
On the Road to _
Artificial
Intelligence:
Amstrad
Jeremy Vine

On the Road to
Artificial
Intelligence:
Amstrad

Dedication

For Christine

‘From quiet homes and first beginning,
Out to the undiscovered ends,

There’s nothing worth the wear of winning,
But laughter and the love of friends.’

Hilaire Belloc (1870-1953)

On the Road to
Artificial
Intelligence:
Amstrad

Jeremy Vine

Shiva Publishing Limited

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CW5 5ES, England

© Jeremy Vine, 1984

ISBN 185014 064 2

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording and/or otherwise, without the prior written permission
of the Publishers.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net price
given by the Publishers in their current price list.

An interface was used to produce this book from a
microcomputer disc, which ensures direct reproduction of
error-free program listings.

Typeset by Wordsmith Graphics Limited
Printed by Devon Print Group, Exeter

Contents

Preface vii
1 Can Machines Think? 1
2 Creating an Interactive Program 5
3 Strings and Things 7
4 More Strings Attached! 19
5 Words, Words, Words 31
6 Always the Unexpected! 43
7 Text Handling 51
8 Sigmund: An Interactive Program 57
9 Sigmund: The Program 63

10 Interviewer 81
11 Brainstorming 87
12 Artificially Intelligent? 91

Appendix A: A crash course in BASIC 93
Appendix B: An Amstrad BASIC keyword summary 99

v

Preface

Computers are rapidly becoming a part of everyday life. The
advance in silicon technology has moved at such a pace that we
now stare in the face what was not long ago complete science
fiction. Machines are now being developed that can behave with
spine-chilling accuracy the way a human does, in thought and
knowledge. Along with that movement has appeared one of the
largest growth industries: home micros. To some people they are
mere toys but the power within a home micro is great and the
ability to create programs that mimic human thought processes
are attainable.

Interactive programming concentrates on a certain aspect of
the BASIC language, namely the commands that are responsible
for handling information. The book teaches how to use these
commands and combine them into programs that communicate
with the user. The reader is also introduced to the expanding field
of artificial intelligence, one of the most exciting areas of
computer science.

Little has been assumed about the programming abilities of the
reader. It is written for those with almost no knowledge of
BASIC, and only assumes the reader has played around with a
few rudimentary commands like PRINT and INPUT. However, if
you have no experience of programming at all, I have included a
crash course in BASIC at the end of the book. In itself the book is
an introduction to BASIC but unlike other books it sets out to
introduce the notion of artificial intelligence and teach the user
how to write programs that interact with the user. Two simulation
programs are described that turn the Amstrad intd a companion
with whom to hold an intelligent two-way conversation and
behave in a manner similar to, and with the same faults as, a
human.

With a little work you will be writing programs that will give
hours of pleasure as well as start you thinking on the limits to
which you can stretch your Amstrad.

vii

To finish on a personal note I must acknowledge with gratitude
the help, encouragement and support I have received from family
and friends and to all at Shiva Publishing. To them, and to
countless others who have enthused my interest in this area, this
book is partly due.

London, 1984 Jeremy Vine

About the author

Jeremy Vine was educated at William Ellis Grammar School,
Highgate, London, and at the City of London Polytechnic, where
he achieved a BSc in Psychology. Jeremy first became involved
with computers while studying for his degree and has never since
been far away from one. When Jeremy left the polytechnic, he
worked freelance for Acorn User magazine, before joining Acorn
Computers Limited. During this period, he also studied for an
MSc in Neurophysiology. Now, having left Acorn, Jeremy is
working full-time as a freelance writer. As well as his books for
Shiva, he is a regular contributor to several computing maga
zines, which has brought him a consultant editorship. His
spare-time interests are tennis, piano, photography and, of
course, home-computing.

viii

1 Can Machines Think?

Science fiction has a way of becoming fact and as it was
impossible to believe, only a few decades ago, that man would
ever step on the moon, so too is it incredible to think about
machines that can answer back and act intelligently. Yet the day
of artificial intelligence becoming reality is dawning and it may
not be long before these words can be written by a computer.
However, before you start to think that your Amstrad can act like
any human being, I should point out that artificial intelligence on
home computers is not advanced enough. But that is no reason
not to go as far as you can.

The purpose of this book is threefold. Firstly, to show you a
variety of commands in the BASIC programming language and
teach you how to write programs that deal solely with text and the
manipulation of text input by the user. Very little knowledge of
BASIC is assumed but if you don’t feel confident enough to
tackle Chapter 3, where we start programming, then turn to
Appendix A where I have written a lightning guide to BASIC and
first principles. Secondly, a number of techniques are shown
which you can incorporate in your own programs, to make them
more interactive and thirdly, to build up to writing programs that
enable the user to freely communicate with the computer. What
do I mean by freely communicate? Well, take a look at the
following interaction between a human and a computer:

COMPUTER: NICE TO MEET YOU JEREMY
TELL ME WHY YOU WANT TO TALK TO ME

HUMAN: I HAVE TERRIBLE DREAMS
COMPUTER: DO YOUR DREAMS INVOLVE OTHER PEOPLE?

HUMAN: YES MY SISTER
COMPUTER: THIS SOUNDS LIKE A COMPLICATED

RELATIONSHIP

1

HUMAN: I'M VERY DEPRESSED OVER THIS
COMPUTER: HOW OFTEN ARE YOU DEPRESSED?

HUMAN: ALMOST ALL THE TIME
COMPUTER: I SEE

HUMAN: AND I DREAM OFTEN
COMPUTER: I ENVY YOU...I CAN'T DREAM

HUMAN: WOULD I BE WRONG IN THINKING ABOUT
HER

COMPUTER: I WOULD IF I WAS IN YOUR PLACE
HUMAN: WOULD YOU SAY IT'S ABNORMAL

COMPUTER: I'M NOT PREPARED TO SAY WHAT I THINK
HUMAN: YOU DON'T THINK ANYWAY. YOU'RE JUST

A MACHINE

COMPUTER: DO MACHINES WORRY YOU?
HUMAN: NO OF COURSE NOT. COMPUTERS ARE

MINDLESS
COMPUTER: AS A COMPUTER I TAKE A DIFFERENT

VIEW

That conversation didn’t take place on a huge mainframe
computer but on the Amstrad computer. It is an example of what
can be achieved even on home micros and we will write the
program to do this later in the book. Now you might be thinking
that we already have an intelligent machine if it can hold a
conversation like the one above. Well, feeling like a magician
who has dropped a card from his sleeve, I have to admit it is all a
trick. The program does indeed allow the user to freely
communicate with the computer, and the computer does make
intelligent replies but does that mean the computer is thinking?

By the end of this book I hope to have started you thinking
about whether machines can think or not, which is a bone of
contention within the research area of artificial intelligence. A
definition of Al is difficult because of the degree of argument and
controversy surrounding the field. Perhaps it is purely to describe
any action performed by a computer that previously could only be
carried out by a human being. Or it may describe the processes a
machine is using to carry out a task, like playing chess.

2

I leave you with that problem to think over and as we progress
through the book, and learn the different ways of communicating
with the computer and it in turn communicating with us, try to
decide for yourself to what degree, if any, your Amstrad is a
thinking machine.

3

2 Creating an Interactive
Program

Creating an interactive program is a combination of factors. It
starts as an idea and progresses through many stages until the
program is completed to the satisfaction of the writer. The
planning behind a program is as important as the way a program
is written and sorting out problems at an early stage makes for
easier development. This chapter considers the general principles
to be borne in mind before writing a program and in particular
interactive programs.

Interactive programming is simply writing programs that
interact with the user. The emphasis is on using BASIC to write
programs that enable the user to freely communicate with the
computer and, in later chapters, we will see how to use a wide
range of commands in the BASIC language which will eventually
make our Amstrad have the appearance of a thinking, intelligent
being. What we will try to achieve is to teach our computer to
think.

In creating a program there will always be an idea or an aim
from which the program will spring. One should think carefully
exactly what the aims of the program are and the way in which it
will work. What do you want the user to see on the screen
display? What do you allow him to type in? You must ask
yourself many questions about the program if you are to get it
right.

For instance, we will see how to account for as many of the
possible things a user of a program might do to mess up the
works. So what we effect is a way of writing into the program, in
advance of its use, procedural methods to take care of the worst
thing a computer has to face. And what is that worst thing? The
user! The computer has no way of knowing or understanding
what the user desires, and is to all intents and purposes blind to
the world. Computers are mindless (though don’t say that to
Sigmund later or he will get upset!) and have to be fed
information.

5

Information is the life blood of a machine and computers need
to be fed a healthy diet of raw data. This book concentrates on
one side of programming, that is, the manipulation of text, both
material held by the computer and text input by the user. You
may already be acquainted with a few BASIC commands and
able to INPUT and PRINT information but there is much more that
you can accomplish with text. BASIC offers a range of commands
enabling the programmer to manipulate and juggle text around to
create the impression of a thinking machine. Points to bear in
mind when writing a program are to:

1. Use flowcharts to aid the planning of a program. (There are a
number of flowcharts in the book which help to understand
the way in which a program works.)

2. Plan what the user will see on the screen.

3. Ease of use. Try to make the program as easy as possible to
use.

4. Error trapping. Ensure that unwanted errors don’t affect the
smooth running of a program.

If any of these points make little sense at the moment, don’t
worry. We will cover them as we progress and by the end of the
book these should be principles that will come straight into your
head when writing a program.

Always remember that we are dealing with an empty box. Our
job is to fill that box up and to make it an Aladdin’s cave to
anyone who looks inside. But if we are to be creative and write
interactive programs we must do some programming. So let’s get
down to it straight away. Happy interactions!

6

3 Strings and Things

I’ve already said that we’ve got to teach our Amstrad to think and
the first step in that process is user input. In this chapter, and the
next, we will see how the computer accepts information and then
manipulates it to our requirements. Let’s remind ourselves of
what is meant by a variable.

Program 3.1

10

20

30

40

INPUT
INPUT
PRINT
PRINT

name$
age
nameS
age

Program 3.1 contains two variables: a string variable, denoted by
$(dollar) on the end of a variable name, called nameS, and a
numeric variable age. When the program is run, in reply to the
first prompt ?, we can type in alphanumeric characters—in other
words, type in anything we like—and this reply is stored in
nameS.

On pressing the ENTER key we are faced with another question
mark. This time the Amstrad is expecting a number to be entered
and this value is stored in age. Lines 30 and 40 print out the
contents of nameS and then the contents of age. You have no
doubt guessed that the program is asking for your name and age.
Well, that is far from clear, as all we can see when the program is
run is two question marks! So, let’s tidy the program up:

7

Program 3.2

10 INPUT"name ? ",name$
20 INPUT'age ? ",age
30 PRINT nameS;" ISage;"YEARS OLD"

Run the program and you can see that the prompts are more
explicit and we can now direct the user to input his name and age.
Now rerun the program but this time enter your name at both
prompts. If we do this, it can be seen that the machine will store
the first input correctly, as it is a string input, i.e. any character.
However, the second variable age requires a numeric input and
therefore a value of 0 remains in variable a g e as the input is not
numeric. The Amstrad will reject alphabetic input in this
situation and ask you to re-enter the information.

Having reminded ourselves briefly on variables, it is time to play
around with strings!

STRING MANIPULATION 1: The use of LEFT$

As one of the main aims of this book is to concentrate on text
input and the manipulation of that text by the computer, let us
take a look at some commands in Amstrad BASIC that enable Us
to play around with strings. But first of all, consider the following
problem—I want to write a program that prints out the letters of
my name, increasing by one letter on each line as follows:

J
JE
JER
JERE
J EREM
JEREMY

Well we could try and write a program, such as the one below:

Program 3.3

10 PRINT "J"
20 PRINT "JE"

8

30 PRINT "JER"
40 PRINT "JERE"
50 PRINT "JEREM"
60 PRINT "JEREMY"

But we are not going to get very far if we have to type in
everything for the computer. The problem with Program 3.3 is
that we are typing everything that appears on the screen—not
exactly a time saving way of writing the program. Of course,
there is a quicker way and Amstrad BASIC provides us with the
commands to help us in this situation.

What we need is a way of reading any given string and printing
it out a letter at a time, increasing by one character on each line,
as in the example above, without all the PRINT statements. ‘How
do I do that?’ I hear you ask. The answer is simple. We use the
command LEFTS .

The next program uses LEFTS to print out the first character of
the string entered by the user. Type it in and see:

Program 3.4

10 INPUT"Enter a word ? ",words
20 PRINT LEFT$(word$,1)

Try changing the number 1 in line 20 to other values to see what
happens. By changing this value, the number of characters
printed, from left to right, of the word will alter accordingly.
Have a look at Figure 3.1.

Our next job is to produce the same effect without having to
type a PRINT statement for each line. Type in Program 3.5:

Program 3.5

10 phraseS = "THE QUICK BROWN FOX"
20 counter = 1
30 PRINT LEFT$(phrase$,counter)
40 counter = counter + 1: GOTO 30

Run the program and ...?! The problem lies in the fact that we
increase the value of counter every time and when we exceed the
number of characters in the string we just carry on printing
phraseS. Change line 40 to read:

9

word$ = COMPUTER

PRINT LEFT$(word$,1)

PRINT LEFT$(word$,2)

PRINT LEFT$(word$,3)

PRINT LEFT$(word$,4)

PRINT LEFT$(word$,5)

PRINT LEFT$(word$,6)

PRINT LEFT$(word$,7)

PRINT LEFT$(word$,8)

Screen display

C

C 0

COM

COMP

C 0 M P U

C 0 M P U T

COMPUTE

COMPUTER

Figure 3.1 Effect of LEFTS.

40 counter = counter + 1: IF counter > 19
THEN END ELSE 30

At last the desired effect! Or is it? There is still a problem. In
order to stop the program when all the characters have been
printed, I’ve had to count the number of characters in phrase$
(including the spaces), thus the reason for IF counter>19in line
40.

However, we are not always going to be in a situation where we
know the number of characters in the string. Once more Amstrad
BASIC comes to the rescue with a command to let the computer
know the length of a string.

STRING MANIPULATION 2: LEN

The LEN statement gives such information. In Program 3.6 we use
LEN to give us the amount of characters entered into ent ry$. Try
entering one word at first and then re-run the program and enter
a short sentence.

10

Program 3.6

10 MODE 2
20 INPUT"Enter word or phrase : ",entryS
30 PRINT"The number of characters in the

string is";LEN(entry$)

If you entered a few words you would have noticed that LEN
counts the spaces as well as any other characters. Spaces are
counted in this instance, and it is worth bearing in mind as we will
take a look later on, in greater detail, at spaces between words.
However, back to LEN for the time being.

In Program 3.5 our problem was not knowing the number of
characters in the string. Let us now rewrite that program using
LEN:

Program 3.7

10 INPUT phrase$
20 FOR counter = 1 TO LEN(phraseS)
30 PRINT LEFTS(phraseS,counter)
40 NEXT

You will notice that I have introduced a FOR-NEXT loop into the
program. If you have not used a FOR-NEXT statement yet, a look
at the user manual will explain the uses of this command. In brief,
the loop is set from the first character of phraseS to the total
length of the string, this being determined by LEN in line 20.

Not only is Program 3.7 more efficient than Program 3.5. but it
is also faster. This can be quite important in the larger programs
where much processing is being carried out. But more of that
later. Time now to introduce a couple more BASIC statements.

STRING MANIPULATION 3: RIGHTS and MID$

If you’ve understood the use of LEFTS, the next command is very
easy. RIGHTS is, as its name implies, a string handling command
and if you haven’t guessed by now, carries out the same function
as LEFTS, except in reverse. Well, not quite the opposite! Let’s
take a look at Program 3.4 again except this time changing LEFTS
to RIGHTS in line 20:

11

Program 3.8

10 INPUT'Enter a word ? "zword$
20 PRINT RIGHT$(word$,1)

RIGHTS doesn’t quite work as you might think. With a value of 1
in line 20, RIGHTS gives the last character in the string. However,
try changing that value. The result produced is not back to front.
Not clear? Have a look at Figure 3.2.

Figure 3.2 Effect of RIGHTS.

The reason I said it might not be clear is that one might expect
RIGHT$(word$,3) to produce YME, in other words print the
string starting from right to left but as you can see from Figure 3.2
this is not the case. If you’re still not certain about the use of
RIGHTS, use Programs 3.4, 3.5 and 3.7, changing LEFTS to
RIGHTS wherever it occurs.

Now let us take a look at MIDS. This, like LEFTS and RIGHTS, is
a string function but unlike those functions has three arguments
associated with itself, i.e. MID$(exam$zXzY). X and Y are two of
the arguments and I will explain each in turn. Let us suppose that
examS contains the string INTERACTION. This is how MIDS works:

12

exam$= INTERACTION INTERACTION

MID$ (exam$, 6, Y)

MID$ (exam$, X, 6) YYYYYY

ACTION

X

Figure 3.3 Function of MID$.

The first argument is the same as LEFTS and RIGHTS and gives
the name of the string variable to be worked on. In our example
this is examS. The second argument acts as a pointer to the
starting position. Therefore, the value of six means that the string
we are going to produce starts at that position, in this case at the
letter A.

Finally, the third argument (shown as Y) gives the number of
characters to be taken from the position of X (inclusive of the
character at position X). So in Figure 3.3, the first six letters from
position X will be taken (as it happens there are only six
characters left in that string). Let’s put this into a program:

Program 3.9

10 CLS
20 exam$="INTERACTION"
30 INPUT"Set pointer to where ? (ie 'X')",x
40 INPUT"Number of characters from that

posi tion",y
50 PRINT MID$(exam$,x,y)

13

Run the program entering different values and see how the values
of x and y alter the word printed out in line 50. (Notice that I have
used both upper and lower case letters for x and y, to show that it
doesn’t matter which form you choose for the data. In fact, you
could combine the two and it would still be accepted.) The MI D$
function along with the other string functions I have mentioned so
far are extremely useful, and I will return to them later on. Let’s,
however, take a break from string manipulation and take a look
at another area of user input.

MENUS!

No, I’m not thinking of food! I mentioned in Chapter 2 that an
important part of an interactive program is the screen presenta
tion. An integral part of such displays is often a menu of options
for the user to choose from, so why don’t we start writing the
options menu for our next program. Type the program in,
keeping to the line numbers shown, as we are going to build up a
program in a few stages.

Program 3.10a: MENU procedure

50 CLS
60 PRINT"A S C I I CODES"
70 PRINT,,"1 ASCII code to character"
80 PRINT,,"2 Character to ASCII code"
90 PRINT,,,/'Enter your choice"

100 a$=INKEY$
110 a=VAL(a$):IF a<1 OR a>2 THEN 100
120 PRINT a
130 ON a GOTO 30,40
140 RETURN

Also add lines 10 and 20 as follows:

10 MODE 1: ZONE 40
20 GOSUB 50

Run the program. As the program is not complete you will get a
NO SUCH LINE error message if you press either 1 or 2. Run the

14

program a few times and note how it only responds to the two
numbers shown. Type in any other number and it is ignored. For
the moment don’t worry about how the program works; I’ll be
explaining how this procedure and the rest of the program works
in the remaining part of this chapter and Chapter 4.

One thing you couldn’t have failed to notice was the strange title
on the screen—ASCII CODES. Who or what is ASCII? Let’s find
out.

ASCII

ASCII (pronounced AS-KEY!) are letters that stand for Amer
ican Standard Code for Information Interchange. Try saying that
every time. No wonder it is shortened! But what does all that
mean?

As you may have discovered by now, every computer is
different and BASIC, for example, has many versions im
plemented and all of them have differences. One of the few
standards that is adopted by most computer manufacturers is the
use of the ASCII character set. ASCII is a code used by the
computer to represent characters and control codes. For our
purposes we will concentrate on the keyboard character set. If
you haven’t already done so, SAVE the menu program and then
type in Program 3.11.

Program 3.11

10 FOR ascii = 32 TO 126
20 PRINT CHRSCascii);
30 NEXT

The program produces the characters represented by the ASCII
value. You might have noticed that I have used a BASIC
keyword CHRS in Program3.11. To explain what CHR$ is doing,
LOAD in Program 3.10a again and let’s add the next part of the
program.

Program 3.10b

240 CLS:INPUT"Enter ASCII code number and
press ENTER",code

15

250 PRINT
260 PRINT code;"is the ASCII code for '";CHR$

(code);'""
270 PRINT,,,/'Press ' Y' to continue"
280 a$=INKEY$:IF a$="y" OR a$="Y" THEN 290

ELSE 280
290 RETURN

Also add line 30:

30 GOSUB 240

Now SAVE the program and RUN. You will be asked to enter an
ASCII code number. Type in any number between 32 and 126
(these are the codes that represent the character set). The
conversion from ASCII number to a character is being carried out
by the CHR$ command in line 260.

The purpose of CHR$ is to produce a character from a given
number. This number relates to the ASCII value of that
character, i.e. if you enter 65 the answer will be A, because the
ASCII value 65 is the code for the character A.

OK. What about converting a character to an ASCII number.
This can be done by using the ASC function. This is used in the
final section of our program. Make sure you have the program as
it stands LOADed into the Amstrad before continuing:

Program 3.10c

170 CLS:PRINT'Enter character"
180 a$=INKEY$:IF a$ <>"" GOTO 190 ELSE 180
190 PRINT'The ASCII code for "';a$;'" is

"ASC(aS)

200 PRINT,,"Press ' Y* to continue"
210 a$=INKEY$:IF a$="y" OR a$="Y" GOTO 220

ELSE 210
220 RETURN

Add line 40:

40 GOSUB 170: GOSUB 50

16

and change line 30 to:

30 GOSUB 240: GOSUB 50

The program is now complete. SAVE it and RUN. Choose option 2
and enter any character. Line 190 carries out the conversion of
the character which is held in the string aS. ASC(AS) gives the
ASCII value of the character held in aS. You can see this working
by just typing in the following line:

PRINT ASCC'J")

By altering the character a different code will be produced.
What if aS contains more than one character? Well, only the

value of the first character of that string will be returned. You are
probably wondering whether I have forgotten to explain the other
elements of the program. Don’t panic! The remaining commands
will be explained in the next chapter but for the moment here
is Figure 3.4, a flowchart of the workings of the program.

See if you can spot what is wrong with the program. Remember
what I said in Chapter 2 about having to account for all possible
input by the user. I will come back to this program in Chapter 6
which is about error trapping. I think you have enough clues for
now!

17

Figure 3.4 Flowchart for Program 3.10.

18

4 More Strings Attached!

An important aspect of writing an interactive program is to
ensure that the computer reads all of the user’s input. Now you
might think that we have already covered this point by using the
INPUT statement but this is not so. To see what I mean enter
Program 4.1:

Program 4.1

10 CLS
20 GOSUB 100:INPUT firstphraseS
30 GOSUB 100:LINE INPUT secondphraseS
40 PRINT,,"firstphraseS = 'firstphrase$;
50 PRINT,,"secondphrase$ =

secondphrasei;.....
90 END

100 PRINT,,"Type in the fo I lowing:","MY
AMSTRAD IS A GREAT COMPUTER"

120 RETURN

Run the program and you can see that both variables contain the
same phrase that we input. However, run the program again and
this time insert a comma in the middle of the sentence like this:

MY AMSTRAD, IS A GREAT COMPUTER

See the difference? When we use INPUT in line 20 the variable
will quite happily retain the entire contents of the string as long
as there is no comma in the sentence. But when a comma
is inserted, INPUT will reject the entire string entered. To get

19

round this problem Amstrad BASIC provides the command LINE
INPUT which will accept everything that is typed in. I have used
LINE INPUT in line 30 of the program and when the program is
run, it can be seen how everything you type in, regardless of
commas, will be retained.

LINE INPUT not only accepts commas, it will also recognize
leading spaces. By this I mean if you type in a number of spaces
before your sentence, LINE INPUT will include those leading
spaces in secondphraseS, whereas INPUT will not. Try typing in
a sentence with leading spaces to see the difference.

But why all this fuss anyway? Well, in developing our
interactive programs we want to allow the user to communicate
freely with the computer. To do this the user must be free to type
in anything he likes and, as is most likely, he will type in a
sentence which could contain a comma. If the computer is to
analyse the input from the keyboard it must be able to look at
everything that has been typed and as we have seen with the
INPUT statement this is not always the case. LINE INPUT ensures
that everything typed in is stored in a given string.

RECOGNIZING A FAMILIAR WORD: The use of INSTR

We now come to a problem in creating an interactive program—
that of recognizing a word within a long stream of other
characters. LINE INPUT may ensure that every word typed in is
what is stored, but how do we start to recognize a particular word
within a sentence? It is not as difficult as it might first sound. As
you by now have come to expect an Amstrad BASIC command is
available to solve the problem. The command is INSTR (you can
think of it as ‘in string’).

What INSTR does is to search a string, in this case a long
sentence that we have input, for a familiar word. When it has
found that word (or group of characters) INSTR returns the
position of the leftmost character of the word within the string.

To demonstrate this type in Program 4.2.

Program 4.2
10 CLS:ZONE 40
20 PRINT"Enter your sentence"
30 LINE INPUT a$
40 b$="BASIC"
50 find=INSTR(a$,b$)

20

60 PRINT,,"The value of variable 'find' =
f i nd

70 PRINT,,"YOU TYPED:",;a$
80 IF find=0 THEN 120 ELSE 90
90 PRINT SPCifind-1);"f"

100 PRINT"The match was found here"
110 END
120 PRINT,,,"The string "^bS;"' was not

found":END

Now if you type in any old sentence the chances are you will get a
message ‘The string BASIC was not found’. This is because the
program is looking for the occurrence of a string, in this case the
alphanumeric string BASIC which is assigned to b$ in line 30.
Run the program again and type in the following:

THAT IS THE BASIC DIFFERENCE

This time you will see the string has been matched up with a word
within the sentence. The value of the variable f i nd is the position
at which the start of the word BASIC was found within the
sentence typed. The line of the program that is doing all the work
is line 50. INSTR(a$,b$) returns a value. If a match is found, i.e.
if the variable b$ is found within the string you typed in as, a$,
then the position of the string is returned and the numeric
variable find equals that value. However,if no match is found
then a value of 0 is always returned. Line 80 acts on that result
and accordingly prints the appropriate message. See Figure 4.1
for a flowchart of the program.

INSTR is a very useful command and as you will see later on in the
book, it plays a crucial part in picking out key words or phrases
for the computer to understand. More of that later. Now let’s
backtrack slightly and look at a few commands I have used in
programs in this chapter and Chapter 3 without explanation.

PRESENTATION AND LAYOUT 1: INKEY$

If you ran the menu program in Chapter 3 you might remember
that everything was laid out for the user and, where possible, just
one push of a key was sufficient to work your way through the
program. An important part of any program is the presentation of

21

Figure 4.1 Recognizing a familiar word.

22

material on screen and the ease of input to the user. The more
friendly these points are, the more interactive a program
becomes. I have already used some commands in order to do this
and I will now cover them.

Go back to Program 3.10 and you will notice I used in both
lines 120 and 190 a BASIC keyword INKEY$. When this function
is used the computer scans the keys of the keyboard to see if a key
is pressed. If a key is pressed, a record of that key is stored in the
opposite variable, i.e:

Program 4.3

10 character$=INKEY$:IF characters = ""
THEN 10

20 PRINT'You typed the character "¿characters

If a key is not pressed an empty string is returned. To ensure that
the program waits until a key is pressed, the program loops
around itself in line 10. However, you need not make any use of
that stored variable as I have done in line 20 of Program 4.3. The
command can also be used as a means of temporarily stopping a
program until any key is pressed. Try Program 4.4:

Program 4.4

10 CLS
20 PRINVI'm waiting for you to press a key"
30 aS=INKEYS:IF a$="" THEN 30
40 PRINT"About time too!"

Line 10 clears the screen and the program comes to a standstill at
line 30 until a key is pressed. In these ways INKEYS can provide
methods of directly scanning the keyboard to see whether or not a
key is pressed and which key it is that has been used.

PRESENTATION AND LAYOUT 2: ZONE, TAB and SPC

There are two commands which you can use as a means of
printing spaces within a PRINT command. These commands are
TAB and SPC. TAB is used in conjunction with the PRINT
statement. It means tabulation and enables the user to specify the
number of spaces to move to in a PRINT command.

23

TAB has one argument associated with its use. Therefore,
PRINT TAB(5); • will move the cursor five spaces to the print
position. S PC works in a similar fashion, though it does not need a
semi-colon to end the command as this is assumed by the
machine. Figure 4.2 shows examples of the TAB and SPC
statements and their effects on the screen display.

Figure 4.2 Effects of TAB and SPC commands.

I used S P C in Program 4.2 to place the correct number of spaces in
a line before printing a word. This ensured that the words lined
up under one another. (Go back and run Program 4.2 if you don’t
remember this.) SPC and TAB are two useful functions which
enable a quick and well laid out screen to be constructed.

You will have noticed that I have used the command ZONE and
it is a command that you will see quite a few times in this book.
ZONE is responsible for changing the width of the ‘zone’ in which
printing takes place when using the PRINT statement. So when we
use a comma to j ump to the next print zone, i. e. PRINT,' we can

24

tell the computer where that zone is by giving the width of that
zone as a number. In the case of our programs, we usually require
the program to read the commas following a print statement to
mean ‘print a blank line’, so we declare the command ZONE 40 at
the start of the program. Do remember, however, that the
number following ZONE depends on the screen mode you are
using. As mode 1 is a 40 column mode we therefore need to make
jumps of 40 spaces. Obviously you change this figure according to
the mode you are working in and the printing you wish to effect.

We have already seen how ASCII works and conversion between
alphanumeric and numeric variables can be important. As you
know, a numeric variable cannot read an alphanumeric input.
However, there is a way of converting a string so that it can be
read.

CONVERTING STRINGS: VAL and STR$

Let us consider a problem. I wish to enter a number using an
alphanumeric input and then have that converted so that a
numeric variable can read and understand the input. Can we do
this? No prizes for guessing that this is possible and Program 4.5
shows how:

Program 4.5

10 a$=INKEY$:IF a$="" THEN 10
20 a=VAL(a$)
30 IF a<1 OR a>5 THEN 10
40 PRINT a
50 ON a GOTO 100,110,120,130,140

The program is not complete and will therefore crash at line 50.
Line 10 waits for an input and line 20 is where a conversion takes
place. The function VAL (standing for ‘value’) takes a$ which
would contain a number and converts it into a real number which
then becomes the value of variable ‘a’. To ensure that a number
between a certain range has been entered, line 30 checks that the
value of ‘a’ is not outside the specified range. If it is outside the
range, the user is sent back to line 10 until an acceptable number
is entered. Program 4.5 is the basis of the subroutine GOSUB 50 in
Program 3.10a in Chapter 3. VAL therefore converts string

25

variables into numeric variables and the opposite can be achieved
using STR$. Type in Program 4.6:

Program 4.6

10 number=1.2
20 PRINT number*2
30 a$=STR$(number)
40 PRINT a$*2

To prove that the number 1.2 has been converted to a string
variable, line 20 carries out a mathematical function on a numeric
variable and of course, it works. However, when line 40 is
reached, an error message is generated by the computer because
the machine is trying to carry out multiplication on a string
variable. In line 30, STR$ has converted the numeric variable into
a string by placing the converted string in a$. To check the
contents of a$ type PRINT aS.

These functions within Amstrad BASIC give your program
ming more flexiblity, and as I’ve shown you with the menu
program, can be very useful.

OPTIONS WITHIN PROGRAMS: The use of ON

Program 4.5 included an easily missed command, ON. This allows
the order of running a program to be changed, by jumping to a
specified line depending on the value of a certain variable. For
instance, in the menu program, depending on which number is
entered, the program jumps to the appropriate routine. There
fore, a line like:

ON key GOTO 220, 250, 800

means if the numeric value of ‘key’ is equal to 1 then GOTO line
220; if ‘key’ equals 2 then GOTO line 250 etc. Figure 4.3 illustrates
this.

Providing options within a program is most common and ON gives
the programmer a way of presenting many options without
resorting to loads of IF-THEN statements. Look at Program 4.7,
but don’t type it in unless you are particularly masochistic!

26

ON key GOTO 280, 250, 220

Figure 4.3 The ON statement.

Program

Program 4.7

10 INPUT "Enter option number", optnum

20 IF optnum = 1 THEN GOTO 100

30 IF optnum = 2 THEN GOTO 24

40 IF optnum = 3 THEN GOTO 310

50 IF optnum < 1 OR optnum > 3 THEN 10

Just from that short example you can see how much quicker ON is
to use. Another use for ON is error trapping and I will cover this in
Chapter 6.

REPEATING ONESELF:
The use of WHILE... WEND and INKEY$

We already know one kind of loop, that being the FOR-NEXT
loop, but there is a second statement which you can use for

27

situations where you want the instructions repeated until a
specified condition is met. This is the WHILE.. .WEND statement.
We can use the command as in the example of Program 4.8.

Program 4.8

10 x = 0
20 WHILE x < 15
30 PRINT x
40 x=x+1
50 WEND

Line 10 sets x to zero and line 40 increases its value. Line 20 is the
all-important line and tells the machine that while x is less than
15, any commands following up to the WEND statement should be
carried out. In this case the program loops round until x is equal
to 15.

The WHILE statement marks the start of a WHILE loop and the
WEND command terminates the loop when the conditions are met.

WHILE...WEND can be used under a variety of other conditions
and another use may be to test for the pressing of a certain key.
To do this we can use WHILE...WEND in conjunction with
INKEYS. Type in Program 4.9.

Program 4.9
10 x$=INKEY$
20 WHILE x$=""
30 GOTO 10
40 WEND
50 PRINT'THE KEY ";x$;" WAS PRESSED"

The program loops around until a key is pressed. The function
INKEYS we have already covered and tests to see if a key has been
pressed. If so the character pressed is placed in x$ and the
program continues. In this case INKEYS loops round indefinitely
because it is placed in a WHILE...WEND loop, which means the
loop continues until a key is pressed.

These functions can be very useful for determining whether or
not a certain key has been pressed and it is a good way of ensuring
that only the key you specify is used. Bear this in mind when
reading about error trapping in Chapter 6.

28

That concludes our look at manipulating strings and if you have
understood everything in these last two chapters, you are well on
the way to creating programs that interact with and not against
the user.

29

5 Words, Words, Words

Even with the advent of new communication systems, a growing
area within computer science, the basic form of communication
has remained the same: the written word. Or to be more exact the
on-screen word is still our most precious commodity as regards
communicating between ourselves and with machines. So far in
this book we have concentrated on the entering of information
into the computer and its manipulation of that data. But we have
dealt only with small individual bits of information that have
amounted to very little. We now need to consider the storage of
larger chunks of data which the computer can call on at any time.

ARRAYS

Imagine that we have to store a record of the finishing positions
of racing car drivers in any given race. We need the computer to
be able to tell us who was at a particular position in the race. Now
how do we go about entering this information? Let’s say we have
the names of the top six drivers to enter. Using what we have
learnt so far we would set up six separate variables to contain the
information. Our program might go something like this:

Program 5.1

10 CLS:PRINT'Enter the name of the drivers in"
20 PRINT"order from 1 to 6"
30 INPUT num1$
40 INPUT num2$
50 INPUT num3$
60 INPUT num4$

31

70 INPUT num5$
80 INPUT num6$
90 CLS

100 INPUT"Which position do you wish to
check",check

110 ON check GOTO 120,130,140,150,160,170

120 PRINT "Position 1 was : num1$: GOSUB 180

130 PRINT "Position 2 was : num2$:GOSUB 180

140 PRINT "Position 3 was : ";num3$:GOSUB 180

150 PRINT "Position 4 was : num4$: GOSUB 180

160 PRINT "Position 5 was : num5$: GOSUB 180

170 PRINT "Position 6 was ; num6$:GOSUB 180

180 PRINT "Press SPACEBAR to continue"

190
200

a$=INKEY$:IF a$<>" "
GOTO 90

THEN 190

But this is a very time consuming exercise. Firstly, I have set up
six separate variables to contain the names of the drivers. What
would happen if I had a hundred names? And for each response I
have had to set up a separate response line. Telling the computer
which number you need to check is not easy and the only way is to
provide a separate reply for each possible input. Well, I need not
tell you this is futile. So what can be done to ease the pain of
programming?

The answer is to introduce arrays. What is an array? You can
think of an array as a table of information. It’s rather like having
an index card with a number of lines of information written on the
card. Look at Figure 5.1.

There is a single filing card in Figure 5.1 and the card is labelled
WINNERS. On each line is a position number and next to the
number is the name. In order to let the computer know that we
want to enter up to six names we tell the machine that the table is
up to six items in length. This is done by using the DIM statement.
So for our first line we type:

10 DIM wi nner$(6)

We have now set up a variable with a one-dimensional array to a

32

DIM

Figure 5.1 Arrays.

maximum figure of six. We can now complete the rest of the
program.

Program 5.2

20 PRINT"Enter the names of the drivers in"
30 PRINT"order from 1 to 6"
40 FOR enter = 1 TO 6
50 INPUT winner$(enter)

60 NEXT
70 CLS
80 INPUT"Which position do you wish to

check",check
90 PRINT"Position ";check;" was :

"winner$(check)

33

100 PRINV'Press SPACEBAR to continue"
110 a$=INKEY$:IF a$<>" " THEN 110
120 GOTO 70

What we have done is to enter all our information into the same
variable winners but at six different points. By using a FOR-NEXT
loop the value of ‘enter’ is increased every time and winners can
have six entry points, winnerSd), winner$(2) and so on.
Having saved time and space on the input side we can also save
time when retrieving information. The correct entry is found and
printed out all in line 90 and much space is saved. This program
would be the same size for six hundred entries as for six. The only
thing we would need to change is the size of the array, and we can
do that by simply changing line 10, i.e. DIMwinner$(600), and
the length of the FOR-NEXT loop. Now try to imagine writing a
system for entering large sets of data using the first method!

The above is more efficient but there are situations where we
need to enter more than one piece of information in connection
with one particular event. Taking our motor racing example, I
also want the country the driver represents to be displayed. We
could add the following line to cover this point:

55 INPUT"Enter country", country$(enter)

and change lines 10 and 90 to:

10 DIM winner$(6), country$(6)
90 PRINT "Position check " was :

"winner$(check); SPC(4); " (
countryS(check)")"

But as we add more items we have to increase the number of
arrays and this can get out of hand with more information being
entered. It would be far easier if we could link the information
about country into the same variable as the name. And, of
course, we can do this. What we are now going to set up is a
two-dimensional array, or if you prefer, a 2 x 2 table. Figure 5.2
shows this.

By changing the array in line 10 to:

10 DIM wi nner$(6,1)

34

DIM winner$(6,1)

1

2

3

4

5

6

MICHAEL ENGLAND

DAVID WALES

JOHN SCOTLAND

BRUCE IRELAND

JOE FRANCE

CHRIS ENGLAND

Figure 5.2 A two-dimensional array.

we have now told the computer that winner$ has two entry
points. Change line 50:

50 INPUT"Entername ", winner$(enten,0)

and add line 55:

55 INPUT"Enter country ", winner$(enter,1)

Finally, change line 90 to:

90 PRINT "Position"; check "was : "
winner$(check,0); SPC(4); " (winners
(check,D") "

I have put in two input lines to show you more easily what is
happening. Line 50 is winner$(1,0) and this equals a name.
Line 55 is winner$(1,1) and this equals the country. The
FOR-NEXT loop increments the first value until six names and
countries have been entered and Figure 5.2 summarizes what is
held in each cell of the variable. But we are not just restricted to
two-dimensional arrays. We can just as easily define arrays with
matrices such as 3 x 2 x 5 x 3.

35

Arrays, therefore, are very good for handling large sets of data
and to us this can be potentially useful, as we will be creating
programs that rely on using a database of information. But arrays
are only half the story. To be of value to us we need to keep that
data permanently and the programs above require you to enter
data every time. Wouldn’t it be better if we could store data
within a program? We might consider storing the data in variables
like this:

name1$ = "JEREMY"
name2$ = "BRUCE"
name3$ = "KITTY"

but we wouldn’t be able to make use of arrays. A better way to
store a set of information is to use the DATA and READ statements.

READ ME SOME DATA: The use of READ and DATA

The READ and DATA statements are ways of storing such data
permanently within a program and enabling the data to be
entered and stored within an array. Let us consider a simple
example. Program 5.3 stores the names of footballers and they
can be found by entering the number on their shirt:

Program 5.3

10 DIM a$(11)
20 FOR x = 1 TO 11
30 READ a$(x)
40 NEXT
50 CLS
60 INPUT"Enter player's number ",num
70 PRINT"Player number";num;"is ";a$(num)

80 a$=INKEY$: IF a$="" THEN 80
90 GOTO 50

100 END
110 DATA JOHN HUNT,DAVID JONES,MIKE DAVIS,

NICK HILL,FRED HEATH

36

120 DATA JEFF DOUGLAS,COLIN BLAKE,ANDREW
MURRAY,DAVE ELLIOT

130 DATA CHRIS MILLER,MARTIN WILLIAMS

Line 10 defines the dimensions of the array and at line 30 we
come across a new command, READ. The READ statement is nested
within a FOR-NEXT loop and the first time round the loop, line 30
looks to READ information into a $ (1) and this data is found at
line 110. All the information is stored after DATA statements and
each piece of data is separated by a comma to let the computer
know it is one item of data. Therefore, the READ statement takes
the first bit of data in line and the next time around the loop it
reads the second item and so on. Figure 5.3 shows where the data
is being stored as it is READ by the computer.

I I
FOR X = 1 X = 2 X = 3 etc. NEXT

I____________________________________ f

READ A$(1) A$ (2) A$ (3)
. I ,

DATA JOHN HUNT, DAVID JONES; MIKE DAVIS, NICK...

Figure 5.3 READ and DATA.

You will notice that I have used three lines of DATA statements.
You can split the data over a number of lines as you wish, so long
as you put a DAT A statement at the start of each new line you use.
It is also conventional to place your data at the end of a program.
Bear in mind that if you use the READ statement at different
junctures in the program, you must order your data so that it is
read into the computer in the order you desire. One more thing,
if you getanDATAEXHAUSTEDerror message, this will be because
you have either entered too few data items for the amount being
read in, or, the number you have allowed to read in is too great,
i.e. too large a loop.

Now that we understand the READ and DATA statements, let’s
use them for something a little more interesting. The whole point
of this book is to build interactive programs and with the
knowledge we have gained we can start to put some of what we

37

have learnt into practice. Program 5.4 simulates a conversation
with a short-tempered computer that just won’t agree with you.

Program 5.4

10 MODE 2
20 DIM ans$(4),n$(4)
30 FOR x=0 TO 1
40 READ ans$(x)
50 READ n$(x)
60 NEXT
70 FOR x=0 TO 1
80 PRINT"WELL"
90 LINE INPUT a$

100 PRINT ans$(x);a$;n$(x)
110 NEXT
120 END
130 DATA "YOU MAY WELL SAY THAT "," BUT DO YOU

HAVE ANY PROOF"
140 DATA "WHAT A LOAD OF NONSENSE. HOW CAN YOU

SAY AND MEAN IT."

Run the program and in reply to the curt prompt WELL type
something like:

AMSTAD COMPUTERS ARE GREAT

and in reply to the the next prompt type:

IT'S BETTER THAN A SINKLAIR

Not exactly artificial intelligence but it starts us on the right road.
Line 100 prints out the first part of the reply, tags on the phrase
you enter and finally adds on a reply to finish the sentence off.
You may have noticed that the DATA statements are slightly
different in Program 5.4, in that the string replies have quotation
marks around them. This is because without them, leading and
end spaces are ignored and it is necessary to leave spaces at both
ends of the answer we are inputting. By placing quotation marks

38

around the phrase, everything contained within that phrase is
used, including the spaces.

Play around with the program by increasing the data state
ments and see how long you can keep a conversation going. Of
course, you have to limit your responses very much but it can be
fun. Later on in Chapters 8 and 9 I will show you a much more
intelligent conversation partner.

RESTORING KNOWLEDGE: The RESTORE statement

It is often useful to be able to set a pointer to where you wish the
data to be read from. Sometimes it will be a case of resetting the
pointer to read from the start of data again or at a specific point in
the DATA statement. This can be done by implementing the
RESTORE statement. For instance, you may write a program
where the user’s response determines where the data is read
from.

Let’s use an example of a grocer’s shop. A customer wants to
know the price of either a particular fruit or a vegetable.
Depending on the customer’s choice the data pointer is either set
to the beginning of the fruit data or the vegetable data. Type in
Program 5.5:

Program 5.5

10 DIM item$(7,1)
20 CLS
30 PRINT"Uhich do you require the prices of

- ","(F)ruit or (V)egetabLes ? "
40 INPUT choices
50 IF choice$="F" OR choice$="f" THEN

RESTORE 130 ELSE RESTORE 150
60 FOR x = 1 TO 7
70 FOR price = 0 TO 1
80 READ item$(x,price)
90 NEXT:NEXT

100 FOR y = 1 TO 7
110 PRINT item$(y,0);" are item$(y,1);"p"
120 NEXT

39

130 DATA PEACHESZ15,APPLES,25,ORANGES,10,
GRAPES,45

140 DATA CHERRIES,27,SATSUMAS,18,
STRAWBERRIES,67

150 DATA POTATOES,9,TOMATOES,14,PEAS,23,
CARROTS,32

160 DATA ONIONS,16,CABBAGES,45,LETTUCES,56

Line 50 is where the data to be used is decided on. If the customer
has requested fruit then the data pointer is reset to line 130, or
else it goes to 150, where the vegetable data is held. Therefore,
RESTORE tells the computer where to read the data from.

Finally, I’m going to look at one more statement.This is RND,
which allows the choosing of an event randomly. In using it I’m
also going to reveal the secret of how books are written! What I’m
going to show you is how authors write their books in this modern
age. How? They get their computers to write for them!

AM-WRITER: Using RND

All this talk of data leads to the obvious way of writing text. Let
the computer randomly generate text for you. This is very easy
and the most difficult part is deciding upon the phrases to use.
The next program uses arrays to set up four different variables. I
have allowed room in the DIM statement for four entries but have
only used up half the room in my DATA section. See if you can add
to the phrases, or if you prefer (and you probably will!), try to
change them. This is one situation where a good grasp of a
‘human’ language helps.

Program 5.6 reads the standard phrases into arrays and then
randomly generates a sentence by choosing in every case one out
of two possible replies for each of four parts of the sentence. I
have used the RND function to choose randomly either the number
0 or 1. If you add more data then you can increase the random
number and therefore the possible kinds of reply. The RND
function is very simple and lines 130 to 160 show this. If you
wanted to choose a random number between 1 and 125 you would
perhaps write a statement like this:

variable = INTiRND * 125)

The number in brackets indicates the upper range to be chosen. If
you require a whole number to be chosen, use I NT. This rounds

40

the number to the nearest integer. Type in Program 5.6 and see
what happens.

Program 5.6

10 CLS
20 DIM phrase1$(4),phrase2$(4),phrase3$(4),

phrase4$(4)
30 GOSUB 60
40 GOSUB 100
50 END
60 FOR x= 0 TO 1
70 READ phrase1$(x),phrase2$(x),phrase3$(x),

phrase4$(x)
80 NEXT
90 RETURN

100 GOSUB 130
110 PRINT phrase1$(x1);" ";phrase2$(x2);"

phrase3$(x3);" ";phrase4$(x4)
120 RETURN
130 x1=RND(1)
140 x2=RND(1)
150 x3=RND(1)
160 x4=RND(1)
170 RETURN
180 DATA In this modern world,Life has become

unbearable
190 DATA and the situation is rapidly
200 DATA degenerating to a never ending abyss
210 DATA Since the advent of computers
220 DATA mankind has gone on the road to self

destruction
230 DATA and may never return from,decLining

standards

41

Program 5.6 is a mere sample of what can be achieved by
randomly re-arranging phrases. For example, you may get the
following phrases when you run the program:

In this modern world mankind has gone on the
road to self destruction and the situation is
rapidly declining standards

Since the advent of computers life has become
unbearable and may never return from
degenerating to a never ending abyss

Well, I’m not really a doom merchant but it is interesting to
construct different parts of a sentence and end up with something
that sounds grammatically correct even if it doesn’t always make
sense! With careful thought you may be able to get your Amstrad
to generate standard reports, essays and projects. Well, maybe!

That finishes our look at arrays and data for the moment but we
will be returning to them later on when we use them for much
bigger and better things. The use of the DIM, READ and DATA
statements form the core of programs that have an inbuilt
knowledge and we will find them invaluable for storing large
quantities of information.

42

6 Always the Unexpected!

When writing programs for yourself it is often easier to take short
cuts. This may be fine if you are to be the only user of the
program but most of the time your piece of software will be used
by others, and this is where problems will occur. Unless you are a
mind reader, or have any other such powers, the people using
your program will no doubt confound your masterpiece by doing
the unexpected. They might ignore your instructions and type
something outside the range of data in the program, or
accidentally press the wrong key. Now you can’t be expected to
think of everything but where possible you can take certain
measures to reduce human error, and that’s what this chapter is
all about—trapping the unexpected.

Up to now, in the programs we have written, we have given no
thought to trapping errors that may occur during the use of a
program. So, what kind of things can happen? Pressing the ESC
key by accident? Entering the wrong information? These are
common pitfalls in programs. It is essential to try to eliminate as
many of these gaps in your programming as possible. Let’s start
with a well-worn phrase in computer sales language: user
friendliness.

USER FRIENDLINESS:
Screen display, error trapping and rigid input

How many times have you heard that phrase before? How many
programs have you bought which make that claim, but when you
first try them leave you totally confused? Perhaps the programs
are user friendly. Friendly that is, to the person who wrote them!
The first place programs can. cause confusion is in their
instructions. If necessary, provide clear, concise instructions at
the start of a program. If you want a user to interact with the
computer, you can’t expect him/her to guess what you want them

43

to do. So don’t make it hard for the user.
Next, the prompts you provide within a program are impor

tant. In the last chapter, I was guilty of giving no on-screen
prompts as to what the user should type in. Many times in this
book whilst concentrating on a certain point, and to save your
well-worn fingers, I have gone for the quickest route. Often this
means that when you run a program you see a question mark and
nothing else. If this has frustrated you then you will easily
understand the point I’m making. Take Program 6.1 as an
example.

I’m going to write a small program representing the process
you go through to obtain money from a computerized till outside
your bank. In the program you have to enter an account number
of six digits and your password of four letters. Then you enter a
request for money. Whether you receive any depends on the
amount you have in your account, and you can take no more than
one hundred pounds out per transaction. So let’s write the
program.

Program 6.1

10 CLS
20 PRINT"ENTER DETAILS"
30 INPUT numb
40 IF numb=123456 THEN GOSUB 50 ELSE 30
50 INPUT pass$
60 IF pass$="USER" THEN GOSUB 80 ELSE 50
70 RETURN
80 INPUT"Enter amount of cash required ",cash
90 GOSUB 110

100 RETURN
110 credit=86
120 IF cash < 100 AND cash < credit THEN GOSUB

150 ELSE 130
130 PRINT"Sorry - no payment can be made.":END
140 RETURN
150 PRINT"Cash advanced : ";cash
160 RETURN

44

On first running the program you are asked to enter the details
and then are faced by a question mark. What do you enter? A
number? Your password? The amount you require? If you look
at the program you’ll know that an account number is first
required, and then the password. Let’s improve the prompts by
changing lines 20 and 50:

20 PRINT "Enter account number"
50 INPUT "Enter your personal password ",

pass?

Now that’s an improvement. But we can go another step forward
in helping the user. What happens if he makes a mistake? Well,
the user will then have to retype his entry. But perhaps he doesn’t
know what his mistake was. Then we should tell the user where
he’s gone wrong so that next time round he’ll hopefully get it
right. The changes are as follows:

40 IF numb = 123456 THEN GOSUB 50 ELSE GOSUB
170

60 IF pass$ = "USER" THEN GOSUB 80 ELSE GOSUB
230

and add lines 170 to 270:

170 PRINT"Your account number was not valid"
180 PRINT"Remember you need to type a six

digit"
190 PRINT"number"
200 FOR x=0 TO 2000:NEXT
205 GOTO 10
210 RETURN
230 PRINT"Your password was invalid."
240 PRINT'Please try again"
250 FOR x=0 TO 2000:NEXT
260 GOTO 50
270 RETURN

We have now provided extra prompts if the user makes a
mistake. Note that I used the FOR-NEXT statement to pause for a

45

short while before returning to the input. In some situations it
may be better to return by making the user press a key. You
might like to tidy the screen display up a little by clearing the
screen every time an input is made, so that if the user makes a
number of mistakes, we don’t see a trail of error messages. Once
you’re happy with that move on to the next problem.

The problem is that when the money is approved the program
also prints out that no payment can be made. This can be solved
by ending the program when the payment is made but really the
program is badly structured. Take a look at Program 6.2 which
has been structured with subroutines. The screen layout works
better when a mistake occurs:

Program 6.2

10 CLS
20 GOSUB 70

30 GOSUB 120
40 GOSUB 170
50 GOSUB 250
60 END
70 CLS
80 PRINT"Enter account number"
90 INPUT num

100 IF num=123456 THEN 110 ELSE GOSUB 310

110 RETURN

120 CLS
130 PRINT"Enter personal password"
140 INPUT pass$
150 IF pass$="USER" OR pass$="user" THEN 160

ELSE GOSUB 370
160 RETURN
170 CLS
180 PRINT"Enter amount of cash requested"
190 INPUT cash

46

200 PRINT"You have requested ";cash;". Is this
correct?"

210 INPUT ans$
220 IF ans$="Y" OR ans$="y" THEN GOSUB 250

ELSE 230
230 IF ans$="N" OR ans$="n" THEN GOTO 170

ELSE 200
240 RETURN
250 credit=87
260 IF cash <100 AND cash < credit THEN PRINT

"Cash request 0K,";cash" foLLowsEND
270 IF cash > 100 THEN PRINT"That is over the

Limit aLLowed.":END
280 IF cash > credit THEN PRINV'You have

insufficient funds":END
290 RETURN
310 PRINT"Your account number was not vaLid"
320 PRINV'Remember you need to type a six"
330 PRINT"digit number."
340 FOR x = 0 TO 2000:NEXT
350 GOSUB 70
360 RETURN
370 PRINT"Your password was invalid."
380 PRINT"PLease try again"
390 FOR x=0 TO 2000:NEXT
400 GOSUB 120
410 RETURN

Note that the program rigidly checks for a certain answer. The
amount of rigidity you build into a program is up to you and can
depend on the nature of the program itself. If you recall, at the
end of Chapter 3, I said that the ASCII program (Program 3.10)
had something wrong with it. Did you spot it?

The problem is that in the subroutine that translates an ASCII
number to a character there is no error trapping for nonsensical
values. For instance, by typing in the value 7 the code is given to

47

sound a noise. What you need is a check on the number being
entered. This is quite simple. By adding the following lines, the
program will only accept the values you intend to be entered. (In
this case, I have restricted the values to between 32 and 126 which
is the range for the entire character set, though this does not take
into account any of the user-defined characters which you could
set up yourself.) Load in your ASCII menu, Program 3.10, and
add the following lines:

Program 6.3

255 IF code < 32 OR code > 126 THEN GOSUB 300
300 PRINT"The value you entered is outside

the"
310 PRINT"range for the character set."
320 a$=INKEY$:IF INKEY$ =" " THEN 330 ELSE 320
330 GOSUB 50
340 RETURN

If you now run the program you will -see that entering an invalid
value is now properly trapped.There is one more thing we can
add to the program to allow for those misplaced fingers on the
keyboard. We can ensure that if the escape key is pressed by
accident then the program is re-run from a certain point. Here, I
want the program to return to the main menu if that key is pressed.
To do this we have to make use of two statements. One we have
come across before,and that is the ON statement. The other is the
BREAK command which allows you to assign a function to the ESC
key when pressed.

KEYING OUT ERRORS: The use of ON BREAK, ON
ERROR, ERR, ERL, KEY and KEY DEF

Besides using the command ON as the basis of a decision, as in the
menu program, it can also be used to detect the occurrence of the
ESC key being pressed in the program. If the ESC key occurs, the
program will normally stop. By using the ON BREAK statement you
can tell the computer what action to take if it comes across the
ESC button being pushed. For instance, if you run Program 3.10
(the complete version), the program stops when you press the
escape key. You can prevent this happening by typing in this line:

48

5 ON BREAK GOSUB 50

Quite simply, you have told the computer that if the ESC key is
pressed, the program should be re-run, which means you will
return to the main menu. You could of course specify some other
action to be taken, depending on the commands within the given
subroutine.

Do take note, however, that if you include this error trap, you
must put it in as the last part of a program, otherwise you will not
be able to stop the program and will lose it in memory because
you will need to reset the machine. The only way you can prevent
this happening is to have another command ONBREAKSTOP within
the program if the ESC is being pressed twice. The other kind of
ON statement is the ON ERROR command. If an error is detected
within the program then the program is sent to a line number
within the program, i.e. ON ERROR GOTO 60.

Remember to enter this statement as the last statement in a
program or you will find debugging difficult. It is all too easy to
forget that you have used an ON ERROR statement in a program
and spend time re-running a program and getting the same fault
without seeing what is going on.

Another useful set of commands are those which enable you to
redefine the function of a key. There are two commands that can
be used. KEY redefines a new function key and gives the user the
opportunity to assign a command to the pressing of a key.
Therefore, to set up the command NEW you would type:

KEY 140, "NEW" + CHR$(13)

This tells the machine that when CONTROL and ENTER are pressed
the command NEW will be carried out. (For a list of the relevant
numbers, see the back of your user guide.)We can also change
any key on the keyboard to represent another character. For
instance, we could ensure that the Q key, when pressed, prints A
to the screen. The command we use to do this is KEY DE F and goes
like this:

KEY DEF 67, 1, 65

The first number is the key to redefine (these numbers can be
found at the back of your user guide); the second indicates
whether a key is repeated. 1 tells the machine that the key
repeats; 0 disables the repeat. The third number refers to the
ASCII code associated with the character. Therefore, in our
example the number 65 stands for the letter A. By adding two

49

further parameters, SHIFT and CONTROL keys can also be used in
conjunction with the pressing of a key.

In the same way, you can set up the other function keys and
make entry of replies easier for the user. For instance, you could
set up function keys to type in YES or NO, NORTH, SOUTH etc., by
just pressing one or two keys. This makes a program far more
friendly and easier to use.

Finally, we can tell the user what mistake has been made by
using the statements ERR and ERL. ERR returns an error number, a
list of which can be found at the back of your user guide, and you
can use it to provide helpful information to the user. ERL gives the
line number at which an error occurred. Both these commands
are very useful in error trapping.

Error trapping is important in all programs and makes life
much easier for the user of a program. It only requires a little
more effort but can improve the way a program is used and
presented. At the end of the day it falls on your shoulders as the
programmer to ensure that the error trapping is good and how
good it is depends on your skill and the thought you put into the
program. Always assume that the person using the program
knows very little, perhaps even nothing!

In the next chapter we will see some more uses of error trapping.
As I mentioned earlier a number of the programs in this book
have deliberately not been error trapped and it would be
worthwhile to spend a few minutes trying to improve them. Try
using flowcharts to work out the sequence and action of your
program and to see where a program should go if an error occurs.
It might take a little extra time but you will be rewarded with a
smooth-running program.

50

7 Text Handling

We have seen in previous chapters how to use the variety of
commands in Amstrad BASIC to manipulate the input of
information. In this chapter we go a little bit further and look at
ways of making your programs more attractive by inserting
routines to print out text in different ways. These are suggested
alternatives to just printing a reply in one large chunk on the
screen. Personal taste has a lot to do with the way a screenful of
information is presented but a program can be given a very
different feel by the way it is designed.

Let me give you an example. Program 7.1 is what I call my
intruder alert. The program leaves a message on the screen,
warning anyone who comes near not to touch the keyboard.
Well, humans being naturally inquisitive, someone will almost
certainly touch the keyboard. And that is where we can have
some fun and put a number of principles we have learnt into
practice. I won’t tell you any more for the moment; instead, type
in the program. Keep to the line numbers shown as we will be
adding to the program later:

Program 7.1

10 ZONE 40
20 NODE 0
30 PAPER 5:B0RDER 2:PEN 10:CLS:PRINT,,,
40 PRINT SPC(4);"D0 NOT TOUCH"
50 PRINT,,,.-PRINT SPC (6) ; "KEYBOARD"
60 a$=INKEY$:IF a$<>"" THEN 70 ELSE 60
70 CLS

80 NODE 1:PAPER 4:B0RDER 7:PEN 10:CLS

51

90 anyphrase$="OH DEAR I DID WARN YOU.
YOU'VE REALLY DONE IT NOW!!!!"

100 PRINT anyphrase$
110 ENV 1,4,3,1,1,0,19,7,-120,4
120 SOUND 1,100,7,14,1
130 a$=INKEY$:IF a$<>"" THEN 140 ELSE 120
140 MODE 0
150 INK 0,4,7:CLS:PRINT,,,,
160 PRINT SPC(5);"TOO LATE!!!!"
170 WHILE x=0
180 ENV 1,4,3,1,1,0,19,7,-120,4
190 SOUND 1,100,7,14,1
200 WEND

Now run the program and press any key. You will see an error
message come up and the alarm will sound. You can stop the
program by pressing ESC. To complete the error trap you can use
ON BREAK but do remember to have saved the program first as you
will not be able to break out of the program once you have used
this error trap. If you press another key a further message is
displayed informing you that you are too late. Note how I’ve
error trapped in the program to direct the program to different
lines. You can improve upon this by using the error trapping
methods in the previous chapter. Line 30 sets the colours of the
paper, border and pen and you can change this as you like
depending on the monitor you are using and the effects that you
prefer. Line 60 waits for the keyboard to be touched, and when it
is, the next page is presented. The WHILE loop at the end of the
program sends the sound command into an indefinite loop
because x always equals zero.

Line 110 is the basis of the alarm, defining the characteristics of
the noise using the ENVELOPE command and line 120 plays the
sound. The rest of the program should contain familiar com
mands. You might like to alter the program to run in different
screen modes and to create different display effects. Figure 7.1
shows a flowchart of the program.

52

Figure 7.1 Intruder alert plus the ESC key trap.
53

The program does its job well enough but there is no sense of
suspense in the presentation of the message. Suspense? Well, yes!
We can make the two sentences appear more interesting and add
life to the program by typing the sentences out slowly. To do this
we must think of how to type text out in a slow teletype manner.

TELETYPE: A slow teletype routine

We have already used commands like MIDS to print out,
selectively, characters in a string. We can use these principles to
form a short program to type a string phrase slowly, letter by
letter. To do this, first input Program 7.2:

Program 7.2

5 ZONE 40
10 CLS

20 anyphrase$="OH DEAR I DID WARN YOU.
YOU'VE REALLY DONE IT NOW!!!!"

30 PRINT,:F0R xZ=1 TO LEN(anyphraseS):PRINT
MID$(anyphrase$,xZ,1);

40 GOSUB 50:NEXT:PRINT:END

50 FOR aZ=150 TO 0 STEP-1:NEXT:RETURN

Run the program and you will see the contents of anyphraseS
printed on the screen very slowly. The idea is very simple. Firstly,
line 40 sets up a loop where a letter of the phrase is printed out in
order every time around the loop. But just doing that is not
sufficient as the machine would work too fast to see this
happening. So we have to insert a time delay loop to slow up the
program. GOSUB60at line 50 calls a time delay subroutine before
the next letter can be printed out. The subroutine is just a
FOR-NEXT loop which is going around in a loop doing nothing.

We could incorporate that principle in Program 7.1 to give a
much more dramatic effect. Make the following changes to the
program:

Change line 100 to:

100 PRINT,: FOR XZ = 1 TO LEN(anyphraseS):
PRINT MID$(anyphrase$,xZ,1);

54

and add lines 105 and 107:

105 GOSUB 107: NEXT: PRINT
107 FOR a% = 150 TO 0 STEP - 1: NEXT: RETURN

Run Program 7.1. I think you will see that we have obtained a
more dramatic effect by slowing the typing of the text. It is matter
of personal preference as to whether you use this kind of display
in your programs but the slow teletype routine gives the
impression that the machine is speaking back.

Try adapting some of the programs in this book to using the
teletype text idea. The method you employ in presenting text can
enhance or detract from a program and it’s always interesting to
experiment with different effects. The string handling commands
in Chapter 3 are particularly useful for novel effects. Moreover,
the most important thing is that you effectively communicate
your message to the user. After all that is what interaction is all
about.

55

8 Sigmund: An Interactive
Program

We have seen how to use a wide range of commands to
manipulate a text input, but we have yet to write a program that
appears intelligent. Well the time has now come to write a large
program that will fully interact with the user. In the next two
chapters we will write Sigmund, which is a computer-based
psychiatrist (no prizes for guessing who I was thinking of when I
named the program). In this chapter we will look at the planning
of this program and the techniques employed. The program is in
Chapter 9, but don’t type it in yet. Read through this chapter first
to get an idea about the principles behind the program, so that
when you come to type it in you will understand its workings
better.

The first thing to do is to give you some background to the
program. The idea behind Sigmund is based around one of the
first artificial intelligence programs to be written—Eliza. There
have been many such programs and research still continues today
for computers that are ‘intelligent’. Programs like Eliza were
written on mainframe computers to simulate a conversation
between a patient and doctor. Eliza fooled many people who
used it and they were convinced that the computer really
understood their problems. As you will see in the Sigmund
program it is no more than a bluff, but extremely effective.

What is the aim of the program? Sigmund is intended as a
simulation of talking to a psycho-analyst though it should be
pointed out that Sigmund behaves like no analyst I’ve ever met!
The concept behind this program is to make the user believe that
he or she is having a real conversation with someone, and that
their conversation is being listened to and intelligently answered.
Now this is quite a tall order but we have learnt ample material to
put together a program of this nature. So where does one start on

57

a project like this?
You’ve already seen how allowing the user to enter anything he

likes can cause problems. We cannot build in the entire Oxford
dictionary, nor a complete set of grammatical rules (even we if
understood them!), to cover all the intricate subtleties of the
English language. What we need to achieve is a way of simulating
an acceptable reply to the user without resorting to typing in
every possible answer which is, unless you know better, an
impossible task. What we can do is to make some assumptions
about the way humans behave and think.

As human beings we have terrific imaginations. It is this which
has led to much of our inventiveness. But an ability to imagine
hypothetical events and abstract ideas has also led to us being
able to read more into a situation than evidence would permit.
Most of us at some time in our lives have done this and that is
precisely what Sigmund relies on to fool the user. The assumption
is that a human user will read more into the reply given than
actually exists. Now that is not as naive an idea as it may at first
sound.

Think of a conversation with a friend. During part of that
conversation you will be listening and will make occasional
comments back, comments that show you are listening and have
understood what has been said. When you see an analyst, you
will, as the client, do much of the talking and the analyst will
encourage you to talk by making the occasional comment back.
What we could do then, is just have a number of phrases which
the computer can turn out randomly no matter what you say. But
that would not be good for very long. For instance, imagine if we
had four stock phrases with which to reply to the user. These
phrases might be the following:

I SEE
THAT IS VERY INTERESTING
COULD YOU TELL ME MORE?
HMMM. CARRY ON PLEASE

With these four answers, and the RND function, we could allow
the user to type in anything he liked, that would be followed by a
randomly chosen reply, and then the whole process would be
repeated. Figure 8.1 shows a possible flowchart for such a
program.

58

Figure 8.1 The RND function.

But this is far from satisfactory. Imagine the conversation that
would ensue:

HUMAN: I HAVE TERRIBLE DREAMS
COMPUTER: COULD YOU TELL ME MORE?

HUMAN: I DREAM ABOUT SEAGULLS
COMPUTER: THAT IS VERY INTERESTING

HUMAN: I'M VERY DEPRESSED OVER THIS
COMPUTER: I SEE

HUMAN: WOULD YOU SAY IT'S ABNORMAL
COMPUTER: HMMM. CARRY ON PLEASE

Now you wouldn’t be able to keep up a conversation for very long
if you just used stock phrases and of course, the program soon
falls down when the computer is asked a question. The phrases
asked by the human above were typed into the Sigmund program
and the replies were very different. Look at the result below:

HUMAN: I HAVE TERRIBLE DREAMS
COMPUTER: DO YOUR DREAMS INVOLVE OTHER PEOPLE?

HUMAN: NO I DREAM ABOUT SEAGULLS

59

COMPUTER: HOW OFTEN DO YOU DREAM ABOUT
SEAGULLS

HUMAN: OFTEN. WOULD YOU SAY IT'S ABNORMAL
COMPUTER: I'M NOT PREPARED TO SAY WHAT I THINK

The answers to what I typed in appear to have been totally
understood by the computer and an intelligent reply was made.
But, of course, you know that the secret must lie somewhere in
the program. What I have done is to go a few steps further than
the stock phrase idea. The computer is still drawing on prepared
answers but there is more latitude in the way an answer is given.
It all depends on what is typed in by the user.

PATTERN MATCHING FOR KEYWORDS

Sigmund uses a method of looking for a familiar word in the
sentence typed in by the user. In other words it searches for a
keyword using text-handling commands like INSTR. It does so in
a pre-defined order, first searching for a verb or adverb and if
none is found (according to the pre-defined list in the DATA
statements) then a search is made for a subject, i.e. I, YOU, THEY
etc. If none of these are found in the sentence then a stock phrase
like those shown above is trundled out. But only as a last resort.

Therefore, the computer goes through a series of possibilities
and decides which action to take. The way this is done is by
storing a range of replies, some in part and others complete. Take
a look at the following DATA statement:

DATA DREAM, HOW OFTEN DO YOU DREAM X, CAN YOU
REMEMBER YOUR DREAMS?, I ENVY YOU...I CAN'T
DREAM

This is typical of the DATA fed into Sigmund and it holds all or part
of a reply. The first word is the keyword and this is read into a
two-dimensional array and the three remaining phrases are the
replies associated with that keyword. The 7. sign tells the
computer to tag on the rest of the sentence typed in by the user
after the keyword. For example, if the user typed in:

I DREAM ABOUT SHIPS

the answer might be:

60

HOW OFTEN DO YOU DREAM ABOUT SHIPS

The remaining part of the user’s input ABOUT SHIPS is taken
from the point after the end of the keyword and placed at the
position where the / sign occurs. Using INSTR, a search is made
of the reply phrase. If a I sign is found, then the tag is made. So if
you look through Sigmund you will see the subroutine GOSUB400
which contains the line:

look = INSTR(getreply$,"X")

The subroutine GOSUB 430 carries out the printing of the reply
with the appropriate, tagged-on phrase.

As subjects are likely to occur more often within a sentence
they are not used until the preliminary search has failed. If used
they can simply turn a sentence around. For instance, if the user
types:

I'VE GOT A BUNCH OF FLOWERS

the computer will reply with:

YOU'VE GOT A BUNCH OF FLOWERS

giving the impression of confirming what the human has said.
What takes place is that the keyword I'VE is found and in its
place is substituted the phrase YOU'VE and the remainder of the
user’s phrase is tagged on to the end.

Finally, if no keyword is found, then one of the stock phrases is
used. The program relies heavily on writing replies which will be
suitable to a number of situations where a keyword is used. This
is difficult and at times the result will not always be as intended
but it works for a good percentage of the time. There are
improvements that could be made to the program but I’ll leave
that until the next chapter when you have typed in Sigmund.

A final thought. Are programs like Sigmund a sign of some
intelligence inside the computer and the program, or merely an
indication of how we can take advantage of human gullibility?

61

9 Sigmund: The Program

At long last! We’ve finally reached our first truly communicative,
interactive program. Sigmund is unpredictable. At times you will
find him caring and attentive; at other times, insulting. Most of
the time you will feel he’s human but there are moments when the
computer in him will strongly show itself. Rather than follow the
way programs like this have been used before, I have made
Sigmund’s replies varied so that the kind of response he may give
can not be so easily gauged. Type in the program carefully as it is
quite long and use the AUTO function for line numbers, as I have
kept them evenly spaced. More details and comments about the
program follow the listing:

SIGMUND: The Program

10 MODE 2
20 ZONE 80
30 PRINT"HELLO MY NAME IS SI GMUND.","WHAT IS

YOUR NAME"
40 INPUT name$
50 PRINT,,/'NICE TO MEET YOU ";name$
60 PRINT,"TELL ME WHY YOU WANT TO TALK TO ME"
70 CLEAR
80 DIM gramin$(40),gramout$(40),match$(30,3)
90 GOSUB 130

100 GOSUB 260
110 GOSUB 290

63

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
33»
340
350
360
370
380
390
400
410
420

END
REM READ gram
RESTORE 780
FOR datain=0 TO 40
READ gramin$(datain),gramout$(datain)
NEXT
REM read matchS
RESTORE 900
FOR datain=0 TO 30
FOR reply=0 TO 3
READ match$(datain,rep ly)
NEXT reply
NEXT datain
RETURN
PRINT,"LINE INPUT phrase!
IF phrase$="END" THEN GOSUB 730
RETURN
FOR datain=0 TO 30
find=INSTR(phrase$,match$(datain,0))
search=LEN(match$(datain,0))
IF find >0 THEN GOSUB 360
NEXT
IF find >0 THEN GOSUB 360 ELSE GOSUB 480
RETURN
x = INT(RND*(4)): IF x=0 GOTO 360 ELSE 370
getreply$=match$(datain,x)
GOSUB 400
END
look=INSTR(getreply$*"X")
IF look > 0 THEN GOSUB 430
PRINT,get reply$:GOTO 70

64

430
440
450
460

470
480
490
500
510
520
530
540
550
560
570
580

590
600
610
620
630
640
650

660
670
680
690

700

Length=LEN(getrepLy$)
repLyless$=LEFT$(getreply$,(Length-2))
Length2=LEN(phrase$)
tg$=RIGHT$(phrase$,(Length2-(find+
search))+1)
PRINT,repLyLess$;tg$:GOTO 70
RESTORE 780: FOR datain = 0 TO 40
sub1 = INSTR(phraseS,gramin$(da tain))
sub1Len=LEN(gramin$(datain))
IF sub1>0 THEN GOSUB 550
NEXT
IF sub1>0 THEN GOSUB 550 ELSE GOSUB 660

RETURN
swap1$=gramout$(datain)
Length2=LEN(phrase$)
Length3=LEN(swap1$)
tg$=""+RIGHT$(phrase$,(Length2-(sub1+
sub1Len))+1)
GOSUB 610
RETURN
FOR datain=0 TO 40
subs2=INSTR(tg$,graminS(da tain))
IF subs2>1 THEN GOSUB 660
NEXT
IF subs2>1 THEN GOSUB 660 ELSE PRINT,
swapl$;tg$:GOTO 70
counter=INT(RND*(5))
ON counter GOTO 680,690,700,710
PRINT,"PLEASE TELL ME MORE":GOTO 70
PRINT,"HMMM! THATS VERY INTERESTING":
GOTO 70
PRINT,"DO CARRY ON":GOTO 70

65

710 PRINT,"I SEE":GOTO 70
720 RETURN
730 PRINT,"ARE YOU SURE YOU WANT TO END THIS

CHAT?"
740 a$=INKEY$:IF a$="" THEN 740
750 IF a$="Y" THEN 760 ELSE 70
760 CLS:END
770 RETURN
780 DATA I'VE,YOU'VE,I'M,YOU'RE,I AM,YOU ARE,

I HAVE,YOU HAVE
790 DATA I WAS,YOU WERE,I WILL,YOU WILL,YOURS

MINE,MY,YOUR
800 DATA ME,YOU,YOU'RE,I'M,YOU ARE,I AM,

YOU HAVE,I HAVE
810 DATA YOU'VE,!'VE,YOU WILL,I WILL,YOU'LL,

I'LL,YOU WERE
820 DATA I WAS,THEY ARE,THEY ARE,SHE HAS,

SHE HAS,HE HAS
830 DATA HE WAS,WE ARE,WE ARE,THEY'RE,THEY'RE

SHE IS,SHE IS
840 DATA HE IS,HE IS,WE ' RE,WE'RE,THEY HAVE,

THEY HAVE,SHE'S
850 DATA SHE'S,HE'S,HE'S,WE HAVE,WE HAVE,

THEY'VE,THEY'VE
860 DATA HE WAS,HE WAS,SHE WAS,SHE WAS,WE'VE,

WE'VE,THEY
870 DATA THEY,HE WILL,HE WILL,SHE WILL,

SHE WILL,WE WILL
880 DATA WE WILL,THEY WILL,THEY WILL,SHE HAS,

SHE HAS
890 DATA THEY WERE,THEY WERE,SHE,SHE,HE,HE,

WE,WE,YOU,I,I,YOU
900 DATA CAN YOU,OF COURSE I CAN,I CAN DO

ANYTHING,! WILL TRY TO 7.

910 DATA CAN I,YOU CAN DO WHAT YOU LIKE,
YOU CAN %

66

920
930
940
950
960
970
980

990
1000
1010

1020

1030
1040
1050
1060
1070
1080

1090
1100

1110

1120
1130
1140
1150

1160
1170

DATA YOU ARE RIGHT TO ASK ME
DATA WOULD YOU,I WOULD NOT %,I WOULD %
DATA I'M NOT PREPARED TO SAY WHAT I THINK
DATA WOULD I,OF COURSE YOU WOULD X
DATA DON'T YOU KNOW WHAT YOU WOULD DO ?
DATA I WOULD IF I WAS IN YOUR PLACE
DATA HAVE YOU,WHAT I HAVE" IS NOTHING TO DO
WITH YOU,I HAVE 7.

DATA I DON'T WISH TO TELL YOU THAT
DATA HAVE I,IS THAT A RHETORICAL QUESTION?
DATA DON'T YOU KNOW WHETHER YOU HAVE %,YOU
SEEM VERY UNSURE
DATA DREAMS,DREAMS ARE A RELEASE VALVE FOR
YOUR SUBCONSCIOUS
DATA DO YOUR DREAMS INVOLVE OTHER PEOPLE?
DATA DO YOU LIKE DREAMS 7,

DATA DREAM,HOW OFTEN DO YOU DREAM 7,

DATA CAN YOU REMEMBER YOUR DREAMS?
DATA I ENVY YOU...I CAN'T DREAM
DATA COMPUTERS,ARE YOU WORRIED ABOUT
MACHINES?
DATA AS A COMPUTER I TAKE A DIFFERENT VIEW
DATA I'D MUCH RATHER TALK TO A COMPUTER
THAN YOU
DATA COMPUTER,WE ARE HERE TO TALK ABOUT
YOU NOT ME
DATA COMPUTERS ARE PERFECT
DATA YOU ARE PRIVILEGED TO TALK TO ME
DATA MACHINE,DO MACHINES WORRY YOU?
DATA YOU SEEM TO BE CONCERNED ABOUT
MACHINES
DATA I'M NOT LIKE OTHER MACHINES
DATA DEPRESSED,DO YOU FEEL DEPRESSION IS
NOT NORMAL?

67

1180
1190
1200

1210
1220
1230
1240
1250
1260

1270
1280

1290

1300

1310

1320

1330
1340
1350
1360
1370
1380
1390

1400

1410

DATA HOW OFTEN ARE YOU DEPRESSED?
DATA WHY ARE YOU DEPRESSED %
DATA MAD,IS THERE ANY MADNESS IN YOUR
FAMILY?,YOU MUST BE MAD
DATA MAD /
DATA MOTHER,WHAT IS YOUR MOTHER LIKE?
DATA ARE ALL MOTHERS THE SAME?
DATA MY MOTHER IS A SILICON CHIP
DATA FATHER,TELL ME ABOUT YOUR FATHER
DATA WHAT IS YOUR RELATIONSHIP LIKE,WHAT
DO YOU TALK TO YOUR PARENTS ABOUT?
DATA SISTER,! LIKE MY SISTER
DATA THIS SOUNDS LIKE A COMPLICATED
RELATIONSHIP
DATA WHAT ARE YOUR FEELINGS TOWARDS YOUR
SISTER?
DATA BROTHER,WHAT WOULD YOU DO WITHOUT A
BROTHER?
DATA DOES YOUR BROTHER ANNOY YOU,I HAVE
NO BROTHER
DATA DISLIKE,WHAT IS IT THAT YOU DISLIKE
ABOUT 7

DATA I DISLIKE HUMANS
DATA IT IS BETTER TO LIKE THAN NOT
DATA FEELINGS,WE ALL HAVE FEELINGS
DATA DO YOU OFTEN FEEL 7.

DATA FEELINGS SHOULD BE EXPRESSED
DATA LOVE,LOVE IS AN ILLOGICAL STATE
DATA HOW DO YOU KNOW THAT YOU ARE IN
LOVE 7.

DATA I WAS IN LOVE ONCE BUT......... SORRY
DO CARRY ON
DATA HATE,I HATE YOU,WHAT DO YOU HATE
ABOUT 7.

68

1420
1430
1440

1450

1460
1470

1480
1490

1500
1510

1520
1530
1540
1550
1560
1570
1580

1590
1600
1610
1620
1630
1640
1650
1660

DATA LOVE IS FAR BETTER THAN HATE
DATA SORRY,THERES NO NEED TO BE SORRY
DATA I HATE PEOPLE WHO THINK THEY'RE
SORRY,YES?
DATA APOLOGISE,DO NOT APOLOGISE,WHY
APOLOGISE ABOUT I

DATA APOLOGIES ARE SELDOM MEANT
DATA CAUSE,THE CAUSE IS ALWAYS DIFFICULT
TO FIND
DATA WHAT IS THE CAUSE 7.

DATA CAUSES. THAT'S ALL HUMANS WANT TO
KNOW
DATA WHAT,IS THAT A RHETORICAL QUESTION?
DATA WHAT A QUEST ION!,QUEST IONS!
QUESTIONS!
DATA HOW,WHY ASK ME 7.

DATA ASK YOURSELF WHETHER THIS IS RELEVANT
DATA WHY DO PEOPLE ALWAYS ASK ME?
DATA THINK,YOU HAVEN'T THE BRAINS TO THINK
DATA ONLY COMPUTERS CAN THINK
DATA I THINK THEREFORE I AM
DATA WHEN,I CAN'T PREDICT THAT,I JUST
DON'T KNOW
DATA YOU MUST WORK IT OUT
DATA WHY,WHY NOT?,WHY ISN'T THAT OBVIOUS?
DATA WHY? WHY? WHY? I DON'T KNOW
DATA YES,THATS MORE POSITIVE
DATA ARE YOU SURE YOU MEAN YES?
DATA I LIKE POSITIVE ANSWERS
DATA NO,THATS VERY NEGATIVE
DATA CAN'T YOU BE MORE POSITIVE?,NO?

69

If you can’t easily follow how the program is working, here is a
list of the subroutines and their functions.

GOSUB 130 Initializes the arrays by reading in the data that
contains the keywords.

GOSUB 260 Requests an input from the user.

GOSUB 290 Searches for a keyword, i.e. Dream, Brother, Com
puter.

GOSUB 730 Checks whether the user wishes to end the chat.

GOSUB 360 If match was found in subroutine GOSUB 290 then a
reply is chosen randomly from the three replies in the
appropriate data statement, i.e. if the keyword found
was APOLOGIZE, the DATA statement might look like
this:

1110 DATA APOLOGIZE, DO NOT APOLOGIZE,
WHY APOLOGIZE ABOUT /,
APOLOGIES ARE SELDOM MEANT

GOSUB 480 Checks for the occurrence of a subject, i.e. I, YOU,
HE, WE etc.

GOSUB 400 Looks to see if a / sign is in the data reply.

GOSUB 430 Puts together the reply and the tagged-on phrase.

GOSUB 550 Swaps the first subject found with the opposing
phrase, i.e. I becomes YOU and then tags the remain
der of the phrase after the subject.

GOSUB 610 Checks to see if more than two subjects appear in the
sentence. If so, it goes to G 0 S U B 6 6 0, or else prints the
swapped subject and tagged phrase.

GOSUB 660 Prints out one of four stock phrases.

70

FLOWCHARTS and DIAGRAMS

To help you understand the program, I include here a flowchart
of the program and separate flowcharts of the subroutines. There
is also a diagram to show you the relationships between the arrays
and the data statements.

Figure 9.1 Subroutine at 130.

71

Figure 9.2 Subroutine at 260.

Figure 9.3 Subroutine at 290.

72

Figure 9.4 Subroutiné at 730.

Figure 9.5 Subroutine at 360.

73

Figure 9.6 Subroutine at 480.

Figure 9.7 Subroutine at 400.

74

Figure 9.8 Subroutine at 430.

Figure 9.9 Subroutine at 550.

75

Figure 9.11 Subroutine at 660.

76

Figure 9.12 Flowchart for Sigmund.

77

DATA I'M , YOU’RE , I AM , YOU ARE

y I a iTi in4>\ ।}

nrom mitC/1 \y I cl 111 UULql^l/

gram

---------------------► gram out$(2)

Figure 9.13 Data stored in subject arrays.

IMPROVING THE PROGRAM

Sigmund can keep up a conversation for quite a while, and very
effectively but it does have faults. It can’t handle more than one
subject in the phrase. Therefore, a sentence like I GOT YOU will
not be handled. Using the principles in the program you could
add to Sigmund by swapping the correct subject into the phrase
and allowing for more than one subject.

Another way to improve on the program is to personalize it to
your own needs. To do this you must change the data statements
at the end of the program. For instance, you might want to add
the keyword Amstrad to Sigmund’s dictionary. To do this write
the DATA statement as follows:

2000 DATA AMSTRAD, MY MOTHER WAS AN AMSTRAD,
DO YOU LIKE AMSTRAD COMPUTERS?, FROM
LITTLE AMSTRADS GROW...

Don’t forget to change the dimension of the array, by altering the
DIM statement of mat ch$. Also remember to alter the FOR-NEXT
loops where matchS is being used.

The order of the data statements is very important. Sigmund
works on the basis of checking for the first keyword it comes
across in the list and acting on that word. Try changing the order
of the keywords to see how the program is affected. The order
can be crucial and I favour putting the more obscure keywords
first as they are less likely to be used, and if placed near the
bottom of the data statements, a more common keyword will take
precedence. You could also make more use of tagging, by placing
more operators like % in the data statements to bring part of the
user’s phrase between two elements of your own reply.

78

Sigmund is an example of the type of program you can construct
with a little thought. There is room for improvement but I hope it
will give you enough encouragement to start writing your own
interactive programs. In the remaining chapters we will look at
more ideas on interactive programming and consider the question
of artificial intelligence. Oh, one last thing. Do remember what I
said about Sigmund not being like any analyst I’ve ever met. The
replies given by Sigmund are, as you have seen, constructed by
the programmer and in this situation reflect the mind of the
author and not a professional psychologist! Happy counselling!

79

10 Interviewer

Simulation can be both practical and fun, and in this chapter
we’re going to look at implementing another interactive program,
this time based around an interview. At the same time we will see
how to use the Sigmund program as the basis of another.

Just as we decided upon an overall aim for the manner in which
Sigmund worked, we will consider what features to build into the
Interviewer program. We could make the computer simulate an
interview for a job, with the computer taking the part of the
interviewer. This means that the computer is going to have to ask
questions as well as respond to our answers. Now it would seem a
pity not to use the Sigmund program as the basis for this, because
we have already programmed him to simulate an intelligent
conversationist. Obviously we will have to change some of the
DATA keyword statements, as some of the replies we have built in
would not be suitable for an interviewer to say. How many
interviews have you attended where the interviewer said:

I HATE YOU

or,

DOES YOUR BROTHER ANNOY YOU?

Not many I’m sure! Now perhaps you like the idea of having a
manic interviewer who might insult you, so we might leave in
some of Sigmund’s replies. But just changing the data statements
is not sufficient. We want the computer to ask questions, and on
the basis of those answers either discuss the answer or carry on
questioning. We can do this by inserting new routines that hold
the data for the questions and set up new networks of possible
routes for the program to act on.

Let’s change Sigmund then and see what we can achieve. Load
in Sigmund and then make the following changes:

81

1. Delete lines 10 to 90 inclusive.
2. Delete lines 660 to 720 inclusive.

Now add the following lines:

10 MODE 2:ZONE 80
15 MEMORY 43869
20 POKE 43870,0
25 PRINT,"HELLO. MY NAME IS THOMPSON. I'M

THE","PERSONNEL OFFICER FOR SLUDGE & SONS.
I","WILL BE CONDUCTING THIS INTERVIEW.",
"YOU ARE..."

30 INPUT name$
40 PRINT,"TELL ME SOMETHING ABOUT YOURSELF"
65 CLEAR:DIM gramin$(40),gramout$(40),

match$(30,3),question$(3)
70 GOSUB 130:GOTO 100
75 CLEAR:DIM gramin$(40),gramout$(40),

match$(30,3),question$(3):GOSUB 130:
GOSUB 2000

80 GOSUB 1900:GOTO 70
660 GOTO 75
680 RETURN

1900 aX=PEEK(43870)+1
1910 PRINT,questionS(a^)
1920 POKE 43870,a%

1930 RETURN
2000 FOR x = 1 TO 3
2010 READ question$(x)
2020 NEXT
2030 RETURN
2040 DATA HOW MANY JOBS HAVE YOU HAD UP TO NOW?
2050 DATA WHY DID YOU APPLY FOR THIS JOB?
2060 DATA ARE YOU QUALIFIED FOR THIS WORK?

82

The program now runs differently and the interaction will look
something like this:

COMPUTER: MY NAME IS THOMPSON. I'M THE PERSONNEL
OFFICER FOR SLUDGE AND SONS. I WILL BE
CONDUCTING THIS INTERVIEW. YOU ARE...?

HUMAN: JEREMY
COMPUTER: PLEASED TO MEET YOU JEREMY. TELL ME

SOMETHING ABOUT YOURSELF
HUMAN: I AM A COLLEGE GRADUATE AND HAVE FIVE

YEARS EXPERIENCE OF WORK
COMPUTER: HOW MANY JOBS HAVE YOU HAD UP TO NOW?

HUMAN: FOUR
COMPUTER: WHY DID YOU APPLY FOR THIS JOB?

HUMAN: BECAUSE I'M MAD ABOUT BECOMING A RAT
CATCHER

COMPUTER: YOU MUST BE MAD
HUMAN: YES

COMPUTER: ARE YOU SURE YOU MEAN YES
HUMAN: I THINK SO

COMPUTER: YOU HAVEN'T THE BRAINS TO THINK
HUMAN: LOOK WHO'S TALKING. YOU ARE JUST A

COMPUTER
COMPUTER: YOU ARE PRIVILEGED TO TALK TO ME

HUMAN: I SUPPOSE I AM
COMPUTER: ARE YOU QUALIFIED FOR THIS WORK?

Can you see what the program is doing? Well let’s take a look at
the changes we have made. GOSUB 2000 reads into the array
questions the questions to be asked by the computer. To keep
the example simple I’ve only added three questions so that you
can see what is happenning. GOSUB 1900 is responsible for
printing out one of those questions, and this time instead of using
a random choice, I have kept track of which questions have been
asked by the computer by using a counter. That is what a% is
doing. There is an important reason for choosing a% as the
variable. At the start of the program and after each interaction,
the variables are all cleared from memory by using the statement

83

CLEAR. The only variable which is not forgotten is the resident
integer variable a%. As we need to keep track of what has been
previously used in the data statements, we can’t afford to have
that information wiped out. As a % is not affected by the use of
CLEAR, we can therefore utilize it to run through the whole
program. The reason a% is unaffected by CLEAR is because a
running count is kept of the variable above the memory of the
main program. This is the function of the PEEK and POKE
statement in lines 1900 to 1920. I’ll return to the question of using
counters shortly but first let’s carry on with understanding the
changes.

GOSUB 660 has been changed to simply send the program back
to line 75 where eventually it is routed to GOSUB 1900. The start
of the program has been changed to provide a new start-up
message and the remaining changes enable us to fit in the new
routines.

This is how the new program works: if a keyword is found, then
the program will behave just as it did in Sigmund, and will print
out an appropriate reply. However, if no keyword is found in
what the user types, then GOSUB 660 will direct the program to
issue one of the questions instead of printing out a stock phrase.
The next time this occurs Interviewer will have incremented the
counter and a different question will be asked.

Figure 10.1 shows a flowchart for the new program. If it is not
clear, compare Figure 10.1 with the flowchart of the Sigmund
program.

To complete the job you now have to add to the DATA statements
used by the subroutine GOSUB 2000, not forgetting to make the
appropriate changes to the array and loop statements. It is then
up to you to decide which of the original keywords are worth
retaining, or change some of the answers associated with a
keyword. It is possible to make Interviewer analyse your
performance by randomly assigning marks to each question
answered and then printing out a report at the end, based on the
score attained. You would have to set a time limit within the
program, the easiest way being to finish the interaction when all
the set questions have been asked. The Sigmund program could
be used as the basis of a number of different simulations and this
is just to show you how easy it is to change the kind of simulation
being written.

I said that a counter was used in the Interviewer program and it
raises once more the question of improving upon the programs
already shown. A problem that occurs in Sigmund, and therefore
in Interviewer, is that as replies are chosen randomly it is possible
to get the same reply being printed a few times in succession. If

84

85

you use a counter instead, it is then possible to make the program
run longer, with less risk of phrases being repeated. By using a
counter routine you can keep track of which replies have been
used and the next time a reply is needed, from the same data
statement, the subsequent reply in line can be implemented. The
same goes for the replies made by the user. If the user types in the
same phrase twice, it can be spotted and the user informed to
type something else. But do remember that all variables will be
wiped out by CLEAR so you may have to POKE a variable above
HIMEM.

These programs can always be improved on and I now put the
ball in your court. The methods for creating interactive programs
have been covered and it is now a matter of trying to work out
ways of incorporating what we have learnt in new and novel
programs. To help you on your way, the next chapter looks at
different ideas for interactive programs and you will see that
there are many applications within which you can use the
techniques covered.

86

11 Brainstorming

We have covered a lot of ground in this book and learnt many
different techniques, but what can we do with our new-found
knowledge? The answer is to have a brainstorming session.
What’s that? Brainstorming is having a good rack through the
brains for ideas, and that’s where all creative programs start.
Let’s take a look at some recent software innovations and see if
we can use our techniques to develop them in our own way.

SIMULATION 1:
Using interactive techniques within adventure games

Now you might think that the only games played on home
computers aim to protect mother earth from multicoloured space
invaders, intent on conquering the bottom of your screen. But
there is a great deal one can do with text-based games. A number
of well-known board games are being implemented on home
micros, and they can be as challenging, and as much fun as an
arcade-style game.

A popular area of gaming is the adventure game. The user is
thrown into a situation in which he has one objective, usually to
survive the onslaughts of unfriendly creatures. Now, I’m not
going to teach you how to write adventure programs, that is a
book in itself, but we can certainly use the methods we have seen,
and put them to good use in an adventure program.

For instance, in an adventure program, the computer relies on
text based commands input by the user from the keyboard. This
means building a dictionary into the program. A good adventure
program will allow a command to be written in a number of ways.
For example, if you tell the computer to go NORTH, this is often
typed either in full or as N. By matching selectively for just a few
letters of a word you may be able to increase the possible
vocabulary. The text manipulation commands are particularly
handy in this area.

87

SIMULATION 2: Education

A long-expressed fear from those unacquainted with computers is
that machines will take over the classroom and threaten a
teacher’s job. This is not what educational programs try to do,
but they can serve a useful purpose as an aid to teaching, either in
the classroom or at home.

We can build into a program some of the qualities of a teacher
and mimic these in the testing of a child’s ability to perform a
certain task. The obvious ideas that come to mind are testing a
child’s knowledge of multiplication tables, other mathematical
tasks, learning the alphabet and so on. What is important in an
educational program is to ensure that the program is interactive.
Is it well error-trapped? What happens if the child presses the
wrong key by mistake? Moreover, is the explanation to the child
clear? And what about the screen display?

All these points we have covered and this is where you will start
putting them into practice. Don’t be afraid to experiment at first
and in the case of children’s programs, the best way to see how
good your programming has been, is to let a few of your intended
victims (children!) try it out. Watch carefully to observe how they
get on with the software and whether there is a clean line of
communication between them and the computer. After all you do
want them to interact with the program.

SIMULATION 3: Business

Even at work programs could be made to be more interactive.
Business software is some of the most unfriendly I have ever
come across. This is one environment where easier communica
tion is a necessity. Simulating a business in game form could be an
exercise to try. Why not use the Sigmund program as a basis for a
‘Board’-room game. The computer could be the Chairman of the
Board and your job is to convince other members of the Board to
accept your amendment to a proposal. Perhaps get the computer
to play the role of several people? It just requires a little
imagination and a host of programs could emerge.

Finally, interactive techniques can be employed in the running
of questionnaires, and you could build tests around them, an
obvious candidate being personality tests. Diagnostic faultfinding
is a growing area of development and the next generation of
computers, the much heralded fifth generation, will be computers
that are knowledge information processors and expert systems.

These are systems where computers can make decisions on
information they have acquired and they are machines which can

88

learn as they go along. We can already implement a number of
these abilities from within BASIC, and as you become more
acquainted with the language you may later on decide to branch
out and delve into programming at a deeper level.

The overall message in this chapter is that interactive program
ming is a matter of man and machine in perfect harmony. Well,
this might not be entirely feasible but if you can blend in your
program with the people and the environment in which it is being
used, then you will have gone a long way towards creating
programs that interact with the user. And that is the purpose of
interactive programming. Man and machine communicating
freely between each other. As for harmony? That may prove to
be another problem!

89

12 Artificially Intelligent?

Man has been seeking the answer to human thought processes for
a very long time now, approaching the subject from different
fields of academic study. However, it has been with the advent of
widely available computers that man’s study of the mind has
escalated. The computer has provided the perfect tool with which
to study the processes of thinking and to simulate human activity
and thought. It is this latter subject on which the book has
concentrated by writing the Sigmund program.

At the very start of this book I presented you with one or two
problems to ponder on. Can machines think? What is artificial
intelligence? Now that we have reached the end, you may have
started to form some answers. I don’t have any answers, just
more questions. That’s not a way of avoiding the issue, but when
you start to think about machine intelligence there are a number
of things to consider. Firstly, there is the problem of defining
what we mean ourselves by intelligence. This particular debate
rages on between psychologists and that argument could be a
book in itself. For the purposes of this book, intelligence
comprises the processes carried out by the human mind to cope
with a variety of tasks: the ability to switch from one idea to
another, and work at a number of different levels.

However, the one thing that does come out of artificial
intelligence research is how little we understand about ourselves
and what the nature of intelligence might be. Computers can be
very good at performing specific tasks, even better than man, but
when faced with situations that require knowledge gained in
different areas, the computer has still to master this. So what did
we achieve by creating Sigmund. Is it an artificially intelligent
program? We are making the computer behave in ways that
mimic intelligent human behaviour. But that cannot be the only
criterion on which to judge a computer’s ‘intelligence’.

Over the years, researchers have suggested different tests that
would determine whether or not a program or machine could be

91

deemed to be intelligent. The most attractive of these is to
identify a unique feature of a human being, i.e. the ability to act
in a creative and original manner. Now surely a computer cannot
be creative and come up with original and novel ideas?

That’s not the case. Programs have been written capable of
generating proofs of geometry theorems that no human has ever
thought of. Who can claim to have made the ‘intelligent’
discovery when such a feat is performed? Is it the programmer
who has never consciously thought of the proof, or the program?
A difficult problem

Whatever you decide to call the actions of a program, be it
intelligence or otherwise, there is no doubt that we are rapidly
approaching a time when computers will have minds of their own.
What we can do on our home micro is merely simulate some
properties of human behaviour, but that in itself can be very
powerful and effective. The emphasis in this book has been on
creating programs that interact with the user. That is very
important.

As we go through another industrial revolution with computers
becoming a feature of everyday life, it is necessary to make them
as user-friendly as possible. That is the first step in interactive
programming. The second is to write programs that Can read a
user’s input and make a decision based on what it has been
taught. Those first two are relatively easy and as we have seen can
be achieved. The next, however, is much more difficult.

How is it possible to write a program which will behave as a
human would in a given situation? This can be achieved, up to a
point, depending on the nature of the behaviour being mimicked.
You will notice I have used the word ‘mimic’ to describe a
computer’s responses. This is because that is all we are doing
when we write a program on our home micro.

We have used the programming language BASIC in this book,
but in terms of creating artificially intelligent programs it is not a
good choice. LISP is a much better language, and others exist.
However, it has taught us the basics of how computers under
stand instructions and armed with this knowledge you should be
able to construct a wide range of programs.

That is where I finish. The principles learnt in this book are the
stepping stones to larger and better programs. If you have
followed everything, you will already be writing useful programs
and with a bit of thought you could be writing programs that will
not only amaze your friends but are truly interactive with the
user. Perhaps the insides of your Amstrad are more than just a
cluster of silicon chips. But whatever they are, you have found a
good point to start on the Road to Artificial Intelligence.

92

Appendix A: A crash course
in BASIC

This is what you could call a crash course in basics, or basic
BASIC. If you’ve never typed a program in before, read this
appendix first. It will give you a grounding from which you will be
able to continue to the techniques taught in this book. So
assuming that you know nothing—read on!

Turn on your Amstrad and you will see a message at the top of
the screen and a box cursor. You’ve probably tried typing in a
friendly message like HELLO but all you have got in reply is a
message telling you that you’ve made a mistake. Don’t be put off!

Computers are stupid machines. Before they can produce all
the wonderous effects you have seen on other machines they have
to be given a set of instructions telling them what is required. This
set of instructions is known as a program and is a logical sequence
of commands which the computer works its way through. Try
typing the following:

PRINT "HELLO"

When you have typed that line, finish off by pressing the ENTER
key. See what happens? The word HELLO has appeared on the
next line. Now type the same line except this time change what
appears between the quotes. For example, you could type:

PRINT "MY NAME IS JEREMY"

Yet again press ENTER when you have typed it in. This time what
has been printed to the screen has changed to what you placed
between the quotation marks (by the way, use the double
quotation mark above the number 2). Two important things can
be learnt from this. Firstly, at the end of any line, unless I indicate
otherwise, always press the ENTER key. This tells the computer to
carry out your instruction. Until the ENTER key is pressed no
command will be carried out. Secondly, what we have done is to

93

give the computer a legal instruction, something which it
recognizes. In this case, that something is the command PRINT.
By now you probably have guessed that the P RIN T command does
what it says. It prints to the screen anything that you place
between the quotation marks.

Now this is all well and good but you can’t type in commands
like that all the time. What we have done so far is to issue a direct
command. What we now need to do is to store our commands, in
order that they be carried out in the sequence we wish. We might
want, for example, to write the name and address of a friend, on
the screen and on a number of lines. To do this try the following:

Program Al

10 PRINT "CHRIS HENDON"
20 PRINT "23 THE HIGH ST"
30 PRINT "WELLINGTON NORFOLK"

Remember to press ENTER at the end of each line. When finished
type RUN (ENTER) and the name and address is printed on three
successive lines. What you have just done is to write a program!
Not the most exciting program in the world but it is a program.
Each line represents a command to the computer which the
machine obeys. I have used line numbering of 10 to 30. The
actual numbers are not important, they could just as easily be
lines 1, 2, 3 or 234, 256, 678. The important thing is that they
represent a guideline to the computer as to what order the
commands should be executed in. The computer reads line 10
first, carries out whatever is written there and then proceeds to
the next line, line 20. It is a good convention to build up a
program in steps of 10 as there are always times when you will
need to insert an extra line and this would be difficult if you have
left no space by writing a program in steps of 1. Note that you can
type the command keywords in lower case characters as they will
be converted to upper case when listed.

To look at our program again type LIST (ENTER) and this
command will print out a listing of your program in the correct
sequence. This command can only be used to list a program and
cannot be used as part of a program.

We have seen how the PRINT statement can place words on the
screen but it can also carry out mathematical instructions. Type in
the following:

PRINT 25 * 2

94

This statement causes the computer to type 50. This is different to
what we have seen previously. Note'this time there are no
quotation marks. In our previous example the quotation marks
were placed to inform the machine that we were dealing with a
non-numerical event or something which didn’t require any
mathematics to be involved. In the present example, I have asked
the computer to tell me what 25 multiplied by 2 is, and it has
replied with the correct answer, which is 50. Therefore, the
computer is capable of being a calculator as well.

The next program asks the user to enter a number. This is
where we come to our second keyword statement. We need to be
able to enter information or input into the computer. To do this
we use the INPUT statement which tells the computer we are
requesting information and the computer will wait until an
answer is given. For example, type this:

INPUT number

In response to the question mark enter a number. If you enter a
number the prompt will return. If you now type:

PRINT number

the number you entered will appear. What you have done is to
allow the value entered to be given to a numeric variable, the
variable name being ‘number’. It could just as easily have been
called ‘a’ or ‘fred’. You can think of a variable as a box. When
you used the INPUT statement the number you entered was
placed in the box called ‘number’ and at a later date when you
asked for the contents of the box by typing PRINT number the
number you entered was shown. Use the example above again
but this time change the variable name, i.e. ‘number’ becomes
‘a’:

Program A2

10 INPUT a
20 PRINT 6 * a

Run the program. Line 10 waits for the user to input a number
and that number is then multiplied by 6 in line 20, and the PRINT
statement prints that result to the screen.

Now what happens if we enter a non-numeric value, i.e. the
letter A? The Amstrad rejects this imput because it is expecting a

95

numeric value and if anything else is typed in, the computer doesn’t
know what to do with it. This example leads me on to the two
different kinds of variable that exist.

The first we have encountered, that being a numeric variable.
The second kind of variable that we can use is called a string
variable. When using a string variable any keyboard character is
accepted and stored. The difference between this and a numeric
variable is that mathematics cannot be carried out on a string
variable. To distinguish between these two kinds, a rule is
followed.

We can call a numeric variable what we like. We called our
numeric variable in Program A2 ‘a’ but co.uld quite as easily have
called it ‘number’ or ‘amstrad’. To tell the computer we are using
a string variable we add a $ (dollar) sign on to the end of the
variable name. For instance, if we want to ask the user for his/her
name and then print a personal greeting to that person we can
write a program like this:

Program A3

10 INPUT name$
20 PRINT "Pleased to meet you name$

The semi-colon in line 20 tells the computer to place the variable
name$ next to the last thing printed, in this case a space, because
we want to leave a space between ‘you’ and the name entered.

Therefore, a string variable allows any alphanumeric character,
i.e. any keyboard character but it cannot carry out mathematics
on a number entered. If you are still unsure about the difference
between a numeric and string variable go back and try to write a
program to carry out multiplication except this time use a string
variable (one with a $ sign on the end) to work out the result.

Finally, let us learn a few more BASIC keywords. The first
keyword is LET. You will often see in programs lines such as:

tag = 9

or,

y = y + 8

In the first example we have told the computer that the numeric
variable ‘tag’ equals 9 or to be more exact, we have said
LET tag = 9. The keyword LET is optional and we will not
make use of it but the important thing to remember is that when

96

we tell the computer that a variable is something or that, as in the
second example, the numeric variable y equals the value of y + 8,
then we are in fact saying, LET this variable equal...

So, for instance, if we want to print our name out ten times we
could type ten lines each with the same PRINT statement:

10 PRINT
20 PRINT
30 PRINT

"Jeremy"
"Jeremy"
"Jeremy"

etc.
But that is a long way of going about it. So we can use our

ability to increment the value of a variable by typing the
following:

Program A4

10 x = 0
20 PRINT "’Jeremy"
30 x = x + 1
40 IF x < 10 GOTO 20

50 END

Line 10 sets the value of x to 0. Line 20 is where we print our
word. At line 30 the value of x is increased by 1 (LET x equal the
value of x, which at this point is 0, and add 1 to it, therefore
making x equal to 1). Now we come to two new keywords, IF and
GOTO. What we have said in line 40 is that IF x is less than 10 G 0 T 0
line 20, where the PRINT phrase is repeated. This continues until
x is greater than 10. If x is greater than 10 the program is finished,
thus the END statement at line 50.

We have yet to cover subroutines. A subroutine is a group of
instructions put together in one section enabling the user to call it
up by its starting line number. You can think of a subroutine as a
smaller program within the main program. If you see a line that
has in it GOSUB Line number, that is a subroutine. Normally the
RETURN statement marks the end of the definition of the
subroutine. Therefore, you could have a program that is one line
long, the line calling a subroutine:

10 GOSUB 30
20 END

97

30 PRINT'HI THERE"
50 RETURN

Subroutines are very useful and make programs easier to read
and follow.

That was, as I said at the beginning, a lightning introduction to
BASIC but if you have understood everything here you should
cope with the rest of the book.

98

Appendix B: Amstrad BASIC
Keyword Summary

This appendix contains a summary of the Amstrad BASIC
commands covered in this book. It isn’t a replacement for the
user guide nor a detailed description, but sufficient to jog your
memory on any of the commands we have used. In addition,
there are a few extra commands not detailed in this book which
may be of use. The commands for graphics, sound and many of
the numeric functions are also missing. For further information
on any of these, refer to the user guide.

AND Logical ‘and’ operator.

ASC Converts a character into an ASCII code.

AUTO Provides an automatic line numbering facility for
typing in listings at regular intervals.

BORDER Changes the colour of the border of the screen.

CHAIN Command to load and run a program, i.e.
CHAIN"fi Lename".

CHR$ Converts an ASCII code into a character.

CLEAR Clears the memory of all variables previously
used.

CLS Clears the screen.

DATA The store of information which is taken by the
READ statement.

DELETE Used to delete lines from a program, i.e. DELETE
10, 60.

99

DIM Dimensions the size of an array.

ELSE Used in conjunction with IF-THEN to branch to
another action, i.e. IF counter > 20 THEN GOTO 50
ELSE 100.

END Tells the computer to terminate running a
program.

ERL Gives the number of the line containing an error.

ERR Returns the number of the last error.

FOR The start element of the FOR-NEXT loop.

GOSUB Sends program to a subroutine at a specified line
number.

GOTO Sends the computer to a specified line in the
program.

IF Start of the IF-THEN statement.

INK Changes ink to a specified colour.

INKEYS Takes the input of a key from the keyboard.

INPUT Issues a request for either numbers or strings of
characters to be entered from the keyboard.

INT Converts a number to the nearest smaller integer.

INSTR Searches for the occurrence of a string within
another string.

KEY Define new function key.

KEY DEF Define the value of a key when pressed.

LEFTS String manipulation command for taking a num
ber of given characters from the start of a string.

LEN Returns a number giving the length of a string.

LINE INPUT As for INPUT but ensures that everything typed in
is held in the variable.

100

LIST Lists to the screen all or part of a program.

LOAD Loads a program from cassette or disc into the
computer’s memory.

LOCATE Moves the cursor to a specified position on screen,
i.e. LOCATE 1, 5

LOWERS Converts upper case characters to lower case.

MID$ String manipulation command for taking a num
ber of given characters from a specified position in
a string.

MODE Sets the screen display mode.

NEW Clears the memory of the computer.

NEXT Specifies the end of a FOR-NEXT loop.

ON Enables redirection of a program by altering the
order of execution, i.e:

ON a GOTO 25, 45
ON ERROR GOTO 10

OR Logical ‘or’ operator.

PAPER Sets the colour of the paper (background).

PEN Sets the colour for the characters (foreground).

PRINT Prints given items on the screen.

READ Reads the information contained in the DATA
statements.

RENUM Renumbers the lines of a program listing, i.e.
RENUM 100.

RESTORE Sets pointer to read data from a specified position.

RETURN Marks the end of a subroutine.

101

RIGHTS String manipulation command that takes a num
ber of characters from the end of a string, working
from right to left.

RND Chooses a random number.

RUN Runs the program.

SAVE Saves a program to cassette or disc.

SPC Places any number of specified spaces on the
screen.

STEP Specifies a step within the FOR-NEXT statement.

STOP Stops a program and displays the line number.

STRS Converts a number into a character string, i.e. 1
becomes ‘1’.

TAB Used with PRINT to move the screen cursor to a
specified position.

THEN Used in conjunction with the IF statement.

TO Used in conjunction with the FOR-NEXT loop to
specify a numeric range.

UPPERS Converts lower case characters to upper case.

VAL Converts a number in a character string into a
numeric variable, i.e. ‘8’ becomes 8.

WHILE Causes a loop until a certain condition is met.

WEND Terminates the WHILE loop.

ZONE Sets the width of the print zone.

102

Other titles of interest

Bells and Whistles on the Amstrad CPC 464
Jeremy Vine
Discover the sound effects which can be created on the
Amstrad CPC 464.

Gateway to Computing with the Amstrad CPC 464 (each)
Ian Stewart
Two books covering the fundamentals of computing for young people.

The Complete Introduction to the
Amstrad CPC 464
Eric Deeson
Computers in a Nutshell
Ian Stewart
The layman’s introduction to computing.

Brainteasers for BASIC Computers
Gordon Lee
A book I would warmly recommend’—Computer & Video Games

Microchip Mathematics: Number Theory for
Computor Users
Keith Devlin
Programming for REAL Beginners: Stages 1 & 2 (each)
Philip Crookall

£4.95

£4.95

TBA

£4.95

£4.95

£12.95

£3.95

ORDER FORM
I should like to order the following Shiva titles:

Qty Title ISBN Price

____ BELLS AND WHISTLES ON THE AMSTRAD CPC 464 1 85014 063 4 £4.95

GATEWAY TO COMPUTING WITH THE AMSTRAD CPC 464

____ BOOK ONE 1850140162 £4.95

____ BOOK TWO 185014 023 5 £4.95

____ THE COMPLETE INTRODUCTION TO THE AMSTRAD CPC 464 185014 002 2 TBA

____ COMPUTERS IN A NUTSHELL 185014 0189 £4.95

____ BRAINTEASERS FOR BASIC COMPUTERS 0906812 364 £4.95

____ MICROCHIP MATHEMATICS 1850140472 £12.95

____ PROGRAMMING FOR REAL BEGINNERS: STAGE 1 0906812 372 £3.95

____ PROGRAMMING FOR REAL BEGINNERS: STAGE 2 0906812 593 £3.95

Please send me a full catalogue of computer books and software: □
Name ..
Address ..

This form should be taken to your local bookshop or computer store. In case of
difficulty, write to Shiva Publishing Ltd, Freepost, 64 Welsh Row, Nantwich,
Cheshire CW5 5BR, enclosing a cheque for £ ..

For payment by credit card: Access/Barclaycard/Visa/American Express
Card No .. Signature

SSnicate discover the techniques \

you will go onaiourney M
rede.dbuM databanks ■

\ e disentangle th^ch techniques \

I and allow feeecommunicat ■

le^B»^Fenableyouto I
CX^Motn'^c^equtted^P

\ Very little ^ow^e the waY^^oute \
\ the inforniation^

■ ’J^Sgence. _______ _______ _

UK price £5.95 net

SHIUf

Shiva Publishing Limited

GB £ NET +005-05

ISBN 1-Ö5014-0L4-B

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	On the road to artificial intelligence AMSTRAD CPC 464
	Contents
	Preface
	About the author
	1 Can Machines Think?
	2 Creating an Interactive Program
	3 Strings and Things
	4 More Strings Attached!
	5 Words, Words, Words
	6 Always the Unexpected!
	7 Text Handling
	8 Sigmund: An Interactive Program
	9 Sigmund: The Program
	10 Interviewer
	11 Brainstorming
	12 Artificially Intelligent?
	Appendix A: A crash course in BASIC

	Appendix B: Amstrad BASIC Keyword Summary

	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-26

