

Gateway to
Computing
with the
Amstrad CPC464

Ian Stewart is Reader in Mathematics at the University of
Warwick, having been Visiting Professor to a number of
overseas universities. He has contributed to several
computer magazines, including Sinclair User, Oric Owner
and Popular Computing Weekly, and has written for The
Guardian, Nature, New Scientist and Scientific American.
Ian also writes occasional science fiction stories Vox Analog
and Omni, and is a member of the British Science Fiction
Association.

Now in his thirties, Ian has already written more than
forty books, about half of these being computer books
written jointly with Robin Jones including: PEEK, POKE,
BYTE & RAM!, Machine Code and Better BASIC and
Easy Programming for the ZX Spectrum. His books have
been translated into ten languages. He is an amateur
cartoonist under the pseudonym ‘Cosgrove’ and has
published three cartoon books on advanced mathematics -
in French - as well as Computing: a Bug’s Eye View.

Ian lives in a small Warwickshire village with one wife,
two sons, and two cats rejoicing in the names Star and
Stripes. His hobbies include home computing, science
fiction, playing the guitar, painting scenery and making
wine.

Eleanor Ball’s first encounter with computers happened by
accident in 1966, whilst analysing the chemical properties
of wheat and bread flour.

She soon abandoned the direction suggested by a BSc
General Degree from London University in favour of
computing. The next five years were spent as a
Programmer with British Airways, establishing systems on
various mainframe computers and terminal equipment at
bases throughout Europe.

In 1973, Eleanor retired from city life and came to settle
in Cheshire with her husband and young family. It was to
be nine years before Shiva discovered her, in the early years
of the company, and her interest in computers was
rekindled. Eleanor’s freelance editorial work for Shiva has
turned into an almost full-time occupation, with even the
family being caught up in the Gateway series, as her
husband and children have all shared her involvement in its
production and testing!

GATE WAY TO
COMPUTING
with the
Amstrad CPC464

Ian Stewart
Mathematics Institute, University of Warwick

Series Editor
Eleanor Ball

Shiva Publishing Limited

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CW5 5ES, England

© Ian Stewart, 1985

ISBN 185014 023 5

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording and/or otherwise, without the prior written permission
of the Publishers.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net price
given by the Publishers in their current price list.

Typeset by MHL Typesetting Limited, Coventry
and printed by Devon Print Group, Exeter

Contents

viiIntroduction

1 Holmes Recollects... 1

2 Loopier and Loopier 12

s She was only a Farmer’s DATA 19

$ Bugliness is next to Ugliness 28

s Things with Strings 38

6 Array of Sunshine 50

7 Squire Stoatthrostle Picks up the TAB 69

Logic Chopping 82

f INTs and INTeaters 96

Glossary 111

Commands and Symbols Index 115

Introduction

The Gateway to Computing series is designed to introduce
young people (and those who are young at heart) to
fundamental ideas of computer programming in an
entertaining and comprehensible way. Each volume is
available in several different versions for the main models
of home computer currently popular. Book 1 deals mostly
with the meanings of the main BASIC commands.
Although this volume does introduce several new
commands, the emphasis is on programming techniques
and structure.

I sometimes worry that we’re producing a world run by
machines that hardly anyone understands. Being able to
write programs is only one facet of what is fashionably
called ‘computer literacy’, but it’s an important one. It
helps rob computers of their mystique. And there we’re
going to need all the help we can get.

The series is based on the belief that it is possible to be
serious about something without being solemn. Learning
can be fun. Difficult ideas can be easier to grasp if they are
presented in a lighthearted way. Hence the cast of curious
characters that romp through these pages: Squire
Stoatthrostle; Sherlock Holmes and Dr Watson; Bernard
and Ermintrude Gasquet; and Shifty Syd the Scurrilous
Salesman - to name but a few.

With their invaluable assistance (and occasional
obstruction) Gateway to Computing Book 2 leads its
readers gently but thoroughly through a variety of topics,
including:

• Data storage
• Computer logic
• Debugging
• String building

• Multiple loops
• Data manipulation

As well as discussion of computing, there are puzzles,
problems, and programs to help the reader practise new
techniques. Answers are provided at the end of each
chapter.

The numerous sample programs include:

• Analysis of weather data
• A prime number generator
• Pete’s Phonebook
• Pickaxo’s Plotter

The first chapter is a brief resume of the main topics
covered in Book 1, and the rest of the material is carefully
selected to be at a suitable level for anyone who has already
mastered those elementary BASIC techniques.

The Gateway to Computing series has, I fondly hope,
two main virtues:

• It’s understandable
• Above all, it’s fun

VIII

1 Holmes
Recollects...

As I climbed the long flight of stairs to the private ward in
the Royal Nose, Throat and Private Eye Hospital in
Bethnal Green, a single phrase kept pounding through my
mind. That fiend, Moriarty (may he rot for eternity)! For it
was Professor Moriarty, the Napolean of Crime, who had
brought my illustrious colleague Mr Sherlock Holmes to
these dire straits. I wondered how much damage a twenty­
pound jade frog could do to an unprotected human skull. I
must admit, I feared the worst.

So, when the nurse bade me enter the dimly lit
bedchamber, I was relieved to see Holmes sitting up in bed,
hastily concealing a pipe under his pillow. But his next
words sent a chill along my spine.

“Who the devil are you?” he said.
“Holmes! Do you not remember me?”
“No,” he said quietly. “I don’t even remember me. I

have no idea who lam.”
“Amnesia!” I cried.
“Delighted to meet you, Mr Amnesia,” said Holmes at

once. “I can see by the cut of your lapel buttonhole that
you buy your suits at Popodopoulos’s Tailors in Athens.
Your haircut is obviously Greek, and your eyebrows have
an ill-balanced droop that is generally acquired by one who
spends much of his life on long sea-voyages. Are you by
any chance Mr Stavros Z. Amnesia, the shipping
magnate?”

“No, no,” I interrupted him - though in truth it pleased
me to see that he had lost none of his acuity of
observation, nor his remarkable deductive talents. “My
name is John H. Watson, MD, and you are the famous
Sherlock Holmes. Whereas amnesia - ”

“I don’t remember anything,” said Holmes.

“Absolutely right, old chap!” I was pleased that Holmes
had not forgotten his medical terminology.

“For what am I famous?” asked Holmes.
“You are the world’s most celebrated and most able

detective,” I told him. “And, on the side, one of the
meanest debuggers in the computer business.” (My readers
will no doubt recall Holmes’s decisive contributions to an
excellent tome called Floodgates to Computing Volume 1,
or something like that.)

“What is a computer, Dr Holmes?” he asked plaintively.
“No, you’re Holmes. A computer, my dear Holmes, is

an information-processing device.” He looked at me
blankly, and I tried again. “A machine for manipulating
data. An artificial brain. A number-cruncher.” Still blank.
“A technological and educational breakthrough: no home
should be without one.” Nothing. “The greatest invention
since the safety-pin.” Still nothing. “A plastic box with lots
of buttons that people use to play TV games.”

He smiled, suddenly. “Oh, one of those," he said.
At last, a sign that his memory was returning! “But you,

Holmes,” I went on, “you did more than play games. You
wrote programs. ”

2

His smile broadened. “Yes, yes, of course I did. How
fascinating, Dr Whatsit.” The smile faded and he broke
off. “Just one thing bothers me, though.”

I waited.
“I haven’t the foggiest idea what a program is.”

PROGRAMS

“A program, Holmes, is a list of instructions for the
computer to carry out, in order to perform some particular
task. It is written in one of a number of languages specially
designed for the purpose. A very common and popular
language is called BASIC. That stands for

“Bending Acronyms So the Initials look Cute.”
“No, Holmes: it’s Beginners’ All-purpose Symbolic

Instruction Code.”
“Quite,” said Holmes drily.

A Transparent Device whereby the Author
Reminds his Readers of what They should have
Remembered from Book 1

“I shall remind you of some of the features of BASIC,
Holmes,” I said in my helpful manner. “Perhaps that will
jog your memory.” I searched through my pocket-book as
I spoke. “Commands in BASIC are given using certain
keywords: things like RUN, LIST, STOP, NEW, FOR,
NEXT, TO, IF, THEN, INPUT, PRINT, LET, GOTO.
Do those ring any bells?”

His brow furrowed in thought. “Are they perhaps types
of traffic-signal for those newfangled horseless carriage
things?”

At that moment I thought I smelled something - it
reminded me of burnt feathers. But I was distracted by
Holmes’s reply. “Not quite, Holmes,” I humoured the
poor lunatic. “But you’re getting warm.”

“Deuced funny,” he said. “I do believe you’re right.”
“Actually, Holmes, they are BASIC keywords.” At last I

found the card that I was looking for - it was in my
trouser pocket. “This is a BASIC reference card, based on
an admirable book which I think was called Gatepost to
Computing Book 74, though my recollection may be at
fault.” And I showed Holmes the card.

3

Watson’s Handy Reference Card

RUN Carry out a program.
LIST List the commands in a program.
STOP What do you think it means?
NEW Clear out an old program from memory.
FOR/NEXT/TO Used to form a loop. The loop starts with a

command such as FOR N = 1 TO 10 and ends
NEXT N. The commands in between are carried out
10 times, with N taking values 1, 2, ..., 10.

IF/THEN Branch commands. IF (condition) THEN (action)
will cause the action to be taken if the condition is
true. If it is false, the program goes on to the next
line.

INPUT Allows the user to tell the computer a number, or a
string. A string is any sequence of symbols, such as
"I8NY" or "FRED". The quotes are not part of the
string, but are used to show where it starts and stops.

PRINT Display a symbol on the TV screen.
LET Assign a value to a variable. A variable is a named

area of memory that can be used to store a number
or a string that may change. LET K = 17 sets
numeric variable K to the value 17. LET B$ =
"FRED" sets string variable B$ to the value
"FRED". Note the $ sign on names of string
variables.

GOTO Causes the program to jump to a new line. Frowned
upon in polite society. Still, what’s wrong with a few
GOTOs among friends?

CLS Clears the screen.

HOLMES'S INTEREST REKINDLED

“Well, Holmes?” 1 enquired anxiously. “Do you recall
these BASIC commands, and how to use them?” I
fervently hoped so. If he did not, then I feared we would
not progress much beyond Chapter 1.

Holmes started to wriggle uncomfortably. “I think so,

4

Whatsit. They do seem somehow familiar. What should I
do if I can’t remember them?”

“I suggest you read a peerless primer that I have in my
rooms at 22IB Baker Street, Holmes. Gatehouse to
Computing Book 492, or so I believe. Written by a chap
called Iron Stewpot, for Sheba Publishing.” (I have always
prided myself on the excellence of my memory, and with
good reason, as you see.)

“Yes!” cried Holmes. “I do believe my memory is
returning! I have a strange picture in my head ... it looks
like . . . like a pair of Wellingtons with mice sitting inside
them.”

“That’s the book. Holmes!”
“Aha. Which leaves only one blank area in my memory,

Whatsit. How did I - wait a minute, Whatsit, is someone
cooking a pheasant? I swear I can smell - oh, never mind,
I prefer grouse anyway. What I was about to ask is: by
what sequence of events did I come to be ensconced in this
infirmary?”

“That fiend, Moriarty (may he rot for eternity)!” I
briefly explained to Holmes how he had concealed himself
among the rhododendrons at Grating Towers, stately home
of the Duke of Westhamptonshire, having been told by an
informant that Professor Moriarty was planning a daring
theft of the Duke’s priceless pearl cufflink-holder. Holmes
had been about to apprehend the thief red-handed when an
accomplice had swatted him on the cranium with a twenty­
pound jade frog. (My personal suspicions lie with the
butler, but it could have been the policeman!)

“Of course!” cried Holmes. “And then, no doubt, that
fiend Moriarty (may he rot for eternity) and his accomplice
absconded with the booty.”

“No, they left the dear Duchess unmolested, Holmes.”
He ignored my feeble jest. (Booty ... beauty. Get it?

Oh, never mind.)
“Pass me my trousers, Whatsit! We must track the

villain down at once!”
“Of course, Holmes. While his trail is still hot!”
Holmes broke into a sweat. Fever? Or merely a burning

desire to catch that fiend Moriarty (may he rot for
eternity)?

“Whatsit?”
“Yes, Holmes?”
“ Whose tail did you say was hot?”
“No, Holmes. Trail.”

5

“Oh. I thought ... You know, 1 do feel very peculiar. 1
think I may be running a temperature. It’s very warm in
here, don’t you think?”

“Oh, 1 don’t know, Holmes. It’s snowing a blizzard
outside and Matron has left the windows wide open as
usual. I’ll just - ”

At that moment the pillow burst into flames, and
Holmes leaped with great agility from the bed, trailing
smoke from the seat of his flannel pyjamas and clasping
his hands to the affected area. It would seem that he had
been in such a hurry to conceal his pipe from nurse’s
prying eyes that he had omitted to put it out before
stuffing it under his pillow.

Well, speaking as a medical man, I was pleased to see
such incontrovertible evidence that, as they say, smoking
can damage your health.

COMMERCIAL BREAK

PROGRAMMING
PREREQUISITES

Watson and Holmes’s little episode is intended to make
sure that you remember the main ideas from Gateway to
Computing Book 1. You don’t have to have read that
book, but you should recognize the BASIC keywords in
Watson’s Handy Reference Card, and know how to use
them. You should also be able to input a program, edit it,
and run it. And fix it up if there’s something wrong, using
simple debugging techniques.

Here are a few problems to test your knowledge. Make
sure you understand the answers before reading the next
chapter. All program listings in this book use upper case
only. Pressing CAPS LOCK| before entering any program will
automatically generate upper case letters on the screen. (Of
course, you can always use lower case if you wish.)

TIM’S TOTALIZATOR

1. Torpid Tim, the Tranquil Trainee, has been told to
write a program to add up all the numbers from 1 to
1000. While he has a quiet snooze behind the coffee­
machine, see if you can help him out.

ó

CASHSNITCHER'S CREDIT CARD
Carlton Q. Cashsnitcher, Manager of the Lower Standards
branch of Gnatwest Bank pic, has decided to send all of his
customers an Armenian Excess credit card (don’t go home
without it) ... provided they have a bank balance of at
least £500. He has hired you as a consultant (at an
exorbitant fee because he doesn’t know any better) to write
a program that will accept as input the customer’s name
and bank balance, and tell his Chief Cashier whether or
not to send them a credit card. You must also make the
program loop so that it is ready to input the next name;
and if you input the name "MONGOOSE" the program
should stop. (No, don’t ask me why " MONGOOSE",
OK?)

Can you earn your exorbitant fee?

VOTING MACHINE
The next program is part of a software package produced
by Apfelsoft Inc. for the Stork-37 micro, for computerized
voting in elections. The users input their choices, and the
program counts the votes and says who wins. Like most
Stork-37 products, it doesn’t work.

Fix it, using, for example, the dry-run technique.

10 PRINT "COMPUTAVOTE
AUTODEMOCRACY PACK V.7B"

20 PRINT "NAME OF CANDIDATE 1?"

30 INPUT N$

40 PRINT "PARTY OF CANDIDATE 1?"

50 INPUT P$

60 PRINT "NAME OF CANDIDATE 2?"

70 INPUT N$

80 PRINT "PARTY OF CANDIDATE 2?"

90 INPUT P$

100 PRINT "GOOD MORNING, VOTERS!"

110 PRINT "THIS IS YOUR CHANCE TO"

120 PRINT "EXERCISE YOUR DEMOCRATIC
RIGHTS."

130 PRINT "YOUR CHOICE IS BETWEEN"

140 PRINT "1: SPACE! ";N$;" SPACE] OF THE
SPACE] ";P$;" SPACE] PARTY"

150 PRINT "AND"

160 PRINT "2: ¡SPACE] ";N$;" SPACE] OF THE
SPACE] ";P$;" SPACE] PARTY"

170 PRINT "PLEASE INPUT YOUR CHOICE: 1
OR 2"

180 LETT1 = 0

190 LET T2 = 0

200 INPUT C

210 IF C = 1 THEN LET T1 = T1 + 1

220 IF C = 2 THEN LET T2 = T2 + 1

230 PRINT "HAS THE POLL CLOSED?"

240 INPUT A$

250 IF A$ = "NO" THEN GOTO 100

260 IF T1 > T2 THEN PRINT "CANDIDATE 1
WINS FOR THE [SPACE "; P$;" ¡SPACE]
PARTY"

270 IF T1 < T2 THEN PRINT "CANDIDATE 2
WINS FOR THE [SPACE] P$;" ¡SPACE]
PARTY"

ANSWERS

Tim’s Totalizator

10 LET SUM = 0
-*20 FOR N = ITO 1000

30 LET SUM = SUM + N

- 40 NEXT N

50 PRINT "TOTAL IS:";SUM

8

Cashsnitcher’s Credit Card

10 PRINT "ARMENIAN EXCESS CREDIT
RATING"

20 PRINT "CUSTOMER’S NAME?"

30 INPUT NAMES

40 IF NAMES = "MONGOOSE" THEN GOTO
100

50 PRINT "CURRENT BALANCE?"

60 INPUT BALANCE

70 IF BALANCE < 500 THEN PRINT "DO NOT
SEND CARD TO SPACE] ";NAME$

80 IF BALANCE > = 500 THEN PRINT "SEND
CARD TO SPACE] ";NAME$

90 GOTO 20

100 PRINT "THIS PROGRAM WAS SPONSORED
BY"

110 PRINT "ARMENIAN EXCESS
INCORPORATED"

120 PRINT "(DON’T GO HOME WITHOUT IT)"

Voting Machine

The program splits into three main parts. Lines 10-160 set
things up ready to run; 170-250 form the main part, where
the votes are taken and counted; and 260-270 say which
candidate won. The program can be debugged section by
section.

The first step is to run the program, input test values,
and see what happens. For instance we could take:

Name of candidate 1: M MOUSEBENDER
Party of candidate 1 : SOCIALIST DEMAGOGUE
Name of candidate 2: J P GROTTY
Party of candidate 2: SELFSERVATIVE

9

Straight away something goes wrong, because the computer
then tells us our choice is between:

1: J P GROTTY OF THE SELFSERVATIVE PARTY
AND

2: J P GROTTY OF THE SELFSERVATIVE PARTY

which seems a little unfair to poor old Mousebender.
However, undaunted, we enter one vote for our friend
Mousebender (candidate 1) and then tell the computer the
poll has closed. Now we’re told:

CANDIDATE 1 WINS FOR THE SELFSERVATIVE
PARTY

which has the right candidate but the wrong party.
Hmmm.
Here’s what my debugging session led to.

1. In lines 30, 50, 70 and 90 the variables N$ and P$ are
used twice with different meanings. A dry run shows
that these variables always end up containing
candidate 2 and party 2. To fix this, we have to
separate the variables, say using M$ and P$ for
candidate and party 1, and N$ and Q$ for candidate
and party 2. Which means we must:

Change N$ to M$ in line 30
Change P$ to Q$ in line 90

There are some consequent changes in the first section
of the program:

Change N$ to M$ in line 140
Change P$ to Q$ in line 160

The first part of the program now checks out, but the
whole thing is still wrong.

2. A dry run of this section shows that lines 180 and 190
reset T1 and T2 to zero each time round the loop.
They should come much earlier, outside the loop:

Move line 180 to line 92
Move line 190 to line 94

IO

3. When you input ‘NO’ as answer to line 250 you get a
whole mass of unwanted printout. The jump is to the
wrong line.

In line 250 change GOTO 100 to GOTO 170

4. All now seems well in the middle section of the
program, but the final section is all haywire. Whatever
else happens, it always tells us that the winner is from
the (Party 1) party. Clearly we must:

Change P$ to Q$ in line 270

5. It now seems to be working pretty well, but that doesn’t
necessarily mean it’s bug-free. Try giving both
candidates the same total vote (1 each is easy). Nothing
gets printed out. You need a final line:

280 IF T1 = T2 THEN PRINT "VOTES EQUAL:
RUN-OFF REQUIRED"

11

Loopier and
45 Loopier

How loopy can you get? Quite a bit! Now that you know
how to use the simple FOR . .. NEXT loop, you can go
for some fancy loops too. In particular:

(a) Loops that don’t go up in steps of 1.
(b) Combinations of several loops.

Let’s start with (a).

SEVEN LEAGUE BOOTS
There is an old story of a man who had a pair of seven­
league boots—boots that took him seven leagues at every
step. (A league is about 5 kilometres.) In BASIC there is a
command:

STEP

that can be used with a FOR ... NEXT loop to move the
loop counter up (or down) in step sizes different from 1.
For instance, here’s a print-out of distances that can be
travelled in seven-league boots.

r-* 10 FOR N = 0 TO 100 STEP 7
20 PRINT "DISTANCE TRAVELLED:

30 PRINT N; " LEAGUES"

40 NEXT N

This works just like the standard loop, except that N goes
up in sevens:

12

0, 7, 14, 21, .. ., 98

It stops there because the next value, 105, would be greater
than 100, the finish number of the loop. (Seven-league
boots are a nuisance if you only want to go half a league to
the chip shop!) Similarly:

FOR N = 25 TO 35 STEP 2

would give the numbers:

25, 27, 29, 31, 33, 35

(the odd numbers between the start and finish values occur
because the start is odd and the count goes up in twos),
and:

FOR N = 1 TO 1000 STEP 100
would go:

1, 101, 201, 301, 401, 501, 601, 701, 801, 901

MOUSEBENDER’S INTELLIGENCE TEST
Marmaduke Mousebender the Mysterious Mathematician is
trying to find FOR ... NEXT commands to produce the
following series of numbers:

(a) 2, 4, 6, 8, 10, 12, 14, 16
(b) 10,13,16,19,22,25,28,31,34
(c) 50, 60, 70, 80, 90, 100
(d) 514,537,560,583,606,629

Can you help him?

COUNTDOWN
You can even use a negative STEP size, to count
downwards: _________________

count down in Is

FOR N = 10 TO 0 STEP - 1

PRINT N

NEXT N

PRINT "OH WELL, BACK TO THE
DRAWING-BOARD"

13

MULTIPLE LOOPS

Suppose you wanted to print out a complete set of
multiplication tables—2 times, 3 times, ... all the way to
12 times. Go on, suppose. Do it for me.

You could write 11 separate programs, starting with:

10 FOR N = 1 TO 12

20 PRINT N;"*";2;" = ";N * 2

30 NEXT N

and change the 2 in line 20 to 3, 4, 5, ..., 12 in turn. But
that would take quite a lot of effort. And the programs
would all look almost the same. Which suggests using a
second loop, whose counter K runs from 2 to 12. The main
outline of the program would go like this:

10 FOR K = 2 TO 12

program to produce K times table

inner loop

60
L

NEXT K
or whatever fits best

Now it’s easy enough to modify the 2 times table program
above to make a general K times table:

FOR N = 1 TO 12

PRINT N;"*";K;" = ";N * K
note use of
semicolons

40 NEXT N

So, fitting this into the outline and tidying a little, we get:

—10 FOR K = 2 TO 12

i*20 FORN = 1 TO 12

30 PRINT N; K; " = N * K

L40 NEXT N

PRINT

— 60 NEXTK
puts in a blank line
between tables

14

Well, that’s fascinating! We’ve ended up with two loops,
one inside the other.

You might like to experiment with what happens if you
get the two NEXTs in the wrong order, like this:

r*10 FOR K = 2 TO 12

•- 20 FOR N = 1 TO 12

30 PRINT N;"*"; K ;" = ";N * K

- 40 NEXT K

50 PRINT

60 NEXT N

The CPC464 discovers the error, and won’t even start to run.

When one loop lives inside another:

(a) Make sure it is completely inside,

with the NEXTs in the right order.

(b) Use different names for the two

loop counters.

Loop counter names can be any valid variable name.

PRESTI-DIGIT-ATION

According to Marmaduke Mousebender, the Magic
Mathematician, there is exactly one two-digit number that
is twice the product of its digits. Write a program to find
it. (Two-digit numbers are those between 10 and 99. The
product is what you get by multiplying. For example, you
could try 72. Twice the product of the digits is twice 7*2,
which is twice 14, or 28. This is not equal to 72, so 72
doesn’t work. Now you’ve only got 89 more to try ...)

Hint-, use a multiple loop, one loop for each digit.

15

PICKAXO’S PLOTTER

Pablo Pickaxo the Pre-Raphaelite Painter has written a
program to produce rectangles on the screen, made up by
repeating a single character, like this:

PPPPPPPPP
PPPPPPPPP
PPPPPPPPP
ppppppppp,

WIDTH =9

— HEIGHT = 4 K$ = P

He uses three variables: HEIGHT and WIDTH to set up
the shape, and K$ to choose the symbol being plotted.

Unfortunately, a nestful of termites wandered over
Pickaxo’s program. Pablo debugged it successfully, but in
doing so he made a bit of a mess of the program. His
mallet got a bit mucky too. Can you fill in the parts that
have been obliterated?

10
20
30
40

PRINT fl RECTANGLE PRINTER

INPUT WIDTH
PRINT " WHAT W ?"

height 1
WHICH CHARACTER ?

70

80 CL^fRF
90 FOR L w 1 TO 5

DD IMT

120 r$ = " " Al
130 -Wf- X = 1 TOW*
140 LET RS R* + K$
150
160 FOR 1 TO 4

" I SPACE I " R$

FOR P = 1 TO HEIGHT
200
210

16

ANSWERS

Mousebender’s Intelligence Test

(a) FOR N = 2 TO 16 STEP 2

(b) FOR N = 10 TO 34 STEP 3

(c) FOR N = 50 TO 100 STEP 10

(d) FOR N = 514 TO 629 STEP 23

Presti-digit-ation

10 FOR A = 1 TO 9

20 FOR B - 0 TO 9

30 LET X = 10 * A + B

40 IF X = 2 * A * B THEN PRINT "GOT IT!
space! ";X

50 NEXT B

60 NEXT A

Pickaxo’s Plotter

10 PRINT "RECTANGLE PRINTER"

20 PRINT "WHAT WIDTH?"

30 INPUT WIDTH

40 PRINT "WHAT HEIGHT?"

50 INPUT HEIGHT

60 PRINT "WHICH CHARACTER?"

70 INPUT K$

80 CLS

90 FOR L = 1 TO 5

100 PRINT

110 NEXT L

120 LET R$ = " "

130 FOR X = 1 TO WIDTH

17

140

150

160

170

180

190

200

210

LET R$ = R$ + K$

NEXTX

FOR Y = 1 TO 4

LET RS = " SPACE! " + RS

NEXT Y

FOR P = 1 TO HEIGHT

PRINT RS

NEXT P

18

She was only
a Farmer’s DATA

(Pronounce that ‘darter’ to get the joke.) (What joke? Ed.)
Millicent MacHaddock the Misguided Milkmaid, famous

as the inventor of the Millie-Litre, has been asked by her
father Hamish MacHaddock to computerize the farm
records. Millie decides to start by listing all the cows in her
flock. (What? Herd of cows? All together now. . . “Of
course I’ve heard of cows!”) Each cow has a serial number
marked on its ear. (Each cereal has a cow number marked
on its ear, too, but that’s not relevant here.) The full list is
too long to record here, but it starts like this:

CORNFLAKE 22443
JUNKET 71450
COWSLIP 22222
FARRAH 93665
XANT1PPE 69888

The problem is: how to put this information into a
program.. . and how to get it out again when needed.

19

Millicent has a datastorage problem. It is solved by the
BASIC keywords:

DATA READ RESTORE

which let you incorporate lists of data into a program, and
retrieve items from the list.

COMPUTERIZED COWS

Data can be numbers, or strings, as you wish. Items in a
DATA list must be separated by commas. Strings do not
need quotes round them. Millicent’s problem is solved, in
part, by the program lines:

10 DATA CORNFLAKE, 22443
20 DATA JUNKET, 71450

30 DATA COWSLIP, 22222
40 DATA FARR AH, 93665

50 DATA XANTIPPE, 69888

and so on.
To use this list, Millicent must be able to extract an item

from it. This is done by the command:

READ

used in the form:

READ variable

This gives to the staled variable the value of the ‘next’ item
in the DATA list.

What do 1 mean by ‘next’? It’s like this.
Think of the list as having a pointer attached by the

computer. When the program is first run, this points to the
start of the list:

pointer

10 DATA CORNFLAKE, 22443

20

Every lime a READ is performed, the computer moves the
pointer one place along the list. So after the first READ,
we have:

pointer

10 DATA CORNFLAKE, 22443

Next READ, it moves on to point to JUNKET, then to
71450, and so on.

The variable name used in a

READ command must have the

correct type (numeric or string)

for the DATA item that it

refers to.

That is, the first READ would refer to CORNFLAKE,
which is a string, so you’d need to use:

READ N$
------dollar sign for a string

but the second would refer to 22443, a number, which
requires something like:

READ NUMBER
— no dollar sign on variable name

To start with an easy one, we’ll write a program to print
out the DATA list. Here it is:

10 DATA CORNFLAKE, 22443

20 DATA JUNKET, 71450

30 DATA COWSLIP, 22222

40 DATA FARR AH, 93665

-original DATA list

50 DATA XANTIPPE, 69888

r* 60 FOR K = 1 TO 5

70 READN$

80 READ NUMBER

90 PRINT N$,NUMBER

-100 NEXT K

21

Let’s just see how it works, as we run through the loop.
The arrows show the effects of the READs.

Value of K N$ becomes NUMBER becomes Pointer points to

(before start) - - --CORNFLAKE

1 CORNFLAKE'* — 22443

CORNFLAKE 22443^_,___ JUNKET

2 JUNKET-" 22443 ^-71450

JUNKET 71450^^2--___COWSLIP

3 COWSLIP -""''''71450 22222

COWSLIP ___-FARRAH

4 FARRAH """ 22222 ^^93665

FARRAH 93665 "*̂2- —-XANTIPPE

5 XANTIPPE ------ ' 93665 ^—69888

XANTIPPE 69888 falls off end: no
more READs
allowed

See how the pointer just ticks along the list? See how the
READs work?

PETE’S PHONEBOOK
Protocol Pete, the Phonophiliac Programmer, wants to
store his personal telephone directory as a DATA list, and
print it out. Here’s the directory:

Name Phone number

Fred Subtiebug
Amanda Bander-Gander
Lolita Nabokova
Ytzak ben Nevis
Igor Biva

667142
1234567
9999
434772
1001001

What does the program look like?

22

TABLE LOOK-UP

Printing the list out isn’t too tricky. Another useful
program would be one that searches the list for a name,
and prints it out together with its number. For Millicent,
this would answer questions like ‘I wonder what Cowslip’s
number is?’; and for Pete, ‘I must call Lolita at once, but
what’s her number, drat it?’

The idea is to READ through the list, using an IF
command to take action once you find what you want.
Like this:

10 DATA FRED SUBTLEBUG, 667142

20 DATA AMANDA BANDER-GANDER,
1234567

30 DATA LOLITA NABOKOVA, 9999

40 DATA YTZAK BEN NEVIS, 434772

50 DATA IGOR BIVA, 1001001

23

SHORT-CUTS

60 PRINT "NAME FOR SEARCH?"

70 INPUT SNAMES

80 PRINT "SEARCHING FOR
SPACE! SNAMES

90 FOR K = 1 TO 5

100 READ NAMES

110 READ NUMBER

120 IF NAMES = SNAMES THEN PRINT
"FOUND SPACE] SNAMES,, "
THE NUMBER IS "¡NUMBER

130 NEXT K

(a) You can string DATA items together in longer lines, and
scatter the DATA statements throughout the program.
Only the overall order counts. The computer combines
all DATA commands into a single list.

(b) You can READ several items in one command, for
example:

READ NAMES, NUMBER

The pointer jumps on by the number of items read.

QUICKIE

Use short-cut (b) to simplify the programs in this chapter
so far.

RESTORE

I said above that when the pointer gets to the end of the
DATA list, no more READing is allowed.

That’s true; and if you try to READ after falling off the
end of the list, you’ll cause a crash and get an error
message:

DATA exhausted

24

But you may need to run through a DATA list several
times—for example, searching for several items, one after
the other.

The keyword:

RESTORE

sends the pointer back to the start of the list, ready to
begin running through it all over again. Here’s a test
program.

10 DATA A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,
R,S,T,U,V,W,X,Y,Z

20 FOR K 1 TO 26
$ because a character isREAD X$ a string (with one symbol)

40 PRINT X$;

50 NEXT K

60 RESTORE

70 GOTO 20

Try this; then delete line 60 and try again. See the
difference?

COMPUCROSTIC

Solve for the across words; spot the BASIC keywords in
the down direction.

Nose noise

Sour fruit

Small film part

Felines

25

PROCNATAKADSKI’S PROBLEM

Comrade Sergei Procnatakadski, the other Russian spy, is
sending a code message to Leningrad. His code will change
the letters of the alphabet like this:

Original ABCDEFGHIJ KLMNOPQRSTUVWXYZ

Code HAMERNDSICKLBFGJ OPQTUVWXYZ

(a) Write a program that will allow Comrade
Procnatakadski to input his message, letter by letter,
and print out the coded version.

(b) Write a program to decode messages the same way.

ANSWERS

Pete’s Phonebook

10 DATA FRED SUBTLEBUG, 667142

20 DATA AMANDA BANDER-GANDER,
1234567

30 DATA LOLITA NABOKOVA, 9999

40 DATA YTZAK BEN NEVIS, 434772

50 DATA IGOR BIVA, 1001001

100 PRINT "PETE’S PHONEBOOK"

110 PRINT

120 FOR T = 1 TO 5

130 READ X$,Y
140 PRINT X$;" |SPACE| |SPACE| |SPACE| ";Y

150 NEXTT

Quickie

Computerized cows Delete lines 70 and 80. Replace by:

70 READ N$, NUMBER

2Ó

Table look-up Delete lines 100 and 110. Replace by:

100 READ NAMES,NUMBER

Compucrostic
SNIFF
LEMON
EXTRA

CATS j
I 1—FOR

NEXT

Procnatakadski’s Problem
The DATA list is the same for both programs: it’s broken
into bite-sized chunks for convenience.

10 DATA A,H,B,A,C,M,D,E,E,R,F,N,G,D,H,S

20 DATA I,I,J,C,K,K,L,L,M,B,N,F,O,G,P,J

30 DATA Q,O,R,P,S,Q,T,T,U,U,V,V,W,W,X,X,
Y,Y,Z,Z

Now to put a message into code, add the lines:

100 PRINT "NEXT LETTER OF MESSAGE?"

110 INPUT M$

120 RESTORE

130 FOR N = 1 TO 26

140 READ AS, C$

150 IF AS = MS THEN PRINT C$

160 NEXTN

170 GOTO 110

To decode, all you need to do is change line 150 to:

150 IF C$ = MS THEN PRINT A$

The input loop goes on forever. You could add a delimiter
command (see Chapter 5):

165 IF MS = "*" THEN STOP

which would stop the program if you input

27

~ Bugliness
IjEL is next
” to Ugliness

In Book 1 we took a look at syntax errors and runtime
errors. Both of these types of bug make their presence
pretty obvious, because they cause the program to crash.
Even then they aren’t always easy to find. But there are
more subtle types of bug, that don’t actually halt the
program, but just make it do the wrong thing.

Sometimes you can track this kind of bug down by
staring at the program listing, but usually all that gives you
is eyestrain and a sore head. A better way is to use a bit of
detective work; and there are some very useful tricks that
involve making small changes to the program to test what
it’s really doing.

TEST LINES

Hortense Mousebender is writing a program which, will let
people find out the lunch menu for any day of the week.
So far she’s got this:

10 DATA SUN, ROAST BEEF, MON,
SPAGHETTI,TUE, FISH AND CHIPS, WED,
SHEPHERD’S PIE

20 DATA THU, MOUSSAKA, FRI, LASAGNA,
SAT, STEAK

30 PRINT "SPECIFY DAY"

28

40 INPUT SDAYS

50 FOR D = 1 TO 6

60 READ DAYS, MENUS

70 IF DAYS = SDAYS THEN PRINT
"MENU IS SPACE| MENUS

80 NEXT D

On running this, she finds it works fine for MON and
THU as input days. But when she tries SAT, it doesn’t
print anything. What’s wrong?

Holmes sat up irritably. “Yes, Watson?”
“You are in receipt of a telegram from a Madame

Mousebender, Holmes.”
“Another bug, Watson?”
“Indeed, Holmes.”
Holmes took the telegram from my hand. “Let me see it,

Watson. Hmmm... I wonder why she has lasagna on
Friday...? No matter... Aha! Since the input is causing
the problem, I deduce that something must be wrong after
line 40, where the input first occurs. I suspect the loop,
Watson.”

“I was about to say the same thing, Holmes.”
“No doubt. I have a strong inkling of the solution at this

very moment, but to settle the matter beyond any doubt,
let us apply a small test.”

“I’ll get the fingerprint powder at once, Holmes.”
“No, no, Watson, you ancient buffoon. Not that test.

This one!”
Holmes turned to his bedside terminal and added a line:

65 PRINT D; DAYS

“That should prove extremely revealing,” he said.
uHow, Holmes?” I cried.
“It will show us exactly what is going on within the loop,

Watson. In particular, which days are being READ.”
“Devilishly cunning, Holmes.”
Holmes sighed, and typed RUN. Across the screen of the

TV set there appeared the words SPECIFY DAY. Holmes
typed in the offending entry:

SAT

29

I watched in anticipation as the screen filled with messages.

1 SUN
2 MON
3 TUE
4 WED
5 THU
6 FRI

and... stopped.
“But—” 1 gasped. “Where the devil is SAT?”
“It was never read, Watson. The loop only gets as far as

D = 6, which is FRI. And that suggests an obvious
culprit—”

“The loop finishnumber!” I cried. “It should be 7!”
“Exactly, Watson.”

This is one way to see what’s wrong with a program.
Add test lines to print out intermediate values of variables,
to see what’s happening. Make the computer itself tell you
what’s going wrong.

If the test lines you try don’t seem to help, delete them
and try again. When you’ve found the bug, and swatted it,
take out the test lines.

Hortense Mousebender got line 50 wrong. It should have
been:

50 FOR D = 1 TO 7
t correct finishnumber

Fix this line, take out line 65, the test line, and check that
the program now works correctly on all seven input days.
(Don’t forget to use the 3-letter abbreviations for inputs,
MON, TUE, etc.)

TRACES
A common piece of bugliness is that the program fails to
jump correctly. Marmaduke Mousebender the Manic
Mathematician has invented a computer game. The
computer chooses a whole number between 1 and 100. The
user makes a guess, and is told whether it is too high or too
low. If it is correct, the computer says so.

30

This is his program.

10 DATA 54,72,66,98,4

20 READ CNUMBER

30 PRINT "WHAT IS YOUR GUESS?"

40 INPUT GNUMBER

50 IF GNUMBER > = CNUMBER THEN
PRINT "TOO HIGH"

60 IF GNUMBER > = CNUMBER THEN GOTO 30

70 IF GNUMBER = CNUMBER THEN GOTO
100

80 IF GNUMBER < CNUMBER THEN PRINT
"TOO LOW"

90 IF GNUMBER < CNUMBER THEN GOTO 30

100 PRINT "WELL DONE"

110 PRINT "WANT ANOTHER GO?"

120 INPUT Q$

130 IF Q$ = "YES" THEN GOTO 20

This gives you five goes. For more, add extra numbers to
the DATA list in line 10.

Well, fine, except that it didn’t work. When Marmaduke
tried it, he got this:

WHAT IS YOU GUESS?
? 43
TOO LOW
WHAT IS YOUR GUESS?
? 55
TOO HIGH
WHAT IS YOUR GUESS?
? 53
TOO LOW
WHAT IS YOUR GUESS?
? 54
TOO HIGH
WHAT IS YOUR GUESS?
?

31

“So it’s between 53 and 54. And a whole number,” said
Marmaduke to himself. And he went off to invent a whole
new kind of arithmetic, the Theory of Hyperintangible
Exotic Numeration Moduli. When that didn’t help, he
finally realized that there might be a bug in the program.

“Holmes, I believe 1 have an idea!”
“Well done, Watson. Well done.”
“I suspect that the program is behaving incorrectly,

Holmes.”
Holmes slapped his forehead with his palm—a nervous

habit I have noted often of late. I continued. “It appears
not to be jumping correctly, Holmes.”

“Indeed, Watson. And how do you propose to test this
wild conjecture?”

I lowered my eyes at the unanticipated query. “I haven’t
the foggiest idea, Holmes.”

The great man furrowed his noble brow in
concentration. Or was it sudden, involuntary pain?

“I suggest we put a trace on the program, Watson.” 1
confess to my bewilderment. Did Holmes think the
program was a horse?

“We must persuade the computer to tell us where it has
jumped, Watson. By adding suitable program lines.”

“Aha! Dashed cunning, Holmes!”
“Let me see... The jumps are GOTO 30, GOTO 100,

and GOTO 20. I propose we add lines to say when these
jumps have been made.”

“But how, Holmes?” He said nothing, but his fingers
skipped nimbly over the keyboard:

21 PRINT "20 EXECUTED"

31 PRINT "30 EXECUTED"

101 PRINT "100 EXECUTED"

It looked like a typical day during the French Revolution.
Then I recalled that in computer jargon, EXECUTE meant
CARRY OUT. “My word!” I gasped in admiration. “I see
it all now! If it jumps to line 20 then the program will
execute line 20—a simple READ statement—and then go
on to 21, the trace! And so line 21 will inform us that line
20 has been carried out! And the other jumps will be traced
by the selfsame means! Holmes, that’s amazing\”

32

Holmes sniffed—was he getting a cold? He typed RUN.
I watched the words build up on the antique monitor.

20 EXECUTED
WHAT IS YOUR GUESS?
30 EXECUTED
? 43
TOO LOW
WHAT IS YOUR GUESS?
30 EXECUTED
? 55
TOO HIGH
WHAT IS YOUR GUESS?
30 EXECUTED
? 53
TOO LOW
WHAT IS YOUR GUESS?
30 EXECUTED
? 54
TOO HIGH
WHAT IS YOUR GUESS?
30 EXECUTED

“Holmes! It never made the jump to line 700! But it
must, in order to end the game!”

Holmes merely smiled the faintest trace of a smile.

33

“But—confound it, Holmes—line 70 will force it to
jump to line 100! Look! IF GNUMBER = CNUMBER
THEN GOTO 100! So how can it have failed to get there,
Holmes?”

Holmes refurrowed his brow. I stared in horror at the
program. “It must, it must, it must\ It—” Holmes
interrupted my train of thought.

“Unless...” he said quietly.
“Unless what!" I cried in anguish.
“Unless it never gets to line 70, Watson.”
I felt as though a yawning pit had opened beneath my

very feet. “My God, Holmes, that’s it! Of course! I
never—” But Holmes was typing once more:

69 IF GNUMBER = CNUMBER THEN PRINT
"70 EXECUTED"

I stared at the listing. “Why 69, Holmes? Why not 71?”
Holmes sighed—another affliction I have noted often of

late.
“Watson, if it ever has GNUMBER = CNUMBER and
reaches line 70—as it should—it will jump forthwith to line
100. Line 71 would never be executed. But line 69 will do
the job admirably.”

What a genius that man is! I feel privileged to breathe
the same air. Except, perhaps, when he is smoking that
confoundedly smelly pipe.

Holmes ran the program anew. The print-out was much
as before. In fact, the print-out was exactly as before! Line
70 was never being reached!

Holmes stood awhile in uffish thought. “But we know,”
he mused, “that lines 50 and 80 are being executed, because
of the messages TOO LOW and TOO HIGH. I wonder.. ”

1 waited with bated breath (but failed to catch anything).
“Let us consider, Watson, lines 50 and 60. What if we

input the correct number, 54? Then GNUMBER and
CNUMBER are both 54, so the condition:

GNUMBER >CNUMBER

is false. And that...”
“Takes it on to line 70,” I said. “But we have already

established that it never gets to line 70, Holmes.”
“When you have eliminated the impossible, Watson,

then whatever remains, however improbable, must be the
truth.”

34

“You mean the computer’s bust?”
“No, Watson, I most certainly do not! If GNUMBER

equals CNUMBER then... aaaaaaaaahhhhhhhhhh!”
“What is it, Holmes?”
“Our analysis was at fault. Lines 50 and 60 do not say:

IF GNUMBER > CNUMBER...

They say:

IF GNUMBER > = CNUMBER. . .

Yes, that will be it.”
I failed dismally to comprehend. “Can such a small

change be responsible for so great a failure, Holmes?”
“Oh, indeed. Typical, and very likely indeed, indeed.

You see, Watson, if we change lines 50 and 60 to read:

IF GNUMBER > CNUMBER. . .

then when we input the correct answer 54 for CNUMBER,
line 50 becomes false. So we continue to line 60, also false.
And thence...”

“To line 70! And then 100!”
“Exactly, Watson.”
Holmes changed lines 50 and 60, and removed the traces

of his intervention. The program functioned perfectly. I
wondered briefly how he would manage without my able
assistance, but was too modest to voice the thought.

GNATWEST STRIKES AGAIN

Carlton Q. Cashsnitcher provides a computer banking
service to his best customers. He has written a program to
let them input their previous balance, list all debits (cash
taken out) and credits (cash put in), and read off their new
balance.

He is particularly proud of a trick that he uses in lines 90
and 130, using a nonsensical input 0 to break out of an
otherwise endless loop of inputs. This technique is known
as using a delimiter, see Chapter 5.

35

He is not so proud of the program’s record in actual use,
because it hardly ever gives the right answer. Worse, the
errors are sometimes in the customer’s favour. So he has
called in Despairing Dan the Debugging Man (you) to put
the program right. Can you do it?

10 PRINT "GNATWEST SAVINGS ACCOUNT"

20 PRINT "INPUT PREVIOUS BALANCE"

30 INPUT BAL

40 LET PBAL = BAL

50 PRINT "INPUT DEBITS ONE BY ONE"

60 INPUT D

70 LET PBAL = PBAL - D

80 GOTO 30

90 IF D = 0 THEN GOTO 100

100 PRINT "INPUT CREDITS ONE BY ONE"

110 INPUT E

36

120 LET PBAL = PBAL + D

130 IF E = 0 THEN GOTO 150

140 GOTO 110

150 LET FBAL = BAL

160 PRINT "FINAL BALANCE IS

170 PRINT FBAL

Test lines tell you what’s

going on.

Traces tell you where a jump

has gone.

ANSWERS

Gnatwest Strikes Again

There are errors in lines 70, 80, 90, 120. These should read:

70 LET BAL = BAL - D

80 IF D = 0 THEN GOTO 100

90 GOTO 60

120 LET BAL = BAL + E

37

Things
with Strings

A lot of people think of computers as machines that handle
numbers and do long, complicated sums. This is known in
the Trade as number-crunching, and computers are
certainly very good at it. But only scientists really need
number-crunching. Computers can do all sorts of other
things: draw pictures, keep records for businessmen,
control machinery, or write letters to people.

Already you’ve seen some programs that don’t crunch
numbers. Programs that print things, programs that look
for things. Programs like these are possible because
computers can crunch all sorts of symbols, not just
numbers. They deal with information: facts, figures,
anything that can be put into symbols. The design for a
bridge, the text of Lord of the Rings, the score of a
Beethoven symphony, or an advertisement for deodorant.

Lots of businesses now use computers as ‘intelligent
typewriters’ or wordprocessors. Here the computer is used
to crunch words and letters. It can correct spelling
mistakes, change errors, and print out neat copies
automatically.

The fundamental idea needed for this kind of work is
that of a string. Let’s remind ourselves from Book 1:

A string is a load of characters

strung together.

String variable names must

end with a $ sign.

When you set up a string variable using a LET
command, you put the value of the string variable in
quotes, like this:

36

LET A$ = "FRED"
LET CAT$ = "FELIX"
LET G$ = "BACH"

and so on.

The quotes round a string tell

you where it starts and where it

stops. They are not considered

to be part of the string.

In fact the quotes are like a pair of bookends: these hold
the books in place, but aren’t books themselves, right? And
quotes hold the string in place, but aren’t characters in the
string.

HOW LONG IS A (PIECE OF) STRING?

To find out how long a string is, that is, how many
characters it contains, you use the keyword:

LEN

in the form:

LET variable = LEN(string)

For example:

LET X = LEN("FRED")

LET L2 = LEN(CAT$)

In these cases, X will take the value 4 because the string
‘FRED’ has 4 letters. And L2 is a variable with value 5,
because the string variable CAT$ has value ‘FELIX’ and
there are 5 letters in ‘FELIX’.

Note the brackets-.

LEN (string)

brackets

The keyword LEN is a new kind of keyword. It’s not a
command: you can’t tell the computer:

39

10 LEN something or other

All you can do is use LEN to set the value of some
variable. LEN is called a function.

If you plug a variable into a

function, it gives you a value,

associated to that variable by

some definite rule.

Here the rule is ‘count how many characters occur’. If you
plug a string (or string variable) into the slot between the
brackets in LEN (), the result is a number.

If a string contains

SPACE] s, they still get

counted by LEN. For instance,
LEN("TOP SPACE] CAT") is

7, because 3AC is counted

as a character.

For example, this test program lets you input a string, and
tells you how long it is.

10 PRINT "INPUT STRING"

20 INPUT S$

30 PRINT "YOUR STRING CONTAINS
SPACE] LEN(S$);" SPACE)

CHARACTERS"

40

STRINGING STRINGS TOGETHER

We’ve already used the sign:

+

to mean ‘add two numbers’. But it has another meaning
which applies to strings. The expression:

AS + B$

now means ‘jam A$ and B$ end to end’. For instance,

"GREEN" + "FLY" makes "GREENFLY"

The fancy name for this is to concatenate A$ and B$.

DRILL PROBLEMS

1. What are the following strings?

(a) "TOOTH" + "PASTE"
(b) "SHUF" + "FLE"
(c) "BUG"+"LER"
(d) "C" + "ANT" + "ER" + "BURY"
(e) "X" + "Y" + "L" + "O" +"PHONE"

2. Find as many ways as you can to write:

"SNOUT"
by concatenating (adding) smaller strings.

3. RUN these two programs:

(a) 10 PRINT "HOUSE" + "BOAT"

(b) 10 PRINT" BOAT " + " HOUSE "

Are the results the same? What are they?

4. Find two strings A$ and B$ such that:

AS + B$ = "SLUNG"

B$ + AS = "LUNGS"

41

KOMPUTERS DON’T MAKE SPELLING
MISTAKES

Norton Greege-Whirdly, the Managing Director of Unclear
Selectronics Inc., has written a 100-page document
outlining the company’s plans for future expansion.
Unfortunately he discovers, very late in the day, that he
has spelt a word incorrectly throughout. Nobody had ever
told him that KOMPUTER wasn’t quite right.

Fortunately his program library inkludes a komputer
program (I regret that Greedge-Whirdly wrote this sektion
for me, and it’s too late to korrekt his text now) which will
put everything straight.

10 INPUT W$

20 FOR T = 1 TO 20

30 PRINT " [SPACE]

40 NEXT T

50 IF W$< > "KOMPUTER" THEN PRINT W$

60 IF W$ = "KOMPUTER" THEN PRINT
"COMPUTER"

70 GOTO 10

42

This lets him type in the dokument one word at a time, and
korrekts the spelling. The corrected version is printed down
the right-hand half of the screen. (With more fiddling you
can suppress the input messages, but this is beyond the
scope of this volume.)

Try it out on the first sentence in Greege-Whirdly’s
document:

UNCLEAR SELECTRONICS’ NEW KOMPUTER
DIVISION HAS JUST PERFECTED THE ZZUB
HOME KOMPUTER SYSTEM.

You should have noticed that there’s a new symbol in the
program:

This means ‘is not equal to’. It is obtained by typing:

s a
I don’t want to give you the impression that real

wordprocessors are as clumsy as this. You don’t have to
type the document in one word at a time! It will have been
prepared using the computer, and will already be stored in
memory. The computer can be told to search right through
the document, looking for occurrences of KOMPUTER
and changing them to COMPUTER. But the principle is
the same.

DELIMITERS

Because of the GOTO 10, the above program goes on
forever. You’d have to switch off to stop it. To allow you
to stop it whenever you feel like it, you can borrow a trick
from Carlton Q. Cashsnitcher, and use a delimiter. This is
any particular string that wouldn’t occur in an ordinary
text. Say ‘XXXXX’. Modify line 70 to read:

70 IF W$ < > "XXXXX" THEN GOTO 10

Now, if you don't input the delimiter ‘XXXXX’ then the
program goes to line 10 for the next word. But if you do
type ‘XXXXX’, then it exits the loop, and stops.

43

SPY IN THE SKY

Comrade Procnatakadski, the spy, has discovered the
secret plans of an American Bubblegum Factory and is
sending it back to Moscow in the hope that Russian
scientists can invent a bubblegum big enough to blow up
the whole world. He conceals the message in a program.

10 LET A$ = "DSKI"

20 LET B$ = "Y SPACE) BY SPACE! "
30 LET C$ = "IVING"

40 LET D$ = "S SPACE! ARR"

44

50 LET E$ = "PLAN"

60 LET F$ = "ROCN"

70 LET G$ = "OVE SPACE| P"

80 LET H$ = "DA"

90 LET 1$ = " SPACEl SUN"

100 LET J$ = "E SPACEl AT"

110 LET K$ = "AKA"

120 LET L$ = "SET SPACEl L"

130 LET M$ = "AT"

200 PRINT "TOP SECRET CODE MESSAGE"

210 PRINT "ABOUT 50 MEGATON
BUBBLEGUM"

220 PRINT E$ + D$ + C$ +1$ + H$ + B$ + E$ + J$ +
1$ + L$ + G$ + F$ + M$ + K$ + A$

230 PRINT "RUN AND DESTROY"

When are the plans going to arrive? Should the KGB send
agents to the bus station, railway station, or the airport to
pick them up?

45

THE EMPTY STRING

When you’re working with numbers, the number 0 is very
useful. And it has a special property:

X + 0 = X = 0 + X

for any number X.
There’s a string that has a similar property:

X$ + "whatever it is" = X$ = "whatever it is" + X$

for any string X$.
Any idea what it may be?
If you think about it, it has to be a string that contains

no characters whatsoever. This curious beast is called the
empty string, and it is written (logically enough) as:

n it

That is, two quotes with nothing in between. (An empty
bookcase consists of two bookends with nothing in
between, right?)

The ‘Computavote’ program in Chapter 1 records the
votes by keeping a ‘running total’ for each candidate - the
variables are given the initial value 0, then incremented in a
loop as the votes are cast. The empty string "" is often used
in the same way, in a program that uses a loop to build up
a complicated string. For instance:

10 LET E$ = ""

20 LET E$ = E$ + "TICK"

30 PRINT E$

40 GOTO 20

Try to guess what this does, then RUN it and see if you
were right.

BABOON BUILD-UP

The next program uses the empty string "" and
concatenation + to let you play a word-game with the
computer.

46

10 LET Y$ = "YESTERDAY I SAW A SPACE I "

20 LET B$ = "BABOON"

30 LET A$ = "" *----- empty string

40 PRINT Y$ + A$ + B$

50 PRINT

60 PRINT "TELL ME AN ADJECTIVE"

70 INPUT 1$

80 LET A$ = 1$ + " SPACEj " + A$

90 GOTO 40

RUN this. Every time you are asked for an adjective, input
one. (An adjective is a word that describes things—like:

GREEN
ECCENTRIC
RUBBERY
INTERCONTINENTAL
WILY

and so forth.) The computer builds up a description of
your baboon by adding all the strings together. If you
input the above in turn, it will end up by printing:

YESTERDAY 1 SAW A WILY
INTERCONTINENTAL RUBBERY ECCENTRIC
GREEN BABOON

47

See how long a sentence you can build. (The computer may
stop when it gets too long for its string-handling system.
Tough.) I got as far as:

YESTERDAY I SAW A MAGNIFICENT HAIRY
COLLAPSIBLE CHEAP FRAGRANT
INCOMPREHENSIBLE VAST SWEATY
INVISIBLE WILY INTERCONTINENTAL
RUBBERY ECCENTRIC GREEN BABOON

But I bet you can do better!

ANSWERS

Drill Problems

1. (a) "TOOTHPASTE"
(b) "SHUFFLE"
(c) "BUGLER"
(d) "CANTERBURY"
(e) "XYLOPHONE"

2. Sixteen ways!

"SNOUT"
"SNOU" + "T"
"SNO" + "UT"
"SNO" 4-"U" + "T"
"SN" + "OUT"
"SN" + "OU" + "T"
"SN" + "O" + "UT"
"SN" + "O" + "U" + "T"
"S" + "NOUT"
"S" + "NOU" + "T"
"S" + "NO" + "UT"
"S" + "NO" + "U" + "T"
"S" + "N" + "OUT"
"S" + "N" + "OU" + "T"
"S" + "N" + "O" + "UT"
"S" + "N" + "O" + "U" + "T"

3. No. (a) is "HOUSEBOAT" (b) is "BOATHOUSE"

4. A$ = "S" B$ = "LUNG"

48

Spy in the Sky

The message that the program prints out is:

PLANS ARRIVING SUNDAY BY PLANE AT
SUNSET LOVE PROCNATAKADSKI

So the plans arrive sunset on Sunday, and the KGB should
send its agents to the airport.

The Empty String

It prints things like:

TICK
TICKTICK
TICKTICKTICK
TICKTICKTICKTICK

until space runs out or you get fed up and put it out of its
misery by switching off.

49

Array of
Sunshine

It is 5 o’clock in the morning on a cold, winter’s day. As I
lie in bed I can hear the next door neighbours clambering
about on the flat roof of their garage. The occasional flash
of a torch beam stabs through a gap in the curtains into my
bedroom.

“Pass the pluviometer, Minnie.”
“In a moment, Max. I seem to have got my foot stuck in

something. And the barograph paper has wrapped itself
around my neck.”

“The anemometer’s bent, must have been the
hurricane.”

“Or Mrs Tankwimple’s cat, after pigeons again.”
“Come on, hand me the pluviometer, woman!”
“It’s the confounded pluviometer that my foot is stuck

in, you clod. I told you not to put it right where somebody
might tread in it!”

“Well, there’s not much room up here, what with the
sonic transponder system, two old bicycles, and a box full
of dead begonias. Where else do you imagine I could - ”

It is Minnie and Max Monsoon, the Merciless
Meteorologists. Every morning they go out and measure
the weather. There is an enormous splash. I think Max just
tripped over the bicycles and fell into the water-butt
beneath. I hope he wasn’t carrying the barometer. They say
a falling barometer is a sign of bad weather.

There must be a better way to make recordings of what
the weather is doing. Why don’t they automate their
weather-station? Then they could use a computer to
analyse the recorded data. I open the window and offer
this suggestion to them. There is a stunned silence,
followed by an outraged cry from Minnie Monsoon:

50

“You and your confounded computers! Bleep-bleep-
bleep at all hours of the night! Zap! Powww! Kaboom!
People can’t get a decent night’s sleep around here!”

1 duck as the remains of an ancient turnip hit the wall
inches from my nose. I close the window in triumph.

I think I interested them in the idea.

DATA STORAGE

Obviously I need to think this through before 1 approach
them again. One problem will be storing the recorded data
in a form that the computer can use, I suppose I could use
DATA lists, but those aren’t designed to be modified
easily. I think I’ll use an array.

An array is a numbered list. It has a name, just like a
variable does, but it also has a number which tells you
whereabouts you are in the list.

51

Here’s a week’s data from the Monsoon’s weather
station.

SUN MON TUE WED THU FRI SAT

Temperature (°C) 15 3 0 8 7 2 11
Rainfall (cm) 0 1 1 0 2 3 0
Sunshine (hr) 8 6 5 2 0 1 9
Windspeed (kph) 24 93 11 14 6 2 18

There are seven days in the week, so I could number them
from 1 to 7 and use an array of size 7 to hold each item. I
will need four arrays: one for the temperature, one for the
rainfall, one for the sunshine, and one for windspeed. To
make them easy to remember, I’ll name them T, R, S and
W. The numbers that show whereabouts in the list we are
will be written afterwards in brackets. For instance,

T(3) is the temperature on day 3 (Tue), which is 0.
R(6) is the rainfall on day 6 (Fri), which is 3.

Then the whole set of data will be stored in the computer
something like this:

Temperature T(l) T(2) T(3) T(4) T(5) T(6) T(7)

which is one array of size 7; and three more:

^R

Sunshine

Windspeed

Rainfall R(l) R(2) I R(3) R(4) |R(5) R(6) R(7)

S(D S(2) I S(3) | S(4) S(5) S(6) S(7)

W(l) W(2) W(3) W(4) W(5) W(6) W(7)

The question is, how can we do this in BASIC?

52

SETTING UP AN ARRAY

To make life easier, let’s concentrate on just one array: the
Sunshine array, S.

First we have to tell the computer to make room in
memory for the array, ready to store the numbers. This is
called dimensioning the array, and it uses the command
DIM. The program line:

10 DIM S(7)

tells the computer to set up an array called S, with seven
slots in which to store numbers.

Now we have to get the numbers into those slots. Here is
a clumsy but simple way:

20 LET S(l) = 8

30 LET S(2) = 6

40 LET S(3) = 5

50 LET S(4) = 2

60 LET S(5) = 0

70 LET S(6) = 1

80 LET S(7) = 9

An array holds a list of

numbers. Before using an

array, you should tell the

computer how big the list will

be by using the DIM command.

This is called dimensioning the

array.

53

TRANSFERRING FROM A DATA LIST

Another way is to use a DATA list, and transfer it
automatically into an array, where it will be easy to
manipulate. Like this:

10 DATA 8, 6, 5, 2,0, 1, 9

20 DIM S(7)

-*30 FOR N = 1 TO 7

40 READ X

50 LET S(N) = X

-60 NEXT N

You can even replace lines 40 and 50 with just:

40 READ S(N)

to save time.

GETTING DATA FROM AN ARRAY

Whichever of these methods you choose, we’re now ready
to do some work with the array. Our first task is to write a
program that will allow us to specify a day number, and
tell us the amount of sunshine. That’s easy. Type lines
10-80 of the clumsy version (or lines 10-60 of the DATA
version) above, and add:

100 PRINT "SPECIFY DAY NUMBER (1-7)"

110 INPUT DAY

120 PRINT "THE AMOUNT OF SUNSHINE
WAS";

130 PRINT S(DAY)

54

Now, let’s just make sure you understand what’s going on.
Suppose you want to know how much sunshine there was
on Thursday. That’s day number 5. So at line 110, after
the prompt in line 100, you should input the number 5.

The computer then sets the variable DAY to the value 5.
Now, in line 130, the computer looks for S(DAY). First

it finds the value of DAY, which is 5; so now it knows it
must look for S(5). But line 60 of the ‘clumsy’ program
above (or the fifth entry in the DATA list version) tells it
that S(5) is equal to 0. So the output you get is:

THE AMOUNT OF SUNSHINE WAS 0

In a way, what the array does is to give you a set of
seven different variables S(l), S(2), ..., S(7). But more
than that: it lets you refer to any one of them as S(N),
where N can be any number in the range 1-7. A program
can then manipulate N, and so deal with different choices
from the seven variables, depending on the value N has
been set to.

Without arrays you can still have seven variables SI, S2,
..., S7, but when you ask the computer to look at SN, it
looks for a variable with the name SN. Even if it knows N
is 4, it does not look for S4. Putting brackets round the N,
and telling the computer that S is an array by dimensioning
it, makes a tremendous difference!

DRILL PROBLEMS

1. What are the values of the following expressions, with
S(l)-S(7) taking the values listed above?

(a) S(l) + S(2)
(b) S(3)-S(7)
(c) 2 S(6)*
(d) S(3) S(7)*
(e) S(2 + 2)
(f) S(1 + 2 + 3) S(2 3) - 2 S(2 2 + 1) +* * * *

S(28 / 4)

Work these out by hand, and then check them on the
computer. (How?)

55

2. Find ways to write the numbers 0, 1,2, . .., 9 in terms
of S(l)-S(7). Again, do it by hand and then use the
computer to check.

GETTING THE WIND UP
Write a program that will store a week’s windspeed data
in an array W, and let the user select a particular day
and find out what the windspeed was.

Numerical Order

This box is just to remind you about the way numbers can be
given an order, so that we can speak of the greater or the smaller
of two numbers. If you think of the numbers as being arranged in
a line, then the greater numbers are to the right and the smaller
ones to the left.

-* — Smaller (or lesser) Larger (or greater) —►

...-5 -4 -3 -2 - 1 0 1 2 3 4 5 ...

There are some standard symbols that the computer uses to deal
with the order of two numbers:

M = N means M is equal to N. (You know that one,
naturally!)

M < > N means M is not equal to N. (Examples: -2 < > 4
is a true statement; 2 + 2 < > 4 is false.)

M > N means M is greater than N. (Examples: 5 > 4 is
true, 3 > -4 is true, -4 > -5 is true; -5 > -4 is
false, 2 > 7 is false.)

M < N means M is less than N. (Examples: 2 < 3 is true,
- 1 < 4 is true, -3 < -2 is true; 3 < 2 is false,
- 1 < - 99 is false. Note that M < N means the
same as N > M.

M > =; N means M is greater than or equal to N.
(Examples: 3 >= 2 is true, 3 > = 3 is true;
7 > = 9 is false.)

M < = N means M is less than or equal to N. (Examples:
2 <= 7 is true, -3 <= -3 is true, 5 <= 5 is
true; 6 < = 5 is false, 999 < = 73 is false.)
Note that M < = N means the same as N >= M.)

The same goes for decimal numbers as well as whole numbers.

56

MANIPULATING ARRAYS

That’s simple enough to follow easily, but not really
terribly fascinating. If that was all we could do with arrays,
it wouldn’t be worth the bother. But computers don’t just
store data: they process it.

What sort of things might the Monsoons want to know?
They could include:

1. The total sunshine for the week.
2. The average sunshine per day.
3. The day with the largest amount of sunshine (or days if

more than one), and how much that was.
4. Ditto for the least sunshine.

Then there might be more fancy questions, like:

5. On which days of the week were there between 1 and 5
hours of sunshine?

6. Were there any days with no sunshine at all? If so,
which?

7. What was the average sunshine at weekends (Saturday
and Sunday)?

8. Was there more sunshine on Sunday than on Saturday?

Once the data is stored in the computer as an array, it is
possible to write short programs to find the answer to each
of these questions. Make sure that only the data-loading
routines (lines 10-80, or lines 10-60 on pages 53 and 54)
are in the machine, and then add the relevant group of
lines below.

Total Sunshine

100 LET SUM = 0

p-110 FORN = 1 TO7

120 LET SUM = SUM + S(N)

_130 NEXTN
140 PRINT "TOTAL SUNSHINE IS";SUM;

"HOURS"

57

Average

This one’s your job. The average of a set of numbers is
their total, divided by how many numbers there are. For
instance, take the set of numbers:

1, 9, 7, 2, 2, 3

Their total is 24 because 1 + 9 + 7 + 2 + 2 + 3 = 24.
There are six of them. So the average is given by:

average = ---------- ---------------- = — = 4
how many there are 6

Can you change one line only in the above ‘Total Sunshine’
program so that it prints out the average sunshine per day?

Maximum Sunshine

To keep things simple, let’s start by trying to find the
largest amount of sunshine, without worrying what day or
days it happens on. The idea is to start with a variable, let’s
call it MX, and to increase it whenever we find a value of S(N)
that is larger. (Recall from page 56 that A > B means ‘A is
greater than B’.) This is the program:

100 LET MX = 0

r110 FORN = 1 TO7

120 IF S(N) > MX THEN LET MX = S(N)
-130 NEXTN

140 PRINT "MAXIMUM AMOUNT OF
SUNSHINE IS";MX

58

To check that this really works, let’s dry-run it (see
Gateway to Computing Book 1, Chapter 9).

Here's the dry-run table showing how N. S(N) and MX
change as we go round the loop'.

Line Number MX N S(N) S(N) > MX'?

100 0 — —

110 0 1 8_ I Yes

120 8Z 1 8

130 8 2 6 No

120 8 2 6

130 8 3 5 No

120 8 3 5

130 8 4 2 No

120 8 4 2

130 8 5 0 No

120 8 5 0

130 8 6 1 No

120 8 6 1

130 8 7 9 _ 1 Yes

120 9Z 7 9

130 exit
loop

140 9 the required maximum

QUICKIE

Would this method work if line 100 had been LET MX = 10?
If so, why? If not. why not? What are the ‘good’ starting
values for MX if you want to use this technique?

59

Minimum Sunshine

Your job again! Think how MX works and adapt it to a
variable MN that stores the smallest number found so far. Be
careful what value you start MN at\ Ms not a good idea. Recall
that A < B means ‘A is less than B'.

On which Days?

Having found the maximum amount of sunshine, we can
do another search through the array to find the day(s) on
which it occurs. Keep lines 10-80 (or 10-60) and the
Maximum Sunshine program (lines 100-140, page 58).
Add:

r*200 FOR N = 1 TO 7

210 IFS(N) = MX THEN PRINT "OCCURRING
ONDAY";N

-220 NEXTN

Now that we know the value of MX, this just checks each day
in turn to see if that amount of sunshine happened, and if so.
it prints a message to say so.

Fancy Stuff

Programs to answer questions 5, 6, 7 and 8 are left to you
as a problem.

BIG STUFF

Of course, you really wouldn’t go to all this trouble just
for one week’s sunshine figures. But what about 10 years?
That would be 3650 days (ignoring leap years; 3653 at most
if they are included); and all you have to do is change the
7s to 3650s throughout. The array would probably be set
up using an input loop, and everything would be saved on
a permanent memory device like tape or floppy disc once
this was done. I can’t go into that sort of technique at
present; but it’s when the numbers get big that the ideas in
this chapter tend to pay off.

60

There are plenty of uses for small arrays in programs,
too: they’re one of the most versatile weapons in the
programmer’s armoury. You’ll see plenty of them as we
proceed.

COMPUTER EXPERIMENT
Here is an experiment you can do to illustrate how weather
information could be gathered and processed
automatically. In the absence of lots of fancy electronic
equipment, however, you will have to play the part of the
automatic recording devices yourself.

Collect weather data for a month. Either take a
thermometer and measure the outside temperature every
day at the same time, or write down what the newspaper
says the temperature was in (say) Reykjavik. (Or cheat and
use the data list given below.) You will end up with about
30 temperature values. The following program will tell you
the average, maximum and minimum temperatures. It can
easily be adapted to allow you to deal with rainfall, air
pressure, windspeed, and so forth. Most of the effort goes
into recording the numbers and feeding them into the
machine.

10

20

30

40

50

60

¡-►70 Q.
q 80

â 90 c
" L]00

110

120

130

PRINT "TEMPERATURE ANALYSER"

PRINT ------------for a blank line

PRINT "HOW MANY VALUES RECORDED?"

INPUT D
DIM T(31)*- maximum no. of days in a month

PRINT "INPUT VALUES ONE BY ONE"

FOR N = 1 TO D

PRINT "TEMPERATURE ON DAY";N

INPUT T(N)

NEXT N

LET SUM = 0

LET MX = T(l)

LET MN = T(1)

initialize values

61

H40

150

160

170

-180

190

200

210

220

230

FOR N = 1 TO D

LET SUM = SUM + T(N)

IF T(N) > MX THEN LET MX = T(N)

IF T(N) < MN THEN LET MN = T(N)

NEXT N

PRINTq

PRINT-
two blank lines for tidiness

PRINT "AVERAGE TEMPERATURE:
SUM/D

PRINT "MAXIMUM TEMPERATURE:";MX

PRINT "MINIMUM TEMPERATURE:" ;MN

Note the use of an input loop in lines 70-100: yet another
way to feed data into an array. However, you have to type
the numbers in every time you run the program. An
alternative is to store them on tape as a file; but that’s
beyond the scope of this volume.

If you’re bone idle and don’t want to spend a month
standing in the garden in rain, sleet, and snow, waving a
thermometer, 1 just happen to have in my possession the
data obtained by Minnie and Max Monsoon, for my home
village. Here it is.

62

What was the average, maximum and minimum
temperature in the sleepy village of Flannel-under-Ware, in
April 1984?

ARRAY
ANOMALIES

RULES FOR ARRAY NAMES
The rules for array names are the same as those for
variable names. For numeric arrays, that hold numbers,
use names suitable for numeric variables. (There are such
things as string arrays, but they are beyond the scope of
this book.)

You do not need to dimension an array if it holds 10 or
fewer items. Also, an array S has an entry S(0). These
features are useful, but can be confusing at first, so I’d
advise you to forget about them until you feel happy with
everything else in this book.

You can use any legal name for

an array - but don’t forget the

brackets! TAKE5 is just

another variable; TAKE(5) is

an item in an array.

MOUSEBENDER’S MUSIC-HALL

Hortense Mousebender, and her husband Marmaduke
Mousebender the Mad Mathematician, have made a
fortune selling computer software. They have decided to
invest it in a theatrical production, to be named:

MOUSEBENDER’S MULTICOLOURED
MUSIC-HALL

There will be 6 acts. The time taken by each is as follows:

1. Lucy Laine the Liverpool Lark
2. Mystro the Mediocre Magician
3. The Wormwood Scrubbs Quartet

11 minutes
8 minutes

13 minutes

63

4. Oo-La-La Can-Can Chorus
5. Seamus Android, the Irish Tenor*
6. Huge Harry, the Hopeless Humorist

* An Irish tenner is worth about £9.31 because of the exchange rate.

25 minutes
2 minutes
7 minutes

They wish to store the times on their computer, and to
work out the average time per act. How would you set
about doing this?

Suppose they want the computer to find out which act is
the shortest. What changes should be made to the
program?

ANSWERS

Drill Problems

1. (a) 8 + 6 = 14
(b) 5 - 9 = -4
(c) 21-2*
(d) 5 9 - 45*
(e) S(4) = 2
(f) S(6) S(6) - 2 S(5) + S(7) =* *

1 * 1 - 2 * 0 + 9 = 10

2. There are lots of ways. Here’s one set:

0 S(5)
1 S(2) - S(3)
2 S(4)
3 S(4) + S(6)
4 S(2) - S(4)
5 S(3)
6 3 S(4)*
7 S(2) + 1
8 S(4) (S(3) - S(6))*
9 S(7)

To get the computer to check, add program lines like:

100 PRINT S(l) + S(2)

to lines 10-80 (or 10-60, page 54) which were used to
set up the array.

64

Getting the Wind Up

10 DIM W(7)
Don’t forget to dimension lhe array!

20 LET W(l) = 24

30 LET W(2) = 93

40 LET W(3) = 11

50 LET W(4) = 14

60 LET W(5) = 6

70 LET W(6) = 2

80 LET W(7) = 18

90 PRINT "SPECIFY DAY NUMBER (1 -7)"

100 INPUT DAY

110 PRINT "THE WINDSPEED WAS";

120 PRINT W(DAY)

Average

Change line 140 to:

140 PRINT "AVERAGE SUNSHINE PER DAY IS";
SUM/7; " HOURS."

Quickie

No: MX would stay at 10 throughout. You need to choose the
starting value nice and low, so that at least one S(N) is equal
or bigger. In fact, a good bet is to start with:

100 LETMX = S(1)

Minimum Sunshine

100 LET MN =1000
nice and large for a minimum calculation

65

*110 FOR N 110 7

120 IFS(N) < MN THEN LET MN = S(N)
- 130 NEXT N

140 PRINT "MINIMUM AMOUNT OF
SUNSHINE IS";MN

Line 100 could also be replaced by:

100 LET MN = S(l)

Fancy Stuff

You may have had to think quite hard to do some of these.
Here are my solutions.

5. r100 FOR N = 1 TO 7*

110 IF S(N) < 1 THEN GOTO 140

120 IF S(N) > 5 THEN GOTO 140

130 PRINT N
-140 NEXTN

Note how lines 110 and 120 cause the computer not to print
the day number N (in line 130) if the sunshine is outside the
range 1-5 required.

6. H00 FOR N = 1 TO 7

110 IF S(N) = 0 THEN PRINT "NO SUNSHINE
ON DAY";N

-120 NEXT N

7. 100 LET AV = (S(l) + S(7)) / 2

110 PRINT "WEEKEND AVERAGE:";AV

8. 100 IF S(l) > S(7) THEN PRINT "MORE ON
SUNDAY"

110 IF S(7) > S(l) THEN PRINT "MORE ON
SATURDAY"

120 IF S(l) = S(7) THEN PRINT "THE SAME
BOTH DAYS"

66

Remember Make sure lines 10-80 (or 10-60; pages 53 or
54) are in the machine before you RUN any of these; and
make sure no lines from previous programs are still left
apart from those specified.

This is best done by editing the unwanted lines out each
time. If you use NEW, you’ll have to retype those data
input lines, which gets kind of boring on the seventeenth
try.

Computer Experiment

AVERAGE TEMPERATURE: 13
MAXIMUM TEMPERATURE: 21
MINIMUM TEMPERATURE: 2

Mousebender’s Music-Hall

10 DIM T(6)

20 LETT(1)=11

30 LET T(2) = 8

40 LET T(3) = 13

50 LET T(4) = 25

60 LET T(5) = 2

70 LET T(6) = 7

r 100 LET SUM = 0
110 FOR N = 1 TO 6

120 LET SUM = SUM + T(N)

-130 NEXTN
140 LET AV = SUM / 6

150 PRINT "AVERAGE TIME IS:";AV

To find the shortest act, change lines 100-150 as follows:

100 LETMN = T(1)

pl 10 FOR N = 1 TO 6

120 IFT(N) < MN THEN LET MN = T(N)

-130 NEXTN

67

,.140 FOR N - 1 TO 6
150 IF T(N) = MN THEN PRINT "SHORTEST

ACT IS NUMBER" ;N

-160 NEXTN

68

Squire
Stoatthrostle
Picks up the TAB

So far, we haven’t worried very much about where the
printing on the TV screen goes, just as long as the items we
need appear when we need them. That’s fair enough: when
you start learning programming you don’t want to be
bothered with fiddly details.

The time has come (the Walrus said ...) to take a look
at one way to tidy up the screen display: tabulation.

Your TV display is divided into a number of cells, each
of which holds one character (letter, number, graphics
symbol, etc.). Lines of cells that run across the screen are
rows', lines that run down the screen are columns.

Columns
I I I I I I

69

On the CPC464 computer there are 25 rows and 40
columns. It is the columns that concern us in this chapter.

THE LUMMOXSHIRE LEAGUE

A dozen or so miles from Flannel-under-Ware is the tiny
village of Hogwallow. Although it has a very small
population (1980 census: 122), Hogwallow has one of the
finest village soccer teams in the area - the Hogwallow
Hackers. Every year the team plays in the local
Lummoxshire League, against such renowned teams as
Bumbleforth Benighted, Prongworthy Ravers, Cow Green
Agricultural and Mechanical, Womblehampton Waverers,
and the Gentle Elastic Company.

At the current stage in the season, the score sheet looks
like this.

Lummoxshire League Official Score Sheet

Hogwallow Hackers

Opponents Goals for Goals against Total points

Bumbleforth 7 0 2
Prongsworthy 2 2 3
Cow Green 4 3 5
Womblehampton 4 5 5
GEC 3 1 7

Points: Win 2, Drawl, Loss 0.

70

It is 8.30 in the evening in the saloon bar of the Paralytic
Pig, the local hostelry. The Hackers have just beaten the
Twangers (the nickname for the Gentle Elastic Company)
and spirits are high. Not to say over-priced. The Captain
and the Secretary of the Hackers, Alf Thyme and Jock
Strappe, are about to chalk up the latest win on the special
blackboard that hangs beside the skittle table ...

Alf: Oh-arrr, that were a good game, Jock!
Jock: Sure wuz, Alf. Now where be that ferdanged
chalk? Oy, Mavis! Go’s nicked the chalk?
Mavis (The barmaid): Oi dunno, Jock. Bob Frapples ’ad
it last noight fer the darts match against Bumbleforth ‘B’
team.
Jock: Tarnation, Mavis! That be the fifth toime young
Bob’s snaffled our chalk! ’Ow can oi mark up the footy
score?
Alf: Yer know, Jock, moight be we should modernize our
methods. Oi bin readin’ in the Goathandler’s Gazette ’bout
’ow one o’ these newfangled compyuter thingummies is
a-revolutionizin’ livestock farmin’. An’ it did strike me as
’ow maybe the ’ackers could put their score chart on to
one.
Jock: Ridicklus, Alf. Puttin’ a score chart on a goat,
indeed!
Alf: No, Jock - on a compyuter!

71

Jock: That’d be a good one, wouldn’it, Mavis? Hur-hur-
hur.
Alf: Nay, Jocko, oi be serious. Look, there be Squire
Stoatthrostle. Oi hear he bought one of ’em a few weeks
back. (Turns to Squire.) Hey, Squire!
Squire S: Oh, good evening, chaps. Yes please, Mavis,
the usual. Double vodka and antifreeze.
Alf: Squire, oi do ’ear tell as ’ow you’m hacquired one o’
them danged compyooooter doofers.
Squire S: That’s right, a Stork-37 with dual disc drives
and a 64K RAM.
Jock: Oi hear Ned Scraggitt bought a few dozen rams at
Nerdsby market, too. But what’s sheep-farmin’ got ter do
with compyuters?
Squire S: RAM, Jock, is Random Access Memory.
Alf: Y’see, Jocko? The Squire be a h’expert already!
Y’see, Squire, we wuz a-wonderin’ if it be possible to put
the ’ackers’ score-sheet on a compyuter, so we could see
the results on the bar TV set.
Mavis: Not durin’ Consternation Street, you don’t! OI’
Mother CreepscuttleTl throw a fit!
Jock: That oi’d loike ter see! Do the ol’ biddy a power o’
good, it would. Whoi, oi do recall that toime when she ...

And talk drifted to other matters. But late that same
evening, Squire Stoatthrostle decided it might after all be
jolly good fun to have a go, don’t y’know? After taking a
crafty peek at Chapter 3 he decided to use DATA
statements, and eventually came up with a program:

10 DATA BUMBLEFORTH, 7, 0, 2

20 DATA PRONGSWORTHY, 2, 2, 3

30 DATA COW GREEN, 4, 3, 5

40 DATA WOMBLEHAMPTON, 4, 5, 5

50 DATA GEC, 3, 1, 7

60 PRINT "OPPONENTS (SPACE) F SPACE) A
I SPACE | P"

70 PRINT

72

1*100 FOR N = 1 TO 5

110 READ O$, F, A, P

120 PRINT 0$;" SPACEl ";F;A;P

130 NEXTN

And the following evening, when Alf and Jock wandered
into the Paralytic Pig, they were surprised to see on the TV
screen:

The Squire was very proud of his program, but although
Alf and Jock were very polite about it, he sensed that they
weren’t altogether satisfied with the result.

Why?

STOATTHROSTLE’S BLUNDER

Eventually the Squire realized what was troubling them. As
Noddy Numskull the village idiot put it, the columns were
‘loike t’hind leg of a rheumatic goat’. The table of results
was out of alignment and very hard to read, not at all like
the score sheet.

Stoatthrostle knew that something had to be done.
But what?

TAB

The answer is a new BASIC keyword:

TAB

73

This tells the computer to print something, and to start it
from a chosen column on the TV screen. For instance,

In general, a command:

120 PRINT TAB(number); string

will print out the chosen string starting in the column given by
the number. This will be in:
1. The current row of printing, if that column has not yet

been reached.
2. The next row if it has.
Compare these two programs:

(a) 10 PRINT TAB(2);"TWO";TAB(12);''TWELVE"

(b) 10 PRINT TAB(12);"TWELVE";TAB(2);"TWO"

Note how in (b) the TWO is printed on the next line, because
the print position has already moved beyond column 2.

74

To keep PRINTing in tidy

columns, use

TAB

in your PRINT statement.

Don’t forget the brackets.

STOATTHROSTLE RECONSIDERS

After dropping several heavy hints, the Hogwallow
Hackers presented Squire Stoatthrostle with a copy of
Gateway to Computing Book 2. An there, on page 69, the
Squire found the chapter criticizing his program. (Hi,
Squire! How’s the wife?) By reading up on TAB he was
able to come up with a dramatic improvement to his
program. 1 would be happy to express gratitude for his
solution, which is reproduced below, except for a vague
suspicion that he may have pirated it from the copy of this
book that was presented to him.

Anyway, here it is.

10 DATA BUMBLEFORTH, 7, 0, 2

20 DATA PRONGSWORTHY, 2, 2, 3

30 DATA COW GREEN, 4, 3, 5

40 DATA WOMBLEHAMPTON, 4, 5, 5

50 DATA GEC, 3, 1, 7

60 PRINT "OPPONENTS";TAB(20);"F";TAB(23);
"A";TAB(26);"P"

70 PRINT
1*100 FOR N = 1 TO 5

110 READ O$, F, A, P

120 PRINT O$;TAB(20);F;TAB(23);A;TAB(26);P

-130 NEXTN
The idea is simple: use columns 0, 20, 23, 26 as standard
positions for the name of the opponents, goals for, goals
against, and total points. It turns out that there’s no need
to use TAB(l) at the start of the PRINT command:

75

PRINTTAB(1);"OPPONENTS"; . . . etc.
because the computer automatically starts each line in
column 1 anyway. Here’s the result:

Now it’s all neat and tidy. The Paralytic Pig had to get a
licence extension for the celebrations.

NUMERICAL
NONCONFORMITY

AGONY COLUMN

If you trusted me to be telling the truth, and didn’t try the
Squire’s program out for yourself, I advise you to do so at
once.

You see, I lied.
It doesn’t quite work!
The numbers in the F, A, P columns all come out one

space too far right. I’ll explain why in a minute, but first
let me demonstrate an important debugging principle:

You don’t always have to understand

why something went wrong, in order

to fix it.

To see this, let’s just move everything one space to the left
in line 120, like this:

120 PRINT O$;TAB(19);F;TAB(22);A;TAB(25);P
1_____ L_____ L_
all TAB numbers reduced by

76

Try again: gee whillikers, it works! It’s a bit chewing-gum-
and-stringy, but it works I

Point taken. But, of course, ceteris paribus and ipso
fatso, it would be much more satisfactory to know why
stuff came out in the wrong place.

The version of BASIC used on your computer is rela ed
to an industry standard called Microsoft BASIC. In
Microsoft BASIC all strings will be printed where you
expect them to be, when TAB is used. But numbers may
not. This is because Microsoft pretends that any number
which isn’t negative has an ‘invisible’ plus (+) sign in front
of it. (Numbers which are negative have a distinctly visible
minus sign!) So instead of printing 7, 0, 2 in columns 20,
23, 26 the machine puts their ‘ + ’ signs there:

Column 20 212223 24 25 2627 28
T| l+|7| |+|0| |+|2| I-

NEGATIVE
NASTY

The + signs can’t actually be seen (like I said, they’re
invisible) but they still occupy the spaces in those columns.
That shoves the actual numbers further right. (Of course,
the machine also prints a SPACEl after the number, - in
columns 22, 25, and 28 - but this is not caused by TAB;
numeric variables always have a iSPACE] printed after
them.)

A negative number, like -7, will come out in the same
way; but now the - sign in the correct column is visible
and everything looks OK. The reasoning behind this bizarre
idea is that columns of numbers may look tidier if a space
is reserved for the plus or minus sign. But then, of course,
nobody in his right mind would actually print the plus
signs, so ...

Try this demonstration program.

10 LET X = 1

•20 FOR T = 1 TO 10

30 LET X = - 1.5 * X

40 PRINT TAB(5);X

-50 NEXTT

77

You should get a print-out that has alternately positive and
negative numbers in it, something like this:

the sixth line has the decimal point out of alignment. You
can’t win ’em all.

If TAB causes numbers to appear one

column too far right, there is an

‘invisible plus sign’. Change the

TAB number to 1 less.

MARMADUKE'S POWER-DRILL

Marmaduke Mousebender, the Multidimensional
Mathematician, wishes to print out on a TV screen the:

Squares N*N
Cubes N*N*N
Fourth powers N*N*N*N

of a number N, ranging from 1 to 20. He also wants them
arranged in columns 6, 12, 18, 24 like this:

Column 6 12
I

18 24

N
1
N*N N*N*N N*N*N*N

1 1 1 1
2 4 8 16
3 9 27 81

and so on. How can he do this, using TAB to set the
column positions?

78

DESPAIRING DAN, THE DIAGONAL

MAN

Despairing Daniel, you may recall, loves Cow Pie. He ii
designing an advertising display for a nationwide chain of
restaurants, patronized by high government officials, to be
known as the Bovine Bonanza Restaurant and Drive-in
Cobbler’s. The display calls for the words COW PIE to
appear diagonally like this:

C
O

w
p

1
E

How can this be done?

FRED'S FRAME

Fred Fenderbender, the Futile Freelancer, is experimenting
with computer graphics. He has had a delightfully original
idea: to print out a frame made up of asterisks. It must be
a 10 x 10 square, like this:

79

* *
* *
* *
* *
* *
* *
* *
* *

I I

Column 2 11

Can you think of a way for him to do it?

{Hint Use PRINT "**********" for top and bottom, and
some TABs to put the sides in.)

ANSWERS

Marmaduke’s Power Drill

10 PRINT TAB(6); "N";TAB(12);"N * N";TAB(18);
"N * N * N";TAB(24);"N * N * N * N"

*20 FOR N = 1 TO 20

30 PRINT TAB(5);N;TAB(11);N * N;TAB(17);
N * N * N;TAB(23);N * N * N* N ----- ,

-40 NEXT N Microsoft number
trouble: change
columns to 5, 11, 17, 23

Despairing Dan, the Diagonal Man

This one calls for brute force and ignorance. (More
sophisticated approaches are possible, but not using what
we know so far.)

10 PRINT "C"

20 PRINT TAB(2);"O"

30 PRINT TAB(3);"W"

40 PRINT TAB(4);"P"

80

50 PRINT TAB(5);"I"

60 PRINT TAB(6);"E"

You might also think about using a loop, and a DATA list.

Fred’s Frame

10 PRINT TAB(2)•"**********"

20 FOR K = 1 TO 8

30 PRINT TAB(2);"*";TAB(1 1);"*"

40 NEXT K

50 PRINT rfAB(2)‘/,**********/z

81

Logic Chopping

1. Only an elephant or a whale gives birth to a creature
that weighs over 100 kilograms.

2. The Prime Minister’s son weighs 110 kilograms.
3. Therefore ...

Logic is the art of making true deductions from true
assumptions. The above deduction, when completed,
amuses us because we know it must be wrong; yet on the
face of it, the logical steps appear correct. The fallacy, of
course, is that it is only the weight at birth that counts, and
the Prime Minister’s son was a normal, bouncing baby boy
of some 5kg. (Well, a bouncing baby boy of some 5kg,
certainly.)

82

Logic is about statements. A statement is something that
is definitely either true or false (though it may be very hard
to find out which!). Examples of statements are:

• 2 + 2 = 5 (False)
• This sentence is on page 97. (False)
• All cows are mammals. (True)
• All mammals are cows. (False)
• Elvis Presley’s Army serial number was 53310761.

(True)
• Alexander the Great had a horse called

Bucephalus. (True)
• Alexander the Great had a goat called William.

(Almost certainly false, and definitely a statement;
but lacking the proper historical documents it’s
not easy to decide whether or not it’s true.)

You can’t think of any phrases that are not statements?
How about these?

• Ugly green furry things.
• Why is a mouse when it spins?
• What is the difference between a duck?
• Good Morning!
• And so on.

It’s either

TRUE

or it’s

FALSE

or it’s not a statement.

DRILL PROBLEM
Which of the following are statements? Of those that are,
which are true and which are false?

(a) How now, brown cow!
(b) Giraffes have long necks.
(c) What goes up and down the washing-line at 60 miles

per hour?
(d) 14 + 22 > 5.
(e) July 4th, 1776.

83

(f) If pigs had wings, we’d all carry umbrellas.
(g) Either it’s snowing, or it’s not.
(h) Today is Tuesday, or 2 + 2 = 4.
(i) You are the Bisto Man, and I claim my five pounds.
(j) If today is Tuesday, then tomorrow must be

Wednesday.
(k) Cod and chips twice.
(1) This sentence is false.

COMPOUND STATEMENTS

Sometimes a statement is built up from other statements by
combining them using the words:

AND
OR

For example:

(m) It’s Monday, AND I’m bored, bored, bored, bored,
bored.

(n) Roses are red AND violets are blue.
(o) I’ll come by car OR I’ll take the train.
(p) These shoes are too small OR my feet are too big.

See also (g, h, i) above. These are called compound
statements. They’re used in computing with IF ... THEN
branch commands, to take action when a combination of
things happens. But the computing must wait for a few
pages. First we must decide when such compound
statements are, or are not, true.

For example, consider (m) above. When is that true?
Suppose today is Thursday. Then (m) is clearly false.

Even if I really am bored, bored, bored, bored, bored.
Suppose it’s Monday all right, but instead of being

bored, bored, bored, bored, bored, I’m full of the joys of
spring, bright-eyed and bushy-tailed, and raring to go.
Then (m) is still false.

So, for a statement using AND, both parts have to be
true in order for the compound statement to be true. We
can write out a little table to show all the possibilities:

84

It’s Monday I’m bored, bored,
bored, bored,
bored

It’s Monday AND I’m
bored, bored, bored,
bored, bored

True True True
True False False
False True False
False False False

What about OR? Let’s take example (p). Suppose these
shoes are not too small, but nonetheless my feet are too
large. Then it’s only fair to assume (p) is true. (It doesn’t
claim both things hold, just one OR the other.) The same
goes if my feet are perfectly sweet and dainty, and nothing
like too large, but the shoes are cramped and uncomfy
because some twerp in the factory made them five sizes
smaller than it says on the box. So now the compound
statement is true provided at least one (possibly both) parts
are true. To be false, both parts have to be false. As a
table:

These shoes are
too small

My feet are
too large

These shoes are too small
OR my feet are too large

True True True
True False True
False True True
False False False

A logician would summarize all this very briefly, by calling
the two parts of the statements P and Q, and using T and F
for True and False:

P Q P ANDQ P ORQ
T T T T
T F F T
F T F T
F F F F

This is called a truth table.
That sizes it up in a nutshell, so to speak; but it’s awfully

dull. But then, logicians are awfully dull people!

85

You can use

AND
and/or

OR

to combine several statements

into one.

THE DUCHESS’S POTATOES

The door-bell rang, and I went to see who it was. It was a
Post-Office messenger on a bicycle. I took the slim brown
envelope from his hands, tipping him a shilling for his
pains.

“Holmes! Holmes! A telegram!”
The great man was engaged in a delicate operation with a

specimen of blood and some chemicals. He shook a test­
tube containing a vile blue liquid. “Watson, if this tube
turns yellow, it means a man’s life! A neat example of the
forensic arts, if I say so myself. See!”

“But Holmes, that’s green, not yellow!”
“Close enough, Watson. I’m colour-blind anyway. Have

you opened the telegram?”
“Yes, Holmes. But — I cannot understand a single word

of it!”
He snatched it from my hand.

Post Office Telegram T. .,» The Royal Snail
Safe, Sure, S/ow

TO MR. SHERLOCK HOLMES, 221B BAKER ST., LONDON, (
(FROM LADY INDORA BADEN-POOLE, DUCHESS OF WESTHAMPTONSEIRE

PIGS HAVE WINGS AND QUEEN ANNE IS DEAD; OR FOZZIE BEAR IS /

(PRESIDENT OF THE USA; OR TEE DUKEfe PRIZE POTATO CROP HAS BEEn\
(HIJACKED; OR SPIDERS HAVE NINE LEGS; OR 'CHACUN A SON GOUT I
IS FRENCH FOR 'EVERYBODY HAS THE GOUT'. COME AT ONCE,

(USUAL FEE, INDORA.

86

“Surely, Watson,” said Holmes testily, “you can
understand the word PIGS?”

“Well, yes, Holmes — ”
“And yet you say you cannot understand a single word.”
“Confound it, Holmes, what I meant was, it makes no

sense to me at all! Why do you have to be so cold-blooded
and logical - ”

“But, my dear Watson, it makes perfect sense; and a
logical analysis is the key to its comprehension. The only
question we need to answer is: is it true1.''’

I frowned. Intelligent thought has never come naturally
to me. “Well ... supposing it were true, Holmes - what
would it meanT’

“That,” said Sherlock Holmes, “is for you to decide.”
Can you help Watson out? Assuming that the whole

statement is true, what is the message contained in the
telegram?

THE SAD SAGA OF SHIFTY SYD

Shifty Syd, the Scurrilous Software Salesman, is trying to
sell a stockmarket program (called PECULATOR­
SPECULATOR, developed by Apfelsoft Inc. for the
Stork-37 micro) to J. Paul Grotty, the Morecambe Bay gas
magnate. It comes in two parts. One displays on the screen
the latest prices of stocks and shares. The second allows the
user to choose which items he wants to buy and sell, and
then automatically contacts his stockbroker’s computer via
the Micronit Network, to make the transaction.

For copyright reasons, we are unable to reproduce most
of this program, but the relevant portions of it are given
below. Acknowledgements are due to Apfelsoft Inc. for
their generous permission to include these program lines.

10 PRINT "PART ONE"

20 PRINT "STOCKMARKET LISTING"

(the next 1970 lines have been deleted)

2000 PRINT "DO YOU WISH TO CONTINUE?"

2010 PRINT "INPUT YOUR ANSWER: Y/N"

2020 INPUT A$

87

2030 IF AS = "NO" THEN GOTO 7000

2040 PRINT "PART TWO"

2050 PRINT "AUTOMATED STOCK
TRANSACTION"

(the next 4940 lines have been deleted)

7000 PRINT "THANK YOU FOR USING
APFELSOFT."

7010 PRINT "HAVE A NICE DAY."

7020 STOP

J. Paul Grotty was extremely interested in this program.
In fact, he was thinking of buying six hundred copies for
his international consortium of companies. So this was
potentially a very big order for Shifty Syd.

Everything went perfectly, until Grotty reached line 2000
of the program - an input prompt that would allow him
to exit the system if he did not wish to continue with the
second part of the program. Now, you don’t get to be a
gas magnate by saying "Yes" to every dumb question, and
Grotty’s natural inclination was always to say "No" until
he had time to think things over. He noticed that line 2010
was asking for Y/N as an input, by which he intelligently
assumed that "Y" would mean ‘Yes’ and "N" would mean
‘No’. (He wasn’t born yesterday, and it never even crossed
his mind to input "Y/N".)

So J. Paul Grotty typed "N", and pressed ENTER |
Instead of exiting the system, however, he was

astonished to see:

PART TWO
AUTOMATED STOCK TRANSACTION

appear on the screen. It took a further twenty minutes to
reach the end of the program (which Grotty conservatively
estimated as costing him some $42,074 in wasted time).

In vain did Shifty Syd point out that the correct input
was "NO", not "N". The program had looked for "NO" in
line 2030, not found it, and hence not jumped to line 7000,
the exit routine.

J. Paul Grotty was not impressed.
Shifty Syd went back to his office, telephoned the

Software Department, and let them know exactly what he
thought of them.

88

Protocol Pete, the Prosaic Programmer, who had just
taken a job working for Apfelsoft Inc., rewrote the
program. He changed just one line, to:

2030 IF A$ = "N" THEN GOTO 7000

He also made several sarcastic comments about being given
trivial jobs to do that wasted his remarkable talents.

Shifty Syd spent two hours on the telephone persuading
J. Paul Grotty’s secretary to give him a second chance. A
week later, he visited Grotty in his office, and tried again.

All went well, until Grotty came to line 2010. Recalling
that programmers often used "Y/N" as an abbreviation for
"YES or NO", Grotty typed:

"NO"

Well ... of course, this time the computer was looking for
the input "N", and didn’t find it; so it didn’t jump to the
exit routine either. That was another $42,074 in wasted
time.

Syd lost the order, and is now working as a yak-herder in
Mongolia. But how different it could have been, if only
he’d known about ...

THE USER-FRIENDLY INPUT
Yes indeed. And now we come to the part you’ve all been
wondering about, namely: what on earth does this have to
do with logic commands!

It’s a common problem. Computer users are often given
multiple choices, where they input their selection and the

89

PEOPLE MAKE
MISTAKES

program proceeds accordingly. The confusion between "N"
and "NO", or "Y" and "YES", is notorious.

Of course, you could just make it absolutely clear to the
user which inputs he is expected to use. But people, unlike
computers, make mistakes. So a better idea would be to
arrange things so that it didn’t matter whether "N" or
"NO" was used.

In other words, we want to jump to line 7000 if either of
the two conditions:

1. A$ = "N"
2. A$ = "NO"

holds.
And the way to achieve this is to use:

2030 IF A$ = "N" OR A$ = "NO" THEN GOTO 7000

condition 1 condition 2

Think how much happier J. Paul Grotty would have been!
(And Shifty Syd, possibly even more so ...)

Programs that are written so that an untrained person
can use them easily, without having to worry about all
sorts of fiddly details, are called user-friendly. Writing a
user-friendly program isn’t just a matter of programming
technique: it’s a question of style.

A program may work fine. But if it keeps going wrong
for silly technical reasons, it’s not user-friendly at all. It’s
user-frustrating.

An INPUT command that

checks for errors or alternatives

is said to be mugtrapped. A

mugtrapped program is more

user-friendly.

INTERNATIONAL INPUT INQUIRY

J. Paul Grotty decided that if the existing software houses
couldn’t write the kind of programs he wanted, he’d have

90

to set up his own. A month later, Grotty Programs was in
operation.

Its first product was an INPUT routine that would
request a Y/N response from the user. But, to cater for the
international market, it would accept all of the following as
being the same as "NO".

NO
NON
NEIN
NYET
NOT ON YER NELLY

Can you work out how this could be done? You are
allowed to string a whole series of conditions together
using OR, like this:

IF A$ = "NO" OR A$ = "NON" OR AS = "NEIN"
OR

MELANIE MONSOON’S MELON
MARKET

Minnie Monsoon’s mother Melanie grows melons. Her
melons are among the best in Lummoxshire, being a new
and tasty variety, Ponsonby’s Delight, imported as
seedlings from the Minnesota Melon Belt. (The previous
variety, Yellow Revolting, developed in Nice, wasn’t.)
(Nice, that is.) The only problem with Ponsonby’s Delight
is that it can’t abide temperatures lower than 13°C, or
higher than 21 °C. So Melanie gets weather information
every day from her daughter Minnie, and runs it through a
small computer program that tells her whether or not to
open the windows in her greenhouse. The windows should
only be open when the temperature is between 13°C and
21 °C (inclusive).

Now there is no BETWEEN command in BASIC. But
Melanie had a quick word with Prudent Pete the Pineapple
Programmer, and he pointed out that a temperature TEMP
lies between 13 and 21, provided both the conditions:

91

1. TEMP > = 13
2. TEMP < = 21

see the box
on page 56

hold. And the way to see if that is true is to use AND, like
this:

IF TEMP > = 13 AND TEMP < = 21 THEN (whatever) I___ _____ I I---------------- 1

condition 1 condition 2

So now Melanie’s machine-minded melons ripen in the
autumnal blizzards, thanks to a program that goes like this:

10 PRINT "INPUT TEMPERATURE"

20 INPUT TEMP

30 IF TEMP > = 13 AND TEMP < = 21
THEN PRINT "OPEN WINDOWS"

PROCNATAKADSKI’S CODE-CHECKER

Comrade Sergei Procnatakadski, the Russian Spy, has been
instructed by the Kremlin to change to a new code system.
The new code uses a key word (not to be confused with a
keyword) such as, for instance,

RUMBLING

This will be used to change the letters in a message, by
altering the alphabet like this:

A B C D E F
R U M B L I

GHI J KLMNOPQRSTUVWXYZ
NG, ACDEFHJ KOPQSTVWXYZ

key word other letters in order

The key word must have between 6 and 11 letters (because
Moscow has determined that this is the optimum range for
indecipherability of the code). Now poor old Procnatakadski
never learned to count beyond 5, so he’s in trouble.

Can you write a computer program that will accept a word
as input, and print ‘USE THIS ONE’ if its length is between
6 and 11 (inclusive)? Use LEN to find the length, and make
the program try again if the word that is input has the wrong
length.

92

ANSWERS

t/g/y green furry things

There is no answer to ugly green furry things: you just have
to learn to live with them.

Why is a mouse when it spins?

The higher, the fewer.

What is the difference between a duck?

One of its legs is both the same.

Drill Problem

(a) Remark, not statement.
(b) True statement.
(c) Honda pants; but it’s not a statement, it’s a question.
(d) True statement.
(e) Date, not statement.
(f) True statement. (Well, /’d carry an umbrella, 1 can

assure you.)
(g) True statement (whatever the wevver).
(h) True statement (whether or not today is Tuesday).
(i) Statement. Truth depends: only true if you are the

Bisto Man, AND I do claim my five pounds.
(j) True statement.
(k) Lunch, not a statement.
(1) Paradox. If it’s true it must be false; if it’s false it

must be true. Best considered not a statement (or your
computer will have a nervous breakdown).

The Duchess’s Potatoes

“It’s impossible, Holmes!”
“Nonsense, Watson. In a few minutes you will be telling

me how utterly obvious it all is.”

93

“I would never say such a thing about so baffling a
problem, Holmes.”

The great man sighed. “Observe, Watson, that the
telegram is a compound statement, involving five
components:

1. Pigs have wings AND Queen Anne is dead.
2. Fozzie Bear is President of the USA.
3. The Duke’s prize potato crop has been hijacked.
4. Spiders have nine legs.
5. ‘Chacun á son gout’ is French for ‘everybody has the

gout’.

“Of these, number (1) is itself compound.
“Next, observe that statements (1), (2), (4) and (5) are all

clearly false. Although Queen Anne is dead, pigs are not
airborne. Fozzie Bear is not President of the USA - ”

“I had my doubts about that one, Holmes.”
“Me also, but we digress. Spiders have eight legs, not

nine. And ‘chacun á son gout’ means ‘each to his own
taste’.”

“Brilliant, Holmes. But ...”
“Indeed. But: we have no idea as to the truth of (3).

However, 1 asked you to suppose the whole statement were
true. Now a compound statement:

(1) OR (2) OR (3) OR (4) OR (5)

can be true only when at least one component is true. And
we know already that statements (1), (2), (4), (5) are false.
Therefore ...”

“Statement (3) must be true!” I cried. “The Duke’s
potato crop has been hijacked! Don’t you see, Holmes?
You really are slow today.” Holmes had a peculiar look on
his face. Blank incomprehension. I tried to explain it in
words of one syllable. “Holmes, it’s like you have said
yourself: “Once you have eliminated the impossible, then
whatever remains, however improbable, must be the
truth!”

Holmes was turning bright red. Curious. A sudden heat­
stroke? Astonishment at my brilliant powers of deduction?
I felt the need to reassure him.

“Why, Holmes,” I said solicitously. “Do you not see
how utterly obvious it all is?”

94

International Input Inquiry

10 PRINT "INPUT YOUR DECISION: YES OR
NO"

20 INPUT D$

30 IF D$ = "NO" OR D$ = "NON" OR D$ =
"NEIN" OR D$ = "NYET" OR D$ = "NOT ON
YER NELLY" THEN GOTO 500

500 (take relevant action)

Procnatakadski’s Code Checker

10 PRINT "INPUT WORD"

20 INPUT W$

30 LET L = LEN(W$)

40 IF L > = 6 AND L < = 11 THEN PRINT
"USE THIS ONE"

50 IF L < 6 OR L > 11 THEN PRINT "TRY
AGAIN"

60 IF L < 6 OR L > 11 THEN GOTO 10

95

INTs and
INTeaters

Bernard Gasquet, who had been snoozing in an armchair,
awoke with a start. His wife Ermintrude has just thrown
her notebook on to the floor with a tremendous THUMP!
She looked unhappy: he could tell by the way she was
chewing the edge of the carpet.

“What’s the matter, ’Trude?”
“It’s this awful correspondence course that I’m doing foi

the Opeless University, Bernard!” (She pronounced his
name ‘Ber-naaahd’.) “Just look at these questions?'

Bernard picked up the notebook with its garish yellow
cover and the title:

AAAA 001: ARITHMETIC FOR ANTEA TERS,
AARDVARKS AND ARMADILLOS.

A trifle bizarre, thought Bernard; but then, ’Trude was a
trifle bizarre. Perhaps it was inherited from her mother,
Charlotte Russe. The trifle part, that is. He opened the
book to a page that ’Trude had marked.

96

- 474 - AAAA001

CMA 63: If 29,453 anteaters have 6,396,375 ants to share
equally between them, how many will each get,
and how many will be left over?

CMA 64: An aardvark goes into a shop and buys
4,992,641 quadruples of socks. (Note: aardvarks
have four feet, so pairs of socks will not suffice.)
If he uses one quadruple every day, and then
throws it away (which is wise - have you ever
smelt an aardvark’s socks? Come to that, have
you ever smelt an aardvark?) how many years
will they last? You may ignore extra days in leap
years, since aardvarks always sleep through
February 29ths.

CMA 65: An armadillo inside a space-probe encircles the
planet Saturn once every 79 days. Assuming
Saturn goes once round the Sun in 10,757 days,
how many times will the armadillo encircle
Saturn during one such rotation round the Sun?

Bernard thought for a moment. “Well, ’Trude, I’d guess
they were some kind of oddball division sums.”

“I know, Bernaaahd dahling; but you know how terrible
I am at oddball division! Why, I have trouble adding up
my charge account at Portnoy and Maidstone’s!”

“I’m well aware of that, ’Trude,” sighed Bernard. “Um.
What does CMA mean? Careful of My Aardvark?”

“Computer-Marked Assignment, Bernaaahd.”
“Oh. Compu - Hey! That’s it, ’Trude! Why not use the

computer? The Stork-37 can do division faster than you
can say ‘Megaflop’!”

And so the program was born:

10 PRINT "CMA 63:"; 6396375 / 29453

20 PRINT "CMA 64:"; 4992641 / 365
number of days in year

30 PRINT "CMA 65:"; 10757 / 79

And they printed it out and sent if off to be marked.

97

BUT IT WASN’T THAT EASY...

Two weeks later the assignment came back, looking like
this:

RIGHT WRONG

CMA 63: 217.172275 X
CMA 64: 13678.4685 X
CMA 65: 136.164557 X

MARKER’S COMMENT: YOU IGNORED THE
INSTRUCTION ON PAGE 473, DUMMY.

After a certain amount of grubbing around they found the
instruction referred to:

When answering CMAs 60-80 ignore any fractional part.
Give answers in whole numbers.

Which was a problem, because the Stork-37 micro always
seemed to give the answer in decimals.

What were the Gasquets to do?

INTEGER PARTS
Eventually Ermintrude Gasquet found the answer in the
Stork-37 Manual. The BASIC keyword:

INT

may be used to convert a decimal number to the largest
whole number that is less or equal to it. That is, to throw
away anything after the decimal point (at least, for positive
numbers - negative ones work a little differently). For
instance,

INT(3.14159) is 3

INT(22.222222) is 22

INT(217.172275) is 217

In general,

INT(number)

98

gives the integer part of the number. For a positive number
this is everything that occurs before the decimal point. For
a negative number it is one less (except when the number is
already an exact whole number). Try this program:

10 PRINT 1NT(3.14159)

20 PRINT INT(— 3.14159)

30 PRINT INT(3)

40 PRINTINT(-3)

You should get the answers 3, -4, 3, -3. Note how
INT(-3.14159) is not -3, but -4, because the number is
negative and not a whole number; but INT(-3) is -3
because, although negative, it is a whole number.

All this makes good sense on a number-line, because
then INT(N) is the largest whole number less than or equal
to N, which is the largest whole number lying to the left of

Technically, INT is not a command, but a function: if
you give it a number, it gives you one back. So you can say
things like:

10 PRINT INT(10757/79)

20 LET Y = INT(12.35)

30 LET M(4) = 3 * INT(Z/7)

but not:
40 INT(10757/79)

because the computer doesn’t know what to do with the
INT when it’s found it.

99

INT rounds a number down to

the previous whole number -

unless it’s a whole number

already, in which case it leaves

it alone.

THE GASQUETS TRY AGAIN

Ermintrude and Bernard rewrote their program to read:

10 PRINT "CMA 63:"; INT(6396375/29453)

20 PRINT "CMA 64:"; INT(4992641/365)

30 PRINT "CMA 65:"; INT(10757/79)

What answers did they get?

...AND NEARLY SUCCEED

What they got was right; but they’d forgotten part of CMA
63, which asked not just for the number of ants per
anteater, but also how many were left over. In other
words, what is the remainder you get when you divide
6,396,375 by 29,453?

Let’s take a look at an easier problem. If you divide 24
by 5, what remainder do you get?

Well, obviously 4. But how do you persuade a computer
to work that out for you?

You can do it this way.

Step I Divide 24 by 5
(to get 4.8)

Step 2 Take the integer part
(to get 4)

Step 3 Multiply this by 5
(to get 20)

Step 4 Subtract the result from 24
(to get 4, the remainder
required)

10 LET D = 24 / 5

20 LET 1 = INT(D)

30 LET M = 5 * 1

40 LET R = 24 - M

1OO

REMAINDER
REMINDER

Get it? We know that 5 goes into 24 four times. That uses
up 4 * 5 = 20, so 24 - 20 = 4 are left.

Looking at the computer program, it’s clear we can
shorten it by combining the calculations like this:

10 LET R = 24 - 5 * INT(24 / 5)

And in general, to get the remainder on dividing a number
N by a number K we replace 24 by N, 5 by K, to get:

10 LET R = N - K* INT(N / K)
how to find a remainder

Here’s a simple test program that lets you INPUT two
numbers N and K, and tells you how many times K goes
into N and what the remainder is.

10 PRINT "INPUT NUMBER"

20 INPUT N

30 PRINT "INPUT DIVISOR"

40 INPUT K

50 PRINT
60 PRINT K;" INTO";N; "GOES";

70 PRINT INT(N / K);"TIMES"

80 PRINT "WITH REMAINDER";

90 PRINT N - K*INT(N / K)

You should now be able to answer the rest of CMA 63.

THE INT-EATER PROBLEM
How many INTs do you get left over if you share
6,396,375 of them between 29,453 INTeaters? Or have I
got that muddled somehow?

If you divide N by K the result

is:

INT(N / K)

and the remainder is:

N - K * INT(N / K)

1O1

NINETEEN EIGHTY-FOUR

... and Big Brother will be watching you\ Using
sophisticated computerized surveillance techniques, of
course. But Big Brother has a problem. He knows that
1984 starts on a Sunday; and his computer will tell him
such juicy items as ‘On the 85th day of 1984 Fred
Nagswindler was seen reading a copy of a subversive
publication, namely The Beano.' Unfortunately, Big
Brother’s computer won’t tell him what day of the week
the 85th day in 1984 is, and that’s important, because it’s
not only legal, but compulsory to read The Beano on a
Tuesday, and not even Big Brother wants to put someone
in the pokey for obeying the law.

Can you write him a program that accepts as input the
day number, between 1 and 366 (1984 was a leap year), and
prints out which day it is?

Hint Think about remainders after dividing by 7.

PRIME TIME
And now, to finish this chapter with a bang, I’ll -

Hang on, someone’s knocking at the door. I’ll open it.
There. Oh dear, I think I boobed. There are five of them,
wearing jackboots and trenchcoats. That’s what you get for
making jokes about Big Brother ...

“Is your name Stewart?”

102

“Yes, ... Sir.”
“We represent COPSAC.”
“Unh?”
“The Citizens’ Organization for the Promotion of

Sensible Applications of Computing.”
“Oh.”
“It has been drawn to our attention that this book

contains an unusually high proportion of frivolous
examples.”

“Yes, well, of course, I do try to present them in an
entertaining way, Sir, but you’ll find that underneath the
frivolity there is a serious purpose, and anyone who reads
them will get a very basic - ”

“COPSAC is not concerned with what lies beneath the
surface, Stewart! Like all pressure-groups, we have enough
trouble handling superficialities, without worrying about
what people are really trying to do!”

“I apologize. 1 will try to be more obvious in - ”
“You will do more than apologize! You will include a

really serious application of computing} Now} This very
instant}"

“I refuse! This is my book, and I’ll write what I want!
You’re just characters, I can make you go away whenever 1
feel like it! 1 can - ”

They elbow their way into my house. This is a
nightmare. I don’t seem to have control of my own book
any more. I guess there’s only one thing for it ...

You can often build up big numbers by multiplying
smaller ones together. For instance, 72 = 3 * 24. A
number that can be formed in this way is called composite.
If a number cannot be written as a product of smaller ones,
it is said to be prime. For example, the numbers:

2 3 5 7 11 13 17 19 23 29

are the first ten primes.

You can’t get a prime by

multiplying two smaller

numbers together.

103

The following program will let you INPUT any number
with up to eight digits, and it will factorize it completely
into primes. For example, if you INPUT 60 it will print:

60 = 2 * 2 * 3 * 5

or if you INPUT 232841 it will print:

232841 = 7 * 29 * 31 * 37

You’ll be amazed by the remarkable arithmetical
capabilities of your computer. (Hey, this is going easily. I’ll
just sneak a joke in while they’re not watching. Did you
hear the one about the Archbishop and the Belly-dancer?
Well, it seems there was this - Aaaaaaaaaaaaagghhh!

Sorry. I tried.)
Here’s the program.

10 PRINT "PRIME FACTORIZATION"

20 PRINT

30 PRINT "NUMBER TO BE FACTORIZED?"

40 INPUT N

50 PRINT

60 PRINT N;" = ";

70 LET N0 = N

80 IF 2*INT(N/2) = N THEN PRINT
" SPACE] 2 ¡SPACE|

90 IF 2*INT(N/2) = N THEN LET N - N/2

100 IF 2*INT(N/2) = N THEN GOTO 80

110 LET K = 3

120 IF K*INT(N/K) = N THEN PRINT K;

130 IF K*INT(N/K) = N THEN LET N = N/K
140 IF K*INT(N/K) = N THEN GOTO 120

150 IF K*K > N THEN GOTO 180

160 LET K = K + 2

170 GOTO 120

180 IF N = N0 AND N0 > 1 THEN PRINT
" SPACE] PRIME"

104

190 IF N < N0 AND N > 1 THEN PRINT N
200 PRINT

210 PRINT

220 PRINT "THIS PROGRAM WAS SPONSORED
BY COPSAC’S"

230 PRINT "CLEAN UP COMPUTING
CAMPAIGN"

What the program does is first test for divisibility by 2, and
then, in turn, for divisibility by odd numbers 3,5,7, ...
up to the square root of N, beyond which it is impossible
to go.

The next bit is hard going, and you can skip to the next
section (DRILL PROBLEMS) if you wish.

Let’s look at the factorization program in more detail.
To test whether a number K divides a number N exactly,
you test whether the remainder is zero. Now we’ve seen
that the remainder is given by:

N - K*INT(N/K)

and this is zero precisely when:

K*INT(N/K) = N

So lines 80-100 test for divisibility by 2; and 120-140 test
for divisibility by K. Note that K starts at 3 in line 110, and
increases by 2 in line 160, to 5, 7, 9, ... etc. A certain
amount of looping goes on, caused by the GOTO
commands, to make sure all factors of 2 are used up before
going on to 3, and so on.

The IF ... THEN parts of lines 80-100 or 120-140 are
the same: this is because we want three distinct actions to
be taken if the condition holds. We can’t write:

IF condition THEN action 1 AND action 2 AND
action 3

because AND refers to statements, not actions! But we can
split this up into three program lines:

IF condition THEN action 1

IF condition THEN action 2

IF condition THEN action 3

using the same condition each time.

105

(Most computers, including the CPC464, will also allow
multi-statement lines of the form:

IF condition THEN action 1 : action 2 : action 3

| colon (

But these are a minor side-issue which I’m not going to
discuss here.)
To see what’s going on, let’s do a dry run with N = 2100.
It goes like this:

Line
number N K N0 Comments

10-30 0 0 0 Instructions
40 2100 Input
50-60 Print formatting
70 2100 Remember value of N in a

variable that won’t be
changed.

80 Condition true: PRINT 2*
90 1050 Condition true

100 Condition true: GOTO 80
80 Condition true: PRINT 2*
90 525 Condition true

100 Condition true: GOTO 80
80 Condition false
90 Condition false

100 Condition false
110 3
120 Condition true: PRINT 3*
130 175 Condition true
140 Condition true: GOTO 120
120 Condition false
130 Condition false
140 Condition false
150 Condition false
160 5
170 GOTO 120 unconditionally
120 Condition true: PRINT 5*
130 35 Condition true
140 Condition true: GOTO 120
120 Condition true: PRINT 5*
130 7 Condition true
140 Condition true: GOTO 120
120 Condition false
130 Condition false
140 Condition false
150 Condition true: GOTO 180
180 Condition false
190 Condition true: PRINT 7
200-230 Sign off

106

Looking down the final column, you can see that the print­
out will be:

2100 = 2* 2 * 3 * 5 * 5 * 7

which is correct. Watch how the value in column N steadily
decreases as each factor is found and divided out.

DRILL PROBLEMS
Factorize the following into primes, by running the
program.

(a) 60
(b) 555555
(c) 121771
(d) 3778125
(e) 11111117 (The CPC464 takes about a minute over this!)
(f) 1024

There’s a very tiny bug that occurs in (f). Can you work
out why?

ANOTHER SERIOUS PROGRAM FROM
COPSAC

(a) Modify the program above so that it loops, listing the
factorizations of all numbers N from 2 to 10,000 in
turn. (This will take some time to run, so you may
prefer to let N go from 5000 to 5500, say.)

(b) Write a program that lists all prime numbers in turn,
starting from a given INPUT value, and continuing
indefinitely.

ANSWERS

The Gasquets Try Again ...

CM A 63:
CMA 64:
CMA 65:

217
13678
136

107

The INTeater Problem

5074

Nineteen Eighty-Four

10 PRINT "BIG BROTHER IS WATCHING YOU"

20 PRINT "INPUT DAY NUMBER"

30 INPUT D
40 IF D < 1 OR D > 366 THEN GOTO 20

protect against nonsense inputs
50 LET R = D —7*INT(D/7)

60 IF R = 1 THEN PRINT "SUNDAY"

70 IF R = 2 THEN PRINT "MONDAY

80 IF R - 3 THEN PRINT "TUESDAY: LEGAL
BEANO DAY"

90 IF R = 4 THEN PRINT "WEDNESDAY"

100 IF R = 5 THEN PRINT "THURSDAY"

110 IF R = 6 THEN PRINT "FRIDAY

120 IF R = 0 THEN PRINT "SATURDAY"

Drill Problems

(a) 2 2 3 5* * *

(b) 3 5 7 11 13 37* * * * *

(c) 13 17 19 29* * *

(d) 3 5 5 5 5 5 13 31* * * * * * *

(e) PRIME

(f) 2222222222*********

There’s a minor bug in the program as it stands - you
sometimes get an extra ‘*’ on the end. This is harmless -
but you might like to try to eliminate it if it bothers you.
(A bug that doesn’t matter is called a feature.)

108

Another Serious Program from COPSAC

(a) Delete lines 30 and 40. Add:

30 FOR M = 2 TO 10000 -* ------------- ,
or 5000 to 5500, say

40 LET N = M

195 NEXT M

(b) One solution is to modify the original primes
program. Change line 30 to:

30 PRINT "START NUMBER FOR PRIME
SEARCH?"

Then delete all PRINT statements that give factors;
but leave the line where ‘PRIME’ occurs. So you
delete lines:

60 80 120 190

Change line 180 to PRINT the prime:

180 IF N = N0 AND N0 > 1 THEN PRINT N0

Loop indefinitely:

185 LETN-N0+1
careful! Don’t use N = N + 1. N has changed

187 GOTO 70

You will also have to change the GOTOs at the end of
lines 100, 140 and 170 because lines 80 and 120 have been
deleted:

100 IF 2*INT(N/2) = N THEN GOTO 90

140 IF K*INT(N/K) - N THEN GOTO 130
170 GOTO 130

The trouble with this is it’s very inefficient, because
the computer finds the whole factorization: it just
doesn’t print it out. So laziness is not much of a
virtue here. The simplest solution is to rewrite the
program, looking for a factor 2 or an odd number,
and stopping if one is found. Like this:

109

no

10

20

30

40

50

60

70

80

90

100

110

120

130

PRINT "START NUMBER FOR PRIME
SEARCH?"

INPUT N
IF N = 1 THEN LET N = 2

IF N = 2 THEN PRINT N

IF N = 2*INT(N/2) THEN GOTO 120

LET K = 3

IF K*K > N THEN GOTO 110
IF N = K*INT(N/K) THEN GOTO 120

LET K = K + 2

GOTO 70

PRINT N
LET N - N + 1

GOTO 50

Glossary

Array A variable with numbered entries, like a list. The
Nth entry in an array named ARRAY is referred to as
ARRAY(N).

Back-up Spare copy of computer software, kept apart for
safety.

BASIC Beginner’s All-purpose Symbolic Instruction
Code. Computer language widely used on home computers.

Bug A mistake in a program.

Cassette Tape used to store a program permanently.
Unlike discs, cheap but slow.

Character A symbol that the computer can print on the
TV screen, such as X, 7, %, and so on.

Column A line of characters vertically down the TV
screen.

Command A single BASIC instruction, such as PRINT
"FRED".

Composite A number that can be factorized into smaller
ones, such as:

24 = 3 * 8

Concatenation Longwinded way of saying ‘jamming
together’. Otherwise known as string addition - for
instance "HOT" + "DOG" = "HOTDOG".

Ill

Data list A series of DATA commands in a BASIC
program, containing information to be used by the
program.

Debugging Making a program work properly.

Delimiter Nonsensical input used to terminate what would
otherwise be an endless input loop.

Disc drive A device that stores a lot of information on a
magnetic disc.

Dry-running A method for debugging a program by
working through parts of it by hand.

Empty string A sequence of characters that doesn’t
contain any!

Factorization Writing a number as a product of primes.

File A list of data stored externally to a computer, for
instance on tape or disc, that can be read back into the
machine for use within a program.

Floppy disc A circular disc of flexible plastic, covered in
magnetic film, and encased in a paper cover, used on disc
drives.

Flowchart A diagram that uses boxes linked by arrows to
show what the program will do.

Function A rule that associates with each variable some
particular value.

Initialize Set up values of variables at the start of a
program or a part of a program.

Input loop A program loop containing an input
command. Used to feed several items of data into the
machine.

Integer part The largest whole number less than or equal
to a given one. The symbol for this is INT. For instance
INT(6.83) is 6.

112

Keyword Special BASIC word such as PRINT, NEW,
RUN, LIST.

Logic The art of making valid deductions from valid
assumptions. In a computer, how to decide what
statements are true or false.

Loop Part of a program that works through the same
sequence of commands several times, usually changing
some of the variables as it does so.

Mnemonic A variable name that reminds you what it is,
such as:

PRICE, HEIGHT, USERNAMES.

Multi-statement line A line of BASIC containing several
commands separated by colons (:).

Numeric variable A variable whose values are numbers.

Output To get information out of the computer; or,
information so obtained.

Pirate A person who steals programs by copying them.

Pointer A variable used to indicate a position in some
array, whose contents are the main item of interest.

Prime A number not divisible by any smaller whole
number, such as 17.

Program List of instructions for the computer to carry
out.

Prompt Message accompanying an input command to
remind the user what is required.

RAM Random Access Memory. The part of memory that
can be changed by the programmer.

Remainder What’s left when you divide one number by
another one, not allowing fractions.

Row A line of characters horizontally across the TV
screen.

113

Search Systematically run through a DATA list, looking
for a particular item of information.

Software Programs stored in physical form as tapes,
discs, or printed listings. Large parts of this book!

Statement Assertion that is either true or false.

Step size The value by which the loop counter changes in
a FOR...NEXT loop.

String Any sequence of characters - including none at
all!

Table look-up A method for changing information in a
systematic way, by searching a list for an item and seeing
what it must be changed to.

Tabulation Arranging things in neat columns.

Test line A line added to a program during debugging, to
find out what is happening in a program.

Trace A command used to find out which lines of a
program are being carried out during a program run.

Truth table Way of tabulating the possible combinations
of truth and falsity in a compound logical statement.

User You.

User-friendly Requiring little experience to operate, giving
helpful messages, accepting different versions of an input,
and generally making life easy for people, instead of for
the computer.

Zero On computers this is written 0 to distinguish from
the letter ‘Oh’.

114

Commands
and Symbols
Index

Keywords

AND 84
CLS 4
DATA 20
DIM 53
FOR 4
GOTO 4
IF 4
INPUT 4
INT 98
LEN 39
LET 4
LIST 4
NEXT 4
NEW 4
OR 84
PRINT 4
READ 20
RESTORE 20
RUN 4
STEP 12
STOP 4
TAB 73
THEN 4
TO 4

Arithmetic and String-handling

56
56
56
56

43, 56
56
41

40, 46

115

Other titles of interest

Gateway to Computing Book 1 : Amstrad CPC464 £4.95
Ian Stewart

Gateway to Computing Book 3: Amstrad CPC464 £4.95
Ian Stewart

(All the books in the Gateway Series are also available for the
BBC Micro. ZX Spectrum. Dragon 32. Commodore 16 and Commodore 64)

The Complete Introduction to the Amstrad CPC464 TBA
Eric Deeson

On the Road to Artificial Intelligence:
Amstrad CPC464 £5.95
Jeremy Vine

Bells and Whistles on the Amstrad CPC464 £4.95
Jeremy Vine

Computers in a Nutshell £4.95
Ian Stewart

Computing: A Bug’s Eye View £2.95
Ian Stewart

Programming for REAL Beginners: Stage 1 £3.95
Philip Crookall

Programming for REAL Beginners: Stage 2 £3.95
Philip Crookall

Brainteasers for BASIC Computers £4.95
Gordon Lee

Just the job for a wet afternoon with the computing class’—
Education Equipment

Shiva also publish a wide range of books for the BBC Micro. Electron. ZX
Spectrum. Atari. VIC 20 Commodore 64. Commodore 16. Commodore Plus/4.
Sinclair QL. Dragon. Oric and Atmos computers, plus educational games
programs for the BBC Micro. Please complete the order form overpage to receive
further details.

ORDER FORM

I should like to order the following Shiva titles:
Qty Title ISBN Price

GATEWAY TO COMPUTING BOOK 1: AMSTRAD CPC464 1 85014 016 2 £4.95

___ GATEWAY TO COMPUTING BOOK 3: AMSTRAD CPC464 1 85014 078 2 £4.95

THE COMPLETE INTRODUCTION TO THE

AMSTRAD CPC464 1 85014 002 2 TBA

ON THE ROAD TO ARTIFICIAL INTELLIGENCE:

AMSTRAD CPC464 1 85014 064 2 £5.95

BELLS AND WHISTLES ON THE AMSTRAD CPC464 1 85014 063 4 £4.95

COMPUTERS IN A NUTSHELL 1 85014 018 9 £4.95

COMPUTING: A BUG’S EYE VIEW 0 906812 55 0 £2.95

PROGRAMMING FOR REAL BEGINNERS: STAGE 1 0 906812 37 2 £3.95

PROGRAMMING FOR REAL BEGINNERS: STAGE 2 0 906812 59 3 £3.95

BRAINTEASERS FOR BASIC COMPUTERS 0 906812 36 4 £4.95

Please send me a full catalogue of computer books and software: □
Name...
Address...

This form should be taken to your local bookshop or computer store. In
case of difficulty, write to Shiva Publishing Ltd, Freepost, 64 Welsh
Row, Nantwich, Cheshire CW5 5BR, enclosing a cheque for £

For payment by credit card: Access/Barclaycard/Visa/American
Express
Card No Signature

Notes

Notes

Notes

Gateway to
Computing

Jithfhe

You are going to meet some strange characters
through the gateway. Be prepared to fight a few battles
when you confront:

• Minnie and Max Monsoon, the Merciless
Meteorologists

• J Paul Grotty, the Morecambe Bay Gas Millionaire
• Millicent MacHaddock, the Misguided Milkmaid
• The Citizens’ Organization for the Promotion of

Sensible Applications of Computing

They’re tough but they’re fun. What’s more, they hold
some important secrets of programming techniques
and structures. Their alliance will be an invaluable
guide to strategy and tactics in your quest to overcome
the beasts of the chip: computer logic, bugs and data-
handling.

In this, the second book of the Gateway to Computing
series, you will pass beyond elementary BASIC.
And once you have conquered the skills held within,
you will be a true Knight of the Gateway and fly the Flag
of Computing.

Shiva Publishing Limited

UK £ NET +004 • H5

ISBN 1-ÖS014-023-S

I K)
I
*
en

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Gateway to Computing with the Amstrad CPC 464 Book 2
	Contents
	Introduction
	1 - Holmes Recollects
	2 - Loopier and 45 Loopier
	3 - She was only a Farmer’s DATA
	4 - Bugliness is next to Ugliness
	5 - Things with Strings
	6 - Array of Sunshine
	7 - Squire Stoatthrostle Picks up the TAB
	8 - Logic Chopping
	9 - INTs and INeaters
	Glossary
	Commands and Symbols Index
	

✅ Raw HQ scan : Maxime CROIZER for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ Thanks to Rafa CPCMANIACO for lending the book

✅ 2020-11-29

