POWERFUL
PROGRAMMING

Amstrads

- SUPERCHARGE YOUR 464/664/6128

Powerful Programming
for Amstrads

—supercharge your 464/664/6128

W. Johnson

SIGMA

IR PRESS ES

Copyright © 1986, W Johnson
All Rights Reserved

No part of this book may be reproduced or transmitted by any means
without the prior permission of the publisher. The only exceptions are for
the purposes of review or as provided for by relevant Copyright legislation
or in order to enter the programs herein onto a computer for the sole
purchaser of this book.

ISBN 185058046 4
Published by:

Sigma Press
98a Water Lane
Wilmslow
Cheshire

U.K.

Distributed by:
U.K., Europe, Africa:

John Wiley & Sons Ltd
Baffins Lane
Chichester

West Sussex

U.K.

Australia:

John Wiley & Sons Inc
GPO Box 859,
Brisbane

Queensland 4001
Australia

Printed by:

Interprint Ltd, Malta

PREFACE

This collection of subroutines has been compiled for publication from a set
of programs written in BASIC to solve problems in engineering, image
manipulation and, data handling and storage. It should be of interest to all
computer owners as it contains useful reference routines as well as routines
which are hard to find or tedious to write.

The subroutines are written in Amstrad BASIC but can easily be translated
into other dialects of BASIC and many of the programs are worth studying
in detail for the techniques used. There is great satisfaction to be had from
producing an elegant solution to a problem and the underlying theme is that
a program should be a body of instructions with efficient subroutines. The
efficiency should be in terms of the time of execution, the memory
requirements, freedom from crashing and the accuracy of the result, though
presentation of the results is also important.

A good programmer is one who is not easily satisfied with a program and will
always seek ways toimprove it.

Part of the pleasure of computing, after the novelty of playing games has
worn off, is to develop your own programs and games and make the
computer do what you want with the minimum number of instructions and
memory requirements. To accomplish this you need techniques for
generating and handling data efficiently as well as being able to store and
retrieve them quickly. Good visual presentation of results considerably
enhances the program and the listings should be well documented and easy
to follow.

This is the aim of the book, which contains over a hundred subroutines to
help you program better. Every effort has been made to ensure that the
subroutines work over the ranges specified and in an efficient way but there
are no prizes for finding cases where they do not work.

At the end of the book, a few complete programs are given to illustrate the
usc of some of the subroutines. They include drawing crystal shapes, solving
an anagram, studying the stability of an automatic control system and
imaging a triangle of any shape, as well as a very efficient storage and
retrieval program.

CONTENTS

THESUBROUTINES 1
1. AdjectivalNumberEndings 2
2. AnnuitiesCertain 3
3.BestFitLine. 5
4. BinarySearchTree 9
5.Binomial Coefficients. 13
6.Circle 15
7. Combinationsof Plusand MinusOne 17
8.Complexnumbers 18
9. Comprehensive NumberFilter 20

10. Conditional Brackets 21

T11-16. CONVErsions. 22

11.BinarytoDecimal 22
12. BinarytoHexadecimal 22
13. DecimaltoBinary 23
14. Decimalto Hexadecimal 23
15. HexadecimaltoBinary. 24
16. HexadecimaltoDecimal 25
17-20. Datalnput. 26
17.LinearEquations 26
I18. MAtFiCes o o e 29
19.Single Variable. 31
20. XandYCoordinates 33

21.DisplayFile 35

22.DoubleSize Printing. 39

23. Drawing LinesbetweenPoints 41

24-26. Errors 43

24.Binomial. 44
25.GaUSSIAN. &« . . e e 45
26.POISSON. 46

27. EvaluationofaDeterminant 47

28.Factorial N. 49

29.HeavisideOperator 50

30-33. High Precision Arithmetic 51

30. Addition. 52

31.Subtraction 55
32.Multiplication 57
33.Reciprocal. 59
34. INORDERSequence. 62
3S.Interpolation 64
36.Label 66
3741. Loops 67
37.Split. . . 68
38.Mixed ... 68
36.°Random’ 68
40.Circular e 69
41. VariableSizeNested 70
4248. Matrices 71
42 Multiplication 74
43. Complex Multiplication 75
44.Inversion e 76
45.ComplexInversion oo 78
46.UnitMatrix 80
47.Transpose oo vt 80
48. ComplexConjugate. it 81
49.MenU 82
SO.Merge. . . oo 84
SEEMIn/Max . ..o 85
52.Min/Max/Mean/Median/Mode L. 86
S3.Modulus 87
S4. NameFilter 88
SS.Permute 89
56. Permutationof Three Numbers. 91
57.PostwarInflation. 92
S8. PrimeNumbers. 93
59.PrintoutforaMatrix. o o o o oo o 95
60.Projection 9
61.Push/Pop. 98
62. Pythagorian Whole Numbers 98
63.Quadsol 99
64.Regression. L 100
65. Rotation of Pointsaround the Origin 106
66-69. Rounding 108
66.Up., e 108
67. Tothe NearestInteger 108
68. ToNDecimalPlaces 108
69. ToN SignificantFigures 109
70.Rubout e 110

71.SavingMemory. 112

T2.Scroll . . e 114

73=76. Series 115
73.Exponential. 115
T4, GEOMELTIC. .« . v oo e e e e e 116
75.Arithmetic 116
76.Binomial. 117

77.SidePrint. 117

78.Simultaneous Equations Lo o oL 118

79-84.8Sorting 121
T9. Anglesort 123
80.Bubblesort 125
81.Bucketsort 126
82.Heapsort. 129
83.Mergesort 132
84. Wordsort 133

85. Statistical Analysis. 134

86.StringStore 137

87.TAGPrint. 138

88. TestforaBinaryNumber., 139

89. TestforaDecimal Number 139

90. TIMEr 140

91.Underline 141

92. Universal Rotation 142

93.UsefulFunctions 147

THEROUTINES 149

TLADAZIAM . . oo 149

2.ControlStability 151

3.CubicCrystals4/m3mClass 154

4.CubicCrystals23Class o 161

5. Evaluation of a Determinant by Laplace Development. 167

6. Triangle 170

7. Two-ThreeTree. 175

INDEX 186

The Subroutines

The majority of the subroutines are set out in three sections. The middle
section is the subroutine itself which begins at line 1000 to assist you in
entering it as a subroutine. The first section is a simple input routine to
enable the subroutine to be checked after typing it in. The final section
always begins at 2000 and is a simple output routine to be used in the same
way as the input one. All three can be used together if you wish to use the
program as a stand—alone routine.

Where a DIM statement occurs in the subroutine itself, it is normally
ERASE(d at the end of the output section to enable the subroutine to be used
again. Where a DIM statement occurs in the input section, it is assumed that
it is part of the main program and that it will carry the information back with
the RETURN.

For good readability, the following conventions have been adopted.
Reserved words and colons are followed by a space. Mathematics are set out
without spaces and, if arguments have to be enclosed in brackets, these take
the place of the space after the reserved word. Integers are usually defined
but the symbols % and ! have not been used in the program variable names
except in a few cases. Strings are almost entirely defined in this way rather
than using DEFSTR at the beginning. This is to make the program more
understandable to readers unfamiliar with this facility. SW or SW$ is used
for the dummy in swapping operations. Square brackets have been used in
array names.

Care should be taken to ensure that the variables used do not conflict with
those in the main program either in type or precision level. A,B,C,H,K,L,
M ,N,P,Q,R,S,T,X,Y,Z are the most common ones.

A brief explanation of how each subroutine works is given and usually, an
example is shown of a typical output.

After entering, the subroutine can be checked and then placed where
required with RENUM. Alternatively, the subroutines can be recorded and
brought in as nccessary with MERGE, provided any lines 1000 onwards
have been shifted to safety with RENUM.

1. ADJECTIVAL NUMBER ENDINGS

This subroutine enables “st”, “nd”, “rd” or “th” to be printed after a number
as appropriate. The Defined Function either prints A$ (i.e. “st” etc.) if the
conditions are true or a null string if the conditions are false. The variable
BOOLE can only take the values of —1 (true) or 0 (false).

10 REM Adjectival Number Endings

20 DEF FN P%(A%$,BOOLE)=MID$ (A%, 1,-LEN(A%$) *BOOLE)

30 N=0: WHILE N<=0 OR N>99999999%9: INFUT N: WEND

40 IF N<>INT(N) THEN 30

SO N$=MID$(STR$(N),2)

60 GOSUB 1000: END

1000 IF LEN(N$)=1 THEN FRINT N$;FN FP$("st",N=1)+FN F&$("nd",N
=2)+FN P$("rd",N=3)+FN P$("th",N<>1 AND N<>2 AND N<>3): RETU
RN

1010 L$=RIGHT$ (N%,1): NL$=RIGHT#$(N$,2): FRINT N$;FN P$("st",
Le="1" AND NL$<>"11")+FN P$("nd",L$="2" AND NL$<>"12")+FN F$
("rd",L$="3" AND NL$<>"13")+FN P$("th", (L$<>"1" AND L$<>"2"

AND L$<>"3" OR (NL$="11" OR NL$="12" OR NL$="13"))): RETURN

2. ANNUITIES CERTAIN

These subroutines work out the annuity certain tables £Ao for different
annual interest rates and for annual and monthly payments.

Financial transactions based on compound interest have the geometric
series underlying them. If i is the interest rate, then £1 will become £(1+1)"
in n years time so that, turning it over £1/(1+1)" will become £1 in n years
time. The annuity certain is the sum of the present values 1/(1+1)" for each
of the years to come.

Hence, A, =v+v> +v? +v* ... v where v=1/(1+i)

This series equals (1—v")/i which has been used to calculate the tables
shown.

10 REM Annual Fayments

20 N=0: WHILE N<=0: INFUT "Number of years";N: WEND

30 DIM ACN1

1000 INPUT "Annual Interest Rate as “Z";I

1010 GOSUB 1020: GOSUB 1040: END

1020 FOR P=1 TO N: ALPI=(1-(100/(100+I))~P)/I%#100: NEXT
1030 RETURN

1040 FOR F=5 TO N: PRINT USING "###.#####";ALPI: NEXT
1050 RETURN

10 REM Monthly Payments

20 N=0: WHILE N<=0: INPUT "Number of years"3;N: WEND

30 DIM ACN]l: GOSUB 1000: GOSUB 2000: END

1000 INPUT "Annual Interest Rate as “Z";I: I=I/12

1010 FOR P=1 TO N: ALPI=(1-(100/(100+I))~(F%x12))/I#100: NEXT
1020 RETURN

2000 FOR P=10 TO N: FPRINT P, USING "###.##4###";ALFI: NEXT
2010 RETURN

The annuity certain is the initial sum which at x% per annum yields £1 per
annum over n years. If you have for example £25,000 to invest at 8% pa and
want to draw 15 equal annual instalments, then the annuity certain for 15
years at 8% is 8.5595 and £25,000/8.5595=£2,920.74 is the annual
instalment. After 15 years the money is all used up, as you have been
drawing capital and interest.

The reverse example is paying off loans, e.g. a mortgage, so that the monthly

payments are constant, i.e. initially you pay mainly interest charges, but
gradually pay back more capital.

MONTHLY REPAYMENTS AT 9%

Years Annuity Certain
10 78.94169
11 83.60642
12 87.87109
13 91.77002
14 95.33457
15 98.59341
16 101.57277
17 104.29661
18 106.78686
19 109.06353
20 111.14495

ANNUAL INSTALMENTS AT 8%

Years Annuity Certain
5 3.99271
6 4.62288
7 5.20637
8 5.74664
9 6.24689
10 6.71008
11 7.13896
12 7.53608
13 7.90378
14 8.24424
15 8.55948
16 8.85137
17 9.12164
18 9.37189
19 9.60360
20 9.81815

3. BEST FIT LINE

This subroutine calculates the best fit straight line for a set of points and,
plots the points and the line with appropriately scaled and labelled axes. It
prints out the slope and intercept of the line and the correlation coefficient
for the data. Dotted lines are drawn to represent the 95% confidence limits
which are also shown numerically.

The first 15 lines work out the mathematical quantities needed from the
INPUT data. These are the maximum values of x and y (MX,MY) to scale
the graph properly and the mean values (XM, YM) from which the slope and
intercept of the best fit line and, the variance can be calculated.

The best fit line is given by

2 xR, i Zxi JxiR)(yi9)
2 (xi%)? n n. 3 (xi-%)?

where the sum is over values of i from 1 to N.
The regression coefficient is given by
2 (xi-R)(yi-V)
'= .
J Z(xi®z. 2 (yiy)?

The six lines from 1150 enable the Student’s t value to be found to calculate
the 95% confidence limits £ E which depend on the number of readings as
well as the standard deviation.

SCX and SCY are the scaling factors for the graph to ensure that all points
can be plotted and that whole numbers appear on the axis marker points. If
the maximum value is less than 1 then the scale is increased by 10.

Line 2030 plots the axes and the next four loops plot the scale marks. The
next two loops PRINT numbers at five division intervals and the following
lines print the axis names.

The CHR$(208) is used to enlarge the points on the graph and the best fit
line is plotted via line 2090. CHR$(171) is the * sign needed for the 95%
confidence limits which are PRINTed along with the slope, intercept and
correlation coefficient

Finally, the X and Y values for the dotted lines are calculated and plotted via
SUB 2300.

Sub 2300 is the dotted line routine detailed elsewhere.

10 REM Best fit line

20 SYMBOL AFTER 208: H=HIMEM+1: FOKE H,240: POKE H+1,240

30 POKE H+16,255: FOKE H+18,255: POKE H+23,0: POKE H+22,0
40 INFPUT " Enter the number of pairs of readings (Minimum 3
)"3N: IF N<3 THEN FRINT "Not enough readings": GOTO 40

S50 DIM EC1,N]

60 PRINT "Type in the names of the variables": PRINT: FPRINT
70 PRINT "The name of the abscissa is": PRINT: INPUT A%$: FRI
NT

80 FRINT “The name of the ordinate is": PRINT: INPUT B$: CLS
90 FOR P=1 TO N

100 LOCATE 1,P: FRINT "x";P;"="3;: INPUT ECLO,F]

110 LOCATE 20,P: FRINT "y";P;"="3: INPUT EC1,F]

120 NEXT: REM Or use DATA INPUT (x and y coordinates) to est
ablish N and EL1,N]

130 GOSUB 1000: GOSUER 2000: END

1000 MX=0: MY=0: XM=0: YM=0

1010 FOR P=1 TO N

1020 IF ECLO,P1I>MX THEN MX=ELO,F1

1030 IF ECL1,F1>MY THEN MY=EC(1,F]

1040 XM=XM+E[O,Fl: YM=YM+E[1,F]

1050 NEXT

1060 XM=XM/N: YM=YM/N

1070 XX=0: XY=0: YY=0

1080 FOR FP=1 TO N

1090 XX=XX+(E[O,F1-XM)*(ELO,FI-XM)

1100 XY=XY+(E{O,FI1-XM)*(EL1,FP1-YM)

1110 YY=YY+(E[1,PI1-YM)*(E[1,P]1-YM)

1120 NEXT

1130 M=XY/XX: C=YM-M*XM

1140 R=XY/ (SER(XX) *SER(YY))

1150 DIM TCL10]1: RESTORE 1150: DATA 12.706,4.103,3.182,2.776,
2.571,2.447,2.365,2.308,2.262,2.228

1160 FOR F=1 TO 10: READ TLF1l: NEXT

1170 IF N<=12 THEN T=TIN-21]

1180 IF N>=13 AND N<=27 THEN T=-0.000014% (N-2)"3+0.00152% (N—-
2)72-0.05075% (N-2)+2.5975

1190 IF N>=28 AND N<=62 THEN T=2.056- (N-2)#0.00165

1200 IF N>&62 THEN T=1.98

1210 SCX=INT(MX/50)+1: SCY=INT (MY/40)+1

1220 IF MX<{=1 THEN SCX=SCX/10

1230 IF MY<=1 THEN SCY=SCY/10

1240 E=T*SER (1-R*R) *SQR(YY/ (N=-2))

1250 ERASE T: RETURN

2000 MODE 2: ORIGIN 0,0: CLS

2010 TAG: X=260: Y=385: FOR F=1 TO 13: MOVE X,Y: FRINT MID$(
“"BEST FIT LINE",FP,1);3;: X=X+12: NEXT

2020 X=260: Y=365: FOR P=1 TO 13: MOVE X,Y: PRINT CHR$(210)
5:1X=X+12: NEXT

2030 PLOT 600,70: DRAWR —-500,0: DRAWR 0,300

2040 FOR P=200 TO 600 STEP 100: PLOT P,70: DRAWR 0,8: NEXT
2050 FOR P=110 TO 600 STEP 10: PLOT P,70: DRAWR 0,5: NEXT
2060 FOR P=145 TO 370 STEP 7S: FLOT 100,F: DRAWR B,0: NEXT
2070 FOR P=70 TO 370 STEF 7.5: PLOT 100,P: DRAWR 5,0: NEXT
2080 TAG

2090 FOR P=1 TD N: MOVE 9&6+E[0,P1%10/SCX,74+E[1,F1%7.5/5CY:
PRINT CHR$(208);: NEXT

2100 FOR P=200 TO 600 STEP 100: MOVE P-15,62: FRINT (F-100)#*
SCX/10;1 NEXT

2110 FOR P=145 TO 370 STEP 75: B=1: IF (F-70)*SCY/7.5<=99 TH
EN B=2: IF (P-70)%SCY/7.5¢{=9 THEN B=3

2120 MOVE 32+10%B,P+8: PRINT (P-70)%SCY/7.5;: NEXT

2130 X=350-5%LEN(A%$): Y=38

2140 FOR P=1 TO LEN(A$): Z$=MID$(A$,P,1)

2150 MOVE X,Y: PRINT Z%;

2160 X=X+14+8% (Z$=" “); NEXT

2170 FOR P=1 TO LEN(B$): MOVE 30,230+10%LEN(B$)-20%P: PRINT
MID$ (B$,P,1);: NEXT

2180 ORIGIN 100,70

2190 PLOT 0,C#7.5/SCY

2200 DRAWR MX#*10/SCX, (MX%M) %7.5/5SCY

2210 X1=0: Y1=(E+C)#7.5/SCY: X2=MX#*10/SCX: Y2=(MX*¥M+E+C)*7.5
/SCY

2220 GOSUB 2300

2230 X1=0: Y1=(-E+C)#*7.5/SCY: X2=MX#10/SCX: Y2=(MX*¥M-E+C)*7.
5/5CY

2240 GOSUB 2300:

2250 MOVE 20,300: PRINT "M=";
2260 MOVE 320,50: FPRINT "R=";
f y=";CHR$(32);E;: MOVE 344,2
2270 TAGOFF: ORIGIN 0,0

2280 IF INKEY$="" THEN 2280
2290 MODE 1: RETURN

2300 IF X1=X2 THEN 2370 ELSE IF Y1=Y2 THEN 2330

2310 P=(Y2-Y1)/(X2-X1)

2320 IF ABS(P)<1 THEN 2340 ELSE P=1/P: GOTO 2380

2330 P=0

2340 I=10%SGN(X2-X1) /SOR (1+P*P)

2350 FOR @=0 TO (X2-X1)/1

2360 PLOT X1+Q*1,Y1+@#I%P: DRAWR O.4%I,0.4%I%F: NEXT: RETURN
2370 P=0

2380 I=10%SGN(Y2-Y1) /SOR (1+P*P)

2390 FOR @=0 TO (Y2-Y1)/1I

2400 PLOT X1+Q#I*P,Y1+Q@*I: DRAWR O.4%I#P,0.4%I: NEXT: RETURN
2410 RETURN

: MOVE 350,300: FRINT "C=";C;
: MOVE 250,25: PRINT "95% Con
FRINT CHR$(171);

TIME

M=1.1272525
220

165

110

C=8.7817207

55
95%CONF y=+20.870822
R=. 97359838
0
35 70 105 140 175
LENGTH

Fig. 3.1 Best Fit Line Display

4. BINARY SEARCH TREE

A Binary Search Tree is a convenient form of storage structure which
enables rapid access to the data to be made. For tree terminology see the
diagram. A vertex is labelled by A[V], one element of the set. Each vertex U
in any subtree to the left has A[U]>A[V] and each vertex in any right
subtree has A[U]<A[V]. There is only one vertex for each value in the set.
A[V]=0O implies an empty vertex.

This subroutine stores N values which must be different and zero is not
allowed. By changing A[M] to A$[M], strings can also be handled. (Z—Z$,
0—>""etc.)

Line 50 finds the size of the tree required. If the tree is very long on one
subtree, e.g. because the values are put in in order, then it may be necessary
to increase the initial value of K. (Subscript out of range message)

As the values are entered, the program goes from the root towards the
leaves by finding out

1.if a vertex is alrcady occupied

2.ifitis, thenis the value less?. If so, go left

3.if not, goright

4. when an empty vertex is found, label it with the value
S5.NEXT value

The searching routine follows the same pattern. K1 is the height of the
vertex in the tree.

See ‘INORDER sequence’ for a related subroutine.

10 REM Binary Search Tree

20 DEFINT N,K,P,V

30 N=0: WHILE N<=0: INFUT "Number of values"j;N: WEND
40 M=N+1: K=2

S50 WHILE M>1: M=M/2: K=K+1: WEND

60 M=2~K: DIM ACM1: GOSUB 1000: GOSUB 2000: GOTO 1050
1000 INFUT "Median Value";Al1l1]

1010 FOR P=2 TO N: PRINT "Value";P3: INPUT Z: V=1

1020 IF Z>ALV1 THEN V=V+V+1i: IF ALVI<>0 THEN 1020 ELSE ALVI=
Z: GOTO 1040

1030 V=V+V: IF ALVI<>0 THEN 1020 ELSE ALVI=Z

1040 NEXT: RETURN

1050 REM Search Routine

1060 PRINT: INPUT "Is the folowing a member";Z

1070 v=1: Ki1=1

1080 IF Z=ACV] THEN PRINT Z;" is a member": GOTO 1050

1090 IF KI1<K THEN K1=Ki1+1: IF Z>ALV] THEN V=V+V+1: GOTO 1080
ELSE V=V+V: GOTO 1080

1100 PRINT Z;" is not a member": GOTO 1050

2000 FOR P=1 TO 27(K-1)-1: PRINT ACPJ1;SPACE$ (7-LEN(STR% (ALP1]
}))3 2 NEXT

2010 RETURN

EXAMPLE

run Output

Number of values? 25 52 35 60 20 45
Median value? 52 59 70 10 28 40
Value 2?7 35 48 54] 65 75
Value 3?7 68 1 15 26] 37
Value 4?7 20 41] 49 53 55
Value 5? 45]] 63 69 74
Value 6?7 59]] (]]]
Value 7?2 78)]) 0 (]
Value 8?7 180 [(]) [}]
Value 92 28 [] ']]]
Value 187 40 (]] (]] [
Value 11?7 48 [’} () [} ')]
Value 12?7 54 () (] ()

Value 13?7 65 Ready

Value 14?7 75

Value 15?7 1

Value 16?7 15
Value 17?7 26
Value 18?7 37
Value 19?7 41
Value 208? 49
Value 21?7 53
Value 227 55
Value 23?7 63
Value 24?7 69
Value 25? 74

10

- ANCESTOR
DEPTH OF
%
L DESCENDANT
L VERTEX
LEVEL OF
v
1 FATHER Y
LEFTSON RIGHT SON
. SON
HEIGHT OF TREE
-4

Fig. 4.1(a) Family Type Tree

BRANCH

LEFT
SUBTREE

RIGHT
VERTEX SUBTREE.

ORNODE

ROOT

Fig. 4.1(b) Botanical Type Tree

11

Fig. 4.2 Binary Search Tree

12

5. BINOMIAL COEFFICIENTS

This subroutine calculates the coefficients of (a+b)" forn<=124

The binomial coefficients are useful in calculating the probability of events
happening. For example, choosing 3 balls from a bag containing 3 red and 7
black balls is governed by '

(3/10+7/10)3 = 1x(.3)> +3x(.3)>x(.7) +3x(.3)x(.7)* + 1x(.7)*
=0.027 +0.189 +0.441 +0.343 .

The first term is the probabilty of 3 red balls being picked, the second 2 red
and 1 black, the third 1 red and 2 black and finally, the last term in the
expansion is all 3 being black.

The illustration is Pascal’s triangle, where each row contains a set of
binomial coefficients. It has the property that any row can be derived from
the row above by adding adjacent coefficients together.

Note the alternative DIM statements using the value of T depending on
whether there is a finite or infinite series.

10 REM Binomial Coefficients

20 INPUT "Value of n"3;N: IF ABS(INT(N))<>N THEN FPRINT "n is
not a positive whole number. How many terms do you want": IN
PUT T: GOSUB 1010: GOTO 40

30 GOSUB 1000

40 GOSUB 2000: END

1000 DIM BIN+1]: T=N+1: GOTO 1020

1010 DIM BLT1]

1020 Z=1: M=N

1030 FOR P=1 TO T: BLP1=Z: Z=Z*M/P: M=M-1: NEXT

1040 RETURN

2000 FOR P=1 TO T: PRINT BLPJ1: NEXT

2010 ERASE. B: RETURN

13

PASCAL’S TRIANGLE

10 REM Pascal’s Triangle

20 DEFINT H,P,Q

JI0 H=0: WHILE H<=0: INFUT "Height (up to 9)"j;H: WEND
40 DIM BLH,H+11

S0 FOR P=0 TO H: Z=1: M=F

60 FOR G=1 TO P+1: BIP,01=Z

70 Z=Z*M/Q@: M=M—-1

80 NEXT @Q,P

90 CLS: FRINT: FRINT

100 FOR P=0 TO H: FRINT SFACE$ (18-FP%2);

110 FOR @=1 TO P+1: A%$=STR$(EBLF,R1)

120 PRINT SPACES$ (4-LEN(A%));A%;: NEXT @: PRINT
130 PRINT: NEXT F

1 5 10 10 S5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84126126 84 36 9 1

14

6. CIRCLE

These subroutines have been used for calculating the positions of circle
centres from engineering drawings and for approximating complex shapes to
a series of arcs for NC machine operation.

The first calculates the centre coordinates and the radius of the only circle
that passes through three points. Note that as there are two values to a
square root, R may be positive or negative. Care is therefore needed if you
use it as an absolute value in a formula.

The second subroutine calculates the position of the centres of the two
circles of a given diameter which pass through two points.

10 REM Finding the centre of the circle

20 CLS: PRINT " Insert the coordinates of the three point
s": PRINT

30 INFPUT "x1=";X1: LOCATE 20,4: INFUT "yl=";Y1

40 INPUT "x2=";X2: LOCATE 20,S5: INPUT "y2=";Y2

SO0 INFPUT "x3=";X3: LOCATE 20,6: INFUT "y3=";Y3

60 GOSUB 1000: GOSUB 2000: END

1600 D=X1%(Y2-Y3) +X2# (Y3-Y1)+X3*(Y1-Y2): IF ABS(D)<0.000001
THEN GOSUB 2050: GOTO 20

1010 OX=((X1%#X1+Y1%#Y1) #(Y2-Y3) + (X2#X2+Y2%#Y2) ¥ (YI=Y1) + (XI# X3+
YI#Y3) *(Y1-Y2))/2/D

1020 OY=((X1%#X1+Y1%Y1) # (X3—X2) + (X2#X2+Y2#Y2) # (X1-X3) + (XI*#X3+
Y3I#Y3) #(X2-X1))/2/D

1030 R=SER((0X-X1)* (0OX—X1)+(0Y-Y1)*(0Y-Y1))

1040 RETURN

2000 FRINT: PRINT "Radius="j;R

2010 PRINT: PRINT "Coordinates of the centre are"

2020 FRINT: PRINT "Ox="j;0X

2030 PRINT: FRINT "Oy=";0Y

2040 RETURN

2050 PRINT " Error in the data. Press any key to begin ag
ain"
2060 IF INKEY$="" THEN 2060

2070 RETURN

10 REM Finding the centres of TWOD circles

20 CLS: PRINT "Insert the coordinates of the two points": PR
INT

IO INPUT "xi1="3;X1: LOCATE 20,4: INPUT "yi1="j3;Y1: PRINT

40 INFUT "x2=";X2: LOCATE 20,6: INPUT "y2=";Y2: PRINT

S50 FRINT "Insert the radius of the circles": PRINT

60 INPUT "r="3R

15

70 GOSUB 1000: END
1000 DEF FN R(A)=A%*-(ABS (A) >0.000001): NL$=CHR$ (10)+CHR%$ (13)
1010 IF (X1-X2)#(X1-X2)+(Y1-Y2)*(Y1-Y2) >4%«R*R THEN FRINT "Er

ror in the data. Fress any key to re—enter": GOSUE 1120:
RUN

1020 IF ABS(X2-X1)<0.000001 AND ABS(Y2-Y1)<0.000001 THEN FRI
NT "Arc too small to calculate centres. Press any key":

GOSUB 1120: RUN

1030 IF ABS(Y2-Y1)<0.000001 THEN THETA=FI/2: GOTO 1050
1040 THETA=ATN((X1-X2)/(Y1-Y2))

1050 XM=(X1+X2)/2: YM=(Y1+Y2)/2

1060 P=SOR(R*¥R—(Y1-YM) ¥ (Y1-YM)—(X1-XM)* (X1-XM))

1070 FC=F*COS(THETA): FS=FP*SIN(THETA)

1080 FRINT: FRINT

1090 FRINT "Centres are at"ijNL$3;FN R(XM+FC);",":FN R(YM+FS)
1100 FRINT "and";NL$;FN R(XM-FC);",";FN R(YM-FS)

1110 RETURN

1120 IF INKEY$="" THEN 1120

1130 RETURN

(X1,Y1)

(X3,Y3)

(X2,v2)

Fig. 6.1 Circle Through Three Points

Fig. 6.2 Circles Through Two Points

16

7. COMBINATIONS OF PLUS AND MINUS ONE IN
GROUPS OF THREE

This subroutine was developed for the cubic crystal program and produces
the eight combinations of +1 and —1 in groups of three leaving the input
unchanged at the end. Each choice can be made in two ways, +1 or —1, and
so the total number of different arrangementsis 2xX2Xx2=8.

The first arrangement is
1 1 1

Two numbers are interchanged or one is multiplied by —1 giving a sequence
of changes as follows:

A=0 1 1 1 A(2)*-1
1 1 1 -1 A(1)—A(2)
2 1 -1 1 A(2)*—1
3 1 -1 -1 A(0)*—1
4 -1 -1 -1 A(2)*—1
5 -1 -1 1 A(1)—A(2)
6 -1 1 -1 A2)*-1
7 -1 1 1 A0)*—1
8 1 1 1

10 REM Combinations of plus and minus cne in groups of three
20 GOSUB 1000: GOSUB 2000: END

1000 DIM ALC21,CC8,21]

1010 ALO1=1: AL1]=1: ALC2]1=1

1020 FOR A=0 TO B8: FOR B=0 TO 2

1030 CCLA,B1=ACBl: NEXT

1040 IF A=1 OR A=5 THEN Z=AC1]1: AL1]1=AL2]1:AC2]=Z: GOTO 1070
1050 IF A=3 OR A=7 THEN AL[0]1=-AL0]: GOTO 1070

1060 AL21=-AL2]

1070 NEXT

1080 RETURN

2000 FOR A=0 TO 8: FOR B=0 TO 2

2010 FRINT CLA,Bl;: NEXT

2020 PRINT: NEXT:

2030 ERASE A,C

2040 RETURN

17

8. COMPLEX NUMBERS

Complex numbers of the form a+bi (where i is the square root of —1) are a
very convenient way of representing pairs of numbers. In geometrical terms,
a is the x—coordinate and b the y—coordinate and complex numbers occur
quite frequently in mathematics.

At first sight, it might appear difficult to handle complex numbers in a
computer as SQR(—1) is not recognised by the computer. However, by
keeping the real and imaginary parts of a complex number separate, say in
two arrays, they are no more difficult to deal with than ordinary numbers. It
is necessary to use a string PRINT to incorporate the “i” in the final answer.

These subroutines deal with the simple operations of addition, subtraction,
multiplication and division but more complicated operations can be found
under ‘MATRICES’.

The formulae used are as follows; —

(a+bi) plus (c+di)=(a+c)+(b+d)i

(a+bi) minus (c+di)=(a—c)+(b—d)i

(a+Dbi) times (c+di)=(ac—bd)+(bc+ad)i

(a+bi) divided by (c+di)=(ac+bd)/(c* +d?)+(bc—ad)/(c’ +d?)i

The DEF FN for the final PRINT is to enable the normal mathematical
conventions to be observed and avoid clumsy expressions such as

0*+2i i.e.—2i and—-2+0i i.e. -2

10 REM Complex numbers

20 DEF FN A% (A%$,A,BOOLE)=MID% (A%, 1+A, -LEN (A%$) *BOOLE)

30 PRINT "1st Complex Number Zl=a+ib"

40 PRINT: INPUT "a=";A: INPUT "b=";B

S0 FPRINT "2nd Complex Number Z2=c+id"

60 PRINT: INPUT "c=";C: INPUT "d=";D

70 CLS: GOSUB 2000: END

2000 R=A: I=B: GOSUB 2100: FRINT: FRINT "Z1=";Z%

2010 R=C: I=D: GOSUB 2100: FRINT: PRINT "Z2=";I%

2020 R=A+C: I=B+D: GOSUB 2100: FRINT: FRINT "Z1+Z2=";7%
2030 R=A-C: I=B-D: GOSUB 2100: PRINT: PRINT "Z1-ZI2=";Z$%
2040 R=A#*C-B*D: I=B*C+A%*D: GOSUB 2100: FRINT: FRINT "Z1%#Z2="
HY4

2050 S=C*C+D%D: IF S=0 THEN GOTO 2080

2060 R=(A*C+B*D)/S: I=(B*C—-A*D)/S: GOSUB 2100: PRINT: PRINT
"Z1/22="1%

18

2070 PRINT: RETURN

2080 FRINT: PRINT "Denominator zero, infinite answer for div
ision"

2090 FPRINT: RETURN

2100 Z$=FN A%$("-",0,R<0)+FN A$(STR$(R),1,R<>0)+FN A$("+",0,A
BS(R) >0 AND I>0)+FN A$("-",0,I<0)+FN A$(STR%(I),1,I<>0 AND A
BS(INK>1)+FN A$("i",0, I<>0}+FN A$("0",0,R=0 AND I=0)

2110 RETURN

EXAMPLE

1st complex number Z1=a+bi

3
-1
2nd complex number Z2=c+di

=2 -3
2

4

11=3-i

12=-3+4i
11+12=3i
11-12=6-5i
11%22=-5+15i
11/12=-.52-.361

Ready

19

9. COMPREHENSIVE NUMBER FILTER

This filter subroutine only allows positive and negative integers, decimals or
exponential numbers through. The number is entered as a string and tested
character by character.

Line 1000 initialises the variables. Q is the position of the decimal point in
the mantissa and R the position of “E” or “e” if they are present. S is the
position after the exponent of any “+” or “—”. W is used to check that there
is a character after this “+” or “—” position. FAIL is used for the RETURN
from the tests. All these variables are set to zero

T is initially set to 1 but changes to 2 if “+” or “~" is used in front of the
number so that they are not included in the tests.

Line 1040 looks for an exponential form of number and continues the tests at
1110.

Line 1050 tests for a decimal in non—exponential numbers and line 1060
rejectsentriessuchas “+.”,“+”,“.” and those >10 1 38 or <10 1 —38.

Line 1100 fails exponential numbers with no mantissa. The following lines
search for a decimal point in the mantissa and reject exponential numbers
with no exponent or with a decimal point in the exponent. The position of
any “+” or ”—" after the exponent is found and numbers with no entries
after the sign are rejected.

Returning to 1110, all characters except the initial “+” or “—", the “E” or
“e” the decimal point and the exponent “+” or “—" are tested for numerical
characteristics.

Finally, the numerical value of an exponent number is tested to see that it
lies between 10 1 38 and 10 1 —38 having first dealt with any number with a
mantissa equal to zero (because of the LOG required in the test).

10 REM Comprehensive Number Filter

20 INPUT “Number";Q%: GOSUB 1000

30 IF FAIL THEN 20 ELSE GOSUB 2000: END

1000 @=0: R=0: 5=0: FAIL=0: T=1: L=LEN(Q%)

1010 IF @s$="" THEN GOSUB 1170: RETURN

1020 IF LEFT$(@%,1)="-" OR LEFT$(Q%,1)="+" THEN T=2
1030 FOR P=T TO L: Z$=MID$(Q$,P,1)

1040 IF Z$="E" OR Zs$="e" THEN 1110 ELSE NEXT F

1050 FOR P=T TO L: IF MID$(Q%,F,1)="." THEN B@=P

20

1060 NEXT F: IF @=T AND L>38 OR L-Q>38 OR L<T OR L<@+1 THEN
GOSUB 1170: RETURN

1070 FOR FP=T TO L: IF F<:@ AND F{xR AND F<:»S8 THEN IF MID$(Q%
,Py,1)<"0" OR MID$(Q%,F,1)>"9" THEN GOSUB 1170: RETURN

1080 NEXT P: IF R<>0 THEN GOSUB 1180

1090 RETURN

1100 IF P<=T THEN GOSUE 1170: RETURN

1110 R=P: FOR F=T TO R-1: IF MID$(Q@%,P,1)="." THEN Q=P

1120 NEXT P: IF L=R OR R<=@+1 THEN GOSUB 1170: RETURN

1130 IF MID$(Q%,R+1,1)="+" OR MID$(Q$,R+1,1)="-" THEN S=R+1:
W=1

1140 IF L<=R+W THEN GOSUB 1170: RETURN

1150 GOTO 1070

1170 FAIL=-1: RETURN

1180 IF VAL(MID$(Q%,T,R-T))=0 THEN Q%$="0": RETURN

1190 V=VAL (MID$(Q%,R+1))+L0OG10 (VAL (MID$(Q%,T,R-T))): IF ABS(
V) »=38 THEN GOSUB 1170: RETURN

1200 RETURN

2000 N=VAL (%): FRINT N: RETURN

10. CONDITIONAL BRACKETS

This subroutine puts brackets around certain items when PRINTed
according to the outcome of a logical operation. For example in accounting
brackets are sometimes used to indicate a negative entry rather than red ink
or aminus sign. The variable BOOLE would then be (N<0).

The routine works by changing the code of the character string from 32
(blank) to 40 or 41, the left hand and right hand brackets respectively. This
technique can be used for other characters and is used in ‘DETERMINANT
BY LAPLACE DEVELOPMENT" to change “+” into “—” in the string
expression.

10 REM Conditional Brackets

20 DEF FN L$ (BOOLE)=CHR$ (32-8%BO0OLE)

30 DEF FN R$ (BOOLE)=CHR% (32-9%BOOLE)

35 REM The variable BOOLE can only take the values O(False)
or -1(True)

40 DEF FN P$(A)=MID$ (STR$(A),2)

S0 GOSUB 1000: END

1000 FOR A=1 TO 4: FOR B=1 TO S

1010 PRINT FN L$(A<B);FN P$(A-B);FN R$(A<B),A-B

1020 NEXT B,A: RETURN

21

11-16, CONVERSIONS

Conversions between binary, decimal and hexadecimal are available in
Amstrad but are limited to sixteen bits. The following routines can be used
for positive integers of any size.

11. BINARY TO DECIMAL

This routine finds the decimal number by adding the number of 1‘s, 2‘s, 4‘s
etc..

10 REM Binary to Decimal

20 REM Use Binary Number test routine

30 INPUT "Input binary number";Bs$

40 GOSUB 1000: GOSUB 2000: END

1000 D=0: C=1: L=LEN(BS)

1010 D=D+2~(L-C)*VAL (MID$(B$,C,1))

1020 IF L=C THEN RETURN ELSE C=C+1: GOTO 1010
1030 RETURN

2000 FRINT B$;SPC(5)3;D: RETURN

12. BINARY TO HEXADECIMAL

There is a simple relationship between binary and hexadecimal numbers as
each group of four in a binary number represents a hex. digit. The Function
B$(S) is the list of 16 hex. digits from which the correct one can be selected
by S which is formed by four cycles of Q and terminated when T=L

10 REM Binary to Hexadecimal

20 DEF FN B$(S)=MID$ ("0123456789AECDEF",S, 1)

30 LINE INPUT "Binary Numbter ";B$

40 REM Use Binary Number test routine

S50 GOSUB 1000: GOSUB 2000: END

1000 L=LEN(B$): H$=STRINGS (1+INT((L-1)/4),32)3 T=0

1010 S=0: Q=0

1020 S=S+2~Q#VAL (MID$ (B$,L-Q-INT(T/4)%4,1)): Q=Q+1z T=T+1
1030 IF T=L THEN MID$(H$,1,1)=FN B$(S+1):1 RETURN

1040 IF @=4 THEN MID$ (H$,LEN(H$)-T/4+1)=FN B$(S+1): GOTO 101
0 ELSE GOTO 1020

2000 PRINT B%;SPC(S5);HS$

2010 RETURN

22

13. DECIMAL TO BINARY

This routine is based on successive division by 2 and finding the remainder.
As there are rounding errors in the computer calculations, 0.0000001 is
added to give the correct INT value.

10 REM Decimal to Binary

20 DEFINT P,Q

30 INPUT "Input decimal number";D

40 GOSUB 1000: GOSUB 2000: END

1000 P=1: WHILE 2~P<ABS(D)+1: P=FP+1: WEND
1010 A$=STRING$(P,32): FOR Q=1 TO P

1020 U=INT(D/2”Q-INT (D/2"Q+0.0000001)+0.5)
1030 MID$ (A%, 1+P-Q)=RIGHT$ (STR$(U),1): NEXT
1040 RETURN

2000 PRINT D;SFC(5) ;AS

2010 RETURN

14. DECIMAL TO HEXADECIMAL

This routine slices the hexadecimal list in FN H$(H) with the remainders
from division by powers of 16.

10 REM Decimel to Hexadecimal

20 DEF FN H$ (H)=MID$("0123456789ABCDEF", 1+16#% (H/16—INT (H/16)
)y 1)

30 INPUT "Input decimal number";N: IF N<O THEN 30

40 GOSUB 1000: GOSUB 2000: END

1000 IF N=O THEN A$="0": RETURN

1010 As=""

1020 FOR D=LEN(STR$(N))-2 TO O STEP -1

1030 A$=AS$+FN H$ (INT(N/(167D))): NEXT

1040 IF LEFT$(A$,1)="0" THEN A$=RIGHT$(A$,LEN(A$)-1): GOTO 1
040

1050 RETURN

2000 PRINT N3SPC(5);AS

2010 RETURN

23

15A. HEXADECIMAL TO BINARY 1.

The Function H(A) converts H$ into a number by using the fact that the
digits are 48—57 and the capitals A—F are 65—70 in the ASCII list of Codes.
For example, ASC(C) is 67, take off 48 and 7 (“C”>"A" hence the bracket
equals —7) which gives 12—the hex. value of C.

10 REM Hexadecimal to Binary 1.

20 DEF FN H(A)=ASC(MID$ (H$,A, 1)) -48+7% (MID$ (H$,A, 1) >="A")
IO LINE INFUT "HEX. NUMBER "j;H$

40 GOSUB 1000: GOSUB 2000: END

1000 B$=STRINGS (LEN (H$) *¥4,32)

1010 FOR N=LEN(H$) TO 1 STEP -1: FOR M=1 TO 4

1020 U=INT(FN H(N)/2"M=INT (FN H(N)/2"M)+0.5000003)
1030 MID%$ (B%, 4%N-M+1)=RIGHT$(STR$(U),1): NEXT M,N
1040 RETURN

2000 FOR T=0 TO 2: IF MID$(B%,1+T,1)="0" THEN NEXT T
2010 PRINT H$3;SFPC(S) ;RIGHT$ (B%,LEN(B$)-T)

2020 RETURN

15B. HEXADECIMAL TO BINARY 2.

The Function H(A) unscrambles the hexadecimal number using the order of
letters and numbers in the ASCII list and slicing with ASC(MID$(H$,A,1))—
47. For example, ASC(F)=70 so that the 23rd character of the string is selected
i.e. the “?” which has an ASC value of 63. Take off 48 and this gives 15—the
decimal value of F.

10 REM Hexadecimal to Binary 2. Upper or lower case
20 DEF FN H(A)=ASC (MID$ ("O1274567BFH ¥ ¥ ¥ 5 =57 K KX 1% %% %% %

H WA RN N HNRR 3 <=>?" ASC (MIDS (H$,A, 1)) —-47,1))-48
30 LINE INPUT "H$ (UPPER or lower case) ";H$

40 GOSUB 1000: GOSUB 2000: END

1000 B$=STRING% (LEN (H$) %4, 32)

1010 FOR N=LEN(H$%) TO 1 STEP -1: FOR M=1 TO 4

1020 U=INT(FN H(N) /2"M=INT (FN H(N)/2"M)+0.5000005)
1030 MID% (B%,4%N-M+1)=RIGHT$(STR$(U),1): NEXT M,N
1040 RETURN

2000 FOR T=0 TO 2: IF MID$(B%,T+1,1)="0" THEN NEXT T
2010 PRINT H%$;SFC(S) ;RIGHTS (B$,LEN(B$)-T)

2020 RETURN

Successive division'produces U which is built up in B$ to form the binary
number. The loop in T is to remove surplus zeros from the front of the binary
number.

24

16A. HEXADECIMAL TO DECIMAL 1.

The Function H(A) converts H$ as in the Hex. to Binary routine. It only works
for upper case hence the UPPERS$ in line 30.

10 REM Hexadecimal to Decimal 1.

20 DEF FN H(A)=ASC(MID$ (H$,A, 1)) —-48+7% (MID% (H%,A, 1) »="A")
20 LINE INFUT "H$ ";H$: H$=UFFER$ (H$)

40 (GOSUB 1000: GOSUB 2000: END

1000 D=0: FOR N=1 TO LEN(HS$)

1010 D=D+FN H(N) ®#16" (LEN(H$)-N): NEXT: RETURN

2000 FRINT H$3;SFC(S) ;D

2010 RETURN

16B. HEXADECIMAL TO DECIMAL 2.

The more complicated Function is used as before to deal with small and capital
letters in the hexadecimal number.

10 REM Hexadecimal to Decimal 2.

20 DEF FN H(A)=ASC(MID$ ("012345678F % %% % #kz 5 =07 R %% 1K HH%%%%%
AR NN AR RXRT 3<{=22" ASC(MID$ (H$,A,1))—-47,1))-48

320 LINE INPUT "Hex. number, UFFER or lower case "j;H®$

40 GOSUB 1000: GOSUB 2000: END

1000 D=0: FOR N=1 TO LEN(H$)

1010 D=D+FN H(N)*16™ (LEN(H%)—-N): NEXT

1020 RETURN

2000 PRINT H$;SPC(3);D

2010 RETURN

25

17—-20.CHECKING DATA INPUT

The purpose of a data input routine is twofold. Firstly, it should enable the
input to be checked automatically, to ensure that it is the right type and within
range i.e. a number, a name, single letters etc and secondly, it should enable it
to be checked by the keyboard operator to see that the values are correct, the
spelling right etc. before it is used. Unchecked data will inevitably lead to the
program crashing at some time. For example INPUT N: N=1/N will lead to a
‘Division by Zero’if the “<ENTER>" key is accidentally pressed before the
digit key. This would simply be avoided by A INPUT N: IFN=0THEN A

Other inclusive tests trap this error. For example IF MID$(NS$,P,1)>="0"
AND MID$(N$,P,1)<="9"(In a loop) THEN accept ensures all the
characters in a number are digits. If you are setting up a DIM statement you
must ensure that it cannot be negative ie. IF VAL(N$)<0 THEN(INPUT Line
No.)

A generalised form of INPUT is
Line No. LET Q =(Line No.): INPUT Q$

QS can then be tested character by character with a loop and if it fails THEN
GOTO Q. If it passes Q$ is then either converted to a number via a VAL
function and stored or stored directly leaving Q and Q$ available for the next
INPUT.

17. DATA INPUT (Linear equations with up to eight variables)

This subroutine accepts coefficients and constants for sets of equations
(maximum number of 8) prior to solving them as simultaneous equations, for
example.

The limitation of 8 arises only from the size of the screen. The FN BSS$ is for
erasing and back spacing and the FN AS$ is for printing in packed format. FN K
and FN J avoid complications in the PRINT locations.

The first half of the routine PRINTSs the equations in algebraic form by
concatenating CHR$ (96+K) with FN A$(J),”*” and CHR$(90+K—N) to
form al*x,b2*y etc.. At 1090 the numerical values are inserted and al is
overwritten by a blank, the PRINT position is backspaced and E[J,K] written
where al*x was before.

26

If you are not satisfied with the numerical values that have been inserted, you
can go back to 1090 and change them via K$.

10 REM DATA INPUT (Linear Equations)

20 SYMBOL AFTER 208: POKE HIMEM+1,0

30 DEFINT J,K,N

40 DEF FN BS$ (AR)=SPACES$ (A) +STRINGS (A, 8)

50 DEF FN A$(A)=MID$(STR$ (A),2)

60 DEF FN K (K)=8#K+32# (K>4)—-b6: DEF FN J(J)=2%J-(K>4)+4

70 INPUT "How many variables are there";N: IF N<1 OR N>8 THE
N 70

75 DIM EILN,N+11]

80 GOSUB 1000: END

1000 CLS: LOCATE 10,2: FRINT "Your equations are"

1010 LOCATE 10,3: FOR P=1 TO 18: PRINT CHR$(208);: NEXT

1020 FOR J=1 TO N: FOR K=1 TO N

1030 LOCATE FN K(K),FN J(J): PRINT CHR$ (26+K)+FN A$(J)+"#"+C
HR$ (90+K-N) : NEXT

1040 FOR K=1 TO N-1:

1050 LOCATE FN K(K)+5,FN J(J): PRINT "+": NEXT

1060 LOCATE 30,FN J(J): PRINT " = "+"K"+FN A$(J): NEXT

1070 FOR K=1 TO N

1080 LOCATE 33,4: PRINT "Const": LOCATE FN K(K)-2%(K>4),4: P
RINT CHR$ (32-15#(K>4)) +CHR$ (90+K-N): NEXT

1090 FOR J=1 TO N: FOR K=1 TO N+1

1100 LOCATE 1,22

1110 PRINT "Now enter the values ";CHR$ (96+K+ (K=N+1)*(K+21))
+FN A$(J)+"="36PC(9);:LOCATE 24,22: INPUT EC[J,K]

1120 LOCATE (1-FN K(K))# (K<>N+1)—=(K=N+1)#32, 2#J+4+ (K>4) % (N>4
)t PRINT USING "&"; FN BS$(7)+STR$(ELJ,KI)

1130 NEXT K,J

1140 LOCATE 1,22: PRINT SPACE$ (40)

1150 LOCATE 1,22: PRINT * oK? (Y/N)"3: INPUT K$

1160 K$=UFPPER$ (K$): IF K$="Y" THEN RETURN ELSE 1090

EXAMPLE
N=5

Your Equations are
v/ W X Y Const
al*v + b1*w + cl¥x + d1*y +
elxz =k1
a2*v + b2%w + c2*%x + d2*y +
e2xz =k2
a3*v + b3*w + c3%*x + d3*y +
e3xz =k3
ab*xv + bb*w + chxx + db*y +
ebxz =ké

27

aS*v + b5*%w + c5%x + d5*y +

e5z

Now insert the values a1=?

vV/1 W

15 + 25
7

9.6 + 10
2

3.7 + 16
4

16 + 91
6

5 + 2

8

ok? (y/n)

X
9.5

4.3

6.9

I+

13

81

28

18. DATA INPUT (Matrices or arrays)

This subroutine enables a matrix or array of numbers to be entered and
checked. The initial display is in algebraic format. FN A$(A) is used for
printing in a packed form. At 1030 the numerical values are inserted using the
erase and backspace function BS$(A). If an error is made, the values can be
changed by going back to 1030.

10 REM Data Input (Matrices or arrays)

20 DEFINT J,K,M,N

30 DEF FN A% (A)=MID$ (STR$ (A),2)

40 DEF FN BS% (A)=SPACES$ (A) +STRINGS (A, 8)

S0 CLS: PRINT: PRINT " Insert the size of the matrix as m ro

ws and n columns"

60 LOCATE 1,5: INPUT "m="3;M: LOCATE 20,5: INPUT "n="3;N: IF N

=0 OR M=0 THEN 50

70 CLS: PRINT: PRINT * The matrix is"

80 DIM ALM,Nl: K$="Y"

85 GOSUB 1000: GOSUB 2000: END

1000 FOR J=1 TO M: FOR K=1 TO N

1010 LOCATE S*K-3,2#J+3: PRINT "a"+FN A$(J)+FN A% (K)

10620 NEXT K,J

1030 FOR J=1 TO M: FOR K=1 TO N

1040 LOCATE 1,20: FRINT * Now type in the numerical values
s

1050 IF K#$<>"Y" THEN PRINT " again, correctly"

1060 FRINT: PRINT "a"+FN A$(J)+FN A$(K)+" is ";FN BS$(8)3: 1

NFUT ALJ,K1]

1070 LOCATE S#K-3,2%J+3: PRINT FN BS$(5);A[J,K]

1080 NEXT K,J

1090 LOCATE 1,20: PRINT FN BS$(80);" OK? (Y/N)"3;: INPUT
K$: K$=UFPER$ (K$)

1100 IF K$<>"Y" THEN 1030

1110 RETURN

2000 CLS: TAG: MOVE 124,395: PRINT "THE MATRIX I s"
s

2010 FLOT 124,378: DRAWR 368,0

2020 FOR J=1 TO M: FOR K=1 TO N

2030 MOVE BO*K-40,400-40%J: PRINT ALJ,KJ;: NEXT K,J

2040 MOVE 72,368: DRAWR —-40,0: DRAWR 0,-32-40%(M-1): DRAWR 4

0,0

2050 MOVE 80%N+40,368: DRAWR 40,0: DRAWR 0,-32-40%(M-1): DRA
WR -40,0

2060 TAGOFF: RETURN

29

EXAMPLE

Insert the size of the matrix as m rows and n columns
mn=? 5 n=? 4
The matrix is

all al2 al3 aléd
a2l a22 a23 al24
a3l a32 a3l a34
ab1 ELY4 abkl3 abb
a51 a52 a53 as4

Now type in the numerical values

all is? 1
1 3 5 7
2 4 6 8
-1 4 6 2.5
3 9 1" 17
6 5 3 1
0K? (y/n) y

THE MATRIX IS

1

1
Y
V1O & S W

5
6
6
1
3

- = N 00~
v

30

19. DATA INPUT (Single Variable)

This subroutine is for entering data for subsequent statistical analysis.

With single variables, you often have too many data to display them all at once.
In this routine, they are stored in V[N]. However each is checked for numerical
characteristics in SUB 1120 before storing. The use of INKEYS$ enables the
number to be built up character by character before testing and this avoids the
complications of INPUT A$ and a comma.

After the numbers are all tested, they are displayed in a column using
VPOS(#0) to stop the flow and allow the numbers to be checked 20 at a time.

If an alteration is required (line 1250), the variable subscript number is sought
and checked (line 1330) before the new value is asked for (lines 1340—1360).

The revised 20 values are again displayed for further possible correction. If they
are OK then the routine displays the next 20 and so on.

10 REM DATA INFUT (Single Variable)

20 DEFINT A,K,N,P,Q,S,T

30 DEF FN A$(A)=MID$(STR$ (A),2)

40 A$=STRING% (10,32)+STRING$(10,8): NL$=CHR%$(10)+CHR$ (13)

S0 CLS: FRINT: INFUT "How many variables are there";N

60 IF N>=4 THEN 65 ELSE PRINT STR$(N)+" values are not enoug

h to do a sensible statistical analysis.": PRINT NL$%;"Press
any key to begin again.": GOSUB 1100: CLS: GOTO SO

65 GOSUB 1000: GOSUB 2000: END

1000 DIM VINl: CLS

1010 WINDOW #2,1,40,22,25

1020 FRINT #2,"Insert the values"

1030 FOR F=1 TO N: V¢$=""

1040 LOCATE #2,1,2: FRINT #2," V(";FN A$(P);") is ";: FRI
NT #2,A%;

1050 T$=INKEY$: IF T$="" THEN 1050

1060 PRINT #2,T$;: IF T$=CHR$(13) THEN 1070 ELSE V$=V$+T$: G

0TO 1050

1070 GOSUB 1120: IF FAIL THEN P=P-1 ELSE VIP1=VAL (V$)

1080 NEXT

1090 CLS :60SUB 1170: RETURN

1100 IF INKEY$="" THEN 1100

1110 RETURN

1120 FAIL=0: S=0: T=1: IF LEFT$(V$,1)="+" OR LEFT$(V$,1)="-"
THEN T=2

1130 FOR Q=T TO LEN(V$): Z$=MID$(V$,0Q,1)

1140 IF Z%$="." THEN S=S+1

1150 IF Z4$="." OR Z$>="0" AND Z$<="9" THEN NEXT: IF S<=1 THE

N RETURN

1160 FAIL=-1: RETURN

31

1170 A=1

1180 FRINT: FRINT #2, "Are these values correct?": FOR F=A T

ON

1190 PRINT TAB(10);"V("3FN As(F);")="3;VIF]

1200 IF VFOS(#0)>20 THEN 122

1210 NEXT

1220 GOTO 1240

1225 IF P>N THEN RETURN

230 CLS : GOTO 1190

1240 PRINT #2, "(Y/N)";

1250 INFUT #2,K$: K$=UFFER®$ (K$)

1260 IF E$="Y" THEN A=F+1: GOTO 1225

1270 CLS #2: FRINT #2,"Which entry would you like to alter?"
s

1280 Vs=""

1290 T$=INKEY$: IF T$="" THEN 1290

1300 PRINT #2,T$;: IF T$=CHR$(13) THEN 1310 ELSE V$=V$+T$: G

0TO 1290

1310 GOSUB 1120: IF FAIL THEN 1270

1320 IF LEFT$(V$,1)<x"=" THEN K=VAL (V$) ELSE 1270

1330 IF K>N OR K>A+18 OR K<A OR K<{=0 THEN PRINT "Not valid":
GOTO 1270

1340 CLS #2: Vs="": FRINT #2,"Flease enter the correct value
V(";FN A$(ABS(K)) ;")="3

1350 T$=INKEY$: IF T#="" THEN 1350

1360 PRINT #2,T$;: IF T$=CHR$(13) THEN 1370 ELSE V$=V$+T$: G

07O 1350

1370 GOSUB 1120: IF FAIL THEN PRINT "Not a valid entry": GOT
0 1340

1380 VIKI=VAL(V$): CLS: GOTO 1180

2000 CLS: FRINT: FOR P=1 TO N

2010 PRINT TAB(10);"VL";FN A$(F);"1=";VIF]: NEXT

2020 RETURN

32

20. DATA INPUT (x and y Coordinates, Statistical Data etc.)

This subroutine accepts pairs of values, allows for checking and correction and
then stores them.

The problem of having a lot of data is overcome by dealing with them in groups
of ten. Array B is chosen to be a multiple of ten and may be larger than is just
necessary to hold the data. The numbers are input using INKEY?$ for each digit
and when complete each number is tested in SUB 1400 for numerical
characteristics.

When the input operation is completed, the numbers are displayed in groups of
10 and can be altered if necessary. Each group can be displayed after changing
until you are satisfied. R is used as the block counter.

When you are satisfied with the data, they are transferred to array E which is
the correct size.

10 REM DATA INFUT (x and y coordinates)

20 DEFINT L,N,P,0,R,S: DEF FN A% (A)=MID$(STR$(A),2)

30 BS$=STRING$(10,32)+STRING%$(10,8)

40 CLS: LOCATE 2,2: INFUT "Number of pairs of readings";N: I

F N<=0 THEN 40

50 DIM ECL1,N]l: GOSUB 1000: END

1000 DIM BC1,10#INT((N-1)/10+1)1: CLS

1010 WINDOW #1,1,40,18,21: WINDOW #2,1,40,22,25

1020 LOCATE #1,1,1: FRINT #1," Type in the values of the x
and y coordinates"

1030 FOR F=1 TO N: F$=FN A% (F)

1040 LOCATE #2,5,1: FRINT #2,BS$;"x";F$;"="3: Z$=""

1050 T$=INKEY$: IF T#$="" THEN 1050

1060 PRINT #2,T%;

1070 IF T$< CHR%(13) THEN Z$=Z%+T$: GOTO 1050

1080 GOSUB 1400: IF FAIL THEN 1040 ELSE BLO,F1=VAL(Z%)

1090 LOCATE #2,5,3: PRINT #2,ES$;"y";F$;"="3: Z$=""

1100 T$=INKEY$: IF T$="" THEN 1100

1110 FRINT #2,T$;

1120 IF T$<>CHR$(13) THEN Z$=Z%$+T$: GOTO 1100

1130 GOSUB 1400: IF FAIL THEN 1090 ELSE BL[1,F1=VAL(Z%)

1140 CLS #2: NEXT

1150 R=0: CLS

1160 FOR F=R TO INT((N-1)/10): R=F

1170 FOR Q=1 TO 10: QF=R+10%F: Q%=FN A% (OF)

1180 LOCATE 4,Q+3: FRINT BS$;"x";0%;"=";B[0,0F]

1190 LLOCATE 20,0+3: FRINT BS$;"y";Q%;"=";B[1,0F]

1200 NEXT

1210 LOCATE #1,2,1: INFUT #1,"Are these data correct (y/n)";
K$: CLS #1

33

1220 K$=UFFER$ (K$): IF K$="Y" THEN 1360

1230 LOCATE #1,2,1: FRINT #1,"Which line between";1+10%p;"an

d";10%(F+1);" would you like to alter";: INFUT #2Z,L: CLS #1:
CLS #2

1240 IF L>=1+10%P AND L<=10%(F+1) THEN 1260 ELSE LOCATE #1,2
,1: FPRINT #1,"Wrong line, try again"

1250 INFUT #2,L: CLS #1: CLS #2: GOTO 1240

1260 LOCATE #1,2,1: FRINT #1,"Enter the correct values"

1270 LOCATE #2,5,1: FRINT #2,"x";FN As(L)j"="53: Z$=""

1280 T$=INKEY#%: IF T#%="" THEN 1280

1290 FRINT #2,T$3: IF T$<>CHR$(13) THEN Z$=Z%$+T%: GOTO 12BO
1300 GOSUB 1400: IF FAIL THEN CLS #2: GOTO 1270 ELSE BLO,LI]=

VAL (Z%)

1310 LOCATE #2,5,3: FRINT #2,"y"3;FN A$(L);"="5: Z$=""

1320 T$=INKEY$: IF T$="" THEN 1320

1330 FPRINT #2,T$;: IF T$<>CHR$(13) THEN Z$=Z%+T%: GOTO 1320
1340 GOSUB 1400: IF FAIL THEN CLS #2: GOTO 1310 ELSE BL1,LI]=

VAL (Z%)

1350 CLS #1: CLS #2: GOTO 1160

1360 NEXT

1370 FOR P=1 TO N

1380 ECLO,F1=BLO,F]: E[1,FP1=Bl[1,F1: NEXT

1390 ERASE B: RETURN

1400 FAIL=0: S=0: T=1: IF LEFT$(Z%$,1)="+" OR LEFT$(Z%,1)="-"
THEN T=2

1410 IF Z$="+" OR Zs%="-" OR Z#%="." THEN 1460

1420 FOR A=T TO LEN(Z%): X$=MID$(Z$,A,1)

1430 IF X$="." THEN S=S+1

1440 IF X$<>" " AND X$<>"." AND (X#$<"0" OR X$>"9") THEN 1460
1450 NEXT: IF S<=1 THEN RETURN

1460 FAIL=-1: RETURN

34

21. DISPLAY FILE

The relationship between the memory map and the display on the screen is
quite complicated and makes direct PEEKing and POKEing into RAM
something to be undertaken with great care. The following simple program
shows a lot about the way the display works, and the complications.

18 MODE 1

20 1=4C000

38 FOR P=@ TO 255

4B POKE Z,P: 71=1+1

50 NEXT: IF 1<-128 THEN 30
6@ END

Firstly, the initial screen origin Z is the top left of the screen. Successive bytes
fill the top line of each printing position over the screen. There are 80 bytes
across the screen in each mode and with 25 lines this uses 25x80=2000 bytes.
The memory is divided into 8 blocks each 2048 bytes long so that the last 48
bytes of each block are not used. A new block fills the second line of the
printing position and so on. The diagram makes this clearer.

In MODE 1, four colours are present but in MODE 2 these are masked down
to two. In MODE 0 (change line 10) 16 colours are present with some flashing.
The way the colours are controlled is by reference to which bits are 0 and which
arel.

The diagram shows which bits are involved with which pixels in the three
modes. In MODE 2, one pixel is associated with one bit so that only two
colours are possible as a bit can only be off (ink 0) or on (ink 1) giving
background and foreground colours. In MODE 1, the pixels are twice as big
and are controlled by two bits. Thus four colours are possible. The following
table shows the relationships.

INK O both bits off
INK 1 high bit on, low bit off
INK 2 high bit off, low bit on
INK 3 both bitson

These correspond to the binary representation of 0—3. A similar arrangement
applies to MODE 0 where 16 colours are possible corresponding to the binary
form of 0—15.

By exciting the three phosphors red, blue and green at different intensities a
palette of 27 colours is produced.

35

The second difficulty with the screen display is that the screen scrolls by
moving the origin of the screen relative to &C000, the Early Morning Start—
up origin. The following program shows a direct POKE to produce an
underline.

18 CLS

20 LOCATE 10,10

30 PRINT "QWERTY"

4@ FOR N=@ TO 11

50 POKE N+&CBP0+818,240
6@ NEXT: PRINT

70 STOP

However, scrolling and then re—running separates the underline from the
word and it is necessary to re—establish the screen origin at &C000 with
machine code routines SCR SET BASE and SCR SET OFFSET. This can
be done with the following lines.

1080 RESTORE 100@: DATA &E5,&F5,&E3,&CH,
&co,&08,88BC,821,800,800,8CD,&05,
&BC,&E1,&F1,8&C9

1010 MEMORY 40000

1020 A=40200

1830 FOR N=@ TO 15

1040 READ 1

1858 POKE A+N,Z

1060 NEXT

Run the machine code program first (with RUN 1880) to set up the subroutine
then RUN 18. After scrolling, RUN 18 again. Type in CALL 48280 to restore the
original conditions. These techniques may be useful for special effects but
not for normal use.

The other aspect of RAM memory is that the user graphics are located just

above HIMEM so that it is possible to POKE directly into RAM rather than
using SYMBOL. Thisiisillustrated in ‘DOUBLE SIZE PRINTING’.

36

d444%-0044%
44.47%-0ALd%
4449%-0A43%
44.3%-0AL3%
444a%®-404a»
44LA%®-00LA®
4440%-0440%
44L0%-0ALO%

pasnioN

dn-ueg3utuion Aj1e 16 suoneso| K1owapy ud210§ 117 "3y

4044% | 9244% [add4dw®
AD0A% | 30/4% | aod¥®
4043% | 3043% | aD43®
40L3% | 30.3% | AOLIA¥
H4044% | 3044% | d04d®
40La% | 30.A¥ [doLa®
4040% | 9040% | AD40% |
A0L0% | A0L0% | ADIO%
Av8d®

4

8%

dr03%

Ar8a®

v0d
_d4v80®

Av00%

/

1X3], JO $aul] §T = $31Lg JO SMOY 00T

0IAOW uts|ax1d 07
L IAOW uts|axid Op
ZAAOW Ul SIaXId 08 = S314g 08

0584%

0504%

0s83%

0503%

05807 |

05007 |

0580%

__1 0000 |

T084% | 1084% | 0084%
2004% | 10047 | 0007
2083% | 1083% | 0083%
2003% | 1003%_| 0003%
[z08a® | 108a% | 00807 |
200a% | 100a% | 0004% |
2080% | 1080% | 0080%
000% | 1000% | 0000%

<

/

qoiq

108103 | 3poW

37

mino. L7]6[5[4[3]2]1]o]

Pixel No. 7|6l5|4|3|211|01

MODE?2

BitNo. [7]6[s[4[3]2]1]0]

pixel | LH |LHMRHM | RH

Byte value 0 r1

l
Byte value 15 l I I
|
!

INK 0

|
|
|
| k2
]
|

Byte value 240 | I INK 1

Byte value 255 I I INK 3

ienvo. | | J L[11|

HEEEEEEE

Pixe | IH [RH]

MODEO0

Fig. 21.2 Relationships Between Bits and Colours in each Mode

38

22. DOUBLE SIZE PRINTING

The Symbol after 64 puts the ASCII information on the capital letters
immediately after HIMEM. The program works by PEEKing into
successive groups of eight bytes representing the capital letters, at location
ADDR. The mathematics converts this information into 32 byte patterns
and they are stored in groups of four in the second half of the ASCII set
which contains the geometric patterns and foreign letters.

When a capital letter is required in double size, the program first checks that
it is a letter and that there is room to print it. If so, it PRINTS four bytes
representing the quarters of the letter in two adjacent positions on one line
and the other two on the line immediately below. Spaces are separated out
and PRINTed with CHR$(32).

It takes about 40 seconds to set up the initial user—defined graphics
information.

10 REM Double size printing (CAFITAL LETTERS and spaces only)
20 GOSUB 1000: GOSUB 2000: END

1000 SYMEOL AFTER 64: H=HIMEM+1: H1=H+512

1010 DIM TC1,161

1020 FOR F=1 TO 16: TL[O,FI=F-1: READ TC1,FJz NEXT

1030 RESTORE 1030: DATA 0,3,12,15,48,51,60,63,192,195,204,20

7,240,24%,252,255

1040 FOR A=1 TO 26: ADDR=H+8%*A: B=A*32+H1

1050 FOR P=0 TO 7: T=PEEK(ADDR+P): I=INT(T/16): J=T-16%1
1060 FOR Z=1 TO 16

1070 IF TLO,Z1=d THEN T1=TC1,Z]

1080 IF TLO,Z]=1I THEN T2=T[1,Z]

1090 NEXT

1100 C=B+2%P

1110 FOKE C,T2: POKE C+1,T2: FOKE C+16,T1i: FOKE C+17,T1

1120 NEXT P,A

1130 RETURN

2000 CLS: PRINT "Enter the matter to be printed": FRINT: INP

uT A%

2010 A$=UFPER$% (A%)

2020 FOR P=1 TO LEN(A%): Z=ASC(MID$(A%,P,1))

2030 IF (2465 OR Z>90) AND Z<>32 THEN PRINT " Not capital 1

etters. Press any key to re—-enter the print material": GOSUB
2170: GOTO 2000

2040 NEXT

2050 PRINT "Enter the locations where the matter is to be pr
inted"

2060 PRINT: INPUT "Row Number (1-23) ";sR: IF RK1 OR R>23 T
HEN 2060

2070 PRINT: INPUT "Column Number (1-39)";C: IF C<1 OR C>39 T
HEN 2070

39

2080 R=2#INT(R/2)+1: C=2*INT(C/2)+1

2090 IF LEN(A$)>240-(C-1)/2-10%(R-1) THEN PRINT " Matter too
long to print in the screen area. Press any key to re-enter
“: GOSUB 2170: GOTO 2000

2100 X=C: Y=R: CLS

2110 FOR P=1 TO LEN(A%): Z=(ASC(MID$(A$,F,1))—64) %4

2120 LOCATE X,Y: IF Z<>-128 THEN FRINT CHR$ (Z+128) ;CHR%(Z+13

0) ELSE FRINT CHR$(32)

2130 LOCATE X,Y+1: IF Z<>-128 THEN PRINT CHR$(Z+129) ;CHR$ (Z+
131) ELSE PRINT CHR$(32)

2140 X=X+2: IF X»39 THEN X=1: Y=Y+2

2150 NEXT

2160 RETURN

2170 IF INKEY$="" THEN 2170

2180 RETURN

40

23. DRAWING LINES BETWEEN TWO POINTS

Drawing lines is very simple with Amstrad BASIC using PLOT and DRAW
(or PLOTR and DRAWR) commands. Provided that the coordinates lie
within the 16 bit capacity (65535) then the system automatically draws the
line which will appear on the screen if the screen area (0<=x<=639, 0<=
y<=399) contains all or part of the line.

However, it is important to remember that the aspect ratio of the screen is
0.92 so that if you wish to draw any figure as its true shape, you must allow
for this in the coordinates. For example,

PLOT 158,40
DRAWR 350,8: DRAWR 0,322
DRAWR -350,0: DRAWR 0,-322

draws a true square on the screen even though the number of pixels is
different. They are in effect slightly rectangular in shape. In drawing an
ellipse, the equation has to take account of the aspect ratio of the circle
which gives the ellipse as well as that of the screen.

To draw a dotted line is a little more difficult as two problems arise. Firstly,
dealing with either horizontal or vertical lines with a single routine will
produce “Division by zero” with one of them. So, two separate routines are
needed. The second problem is to keep the mark/space ratio the same for
lines at different angles.

Line 2070 caters for the horizontal line and line 2030 for the vertical one. P is
the slope but if P is less than one then the reciprocal is used. I is the interval
between each new beginning of the mark and a loop is set up in Q to PLOT
X1, Y1 then to DRAW 0.4 of the distance to the next PLOT point and so on.
A mark/space ratio of 0.4/0.6 looks better than 0.5/0.5.

The SGN in I takes care of the direction of plottingi.e. Lto R or R to L and
SQR(1+P*P) keeps the mark/space ratio constant for different line slopes.

This subroutine draws a dotted line between (X1,Y1) and (X2,Y?2).

10 REM Dotted line

20 INPUT "X1="j3X1: INPUT "Yi=";Y1: INPUT "X2=";X2: INFUT "Y2
=II‘Y2

30 CLS: GOSUB 2000: END

2000 IF X1=X2 THEN 2070 ELSE IF Y1=Y2 THEN 2030

41

2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

F=(Y2-Y1) / (X2-X1)

IF ABS(P)<1 THEN 2040 ELSE F=1/FP: GOTO 2080
F=0

I=10%SGN (X2-X1) /SAR (1+FP*P)

FOR @=0 TO (X2-X1)/I

FLOT X1+@*I,Y1+Q*I%*P: DRAWR 0.4%1,0.4%I%P:
IF Y1=Y2 THEN RETURN ELSE FP=0
I=10*SGN(Y2-Y1) /SER (1+F*P)

FOR @=0 TO (Y2-Y1)/1

FLOT X1+Q#*I%P,Y1+Q%I: DRAWR O.4%I%P,0.4%]:

Fig. 23.1 Illustration of Dotted Line Draw

42

NEXT: RETURN

NEXT: RETURN

24—26. ERRORS

If you wish to simulate data which follow a known error law then it is
desirable to be able to generate numbers which relate to particular
distributions. For example, for circumstances where lots of small random
errors combine together say, when making a measurement of length, the
Gaussion distribution is likely to be the one nearest to the observed results.
If the probability of an event happening is very small, such as the number of
fatal road accidents occurring in a given period (compared with the total
number of journeys made in that period) then the Poisson distribution is
much more relevant. Selections of dice throws or hands of cards follow a
Binomial distribution.

The random number generator facility in the computer is a rectangular
distribution so that any number in the range selected is equally likely to
occur. These subroutines alter this distribution so that numbers are more
likely to be near the mean of the appropriate distribution rather than at the
tails.

The graph shows the typical shapes of the distributions.

300
BINOMIAL MEANG6.5(N=9 p=.5)
/ ST.DEV1.§
P
g™
3
E POISSON MEAN4 (n=1000 p=.004)
= ST.DEV2
<
a POISSON MEAN2S
° ST.DEVS
-3
100 4 GAUSSIAN MEAN2S
ST.DEVS
I . : . .
10 20 30 40
NUMBER

Fig. 24/26.1 Comparison of Different Distributions

43

24. BINOMIAL DISTRIBUTION

This routine creates an array G which, if sampled randomly, gives a
Binomially Distributed set of values. As the size of the array is limited by
memory capacity, the routine only works for small values of N as indicated

by the expression for Y. The Binomial distribution approximates to the
Gaussian distribution as N increases.

10 REM Binomial Distribution

20 INPUT "Type in the probability of the event happening, wh
ich must lie in the range 0-1";P

30 IF P<=0 OR P>=1 THEN 20

40 INPUT "Type in the number of items in the selection";N
S0 IF N<>ABS(INT(N)) OR N=0 THEN SO

60 GOSUB 1000: GOSUB 2000: END

1000 DIM BLN+31: T=1/P-1

1010 IF P>0.5 THEN T=1/T

1020 Z=1: M=N

1030 FOR A=1 TO N+1: BLAJ=INT(Z+0.5)

1040 Z=Z*M*T/A: M=M-1: NEXT A

1050 Y=INT(1/P~N): IF P>0.5 THEN Y=INT(1/ (1-P)"*N)

1060 DIM GLY1: A=1: B=0: Q=BLAl

1070 FOR C=1 TO Y: GILCI=B

1080 IF C>=@ THEN A=A+1: B=B+1: @=Q+BL[Al]

1090 NEXT C: IF P<0.5 THEN FOR C=1 TO Y: GLC1=N-GLCJ: NEXT C
1100 RETURN

2000 PRINT GLINT(RND(1)%#Y)+11;: IF INKEY$="" THEN 2000

2010 RETURN

44

25. GAUSSIAN DISTRIBUTION

This routine sets up an array of 1823 memory locations which, if sampled
randomly, will generate values which are Normally Distributed about a

chosen mean and have a givenstandard deviation.

10 REM Gaussian Distribution

20 DEF FN G(X)=90.0013%EXP (=X#X/2)

30 DIM G6C1823]: GOSUB 1000

40 INPUT "Type in the desired mean value";M
S0 INPUT "Type in the desired standard deviation";$S
60 IF S<=0 THEN 350

70 GOSUB 2000: END

1000 N=1

1010 FOR P=-3 TO 3 STEP 0.125

1020 E=(FN G(P)+FN G(P+0.125))/2

1030 FOR @=0 TO E

1040 GINI=P+RND (1) %0.125: N=N+1

1050 NEXT @,P

1060 RETURN

2000 Z=M+S*GLINT (RND(1)%1823)+11]

2010 FRINT ROUND(Z,4): IF INKEY$="" THEN 2000
2020 RETURN

EXAMPLE

run

Type in the desired mean value ? 35
Type in the desired standard deviation ? 1.5
(REM wait)
35.0681
34.08545
34.6708
35.8419
31.6583
33.8876
34.7117
33.6309
33.2394
35.9174
32.6720
36.9178
32.3196
34.8433
36.2537
35.8322
35.5951
Break

45

26. POISSON DISTRIBUTION

In the Poisson distribution, the probability of exactly N events happening in
a given period is given by

P=M 1 N/NI*EXP(—M)
where M is the average number of events in the period.

This is the formula used in the subroutine. The standard deviation equals
SQR(M) and the distribution is taken out as far as 3*SQR(M) i.e. N3

10 REM Foisson Distribution

20 INPUT "Type in the average number of times the event happ
ens in a given period";M: IF M:86 THEN 20

30 GOSUB 1000: CLS: GOSUB 2000: END

1000 M=ABS (M) : N3I=3I*SQR (M)

1010 N=2%N3+ (N3-M) * (M<N3)

1020 DIM ACN+1,21: K=1/M: T=1

1030 FOR P=0 TO M+N3

1040 K=K#*M/ (P-(FP=0))

1050 Z=K*EXP (—-M)

1060 IF P>M-N3 THEN ALT,11=Z: ALT,2]1=P: T=T+1

1070 NEXT

1080 DIM BCN+21: Z=0

1090 FOR P=1 TO N+1

1100 BLPI=INT (ALP,1]1%#1000+0.5)

1110 Z=Z+BC[PJ: NEXT

1120 DIM PLZ]: T=1: S=BLT]

1130 FOR P=1 7O Z: PLPI=ALT,21]

1140 IF P>=S THEN T=T+1: S=S+BI[T]

1150 NEXT

1160 RETURN

2000 PRINT "Number of times the event happens in subsequent
periods is given by:-"

2010 PRINT PLINT(RND(1)#Z+1)3;: IF INKEY$="" THEN 2010
2020 ERASE A,B,FP: RETURN

46

27. EVALUATION OF A DETERMINANT

This elegant subroutine is based on the fact that in the Gauss—Jordan
method of matrix inversion (see ‘MATRIX INVERSION’), the bottom
righthand entry in the matrix at the end of the next—to—last cycle of the
outer loop is the determinant you want divided by the minor of this entry
(i.e. the original determinant with RH column and bottom row omitted).
You do not know the value of this minor but it has already been calculated in
the same way at the end of the second—to—last cycle of the outer loop,
giving the minor of the minor as the unknown. Repeating this process N—1
times leaves you finally with just the top LH entry which you do know.
Hence the answer is the product of each of these steps.

The DEF FN is for PRINTing the determinant INPUT entries A[1,1] etc. in
packed format.

The first line of the subroutine caters for a determinant with a single term
(order1).

SUB 1140 and SUB 1180 condition the determinant to avoid an unnecessary
crash in line 1050 where the ‘Division by zero’ message would occur if
A[LI]=0and the protective IF were not present in line 1050.

SUB 1140 ensures that the diagonal entries are not zero and SUB 1180 adds
the bottom row to the top row and the RH column to the LH column if the
upper LH 2x2 determinant is zero (this does not alter the value of the
determinant).

The lines 1030—1120 invert the matrix and multiply the products of each
stage up to the N—1 cycle of the [variable.

There is a subtraction in line ten which can produce a zero and this would
cause a crash in the next cycle unless detected by line 1110. This aborts the
program as the value of the determinant will be zero which happens for
example if two rows or two columns are the same or if one is a multiple of the
other (see second example).

The subroutine works out the numerical value of a determinant |A| of order
N.

47

10 REM Evaluation of a determinant

20 DEFINT I,J,K,N,P,T: DEF FN A$(A)=MID$(STR$ (A),2)

30 éNPUT "Insert the order of the determinant";N: IF N<i THE
N 3

40 DIM ALCN,Nl: FOR I=1 TO N: FOR J=1 TO N

50 PRINT "AL“+FN A$(I)+","+FN A$(J)+"1="3: INPUT ACI,J]1: NEX
TJ,I

60 GOSUB 1000: GOSUB 2000: END

1000 D=A[1,1]: IF N=1 THEN RETURN

1010 GOSUB 1140

1020 IF AL1,131%A02,2]1=AC1,2]I%AL2,1] THEN GOSUB 1180

1030 D=AC1,11%T: FOR P=N TO 2 STEP -1: DIM DL[P,P]

1040 FOR I=1 TO Ps FOR J=1 TO P: D[I,J]=ACI,J]: NEXT J,I
1050 FOR I=1 TO P-1: IF ABS(DLI,I])<0.00000001 THEN D=0: RET
URN ELSE DCI,I]1=1/DCI,I]

1060 FOR J=1 TO P: IF J=I THEN 1110

1070 DCLJ,13=DLJ,I1%*DCI, 1]

1080 FOR K=1 TO P: IF K=I THEN 1100

1090 DCLJ,KI=DCJ,K1-DLJ, I1#DLI,K]

1100 NEXT

1110 NEXT: IF ABS(DLI+1,I+11)<0.00000001 THEN D=0: RETURN
1120 NEXT: D=D#DCP,Pl: ERASE D: NEXT

1130 RETURN

1140 T=1: FOR I=1 TO N: IF ACI,Il=0 THEN GOSUB 1160

11350 NEXT: RETURN

1160 FOR J=2 TO N: IF ALI,JI<>0 THEN T=-T: FOR K=1 TO N: SW=
ALK, Il: ALK,I]J=ALK,Jd]: ALK,J1=SW: NEXT: RETURN

1170 NEXT: RETURN

1180 FOR I=1 TO N: AC1,I3=AC1,I1+ALCN,I]1: NEXT

1190 FOR I=1 TO N: ACI,1]=ACI,11+ACI,N]: NEXT

1200 RETURN

2000 PRINT "Det D=";D

2010 RETURN

EXAMPLES
N=4 N=5
-2 4 7 3 15-7 6 9 3
8 2-9 5 2 4 6 818
-4 6 8 & 31 6 11 17 2
2-9 3 1 2 3 4 5
Det D=2140 81 923 1 3
Det D=0

48

28. FACTORIAL n

This subroutine calculates factorial n (for n<33). It illustrates a very simple
loop with accumulative multiplication. Factorials occur in Permutations and
Combinations as well as in series.

10 REM Factorial n

20 INPUT "Number";N: IF N<>ABS(INT(N)) OR N>33 THEN 20
30 GOSUB 1000: GOSUB 2000: END

1000 Z=1: FOR P=1 TO N: Z=Z#P: NEXT

1010 RETURN

2000 PRINT "N!'="3;2

2010 RETURN

49

29. HEAVISIDE OPERATOR

This subroutine performs the Heaviside operation of turning a function on at
x=aand off at x=Db.

This is very useful in studying mechanical and electrical problems where step
functions occur eg. a switch being turned on. To test the stability of a system
or itsresponse, a step function is often used. In the example, the response of
a circuit containing a capacitor and a resistance in series is given and it can be
seen that even though the voltage is turned on and off instantaneously, the
condenser voltage always lags behind. It takes time to charge up and
discharge. Change the value of RC to see the effect on the response. This
test is often used to assess the performance of amplifiers and loud speakers
in Hi—Fi systems.

The Control Stability Program is another example of the use of the
Heaviside Operator.

10 REM Heaviside operator

20 DEF FN H(X,A,B)=—(X>=A)+(X>=B)

30 REM EXAMPLE

40 A=100: B=198: RC=10

S0 DEF FN H(X,A,B)=—(X>=A)+(X>=B)

60 FOR X=1 TO 639: T=(X—-100#INT(X/100))/RC
70 PLOT X,150+128#EXP (-T)+128%FN H(X,A,B+2) # (1-2#EXP (-T))
80 PLOT X, 128#FN H(X,A+1,B+1)

90 IF X=A-1 OR X=B+1 THEN DRAWR 0,128

100 IF X>B THEN A=A+200: B=B+200

110 NEXT

Fig. 29.1 Square Wave and Damped Square Wave

50

30-33. HIGH PRECISION
ARITHMETIC

As simple calculations with the Amstrad are accurate to one part in ten to
the ninth, there seems little need for anything more accurate. However, this
group of programs is included as they are excellent examples of string
handling techniques and cover all the possibilities. There are several ways of
approaching calculations using strings, the ones adopted here for add,
subtract and multiply follow the longhand calculation methods. They also
use look—up tables to find the tens and units e.g. “9” + “7” = “1” ten and
“6” units.

Reciprocal is different and is based on a combination of the other three using
a successive approximation method. It is very slow in BASIC but in machine
code is an excellent way of doing integer division.

The following are the look—up tables generated in the first sections of the
routines.

TENS AND UNITS LOOK—-UPTABLES

P+Q

Q0123456789 Q0123456789
P P

0 0123456789 0 0000000000
1 1234567890 I 000000000O01
2 2345678901 2 0000000011
3 3456789012 3 0000000111
4 4567890123 4 0000001111
S 5678901234 S 0000011111
6 6789012345 6 0000111111
7 7890123456 7 0001111111
8 8901234567 8 0011111111
9 9012345678 9 0111111111

UNITS TENS

51

Q0123456789

Q0123456789

— e O
e e — O O
—— e —— O O O
e —— OO OO
e = — O OO OO
e — O OO O OO
HE O OOOoOOoO OO
——OoO OO oo OoOO O
—_O OO OoOOoOOoOO
SOOOCOOoOCOOO

S= NNtV O~

—_ANNTNO~0NO
NNTWNOS~0ND —
NTWVMO~N0AND — AN
TNO~NONO—~NN N
MOS0 — NN <t
O~ — NN <t N
OO =Nt \O
OO =N N \O I~
AO—ANNFTWNO~ X0
SN TWVOS0AN

ACS—ANON TNV O~00

TENS

UNITS

P*Q

Q0123456789

Q0123456789

CO— AN NTWNO~XC
SO =Nt TV O~
SO— ANt TN O
SO~ T TN
SO == AN T <
SO == AN
SO0 ——— AN
S OO OO m m
SoOoOooooooCC o
SO OoOOoOOoOOoOO

AO—ANN TN OS> 0N

SR>~ O0OWN TN A —~
SOO0OTANO 0O T AN
ST =0 VN ANOM
SVOANXTFTO OO0
SUVNOWVNOoOWVNOoOWNOWMm
STROANOO T OAN O
SN OAAANWN 0 — < >~
OSCANAIFTOOOAN T O X
S AN NTWNO~0RN
SO OOCOOCOoOOOO

AC—ANNTNVNOSON

TENS

UNITS

30. HIGH PRECISION ARITHMETIC — Addition

FN L(A,B) finds which is the larger A or B and the two loops from 0 to 9

work out the contents of the look —up table.

After the INPUTS, the position of the decimal point is found and the number

turned inside out (see Subtraction).

52

D$[1] is filled with zeros using the STRINGS function because this defines
the minimum length of string necessary to hold the number (equal to the
largerinteger part + the larger decimal part +1).

In the next four lines, MIDS$ is used with its statement meaning to replace
some of the zeros in D$ with X$ and Y$. The addition is done in SUB 1200
and 1240 using the VAL of P$ and QS to find the correct answers. Note that
P$ and QS are defined using MID$ as a function to return a specified part of
DS$.

C is the carry and in the PRINT, (SJRL—L+1]=0) is used to suppress the
leading zero, if present.

10 REM High precision arithmetic-Addition (Fositive nmbers o
nly)

20 DEFINT A,B,C,L,F,0,R,X,Y,Z

30 DEF FN L (A,B)=A—-(B—A)*(B>A)

40 DEF FN A$(A)=MID$(STR$ (A),2)

50 DIM A$(9,91,B%(9,9]

60 FOR F=0 TO 9: FOR Q=0 TO 9

70 A$LP,R1=MID% (STR$ (100+P+Q),4,1)

80 B%[P,R1=MID% (STR$ (100+P+Q),3,1)

90 NEXT Q,P

100 LINE INPUT "X="3;X$: LINE INPUT "Y=";Y$: IF X$="" OR Y$="
" OR LEFT$(X$,1)="-" OR LEFT$(Y$,1)="-" THEN 100

110 GOSUB 1000: GOSUB 2000

120 ERASE D$,S: END

1000 LX=LEN(X%):z LY=LEN(Y%$)

1010 XL=INSTR(X$,".")—-1: YL=INSTR(Y$,".")-1

1020 IF XL=-1 THEN XL=LX

1030 IF YL=-1 THEN YL=LY

1040 XR=LX-XL+(LX<>XL): YR=LY-YL+(LY<>YL)

1050 L=FN L(XL,YL): R=FN L(XR,YR): RL=R+L

1060 DIM D#%L11: FOR P=0 TO 1

1070 D$LPI=STRINGS (RL,48): NEXT

1080 IF XR<>0 THEN MID$(D$[01,1)=RIGHT$ (X%, XR)

1090 IF YR<>0 THEN MID$(D%$[11,1)=RIGHT$(Y$,YR)

1100 IF XL<>0 THEN MID$(D$[OJ,RL-XL+1)=LEFT$ (X%, XL)

1110 IF YL<>0 THEN MID$(D$[1]1,RL-YL+1)=LEFT$(Y$,YL)

1120 DIM SCRL+11: C=0

1130 IF R<>0 THEN FOR P=R TO 1 STEP -1: F$=MID$(D$[0],P,1):
Q$=MID$(D%[11,P,1): GOSUB 1200: NEXT

1150 IF L<>0 THEN FOR P=RL TO RL-L+1 STEP -1: P$=MID$(D$L[01],
P,1): Q$=MID$(D$C[1],P,1): GOSUB 1240: NEXT: SL[RL-L+11=C
1170 RETURN

1200 SCP1=VAL (A$LVAL (P$),C1): C=VAL (B$[VAL(F$%$),Cl): Z=S[F1]
1210 SCPI=VAL (A$[Z,VAL(Q%)1]): C=C+VAL (B%[Z,VAL (B%) 1)

1220 RETURN

1240 S[P+11=VAL (A$LVAL (F$),C1): C=VAL (B$LVAL (P$),Cl): Z=S[P+
11

53

1250 SCP+11=VAL (A$LZ,VAL(Q%)1): C=C+VAL (B$[Z,VAL (Q%)1)

1260 RETURN

2000 IF L<>0 THEN FOR P=RL-L+1-(SCRL-L+11=0) TO RL+1: FRINT
FN A$(SCP1)j;: NEXT

2010 IF L=0 THEN PRINT FN A$(C);

2020 IF R<>0 THEN PRINT ".";: FOR P=1 TO RL-L: PRINT FN A$(S
CP1);: NEXT

2030 RETURN

EXAMPLE

run

X=123456789.987654321
Y=12121212112.1212121
12244668902.108866421

54

31. HIGH PRECISION ARITHMETIC — Subtraction

The first group of lines fills in the subtraction look—up table. The —
20*(P<Q) is to convert the 9 from borrowing to a 1 for a carry as in the
addition routine (see tables).

The FN L(A,B) defines which is larger, A or B and the FN A$(A) is for
packed format in the string printout.

After the INPUT with SIGNS taking care of the sign, the position of the
decimal point is found with INSTR(XS$,”.”) and for convenience the
numbers are turned inside out (lines 1080—1110).

For example, 123.45678
—45.678

becomes 45678123
—67800045

having first filled D$ with zeros.

The subtraction is done in two separate loops using the SUB 1160 and the
PRINT routines reconstitute the answer with its decimal point and correct
sign. Note the use of Z in the subroutine to preserve the correct value of
D[P] in the last statement and not the value of D[P] from the next—to—last
statement.

10 REM High precision arithmetic-Subtraction (Positive nmber
& only)

20 DEFINT A,B,C,L,P,Q,R,X,Y,Z

30 DEF FN L (A,B)=A-(B-A) *(B>A)

40 DEF FN A$ (A)=MID$ (STR$ (A),2)

S0 DIM S$[9,91,T$(9,91

60 FOR P=0 TO 9: FOR @=0 TO 9

70 S$[P,Q1=MID$ (STR$ (100+P-Q-20#% (P<Q)),4,1)

80 T$L[P,Q1=MID$ (STR$ (100+P-Q-20# (P<@)),3, 1)

90 NEXT Q,P

100 SIGN$="+"3 LINE INPUT "X=";X$: LINE INPUT "Y=";Y$: IF X$
="" DR Y$="" OR LEFT$(X$,1)="-" OR LEFT$(Y$,1)="-" THEN 100
110 IF VAL (X$)<VAL (Y$) THEN SWs$=X$: X$=Y$: Y$=SWs: SIGN$="-"
120 GOSUB 1000: GOSUB 2000

130 ERASE Ds$,D: END

1000 LX=LEN(X$): LY=LEN(YS)

1010 XL=INSTR(X$,".")—=1: YL=INSTR(Y$,".")-1

1020 IF XL=-1 THEN XL=LX

1030 IF YL=-1 THEN YL=LY

1040 XR=LX-XL+(LX<>XL): YR=LY-YL+(LY<>YL)

1050 L=FN L(XL,YL): R=FN L(XR,YR): RL=R+L

1060 DIM D$C1]: FOR P=0 TO 1

1070 D$LPI=STRINGS (RL,48): NEXT

55

1080 IF XR<>0 THEN MID$(D%L01], 1)=RIGHT$ (X%, XR)

1090 IF YR<>0O THEN MID$(D%C11,1)=RIGHT#%(Y$,YR)

1100 IF XL<>0 THEN MID$(D$[O]1,RL-XL+1)=LEFT$ (X%, XL)

1110 IF YL<>O0 THEN MID$(D$C1]1,RL-YL+1)=LEFT$(Y$,YL)

1120 DIM DLRL]: C=0

1130 IF R<>*0 THEN FOR F=R TO 1 STEP -1: GOSUB 1160: NEXT

1140 IF L<>0 THEN FOR P=RL TO RL-L+1 STEP —-1: GOSUB 1160: NE

XT

1150 RETURN

1160 F$=MID%(D$[0]1,P,1): Q%$=MID$(D$L11,F,1)

1170 DLPI=VAL (S$LVAL(P$),C1): C=VAL(T$L[VAL(F$),C1): Z=DCF1]

1180 DIFI=VAL (S$[Z,VAL(0%)1): C=C+VAL(T$LZ,VAL(Q%$) 1)

1190 RETURN

2000 FRINT SIGN%;:IF L<>»0 THEN FOR F=1+R TO RL: PRINT FN A$(

DLF1)3: NEXT

2010 IF R<>0 THEN FPRINT ".";: FOR FP=1 TO R: PRINT FN A$ (DLCF1
55 NEXT

2020 RETURN

EXAMPLE

X = 135791357913579
Y = 24682468.2468246

+135791333231110.7531754

56

32. HIGH PRECISION ARITHMETIC — Multiplication

The first part follows the addition and subtraction routines closely but the
decimal point is removed from the number if present, rather than turning the
number inside out.

After the DIM statements, the multiplication is performed with the look—
up table but the tens and units are kept separate and the sum of each column
is stored in M[L,1] and M[L,2]. As D$ contains some blank spaces from the
DIM operation, these have to be avoided before the proper entries can be
added togetherin P[L] using the VAL function.

The 0.00001 is added to avoid rounding errors.

10 REM High precision arithmetic-Multiplication

20 DEFINT A,B,C,L,M,P,Q,X,Y

30 DEF FN A% (A)=MID$(STR$(A),2)

40 DIM M$[9,21,N$[9,91]

50 FOR F=0 TO 9: FOR Q=0 TO 9

60 M$LFP,Q1=MID$ (STR$ (100+F*Q) ,4,1)

70 N$[P,01=MID$%(STR% (100+P*Q),3,1)

80 NEXT @,P

90 LINE INPUT "X=";X$: LINE INPUT "Y=";Y&$:

100 IF X$="" OR Y$="" OR LEFT$(X$,1)="-" OR LEFT$(Y$,1)="-"
THEN <90

110 GOSUB 1000: i,0SUB 2000: END

1000 XD=INSTR(X%,".")—1: YD=INSTR(Y$,".")-1

1010 IF XD=-1 THEN XD=LEN(X$): GOTO 1030

1020 X$=LEFT$(X%,XD)+MID% (X%, XD+2)

1030 IF YD=-1 THEN YD=LEN(Y$): GOTO 1050

1040 Y$=LEFT$(Y$,YD)+MID$ (Y$,YD+2)

1050 LX=LEN(X%$): LY=LEN(Y$): L=LX+LY: LD=L-XD-YD

1060 DIM D#CL,LY,13,MIL,2]1,PCL]

1070 FOR P=1 TO LX: FOR @=1 TO LY

1080 A=VAL (MID$ (X$,P,1)): B=VAL(MID$(Y$,Q@,1))

1090 D$[F+QR,Q,01=M$[A,Bl: D$L[P+Q-1,R,11=N$[A,B]

1100 NEXT Q,P

1110 FOR P=L TO 1 STEP -1: FOR Q=1 TO LY

1120 IF D%I{P,Q@,01<>" " THEN MLCP,11=MCP,1]1+VAL(D$L(P,QR,01)
1130 IF D$[P,Q@,11<>" " THEN MI[P,21=M[P,2]1+VAL (D$LP,Q,11)
1140 NEXT Q,P

1150 C=0: FOR P=L TO 1 STEP -1

1160 M=C+MLCP,11+M[P,2]1: C=0

1170 IF M>9 THEN C=INT(M/10+0.00001): M=INT (10%(M/10-INT(M/1
0))+0.00001)

1180 FLPI=M: NEXT

1190 RETURN

2000 IF L<>LD THEN FOR P=1-(PL1]1=0) TO L-LD: PRINT FN As$(PLP
1)3: NEXT

57

2010 IF LD<>0 THEN PRINT ".";: FOR F=L-LD+1 TO L: PRINT FN A
$(FLPJ1);: NEXT
2020 ERASE D$,M,P: RETURN

EXAMPLES

run

X=1234.56789
Y=98765.4321
121932631.112635269

run

X=999999999999
Y=999999999999
99999999999800000000000 1

58

33. HIGH PRECISION ARITHMETIC — Reciprocal

This program is the most interesting of the group. It is based on the fact that
if Ais the reciprocal of P, where P is an integer, then obviously
A=1/P

If A;is the ith approximation to 1/P then the exact value of A is given by
A=A;+(1/P)*(1-A;P)
If we substitute A, for 1/P then
Ai+1=Ai+A(1-AP)
=2A;-A;’P

As we are dealing with integers, it is necessary to remove the decimal point,
if present, by multiplying by a suitable power of 10. The program then finds
200 times A (200 corresponds to 2A with two extra digits) and subtracts AP
which gives the next approximation two digits better.

The first block works out the six look —up tables required.

After the number is INPUT as I$, it is checked for “+” and “—", and the
decimal place is sought in 200 or 220 depending on whether the number is
greater than or less than one. ES$ is the first approximation to the answer
which is an integer representing the first 8 non—zero digits in the reciprocal
calculated by the computer.

ES$ is sent to SUB Times 200 and then to Multiply to produce the square.
This latter is sent back to Multiply with C$ to produce A? P and then the
subtraction is performed in SUB Subtract to produce the next value of ES.

The routine can be speeded up by only considering what happens beyond the
places in the strings where the digits change each time. If you want to
become proficient in string handling, work out the modifications needed!.

It is interesting to attempt to SAVE this program. Nothing happens for 40
seconds whilst the computer reorganises its memory and gets rid of the
garbage. This happens also when you ask for FRE(“”) which gives the
amount of free string space.

59

EXAMPLE.

run
X=17

Precison Required? 20
5.882352941176470588236E-2
Ready

Inserting a PRINT ES$ just inside the I loop shows how the number builds up.

run

X=17

Precision Required? 20
58823529

5882352942
588235294118
58823529411765
5882352941176471
588235294117647859
58823529411764705883
5.882352941176470588236E-2

Note that the last digit is always one digit high. Also, like many prime
numbers, but not all, it gives a recurring decimal which recurs after a number
of decimal places equal to the prime number itself, in this casc 17.

10 REM High precision arithmetic-Reciprocal

20 DEFINT C,I,K,L,N,P,Q,T,V,2Z

30 DEF FN A%$(A)=MID% (STR% (A) ,2)

40 DIM A%(9,91,B%[9,91,M$[?,9]1,N$(9,9]1,5%(9,21,T$(9,91]
S50 FOR FP=0 TO 9: FOR @=0 TO 9

60 A$LP,Q1I=MID$(STR% (100+P+Q),4,1)

70 B$[P,RQ1I=MID$ (STR$ (100+FP+Q@),3,1)

80 M$L[P,Q1I=MID$ (STR$ (100+F*Q),4,1)

Q0 N$[P,Q]1=MID$ (STR$ (100+P*QR),3,1)

100 S$[P,Q1I=MID$ (STR$(100+P-Q-20%(P<@)),4,1)

110 T$L[P,Q1=MID$ (STR% (100+P-Q-20% (P<Q)),3,1)

120 NEXT @,P

130 T=1: LINE INPUT "X=";I$: IF Is$="" THEN 130

140 IF VAL(I$)=0 THEN 130

150 IF LEFT$(I%,1)="+" OR LEFT$(I$,1)="-" THEN T=2

160 ID=INSTR(I$,".")—-1: IF ID=-1 THEN ID=LEN(I$): N=0: GOTO

170 N=LEN(I$)-1-ID

180 X=ABS(VAL (I%)): IF X=1 THEN GOSUB 2020: END
190 M=X: K=0: IF X<1 THEN K=1: GOTO 220

200 WHILE M>1: M=M/10: K=K+1: WEND

210 GOTO 230

220 WHILE M<1: M=M%10: K=K-1: WEND

60

230 E$=MID$ (STR$ (INT (10~ (K+7) /X)) ,2)

240 C$=MID$(I%$,T,ID)+MID$(I%, ID+2)

250 INFUT "Precision Required"; C: C=ABS(INT(C)): IF C<9 THE
N 250

260 GOSUB 1000: GOSUB 2000: END

1000 FOR I=1 TO C-7 STEP 2

1010 X¢=E$: GOSUB 1500: REM Times 200

1020 Y$=X$: GOSUB 1600: REM Multiply

1030 X¢$=Z¢: Y$=C$: GOSUB 1600: REM Multiply

1040 X$=Vé: Y$=LEFT$(Z$,LEN(Z$)-4-K-N-1I): GOSUB 1800: REM Su
btract

1050 NEXT

1060 RETURN

1499 REM Times 200

1500 LX=LEN(X$): DIM SCLX+2]: C=0

1510 FOR P=LX TO 1 STEP —-1: VX=VAL(MID$(X$,F,1))

1520 SCP-11=VAL (A$LVX,C1): C=VAL(B$LVX,Cl): Z=SC[F-11]
1530 S[PI=VAL(A$LVX,Z1): C=C+VAL(B$LVX,Z1)

1540 NEXT: SC[O]=C: V$=""

1550 FOR P=0 TO LX+2: V$=V$+FN A%$(SL[P1): NEXT

1560 ERASE S: RETURN

1599 REM Multiply

1600 LX=LEN(X$): LY=LEN(Y$): L=LX+LY

1610 DIM D$CL,LY,1],M[L,2],FPCL]

1620 FOR F=1 TO LX: FOR @=1 TO LY

1630 VX=VAL (MID$(X$,P,1)): VY=VAL(MID$(Y$,Q,1))

1640 D$[F+Q,Q, 01=M$[VX,VY]: D$L[P+Q-1,Q,1]1=N$L[VX,VY]
1650 NEXT Q,P

1660 FOR F=L TO 1 STEP -1: FOR Q=1 TO LY

1670 IF D$LP,QR,01<>" " THEN MLP,1]1=MCF,11+VAL(D$L(F,Q,01)
1680 IF D%[(P,Q,11<>" " THEN M[P,21=M[P,2]+VAL (D$L(P,Q,11)
1690 NEXT Q,P

1700 C=0: FOR F=L TO 1 STEP -1

1710 M=C+M[P, 11+MIP,21: C=0

1720 IF M>9 THEN C=INT(M/10+0.00001): M=INT(10%(M/10-C)+0.00
001)

1730 FLP1=M: NEXT: Z¢$=""

1740 FOR F=1-(FL11=0) TO L: Z$=Z%+FN A$(PCF1): NEXT
1750 ERASE D$%,M,F: RETURN

1799 REM Subtract

1800 LX=LEN(X%$): LY=LEN(Y$)

1810 DIM D%[1]: FOR P=0 TO 1

1820 D$LFPI=STRING%(LX,48): NEXT

1830 MID$(D$[0]1,1)=X%: MID$(D$C1],LX-LY+1)=Y$

1840 DIM DCLX1: C=0

1850 FOR P=LX TO 1 STEP -1

1860 VX=VAL (MID$(D$[01,P,1)): VY=VAL(MID$(D$C11,F,1))
1870 DLPI=VAL (S$[VX,C1): C=VAL(T$LVX,C1)

1875 Z=DCF1: DILFI=VAL(S%[Z,VY])

1880 C=C+VAL(T$LZ,VY1): NEXT: E$=""

1890 FOR FP=1-(DC131=0) TO LX: E$=E$+FN A$(DLF1): NEXT
1900 ERASE D%$,D: RETURN

2000 IF T=2 THEN PRINT LEFT$(I%$,1);

2010 FRINT LEFT$(E$,1);".";MID$(E$,2);"E"3—-K: RETURN
2020 FRINT I%

2030 RETURN

61

34. INORDER SEQUENCE

This subroutine labels the vertices of a binary tree in INORDER sequence.
Each vertex to the left of any other vertex nearer the root is labelled with a
lower value and each one to the right is higher. The illustration shows a
binary tree labelled with the names of computer languages in INORDER
sequence lexicographically. (See ‘BINARY SEARCH TREE’ for related
routine.)

10 REM INORDER Sequence for words

20 INPUT "Height of tree";K: K=2~(K+2)-1: L=(K+1)/2-1
30 DIM A$LK1,ALK],SCK]

40 FOR P=1 TO L: INPUT ASCPl: NEXT

50 GOSUB 1000: GOSUB 20003 END

1000 C=13 V=1: SP=K

1010 WHILE A$[2%#V1<>"": GOSUB 1060: V=V+V: WEND
1020 ALVI=C: C=C+1

1030 IF ASL2#V+11<>"" THEN V=2#V+1: GOTO 1010
1040 IF SP<>K THEN GOSUB 1070: GOTO 1020

1050 RETURN

1060 S[SPI=V: SP=SP-1: RETURN

1070 VaSC[SP+11: SP=SP+1: RETURN

2000 FOR P=1 TO L: PRINT A$CP1; TAB(10);ALFI: NEXT
2010 RETURN

10 REM INORDER Sequence for numbers

20 INPUT "Height of tree";K: K=27(K+2)-1: L=(K+1)/2~-1
30 DIM ALK,1]1,SCK]

40 FOR P=1 TO L: INPUT ACP,0]: NEXT

50 GOSUB 1000: GOSUB 2000: END

1000 C=1: V=1: SP=K

1010 WHILE AL2#V,01<>0: GOSUB 1060: V=V+V: WEND

1020 ALV,11=C: C=C+1

1030 IF AL2#V+1,01<>0 THEN V=2#V+1: GOTO 1010

1040 IF SP<>K THEN GOSUB 1070: GOTO 1020

1050 RETURN

1060 S[SPI=V: SP=SP-1: RETURN

1070 V=S[SP+11: SP=SP+1: RETURN

2000 FOR P=1 TO L: PRINT ACP,01; TAB(10);ALP,11: NEXT
2010 RETURN

EXAMPLE

run Qutput
Height of tree? & MALLARD 1
? MALLARD BCPL 4
? BCPL QLSUPER 14

62

7 QLSUPER BASICB9 2
? BASICAY FORTH 7
? FORTH PASCAL 12
? PASCAL SPECTRUM 15
? SPECTRUM ALGOL 1
? ALGOL BBC 3
? BBC COBOL 6
? COBOL LISP 9
? LISP ']
? PIP 13
? PIP e
? '}
)]
) (]
] (]
2 (]
) [
7 ¢ C 5
? 0
? FORTRAN FORTRAN 8
? LOGO LOGO 10
) 8
?]
? ']
)]
? ']
?]
?]
) 8
Ready
Note that the words are numbered in alphabetical order.

MALLARD

QL BASIC

‘FORTH PASCAL

(oL) (BBC-BASIC)

LISP

N

C ¢) (rrman) (oco)

Fig. 34.1 Binary Tree of Computer Languages

63

35. INTERPOLATION

The idea behind interpolation is to fit a curve of some sort through a set of
points so that you can calculate a value at an intermediate position where
there is no point. The best way of doing this depends very much on the
quality of the data that you are dealing with and there are no hard—and—fast
rules to get the best answer.

Obviously, a straight line can always be drawn through two points, a second
order curve, (a circle, parabola, ellipse or hyperbola) can be drawn through
three points and a cubic curve through four points etc.. However, there is no
point in fitting an n'" order curve through a set of points if the scatter from a
straight line is due to errors in the measurement. It is then better to use a
‘Best Fit Line’ approach and use the equation of this to predict the value and
the likely errors associated with it.

Similarly, if a set of points lies about a curve, it may be more sensible to
replot on alog/linear orlog/log scale to produce a straight scatter band and
then use this for the ‘Best Fit Line” approach.

If the data are very accurate then the way to find the polynomial to represent
the curve is to select a number of points spaced out along the curve including
the first and last in the range of interest and fit a curve of power one less than
the number of points i.e. to fit a fourth power polynomial you need five
points etc..

This is best illustrated by example. The table shows the Student’s t values for
N=10t060. To fit a cubic equation we require that: —

aN? +bN? +cN+d=t
choosing the points N=10, 15, 25 and 60 we have: —

a*1000 +b*100 +c*10+d=2.228
a*3375 +b*225 +c*15+d=2.131
a*15625 +b*625 +c*25+d=2.060
a*216000+b*3600+c*60+d=2.000

and solving these using the ‘Simultaneous Equations’ subroutine gives the
values

a=-0.000014
b=0.001520
c=-0.050755
d=2.597524

64

From these values the intermediate ones shown in the table have been
calculated and the difference column shows how the approximate curve
weaves about the true line. Between 10 and 27 the erroris less than 0.4% and
good enough for the purpose. To get a better fit would require a higher order
curve to be fitted.

Student’s t Table
N Actual from Calculated Difference
Tables from equation (Calc.—Actual)
10 2.228* (2.228) -
11 2.201 2.205 +0.004
12 2.179 2.183 +0.004
13 2.160 2.164 +0.004
14 2.145 2.147 +0.002
15 2.131* (2.131) -
16 2.120 2.117 —0.003
17 2.110 2.105 —0.005
18 2.101 2.095 —0.006
19 2.093 2.086 —0.007
20 2.086 2.078 —0.008
21 2.080 2.072 —0.008
22 2.074 2.068 —0.006
23 2.069 2.064 —0.005
24 2.064 2.061 —0.003
25 2.060* (2.060) -
26 2.056 2.059 +0.003
27 2.052 2.060 +0.008
28 2.048 2.061 +0.013
29 2.045 2.063 +0.018
30 2.042 2.065 +0.026
40 2.021 2.103 +0.082
60 2.000* (2.000) -

* Used to establish the coefficients.

Finally a word of warning, don’t quote more accuracy in the calculated
values than is inherent in the original data and NEVER try to calculate
values outside the range you originally used.

65

36. LABEL

This subroutine is associated with storage of information. The information is
in two parts, an identifier which is unique e.g. a name or a number and the
remaining information associated with the identifier e.g. address, telephone
number, component details etc.. The identifier is stored in one array (I) and
the remaining information in another (J). A label is attached to each
identifier which points to the second array so that, for example, if the
information is ordered only the identifier array needs to be ordered.

10 REM Label

20 PRINT "How many items to be stored";: INPUT No.

30 DIM I$CNo.1,J$[No.1]

40 PRINT "Enter a unique identifier e.g. a name or part No."
S0 FOR P=1 TO No.

60 INPUT "Identifier";I$(P]

70 I$LPI=I$LPI+"*#"+STR$ (F)

80 INFUT "Remaining details";J$L[P]

0 NEXT

1000 REM A search will produce a value V which holds the ide
ntifier information"

1010 PRINT I$CV],J$CVAL(MID$(I$SLVI, INSTR(I$LVI,"*")+1))]

66

37-41. LOOPS

Loops are a very powerful way of generating and handling data and these
examples illustrate more complicated looping operations than the single or
nested loop.

In the ‘SPLIT LOOP’, when A exceeds 4 the looping back point changes to
the second FOR statement.

Within ‘MIXED LOOP’, there are two incrementing operations in action
i.,e. FOR A=1TO 7 and A=A+1 so that instead of 7x4 pairs of values, we
get8. The +(A=4) term s to adjust at the changeover point.

In ‘RANDOM LOOP’ the B value skips as it exceeds the various ‘greater
than’ conditions.

In ‘CIRCULAR LOOP’ the MOD function is used to change the last entry
into the first so that the loop can be used to perform cyclical operations.
Examples of this would be moving all the entries in an array by a given
number of places using the zero position as the temporary store or plotting
points to give a closed figure.

There are occasions when a set of nested loops is required but the number
depends on some variable in the program. To solve this, a subscripted
variable would have to be used in the loop e.g. FOR A[P]=1 TO B[P] but
this is not permitted in the syntax of Amstrad. It can, however, be overcome
by simulating the operations carried out during looping but without using a
main FOR————— NEXT statement. Examples of this construction can be
foundin ‘PERMUTE’,"ANAGRAM’ and ‘2—-3 TREES’.

In the example given, which is the preparation of a multiplication look—up
table for P*Q (P and Q varying from 1 TO 10), a variable size loop structure
is compared with a double loop. The former can be easily increased to a
P*Q*R system but the simple nested loop cannot be without writing an extra
loop in the program in the variable R.

67

37. SPLIT LOOP

10 REM Split loop

20 FOR A=1 TO S: IF A>4 THEN FOR A=13 TO 16: PRINT A: NEXT:
GOTO 40

30 PRINT A

40 NEXT

This selects values of A equal to 1,2,3,4,13,14,15,16,

38. MIXED LOOP

10 REM Mixed loop

20 FOR A=1 TO 7: FOR B=5 TO 8
30 PRINT TAB(18);A;CHR$(8);",";B
40 A=A+1+(A=4): NEXT B,A

This selects pairs of values as follows

1,5;2,6;3,7;4,8;5,5;6,6;7,7; 8,8

39. RANDOM LOOP

10 REM ’'Random’ 1loop

20 FOR A=1 TO 4: FOR B=1 TO 2

30 IF B>1 THEN FOR B=7 TO 9: IF B>8 THEN FOR B=11 TO 13 STEP
2: PRINT B;: NEXT: GOTO 40 ELSE PRINT Bj: GOTO 40 ELSE PRIN

T B3: 6GOTO SO

40 NEXT

S0 NEXT: PRINT

60 NEXT

This PRINTs 1,7,8,11,13,15, four times.

68

40. CIRCULAR LOOP

This loop selects adjacent points in an array so that when PLOTted, for
example it will produce a closed figure. (See ‘ANGLESORT’).

10 REM Circular loop

20 INPUT N

30 DIM ACNJ1,BILN]

40 FOR P=1 TO N: ALPI=P: BLPl=P: NEXT

50 GOSUB 1000: END

1000 FOR P=0 TO N

1010 ACPI=AL (1+P)MOD (N+1)1

1020 NEXT

1030 FOR P=1 TO N: PRINT "Join";BLP];"to";ALPJ: NEXT
1040 RETURN

69

41. VARIABLE SIZE NESTED LOOP

10 REM Variable size nested loop
20 INPUT N: REM Number of loops

30 DIM ACN]: REM Loop variables

40 DIM BLNl: REM Loop end values

S50 FOR P=1 TO N

60 ALPI=1: REM Initialise variables

70 BLP)=10: REM Initialise loop end values

80 NEXT P

90 FOR P=1 TO N

100 IF ACPI>BILP) THEN ALPl=1: REM Re—-initialise inner loop v
ariables if required

110 NEXT P: Z=1

120 FOR P=1 TO N

130 Z=Z#ALPl: NEXT P: REM Calculate product

140 PRINT Z3;

150 FOR X=N TO 1 STEP -1: REM Control nesting operation

160 ACXI=ACX1+1: REM Increment variable

170 IF ACX1>BLX] THEN PRINT: NEXT X: PRINT: END: REM Change
to the next loop?

180 GOTO 90: REM Next cycle of this loop

Without the REM statements the routine is as follows

10 REM Variable size nested loop

20 INPUT N: DIM ALCN],BCN]

30 FOR P=1 TO N: ACPl=1: BL[PJ1=10: NEXT

40 FOR P=1 TO N: IF ALP1>BLP) THEN ALPI1=1

30 NEXT: Z=1

60 FOR P=1 TO N: Z=Z#ALPJ: NEXT: PRINT Z;

70 FOR X=N TO 1 STEP -1: ACXI=ACX1+1

80 IF ACX1>BCLX] THEN PRINT: NEXT ELSE 40: END

The subroutine is of great value in problems involving permutations of the
variables.

70

42—48. MATRICES

The matrices can be used to store information about paths between places
on maps or graphs and between corners of a polygon or a solid polyhedron.
For example, the matrix used in ‘Universal Rotation’ uses “1” to indicate
which corners of a bipyramid are joined by an edge and “0” where no join
exists.

The points 1to 4 can be joined by several paths as drawn.

)
®/l\@
/"
\@
The path matrix would then be

P= 01
11
00
10

oo
oo =

P? has the property of representing paths made of two separate parts.

Hence
P2=0101*01017=[0021
0011 (0011 0010
000 0000 0000
001 0010 0000

The 2 represents 1-3 as 1 -2—3 and 1543
The I’srepresent 1-4 as 1 -2—4 and 2—3 as 2—4—-3

P =

SOCOoOO
OO O
SOoOO =
SOOO

i.e. 152—4—-3 the only triple path.

P*is a null matrix as there are no four part paths

71

Reference to ‘Simultaneous Equations’, ‘Determinants’ and ‘Regression’
will show other applications of matrices.

Matrix multiplication is row by column so that for example

A BJ] * C D| = |A*C+B*G A*D+B*H
E F G H E*C+F*G E*D+F*H
Hence, an M x N matrix can only be multiplied by an N x R matrix to give an
M x R result or an A x B x C can be multipliedbyaCx D togivean AxBx D
answer. In each case two dimensions have to be the same and disappear from

the resultant product. The order of multiplication is therefore important and
ingeneral A * B does notequal B* A.

The following example illustrates matrix multiplication using salary costs
but it could equally be stock levels and values at different sites or exam
results in different subjects in different years etc.

The numbers employed in each grade at six establishments are as follows: —

ESTABLISHMENT GRADE

1 2 3 4 S
A 200 50 10 1 0
B 250 60 6 2 0
C 500 101 12 3 0
D 35 5 1 0 1
E 1010 190 27 2 1
F 1250 200 45 3 1

and the salary scales are: —

GRADE £/a
5500
7500
9000
11000
15000

nNnH W=

72

Then

200 50 1010 * 55 = 1576000
250 60 620 7500 1901000
500 101 1230 9000 3648500

35 5 101 11000 254000
1010 190 27 21 15000 7260000
1250 200 45 31 8828000

represented symbolically by
A[M,N]*B[N,R]=C[M,R]
gives the total salary bill at each of the six establishments.

A unit matrix is the equivalent of 1 in ordinary numbers and consists of a
diagonal line of ones, the remaining entries being zeros. The product of a
matrix with its inverse is a unit matrix. ‘Universal Rotation’ contains an
example of a 3x3 unit matrix which is set up initially to build up the final
transformation matrix.

Complex matrices are really associated pairs of matrices which hold the real
and imaginary parts of the array of values. They have a variety of uses and a
simple example is that of rotation around the origin. The expression

(x+iy)exp(i §)
rotates the point (x,y) by an angle 6 around the origin.

As exp (i@)=cosO+isin@ we have with multiple points and angles, the
product of two matrices viz: —

X1+iY1]cos @ +isin® cosp +ising cost+isint”]
X2+iY2
X3+iY3
X4+iY4

The inverse of a matrix is required in the solution of simultaneous equations
and for testing whether a determinant is zero or not. The analogous inverse
of a complex matrix pair is also given along with the complex conjugate
which is occasionally required

73

42. MATRIX MULTIPLICATION

10 REM Matrix Multiplication

20 DEFINT J,K,L,M,N,R

30 DEF FN N$ (N)=MID$ (STR% (N),2)

40 INPUT "Number of rows in matrix A";M

S0 INPUT "Number of columns in matrix A";N

60 INPUT "Number of columns in matrix B";R

70 DIM ACM,N],BI[N,R1,CICM,R]

80 FOR J=1 TO M: FOR K=1 TO N

Q0 PRINT "A(";FN N$(J);",";FN N&(K);")="3: INPUT ALJ,KI: NEX
T K,Jd

100 FOR J=1 TO N: FOR K=1 TO R

110 PRINT "B(";FN N$(J);",";FN N$(K);")="3: INPUT BLJ,K]: NE
XT K,J

120 REM Or use DATA INPUT (Matrices) twice to INPUT A and B)
130 GOSUB 1000: CLS: GOSUB 2000: END

1000 FOR J=1 TO M: FOR L=1 TO R

1010 FOR K=1 TO N: CC[J,LI=CCJ,LI+ALI,KI*BLK,L]

1020 NEXT K,L,J

1030 RETURN

2000 FOR J=1 TO M: FOR K=1 TO R

2010 LOCATE 4#*K-3,2#J+3: FRINT CLJ,K]

2020 NEXT K,J

2030 RETURN

2040 REM Or use PRINTOUT for MATRIX

EXAMPLE

run
Number of Rows in Matrix A? 3

Number of Columns in Matrix A? &4
Number of Columns in Matrix B? 2

ACT,1)=2 1
AC1,2)=7 2

AC1,3)=2 3

AC1,4)=2 4

AC2,1)=2

AC2,2)=2 Z B(2,2)=2 8
A2 3027 7 B(3,1)=2 10
A24)=? 8 B(3,2)=2 12
A3 1227 9 B(4,1)=2 14
AG3,2)=2 10 B4, 22=7 16
AG3,3)=2 11

AG3,4)=2 12 100 128
B(1,1)=2 2 228 288
B(1,2)=7 4 356 440
B(2,1)=7 6 Ready

74

43. COMPLEX MATRIX MULTIPLICATION

10 REM Complex Matrix Multiplication

20 DEFINT J,K,L,M,N,P,R

30 DEF FN N$ (N)=MID$ (STR$ (N),2)

40 INPUT "Number of rows in matrix A";M

S50 INPUT “Number of columns in matrix A";N

60 INPUT "Number of columns in matrix B";R

70 CLS: P=1

80 DIM ACM,N],BILN,R],CLM,R]1,XILM,N],YI[N,R1,ZL[M,R]

90 FOR J=1 TO M: FOR K=1 TO N

100 P=P+131 LOCATE 1,P: PRINT "A(";FN N$(J);",";FN N$(K);")="
32 INPUT ALJ,K)

110 LOCATE 20,P: PRINT "+i#X(";FN N$(J);",";FN N$(K);")=";5:
INPUT XCJ,KJ: NEXT K,J

120 FOR J=1 TO N: FOR K=1 TO R

130 P=P+1: LOCATE 1,P: PRINT "B("; FN N$(J);",";FN N$(K);")=
"33 INPUT BLJ,K]

140 LOCATE 16,P: PRINT "i#Y(=";FN N$(J);",";FN N$(K);")=";:
INPUT YL[J,K]

150 NEXT K: NEXT J

160 REM Or use DATA INPUT (Matrices) twice to INPUT A and B)
180 GOSUB 1000: CLS: GOSUB 2000: END

1000 FOR J=1 TO M: FOR L=1 TO R: FOR K=1 TO N

1010 CCJ,LI=CCLJI,LI+ALI,KI*BLK,LI-XLJ,KI*Y[K,L]

1020 ZC0J,L)=Z(J,LI+ALJ,KI*YI[K,LI+X[J,KI*BLK,L]

1030 NEXT K,L,J

1040 RETURN

2000 FOR J=1 TO M: FOR K=1 TO N

2010 LOCATE 8#K-3,2#J+3: PRINT CCJ,KJ;"+i*";Z[J,K]

2020 NEXT K,J

2030 RETURN

2040 REM Or use PRINTOUT for MATRIX

75

44. MATRIX INVERSION

You cannot divide two matrices but can derive A™' and multiply using the
matrix multiplication rules provided that A is square and its determinant not
Zero.

This derivation of A~ is based on the Gauss—Jordan method of progressive
substitution whereby three loops are established and the individual entries
are operated on in turn and the values in the matrix immediately replaced by
the new value. Thus in the case of 3x3 matrix, there are 27 operations so that
the matrix gradually changes into its inverse in 27 stages. Relating this to
equations, if

Y, =a;; X, +ap X, +a;3X;
Y, =2y X +a X; +a X;
Y3 =a3 X; +anX; +a X;

for example. Then solving the first equation for X; and substituting gives (if
a1y <>O)

Xi=AuY +tAp X5 +A 13 X3
Yo=An Y +An X, +Ax3 X,
Y3=A3 Y +AnX; +A3 X,

where

Ay =1/ay, A =—apla;, Ajz=—ap/ay;

Ay =ay/ayy Ay =ay—aza/ay Asz=ax—a a;3/ay,
Az =az /ay; Az =az—az ap/ag Ajz =az3—az a;3/ag

Repeating this process through the three cycles produces the inverse.

SUB 1120 checks for zeros in the leading diagonal and exchanges two
columns if possible to avoid a ‘Division by zero’ problem at the beginning of
the Iloop. Array M remembers which columns have been interchanged and
in SUB 1160 exchanges the same rows in the inverse to compensate.

If two rows (or columns) are identical or one a multiple of the otherorifa
line of zeros is present, then the matrix cannot be inverted as its determinant
iszero. This is picked up by the IF statement at the beginning of the routine.

The IF J<>N+(I1=N) statement in the K loop dispenses with the need for a
second set of loops found in some versions of this routine.

76

10 REM Matrix Inversion

20 DEFINT I,J,K,N,T: DEF FN N$(N)=MID$ (STR$(N),2)s N=O

30 WHILE N<=0: INPUT "N="j3;N: WEND

40 DIM ACN,N]: FOR I=1 TO N: FOR J=1 TO N

S50 PRINT "A(“;FN N$(I)3“,";FN N$(J);*")="3: INPUT ALI,J1: NEX
T J,1I

60 BGOSUB 1000: GOSUB 2000: END

1000 DIM MIN,N]: T=0: GOSUB 1120

1010 FOR I=1 TO N: IF ABS(ALI,I11)<0.0000001 THEN T=1: RETURN
1020 ACI,I1=1/AL1,1]

1030 FOR J=1"TO N: IF J=I THEN 1100

1040 ACJ,I1=ALJ,I1+ACI,11]

1050 FOR K=1 TO N: IF K=I THEN 1090

1060 ALJ,KI=ALJ,K1-ALJ, I1*ALI,K]

1070 IF J<>N+(I=N) THEN 1090

1080 ALI,K1=-ALI,I11%ACI,K]

1090 NEXT K

1100 NEXT J,I: IF T THEN GOSUB 1160

1110 RETURN

1120 FOR I=1 TO N: IF ALI,Il=0 THEN T=-1: GOSUB 1140

1130 NEXT I: RETURN

1140 FOR J=I TO N: IF ACI,J])<>0 THEN FOR K=1 TO N3 SW=A[K,I1]
1 ALK, I11=ACK,J]1: ALK,J1=SW: NEXT K: MCI,Jl=1: RETURN

1150 NEXT J: RETURN

1160 FOR I=1 TO N: FOR J=1 TO N

1170 IF MCLI,J1=1 THEN FOR K=1 TO N: SW=A[I,Kl: ALI,KI=A[J,K]
: ACJ,KI=SW: NEXT K

1180 NEXT J,I: RETURN

2000 ERASE M: IF T<1 THEN FOR I=1 TO N: FOR J=1 TO N: PRINT
"A(";FN N$(I)3",";FN N$(J);")="3ACLI,J1: NEXT J,I: RETURN
2010 PRINT "Singular Matrix, there is no inverse": RETURN

EXAMPLE
1 3 5 -1.5 1.125 25
2 4 6 0 25 -5
1 0 3 S5 =375 .25

77

45. COMPLEX MATRIX INVERSION

10 REM Complex matrix inversion

20 DEFINT A,B,N,J,K,T

30 DEF FN M(A,B)=R[A,BI*R[A,B1+I[A,BI*I[A,B)

40 DEF FN Z$(A%$,A, BOOLE)=MID$ (A%$,1+A, -LEN (A%) *BOOLE)
50 DEF FN N$ (N)=MID$ (STR% (N),2)

60 INPUT "Enter the rank of the matrix"j;N$

70 IF N$="" THEN 60

80 T=1: IF LEFT$(N$,1)="+" THEN T=2

90 FOR P=T TO LEN(N$): IF MID$(N$,P)<"0" OR MID$(N%,P)>"9" T
HEN 60

100 NEXT: N=VAL(N$): IF N<=0 THEN 60

110 DIM RCN,N], ICN,N]

120 PRINT " Now enter the individual terms in thematrix wh
ich can be real, imaginary or complex. Typically, they will
be of the form a+ib where i=SQR(-1). Type in a andb. Press

RETURN to continue": INPUT K$

130 CLS: T=1

140 FOR I=1 TO N: FOR J=1 TO N: T=T+1

150 LOCATE 1,T: PRINT "a";FN N$(I);FN N$(J);" is "3: INPUT R
(1,J)

160 LOCATE 20,T: PRINT "+i#"33;: INPUT I(I,J)

170 NEXT J,I

180 GOSUB 1000: GOSUB 2000: END

1000 DIM MIN,NJ: T=0: GOSUB 1120

1010 FOR I=1 TO N: Z=FN M(I,I): IF ABS(Z)<0.00000001 THEN T=
1: GOTO 2000

1020 RCI,I)=RCI,I3/Z: ICI,I)=-1C1,11/Z

1030 FOR J=1 TO N: IF J=I THEN 1100

1040 Z=R[J,1]: RCJ,I1=Z*RCI,I1-ICJ,T1%ICI,I]: ICJ,I]=ICJ,I3%
RCI,IJ+Z%*ICI,I1]

1050 FOR K=1 TO N: IF K=1 THEN 1090

1060 R[JL,KI=R[J,KI-RC[J, II*RCI,KI+I[J,I2*ICI,K]: ICJ,KI=ILJ,K
1-I0J,II*RCI,KI-RLJ, II*#ICI,K]

1070 IF J<>N+(I=N) THEN 1090

1080 Z=RC1,K]: RCI,K)=—RCI,IJ1%Z+ICI,I]%ICI,K]: ICI,KI=-ICI,I
1#Z-RCI,I1+ICI,K]

1090 NEXT

1100 NEXT J,I: IF T THEN GOSUB 1160

1110 RETURN

1120 FOR I=1 TO N: IF FN M(I,I)=0 THEN T=-1: GOSUB 1140

1130 NEXT: RETURN

1140 FOR J=1 TO N: IF FN M(I,J)<>0 THEN FOR K=1 TO N: SW=R[K
»I11J: RIK,I11=R[K,J]: RCK,J]1=SW: SW=ICK,Il: ICK,I)=ICK,J): ILCK
yJ1=SW: MLI,J1=1: NEXT: RETURN

1150 NEXT: RETURN

1160 FOR I=1 TO N: FOR J=1 TO N:

1170 IF MCI,J1=1 THEN FOR K=1 TO N: SW=RC[I,K]l: RCI,K]=RL[J,K]
t R[J,KI=SW: SW=ICI1,K]: ICI,KI=ICJ,K]1: ICJI,KI=SW: NEXT

1180 NEXT J,I: RETURN

1190 RETURN

78

2000 ERASE M: IF T>0 THEN FRINT "Singular matrix, no inverse
RETURN

2005

PRINT "The inverse matrix is": PRINT

2010 FOR I=1 TO N: FOR J=1 TO N: GOSUB 2050

2020 PRINT "b(";FN N$(I);",";FN N$(J);")=";2%

2030 NEXT J,1

2040 RETURN

2050 X$=FN Z$("-",0,RL[I,J31<0)+FN Z$(STR$(RCI1,J1),1,RCI,JI<>0
)+FN Z$("+",0,ABS(RLI,J1)>0 AND ICI,J1>0)+FN Z$("-",0,1[I,J]
<0)

2060 Y$=FN Z$(STR$(I[I1,J3),1,IC1,J3<>0 AND ABS(ICI,J1)<>1)+F
N Z$("i",0,ICI,JI<>0)+FN Z$("0",0,ABS(RLI,J1)<0.000001 AND A
BS(ILI,J1)<0.000001)

2070 Z$=X$+Y$
2080 RETURN

EXAMPLE

Enter the rank of the matrix? 3

Now enter the individual terms in the
matrix which can be real imaginary or
complex. Generally, they will be of
the form a+ib where i=SQR(-1). Type
in a and b. Press RETURN to continue

all is ? 1 +i%27 @
al2 is ? B +ix2 0
al3 is ? P +i*? 5
a2l is ? B +ix? =2
a22 is ? 2 +i%? @
a23 is ? D +i*x? @
a3l is ? 1 +i%2 @
a32 is ? 1 +1%2 1
a33 is ? B +ix? 0
B11 = 0

B12 = -.5+.5i

B13 = -j

B21 =@

B22 = -.5i

B23 = 1

B31 = -.2i

B32 = -.1-.1i

B33 = .2

79

46. UNIT MATRIX

DIMi s used to create the zeros and the loop the diagonal row of ones.

10 REM Unit matrix

20 DEFINT I,J,N

30 INPUT "Rank of the matrix";N: IF N<1 THEN 30
40 GOSUB 1000: GOSUB 2000: END

1000 DIM ACN, N1

1010 FOR I=1 TO N: ACI,Il=1: NEXT

1020 RETURN

2000 FOR I=1 TO N: FOR J=1 TO N

2010 PRINT ACI,Jd1;: NEXT: FRINT: NEXT

2020 RETURN

47. TRANSPOSE

In a transpose of a square matrix, rows become columns and vice versa

10 REM Transpose of a matrix

20 DEFINT J,K,N

30 INPUT "Rank of matrix";N: IF N<1 THEN 30

40 DIM ACN, N1

50 FOR J=1 TO N: FOR K=1 TO N: INPUT ACJ,Kl: NEXT K,J
&0 GOSUB 1000: GOSUB 2000: END

1000 FOR J=1 TO N: FOR K=J TO N

1010 IF J<>K THEN SW=ACJ,K]: ALJ,KI=A[K,J1: ACLK,J]1=SW
1020 NEXT: NEXT

1030 RETURN

2000 FOR J=1 TO N: FOR K=1 TO N

2010 PRINT ACLJ,KJ;: NEXT K: PRINT: NEXT J

2020 RETURN

80

48. COMPLEX CONJUGATE

The complex conjugate has the opposite sign on the imaginary parts.

10 REM Complex conjugate of a complex pair of matrices

20 DEFINT J,K,N

30 INPUT "Rank of matrix";N: IF N<1 THEN 30

40 DIM REAL CN,N]1,IMAG [N,N1]

50 FOR J=1 TO N: FOR K=1 TO N: INPUT REAL [J,K]1,IMAG [J,K]:
NEXT K,J: REM Enter REAL [J,K] and IMAG [J,K] as two real nu
mbers separated by a comma

60 GOSUB 1000: GOSUB 2000: END

1000 FOR J=1 TO N: FOR K=1 TO N

1010 IMAG [J,KI=-IMAG [J,K]

1020 NEXT: NEXT

1030 RETURN

2000 FOR J=1 TO N: FOR K=1 TO N

2010 PRINT REAL [J,K1;IMAG C[J,K1;"i": NEXT K,J

2020 RETURN

81

49. MENU

The object of having a ‘MENU" in a program is to help the user to interact
with the computer and to be able to choose a specific part of the program
without having to run all the way through the rest of it. Complicated
programs often have ‘Help‘* menus which you can return to if you get out of
your depth and don‘t know what to do next.

The following program illustrates a simple ‘Menu‘ arrangement using ON—
———GOSUB as the active element. Breaking into the program anywhere
and typing GOTO (line 120) will bring the menu back to the screen.
Normally the various subroutines will return to (line 120) after completion
and the last subroutine will enable you to terminate the program. Other
subroutines may allow data to be saved or loaded.

The point of note in the program is the POKE in the second line which alters
CHRS$(208) to give a better underline. M$[10] holds the chapter titles and
these are printed by the P loop.

The choice is made as M$[0] which is tested in SUB 300 for numerical
characteristics otherwise FAIL becomes true and the choice is requested
again. Part of the complication in this area is preventing the Menu being
inched up the screen by various messages so as far as possible the window is
reserved for active inputs. However if you accidently ENTER a comma, you
can‘t stop the ‘Redo from start‘ message from appearing.

10 REM Menu

20 SYMBOL AFTER 208: H=HIMEM+1: POKE H+1,0

30 WINDOW #1,1,40,22,25: DIM M$[10]

40 NL$=CHR$ (10) +CHRS$ (13)

50 Ms(1]1=" 1. Load Data*

60 MS$[2]=" 2. Save Data"

70 MS[3I]I=" 3. Second Choice"

80 M$L[4]=" 4. Third Choice"

90 REM etc.

100 M$[F]=" 9. Ninth Choice"

110 MsC101=" 10. Finish"

120 CLS: LOCATE 18,231 PRINT "MENU*

130 LOCATE 18,33 FOR P=1 TO 4: PRINT CHR$(208);: NEXT: PRINT
140 FOR P=1 TO 103 LOCATE 5,4+P

150 PRINT M$[P1: NEXT: T$[O]="*

160 PRINT #1,"“Type in your choice 1-10"

170 T¢=INKEY$: IF T$="" THEN 170

180 PRINT #1,T#;3: IF T$<>CHR$(13) THEN T$[Ol=T$[O01+T$: GOTO
170

190 GOSUB 3001 IF NOT FAIL THEN M%=VAL (T$[0]) ELSE 170
200 IF MZ>10 OR M¥%<1 THEN 170

82

210 ON M7 GOSUB 400,500, 600,700,800,900,1000,1100,1200,1310:
REM Or as appropriate

220 GOTO 120

240 END

300 FAIL=0

310 FOR P=1 TO LEN(M$LO0]): Z$=MID$(M$[O1,P,1)

320 IF Z$<"0" OR Z$>"9" THEN FAIL=-1

330 NEXT: RETURN

400 REM Load the data from the Datacorder

410 CLS: PRINT " Is the Datacorder ready to INPUT the stor

ed data (y/n)?"3;NLS$

420 IF INKEY$<>"Y" AND INKEY$<>"y" THEN 420

430 OPENIN D%

440 INPUT #9,A,B,C: REM Here A,B,C means the variables A,B,C
whose values you have stored previously

450 CLOSEIN

4560 RETURN

500 REM Save Data

510 CLS: PRINT "Is the tape recorder ready to record the dat
a. (y/n)";NL$;" Make a note of the position and which tape"

520 IF INKEY$<>"y" AND INKEY$<>"Y" THEN 520

530 PRINT "Type in the name of the file";: INPUT D$

5S40 OPENOUT D%

550 PRINT #9,A,B,C: REM Here A,B,C means the names of the va
riables whose values you wish to save. See *2-3 TREE’ for an
example

560 CLOSEOUT

570 RETURN

1300 REM Finish

1310 CLS: PRINT "Do you really want to finish?";NL$

1320 PRINT "Press ";CHR$(34);"Y";CHR$(34);" for finish «lse

<ENTER>";: INPUT K$

1330 K$=UPPERS (K$): IF K$="Y" THEN NEW ELSE RETURN

83

50. MERGE

This subroutine merges two lists, each of which is already in order, into a
single ordered list. If you need to add extra values to an ordered list it is
much more efficient to sort them first and then merge the two lists. Slotting
them in individually in the correct place or adding them to the end of the list
andresorting takes a lot longer.

MERGE isusedin MERGESORT and MIN/MAX

10 REM Merge

20 FRINT "Length of lists";"REM Enter as two numbers separat
ed by a comma"

25 DEF FN A% (A)=MID$ (STR% (A),2)

30 INPUT M,N: IF M=0 OR N=0 THEN 30

40 M=M+1: N=N+1: TITCH=0

S50 DIM ACM1,BCN],CCM+N]

60 FOR P=2 TO M: PRINT "A(";FN A$(P-1);'")="33: INPUT ALP]
70 IF ALPI<TITCH THEN TITCH=ALP]

80 NEXT

90 FOR P=2 TO N: PRINT "B(";FN As(P-1);3")="3: INPUT BLP]
100 IF BLPI<TITCH THEN TITCH=BLP]

110 NEXT

120 GOSUB 1000: GOSUB 2000: END

1000 AC11=TITCH-1: BCL11=A[1]

1010 Y=M: Z=N

1020 WHILE ACY1>BLZ]: CLY+Z1=ALYl: IF Y>1 THEN Y=Y-1: WEND
1030 CLY+Z1=BLZl: IF Z>1 THEN Z=Z-1: GOTO 1020

1040 RETURN

2000 FOR P=3 TO M+N: PRINT CCPl;: NEXT

2010 ERASE A,B,C: RETURN

84

51. MIN/MAX

This routine gives the same answer as MIN and MAX but is much more
flexible. The subroutine finds the maximum and minimum values in a list. It
works by ordering adjacent entered values and selecting the maximum and
minimum in each pair. These values are then compared in 4°s, 8's, 16's, etc.
selecting the maximum and minimum in each case.

10 REM Min/Max

20 DEFINT A,B,N,P,S5: N=0O

30 DEF FN A$(A)=MID% (STR% (A),2)

40 WHILE N<=0: INPUT "Number of values"j;N: WEND

50 GOSUB 1000: GOSUB 2000: END

1000 M=N: P=0

1010 WHILE M>1: M=M/2: P=P+1: WEND

1020 S=2~P: DIM ALS]

1030 FOR A=1 TO N: PRINT "A(";FN A% (A);")="3: INFUT ALA]
1040 A=A+1: IF A>N THEN 1080

1050 PRINT "A(";FN A% (A);3')="3: INPUT ALA1J

1060 IF ALAI>ALA-1] THEN SW=ACAl: ACAI=ALA-1]1: ALA-11=8W
1070 NEXT

1080 IF M<>1 THEN FOR A=N+1 TO S: ALAJ=ACNI: NEXT
1090 M=2

1100 FOR B=0 TO S/2/M-1: T=2%BxM

1110 IF AC1+TI<KAL1+T+M] THEN AL1+TI1=AC1+T+M]

1120 IF ALT+MI<ALT+M+M] THEN ALT+M+MI=ALT+M1

1130 NEXT: M=M+M: IF M<S THEN 1100

1140 RETURN

2000 PRINT: PRINT "Min=";;AL[S]; SFACE$(5); "Max="3AC11]

85

52. MINIMUM, MAXIMUM, MEAN, MEDIAN AND
MODE

By putting the numbers in ascending order it is easy to find the minimum and
maximum. The mean is established from the sum of the values during the
input phase and the median is half way up the list. This will be one of the
values if there is an odd number of them or the mean of two adjacent ones if
there is an even number.

The mode is more difficult to derive as you have to count the number of
entries of each value. T[0,Z] does this and T[1,Z] stores the different actual
values. At E, T[0,Z] is ordered by a bubblesort into descending order and
the mode corresponds to the first value in T[1,Z]. T[0,Z] and T[1,Z] are
both swapped in the sorting.

This subroutine PRINTSs out the above values for a list of positive numbers.

10 REM Minimum, Maximum, Mean, Median and Mode

20 DEF FN A% (A)=MID$ (STR$(A),2)

30 INPUT “Number of values"j;N: IF N<=0 THEN 30

40 DIM VILNl: S=0

S0 FOR P=1 TO N: FRINT "V("3;FN A$(P);")="3: INPUT VI[P]: S=S+

VILP1: NEXT

60 GOSUB 1000: GOSUB 2000: END

1000 @=0: FOR P=1 TO N-1

1010 IF VIP+11<VIF] THEN SW=VI[P]l: VLP1=VIP+11: VIF+1]1=SW: B=

Q+1

1020 NEXT: IF 0<>0 THEN 1000

1030 P=1: Z=1: DIM TCL1,N1]

1040 IF VILPI=VIP+1] THEN T[O,Z]=T[O,Z1+1: P=F+1: IF P<N THEN
1040

1050 TC1,Z1=VIP1: P=P+1: Z=Z+1+T[O,Z]: IF PKN THEN 1040

1060 @=0: FOR P=1 TO N-1

1070 X=F+1: IF TC[O,X1>TLO,P] THEN SW=TLO,Pl: TLO,FP1=TLO,X1]:

TLO,X1=SW: SW=T[i,FJl: TC1,P1=TC[1,X]: TC1,X1=SW: Q=0C+1

1080 NEXT: IF Q<>0 THEN 1060

1090 RETURN

2000 PRINT "Minimum =";VI[1]: PRINT

2010 PRINT "Maximum =";VIN]: PRINT

2020 PRINT "Mean ="3S/N: PRINT

2030 IF 2#INT(N/2)=N THEN FPRINT "Median ="3 (VIN/21+VIN/2+1
1)/2 ELSE PRINT "Median ="3;VIN/2]
2040 FRINT: FRINT "Mode ="3TC1,1]: PRINT

2050 ERASE T: RETURN

86

53. MODULUS

Although one rarely needs a modulus sign, the routine is included as an
example of using POKE to alter an ASCII character. Reference to
‘DISPLAY FILE‘explains the values used in POKE.

10 REM Modulus
20 GOSUB 1000: GOSUB 2000: END

1000
1010
1020
1030
1040
1050
2000
2010

SYMBOL AFTER 209

H=HIMEM+1

FOR P=H TO H+7

FOKE P,4: POKE P+16,64

NEXT

RETURN

PRINT CHR$(209);"M";CHR$(211);"is the modulus of M"
RETURN

87

54. NAME FILTER

This subroutine allows names to be stored. The permitted characters can be
capital or lower case letter, hyphens, full stops, spaces and apostrophes.
Words containing other characters are rejected. The loop in P tests for the
normal characters found in names but if the test fails, Q is reduced by one so
as not to leave a blank in B$[N].

10 REM Name filter

20 INPUT "Number of names";N: IF N<1 THEN 20

30 DIM B$IN]

40 GOSUB 1000: GOSUB 2000: END

1000 FOR Q=1 TO N: PRINT "Name";Q3" is "3: INPUT AS

1010 FOR P=1 TO LEN(A$): Z$=MID$(AS$,P,1)

1020 IF Z$="-" OR Z$="." OR Z$=" " OR Z$=""" OR Z$>="A" AND
Z$<="2" OR ZI$>="a" AND Z$<="z" THEN NEXT: B$[Ql=As$: GOTO 104
(o]

1030 PRINT A%$3" is not a name": Q=0-1

1040 NEXT Q

1050 RETURN

2000 FOR P=1 TO N: PRINT B$L[Pl: NEXT

2010 RETURN

EXAMPLE

run (Output)

Number of names? 13 J. Lucas-Tooth
Name 1 is ? J. Lucas-Tooth T. Harding

Name 2 is ? T. Harding Mr. R. Smith
Name 3 is ? Mr. 5. Smith I. 0'Connel

Mr. 5 Smith is not a name Mr.P. Ward-Jones
Name 3 is ? Mr. R. Smith Rachelina

Name &4 is ? I. 0"Connel Johnson W.

Name 5 is ? Mr. P. Ward-Jones Clive Bosworth
Name 6 is ? Rachelina Miss J. Robinson
Name 7 is ? Johnson W. T.K. Jones

Name 8 is ? Clive Bosworth J. Bu'tock

Name 9 is ? Miss J. Robinson Alison

Name 10 is ? T;K. Jones William Peterson

T,K. Jones is not a name

Name 10 is ? T.K. Jones

Name 11 is 2 J. Bu'lock

Name 12 is ? Alison

Name 13 is ? William Peterson
Ready

88

55. PERMUTE

There are n! (factorial n) permutation of n items and a number of programs
need the ability to generate them. The subroutine given below is used in
‘ANAGRAM', ‘DETERMINANTS BY LAPLACE DEVELOPMENT ‘
and 2—-3 TREES* for example.

All permutations of a set of items can be made by starting with one character
and adding the next character in each possible position. This is illustrated for
ABCD in the first figure. The subroutine given here works a little differently
by progressively rotating the characters to the left (or right if you start at the
other end). The sequence of permutations for ABCD is then as shown in the
second figure. Where a sequence is restored by a second rotation the result is
ignored.

The following simple program (for four characters) performs the rotate
operation.

10 REM Permute, simple

20 INPUT A$: REM LEN(A%$)=4
30 FOR R=1 TO 4

40 FOR @=1 TO 3

S50 FOR FP=1 TO 2

60 FRINT A%;" “;

70 N=1: GOSUB 110: NEXT P
80 N=2: GOSUB 110: NEXT @
90 N=3: GOSUB 110: NEXT R
100 END

110 Z3=LEFT$ (A%, 1)

120 FOR X=1 TO N

130 MID$ (A%, X, 1)=MID$ (A%, X+1,1)
140 NEXT X

160 MIDS (A%, X)=Z%

170 RETURN

This program cries out for an outer loop which would enable it to permute
any number of characters but it would involve the use of a subscripted
variable which is not permitted as a loop variable. Instead, the loop structure
without FOR————— NEXT is used (see LOOPS) and produces the
following subroutine. The variables in A[L] become the loop variables and
those in B[L] the end values of each loop (2,3,4 etc.). Line 2 initialises the
beginning and end values of the loops. Line 1020 reinitialises A[X] if A[X]
has passed the end value B[X].

The loop in X controls which loop is operating and Z$ holds the first

89

character whilst P perfoms the Left Rotate routine. A[X]is incremented and
tested against its end value.

The subroutine PRINTS all the permutations of the characters in a string.

10 REM Permute universal

20 INPUT As: IF As="" OR LEN(A$)=1 THEN 20
30 GOSUB 1000: END

1000 L=LEN(A$)-13: DIM ACLIJI,BCL]

1010 FOR P=1 TO L: ACLPI=1: BLPl=L-P+2: NEXT
1020 FOR P=1 TO L: IF ACPI>BLP] THEN ACPl=1
1030 NEXT

1040 PRINT A$+SPACES (7-L);

1050 FOR X=L TO 1 STEP -1

1060 Z$=LEFT$(As$,1): FOR P=1 TO LEN(A%$)-X
1070 MID$(A$,P,1)=MID$ (A$,P+1,1): NEXT

1080 MID$ (A$,P,1)=7Z%

1090 ACXI=ALX1+1: IF ACX1>BLX] THEN NEXT: GOTO 1100 ELSE 102
[¢]

1100 ERASE A,B: RETURN

EXAMPLE

First 100 Permutations of ‘teaser*

teaser etaser eatser aetser ateser
taeser easter aester aseter saeter
seater esater asteer sateer staeer
tsaeer taseer atseer steaer tseaer
tesaer etsaer estaer setaer easetr
aesetr aseetr saeetr seaetr esaetr
aesetr seeatr eseatr eesatr eesatr
eseatr seeatr eeastr eeastr eaestr
aeestr aeestr eaestr aseter saeter
seater esater easter aester setaer
estaer etsaer tesaer tseaer steaer
etaser teaser taeser ateser aetser
eatser taseer atseer astear sateer
staeer tsaeer setear estear etsear
tesear tseear steear etesar teesar
teesar etesar eetsar eetsar tesear
etsear estear setear steear tseear
esetar seetar seetar esetar eestar
eestar eteasr teeasr teeasr eteasr
eetasr eetasr teaesr etaesr eatesr

90

56. PERMUTATIONS OF THREE NUMBERS

This is a simplified permute subroutine for just three numbers which was
developed for the crystal program to permute the face indices h,k and 1

As the first index can be chosen in three ways, the second in only two (as we
have already chosen one) and the third is then fixed, the total number of
waysis 3*2*1=6. (n! for n values) -
In the A loop the choice begins with

h k 1

Two terms are interchanged depending on the value of T which is either 2 (A
even) or 1 (A odd) and so the sequence of changes becomes

A A[0] A1l A[2]

0 h k 1 interchange 0 and 2
1 1 k h interchange Oand 1
2 k 1 h interchange 0 and 2
3 h 1 k interchange Oand 1
4 1 h k interchange 0 and 2
5 k h 1 interchange Oand 1
6 h k 1

The subroutine produces the six permutations of any three numbers h, k and
1.

10 REM Permutations of three numbers

20 DIM AC2]1,PL6,21]

30 INPUT "h=";AL0]

40 INPUT "k=";AC11]

50 INPUT "1=";AC2]

60 GOSUB 1000: GOSUB 2000: END

1000 FOR A=0 TO 631 T=2-(A/2-INT(A/2))#*2
1010 FOR B=0 TO 2: PL[A,Bl=ALBl: NEXT
1020 SW=AL01: ALOI=ALTl: ALTI=SW: NEXT
1030 RETURN

2000 FOR A=0 TO 6: FOR B=0 TO 2

2010 PRINT PCLA,Bl3","3: NEXT: PRINT CHR$(8);CHR$(32);
2020 PRINT: NEXT

2030 RETURN

91

57. POSTWAR INFLATION

The data for this simple calculation are taken from the London and
Cambridge Economic Bulletin Index and, from 1974, from the Department
of Employment Gazette, Monthly, Table 6.1

The routine shows the value of money between 1945 and 1985 and its effect
on prices.

10 REM Postwar inflation

20 DATA 1.00,.945,.9125,.8458,.8209,.8,.7333,.6708,.65,.6375
y 6125, .8833,.5625,.5458,.5417,.5375, .5208, .4958,.4917,.4708
s 4417, .4333

30 DATA .425,.4083,.3875,.3583,.353,.31,.28,.2158,.1799,.1458
y» 1252,.1139,.1041,.088,.0778, .0695, . 0662, .0630, .0559

40 DEFREAL I: DEFINT F: DEFSTR A,V,Y

50 DIM IC411]

60 FOR P=1 TO 41: READ ICF1: NEXT

70 FRINT "Enter the value and the year of purchase(1945-1985
)": PRINT: PRINT “£"33: LINE INPUT V: LOCATE FOS (#0)+LEN(V)+
1,VPOS(#0)-1: FRINT " in 19";: LINE INFUT Y

80 FRINT: FRINT "In what year would you like to know its val
ue? 19"3: LINE INFPUT A

90 GOSUR 2000: END

2000 PRINT: FRINT "It cost #";V;" in 19";Y

2010 V!=VAL (V)

2020 PRINT: FRINT "Its value in 19";A;" was £"; USING "#####
HH" VI RILVAL(A)-441/1LVAL(Y)-44]

2020 PRINT: FRINT "It would cost £"; USING "#####. H#";V!I*I[V
AL (Y)—-44)/ILVAL(A)-441;: FRINT " to buy in 19";A

2040 PRINT: FRINT "The factor is "3 USING "##.###4#"; ILVAL(Y)
-441/1CVAL(A)-4413: FRINT " to one"

2050 RETURN

92

58. PRIME NUMBERS

Two routines are given, one is faster than the other but requires more
memory.

The first routine finds the primes by eliminating any number which has a
factor. Taking 1, 2 and 3 as primes without calculation the program adds 2 on
and tries to find'if 5 has any factors. As it fails to find a factor, S is a prime
number and it moves on to 7 and so on. Divisions for factors are taken up to
approximately the square root of the number (line 2060) as there cannot be a
larger factor without you having already found a factor less than the square
root.

A variant of this routine stores the primes but takes up less memorythan the
third subroutine which is faster and uses Eratosthenes* Sieve.

This technique establishes an array containing all the odd numbers from 3 up
to n. The smallest number only is allowed through the sieve and all multiples
of it are eliminated from the list. The smallest number left is then let through
and its multiples eliminated and so on.

The Table gives a comparison of the times and memory requirements of the
two routines.

This subroutine generates prime numbers up to N

10 REM Primes by division

20 INPUT "N="3;N: N=INT(ABS(N))
30 GOSUB 2000: END

2000 A=3

2010 IF N>=1 THEN PRINT 1

2020 IF N>=2 THEN FRINT 2

2030 IF N>=3 THEN PRINT A

2040 B=3: A=A+2

2050 IF A-B*INT (A/B)=0 THEN 2040
2060 IF B>=INT(A/B) THEN 2080
2070 B=B+2: GOTO 2050

2080 IF A<=N THEN FRINT A

2090 IF A>=N THEN RETURN ELSE 2040

This subroutine generates and stores prime numbers up to SQR(N) and
calculates the number of them as well.

93

10 REM Primes up to root N with storage

20 INPUT "N="3N

30 N=INT(ABS(N)): RT=SQR(N)

40 GOSUB 1000: GOSUB 2000: END

1000 A=3: Z=4: DIM NLRT/2+21]

1010 IF N>=1 THEN N[11]1=1

1020 IF N>=4 THEN NC[21=2

1030 IF N>=9 THEN N[31=3

1040 B=3: A=A+2

1050 IF A-B*INT(A/B)=0 THEN 1040

1060 IF B>=INT(A/B) THEN 1080

1070 B=B+2: GOTO 1050

1080 IF AK=RT THEN N[Z1l=A: ZI=Z+1

1090 IF A>=RT THEN RETURN ELSE 1040

2000 FOR P=1 TO RT/2+2: IF NCP1<>0 THEN PRINT NLCF1]
2010 NEXT

2020 PRINT "Number of prime numbers up to S@R";N;" (";RT;") i
s"3;Z-1

2030 ERASE N: RETURN

10 REM Eratosthenes’ Sieve

20 DEFINT N,P

30 FPRINT "Maximum number (>3) to be considered": INFUT N
40 IF N<=2 THEN 30

50 GOSUB 1000: GOSUB 2000: END

1000 N=INT((N+1)/2): DIM ACN1: AC11=3

1010 FOR FP=1 TO N-1: ACP+11=ACF1+2: NEXT

1020 FOR P=1 TO N: IF ALF1I<>0 THEN GOSUB 10350

1030 NEXT : CLS

1040 RETURN

1050 FOR B@=F TO N-ALF] STEP ALFl: IF Q@+ALFI<=N THEN ALQ+ALF]
1=0

1060 NEXT : RETURN

2000 PRINT 1: PRINT 2

2010 FOR P=1 TO N-1: IF ALFI<>0 THEN FRINT ALF]

2020 NEXT: RETURN

94

Comparison of Time and Memory Used.

Number Divison for Facfors Eratosthenes’ Sieve
Time (Secs) Memory Time (secs) Memory

10 27 720 .34 842
20 55 720 .55 867
50 .96 720 1.05 942
100 2.45 720 1.89 1067
200 5.91 720 3.99 1317
500 17.12 720 9.99 2067
1000 39.81 720 19.55 3317
2000 97.81 720 39.81 5817
5000 325.99 720 99.55 13317

59. PRINTOUT FOR A MATRIX OR A DETERMINANT

It may be necessary to round to four significant figures to prevent
overprinting in large matrices if the values are not integers.

The subroutine displays arrays up to nine rows and twelve columns with
matrix or determinant brackets.

10 REM Printout for matrix or determinant

15 CLS: INPUT "Mode";S

20 INPUT "M="3M: INPUT "“N=";N: IF M<1 OR M<1 THEN 20

30 DIM ACM,N]: FOR J=1 TO M: FOR K=1 TO N

40 INPUT ALJ,K]1: NEXT K,Jd

50 BOSUB 2000: END

2000 MODE S: TAG

2010 MOVE 120,390: PRINT "The matrix is";: REM Or "The deter

minant is"

2020 PLOT 120,374: DRAWR 208/S,0: REM Or PLOT 120,374: DRAWR
288/S,0

2030 FOR J=1 TO M: FOR K=1 TO N

2040 MOVE 96%K-40,350-32#J: PRINT A(J,K)j;: NEXT K,dJd

2050 PLOT 72,326: DRAWR -20,0: DRAWR 0,4-32%¥M: DRAWR 20,0
2060 PLOT 96%N+64/S,326: DRAWR 20,0: DRAWR 0,4-32#M: DRAWR -

20,0

2070 TAGOFF: RETURN

2080 REM For determinants use PLOT 52,326: DRAWR 0,4-32%M an
d PLOT 96#N+84/S,326: DRAWR 0,4-32%#M in lines 2050 and 2060
respectively

95

60. PROJECTION

The 3—D origin is assumed to be near the centre of the TV screen at
(320,196) and the projection relationship is

X —cosx cosf3 0 X 320
Y| =|-sin —sin@ 1| * y| + [196
Z 0 0 0 z L0

Taking the aspect ratio of the screen as 0.92*, the lengths of the axes are

0z=162 pixels
Oy=176.2 pixels
Ox=61.39 pixels

and the angles are given by

tano =1/3
tanB =127

The relationship is then

X=176.2yCOS(ARCTAN(1/27))—61.39xCOS(ARCTAN(1/3))+320

Y =162z—176.2ySIN(ARCTAN(1/27))—61.39xSIN(ARCTAN(1/3))+196
or

X=320—58.2x+176.1y

Y=196—19.4x—6.5y+162z

x, y and z are measured from O and X and Y from the bottom left of the
screen. Ox, Oy and Oz are taken as a length of unity.

* The exact value of the aspect ratio may differ from this value if the X and Y
magnifications in the TV screen monitor are set differently. It should be
determined experimentally by drawing a true square symmetrically on the
screen.

96

EXAMPLE

The following example program illustrates the use of these relationships but
other examples can be found in ‘CUBIC CRYSTALS’ and ‘UNIVERSAL
ROTATION'’. The program simply plots at the corners of a cube of side 2 as
projected.

10
20
30

REM Projection

INPUT "Magnification (K1)";M

DEF FN X(X,Y,M)=320-(58.24#X-176.08%#Y) *M

DEF FN Y(X,Y,Z,M)=196—-(19.41%X+5.52#Y-162%2Z) ¥M
DIM AL8,3]

AC1,11=1: AL1,2]1=1: Al1,31=1

Al2,1]1=1: AL2,2]1=1: A[2,3]1=-1

AC3,11=1: AL3,21=-1: AL3,31=1

AC4,11=1: AL4,21=-1:1 AL[4,3]1=-1

100 ALS,1)=-1: A[J,2]=-1: AL[S5,31=-1

110

Al6,1]1=-1: ALL,2])=-1: AL6,3]1=1

120 AL7,1)=-1: AL7,2]1=1: AL7,31=-1

130

ACB,11=-1: ALB,2)=1: ALB,3]=1

140 CLS

1350
160

FOR P=1 TO 8
PLOT FN X (ACP,131,ACP,23,M),FN Y(ALP,11,ACP,21,ALP,31,M)

170 NEXT

180

END

97

61. PUSH and POP

These related subroutines store values on a stack using the ‘last in, first out’
principal. The stack pointer SP is used to indicate which value is at the top of
the stack but the actual values themselves are not transferred. The
subroutine is used in the INORDER SEQUENCE’ program to store the
vertices which are occupied along the path to an empty vertex.

10 REM Push and Fop
20 INPUT K: DIM DCKJ: REM V refers to some element of array

30 DIM SCK1: SP=K

40 REM Push

S0 S[SP1=V: SP=SP-1: RETURN
60 REM Fop

70 V=S[SFP+1]: SP=SP+1: RETURN

62. PYTHAGORIAN WHOLE NUMBERS

This subroutine works out the pairs of numbers less than a given value whose
squares, when added together, give a perfect square e.g. 3 and 4.

To prevent covering the same numbers twice e.g. 3 and 4, and 4 and 3, the
loop in B begins at A. The other point to note is the need to add a very small
quantity to cover the inaccuracies in the calculations. Although a number
might be printed out as a whole number on the screen, when a comparison is
done the number may be one less plus .9999999999 etc. (in binary) and INT
rounds down thus failing to pick up the equality in ‘IF ABS(T—INT(T))=0’.

1Q REM Pythagorian whole numbers
20 INPUT “"Maximum value to be considered";N

30 FOR A=1 TO N: FOR B=A TO N

40 T=SGR (A*A+B*B)

50 IF ABS(T-INT (T+0.00C01))<0.00001 THEN PRINT TAB(2);A; TAB(
10) ;B; TAB (20) ; ROUND (T, 0)

60 NEXT B: NEXT A

98

63. QUADSOL

This is the straightforward solution of a quadratic equation but made idiot—
proof. It works out the solutlon(s) both real and imaginary, of a quadratic
equation of the form ax? +bx+c=0.

10 REM Quadsol

20 NL%$=CHR$ (10)+CHR$(13)

30 INPUT "a=";A

40 INPUT “"b=";B

50 INPUT "c=";C

60 IF A=0 AND B=0 THEN 30

70 GOSUB 1000: GOSUB 2000: END

1000 IF A=0 THEN B$="One and only": X=-C/B: RETURN

1010 P=-B/2/A: Q= (B*B-4%A%*C)/4/A/A

1020 IF @>=0 THEN B$="Real": X1=P+SQR(Q): X2=P-X1+P: RETURN
1030 B$="Imaginary": R$=STR$(F): I$=STR$(SOR(ARS(Q)))+"*i"
1040 RETURN

2000 CLS: Z$=LEFT$(B%$,1): PRINT B%$;" root";

2010 IF Z$="0" THEN PRINT " is “;X

2020 IF Z$="R" THEN PRINT "s are ";NL$;X1;NL$; "and";NL$; X2
2030 IF Z$="I" THEN PRINT "s are "“;NL$; Rs+"+“+I$ NL$; "and"; N
L$;R$+"-"+]I%

2040 RETURN

EXAMPLES

run
a=? @

b=? 5

c=? 2

One and only root is =-.4
Ready

run

a=? 1

b=? =5

c=? 6

Real roots are

3

2

Ready

run

a=? 1

b=? 8

c=? 20

Imaginary roots are
=4+ 2%

=4= 2%

Ready

9

64. REGRESSION

A group of simultaneous equations which are linearly independent can only
be solved exactly if the number of equations is the same as the number of
unknown variables. If there are less equations than variables then only
relationships between the ratios of the variables can be found but, if there
are more equations than variables then it is possible to find a unique solution
which minimises the errors in the equations in terms of a least squares
concept.

The subroutine given here is based on Bauers elimination method using
weighted row combinations. The A matrix is copied into the U matrix in
order to preserve it and the Q matrix, which is an upper right triangular
matrix, is derived by a decomposition of U using an orthogonalisation
process with weighted row combinations. The answer, which is derived by
back substitution, is stored in the X matrix.

Very complicated to explain in a few lines.

If M and N are equal, the routine solves the simultaneous equation in the
normal way giving an exact solution.

10 REM Solution of N equations with M unknowns (M<=N)

20 DEFINT H,I,J,L,M,N

30 DEF FN A$(A)=MID$ (STR$(A),2)

40 INPUT "Number of equations"j;N: IF N<=0 THEN 40

50 INPUT "Number of unknowns"3;M: IF M>N THEN 40

60 DIM ACN,M1,BLNJ, XLCM]

70 FOR I=1 TO N: FOR J=1 TO M

80 PRINT "A(";FN A$(I);","3FN AS(I);")="3: INPUT ACI,J]: NEX

?0 PRINT "B(";FN A$(I);")="33 INPUT BLIl: NEXT
100 GOSUB 1000: GOSUB 2000: END

1000 DIM QLM% (M+1)/21,ULN,M]

1010 FOR I=1 TO N: FOR J=1 TO M

1020 UCI,JdJ)=ACI,J]1: NEXT J,I

1030 L=0: FOR I=1 TO M

1040 S§=0: FOR J=1 TO N: S=5+ULJ, II*UCJ,I]s NEXT
1050 L=L+1: Q@CLI=S

1060 T=0: FOR J=1 TO N: T=T+ULJ,II#BLJ]: NEXT
1070 XCI)=T

1080 FOR H=I+1 TO M: GOSUB 1150: NEXT

1090 NEXT

1100 FOR I=M TO 1 STEP -1

1110 H=L-1: S=X[I1]

1120 FOR J=I+1 TO M: S=S-QLJ+HI*X[JJs NEXT
1130 X[I)=S/QCL]: L=L+I-M-2

1140 NEXT: RETURN

100

18.22
18.48
20.45
15.29
16.95

18.52 -

18.24
18.15

18.12

18.48
18.42
18.28
18.33

18.25
18.15
17.86
17.76
17.49

(b) As used for independent test.

%Cr

15.2

12.8

18.7

18.5

18.41
19.93
16.70
16.18
18.24
18.56
18.10
18.04
19.74
17.80
18.45
17.60

8.17
6.16
8.19
8.36
10.15

8.03
7.97
7.88
7.81

7.98
8.00
7.92
7.83

7.93
7.85
7.71
7.63
7.54

%Ni

6.26
12.45
9.49
9.33
8.97
7.46
10.15
9.24
8.00
10.18
7.86
8.28
9.16
9.52
9.47
9.48

cooCoC

0.54
1.06
1.64
2.11

Soocoo

%Nb

S
N

occocoCco

oo

0.43
0.95
1.39
1.97

0
0
0

0

%Ti

0

)
<

oo o coCoceoo

(el e en R

0.99
2.13
3.28
4.31
5.54

%Mo

NOOoCOoOOoOOooOoOooCcooooOoC

101

1.141
1.161
1.251
0.991
1.075

1.139
1.109
1.096
1.080

1.140
1.117
1.095
1.084

1.122
1.088
1.045
1.019
0.983

Intensity
Chromium,I
0.992
0.833
1.154
1.143
1.155
1.228
1.055
1.024
1.134
1.158
1.126
1.131
1.205
1.083
1.124
1.046

4.358
4.307
4.737
3.819
4.157

4.650
4.837
4.950
5.168

4.601
4.881
5.084
5.300

4.656
5.072
5.481
5.819
6.182

Calculated
Percent Cr
15.09
12.50
18.61
18.38
18.53
20.01
16.60
15.95
18.09
18.68
17.92
18.01
19.68
17.71
18.33
17.56

1150 T=03: FOR J=1 TO N3 T=T+ULJ,I1I*ULJ,HIs NEXT

1160 L=L+1: QLLI=T: T=T/S

1170 FOR J=1 TO Ns: UCLJ,HI=UCJ,HI-UCJ, I]I*T: NEXT

1180 RETURN

2000 FOR I=1 TO M: PRINT “X(";FN A$(I);")="3XCIls NEXT
2010 ERASE @,U: RETURN

EXAMPLE

The regression technique can be applied where a number of factors each
have a linear effect on the value of some measurement. For example, the
tensile strength of steel depends very strongly on the carbon content but not
entirely so and the other elements present have a lesser effect which can be
expressed by a formula of the type.

Tensile strength=a*Carbon% +b*Manganese % +c*Silicon% + etc.

To find the coefficients a, b, cetc. in this equation by a regression technique,
you require a large number of steels of known composition and tensile
strength and you solve the set of simultaneous equations to produce the best
fit between the calculated and measured strength, using the above routine.

Another example which is illustrated in detail is that of doing chemical
analysis using the characteristic X—rays produced when you irradiate a
surface with a beam of electrons or X—rays. To a first approximation the
measured signal is proportional to the concentration of the element but all
the other elements present interfere and it is possible to set up an equation to
give alinear relationship representing the effects.

The table shows the analysis of a group of stainless steels and the intensities
of the chromium X-rays which were measured These results are taken from

an Open Report published by the British Iron and Steel Research
Association (now part of British Steel Corporation).

Analysis of Stainless Steels

(a) As used for deriving the regression coefficients.

%Cr %Ni %Nb %Ti %Mo Intcnsity %Cr/1-11.61
Chromium,I
4.94 0 0 0 0 0.391 1.024
9.99 0 0 0 0 0.723 2.207
14.82 0 0 0 0 0.999 3.225
19.80 O 0 0 0 1.244 4.306
2491 0 0 0 0 1.470 5.336

102

The graphs 64.1 and 64.2 show the before and after relationships. Initially,
the points appear to be unrelated but after correction there is a good

correlation between chemical content and calculated content.

5
%CR/MEASURED
INTENSITY - 11.61

4

wd

10 15
CHROMIUM CONTENT, %
(by CHEMICAL ANALYSIS)

o

Fig. 64.1 Uncorrected Readings on Standards

204
CHROMIUM 194
CONTENT. %

(by CALCULATION)

17 18 19

20
CHROMIUM CONTENT, %
(by CHEMICAL ANALYSIS)

Fig. 64.2 Actual Percent Cr v.s. Calculated Percent Cr on Standards
(Data as per Fig. 64.1)

103

The linear relationship is of the form
A*%Cr+B*%Ni+C*%Nb+D*%Ti+E*%Mo=(%Cr/I-11.61)

This appears to be complicated but it arises this way because the simplest
alloys you can have namely Iron plus Chromium give a curved graph to begin
with. You can easily verify the correctness of the form of the equation by
plotting just the first five points.

The 23 equations represented by the data were solved with the regression
routine and gave the following coefficients

ELEMENT COEFFICIENT
Chromium 0.21578
Nickel 0.05112
Niobium 0.40917
Titanium 0.49890
Molybdenum 0.36674

Fig.64.3 Uncorrected Readings from Steel Samples

104

CHROMIUM CONTENT,

%
(byCALCULATION) | |

154

134

13 14 15 16 %) 18 19 2
CHROMIUM CONTENT. %
(by CHEMICAL ANALYSIS)

Fig. 64.4 Readings from Steel Samples After Correction

However, the true test is to take another unrelated set of steels and apply the
coefficients to the measurements taken on them. This is shown in graphs
64.3 and 64.4 and it can be seen that after correction the analyses are
accurate to £0.15% Cr. Bearing in mind that there are errors in the X—ray
measurements and in the chemical analyses, this result is satisfactory.

A word of warning however, to get sensible coefficients you must have a
good range of variation in the factors and you should never try to calculate
corrections outside the range from which the regression coefficients were
derived in the first place. Always try to check your equation with a separate
set of independent figures

105

65. ROTATION OF POINTS AROUND THE ORIGIN

This subroutine takes a group of x,y coordinates and calculates their new
positions as the group is rotated about the origin into a given number of
equally spaced positions. It was developed for CNC milling machines
producing shapes with an axis of symmetry such as sprockets or gear teeth.
.The x, y coordinates are the break points where the profile changes
curvature.

The angle of rotation is calculated (as theta) from the number of sectors.
S[2,B] stores the list of x, y coordinates. R is the rotation matrix and I 'is a
unit matrix used to build up the answer array T.

On the first cycle of the outer I loop, the original coordinates are storedin T.
The I matrix is then changed into a @ rotation matrix and multiplies the
original coordinates to produce the first shifted position. I is then
transformed into a 2@ rotation matrix and soon.

Note the use of ROUND to restrict the number of decimal places PRINTed
and of ERASE to enable DIM to be used in the program and hence avoid
having to zero all the values in the arrays each time.

To rotate about a point (A,B) instead of the origin, subtract A from x
coordinates and B from the y coordinates during the INPUT routine. After
carrying out the rotation add A and B to the transformed x and y coordinates
respectively. (Cf. ‘UNIVERSAL ROTATION’)

10 REM Rotation of points about the origin,

20 DEFINT B,J,K,L,N: DEF FN A$(A)=MID$(STR$(A),2)

30 INPUT "No. of sectors";N: IF N<=0 THEN 30

40 INPUT "No. of points ";B: IF B<=0 THEN 40

50 DIM S[2,B]

60 THETA=2#PI/N

70 CT=COS(THETA): ST=SIN(THETA)

80 CLS: PRINT "Input the x and y coordinates"

90 FOR P=1 TO B

100 LOCATE 1,P+3: PRINT "x";FN A$(P);"="3: INPUT S(1,P]l: LOC
ATE 20,P+3: PRINT "y";FN As$(P);"=";: INPUT SC2,P]

110 NEXT

120 PRINT: PRINT * 0K? (y/n)"3: INPUT K$: K$=UPPERS(

130 IF K$<>"Y" THEN ERASE S: CLS: GOTO 30

140 GOSUB 1000: GOSUB 2000: END

1000 DIM RC[2,21,1(2,21,TC2,B,N]

1010 RC1,11=CT: RC[2,21=CT: R[1,21=-ST: R[2,11=ST: I[1,11=1:
1r2,21=1

1020 FOR I=1 TO N: FOR J=1 TO B: FOR K=1 TO 2: FOR L=1 TO 2

106

1030 TCK,J,I131=TCK,J,I3+ICK,L1*SCL,J]
1040 NEXT L,K,J

1050 FOR J=1 TO 2: DIM Y[2]

1060 FOR K=1 TO 2: FOR L=1 TO 2

1070 YCKI=Y[KI+RLK,LI*ICL,J]

1080 NEXT L,K

1090 FOR K=1 TO 2: ICK,J1=YCK]

1100 NEXT K: ERASE Y: NEXT J,I

1110 RETURN

2000 CLS

2010 FOR I=1 TO N: FOR J=1 TO B

2020 PRINT "(X"3;FN A$(J);"),";FN A$(I);"="3ROUND(TC1,J,11,6)
2030 PRINT "(Y";FN A$(J);"),";FN A$(I);"=";ROUND(TC2,J,11,6)
2040 NEXT J,1

2050 ERASE T,I,R

2060 RETURN

EXAMPLE
No of sectors? &

Number of points? 1
Input the X and Y coordinates

X17210 Y1220
0K? Y/N

x1),1 =10

Yt),1 = 20

(x1),2 = -20

Yn,2 =18

x1),3 = -18

1,3 = -20

(X1),4 = 20

(Yt),4 = -19

107

66—69. ROUNDING NUMBERS

The INT(X) operation always rounds down and the FIX(X) function gives
the integer part of a number.A function of the type INT(X+000+.5)/1000
will round off excess decimal places (to three in this case) but there are
occasions when other rounding operations are required. ROUND(X,N) is
available for rounding to N places.

66. ROUNDING UP TO AN INTEGER

10 REM Rounding up to an integer
20 INPUT X

30 GOSUB 1000: GOSUB 2000: END
1000 IF X=INT(X) THEN RETURN
1010 X=1+INT(X): RETURN

2000 PRINT X: RETURN

67. ROUNDING TO THE NEAREST INTEGER

This program is equivalent to ROUND(X,0).

10 REM Rounding to the nearest integer
20 INPUT X

30 GOSUB 1000: GOSUB 2000: END

1000 X=INT(X+0.5): RETURN

2000 FRINT X: RETURN

68. ROUNDING TO N DECIMAL PLACES

For printing purposes it is usually possible to invoke the PRINT USING
statement to specify the number of decimal places. However there may be
occasions when the following subroutine is better, particularly when you
don‘t know the size of the integer part. ROUND(X,N) is almost identical
butit does not supply any extra zeros.

108

10 REM Rounding to n decimal places

20 INPUT "Number";A%$: INFUT "Number of decimal places";N
30 GOSUB 2000: END

2000 IF N=0 THEN PRINT INT(VAL (A%$)+0.5): RETURN

2010 L=LEN(AS%)

2020 FOR P=1 TO L: IF MID$(A%,P,1)="." THEN 2040

2030 NEXT: PRINT A$+"."+STRING$(N,48): RETURN

2040 IF N+F>=L THEN FRINT A$+STRING$ (N+P-L,48): RETURN
2050 PRINT LEFT$(A$,P+N-1)+MID$(STR$ (INT (VAL (MID$ (A%, P+N)) /1
O~ (L-N-P)+0.5)),2)

2060 RETURN

69. ROUNDING TO N SIGNIFICANT FIGURES

Quoting numbers to a significant number of figures is a good way of
indicating the accuracy as it can be assumed that the number is accurate to
one digit in the last decimal place or non—zero digit for an integer.

The subroutine first deals with the trivial case of N=0. It then separates
numbers containing a decimal point from integers. The latter either need
truncating or extra zeros after a decimal point adding on. At 2050, decimal
numbers greater than one which need augmenting are dealt with and then
for numbers less than one the position of the decimal point is found in SUB
2080. Numbers are then truncated or augmented as necessary.
STRINGS$(N,48) supplies the zeros.

10 REM Rounding to n significant figures

20 INPUT “Number";As$: INPUT "“Number of significant figures"j
N

30 GOSUB 2000: END

2000 IF N=0 THEN PRINT "O": RETURN

2010 L=LEN(AS%)

2020 FOR P=1 TO L: IF MID$(A$,P,1)="." THEN 20350

2030 NEXT: IF N>=L THEN PRINT As$+"."+STRING$ (N-L,48): RETURN
2040 FRINT LEFT$ (STR$ (INT (VAL (LEFT$ (A$,N+1))/10+0.5)),N+1)+§
TRINGS (L-N,48): RETURN

2050 IF N>=L AND VAL (A$)>1 THEN PRINT A$+STRING3 (N-L+1,48):
RETURN

2060 IF VAL (A$)<1 THEN GOSUB 2080: IF N>L-Q+1 THEN PRINT A$+
STRINGS (N+@-L—-1,48): RETURN ELSE PRINT INT ((VAL (A%$))*10"(Q+N
-P-1)+0.5) /10" (@+N-P-1): RETURN

2070 PRINT INT((VAL (A%$)) %10~ (N-P+1)+0.5)/10"~(N-P+1): RETURN
2080 FOR Q=P+1 TO L: IF MID$(A$,Q,1)<>"0" THEN RETURN

2090 NEXT: RETURN

109

70. RUBOUT (OR FILL IN)

This subroutine rubs out everything inside a triangle or paints over the paper
with INK 1 colour. The heart of the program is very simple and uses the
PLOT command to over print pixels with the background colour. The
complications arise from covering all orientations of the triangle including
those with horizontal and vertical sides.

At 1000, the corners are relabelled so that 1 is the highest and 3 the lowest
point on the screen. A loop is set up to travel from Y1 to Y3 and a horizontal
box one pixel deep is plotted across the triangle in background colour.
Before the loop begins it is necessary to work out the slopes of the sides
without generating ‘Division by zero’ and then to define P12, P23, and P31 —
the reciprocals of the slopes.

T determines which way the PLOT goes R to L or L to R and INT(1+
ABS(P31)) etc. is to stop the lines of the triangle itself being erased.
Reversing the sign of these terms or omitting them will remove the triangle if
required.

Any polygon shape is made up of triangles and the subroutine can be
extended to other shapes.

10 REM Rubout or Fill in

20 BORDER 15: INK 0,5: INK 1,203 INK 2,24

30 A$="This is an eradicator program which rubs out the pixe
ls inside the triange by using the PLOT function to paint ov
er the paper with INK 1 colour"

40 CLS: PEN 23 PAPER O: PRINT " Type in the coordinates of t
he corners of the triangle"

50 LOCATE 1,4: PRINT "X1="3: INPUT X1: LOCATE 20,4: PRINT "Y
1="3: INPUT Y1

60 LOCATE 1,8: PRINT "X2="33: INPUT X2: LOCATE 20,8: PRINT "Y
2="3: INPUT Y2

70 LOCATE 1,123 PRINT "X3="3: INPUT X3: LOCATE 20,12: PRINT
"Y3="33: INPUT Y3

80 CLS: GOSUB 10003 END

1000 IF Y2>Y3 THEN SW=X2: X2=X3: X3=SW: SWuY2: Y2=Y3: Y3I=SW
1010 IF Y1>Y2 THEN SW=X1: X1=X2: X2=SW: SW=Y1: Yi=Y2; Y2=8W:
GOTO 1000

1020 FOR P=1 TO 7: PRINT As$: NEXT

1030 PLOT X1,Y1: DRAW X2,Y2: DRAW X3,Y3: DRAW X1,Y1

1040 IF X1<>X2 THEN M12=(Y1-Y2)/(X1-X2): GOTO 1060

1050 P12=0: GOTO 1070

1060 IF Y1<>Y2 THEN P12=1/M12

1070 IF X2<>X3 THEN M23=(Y2-Y3)/(X2-X3): GOTO 1090

1080 P23=0: GOTO 1100

110

1090 IF Y2<>Y3 THEN P23=1/M23

1100 IF X3<>X1 THEN M31=(Y3-Y1)/(X3-X1): GOTO 1120

1110 P31=0; GOTO 1130

1120 IF Y3<>Y1 THEN P31=1/M31

1130 IF Yi=Y2 THEN 1190 ELSE T=SGN(P12-P31)

1140 FOR Y=Y1+1 TO Y2+(Y2=Y3)#2

1150 X=X1-Y1#P31+Y#P31+T#INT (1+ABS (P31))

1160 Z=T#(ABS((Y1-Y)# (P31-P12))-T#INT (1+ABS(P12)) +T#INT (1+AB
S(P31)))

1170 PLOT X,Y: DRAWR Z,0

1180 NEXT VY

1190 IF Y2=Y3 THEN RETURN ELSE T=SGN(P31-P23)

1200 FOR Y=Y2+1-(Y1=Y3)#2 TO Y3-1

1210 X=X1-Y1#P31+Y*¥P31+T*INT (1+ABS(P31))

1220 Z=T#(ABS (X2-X1+Y# (P23-P31)+Y1%P31-Y2#P23) +T#INT (1+ABS (P
31))-T#INT (1+ABS (P23)))

1230 PLOT X,Y: DRAWR Z,0

1240 NEXT: RETURN

w h INK 1 colour

is an eradicator program which rub

the pixels inside the triangle by

the PLOT functi to paint over th

with I NK 1 co’

is an eradicat ~ram which rub

the pixels in +*riangle by

the PLOT func nt over t h

with INK 1

is an eradi- c h rub

the pixels 2 b)t/h

the PLOT f .ver

the

1:1:: er a m which rub

the pixe triangle by

the PLOT . 0 paint over th

o r

i:i:: . ur program which rub

the p i nside the triangle by

the P unction to paint over t h
4 o K 1 colour

i:i: eradicator program which rub

the pixels inside the triangle byh

the PLOT function to pa nt over t

with INK 1 colour

.

Fig. 70.1 Illustration of ‘Rubout’

71. SAVING MEMORY

The Amstrad 464 has 43903 bytes available for programming and this should
be enough for most purposes. However, as your skills develop in BASIC and
machine code, you may be writing programs where memory is at a premium.
But, by taking relatively simple steps, you can save significant amounts of
memory easily. '

It is sensible to record the size of major programs and, if they are getting too
big, aim to reduce them. PRINT HIMEM —FRE(0) is useful for this and can
be added at the end of the program.

Apart from readability, there is no point in having long names as each letter
has to be interpreted. One letter with or without a digit gives 286 variables
and two letters 667 (avoiding IF, FN, ON, PI etc.) which should be enough!
The judicious use of X, X% and X$ as three separate variables may combine
the two symbol name with the correct type.

In general however, it is better to use the DEFINT, DEFREAL and
DEFSTR at the beginning of the program and choose say A—H as strings,
I-T as integers and U—Z as reals. In specific cases the definition can be
overridden by a statement. For example, DEFINT A: DIM A![N,M]
ensures that A1, A2 etc. are integers but array A![N,M] can still hold reals.

The use of DEF FN pays off if the same expression has to be used more than
once in a program though the amount of space saved depends on the
complexity of the expression. A word of warning, however, in Amstrad
BASICi it is not possible to use a defined function as the argument for a DIM
statement or as an array variable. For example

DEF FN A(A)=Ax*A
DIM XCFN A(4)]

does not work and the use of a FN in an array variable upsets the FOR———
—NEXT loops, the GOSUB——-——RETURN s and the WHILE————
WEND:s by altering the stack pointer. This results in UNEXPECTED
NEXT, RETURN or WEND messages.

So, do not use statements such as
I=XLFN A(2)1]

but introduce another variable
A=FN A(2): 2=X[A]

instead.

112

The use of GOSUB saves space if the routine is used more than once but the
use of ELSE with IF————THEN often avoids having to use a GOSUB at
all say just to get the logic right.

Arrays use a lot of memory. For example, in ‘CUBIC CRYSTAL’ I(3,8,6)
uses 590 in integer mode and 1250 in reals but fortunately the space can be
re—used later in the program with the aid of ERASE after the data is no
longer required.

You cannot store variables in DATA statements in Amstrad so the correct
type must be specified in the READ instruction. See ‘STRING STORE’ for
the most efficient methods of storing data.

Always re—use variable names if possible e.g. for non—nested loops. For
example,

FOR A=1 TO 1@: PRINT A: NEXT
FOR B=1 TO 20: PRINT B: NEXT

uses 9 more bytes than

FOR A=1 TO 1@: PRINT A: NEXT
FOR A=1 TO 2@: PRINT A: NEXT

because the last value of B is stored as well as that of A.

Multi—statement lines save memory and if not too long, do not detract from
readability.

REM statements are very valuable to make a program understandable but
are best placed in the printed version of the program rather than the one
residing in memory. In the programs in the book REM statements are often
put on lines ending in a 9 so that they can be ignored with the AUTO input
facility. GOTO’s and GOSUB?’s are to the line after the REM line and this
will be a multiple of 10.

113

72. SCROLL

This routine should be included in any program which generates a lot of data
which are PRINTed on the screen so that the rather haphazard process of
stopping and starting with <ESC> can be avoided.

The routine uses VPOS(#0)to detect the current printing position and stops
when it reaches 20. After clearing the screen, the printing can be restarted at
will.

10 REM Scroll

20 INPUT "Number of values"3;N: REM N>25 to be relevant
30 DIM ALCN]

40 FOR P=1 TO N: ALPI=P: NEXT: REM For example

50 GOSUB 2000: END

2000 CLS: FOR P=1 TO N: PRINT "P=";P,"P"2=";ALPI*ALPl: REM F
or example

2010 IF VPOS(#0)>20 THEN GOSUB 2030: CLS

2020 NEXT: RETURN

2030 LOCATE 1,22: PRINT "Press any key to continue"
2040 IF INKEY$="" THEN 2040 :

2050 RETURN

114

73—76. SERIES

Series can usually be written as a looping operation which is quicker to
calculate than a set of individual terms. Thus the exponential series can be
written as

S =1+x{1+x(1+x(1+x(1+ etc
2 3 4

the geometric series as
S=a(1+r(1+r(1+r(1+ etc
the arithmetic series as

S = n*a+d(1+2+3+4+ etc and

the binomial series as

S = 14nx(1+(n=1)x(1+(n=2)x(1+ etc
1 2 3

The form of the loop used becomes obvious by inspection of the above
equations.

This group of subroutines calculates the sum to N terms of several different
series. (Used to study convergence and calculation of errors caused by
ignoring higher order terms).

73. EXPONENTIAL SERIES

S=1+x/11+x221+ X331+ X4/4!+

10 REM Exponential series

20 INPUT "X="3X: INPUT "N=";N
30 GOSUB 1000: GOSUB 2000: END
1000 S=0: E=1

1010 FOR P=1 TO N

1020 S=S+E: E=E#X/P: NEXT

1030 RETURN

115

2000 PRINT TAB(8);"8=";8S
2010 RETURN

74. GEOMETRIC SERIES

S=a+ar+ar’+ar’+ar*+ (=a(r"=1)/(r—1))

10 REM Geometric series
20 INPUT "A="3;A

30 INPUT "R=";R

40 INPUT "N=";N

S50 GOSUB 1000: GOSUB 2000: END
1000 S=0: G=A

1010 FOR P=1 TO N

1020 S=S+G: G=6G#R: NEXT
1030 RETURN

2000 PRINT TAB(8);"S=";8S
2010 RETURN

75. ARITHMETIC SERIES

S=a+(a+d)+(a+2d)+(a+3d)+

10 REM Arithmetic series
20 INPUT "A="3;A

30 INPUT "D=";d

40 INPUT "“N="3N

50 GOSUB 1000: GOSUB 2000: END
1000 S=0

1010 FOR P=1 TO N

1020 S=S+A+(P-1)#D: NEXT
1030 RETURN

2000 PRINT TAB(8);"S=";S
2010 RETURN

116

76. BINOMIAL SERIES
S=1+nx+n(n—1)x*2!+n(n—1)(n—2)x*3!+

=(1+4x)" (if |x| <1 when n<>positive integer)

10 REM Binomial series

20 INPUT "X="3X

30 INPUT “N=“3N

40 INPUT "Number of terms";R
50 GOSUB 1000: GOSUB 2000: END
1000 S=0: Z=1: M=N

1010 FOR P=1 TO R

1020 S=5+Z: Z=Z*#M#*X/P: M=M-13 NEXT
1030 RETURN

2000 PRINT TAB(8)"S=";S

2010 RETURN

77. SIDEPRINT

This subroutine enables numbers to be printed so that the righthand
overflow is printed below the number and not on the opposite side of the
screen.

Two incrementing operations are employed viz FOR P=1TO LEN(N$) and
C=C+1. At the edge of the screen C reverts to C=W+P—LEN(NS$) to print
the remainder of the number on the line below.

10 REM SidePrint

20 INPUT "MODE"3;M: IF M<O OR M>2 THEN 20
30 MODE Mz W=21-20#% (M=1 OR M=2)-40#% (M=2)
40 INPUT "“Number "N

50 INPUT "Row"jR3 REM 1<=R<=23

60 INPUT "Column"j;C: REM 1<{=C<=W-1

70 GOSUB 2000: END

2000 N$=STR$(N): L=LEN(NS$)

2010 CLS: FOR P=1 TO L

2020 LOCATE C,R: PRINT MID$(N$,P,1)

2030 C=C+1

2040 IF C=W THEN R=R+1: C=W+P-L

2030 NEXT

2060 LOCATE 1,1

2070 RETURN

117

78. SIMULTANEOUS EQUATIONS

This solution uses the inverse matrix method whereby if equations, say

al*x+b1*Y+c1*Z=Kl
32*X+b2*Y+C2*Z=K2
a3*X+b3*Y+c3*Z=K3

are written in matrix notation as

The inverse is derived by the Gauss—Jordan method and multiplied by the
constants’ matrix.

SUB 1060 checks for zeros along the diagonal and adds two lines together in
SUB 1080 to avoid a crash in line 1110. The next line looks for a zero in the
top left hand 2x2 determinant and adds the last equation to the first if it finds
this. SUB 1110 is the matrix inversion routine which also checks, in line
1190, that the determinant is not zero (a precondition of being able to find
the inverse). On return from SUB 1110, the inverse is multiplied by the
constants’ matrix E[K,N+1] and S[J] is PRINTed using CHR$(90—N+1J) to
print the appropriate variable names x,y,z etc..

The method is not limited to 8 x 8 equations, this limitation arises only from
the Data Input routine and can easily be circumvented.

This subroutine tests whether there is a solution and if so, solves the
equations.

118

10 REM Simultaneous equations

20 DEFINT I,J,K,N: DEF FN A$(A)=MID$(STR%$(A),2)

30 INPUT "Number of variables";N: IF N<=1 THEN 20

40 CLS: PRINT "Insert the coefficients"

50 FOR J=1 TO N: FOR K=1 TO N+1

60 PRINT "E("+FN A$(J)+",";FN A$(K)+")="3: INPUT E(J,K)

70 NEXT K,Jd

80 REM Alternatively, use DATA INFUT (Linear Equations)

90 GOSUB 1000: GOSUB 2000: END

1000 DIM SICNl: GOSUB 1060: IF D=0 THEN RETURN

1010 IF N>»1 THEN IF EC1,11%E[2,2]1=E[1,21%E(2,1] THEN GOSUB 1
100

1020 GOSUB 1110: IF D=0 THEN RETURN

1030 FOR J=1 TO N: FOR K=1 TO N

1040 S[JI=SC[JII+E[I,KI*ELK,N+11]

1050 NEXT K,J: RETURN

1060 D=1: FOR I=1 TO N: IF ELI,I]=0 THEN GOSUB 1080

1070 NEXT: RETURN

1080 FOR J=1 TO N: IF ELJ,I1<>0 THEN FOR K=1 TO N+1i: E[I,K]=
ECI,KI+ELJ,K]: NEXT: RETURN

1090 NEXT: D=0: RETURN

1100 FOR I=1 TO N+1: E[1,I]=EC1,IJ+ELN,IJ: NEXT: RETURN

1110 FOR I=1 TO N: ECI,IJ=1/ECI,I]

1120 FOR J=1 TO N: IF J=I THEN 1190

1130 ECJ,I])=E[J,I1*ELI,I]

1140 FOR K=1 TO N: IF K=I THEN 1180

1150 ECJ,KI=ELJ,KI-ELJI, II*ELI,K]

1160 IF J< >N+ (I=N) THEN 1180

1170 ECLI,K1=-E[LI,I1*ECI,K]

1180 NEXT

1190 NEXT: IF I<>N THEN IF ABS(ELI+1,I+11)<0.0000001 THEN D=
0: RETURN

1200 NEXT: RETURN

2000 CLS: IF D=0 THEN FRINT "There is no solution": ERASE S:
RETURN

2010 LOCATE 7,1: FRINT "The solution is": FRINT

2020 FOR J=1 TO N: FRINT TAB(3) ;CHR$(90-N+J);"="3SL0J1: FRINT

2030 NEXT

2040 ERASE S: RETURN

119

EXAMPLE

N=6

Your Eq
u/y v/t
al*xu + bl*v +
elxy + f1x2
a2xu + b2*v +
e2xy + f2xz
a3*xu + b3xv +
e3xy + 3%z
ab*xu + béxv +
ebxy + fbxz
aS*u + bS*v +
eS*xy 4+ fS5%z
ab*u + bé*v +
ebxy + fé*z
Now insert the
u/y v/l
7 + 5 +
13 + 6
4.5 + 2+
-7 + 9.6
5.5 + 13, +
5 + 32
-7.9+ 6.1 +
5 + 8
6.9 + 5.3 +
g + 5.7
-5.4+ 1 +
3.88+ &

uations are
W X
clxw + d1*x +
c2%w + d2*x +
c3%xw + d3*x +
ch*w + db*x +
c5*%w + d5*x +
cb*w + dé*x +
values a1=?
(] X

-4 + 2+

19 + 24 +
9.43+ -5.46+
3.2 + 2.7 +
6.7 + 2 +

6.8 + 4 +

The solution is

u=-1.43955734
=-7.19042574
10.7642367
-3.94752449
9.53563634
-1.99784118

£ <
[

N <
wouw onon

bl

(Calculation time 5 seconds)

Const.

n
—_
wvi

5.44

23

4.8

87

120

79-84. SORTING

Sorting words or numbers is a common operation in computing and many
algorithms are available to do it. However, choosing the best one requires
some thought and examples of four different algorithms are given to
illustrate different choices. The main consideration is the speed of the
algorithm and hence how the time increases with the number of items to be
sorted.

Bubblesort is commonly used in programs but in fact is very poor for large
numbers of items as the time increases as the square of the number.
Heapsort is much more efficient for large numbers as the time only increases
as nlog n. The reasons for this can be seen by comparing the operation of the
sorting algorithms. If we have a list of items which is in order except for the
largest item which is at the wrong end, then with Bubblesort it moves to the
correct position one move at a time, whereas with Heapsort and Mergesort it
moves one place first time, then two places, four places, eight places, sixteen
places etc. and gets to the correct position much faster.

1334

SORTING
TIME

SECONDS

674 N3

5D\C
MERGESORT _ _ (RT

BUCKE
oIGITINTESEE witd
3 WEAPSORT

t +
350 100 150 200

NUMBER OF ITEMS (OR N*K FOR TUPLES)

121

Mergesort is almost as fast as Heapsort but as it requires 2" values in the
algorithm, extra values have to be added and it takes as long to sort 65 values
asit does 128. The first sorting can be done during the INPUT however.

Bucketsort has long been used in punched card sorting machines and is
useful for sorting integers or strings. A list of n strings or integers containing
k characters can be sorted in a time proportional to k times n.

The graph shows how the four routines perform. Clearly, Bubblesort
although by far the simplest routine is unsuitable for sorting large numbers
ofitems.

Two other sorting routines are included one for words and one for angles
which involve other considerations than just sorting i.e. organising the data
so that they are suitable for a standard sorting algorithm.

In both cases Bubblesort has been used in the program but if larger numbers
of items were involved then a more efficient algorithm should be considered.

122

79. ANGLESORT

This subroutine puts a list of coordinates into angular order relative to their
centre.

The first eight lines find the highest and lowest values of x and y and the point
(XM,YM) is chosen to be halfway in between. The angles between the
horizontal and the lines joining cach point to this mid point are calculated
and inspected to see which quadrant they are in. This is because a tangent is
positive in the first and third quadrants and negative in the other two. The
angle is adjusted if necessary by adding PI or 2*PI and then stored in B[N]. A
bubblesort routine, 1140, is used to put the angles in order and the
coordinates follow in sympathy. In the display, the 0.92 is to correct the
aspect ratio of the screen.

EXAMPLE

150.10

200,20

50,50

25,75

175,100

150,10
50,50
200,20
175,100
25,75
140,150

140,150

Fig.79.1 Anglesort

123

10 REM Anglesort

20 DEF FN A%$(A)=MID$(STR$(A),2)

30 INFUT "Number of pairs of readings"j;N: IF N<=0 THEN 30
40 DIM AC1,N]: CLS

S0 FOR P=1 TO N: LOCATE S,P+2: PRINT "x";FN A$(P);"=";: INPU
T ALO,P]

60 LOCATE 21,2+P: PRINT "y";FN A$(P);"=";: INPUT AL1,Pl: NEX
T

70 GOSUB 1000: GOSUB 2000: END

1000 XX=0: YX=0: XN=A[O,11: YN=A[1,1]

1010 FOR P=1 TO N

1020 IF ACLO,P1>=XX THEN XX=A[O,P1]

1030 IF AL1,Pl1>=YX THEN YX=A[1,P]

1040 IF ALO,PI<XN THEN XN=A[O,P1]

1050 IF AC1,PI<KYN THEN YN=A[1,P]

1060 NEXT

1070 XM= (XX+XY)/2: YM=(YX+YN)/2

1080 DIM BICNl: FOR P=1 TO N

1090 Z=ATN(AL1,PI-YM)/ (ALO,PI1-XM)

1100 IF ALO,P1>=XM AND AC1,P1>=YM THEN BL(Pl1=Z

1110 IF ALO,FPI<XM AND AL1,P1>=YM OR ALO,P1I<XM AND A[1,PI<YM
THEN BLP1=Z+PI

1120 IF ALO,PJI>=XM AND AL1,P1<YM THEN BIPJ1=Z+2#%PI

1130 NEXT

1140 @=0: FOR P=1 TO N-1

1150 IF BLP+11<BLCP] THEN SW=B[F1l: BI[PJI=BCP+1]: BI[P+1]=SW: SW
=AL0,P1: ALO,P1=AL0O,P+1]: ALO,P+11=SW: SW=A[1,P1: A[1,P1I=Al1
sP+11: AC1,P+1]1=SW: @=Q0+1

1160 NEXT: IF Q<>0 THEN 1140

1170 RETURN

2000 CLS: TAG

2010 FOR P=0 TO N-1

2020 Z1=1+4P: Z2=1+(P+1)MOD N

2030 PLOT AL0,Z11,0.92%A01,Z1]

2040 DRAW AL0,Z21,0.92%#A01,Z21: MOVER 5,-5: PRINT FN AS(ALO,
Z21);",";FN A$(AL1,22]);

2050 NEXT

2060 ERASE B: TAGOFF:

2070 RETURN

124

80. BUBBLESORT

This well known sorting routine is called bubblesort because high numbers
work their way up the list like bubbles in a liquid. Q counts the number of
exchanges made. Line 1010 decides whether an interchange between
adjacent numbers is required and if so does it. The routine keeps on
recycling until no further interchanges are needed i.e. when Q=0.

This subroutine puts numbers into descending order. To change to an
ascending order replace > by <inline 1010.

10 REM Bubblesort

20 N=0

30 WHILE N<=0: INFUT "Number of items"j;N: WEND
40 DIM ACN1]

S0 FOR P=1 TO N: INFUT ACPJ: NEXT

60 GOSUB 1000: GOSUB 2000: END

1000 @=0: FOR P=1 TO N-1

1010 IF ACP+11>ACLP] THEN SW=ALFl: ALPI=ALP+1]: A[P+11=SW: @=
Q+1

1020 NEXT: IF @<>0 THEN 1000

1030 RETURN

2000 FOR P=1 TO N: PRINT ALCFJ: NEXT

2010 RETURN

125

81. BUCKETSORT

In Bucketsort, the tuples are sorted first in terms of the last character. Then,
after reconstituting the string, in terms of the next—to—last character and so
on. For example, the following six tuples BACD, BBCD, ABCD, BBAC,
BAAB, AABC whensorted give

A

B BAAB

C BBAC,AABC

D BACD,BBCD,ABCD

which gives a new order of BAAB, BBAC, AABC, BACD, BBCD,
ABCD. When sorted in order of the next—to—last letter this gives

A BAAB,BBAC

B AABC

C BACD,BBCD,ABCD
D

This becomes BAAB, BBAC, AABC, BACD, BBCD, ABCD.

The next two sorts give

A BAAB,AABC,BACD
B BBAC,BBCD,ABCD
C
D

and

A AABC,ABCD

B BAAB,BACD,BBAC,BBCD
C

D

Thus the final orderis AABC, ABCD, BAAB, BACD,BBAC, BBCD
The P loop works backwards through the characters. A$="" etc. empties
the buckets. The Q loop finds the comma separating the tuples (See

‘STRING STORAGE') and the IF statements place pointers to the
appropriate tuple and these are joined together in Z$ ready for the next

126

cycle of the P loop.

The alternative routine uses the same input and output but is geared to
sorting integers.

To Bucketsort with the whole of the alphabet it would be sensible to use a2—
3 Tree for rapid sorting. A tree of height 3 has 27 leaves which will
accommodate the 26 letters of the alphabet and a space.

These can be identified with an average of five questions.

10 REM Bucketsort (Equal length tuples made up from A, B, C
and D)

20 DEFINT A,B,K,N,F,Q

30 INPUT "Number of tuples";N: IF N<=0 THEN 30

40 INFUT "Number of characters in each tuple";K: IF K<=0 THE
N 40

S50 DIM D$IN,Kl: Z¢$=""

60 FOR P=1 TO N: Z$=Z$+STR$(F)+","

70 PRINT "Tuple No.";P;"is";: INPUT T$

80 FOR @=1 TO K: D$[F,Q1I=MID$(T$,0,1): NEXT @,P

Q0 GOSUB 1000: GOSUB 2000: END

1000 FOR P=K TO 1 STEP -1t A=1: B=1: As$="": B$="": C$="": D%
1010 FOR Q=1 TO LEN(Z$)

1020 IF MID$(Z%,Q@,1)="," THEN A=Q: Z=VAL (MID$(Z%,B+(B=2),A-B
-(B=2))) ELSE 1070

1030 IF D%(Z,F)="A" THEN A$=A$+STR$(Z)+",": GOTO 1070

1040 IF D$(Z,P)="B" THEN B%=B$+STR$(Z)+",": GOTO 1070

1050 IF D$(Z,P)="C" THEN C$=C$+STR$(Z)+",": GOTO 1070

1060 IF D#$(Z,FP)="D" THEN D$=D$+STR$(Z)+","

1070 B=A+1: NEXT

1080 Z$=A$+B$+CH$+D%

1090 NEXT

1100 RETURN

2000 A=1: B=1: FOR P=1 TO LEN(Z$%)

2010 IF MID$(Z%,P,1)="," THEN A=F: Z=VAL(MID$(Z%,B+(B=2),A-B
-(B=2))) ELSE 2030

2020 FOR Q=1 TO K: FRINT D$(Z,@);: NEXT: PRINT

2030 B=A+1: NEXT

2040 RETURN

?99 REM For numbers use the following subroutine

1000 FOR F=K TO 1 STEP -1: A=1: B=1: A%="": B$="": C$="": D$
="": E$="": Fe="": GE="": H$=""g Jd="": Jg=""

1010 FOR @=1 TO LEN(Z$)

1020 IF MID$(Z%,Q@,1)="," THEN A=Q: Z=VAL (MID%(Z%,E+(B=2),A-B
=(B=2))): T$=D$(Z,F) ELSE 1130

127

10Z0
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

IF T$="0" THEN A$=A%+STR$(Z)+",": GOTO 1130
IF T$="1" THEN B#$=B$+STR$(Z)+",": GOTO 1130
IF Te="2" THEN C#$=C#%+STR%(Z)+",": GOTO 1130
IF T$="3" THEN D#$=D$+STR$(Z)+",": GOTO 1130
IF T$="4" THEN E$=E$+STR$(Z)+",": GOTO 1130
IF T$="5" THEN F$=F$+STR$(Z)+",": GOTO 1130
IF T$="6" THEN G%$=G$+STR$(Z)+",": GOTO 113
IF T$="7" THEN H$=H$+STR&(Z)+",": GOTO 1130
IF T4="8" THEN I$=I$+STR%(Z)+",": GOTO 1130
IF T$="9" THEN J$=J%+STR&(Z)+","

B=A+1: NEXT

I$=A%+BE+CH+DE+ES+F $+6S+HE+IS+TI%: NEXT

RETURN

10 REM Bucketisort for the alphabet using a 2-3 tree
20 DEFINT A,B,H, I,K,L,N,P,Q,V,Z
30 DIM L$[40],M$013],T$(27]

40 L$="HBKT CFILORUX":

S50 FOR FP=1 TO 13:

60 L$0141=" ":
70 INPUT "Number of tuples";N
80 INPUT."Maximum number of characters per tuple";K
90 DIM D$IN,Kl: Zg=""

110

FOR

120 L=LEN(T%):

130
140
150

FOR @=1 TO K:
GOSUB 1000:

F=1 TO N:

FOR P=15 TO 40:

M$="QENWADGIMPSVY"

2$=7%+STR$ (F)+", "
PRINT "Tuple No.";P;"is";:

IF L>K THEN 110

1000 FOR P=K TO 1 STEP
1010 FOR I=1 TO 27: T$LIl="": NEXT
1020 FOR @=1 TO LEN(Z$)
1030 IF MID$(Z%,@,1)="," THEN A=Q:
-(B=2))) ELSE 1070

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
2000
2010

2020 FOR Q=1 TO K:

2030
2040

V=1: H=1

WHILE H<4: GOSUB 1
V=V=-13: T$IVI=T$LIVI+STR$(Z)+","
B=A+1: NEXT: Z$=""

FOR I=1 TO 27:

NEXT I,P
RETURN

IF D$LZ,PI<=L$IV]
IF D$LZ,PI1<=M$LV]

V=3#V+1:
A=1: B=1:

RETURN
FOR P=1

IF MID$(Z$,P,1)=",
-(B=2))) ELSE 2030

B=A+1: NEXT

RETURN

T$=UPPER% (T$) +STRINGS (K-L, 32)
D$(P,Q)=MID$(T$,Q,1): NEXT @,P
GOSUB 2000: END

-1: A=1: B=1

110: H=H+1:

THEN V=3%V-1
THEN V=3#V:

TO LEN(Z$)
" THEN A=P:

FRINT D$LZ,Q1;:

128

L$LFPI=MID$(L$,P,1): M$LFPI=MID$ (M$,P,1): NE

L$LPI=CHR$ (51+FP): NEXT

INPUT T$

Z=VAL (MID$(Z%, B+ (B=2),A-B

WEND

IF T$LI1<>"" THEN Z$=Z$+T$[I]

: RETURN
RETURN

Z=VAL (MID$ (Z$,B+(B=2) ,A-B

NEXT: PRINT

82. HEAPSORT

A ‘heap’ is the name for a binary tree structure where the elements are so
arranged that the one associated with any vertex is greater than or equal to
those associated with its two sons. The level of any leaf can only differ by one
level at most from any other leaf.

The diagram shows a typical heap. If A1, A2, A3 etc. are the elements to be
sorted, then they are stored in an array A[N]. The heap property implies that

All]>=A[2*1] for 1<=I<=N/2
and All]>=A2*1+1] for1<=I<N/2

The first part of the routine is ‘heapify* which establishes the order in the
array to give the heap property.

The second part then sorts the array elements into order by
1. removing the largest element (which is in the root) and exchanging it for
the last element. This element then takes no further part.

2. reforming the remaining elements using ‘heapify*
3. repeating until the array contains all the elements in ascending order.

This is illustrated in the sequence of arrays. The flowcharts show how the
subroutine works.

10 REM Heapsort

20 INPUT "Number of values";M: IF M<{=1 THEN 20

30 DIM DCM]

40 FOR P=1 TO M: FRINT "Value";P;"is";: INFUT DCPJ: NEXT
50 GOSUB 1000: GOSUB 2000: END

1000 FOR P=INT(M/2) TO 1 STEP -1: R=P

1010 S=R+R: T=5+1

1020 IF DCRIKDIS] THEN GOSUB 1170: GOTO 1050

1030 IF T<=M THEN IF DCRJ<DLTJ] THEN GOSUB 1200: GOTO 1050
1040 GOTO 1060

1050 IF R<{=M/2 THEN 1010

1060 NEXT P

1070 FOR F=M TO 3 STEP -1: SW=D[1]: DL11=DCFPJ: DLF1=SW: R=1
1080 S=R+R: T=5+1

1090 IF DILRI<DCS] THEN GOSUB 1150: GOTO 1120

1100 IF T<P THEN IF DCRJ<DLCT] THEN GOSUB 1200: GOTO 1120
1110 GOTO 1130

1120 IF R<{=(P-1)/2 THEN 1080

1130 NEXT P

129

SW=D{1]:z DL[1]1=D(2]: DI[2]=SW:
IF T>=P THEN 1190

GOTO 1180

IF T>M THEN 1190

IF DLSI<DLT]1 THEN 1200

RETURN

SW=DLRJ: DLRI=DC[S1: DL[S]I=SW: R=R+R: RETURN
SW=DLR1: DCR]I=DCT]: DCTI=SW: R=R+R+1: RETURN
FOR P=1 TO M: FRINT DLF1: NEXT

RETURN

SWAP SWAP
A(R),A(T) A(R),A(S)
R=R+R+1 I l R=R+R

R<=NA2? >

P=P-1

r<1?

O

Fig. 82.1 Heapify

130

SWAP
A(1),A(P)
n

R=1
SWAP SWAP
- A(R),A(T) A(R),A(S
S=R+R
I
R=R+R+1 R=R+R
A
R<=(P-1)12? >
P=P-1
n H
SWAP
A(1),A(2)
END
Fig. 82.2Sort

131

83. MERGESORT

MERGESORT is a subroutine for sorting a list of 2" items. If the number of
items is not a power of two, then values higher than the maximum in the list
have to be added and discarded at the end. The routine works by first
ordering pairs of values, then merging adjacent pairs, then adjacent 4’s, 8’s,
16’s etc., using SUB Merge. For example, the list

8,6,4,1,5,6,3,1
becomes 68,14,56,13 which
becomes 1468,1356which
becomes 11345668

The DEF FN is to pack the format in the INPUT. During the INPUT, the
maximum value MX is sought and pairs of values are ordered (in line 1050).
SUB 1200 fills out the rest of the array A with values of MX+1. Line 1080
begins with pairs of values and merges them with SUB 1090, then it merges
groups of 4, 8, 16 etc. As the extra MX+1 values finish up at the beginning of
the array, they are ignored by the PRINT statement which stops at 1+S—N.
Toreverse the order, loop from 1+S—NTOS.

10 REM Mergesort -

20 DEFINT A-C,N,P,X-Z: DEF FN A%$ (A)=MID$ (STR$ (A) , 2)

30 INPUT “"Number of values";N: IF N<=0 THEN 30

40 M=N: P=0: MX=0

50 WHILE M>1: M=M/2: P=P+1: WEND

60 S=2~P: DIM ALS1,X[S/2+11,Y[S/2+11,ZL[S+2]

70 GOSUB 1000: GOSUB 2000: END

1000 FOR A=1 TO N: PRINT "A("+FN A$(A)+")=";: INFUT ALA]
1010 IF ALAI>MX THEN MX=A[A1]

1020 A=A+11 IF A>N THEN GOSUB 1200: GOTO 1070

1030 PRINT "A("+FN AS$(A)Y+")=";: INPUT ALAI

1040 IF ALAI>MX THEN MX=ALA1]

1050 IF ACAI>ACLA-11 THEN SW=ALAl: ALAI=ALA-1]: ALA-11=SW
1060 NEXT A: GOSUB 1200: GOTO 1080

1070 IF ACN+113>ACN] THEN SW=ALCN]: ALNI=ALN+1]: ACN+11=5SW
1080 M=2: X[11=MX+2: Y[11=X[1]

1090 FOR B=0 TO S/M/2-1: T=2#B#*M-13: FOR C=2 TO M+1

1100 XLC1=ALC+T1: YLCI=ALC+T+M1: NEXT: GOSUB 1220

1120 NEXT: M=M+M: IF M<S GOTO 1090 ELSE RETURN

1200 IF M<>1 THEN FOR A=N+1 TO S: ALAl=MX+1: NEXT

1210 RETURN

1220 X=M+1: Y=X

1230 IF XCXI<YLY] THEN Z[X+Yl=X{XJ: IF X>1 THEN X=X-1: GOTO

1240 ZCX+YI=YLY1: IF Y>1 THEN Y=Y-1: GOTO 1230
1250 FOR J=3 TO M+M+2: ACLJ+T-11=2ZC[J1: NEXT: RETURN
2000 FOR A=S TO 1+S-N STEP -1

2010 PRINT ALAl: NEXT

2020 ERASE A, X,Y,Z: RETURN

132

84. WORDSORT

Using a sorting routine on ASCII characters puts them in order of their
code. To get a proper alphabetical order it is necessary to reduce all capitals
to lower case letters or vice versa. Other symbols are not relevant to
alphabetical ordering and need to be ignored.

AS$ is used to store the original words whilst B$ holds the reduced capitals
and lower case letters but excluding non—letters. B$ is ordered by a
bubblesort—line 1100 and A$ follows in sympathy. Each word is checked for
the right characteristics before it is accepted for sorting.

10 REM Wordsort

20 DEFINT N,P,Q,T

30 INFUT "Number of words'";N: IF N<{=0 THEN 30

40 GOSUB 1000: GOSUB 2000: END

1000 N=N—-1: DIM ACNI,BL[N1]

1010 FOR @=0 TO N: PRINT "Word";@+1;" is "3;: INFUT Z%: L=LEN
(Z%)

1020 A$L@I=Z%: B$L[QI=Z%

1030 FOR FP=1 TO L: T=1: X$=MID$(Z$,P,1)

1040 IF X$="-" OR X$="’" OR X$>="A" AND X$<="Z" DR X$>="a" A
ND X#<{="z" THEN NEXT ELSE FRINT Z%$;" is not a word": Q=Q-1:
GOTO 1090

1050 FOR P=1 TO L: X$=MID%(Z%,F,1)

1060 IF X$>="A" AND X$<="Z" THEN MID$(B%[Q1,T,1)=LOWERS (X$):
T=T+1 ELSE IF X$>="a" AND X#<="z" THEN MID$(E$[Q1,T,1)=X$:
T=T+1

1070 NEXT

1080 B$LRI=LEFT$(B$[(R1,T-1)

1090 NEXT

1100 @=0: FOR P=0 TO N-1

1110 IF B$[P+11<B$[FJ] THEN SW$=EB$[FJl: B$[FI=B$[(F+131: B$LF+11
=5W$: SW$=A$LPI: ASLPI=A%LP+1]: A$LP+11=SWH: Q=0+1

1120 NEXT: IF Q<>0 THEN 1100 ELSE RETURN

2000 FOR P=0 TO N: FRINT A$LPJ: NEXT

2010 RETURN

run (output)
Number of words? 9 brown
Word 1 is ? The dog
Word 2 is ? quick fox
word 3 is ? fox jumps
Word 4 is ? jumps lazy
Word 5 is ? over over
Word 6 is ? the quick
Word 7 is 7 lazy The
Word 8 is ? brown the
Word 9 is ? dog

133

85. STATISTICAL ANALYSIS

This subroutine calculates the statistical properties of a group of readings
(Mean, standard deviation, minimum, maximum and the number of
readings in each histogram interval) and displays the results as a 3—D
histogram.

The number of intervals in the histogram is chosen to be near the squareroot
of the number of readings to give a satisfactory display.

The first eight lines calculate the minimum, maximum, mean and standard
deviation for the data. These are stored in Z$ to control the number of digits
printed out on the display (by slicing). D[2,143] is used to store (a) the lower
value of the histogram intervals in D[1,1+3] and (b) the number of values in
each interval in D[2,1+3]. The highest number of values is made equal to
D2MAX.

A[2,1+4] holds the values to be plotted on the histogram which is scaled to
fit a line of slope 1/3 which passes through (112,34) and (352,107). These two
points are made equal to the minimum and maximum values. The height is
scaled to 100 by line 2030.

The following lines draw the histogram and shade it. After line 2090 the
main axes are drawn and the statistical information printed on the screen.

10 REM Statistical analysis

20 BORDER S5: INK O,1: INK 1,15

30 DEFINT 1,P,Q: DEF FN A%$(A)=MID%(STR$(A),2)

40 INPUT "How many readings (min 4)";N: IF N<4 THEN 40
50 CLS: DIM VIN]

60 PRINT: PRINT "Type in the values of the readings"
70 PRINT: FOR P=1 TO N: PRINT TAB(S);"V"3;FN A$(P);"="3: INPU
T VLP1: NEXT

80 REM Alternatively, use ’*DATA INFUT (Single Variable)’ to
establish N and V(N)

90 CLS: GOSUB 1000: GOSUB 2000: END

1000 I=INT(SER(N)): MEAN=0: S=0: XMAX=VI[1]l: XMIN=V[1]
1010 FOR P=1 TO N

1020 MEAN=MEAN+VLPJ: IF VLPI>XMAX THEN XMAX=VILP1

1030 NEXT: MEAN=MEAN/N

1040 FOR P=1 TO N: D=VILPI-MEAN

1050 S=S+D#*D: IF VLPI<XMIN THEN XMIN=VIP1]

1060 NEXT: S=SAR(S/ (N-1))

1070 T=(XMAX-XMIN) /I: XR=T#*I

1080 DIM Z$(I+91,DC2,I+3]

1090 FOR P=6 TO I+7: Z$(P)=STR$ (XMIN+(P-6.35)*T): NEXT

134

1100 Z$(1)=STR$ (MEAN)
1110 Z$(2)=STR$ (XMIN)

1120 2% (3)=STR$ (XMAX)

1130 Z$(4)=STR$(S)

1140 Z$(5)=""

1150 D2MAX=0: D[2,11=0

1160 FOR P=1 TO N: FOR Q=6 TO I+7

1170 IF VIPI<=VAL(Z$(Q@)) THEN D[2,0-51=D[2,0-51+1: GOTO 1190
1180 DC2,1+31=0: NEXT Q

1190 NEXT P

1200 FOR P=1 TO I+2

1210 DC1,P1=VAL (Z$(P+5)): IF D[2,P1>=D2MAX THEN DZMAX=D[2,F1
1220 NEXT P

1230 DIM AL2,I1+41: FOR F=2 TO I1+4

1240 AC1,P1=((D[1,P-11-XMIN)*251/XR+117) *C0OS(0.32175)

1250 AL2,PI=AC1,P1*TAN(0.32175): NEXT

1260 RETURN

2000 FOR P=2 TO I+3: 0=0

2010 IF AL1,P1+@>AL1,P+11 THEN 2090

2020 IF P<=I+2 THEN PLOT 112+A[1,P1+Q,34+Al2,P1+Q*TAN(0.3217
S)

2030 DRAWR 0, 100/D2MAX*D[2,F]

2040 IF DC2,P1>=DC2,P-11 THEN DRAWR -50,0: GOTO 2070

2050 IF P<I+3 AND B<SO AND @/3<(DC2,P-11-DL[2,P1)*100/D2MAX T
HEN DRAWR -Q,0: GOTO 2060 ELSE DRAWR -S0,0

2060 IF DL2,P1<=D[2,P-11 THEN GOTO 2080

2070 IF Q=0 THEN DRAWR O, -100/D2MAX*(DL2,P1-DC2,P-11)

2080 Q=0+3: GOTO 2010

2090 NEXT

2100 PLOT 112,34: DRAWR 529,529%TAN(0.32175)

2110 PLOT 112,34: DRAWR -110,0

2120 PLOT 112+AC1,23,34+A02,21: DRAWR -50,0

2130 FOR P=1 TO I+1: LOCATE 1,3+P: PRINT LEFT$(Z$(P+5),5);"-
“SLEFT$ (Z$(P+6),5);" "DC2,P+11: NEXT

2140 LOCATE 25,4: PRINT "Sigma=";LEFT$(z$(4),7)

2150 LOCATE 26,5: PRINT "Mean=";LEFT$(Z$(1),7)

2160 LOCATE 18,21: PRINT LEFT$(Z$(2),5)

2170 LOCATE 33,16: PRINT LEFT$(Z$(3),5)

2180 PLOT 224,68: DRAWR 50,0

2190 PLOT 444,148: DRAWR 50,0

2200 PLOT 112+((MEAN-XMIN)%255/XR+112) #C0S (0.32175) , 34+ ((MEA
N-XMIN) #255/XR+112) *SIN(0.32175): DRAWR O, 200

2210 LOCATE 11,1: PRINT "STATISTICAL ANAYSIS"

2220 IF INKEY$="" THEN 2220

2230 RETURN

135

EXAMPLE

The following data give the display as shown.

V1=25.6 V15=35.0 V29=27.9 V43=28.9

V2=28.3 V16=27.1 V30=32.1 V44=32.0

V3=30.1 V17=29.3 V31=28.7 V45=27.9

V4=26.9 V18=30.6 V32=29.1 V46=31.0

V5=37.6 V19=30.5 V33=32.1 V47=30.5

V6=30.8 V20=29.5 V34=31.3 V48=29.9

V7=26.0 V21=28.0 V35=30.0 V49=30.1

V8=29.3 V22=33.1 V36=29.6 V50=30.3

V9=30.2 V23=36.0 V37=28.7 V51=28.7
V10=31.6 V24=29.8 V38=35.0 V52=31.2
V11=28.7 V25=31.2 V39=31.2 V53=33.1
V12=29.5 V26=30.1 V40=27.9 V54=28.9
V13=30.3 V27=28.7 V41=30.5 V55=27.9
V14=32.4 V28=31.5 V42=31.6 V56=31.0
STATISTICAL ANALYSIS SIGMA = 2.28158
24.7-26.4 2 MEAN = 30.264286
26.4-28.1 7

28.1-29.8 15
29.8-31.6 22

136

86. STRING STORAGE

Storing data, particularly as floating point numbers can use a lot of memory
and it is sometimes preferable to store as a string or string array.

There are three cases to consider. Firstly where each string is the same
length as for instance with machine code bytes in hexadecimal. Here no
separators are required. If however the data are different lengths then
separators such as commas are needed. Where most of the strings are the
same length but with a few smaller ones it may be economic to fill out with
spaces and dispense with the separators.

The first case is trivial but the following two programs might be of use in
saving memiory.

10 REM All strings the same length

20 INFUT "Length of strings";N: B&=""

30 INFUT "String";A%: IF LEN(A%$) >N THEN 30: REM To finish IN
FUT "="

40 IF A%< >"=" THEN E$=E$+STRING$ (N-LEN (A%$),32)+A%: GOTO 30
50 GOSUB 2000: END

2000 FRINT E%

2010 RETURN

2020 REM Changing line 40 to

2030 REM "IF A$<>"=" THEN B%=B$+STRING$ (N-LEN(A%),32)+A$s+NL$
: GOTO 30" (Where NL$=CHR$ (10)+CHR%$(13))

2040 REM PRINTs out in a vertical column.

2050 REM Or changing 2000 to

2060 REM "FOR P=1 TO T: FRINT MID$(B%, 1+N* (P-1),N): NEXT" (W
here T is the number of strings) does the same.

10 REM Store as a suring with a / between each item

20 DEFSTR N

30 INPUT N: REM N=n1/n2/n3/n4/nS/né6/ and must finish with a
slash (/). N.B. Commas are NOT allowed and inverted commas a
re not necessary.

40 GOSUB 2000: END

2000 REM To recover the data

2010 A=1: B=1

2020 FOR F=A TO LEN(N$)

2030 IF MID$ (N$,P,1)="/" THEN A=F: FRINT MID$ (N%,B+(B=2),A-B
-(B=2))

2040 B=A+1: NEXT

137

87. TAG PRINT

In MODE 2, PRINT produces the ASCII characters within a rectangular
area 8x8 pixels in size which is quite difficult to read. By TAGging the
PRINT to the graphics cursor it is possible to leave a little more space
between the letters to suit your preference.

In MODE 1, the reverse can be used i.e. to have slightly less space between
the letters.

10 REM TAG FRINT-MODE 1

20 MODE 1

30 INPUT "Printing position (as x,y coordinates)"; X,Y
40 INPUT "Matter to be printed";A$

S50 GOSUB 2000: END

2000 CLS: FOR P=1 TO LEN (A%): Z$=MID$(A%,P,1)
2010 MOVE X,Y: TAG

2020 PRINT Z$3: X=X+14+5S*(Z¢=" ")

2030 IF X>620 THEN X=0: Y=Y-164

2040 NEXT: TAGOFF

2050 RETURN

10 REM TAG PRINT-MODE 2

20 MODE 2

30 INPUT “Printing position (as x,y coordinates)"; X,Y
40 INPUT “Matter to be printed";As$

50 GOSUB 2000: END

2000 CLS: FORP=1 TO LEN (A%): Z$=MID$(A$,P,1)
2010 MOVE X,Y: TAG

2020 PRINT Z$;: X=X+10+4%(Z$=" ")

2030 IF X>»620 THEN X=0: Y=Y-16

2040 NEXT: TAGOFF

2050 RETURN

138

88. TEST FOR A BINARY NUMBER

This test is similar to the test for a decimal number but more restricted. This
subroutine tests for a positive or negative binary integer and can be used for
example prior to a conversion routine.

10 REM Test for a binary number

20 PRINT “Type in the number as a string": PRINT

30 INPUT B$

40 GOSUB 1000: GOSUB 2000: END

1000 FAIL=0: T=1: IF LEFT$(B$,1)="+" OR LEFT$(B%,1)="-" THEN
T=2

1010 IF T=2 AND LEN(E$)=1 THEN FAIL=-1: RETURN

1020 FOR P=T TO LEN(BS$)

1030 IF MID$(B%$,P,1)<>"0" AND MID$(B%$,P,1)<>"1" THEN FAIL=-1
: RETURN ELSE NEXT

1040 RETURN

2000 IF NOT FAIL THEN PRINT "OK": RETURN

2010 FRINT "Not a binary number": RETURN

89. TEST FOR A DECIMAL NUMBER

As the INPUT is in the form of a string each character can be tested
separately. “+” or “—" must come at the beginning if they are used and this
changes T from 1 to 2 so that they are not involved in the test loop. S counts
the number of decimal points and fails the number if it has more than one or
the characters do not lie between 0 and 9. Lines 1010 and 1020 fail entries
without digits.

The subroutine only passes positive or negative decimal numbers.

10 REM Test for a decimal number

30 INPUT "Type in the number";N$

40 GOSUB 1000: GOSUB 2000: END

1000 FAIL=0: S=0: T=1: IF LEFT$(N$,1)="+" OR LEFTH(N$,1)="-"
THEN T=2

1010 SP=INSTR(N$,"."): IF SP=LEN(N$) THEN FAIL=-1: RETURN
1020 IF T=2 AND LEN(N$)=1 THEN FAIL=-1: RETURN

1030 FOR P=T TO LEN(N$): Z$=MID$(N$,P,1)

1040 IF Z$="." THEN S=S+1

1050 IF Z#$="." OR Z$>="0" AND Z$<="9" THEN NEXT: IF S<2 THEN
RETURN

1060 FAIL=-1

1070 RETURN

2000 IF NOT FAIL THEN PRINT N%: RETURN

2010 PRINT "Not a decimal number": RETURN

139

90. TIMER

To measure the efficiency of a program in terms of its execution time is very
easy with the machine variable TIME.

The first statement should be placed after any INPUT statement and the
second one after the program has finished calculating or PRINTing.

Toillustrate its use, the actual delay time of an empty loop is measured.

10 REM Timer

20 INPUT N

30 TO=TIME

40 FOR P=1 TO Nz NEXT: T=(TIME-TO)/300
50 PRINT "Time for";

60 PRINT N3

70 PRINT "loops is"j;

80 PRINT ROUND (T,2); "seconds"

EXAMPLE

run
? 10000
Time for 180808 loops is 10.71 seconds

140

91. UNDERLINE

To use the underline symbol on the keyboard requires an OR operation
performed through the transparent printing option—PRINT CHR$(22)+
CHRS$(1) followed by CHR$(22)+CHR$(0) to disable it. However, the
result is unsatisfactory as the underline is the bottom row of pixels and it
merges with the letters.

Two alternatives produce a better result. TAG PRINT will position the
word and the underline as required or the following subroutine which uses a
modified CHR$(208), also looks well.

CHRS$(208) has the top two lines of pixels set and line 1000 removes one of
them. Line 1010 adds a second underline if required. SYMBOL AFTER 208
puts the pixel information for CHR$(208) onwards immediately after
HIMEM.

10 REM_Underline

20 SYMBOL AFTER 208: H=HIMEM+2

30 INFUT "Matter to be underlined";A$

40 FRINT "Printing position": FRINT: INFUT "Row No."3jR: FRIN
T: INFUT "Column No.";C

50 G0SUB 1000: GOSUB Z0O00: END

1000 FOKE H,0: RETURN

1010 REM To double underline, also FOK® H+1,255

2000 CLS: LOCATE C,R: FRINT A%

2010 LOCATE C,R+1: FOR F=1 TO LEN(A%): PRINT CHR% (208);: NEX
T

2020 REM To FRINT on the line immediately below the the unde
rlined words, use FRINT CHR$(22);CHR$(1); to enable the tran
sparent option and CHR$(22) ;CHR$(0); to disable the option w
hen no longer required.

2030 REM Alternatively, protect the underline with a FRINT s
tatement at the end of line 2010 if no printing appears imme
diately under the words.

2040 RETURN

141

92. UNIVERSAL ROTATION

This subroutine allows any set of points (which could represent a plane or
solid figure) to be rotated by some angle theta about any line in space which
passes through two points (AX,AY,AZ) and (BX,BY,BZ). In the
illustration, a bipyramid is rotated 30° about a line passing through the
centre of the figure and a point (1,1,1) i.e. a line which emerges from the
centre of a triangular face.

In the input part of the program, the coordinates (AX,AY,AZ) and
(BX,BY,BZ) are entered and then the 3—D coordinates of the corners of
the solid figure are INPUT but changed before storing in C[N,2] so that the
originis movedto (AX,AY,AZ). Thetais entered in degrees.

In the main program. the x,y,z displacements DX,DY,DZ between the two
points on the line are calculated and the program then goes to SUB 1100
which sets up a 3x3 Unit Matrix. This is used in SUB 1110 to build up the
main transformation matrix via SUB 1200 and SUB 1300. SUB 1200 works
out the angle for the various rotations and SUB 1300 first finds the correct
rotation matrix A[3,3] which are as follows for the three axes: —

LI=1 LI=2 LI=3
1 0 0 COsA 0 sinA| |cosA —sinA 0
0 COSA —sin 0 1 0 sinA CcOsA 0
0 SinA cosA| |—sinA 0 COSA 0 0 1

The latter part of the routine multiplies A by U and then transfers the result
back to U leaving A and Z available for the next multiplication.

Referring to the sequence of diagrams for the transformation, these perform
the following operations: —

1. Move the origin to (AX,AY,AZ). Thisis done in the INPUT

2. Rotate about the z—axis to put B in the x—z plane. LI=3; angle=
ATN(DY/DX);A=—angle;B stores A

3. Rotate about the y—axis to make AB coincide with the z—axis.
LI=2;angle=ATN(SQR(DX? +DY?)/DZ);A=—angle;C stores A

4. Rotate theta degrees about the z—axis. LI=3;A=THETA

5. Rotate back about the y—axis by angle C. LI=2;A=C

6. Rotate back about the z—axis by angle B. LI=3;A=B

We now have the main transformation matrix which is the product of six
matrices i.e. A1™! *A27! *A3*A2*A1*U where Al, A2 and A3 are the
separate rotation matrices and A1~! and A2! the inverses of A1 and A2
which rotate in the opposite direction. Note that it is not necessary to

142

formally invert as we know that changing the sign of the angle must reverse
the rotation process. However itis easy to show that

cos(—A) 0 sin(—A)| * [cos(A) O sin(A) =(100
0 1 0 0 1 0 010
—sin(—A) 0 cos(—A) —sin(A) 0 cos(A) 001

ascos® A+sin> A=1

After returning from SUB 1110, T[N,2] is made available to store the
transformed coordinates which are produced by multiplying C by U and
adding AX,AY,AZto x, y and z to move the origin back to where it started.

In the output, a magnification factor can be incorporated and the PLOT and
DRAW information is INPUT into V$[N,N] to enable the figure to be
drawn after using the projection formula and allowing for the screen aspect
ratio. To condense the information, only the upper right triangle of V§[N,N]
isused but note line 2150 — NEXT Q: NEXT P — NEXT Q,P does not work.

10 REM Universal rotation

20 DEG: DEF FN A% (A)=MID$(STR$ (A),2)

0 CLS: FRINT * Type in the coordinates of the two point
s which define the axes of rotation"

40 INFUT "AX";AX: LOCATE 13,VFOS(#0)-1: INFUT "AY";AY: LOCAT
E 26,VFOS(#0)—-1: INPUT "AZ";AZ

S50 INFUT "BX";BX: LOCATE 13,VPOS(#0)-1: INFUT "BY";BY: LOCAT
E 26,VFOS(#0)-1: INFUT "BZ";BZ

60 INFUT "Number of points"iN: IF NI=0 THEN 60
70 DIM CCN,21,TICN,21: CLS
80 FRINT " Type in the x, y and z coordinates of the point

s to be rotated"

90 FOR F=1 TO N

100 LOCATE 1,F+3: FRINT "x";FN A% (F);:
110 LOCATE 14,P+3: PRINT "y";FN As(F);:
120 LOCATE 27,F+3: FRINT "z";FN A% (F)j:
130 NEXT

140 INFUT " oK? (Y/N) ":E$: K$=UFFER$(K$): IF Ks="Y"
THEN CLS ELSE ERASE C,T: GOTO 60

150 INPUT " Type in the desired angle of rotation, theta in
degrees"; TH

160 GOSUB 1000: GOSUB Z000: END

1000 DX=BX-AX: DY=BY-AY: DZ=RZI-AZ

1010 GOSUEB 1100: GOSUB 1110

1020 FOR F=1 TO N

1070 TLF,01=CLF,0]*#ULO0,0]+CLF,11%ULO, 1]+C[F,2]1%ULO0,2]+AX
1040 TCP,11=CC[P,0]1*Ul1,01+CCF,11%UC1,1]1+CLP,21%ULC1,2]1+AY
1050 TC(P,21=CL[P,01%UL2,01+C[P,13%UL2,1]+CIP,21%UL2,2]+AZ
1060 NEXT: ERASE U

1070 RETURN

INFUT Z: CLFP,01=Z-AX
INFUT Z: CCF,11=Z-AY
I

NFUT Z: CCP,21=Z-AZ

1099
1100
1109
1110
1120
1130
1140
1180
1160
1170
1180
1199
1200
1210

1220

1230
1240

1250

2000
2010
2020
2099
le

2100
2110

2120

2170
2140
NFUT
2150
2160
2170
2499
2500
2310
2520
2530
2540
2550
2560
s, 13

2570
2580

2590

REM Unit matri
DIM ULC2,2]1: FO
REM Universal
GOSUB 1200

X

R I=0 TO 2: UCI,IJ=1: NEXT :RETURN

Rotation

LI=2: B=A: A=-A: GOSUB 1300

DY=S@OR (DX*DX+D

Y*DY): DX=DZ: GOSUER 1200

LI=1: C=A: A=-A: GOSUB 1300
LI=2: A=TH: GOSUB 13Z00

IF ABS(DX) »0.000001 THEN 1240 ELSE A=90

LI=1: A=C: GOSUB 1300

LI=2: A=R: GOSUE 1300

RETURN

REM Angle

IF DY<Z0 THEN A=A+90

IF ABS (DY) <0.000001 THEN A=0
RETURN

A=ATN(DY/DX) :

RETURN

IF DX<0 THEN A=A+180

REM Turn and Multiply

DIM ACZ2,2]1: AILI,LLII=1
Al=(LI+1)MOD 3: AZ=(LI+2)MOD =
CA=COS (A): SA=SIN(A)

ALAL1,A1]1=CA: ALAZ,AZ]1=CA:

FOR I=0 TO 2:
ZLJ31=Z[JI+ALJ,
FOR k=0 TO 2:
ERASE Z: NEXT:
FOR F=1 TO N

DIM ZCL2]1: FOR J=0 TO Z2:

KI#UCK, I3z NEXT K,J
UCK, I1=ZCK1: NEXT
ERASE A: RETURN

FRINT TCF,01;TCF,13;TCF,2]

NEXT

ALAL1,AZ21=-5A: ALAZ,A11=5A

FOR k=0 TO 2

REM Information needed for graphical output as in examp

INFUT "Magnifi
DIM V$IN,N1]
FRINT "Type in

FOR F=1 TO N:

IF P<:x@ THEN FRINT

Vs (F,)

NEXT Q: NEXT P
GOSUR 2500
RETURN

REM Graphic ou
CLS: DIM ALN,1
FOR F=1 TO N

cation";H

"+CHR$ (Z4)+"1"+CHR$ (34)+" to represent v
ertices to be joined else a "+CHR$(34)+"0"+CHR$ (34)

FOR @=F+1 TO N

tput
]

"Vertex";F;"joined to vertex ";Q@;3;: I

ALF,01=320-(58.8*T[F,0]1-176.4%TLF,11) *H
ALF,11=196~(19%TLF,0]+6.5%TLF, 11-162%TLF,21) *H

NEXT
FOR P=1 TO N:

FOR @=P TO N

IF V$CP,Q1="1" THEN FLOT ALCF,0],ALF,11: DRAW ALR,01,ALQ

NEXT @,F
ERASE A,V$
RETURN

144

YA
b <P
DZ
O
/ =TTy DY
DX
X
\/A " y
X
1.MOVETHEORIGINTO A 2. ROTATEABOUTOzTOPUTABINTHE
x—z PLANE
z
B z, B
DZ

x y
y 6 A V(DX24+DY?)

3. ROTATEABOUT Oy TO MAKE 4 ROTATEABOUT Oz
0z COINCIDE WITH AB

Fig. 92.1 Making the Z Axis Coincide with the Line

145

Edge Array =

011000
001100
000110
000011
100001
110000

Fig. 92.2 Use of Arrays to Hold Edge or Path Information

146

93. USEFUL FUNCTIONS

It saves space in a program to use a DEF FN if the function is needed more
than once, the actual saving depending on the complexity of the function.

The functions listed here are generally useful for a range of programs and
can be found in various parts of the book.

10 REM FEEK (into a two byte address)

20 DEF FN P(P)=PEEK (P)+2S6%FEEK (F+1)

30 REM POKE (a number into a two byte location)

40 DEF FN Q(Q)=0-256%INT(Q/256): REM low byte

50 DEF FN R(R)=INT(Q/256): REM high byte

60 REM Larger of two numbers

70 DEF FN L (A,B)=A-(B-A)*(B:A)

80 REM or

90 DEF FN L (A,B)=(A+B+ABS (A-B)) /2

100 REM Erase and backspace N characters

110 DEF FN BS% (N)=SPACE$ (N) +STRING% (N,CHR%$ (8))

120 REM To PRINT or not to FRINT based on the result of a lo
gical operation

130 DEF FN FB A% (A%,RO0LE)=MID$(A%,1,-LEN(A%$)*BOOLE)

140 REM Plus or minus PRINT for "+" or "-" on a string expre
ssion

150 DEF FN SIGN$ (X)=CHR$ (45+2% (X>=0))

160 REM Packed format FRINT-omits sign space in front of num
bers

170 DEF FN A% (A)=MID$(STR$(A),2

180 REM FPacked format PRINT, positive-omit space in front of
positive numbers only

190 DEF FN A% (A)=MID$(STR$(A) ,1-LEFT$(STR$(A),1)<>"*=-*,6)¢ RE
M 6 digits

200 REM Complex numbers—enables complex numbers to be FRINTe
d correctly

210 DEF FN A$(A%$,A, BOOLE)=MID% (A%, 1+A,-LEN(A$) *BOOLE)

220 REM Brackets—for FRINTing in certain circumstances e.g.
around negative numbers

230 DEF FN L$ (BOOLE)=CHR$ (32-8%BOOLE): DEF FN R% (BOOLE)=CHR$%$
(32-9%BOOLE)

147

Full Name Function
Secant SEC
Cosecant CSC
Cotangent coTt

Inverse Sine ARCSIN*
Inverse Cosine ARCCOS*
Inverse Secant ARCSEC
Inverse Cosecant ARCCSC
Inverse Cotangent ARCCOT
Hyperbolic Sine SINH*
Hyperbolic Cosine COSH*
Hyperbolic Tangent TANH*
Hyperbolic Secant SECH
Hyperbolic Cosecant CSCH
Hyperbolic Cotangent COTH
Inverse Hyperbolic Sine ARCSINH*
Inverse Hyperbolic Cosine ARCCOSH*
Inverse Hyperbolic Tangent ~ ARCTANH*
Inverse Hyperbolic Secant ARCSECH
Inverse Hyperbolic Cosecant ARCCSCH

Inverse Hyperbolic Cotangent ARCCOTH

Derived Function

1ICOS(X)
1ISIN(X)
IITAN(X)
ATN(X/SQR(1-X*X))
~ ATN(X/SQR(1-X*X))+1.5708
ATN(X/SQR(X*X~ 1))+ SGN(SGN(X)~
ATN(X/SQR(X*X~ 1))+ (SGN(X)-
ATN(X)+1.5708
(EXP(X)-EXP(-X))12
(EXP(X)+EXP(~X))2
(EXP(X)-EXP(~X))/(EXP(X)+ EXP(~
2(EXP(X)+EXP(-X))
2(EXP(X)-EXP(-X))
(EXP(X)+EXP(-X))/(EXP(X)~EXP(-X))
LOG(X+SQR(X*X+1))
LOG(X+SQR(X*X~1))
LOG((1+X)/(1-X))2
(
(

1)*1.5708
1)*1.5708

X))

LOG((SQR(1-X*X)+1)/X)
LOG((SGN(X)*SQR(1+X*X)+1)/X)
LOG((X+1)(X-1))2

* Contains a Reserved Name (OK for Amstrad but not other computers)

N.B.1.5708 = P12

Table 93.1: Trigonometric Functions for use in DEF FN statements

148

The Routines

The following routines are complete programs, ready for you to type directly
into your Amstrad. Whilst being of interest in their own right, they also
demonstrate the uses of several of the subroutines listed in this book.

1. ANAGRAM

This program gives all the anagrams from a word taking into account any
known letters in the correct solution.

The program first seeks any known letters and eliminates them from C$
(lines 140—200). If the letters in the original word and the known letters do
not match up, the Q loop is exceeded at 190 and the program restarts.

C$ is permuted by lines 220—360. The permutations are PRINTed in line
260 or, if some letters are known, in line 290 after restoring these letters as
only the unknown ones are permuted.

10 REM Anagram
20 DEFINT C,L,FysX,Z: NL$%$=CHR% (10)+CHR% (13)

30 CLS: Z=0: LINE INFUT "Type in the word ";A%$: L=LEN(A%$):
GOSUB 400: GOSUB Z70: IF Z=1 THEN 30
40 B$="": C%=A%

S50 FRINT NL$;"Do you know the positions of any of the letter
s7?"sNL$: INFUT "(y/n)"3;K$

60 Es=UFFER$ (K$%): IF K$="N" THEN 220

70 CLS: LOCATE 2,5: PRINT A%: LOCATE 1,8: PRINT " Type in t

he known letters of the word one by one in the correct place
or type a question mark if the letter position is not know

N."3NL$;NLE;CHRS (32) ; STRINGS (L, "%")

80 FOR P=1 TO L

20 LOCATE F+1,20: LINE INFUT X%: IF X#$="" THEN 20

100 Bs=B$+LEFT$(X%$,1): LOCATE P+1,12

110 IF LEFT$(X%,1)="?" THEN PRINT "7";: GOTO 130

120 FRINT LEFT$(X%,1)

130 NEXT P: GOSUR Z70: D$=R%: CLS: IF Z=1 THEN 30

140 FOR P=1 TO L

150 IF MID$(R%$,F,1)="?" THEN 200

160 FOR @=1 TO LEN(C%)

170 IF MID$ (E$,F,1)<>MID$(C%,Q,1) THEN 190

180 C$=LEFT$(C%,0-1)+MID$(C%,Q+1): GOTO 200

190 NEXT @: IF @=LEN(C$)+1 THEN 210

200 NEXT P: IF LEN(C$)=0 THEN FRINT As: END ELSE GOTOD 220

149

210
key
220
230

240

FRINT NL%$; "Your information is inconsistent.
to start again": GOSUB 350: CLS: GOTO 30
C=LEN(C$)-1: DIM ALC]1,RLC]

FOR F=1 TO C: ACFl=1: EBILF1=C-F+2: NEXT

FOR F=1 TO C: IF ACFI*BL[F] THEN ALFI1=1

Fress any

250 NEXT P: T=1

260 IF K$="N" OR K$="n" THEN FRINT C$+SFACE$(7-C);: BOTO 200
270 FOR F=1 TO L

280 IF MID$ (B$,F,1)="?" THEN MID$(D$,F,1)=MID$(C%,T,1): T=T+
1

290 NEXT F: FRINT D$+SFACE$ (8-L);

I00 FOR X=C TO 1 STEP -1

T10 Z$=LEFT$(C$,1): FOR F=1 TO 1+C-X

320 MID$(C$,FP,1)=MID$(C$,F+1,1): NEXT F

IT0 MID$ (C$,F,1)=Z%: ALXI=ACX1+1

340 IF ALX1>BLX] THEN NEXT X: END ELSE 240

IS0 IF INKEY$="" THEN 350

360 RETURN

370 PRINT NL$3NL$;" Is this OK? (y/n)"3;: INFUT E$

380 K$=UFPFER$ (K$): IF K$="Y" THEN RETURN

I90 Z=1: RETURN

400 FOR F=1 TO L: Z#$=MID%(A%,F, 1)

410 IF (Z$<"A" OR Z%$:"Z") AND (Z#:"a" OR Z%:"z") THEN Z=1: F
=L

420 NEXT F: RETURN

EXAMPLE

run

Type in the word? easter
Is this ok? (y/n)? y

Do you know the position of any of the letters? (y/n)? y

easter

Type in

kkkkkk

$?227r

Is this ok? (y/n) y

seater saeter sateer staeer steaer
setaer sateer staeer steaer setaer
seater saeter steear setear seetar
seetar setear steear seeatr seeatr
seaetr saeetr saeetr seaetr

Ready

150

the word again using the known letters and question marks

2. CONTROL LOOP SIMULATION

In automatic control, there is a sensor which measures the quantity you are
trying to control and if the measurement differs from the ideal value some
change is made to bring the measurement back to the ideal value. Normaily
the rate of correction is made to be proportional to the error signal but
integral and derivative terms can be added to improve the control action.

A time delay in a control loop can play havoc with its stability and lead to
hunting or run away conditions. Backlash in transmission mechanisms or a
time interval between the measuring and control point are common sources
of this problem.

In the following program, the control stability of a machining operation is
simulated to find the maximum rate of correction to give a stable loop.

As it is not possible to measure at the point of machining the size
measurement is taken diametrically opposite to the tool position and this
introduces a half cycle delay into the control loop.

To test the stability, a step change is introduced into the system and its
response calculated. In practice this could be a bit of the tool breaking off or
the setting of the tool being accidentally altered but slow changes can be
considered as a set of small step changes.

For the first half of the cycle no change in measurement occurs as the new
size has not yet got to the measurement point. When it arrives, it remains a
constant error for a further half cycle and the control system institutes a
linear correction. When this corrected size arrives the control changes to a
squared function then to a cubic one and so on. Whether or not this is stable
depends on the amount of correction done in the second half cycle after the
step changei.e. whether it has over corrected or under corrected.

To investigate this you simply need to change K in line 60 and observe the
graph of tool position versus time. This can vary from over damped (K=.01)
through critically damped (K=.018) to wildly oscillating (K=0.1)

The simulation indicates that the system works best if only 37% of the error
is corrected in one half cycle (K=.018).

151

dJLL

uonejnuig doo jonuo)) |z *Sig

d14VLSNN

41dVLS

dONVHO d4.LS

HANLI'TdNY

152

10 REM Control loop stability

20 MODE 1: BORDER 1: INK 0,15: INK 1,9: INK 2,0: INK 3,6

Z0 SYMEOL AFTER 208: FOKE HIMEM+1,0

40 DEF FN H(T,X,Y)=—(X{=T)+(Y<=T): REM Heaviside operator

S0 CLS: PEN 2: PAFPER 3: FRINT SFPC(9);"Control Loop Stability
"; SPC(9): PRINT SPC(9)3;: FOR F=1 TO 22: PRINT CHR$(208);: N
EXT PRINT SPC(9): FPRINT

60 FAPER 0: PRINT " This program demonstrates the behaviouro
f a control loop which has a time delayin it so that the rat

e of correction of the error determines the stability of t
he system."; SPC(29)
70 PRINT " By inserting different values of the proportion

ality constant K, you can see how this affects the response

to a step change. K should be in the range 0-0.1 to show th

e full effect."; SPC(16)

80 PAFPER 3: PRINT: FRINT " Proportionality constant”: FRINT:
INPUT "K";K

90 RO=100: DR=20: W=0.1: T1=PI/W: Z=K*T1

100 CLS

110 PRINT: PRINT SPC(11);"Initial Conditions": PRINT SPC(11)
52 FOR P=1 TO 18: FPRINT CHR$(208);: NEXT

120 FAPER 0: PRINT: PRINT TAB(3);"Radius";TAB(16) USING "###
< HH#8" ;RO

130 PRINT: PRINT TAE(Z);"Step";TFL(16) USING "###.H##4#4" ;DR
140 PRINT: PRINT TAB(3);"Half Cycle";TAB(16) USING "###. HHd#

";Ti

150 PRINT: PRINT TAB(3);"Constant K";TAB(16) USING "###. ###s
II;K

160 PRINT: FRINT " CK? (Y/N)"3: INPUT K$: K$=UFFER®$ (K$
Y: IF K$<>"Y" THEN CLS: GOTO 80

170 T2=T1+4T1: T3I=T24T1: T4=T3+T1: TS=T4+T1l: Té6&=TS+T1l: T7=Ré6+

Ti: REM Half cvcle periods

180 TAG: MOVE 576,47: PRINT "AXIS": CLS : TAGOFF

190 FOR T=1 TO T3

200 R=RO+FN H(T,T1,T2)*DR+FN H(T,T2,T3) *DR* (1-K*(T-T2))

210 GOSUB 340: NEXT T

220 FOR T=T3 TO T4: C=K*(T-T3)

230 R=RO+DR*(1-Z-C+C"~2/2)

240 GOSUB 340: NEXT T

250 FOR T=T4 TO TS: C=K*(T-T4)

260 R=RO+DR* (1-2#Z+Z"~2/2-(1-7) *C+C"2/2-C"3/6)

270 GOSUB Z40: NEXT T

280 FOR T=T5 TO Té: C=K*(T-TS)

290 R=RO+DR* (1-3%Z+2%#Z"2-Z"3/6-C* (1-2#Z+2Z"2/2)+C 2% (1-2)/2-C

~3/6+C"~4/24)

300 GOSUB 340: NEXT T

310 FOR T=T&6 TO T7: C=K*(T-T&)

320 R=RO+DR*(1-4%Z+9%Z"2/2~4+2"3/3+72"4/24-C* (1-3%Z+2%7"2~-2"3

76)+CM2% (1 -2%Z+272/2) /2-C™3%(1-2) /6+C~4/24-C"5/12)

330 GOSUB 340: NEXT T: GOTO 350

340 FLOT 3%T,40: DRAWR O,R: RETURN

350 LOCATE 1,24: PEN 2: END

153

3. CUBIC CRYSTALS

The faces of a crystal can be designated by three whole numbers h, k and 1
(which are the reciprocals of the intercepts of the particular face on the x, y
and z axes). In the fully symmetrical crystal, the Millar Indices, as these
numbers are called are positive and negative and fully permuted by the
symmetry to give a group of faces which enclose the crystal shape.

Thus, (100)i.e. h, k and 1 become (TO()), (010), (()TO), (001) and (OOT) which
encloses a cube. (111) has eight permutations and gives a bipyramid, (110)
has twelve and gives a rhombic dodecahedron etc.etc.

The program first works out a control array C[26,3] which will enable the
correct lines to be drawn and then asks for the values of h, k and | you wish to
choose. It calculates the coordinates of the apices of the figure and joins
them up in a 3—D projection using solid lines for the front and dotted lines
for the back,

The figure is labelled {hkl} form and the next values can be inserted by
initially pressing any key followed by the new h, k, and I values.

Lines 100—220 set up a 3x8x6 matrix containing all the permuations of h, k
and 1 with both positive and negative values.

Lines 240—245 contain the necessary information to enable 26 triplets of
faces to be selected from the 48. These are stored in A[26,3,3] via lines 250—
290. SUB’s 1200, 1210 and 1220 select parts of this array containing different
values of H, K and L (lines 10, 20 and 30) to make the control array C[26,3].

After the first three cycles controlled by G, the desired h,k and 1 values are
asked for (lines 40—43) and lines 50 and 60 put their absolute values in
descending order.

To find an apex, three faces which join at the apex are chosen and their
equations solved as simultaneous equations. This gives the coordinates of
the apex as this s the only point common to all three planes.

This is done in lines 300—390 where each of the 26 triplets is solved for x, y
and z provided that the determinant D, is not zero. The results are stored in
1[26,3].

Lines 400—420 use the projection formula to find the 2—D coordinates on
the screen. His used as a scaling factor.

154

Lines 440—480 scparatc the faces into seven different types: —

1
1
1
h
0

0
0

oo oo oo
oo x oo x

Subroutines 500, 600, 700, 800, and 900 decide which points to join up on the
basis of information in the control array. For example, in a cube only
adjacent corners must be joined and not face or body diagonals. SUB 1500 is
for solid lines and SUB 1600 for dotted lines.

To help you when you are typing in the program, the main flow chart and the
crystal face separation chart are appended as well as the control array
C[26,3] and the face triplet matrix A[26,3,3].

1 REM Cubic Crystal 4/m3m Class—-Holosymmetric

2 BORDER 13X: INK 0,2: INK 1,0

3 DEFINT B-D,G,H,K,L,M,R-Z: DEF FN A% (A)=MID% (STR% (A) ,2)

10 DIM CL26,3]: G=0: H=1: K=1: L=1: GOTO 100

20 ERASE A: G=G+1: IF G=1 THEN L=0: GOTO 100

30 IF G=2 THEN K=0: GOTO 100

40 PRINT "Next Form"

41 INPUT "h="j3;H: H=ABS(H)

42 INPUT "k="3;K: K=ABS (K)

43 INPUT "1="j3L: L=ABS(L): IF H+K+L=0 THEN 40

50 IF K>H THEN SW=K: K=H: H=SW

60 IF L>K THEN SW=L: L=K: K=SW: GOTO S0

70 Z$="CUBIC CRYSTAL FORM "+CHR$ (123)+FN A% (H)+FN A$ (K)+FN A
% (L) +CHR$ (125)

75 CLS

100 DIM ALB,21,DC181,1(3,8,61]

110 X[O01=1: X[1l=1: X[2]1=1

120 FOR A=1 TO 8: FOR B=0 TO 2: A[LA,R1I=X[Bl: NEXT

130 IF A=2 OR A=6 THEN X[21=-X[21: GOTO 160

140 IF A=4 THEN X[Ol=-XCO0J: X[11=-X[1l: XC21=-X[2]1: GOTO 160
150 XC11=-XC[11]

160 NEXT

170 XCOl1=H: X[11=K: X[2]=L: N=1

180 FOR B=0 TO 2: DIN1=XCB1l: N=N+1: NEXT: SW=X[0l: X[O01l=X[21]
: X[21=SW

1920 FOR BR=0 TO 2: DINJ=-X[CBl: N=N+1: NEXT: SW=X[0l: X[O0OJl=X[1
J: X[11=SW

200 IF N<18 THEN 180

210 FOR B=1 TO B8: N=1

220 FOR C=1 TO 6: FOR A=0 TO 2: I[LA+1,B,C1=ALB,AI*DIN]: N=N+
1: NEXT A,C,B

155

230 ERASE A,D: DIM AL[256,3,3]
240 A$="11864712345678111333555777"
241 B$="26357412345678888666444222"
242 C$="64711812345678426248862684"
243 D$="13613611111111135135135135"
244 E$="13613633333333642642642642"
245 F$="42542555555555135135135135"
250 FOR C=1 TO 26: FOR A=1 TO 3
260 ALC,1,A]=ILA,VAL(MID$(A%$,C,1)),VAL(MID$(D%,C,1))1]
270 ALC,2,A)=1LA,VAL(MID$(B%,C,1)),VAL(MID$(E$,C,1))1]
280 ALC,3,A1=ICA,VAL(MID$(C$%,C,1)),VAL(MID$(F$,C,1))1]
290 NEXT A,C: ERASE I
291 IF 6=0 THEN GOSUB 1200: GOTO 20
292 IF G=1 THEN GOSUB 1210: GOTO 20
293 IF 6=2 THEN GOSUB 1220: GOTO 20
300 DIM I[26,31: FOR A=1 TO 26
310 R=AlLA,1,1]1: S=A[A,1,2]: T=ALA,1,3]
320 U=ALA,2,1]: V=ALA,2,2]: W=ALA,2,2]
330 X=ALA,3,11: Y=ALA,3,21: Z=AL[A,3,3]
340 D=R*(V*Z-Y*W) +S* (WxX—=Z*U) +T* (UxY-X*V)
350 IF D=0 THEN 320
360 ILA,11=(V*Z-Y*W+S* (W-Z)+T* (Y-V)) /D
370 ILA,2)=(R* (Z-W) +WxX—-Z*U+T* (U-X)) /D
380 ILA,31=(R*(V-Y)+S5*(X-U) +UxY-X*V) /D
90 NEXT: ERASE A
400 DIM AL26,31: FOR A=1 TO 26
410 ALA,11=320-58.8%IL[A,11#H+176.4%1[A,2]1%H
420 ALA,21=196-19%ICA,1]1-6.5*%1[A,21%H+162%I[A,ZI%H: NEXT: ER
ASE 1
30 MODE 2
440 IF H=K THEN 465 ELSE IF L<>0 THEN 43535
445 GOSUB 700: IF K<>L THEN GOSUE 800
450 GOTO 2000
455 GOSUB S00: GOSUR 600: IF K<>L THEN GOSURB 800
460 GOTO 2000
465 IF L<>»0 THEN GOSUEB 900: GOTO 475
470 GOSUB 800: GOTO 2000
475 IF L<>K THEN GOSUB 800
480 GOTO 2000
500 FOR A=1 TO é: FOR B=1 TO 3: IF CLA,R1I<>0 THEN GOSUB 520
510 NEXT B,A: RETURN
520 FOR C=15 TO 26: IF CLC,BJI<>CLA,B] THEN 550
330 IF CILC,1]1=-1 OR A=4 THEN GOSUB 1600: GOTO S50
540 GOSUB 1500
550 NEXT C: RETURN
600 FOR A=7 TO 14: FOR C=15 TO 26
610 IF (CCLC,11=CCLA,1]1 OR CLC,11=0) AND (CLC,2]1=CCA,2]1 OR CILC
. 21=0) AND (CLC,3]1=CL[A,3] OR CLC,31=0) THEN GOSUB 630
620 NEXT C,A: RETURN
630 IF A>10 AND C>19 THEN GOSUB 1600: GOTO 650
640 GOSUB 1500
650 RETURN
700 FOR A=7 TO 14 STEP 2: FOR C=7 TO 14

156

710

IF CCA,11=-CLC,1] AND CLA,21=CLC,2] AND CLA,31=CLC,3] OR

CLA,11=CLC, 1] AND CLA,21=-CLC,2] AND CLA,31=CL[C,3] OR CLA,1
1=C[C,1] AND CCA,21=CLC,2]1 AND CLA,31=-CLC,3] THEN GOSUB 730

720
730
740
750
800
,B1
810
820
830
840
850
860
900
910
920
930
940
950
960
970
980
990

NEXT C,A: RETURN

IF C=14 THEN GOSUB 1600: GOTO 750

GOSUB 1500

RETURN

FOR A=7 TO 14: FOR B=1 TO 3: FOR C=1 TO &6: IF CLA,B1I=CLC
THEN GOSUB 820

NEXT C,B,A: RETURN

IF A>10 THEN B840

GOSUB 1500: GOTO 860

IF CLA,2])=-1 OR CI[C,1]1=-1 THEN GOSUB 1600: GOTO B&0O
GOTO 830

RETURN

FOR A=1 TO 6: FOR B=1 TO 3: IF CC[A,B1<>0 THEN GOSUR 920
NEXT R,A: RETURN

FOR C=1 TO &6: IF B=3 THEN 950

IF CI[C,B+11<>0 THEN 970

GOTO 990

IF CLC,11<>0 THEN 970

GOTO 990

IF C=4 DR A=4 THEN GOSUR 1600: GOTO 990

GOSUB 1500

NEXT: RETURN

1200 FOR A=7 TO 14: GOSUB 1300: NEXT: RETURN
1210 FOR A=13 TO 26: GOSUB 1300: NEXT: RETURN

122

FOR A=1 TO 6: GOSUB 1300: NEXT: RETURN

1300 FOR B=1 TO 3: CC[A,B1=ACA,1,B1: NEXT: RETURN
1500 FLOT ALA,11,ACA,21: DRAW ACC,1],ALC,21: RETURN

1600
630
1461Q

IF ACA,11=ACC,1] THEN 1670 ELSE IF ALA,2]1=ALC,2] THEN 1

F=(ALC,2]1-ACLA,21)/ (ALC,1]1-ALA,1D)

1620 IF ABS(F)<1 THEN 1640 ELSE F=1/F: GOTO 1680

1630
1640

F=0
I=10%SGN(ALC, 11-ALA, 11) /SOR (1+F*F)

1650 FOR @=0 TO (ACC,11-ALA,11)/I

1660
: RE
1670
1680

FLOT ACA,11+0*1,ALA,2]1+O*I%FP: DRAWR 0.4%I,0.4%I%*F: NEXT
TURN

F=0

I=10#SGN(ALC,2]1-ALA,21) /SOR (1+F*F)

1690 FOR 0=0 TO (ALC,21-ACA,21)/1

1700

FLOT ACA,11+0*I%*F,ALA,2]1+0%1: DRAWR O0.4%I%*F,0.4%I: NEXT

: RETURN
2000 TAG: MOVE 225,380: PRINT Z%;
2010 IF INKEY$="" THEN 2010

2020

TAGOFF: GOTO 20

157

Z

—_
SOV NN A WN =

—_——
N =

C[26,3]

100
001
010
100
001
010
11
111
111
111
i1

A[26,3,3]

HKL
KLH
KHL
HKL
KLH
KHL
HKL
HKL
HKL
HKL
HKL
HKL
HKL
HKL
HKL
KLH
LHK
HKL
KLH
LHK
HKL
KLH
LHK
KL
RLH
LHK

HKL
KLH
KHL
HRL
KLH
KHL
KLH
KLH
KLH
KLH
KLH
KLH
KLH
KLH
KHL
HLK
LKH
KHL
HLK
LKH
KHL
HLK
LKH
RHL
HLK
LKH

Cubic Crystal 4/m3m Class

Control Array and Face Triplet Matrix

158

HLK
LKH
LHK
ALK
LKH
LHK
LHK
LAIK
LHK
LHK
LHK
LHK
LHK
LHK
HKL
KLH
LHK
HKL
KLH
LHK
HKL
KLH
LHK
HKL
KLH
LHK

GOSUB 500
GOSUB 600

Icositetrahedron

475

GOSUB 800
6—laced
octohedron

465

GOSUB 900
octahedron

445

GOSUB 700
cube

GOSUB 800

3-faced octahedron

GOSUB 800
Rhombic

Dodecahedron

GOSUB 800
4—faced cube

159

Fig. 3.2 Cubic Crystals
23and4/m3m CLLASSES
{100} Form Cube

160

4. CRYSTAL FORM 23 — Ullmannite

The mineral ullmannite belongs to the cubic crystal class with the least
symmetry. Whereas the fully symmetrical class has 3 4—fold axes, 4 3—fold
axes, 6 2—fold axes and 9 mirror planes as well as a centre, the least
symmetrical class only has 4 3—fold axes and 3 2—fold axes. This gives rise to
several different external forms based more on the tetrahedron than the
bipyramid although some forms e.g. {100} are cubes in both classes.

The program for the 23 form (pronounced two three) is similar to the 4/m3m
form (pronounced four over em three em) and many of the subroutines are
identical. However, there are some subtle changes and care should be taken
if you derive one listing from the other.

The main points of difference are

1. The H, K, and L values used to build up the control array are 111, —111,
and 011 and the third column not the first is used. (See lines 20, 30 and
1300).

2. H,Kand L are put in ascending order (lines 50 and 60).

3. Lines 100—220 build up the 3x8x6 array in another way but the end
resultisidentical.

4. There are only 20 possible apices in the 23 class s0 26 is changed to
20in lines 230, 250, 300 and 400. A$ to F$ only contain 20
characters.

5. Lisused as the scaling factor in the projection formula.

Obviously, subroutines 500, 600, 700, 800, and 900 are different as
are lines 400—490 which separate the different crystal faces.

1 REM Cubic Crystal 23 Class-Ullmannite

2 BORDER 13: INK 0,2: INK 1,0

3 DEFINT B-D,G,H,K,L,N,R-Z: DEF FN A$(A)=MID%$(STR$ (A),2)
10 DIM C[L20,31,XC2]1: G=0: H=1: K=1: L=1: GOTO 100

20 ERASE A: G=G+1: IF G=1 THEN H=-1: GOTO 100

30 IF G=2 THEN H=0: GOTO 100

40 PRINT "Next Form"

41 INPUT "h="j3;H: H=ABS (H)

42 INPUT "k=";3;K: K=ABS (K)

43 INPUT "1=";L: L=ABS(L): IF H+K+L=0 THEN 40

50 IF H>K THEN SW=K: K=H: H=SW

60 IF K>L THEN SW=L: L=K: K=SW: GOTO SO

70 Z$="CUBIC CRYSTAL FORM "+CHR$ (123)+FN A$(H)+FN A$(K)+FN A
$ (L) +CHR$(125)

100 DIM ALB,31,DC181,1(3,8,61,PL6,2]

110 X[O0J=H: X[1l1=K: X[2]1=L: N=1

120 FOR A=1 TO 4: ACA,11=1: ALA+4,11=—1: NEXT

161

130 RESTORE 130: DATA 1,-1,-1,1,-1,1,1,-1

140 FOR A=1 TO 8: READ ALA,2]1: NEXT

150 FOR A=1 TO 5 STEP 4: ALA,31=1: ALA+1,31=1: ALA+2,31=-1:

ALA+3,3]1=-1: NEXT

160 FOR A=0 TO 6: T=2-(A/2-INT(A/2))*2

170 FOR B=0 TO 2: PLA,B1=X[BJl: NEXT

180 SW=X[0J: XCOJI=X[T1: XCTI1=SW: NEXT

190 FOR A=0 TO S

200 FOR B=0 TO 2: DILN1=P[A,BJ: N=N+1: NEXT: A=A+1

210 FOR B=0 TO 2: DLN]=-PLA,Bl: N=N+1: NEXT B,A

220 FOR B=1 TO 8: N=1: FOR C=1 TO 6: FOR A=1 TO 3: ,I[A,B,Cl=
ALB,AI*DIN]: N=N+1: NEXT A,C,B

230 ERASE A,D,P: DIM AL[20,3,3)

240 A$="13573175513771353157"

241 B$="13575713157317531375"

242 C$="13577531153717531375"

243 D$="11111111111133335555"

244 E$="33333333111133335555"

245 F$="55555%5555555511113333"

250 FOR C=1 TO 20: FOR A=1 TO 3

260 A[C,1,A)=I[A,VAL(MID$(A$,C,1)),VAL(MID$(D$,C,1))J

270 ALC,2,Al=ILA,VAL(MID$(B%,C,1)),VAL(MID$(E%$,C,1))]

280 ALC,3,A1=ICA,VAL(MID$(C$,C,1)),VAL (MID$ (F$,C,1))]

290 NEXT A,C: ERASE I

291 IF G=0 THEN GOSUB 1200: GOTO 20

292 IF G+1 THEN GOSUB 1210: GOTO 20

293 IF G=2 THEN GOSUB 1220: GOTO 20

300 DIM I[20,3]1: FOR A=1 TO 20

310 R=ACA,1,1]: S=ACLA,1,2]: T=ALA,1,3]

320 U=A[A.2.11: V=ALA.2.2]: W=ALA.2.3]

330 X=ALA,3,11: Y=ALA,3,21: Z=ALA,3,3]

J40 D=ER* (VZ--Y%W) +S% (WaX--Z%U) +T* (U*Y—-X*V)

350 1F D=0 THEN 390

360 ILA,11=(V*Z-Y*W+S* (W-Z) +T*(Y-V)) /D

370 ICA,2]1=(R* (Z-W)+WxX—Z*U+T* (U-X)) /D

380 ILA,31=(R*(V-Y)+S* (X-U)+UxY-X*V) /D

390 NEXT: ERASE A

400 DIM AL20,3]1: FOR A=1 TO 20

410 ALA,11=320-58.8%I[A, 11%L++176.4%1[A,21%L

420 ALA,21=196-19*%I[A,11-6.5*I[A,21%L+162%I[A,31%#L: NEXT: ER

ASE 1

430 MODE 2

440 IF K=L THEN 480 ELSE IF H=K THEN 460

450 GOSUB 800: GOSUB 900: GOTO 2000

460 IF H=0 THEN GOSUB S500: GOTO 2000

470 GOSUB 600: GOSUB 700: GOTO 2000

480 IF H=K THEN GOSUB 700: GOTO 2000

490 GOSUB 800: GOTO 2000

500 FOR A=1 TO 4: FOR C=5 TO 8

510 IF CCA,11=-CLC,1] AND CCA,21=CCC,2]1 AND CCA,31=CLC, 31 OR
CCLA,131=CL[C,1] AND CLA,21=-CLC,2]1 AND CCLA,31=CLC,3] OR CLA,1
1=CCC, 1] AND C[A,21=CLC,2] AND CCA,31=-CLC,3] THEN GOSUB 530
520 NEXT C,A: RETURN

S30 IF C=5 THEN GOSUB 1600: GOTO SSO

540 GOSUB 1500

162

S50 RETURN

600 FOR A=1 TO 4: FOR C=5 TO 8

610 IF C<>A+4 AND C[A,11=—1 THEN GOSUB 1400: GOTO 630

620 IF C<>A+4 THEN GOSUB 1500

630 NEXT C,A: RETURN

700 FOR A=S TO 7: FOR C=A+1 TO 8

710 IF CCA,11=-1 AND CLC,11=-1 THEN GOSUB 1400: GOTO 730

720 GOSUB 1500

730 NEXT C,A: RETURN

B0O FOR A=1 TO 8: FOR C=9 TO 20

810 IF (CC[C,11=C[A,11 OR CIC,131=0) AND (C[C,23=CC[A,21 OR CIC

,21=0) AND (CI[C,31=CL[A,3] OR CL[C,33]=0) THEN GOSUB 830

820 NEXT C,A: RETURN

830 IF A=3 OR A=5 OR A=4 AND H<>0 OR C=19 OR C=20 THEN GOSUB
1600: GOTO 850

840 GOSUB 1500

850 RETURN

900 FOR A=9 TO 20 STEP 2: C=A+1

910 IF CCA,11=—-1 THEN GOSUB 1600: GOTO 930

920 GOSUB 1500

930 NEXT A: RETURN

1200 FOR A=1 TO 4: GOSUB 1300: NEXT: RETURN

1210 FOR A=S TO 8: GOSUB 1300: NEXT: RETURN

1220 FOR A=9 TO 20: GOSUB 1300: NEXT: RETURN

1300 FOR B=1 TO 3: CL[A,B1)=A[A,3,Bl: NEXT: RETURN

1500 PLOT ACA,131,ACA,21: DRAW ALC,131,ALC,2]: RETURN

1600 IF ACA,11=ALC,1] THEN 1670 ELSE IF ALA,21=ALC,2] THEN 1

630

1610 P=(ALC,21-ALA,21)/ (ALC,11-ALA, 1)

1620 IF ABS(P)<1 THEN 1640 ELSE P=1/P: GOTO 1680

1630 P=0

1640 1=10%SGN(ALC,11-ALA, 11) /SER(1+P*P)

1650 FOR @=0 TO (ACC,11-ACA,11)/1

1660 PLOT ACA,11+@*I,ACLA,2]1+@*I*P: DRAWR O0.4%1,0.4%I%P: NEXT

: RETURN

1670 P=0

1680 I1=10%SGN(ALC,21-ALA,21) /SER (1+P*P)

1690 FOR @=0 TO (ACLC,21-ACA,21)/1

1700 PLOT ACLA,11+@*I*P,ALA,21+Q*I: DRAWR O.4%I*P,0.4%I: NEXT

: RETURN

2000 TAG: MOVE 225,380: PRINT Z$;

2010 IF INKEY$="" THEN 2010

2020 TAGOFF: GOTO 20

163

Z

O N NKEWN —

C[20,3] A[20,3,3]

11 HKL KLH
i HRL KLH
i1 HKL KLH
i HKL KLH
il HKL KLH
11 HKL KLH
111 HKL KLH
11 HKL KLH
101 HKL HKL
101 HKL HKL
101 HKL HKL
101 HKL HKL
011 KLA KLH
011 KLH KLH
0i1 KLH RLH
011 KLH KLH
110 LHK LHK
110 LHK LHK
110 LHK LHK
1o LHK LHK
Cubic Crystal 23 Class

LHK
LHK
LHK
LHK
LHK
LHK
LHK
LHK
LHK
LHK
LHK
LHK
HKL
HKL
HKL
HKL
KLH
KLH
KLH
KLH

Control Array and Face Triplet Matrix

164

HKL

HHH

GOSUB 800
(Dodecahedron)
(Tetrahedrite)

GOSUB 700

(Tetrahedron)

H=K?

HKL

OOL

OKL
GOSUB 800 GOSUB 600
GOSUB 900 GOSUB 700 GOSUB 500
Ullmannite) (Three—faced .
(Pyritohedron) Tetrahedron) (Cube)

Fig. 4.1 Cubic Crystal 23 Class Face Separation Chart

165

Fig. 4.3 Cubic Crystals
23 CLASS
{211} Form Three faced Tetrahedron

Fig. 4.4 Cubic Crystals
23CLASS
{210} form Pyritohedron

166

5. EVALUATION OF A DETERMINANT BY LAPLACE
DEVELOPMENT

A determinant is a mathematical shorthand for the sum and difference of a
set of products.

all al2| =all*a22—a21*al2
a2l a22|

and more complicated determinants can be derived by expansion so that

all al2 al3 =all* [a22 a23|—al2* [a21 a23|+al3* |a21 a22
a2l a22 a23 a32 a33 a31 a33 a3l a32
a31 a32 a33

etc..

As the number of terms is given by factorial N, the size of the printout
rapidly increases with N. The different product terms contain all the
permutations of the determinant terms and lines 190—290 are the Permute
routine. However, the order in which they are generated requires that the
sign be changed for every term which is factorial of the odd numbers (i.e.
1,6,120,5040 etc.). Lines 120—160 work out the factorials and lines 250/260
check whether the sign needs changing.

The individual terms and their value are built up in lines 220—240 but the
program is a good example of how not to solve a mathematical problem by
choosing the ‘obvious’ method. In terms of execution time the matrix
inversion method detailed elsewhere is much more efficient. However, as
the routine below only contains products and additions it will always work
no matter how ill—conditioned the determinant is.

The defined function in line 40 is for making the print format packed and
NLS$ isa new line operation.

10 REM Evaluation of a determinant by Laplace development
20 DEFINT B,C,M,N,P,Q,S5,T,X,Y,Z

30 DEF FN P$(P)=MID$(STR$(P),2): NL$=CHR%(10)+CHR% (13)

40 SYMBOL AFTER 208: H=HIMEM+1: POKE H,O0

S50 CLS: GOSUB 400:

60 LINE INPUT "Enter the order of the determinant " ;A$: GO
SUB 340: IF Z=1 THEN Z=0: GOTO &0

70 DIM DCN,NJ: PRINT: FOR P=1 TO N: FOR @=1 TO N

80 PRINT "a"+FN P$(P)+FN P$(Q);"="3: INPUT DLCP,Q1: NEXT Q,P

167

90 IF N=1 THEN CLS: GOSUB 400: PRINT "The determinant is all
=":DC1,1]: GOTO 390

100 M=N-13 Y=1+INT(M/2)

110 DIM ACM]1,BCM]1,FCN1,BGLY]

120 B=3: D$="": D=0: S=0: T=1

130 FOR P=1 TO N: FL[Pl=P: NEXT P

140 FOR A=1 TO Y: GL[Al=2

150 FOR C=3 TO B: GLAJ=GLAlI*#C: NEXT C

160 B=B+2: NEXT A

170 CLS: GOSUB 400

180 PRINT "The determinant is";NLS$

190 FOR P=1 7O M: ALCPJI=1: BC[PJ]=N-P+1: NEXT P

200 FOR P=1 TO M: IF ALPI>BLP] THEN ALP]=1

210 NEXT P: A=1: A$=""

220 FOR P=1 TO N: A=A*DLP,FLPll: A$=A$+"a"+FN P$(P)+FN P$ (FL
P1)s NEXT P

230 D=D+T#A: D$=CHRS$ (44-T)+A%$: S=S+1: T=-T

240 PRINT D$;

250 IF N>3 THEN GOSUB 300

260 FOR X=M TO 1 STEP -1

270 Z=F[X1: FOR P=X TO M: FL[PI=F[P+11: NEXT P: FINl=Z

280 ACX1I=ACX]+1: IF ACX1I>BLX] THEN NEXT X: GOTO 380

290 GOTO 200

300 FOR P=1 TO Y: IF INT(S/GLP1)=S/GLP] THEN T=-T

310 NEXT P: RETURN

320 IF A$="" OR VAL (A$)=0 THEN Z=1

330 RETURN

340 T=13: IF LEFT$(N$,1)="+" THEN T=2

330 FOR P=T TO LEN(A$): IF MID$(A%,T,1)<>"0" AND MID$(A$,P,1
) >="0" AND MID$(A$,P, 1)<="9" THEN 370

360 Z=1: RETURN

370 NEXT P: N=VAL (A$): RETURN

380 PRINT: PRINT : PRINT "Det D="3;D

390 END

400 LOCATE 6,2: PRINT "DETERMINANT DISPLAY AND VALUE";NL$;NL
$

410 LOCATE 6,3: FOR P=1 TO 29: PRINT CHR$(208);: NEXT

420 PRINT: RETURN

168

EXAMPLE

DETERMINANT DISPLAY AND VALUE

Enter the order of the determinant 4

-alla22a34ab3
+a11a24a32a43
+al2a23a31abé
-al2a21a33ab44
-al13a24a32a41
+al13a22a34ab1
+al4a21a33a42
-al4a23a31a42

D(1,1)=2 =2
D(1,2)=? &4
p(1,3)=2 7
D(1,4)=7 3
D(2,1)=7 8
D(2,2)=? 2
pD(2,3)=? -9
D(2,4)=2 5
D(3,1)=2 -4
D(3,2)=? 6
D(3,3)=7 8
D(3,4)=7 &
D(4,1)=27 2
D(4,2)=? -9
D(4,3)=2 3
D(4,4)=7 8
The Determinant is
+al11a22a33ab4
-al1a23a32a44
-al12a23a34aé
+a12a24a33aé
+a13a24a31a4?2
-a13a21a34ab?2
-al4a21a32a43
+al4a22a31a43
Det D= 2140

+a11a23a34a4?2
-al1a24a33a42
-al2a24a31a43
+al12a21a34ab3
+al13a21a32a4é
-al3a22a31a4é
-al4a22a33a41
+a14a23a32a41

169

6. TRIANGLE

This program uses the geometrical relationships in a triangle to calculate the
unknown sides and angles given that you have three known facts including
the length of one side. To check that the triangle is in agreement with your
data, it will also draw a scaled and labelled drawing if you wish. It was
developed to help with engineering drawings.

Lines 30—80 are the sine and cosine rules with FN A and FN C being arccos
and arcsin respectively.

INS$ is sliced for the INPUT statements 510, 610, 710 ctc..

NLS$ isa new line used in PRINT statements.

Lines 190—310 are the MENU

Lines 340—370 and 400—460 give the complete data PRINT presentation.
(T=3represents the ambiguous case where two answers are possible)

SUB’S 500, 600, 700, 800, and 900 are the INPUT routines.

SUB 2000 is the heading and underline

SUB 2040 is for holding

SUB 2070 is a number filter for 1 -5 from the MENU

SUB2100is “OK to proceed?”.

SUB 2120, 2160, 2180, 2200 and 2220 are data checks to ensure that the input
data can form a triangle e.g. the sum of the shorter two sides must be greater
than the third one etc..

SUB 2400 is the “Invalid Data” statement with FAIL as the carrier. The rest
of the program is to draw a scaled triangle. Except for the case when T=3
and VERT>320, the longest side is always drawn as a horizontal line of fixed
length, S. Note the use of 0.91 for the screen aspect ratio to get the shape
correct.

Lines 2270—2290 find the longest side and lines 2300—2350 then relabel the
sides and corners.

Lines 2390—2400 draw the other two sides and if T=3, line 2410 draws the

extra line to make two triangles.

The remaining lines 2410—2570 are for labelling the sides and angles at the
right place on the screen using the “TAG PRINT’ subroutine represented by
SUB 2700.

170

The subroutine returns to line 490 and then to 180 for the next triangle after
‘Press any key to continue’.

10 REM Triangle

20 DEG: DIM T4[S]1: SYMROL AFTER 208: HM=HIMEM+1: FOKE HM,0
30 DEF FN Z(A,B,C)=(E*B+C*C~-A*A) /2/R/C

40 DEF FN A(A)=90-ATN(A/SAR (1-A*A))

S0 DEF FN B(A,Y,C)=S0R (A*A+C*C-2#A*C*xCOS(Y))

&0 DEF FN X(A,Y,B)=A*SIN(Y)/B

70 DEF FN C(C)=ATN(C/SER(1-C*C))

80 DEF FN D(A,Y,X)=A*SIN(Y)/SIN(X)

90 DEF FN U(U$)=—A% (U$="A")-B* (U$="B")-Cx (Us="C")

100 DEF FN V(U$)=—X* (Us="X")=Y* (Us="Y")-Z* (Us="Z")

110 IN$="INPUT a, b and c and the angles X, Y and Z (in degr
ees)"

120 NL$=CHR% (10)+CHR$ (13): NL$=NL$+NL$: D$=" Degrees"

130 CLS: GOSUB 2000

140 FRINT " Triangles are defined if three of the six featu
res (three sides plus three angles) are known provided th
at at leastone is a side."

150 FRINT " In one case -two sides and one angle- two trian
gles are possible if the angle is not the included one."

160 FRINT * This program finds the values of the unknown a
ngles and sides, and draws the triangle"

170 GOSUR 2040

180 CLS: GOSUB 2000

190 FRINT Choose the combination of known information"
200 Ts$L11=" 1. Three Sides"

210 TsrL21=" 2. Two sides and the Included Angle"

220 T$C31=" 3. Two Sides and the Non-Included An
glell

230 TsC41=" 4. One Side and Two Angles (both ad
jacent)

240 T+[SI=" S. One Side and Two Angles (ane ad
jacent)

250 FOR F=1 TO S:
260 LOCATE 1,22:
01

270 GOSUB 2070
280 IF FAIL THEN 180

290 T=VAL(T$L01)

300 ON T GOSUB S00, 600,700,800, 900

310 5=370

320 IF T=3 THEN 390

330 CLS: GOSUB 2000: LOCATE 1,4

340 FRINT "a=";A;M$;NL$; "b=";B;M$;NL$; "c=";C;M$;NL$; "X=";USI
NG "###. #4885 X;

IS0 FRINT D$;NL$; "Y=";USING "###. ##a8";v;

360 PRINT D$3NL$;"Z=";USING "###. ###4";27;

370 FRINT D$

380 C2=0: VERT=0: GOTO 490

390 CLS: GOSUB 2000: LOCATE 1,4

LOCATE 1,3%F+4: FRINT T$L[F1: NEXT F
I

LINE INFUT "Type in 1, 2, 3, 4, or 5§ ";Ts$C

171

400 FPRINT “"a="3;A;M$;NLS$; "b="3B;M$;NLS$; "c1="Cl;M$;NL$;"c2=";C
2;M$

410 PRINT: PRINT "X1=";USING "###.##H##";X1;

420 PRINT D$;NL%; "X2="3USING "###. H###"; X2;

430 PRINT D$;NL$;"Y=";USING "###.H#HHH#";Y;

440 PRINT D$;NL%;"Z1="USING "###.H####";71;

450 PRINT D$;NL$;"Z2="USING "###. ###4#";22;

4460 FRINT D$

470 C=C1+C2* (SGN(C2)=-1): X=X1
480 SwW=A: A=B: B=SW: SW=X: X=Y
20/VERT

490 GOSUB 2040: GOSUB 2260: GOSUE 2040: GOTO 180

500 CLS: GOSUB 2000

510 PRINT: FRINT LEFT$ (IN$,16)

520 GOSUB 1000: GOSUB 1010: GOSUB 1020: GOSUB 1060

530 GOSUB 2100: IF FAIL THEN S00

540 H=A: K=B: L=C: GOSUB 2120: IF FAIL THEN 500

S50 X=FN A(FN Z(A,B,C)): Y=FN A(FN Z(B,C,A)): Z=FN A(FN Z(C,
A,B))

560 RETURN

600 CLS: GOSUB 2000

610 FRINT: FRINT LEFT$ (IN%,8)+MID$ (IN$,15,7)+MID$(T$L21,22,1
2)+RIGHT$(T$(21,6)+" Y "+RIGHT$(IN%,12)

620 GOSUB 1000: GOSUE 1020: GOSUB 1040: GOSUB 1060

630 GOSUB 2100: IF FAIL THEN 600

640 GOSUB 2160: IF FAIL THEN 600

650 B=FN B(A,Y,C): X=FN C(FN X(A,Y,B))

660 IF A*COS(Y)>C THEN X=180-X

670 Z=180-X-Y

680 RETURN

700 CLS: GOSUB 2000

710 FRINT: FRINT LEFT$ (IN%,10)+MID$ (IN$,11,5)+MID$(THL[Z1,22,
16)+RIGHT$(T$L31,6)+" Y "+RIGHT$ (INS, 12)

720 GOSUE 1000: GOSUBR 1010: GOSUB 1040: GOSUB 1060

730 GOSUB 2100: IF FAIL THEN 700

740 GOSUR 2180: IF FAIL THEN 700

750 X1=FN C(FN X(A,Y,R)): Z1=180-X1-Y: Z2=X1-Y

760 X2=180-X1: C1=FN D(R,Z1,Y): C2=FN D(E,Z2,Y)

770 RETURN

800 CLS: GOSUB 2000

810 FRINT: FRINT LEFT$ (IN$,7)+MID$ (IN$,17,16)+MID% (IN$,36)
820 GOSUB 1000: GOSUB 1040: GOSUB 1050: GOSUB 1060

830 GOSUB 2100: IF FAIL THEN 800

840 GOSUB 2200: IF FAIL THEN 800

850 X=180-Y-Z: B=FN D(A,Y,X): C=FN D(A,Z,X)

860 RETURN

200 CLS: GOSUB 2000

910 FPRINT: FPRINT LEFT$ (IN$,7)+MID$ (IN$,17,17)+RIGHT$ (IN%,19)
920 GOSUB 1000: GOSUB 1030: GOSUB 10S0: GOSUB 1060

9?30 GOSUB 2100: IF FAIL THEN 900

240 GOSUB 2220: IF FAIL THEN 900

?30 Y=180-X-Z: B=FN D(A,Y,X): C=FN D(A,Z,X)

960 RETURN '

1000 LOCATE 5,8: INFUT "a=";A: RETURN

1010 LOCATE S,10: INFUT "b=";E: RETURN

Z1: VERT=A*SIN(Y)*370/C 1o
SW: IF VERT>320 THEN S=S*3

172

1020
1030
1040
1030
1060
2000
2010
2020
2040
2030
2060
2070
2080
2090
2100

LOCATE S5,12: INPUT "c="3;C: RETURN

LOCATE 5,14: INPUT "X="3;X: RETURN

LOCATE S,16: INPUT "Y="3;Y: RETURN

LOCATE S,18: INFUT "Z="3;Z: RETURN

LOCATE S5,20: INPUT "Unit of length";M#$: RETURN
LOCATE 146,1: PRINT "TRIANGLE"

LOCATE 16,2: FOR F=1 TO 8: PRINT CHR$(208);: NEXT P
RETURN

LOCATE 1,25: PRINT "Press any key to continue"

IF INKEY$="" THEN 2050

RETURN

FAIL=0: IF T4[O01="" THEN FAIL=-1: RETURN

IF T#[01>="1" AND T#[01<="5" THEN RETURN

FAIL=-1: RETURN

FAIL=0: LOCATE 1,23: PRINT " OK? (y/n) "3z INPUT K

$: K$=UPPER$ (K$): IF K$<>"Y" THEN FAIL=-1

2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240

RETURN

FAIL=0: IF H<K THEN SW=H: H=K: K=SW

IF K{L THEN SW=K: K=L: L=SW: GOTO 2120
IF H<K+L THEN RETURN

GOSUB 2240: RETURN

FAIL=0: IF Y<180 THEN RETURN

GOSUB 2240: RETURN

FAIL=0: IF B>A*SIN(Y) THEN RETURN
GOSUB 2240: RETURN

FAIL=0: IF Y+Z<180 THEN RETURN

GOSUB 2240: RETURN

FAIL=0: IF X>0 THEN RETURN

GOSUB 2240: RETURN .

LOCATE 27,8: FPRINT "Invalid Data": GOSUB 2040: FAIL=-1:

RETURN .
2260 CLS: PLOT 135,48: DRAWR S,0: IF VERT>320 THEN P=2: GOTO
2300

2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480

IF A>=B AND A>=C THEN F=0

IF B>=C AND B>=A THEN FP=1

IF C>=A AND C>=B THEN F=2

H$=CHR%$ (65+F) : H=FN U(H$)

K$=CHR®$ (66+P+ (P>1) #3): K=FN U(K$)

L$=CHR$ (67+P+ (P>0) #3): L=FN U(LS$)

G$=CHR$ (88+P) : G=FN V(G%)

I$=CHR$ (89+P+ (P>1)#3): I=FN V(I$%$)

J$=CHR$ (P0+P+ (P>0)*3): J=FN V(J%)

SCY=S/H: SCX=SCY#*0.91

CJ=SCY*#COS(J): CI=SCY*COS(I)

SJI=SCX*#SIN(J): SI=SCX*SIN(I)

DRAWR -K*CJ,K#*SJ

DRAWR —L%*CI,—L%*SI

IF T=3 THEN FLOT 135+S-K#CJ,48+K#SJ: DRAWR —K#*CJ,~-K#SJ
E=260: F=44 -
TEXT$=H$+"="+LEFT$ (STR$ (H) ,7): GOSUB 2700
E=100+(S6GN(C2)=—1) #(C2%S/C): F=56+12%(SGN(C2)=-1)
TEXT$=I%+"=": GOSUB 2700

E=80+ (SGN(C2) =—1) * (C2#S/C-10): F=40+12%(SGN(C2)=-1)
TEXT$=LEFT$ (STR%(I),7): GOSUB 2700

E=510: F=56

173

2490
2500
2510
2520
253

2540
23550
2560
23570
2580
2590

TEXT$=J$+"=": GOSUB 2700

E=S00: F=40

TEXT$=LEFT$ (STR$(J),7): GOSUE 2700
E=480-K*CJ: F=b64+kK*SJ

TEXT$=G$+"="+LEFT$ (STR$(B),7): BOSUB 2700
=550-0.,5%K*¥CJ: F=56+0.5%K*SJ

TEXT$=K$+"="+_EFT$ (STR$ (K),7): GOSUB 2700
=30+ (SGN(C2) =—1) ¥2¥C2#S/C+0. S*L*¥CI: F=56+0.5*L*SI

TEXT$=L$+"="+LEFT$ (STR$ (L) ,7): BOSUE 2700
E=260: F=390: TEXT$="TRIANGLE": GOSUB 2700

PLOT 260,370: DRAWR 128,0

2600 RETURN

2700 FOR @=1 TO LEN(TEXT$): Z$=MID$(TEXT$,0,1)
2710 MOVE E,F: TAG

2720 PRINT Z%;

2730 E=E+16+16%(Z$=" "): NEXT @

2740 TABOFF: RETURN

EXAMPLE

TRIANGLE

INPUT a, ¢ and the Included Angle Y(in Degrees)

a=? 25
c=? 37
y=? 45

Unit of Length? mm 0K? (y/n)

a= 25mm

b= 26.1887849 mm
c= 37 mm

X= 42.4549 Degrees
Y= 45.00008 Degrees
1= 92.5451 Degrees

Press any key to continue

Fig 6.1 Screen Illustration of TRIANGLE

174

7. 2—3 TREE STRUCTURE

A 2-3treeis a tree structure in which every non—zero vertex has either two
or three branches. The stored information is carried on the leaves and to find
the appropriate leaf each vertex from a leaf to the root carries two additional
pieces of information. Reference to the diagram makes this easier to follow.
To find a particular leaf you ask two questions at each vertex starting at the
root.

1. Is the leaf value less than or equal to the lefthand number?.
If so, go down the left branch.

2. If not, is the leaf value less than or equal to the righthand
number?. If so, go down the middle branch. Otherwise go down the
righthand branch. '

To fulfil the 2 or 3 rule, it is easy to show that the maximum number of leaves
is 31 N and the minimum number 2 1 N where N is the height of the tree.
The following table shows the range of capacities for each size of tree.

Height of tree Minimum Maximum
0 1 1
1 2 3
2 4 9
3 8 27
4 16 81
5 32 243
6 64 729
7 128 2187

Hence with a 2—3 tree of height 7 you can find one leaf out of 2187 with a
number of questions which varies from 7 to 13 (weighted average 11) of the
type discussed plus 8 questions. “Is this a leaf?” — a total of 19 questions.

With a symmetrical binary tree holding 2047 items the minimum height
would be 11 and you would need to ask between 1 and 21 questions (Is it this
vertex?. If not, isitless?). (Average also 19.)

The problem which arises with the binary tree is that adding or removing
members produces an unsymmetrical tree particularly if the entries happen
to be in order (see ‘Binary Search Tree’) and then the access time becomes
significantly different from the best value which is given by a symmetrical
tree. The access time for a 2—3 tree is constant and depends only on the

175

initial tree size.

The flowchart shows the general construction of the program based on a
nine choice menu. Following this chart, the program first finds if the
program has already been used to establish a data base and if so, asks for it to
be INPUT into the computer (SUB 300). If not then a new tree is formed by
SUB 5000. This establishes the minimum size of tree required (line 5020)
and then, utilising the ‘Variable Size Nested Loop*, finds the location of the
storage positions to fulfil the 2 or 3 rule. The variables B1, B2 and B3 change
the end values of the K loop from 0 to 1 so that at each vertex the loop runs
from —1 TO +1 (three branches) or —1 TO 0 (two branches) as necessary.
The decision tree values are stored in the L and M arrays (left and middle
respectively). The last part of the L array (which is bigger than the M array),
holds the data to be stored. This is INPUT in line 5150, sorted by ‘Heapsort’
in SUB 1000 and loaded into L in line 5170.

The program then runs under Menu control (iine 200, to which you should
return in case of difficulty). Most of the subroutines are straightférward with
the exception of 500, 2000 and 3000.

SUB 500 generates the H array which is needed when reorganising the tree
in 2000 and 3000. The H array contains the storage positions at spilloveri.e.
forMN+1 values when stored as close as possible within the 2,3 rules. The
table gives the first S0 values.

SUB 2000 deals with adding a new value to the existing tree. First of all it
finds the value of V for the father (SUB 1800) and three cases are possible

1. The father has 2 sons in which case a third one can be fitted in (SUB
2300).

2. The father already has 3 sons in which case a father with only 2 sons has to
be found (loops 2040 and 2070) at position A. The intervening
sons are then nudged across to make room for the new entry (lines 2100—
2150 for left and lines 2170—2220 for right shift).

3. No father can be found with only 2 sons. In this case the tree has to be
reorganised in SUB 2500 to use some of the vacant leaves and branches
but still conforming with the 2 or 3 rule. This is done by swapping vacant
positions with righthand entries in line 2630 using the function S which is
derived from the spillover information in the H array.

After reorganisation, the first two options are tried again to obtain a suitable
location. Failure to do so only happens if the tree is full, line 2560

SUB 3000 follows a similar procedure to remove an entry.

176

The three cases are

—

. The father has 3 sons (SUB 3300)

2. The father only has two sons and a father with 3 sons is found and the sons
between the two locations are moved right or left (lines 3110—3220)

3. No father has three sons in which case the tree is reorganised (SUB 3500)

and cases 1 or 2 will apply unless there are less than 2 T N entries (N is the

height of the tree)

Note the use of CHR$(34) for inverted commas in 4430 but WRITE could
have been used.

The program can be adapted to store string information or if each piece of
information has a unique number this can be stored and used as a pointer to
the main string storage array. (See ‘Label’)

The D,L and M arrays need to be string arrays, X changed to X$ and the

(73}

various zeros used in comparisons changed to “”.

9 REM 2-3 Tree Structure

10 DEFINT A,B,F-K, N,P,Q,V,Z

20 DEF FN L(L)=INT(3"L-0.99999991)

30 DEF FN K(K)=1+K+FN L(K)/2

40 DEF FN S(A,B)=H(A)-H(1+B)+1

50 DEF FN A$(A)=MID$(STR$(A), 2)

60 NL$=CHR$(10)+CHR%$(13): DIM M$(91]

70 M$[1l1="Create a new Z-3 tree"

80 M$[2]1="Find a member"

90 M$[31="Find min/max and number of members"

100 M$[(41="Add a new member"

110 M$[51="Remove an existing member"

120 M$[h6]1="Print out a list of members"”

130 M$[71="Save the data on disc"

140 M$(81="Save the program"”

150 M$[91="Finish"

160 WINDOW #1,1,40,23,25: CLS: GOSUB 1600

170 PRINT " This program is designed to create a 2-3 tree

storage structure using a disc unit for the storage and ret
rieval of data."

180 PRINT * If you have already created the tree and store
d it then press"+CHR$(34)+"Y and <ENTER)>"+CHR$(34)+"else ju
st "+CHR$(34)+"<ENTER>"+CHR$(34)

190 LINE INPUT K$: K$=UPPER$(Ks$): IF K$="Y" THEN GOSUB 300 E
LSE GOSUB 5000: GOSUB S00

200 CLS: GOSUB 1400

210 FOR P=1 TO 9: LOCATE 2,2+2#P: PRINT P;CHR$(8);". ";Ms$(P]
: NEXT

220 LOCATE #1,1,1: PRINT #1, "Type in your choice 1-9";

230 LOCATE 25,23: INPUT M$[O0l: GOSUB 1650

177

240

IF FAIL THEN 200

250 K=VAL(M$[01)

260 ON K GOSUB 4700,4500,4000,2000,3000,
270 GOTO 200

299 REM Load the data from disc

300 CLS: GOSUB 41600: PRINT "Is the disc
the stored data (Y/N)?7";NLS$

310 IF INKEY$<{>"Y" AND INKEY$<{>"y" THEN
320 INPUT “Name of data file"; TREE$

330 OPENIN TREES$

340 INPUT #9,N,M: AL=FN L(N+1)/2: AM=FN
AM]

350 FOR P=1 TO AL: INPUT #9,LL[PJ]: NEXT:
360 FOR P=1 TO AM: INPUT #9,M[P]: NEXT:
370 CLOSEIN

380 GOSUB 500

390 RETURN

499 REM Deriving the H array

500 NH=FN K(N): DIM HI[NH]: H[11=1

510 I=0: J=0: K=1: Y=1: Z=-1

520 FOR P=1 TO FN K(N-1)

530 IF HIK1=9 THEN I=1: Y=7: J=0: Z=1
540 FOR @=-1 TO -(I>0)

550 IF HIP1<>0 THEN HLK+11=3#HI[P1+0: K=K
560 NEXT @

570 IF J<3#FN L(Z) THEN 600

580 I=0

590 NZ=FN L(Z): IF P>3 THEN IF HI[Y+3#NZ+
T=0: Y=Y+3#NZ+4: Z=Z+1

600 NEXT P

610 RETURN

999 REM Heapsort

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1499
1500

FOR P=INT(M/2) TO 1 ETEP -1: R=P
S=R+R: T=6+1

IF DI[R1<D[(S]1 THEN GOSUB 1170: GOTO 1
IF T<=M THEN IF DIRI<DIT] THEN GOSUE
GOTC 10460

IF R<=M/2 THEN 1010

NEXT P

FOR P=M TO 3 STEP -1: SW=D[C11: DI11=
S=R+R: T=5+1

IF DCLR1I<DILS] THEN GOSUE 1150: GOTO 1
IF T<P THEN IF DI[RI<DLT] THEN GOSUB
GOTO 1130

IF R{=(P-1)/2 THEN 1080

NEXT P

SW=DC11: DC11=DC2): DC21=SW: RETURN
IF T>=P THEN 1190

GOTO 1180

IF T>M THEN 1170

IF DISI<DILT] THEN 1200

SW=D[R1: DI[R]I=D[S]: DI[S1I=SW: R=R+R:
SW=DCR]: DCR1I=DCT1: DI(T)I=SW: R=R+R+1
REM Number

FOR H=N-1 TO 0 STEP -1

178

4600,4100,4300,4400

unit ready to INPUT

310
L(N)/Z: DIM L[AL1], ML

INPUT #9,SMALL
INPUT #9,LARGE

+1: J=7+1

41/HLY1=3 THEN I=1:

050
1200: GOTO 1050

DIP1: DI[P1=SW: R=1

120
1200: GOTO 1120

RETURN
¢ RETURN

1510
1520
1530
1540
1550
1560
1570
1580
1590
1599
1600
1610
1620
1649
1650
1650
RN
1670
1699
1700
1710
0SUB
1720
1730
1740
0SUB
1750
1799
1800
1810
1820
1830
1840
1850
1860
1870
1999
2000
0
2005
2010

FOR V=FN L(H)/2+1 TO FN L(H+1)/2

T=H: VL=3#V-1: VM=VL+1

IF T=N-1 THEN 1570

VL=3#VL-(L[3#VL+11>0)

VM=3% VM- (LI[3*VM+1120)

T=T+1: GOTO 1530

LCVI=L[VL]: MIV]I=LLVM]

NEXT V,H

RETURN

REM Title

LOCATE 11,2: PRINT "2-3 TREE STRUCTURE": LOCATE 11,3
FOR P=1 TO 18: PRINT CHR$(208);: NEXT: PRINT

RETURN
REM M$[01 test
FAIL=0: IF M$[{0]="" THEN 1670

IF LEN(M$[L0]1)=1 AND M$[01>="1" AND M$[01<{="9" THEN RETU

FAIL=-1: RETURN

REM Tally of members

M=M+1: SMALL=0

IF M=3~N THEN PRINT "Tree structure full": LARGE =-1: G
4750

RETURN

M=M-1: LARGE=0

IF M=2~N THEN PRINT "Tree at minimum size": SMALL=-1: G
4750

RETURN

REM Member check

V=1: H=1: MEMBER=0

IF H{N THEN GOSUB 1850: H=H+1: GOTO 1810

V3=3+V

IF X=L[V3-1] OR X=LC[V3] OR X=L[V3+1] THEN MEMEBER=-1
RETURN

IF X{=L[V]l THEN V=3#V-1: RETURN

IF X<{=M[V] THEN V=3#V: RETURN

V=3#V+1: RETURN

REM Addson

CLS: GOSUB 1600: INPUT "New Member";X: IF X<{=0 THEN 200

IF LARGE=-1 THEN PRINT "Tree Full": GOSUB 4750: RETURN
GOSUB 1800: IF MEMBER THEN PRINT "Already a member": GO

SUB 4750: RETURN

2020 IF LIV1<>0 AND L[3#V+11=0 THEN GOSUB 2300: GOSUB 1500:
GOTO 1700

2030 GOSUB 2350

2040 FOR P=FN L(N-1)/2+1 TO V-1

2050 IF LIP]<>0 THEN IF LI[3#P+11=0 THEN A=P: GOTO 2100

2050 NEXT P

2070 Z=Z+1: IF V+1>FN L(N)/2 THEN 2500 ELSE FOR P=V+1 TO FN
L(N)/2

2080 IF LIP1<>0 THEN IF L[{3#P+11=0 THEN A=P: GOTO 2170

2090 NEXT P: GOTO 2500

2100 A=3#A+1: IF A=Z THEN L[Al=X: GOTO 2230

2110 B=A+1

2120 IF B<Z THEN IF L[E]1=0 THEN B=B+1: GOTO 2120

179

2130 LLAI=L[B1: IF LCBI<>0 THEN A=B

2140 IF B<{Z THEN GOTO 2110

2150 LrAl=X

2160 GOSUB 1500: GOTO 1700

2170 A=3#A+1

2180 EB=A-1

2190 IF B>Z THEN IF LIB1=0 THEN B=B-1: GOTO 2190

2200 LCAl=LI[B]1: IF B>=Z THEN A=B

2210 IF B>Z THEN 2180

2220 LIE1=X

2230 GOSUB 1500: GOTO 1700

2299 REM Case where father has only two sons

2300 V3=V#3

2310 IF X<=L[V] THEN LIV3+1]1=LI[V3]): LIV31=L[V3-1]: L[V3-11=X
: RETURN

2320 IF X<=MI[V] THEN L(V3+1)=L[V3]: L{V3l=X: RETURN

2330 LIV3+11=X: RETURN

2349 REM Finding Z

2350 V3=V#3: IF LIV1=0 THEN Z=V3-1: RETURN

2360 IF X<L[V3-11 THEN Z=V3-2: RETURN

2370 IF X<L[V3] THEN Z=V3-1: RETURN

2380 IF X<L[V3+11 THEN Z=V3: RETURN

2390 Z=V3+1: RETURN

2499 REM Reorganising the tree

2500 FOR H=N-2 TO 0 STEP -1

2510 FOR P=FN L(H)/2+1 TO FN L(H+1)/2

2520 V=P

2530 IF LI[V1=0 THEN 2550

2540 IF L[3#V+11=0 THEN GOSUB 2400: GOSUB 1500: GOSUB 1800:

GOTO 2020

2550 NEXT P

2360 NEXT H: PRINT "Adding this member would make the tree o

ut of memory": GOSUB 4750: LARGE=-1: RETURN

2600 A=N-H-1: A1=2#(FN L(A)+1): SA=FN K(A)

2610 IF HCN THEN V=3#V+1: H=H+1: GOTO 2610

2620 V1=V-Al: V1K=Vi-SA-1: FOR P=FN K(A+1) TO FN K(A)+1 STEP
-1: V1S=V1+FN S(P,SA):

2630 SW=L[V1S): LIV1S1=L[VA1K+Pl: LI[V1K+Pl=SKH

2640 NEXT P: RETURN

2999 REM Removeson

3000 CLS: GOSUB 1600: INPUT "Which entry would you like to r
emove"; X: IF X<=0 THEN 3000

3010 IF SMALL=-1 THEN PRINT "Tree at minimum size": GOSUB 47
S50: RETURN

3020 GOSUB 1B00: IF NOT MEMBER THEN PRINT "Not a member": GO
SUB 4750: RETURN

3030 IF LI{3#V+11<>0 THEN GOSUB 3300: GOSUB 1500: GOTO 1730
3040 GOSUB 3450

3050 FOR P=FN L(N-1)/2+1 TO V-1

3060 IF LIPI<>0 AND LI3#P+11<>0 THEN A=P: GOTO 3110

3070 NEXT P '

3080 IF V+1>FN L(N)/2 THEN 3500 ELSE FOR P=V+1 TO FN L(N)/2
3090 IF LLP1<>0 THEN IF LI[3#P+11<>0 THEN A=P: GOTO 3170

3100 NEXT P: GOTO 3500

3110 A=3*A+1

180

3120 B=Z-1

3130 IF B>A THEN IF L[B1=0 THEN B=B-1: GOTO 3130

3140 LLZ1=LC[Bl: Z=B

3150 IF B>A THEN 3120

3160 L[EB1=0: GOSUB 1500: GOTO 1730

3170 A=3#A+1

3180 B=Z+1

3190 IF BCA THEN IF L[E1=0 THEN B=B+1: GOTO 3190

3200 L[Z1=LCBl: Z=B

3210 IF B<A THEN 3180

3220 LI[BI=0: GOSUB 1500: GOTO 1730

3299 REM Case where father has three sons

3300 IF X=L[V] THEN L[V3-11=L[V3]): LIV3]=L[{V3+1]: LIV3+11=0:
RETURN

3340 IF X=M[V] THEN L[V31=L[V3+1]: LI[V3+11=0: RETURN

3320 LIV3+11=0: RETURN

3449 REM Finding 2

3450 IF X=L[V] THEN Z=V3-1: RETURN

3460 Z=V3: RETURN

3499 REM Reorganising the tree

3500 FOR H=N-2 TO 0 STEP -1

3510 FOR P=FN L(H)/2+1 TO FN L(H+1)/2

3520 V=P

3530 IF LIV1=0 THEN 3550

3540 IF LI{3#V+11<>0 THEN GOSUB 3570: GOSUB 1500: GOSUB 1800:
GOTO 3030

3550 NEXT P,H

3560 PRINT “"Removing this member would leave too f2w members
for this size of tree“: GOSUE 4750: SMALL=-1: RETURN

3570 A=N-H-1: A1=2#(FN L(A)+1): SA=FN K(A)

3580 IF HCN THEN V=3#V+1: H=H+1: GOTO 3580

3590 Vi=V-Al: V1K=V1-SA-1: FOR P=FN K(A)+1 TO FN K(A+1): ViS
=Vi+FN S(P,SA)

3600 SW=LCV1S]: LCV1S]I=LCV1K+P): LIV1K+P1=SW

3610 NEXT P

3620 RETURN

3999 REM Number of members

4000 CLS: GOSUE 14600

4010 PRINT "Number of members is";M;NL$

4020 SM=FN L(N): PRINT "Smallest member is";LI[SM/2+11;NL$
4030 V=1: H=0

4040 WHILE H{N: V=3#V-(LI[3#V+11<{>0): H=H+1: WEND

4050 PRINT "Largest member is";L(V)

4060 GOSUB 4750: RETURN

4099 REM Save the data

4100 CLS: GOSUB 1600

4110 PRINT "Is the disc unit ready to record the data (Y/N)?
“;NLs$

4120 IF INKEY$<>"Y" AND INKEY$<>"y" THEN 4120

4130 INPUT "Name of data file"; TREE$

4140 OPENOUT TREES

4150 PRINT #9,N, M

:160 FOR P=1 TO FN L(N+1)/2: PRINT #9,L[PJ): NEXT: PRINT #9,S
ALL

181

4170 FOR P=1 TO FN L(N)/2: PRINT #9,M[P1l: NEXT: PRINT #9,LAR
GE

4180 CLOSEOUT: PRINT "OK": GOSUB 4750

44190 RETURN

4299 REM Save program

4300 CLS: GOSUB 1400

4310 PRINT "Is the disc unit ready to record the program (Y/

N)?"“; NL$

4320 IF INKEY$<>"Y" AND INKEY$<>"y" THEN 4320

4330 SAVE “23TREE"

4340 PRINT "The program saved on disc is now included in the
index. "

4370 CAT

4380 GOSUB 4750

4390 RETURN

4399 REM Finish

4400 CLS: GOSUB 1600

4410 PRINT "Do you really want to finish?";NL$

4420 PRINT "Have you recorded the data?";NL$

4430 PRINT “"Press "“;CHR$(34); "Y";CHR$(34);" for finish else
<ENTER>";: INPUT K¢

4440 K$=UPPER$(K$): IF K$="Y* THEN NEW ELSE RETURN

4499 REM Member?

4500 CLS: GOSUB 1600

4510 INPUT "Which member do you wish to check";X

4520 GOSUB 1800

4530 IF MEMBER THEN PRINT NL$;X;" is a member* ELSE PRINT NL
$;X;" is not a member"

4540 GOSUB 4750: RETURN

4599 REM List of members

4600 CLS: GOSUB 14600

4610 PRINT "The following is a list of members": PRINT

4620 FOR P=FN L(N)/2+1 TO FN L(N+1)/2

4630 PRINT LIP];

4640 NEXT P: PRINT

4650 GOSUB 47350: RETURN

4699 REM Erase arrays

4700 ERASE H,L,M

4710 GOSUB 5000: GOSUB 500

4720 RETURN

4749 REM Hold

4750 PRINT #1, "Press any key to continue"

4760 IF INKEY$="" THEN 4760

4770 RETURN -

4999 REM New 2-3 Tree

5000 CLS: GOSUB 1600: INPUT "Number of values to be stored";
M: IF M<{2 THEN 5000

5010 Y=M+1: N=-1

5020 WHILE Y>1: Y=Y/2: N=N+1: WEND

5030 V=1: Z=4: F=2~N: G=3#2~(N-1): NV=FN L(N+1)/2: NM=FN L(N
) /2

182

The above program is written specifically for the CPC-6128. Owners of the
CPC-464 will need to replace lines 299-390, 4099-4180 and 4299-4380 with
tape-handling commands.

The H Array

N H[N] N H[N] N H[N]
1 1 18 41 35 58
2 2 19 42 36 68
3 3 20 43 37 69
4 5 21 44 38 70
5 6 22 45 39 71
6 8 23 46 40 72
7 9 24 47 41 73
8 14 25 48 42 77
9 15 26 49 43 78

10 16 27 50 44 80

—_—
—

17 28 S1 45 81

12 18 29 52 46 122
13 19 30 53 47 123
14 23 31 54 48 124
15 24 32 55 49 125
16 26 33 56 50 126
17

27 34 57

183

INTRO

CREATENEW,
TREE

f

L

Crcatc
Ncw Tree

Member?

No. of
Members

Add
Member

Delete
Member

List of
Members

Save
Program

Save
Data

Finish

Fig7.12-3 Tree Menu

.|

MENU

ERASE
ARRAYS

4500

3000

&

4100

OOOO®O O

&
&

184

NEW

!

“yind 241u20 £12101pIwaul Yi UMOP K11ud 15340
243 S140qUINU pupyIY31 Y3 puv yind puvyafa) Kjprvipawiuat
241 uMOp K432 15284v] Y1 S1 12qUINU PUDYIfa] 31} VY1 JION

21NN] €7 T L3

185

INDEX

The index is compiled to refer to particular programs or subroutines which
illustrate the various uses of statements, functions and cyphers and of course

is not exhaustive.

As the subroutines are in alphabetical order, the numbers following the title
are the line numbers in the routine unless indicated otherwise (c.g.
Introduction, explanation, SUB). Reference just to the subroutine or

routine titles are general in nature.

(&H)
ABS

Adjectival Number Endings
Anagram
AND

Angles

Anglesort
Annuities
Anti—Crash Tests

Apostrophe
Arithmetic Progression
Arrays

ASC

ASCII Characters
Aspect Ratio

ATN
AUTO
Avoiding calculation errors

Background Colour
Backspacing

Binary Numbers
Binary Search Tree
Binomial Coefficients
Binomial Errors

Display File, Intro

Binomial Coefficients, Input Cubic
Crystal Form4/m3m,41-43
Subroutine

Program

Adjectival Number Endings, 1000
Anglesort

Universal Rotation, SUB Angle (1200)
Subroutine

Annuities Certain

Evaluation of a Determinant 1020, 1050 and
1110

(See REM)

Series

Matrices

Conversions, Hex. to Binary, FN H(A)
Double Size Printing, Intro
Drawinglines between points | Intro
Anglesort, 2030 and 2040

Triangle, 40 and 70

Saving Memory

2—3Tree,20FN L(L)

H.P. Arithmetic—multiplication, 1170

Display File

Data Input (Matrices or Arrays) FN BS$
Conversions, Binary to Decimal etc.
Subroutine

Pascal’s Triangle

Errors

186

Bits

Boole
BORDER
Brackets (())

Bucketsort
Bytes

CALL

CAT

Centre

Checking Data Input
CHRS$

CHR$(34)
Circles
Circular Loop
CLOSEIN
CLOSEOUT
CLS

Colon(:)
Combinations

Comma(,)

Complex Conjugate
Complex Numbers

Compound Interest
Comprehensive Filter
Computing Errors

Concatenate
Conditional Brackets
Confidence Limits
Correlation Coefficients
Control Loop
Conversions

COS

Cubic Crystals
Curly Brackets ({ })

Cycle Counter

Display File

Conditional Brackets, 20 and 30
Control Loop Simulation
Conditional Brackets
Anagram, 430

Sorting

Display File

Display File

2—3Tree, 4380

Circle

Subroutines

Anagram, 70

Triangle, 2300—-2350

2—3Tree, 4430

Subroutine

Subroutine

2—3Tree, 360

2—3Tree, 4170

2—3Tree, 4600

2—3Tree, 4380

Combinations of plus and minus one
Factorial n

Menu, Intro

Bucketsort, Intro.

Matrices

Subroutine

Matrices, Complex

Annuities Certain

Comprehensive Number Filter
Rotation of Points around the Origin, 2020
and 2030

Triangle, 2430

Subroutine

Best Fit Line, Intro

Best Fit Line, Intro.

Control Loop Stability

Subroutines

Circle (ii), 1070

Useful Functions—Table of Derived
Mathematical Functions

Cubic Crystal Classes 4/m3m and 23
Cubic Crystal Class4/m3m, 70

Cubic Crystal, 20*(G)

187

DATA
Datacorder
Decimal Number
Decimal Point
DEFFN

DEFINT

DEFREAL
DEFSTR

DEG
Determinant

DIM

Display File
Divide (/or=+)

Dollar Sign ($)
DRAW

DRAWR
Dotted Line

Drawing Lines Between Points

E
END

ENTER

Equals (=)

ERASE

Erasing
Eratosthenes’ Sieve
Errors

ESC

Exclamation Mark (!)

EXP
Exponential Numbers

Factorial

FAIL

Best Fit Line, 1150

2—3Tree, 299

Comprehensive Number Filter, Intro
Comprehensive Number Filter, Intro.
Triangle,30—100

Saving Memory

Cubic Crystal Form 4/m3m, 3
2—3Tree, 10

Postwar Inflation, 40

Subroutine Layout

Postwar Inflation, 40

Universal Rotation, 20

Evaluation of a Determinant
Evaluation of a Determinant by Laplace
2—3Tree, 5050

Unit Matrix, 1000

Subroutine

Anagram, 50

Complex Numbers, Intro and 2060
Anagram, 30

Cubic Crystals, 1500

Control Loop, 340

Drawing Lines Between Points
Subroutine

Comprehensive Number Filter
Evaluation of a Determinant by Laplace
Development, 390

Menu, Intro

Anagram, 40

2—3Tree, 4700

Rubout

2—3Tree, 2999

Prime Numbers, Intro and 3rd Routine
Subroutine

2—3Tree, 4370

Subroutine Layout

Factorial n

Poisson Distribution, Intro and 1050
Comprehensive Number Filter

Factorial n

Evaluation of a Determinant by Laplace
Development, Intro

Comprehensive Number Filter, 1170

188

False

Fillin
Filters

Fitting

FIX

FOR
FRE(0)
FRE(“”)
Full Stop (.)
Functions

Gauss—Jordan

Gaussian Errors

Geometric Progression
Geometric Series

GOSUB

GOTO

Graphs

Greater Than (>)

Greater Than or Equal to(>=)

Hash#

Heap
Heapsort

Heaviside Operator

Hexadecimal

High Precision Arithmetic

HIMEM

Histogram

Identifier
IF-—-THEN----ELSE

Inflation

Adjectival Number Endings, Intro.
Conditional Brackets REM

See Rubout

Name Filter

Comprehensive Number Filter
Triangle, SUB 2070

Interpolation

Rounding Numbers, Intro.

Best Fit Line, 1010

Saving Memory

H.P. Arithmetical—Reciprocal, Intro
Name Filter, Intro. and 1020
Triangle

Useful Functions Table of Derived
Mathematical Functions

Matrix Inversion
Simultaneous Equations
Errors

Series

Series

Triangle, 490

Binomial Coefficients, 20
Best Fit Line

Best Fit Line, 1020

Best Fit Line, 1180

Annuities Certain 1040
2—3Tree, 4140

Heapsort, Intro.

Sorting

2—3Tree, SUB 1000
Subroutine, Square Wave, 20
Control Loop Stability, 40
Conversions

Subroutines

Best Fit Line, 20

Display File

Statistical Analysis

Label, I$

Triangle, 280,320,690,2270,2400,2120
2—-3Tree, 1030,2070,4530

Regression Intro.

Postwar Inflation

189

INK
INKEY$
INORDER Sequence

INPUT
Instalment
INSTR

INT

Interest
Interpolation
Inverse COS

Inverse SIN
Label

Left Son
LEFTS$

LEN
Less Than (<)

Less Than or Equalto (<=)

Lexicographic Order
Linear Equations

LINEINPUT
LOCATE

LOGI10
Look—up Table
Loops

Lower Case
LOWERS$

Machine Code
Mantissa
Mark/Space Ratio
Matrices

Matrix Inversion

Matrix Multiplication

MAX

Display File

Control Loop, 20

Anagram, 350

Data Input (Single Variable), 1050
Subroutine

Binary Search Tree

Best Fit Line, 40

Annuities Certain

H.P. Arithmetic— Addition, 1010

H.P. Arithmetic—Reciprocal, 1710
Annuities Certain

Subroutine

Table of Derived Mathematical Function
Triangle, FN A

Table of Derived Mathematical Function
Triangle, FN C

Subroutine

2—3Tree

Binary Search Tree
H.P.Arithmetic— Addition, 1100—1110
Test for a Binary Number, 1010
Binomial Distribution, 1090
Binomial Distribution, 30
INORDER Sequence

Simultaneous Equations

Regression

H.P. Arithmetic— Addition, 100
Circle, 30—50

Menu, 130, 140

Comprehensive Number Filter, 1190
H.P. Arithmetic, Intro

Subroutine

Conversions,Hex. to Decimal
Wordsort 1060

Display File

Comprehensive Number Filter, Intro
Drawing Lines Between Two Points, Intro
Subroutines

Matrices

Simultaneous Equations

Universal Rotation, SUB Turn and
Multiply

Min/Max, Intro.

190

Maximum
Mean

Memory
MEMORY
Menu

MERGE
Merge

Mergesort

MIDS$ (Statement)
MIDS$ (Function)
MIN

Minimum

Minus (—)
MOD

MODE

Modulus

Mortgage

MOVE

MOVER
Multicolour Graphics
Multiply (*)

Names

N.C. Machines
Nested Loops
NEW

Newline

NEXT

NOT

Not Equalto (<>)
Null String (“”)
Numbers

Odd/Even
ONBREAK GOSUB
ON-—--GOSUB
OPENIN

Min/Max

Statistical Analysis, 1020
Statistical Analysis. 1010—1030
Min/Max/Mean/Median/Mode
Saving Memory

Display File

Subroutine

Triangle, 200—240

2—3Tree, 70—150

Subroutine Layout

Subroutine

Mergesort

Sorting

H.P. Arithmetic—Addition, 1080—1110
H.P. Arithmetic—Addition, 1130
Min/Max, Intro.

Statistical Analysis, 1050
2—3Tree, 3005

Complex Numbers, Intro and 2030
Circular Loop 1010

Universal Rotation 1310
SidePrint, 20 and 30

Subroutine

Annuities Certain

Cubic Crystal, 2000

Anglesort, 2040

Display File

Errors—Gaussian Distribution, 2000

Saving Memory, Intro

Circle, Intro.

Loops

2—3Tree, 4440

Anagram, 40, NL$

Triangle, 120

Timer, 40

Test for a binary number, 2000
H.P. Arithmetic— Addition, 1080—1110
Bucketsort, 1000

H.P. Arithmetic

Permutations of Three Numbers, Intro.
2—3Tree, 4370

2—3Tree, 260

2—3Tree, 320

191

OPENOUT
Ordering

ORIGIN

Packed Format Printing
PAPER

Pascal

Path Matrix

PEEK
PEN
Percent (%)

Permute
Permutations
PI

Pixel

Plotting Graph Axes
Plotting Points
Plus (+)
Poisson Errors
POKE

Polygon

Pound (£)
Power (1)
Prime Numbers
Printing

PRINT (or?)
PRINT USING
Probability
Program Hold
Projection
Push/Pop
Pythagoras

Quadrant
Quadratic Equation
Quadsol

Question Mark (?)

READ
Reciprocal

2—3Tree, 4130

Sorting

2—3Trees

Best Fit Line 2000 and 2180

Triangle, SUB 2700

Control Loop Stability, 50
Binomial Coefficients, Example
Matrices, Intro

Universal Rotation, Example
Useful Functions, PEEK
Control Loop Stability, 50
Annuities Certain, 1000
Menu, 190

Subroutine

Factorial n

Circle (ii), 1030

Underline, Intro

Best Fit Line, 2030

Best Fit Line, 2090

Complex Numbers, Intro. and 2020

Errors

Useful Functions, POKE
Rubout, Intro

Annuities Certain, Expl.
2—3Tree, 20

Subroutine

Sideprint

TAG Print

Anagram, 210

Triangle, 350

Binomial Coefficients, Intro
2—3Tree, SUB 4750
Subroutine

Subroutine

Pythagorian Whole Numbers

Rubout, Intro
Quadsol
Subroutine
Anagram, 110
(See PRINT)

Best Fit Line, 1160
H.P. Arithmetic

192

’Redo from start’
Regression

Reserved Words
REM ()
RENUM
RESTORE
RETURN
Right Son
RIGHTS$

RND

Root

Rotation

ROUND
Rounding Off
Rubout

RUN

SAVE

Saving Memory
Scaling Factor
Scroll

Search Tree

Second Order Curve
Semicolon (;)

Series

SGN

SidePrint

Simultaneous Equations

SIN

Singular Matrix
Slash (/)

Slicing

Solid Lines
Sorting
SPACE$
SPC
Spillover
Square Wave

Menu, Intro.

Subroutine

Best Fit Line, Intro

Table of Derived Mathematical Functions
Best Fit Line, 10

Subroutine Layout

Best Fit Line, 1150

Best Fit Line, 2410

Binary Search Tree, Fig.

H.P. Arithmetic— Addition, 1080—1090
Errors—Binomial Distribution, 2000
Binary Search Tree, Fig.

Universal Rotation

Rotation of Points around the Origin
Rounding Numbers, Intro.

Rounding

Subroutine

Binary Search Tree, Example

2—3Tree, 4330

Subroutine

Best Fit Line, 1210

Subroutine

Binary Search Tree

2—3Tree, SUB 1800

Interpolation, Intro

Anagram, 30

Subroutine

Triangle, 2440

Subroutine

Interpolation, Intro.

Cubic Crystals 4/m3m, 300—390
Useful Functions—Table of Derived
Mathematical Functions

Triangle, 80

Matrix Inversion, 2010

Matrix Inversion, 1010

String Storage —Store as a string, 10
Triangle, 510,610,710,810,910
Drawing Lines Between Points
Subroutines

Binomial Coefficients—Pascal’s Triangle,100
Conversions—Decimal to Hex.,2000
2—3Tree, Intro.

Heaviside Operator

193

SQR

SQR(-1)

Squares

Standard Deviation

Statistical Analysis
Step Function
String

STRINGS$

STR$

String Storage
Student’st
Swapping
SYMBOL
SYMBOL AFTER

TAB

TAG
TAGOFF
TAG PRINT
TAN

Tests

TIME

Timer
Transformation
Transparent Option
Transpose of a Matrix
Trees

Triangle
True

Tuple
Two—Three Tree

Underlining
Unexpected
Unit Matrix
Upper Case
UPPERS$

Triangle, 40

Complex Numbers, Intro
Pythagorian Whole Numbers
Best Fit Line

Statistical Analysis
Subroutine

Control Loop Stability, Intro.
String Storage

Test For a Binary Number
H.P.Arithmetic—Addition, 1070
Anagram, 70

Sideprint, 2000

Subroutine

Best Fit Line ,Expl.
Heapsort, 1190, 1200

Display File

Control Loop, 30

Pythagorian Whole Numbers, 50
Triangle, 2710

Triangle, 2740

Subroutine

Statistical Analysis, 1250

Test for Decimal Number

Test for Binary Number

Timer

Subroutine

Matrices

Underline, Intro.

Matrices

2—3Tree

Binary Search Tree

Routine

Rubout

Adjectival Number Endings, Expl.
Conditional Brackets, Intro
Bucketsort, Intro

Routine

Subroutine
Saving Memory
Matrices

Conversions—Hex. to Decimal, Expl.

Hex. to Decimal 1, 30

194

VAL
Variance
Vertex

WHILE—-—-—WEND
WINDOW

Wordsort

WRITE

XPOS

H.P. Arithmetic—Addition, SUB 1040
Interpolation
Binary Search Tree, Intro and Fig.

H.P. Arithmetic — Reciprocal, 200, 220
Data Input (Single Variable), 1010
Sorting

2—3Tree, Intro.

Scroll, 2010

195

Prollems ta Solue?
Pragrams to Wnde?

This unique book is a collection of over 100 Amstrad subroutines to solve your
programming problems. You simply add the subroutines required to your own
programs —saving days of extra programming, and solving so many tedious
problems.

The coverage is vast, and includes:

checking of input data

sorting

data storage and retrieval

graphics image manipulation

statistical analysis

advanced mathematical techniques, including matrix
manipulation.

Towards the end of the book, a number of complete programs are included to
illustrate the effective use of these subroutines.

All subroutines are written in BASIC for the Amstrad 464/664/6128 machines.
Where appropriate, comments are made on the use of tape or disk storage..

About Sigma

We publish a wide range of books 68 £ NET +00k.95
for programmers, scientists and
technologists —and we welcome your ISBN 1-85056-04k-4
proposals for new books. 00695
Sigma Press
98a Water Lane
Wilmslow

9 SBB 781850"58046

Cheshire
SK

POWERFUL PROGRAMMING FOR Amstrads W.Johnson ()

=)0 :
E https:/facpe.ne/

	Powerful programming for AMSTRADs
	PREFACE
	CONTENTS
	THE SUBROUTINES
	1. ADJECTIVAL NUMBER ENDINGS
	2. ANNUITIES CERTAIN
	3. BEST FIT LINE
	4. BINARY SEARCH TREE
	5. BINOMIAL COEFFICIENTS
	6. CIRCLE
	7. COMBINATIONS OF PLUS AND MINUS ONE IN GROUPS OF THREE
	8. COMPLEX NUMBERS
	9. COMPREHENSIVE NUMBER FILTER
	10. CONDITIONAL BRACKETS
	11-16 CONVERSIONS
	11. BINARY TO DECIMAL
	12. BINARY TO HEXADECIMAL
	13. DECIMAL TO BINARY
	14. DECIMAL TO HEXADECIMAL
	15A. HEXADECIMAL TO BINARY 1
	15B. HEXADECIMAL TO BINARY 2.
	16A. HEXADECIMAL TO DECIMAL 1
	16B. HEXADECIMAL TO DECIMAL 2.

	17-20.CHECKING DATA INPUT
	17. DATA INPUT (Linear equations with up to eight variables)
	18. DATA INPUT (Matrices or arrays)
	19. DATA INPUT (Single Variable)
	20. DATA INPUT (x and y Coordinates, Statistical Data etc.)
	21. DISPLAY FILE
	22. DOUBLE SIZE PRINTING
	23. DRAWING LINES BETWEEN TWO POINTS

	24-26. ERRORS
	24. BINOMIAL DISTRIBUTION
	25. GAUSSIAN DISTRIBUTION
	26. POISSON DISTRIBUTION
	27. EVALUATION OF A DETERMINANT
	28. FACTORIAL n
	29. HEAVISIDE OPERATOR

	30-33. HIGH PRECISION ARITHMETIC
	30. HIGH PRECISION ARITHMETIC - Addition
	31. HIGH PRECISION ARITHMETIC - Subtraction
	32. HIGH PRECISION ARITHMETIC - Multiplication
	33. HIGH PRECISION ARITHMETIC - Reciprocal
	34. INORDER SEQUENCE
	35. INTERPOLATION
	36. LABEL

	37-41. LOOPS
	37. SPLIT LOOP
	38. MIXED LOOP
	39. RANDOM LOOP
	40. CIRCULAR LOOP
	41. VARIABLE SIZE NESTED LOOP

	42-48. MATRICES
	42. MATRIX MULTIPLICATION
	43. COMPLEX MATRIX MULTIPLICATION
	44. MATRIX INVERSION
	45. COMPLEX MATRIX INVERSION
	46. UNIT MATRIX
	47. TRANSPOSE
	48. COMPLEX CONJUGATE

	49. MENU
	50. MERGE
	51. MIN/MAX
	52. MINIMUM, MAXIMUM, MEAN, MEDIAN AND MODE
	53. MODULUS
	54. NAME FILTER
	55. PERMUTE
	56. PERMUTATIONS OF THREE NUMBERS
	57. POSTWAR INFLATION
	58. PRIME NUMBERS
	59. PRINTOUT FOR A MATRIX OR A DETERMINANT
	60. PROJECTION
	61. PUSH and POP
	62. PYTHAGORIAN WHOLE NUMBERS
	63. QUADSOL
	64. REGRESSION
	65. ROTATION OF POINTS AROUND THE ORIGIN
	66-69.ROUNDING NUMBERS
	66. ROUNDING UP TO AN INTEGER
	67. ROUNDING TO THE NEAREST INTEGER
	68. ROUNDING TO N DECIMAL PLACES
	69. ROUNDING TO N SIGNIFICANT FIGURES

	70. RUBOUT (OR FILL IN)
	71. SAVING MEMORY
	72. SCROLL
	73-76. SERIES
	73. EXPONENTIAL SERIES
	74. GEOMETRIC SERIES
	75. ARITHMETIC SERIES
	76. BINOMIAL SERIES

	77. SIDEPRINT
	78. SIMULTANEOUS EQUATIONS
	79-84. SORTING
	79. ANGLESORT
	80. BUBBLESORT
	81. BUCKETSORT
	82. HEAPSORT
	83. MERGESORT
	84. WORDSORT

	85. STATISTICAL ANALYSIS
	86. STRING STORAGE
	87. TAG PRINT
	88. TEST FOR A BINARY NUMBER
	89. TEST FOR A DECIMAL NUMBER
	90. TIMER
	91. UNDERLINE
	92. UNIVERSAL ROTATION
	93. USEFUL FUNCTIONS

	THE ROUTINES
	1. ANAGRAM
	2. CONTROL LOOP SIMULATION
	3. CUBIC CRYSTALS
	4. CRYSTAL FORM 23 - Ullmannite
	5. EVALUATION OF A DETERMINANT BY LAPLACE DEVELOPMENT
	6. TRIANGLE
	7. 2-3 TREE STRUCTURE
	INDEX

	● Raw scan : Maxime CROIZER for ACME | Cleaning/Layout/OCR : ACME – https://acpc.me ● 2020-07-17

