
Gateway to
Computing

Shthe

GATEWAY TO
COMPUTING
with the
Amstrad CPC464

Ian Stewart
Mathematics Institute, University of Warwick

Series Editor
Eleanor Ball

Shiva Publishing Limited

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CW5 5ES, England

© Ian Stewart, 1985

ISBN 1 850140162 (paperback)

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording and/or otherwise, without the prior written permission
of the Publishers.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net price
given by the Publishers in their current price list.

Typeset by MHL Typesetting Limited, Coventry
and printed by Devon Print Group, Exeter

Contents

Introduction v

Make Friends with your Computer 1

Programs 6

S Running a Program 13

PRINTS Charming 20

§ INPUT the Boot 30

The Very Able Variable 36

U All Right for Sums 43

@ IFsbutnobuts 58

Bugs under the Rug 70

FOR, 3, TO, 1, NEXT! 78

Inside the Computer’s Brain 88

Glossary 99

Commandsand Symbols Index 104

Ian Stewart is Reader in Mathematics at the University of
Warwick, having been Visiting Professor to a number of
overseas universities. He has contributed to several
computer magazines, including Sinclair User, Oric Owner
and Popular Computing Weekly, and has written for The
Guardian, Nature, New Scientist and Scientific American.
Ian also writes occasional science fiction stories for Analog
and Omni, and is a member of the British Science Fiction
Association.

Now in his thirties, Ian has already written more than
forty books, about half of these being computer books
written jointly with Robin Jones including: PEEK, POKE,
BYTE & RAM!, Machine Code and Better BASIC and
Easy Programming for the ZX Spectrum. His books have
been translated into ten languages. He is an amateur
cartoonist under the pseudonym ‘Cosgrove’ and has
published three cartoon books on advanced mathematics -
in French — as well as Computing: a Bug’s Eye View.

Ian lives in a small Warwickshire village with one wife,
two sons, and two cats rejoicing in the names Star and
Stripes. His hobbies include home computing, science
fiction, playing the guitar, painting scenery and making
wine.

Eleanor Ball’s first encounter with computers happened by
accident in 1966, whilst analysing the chemical properties
of wheat and bread flour.

She soon abandoned the direction suggested by a BSc
General Degree from London University in favour of
computing. The next five years were spent as a
Programmer with British Airways, establishing systems on
various mainframe computers and terminal equipment at
bases throughout Europe.

In 1973, Eleanor retired from city life and came to settle
in Cheshire with her husband and young family. It was to
be nine years before Shiva discovered her, in the early years
of the company, and her interest in computers was
rekindled. Eleanor’s freelance editorial work for Shiva has
turned into an almost full-time occupation, with even the
family being caught up in the Gateway series, as her
husband and children have all shared her involvement in its
production and testing!

Introduction

The first electronic computer to be built and put on the
market was the ENIAC in 1946. It cost a third of a million
pounds, occupied over a hundred cubic metres of space and
used as much electricity as two hundred electric fires. Of
course, such computers were restricted by size and cost to
important areas of scientific research, business and army
intelligence. It would have stretched the imagination too
much to suggest that computers as powerful as this could
become an everyday household object. But that is exactly
what they are today - and almost as common as the TV
sets we plug into them.

Large mini- and mainframe computers have become
essential to business and industry, which now rely on their
speed and accuracy to perform as efficiently as possible.
Microcomputers - the sort we have in our homes and
schools - are not suitable for large-scale application
because they are too small and too slow, but they are a
great source of fun and can be very stimulating for the
individual.

People make very successful careers these days in
computer programming — writing instructions to tell the
computer what to do. You will probably begin by
purchasing the software prepared by a professional, but in
time you might like to try writing your own programs.
It’s the best way to appreciate how a computer works and
where its strengths and weaknesses lie.

This book is one of a series intended to introduce the
fundamentals of computing to young people (and to adults
who are still young at heart!). The series is based on the
belief that it is possible to be serious about something
without being solemn. Learning can be fun!

The material will apply to almost all home computers,
not just the machine displayed on the front cover.
However, there are always annoying differences between
one machine and another, and even if these are small, they
are especially puzzling to anyone just starting computing.
To avoid these problems each book in the Gateway series
will appear in several different versions, directed at specific
machines, so that the instructions will always fit the
machine you are using.

The series begins with one main objective: to get you
used to computers and to prove that you can write your
own programs. You will first be introduced to BASIC -
the user-friendly language that both you and the computer
can understand easily. Later volumes deal with more
advanced ideas, such as programming structure and
organizing attractive screen layouts.

As well as BASIC programming techniques, you will find
problems, puzzles and projects for you to practise what
you have learned (I shouldn’t tell you this, but all the
answers are included, too). In addition to the meanings of
BASIC commands, there are useful methods for stringing
them together to do things. The notorious sleuths, Sherlock
Holmes and Dr Watson, will show you the art of
debugging - tinkering with a faulty program to make it
work. Programs taken from books and computer
magazines often contain mistakes; and commercial
software may not always work quite the way you want it
to. So it’s worth learning a few tricks of the trade for
ironing out the snags.

As you work through the series, computers will become
less of a mystery to you. You’ll understand how they work
and realize that there is life beyond BASIC. We have to
know about these machines because our future world is
theirs too. But for once, something important we have to
learn about isn’t boring - computers are intriguing,
creative and rewarding. Most of all, they’re fun!

VI

Make Friends
with
your Computer

Computers are a bit like people. If you don’t take the
trouble to get to know them, they can seem very
unfriendly. But deep down inside they can be very pleasant
and helpful. So it pays to make friends with your
computer, to learn what it can and cannot do, and to take
good care of it.

A computer is a machine that obeys instructions. It
works by electricity, and it’s built from complicated
electronic components. You don’t need to know any
electronics to be able to use or program a computer. But
it helps if you know what the main parts of the machine
are and how they connect together.

Programs are lists of instructions to be carried out by the
computer. They are stored as electrical signals in its
memory. The Central Processing Unit, or CPU, uses more
electrical signals to obey these instructions. The user (that’s
you - and an essential component in the whole set-up!)
‘talks’ to the computer by typing instructions on its
keyboard.

On home computers the memory, CPU, and keyboard
are all inside a single box - the thing you buy from the
computer company.

The computer must also be able to ‘talk back’ to the
user. The commonest way it does this is by ‘printing’
messages on a TV screen (also called a monitor, Visual
Display Unit, or VDU) or on a mechanical printer.
The CPC464 comes with its own monitor as a standard
accessory.

Mains

SETTING UP THE COMPUTER
Different computers do things in slightly different ways,
but the basic ideas are the same, and I’ll run through them
quickly. For the full story, consult your Manual - the
book that came with the machine when you bought it.
Starting with the mains switched off at the wall sockets,
you must:

• Plug the monitor into the mains.
• Connect the computer to the monitor

(using the two leads to the sockets marked
5V DC and MONITOR).

• Switch everything on.

It is important to decide on a sensible and comfortable
layout. Ideally, the computer should be on a table or desk
with the monitor behind it, so that you can sit in a chair in
front of both, with space for the Manual, pen and paper, and
other equipment like cassettes. DON’T put everything in a
heap on the floor. You’ll get pins-and-needles from kneeling
too long on a hard surface, and there’s a danger that the
computer will get trodden on.

2

If you have a green-screen monitor you may wish to use a
colour TV sometimes. You’ll need to get an MP1 modulator.
This comes supplied with special cables which must be
plugged into the correct sockets on the computer and TV.
The power supply cable is permanently connected to the
modulator, and plugs into a socket on the computer. Another
cable runs from the modulator to the aerial socket on the TV
(usually marked UHF on the back of the TV set). Pull out the
usual aerial lead and replace it with the cable from the
computer.

The TV must be tuned to Channel 36 (either by rotating a
dial or by selecting a push-button number you don’t normally
use, say 6, and tuning that one until it picks up a signal from
the computer). When the tuning is correct you will see a
message on the TV screen. The monitor gives the same
message:

3

Or something like that. You may have to tune contrast,
brightness and colour to get the best display. Over-bright
displays are bad for the eyes and the TV.

THE KEYBOARD

Next, get the ‘feel’ of the keyboard. Push keys and see
what happens. If the screen gets full of junk, you can
always clear it by switching the computer off for a second
and then on again.

The keys for the alphabet, and numbers, are arranged in
the usual typewriter pattern (which you’ll soon get used to):

and there are various extra keys too, including a second set of
number keys to the right of the main keyboard. Some keys
have several other symbols printed on them. You get these by
holding down the key marked:

[SHIFT)

and then pressing the key with the symbol on. Holding down
[CTRL] and then pressing another key can also produce
some strange symbols.

Notice the way the number zero appears:

The number zero is written

0

in computing, to distinguish it

from the letter ‘Oh’.

Don’t worry too much about [SHI FT| and (CTRL) to begin
with. Just get used to how the computer reacts when you

USEFUL TIP

press keys at random. (Some keys can have very strange
effects, but nothing you type on the keyboard can damage the
computer. If anything weird happens, just flip the mains off
for a few seconds to reset the machine.) Once you’ve got the
feel of the keyboard, try to work out which keys are needed
for which symbols, especially those that need SHIFT|s.

When you’ve finished computing, pack everything away
tidily. If you’ve used the family TV, RETUNE IT TO
NORMAL SETTINGS. Other members of your household
may just possibly want to use the TV to watch Dr Who, and
they will object if your computer has mucked up the tuning.

From now on I’ll use the word ‘monitor’ to mean either a
monitor or a TV.

THINGS TO DO
1. Type the entire alphabet on the screen, in order:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

You can, of course, use lower case letters if you wish.
2. Find out what happens if you type a sentence that

is longer than the width of the monitor screen.
3. Count how many letters wide the display on your

computer is. And how many letters high. If you fill the
screen with the letter ‘L’ how many ‘L’s will you get?

4. In your Manual: Read the section on the keyboard
and find out exactly how to use the SHIFT] keys and
(CAPS LOCK i to get upper and lower case letters.

5. In your Manual: Find out where the DE L key is,
and how to use it to correct mistakes.

5

Programs

If you want to cook cow pie for lunch, you look up the
recipe in Despairing Daniel’s Cookbook:

First, catch your cow.
Take a large pie-dish.
Line it with pastry.
Add 1 cow.
Add salt and pepper to taste.
Cover with pastry crust.
Bake in oven at 437° (Mark 62) until lightly browned.
(Serves 256 persons.)

This tells you exactly what to do. If you want a computer
to do something, you have to tell it the recipe - but a
different word is used to describe it:

A program is a list of

commands for the computer to

carry out.

But what do I mean by commands? Suppose you were
working through a recipe that went like this:

First, catch your cow.
Take a large pie-dish.
Line it with pastry.

Eine Kuh beiftigen.
Ajoutez du poivre et du sel à volonté...

Well, you’d be up a Gum Tree without a paddle. Unless
you could read Chinese, French, and German. (And if you
could read Chinese you’d still have problems, because it’s
not part of a recipe at all: it says ‘On Wednesday we visited
the Red Flag Electric Machinery Plant’.)

It’s the same with computers: you have to use the right
language.

A computer language is made up from a lot of standard
instructions, together with rules for using them. The
computer can only ‘understand’ the language - that is,
carry out the commands successfully - if you obey those
rules to the letter. The computer can’t guess what you
mean if you make a tiny mistake. (Maybe that will change
over the next few years!)

The computer is supplied with an interpreter, held
permanently in its memory, which tells it how to obey the
commands in that language. The nice thing for the
programmer (that’s you, again) is that you don’t need to
know how the interpreter works. All you need to know is
the language that it uses.

There are many different computer languages, rejoicing
in names like COBOL, FORTRAN, ADA, PROLOG, and
C. But for home computers, one language is by far the
most popular. It’s called BASIC, which stands for:

Beginner’s
All-purpose
Symbolic
Instruction
Code

It was invented in America in the 1960s, and looks like a
cross between ordinary English and Algebra. Although it
has its defects, it is very widely used; and it’s the only
computer language used in this book.

BASIC BEFORE BREAKFAST
Here is an example of a BASIC program.

1 PRINT "GROAN"

2 PRINT " IS IT THAT TIME ALREADY? "

3 PRINT "BOTHER"

4 PRINT " WHO ARE YOU, ANYWAY? "

5 INPUT NAMES

6 PRINT "OH, YOU AGAIN"

7 PRINT "BUZZ OFF,"

8 PRINT NAMES

9 PRINT "I’M HAVING A LOVELY
SNOOZE"

You may well be able to guess what this does. Let’s see if
you’re right! We need to get the program stored in the
computer’s memory-but first, a word from our sponsor...

LINE NUMBERS
You’ll have noticed that, unlike the recipe for cow pie, the
commands in the program are numbered.

In BASIC, every program

command must start with a

number, called its line number.

This makes it easy for the computer to refer to a particular
command, and to tell which one comes next. Each
numbered command is called a program line (even if it
covers more than one line of printing on the monitor,
which is possible).

The numbers do NOT have to go up in ones, as
1,2,3,4,... They can be anything you like (up to 65535).

8

The computer automatically arranges the lines in numerical
order. You could number the lines:

13, 42, 43, 255, 777, 779, 3001, 4000, ...

if you wanted to. A favourite way is to count in tens:

10,20,30,40,...

This leaves enough space to insert extra lines at a later
stage if you need them. From the next chapter on, I will
follow this fashion. But you don’t have to count in tens if
you don’t want to.

ENTERING A PROGRAM LINE

Programs are entered into the computer one line at a time.
We’ll start with line 1.

• Press the |T| key.

• Now press the key for a ¡SPACE]
(This is the long bar at the front.)

The next step is to get the word PRINT into the
machine. To do this,

• Press keys in turn.

(The word PRINT may not come out in capitals yet, but the
computer will change it to capitals later—see page 12.) Now
for the rest of line 1:

CAPITAL
QUIBBLE

• Press the key.

(To get quotation marks press
the SHIFT] key and thekey
together.)

• Press keys | G] | R] |O] [A] | N] in turn.

The word ‘groan’ will appear on the screen in lower case
letters. This doesn’t matter a bit. In fact, it is easier if you
use lower case letters because you don’t have to remember
to use the ¡SHIFT key as well.

• Press ") again (that’s SHIFT] and[2]as
before).

Now you have to press a special key to tell the computer
to store all of the above in memory. This key is called:

[ENTERl

Find it (it’s a big blue key on the right of the
keyboard) and:

• Press it.

• Check that you have the correct command:

1 PRINT "groan"

on the monitor.

CORRECTING MISTAKES

Well, gosh. 1 checked it ever so carefully ... but I missed
something. It actually reads:

1 PLINT "gloan"

(That’s what you get for buying a Japanese computer,
Neddy!) And now the silly thing is in the memory. WHAT
DO I DO?

No sweat. Just type the whole line again, and then press:

¡ENTERl

of course. (There are other ways to correct the line, called
editing-, they are completely described in your Manual.)

You’ll see both versions of line 1 on the screen:

1 PLINT "gloan "

1 PRINT "groan"

That’s OK. Your CPC464 will use only the newest
version.

If you’ve made a mistake in the line number, though,
you need to do a little more. Suppose you’d typed:

11 PRINT "groan"

by mistake. If you just type:

1 PRINT "groan"

IO

you’ll get line one right ... but you’ll still have a wrong line
eleven. To get rid of it, type the wrong line number again:

Tffl
and then:

lENTERl

To correct a line, just type it

again and press:

lENTERl

To get rid of a line, type its

line number and then press:

|ENTER|

TYPING IN A WHOLE PROGRAM
To type in a whole program, you just repeat this process
for every line. So line 2 is entered by typing the keys:

I“2] SPACE) Qrn® LSPACEj ClJCT] [SPACE) fT]iH]|A]fT
♦
[SHIFT) required

space! [T1(T|[m]® ¡SPACE! [a) El ® ® © [Y] SFI

and then:

[ENTER)

[SHIFT)
required

Similarly line 5 is entered like this: —

|T| space! (T)[N][P]|Uj[T) [space! S) [enter!

dollar sign needs SHIFT|

Before we can all move on to the next chapter, you’ve got a
job to do: type in the whole of the program above. Just
copy each line.

11

To enter a program (get it into

memory) just type each line in

turn, and press:

|ENTER|

after each line.

LISTING A PROGRAM

At any time while you are entering a program (but not in
the middle of a program line!) you can check what’s in
memory by entering the command:

LIST

Type:

The computer will then display the complete program
listing, up to that point, on the screen.

To find out what’s stored in

program memory, type LIST

and |ENTER|

Try it now. You’ll notice that PRINT and INPUT are now in
capitals: this always happens when you LIST a program.

THINGS TO DO
1. Type that program in, buster!
2. After you’ve worked through the next chapter, get out

your Manual and read up about editing programs.

12

Running
a Program

Once the program is safely stored away in memory, and
you’re satisfied it’s correctly typed, you can make the
computer obey (or, in the jargon, execute) it. The
command for this is:

RUN

which you type directly from the keyboard:

® ® ® [ENTER]

Assuming you’ve done what I asked you to, and typed the
program in the previous chapter into the computer, you’re
ready to try it out. Do so.

Unless something is not quite right, you should get this
on the monitor screen:

groan
is it that time already?
bother
who are you, anyway?
?

The computer is now waiting for a response from you.
The sign means it’s waiting for an input (see program
line 5, page 8). I’ll have a lot more to say about inputs in
Chapter 5, but for now, what you must do is type in your
name and then I ENTER J . For example, suppose your
name is Hortense Mousebender. Then you type:

(H)©®®®®®® [SPACE] ®©®®®®®®S®® [ENTER]

use [SHIFT] if you like

13

Now the computer continues:

oh, you again
buzz off,
hortense mousebender
I’m having a lovely snooze

Then it stops (because it’s run out of program to do).
There will be a final message—Ready—but you can ignore
it.

CRASHES
If you make a mistake in a program, it may crash. That is,
the computer may stop and refuse to continue obeying the
program. It only does this when you have asked it to do
something that it can’t actually do. If a program crashes
then the computer will print an error message on the
monitor screen.

The error must be corrected before the program will run
properly. Find the line responsible for the crash, and retype
it (I’ll say a little more about this in Chapter 9 on
Debugging).

In particular if you get a:

Syntax error

message it means you have broken the grammatical rules of
BASIC. The computer tells you which line is wrong, and

NEW

When you’ve finished with a program, you must get rid of
it before typing in another one. Otherwise the two just get
mixed up.

14

WARNING

One way to do this is to switch off for a second. A better
way is to type the command:

NEW

That is, press:

N]T)iW| lENTERl

Always type NEW before entering a new program.

NO NEWS IS BAD NEWS

You probably didn’t know that the BBC and ITV both
produce scripts for their newsreaders by computer. On the
nurth of Octember last year, the ITV news started this way.

20 PRINT "GOOD MORNING. THIS IS THE"

30 PRINT " ITV "

40 PRINT "NEWS. THERE IS NO"

70 PRINT "CROSS-CHANNEL FERRY TO"

100 PRINT "DIEPPE. PASSENGERS SHOULD"

110 PRINT " BE PREPARED FOR "

120 PRINT "DELAYS. AUSTRALIA"

130 PRINT " WON THE FIFTH "

140 PRINT "TEST MATCH WITH ONE"

150 PRINT "RUN OVER"

170 PRINT "A"

180 PRINT " SPOKESMAN FOR MCC SENDS "

190 PRINT "HEARTY CONGRATULATIONS"

200 PRINT "TO THE AUSTRALIAN TEAM. "

Then the BBC ran their script through the same computer,
but forgot to type NEW first. The BBC News should have
been this:

15

10 PRINT " BBC NEWS AT TEN "

30 PRINT "CUP FINAL"

50 PRINT "RESULT. THE WINNER"

60 PRINT " IS THE FAVOURITE "

80 PRINT "NOTTINGHAM FOREST"

90 PRINT "AND THE LOSER IS"

120 PRINT "WOLVES."

130 PRINT "THE PRIME MINISTER"

140 PRINT "HAS BEEN"

160 PRINT "BY"

180 PRINT "BUS"

200 PRINT "TO BRITISH COACHBUILDERS. "

What, in fact, did the BBC News come out as? See the end
of the chapter for the answer.

UPPER OR LOWER CASE?
From now on I’m going to list programs in lower case in
places where they would normally appear in lower case on
the screen, because that makes it easier for you to check
that you have entered the lines correctly. (Of course, if you
wish to use capital letters throughout then that's OK.)

THE FIRST ELEPHANT JOKE EVER
TOLD
Here’s another program to practice on. Type it in and
RUN it. Type NEW first, dummy! Don't you listen to
anything I tell you?

10 PRINT "extremely ancient joke"

20 PRINT "do you know the
difference"

30 PRINT "between an elephant and a"

16

40 PRINT "letterbox?"

50 INPUT answer$

60 IF answer$ = "yes" THEN PRINT
"bother, you’ve heard it before"

70 IF answerS = "no" THEN PRINT" I
won’t ask you to post a letter,
then!"

Remember - NEW first, then type it in line by line, with
a |ENTER| after each. LIST to check it’s OK. Then
RUN it. Input yes or no after the question has been asked.

There are some new commands:

IF and THEN
which I’ll say more about in Chapter 8.

FRUITFUL HIPPO

Change lines 30 and 40 above so that the question
becomes:

do you know the difference between

a hippopotamus and a fruit-bowl?

17

Then change line 70 so that the computer’s answer
becomes:

so that’s why my pet hippo has a
banana stuffed in its ear!

NUMBER MAGIC

This program was devised by the famous conjuror Daniel
Pauls. NEW, enter, LIST, RUN.

10 PRINT "think of a number"

20 PRINT "double it"

30 PRINT "add 24"

40 PRINT "divide by 2"

50 PRINT "subtract 9"

60 PRINT "tell me what you get"

70 INPUT number

80 LET x = number - 3

90 PRINT "you chose ";x

For instance, suppose you chose 17. Then:

number = 17
double it - 34
add 24 = 58
divide by 2 = 29
subtract 9 - 20

So you input 20 at this stage. The computer will tell you:

you chose 17

which is right.
Try some other numbers. Does it always work? WHY?

ANSWERS
No News is Bad News
If you type in both programs (preferably using
[CAPS LOCK| for everything inside "...."), without
using NEW, you will find the BBC News print-out was:

18

BBC NEWS AT TEN
GOOD MORNING. THIS IS THE
CUP FINAL
NEWS. THERE IS NO
RESULT. THE WINNER
IS THE FAVOURITE
CROSS-CHANNEL FERRY TO
NOTTINGHAM FOREST
AND THE LOSER IS
DIEPPE. PASSENGERS SHOULD
BE PREPARED FOR
WOLVES.
THE PRIME MINISTER
HAS BEEN
RUN OVER
BY
A
BUS
HEARTY CONGRATULATIONS
TO BRITISH COACHBUILDERS.

Fruitful Hippo
Make these changes to the program. (If it’s still in memory,
just type the new lines.)

30 PRINT "between a hippopotamus
and"

40 PRINT "a fruit-bowl?"

70 IF answers = "no" THEN PRINT "so that’s
why my pet hippo has a banana stuffed in its ear!"

Number Magic

Yes, it always works. Take any number x. Double it, you
get 2x. Add 24, you get 2x + 24. Divide by 2, you get
x+ 12. Subtract 9, you get x + 3. This is the input number,
and so x is number - 3 (line 80).

19

JR PRINTS
Charming

Now that you’ve seen a few programs, you’re ready to start
writing simple ones of your own. To do this, you need to
know the commands allowed in BASIC, what they do, and
how to put them to good use. As the old song has it:

‘It ain’t what you do,
It’s the way that you do it.
That’s what gets results.’

The main commands in BASIC are single words, much
like ordinary English. They are called keywords, and in this
book are always printed in boldface. So far we’ve met the
keywords:

PRINT INPUT RUN LIST LET IF THEN
NEW

which isn’t bad for three chapters. Though, to be fair, we
haven’t explained all of them in detail yet. The keywords are
shown in capitals, because that’s what a LIST command does
to them.

You’ll certainly have worked out what the first keyword in
that list does:

PRINT causes symbols to be

displayed on the monitor.

However, PRINT is more versatile, and different kinds of
PRINT commands can be combined to give different
effects.

20

CHARACTERS

What sort of things can be PRINTed? They have to be
symbols that the computer ‘knows’. Every computer has a
standard list of such symbols including:

Letters
Numbers
Punctuation marks
Arithmetic
Others

A B C ... Z
0 1 2 ... 9

" •) !• • ? , • •
+ - * /
$#()[]

Most computers also have lots of special symbols. On the
CPC464 you get these by using [CTRL] instead of SHIFT]
when you type. There is a special name given to all these
symbols:

A character is a single symbol

taken from the standard list

that the computer can PRINT.

PLAIN PRINTS

To PRINT a whole sequence of characters, you use the
BASIC command in the form:

PRINT "sequence of characters"

quotes

keyword

For example:

PRINT "James Bond 007"
t f --------- T-------------
1---------1---------- use lower case if you wish

Note that quotes " " must be placed at both ends of the
sequence of characters. (If the second quote is at the end
of a program line it can be omitted.)

21

PRINT PUZZLES
1. Fill in the blanks in the following four short programs,

so that they will PRINT the messages:

(a) good morning
(b) I’ve got a headache
(c) that’s funny, so is mine
(d) how dare you!

Here are the programs:

(a) 10 PRINT "go_____________ ing"
(b) 10____________ "I’ve got a headache"
(c) 10 PRINT _that’s funny, so is mine__
(d) 10____________ ____how____________

____u!_

2. What is wrong with these commands?

(a) PRINT "hi there gorgeous!
(b) PRIMT "woops"
(c) PRINT various things
(d) PRINT " I karnt spel 2 good "

3. Write a 1-line program to PRINT your name
backwards.

SILLY SPLITS
Sometimes you may need to add ¡SPACE] s to PRINT
commands to avoid BREAK
ING words like this. For example:

PRINT " my hippopotamus is extremely
hard of hearing"

would come out as:

my hippopotamus is extremely hard of hea
ring

But you can pad it out with spaces like this:

22

PRINT " my hippopotamus is extremely
hard of |SPACE| I SPACE | |SPACE| |SPACE|
hearing"

with the effect:

my hippopotamus is extremely hard of
hearing

Why is my hippopotamus extremely hard of hearing? All
together now: BECAUSE IT’S GOT A BANANA IN ITS
EAR!

If a sentence is too long to get

into a single PRINT command,

break it into pieces.

PRINTING ON SEVERAL LINES

At the end of a PRINT command, the computer
automatically moves on to the next line of the monitor
screen, ready for the next PRINT. (I’ll explain later how to
prevent this.) See what happens with this program:

10 PRINT "the"

20 PRINT "quick"

30 PRINT "brain’s"

40 PRINT "facts"

50 PRINT "jump"

60 PRINT " over "

70 PRINT "the"

23

80 PRINT "lazy"

90 PRINT "dogma"

You can also leave a line of the screen blank (to separate
things) by using the command PRINT on its own:

130 PRINT

PROGRAMMED PIGS

The Lower Standards Repertory Company is putting on an
Easter pantomime and the Director, Nigel Podlington-
Wally, is a computer buff, so he wants to write a program
to print out the programme. (Got that?) It will have to
look like this:

THE THREE LITTLE PIGS

CAST IN ORDER OF APPEARANCE:

PERKY PIG
PORKY PIG
PUNKY PIG
SNAGGLETOOTH BALDPATCH, WOLF

ACT ONE: WHO’S AFRAID OF THE
BIG BAD WOLF?

ACT TWO: WOLF’S AFRAID OF THE
PIGS’ HOT BATH

Write him a suitable program.

24

SEMICOLON

Now it’s not always helpful to move on to the next line,
after a PRINT. So you want to be able to avoid this if you
choose. The answer is to put a semicolon

after the final quote in the PRINT commands, like this:

50 PRINT "something";
4

semicolon

Compare the effect of RUNning these two programs:

(a)

(b)

10

20

10

PRINT "thunder"

PRINT "bird"

PRINT "thunder";

no semicolon

semicolon

20 PRINT "bird"

You should have found that program (a) gave:

thunder
bird

whereas (b) gave:

thunderbird

all on one line. A tiny semicolon can have an enormous
effect-check listings carefully for punctuation! (It is said
that early in the American space programme a rocket
crashed for lack of a semicolon in the computer guidance
program. You might call that a Blunderbird!) Notice that
the semicolon not only leaves you on the same line - it
doesn’t even put in a space! How would you get:

thunder bird

with two PRINT commands?

25

The only way is to tell the computer to PRINT
the SPACE] too. SPACE) is considered to be a
character, just like all the rest. Here are two different ways
to do it:

10 PRINT "thunder";

20 PRINT " [SPACE! bird"

10 PRINT "thunder [SPACE) "

20 PRINT "bird"

You can also do it by:

10 PRINT "thunder";

20 PRINT " SPACE! ";

30 PRINT "bird"

or you can string a lot of PRINT commands together like
this:

10 PRINT "thunder"; " [SPACE! ";
"bird"

PUZZLE POSTCARD

Poking Pete the Peerless Programmer has written a
program to address a postcard:

HeityiM,

26

Unfortunately his pet armadillo tipped a bottle of HP
sauce over it. Can you fill in the missing parts?

COMMA

The comma

is used in a similar way to the semicolon, but with a
different effect. It works like this. The screen is divided
up into three columns. After a comma, the PRINT position
moves to the next column in the line - or skips to the next
line if all columns have been used. I don’t want to make
a big song and dance about this ... but you can easily check
it out on your computer by running the following test
program.

10 PRINT "tiger", "hare", "dragon",

20 PRINT "snake","horse","goat",
" monkey ",

30 PRINT "cockerel", "dog",

40 PRINT "pig","rat","ox"

CLEARING THE SCREEN

After you’ve used the computer, there’s a lot of junk
floating around on the screen. It’s often a good idea to get
rid of it.

There is a BASIC keyword to clear the screen. On most
computers, including the CPC464. it is:

CLS

I’ve left you to do the tidying up in this book, so to
produce neat displays on the screen, you should feel free to
add program lines like:

175 CLS

to the programs you copy, or use.

ANSWERS
PRINT Puzzles
1. (a) 10 PRINT "good morning!"

(b) 10 PRINT "I’ve got a headache"
(c) 10 PRINT "that’s funny, so is mine"
(d) 10 PRINT "how dare you!"

2. (a) No final quote.
(b) PRINT misspelled.
(c) No quotes.
(d) As far as the computer is concerned, there’s

nothing wrong with it at all!

3. This is Hortense Mousebender’s answer:

10 PRINT "rednebesuoM esnetroH "

Programmed Pigs

(You need I CAPS LOCK| for this!)

10 PRINT "THE THREE LITTLE PIGS"

20 PRINT

28

PRINT "CAST IN ORDER OF
APPEARANCE:"

40 PRINT

50 PRINT "PERKY PIG"

60 PRINT "PORKY PIG"

70 PRINT "PUNKY PIG"

80 PRINT "SNAGGLETOOTH BALDPATCH,
WOLF"

90 PRINT

100 PRINT "ACT ONE: WHO’S AFRAID OF
THE"

110 PRINT " SPACE) |SPACE| SPACE) BIG
BAD WOLF? "

120 PRINT

130 PRINT "ACT TWO: WOLF’S AFRAID OF
THE"

140 PRINT " ISPACEl SPACE) [SPACE) PIG’S
HOT BATH"

Postcard Puzzle

(You need [CAPS LOCK for this one too!)

10 PRINT "HENRIETTA [SPACE)

20 PRINT "BIGBANANA,"

30 PRINT "4 LUNCH AVENUE, "

40 PRINT "HERDIM,"

50 PRINT "BURPIN"

29

INPUT the Boot

When you use PRINT to send a message from the
computer to the monitor, that’s an example of
output -communication from the computer to the outside
world. The opposite — sending messages from the outside
world to the computer - is called input.

OUTPUT is what goes out,

INPUT is what goes in.

When you type a program from the keyboard, that’s input.
And there’s even a BASIC keyword:

INPUT

that tells the computer to fetch a message from the
keyboard. You’ve used it already, but I haven’t explained
what it’s all about.

NAMED INPUTS

When you use INPUT you must include a ‘code name’ so
that the computer can tell which input is which. So the
command takes the form:

INPUT codename

For instance, suppose you want to write a program to work
out the price of a pair of Wellington boots, given the prices
of the left and right boots separately. (Look, I’m trying to
be realistic, but it’s not always possible.) The computer
needs to know the two prices, and it needs to know which

30

is which (in case you also wanted to buy three left boots
and seven right boots for an extraterrestrial acquaintance).
So you invent two codenames:

leftboot rightboot

to distinguish them. Then the program is a doddle:

10 PRINT "price of left boot?"

20 INPUT leftboot

30 PRINT "price of right boot?"

40 INPUT rightboot

50 PRINT "Total price is ";

60 PRINT leftboot + rightboot

RUN this, and try the inputs:
2 |ENTER|

for the left boot and:
3 enter!

for the right. You should get the answer:

Total price is 5

I haven't bothered to say what sort of money: pounds, dollars,
roubles, corporals—that’s up to you.

You’ll have noticed that the computer gives you a
P?] sign to show it wants an input.

31

asks for an input—that is,
a message or a number. Type
your input and then ¡ENTER).

Try the program again with:

leftboot input 1234567
rightboot input 7654321

And if you’re a decimal freak, try something more
plausible, like

leftboot input 3.42
rightboot input 3.69

What answers do you get?

COMPUCROSTIC
Solve the across clues, and spot the BASIC keyword among
the down words.

Clever thought

Opposite of day

Mini-dog

A single piece

Common to fishing
and football

THE ALMIGHTY DOLLAR
That’s how to input numbers. To input words there is
one minor change. The codename must end in a dollar sign:

s
32

For example:

10 PRINT "good morning"

20 PRINT " this is your friendly "

30 PRINT "neighbourhood computer."

40 PRINT "you’re new, aren’t you?"

50 PRINT "what’s your name?"

60 INPUT nameS-*— dollar sign on codename

70 PRINT "hi, [SPACE] ”;name$;

80 PRINT " SPACEl welcome to the
swamp!"

The $ sign tells the computer to expect a sequence of
characters (especially letters, but you can use any other
symbols too) rather than a number. Such a sequence of
characters is called a string. Here are some strings:

FRED
OMO
R2D2
**!%#@!

A string is just a load of

characters strung together.

The codename for a String

INPUT mu$t fini$h with a

dollar $ign ($).

PRACTICE PROBLEMS

Write a program that lets you INPUT a name, and prints it
out five times one beneath another.

33

PROMPTS
In most of the inputs above, I have PRINTed a message to
remind you what it is that has to be input. This is a very
useful trick: a bare ?) isn’t always very
comprehensible.

A message to remind you what

the input is for is called a

prompt.

On the CPC464 you can build a prompt into an INPUT
command. Instead of something like:

SHORT-CUT

50 PRINT "what’s your name, honey?"

60 INPUT name$

I haven’t used this short-cut in this book, but don’t let that
stop you!

ANSWERS

Named Inputs

Total price is 8888888
Total price is 7.11

Compucrostic
IDEA
NIGHT
PUPPY
UN I T
TACK LE
*--- INPUT

34

Practice Problem

10

20

30

40

50

60

70

PRINT "input a name'

INPUT name$

PRINT name$

PRINT name$

PRINT name$

PRINT name$

PRINT name$

for a better way see
Chapter 10

35

A The Very Able |
<9 Variable

In the last chapter I said we use ‘codenames’ for inputs.
Now let me tell the whole truth. Well ... some of the whole
truth!

You can think of the computer’s memory as a lot of
boxes. Each box contains one piece of information.

When you give a computer an INPUT, it stores it away
in a box. It uses the ‘codename’ as a kind of label on the
box, so that it can tell which box is which.

(Actually, it usually needs several boxes in a row, but let’s
not go into fine details at this stage, huh?)

A memory box with a label on it is called a variable. I’ll
tell you why in a moment.

There are two main types of variable in BASIC:

1. A numeric variable - which contains a number.
2. A string variable - which contains a string of

characters.

The codename for a variable consists of letters and
numbers. If it’s a string variable, the codename must end
in a $ sign. The codename, that is, the label on the box,
is referred to as the name of the variable. Unlike a BASIC

36

keyword, which must come from a standard set of
commands, variable names may be chosen by the
programmer. There are a few rules governing that choice:
see page 39.

A variable is a memory box

with a codename that acts like a

label.

The label is the name of the

variable.

The contents of the memory

box is the value of the variable.

PETE’S PUZZLE
Peripheral Pete the Perfidious Programmer has set up
some variables. What are their names? What are their
values? Are they numeric or string variables?

THE SEMICOLON REVISITED
As you may remember, using a semicolon between two
PRINT strings (or string variables) causes the strings to be
joined together, with no extra |SPACE| s added:

PRINT "thunder"; "bird"
gives thunderbird. However, if you use a semicolon
when PRINTing numeric variables, each item is PRINTed
with a |SPACE| on either side. For example:

37

10 PRINT "what is your age?"
20 INPUT age
30 PRINT "I think you [SPACE]

[SPACE] required for strings

40 PRINT "will be"; age + 1/'next year"
f__ L______

no SPACE] for numeric items

VARYING A VARIABLE
Once you have set up a labelled memory-box, you can
change its contents without changing the label. (This idea is
widely used by the smuggling fraternity.) That is, you can
alter the value of a variable without changing its name.

The way to do this is to use the keyword:

LET

in the form:

LET variablename - value

For example:

LET AGE = 23

changes the value of the (numeric) variable AGE from
whatever it was to 23. (If it wasn’t anything - that is, the
variable AGE hadn’t been set up - it sets up a new variable
called AGE and puts the value 23 in it.)

The next program uses this ability of variables. It works
out the change (from 100 pence) for three different
payments - 17, 32 and 81 pence.

38

10 LET amount = 17

20 PRINT 100-amount

30 LET amount = 32

40 PRINT 100-amount

50 LET amount = 81

60 PRINT 100-amount

Notice that the same box holds the three amounts in turn.

Variables let you write general

programs to handle a range of

different items in the same way.

On the CPC464. the word LET is optional and may be
omitted. For example:

AGE = 23

will give the variable AGE the value 23.
On some computers the LET is compulsory. I will always

use LET in this book.

RULES FOR VARIABLE NAMES
The general rules for variable names in BASIC are:

1. They must start with a letter of the alphabet.
2. You can use as many letters and numbers as you like,

up to a reasonable limit (40) BUT don’t use
any SPACE| s.

3. The name may not be a BASIC keyword.

These rules are to help the computer understand
commands. If you break them, you will get a Syntax
error message.

Rule 1 means that you can’t use a name like:

2K *ABC (FRED)I I___ 1__ not a letter

39

Rule 2 means that vou can't use:

pocket money

as a variable name
Rule 3 means you can't use names like:

input run list

but who'd want to. anyway!

PROGRAM PROBLEM

Write a program that uses two string variables f$ and s$ to
input a person’s first name and surname separately - and
then PRINT them out with the surname first, as in:

WHITTINGTON , DICK

(Well, he was told to ‘turn again’, wasn’t he?)

THE HOUND OF THE BASKETBALLS

Mr Sherlock Holmes, who was usually very late in the
mornings, save upon those not infrequent occasions when
he was up all night, was seated at the breakfast table. An
irregular piece of parchment lay before him, at which I
glanced in curiosity. It appeared to be a list of
names—outlandish, wild names: £5-NOTE, TOMATO
SAUCE. SNAGGLEPUSS. SNIGGLEPUSS,
SNUGGLEPUSS. 99-BONK!. 007. BANANA SKIN, 7-UP
AND GEORGE WASHINGTON.

“Well, Watson, what do you make of it?”
Holmes was sitting with his back to me, and I had given

him no sign of my occupation.
“How did you know what I was doing? I believe you

have eyes in the back of your head!”
“Simple logic, Watson. I know you’re a nosey old coot.

You wouldn’t be able to resist such an opportunity.”
I sustained a dignified silence for a few moments. Then,

“But what is it, Holmes?” I burst out.

40

“It is a communication from Sir Tobias Basketball of
Basketball Hall, Watson. Precisely, it is a list of his
foxhounds.’’

“What strange names,” I mused.
“Indeed, Watson, indeed.” Holmes drew deeply upon

his pipe and transfixed me with his steely eye. “And one of
them-just one, mark you-is an imposter.

‘The question is, Watson: which?”
“I have no idea,” I replied.
“But Watson, it is utterly elementary. Can you not see

that there is a BASIC distinction which singles out one
name?”

I must confess, I could not. Perhaps my gentle reader
will fare better than I.

ANSWERS

Pete’s Puzzle

Name
AGE

Value Type
65 Numeric

G$ "AIR BY BACH" String

CATCH 22 Numeric

41

Program Problem

10 PRINT "what is your first name?"

20 INPUT f$

30 PRINT "what is your surname?"

40 INPUT s$

50 PRINT "your name, surname first,
is"

60 PRINT s$;",";f$

The Hound of the Basketballs
“When I tell you, Watson, you will be overcome by the
irony of it all.’’

“1 doubt it, Holmes. But what is the answer?”
“The first clue is the presence of dollar signs, Watson.”
A light dawned. “American! The imposter is an

American foxhound!” I scanned the list rapidly.
“GEORGE WASHINGTON, right Holmes?”

“No, Watson,” he said slowly. “It is not American. The
dollar signs suggest that the names are BASIC variables.”

“Oh.”
“In addition, hardly any of the names could actually be

used on a computer. Most are illegal. Thus, TOMATO
SAUCE, BANANA SKIN, and GEORGE
WASHINGTON all contain spaces; and £5-note,
SNIGGLEPUSS, SNUGGLEPUSS, 99-BONK!, 007, AND
7-up do not start with a letter."

“Aha!”
“Which leaves, as the odd man out, the name

SNAGGLEPUSS. The impostor-”
“Is the only legal name, Holmes!” A thought struck me.

“The illegal imposter signalled by a legal name!” I paused.
“How ironic!”

Holmes’s eyeballs rolled skywards once more. 1 must
persuade him to see a doctor.

I’ve just remembered something.
I’m a doctor.
He should definitely see a vet.

42

All Right
for Sums

Like it or not, if you’re going to tangle with computers
you’ll need to use arithmetic every so often. Fortunately
the computer knows how to do all the hard stuff. In fact,
sums can be fun-if you make somebody else do the work!

The fundamental operations of arithmetic are:

+ Add
- Subtract
x Multiply
4- Divide

In BASIC, two of these symbols don’t change, namely
+ and - . Indeed, we’ve used them already to mean ‘add’
and ‘subtract’. (Where?)

But x and -? are changed to * and /. This makes life
easier for the computer and stops the programmer getting
confused. On a monitor x looks much like X and -s- is easily
muddled with +. The easiest thing is no^t to use them.

ADD (+)
This is just as in arithmetic. To add the values of two
variables A and B we pick a variable C to hold the result,
and write:

70 LET C - A + B

(assuming it is line 70 that this occurs in). Here’s an example
that adds a whole lot of numbers at once...

“Can you do Addition?’’ the White Queen asked.

43

“What’s one and one and one and one and one and one
and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”
“She can’t do Addition,” the Red Queen interrupted.

But the computer...

10 PRINT "answer to the white
queen’s problem"

20 PRINT "l+l+l+l+l+l+l+l+l+l
I SPACE | = ";

30 PRINTl+l+l+l+l+l+l+l+l+l

Notice the difference the quotes make in lines 20 and 30. If
they are present, then l + l + l + l + l + l + l + l + l + l is
treated as a string and just copied out. But if they are
missing it is treated as a number and worked out.

Similarly, if you write:

100 PRINT ANSWER

then the computer looks for a variable named ANSWER,
and PRINTS out what its value is. But:

100 PRINT "ANSWER"

just produces the word ANSWER. This is true even if there
is a variable named ANSWER.

DRILL PROBLEMS (+)
________ L_____________
to remind you this is arithmetic - serious stuff!

CUT OUT
COMMAS

Write three computer programs to work out:

(a) 1+2 + 3+4 + 5 + 6 + 7 + 8 + 9+10
(b) 99999+1
(c) 1000000 + 10000 +100+1

Don’t write commas to separate thousands or millions (as
in 1,000,000 for a million). The computer won’t
understand. Write 1000000 with no commas, and be careful
to count that you have the right number of 0s.

44

SUBTRACT (-)
Again, this is as in ordinary arithmetic:

530 LET C = A - B
assigns to the variable C the value obtained by subtracting
the value of B from the value of A.

The Wong Weh Chinese Restuarant has an arrangement
with its regular customers. The customer deposits a sum of
£100 with the restaurant. He or she may then order food by
telephone. The price is subtracted from the amount
deposited and the remainder is left in the customer’s
account.

(This is called a Chinese Take-Away.)
Here is a program to input the price of an order, and tell

the customer how much is left.

10 LET deposit = 100

20 INPUT price

30 LET deposit = deposit - price

40 PRINT "you now have "
deposit; "left"

45

Three customers purchase the following meals:

(a) Hortense Mousebender: 1 goldfish fin soup, price:
17.23

(b) Sue Choppy: 1 crispy jellyfish with noodles, price:
2.74

(c) Tommy Upset: Flied Lice in black bean sauce with
One-tonne Won-Tons; Noodle noodle soup; Mangrove
shoots in water lilies; Wong Weh special
hippopotamus Chow Mein; and chips. Total price:
98.72

RUN the program three times, to find out how much each
had left.

ALGEBRA IT AIN’T

BASIC
BOGGLE

There is something a little peculiar about line 30. Suppose
the value of price is (say) 1. Then deposit 100, price = 1,
so deposit - price = 99; and line 30 seems to be saying:

LET 100 = 99

which is hard, to say the least!
There’s no real problem, however. The equals sign = in

BASIC doesn’t really mean ‘equals’. It means ‘is given the
value’. The part before the = sign is the new value of a
variable, to be found by working out the part after the =
sign. And while that’s being worked out, the variables
involved retain their old values.

Got that? It’s like this:

4Ó

deposit = deposit - price

So inside the computer, what happens is this:

1. Start with these values:

2. Work out deposit - price,

which is 100 - 1,
which is 99.

3. Change the value held in deposit to this new value:

Note that the value of price (1) is unchanged.

Once a variable has been given

a value, that value stays the

same unless you tell the

computer to change it.

47

DRILL PROBLEMS (-)
Write programs to work out:

(a) 301-60
(b) 100-1-2-3-4-5
(c) 707070- 181818
(d) 1-2 + 3-4 + 5-6 + 7

MULTIPLY (*)
The usual symbol for multiplication is:

x

But programmers could easily confuse this with:

X

To avoid that danger, BASIC uses an asterisk (or star):

(That way yer doesn’t ‘as ter risk confusing it with X!)
For instance, in BASIC:

3*5=15
7 * 7 = 49
100 * 22 = 2200

and so on.
Here’s a program that uses . A party of several people

visits the Wong Weh Chinese Restaurant for lunch. All
order the same menu, the 3-course businessman’s lunch.
The prices of the courses must be input as three variables:

pl p2 p3

and the number of people in the party as:

number

The total cost is obtained by adding the first three inputs
together to get the price of one meal,

meal = pl + p2 + p3

and then multiplying this by the fourth of the input

46

variables, number (hence obeying the Biblical injunction,
‘Go ye fourth and multiply’).

10 PRINT "first course?"

20 INPUT pl

30 PRINT "second course?"

40 INPUT p2

50 PRINT "third course?"

60 INPUT p3

70 PRINT "number of people?"

80 INPUT number

90 LET meal = pl + p2 + p3

100 LET price — meal * number

110 PRINT "total cost is price

HORTENSE PIGS OUT

Hortense Mousebender takes her Aunt Hilda, her Uncle
Jeremiah, and their friends Mr and Mrs Nosewangle to the
Wong Weh Chinese restaurant. They order the business­
man’s lunch, which on that particular day is:

1st course: Porridge soup and sauerkraut 2.73
2nd course: Sweet and sour spaghetti 3.29
3rd course: Chili ice cream 1.95

RUN the program to find out what it cost them.

49

DRILL PROBLEMS

Write computer programs to work out:

(a) j *2*3*4*5*6*7*8*9
(b) 2*2* 2*2* 2*2*2*2*2*2
(c) 7 * 7 * 7 * 7
(d) 1 +2 * 3 + 4 * 5 + 6 * 7 + 8 * 9

AYE-AYE, IT’S MY LITTLE SPY
The Russian Master-Spy Ivan Nokyablokov is sending a
computer program in code to his controller, Major Igor
Biva of the KGB. He had coded it by changing each letter
of the alphabet to a different one, in a systematic way (so
that, for example, every ‘P’ has been replaced by ‘X’).

Can you, Cheerful Charlie, the Cunning Cryptographer,
break the code and work out the program? Here is the
coded version. (You’ll need [CAPS LOCK I for this!)

50

10 XLVJS "STX MXHWO MOWLOS"
20 XLVJS "KOOGNZ | MXHWO

LHVJYHNN"
30 XLVJS "VJXDS IMXHWO I BHVNZ

MXHWO I LHVJYHNN"

40 VJXDS LHVJ

50 NOS LHVJ = 7 * LHVJ

60 XLVJS "LHVJYHNN | MXHWO | VM
I MXHWOl"; LHVJ; " I MXHWO I OCOLZ
I MXHWO I KOOG"

70 XLVJS "BOMSLTZ | MXHWO | HYSOL
MXHWOl LDJJVJA"

DIVIDE (/)
Ordinary arithmetic uses:

for division. But BASIC uses a slash:

For instance, in BASIC, you must write:

6/2 = 3
20 / 5 = 4
49 / 7 = 7

and so on.

DECIMAL
DISASTER

You’ll also find that:

1 / 3

comes out as:

.33333333

because BASIC uses a decimal point when it’s asked to
work out fractions.

I’ve tried not to use decimal notation in this book,
except for pounds and pence, such as £4.23.

51

DRILL PROBLEMS
Write computer programs to work out:

(a) 365 / 5
(b) 1000000 / 100
(c) 727272 /9

DIVIDE AND CONKER

Hortense’s youngest son, Mickey Mousebender, and his
friends have been throwing sticks into a conker tree.
Suppose that there are n boys and they get k conkers
altogether, (k, because they karnt spel 2 good.) if the
conkers are shared equally between them, how many will
each boy get?

10 PRINT "number of boys?"

20 INPUT n

30 PRINT "number of conkers?"

40 INPUT k -------- slash for division
50 LET share = k / n

60 PRINT "there are share;
" conkers per boy"

This program works well if the number of conkers divides
exactly. It doesn’t give particularly sensible results
otherwise. Try using it to divide 47 conkers among 7 boys!
Division with remainder is possible in BASIC (and would
give an answer of 6 per boy with 5 left over) but is beyond
the scope of this book.

BRACKETS ()
These are used, as in arithmetic, to specify the order in
which calculations are carried out.

The standard rule (called a priority rule because it tells
you what to do first) is that:

52

* and /

are worked out before-.

+ and -

So something like:

12 + 4/2

is worked out like this:

First do the 4/2 = 2

Then do 12 + 2 = 14

It is NOT worked out doing the ‘ ’ first, like this:

First do 12 + 4 = 16

Then do 16 / 2 = 8

See? It matters!
Now sometimes you may want to do the addition first. If

so, you must tell the computer this, by using brackets:

(12 + 4) / 12

Anything inside brackets is

worked out completely before

anything else is done to it.

I’m going to use brackets to simplify the program about
the Chinese Restaurant in the MULTIPLY section above.
It can be shortened to this:

10 PRINT "first course?"

20 INPUT pl

30 PRINT "second course?"

40 INPUT p2

50 PRINT "third course?"

60 INPUT p3

70 PRINT "number of people?"

53

80 INPUT number brackets!
f f --------------

90 LET price = (pl + p2 + p3) * number

100 PRINT "total cost is price

Brackets must always be used

in pairs: ‘(’ at the front

and “)’ at the end.

Notice that you can’t just write:

pl + p2 + p3 * number

in line 90. For example, suppose:

pl = 5 p2 = 7 p3 = 10 number = 4

Then:

pl + p2 + p3 * number = 5 + 7+ 10 *4
= 5 + 7 + 40
= 52

whereas:

(pl + p2 + p3) * number = (5 + 7 + 10) * 4
= (22) * 4
= 88

MOUSEBENDER’S MUDDLE
Marmaduke Mousebender the Mad Mathematician has
found four different answers to the same arithmetic
problem:

(a) 2 * 3 + 4 * 5 = 26
(b) 2 * 3 + 4 * 5 = 70
(c) 2 * 3 + 4 * 5 = 50
(d) 2 * 3 + 4 * 5 = 46

Can you put in some brackets to make all of these correct?

54

The arithmetic symbols in
BASIC are:

+ add
- subtract
* multiply
/ divide
() brackets

The symbols x and are
NEVER used.

ANSWERS

Drill Problems (+)

(a) 10 PRINT 1+2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+10
Answer 55.

(b) 10 PRINT 99999+1
Answer 100000.

(c) 10 PRINT 1000000+10000+100+1
Answer 1010101.

Subtract (-)

Hortense Mousebender had 82.77 left.
Sue Choppy had 97.26 left.
Tommy Upset had 1.28 left.

Drill Problems (-)

(a) 10 PRINT 301-60
Answer 241.

(b) 10 PRINT 100-1-2-3-4-5
Answer 85.

(c) 10 PRINT 707070- 181818
Answer 525252.

(d) 10 PRINT 1-2 + 3-4 + 5-6 + 7
Answer 4.

Hortense Pigs Out

There are five people in the party. The meal cost 39.85.

55

Drill Problems (*)

(a) 10 PRINT 1 * 2 * 3 *4* 5 * 6*7 * 8 *9
Answer 362880.

(b) 10 PRINT 2*2* 2* 2*2* 2*2* 2 * 2*2
Answer 1024.

(c) 10 PRINT 7 * 7 * 7 * 7
Answer 2401.

(d) 10 PRINT 1+2 * 3 + 4 * 5 + 6 * 7 + 8 * 9
Answer 141.

Aye-aye, it’s my Little Spy

The code is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
H WBOY VGN JTX LMSDCK Z

(The other letters aren’t used, so you can’t decide what
they are.)
The program was:

10 PRINT "TOP I SPACE I SECRET"
20 PRINT "WEEKLY SPACEl RAINFALL"

30 PRINT "INPUT SPACE DAILY SPACE)
RAINFALL"

40 INPUT RAIN

50 LET RAIN = 7 * RAIN
60 PRINT "RAINFALL [SPACE] IS SPACEl"; RAIN;

" SPACEl EVERY ¡SPACE WEEK"

70 PRINT "DESTROY SPACE) AFTER SPACE)
RUNNING"

56

Drill Problems (/)

(a) 10 PRINT 365 / 5
Answer 73.

(b) 10 PRINT 1000000 / 100
Answer 10000.

(c) 10 PRINT 727272 / 9
Answer 80808.

Mousebender’s Muddle

(a) (2 * 3) + (4 * 5) = 26
(b) 2 * (3 + 4) * 5 = 70
(c) (2 * 3 + 4) * 5 = 50
(d) 2 * (3 + 4 * 5) = 46

57

IFs but no buts

So far, the power of the computer has not really been
exploited, except in doing arithmetic. This is because every
program has just run through a single list of commands in
order, and stopped:

This is kind of boring. Also, if you wanted a computer to
carry out a million commands (which is not unusual) you
would need to write a million lines of program. Not only
would this be ridiculous—there wouldn’t be room in
memory to hold the program anyway. So there has to be a
better way.

Two important ways to make a program more flexible
are called branching and looping. In this chapter, we’ll take
a look at branching. For looping, see Chapter 10.

A program is said to branch if the computer follows
different instructions, depending on whether some
condition is:

58

TRUE

or
FALSE

We meet many such conditions in daily life:

IF you eat too many buns THEN you’ll get sick• । , ■ r
condition actionL—___,

IF you touch that vase THEN I’ll wallop you

In each, the specified action occurs only if the condition is
TRUE.

It’s much the same in BASIC. In fact, if you look back
to Chapter 3, you’ll find a program using the keywords:

IF THEN

to tell the computer what to do.
The next program asks you to toss a coin, input whether

the result was heads or tails, and then prints different
responses depending on what you tossed.

10 PRINT "please toss a coin"

20 PRINT "was it heads or tails?"

30 INPUT sideS

40 IFsideS = "heads" THEN PRINT "I win!"

50 IF sideS = "tails" THEN PRINT "you
lose!"

In general, IF ... THEN is used in the form:

IF condition THEN action

The conditions above are:

(in line 40) sideS = "heads"

(in line 50) sideS = "tails"

The actions are:

(in line 40) PRINT "I win!"

(in line 50) PRINT "you lose!"

59

Note that while the condition is a statement, to be tested
for truth or falsehood, the action is a command, to be
carried out.

Here’s how the computer treats an IF ... THEN
command.

IF the condition is TRUE

THEN the computer carries out*

the action.

IF the condition is FALSE,

THEN it doesn’t!

Either way, it goes on to the

next program line.

Here’s a diagram to show how the computer decides what
to do. It is called a flowchart, because it lets you see the

60

THE SPEAK - YOUR - WEIGHT
MACHINE

Portly Pete the Plump Programmer needs to go on a diet.
To help him get up the courage, he had decided to write a
computer program. It will ask him to INPUT his weight. If
this is less than 150 pounds, it will congratulate him on his
success in becoming thin. If it is 150 pounds or more, it
will say something rude.

Can you write a program to help Pete stay slim?
You will need to know two new symbols:

means ‘less than’

> = means ‘greater than or equal to’

So the conditions you’ll need are:

IF weight < 150

IF weight > = 150

(You get ‘> =’ by pressing keys > and[=] in turn.)

61

Size comparison symbols
= Equal to
< Less than
> Greater than
< = Less than or equal to
> = Greater than or equal to
< > Not equal to

COMPUCROSTIC

Fill in the across words and find the BASIC keywords in

JUMPS

I lied to you.
There is one circumstance in which an IF ... THEN

does not proceed to the next command at all.
First you need to know a new keyword,

GOTO

A command:

GOTO linenumber

moves the program to the command on that line. For

62

example,

GOTO 710

moves the program to line 710, no matter 'where it was
before.

Programming purists profess not to like GOTO. This is
because it’s very easy to get into bad habits, use too many
GOTOs, and produce ‘spaghetti’ like this:

10

20

30

— 40

i 50
60

T70
80

::=r 90
-k: 100

*—110
_ki20

PRINT "where do I goto?"

GOTO 100

GOTO 90

GOTO 110

PRINT "easier way"

GOTO 30

PRINT "I’m lost!"

GOTO 40

GOTO 70

GOTO 70

PRINT "there must be an"

GOTO 50

The lines at the side show where the jumps go: the reason
for the word ‘spaghetti’ should be perfectly clear!

If you RUN this awful piece of programming you’ll find
that among other things it goes on forever. The lines are
carried out in the order you’ll find if you disentangle the
spaghetti—that is:

63

and so it gets trapped in an endless loop, printing out the
message:

I’m lost!
there must be an
easier way

over and over again. Turn the computer off and then on to
stop it. or (better!) press:

iTsc]
twice.

Let’s agree right now that the purists have a point: there
is a danger of getting in an awful muddle if you use too
many GOTOs. And it would indeed be nice to improve
BASIC so that GOTO was hardly ever needed. Granted
that, it’s still true that there are occasions when GOTO is
very useful, if only to give you enough space to write a
series of commands that you’ve forgotten to include
somewhere.

For example, suppose you’ve written a hundred lines of
program, from line 10 to line 1000. Suddenly you realize
that you have missed out 25 lines, which should come in
between lines 460 and 470.

10

460
470

1000

jam 25 lines in here

Well, there isn’t enough room. You could change a few
numbers to make room (for example change line 460 to 451
and 470 to 479). Or you could add:

465 GOTO 2000

to jump to somewhere with plenty of elbow-room; then
write your 25 lines:

64

2000

2240

and then finish off with:

2250 GOTO 470

to link back to the correct place.
Effectively the program takes a big detour and then

rejoins the main route, like this:

10

2000
460 /

465
2240

470
2250

1000
This technique is called a patch. It belongs to the general

class of methods known as ‘quick and dirty’ in the Trade.
That’s fine: ‘quick and dirty’ may be dirty, but it’s also
quick, and there’s no great virtue in spending hours and
hours making something look pretty when it works just as
well without.

The main use of GOTO, however, is in conjunction with
IF ... THEN. Suppose that the action to be performed if
the IF condition is true, is a complicated one, taking many
lines of program. Then the usual:

IF condition THEN action

just doesn’t leave room to specify the action. Instead, we

IF condition THEN GOTO linenumber optional

which jumps the program to linenumber if the condition is
true. That gives us plenty of room to specify the action
required; and then we can always jump back to wherever
we want to be, using another GOTO.

Here is a program used by Licentious Lionel, the
Lothario of Luton. This asks a lady her age. It responds

65

differently, depending whether her age is 23 and over, or
not. (Unlike the author of this book, Licentious Lionel is a
Male Chauvinist Pig.)

10 PRINT "how old are you, cutie-pie?"

20 INPUT age greater than or equal to—remember?

30 IF age > = 23 THEN GOTO 90

40 PRINT "what a sweet young thing!"

50 PRINT "how about you coming
over to my place"

60 PRINT "to see my programming
routines?"

70 PRINT "well, be like that if you
want!"

80 STOP
90 PRINT "well, you’re no chicken!"

100 PRINT "same to you, grandma!"

Here’s how the ‘flow of command’ goes in the above
program.

66

QUICKIE

There’s a new command buried in Lionel’s program. Find
it and guess (it’s not hard, 1 promise) what it does. Get rid
of it, and find out why it was put there in the first place.

BRANCH BANKING
Carlton Q. Cashsnitcher, manager of the Lower Standards
branch of the Gnatwest Bank, has just had an automatic
cash-dispenser installed. It is computer-controlled. When a
customer uses it, he is asked to input the password. The
correct answer is ‘toothpaste’. If the customer gets this
right, the program then asks him how much cash he wants
to take out. If he gets it wrong, the program informs him
that he is in deep trouble.

Write a program to do this for Mr Cashsnitcher, so that
all the shareholders in Gnatwest can rest easy in their beds
at night.

67

ANSWERS

The Speak-your-weight Machine

10 PRINT "good morning, Pete"

20 PRINT "and how heavy are we today?"

30 INPUT weight

40 IF weight < 150 THEN PRINT "careful
walking over gratings you slim devil!"

50 IF weight > = 150 THEN PRINT "watch
out for harpoons!"

Compucrostic

LIMIT
FI SH

TEXAS
H UNT

| F O W L

IF THEN

Quickie

The new command is STOP. It stops the program going
past that line. If you miss it out, then when age < 23,
both messages get printed out. This could cramp Lionel’s
style ...

Branch Banking

10 PRINT "gnatwest autocash"

20 PRINT "input password"

30 INPUT pw$

40 IF pw$ = "toothpaste" THEN GOTO 70

50 PRINT "if you don’t leave this
instant, I’ll call the police!"

60 STOP

68

70

80

90

100

PRINT "how much cash do you want?"

INPUT cash

PRINT "take it, it’s yours!"

PRINT "thank you for making a humble
autocash machine very happy"

69

(A Bugs under
the Rug

Programs seldom work properly the first time you run
them. So don’t be surprised! When the World was young
and computers were the size of a room, insects used to
crawl inside and cause havoc with program runs. This led
to a term that is still in use:

A bug is an error in a program.

When you fix it, that’s called

debugging.

Program bugs, like their real-life counterparts, are hard to
avoid. The best you can do is to find good methods for
swatting them.

USER, HIM NO TALK GOOD

The grammatical structure of a computer language is
called syntax. This may sound as if it refers to payments to
the Inland Revenue for bad habits, but it comes from a
Greek word and means ‘systematic arrangement of parts’.
For example, the syntax will be wrong if you:

• Spell a keyword incorrectly (GNU instead of NEW)
• Use non-existent commands (PUTOUT CAT. A

variable named CAT is legal enough—but
there’s no command PUTOUT in BASIC)

• Combine statements incorrectly (IF X = 5
THEN "FRED" instead of IF X = 5 THEN
PRINT "FRED")

70

• Use an illegal variable name (such as 007 or
list)

• Fail to match brackets in arithmetic (such as
(1 - 3 * (5 + 2) where the final bracket has got lost)

• Write general nonsense (LET Z = 42/Z6 + 17..4)
• Invent your own—you soon will!

As mentioned already in Chapter 3. if you get the grammar
wrong, the computer will stop and send you a message to
tell you there is a syntax error, and what line it is on:

Syntax error in 666

USEFUL TIP

It also LISTs the line ready for you to correct it.
It’s a good idea to RUN the program after typing every

5 or 6 lines. That way you can pick up a lot of the syntax
errors from the error messages, and fix them straight away.
(There’s nothing worse than having finished typing a
100-line program, and then spending the next hour dealing
with Syntax error messages, one line at a time!)
Ignore any error messages other than syntax: these are
probably due to the program being incomplete. Deal with
them only after all syntax is correct.

DEBUGS IS COMING!
Portable Pete the Perfunctory Programmer has been
overwhelmed by syntax errors. Can you fix them for him?

(a) 10 PRIMT "HELLO"

(b) 20 IMPUT WEIGHT

71

(c) 30 LET X = 2 * Y +

(d) 40 LET X = 3 * (1+3 * (4 + 5)))

(e) 50 LET 2 * Y = X

(f) 60 IF PRINT "FRED" THEN LET B = 4

(g) 70 IF AGE >3 THEM GOTO 7

(h) 80 LET 2MUCH = 55

(i) 90 ADD 6 TO 35

(j) 100 THE COMPUTER FACILITY WILL CLOSE
IN TEN MINUTES

THE CASE
OF THE CRASHED COMPUTER

Other errors pass the syntax test, but show up as soon as
you run the program. These are called runtime errors. For
example,

10 INPUT a

20 INPUT b

30 LET c = 100 / (2 * a - b)

40 PRINT c

If you RUN this with the following inputs:

a = 3 b = 1

then it works fine, and prints out the answer 20. Now try
again using:

a - 2 b = 4

Yuk! What’s 1.70141E + 38 got to do with it? It’s crashed!
Well, almost...

A crash is when a program

stops where it isn’t supposed to.

The CPC464 doesn’t actually stop.. .but it’s clearly not happy.

72

Well, it worked OK the first time. So what’s gone
wrong?

“A small problem, Watson?”
“Holmes, thank God you’ve arrived. I’m in a terrible

tangle. The computer simply refuses to obey my
commands!”

Holmes cast his eye languidly over the monitor. “You
have a bug, Watson.”

“I am aware of that, Holmes. Regrettably, I have been
unable to locate its exact whereabouts.”

“But Watson, it’s perfectly simple. Look at the clues, my
dear fellow.”

My mouth dropped open. “Clues? Clues? What clues?” I
burbled hopelessly on like this for a considerable time.
Holmes regarded me in silence until I ran out of breath.

“First, Watson, there is the remarkable incident of the
first program-run.”

“But Holmes, nothing went wrong on the first program­
run!”

“That was the remarkable incident. And what do we
deduce from it, Watson?”

I racked my brains, and a tiny light dawned. “My God,
Holmes! It couldn’t have been a syntax error?’

“Very good Watson.” Holmes tactfully refrained from
pointing out that there was no syntax error message. “In
which case, Watson, we must ask ourselves what was
different about the second run.”

“Nothing, Holmes. The program was exactly the same
both times.”

“I know that, Watson. But ...”
“My God! The inputs, Holmes! I changed the inputs?’
“We progress. Excellent, Watson. And where might the

input value cause trouble?”
I cast my eyes over the program. The inputs were in lines

10 and 20. I failed to see any opportunity for error there.
But line 30 ... arithmetic, I confess, is not my strongest
point. “I suspect line 30 may contain the culprit, Holmes,”
I said slowly.

The great man nodded his assen* “If you care to study the
error message, Watson, you will find that the cause will
rapidly become apparent. For a medical man like yourself, a

73

diagnosis of the fatal condition should not prove difficult.”
My charitable and perspicacious reader may fare better

than 1.1 confess, even this information did little for my
addled brain. I stared blankly at the screen:

Division by zero
1.70141E+38

Division by zero? What 0? And what on Earth
is 1.70141E+38?

DRY RUNNING
But Holmes’s well of ideas had not yet run dry. He lit his
pipe, leaned back in his chair, and puffed solemnly. I half
expected to see him pick up his violin, but that was not to
be.

“Has it occurred to you, Watson, to dry-run the
program?”

“I beg your pardon, Holmes?”
“Work through the commands, using pencil and paper.

Very instructive, Watson. Very instructive.” Holmes took a
leaf from his notebook and drew up a small tabulation:

Line no. a b c

“Now, Watson: see that I have provided columns not
only for the line number being executed, but also for the

74

values of the three variables a, b and c that occur in the
program. I now proceed to trace through the lines in order,
paying due regard to the values assumed by those
variables.” And he wrote:

Line no. a b c

10 2 — —
20 2 4 —
30 2 4 ?

Holmes paused, and rubbed his chin in thought. “The
question being: what value does the mysterious ‘?’ take?”
His pencil moved on to perform the calculation:

c = 100 / (2 * a-b)

= 100 / (2 * 2 — 4)

= 100/0

DANGEROUS
DIVISION

“As I imagined,” he sighed. “There it is, Watson. Do
you see?”

“Well, Holmes .. . arithmetic has never been one of
my—”

“Suppose I gave you a bag of apples, Watson.”
“Holmes, that would be very kind of you, but I utterly

fail to see how—”
“And suppose there were exactly zero apples in it.”
“Zero? Whatever—”
“How many such bags, Watson, must I give you for you

to receive a hundred apples?”
I counted desperately on my fingers. A hundred bags?

No, that would still give me zero apples. A thousand? A
million? A googolplex? “It seems, Holmes, that no
quantity of bags would ever yield even a single apple. Let
alone a hundred.”

“Precisely, Watson! So the arithmetical statement 100/0
has no meaning!”

And then I saw. “So the computer cannot produce a
sensible answer for the value of c, Holmes!”

“Exactly. It does the best it can. The largest number it can
store is 1.70141E + 38, in Scientific notation."

“And what is that, Holmes?”
“About 170 million, million, million, million, million,

million.”

75

“That’s a lot of apples. Holmes! I’d get stomach ache if I
ate all of themV" Holmes sighed, and reached for his violin.

The divide-by-zero gremlin can
strike at any moment. Beware!

CRICKET BUG
The Inevitable Duck Cricket Club is the proud owner of a
war surplus IBM computer. Every year this is used to work
out the team’s bowling averages. The program uses four
variables:

rp - total runs scored off bowler at the end of
previous season

rt - total runs scored off bowler to date
wp = total wickets taken by bowler at the end of

previous season
wt = total wickets taken by bowler to date

It subtracts the totals to find the number of wickets taken
in the current season (wt-wp) and the number of runs
scored off the bowler in the current season (rt-rp), and
then divides to get the number of runs per wicket. Like this:

10 INPUT rp

20 INPUT rt

30 INPUT wp

40 INPUT wt

50 LET average = (rt - rp)/(wt - wp)

60 PRINT "average is ; average

At this stage of the season the bowlers’ figures are:

Bowler’s name rp rt wp wt

Will Bashitt 2001 2041 72 76
Tom Bowler 9 97 1 12
Dick Laird 403 625 48 49
L.B.Doubleyou 962 1531 17 17
Kit Bagge 122 365 26 35
Wally Pitt 743 967 73 81

76

One of the bowlers will make the program go wrong. Who,
and why? Try the inputs in turn. Write a dry-run table to
find the bug.

ANSWERS
Debugs is Coming!

(a) PRINT, not PRIMT

(b) INPUT, not IMPUT.

(c) Delete final + .

(d) One final bracket too many.

(e) LET X = 2 * Y is the only legal syntax.

(f) PRINT "FRED" isn’t a condition.

(g) THEN, not THEM.
(h) 2MUCH starts with a number and is illegal on the

CPC464.

(i) ADD is not a BASIC keyword.

(j) Nonsense in BASIC.

Cricket Bug

L.B.Doubleyou will cause a division-by-zero error because
wp-wt is 0 for his figures.

77

) FOR, 3,TO,1, NEXT!

We noticed in Chapter 8 that the GOTO command can
produce an endless loop, where the program does the same
things over and over again forever. For example,

-*10 PRINT "help!"

20 PRINT "get me out of here!"

30 PRINT "I’m stuck!"

40 GOTO 10

This shows that the computer can be made to carry out a
large number of commands with a very short program. It
would be far more useful, though, if we could make the
computer go round a loop a definite number of times, and
then exit the loop, ready to obey other commands. This
would let us tell the computer to carry out some repetitive
task, and then do things with the result. People find
repetitive tasks boring; computers like nothing better!

The keywords:

FOR TO NEXT
are designed to do just that. They are used in the general
form:

FOR variable = startnumber TO finishnumber

program lines

NEXT variable
which is known as a FOR . .. NEXT loop.

78

Suppose you want the computer to work out a seven
times table. It has to find:

1*7 2*7 3*7 ... 12 *7
in turn.

Here’s a bad answer. ‘Slow and dirty’ instead of ‘quick
and dirty’.

10 PRINT "1 * 7 = 1 * 7

20 PRINT "2 * 7 = "; 2 * 7

30 PRINT "3 * 7 = "; 3 * 7

40 PRINT "4 * 7 = "; 4 * 7

50 PRINT "5 * 7 = "; 5 * 7

60 PRINT "6 * 7 = "; 6 * 7

70 PRINT "7 * 7 = "; 7 * 7

80 PRINT "8 * 7 = "; 8 * 7

90 PRINT "9 * 7 = "; 9 * 7

100 PRINT "10 * 7 = "; 10 * 7

110 PRINT "11 * 7 = 11 * 7

120 PRINT "12 * 7 -"; 12 * 7

Pheeeeeewwwww!
It’s bad, because it has lots of lines that do almost the

same thing. And suppose you wanted the table to continue
up to 1000*7? Or 1000000*7? Yuk!

Fortunately, there’s a much more efficient way to
proceed. The idea is to set up a variable, say n, running
from 1 to 12. We work out

n * 7
for n = 1, 2, 3, ..., 12, by using a loop. Then we stop the
loop.

This is the whole program:

start finish
I I

10 FOR n = 1 TO 12

20 PRINT n;" * 7 = ";n * 7

30 NEXT n

79

Let’s see how this works. I’ll follow through the line
numbers being carried out, with comments on what’s
happening.

Line
number

Commentary Value
of n

10 The FOR n= 1 TO 12 command starts
by setting n to the value 1 (the
startnumber). 1

20 Work out 7 * n and print. 1
30 The NEXT tells us to test the value of n

to see whether the loop has finished. If n
is greater than or equal to the
finishnumber (here 12) we exit the loop
and go on to the command immediately
after the NEXT command (if there is
one; if not, stop). This is not the case, so
we go back to the start of the loop, the
FOR command.

10 Now increase n to 2 2
20 Work out 2*7 and print. 2
30 Test for end: no, so back to the FOR. 2
10 Increase n to 3 3
20 Work out 3*7 and print. 3

20 Work out 12 * 7 and print. 12
30 Test for finish. This time n= 12, which is

the finishnumber. So we exit the loop.
That is, instead of going back yet again
to the FOR command, the program
carries on to the line after NEXT.

Here there isn’t one, so it stops.
12

80

We can draw the loop as a flowchart:

Now, I admit that a seven times table isn’t very exciting.
But a table up to 1000000*7 would be more impressive, and
just as easy:

10 FOR n = 1 TO 1000000

20 PRINT n;" * 7 = ";n * 7

30 NEXT n

You may care to try this. It will take about a day or so for
the computer to carry it out! Switch off when you get fed
up.

The variable n in the FOR and NEXT commands is
called the loop counter. It is important to use the same
variable in both commands:

The loop-counting variable in

the FOR and NEXT commands

must match up.

81

FOR N = whatever it is
t~i-------------------same variable

NEXT N

You may not use something like this:

FOR N = whatever it is

T
NEXTM

has hysterics

The CPC464 can’t cope with NEXT M if it hasn't
already found FOR M. so gives:

Unexpected NEXT...

On many computers, loops with non-matching variables
will not lead to error messages or crashes. BUT the
computer will not do anything remotely like what you
intended.

On the CPC464 the variable in the NEXT command may
be omitted altogether. The computer will automatically
match it to its FOR command.

FOR N = 1 TO 12
NEXT

But you must put it in the FOR command at the start
of the loop.

TELLYGRAM

Procedural Pete the Pedestrian Programmer is trying to
download software (receive a program) from the Micronit
84 network system, but his telly’s on the blink and a lot of
the program has been obliterated. Can you work out what
it should be?

82

CUMULATIVE ADDITION
If you want to add up a whole lot of numbers that vary
regularly, you can use a loop. You will need a variable to
act as a ‘running total’. For example, we can work out:

1+2+3+4+5+6+7+8+9+10

using this loop:

10 LET sum = 0

20 FOR n = 1 TO 10

30 LET sum = sum + n

40 NEXT n

50 PRINT sum

Note that we set up sum, the running total, to an initial
value zero. And this is done before the loop starts. This is
important: it has to be given a starting value somewhere;
and if you do it inside the loop, you keep resetting it to the
start, which is silly. Setting up a start value for a variable is
called initialization.

Initialize before you loop.

Let’s just see how the program does the addition. Here are
the variables involved, and how they change.

83

n sum takes new value

0 at start
1

1 0+1 2d’
2

r~
1+2 2d’

3
c-
3 + 3 2d»

4
r~
6 + 4 (=10)

_____ 1

5
r

10 + 5 2d?
6

r
15+6 (= 21)

7
1

21 +7 (= 28)

8
r~

28 + 8 (= 36)

9
r-

36 + 9 (= 45) _ l
10 45 + 10 (= 55)

YOU TOO CAN BE A GENIUS!

The great mathematician Carl Gauss showed his genius at a
very early age. When he first went to school, his teacher set
the class the problem of adding all the numbers between 1
and 100, that is,

1+2+3+4+5+ ... +99+100

Gauss took one look at this, and immediately wrote a
number on his slate. ‘There it is’, he said, putting it on the
teacher’s desk. The teacher didn’t believe he could have got
the answer so quickly. But at the end of the lesson, when
the other children had handed in their answers ... only
Gauss got it right!

Write a program that uses a FOR ... NEXT loop to
find the total that Gauss worked out in his head.

84

STING IN THE TAIL

In fact, there were no computers in those days, and Gauss
did it by finding a short-cut. Can you see how to work out
the answer without using a computer and without doing
lots of sums?

THREE PROGRAM PROBLEMS
(a) Write a program that lets you input a phrase, and

then prints it out 20 times, each on a new line. Try it
with the phrase:

I MUST NOT CHEW BUBBLEGUM IN CLASS

See? Computers can be useful in practical situations!
‘Computer, write a thousand lines ... ’

(b) Without running this program, work out what it does.
Then run it and see if you’re right.

r-* 10 FOR n = 1 TO 10

20 PRINT n
30 IF n * n - 25 THEN PRINT "bingo!"

— 40 NEXT n

(c) Write a program that uses a loop to find all whole
numbers n between 1 and 100 for which:

n * n * n + 6875 * n = 150 * n * n + 93750

What numbers n solve this?

ANSWERS

Tellygram

10 PRINT "SIX TIMES TABLE"

20 FOR N = 1 TO 12

30 PRINT N; " SPACE TIMES SPACE 6 = ";

40 PRINT 6 * N

50 NEXT N

85

You too can be a Genius!

10 LET sum - 0

20 FOR n = 1 TO 100

30 LET sum = sum + n

40 NEXT n

50 PRINT "total is ";sum

The answer is 5050.

Sting in the Tail

Gauss paired off the numbers from both ends, like this:

1 + 100 = 101
2 + 99 = 101
3 + 98 = 101

50 + 51 = 101

So there are 50 pairs, each adding up to 101, and the total
is 50 * 101 = 5050.

Moral-. Think first, compute

later!

Three Program Problems

(a) 10 PRINT "input phrase"

20 INPUT phrase$

30 FOR n = 1 TO 20

40 PRINT phrase$

50 NEXT n

(b) It prints out the numbers from 1 to 10 in order. Further,
when it finds a number n such that n * n = 25, it shouts
"bingo!". This occurs at n = 5. (In other words, the

86

(c)

computer is solving the equation n * n = 25 by
systematic trial-and-error.)

10 FOR n = 1 TO 100

20 IF n * n * n + 6875 *n = 150 * n * n + 93750

THEN PRINT n

30 NEXT n

The numbers n that get printed are 25, 50, 75.

87

Inside the
1111 Computers
w ® Brain

This chapter isn’t about programming. It’s about the way
your computer actually works. You don’t have to read this
to be a good BASIC programmer, but I thought you might
find it useful anyway. A lot of things in computing make
more sense if you have some idea of what is really going on
inside the machine.

88

ZEROS AND ONES

Deep down inside, computers work by shuffling pulses of
electricity around. The timing of these pulses is controlled
by a clock—a circuit that ‘licks’ electronically at a very
high speed. Four million licks per second is typical of home
computers. By contrast a big computer may work at a
thousand million licks per second.

Each tick, the CPU (Central Processing Unit, remember?
If not, read Chapter 1 again) looks to see whether there is a
pulse of electricity or not. The pulses form code signals,
telling it what to do. It then sends similar code signals to
other parts of the computer.

In the early days, the circuits that controlled these pulses
were very slow and clumsy, and used big vacuum tubes.
Nowadays they are constructed photographically on the
surface of a tiny chip of silicon. A chip the size of a penny
can contain a quarter of a million circuit components! The
complexity of a chip is similar to drawing a map of
London on the head of a pin. Usually there are a number
ofchips, each intended to perform a specific task; and
these chips shuttle messages around to tell each other what
to do next.

89

The computer makes only a very coarse distinction
between:

• No electricity
• Lots of electricity

This is done to minimize errors caused by ‘noise’ in the
circuits.

It is convenient to use the numbers 0 and 1 to represent
the absence or presence of a pulse.

0 means ‘no electrical pulse’
1 means ‘one electrical pulse’

Each 0 or 1 is called a bit of information.
Here is a typical message.

Clock ticks

It corresponds to the sequence of bits:

01101001

and has eight bits in it.
Computers use certain special sequences of bits to

represent numbers, letters, or instructions. For example,
letters are usually represented in ASCII code (American
Standard Code for Information Interchange) which starts
off like this:

A 01000001

B 01000010

C 01000011

D 01000100

E 01000101

Z 01011010

90

Numbers are dealt with in a different code, called binary.
In its simplest form this goes:

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

255 11111111

And commands are stored in yet another code, for
example:

THEN 11101011

TO 11101100

STEP 11100110

FOR 10011110

LIST 10 100111

etc.

When programming in BASIC you don’t need to know any
of these codes. I’ll explain why in a minute. But it’s worth
realizing that a simple line of BASIC such as:

10 FOR X = 1 TO 5

is handled by the computer in a form more like this:

(In fact it’s even more complicated, but the general idea is

00001010 10 (binary)

10011110 FOR (special)

0 10 1 1000 X (ASCII)

00111101 = (ASCII)

00000001 1 (binary)

11101100 TO (special)

00000101 5 (ASCII)

91

right.) So the BASIC line becomes a long series of electrical
pulses, like this:

_nnnmin—mi__ nr__nr
Clock ticks---- -

Notice that the codes all come in 8-bit blocks. This is
because almost all home computers use chips that handle
bits in groups of 8 at a time: they are 8-bit machines.
(Commercial computers are often 16- or 32-bit machines;
scientific ones often more.) A series of 8 bits is called a
byte.

PULSE CODE PUZZLE
What would the phrase BAD CAT look like:

(a) In ASCII code?
(b) In electrical pulses?

(ASCII for ‘T’ is 0101011)0, and ASCII for ¡SPACE] is
00100000.)

THE MEMORY
Pulses are used to shuttle information around. A similar
system is used to store information. The way to think of
this is to pretend that the memory consists of row upon
row of little switches, with:

1 representing an ON switch
0 representing an OFF switch

like this:

0 0 0 0 10 1 0

92

The internal memory of the computer comes in two types:
1. RAM (Random Access Memory). This can be changed

by the programmer, and its contents are lost when the
power is turned off.

2. ROM (Read Only Memory). This holds in permanent
form all the instructions that tell the CPU what to do.
This does not get lost when the power is turned off;
and can’t be altered by the programmer.

MEMORY SIZE

The amount of memory is usually measured in kilobytes.
One kilobyte = 1024 bytes; that is 8192 bits. This may
sound a lot, but since it takes one byte to hold a single
character (ASCII code uses 8 bits per letter) you could only
get about half a page of this book into one kilobyte of
RAM.

The word ‘kilobyte’ is abbreviated to the letter K, so for
instance 7K would mean 7 kilobytes. Typical memories in
home computers nowadays are:

16K or 32K of ROM
16K, 32K, 48K, or 64K of RAM

These would hold about 8; 16, 24, or 32 pages of this
book. This is more than enough for most programs.
The Amstrad CPC464 has 64K of memory, which is more than
you’ll be likely to need... unless you want to handle lots of
data. And then you really need an outside memory,
preferably as disc drive, which is quick to get at and stores an
awful lot of information cheaply.

For example, suppose you want to catalogue a library of
1000 books, by author and title. You’d need, typically,
about 60 bytes per book:

20 bytes for author 40 bytes for title
i;

A A M 1 1 N E

DAVID HARWOOD

LEWIS C A R R OI 1

"1 1 1

THE HOUSE A I POOH CORNER

GAMES TO PLAY ON YOUR AMSTRAD C P C 4 6 4

Al ICE'S ADVENTURES IN WONDERLAND AND THR

93

(Woops! OUGH THE LOOKING-GLASS has got the
chop, even with 40 bytes.) That gives a total of 60,000
bytes, so you might just squeeze it into 64K. And there
would be precious little room for any programs to handle
the data—for instance, to arrange items in alphabetical
order.

I recently read in an American newspaper an excellent
rule for deciding how much computer memory to buy. Add
14 to your salary. That is, if you earn 50K ($50,000) then
buy 64K. If you earn 34K then buy 48K. The point it was
making was that making a fuss about needing a large memory
is often just snobbery.

THE OPERATING SYSTEM

The instructions in ROM are known as the Operating
System of the computer. They tell the CPU how to go
about doing everyday tasks like:

• Read the keyboard to see which key has been
pressed

• Print a character to the TV screen
• Decide what a given line Qf BASIC means
• Send signals to a cassette recorder or disc drive

to save a program in permanent form

and a thousand and one other jobs.
The CPU is capable of handling all of these, but only if

they are broken down into a series of very simple steps.

MACHINE CODE

Each such step has its own representation in yet another
code (oh, yes: there are lots and lots of codes, depending
on what’s most effective for the job being done!) called
Machine Code.

For example a simple line of BASIC like:

20 LET A = B + C
is handled by the CPU like this:

94

1. Search through the ‘variables’ area of RAM to find a
variable labelled ‘B’.

2. Take the number stored in B and put it into a special
part of the CPU called an accumulator register.

3. Search through the ‘variables’ area of RAM for a
variable labelled ‘C’.

4. Take the number stored in C and transfer it to another
special register in the CPU.

5. Add the number in the special register to the one in the
accumulator register and store the result in the
accumulator register.

6. Search through the ‘variables’ area of RAM to find a
variable labelled ‘A’.

7. If there isn’t one, set one up at the end of the
‘variables’ area.

8. Take the contents of the accumulator register of the
CPU and place that in the variable ‘A’.

And in fact, each of these steps would be broken down into
even simpler tasks. And the whole lot would then be coded
into lots of 0s and Is.

For instance, suppose ‘B’ holds 7 (which is 00000111 in
binary, but to keep it simple let me use decimal) and ‘C’
holds 6. Then the sequence of steps has this effect:

Step
CPU registers

Accumulator Special
‘Variables’ area of RAM

95

STRUCTURE OF THE COMPUTER

Much of the ROM consists of a BASIC interpreter which
works out what the computer must do to carry out any
particular BASIC command. The rest handles cassettes and
discs, generates character shapes, keeps an eye on the
keyboard, and so forth.

The RAM is divided into definite areas with particular
tasks. For example the:

Program area
Variables area
Video RAM

stores the program
stores values of variables
stores information controlling the
screen display

So now our picture of the computer’s structure has got
more detailed and of course there’s more to it even than
that.

RAM

96

HOW A PROGRAM IS RUN

Here, in simplified form, is what goes on when you type in
and RUN a program.

1. The Operating System tells the CPU to scan the
keyboard. As each key is pressed, the result is sent to
the Program Area of RAM for storage. Then the CPU
looks for the next key.

2. When you give the command RUN, the Operating
System tells the CPU to execute the program.

3. The CPU looks through RAM to find the first
program line.

4. It looks at the ROM to find the BASIC interpreter, in
order to find out two things:

(a) Which line will come next. (Note that IF,
FOR.. .NEXT, GOTO and so on can make this
different from the next line in numerical order.)

(b) How to convert the line into Machine Code, to
carry it out.

5. It then carries out the series of Machine Code
instructions for that line.

6. It uses the result of 4(a) to look up in RAM the next
line of the BASIC program.

7. And so on until it gets to the end.

The point to realize is that the CPU spends an awful lot
of its time looking either through RAM or ROM to find
the information it needs. It’s like a person who can only do
a job by looking up each step in the handbook.

Note also that each line of BASIC is converted to
Machine Code by the interpreter every time it is executed.
It may have occurred before, for instance in a loop. The
CPU does not realize this: it asks the interpreter to deal
with it all over again.

This problem with an ‘unintelligent’ interpreter is the
major reason why BASIC is far slower than Machine Code.
But BASIC is so much simpler to write! One solution is a
more sophisticated technique called a compiler: this
changes the whole program into Machine Code first, before
it is carried out. But compilers are harder to produce.

You can learn to program directly in Machine Code, to

97

improve the speed, but it’s tough going. (See the Shiva
catalogue for Machine Code books for ZX81, Spectrum,
Dragon, BBC, Commodore, Electron, VIC 20, Atmos and
Oric-1, etc.)

No, that’s not the end of the story. Computers are very
complicated machines indeed, and we’ve barely scratched
the surface. There are dozens and dozens of BASIC
commands I haven’t had room to explain yet; and that’s
just the tip of a gigantic iceberg. And the whole subject
changes dramatically every few years. But at least we’ve got
started. And this chapter has gone on too long already, so
I’ll stop here.

ANSWERS

Pulse Code Puzzle

(a) 01000010 01000001
01000011 01000001

(b)

01000100 00100000
01010100

Clock ticks

98

Glossary

Accumulator register The place where numbers are
added up.

ASCII code American Standard Code for Information
Interchange. Represents symbols as sequences of 0s and Is
in a standard way.

BASIC Beginner’s All-purpose Symbolic Instruction
Code. Computer language widely used on home
computers.

Binary A method of writing numbers using only the
digits 0 or 1.

Bit A code digit 0 or 1.

Branch A place where a program can carry out one of
several different options.

Bug A mistake in a program.

Byte A sequence of eight bits, such as 10110010. Most
home computers use one byte to store each item of
information.

Central Processing Unit The ‘brains’ of the computer:
the part that controls what it does. Abbreviated to CPU.
Usually resides on a single chip.

Character A symbol that the computer can print on the
TV screen, such as X, 7, %, and so on.

Chip An electronic circuit built on the surface of a tiny
piece of silicon by photographic etching methods and
vapour-deposition. Lots of components crammed into a
very small space.

99

Clock An electronic circuit that sets the timing of all
electrical signals inside the computer.

Command A single BASIC instruction, such as PRINT
"FRED".

Compiler A fancy program that takes any program
written in BASIC and converts it into instructions that the
computer’s CPU can understand.

Condition A statement that is either true or false, used
to cause a branch in a program.

Crash When a program stops, or gives an error message,
where it isn’t intended to. Sign of bugs!

Data Items of information.

Debugging Making a program work properly.

Decimal point Written as a full stop in BASIC.

Disc drive A device that stores lots of information on a
magnetic disc.

Division sign In BASIC, this is 7’ not ‘ ’.

Dollar sign ($) Used in BASIC to tell the computer to
work with strings, that is, sequences of characters.
Dry-running A method for debugging a program by
working through parts of it by hand.

Endless loop A state the computer sometimes gets into,
where it carries out the same commands over again
forever. Due to faulty programming.

Enter To type a program from the keyboard.

Error message Message printed by the computer if it
spots a mistake.
Execute To carry out the instructions in a program.

Exit To leave a program loop.

Flowchart A diagram that uses boxes linked by arrows
to show what the program will do. Overrated as a
teaching aid, but sometimes useful.

Function A rule that associates with each variable some
particular value.

1OO

Information Facts, figures, anything that can be put into
symbols.

Initialize Set up values of variables at the start of a
program or a part of a program.

Input To feed information into the computer.

Interpreter Program permanently stored in memory to
convert BASIC into instructions that the CPU can
understand, one line at a time.

Jump Instruction to the program to move to a line that
is not the next in numerical order.

Keyboard Used by the operator to type instructions into
the computer.

Keyword Special BASIC word such as PRINT, NEW,
RUN, LIST.
Kilobyte Unit of memory size equal to 1024 bytes or
8192 bits. Roughly equivalent to half a page of text.

Line number Number written in front of each BASIC
command, used by the interpreter for reference purposes.

Loop Part of a program that works through the same
sequence of commands several times, usually changing
some of the variables as it does so.

Loop counter Special variable used to ensure that the
loop stops after the required number of stages.

Machine Code Computer language that the CPU is
designed to work with.

Manual Instruction book for a computer.

Memory Circuitry that lets the computer store data.

Monitor High-quality TV set used for display.

Multiplication sign In BASIC this is ‘*’, not ‘ x ’.

Name (of a variable) Codename given to a variable so
that the computer can tell which one is required.
Examples are B, STRENGTH, C$.

Numeric variable A variable whose values are numbers.

1O1

Operating System Program permanently stored in
memory which tells the CPU how to carry out all of the
routine tasks needed to make the computer work.

Output To get information out of the computer.

Patch Addition to a program to cure an error, usually
as an afterthought, by making the program do a detour.

Power supply Device that supplies electricity to the
computer at the correct voltage, etc. On the CPC464 it’s
built into the monitor or MP1 modulator.
Printer Mechanical device that produces typed output on
sheets of paper.

Program List of instructions for the computer to carry
out.

Program line In BASIC, the program is divided into
numbered lines.

Program memory The part of memory reserved for
storing programs.

Prompt Message accompanying an input command to
remind the user what is required.

Pulse Electrical signal in the computer’s circuitry, used
to convey information from one par? to another.

Quotes Punctuation " " used to define the start and end
of a string.

RAM Random Access Memory. The part of memory
that can be changed by the programmer.

Register Special memory area in the CPU.

ROM Read Only Memory. Used by the computer
manufacturer to hold permanent instructions, such as the
Operating System. Cannot be changed by the user, except
by physical removal of the chips.

Runtime error Bug in a program that only shows up
when it is executed.

Spaghetti Bad programming style caused by over-use of
GOTO commands.

String Any sequence of characters—including none at
ah!

102

String variable A variable whose value is a string.

Syntax error A mistake in the ‘grammar’ of BASIC.

User You.

Value The specific item, string or number, currently
stored in a given variable. Can be changed by the
programmer.

Variable A labelled section of memory that can hold a
number or string, which can be found by looking for that
label. The label is the name of the variable. It can be set
up by the programmer for use in a program.

Variables area The section of memory that stores the
variables and their values.

Video RAM The area of memory that stores
information needed for the monitor display.

Visual Display Unit Fancy name for monitor or
TV screen. Abbreviated to VDU.
Wordprocessor Intelligent typewriter that can process
text—e.g. correct spelling mistakes, rearrange sentence
order, change words.

Zero On computers this is written 0 to distinguish from
the letter ‘Oh’.

103

Commands
and Symbols
Index

Keywords Arithmetic

CLS 28 + 43
FOR 78 — 45
GOTO 62 * 48
IF 59 / 51
INPUT 30 0 52
LET 38 51
LIST 12 0 4
NEXT 78 > 62
NEW 14 < 61,62
PRINT 20 > = 61,62
RUN 13 < = 62
STOP 66,68 = 46
THEN 59 < > 62
TO 78

Special Keys and Symbols
¡CAPS LOCK| 5

CTRL! 4,21

IDEL) 5Punctuation
|ENTER| 10

n n 21
5 25 (ESC J 64

27 [SHIFT] 4
$ 32
9 13,31 SPACE! 9

104

Other titles of interest

Gateway to Computing Book 2: Amstrad CPC464 £4.95
Ian Stewart

Gateway to Computing Book 3: Amstrad CPC464 £4.95
Ian Stewart

(All the books in the Gateway Series are also available for the
BBC Micro. ZX Spectrum. Dragon 32, Commodore 16 and Commodore 64)

The Complete Introduction to the Amstrad CPC464 TBA
Eric Deeson

On the Road to Artificial Intelligence:
Amstrad CPC464 £5.95
Jeremy Vine

Bells and Whistles on the Amstrad CPC464 £4.95
Jeremy Vine

Computers in a Nutshell £4.95
Ian Stewart

Computing: A Bug’s Eye View £2.95
Ian Stewart

Programming for REAL Beginners: Stage 1 £3.95
Philip Crookall

Programming for REAL Beginners: Stage 2 £3.95
Philip Crookall

Brainteasers for BASIC Computers £4.95
Gordon Lee

‘Just the job for a wet afternoon with the computing class’—
Education Equipment

Shiva also publish a wide range of books for the BBC Micro. Electron. ZX
Spectrum. Atari, VIC20 Commodore 64. Commodore 16, Commodore Plus/4.
Sinclair QL, Dragon, Oric and Atmos computers, plus educational games
programs for the BBC Micro. Please complete the order form overpage to receive
further details.

ORDER FORM
I should like to order the following Shiva titles:
Qty Title ISBN Price

_____ GATEWAY TO COMPUTING BOOK 2: AMSTRAD CPC464 1 85014 023 5 £4.95

_____ GATEWAY TO COMPUTING BOOK 3: AMSTRAD CPC464 1 85014 078 2 £4.95

_____ THE COMPLETE INTRODUCTION TO THE

AMSTRAD CPC464 185014 002 2 TBA

_____ ON THE ROAD TO ARTIFICIAL INTELLIGENCE:

AMSTRAD CPC464 185014 064 2 £5.95

_____BELLS AND WHISTLES ON THE AMSTRAD CPC464 1 85014 063 4 £4.95

_____ COMPUTERS IN A NUTSHELL 1 85014 018 9 £4.95

____ COMPUTING: A BUG'S EYE VIEW 0 906812 55 0 £2.95

PROGRAMMING FOR REAL BEGINNERS: STAGE 1 0 906812 372 £3.95

PROGRAMMING FOR REAL BEGINNERS: STAGE 2 0 906812 59 3 £3.95

____ BRAINTEASERS FOR BASIC COMPUTERS 0 906812 36 4 £4.95

Please send me a full catalogue of computer books and software: □
Name ...
Address...

This form should be taken to your local bookshop or computer store. In
case of difficulty, write to Shiva Publishing Ltd, Freepost, 64 Welsh
Row, Nantwich, Cheshire CW5 5BR, enclosing a cheque for £

For payment by credit card: Access/Barclaycard/Visa/American
Express
Card No Signature...................................

Gateway to
Computing

¡5fhe

Step through the gateway and enter a computer
wonderland. It’s a world of intrigue, novelty and
enormous fun.

Come and meet the creatures aboard the silicon ship:

• Carlton Q. Cashsnitcher, the Gnatwest Bank Manager
• Ivan Nokyablokov, Spy with a Mission
• Sherlock Holmes and Dr Watson, Anti-bug Squad

They, and others, are involved in a curious
entanglement of problems, puzzles and projects.

What’s more, they’re pioneers of a new ‘fun’ approach to
BASIC learning. You’ll find them very friendly towards
newcomers to computing.

This is the first book in a series, specifically designed to
suit your computer and help you to get the most out of
your machine.

It is your freedom ticket to fly past the Guardians of the
Gateway and seek the key to Computing.

Shiva Publishing Limited

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Gateway to Computing with the AMSTRAD CPC 464 Book 1
	Contents
	Introduction
	1 - Make Friends with your Computer
	2 - Programs
	3 - Running a Program
	4 - PRINTSs Charming
	5 - INPUT the Boot
	6 - A The Very Able Variable
	7 - All Right for Sums
	8 - IFs but no buts
	9 - Bugs under the Rug
	10 - FOR, 3,TO,1, NEXT!
	11 - Inside the Computer's Brain
	Glossary
	Commands and Symbols Index
	

✅ Raw HQ scan : Maxime CROIZER for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ Thanks to Rafa CPCMANIACO for lending the book

✅ 2020-11-29

