
AMSTRAD
GRAPHICS
THE A D V A N C E D USER G UIDE

Robert Ransom

SIGM A ■

AMSTRAD GRAPHICS
- the advanced user guide

Robert Ransom

SIGM A
press ■

Copyright © Robert Ransom

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
prior permission of the publisher. The only exceptions are for the purposes of
review, or as provided for by the Copyright (Photocopying) Act or in order to
enter the programs herein onto a computer for the sole use of the purchaser of
this book.

ISBN 1-85058-040-5

Published by:
SIGMA PRESS
98A Water Lane
Wilmslow
Cheshire
U.K.
Printed in Malta by Interprint Limited

Distributors:

U.K., Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester
West Sussex, England

Australia;
JOHN WILEY & SONS INC
GPO Box 859, Brisbane
Queensland 40001
Australia

Acknowledgements: CPC-464, CPC-664 and CPC-6128 are the Trade
Marks of Amstrad Consumer Electronics pic.

Preface

This book is about graphics for Amstrad home computers, specifically the CPC
464 CPC 664 and CPC 6128 machines. These computers are ideally suited for
graphics work for a number of reasons. Firstly, the version of BASIC included
in ROM is very fast, enabling the user to perform numeric calculations or to
draw lines more quickly than is possible with many other home computers.
Next, the graphics screen is mapped as a 640 X 400 unit area. This is a similar
resolution to many professional quality graphics devices (although the ‘true’
Amstrad resolution is actually 640 X 200 pixels, as you will see in Chapter 1).
The most important advantage of the Amstrad home computers for graphics
use is probably the range of graphics commands available for use from within
the BASIC language. Unlike the hapless owner of a Commodore 64 machine,
the Amstrad owner can draw lines, change screen and plotting colours, and even
paint areas of the screen (CPC 664 only) without recourse to an endless series
of PEEKs and POKEs to memory locations.

The present book is intended as a simple introduction to computer graphics for
the novice programmer as well as a more detailed primer introducing the world
of real computer graphics: the sort that are used in computer-aided design,
simulation work and art studies. Much of the basic groundwork covered in
these pages is relevent to sophisticated graphics software packages running on
computers costing hundreds of thousands of pounds.

In the following pages you will learn how to construct simple pictures and
graphs using text screen characters, to draw and manipulate two and three
dimensional ‘wireframe’ line objects, to draw in perspective, to use ‘hidden line’
algorithms, to construct multisegment pictures, and to fill in frame diagrams to
give a solid high resolution picture. A variety of programs will be given as
examples, and a library of subroutines will be built up to allow you to develop
your own ‘graphics library’ using the same techniques. It is assumed that the
reader has written at least a few simple programs in BASIC, and has a grasp of
Amstrad BASIC commands. The Amstrad manuals are all quite detailed
enough for understanding of the general programming techniques used in this
book, but if you wish to go further I recommend the CPC464 Advanced User
Guide by Mark Harrison, also published by Sigma Press.

Although an understanding of computer graphics relies on some understanding
of the mathematics involved, you will be able to use the routines without
knowing any coordinate geometry or matrix algebra. This is possible because

3

the purpose of each routine is clearly described, together with details of input
and output variables. For the more mathematically adept reader, an appendix
describing the matrix manipulations involved is included.

I have tried to make the material in this book as accessible as possible for owners
of Amstrad home computers. The program examples in these pages have been
developed on a CPC 664 with colour monitor, and will run identically on the
CPC 6128. There are only a few subtle differences between CPC 664 and 464,
so no difficulty will be experienced by the reader armed with the disk-driveless
machine. There is even no distinction between disk and tape owner - the input
and output commands in Locomotive Softwares’ excellent BASIC interpreter
are identical for both.

As this book concerns itself almost entirely with Amstrad computer graphics,
you may like some advance information on how the book’s graphics were
themselves prepared. In the main, the figures are from two sources. The
program output was obtained using an Epson MX 82F/T printer coupled via a
Centronics interface cable to the user port of a CPC-664. The software to drive
the interface was obtained from two different sources: the first is a machine
code listing by F M Collins to be found in the Apiil 1985 issue of Practical
Computing (this program required a few modifications to run with the Epson
printer). A more sophisticated package of screen dump software is Tascopy, and
this has been extensively used here. You will find details of Tascopy in Chapter 1.

Some of the diagrams were obtained using a rather more heavyweight
approach. A Digital Equipment Corporation (DEC) Vax 11/780 ‘supermini’
computer was used for this purpose, and programs to generate the Figures were
written in Fortran 77, utilizing Tektronix Plot-10 graphics software. This
software consists of a set of Fortran callable subroutines to perform graphics
operations. The actual figures were obtained on a Tektronix 4663 flatbed two
pen plotter. This choice of equipment (about £250,000 worth) was really only
made because of its availability, together with the practical consideration that
1 had no suitable plotter attached to my Amstrad. A more detailed discussion
of the merits and features of printers and plotters can be found in Chapter 1.

The use to which the graphics techniques in this book will be put by the reader
depends very much on individual circumstances. Although many people
already have an idea what they want from graphics, the author hopes that the
techniques set out here will stimulate interest in the possibilities of graphics on
Amstrad home computers. This book can be used on several different levels. If
you only want to have some programs which show interesting graphics effects
to impress your friends, then you will find the book a source of useful program
material. I do hope, however, that many readers will want to go further than
this, and will be willing to try to understand the basic principles behind
computer graphics. You will find that many of the programs included here may

4

be enhanced by additions, extensions or even merging into program ‘packages’. I
have tried to keep the programs in discrete sections that are as straightforward
as possible, so I’ve avoided this kind of ‘integrated software’ approach in the
interests of clarity.

Let me wish you good luck, and 1 hope that you will get as much enjoyment out
of exploring the graphics capabilities of your computer as 1 have had in writing
this book. If you find mistakes or errors, please let me know, and if you have
success in amending the programs, well, perhaps you’ll let me know about your
triumphs as well. Now, I’m going to try some different parameter values for
those fractal curves....

I have received help from several sources during the preparation of the book.
Ray Matela first introduced me to the world of computer graphics, and I’ve
learnt a lot from his extensive experience. I’d also like to thank Greg Turk for
permission to use an amended version of his Apple fractal program (thanks also
to Peter Sorensen), and thanks to Tektronix Inc (Beaverton, Oregon) for
permission to copy Figures 7.1 and 7.6 from their Plot 10 3D User’s Support
Manual. Graham Beech of Sigma Press encouraged me to consider the Amstrad
computers for graphics work, (and loaned me a CPC 664 to develop the
programs for this book), and finally thanks to my wife and children for allowing
me to lock myself away for long hours at a time.

Robert Ransom
Woburn Sands

July 1985

Reader Convenience D isk

A disk containing all of the programs in this book
is now available direct from:

AMSOFT
Brentwood House
169 Kings Road
Brentwood, Essex
CM14 4ET

The current price is £9.9.5 inc. VAT.

5

CONTENTS

Program Index 9

CHAPTER 1 INTRODUCTION 15
1.1 What are computer graphics? 15
1.2 The elements of computer graphics 15
1.3 Amstrad screen modes 20
1.4 Inks and colours 22
1.5 Some simple graphics 24
1.6 Placement of text 31
1.7 Printing graphics 32

CHAPTER 2 POINTS, LINES AND SHAPES 37
2.1 Drawing lines 37
2.2 Points 40
2.3 Drawing shapes 41
2.4 Dashes and fills 42
2.5 Drawing curves 45
2.6 Vector animation 49
2.7 Fractals 50

CHAPTER 3 GRAPHICS DATA STRUCTURES 53
3.1 Input of data 53
3.2 More complex data sets 58

- How many dimensions? 58
- Picture segments 59

3.3 Manipulating segments 61
3.4 Drawing pictures the easy way 62
3.5 How to use SKETCH 66

CHAPTER 4 MANIPULATING 2D DATA 69
4.1 The coordinate system 69
4.2 Rotation 70
4.3 Translation 73
4.4 Scaling 75
4.5 Sequences of transformations 77
4.6 Windows on the world 81

CHAPTER 5 BUSINESS GRAPHICS 93
5.1 The importance of presentation 93
5.2 A slice of the pie 93
5.3 Graphing techniques 103

7

5.4 Bar charts 112
5.55 3D bar charts 117

CHAPTER 6 A COMPUTER AIDED DESIGN PROGRAM 123
6.1 Design considerations 123
6.2 Some nuts and bolts 123
6.3 The DESIGN program 130
6.4 Some applications for the DESIGN program 140

CHAPTER 7 WORKING IN THREE DIMENSIONS 143
7.1 Data and 2D projections 143
7.2 Projection methods 146
7.3 Entering 3D data 148
7.4 Parallel projections 153
7.5 Rotation, translation and scaling revisited 157
7.6 Perspective projections 162

CHAPTERS HIDDEN LINES AND SURFACES 171
8.1 What is a hidden line? 171
8.2 Defining surfaces 173
8.3 A complete hidden lines program 176
8.4 Extension of ‘SKETCH3D’ 188
8.5 More advanced techniques 191

CHAPTER 9 A SAMPLE APPLICATION: DRAWING MOLECULES
193

9.1 Setting the scene 193
9.2 Solving the problem 193
9.3 Developing the program 195
9.4 The full MOL3D program 198
9.5 Some final remarks 205

APPENDIX 1 AMSTRAD GRAPHICS COMMANDS 207
A 1.1 Overview 207
Al.2 Graphic action commands 207
Al.3 Text action commands 209
A 1.4 Graphic environmental commands 209
A1.5 Text environmental commands 212

APPENDIX 2 MATRIX MANIPULATION 213
A2.1 What are matrices? 213
A2.2 Two dimensional matrix manipulations 213
A2.3 Three dimensional matrix manipulations 221

APPENDIX 3 REFERENCES ON COMPUTER GRAPHICS 223

8

PROGRAM INDEX

The following annotated list of programs is included in order to help you see at
a glance what your computer will be able to do after you have typed in the
listings in this book. All the programs have been tested on Amstrad computers
and should work satisfactorily. Note that some listings are meant to be
MERGEd with main programs already loaded into your computer. These
amendments are marked with an asterisk here.

Note also that the program listings were done on an EPSON printer which
substitutes the character “£’ for throughout. You should, therefore, replace
each of these characters as you procede.

C hapter 1 B L O C K

A program demonstrating use of low resolution block graphics to
create a picture.

C O L O U R

Shows the colours available on the Amstrad computers as a series
of grey shades outputted to a printer.

H E X A G O N

A simple program that draws a hexagon. The program
demonstrates simple the setting up of the high resolution screen
and line drawing commands.

C I R C L E

Another simple program, this time showing how a simple formula
can be used to generate a regular shape.

S P I R A L

A spiral generation program.

G R A P H

A demonstration program that can be used to draw graphs. The
graph scales, labels and data are inputted during program
execution.

S C R E E N

A program that outlines the screen dimensions to test the picture
size on a printer (if a printer is available!)

9

C h ap ter 2 N O W Y O U S E E I T

This program demonstrates the drawing and erasing of lines to
produce the effect of movement.

I N V E R T

A program demonstrating the effect of inverting pixels rather than
drawing and erasing them.

J O I N

Tests pixels to prevent lines crossing.

M A S K D E M O

Demonstrates the use of the CPC664 and CPC6128 MASK
command.

D A S H

A dashed line generating program for CPC464 owners

E L L I P S E

An ellipse generation program.

S I N E

A program for generating sine waves.

P A R A

A program to generate parabolic curves.

V E C T O R

Program showing drawing and erasure of line vectors to produce
animation.

F R A C T A L

A demonstration of the striking patterns that can be obtained by
plotting fractal curves.

C h ap ter 3 E A S Y D R A W

Program demonstrating the use of data structures for defining 2D
data.

F I L E 2 D

This program allows you to create files containing point and line
data to draw 2D pictures. The version here stores files on disk, but
instructions for tape storage are given in the text.

10

DRAW2D
An extended version of EASYDRAW which inputs data from a
disk or tape file (created using FI L E 2 D).

SKETCH
Program allowing interactive creation of a 2D data set on screen,
using joystick to control cursor movement.

Chapter 4 ROTATE
Shows movement of an arrow to demonstrate 2D rotations.

TRV1 , TRV2 , TRV3
These programs are developed from ROTATE, and are built up
throughout the chapter to handle general 2D transformations.

VI rotation + translation (arrow)

V2 rotation + translation + scaling (spaceship)
V3 as V2 but reads in data from a sequential file created using

SKETCH, and uses a matrix multiplication method.

ZOOM
Demonstrates the use of a clipping algorithm to allow zooming in
and out of a picture.

QUADRANT *
A version of S K E T C H which allows an object 4X screen size to be
drawn. This program is especially useful for preparing data files
containing maps etc. and is used in conjunction with ZOOMQUAD
below.

ZOOMQUAD *
A version of ZOOM which manipulates the full 1280 X 800 data
area made available by QUADRANT.

C h ap ter 5 P I E

A program to generate pie charts: can be used in any MODE.

EXPLODE
A version of P I E allowing individual sectors to be displaced or
‘exploded’.

11

MI NI PI E
A version of P I E allowing multiple ‘pies’ to be displayed at the
same time.

SUPERG
An expanded version of the G R A P H program in Chapter 1. Can
be used to plot data points or to draw a continuous line.

CHART
A graphing program with months labelled on the X axis.

EMPHASIS *
A version of CHART allowing comparison of two sets of data.

CUMUL *
A version of CHART showing cumulative plotting of two sets of
data.

BAR *
A version of CHART plotting bars instead of data points.

PATTERN
A program for shading rectangles with a variety of hatch patterns.

HATCH *
An addition for BAR to allow hatch patterns to be used in bar
charts.

BARCOMP *
A version of B A R plotting two sets of bar chart data on the same
axes.

HIST03D
A program for generating three dimensional histograms.

C h ap ter 6 DESIGN
This is a computer aided design program which may be used in a
variety of situations where objects have to be fitted into a space:
room layout, circuit design, etc.

C h ap ter 7 FILE3D
This program is an expanded version of F I L E 2 D (Chapter 3),

12

and allows you to create 3D data files.

S K E T C H 3 D *

An amended version of S K E T C H Chapter 3) allowing interactive
‘creation’ of a 3D data file ‘on screen’.

P R O J 3 D

This program draws a picture using 3D data. The program may
either be used in conjunction with a 3D datafile on tape or disk, or
can use data statements within the program itself.

T R A N S 3 D

Program consisting of the basic P RO J 3 D section, with a routine
for three dimensional rotation. Routines for scaling and
translation are also given in the text.

P E R 3 D

This is an extended version of PR0J3D which draws 3D wire
frame pictures in perspective.

B I L L *
An amendment of P E R 3 D that allows a two dimensional data set
to be projected as a ‘billboard’ in three dimensions.

Chapter 8 P A I N T E R

A program demonstrating use of the painter’s algorithm for
removing hidden surfaces from a picture.

F I L E 3 D H

This version of F I L E 3 D incorporates additional input
statements to handle the additional surface data elements needed
to draw a hidden lines picture.

H I D D E N

The main hidden lines removal program, allowing hidden lines to
be removed from a single convex object with the origin inside the
object.

S 3 D H *

A version of SKETCH3D which adds surface information to the
3D data set created.

H I D D E N 2 *

This version of HIDDEN can be used with S3DH to create a

13

hidden lines image of a data set ‘expanded’ from two dimensions.

C h ap ter 9 M 0 L 3 D

A program for drawing molecules with atoms represented as
circles ’spheres’) in 3D space.

I N P U T M O L

This programs creates the molecule data file read by M 0 L 3 D

containing X,Y,Z coordinate data for each atom together with the
atomic radius.

Appendix 2

M A T R I X M U L T I P L I C A T I O N 1

M A T R I X M U L T I P L I C A T I O N 2

Two routines for multiplying 1 X 3 by 3 X 3, and 3 X 3 by 3 X 3
matrices respectively.

14

Chapter One

Introduction

1.1 What are computer graphics?

Computer graphics are the visual representation of the numeric information
encoded within a computer. Although normal text output on the computer
screen is, in the strictest sense, ‘graphics’, computer graphics really begin when
graphs, histograms, pictures and animations are displayed.

In the days before home computers, computer graphics were limited to
industrial and educational mainframe computers whose users could budget
tens of thousands of dollars on hardware and software. Today, however, the
tables have turned and home microcomputers have a great advantage over
mainframe computers: on most micros, graphics facilities are built into both
hard and software, while mainframe users have to separately purchase terminals
and software on which to run graphics programs, and these items don’t come
cheap! The advantage of large computers lies of course in the speed at which
they can do things and the amount of memory available to the programmer. We
will return at intervals throughout this book to make comparisons between
graphics on mainframe and microcomputers, but let us now turn to look at the
nuts and bolts of computer graphics, before homing in on the Amstrad home
computers as the vehicles for our graphics studies.

1.2 The elements of computer graphics

The single main element which has aided the flourishing of graphics facilities on
home micros is the development of raster display technology. In the early days
of computer graphics, graphic primitives (points, lines, filled areas) were drawn
by direct control of the beam in the cathode ray tube being used. This kind of
display (called vector display) is still used in professional graphics where high
accuracy is needed. Although such devices are great fun to use, you won’t find
many coupled to home micros. This is because they are expensive and have the
additional limitation that you often cannot selectively erase lines on this kind of
device: you can only wipe the whole screen at one fell swoop.

15

More recently, refresh displays have come into prominence. Refresh displays get
around the shortcomings of vector displays very neatly. First of all, refresh
technology is TV technology, so you can buy a new monochrome display device
for £40. Also, the very term refresh’ indicates that the picture is constantly
being renewed: on a standard TV it is replaced 30 times each second. This means
that you can wipe out a line and redraw it in another place ’quicker than the eye
can see’. In actual fact this is easier in theory than practice, because you have got
to make the visual information available for the computer to act on. This visual
information is held in the form of a parcel of computer memory called a display
file. The display file is essentially a ‘map’ of the displayable points on the screen.
Each of these points is called a pixel (short for picture element), and each pixel
requires a storage location in the display file.

In the simplest form of display file, only one bit is used to represent each pixel.
(Which is why you will often find the display file on micros referred to as a
‘bitmap’). If the bit is set to one, the pixel is lit, if it is set to zero, it remains unlit.
This representation is ideal for a monochrome display without grey shades),
because each point can only be dark or light. If a number of colours or grey
shades are to be drawn, more than one bit must be available to represent each
pixel. If you ever have occasion to enter the world of professional graphics, you
will find the term ‘bit plane’ used. Each bit plane is an extra bit used per pixel.
T\vo bit planes gives four possible pixel colour combinations, three bit planes
gives seven combinations and so on. ___ _ „

COMPUTER

MEMORY

contents of

d i spl ay file

mapped on
DISPLAY

FILE

PROGRAM

Figure 1.1 Relationship between the screen and computer memory. The program manipulates the
screen locations ‘bitmapped’ in the display file, and the computer hardware refreshes the screen
image of the display file 30 times a second.

16

Let us recap on the terms we have introduced so far. The important ones are
refresh display, display file, pixel, and bitmap. You will need to remember these
because they crop up a lot in graphics lore.

Now at this point you may be worrying about how the information gets from
the display file to the screen, or indeed about how the display file is itself
structured. On the first problem the simple answer is: forget it. If you really want
to know about addressing rasters and so on then you need a hardware manual
and not this book. The structure of the display file however is relevent, but is
highly machine specific.

We have not yet finished with our overview of graphics concepts. The next term
to introduce is the resolution of the graphic screen. You will be familiar with the
terms ‘hi-res’ and ‘lo-res’ graphics. In hi-res mode, the resolution is defined by
the number of pixels that can be displayed on the screen. A resolution of 1000
X 400 pixels means that 400,000 pixels can be displayed. You can work out the
massive display file that would be needed to cope with this resolution even in
monochrome: it is 400000/8 bytes (one bit per pixel) or 50K bytes. No wonder
home micros work on lower resolutions!

The Amstrad home micros have a maximum hi-res screen resolution of 640 X
200 pixels, which needs a display file of 16K bytes. In fact, as you will see below,
all high resolution modes on the CPC 6128,664 and 464 need 16K bytes space:
the difference is that some modes give a larger range of colours for the sacrifice
of resolution.

Figure 1.2 The ‘low resolution’ character grid is made up of a square measuring 8 X 8 pixels. Each
standard character is mapped in a special section of memory accessed when a character is to be
printed on screen.

17

Low resolution graphics are based around blocks of pixels which are considered
as integral units. The Amstrad version of these blocks measures eight bits by
eight bits, or 1 X 1 bytes as you can see in the diagram.

The principle use of low resolution graphics is for text, but the block graphics
facility uses the same block space and allows the programmer to design quite
striking graphic effects using the low resolution screen only. The block graphics
characters available on your Amstrad are listed in your User Manual. There are
two techniques for using these symbols. First, they can be ’pasted’ on the screen
to produce the image you want, say a backdrop for a computer game (Figure
1.3). Alternatively, they may be directly used in animation (graphics for
‘matchstick men’ and ‘space invaders’ are provided, for example).

Figure 1.3 An example of a picture made up of character cells or ‘block graphics’. This simple picture
consists of special characters placed on screen using the LOCATE command.

The picture in Figure 1.3 was produced using just five different block graphics
symbols. As you can see from the program below, the ‘mountain’, ‘trees’ and
‘Chris Bonnington’ are all drawn using the P R I N T C H R $ command. The
LOCATE command is used to place the graphics symbols at the correct row and
column on the screen.

18

BLOCK program

10 REM BLOCK GRAPHICS DEMONSTRATION
20 REM TO DRAW A PRETTY SCENE IN MODE 1

30 MODE 1

40 INK 0,11:INK 1,0:INK 2,13:INK 3,9

50 CLS

60 REM FIRST DRAW MOUNTAIN

70 PEN 3:REM DRAW MOUNTAIN IN GREEN

80 J=26

90 FOR 1=1 TO 19

100 IF J<15 THEN PEN 2

110 J=J-1

120 LOCATE I,J

130 PRINT CHR*(214)

140 FOR K=1 TO J-I+13

150 LOCATE I+K,J
160 IF J< 14 THEN PEN 2

170 IF RND(1X0.1 THEN GOSUB 300 ELSE PAPER 0: PRINT CHR* (143)

180 NEXT K

190 LOCATE I+K, J

200 PRINT CHR*(215)

210 NEXT 1

220 REM NOW DRAW MOUNTAINEER

230 PEN 1

240 FIG=247

250 FIG=FIG+1:IF FIG=252 THEN FIG=248

260 LOCATE 20,6

270 PRINT CHR*(FIG)

280 FOR 1=1 TO 500:NEXT I:GOTO 250

290 STOP

300 REM SUBROUTINE TO PLOT TREES

310 IF K=1 OR K=J-I+13 THEN PAPER 0:PRINT CHR*(143):RETURN

320 IF J< 14 THEN PEN 2:PRINT CHR*(143):RETURN

330 PEN 1iREM DRAW OBJECTS IN BLACK

340 PAPER 3:REM SET OBJECT BACKGROUND TO GREEN

350 PRINT CHR*(229)

360 PAPER 2

370 PEN 3

380 RETURN

This program represents the first and last use of non-text block graphics in this
book. If all you really want to do is to program simple games using these
symbols, there are plenty of other books that will show you how!

19

1.3 Amstrad screen modes

Although the maximum Amstrad screen resolution is 640 * 200 pixels, your
machine can work in three different resolution modes. These modes (MODE
0 , MODE 1 , MODE 2) give effective working resolutions of 160 * 200 pixels,
320 * 200 pixels, and 640 * 200 pixels respectively. In addition, the Amstrad
screen is actually ‘mapped’ as a 640 * 400 unit area in all modes. This means that
each pair of units along the Y = vertical) axis will actually refer to the same
pixel. The units along the X axis are more flexible. Working in M0 D E 2 , each
unit is equivalent to one pixel. In M0 D E 1, each pair of units equals one pixel,
while in MODE 0 , four units share the same pixel.

Q
Q
(\l

(J

ID
<M

640 PIXELS

<0
J
Id
X

A
(D

fd

&
a

C20-80 CHARACTERS)

tL
8 PIXELS

ligurc' 1.4 The high resolution and low resolution screens compared. Each character is actually
drawn as an 8 X 8 sequence of pixels.

I should make two clarifying points about this apparent confusion. First, the
use of a 640 * 400 unit work area gives the correct aspect ratio to the X and Y
axes, and the fact that the units are the same in all modes vastly simplifies
switching between modes. The second point involves the use of the lower
resolution modes, 1 and 0. Why use them at all? The answer to this question lies
in the use of colour. If the true number of pixels in a 16K display memory is 640
* 200, there will be one bit per pixel, only enough to specify one of two colours
(background or foreground). If the pixel number is 320 * 200, two bits of display
memory can be dedicated to each pixel, thus allowing four possible colour
combinations. With a pixel number of 160 * 200, two further bits are released
per pixel, giving 16 colour combinations on screen at the same time.

20

As you progress through this book you will see (and I hope use) many different
programs involving the various screen modes. Before leaving the topic of modes
it might however be useful to consider the display of the text character blocks
at each mode. If you look in the Appendices of your Amstrad manual you will
see the various characters available. These characters are drawn ocupying the 8
* 8 character cell we discussed earlier in this chapter. If you type a character in
either M O D E 0 or M O D E 2 , it is clear that the character does not occupy a
square block. In M 0 D E 2 , each character does appear square. Now the vertical
(Y) resolution in all modes is 200 pixels, and each character cell is eight units
high. Dividing 200/8 gives 25 lines on screen IN ALL MODES. Now consider
the horizontal (X) resolution. In MODE 2 , 640/8 = 80 characters can be
displayed. In M O D E 1 , 320/8 = 40characters can be displayed. In M O D E 0 ,
160/8 = 20 characters can be displayed.

In this book we will concentrate on graphics applications written in BASIC, and
you will not therefore have to worry about the implementation of memory
mapping in the CPC 6128, CPC 664 and CPC 464. If you do wish to program
graphics in machine code, you should purchase the CPC464 Firmware Guide
(AMSOFT 158), available from Amstrad.

MSB LSB

LSB

DOT MATRIX

DISPLAY BYTE

Figure 1.5 A byte within the display file can be dumped onto a printer by setting the needles on the
printhead to copy the on /off state o f each pixel in the byte. On Epson series printers the dot matrix
head is an 8 X 1 needle band, so each byte is directly translated into a vertical column of dots. MSB
= most significant bit (ie 128), LSB = least significant bit (ie 1).

21

The high resolution display file is more versatile than just providing a bitmap
for the video screen. It can also be used to provide data for a display device. If
a dot-matrix printer is used, a ‘screen dump’ can be performed to transfer the
information in the display file onto paper by sequentially writing each byte like
this

A plotter works on a rather different principle, and bypasses the display file
altogether: lines are drawn between points directly specified to the plotter. The
quality of the graphics produced can be very high as each line is a true line and
not a sequence of tiny dots. Four of the first five figures of the book so far were
done on a plotter.

1.4 Inks and colours

Probably the most confusing aspect of running programs on Amstrad
computers is the choice of colour. As we have already seen, two colours are
available in M O D E 2 , four colours can be displayed in M O D E 1 , and a
spectacular 16 colours in M 0 D E 0 . The total ‘palette’ of colours is 27, and you
can see the full range by entering and running the following program

COLOUR program

10 REM *** *C0L0UR CHECK PROGRAM!***

15 MODE 0

20 C0Ll=0iC0L2=15

27 PAPER 0

30 CLS

32 IF COL 1=0 THEN LOCATE 1,2iPRINT'TOLOUR CHART PAGE 1"

33 IF COL 1 = 16 THEN LOCATE 1,2iPRINT"C0L0UR CHART PAGE 2"
35 M=-l

40 K«0:L=0

45 LOCATE 1,5

50 FOR J=C0L1 TO C0L2
55 M=M+1

60 INK M,J

70 NEXT J

130 FOR 1=0 TO (C0L2-C0L1)*40

140 IF L>40 THEN L=1:K=K>1

150 L=L+1

160 GRAPHICS PEN K
170 MOVE 1,0

22

180 DRAW 1,300

190 NEXT I

200 IF C0L2-27 THEN 200

205 IF COL1-0 THEN PRINT"PRESS KEY FOR MORE"

210 COL 1-16*C0L2-27:M— 1

215 INK 15,0

216 PAPER 15

217 A$=INKEY$

218 IF At=""THEN 217

220 GOTO 30

COLOUR CHART PAGE 1

1 2 3 4 5 6 7 8 9 10 i l 12 13 14

15 16 17 18 19 28 21 22 23 24 25 26

Figure 1.6 Output from the COLOUR program. The screen dump was performed using Tascopy
software, showing grey shades for the different colours. Note that MODE 0 is used to give up to 16
colours on screen at the same time. The numbers were added after printing (MODE 0 numbers are
too large).

23

You will see that some of the colours in fact look very similar. This is due mainly
to the shortcomings of your monitor rather than to a bad choice of colour on
the part of Amstrad pic. Of course you may be using a monochrome monitor
restricting colour to a range of ‘grey shades’. If you do not have a colour
monitor, fear not! Most if not all the programs in this book will still be of value
to you.

Amstrad colours are coded by the INK command. This command is used as
follows

I N K 0 , 1

where the first number is the ink code number and the second number is the
colour number as specified in your CPC 464 User Manual or on the disk drive
housing of your CPC 664/CPC 6128. Merely specifying an I N K colour like this
will only have an immediate effect if you specify an ink code of 0 or 1. Ink code
0 sets the screen colour (by default), while ink code 1 sets the default drawing
colour, so all lines and characters will be set to this colour unless otherwise
specified.

You can change the INK code for drawing, background colour or screen border
colour by using the commands

P E N n

P A P E R n

B O R D E R n

where n is the chosen ink code. The PAPER command requires a little more
explanation. It only affects the environment of text characters. If you wish to
change the screen colour you need to use the command

I N K 0 , n

where n is the required screen colour.

1.5 Some simple graphics

Now that you can manipulate the screen colours, we are ready to look at some
simple graphics programs.

We will start our graphics excursions with four simple programs to give the
flavour of high resolution graphics. The first three of these programs, which
draw a hexagon, a circle and a spiral, all use the basic graphics primitives - points

24

and lines - which will be discussed at length in Chapter 2. The last example,
GRAPH, uses graphics mixed with text.

First we will draw a hexagon. The data for the hexagon is given in the form of
X,Y pairs of coordinates, as you will see from the data statements. Do not worry
too much if terms like ‘coordinate’ seem unfamiliar: the programs below are
really very simple and we will spend more time on terminology later.

Figure 1.7 Output from HEXAGON

HEXAGON program

10 REM *»*«PR0GRAM HEXAGON!***

20 REM TO CONSTRUCT A HEXAGON USING DATA STATEMENTS FOR COORDINATE DATA
30 INK 0,0

40 INK 1,12

50 MODE 1

60 PAPER 0

70 GRAPHICS PEN 1:REM LINES 30-70 SET UP DRAWING COLOURS
80 READ XI, Y1

90 FOR 1-1 TO 6

100 X-XllY-Yl

110 READ XI,Y1

120 MOVE X,Y

130 DRAW XI,Y1

140 NEXT I

150 END

160 DATA 100,150,200,150,250,100,200,50,100,50,50,100,100,150

As this is the first real ‘graphics’ program in the book we will step through it line
by line, even though it really is very simple. Lines 10 and 20 are common-or-
garden rem statements. Lines 30 and 40 set background (Screen) and foreground

25

(pen) colours. Line 50 sets MODE 1, and line 60 confirms that the text paper
colour will be the same as the screen colour. In line 0 we read in the ‘start’
coordinates for the hexagon, in this case the top left hand corner has been
chosen, but any of the corners could have been selected. The start coordinates
are placed in variables XI, Yl. This is a temporary measure! We really need the
coordinates to be in variables X,Y as you will see in line 120. Line 90 is the start
of the loop for drawing the lines. This loop is executed six times, once for each
line. Line 100 puts the values of XI,Yl into X,Y. This is because the end of the
previous line becomes the start of the next line.

The coordinates of the point at the end of the line to be drawn next are then read
in (line 110), and lines 120-130 are the instructions for drawing the line itself. The
line is drawn from X,Y to XI,Yl. Line 140 marks the end of the loop, and line
160 contains the coordinate data to draw the hexagon.

The HEXAGON program illustrates the use of several simple graphics
techniques: the use of the MOVE and DRAW commands, setting up the screen
colours, and rudimentary graphics data handling. In HEXAGON, all the data
is absolutely defined by the programmer. The next short program, CIRCLE,
uses a different technique: here, the data is generated by a mathematical
function, in this case the position of points on a fixed radius from a centre point.

Figure 1.8 Output from CIRCLE

26

Although the program draws an approximate circle, it really draws a 100-gon by
computing the positions of 100 points sequentially around the centre. CIRCLE
is crude, slow, and only for demonstration purposes: it is perhaps a curious fact
that Amstrad BASIC does not actually support a CIRCLE command,
common with many other varieties of BASIC running on other machines. This
is a rather insignificant shortcoming on what is otherwise an excellent machine
(and anyhow it gives us the excuse to play with circle drawing algorithms!)

CIRCLE program

10 REM ****PR0GRAM CIRCLE****

20 REM TO CONSTRUCT CIRCLE FROM CALCULATED COORDINATES

30 INK 0,0

40 INK 1,12

50 MODE 1

60 PAPER 0

70 GRAPHICS PEN 1:REM LINES 30-70 SET UP DRAWING COLOURS

80 INPUT"RADIUS?";R

90 AN-0

100 AI-0.062831853

110 X1=R*C0S<AN):Y1-R*SIN<AN)

120 FOR 1-1 TO 100

130 X-Xl:Y-Yl

140 AN-AN+AI

150 X1-R*C0S(AN):Y1-R*SIN<AN)

160 MOVE X+320,Y+200

170 DRAW X1+320,Y1+200

180 NEXT I

190 END

The next program also uses a mathematical function to generate a shape, in this
case a spiral. SPIRAL doesn’t do much more than CIRCLE, but it can give
some aesthetic-looking patterns if you set R E (the ‘resolution’) large enough.

10 REM ****PR0GRAM SPIRAL****
20 REM TO CONSTRUCT A SPIRAL FROM CALCULATED COORDINATES
30 INK 0,0

40 INK 1,12

50 MODE 1

60 PAPER 0

27

70 GRAPHICS PEN IrREM LINES 30-70 SET UP DRAWING COLOURS

80 INPUT"RESOLUTION?";RE

90 X1=320:VI=200

100 FOR 1=0 TO 50 STEP RE

110 R=I*2:X=X1:Y=Y1

120 X1= R *S IN (I)+320:Y1=R*CO S(I)+200

130 MOVE X,Y

140 DRAW X I , Y 1

150 NEXT I

Figure 1.9 Output from SPIRAL. Nine different values of RE have been used

The next program uses the basic graphics primitives to create a graph. The graph
scales, axis legends and coordinate points are inputted during program
execution. The program could easily be amended to read data from a tape or
disk file, or to display more than one set of data. (The access of sequential data
storage files is discussed in Chapter 3).

28

20

T
R
I
A
L
S

SUCCESS RATE 1 0

Figure 1.10 Output from GRAPH

GRAPH program

10 REM ****F'R0GRAM GRAPH****

20 REM TO DRAW A SIMPLE LABELLED GRAPH

30 INK 0,13

40 INK 1,0

50 MODE 1

60 INPUT"HOW MANY POINTS ON THE GRAPH?";P

70 DIM X(P),Y(P)

80 FOR I»1 TO P

90 INPUT"XVAL?";X(I)

100 INPUT"YVAL?";Y(I)

110 NEXT I

120 INPUT"WHAT IS MAX VALUE ON X AX IS?";MX

130 INPUT"WHAT IS MAX VALUE ON Y AX IS?";MY

140 INPUT"X AXIS NAME";N$

150 INPUT"Y AXIS NAME";M$

155 CLS

29

160 REM NOW DRAW THE AXES

170 MOVE 200,380

180 DRAW 200,80

190 DRAW 500,80

200 REM PUT IN SCALE MARKS

210 FOR 1=1 TO 11

220 MOVE 190,(1*30)+50

230 DRAW 200,(I*30)+50

240 NEXT I

250 FOR 1=1 TO 11

260 MOVE (I*30)+170,70

270 DRAW (I*30)+170,80

280 NEXT I

290 REM NOW LABEL AXES

300 REM POSITION X LABEL FIRST

305 REM START POSITION IS CENTRE PT ON X AXIS MINUS HALF STRING LENGTH

310 AX*(350-((LEN(N*)*16)/2))

315 REM START POSITION IS CENTRE PT ON Y AXIS PLUS HALF STRING LENGTH

320 AY*(240+<(LEN(M$)*16)/2))

330 TAG

340 MOVE AX,50
350 PRINT N*?

360 IF INKEY*=M"THEN 360

370 REM NOW PRINT Y LABEL VERTICALLY

380 FOR 1=1 TO LEN(Mi):Ml*=MID*<M*,I,1)

390 MOVE 120,AY-((1-1)* 16)

400 PRINT Ml*;

410 NEXT I

412 MOVE 480,60;PRINT MX;

414 MOVE 130,382sPRINT MY;

420 REM NOW PLOT POINTS

430 FOR 1=1 TO P

440 MOVE 194+(300*(X(I)/MX)),86+(300* <Y (I)/MY))

445 PRINT CHR*(231);

450 NEXT I

GRAPH is a little more complex than the programs we have considered so far,
and its main sections are as follows:

LINES 10- 50
60
70
80

120-150
155
160-280
290-414
420-450

PROGRAM TITLE, SETUP COLOURS, MODE
INPUT NUMBER OF POINTS ON THE GRAPH
SETUP ARRAYS
INPUT COORDINATES OF POINTS
INPUT AXIS LABELS AND SCALES
CLEAR SCREEN
DRAW AXES
LABEL AXES
PLOT POINTS

For the first time this program introduces the notion of using arrays to hold
data. You will find that this technique is one of the central methods of computer

30

graphics, and the uses of arrays are discussed at length in Chapter 3. The
GRAPH program also illustrates the use of variables in a simple FOR NEXT
loop to draw a series of lines. This is a valuable technique that works as follows.
In the GRAPH program we wish to draw a series of marks along each axis.
These marks could be laboriously drawn by a series of individual MOVE and
DRAW instructions, but why do all the work when the computer can do it for
you? Look at lines 210 to 240 of GRAPH, which control the marking of the Y
axis. Line 170 sets the number of marks that are to be drawn: any number would
be possible, within the resolution limits of the computer. Lines 220-230 contain
the instructions to draw each mark. The start and finish X coordinates are 190
and 200 respectively. But instead of drawing the same mark a number of times
we need to move down (or up) the Y axis for each new mark. The start and finish
Y coordinates will be the same for each Y axis mark. Each successive pair of Y
coordinates are set to a multiple of the FOR NEXT counter I: in this case the
multiplier is 30. Because the marks are to be set at Y= 50,80,110 and so on rather
than 0,30,60, a constant amount of 50 is added to each Y value. The same
technique is used along the X axis in lines 250 to 280 of GRAPH.

1.6 Placement of text

There are in fact two methods which can be used to place text on the high
resolution screen. As the text and graphics screens on Amstrad computers share
the same location in memory, they can be accessed at the same time. This means
that you can use the standard BASIC command

P R I N T " W H A T E V E R Y O U L I K E "

to add text to a picture. The problem is that a bald statement of this kind will
put the text at the current position of the text cursor, which will almost certainly
be in the wrong place. To overcome this problem, Amstrad BASIC provides the
LOCATE command. In the simplest case for example, the command

L O C A T E 1 0 , 2 0

puts the text cursor at the 10th column in the 20th row.

Unfortunately, LO C A T E is of limited use for high resolution graphics. In order
to make use of L 0 C A T E to label a picture it is necesssary to transform the row,
column start position (i.e. addressing a 40 * 25 area in M 0 D E 1) to the 640 * 400
screen unit area. This can of course be done, because the size of each text cell is
constant. It does involve needless calculation however. The solution is to use a
new command called TAG. TAG allows the start position of the text string to
be at a given pixel, so

31

TAG
MOVE 1 0 0 , 2 0 0
PRINT"WHATEVER YOU LI KE" ;
TAGOF F

will print the string starting at pixel 100,200. Note that T A G is a somewhat
dangerous command, because all text will be ‘tied’ to the current graphics
cursor position until the T A G 0 F F command is used. You may like to note (and
may already know) that both LOCATE and TAG commands may be specified
for particular output streams, and the use of streams will be discussed in section
7 below.

1.7 Printing graphics

Although the first goal of any graphics work is to produce the expected output
from the program on screen, ‘hard copy’, either produced on a dot matrix
printer or a pen plotter is both useful and rewarding. What options are open to
the Amstrad computer owner? Amstrad produce a printer (the DMP 1) which
can be used to output text and to print graphics.

The DMP 1 is one of the cheapest dot matrix printers around, and costs around
£200 (August 1985). It prints the full Amstrad low resolution graphics set:
useful if you want to use the low resolution graphics capabilities of your
machine. The quality of the output is fairly low, and the DMP 1 uses only
perforated paper as it has a tractor feed mechanism and has no friction feed for
unperforated paper. The DMP 1 does allow a ‘graphics dump’ (i.e. a printing of
all the pixels on screen) to be performed.

Now the beauty of the Amstrad computers is that they have a standard parallel
Centronics interface. This means that any Centronics compatible printer can be
connected by purchasing a cable (note that the socket on the back of the
computer does not take a Centronics type connector, so you will have to buy a
special cable for around £10-15).

By specifying stream eight in output commands, output can be directly written
to the printer. Note that screen dumps cannot automatically be done, and
special software will have to be used to perform this task. Recent issues of
several computer magazines have included listings of programs to do screen
dumps, and there are three classes of software for this purpose. Very much the
worst performance is offered by screen dump programs written in BASIC - it
may take up to half an hour to copy a single screen! Magazine listings using

32

machine code are much quicker, but often have no facility for shading and may
not be able to copy the full width of the screen.

The best solution is to buy one of the commercially available software packages.
Such packages may be able to cope with the full screen width by printing screens
vertically (long axis down the paper). The best package is probably Tascopy
(Tasman Software Ltd). Tascopy allows production of screen copies in all screen
modes, with full grey scale representation of colour (see for example Figures 1.6
and 1.11).

Figure 1.11 An example of colour shading using Tascopy

The grey shades can be specified by the user. Tascopy also allows you to make
poster size screen copies on four sheets of printer paper (by drawing a quarter
of the screen on each piece, the pieces subsequently being pasted together). A
variety of printer types including the DMP 1 can be used with the package. All
the screen dumps shown in this book have been obtained using Tascopy.
Assuming that you have a printer capable of copying the high resolution screen,
you may find that the proportions of X and Y axes on the printer are different

33

from those on the screen. To test this, try printing the output from the CIRCLE
program above. Trial and error will show you how to compensate for the
difference. Using a sophisticated package like Tascopy will obviate these
problems.

The following short program (SCREEN) outlines the screen dimensions and
you can use it to see the screen dump size and XY ratios available on your
printer. You will of course need to include the correct screen dump command
for the printer software that you are using.

SCREEN program

10 REM ****PR0GRAM SCREEN****
15 CLS

20 MOVE 1,1
30 DRAW 639,1
40 DRAW 639,399
50 DRAW 1,399
60 DRAW 1.1
70 REM NOW DRAW CROSS AT CENTRE
80 MOVE 310,200
90 DRAW 330,200
100 MOVE 320,190
110 DRAW 320,210

34

This chapter has demonstrated the use of the Amstrad computers to produce
graphics images, but we have not yet looked in a logical fashion at the
commands used to create graphics on the screen. We will investigate these
commands in Chapter 2.

35

Chapter 2

Points, Lines and Shapes

2.1 Drawing lines

We have already seen some simple graphics programs in Chapter 1, but no
explanation of the various graphics commands has yet been given. Appendix 1
lists the graphics commands that are used on the CPC 6128, 664 and 464, and
in this chapter we will build up an armoury of the more common commands
used in the rest of the book. Let us begin with the simplest ‘graphics primitives’:
points and lines.

To start with we will not concern ourselves with streams or ink colours. Suppose
we wish to draw a line from point XI,Y1 to point X2,Y2. To do this on an
Amstrad computer the following commands would be used

MOVE X1 , Y1
DRAW X2 , Y2

The current position of the ‘graphics cursor’ will move to the point specified by
the last graphics command. After the above two statements it will therefore be
at position X2,Y2. Recall that MOVE and DRAW instructions were used for the
graphics programs in Chapter 1.

At the start of a graphics programming session, the graphics cursor will be at
position 0,0 - the bottom left hand corner of the screen. This point is termed the
origin. Amstrad BASIC has an additional command called appropriately
enough ORIGIN which allows you to move the origin anywhere within the
screen area. The line drawn above could therefore be drawn using the ORIGIN
command thus

ORIGIN X1 , Y1
DRAW X2 , Y2

Use of OR I G I N allows you to specify negative coordinates! If you try to plot
the following line

DRAW- 1 0 , - 1 0

37

You will obtain a single dot at position 0,0 because all the other points from the
0,0 origin to position -10̂ 10 are off the screen. If you instead use

D R A W - 1 0 , - 1 0 O R I G I N - 1 0 0 , 1 0 0

a line will in fact be drawn, because the true endpoint of the line is at position
90,90.

Up until now we have been concerned with drawing lines, but it is often
necessary to erase lines, either because they have been drawn in the wrong place,
or because the picture is to be updated (rotated, for example). The usual way of
doing this is to include an extra parameter in the DRAW command which
defines what is to be done to each pixel along the line. You will find this extra
parameter referred to as the ‘ink mode’ in your User Manual, and four ink
modes are available. These modes are

0 Plot normally
1 Perform an exclusive OR (XOR) on each pixel
2 Perform an AND on each pixel
3 Perform an OR on each pixel

The ink mode defaults to 0 if you do not specify a mode, so each pixel is
normally lit. Use of ink mode 1 is especially useful as it allows you to ‘wipe out’
lit pixels

The following short program demonstrates the use of this erase facility by
drawing lines at random on the screen and immediately wiping them off again.

NOWYOUSEEIT program

10 REM «*»*PR0GRAM N0WY0USEEIT»»*«

20 RANDOMIZE
30 CLS
40 X1=RND<1)*6401REM SET FIRST X VAL
50 V1"RND(1)*400lREM SET FIRST Y VAL
60 X2*RND (1) t640l REM SET SECOND X VAL
70 Y2«RND(1)*400iREM SET SECOND Y VAL
80 MOVE X1,Y1

90 DRAW X2.Y2
100 REM NOW WIPE LINE

110 REM INK MODE 1 <XOR) WILL WIPE EXISTING LINE
120 MOVE XI,Yl,1,1

130 DRAW X2,Y2,1,1
140 GOTO 40

38

By specifying ink mode 1 you can ‘invert’ pixels (ie turn them on if they are off
or turn them off if they are on). Inversion has two main uses. Its first, less formal
role is in the drawing of pretty patterns. Program INVERT below shows the
ability of inversion to generate complex and striking patterns with little
programming effort.

Figure 2.1 Output from INVERT

INVERT program

10 REM ****PR0GRAM INVERT****

15 CLS
17 N-0
20 Xl-40iYl-0
30 X2-600iY2-400
40 Xl-Xl+3* X2-X2-3
50 IF XI>600 THEN X1-41:N-N+l
60 IF X2<40 THEN X2-599
70 MOVE X1,Y1,1,1
00 DRAW X2,Y2,1,1
83 IF N-l THEN N-2
05 IF X1-41 THEN INK 1,N

90 GOTO 40

39

The more utilitarian value of the inversion technique is in preventing picture
element erasure when overwriting part of the picture. We will use inversion in
Chapter 3 to prevent wiping of a picture by a cursor moving over it. Consider a
line extending vertically halfway across the screen. If an object is moved across
the screen by erasing it at, say, location XI, and redrawing it at location X2, then
when the object crosses the vertical line the erasure command will erase any
pixel on the line which overlaps the object to be erased. If however, inversion is
used rather than erasure, the object will still disappear when required to
(because all lit pixels become inverted, i.e. they become unlit). How does this
affect the vertical line? When the object reaches the line, inversion turns off the
pixels on the line which overlap the object, and when this object position is later
inverted (to turn off the object) the vertical line is ‘made new’ again as re
inversion occurs. This process is shown pictorially in Figure 2.2

1 1

1 1
1 1

1 1

Figure 2.2 The inversion technique in action. The sequence of frames shows the movement of a
square object across a vertical line, without permanently erasing any line pixel. As the pixels in the
square and line meet, they are inverted, and are turned off (that is, 1 + 1 = 0). When the square
leaves the vertical line, inverting the pixels vacated by the square turns on the line pixels again.

2.2 Points

So far we have only considered lines, but it is often necessary to plot individual
pixels. Amstrad BASIC uses the PLOT command to do this job, and the
command is used in a similar way to DRAW. To plot a single pixel at position
XI,Y1

PLOT X1 , Y1

and to draw a horizontal dotted line across the screen

40

M O V E 1 0 0 , 1 0 0

FOR X = 1 0 0 TO 6 0 0 STEP 1 0

P L O T X , 1 0 0

N E X T X

Plotting points rather than lines can also be very useful if you want to check if
two lines intersect. You may wish to draw a line that does not cross another line
for example. Try the following short program

JOIN program

10 REM **** PROGRAM JOIN ****
20 REM DEMONSTRATES USE OF TEST COMMAND

30 CLS
40 INK 0,13s INK 1,0

50 MOVE 300,300
60 DRAW 300,100

70 FOR X=0 TO 640
80 IF TEST (X,200)00 THEN 200

90 PLOT X,200

100 NEXT X

200 STOP

This program draws a vertical line and then constructs a horizontal line by
plotting adjacent pixels. The command TEST (X, Y) checks if the pixel at
position X,Y to be lit along the horizontal line is in fact already lit. When the
horizontal line reaches the vertical line this condition is true, so the program
stops.

2.3 Drawing shapes

You saw in the last chapter that repetitive use of the DRAW command allows
shapes to be built up. You may wish to experiment by drawing an outline on
graph paper marked out in a 640 * 400 unit box. Your shape can be drawn on
the computer by specifying a D R A W instruction for each adjacent point on the
outline. Remember to use a MO V E command to move to the first point of your
outline, or you will have an ugly extra line from the origin to the first point. You
will need extra MOVE commands if you have disconnected parts of your
outline.

41

2.4 Dashes and fills

The lucky CPC 6128 or CPC 664 owner has several commands in his or her
graphics armoury that are not available to the CPC464 buff. In particular the
MASK command allows various dash patterns to be drawn instead of an
unbroken line. This command is of the form

M A S K n u m b e r

where ‘number’ is an integer number between 0 and 255. MASK sets pixels in
each adjacent group of 8 to OFF (0) or ON (1). The following program displays
some typical patterns on the screen, but please remember that it is for the
CPC664 only.

EXAMPLES OF MASK VALUES
MODE = 1

1

3

3 3

7

' I S

' 3 1

~ 6 3

' 1 2 7

Figure 2.3 Output from MASKDEMO

42

MASKDEMO program

10 REM »**« MASK DEMO PROGRAM «***
15 MODE 1
20 CLS

25 LOCATE 5,2:PRINT"EXAMPLES OF MASK VALUES"
27 LOCATE 5,4:PR INT"MODE « 1"
30 Y=300

40 DATA 1,3,33,7,15,31,63,127
50 FOR 1-1 TO 8
60 READ M

70 MASK M
80 Y-Y-30
90 MOVE 100,Y
100 DRAW 400,Y
110 TAG
120 PRINT Ml
140 NEXT I

In order to use MASK effectively you will need to remember (or learn, shame on
you) some elementary binary numbering. Recall that binary 255 is represented
by

1 1 1 1 1 1 1 1

and that binary 0 is represented by

0 0 0 0 0 0 0 0

so if you specify a MASK of 255, a solid line results, while a M A S K of 0
produces no line. If you wanted to plot each alternate pixel you would use one
of the following MASKS

1 0 1 0 1 0 1 0

or

0 1 0 1 0 1 0 1

represented by the decimal numbers 170 and 85 respectively.

If you do not have a CPC 6128/664, all is not lost. The following program will
allow you to plot a line between two points using a dashed pattern.

43

DASH program

10 REM FOR CPC 464 OWNERS WITHOUT MASK COMMAND
20 REM DRAWS DASHED LINE FROM XIr yi TO X2.Y2
30 CLS
40 INPUT"INCREMENT?”;INCREMENT
50 GOSUB 240:REM GET END POINTS
60 MOVE XI, Yl
70 REM FIRST CALCULATE LENGTH OF THE LINE
80 HY2* (X2-X1) ̂ 2 ♦ (Y2-Y1)/N2
90 HY =SOR(HY2)
100 INC=INCREMENT *(HY/300)
110 PLOT X1,Yl,1,0
120 PLOT X2,Y2,1,0
130 REM NOW FIND RATIOS FOR X AND Y INCREMENTS
140 XR“(X2-X1)/INC;YR= < Y2-Y1)/INC
150 REM NOW DRAW THE LINE
160 DASHO
170 FOR 1=1 TO INC
180 IF DASH*0 THEN DASH=2:G0T0 20 0

190 IF DASH=2 THEN DASH=0
200 X1-X1+XR:Y1=Y1+YR
210 DRAW XI,Yl,1,DASH
220 NEXT I
230 GOSUB 240:GOTO 60
240 REM RANDOM END POINT ROUTINE
250 X1=RND(1)>600:X 2=RND(1)1600
260 Y1=RND(1)1400:Y2=RND<1>*400
270 RETURN

INCREMENT?? 28

Figure 2.4

44

INCREMENT?? 50

Figure 2.4,2.5 Two examples of output from the DASH program

Perhaps a more serious shortcoming of the CPC464 is the lack of the FILL
command on this machine. FILL merely fills a space FROM THE CURRENT
GRAPHICS CURSOR POSITION with a chosen ink colour. The form of the
command is simply

FILL ink number

The FILL operation only stops when lit pixels are reached, so if you try to fill
a space that is not completely bounded by lit pixels beware: the whole screen
area may become filled! I cannot offer a full FI LL simulation for the CPC464
owner in this book, but you will find a program called PATTERN in Chapter
5 that will allow you to fill rectangular areas (for example in bar charts) with
various hatched patterns.

2.5 Drawing curves

We saw how to draw a circle in Chapter 1, and it is often useful to be able to
construct other curved shapes. First, let us consider an ellipse. The equations to
be used are almost identical to those used for a circle, but different radii are used
for the X and Y axes. Try this version of the CIRCLE program (we now call it
ELLIPSE) for different values of RX and RY.

45

ELLIPSE program

10 REM * * **PROGRAM ELLIPSE***#
20 REM TO CONSTRUCT CIRCLE FROM CALCULATED COORDINATES

30 INK 0,0
40 INK 1,12
50 MODE 1
60 PAPER 0
70 GRAPHICS PEN 1:REM LINES 30-70 SET UP DRAWING COLOURS

80 INPUT"X,Y RADI I?";XR,YR
90 AN=0
100 A I = 0 .0 6 2 8 3 1 8 5 3

110 X1=XR*COS(AN):Y1=YR#SIN(AN)

120 FOR 1=1 TO 100
130 X = X1:Y=Y1
140 AN=AN+AI
150 X1=XR#C0S<AN):Y1=YR#SIN<AN)

160 MOVE X+320,Y+200
170 DRAW X1+320,Y1+200
180 NEXT I

190 END

Figure 2.6 Ellipses for various values of RX and RY drawn using the ELLIPSE program

The general equation for a sine curve can be written as

Y = H * SIN (W * X + D)

46

where W is the frequency (determining the number of oscillations) for a given
range of X. D specifies the curve’s right (positive) or left (negative)
displacement. Here is a program for generating sine curves

SINE program

10 REM * » « * PROGRAM SINEWAVE * * * «

20 CLS

30 INK 0 , 1 3 : IN K 1 ,0

40 INPUT"MAX Y VALUE?"; YV
45 M=:YV/2
50 INPUT"H,W,D";H, W, D:REM USE 40,.
60 IF H>M THEN 40
70 INPUT"XMIN, XMAX"; XMIN, XMAX
80 YA=H*SIN(W*XMIN+D>
90 IF YA>=0 THEN YA=M-YA
100 IF YA<0 THEN YA=M+ABS(YA)
110 XA=XMIN
120 FOR XB=XMIN TO XMAX
130 YB=H*SIN<W*XB+D>
140 IF YB>=0 THEN YB=M-YB
150 IF YB<0 THEN YB=M+ABS(YB)
160 MOVE XA,YA
170 DRAW XB,YB
180 XA=XB
190 YA=YB
200 NEXT XB
210 END

SINE CURVE: H=175,W=.05,D=0

Figure 2.7 A sine curve drawn using the SINE program

47

A parabola is a useful curve that can be used to describe the motion of objects.
The equation to calculate a Y coordinate is

Y = Cl * XA2 + C2 * X + C3

where Cl, C2 and C3 are three coefficients that can be varied to produce
different parabolic trajectories. Program PARA draws a parabolic curve after
input of the maximum X and Y values, together with values for C1,C2 and C3.
Try varying these coefficients! The parabola will be at a maximum at the centre
if Cl >0.

PARA program

10 REM **** PROGRAM PARA ****
20 REM DRAWS A PARABOLA
25 DIM C (3)
30 CLS:MODE 2
40 INK 0,13:INK 1.0
50 1NPUT"MAX X AMD Y VALUES":MX.MY
60 INPUT"C1,C2,C3":C(1),C<2>,C<3>
70 XC=320

80 X=-C<2)/(2*C<1>)
90 YV=C<1)*XA2+C<2)*X+C<3)
100 IF C(1K0 THEN YA=0
110 IF C<1)>0 THEN YA=MY

120 XL 1=320:XL2=320:XR1=320:XR2=320
130 X=X-1
140 N=3

150 Y=C(1)
160 FOR 1=2 TO N
170 Y=Y#X+C <I)
175 NEXT I

180 IF C(1)<0 THEN YB=YV~Y
190 IF C(1)>0 THEN YB=MY-(Y-YV)
200 XL2=XL2-1
210 XR2=XR2+1
220 MOVE XL 1,YA
230 DRAW XL2,YB
240 MOVE XR1,YA
250 DRAW XR2,YB
260 YA=YB
270 XL1=XL2
280 XR1=XR2
285 IF YA<1 THEN 300
290 GOTO 130

300 C U > =C < 1) +0.005: C <2) =C (2) +0.005: C <3) =C (3) +0.005
310 GOTO 80

48

MAX X AND ¥ VALUES? 360,300
C1.C2.C3? .004,,004,.004

Figure 2.8 A group of parabolas drawn using the PARA program

2.6 Vector animation

Graphic lines are sometimes called ‘vectors’, and animation of lines is usually
termed ‘vector animation’. If you wish to animate line drawings you will find it
rather frustrating to program in BASIC. The reason is that even the rather quick
Amstrad BASIC cannot wipe and redraw more than a minimum of lines
without flicker. Type in the following short program that moves an ‘arrowhead’
across the screen. Try varying the size of the arrow and the step size taken. You
will find that the larger the arrow, the slower the movement.

VECTOR program

10 REM VECTOR ANIMATION PROGRAM
20 REM MOVES AN ’ARROW’ ACROSS THE SCREEN
30 INK 0,13:INK 1,0

35 INPUT "ARROW LENGTH?":N
37 INPUT "STEP SIZE";M
40 MODE 2

50 FOR X=1 TO 640 STEP M

49

55 GOSUB 100:REM WIPE ARROW
57 FRAME
6 0 GOSUB 200:REM DRAW ARROW
70 NEXT X
80 END
100 REM SUBROUTINE TO WIPE ARROW
110 MOVE X,200

120 DRAW X+N,190,1,1
130 DRAW X,180,1,1
140 DRAW X,200,1,1
150 RETURN

200 REM SUBROUTINE TO DRAW AND WIPE ARROW
210 MOVE X,200
220 DRAW X+N,190
230 DRAW X.180
240 DRAW X,200

250 RETURN

You can see that the program uses the FRAME command to synchronize line
drawing with the screen refresh. Try running the program without FRAME and
you will see a noticeable drop in picture quality.

Note that this vector drawing program uses the ‘Xor’ ink mode to wipe out the
existing image before drawing a new image further across the screen.

2.7 Fractals

We will conclude this short chapter with a little ‘light recreation’: light at least
in the aesthetic nature of the pictures that you can produce. Fractal geometry is
a specialized form of geometry which deals not with one, two or three
dimensions, but with the ‘no-mans-land’ between these dimensions. You have
probably seen the beautiful three dimensional mountain ranges and forest-
scapes produced by leading exponents of mainframe computer graphics,
notably the ‘Star Wars’, L.ucasFilm team: these pictures are made up of fractal
curves, and although the mathematics and computer processing power required
to produce such artwork are quite beyond the scope of this book, you can use
a little arithmetic and a simple pixel plotting instruction to generate your own
fractals with dimensions between one and two.

The following program is a modification of one by Greg Turk. In mathematical
terms, the type of fractal generated by this program results from the behaviour
of points in the plane described by the function x + iy, where x and y are real
numbers and i is the square root of -1. The effect shown in the program output

50

(Figure 1.15) is produced by iteration: solving the function repeatedly for each
current value of x and y. To get the x and y points from the function, you need
to work out the following equations:

new pt x = LA * old X * (1-X)
new pt y = LA * old Y * (1-Y)

LA is a constant in the equation. You can experiment with LA to get different
fractal curves. You can also adjust the size of the picture by varying SC S C = 2
for the plots in Figure 2.9). The smaller SC, the quicker the picture will be
drawn. Be prepared to wait ten or fifteen minutes though: this program does a
lot of number crunching.

Figure 2.9 Fractal curves of between one and two dimensions obtained using FRACTAL.

FRACTAL program

10 REM ****PR0GRAM FRACTAL****
20 REM DEMONSTRATES POINT PLOTTING TO PRODUCE ABSTRACT SHAPES
30 RANDOMIZE
40 MODE 1

50 INK 0 , 0 : INK 1 ,2 4

6 0 C X -3 20 :C Y = 200

70 X = 0 .5 0 0 0 1 :Y = 0

51

80 GOSUB 390

90 FOR 1*1 TO 1 0 :GOSUB 3 1 0 :NEXT I

100 GOSUB 460

110 GOSUB 310

120 GOTO 100

130 END

140 REM SQUARE ROOT OF X,Y

150 T=Y

160 S=SQR(ABS(X tX + Y *Y))

170 Y = S Q R (A B S (< -X + S > /2))

180 X=SQR(ABS((X + S) /2))

190 IF T<0 THEN X — X

2 0 0 RETURN

210 REM FOUR OVER L

2 2 0 S =LX *LX + LY *LY

2 3 0 L X = 4 *L X /S

240 L Y = -4 *L Y /S

2 5 0 RETURN

260 REM X, Y TIMES L

2 7 0 TX=X: TY=Y

2 8 0 X = T X *LX -T Y *LY

2 9 0 X = T X tL X -T Y IL Y

3 0 0 RETURN

310 REM FUNCTION OF X,Y

320 GOSUB 260

33 0 X =1-X

340 GOSUB 140

350 IF RND(1 X 0 . 5 THEN X = -X :Y = -Y

360 X =1-X

370 X = X /2 :Y = Y /2

38 0 RETURN

390 REM GET VALUES

40 0 INPUT "LAMBDA V A LU E ?"; L X , LY

410 GOSUB 210

42 0 INPUT "SCALE VALUE";SC

43 0 SC =2*CX/SC

44 0 CLS

45 0 RETURN

460 REM PLOT X,Y

470 PLOT S C » < X -0 .5)+ C X ,C Y -S C *Y

4 8 0 RETURN

52

Chapter Three

Graphics Data Structures

3.1 Input of data

We have already seen that any point on the screen can be defined by its x,y
coordinates. Plotting a single point or drawing a line is therefore extremely
simple. Plotting a small number of joined points is also easy, but what if we wish
to draw a complex figure that has 50 or even 100 lines, not all of which are joined
in one sequential length?

A standard procedure for both inputting and for holding data is therefore
necessary, and must specify three things

(1) The x,y locations of all the points in the figure.
(2) The ordering of the points (ie the order in which they are to be

plotted).
(3) The connection between the points (are two consecutive points to be

joined or not?)

Study of computer data structures makes up a significant part of an honours
degree in computer science, and although advanced graphics techniques rely
heavily on complex data structures, we will limit ourselves to the array structure.
This is, in many ways, the most rudimentary of data structures, but as none of
the others are supported in BASIC our choice is not a free one!

We first take two one-dimensional arrays X(1 .. n), Y(1 .. n), where n is the total
number of points to be drawn. Of course, both X and Y must be dimensioned
the same, as each point has both x and y coordinates. We will call these arrays
the coordinate data. As X(l) precedes X(2), these arrays also allow the ordering
of the data: point X(1),Y(1) is drawn before X(2),Y(2) and so on.

Next, the connections between the points must be considered. This information
is provided by a third array, this time a two dimensional one. The line array is
dimensioned W(1 .. 2,1 .. i) where i is the number of lines to be drawn in the
picture. Now the first dimension of the array W indicates that for each line
number there are two items of data, as you can see in the next table. These two

53

items of data are not coordinates as such but are what are termed indices (sing,
index). An index in computer jargon is merely a pointer to some other piece of
information in the computer. In this case each index points to an element
number in the X and Y arrays. The first index for each line corresponds to the
coordinates of the start point for the line. The second index corresponds to the
finish point for the line. So the complete data for drawing a square might look
as follows.

/ XX(i) Y(i) W(l,i) W(2,i)

1 50 150 1 2
2 150 150 2 3
3 150 50 3 4
4 50 50 4 1

50,150 150,150

50,50 150,50

Figure 3.1 Points and coordinates for a square

Notice that the number of points in X, Y and W are the same in this example,
but this need not always be the case. If the following picture is to be drawn, the
W array would contain a break as you can see from the data under the picture

54

50,150
O -

1

150,150
— O

2

150, 25

150,75

° 4

5

50,50 150,50

Figure 3.2 Points and coordinates for a square with a ‘break’

/ X(i) Y(i) W(l,i) W(2,i)

1 50 150 1 2
2 150 150 2 3
3 150 125 4 5
4 150 75 5 6
5 150 50 6 1
6 50 150

The following program section would read in the data for this rectangle and
would then plot it. Note the two variables NPTS and LI. These just specify the
number of points and the number of lines respectively. We will use these
variables throughout this book.

EASYDRAW program

10 REM ****PR0G RAM EASYDRAW ****

20 REM DEMONSTRATES POINT AND L IN E DRAWING FROM DATA IN STORED ARRAYS

30 CLS

40 REM SET UP POINT ARRAY

50 READ NPTS

55

60 DIM X(NP1S).Y(NPTS)
70 FOR 1=1 TO NPTS

80 READ X(I),Y(I)
90 NEXT I
100 READ LI
110 DIM LN12,LI)
120 FOR 1=1 TO LI

130 READ LN<1,I),LN<2,I)
140 NEXT I
150 REM NOW DRAW THE PICTURE

160 FOR 1=1 TO LI
170 MOVE X(LN(1,I)),Y(LN(1,I>)

ISO DRAW X(LN(2,I)),Y(LN<2,I))
190 NEXT I

200 STOP
210 DATA 6.100,100,300,100,300,150,300,250,300,300,100,300
220 DATA 5,1,2,2,3,4.5,5.6,6,1

By using the X, Y and W arrays to store the picture information, you can
construct any line drawing you wish. You can also use differently coloured lines,
so long as they are not in the same 8 X 8 bit character block. This form of data
input by data statements in lines of the program is less than ideal because it
means you have to change the program every time a new set of data is to be used.
This is trivial for a ten line program like the one listed above, but what about
input to a piece of professional software that is both read and write protected?
The best solution is to use a sequential file to hold the data needed to draw the
picture. We must therefore (1) write a short program to create the data file and
(2) amend our drawing program(s) to access data from the sequential files
created.

The program FILE2D below allows you to enter the X, Y and W array data into
a sequential file. The program starts by asking for the sequential file name you
wish to use.

Now the program sections to read and write from sequential files will be the
same for all the three Amstrad computers. It is of little interest to Amstrad
BASIC whether you have a disk drive or a tape drive - your machine will default
to whichever is connected. In this book we will restrict ourselves to the following
simple input/output commands

OPENIN " F I LENAME*
IN P U T # 9 , VARIABLES
CLOSEIN

OPENOUT "FILENAME"
P R I N T # 9 , V A R I A B L E S

C LOSEOUT

56

A word of warning for disk users - if a sequential file with the same name
already exists it will be overwritten! Amstrad BASIC gives you a degree of safety
in that the existing file is saved under the name FILENAME.BAK. If a third
version of the same file is saved, however, the version in FILENAME.BAK will
be lost as it will be overwritten by the second backup version.

FILE2D program

10 REM ****PR0G RAM F ILE 2D

2 0 REM PROGRAM TO STORE COORDINATE DATA TO BE DRAWN USING DRAW2D

30 IN P U T"F ILE N A M E ?"; H$

40 OPENOUT H$

50 INPUT"NUMBER OF P O IN T S ? "; NPTS

55 W RITE£9,NPTS

60 PRINT"ENTER X ,Y P A IR S "

70 FOR 1=1 TO NPTS

80 IN P U T "X = " ;X :IN P U T "Y = " ;Y

90 W RITE£9,X

100 W R ITE£9,Y

110 NEXT I

120 INPUT"NUMBER OF L IN E S ? " ;L I

130 W R IT E E 9,L I

140 PRINT"ENTER NUMBERS OF JO IN IN G PO INTS"

150 FOR 1=1 TO L I

160 INPUT"START N O "; S N :IN P U T "F IN IS H N O ";F I

170 WRITEE9,SN

180 W R ITE E 9,F I

190 NEXT I

20 0 CLOSEOUT

210 END

Note that FILE2D does not need to concern itself with data structures at all
because its sole role in life is to transfer a sequence of numbers to a disk or tape
file. The program to draw a picture from the data in a sequential file created
using FILE2D is listed below. As you can see, this program (DRAW2D) is the
‘reverse’ of FILE2D as it ‘plucks back’ the relevent data to fill the X, Y and W
arrays. These three arrays are dimensioned in accordance with the values of the
variables NPTS and LI in the sequential file

DRAW2D program

10 REM tU tPRO G RAM D R AW 2D ****

20 REM DRAWS IMAGE FROM DATA HELD IN F IL E 2 D FORMAT

30 INPUT" F ILE N A M E ?"; H$

57

40 OPENIN H$
50 REM SET UP POINT ARRAYS

60 INPUTE9,NPTS
70 DIM X(NPTS),Y(NPTS)
00 FOR 1 = 1 TO NPTS
90 INPUTE9,X(I):INPUTE9,Y <I)

100 NEXT I
110 INPUTE9,LI
120 REM SET UP LINE ARRAY
130 DIM LN(2,LI)
140 FOR 1=1 TO LI
150 INPUTE9,LN<1,I),LN(2,I)
160 NEXT I
170 CLOSE IN
180 REM NOW DRAW THE PICTURE
190 CLS
200 FOR 1=1 TO LI

210 MOVE X(LN(1,I)),Y(LN(1,I))

220 DRAW X(LN(2,I)),Y(LN(2,I))
230 NEXT I
240 END

The only tricky bit of programming in DRAW2D can be found in lines 210-220
which do the actual drawing on screen. As drawing is done between pairs of X,Y
coordinates, it follows that the X and Y coordinates must be given in this
program line. However, we really want to be able to specify the series of LIN E S
which are to be drawn. We have already seen that the indices of the start and
finish POINTS for each line i are given by W(l,i) and W(2,i). It therefore
follows that the array element X(W(l,i)) is the X coordinate of the start point of
line 1, and X(W(2,i)) is the X coordinate of the finish point of the same line. The
FOR NEXT loop between lines 200-230 sequentially draws all the lines in the
picture by accessing the X and Y coordinates via the X and Y array indices
’pointed to’ by the elements of the W array.

3.2 M ore complex data sets

How many dimensions?

In the simplest cases that we have looked at so far, there has been a direct
equivalence between the coordinate data from our data file, and the coordinates
plotted on the screen. With two dimensional data this one to one
correspondence is often possible to achieve, although some kind of ‘scaling’
operation to fit data to the screen may be necessary - we will look at how to
handle this in the next chapter. Three dimensional data needs special care: the
data is defined in terms of X, Y and Z coordinates, but as the screen is only two

58

dimensional, we have to ‘lose1 the third dimension again. We will see how to
carry out this kind of transformation in Chapter 7. For the moment, we merely
need to note that the Z data is provided in the form of a third one dimensional
array to join its X and Y companions.

Picture segments

More important at this stage is the possible modular nature of the picture that
we wish to draw. If you consider a screen full of information as a single entity
constructed of information derived from the X, Y and W arrays, then it is a
static set of data which may be very aesthetic to look at, but is restricted in its
usefulness. What happens if we want to interact with the picture in some way?
Perhaps we wish to move part of the picture to a different location on the screen,
or alternatively we may want to erase or amend part of the picture.

In order to consider parts of the picture without the whole, we must introduce
a new concept, the segment. A picture segment is a section of a picture which
may be treated in its own right.

If the total picture is to be treated as one segment, then our X, Y and W arrays
are quite sufficient to store and construct the segment. If more than one
segment is to be displayed, the input data must be stored in either a series of
arrays (XI, Yl, Z1 ... Xn, Yn, Zn), or else the segments can be stored as blocks
in the single X, Y and Z arrays. This latter method is neater and more widely
used, so this is the one for us. So what method do we use to define the segments
if they are all in one array? Let us take a pictorial example first.

The diagram shows a simple scene built up of four different segments, a table,
four chairs, a television set and a lamp. We will assume that this framework is
part of a ‘room layout’ design program, where the observer can move elements
around the screen at will.

TO
CHAIR

D TftBLE □

c n

LAMP

Figure 3.3 A scene built up of segments

59

The storage arrays for
something like this:

the data making up the segments might appear

i X(i) Yfi) W(l,i) W(2,i)
6-10 TABLE DATA

11 -19 LAMP DATA
20-28 TV DATA

Note that there is only one set of chair data, but four chairs are present in the
picture. The ability to recall the segment data at will to copy individual segments
demonstrates another aspect of their power. In order to access the data
representing a particular segment, the start and finish indices for the segment
are needed. In other words, we need to know the start point for the first line of
each segment, for example the chair, and the finish point for the last line of the
segment. To do this we define a new two dimensional array, which is
dimensioned S (2 , N S) , t h e N S representing the total number of segments, in
this case four. The appearance of the S array for our room example is as follows:

i S(l,i) S(2,i)
1 1 6
2 7 11
3 12 20
4 21 29

So S(l,i) is the index of the start line for the ith segment and S(2,i) is the index
of the finish line for the ith segment. You can see that our data structures are
getting quite hairy now! We have a ‘three tiered’ system, with S array pointing
to W array pointing to X and Y arrays.

S W X Y

Figure 3.4 Relationship of S,W,X and Y arrays. Note that the contents of the S and W arrays are
indices to the locations on the arrays to which they point. STX,Y = start coordinates of line. FIX,Y
= end coordinates o f line.

60

We now have all the information necessary to access the segment from the main
program generating the picture.

3.3 Manipulating segments

You will not be able to harness the real power of segments until you have learned
how to manipulate (ie move around and scale) picture elements, and a
description of these manipulations makes up the bulk of Chapter 4. In order to
display segments at varying places on the screen, for example, the technique of
translation is used. You may however like to construct your own simple
‘segmented’ picture at this stage, and the following short sections of code can be
added to FILE2D and DRAW2D respectively. These amendments in fact allow
you to do little more than the programs without the additions but they do allow
you to see how the S array is defined and used in an elementary way.

2 0 0 REM A D D I T I O N S T O F I L E 2 D

2 1 0 I N P U T " S E G M E N T S SN

2 2 0 PR I N T # 9 , SN

2 3 0 P R I N T " R E A D I N S A R R A Y D A T A "

2 4 0 F OR 1 = 1 T O SN

2 5 0 I N P U T J , K , L

2 6 0 P R I N T # 9 , J : P R I N T # 9 , K : P R I N T # 9 , L

2 7 0 N E X T I

2 8 0 C L O S E O U T : E N D

2 4 0 REM A D D I T I O N S T O D R A W 2 D

2 5 0 I N P U T # 9 , SN

2 6 0 D I M S (3 , S N)

2 7 0 F OR 1 = 1 T O SN

2 8 0 I N P U T # 9 f S (1 , I) i , S < 2 , I) , S <3 , I)
2 9 0 N E X T I

3 0 0 REM NOW DRAW A S E G M E N T : C H A N G E SE

S E G M E N T S O T H E R T H A N NO 1

3 2 0 FOR I = S (1 , S E G) T O S (2 , S E G)

3 3 0 M O V E X <W <1 , I)) , Y (W (1 , I))

3 4 0 DRAW X (W (2 , I)) , Y (W (2 , I))

3 5 0 N E X T I

3 6 0 E N D

NOTE - All the program sections to be inserted in existing programs should
overwrite existing line numbers if there is an overlap. Unless otherwise
specified, all non-overlapping lines in both original program and insert are to be

61

included in the new version of the program. The easiest way to do this is to (1)
create a tape or disk file containing the additions, (2) load the original program
into memory and finally (3) MERGE the additions into the main program.

3.4 Drawing pictures the easy way

So far we have seen how to produce a data set to represent single and multiple
segments. The problem is of course that the data points have to be laboriously
calculated by hand. There must be a better method! In this section we will look
at a program which allows you to compose two dimensional data files at your
leisure using screen and joystick. This program is called SKETCH after
Sketchpad, the original of a similar name: one of the earliest computer aided
design tools devised by Ivan Sutherland in the early 1960’s.

SKETCH uses a joystick to move a cursor around the screen. The following
actions control program flow.

Key pressed
fire button
fire button
B
E
F
S

Action
Initialise line
End line
Next point not joined
End segment
Finish picture
Start next segment

This control information is displayed on screen in the version of SKETCH given
below. Once you have got used to the commands you will find it helpful to
remove the GOSUB statement (line 135) to the text routine so that the
instructions are not printed, as the bottom of the drawing area is covered by the
instructions. You can see this from the following screen dump.

Once a line has been initialised, the cursor ‘drags’ the line from the start point
around with it. This allows you to see the effect of placing a line in any given
position. You may recall from our discussion of the pixel inversion technique at
the end of the last chapter that this technique allows us to move parts of the
picture over underlying picture elements without wiping out these elements and
so you will find that all the LINE commands in SKETCH take the form of
inversions rather than line draw/wipe instructions.

SKETCH is reproduced below. It is considerably longer than our other program
examples so far, but you will find its use will save you more time in creating data
files than you will expend in typing it into your computer.

62

SKETCH PROGRAM
ANOTHER SEGMENT?

FIRE = START/FINISH LINE B=BREAK LINE
F=FINISH S=NEXT SEG E=END SEG

Figure 3.5 Screen dump of the SKETCH screen. A triangle has been drawn using the joystick

SKETCH program

5 REM ****PROGRAM SKETCH****

10 REM SET CURSOR AND STEP SIZES

20 CS=2:SS=2

40 INPUT "DATA FILE NAME?";N*

45 CLS

50 REM NOW SET COUNTERS AND FLAGS

60 FL“0:NPTS*1iNA*1

70 LB=0:REM LINES COUNTER

80 SE*0:REM FLAG FOR SEGMENT END

90 Sl=0rREM SEGMENT COUNTER

92 F1*0:REM FLAG FOR LINE BREAK

93 LI*0:REM SEGMENT LINE COUNTER

94 JY=1:REM LINE START/FINISH FLAG

100 DIM XP(500),YP(500),LN(2,500),S (3,10):REM DIMENSION ARRAYS

120 REM SET CURSOR IN CENTRE POSITION

130 X*320:Y=200

135 GOSUB 3500:REM PUT TEXT ON SCREEN

140 GOSUB 180:REM CURSOR PLOT ROUTINE

150 GOSUB 230:REM CURSOR MOVE ROUTINE

160 GOSUB 340:REM LINE DRAG ROUTINE

170 GOTO 140

63

180 REM CURSOR PLOT ROUTINE

190 X1*X-CS:Y1=Y-CS:X2=X+CS:Y2=Y+CS

200 MOVE X1,Y

205 DRAW X2, Y,1,1

210 MOVE X,Y1

215 DRAW X, Y2,1,1

220 RETURN

230 REM CURSOR MOVE ROUTINE

240 Y3=*Y: X3=X

250 IF JOY(0)=0 THEN 310

260 IF JOY(0)=1 THEN Y=Y+SS:GOTO 310

270 IF JOY(0)=2 THEN Y=Y-SS:GOTO 310

280 IF JOY(0)=4 THEN X=X-SS:GOTO 310

290 IF JOY(0)=8 THEN X=X+SS:GOTO 310

310 MOVE X3,Y2

320 DRAW X3,Yl,1, 1

325 MOVE X1,Y3

326 DRAW X2,Y3,1,1

330 RETURN

340 REM LINE DRAG AND PLOT ROUTINE

350 A$=INKEY$

355 IF A$=""AND JOY(OX>16 THEN IF FL=0 THEN RETURN

370 IF JOY(0) = 16 AND JY=1 THEN JY=2:LOCATE 1,1:PRINT"S":GOSUB 3000sGOTO 430

380 IF JOY(0)=16 AND JY=2 THEN JY=lsLOCATE 1,1sPRINT"F":GOSUB 3000:GOTO 460

390 IF A$="B"THEN JY=1:G0T0 450:REM BREAK LINE

400 IF A$="E"THEN SE=1:JY=1:GOTO 460:REM FINISH PICTURE

410 IF FL=0 THEN RETURN

420 GOTO 650:REM NORMAL LINE DRAW/WIPE

430 XI=X:YI=Y:REM START COORDINATES

440 FL=1:RETURN

450 F1=1:REM FLAG FOR LINE BREAK

460 XF=X:YF=Y:REM PUT IN POINT

480 MOVE XI.YI
485 DRAW XF,YF

490 NPTS=NPTS+1:NA=NA+1:LI=LI+1:LB=LB+1:REM INCREMENT COUNTERS

500 XP(NA)=XF:YP(NA)=YF:REM PUT IN POINTS

510 XP(NA-1)=XI:YP(NA-1)=YI:REM PUT IN POINTS

560 LN(1,LB)=NA-1:REM PUT IN LINE INDICES

570 LN(2,LB)=NA

580 IF FI=1 THEN NA=NA+1:F1=0:REM INCREMENT IF BREAK FLAG SET

590 IF SE=1 THEN S1=S1+1:S (1,SI)=NPTS-LI:S(2,SI)=NPTS-1:S (3,SI)=0:GOTO 690

630 FL=0:RETURN

640 FL=0

650 REM DO LINE DRAW/WIPE

660 MOVE X,Y

665 DRAW XI,YI,1, 1

670 MOVE X,Y

675 DRAW XI,YI,1,1

680 RETURN

690 REM CONTINUE

710 FOR I=S(1,S1) TO S (2,SI)

730 MOVE XP(LN(1,I)),YP(LN(1,I))

735 DRAW XP(LN(2,I)),YP(LN(2,I)),1,0

740 NEXT I

64

750 K*=INKEY$:LOCATE 1,2:PRINT"ANOTHER SEGMENT?"

755 IF K$=""THEN 750:REM ANOTHER SEGMENT?

757 LOCATE 1,2:PRINT"

770 IF K*="F" THEN BOO:REM NO, SO FINISH

780 LI=0:FL=0:SE=0:NA=NA+1:REM YES, SO SET COUNTERS

790 RETURN

800 REM NOW CREATE FILE CONTAINING DATA

BIO OPENOUT N$

840 WRITEE9,NA

850 FOR 1=1 TO NA

860 WRITEE9,XP<I)

870 WRITEE9,YP(I)

875 NEXT I

880 WRITEE9,LB

890 FOR 1=1 TO LB

900 WRITEE9,LN(1,1)

910 WRITEE9,LN(2,I)

915 NEXT I

920 WRITEE9,SI

930 FOR 1=1 TO SI

940 WRITEE9,S < 1, I)

950 WRITEE9,S(2,I)

960 WRITEE9,S<3,I)

965 NEXT I

970 CLOSEOUT

980 END

3000 FOR 1=1 TO 200:NEXT I:RETURN

3500 LOCATE 13,1:PRINT"SKETCH PROGRAM"(

3510 LOCATE 1,24:PRINT" FIRE=START/FINISH LINE B=BREAK LINE"

3520 LOCATE 1,25:PRINT- F=FINISH S=NEXT SEG E=END SEG"

3530 MOVE 0,50

3540 DRAW 640,50

3600 RETURN

SKETCH may be broken down as follows:

LINES 5- 130
135
140- 170
180- 330
340- 400
420- 440
450
480
490
500- 570
580
590
650- 680

SETUP SCREEN, CURSOR AND ARRAYS
PUT INSTRUCTIONS ON SCREEN
MAIN LOOP
CURSOR PLOT AND MOVE ROUTINES
READ CONTROL KEYS
START LINE
FLAG FOR LINE BREAK
DRAW LINE
UPDATE COUNTERS
PUT COORDINATE DATA INTO X,Y,W ARRAYS
RESET COUNTERS FOR LINE BREAK
SET SEGMENT COUNTER
TEMP LINE DRAW/WIPE

65

710- 740 REDRAW SEGMENT
750- 790 ANOTHER SEGMENT? IF SO RESET COUNTERS
800- 980 CREATE DATA FILE

3000 SIMPLE DELAY LOOP
3500- 3600 TEXT DRAWING ROUTINE

The cursor control section of SKETCH uses the joystick because this device
gives much more convenient control over picture generation than does keyboard
control.

The use of the X, Y, W and S arrays in SKETCH is essentially the same as for
the programs we have already looked at. The new part of SKETCH is really the
manipulation of the joystick and cursor for interactive data creation. Lines
180-330 of SKETCH handle cursor movement, and three main steps are
involved. These are:

(1) cursor plotting
(2) cursor movement
(3) cursor erasure

The cursor is plotted by drawing two straight lines, one horizontal, one vertical,
which intersect at their midpoints. The length of these lines is set using the
variable CS. If the plotted point is at coordinates x,y then the X line is drawn
from x-CS,y to x + CS,y: the Y line is correspondingly drawn from x,y-CS to
x^ + CS. Movement of the cursor occurs by using the values returned from the
joystick to increment or decrement the x or y values. Re-plotting of the cursor
can then occur around the new x,y point. For cursor erasure, a cursor is retraced
around the original x,y point, but this time each pixel is cleared instead of being
plotted. By using these three operations together, movement of the cursor
around the screen may be smoothly controlled with the joystick.

3.5 How to use SKETCH

You will find SKETCH difficult to use at first. Drawing by ’remote control’ is
not an easy skill to master, but some quite impressive results can be obtained,
as you see from the pictures reproduced below. Once you have acquired the skill
of pressing the correct key or fire button at the right time you can produce useful
data with the program. The pictures shown here were drawn using an additional
trick. Each outline was traced on an A4 sheet of overhead transparency film
(you can buy this at an art or business supplies shop). The film was then stuck
onto the monitor screen using sticky tape. Using this method, it is then possible

66

to sit back and trace the outline using the joystick and SKETCH. Try creating
a map of some adjoining counties or US states with each state or county as a
segment. Write a version of DRAW2D to enable you to recall segments in any
order. Use your program to test your friends’ knowledge of geography!

HAP OF ENGLAND AND WALES CREATED USING
SKETCH PROGRAH S/7/8S

\ X
VV \■ I

Figure 3.6 Output from SKETCH. A simple outline map of England and Wales

Figure 3.7 Output from SKETCH. A jet plane.

67

The use of SKETCH with transparency film in this way is an example of a
makeshift digitizer, a device for directly transferring spatial data into the
computer. Commercial digitizers can cost up to £20,000. Now you have one for
the cost of a joystick!

If you have a CPC 6128 or CPC 664 you may like to add the following FILL
routine to SKETCH. It works as follows. When you have drawn your picture,
put the cursor in the centre of the area you wish to colour. Press the Z key. You
then choose the colour by pressing the 1, 2 or 3 key. The area (make sure it is
enclosed!) is then filled, and you are returned to the main program to draw more
lines or to reselect further colours as you wish. The FILL routine does not affect
the ability to save the picture, as the colouring process is transparent to the data
structures holding points and lines.

217 K$=INKEY$:IF K$="Z"THEN SOSUB 4000:REM PAINT ROUTINE

4000 REM FILL ROUTINE FOR USE WITH SKETCH PROGRAM (ONLY ON CPC 664)

4010 REM USE WITH MODE 1 ONLY

4020 INK 2.3:INK 3, 12

4025 MOVE X+2.YF2

4 0 3 0 K 4 -IN K E Y *

4040 IF K*=""THEN 4030

4050 IF Kt="1"THEN FILL 1

4060 IF k$="2"THEN FILL 2

4070 IF K$="3"THEN FILL 3

4080 RETURN

S K E T C H P R O G R A M

Figure 3.8 Output from SKETCH using the FILL amendment.

68

Chapter 4

Manipulating 2D Data

4.1 The coordinate system

In this chapter you will learn how to move two dimensional pictures and
segments around on the screen. Before doing this, we will revise some of the
elementary rules of two dimensional coordinate geometry. Although we have
already looked at a number of simple programs which use X and Y coordinates,
it will help if we look at the coordinate system in a little more detail.

In essence, we are dealing with a rectangular coordinate system. This consists of
two scales called axes. One of the scales is horizontal, the other vertical. The
point of intersection of the axes is called the origin. It is usual to designate the
right side of the horizontal axis as the positive x axis, and the upward direction
as the positive y axis. (It follows that the left side of the x axis and the downward
direction on the y axis are therefore negative).

+ Y

+ X

Figure 4.1 Labelling of axes in an X,Y coordinate system. Two points are shown, one positive and the
other (with the same coordinates but different sign) negative.

69

The diagram above shows the layout of these axes. Using them, any point can
be designated P(x,y) on any of the four sectors or quadrants around the origin
depending on the sign of x and y. On most home computers (and all other
computers 1 have worked with) the origin is at the bottom left hand corner of
the screen. This means that all plotted coordinates must have positive values.

Now that we have seen how to represent points in a rectangular coordinate
system, we can draw simple pictures on the screen using the commands MOVE
and DRAW, together with the data held in a simple data structure. This is fine
if all the data is within the bounds of the Amstrad screen coordinate area (X =
0 - 639, Y = 0 - 199), and if no spatial manipulations are to be done on the data.
But what if we wish to move an object around on the screen, to change its size
along one or both axes, or to rotate it around a specified axis?

The techniques for doing these operations are called transformations in
graphics jargon, and the main ones are the ‘holy trinity’ of rotation, scaling and
translation. Using combinations of these transformations, we can manipulate
two dimensional pictures at will. Now although it is possible to perform all 2D
transformations by a mixture of ’brute strength’ arithmetic and basic
trigonometry, we will use matrix algebra for all our transformations. Matrix
algebra provides an extremely efficient system for manipulating coordinate
data. The disadvantage is that in order to understand this form of manipulation
you have to learn what matrices are, and how to handle them.

This is not to say that there is anything particularly complex about handling
matrices, and details of how to go about doing it are given in Appendix 2.
Reference to this appendix will be made throughout this section, but if
mathematics truly does give you nightmares - don’t worry! You do not need to
understand the contents of Appendix 2 to be able to use the routines given here.
In fact, it is quite possible for you to work through the whole book without
knowing what matrices are: but don’t be lazy - try Appendix 2 - like some new
foreign dish, it may even appeal to your palate.

4.2 Rotation

As its name suggests, rotation involves turning the picture, or part of it, through
an angle in space. We require an important piece of information before
performing a rotation - the point around which the object is to be rotated.
Although it is possible to mathematically compute a rotation around any given
point in 2D space, by far the easiest point to rotate around is the origin. Using
matrix algebra it is easy to set up a matrix A which, when evaluated, gives
rotated x,y points around the origin for a given data set. Let us step through a
simple two dimensional rotation program to see how it works.

70

The first step is to read in the data to the X,Y and W arrays that will be used for
storage, and we saw how to do this in the last chapter. We will leave out the
segment array for now in order to simplify the program. Next, we set up the
correct matrix. For all 2D transformations our matrices will appear as arrays
D IM’d 3 X 3. Here we will use the array A(3,3) to hold the matrix, and a rotation
routine sets up the matrix. Finally, we mutiply the x,y data and the rotation
matrix to transform the data. Our flow chart for this program might look
something like the following:

Input xy data
1

Input rotation angle
I

Set up rotation matrix
I

Multiply each pair of x, y
points with the rotation matrix

i
Plot picture using the
transformed points

1
Loop to matrix
multiplication

step

The whole program appears below. If you type this in you will find that it draws
an arrow which starts out along the Y axis and gradually moves down to the X
axis.

Figure 4.2 Output from ROTATE. Each arrow has been rotated + 10 degrees around the origin at
0,0.

71

You can clearly see that the origin is acting as the pivot point. The program
calculates a sequence of 10 degree rotations, looping between lines 160 and 190.
Note that the transformation matrix only has to be set up once: as each rotation
is by 10 degrees it is only the matrix multiplications that need to be repeated. You
will find these multiplications between lines 430 and 490. Note the use of the
constant .17455 in line 160. This is ten degrees in radians, one degree being equal
to .017455 radians (or approximately so - there are in fact 2 X pi radians in 360
degrees).

ROTATE program

10 REM ****PR0GRAM ROTATE****

20 REM DEMONSTRATES 2D ROTATIONS USING MATRIX TRANSFORMATIONS

25 REM ROTATES ARROW AROUND ORIGIN 0,0

30 REM SET UP ARRAYS

40 DIM X(4),Y<4),XP<4),YP<4),LN<2,3),A<3,3),P0<3>,P<3>

45 CLS

50 REM GET DATA TO DRAW SHAPE

60 READ NPTS

70 FOR 1=1 TO NPTS

80 READ X (I), Y (I)

90 NEXT I

100 READ LI

110 FOR 1=1 TO LI

120 READ LNd,I),LN<2,I)

130 NEXT I

140 DATA 4,0,0,0,195,10,185,-10,185,3,1,2,2,3,2,4

150 REM NOW SET ROTATION ANGLE

160 AN=AN+0.174533

170 GOSUB 360iREM ROTATION ROUTINE

180 GOSUB 430:REM DRAW PICTURE

190 GOTO 160

200 END

220 A(l,1)=C0S(AN):A (1,2)=SIN(AN):A (i,3)=0-

360 REM ROTATION ROUTINE

370 A(l, 1)-COS(AN):A (1,2)-SIN(AN) :A(1,3)=0

380 A (2, 1) =-SIN (AN) : A (2, 2) =COS (AN) : A (2, 3) =0

390 A(3,1)*0: A (3,2) *0: A(3,3>**1
400 RETURN

430 REM SETUP PICTURE

440 FOR 1=1 TO NPTS:P(1)=0:P (2)=0:P (3)=0

445 P0(1)=X(I):P0(2)=Y(I):P0(3)=1

450 FOR J«1 TO 3

455 FOR K-l TO 3

460 P(J)-(A(J,K)*PO(K))+P(J)

470 NEXT K:NE X T J

480 XP(I)-P(1)iYP(I)=P(2)

490 NEXT I

500 REM NOW DRAW THE PICTURE

72

510 FOR I-l TO LI

520 MOVE XP<LNU,I>>,YP(LN<1,I)>

530 DRAW XP(LN<2,I)),YP<LN<2,I>>

540 NEXT I

550 RETURN

In ROTATE, you will see that we keep the original X Y data ‘virgin’, and the
transformations are done on two new arrays called XP and YP. It is in fact quite
usual to keep working or ‘scratch’ arrays to hold the coordinate data to be
plotted on screen. In future programs you will find the arrays XP and YP used
as a matter of course.

Although we have used matrix algebra to determine the rotated coordinates, it
is possible, if the angle of rotation is not too large, to use a more elementary
method, which is much faster, but it only works for increments of one or two
degrees. The new coordinates for each point are then

x’ = x - y sin (theta)

and y’ = x’ sin (theta) + y

You can rewrite the arrow rotation program to draw, say, one degree rotations
from 0 to 90 degrees to see the vast increase in speed that is produced. But see
what a mess it makes if you set theta to something like ten degrees!

4.3 Translation

A translation is simply a reduction or increase of the X and/or Y coordinate
values of the segment or whole picture. Translations are also performed by way
of matrices, again using a 3 X 3 array to hold the matrix. We can easily amend
the ROTATE program to accommodate translations. The translation matrix is
set up using the following routine, which you can add to ROTATE. In the next
few pages we will build up a general 2D transformation program, so we will call
the program TRY., from now on. This first version you could call TRV1

600 r em t ra i n s. 1 a t i on r o u t i n e
61 0 a (1 , 1) = 1 : a (1 , 2) = 0 : a (1 , 3) = t X
620 a (2 , 1) = 0 : a (2 , 2) = 1 : a (2 , 3) = t y
630 a (3 , 1) = 0 : a (3 , 2) = 0 : a (3 , 3) = 1
640 r e t u r n

73

TX and TY are the changes in x and y coordinates of the points to be translated.
These values must be set up in the program before the translation routine is
called. If the TRV1 program is to translate the arrow along the X axis in
increments of 10 screen units, for example, the following changes should also be
made.

1 3 5 t x = 1 0 : t y = 0 : r e m s e t t r a n s l a t i o n s t e p

1 7 0 g o s u b 6 0 0 : r e m t r a n s l a t i o n s t e p

\ A \ / T'. / A \ A \ A

Figure 4 3 Output from TRV1. Each arrow has been translated + 1C pixels along the X axis.

Translation in general graphics programming is also a vital procedure. It allows
us to move pictures or segments from and to the origin. We saw in the previous
section that the easiest rotations to perform are those around the origin, and by
using appropriate translations we can simulate rotation around any point in
coordinate space. In order to do this, the following sequence is used.

(1) Translate the object to the origin
(2) Rotate the object
(3) Translate the object back to the original position

We can use the TRVI program, with a few amendments, to perform this
sequence you will no doubt appreciate by now that we are building TRVI into
a general program for performing two dimensional transformations). As both

74

translation and rotation routines are already in TRV1, there is little more to add.
Before looking at the use of translation and rotation together, the third type of
transformation should be mentioned.

4.4 Scaling

Perhaps you have an object drawn in the centre of the screen and wish it to be
expanded to occupy the whole area. Alternatively, you may wish to expand an
object either horizontally or vertically. These operations are performed by
increasing the relative distances between the coordinate points of the segment.

The following routine sets up a matrix to be used in scaling transformations. It
follows the same pattern as the rotation and translation matrices, ie it is held in
a 3 X 3 array A(3,3).

7 0 0 r e m s c a l e r o u t i n e

7 1 0 a (1 , 1) = s x : a (1 , 2) = 0 : a (1 , 3) = 0

7 2 0 a (2 , 1) = 0 : a (2 f 2) = s y : a (2 f 3) = 0

7 3 0 a (3 , 1) = 0 : a (3 f 2) = 0 : a (3 , 3) = 1

7 4 0 r e t u r n

The variables sx and sy hold the values by which the x and v coordinates are to
be respectively multiplied. If one of the axes is to remain unchanged, the
variable should be set at 1, not 0. Reductions as well as increases in size can be
used.

The following expansion of TRV1 (call this TRV2) demonstrates the use of all
the transformations discussed so far in the same program. The program
prompts for translation and scale values, and draws a small ‘spaceship’ with its
minimum x and y coordinates at 10,10 (the bottom left corner). The sequence
of transformations in the program is given between lines 240 - 290. Run the
program to familiarise yourself with the effect that various parameter values
have on the shape, size and position of the spaceship.

T R V 2 program

10 REM «***PR0GRAM TRANSF0RMV2****

20 REM PROGRAM TD DO TRANSLATION, SCALE AND ROTATION ON SPACESHIP

30 DIM X(20),Y(20),LN(2,30),A (4,4),P (3),P0(3)

40 REM GET DATA TO DRAW SHAPE

75

50 READ NPTS

60 FOR 1 = 1 TO NPTS* Z=3

70 READ X (I), Y (I)

80 NEXT I

90 READ LI

100 FOR 1-1 TO LI

110 READ LN(1,I),LN(2,I)

120 NEXT I

130 REM DATA FOR SPACECHIP

140 DATA 11,10,10,10,30,20,40,20,60,25,70,30,60,30,40,40,30,40,10,30,20,20,20

150 DATA 11,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,1

160 REM INPUT TRANSFORMATION INFO

170 CLS

180 INPUT "TRANSLATION TX,TY?"*TX,TY

190 INPUT "SCALING AMOUNTS SX,SY?"jSX,SY

200 INPUT "ROTATION IN DEGREES?"jAN

210 REM CHANGE ROTATION TO RADIANS

220 AN-ANtO.017455

230 REM NOW DO THE TRANSFORMATIONS

240 Tl — X<1> :T2— Y<1> iREM TRANSLATE TO ORIGIN

250 GOSUB 360iREM TRANSLATION ROUTINE
260 GOSUB 510iREM DRAW PICTURE

270 GOSUB 410iREM SCALE ROUTINE

280 GOSUB 510:REM DRAW PICTURE

290 GOSUB 460:REM ROTATION ROUTINE

300 GOSUB 510:REM DRAW PICTURE

310 T1-TX:T2-TY

320 GOSUB 360:REM TRANSLATION ROUTINE

330 GOSUB 510:REM DRAW PICTURE

340 END

360 REM TRANSLATION ROUTINE

365 A<1,1)-1:A(1,2)-0:A<1,3>*T1

370 A<2,1)-0:A(2,2)-1:A(2,3)-T2

375 A(3,1)*0:A (3,2)“01A (3,3)*1
380 RETURN

410 REM SCALE ROUTINE

420 A(l,1>»SX:A(1,2)-0:A<1,3>=0

425 A(2,1)“0 :A<2,2)“SY:A(2,3)=0

430 A (3,1)“0 :A(3,2)-0:A(3,3)-1

440 RETURN

460 REM ROTATION ROUTINE

465 A <1,1)-COS(AN)1A <1,2)-SIN<AN):A(l,3)-0
470 A <2, 1) --SIN (AN) : A (2, 2) -COS (AN) 1A (2,3) =0
475 A(3,1)«0:A(3,2)-0:A (3,3)=1

480 RETURN
510 REM PROCESS POINTS FOR PICTURE

520 FOR 1-1 TO NPTS

525 P (1)-0:P (2)-0:P (3)-0

530 P0(1)-X(I):P0(2)-Y(I):P0(3)*1

540 FOR J-l TO 3

545 FOR K-l TO 3

550 P(J)-(A(J,K)IPO(K)>+P(J)

555 NEXT K

560 NEXT J

76

565 X (I)=P(1)

570 Y(I)=P(2)

575 NEXT I

580 REM NOW DRAW THE PICTURE

600 FOR 1=1 TO LI

610 MOVE X (LN (1,1)),Y(LN <1,1))

620 DRAW X (LN(2, I)),Y(LN(2,I))

630 NEXT I

640 FOR 1=1 TO 1000:NEXT I

650 RETURN

Figure 4.4 Output from TRV2. Spaceship (1) has been scaled up, rotated (2) and finally translated
to a new location (3).

4.5 Sequences of transformations

The simplest sequences of transformations have already been covered:
translation to the origin, rotation, translation back to the final position. We
used a rather laborious method for doing the transformation sequence in
TRV2, admittedly, for the purpose of demonstration. In fact, the intermediate
stage of translation back to the origin and out again can be accomplished
without intermediate calculation of coordinate positions. As you will see if you
read Appendix 2, the secret is to multiply the series of 3 X 3 matrices for
rotation, scaling and translation together as soon as they have been set up. We

77

can use a single routine to take care of this within the transformation program.
Matrix multiplication is not complicated, but care has to be taken to do the
multiplications in the correct order: although A X B = BXAi n school algebra,
matrix multiplication of A X B does not necessarily give the same product as B
X A. The rules for matrix multiplication will be found in Appendix 2. Here is
the routine for multiplying two 3X 3 matrices. Note that this is rather different
from the matrix multiplications which you have already met in the TRV2
program. This is because the multiplications in this case were performed
between the transformation array and the coordinate data only. Again, this will
be made clearer in Appendix 2 if you want to know the nuts and bolts of what
is going on.

3 0 0 0 r e m r o u t i n e m a t r i x m u t t i p l i e r

3 0 1 0 r e m t h e t w o m a t r i c e s m u s t b e i n a r r a y s

d i m e n s i o n e d a (3 , 3) a n d b (3 , 3)

3 0 2 0 f o r i = 1 t o 3

3 0 3 0 f o r j = 1 t o 3 : a b = 0

3 0 4 0 f o r k = 1 t o 3

3 0 5 0 a b = a b + a (i , k) " b (k , j)

3 0 6 0 n e x t k : c (i , j) = a b : n e x t j : n e x t i

3 0 7 0 r e t u r n

Now let us put this routine into our expanded TRV2 program. Unfortunately,
it is not possible to merely slot the routine into TRV2, because several
multiplications have to be done, and as you will see from the new version below,
some complexities are encountered. The end result is to produce a ‘super’ matrix
product which is used for the final coordinate calculations. This final version of
the transformation program (TRV3) also contains a file read section to allow
input of data from a file created with SKETCH or FILE2D.

TRV3 program

10 REM * * * *PROGRAM TRANSF0RMV3****

20 REM DOES 2D TRANSFORMATIONS ON,DATA IN FILE CREATED USING SKETCH OR FILE2D

30 CL3

40 INF'UT"FILENAME?"iH«

45 OPENIN H*

50 INPUT£R,NPTS

55 DIM A<3,3),B(3.3),C<3,3)

60 DIM X(NPTS),Y(NPTS),XP(NPTS),YP(NPTS)

65 XL=640:XH=0:YL=400:YH=0

78

70 FOR 1*1 TO NPTS

75 INPUT £9,X(I),Y (I)

80 REM SORT FOR MAX AND MIN VALS

85 IF X d X X L THEN XL=X (I)

90 IF X <I)>XH THEN XH=X(I)

95 IF Y(IXYL THEN YL=Y(I>

100 IF Y(I)>YH THEN YH=Yd)

110 NEXT I

120 INPUTE9,LI

125 DIM LN(2,LI)

130 FOR 1=1 TO LI

135 1NPUT £9,LN <1,I),LN(2,I)

140 NEXT I

150 CLOSEIN

160 REM INPUT TRANSFORMATION INFO

165 INPUT"TRANSLATION TX,TYH;TX,TY

170 INPUT"SCALING AMOUNTS";SX,SY

180 INPUT"ROTATION IN DEGREES";AN

185 AN=ANtO.017455:REM RADIANS

190 REM NOW PUT COORDINATE DATA INTO TEMPORARY ARRAYS

192 FOR 1=1 TO NPTS

194 XPd)=Xd)

196 YP d) =Y d)

198 NEXT I

200 GOSUB 2500:REM DRAW ORIGINAL PICTURE

210 REM NOW DO THE TRANSFORMATIONS

220 Tl=-dXH+XL)/2):T2°-((YH+YL)/2):REM TRANSLATE CENTRE POINT TO ORIGIN

230 REM SETUP MATRICES AND DO MULTIPLICATIONS

275 GOSUB 1400:REM ROTATION (MATRIX A)

280 GOSUB 1100:REM TRANSLATION (MATRIX B) TO ORIGIN

300 GOSUB 1600:REM FIRST MULTIPLICATION (MATRIX C)

310 GOSUB 1500:REM ROTATION (MATRIX B)

315 GOSUB 1300:REM SCALING (MATRIX B)

320 GOSUB 1700:REM SECOND MULTIPLICATION (MATRIX A)

330 T1=-T1+TX:T2=-T2+TY:REM SET TRANSLATION VALUES

340 GOSUB 1100:REM TRANSLATION (MATRIX B)

350 GOSUB 1600:REM THIRD MULTIPLICATION (MATRIX C)

360 GOSUB 2000:REM NOW WORK OUT COORDINATES

370 GOSUB 2500:REM DRAW PICTURE

380 INPUT X:IF X=1 THEN CLStGOTO 160

400 END

1000 REM TRANSLATION ROUTINE

1010 Ad, l) = l:A(l,2)=0iA(l,3)=Tl

1020 A(2,1)*0»A(2,2)*1:A(2,3)=T2

1030 A(3,1)-0:A(3,2)=0:A(3,3)»1

1040 RETURN
1100 REM TRANSLATION ROUTINE

1110 Bd, l) = l:B(l,2)=0iB(l,3)-Tl

1120 B(2, l)=0:B(2,2)-liB(2,3X=T2

1130 B(3,1)=0«B(3,2)»0:B(3,3) = 1

1140 RETURN

1250 REM SCALE ROUTINE

1260 A(l,1)=SX:A(1,2)=0:A(1,3)=0

1270 A (2,1)=0 x A (2,2)*SY:A < 2,3)=0

79

1280 A (3,1)=0 :A(3,2)=0:A<3,3)=1

1290 RETURN

1300 REM SCALE ROUTINE

1310 B (1,1)=SX: B < 1,2)*0:B <1,3)=0

1320 B (2, 1) =0 : B (2, 2) =SY: B (2,3) =0

1330 B (3,1)=0 :B(3,2)=0:B(3,3)=1

1340 RETURN

1400 REM ROTATION ROUTINE

1410 A < 1,1)=COS (AN):A (1,2)=SIN(AN)J A (1,3)=0

1420 A(2,1)=-SIN(AN): A <2,2)=COS<AN):A(2,3)=0

1430 A<3,1)»0iA(3,2)=0:A<3,3)=l

1440 RETURN

1500 REM ROTATION ROUTINE

1510 B (1, 1) «=COS (AN) : B <1,2)=SIN <AN) j B <1,3)=0

1520 B(2,1)=-SIN(AN):B(2,2)=COS<AN):B<2,3)=0

1530 B(3,1)=0:B(3,2)=0:B(3,3)=1

1540 RETURN

1600 REM MATRIX MULTIPLIER (RESULT IN C)

1610 FOR 1=1 TO 3

1620 FOR J=1 TO 3:AB=0

1630 FOR K=1 TO 3

1640 AB=AB+A(I,K)*B(K,J)

1650 NEXT K

1660 C (I, J)=AB

1670 NEXT J

1680 NEXT I

1690 RETURN

1700 REM MATRIX MULTIPLIER (RESULT, IN A)

1710 FOR 1=1 TO 3

1720 FOR J=1 TO 3iAB=0

1730 FOR K=1 TO 3

1740 AB=AB+B(I,K)*C(K,J)

1750 NEXT K

1760 A (I,J)=AB

1770 NEXT J
1780 NEXT I

1790 RETURN

2000 REM PROCESS POINTS FOR PICTURE

2010 FOR 1=1 TO NPTS

2020 P(1)=0:P (2)=0:P (3)=0

2030 P0(1)=XP(I):PO(2)=YP(I):PO(3)=1

2040 FOR J=1 TO 3

2050 FOR K=1 TO 3

2060 P(J)=(C(J,K)*PO(K))+P(J)

2070 NEXT K

2080 NEXT J

2090 XP(I)-P(1)

2100 YP <I)=P(2)

2110 NEXT I
2500 REM NOW DRAW THE PICTURE

2510 FOR 1=1 TO LI

2520 MOVE XP<LN<1,1)),YP(LN(1,1))

2530 DRAW XP(LN(2,I)),YP(LN(2,I))

2540 NEXT I

8 0

2550 FOR 1-1 TO 1000:NEXT I

2560 RETURN

If you look at lines 1000-1540 of TRV3, you can see that the matrices are set up
in exactly the same way as was used in TRV2, but the actual routines for each
transformation are duplicated for each type of transformation. This is
necessary because the multiplications require the matrices to be in either arrays
A and B, or B and C. The C matrix is in fact the product resulting from the
multiplication of matrices A and B, while the product of B and C is put into
array A.

The matrix multiplication that gives the coordinates for plotting (lines
2000-2110) uses the C array as the final transformation matrix. You must bear
this in mind when amending TRV3.

You should try variations in the data set and transformation sequences to make
sure that you have grasped how to handle these matrix manipulations. By
manipulating some complex outlines with SKETCH, you will be able to gauge
the speed at which the various transformations work in BASIC.

4.6 Windows on the world

We now need to introduce two terms which you will come across in articles and
books on computer graphics. These terms are window and viewport. The
diagram below shows how they are related. If you think of a two dimensional
scene as being the two dimensional ‘world’ which we wish to display, then the
window is the part of that world to be displayed on the screen.

For many simpler applications, there may be a one-to-one relationship between
window and world - the shapes that we have used for our examples so far come
into this category. But other pictures require different parts of the world to be
displayed. We therefore need to define a window which can be positioned at any
point over the 2D world. Consider for example a map or circuit diagram. The
total amount of information in pictures of these types will be far greater than
that which could be displayed on the screen at the same time. Use of the
windowing technique allows any subpart of a picture to be displayed on its own.
You may wish to ‘scroll’ over a map for example, and providing the window and
scrolling facility are coupled to a suitable data set, this will be possible.

The viewport is simply the part of the screen on which the window is displayed.
Viewports are useful if different parts of the screen are to be used to display
different things: an example would be if part of the screen is to be used for
graphics and part for text. The ability to separate text and graphics in this way

81

2D WORLD 2D WORLD

w i ndow
-o n 2D

wor I d

Figure 4.5 The relationship between the 2D world, windows and viewports. A mapping of 1:1
between 2D world and screen would give a window the size o f the 2D world and a viewport the size

o f the screen.

is inherent in the Amstrad computers via the WINDOW command. You should
note that WINDOW only allows text streams to be manipulated separately.
Graphics commands are not associated with streams and cannot be ‘windowed’
via Amstrad BASIC. If window and viewport techniques are used together, the
effects of zooming and panning can be simulated. Program ZOOM below
shows how these operations can be done using BASIC. Note that the following
statements hold true.

(1) If you decrease the window size but keep the viewport constant you
produce ‘zooming in’.

(2) If you increase the window size but keep the viewport constant you
produce ‘zooming out’.

(3) If you move the window you produce ‘panning’.

The window size can be changed dynamically during execution of ZOOM by
pressing the S key (this makes the window smaller) and the L key (making the
window larger), "i he joystick is used to move over the surface of the displayed
picture, and when the window is the correct size and is positioned over the
correct part of the picture, pressing the fire button followed by the space bar
performs the zoom operation. To return to the original picture, the fire button
is again pressed, followed by key N.

82

You can use ZOOM to look at a 2D space that is much larger than the Amstrad’s
640 X 400 coordinate space, and conversely, you can expand a smaller picture
to fill the whole screen. Here is an example of the output from ZOOM

ZOOM PROGRAM

Figure 4.6 Output from ZOOM. A human heart. Note the position of the cursor window defining
the ‘zoomed’ area in the lower picture.

Apart from translation and scaling (operations at which you are, by now,
expert!) ZOOM uses the concept of clipping. Clipping means that lines passing
out of the chosen window are ‘cut’ at the window’s edge, like this

83

Figure 4.7 The clipping operation. The screen is divided into nine rectangles, with the visible space
in the centre rectangle. Note that the values of XX and YY are set to 1 if they are > the visible space,
0 if they are inside the visible space, and -1 if they are < the visible space.

The algorithm used to do this clipping is a standard one devised some years ago
by US graphics pioneer Ivan Sutherland, and consists of ‘moving’ all the ends
of lines passing out of the window to the point on the window’s edge on the line.
The clipping algorithm is found between lines 160-1540 of ZOOM, and works
as follows. If you look at the previous diagram, you’ll see that the whole area is
divided up into nine rectangles, with the positions of the vertical and horizontal
lines being set by the position, shape and size of the window to be clipped to.

Every point on the screen will be in one of the rectangles, and we use this
information as the basis for the algorithm. As you can see from the diagram, the
rectangles are identified by the values of two variables, XX and YY. If XX and
YY are 0 for both points on a line, we know that the whole line is visible within
the window. If XX is -1 or +1 then no matter what the value of YY, the line will
totally fall outside the window. If YY is -1 or +1 the line will also be outside the
window. In the other cases there is a possibility (not a certainty) that part of the
line will be inside the window, and one or perhaps both points on the ends of
the line will be outside the window.

In these cases, the position of the point outside the window will be moved onto
the edge of the window (for example c’ in the previous diagram).

84

The algorithm uses two routines: TYPE returns the XX and YY values to
identify the rectangle for each point in the picture. CLIP uses this information
to move the points outside the window to the window edge as required.

ZOOM program

5 REM ♦♦♦♦PROGRAM ZOOM****

10 REM TAKES PICTURE IN FILE2D FORMAT AND EXPANDS SECTION BOUNDED BY A WINDOW
20 REM SET I,J,K,L,R VARIABLES TO INTEGER
30 DEFINT I,J,K,L,R

40 CLS:MODE 2
45 GOSUB 1500:REM TITLES
50 LOCATE 1,1iINPUT "FILENAME?";H$
60 OPENIN H$
70 INPUTE9,NPTS

80 DIM X(NPTS),Y(NPTS)

90 FOR 1=1 TO NPTS

100 INPUTE9,X(I),Y (I)

110 NEXT I

120 INPUTE9,LI

130 DIM LN(2,LI)

140 FOR 1=1 TO LI

150 INPUTE9,LN(1,I),LN(2,I)

160 NEXT I

170 CLOSEIN

180 REM INPUT CLIPPING INFORMATION

190 XW=640:YW=400

200 K*="N"

210 XC=320:YC=200:REM SET CENTRE POINT

220 ZX=1:ZY=1

230 WX=40:WY=INT(40^0.625)s X=320:Y=200:WW=:

240 DX=XW/2:DY=YW/2

250 REM CLIPPING SECTION

260 XM=(640IZX)/XW

270 YM=(400IZY)/YW

280 REM DO TITLE

300 FOR 1=1 TO LI

310 X1=X(LN(1,1))-XC

320 Y1=Y(LN(1,1))-YC

330 X2=X(LN(2,I))-XC

340 Y2=Y(LN <2,I))-YC

350 IF K$="N" THEN XM=1jG0T0 ,660

360 XT=Xl:YT=YIsGOSUB 860:REM CLIP MODE

370 I1=R1:I2=R2

380 XT=X2:YT=Y2:GOSUB 860:REM CLIP MODE

390 I3=R1:I4=R2

400 REM ARE ALL POINTS OUT OF THE WINDOW?

410 IF(IIt 13*1) OR (12114=1) THEN 710

420 IF 11=0 THEN 490

85

430 REM MOVE POINT l’S COORDINATE TO WINDOW EDGE

440 XX=DX*I1

450 Y1=Y1+(Y2-Y1)*(XX-X1)/(X2-X1)

460 X1 = X X

470 XT=X1:YT=Y1:GOSUB 860:REM CLIP MODE

480 I1=R1:I2=R2

490 IF 12=0 THEN 540
500 REM MOVE POINT l'S Y COORDINATE TO WINDOW EDGE

510 YY=DY*I2

520 X1=X1+(X2-X1)*(YY-Y1) / <Y2-Y1)
530 Y1=YY

540 IF 13=0 THEN 590

550 REM MOVE POINT 2’S X COORDINATE TO WINDOW EDGE

560 XX=DX*I3

570 Y2=Y1 + < Y2-Y1)* <XX-X1)/(X2-X1)

580 X2=XX

590 XT=X2:YT=Y2:GOSUB 860:REM CLIP MODE

600 13=R1: 14=R2

610 IF 14=0 THEN 660

620 REM MOVE POINT 2’S Y COORDINATE TO WINDOW EDGE
630 YY=DYt14

640 X2=X1+(X2-X1)*(YY-Y1)/(Y2-Y1)

650 Y2=YY

66 0 REM YOU ARE NOW READY TO PLOT

67 0 X l= (X l * X M) + 3 2 0 :X 2 = (X 2 * X M > + 3 2 0

68 0 Y 1 = (Y 1 * YM)+ 2 0 0 : Y2= < Y 2 *Y M)+200

6 9 0 MOVE X1 • Y 1

700 DRAW X 2 ,Y 2

710 NEXT I

720 REM NOW HANDLE THE WINDOW OUTLINE DISPLAY

730 GOSUB 960:REM WINDOW PLOT

740 GOSUB 1030:REM WINDOW MOVE

750 GOSUB 1160:REM TOGGLE WINDOW SIZE

760 IF JOY (OX >16 THEN 720

765 CLS:GOSUB 1500

770 XW=X2-X1:YW=Y2-Y1:XC=XiYC*Y'

775 GOTO 240

850 END

860 REM SUBROUTINE CLIP MODE

870 R1=0:R2=0

880 IF* ABS(XT)>DX THEN R1=1:IF XT<0 THEN Rl=-1

890 IF ABS(YT)>DY THEN R2=1:IF YT<0 THEN R2=-l

900 RETURN
950 REM WINDOW PLOT ROUTINE

960 X1=X-WX:Yl=Y-WYiX2=X+WX:Y2=Y+WY

970 MOVE XI,Y1

980 DRAW X2,Y1,1,1

990 DRAW X2,Y2,1,1

1000 DRAW XI,Y2,1,1

1010 DRAW XI,Yl,1,1

1020 RETURN

1030 REM WINDOW MOVE ROUTINE

1040 Y3«YiX3=Y

1050 IF JOY <0=4 THEN X=X-WW:GOTO 1090

8 6

1060 IF JOY<0)*8 THEN X=X+WW:GOTO 1090

1070 IF JOY(0)”1 THEN Y=Y+WW:GOTO 1090

1080 IF JOY(0)=2 THEN Y=Y-WWjGOTO 1090

1090 MOVE XI,Y1

1100 DRAW X2,Y1,1, 1

1110 DRAW X2,Y2,1,1

1120 DRAW X1,Y2,1,1

1130 DRAW XI,Y1,1,1

1140 RETURN

1150 REM TOGGLE WINDOW SIZE ROUTINE

1160 K*-INKEY*:IF K*="S"THEN WX=WX-2: WY-WY-1.25

1170 IF K*-"L"THEN WX=WX+2:WY=WY+1.25

1172 IF K*="N" THEN CLSrGOSUB 1500:GOTO 100

1180 MOVE XI,Y1

1190 DRAW X2,Y1,1,1

1200 DRAW X2,Y2,1,1

1210 DRAW XI,Y2,1,1

1220 DRAW XI,Yl,1, 1

1230 DRAW X2,Y1,1, 1

1240 DRAW X2,Y2,1,1

1250 DRAW XI,Y2,1,1

1260 DRAW XI,Yl,1,1

1270 RETURN

1500 REM TITLES

1510 LOCATE 34,1:PRINT"ZOOM PROGRAM"

1520 LOCATE l,25iPRINT" L=ENLARGE WINDOW S=SHRINK WINDOW FIRE'ZOOM N=NORMAL

SIZE PICTURE

1530 MOVE 0,30

1540 DRAW 640,30

1550 RETURN

The main sections of ZOOM are as follows.

LINES 5 TITLE
20- 45 SETUP SCREEN, VARIABLE DECLARATIONS

50-170 INPUT DATA
190- SET INITIAL WINDOW SIZE
210 SET WINDOW CENTRE
230-240 SET CURSOR WINDOW SIZE, POSITION AND

MOVEMENT INCREMENT

250-650 CLIPPING SECTION

660-710 PLOT PICTURE
720-760 LOOP UNTIL CURSOR WINDOW CHANGED

860-900 SUBROUTINE MODE

950-1020PLOT CURSOR WINDOW
1030-1140 MOVE CURSOR WINDOW

1150- 1270TOGGLE CURSOR WINDOW SIZE

87

The data for ZOOM is read in from any 2D data file that uses the standard
format that we have employed in SKETCH and FILE2D. This makes it a useful
way of enlarging parts of a complex data set. If the original data has been
created on screen using SKETCH however, there is a limit to the value of
ZOOM. The ZOOM effect is much more dramatic if you are able to ‘walk
around’ a picture that is made up of data originally drawn at many times the
screen size. There are several ways of producing data larger than the screen,
either using FILE2D, or by modifying SKETCH. The following version of
SKETCH (called QUADRANT) allows a picture 4X screen size to be created
using the SKETCH technique. As its name suggests, QUADRANT defines
successive segments as quadrants of the final picture. The top left quadrant is
segment one, top right is segment two, bottom left is segment three and bottom
right is segment four. The final picture is therefore built up as shown in Figure
4.8

-3 2 0 ,6 0 0 3 2 0 ,6 0 0 9 6 0 ,6 0 0

Q!

7
A M S T R A D /

/
/

✓
' /

' /
' /

' /
' /

\
\
\
\
\

t \
\ \
\ \
\ \
\ \
\ \

Q3

/
/

/
/

/
/

7 /
' /

' /
' /

' /
' f

Q 4 \
\ \
\ \
\ \

\
\
\
\
\

/ 0 , 0
/

/
/

\
\
\
\
\

Q2

-3 2 0 ,- 2 0 0 3 2 0 ,-2 0 0 9 6 0 ,-2 0 0

Figure 4.8 The four quadrants defined by QUADRANT. Note that the window extends from
-320;200 to 960,600. The following transformation scales points drawn in this area into the normal
Amstrad screen coordinate system.

XPLOT = (320 + X)/2
YPLOT = (200 + Y)/2

The dotted triangles show the effect o f scaling.

88

To change SKETCH to QUADRANT, you need to make the following changes:

QUADRANT program

1 REM ****QUADRANT ADDITIONS FOR SKETCH*!**

2 REM TO ADD THESE LINES LOAD SKETCH FIRST AND THEN MERGE "QUADRANT"

3 QU=1:REM SET QUADRANT COUNTER

135 GOSUB 2700:REM CHANGE TEXT DISPLAY FOR QUADRANT

750 REM OVERWRITE THIS LINE

755 GOSUB 2500 :REM ADJUST SEGMENT COORDINATES

757 REM OVERWRITE THIS LINE

770 IF QU=5 THEN 800

2100 REM ROUTINE BOUNDARY_ADJUST

2110 IF X<0 THEN X=0

2120 IF X >640 THEN X=640

2130 IF Y<0 THEN Y=0

2140 IF Y>400 THEN Y=400

2150 IF XI<0 THEN XI=0

2160 IF XI>640 THEN XI=640

2170 IF YI< 0 THEN Y1=0

2180 IF YI>400 THEN YI=400

2190 RETURN

2500 REM QUADRANT COORDINATE ADJUST ROUTINE

2510 11=LN(1, S < 1,QU)):I2=LN<2,S<2,QU))

2520 FOR 1=11 TO 12

2530 IF QU=1 THEN XP(I)=XP(I)-320:YP<I)=YP(I)+200:GOTO 2600

2540 IF QU=2 THEN XP (I) =XP (I) +320: YP (I) =YP (I) +200: GOTO 2600

2550 IF QU=3 THEN XP<I)=XP<I>-320:YP<1)=YP<I>-200:GOTO 2600

2560 IF QU=4 THEN XP(I)= XP(I)+320:YP(I)“YP(I)-200:GOTO 2600

2600 NEXT I

2610 QU*QU+1

2620 IF QU=5 THEN GOTO 800

2630 GOSUB 2700

2640 RETURN

2700 REM TEXT FOR QUADRANT NUMBER

2702 CLS

2705 LOCATE 12,1:PRINT "QUADRANT PROGRAM"

2710 LOCATE 1,2
2720 PRINT "QUADRANT NO * "jQU

2730 LOCATE 1,23

2740 PRINT "PRESS E TO END QUADRANT"

2800 REM DIRECTION FINDER ROUTINE

2805 IF QU=1 THEN X9=47:Y9=298

2810 IF QU=2 THEN X9-563:Y9=298

2815 IF QU=3 THEN X9=47:Y9=99

2B20 IF QU=4 THEN X9=563:Y9=99
2825 REM NOW DRAW THE FOUR SQUARES

2830 FOR 1=1 TO 4

2835 IF 1=2 THEN X9=X9+25

2840 IF 1=3 THEN Y9=Y?+25

89

2845 IF 1=4 THEN X9=X9-25

2850 MOVE X9,Y9iREM MOVE TO RELATIVE START POSITION FOR KEY

2855 DRAWR 20,0

2860 DRAWR 0,-20

2865 DRAWR -20,0

2870 DRAWR 0,20

2875 NEXT I

2880 IF QU=1 THEN LOCATE 4,6iPRINT"1"

2885 IF QU“2 THEN LOCATE 38,6iPRINT"2"

2890 IF QU*3 THEN LOCATE 4,20*PRINT"3"

2895 IF 9U=4 THEN LOCATE 38,20*PRINT"4"

2900 REM GRID DRAWING ROUTINE

2905 REM NOTE MASK COMMAND FOR DOTTED LINES ONLY IN CPC664 BASIC

2910 FOR 1*0 TO 640 STEP 40

2920 MOVE 1,0

2930 MASK 36iDRAW 1,400

2950 NEXT I

2955 FOR 1*0 TO 400 STEP 40

2960 MOVE 0,I

2965 MASK 36iDRAW 640,1

2970 NEXT I

2975 MASK 255

2980 RETURN

The data produced by QUADRANT is in the range -320,-200 to 960,600. This
gives a ‘resolution’ of 1280 X 800 pixels, although of course this cannot be
directly seen on the Amstrad screen. An amended version of ZOOM (called
ZOOMQUAD) is used to handle this data, and the necessary changes to ZOOM
are given below. Operationally, ZOOMQUAD is identical to ZOOM, so the
joystick and control keys are used in the same way in both versions.

The amendments to ZOOM to obtain ZOOMQUAD are rather less severe than
those needed to produce QUADRANT. Here they are:

10 REM t tttZOOMQUAD VERSION OF ZOOOMt***

105 X(I)*(X(I)+320)/2j Y(I)-(Y (I)+200)/2

QUADRANT was used to create the map of the USA shown in the following
screen dumps from ZOOMQUAEl

90

FILENAME?? USA.DAT ZOOM PROGRAM

L=ENLARGE WINDOW S=SHRINK WINDOW FIRE=200H N=NORMAL SIZE PICTURE

Figure 4.9 Output from ZOOMQUAD: a map of the USA defined using QUADRANT on four
separate segments (ie NW, NE, SW, SE): note the ‘window’ cursor.

Figure 4.10 A detail of an area from the same map.

91

In this chapter we’ve seen a lot of fundamental 2D graphics techniques. The
time has now come to put them all together to produce a ‘useful’ program. Now
there are strict limits to what you can do in BASIC, because the poor old BASIC
interpreter just cannot work quickly enough to do lengthy series of matrix
multiplications in real time. This limitation is pretty well absolute if you wish to
program a fast moving game or perhaps a flight simulator. We have already seen
that it is possible to use a ‘shortcut’ method to carry out 2D rotations, and we
will discuss other ways of overcoming speed limitations in the chapters on three
dimensional graphics. But don’t lose heart completely. Whatever your motives
for learning graphics techniques, you won’t get very far unless you have the
armoury of techniques like those in this chapter at your disposal. Even if you are
going to program in machine code, the algorithms will essentially be the same!

But even if you are now tempted to heave a sigh because you want to stick to
BASIC, all is still not lost. Many applications are not shoot-em-up type games
and do not need animation effects. The whole of Chapter 6 will be devoted to
a description of one such application: a computer-aided-design program. This
program demonstrates what I hope is a non-trivial use of all the routines set out
in the present chapter.

92

Chapter 5

Business Graphics

5.1 The importance of presentation

Computer graphics are extensively used in the business area as aids to marketing
studies, financial analysis and planning. Graphics are used to create graphs and
charts to show data such as sales trends, comparative sales, cash flow and
budget fluctuations. Information can be understood in graphical form more
quickly than a corresponding page of figures, and the impact of a picture is
much greater than more abstract data.

There are three main types of business graphics techniques. The first of these is
the graph, and we saw an example of a simple graph program in Chapter 1.
Graphs are most useful for displaying accurate data, if for example a large
number of data points are to be illustrated. A variation on the graph theme is
shown by the histogram, or bar chart. A bar chart shows graph data in a
‘stepped’ form and provides more scope for attractive layout. The third business
graphics technique is use of a pie chart, where relative proportions of totals (ie
‘slices of the pie’) are illustrated by a sectored circle.

Business graphics packages available on the commercial market often display
visually appealing and complex pictures by use of sophisticated software. It may
even be possible to display several different treatments of the same data (for
example histogram and graph) on screen at the same time. Fortunately for the
home computer owner, the techniques of business graphics are really very
simple. The complexity of graphics packages is usually due to the large amount
of error trapping necessary to make them ‘user friendly’. The Amstrad owner
has an additional piece of good fortune. The Amstrad screen has an 80 column
mode that allows much more professional looking business graphics to be
produced that can be developed on most other home computers. So just what
can be done on an Amstrad machine?

5.2 A slice of the pie

We have already looked at an algorithm for circle generation in the CIRCLE
program (Chapter 1), and circle generation is the major constituent of a pie

93

chart program. The important thing to remember about pie chart data is that is
must be expressed in terms of proportions of the whole. You can therefore use
a pie chart to display the relative sales of Widgets in different sales areas, but
you would not use this method to plot sales over a twelve month period. The raw
data for a pie chart might therefore look as follows.

Area

London
South-East
Midlands
North
Scotland

Widget Sales

1 0 ,1 0 0

17,300
9.000
2.000
1,600

40,000 total

This data tells us a number of things. First, the pie will have five sectors (one for
each area). Next, the regional sales will all be represented in the pie chart as a
proportion of the total sales figure: it is easiest to think of this in percentage
terms, so the percentage of sales in the London region is therefore

10,100 100

40,000 ' 1

or 25.25 percent.

The first task of a pie chart program is to input the data, to total it, and to work
out the proportions of each item in the total. But how do the radial sectors on
the pie correspond to raw percentages? A pie chart consists of a number of lines
radiating from a centre point with two adjacent lines indicating the proportion
of a particular item. The angle between each pair of lines is therefore crucial.
Instead of 100 percentage points to sum all the data, we have the 360 degree arc
of a full circle. If we take the percentage of any item, the angle between the lines
representing its boundaries on a pie chart will be

item percentage ,
-------- l KK)----6— X 360 degrees

The next task of the pie chart program is therefore to calculate the angular
equivalents of the percentage data. The only other fundamental technique you
need to write your own pie chart program is a method for calculating the radial
lines. This uses the identical equations to those used to generate the
circumference of a circle. Recall from the CIRCLE program that any point on
the circumference of a circle has its X and Y coordinates defined by the
equations

94

X = XC + (RADIUS * COS(ANGLE))

Y = YC + (RADIUS * SIN(ANGLE))

Where XC,YC are the coordinates of the circle centre.

So the radial lines defining the first segment of the pie, assuming the angle is
known, will be defined by the lines

M O V E X C , YC

D R A W X , Y where ANGLE = 0
M O V E XC , YC
DRAW X1 ,Y1 where ANGLE = proportion for first segment

Now monochrome pies are very boring. This raises a problem on the CPC664
and CPC464, because 80 column mode only allows two colours on screen at any
one time. You therefore have a trade-off between small (and hence neat) text but
no colour, or chunky text and four colours in MOD E 1 . If you really want a
rainbow coloured pie chart, use MOD E 0 . The text in MO D E 0 is unfortunately
so large that you will have to restrict yourself to one or at most two letter labels.
The choice is yours. The following program PIE uses M O D E 1 , but can easily
be amended for M 0 D E s 0 or 2

PIE program

10 REM »*** PROGRAM PIE «***
20 REM DRAWS A LABELLED PIE CHART USING FOUR COLOURS IN MODE 1
30 REM INPUT DATA
40 CLSlINK 0,13:INK 1,0:INK 2,3:INK 3,7
SO MODE 1
60 PRINT" WELCOME TO THE PIE CHART PROGRAM"
65 INPUT"MAIN TITLE?"(M*

66 P1»LEN(M*I:Pl*20-(Pl/2>
70 INPUT"HOW MANY SEGMENTS FOR DISPLAY?"(NUMBER
72 DIM S<NUMBER),H*(NUMBER),POINT(NUMBER),CUM(NUMBER)
73 T0TAL“0:CANGLE*0
75 FOR 1-1 TO NUMBER
BO INPUT“INPUT THIS SEGMENT TITLE";H»(I)

85 INPUT"INPUT SEGMENT VALUE"jS(I>

87 T0TAL*T0TAL+S(I)
90 NEXT I
100 FOR 1-1 TO NUMBER:REM SET ANGLES FOR EACH SEGMENT

110 CANGLE-CANGLE+((S(I)/T0TAL)*(2*PI))
120 POINT<I)”CANGLE-<((S(I)/2)/T0TAL)»(2*PI))
122 CUM <I)“CANGLE
130 NEXT I

95

135 CLS

20 0 LOCATE P I , I s PRINT M$

205 TAG

22 0 REM SET CIRCLE S IZ E

23 0 RADIUS3 150

240 XC =320:YC =200

25 0 A3 (2 < P I) /1 0 0

26 0 ANGLE=0

27 0 X2=XC+RADIUS:Y2=YC

28 0 FOR 1=1 TO 100

290 ANGLE3 ANGLE+A

300 X1=X2:Y1=Y2

3 1 0 X2=XC+RADIUS*C0S(ANGLE)

320 Y2=YC +RADIUStSIN(AN G LE)

3 3 0 MOVE X1, Y 1

340 DRAW X 2 ,Y 2

3 5 0 NEXT I

400 REM NOW PLOT SEGMENTS

4 0 5 N = - 1

410 FOR 1=1 TO NUMBER

4 1 5 N=N+1: IF N=4 THEN N=0

420 MOVE XC,YC

4 3 0 X1=XC+RADIUS*C0S(CUM (I))

440 Y1=YC +RADIUS*S IN (C UM (I))

4 5 0 DRAW X I,Y 1

460 X2=XC+(RADIUS/2)<COS(POINT(I))
470 Y2=YC+(RADIUS/2)*SIN(POINT(I))
472 DISP=LEN(H$(I)) +15
475 MOVE X2,Y2
480 FILL N
482 IF X2<XC THEN D IS P =D IS P +10

4 8 5 MOVE X 2 -D IS P .Y 2

487 PRINT H $ (I) ;

490 NEXT I

You should find PIE quite easy to follow, but two points should be noted. Firstly,
the program makes use of the CPC664 FI LL command. CPC464 owners do not
have this command, and so no pie filling is easily possible. The second point
concerns text placement (lines 460-487). Text is positioned on the graphics
screen using the T AG command to tie it to the graphics cursor position. The
normal start position for each text string is on the radial line bisecting the given
segment, half way between the circle centre and the circumference. If the sector
is on the left hand side of the circle, a displacement of the left to ten units is
made.

Note the form of the data in the program. The raw data is entered into array S,
with the segment title going into array H$. The angles are then worked out and
these are entered into a new array CUM. CUM (short for cumulative) holds the
total angle for each segment FROM 0 DEGREES. If the first three segment
angles were 15 degrees, 15 degrees and five degrees, they would be represented

96

MAIN EURO CAR MARKET COMPETITORS 1983

Figure 5.1 A pie chart drawn using the PIE program: MODE 1 used.

Figure 5.2 A pie chart drawn using the PIE program: MODE 2 used.

97

in the CUM array as 15, 30 and 35 degrees respectively. The array POINT holds
the bisected angle for the current segment, used for text plotting.

There are several variations on the pie chart theme. The first of these is called
an exploded pie chart (Figure 5.3). This is used if emphasis is to be made of a
particular segment of the pie. The logic of the EXPLODE program below is
similar to the PIE program, but extra sections to handle the exploded section are
needed. In particular, the line bisecting the exploded segment has to be found,
and the centre of the circle must temporarily be shifted along thfs line by the
required amount.

Figure 5.3 A pie chart with one segment exploded (program EXPLODE).

EXPLODE program

10 REM * * « l PROGRAM EXPLODE *« « *

20 REM DRAWS A LABELLED P IE CHART USING FOUR COLOURS IN MODE 1

22 REM WITH AN EXPLODED SECTION CHOSEN BY THE USER

30 REM INPUT DATA

40 C L S :IN K 0 . 1 3 : INK 1 , 0 : INK 2 , 6 : INK 3 ,1 2

50 MODE 1

60 P R IN T " WELCOME TO THE P IE CHART PROGRAM"

70 INPUT"HOW MANY SEGMENTS FOR D ISP LAY7 " ; NUMBER

80 INPUT"SEGMENT NO TO BE EXPLODED?"; EXPLODE

90 IF EXPLODE=NUMBER THEN PR INT"CANNOT EXPLODE LAST SEGMENT: RESTART":G 0T0 80

100 DIM S(NUMBER), H$(NUM BER), POINT tNUMBER), CUM(NUMBER)

98

110 T0TAL=0:CANGLE=0

120 FOR 1=1 TO NUMBER

130 PR IN T"IN PU T T IT L E FOR SEGMENT"; I I N P U T H$ (I)

140 INPUT"INPUT SEGMENT V A L U E ";S < I)

150 TOTAL=TOTAL+S(I)

160 NEXT I

170 TAG

180 FOR 1=1 TO NUMBER:REM SET ANGLES FOR EACH SEGMENT

190 CANGLE=CANGLE+ <(S (I) /T O T A L)* (2 * P I) >

200 POINT(I> =CANGLE-(<<S<I)/2>/TOTAL)t<2*PI))

210 CUM(I) =CANGLE

220 NEXT I

23 0 CLS

24 0 REM SET CIRCLE S IZE

250 RADIUS=150

260 X C =320:YC =200

27 0 A = (2 * P I) /3 0 0

280 ANGLE=0

290 X2=XC+RADIUS:Y2=YC

300 F L1 =0 :F L2=0*R E M SET EXPLODE SEGMENT FLAGS

310 FOR 1=1 TO 300

320 ANGLE=ANGLE+A

330 X1=X 2:Y 1=Y 2

340 IF ANGLE>*CUM(EXPLODE-1) AND F L1 =0 THEN GOSUB 630:REM SH IFT OUT SEGMENT

35 0 IF ANGLE>=CUM(EXPLODE)AND F L2 =0 THEN MOVE XC,YC:DRAW X1 , Y1

3 6 0 IF ANGLE>=CUM(EXPLODE)AND F L2 =0 THEN XC=XHOLD:YC=YHOLD

3 7 0 X2=XC+RADIUS*C0S(ANGLE)

38 0 Y2=YC+RADIUS*SIN(ANG LE)

390 IF ANGLE>=CUM(EXPLODE-1) AND F L1 =0 THEN X1=X2:Y1=Y2

4 0 0 IF ANGLE >«CtlM(EXPLODE-1)AND F L1 = 0 THEN MOVE XC,YC:DRAW X 2 ,Y 2 :F L 1 = 1

4 1 0 IF ANGLE>=CUM(EXPLODE) AND F L2 =0 THEN A N G LE =A N G LE -A :X 1=X 2:Y 1=Y 2:F L2»1 : GOTO 330

420 MOVE XI,Y1

4 3 0 DRAW X 2 ,Y 2

440 NEXT I
450 REM NOW PLOT SEGMENTS

460 N = - l

470 FOR 1=1 TO NUMBER

48 0 N=N+1: IF N=4 THEN N=0

49 0 MOVE XC, YC

500 X1=XC+RADIUS*C0S(CUM(I))

51 0 Y1=YC +RADIUS*S IN (C UM (I))

52 0 DRAW X I,Y 1

53 0 X 2 = X C + (R A D IU S /2)*C O S (P O IN T (I))

540 Y 2 = Y C + (R A D IU S /2)*S IN (P O IN T (I))

55 0 D IS P = L E N (H $ (I))» 3

560 MOVE X 2 ,Y 2

570 F IL L N

580 IF X2<XC THEN D IS P =D IS P *4

590 MOVE X 2 -D IS P ,Y 2

600 NEXT I

610 GOSUB 700iREM DO TITLES

615 !COPY

620 END

630 REM CALCULATE XC,YC POSITIONS FOR EXPLODED SECTION

99

64 0 REM FIRST CALCULATE BISECTION ANGLE

65 0 B IS = < (CUM (EXPLO DE)-CUM (EXPLO DE-1)) /2>+C U M (E XPLO D E-1)

66 0 XHOLD=XC:YHOLD=YC:REM STORE NORMAL CENTRE VALUES

67 0 XC=XH 0LD +20$C 0S(BIS)

6 8 0 Y C = Y H 0LD +20*S IN (B IS)

69 0 RETURN

7 0 0 REM NOW PLOT T ITLE S

7 1 0 N = - l

720 FOR 1=1 TO NUMBER

730 N=N+1; IF N=4 THEN N=0

740 MOVE XC,YC

750 X1=XC+RADIUS*C0S(CUM(I))

760 Y l= Y C + R A D IU S tS IN (C U M (I))

770 DRAW X I,Y 1

780 X 2=X C +(R A D IU S /2) tC O S (P O IN T (I))

790 Y 2 = Y C + (R A D IU S /2)*S IN (P O IN T <I))

8 0 0 D IS P = LE N (H $(I)) > 3

810 MOVE X 2 ,Y 2

82 0 IF X2<XC THEN D IS P =D IS P *4

83 0 MOVE X 2 -D IS P ,Y 2

840 PRINT HS <I) ;

85 0 NEXT I

87 0 RETURN

The last variation of the pie is the display of a number of ‘Humpies’ at the same
time to illustrate more complex data, for example proportional fluctuations
over a period of time. As with EXPLODE, there are no real differences over the
main PIE theme, but problems of placement occur. In the example below
(MINIPIE), 12 small pies are shown, demonstrating differences over a twelve
month period. You will see that the twelve pies are all drawn using exactly the
same block of the program (lines 220-660), and only one line (line 320) is
necessary to change the position of the pie to be drawn. As so much data is
crammed on screen (in M 0 D E 2), the data is entered in the program itself rather
than interactively from the keyboard. You could of course use an input data file
from tape or disk if you so wish. The cramming has also entailed the use of
single letter labels. Unfortunately, M O D E 2 mean no colour, but the output
looks terrible in M O D E 1 : try it and see!

MINIPIE program

10 REM tttt PROGRAM MINIPIE ****
20 REM THIS MODIFICATION DRAWS 12 MINI PIES COMPARING PERFORMANCE

30 REM OVER A TWELVE MONTH PERIOD. USE ONE LETTER CODES TO LABEL PIES

40 REM MODE 2 USED FOR HIGH DEFINITION.

50 REM INPUT DATA

60 CLSiINK 0,13:INK 1,0

100

70 MODE 2

80 PR IN T" RELATIVE SALES OF PRODUCT L IN E S A -E OVER A TWELVE MONTH PERIOD"

90 READ NUMBER

100 DIM S (NUMBER, 1 2) , H$ <NUMBER) , P O IN T (NUMBER, 1 2) , CUM(NUMBER, 1 2) , TOTAL <12)

110 TOTAL-O i CANGLE-0

120 FOR 1-1 TO NUMBER

130 READ H $ (I)

140 REM DATA IS AT THE END OF THE PROGRAM IN -T H E SEQUENCE

150 REM NO OF SEGMENTS, THEN T IT L E CODE, SEGMENT VALUES - FOR EACH SEGMENT

160 NEXT I

170 FOR 1 -1 TO 12

180 FOR IP -1 TO NUMBER

190 READ S (I P , I) j T O T A L (I) * T O T A L (I) + S (IP , I) iNEXT IP iN E X T I

200 GOSUB 6 8 0 iREM PLOT MONTHS

210 TAG

2 2 0 REM NOW DRAW THE TWELVE P IE S

230 X C -O iY C -3 1 9 * REM CENTRE POINT FOR F IR S T P IE

240 FOR IP -1 TO 1 2 : REM START LOOP FOR 12 P IE S

250 FOR 1 -1 TO NUMBERiREM SET ANGLES FOR EACH SEGMENT

260 CANGLE-CANGLE+((S (I , IP) / T O T A L (I P)) * < 2 t P I >)

270 P O IN T (I , IP) -C A N G L E -(< <S <I , IP) /2) / T O T A L (I P)) * (2 t P I))

280 CUM(I , I P) -CANGLE

290 NEXT I

300 REM SET CIRCLE S IZ E

31 0 R A D IU S -45

32 0 X C -X C + 1 2 7 *IF XC>=605 THEN X C -1 2 5 :Y C -Y C -1 1 0 *REM START NEW ROW

3 3 0 A - < 2 * P I) /1 0 0

340 ANGLE-0

350 X2-X C +R AD IU S ;Y 2-YC

360 FOR 1=1 TO 103

370 ANGLE-ANGLE+A

380 X 1 -X 2* Y 1 -Y 2

390 X2-XC+RADIUS*C0S(ANG LE)

400 Y2-YC+R ADIUS4SIN(AN G LE)

410 MOVE X I,Y 1

420 DRAW X 2 ,Y 2

4 30 NEXT I
4 40 REM NOW PLOT SEGMENT t*

4 5 0 N = - l

460 FOR 1=1 TO NUMBER

4 7 0 N - N + l* IF N=4 THEN N=0

480 MOVE XC,YC

490 X1-XC+RADIUS4C0S(CUM (I , I P))

500 Y 1-Y C +R A D IU S *S IN (C U M (I , I P))

510 DRAW X I,Y 1

52 0 X 2 = X C + (R A D IU S /2)*C O S (P O IN T (I , I P))

53 0 Y 2 -Y C + (R A D IU S /2)*S IN (P O IN T (I , I P))

540 MOVE X 2 ,Y 2 + 6

550 IF (IN T (1 / 2)) = 1 / 2 THEN F IL L 1

560 NEXT I

570 REM NOW PLOT T IT LE S

580 N— 1

590 FOR 1-1 TO NUMBER

600 N - N + l: IF N=4 THEN N=0

101

61 0 X1=XC+(R A D IU S /2) *C0S (POINT (I , IP))

62 0 Y 1 = Y C + (R A D IU S /2)*S IN (P O IN T (I , I P))

630 MOVE X 1 .Y 1 + 6

640 PRINT H* <I >:

650 NEXT I

660 NEXT IP

67 0 ! COPY: END

680 REM MONTH PLOT

69 0 LOCATE 9 ,9 :P R IN T '' JAN

70 0 LOCATE 9 ,1 6 :P R IN T " MAY

71 0 LOCATE 9 , 2 3 : P R IN T " SEP

72 0 RETURN

73 0 DATA 5 : REM NO OF SEGMENTS

740 DATA " A " , " B " , " C " , " D " , "E "

7 5 0 DATA 2 0 , 2 0 , 2 0 , 2 0 , 2 0 : REM JAN

7 6 0 DATA 3 0 , 1 0 , 1 5 , 4 0 , 12:REM FEB

770 DATA 1 0 . 1 5 , 3 0 . 2 0 , 1 0 : REM MAR

7B0 DATA 1 2 . 1 2 , 3 4 , 1 2 , 10:REM APR

790 DATA 1 4 , 3 1 , 1 2 , 1 0 , 19:REM MAY

80 0 DATA 1 5 , 3 1 , 1 2 , 8 , 19:REM JUN

81 0 DATA 1 3 , 1 3 , 1 4 , 1 5 , 12:REM JUL

02 0 DATA 2 2 . 1 5 , 1 0 , 1 2 , 18:REM AUG

830 DATA 1 5 , 1 3 , 1 0 , 1 3 , 17:REM SEP

040 DATA 1 4 , 4 1 , 1 3 , 2 4 , 1 3 : REM OCT

850 DATA 5 , 12 , 13 , 15 , 13-.REM NOV

8 6 0 DATA 1 1 , 2 1 , 3 1 , 8 , 13:REM DEC

FEB MAR APR"

JUN JUL AUG

OCT NOV DEC

RELATIUE SALES OF PRODUCT LINES A-E OUER A THELUE MONTH PERIOD

Figure 5.4 Output from MINIPIE program

102

5.3 Graphing techniques

The earliest form of pictorial output on a computer was probably the graph,
and we are all familiar with the abstraction of numbers into a simple graph
form. Graphs deal with relationships: they show the variation of one parameter
with another. In the most complex cases, three or even four variables can be
plotted together to produce quite complex graphs. We will only concern
ourselves here with the common-or-garden two axis graph.

After your study of Chapter 1 you should already be familiar with the methods
involved in the programming of a simple graph. In the present section we will
consider how to improve the elementary program so that more pleasing and
useful output can be produced. Here is an improved version of that earlier graph
program, called SUPERG

SUPERG program

10 REM ****PR0G RAM SU PE R G ****

20 REM VERSION OF GRAPH PROGRAM TO PLOT TWO VARIABLES

30 REM TO DRAW A SIMPLE LABELLED GRAPH

40 INK 0 ,1 3

50 INK 1 ,0

6 0 READ T IT L E *

7 0 C H O IC E R : REM USE 1 FOR POINT PLOT, 2 FOR LINES

BO MODE 2

90 READ POINTS

100 DIM X(POINTS),Y<P0INTS)

110 FOR 1=1 TO POINTS

120 READ X (I)

130 READ Y (I)

140 NEXT I

150 READ XMIN, XMAX, YM IN, YMAX

160 READ X*:REM X A X IS NAME

170 READ Y*:REM Y A X IS NAME

ISO CLS

190 REM NOW DRAW THE AXES

20 0 MOVE 1 0 0 ,3 8 0

210 DRAW 1 0 0 ,8 0

2 2 0 DRAW 5 5 0 ,8 0

23 0 REM PUT IN SCALE MARKS

240 FOR 1 = 1 TO 11

250 MOVE 9 0 . (I * 3 0)+ 5 0

260 DRAW 1 0 0 ,< 1 *3 0 1 + 5 0

270 NEXT I

280 FOR 1 = 1 TO 16

290 MOVE (I * 3 0) + 7 0 ,7 0

300 DRAW (I * 3 0) + 7 0 ,8 0

103

310 NEXT I

320 REM PRINT TITLE

330 Pl-LEN(TITLES):Pl-40-(PI/2)

340 LOCATE PI,liPRINT TITLES;

350 REM NOW LABEL AXES

360 REM POSITION X LABEL FIRST

370 REM START POSITION IS CENTRE PT ON X AXIS MINUS HALF STRING LENGTH

380 AX-(320-((LEN(XS)*16)/2))

390 REM START POSITION IS CENTRE PT ON Y AXIS PLUS HALF STRING LENGTH

400 AY*(220+((LEN(YS)* 16)/2))

410 TAG

420 MOVE AX,40

430 PRINT XS;
440 REM NOW PRINT Y LABEL VERTICALLY

450 FOR 1-1 TO LEN(YS):M1S-MIDS(YS,I,1)

460 MOVE 40,AY-<(1-1)*16)

470 PRINT MIS;

480 NEXT I

490 MOVE 530,60*PRINT XMAXj

500 MOVE 50,382*PRINT YMAX;

510 MOVE 70,90*PRINT YMIN;

520 MOVE 80,60s PRINT XMIN;

530 MOVE 55,240*PRINT INT((YMAX+YMIN)/2);

540 MOVE 290,60*PRINT INT((XMAX+XMIN)/2);

550 REM NOW PLOT POINTS

560 IF CHOICE-2 THEN GOTO 640

570 FOR 1-1 TO POINTS

580 XTOP-XMAX-XMINiYTOP=YMAX-YMIN

590 XTRUE-XTOP-(XMAX-X <I))*YTRUE=YTOP-(YMAX-Y(I))

600 MOVE 96+(450t(XTRUE/XTOP)),86+(3001(YTRUE/YTOP))
610 PRINT CHRS(244);

620 NEXT I

630 !COPY:END

640 REM LINE PLOT SECTION

650 FOR 1-1 TO POINTS

660 XTOP-XMAX-XMIN*YTOP-YMAX-YMIN

670 XTRUE-XTOP-(XMAX-X(I))*YTRUE-YTOP-(YMAX-Y(I))

680 IF 1-1 THEN MOVE 96+<450*(XTRUE/XTOP)),86+(300*(YTRUE/YTOP))

690 DRAW 96+(450*(XTRUE/XTOP)),86+(300*(YTRUE/YTOP))

700 NEXT I

710 JCOPY*END

720 REM DATA - IN SEQUENCE - TITLE,NUMBER OF POINTS,XVAL YVAL FOR EACH POINT

730 REM XMIN, XMAX,YMIN,YMAX

740 REM XS,YS

750 DATA "SHARE INDEX OVER A SIXTEEN YEAR PERIOD"

760 DATA 16,1970,380,1971,550,1972,500,1973,400,1974,270,1975,290,1976,480,1977

765 DATA 500,1978,500,1979,500,1980,495, 1981,520,1982,540,1983,660,1984,800,1985,940

770 DATA 1970,1985,0,1000

7BO DATA "YEAR","FT ORDINARY INDEX"

SUPERG uses MODE 2 to give a clean, crisp appearance, most graphs look just
as good in monochrome as in colour, so the lack of colour is no handicap here.
You will see that the minimum and maximum X and Y axis values are inputted

104

1000
SHARE INDEX ODER A SIXTEEN YEAR PERIOD

F
T

0
R
D
I
N 500 -
A
R
Y *

I
N -i
D
E
X „

4

i

1970

4 4 4 4

i— i— i— r
1977

YEAR

4

1985

Figure 5.5 SUPERG output: point plotting

SHARE INDEX OVER A SIXTEEN YEAR PERIOD

Figure 5.6 SUPERG output: line plotting

105

and that the program automatically scales the data into the screen coordinates
using this information. The version of SUPERG given above plots each data
item as an individual point. If instead you wish to plot a continuous line (Figure
5.7) a small amendment of lines 580-610 is needed. Replace lines 600-610 with

6 0 0 I F 1 = 1 T H E N M O V E 9 6 + (4 5 0 * (X T R U E / X T 0 P)) ,

8 6 + (3 0 0 * (Y T R U E / Y T O P))

6 1 0 DRAW 9 6 + (4 5 0 * (X T R U E / X T 0 P)) , 8 6 + (3 0 0 * (Y T R U E /

Y T 0 P))

Data fluctuations over a short period of time often need to be plotted. The
technique in this case is more or less the same as with SUPERG, but a fancier
label for the time axis is used. The following program called CHART can be
used for this purpose. If your fingers are already sore from typing, let me offer
some consolation: many of the programs in the rest of this chapter are
variations on CHART, and you will only have to MERGE the alterations with
the original program!

CHART program

10 REM I*** PROGRAM CHART ****

20 REM DRAWS A LABELLED GRAPH FOR A TWELVE MONTH PERIOD

30 REM FOR EXAMPLE SALES FIGURES,CURRENCY FLUCTUATIONS, ETC

40 REM DATA IS AT END OF THE PROGRAM, BUT INTERACTIVE INPUT IS A SIMPLE CHANGE

50 DIM XP(12),YP(12)

60 CLSiMODE 2:INK 0,13:INK 1,0

70 REM INPUT LABEL INFORMATION

80 INPUT"MAIN TITLE MAX 80 CHARACTERS";T*

90 INPUT"SIDE TITLE MAX 20 CHARACTERS";Si

95 INPUT"SIDE (SUB) TITLE? MAX 20 CHARACTERS"jSI*

100 REM NOW CALCULATE TITLE POSITIONS

110 T1«LEN(T$)

120 T2-LEN(S*>

125 T3«LEN(S1*>

130 XT«40-(Tl/2)

140 XS=10-(T2/2)

145 XS1-10-CT3/2)

150 CLS

160 LOCATE XT,2:PRINT T*

170 LOCATE XS,12:PRINT S*

175 LOCATE XS1,)3:PRINT SI*

180 QOSUB 450:REM PLACE MONTH LEGENDS ON SCREEN

190 REM NOW DRAW AXES

200 MOVE 145,365:DRAW 145,105

210 DRAW 550,105

220 REM MAKE Y AXIS GRADATIONS

106

230 FOR Y=362 TO 112 STEP -25

240 MOVE 142,Y:DRAW 147,Y

250 NEXT Y

260 REM NOW PLOT THE GRAPH

270 READ MXX

280 XF=131

290 TAGsMOVE 105,360:PRINT MXX;

300 MOVE 105,235jPRINT MXX/2;

310 MOVE 105,112:PRINT 0;

320 FOR I»1 TO 12

330 READ VALUE

340 VALUE=((VALUE/MXX)*250)+112

350 XF=XF+32

360 IF 1=1 THEN X2=XFi! Y2:=VALUE

370 X1=X2:Y1=Y2

380 X2=XFs Y2=VALUE

390 MOVE X1,Y1

400 DRAW X2,Y2

420 NEXT I

430 ICOPY

440 GOTO 440

450 REM MONTH LEGENDS

460 LOCATE 1,19

470 PRINT TAB<21);"! ! : :

480 PRINT TAB(21);" J F M A

490 PRINT TAB(21);"A E A P

500 PRINT TAB(21);"N B R R

510 RETURN

520 DATA 10

!
M J J A S 0 N DH

A U U U E C 0 E"

Y N L G P T V CM

530 DATA 1.6,1.8,2.5,2.7,1.1,3.6,4.6,5.9,7.2,8.1,7.1,9.3

SALES SUMMARY FOR 1985

WIDGETS 5
(X 1000)

--1—
F

--1—
M

--1--
A

--1—
M

--1--
J

--1—
J

--1—
A

—5—
S

—1—
0

--1--
N

--T"
D

F A p A 11 11 u E C 0 E
8 R R V N L G P I U C

Figure 5.7 CHART output

107

The data is in the form of data statements, which are read in and plotted at lines
3320-420. This graph program illustrates variations over a twelve month period,
with the months along the X axis. The Y axis legend is also printed horizontally.

It is sometimes useful to use a graph to compare two sets of data. In the simplest
case, the two lines can be plotted using a simple amendment of SUPERG or
CHART with lines drawn in different colours or dash patterns or with different
markers, if discrete points are to be plotted. If the comparison involves some
kind of competitive performance, it may be useful to emphasize the relationship
between the two data lines. Figure 5.9 shows an example of this type. The
periods when one of the two products was dominant are highlighted in a defined
colour.

S a l e s o f t w o c o n p u t e r g a n e s

J F M A M J J A S O N D
A E A P A U U U E C O E
N B R R Y N L G P T U C

Figure 5.8 EMPHASIS output

EMPHASIS program

10 REM m * PROGRAM EMPHASIS *»*»
20 REM VERSION OF CHART PROGRAM HIGHLIGHTING COMPARISON BETWEEN TWO DATA SETS

40 REM DRAWS A LABELLED GRAPH FOR A TWELVE MONTH PERIOD

50 REM FOR EXAMPLE SALES FIGURES,CURRENCY FLUCTUATIONS, ETC

60 REM DATA IS AT END OF THE PROGRAM. BUT INTERACTIVE INPUT IS A SIMPLE CHANGE

70 REM THIS VERSION FILLS IN THE AREAS BETWEEN THE TWO SETS OF DATA

SO REM WITH A DIFFERENT COLOUR DEPEMDING ON WHICH LINE IS ABOVE THE OTHER

90 REM FILL COMMAND ONLY AVAILABLE WITH CPC664

108

100

n o
1 2 0

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

2B0

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430
440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

REM MODE 1 USED HERE

DIM XP(12),YP(12),COMP(2,12):REM COMP IS TO HOLD PAIRS OF DATA POINTS

CLS:MODE 1*INK 0,13:INK 1,0iINK 2,2:INK 3,20

REM INPUT LABEL INFORMATION

INPUT"MAIN TITLE MAX 40 CHARACTERS"jT$

INPUT"SIDE TITLE MAX 10 CHARACTERS";S$

INPUT"SIDE (SUB) TITLE? MAX 10 CHARACTERS";SI♦

REM NOW CALCULATE TITLE POSITIONS

T1=LEN(T$)

T2=LEN (SO

T3=LEN(Bl$)

XT=20-(Tl/2)

XS*5-(T2/2)

XS1=5-(T3/2)

CLS

LOCATE XT+1,1:PRINT T*

LOCATE XS,6:PRINT St
LOCATE XS1,15:PRINT Sl$

GOSUB 700:REM PLACE MONTH LEGENDS ON SCREEN

REM NOW DRAW AXES

MOVE 164,365*DRAW 164,105

DRAW 520,105

MOVE 520,105iDRAW 520,365

REM MAKE Y AXIS GRADATIONS

FOR Y-362 TO 112 STEP -25

MOVE 161,Y:DRAW 167,Y

NEXT Y

REM NOW PLOT THE FIRST LINE

READ MXX

XF=135

TAG: MOVE 85, 360: PRINT MXX';'

MOVE 90,235:PRINT MXX/2;

MOVE 98,112*PRINT 0;

FOR 1=1 TO 12
READ VALUE

VALUE*((VALUE/MXX)*250)+112

COMP(1,1)“VALUE:REM LOAD VALUE OF DATA SET POINT FOR LATER COMPARISON

YMIN=115

XF=XF*32

IF 1*1 THEN X2=XF:Y2=VALUE

Xl*X2fcY1=Y2

X2*XF:Y2*VALUE

MOVE XI,Y1

DRAW X2,Y2

NEXT 1̂
REM NOW PLOT THE SECOND LINE

XFn135

FOR 1=1 TO 12

READ VALUE

VALUE®((VALUE/MXX)<250)+112

COMP(2,I)“VALUE:REM LOAD VALUE OF DATA SET POINT FOR LATER COMPARISON

XF-XF+32

IF 1*1 THEN X2=XFiY2=VALUE

X1-X2*Y1=Y2

109

640 X2=XF:Y2=VALUE

650 MOVE X1,Y1

660 DRAW X2,Y2

670 NEXT I

680 GOSUB 800:REM FILL IN COLOURED AREAS

690 !COPY:END

700 REM MONTH ^EGENDS

710 LOCATE 1,19

720 PRINT TAB(11);"! ! : : : ! ! : ! "

730 PRINT TAB(11);"J F M A M J J A S 0 N D"

740 PRINT TAB(11)5"A E A P A u U U E C 0 E"

750 PRINT TAB(11);"N B R R Y N L G P T V C"

760 RETURN

77 0 DATA 100

780 DATA 8 0 , 4 5 , 4 0 , 1 0 , 3 0 , 5 0 , 6 5 , 8 0 , 6 0 , 4 0 , 3 0 , 1 0

790 DATA 2 0 , 3 0 , 5 0 , 7 0 , 6 0 , 5 5 , 3 0 , 5 0 , 6 0 , 7 0 , 9 0 , 9 5

80 0 REM NOW F IL L IN COLOURED AREAS USING F IL L COMMAND

81 0 X X *135

82 0 FOR 1=1 TO 12

03 0 IF COMP(1 ,1) < COMP(2 , I) THEN C0L=2

84 0 IF COMP(1 ,1) > COMP(2 , I) THEN C0L=3

850 IF COMP(1 ,1) = COMP(2 , I) THEN XX = XX+32:GOTO 900

86 0 YY = (COMP(1 , 1) +COMP < 2 , I)) / 2

8 7 0 XX = XX+32

880 MOVE XX, YY

8 9 0 F IL L COL

9 0 0 NEXT I

910 RETURN

NEW CARS
S/H CARS

CUMULATIUE NEW AND SECONDHAND CAR SALES - 1984

Figure 5.9 Cumulative graph drawn using CUMUL amendment of the CHART program.

110

EMPHASIS makes use of the FILL command and so will be of limited
usefulness to CPC464 owners. It also uses MODE 1, producing rather coarse
looking output.

EMPHASIS highlights the difference between two data sets. Often, however,
the cumulative effect of multiple sets of data is of interest. Figure 5.9 shows an
example. The bottom line here is the true line for the first data set. The top line
is not the true line for the second data set but is instead the cumulative total of
both sets.

To use the cumulative program CUMUL, type and save the following lines, and
then MERGE them with CHART already in memory.

C U M U L program

10 REM *«»* PROGRAM CHART »«**

12 REM CUMUL AMMENDMENT

15 YMIN=400

45 REM THIS VERSION DRAWS A CUMULATIVE GRAPH FOR TWO SETS OF DATA

46 REM LOWER DATA SET IS SHADED (ROUTINE AT LINE 1000)

260 REM NOW PLOT THE TOP GRAPH

270 READ MXX

280 XF-131

290 TAG:MOVE 105,360:PRINT MXX;

300 MOVE 105,235:PRINT MXX/2;

310 MOVE 105,112iPRINT 0;

320 FOR 1=1 TO 12

330 READ VALUE

340 VALUE*((VALUE/MXX)*250)+112
345 YMIN=115

350 XF-XF+32

360 IF 1=1 THEN X2=XF:Y2*VALUE

370 X1=X2:Y1=Y2

380 X2=XF:Y2=VALUE

390 MOVE X1, Y1

400 DRAW X2,Y2

420 NEXT I

422 REM NOW PLOT THE BOTTOM LINE
426 XF=131

428 FOR 1*1 TO 12

430 READ VALUE

432 VALUE*((VALUE/MXX)*250)+112

434 XF-XF+32

436 IF 1*1 THEN X2=XF*Y2=VALUE

438 X1=X2:Y1=Y2

439 X2=XF:Y2=VALUE

440 MOVE XI,Y1

442 DRAW X2,Y2

444 NEXT I

ill

446 GOSUB 1000:REM FILL IN TOP AREA

449 GOTO 440

520 DATA 10

530 DATA 3.6,5.8,4.5,6.7,3.1,5.6,5.6,6.9,7.9,8.9,6.1,9.3
540 DATA 1.1,1.3,2.1,1.3,0.6,1.2,3.3,3.2,4.3,5.1,3.2,4.1

1000 REM SHADE TOP LINE VALUES

1005 IN04

1010 YVAL=YMIN-2:REM SET SEED POSITION FOR HATCH PATTERN

1015 XX=250+INC

1020 FOR YY=YVAL TO 400 STEP 2

1030 IF TEST (XX, YYIOO THEN 1100

1040 PLOT XX,YY

1065 NEXT YY

1100 FOR YY=YVAL TO 0 STEP -2

1110 IF TEST(XX,YY-1)< >0 THEN 1200

1120 PLOT XX, YY

1130 NEXT YY

1200 XX*XX+INC

1210 IF XX>515 THEN INC*-INCiXX=250

1220 IF XX<165 THEN RETURN

1230 GOTO 1020

To the obvious relief of the CPC464 owner (and to allow MODE 2 to be used),
the shaded part of the graph uses a hatching routine in the program itself
(routine at line 1000). This routine moves along the X axis by a chosen increment
set by INC (line 1005) and draws a line vertically upwards at each step from the
Y=0 position to the point at which the vertical line hits the lower line of the
graph.

5.4 Bar charts

A useful technique to aid the interpretation of data graphs is to plot the points
as ‘bars’ instead of points. Colour or shading patterns can be used to improve
the appearance of the bars. The simplest form of bar chart is demonstrated by
the program BAR below. This is an amendment of the CHART program, and
it should be M E R G E D with CHART already in memory.

BAR program

10 REM * * * * BAR CHART ADDITIONS TO PROGRAM CHART ****

20 REM DRAWS A LABELLED BAR CHART FOR A TWELVE MONTH PERIOD

260 REM NOW PLOT THE BARS

270 READ MX X

280 XF=131

290 TAG:MOVE 105,360:PRINT MXX;

112

300 MOVE 105,235sPRINT MXX/2?

310 MOVE 105,112:PRINT 0;

320 FOR 1=1 TO 12

330 READ VALUE

340 VALUE=<(VALUE/MXX)*250)+112

350 XF=XF+32

360 REM DRAW THE RECTANGLE FOR THIS MONTH

370 MOVE XF-B,VALUE:DRAW XF+8,VALUE
380 DRAW XF+8,112
390 DRAW XF-8,112

400 DRAW XF-8,VALUE
410 MOVE XF,115:FILL 1

420 NEXT I

EXCHANGE RATE AGAINST STERLING

J F M A M j J A S 0 N D
A E A P A u U U E C 0 E
N B R R y N L G P I U C

Figure 5.10 BAR output

As you can see, the changes are fairly minimal: instead of plotting a series of
points, rectangles (‘bars’) are drawn. In BAR, the bars are coloured using the
CPC664 FI LL command. CPC464 owners can either leave the bars empty, or
consider using a hatched pattern to fill each bar. Here is a simple program
PATTERN that enables you to fill rectangles with a variety of possible hatched
patterns (Figure 5.11

113

PATTERN program

10 REM RECTANGLE HATCH TEST PROGRAM

20 CLS

25 LOCATE 12,2:PRINT" EXAMPLES OF RECTANGLE FILL PATTERNS FOR BAR CHARTS"

30 READ XL,XR,YB,YT

35 READ XA,YA,SEP

40 IF XL=1 THEN I COPY:END

1020 MOVE XL,YT

1030 DRAW XL,YB

1040 DRAW XR,YB

1050 DRAW XR,YT

1060 DRAW XL,YT

1080 REM FIRST FILL IN UPPER SECTION

1085 IF XA/YA>2 THEN 1165

1090 FOR L“ XR TO XL STEP -SEP t 3

1100 X=L

1110 /=YT

1120 PLOT X,Y

1130 X=X-XA

1140 Y=Y-YA

1150 IF Y>*YB AND X>XL THEN 1120
1160 NEXT L

1165 IF YA/XA>2 THEN 1260

1170 REM NOW FILL IN LOWER SECTION

1180 FOR L=» YT TO YB STEP -SEP * 3

1190 Y=L

1200 X = XR

1210 PLOT X,Y

1220 Y-Y-YA

1230 X-X-XA

1240 IF Y>=YB AND X>XL THEN 1210
1250 NEXT L

1260 GOTO 30

2000 DATA 100,150,300,350,1,1,2

2010 DATA 200,250,300,350,1,1,4

2020 DATA 300,350,300,350,1,1,6

2030 DATA 400,450,300,350,4,4,2

2040 DATA 500,550,300,350,4,4,4

2050 DATA 100,150,200,250,4,4,6

2060 DATA 200,250,200,250,8,8,2

2070 DATA 300,350,200,250,8,8,4

2080 DATA 400,450,200,250,8,8,6

2090 DATA 500,550,200,250,1,8,3

2100 DATA 100,150,100,150,1,8,1

2110 DATA 200,250,100,150,1,8,2

2120 DATA 300,350,100.150,8,1,4

2130 DATA 400,450,100,150,3,5,4

2140 DATA 500,550,100,150,6,2,4

2145 DATA 1,1,1,1, 1, 1, 1

114

EXAMPLES OF RECTANGLE FILL PATTERNS FOR EAR CHARTS

w

Figure 5.11 Hatching patterns produced using PATTERN program.

PATTERN generates the output shown in Figure 5.11. To use the method with
a bar chart program you will need the section between lines 1080 and 1250 as a
subroutine in your program. For exafnple in BAR you would substitute the
command FI LL 1 withGOSUB 5000 , putting the PATTERN section from
lines 5000 onwards, Before calling this subroutine, set XL,XR,YB,YT to equal
the four corners of the bar. XA, YA and SEP should be set to give the required
fill pattern. The following version of BAR called HATCH demonstrates the
complete procedure. Again, merge it with CHART in memory.

HATCH program

405 XL*»XF-8: XR=XF+8: YT=VALUE: VB* 115iREM LOAD CORNERS FOR HATCH
410 MOVE XF,115lGOSUB 5000tREM HATCH

5000 REM SUBROUTINE HATCH! MERGE WITH CHART+BAR

5005 XA=l:YA=llSEP=2lREM SET HATCH VALUES

5010 IF XA/YAX2 THEN 5100

5020 FOR L= XR TO XL STEP -SEP « 3

5030 X=L

5040 Y=YT

5050 PLOT X,Y

5060 X=X-XA

5070 Y=Y-YA

5080 IF Y>=YB AND X>XL THEN 5050

5090 NEXT L

5100 IF YA/XAX2 THEN RETURN

5110 REM NOW FILL IN LOWER SECTION

115

5120 FOR L= YT TO YB STEP -SEP * 3

5130 Y=L

5140 X=XR

5150 PLOT X.Y

5160 Y=Y-YA

5170 X=X-XA

5180 IF Y>=YB AND X>XL THEN 5150

5190 NEXT L

5200 RETURN

Hatching or colouring becomes important if you wish to use a bar chart for
comparative or cumulative display of several sets of data. Figure 5.13 shows a
comparative method. Again, the CHART basic program is used, but instead of
the BAR changes, the following amendments should be used.

BARCOMP program

10 REM **** BARCOMP - BAR CHART ADDITIONS TO PROGRAM CHART ****

20 REM DRAWS A BAR CHART WITH TWO SETS OF DATA FOR COMPARISONS

25 REM 2 DATA POINTS FOR EACH MONTH READ TOGETHER

260 REM NOW PLOT THE BARS

265 READ MXX

270 XF=129

275 TAG:MOVE 105,360:PRINT MXX;

280 MOVE 105,235:PRINT MXX/2;

285 MOVE 105,112:PRINT 0;

290 FOR 1=1 TO 12

295 READ VALUE

300 VALUE=((VALUE/MXX)*250)+112

305 XF=XF+32

310 REM NOW DRAW THE FIRST RECTANGLE

315 MOVE XF-8,VALUE:DRAW XF+8,VALUE
320 DRAW XF+8,112
325 DRAW XF-8,112
330 DRAW XF-8.VALUE
335 MOVE XF,115:FILL 1

340 REM NOW DRAW THE SECOND RECTANGLE FOR THIS MONTH

345 READ VALUE

350 VALUE=<(VALUE/MXX)*250)+112

355 XF=XF+6
360 REM DISPLACED BY 6 PIXELS FROM FIRST RECTANGLE
365 MOVE XF-8,VALUE:DRAW XF+8,VALUE
370 DRAW XF+8,112
375 DRAW XF-8,112
380 DRAW XF-8,VALUE
385 XF=XF-6
390 NEXT I

400 REM OVERWRITE THIS LINE

116

420 REM OVERWRITE THIS LINE

520 DATA 100

530 DATA 50,40, 60,20, 70,10, 65,45, 45,75, 10,67

540 DATA 40,75, 50,50, 60,23, 56,43, 45,67, 54,10

SALES SUMMARY BV REGION - BLACK = NORTH : WHITE : SOUTH
100'

J F M ft M J J ft S 0 N D
ft E ft P ft U U U E C 0 E
N B R R V N L G P I V C

Figure 5.12 Two sets o f bar chart data plotted on the same axes using the BARCOMP amendments
to program BAR.

As before, this code should be merged with CHART already in memory. You
can use HATCH with this program if you wish.

5.5 3D bar charts

It is also possible to draw a ‘three dimensional bar chart’ to look at the
behaviour of three variables simultaneously. The HISTO3D program below
allows you to do this, and typical output from the program is shown in Figures
5.13 and 5.14. This program is not a ‘real’ three dimensional program, as it
cheats by incrementing the X and Y axes to give a 3D effect.

HIST03D program

10 REM «*»*HIST03D **»*
20 CL5

30 MODE 1:INK 0,13:INK 1,0:INK 2,9:INK 3,15

40 REM DRAW BACKGROUND

117

50 GRAPHICS PEN 1

60 X=460:XL=40:XR=639

70 MOVE X,400

80 DRAW X,160

90 MOVE XL,340

100 DRAW XL,100

110 MOVE XR,340

120 DRAW XR,100

130 A=1000

140 RW=4

150 C$*“E"

160 FOR Y=400 TO 160 STEP -(160/6)

170 MOVE X,Y

180 MASK 16

190 DRAW XL,Y-60

200 IF C$-"0"THEN 270

210 LOCATE 2,RW

220 PRINT A;

230 C$-"0H

240 A*A-250

250 RW=RW+3.7

260 GOTO 280

270 C$**"E"

280 MOVE X,Y

290 DRAW XR,Y-60

300 NEXT Y

310 MOVE 40,100

320 DRAW 220,40

330 DRAW 639,100

340 MASK 255

350 LOCATE 17,23:PRINT"1970";

360 LOCATE 26,22:PRINT"1975"j

370 LOCATE 35,21:PRINT"1980"$

380 H-40:C-0

390 XL=80

400 YL-100

410 XS-240

420 MR— 50/210

430 ML*15/89

440 F-3:0-2

450 Hb100
460 REM NOW DO THE BLOCKS

470 GRAPHICS PEN F

480 FOR X=XS TO XS+20

490 MOVE X, 20

500 DRAW X,1

510 NEXT X

515 LOCATE 5,25:PRINT"FRANCE"

516 LOCATE 21,25:PRINT" W GERMANY"

520 FOR J*1 TO 3

530 READ DA:REM GET DATA

540 TP*(240tDA)/900

550 GOSUB 680:REM COLOUR BARS

560 GOSUB 980:REM OUTLINE BARS

118

570 XL=XL+146

580 YL=YL+20:REM STEP BARS

590 NEXT J

600 C=C+1

605 LOCATE 1, 1

610 IF C=2 THEN END

620 XL=182

630 YL=75:REM STEP BARS FOR NEXT ROW

640 F=2

650 0=3

660 XS=544

670 GOTO 460

680 REM FILL IN BOX

690 BL=YL+TP-ML*XL

700 BR=YL-MR*XL

710 FOR X=XL TO XL+H/2

720 Y1=ML*X+BL

730 Y2=MR*X+BR

740 GRAPHICS PEN F

750 MOVE X, Y1

760 DRAW X , Y2

770 GRAPHICS PEN 1

780 PLOT X,Y1

790 PLOT X,Y2

BOO NEXT X

810 YT=Y1

820 YB=Y2

830 BL=YB-MLI(XL+H/2)

840 BR=YT-MR*<XL+H/2)

o o y i i - r i r t * A + B K

870 Y2=ML*X+BL

880 GRAPHICS PEN F

890 MOVE X,Y1

900 DRAW X, Y2

910 GRAPHICS PEN 1

920 PLOT X, Y1

930 PLOT X,Y2

940 NEXT X

950 YR=Y2

960 RETURN

970 REM BAR OUTLINE ROUTINE

980 MOVE XL,YL

990 GRAPHICS PEN 1

1000 DRAW XL,YL+TP

1010 MOVE XL+H/2,YB

1020 DRAW XL+H/2,YB+TP

1030 MOVE XL+H,YR

1040 DRAW XL+H,YR+TP

1050 MOVE XL+H/2,YB+TP

1060 DRAW XL+H,YR+TP

1070 MOVE XL,YL+TP

1080 DRAW XL+H/2, YR+TP-(6KH/80))
1090 RETURN

1100 DATA 500,500,750,250,500,750

119

1 9 6 6 „
BURGUNDY ill CLARET

Figure 5.13,5.14 Output from HIST03D. Data from the ‘World Atlas of Wine’ by Hugh Johnson
(Mitchell Beazley)

120

Here is the outline of HISTO3D

LINE 10- 50 SET COLOURS, MODE CLEAR SCREEN
60-340 DRAW GRID

350-370 PLOT X AXIS SCALE
380-450 SET VARIABLES

H=WIDTH OF BARS
MR, ML = X AND Y SLOPES
F,0 = INK MODES FOR PLOTTING
XL,YL = LOWER LEFT POINT OF BAR
XS = POSITION OF COLOUR CODE BLOCKS

460-510 PLOT COLOUR CODE BLOCKS
515-516 PLOT COLOUR CODE LEGENDS
520-670 MAIN LOOP
600 INCREMENT ROW COUNTER
605 PUT TEXT CURSOR AT HOME POSITION
610 TEST IF ALL ROWS DONE
620-660 SET VARIABLES FOR NEXT ROW
670 END OF MAIN LOOP
680-960 ROUTINE TO FILL BAR WITH COLOUR

BL,BR=Y VALUES FOR LEFT EDGES OF BAR
970- 1090 ROUTINE TO OUTLINE BAR
1100 DATA (FOR EACH ROW IN LEFT-RIGHT ORDER)

Once the heights of the bars have been set, the routines at lines 680 and 970 fill
in and outline the bars for each data point. As the rear bars are drawn First, a
‘hidden surface’ effect (see Chapter 8) is given, because the front bars overlap
those drawn previously.

The CPC664 MASK command is used in lines 180 and 340 to draw the outline
grid. If you have a CPC464 you could use the DASH program (Chapter 2) to
draw dotted lines, or alternatively the lines can be drawn unbroken if required.
The MASK value can of course be changed if required.

There are many other variations on the business graphics methods that we have
not considered in this chapter. You can, for example display a pie chart and a
graph at the same time, or plot two bar charts simultaneously, one extending up
the Y axis, one extending down it. I leave these and other variations for you to
program: the methods are based on the principles that we have already looked
at.

121

Chapter 6

A Computer-Aided
Design Program

6.1 Design considerations

Most of the material that we have so far considered provides useful groundwork
for the manipulation of two dimensional images on the computer screen. Apart
from the business area, we have not yet looked at ’serious’ uses of 2D graphics,
and although I hinted at the limitations of BASIC for a number of graphics
application?time for us to roll up our sleeves and see just what we can create.

Computer graphics are extensively used in the professional world for computer-
aided design work (CAD), where complex structures may be designed by
building up pictures or diagrams from a number of subcomponents. These
subcomponents may in turn be manipulated on screen to change and update the
structure being designed. We have already met the geometrical transformations
that act as the raw materials required to implement a simplified version of a
design package on a microcomputer, and the problem that remains is how to put
the components together into a coherent program. This problem really distills
down to the complexity of the data structures which hold the elements used in
the picture.

The program package, which we will naturally enough call DESIGN, is flexible
enough to require little modification to design floor plans of houses, furniture
layouts, weather maps, anything in fact where you wish to spatially design
things in two dimensions. The opportunities for customising will become
clearer as the program unfolds itself.

6.2 Some nuts and bolts

Let us first decide on a simple set of picture elements which should be included
in a design package of this type. First and foremost, we need a basic outline of
the object to be designed. We will assume for the present purpose that each

123

object is a space enclosed by a series of points: a polygon or series of polygons,
if you want to be geometrical.

We can now review our armoury of techniques to see just what we have at our
disposal (and what we wish to achieve with the DESIGN program). Our major
ally will be the routines in the program SKETCH, and the ‘line dragging’
method will be used to draw the outline and major demarcations within the
system. The smaller elements which will be positioned at various points over the
outline will also be separately defined using SKETCH routines, but a
combination of 2D transformations will be used to simplify drawing and recall
of the elements. The coordinates of each element will be stored in our old
friends the X and Y coordinate arrays, and the W array will perform the same
purpose as always, namely to orchestrate connection of coordinate pairs by
lines.

The major sophistication in the data structures used in DESIGN is the S array
which, you will recall from Chapter 3, is used to keep track of the various
segments that may be in use). If you look back to section 2 of Chapter 2, you’ll
see that we defined S as a 2 X n array, where n is the number of segments.
DESIGN uses the first segment to represent the outline of the structure on
which the design is to be carried out, in this case the boundary and major
demarcations. The other segments are used for the various items to be placed on
the design area.

Besides keeping track of the shapes and sizes of the various segments which are
manipulated on screen, the positions of the segments must be recorded. You will
remember from Chapter 3 that the four chairs in the simple segment
demonstration picture are in fact the same segment repeated four times. None
of the data structures that we have looked at so far give any information for
reconstructing multiple appearances of segments, or indeed, allow segments to
be displayed at different points on screen. A new array, dimensioned RD(3,i) is
used for this purpose in the DESIGN program. In this case i represents the total
number of items in the picture (each appearance of a segment counts as an extra
item), and for each item the X and Y coordinates of the centre point of the item,
together with the segment number of the item, are recorded. So for a picture
containing five items chosen from three segments, the RD array might appear
as follows:

X Y segment
no.

140 100 3
100 80 1
120 10 1
200 60 2
200 130 2

124

As you will see as we build up the DESIGN program, the data structures that we
now have at our disposal (X, Y, W, S, and RD) allow complex pictures to be
constructed and manipulated.

The RD array allows items to be positioned on screen using only one pair of
coordinate points. How is this possible? Unlike the segment data considered in
the original SKETCH program, the DESIGN segment data is translated to the
origin as soon as it has been created. This is accomplished using essentially the
same method as was introduced in Chapter 4: the centre point within the
segment is calculated, and all coordinate points within the segment have their
values decreased by the X or Y value of the centre point. This effectively
positions the centre point at position 0,0, with the other points around it. In
order to centre the translated segment ‘neatly’ around the origin, the midpoints
between minimum and maximum X and Y values are set as the centre point to
be translated to the origin. Note that there need not be a physical point at this
midpoint, as it is only used as a reference point.

When a segment is to be recalled on screen, it can be drawn around any given
X,Y point by merely translating all X and Y coordinates in the stored segment
data by + X and +Y.

Figure 6.1 Segment creation and translation. A segment may be drawn at any point on the screen and
then translated by -X, -Y to the origin. The segment can then be redrawn around any point XI, Y1
on the screen by adding XI, Y1 to all coordinate values o f the segment at the origin.

125

Now that we have considered the data structures used in DESIGN, the control
structure of the program can be considered. Because of the complexity of
DESIGN, it is not feasible to use a small set of memorised instructions to drive
the program, as we did with SKETCH. We may wish to save or load files, or
parts of files, to define segments or to draw outlines. In order to control the flow
between these various states, a system of menus is used. You will be familiar with
menu-driven software in various guises, and DESIGN uses two simple menus.
The first allows selection of the main functions available within the program. A
second menu offers various file load options. Here are the two menus as
displayed by the program:

DESIGN - MAIN MENU
DRAM OUTLINE OF IMAGE - 1
DEFINE ITEMS - 2
SAUE PICTURE - 3
SAUE ITEMS ONLV - 4
LOAD PICTURE - 5
PLOT ITEMS ON OUTLINE - 6
NIPE ITEMS BEFORE PLOT - 7
PRINT PICTURE - 8
EXIT FROM PROGRAM - 9

Figure 6.2 The main DESIGN menu

DESIGN - LOAD MENU
LOAD OUTLINE ONLV - 1
LOAD ITEMS ONLV - 2
LOAD OUTLINE + ITEMS - 3
LOAD NHOLE PICTURE - 4

Figure 6.3 The DESIGN load menu

Most of the options available from these two menus are contained within
subroutines or groups of subroutines. This modular approach allows the

126

construction of a flow diagram of the DESIGN program. This diagram is
shown below

Figure 6.4 A simple flow diagram of the DESIGN program. All the options are controlled from the
two menus.

As you can see from this diagram, the main functions of DESIGN are:

(1) Menu display
(2) Definition of segments
(3) Definition of outline
(4) Plotting of segments on the outline
(5) Saving data
(6) Loading data
(7) Printout of picture

In order to perform these functions, a number of technical details have to be
taken care of. These technical details include:

127

(1) Updating counters and variables for each data structure
(2) Movement and plotting of the cursor and update of the current

screen location of cursor
(3) Segment translations and scaling
(4) Picture construction from the available data
(5) Non-menu driven control facilities

A full list of counters and other variables used in DESIGN can be found
immediately before the program listing later in this chapter. Cursor handling
routines are the same as used in the original SKETCH program. Segment
translations have already been described in this section, but segment scaling
requires some explanation.

As the final plotted size of some segments may be very small, it is useful to be
able to define (draw) each segment at a ‘comfortable’ size,and then to shrink it
to the required dimensions. This is done in the DESIGN program by drawing
each element in an enlarged box equivalent to the small boxes on the right hand
margin of the main design screen, as shown in Figures 6.5 and 6.6 below.

F

DRAW U E M TN TH E BOX

Figure 6.5 Drawing segment at an enlarged size in the box.

128

The picture construction methods used involve use of the RD and S arrays to
access the line indices held in the W array, and ultimately the X and Y
coordinates in the X and Y arrays. If item number SP is to be plotted, the X and
Y coordinates of the point around which the segment is to be plotted, together
with the segment type (SN), are given by the RD array, so

RD(1,SP) = X, RD(2,SP)=Y, RD(3,SP) = SN

Given this information, it is possible to access the S, W, X and Y arrays to plot
segment SN around point X,Y using the following code frorn ̂DESIGN.

F OR I = S (1 , S N) T O S (2 , S N)

L 1 = W (1 , I) : L 2 = W (2 , I)

M O V E X P (L 1) + X , Y P (L 1) + Y

DRAW X P (L 2) + X , Y P (L 2) + Y

N E X T I

Note that the arrays XP and YP contain the coordinate data at the origin.
Adding X to the XP elements and Y to the YP elements translates the segment
to the correct location.

It is clearly not possible to access all functions via the menus because some
control steps have to be used as the picture is being created - lines have to be
initiated and terminated for example. As with SKETCH, start and stop points
for newly defined lines have to be set, and recall of particular segments during
the design process would be extremely tedious if the computer has to constantly
switch back and forwards between the hi-res screen and the lo-res menus. As
with SKETCH, some use of the keyboard is also needed (to end a segment or to
signal a ‘skip’ within a segment). In addition, the joystick fire button is used. We
will next look at the most interesting facility in computer graphics terms - the
use of part of the high resolution screen itself for control purposes. This facility
is only activated in design mode, where the available segments are displayed
down the right hand edge of the screen. Figure 6.6 in fact shows a
demonsstration of the use of the design program, and you may like to refer to
it as you read on.

If the cursor is moved into one of the segment boxes, a copy of the segment may
be placed anywhere on the screen merely by pressing the fire button. The
segment plotted can be respecified by entering another segment box. You can
also see the words ‘EXIT’ and ‘FILL’ below the segments. EXIT is self
explanatory, whilst FILL causes the whole picture to be redrawn.

The use of this kind of visual representation for control purposes is becoming

129

Figure 6.6 Dump of the DESIGN screen showing a ‘garden’ outline.

very common in areas like business graphics where the joystick-related ‘mouse’
is often used to move a cursor around the screen to select options available
within a given program or suite of programs. It is in fact a remarkably simple
technique to program. A simple test within the program checks whether or not
the cursor X and Y values are within certain limits, and jumps to a different part
of the program if the check is true.

6.3 The DESIG N program

Before consideringHhe listing of DESIGN, here is the list of variables used
within the program.

GENERAL FLAGS/COUNTERS

FL flag indicating line in progress
NPTS counter for number of points within segment
NA overall points counter
LB overall lines counter
SE flag for end of segment
SI segment counter
FI flag for line break

130

PF flag for segment type (outline/item)
LI segment line counter
S counter for number of items plotted
CS cursor size
SS cursor step size
N$ name of input file
H$ name of output file
K$ character string input from keyboard
I,J general incremental counters
PW width of segment in pixels
WI factor for scaling down segment width

COORDINATE VARIABLES

X X coordinate of cursor
Y Y coordinate of cursor
XI temporary X coordinate values
Y1 temporary Y coordinate values
XI X coordinate at line start
YI Y coordinate at line start
XF X coordinate at line finish
XH,XL maximum and minimum X values for a segment
YH,YL maximum and minimum Y values for a segment
XC,YC centre point of segment
XX,YY temporary X and Y coordinate values

ARRAYS

XP(i) arrays holding X,Y coordinate values
YP(i)

W(2,j) array holding start and finish indices for each line
S(2,k) array holding indices of first and last line in each segment

RD(3,1) array holding X and Y coordinates of each segment appearance,
together with the segment type

DESIGN program

5 REM ****PROGRAM DESIGN****

10 REM SET CURSOR AND STEP SIZES

15 MODE 1

20 CS=2:SS=5

131

30 INK 0,13:INK 1,1:INK 2,3

45 CLS

50 REM NOW SET COUNTERS AND FLAGS

60 FL=0:NPTS=1:NA=1

70 LB=0:REM LINES COUNTER

80 SE=0:REM FLAG FOR SEGMENT END

90 S1=0:REM SEGMENT COUNTER

91 SP=0:REM PICTURE ELEMENT COUNTER

92 F1=0:REM FLAG FOR LINE BREAK

93 L1=0:REM SEGMENT LINE COUNTER

94 JY=1:REM LINE START/FINISH FLAG

95 PF=1r REM FLAG FOR SEGMENT TYPE

100 DIM XP(500),YP(500),LN(2,500),S(3,10),RD(3,100):REM DIMENSION ARRAYS

110 GOTO 1690:REM GOTO MAIN MENU

120 REM SET CURSOR IN CENTRE POSITION

125 IF PF=2 THEN GOSUB 2900

130 X=320:Y=200

140 GOSUB 180:REM CURSOR PLOT ROUTINE

150 GOSUB 230:REM CURSOR MOVE ROUTINE

160 GOSUB 340:REM LINE DRAG ROUTINE

170 GOTO 140

180 REM CURSOR PLOT ROUTINE

190 X1=X-CS:Y1=Y-CS:X2=X+CS:Y2=Y+CS

200 MOVE X1,Y

205 DRAW X2,Y,1,1

210 MOVE X,Y1

215 DRAW X,Y2,1,1

220 RETURN

230 REM CURSOR MOVE ROUTINE

240 Y3=Y:X3=X

250 IF JOY(0)=0 THEN 310

260 IF JOY(0)=1 THEN Y=Y+SS:GOTO 310

270 IF JOY(0)=2 THEN Y=Y-SS:GOTO 310

280 IF JOY(0)=4 THEN X=X-SS:GOTO 310

290 IF JOY(0)=8 THEN X=X+SS:GOTO 310

310 MOVE X3,Y2

320 DRAW X3,Y1, 1,1

325 MOVE X1,Y3

326 DRAW X2,Y3,1,1

330 RETURN

340 REM LINE DRAG AND PLOT ROUTINE

350 A$=INKEYS 1
355 IF A$=""AND JOY(OX>16 THEN IF FL=0 THEN RETURN

370 IF JOY(0)=16 AND JY=1 THEN JY=2:L0CATE 2,2:PRINT"S":GOSUB 3000:GOTO 430

380 IF JOY(0)=16 AND JY=2 THEN JY=1:L0CATE 2,2:PRINT"F":GOSUB 3000:G0T0 460

390 IF AS="B"THEN JY=1:G0T0 450:REM BREAK LINE

400 IF AS="E"THEN SE=1:JY=1:GOTO 460:REM FINISH PICTURE
420 GOTO 650:REM NORMAL LINE DRAW/WIPE

430 XI=X:YI=Y:REM START COORDINATES

440 FL=1:RETURN

450 FI=1:REM FLAG FOR LINE BREAK

460 XF=X:YF=Y:REM PUT IN POINT

480 MOVE X I,YI

485 DRAW XF.YF

132

490 NPTS=NPTS+1:NA=NA+1:LI=LI+1:LB=LB+1:REM INCREMENT COUNTERS

500 XP(NA)=XF:YP(NA)=YFt REM PUT IN POINTS

510 XP(NA-1)=XI:YP(NA-1) = YI:REM PUT IN POINTS

560 LN <1,LB)=NA-1:REM PUT IN LINE INDICES

570 LN<2,LB)=NA

580 IF FI = 1 THEN NA=NA+1:FI=0:REM INCREMENT IF BREAK FLAG SET

590 IF SE=1 THEN S1=S1+1:S (1,SI)=NPTS-LI:S(2,SI)=NPTS-1:S(3,SI)=0:GOTO 690

630 FL=0:RETURN

640 FL=0

650 REM DO LINE DRAW/WIPE

660 MOVE X,Y

665 DRAW XI,YI,1,1

670 MOVE X,Y

675 DRAW XI,YI,1,1

680 RETURN

690 REM CONTINUE

710 FOR I=S(1,S1) TO S(2,SI)

730 MOVE XP(LN <1,I)),YP(LN(1,I))

735 DRAW XP(LN(2,I)),YP(LN(2,I)),1,0

740 NEXT I

750 K$=INKEY*jIF K$=""THEN 750

780 LI=0:FL=0:SE=0:NA=NA+1:REM YES, SO SET COUNTERS

790 IF PF=1 THEN 1690:REM OUTLINE, SO RETURN TO MAIN MENU

792 GOSUB 1000:REM SCALE DOWN PICTURE ELEMENT

794 GOTO 1690:REM RETURN TO MAIN MENU

796 GOTO 120

800 REM NOW CREATE FILE CONTAINING DATA

810 CLS

820 INPUT"OUTPUT FILENAME?";N$

830 OPENOUT N$

840 WRITE£9,NA

850 FOR 1=1 TO NA

860 WRITEE9,XP<I)

870 WRITEE9,YP(I)

875 NEXT I

880 WRITEE9,LB

890 FOR 1=1 TO LB

900 WRITE£9,LN(1,I)

910 WRITE£9,LN(2,I)

915 NEXT I

920 WRITEE9,SI

930 FOR 1=1 TO SI

940 WRITEE9,S(1,1)

950 WRITE£9,S(2,I)

965 NEXT I

970 PRINTER,SP

980 FOR 1=1 TO SP

982 PRINT£9,RD(1,I),RD(2,1),RD(3, I)

984 NEXT I

986 CLOSEOUT
1000 REM SCALE DOWN PICIUNE ELEMENI

1030 REM PRINT " SET ELEMENT SIZE:"

1040 REM INPUT " WIDTH IN PIXELS?";PW

1060 REM SET MAX AND MIN POINTERS

133

1070 XH-OsXL=640:YH=0:YL=400
1080 L1=LN(1,S(1,SI)>:L2=LN<2,S(2,S1))

1085 FOR I=L1 TO L2
1090

1100
1 1 1 0

1120
1130

IF XP(IXXL THEN XL=XP(I)

IF XP(I)>XH THEN XH=XP(I)

IF Y P d X Y L THEN YL=YP (I)

IF YP(1)>YH THEN YH=YP(I)

NEXT I

1140 REM SET WIDTH

1145 WI=0.16

1150 REM CALCULATE CENTRE POINT FOR TRANSLATION TO ORIGIN

1160 XC=<(XH+XL)/2)tWI:YC=(<YH+YL)/2)*WI

1170 REM NOW SCALE DOWN OBJECT SIZE AND MOVE TO ORIGIN

1180 FOR I=L1 TO L2

1185 XP(I)=(XP(I)*WI)-XC

1186 YP(I)=(YP(I)*WI)-YC

1187 NEXT I

1190 RETURN

1200 REM POSITION SEGMENTS ON SCREEN

1210 SM=0:X=320:Y=200

1220 GOSUB 180:REM CURSOR PLOT ROUTINE

1230 GOSUB 230:REM CURSOR MOVE ROUTINE

1235 IF X>574 THEN GOSUB 1900:REM PICK SEGMENT

1240 IF JOY(0)=16 THEN GOSUB 1260:REM PLOT SEGMENT

1245 IF X<4 THEN GOTO 1690:REM RETURN TO MAIN MENU

1250 GOTO 1220:REM LOOP BACK

1260 REM PLOT SEGMENT

1265 SP=SP+1:RD<1,SP)=X:RD<2,SP)=Y:RD<7,SP)*SM

1270 FOR I=S(1,SM) TO S(2,SM)

1280 L1=LN<1,1):L2=LN<2,I)

1285 MOVE XP<L1)+X,YP(L1)+Y

1290 DRAW XP(L2)+X,YP(L2)+Y,2,0

1300 NEXT I

1310 RETURN

1330 REM FILE INPUT ROUTINE

1340 INPUT "FILENAME FOR INPUT?";H*

1360 OPENIN H$

1370 INPUTC9,NPTS

1380 FOR 1=1 TO NPTS

1390 INPUT £9,XP(I),YP(I)

1395 NEXT I

1400 INPUT£9,LI

1420 FOR 1=1 TO LI

1425 INPUT £9,LN(1,I),LN(2,I)

1427 NEXT I

1430 INPUT£9,SI

1440 FOR 1=1 TO SI

1450 INPUT £9,S(1,I),S < 2,I>

1460 NEXT I

1465 INPUT £9,SP

1470 FOR 1=1 TO SP

1475 INPUT£9,RD(1,I>,RD<2,I),RD<3,I)

1480 NEXT I

1485 CLOSE IN

134

1490 PRINT-FILE ",H*," LOADED OK"

1500 RETURN

1560 REM DESIGN BORDER DRAW ROUTINE

1570 MOVE 6,394

1575 DRAW 146,394

1580 MOVE 440,394

1590 DRAW 634,394

1600 DRAW 634,6

1610 DRAW 6,6

1620 DRAW 6,394

1630 MOVE 574,394

1635 DRAW 574,6

1640 FOR 1*60 TO 340 STEP 56

1645 MOVE 574,1

1650 DRAW 634,1

1655 NEXT I

1660 MOVE 574,34

1665 DRAW 634,34

1670 LOCATE 13,lsPRINT” DESIGN GRID-

1675 IF PF=1 THEN LOCATE 1, 1 : PRINT" OUTLINE"

1676 RETURN

1680 REM MAIN MENU

1690 CLS:PF=2

1700 PRINT""

1710 PRINT" DESIGN - MAIN MENU"

1720 PRINT""

1730 PRINT- DRAW OUTLINE OF IMAGE - 1"

1740 PRINT" DEFINE ITEMS - 2

1750 PRINT" SAVE PICTURE - 3"

1755 PRINT" SAVE ITEMS ONLY - 4"

1760 PRINT" LOAD PICTURE - 5"

1770 PRINT- PLOT ITEMS ON OUTLINE - 6"

1780 PRINT" WIPE ITEMS BEFORE PLOT - 7"

1790 PRINT" PRINT PICTURE - 8"

1792 PRINT" EXIT FROM PROGRAM - 9"

1794 K**INKEY*:

IF K*=

IF K*=""THEN 1794

IF K*=

IF K*=

IF K*=

1796

1800

1810

1815

1820

1830

1840

1850

I860

1870 GOTO 1794

1900 REM SEGMENT PICK ROUTINE FOR PLOTTING

1" THEN PF=1!CLS:GOSUB 1570:G0T0 120:REM DEFINE OUTLINE

2" THEN PF=2»CLS:GOTO 120*REM DEFINE ITEM

3" THEN GOTO SIOj REM STORE ALL

4" THEN GOSUB 2700lGOTO 1680:REM STORE ITEMS ONLY

IF K$*"5" THEN SP=0:GOSUB 2300*GOTO 1690 iREM LOAD ALL

IF K*="6" THEN CLS:GOSUB 2000:G0SUB 1570*G0SUB 2100.-G0T0 1210

IF K*-"7" THEN CLS:SP=0:Sl=l*GOSUB 2000:GOSUB 1570*GOSUB 2100:GOTO

IF K*="8" THEN !COPY:GOTO 1680*REM TASCOPY SCREEN DUMP

IF K$*"9" THEN PRINT"PROGRAM EX ITED":END

1910 IF Y>340 THEN SM=2:RETURN

1920 IF Y>284 THEN SM=3*RETURN

1930 IF Y >228 THEN SM=4:RETURN

1940 IF Y>172 THEN SM*5:RETURN

1950 IF Y>116 THEN SM=6:RETURN

1960 IF Y>60 THEN ! COPY :SM=*7* RETURN

1965 IF Y>32 THEN:GOSUB 2200:X*X-30*RETURN:REM

1 2 1 0

135

1970 IF Y<34 THEN GOTO 1690

1990 IF JOY <0)016 THEN RETURN
2000 REM SEGMENI FLU I RUUIlNt

2010 YA=424

2020 IF S1=1 THEN 2085

2027 FOR 1=2 TO SI

2030 YA=YA-56

2040 FOR J=S(1,I> TO S(2,I)

2060 MOVE XP(LN(1,J)>+604,YP <LN(1,J))+YA

2065 DRAW XP(LN(2,J))+604,YP(LN<2,J))+YA,2,0

2070 NEXT J

2080 NEXT I

2082 TAG

2085 MOVE 574,54:PRINT"FILL"

2090 MOVE 574,26:PRINT"EX IT"

2092 TAGOFF

2095 RETURN

2100 REM REDRAW DESIGN OUTLINE

2110 FOR I=S<1,1) TO S<2,1)

2120 L1=LN(1,I):L2=LN<2,I)

2130 MOVE XP(L1),YP(LI)

2135 DRAW XP(L2),YP(L2),1,0

2140 NEXT I

2150 RETURN

2200 REM PICTURE RECREATE ROUTINE

2215 IF SP=0 THEN GOSUB 2100:RETURN

2220 FOR 1=1 TO SP

2230 XX=RD(1,1):YY=RD(2,I)

2235 FOR J=S(1,RD(3,I)) TO S (2,RD<3,I))

2240 L1=LN(1,J):L2=LN<2,J)

2260 MOVE XP(L1)+XX,YP(L1)+YY

2265 DRAW XP(L2)+XX,YP(L2)+YY,2,0

2267 NEXT J

2270 NEXT I

2275 GOSUB 2100:REM REDRAW OUTLINE

2280 RETURN

2300 REM LOAD MENU

2310 CLS

2320 PF*2

2330 PRINT""

2340 PRINT" DESIGN - LOAD MENU"

2350 PRINT""

2360 PRINT" LOAD OUTLINE ONLY - 1"

2370 PRINT" LOAD ITEMS ONLY - 2"

2380 PRINT" LOAD OUTLINE + ITEMS - 3"

2390 PRINT" LOAD WHOLE PICTURE - 4"

2400 K$=INKEY$:IF K$=""THEN 2400

24 1 0 IF K*="1" THEN GOSUB 1 3 3 0 :NPTS=S(2,1)+1:L I = 0 : S 1 =* 1:NA=NPTS+1

2415 IF K$="l" THEN LB=NPTS-1:SP=0:RETURN

2420 IF K*="2" THEN GOSUB 2500:SP=0:RETURN

2425 IF K$="3" THEN GOSUB 1330:SP=0:RETURN

2430 IF K$="4" THEN GOSUB 1330:RETURN

2500 REM LOAD ITEMS ONLY

2510 INPUT"FILENAME FOR ITEMS";H«

136

2520 OPENIN H*

2530 NPTS =S <2, 1>+1:LI=0*S1=1:NA=NPTS+1

2540 INPUT £9,NW

2550 FOR I=NPTS+1 TO NPTS+NW

2560 INPUT £9,XP <I),YP <I)

2570 NEXT I
2575 NPTS=NPTS+NW

2580 INPUT£9,LW

2585 FOR I=LB+1 TO LB+LW

2590 INPUT£9,LN(1,I),LN(2,I)

2595 NEXT I

2600 LB=LB+LW:LI=LB

2605 INPUT£9,B1

2610 S1=S1+1

2620 FOR 1=2 TO SI

2630 INPUT£9,S(1,I),S(2,I)

2640 NEXT I

2650 PRINT"FILE INPUTTED OK"

2655 CLOSEIN

2660 CLS

2670 RETURN

2700 REM CREATE FILE CONTAINING DATA ITEMS ONLY

2710 CLS

2720 INPUT"FILENAME FOR ITEMS";H$

2730 OPENOUT H$

2740 PRINT£9,(NA-(LN<2,S<2,1))))-l
2750 FOR 1=(LN(2,S(2,1)))+1 TO NA-1
2760 PRINT£9,XP <I)
2770 PRINT£9,YP(I)

2780 NEXT I

2790 PRINT£9,LB-S(2,1)

2800 FOR I=S<2,1)+1 TO LB

2810 PRINT£9,LN(1,I)

2820 PRINT£9,LN(2,I)

2825 NEXT I

2830 PRINT£9,Sl-1

2840 FOR 1=2 TO SI

2850 PRINT£9,S <1,I)

2860 PRINT£9,S<2,I)

2870 NEXT I

2880 CLOSEOUT

2890 RETURN

2900 REM OUTLINE FOR SEGMENT CREATE BOX

2910 MOVE 140,368

2915 DRAW 500,368,2,0

2920 DRAW 500,32,2,0

2925 DRAW 140,32,2,0

2930 DRAW 140,368,2,0

2940 LOCATE 2,24:PRINT"DRAW ITEM IN THE BOX"

2950 RETURN

3000 FOR 1=1 TO 1000:NEXT I:RETURN

DESIGN is used in the following way. On running the program, the main menu
appears, and this allows the user to save or load files, to define segments or the

137

outline or to print the design area. The definition options initiate ’SKETCH’
mode, and a segment can be created using the joystick, fire button and keys S
and E as for SKETCH. The central option is the design screen itself, which
appears as below, with a given outline and available segments drawn down the
right hand side of the screen. Movement of the cursor to pick up and plot
individual segments is performed until the picture is complete. EXIT returns to
the main menu.

The load menu allows an outline, a set of segments, or even a whole picture to
be restored from disk or tape.

The DESIGN program is structured as follows

LINES 10- 20 SET UP CURSOR AND STEP SIZES
30- 45 SET UP INK COLOURS AND CLEAR SCREEN
60- 100 SET UP COUNTERS AND FLAGS

110 JUMP TO MAIN MENU DRAW ROUTINE
130 SET CURSOR IN MIDDLE OF SCREEN
125 PRINT ‘SEGMENT’ IF CREATING SEGMENT
140- 170 MAIN SCREEN CONTROL SECTION
180- 220 CURSOR DRAW ROUTINE
230- 330 CURSOR MOVE ROUTINE
340- 680 LINE DRAG AND PLOT SECTION
730- 790 TEST FOR END OF LINE OR SEGMENT
810- 990 CREATE DATA FILE
1000- 1190 SCALE DOWN SEGMENT SIZE
1200- 1310 POSITION SEGMENTS ON SCREEN
1320- 1550 FILE INPUT ROUTINE
1560- 1670 DRAW BORDER ROUND SCREEN
1680- 1785 MAIN MENU DISPLAY SCREEN
1790- 1850 READ KEY AND BRANCH
1900- 1910 PICK SEGMENT FOR PLOTTING
2000- 2095 PLOT SEGMENTS DOWN RH MARGIN
2100- 2160 REDRAW GARDEN OUTLINE
2200- 2300 RECREATE PICTURE ROUTINE
2310- 2390 DISPLAY LOAD MENU
2400- 2430 READ KEY FOR LOAD CHOICE AND BRANCH
2500- 2650 FILE INPUT SEGMENTS ONLY
2700- 2880 CREATE DATA FILE (ITEMS ONLY)
3000- 3005 DELAY LOOP

These descriptions are somewhat sparse, and the following notes expand some
of the more complex sections:

138

Lines 20-40
The cursor and step sizes can be altered as you wish, but of course the larger the
step, the less accurate will be the final picture. A big cursor looks impressive, but
remember that pixel inversion will create a lot of annoying and unnecessary
‘blinking’ along the cursor lines if the picture has much fine detail.

Lines 140-790

This large section is almost identical to the SKETCH program and carries out
the main drawing and plotting steps.

Lines 730-790
Some differences to SKETCH are worthy of note. If the segment defined is the
outline, control is immediately transferred back to the main menu. If the
segment is not the outline it is scaled down (lines 1000-1190) before the main
menu is accessed.

Lines 810-990

This is the main data file creation routine. All the information in the data
structures is stored: outline, segment, and segment placing data are stored on
disk.

Lines 1010-1190

This routine scales down a picture element drawn at large scale in the ’box’

Lines 1200-1310

Plotting segments on the screen involves three steps. First, the cursor plot and
move routines are used to allow picking and placement of segments. Secondly,
the segment to be plotted is picked from the options down the right hand side
of the screen. The routine on lines 1900-1990 is called to handle this. The chosen
segment is then plotted around the current cursor position I ines 1260-1310). The
RD array is incremented and the X,Y cordinates of the current cursor position,
together with the segment number, are placed in this array.

Lines 1320-1550

The main data file input routine. Data for X,Y,W,S and RD arrays are read in.

Lines 1560-1670

This routine draws the border around the screen and places the title in position.
If the outline is being plotted, the word ‘outline’ is printed on screen.

139

Lines 1900-1990

The current segment number to be plotted is updated if the X position of the
cursor is > 287. The cursor’s Y coordinate determines the segment number. This
routine is called from the segment plot routine (lines 1200-1310).

Lines 2000-2095

This routine draws the available segments down the right hand edge of the
screen ready for picking in the previous routine. All segments are drawn with the
same X displacement, while the Y displacement is incremented for each
successive segment.

Lines 2100-2160

The outline is drawn in preparation for the plotting of the items on it.

Lines 2200-2300

This routine draws all the occurrences of every item on the screen, and is
accessed by choosing the FI LL option on the plotting screen. It is used if the
plotting screen is exited to define new segments, and is then reaccessed, for
example.

Lines 2500-2650

This input routine assumes that an outline has already been defined, and loads
in a series of segments above it into the X,Y W and S arrays. Note that the RD
array is not filled by this routine, because the segment data may be used with any
number of outlines and the RD information will only be specific for one
outline. Note also that the outline must already exist! This is necessary to avoid
the problem of how much space to leave at the beginning of the various arrays
for the outline.

Lines 2700-2880

This data file creation routine does not save the outline, and the file created is
used in conjunction with the previous routine.

6.4 Some applications for the D E SIG N program

DESIGN has possible applications in several different areas. Figure 6.6 showed
one possible use. You can create your own weather maps by drawing a map as

140

the outline and by designing ‘BBC’ style weather symbols to place as you wish
(will you ever need the sun symbol?). Alternatively, designs for gardens or
furniture placement in a room can be made.

Figure 6.7 Use of the DESIGN program for drawing a weather map.

141

Chapter 7

Working in
Three Dimensions

7.1 Data and 2D projections

The techniques of drawing lines between points in a two dimensional plane are
easy to grasp, but problems arise when we come to look at the third dimension.
These problems are not specific to the CPC 6128,CPC 664 or CPC 464: they are
common to all computers, although graphics software packages available on
mini and mainframe computers (and some expensive micros) may include
special facilities for handling three dimensional data, especially with respect to
perspective and projections, topics that we will consider later in this chapter.
The objects that we will look at here fall into the category of ‘wire frame’
pictures, because we will only be considering points and lines, not surfaces as
such. The representation of solid objects will be the subject of Chapter 8.

In order to represent three dimensional data we first need to extend the
rectangular coordinate system introduced in Chapter 4. Recall that in two
dimensions we have an X and a Y axis extending left/right and up/down the
page respectively. In three dimensions we also have to represent depth, and this
is done by the use of a third axis called Z. The Z axis is conventionally drawn
into/out of the page. If you stand a pencil on end on the page of a book, the
pencil represents the Z axis, as you see here.

143

If the observer views the three axes from a position slightly displaced from the
Z axis, the axes appear like this

Y

- Y

Figure 7.2 The three axes in space. The negative Z axis projects out o f the screen towards the
observer.

The Z data is treated in exactly the same way as the X and Y data, that is, it has
its own one dimensional array set up to hold the Z coordinate data for each
point. As an exercise in ‘thinking three dimensionally’, we can consider a cube,
perhaps the simplest three dimensional object. For additional simplicity, we will
also assume that the cube lies in 3D space with coordinates greater than the
origin in all three dimensions. The cube will therefore be defined by a series of
points, whose coordinates might then be as follows:

144

6 6 710

7

8

Figure 7 3 Point and line data for the cube used as a 3D example in this chapter. Line numbers are
underlined.

pt no X Y z
1 50 50 50
2 50 100 50
3 100 100 50
4 100 50 50
5 50 50 100
6 50 100 100
7 100 100 100
8 100 50 100

We can also define the lines to be drawn between the points, in the same way as
we did in the two dimensional case, so

i W(l,i) W(2
1 1 2
2 2 3
3 3 4
4 4 1
5 5 6
6 6 7
7 7 8
8 8 5
9 1 5
10 2 6
11 3 7
12 4 8

145

Note th&t in this case there are more lines than points.

50,100,100 100 ,100 , 100

100,50,100

Figure 7.4 The X,Y,Z coordinates for the cube displayed in Figure 7.3.

Now the W array is dimensioned in exactly the same way in two and three
dimensional representations, and it is also used in the same way. The X Y Z data
on the other hand must be transformed to eliminate the Z axis before drawing,
because there is no way of plotting X Y Z data on an X Y display. We cannot
use the X Y Z coordinate arrays for drawing in the same way as we used the X
Y data in the two dimensional case. For plotting, we will use the XP and YP
arrays that have already been introduced in Chapter 3 section 3.2. The question
that must now be addressed is just how we shrink down from three to two
dimensions.

7.2 Projection methods

Techniques of getting from three dimensional coordinates to a ‘mapping’ in 2D
X Y coordinate data are called projections. Look at the two diagrams below.
The object that is to be projected is held in a three dimensional space called the
view volume (analogous to the 2D window that we met in Chapter 4).

146

PARALLEL PERSPECTIVE

Figure 7.5 Parallel and perspective views of a rectangular block within the view volume, the
equivalent of the window in the two dimensional world. The view plane is the two dimensional t rame
on which the block is projected, and you can see that the projection is different for perspective and
parallel projections.

There are two different types of projection from this volume into two
dimensions, depending on the axis of projection. If projection is towards a
point, we have perspective projection. If projection of all points in the view
volume is parallel, then (naturally enough) the projection is called parallel. You
can visualise this simply as the difference in the position of an ‘observer’. If the
observer is at some distance d from the view volume where d < infinity, then he
will see a perspective view, as the light rays from every point on the object will
converge onto his eyes. If the observer is considered to be at infinity, then the
light rays will never converge, so the projection will be parallel. These railway
lines show the difference between parallel and perspective views.

In general, perspective projections are more realistic, but are slightly more tricky
to program. Parallel projections are conversely Lss ‘realistic’ but more
straightforward. Which you use is largely a matter of the project in hand. You
will be able to compare the effects of each by running the programs described
in this chapter.

If you look again at the projections from the view volume shown above, you will
see an element which we have still to explain. This element is the projection
plane, and it holds the key to our projection problem. The projection plane is

147

Figure 7.6 A striking example of parallel and perspective projections: railway tracks.

defined as the plane in space at which the projection lines are ‘cut’. If the plane
is parallel to the Z axis, the Z coordinates are lost in the plane, because all points
in the plane have an identical Z value. If you compare the parallel and
perspective projections, you will see that the 2D representations on the
projection plane are different in each case.

So the image that is presented to the eye differs depending on the type of
projection. Before looking at the mechanics of the various projection methods,
we should note that the image that results from the 2D projection will vary
depending on the position of the ‘eye’ relative to the origin. For our purposes we
will assume that the eye looks straight down the Z axis, in the same'kind of
orientation to your eyes on the page of this book. This is not a limitation at all,
because we can still rotate any 3D object around to view it from any desired
position. This will become clearer when we discuss 3D transformations later on.

7.3 Entering 3D data

You will recall that we described some utilities in Chapter 3 for creating 2D data
files (FILE2D, SKETCH). We have already seen that a 3D data set can be
created merely by adding an extra set of Z coordinate data, and therefore
FILE2D becomes FILE3D in this new version.

FILE3D program

10 REM ****PR0G RAM F IL E 3 D * * * *

20 REM PROGRAM TO STORE COORDINATE DATA TO BE DRAWN

3 0 IN PU T"FILEN AM E?M; H$

40 OPENOUT H*

50 INPUT"NUMBER OF P O IN T S ? "; NPTS

5 5 W RITE£9,NPTS

148

60 PRINT"ENTER X,Y ,Z TRIPLETS1'

70 FOR 1-1 TO NPTS

80 INPUT"X*"j X:INPUT"Y-*|YiINPUT"Z*”;Z

90 WRITE£9, X

100 WRITE£9,Y

105 WRITE£9,Z

110 NEXT I

120 INPUT"NUMBER OF LINES?"!LI

130 WRITE£9,LI

140 PRINT-ENTER NUMBERS OF JOINING POINTS"

150 FOR 1*1 TO LI

160 INPUT”START NO";SN:INPUT"FINISH NO"|FI

170 WRITE£9,SN

180 WRITE£9,FI

190 NEXT I

200 CLOSEOUT

210 END

SKETCH itself is trickier to adapt. This is not of course because there is
anything inherently complex about setting up a set of 3D data points, but rather
because of the difficulty of getting ‘back’ from the 2D projection on the screen
to 3D data. This can be done in two ways. The first and ‘hairiest’ way is to try
to define points on screen by their X Y and Z coordinates. A possible system for
doing this would be to program the joystick to move the cursor around the
screen in the X, Y plane as used in SKETCH. Instead of creating a 2D picture,
however, two keys could be used to control movement into and out of the screen
to add the Z dimension. Only when Z is set to the correct value would the line
be stored as in SKETCH. The trick is of course in gauging Z. The default for Z
would be set at 0, but Z could be varied from, say, - 300 to + 300. Such a system
would ideally use a windowing facility at the bottom of the screen to keep you
informed of the current Z value. You would have to program some kind of Z
indicator onto the high resolution screen. You would also have the problem of
projection to consider and the simplest solution would be to use parallel
projection. It would be quite easy to amend such a program to draw in
perspective, but this is of no use if you are not an artist!

After reading this last paragraph you may be excused for thinking that I have
acquired the too-common syndrome seen in computer writers who describe vast
numbers of juicy sounding programs without giving the code. Do not fear! The
only reason that you are not faced with a program of the sort outlined here is
that I really have doubts about its usefulness.

Instead, I propose a far neater, but much more restrictive program which allows
you to give some depth information to your 2D data. This program, called
appropriately enough SKETCH3D, allows definition of a 2D outline as in
SKETCH, but after the object is drawn, Z data is added to the X,Y coordinate
data. Next, data representing a second image of the outline is calculated with the

149

same X,Y coordinates, but with Z coordinates set to a chosen value different to
that of the first object image. Besides calculating the X,Y,Z coordinates in this
way, the W array containing line data is also expanded to contain the lines
connecting the first and second set of points. The data so far enables
reconstruction of two parallel planar objects in 3D space, but this is not useful
enough, because what we actually want is a single 3D object. The W array holds
the key to this object, because all that is needed is a set of lines joining
corresponding points in the two planes. The diagram below shows pictorially
the steps in preparation of the final 3D data set. It is also possible to add
additional data to the data set to enable it to be used in conjunction with a
‘hidden lines’ program.

Figure 7.7 Production of a 3D data set from 2D data using SKETCH3D. The first face is defined as
a series of 2D points and lines. Constant Z data are then added to each X.Y coordinate pair. The X
and Y data are then duplicated to produce a back face (with Z values constant but > those of the
front face). A further set of lines is set up joining corresponding points on front and back faces.

SKETCH3D is great fun to use, as it avoids calculation of streams of 3D data
sets. It is of course limited to objects which benefit from the representation
technique, but it is especially helpful in giving practice in ‘thinking 3D’. In order
to change SKETCH into SKETCH3D, MERGE the following SKETCH3D
amendments with SKETCH already in your computer’s memory.

150

SKETCH3D program

10 REM * m PROGRAM SKETCH3D **<t

110 S < 1,2)=0

800 REM NOW CREATE FILE CONTAINING DATA

810 OPENOUT N$

815 GOSUB 1200:REM GET TRANSLATION VALUES

817 PRINT "YOUR X SPREAD IS ",XH-XL

818 PRINT "YOUR Y SPREAD IS ",YH-YL

819 INPUT "INPUT YOUR Z SPREAD"jZZ

820 PRINT£9,NA»2

830 FOR 1=1 TO NA

840 PRINT£9,XP(I)+XTRANS

850 PRINT£9,YP(I)+YTRANS

860 PRINT£9,-(ZZ/2)

870 NEXT 1

875 REM OVERWRITE THIS LINE

880 FOR 1=1 TO NA

890 PRINT£9,XP(I)+XTRANS

900 PRINT£9,YP <I)+YTRANS

910 PRINT£9,< ZZ/2)

915 REM OVERWRITE THIS LINE

920 NEXT I

930 IF S(1,2)=0 THEN S(1,2)«LB

940 PRINT£9,<2*LB)+S<1,2)-l

950 FOR 1=1 TO LB

960 PRINT£9,LN<1,I),LN<2,I)

965 REM OVERWRITE THIS LINE

970 NEXT I

980 FOR 1=1 TO LB

990 PRINT£9,LN(1,I)+NA

1000 PRINT£9,LN(2,I)+NA

1010 NEXT I

1020 FOR 1=1 TO 8(1,2)

1030 PRINT£9,I

1040 PRINT£9,I+NA

1050 NEXT I

1060 PRINT£9,81

1070 FOR 1*1 TO SI

1080 PRINT£9,S(1,I)

1090 PRINT£9,8(2,I)

1100 NEXT I

1110 CLOSEOUT

1120 END

1200 REM ROUTINE TO TRANSLATE X,Y VALS AROUND ORIGIN

1205 XL=640xYL«400*XH-0»YH»0

1210 FOR 1-1 TO NA

1220 IF X P U X X L THEN XL«XP(I)

1230 IF XP(I)>XH THEN XH*XP(I)

1240 IF YP(IXYL THEN YL-YP(I)

1250 IF YP(I)>YH THEN YH=YP(I)

1260 NEXT I

1270 XTRANS - -((XH+XD/2)

151

1280 YTRANS - -((YH+YD/2)

1290 RETURN

As you can see from the above code, most of the changes needed to be made to
SKETCH are in the file creation section.

Line 820

The number of data points in SKETCH3D is 2*NA or twice the number drawn
in the 2D picture.

Line 860

The Z coordinate values for all data points in the front face of the 3D object are
arbitrarily set here at -(ZZ/2), and this can be changed as required.

Line 910

The Z coordinate values for all data points in the rear face are arbitrarily set at
ZZ/2.

Line 930

The part of the front face of the object connected to the analogous points on the
rear face is made up of all the points in the first segment defined. If only one
segment is defined in total, the start line for the second segment will not have
been set, and this will cause the program to fail on line 1020. To avoid this
happening, S(l,2) is set to LB (the number of lines on the first segment) if there
is only one segment present.

Line 940

The number of lines is 2* LB + S(l,2) — 1. In other words, double the number
of lines in the front face, plus the number of lines in the first segment defined
(these are the lines connecting front and rear faces).

Lines 950-970

The first set of lines to be written to the data file are the lines on the 2D ‘front
surface’. These are the lines present in the SKETCH version.

Lines 980-1010

The second set of lines are the analogous lines in the rear face. These are the
same as the front face lines, added to NA, the number of points in the front face.

152

Lines 1020-1050

The remaining lines tire the connecting lines between the first segment in the
front face and the corresponding points on the rear face.

Lines 1060-1100

The segment information is written to the data file.

Figure 7.8 shows the front surface of a picture created using SKETCH3D to
define the data. The reconstructed 3D picture is shown in Figure 7.12.

S SKETCH3D PROGRAM

The ‘easiest’ parallel projections are called orthographic projections. We are all
familiar with ‘front’, ‘side’ and ‘top’ views of architectural plans. These are
orthographic projections perpendicular to one of the three axes, X,Y, or Z.
These views are also very boring in the case of a rectangular object that lies on
the major axes because no illusion of depth is given at all!

3 4 0
8 4

Figure 7.8 Use of SKETCH3D program to create front face of a 3D image.

7.4 Parallel projections

153

FRONT

S ID E

Figure 7.9 The simplest sort of projection: an architectural drawing. From, side and top aspects of
a building correspond to planes in the Z, X, and Y axes respectively.

In order to program orthographic projections of this kind, all you have to do is
to ‘forget’ the Z axis. Any set of 3D data plotted as a 2D X,Y picture is an
orthogonal projection on the Z plane. This type of program introduces the
program format to handle three dimensional data setting up the various data
structures (X, Y, Z, S and W arrays) needed to hold the data. The following
program PROJ3D lays out the backbone for the routines that will be developed
in this chapter, and can be used with any 3D data set to draw an orthogonal
parallel projection.

This program uses the same data file input facility used in TRANSFORM, so
if you want to use your own data created using either FILE3D or SKETCH3D
you can. If you want to by pass creativity at this stage, alternate lines 60-130 are
given after the program listing. These lines include data statements representing
a 3D ‘Wendy house1 for you to draw on the screen.

PROJ3D program

10 REM * * *IPRDGRAM PR0J3D*»I*

20 REM DEMONSTRATES SIMPLE 3D PROJECTION METHOD

30 DIM X(50),Y(50),Z(50),LN(2,50)

40 DIM XP(50),YP(50)

45 CLS

50 REM GET DATA TO DRAW HOUSE

154

60 OPENIN "HOUSE.DAT"

70 INPUTE9,NPTS

80 FOR 1=1 TO NPTS

90 INPUT £9,X(I),Y(I),Z(I)

100 XP(I)=X(I)

110 YP <I)=Y <I)

120 NEXT I

122 INPUTE9, LI

124 FOR 1=1 TO LI

126 INPUTE9,LN<1,I),LN(2,I)

128 NEXT I

130 CLOSEIN

140 REM DRAW AXES

150 MOVE 180,280

160 DRAW 180,180

170 DRAW 280,180

180 REM NOW DRAW HOUSE

185 REM NOTE THAT COORDINATES ARE AT ORIGIN, WITH +200 TRANSLATION

190 FOR 1=1 TO LI

200 MOVE XP<LN<1,I))+200,YP(LN<1,I))+200

210 DRAW XP (LN (2, I)) +200, YP(LN(2,I)) +200

220 NEXT I

230 END

Figure 7.10 Output from PROJ3D showing front view of the Wendy house.

PROJ3D is a very simple program, and consists of the following sections

LINES 30- 40 SET UP ARRAYS
60-130 INPUT DATA FOR HOUSE

180-220 DRAW HOUSE

Lines 30-40

Although no transformations as such are to be done on the data in arrays X and

155

Y, arrays XP and YP are introduced, as they will be used extensively in later
programs to hold transformed data.

Lines 60-130

The data read in is, as you would expect, identical to two dimensional data
except for the addition of Z coordinates. The X and Y values are also stored in
the XP and YP arrays as they are read in.

Lines 140-170

The X and Y axes are drawn to indicate the position of the displaced origin
relative to the object. Again, this code is included only for compatibility with
later programs.

Lines 180-220

Although the data is three dimensional, this simple projection does a 3D to 2D
transformation by conveniently omitting the Z coordinate data altogether. Note
the form of the M 0 V E and DRAW statements in lines 200-210. The coordinate
data is drawn around the origin (ie, the ‘invisible’ centre point of the house is at
0,0. In order to translate the picture into the centre of the screen, a value of 200
is added to each X and Y coordinate value.

Here are the statements required to input the Wendy house data directly inside
the program. Replace lines 50 - 130 with:

50 rem read i n data for house
60 npt s = 14
70 for i=1 to14:readx(i),y(i),z(i):xp=x(i):

yp=y(i)rnext
80 M nes = 19
90 for i=1 to lines:readw(1,i),w(2,i):nexti
100 data0,0,0,0,45,0,22,60,0,45,45,0,45,0,0,0,

0,40,0,45,40,22,60,40,45,45,40,45 40,45
110 data0,40,15,0,0,15,21,0,30,21,0,30,0,0,

1,2,2,3,3,4,4,5,5,1,11,14,5,1,6,2,7
115 data3,8,4,9,5,10,6,7,7,8,8,9,9,10,10,6,11,
12,12,13,13,14

Now whether you have drawn the Wendy house or have reconstructed your own
data using FILE3D, you will not take long to notice that the effect of PROJ3D
is to draw a single, very boring view of the object. No evidence of the object’s
3D structure can be gained from the program as it stands. To ‘pep it up’, you
need to transform the data.

156

7.5 Rotation, translation and scaling revisited

The real usefulness of 3D graphics is really only seen when the 3D data is made
to work in some way, either by moving it around, or by using hidden line
reconstruction methods. Of course, the particular techniques to be used depend
on the application. Arcade type games programs or flight/driving simulators
may need a lot of rotation and translation: the effect of flying a space ship
around a three dimensional obstruction for example. Computer aided design
programs may need an object to be displayed in as ‘realistic’ a manner as
possible, and here the objects may need to show solid surfaces with hidden
surface removal and shading.

As we did with the two dimensional case in Chapter 4, we’ll take rotation first.
As before, the donkey work will be done by matrix algebra, so if you want to
know the nuts and bolts of the techniques involved, turn now to Appendix 2. In
two dimensions, we merely had to specify the origin and we could rotate around
this point. In three dimensions, we need to define a pivot axis. It is easiest to
consider rotation around one of the coordinate axes X,Y or Z, so we will start
by considering these ‘axial’ rotations. We will build up a three dimensional
equivalent to TRV.. (described in Chapter 4), called TRANS3D. The code used
for PROJ3D forms the basis for TRANS3D, and uses a rotation routine to set
up the matrix for the 3D rotations.

TRANS3D program

10 REM ****PR0GRAM TRANS3D****
20 REM DEMONSTRATES SIMPLE 3D PROJECTION METHOD
30 DIM X(30),Y(30) ,Z(30) , LN(2,50), A (4,4)
40 DIM XP(30),YP(30)
50 CLS
55 MODE 1iINK 0,13*INK 1,1:INK 2,3
60 REM GET DATA TO DRAW HOUSE
70 OPENIN "HOUSE.DAT"
80 INPUT£9,NPTS
90 FOR I»1 TO NPTS
100 INPUT £9,X(I),Y (I),Z(I)
105 IF Z(I)>0 THEN Z(I)«Z(I)-60
1 1 0 X P (I) « X < I)

1 2 0 Y P (I) * Y (I)

1 3 0 N E X T I

1 4 0 I N P U T £ 9 , L I

1 5 0 F O R 1 = 1 T O l

1 6 0 I N P U T £ 9 , L N

1 7 0 N E X T I

1 8 0 C L O S E I N

182 REM GET AXIS FOR ROTATION

157

183 INPUT"AXIS FOR ROTATION? - X=1,Y=2,Z=3";M
184 THETA=0
222 GOSUB 400:REM FULL ROTATION SETUP FIRST TIME ONLY
225 REM START MAIN LOOP FOR ROTATIONS
227 k$=INKEY$:IF K$=MS"THEN CLStGOTO 182:REM ABORT THIS ROTATION
230 REM NOW DRAW HOUSE
240 REM NOTE THAT COORDINATES ARE AT ORIGIN, WITH TRANSLATION TO CENTRE
245 CLS
247 GOSUB 1000:REM DRAW AXES
250 FOR 1=1 TO LI
260 MOVE XP(LN(1,1))+320,YP(LN <1,I))+200
270 DRAW XP (LN (2, I)) +320, YP (LN (2, I)) ■♦■200, 1,0
280 NEXT I
290 REM ROTATE THRU 10 DEGREES
300 THETA =THETA + 0.174533
310 A(Ml,M2)=SIN(THETA)
311 A(Ml.Ml)=COS(THETA):A (M2,M2)=COS(THETA):A(M2,Ml)=-SIN(THETA)
320 REM CALCULATE PROJECTION TO X,Y, PLANE
330 FOR 1=1 TO NPTS

340 XP(I)=A(1, 1)*X<I)+A<1.,2)*Y(I)+A<1,3)*Z(I)+A<1,4)
350 YP(I)=A(2,1>*X(I)+A(2,2)*Y<I)+A<2,3>*Z<I)+A<2,4>
360 NEXT I
370 REM END OF MAIN LOOP
380 GOTO 225
400 REM SUBROUTINE ROTATE
410 C*COS(THETA)
420 S=SIN<THETA)
430 FOR K-l TO 4
440 FOR L“1 TO 4
450 A(K,L)=0
460 NEXT L
470 NEXT K
475 REM NOW CALCULATE THE CORRECT INSERTIONS FOR THE MATRIX
476 REM SEE APPENDIX FOR THE THEORY1
480 A (4,4)=1
490 A(M,M)=1
500 Ml=*3-M: IF M1=0 THEN Ml = l
510 M2=3:IF M=3 THEN M2=2
520 A (Ml, Ml) =C: A (M2, M2) =Ci A (M2, Ml) =-S: A (Ml, M2) “S
530 RETURN
1000 REM DRAW AXES
1010 MOVE 310,300
1020 DRAW 310,190,2,0
1030 DRAW 400,190,2,0
1032 LOCATE 20,6:PRINT"Y"
1034 LOCATE 26,14:PRINT"X”
1036 LOCATE 20,14iPRINT"Z"
1040 RETURN

158

LINES
30- 40
50- 55
60-180

182-184
222
225
200-220
290-300

310-311
320-360
370
400-530

1000-1040

SET UP ARRAYS
SET UP COLOURS AND SCREEN
INPUT DATA FOR HOUSE
INPUT ROTATION AXIS,INITIALISE ROT ANGLE
SETUP ROTATION MATRIX
START MAIN LOOP
DRAW HOUSE
INCREMENT ANGLE, CALL ROTATION
SUBROUTINE
ADJUST ROTATION MATRIX
CA1XULATE PROJECTION TO X,Y, PLANE
END OF MAIN LOOP
SUBROUTINE ROTATE
DRAW AXES

Lines 10-247

This section of the program is largely the same as for PROJ3D except that the
rotation axis M is chosen and the initial rotation angle is specified

Lines 290-311

The rotation angle is incremented. The trig functions in the rotation subroutine
work in radians, so the incrementation is in 20 degree units (.174533*2 radians).
As only a few of the rotation matrix values are changed for each angular
increment these values are updated instead of updating the whole matrix each
time.

Lines 320-360

The projection to the X,Y plane is performed using matrix algebra. The matrix
multiplication here is the 4x4 rotation matrix held in array A, multiplied by the
4 x 1 vector holding X,Y and Z coordinates. The matrix multiplication works on
the X,Y and Z arrays, but the results are put into the XP and YP arrays. This is
to ensure that each multiplication is performed on the ‘virgin’ X,Y data to avoid
‘rotating rotations’.

Lines 400-530

The rotate subroutine does not do any matrix multiplication, but merely fills the
correct values into the rotation matrix A. The subroutine looks a little more
complicated than it actually is because it uses the variable M to set which
elements are filled with the various permutations of angles, 0’s and l’s.
Appendix 2 gives the form of the three rotation matrices around the major axes.

159

Figure 7.11 Output from TRANS3D showing rotation of the Wendy house around the Y axis.

160

¥

¥

Figure 7.12 Output from TRANS3D showing rotation of a ‘car chassis’. This shape was created using
SKETCH3D as shown in Figure 7.8

161

If you run TRANS3D you will see the object rotating around one of the axes
X,Y or Z. We have already seen that rotations are considerably easier if you stick
to one of the major axes. Algorithms for more complex rotations can be found
in the advanced graphics books listed in Appendix 3.

Scaling and translation both have equivalents to their two dimensional
counterparts. The method for setting up and using the transformation matrices
are also similar in two and three dimensions. The mathematical background to
three dimensional transformations is given in Appendix 2, and the routines to
add to TRANS3D are as follows:

1 2 0 0 RE M S U B R O U T I N E S C A L E

1 2 1 0 A (1 , 1) = S X : A (1 , 2) = 0 : A (1 , 3) = 0 : A (1 , 4) = 0

1 2 2 0 A (2 , 1) = 0 : A (2 , 2) = S Y : A (2 f 3) = 0 : A (2 , 4) = 0

1 2 3 0 A (3 , 1) = 0 : A (3 , 2) = 0 : A (3 , 3) = S Z : A (3 , 4) = 0

1 2 4 0 A (4 , 1) = 0 : A (4 , 2) = 0 : A (4 , 3) = 0 : A (4 , 4) = 1

1 2 5 0 R E T U R N

1 3 0 0 RE M S U B R O U T I N E T R A N S L A T E

1 3 1 0 A (1 , 1) = 1 : A (1 f 2) = 0 : A (1 , 3) = 0 : A (1 , 4) = T X

1 3 2 0 A (2 , 1) = 0 : A (2 , 2) = 1 : A (2 , 3) = 0 : A (2 , 4) = T Y

1 3 3 0 A (3 f 1) = 0 : A (3 , 2) = 0 : A (3 , 3) = 1 : A (3 , 4) = T Z

1 3 4 0 A (4 , 1) = 0 : A (4 , 2) = 0 : A (4 , 3) = 0 : A C 4 f 4) = 1

1 3 5 0 R E T U R N

I will leave you the exercise of amending the programs in this chapter to make
use of these routines.

7.6 Perspective projections

The algorithm that we will use for perspective projection is very simple, and is
based on the following reasoning. Look at the next diagram. You can see that
two sorts of projection plane are possible: those that are in front of the object
and those that are behind the object. You can also see that the size of the image
relative to the size of the object depends on the position of the perspective plane.
If it is behind the object the projection is larger, but if it is in front of the object
it is smaller. Note also that each point on the object maps to a corresponding
point on the projection plane. The image is of course formed by drawing lines
between the projected points as you would do with a two dimensional object
(and this is why our W array is treated in the same way in 2 and 3D cases).

162

The next diagram shows the geometrical relationship between the position of
the point in 3D space and the position of the projection of the same point onto
the screen. Let the projection plane be distance PP from the eye. For every point
X, Y, Z, we must calculate the X,Y values at Z = PP. For the Y case, y/PP =
Y/Z + PP, and y = Y*PP/Z + PP. in the same way, x = X*PP/Z + PP, so the
calculations for the perspective view are now complete.

SCREEN

Figure 7.14 Relationship of the ‘true’ height of an object Y and its projection y onto the screen. As
the distance from the observer to the screen (PP) and the Z value of the point, y can be calculated
by similar triangles.

163

Now that the hard work has been done we can sit back and look at our
perspective projections on the screen. As you will gather from the above
description, we are not going to have to do much work in order to amend
TRANS3D to handle perspective projections.

PER3D program

10 REM ****PR0GRAM PER3D****

20 REM DEMONSTRATES PERSPECTIVE PROJECTION METHOD

30 DIM X(60),Y<60>,Z(60),LN<2,80>,A<4,4)

40 DIM XP(60),YP(60),ZP(60)

50 CLS

55 MODE 1:INK 0,13:INK 1,1:INK 2,3

60 INPUT"FILENAME";N$

70 OPENIN N$

80 INPUT£9,NPTS

90 FOR 1=1 TO NPTS

100 INPUT £9,X(I),Y(I),Z(I)

105 IF Z(I)>0 THEN Z <I)=Z <I)-60

110 XP(I)=X <I)

120 YP(I)=Y(I)

125 ZP(I)=Z(I)

130 NEXT I

140 INPUTE9, LI

150 FOR 1=1 TO LI

160 INPUTE9,LN(1,I),LN(2,I)

170 NEXT I

180 CLOSE IN

182 REM GET AXIS FOR ROTATION

183 INPUT"AXIS FOR ROTATION? - X=1,Y=2,Z“3";M

184 THETA=0

190 REM GET DISTANCE FROM OBSERVER TO ORIGIN

195 INPUT"DI ST ANCE FROM ORIGIN?";PP

222 GOSUB 400:REM FULL ROTATION SETUP FIRST TIME ONLY

225 REM START MAIN LOOP FOR ROTATIONS

227 K$=INKEY$:IF K$="S"THEN CLS:GOTO 182:REM ABORT THIS ROTATION

230 REM NOW DRAW HOUSE

240 REM NOTE THAT COORDINATES ARE AT ORIGIN, WITH TRANSLATION TO CENTRE

245 CLS

247 GOSUB 1000:REM DRAW AXES

250 FOR 1=1 TO LI

260 MOVE XP(LN(1,I))+320,YP(LN(1,I))+200

270 DRAW XP(LN(2,I))+320,YP(LN(2,I))+200,1,0

280 NEXT I

290 REM ROTATE THRU 10 DEGREES

300 THETA =THETA + 0.174533

310 A(Ml,M2)=SIN(THETA)

311 A(Ml,Ml)=COS(THETA):A (M2,M2)=COS(THETA):A(M2,Ml)=-SIN(THETA)

312 REM NOW WIPE THE LAST PICTURE

313 GOTO 320

314 FOR 1=1 TO LI

164

316 MOVE XP(LN(1,I))+200,YP(LN <1,1))+200

317 DRAW XP(LN(2,I))+200,YP(LN(2,I))+200,1,1

318 NEXT I
320 REM CALCULATE PROJECTION TO X,Y, PLANE

330 FOR 1=1 TO NPTS

340 XT=A(1,1> *X(I> +A(1,2)*Y <I)+A <1,3)*Z <I)+A(1,4>

350 YT=A(2,1)*X(I)+A(2,2)*Y(I)+A(2,3)*Z<I)+A(2,4)

352 ZT=A<3,1>*X(I)+A<3,2)*Y(I)+A(3,3)*Z(I)+A<3,4)

354 DD=ZT+PPs XP (I) =XT*PP/DD: YP < I) =YT*PP/DD: ZP (I) «=DD

360 NEXT I

370 REM END OF MAIN LOOP

380 GOTO 225

400 REM SUBROUTINE ROTATE

410 C=COS(THETA)

420 S=SIN(THETA)

430 FOR K=1 TO 4

440 FOR L=1 TO 4

450 A(K,L)=0

460 NEXT L

470 NEXT K

475 REM NOW CALCULATE THE CORRECT INSERTIONS FOR THE MATRIX

476 REM SEE APPENDIX FOR THE THEORY!

480 A (4,4)=1

490 A (M, M)=1

500 Ml*3-M: IF M1=0 THEN Ml*=l

510 M2=3xIF M=3 THEN M2=2

520 A<M1,Ml)=C« A(M2,M2)=Cs A(M2,Ml)*-S:A(Ml,M2)“S

530 RETURN

1000 REM DRAW AXES

1010 MOVE 310,300

1020 DRAW 310,190,2,0

1030 DRAW 400,190,2,0

1032 LOCATE 20,6:PRINT"Y"
1034 LOCATE 26,14»PRINT"X"

1036 LOCATE 20,14iPRINT"Z"

1040 RETURN

LINES
30- 40 SET UP ARRAYS
50- 55 SET UP COLOURS AND SCREEN
60-180 INPUT DATA FOR OBJECT

182-184 INPUT ROTATION AXIS, INITIALISE ROTATION
ANGLE

190-195 INPUT DISTANCE OF OBSERVER FROM ORIGIN
222 CALL ROTATION SUBROUTINE
225 START MAIN LOOP
227 INPUT OF ‘S’ ABORTS THIS ROTATION SERIES
247 CALL AXIS DRAW ROUTINE
250-280 DRAW OBJECT
290-300 INCREMENT ANGLE, CALL ROTATION

SUBROUTINE

165

310-311 ADJUST ROTATION MATRIX
320-360 CALCULATE PROJECTION TO X,Y PLANE
370 END MAIN LOOP FOR THIS ROTATION
400-520 ROTATE SUBROUTINE

Lines 60-180

The 3D data is read in as in the previous programs in this chapter.

Line 195

The variable PP is the distance from the eye to the origin, as described above.

Lines 320-360

The projection to the X,Y plane starts off with the calculation of values for the
variables XT, YT, and ZT by matrix multiplication in a similar manner used to
get the XP and YP values in TRANS3D. The data so far is a parallel projection,
and the perspective transformation is done in line 260. In this line, the XP and
YP (perspective) values are calculated by multiplying the parallel projections of
XT and YT by the ratio of the distance from the observer to the origin (PP) over
the distance from the observer to the Z coordinate of the point.

You can look at the effect of changing the position of the projection plane by
changing the value of PP in the amended program. Clearly, the size of the
picture will vary depending on the value of PP. If you consider the area of the
projection plane to be the area of your monitor screen, then sensible values of
PP would reflect the distance that you sit from the screen. The most ‘realistic1
distances are probably between PP = 2*h and PP = 3*h, where h is the height
of the screen in pixels. So PP will normally be between 800 and 1200. But don’t
take my word for it! Experiment and see. If you make PP significantly larger
than 600 you will get an almost parallel projection. If PP is less than 400, a
distorted picture will result.

Now that we have looked at the complete armoury of three dimensional ‘wire
frame’ techniques, you should experiment with various data sets and
projections to gain familiarity with the various methods involved. It is
important that you understand these basic techniques before going on to the
next chapter, so that you can concentrate on the intricacies of hidden line
methods.

One specialised form of ‘3D trickery’ that you can perform is to make a
billboard. In computer graphics jargon, a billboard is a 2D drawing or area of
text displayed in 3D. This page of the book could be displayed on your TV or

166

Figure 7.15 Output from PER3D showing the Wendy house rotation in perspective around the Y
axis.

167

ill h o a rd

i 1 1 \ z j n u c 3 f — r —j

P ' l
Figure 7.16 Use of the ‘billboard' technique to display a 2D plane in 3D.

monitor as a 2D plane, with constant Z coordinate of 0 for every point on the
page. But what happens if we rotate the page so that different parts of the page
have different Z values, with some nearer the observer than others? This is
where the fun begins.

Given the program listings in this chapter, billboard creation is very simple. All
you do is amend a program like PER3D, for example, so that it reads in a 2D
data set instead of a 3D one. (All data created using SKETCH can then be used).
Next, you create an ‘artificial’ set of Z data to compensate for the missing data
in the 2D data set. Try putting these alterations into PER3D.

168

10 REM **** BILLBOARD ****

12 REM ADDITIONS TO PER3D FOR 2D DATA INPUT

30 DIM X(500),Y(500),Z(500),LN(2,750),A(4,4)

40 DIM XPI500),YP(500),ZP(500)

100 INPUT£9, X (I) , Y (I) : Z (1) =0

It really is as simple as this!

Rotation of the picture will ‘automatically’ twist the billboard around X,Y or Z
axes as required. Figures 7.16 and 7.17 show the technique in action. You will
recognise the data set in Figure 7.17 as the USA map from Chapter 4. A
‘satellite’s eye view’ has been created!

169

Chapter 8

Hidden Lines and Surfaces

8.1 W hat is a hidden line?

The three dimensional objects that we considered in the last chapter were all of
the ‘wire frame' type. The Wendy house that we rotated in TRANS3D and
PER3D appears confusing because it is often difficult to tell which is the front
face and which is the rear. A method is therefore needed which ‘cuts o ff lines
which should not be seen by the observer.

Y

Figure 8.1 Outline o f the Wendy house positioned around the origin. ’Hidden’ lines are shown
dotted. Each face is coded FI - F7.

171

These cut off lines are called hidden lines, and many algorithms have been
worked out to deal with them. Some methods are relatively simple, others are
much more complex. The problem with all of these methods is the amount of
processing time needed, especially when programming in BASIC. In this
chapter we will look at one of the simplest types of hidden lines algorithms
which can be used on Amstrad home computers.

Although it is quite usual to talk in terms of hidden lines, the term is not strictly
accurate. We are not primarily interested in which line passes in front of another
but rather which surface. We have not up until now considered surfaces at all,
and so our first job in this chapter is to decide just what we mean by a surface,
and how it can be described.

The simplest way of hiding lines and surfaces is to draw the surfaces starting
with the surface furthest from the observer, working forwards to the ‘front’ of
the screen. As long as certain criteria are met (the main one being that the
surfaces are all drawn as solids by use of a fill method), an acceptable picture
can be produced. This method is called a ‘painters algorithm’, as each successive
surface ‘paints’ over underlying faces so that the new surface completely or
partially obscures those underneath it. Here is a simple program that draws four
rectangles. The order of the rectangles from back to front is black, blue, yellow
and green, and the monochrome representation of the picture produced is
shown in Figure 8.2

PAINTER program

10 REM *»»* PAINTER PROGRAM **»*
20 REM DRAWS FOUR RECTANGLES TO DEMONSTRATE SIMPLE HIDDEN SURFACE METHOD

30 MODE 0

40 INK 0,13:INK 1,0:INK 2,2:INK 3,12:INK 4,7

50 REM DRAW RECTANGLES

60 REM BLACK RECTANGLE

70 GRAPHICS PEN 1

80 FOR Y=300 TO 200 STEP -1

70 MOVE 100, Y

100 DRAW 400, Y

110 NEXT Y

120 REM BLUE RECTANGLE

130 GRAPHICS PEN 2

140 FOR Y-350 TO 250 STEP -1

150 MOVE 150,Y

160 DRAW 350, Y

170 NEXT Y

180 REM YELLOW RECTANGLE

170 GRAPHICS PEN 3

200 FOR Y=250 TO 150 STEP -1

210 MOVE 200,Y

220 DRAW 400,Y

172

230 NEXT Y

240 REM GREEN RECTANGLE

250 GRAPHICS PEN 4

260 FOR Y=380 TO 200 STEP -1

270 MOVE 230,Y

280 DRAW 500,Y

290 NEXT Y

299 ICOPY

300 STOP

Figure 8.2 Use of the ‘painter’s algorithm’ to draw surfaces.

This method of overwriting colours is the same technique as we used for the
HIST03D program in Chapter 5.

8.2 Defining surfaces

Let us review our structures for representing 3D data. We have arrays X, Y and
Z which hold sequential lists of the X, Y and Z coordinates for the points in the
picture. We also have an array W which contains the data for drawing lines

173

between the sets of coordinates. We now need to introduce two new arrays which
will be used to hold the surface information. These arrays are called FA and NL.
FA is dimensioned FA(i j) where i is the number of lines defining surface j. The
values in each element of the array are the indices held in our W array. Knowing
the value of a given element of FA, then, allows us to access the coordinates of
the points at either end of the line to which it refers. The second array,
dimensioned NL(k), holds the number of lines defining each surface, with k
representing the total number of surfaces.

If this is unclear, refer to the following diagram, which shows the relationship
between all the arrays we have introduced so far: the data is for a cube. It is
important that you take the trouble to work out this relationship, or else you will
have difficulty in creating your own data sets for hidden lines treatment.

FA W X Y

Figure 8.3 Relationship of FA, W, X and Y arrays (cf Figure 3.4). Here, each element for a particular
index in FA ‘points’ to a line in the W array.

no. X Y Z

1 -5 0 -5 0 -5 0
2 -5 0 50 -5 0
3 50 50 -5 0
4 50 -5 0 -5 0
5 -5 0 -5 0 50
6 -5 0 50 50
7 50 50 50
8 50 -5 0 50

174

lines = 12
W

no. 1 2

1 1 2
2 2 3
3 3 4
4 4 1
5 5 6
6 6 7
7 7 8
8 8 5
9 2 6
10 1 5
11 3 7
12 4 8

Figure 8.4 Point, line and face data for a cube. Lines are underlined here The faces are labelled A - F.

175

-5 0 ,5 0 ,5 0 5 0 ,5 0 ,5 0

Figure 8.5 Coordinate data for the cube used in the hidden lines demonstration. Note that the origin
is inside the cube (cf Figure 7.4).

We now have all the information required to define each surface in terms of a
polygonal mesh, or rather a closed series of lines drawn between points. But in
order to perform hidden surface analysis, we also need to be able to sort out
which surfaces lie in front of others. In other words, we need to know the plane
in which the surface lies in 3D space. This procedure is easily done using
coordinate geometry, and methods for doing it can be found in many textbooks,
some of which are listed for further reading at the end of this book.

8.3 A complete hidden lines program

Armed with our expanded data structures and the algorithm for calculating
coefficientS'of planes in 3D space, we can attempt to implement a hidden lines
algorithm. The following algorithm only works in a restricted range of cases.
Nevertheless, given the speed limitations of BASIC it is a useful piece of code.
Let us start by listing the restrictions on its use. The algorithm can be used if:

(1) All the surfaces are convex (that is, every line drawn between any two
points on a non-adjacent surface stays within the surface).

(2) The origin (the point 0,0,0) is positioned inside the object. The reason
for this will shortly become clear.

(3) Only one object is to be drawn.

Given these limitations, the program is comparatively speedy. It can be broken
down into the following steps.

176

(1) Choose three points on each surface of the object.
(2) Calculate the plane of the surface from the coordinates of the three

points.
(3) Check to see if the plane is between the origin and the observer.
(4) Make a list of all the lines in all the planes which are between origin

and observer.
(5) Eliminate duplications in the list.
(6) Draw the lines for a hidden lines picture.

All these elements are quite straightforward when looked at individually. The
heaviest computation occurs in steps (4) and (5), because as each surface is
processed and the line list is added to, redundancy occurs due to lines which are
duplicated on several surfaces being repeated in the list. The redundant list
entries are removed by (1) putting the list into a numeric order and then (2)
stripping out duplications.

Satisfy yourself that all surfaces between you (the observer) and the origin are
visible, and that all other surfaces are not visible in Figure 8.1

The data set used in HIDDEN may be created using FILE3DH, a version of
FILE3D which allows the incorporation of the extra information needed to
draw a hidden lines picture, namely the number of surfaces, number of lines
around each surface and the codes of these lines so that they can bp ‘picked o ff
from the existing X, Y, Z and W arrays. Here is FILE3DH in full:

FILE3DH program

10 REM **»IPR0GRAM FILE3DH**»«

20 REM PROGRAM TO STORE COORDINATE DATA

25 REM VERSION FOR HIDDEN LINE REMOVAL

30 INPUT"FILENAME?”;H*

40 OPENCUT H$

50 INPUT"NUMBER OF POINTS?";NPTS

55 WRITE£9,NPTS

60 PRINT"ENTER X,Y ,Z TRIPLETS"

70 FOR 1 = 1 TO NPTS

80 INPUT"X, Y, Z="j X,Y,Z

90 WRITED9,X

100 WRITEC9, Y

105 WRITE£9, Z

110 NEXT I

120 INPUT"NUMBER OF LINES?";LI

130 WRITE£9,LI

140 PRINT"ENTER NUMBERS OF JOINING POINTS"

150 FOR 1=1 TO LI

160 INPUT"ST, FIN N0S=";SN,FI

170 WRITE£9, SN

177

180 WRITEE9,FI

190 NEXT I

200 REM NOW GET THE SURFACE DATA

210 INPUT-NUMBER OF SURFACES?"jNF

215 PRINTE9,NF

220 REM DIMENSION SURFACE ARRAYS

230 DIM FA(12,NF),NL(NF)

240 PRINT"NOW INPUT CLOCKWISE LINES AROUND EACH SURFACE"

260 FOR 1=1 TO NF

270 INPUT"NO OF LINES IN THIS SURFACE?"|NLF

275 NL(I)=NLF

280 FOR J=1 TO NLF

290 INPUT "LINE=";LNUM

300 FA (J,I)=LNUM

310 PRINTER,LNUM

320 NEXT J

330 REM NOW FILL ARRAY WITH ZEROS TO MAX LINE NO

340 IF NLF=12 THEN 390

350 FOR K=J TO 12

360 FA(K,I)=0

370 PR I NT£9,0

380 NEXT K

390 NEXT I

400 REM NOW STORE LINES PER SURFACE ARRAY

410 FOR 1=1 TO NF

420 PRINTE9,NL(I)

430 NEXT I

440 CLOSEOUT

450 END

The main hidden lines program HIDDEN is also reproduced in full here to save
any confusion in adapting TRANS3D, on whose skeleton it is based. For your
own convenience you will probably find it easier to load TRANS3D and to do
extensive editing than to type the program from scratch.

HIDDEN program

5 REM * * *tPROGRAM HIDDEN****

10 REM USE PP=1000 TO TEST

20 MODE 1jINK 0,13s INK 1.1:INK 2,3

30 PP=1000

40 DIM X(40),Y(40),Z(40),LN(2,60),A (4,4),FA(12,40),NL(40),LS(40)

50 DIM XP(40),YP(40),ZP(40)

60 REM GET DATA TO DRAW SHAPE

70 INPUT"FILENAME?";H $:OPENIN H$

80 INPUTE9,NPTS

90 FOR 1=1 TO NPTS

100 INPUTE9,X(I)

110 INPUTE9,Y(I)

120 INPUTE9,Z(I)

130 XP(I)=X(I)sYP(I)=Y(I)

178

140 NEXT I

150 INPUTE9,LI

160 FOR 1=1 TO LI

170 INPUTE9,LN(1,I),LN(2,I)

180 NEXT I

190 INPUTE9,NF

200 FOR 1=1 TO NF

210 FOR J=1 TO 12

220 INPUTE9,FA <J,I)

230 NEXT J

240 NEXT I

250 FOR 1=1 TO NF

260 INPUTE9,NL(I)

270 NEXT I

280 CLOSE IN

290 REM GET AXIS FOR ROTATION

300 REM GET AXIS FOR ROTATION

310 INPUT"AXIS FOR ROTATION? - X=1,Y=2,2=3";M

320 THETA=0

330 GOSUB 540*REM FULL ROTATION SETUP FIRST TIME ONLY

340 REM START MAIN LOOP FOR ROTATIONS

350 K$=INKEY$:IF K$*"S"THEN CLSrGOTO 300:REM ABORT THIS ROTATION

360 REM NOW DRAW OBJECT

370 REM NOTE THAT COORDINATES ARE AT ORIGIN, WITH TRANSLATION TO CENTRE

380 CLS

390 GOSUB 700:REM DRAW AXES

400 REM ROTATE THRU 10 DEGREES

410 THETA =THETA + 0.174533

420 A(Ml,M2)*SIN(THETA)

430 A(Ml,Ml)=COS(THETA):A(M2,M2)=C0S(THETA)iA(M2,M1)=-SIN(THETA)

440 REM CALCULATE PROJECTION TO X,Y, PLANE

450 FOR 1=1 TO NPTS

460 XT=A< 1, 1) *X (I) +A (1,2) *Y (I > +A < 1,3) t Z < I > +A < 1,4)

470 YT=A(2,l)tXU)+A<2,2> *Y<I)+A(2,3>*Z<I)+A<2,4)

480 ZT=A(3,1)*X(IM-A(3,2) tY(I)+A<3,3)IZ(I)+A(3,4)

490 DD=ZT+PP:XP(I)=XTtPP/DD:YP(I)=YTtPP/DD:ZP(I)=ZT

500 NEXT I

510 GOSUB 780:REM HIDDEN LINES ROUTINE

520 REM END OF MAIN LOOP

530 GOTO 340
540 REM SUBROUTINE ROTATE

550 C=COS<THETA)

560 S-SIN(THETA)

570 FOR K»1 TO 4

580 FOR L»1 TO 4
590 A(K,L)-0

600 NEXT L

610 NEXT K

620 REM NOW CALCULATE THE CORRECT INSERTIONS FOR THE MATRIX

630 REM SEE APPENDIX FOR THE THEORY!

640 A(4,4)=1

650 A(M,M)*1

660 Ml=3-MiIF Ml-0 THEN Ml=l

670 M2=3xIF M=3 THEN M2-2

179

680 A (Ml, Ml) =C: A (M2, M2) =C: A (M2, Ml) =-S: A (Ml, M2) =S

690 RETURN

700 REM DRAW AXES

710 MOVE 310,300

720 DRAW 310,190,2,0

730 DRAW 400,190,2,0

740 LOCATE 20,6:PRINT"Y"

750 LOCATE 26,14:PRINT"X"

760 LOCATE 20,14:PRINT"ZM

770 RETURN

780 REM SUBROUTINE HIDDEN

79Q IC=0s C*0:REM SETUP COUNTERS

800 REM GET POINTS IN THE PLANE

810 FOR IH=1 TO NF

820 11=FA (1, IH): I2=FA (2, IH)

830 15"LN (1, ID i 16=LN (2, ID: I7=LN(1, 12)

840 IF (15=17) OR (16=17) THEN I7=LN(2,I2)

850 REM NOW CALCULATE PLANE POSITION

860 X5=XP(15)-XP(16):Y5=YP(15)-YP(16):Z5=ZP(15)-ZP(16)

870 X6=XP(I7)-XP(I6):Y6-YP(17)-YP(16):Z6=ZP(17)-ZP(16)

880 A9«»Y5t Z6-Y6tZ5

890 B9=Z5*X6-Z6*X5

900 C9=X5tY6-X6IY5

910 D9=A9*XP(I5) +B9*YP(I5) +C9*ZP(I5)

920 REM ARE OBSERVER AND ORIGIN ON DIFFERENT SIDES OF THE PLANE?

925 IF D9-0 THEN F9=0:G0T0 940:REM AVOID DIVIDE BY ZERO

930 F9«(1+C9IPP)/D9

940 IF F9>*0 THEN 1010

950 OC+1

960 IX=NL(IH)

970 FOR JH=1 TO IX

980 IC-1C-M

990 LS(IC)=FA(JH,IH)

1000 NEXT JH

1010 NEXT IH

1020 REM ORDER THE LIST

1030 FOR IH=1 TO IC-1

1040 II-IH+1

1050 LL-LS(IH)

1060 FOR JH=II TO IC

1070 IF LL<*LS(JH) THEN 1110

1080 LL=LS(JH)

1090 LS(JH)-LS(IH)

1100 LS(IH)=LL

1110 NEXT JH

1120 NEXT IH

1130 REM NOW GET RID OF DUPLICATIONS IN THE LIST

1140 JH=1

1150 FOR IH=2 TO IC

1160 IF LS(IH)“LS(JH) THEN 1190

1170 JH-JH+1

1180 LS <JH)*LS(IH)

1190 NEXT IH

1200 IC=JH

180

1210 IN=*1

1220 LQ=LS(1)

1230 REM NOW DRAW THE PICTURE USING LINES IN LIST ONLY

1240 FOR IH-1 TO LI

1250 L2«LN<2,IH)

1260 L1«LN(1,IH>

1270 IF IHOLQ OR IN>IC THEN 1320

1280 MOVE XP(LI)+320,YP(LI)+200

1290 DRAW XP(L2)+320,YP(L2)+200,1,0

1300 IN-IN+1

1310 LQ=LS(1N>

1320 NEXT IH

1330 FOR I»1 TO lOOOlNEXT I

1340 RETURN

HIDDEN consists of the following sections

LINES 20 SET MODE AND COLOURS
30 SET OBSERVER TO ORIGIN DISTANCE
40- 50 SETUP ARRAYS
70- 280 INPUT DATA FOR OBJECT

300- 320 INPUT ROTATION AXIS, INITIALISE ROTATION
ANGLE

330 CALL ROUTINE SETTING UP ROTATION
MATRIX

340 START MAIN LOOP
350 EXIT THIS ROTATION SEQUENCE ON TEST
390 CALL AXIS DRAW ROUTINE
400- 430 INCREMENT ANGLE, UPDATE MATRIX
440- 500 CALCULATE PROJECTION TO X,Y PLANE
510 CALL HIDDEN SUBROUTINE
530 END MAIN LOOP FOR THIS ROTATION
540- 690 SUBROUTINE ROTATE (AS IN CHAPTER 7)
700- 770 AXIS DRAW SUBROUTINE
780 START OF SUBROUTINE HIDDEN
790 INITIALISE COUNTERS
800- 840 THREE POINTS NEEDED FOR EACH PLANE
850- 910 CALCULATE PLANE COEFFICIENT IN 3D SPACE
920- 940 TEST TO SEE IF OBSERVER AND ORIGIN ARE

ON OPPOSITE SIDES OF THE PLANE
950-1000 STORE ALL LINE INDICES IN THIS FACE IN

ARRAY LS
1010 LOOP BACK TO PROCESS NEXT PLANE
1020-1120 PUT LS LIST IN ORDER

181

1130-1190 GET RID OF LS LIST DUPLICATIONS
1200-1220 INITIALISE VARIABLES FOR PICTURE DRAW
1230- 1320 DRAW PICTURE USING LINES IN LS ARRAY
1330 DELAY LOOP
1340 RETURN TO MAIN PROGRAM

Lines 10-770

All the steps here are identical to those met in the last chapter in the program
PER3D. This part of the program draws and rotates a cube in perspective
around one of the major axes. The section for inputting the object data (lines
70-280) is expanded to read the surface data into the arrays FA and NL. The axis
draw section (subroutine at lines 700-770) is only for demonstration purposes
and can be omitted as required.

Line 790

The two counters IC and C are initialised. C is the number of surfaces to be
displayed after hidden line removal. IC is the number of lines in the LS list.

Lines 800-840

The method for finding which surfaces are visible depends on calculation of a
‘plane coefficient’ for each face. This plane coefficient is found from the
positions of three points on each face. The first two lines in each face are
obtained from the FA array (and are placed in variables II.and 12).

The points at the start of the first line and the start of the second line are then
obtained from the W array, and are in turn placed in variables 15 and 16. The
point at the end of the first line is placed in variable 17. If either 15 or 16 = 17
then the end point of the second line is placed in 17.

Lines 850-910

The plane position is calculated in the following manner. The difference
between the X and Y and Z coordinates of the points 15 and 16, and 16 and 17
are placed in variables X5, Y5, Z5 and X6, Y6, and Z6.

Variables A9, B9, and C9 are then calculated, and variable D9 is found from
these values. The plane coefficient F9 is then calculated in line 640. If this

182

coefficient is less than or equal to 0.0, it means that the surface is not between
the observer and the origin, so the surface is discarded.

Lines 950-1000

All the lines in the surface (if it has not been discarded) must now be stored in
an array which will be used to draw the final picture. Counter C is incremented
(one more surface), and the variable IX is set to the number of lines in the
surface (using the NL array for reference: note that the loop variable IH will be
set at the correct surface number). The counter IC is incremented for each new
line, and the FA array is used to obtain each successive line for the surface being
processed. These lines are then put into the LS array. Note also that the line
indices held in LS are not segregated specifically into surfaces, LS merely holds
a list of lines.

Lines 1020-1190

The next stage is carried out when all surfaces have been processed, and involves
first ordering the LS array, so that all line ‘repeats’ (ie occurrences of the same
line in two visible faces) are grouped. After this ordering has been carried out
(lines 1020-1120) it is easier to remove all multiple occurrences of the same line
(lines 1130-1190). I leave you to work out how these two steps are performed!

Lines 1200-1220

IC is no longer a true indicator of the number of lines because of the removal
of duplications. You can see from line 840 than JH is used temporarily to store
the ‘reduced’ number of lines. IC must therefore be reset to JH. Variable LQ is
used to hold the current line number (from the LS list), and IN is a counter for
the LS list.

Lines 1230-1320

The picture is drawn in essentially the same manner as was used for PER3D in
the last chapter. The main difference is that LQ is only changed once the current
‘visible’ line has been reached in the main line list. If the line currently being
processed is LQ then it is drawn, IN is incremented, and LQ is assigned the value
of the next LS element. In other words, LQ becomes the next line number which
may be drawn.

183

Figure 8.6 Output from HIDDEN showing cube rotation around the X and Y axes.

You can use HIDDEN for any 3D data set which is not concave, so long as the
origin is set inside it. This of course just means that coordinate 0,0,0 must be
inside the figure. But you shouldn’t think that this limitation restricts you to
viewing the picture in the bottom left hand corner of the screen! It does mean
that you must use the scaling and translating routines after hidden lines
processing to position the drawing where you want it on the screen. There is in
fact a short cut to this repositioning process, and this short cut has been used in
HIDDEN. All I’ve done is to add + 30 to the final X and Y coordinates at the
time of plotting. This increment is completely arbitrary and could be anything
between 0-639 X and 0-399 Y depending on the original position of the picture
to be transformed.

184

Figure 8.7 Output from HIDDEN showing hidden lines picture of a ‘crystal’. Rotations are around
the X, Y and Z axes, (left, centre and right columns respectively).

185

The figure above may be drawn using the following data set. Although the shape
is more complex than a straightforward cube, it still fulfills the criteria needed
for our simple hidden lines algorithm to work.

13

Figure 8.8 Point and line data for a 14-gon ‘crystal’. The surface data has been omitted from this
figure for clarity (see data below).

npts = 14
no. X Y Z

1 100 70 0
2 140 70 -6 0
3 200 70 -6 0
4 240 70 0

186

w

1
1
2
3
4
5
6
1
2
3
4
5
6
1
2

7VL
4
4
4
4
4
4
3
3
3
3

5 200 70 60
6 140 70 60
7 100 130 0
8 140 130 -6 0
9 200 130 -6 0

10 240 130 0
11 200 130 60
12 140 130 60
13 170 190 0
14 170 10 0

W

2 no. 1 2
2 15 3 9
3 16 4 10
4 17 5 11
5 18 6 12
6 19 7 8
1 20 8 9

14 21 9 10
14 22 10 11
14 23 11 12
14 24 12 7
14 25 7 13
14 26 8 13
7 27 9 13
8 28 10 13

29 11 13
30 12 13

FA
1 2 3 4
13 1 14 19
14 2 15 20
15 3 16 21
16 4 17 22
17 5 18 23
18 6 13 24
19 26 25 0
20 27 26 0
21 28 27 0
22 29 28 0

187

11 3 23 30 29 0
12 3 24 25 30 0
13 3 1 7 8 0
14 3 2 8 9 0
15 3 3 9 10 0
16 3 4 10 11 0
17 3 5 11 12 0
18 3 6 12 7 0

8.4 Extension of SKETCH3D

The extension of SKETCH which allows 3D data sets to be composed on screen
can itself be extended to include surface data. The extra lines to add to
SKETCH3D are given below, and we will call this new version SKETCH3DH.
The surface data is made up of the initial outline (surface one), the duplicate
outline (surface two), together with the other surfaces, each of which is a
rectangle, made up of each line on surface one, its duplicate on surface two, and
the lines which join the points at either end of the first two lines on the two
surfaces. These surfaces are indicated in the following figure.

Figure 8.9 Output from SKETCH3DH. The picture at the bottom right shows that even a non
convex shape can be drawn with the HIDDEN program in a few cases.

188

The main HIDDEN program needs several alterations to work well with
SKETCH3DH. These alterations mainly consist of calculation of the centre
point of the data, with translation of this point to the origin. All other points
are translated by the same negative displacement. You will recall that we used
this technique to transform the segment data in the DESIGN program (Chapter
6). Only X and Y points need to be transformed, because SKETCH3DH
automatically sets the Z values of the front and rear surfaces to be greater than
and less than 0 respectively. Here are the changes that need to be made to
SKETCH3D.

SKETCH3DH program

10 REM **** PROGRAM SKETCH3DH ****

110 S(1,2)= 0

800 REM NOW CREATE FILE CONTAINING DATA
810 OPENOUT N$

815 GOSUb 1200:REM GET TRANSLATION VALUES
B17 PRIN1 "YOUR X SPREAD IS ",XH-XL
818 PRINT "YOUR Y SPREAD IS ",YH-YL

819 INPUT "INPUT YOUR Z SPREAD";ZZ
820 PRINTER,NA*2
830 FOR 1=1 TO NA
840 PRINTER,XP(I)+XTRANS

850 PRINTER,YP<I)+YTRANB
860 PRINTER,- (1 1 / 2)

870 NEXT I
875 REM OVERWRITE THIS LINE
880 FOR 1=1 TO NA
890 PRINTE9,XP(I)+XTRANS
900 PRINTE9,YP(I)+YTRANS
910 PRINTE9,<ZZ/2)
915 REM OVERWRITE THIS LINE
920 NEXT I
930 REM IF S<1,2)=0 THEN S<1,2)=LB
940 PRINTER,(3*LB)+1
950 FOR 1=1 TO LB

960 PRINTE9,LN <1,I),LN(2,I)
965 REM OVERWRITE THIS LINE
970 NEXT I
980 FOR 1=1 TO LB

990 PRINTER,LN(1,I)+NA
1000 PRINTE9,LN < 2,I)+NA
1010 NEXT I
1020 FOR 1=1 TO LB
1030 PRINTER,I
1040 PRINTE9,I+NA
1050 NEXT I
1060 PRINTE9,LB+1
1070 PRINTER,LB+l+NA
1080 PRINTE9,LB+2
1090 FOR 1=1 TO LB
1100 PRINTE9,I

189

1110

1120

1130
1140
1150
1160
1170
1180

1185
1190
1192

NEXT I

PRINTE9, I ■►LB
NEXT I

FOR 1=1 TO LB+1

FOR 1=1 TO LB

PRINTE9,I,I+<2*LB>,I+LB,I+<2tLB)+l
NEXT I

PRINTE9,LBs PRINTER, LB
FOR 1=1 TO LB
PRINTER,4

NEXT I
1194 CLOSEOUT

1196 END
1200 REM ROUTINE TO TRANSLATE X,Y VALS AROUND ORIGIN
1205 XL=640:YL=400:XH=0:YH=0
1210 FOR 1=1 TO NA

1220 IF XP(IXXL THEN XL=XP(I)
1230 IF XP(I)>XH THEN XH=XP(I)

1240 IF YP(IXYL THEN YL-YP(I)
1250 IF YP(I)>YH THEN Y H -Y P(I)
1260 NEXT I
1270 XTRANS = -((XH+XD/2)

1280 YTRANS = -<<YH+YL>/2>
1290 RETURN

These changes may appear a bit complex, so you may find the following notes
of help.

Line 815, subroutine at line 1200

The picture created using SKETCH3D will be placed at some arbitrary point on
the screen, and will not be centred around the origin. The first job of the
amended program is therefore to work out the translation necessary to move all
the data points to new locations around the origin (we have already used this
technique in the DESIGN program in chapter 6).

Lines 1200-1260

The minimum and maximum X and Y coordinates for the data set are
calculated.

Lines 1270-1280

The X and Y translation variables XTRANS and YTRANS are calculated in
these lines.

Lines 1020-1192

This new section handles the surface data. As you will appreciate, the front and

190

back surfaces of any object created using SKETCH3DH will have a variable
number of sides, whilst all the other surfaces have four sides, one each at front
and back, and two joining front and back surfaces. Line XXX inputs the total
number of lines, and works out LT, the number of lines on each of the front and
back surfaces from this.

In line 142 the number of surfaces is inputted, and the arrays FA and NL are
dimensioned using this information. Lines 144-148 contain the surface data
input statements, and line 150 sets the number of lines within each surface.

To use SKETCH3DH you will also need to make some amendntents to the
HIDDEN program. Here are the alterations. As before, MERGE these lines
with HIDDEN already in memory.

10 REM ««•» HIDDEN2 - FOR USE WITH S3DH »***

200 LT*(LI-1)/3

205 FOR 1*1 TO LT

210 INPUT£9,FA(1,1)
215 NEXT I
220 FOR 1*1 TO LT

225 INPUTE9,FA(I,2)
230 NEXT I

235 FOR 1*3 TO NF
240 INPUT£9,FA(1,I),FA<2,I),FA<3,I),FA(4,I)
245 NEXT I
250 NL(1)=LT:NL(2)*LT
255 FOR 1*3 TO NF
260 NL(I)=4
270 NEXT I

8.5 M ore advanced techniques

HIDDEN will not work properly on pictures with more than one object (the
origin cannot be inside two objects at once, unless they surround each other).
This is perhaps the biggest disadvantage of what is a relatively simple and
speedy algorithm. If you wish to use a more ambitious hidden surface
approach, then it is not really feasible to use an Amstrad BASIC program
because of the time it will take to process the picture. If you do want to delve
further into the world of advanced computer graphics, some books are listed in
Appendix 3. You may find some of these texts heavy going, but you have a
sufficient grounding in graphics techniques now to tackle some demanding
homework! During the preparation of this book I toyed with the idea of

191

including a more sophisticated hidden lines algorithm (a BASIC version of the
algorithm given in Angell’s book referenced in Appendix 3). My poor Amstrad
took five minutes to plot a 20 point hidden lines picture using this algorithm, so
I reluctantly decided not to include the details here.

There are in fact many hidden surface algorithms, and one in particular is
worthy of further mention here because it is so conceptually simple, yet
tantalisingly difficult to implement on a low memory computer. This is the
depth-buffer algorithm. In depth buffering, each pixel is assigned depth
information. The visible screen of the monitor is viewed as a long narrow box
measuring the standard X by Y pixels, but with depth, or the Z dimension
extending back into the screen. Associated with the main bit map, there is an
additional memory area which contains the Z value for each pixel.

To start with, the Z value of all pixels is set to the maximum value. The depth
memory then has the equivalent of a solid surface across the furthest end of the
box. Next, a surface is written into the bit map. Each pixel that makes up the
polygon depth is compared with the value already in the depth buffer for that
location. If the new value of a pixel is less than its existing value, it is itself
written into the bit map, and its Z value is substituted for the old value in the
depth buffer. Because all locations of the buffer have been preset to the
maximum value, all the pixels of the first surface are written. Z values for pixels
that are not on the lines defining the surface are found by mathematical means,
in a similar way to that used in filling a shape.

If, on drawing a subsequent surface the new Z value is further away than the Z
value already existing for a particular pixel, it should be hidden and not drawn.
If on the other hand the Z value is less than the existing pixel, it is closer to the
screen, and should overwrite the existing point. The effect of repeating this
procedure for all points is that only the visible surfaces are drawn. Note that the
surfaces need not be processed in any particular order. The main overhead in
this hidden surface method is the size of the Z buffer. It would be difficult to
operate with less than two bytes per pixel: even the Amstrad’s memory does not
have 128K bytes spare!

Nevertheless, this technique presents possibilities for the enterprising machine
code programmer. A ‘Z buffer extension ROM’ could be developed for the
Amstrad machines which would enable very sophisticated real time hidden lines
programming. Is this just a dream? Modern graphics systems coupled to mini
and mainframe computers have depth buffering and can shade a 640 X 512 pixel
picture with up to 5000 surfaces in from two to five seconds. The cost? Around
£20,000 - £30,000 at 1985 prices.

192

Chapter Nine

A Sample Application:
Drawing Molecules

9.1 Setting the scene

In all the earlier chapters of this book we have looked in quite general terms at
the sorts of graphics approaches and techniques that you can use on your
Amstrad. In this final chapter we will consider a rather more specialised case
history: how to draw atoms and molecules on a home computer. At this point
I must reveal a little of my own background. My main training has been as a
biologist and although my interest in computers submerges this other interest
from time to time there are quite a few occasions when the two fields work
together very well. Graphics are used in various biological disciplines, from the
use of graphs and histograms in the plotting of experimental data to the use of
complex graphics simulation techniques. One of the most colourful uses of
graphics in the life sciences is the reconstruction of the appearance of biological
molecules from spatial coordinate data of the constituent atoms.

As you are probably aware, all matter is made up of atoms arranged in
characteristic groups called molecules, and the proportions and types of
different atoms in substances can be gauged by the technique of X-ray
crystallograpy. Many different methods for reconstructing the appearance of
molecules have been devised, from crude representation made out of ‘coat-
hanger wire’ to specially designed plastic kits. Most recently, computer graphics
reconstructions have been used, and you may have seen examples of the
impressive pictures produced by the most expensive graphics systems. Our
problem is therefore this. Can we use an Amstrad computer to draw pictures of
molecules from a set of coordinate data?

9.2 Solving the problem

The most important question to ask is, therefore, what elements of a computer
system are necessary to draw molecules? The answer is not clear-cut. As with
any computer work there are trade-offs to consider. Let us start with the

193

essentials. What do we need in a graphics system to do this kind of work?
Firstly, the system must be able to display non-text graphics. Next, there must
be sufficient processing power and memory available to calculate coordinate
positions in three dimensional space and to do the relevent 3-space to 2-space
projections that we have already seen in Chapter 7. So far so good. But what
about the actual appearance of the atoms within a molecule? Should all the
atomic particles be drawn? Should a hidden lines algorithm be used? What
about colour and definition?

Few molecular models consider atomic particles at all. This is for reasons of
clarity rather than any inherent difficulty in drawing the particles. Molecules are
of interest to biologists primarily because of their arrangements of atoms, not
because of the arrangements of the subatomic particles. Molecules are
characteristically modelled on computers as opaque or transparent spheres,
with the outer electron orbit (ie the maximum physical diameter of an atom) as
the diameter of the sphere. In ‘ball’ models, only the atom positions are
modelled. An alternative method of display is to join atoms that are chemically
joined in each molecule (the so-called ‘ball and stick’ model). The form of the
balls is also open to a variety of display treatments. Is a ‘true’ spherical
representation to be used, or will a common or garden circle do? Is the sphere
to show shading,incident and reflected light?

We can now begin to narrow down our Amstrad options. To start with,
phenomena like light reflection and true shading are both computationally very
intense and need a huge palette of colours (say of the order of 64 grey shades for
an absolute minimum representation in monochrome only). Light ray tracing
also needs a very high resolution graphics system, say 1024 X 1024 pixel
resolution. At the time of writing, the display device alone (forget the computer)
would not leave much change from £10,000. We will therefore stick with
‘common or garden circles’.

But this is where the fun begins. What we are really trying to do is to play the
‘big boys’ game with our humble home computer. What tricks can we use to
make up for the lack of mainframe processing power and resolution on the
Amstrad machines? Trick number one relies on the human eye. If a smooth
non-reflectant sphere is observed under even lighting conditions at a distance it
is impossible to distinguish it from a two dimensional coloured circle. This
means that our simple Amstrad circles can perform a good simulation of a
sphere!

If you have read Chapter 7 (and I hope that by now you have read it), you will
recall that transforming points in three dimensional space is really not too
difficult. If you think of a set of data for drawing a molecule as a set of X,Y,Z
points for the centre of each atom in the molecule, together with the type of each
atom (used to set its diameter), then the glimmerings of the structure of a

194

primitive program for molecule drawing appears. The form could be as follows:

(1) Read in the X,Y,Z and type data for each atom.

(2) Do a 3-space to 2-space projection for the data points.

(3) Scale the data to fit a 640 X 400 coordinate space.

(4) Draw a circle of the correct diameter around the projected centre
point of each atom, using a different colour for each atom type.

Our molecule drawing program has been born!

As you are probably aware by now, writing a computer program takes ten times
as long as you initially thought it would. The more complex the program, the
more time you waste trying endless variations and debugging seemingly perfect
pieces of code that just do not work. Let us give the Amstrad molecule drawing
program a name - MOL3D. MOL3D is a typical product of a number of
sleepless nights - it was originally supposed to be written in an evening’s session!

The simple program that was outlined at the end of the last section is in fact very
straightforward. The problem is that the picture produced is very confusing
(Figure 9.1). No illusion of depth is given and the whole thing is really a mess.
We need to colour the ‘spheres’ using a fill algorithm and we also need to use a
hidden surface method so that spheres further from the observer are hidden
behind those closer up as shown in Figure 9.2. How do we do this?

TE

9.3 Developing the program

ANGLE= O AXIS=:X
Figure 9.1 The open circle method for drawing molecules.

195

TESTMOL

ANGLE- 0 AXIS-X

Figure 9.2 Filled circle view of the molecule shown in Figure 9.1

The secret is to use a sorting algorithm to sort all the atoms in the molecule by
means of their Z coordiinates. We then end up with a list of atoms with atom
number one closest to the observer and the last atom furthest away from the
observer. We can then use a ‘painter’s algorithm’ as discussed at the beginning
of the last chapter to give a simple method of hidden surface elimination.. Here
is the section of MOL3D that does the sorting.

3000 REM SUBROUTINE FOR SORT

3010 FOR K = 1 TO NP T S

3020 FOR J=1 TO NPTS

3030 Z Z= Z P < K)

3040 YY=YP(K)

3050 XX=XP(K)

30 6 0 SN=SS(K) : REM STORE TEMPORARY VALUES

30 6 5 SM =SI(K)

30 7 0 IF Z F '< JK = ZP O.) I HEN 3110

30 8 0 Z P (K) = Z P (J) : Z P (J) = Z Z

30 9 0 YPO) = Y F (J) : YP (J) =YY

31 0 0 X P (fc) = X P < J) : X P (J)=X X

31 0 5 SS(K) =SS(J) : SS < J) =SN

3107 S I < K) = S I < J) : S I< J) = S M

31 1 0 NEXT J

31 2 0 NEXT K

3130 RETURN

196

There are however two problems with the basic painter’s algorithm approach in
this case. If you have a CPC464 you have no fill command to paint in the circles,
but here is your salvation. Replace the references to FILL in MOL3D with
GOSUB 6000 and add the following lines to the complete program.

100 CLG
500 INK 2,3

510 INK 1,1

6000 REM CIRCLE FILL FOR CPC464 ONLY

6005 PD=2:REM SET DRAW COLOUR

6010 AN=0.01745542

6015 R=50

6020 AI=0:AJ=0

6030 XL=320: YL=200

6040 FOR 11=1 TO 200

6050 AI=AI+AN

6060 AJ=AI-(2*PI)

6070 AX=XL+(R*COS(AI))

6080 AY=YL+(R»SIN(AI))

6090 BX=XL-(R*COS(AJ>)

6095 BY=YL+(R*SIN(AJ))

6100 FOR JJ=BX TO AX

6110 IF TEST! JJ,AY)=0 THEN PLOT JJ,AY,PD

6120 NEXT JJ

6130 NEXT II

There is still another problem. It is fine to draw all the spheres in the same colour
but to FILL them in the colour-coded scheme for the correct types of atoms is
difficult. If you try to use the CPC 6128/664 FILL command to do this you are
in for a shock. The FILL operation stops when it reaches a boundary of the
current drawing ink colour. The painter’s algorithm will not therefore erase the
boundary lines around more distant atoms as it draws them.

My own solution was to turn the painter’s algorithm on its head and to draw the
atoms nearest first. Instead of overwriting all closer atoms, each pixel on the
boundaries of further atoms is tested before being drawn to see if a closer atom
is being overwritten. If it is, the drawing operation on that part of the atom is
halted. This method gives a perfect hidden surface view, as you can see from
Figure 9.2

If every pixel around the boundary of every atom is to be plotted, a significant
amount of time will be spent plotting circles. We have already looked at a circle
drawing algorithm in Chapter 1, but time was not a major consideration at that
point. Can we in fact speed up circle drawing? Luckily help is at hand, in the

197

guise of a technique called eight-way symmetry (Figure 9.3). This technique
relies on the fact that the points in all eight octants of a circle can be quickly
found from the coordinates of the points in the first octant. The code is given
in the routine at line 3500 of MOL3D. The circle generation algorithm (line
2160-2240) therefore only needs to calculate the first 45 degrees of each circle,
relying on eight-way symmetry to fill in the remaining quadrants.

Our program is now in essence complete. The other elements (projection,
scaling, data input) are similar to those discussed in Chapter 7.

9.4 The full M O L 3D program

MOL3D program

10 REM » l t « M0L3D - 3D MOLECULE PROGRAM ****

13 REM USE INPUTMOL TO CREATE INPUT DATA

20 REM USES FILLED CIRCLES TO REPRESENT ATOMS IN MOLECULES

198

30 REM HIDDEN SURFACE REPRESENTATION

40 INK 0,13iINK 1,1:MODE 1

45 INK 2,3iINK 3,9

50 PP=1000:SC=2:REM SET OBSERVER DISTANCE AND SCALE

60 INPUT"PRINT OPTION? V OR N"jP*:PT=0

70 IF P$="Y" THEN PT=1

80 DIM X(100) ,Y<100),Z(100),SI(100),A(4,4),SSI 100),XP(100),YP(IOO),ZP(IOO)

90 LX=1000:HX=0:LY=1000:HY=0:LZ=1000:HZ“0:SZ«0:REM INITIALIZE VARIABLES

100 INPUT"INPUT DATAFILE NAME"\N$
110 OPENIN N$

112 INPUT£9,H$:REM NAME OF MOLECULE

115 INPUTE9,NPTS

117 PRINT"THERE ARE" ,NPTS,"ATOMS"

120 FOR 1=1 TO NPTS

130 INPUT£9,X<I),Y(I),Z<I),SI(I)

135 IF Z(I)=0 THEN Z <I) = 1

140 GOSUB 4000:REM DO MIN MAX

150 NEXT I

160 CLOSE IN

170 GOSUB 4100:REM SCALE

180 REM GET AXIS FOR ROTATION

190 INPUT"INPUT AXIS FOR ROTATION: X = 1,Y=2,Z=3"yM

200 INPUT"INPUT ROTATION ANGLE":THETA

210 INPUT"FILL OPTION'? Y OR N";P$:PS=0

220 IF P*-"Y" THEN PS=1

240 FOR 1=1 TO NPTS

250 XP(I)=X(I)

260 YP <I)=Y <I)

270 ZP(I)=Z(I)

280 SS(I)=SI(I)

290 NEXT I

300 REM DO ROTATION

310 THETA =THETA I 0.017455

320 GOSUB 1000:REM ROTATE SUBROUTINE

330 LX=1000:HX=0:LY=1000:HY=0:LZ=1000:HZ=0:SZ=0:REM REINITIALIZE VARIABLES

340 REM CALCULATE PROJECTION TO X,Y, PLANE

350 FOR 1=1 TO NPTS

360 X4=X <I):REM X4-X8 ARE VARIABLES FOR CALCULATING PROJECTED ATOM RADII

370 X5=X4+(SI(I)/2)
380 X6=A (1,1) IX5+A <l,2)tY(I)+A<l,3)*Z(I)+A(l,4)

390 X T=A (1, 1) * X (I) +A (1,2) * Y (I) +A (1,3) * Z (I) +A (1,4)

400 YT=A(2,1)*X(I)+A(2,2)>Y(I)+A<2,3)*Z(I)+A(2,4)

410 ZT=A (3, 1) tX (I) +A (3,2) tY (I) +A(3, 3) *Z (I) +A (3, 4)

420 DD=ZT+PP

430 XP(I)=XT 4PP/DD

440 YP(I)=YT tPP/DD

450 ZP(I)=DD

460 X4=XP(I)
470 REM NOW SET DIAMETER OF ATOM

480 X7=X6*PP/DD

490 IF X7<X4 THEN X8=X4-X7

500 IF X4<X7 THEN X8=X7-X4

510 SS(I)=(SCtXB)*2

520 IF SSIIKO THEN SS (I > =-SS<-I)

199

530 GOSUB 5000:REM DO MIN MAX ON TRANSFORMED DATA

540 NEXT I

550 REM END OF PERSPECTIVE SECTION

555 CLS:REM CLEAR SCREEN

560 GOSUB 3000:REM DO SORT FOR DEPTH

562 IF M=1 THEN Mi^'X"

564 IF M=2 THEN Mt«"Y"

566 IF M=3 THEN M$="Z"

570 GA$=STR$(THETA*(1/0.017455))sLOCATE 2,251 PRINT"ANGLE®"+GA$+" AXIS=MM$

580 GOSUB 5100:REM DO SCALE ON TRANSFORMED DATA

590 REM NOW READY FOR PLOTTING

600 FOR 1=1 TO NPTS

610 GOSUB 2000

620 NEXT I

630 K*=INKEY*:IF K*=""THEN 630

640 IF PT=1 THEN COPY

650 REM REPEAT WITH DIFFERENT VIEW

660 GOTO 180

1000 REM SUBROUTINE ROTATE

1010 C=COS(THETA)

1020 S=SIN(THETA)

1030 FOR K=1 TO 4

1040 FOR L=1 TO 4

1050 A(K,L)*0

1060 NEXT L

1070 NEXT K

1080 A <4,4) = 1

1090 A(M,M)=1

1100 Ml=3-M:IF M1=0 THEN Ml=l

1110 M2=3:IF M=3 THEN M2=2

1120 A(Ml,Ml)=C

1130 A(M2,M2)=C

1140 A (M2,Ml)=-S

1150 A(Ml,M2)=S

1160 RETURN

2000 REM **** ROUTINE TO DRAW ATOMS ****

2010 R=SI(I):XL=XP(I):YL=YP(I):PD=1:FLAG=0

2012 LOCATE 1,1:PR INT H$

2020 IF R=50 THEN PD=2:REM SET PLOT COLOUR FOR ATOM RADIUS 15

2030 IF R=40 THEN PD=3:REM SET PLOT COLOUR FOR ATOM RADIUS 20

2035 IF R=25 THEN PD=1:REM SET PLOT COLOUR FOR ATOM RADIUS 25

2040 R=SS(I):REM NOW RESET RADIUS TO PERSPECTIVE SIZE

2050 AI=(2*PI)*(1/500)

2055 AN=-AI

2130 X1=R*COS(AN):Y1=R*SIN(AN):XS=X1:YS=Y1

2160 FOR IK=1 TO 63

2180 AN=AN+AI

2190 X1=R*C0S(AN):Y1=R*SIN(AN)

2220 GOSUB 3500:REM EIGHT WAY SYMMETRY

2240 NEXT IK

2245 IF PS=0 THEN RETURN
2246 REM NOW DO FILL SECTION

2248 NN=500

2250 R=R-2

200

2260 X1=R*C0S(AN):Y1=R*SIN(AN)

2270 XS=X1:YS=V1

2280 X2=X1:Y2=Y1

2290 AN=AN+AI

2300 X1=R*C0S(AN) : V1=R*SIN(AN)

2310 IF TEST(Xl+XL,Yl+YL)>0 THEN GOTO 2350

2340 MOVE XL+X1,YL+Y1

2345 FILL PD

2350 AN=(Alt(NN/4))

2360 X1=R*C0S(AN):Y1=R*SIN(AN)

2370 IF TEST (X1+XL,Yl+YL)>0 THEN GOTO 2410

2400 MOVE XL+X1,YL+Y1

2405 FILL PD

2410 AN=(AI*(NN/2))

2420 X1=R*C0S(AN):Y1=R*SIN(AN)

2430 IF TEST(Xl+XL,Yl+YL)>0 THEN GOTO 2470

2460 MOVE XL+X1,YL+Y1

2465 FILL PD

2470 AN=(AI*(NN*0.75))

2480 X1=R*C0S(AN)sY1=R*SIN(AN)

2490 IF TEST(Xl+XL,Yl+YL)>0 THEN GOTO 2540

2500 MOVE XL+Xl,VL-*v'l

2520 FILL PD

2540 R=R+2: RET15RN

3000 REM SUBROUTINE FOR SORT

3010 FOR K-l TO NPTS

3020 FOR J=1 TO NPTS

3030 ZZ=ZP(K)

3040 YY=YP(K)

3050 XX=XP(K)

3060 SN=SS(K):REM STORE TEMPORARY VALUES

3065 SM=SI(K)

3070 IF ZP(J)<=ZP(K) THEN 3110

3080 ZP <K)=ZP(J):ZP(J)=ZZ

3090 YP(K)=YP(J):YP(J)«YY

3100 XP(K)=XP(J):XP(J)=XX

3105 SS(K)=SS(J):SS(J)=SN

3107 SI<K)=SI(J)sSI(J)=SM

3110 NEXT J

3120 NEXT K

3130 RETURN

3500 REM EIGHT WAY SYMMETRY FOR CIRCLE

3510 IF TEST(Xl+XL,Y1+YL)=0 THEN PLOT Xl+XL,Yl+YL ,1,0

3520 IF TEST(Yl+XL,X1+YL)=0 THEN PLOT Y1+XL,X1+YL ,1,0

3530 IF TEST(Yl+XL,-Xl+YL)=0 THEN PLOT Yl+XL,-Xl+YL ,1,0

3540 IF TEST(Xl+XL,-Yl+YL)=0 THEN PLOT Xl+XL,-Yl+YL ,1,0

3550 IF TEST(-Xl+XL,-Y1+YL)=0 THEN PLOT -Xl+XL,-Yl+YL ,1,0

3560 IF TEST(-Yl+XL,-X1+YL)“0 THEN PL0T-Y1+XL,-Xl+YL ,1,0

3570 IF TEST(-Y1+XL,X1+YL)*0 THEN PLOT -Yl+XL,Xl+YL ,1,0

3580 IF TEST(-X1+XL,Yl+YL)=0 THEN PLOT -Xl+XL,Yl+YL ,1,0

3590 RETURN
4000 REM MIN MAX SUBROUTINE

4010 IF #<IKLX THEN LX-X(I)

4020 IF X(I)>HX THEN HX=X(I)

2 0 1

4030 IF Y U K L Y THEN LY=Y (I)

4040 IF Y(I)>HY THEN HY=Y <I)

4050 IF Z U K L Z THEN LZ=Z(I)

4060 IF Z(I)>HZ THEN HZ=Z(I>

4070 IF Sid)>SZ THEN SZ=SI(I)

4080 RETURN

4100 REM SCALE SUBROUTINE

4105 FA=HX-LX

4110 IF (HX-LX)>(HY-LY)THEN FA=HX-LX

4120 IF (HY-LY)>(HX-LX)THEN FA=HY-LY

4130 SZ=SZtSC:Z0=1000:ZM=0

4140 FOR 1=1 TO NPTS

4150 X(I)=(X(I)-LX+1)>((640-SZ)/FA)

4155 X(I)=X(I)-320

4156 Y(I)=(Y(I)-LY+1)*(<400-SZ)/FA)

4157 Y <I)=Y <I>-200

4160 Z (I) = (Z (I) - L Z + 1) * ((4 0 0 - S Z) / F A)

4170 IF Z(IXZO THEN ZO=Z < I)

4180 IF Z <I)>ZM THEN ZM=Z(I)

4190 NEXT I

4200 SZ=SZ/SC

4210 RETURN

5000 REM MIN MAX SUBROUTINE FOR XP ETC

5010 IF XP(IXLX THEN LX=XP(I>

5020 IF XP(I)>HX THEN HX=XP(I)

5030 IF YP(IXLY THEN LY=YP (I)

5040 IF YP(I)>HY THEN HY=YP(I)

5050 IF ZPdXLZ THEN LZ=ZP(I)

5060 IF ZP(I)>HZ THEN HZ=ZP(I)

5070 IF SS(I)>SZ THEN SZ=SS(I)

5080 RETURN

5100 REM SCALE SUBROUTINE FOR XP ETC

5105 FA=HX-LX

5110 IF (HX-LX)XHY-LY)THEN FA=HX-LX

5120 IF (HY-LY)XHX-LX)THEN FA=HY-LY

5130 SZ=SZ*SC

5140 FOR 1=1 TO NPTS

5150 XP <I) = (XP(I)-LX + 1)t((600-SZ)/FA)
5155 XP(I)=XP(I)+<SZ/2)

5156 YPd) = (YP(I)-LY-U)*< (380-SZ)/FA)

5157 YP (I) =YF3 (I) + (SZ/2)

5160 ZP(I) = (ZP(I)-LZ-d)»((380-SZ)/FA)

5190 NEXT I

5200 SZ=SZ/SC

5210 RETURN

There is still an important component missing. A program to prepare the data
is needed. A very simple program will suffice as data scaling is performed within
MOL3D. The following program called INPUTMOL allows you to create a
suitable file, and you can poach data from a number of sources. I have used data
from the Brookhaven Data Bank: a mammoth computer collection of data
from crystallographic and other sources for proteins and nucleic acids. Another
good source is Wyckoff s Crystal Structures published by Wiley Interscience.

202

INPUTMOL program

10 REM * m INPUTMOL ****

20 REM CREATES DATA FOR MOL3D

30 INPUT"INPUT DATAFILE NAME";N$

40 OPENOUT N$

50 INPUT"INPUT NAME OF MOLECULE";H$

60 PRINTER,H$
70 INPUT"NUMBER OF ATOMS";ATOMS

80 PRINTER,ATOMS

RO FOR 1=1 TO ATOMS

100 INPUT"INPUT X, Y, Z COORDS";X,Y,Z

105 INPUT"INPUT ATOM SIZE";S

110 PRINTER,X,Y,Z,S

120 NEXT I

130 CLOSEOUT

140 END

And here are some pictures prepared using MOL3D.

DNA

203

DNA

ANGLES 50 AXIS=V

Figure 9.4,9.5 Two views of a ‘DNA double helix’ with the bases on each helix shown as different
coloured spheres.

O L E I C A C I D

Figure 9.6 A view of the oleic acid molecule. (Data from Wyckoff, ’Crystal Structures’ vol 5, Wiley
Interscience). Hydrogen atoms, dark; carbon atoms stippled; oxygen atoms striped.

204

9.5 Some final remarks

So, congratulations! You’ve stayed the course to the end of this book (and I do
hope that you have tried to master Appendix 2). You can be sure that much of
what you’ve read is relevent to ‘real’ computer graphics, and you should be able
hold your own in any conversation about pixels, refresh displays,
transformations or hidden surfaces. There is no doubt that in five years time this
book will be hopelessly ‘underpowered’. You will then be the proud owner of a
512K memory machine with 32 bit processor, speech input, and with on-board
compilers in several languages. Your future machine will have 640 X 400 pixel
resolution, the ability to simultaneously display at least 256 and probably more
colours from a palette of 16 million colours in high resolution mode. These
specifications are undoubtably on the conservative side. Only then will you
truly be able to reap the benefits of your grounding in computer graphics, but
until then, make the most of your Amstrad micro!

205

Appendix 1

Amstrad Graphics
Commands

A l.l Overview

This appendix provides a reference guide to the graphics commands available
on CPC 6128, CPC664 and CPC464 computers. Its main purpose is to save you
thumbing back and forth between your User Manual and this book, but I have
tried to expand on the command descriptions where it seems necessary. Some
commands which affect the form of the output (for example WIDTH which
changes the width of printed output) are not strictly graphics commands and
they will not be discussed here. Commands specific to the CPC 6128 and CPC
664 are clearly indicated. Note that the convention for parameters specified
after the commands is that those in angle brackets <> are essential, those in
square brackets [] are optional.

A1.2 Graphic action commands

Commands in this category are the basic drawing instructions which result in
graphics appearing on screen or movement of the graphics cursor. The graphics
cursor can be thought of as the position of an imaginary pen head capable of
movement over the screen area. The pen head can be either ‘up’ (ie it will move
without drawing anything) or ‘down’ (for drawing).

M O V E < X c o o r d i n a t e > , < Y

c o o r d i n a t e ^ [i n k] , [i n k m o d e]

Moves the graphics cursor to the point specified by the X,Y coordinates. The ink
and ink mode are optional and can be used if required. As M 0 V E is a ‘pen up’
instruction you will probably not need to specify the optional parameters (their
values are discussed under DRAW below).

M O V E R < X r e l > f < Y r e l > , [i n k] , [i n k m o d e]

207

Moves the graphic cursor by an amount relative to the current cursor position.
Relative commands are useful if you wish to use the same draw sequence at
different parts of the screen.

DRAW < X c o o r d i n a t e > , < Y

c o o r d i n a t e d f i n k] , [i n k m o d e]

Draws a straight line from the current graphics cursor position to the absolute
position specified in the X,Y coordinates. The Amstrad graphics firmware does
this by implementation of a ‘scan conversion algorithm’ which works out the
coordinates of all pixels along a straight line between the start and end points
of the line. The optional ink parameter allows values between 0 and 15 to be
specified, but note that values over one will be ignored in MODE 2 and values
over three will be ignored in M 0 D E 1 .

The optional ink mode parameter was discussed in Chapter 1 and specifies how
the ink being written to a pixel will interact with the existing state of the pixel.

D R A W R < X r e l > , < Y r e l > , [i n k] , [i n k m o d e]

This is a relative draw command analogous to MOVER. It draws a line from the
current graphics cursor position relative to the cursor position. It is thus
possible to use negative X and/or Y coordinates if required.

P L O T < X c o o r d i n a t e d < Y

c o o r d i n a t e d [i n k] , [i n k m o d e]

Plots a point on the screen at the X,Y coordinates specified. Note that the size
of the ‘point’ will vary depending on the M O D E chosen. With M O D E 0 , the
point will in fact be represented on screen as four pixels parallel to the X axis.
In MO D E 1 , the point will be two adjacent pixels parallel to the X axis, whilst
only in M 0 D E 2 will each point really be a single pixel.

P L O T R < X r e L < , > Y r e l > , [i n k] , [i n k m o d e]

A relative version of the PLOT command.

C LG [i n k]

Clears the graphics screen to the graphics paper value. If the ink colour is
specified the graphics paper takes this colour. Note that C L G erases text as well
as graphics! A more useful command is C L S (see ‘text action’ commands
below) as this can be set up to erase text and not graphics.

F I L L [i n k]

208

This command works only on the CPC 6128 and CPC 664. It paints an area of
the screen starting at the current screen cursor position and stops only when it
reaches a boundary defined by either the current drawing ink or the paint
colour. BEWARE! If the space to be filled is not totally enclosed you may find
that the whole screen is painted!

A1.3 Text action commands

There is only one true text action command used in Amstrad graphics. This is
the PRINT command

P R I N T [# s t r e a m] , l i s t o f p r i n t i t e m s

PRINT is used for graphics printing in the same way as for normal BASIC
programming. Either a literal string enclosed by quotes,for example

P R I N T " G R A P H L A B E L "

or a variable,for example

P R I N T A $

can be used. Items separated by commas or semicolons can also be put in the
same statement.

T A G [# s t r e a m]

‘frees’ printed output from the text screen positions and instead specifies that
text printing will begin at the current graphics cursor location. T A G is in fact an
acronym for Text At Graphics. All PRINTed items should end with a semicolon
to suppress printing of control characters (eg line feed and carriage return). To
return to normal text mode the command

T A G O F F [# s t r e a m]

is used. Text then begins at the last text cursor position.

A1.4 Graphics environmental commands

Environmental commands affect the ‘environment’ of graphic action
commands. They include commands specifying colour, MODE and relocation
of the origin.

209

We will first consider the colour commands. Note that the default inks for
background and drawing colours are 0 and 1 respectively. This means that you
can change the screen or pen colour merely by specifying an ink number of 0 or
1 with the appropriate colour code. For graphic applications that do not need
more than two colours, you only need to use the INK command

BORDER <colour>, [flash colour]

This command sets the screen border colour. The colour chosen is completely
independent of the colours used in the mainscreen area, so even in MODE 2,
any of the available 27 colours can be specified for the border. The optional
flash colour will flash with the primary border colour (ugh!) at a rate set by the
SPEED INK command.

I N K < n u m b e r > , < c o l o u r > , [c o l o u r]

One of the difficulties in getting to grips with Amstrad graphics is the
relationship between ink colours and ink numbers. Although there are 27
possible colours available, they cannot be referred to directly by colour number
but must first be assigned code numbers. These numbers are then used to refer
to the colours in the PAPER and PEN commands (see below). You cannot
therefore specify

P A P E R 2 2

expecting to get a pastel green text background! Instead you must use

I N K 2 , 2 2

G R A P H I C S P A P E R 2

There are two remaining colour commands that are specific to non-text
graphics. These are G R A P H I C S P A P E R and G R A P H I C S P E N .

G R A P H I C S P A P E R < I N k >

This sets the colour of the area behind graphics drawn on screen. This command
is only useful in a few instances, for example if a dashed line is to be drawn using
the MASK command

G R A P H I C S P E N [i n k] , [b a c k g r o u n d m o d e]

G R A P H I C S P E N sets the graphics pen colour in exactly the same way as the
PEN command sets the text pen colour.

MOD E < t y p e >

210

MODE affects the appearance of text. The characteristics of the three
permissible modes are as follows.

Mode Pixel Size Character Size Inks

0 160 X 200 20X25 16
1 320 X 200 40X25 4
2 640 X 200 80X25 2

The ‘true’ number of pixels on your monitor is actually 640 X 200 and MODEs
0 and 1 overcome this apparent discrepancy by addressing more than one pixel
in the horizontal direction for each coordinate point specified. Try plotting

P L O T 0 , 0

for example in MO D E 1 . If your eyesight is good you will see that two adjacent
pixels (0,0 and 1,0) are actually lit on screen. Now switch to M 0 D E 0 and PLOT
the same point. Four pixels are now lit (0,0; 1,0; 2,0 and 3,0). If you try to plot
any of these four pixels you will find that, in MOD E 0 , the same bar of four
pixels is always lit. Only when you PLOT 4 , 0 will the next bar of four pixels
appear! This apparent overlap is the cause of the low definition available in
MODE 0 .

M A S K [i n t e g e r i n r a n g e 0 - 5 5] , [s t a r t m o d e]

MASK is specific to the CPC 6128 and CPC 664 and sets the dash pattern for
a line. This command is considered at greater length in Chapter 2

O R I G I N < X c o o r d i n a t e d < Y c o o r d i n a t e > , [l e f t ,

r i g h t , t o p , b o t t o m]

This command is used if you wish to move the screen origin (ie pixel 0,0) away
from the left hand lower corner of the screen. If an 0 R I G I N of 100,100 is set,
the effective screen coordinate system is X -100,540 and Y -100,300. The
optional parameters can be used to set up a ‘clipping area’ outside which non
text graphics and TAGged text will not be written.

The CPC 6128 has two additional commands to copy the screen contents back
and forth between the visible screen and the second 64K bank of memory
present on this machine. We have seen in earlier chapters that the screen
occupies 16K of memory, and in fact four separate screenfuls of information
can be stored in the ‘spare’ 64K of memory on the CPC 6128. The relevant
commands are called SCREENSWAP (to exchange contents of different 16K
memory blocks), and SCREENCOPYto copy the information making up one

211

screen into any one of the alternate 16K memory blocks). These commands will
probably prove of great use to games programmers, but the wider value is
questionnable.

A1.5 Text environmental commands

These affect the appearance of text on screen. The relevent Amstrad commands
are those for colour changes and text location.

P A P E R l # s t r e a m] , < i n k >

Sets the colour for text cells. As with all other commands with the optional
stream parameter, a default of stream # 0 is assumed. Unlike BORDER, the
number of inks available are limited by the MODE in use.

PEN [# s t r e a m] , [i n k] , [b a c k g r o u n d m o d e]

This command only changes the colour of the text on screen, non-text graphics
remaining unaffected. Both ‘ink’ and ‘background mode’ are optional, but one
must be specified. ’Background mode’ sets the relationship between text and
other graphics on the screen. If the MO D E is set to 0, the text cells will overwrite
any graphics encountered by text. If MODE 1 is specified only text characters
and not text cells will overwrite graphics.

L O C A T E [((s t r e a m] , < c o l u m n > , < r o w >

LOCATE allows you to set the position of the text cursor to the point specified
by the column and row coordinates.

WINDOW [((s t r e a m] , < l e f t c o l , r i g h t c o l , t o p

r o w , b o t t o m r o w >

Text windows can be created using the WINDOW command. If the stream is not
specified, the normal output stream of 0 is used by default. Note that the
window size should be consistent with the MODE in use (eg don’t use a right
column value of < 40 when in MO D E 1)

2 1 2

Appendix 2

Matrix Manipulation

A2.1 What are matrices?

This appendix details the matrix operations necessary to carry out both two and
three dimensional rotation translation and scaling. You can use the information
here to help you to understand the routines in the earlier chapters of the book,
or alternatively as the base for your own programs. It is not strictly necessary to
use matrices to carry out transformations on coordinate data. As you will have
seen from some of the examples discussed earlier, algebraic equations can be
derived to carry out the manipulations needed, and matrices are simply an
alternative way of doing the calculations. The use of matrices makes things a lot
simpler when it comes to handling three dimensions, and it is therefore a useful
skill to acquire even when handling two dimensions. Matrix algebra is suited to
computer solution. Whereas humans like to deal with information in a linear
fashion (a then b then c and so on), computers can easily handle information in
tabular (= array) format, and this is really what matrices are all about. In
essence, matrices are tabular representions of algebraic equations.

2.2 Two dimensional transformations

Let us represent a point in two dimensional space as a column vector

x

y

1

The meaning of x and y are clear - they are the x and y coordinates of the point.
The T is in the vector because in mathematical terms we are dealing with
‘homogeneous coordinates’ - but forget this for the present. We can write the
matrices for transformations in two dimensional space in the following way:

For rotation

213

cosA sin A 0

-sinA cosA 0

0 0 1

where A is the (clockwise) angle of rotation about the origin

For scaling

s x 0 0

0 SY 0

0 0 1

where SX,SY are the scale factors for the X and Y axes respectively

For translation

1 0 TX

0 1 TY

0 0 0

where TX,TY are the X and Y translations

If you wish to apply one of these transformations alone, then matrix
multiplication of the coordinate vector and the corresponding transformation
matrix must be performed.

The BASIC code to do this multiplication is easier than the theory behind it!
Assuming that the transformation matrix is in the 3 X 3 array A(3,3), and the
coordinate points are X=PO(l),Y=PO(2),l = PO(3)

1 0 REM * * ★ * M A T R I X M U L T I P L I C A T I O N 1 * * * *

2 0 F OR 1 = 1 T O 3

3 0 F OR J = 1 T O 3

4 0 P (I) = A (I , J) * P 0 (J)

5 0 N E X T J

6 0 N E X T I

The result is stored in the array P, so the new X and Y values are in P(l) and P(2)
respectively. You will have seen code of this general structure used in, for

214

example TRANSFORMV2 (Chapter 4), in lines 510-575. In this program, the
transformed X and Y coordinates are obtained from the array P (lines 565-570).

One of the major advantages of using matrices is the possibility of
premultiplying separate transformation matrices so that only one
multiplication of the coordinate data like the one above has to be done. Instead
of the (3 X 1) and (3 X 3) matrices being multiplied, in this case we multiply two
(3 X 3) matrices. For example we may wish to translate an object to the origin,
to rotate it by a given angle, and then to translate it back to the original position.
Instead of two intermediate calculations of the transformed coordinate data,
the three matrices needed to carry out the whole transformation can be
multiplied amongst themselves.

Multiplying two 3X 3 matrices together is carried out easily enough in BASIC.
If A and B are the matrices to be multiplied, the result of multiplying them
together is another 3 X 3 matrix, C. The multiplication is as follows

1 0 REM ★ ★ ★ * M A T R I X M U L T I P L I C A T I O N 2 * * * *

2 0 FOR 1=1 T O 3

3 0 FOR J = 1 T O 3

4 0 FOR K = 1 T O 3

5 0 C (I , J > := A (I , K) * B (K , J)

6 0 N E X T K

7 0 NEX TJ
8 0 N E X T I

What this short routine actually does, is to multiply row I of the first matrix by
column J of the second matrix. You can see this code in action in TRV3C hapter
4 again), lines 1600-1790.

Let us now put all this together to do a typical series of transformations. The
diagram below shows an example set of transformations on a triangle. These
are:

(1) Increase the Y scale by a factor of two.

(2) Rotate the axes through 45 degrees (= pi/4 radians).

(3) Move the origin by 50 X, 100 Y.

We therefore need the following 3 X 3 matrices

215

1 0 0

0 2 0

0 0 1

.7071 .7071 0

-.7071 .7071 0

0 0 1

1 0 50

0 1 100

0 0 0

The complete transformation is obtained by multiplying the matrices, so we
need the result of

1 0 0 .7071 .7071 0 1 0 50

0 2 1 X -.7071 .7071 0 X 0 1 100

0 0 1 0 0 1 0 0 0

We have already looked at the BASIC code that will carry out matrix
multiplication for us. It will be clear to you from this code that only two
matrices can be multiplied at once, and this would be expected from the normal
laws of multiplication. But here the similarity with normal multiplication ends,
because in matrix terms, 6 X 3 does not equal 3X6! Matrix multiplication is
achieved by the following method. First, work across each column of the first
matrix from left to right like this

Multiply each element of the matrix by the next downwards element in the
second matrix. You therefore work through the second matrix like this

▼
' '

So for matrices A and B with the elements written like this

A
11

A
12

A
13

B
11

B
12

B
13

A
21 A 22 A 23

B
21

B
22

B
23

A
31 A 32 A 33 B31 B32

B
33

-

To calculate the first column of the product matrix C, the following is done

% V + (A 1 2 B 2,» + (A ,3 V

217

which is the same as

(rowl X columnl)

(A B) + (A B) + (A B)
21 11 22 21 23 31

which is the same as

(row2 X columnl)

(A „ B „) + (A „ B ^) + (A 33 B31)
31 11 32 21

which is the same as

(row3 X columnl)

so the ‘master plan’ for the matrix multiplication is:

rowl X columnl

row2 X columnl

row3 X columnl

rowl X column2

row2 X column2

row3 X column2

rowl X column3

row2 X column3

row3 X column3

You might like to try multiplying the numbers from our transformation
example to check that you have understood all this. First multiply the rotation
and translation matrices. Then multiply the product by the scaling matrix

You should get the following result

.7071 .7071 106.055

-1.414 1.414 70.71

0 0 0

There is one thing to watch while doing these multiplications, and that is the
order in which the multiplications are done. If you do them in the wrong order,
or try to multiply B by A instead of A by B, you will get into trouble. As a general
rule, always multiply in the following order.

218

ROTATION X TRANSLATION - PRODUCT1

SCALE X PRODUCTl — PRODUCT2

In order to transform the coordinates of our example triangle, the column
vector for each pair of x y coordinates is multiplied by the matrix PRODUCT2,
as we saw earlier in this appendix. So to transform the point X = 70, Y=25, you
would calculate the result of

.7071 .7071 106.055 70

-1.414 1.414 70.71 X 25

0 0 1 1
_ - _

For completeness, you might like to work through the arithmetic to do this (the
faint hearted can take refuge in the fact that we have already seen the BASIC
code to do the job!) With the nomenclature we used for the (3 X 3) X (3 X 3)
case, we have

A A A B
11 12 13 11

A A A X B
21 22 23 21

A A A B
31 32 33 31

— —1
this becomes

- |
A B + A B + A B

11 11 12 21 13 31

A B + A B + A B
2! 11 22 21 23 31

A B + A B + A B
31 11 32 21 33 31

so the column vector product becomes

219

212.1

141.4

1

and the point 70,25 is therefore transformed to 212.1, 141.4.

Now look at the effect of applying the transformation matrices for the whole
triangle

Figure A2.1 Transformations on a triangle. Top left, untransformed triangle. Top right, translation
by +50, +100; bottom left, rotation around origin by 45 degrees; bottom right, scaling by a factor
o f two on the Y axis.

220

A2.3 Three dimensional transformations

The difficulties of visualising transformations in three dimensions have already
been alluded to in Chapter 7. We have seen how the three main types of
transformation can be represented in matrix format in two dimensions, and
with relatively little extra effort matrices can also be used to represent 3D
transformations. In three dimensions, our single point coordinates are written
in the form of a column vector

X

Y

Z

1

and each transformation matrix is 4 X 4 instead of 3 X 3 in size.

The rules for multiplication are exactly the same as with two dimensions, so all
that is left really is to list the relevent matrices. These are

For scaling

S =

For translation

T =

sx 0 0 0

0 SY 0 0

0 0 sz 0

0 0 0 1

-

1 0 0 TX

0 1 0 TY

0 0 1 TZ

0 0 0 1

For rotation, things are a little more complicated. Because we are adrift in three

2 2 1

dimensional space, we need to be a little more specific about just what we mean
by rotation (we looked at this problem in Chapter 7). To obtain rotation about
a single axis, we can use one of the following matrices

For X

1 0 0 0

0 cosA sinA 0

0 -sinA cosA 0

0 0 0 1

For Y

cosA 0 -sinA 0

0 1 0 0

sinA 0 cosA 0

0 0 0 1

For Z

cosA sinA 0 0

-sinA cosA 0 0

0 0 1 0

0 0 0 1

Subroutine ROTATE in program TRANS3D (Chapter 7) was based on these
matrices. You will note that a little juggling with the values in the variable M in
ROTATE enables any of the three matrices to be set up by specifying a single
integer in the range 1 - 3.

222

A ppendix 3

References on
Computer Graphics.

There are many books available on computer graphics, and now that you have
explored some simple graphics techniques on your Amstrad you might like to
investigate the literature. I have made use of all the books listed in this
Appendix, and I recommend them for your attention. The level of treatment of
graphics topics varies extensively from book to book, so note my remarks
carefully lest you spend hard earned cash on a book that doesn’t address your
own interests!

Angell, I O (1981) A Practical Introduction to Computer Graphics. Macmillan

This is a very clear introduction to graphics which deals with many of the
concepts introduced here, covering them in more detail. The programming
examples are given in Fortran, assuming that the reader has access to a graphics
package on a ‘traditional’ mini or mainframe computer. Nevertheless, this book
is very useful if you want a gentle method of learning more about computer
graphics techniques.

Giloh, W G (1978) Interactive Computer Graphics. Prentice Hall

Real hair-shirt stuff this. Giloh’s book is something of a classic in the more
mathematical and algorithmic aspects of graphics programming. Half the book
concerns itself with graphics data structures. If you want to get into heavy
theory, this book will show you the way.

Foley J D and Van Dam A (1982) Fundamentals o f Interactive Computer
Graphics. Addison Wesley

This is one of those textbooks that only the Americans know how to produce.
Beautifully laid out, it covers everything you need for a complete overview of
graphics hard and software, using Pascal for the programming examples. It will
tell you everything from the detailed analysis of user-interactive design packages
to the ins and outs of the ‘state of the art’ Evans and Sutherland PictureSystem
200 .

223

Rogers D G and Adams J A (1976) Mathematical Elements fo r Computer
Graphics. McGraw-Hill

This book covers the mathematics of graphics in great detail, yet in a way that
is microcomputer oriented (all the example subroutines are in BASIC). Quite
helpful, but only if you are into the mathematical side of graphics.

Hearn D and Baker M P (1984) Microcomputer Graphics: Techniques and
Applications. Prentice Hall Inc

An excellent book for the novice or graphics buff working on a home computer.
This book is a little on the simple side, and many of the techniques discussed in
the present book will also be found in Hearn and Baker. These authors have
done an excellent job in producing a book that can be read by users of any
microcomputer with graphics capability.

Mufti A A (1983) Elementary Computer Graphics. Prentice Hall Inc

Quite an elementary text, but not much fun to read. Perhaps this book would
be useful for science and engineering based students rather than a home
audience.

Newman W M and Sproull R F (1981) Principles o f Interactive Computer
Graphics. McGraw Hill Inc

This book was the most complete introduction to computer graphics until Foley
and Van Dam entered the scene. Although it is a less pretty book and is less up-
to-date than Foley and Van Dam many sections are explained more clearly and
simply, especially the parts on hidden lines and surfaces.

Artwick B A (1984) Applied Concepts in Microcomputer Graphics. Prentice Hall
Inc

This is a very individual book, and covers a lot of material skimmed over in
other books: it has a lot of detail on microcomputer graphics hardware, for
example. A good book for the dedicated graphics programmer to mull over.

224

IN D E X

algorithms, for drawing circles... 27
animation .. 18, 49
arrays... 30, 53, 71
arrays, ‘scratch’ ...73
axes, 3D ... 144
axis, Z .. 143

BAR ...112
bar chart .. 93
bar charts.. 112, 113
bar charts, 3 D ... 117
BARCOM P... 116
billboard.. 166, 168
binary numbers...43
bitmapi.. 16, 17, 22
bitplane .. 16
BLOCK .. 19
BOR D E R .. 24, 210
Brookhaven Data Bank ... 202

cathode ray tube..15
character c e lls ... 18, 21
character grid ..17
CHART ... 106
CIRCLE .. 27
circle generation algorithm ..198
C LG ...208
clipping...83, 84
COLOUR ... 22
colour combinations ...20
colour palette..22
commands, graphic action ...207
commands, graphics/environmental ..209
commands, text action ...209
commands, text environmental..212
computer gam es..18
computer graphics ... 15
computer graphics, elements o f .. 15
computer aided design...123
coordinates, 3 D ... 146, 146
coordinates, negative...37
coordinates, rectangular a x es .. 69
coordinates, X ,Y ... 25, 53, 69
crystal, hidden lines treatment.. 184
cube, data structures fo r ..145
cube, rotation o f ...184
C U M U L ... Ill
cursor... 62, 66
curve s in e ...46

225

curve, parabolic ... 48

DASH .. 43

data, coordinate... 53
data, two and three dimensional .. 58
depth buffer algorithm ... 192
DESIGN ..131
DESIGN, applications o f ...140
display f i le ...16, 17, 22
DNA ... 203, 204
DRAW .. 26, 31, 37, 208
DRAW2D ... 57
DRAWR ...208
drives, tape and d isk .. 56

EASYDRAW ..55
eight-way symmetry .. 198
ELLIPSE...46
EM PH A SIS.. 108
EXPLODE ..98

file, sequential .. 56
FILE2D .. 57
FILE3D ... 148
FILE3D H .. 177
files, backup ... 57
FI LL ... 45, 68, 96, 208
flow diagram ...127
FRACTAL .. 50, 51
fractals ...50, 50, 51
FRAME ..50

GRAPH .. 29
graph 93
GRAPHI CS PAPER ...210
GRAPHI CS PEN ..210
graphics primitives... 15
graphics, block 18, 19
graphics, business.. 93
graphics, high resolution... 17
graphics, low resolution...17, 18
graphing, techniques ... 103
graphs... 108
graphs, comparative... 108
graphs, cumulative.. Ill

hardcopy.. 32
HATCH ... 115
hatching ... 115
HEXAGON.. 25
HIDDEN .. 178
hidden lines ... 171, 172
hidden lines program .. 176
hidden lives program... 176

226

hidden surfaces ...172, 195
HISTO3D .. 117
histogram...93

indices, array... 60
I N K ..24, 210
ink mode ... 38
INPUTM OL.. 203
interface, Centronics ...32
inversion .. 40
INVERT.. 39

JOIN ..41
joystick ... 62, 66

lines, erasing .. 38
LOCATE ..212

M ^ K D E M O ...
matrices, for 2D transforms
matrices, for 3D transforms
matrix algebra......................
matrix multiplication..........
matrix operations
matrix, rotation in 2 D
matrix, scaling in 2 D
matrix, scaling in 3 D
matrix, translation in 2D ...
matrix, translation in 3D ...
menus
M ER GE
MINIPIE
MODE
model, ‘ball and stick’
M O L 3D
molecular graphics
m olecule................................
MOVE
M OV ER

.....................42, 121

............................. 43
................... 213, 214
............................221
..............................70
77, 78, 81, 214, 215
............................ 213
............................ 214
............................ 214
............................221
............................ 214
............................221
............................126
.............................62
........................... 100
...................210, 211
.............................194
.............................198
.............................193
.............................193
....... 26, 31, 37, 207
............................ 207

NOW YOU SEE IT .38

oleic acid ... 204
ORI GI N .. 37,211
overhead transparency f i lm ... 66
PAINTER.. 172
painter’s algorithm ... 172, 196
PAPER ..24, 210, 212
PARA ...48
PATTERN ... 114
PEN .. 24, 212
PER3D ...164
PIE ...95
pie chart...93, 94, 95, 96

227

pivot point ..72
pixel .. 16, 17, 18, 20
pixel, inversion ...39
PLOT ... 40, 208, 211

PLOTR ...208
plotter .. 22
primitives, graphics..24, 29, 37
PRI NT ...209
printer, Centronics compatible... 32
printer, DMP1 ...32, 33
PRQ J3D... 154
projection, orthographic .. 153
projection, paralle.. 147, 147, 153
projection, perspective...147, 147, 163
projections, orthographic ... 154
projections, perspective..162, 166
projections, p lane... 166

QUADRANT..89

refresh display.. 16, 17
resolution m odes..20
ROTATE.. 72
rotation, 2D ..70, 71, 72
rotation, 3 D ...157, 158, 159, 160

scaling, 2 D ..70, 75
scaling, 3D ... 157
SCREEN ...34
screen dimensions.. 33
screen dumps ... 32
screen resolution.. 17, 20
SCREENCOPY..211
SCREENSW AP..211
segments... 124
segments, manipulation o f ...61
segments, picture..59
segments, translation o f ..125
SINE .. 47
SKETCH ...63
SKETCH3D .. 151
SKETCH3DH ..189
Sketchpad ... 62
sorting algorithm ... 1%
sphere ..195
SPIRAL .. 27
stream, output .. 32
SUPERG ..103
surfaces, definition o f ...173
symbols, graphics ...18

TAG ... 31, 96, 209
TAG0FF .. 209
Tascopy .. 33

2 2 8

TEST ...41
text placement, in pie charts..96
text, placement o f ...31
TRA NS3D... 157
transformation, sequences ...77

transformations ... 70
translation, 2D ... 70, 73, 74
translation, 3D ..157
T R V 2.. 75
TRV3 ..78

VECTOR .. 49
vector display...15, 16
vectors.. 49
view volume ... 146, 146, 147
viewport..81

window ... 81
WINDOW ..82, 212

ZOOM ..85
zoom operation ... 82

229

t&e outy

AmotnaoL ynafa/tico “SooJe

you '(l even need!

If you ’ve already mastered the use o f BASIC on your Amstrad
com puter (464, 6 6 4 or 6128), you ’ll want to explore its amazing graphics
potential. Your com puter can be used to produce fully professional results, to
the same standards that were previously only possible on computers costing
up to ten times as much!

A lthough there are other books on Amstrad graphics, this one takes
you right from the first stages o f drawing simple shapes, through business
graphics, com puter aided design, three dimensional surfaces, and on to such
advanced applications as molecular drawing.

Throughout the book, you ’ll be shown techniques o f com puter graphics
that the professionals use. The author is a widely-respected expert in the field
o f com puter graphics, and regularly uses these techniques in his work at the
Open University.

This book will be invaluable to you whether you apply it in education,
business or s c ie n ce -o r just to enliven the old text-based programs you used
to write.

Well over 50 programs are included as complete, tested listings. These
are also available on disc, direct from Amsoft (see page 5).

Sigma Press publish many other
stimulating books. For a catalogue or
to subm it your own book proposal in
computing, science or technology,
write to:

Sigma Press
98a Water Lane
Wilmslow SK9 5BB

GB f N E T + □ □ ? . S 5

ISBN 1-A5D5A-D4D-5
0 0 7 9 5

7 8 1 8 5 0 5 8 0 4 0 99

>

o n

>a
o
70
>

n
o n

> i

I

C
8

IQ
C

MÉMOIRE ÉCRITE

https://acpc.me/

Document numérisé
avec amour par :

	Amstrad graphics - The_advanced_user_guide
	Preface
	CONTENTS
	PROGRAM INDEX
	1 - INTRODUCTION
	1.1 What are computer graphics?
	1.2 The elements of computer graphics
	1.3 Amstrad screen modes
	1.4 Inks and colours
	1.5 Some simple graphics
	1.6 Placement of text
	1.7 Printing graphics

	2 - POINTS, LINES AND SHAPES
	2.1 Drawing lines
	2.2 Points
	2.3 Drawing shapes
	2.4 Dashes and fills
	2.5 Drawing curves
	2.6 Vector animation
	2.7 Fractals

	3 - GRAPHICS DATA STRUCTURES
	3.1 Input of data
	3.2 More complex data sets
	3.3 Manipulating segments
	3.4 Drawing pictures the easy way
	3.5 How to use SKETCH

	4 - MANIPULATING 2D DATA
	4.1 The coordinate system
	4.2 Rotation
	4.3 Translation
	4.4 Scaling
	4.5 Sequences of transformations
	4.6 Windows on the world

	5 - BUSINESS GRAPHICS
	5.1 The importance of presentation
	5.2 A slice of the pie
	5.3 Graphing techniques
	5.4 Bar charts
	5.5 3D bar charts

	6 - A COMPUTER AIDED DESIGN PROGRAM
	6.1 Design considerations
	6.2 Some nuts and bolts
	6.3 The DESIGN program
	6.4 Some applications for the DESIGN program

	7 - WORKING IN THREE DIMENSIONS
	7.1 Data and 2D projections
	7.2 Projection methods
	7.3 Entering 3D data
	7.4 Parallel projections
	7.5 Rotation, translation and scaling revisited
	7.6 Perspective projections

	8 - HIDDEN LINES AND SURFACES
	8.1 What is a hidden line?
	8.2 Defining surfaces
	8.3 A complete hidden lines program
	8.4 Extension of ‘SKETCH3D’
	8.5 More advanced techniques

	9 - A SAMPLE APPLICATION: DRAWING MOLECULES
	9.1 Setting the scene
	9.2 Solving the problem
	9.3 Developing the program
	9.4 The full MOL3D program
	9.5 Some final remarks

	APPENDIX 1 - AMSTRAD GRAPHICS COMMANDS
	APPENDIX 2 MATRIX MANIPULATION
	APPENDIX 3 REFERENCES ON COMPUTER GRAPHICS
	INDEX
	Scan by ACME

