
AMSTRADS
and Artificial
Intelligence

Patrick Hall
SIGMA

t'RESSB ■■■■

Amstrads and
Artificial Intelligence

Patrick Hall

SIGMA
■■■■■■■ PRESS ■

Copyright©?. J. Hall, 1986.

All Rights Reserved

No part of this book may be reproduced or transmitted by any means
without the prior permission of the publisher. The only exceptions are for
the purposes of review, or as provided for by the Copyright (Photocopying)
Act or in order to enter the programs herein onto a computer for the sole use
of the purchaser of this book.

ISBN 1 85058 043 X

Published by:

SIGMA PRESS
98a Water Lane
Wilmslow
Cheshire
U.K.

Distributors:

U.K., Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester
West Sussex, England

Australia:
JOHN WILEY & SONS INC.
GPO Box 859, Brisbane
Queensland 40001
Australia

Acknowledgments

CPC-464, CPC-664 and CPC-6128 are trademarks of Amstrad Consumer
Electronics PLC

Printed in Malta by Interprint Ltd

Contents
Chapter 1: In the beginning: the history of artificial intelligence 1
‘Electronic Brains’ ... 1
Al and Common Sense ... 2
Frontiers of Al Research ... 2
The Programs in this Book .. 2

Chapter 2: Planned spontaneity: computer creativity 5
Computers and The Arts ... 5
Example Program: ODE ... 6
Commentary on ODE ... 11
Example Program: BARD ... 16
Commentary on BARD ... 26
EURISKO - a creative system, or a cheat? ... 31

Chapter 3: Common parlance: understanding natural language 33
Talking to Computers ... 33
Example Program: INGA .. 34
Commentary on INGA .. 44
The Problem of Ambiguity ... 49
Winograd and SHRDLU ... 49

Chapter 4: The last analysis:knowledge representation and semantics ... 51
Frames .. 51
Blackboards ... 52
Parsing and Syntax 52
Example Program: VALID ... 52
Commentary on VALID ... 54

Chapter 5: Expert assistance: knowledge engineering.............................. 69
Example Program: AMY... 70
Commentary on AMY ... 76
Accountability and Expert Systems .. 80

Chapter 6: Playing the game: heuristic strategies 83
Game Playing and Al ... 83
Search Trees .. 83
Evaluation Functions .. 84

Heuristics .. 84
Example Program: HEX ... 85
Commentary on HEX.. 86
Example Program: T1CTACTOE.. 94
Commentary on TICTACTOE ... 102

Chapter 7: The wood for the trees: computer vision Ill
Industrial Applications ... Ill
Human Vision .. Ill
Processing the Data.. 112
Stereoscopic Vision .. 113
Thinking Small 113
Example Program: PIPPA .. 113
Commentary on PIPPA .. 115

Chapter 8: The light of experience: robots and learning programs.... 127
Robots in Industry ... 127
Learning Algorithms ... 128
Example Program: MINOTAUR .. 129
Commentary on MINOTAUR .. 130
Example Program: LUCIE .. 143
Commentary on LUCIE.. 147

Chapter 9: Machine mentality: philosophical issues................................ 179
The ‘Strong’ Al Position.. 179
The Turing Test ... 180
The Case against ‘Strong’ Al .. 180
Social Beliefs and Expectations .. 181

Chapter 10: An A.I. crib sheet:
concepts, names and programs 183

CHAPTER 1

In the beginning:
the history of

artificial intelligence

‘Electronic Brains’
In the first period of their growth and development, in the 1950s, computers
were frequently referred to as ’electronic brains’, a catch phrase which
reinforced a basic misconception of the true nature of the machines. The
source of the error probably stemmed from the image of the brain as ‘an
amazing telephone exchange’, which had earlier appeared frequently in
popular books on biology. How natural, then, to assume that this new piece
of even more complicated electrical wiring should be a better analogy. Soon
statements were appearing in newspapers which estimated how big an
electronic brain would have to be in order to compete with the natural
variety. It certainly gave many people the satisfaction of knowing that their
cranium could outperform the Royal Albert Hall, while at the same time the
confidence that science had at last solved the problem and that we knew how
it all worked.

Possibly the same jingoism overflowed into computer science itself, because
with buoyant confidence early programs were soon forthcoming intended to
simulate aspects of human thought. The term ‘Artificial Intelligence’ was
invented by John McCarthy, while Allen Newell and Hebert Simon wrote
one of the first convincing A.I. programs, the General Problem Solver. This
could deal remarkably well with highly formalised situations. Other
programs were developed which could operate convincingly in areas
conventionally assumed to require human intelligence and optimistic
predictions were made about the future of the new science. However it
began to be realised that, whereas a computer program could be written to
perform calculus, programs intended to deal with more mundane issues
were not particularly successful. A new conception of intelligence evolved,
as researchers discovered that the truly ‘intelligent’ things of which human
beings were capable were the ones mastered by infants rather than

1

undergraduates. Decyphering visual images of the world, controlling limbs
and balance, understanding language, all of these are intelligent activities
which happen so automatically that we are not conscious of them.

Al and Common Sense
The real task faced by A.I. workers was therefore introducing common
sense into their programs. This began to take place as programs were written
to play games. Here the program had to be able to investigate a situation,
represent for itself the information it had acquired and make decisions about
what could be attempted next. Game playing was accompanied by the
development of ‘expert systems’. In such a program, information is stored
on a particular area of human knowledge in such a way that the computer
can use it effectively in asking questions, extending its grasp of the situation
and giving practical advice. Cross fertilisation between the two fields of A.I.
occurred as similar methods of knowledge representation and ‘heuristic’
rules for operating on the knowledge were applicable to both game playing
and expert systems. The latter area of A.I. attracted commercial interest as
knowledge based systems could be used practically in the real world.

Frontiers of Al Research
Research in A.I. continues in many areas. Computer vision is a particularly
difficult, but stimulating area of investigation, with immediate applications
in the control of industrial robots. Language translation programs, after an
unpromising beginning, are now being employed to help in the
administration of multicultural organisations, like the European Economic
Community. Slow but consistent progress is made in the development of
robotic systems which one day will be of immense usefulness.

There is another aspect of A.I. in which programs can be used to help test
models of human cognition. The psychologist, or cognitive scientist, can try
out new ideas in almost laboratory conditions and modify theories
accordingly. Sometimes this process can be reversed and discoveries about
the human brain used in new approaches in A.I. software. An example of
this has occurred recently in computer vision, where an insight into the way
the brain processes sterescopic information has inspired a new algorithm in
a vision program.

The Programs in this Book
A.I. will be an important feature of the proposed fifth generation of
computers, which are expected to possess far greater processing power and
an enhanced ability to understand ordinary language. Some might argue it

2

was worth waiting for these machines to emerge from whichever country
succeeds in making them first. However, this would remove the excitement
of working, albeit at the micro level with an Amstrad computer, in a
relatively new area of scientific research. It must be remembered that the
home microcomputer is as powerful as the mainframes upon which the early
A.I. programs were first evaluated. In this book, ten programs are provided
which cover a broad area of A.I. The order in which material is introduced
is intended to emphasise particular themes in A.I. and also to allow the
programming techniques employed to progress in difficulty. A full
commentary follows every program and algorithms are explained in detail.

The first two programs illustrate automatic writing, or the debatable area of
computer creativity. ODE, an acronym for ‘Obsequious Dedication to
Everybody’, produces rhyming verse praising the personal attributes and
traits of, it is hoped, a suitably impressed and computer-naive, friend of the
programmer! Then computer prose is generated by BARD, the ‘Basic
Algorithm for Random Development’. Understanding natural language is
explored with a German/English translation program, INGA, an
‘INtelligent German Algorithm’. After this, VALID, or ‘Veracity Assessed
by Logical Inference and Deduction’, investigates the way in which
knowledge can be stored within a program.

An introduction to expert systems is provided by AMY, ‘Analytical Method
of Yielding information’. Two games playing programs follow. The game of
Hex is played by the program HEX, ‘Heuristics Examined’, and noughts
and crosses by the American-named TICTACTOE, ‘Testing Intelligent
Computer TACTics Opposing Enemy’. An example of a computer vision
system is given by PIPPA, ‘Programmed Identification of Polygon
Properties and Attributes’. Finally, two robotics programs are included in
the book. MINOTAUR, ‘MINimum Operational Time Acquiring Ultimate
Route’, is a maze solving program and LUCIE, ‘Location Under Controlled
Investigation of Environment’, gives a three-dimensional graphic animation
of a domestic robot (actually a robot cat) exploring a room full of furniture
as it tries to find a life-giving power socket.

3

CHAPTER 2

Planned spontaneity:
computer creativity?

The possibility that computers might one day be capable of simulating
human speech, and perhaps thought, is accepted by many people who,
nevertheless, baulk at the suggestion that original and imaginative action
might also be attributed to them. The very concept of computer creativity
can seem distasteful, as if it marks the last barrier between the human and
the machine.

Computers and The Arts
Nevertheless, computers have been used, in a limited way, in the Arts. In
particular they have appealed to certain contemporary composers. Strength
is, possibly, given to this position by the fact that a Russian composer,
Joseph Schillinger, wrote a book called ‘The Mathematical Basis of the Arts’
in 1942. In this, many of the characteristics of later, computer-based musical
scores were first enunciated. Significantly, the book was written before the
emergence of the electronic computer from its war time backroom, thus
preventing any cynical assumption that Schilllinger was simply exploiting a
new technical advance.

At the University of Illinois in the 1950s, Professor Hiller used ILLIAC, a
first generation machine, to compose various pieces, including a suite for
string quartet. Better known are the works of John Cage and Xenakis.
Cage’s ‘HPSCHD’ contrasts fifty one channels of computer generated music
against seven of amplified harpsichords. Xenakis, who studied under
Honegger and Milhaud and who is therefore closer to the mainstream of
contemporary European music, has experimented with compositional
techniques so complicated that a computer is required to work out the
mathematics involved. This belies the immediacy of his compositions’
appeal. Similarly, the leading French composer, Pierre Boulez, at IRCAM,
the Institut de Recherche et de Coordinatiom Acoustique Musique, has
encouaged students to learn computer programming.

5

The use of computers in music is not equivalent to computer creativity.
Instead the composer remains decisively in control, retaining through the
design of the program a critical over-view of what is being produced. A
parallel can be drawn with simple language-generating programs which can
be used to produce a variety of sentence structures around given themes. By
careful pruning of the results, the computer can appear occasionally to have
written something of merit. An example of such a program is given here.

ODE TO SARAH

MY SARRH, SRRRH, SRRRH,
SO STRANGELY SLY,
NO WONDER SINCE YOU'UE GOT
R UERY ICY EYE.
OH SRRRH YOUR UERY
LOUELY HAIR,
IS RATHER LIKE A
PLIGHT THAT'S FAIR.
MY SRRAH, SARAH, SARAH,
SO STRANGELY HIGH,
NO WONDER SINCE YOU'UE GOT
A UERY TRAGIC REPLY.
THE MAGICAL SPELL COULD NEUER
BE SO DEAR,
AS SRRAH IN THE MORNING
WHEN YOU DISAPPEAR.

ODE
This program writes verse in rhyming couplets. The screen dump gives a
typical example of the quality of its work. Because of the limited nature of
subject material, making wry comments about the character and physical
traits of the person to whom the ode is dedicated, the program can,
occasionally, get things completely right and appear more sophisticated than
it actually is. Hence the last two lines of ‘Ode to Sarah’ seem to possess a
resigned optimism.

6

1000

1010

1020

1030

1040

1030

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

REM ODE - PAT HALL, 2/86

REM CONTROL ROUTINE

GOSUB 1070:GOSUB 1150:WHILE l>0

GOSUB 1310:GOSUB 1350:FOR 1-1 TO 4

GOSUB 1410:NEXT:WEND

REM

REM INITIALISATION

BORDER O:MODE 1:INK 0,26:INK 1,2

DIM R<3,5):F0R 1-1 TO 3:F0R J=1 TO

5:READ R(I,J):NEXT:NEXT

DIM R$<3,5,7):FOR 1-1 TO 3:F0R J»1

TO 5:F0R K»1 TO R<I,J):READ RSCI.J,

K):NEXT:NEXT:NEXT

DIM N$<10):F0R 1 = 1 TO 10:READ N$<I)

:NEXT:DIM A»<10):F0R 1=1 TO 10

READ A*<I)1NEXT: RANDOMIZE TIME

RETURN

REM

REM DESCRIBE

BORDER 2:PEN 1:PAPER 2:CLS:WINDOW

#1,1,40,1,3:PAPER #1,O:CLS #1

WINDOW #2,1,40,23,25:PAPER #2,0:CLS

#2:LOCATE 18,2:PRINT"< ODE >"

LOCATE 3,9:PRINT "USING THIS"J

PRINT" PROGRAM YOU CAN WRITE A"

PRINT” POEM DEDICATED TO A")

PRINT" CLOSE FRIEND. THE"

PRINT" AMSTRAD 6128 WILL";

PRINT" SELECT WORDS WHICH"

PRINT" RHYME." : PRINT

PRINT" ALL YOU HAVE TO DO";

7

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

PRINT" IS TYPE THE NAME"

PRINT" OF THE PERSON TO WHOM“»

PRINT" YOU WISH TO"

PRINT" OFFER YOUR ODE."iRETURN

REM

REM PROMPT

CLS #21 LOCATE «2,16,2:PRINT «2,

"< SPACE >"IK-0:WHILE K-0:IF INKEY<

47)-0 THEN K—1

WENDICLS #21 RETURN

REM

REM DEDICATION

L-91WHILE L>8:CLS1 LOCATE 15,10

PRINT“TYPE NAME"1 LOCATE 15,12

INPUT D«lL-LEN(DOI WEND:CLSlLOCATE

16—L/2,3:PRINT“0DE TO "jD«iPRINT

RETURN

REM

REM SELECT COUPLET

S-SiGOSUB 1440:RF—N:GOSUB 1440iCT>N

I ON CT GOSUB 1470,1520,1580,1620,

1670s RETURN

REM

REM RANDOM

N-INT(RND<1)*S)+1sRETURN

REM

REM COUPLET 1

PRINT TAB(3)

"I LOVE TO WATCH YOUR "j:S-lOsGOSUB

1440:PRINT TAB(3)A«<N>;" "J

S-R(1,RF>:GOSUB 1440:PRINT R$(1,RF,

8

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

N>JPRINT TAB(3)

"DESPITE THE FACT YOU"J SPRINT TAB

(3)"SEEM TO "|

S-R(3,RF)sGOSUB 1440:PRINT RS(3,RF,

N)|"."I RETURN

REM

REM COUPLET 2

PRINT TAB(3) "THE "jsS-lOsGOSUB

1440iPRINT A*(N)|" "j:GOSUB 1440

PRINT N*(N)|* REMINDS"SPRINT TAB <3

>"ME OF YOUR "|sS»R(l,RF)sGOSUB

1440iPRINT R«(1,RF,N)|","«PRINT TAB

(3) "EVEN THOUGH YOUR "jiS-SsGOSUB

1440sRN-NsS»R(l,RN)sGOSUB 1440

PRINT RX1 ,RN,N> sPRINT TAB <3)

"IS RATHER “IiS-R<2,RF>:GOSUB 1440

PRINT RX2,RF,N> | sRETURN

REM

REM COUPLET 3

PRINT TAB <3>"THE "J:S-lOsGOSUB

1440sPRINT AXN)|" "|sGOSUB 1440s

PRINT N»(N)|" COULD NEVER"SPRINT

TAB (3)“BE SO "|sS-R<2,RF)sGOSUB

1440

PRINT RX2,RF,N) j ",“sPRINT TAB <3>

"AS "|D«j" IN THE MORNING"sPRINT

TAB (3)"WHEN YOU "jsS=R(3,RF)sGOSUB

1440sPRINT RX3,RF,N>, "sRETURN

REM

REM COUPLET 4

PRINT TAB (3)"OH D4;" YOUR VERY"

9

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1 PRINT TAB (3)“LOVELY "j:S-R(1,RF):

GOSUB 1440:PRINT R»<1,RF,N>;“,"

PRINT TAB (3)"IS RATHER LIKE A":S-5

IGOSUB 1440:RN-N:S-R<1,RN)IGOSUB

1440:PRINT TAB (3)R*<1,RN,N);

“ THAT'S “|:S-R<2,RF):GOSUB 1440

PRINT R*(2,RF,N>|".":RETURN

REM

REM COUPLET 5

PRINT TAB (3)“MY "|D«j", “|D»|", “|

D$J"."»PRINT TAB (3)"SO STRANGELY "

]:S—R<2,RF):GOSUB 1440:PRINT R«<2,

RF,N)j",“:PRINT TAB <3>

“NO WONDER SINCE YOU'VE GOT“:PRINT

TAB (3)“A VERY ")IS-10:GOSUB 1440

S—10:GOSUB 1440:PRINT A*(N)|” “;

S-R<1,RF):GOSUB 1440:S-R(1,RF)

GOSUB 1440:PRINT RS(1,RF,N>;".“

RETURN

REM

REM DATA

DATA 6,5,4,5,7,6,3,3

DATA 3,6,4,6,6,7,7

DATA SIGHT,PLIGHT,HEIGHT,SPITE

DATA MIGHT,NIGHT,HAIR,STARE

DATA FLAIR,AIR,SNAIR,FACE,BASE

DATA GRACE,WAIST,EYE,THIGH,CRY

DATA SIGH,REPLY,CHEER,EAR,TEAR

DATA REAR,IDEA,FEAR,SNEER

DATA WHITE,SLIGHT,RIGHT,QUITE

DATA LIGHT,TIGHT,FAIR,BARE

10

1840 DATA RARE,CHASTE,BRACED,LACED

1850 DATA HIBH, SLY, NIGH, NE AR, CLEAR

I860 DATA SINCERE, INSINCERE,MERE,DEAR

1870 DATA FIGHT,WRITE,HYPE,BITE

1880 DATA COMPARE,CARE,DESPAIR,DARE

1890 DATA TEAR, I MP AIR, RACE, CHASE

1900 DATA DISPLACE,DISGRACE,PACE

1910 DATA TASTE,GO BY,DEFY,ESPY,LIE

1920 DATA IMPLY,PRY,DECRY,HEAR,LEER

1930 DATA PEER,JEER,STEER,VEER

1940 DATA DISAPPEAR,MOUNTAIN,MOON

1950 DATA LAKE,BREATH,RIVER,MIST,FIRE

1960 DATA ICE,SPELL,GLACIER

1970 DATA PURPLE,MISTY,ICY,FIERY

1980 DATA TEARFUL,MAGICAL,DEVOUT

1990 DATA HELPLESS,TRAGIC, ICE-BLUE

Commentary on ODE
ODE, like the other programs contained in the book, is written in a modular
fashion, with a control routine calling various other routines as required.
Lines 1020 - 1040 form this control routine. At line 1020 it calls the
initialisation routine to set up the arrays of words needed by the program.
Line 1020 also uses ‘describe’ to explain the operation of ODE to the user.
Then the WHILE/WEND loop, between lines 1020 - 1040, allows the
computer to generate verse by calling the routines ‘prompt’, ‘dedication’
and, within the FOR loop, the routine ‘select-couplet’.

11

1 2 3

SIGHT SLIGHT FIGHT

HAIR FAIR CARE

FACE CHASTE DISGRACE

EYE SLY PRY

EAR DEAR JEER

Initialisation routine (Lines 1060 -1130):

First line 1070 selects MODE 1 and sets INK 0 to white and INK 1 to blue.
Then the routine places the vocabulary held as DATA between lines 1760 -
1990 into three separate arrays so that words can be selected easily by the
five routines, ‘couplet-1’ - ‘couplet-5’.

The largest of these arrays is R$(I, J, K), initialised at line 1090. It stores
nouns, adjectives and verbs, further classified into five categories of rhyme.
The way in which this vocabulary is organised can best be understood by
looking at the table. The first column contains nouns, the second adjectives
and the third verbs. The first subscripted variable of the array represents this
choice. The five rows of the table allow for five different types of rhyme,
reflected in the value of the second variable of the array. The third variable
is the number of words in each particular section of the table, eg: nouns
which rhyme with the word ‘sight’.

12

Before the words can be placed into the R$ array, the number in each section
has to be established. These numbers are held as DATA at lines 1740,1750
and are READ into the R(I, J) array by the two nested FOR loops at line
1080. After this the three nested FOR loops at line 1090 need to use these
R(I, J) values in order to fill the R$ array with the rhyming vocabulary.

An array, N$, of non-rhyming nouns is set up by line 1100 and filled from
DATA by the FOR loop. Similarly lines 1100 - 1110 place non-rhyming
adjectives into the A$ array. The random number generator is initialised
with RANDOMIZE TIME.

Describe routine (Lines 1140 -1290):

Here the operation of the program is explained to the user. Line 1150
chooses a blue border for the display. Then the screen is cleared to cyan and
a white band for the title placed across the top of the screen by setting
suitable coordinates for WINDOW #1. WINDOW #2 is used to place a
similar band across the bottom of the screen by line 1160. The program title
is PRINTed in blue text with a cyan background by line 1160 as well.

The description of the program is placed on the screen by lines 1170 - 1280.
After this, the routine ends and the program moves into the WHILE/
WEND loop in the control routine. This means that the routine ‘prompt’
leaves the explanation PRINTed by ‘describe’ on the screen until the space­
bar is pressed.

Prompt routine (Lines 1300 - 1330):

This routine is used to prevent further execution of the program until the
user presses the space-bar. In this way the contents of the display can be
examined carefully before the program is allowed to refresh the screen.
First, line 1310 PRINTS the message <SPACE> in the centre of window #2,
thus informing the user what has to be done before the program will
continue.

Then the WHILE/WEND loop between lines 1310, 1320 scans the
keyboard. When INKEY(47) at line 1310 detects that the space-bar has
been pressed, the loop is able to terminate because of the value K = 1 at line
1320. Window #2 is then cleared and the routine ends.

Dedication routine (Lines 1340 - 1390):

Here the name is requested of the person for whom the ode is intended. The
WHILE/WEND loop asks for the name at line 1360. The string INPUT at
1370, D$, is checked for length and only names of fewer than nine characters

13

will allow the loop to end. This is to prevent a possible line of verse
generated by the subsequent routine ‘couplet-5’ from spilling over on to the
following line and thereby spoiling the format of the display.

Line 1370 then clears the screen and places the title of the ode centrally at the
top of the display. The expression employed, 16—L/2, ensures that the
position of the title is adjusted according to the length of the name chosen.

Select couplet routine (Lines 1400 -1420):

This is the routine called four times by the FOR loop in the program’s
control routine. On each call, the routine chooses a rhyme for the couplet
that it generates. The rhyme is established by the rhyme flag, RF, generated
as a random number between 1 and 5byG0SUB 1440 at line 1410. Each
of the five possible values of RF corresponds to one of the five categories of
rhymes stored in the array.

Line 1410 also chooses a random value of 1-5 for the variable CT. This value
is then used in the ON GOSUB routine to call one of the five routines which
produce a rhyming couplet to add to the ode.

Random routine (Lines 1430-1450):

Line 1440 produces a random integer in the range 1-5.

Couplet 1 routine (Lines 1460-1500):

Here two lines of verse are generated according to the pattern:

I LOVE TO WATCH YOUR
FIERY SPITE,
DESPITE THE FACT YOU
SEEM TO BITE .

Each line is PRINTed on the screen in two sections to avoid long lines being
accidentally split when displayed.

Although the poetic quality of such language could be questioned, the
program does succeed in producing reasonable rhyme and metre. This is a
consequence of the vocabulary stored as DATA, the use of the variable RF
to control the rhyme and the overall structure of the lines defined in the
routine.

Line 1470 generates the first half of the first line of the couplet and adds the
final adjective, selected from the A$ array by the use of the random number

14

N returned by GOSUB 1440. The selection of the rhyming noun to end the
line, from the R$ array, by line 1480 is more complicated, however, because
the variable RF must be included. Selection of words from the R$ array is
governed by three subscripted variables. The value of the first variable, 1,
determines that a noun is chosen from the array. The second variable, RF,
chooses the rhyme. The total number of nouns with this particular rhyme is
then given by the value of the R array element, R(l, RF). This means that
a random selection from these words will be obtained by setting S = R(l,
RF) for GOSUB 1440 and that the number, N, returned will be the third
subscripted variable. The noun found in the array is thus R$(l, RF, N).

The second line of the couplet is similarly constructed by lines 1480, 1490.

Couplet 2 routine (Lines 1510-1560):

This routine generates two lines which rhyme like this:

THE PURPLE MOUNTAIN REMINDS
ME OF YOUR EYE,
EVEN THOUGH YOUR IDEA
IS RATHER SLY.

At line 1530 a random number, RN, is generated to select a noun from the
R$ array, at line 1540, which does not have to match the rhyme of the
couplet.

Couplet 3 routine (Lines 1570 -1600):

Here the couplet produced takes the form

THE MISTY MOON COULD NEVER
BE SO CLEAR,
AS PAULINE IN THE MORNING
WHEN YOU JEER.

Couplet 4 routine (Lines 1610-1650):

The structure of the couplet is:

OH MICHELLE YOUR VERY
LOVELY HAIR,
IS RATHER LIKE A
SIGHT THAT ' S RARE.

15

Couplet 5 (Lines 1660-1720):

This routine generates a couplet according to the structure:

MY RACHEL, RACHEL, RACHEL,
SO STRANGELY GRACED,
NO WONDER SINCE YOU ' VE GOT
AVERYTRAGIC FACE.

Data (Lines 1730-1990):

All the information needed for the three word arrays is stored between lines
1740 - 1990. Obviously the nature of the poetry produced will depend upon
an imaginative choice of words in this section of the program.

BARD
ODE produced verse by having a series of couplet writing routines. A
similar technique is used in the second program, BARD. Here the computer
writes stories, using a number of different sentence types and a larger
vocabulary than ODE. The display, as shown in the first screen dump, is also
more ambitious. It details the sentence type currently in use as a parsing
tree, with the parts of speech highlighted above the sentence that has been
generated by the tree. After ten such sentences have been composed, they
are all repeated to form a ‘story’. A pretty-printing routine is incorporated
to create a tidy display and to avoid wrap around with any longer words that
are chosen.

The DATA used allows for five types of story, fairy, horror, romantic, crime
and science fiction. The user can select the initial story type and also a
‘semantic drift’ factor which supervises the possible modification of the
vocabulary chosen from one classification to another. Randomness is, of
course, involved to promote ‘creativity’.

Unlike ODE, the sentence structures are not part of the main program.
Instead they are held in coded form as DATA at the end of the listing. It
would be fairly easy to construct other types of sentences and include these
in BARD as well. Details of how to do this are to be found in the
commentary which follows the listing.

16

BAR

TYPE: 1 DRIFT: 11111111
THE FOOLISHLY MISCHIEUOUS KNIGHT HYPNOTISES THE GOLDEN FAIRY.

ER RD >

TERRIFYINGLY BEHIND THE FOREST
THE CREEPY SKELETON KILLS. THE
SKULL KILLS R DEMON. R SKULL
HAUNTS THE SKELETON. R WEREWOLF
FRIGHTENS THE FOREST, fi GHOST
DEVOURS fi CORPSE. R CREEPY UAMPIRE
RTTRCKS THROUGH fi DEMON. THE
GHOSTLY SKULL BLEEDS THE CREEPY
SKULL. THE FIENDISHLY
TRANSYLURNIRN FOG TERRIFIES R
GROTESQUE FOREST. A CREEPY SKULL
DECAPITATES THROUGH THE DEMON. THE
DEMON BITES ALTHOUGH A SKELETON
HAUNTS.

17

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

REM BARD - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 1060:GOSUB 112O:WHILE TIME>0:

GOSUB 1250:GOSUB 1290:GOSUB 1440

WEND

REM

REM INITIALISATION

BORDER 0:M0DE 1:INK 0,0:INK 1,26:

INK 2,20:INK 3,2:DIM SEN«(10)

DIM NL(15):DIM X(15):DIM Y(15>

DIM NLS(12):F0R 1-1 TO 12:READ NLS<

I):NEXT:DIM VCS<4,5,10):FOR 1=1 TO

4: FOR J=1 TO 5:F0R K-l TO 10:READ

VCS(I,J,K):NEXT:NEXT:NEXT:DIM W(3)

FOR 1-1 TO 3:READ W(I):NEXT: DIM

VS<3,9):F0R 1=1 TO 3:F0R J=1 TO W(I

):READ VS(I,J):NEXT:NEXT:DIM WDS<15

):DIM VOS(5):FOR 1-1 TO 5:READ VOS(

I):NEXT:GRAPHICS PEN 3:RETURN

REM

REM DESCRIBE

BORDER 2:PEN 3:PAPER 2:CLS:WIND0W

#1,1,40,1,3:PAPER «1,1:CLS *1:

WINDOW «2,1,40,4,22:PAPER «2,2:

WINDOW #3,1,40,23,25:PEN #3,O:PAPER

«3,1:CLS »3

LOCATE 17,2:PRINT"< BARD >“

LOCATE 3,10:PRINT"THIS PROGRAM":

PRINT" WILL COMPOSE DIFFERENT"

PRINT" STORIES AT RANDOM.

PRINT" FIRST, YOU SELECT"

18

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

PRINT" THE BASIC STORY TYPE";

PRINT" AND THE 'DRIFT'"

PRINT" THROUGH THE STORED";

PRINT" VOCABULARY."

RETURN

REM

REM PROMPT

LOCATE #3,16,2:PRINT #3,“< SPACE >"

:K—0:WHILE K—0:IF INKEY(47)-0 THEN

K—1

WEND: CLEAR INPUT:CLS #3:RETURN

REM

REM GENERATE

K—0:WHILE K-O:CLS »2:LOCATE 10,11

PR I NT "ENTER STORY TYPE, 1-5"

LOCATE 20,13:INPUT ST:IF ST>0 AND

ST<6 AND ST-INT(ST) THEN K=1

WEND:CLEAR INPUT:K—0:WHILE K-O:CLS

#2:LOCATE 9,11:PRINT"TYPE 'DRIFT' "

;:PRINT"FACTOR, 0-20":LOCATE 20,13:

INPUT SD:IF SD>-0 AND SD<21 AND SD-

INT(SD) THEN K-l

WEND: CLEAR INPUT:SD—SD/20:FOR 0-1

TO 10:CLS #2:SC-INT(RND*6>+1

IF SC-1 THEN RESTORE 2550

IF SC-2 THEN RESTORE 2620

IF SC-3 THEN RESTORE 2690

IF SC-4 THEN RESTORE 2760

IF SC-5 THEN RESTORE 2830

IF SC-6 THEN RESTORE 2900

GOSUB 1470:SEN»(0)="“:FOR R-l TO NW

19

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

:SENS<Q)=SENS(Q>+" "+WDS(R)»NEXT

SENS <Q>-SENS <□)-t-":AS=SENS<Q> »L-0:

LOCATE 1,18:GOSUB 1780»G0SUB 1250»

NEXT:RETURN

REM

REM STORY

CLS #2»LOCATE l,5:L-0:F0R 0=1 TO 10

:AS=SENS(Q):GOSUB 1780:NEXT»RETURN

REM

REM PARSING TREE

TN«-”":FOR 1-1 TO 5:READ A*:TN«-TNS

+AS:NEXT:BRS-"":FOR 1-1 TO 2:READ

AS:BRS-BRS+AS:NEXT:N=VAL<LEFTS<TN<,

2 > > :L-LEN < TNS):TNS=RIGHTS < TNS,L-3)

FOR 1=1 TO N:P=I*9-8:BS=MIDS<TNS,P,

8>:NL<I)=VAL(LEFTS<BS,2)> : X(I>=VAL(

MIDS(BS,3,3)>:Y(I)=VAL(MIDS(BS,6,3)

>:NEXT:FOR 1=1 TO LEN(BRS>-2 STEP 4

:A—VAL(MIDS(BRS,I,1>):B-VAL<MIDS<

BRS,1+1,2)):GOSUB 1620:NEXT

PAPER l.-FOR 1 = 1 TO N:XL=X(I>/16»YL=

25—Y(I>/16:TS—NLS(NL<I>):L=LEN(TS>

IF L>4 THEN T1S=LEFTS<TS,4>:T2S=

RIGHTS<TS,4)» LOCATE XL,YL:PRINT T1S

: LOCATE XL,YL+1: PRINT T2S ELSE

LOCATE XL, YL: PRINT TS

NEXT:PEN 0:PAPER 2:LOCATE 6,16

PRINT ST:LOCATE 1,16:PRINT"TYPE:"

LOCATE 16,16:PRINT“DRIFT:"

CT-ST:TT=O:NW=0

FOR 1=1 TO N

20

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

IF Y(1X200 THEN NW-NW+1»GOSUB 1650

I IF NL(IX1O THEN GOSUB 1720 ELSE

GOSUB 1750

NEXT!ST—INT(TTZNW)«FOR 1-2 TO NW

FOR J-l TO 5:IF WD»(I-1)-"A" AND

LEFT*(WD»(I),1)»VO*(J) THEN WD»(I-1

)-“AN"

NEXT»NEXTiRETURN

REM

REM JOIN

FOR J-l TO 10 STEP 2»M0VE X(B)+J,Y(

BllDRAW X(A)+J,Y(A)I NEXT»RETURN

REM

REM DRIFT

IF RND<SD THEN CT-CT+INT(RND*2)-

INT(RND*2)

IF CT<1 THEN CT-1

IF CT>5 THEN CT-5

TT-TT+CTI LOCATE 20+NW*2,16»PEN 0

PRINT CT1PEN 3»RETURN

REM

REM CONTENT 1

T-NL <I)-51WD» (NW)-VC»(T,CT,INT (RND*

10)+1)»RETURN

REM

REM CONTENT 2

T-NL (I)—9»WD»(NW)-V» <T,INT(RND*W (T)

)+l> »RETURN

REM

REM OUTPUT

W»—““»FOR K-1 TO LEN(AS)»ZS—MID»(AS

21

1790

1800

1810

1820

1830

1840

1850

I860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

,K,1)1Z=ASC(Z*):W4-W4+Z»:L-L+l

IF <Z=32 OR Z=46> AND L<39 THEN

PRINT W*;:W»»""

IF (Z-32 OR Z=46> AND L>-39 THEN

PRINTsPRINT" ";W4j :L=-LEN(W*> :W*-”"

NEXT:RETURN

REM

REM DATA

DATA SENT,NOUN PHRS.ADJV PHRS

DATA ADVB PHRS.ADVB CLSE,NOUN,VERB

DATA ADJV,ADVB,ARTL,PREP,CONJ

DATA CASTLE,FAIRY,WITCH, TOADSTOOL

DATA GNOME,DRAGON,DWARF,FROG

DATA DAMSEL,KNIGHT,CORPSE,WEREWOLF

DATA FOREST,DEMON,GHOST,SKELETON

DATA FOG, VAMP I RE, KN IFE, SKULL, BR I DE

DATA SU I TOR, MA I DEN, BELLE, RI NG, BEAU

DATA CHURCH, FIANCEE, VI CAR, WEDDI NG

DATA CLUE, GANGSTER , CRIMINAL, CAMERA

DATA DETECTIVE,GUN,EVIDENCE,JURY

DATA OFFENCE,JUDGE,SPACESHIP,ALIEN

DATA ASTEROID, BLACK-HOLE, SUPERNOVA

DATA PLUTON I UM, SPACE-WARP, GRAVITY

DATA FORCE-FIELD,PLANET,THREATENS

DATA ENCHANTS,SLAYS,HYPNOTISES

DATA KISSES,PETRIFIES,CHARMS,MOCKS

DATA KIDNAPS.HATES,TERRIFIES,KILLS

DATA BLEEDS, DECAP I TATES, STABS

DATA FRIGHTENS,HAUNTS,BITES

DATA ATTACKS, DEVOURS, ADORES , LOVES

DATA ADMIRES,WORSHIPS,EMBRACES

22

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

DATA CARESSES,MARRIES,COURTS

DATA SERENADES,FANCIES,SHOOTS

DATA INVESTIGATES,KILLS,DISCOVERS

DATA PHOTOGRAPHS,PUNISHES,ACCUSES

DATA IDENTIFIES,SCRUTINISES

DATA CONSIDERS,DEMATERIALISES

DATA BLASTS,EXPLODES,ACTIVATES

DATA EXTERMINATES,SHIELDS,CONTROLS

DATA MODULATES , IRRADI ATES , CREATES

DATA WICKED, ENCHANTED, MAG IC , GOLDEN

DATA EVIL, BEAUT IFUL, UNHAPPY, BRAVE

DATA MISCHIEVOUS, NAUGHTY .DEMENTED

DATA GHOSTLY,MYSTERIOUS,GROTESQUE

DATA DEMONIC,BLEEDING,DEVILISH

DATA TORMENTED,TRANSYLVANIAN

DATA CREEPY , CUTE, HANDSOME , MOONLIT

DATA SHAPELY,MANLY,DIVINE.JILTED

DATA JEALOUS,EMOTIONAL,BASHFUL

DATA CLEVER,EVIL-MINDED,MERCILESS

DATA SHARP,IMMORAL,CRIMINAL,SHREWD

DATA PERVERSE, INTELLI GENT, DEPRAVED

DATA PURPLE,HYPERSPATIAL,ALIEN

DATA RADIOACTIVE,NUCLEAR,MARTIAN

DATA MICROSCOPIC,QUANTUM,ATOMIC

DATA RELATIVISTIC,WICKEDLY,BADLY

DATA FOOL ISHLY, UNHAPPILY, NAUGHT ILY

DATA BRAVELY, MISCHIEVOUSLY, HAPPILY

DATA HOPEFULLY, MAGICALLY, EV ILLY

DATA REPULSIVELY,FIENDLISHLY,ODDLY

DATA FEARFULLY,TERRIFYINGLY

DATA GROTESQUELY, STRANGELY .WEIRDLY

23

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

DATA MYSTERIOUSLY,ADORINGLY

DATA WILTINGLY,ADMIRINGLY

DATA HELPLESSLY,EMOTIONALLY

DATA JEALOUSLY,WILLINGLY,LOVINGLY

DATA SEDUCTIVELY,PASSIONATELY

DATA CUNNINGLY, CRIMIN ALLY,SHREWDLY

DATA STEALTHILY,MALICIOUSLY

DATA SILENTLY,CRUELLY,MERCILESSLY

DATA ARROGANTLY,SUBTLY,LOGICALLY

DATA CHEMICALLY,INEVITABLY.COLDLY

DATA AUTOMATICALLY,ROBOTICALLY

DATA SWIFTLY,ABRUPTLY,IONICALLY

DATA INTENSELY,2,5,9,A,THE,BEHIND

DATA IN,TOWARDS,THROUGH,ON,AND,BUT

DATA BECAUSE,HOWEVER,SINCE,WHILE

DATA AS,ALTHOUGH,WHEN,A,E,I,0,U

REM 1ST TREE

DATA 09-01310310-02186245-07310245

DATA -02433245-10103180-06206180-0

DATA 7310180-10413180-06516180

DATA -"«DATA

DATA 102-103-104-205-206-307-408-4

DATA 09

REM 2ND TREE

DATA 11-01310310-02169245-07310245

DATA -04449245-10065180-08138180-0

DATA 6231180-07310180-11387180-104

DATA 64180-06541180:DATA ””

DATA 102-103-104-205-206-207-308-4

DATA 09-410-411

REM 3RD TREE

24

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

DATA 12-01310310-04130245-02310245

DATA -07510245-09020180-11100180-1

DATA 0180180-06260180-10340180-084

DATA 20180-06500180-07580180

DATA ““sDATA 102-103-104-205-206-

DATA 207-208-309-310-311-412

REM 4TH TREE

DATA 11-01310310-02169245-07310245

DATA -02449245-10065180-08138180-0

DATA 6231180-07310180-10387180-084

DATA 64180-06541180sDATA

DATA 102-103-104-205-206-207-308-4

DATA 09-410-411

REM 5TH TREE

DATA 11-01310310-02169245-07310245

DATA -05449245-10065180-06138180-0

DATA 7231180-12310180-10387180-064

DATA 64180-07541180:DATA

DATA 102-103-104-205-206-307-408-4

DATA 09-410-411

REM 6TH TREE

DATA 13-01310310-03080245-06240245

DATA -07400245-02560245-10020180-0

DATA 9100180-08180180-06260180-073

DATA 40180-10420180-08500180-06580

DATA 180

DATA 102-103-104-105-206-207-208-3

DATA 09-410-511-512-513

25

Commentary on BARD
The control routine for the program is formed by lines 1020, 1030. The
routine ‘initialisation’, called at line 1020, establishes the arrays of words
needed by the program. Its operation is then explained by ‘describe’. After
that, the WHILE/WEND loop indefinitely calls the routines ‘prompt’,
‘generate’ and ‘story’.
Initialisation routine (Lines 1050-1100):

First, line 1060 establishes MODE and screen colours and then sets up the
SEN$ array which is used in ‘generate’ to hold the ten sentences composing
the story. Line 1070 initialises the NL array. This holds values identifying the
different nodes of the parsing tree shown on the screen. It also establishes
the X and Y arrays, which store the coordinates of the nodes. The twelve
possible names of the different nodes are placed into the NL$ array by line
1080 from DATA. For the sake of clarity when the names are superimposed
on to the nodes of the parsing tree, abbreviations are employed. Thus
‘SENT’ stands for the word ‘Sentence’, ‘ADVB CLSE’ for ‘Adverbial
Clause’ and similarly for the other labels.

The words of the vocabulary are held in two different arrays. The first of
these, VC$(4,5,10), initialised at line 1080, contains classified vocabulary in
five categories for fairy, horror, romantic, detective and science-fiction
stories. The first subscripted variable of the array corresponds to the parts of
speech: noun, verb, adjective and adverb. The second variable represents
the five types of story category and the third allows ten words in each
category. The three nested loops at line 1080 READ all the classified
vocabulary into the array from the DATA held at lines 1870-2500.
The second vocabulary array, V$(3,9), stores an unclassified vocabulary of
words appropriate to any of the five story categories. Three parts of speech
are involved: articles, prepositions and conjunctions. Line 1090 places the
number of each type of word into the W array. The word numbers are
READ from line 2500 and the array values are then used in the nested FOR
loops at 1090 to place the words into their respective locations in the V$
array. The first array variable represents the word type and the second the
number of the word within that group.

Line 1090 also initialises the WD$ array, which in turn holds the words of
each sentence devised by the program. Finally the five vowels are READ
into the VO$ array for use at line 1580 in the routine ‘parsing tree’.

Describe routine (Lines 1110-1230):

Here the program is explained to the user and the initial screen display set
up. Line 1120 selects blue text and clears the screen to cyan. Line 1120 also

26

sets up windows #1, #2 and #3. The title is placed at the top of the screen
by line 1130. Then lines 1140 - 1210 PRINT a brief explanation of the
program.

Prompt routine (Lines 1240-1270):

As in the previous program, ODE, this routine delays further execution
until the space-bar is pressed.

Generate routine (Lines 1280-1420):
This is the routine called by the control routine at line 1020. It governs the
generation of the sentences of the story. First, the user is asked to choose the
story type required. This is a variable, ST, which can have integral values, 1-
5, corresponding to the five categories of vocabulary. The particular value
for ST with which the routine begins is obtained by the WHILE/WEND loop
between lines 1290-1320. The text on the screen, though not the title, is
cleared by CLS #2 at 1290. Then line 1300 PRINTS a suitable request for
information and the ST value is INPUT at 1310. If this value is integral and
within the specified range, line 1310 allows the loop to terminate.

In an identical fashion, the WHILE/WEND loop, 1320 - 1330 obtains an
initial value, 0-20, for the variable SD. This is converted into a decimal
fraction because subsequently it will be compared with the value of the
random decimal generated by RND. SD is used to control the ‘semantic
drift’ of the story, or simply the likelihood of the vocabulary selected moving
away from the category which would be chosen by the variable ST.
The FOR loop, lines 1330-1410, then generates the sentences which build up
the story. Line 1330 clears the screen. Lines 1340 -1390 RESTORE to one
of the randomly chosen lines 2550, 2620, 2690, 2760, 2830 or 2900. These
correspond to the six locations in the lines of DATA where information
about a particular sentence structure is stored, in the form of a parsing-tree,
and therefore determine the type of sentence which will be generated.

The routine ‘parsing tree’ is now called at 1400 to place a diagram of the
chosen tree structure on the screen and to fill words into the corresponding
sentence.
The number of words produced is NW and they are held in the WD$ array.
This array needs to be used again by ‘parsing tree’ and so line 1400 concate­
nates all the words into the sentence string SEN$(Q). Ten such strings are
generated altogether by the Q loop. A space is placed between each word of
the sentence by 1400 and a period is placed at the end by 1410.

After this the sentence is displayed beneath the parsing tree. Line 1410
places the sentence, SEN$(Q), into the variable A$ and initialises the value

27

of L. Both of these variables are needed in the routine ‘output’. The location
of the sentence on the screen is determined by LOCATE and then ‘output’
is called by GOSUB 1780 to PRINT the sentence neatly, without splitting
words in half when the end of any line of the display is reached.

Finally ‘prompt’ is again called, with GOSUB 1250, so that a further
sentence will not be generated until the current one is read and compared
with its parsing tree.

Story routine (Lines 1430-1450):

After ‘generate’ has produced each of the ten sentences, the control routine
calls this routine to redisplay the whole of the story. Line 1440 clears the
screen, locates the beginning of the story on the display and initialises L.
After this, the FOR loop calls ‘output’, GOSUB 1780, for each of the ten
sentences and thus PRINTs all of the story. Because the variable L is not
reinitialised within the loop, the sentences follow one another smoothly on
the screen rather than forming separate paragraphs.

Parsing tree routine (Lines 1460-1600):

This routine displays the tree structure of the sentence graphically on the
screen and shows the sentence underneath.

The position of the DATA pointer has already been fixed by the routine
‘generate’. This decides which of the six possible parsing trees and related
sentence structures will be employed. The information for the tree is READ
into two separate string variables by the routine. Line 1470 builds up the
strings TN$ and BR$.

A typical TN$ can be seen by examining lines 2550 - 2570 and ignoring the
words ‘DATA’. The digits 09 at the beginning show that the parsing tree will
have nine nodes. A typical node is coded as a sequence of eight digits
separated from other such groups by dashes. The first such sequence in this
particular TN$ is 01310310. The first two digits, 01, identify the node label
in the NL$ array. Here, NL$(1) is “SENT” and so the first node will have
this label on the display. The next three digits give the x-coordinate of the
label on the screen and the last three digits the y-coordinate. Thus the node
label “SENT” will have the screen coordinates (310, 310).

It can be seen, then, that TN$ contains information about the number of
nodes in the parsing tree, the identity of each of the node labels and the
coordinates for the display. Line 1470 obtains the number of nodes from
TN$ as the variable N and then deletes this information from the string. A
FOR loop follows at line 1480 in which each eight digit sequence is isolated

28

in turn as the string, B$. From B$ is obtained the identity of each node label
and its x- and its y-coordinates, all placed into the appropriate arrays NL, X
and Y.

Next, the routine draws the branches of the parsing tree on the screen. The
string BR$ is used to identify which nodes have to be joined together. Lines
2590, 2600 show a typical BR$. It consists of three digit groups separated by
dashes. The first such group, T02’, simply means that node 1 has to be joined
to node 2. Similarly the later group, 307, means that node 3 has to be joined
to node 7. BR$ is thus a coding of the actual geometric structure of the tree.

The second FOR loop at line 1480 STEPs through BR$ identifying the nodes
which have to be joined by a branch with the values A and B. The routine
‘join’ is called with GOSUB 1620 to draw a branch between the relevant
nodes.

Then another FOR loop, 1490-1510, considers each of the N node labels in
turn. If the node label, identified by the values in the NL array, is more than
four characters long, line 1500 splits it in half and places one half above the
other on the display for clarity. Shorter labels are displayed as a whole. In
either case, the coordinates are derived from the X and Y arrays.

The remaining part of the routine ‘parsing tree’ inserts vocabulary into the
sentence structure. Line 1520 shows the current story type by PRINTing the
value of ST. Line 1530 places the heading for the subsequent display of
vocabulary categories for the words of the sentence. Line 1540 initialises the
variables CT, TT and NW used to calculate the new story type. Then the
FOR loop between 1550-1570 considers each of the nodes of the parsing
tree. Only the ‘leaf’ nodes contain the information needed to decide the
actual words in the sentence generated, and these nodes are identified by the
expression Y(I)<200 in line 1560, which simply determines how far down
the display any label is. For the relevant nodes, the routine ‘drift’ is called,
to allow the type of word selected to be adjusted by a random factor, and the
number of words in the sentence, NW, is incremented. Line 1560 also calls
either ‘content 1’ or ‘content 2’ depending upon whether the node label
represents classified or unclassified vocabulary.

The value of the variable TT acquired in the calls to ‘drift’ is averaged out by
line 1570 over the number of words in the sentence and used to calculate the
new story type, ST. Depending upon the value of the semantic drift chosen
by the user, ST can remain completely fixed or, instead, fluctuate greatly.

Finally the nested loops between lines 1570-1590 check through the words of
the sentence, using the VO$ array to see if an ‘a’ is followed by a word
beginning with a vowel. If this is the case, line 1580 changes the article to
‘an’.

29

Join routine (Lines 1610-1630):

This routine draws the branch between selected nodes. The use of MOVE
and DRAW within the FOR loop produces a thick diagonal line betwen the
nodes to show the tree structure clearly.

Drift routine (Lines 1640-1700):

Here the choice of words from the classified vocabulary is adjusted by a
random factor to create a further unpredictable element in the composition
of the story. Line 1650 alters the value of CT, used subsequently to decide
which category of vocabulary is chosen, by either plus or minus one. The
probability of such a change taking place increases with the value of the
variable SD. This means that the user can control the degree of randomness
by the choice of the semantic drift. Lines 1660,1670 prevent the value of CT
from going outside of the range 1-5. The running total, TT, of the CT values,
calculated at line 1680, is employed in ’parsing tree’ to decide the new story
type, ST. Line 1690 displays the current CT value as each word is added to
the sentence.

Content 1 routine (Lines 1710-1730):

This routine selects a word from the classified vocabulary, VC$. Line 1720
obtains the part of speech required, T, from the identity of the node label,
NL(I).T and CT are then both used in the choice of a word from VC$.

Content 2 routine (Lines 1740-1760):

Here a word is chosen from the unclassified vocabulary, V$.

Output routine (Lines 1770-1820):

The sentences are PRINTed on the screen neatly, without ‘wrapping round’,
by comparing the length of each word with the remaining number of spaces
on the line of the display. In the FOR loop, lines 1780-1810, Z is the ASCII
code of each character of the sentence in turn. Line 1780 builds up the words
of the sentence, character by character, from A$ and counts the number of
spaces used up in the display line. If a full stop or character space is detected,
and there is enough room on the line, the word is added to the display by line
1790. If, however, the word is too long to be added to that line of the display,
a new line is begun by 1800. In this way no word is split in half.
Data (Lines 1830-2960):

The remaining lines of the program hold all the vocabulary and the
information needed both to display the parsing tree structure and generate
the sentences.

30

EURISKO- a creative system, or a cheat?
The examples given so far would scarcely justify a claim to ‘creativity’.
However there is an excellent example of a computer program which does
display a remarkable degree of originality. This is EURISKO, written by
Douglas Lenat at Stanford University. The program involves hundreds of
generalised rules, or heuristics, which enable it to approach a wide range of
problems. A heuristic is an informal, judgemental rule which permits
guessing. A typical heuristic could be ’Look at extreme cases’.

EURISKO was intended to mimic the way in which people succeed in
learning; discovery and creativity. Lenat concluded that the only way in
which his program would be able to achieve this was if it was able to modify
for itself the heuristics which it employed. The program was allowed access
to its own structure to enable this to happen. For example, if there was a
predicate expected to return values of ‘true’ or ‘false’ but which only
produced the latter, EURISKO would redefine the predicate to return ‘true’
more frequently. Lenat realised that a serious problem with existing
programs was that they inevitably reached a point where they could proceed
no further, simply because they lacked new heuristics. EURISKO did not
have this disadvantage.

Beginning with an early version of his program, Automatic Mathematician,
which dealt with discovery in set and number theory, Lenat refined it to the
point where it was able to produce a genuinely original design for a very
large scale integrated circuit. This was patented! EURISKO has also proved
an excellent competitor in a war game called Traveller T.C.S. This is a game
of naval strategy. Unexpectedly, EURISKO decided to fight with a fleet of
small, fast vessels. Its opponents were amused, but lost. Interestingly,
EURISKO carried over into the game some of the heuristics it had devised
when working in the field of VLSI circuits.

EURISKO’s behaviour is goal directed and it constantly reviews its perfor­
mance on a ‘scale of worth’. Lenat has found to his dismay that EURISKO
regularly rediscovers a new heuristic (which Lenat immediately deletes) by
which it can give itself very high scores. Quite simply it attaches its own name
as creator to any recent discovery of high worth. Lenat has found it
extremely difficult to persuade EURISKO not to cheat! In his comic novel
‘The Tin Men’, Michael Frayn proposed, tongue in cheek, a ‘Samaritan’
program intended to simulate moral judgement. Perhaps he was being more
serious than was realised at the time.

31

CHAPTER 3

Common parlance:
understanding natural

language.
Talking to Computers
The goal of possessing computers with which we can communicate directly
in our own natural language is clearly desirable. It is an assumption always
made in short stories about robots. In real life, tremendous effort has been
made to produce machine systems which will be able to cope with the
nuances of everyday speech. One of the major objectives of the proposed
‘Fifth Generation’ machines is the ability to understand natural language
and the title of a classic work in Artificial Intelligence, by Terry Winograd,
is formed by precisely those three words.

In fact as soon as electronic computers were first built Warren Weaver
suggested, in 1949,that their code-breaking skills used during the Second
World War could be turned to translation of one language into another.
Early optimism was felt for the project as it appeared that all that needed to
be done was devise programs which could directly translate the words of the
first language into the second. Then, by a simple analysis of the grammatical
structure of the initial sentence, a correct translation could be produced.
Much work went into the development of such programs. It was believed
that the main problem was one of checking through large vocabularies of
equivalent words and so the principal direction of the research was towards
devising fast algorithms concerned with search and matching.

The project failed, although much was learnt through the attempt. Such a
simplistic approach, it was reluctantly accepted, could not cope with the
subtleties of human language. A story exists, possibly apocryphal but still
worth repeating, of a massive English/Russian translation program which,
when asked to check its work by retranslating back into English, proudly
announced that ‘Out of sight, out of mind’ had been rendered as ‘Invisible
idiot’.

33

Nevertheless such programs are interesting, if only to highlight the typical
problems of A.I. Here, then, is a program which shows the type of result
possible with such an approach.

INGA
This program translates simple German sentences into English. The screen
dumps show a typical display. In the first a German sentence has been
entered. In the second the screen display is shown after the translation has
been achieved.

Like the early translation programs of the 1950s, INGA operates by first
directly translating the German words into English. This can be seen in the
print out of a program RUN. The English words are shown in the order in
which they have been identified and bear no relation to the grammatical
structure of the sentence. In recognising the German, the program uses an
A.I. principle known as ‘fuzzy matching’. In this only broad features of a
particular object are searched for, in this case the root stem of German

MBHSW
laffe

UERE: | ARTL I NOUN ■ AC JU

<= STATUS =>
UORDS IN
SENTENCE
ANALYSED

GERMAN ENGLISH

34

IH G H

ee nag COFFE □ EBB

'JEFE: ■ RRTL | NOUN | ADJ1.1

<= STATUS => <==== UOCRBULRRY ==«=>
SENTENCE
A HALT'5 I E
COMPLETE

CINO ■ THE
SPIEL ■COFFEE
BIN ■ HOT
,S I ND ■ I S
1ST &
GERMAN ENGLISH

words. Fuzzy matching saves time by only concerning itself with vital
differences. For example, a car and a boat can be distinguished simply by
looking for the presence of wheels. There is no point in considering colour,
size, material of contruction or other irrelevant, incidental differences.

At the same time as identifying and translating the English words, INGA is
also recognising the part of speech formed by the original German. This
allows the program to construct a recognition code for each sentence
encountered. If the code matches one that is stored as DATA, the program
is able to proceed to contructing a translation in grammatical English.

This was the way in which early translation programs were able to tackle
variations in the syntactic structure of different languages. ‘Le chat de mon
oncle’ and ‘my uncle’s pussy’ therefore presented no difficulty. The
idiomatic phrase was simply identified as a single unit of structure and paired
with the known equivalent in the other language. INGA can be seen to be
doing this in the print out. It realises that the singular form should be ‘Does
a man ...’ but the plural becomes ’Do the men ...’

INGA also provides an example of the relatively mechanical way in which
some linguistic problems can be overcome. The variety of English plurals
possible is reduced to a series of conditional terms looking for particular
endings such as ‘X’, ‘Y’, ‘CH’. A computer can handle this type of problem
easily. It is merely a question of memory and speed.

35

TYPE THE GERMAN SENTENCE
ICH BIN DER MANN
NORDS IN SENTENCE ANALYSED
ICH ... BIN ... DER ... MANN ...
THE ... MAN ... I ... AM ...
SENTENCE ANALYSIS COMPLETE
I AM THE MAN

TYPE THE GERMAN SENTENCE
IST DER KAFFEE HEISS
NORDS IN SENTENCE ANALYSED
IST ... DER ... KAFFEE ... HEISS ...
THE ... COFFEE ... HOT ... IS ...
SENTENCE ANALYSIS COMPLETE
IS THE COFFEE HOT

TYPE THE GERMAN SENTENCE
TRINKT EIN MANN DAS BIER
NORDS IN SENTENCE ANALYSED
TRINKT ... EIN ... MANN ... DAS ... BIER ...
THE ... A ... MAN ... BEER ... DRINK ...
SENTENCE ANALYSIS COMPLETE
DOES A MAN DRINK THE BEER

TYPE THE GERMAN SENTENCE
TRINKEN DIE MANNER DAS KAFFEE
NORDS IN SENTENCE ANALYSED
TRINKEN ... DIE ... MANNER ... DAS ... KAFFEE
THE ... THE ... MAN ... COFFEE ... DRINK
SENTENCE ANALYSIS COMPLETE
DO THE MEN DRINK THE COFFEE

36

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

REM INGA - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 1050:GOSUB II6O1WHILE TIME>0:

GOSUB 12801GOSUB 1320:GOSUB 1460:

WEND

REM

REM INITIALISATION

BORDER O:MODE 11INK 0,18: INK 1,26

INK 2,0: INK 3,8:DIM W«<2,10>

DIM WN(6):F0R 1-1 TO 6:READ WN(I)

NEXT1DIM G*(6,15):DIM E«<6,15):F0R

1-1 TO 61F0R J»1 TO WN<I):READ G«(I

,J>,E«(I,J):NEXT:NEXT:DIM WX(IO)

DIM WY<10):F0R 1-1 TO 5:WX(I1-1*7-5

:WX <1+5,-WX<11:WY <11-9:WY <1+51-11

NEXT:DIM WT#(61:F0R 1-1 TO 61READ

WTS<I):NEXT:DIM TS<6):F0R 1=1 TO 6

READ TS<I1:NEXT:DIM P(9):DIM D<9>

FOR 1=1 TO 9:READ P(I1,D(I1:NEXT

DIM X(101:DIM Y(101:PA«="ES“:PB«-

“IES“:PCS-“S“:RETURN

REM

REM DISPLAY

BORDER 8: PEN 2:PAPER O:CLS:WINDOW

#1,1,40,1,3:PAPER «1,1:CLS «1

WINDOW #2,1,40,4,7:WINDOW «3,1,40,

9,11:PAPER «3,0

WINDOW #4,2,13,15,191PEN #4,2:PAPER

#4,1:WINDOW »5,15,26,15,19:PEN «5,2

:PAPER #5,1:WINDOW «6,28,39,15,19

PEN #6,2:PAPER #6,l:WIND0W #7,1,40,

37

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

23,25:PEN #7,2:PAPER #7,1:CLS #7

LOCATE 17,2:PRINT"< INGA >"

GRAPHICS PEN 2iF0R 1=1 TO 5iMOVE O,

212+1:DRAW 640,212+1:MOVE 0,276+1

DRAW 640,276+1sNEXT:LOCATE 2,13

PRINT"<- STATUS ->":LOCATE 16,13

PRINT"<“=“=“ VOCABULARY

LOCATE 18,21:PRINT"GERMAN":LOCATE

31,21:PRINT"ENGLISH":RETURN

REM

REM PROMPT

LOCATE «7,16,2:PRINT *7,"< SPACE >"

:K»O:WHILE K-0:IF INKEY(47)=0 THEN

K-l

WEND:CLEAR INPUT:CLS «7:RETURN

REM

REM WORDS

PAPER *2,0:CLS #2:CLS «3:CLS #4:CLS

«5:CLS «6:FOR 1-1 TO 2:FOR J»1 TO

10:W»<I,J)«”“:NEXT:NEXT:LOCATE *4,3

,2:PRINT *4,"TYPE THE":PRINT *4,

" GERMAN":PRINT #4," SENTENCE"

INPUT *7,AS:CLS #7:PRINT #4:PRINT

#4," WORDS IN":PRINT #4,

“ SENTENCE":PRINT #4," ANALYSED"

PRINT #4:L=LEN(A»>:N-1:FOR 1=1 TO L

:C$=MID$(A$,I,1):IF ASC(C«)<> 32

THEN W»(1,N>=W$(1,N>+C« ELSE N-N+l

NEXTzGOSUB 1390:FOR 1=1 TO N:T(I)=

0:NEXT:PAPER 1:FOR 1-1 TO N:LOCATE

WX<I),WY(I>:PRINT" ":NEXT

38

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

RETURN

REM

REM COORDS

FOR 1-1 TO 10>X<I>»0:Y(I>-O:NEXT

X<1)»2:Y<1>=5:YF-O:FOR 1-2 TO N

X (I>—X<I—1>+LEN<W<(1,1—1>)+1: IF X(I

)+LEN<W«<1,I))>39 THEN X(I)-2:YF-1

IF YF-0 THEN Y<I)-5 ELSE Y<I)»7

NEXT:RETURN

REM

REM SCAN

NR—0:FOR 1-1 TO 6:FOR J-l TO WN<I>

PRINT #5," "|G*(I,J):L—LEN<G*(I,J))

IFOR K-l TO Nt SOUND 1,60,lOiPEN 1

PAPER 2:LOCATE X(K),Y<K)I PRINT W»(1

,K):PEN 21PAPER 1:LOCATE X<K>,Y<K>

FOR TP-1 TO 100:NEXT:PRINT W»<1,K>

IF LEFT»<W*< 1 ,K> ,D—G*<I, J) THEN

GOSUB 1550

NEXT:NEXT:NEXT:IF NR<N THEN GOSUB

1640 ELSE GOSUB 1680

RETURN

REM

REM FOUND WORD

INK 3,0,26:PEN 3:LOCATE X(K),Y<K)

PRINT W»<1,K>:GOSUB 1610:PEN 2

LOCATE X(K>,Y(K):PRINT W«(1,K):INK

3,8:W»(2,K>—E»(I,J>:PRINT #6," ",E»

<I,J):T(K>-I:LOCATE WX(K),WY(K)

PRINT WT»<T<K)>:NR—NR+1:RETURN

REM

39

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

REM TUNE

FOR Q=1 TO 9:S0UND 1,P<Q),D<Q):FOR

R=1 TO D(Q>*15:NEXT:NEXT:RETURN

REM

REM FAILURE 1

PRINT #4," HERE THE“:PRINT #4,

” VOCAB IS"SPRINT #4," EXCEEDED"

PRINT #4:RETURN

REM

REM STRUCTURE

ST=0sF0R 1 = 1 TO N:ST=ST+T<I>*10-'<I-

1>:NEXT:SC—O:FOR 1=1 TO 6:IF ST=TS<

I) THEN SC-I

NEXT:IF SC<>O THEN GOSUB 1730 ELSE

GOSUB 1840

RETURN

REM

REM TRANSLATE

SOUND 1,30,50:PAPER «2,3:CLS «2

IF SC-1 THEN GOSUB 1880

IF SC-2 THEN GOSUB 1920

IF SC=3 THEN GOSUB 1970

IF SC-4 THEN GOSUB 2020

IF SC-5 THEN GOSUB 2070

IF SC-6 THEN GOSUB 2120

GOSUB 1390SPRINT #4,“ SENTENCE"

PRINT #4," ANALYSIS"SPRINT #4,

" COMPLETE"SPRINT #4:FOR 1=1 TO Ns

LOCATE XCI>,Y(I):PRINT W«(1,I):NEXT

: RETURN

REM

40

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

REH FAILURE 2

PRINT #4," SENTENCE"1 PRINT #4,

" TYPE NOT"1 PRINT #4," MATCHED!"

PRINT #41 RETURN

REM

REM TYPE 1

Vt-Wt<1,3)1GOSUB 21701W-3:GOSUB

2210:IF S-O THEN Nt-Wt(l,2)1G0SUB

2250:Wt<1,2)—Nt ELSE Nt-Wt<l,3>:

GOSUB 2250iWt<1,3)-Nt

N—31 RETURN

REM

REM TYPE 2

IF Wt(2,2)-“ARE" THEN S-O ELSE S-l

W-41GOSUB 22101 IF S-0 THEN Nt-Wt(1

4)1GOSUB 22501Wt<1,4)—Nt

N-4:RETURN

REM

REM TYPE 3

IF Wt<2,3>—"ARE" THEN S-O ELSE S-l

W-41GOSUB 2210:IF S-O THEN Nt-Wt<l

2):GOSUB 2250:Wt<1,2)-Nt

N-4¡RETURN

REM

REM TYPE 4

IF Wt<2,1)—"ARE" THEN S-O ELSE S-l

W-4:GOSUB 2210:IF S-O THEN Nt-Wt<l

3):GOSUB 2250:Wt<1,3)-Nt

N-4: RETURN

REM

REM TYPE 5

41

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

V«-W«(l,3>1GOSUB 2170:W—5:GOSUB

2210s IF S-0 THEN N«-W«(1,2):GOSUB

2250:W*(1,2)-N*

IF S-l THEN N«=W«(1,3)sGOSUB 2250:

W*(l,3)-N*

RETURN

REM

REN TYPE 6

V4-W»<1,1>IGOSUB 2170s IF S-l THEN

W*(1,1 »-“DOES" ELSE W«(1,1)»"DO"

W*(1,2)—W*(2,2):W*(1,3>—W*(2,3):W*(

1,4)-W«(2,1):W*(1,5)-W«(2,4>:W»(1,6

)-W*(2,5):IF S=0 THEN N»-W*(l,3>:

GOSUB 2250: W*(l,3)-N*

N—6:RETURN

REM

REM SING PLURAL

IF ASC(RIGHT*(V*,1)>-84 THEN S-l

ELSE S-0

RETURN

REM

REM EXCHANGE

FOR 1-1 TO W:W*<1,I>-W*<2,I>:NEXT

RETURN

REM

REM ENG PLURAL

F=0:L—LEN(N*>:CA—ASC(RIGHT*(N*,1> >

CB—ASC(MID*(N*,L—1,1)>:IF CA=83

THEN N*=N*+PA*:F=1

IF CA-88 THEN N*=N«+PA*:F=1

IF CA=72 THEN IF CB-67 OR CB=83

42

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

THEN N*-N«+PA»iF-l

IF CA=89 THEN IF CB< >65 AND CBO69

AND CBO73 AND CBO79 AND CBO85

THEN N4-LEFT«(N*,L-1)+PB«>F=1

IF F-0 THEN N»=N«+PC«

IF N«-"MANS" THEN NS“"MEN"

RETURN

REM

REM DATA

DATA 5,15,4,8,6,3,DER,THE,DIE,THE

DATA DAS,THE,EIN,A,EINE,A,FRAU

DATA WOMAN, MANN, MAN, MUTTER, MOTHER

DATA VATER , FATHER, SCHWESTER , SISTER

DATA BRUDER,BROTHER,TANTE,AUNT

DATA ONKEL,UNCLE,KATZE,CAT,HUND

DATA DOG,GLAS,GLASS,WASSER,WATER

DATA KAFFEE, COFFEE, BI ER, BEER, AUTO

DATA CAR, ICH, I,SIE, YOU,ER,HE,WIR

DATA WE,JUNG,YOUNG,ALT,OLD,HEISS

DATA HOT , KALT , COLD , VOLL , FULL , SCHON

DATA BEAUTIFUL,REICH,RICH,SCHNELL

DATA FAST,LACH,LAUGH,TRINK,DRINK

DATA LIEB,LOVE,ARBEIT,WORK,SING

DATA SING,SPIEL,PLAY,BIN,AM,SIND

DATA ARE,1ST,IS," ARTL"," NOUN"

DATA " PRON"," ADJV"," VERB"

DATA " VERB”,521,2163,4621,4216

DATA 21521,21215,478,27,426,18,379

DATA 15,426,24,358,18,379,18,426

DATA 10,506,10,478,18

43

Commentary on INGA
The control routine for the program is formed by line 1020. It calls the
routine ‘initialisation’ which sets up several arrays required by the program
and then ‘display’ creates the initial screen shown. After this the WHILE/
WEND loop alternately calls ‘words’, which accepts the input of a simple
German sentence, and ‘scan’ which in turn calls other routines to translate
the sentence into English.

Initialisation routine (Lines 1040-1140):

The program contains six different types of word held as DATA:- articles,
nouns, pronouns, adjectives, verbs and the verb sein. The number of words
in each category is placed into the WN array by lines 1070-1080 and these
values then used in the nested loops at line 1080 to store all the German
words in the G$ array and their English equivalents in the E$ array.

During the translation of each sentence not only the individual words
themselves are displayed on the screen but also the type of word they are, in
a separate section of the display beneath the initial sentence. Because the
names of the word types have all been abbreviated to be of the same length,
the coordinates for each name form a regular arithmetical pattern and can
therefore be calculated by the FOR loop, 1090,1100, and placed in the WX
and WY arrays. The names of the word types themselves are READ from
DATA and placed in the WT$ array by line 1100.

INGA translates sentences by recognising particular sentence structures.
These are stored in the program in the form of numeric codes. The FOR
loop between 1100,1110, transfers these codes from DATA to the TS array.

The pitch and duration of nine notes from ‘Deutschland uber Alles’ are
placed in the P and D arrays by 1110, 1120. Line 1130 initialises the X and
Y arrays and defines three plural endings for English words, needed later in
the routine ‘Eng plural’.

Display routine (Lines 1150-1260):

Lines 1160-1190 set up seven text windows needed by the program. Three of
these, #4, #3 #5 and #6, are used to create separately scrolling displays of
the program status and the German and English vocabularies. After the
program’s title is displayed by 1200 and the screen additionally divided into
separate areas by the FOR loop, lines 1210,1220, the identity of these parts
of the display is explained by lines 1230-1250.

44

Prompt routine (Lines 1270-1300):

This routine is included to allow the program to be halted between each
sentence given for translation.

Words routine (Lines 1310-1370):

Here the user can type in the German sentence. First, previous text is
removed from the screen by line 1320. Then 1320 sets up the W$ array. This
will hold both the German words of the initial sentence typed in and also
their direct English translation. The first subscripted variable takes a value
of 1 for German words and 2 for English.
A request for the German sentence is placed in window #4. This is INPUT
as A$ at 1330. A further message is placed in #4 to show that the sentence
is being analysed into component words. Line 1340 initialises L as the length
of the sentence and sets the word count to 1. Then the FOR loop, lines 1340-
1350, looks at each character of the sentence in turn and adds it to the
current word if it is not an empty space or begins a new word if it is.

Line 1350 then calls the routine ‘coords’, with GOSUB 1390, to calculate the
screen coordinates that will be needed in order to place the individual words
of the German sentence neatly on the screen, without wrapping round the
display. It then initialises the T array, used to record the word types in the
sentence, and the FOR loop uses the WX, WY arrays to place an
appropriate number of blank spaces on the screen which represent the
structure of the sentence. These are subsequently filled in by the routine
‘found word’.
Coords routine (Lines 1380-1440):

This routine calculates the coordinates of the words in the sentence before
they are displayed. The values are held in the X and Y arrays. Line 1400
gives the initial coordinates (2, 5) to the first word and sets the flag YF to
zero. After this the FOR loop calculates the x-coordinate of each word by
adding the length of the previous word to its coordinate and by including an
extra 1 to allow for a gap between words. In this way the x-value increases
steadily. However, when the line length is exceeded, 1410 resets the x-
coordinate to 1 for the beginning of a new line on the screen. In order to
place this line further down the display, 1410 also sets YF to 1. The correct
y-value is then obtained by 1420.

Scan routine (Lines 1450-1530):

As its name suggests, this procedure scans through the sentence, attempting
to identify words. The number of words translated, NR, is initialised at line
1460.

45

Three nested FOR loops are used in the search. The outer I loop rotates
through each of the word types, article, noun, pronoun ... The middle J loop
considers each of the words, of that particular type, held in the G$ array.
The inner K loop scans through the words of the sentence typed in by the
user.

It is important to indicate precisely what the program is doing at this stage.
Accountability is, after all, an important feature of A.I. programs. With this
in mind, line 1470 shows the German word currrently being compared with
the words in the sentence in window #5. It also sets the variable L to the
length of the word, G$(I, J). Similarly lines 1470-1490 produce a tone and
highlight the word in the sentence by showing it momentarily inverted in
text/background colours.

Each word of the sentence is then checked. L is used with LEFTS at line 1500
to make sure that only the stem of the word is compared with the vocabulary.
This simple device helps to circumvent the problem of identifying German
words and is an example of the A.I. concept of fuzzy matching. If a match is
obtained, the routine ‘found word’ is called.

At the end of the three loops, line 1510 uses the value of NR returned by
‘found word’ to decide whether all the words in the sentence have been
identified. If they have not, the routine ‘failure 1’ is called. If they have, the
program continues with ‘structure’.

Found word routine (Lines 1540-1590):

This is the routine called by ‘scan’ when a word is identified. Lines 1550-1570
inform the user that a word has been successfully matched by flashing it on
the screen and by calling the routine ‘tune’. The English translation of the
word is then placed in the W$ array and in window #6 by 1570. The word
type is registered in the T array and displayed on the screen, with the use of
the WY, WX and WT$ arrays, at 1580. Finally the number of words
translated, NR, is also incremented by line 1580.

Tune routine (Lines 1600-1620):

Here a facetious rendering of a suitably Germanic tune is given by the use of
arrays D and P! The delay between notes generated by the empty FOR loop
is made directly proportional to the duration of the previous note.

Failure 1 routine (Lines 1630-1660):

This routine is called if there are unidentified words in the sentence and
provides a corresponding message in window #4.

46

Structure routine (Lines 1670-1710):

A vital part of the program is the identification of the structure of the
sentence typed in. This is achieved by considering the word type for each
word in turn. Line 1680 constructs a numeric code, ST, from the values now
held in the word type array, T. This code is then compared with the known
codes by the FOR loop, 1680,1690. If a match is found, the appropriate code
number is transferred to the variable SC.
A zero value of SC shows that the sentence structure has not been identified
and so the routine ‘failure 2’ is called at line 1690. If is has been identified,
‘translate’ is called instead.

Translate routine (Lines 1720-1820):

Line 1730 gives a triumphant SOUND and clears part of the display to make
room for the English translation. Lines 1740-1790 choose which routine
should translate the sentence according to the code SC. Then 1800 calls
‘coords’ to calculate where the translated English words should appear on
the screen. After this another message is placed in window #4 and finally
line 1810 shows the translation.

Failure 2 routine (Lines 1830-1860):

This routine is called when the sentence structure is not identified.

Type 1 routine (Lines 1870-1900):

Here sentences of the form Article/Noun/Verb are translated. First it has to
be established whether the subject of the sentence is singular or plural in
order that the English words can be adjusted accordingly. This is done by
looking at the German verb. Line 1880 sets the string variable, V$, to the
verb, W$(l, 3), and calls the routine ‘sing plural’ to check the ending of V$
and to return the variable, S. A value of S = 0 indicates that the verb is plural
and. similarly, S = 1, means that the verb is singular.

GOSUB 2210 places the English words into the alternative position in the
W$ array. The German words are now no longer required and the routine
‘coords’ called by ‘translate’ assumes this position.

Finally the value of S is used in calls to ‘Eng plural’ to adjust the endings of
the English words. Line 1890 provides the value of N needed by ‘coords’.

Type 2 routine (Lines 1910-1950):
The sentence has the structure Pronoun/Sein/Article/Noun. The routine is
identical in principle to ‘type 1’ except that line 1920 can establish more
directly whether the subject is singular or plural.

47

Type 3 routine (Lines 1960-2000):

The sentence structure here is Article/Noun/Sein/Adjective.

Type 4 routine (Lines 2010-2050):

The structure is Sein/Article/Noun/Adjective.

Type 5 routine (Lines 2060-2100):

The structure is Article/Noun/Verb/Article/Noun. The routine sing plural is
required at line 2070.

Type 6 routine (Lines 2110 -2150):

The sentence structure is Verb/Article/Noun/Article/Noun. Because here
the corresponding English structure is quite different, lines 2120, 2130 are
needed to generate the translation.
Sing plural routine (Lines 2160-2190):

Line 2170 decides whether the verb is singular or plural by looking at the
final letter and setting S to 1 if it is a ‘T’.

Exchange routine (Lines 2200-2230):

This routine places the English words, W$(2,1), in the W$ array into the
position hitherto occupied by the corresponding German, W$(l, I).

Eng plural routine (Lines 2240-2330):

In an attempt to make INGA more intelligent, this procedure consists of a
set of rules to construct the plurals of English words. Obviously it is difficult
to provide for every possible case, but nevertheless a large number of words
do fall under the conditions set here.

Line 2250 initialises the value of the flag, F. This is subsequently used to
identify regular plurals.

Lines 2250, 2260 store the codes of the ultimate and penultimate letters of
the word considered, CA and CB. Lines 2260-2290 then use the values of
CA and CB to form the plurals of words which end in ’S’, ’X’, ’CH’, ’SH’ and
’ Y’. Note that in the latter case line 2290 also checks for a preceding vowel.

Line 2300 forms the regular plural and 2310 deals with a specific irregular
word.

48

Data (Lines 2340-2550):

The remaining lines of the program hold all the information required for the
translation of a finite set of sentences. Obviously the area of the program’s
application can be adjusted here.

The Problem of Ambiguity
The problem which such naive translation programs cannot overcome is
mainly one of ambiguity. The superficial structure of a sentence is frequently
not its real meaning. A superb example given by one A.I. researcher was:
‘Time flies like an arrow; fruit flies like a banana’. Such a sentence, if
presented to a translation program, would yield immense problems. The
identical grammatical structure of the two halves of the statement masks a
total disparity of meaning. The English speaking human sees the ludicrous
contrast immediately and probably grins. A computer program would
require a hopelessly large store of cross-referenced information about
language, and how it is applied to the world, before it could attempt to
‘understand’ what was meant.

We all become proficient at an early age with the way in which words can
twist and change their meanings, Eliot’s ‘Words strain, Crack and
sometimes break, under the burden’. One of the fascinating things about
young children growing in maturity is the delight with which they rediscover
for themselves the word play, and verbal sleight, that language provides.
But this is not easy to program into a machine. Perhaps the only real solution
will be some sophisticated learning program of the future which develops
natural language in the way we do as we grow up. When computers can laugh
at a joke, the problem of natural language will have been solved.

Winograd and SHRDLU
One way in which a computer can engage in sensible dialogue with a human
is to give it an extremely limited world of discourse. In his famous program
SHRDLU, Terry Winograd devised ‘Blocks World’ in which a PDP 10
manipulated a series of polyhedral shapes. They could be lifted and moved
about by a robot arm and the program was capable of answering complicated
questions about its actions, using remarkably natural English. The imagined
world existed on the display of a DEC 340 (rather as, in a later program in
this book, a robot is shown exploring a three dimensional view of a room.)
The success of the program has, perhaps, concealed the fact that it involved
only a very limited subset of the world we inhabit and which any true robot
would also need to understand. Nevertheless it was an outstanding
achievement and a breakthrough in interpreting language.

49

BLOCKS WORLD

50

CHAPTER 4

The last analysis:
knowledge representation

and semantics.
After the failure of direct translation programs, research in Artificial
Intelligence turned to more sophisticated methods of persuading computers
to respond to statements in ordinary language about the real world. Two
main lines of approach were adopted. One was a more refined way of
representing knowledge within a program. The other was a subtle method of
analysing information presented to the computer.

The way in which knowledge is stored in a program will depend upon how
the program is designed to operate, because different methods will be
appropriate to different situations. In some programs, an internal map is
used to relate distinct items. In others, information takes the form of sets of
conditional rules. A third method of representation is to link separate items
in a hierarchical, tree-like structure. In A.I. programs another method of
representation frequently used is a list, with a list name and a series of items
held under that name. A whole list can be just one item in another. Special
list processing languages, like LISP, were developed specifically for this
method of representation.

Frames
A particularly significant contribution was made by Marvin Minsky of the
Massachusetts Institute of Technology in 1974. This was the concept of a
‘frame’. A frame is a table-like structure which aids a program in
understanding analogies. So much of the true semantic content of everyday
utterances depends upon implicit analogies, that this is evidently a useful
ability to give the computer. A frame for a particular subject consists of a set
of ‘ slots’ which can be filled with given attributes. Comparisons can then be
drawn with frames for other subjects and the contents of respective slots
matched against one another, according to selected heuristic rules:

51

1 Me rvyn i s likeavandal.'

NAME
ISA
CHARACTER
HEIGHT ..
BEHAVIOUR
PHYSIQUE
HOME

MERVYN
MAN . .
AGGRESSIVE
5 FOOT 1
VIOLENT
SCRAWNY
BOGNOR

NAME
ISA
CHARACTER
HEIGHT ..
BEHAVIOUR
PHYSIQUE
HOME

VANDAL
MAN
AGGRESSIVE
6 foot 7
VIOLENT
MUSCULAR
ASIA

A further development of the frame is a ‘script’. Here is stored a generalised
set of expectations and implications for a particular situation. So if a
computer program was given the statements ‘John invited Mary to tea.’ and
‘John hung mistletoe over the door.’ it would consult its scripts concerning
inviting people to tea and about hanging up mistletoe. It could then answer
questions like ‘Did John kiss Mary?’ and ‘What time of year was it?’

Blackboards
Another device for representing knowledge within a program is the
‘blackboard’. This enables separate modules to store information quite
independently of one another and to become active only when called upon
by another part of the blackboard.

Parsing and Syntax
The analysis of language can be broken down into a number of distinct
stages. In the first, the phonological, the computer actually analyses the
sound waves reaching a microphone. This could be regarded as a task for the
hardware specialist and, certainly, the A.I. worker frequently begins at the
next stage. This is the morphological analysis in which individual words are
analysed into their roots and endings. After this, a lexical analysis follows.
Here parts of speech and plurals are identified. The fourth part of the
analysis is the deduction of the syntactic structure of the sentence. Parsing
algorithms examine what has been learnt so far about the utterance. It is at
this stage that ambiguity can be tackled. Alternative structures are
considered and the most appropriate choice made in the circumstances.
Finally, the sentence reaches the stage of semantic analysis where its true
meaning is attempted. At this point context becomes all important.

VALID
This program is intended to provide examples of both knowledge
representation and semantic analysis. As the two screen dumps illustrate,

52

URLID

THIS PROGRAM SETS UP INFORMATION ON
ANY SUBJECT THAT YOU CHOOSE. YOU CAN
THEN INTERROGATE THE SYSTEM AND ASK
IT QUESTIONS ABOUT WHAT IT *KNOWS-
OR REQUEST REASONS FOR THE ANSWERS
THAT IT GIUES.

THE INFORMATION HELD AT ANY STAGE IS
SHOWN GRAPHICALLY AS AN ARRAY ON THE
SCREEN.

FOUR TYPES OF ENTRY ARE ALLOWED INTO
THE SYSTEM AS FOLLOWS.

U H LID

EXAMPLE: Fish is / are nutritious.
B3ES3SS9

EXAMPLE: Data on Lucy_Hopgood ?
(3)
EXAMPLE: Is arsenic harmful ?
<4>
EXAMPLE: Reason why Tennents super ?

H CUESTIÜH

H QUERY

53

VALID will hold information on a subject chosen by the user. Four types of
user entry are allowed. First, information can be typed directly into the
program. This has to take the form of direct statements such as ‘A-C5 is
electric.’ or ‘Spiders are creepy’. Secondly, information on a subject can be
obtained by a request: ‘Data on weather?’. Direct questions are allowed,
such as ‘Is Southsea sunny?’. Finally the program can be asked to justify an
answer it has given: ‘Reason why pandas scarce ?’.

The method of knowledge representation used is a two dimensional array.
Arrays are a realistic way of storing information in BASIC. In this program
the knowledge base is also shown as a graphic table on the screen. This helps
to indicate the way in which the array is searched for requred data.

Analysis is carried out within the program by a special parsing routine.
This has been designed to deal with the four specific types of user-interaction
and it demonstrates the way in which a degree of semantic analysis is
possible. Thus if the question ‘Is the-hamster hibernating?’ is followed by
another entry like ‘Reason why?’, the program will immediately assume
that in this context the second question is also about the hamster. (Of
course, it may not be!)

The print out shows how VALID is capable of a limited degree of reasoning.
This is based upon the hypothetical syllogism. If the computer is given a
series of propositions like: ‘A is B; B is C; C is D; D is E’, it will be able to
deduce that A is E. This is scarcely genius level. It does, however, make the
program a little more intelligent than a simple language translator.

VALID is humanised with one or two additional routines to make it appear
more polite than it would otherwise be.

Commentary on VALID
The program is controlled by lines 1020,1030. The routine ‘initialisation’ is
called with GOSUB 1060 to set up some of the arrays and variables required
during the execution of the program. Then the routine ‘describe’ provides an
explanation of the program’s operation. Finally the WHILE/WEND loop
allows indefinite calls to ‘parser’ during each program run.

Initialisation routine (Lines 1050-1080):

Lines 1060, 1070 select MODE and colours. Line 1070 also establishes the
D$ array which holds all the information acquired in any execution of the

54

STATEMENT, REQUEST, QUESTION, QUERY 7
IS MONTY VINALL RATIONAL 7
I DON'T KNOW
STATEMENT, REQUEST, QUESTION, QUERY 7
EDUCATED IS RATIONAL
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
TEACHERS ARE EDUCATED
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
MONTY VINALL IS A_TEACHER
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
IS MONTY VINALL RATIONAL 7
YES
STATEMENT, REQUEST, QUESTION, QUERY 7
REASON WHY YOU KNEW THAT 7
MONTY VINALL IS A TEACHER
A TEACHER IS EDUCATED
EDUCATED IS RATIONAL
STATEMENT, REQUEST, QUESTION, QUERY 7
CATS ARE FLUFFY
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
CATS ARE INTELLIGENT
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
CATS ARE AFFECTIONATE
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
JASPER IS A_CAT
OKAY
STATEMENT, REQUEST, QUESTION, QUERY 7
DATA ON JASPER
DATA ISi
liJASPER
21A CAT
3iFLUFFY
41 INTELLIGENT
Si AFFECTIONATE
STATEMENT, REQUEST, QUESTION, QUERY 7
THANKS
PARDON 7
STATEMENT, REQUEST, QUESTION, QUERY 7
THANK YOU VALID
YOU'RE WELCOME
STATEMENT, REQUEST, QUESTION, QUERY 7
FORGOT TO SWITCH OFF THE PRINTER
PLEASE REPEAT
STATEMENT, REQUEST, QUESTION, QUERY 7
TOO LATE ... CLICK !

55

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

REM VALID - PAT HALL, 2/86

REM CONTROL ROUTINE

GOSUB 1060:GOSUB 1100:WHILE l>0

GOSUB 1530:WEND:STOP

REM

REM INITIALISATION

BORDER 0:M0DE liINK 0,24:INK 1,26

INK 2,6:INK 3,0:DIM D*<20,10): DIM

D(20):TF-O:LQ-O:DIM W«(1O):DIM H«<

20):DIM E$(20>:DIM P<20>:RETURN

REM

REM DESCRIBE

BORDER 6:PAPER O:CLS:WINDOW «1,1,40

,1,3:PAPER ttl,l:CLS «1:WINDOW «2,1,

40,22,25:PEN #2,3:PAPER #2,1:CLS «2

:PEN 3:LOCATE 16,2:PRINT"< VALID >"

: LOCATE 3,6:PRINT"THIS PROGRAM“,

PRINT“ SETS UP INFORMATION ON“

PRINT" ANY SUBJECT THAT YOU",

PRINT" CHOOSE. YOU CAN"

PRINT“ THEN INTERROGATE")

PRINT" THE SYSTEM AND ASK"

PRINT" IT QUESTIONS ABOUT")

PRINT" WHAT IT 'KNOWS'"

PRINT" OR REQUEST REASONS")

PRINT" FOR THE ANSWERS"

PRINT" THAT IT GIVES." 1 PRINT

PRINT" THE INFORMATION HELD")

PRINT" AT ANY STAGE IS"

PRINT" SHOWN GRAPHICALLY AS",

PRINT" AN ARRAY ON THE"

56

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

PRINT” SCREEN." : PRINT

PRINT” FOUR TYPES OF ENTRY"!

PRINT” ARE ALLOWED INTO”

PRINT” THE SYSTEM AS FOLLOWS: "

GOSUB 1430:LOCATE 4,5:PRINT"(1>"

PEN 1:PAPER 2:L0CATE 14,5:PRINT

" A STATEMENT ":PEN 3:PAPER 0:PRINT

:PRINT" EXAMPLE: Fish is

PRINT” are nutritious.":LOCATE 4,9

PRINT"<2>":PEN 1:PAPER 2:L0CATE 15,

9:PRINT" A REQUEST ":PEN 3:PAPER O

PRINT:PRINT" EXAMPLE: Data on”!

PRINT” Lucy_Hopgood 7":LOCATE 4,13

PRINT"(3)”:PEN 1:PAPER 2:L0CATE 14,

13:PRINT" A QUESTION ”:PEN 3:PAPER

O:PRINT:PRINT" EXAMPLE: Is ars"!

PRINT“snic harmful ?":LOCATE 4,17

PRINT"(4)":PEN 1:PAPER 2:LOCATE 16,

17:PRINT" A QUERY ":PEN 3:PAPER 0

PRINT:PRINT" EXAMPLE: Rsason why"

|:PRINT" Tsnnsnts supsr ?":GOSUB

1430:GOSUB 1470:WIND0W *4,22,36,7,

IB:PEN *4,3:PAPER #4,1:CLS #4

LOCATE 4,20:PRINT"KNOWLEDGE BASE"

LOCATE 26,20:PRINT"NOTEPAD":RETURN

REM

REM PROMPT

LOCATE #2,16,2:PRINT #2,"< SPACE >”

:K«0:WHILE K=0:IF INKEY<47>=0 THEN

K-l

WEND:CLEAR INPUT:CLS «2:WINDOW *3,1

57

,40,4,21:PAPER #3,0:CLS #3:RETURN

1450 REM

1460 REM ARRAY

1470 GRAPHICS PEN l:F0R 1-107 TO 307

1480 MOVE 48,I:DRAM 268,I:NEXT:GRAPHICS

PEN 3:FOR 1-48 TO 268 STEP 22:FOR J

»0 TO 2:M0VE I+J,107:DRAM I+J,307

1490 NEXT:NEXT:FOR 1-107 TO 307 STEP 10

1500 FOR J-0 TO 2:MOVE 48,1+J:DRAM 268,

I+J:NEXT:NEXT:RETURN

1510 REM

1520 REM PARSER

1530 CM—O:MHILE CM-O:IM-O:MHILE IM-0

1540 LOCATE #2,3,2:PRINT #2,

“STATEMENT, REQUEST"|:PRINT #2,

", QUESTION, QUERY PRINT #2

1550 INPUT #2,St:FOR T-l TO 1500:NEXT

1560 CLS #2:ERASE Mt:L-LEN(St):IF MIDt(

St,L—1,2)—“ ?“THEN St—LEFT*(St,L—2)

:L-L-2

1570 At-MID*(S»,L,1):IF At-"?" OR At-“.“

THEN St—LEFT*(St,L-1):L-L-1

1580 N—1:FOR 1-1 TO L:IF ASC(MID*(St,I,1

>)<>32 THEN Mt(N>-Mt(N)+MID*(St,I,1

) ELSE N-N+l

1590 NEXT:IF N>2 THEN IM-1 ELSE PRINT #4

," PARDON ?":PRINT #4

1600 MEND:IF M*(2)-"ARE" THEN L-LEN(Mt(l

)):M*(l)»“A_“+LEFTt(Mt(l),L-1>:Mt(2

)=“IS"

1610 IF Mt(2>—"IS" THEN CM=1:GOSUB 1700

58

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

IF W4<1)-"DATA“ AND W«(2>-"0N“ THEN

CM-lxGOSUB 1750

IF W«<1>="IS" THEN CM-1:LQ-1:GOSUB

1780

IF Wt(l>—“REASON" AND W«(2)-“WHY"

AND LQ-1 THEN CM-1ILQ-OsGOSUB 1840

IF W*<1)-“THANK" AND W$(2)YOU"

THEN CM-IxPRINT #4,"YOU'RE ";SPRINT

#4, "WELCOME !" X PRINT *41 SOUND 1,239,

20

IF CM—0 THEN PRINT #4,“ PLEASE “;:

PRINT #4 , “REPEAT" X PRINT #4

WENDI RETURN

REM

REM STATEMENT

PRINT #4," OKAY":PRINT #4sGOSUB

1950:F—OsC—3:FOR 1=0 TO TFiIF D«<I,

0)—WS(1)THEN F-l:D(I)-D <I)+1s D*(I,D

(I))-R*xX-D<I)sY—IsGOSUB 1990

NEXT:X—OxY—TF+11 IF F-0 THEN TF-TF+1

I Df(TF, Ol -W» < 1) s D (TF > -1 s D* < TF, 1 > -R#

XGOSUB 1990sX=1XGOSUB 1990

RETURN

REM

REM REQUEST

ERASE H* x H-1: H* (1) =W$ (3 > : GOSUB 2040

SPRINT #4,“ "jW«(1)j" ISs“xFOR 1=1

TO HxFOR T=1 TO 1000sNEXT:SOUND 1,

239,10:PRINT #4,I:PRINT #4," "jH*(I

): NEXT: PR I NT #4: RETURN

REM

59

1770 REM QUESTION

1780 SR«-W«(2)sGOSUB 1950s ERASE H*sH-l

1790 H*<l)-W*<2>sGOSUB 2040sMF-OsFOR 1-1

TO HsIF H*(I)-R» THEN MF-1

1800 NEXTs IF MF-1 THEN PRINT #4," YES”

ELSE PRINT #4," I DON'T KNOW"

1810 SOUND 1,239,10sPRINT #4sRETURN

1820 REM

1830 REM REASON

1840 ERASE E*lE-OsPB»-R»sFF-1sGOSUB 1900

sLF=OsWHILE LF—Os SOUND 1,239,10sE-E

+ lsEi(E)«PB»sGOSUB 2150s IF PA»-SR»

THEN LF-1

1850 PB*-PA*sWENDsFF-OsGOSUB 1900sFOR T-

1 TO lOOOsNEXTsSOUND 1,239,10sPRINT

#4," ";SR$;" IS “jSPRINT #4,E«<E>

1860 FOR I=E TO 2 STEP -IsFOR T=1 TO

1000sNEXTsSOUND 1,239,lOsPRINT #4

1870 PRINT #4," "jE*(I)|" IS “jsPRINT #4

,EX I—1 > s NEXTs PRINT #4lRETURN

1880 REM

1890 REM INDICATE

1900 IF FF-1 THEN PEN 3 ELSE PEN 0

1910 LOCATE 6,5sPRINT"SEARCHING!"

1920 RETURN

1930 REM

1940 REM PREDICATE

1950 L-LEN <S»>-LEN <W»<1> >-LEN (W«<2> >-2

1960 R«=RIGHTS(S*,L > s RETURN

1970 REM

1980 REM CELL

60

1990

2000

2010

2020

2030

2040k

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

IF XOO THEN C=C-1

GRAPHICS PEN ClRX-X*22+53tRY-310-Y

«101 FOR R—RY TO RY+51M0VE RX,R

DRAW RX+15.R1NEXTiRETURN

REM

REM SEARCH

FF-llGOSUB 1900iFOR T-l TO 1000

NEXTiFOR 1-1 TO 201P<I>—OiNEXTiSM—O

1 WHILE SM-OiFS-01FOR 1-1 TO TFiY-I

N-HiFOR J-l TO N1S0UND 1,239,10iX-J

1 IF D4(I,□)<>"" THEN C-liGOSUB 1990

: C-31G0SUB 1990

IF D«(I,O>-H«(J> AND P(I)-0 THEN P(

I)—11G0SUB 2120

NEXT]NEXTiIF FS-0 THEN SM-1

WEND1FF-01GOSUB 19001 RETURN

REM

REM ADD PREDICATE

FS-ltFOR K-l TO D<I)iH-H+liH»<H)-D«

(I,K>INEXTiRETURN

REM

REM FIND PREDICATE

FOR 1-1 TO 20iF0R J-l TO 101 IF D«<I

,J)-PB« THEN PA«-D«(I,O>

NEXTiNEXTiRETURN

61

program. Twenty subjects are possible and up to ten predicates for each.
The D array records how many predicates are assigned to any given subject.
The variables TF and LQ initialised by 1070 are used subsequently in the
program to count the total number of subjects introduced and to register
whether the previous command given in the routine ‘parser’ was a
question. Other arrays needed during the operation of the program, W$,
H$, E$ and P, are also initialised..
Describe routine (Lines 1090-1410):

Line 1100 creates the initial screen, a yellow background with defined
windows forming bands of white at the top and bottom of the display. It
places the program title in black text and yellow background superimposed
on the top band.

An initial explanation of the operation of the program is provided by lines
1100 -1280. The routine ‘prompt’, GOSUB 1430 at line 1290 then prevents
further execution of the program until the space-bar is pressed. After this,
lines 1290-1380 give examples of the four types of command that VALID
will accept. Because the program is fairly complicated in its execution, care
is taken to make these examples as helpful as possible. Lines 1300, 1320,
1350 and 1370 state the four categories of command: statement, request,
question and query. For emphasis, white text with red background is
selected for each heading to contrast with the yellow of the screen. The
examples themselves are PRINTed in black text and are designed to show
the variety of commands possible. Thus the first example, Fish is/are
nutritious1, demonstrates that a singular or plural verb may be used
in statements. The second example, Data on Lucy-Hopgood,
illustrates that a multiple word subject will be accepted by VALID provided
that no character spaces are included. The form that questions must take,
with an initial “IS”, is shown by the third example. Finally the fourth
example indicates that an explanation for an answer given to a preceding
question is prompted by instructions beginning “REASON WHY ...”

Line 1380 retains the screen display until the space-bar is pressed a second
time and then calls the routine ‘array’ to place a 20 X 10 grid on the screen.
This records how much information is typed into VALID and line 1390
places the headimg KNOWLEDGE BASE beneath the grid accordingly.
Line 1380 also sets up a text window for all the program’s output and this is
indentified as the ‘NOTEPAD’ by 1400.

Prompt routine (Lines 1420-1450):

Here the use of WHILE/WEND loop, lines 1430, 1440 prevents further
execution of the program until the space-bar is pressed. The screen is cleared
without removing the program’s title.

62

Array routine (Lines 1460-1510):

This routine places- the grid, which represents the knowledge base of the
program, on the screen. 200 cells are shown, each of which can be filled in
by the subsequent routine ‘cell’ as information is acquired by VALID. The
first FOR loop, lines 1470,1480, places the white background for the grid on
to the yellow screen. Then the two sets of nested FOR loops which follow,
lines 1480,1490 and lines 1490,1500, add vertical and horizontal lines

Parser routine (Lines 1520-1680):

This is the routine which handles all the instructions typed in by the user. It
consists of two nested WHILE/WEND loops, between lines 1530-1670, and
1530-1600.

The inner loop PRINTS in #2 a request for an instruction at line 1540. The
user’s response, the string S$, is accepted by 1550. The response is then
analysed into individual words by lines 1580 - 1590. The words are placed
into the array W$ and the total number of characters in S$ is established as
the variable L.

It is quite possible that the string typed in by the user will have a final
question mark or period, yet it is important that the program will correctly
identify the true content of the string irrespective of such incidental
punctuation. Line 1560 therefore removes a final question mark separated
from the rest of the instruction by a single character space and, in a similar
way, line 1570 removes a question mark or period which immediately
follows the last word of the instruction. In either case the value of L is
correctly adjusted.

Lines 1580,1590 then analyse S$ into its component words. The number of
words detected, N, is initialised by line 1580. The FOR loop which follows
considers each character of S$ in turn. If it is not a space, identified as ASCII
code 32, then the character is added to the current word, W$(N), being
assembled. If it is a space, then the word total, N, is incremented and a new
word is begun. In this way one pass through the loop completely analyses the
word structure of the instruction, S$.

The next part of the analysis follows at line 1590. Only sentences of at least
three words will be accepted. If N is less than 3, the WHILE/WEND loop
will not terminate and the message, PARDON appears on the notepad.
However, if three or more words have been typed, the program proceeds to
the main body of outer loop.

Line 1600 reduces all instructions to singular form. Thus if the user has typed
the statement, FROGS ARE SLIMY, this will be altered toA-FROG IS

63

SLIMY. Such a preliminary adjustment is needed before the instruction can
be analysed further. Note that the two words of the subject are joined by the
underline character. This is because, as stated earlier, VALID requires
multiple word cells in its knowledge base to contain no character spaces.

Now ‘parser’ can decide which category of command it has been given. Line
1610 assumes that a statement is being made if the second word in the
command is identified as ‘IS’. It therefore calls the routine ‘statement’. Line
1620 calls the routine ‘request’ if the first two words of the command are
D A T A 0 N. If the first word of the command is I S, line 1630 calls the routine
‘question’. It also sets the last question flag, LQ, to 1. Finally, line 1640 will
call the routine ‘reason’ if the command begins REASON WHY. This will
only be allowed, however, if the flag LQ shows that the previous command
was, indeed, a question.

VALID is made to seem a little friendlier by line 1650 which responds with
YOU'RE WELCOME if the user has typed in a sentence beginning with the
words THANK YOU. Finally, the program will reply with PLEASE
REPEAT at line 1660 for any sentence which does not match one of the
specified categories.

Statement routine (Lines 1690-1730):

First the user is informed by the message OKAY, given by line 1700, that the
information typed in has been accepted. Then GOSUB 1950 uses the
routine ‘predicate’ to decide what new data has been given about the chosen
subject. For example, if the user entered the sentence IGOR-
STRAVINSKY IS A-COMPOSER the routine ‘predicate’ would return
the string A-COMPOSER for ‘statement’ to assign to IGOR-
STRAVINSKY in an appropriate cell of the knowledge base.

Next VALID has to decide whether the information received is about one of
the subjects it already contains in its knowledge base or if, instead, a new
subject has been introduced. Line 1700 initialises the flag F, needed in the
subsequent search. (It also gives a value to the variable C, used in the
graphic routine ‘cell’.) After this, the FOR loop between 1700, 1710
searches through the D$ array to see if the first cell in any row of the
knowledge base matches the first word, W$(l), of the sentence typed in by
the user. If this is the case, and an existing subject has been found, line 1700
alters the value of F to 1. Then the value of D(I) is incremented. This is the
column number of the cell in the Ith row where the information will be
stored. Line 1700 finally places the string, R$, returned by ‘predicate’ into
this location in the D$ array.

64

If at the end of the FOR loop the subject has not been matched, the value of
F will still be 0. Line 1710 then increments the value of TF, which records the
total number of subjects held in D$. The same line also places the new
subject, W$(l) into the first column of the new row of the array and the
information about this subject, R$, into the second column.

In this way, the two routines contained in ‘statement’ systematically store all
information given by the user. Calls are made by lines 1700 and 1710 to the
routine ‘cell’ to show graphically how the knowledge is being classified.

Request routine (Lines 1740-1760):

This routine returns all the known information on any subject requested by
the user. Line 1750 initialises the H$ array and places the selected subject,
the third word typed by the user, into the first element of the array. After
this, the routine ‘search’ adds to the array all the predicates associated,
directly or indirectly, with the requested subject. Then the FOR loop lists
out the H$ array on the notepad.

Question routine (Lines 1770-1820):

First line 1780 stores the subject of the question as the string SR$ in case a
further enquiry is made by the user and ‘reason’ is called. Then ‘predicate’
is called to establish the string, R$, which is being tentatively linked with the
subject. The subject is made the first element of the H$ array by line 1790
and ‘search’, called by GOSUB 2040, adds all the associated predicates to
the array.

Line 1790 initialises the match-flag, MF. The FOR loop, 1790,1800, checks
through the H$ array to see if any of the predicates associated with the
subject matches the proposed predicate, R$. If this is the case, 1790 changes
the value of MF to 1. Finally, line 1800 PRINTs either YES or I DON'T
KNOW in answer to the question, depending upon the value of MF. Line
1810 adds a musical tone with SOUND.

Reason routine (Lines 1830-1880):

In accord with the general A.I. principle that programs should provide
adequate justification for their output, this routine can state why it has
associated a particular predicate with a given subject.

It does this by searching backwards from the predicate of the previous
question, equated to PB$ at line 1840, until the subject, SR$, is found. This
occurs in the WHILE/WEND loop. Here, with GOSUB 2150, the routine

65

‘ find predicate’ locates the subject PA$ of PB$ in the array. Now PA$
becomes the new PB$, at 1850, and the search is carried out again until
eventually the desired subject is reached and the loop ends.

Throughout the routine, all predicates found are placed into the E$ array by
1840. This is then used by 1850-1870 to display the logic involved in the result
the program had originally stated.

Indicate routine (Lines 1890-1930):

This routine places a message on the screen when the knowledge base is
being interrogated.

Predicate routine (Lines 1940-1970):

This routine is called by ‘statement’ and ‘question’. It provides the predicate
of the user’s original sentence by removing the first two words at line 1960.

Cell routine (Lines 1980-2020):

Here MOVE and DRAW are used in the FOR loop to fill one element of the
knowledge base on the screen, at (X, Y), in colour C.

Search routine (Lines 2030-2100):

The routine is called by both ‘request’ and ‘question’ and checks the
knowledge base, D$, to return all predicates associated, either directly or
indirectly, with the subject that has been placed in the first location of the H$
array, at line 1750 or 1790. Because the checking routine repeats until a
value of SM = 1 occurs at 2080, a predicate found on one pass through the
routine can locate another on the next. This makes the searching particularly
thorough. All predicates found are placed in H$.

The routine is governed by the WHILE/WEND loop, lines 2050 - 2090. The
I loop examines each of the subjects, total TF, in the D$ array. The J loop
then checks N locations in the H$ array. N begins as 1 when the routine is
first called, but is constantly incremented, via H, by ‘add predicate’. In this
way, every predicate added to H$ is compared with the subjects in the D$
array, at 2070. If a match is found, ‘add predicate’ is immediately called and
all the predicates linked with this new subject are added to the H$ array as
well. (The P array prevents the same subject being counted twice.)

This continues until the flag FS indicates that no further matching is taking
place. The loop then ends at 2090. Throughout the routine, SOUND and

66

GOSUB 1990, at line 2060, show the user that searching is taking place.
Similarly ‘indicate’ at 2040 is employed to place a message on the screen.

Add predicate routine (Lines 2110-2130):

When line 2070 matches a predicate in the H$ array with one of the subjects,
D$(I, 0) of the D$ array, this routine uses the FOR loop to add all the
predicates associated with D$(I, 0) to the H$ array. This means that no
logical connection between the various pieces of information given to the
program will be missed.

Find predicate routine (Lines 2140-2160):

This is called by ‘reason’ to find the subject, PA$, of any predicate, PB$, in
the D$ array. This is done quite simply by the nested FOR loops, lines 2150,
2160.

67

CHAPTER 5

Expert assistance:
knowledge engineering.

Expert systems are the new factor which have entered the world of Artificial
Intelligence and attracted cheque books from the world of commerce.
Ironically, after the Lighthill Report was critical about the future of A.I.
research, many British workers crossed to the States to continue their
research and have thus contributed to the G.N.P. elsewhere.

An expert system has been mentioned already, Douglas Lenat’s
EURISKO, and it has been seen that expert systems and programs which
play games have much in common. Specifically it is the way in which
knowledge is represented, and then manipulated according to heuristic
rules, which gives success to either type of program. In an expert system the
information stored is the ‘knowledge base’, as already seen in the program
VALID, and the set of heuristic rules forms the ‘inference engine’. Similar
inference engines can be applied to different knowledge bases and thereby
form a new expert system. However a tailor made inference system/
knowledge base is usually more efficient for a particular task.

A principle used in the design of an inference engine is structured selection
in which hypotheses are linked with associated evidence. Three types of
strategy can be employed. One is ‘forward chaining’ in which the engine
begins with initial evidence and makes a hypothesis. Further evidence then
leads to another hypothesis and the process continues until a conclusion is
reached. In ‘backward chaining’ the system begins with a hypothesis and
determines what preconditions will be necessary for this hypothesis to be
true. In a rule-value approach the engine deals with a complicated,
interconnected set of hypotheses and related evidence by asking questions
about those hypotheses which will maximise the change further on in the set
and remove the most uncertainty from the system.

An important feature of an expert system is that it can learn for itself about
a particular domain of enquiry without a human programmer typing in every
precise detail. It should be able to associate important items without
excessive prompting. The next program gives a simple example of a learning
system which manages to do this.

69

AMY
This program can learn to distinguish between two different subjects by
asking a series of questions. The user decides what the two subjects should
be and what questions (maximum of five) can be asked, but does not indicate
further how the questions are related to the subjects. For example the two
subjects might be ‘petrol’ and ‘water’ and one of the questions could be ‘Do
firemen squirt it on your house?’. The program is not informed about the
relation between firemen, petrol and water. It does, however, eventually
learn that if firemen squirt a liquid on your house then the liquid will be
water rather than petrol.

In order to see how this works it is best to RUN the program and watch the
repeated updating of the screen display as AMY develops a rule for each set
of questions and answers it is given. The program contains, as DATA, three
standard examples which can be used for an initial demonstration.

TOTAL: 0 + 04-0+1 + 1= 2POSITIVE VALUE IMPLIES: MAX DAVIES

REPLY VALUE RULE RULE X VALUE
YES 1 0 0
YES 1 0 0
NO 0 -1 0
YES 1 1 1
YES 1 1 1

70

1000

1010

1020

1030

1040

1050

1060

1070

1060

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

REM AMY - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 1090:GOSUB 11301 WHILE TIME>0

GOSUB 1160

IF K-0 THEN GOSUB 1280

IF K»1 THEN GOSUB 1370

WEND

REM

REM INITIALISATION

MODE liBORDER 2:INK 0,0:INK 1,24:

INK 2,26: INK 3,6:GRAPHICS PEN 0

DIM Q*(5):DIM A(5):DIM R(5):DIM

P(5):EX-0:RETURN

REM

REM DISPLAY

PEN 0:PAPER 1:CLS:WINDOW »1,1,40,1

3:PAPER #1,2:CLS #1:LOCATE 16,2:

PRINT"< AMY >“:WINDOW #2,1,40,4,6:

PEN #2,2:PAPER #2,3:WINDOW «3,1,40

4,25:PAPER #3,1:WINDOW «4,1,40,22,

25:PEN «4,0:PAPER «4,1:RETURN

REM

REM CHOICE

CLS #3:LOCATE 4,10:PRINT”THIS "|

PRINT"PROGRAM GIVES AN EXAMPLE

PRINT “OF A":LOCATE 4,11:PRINT

"LEARNING SYSTEM.":LOCATE 7,13

PRINT"DEMONSTRATION ... PRESS D."

LOCATE 7,15

PRINT"OWN EXAMPLE........... PRESS E. "

CH-O:WHILE CH-0

71

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

IF INKEY(61)-0 THEN K-OlCH-1

IF INKEY(58)-O THEN K»1:CH»1

WEND:CLS «3:CLEAR INPUT!RETURN

REM

REM DEMONSTRATION

N-5:EX-EX+1|DE-EX MOD 3

IF DE-0 THEN RESTORE 1960

IF DE-1 THEN RESTORE 2070

IF DE-2 THEN RESTORE 2180

READ A4,84:FOR 1-1 TO 51READ D4,E4,

R(I>: 04(I)-D4+E4:NEXT

GOSUB 1520iCLS #4:PRINT *4,TAB(16)

"< SPACE >":CH—0:WHILE CH-O!IF

INKEY(47)-0 THEN CH-1

WENDxCLEAR INPUT: RETURN

REM

REM LEARN

GOSUB 1420:RL-O:WHILE RL-OlGOSUB

1520:GOSUB 1720:CLS #4:PRINT «4,

“ PRESS SPACE TO RETURN TO MENU"

:GOSUB 1690

IF INKEY(47)-0 THEN RL-1

WENDxCLEAR INPUT! RETURN

REM

REM QUESTIONS

LOCATE 2,5:PRINT"TYPE 1ST ANSWER "j

I INPUT A4:LOCATE 2.71PRINT

"TYPE 2ND ANSWER "j:INPUT B4:LOCATE

2,9:PRINT"TYPE HOW MANY QUESTIONS"

RN=O:WHILE RN=O:LOCATE 26,9

INPUT N:IF N>0 AND N<6 AND N=INT(N)

72

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

THEN RN-1

WENDiFOR 1-1 TO N:PEN OiPAPER 2

LOCATE 2,1*2+91 PRINT"QUESTION "jl|

"t"iPEN 3:PAPER liPRINT" "|

QL-O:WHILE QL-OiINPUT Q<<I>

IF LEN<Q<<DX36 THEN QL-1

WEND:NEXT: PEN OiRETURN

REN

REM ANSWER

CLS #3:FOR 1-0 TO N+1:Y-I*32

MOVE 20,280—Y1 DRAW 600,280-Y

MOVE 20,280:DRAW 20,280-Y:M0VE 137,

280:DRAW 137,280—Y:MOVE 264,280:

DRAW 264,280-Y:MOVE 374,280:DRAW

374,280—Y:MOVE 600,280:DRAW 600,280

—Y:NEXT

LOCATE 3,9:PRINT"REPLY":LOCATE 11,9

:PRINT"VALUE":LOCATE 19,9:PRINT

"RULE":FOR 1-1 TO N:LOCATE 20,1*2+9

:PRINT R<I):NEXT

PRINT #4," CHOICE: "|A<;" OR "jB<

PRINT «4,TAB<8>"PRESS: Y ... YES"J

PRINT #4," N ... NO":GOSUB 1690:

CLS «2

FOR I - 1 TO N:PRINT #2

IF RIGHT<<Q<<D ,1)0"?" THEN Q<<I) =

Q<<!)+"?"

PRINT #2,“ "|Q<<I):PRINT #2:G0SUB

1770:A<I>—D:LOCATE 4,1*2+9:PRINT C<

:LOCATE 12,1*2+9:PRINT A<I):NEXT

OP-3:CLS #2:G0SUB 1830:T=0:GOSUB

73

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1690:PRINT #2,“ TOTAL: ";:FOR 1-1

TO N—1:T—T+P(I):PRINT #2,P(I)J“ + '

I:NEXT

T-T+PCN)I PRINT #2,P(N);" - "jT

PRINT #2,“ VALUE IMPLIES: "j

IF T<0 THEN PRINT #2,BS:0P—1 ELSE

PRINT *2,AS:OP-2

RETURN

REM

REM PAUSE

FOR TP-1 TO 1500:NEXT:RETURN

REM

REM INSTRUCT

SOSUB 1690: PRINT #2,

“ IS THIS CORRECT ?"

GOSUB 1770: IF D-0 THEN GOSUB 1830

RETURN

REM

REM ASK

CH-O:WHILE CH=O

IF INKEY<46>-0 THEN D-0:CS-"NO":

CH-1

IF INKEY(43)—O THEN D-l:CS-“YES":

CH-1

WEND:CLEAR INPUT:RETURN

REM

REM CALCULATE

IF OP-1 THEN OPS-" + "

IF OP-2 THEN OPS-" - “

IF OP-3 THEN OPS-" X "

LOCATE 26,9:PRINT"RULE"J OPS j"VALUE

74

1870

1880

1890

1900

1910

1920

1930

1940

1950

I960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

I FOR 1-1 TO NlY»I*2+9

IF OP-1 THEN P < I > =R < I > +A < I >

IF OP-2 THEN P < I > —R < I > —A (I)

IF OP-3 THEN P<I)-R(I)*A<I)

GOSUB 16901 SOUND 1,119

PAPER 21L0CATE 27,YiPRINT R<I);0P4;

A(I>1GOSUB 16901 PAPER 1

LOCATE 27,Y1PRINT SPC(9)I LOCATE 30,

YiPRINT P(I)I IF 0P<>3 THEN R<I>-

P(I)

NEXT IiRETURN

REM

REM DATA

DATA CAT,DOG

DATA “DOES IT MIAOW "

DATA WHEN IT'S HUNGRY, 1

DATA "DOES IT CHASE POSTMEN "

DATA UP THE DRIVE, -1

DATA “DOES IT THINK IT "

DATA CAN CLIMB TREES, 1

DATA "IS IT GOOD AT DIGGING "

DATA UP THE GARDEN, O

DATA "IS IT WRITING A POEM "

DATA ON T.S.ELIOT, 1

DATA MAX DAVIES,HENZE

DATA "IS HE A CONTEMPORARY "

DATA COMPOSER,0

DATA "HAS HE WRITTEN MORE "

DATA THAN ONE OPERA,0

DATA “DID HE COMPOSE 'THE' "

DATA YOUNG LORD,-1

75

2140 DATA "DOES HE LIVE ON HOY “

2150 DATA IN THE ORKNEYS,!

2160 DATA “DID HE COMPOSE "

2170 DATA 'TAVERNER',1

2180 DATA JACK DANIELS,JIM BEAM

2190 DATA “IS IT A BOURBON "

2200 DATA WHISKEY,O

2210 DATA "DOES THE BOTTLE HAVE "

2220 DATA A WHITE LABEL,-1

2230 DATA “IS IT PRODUCED IN "

2240 DATA TENNESSEE,!

2250 DATA “WAS IT FIRST MADE “

2260 DATA IN 1795,-1

2270 DATA “DOES IT HAVE A SUBTLE “

2280 DATA NUTTY FLAVOUR,!

Commentary on AMY
The control routine for AMY resides between lines 1020-1060. The routine
‘initialisation’ is called at 1020 to set up the arrays required by the program
and ‘display’, called as well, establishes the initial screen. The WHILE/
WEND loop, lines 1020-1060, then allows the user either to choose
examples of simple learning systems already held by the program as DATA
or to set up a new system entirely. The alternatives are given by the routine
‘choice’. This returns a value for the variable K which is then used by lines
1040,1050 to call ‘demonstration’ or ‘learn’.

76

Initialisation routine (Lines 1080-1110):

Here four arrays are established. Q$ can hold five questions up to 35
characters in length. A is the array which stores the answers typed in by the
user, coded as 1 for ‘Yes’ and 0 for ‘No’. R is the rule which the computer
develops to make its decision and the array P is used to hold intermediate
results generated by ‘calculate’.

Line 1100 initialises the variable EX, which is used in ‘demonstrate’ to select
which set of DATA to employ.

Display routine (Lines 1120-1140):

The whole screen is set to yellow with black text. Line 1130 uses WINDOW
#1 to place a white strip across the top of the screen and the program’s title
is PRINTed centrally here in black on a yellow background. WINDOW #2
is defined with white text and a red background just beneath the title but at
this stage of the program the window is not seen. WINDOW #3 is set up
so it can be used subsequently for clearing the central section of the display.
WINDOW #4 is established at the bottom of the screen for further text and
prompts.

Choice routine (Lines 1150-1260):

The user can decide here whether to see an example of a learning system
from the program’s DATA or to investigate the way in which the computer
builds up its rule array with fresh subject matter and questions.

Line 1160 uses CLS #3 to clear any previous text from the screen without
removing the program’s title. The alternatives available are described by
1160 - 1210. After this the WHILE/WEND loop between lines 1220-1250
terminates only when ‘ D’ or ‘E’ is pressed. The value of K then obtained is
used by the control routine. The screen is cleared again by CLS #3 at line
1250.

Demonstration routine (Lines 1270-1350):

This routine uses one of the three sets of DATA to show the user the rule­
based principle involved in the learning system. The maximum number of
questions is required for these examples and so line 1280 makes N = 5. Each
time the routine is called, the next set of DATA is used. This means that
three separate examples can be given before a repetition occurs. The
sequential selection is achieved by incrementing the variable EX at line 1280
whenever the routine is executed. The expression DE = EX MOD 3 will
then have the value 0, 1 or 2 and so the DATA pointer will be restored to

77

lines 1960, 2070 or 2180, which correspond with the separate examples
stored at the end of the program. Naturally more than three examples could
be placed in DATA. If this is required the expression could become,
perhaps, (EX MOD 5).

Once the DATA pointer is in an appropriate position, line 1320 READs the
two subjects as A$ and B$. The FOR loop then READs each question in
turn in two halves, as the strings D$ and E$, and concatenates them into the
question Q$(I). The reason for this is simply to have a neat listing. The loop
also places the appropriate value, 1, 0 or -1, into the rule array, R(I).

The routine ‘answer’ is called at line 1330 with GOSUB 1520 to present each
question to the user, obtain a reply and finally make a decision about the
subject.

Further execution of the program is delayed until the space-bar is detected
as INKEY(47) at 1330, but then ‘demonstration’ ends and the program
returns to the control routine. The menu is placed on the screen again by
‘choice’.

Learn routine (Lines 1360-1400):

In this routine the user can set up a fresh learning system and see how the
rule array evolves into a set of values which always generates a correct
decision.

Line 1370 calls ‘questions’ to request the two subjects and the questions
needed for the new system. The WHILE/WEND loop between lines 1370 -
1390, then uses the routine ‘answer’ to test the user’s response to each
question and to generate a decision accordingly. After this, ‘instruct’, called
by GOSUB 1720 at line 1370 modifies the rule array if an incorrect decision
has been given.

The loop will repeat indefinitely and develops a rule array which always
gives a correct decision. At this stage the user will probably wish to
experiment with a new system and so line 1380 gives the opportunity of exit
from the loop if the space-bar is pressed when the prompt to do so appears
in window #4.

Questions routine (Lines 1410-1500) :

The routine requests the two subjects for the new system at lines 1420. The
WHILE/WEND loop, lines 1430-1450 then asks for a number of questions
between 1-5. Naturally non-integral numbers are rejected, by line 1440.

78

The FOR loop, lines 1450 -1490, places the questions into the Q$ array. The
embedded WHILE/WEND loop places an upper limit on the length of the
questions to prevent the screen display from being disrupted.

Answer routine (Lines 1510-1670):

The principal aim of AMY is realised in this procedure, which is therefore
the core of the program. First a table is displayed on the screen with columns
for the user’s replies, the current rule being employed by the program and
any calculation which needs to be carried out. Then, as the user responds to
the questions presented in window #2, the replies are filled in (both as words
and as value of 1 and 0). Next, the program details the calculations it is
making in the final column and displays its decision. If this is incorrect, the
modification to the rule array is also shown being calculated.

Line 1520 clears any earlier table from the screen with CLS #3. MOVE and
DRAW are used in the FOR loop between lines 1520-1540 to produce the
new table. The dimensions of the table are determined by the number of
questions, N. Headings are added by line 1550.

The current rule array is displayed in the third column of the table by the
FOR loop at line 1550. Each time ‘answer’ is called these values are seen to
be converging on a final rule which, eventually, always makes a correct
decision.

The two possible subjects are PRINTed in window #4 by lines 1560 - 1580.
After this the FOR loop, lines 1590-1610, presents all N questions in window
#2. Line 1600 adds a question mark if needed. At line 1610 the routine ‘ask’
is called with GOSUB 1770 to obtain a yes/no answer to the question. The
appropriate value is placed in the A array by 1610, which also displays the
yes/no answer and its corresponding 1/0 value on the table.

AMY now has sufficient information to make a decision between the two
possible subjects, A$ and B$. The calculation is performed by the routine
‘calculate’, called at 1620 with GOSUB 1830. The variable OP is given the
value 3 because multiplication is the operation required. Lines 1620, 1630
display, in window #2, the total of all the intermediate results returned by
‘calculate’ and lines 1640, 1650 finally PRINT the decision determined by
this total. Line 1650 also obtains the value of OP needed for the next call to
‘calculate’.

Pause routine (Lines 1680-1700) :

The empty FOR loop delays the operation of the program when a pause is
required.

79

Instruct routine (Lines 1710-1750):

This routine asks the user if the decision made is correct. If it is not,
‘calculate’ is called once more, this time to adjust the rule array.

Ask routine (Lines 1760-1810):

Here the keyboard is scanned until either ‘Y’ or ‘N’ is pressed. Appropriate
values are then given to C$, ‘YES’ or ‘NO’, and to D, 1 or 0.

Calculate routine (Lines 1820-1940):

This routine will either add, subtract or multiply the rule array by the answer
array, depending upon whether the rule array is being adjusted or a decision
being made. The type of operation employed is controlled by the variable
OP.

Lines 1830-1850 determine the arithmetical sign to show for the final column
of the table. It is displayed by 1860.

The FOR loop, 1860-1930, performs the necessary calculation for each
answer in turn and displays it on the table. The lines between 1870-1890
carry out the calculation prescribed by OP. The calculation is shown, and the
result then displayed, on the table by lines 1900-1920. Line 1920 alters the
rule array when required.

Data (Lines 1950-2280):

Information for three separate examples is held between 1960 - 2280.

Accountability and Expert Systems
A feature included in expert systems is accountability. The program is
expected to be able to give reasons for the decisions it has made and must be
capable of interrogation by the user. The principle was included in the
routine ‘reason’ in the program VALID of Chapter 4. Here the program did
a little backward chaining of its own through its knowledge base in order to
establish the logic behind its previous answer. Some people argue that the
necessity of including accountability in A.I. programs will imply an upper
limit to the computer’s power of reasoning, preventing it from ever exceed­
ing, if it was ever in a position to, the human operator’s ability to understand
what it was doing.

80

Probably the earliest working expert system is DENDRAL. This was
developed at Stanford University. It asks questions about the chemical
properties of a substance, and more refined information like nuclear
magnetic resonance data, and is able to deduce a possible structure for the
substance from the many possibilities. Another expert system,
PROSPECTOR, can generate probabilities of ore deposits in given
locations from geological evidence. PUFF is a medical program which
diagnoses respiratory illnesses and MYCIN, from which PUFF derived its
inference engine, similarly diagnoses blood infections.

Human culture has evolved because of the way information is stored.
Writing, then libraries, then the printing press, all helped to preserve
knowledge and to allow people to understand more and more about the
world. With expert systems, we are witnessing an exciting new extension of
this principle. Not simply information can now be passed from generation to
generation, but also the very skills of handling and interpreting that
information. Unlike doctors and geologists, expert systems can be
reproduced and taken wherever they are needed. And also unlike the
human expert they do not die. In the future there will be people cured of
illnesses which have been diagnosed by expert systems developed now. This
will be long after the original, human experts who helped (with the
programmers) to create the system themselves died. This is an incredible
prospect.

81

CHAPTER 6

Playing the game:
heuristic strategies

The winner of the world backgammon championship held at Monte Carlo in
1979 was challenged to play against a robot for a prize of 5000 dollars. The
robot had been supplying an amusing distraction for the players during the
earlier games and had seemed merely a novelty. However an assistant
behind the scenes was controlling it by radio and was, in turn, in direct
satellite link with Carnegie-Mellon University. Here, Hans Berliner was
interested to find out how well his backgammon playing program, Mighty
Bee, would compete at championship level. The program won.

Game Playing and Al
From the earliest days of Artificial Intelligence, game playing has been
regarded as a useful testbed of ideas and stategies. The limited ‘microworld’
provided by a game, with its clearly defined rules and finite number of goals,
is ideally suitable for the internal representation of a program and yet, at the
same time, involves aspects of human reasoning which the A.I. researcher
is anxious to investigate.

Search Trees
In any game, the state of play can be represented by an inverted tree
structure. At the top (the root!) is the current game position. This is usually
referred to as ‘ply O’. Branching out beneath these are all the possible states
of play which could immediately follow the current state. Depending upon
the game, this could be adding a cross to the centre square, taking a knight,
or, perhaps, occupying a hexagon. All these positions form ply 1. Similarly
the possibilities for the subsequent stages of the game will be ply 2, ply 3...
Clearly in all games the tree will branch out very rapidly. In some simple
games, like noughts and crosses, it is possible to show the whole of the tree
structure. In this sense, the game is deterministic. For most games, however,
the tree structure soon becomes too broad to be able to do this. Chess, for
example, has a branching factor of approximately 30 and other games can
have even higher factors.

83

It is the tree structure which controls the way in which a program plays a
game. From each move made, the computer has to look ahead, examine the
game tree and decide the best possible decision to make. But even the vast
computational power of the largest mainframe machines cannot be expected
to cope with the exponential growth of the tree structure. The world’s most
powerful computer, a Cray, running a chess program called Blitz was
defeated by chess master, David Levy. Another leading chess-playing
program, Belle, developed at AT&T Bell Laboratories by Joe Condon and
Ken Thompson, requires a dedicated computer with special components
and is able to consider 160 000 positions per second. This has taken it to
expert level in its tournament rating, but it is clearly playing chess in a
different way to a human’s approach. Unlike a program, which looks at a
large number of tree branches but only to a few ply ahead, a good human
player apparently considers just a few possible routes through the tree and
investigates these to a far greater depth. This is only possible because the
human mind can automatically eliminate those branches which are not going
to lead to successful game positions. The computer, instead, needs to
consider a far greater number of branches. This is another example of the
way the human mind and the computer program usually employ totally
different approaches to the same problem.

Evaluation Functions
At each stage of its play, a program has to use an ‘evaluation function’ to
decide, in quite a formal, mechanical fashion, a score for each potential
move. The function normally takes the shape of a simple polynomial
incorporating various aspects of the game in hand. The number of terms
involved will decide how good a game is played and in some programs the
evaluation function is capable of modifying itself in order to improve the
program’s ability. It does this by considering its past performance.

Heuristics
The evaluation function alone is insufficient to create a feasible game
strategy. The program needs to employ some heuristic rules to reduce the
number of possible branches of the game tree it must consider. In this way
it comes closer to the human approach, although the heuristics involved are
unlikely to be the same. However, in one remarkable example, a poker­
playing program developed by a team at the State University of New York,
Buffalo, discovered for itself the importance of bluffing about the hand it
was playing.

A heuristic rule devised very early in the history of A.I. is the principle of
‘minimaxing’. This was invented by Claude Shannon in 1949. In it the

84

computer evaluates all positions several ply ahead. It assuumes that its
opponent is playing an error free game and therefore accepts that alternate
ply will minimise its own advantage. With this precondition, it looks for the
route which will maximise its position for the other ply. Minimaxing is a
strategy which has been employed widely by programmers. A further
refinement is the ‘alpha-beta’ algorithm, which reduces the amount of
searching required by drastically pruning the game tree. Any branch
stemming from a poor move on the part of the computer is eliminated from
further investigations.

HEX
The first program in this chapter is the game of Hex. This was invented by
the Danish mathematician and poet, Piet Hein, in 1942, although the name
was chosen by the American firm of Parker Brothers, ‘Nash’ and ‘John’
being other contenders. It is now better known in this country as the
television programme of ‘Blockbusters’. The interesting aspect of the game
is that nobody has yet specified how large a board should be used! In this
version for computer, a 5 X 5 set of 25 hexagons has been chosen, as shown
in the screen dump.

£| £ $ £

85

The game’s object is quite simple. Each player has to complete a line of
hexagons from one side of the board to the other, taking alternate moves.
Depending upon the size of the board, varied strategies can be devised and
Hex can become very involved indeed. Fortunately a 5 X 5 board seems to
be the point at which it becomes interesting.

The program HEX uses a heuristic strategy which concentrates upon
aggressive rather than defensive play. It can deal effectively with filled
hexagons obstructing its intended path but does not attempt to block the
other chain. The computer places the initial hexagon of its chain as close to
the centre of the board as possible and then extends alternate ends of the
chain until either side of the board is reached. Its opponent plays in a vertical
direction. The simplicity of the heuristic means that depth searching is not
required.

Commentary on HEX
The program is controlled by lines 1020-1080. Line 1020 calls the
initialisation routine with GOSUB 1100 to set up arrays and variables
necessary for the program. Then ‘board’ creates the screen display and ‘first
turn’ decides whether the user or computer makes the initial move. After
this, the WHILE/WEND loop, 1030-1070, calls the routines ‘check side’,
‘user move’, ‘computer move’ and ‘show move’, to play a game of Hex.

Initialisation routine (Lines 1090-1130):

Line 1100 selects MODE and screen colour. Then line 1110 sets up the H
array. The values placed in this array indicate whether a particular hexagon
is vacant, value 0, occupied by a user move, value 1, or by a computer move,
value 2. Only twenty five hexagons are needed for the game but the playing
strategy involved means that an extra row is required at the top and the
bottom of the board. The H array for these redundant locations is filled with
values of 3 to prevent the computer from attempting to use one of them.

The coordinates for the hexagons displayed on the screen are held in arrays
XH, YH, established by lines 1110, 1120, which READ the necessary
information from DATA. It can be seen that the computer identifies the
possible hexagons as numbers 5-29, as on the diagram. These values need to
be decreased by 4 in order for the user to identify them sensibly and this
correction occurs throughout the program.

One of the algorithms used by HEX involves knowing which hexagons are
adjacent to any given position on the board. It can be seen from both
diagrams considered together that this amounts to knowing six possible
increments, both positive and negative, in the H array. These are also held
as DATA and placed into the ‘priority’ array, P, by line 1120.

86

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

REM HEX - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 11001GOSUB 1150IGOSUB 1290

WHILE TIME>0IGOSUB 1350

IF T=0 THEN GOSUB 1410 ELSE GOSUB

1490

GOSUB 16701GOSUB 1350

IF T=0 THEN GOSUB 1490 ELSE GOSUB

1410

GOSUB 1670iWEND

REM

REM INITIALISATION

MODE 11 INK 0,01 INK 1,261 INK 2,201

INK 3,2

DIM H(34)1FOR I- 0 TO 41H(I)-31H(1+

30)—31 NEXT]DIM XH(29)iDIM YH(29)

FOR 1=5 TO 291READ XH(I),YH(I)1 NEXT

1DIM P(6)1 FOR I- 1 TO 61 READ P(I)1

NEXT1CM—11N-OiLS-01RS-Ot RETURN

REM

REM BOARD

PEN OlPAPER 21CLS1PAPER 11 BORDER 20

■ LOCATE 32,31 PRINT SPC(5)I LOCATE 32

,4lPRINT" HEX “1L0CATE 32,5iPRINT

SPC(5)

FOR I -5 TO 291X—XH<I)I Y—YH<I>

L-501C-OiGOSUB 1220iX-X-71Y-Y+51L-

401C-l1GOSUB 12201XP-XH(I> *0.0627-3

I IF I>13 THEN XP-XP-1

YP—23—YH(I)*0.05851 IF I>14 AND K20

THEN YP—YP+1

87

1190 LOCATE XP.YPiPRINT 1-41NEXTsPAPER 2

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1 RETURN

REM

REM HEXAGON

GRAPHICS PEN C

R—L*O.51S—L*O.8661 MOVE X,Y

DRAWR —S,—RiDRAWR -S,RiDRAWR 0,L

DRAWR S,RiDRAWR S,-RiDRAWR 0,-L

MOVE X-R.Y1FILL Cl RETURN

REM

REM FIRST TURN

LOCATE 2,221 PRINT“USER—U“1LOCATE 2,

231 PRINT"COMPUTER—C"1K-OiWHILE K-0

IF INKEY(42)-O THEN T-OiK-1

IF INKEY(62)-O THEN T-liK-1

WEND¡PAPER 21 LOCATE 2,221PRINT SPC

(6)IPRINTlPRINT SPC(11)1 CLEAR INPUT

1 RETURN

REM

REM CHECK SIDE

FOR I- 5 TO 25 STEP SiFOR J-0 TO 4

STEP 4

IF H(I+J)-2 AND J-0 THEN LS-1

IF H(I+J)—2 AND J—4 THEN RS-1

NEXTiNEXTiIF LS-1 AND RS-1 THEN

LOCATE 2,221 PRINT"COMPUTER"1 PRINT

" WINS"1 LOCATE 1,11STOP ELSE

RETURN

REM

REM USER MOVE

VH—01 WHILE VH—OiCH—01 WHILE CH-0

88

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

LOCATE 2,22:PRINT"TYPE MOVE"

INPUT NMlLOCATE 1.231PRINT SPC(10)

IF NM>0 AND NM<26 AND INT(NM)—NM

THEN CH-1

WEND:IF H(NM+4)-0 THEN VH-1

WEND:NH—NM+4: LOCATE 2,22:PRINT

SPC (9):FM-1: RETURN

REM

REM COMPUTER MOVE

IF CM—1 THEN GOSUB 1530 ELSE GOSUB

1570

FM-2:RETURN

REM

REM CENTRE

IF H(17)—0 THEN NM-17 ELSE NM-17+P«

INT(RND(1)»6)+1)

CM—0 :LL—NM:LR—NM: RETURN

REM

REM NEXT MOVE

N—N+l: MF—1 —(N MOD 2) *2

IF LS-1 THEN MF—1

IF RS-1 THEN MF—1

IF MF—1 THEN A-l:B-6:LM-LR ELSE A-6

:B—1:LM—LL

FOR I-A TO B STEP MF:HX-LM+P(I)

IF H(HX)—0 THEN NM-HX

NEXT:IF MF-1 THEN LR-NM ELSE LL—NM

RETURN

REM

REM SHOW MOVE

H(NM)=FM:X-XH(NM)-7:Y-YH(NM)+5

89

1680 IF FM-1 THEN 03 ELSE 02

1690 GOSUB 12201 RETURN

1700 REM

1710 REM DATA FOR HEXAGONS 6 PRIORITIES

1720 DATA 120,320,200,320,280,320,360

1730 DATA 320,440,320,160,250,240,250

1740 DATA 320,250,400,250,480,250,200

1750 DATA 180,280,180,360,180,440,180

1760 DATA 520,180,240,110,320,110,400

1770 DATA 110,480,110,560,110,280,40

1780 DATA 360,40,440,40,520,40,600,40

1790 DATA -1,4,-5,5,-4,1

ARRAX LOCATIONS

90

P ARRAY

Line 1120 then initialises variables needed later in the program, CM, N, LS
and RS.

Board routine (Lines 1140-1200):

Line 1150 clears the entire display to cyan, using the BORDER command to
extend the uniform coloured background up to the screen edge of the
monitor. The program’s title, HEX, is PRINTed in black text on a white
background, displaced from the middle of the display to allow room for the
first row of five hexagons.

The FOR loop, lines 1160-1190, then uses GOSUB 1220 and the coordinates
in the XH, YH arrays, to draw all the twenty five hexagons forming the

91

board. At each particular location, ‘hexagon’ is used twice, with a colour
change from black to white, to give a clearly defined edge to each hexagon.
Lines 1170, 1180 calculate coordinates (XP, YP) at which to place the
number of each hexagon using LOCATE.

Hexagon routine (Lines 1210-1270):

Here a hexagon, sides length L and colour C, is drawn relative to the point
(X, Y) using LINE and FILL. The cosine and sine of an angle of 60 degrees
are incorporated into the variables R and S and so the values used in the
DRAWR commannds at lines 1240,1250 follow quite automatically.

First turn routine (Lines 1280-1330):

This routine allows the user to decide whether the computer will be allowed
to make the first move or not. (The playing algorithm does not include
defensive moves. As a result, if the user starts HEX is likely to lose.) Line
1290 places a message on the display and then the WHILE/WEND loop
returns a value of T = 1 for the computer to start, or T = 0 for the user’s first
move, to the control routine. This value is used at lines 1040, 1060, at each
pass through the main control loop to decide whether it is the user’s or
computer’s turn to make a move.

Check side routine (Lines 1340-1390):

The computer needs to know when its chain of filled hexagons has reached
either the left, or right, side of the board. The ‘check side’ routine
determines this. The combination of the ranges of the two FOR loops
between 1350-1380 means that at line 1360 each hexagon down the left side
of the board is being checked and at line 1370 each hexagon down the right
side. In either case, if a value of 2 is found in the H array the computer’s
chain has reached that side and the flag, LS or RS, is set accordingly.

Obviously, if line 1380 detects that both sides have been reached, the
computer can state that it has won the game. HEX does not include a routine
to identify a user win, however. The number of possible chains which could
comprise a winning strategy is too great. It is only because of the simplified
strategy it employs that the program can discover its own wins.

User move routine (Lines 1400-1470):

Two nested WHILE/WEND loops between lines 1410 -1460 are employed
to obtain the user’s choice of move. The inner loop only terminates if an
integer in the range 1-25 is typed and detected at 1440. Then line 1450 allows
the outer loop to be left if the corresponding hexagon is vacant. Line 1460

92

increases the value of the variable NM to match the location in the H array.
It also selects the value of FM for the routine ‘show move’.

Computer move routine (Lines 1480-1510):

If it is the first move made by the computer, indicated by the status of of
centre-move flag, CM, line 1490 calls the routine ‘centre’ with GOSUB 1530
to place the first filled hexagon for the computer’s chain as close to the centre
of the board as possible. Subsequent positions are determined by calling
‘next move’ with GOSUB 1570. The value of FM for the routine ‘show
move’ is chosen at 1500.

Centre routine (Lines 1520-1550):

This routine attempts to put the first hexagon of the computer’s chain at the
central position, H = 17, in the array. This is part of the algorithm used by
the program. If, however, line 1530 detects that the centre is not vacant, the
P array is used to find an adjacent location at random. Line 1540 updates the
CM flag and then initialises the variables LL, LR, which record the last
hexagon added for the left side of the chain and the right side.

Next move routine (Lines 1560-1650):

This routine adds a hexagon alternately to one end of the computer’s chain
and then the other. This switch is achieved by the variable MF. At line 1570,
N is incremented. This means that the expression (N MOD 2) will alternate
between 0 and 1. Hence 1 - (N MOD 2) * 2, the value calculated for MF,
jumps from 1 to -1, or vice versa, every time the routine is called. If MF is 1
the right side of the chain is extended whereas the left side will be if MF is
-1. Lines 1580, 1590 correct the value of MF if one of the sides has already
been reached.

MF adds to the chain by controlling the values of A, B and LM at line 1600.
The FOR loop, 1610 -1630, then inevitably STEPs through the P array in a
way which will extend the chain in the direction required. It selects the next
position, HX, adjacent to the last, LM, at 1610 by incrementing with the
chosen P value. This position is then checked at 1620 to make sure it is free.
Finally line 1630 records the move made, as either LR or LL, as this will be
needed the next time line 1600 is executed.

Show move routine (Lines 1660-1700):

Here the move made by either user or computer is recorded. Line 1670
updates the H array and lines 1670 - 1690 fill in the corresponding hexagon
on the board in the appropriate colour.

93

Data (Lines 1710-1790) :

Values are held for the x- and y- coordinates of the 25 hexagons making up
the board. The values for the priority array, P, are stored at 1790.

TICTACTOE
This program plays the familiar game of noughts and crosses, the shorter
American name being chosen as more convenient for a computer file name!
TICTACTOE has the advantage of playing a game with a relatvely simple
tree structure. It is able, therefore, to play at a far greater depth and is, in a
sense, anticipating ply 8 by constantly referring to the possible winning lines
in the algorithms it employs.

The program plays a defensive game, always giving priority to blocking its
opponent whenever a dangerous situation is developing. When no such
threat exists, it carefully decides the best line to continue by looking at all the
moves it has currently made.

TICTACTOE

NEU 'O' LINE?
TEST 13:CHECK
LINE IS 123
C R O S S. H L R E H D i
IN SQUARE 2
TEST 17: CHECK
LINE IS 147
FILL SQUARE 4
TEST 37:

□□□
The screen dump shows that two noughts and crosses grids are displayed.
The main grid shows the actual state of the game. The smaller one is used to
indicate the various combinations of moves being examined. This is
accompanied by explanatory messages in the text window on the left of the
screen. Here TICTACTOE displays accountability for its decisions, an
important feature of A.I. software.

94

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

REM TICTACTOE - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 10701GOSUB 11301G0SUB 1240

GOSUB 12901IF WG-0 THEN GOSUB 1340

ELSE GOSUB 1610

STOP

REM

REM INITIALISATION

BORDER 01 MODE 11INK 0,261 INK 1,201

INK 2,21 INK 3,0iDIM PM(5>lDIM CM(5>

iDIM GM(5)iDIM D(9)iDIM WIN4(8)1FOR

1-1 TO BlREAD WINS(I)iNEXTiP-OiC-O

DIM LX(9)|DIM LY<9>iF0R 1-1 TO 9

READ LX(I>,LY<I)iNEXTiDIM SX(9)iDIM

SY(9)iF0R 1-1 TO 9iREAD SX(I),SY(I>

iNEXTiGRAPHICS PEN 3:DIM FT(8)

RETURN

REM

REM DISPLAY

BORDER 21 PEN 3iPAPER liCLSiWINDOW

«1,1,40,1,3iPAPER #1,O1CLS *1

WINDOW *2,3,17,5,13iPEN #2,01 PAPER

*2,2iWIND0W *3,6,14,15,211 PAPER «3,

01 WINDOW *4,20,38,5,21iPAPER *4,0

WINDOW «5,1,40,23,251 PEN *5,3:PAPER

#5,0iCLS *51LOCATE 14.21PRINT

"< TICTACTOE >"lGOSUB 11901CLS #2

RETURN

REM

REM FIRST TURN

LOCATE 11,121 PRINT"THE USER STARTS“

95

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

jIPRINT“ - U"I LOCATE 11,14»PRINT

"COMPUTER STARTS - C" 1WG-21WHILE WG

-21 IF INKEY<621-0 THEN WG-1

IF INKEY(421—0 THEN WG-0

WEND1CLEAR INPUT:FOR 1-12 TO 14:

LOCATE 11,I»PRINT STRINGS(19,CHRS(

3211:NEXT:RETURN

REM

REM LARGE GRID

CLS #4:FOR 1-1 TO IOiMOVE 399+1,64:

DRAW 399+1,334:MOVE 499+1,641 DRAW

499+I,334:NEXT»FOR 1-1 TO IOiMOVE

304,149+1»DRAW 606,149+1»MOVE 304,

239+IiDRAW 606,239+1»NEXTI PAPER 0

FOR 1-1 TO 9»X—LX(I1*O.062»Y—25—LY(

11/16»IF I>6 THEN Y-Y+l

LOCATE X.YiPRINT I■NEXT»RETURN

REM

REM SMALL GRID

CLS «3»FOR 1-1 TO 5»MOVE 125+1,64

DRAW 125+1,174»MOVE 172+1,64»DRAW

172+1,174»NEXT»FOR 1-1 TO 5»MOVE 80

,98+11 DRAW 222,98+1»MOVE 80,135+1

DRAW 222,135+11 NEXT: RETURN

REM

REM USER MOVE

UC-OiWHILE UC-OiN-O:WHILE N-0

LOCATE «5,13,2»PRINT «5,

"TYPE IN YOUR MOVE"

IF INKEY(641-0 THEN N-l

IF INKEY(651=0 THEN N-2

96

1380 IF INKEY (57)-0 THEN N—3

1390 IF INKEY<561-0 THEN N-4

1400 IF INKEY(49)-0 THEN N-5

1410 IF INKEY(48)-0 THEN N—6

1420 IF INKEY<411-0 THEN N—7

1430 IF INKEY<401-0 THEN N—8

1440 IF INKEY<331-0 THEN N-9

1450 WENDiCLEAR INPUTiCLt5 «5

1460 IF D<N1—0 THEN UC-1

1470 WENDiP-P+l1 PM <P>-N1D <N>-11G03UB

13201 IF P>2 THEN GOSUB 20401GOSUB

2120

14B0 IF C+P-9 THEN GOSUB 2330

1490 GOSUB 16101 RETURN

1500 REM

1510 REM NOUGHT

1520 SOUND 1,60,501 GRAPHICS PEN liR-35

1530 GOSUB 15701 GRAPHICS PEN OiR-lO

1540 GOSUB 15701 RETURN

1550 REM

1560 REM CIRCLE

1570 FOR YC—LY<N1—R TO LY<N1+R|Xl-LX<N1-

8QR <R*2- <YC-LY <N11*211X2-LX <N> *2-X 1

■MOVE X1,YC|DRAW X2,YCiNEXT YC

1580 RETURN

1590 REM

1600 REM COMPUTER MOVE

1610 IF P>1 THEN GOSUB 1680 ELSE SC-0

1620 IF SCOO THEN N-SC ELSE GOSUB 1880

1630 C-C+lI CM<C1-NlD<N>-21GOSUB 19901 IF

02 THEN GOSUB 2080iGOSUB 2120

97

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

IF C+P-9 THEN GOSUB 2350

GOSUB 1340:RETURN

REM

REM BLOCK LINE

SC=O:PRINT #2:PEN #2,0:PAPER #2,3

PRINT #2," NEW '0' LINE?":GOSUB

2040:GOSUB 2200:FOR 1-1 TO G-1:FOR

J-I+l TO G:PRINT #2,“ TEST *|GM(I>|

GM(J)JCHR#(58)I :CL-3:GOSUB 1790

BL-O:FOR K-l TO 8:BF-O:FOR L-l TO 3

:A-VAL(MIDS(WIN«(K),L,1)):IF A-GM(I

) OR A-GM(J) THEN BF-BF+1

NEXT:IF BF-2 THEN BL-K

NEXT:GOSUB 1760:IF BL-0 THEN PRINT

#2," OKAY" ELSE PRINT #2," CHECK":

GOSUB 1820

GOSUB 1760:CL-O:GOSUB 1790:NEXT:

NEXT:RETURN

REM

REM PAUSE

FOR TP-1 TO 1OOO:NEXT:RETURN

REM

REM SQUARES 2

PEN CL:LOCATE SX(GM(I)>,SY(GM(I>> :

PRINT CHR«(79):LOCATE SX(GM(J)>,SY(

GM(□)>:PRINT CHRS(79)1 RETURN

REM

REM MAKE SURE

GOSUB 1760:PRINT #2," LINE IS

WIN«(BL):SF—O:FOR M-l TO 3:A-VAL(

MID«(WIN4(BL),M,1)>: IF D(A)=O THEN

98

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

SC-A

IF D(A)-2 THEN SF-A

NEXT:G0SUB 1760:IF SFOO THEN PRINT

#2," CROSS ALREADY":PRINT #2,

• IN SQUARE";SF ELSE IF SCO 0 THEN

PRINT #2,“ FILL SQUARE"|SC

RETURN

REM

REM STRATEGY

PEN «2,0:PAPER «2,2:PRINT «2

CHOOSING LINE"iPRINT «2,

" FOR COMPUTER"!FOR 1-1 TO 8:FT(I>-

0«NEXT!FOR 1-1 TO 8:FC-O:FOR J-l TO

31 S—D(VAL(MID*(WIN*(I),J,1)>)

IF S-l THEN FC-l:FT(I>=0 ELSE IF S-

2 AND FC-O THEN FT(I)-FT(I)+1

NEXT!NEXT: FOR 1-1 TO 8

PRINT #2,"*"|WIN*<I>VALUE"}

PRINT «2,FT(I):G0SUB 1750:NEXT:FB-0

:F0R 1-1 TO 8: IF FT(D>-FB THEN FB-

FT(I)1FL-I

NEXT:ST*-WIN«(FL> : IF FB-0 AND COO

THEN GOSUB 2390

IF FB-0 THEN ST*-WIN*(INT(RND*8>

+1)

PRINT «2,"SELECTED: "jST*:FOR 1-1

TO 3:A—VAL(MID*(ST*,I,1)>:IF D(A>-

0 THEN N-A

NEXT:RETURN

REM

REM CROSS

99

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

SOUND 1,239,50: GRAPHICS PEN 2: MU VE

LX(N)-30,LY(N)+151DRAWR 15,151DRAWR

45,-45IDRAWR —15,—15iDRAWR -45,451

MOVE LX(N),LY(N)1FILL 21DRAWR -30,

ISlDRAWR 15,15iDRAWR 45,-45iDRAWR -

15,—15iDRAWR -45,45

MOVE LX(N)+4,LY(N)1 FILL 21 MOVE LX(N

)—30,LY(Ni-151DRAWR 45,451DRAWR 15,

-ISlDRAWR —45,—45iDRAWR -15,151

MOVER 4,0lFILL 21 MOVER 30,30!

FILL 2

RETURN

REM

REM USER ARRAY

G-PlFOR 1-1 TO 5lGM(I>“PM(I>iNEXT

CH-791 RETURN

REM

REM COMPUTER ARRAY

G-C1F0R 1-1 TO 5iGM<I)“CM(I>iNEXT

CH-881 RETURN

REM

REM CHECK LINE

PEN #2,3lPAPER #2,0iPRINT #2,

" CHECK •"|CHR»(CH>J"* WIN1* l GOSUB

22001W-OiFOR 1-1 TO G-21F0R 0-1+1

TO G-llFOR K-J+l TO GiLIN*“STR*(GM(

I>)+STR4(GM(J))+STR4(GM(K>)I PRINT

#2," TEST "|LIN*|"l "|tCL-3

A«-""1FOR M-2 TO 6 STEP 21A»-A*+

MID«(LIN«,M,1>1 NEXTiLIN*“A»

GOSUB 22601GOSUB 1760iCL-OlGOSUB

100

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

22601WP-Oi FOR L-l TO 8l IF LIN«-

WIN«(L) THEN W-liWL-LiWP-1

NEXTiIF WP-1 THEN PRINT *2," YES"

ELSE PRINT #2," NO"

NEXTiNEXTiNEXTiIF W-l THEN GOSUB

2300

RETURN

REM

REM SORT

SR-01WHILE SR-01F-01FOR 1-1 TO 8-1

IF GM (I) >GM (1+1) THEN S-GM(I)i8M(I)

-GM (1*1) I GM (1*1) -Si F-l

NEXTiIF F-0 THEN SR-1

WENDlRETURN

REM

REM SQUARES 3

PEN CLiLOCATE SX(GM<I)),SY<GM<I>>I

PRINT CHR«(CH)iLOCATE SX(GM(J)),SY(

GM(J))iPRINT CHR«(CH)ILOCATE SX(GM(

K)),SY(GM(K)>1 PRINT CHR«(CH)

RETURN

REM

REM REM WIN

SL—VAL(LEFT«(WIN«(WL),1))1EL-VAL(

RIGHT«(WIN«(WL>,1))iGRAPHICS PEN 31

MOVE LX(SL),LY(SL)iDRAW LX(EL),LY(

EL)

LOCATE *5,14,21 IF CH-79 THEN PRINT

#5,"THE USER WINS" ELSE PRINT #5,

"COMPUTER WINS"

LOCATE 1,11 PEN 31STOPsRETURN

101

2330 REM

2340 REM DRAW

2330 LOCATE *5,14.21PRINT «5,

"GAME IS DRAWN">LOCATE 1,11 STOP

2360 RETURN

2370 REM

2380 REM CONCEDE

2390 LOCATE #5,14,21 PRINT #3,

"ACCEPT DEFEAT"!LOCATE 1,1lSTOP

2400 RETURN

2410 REM

2420 REM DATA

2430 DATA 123,456,789,147,258,369,159

2440 DATA 357,354,289,454,289,554,289

2450 DATA 354,199,454,199,554,199,354

2460 DATA 109,454,109,554,109,7,16,10

2470 DATA 16,13,16,7,18,10,18,13,18,7

2480 DATA 20,10,20,13,20

Commentary on TICTACTOE
The control routine between lines 1020,1030 calls the routine ‘initialisation’,
to establish arrays, variables and information required during the program’s
execution, and then calls ‘display’, ‘large grid’ and ‘small grid’ to set up the
screen display used throughout the program. At line 1030 the value of the
flag WG, obtained in the routine ‘first turn’, called by ‘display’, is used to call
either ‘user move’ or ‘computer move’, depending upon whether an initial
move by the user or the computer has been selected.

102

Initialisation routine (Lines 1060-1110)

Line 1070 selects MODE and screen colours and then sets up the arrays PM,
and CM. These are used to record the user’s moves and the computer’s
moves on a numbered 1-9 grid representing the nought and crosses game.
The array GM, also initialised at line 1070, is required later in the program
in several routines which need to refer to either set of all moves currently
made, whether by the user or the computer. The D array is used to record
moves made, both for the screen display and also for reference purposes in
various routines.

The program needs to know which combinations of filled squares represent
winning lines in a game of noughts and crosses. There are eight such lines
and this information is held as DATA at 2430, 2440. The winning lines are
READ into the WIN$ array by the FOR loop at line 1070. The same line
initialises the variable P which counts the total number of user moves at any
stage of the game. Similarly the variable C records the number of computer
moves.

The screen display gives two representations of the noughts and crosses grid.
The main grid fills the right hand side of the display and shows the current
state of the game, constantly updated as the user and computer make their
moves. A smaller grid at the bottom left of the screen is used to indicate
which combination of positions the coniputer is considering when selecting
its next move. The coordinates of the centres of all the squares on both grids
are READ from DATA in ‘initialisation’. Lines 1080, 1090 place
coordinates for the large grid into the arrays LX and LY. Similarly line 1090
fills the SX, SY arrays with coordinates for the small grid. Line 1090 also
selects GRAPHICS PEN colour and initialises the FT array for the ‘strategy’
routine.

Display routine (Lines 1120-1170)

This routine sets up the screen display used throughout the execution of the
program. Line 1130 clears the entire screen to cyan and selects black for text.
Five windows are established by lines 1130-1150. Windows #1 and #5 are
used initially to place matching bands of white across the top and bottom of
the screen and line 1150 PRINTS the program’s title on the top band. Before
the display is completed a prompt appears on the screen which asks whether
the user or the computer is going to make the first move in the game. This is
done by the call to the routine ‘ first turn’ at line 1150 with GOSUB 1190.

First turn routine (Lines 1180-1220)

Here the value of the flag WG is determined, as required by the control
routine in order to decide whether the user or the computer makes the first

103

move. Prompts are PRINTed by line 1190. The WHILE/WEND loop, lines
1190-1210, then prevents further execution of the program until either the U
or the C key is pressed. INKEY is used by lines 1190,1200 to set WG to 0 or
1 as required and either value causes the loop to end at line 1210. After this
the prompts are erased by the FOR loop at 1210.

Large grid routine (Lines 1230-1270)

A large noughts and crosses grid is placed upon the screen. First a white
background is created by the use of CLS #4 at line 1240. Then vertical and
horizontal lines are added boldly in black by using the two FOR loops at line
1240 to thicken them. The grid now needs to be numbered to allow the user
to choose the moves to be made. This is done by the FOR loop, lines 1250,
1260. The arrays LX, LY hold the graphic coordinates of the centres of the
squares and so these have to be modified by the algebraic expressions in line
1250 to give the screen coordinates required by the LOCATE command.

Small grid routine (Lines 1280-1320)

A small noughts and crosses grid is placed in the bottom left hand corner of
the screen by this routine. Here the white background is produced by CLS
#3 at line 1290. The two FOR loops again divide the area into the grid
required.

User move routine (Lines 1330-1500)

This routine requests the user’s choice of move. This is done between lines
1340 - 1470 by the nested WHILE/WEND loops. The inner loop repeats
until one of the conditional lines, 1360 - 1440, detects that an appropriate
key has been pressed. Then the outer loop repeats unless this choice of move
corresponds to an empty square on the grid.

Line 1470 increments the variable P representing the number of user moves
and enters the move into the user move array, PM. The D array is also
updated and the routine ‘nought’ called with GOSUB 1520 to show the
move made on the large grid.

Line 1470 then calls ‘user array’ and ‘check line’ to see if the user has won the
game. Obviously this can only be possible if at least three moves have been
made and so 1470 includes the conditional expression, IF P > 2 THEN... At
line 1480 the total number of moves, both by computer and player, is
calculated and, if this has reached nine without a win for either, the routine
‘draw’ is called.

The routine then calls ‘computer move’.

104

Nought routine (Lines 1510-1550)

Here GOSUB 1570 is used twice to call the circle routine and mark the grid
with the user’s nought.

Circle routine (Lines 1560-1590)

This routine fills a solid circle, radius R, about the point LX(N), LY(N). The
YC loop does this by calculating two points, XI, X2, on the circumference
of the circle for each YC value and then joining them. The equations at line
1570 are derived from the standard Pythagorean relationship.

Computer move routine (Lines 1600-1660)

Here TICTACTOE decides the move that the computer should make.
Priority is given to defensive play and so, if the user has made at least two
moves, line 1610 calls ‘block line’ with GOSUB 1680 to see whether the
move made by the computer needs to obstruct a possible winning line. If
there are fewer than two user moves, the variable SC is set to zero. The
routine ‘block line’ itself can also return a value of SC equal to zero if there
is no user line to be obstructed. In either case, line 1620 calls ‘strategy’ to
choose the best new move for the computer to make. However, if ‘block
line’ has found a square which needs to be occupied quickly to prevent a user
win, line 1620 plays this move.

The remaining lines of the routine, 1630-1650, are an exact parallel to lines
1470-1490 of ‘user move’.

Block line routine (Lines 1670-1740)

All the moves made so far by the user are examined here to see if any two of
them form a potential line which needs to be blocked by the computer. For
exanple, since the combination 159 is a winning line, if the user has already
filled squares 1 and 9 this routine will return the value SC = 5 in order to
prevent the user from completing this particular route.

First, the routines ‘user array’ and ‘sort’ have to be called to place all the user
moves into numerical order. The four nested loops, 1690-1730, then
combine all the user moves into pairs which possibly form a potential line so
they can check these against the known winning lines in the WIN$ array. The
range of the I and J loops ensure that all the correct combinations are
formed. This can be seen by looking at the diagram, where it has been
assumed that the user has made the four moves: 1, 3, 4 and 7. Each
combination is shown as it is formed by lines 1690 and 1730.

105

The K loop considers the eight WIN$ lines and the L loop tests the three
squares of each of these lines against the currently combined pair of user
moves, at line 1700. For each match, the variable BF is incremented. If its
value reaches 2 then a potential user line has been found. When this happens
the block-line flag, BL, is equated to the value of K at line 1710 to register
the particular winning line involved.

Line 1720 indicates to the user whether or not a line has been found. If one
has, the routine ‘make sure’ is called by GOSUB 1820 to see if it is blocked
by a square already occupied by the computer or whether a defensive move
has to be made.

Pause routine (Lines 1750-1770)

A delay is created by the empty FOR loop.

106

Squares 2 routine (Lines 1780-1800)

The positions of the pairs of user moves being considered by ‘block line' are
shown on the small grid by this routine.

Make sure routine (Lines 1810-1860)

This routine is called by ‘block line’ to see if a suspected winning line for the
user, WIN$(BL) , is already blocked by a square filled by the computer.
Line 1820 states which line is being examined.

The FOR loop checks through the line. If 1820 finds a vacant location in the
D array, then obviously this is the move the computer needs to make and so
the variable SC is set accordingly. Alternatively, if the line has already been
blocked, line 1830 will identify as SF the computer move which is preventing
a user win. Whichever is the case, line 1840 will inform the user what is
happening.

Strategy routine (Lines 1870-1970)

If TICTACTOE does not have to block a winning line which is being
produced by the user, line 1620 calls this routine to choose the best possible
move for the computer. A prompt PRINTed by line 1880 indicates this.

The move is chosen by establishing a score for each possible line in WIN$.
These values are placed in the FT array, initialised at 1880, and calculated by
the nested FOR loops, 1880 - 1900. The outer loop examines each line in
turn. If 1890 finds a user move in a line it is immediately given a score of zero
and the flag FC prevents any subsequent addition to this score. However, if
a computer move is found, and the FC flag is switched off, the score is
incremented. In this way, a line with no user moves and the most computer
moves will be given the highest score.

The scores for all eight possible lines are displayed by 1900 - 1920. Lines
1920, 1930 then identify the best line for the computer to play, ST$. If no
best line is found, 1940 chooses a line at random for the very first computer
move. Later in the game, on the other hand, an absence of a best line causes
TICTACTOE to accept defeat at 1930 with ‘concede’.

The FOR loop, 1950,1960, chooses the move, N, to make from the best line.

Cross routine (Lines 1980-2020)

A cross is drawn for the computer’s move at (LX(N), LY(N)) on the large
grid by the use of FILL and DRAWR.

107

User array routine (Lines 2030-2060)

This places the user’s moves into the GM array for those generalised
routines which need to operate on either the user or computer moves. It also
places the ASCII code for an ‘O’ into the variable CH at line 2050.

Computer array routine (Lines 2070-2100)

This routine is directly analogous to ‘user array’.

Check line routine (Lines 2110-2180)

A possible winning line for either player is determined in this routine. Line
2120 indicates whether a user or computer win is being checked and ‘sort’,
called by GOSUB 2200, places all moves in the GM array into order. Then
the nested I, J, K loops, 2120 - 2160, concatenate values from GM to form
all possible lines, expressed at each pass through the loops as the string,
LIN$. The ranges of I, J, K are deduced in a similar way to the I, J ranges in
‘block line’.

Line 2140 shows on the small grid the particular combination of moves that
is being tested by calling ‘squares 3’. The FOR loop, 2140, 2150, compares
LIN$ with the WINS array to see if a winning line has been found and a
message is placed on the screen by 2150. After the loops have checked
through all the possible lines, line 2160 calls ‘win’ if necessary.

Sort routine (Lines 2190-2240)

This is a simple sorting routine which will place array values into order when
required by other routines.

Squares 3 routine (Lines 2250-2280)

The combination of moves being tested by ‘check line’ is shown on the small
grid by this routine.

Win routine (Lines 2290-2330)

A line is drawn across the large grid to show a winning combination of
squares. At line 2300, SL and EL are defined as the first and last squares of
the winning line, obtained by using LEFT$ and RIGHTS on WIN$(WL).
These values are then used in the LX and LY coordinate arrays to show the
line graphically, with MOVE and DRAW. Line 2310 then states whether
the user or computer has won.

108

Draw routine (Lines 2340-2370)

Here the program informs the user that the game cannot be won by either
player.

Concede routine (Lines 2380-2410)

The program admits defeat!

Data (Lines 2420-2480):

The codes for the winning lines and the coordinates for both grids are stored
here and READ by the routine ’initialisation’.

109

CHAPTER 7

The wood for the trees:
computer vision.

If one of the aims of Artificial Intelligence is to be the eventual development
of useful robots, then the problem of adequate vision will have to be solved.
We are, like most other species, almost wholly dependent upon sight for the
conception we have of the world we inhabit. A culture without vision would
be strangely different to ours. In a short story, H.G. Wells imagined a valley
isolated from the rest of the world and in which every person was blind.
Inevitably, a very alien society had developed with concepts totally different
from those of an accidental, sighted visitor. Robots, too, would never share
our world, in the way postulated by visionaries and science fiction authors,
without a sense closely approximating to human sight.

Industrial Applications
More appropriate to the present is the need to give industrial robots an
ability to see. This, although very crude, would enable automated factories
to produce a greater variety of products and deal more efficiently with
problems of orientation of parts on conveyor belts. Here the force of
industrial competition will presumably provide the funds required for the
pure research required, in the same way that money was made available for
A.I. once the commercial viability of expert systems was perceived.

A third incentive for investigation of computer vision is the immediate affect
such a development would have upon other areas of A.I. In particular,
learning systems would become far more efficient if computers were able to
examine directly those things they were meant to be learning about instead
of relying upon a human at the keyboard as an unavoidable intermediary.

Human Vision
Nevertheless, the difficulties involved in producing the software, and
hardware, necessary to simulate vision can hardly be exaggerated. Quite
simply, a tremendous amount of computational power is involved in human

111

sight. It has been estimated that perhaps 60 percent of the cortex is involved
is seeing. The neurons in the brain are vastly more sophisticated than
computer circuits. They possess thousands of interconnections in three
dimensions, compared with the few, and relatively two-dimensional,
connections of the silicon chip. In addition, brain signals are not merely
electrical, but instead involve a variety of subtle chemical modifications.
Most important of all, the brain is capable of parallel processing on a gigantic
scale, unlike the fast, but serial, operation of digital computers.

These differences in basic design and capacity reveal themselves very
obviously in the way in which a person and a computer see and interpret a
given visual image. While the computer is still probably saying to itself
something like: ‘Ah, this pixel is a bit darker than that one, and so was the
one before. Maybe there’s an edge here. I’d better remember that in case
this could be the corner of a rectangular object...’ the person will be
thinking: ‘Oh dear. I’ve left the freezer open again. Hope the ice-cream
hasn’t thawed out, because the last time I did that on Howard’s birthday he
sulked for a week.’

It is the human ability to make such amazing leaps of association that
provides a tremendous challenge to A.I. It seems highly unlikely that
anything less than a completely new type of computer architecture, and
vastly improved chips, will ever bring computers and humans together to the
position where they could agree about the fine detail of what they were
seeing. Yet again, A.I. has shown the great deal of intelligence required to
do some seemingly ordinary process. Nevertheless, the challenge remains to
investigate what can be done with existing machines.

Processing the Data
The first stage of any system of vision has to be the collection of raw data for
further processing. It can be assumed that a video camera is available for this
and that it will reduce a scene to an array of pixels, each varying over some
range of greyness and representing the intensity of light falling on that
particular area of the receptor’s surface. The software must now convert this
into a meaningful internal representation of the scene viewed and begin to
identify what has been ‘seen’.

The algorithms employed must consider the levels of greyness and decide at
what point a change in intensity represents some real change in the scene,
rather than just a random fluctuation caused by a lighting effect. They must
be able to decide where edges are and how these fit together to form
surfaces. As seen with expert systems, logical rules are not sufficient for true
understanding. A vision program will need to have a great deal of the same

112

heuristic, ‘ rules of thumb’ built in. Then it will realise that a particular part
of the image cannot possibly represent, perhaps, a bus being cut in half
because such things are unlikely to happen in the real world. Instead it will
start looking for a lamppost in the foreground. (A human, of course, would
immediately recognise half a bus without any difficulty!)

Stereoscopic Vision
Important cues in interpreting visual information in the cortex seem to result
from stereoscopic vision. Bela Julesz of the AT&T Bell Laboratories has
discovered that the brain has unexpected abilities at extracting depth
information from the signals it receives. Even a randomly produced pattern
of black and white dots, presented to each eye but with a certain area of the
pattern shifted in opposite directions for either one, will produce a strikingly
three dimensional screen. In it, the area appears raised or depressed from
the rest of the background. Here, the brain is clearly detecting the
stereoscopic information without any obvious aids, like recognition of
previously encountered patterns. Encouraged by this evidence of a working
algorithm, Tomaso Poggio, at the Massachusetts Institute of Technology,
has gone on to develop a stereo vision program. This can take two separate
images, seen from slightly separated points of vision as with the two eyes of
human sight, and by filtering the images mathematically and matching one
against the other, determines differences in depth. This is clearly an
significant line of research.

Thinking Small
In developing a vision system on a small microcomputer a number of
enormous simplifications have to be made. Analysing an image rapidly
consumes memory and it is therefore necessary to work on a very reduced
scale. Processing of raw data into a convenient array of pixels is probably
also too difficult, although cameras designed to be interfaced with a small
computer are available commercially. Instead it is much easier to type the
array information directly into the program. A choice has to be made about
the type of algorithm to be employed. Recognising straight lines, as regular
patterns of ones in an array otherwise consisting of noughts, is probably
about the easiest approach, as well as having the satisfaction of mimicking
the function of some neurons.

PIPPA
In this program, the algorithm developed looks instead for the vertices of a
shape rather than lines. From the patterns the vertices make, it attempts to
identify the shape from a knowledge gained in previous program RUNs.

113

mmsi
TO MAKE SHAPE:
L-IJR EUR-LUC A"i E-i
SPACESAE-F IXESj

(IDENTIFICATION!
¡PRESS: < S >

SEARCHING GF ID
FOR VERTICES..
FOUND VERTEX 1
'FOUND VERTEX 2
(FOUND HERTEN :?

(MATCHING CHAPE
(FOR: CODE: 2211
11

SHAF6E ■ IE; :
TRIANGLE

SHAPE'S CODE :
2211 1 1

!
TRIANGLE CODE;!
221111 i

114

The operation of the program can be understood by looking at the two
screen dumps. In the first, a large right-angled triangle has been drawn on a
coordinate grid on the screen, by using a combination of the cursor keys and
the space-bar. Pressing the S key has then begun the program searching
for vertices. From the text window it can be seen that all three were found
successfully.

Once the vertices were found, the program generated a unique code based
upon their mutual distances apart. The code determined here was 221111, as
seen in the second screen dump. Once the computer had a code for the
shape, it checked it against all known codes. Finding no match, it requested
the identity of the shape and was given the name ‘ triangle’.

The program was then given the second triangle. It can be seen that although
the triangle, this time, was smaller, in a different part of the grid and
possessed a different orientation, the program still determined the same
code for it and succeeded as a result in naming it correctly. PIPPA is able to
learn to identify a number of different shapes in this way.

Commentary on PIPPA
The overall operation of the program is controlled by line 1020. The routine
‘initialisation’ is called with GOSUB 1050 to set up arrays and variables and
‘describe’, GOSUB 1130, provides an explanation of the program. Then the
WHILE /WEND loop calls in turn ‘polygon’, which lets the user give the
program a shape, ‘code shape’, which turns the shape into a unique code and
‘identify’ which compares this code with known shapes and their codes. The
loop progressively acquires a set of codes which enables the program to
identify more and more shapes given to it.

Initialisation routine (Lines 1040-1110) :

First, line 1050 selects MODE and screen colours. Lines 1050, 1060 then set
up the arrays XA, YA, XB and YB. The first pair, XA and YA, are used to
hold the DATA entered by the FOR loop at line 1090. These values are the
relative coordinates of the immediate neighbours of any square on the grid
on which the shape is drawn. They are needed, in the routine ‘detect vertex’,
to decide whether a particular square is a vertex of the shape. Similarly line
1100 READs the coordinates of the second-nearest squares into XB, YB
and these, too, are considered by ‘detect vertex’.

Lines 1070, 1080 establish other arrays needed by the program and the
variable NS, which is the total number of known shapes. The names of the
shapes are held in the NS$ array and the identification codes by the CD$
array.

115

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

REM PIPPA - PAT HALL, 1/86

REM CONTROL ROUTINE

GOSUB 1050:GOSUB 1130:WHILE TIME >0

:GOSUB 1410:GOSUB 1740:GOSUB 1990:

GOSUB 1370:WEND

REM

REM INITIALISATION

MODE 1:BORDER 2:INK 0,2:INK 1,24:

INK 2,0:INK 3,26:DIM XA(B)

DIM YA(8): DIM XB(16): DIM YB(16>

DIM G(18,18): DIM VX(10)

DIM VY(10): DIM VV(90): DIM NS«(10)

:DIM CD«(10): NS=O

FOR 1=1 TO 8:READ XA(I),YA(I>:NEXT

FOR 1=1 TO 16:READ XB(I>,YB(I):NEXT

:RETURN

REM

REM DESCRIBE

PEN 2:PAPER 1:CLS:WINDOW «1,1,40,1,

3:PAPER #1,3:CLS#1:WINDOW «2,1,40,

4,22:PAPER #2,1:WINDOW «3,1,40,23,

25:PEN #3,2:PAPER «3,3:CLS «3

PEN #1,3:PAPER #1,0:LOCATE #1,16,2:

PRINT #!,"< PIPPA >":LOCATE 3,7

PRINT’THIS PROGRAM CAN BE";

PRINT" 'TAUGHT' HOW TO"

PRINT" IDENTIFY DIFFERENT";

PRINT” SHAPES WHICH YOU"

PRINT" DRAW ON A 15 X 15 GRID"

PRINT:PRINT" IT DOES THIS";

PRINT" BY FINDING THE VERTICES"

116

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

PRINT“ OF THE SHAPE AND";

PRINT“ CALCULATING A CODE"

PRINT" FROM THEIR MUTUAL";

PRINT" DISTANCES APART."1 PRINT

PRINT" AT FIRST YOU NEED”;

PRINT" TO NAME EACH SHAPE"

PRINT" AS YOU ENTER IT.";

PRINT" HOWEVER THE PROGRAM"

PRINT" ALWAYS CHECKS A";

PRINT" NEW SHAPE WITH THE"

PRINT" CODES IT 'KNOWS'."

GOSUB 1370:CLS #2:WINDOW «4,3,16,5,

12:PEN #4,2:PAPER «4.31CLS #4

WINDOW «5,3,16,14,21:PEN «5,2:PAPER

#5,3:CLS «5:PAPER 3:RETURN

REM

REM PROMPT

CLS «3XPRINT #3:PRINT #3,TAB«16)

"< SPACE >" I K-0: WHILE K=0:IF INKEY

(47)-O THEN K-l

WEND:CLS «3:CLEAR INPUT:RETURN

REM

REM POLYGON

FOR 1-2 TO 16:F0R J-2 TO 16:8(1,J>

-0:NEXT:NEXT:FOR 1=1 TO 10:VX(I)-0:

VY(I)—O:NEXT

VC-O:X=9:Y=9:P-150:CLS #4:CLS «5

LOCATE #4,1,1:PRINT «4,"TO MAKE ";:

PRINT #4,"SHAPE:”:LOCATE #4,1,2

PRINT #4,"CURSOR—LOCATES":LOCATE «4

,1,3:PRINT #4,"SPACEBAR-FIXES"

117

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

LOCATE #4,1,5:PRINT #4,"IDENTIFIC"|

«PRINT #4,"ATION":LOCATE #4,1,6

PRINT #4,“PRESS....KEY S"sPRINT #4

WINDOW #6,19,38,5,21 xPAPER «6,3

CLS #6: GRAPHICS PEN 2: FOR 1-291 TO

606 STEP 21:MOVE 1,641 DRAW 1,335

NEXT«FOR 1-64 TO 336 STEP 18

MOVE 290,lx DRAW 604,1iNEXT

B-0:WHILE B-0

IF INKEY<8>-0 THEN X-X-l

IF INKEY<l)»0 THEN X-X+l

IF INKEY(2)-0 THEN Y-Y-l

IF INKEY<0>-0 THEN Y-Y+l

IF X<2 THEN X—2

IF X>16 THEN X—16

IF Y<2 THEN Y-2

IF Y>16 THEN Y=16

IF G<X,Y)—0 THEN GOSUB 1660

IF INKEY(47)=0 AND G<X,Y>-0 THEN G<

X,Y>—1:C—l:GOSUB 1710

IF INKEY<60>-0 THEN B-l

WENDs CLEAR INPUT1 RETURN

REM

REM SHADE IN

C-01GOSUB 17101 FOR 1-1 TO Pl NEXT

C-3:GOSUB 1710:FOR 1-1 TO PiNEXT

RETURN

REM

REM SQUARE

GRAPHICS PEN C:XP-X*21+260:YP-Y*18+

37:MOVE XP-9,YP-8«DRAWR 0,16«DRAWR

118

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

17,0iDRAWR 0,-151DRAWR -17.01MOVE

XP.YPlFILL CiRETURN

REM

REM CODE SHAPE

PRINT #5,

"SEARCHING GRIDFOR VERTICES"

FOR 1-1 TO 901VV(I>—01 NEXT

GOSUB 18501S—01 MN—4001 FOR 1-1 TO VC

■FOR J-l TO VC

IF IOJ THEN GOSUB 1950

NEXTiNEXT1FOR 1-1 TO StVV(I)-INT<VV

(I>/MN)1NEXT1ST-O1WHILE ST-01SW-0

FOR 1-1 TO S-11 IF VV(I)<VV(I+1)

THEN A-VV (I) I VV (I) -VV (1+1)IVV <1+1) —

A1SW-1

NEXTiIF SW-0 THEN ST-1

WEND1 ID»-""iFOR 1-1 TO SiID«-ID»+

STR«(VV<I>)iNEXTiPRINT «5,

"SHAPE'S CODEi"!PRINT «5,ID»

RETURN

REM

REM SEARCH GRID

P-01 FOR Y—16 TO 2 STEP-1: FOR X-2 TO

16lIF 8<X,Y>—0 THEN GOSUB 1660 ELSE

GOSUB 1890

NEXT]NEXTiRETURN

REM

REM DETECT VERTEX

FOR 1 = 1 TO 4s IF G<X+XA<I),Y+YA<I)>

<>0 AND G(X+XA<1+4),Y+YA<1+4)><>0

THEN G<X,Y)=2

119

1900

1910

1920

1930

1940

1950

1960

1970

I960

1990

2000

2010

2020

2030

2040

2050

2060

2070

NEXTsFOR 1=1 TO BsIF B<X+XB(I),Y+YB

(I))<>0 AND G(X+XB(1+8),Y+YB(1+8)>

<>0 THEN G(X,Y>=2

NEXT:IF G(X,Y)<>2 THEN C=O:GOSUB

1710:VC=VC+1: VX(VC)=X:VY(VC)=Y:

PRINT #5,"VERTEXVC

RETURN

REM

REM LENGTH

S-S+1:VV(S)=(VX(I)-VX(J))~2+(VY(I)-

VY(J))-2lIF MN>VV(S> THEN MN=VV(S)

RETURN

REM

REM IDENTIFY

PRINT #4,"MATCHING SHAPEFOR CODE "|

:PRINT 44,ID*:PRINT 44:MF=0:F0R

1=1 TO NS

PRINT 45,NS*(I)|" CODE:":PRINT 45,

CD»(I):IF ID*=CD*(I> THEN M-I:MF-1

GOSUB 2100:NEXT:IF MF-1 THEN PRINT

44,"SHAPE IS:”:PRINT 44, NS»(M>

ELSE GOSUB 2050

RETURN

REM

REM NEW SHAPE

GOSUB 2100:NS=NS+1:PRINT 44,

"NOT IDENTIFIED":GOSUB 2100

PRINT 44,

"TYPE NAME OF THIS SHAPE"

LOCATE 1,23:INPUT N*:NS*(NS)=N*:

CD*(NS)=ID*:RETURN

120

2080 REM

2090 REM PAUSE

2100 FOR TP-1 TO lOOOiNEXT:RETURN

2110 REM

2120 REM DATA FOR NEIGHBOURS

2130 DATA -1,-1,0,-1,1,-1,1.0,1,1,0,1

2140 DATA -1,1,-1,0,-2,-2,-1,-2,0,-2,1

2150 DATA -2,2,-2,2,-1,2,0,2,1,2,2,1,2

2160 DATA 0,2,-1,2,-2,2,-2,1,-2,0,-2,-1

Describe routine (Lines 1120-1350) :

Lines 1130-1140 set up the text windows needed by the program and display
the title. Then a brief description of the program’s operation is provided by
lines 1150-1320. This text is left on the screen until the space-bar is detected
by the routine ‘prompt’ with GOSUB 1370 at 1330. Then it is cleared by CLS
#2 and two separate text windows, with a white background to contrast with
the yellow of the screen, are created by 1330, 1340.

Prompt routine (Lines 1360-1390) :

Here the program’s execution is delayed until the space-bar is detected at
line 1370.

Polygon routine (Lines 1400-1640):

In this routine the user is able to draw on the screen a shape for the program
to identify. Line 1410 initialises the G array which represents the contents of
the grid on which the shape is drawn. Although the grid itself consists of 15
rows and columns, the array needs to be dimensioned as 18 X 18. This is due
to the form of the vertex-detection algorithm used subsequently in the
program.

Line 1410 also clears the two arrays, VX and VY, which are used to store the
coordinates of the vertices of the shape. The variable VC, initialised by
1420, counts the number of vertices detected. The starting point, (X, Y), for
the user’s ‘cursor’, a filled square which can be moved around the grid, is

121

selected as the centre of the grid by line 1420. This line also sets the value,
P, for the pause in the routine ‘shade in’.

Explanatory text is placed in window #4 by lines 1430 - 1460 and the grid
itself is drawn by the use of CLS #6 and two separate FOR loops between
1480-1500.

After this the shape can be drawn. The WHILE/WEND loop between lines
1510-1630 allows the filled square to be moved around the grid by adjusting
the coordinates, X and Y, according to the cursor keys detected by lines 1520
- 1550. Lines 1560-1590 prevent the square from moving outside of the grid.
Grid squares which are not part of the shape being designed are
momentarily filled by ’shade in’ called by GOSUB 1660 at line 1600 in order
to show the location of the user’s cursor. If, however, the space-bar is
pressed, line 1610 alters the element of the G arrary corresponding to the
relevant square to 1 and thus records part of the shape being built up. The
same line also calls the routine ‘square’ to fill this square permanently as yel­
low, contrasting with the white background of the grid.

Line 1620 permits the routine to end when the user has finished the shape
and pressed the S key.

Shade in routine (Lines 1650-1690):

The flashing cursor used in designing the shape on the grid is created by this
routine. Line 1660 selects blue for the colour variable, C, and then uses
‘square’ to fill in the appropriate section of the grid. The length, P, of the
empty FOR loop which follows depends upon which routine is calling ‘shade
in’. ‘Line 1670 the uses ‘square’ to return the grid to white.

Square routine (Lines 1700-1720):

The screen coordinates, XP, YP, are calculated by line 1710 from the coor­
dinates, X, Y, of the square on the grid. The code depends solely upon the
geometric arrangement of the verticles of the shape and not their actual dis­
tances. This means that the program can be taught a name like ‘rectangle’
with reference to one shape that has been drawn and then will use it correctly
to indentify any othe rectangle tested susequently, irrespective of its size or
orientation.

Line 1740 places relevant text in window #5. Then the routine ‘search grid’
is called at 1760. This locates all vertices of the shape, total VC, and places
their coordinates in the VX and VY arrays.

122

Line 1750 has initialised the VV array, used to store the distances between
all possible pairs of vertices. Line 1760 sets to zero the number, S, of such
distances and also the variable MN, used in the calculation of the minimum
distance, in the procedure ‘length’. (The value 400 is required for the largest-
possible case of a square with edges along the perimeter of the grid.) The two
nested FOR loops, lines 1760-1780 then call the routine ‘length’ with
GOSUB 1950 to calculate the squared distance between all pairs of vertices.
Following this, the FOR loop at line 1780 uses the minimum distance, MN,
to convert all the distances to a set of ratios. It is this conversion which allows
the same code to be produced for any size shape.

The final step in producing the identification code is to place all the
converted distances into order. This is done by the simple sorting routine
contained in the WHILE/WEND loop, lines 1780 -1810. Then the numbers
are concatenated into a single string, ID$, by the FOR loop at line 1810. The
value of ID$ is displayed in window #5.

Search grid routine (Lines 1840-1870):

This routine searches through the grid and the G array and locates all
squares which are part of the shape. Line 1850 reduces the length of the
pause, P, to zero to make the search quicker. Line 1850 also fills in all
squares briefly except those which belong to the shape. For these, the
routine ‘detect vertex’ is called.

Detect vertex routine (Lines 1880-1930):

In ‘detect vertex’ each point of the shape is examined to see if it is a vertex.
This is done by referring first to the eight neighbouring squares and then to
the sixteen second closest neighbours. The coordinates for both sets of
squares have already been placed into the arrays XA, YA, XB and YB by
‘initialisation’.

The diagram shows the first neighbours, numbered 1 to 8. The FOR loop,
1890, 1900, checks the first four neighbours, and the square diagonally
opposite each time, to see if both have a value in the G array of 1. If this is
the case, then the central square lies on a side of the shape and is given a G
array value of 2. A similar routine then follows for the second neighbours in
lines 1900,1910. If, at the end of both loops, the central square has not been
given an array value of 2, it cannot lie between two points of a side of the
shape and must therefore be a vertex. Line 1910 will then mark the point in
blue on the grid, increment the vertex total, VC, and place the coordinates
of the square into the VX and VY arrays. It also places an appropriate
message in window #5.

123

Length routine (Lines 1940-1970):

This routine is called by ‘code shape’. It increments the total of distances
calculated, S, at line 1950 and calculates the squared distance between the
two vertices. In addition, line 1950 obtains the minimum distance of all, in
order that the ratios can be calculated.

Identify routine (Lines 1980-2030) :

A message is placed in window #4 by line 1990, which then initialises the
match flag, MF. The FOR loop, 1990-2010 checks through all the known
codes in the array CD$ to see if there is a match with the code derived for the
current shape, ID$. If there is, line 2000 sets MF equal to 1. At line 2010 the
value of MF is used either to name the shape which matches the code or else
to request the name of an unknown shape by a call to the routine ‘new
shape’.

124

New shape routine (Lines 2040-2080):

The number of known shapes, NS, is incremented at 2050. A suitable
request for a name is made by line 2060 and this, and its respective code,
entered into the NS$ and CD$ arrays by 2070.

Pause routine (Lines 2090-2110):

The FOR loop produces a delay.

Data (Lines 2120-2160):

The coordinate information for the eight first neighbour squares and for the
sixteen second neighbour squares is stored at these lines.

125

CHAPTER 8

The light of experience:
robots and

learning programs.

Robots are arriving slowly. They have been preceded by their name, since
Karel Capek’s play of 1923, and by their reputation since Talos, forged in
Greek Mythology by Hephaestus. They have starred in films for over fifty
years. They have appeared as toys, as threats and even as frauds, one radio­
controlled device once clearly deceiving a television news team. Their name
has suffered a bifurcation and can now refer to a most unanthropomorphic
mass of computer-controlled machinery.

But robots have still not arrived. At least, they have not yet arrived in the
bodily shape, and near demented intellect, of Robbie in ‘ Forbidden Planet’.
Nobody has yet been accosted at a party by their host’s latest Amstrad,
booming at them in a stentorian rumble: ‘I am monitored to bring you a
Carlsberg Special’. Unfortunately, robots appear to have matched Artificial
Intelligence generally in bringing the promised goods several generations
too late. Like the General Problem Solver, and Natural Language, the robot
has never quite managed to live up to its image...yet.

Nevertheless in a quiet way all the pieces are being assembled. Better A.I.
programs get written. Computational power per unit cost increases,
seemingly exponentially. University teams independently develop parts of
the solution. It seems inevitable that one day the robot really will be
trundling down to the park with the kids, just as Isaac Asimov always
assured us that it would.

Robots in Industry
Again, financial considerations will be the determining factor. The cost of
developing robots for domestic use would be quite prohibitive. Instead
money will be found for industrial robots capable of working in impossible

127

conditions for men, like the interior of reactors. Deep ocean salvage will
involve a high degree of robot technology. Exploration of Mars and the
satellites of Jupiter, and perhaps even high-temperature Venus, will
inevitably require very sophisticated levels of A.I. because no controlling
link will be available to Mission Control in real time.

Once the systems have been built, and the research paid for, the extension
into domestic life of what has been achieved will be cheap and irresistable.
The robot will arrive.

At present it is the industrial robot which appears to have made the most
progress. The first company devoted to robotics, Unimation, was founded in
1972. Since then more and more robots have appeared in factories. They are
now used for industrial processes such as loading and unloading lathes,
applying adhesives, welding, paint spraying, checking for damaged bottles
and precision assembly. Computer numerical control of machine tools has
been undoubtedly a breakthrough in production techniques. However it is
hard to see that this type of ‘robot’, at the moment, really incorporates A.I.
in its design, except in a very minimal sense. More interesting, perhaps, are
the genuine robot-like advances being made. For example, a research team
at Waseda University, Tokio, has concentrated upon developing a walking,
bipedal robot. It is claimed that problems of balance have been solved to the
point where the robot is almost as fast as a human being in performing this
inherently human skill. Similarly, at Carnegie-Mellon, a wheeled robot has
been built which can follow asphalt pathways around the campus and avoid
trundling on the grass. Its vision algorithms are sufficiently developed to
process the raw input of a video camera into an internal representation of the
surroundings. This representation is good enough to prevent the machine
trying to climb trees - most of the time!

Learning Algorithms
A vital feature of any piece of robotics software is the ability of the program
to learn. Of course ‘learning’ is a fairly nebulous concept and might well
seem very difficult to program. Certainly a generalised learning system, like
the brain of a human infant, is beyond the scope of any current machine or
software. There are, however, a number of points to bear in mind when
writing a learning program because they make the task a little easier.

First, it is vital to adopt a ‘top-down’ programming style. In preparing the
program to deal with the situations it will find itself in, it is important to
divide the potential state of affairs into various substates. These are then
redivided until small units are achieved which can be dealt with using simple
algorithms. This approach is illustrated in the commentaries for the two
programs in this chapter. Secondly, the internal model of the world that the

128

program contains requires an adequate method of representing knowledge.
It has to be appropriate to the needs of the program. Thirdly, the program
must be allowed reasonable feedback about the decisions it is making so that
it can correct its mistakes. Finally, the program’s internal model must not
begin too far away from the true state of things if learning is to take place.
This last condition is, quite evidently, similar to the human ability to learn
what is already fairly familiar but initial difficulty with the completely
unknown. (Most British people can pick up a few new words of French, but
rarely manage the same with Chinese!)

MINOTAUR
A familiar example of amateur programming in A.I. is the ‘Micromouse’
competition. Regularly, enthusiasts compete with a home-built model
(usually a combination of a glove puppet, Meccano set and Sinclair ZX 81)
and see whose mouse can navigate most efficiently to the centre of a maze.
The first program in this chapter offers all the thrills of such an event, but
condenses the whole occasion on to the computer’s monitor. Here a plan
view of the maze is displayed and the mouse can be seen racing around in
search of its goal.

MINOTAUR’

CURSOR TO
HAKE HAZE
SPACE-BAR
FIT! START
ENTER FUR
HOUSE AND
ALSO GOAL
ESC BEGIN
SEARCHING

129

MINOTAUR

JUHCriON 2

H FRESH
'E FRESH

S TRIED
II FRESH

Hl EDS It.10

The screen dumps show both the initial display of the program and how it
appears when the mouse is searching the maze. It can be seen that the user
is given a grid for designing the maze, but that once the search has begun the
computer redraws a more realistic looking display.

The searching algorithm employed relies upon counting, or reidentifying,
each junction of the maze as it is encountered and making a note of which
directions have been tried. Wherever possible, the mouse avoids retaking
the same direction. In this way the maze is searched thoroughly.
Additionally, the mouse ‘remembers’ every decision made and is able, when
the goal is found, to deduce a more efficient route.

Commentary on MINOTAUR

The program’s control routine is between lines 1020-1040. The routine
‘initialisation’ sets up array values, then ‘display’, ‘grid’ and ‘explain’
produce the initial screen. After this, ‘design’ allows the user to sketch a
maze on the screen. This is redrawn with necessary modifications by ‘show
maze’ and afterwards ‘search’ begins to solve the maze by trial and error.
Once the goal has been found, ‘short route’ produces a logical solution to the
maze which is repeated indefinitely by the WHILE/WEND loop.

130

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

REM MINOTAUR - PAT HALL, 2/86

REM CONTROL ROUTINE

GOSUB 1070:GOSUB 1130:GOSUB 1190

GOSUB 1230:GOSUB 1300:GOSUB 1700

GOSUB 1960:GOSUB 2410:WHILE TIME >0

:GOSUB 1960:WEND

REM

REM INITIALISATION

BORDER O:MODE 1:INK 0,20:INK 1,2

INK 2,26:INK 3,0:DIM M(22,22>:DIM

D#(4):F0R 1=1 TO 4:READ D«(I):NEXT

DIM NX(4):DIM NY(4>:F0R 1 = 1 TO 4

READ NX(I),NY(I):NEXT:BP-O:GRAPHICS

PEN 1:DIM JX(10>:DIM JY<10):DIM JD<

10,4):DIM NS(4):RETURN

REM

REM DISPLAY

BORDER 2:PEN 1:PAPER 0:CLS:WIND0W

#1,4,14,2,4: PAPER #1,2:CLS *1

WINDOW #2,4,14,6,14:PAPER #2,2:CLS

#2:WINDOW #3,4,14,16,21:PAPER «3,2

CLS «3:WINDOW #4,17,37,2,21:PAPER

#4,2:CLS #4:WINDOW «5,1,40,23,25

PAPER #5,2:CLS #5:PAPER 2:LOCATE 5,

3:PRINT "MINOTAUR:":RETURN

REM

REM GRID

FOR 1=256 TO 592 STEP 16:MOVE 1,67:

DRAW I,382:NEXT:FOR 1-67 TO 382

STEP 15:MOVE 256,I:DRAW 592,I:NEXT

RETURN

131

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

REM

REM EXPLAIN

PRINT #2,* CURSOR TO">PRINT #2,

" MAKE MAZE-1PEN #2,3iPRINT #2,

* SPACE-BAR"I PRINT #2," FIX START"

PEN «2,liPRINT #2," ENTER FOR"

PRINT #2," MOUSE AND"«PRINT #2,

" ALSO GOAL"«PEN «2,3tPRINT »2,

" 'S' BEGIN"

PRINT *2,“ SEARCHING"«PEN »2,1

RETURN

REM

REM DESIGN

X-111Y-llsD-1lSF-OlS-0

B-OtWHILE B-O

IF INKEY(0)-0 THEN Y-Y+UD-1

IF INKEY<l)-0 THEN X-X+l,D-2

IF INKEY<2>-0 THEN Y-Y-llD-1

IF INKEY(8)“O THEN X-X-llD-2

IF X<1 THEN X-l

IF X>21 THEN X-21

IF Y<1 THEN Y-l

IF Y>21 THEN Y-21

IF INKEY<18)-O THEN IF SF-0 THEN MX

-X«HY-Y|SX-X«SY-Y1SF-1 ELSE GX-XiGY

-Y

IF INKEY(47)-0 THEN M(X,Y)»3«S-1«LD

-D

IF INKEY(60>*=0 THEN M<X,Y)-3«B-1

IF S-0 THEN GOSUB 1470 ELSE GOSUB

1580

132

1440 WEND: CLEAR INPUT «RETURN

1450 REM

1460 REM SHOW

1470 C—3«GOSUB 1520:SOUND 1,67,10

1480 PT-1«GOSUB 15501C-21GOSUB 1520

1490 RETURN

1500 REM

1510 REM SQUARE

1520 GRAPHICS PEN C«PLOT X*16+248,Y*15+/
60«RETURN

1530 REM

1540 REM PAUSE

1550 FOR TP-1 TO PT*430:NEXT:RETURN

1560 REM

1570 REM MARK

1580 GRAPHICS PEN 1«CL-1:GOSUB 1660

1590 IF BOLD THEN M(LX,LY>-3

1600 IF D— 1 AND M(X,Y>-2 THEN M(X,Y>-3

1610 IF D—2 AND M(X,Y>-1 THEN M(X,Y>-3

1620 IF M(X,Y>-0 THEN M(X,Y>-D

1630 LD—DiLX-XlLY—YiRETURN

1640 REM

1650 REM BLOCK

1660 MOVE X*16+240,Y*15+56«DRAWR 0,12

1670 DRAWR 14.01DRAWR 0.-141DRAWR -14,01

MOVER 3,3«FILL CL«RETURN

1680 REM

1690 REM SHOW MAZE

1700 PAPER «4,0:CL8 «4«GRAPHICS PEN 0«

MOVE 592,67:DRAW 592,382«CLS «2

1710 PRINT *2,“ CONSTRUCT"«PRINT #2,

133

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

" TURNS AND"J PRINT #2," JUNCTIONS"

FOR Y-l TO 21sFOR X-l TO 21

IF M(X,Y)-3 THEN GRAPHICS PEN 3s CL-

2sGOSUB 1660

NEXTsNEXTsPRINT #2sPRINT #2,

" LINK WITH ALL PATHS" s PRINT #2

FOR Y-l TO 21sFOR X-l TO 21

IF M(X,Y>-1 THEN GOSUB 1820

IF M<X,Y>-2 THEN GOSUB 1870

NEXTsNEXTsPRINT #2," SHOW GOALJ'sX-

GXsY-GYsC»3sGOSUB 1920sPRINT #2sPT=

5sGOSUB 1550sPRINT #2," SEARCHING"

PRINT *2sRETURN

REM

REM VERTICAL SECTION

XP= X*16+243sYP=Y*15+53sFOR I-l TO

SsGRAPHICS PEN 3s IF I>2 AND I<7

THEN GRAPHICS PEN 2

MOVE XP+I,YPsDRAW XP+I,YP+16sNEXT

RETURN

REM

REM HORIZONTAL SECTION

XP- X*16+238sYP-Y*15+56sFOR 1=1 TO

SsGRAPHICS PEN 3s IF I>2 AND I<7

THEN GRAPHICS PEN 2

MOVE XP,YP+IsDRAW XP+18,YP+IsNEXT

RETURN

REM

REM LOCATION

GRAPHICS PEN C3 PLOT X*16+247,Y*15+

60s PLOT X*16+248,Y*15+60sPLOT X*16+

134

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

247,Y*15+61:PLOT X *16+248,Y*15+61

RETURN

REM

REM SEARCH

MD-11IF BP=1 THEN MX=SX:MY=SY

JC-O:JN-OiFOR 1-1 TO lOiJX<I>=0:JY(

I>-0:JD(I,4)—O:NEXT:JP-0:TM-TIME:PT

»11 IF BP-0 THEN RS-""

CS-OsWHILE CS—0:X=MX:Y—MY:SOUND 1,

119,10:C—1:GOSUB 1920:G0SUB 1550

C—2:GOSUB 1920:FOR 1=1 TO 4sNS(I)=0

:NEXT:DC-0:FOR 1-1 TO 4

IF MCMX+NX(I>,MY+NY(I>>-0 THEN NS(I

)—0 ELSE NS(I)-1:DC-DC+1

NEXT:AS- FOR 1=1 TO 4:AS-AS+DS<I)

+RIGHTS(STRS(NS(I)>,1):NEXT:PRINT

#2,” AS:PRINT #2

IF MD<3 THEN BD—MD+2 ELSE BD-MD-2

IF DC-1 THEN MD-BD:PRINT #2,

• DEAD END":PRINT #2

IF DC-2 THEN GOSUB 2140

IF DC-3 OR DC-4 THEN IF BP-0 THEN

GOSUB 2180 ELSE GOSUB 2480

IF MD-1 THEN MY—MY—1

IF MD-2 THEN MX-MX+1

IF MD-3 THEN MY-MY+1

IF MD-4 THEN MX-MX-1

GOSUB 2380:IF MX-GX AND MY—GY THEN

CS-1

WEND:RETURN

REM

135

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

REM PATH

FOR 1-4 TO 1 STEP -11 IF NS(I>-1 AND

IOBD THEN MD-I

NEXTiRETURN

REM

REM CHECK JUNCTION

FJ-01F0R 1=0 TO JC: IF MX-JX(I) AND

MY-JY(I) THEN FJ-11JN-I

NEXT: IF FJ=O THEN GOSUB 2230 ELSE

GOSUB 2270

RETURN

REM

REM NEW JUNCTION

JC-JC+1:JN-JC:JX(JN)=MX:JY(JN>-MY

GOSUB 2270:RETURN

REM

REM JUNCTION

PRINT #2,"JUNCTION ";RIGHT»<STRS<JN

),1)1PRINT #2:JD(JN,BD>»1:CJ-0:FOR

1-1 TO 4:IF JD<JN,I>=1 THEN AS-

« TRIED" ELSE A«-" FRESH"

PRINT 42," “|DS<I>;AS:CJ—CJ+JD<JN,I

):NEXT:PRINT #2:PT=3:GOSUB 1550:PT-

11 IF CJ—4 THEN GOSUB 2340

FOR 1-4 TO 1 STEP -1:IF JD(JN,I)=O

THEN MD-I

NEX T: J D (JN, MD) -1: RS-RS+ " J " +RIGHTS (

STRS(JN),1)+"D"+RIGHTS<STRS<MD>,1>

PRINT #5," ROUTE TAKEN: "J1PRINT #5

,RSSPRINT #5¡RETURN

REM

136

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

REM CLEAR JUNCTION

PRINT #2," ALL ROUTES ATTEMPTED“

PRINT *2:PT-2: GOSUB 1550:FOR 1=1

TO 4:JD(JN,I>-0:NEXT:PT=1:RETURN

REM

REM TIME

PRINT #3," TIME —“JINT<(TIME—TM>/

300>:RETURN

REM

REM SHORT ROUTE

CH-0:WHILE CH-0: RF-0:L-LEN(R*):FOR

1-2 TO L STEP 4:FOR J-I+4 TO L STEP

4:IF MID*(R*,I,1>—MID*(R*,J,1> THEN

A-I: B—J:RF—1

NEXT:NEXT: IF RF-0 THEN CH-1

IF B<L THEN RS—LEFT*(R*,A>+RIGHT*(

R«,L—B>

WEND: IF R*<>“” THEN PRINT #5,

" SHORT ROUTE: "jR*

BP-1:RETURN

REM

REM BEST PATH

JP-JP+1:MD—VAL(MID*(R*,JP*4,1>>

RETURN

REM

REM DATA

DATA S,E,N,W,0,-1,1,0,0,1,-1,0

137

Initialisation routine (Lines 1060-1110):

Line 1080 initialises the maze array, M. Then it places the four compass
directions into the D$ array. The next-position arrays, NX, NY, are
similarly established from DATA by 1090-1100. The flag BP is initialised at
1100 and arrays relating to the junctions of the maze set up.

Display routine (Lines 1120-1170):

Here the screen is cleared, the title PRINTed and text windows, #1 — #5,
set up.

Grid routine (Lines 1180-1210) :

MOVE and DRAW are used in two FOR loops at line 1190 to place a 21 X
21 grid on the screen. This is to enable the user to design the maze.

Explain routine (Lines 1220-1280):

Prompts are placed in window #2 to tell the user that the cursor keys, space­
bar, ENTER and S keys are all employed in designing the grid.

Design routine (Lines 1290-1450) :

In this routine the initial shape of the maze is sketched out on the grid. Line
1300 places the cursor coordinates at the centre of the grid and essential flags
are set up. The WHILE/WEND loop between 1310-1440 then allows the
designing to take place.

INKEY is used to scan the cursor keys and lines 1320-1350 adjust the
coordinates of the cursor on the grid. They also update the variable D ,
which records the direction the cursor is moving. (Left/right = 2, up/down
= 1.) Unacceptable values are prevented by 1360 - 1390. At first the cursor
just moves across the grid without permanently marking it, because line 1430
calls ‘show’. But once the space-bar has been pressed, and detected by 1410,
the flag S becomes 1 and‘mark’ is called by 1430. This routine records every
position of the cursor on the grid to build up the maze. The first position
marked is also recorded at 1410 by a value of 3 placed in the M array. This
is needed later in the routine ‘show maze’.

Line 1400 detects the ENTER key. The first time it is pressed the cursor
coordinates are stored as (MX, MY) for the ‘mouse’ and also as (SX, SY) for
use later in search’. The second time the key is pressed the coordinates are
recorded as (GX, GY) for the goal.

138

Line 1420 detects the S key and allows ‘design’ to come to an end. As the
cursor position will now be the end of the maze on the grid, another value of
3 in placed in the M array.

Show routine (Lines 1460-1500) :

This routine calls ‘square’ to mark momentarily the position of the cursor on
the grid during the routine ‘design’.

Square routine (Lines 1510-1530):

PLOT is used to fill in one element of the grid in colour C.

Pause routine (Lines 1540-1560) :

A variable delay is provided by the FOR loop.

Mark routine (Lines 1570-1640) :

This routine has two important functions. First, line 1580 permanently
marks the grid in blue to show the user that this is now part of the maze
design. Second, the M array is correctly updated with values of 1, 2 or 3.

Line 1590 detects a change of direction and so marks the point in the M array
with a value of 3 to represent a turn. Similarly, lines 1600, 1610 detect the
maze crossing over itself to form a junction and mark this also with a value
of 3. Simple vertical or horizontal extensions of the maze are represented by
1620 in the array with the D value of 1 or 2. At line 1630 the variables needed
for the next call to ‘mark’ are set up.

Block routine (Lines 1650-1680):

Here a section of the grid is shaded in with colour CL by the use of MOVE,
DRAWR and FILL.

Show maze routine (Lines 1690-1800):

When the user has finished designing the maze and pressed S, this routine
redraws it, with artistic improvements! First, line 1700 removes the user’s
design. Then the nested FOR loops, 1720-1740 use the block routine again
with GOSUB 1660 to place a junction graphic at each turn and junction of
the maze, identified by the array values of 3. The second set of nested FOR
loops, lines 1750 - 1780 call the vertical and horizontal section routines to
create the rest of the maze.

139

Vertical section routine (Lines 1810-1850):

The FOR loop uses MOVE and DRAW to produce a vertical maze section
corresponding to one square of the grid. The GRAPHICS PEN colour
change determined by line 1820 creates floor and outer walls for the section.
Horizontal section routine (Lines 1860-1900):

Here a horizontal maze section is drawn.

Location routine (Lines 1910-1940):
PLOT is used four times to mark the mouse or goal location in the maze.

Search routine (Lines 1950-2120)

The block of pixels representing a mouse is moved around the maze by this
routine, which is used in two different ways in the program. When it is first
called at line 1040, ‘search’ has to learn its way to the goal. But, by the time
it is called again by the WHILE/WEND loop in the control routine it has
learnt a more direct route. This difference in knowledge is reflected in the
status of the best-path flag, BP. (For example at line 1960 the flag restores
the mouse position to its initial value, (SX, SY), for every pass through the
WHILE/WEND loop.)

Lines 1960, 1970 initialise arrays and flags needed to deal with junctions in
the maze, and the route string, R$. Then the WHILE/WEND loop, lines
1980-2110, moves the mouse through the maze.

The mouse’s position in the maze, (MX, MY), is shown briefly by lines 1980,
1990. The FOR loop, 1990-2010, then uses the NX, NY arrays to examine
the positions around the mouse in the M array. Every position where the
array value is not zero represents a continuation of the maze. Such values are
registered in the NS array at 2000 and also cause the variable DC to
increment. The NS array can afterwards be used to show what directions are
possible, as a message PRINTed in window #2 by line 2010, and DC used to
choose which way to move the mouse.

Line 2020 defines the opposite direction, BD, from the last taken, MD.
Then lines 2030-2050 decide the new direction for the mouse, MD,
according to the number of possible paths open determined by the current
value of DC generated at 2000. If there is only one direction, in other words
a dead-end has been reached, line 2030 makes the mouse reverse its
direction. Two directions will call ‘path’ at 2040. More directions than this
calls either ‘check junction’ or ‘best path’ at 2050, depending upon whether
the mouse is learning its way or already knows it.

140

The MD value returned by the routines called between 2030-2050 is used to
adjust the mouse coordinates between lines 2060-2090. The time taken so far
is displayed by a call to the routine ‘ time’ with GOSUB 2380 at line 2100,
which also detects if the goal location has been reached. If it has, the loop
terminates and ends the routine. The control routine can then call ‘short
route' to deduce a more efficient path to the goal.

Path routine (Lines 2130-2160)

When there are two directions the mouse can take, this routine identifies the
correct one by ignoring the direction the mouse has come from.

Check junction routine (Lines 2170-2210)

Here TICTACTOE decides whether a junction reached in the maze is new,
or one already visited, by comparing the mouse coordinates with the
locations of all the known junctions in the arrays JX, JY. This is done at line
2180 in the FOR loop. Either ‘new junction’ or ‘junction’ is called. A
previously visited junction is identified by the junction-number, JN.

New junction routine (Lines 2220-2250)

A junction not met before is added to the JX, JY array. The total junction
count, JC, is incremented and this value will also be the junction-number,
JN. The routine ‘junction’ is then called.

Junction routine (Lines 2260-2320)

This routine will always be reached, sometimes via ‘new junction’, when the
mouse is exploring the maze and encounters an intersection. Line 2270
names the junction on the screen.

A logical search of the maze is produced simply by recording the direction
taken at every junction in the junction-direction array, JD, and by ensuring
that the same direction is not taken twice until all directions out of the
junction have been attempted. Line 2270, for example, updates the JD array
by registering the direction in which the current junction was approached,
since obviously this is not a path to try again. The FOR loop, 2270 - 2280,
shows the user which routes from the junction still have to be tried.

If all routes have been tried, line 2280 calls ‘clear junction’ to reset the JD
array and allow directions to be tried again. The loop, lines 2290,2300, uses
the array to select a direction and the MD value generated here is
immediately used to modify the JD array at 2300.

141

At each arrival at a junction, the route string, R$, is updated, at 2300, to
show the path so far taken through the maze. R$ is displayed in window #5
at line 2310.

Clear junction routine (Lines 2330-2360)

This routine clears the JD array for a particular junction.

Time routine (Lines 2370-2390)

The time taken in exploring the maze is determined by TIME.

Short route routine (Lines 2400-2460)

This is the most ‘intelligent’ part of the program. It looks at the route string,
R$, and decides which parts of the earlier path taken should be eliminated.
A typical route string could be, for example:

J1D2 J2D1 J3D1 J 1 D 1

Extra spaces have been included to make the string easier to analyse. It can
be seen how each junction and direction taken are identified by a single digit.
(The user must not attempt a maze with more than nine junctions.) It can
also be seen that the middle part of the string is superfluous, since junction
1 was the one eventually required. In fact, a logical route would have been
J 1 D 1 .

The WHILE/WEND loop looks for precisely this sort of redundancy. The I
and J loops STEP by 4 through R$, looking for repeated junctions. When
one is found, line 2430 cuts out the part of the string between the two and
merges the two end pieces into a shorter route. This process is repeated until
the RF flag indicates that no further simplification is possible.

Best path routine (Lines 2470-2500)

This routine replaces ‘check junction’ once the control routine reaches the
WHILE/WEND loop. It uses the modified R$ to determine the direction at
each junction.

Data (Lines 2510-2520)

Necessary information for ‘initialisation’ is stored at line 2520.

142

LUCIE
A early robotics project at S.R.I. International, under Charles Rosen and
David Nitzan, was ‘Shakey'. This was a small self-propelled wheeled
vehicle, equipped with a tv camera, range finder and touch sensors, and
controlled, via a radio link, by a PDP-10 computer. Shakey could navigate
its way around separate rooms of the laboratory, recognise regularly shaped
objects and even obey simple commands like: ‘Push the box off the
platform’.

The last program of this book is an attempt to recreate a Shakey-type robot.
As the previous program involved a mouse, and as fame was achieved by the
robotic dog, K9, ‘Lucie’, to redress the balance, is a cat. She lives in a typical
domestic interior, with standard lamps, tables, chairs and tv sets, and her
one goal in life is to find a power socket and plug herself in.

PUSSY URNTS POWER !

143

LUCIE

H - LOOT HURTH E - LOOK ERST
S - LOOK SOUTH U - LOOK0 LEST

R -■ ROBOT'S UlEW .. ■-

H - LOOT NORTH E - LOOK EAST
S - LOOK SOUTH U - LOOK WEST

R - ROBOT'S UIEU

144

LUC IE

LUCIE

N - LOOK HÜRTH . E - LCQK EAST-
- LACK SAI ITH U - LOOK UE S T

R - RÛBUT'S UIEU

145

LUCIE

The screen dumps show the beginning of a typical search by Lucie. The first
illustration is simply the initial screen display, which indicates to the user
what Lucie intends to do. The second is the display after the user has
designed the room’s interior, using the coordinate grid to place items of
furniture. In each of the screen dumps that follow all the items of furniture
occupy exactly the same position on the grid, but the square representing
Lucie moves around.

On the right hand side of the screen is a picture of the room. The user can
choose to view from any of the four walls, or instead‘see’ the room through
the eyes of the robot. In the second illustration Lucie is beside the standard
lamp. In the third she has moved further into the distance. In the fourth the
view is the one from the cat’s position in the room. The tv set and chair, of
course, look much closer. In the fifth view Lucie has reached the far wall and
turned right. The corner of the room can now be seen and the second
standard lamp. In the last view Lucie has moved closer to the East wall and
so the lamp is much larger.

146

The room searching algorithms Lucie employs can be summarised as
follows:

1. Throughout the search, use sonar to scan the room. Make a note of any
objects detected.

2. If the sonar detects a power socket, move straight towards it.

3. Begin by finding a clear path, unblocked by any furniture, to the North
wall of the room. Move East or West until the clear path is found.

4. Move to the North Wall.

5. Find a clear path to the East wall. Take it.

6. Return to initial position in room.

7. Find clear path to South wall. Take it.

8. Find clear path to West wall. Take it.

9. Move to first item of furniture in the room. Move all the way around it,
in case it was blocking a direct view of a socket.

10. Repeat for all items of furniture in the room.

11. Give up!

This algorithm gives an example of the ‘top-down’ approach mentioned
above. The individual goals in the list all require many sub-goals.

During the execution of the program, Lucie’s sonar can be seen represented
on the grid. When eventually she finds the power socket she purrs!

Commentary on LUCIE
LUCIE is controlled by lines 1020 - 1040. The routine ‘initialisation’ called
by line 1020 sets up variables and arrays needed by the program. Then ‘title
screen’ creates the initial screen shown. Next, GOSUB 1210 calls ‘room’ to
show the house interior the robot cat has to explore. GOSUB 1250 calls
‘display’ and GOSUB 1320 draws the coordinate grid on which the room’s
contents are planned. After this ‘design’ called by GOSUB 1440 allows
furniture, and the robot cat, to be added. Finally, the routine ‘find socket’
controls the robot’s search around the room.

147

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

REM LUCIE - PAT HALL, 2/86

REM CONTROL ROUTINE

80SUB 1070:GOSUB 1120:GOSUB 1210

GOSUB 12501GOSUB 1320:GOSUB 1440

GOSUB 2770s STOP

REM

REM INITIALISATION

BORDER OsMODE Is INK 0,26:INK 1,24

INK 2,20sINK 3,0:DIM G<15,15)iXC-8:

YC-8s XW-8: YW-11 XV-81YV-1 s NV-781V-78

:RF=0:GD-3: PAPER OsDIM TX<3)iSP-0

DIM TY(3)I RETURN

REM

REM TITLE SCREEN

BORDER 201 PAPER 2:CLSsX-1641Y-40:S-

144:GOSUB 2390:PEN 3:PAPER 1:LOCATE

10,10:PRINT"O"1 LOCATE 13,10:PRINT

“0":X-490:Y-56:S-200:GOSUB 2570

PAPER 21L0CATE 29,4:PRINT"LUC1E"

LOCATE 25,6:PRINT"THE ROBOT CAT"

LOCATE 12,25:PRINT"PUSSY WANTS "|

PRINT"POWER !":K-O:WHILE K-01IF

INKEY(47)=0 THEN K-l

LOCATE 27,9:PRINT”< SPACE >":PT-2

GOSUB 18201L0CATE 27,9:PRINT SPC(9)

:GOSUB 1820:WEND:CLEAR INPUT:BORDER

24SPARER Os RETURN

REM

REM ROOM

GRAPHICS PEN 3sCLSsA=YW*8sB-188-YW*

8:XL= <l-XW)*608/14:YT=YW*8+332:MOVE

148

1220

1230

1240

1230

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

XL—A,OlDRAW XL+392—A,BiDRAW XL+G59+

A,Bl DRAW XL+1251+A.O1IF XW<7 THEN

MOVE XL+392—A,B—10 ELSE MOVE XL+859

+A.B-10

FILL 21M0VE XL+625,B-10iFILL 2>MOVE

XL-A,YT+BiDRAW XL+392-A.YT1DRAW XL+

859+A,YTI DRAW XL+1251+A,YT+BlF0R I-

392—A TO 859+A STEP 467+A*21M0VE XL

+i,bidraw xl+i,ytinextiRETurn

REM

REM DISPLAY

PEN 3iPAPER 1

LOCATE 17,21 PRINT" LUCIE "

PAPER 0

WINDOW *1,2,12,4,131 PAPER *1,0

WINDOW *2,2,12,17,18iPAPER *2,O1PEN

#2,31 WINDOW *3,1,40,24,251 PAPER *3,

OlPEN #3,01RETURN

REM

REM GRID

GRAPHICS PEN 31CLS *1|FOR 1-15 TO

195 STEP 121 MOVE 1,1891 DRAW I,354t

NEXTiFOR I »189 TO 354 STEP lliMOVE

15,Il DRAW 195,IlNEXTiGRAPHICS PEN 0

•PLOT 81,191iF0R 1-52 TO 56 STEP 2

PLOT I,3521NEXTiCLS *21CLS *3iC-3

FOR 1-1 TO 151 FOR J-l TO 15iIF G(I,

J)<>0 THEN XX-IiYY-JiGOSUB 1790

NEXTiNEXTiIF V-69 THEN CP*-"EAST "

IF V—78 THEN CP*-"NORTH "

IF V—83 THEN CP*-"SOUTH "

149

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

IF V-87 THEN CP«-"WEST “

PRINT #2,CP«J"VIEW"

IF SP-1 THEN LOCATE 2,241 PRINT

"N—LOOK NORTH E-LOOK EAST S";:PRINT

“-LOOK SOUTH“1 LOCATE 8,25:PRINT

"W—LOOK WEST R—ROBOT'S VIEW"

RETURN

REM

REM DESIGN

LOCATE 6,24:PRINT"MOVE-CURSOR";

PRINT" PLACE ITEM-SPACE"

DS—01 WHILE DS—O

IF INKEY(0)—0 THEN YC-YC+1

IF INKEY<1>=O THEN XC-XC+1

IF INKEY(2)-0 THEN YC-YC-1

IF INKEY<8>—O THEN XC-XC-1

IF INKEY(47)=0 THEN GOSUB 1610

IF INKEY(54)-O AND RF -1 THEN DS-1

IF XC<1 THEN XC-1

IF XC>15 THEN XC-15

IF YC<1 THEN YC-1

IF YC>15 THEN YC-15

IF G(XC,YC)-0 THEN C-3:XX-XC:YY-YC:

GOSUB 1790:PT-1:GOSUB 1820:C-0:

GOSUB 1790

WEND:RETURN

REM

REM CHOOSE ITEM

CLS #3:L0CATE 5,24:PRINT"C - CHAIR"

;:PRINT" L - LIGHT"j:PRINT" S-"j

:PRINT" SOCKET":LOCATE 5,25:PRINT

150

T - TABLE V - TV SET" J

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

IF RF=0 THEN PRINT" R - ROBOT"

LK=O:WHILE LK=O

IF INKEY(36)=0 THEN LK=1:K=76

IF INKEY(50)=0 THEN LK-1:K=82

IF INKEY(51)»0 THEN LK=liK=84

IF INKEY(55)=0 THEN LK=1:K=86

IF INKEY(60)»0 THEN LK=llK=83

IF INKEY(62)-0 THEN LK-11K-67

WEND: IF G(XC,YC)»O AND KO82 THEN

G(XC,YC)»K

IF K-82 AND RF»O AND G(XC,YC)=O

THEN G(XC,YC> »82:XR»XC:YR-YC:XB-XCI

YB=YC:RF»1

GOSUB 1210:GOSUB 1850:GOSUB 1320

LOCATE 6,24:PRINT"MOVE-CURSOR";

PRINT" PLACE ITEM-SPACE”

IF RF=1 THEN LOCATE 9,25: PRINT

"BEGIN ROBOT'S SEARCH - B"

RETURN

REM

REM SQUARE

XP=XX*12+4: YP=YY*11 + 180: GRAPHICS

PEN C:MOVE XP,YP:DRAWR 0,7:DRAWR 8,

O:DRAWR 0,-7:DRAWR -8,0:M0VER 2,2:

FILL C:RETURN

REM

REM PAUSE

FOR TP=1 TO PT*200:NEXT:RETURN

REM

REM VIEW_N

151

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

FOR J=15 TO YV+1 STEP -liFOR 1-1 TO

15:W-(15+YV-J)*10/15:IF ABS(I-XV)<-

10-W AND G(I,J)<>0 THEN X-=640*(10-

XV-W+I>/<20-W*2):Y-(J-YV)*12:S-(16-

J+YV)*4:GOSUB 2010:GOSUB 2140

NEXT:NEXT:RETURN

REM

REM VIEW_E

FOR 1-15 TO XV+1 STEP -1:FOR J-15

TO 1 STEP -1:W-(15+XV—I>*10/15:IF

ABS(J-YV)<»10-W AND G(I,J)<>0 THEN

X»640* (10+YV-W-J)/(20-W*2>:Y-(I-XV)

*12:S-<16-I+XV)«4:GOSUB 2010:GOSUB

2140

NEXT:NEXT:RETURN

REM

REM VIEW_S

FOR J-l TO YV—1:FOR 1-15 TO 1 STEP

-1:W—(15—YV+J) *10/15:IF ABS(I-XV> <»

10-W AND 6(1,3)00 THEN X»640«(10+

XV-W-I)/(20—W*2):Y-(YV—J)*12:S-(16+

J-YV)*4:GOSUB 2010:GOSUB 2140

NEXT:NEXT:RETURN

REM

REM VIEW.W

FOR 1-1 TO XV-1:FOR J-l TO 15:M-<15

—XV+I)*10/15:IF ABS(J-YV)<«1O-W AND

G(I,J)<>0 THEN X-64O*(10-YV-W+J)/(

20—W*2):Y=(XV-I)*12:S=(16+I-XV)*4:

GOSUB 2010:GOSUB 2140

NEXT:NEXT:RETURN

152

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

REM

REM ADJUST

IF S>45 THEN S=S+<S-45>*1.6

RETURN

REM

REM ROBOT VIEW

XV-XRtYV-YR

IF RV-1 THEN XW-XR:YW-YR:V-78:GOSUB

12101GOSUB 1850

IF RV-2 THEN XW=15-YR1YW=XR:V«69:

GOSUB 1210:GOSUB 1890

IF RV-3 THEN XW-15-XR: YW-15-YR: V=83

:GOSUB 1210:GOSUB 1930

IF RV-4 THEN XW=»YR: YW-15-XR: V-87:

GOSUB 1210:GOSUB 1970

GOSUB 1320:PRINT #2,"FROM ROBOT"

RETURN

REM

REM ITEM TYPE

IF G(I,J)>67 THEN GOSUB 2230

IF G(I,J>-76 THEN GOSUB 2320

IF G(I,J)-82 THEN GOSUB 2390

IF G(I,J>»83 THEN GOSUB 2570

IF G(I,J)-84 THEN GOSUB 2620

IF G(I,J)-86 THEN GOSUB 2680

RETURN

REM

REM DRAW CHAIR

A-S/2:E-S/5:B-A+E:C=S*O.15:D-C/2iF-

S-C:MOVE X-A,Y+B:DRAWR O,C:DRAWR S,

0:DRAWR 0,-C:DRAWR -S,O:MOVER D,D

153

2240 FILL 3:M0VER S-C,0sFILL 3sM0VE X-A,

Y:DRAWR C.BsDRAWR C.OsDRAWR -0,-B

2250 DRAWR -C,OsMOVER C,B/2:FILL 3>MOVE

X+A,Y:DRAWR —0,0sDRAWR -C,BsDRAWR C

,0:DRAWR C,-BsMOVER -C,B/2sFILL 3

2260'IF VO69 THEN MOVE X+E,Y+FsDRAWR 0,

AiDRAWR 0,0:DRAWR O,-A:DRAWR -C,0:

MOVER D,DiFILL 3:M0VER O,A-C:FILL

3

2270 IF VO87 THEN MOVE X-E,Y+F:DRAWR 0,

A:DRAWR -C,O:DRAWR 0,-A:DRAWR C,0:

MOVER -D.DsFILL 31M0VER O,A-C:FILL

3

2280 IF V-78 OR V-83 THEN MOVE X-A,Y+A+F

:DRAWR O.CsDRAWR S,0:DRAWR 0,-C:

DRAWR -S,OsMOVER D.DsFILL 31M0VER S

-C,Os FILL 3

* 2290 RETURN

2300 REM

2310 REM DRAW LAMP

2320 A»S*3:B=S*2s C-S/2:D-S/41E-C/5:F-E/2

■ GRAPHICS PEN is MOVE X-C,Y+BsDRAWR

D,SsDRAWR 0,0:DRAWR D,-S:DRAWR -3,0

sMOVER F.FsFILL Is GRAPHICS PEN 3

2330 MOVE X-C,YsDRAWR O,EsDRAWR S,0

2340 DRAWR 0,-EsDRAWR -S,OsMOVER F,F

2350 FILL 3sFOR K-X-F TO X+FsMOVE K,Y

2360 DRAW K,Y+BsNEXTsRETURN

2370 REM

2380 REM DRAW ROBOT

2390 A=S/2sB=A*3sC=A/5sD=S*l. 1

154

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

FOR F=0 TO C STEP C

IF F=0 THEN RC=3 ELSE RC=1

GRAPHICS PEN RC1F0R K=0 TO S-F*4

STEP 2:XE=A*<S—K>ZS—F*2:MOVE X-A+F,

Y+B+K:DRAW X-A+F+XE,Y+B+K:MOVE X+A-

F,Y+B+K:DRAW X+A-F-XE,Y+B+K:NEXT:R-

A-F:CY«Y+B:GOSUB 2500

MOVE X-A+F,Y+F:DRAWR 0,S-F*2:DRAWR

S—F*2,0:DRAWR 0,F*2—S:DRAWR F*2-S,0

sMOVER C.C1FILL RC

IF F-0 THEN MOVER 0.S-C-21FILL 3

NEXT1 GRAPHICS PEN 3

IF S>20 THEN CY»Y+S*1.3:R-C:GOSUB

2500:CX-X-S*O.15:CY-Y+S*!.4:R-S/60:

GOSUB 2530:CX=X+S*O.15:G0SUB 2530:

MOVE X—D,Y+S:DRAW X+D,Y+B:MOVE X-D,

Y+B:DRAW X+D,Y+S

RETURN

REM

REM FILL CIRCLE

FOR K-CY-R TO CY+R STEP 2:X1>X-SOR(

ABS(R-2-(K-CY)~2>):X2»X*2-X1:MOVE

X1,K:DRAW X2,K:NEXT:RETURN

REM

REM DRAW CIRCLE

DEG:MOVE CX,CY:FOR K-l TO 360 STEP

lOsPLOTR R»COS(K),R*SIN<K>:NEXT

RETURN

REM

REM DRAW SOCKET

A=S/36:B=S/2:GRAPHICS PEN OsMOVE X-

155

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

A*9,Y+A*10sDRAWR 0,BsDRAWR B,0

DRAWR 0,—BsDRAWR -B,OiMOVER A*2,A*2

«FILL OsGRAPHICS PEN 3sM0VER A*2,A*

2:DRAWR 0,A»2sDRAWR A«4,0iDRAWR 0,

-A*2:DRAWR -A*4,OsMOVER A.AsFILL 3

MOVER A*3,A*51 DRAWR O,A*41 DRAWR A*2

,0:DRAWR 0,-A*4iDRAWR -A*2,OsMOVER

A.AsFILL 3sM0VE X+A,Y+A*14sDRAWR 0,

A*2sDRAWR A*4,0:DRAWR 0,-A*2sDRAWR

-A*4,OsMOVER A.AsFILL 3sRETURN

REM

REM DRAW TABLE

C=S/2s B-C/5s A-C-Bs D-S/5sE-C+DsF-B/2

sGRAPHICS PEN 3sFOR K-0 TO E STEP E

sMOVE X-A+K,YsDRAWR O.SsDRAWR B,0

DRAWR O,-SsDRAWR -B,Os MOVER F.F

FILL 3sM0VER O,S-BsFILL 3sNEXTsM0VE

X—C,Y+SsDRAWR O,DsDRAWR S.OsDRAWR 0

DsDRAWR -S,OsMOVER F.FsFILL 3

MOVER S-B.OsFILL 3sRETURN

REM

REM DRAW TV

A=S/2:B-A/SsC=B/2sFOR K=O TO S*0.15

STEP S*0.15sIF K=O THEN TC-3 ELSE

IF V-78 THEN TC=O

GRAPHICS PEN TCsMOVE X-A+K.Y+A+K

DRAWR O,S-K*2s DRAWR S-K*2,0sDRAWR 0

,K*2-SsDRAWR K*2-S,OsMOVER S/5,3/5

FILL TCsIF K=0 THEN MOVER 0,S*0.79s

FILL TC

NEXT

156

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

GRAPHICS PEN 31M0VE X-A,Y1DRAWR 0,B

1DRAWR S.OiDRAWR 0,-BiDRAWR -3,0

MOVER C,ClFILL 31 MOVE X-C,Y+B1DRAWR

0,A—BlDRAWR B,01DRAWR 0,B—A1DRAWR

-B,01 MOVER C,ClFILL 3iRETURN

REM

REM FIND SOCKET

DIM OX(10)I DIM 0Y(10>IOC-OiFS-OiDS-

1IXM-11FVU-1iFHR-OiFVD-OiFHL-OiVU-0

IHR-0:RS-01VD-01HL-01 SP-11NP-0

WHILE NP-OiPX-XRiPY-YR

IF FVU-1 THEN GOSUB 3070

IF YR-15 AND VU-1 THEN FHR-liDS-2

IF YR-15 THEN VU-0

IF FHR-1 THEN GOSUB 3120

IF VU-1 THEN YR—YR+11RV—1

IF XR-15 AND HR-1 THEN RS-1

IF XR-15 THEN HR-0

IF RS-1 THEN GOSUB 3160

IF HR-1 THEN XR-XR+11RV-2

IF FVD-1 THEN GOSUB 3380

IF YR—1 AND VD-1 THEN FHL-11DS-4

IF YR—1 THEN VD-0

IF FHL-1 THEN GOSUB 3430

IF VD-1 THEN YR—YR—11RV—3

IF HL—1 THEN XR-XR-11RV-4

GOSUB 36401 IF XR-1 AND HL-1 THEN NP

-1

IF FVU-0 AND FHR-0 AND FVD-0 AND

FHL-0 THEN GOSUB 3510

IF FS-1 THEN GOSUB 3980

157

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

WENDIGD-1iFOR GT-1 TO OC:BX-OX<GT>:

BY=OY<GT):IF BX>1 AND BXC15 AND BY>

1 AND BYC15 THEN GOSUB 3020

NEXTiCLS #3:LOCATE 10.241PRINT

"FAILED TO FIND SOCKET“:LOCATE 1,1

RETURN

REM

REM PEER ROUND

PRINT #2,"INSPECTING“1 PRINT #2,

"OBJECT“;GT:PT—10:GOSUB 1820:XG-BX

YG—BY:GR—0:PR—0:WHILE PR-0:PX-XR:PY

-YR:GOSUB 3200:GOSUB 3640:IF GR-1

THEN PX-XR:PY-YRsPR-1

WEND:GOSUB 3540:RETURN

REM

REM PATH 1

IF XR—15 THEN XM—1

GOSUB 3470:GOSUB 3800:IF FW-1 THEN

PRINT #2," YES, “|:FVU—0:VU—1 ELSE

PRINT #2," NO “mXR-XR+XM

PRINT #2,“ PATH ":RV-3-XM:PT-8:

GOSUB 1820:RETURN

REM

REM PATH 2

GOSUB 3470:GOSUB 3800:IF FW-1 THEN

PRINT #2," YES, ";:FHR—0:HR—1 ELSE

PRINT #2," NO ";:YR=YR-1

PRINT #2,“ PATH “:RV-3:PT-8:GOSUB

1820:RETURN

REM

REM RESTART

158

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

XG-XB»YG-YB»GR=0sGOSUB 3200»IF GR=1

THEN RS-O»FVD-1»DS-3»XM-1

RETURN

REM

REM GOAL

IF XG-XR THEN XD-0 ELSE XD-(XG-XR)/

ABS(XG-XR)

IF YG-YR THEN YD-0 ELSE YD-ÍYG-YR) /

ABS(YG-YR)

XN-XR+XD»YN-YR+YD»IF ABS(XG-XN)+ABS

(YG-YNXGD THEN GR=1

IF GR-0 THEN IF G(XN,YN)-0 THEN XR-

XN1YR=YN ELSE GOSUB 3280

IF ABS(XG-XR)>-ABS(YG-YR) THEN RV-

XD~2-XD+2 ELSE RV-YDZ'2-YD+1

RETURN

REM

REM JUMP

PRINT #2," OBSTACLE”»XA-XR»YA-YR»AL

-OiWHILE AL-OlJF-O»GOSUB 33401XR-XA

+RN:IF XR-XA THEN GOSUB 33401YR-YA+

RN

IF XR-XA AND YR—YA THEN JF-1

IF G(XR,YR>“0 AND JF-0 THEN AL-1

WEND1PT-10»GOSUB 1820:RETURN

REM

REM RANDOM

RN—INT(RND<1>*3>—1

RETURN

REM

REM PATH 3

159

J390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

IF XR-15 THEN XM—1

GOSUB 3470¡GOSUB 3800:IF FW-1 THEN

PRINT #2," YES, "j1FVD-01VD-1 ELSE

PRINT #2," NO “J1XR-XR+XM

PRINT #2,“ PATH “:RV-3-XM1PT-Gi

GOSUB 1820:RETURN

REM

REM PATH 4

GOSUB 34701GOSUB 38001 IF FW-1 THEN

PRINT #2," YES, "|iFHL-OiHL-1 ELSE

PRINT #2," NO "jlYR-YR+l

PRINT #2,“ PATH "iRV-liPT-81GOSUB

18201 RETURN

REM

REM INTENT

PRINT #2,"CLEAR PATH"¡PRINT #2,

“TO A WALL?"1 PT-81GOSUB 1820

RETURN

REM

REM SCAN

PT-101GOSUB 18201PRINT «2,

"SONAR USED"1 FOR DS-1 TO 41GOSUB

38001 NEXTiRETURN

REM

REM TRACK

PRINT #2,"L00K ROUND":PRINT #2,

"THE OBJECT"!PT-81GOSUB 1820

IF XG-XR+1 THEN TX(11-XG1TY<1)-YG+1

ITX(2)—XG+11TY(2)=YG1TX(3)—XG1TY(3)

-YG-1

IF YG-YR-1 THEN TX(1)-XG+11TY<1>=YG

160

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

ITX(2)-XG:TY(2)-YG-1:TX(3)-XG-1:TY(

3)=YG

IF XG—XR—1 THEN TX (1)-XG: TY< 1)-YG-1

: TX(2)—XG—1: TY(2)—YG:TX(3)—XG:TY(3)

-YG+1

IF YG-YR+1 THEN TX(1)-XG-1:TY<1>-YG

ITX(2)-XGiTY(2)-YG+1:TX(3)-XG+11TY(

3) = YG

FOR TR-1 TO 3:PX—XR:PY—YR:XR—TX(TR)

:YR—TY(TR):GOSUB 3640:G0SUB 3510

IF FS-1 THEN GOSUB 3980

NEXT:RETURN

REM

REM PLACE

G(PX,PY)=0:G (XR,YR)-82:PT-10:GOSUB

1820:SOUND 1,119,50:PRINT #2,

"CHOOSE THE":PRINT #2,"NEW VIEW 7"

GOSUB 1820

IF INKEY(46)-0 THEN NV-78

IF INKEY(50)-O THEN NV-82

IF INKEY (58)-0 THEN NV-69

IF INKEY(59)—0 THEN NV-87

IF INKEY(60)=0 THEN NV-83

V-NV1IF NVO82 THEN XW-8:YW-1

IF NV-78 THEN XV—8:YV—0:GOSUB 1210:

GOSUB 1850:GOSUB 1320

IF NV-69 THEN XV-O:YV-8:GOSUB 1210:

GOSUB 1890:GOSUB 1320

IF NV—83 THEN XV—8: YV—16: GOSUB 1210

:GOSUB 1930:GOSUB 1320

IF NV—87 THEN XV—16:YV—8:GOSUB 1210

161

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

sGOSUB 1970:G0SUB 1320

IF NV-82 THEN BOSUB 2050

RETURN

REM

REM SONAR

IF DS-1 THEN Sl-YR+1i82-15:S3-XR1S4

-XR

IF DS-2 THEN Sl-YRsS2-YR:S3-XR+1:84

-15

IF DS-3 THEN Sl-YR-1s82-1iS3-XR:84-

XR

IF DS-4 THEN Sl-YR:S2-YRIS3-XR-1184

-1

IF DS<3 THEN S5-1 ELSE 85—1

FW-11SB-01PT-0.25

FOR C—2 TO O STEP -2: FOR J-Sl TO S2

STEP S51F0R K-83 TO 84 STEP 85

SOUND l,60,5sG0SUB 1820iIF 8<K,J)-0

THEN XX—KsYY—JsGOSUB 1790

IF G(K,J>-83 AND SB-0 AND C-0 THEN

XS-KlYS-JiFS-liPRINT #2,

"SEE SOCKET"

IF G<K,J)<>0 AND G(K,J><>83 AND C-0

THEN FW-OíIF 8B-0 THEN GOSUB 3930

NEXTiNEXT1NEXTs RETURN

REM

REM CHECK

SB—l:0F—OSPRINT #2,"OBJECT";:FOR CH

=1 TO OCsIF K-OX(CH> AND J-OY(CH>

THEN OF-lsEO-CH

NEXTsIF OF-O THEN OC-OC+1sOX<0C>=K:

162

OY<OC>-JIPRINT #2,QC ELSE PRINT *2,

ED

3950 RETURN

3960 REM

3970 REM RECHARGE

3980 XG—XS1YG—YS1GR—O18D—I1RH—O1WHILE RH

-OlPX-XRlPY-YRlGOSUB 3200iGOSUB

36401 IF 8R-1 THEN RH-1

3990 WENDlPT-lOiGOSUB 18201 BORDER 20

4000 PAPER 2lX-320lF0R S-80 TO 770 STEP

46lCLSiY—202.9-S*0.5361GOSUB 2570

4010 GOSUB 18201 NEXT]PT-151GOSUB 1820i

CLSlY-518-1551GOSUB 23901 PT-1.31L-

181WHILE 1>O1L—L-31IF L<3 THEN L-

15

4020 PAPER liLOCATE 19,11iPRINT"O“

4030 LOCATE 22,11|PRINT"O"1PAPER 2

4040 LOCATE 5, LI PR I NT" PURR "1 SOUND 1,800,

20iGOSUB 18201 PAPER llLOCATE 19,11

4050 PRINT" "ILOCATE 22.111PRINT" -

4060 PAPER 21 LOCATE 5,Li PRINT"

4070 SOUND 1,1000,201GOSUB 18201 WEND

4080 RETURN

Initialisation routine (Lines 1060-1100)

The 15 X 15 array which holds all the information about the position of
furniture, and the robot, in the room is set up at line 1080, which also places
the cursor position (XC, YC) at the centre of the room. Then various
variables required for the perspective room view are initialised. The routine
also establishes the robot flag, RF, the goal distance, GD, and arrays TX,
TY.

163

Title screen routine (Lines 1110-1190)

LUCIE begins with a screen display of the robot cat and the power socket it
has to find. There are special drawing routines to create both of these. First
line 1120 sets the whole screen to cyan and uses GOSUB 2390 to draw the
cat, after selecting the values of X, Y and S required. The same line draws
the power socket with the call, GOSUB 2570, to ‘draw socket.’ LOCATE
allows the letter ‘O’ to be added to each eye and create the impression that
Lucie is looking down at the socket.

Lines 1130-1160 place the title of the program on the screen and add the brief
explanatory message PUSSY WANTS POWER ! The WHILE/WEND loop
that follows retains this initial screen display until INKEY(47) detects the
space-bar at line 1160. It also allows the prompt, ‘<SPACE>’, to be flashed
on and off.

Room routine (Lines 1200-1230)

This routine draws a perspective view of the room. It shows the floor as cyan,
the walls white and the edges of the room as black lines. Because the user can
select a view from the robot’s position, which obviously changes as the robot
moves around the room, the drawing algorithm has to be able to produce a
convincing picture of the floor and walls from any position on the 15 X 15
grid.

164

This variable perspective is produced by one basic room view, as shown in
the diagram. However, by altering the size and relative position of this
picture with respect to the edges of the screen, the impression can be given
that the room is being seen from any location.

Four variables are used in drawing the room, XL, YT, A and B. Their values
are calculated for a specific view from the particular viewing position, (XW,
YW). This is done by line 1210. Obviously four variables are not strictly
necessary, and it can be seen immediately that they are not all independent
of one another. However, fewer variables would make the BASIC
expressions that follow rather cumbersome. The apparently arbitrary
numerical values in the equations and on the diagram follow inevitably from
the ‘ trial and error’ method used to create an artistically plausible picture of
a room interior. Elegant arithmetic was required to take second place,
unfortunately!

The cyan floor of the room is produced using DRAW, MOVE and FILL at
1210,1220. Black lines are then added to the diagram by the rest of line 1220
to show the edges of the floor, walls and ceiling.

To convince himself/herself that the room algorithm works, the user should
probably test it with trial values of XW, YW and with direct calls to ‘room’
as soon as the routine is typed in.

Display routine (Lines 1240-1300)

Here the title of the program is PRINTed and three windows created.

Grid routine (Lines 1310-1420)

Line 1320 clears window #1 to give the white background of the grid
superimposed on the view of the room. The two FOR loops which follow
add the vertical and horizontal black lines required. Then the nested FOR
loops between 1340, 1350 check the G array and use GOSUB 1790 to
indicate the room’s contents on the grid. The value of V allows lines 1350-
1390 to indicate the direction from which the room is being viewed. Finally,
SP determines when further prompts need to be added to the display in the
‘find socket’ phase of the program.

Design routine (Lines 1430-1590)

Here the user can place furniture into the room. Lines 1440, 1450 place an
explanatory prompt on the display to show the keys that allow the contents
to be added. The WHILE/WEND loop, lines 1460-1580, then controls the

165

construction of the room interior. The cursor is moved over the grid by 1470-
1500. Line 1510 allows the routine ‘choose item’ to be selected, when the
space-bar is pressed, in order to add furniture or the robot to the room. Line
1520 permits the loop to end, and the search of the room to begin, when the
‘B’ key is pressed, provided that the RF flag indicates that the robot has been
placed in the room.

Lines 1530-1560 prevent the cursor leaving the grid. The cursor position is
marked by ‘square’ called twice at 1570 to blink the cursor on and off with a
colour change, black to background white.

Choose item routine (Lines 1600-1770)

This routine lets the user place chairs, lights, sockets, tables and tv sets in the
room. Lucie the Cat can be located just once. Line 1610 shows the options
available. If RF = 0 and the robot still has to be located, line 1620 indicates
this as well. The WHILE/WEND loop then detects the appropriate letter:
C, L, S, R, T or V. Line 1700 updates the G array for any item of furniture.
The numerical value placed in the array is the ASCII code of the letter. The
array is updated for the robot, if RF = 0, by 1710. The same line also
initialises the robot’s coordinates, (XR, YR) and records its starting
position, (XB, YB). This latter point is subsequently required by the
searching algorithm in the routine ‘find socket’. Finally, line 1710 also sets
RF to 1 to prevent a second robot being accidentally added to the room’s
contents. Line 1720 then shows the new view of the room by calling ‘room’,
‘view-N’ and ‘grid’. After this further prompts are added to the display.

Square routine (Lines 1780-1800)

The relevant square is filled in colour C on the grid.

Pause routine (Lines 1810-1830)

A variable length delay is produced by the FOR loop.

View-N routine (Lines 1840-1870)

This is the first of four routines which allow the furniture in the room to be
added to the perspective view which has already been created by the earlier
routine ‘room’. It will generate the view facing North from any of the
coordinate grid positions. All furniture seen within the defined field of view
is displayed, with size adjusted according to distance from the viewing
location. The most distant objects are placed first so that nearer objects may
obscure parts of the view in a realistic way.

166

The two nested loops, lines 1850, 1860, consider all relevant grid locations.
The outer, J, loop begins with the ‘top’ row of the array and STEPs down to
the row immediately in front of the viewing location, (XV, YV). The inner,
I, loop looks at each column in turn, from left to right. Naturally, however,
not all locations should be shown superimposed on the room but only those
which fall within the field of view.

c

Tm-rm i
VIEW_N

167

The diagram indicates the field of view from a typical viewing location on the
grid, M, with coordinates (XV, YV). (It should be noted that the
intersecting lines on the diagram represent the centre points of the squares
on the grid.) The field of view is the triangle ACM. The base of the triangle,
AC, is 20 units and the height, BM, 15 units. A typical location of a possible
item of furniture is the point F, coordinates (I, J). The algorithm chosen has
to be able to determine whether or not point F falls inside the field of view
and thus between the lines AM and CM.

In order to do this, the distance DE has to be calculated and compared with
the x-coordinate of F on the grid, value I. In the program, DE is represented
by the variable W. It can be seen from the similar triangles, ADE, ALM,
that:

DE = AD * LM/AL

Substituting the values already mentioned gives:

W = AD * 10/15

And it can be seen that this is the same as:

W = (15 - DL) * 10/15

However DL is the difference between the y-coordinates of the points F and
M and therefore equals (J-YV). This finally yields:

W = (15 + YV-J) * 10/15

This is the expression which occurs in line 1850. The line can now use this
value of W to decide whether or not F is in the field of view. The condition
is simply that FH should be less than or equal to EH. Since FH = ABS (I-
XV) and EH = 10-W, this leads immediately to the expression employed.
The second part of the conditional is just the need for there to be an item of
furniture, or the robot, at the corresponding array location, G(I, J).

If there is, the rest of the line calculates the coordinates (X, Y) needed to
show the item on the screen and also the scale factor, S. X will simply be the
value 640, corresponding to the width of the graphics screen, multiplied by
the ratio EF/EK. It can again be seen that:

EF =10-W-FH = lO-W-(XV-I)

This expression occurs in line 1850. Similarly EK is evidently 20 - W * 2. This
also appears in the expression for X.

168

The values of Y and S are calculated by simple proportion. Finally, line 1850
calls the routine ‘adjust’ to correct the scale factor for close-up views and the
routine ‘item type’ to choose which item to draw at the position deduced.

View-E routine (Lines 1880-1910)

The drawing algorithm employed in this routine is exactly the same as the
one used in view-N, but allows a perspective view to be created looking East
from the viewing location, (XV, YV) .

View-S routine (Lines 1920-1950)

Here the perspective view of the room’s contents is generated looking South
from (XV, YV) .

View-W routine (Lines 1960-1990)

This routine creates the view looking West.

Adjust routine (Lines 2000-2030)

In order to give large close-up views of furniture items, the scale factor, S,
is increased by a square term for all values greater than 45.

Robot view routine (Lines 2040-2120)

This routine is called by line 3760 if the user has selected a perspective view
from the current position of Lucie the Cat.

Line 2050 makes the viewing position, (XV, YV) the same as the robot’s
coordinates, (XR, YR). However this is not necessarily the point which can
be used in the routine ‘room’ to create an appropriate view of the walls and
floor. The problem occurs because ‘room’ always assumes a North view in
creating its display. As a result two separate viewing positions are usually
required. (XV, YV) generates the perspective view of the room’s contents
and (XW, YW) the correct position for the room’s edges. This can be seen
from the diagram.

The robot is at point B in the room. However, because it is assumed to be
looking East, the correct position on the grid to create a realistic view of the
walls is point E, where DE = CB and EF = AB. From very simple geometry
it can be seen that:

XW = DE = CB = (15 - YR)

YW = EF = AB = XR

169

These relationships appear in line 2070. Similar expressions can be derived
for each of the other three viewing directions. The direction the robot is, in
fact, ‘looking’ in is returned by various subsequent routines as the variable
RV. It takes values 1 - 4, corresponding to compass directions N - W. Lines
2060-2090, calculate (XW, YW) according to the RV value, as well as calling
the appropriate routines for showing the room. Line 2100 adds the grid and
the message that it is the robot’s view which is being shown.

170

171

Item type routine (Lines 2130-2210)

This routine is called whenever an item has to be added to the room. Lines
2140 - 2190 choose the correct drawing routine according to the array value
at the given point, (I, J) .

Draw chair routine (Lines 2220-2300)

Here a chair is added to the view of the room at the coordinates already
calculated, (X, Y) and of a size determined by the scale factor, S.

Line 2230 calculates five variables, A - E, directly from the value of S, to
facilitate the drawing routines. The relation of these variables to the chair
design can be seen on the diagram. MOVER, DRAWR and FILL are used
to draw the seat and legs of the chair. Then different parts of the back,
selected according to the view variable, V, are drawn by lines 2260-2280.
Varying views of the chair back are needed since the chair can be seen from
any of four directions. (All items of furniture added to the room are FILLed
as solid shapes, although in some cases overlapping of graphics can lead to
incomplete FILLing.)

Draw lamp (Lines 2310-2370)

A lamp is added to the room in a similar way by this routine.

Draw robot routine (Lines 2380-2480)

Here Lucie the Cat is added. The F loop, lines 2400-2450, alters the size of
the robot as well as producing a colour change from black to yellow. This
gives a ‘hard edge’ to the outline and so emphasises the position of the cat in
the room. Line 2460 draws the cat’s face if it is close enough to the viewing
position. Lucie appears always to be looking at the user... This could,
perhaps, be interpreted as a rotating head associated with the sonar scanner!

Fill circle routine (Lines 2490-2510)

This routine is called by the draw robot routine and creates a filled circle.

Draw circle routine (Lines 2520-2550)

A circle, radius R, is drawn at the point (CX, CY) .

Draw socket routine (Lines 2560-2600)

This routine shows the robot’s goal, a power socket.

172

Draw table routine (Lines 2610-2660)

This routine adds a table to the room.

Draw tv routine (Lines 2670-2750)

The K loop, 2680-2720, adds the screen to the tv set for all views North.

173

Find socket routine (Lines 2760-3000)

This is the routine which moves the robot around the room to look for the
power socket. Line 2770 initialises arrays and variables needed in the
searching algorithms that follow.

The initial search is carried out by the WHILE/WEND loop, lines 2780-
2970. Each stage of the search is monitored by the status of various flags. For
example, at line 2790 flag FVU calls ‘path 1’, with GOSUB 3070, to find a
clear route to the North wall of the room. Line 2800 switches on, when the
North wall is reached, the flag FHR which subsequenly calls ‘path 2’ to find
a clear route to the East wall. Line 2810 switches off the VU flag when the
North wall is reached. At line 2820, flag FHR calls ‘path 2’. Line 2830
increments YR to move the robot one square North, depending upon the
flag, VU...

In a similar way the other flags within the loop move the robot around the
room according to the general algorithm outlined in the main text. The
whole time, line 2950 uses the robot’s sonar to look for a power socket and
2960 calls ‘recharge’ if one is found. However, if the robot reaches the South
West corner of the room without finding a power socket, line 2940 ends the
loop and the next phase of the search begins.

In this final stage of searching, the FOR loop, 2970, 2980, considers each
item of furniture in the room in turn and, provided it is not at the edge of the
room, line 2970 uses the routine ‘peer round’ to do precisely that, assuming
that there must be a socket somewhere!

If line 2980 is reached, there evidently is no socket in the room and hence the
final message.

Peer round routine (Lines 3010-3020)

The routine ‘find socket’ calls ‘peer round’ when it requires an object in the
room to be examined. It provides the coordinates of the object, (BX, BY).
The new routine then sets these coordinates as the goal coordinates (XG,
YG) at lines 3020,3030 and the WHILE/WEND loop uses the routine ‘goal’
to move to the new position. When it is reached, line 3040 calls ‘track’ to
move around the object and allow the robot’s sonar to check the room
positions previously blocked.

Path 1 routine (Lines 3060-3100)

This routine moves the robot horizontally until its sonar detects a clear path
to the North wall of the room. Line 3070 reverses the robot’s horizontal

174

direction if the East wall is reached. Line 3080 places a message in window
#2 by calling ‘intent’ and also calls ‘sonar’ to look North. A clear path is
determined by the value of the flag FW returned by sonar at 3080 and if one
has been found the flags needed by ‘find socket’, FVU and VU, are
adjusted. Line 3090 calculates the robot’s view, RV, in case this is required.

Path 2 routine (Lines 3110-3140)

Here a clear path to the East wall is found.

Restart routine (Lines 3150-3180)

This routine uses ‘goal’ to return the robot cat to its initial position in the
room.

Goal routine (Lines 3190-3260) At certain stages in LUCIE it is necessary to
move the robot to a particular position that can be specified in advance, a
goal point (XG, YG). This occurs, for example, in the routine ‘restart’. The
routine ‘goal’ handles such cases. It modifies the robot’s coordinates (XR,
YR) in such a way that the goal location is reached as quickly as possible.

Line 3200 calculates XD, the increment needed to bring the x-coordinate
nearer to the goal. This will be zero if the goal and the robot already have the
same x-coordinate, or either 1 or -1, as determined by the expression
involving ABS (XG - XR). In a similar way, line 3210 calculates YD.

Line 3220 uses XD, YD, to calculate the provisional new point, (XN, YN).
Then it compares the distance of this point from the goal with the goal
distance, GD, and sets the goal reached flag, GR, to 1 if necessary. If,
however, the goal has not been reached, line 3230 moves the robot’s
coordinates to the new point if the grid array indicates that space is vacant
or calls the routine ‘jump’ if the space is occupied and avoiding action needs
to be taken.

Line 3240 calculates the robot view variable, RV, from the increments XD,
YD. The reasonable, assumption is made that the robot is facing in the
direction of greatest distance from the goal.

Jump routine (Lines 3270-3320)

This routine is called by ‘goal’ when there is an obstacle. It simply makes a
random jump of one square in the hope that a better path can be selected
from the new position. It deals far more easily with single obstacles than, for
example, long lines of chairs stretching across the room!

175

Line 3280 stores the initial robot position as (XA, YA). The WHILE/
WEND loop then produces a random jump of one square in either the x- or
y-direction. Line 3280 will alter the x-coordinate one way or the other, or,
perhaps, not at all. Only in the latter case will it attempt to alter the y-
coordinate. This means that the point can only ever be moved in one
coordinate direction at one pass through the loop, or possibly left unaltered.
But if this happens, or if the point selected is not vacant, the loop will not end
at 3310. Inevitably this algorithm will find a suitable new position.

Random routine (Lines 3330-3360)

A random integer, -1, 0 or 1, is generated for the jump routine.

Path 3 routine (Lines 3370-3410)

Here a clear path to the South wall is found.

Path 4 routine (Lines 3420-3450)

This routine locates a clear path to the West wall.

Intent routine (Line 3460-3490)

The user is informed, by a message in window #2, that Lucie is trying to find
an unblocked path to one one of the walls.

Scan routine (Lines 3500-3520)

The FOR loop directs the sonar beam in each of the four possible directions
by calling ‘sonar’ with GOSUB 3800.

Track routine (Lines 3530-3620)

The routine ‘peer round’ calls ‘track’ when the robot cat has reached one of
the items of furniture earlier located by the sonar beam. The four
conditionals between 3550 - 3580 decide the position of the robot relative to
the item and place the coordinates of the other three locations immediately
adjacent to the item into the coordinate arrays TX, TY. After this the FOR
loop, 3590-3610, moves Lucie to each of the locations in turn so that the
sonar beam can investigate the previously blocked direction.

Place routine (Lines 3630-3780)

Line 3640 updates the robot’s position in the G array and invites the user to
select a new view. The choice is then detected by lines 3660 - 3700 and the

176

new display created by lines 3720 - 3760, with appropriate calls to ‘room’, the
view routines and ‘grid’.

Sonar routine (Lines 3790-3910)

This is the important routine which shows the robot’s sonar on the grid,
‘remembers’ all objects encountered in the room and identifies a power
socket.

Lines 3800 - 3840 calculate the ranges of the nested FOR loops, depending
upon the robot’s location and the direction, DS, in which the sonar has to be
directed.

The beam is produced by the three loops between lines 3860-3900. The C
loop governs a colour change from cyan to white, so that the beam is erased
from the grid. The J and K loops control the beam in the y- and x- directions.
Line 3870 produces a tone and uses GOSUB 1790 to indicate the relevant
square of the grid through which the beam is passing. Objects in its path are
not accidentally erased.

If a socket is located, and the sonar-blocked flag, SB, is off (to prevent the
sonar seeing through objects) and it is the second pass through the C loop,
line 3880 switches on the found-socket flag, FS, and stores the socket
location as (XS, YS).

Line 3890 will locate other items of furniture, again only on the second pass
through the C loop (to avoid counting twice). The found-wall flag, FW, is
switched off and, if the sonar-blocked flag is off, the routine ‘ check’ is called.

Check routine (Lines 3920-3960)

When ‘sonar’ detects a furniture item, this routine uses the FOR loop, 3930,
3940, to check its location against the coordinates of known items in the OX,
OY, arrays. If the flag OF indicates that it is a fresh item, line 3940 adds it
to the arrays. Line 3930 switches on the flag SB to prevent the sonar
registering subsequent objects in the same direction, and seeing through this
object.

Recharge routine (Lines 3970-4080)

This is the routine which is called when the robot eventually finds the power
socket it is seeking. Line 3980 sets the socket location, (XS, YS), returned
by ‘sonar’ as the goal location, coordinates (XG, YG). The WHILE/WEND
loop then uses ‘goal’ and ‘place’ to show the robot cat approaching the
socket.

177

After this the FOR loop at 4000, 4010, uses GOSUB 2570 to produce a
‘zoom’ effect on the socket. Then the cat is drawn on the screen with flashing
eyes and a purr created by the WHILE/WEND loop between lines 4010-
4070.

178

CHAPTER 9

Machine mentality:
philosophical issues.

The ultimate question which will face Artificial Intelligence will be the
inherent status of the machines that it produces. Will they, in any sense, be
‘persons’? It is possible to imagine very advanced robots sent on voyages of
exploration to distant planets and into conditions which would be quite
intolerable for human life. The environment might well be equally inimical
for robots. The project will probably accept their loss. But if these future
machines are to conduct the type of research necessary, they will have
undoubtedly have been created with human-like skils of reasoning and
linguistic ability. Back on Earth, project coordinators may feel just a little
queasy when the final message comes through. What will the moral standing
of such robots be? Could it conceivably be murder to allow such a creation
to be extinguished? Similarly, powerful domestic machines around the
home might also pose problems. Suppose an eccentric bachelor makes his
robot valet also his beneficiary. What would the position of the intelligent
machine be in law?

Such issues have been a central theme of science fiction for many years.
Now, with the new intellectual status granted to them by serious research in
A.I., they are beginning to emerge as serious philosophical questions.

The ‘Strong’ Al Position
Some A.I. workers maintain a position which declares almost full
equivalence between intelligent programs and people. John McCarthy
stated that simple thermostats could have beliefs about the world, for
example ‘It is the right temperature now’. Herbert Simon and Alan Newell
claim that intelligence is merely a matter of symbol manipulation and can
take place as well in an electronic machine as in the human mind. Freeman
Dyson gives the advantage to the machine, because of its robust
construction, and sees computers as the next stage of evolution. Marvin
Minsky believes that computers will become so intelligent that people will
just have to rely upon being looked after as pets.

179

The Turing Test
A more pragmatic attitude was displayed by Alan Turing when he suggested
a definite test of whether a machine was truly intelligent or not. Turing felt
that if it proved impossible to tell whether or not the ‘person’ at the other end
of a communications link was a human being or a computer, then it made
little sense to say that the computer was not intelligent. The Turing Test
appears to have the reassuring nature of a scientic experiment and therefore
open to the usual criteria used forjudging all science. However it becomes
less plausible when confronted with Joseph Weizenbaum’s psychoanalysis
program ELIZA. Despite the almost fraudulent simplicity of this program,
which simulated understanding of typed dialogue by looking for key phrases
and by being cunningly evasive the rest of the time, people frequently
reacted as if they were really addressing another person.

The Case against ‘Strong’ Al
The linguistic philosopher John Searle has devised what many consider to be
a refutation of the more extreme claims of A.I. In it, he imagined a person
locked in a room but engaging in dialogue with Chinese speaking people
outside. This could be done with printed Chinese symbols which could be
passed to and fro. Searle argued that, provided the person had been given a
sufficiently detailed rule book written in his own language, English,
enabling him to exchange the correct symbols, he could appear to be
communicating perfectly well. He would, however, understand no Chinese
at all. Searle reasons that this is precisely the same situation which would
arise in A.I. Even with the most sophisticated programs designed to
‘understand’ natural language, the computer would be comunicating
without understanding. According to Searle, there is a gulf which cannot be
bridged between the syntactic understanding of language at a superficial
level and true semantic understanding. The latter can only exist in the
language-using domain of human beings, full of richness and context.

Searle’s position is also adopted by the philosopher Hubert Dreyfus. He
challenges the idea that the whole of reality as we understand it can be
turned into a formal system. This, inevitably, is the implication behind the
more excessive claims of A.I. Instead, Dreyfus emphasises the wealth of
perceptions, emotions and intuitions that each of us experiences as a person
in the world. Dreyfus feels that Western culture since the time of Plato has
implicitly assumed the division of mind from the world and that this is an
error now carried over into A. I. The belief that the mind is an abstract entity
and totally separate from the things around it gives the A.I. researcher an
unfounded confidence in the possibility of codifying it into a formal system.

180

Social Beliefs and Expectations
Terry Winograd is one A.I. worker who is also moving towards this position.
After the failure of the microworld approach, he now sees language as a far
broader, social activity, with a network of beliefs and expectations
stretching out from the individual to encompass the surrounding society. In
a positive way he regards this as a challenge for the development of further
ideas in A.I. at the new Centre for the Study of Language and Information
at Stanford. There is a curious similarity between his change of direction and
that of the philosopher Ludwig Wittgenstein earlier this century, who also
radically altered his perception of language from a precise logical calculus to
an essentially social act. Artificial Intelligence necessarily brings together
many seemingly diverse disciplines. It is this which gives the activity its
undeniable appeal.

181

CHAPTER 10

An A.I. crib sheet:
concepts, names
and programs.

ALTY Jim: Professor at the University of Strathclyde and associated with
the Turing Institute; coauthor of ‘Expert Systems: Concepts and Examples’.
(NCC Publications, 1984)

Alvey Report: ‘A Programme for Advanced Information Technology’, the
report prepared for the Department of Industry by the Alvey Committee.

Accountability: The principle that A.I. programs should be able to give
reasons for the decisions they make.

Alpha-beta algorithm: An improved heuristic derived from minimax which
ignores unpromising branches during a tree search.

Automatic Mathematician (AM): This was an early version of Lenat’s
EURISKO which deduced for itself, then investigated, basic concepts in
number theory.

B-star algorithm: A heuristic, devised by Hans Berliner, which evaluates
two variables at each node of a tree structure, for best and worst possible
result

Backward chaining: A strategy employed by the inference engine of an
expert system in which deduction proceeds from a final hypothesis to the
initial evidence implying that hypothesis.

Belle: A chess playing program developed by Thompson and Condon at
AT&T Bell.

BERLINER Hans: Professor of Computer Science at Carnegie-Mellon
University; author of Mighty Bee and B-star algorithm.

183

Blackboard: A method of knowledge representation first applied in speech
recognition; information is stored in separate modules which can summon
the contents of other modules when necessary.

Blind search: Seeking a solution to a given problem by considering all routes
through the tree structure without the aid of any simplifying heuristic to
reduce their number.

Blocks World: A microworld devised by Terry Winograd for his natural
language program SHRDLU.

BODEN Margaret: Reader in Philosophy and Psychology at the University
of Sussex, concerned with philosophical and social consequences of A.I.,
especially the ‘rights’ of sentient machines; author of ‘Artificial Intelligence
and Natural Man’. (Harvester Press, 1977)

Boltzmann architecture: A hypothetical computer design involving parallel
processing and intended to simulate the functioning of the human brain; a
large number of separate processors placed initially in a random state
‘coalesce’ to create a final state in a way which copies the brain’s power of
intuition.

Bottom-up: A programming technique in which the fine details are
investigated before the overall structure of the program.

Branching factor: A measure of the increasing complexity of a tree structure
at each node.

CAPEC Karel: Czech playwright who invented the term ‘robot’.

Chinese room: A thought experiment devised by John Searle to support his
belief that programs can never truly understand language.

CHOMSKY Noam: Professor of Linguistics at the Massachusetts Institute
of Technology; leading figure in the subject whose work on the structure of
language has influenced research in A.I.

CLOWES Max (late): A. I. research worker at the University of Sussex who,
together with David Huffman of M.I.T., produced a system of classification
of the sixteen possible vertices of a two dimensional diagram which allowed
the recognition of three dimensional shapes.

Cognitive science: The inter-disciplinary study of A.I., linguistics and
psychology.

184

COLBY Kenneth: A psychoanalyst who turned to A. I.; author of PARRY.

Combinatorial explosion: The rapid growth of a tree structure.

Common sense: The human ability, and current computer inability, to cope
with the complex, though apparently trivial, activities of everyday life.

Computer creativity: The ability of a computer to generate seemingly
original ideas.

Computer learning: Techniques enabling a computer to acquire fresh
knowledge and skills not initially implicit within its program.

Computer vision: The development of specialised hardware, and associated
software, intended to give computers limited sight.

Cray Blitz: A championship level chess program written for the Cray
computer.

Demons: Routine within a program intended to identify, and act upon, some
particular situation.

DENDRAL: An expert system which deduces chemical structure.

DENNETT Daniel: Professor of Philosophy at Tuffs University and
important figure in A.I.; author of ‘Brainstorms: Philosophical Essays on
Mind and Psychology’ (Harvester Press, 1978) and coauthor, with Douglas
Hofstadter, of ‘The Mind’s I’ (Harvester Press, 1981)

Depth search: Seeking the solution to a problem by resolving it into
increasingly simplified, though more numerous, sub-problems.

Domestic robot: A hypothetical computer controlled machine of the future
which uses a high level of A.I. to perform household tasks.

DREYFUS Hubert: A philosopher at the University of California at
Berkeley who maintains that computers will never be able to ‘think’; author
of ‘What Computers Can’t Do: The Limits of Artificial Intelligence’.

Edge detection: The ability of a computer vision system to locate boundaries
within its field of view; also called ‘profile analysis’.

ELIZA: A program written in 1966 at M.I.T. by Joseph Weizenbaum and
capable of simulating apparently intelligent dialogue; the program adopts
the role of a psychiatrist counselling a patient.

185

EURISKO: A program developed by Douglas Lenat which, by adjusting its
own heuristics, has shown ‘creative’ ability in a number of areas of
application.

Evaluation function: A calculation performed at each node during a tree
search to determine the best route.

Exhaustive search: See blind search.

Expert systems: The realisation in a computer program of some area of
human expertise which allows the computer to make decisions and offer
advice.

Feedback: Providing a program with results of its decisions to allow it to
modify and optimise its performance.

FEIGENBA UM Edward: Head of team at Stanford University which began
the development of expert systems with DENDRAL.

Fifth generation: The proposed next stage of computer development,
particularly associated with Japan and officially launched in October 1981,
involving sophisticated A.I. in the design of new machines and software;
fifth generation computers are intended to communicate in natural
language, possess a large knowledge base and efficient inference engine and
to be able to derive new heuristics from their own experience.

FODOR Jerry: Professor of Psycholinguistics and Philosophy at M.I.T.;
author of ‘The Language of Thought’. (Harvester Press, 1976.)

Forward chaining: A strategy employed by the inference engine of an expert
system which reasons from initial evidence, through a series of hypotheses,
to a final conclusion.

Frames: A method of knowledge representation, proposed by Marvin
Minsky in 1974 which allows analogies to be drawn between different
concepts.

Freddy: Early robot project at Edinburgh University.

FRUMP: ‘Fast Reading and Understanding Memory Program’, developed
at Yale, which uses scripts to analyse newspaper articles.

Functionalism: A recently developed philosophy of mind which has
emerged from work in cognitive science.

186

Fuzzy matching: Identification by matching only the most salient details of
a pattern.
Game-playing: The practice traditional in A.I. of testing heuristic rules and
related concepts in typically ‘intellectual’ games like chess.

General Problem Solver: A program written by Newell and Simon capable
of solving problems in certain restricted microworlds.

Goal directed: Term describing a strategy intended to achieve a given goal.

Goal state: A specific objective for a program.

Heuristic: A practical ‘rule of thumb’ which uses knowledge, rather than
logic alone, to make a decision.
Heuristic search: A tree search guided by heuristic rules.

Heuristic pruning: Ignoring branches of a tree structure according to a
selected heuristic.

HOFSTADTER Douglas: Assistant Professor of Computer Science at
Indiana University; author of ‘Godel, Escher,Bach: an Eternal Golden
Braid’ (Penguin Books, 1980) and coauthor of ‘The Mind’s I’

Homunculus: A (whimsically) imagined ‘inner man’ proposed in traditional
philosophy to account for perception and understanding; a similar concept
passes over to A.I. in its division of a problem into sets of autonomous
subsystems.
Horizon effect: The necessity of adjusting look-ahead to a sufficient depth of
ply, according to the current situation, in order to detect important decisions
in advance.

HUFFMAN David: See Max Clowes.

Image processing: The conversion of information from an optical device into
a form capable of manipulation by a computer.

Inference engine: The analytical/deductive component of an expert system
as opposed to its knowledge base.

Internal representation: See knowledge representation.

JULESZ Bela: Research worker at AT&T Bell who has investigated the
brain’s ability in stereopsis, obtaining in particular depth-information from
randomly generated dot patterns.

187

Knowledge base: Information stored within an expert system.

Knowledge engineering: Term used widely to describe the operation and
function of an expert system.

Knowledge representation: The specific method of storing the data used by
a program; different methods are more or less appropriate for a given
program.

LEHNERT Wendy: Assistant Professor of Computer Science at Yale
University who has employed scripts in natural language programs.

LENAT Douglas: Assistant Professor of Computer Science at Stanford
University who developed the program EURISKO.

Lighthill Report: Sir James Lighthill’s report to the Science Research
Council in 1972 concerning a grant application from the Edinburgh
University A.I. research group; a critical appraisal of the potential of A.I.
research which led to a lack of funding in Britain and even America.

LISP: The LISt Processing language used extensively in A.I.

Logic Theorist: Program written in 1950s by Newell, Simon and Shaw and
designed to prove theorems in mathematical logic.

LONGUET-HIGGINS Christopher: A mathematician who worked on A.I.
with Donald Michie at Edinburgh University and who later moved to the
A.I. group at Sussex.

Look-ahead: Initial production of a tree structure in a problem-solving
program.

MACSYMA: Early expert system developed at M.I.T. by Joel Moses.

McCarthy John: Professor of Computer Science and Director of A.I.
Laboratory at Stanford University; original author of LISP and inventor of
term ‘Artificial Intelligence’.

MICHIE Donald: Mathematician who founded the early Department of
Machine Intelligence and perception at Edinburgh University, now working
at the Turing Institute, Glasgow.

Micromouse: A small computer controlled vehicle used to test problem
solving techniques by exploring a maze; micromouse competitions are now
part of the tradition of A.I.

188

Microworld: A mathematical model of a minute portion of the real world so
reduced in complexity that a program can converse about it in natural
language.
Mighty Bee: Hans Berliner’s backgammon program which defeated the
world champion in 1979.

Mind-Body problem: A traditional issue in philosophy which explores the
relationship between mind and the brain; A.I. may eventually help to clarify
some of the arguments involved.
Minimax algorithm: A heuristic, developed by Claude Shannon, designed to
reduce the complexity of a tree search by assuming that the computer’s
opponent will always select the best possible move.

MINSK1 Marvin: Leading M.I.T. figure and proponent of the ‘strong’ A.I.
position; invented concept of frames.

Modular programming: A technique of writing programs in discrete units,
each with a distinct function within the overall structure.

MOSES Joel: M.I.T. researcher who developed MACSYMA.

MYCIN: An expert system, developed by Edward Shortliffe of Stanford
University, which diagnoses blood infections.

Natural language: A term used to distinguish between ordinary human
discourse and computer languages; a major objective of A.I. is to narrow the
gap between the two.

NAGEL Thomas: Professor of Philosophy at Princeton University and
author of ‘What is it like to be a bat ?’ (Mortal Questions, C.U.P.)

NEWELL Allen: Researcher at Carnegie-Mellon University who helped to
develop Logic Theorist and General Problem Solver.

Nodes: Points of divergence in a tree structure and where decisions, usually
governed by a heuristic rule, have to be made.

PAPERT Seymour: Colleague of Marvin Minski and author of the
programming language LOGO.

Parallelism: The application of parallel processing in A.I.

PARRY: Program, written by Kenneth Colby, which simulates a neurotic
person.

189

Parsing: The grammatical technique of analysing a sentence into component
words and phrases; it has a particular significance for programs intended to
understand natural language.

Pattern recognition: A fundamental problem in computer vision involving
the extraction of significant features during image processing.

PEARL Judea: Author of the Scout algorithm.

PLANNER: A computer language used in A.I. and employed by Terry
Winograd in SHRDLU.

Ply: A given level of a tree structure, counted from present position.

POGGIO Tomasso: Associate Professor at Massachusetts Institute of
Technology; following research at the Max Planck Institute on the visual
system of the fly, he began working on computational problems in computer
vision.

Portsmouth Polytechnic: On a nationalistic note... the location of John
Billingsley’s robot ping-pong competition!

Production rules: A conditional method of storing information; eg: ‘If the
gas goes out then my bath will be cold’.

PROLOG: A computer language used in A.I. in which the knowledge
representation is based upon predicate calculus.

PROSPECTOR: An expert system which locates mineral deposits.

PUFF: An expert system which diagnoses breathing disorders.

PUTNAM Hilary: Professor of Philosophy at Harvard University; author of
‘The mental life of some machines’ (Mind, Language and Reality, C.U.P.)

RA1BERT Marc: Assistant Professor of Computer Science and Robotics at
Carnegie-Mellon University who has worked on control systems required by
walking machinery and specifically upon a hopping leg.

Recursion: Programming technique, frequently employed in A.I. programs,
in which a routine calls itself.

Robotics: The gradual development of autonomous computer controlled
machines capable of many physical and intellectual tasks usually supposed
to require direct human intervention.

190

SAM: ‘Script Applier Mechanism’, a Yale program which uses scripts to
interpret stories presented to it.

SCHANK Roger: Professor of Computer Science and Director of A.I. Pro­
ject at Yale University who devised the concept of scripts.

Scout algorithm: A game tree heuristic developed by Judea Pearl.

Scripts: A development of frames by Roger Schank and other Yale resear­
chers in which context and inferences allow a program to answer questions
about simple stories and provide details implicit, thought not directly
explicit, in the text.

SEARLE John: Professor of Philosophy at the University of California,
Berkeley; a leading linguistic philosopher who has turned to issues raised by
A.I.; author of ‘Minds, Brains and Programs’ (Reprinted in Hofstadter/
Dennett ‘The Mind’s I’)

Semantics: The intrinsic meaning of sentences as opposed to their formal
grammatical structure; semantic meaning is notoriously difficult to code into
natural language programs.

Shakey: A research robot at Stanford controlled via radio by a PDP-10
computer and used to investigate practical issues in vision, navigation and
problem solving; experience gained in this project was later applied to the
design of NASA’s Viking lander on Mars.

SHANNON Claude: Author of the minimax algorithm, developed at AT&T
Bell.
SHRDLU: Terry Winograd’s very successful natural language program
based on ‘Blocks World’; name deliberately meaningless and not an
acronym, but instead originating in a group of random letters inserted by
typesetters into a manuscript to indicate a mistake.

SIMON Herbert: Leading A.I. figure at Carnegie-Mellon University who
helped to develop Logic Theorist and General Problem Solver.

Slots: Term used for positions in a frame which can be filled with
information.

Speech acts: A analytical approach to language first employed by the British
philosopher John Austin (1911 - 1960) in which utterances are seen to be
performing specific roles, statements, commitments, requests etc.; speech
act theory is now entering A.I. via ‘coordinator systems’ which identify the
specific speech acts implicit in text undergoing analysis.

191

Speech recognition: Computer identification of spoken language; an initial
stage in natural language processing for the ‘fifth generation’ machines.

‘Strong’ A.I.: A term used by John Searle to refer to the belief of some A.I.
researchers that the relationship between a computer program and the
computer is closely analogous to that between the human mind and the
brain.
Structured selection: A ‘diagnostic’ approach to hypotheses and evidence
adopted in expert systems.

Syntax: The grammatical structure of a language which needs to be analysed
by a natural language program before semantic meaning can be
investigated.

TALESPIN: Program, written by Jim Meehan, which explores the
interaction of the goals assigned to characters with events occurring in a
simulated world in order to generate simple stories.

Top-down: A technique in which the structure of a program is developed
before the fine details of programming are investigated.

Tree search: Examining the tree structure to determine the best possible
solution for a given problem.

Tree structure: A descriptive name used to indicate the way the total number
of possible decisions increases geometrically at each stage of a problem
solving exercise.

TURING Alan: British mathematician responsible for much early
theoretical work in the development of computers and also A.I.

Turing Institute: Organisation established by Donald Michie and others in
1983 at Glasgow in order to encourage research and industrial contribution
to A.I.

Turing test: A thought experiment described by Alan Turing in which a
program would be deemed intelligent if capable of dialogue
indistinguishable from human.

Ultra intelligent machines: Computers more intelligent than people, the final
objective of A.I. according to adherents of its ‘strong’ form; term invented
by Jack Good, Professor of Statistics at Virginia Polytechnic Institute.

WEIZENBAUM Joseph: Author of ELIZA and also ‘Computer Power and
Human Reason’. (Penguin Books, 1984)

192

WINOGRAD Terry: Important figure in A.I. who, while at the
Massachusetts Institute of Technology, developed the natural language
program SHRDLU; author of ‘Understanding Natural Language’.
(Edinburgh University Press, 1976)

WINSTON Patrick: M.LT. researcher who developed a program capable of
generalising concepts from specific examples; author of ‘Artificial
Intelligence’. (Addison-Wesley, 1977)

WITTGENSTEIN Ludwig: The extremely influential twentieth century
philosopher whose view of language evolved from a formal system,
described in his ‘Tractatus Logico-Philosophicus’, to one which appreciated
its essentially social nature, expressed in the ‘Philosophical Investigations’;
an analogous development seems to be occurring in natural language
programs in A.I.

193

INDEX

Alty, Jim ... 183
Alvey Report ... 183
Accountability 46,80,94,183
Alpha-beta algorithm ... 85,183
Ambiguity... 49
Asimov Isaac ... 127
Automatic mathematician .. 183

B-star algorithm .. 183
Backward chaining ... 69,80,183
Belle .. 84,183
Berliner Hans .. 83,183
Blackboard .. 52,184
Blind search .. 184
Blocks world .. 49,50,184
Boden Margaret ... 184
Boltzmann architecture .. 184
Bottom-up ... 184
Boulez, Pierre ... 5
Branching factor .. 83,184

Capec, Karel .. 127,184
Chinese room ... 180,184
Chomsky, Noam .. 184
Clowes, Max ... 184
Cognitive science .. 184
Colby, Kenneth ... 185
Combinatorial explosion ... 185
Common sense ... 2,185
Computer creativity ... 5,6,31,185
Computer learning ... 111,128,185
Computer vision ... 2,111,185
Cray Blitz ... 84,185

Demons.. 185
DENDRAL ... 81,185
Dennett, Daniel .. 185
Depth search ... 185
Domestic robot ... 185
Dreyfus, Hubert ... 180,185
Dyson, Freeman .. 179

195

Edge detection 185
Electronic brains .. 1
Eliot 49
ELIZA ... 180,185
EURISKO .. 31,69,186
Evaluation function ... 84,186
Exhaustive search 186
Expert systems ... 2,69,80,112,186

Feedback ... 129,186
Feigenbaum, Edward .. 186
Fifth generation ... 2,33,186
Fodor, Jerry .. 186
‘Forbidden Planet’ ... 127
Forward chaining ... 69,186
Frames .. 51,186
Frayn, Michael ... 31
Freddy ... 186
FRUMP ... 186
Functionalism ... 186
Fuzzy matching .. 34,35,187

Game-playing ... 2,187
General Problem Solver ... 1,127,187
Goal directed .. 147,187
Goal state .. 187

Hephaestus .. 227
Heuristic... 31,51,84,86,113,187
Heuristic search ... 187
Heuristic pruning.. 187
Hofstadter, Douglas ... 187
Homunculus .. 187
Horizon effect ... 187
Huffman, David ... 187
Hypothetical syllogism .. 54

Image processing .. 112,113,187
Inference engine .. 69,187
Internal representation ... 112,187

Julesz, Bela ... 113,187

Knowledge base ... 62,69,188
Knowledge engineering ... 188

196

Knowledge representation ... 51,54,129,188

Lehnert, Wendy ... 188
Lenat, douglas ... 31,69,188
Lighthill Report .. 69,188
LISP .. 188
Logic Theorist ... 188
Longuet-Higgins... 188
Look-ahead ... 188

MACSYMA .. 188
McCarthy, John ... 1,179,188
Michie, Donald ... 188
Micromouse ... 129,188
Microworld ... 181,189
Mighty Bee .. 83,189
Mind-Body program ... 189
Minimax algorithm ... 84,189
Minski, Marvin ... 51,179,189
Modular programming ... 11,189
Moses, Joel ... 189
MYCIN ... 81,189

Natural language ... 49,33,189
Nagel, Thomas .. 189
Newell, Allen ... 1,179,189
Nodes .. 189

Papert, Seymour .. 189
Parallelism ... 189
PARRY ... 189
Parsing ... 16,28,52,190
Pattern recognition .. 190
Pearly, Judea ... 190
PLANNER ... 190
Ply .. 83,85,94,190
Poggio, Tomasso ... 113,190
Portsmouth Polytechnic .. 190
Production rules ... 190
PROLOG ... 81,190
PUFF... 81,190

Putnam, Hilary ... 190

197

Raibert, Marc ... 190
Recursion .. 190
Robotics .. 190

SAM.. 191
Schank, Roger .. 191
Schillinger, Joseph ... 5
Scout algorithm .. 191
Scripts ... 52,191
Searle, John 180,191
Semantics .. 191
Shakey .. 143,191
Shannon, Claude ... 84,191
SHRDLU ... 49,191
Simon, Herbert ... 1,179,191
Slots 51,191
Speech acts ... 191
Speech recognition ... 192
Strong A.1.. 180,192
Structured selection ... 69,192
Syntax ... 192

TALESPIN ... 192
Talos .. 127
Top-down ... 128,147,192
Tree search .. 83,192
Tree structure ... 192
Turing, Alan .. 180,192
Turing Institute .. 183,192
Turing test .. 180,192

Ultra intelligent machines ... 192
Unimation ... 128

Weizenbaum, Joseph ... 180,192
Wells, H.G.. Ill
Winograd, Terry ... 33,49,181,193
Winston, Patrick .. 193
Wittgenstein, Ludwig ... 181,193

198

AMSTRADS AND
ARTIFICIAL INTELLIGENCE
About this book
This is intended as a companion to another of our highly successful books on artificial
intelligence Build Your Own Expert System. In this new book, Patrick Hall surveys the
broad field of contemporary artificial intelligence- the underlying theories, practical
applications in industry and commerce, and working examples that are ready to run on
Amstrad CPC series computers (and, with minor changes, on most popular micros).

Topics covered include.

Creative writing of prose and verse
Natural language translation
Knowledge representation
Expert systems and knowledge engineering
Game playing
Computer vision
Robots and learning

The programs are substantial productions- in fact, many of them are based on major
landmarks in Al research. For example, there is a re-creation of 'Shakey'- the robot
developed at Stamford Research Institute, though in this book Shakey is a robotic cat
on the screen of an Amstradl Each program is carefully described and documented, so
that users can understand exactly how and why it works.

About the author
Patrick Hall is an established Sigma author with a special interest in simulations, artificial
intelligence, and computing. He is currently working on a major new LISP programming
book for microcomputer users.

About us
Sigma Press has a long-term
commitment to excellence in personal
computing, science, and technology
Intending authors should contact.

GB

ISBN
Í NET +D0fl . TS
l-0505fl-03fl-3

Sigma Press, 98a Water Lane,
Wilmslow, Cheshire SK9 5BB

A comprehensive catalogue is
available on request.

SIGMA
PRESS«

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	AMSTRADS and artificial intelligence
	Contents
	1 - In the beginning: the history of artificial intelligence
	2 - Planned spontaneity: computer creativity?
	3 - Common parlance: understanding natural language
	4 - The last analysis: knowledge representation and semantics
	5 - Expert assistance: knowledge engineering
	6 - Playing the game: heuristic strategies
	7 - The wood for the trees: computer vision
	8 - The light of experience: robots and learning programs
	9 - Machine mentality: philosophical issues
	10 - An A.I. crib sheet: concepts, names and programs
	INDEX
	

✅ Raw HQ scan : Maxime CROIZER for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ Thanks to Rafa CPCMANIACO for lending the book

✅ 2020-11-29

