,100,15,0,0,10

And that concludes the basic parameters of sound generation.
You are now well equipped to start playing around with the
SOUND command. It might seem a little complicated at first but
the best way to master the sound commands is to type in a variety
of sound statements and alter the parameters to see their effects.
To help you sound out the Amstrad use Program 3.3 which allows
you to enter the parameters P,D,V and NP. Run this program,
and when you are satisfied that you thoroughly understand the
effects of these parameters move on to the final part of this
chapter.

Program 3.3

10 CLS
20 PRINT"Enter pitch value (0 to 4095)"

30 INPUT p
40 PRINT"Enter duration value (1 to 32767)"

50 INPUT d
60 PRINT"Enter volume (0 to 7)"

70 INPUT v

80 PRINT"Enter noise, if any (0 to 31)"

90 INPUT np

100 SOUND 1,p,d,v,0,0,np
110 PRINT"Press a key to continue"

120 x$ = INKEYS: IF x$ = "" THEN 120 ELSE 10

SOUNDS UNIFIED:
THE CHANNEL PARAMETER REVISITED

At the start of the chapter I described the channel parameter of
the SOUND command. However, as I indicated, there is more to
that parameter than just the three values that indicate which
sound channel is to be used. We can now consider the other
values you can input into this variable. Let us first update Table
3.1 where the sound channel values were shown. Table 3.3 shows
a more complete set of values, though these are still not all the
possible values, as I will shortly explain!

21

Table 3.3 Sound channel values(2): Channel status.

Value Channel(s) Effect

1 SOUND channel A

2 SOUND channel B

4 SOUND channel C

8 — A Rendezvous with channel A

16 I œ Rendezvous with channel B

32 I o Rendezvous with channel C

64 Hold

128 Flush

The state of the channels (or channel status) indicates to the
machine which sound channel is to be used, whether the channel
is played in unison with one or more other sound channels, if the
sound is held (i.e. continues until RELEASEd) or if the sound
channel is flushed (i.e. the sound queue is cleared).

The values shown in Table 3.3 send the relevant command to

22

the sound generator. By adding these values together, we can
combine several commands. For example, if we want to send a
sound to channels A and B at the same time, we could write it as
follows:

SOUND 3,478,50,7

where 1 (channel A) + 2 (channel B) = 3.
To give you a better idea of this process, type in Program 3.4,

which sets up a few keys on the keyboard.

Program 3.4

10 KEY 128,"SOUND 1,478,50,7" + CHR$(13)

20 KEY 138,"SOUND 3,478,50,7" + CHR$(13)

30 KEY 140,"SOUND 5,478,50,7" + CHR$(13)

40 KEY 131,"SOUND 7,478,50,7" + CHR$(13)

As you can see, the KEY command is used to define four keys.
First run the program. You should just get back the prompt
‘Ready’. To play the commands assigned to these keys you will
need to hold the CTRL key down while pressing one of the keys
on the numeric key pad. Try it in the following order:

CTRL + 0

- CTRL + .

CTRL + ENTER

CTRL + 3

You will have to listen very carefully, but should be able to hear
differences in the sounds produced. In a similar way by different
permutations of the other values, different statuses of the
channels can be created. For example, to send a sound to channel
A, rendezvous with channel B and hold, the channel status value
would be 81 because:

1 (channel A) + 16 (rendezvous with B) + 64 (hold) = 81

These facilities are very important, as they offer the programmer
the ability to synchronize sound channels, and to clear the sound
channels when necessary.

23

SQAND RELEASE

And finally two further BASIC commands which will be of use.
The first is the SQ command which indicates the number of free
entries left in a sound queue for the specified sound channel. This
is also useful in determining if a sound channel is still active.
Program 3.5 shows an example of its use.

Program 3.5

10 PRINT'ChanneI A is sounding"

20 SOUND 1,261,250,7

30 PRINT'The End"

If you run this program you will see that the message ‘The End’
appears straight away, even though the sound continues. So in
order to test the sound channel to see whether the channel is still
active we have to use the SQ command. Add line 25 as follows:

25 WHILE SQM) > 127:WEND

Now if you run the program the final message does not appear
until the sound has terminated. This is because a value of greater
than 127 will be returned while the sound channel is active. Line
25 continues in a loop until that condition is broken. The number
in brackets after the SQ refers to the sound channel number.

Secondly the RELEASE command. This releases a sound on a
specified channel if the sound is in a ‘hold’ state. The values are in
the range 1 to 7. For example RELEASE 1 would release a hold
state, if it existed, on channel A.

And that is the SOUND command. The best way to under
stand everything discussed in this chapter is, as I suggested
earlier, to play around with the SOUND command. This in itself
is good fun and may yield some unexpected results. I will return
to the SOUND command in Chapter 5.

24

4 A Musical Interlude

This chapter is an introduction to musical terms and notation. If
you are acquainted with musical notation, if perhaps you play an
instrument, you can quickly skim through this chapter. However,
as this book is intended to introduce the sound possibilities of the
Amstrad to every user, it would be incomplete without helping
those not familiar with musical jargon and notation. It is by no
means a complete course, but if carefully read it will be of great
assistance in understanding later chapters and when you convert
any piece of music to the Amstrad.

STAVES AND NOTES

First of all, don’t be put off by the sight of musical notation. To
those who have never read music it can seem a very daunting
task. All those lines, dots and strange symbols ... Well, it’s not as
hard as it may look. Let’s acquaint ourselves firstly with the way
music is set out on paper. Just as words are often written on lined
paper, music is written on lines. These are grouped together in a
stave, a set of five horizontal lines. Figure 4.1 shows a stave with
nothing written on it, rather like a blank piece of paper.

Figure 4. 1 A blank stave.

Musical tones are represented on a stave by characters called
notes. The vertical position of the note on the stave represents its
pitch. Notes are written on or between the lines. The higher the
pitch, the higher the note is placed on the stave. The line on

25

which the note lies, or the lines it lies between, indicate the letter
name of the note. Figure 4.2 shows a typical set of notes.

CDEFGABCDEFGA
Figure 4. 2 Set of notes on a stave with ledger lines.

Notice that the notes are repeated. The notes are given letter
names from A to G and then—an octave higher—from A again.
Notes too high or low to be placed on the stave can be shown by
adding short lines called ledger lines above or below the stave.
These ledger lines therefore allow the musician to extend the
range of a stave. However, it is conventional not to use too many
ledger lines as this could make the music virtually unreadable.

DURATION

Leaving the pitch of the note for the moment, we can look at how
notes of different duration are represented. A different symbol is
used for each note, indicating its timing value. At this stage a
point to be remembered is that these timing values are not an
indication of how fast or slow a piece of music should be played.
That is something I will cover shortly. The different timing values
accorded to notes are an indication of the length of each note in
relation to the others. Table 4.1 shows these timing values with
the names associated with each.

The semibreve is (normally) the longest sounding note and the
demisemiquaver the shortest. If a note has a dot (.) after it the
duration of the note is increased by one-half. It is also possible to
indicate periods of silence in the music by inserting rests into the
music. Figure 4.3 shows the symbols for rests: the time values are
equal to the notes of the same name.

If the rest is for a long time, then a number is placed above the
rest. For example, if the number 12 were placed above a rest, this
would indicate 12 measures of that rest.

26

Table 4.1 Timing values.

Note Name

o
J
J
J

Semibreve or whole note

Minim or half note

Crotchet or quarter note

Quaver or 8th note

Semiquaver or 16th note

Demisemiquaver or 32nd note

— Semibreve rest

*"' Minim rest

Figure 4.3 Rests. 27

CLEFS AND SCALES

I mentioned earlier that the range of a stave could be extended by
ledger lines. To make the music more legible we can add another
stave below the first one. These are then two separate staves
whose pitch range is shown by a clef sign. A clef sign that appears
at the start of the stave fixes the pitch or letter name of a
particular note. The two most common clefs used, in particular
for piano music, are the treble and bass clefs. The treble clef has
the higher pitch of the two and is therefore placed on the top
stave. Figure 4.4 shows an example of this.

DE FGAB CDEFGAB

C DE FGABC D E FGAB

Figure 4.4 Treble and bass clefs.

You can see that the positions of the notes on the staves are
different, according to the clef, and that middle C can be shown on
either stave. A series of eight notes is called a scale. The simplest
scale is that of C major. This can be shown on a piano keyboard
as in Figure 4.5.

You will note that C major uses only white notes, and that there
is no black note between E and F or between B and C. These
pairs of notes are closer together in pitch: they are only one
semitone apart. All other pairs of notes have a black note in
between them, and are two semitones or one tone apart. All
major scales follow this same pattern: tone, tone, semitone, tone,
tone, tone, semitone. If you move up the keyboard in a single
sequence, playing all the black notes as well as the white notes,
you will move up a semitone each time, and after you have played
twelve notes you will be back at the note name you started with.

28

11111111
CDEFGABC

Figure 4.5 How the notes on the stave relate to the piano keyboard.

This twelve-note sequence is called a chromatic scale.
For major scales other than C you will need to use the black

notes. Black notes are named according to the white note
immediately above or below them in pitch. For example, the
black note which is one semitone above D is called D sharp (fl)
and the black note one semitone below D is called D flat (b)• If
these signs are included at the beginning of the music they are
known as the key signature. For instance, the key signature of G
major has one sharp (fl), that being Ffl. This means that when
the scale is played the note F is always raised by a semitone.
Figure 4.6 shows you a few sample key signatures.

Figure 4.6 Some key signatures.

A note that has been sharpened or flattened can be restored to its
original pitch by the sign (j (natural) which cancels the
previous sharp or flat.

29

BARS AND RHYTHM

Music is divided into portions called measures or bars by vertical
lines called bar lines. A double vertical line indicates the
conclusion of a passage or piece. At the beginning of the music
the length of the bars is indicated by the time signature. This
consists of an upper and lower number, where the upper number
indicates the number of counts (beats) within each bar and the
lower number shows the time value of each count. Figure 4.7
shows this.

Figure 4.7 Bars and timing values.

If the time signature is 2/4, for example, this indicates to the
musician that there are two beats in a bar and that each beat is a
crotchet: each count equals a quarter note or crotchet, repre
sented by the lower number being 4. It is by these means that
rhythm can be established.

More useful points to note are the different ways notes can be
played. There are three aspects especially worth looking out for.
The first is if a dot appears over or under a note. If it does, then
the note is played staccato: this means to cut the note short,
thereby leaving a slight gap between the note and the next note.

The opposite of this is a slur, which is a curved line connecting
a series of two or more notes. These notes should be played in a
smooth and connected way. This is called legato.

Finally, if a curved line appears between notes of the same
pitch it is called a tie. This has the effect of adding the time value
of the tied notes together, which will in effect produce a single,
longer note.

Figure 4.8 shows examples of the above three notations.

30

Figure 4.8 Slurs, ties and staccato.

Now all of this may have confused you. If it has, don’t despair.
You need not know this section by heart, but you may find it
useful later to refer to some of the points made. In a book of this
nature it is not possible to give a thorough knowledge of even the
basics of music. If you wish to go further into the theory of music
there are many books which can teach you the rudiments of music
and its notation.

As we progress, you will see that the lessons learned in this
chapter will help you cope with understanding the musical
programs and how to convert musical notation into a form that
the Amstrad will understand. So once you feel happy (well,
almost!) with the principles in this chapter, move on to Chapter 5,
and we will start writing music on our Amstrad.

31

5 The Sound of Music

Converting music into a form that the Amstrad will understand is
a relatively simple task. In Chapter 3 I said that the pitch
parameter of the sound statement can produce a recognizable
pitch (see Appendix E). We can now use those values to enable
the sound chip to play musical notes.

CHROMATIC SCALES

A good place to start understanding the relationship between the
Amstrad’s pitch parameters and musical notes is to consider the
problem of constructing a chromatic octave from any note, that
is, the series of 12 semitones that makes up an octave. Writing
such a program is not that easy! The intervals between each
semitone on the pitch parameter table (Appendix E) are not
uniform, and nor are the frequency intervals. What we therefore
need to do is to obtain the correct frequency for each note and
convert this to its pitch parameter.

The conversion of a*given note into a frequency number can be
carried out by an equation. Appendix 7 of the Amstrad user
guide gives a formula to do this—but it is incorrect! If you use the
equation given you will be about 18 semitones away from the
correct note! The correct formula reads as follows:

frequency = 440 * (2 f (octave + ((n - 10) I 12)))

where ‘octave’ is the octave number over the eight-octave range
(see Appendix E) and ‘n’ is the note (C = 1, C fl =2 and so on for
each semitone).

Having obtained the correct frequency, this is then converted
into the pitch parameter by the following formula:

P = ROUND(125000/frequency)

33

The program we want is therefore Program 5.1.

Program 5.1

10 FOR num = 1 TO 12

20 READ a(y)

30 freq = 440 * (2f(0 + (<a(y) - 10) / 12)))
40 pitch = ROUND(125000/freq)

50 SOUND 1,pitch,35,15
60 NEXT

70 DATA 1,2,3,4,5,6,7,8,9,10,11,12

Line 70 contains numbers which represent the different musical
notes starting at 1 (C) and working upwards a semitone at a time
to play all 12 semitones in the octave. Line 30 converts the note
number to a frequency and line 40 converts that figure to a pitch
value.

SCALES

From that basis it is not difficult to go one step further and to
create a scale, say C major. In the last chapter I gave you the rule
for producing major scales, the progression being: tone, tone,
semitone, tone, tone, tone, semitone.

All we then need to do is to change the data in line 70 to:

70 DATA 1,3,5,6,8,10,12,13

and change line 10 to:

10 FOR num = 1 TO 8

Run the program and you will now hear the scale of C major
starting at middle C and finishing at C above middle C. The data
in line 70 is easy to comprehend. The value 1 is middle C, and the
other seven values represent the progression of tones and
semitones given above. A semitone is represented by an
increment of one and a tone by an increment of two.

34

TUNES!

We can take this idea much further and convert familiar tunes to
play on the Amstrad. Type in Program 5.2 and run it. You should
hear a familiar ragtime tune, but I’m not telling you the name.
You’re going to have to type it in to find out!

Program 5.2

10 tempo = 2.5
20 RESTORE 90

30 FOR x = 1 TO 37

40 READ pitch,duration

50 freq = 440 * (2f(0 + ((pitch - 10) / 12)))

60 pitchnum = ROUND(125000/freq)
70 SOUND 1,pitchnum,duration * tempo,15

80 NEXT
90 DATA 27,10,29,10,25,10,22,20,24,10,20,

20
100 DATA 15,10,17,10,13,10,10,20,12,10,8,

20
110 DATA 3,10,5,10,1,10,-2,20,0,10,-2,10,

-3,10,-4,40
120 DATA 3,10,4,10,5,10,13,20,5,10,13,20,

5,10,13,40

130 DATA 13,10,15,10,17,10,13,10,15,10,17,
20,12,10,15,20,13,40

Recognize it?! Now you’re probably wondering how it all works.
The tempo figure in line 10 can be altered: increasing the value
will slow down the tune, decreasing it will speed it up. Line 70 is
the sound statement. You will notice that the third parameter,
the duration number, is a combination of the tempo setting and a
duration figure. The duration figure is read in from the data
statement where the notes have been entered in pairs, the first
value being the note to be played, as I have shown previously,
and the second value the duration of the note. The duration
figures are equivalent to a musical timing—we look at these in

35

Chapter 10. For the moment you can ignore these values and just
look at the pitch numbers.

The core of the program, lines 50 to 70, is the same as Program
5.1, but I have translated the piece of music by taking each note
and entering its pitch parameter. In order to help you do this,
Appendix E has these numbers set out, assuming that you work
from middle C and that that octave is given the value zero (see
line 50). Once you get the hang of this method it can be quite
quick to convert a set of musical notes to sound on the Amstrad.

To practise this, take an easy piece of music, one where there is
a line of single notes, not chords, and convert these notes into a
data statement. Disregard the duration parameter by inserting an
average time in the duration part in line 70. Without the duration
it will sound a bit odd but this will help you to get the feel of
converting music.

Now let’s leave music for a while, and look at the two
remaining sound commands, ENV and ENT.

36

6 The Volume Envelope

The volume envelope command (ENV) allows the user to
manipulate the volume within a given sound. When used it can
alter the sound generated by a SOUND command. In common
with the SOUND command it has a number of parameters, and
may appear complicated at first. But there is far less to explain
than you might think, as most of these parameters follow the
same rules.

To see what I mean take a look at the command in all its glory:

ENV n,P1,Q1,Rl,P2,Q2,R2,P3,Q3,R3,P4,
Q4,R4,P5,Q5,R5

Don’t take fright! This is obviously what is known as a
user-friendly micro! Actually the only parameters I need explain
are the first four. But first let’s take a closer look at the shape of a
sound.

SHAPING THE SOUND

When using the ENVelope commands a great deal of time can be
wasted entering a variety of values. Because of the numerous
permutations available, creating the sound you desire cannot be
left to chance. It is obviously worth your while to invest a few
minutes in thinking about the sound you wish to create. When an
ENVelope is defined by the user, the control of the amplitude of
that sound is handled by the ENV command.

Every sound you hear has a distinctive shape and it is this shape
that we are defining when we write the ENV command. Type in
Program 6.1 and run it.

37

Program 6.1

10 ENV 1,10,4,3,5,-3,20,1,0,20,5,3,
10,10,-3,30

20 SOUND 1,478,0,0,1,0,0

The sound you hear is being totally controlled by the ENV
statement. Line 20 defines the pitch, but the duration is set to 0
and this tells the machine that the sound should last until the end
of the volume envelope. Also the volume parameter is set to 0 as
the amplitude is under the control of the volume envelope. The
‘VE’ parameter indicates that volume envelope number 1 should
be used, which is the envelope we have defined in line 10. To see
what is happening in that line look at Figure 6.1.

Figure 6.1 Example shape of volume envelope.

The shape of the note is divided into five sections, each section
having three parameters. Figure 6.2 shows how the five sections
relate to the envelope parameters.

Within each section there are three parameters, the step count
(Pn), (where n equals the section number), step size (Qn) and the
pause time (Rn). At least one complete section must be defined,

38

ENV 1, 10,4, 3, 5, -3, 20, 1,0,20, 5,3,10, 10, -3,30

Section 1 Section 2 Section 3 Section 4 Section 5

Figure 6.2 The five sections of the volume envelope.

and up to five can be used.
The step count Pn can have any integer value from 0 to 127. It

represents the number of steps in each section in Figure 6.1. Each
of these steps has a fixed duration, and this is the pause time
(Rn), measured in hundredths of a second—a value in the range 0
to 255 can be entered. In between these two parameters is the
step size (Qn). This indicates the amount by which the amplitude
increases or decreases at each step, a negative number indicating
a decrease. The range of possible values is from —128 to +127.
The effect on the shape of the note can be seen in Figure 6.1.
Each step in section 1 increases in intervals of 4 (the step size).

The graph indicates that the sound will last for 5 seconds. We
can check this by multiplying the pause time figure by the step
count figure in each section and adding these totals together:

(3 * 10) + (20 * 5) + (20 * 1) + (10 * 5) + (30 * 10) = 500

As we are counting in hundredths of a second, 500 is equal to 5
seconds.

Once an envelope has been set these parameters are stored by
the sound chip and used every time the envelope is called. If you
wish to cancel the effect of an envelope on a SOUND command
this can be done by specifying the appropriate envelope by name
but without allocating any sections. So in order to cancel the
effect of ENVelope 1 you would type:

ENV 1

The envelope would then be inactive.

39

PLAYING AROUND!

Having said earlier that you should think about the shape of the
sound you intend to imitate before writing the envelope, I am
going to make an exception to that point right now. To give you
an idea of the effects of altering the different parameters,
Program 6.2 allows you to edit the three parameters. Only one
section has been used.

Program 6.2

10 CLS
20 PRINT"Enter step count (0 to 127)"

30 INPUT stepcount
40 PRINT'Enter step size (-128 to +127)"

50 INPUT stepsize
60 PRINT'Enter pause time (0 to 255)"

70 INPUT pausetime
80 ENV 1,stepcount,stepsize,pausetime

90 SOUND 1,240,15,15,1,1,0

100 ENV 1
110 PRINT'Press a key to continue"

120 x$ = INKEYS: IF x$ = "" THEN 120

130 GOTO 10

See what you can devise just from messing about with a few
numbers. You may come across some very interesting sounds!

INSTRUMENTS

It is likely that you will want to try to create the sounds of musical
instruments. This is possible, within reason, though do not forget
that we are dealing with an electronic sound chip which does have
its restrictions. Whenever anyone produces an envelope that they
believe sounds like a violin or an organ, you will surely find
someone else who thinks they sound like a clarinet or a
saxophone! With this in mind I won’t give you a list of
pre-defined instrument envelopes but let you discover the right

40

ones for yourself. To help you on your way, here are a few
pointers as to how some instrument envelope shapes look. This is
not a definitive list, and you must decide which sounds you like
for yourself.

Figure 6.3 shows approximate sound shapes produced by
various kinds of musical instrument.

Figure 6.3

Aim to match the shape of the curve, and then you can attempt to
‘tune’ the sound more finely to your taste.

For a more subtle adjustment of the sound you can add changes
to the frequency of the note by using the tone envelope
command, which is explained in the next chapter.

41

1 The Tone Envelope

If you have understood how the volume envelope works then this
chapter should be a nice easy read. The tone envelope (ENT) is
formed in virtually the same manner as the ENV command
except that its effect is not on the amplitude of the note but on the
tone.

The ENT command causes small variations in the pitch of a
note. In thus varying the tone by creating a pulsating effect we are
producing a form of vibrato within the sound. This affects the
harmonics of the sound wave, and many musical instruments rely
on these variations for their unique sounds.

SHAPING TONES

The parameters of the ENT command should not be difficult to
follow: they are arranged in groupings similar to the ENV
command. The parameters are as follows:

ENT nzT1,V1,W1,T2,V2/W2,T3,V3,W3,T4/
V4,W4,T5,V5,W5

where n is the envelope number. As in the previous chapter, I
have followed the conventional letter descriptions used by the
Amstrad user guide, though they seem to have little in common
with the parameters being described.

As with the volume envelope, the tone envelope can be set out
in the form of a visual graph, and it is best in the cases of both
envelopes to sketch out the shape of the envelope. The ENT
command controls the tone of a note and when this envelope has
been defined, the control of the note in the SOUND statement is
handled by the relevant ENT command.

Program 7.1 defines a sample envelope using four of the five

43

possible sections allowed. When you first run the program you
will hear the tone as it sounds without the ENT statement.
Remove line 15, which like its counterpart ENV, simply cancels
the definition of the tone envelope.

Program 7.1

10 ENT 1,65,5,1,10,-2,10,10,2,5,30,-5,1
15 ENT 1

20 SOUND 1,478,50,15,0,1,0

The sound you now hear is the effect of the tone envelope on the
note. Figure 7.1 decribes what is happening in both the SOUND
and ENT commands.

Envelope number

Step count
Step size

Pause time

u
ENT 1, 65,5,1, ; 10, —2, 10, 10,2, 5, 30, —5, 1 ! Not used

Section 2 Section 3 Section 4 : Section 5Section 1

Channel
number

Figure 7.1 The relationship between SOUND and ENT statements and
sections of ENT commands.
44

Another example of the shape of the ENT envelope is shown in
Figure 7.2.

period Section 1 Section 2
ENT1, 6,2,1, 4,-6,2

10

Time
(1/IOOths second)

15

Section 2

Figure 7.2 Example shape of tone envelope.

Within each section there are three parts, the step count (Tn), the
step size (Vn) and the pause time (Wn). As with the volume
envelope, at least one section must be defined, unless you are
cancelling an envelope, where you can just use the form ENV n.
If you begin the definition of a section you must complete it, as
the envelope will not work if an operand is missing.

The range of values allowed is identical to that for the ENV
statement for the step size and pause time parameters, but the
step count has a range of 0 to 239. The first parameter n, which
specifies the envelope to be used, can also indicate whether a
tone envelope is to be repeated. By using a negative number the
tone envelope will repeat for the duration of the sound. This is of
use when you wish to create tremolo effects.

If you want to experiment with the properties of the ENT
command, type in Program 7.2, which works in an identical

45

manner to Program 6.2 except that it has been set up for use with
the ENT envelopes.

Program 7.2

10 CLS

20 PRINT"Enter step count (0 to 239)"
30
40

INPUT stepcount

PRINT"Enter step size (-128 to +127)
50
60

INPUT stepsize
PRINT"Enter pause t i me (0 to 255)"

70 INPUT pausetime

80 ENT 1,stepcount,stepsize,pausetime
90 SOUND 1,240,100,15,0,1,0

100 ENT 1

110 PRINT"Press a key to continue"

120 x$ = INKEY$:IF x$ = "" THEN 120

130 GOTO 10

ATTACK, SUSTAIN AND DECAY

And with that we have almost concluded our look at envelopes.
The inclusion of envelopes in the BASIC language gives a
powerful facility to the programmer wishing to control the sounds
generated by the sound chip. Defining an envelope allows you to
control the attack, sustain and decay rates of a sound. If these
terms aren’t familiar to you, do not fear. You have actually been
looking at these factors in these past two chapters. When we use
the ENV and ENT statements we are either increasing, decreas
ing or keeping constant the amplitude or pitch. When you hear a
sound the note increases in volume, usually sharply, this being
the attack phase. When this has reached its peak the sound will be
sustained while the note continues to sound, and then the decay
phase comes into play as the note dies away. Therefore different
sounds (perhaps instruments) will all have these three parts
contained within the generated sound, but the rates within these
parameters will differ according to the shape of the sound being
created. Let’s look at the factors of attack, sustain and decay in a

46

little more detail with reference to a volume envelope.
The attack phase is the first part of sound generation. It

determines the amount of time a note will take to reach its peak
or maximum level. You can hear examples of this in all the
musical instruments we use. Pianos, for instance, have a very
sharp attack rate because the instrument’s sound is created by
striking the strings with a hammer. Try and think of the sounds of
other instruments and whether they build up to their maximum
amplitude sharply or gradually.

The sustain phase keeps the volume of the note constant, and
finally in the decay phase the volume dies away back to nothing.
Figure 7.3 shows these three phases.

Am
pl

itu
de

It is difficult for the Amstrad sound chip to produce accurate
representations of musical instruments, as the tone it produces is
not a pure sine wave but a square wave which inherently includes
its own harmonic pattern. However, all is not lost. Reasonable
approximations can be synthesized by controlling the amplitude
and tone envelopes, and with a little work you should be able to
build a library of your own instrument sounds.

And that explains the main commands concerned with the
generation of sound. The following chapters continue our
exploration of the sound chip with everything from music to space
invaders.

47

8 Whiz Bang Wallop!

This book’s title Bells and Whistles ... is most appropriate in view
of the noises that you can generate! Besides producing music the
Amstrad has great facilities for providing sound effects for many
programs, especially games, or just for creating sound for its own
sake.

The Amstrad can be a noisy beast and we can make effective
use of these sounds in different ways. The first place we can use
sound effects, and probably the most popular use, is in games
writing.

Computer games just wouldn’t be the same without those
ear-shattering sounds of crashes, explosions and laser blasts! Let
your imagination run wild and you will soon start to produce
sounds to match the visual images on your monitor screen.

ADVENTURE IN SOUND

A journey through the sound channels of space and time

You’re drifting through space at hyperspeed 7.6 when on your
intergalactic supersensitive monitor you notice an alien vessel
approaching at ultrawarp speed. You reach for the general alert
button and ...

... you type in Program 8.1!

Program 8.1

10 ENT 1,80,-4,1

20 SOUND 1,478,50,15,0,1,0
30 GOTO 20

49

Having sounded the alert, the crew of the Federation Star
Amcruiser rush to their battle stations to await the first sign of
hostile action. Suddenly, the alien ship disappears from your
scanners and all is quiet. Time drifts by, but there is no sign of the
aliens. You are beginning to wonder whether the spacecraft ever
existed, when all of a sudden the ultra-matrix printer jerks into
life and prints out ...

Program 8.2

10 FOR type = 1 TO 45

20 SOUND 1,901,7,15,0,0,1

30 FOR delay = 1 TO 100:NEXT

40 NEXT

The printer continues to print out a garbled collection of
characters which means nothing in any human language. Why
don’t they use electromagnetic communication? As if someone
has read your thoughts the communicator by your hand buzzes to
life.

Program 8.3

10 FOR repeat = 1 TO 6

20 radio = INTCRND * 20)

30 SOUND 1,radio,100,15,0,0,1

40 NEXT

But your communicator isn’t capable of tuning into the sending
frequency of the aliens. Will you ever find out what is happening?
Probably not, as this fantasy is reaching its conclusion. Your only
chance is to call upon the ship’s computer. You quickly tap in
your request and the computer processes your problem.

Program 8.4

10 FOR repeat = 0 TO 140

20 compute = INTCRND * 150)

30 SOUND 1,compute,3,15,0,0,0
40 NEXT

50

You eagerly await the reply. Nail-biting seconds pass, and then
on your screen comes the reply: “GAME OVER. PLEASE
INSERT 10p FOR ANOTHER GAME!”

Well, perhaps my imagination leaves much to be desired, but
you can see that it’s not hard to fit a sound or noise to a storyline.
You may like to join the above programs into one and play each
sound at the appropriate stage in the tale.

By adding noise to a sound, using the last parameter of the
SOUND command, the sounds in Program 8.4 can be easily
converted to form the second half of a ‘drop the bomb and
explode’ program. Type in Program 8.5.

Program 8.5

10 FOR drop = 50 TO 150
20 SOUND 1,drop,3,15,0,0,0

30 NEXT
40 FOR repeat = 0 TO 45

50 compute = 1
60 SOUND 1,compute,3,15,0,0,31

70 NEXT

All that is required is a little imagination and exploration. With
these sound effects it is usually best to experiment with sound and
envelope commands to produce the noise you need. The next
program is an envelope generator program to help you construct
volume envelope and sound commands. Type in Program 8.6 and
run it.

ENVELOPE GENERATOR

Program 8.6

10 :
20 REM Initialize program

30 :
40 ZONE 40

50 ENV 1

51

60

70

80
90

100
110

120

130
140

150

160
170

180
190

200

210

220

230
240

250

260
270

280
290

300

310

320

330

340

350

CLS

REM Menu definition

PRINV'VOLUME ENVELOPE GENERATOR"

PRINT,,"1 Volume envelope"

PRINT,,,,"Enter your choice"

a$ = INKEY$

a = VAL(a$):IF a<>1 THEN 130

PRINT a

ON a GOTO 170

CLS

REM Choose number of sections

REM within specified envelope

PRINV'ENVELOPE NUMBER 1"
PRINT,,,"Enter number of sections (max 5)"

INPUT sections

FOR sec = 1 TO sections

PRINT,,"Enter step count (0 to 127)"

INPUT sc(sec)
PRINT,,"Enter step size (-128 to +127)"

INPUT ss(sec)
PRINT,,"Enter pause time (0 to 255)"

INPUT pt(sec)

REM Write parameters to volume

REM envelope statement

52

360 ENV 1,sc(1),ss(1),pt(1),sc(2),ss(2),
pt(2),sc(3),ss(3),pt(3),sc(4),ss(4),
pt(4),sc(5),ss(5),pt(5)

370 :
380 REM Return to next section, if any

390 :

400 NEXT

410 :
420 REM Enter parameters for

430 REM sound statement

440 :

450 CLS
460 PRINT'S 0 U N D PARAMETERS"
470 PRINT,"Which channel?"

480 INPUT channel
490 PRINT'Enter duration"

500 INPUT duration

510 PRINT'Enter noise (0 to 31)"

520 INPUT noise

530 :
540 REM Play sound

550 :
560 SOUND channe l,478,duration,1,1,0,noise

570 :
580 REM Print out the envelope

590 REM parameters

600 :
610 CLS
620 PRINT,,"The envelope parameters are as

follows:"
630 PRINT'Enve lope 1"

53

640 FOR x = 1 TO 5

650 PRINT"SC";x;" = "; S C (X)

660 PRINT"SS";x;" = "; S S (X)

670 PRINT"PT";x;" = pt (x)

680 NEXT

690 PRINT"Do you want to hear that again?

700 a$ = INKEYS:IF a$ = "" THEN 700

710 IF a$ = "Y" OR a$ = "y" THEN 560

720 PRINT,,"Do you wan
sound?"

t to change the

730 PRINT"parameters?"

740 a$ = INKEY$:IF a$ = "" THEN 740

750 IF a$ = "Y" OR a$ = "y" THEN 450

760 GOTO 40

The program first presents you with a menu options page. In this
version of the program there is only one option for you to choose,
that being the volume envelope option. I suggest that when you
have got used to the program you add a second option for the
tone envelope, or indeed any improvement on the program which
helps you with the development of noise or sound effects. Once
entered into the main program you are given the choice of how
many sections of the envelope command you wish to define. If
you press the ENTER key at this stage no envelope will be
defined. Entering a number between 1 and 5 will specify the
number of sections to be given values.

The three parameters within each section will now be pre
sented, with their respective range of values. Finally you will be
presented with sound parameter options where you must supply
the channel number, duration and whether there is any noise.
The sound you have created will be played and the envelope
parameters you chose displayed. Further options allow you to
repeat the sound or change the sound parameters.

The program should be easy to follow, as the main sections are
marked with REM statements. It is a time-saving utility, enabling
you to create and test a variety of sounds until you are satisfied
with the results.

To get you started I have prepared a few of my own sounds to
enter into the sound generator program. These are shown in

54

Table 8.1. Do bear in mind, though, that some sound effects may
require extra manipulation not within the range of the program.

Table 8.1 Envelope parameters (sections 1-3 only)and sound
values.

SOUND description

Section 1 Section 2 Section 3
SOUND
channel Duration

Noise
valueSC1 SS1 PT1 SC2 SS2 PT2 SC3 SS3 PT3

Guns firing 12 13 14 15 16 17 18 19 20 7 145 30

String instrument 12 13 14 15 16 17 18 19 20 7 145 0

Knock on door/drum 23 -68 3 - - - - - - 7 120 12

Explosion 15 5 1 15 -1 30 - - - 7 120 20

PERCUSSION

Finally, whilst on the subject of noise effects, percussion sounds
will be of obvious interest to the musician. The noise channel in
conjunction with the tone and volume envelope commands will
yield a number of pseudo-percussive effects from snare drums to
bass drums. Program 8.7 is a short example of the kind of drum
sounds possible.

Program 8.7

10 ENV 1,23,-68,3

20 FOR duration = 1 TO 50

30 SOUND 7,748,duration,15,1,1,1

40 NEXT

And that concludes this introduction to the world of noise effects.
You can spend many hours sorting through the weird and
wonderful noises the sound chip will produce, and it won’t be
long before you can apply these noises in your own programs for
effect, amusement or simply to whiz bang wallop your Amstrad.

55

9 Music Maestro Please!

We have covered a lot of ground since Chapter 1, and I think it’s
about time that you turned into a concert pianist—almost! One of
the aims of this book is to make life easier for you when trying to
create music, but until now the only way you could play music
was to enter all the notes in DATA statements. This can be
time-consuming and difficult with long pieces of music.

What we really need is a way of letting you play music directly
on the keyboard. The problem is that the Amstrad doesn’t have a
set of piano keys. So we must make do with the next best thing.
Yes, you guessed it, the QWERTY keyboard. Although not ideal
for a musical instrument, it is an ordered set of keys which we can
use. But how do we set about turning a typewriter keyboard into
a musical instrument? You may think that this would involve a
long and complicated program, but you’d be wrong. We can in
fact write the program in only 8 lines!

AM-SYNTH

The Amstrad Piano Keyboard

Take a look at the keys on a piano and then at your Amstrad
keyboard. Not much in common, is there? The point they do
share is that every key can be depressed independently of the
others. Now that gives us a good basis to work from. Our next
problem is a bit more tricky. A piano keyboard has its keys laid
out in one long line covering a range of octaves, from the lowest
pitch to the highest. We are not so fortunate with the QWERTY
layout. But this will not stop us. Our immediate aim should be to
have a keyboard that has at least an octave range. Later on I’ll
show you how to extend this.

Let’s take the top row of alphabetic keys (QWERTY etc) and

57

make this our row of ‘white’ keys. The ‘black’ keys will be on the
row above, the numeric keys. And now we can begin to write the
program. Type in these lines as they appear and I will explain
their functions as we proceed. Do not run the program until it is
complete. The first line is line 30.

30 w$ = INKEYS:IF w$ = "" THEN 30

This loops endlessly back on itself, waiting until a key has been
depressed, when it goes on to line 40. Next we need to tell the
machine which keys we are using. This is defined in line 10. The
characters comprising s$ are the keys that will represent a series
of notes at semitone intervals. Do take note at this stage that
when you run the program you must not have the CAPS LOCK
key set to produce upper-case characters, as this will prevent the
program from working properly.

10 s$ = nq2w3er5t6y7ui9o0p"

The sound statement comes next. This is line 60, which will play
the note:

70 SOUND 1,pitch,15,15

Notice that the pitch is not yet defined. To work out the correct
pitch we use the equations (given in Chapter 5) for converting a
frequency to the pitch parameter. This is carried out in lines 50
and 60.

50 frequency = 440 * (2f(1 + ((note - 10) /
12)))

60 pitch = ROUND(125000/frequency)

If you remember, the value of ‘note’ in line 50 determines the
note played (where C = 1, D = 3 etc). Since we have decided that
the first key will be ‘q’, then this becomes the musical note ‘C’.
Why? Well, take a look at line 40.

40 note = INSTR(s$,w$)

The INSTR command has been used in line 40 to check whether
the key pressed, which is w$, matches with any of the characters
in s$. If it does, a value is returned by the INSTR command and
given to the numeric variable ‘note’. Therefore if the user presses
the key ‘q’, ‘note’ is given the value 1, and this corresponds to the
musical note ‘C’.
58

All we now need to do is to keep the program running in a
loop, and we can achieve this by using a WHILE - WEND loop
in lines 20 and 80.

20 WHILE x = 0

80 WEND

And that completes the program! Run the program and you have
at your fingertips a keyboard starting at C above middle C (q) and
continuing for a full octave plus two further tones. I have
included this extension to give you that little more to play with. If
you just want a one octave range you can cut out the last four
characters of the ‘s$’ definition, in other words finishing on the
alphabetic key ‘i’.

Figure 9. 1 shows how the-Amstrad keyboard relates to a
conventional piano keyboard. Remember that Appendix E has
the full pitch and frequency tables with the relevant numbers to
enter into the ‘note’ position in the frequency equation.

CDEFGABCDE

UJLllllJ

Figure 9.1 The relationship between the Amstrad keyboard and the
piano keyboard.

Changing the octave being played is very easy. The octave
position in line 50, which is defined in the above program as 1,
can be changed to suit the pitch of your voice. If, for example,
you replace the 1 in line 50 by 0, the range moves down an octave.
All you need to do now is to give your first performance on the
Am-Synth! Just in case you really aren’t too musically orientated,
Figure 9.2 shows a series of notes for you to play, but giving the

59

QWERTY keys to press rather than the musical notes. There is
of course no indication as to the tempo, but I’m sure you will
work that out as soon as you recognize the tune, which no doubt
you will!

Q W

R E

T R

W E

Y U

U Y

R T

E Q

W R

T Y

R T

U E

Y R

Y U

E Q

E R

Y T

Y Y

R T

U T

I Q

E W

T E

R Y

W E

Y U

I Q

E R

T E

T Q

R T

I I

W E

Figure 9. 2 Mystery tune.

MORE OCTAVES PLEASE!

Extending the range of the keyboard

I mentioned earlier in the chapter that the range of octaves could
be extended. This may be done in a variety of ways, but the
method I prefer is where the bottom two rows of keys on the
Amstrad play a lower range, and the upper two rows the octave
above. This would then give you a continuous run of at least two
octaves.

To implement this range of two octaves plus, the following
lines must be added to the Am-Synth program:

15 octaveS = "zsxdcvgbhnjm,L.:
65 IF note = 0 THEN GOSUB 90

60

90 note = INSTR(octave$,w$)

100 frequency = 440 * (2f(0 + ((note - 10) /
12)))

110 pitch = ROUND(125000/frequency)

120 RETURN

You now have a keyboard with a range of over two octaves.
Therefore to play the scale of C major over two octaves you
would press the following keys: ‘ZXCVBNM,WERTYUI’.

Both the upper and lower rows of keys themselves also extend
a little over the octave range, so you have a choice of keys to play
some mid-range notes.

The Am-Synth keyboard is a useful tool to play around with or
to compose on. The program presented is intended to give you a
start in using synthesizer keyboards and I hope you make use of it
not just as it stands but as the basis of creating a synthesized
keyboard with a range of effects. This would involve the use of
the envelope statements and a little imagination on your part.
Good luck and happy composing!

61

10 Dig that Beat!

Cast your mind back to Chapter 5 and you will recall that I
showed you how to convert music into numbers that could be
held in DATA statements in a program. I explained how to
convert notes to numbers but the question of converting the
duration of a note to a number was left unanswered. In this
chapter we will see how to convert that musical notation into
figures that the Amstrad can understand.

Timing in a tune is obviously very important. When was the last
time you heard music that had each note played for the same
length of time? It is the variation between the duration of the
notes that gives music its characteristic beat and tempo.

But let’s clarify that last statement. Remember that musical
time notation, such as crotchets and quavers, represent differ
ences in duration. These differences are relative to each other,
and so these timing marks are not indications of tempo (the
overall speed a piece of music is played at). Don’t confuse these
two concepts, because they are totally separate.

Returning to Chapter 5, you will have noticed when you played
the mystery tune in Program 5.2 that not only did the tune play at
an appropriate speed overall but each note had its own timing.
When I translated the music into numbers I had to have a chart to
refer to for the equivalents of the note timings (quavers,
semiquavers etc). In constructing the timings it was important to
ensure that all the timings were correct relative to the others. To
see what I mean, look at Table 10.1 which gives the relative
durations for note lengths.

You know that if a quaver has a duration of 20, the crotchet has a
duration twice that of the quaver. By reference to the chart you
can see that this is so. The crotchet has a duration of 40. These
timings are those to be entered into the duration parameter of the
SOUND statement. Our next problem then occurs. Every piece

63

Table 10.1 Amstrad durations in relation to musical note length.

Note * J J. J J. o-

Duration 10 15 20 30 40 60 80 120 160

of music plays at different speeds, so using these timings ‘raw’ will
be of no use in most cases.

Well, we certainly don’t want to keep different sets of data for
all possible speeds! This is why in Program 5.2 I have a line that
sets the tempo. This value is then multiplied by the duration
figure to produce the overall length for the SOUND duration
parameter. By altering just one line, line 10 in the case of
Program 5.2, we can easily change the tempo of the tune.

From this basis you can then start to think about the different
rhythms and beats possible for music. Experiment with rock and
roll, or waltzes, or whatever—it doesn’t matter. Rhythm is a very
important factor in music, and changes the nature of a tune.
There are almost infinite variations in rhythm, and you can try to
generate tunes that play in different styles.

You now have all the information you need to convert music to
play on the Amstrad. Now it’s your job to get into the swing of
things and start to liven up your synthesized tunes with a beat. So
boogie on down and dig that beat!

64

11 Bells and Whistles

The spectrum of sound on the Amstrad is vast. It is virtually
limited only by your imagination and the time you invest in
seeking out new sounds, noises and effects. All the basic
information you need to explore the sound channels of your
machine is in this book. With that information you should now be
in a position to create both noise and music effects.

Half the fun in writing a program that uses sound is to discover
those beeps and noises for yourself. If you still get confused by
the multitude of parameters or cannot understand the way a
command or parameter is working, take your time. This book
was intended for those who like to experiment. Play around with
the commands as much as you like. It is one way of discovering
how a command works.
I have also introduced the notion of music on the Amstrad to you,
and with programs like Am-Synth you have a firm foundation
from which to build more complicated and impressive musical
performances. The subject of music has not been exhausted by
any means and hopefully you will feel inspired and enthused
enough to continue from where I’ve left off, creating instrument
sounds, three-part harmony, drum kits and much more.

At the end of this book you will find a number of appendices
which will act as a useful reference point for those moments of
doubt, so don’t hesitate to consult them.

Do remember that the sounds you devise are personal
interpretations and that different people may hear the same
sound somewhat differently. You are making no more than an
approximation to a certain sound. Some approximations will be
much better than others. This will be in many cases due to the
limitations of the sound chip. Your job is to stretch the sound
generator to its limits—and what those limits are is for you to find
out.

I can’t finish a book on sound without a few final quick sound

65

effects. And what better way to end than to use the noises that
confront me through my working day? The annoying engaged
telephone ...

10 SOUND 1,100,40,15

20 FOR pause = 0 TO 900:NEXT
30 GOTO 10

or if it’s not engaged it rings, and rings, and rings!

10 ENV 1,100,122,1

20 SOUND 1,239,0,15,1,0,0

30 FOR x = 0 TO 2000:NEXT

40 GOTO 20

And finally, this book wouldn’t be complete without at least one
whistle effect: a train whistle.

10 FOR blow = 1 TO 3

20 SOUND 1,239,80,15,1,2,1
30 FOR delay = 0 TO 900:NEXT

40 NEXT

And that is the end of the book. But for you it should just be the
beginning of a journey of discovery, uncovering the hidden
talents of your Amstrad and the vast range of sounds it can
produce.

66

Appendix A Amstrad
BASIC Keyword Summary

This appendix contains a summary of the Amstrad BASIC
commands. It isn’t a replacement for the user guide nor a detailed
description, but sufficient to jog your memory on any command
you may use in your programming. For further information on
any of these, refer to the user guide.

ABS Gives an absolute value

AFTER Used with internal timers to GOTO a subroutine
after a specified time period

AND Logical ‘and’ operator

ASC Converts a character into an ASCII code

ATN Arc tangent

AUTO Provides an automatic line numbering facility for
typing in listings

BINS Converts decimal number to binary

BORDER Changes the colour of the screen border

CALL Calls a machine-code subroutine

CAT Gives a catalogue of files on cassette

CHAIN Command to load and run a program CHAIN-
“ filename”

67

CHAIN MERGE As above but merges one program into another

CHRS Converts an ASCII code into a character

CINT Rounds up a figure to the nearest integer

CLEAR Clears the memory of all variables previously used

CLG Clears the graphics screen

CLOSEIN Closes cassette input file

CLOSEOUT Closes cassette output file

CLS Clears the screen

CONT Continue program

COS Cosine

CREAL Converts value to real number

DATA The store of information which is taken by the
READ statement

DEF FN Defines a function

DEFINT Defines integer variable

DEFREAL Defines real variable

DEFSTR Defines string variable

DEG Degrees

DELETE Used to delete lines from a program,
e.g. DELETE 10-60

DI Disable interrupts

DIM Dimensions the size of an array

DRAW Draws a line between specified points

DRAWR Draws a line to a position relative to the graphics
cursor position

68

EDIT Edit a line number

El Enable interrupts

ELSE Used in conjunction with IF-THEN to branch to
another action if the condition is not fulfilled, e.g.
IF counter > 20 THEN GOTO 50 ELSE GOTO
100

END Tells the computer to terminate running a
program

ENT Tone Envelope

ENV Volume Envelope

EOF End of file

ERASE Clears specified arrays

ERL Gives the line number where the last error
occurred

ERR Returns the error number of the last error

ERROR Used in conjunction with error number

EVERY Used with internal timers to GOTO a subroutine
at EVERY given interval

EXP Calculates e to a given power

FIX Removes numbers to right of decimal point

FOR The start element of the FOR-NEXT loop

FRE Provides information on amount of free memory

GOSUB Sends program to a subroutine at a specified line
number

GOTO Sends the computer to a specified line in the
program

HEX$ Converts decimal to hexadecimal

69

HIMEM Returns value of highest byte in BASIC memory

IF Start of the IF-THEN statement

INK Changes ink to a specified colour

INKEY Checks keyboard for depression of key(s)

INKEYS Takes the input of a key from the keyboard

INP Gives value from I/O port

INPUT Issues a request for either numbers or strings of
characters to be entered from the keyboard

INT Converts a number to the nearest smaller integer

INSTR Searches for the occurrence of a string within
another string

KEY Defines new function key

KEY DEF Defines the value of a key when pressed

JOY For use with joysticks

LEFTS String manipulation command for taking a num
ber of given characters from the start of a string

LEN Returns a number giving the length of a string

LINE INPUT As for INPUT but ensures everything typed in is
held in the variable

LIST Lists to the screen all or part of a program

LOAD Loads a program from cassette or disk into the
computer’s memory

LOCATE Moves the cursor to a specified position on screen,
e.g. LOCATE 1,5

LOG Logarithm

LOWERS Converts upper-case characters (capitals) to lower
case

70

MAX Finds largest value

MEMORY Resets BASIC memory

MERGE To merge a program

MI D$ String manipulation command for taking a num
ber of given characters from a specified position in
a string

MIN Finds smallest value

MODE Sets the screen display mode

MOVE Moves graphics cursor

NEW Clears the memory of the computer

NEXT Specifies the end of a FOR-NEXT loop

ON Enables re-direction of program by altering the
order of execution e.g.

ON a GOTO 25,45

ON ERROR GOTO 10

ON SQ GOSUB To enable an interrupt when there is a free space
in the sound queue

OR Logical ‘or’ operator

OPENIN Opens a cassette input file

OPENOUT Opens a cassette output file

ORIGIN Sets the starting point for the graphics cursor

PAPER Sets the colour of the paper (background)

PEEK Enables user to look at contents of RAM

PEN Sets the colour for the characters (foreground)

PI The value of pi (3.14159...)

71

PLOT Plots pixel points

POKE Pokes values into memory addresses

PRINT Prints given items on the screen

RAD Radians

RANDOMIZE Sets the initial value for RND generator

READ Reads the information contained in the DATA
statements

RELEASE Releases ‘hold’ on sound channels

REMAIN Disables an internal delay timer if set

RENUM Renumbers the lines of a program listing

RESTORE Sets pointer to read data from a specified position

RESUME Used after ON ERROR

RETURN Marks the end of a subroutine

RIGHTS String manipulation command that takes a number
of characters from the end of a string, working
from right to left

RND Chooses a random number

ROUND Rounds number to a specified number of decimal
places

RUN Runs the program

SAVE Saves a program to cassette or disk

SGN Returns a value indicating the sign of a numeric
value (positive or negative)

SOUND Covered in this book!

SPACES Places a string of spaces

SPEED INK Sets time for first and second inks

72

SPEED KEY Sets auto-repeat rate of keys

SPEED WRITE Determines the speed at which a cassette file is
SAVEd

SPC Places any number of specified spaces on the
screen

SQ Checks the free space in the sound queue

SQR Square root

STEP Specifies a step within the FOR-NEXT statement

STOP Stops a program and diplays the line number

STR$ Converts a number into a character string, e.g. 1
becomes ‘1’

SYMBOL Redefines character set

TAB Used with PRINT to move the screen cursor to a
specified position

TAG Allows text to be written at graphics cursor point

TAGOFF Turns TAG command off

TAN Tangent

TESTR Returns a value indicating the ink being used at a
specified screen position

THEN Used in conjunction with the IF statement

TIME Gives the amount of time passed since the
machine was switched on

TO Used in conjunction with the FOR-NEXT loop
to specify a numeric range

TRON Trace facility

TROFF Turns trace facility off

UPPERS Converts lower-case characters to upper case

73

VAL Converts a number in a character string into
numeric form, e.g. ‘8’ becomes 8

VPOS Gives the vertical position of the text cursor

WEND Terminates the WHILE loop

WHILE Creates a loop while a certain condition is true

WINDOW Specifies the text window

XPOS Gives horizontal position of graphics cursor

YPOS Gives vertical position of graphics cursor

ZONE Sets the width of the print zone

74

Appendix B
SOUND Parameters

V V V V V V V
SOUND C , P , D , V , VE , TE , NP

SOUND CHANNEL VALUES

Value Channel (s) / Effect
1 Sound Channel A
2 Sound Channel B
4 Sound Channel C
8 Rendezvous with A

16 Rendezvous with B
32 Rendezvous with C
64 Hold

128 Flush

DURATION VALUES

Default: 20
Range: —32768 to

+32767

Value Effect
>0 Length of Sound
= 0 Duration

controlled by Volume
Envelope

<0 No. of times Volume
Envelope Repeated

75

Appendix C Volume
Envelope Parameters

ENV n,Pl,Q1ZR1ZP2ZQ2ZR2ZP3ZQ3ZR3ZP4,
Q4ZR4,P5ZQ5ZR5

n = envelope number

Pn= step count (0 to 127)

Qn= step size (-128 to 127)

Rn = pausetime (0 to 255)

Minimum= one section

Maximums five sections

If a section is defined it must contain all three categories.

If no section is defined (e.g. ENV 1) then the envelope will be
cancelled.

77

Appendix D Tone Envelope
Parameters

ENT nzTlzVlzW1zT2zV2zW2zT3zV3zW3zT4,
V4ZW4ZT5ZV5ZW5

n = envelope number

Tn = step count (Oto 239)

Vn = step si ze (-128 to +127)

Wn = pause time(0to255)

Minimum = one section

Maxi mum = f i ve sections

If a section is defined it must contain all three categories.

If no section is defined (e.g. ENT 1) then the envelope will be
cancelled.

79

Appendix E
Note, Frequency and Pitch
Parameter Table

Middle C — 1 (octave 0)

n Note Frequency Pitch Octave
parameter

(P)

-35 C 32.703 3822 -3
-34 C# 34.648 3608 -3
-33 D 36.708 "3405 -3
-32 D# 38.891 3214 -3
-31 E 41.203 3034 -3
-30 F 43.654 2863 -3
-29 F# 46.249 2703 -3
-28 G 48.999 2551 -3
-27 G# 51.913 2408 -3
-26 A 55.000 2273 -3
-25 A# 58.270 2145 -3
-24 B 61.735 2025 -3

-23 C 65.406 1911 -2
-22 C# 69.296 1804 -2
-21 D 73.416 1703 -2
-20 D# 77.782 1607 -2
-19 E 82.407 1517 -2
-18 F 87.307 1432 -2
-17 F# 92.499 1351 -2
-16 G 97.999 1276 -2
-15 G# 103.826 1204 -2
-14 A 110.000 1136 -2

81

n Note Frequency Pitch Octave
parameter

(P)

-13 A# 116.541 1073 -2
-12 B 123.471 1012 -2
-11 C 130.813 956 -1
-10 C# 138.591 902 -1
-9 D 146.832 851 -1
-8 D# 155.564 804 -1
-7 E 1-64.814 758 -1
-6 F 174.614 716 -1
-5 F# 184.997 676 -1
-4 G 195.998 638 -1
-3 G# 207.652 602 -1
-2 A 220.000 568 -1
-1 A# 233.082 536 -1

0 B 246.942 506 -1

+ 1 C 261.626 478 0
+ 2 C# 277.183 451 0
+ 3 D 293.665 426 0
+ 4 D# 311.127 402 0
+ 5 E 329.628 379 0
+ 6 F 349.228 358 0
+ 7 F# 369.994 338 0
+ 8 G 391.995 319 0
+9 G# 415.305 301 0

+ 10 A 440.000 284 0
+ 11 A# 46¿.164 268 0
+ 12 B 493.883 253 0

+ 13 C 523.251 239 1
+ 14 C# 554.365 225 1
+ 15 D 587.330 213 1
+ 16 D# 622.254 201 1
+ 17 E 659.255 190 1
+ 18 F 698.457 179 1
+ 19 F# 739.989 169 1
+ 20 G 783.991 159 1
+ 21 G# 830.609 150 1
+ 22 A 880.000 142 1
+ 23 A# 932.328 134 1
+ 24 B 987.767 127 1

+ 25 C 1046.502 119 2
+ 26 C# 1108.731 113 2

82

n Note Frequency Pitch Octave
parameter

(P)

+ 27 D 1174.659 106 2
+ 28 D# 1244.508 100 2
+ 29 E 1318.510 95 2
+ 30 F 1396.913 89 2
+ 31 F# 1479.978 84 2
+ 32 G 1567.982 80 2
+33 G# 1661.219 75 2
+ 34 A 1760.000 71 2
+ 35 A# 1864.655 67 2
+ 36 B 1975.533 63 2

+ 37 C 2093.004 60 3
+ 38 C# 2217.461 56 3
+ 39 D 2349.318 53 3
+ 40 D# 2489.016 50 3
+ 41 E 2637.021 47 3
+ 42 F 2793.826 45 3
+ 43 F# 2959.955 42 3
+ 44 G 3135.963 40 3
+ 45 G# 3322.438 38 3
+ 46 A 3520.000 36 3
+ 47 A# 3729.310 34 3
+ 48 B 3951.066 32 3

+ 49 C 4186.009 30 4
+ 50 C# 4434.922 28 4
+ 51 D 4698.636 27 4
+ 52 D# 4978.032 25 4
+ 53 E 5274.041 24 4
+ 54 F 5587.652 22 4
+ 55 F# 5919.911 21 4
+ 56 G 6271.927 20 4
+ 57 G# 6644.875 19 4
+ 58 A 7040.000 18 4
+ 59 A# 7458.621 17 4
+ 60 B 7902.133 16 4

83

Appendix F The Sound
Chip—Technical notes

These notes are intended for the more technically inclined and
those who will delve into the operating system of the Amstrad.
They are not a complete rundown on the Amstrad firmware, but
will give those who are interested a head start in disassembling
the complexities of the sound chip.

The sound generator chip supplied within the Amstrad is a
General Instruments AY-3-8912 which generates square wave
form sounds. The pitch generated is given by the period of the
note and this period is incremented in steps of 8 microseconds.

The volume envelope can also have its sections defined either
by hardware or by software selection. The software definitions we
have covered in the main part of the book. If hardware definition
is used then values can be written into registers 11, 12 and 13 of
the sound chip in order to create a hardware envelope. The three
sound channels are set up by amplitude control registers
(registers 8 to 10). If a hardware envelope is going to be used in
the defined channel, Bit 4 of the corresponding amplitude control
register is set. If this bit has not been set then the volume is
controlled by bits 0 to 3 of this register.

Register 13 (bits 0 to 3) control the shape of the envelope.
Eight hardware envelopes are possible. These are:

8: Repeated sharp rise and sloping fall.
9: Sharp rise followed by a sloping fall and then sustained at

zero amplitude.

10: Sharp rise followed by repeated sections of sloping fall and
sloping rise.

11: Sharp rise, sloping fall, sharp rise and then sustained at
maximum amplitude.

12: Repeated sloped rise and sharp fall.

85

13: Sloped rise and then sustained at maximum amplitude.
14: Repeated sloped rise and fall.

15: Sloped rise followed by a sharp fall and then sustained at
zero amplitude.

An envelope period determines the length of the slopes. The
period is a 16-bit number with the LSB being held in register 11
and the MSB in register 12. These periods are the time intervals
between slope steps and are in units of 128 microseconds.

Register 7 determines whether noise is to be used or tone. Bits
0 to 2 disable the tone in channels A to C respectively, and bits 3
to 5 disable noise on channels A to C.

The noise generator produces a pseudo-random noise, and the
data register for this is register 6. Registers 0 to 5 are the tone
generators; each sound channel (channels A to C) has two tone
period registers, one being a fine-tune register and the other a
coarse-tune register.

Listed below you will find a list of routines and their addresses
that can be called from the operating system by the user.

BCA7 Resets sound chip and clears all sound queues

BCAA Adds a sound to sound queue(s) of channel(s)
BCAD Checks to see if there are free spaces in the sound

queue
BCBO When queue is not full an event is set up
BCB3 Releases sounds on channels
BCB6 Halts sound
BCB9 Continues sounds after BCB6 has been invoked
BCBC Sets up a volume envelope
BCBF Sets up a tone envelope
BCC2 Interrogates for information as to where the address of

a volume envelope is
BCC5 As above but for a tone envelope

86

Other titles of interest

On the Road to Artificial Intelligence: Amstrad CPC 464
Jeremy Vine

£5.95

Gateway to Computing with the Amstrad CPC 464 (each) £4.95
Ian Stewart
Two books covering the fundamentals of computing for children.

The Complete Introduction to the
Amstrad CPC 464 TBA
Eric Deeson
Computers in a Nutshell £4.95
Ian Stewart
The layman’s introduction to computing.

Brainteasers for BASIC Computers £4.95
Gordon Lee
‘A book I would warmly recommend’—Computer & Video Games

Microchip Mathematics: Number Theory for
Computor Users £12.95
Keith Devlin
Programming for REAL Beginners: Stages 1 & 2 (each) £3.95
Philip Crookall

ORDER FORM
I should like to order the following Shiva titles:

Qty Title ISBN Price

_____ ON THE ROAD TO ARTIFICIAL INTELLIGENCE:
AMSTRAD CPC 464 1850140642 £5.95

GATEWAY TO COMPUTING WITH THE AMSTRAD CPC 464

_____ BOOK ONE 1850140162 £4.95

_____ BOOKTWO 185014023 5 £4.95

_____ THE COMPLETE INTRODUCTION TO THE AMSTRAD CPC 464 1850140022 TBA

_____ COMPUTERS IN A NUTSHELL 1850140189 £4.95

_____ BRAINTEASERS FOR BASIC COMPUTERS 0906812 364 £4.95

_____ MICROCHIP MATHEMATICS 1850140472 £12.95

_____ PROGRAMMING FOR REAL BEGINNERS: STAGE 1 0906812 37 2 £3.95

_ PROGRAMMING FOR REAL BEGINNERS: STAGE 2 0906812 593 £3.95

Please send me a full catalogue of computer books and software: □
Name ..
Address ..

This form should be taken to your local bookshop or computer store. In case of
difficulty, write to Shiva Publishing Ltd, Freepost, 64 Welsh Row, Nantwich,
Cheshire CW5 5BR, enclosing a cheque for £...

For payment by credit card: Access/Barclaycard/Visa/American Express
Card No .. Signature

. tathe I
and audience with Y can join®e I■With the h®lp^le2d music-mahing ly 1

banging, computer-dnal^ ■
powerful and y encourage V practical 1

। fed . composing andI^^adXa synthesizer

1 “tX—•
B rX"«»»
■ .musical scales

1 and of course,
■ ’.bells and whistles

Sounds OK'.

SWIM

UK price £4.95 net
GB f NET

ISBN 1-ÔS01M-0L3-4
004 9 5

9Shiva Publishing Limited 781850 140634

Shiva Publishing Limited

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Bells and whistles on the AMSTRAD CPC 464
	Contents
	Preface
	About the author
	1 What Can I Do?
	2 A Sound Statement
	SOUND PRINCIPLES
	SOUNDS COMPLICATED?

	3 Sounds Abound!
	THE CHANNEL PARAMETER
	THE PITCH PARAMETER
	THE VOLUME PARAMETER
	USER-DEFINED ENVELOPES: ENV AND ENT
	THE NOISE PARAMETER
	SOUNDS UNIFIED: THE CHANNEL PARAMETER REVISITED
	SQAND RELEASE

	4 A Musical Interlude
	STAVES AND NOTES
	DURATION
	CLEFS AND SCALES
	BARS AND RHYTHM

	5 The Sound of Music
	CHROMATIC SCALES
	SCALES
	TUNES!

	6 The Volume Envelope
	SHAPING THE SOUND
	PLAYING AROUND!
	INSTRUMENTS

	7 The Tone Envelope
	SHAPING TONES
	ATTACK, SUSTAIN AND DECAY

	8 Whiz Bang Wallop!
	ADVENTURE IN SOUND
	ENVELOPE GENERATOR
	PERCUSSION

	9 Music Maestro Please!
	AM-SYNTH
	MORE OCTAVES PLEASE!

	10 Dig that Beat!
	11 Bells and Whistles
	Appendix A Amstrad BASIC Keyword Summary
	Appendix B SOUND Parameters
	Appendix C Volume Envelope Parameters
	Appendix D Tone Envelope Parameters
	Appendix E Note, Frequency and Pitch Parameter Table
	Appendix F The Sound Chip—Technical notes
	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2020-11-27

