

Practical
C

Mark Harrison

SIGMA
PRESS ■

Copyright © Mark R. Harrison, 1985

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the purposes
of review, or as provided for by the Copyright (Photocopying) Act or in order
to enter the programs herein onto a computer for the sole use of the purchaser
of this book.

ISBN 1 85058 035 9

Published by:

SIGMA PRESS
98a Water Lane
Wilmslow
Cheshire
U.K.

Printed in Malta by Interprint Limited

Distributors:
U.K., Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester
West Sussex, England

Australia:
JOHN WILEY & SONS INC.
GPO Box 859, Brisbane
Queensland 40001
Australia

Acknowledgements: UNIX is a trademark of Bell Laboratories. CPC 464, 664
and 6128 are trademarks of Amstrad Consumer Electronics pic.

CONTENTS

1. C—An overview.. 1
1.1 Introduction... 1

2. Hardware and Software..4
2.1 Introduction...4
2.2 Hardware components.. 4

The central processor... 5
I/O devices.. 5
Memory.. 5

2.3 Types of software and how they work... 6
Program 1 : counter... 7

3. The Design and Development of C Programs...9
3.1 Introduction.. 9
3.2 Program Development...9
3.3 Structured Design.. 10
3.4 A Brief Look at C Programming... 13

Program 2 : main...13
Program 3 : print...13

3.5 Using Hisoft C.. 15
3.6 And So... 15

4. Deep C...16
4.1 Introduction...16
4.2 Binary Numbers...16
4.3 Hexadecimal Numbers...21
4.4 Octal Numbers..23
4.5 Computer Logic.. 24
4.6 Logical Operators... 25
4.7 Bitwise Operators... 28
4.8 STOP!... 30

5. Data Types...31
5.1 Introduction...31
5.2 More on Numbering Notations..31
5.3 Variables... 33
5.4 Declarations...33
5.5 Characters.. 35
5.6 Arrays..36
5.7 Strings... 37
5.8 Initialising Arrays..38

5.9 Algebraic Expressions.. 38
5.10 Pointers.. 42
5.11 Pointer Arrays...44
5.12 Pointers to Functions..44
5.13 Function Arguments... 44

Program 4 : odd numbers.. 45
Program 5 : pointer example..................................... 46

5.14 Variadic Functions..47
5.15 Command Line Arguments.. 47

6. More C Statements and Commands...49
6.1 Introduction.. 49
6.2 Preprocessor commands..50
6.3 Control Statements...52
6.4 Some words of advice.. 56

7. The C Standard Library...57
7.1 Introduction.. 49
7.2 Simple I/O.. 58

Program 6 : The Fibonacci Sequence..58
Program 7 : Calendar... 62

7.3 Character tests...63
7.4 Character and String Manipulation.. 65

Program 8 : data search...68
7.5 Sorting Data..69

Program 9 : sort...70
7.6 Arithmetic Functions..71

Program 10 : highest common factor...................................... 72
7.7 Format Conversion Functions.. 72
7.8 Bit Number Arithmetic... 73

Program 11 : Enigma...75
7.9 Memory Management...77
7.10 Advanced I/O...79

Program 12 : file dumper..81
Program 13 : telephone index... 86

8. Data Structures...89
8.1 Introduction.. 89
8.2 More on C Data Types...89
8.3 Structures... 91

Program 14 : class positions..94
8.4 Dynamic Data Structures... 96
8.5 The Forward Linked List...97

Program 15 : forward linked list...99
8.6 More Advanced Lists... 103

8.7 Circular Lists..103
8.8 Double Linked Lists... 104
8.9 Stacks and Queues..104
8.10 Graphs... 106

Program 16 : shortest routes..108
8.11 Trees..Ill

Program 17 : tree sort.. 115
8.12 Heuristic Programming... 117

Program 18 : animals.. 117

9. Advanced input/Output Techniques.. 123
9.1 Introduction... 125
9.2 Screen Input...126
9.3 Raw Input... 126

Program 19 : checking a date.. 128
9.4 Validity of Data... 129
9.5 Screen Output.. 129

Program 20 : cursor control... 130
9.6 Animated Effects...131

Program 21 : horizontal motion.. 131
Program 22 : diagonal motion... 131

9.7 Controlled Printing.. 133
9.8 Menu Selection... 135

Program 23 : menu...136
9.9 Screen Handlers..139

Program 24 : screen handler example.................................... 140
9.10 Report Generation..144

Program 25 : staff pay and expenses......................................145
9.11 Time Input/Firmware Software Calls... 147

Program 26 : code breaking... 150
Program 27 : reaction timer... 150

9.12 High Resolution Graphics...154
Program 28 : Picasso.. 154
Program 29 : 3D Histogram... 156
Program 30 : Etcha Sketch...159

Appendix A. The Standard C Library...161
Appendix B. The MRH C Library...162
Appendix C. The Hisoft C Library.. 163
Appendix D. Further Reading..165
Appendix E. The Amstrad/Hisoft Memory Map... 166
Appendix F. The Spectrum/Hisoft Memory Map.. 167

Index:.. 169

CHAPTER 1

C—an overview

1.1 Introduction

“I can write BASIC programs but they are far too slow” “I learnt machine code
to write efficient programs - but it is so tedious to use” “Machine code!! — far to
complicated for me”

These are three views commonly expressed by enthusiasts who have realised the
serious limitations of the standard BASIC interpreter supplied with their
personal computer. Recently a new computer language, C, has developed a cult
following and has become very popular in a short space of time. To have
gathered such momentum, so quickly, there must be a very good reason. As you
read on you will see the great advantages and power of C and will, no doubt,
join the ever growing bandwagon of C fanatics.

The C language was developed at Bell Laboratories in the early 1970s and is an
extension of the Basic Combined Programming Language (BCPL). It is often
closely associated with the Unix operating system on which it was developed,
and to many Unix users the one implies the other. Now Unix is almost entirely
written in C reflecting the powerful capabilities of the language.

C is a general purpose programming language that places emphasis on concise
programs and flexible expressions. It is a compiled language, which means that
it is first written in source format and then translated into object or machine
code. The object code is then linked with other code modules to form the final
code version which can be executed by the computer. Because the machine code
program is understood by the computer it may be executed directly and so
processed fast and efficiently.

Due to the nature of C, it is very easy to write programs in C that, with only
minor amendments, will work on any machine supporting C. Thus C, is
favoured by many serious software houses, since the time to port their systems
onto different machines is considerably reduced (especially if they have the
same target operating system). Whilst no language can be considered truly
portable, C does approach this ideal.

It is common practice for BASIC programmers to start with an initial idea and
then continue to add extra refinements until the logic behind the program
resembles “spaghetti” with numerous jump statements sending control in all
directions. C enables the better approach of using structured programming
techniques. This is a system in which programs are broken down into blocks or
functions, each of which has a single specific purpose. Structured programming
also tries to avoid the GOTO statement in an attempt to keep the logic in a
program simple-this is easily achieved using other, more powerful, C control
statements. Modularising a program in this fashion means that each function
can be tested in isolation so that any errors or bugs can easily be detected. In
addition, amendments and enhancements can be made with minimal changes
to existing code, thus helping to avoid the introduction of new bugs.

Function libraries are supplied with C compilers and additional libraries can be
created to contain commonly used functions such as database routines, screen
handlers, etc. Functions that are specific to any hardware, such as I/O routines,
should be isolated in libraries so that porting software onto other machines
requires admendments which can easily located.

C is fairly small in size compared with other compiled high level languages,
making it suitable for use on microcomputers and easy for the beginner to learn
Despite its size, it supports elegant and powerful programs. Developing C
programs is not as straight forward as working in BASIC because the user is not
protected from crashing the machine. A bug in a BASIC program usually results
in an error code, the wrong answer or a loop. C is much more like machine code,
where bugs can have wierd and obscure effects causing numerous
problems-the most obvious being when the computer gets into a state such
that the only escape is to reset it by disconnecting the power supply, thus losing
the contents of the memory!!

Since the first implementation of C numerous versions have appeared; notably,
for small microcomputers:

Mark Williams, De Smet, Manx Aztec, Digital Research, BDS, ECO,
Lattice, Computer Innovations, Consulair, Codeworks Q/C, Softworks,
Microsoft,

to name just a few.

Whereas these implementations require a disk system so that data can be stored
permanently on a magnetic meduim, a version of C has been developed by
Hisoft with small personal computers in mind, enabling the language to be used
on systems with a minimum configuration of just RAM and cassette tape. It is
however worth mentioning that the use of a disk drive makes life a lot easier.

2

The Hisoft implementation of C is designed to be as close to the true definition
of the language as possible. However, there are a few exceptions and extensions
that have occurred because of the specific hardware environment for which it
has been designed. Some of these limitations are expected to be removed in
future releases.

The Hisoft C compiler is based entirely in RAM, together with an editor, the C
program source and the resultant machine code. At the time of writing, versions
are available for the Amstrad CPC 464/664 and ZX Spectrum, and are being
developed for use on MSX, CP/M and other Z80 based systems. The Hisoft
compiler is being produced for large volume sales and so costs a fraction of
other C compilers, thus enabling the language to be used by many. Because of
this expected popularity, the examples in this book are written in Hisoft C. Any
differences between Hisoft C and the true definition will be highlighted for the
benefit of readers using other versions of the language.

To get started with your compiler, study the documentation provided to see the
specifications and differences from the true definition of C. Find out how to
create and compile source files, use the editor and library facilities and link
different code modules together to produce an executable program. We won’t
waste time here by repeating such details and besides, to cover every C compiler
would be an impossibility.

Following on from this introduction, the reader will now be taken on a
programming course exploring some of the most advanced techniques possible
with C. All the features demonstrated are illustrated with numerous
programming examples - they are there to be used, altered, added to and
subtracted from to meet your own requirements, so please feel free to mutilate
them as much as you like. Finally, if you are new to C, do not be overwhelmed
by the initial sight of what looks like a complex instruction manual; possibly the
hardest part of C is deciding to spend your hard earned money on a compiler
-the rest is easy!

3

CHAPTER 2

HARDWARE AND
SOFTWARE

2.1 Introduction

Before studying the particular capabilities of your C compiler, it is both
interesting and important for C programming to fully understand the basic
functions and components of your computer system. We shall see briefly which
features are common to all systems-whether they cost several thousands of
pounds or less than a hi-fi system. You are recommended to use the rest of this
chapter for reference; any reader requiring comprehensive information on the
architecture of computer systems should refer to one of the numerous books on
the subject.

2.2 Hardware Components

All computer systems have several components of hardware in common,
notably the memory, the I/O devices and the central processing unit. The rest
of this section gives further details about this hardware.

Figure 2.1 Principle components of a computer system.

4

The Central Processor:

The CPU (or Central Processing Unit) is responsible for controlling all the
operations of the computer. It is also used to evaluate mathematical expressions
involving addition, subtraction, multiplication and division (arithmetic), and to
test if numbers are positive, negative or zero (logic). Whilst the requirements of
the arithmetic functions in our C programs are obvious, the logic function is
needed so that the computer can make decisions about what action to perform
next.

I/O Devices:

Data is entered into and accessed from the computer by means of input and
output (I/O) devices. Examples for small microcomputers include the keyboard
and joysticks for input, the screen and loudspeaker for output, and a cassette
unit or disk drive for both input and output. We shall see later that all I/O from
C is done via logical files and that includes not only what we usually think of as
files (i.e. on tape or floppy disk) but also the I/O devices mentioned above. With
some microcomputers, such as the Amstrad and the ZX Spectrum, the logical
files are referred to as streams. The idea of logical files is quite common in
computing although initially it can be a difficult concept to grasp. Fortunately
for the C beginner, the files for I/O to the keyboard and screen are handled
automatically within the library functions.

Memory:

The hardware unit whose function is to store all the data held in the system is
called the memory. The best analogy to a computer’s memory is the
visualisation of a long sequence of consecutively numbered storage boxes, or
cells, each identified by its unique number (imagine the lockers at a railway
station). The label of each storage box (or cell) in the memory is called its
address, and each box is capable of storing one number. With many
microcomputers, including the Amstrad and the ZX Spectrum, this number
must be in the range 0 to 255.

Note-whilst it is possible for the BASIC programmer to work in isolation from
the ideas of the memory and its structure, a C programmer must fully
comprehend the concepts.

Microcomputers contain two different types of memory. These are read only
memory (ROM) and random access memory (RAM), the difference being:

ROM-is memory which is manufactured pre-programmed with
permanent data. The contents cannot be changed by the user.

5

RAM - is general purpose memory in which data may be stored and then
retrieved when required. It loses its contents when the power is
switched off.

In addition to numbers, it is possible to store characters and program
instructions in the memory by representing them as numerical values; these
values are known as character codes and instruction codes.

Apart from storing a users program and its associated data, one section of the
memory is reserved for system software. System software is a program that is
stored permanently in the computer and is used for controlling all the
operations of the computer system. It must be protected from corruption by the
programmer, and must not be affected by switching off the power supply. A
computer manufacturer always stores system software in ROM.

One final comment about memory-for the time being-is on quantities of
storage capacity. When referring to a size of memory the abbreviation K is
frequently chosen to represent 1024 memory cells. 1024 is 2 raised to the power
of 10, so, an 8K program would require 8 x 1024 cells of memory.

2.3 Types of Software and how they work.

Having taken a quick browse through the basic hardware that all computer
systems contain, we shall now examine the different types of software and see
how the computer copes with them.

It was pointed out earlier that the cells in the computer’s memory could store
programs by representing the instructions as unique numerical values; for
example, the code to add two values together with a particular CPU might be
35. Other codes would be used for other operations. Since a program would
need to contain more than one instruction for it to be of any practical use, such
a program might look like this:

35 27 133 211 23 39 5 221 100 .. .

Obviously, this program is meaningless to anyone who has not been told what
instructions each value represents. This type of program is Known a machine
code program and although it may seem tedious and difficult to use, computer
programmers in the days of the first computers had no alternatives to this type
of programming. It soon became obvious to the programmers that it would be
more efficient for them to use codes that bore some resemblence to the
instructions that they represent; but, at this stage it is important for the reader
to realise that a CPU can only ever understand programs that are in the machine

6

code format. Thus if a program is written using other instruction codes, it must
at some stage be translated into the equivalent machine code program. This
translation is accomplished by yet another computer program - ultimately
written in machine code.

The next stage in the advancement of software was the introduction of
assembler programs. These enable the programmer to replace machine code
instructions like 35 or 169 by abbreviations for the instruction that the code
represents; for example, LD for Load, ADD for Addition, SUB for Subtraction,
etc. It takes no imagination to realise that an assembler program is far easier to
write, read and comprehend than a machine code program. These
abbreviations, which are commonly referred to as mnemonics, are then
converted into their corresponding machine code values by a section of software
called an assembler, and then the machine code version is used as before. As
long as the machine code works, the computer does not care where it comes
from.

A futher advance in software since the late 1950s has been the development of
several sophisticated programming languages known as high level languages.
There are many different ones, the most common being Fortran, ALGOL,
COBOL, Pascal, CORAL, BASIC and, of course, C. The choice of which
language to use depends on the application. For example, a large data
processing department would probably use COBOL, a scientific application
might use Fortran and an application that required results to be produced
within strict time limits could well use CORAL. Modern languages, such as C,
are very flexible and not really limited to any particular area of application.
Unlike assembler programs, the codes in high level languages do not correspond
one to one with the machine code values but, instead, allow the coding to
resemble the nature of the problem to be solved. This can be seen below in a
small C program which prints the numbers 0 to 9.

Program 1: counter

ma i n ()
<
i n t i ;

for (i = 0 ; i <10; i + +)
pr i nt f("%d \ n" , i) ;

>

7

Whilst the reader should not, at this stage, try to understand the C syntax, it
should be evident that a high level language, when compared with the other
types of software, is by far the easiest for readability. As with assemblers, before
a CPU can understand the codes of a high level language, they must be
translated into their machine code equivalent by a special program. It might be
reassuring to know that you are totally isolated from this translation process-
you do not need to know how the process works, just that it does. All we shall
say on the subject is that there are two methods used for translating high level
languages into machine code versions. The first method, which is used by most
implementations of BASIC on microcomputers, uses software called an
interpreter to convert each small part of the high level language program into
machine code as it is needed. This means that if a section of code is executed
several times, then it must be translated several times and so will slow down the
overall process. The alternative method used by many languages including C,
requires software called a compiler which converts the whole program into
machine code once and for all and then the machine code version is used every
time. Since C is compiled it can produce the fast action programs not available
from interpreted BASIC.

8

CHAPTER 3

THE DESIGN &
DEVELOPMENT OF

C PROGRAMS

3.1 Introduction

We can now to examine the various stages in the development of a C program.
A beginner to C should concentrate more on learning the skills of structured
program design, which are completely different from those used in producing
BASIC programs, than worrying about mastering all the features of C at once.
Even an experienced C programmer would not get straight down to the coding
level and expect to produce a program that functioned correctly first time, and
which contained no logical errors.

3.2 Program Development.

C program development may be split up into four distinct stages.

The first stage is for the programmer to recognise the problem to be solved and
ensure that it has been correctly defined. This may seem rather trivial but system
consultants frequently find that their clients are not totally sure of their
requirements. The most obvious method of tackling a complex problem is to
break it up into smaller sub-sections which can be considered independently as
separate problems. This also enables errors and difficulties with the complex
problem to be easily located.

In the second stage the programmer has to recognise the factors in the problem
that are liable to vary (know as the variables), and then find the mathematical
relationships that govern them. By using his skills the programmer can analyse
this information to produce a series of rules that solve the problem; such a series
is called an algorithm. C design skills can ideally be learned by studying good
quality software written in books and magazines by C experts.

9

Provided that enough thought goes into these first two stages, the programmer
should find the third stage reasonably simple. This involves turning the
algorithm into a C program and compiling it into a machine code version that
the computer can execute. Care should be taken not to introduce errors in the
program; syntax errors will be detected during compilation, but logical errors
cannot be discovered and will leave bugs in the compiled machine code.

The final stage is for the programmer to test the program to ensure that it
functions as intended. Through testing a programmer may detect errors but
unless the program is tested using all feasible input data, and through all
possible paths in the program flow, the absence of errors cannot be guaranteed.
Taking, for example, just the variability in numeric input, the range of test data
is so vast that total testing is virtually impossible. Thus, a programmer should
choose selected data that will take all possible paths in the program flow.

3.3 Structured Design.

The end result in the design of an algorithm will be a series of instructions that
are obeyed in a specific order, this normally being the sequence in which they are
written. It is, however, possible for the algorithm to include decisions and j umps
which cause the execution of the algorithm to proceed with different
instructions. In order to cope with the program flow in complex algorithms that
contain numerous branches, some programmers like to draw diagrams called
flowcharts. Flowcharts contain the instructions of the algorithm written within
symbols of differing shapes, and are linked together by arrows or flowlines to
indicate the sequence of operations. The type of symbol drawn depends on the
type of instruction it represents.

Having said that some programmers like flowcharts, the majority do not! The
two dimensional nature of paper actually encourages careless design, leading to
inefficient programs with logic that is incomprehensible to anyone except the
original author. The design is also hampered from the beginning by a
preoccupation with detail-a so called bottom-up methodology.

Since design is so vital in program development, programmers have turned to
better methods. These methods are generally called top-down but have assumed
other names including structured programming, modular programming or the
Jackson Method. Each of these involves structuring the problem by breaking it
into simpler sub-problems and, ultimately, into very simple “building blocks”.

With structured techniques and the use of careful programming, it is possible to
avoid the GOTO statement. This statement permits the forward and backward
branching in a program and, therefore, is the most frequent cause of lack of

10

structure and spaghetti tendancies. The object of removing these jumps is to
produce a program comprised of a linear sequence of building blocks, as
illustrated in Figure 3.1. Each block can be formally delimited by BEGIN and
END.

-*d i r e c t i o n
of flow

Figure 3.1 Structured design.

The top-down approach can now be seen. The main block is designed and
implemented with the calls to the other blocks inserted (these can initially return
immediately to the main block). The lower level blocks can then be designed and
programmed independently and introduced to the higher level blocks when
complete. If required, the lower level blocks can be called from more than one
position.

The blocks can be designed with English statements using a simple program
description language (PDL) to describe their operation. Briefly, here is a
summary of PDL.

Each sub unit of a block is one of the following statement types:

(a) the simple sequence - a series of actions

(b) the alternative clause - i f (conditional statement)
then (action)
else (other action)

11

(c) the choice unit -case of
1: (action 1)
2: (action 2)

n: (action n)
end case

(d) the iteration unit - wh i Le (condtional statement)
d o (action)
end do

(e) the repetition unit - repeat
(action)

unti L (conditional statement)

Standard actions, such as I/O, may be included in the description.

As an example of PDL, consider the problem of solving the quadratic equation,

ax2 + bx + c = 0

where a, b and c are know constants and x is required to be found. It can be
proved mathematically that the solution is

x = -b + \Ab2 -4.a.c

2.a

function quadratic (a, b, c)
begin

i f a = 0
then

begin
i f b = 0
then print “No solution”
else print ‘Linear equation x = -c/b

end
else

begin
d = b2 -4ac
i f d > 0
then print “xl =”;(-b + \Ad)/2a;

“x2 =”;(-b - /d)/2a

end
end

else print “No real solutions”

12

Once the PDL has been properly designed, it is a simple task to translate it into
a high level language such as C, and be reasonably confident that it will work
correctly the first time.

It is not within the scope of this book to give a full exposition of PDL but its
use is recommended for C program design. Detailed information and examples
on the subject can be found in “Successful Software for Small Computers” by
Graham Beech, published by Sigma Press.

3.4 A Brief Look at C Programming.

As we shall soon see, the structure of C closely resembles that of PDL. A C
program, whatever its size, consists of one or more functions (analogous to a
block of PDL). Each function is distinguished by a unique name and control
may invoke another function simply by calling its name.

Program 2: main

ma i n ()
<
}

Program 2 is the simplest C program in the world consisting of a single function
called main and not containing any executable statements. All programs must
have one function called main which is the first one performed when a
program is executed; if m a i n is missing then the program will not compile.
Program 2 example also illustrates that every function begins and ends with
braces < and }. In C, each statement is followed by a semicolon, and the braces
are also used to group statements together into blocks, or compound statements,
which are treated by the C compiler as equivalent to single statements.

Program 3: print

main
<
pri ntf("SIGMA PRESS");
>

It is very unlikely that you will ever write a program containing just one
function. Even the simplest programs have to call other functions to output
results (usually standard I/O library functions, e.g. p r i n t f). Program 3 also
illustrates passing parameters to other functions (i.e. the sequence of characters

13

“SIGMA PRESS”). This is a mechanism whereby procedures can communicate
with each other which we shall study in detail in Chapter 5.

A program may be built up of functions contained in more than one source file.
This enables functions of a specific type (e.g. I/O, database, etc.) to be stored
together and be used as required. Some compilers are supplied with
sophisticated linking utilities enabling files to be compiled (even without a
main function) into relocatable machine code modules. When a program is
compiled, any specified libraries are searched for missing functions. The
alternative method is to merge source files into the file being compiled; this is
done using the preprocessor command # i n c lode which specifies a sourer
file to be included in compilation.

Example: /(include <dbase.c>

A preprocessor command is one preceded by the # sign. This part of C is not
clearly defined since different systems have different requirements, and so you
should refer to the documentation supplied with your compiler for a full
description.

The Hisoft C compiler, which does not have any linking facilities, contains a
special form of the # i n c L u d e command giving a conditional compilation
facility. If the specified filename is enclosed within question marks, then only
functions which have been invoked previously are included for compilation.
This command would normally be the last instruction in the file. When
constructing a Hisoft library file, it is important to order the functions such that
those which are invoked by other functions appear first in the file.

Example:

m a i n ()
<

(act i ons)

#include ?common. lib?

Comments may be included in C programs to assist understanding, but it is not
necessary to overburden the source with excessive comments since it is usually
built up of many small functions each doing a simple task. If you understand
what action the function has, then grasping the overall operation should be
simple. Ideally, the function names should be descriptive of the function tasks.
Comments that are required may be placed anywhere and are enclosed by / *
and * /.

14

3.5 Using Hisoft C

Since operating the Hisoft compiler is a little unorthodox, we shall take a brief
look at its use. Once loaded, the following sign-on message is displayed:

HISOFT-C Compi ter V1 .2
Copyright © 1984 HISOFT

>

The > prompt sign means the computer is in “edit” mode and a C program may
be entered using the Hisoft line editor. When completed, the program can be
compiled. To switch to “compilation” mode enter “C” and the screen will first
clear and redisplay the sign-on message; this time the > prompt will not be
present. The C source may then be compiled using the # i n c I u d e command;
if no filename is specified, then the C source stored in the editor is included and
compiled. When all files have been included, hit the End of File key (CTRL Z
on the Amstrad, SYMBOL SHIFT I on the ZX Spectrum). Provided that no
errors have occurred, the compiler will display:

Type y to run program:

The program may then be re-run any number of times by typing “y”.

3.6 And so...

There is much more to learn about C programs such as how to control program
flow and manipulate data, but we shall leave these topics to later in the book.
We shall now take a detailed look at how the data is stored in the computer, since
such knowledge is imperative for serious C programmers.

15

CHAPTER 4

DEEPC

4.1 Introduction

Some people like to compare the memory in a computer system with that of the
human brain; however this comparison leaves a lot to be desired. The brain can
memorise all types of information including letters, numbers, words, pictures,
etc. In comparison, the computer’s memory is very simple. The nature of
electronics restricts components to being either switched on or off and this
reduces the computer’s capabilities to the recognition of just two states, which
are written for convenience as “0” and “1”. Just as in English where words and
sentences are built up by using more than one letter and numbers consist of
several digits, computer expressions are represented by sequences of Os and Is.
Such patterns of Os and Is are called binary numbers.

4.2. Binary Numbers

When numbers are written in the normal decimal or base 10 representation, the
digit furthest to the right gives the number of units, the digit to its left gives the
number of tens (the base of the number system), the next digit to the left gives
the number of hundreds (the base squared), and so on.

Binary numbers use a base of 2; the digit furthest to the right gives the number
of units, the digit to its left gives the number of twos (the base), the next digit
gives the number of fours (the base squared), the next digit gives the number of
eights (the base cubed), and so on.

16

Conventionally, the number 345 in the familiar decimal numbering system that
we use means:

3 4 5 (decimal)

|_____5 x 10° = 5 x 1 = 5
|_________4 x 101 = 4 x 10= 40

|____________ 3 x 102 = 3 x 100 = 300

345 (decimal)

Likewise a binary number such as 11001 is equivalent to

110 0 1 (binary)

Illi |____ 1 x 2° = 1 x 1 = 1
|______ 0x21 = Ox 2 = 0

|__________ 0 x 22 = 0 x 4 = 0
|______________ 1 x 23 = 1 x 8 = 8

|____________________ 1 x 24 = 1x16 = 16

25 (decimal)

When counting, a decimal “1” is carried over into the next column whenever a
“9’ is reached, i.e. after 9 comes 10, after 29 comes 30, after 99 comes 100.
Similarly, since binary only uses the digits 0 and 1, a “1” is carried over whenever
a “1” is reached, i.e. after 0 comes 1, after 1 comes 10, after 10 comes 11, after
11 comes 100 (Further examples of binary numbers are given later in Figure 4.4).

It can be seen that the binary numbering system works on the same principle as
the decimal numbering system, but since more digits are required to represent a
number in binary than in decimal it is more cumbersome for us humans to use.

It is now possible to explain why, in Chapter 2, it was stated that many small
computers can only store numbers between 0 and 255 at any particular memory
address. This is because a storage location can only contain eight binary digits;
thus the range is from 00000000 (0 decimal) to 11111111 (255 decimal). When
referring to binary numbers in computers an individual digit is called a bit and
a group of eight bits at an address is called a byte.

Binary arithmetic

Binary numbers may be combined by addition, subtraction, multiplication and
division.

17

Binary addition uses the following five rules:

0 + 0 = 0
0+1 = 1
1+0=1
1 + 1=0 carry 1

carry +1 + 1 = 1 carry 1

example:

1 1 1
+ 011

10 10

Taking the 1st column,
Taking the 2nd column,
Taking the 3rd column,
Taking the 4th column,

1+1 =0 carry 1
1 + 1 + carry = 1 carry 1
1 + 0 + carry = 0 carry 1

carry = 1

cCarry
indicators

Binary subtraction uses the following four rules:

0-0 = 0
1-0=1
1-1=0
0-1 = 1 (found by borrowing from the next higher digit)

example:

0 1 Taking the 1st column,
1 0

- 0 1
______ Taking the 3rd column,

0 1

0 - 1 not possible borrow
from next higher digit,
10 - 1= 0
0-0 = 0

Example:

*- +
100

-00 1

0 1 1
Borrow
indicators

O 1 1

18

Example:

1 0 1
-0 1 1

0 1 0

One complication when dealing with binary numbers is the handling of
negative numbers. Consider the problem of subtracting 92 from 20 using binary
numbers:

Decimal
20

-92
-72

Binary
00010100
01011100
10111000

The above binary result is obtained only if we do not worry where the “borrow”
from the left-hand bit came from. But, 10111000 in binary is equal to 184 in
decimal, so that -72 in decimal seems to have the same binary representation
as 184. How can we explain this? To do so, we must find a way of representing
negative numbers. These can be visualised as numbers in the opposite direction
to postive numbers, i.e. if an electronic meter reading 0000 was wound back one
unit it would read 9999. To obtain -72 it should be wound back 72 units, as

19

Thus —72 can be represented on our meter as 9928 - as long as we remember
that it is really a negative number.

Using a similar method for binary numbers, it is convenient to represent
negative numbers in a form that is known as the two’s comlement form. In a
binary number containing x bits, this simply means that minus n is stored as
(2X - n).

For example, a computer using 8 bits would store -72 (decimal) as
(28 -72) = 184 (see Figure 4.2).

Figure 4.2

A binary number can be converted into its two’s complement form simply by
converting all the Is to Os, and the Os to Is, and then adding 1.

Example:

negate 72 - 72 in binary is

Convert digits

Add 1

So - 72 (decimal) is represented

Example:

negate (-72) - (— 72) in binary is

Convert digits

Add 1

01001000

I
10110111

10 1 11000

10111000

10 1 1 10 0 0 (from above)

01000111

i
01001000

20

So -(-72) (decimal) is represented by 01001000, which, as we would
expect, is 72 (decimal).

If this is valid we would also expect 72 + (-72) to be zero.

01001000
+ 10111000

1 00000000

Ignoring the first digit, the last eight bits show this to be true. The additional bit
on the extreme left is known as the sign bit. If the sign bit is “0” the number is
postive and if the sign bit is “1” the number is negative. In this case, where the
numbers add up to zero, the sign bit is irrelevant. The use of the sign bit simply
enables the computer to distinguish between positive and negative numbers. As
further examples, we would expect 172 + (-25) to be postive and 117 + (-159)
to be negative.

I

Decimal sign Binary
172 0 10101100

- 25 + 1 11100111

147 0 1 00 1 00 1 1

*- - 25 in two’s complement,
i.e. sign bit set

positive, so result is in
normal form

Decimal sign Binary
117 0 0 1 1 1 0 1 0 1

-159 + 1 0 11 0000 1 *--159 in two’s
complement,
i.e. sign bit set-42 1 110 10 110

I
negative, so result is in two’s
complement form

4.3 Hexadecimal Numbers

Unlike computers, we find these long strings of 0s and Is difficult to memorise
and awkward to work with, so some simpler notations have been developed to
help us. One such system uses a numbering notation with a base of sixteen and

21

is known as the hexadecimal system. This requires sixteen digits, but instead of
designing six new symbols the first letters of the alphabet are used. The sixteen
hexadecimal digits are:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

It is important, in this context not to interpret the new symbols as letters, but as
digits that are capable of the mathematical operations such as addition,
subtraction, etc.

As an example, consider the hexadecimal number 2.FA:

2 F A (hexadecimal)

J____ A x 16° = A x 1 = 10 (decimal) x 1 = 10

 F x 161 = F x 16 = 15 (decimal) x 16 = 240
____________ 2_x 162 = 2 x 256 = 2 (decimal) x 256 = 512

762 (decimal)

There is a very simple method for converting binary numbers into their
hexadecimal equivalent. This involves splitting up the binary digits into groups
of four bits, starting from the right. Each digit of the hexadecimal number is
then represented by the value of the four bits.

Example:

Thus 2FA (hexadecimal) and 1011111010 (binary) are equivalent.

1 0 1111 10 10

Split into groups of four bits
Y Y Y
10 1111 1010

Y V Y
Calculate value of each group 2 15 10 (decimal)

V Y Y
Convert to hexadecimal 2 F A (hexadecimal)

As a byte contains eight bits, its value may be expressed with just two
hexadecimal digits; thus, with the possible exception of decimal numbers, the
hexadecimal numbering system is often used in computing in preference to any
other.

22

Example:
The first hexadecimal digit
represents the value of the

7 6 5 4 3 2 1 0 bit four most significant bits
and the second represents

1 0 1 0 1 0 0 1 the value of the four least
significant bits.
So the hex value of this byte
is A9.

A 9

Figure 4.3

4.4 Octal Numbers

One other important number system required by C programmers is Octal
which uses a base of eight. This is used in C for character/string constants to
drive graphics, sound, etc. Examples of octal and other notations is given in
Figure 4.4.

Figure 4.4 Examples of decimal, binary, hexadecimal and numbers.

Decimal Binary Hex Octal Decimal Binary Hex Octal

- 15 11110001 Fl 161 1 1 1 1
-14 11110010 F2 162 2 10 2 2
-13 11110011 F3 163 3 11 3 3
- 12 11110100 F4 164 4 100 4 4
- 11 11110101 F5 165 5 101 5 5
- 10 11110110 F6 166 6 110 6 6
- 9 11110111 F7 167 7 111 7 7
- 8 11111000 F8 170 8 1000 8 10
- 7 11111001 F9 171 9 1001 9 11
- 6 muoio FA 172 10 1010 A 12
- 5 ninon FB 173 11 1011 B 13
- 4 11111100 FC 174 12 1100 C 14
- 3 11111101 FD 175 13 1101 D 15
- 2 ninno FE 176 14 1110 E 16
- 1 ninni FF 177 15 mi F 17

0 00000000 0 0 16 10000 10 20

Of course, there are many other numbering systems using bases of 3, 4, 5, etc,
however to program in C it is sufficient to just use the notations that we have just
studied.

23

When working with decimal, hexadecimal and octal numbers you should
remember that although the computer appears to understand them through its
I/O devices, it still stores and operates on them in their expanded binary form.

Although these strange notations may seem difficult at first, once they are used
in practice, understanding them becomes second nature. A full understanding
of these numbers is vital to be able to use the advanced techniques that are
available in C programming.

4.5 Computer Logic

If we consider the normal every day things which we do, we find that the
majority of these tasks require the making of numerous decisions. For a
computer system to simulate some of the mental processes of the human brain,
it must also be able to make decisions. Although a computer can only think in
terms of Os and Is, it is still possible for the computer to solve complicated tasks
involving decisions by reducing the problems to ones of Os and Is. This is binary
logic and is often referred to by mathematicians as boolean algebra.

This logic can be explained most clearly by considering the following example:

i f my car was serviced more than 6 months ago (A)
a nd I have driven at least 6000 miles since the last oil change (B)
t h e n I shall change the oil (C)

There are three sections to this statement which have been labelled A, B and C.
A and B refer to the two questions I have to ask myself and C refers to the action
I shall take. A and B are sometimes called binary variables, and take the value
“1” if the statement is True and “0” if it is False. Analysing the statements reveals
that there are four possible combinations for A and B which are shown below.

1. Car has been serviced within 6 months.
Less than 6000 miles have been driven.

2. Car has been serviced within 6 months.
More than 6000 miles have been driven.

3. Car has not been serviced within 6 months.
Less than 6000 miles have been driven.

4. Car has not been serviced within 6 months.
More than 6000 miles have been driven.

Since I only change the oil if statement A a n d statement B are True, then I only

24

change it for the fourth option, i.e. if the car has not been serviced within 6
months and more than 6000 miles have been driven since the last oil change.

These results can be written in tabular form using 1 for True and 0 for False.
Such a table is called a truth table, an example of which is shown in Figure 4.5.

AND A
(1) 0
(2) 0
(3) 1
(4) 1

B C
0 0
1 0
0 0
1 1

Figure 4.5 The AND truth table.

If, however, the original statement read:

i f my car was serviced more than 6 months ago (A)
o r I have driven at least 6000 miles since the last oil change (B)
t h e n I shall change the oil (C)

Then I would change the oil if either (or both) statement A or statement B was
True. The truth table would be as shown in Figure 4.6.

OR A B C
(1) 0 0 0
(2) 0 1 1
(3) 1 0 1
(4) 1 1 1

Figure 4.6 The OR truth table.

4.5 Logical Operators

It is possible to combine conditional statements in the English language by
linking them with either and and o r; similarly, you can it is also possible to
combine conditional statements in PDL and the C language by using operators.
These operators are called AND and OR, although in the C source they are
written as & & and | | respectively. These operators, which are very important
in decision statements (they appear in three of the PDL sub units which we met
in Chapter 3), are used between conditional statements as shown.

25

(condition 1) && (condition 2)

(condition 1) || (condition 2)

AND returns a result True
if, and only if, both
conditions are True.
Otherwise the result is False.

OR returns a result False if,
and only if, both conditions
are False. Otherwise the
result is True.

These results are summarised in the following tables:

AND True False
True True False
False False False

Figure 4.7

OR True False
True True True
False True False

Figure 4.8

There is one other logical operator, NOT that is used in conditional statements.
In C, this is written as !.

! (condition 1) NOT returns a result True if
the condition is False and a
result False if the condition
is True

NOT
False True
True False

Figure 4.9

26

Care has to be taken when programming in C since the & & and | | operators are
not commutative; the evaluation of each term in a logical expression ceases as
soon as it is known that the result of the expression cannot be changed.

Example: a && b

I f a is False then b is not evaluated and a result False is returned. If b is True
then b is evaluated to determine the result.

It is also possible to combine more than two conditional statements using more
than one operator.

Example:

! (condition 1) && (condition 2) || (condition 3) && (condition 4)

However, logical operators are processed in a fixed order and not simply from
left to right. First all NOTs are evaluated, then the ANDs and finally the ORs.

One other logical operator which is occasionally mentioned, but not available
directly in C is EX-OR (exclusive OR) which operates on two operands. This
gives the following results.

(condition 1) EX-OR (condition 2)

EX-OR returns a result True if one, and
only one of the conditions is True.
Otherwise the result is False

Figure 4.10

EX-OR True False
True False True
False True False

One final comment about logical operators in C. Up to now we have defined
True as a value of 1. In fact, the C compiler considers any non zero value as True,
and a zero value as False. C condition statments may consist of two algebraic
expressions or two characters separated by one of the following:

= = ... equal to

27

< ... less than
< = ... less than or equal
> ... greater than
> = ... greater than or equal

1 = ... not equal

4.1 Bitwise operators

C provides a number of operators for bit manipulation. Some of these are
similar to the logical functions that we have just met, but they work on separate
bits rather than byte values 0 and 1.

The bitwise operators are:
&

1
bitwise AND
bitwise OR

A bitwise EX-OR
<<

>>

left shift
right shift
one’s complement

Examples:

15 & 195 returns 3. How can we explain this ? To do so we must convert 15 and
195 into binary numbers and then use our AND truth table on each column.

0000 1 1 1 1
& 1 1 0000 1 1

000000 1 1

15 (decimal)
195 (decimal)

3 (decimal)

1 AND 1 = 1
1 AND 1 = 1
1 ANDO = 0
1 ANDO = 0

Likewise, if the bitwise OR or EX-OR operators are used on two numbers, each
column is evaluated using the corresponding truth table. The one’s
complement operator converts all the 0s in the binary form to Is, and vice
versa.

28

The shift operators < < and > > perform left and right shifts on the binary form
for the specified number of bit positions.

Example:

10 << 1 returns 20

(i.e. a shift of 1 is equivalent to multiplying a number by 2. This is similar to
multiplying a decimal number by 10 by just adding a zero to the last column.
99 x 10 = 990.)

10 (decimal) = 00001010

Shift by 1 place 00010100 = 20 (decimal)
(fill vacated bits with 0)

With bitwise operators we have a mechanism for setting and determining the
value of specific bits within a byte. This involves a technique called masking.

Examples:

1. To select a single bit X.

AND the byte with another containing just a single bit set-every bit
except X is set to zero.

1101X101
00001000

0000X000
1
X AND 1 = X

So, if the result is 00001000 (8 decimal) then bit 4 (X) must have been set.

2. To unset a single bit X.

AND the byte with another which has all bits set except the one
corresponding to X - only the required bit will be altered.

110001X0
1111110 1

11000100

A
X AND 0 = 0

29

3. To set a single bit X.

OR the byte with another which has all bits zero except the one
corresponding to X-only the required bit is altered.

i.e. YYYYXYYY
0 0 0 0 1 0 0 0

Y Y Y Y 1 Y Y Y
4

X OR 1 = 1

4.8 Stop

Before proceeding further, it is important that you understand the principles of
this chapter, as the concepts will be commonly used throughout the book.

30

CHAPTER 5

DATA TYPES

5.1 Introduction

While everybody realises that a computer can handle very complicated
arithmetic expressions, it is a common misconception that this is a simple task
-in fact it is one of the hardest! There are two main reasons for this. The first
being that a computer is expected to be able to cope with a vast range of
numbers and the second is that an individual address in the computer’s memory
can only contain whole numbers between 0 and 255 inclusive. It is, however,
comforting to know that when a high level language such as C is used, the
programmer needs no knowledge of the complicated methods used to evaluate
arithmetic expressions; these are handled automatically by the compiler.

5.2 More on Numbering Notations

Those readers who have little experience of mathematics have probably never
given a great deal of thought to the many notations in which numbers can be
written. For example, the first three different types of numbers we ever learned
about were whole numbers, fractions and decimals. Computing, similarly uses
three types of numbers-integers, real numbers and exponential numbers. We
will now consider these in more detail.

Integers.

Integers, commonly called whole numbers, are numbers comprised of a
sequence of digits which does not involve a decimal point or any fractional
component. They may be positive or negative. For example, -156, -22, 0, 1,2
and 69 are all integers.

Real Numbers.

Real numbers are a sequence of decimal digits with a single decimal point either
at the end, the beginning or between any two digits. The digits to the left of the
decimal point are weighted in positive powers of 10 and form the integer

31

component of the number. Likewise the digits to the right of the decimal point
are weighted in negative powers of 10 and form the fractional component of the
number. Real numbers may be positive or negative. Examples of real numbers
include -2.3, 0.4, 21.035, .25, -0.278.

The following diagram illustrates this idea:

10’3 = 5x 0.001 =
IO’2 = Ox 0.01 =
10“1 = 1 X 0.1 =

10° = 7x 1
101 = 1 X 10
102 = 6 x 100

0.005
0.0
0.1

7
10

600

Negative powers
of 10

Positive powers
of 10

617.105 (decimal)

Exponential Numbers.

Exponential numbers are written in a notation which is suitable for either very
large or very small numbers. They are written using a real number followed by
the symbol “E” and an integer number. The “E” means times 10 to the power
of.

Thus yEx means y times 10 to the power of x. Further examples are given by:

1.234E-2 = 1.234 x IO"2 = 0.01234
1.234E0 = 1.234x 10° = 1.234
1.234E2 = 1.234 xlO2 =123.4

The effect of the integer following the “E”is to indicate how many places the
decimal point has to be shifted. A positive value means shift to the right and a
negative value means shift to the left.

For example, 1E10 means 1 followed by ten ‘0’s, i.e. 10,000,000,000

In the current release of the Hisoft compiler, numbers are restricted to the
integer notation.

The hexadecimal and octal notations, which we met in Chapter 4, may be used
freely in C programs by writing the number preceded by Ox and 0 respectively.

32

Example:

0x4C and 0114 would both be interpreted as 76.

5.3 Variables

All items of data stored in the computer’s memory are identified in C by
labelling them with symbolic names. Such a name refers to the location at which
the particular data is stored. If we consider a statement in which a numerical
value is assigned to, for example, a name m a x_v a I, then the computer reserve
a section of memory for this name and stores the value there. From then on, any
reference to ma x_va I relates directly to the value stored in that section of
memory specifically reserved for m a x_v a I. It is because the data stored at the
location may be changed that the names are called variables.

In C, there are certain rules for choosing the names of variables. They can have
names of any length and may consist of letters, digits and the underscore ‘__’,
character provided that the name starts with a letter or ‘__ ’. However, C
variables are only recognised up to the eighth character. Thus p o s i t i o n_1
and p o s i t i o n_2 refer to the same variable (i.e. position).

Naturally, in order to improve the readability of a program, it makes sense for
the variable names to be chosen so that they bear some resemblence to their
contents.

5.4 Declarations

All variables must be declared before they are used. If they are declared at the
top of the C program they are global and are available for use from anywhere
in the program. Local variables are declared at the top of blocks of code, before
any executable statements, and may only be used from within that block. Local
variables in different blocks may have the same name but they are totally
independent.

Local variables may be declared as automatic, static or register. Automatic
variables are discarded on exit from the block, whereas static variables retain
their values until the block is called again. Register variables are treated like
automatic variables but are stored in locations in the CPU (if available), and so
can speed up the processing in sections of code where they are frequently used.
External variables may be declared and refer to global variables that have been
declared elsewhere —possibly in another source file.

33

Examples:

int average;
i n t a , b , c ;

i n t p t r = 0 ;
static i n t m a x ;
register int count;

extern char v a l_p t r ;

Declares integer variable (automatic).
More than one variable may be declared at
once.
Variables may be initialised when declared.
Static variable.
If no registers are available, then the variable
is treated as a normal automatic variable.
Informs the compiler that the variable has
been declared elsewhere.

In order to keep their compiler small, Hisoft have imposed several minor
restrictions in their version of C. Automatic variables cannot be initialised when
declared; instead, values must be assigned to them. Because there are never
enough CPU registers free, the r e g i s t e r keyword is accepted but ignored.
And finally, all local variables must be declared at the start of a function and not
at the top of a compound block; this restriction does, in fact, aid the
understanding of programs.

The size or precision of variables is dependent upon the hardware and your C
compiler, but an integer is usually stored within sixteen bits, restricting numbers
to between -32768 and 32767. Integer variables may be declared as unsigned,
in which the range is between 0 and 65535.

Example:
unsigned int mi n_v a I;
unsigned ma x_v a L ; The word int may be omitted.

In addition to i n t, C has several other data types, although the way these are
handled varies, once again, with the hardware and C compiler. The complete list
of data types is:

Typical Precision
i nt Integer 16 bits
short Short integer 16 bits
Long Long integer 32 bits
char Character 8 bits
f L oa t Floating point / real 32 bits
doub L e Double precison floating point 64 bits

Long constants are distinguished by following the number with an L.

Example:
Long start_vaL = 10000L;

34

The current version of the Hisoft compiler uses 16 bits for int, short and long
variables, and 8 bits for char variables. Floating point numbers are not
implemented. However, it is hoped that a future release will include 8 bit short
variables, 32 bit long variables and floating point arithmetic.

5.5 Characters

All computers have a character set, usually of 256 items, which can be visualised
as its own unique alphabet. It can include alphabetic and numeric characters,
Greek letters, pixel graphics, punctuation marks, mathematical symbols,
control characters, etc. Most manufacturers of microcomputers use the ASCII
(American Standard Code for Information Interchange) character set, but
many have altered it slightly to suit their own requirements resulting in many
versions which are not really standard at all! Each character is distinguished by
its own character code which, in the case of ASCII, is a unique number between
0 and 255. Since char variables comprise 8 bits they can be used to
accommodate the character code of any ASCII character.

Character constants may be represented by enclosing either the character, or the
character code in octal preceded by ‘ \ ’, within single quotation marks. Certain
non-graphic control characters have a special notation represented by a
backslash and a normal character:

\ b Backspace
\ f Form feed
\ n Newline
\ r Carriage return
\t Tab
\ \ Backslash
\ " Double quotes
\ ' Single quotes

Examples:

char a_u p p e r = ' A ' ;
char for m_fe e d = ' \f ' ;
char Lin e_f e e d = 10;
char escape = 0 x 1 B ;
charnull char='\fi00';

35

5.6 Arrays

It is often useful to reserve a block of cells in the memory which can be referred
to by a name (identifying the block) and a number (representing the particular
cell within the block); such a block is called an array. The compiler is instructed
to reserve an array by declaring it along with the other variables and specifying
its length within square brackets.

Example:

i n t a [7] ; Reserves an array, a, of seven integer elements.

Each cell can store one integer and is identified by the block variable name and
cell number which is written within square brackets. For example, the 6th cell in
the block is referred to by a [5]. The term in brackets is called the subscript
and varies from 0 to one less than the specified array length. A subscript may
be replaced by an algebraic expression whose result indicates the required
element, but care must be taken that the result always lies in the correct range.
BASIC users may be aware that if they use a subscript that is out of range, then
the program stops giving an appropriate error message. C, however, allows you
to use subscripts out of range, on the assumption that you know what you are
doing and are deliberately trying to access a different section of the memory
-thus take care!

Example:

i nt a [7] , b C 7 J;

Cell a [7 J refers to the section of memory following on from the array a, i.e.
element b [01.

It is also possible to set up arrays with more than one subscript.

Example:
i nt c[3]C4];

cIO]EOI c[01 [1 J c 10] L 2 J c EOI[31
c[1 I[0J C [1] [1] c[1][2] c[1] [33
c [2 J C 0 J c[21 11] c[21121 c[21[3]

36

Such an array is called a two dimensional array; remember however, that the
cells are physically stored sequentially in the computer’s memory.

The same idea works for an n dimensional array.

Example:
i n t d [3] [4 J C 2] [3] ;

5.7 Strings.

String constants, which are sequences of characters, are commonly required in
C programs and are represented by enclosing the characters in double quotes.

Example:

"VOLVO"

One of the most common use of arrays is to store sequences of characters.

example:

char c a r [6] ; Could be used to store

| V | 0 | L | V | 0 | \0~|

by assigning each character in turn i.e. cartBJ = 'V1;
c a r [1] = 'O';
etc.

We shall see later that there are a number of standard string functions which are
fundamental to string manipulation, including one which allows the address of
the target array and the string constant to be specified and then undertakes to
assign each character in turn. Until we meet these functions, all we shall say is
that strings are terminated by a null character (i.e. the character whose character
code is zero) so that the end of a string can be detected. This extra character
means that the length of a string array should be 1 greater than the maximum
length of the stored string. Many string functions do not check this length and
so, if it is exceeded, are likely to corrupt the next area of memory.

37

5.8 Initialising Arrays,

Global and static arrays may be initialised by following the declaration with an
element list. When the size of the array is omitted, the compiler uses the number
of elements detected.

Examples:

i n t n o_d a y s!12 J =
<31,28,31,30,31,30,31,31,30,31,30,31?;

int factorial!] =
<1,2,6,24,120,720,5040,40320?;

charname[]=<'J,,,A,,,N,,'E,,,\000'?;

A shorthand for the character initialisation is

char company!] ="G.H.Hogg & Sons Ltd.";

5.9 Algebraic expressions.

When we consider mathematical problems of the form

5 + x / 3 - y

we are talking about the evaluation of algebraic expressions. An algebraic
expression is a list of numerical variables and constants known as operands,
linked together by operators such as +, - , etc.

Examples:

a * b / c ,
-a + b + c- 2.5,

a + b * c * 3

Brackets may also be included in such expressions in which case the algebraic
expressions most deeply nested by brackets are evaluated first.

Examples:

(a + b + c) / 3 ,
(a + b) / (c + d)

38

Sometimes if we choose to omit the brackets we may not achieve the results that
we require. For example, consider the expression a + b * c. You might think
that the computer could interpret this in two ways.

1) c multiplied by the result of a plus b
2) a added to the result of b multiplied by c

Thus it is important that there are some rules to specify the order in which the
operands are operated on. C gives each operator a hierarchy or priority value.
When an expression is evaluated, all operators with the highest priority are
considered and evaluated from left to right. Next, the operators with the second
highest priority are evaluated, again, from left to right, an this continues until
all the operators have been considered and the expression is evaluated. The list
of C operators and their hierarchy is given in Figure 5.1.

To some readers, the number of C operators may seem surprising, as there are
far more than any version of BASIC. There are two types of operators, unary
and binary for use on one or two operands respectively.

The most common operators are + (addition), - (subtraction), *
(multiplication) and / (division); these should not require any explanation.

Similar to these arithmetic operators is %, which returns the remainder when the
first operand is divided by the second.

Example:

a = 1 3 % 3 Evaluates to 1.

Adding 1 to a variable is so common that a special operator, + +, is available to
do it.

Example:

i++ Increment the contents of i by 1.

Similarly, we can decrement a variable by using - -.

Example:

j

Alternatives to the above two examples are + + i and - - j. The difference in the
two notations is only noticable when they are involved in larger expressions.

39

Example:

k-+ + i ; Increment i and assign result to k.
k = i + +; Assign i to k and then increment i.

When the left hand side of an expression is repeated on the right hand side, the
expression may be written in a simpler notation using + =, -=, *=, / =
%=, <<=, >>=, &=, += or /=.

Examples:

i = 1 0 * i ; could be written as i *=10;
j = j +100; could be written as j +=100;
k = k / 1 0 ; could be written as k / = 1 0 ;

This is very useful when the expression is complicated, for example, when
involving complex array subscripts, and also can produce more efficient
machine code.

Example:

x[y[i J]Cz [j J] += 2;

The & operator returns the address of a variable, i.e. its location in the memory.

Examples:

ptr1 = & d a t a ;
ptr2 = 8wordf10] ;

In the case of arrays, the address of the first element in the array can be obtained
by referencing the array without any subscript.

Example:

char s[10];

k 1 = & s [0] ; This results in both kl and k2
k 2 = s ; containing the start address of the array.

The remaining operators in C are the logical and bitwise operators which we met
in Chapter 4.

40

Priority_____ Operator_________________Description.
Highest

() [] . «- Primary expression operators

* & - ! ++ --
si zeof Unary operators

* / % Binary operators

-

>> <<

< > <= > =

&

&&

11 Binary operators

? : Conditional operator

= + = -= * = / =
% = Assignment operators
>> = <<= &= += | =

Lowest priority.

Figure 4.1 The Hierachy of C operators:

There are a couple of operators here that we have not yet studied but which have
been included for future reference.

41

5.10 Pointers

Any reader who has not met pointers before may find the next concepts difficult
to understand, but do perservere since their use is fundamental in C programs
and it is only a poor programmer who is unable to use them constructively.
Understanding pointers is not nearly as difficult as teaching someone when they
should be used; however we shall meet them on numerous occasions throughout
this book and, hopefully, their use will soon become second nature.

Pointers may be thought of as variables that contain the addresses of physical
locations in the computer’s memory. They are declared along with normal
variables but are distinguished by preceding their name with a “*’ character. The
declared variable must have a data type that corresponds to the data that it
points to. Whenever a pointer is used without the * it refers to the contents of
the variable; i.e. the address of a physical location in the memory. When the *
is included it refers to the contents at the address stored in the variable.

Example:
charname[201, *ptr;
ptr = 8name[0];
* p t r = ' M ' ;

is equivalent to t ,

i

(Also remember that &na me[01 could have been represented by n a m e)

42

Example:

int s[10], * p t r ;

P t r = s ; s ;
(*pt r)++;
*(ptr*5) = 100;

p t r points to s 10 3
Increments s I 0 1 .
Assigns 100 to s [5]

Mathematical operations on pointers are undertaken in multiples of the size of
their data type. For example, if a long variable consists of four bytes, adding 1
to a long pointer increments the stored address by four bytes.

Example:

Long income[12], *idx;
i d x = income;
i d x + + ;

i d x now points toincomeflJ.

43

5.11 Pointer Arrays

Just as we have arrays of integers, characters, etc., we can also have arrays of
pointers. This is illustrated in the following example which enables seven text
strings to be accessed using an index.

Example:

char *day_text 11 =
<
"Sunday",
"Monday",
"T uesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

>;
The compiler assigns the address of the location where each string is stored to
the corresponding element in the array of pointers enabling each day, 0 to 6, to
be accessed via the appropriate pointer. We can even set up a pointer to point to
the pointers!

As in the earlier examples, the array size is not specified so the complier counts
up and uses the number of elements it detects.

5.12 Pointers to Functions

It is even possible in C to set up pointers to point to functions and they may be
stored, manipulated and passed on to other functions in the same fashion as
other pointers. However, we shall leave such ideas to later since the concepts can
be rather mind boggling to the beginner.

5.13 Function Arguments

Earlier, we saw how programs are broken down into small functions each having
a specific task, which may be used without worrying about the complexity of its
operations. Once written, you need not know how it works - just that it does. C
is designed so that the use of functions is easy and efficient enabling the
programmer to keep control of potentially, very complicated problems.

44

Each function takes the following form:

function name (argument list)
declaration of arguments
<
Local declarations

executable statements

Arguments to functions provide a mechanism whereby functions can
communicate with each other; the alternative method is to pass values via
global variables. When a function is called, temporary variables, as declared
before the opening left brace of the function, are set up and the passed
arguments are assigned to each in turn. These variables are the function’s own
private copy for use during its lifetime, and are totally independent from any
other variables.

A function may, if required, return a value or the result of an expression by using
the return statement.

Program 4: Odd Numbers

ma i n ()
<
i n t x , y ;

y = 99;
x = odd_t e s t (y) ;

odd_t est(value)
i n t value;
<

return (va Lue & 1);

Function o d d_t e s t returns a value of 1 if the argument is odd, or 0 if it is
even. The method used is to mask the the least significant bit, which is set for
odd numbers and unset for even numbers (see Chapter 4).

Functions returning useful values can be used as parameters to other functions.

45

Example:

process_data(ptr, odd_test(data));

Functions returning data types other than i n t values require the data type to
be specified at the start of the function. Those not returning a value may be
defined as v o i d.

Examples:

char toupper(c)
char c ;
<

void free(block)
char * b I o c k ;
<

> >

Many applications require functions to affect the variables in the calling
function; this can be done by passing pointers as parameters.

Program 5: pointer example

m a i n ()
<
i n t a , b;

a = 1 0 ; b = 2 0 ;
fLip(8a,8b);
>

f I i p (x , y)
i n t * x , * y ;
<
i n t temp;

temp = *x;
*x = *y;
* y = t e m p ;

In this example, the addresses of the variables are passed and assigned to the
pointer variables enabling the operations to be carried out on the locations
where a and b are stored. This method can also be used for returning more than
one value to calling functions.

46

Calls to functions which process arrays are controlled by passing the address of
the first element of the array as a parameter. This is picked up by a pointer in
the called function. The function can then access all elements in the array using
offsets from this location. One common use of this is with string handling
functions. So that functions can detect the end of the string, it is standard that
all strings are terminated by a null character (character code of zero). String
constants, (i.e a number of characters enclosed by double quotes), may be
passed to functions in a similar fashion to passing the address of an array. The
compiler passes the address of the internal representation of the constant and
assumes that the string is terminated by a null.

Example:

char n a m e [2 0];

strcpy(name,"STEPHANIE") ;

5.14 Variadic Functions

Hisoft C provides an addition to the syntax of function definitions and offers
a method of defining functions which take a variable number of arguments
(these are called variadic functions). The keyword auto can follow the
functions argument list (before the function body) and causes.the compiler to
place the number of bytes of actual argument as an additional argument after
the others. The function can access this argument and use it to work out how
many arguments there are.

Example:

int max(param_byte_count) auto
/* fromHisoft library*/

{

static int a r g c , * arg v , max;

argc = para m_b y t e_c ount/2-1;
argv = Spa r a m_b y t e_c ount + argc; pointer to last

argument.

5.15 Command Line Arguments

In some environments supporting C, there is method of passing arguments to
the program when it is executed. These command line arguments are typed after

47

the program name that is to be executed.

Example:

A> CC TRS1 .C MDRIVE .OLB

f t
program > first \ second
name argument argument

Two arguments are passed to mai n; the first (by convention called a r g c) is
the number of command line arguments, and the second (a rg v) is a pointer
to an array of character strings.

Example:

main(argc, argv)
i nt a rgc ;
char*argv[];
<

}

You are referred to the documentation supplied with your compiler to see if this
feature is implemented. Command line arguments are not applicable to the
Amstrad and ZX Spectrum versions of Hisoft C, and so will not be used in this
book.

48

CHAPTER 6

MOREC
STATEMENTS

AND COMMANDS

6.1 Introduction

As we have already seen, a C program comprises a number of statements, each
of which may do one of two things. It may either describe some item of
information or it may tell the computer to undertake a specific operation.

The C statements may be divided up into five categories.

Those that we have met include:

1. DECLARATIONS
Used to inform the compiler to reserve memory space for variables.

2. ASSIGNMENTS
Used to allocate either numeric or character values to specific
locations in the computer’s memory.

3. FUNCTION CALLS
Used to transfer control to other blocks of code; after execution
control returns to the calling statement.

The remaining categories are:

4. PREPROCESSOR COMMANDS
Control commands used to instruct the compiler of certain
requirements during compilation.

5. CONTROL STATEMENTS
Used to control the sequence in which the program commands are
executed.

49

We shall now look at these last two in detail.
To clarify each C control statement, the syntax will be given in italics.

6.2 Preprocessor Commands

The preprocessor commands are not as clearly defined as the actual language
since different systems have different requirements. The following commands
are available with Hisoft C but may not be found on your version of C; likewise
your version may contain others not discussed here, so you are advised to
consult the documentation supplied with your compiler.

//define

The //define preprocessor allows macro expansion. The command is
followed by an identifier text string and a constant. Whenever the identifier text
string appears in the program, the compiler replaces it with the corresponding
constant.

example:

//def i ne BUFF_LEN 25

char msg e_b ufferfBUF F_L E N J ; declares a character array of
25 bytes

It is important to remember that everything after the identifier is transferred
into the program (so do not include a semicolon unless you want it to reappear).

Some versions of C allow the macros to be passed arguments in a similar fashion
to functions, but this is not available on the Hisoft implementation. Also not
available with Hisoft C is the # u n d e f preprocessor, which instructs the
compiler to forget a previously defined macro.

The use of macros has two main advantages. Firstly it can help to improve the
readability of a program and secondly, if any values have to be changed, they
need only be amended at one place in the program.

//direct

The //di r e c t preprocessor is followed by a “ + ” or a and is used to toggle
on/off direct execution mode. This facility is unique to Hisoft C and enables
functions to be tested as they are written. When direct execution mode is
enabled, a C command may be entered for immediate execution by typing just
its name, any parameters and a semicolon.

50

example:
#d i re c t #
p r i n t f ("Day no = %d
) ;

(screen output)

//direct -

//translate

c a L c_d a y_no("06/05/61")

The //translate preprocessor enables object code that is produced from
compilation to be saved to a specified filename such that it may be reloaded in
standalone mode, i.e. without the compiler, editor, etc. present. This is used for
final versions of a program and is important for commercial distribution of
your software products.

example:
//translate invaders should be the first command in

compilation
//include

//include

We met the // i n c I u d e preprocessor briefly in chapter 3 where we saw it was
used to include a specified file into compilation.

Hisoft C has three major forms:

include source stored by the editor

include specified source file

include functions in specified file that
have been previously invoked

#error

The //error preprocessor removes compiler error text messages from the
RAM, once and for all, releasing about 2K of space.

//list

The //list preprocessor is followed by either “ + ” or and is used to toggle
on/off a compiler listing.

51

6.3 Control Statements

Probably some of the most vital statements in a computer’s repertoire are those
that allow us to control the order in which the instructions in a program are
carried out. They enable the computer to become “intelligent” and able to test
conditions so that, depending on results, different actions may be taken.

C contains a number of control statments which closely resemble the latter four
types of PDL sub-units which we met in Chapter 3. They all involve testing
logical conditions which, recapping on Chapter 4, evaluate to either zero or
non-zero. C treats zero as a truth value False; non zero is considered as True. As
you may remember, logical expressions can be made very complicated by
linking conditions with the logical operators 88, | | and I .

if... then

An i f statement tests a condition within parenthesis and if True will execute
the following statement (or, if within braces, the compound block). If required,
an “else” statement may be included, in which case the following statement (or
compound block) is executed if the condition is False.

if (condition) or if (condition)
statements statements-1

else
statements-2

Example:
if (x == 0)

p roc es s_0();
else

if (x > 0)
p r o c e s s_n (x) ;

else
e r r o r_m sg("Invalid option");

switch... case.

A frequent requirement is a multi-way decision whereby an expression is tested
against a number of constant values. The switch statement provides a simple
and efficient mechanism of coding such decisions. The result of the expression
within parenthesis which follows the switch statement is used to select one of a
number of c a s e values. Execution continues from that point until a b r e a k
statement is found, and then the switch is terminated. If none of the constant
values matches, then a d e f a u L t label, if present, is selected. It is important

52

not to forget the b r e a k statement or the program will “plough” through the
remaining selections.

switch (expression)
<
case <constanf>:

statements

default:
statements

Example:
switch (men u_o p t i o n ())

<
case-1 :

h e I p () ;
break;

case 0 :
return;

case 1 :
opti on_1 () ;
break;

case 2 :
opti on_2();
break;

c a s e 3 :
o p t i o n_3();
break;

default:
erro r_m sg("Invai id option");

for

The for statement is used when we require a section of code to be repeated a
specific number of times. The looping is controlled by making a once only
number of initialisations. Then while a logical condition is True, the following
statement or compound block is executed. On the completion of each loop, a
number of expressions may be evaluated.

for (initialisation; condition; expressions)
statements

53

The normal use is to assign a initial value to a control variable and then
increment it on each loop until it exceeds a terminating value.

Example:

for (i = 0; i <10; i + +)
p r o c e s s_o p t i o n(i);

Occassionally, it is convenient to omit some of the components in the statement.
In this extreme case, we have a “forever loop”.

Example:

■for (;;)
p r o c e s s_s e I e c t i o n();

while

The w h i I e statement is similar to the for statement but only the condition is
specified. The following statement or compound block is executed until the
condition becomes False.

while (condition)
statements

Example:

w h i I e (i - -) execute function until i equals 0
get_ba t c h();

do

The while statement tests to see if the condition is True before any statements in
the loop are executed. However, there are times when the loop is required to be
executed at least once before any terminating test is made, and in such cases the
d o statement can be used. With this statement the w h i I e condition is
positioned after the statement or compound block.

do
statements

while (condition)

Example:

do
get_data();

wh iIe (cont f I g)

54

continue and break

The statements continue and break may be used to take specific actions
within loops.

Continue is used to skip to the end of a loop avoiding the following statements.
Break causes immediate execution of the loop.

Another method of terminating a loop is the return statement which ceases
execution of a procedure.

goto

Control may be transferred unconditionally, by use of the g o t o statement, to
a defined label.

goto identifier

identifier:

Example:

NONE !! As discussed previously, the goto statement should be avoided. I
have never used a C goto before and so I would rather not start now.

inline

Hisoft C provides a statement enabling the incorporation of machine code into
a C program. This is useful for calling routines in the manufacturer’s operating
system that is stored in RAM.

inline (machine code values)

Examples:

//def i ne CHAN_OPEN
//define Id a with

0x1601
0x3E
0xCD//define call

inline (Id a with 3 , call, CHA N_0 PEN); call location 1601
(hex) with 3 assigned to register A

For more examples of the inline statement you are referred to the Hisoft library
functions.

55

6.4. Some words of advice .

A beginner to C can read books on the subject until the print conies off the
pages, but nothing will help him/her more than to seeing the language in action.
Up to now, examples have been limited since we have not yet met any of the vital
C library functions such as I/O routines. From now on our repertoire of C is
sophisticated enough to illustrate everything with, hopefully, both interesting
and useful programs.

Many of the functions given in this book will be used on several occasions but
will only be listed once. It is suggested that as you progress through the book,
you build up a library of useful procedures; you should include all those that are
commented:

/* MRH . LIB */

as they will be required in later programs. Remember, they can be conditionally
included for compilation by using:

#include 7MRH.LIB?

A complete list of functions in the MRH.LIB library is given in Appendix B.

56

CHAPTER 7

THE C STANDARD
LIBRARY.

7.1 Introduction

We shall now look at the library functions which are provided with the Hisoft
compiler. The majority of the functions we meet in this chapter are common to
other versions of C. Most of the library procedures in this chapter are so
fundamental to C programming that they tend to be thought of as part of the
actual language.

The library is provided in three components; the header, the built-in functions
and the remaining functions.

The header is a C source file ‘stdio.h’ containing constant and data type
definitions and a couple of functions. Any program using the library must use
this header by using the // i n c I u d e preprocessor at the start of the program.

i£- U i n c I u d e < s t d i o . h >

The built-in functions are those frequently used and are contained, for
efficiency, in the run-time system. They are automatically included in your
compiled program.

The remaining functions are contained in a C source file ‘stdio.lib’. They may be
selectively compiled using the library search # i n c I u d e at the end of your
program.

i£- //include ? s t d i o . I i b ?

Other versions of C provide library functions in two files; a header that has to
be included at the top of your source, and an object file containing the functions
which have to be linked in at compilation time using facilities provided.
It is anticipated that Hisoft will supply additional library functions written by
the users of their compiler at a low cost to make them widely available (provided
free to those who supply functions for inclusion).

57

7.1.1 Function descriptions—an important note

For each procedure we shall meet, a few lines in italics are listed, which represent
the top lines in the procedure’s C code. From this it is clear what data type the
procedure returns and what, if any, parameters are required (see section 5.13).

Example:
void error__message(msg)

char *msg;
This procedure requires a character pointer to be passed and does not return any
value, i.e. a type ‘void’.

Example:
char *search(strg,num)

char *strg;
int num;

This procedure requires a character pointer and an integer as parameters (in that
order) and returns a character pointer.

7.2 Simple I/O

Up to now, all of our examples have been hampered by the absence of any
functions in our C repertoire for the output of data. Since it is pointless writing
programs if we cannot access the results from the computer, we shall rectify our
problem and study the most important output function, p r i n t f, which can
be used for displaying all kinds of data, i.e. numbers, characters, strings, etc.

printf

The first parameter is the control string which, with the exception of conversion
specification characters is displayed as it stands. Conversion specifications
define the format for displaying the remaining arguments.

void printficontrol, [argl, arg2, arg3, , argn])
char *control;

Conversion specifications commence with a ‘W character, followed by some
option modifiers, and are positioned in the control string where the next
successive argument is to appear.

The following conversion specifications are possible:

% d signed decimal notation
% u unsigned decimal notation
% o octal notation
% x hexadecimal notation
% e exponential notation
% f floating point notation

not supported on
Hisoft C

58

% c single character
% s string terminated by a null character
% % % character

example:

char e r ro r[80 J;

printfC"ERROR: %s" , error);

example:

i nt h_score , score;

printfC"Your score is %d \n",score);
printfC"Highest score is %d \n",h_s co re) ;

Some additional characters may appear between the % and the optional
modifier; these are:

0
digit string

.digit string

L

left justified (default is right)
leading zeros in field
minimum field width
maximum number of characters printed from a
string, or the number of decimal places printed in a
floating point number
indicates long data type - not Hisoft C

example:

printfC":%-10.5s:","MICRODRIVE")

this would display : M I C R 0 :

Example: Fibonacci Sequence.

In the thirteenth century, the Italian mathematician Leonardo Fibonacci
studied the vast explosion in the rabbit population. He considered how the
population grew, starting with just one pair of rabbits and assumed that it took
a pair of newborn rabbits one month before they became fertile and could
reproduce. From then on they would breed an additional pair each month. He
assumed that no deaths or migration occurred in the timespan under
consideration. Analysing the problem it can be seen that if the population of

59

month n is Pn then:

Pn Pn—1 + Pn—2

T

the new
1

all those alive
I

+ one more pair from
population in the preceding each of those fertile

month and so still (those alive 2 months
alive ago)

The values of Pn are found in Program 6, the sequence of numbers obtained is
known as the ‘Fibonacci Sequence’.

Program 6:

/******<****************

* FIBONACCI SEQUENCE *
* --- *
* M.R.H. May 85 *
******»*******•;(■**■»<■*****/

mai n ()
<
i nt p,p1,p2j m;

pl = 1; p2 « 1;
printf("\nFIBONACCI SEQUENCE
printf("\nMonth
printf("\nMonth
for (m = 3; m <

“) ;
1 Rabbits 1");
2 Rabbits 1");
21 ; m++)

p = pl + p2;
pr i ntf ("\nMonth 7.d Rabbits 7.d"
p2 = pl; pl = p ;

m,p) ;

scanf

Equally important as accessing data is the input of information; the simplest
method is via the scanf function which is the input analogue of p r i n t f.
It provides many of the same conversion facilities but in the opposite direction.

60

int scanj(control, [argl, arg2, arg3, ... , argn 1) ^control;
gnJ J

All other arguments must be pointers!

scant reads characters entered from the keyboard and interprets them as
directed by the conversion specifications in the control string. The results are
stored in the remaining arguments, all of which must be pointers (e.g. use the &
operator on integer va iables). scant stops when the control string is
exhausted or when some characters are entered which do not match the control
string. The function returns the number of input items that have been entered
and which successfully match the control string; this value should be checked
when the function returns and, if not as expected the function can be recalled.

In addition to the conversion specifications of p r i n t f (with the exception of
%u), the control string may contain:

blanks matched by any amount of white space
(blanks, tabs or newlines)

ordinary characters
%* (suppression)
% digit

must match next input character
next input field is skipped
maximum field width

When s c a n f is called, the user may enter the inputs fields. The characters are
echoed on the screen and may be amended using the cursor control and delete
keys; the fields are accepted with the Enter key. The conversion specifications
within the control field determine how each input field is interpreted. An input
field is defined as a string of non white space characters or everything recieved
until the field width, if specified, is exhausted. Thus Enter, Tab or Space may be
used to separate fields for scant.

example:
int x ; c h a r name[21J;

printf("Enter data: ") ;
scanf("%d%20s",&x,name) ;

Program 7 responds to any entered month and year by displaying the calendar
for that particular month. The original calendar was devised by Julius Caesar,
but he fixed the length of a year to be eleven minutes too long. This error was
rectified by the Gregorian calendar in Italy in 1582 although it was not
introduced into England until 1752. The program will not give correct answers
for earlier years.

61

The program works by using the function c a L c_d a y_n o to calculate the
day of the week (O-Sun, 1-Mon, 6-Sat) for any date.

Program 7:

/*##*#######*####*#*##**
* CALENDAR »
* -- *
* M.R.H. May B5 #
##***####**#***#***#***/

int m, y, d, dd, n,

main ()
<
get_date(>;
proces5_date(),
di splay_calendar (>,

get_date()
<
printf("\nCALENDAR\n\n"),
m = O; y => O;
do

<
printf("Enter months"),
scanf(" */.d",&m);
>

while (m < 1 I I m > 12),
do

<
printf("Enter year i"),

scanfC %d",&y);
}

while (y “= 0),
>

process_date()
<
d « cal c_day_.no (1, m, y) ,
if ((m++) > 12)

<
m = 1,
y +« 1,
>

dd « calc_day_no(1,m,y);
if (dd < d)

dd +- 7,
n = 28 + dd - d;
>

calc_day_no(day,mon,yr) /* MRH.LIB */
int day,mon,yr;
<
int xl,x2,x3;

mon = mon - 2;
if (mon <■ O)

<
mon += 12,

62

c_day_.no

yr -= 1;
>

xl = yr / 100;
yr ® yr - 100 * xl;
x2 = <260 ♦ mon - 19) / 100 yr / 4 ♦

yr + xl / 4 - 2 * xl + day;
x3 « (x2 < 0) ? x2 / 7 - 1 x x2 / 7 ;
return <x2 - 7 * x3> ;
>

di splay_calendar ()
<
int j, p;

print*("\n SUN MON TUE WED THU FRI SAT\n\n“>;
for (j = 0; j < d; J++)

print*(" ");
p - d;
for (j = 1; j <= n; j++)

<
print* (•' 7.2d “ » j) ;
x* (p — 6)

<
print*("\n">;
p = 0;
>

else

P**l
>

>

7.3 Character tests

There are a number of standard C functions for determining the nature of a
character.

isalnum

Returns True if the character is alphanumeric (i.e. a letter or a digit), otherwise

it returns False.

int isalnum(c)
char c;

Example:

char *pt r;

if (i s a L num(*pt r))
men u_o n e() ;

else
print f("Invalid option \ n");

63

isalpha

Returns True if the character is a letter otherwise, it returns False.

int isalpha(c)
char c;

isascii

Returns True if the character code is less than 128, otherwise it returns False.

int isascii(c)
char c;

iscntrl

Returns True if the character is a control character, otherwise it returns'False.

int iscntrl(c)
char c;

isdigit

Returns True if the character is a digit, otherwise it returns False.

int isdigit(c)
char c;

¡slower

Returns True if the character is lower case, otherwise it returns False.

int islower(c)
char c;

¡sprint

Returns True if the character is printable, otherwise it returns False.

int isprint(c)
char c;

ispunct

Returns True if the character is printable but not a letter or digit, otherwise it

64

returns False.

int ispunct(c)
char c;

isspace

Returns True if the character is a white space character, otherwise it returns
False.

int isspace(c)
char c;

¡supper

Returns True if the character is an upper case character, otherwise it returns
False.

int isupper(c)
char c;

7.4 Character and String Manipulation

The C language treats all strings as arrays of characters and so a number of
fundamental library functions exist to deal with them.

toupper

If the passed character is in lower case then the character is returned in upper
case; other characters are returned unchanged.

char toupper(c)
char c;

Example:

for (j = 0; namelj] ! = 1 \000'; j + +)
nameljl =toupper(nameIjJ);

tolower

If the passed character is in upper case then the character is returned in lower
case; other characters are returned unchanged.

65

char tolower(c)
char c;

strlen

Returns the length of a string, i.e. the number of bytes between the passed
address and the first null character.

unsigned strlen(s)
char *s;

example:
char buffer[80];
i n t L e n;

ten = strlen(buffer);

strcpy

Copies one string to another, i.e. copies from the passed source address to
another address, byte by byte, until the first null character is detected.

char *strcpy(dest,source)
char *dest, *source;

Example:

char car 16J;

strcpyCcar,"VOLVO") ;

strcat

Concatenates one string onto the end of another, i.e. copies from a passed
address, byte by byte to the end of a string starting at a base address. Returns a
pointer to the start of the base string.

char *strcat(base,add)
char *base, *add;

example:
char error_ms g [8 0 J , project[15J;

strcpy(error_msg,"Project ");
st r c at(e r ror_m sg,project);
strcat (erro r_msg," does not exist");

66

strcmp

Compares two strings, byte by byte, and returns a value:

0 if the strings are identical
> 0 if the first string is greater than the second string
< 0 if the first string is less than the second string

A string is found to be less than another if the first character that differs comes
earlier in the ASCII character set.

char strcmp(s,t)
char *s, *t;

example:
char response[20J;

if (strcmp("END",response) ==0)
return;

Other String Functions.

Absent from early versions of Hisoft C are the following standard C functions:

char *strncpy(dest,source,n)
char *dest, *source;
int n;

string copy up to a maximum
of n characters

char *strncat(base,add,n)
char *base, *add;
int n;

char *strncmp(s,t,n)
char *s, *t;
int n;

string concatenate up to a maximum
of n characters

string compare up to a maximum
of n characters

However, any Hisoft user that requires these functions should not have any
problems in writing them and can include them in their own C function library.

Program 8 has been devised for a hypothetical software house which has a large
number of staff, each with various skills and experience of different machines,
languages and operating systems. The staff scheduler needs a means of keeping
a record of each employee’s skills and a method of obtaining the names of all
those who are familiar with a specified subject. Thus, some sort of database is
required.

67

The names of the employees are stored as strings followed by their computer
skills. To distinguish between a name and a skill, the name is preceded by the
symbol ‘ The program does a word search on each item; if a word is preceded
by ‘ # ’ then the employee’s name is temporarily stored while his/her skills are
examined. If a required skill is found, then the employee’s name can be
displayed. The program then continues to search through the remaining items
until the termination symbol ‘W is detected.

This is a very elementary form of database. The staff scheduler can easily add
to his records by amending the initialisations in the program. You could change
these statements to set up a database with something more relevant to your own
needs, for example, a book or record library.

Program 8:

/#*#*#*#*#*#«#**####*###
* DATA SEARCH *
* -- #

* M.R.H. May 85 *
#**##**##***###*##*####/

♦♦include <stdio.h>

♦♦define TRUE 1

char *dataC3=
<
"#BROWN N","ADA","FORTRAN","VAX",
" «CLOUGH S","BAS IC"," COBOL " , " DEC " , " TAL " ,
"«FIELDS D","CORAL","COBOL","ARGUS","ASSEMBLER",
"«HARRISON M","C","CP/M","UNI X","TANDEM","COMMS",
"»MACALISTER C","BASIC","COBOL","PDP","ARMY",
"«SINCLAIR M","ALGOL","COBOL","BURROUGHS",
"«STEVENS G","CAD/CAM","UNIX","PROLOG","MICROCOBOL",
"«THOMPSON P","PASCAL",“POLICE",
"«YATES D","BASIC","Z80","68000","CP/M",
"7.",
>;

mainO
<
char ski 11C553;

printf("SOFTWARE SKILLS LTD");
while (TRUE)

<
printf("\n\nEnter skill required; ");
scanf (" 7.s" , ski 1 1) ;
if (strcmp(ski 11,"bye") == O)

return;
process_data(ski 11);

>

process_data(ptr)
char *ptr;
<

68

i nt j ;
char nameL253;

for (j = Oj *(ptr +j) != ’\000’5 j**)

<ptr + j> = toupper((ptr + j));
for (j = Oj ; j++)

<
switch (*dataCj]>

<
case ’#’:

strcpy(name,dataijJ + 1);
break ;

case * 7.’ :
return;

de-f ault:
if (strcmp (dataC j J , ptr) =«= 0)

printf (" \n7.s" , name) ;

break ;

>
>

}

^include ?stdio.lib?

7.5 Sorting Data

One of the few advantages a computer has over the human brain is its ability to
undertake long and laborious, but relatively simple tasks, in a short time. One
such task we shall examine is the mundane job of sorting data comprised of
numeric or alphabetic items into some sequence-usually increasing or
alphabetical order. There have been many algorithms devised for doing such
operations and their efficiency is usually proportional to their complexity.

Most C libraries contain at least one sorting function - the function provided by
Hisoft is called q s o r t and uses the well known shell sort algorithm.

The simplest method of sorting is called a bubblesort because the lowest values
can be though of as floating upwards to one end of an array and the highest
values sink to the bottom. The array is continually scanned and two
neighbouring items are swapped if the first has a higher value than the other; if
no exchanges are made, the list is in order.

Whereas the bubble sort compares adjacent data items in the array, a shell sort
makes initial comparisons between items that are far apart, on the assumption
that if elements are far apart and have to be swapped it is more efficient to do
it as soon as possible. The separation between data elements is called the sort
interval. Initially, the sort interval is set to the number of elements and then on

69

each scan the interval is reduced by one half until the final scan is equivalent to
a bubble sort.

void qsort(list,no__items,size,comp, jfunction)
char *list;
int no__items, size;
int (*comp_juntion)();

Way back in Chapter 5, it was said that we could set up pointers to functions and
manipulate them like any other pointer. This is now illustrated since the fourth
parameter to q s o r t is a pointer to a function which compares two items in the
list, and returns values that are positive, zero or negative according to whether
the first item is greater than, equal or less than the second. If the sort is
alphabetical on strings, then the s t r c mp function can be used.

The most common structure for the list is a two dimensional array which is
n o_i t e m s long and size bytes wide.

char ListCn o_i temsl [si zel;

All of this is now demonstrated in Program 9 which allows a number of strings
to be entered. To terminate string input and sort the list, type [CTRL] Z
followed by [ENTER]; the sorted list will then be displayed.

Program 9:

/#*#*####****#«**#<#*#«#
* SORT *
* -------------------------------- -
* M.R.H. May 85 *
a-**********************/

^include <stdio.h>

♦»define LINEFEED ’\012’
♦♦define MAX_NO_ITEMS 100
«define SIZE 25
♦»define stdin 0

char 1istCMAX_NO_ITEMS][SIZED;
int count;
extern int strcmpO;

mai n ()
C
get_strings ();
printf("\nSorting\n");
qsort(1ist,count,SI ZE,stremp);
display_strings ();
>

get_stri ngs()
<

70

for (count = 0; count < MAX_N0_ITEMS; count++)

<
pr i ntf ("7.d: "»count);
fgets(11 st[countJ,SI ZE,0) ;
if (1istCcount DC03 == LINEFEED)

break;
>

>

di splay_stri ngs()
<
int ji

for (j = 0; j < count; j++)
printf("Zs", 1i st Cj1);

>

»include ?stdio.lib?

7.6 Arithmetic Functions

There are several arithmetic functions available to the C programmer:

max

Returns the greatest value in the set of arguments. This function is variadic (i.e.
can have any number of arguments).

int max(argl, arg2, , argn) auto

min

Returns the smallest value in the set of arguments. This function is variadic.

int min(argl, arg2, , argn) auto

abs

Returns the absolute value of its argument.

inf abs(n)

sign

Returns one of the following values:

1 if the argument is positive

71

0 if the argument is zero
— 1 if the argument is negative

int sign(n)

Recursion

The following program shows a technique called recursion in which a function
calls itself. This essentially offers no new ideas, but can often lead to neat and
elegant solutions. The example uses a famous algorithm, named after a
mathematician called Euclid, for finding the highest common factor of two
integers. Remember, unsigned variables are restricted to the range 0 to 65535.

Program 10: highest common factor

/***********************
* EUCLID *
* -- #

* M.R.H. May 85 *
***********************/

main (>

<
unsigned x,y;

printf("Enter X and Ys")j
scant ("7.d 7.d " , 8<x , &y) ;
printf("Highest common factor ■ 7.d", hcf(x,y));

>

hcf(m,n)
unsigned m,n;

<
if (m < n)

hcf(n,m);
el se

if (n == O)
return m;

el se
hcf (n, m 7. n) ;

y

1.1 Format Conversion Functions

A number of routines are provided in the C libraries for converting numbers in
ASCII character format to an appropriate data type.

atoi

Scans the string starting at a passed address and, after ignoring any initial white

72

space, it converts the characters, up to the first non digit, into their equivalent
integer form. Numbers may have a leading ‘+’ or A value of 0 is returned if
no number is present.

int atoi(s)
char *s;

example:
char men u_s e L e c t [3 J ;
int selection;

scanf("%2s",menu_s elect);
selection = atoi(men u_s elect);

Other format conversion functions

Since floating point and long arithmetic are not yet supported by Hisoft, the
following standard C functions are absent from their implementation.

double atof(s)
char *s; converts string s to a double precision floating

point number

long atol(s)
char *s; converts string s to a long number

7.8 32 Bit Number Arithmetic.

Long Functions.

Relevant to Hisoft users only, are a number of functions providing facilities for
long arithmetic. The numbers are represented by pointers to arrays of four bytes,
in which the least significant byte (l.s.b.) is stored in element 0, and the most
significant byte (m.s.b.) is stored in element 3. All arithmetic is unsigned.

The functions are:

void long__multiply(c,a,b)
char *c,*a,*b; multiply c = a * b

void long__add(c,a,b)
char *c*a,*b; add c = a + b

73

void long__init(a,nl,n2)
char *a;
ini nl, n2; initialise upper 16 bits with nl and lower 16 bits

with n2

void long__set(a,n,d)
char *a;
int n,d;

void long__copy(c,a)
char *a,*c;

initialise 16 bits at bytes d and d + 1

assign c = a

Pseudo-Random Number Generator

These long functions have been used by the Hisoft random number generator
which is extremely useful for games requiring an element of luck. It should be
realised that the number generator is not truly random since it works by
returning sequentially values from a very long list of numbers. However, since
the list is so long, a random number of sorts can be achieved by starting at an
unknown position and this is usually more than adequate for most
requirements. The position in the sequence is dependent upon a value called the
seed. If the seed is reset to the same value each time the random number
generator function is called, then the same random number will be returned.
(Most other compilers have some equivalent method of generating random
number)

The functions are:

void srand(n) ‘seeds’ the generator with a value n
int n;

int rand() returns a 16 bit pseudo random number

Program 11 demonstrates how setting the seed to the same value produces the
same sequence of numbers. The program is used to code and decode secret
messages, and works in a similar method to the German “Enigma” coding
device used in World War Two. That machine was dependent upon an entered
“codeword”, and would then code messages by replacing the characters in the
message by other characters. To make things more difficult, a character
appearing more than once would usually be replaced by different characters on
each occurrence.

The program uses the random number generator to choose replacement
characters. The basic idea is that when the generator is re-seeded with the same

74

value, it starts at the same position in the sequence list. The seed used is always
dependent upon the characters in the codeword so, when sending the message,
it is important that the receiver knows the codeword so that he can set his
random number generator to the correct starting position. All spaces in the
message should be represented by the underscore character “__”.

Program 11:

/***#**#***#*#***#*#***#

* ENIGMA *

* --*
* M.R.H. May 85 *
***********************/

♦♦include <stdio.h>

«define TRUE
«define FALSE
«define BELL

1
0

’\007’
«define MESSAGE_LEN 240

i nt 1 en, j ;
char codewordC20J, messageLMESSAGE_LENl;
char chrctrsCl = "_0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

mai n ()
{
printf("ENIGMA");
while (process())

5
>

process()
<
char opt;

while (TRUE)
<

printf("\n\nEnter: (C)ode, (D)ecode or e(X)it - ");
scanfC" 7.c",8<opt);
swi tch(opt)

<
case *c’:
case ’C’ :

code.msg();
return TRUE;

case ’d’s
case ’D’!

decode_msg();
return TRUE;

case ’x * 8
case * X’s

return FALSE;
default s

printf("Invalid option");
belli);

>
>

>

75

code_msg()

i nt p ;

reset-Codeword();
i nput_msg();
printf ("Coded message: ");

for (j =0; j < len; j++)
<
p = position(messagetj]) + rnd(37);
if (p >36)

P "= 37;
printf ("7.c " , chrctrsCp J) ;

>

decode_msg()
<
i nt p;

reset-Codeword();
i nput_msg ();
for (j = 0; j < len; j++)

<
p = position(messageCjJ) - rnd(37);
if (p < 0)

P += 37j
printf ("7.c" , chrctrsC p J) ;

posi t ion (c)
char c;
<

if (c < 48 !! c > 90)
c = 47;

if (c > 64 IA c < 91)
c = c - 7;

return (c - 47);

input_msg ()
<
int cont_flg;

cont_flg = TRUE;
while (cont_flg)

£

cont_flg = FALSE;
printf("Enter message: ");
scanfi" 7.s" 9 message) ;
len = str 1 en(message);
for (j = 0; j <len; j++)

<
if (isal num(messageCjJ) ! ! messageCj? == ’_’)

messagetj] = toupper(messageCj]);
el se

<
printf("Invalid character 7.c\n messageC j J) ;
cont_flg = TRUE;
>

>
}

76

reset codeword()

f or (j = 0; j < 4; j + +)
codewordtj] = NULL;

printf("\nEnter codeword: ");
scant (" 7.s" , codeword) ;
srand(B * codeword^] + 4 * codeword^] + codewordtOJ) ;
}

bel1() /* MRH.LIB */

print* (M7.c "»BELLI ;
}

rnd (arg) /* MRH.LIB */

int arg;

<
unsigned x, y;

x = randO & 255;
y = (arg * x) / 256 •* 1 ;
return y;

♦♦include ?stdio.lib?

7.9 Memory Management

When a C program is executed, some of the memory is used for the program
code, some for the permanent data and some is reserved for the stack which
stores local data and so expands and shrinks as functions are called and exited.
There is often additional memory which can be accessed via memory
management functions which reserve and release the space.

calloc

Allocates memory space for a specified number of items of a given byte size. It
either returns a pointer to the start of the section of memory or otherwise
NULL (value 0 as defined in the standard header) if there is no space available.
A number of hidden control bytes are stored in front of the allocated block and
must not be changed; thus you should remember overheads are involved. The
allocated block is sometimes called a heap.

char *calloc(n,size)
unsigned n,size;

example:
char *pt r;

77

ptr = caLloc(250,1); reserves 250 bytes

free

Returns an allocated heap to the free store enabling future re-allocation. The
pointer returned from calling c a L L o c must be passed and the control bytes at
the start of the heap must not have been corrupted.

sbrk

Before any heaps can be allocated, a section of the memory has to be reserved.
On larger systems, such as those using Unix, this function would call th.;
operating system, which would then make the memory available by moving
other items about in the memory. On smaller microcomputers it is up to the user
to decide on a safe place, away from the program and important data. By
consulting your microcomputer’s documentation you may find that there is a
way of reserving such space before you start up your compiler. The alternative,
and probably the safest method is to define a large static variable and use the
space that it creates for heap management.

The Hisoft implementation, which uses the latter of these two methods,
requires the number of bytes of physical memory that can be used by c a I L o c
to be passed as an argument.

char *sbrk(n)
unsigned n;

The maximum size of the heap area is defined by a # d e f i n e statement in the
library and so may be amended if required.

swap

Swaps the contents of two areas of memory each a specified byte length long.

void swap(ptrl,ptr2,length)
char *ptrl,*ptr2;
unsigned length;

swap is used by the sort function q s o r t.

bit

Moves the contents of one area of memory of a specified byte length to another
area. The move is undertaken in a non-destructive direction-which is
important if the areas overlap. Whilst this function is similar to s t r c p y, it

78

always copies the given number of bytes whereas the string version terminates
at the first null character. Also b L t is more efficient since it is built-in.

peek

Returns the byte value at a specified address.

char peek(address)
unsigned address

poke

Puts the least significant byte of a passed value at a specified address.

void poke(address,value)
unsigned address, value;

Whilst the functions peek and poke aid the readability of a program, it is far
more efficient to use a character pointer which can point to an address, and then
read and assign values directly.

7.10 Advanced I/O

The C language has no facilities for input and output, and so accessing the
display screen, the keyboard and cassette or floppy disk files is done by means
of standard I/O functions. The I/O functions that we shall meet exist in a
compatible form with any C implementation, and so, restricting all your I/O to
these routines enables your software to be easily ported onto other systems.
Besides, the functions provided are so versatile, it is unlikely that anyone would
need to write their own.

All I/O in C is done via files, with devices treated as special cases. A file is a
sequence of bytes which can be read or written to one at a time (known as serial
access). A file may exist on cassette, floppy disk, microdrive or may be a device
such as the screen or a printer. There are three standard files called stdin
(standard input), stdout (standard output) and stderr (error output).
Usually, the standard input file is the keyboard and the standard and error
output files are the screen.

fopen

Before a file may be used it has to opened using the fopen function; this
specifies a file name and a mode. The mode is a string specifying the action

79

which is to be carried out on the opened file:

" r " reading
"w" writing
"a" appending

If a file is successfully opened, the function returns a pointer to a block of data,
found in the header, which contains essential information about the file. A new
data type called FILE, which is also defined in the header, is used for file
pointers. If any errors occur when opening the file, a value NULL is returned.

Due to the nature of the disk operating systems on the Amstrad and ZX
Spectrum, the Hisoft f o p e n modes are restricted to “r” and “w”, and opening
an existing file for writing will first cause the file to be erased. Also, you are
limited to just one input and one output file open at any one time. By inspecting
the standard header, you will also see that the FILE definition is just a single
integer value, but in order to keep our software portable, we shall use the
conventional FILE notation.

FILE *fopen(name,mode)
char *name,*mode;

example:

FILE * f p;

if ((fp= fopen("STAFF.DAT" , "r")) == NULL)
<
p r i nt f("F a i Lure opening STAFF.DAT");
return -1;

fclose

When all operations with a file have been completed, the file must be closed
using f c Lose.

zwi fclose(fp)
FILE *fp;

When data is loaded from a file, one block is loaded at a time and stored into
a buffer, and then the data is accessed from the buffer. Similarly, when data is
being stored in a file it is stored in the buffer, and sent to the cassette unit or disk
drive when the buffer becomes full. Further data is sent by refilling the buffer.
The use of the buffer avoids the drive or cassette unit being continually started

80

and stopped for each data item, and so speeds up processing and enables data
to be more closely packed. When writing to files it is vital to close the file, since
this function transmits the final data by flushing the output buffer.

getc

A single byte value may be read from a file using getc.

int getcffp)
FILE *fp;

When the end of file is reached, the function returns a value EOF (-1, as
defined in the standard header). When testing for EOF, it is important to
recognise that the function is returning an integer value. You must not first
assign the returned value to a character since the most significant byte will be
lost, thus making the comparison always False.

Program 12 demonstrates the previous I/O functions with a useful program for
dumping the contents of a file in both ASCII and hexadecimal form. Such a
program is often very useful for examining the contents of files when debugging
your software.

Program 12: file dumper

/**************»********

* FILE DUMP *
* --*

* M.R.H. May 85 *

♦♦include <stdio.h>

♦♦define TRUE 1
♦♦define FALSE 0

char fi1 enamel 13], dataClò];
FILE *fp;
int c, idx, ent;

mai n()
<
get_f i1e();
idx = O;
ent = 0;
while ((c « getc(fp)) != EOF)

<

dataCidx] = c;
i dx++;
if (idx == 16)

print 1i ne ();
>

if (idx ! » 0)
pri nt_li ne() ;

81

NULL)

get_f ilei)
<
printf("Enter -file: ");
scanfC 7.12s" , f i 1 ename) ;
i f (<-f p = fopen (f i lename, "r")) ==

<
pri nti "XnFai 1 ure to open 7,s",f ilename) ;
return;

3

pri nt_li ne()

<
int j ;

pr i nt f "\n7.04x : ",cnt);

cnt += 16;
for (j = 0; j < 16; j++)

printft" Z02x",dataij1);
pri nt-f (" ") ;
for (j = 0; j < 16; j++)

<
if (isprint(dataij3))

pr i nt f (", datai j 1) ;
el se

print-f ("?" , datai j 3) ;
>

for (j = 0; j < 16; j++)
datai j 3=0;

i dx = 0;
>

♦♦include ?stdio.lib?

ungetc.

The ungetc function is used to put back a character onto a file so that it becomes
the next character to be read with getc() or getchar().

int ungetc(cjp)
int c;
FILE *fp;

putc

A single byte may be written to a file using putc.

int putc(cjp)
int c;
FILE *fp;i

getchar

Since input from the keyboard is so common, the function getchar has been

82

provided for convenience to input one character. This function does buffered
input, that is the characters are collected into an input buffer until the Enter key
is pressed. If required, the Delete key may be used to edit the characters as they
are typed. All characters entered are echoed on the screen.

int getcharf)

example:

printfU'Hit ENTER to continue");
getcharO ;

putchar

Again for convenience, a function putchar is provided to display characters
on the screen.

int putchar(c)
int c;

example:
belli)

<
putchar(7) ;

fgets

The fgets function reads a string of a maximum length from a specified file.

char *fgets(s,njp)
char *s;
int n;
FILE *fp;

The input stops when either n-1 characters have been read, or when a newline
character is found. The input string is terminated with a null character. The
function normally returns the address of the input string, but if the end of file
has been reached when the function is called, the value NULL is returned.

Example:
fgets(buffer,51, f p);

83

fputs

The fputs function writes a string to a specified file.

void fputs(sjp)
char *s;
FILE *fp;i

gets

The Hisoft implementation provides a function gets to read from the
standard input, i.e. the keyboard. It is similar to fgets except that no maximum
length is specified and the newline character is overwritten by a null character.

char *gets(s)
char *s;

puts

Also provided by Hisoft, is a function p u t s to output a string to the standard
output, i.e. the screen.

void puts(s)
char *s;

fprintf

Acts like the function p r i n t f except output is directed to a specified file.

void fprintfffp,control,argl, ... , argn)
FILE *fp;
char *control;

sprintf

Acts like the function p r i n t f except output is directed to a specified string.

void sprintffs,control,argl, ... , argn)
char *s, *control;

fscanf

Acts like the function s c a n f except input is taken from a specified file.

84

int fscanfffp,control,argl, ... , argn)
FILE *fp;
char *control;

sscanf

Acts like the function scant except input is taken from a specified string.

mZ fscanffs,control,argl, ... , argn)
char *s,*control;

exit

Terminates execution and closes all files which the program has opened. With
the Hisoft implementation, the value passed causes the corresponding Amstrad
or ZX Spectrum error report to be given.

void exit(n)
int n

File Useage

In most computer systems, data may be organised either in sequential or
random access files. When sequential files are used, the file has to be read
through from the beginning until the required record is found; in random access
files any record can be accessed directly, with almost equal speed. However, due
to limitations with the Amstrad and ZX Spectrum systems, all data files must
be organised sequentially. To use sequential files we must be able to:

1. Set up a file.
2. List the file.
3. Access records in the file.
4. Delete records in the file.
5. Amend records in the file.
6. Add records to the file.

These six operations are illustrated in program 13 which records names and
telephone numbers. The data is first loaded into an array and then searches and
amendments can be made. Finally, when all operations are complete, the file on
the disk may be updated.

85

Program 13: telephone index

/*#*♦*##***#*#***#*#♦##♦
* TELEPHONE NUMBERS *
«--*

* M.R.H. May 85 ♦
#####*###*#♦###*####*##/

#include <stdio.h>

#define TRUE 1
#defi ne FALSE 0
Adeline stdin 0
ttdefine MAX_NO_ITEMS 100

char dataEMAX_NQ_ITEMS3C423, *ptr)
char nameC213, phone[213j
FILE *fp;
int j, count)

main()

<
if (read_records())

<
mai n_process() ;
write_recordi(>)
>

el se
createj i 1 e () ;

>
mai n_process()

<
char optC33)

while (TRUE)
<
printf("\n\nTELEPHONE NUMBERS")
printf("\n\nl. List records")
printf("\n2.
printf("\n3.
printf ("\n4.
printf("\n5.

Access record").

Add record"))
Delete record"))
Exit"))

I
;

printf("\n\nEnter facility required:

fgets(opt,3,stdin)j
swi tch(opt[03)

<
case ’i’i

1i st_records();

break)
case ’2’:

access_record())
break)

case ’3’:
add_record())

break)
case ’4’:

delete_record();
break ;

case *5’:
return ;

default:

86

pr i ntf (“ Invai i d option");
bell();

>
}

>

read_records()
<
int cont_flg;

ptr = datato];
printf ("\nReading -file!");
if (<fp » fopen("PHONE.DAT","r")> NULL)

<
pri ntf ("\nFai Iure to open PHONE.DAT");

return FALSE;
>

fscanf(fp,"%d “,8ccount>;
printf(“ 7.d records read",count);
for <j = 0; J < 42 * count; J++>

*(ptr + j) = getc(fp);
fclose(fp);
return IKUF;

>

creats.fi 1 e()
<
char opt;

printf("\nDo you want to create PHONE.DAT (y or n)">;
scanfC 7.c ",8<opt);
if (opt == ’y’ ¡i opt »» ’Y’)

<
fp = fopen("PHONE.DAT","w");
fprintf(fp,“%d ",0);
f cl ose (f p) ;
>

>

wri te_records()
<
printf ("XnWriting file:**);
fp = fopen("PHONE.DAT","w");
fprintf (fp,"%d ",count);
printfC" 7.d records written",count);
for (j =0; j < 42* count; j++)

putc(*(ptr+j),fp);
fclose(fp);
>

list recordsO
<
printf ("\nPhone List\n");
for (j = 0; j < count; j++)

<
if (dataCjKO] !» ’\377’)

printf ("\n7.ds 7.s 7.s" , j , &dat aC j] CO], &dat aC j] C21]) ;
>

>

access_record()
<
printf("XnAccess record\n\n");

87

printf("Enter names ");
f gets (name,21,stdin);
for (j = O5 j < count; j++)

<
if (strcmp(dataCj3,name) == 0)

<
pri ntf ("Found phone; %s" , ¿.dataC j J C21 3) ;

return;
3

3
printfCNot found\n");
3

add_record ()

printf("\nAdd record\n\n");
printf ("Enter name: ");
fgets(name,21,stdi n);
printf("Enter phone: ");
fgets(phone,21,stdin);
for <j = 0; j < count; j++)

<
if (dataCj3CO3 -■ ’\377’)

<
strcpy(fcdatatj3 CO],name);
strcpy(&dataCj3C213,phone);
return;
3

3
strcpy(&dataCcount3 CO],name);
strcpy (fcdatatcount3C213,phone) ;
count+ +;
3

delete_record()

<
printf("\nDelete record\n\n");
printf("Enter names ");
fgets(name,21,stdin);
for (j «= 0; j < count; j++)

<
if (strcmp(dataCj3,name) == 0)

<
dataCj3CO3 = ’\377*;
printf ("Deleted\n");
return;
3

3
printf("Not found\n");
3

^include ?mrh.lib?

ttinclude ?stdio.lib?

88

CHAPTER 8

DATA STRUCTURES

8.1 Introduction

In this chapter we shall see how to organize complex data so that we can handle
it in a convenient fashion. This involves collections of variables, often of
different data types, grouped together under a single name. As we shall see, C
provides powerful mechanisms for defining groups of data and manipulating
them through the use of pointers.

Before we move on to such topics, we shall first take another look at C data
types and see how we can define new ones (other than i n t , char, etc).

8.2 More on C Data Types.

Earlier in Chapter 5, we saw that there are six basic data types in C:

char, int, short, Long, float, double.

All variables must be declared before use. (A declaration specifies the data type
followed by a list of variables of that particular type.)

When operands of different types appear in the same expression, a few simple
C rules ensure that the data is converted to a common type. Usually the
conversion only takes place if the expression makes sense; for example, using a
float type for an array subscript would not be allowed.

chars and i nts may be used together freely within the same algebraic
expressions, since the c h a r values are automatically converted to i n t type.
With most compilers, chars with values above 127 are converted as positive
numbers, hovever, care should be taken as there are a few versions which convert
such values as negative numbers.

In general, if two operands of different data types are involved in an arithmetic

89

operation, the following sequence of operations takes place.

char and short are converted to long;
float is converted to d o u b L e;
If either operand is d o u b I e, the other is converted to d o u b L e and the
result returned is d o u b I e;
Otherwise, if either operand is I o n g, the other is converted to long
and the result returned is long;
Otherwise, if either operand is u n s i g n e d, the other is converted to
unsigned and the result returned is unsigned;
Otherwise, the result returned is i n t.

Conversion takes place across assignments and when passing arguments to
functions. For example, if a c h a r value is assigned to an i n t variable, the
value is converted to an i n t first and then stored in the variable. An i n t value
can be assigned to a c h a r variable but the most significant byte is discarded.
Likewise, converting along value to an i n t is done by discarding the most
significant bits. Converting float to an i n t causes the fractional
component to be truncated and lost, and double to float conversion is
done by rounding.

It is possible to force or coerce any expression into a specific data type by using
a construction called a cast. Casting a value to another data type is done by
including the data type within brackets before the value.

example:
i n t x ;
sqrt((double) x);

New data type names can be created using the t y p e d e f facility. For example,
if we wanted a new data type COUNT which would store integer values we
would declare:

typedef i nt COUNT;

From then onwards, the type COUNT could be used in declarations and casts in
the same fashion as i n t would be used.

Another commonly used example is STRING:

typedef char *STRING;

makes STRING a synonym for c h a r * and so can be used in declarations
requiring string pointers.

90

The use of typedef declarations has two advantages, firstly it can aid
porting software onto new environments where certain data types may be
machine specific, and secondly it can aid the readability of a program.

In order to simplify the Hisoft compiler (and make programs more readable)
casts must be preceded by the keyword cast and use types that are predefined
or defined by a typedef statement.

i.e. cast(type__specifier) expression

With C it is possible to store different kinds of data in the same section of
memory and let the compiler handle the size and alignment problems. This is
done by using unions which are variables that can store data of different types
but, of course, not at the same time. It is up to the logic in the program to know
what type of data is currently stored. A union has to be declared just like any
other variable. This involves listing the different types that the union can store
(members) and declaring the overall variable name. The compiler allocates
enough space for the largest data item required.

example:
union

<
i n t i v a L;
char eval;
Long L va L ;
}total;

When used, the individual members of the union are accessed by using both the
union and member names.

example:
total.ivat = 100;
total.Ival = 1 0 0 L;

The only operations permitted on unions is accessing a member and obtaining
its address. More complicated operations, such as passing to functions, has to
be undertaken using pointers.

8.3 Structures

It is a common requirement in programming to group several items of related
data together. For example, when considering a staff list, the information may
include name, personnel number, grade, salary, holiday taken/entitlement, etc.,

91

all of which are best considered as one unit rather than separate entities. The C
language makes this simple enabling structures to be defined which contain all
of the data items required.

The first stage in using structures is to define a template which lists each of the
data items in the structure. Creating a template does not occupy any physical
space in the memory, but allows us to later declare any number of structures of
that format.

example:
struct staff_tmp

<
char s t_name[201 ;
char st_pers_no[6];
char st_grade[2];
i nt st_salary;
int st_hol_tak; /* half days*/
int st_hol_ent;
char st_comment130] ;

>;
The name of the structure template, in this case staff _tmp, is known as the
structure tag.

Once the template has been defined, structures may be declared just like any
other variable. With structure declarations the keyword struct is followed
by the structure tag and then the list of structure names.
example:
struct staff_tmp write_staff_rec ,

read_staff_rec;

If required, defining the template and declaring the structures can be combined.
The next example defines an array of structures.

example:
st ruct address tmp

<
char ad_ contact[20]
char ad-’line 1 [30] ;
char ad-’line 2130];
char ad-’line 3130];
char ad Ji ne_4[30];
char ad_ p h o n e [1 5] ;
} company_addres s[MAX_ADDRES SESJ ;

92

The structure tag is, in fact, optional and so if the structure definition is not
required elsewhere it can be omitted. The next example also illustrates that
structures can be nested.

example:
struct

<
char n a m e[2 0];
char date[8];
struct addres s_tmp address;
} cust_rec;

As with unions, the only operations that can be undertaken on structures are
taking its address using the & operator, and accessing its individual members
using the structure member operator . .

structure__name.member__name

example:
writ e_s t a f f_rec.st_salary = 9500;

The only method of passing structures to functions is by means of pointers.

example:
p ro c e s s_s taff(&write_s taff_rec);

p roc e s s_s taff(st_rec)
struct staff_tmp *st_rec;
<

Since st_rec points to the structure, the member st_name could be
referred to as:

(*st_rec).st_name

However, pointers to structures are used so frequently that a more convenient
notation is available using the operator.

pointer-* member__name

93

So to refer to s t_n a m e we could use:

st_rec-»st_name

To find the size of a structure in bytes we can use the operator si z e o f, which
is evaluated at compilation time. The object can be an actual variable, array or
structure, a data type like int or char or a structure definition. With Hisoft
C, the sizeof operator will only accept predefined types oratypedef name.

sizeof(object)

For example, to allocate space for 100 integers using cal I o c we could use:
if ((ptr = calloc(100,sizeof(int))) ==NULL)

<
printf("\nN0SPACE AVAILABLE");
return FALSE;
>

The use of structures is illustrated in program 14 which records pupils names
and exam marks and then generates a list of pupils in order of proficiency.

Program 14: class positions

/*#♦********************
* CLASS POSITIONS *
* --*
* M.R.H. May B5 *
»•»if***********#**»»*#**/

Kinclude <stdio.h>

«♦define NO_OF_SUBS 8

«♦define NO_OF_PUPILS 40
♦♦define TRUE 1
♦♦define FALSE O
♦♦define stdin O

typedef int »location;

char *sub_textCNO_OF_SUBSJ =
<
"Maths",
"Engli sh",
"French",

"Geography",
"Hi story",
"Chemi stry",
"Physi cs",
"Biology"

94

int max_markCN0_0F_SUBS3, ent;

unsi gned val;

struct class_tmp
<
int total;
char nameC203;
int markCN0_DF_SUBS3;

>;

struct class.tmp class_recCN0_0F_PUPILS3;

extern int total_comp();

mai n(>
<
printf("Calculation of class positions");
if (get_max_marks())

return;
printf("\nEnter CTRL Z to complete input");

ent = 0;
while (getjnar ks ())

i
qsort(cla5s_rec, ent,si zeof(struct class_tmp),total.comp);

disp_positions();
>

get.max.marks()
<
int j;

printf ("\n\nEnter maximum possible marks for each subject\n\n");

for (j = 0; j < N0_0F_SUBS; j++)
<
printf("%s: ",sub.textCjJ);
scanfC 7.d", &max_markC j 3) ;
if (max_markCj3 > 600)

{
printf("\nMaximum mark must be between 1 and 600");

return TRUE;

>
getchar();
return FALSE;
3

get_marks()
<
int j ;

printf ("\n\nEnter name and marks for each subject\n");
pri ntf ("\n7.d Name: ",cnt + 1);
fgets(class.recEcnt3.name,20,stdin);
if (str 1en(c1ass.recCent 3.name) < 2)

return FALSE;
class.rectcnt3.total = 0;

for (j =~0; j < N0_0F_SUBS; j++)

<
do

<
printf("7.s: " , sub.text C j 3) ;
scanfC 7.d " , &vial) ;
>

95

while (val > max_mark[j]);
class_rec[cnt].mark[j] = val * 100 / max_markCjJ;
class.reclcntJ.total += class rectcntl.markij])
1

cnt++j
getchar();
return TRUE;
>

di sp_posi tionaO
<
int J ;

print*("\nP0S TOTAL NAME\n\n");
for <j 31 0; j < ent; j++)

<
print* ("7.2d 7.3d 7.s",j + 1,

class_recC jJ.total,class_recC j].name);

>
>

t ot a 1 _c omp(ptrl,ptr2)
char *ptrl, *ptr2;
<
location totl, tot2;

totl =» cast(location) ptrl;
tot2 = cast(location) ptr2;
return (*tot2 - *totl);
>

♦♦include ?stdio.lib?

8.4 Dynamic Data Structures

There are occasions when we require a flexible system of ordering our data, and
we now turn to several different methods which can be covered by the general
title dynamic data structures.

As an example of what dynamic data structures are all about, consider the table
in Figure 8.1 which contains a list of customer’s orders with a car dealer. All the
records are kept in order of the customer’s surname which enables the
information referring to a particular customer to be located easily. Suppose
further that a record for the customer HARRISON has to be added to the list.

So that the table remains in order, the new record must be placed between
HART and HOPTON. If these records were kept using normal office index
cards, any new record could be added by slotting the new card in at the
appropriate position. Likewise, when the customer’s order has been completed
the corresponding record could be deleted from the system by simply removing
the card.

96

Figure 8.1

NAME INITIAL MODEL COLOUR DATE DUE

BANKS M 240 DL Green 04.5.83
BEECH G 760 GLE Silver 30.6.83
GRAHAM R 360 G LT Red 25.5.83
HART W 240 GL White 25.5.83
HOPTON J 360 G LS Blue 17.6.83
TROWSDALE D 260 GLE Black 19.6.83
TURNER M 340 DL Red 17.6.83

HARRISON M 340 CL Silver 30.6.83

Figure 8.2

Our requirement is to simulate such a system where we can add and delete
records, and by re-using any vacated space, keep the occupied memory down to
a minimum. One data structure that can be used for this application is called a
linked list. When using linked lists for small quantities of data, the advantages
of flexibility are offset by the disadvantages of complexity. However, it is useful
to learn the techniques since general and more complicated structures can then
be handled in a similar fashion.

8.5 The Forward Linked List

With linked lists, each element contains two items of information; the first item
is the data itself and the second item is a pointer which relates that element to
the next. The data can contain several fields, e.g. name, address, telephone
number, etc.; but for simplicity, our explanations will consider just a single data
field.

97

(null)

Figure 8.3

In Figure 8.3, element 1 points to element 2, element 2 points to element 3, and
so on. As element 5 is the last element in the list its pointer is NULL.

To set up such a list we have to define a self-referential structure.

example:
struct Ii nk_l i s t

<
char d a t a[2 01;
struct Linked_List * p t r;
} *root, ListLN0_0F_ELEMENTS I ;

To retrieve the data we access all the elements in the list; this is done by starting
from root and then moving along the structure, accessing each item of data,
until the NULL pointer is reached.

An item can easily be deleted from a linked list by amending the pointer from
the previous element so that it points, instead, to the next item. The pointer of
the element that has been deleted should then be changed to a NULL value to

Figure 8.4

If instead we want to reinstate an item into our list there are two stages to
undertaken; firstly we must find where in the list the item should be placed, and
secondly, amend the pointers to include the new item. The position where the
new item is placed depends on what the user wants; it could be simply to put the
item immediately after the last item or perhaps, if the list is ordered, in the

98

correct position as in our example in Figure 8.5.

ROOT

Figure 8.5

First the pointer from element 6 is changed to point to element 4, and then the

Figure 8.6

We shall now see some routines in program 15 that can handle linked lists; note
that special considerations have to be made when the data is to be placed at the
beginning or the end of a list.

Program 15: forward linked list

/***********************
* LINKED LIST *
* ---*
* M.R.H. May 85 *
***********************/

»include <stdio.h>

99

»define NO_DF_ELEMENTS
»define stdin

100
0
1
0

»def i ne
»define

TRUE
FALSE

struct link_list
£
char data£203;
struct link_list *ptr;
> »root, *lp, *lpl, 1ist£N0_0F_ELEMENTS3;

char buffer[503;
i nt x;

main ()
£

char opt£33;

■

. Initialise");
List") ;
Insert"
Delete.
Exit

> ;
") ;
5

facility required: ");
5

”>

?

while (TRUE)
£
printf("\n\nLINKED LISTS")
printf("\n\nl
printf("\n2.
printf("\n3.
printf("\n4.
printf("\n5.
printf("\n\nSelect
fgets(opt,3,stdin)
swi tch(opt £03)

£
case ’1’s

ini t_chain()
break;

case ’2’:
1i st_chai n()
break;

case ’3’:
i nsert_itern();
break;

case ’4’:
delete_i tern()

5

J

100

break;
case ’5’:

return;
default:

printf("\nInvalid option");
bel1();

>
y

i ni t_chai n ()
<
root = NULL;
•for (x = 0; x < N0_0F_ELEMENTS; x++)

<
strcpy(listEx3.data,"");
listExl.ptr = NULL;

1 i st_chai n ()
<
1p = root;
printf ("\nLIST CHAIN\n\n");
while (lp != NULL)

<
print-f ("%s",lp->data) ;
lp = lp->ptr;
xJ

>

i nsert_i tem()
<
print-f ("\n INSERT ITEM\n");
print-f ("\nEnter data: ");
f gets (bu-f f er, 20, st di n) ;
•for (x =0; x < N0_0F_ELEMENTS; x++)

<
if (1 i st E x 3 . dataEOO =■ ’ \000’)

<
strcpy(listExl.data,buffer);

101

it (root == NULL)
£
root = 8<list£xl;
root->ptr = NULL;
return;

it (strcmp(root->data,butter) > 0)
£
listtxl.ptr = root;
root = idisttxJ;
return;

lp = root;
while (lp != NULL)

£
it (strcmp(1p-^data,butter) > 0)

£
listCxl.ptr = lp;
lpl->ptr = fclistCxJ;
return;
>

lpl = lp;
lp = lp->ptr;
>

lpl->ptr = &listtxZ);
listCxl.ptr = NULL;
return;

J

delete_i tem()
£
printt("\nDELETE ITEMXn");
printt("\nEnter data: ");
tgets(butter,20,stdin);
it (root != NULL)

£
it (strcmp(root->data,butter) == 0)

£
strcpy(root->data," ");

102

root = root->ptr;
pri ntf ("\nl tern deleted");
return;

lp = root;
while (lp != NULL)

£
if (strcmp(lp->data,buffer) == 0)

£
strcpy(1p->data,"null");
lpl->ptr = lp->ptr;
printf("\nltem deleted");
return;
>

1p1 = lp;
lp = lp->ptr;

printf("\nItem not in list");
bel1();
>

ttinclude ?mrh.lib?

«include ?stdio.lib?

8.6 More Advanced Lists

Although many applications can be handled by forward linked lists, there are a
couple of amendments that can be made which enhance the power of the
structures that we have seen.

8.7 Circular Lists

In a circular list or ring the last element is made to point back to the first
element. The main advantage of such a structure is that an item which precedes
an identified element, can still be accessed without having to restart at the root
- see Figure 8.7.

103

ROOT

8.8 Double Linked Lists

Even greater power can be added to linked lists by including a backward pointer
which links up an element with its predecessor in the structure - see Figure 8.8.

Figure 8.8

This enables the structure to be searched in either direction. By using more than
one pointer it is possible to order the list in more than one type of order.

In certain small applications, the advantages of such a structure will be offset
by an increase in the memory required for additional pointer storage.

8.9 Stacks and Queues

There are two very useful linear data structures that are commonly used in
computing called stacks and queues.

A stack is a method of storing and retrieving data in the computer with the basic
principle that the most recent item of data stored will be the first retrieved.
Storing information is known as pushing onto the stack and retrieving it is
known as popping or pulling the stack. In our example in Figure 8.9, the top of
the structure is indicated by a pointer called top.

104

Figure 8.9

Although it is never obvious to the programmer, the C program language uses
a stack when dealing with subroutine calls. When a function is called, the
calling address is popped onto the stack and control jumps to the called
function. Automatic variables are also placed on the stack. When a program
returns from a function, it continues from the address that is popped from the
stack. This enables functions to be nested several levels deep although careful
management is required by the programmer.

A queue structure differs in that its rule is that the earliest item stored will be the
first retrieved. Two pointers are required, head and tail which point in the
structure to the first and last items respectively.

A queue is used with keyboard buffers where keys are stored as they are pressed.
Since it is a queue, the earliest keys pressed are detected before the more recent
keys. Any released space is then available to store future key presses.

Figure 8.10

105

When an item is retrieved, head is made to point to the next element in the
structure, i.e. to the element that is pointed to by the pointer of the element that
is being retrieved.

Figure 8.11

When an item is added both tail and the last element are made to point at the
new item.

Figure 8.12

The main problem is that a queue gradually drifts through the memory as
retrievals and additions occur. One solution is to use a circular list so that if all
the memory at the end of a structure runs out, then items can be added at the
beginning. If t a i I ever reaches head then we have run out of space.

8.10 Graphs

Although the concept of the linked lists is very useful as an insight into data
structures, their use is severely limited as they can only function in one
dimension, either forwards or backwards. In order to utilise these techniques
with any practical ideas we often have to handle data structures in more than
one dimension; such structures are called graphs.

106

Consider Figure 8.13 which represents the air routes that a certain airline
company undertakes.

Figure 8.13

This could be represented by the structure in Figure 8.14.

Figure 8.14

Additional data items could be included which, for example, could give the cost,
distance, etc. between two cities.

When referring to graphs, the intersecting points are called nodes and the links

107

that join the nodes are called edges. Edges can be either directed or undirected,
and may or may not contain a value (for instance, cost, distance, etc., in our
above example). Nodes can represent many things; such as towns or positions,
production output, steps in a process, etc.

Graphs have many applications; as an example we shall take a look at the
problem of finding the shortest path between two nodes. With reference to
Figure 8.13, what is the shortest route from London to Berlin.

The algorithm that we shall use calculates the shortest paths between all pairs
of nodes in a given graph, and can also print out the optimum route.

The graph of n nodes may be represented in the computer by a n x n array (or
matrix), say x (n , n) where element x (s , d) would be the distance from a
source town s to a destination town d - see Figure 8.15.

eg-

/J

31 «=
4 \ OO

2 3 4 5
8 00 OO 7
0 15 00 10
15 0 10 00
00 10 0 10
10 00 10 0
10 5 7 00

Figure 8.15

Any two towns that are not directly connected take a distance value of infinity
- with Hisoft C we have to make do with a value of 65535.

The procedure for calculating the shortest route is as follows:

The distance of each route is considered separately with the distance of the same
route but going through each other node (if possible). For example, distance 1
-* 6 is compared to the distances 1 —* 2 —* 6, 1 —* 3 —► 6, 1 -» 4 -* 6 and 1 -*■ 5

6, and the shortest value is placed into our array at element x(l ,6). A separate
array is used to record the optimum route.

Shortest Routes

Program 16 allows you to enter a graph, edge by edge by specifying a source

108

town number, a destination town number and a distance. When you have
entered all the information, you simply input a set of invalid data, such as 0,0,0.
The program then works out the shortest route between each pair of towns.
Then by specifying two town numbers, the program will display the shortest
route and its distance.

Program 16:
/»#♦#**<«♦##♦♦#«♦*******
* SHORTEST ROUTES ♦
* -- «
♦ M.R.H. May 85 ♦
♦**»«*«**********/

♦»define NO_TOWNS
♦»define INFINITY
♦»define TRUE

IO
65535

1

unsigned xCNO_TOWNS3CNO_TOWNS3, yCNO_TOWNS3CNO_TOWNS3j
unsigned s, d, vj

mai n <)
<
printf("\nSHORTEST ROUTES\n")j
i ni ti ali se < >;
get_distances()j
calc_distances(>j
access_di stances < >;
>

xCpKqJ - INFINITYj

i ni ti al i se ()
Z

int p, qj

for (p ■ 0j
for (q ■

if (p

p < NO.TOWNSj p++)
Oj q < NO TOWNSj q++)
•= q)

>

get_di stances()
<
while (TRUE)

<
printf("\nEnter source town : H)j
scanfC %d",&s)j
printf("Enter destination towm ")j
scanfC 7.d",&d)j
printf("Enter distance: : ")j
scanfC 7.d",8cv)j
if (s — d I : s < 1 I ! s > NO—TOWNS I I d < 1 H d > NO_TOWNS)

returnj
else

<
xCs-lKd-13 - vj
xCd-13Cs-13 » vj
yCd-HEs-lD - sj
yCs—lICd—13 - d;
>

>
>

109

calc_di stances ()

<
int p, q, r;
unsigned k;

printf("\nPlease wait\n“);
for (p “ 0; p < NO_TOWNS; p++>

for (q - 0; q < N0_T0WNS; q++)
for (r = 0; r < N0_T0WNS; r++)

<
if (xtq3Cp3 -- INFINITY II xCp3Cr3 == INFINITY)

k = INFINITY;
el se

k = xCq3tp3 + xCp3Cr3;
if (xtq3Cr3 > k)

<
xCq3Cr3 = k;
yCq3Cr3 = yCq3Cp3;
3

3
3

access_di stances()

<
printf ("\nLowest cost between two towns");
while (TRUE)

<
printf("\n\nEnter first town s ");
scanf(" %d",&s);
printf("Enter second towns ");
scanf(" 7.d",&d);
if (s >= 1 && s <« N0_T0WNS && d>-= 1 d <= NO_TOWNS)

<
if (xCs-13Ed-13 == INFINITY II xEs-13Ed-13 == 0)

printf("Not connected");
else

<
printf ("Cost from town */.d to town */.d is 7.d",

s,d,xEs-13Ed-13);
printf("\nVia towns - ");
if (yEs-13Ed-13 «== d)

printf("Direct");
el se

<
s = yEs-13Ed-13;
while (s !« d)

€
printf (" 7.d s) ;
s = yEs-13Ed-13;
3

3
3

3
else

return;
3

3

110

8.11 Trees

There is one special graph commonly used in computing called a tree. A tree is
a graph that contains no isolated nodes and no cycles, that is, there is one and
only one route for getting from one node to another. We are usually concerned
with trees in which all the nodes are directed away from one specific node called
the root', every node except for the root has exactly one edge entering it.

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Figure 8.16

The number of nodes away from the root is often referred to as the tree’s level
(with root situated at level 1). The depth of the tree is its maximum level. Often
a preceding node is called a parent node and a descending node is called a
sibling.

In order to keep things simple, we shall restrict ourselves to binary trees; these
have a maximum of two edges leading from each node.

Binary trees may be stored in C using a similar principle to linked lists, except
that two pointers are required for each structure.

example

struct t ree_node
<
chardataC20];
struct tre e_n ode * L e ft_p t r;
struct tre e_n ode * r i g h t_p t r;
}*root, t ree ENO_OF_NODES];

111

Figure 8.17

As with linked lists we require the data to be set up in some logical order. For
example, let us see how we would store the following sequence of car
manufacturers in alphabetical order in a binary tree.

MERCEDES,FERRARI,PORSCHE,LOTUS,VOLVO,BMW,SAAB.

We commence with the first name, MERCEDES, as the root of the tree; at this
stage the node has no descendants so the pointers take NULL values.

Figure 8.18

Next we introduce FERRARI and since it precedes MERCEDES alphabetically
it will become a descendant on the left.

Figure 8.19

The next item, PORSCHE follows MERCEDES and so becomes a right
descendant of it.

112

ROOT

Figure 8.20

After examining all the information and arranging it alphabetically the tree
resembles Figure 8.21.

ROOT

RoI mercedesT <k1
arzzz:

L^T bmw \y\

PORSCHE I <\l

lx" I VOLVO \/\
K'S

Figure 8.21

The next obvious task is to be able to select a name and to request all the data
that is associated with it. Having entered a name, the program searches down
the tree starting at the root and then travelling either left or right depending on
the alphabetical order of the entered name and the one stored at the present
node. If a NULL pointer is reached before the entered name is located then the
name is not present in the tree. This method of searching is a form of what is
called a binary chop and can be very fast, even with vast quantities of data. For
example, by making seven comparisons we can get down to level 8 of the tree
which could mean that up to 255 elements have been searched.

To output all the data in the tree in the order set up, we require a systematic
method of travelling to each node once and in the order of the leftmost nodes
before those to their right.

If we consider any node in the binary tree, providing its pointers are not NULL,
it is linked to two binary subtrees. Similarly, all the nodes in each of these
subtrees are joined to further subtrees. Thus a binary subtree may be
abbreviated to the layout shown in Figure 8.22.

113

Figure 8.22

If we travel to each of these components in a fixed order it is called a traversal

There are three traversals that we can make:

1) Left subtree
2) Node or
3) Right subtree

(LNR)

1) Left subtree
2) Right subtree
3) Node

(LRN)

1) Node
or 2) Left subtree

3) Right subtree

(NLR)

Further traversals using the same fixed order should be made at each subtree. If
we use the order LNR we can obtain our data in the order in which the structure
was set up (alphabetically).

Consider the tree in Figure 8.23 under a LNR traversal.

Figure 8.23

114

Our order would be: L,, 100, R, Subtree L, can be traversed LNR to give: L2,
50, 59 and L2 can be traversed LNR to give: 10, 25, 27 Thus our order so far is:
10, 25, 27, 50, 59, 100, R, When R, has been traversed LNR we will have
accessed the whole tree in order.

Tree sort

Program 17 demonstrates how to sort alphabetically a sequence of strings by
creating a binary tree and then undertaking a LNR traversal.

The traversal is done by starting at the root and continually travelling left
pushing the nodes on to a stack. Wherever a NULL pointer is reached, the data
value of the node is printed and if a a right hand node is present the same process
is taken on its subtree. Having gone as far as possible, we then back-track to the
parent node by popping the stack. This process is repeated for the whole tree.

The program simplifies the problem of stack control by making use of recursive
functions, that is ones that call themselves.

Program 17:

/*****»♦***#**********<*
* TREE SORT *
»--- *

* M.R.H. May 85 *
#***♦*#**♦****♦<#/

^include <stdio.h>

«define NO_NODES 1OO
«define LINEFEED ’\012’
«define stdin 0

typedef struct tree node
<
char dataC2O3;

struct treejiode *left_ptrj
struct tree.node *right_ptr;
> TREENODE, »TREEPTR;

TREENODE t_nodeCNO_NODES];
TREEPTR t_root, tpl, tp;

char buffer£20]j
ir.t x;

mai n()
<
i ni t_tree();
printf("TREE SORT")|
printf("\nEnter data\n”)j
get_data();
printf("\nSorted liBt\n")j

115

1 i st_tree(t_root);

>

ini t_tree()
€
for (x = 0: x < NO_NODES; x+♦)

€
t_nodeCx3.dataCOl = ’\OOO’;
t_nodeCx3.1eft_ptr « NULL;
t_nodeCx3.right_ptr = NULL;
>

getdata()

while (TRUE)
<
pri ntf <"i “);
f gets (buffer , 20, stdin) ;
if (bufferC03 =» LINEFEED)

return;
for (x « 0; x < NO_NODES; x++)

<
if (t_nodeCx3.dataC03 «« NULL)

<
if (t.root =”= NULL)

<
t_root = &t_nodetx3;

strcpy(t_nodeCx3.data,buffer);
t_root->left_ptr ■ NULL;
t_root->right_ptr = NULL;
break;
>

el se
<
tp “ t_root;

while (tp != NULL)
<
tpl » tp;
if (strcmp(cast(char)tp->data,buffer) > 0)

tp = tp->left_ptr;
el se

tp * tp->right_ptr;
>

if (strcmp(cast(char)tpl->data,buffer) > 0)
tp = tp1->1eft_ptr = &t_nodeCx3;

el se
tp = tpl->right_ptr = &t_node[x3;

strcpy (t_nodeC>: 3 . data, buf f er) ;
tp->left_ptr = NULL;
tp->right_ptr = NULL;
break;
>

>
>

>

1i st_tree(t_ptr)
TREEPTR t_ptr;
<
if (t_ptr->left_ptr ! = NULL)

116

1ist_tree<t_ptr->left_ptr);

pri ntf ("’Zs" , cast (char) t_ptr->data) ;
if (t_ptr->right_ptr != NULL)

1ist_tree <t_ptr—>right_ptr);

^include ?stdio.lib?

8.12 Heuristic Programming

By now you will be aware of the flexibility that dynamic data structures can
provide. Trees are the most common form found in computing and are used in
a varied range of unusual subjects. Many games can be studied using trees,
where different branches provide the various options available; by using some
optimizing algorithms a computer can examine all the possible states that could
occur for any feasible move it makes.

A similar idea is used when a program learns from previous operations, and
remembers what results occur for certain moves by building onto a tree. The
program commences with a tree consisting of a single node, the root, and at that
stage knows nothing; with time the tree expands and soon becomes
“intelligent”. Programs that learn with experience are called heuristic.

Program 18: animals

Heuristic programming is demonstrated in Program 18 which starts off with
minimal knowledge of animals. It asks you to think of an animal and then tries
to guess it by asking you a series of questions to which you must answer “yes’
or “no”. If the computer is unable to guess the animal it will ask you for a
question and answer that it can use in the future.

The program builds up a binary tree with animals stored at the bottom nodes in
the tree and questions in the other nodes. By asking questions and analysing the
answers the program can decide on which path to travel down the tree. When an
animal is reached, the computer asks if it is the correct one; if not, it asks for a
question that distinguishes between the animal in the tree and the animal
chosen.

There is one small snag; when you turn off your computer, it will forget all that
it has ever learned about frogs, elephants and whatever. This is rectified by
including a facility for the program to load and save the data on disk.

117

/#***♦»***#*♦***#*#*##**
* ANIMALS *

* --*
* M.R.H. May 85 *
♦ ♦«♦»■»■it-******#*********/

♦♦include <stdio.h>

typedef struct tree_node
<
char dataC3O3;
struct tree_node *left_ptr;
struct tree_node *right_ptr;
) TREENODE, «TREEPTR;

TREEPTR t_root, t_ptr;
extern TREEPTR tallocO, read_node()j

char animalC3O3, questione30J;

FILE *fp;

mai n()
<
printf("ANIMALSXnXn");
if (ini ti ali se())

<
while (TRUE)

<
process ();
printf("XnPlay again ? ");
if (!get_yn())

<
printf("XnDo you want to update disk ? ");
i f (get_yn())

wri te_f i1e();
return;
>

>
>

>

i ni ti ali se()
<
int ret;

printf("Initialising animal treeXn");
printf("Do you want to read animals from disk ? ");
i f (get_yn())

<
if (ret « read_file(>)

return ret;
>

else
def ault_tree();

return TRUE;
>

118

read_f i1e()

<
if ((fp = fopen("ANIMAL.DAT","r")) ■== NULL)

<
printf("XnFai1ure opening ANIMAL.DAT\n");

return FALSE;
>

t_root = read_node();
iclose(fp);
return TRUE;
>

TREEPTR read.nodeO
<
TREEPTR tmp;
char bufferC3O3;
i nt k;

for (k => 0; k < 30; k++)
bufferCkD =■ getc(fp);

if (bufferCOl !- ’\000’)
<
tmp “ tai 1oc();
strepy(tmp->data,buffer);

tmp->left_ptr - read_node();
tmp->right_ptr » read_node();

return tmp;
>

el se
return NULL;

>

def ault_tree()
<
printf("\nAssigning default tree\n");
t_root - talloc();
strepy(cast(char)t_root->data,"Is it a bird");
t_root->l ef t_ptr « tallocO;
t_root->right_ptr * tallocO;
strepy(((t_root->left_ptr)->data),"ROBIN");

(t_root->left_ptr)->1eft_ptr = NULL;
(t_root->left_ptr)->right_ptr = NULL;
strcpy(((t_root->right_ptr)->data),"SQUIRREL");
(t_root->right_ptr)->1eft_ptr = NULL;
(t_root->right_ptr)->right_ptr « NULL;
>

119

process()
<
printf("XnXnThink of an animal\n");

del ay(10000);
printf("XnAnswer Y or N to the following questions:\n") ;

t_ptr « t_root;
while (t_ptr->left_ptr ! = NULL H t_ptr->right_ptr •- NULL)

<
pri ntf ("\n7.s ? “ , t_ptr->data) ;
i f (get_yn())

t_ptr = t_ptr~>left_ptr;
el se

t_ptr •= t_ptr->r i ght_ptr j
>

printf("Xnl think your animal is 7.s ",t_ptr->data);

printf("XnAm I correct ? ");
i f (get_yn())

printf("Xnl thought so")j
el se

<
printf("XnWhat had you chosen ?\n");
get_stri ng(animal,30);
pri ntf ("Enter a question that distinguishes a 7.s from a 7-s \n

animal,t_ptr->data)
4 / miael1 4 "T<~> 1 ■

t_ptr—>right-ptr ■ talloc();
printf("Would the answer for 7.s be Y or N ? ",animal);

i f (get_yn())
<
strcpyt <t_ptr->left_ptr)->data, animal);
strcpyt (t_ptr—>right_ptr)->data, t_ptr—>data);
)

el se
<
strcpyC (t-ptr—>1eft_ptr)->data, t_ptr->data);

strcpyt (t_ptr—>right_ptr)->data, animal);
>

strcpy(t_ptr->data,question);
(t_ptr->left_ptr)->1eft_ptr ® NULL;
(t_ptr—>left_ptr)->right_ptr « NULL;
(t-ptr—>right_.ptr)->1 eft_ptr « NULL;
<t_ptr—>right_ptr)->right_ptr = NULL;
>

>

wri te_fi1e()
<
if ((fp » fopen<"ANIMAL.DAT","w")) «« NULL)

<
printf("XnFai1ure opening ANIMAL.DATXn");

return FALSE;
}

write_node(t_root);
fclose (fp) ;
>

120

wr i te_node(tp)
TREEPTR tp;
<
i nt k;

if (tp == NULL)
<
for (k =» 0; k < 30; k++)

putc(’\000’,fp);
return;
>

el se
for (k =» 0; k < 30; k++)

putc(*(tp->data + k),fp);
wri te_node(tp->left_ptr);
write_node(tp->right_ptr) ;

TREEPTR tallocO
<
extern char #calloc();

char *ptr;

ptr « calloc(1,sizeof(TREENODE));
if (ptr == NULL)

<
printf(“\nSystem failure: Increase size of heap\n");

getchar();
>

return (cast(TREEPTR) ptr);
>

delay(duration) /# MRH.LIB */

int duration;
C
while (duration—)

5
>

get_yn()

char opt;

/* MRH.LIB */

f or (; ;)
<
swi tch (rawi n ())

<
case ’y’>
case ’Y’:

printf("Y");
return TRUE;

case ’n’:
case ’N’:

pri ntf("N");
return FALSE;

def ault:
>

>

121

get_string(ptr,1ength) /* MRH.LIB */
char *ptr;
int length;
<
char bufferC803;

while (TRUE)

<
gets (buffer) ;
if (strlen(buffer) < length)

<
strcpy(ptr,buffer);
return;

>
else

printf("\nRe-enter, max length exceeded\n");
>

>

♦♦include ?stdio.lib?

Since the topic of data structures is both large and complicated, anyone
interested in further study should obtain one of the numerous books
specialising in the subject. A recommended book is “Successful Software for
Small Computers” by Graham Beech, published by Sigma Press, which
contains numerous examples of various data structures.

122

CHAPTER 9

ADVANCED
INPUTOUTPUT
TECHNIQUES

9.1 Introduction

In this chapter we shall discuss I/O techniques with C and look at methods for
improving the relationship between man and machine, sometimes called the
interface.

A programmer often puts a great deal of effort into improving the efficiency of
a program whereas time spent on the ease of input for the user, eliminating the
entry of invalid data, keeping the user fully aware of a program’s state, and the
presentation of results would be far more beneficial. Information may be
output directly to the user by three distinct methods; shape, colours and sounds,
each of which is important in its own way.

Shapes can take the form of pictures or symbols which can be recognised
immediately, or text, which although it has to be deciphered should not pose too
much of a problem. Whilst to the user text is less direct than symbols, it can
often say much more in an efficient way. A further extension to shapes is
animation in which the screen is updated rapidly to produce a dynamic display.
Such displays are sensed quickly by the user; for example, a flashing error
message has more effect than a static one. Dynamic displays can provide
realistic images and are popular in arcade-type games.

Colour is less powerful than shape but can be used to aid the identification of
indistinguishable shapes. For example, a colour display with the top half in blue
and the bottom half in green would resemble sky and grass far better than a
monochromatic display could. Colour can also be used to highlight certain
areas of the screen; for example, a warning message displayed in a vivid red
would soon be brought to the attention of the user. Finally, a colour display is
nicer to look at than a two tone display, provided that the colours are chosen
wisely.

123

Whilst the user must watch the screen to receive information in shape and
colour form, sound output can reach the user even when he/she is not paying
direct attention. Thus sound can be useful for attracting the attention of the
user, if for example an operation is complete or an error has occurred. Such
notes should be high and pleasant for correct operations and long low dirges for
the occurrence of errors. Sound can also add reality to a display. In a space
invader game, zapping and explosions sounds add realism as well as signalling
to the player the results of his operations.

One major cause of user dissatisfaction is the long delays that occur in programs
with long detailed numerical calculations. If programs are as efficient as
possible, then lengthy inactive screens with the computer showing no sign of life
should be avoided by showing screen messages such as “Program initiated”,
“Stage one complete”, etc. This will not only reassure the user but also keep
him/her informed of the processing undertaken. At the end of a long process
it is probably advisable to attract the user’s attention with a bleep type sound.

The user may enter data directly into the computer by using either the keyboard
or a games controller. The keyboard is by far the most flexible and powerful
means for allowing entry of text, numerical values or single key responses. Most
modern keyboards have over 75 keys, but each has alternative meanings when
pressed simultaneously with the SHIFT or CTRL keys. Unfortunately it is
common for a programmer who uses a keyboard frequently to forget that the
users of their programs might not feel equally at ease. In this chapter we shall
see how to make the entry of data via the keyboard as simple as possible.
Whenever a user has to enter data, clear prompts should be given and any
invalid data should be rejected with an error message explaining the problem;
the opportunity should be given for the user to re-enter the data. Since keys have
predefined labels it makes sense to try to make use of them as much as possible.
For example, the best key for ending a program might be CTRL X (eXit) or
CTRL Q (Quit), whereas to use something like CTRL 4 would be, to me, quite
meaningless.

An alternative to the keyboard is a games controller, such as a joystick or
paddle', these have severe limitations but can be preferable for some
applications. A joystick usually has five or she switches. Each of the first four
are set when a knob is pushed left, right, up or down; diagonal movements cause
two switches to be set. The remaining switches are set when separate push
buttons are pressed. A paddle is similar to the volume control on a radio and
enters a single value, within a limited range, into the computer. However, the real
advantage of a games controller is that the interface to the machine becomes
second nature; after a few minutes of moving the joystick to the left or right in
order to move an object on the screen left or right you start to do it without
giving it any thought.

124

We shall now proceed to study some I/O techniques but remember the points
we have covered in this introduction, notably:

1. Ease and validation of input.
2. Keeping the user fully aware of all operations.
3. Presentation of results.

9.2 Screen Input

The most obvious and commonly used method for entering data is with either
the scant, getchar or fgets standard functions which we met in
Chapter 7.

Recapping, scant can be used to input several variables that match a control
string. They can be entered simply by separating them with white space
characters and the function returns the number of values that successfully
matched the control string and were assigned.

getchar is a special case of the g e t c function and inputs a single character
from the keyboard buffer. Input via getchar is buffered - when the
function is called characters can be input into the keyboard buffer until the
Enter key is pressed. The function returns the first character input. Further calls
to the function return the next keys in the buffer, or if empty, will wait and
accept more characters until Enter is pressed once again. All input characters
are echoed on the screen and may be edited using the Delete key.

fgets is used to input a sequence of characters from a file and is terminated
either by a Newline character or when a maximum count is exceeded. To input
from the keyboard the standard input file is used. Both a Newline and a Null
character will be present at the end of the entered character sequence.

9.3 Raw Input

Most C compilers will have a function enabling the input of characters without
displaying the cursor or any characters on the screen. This is useful for special
applications like games. We shall use this facility later in our screen handler
where we will input the characters, one by one, using this method and only
display them if they are valid. The function is often supplied with another one
which detects whether any keys have been pressed.

With Hisoft C these functions are called r a w i n and k e y h i t, and are both

125

built-in; users of other versions should consult their documentation to find the
names of their equivalent functions.

If r a w i n is called and no key is pressed, the program will stop for input. In
some cases, for example in arcade type games, it may be required to take some
certain actions if there is no key input. The use of k e y h i t and r a w i n
together is shown below.

example:
if (keyhitO)

c = toupper(rawin());

Once a key has been pressed, k e y h i t will continue to return True, until an
input character has been read.

The next program concatenates the characters input using these functions to
force the user to enter a date string of the correct format, and is a good
alternative to the scant function. Once entered, the complete string can be
checked for validity.

Program 19:

/#******************♦**
* GET DATE *
* --*

* MRH MAY 85 *
♦***#****##**##******#/

♦♦include <stdio.h>

♦♦define TRUE 1
♦♦define FALSE 0

char dateC91;

mai n ()

<
do

get_date("Pl ease enter todays date",date)$
while (•validate_date(date));
}

get_date(prompt_ptr,dateptr) /♦ MRH.LIB */
char *prompt_ptr, *date_ptr;

<
int j;

printf("*/.s: " , prompt_ptr) ;
for (j = 0; j < 8; j++)

<
if (j =» 2 ! ! j == 5)

*(date_ptr + j) = ’s’»
el se

126

*(date_ptr + j) = rawinO;

printf ("7.c" , * (date_ptr + j>>;

}

vaiidate_date(date_ptr) /* MRH.LIB */
char *date_ptr;
<
int d, m ,y;

d = atoi(date_ptr);
m = atoi(date_ptr + 3);
y = atoi(date_ptr + 6);
ii (y < BO I! y > 99)

<
printf("\nYear outside System rangeXn");

bel IO;
return FALSE;
y

if <m < 1 II m > 12)
<
printf("\nInvaiid month\n">;
bel 1 () ;
return FALSE;
}

if (m «» 2)
if (y 7. 4>

<
if (d < 1 II d > 2fl)

<
printf(“\nInvaiid dayXn");
bell O ;
return FALSE;
>

>
el se

<
i f <d < 1 I I d > 29)

<
printf("Xnlnval id day\n");
bel 1 () ;
return FALSE;
>

>
i-f (m =» 4 II m «=« 6 II m «« 9 II m «°= 11)

<
if (d < 1 II d > 30)

<
printf<"\nInvaiid day\n");
bell O ;
return FALSE;
y

y
el se

<
if (d < 1 II d > 31)

<
printf<"\nInvaiid dayXn");
bel IO;
return FALSE;
>

>
return TRUE;

127

ttinclude ?mrh.lib?

#include ?stdio.lib?

9.4 Validity of Data

One method of preventing programs from crashing is to check that the data
being entered is of the correct form. If the data is not correct then control should
return to the same input statement. The program should only continue if data
of the correct format is entered. It is a good idea to display a message to indicate
to the user what the problem was.

Example:
prompt_yn(pt r)

char *pt r;
<
printf("%s",ptr);
while (TRUE)

<
while (!k e y h i t ())

t

c = toupper(rawin());
switch (c)

<
case"N" :

return FALSE;
case"Y" :

return TRUE;
defau Lt :

e r r o r_m sg(" Invalid response");
>

>
>

We saw earlier how to force the user to enter data in the correct format, in our
example a date string, but this does not guarantee that the entered values are
valid, i.e. a month of 13 could have been given. It is, however, a simple task to
then check that the month lies between 1 and 12, and then by referring to a list
of days in each month that the date is valid - of course leap years must be taken
into account. The numeric values are extracted from a date string using the
standard a t o f function. An example of a function for validating a string of
the format DD/MM/YY is listed with program 19 above.

Other methods for checking the validity of data include inspecting the lengths

128

of strings using s t r I e n, checking that values are in a given range using the
‘<’and *>’operators, and checking that certain characters are present by
inspecting the ASCII character codes.

Another problem that can occur is when the user enters valid but incorrect input
data. If this creates results that are difficult to rectify it is a good idea to re­
display the entered data and ask the user to confirm it by pressing Y or N before
futher actions are undertaken.

Carelessness in checking input data can result in unnecessary time wasting
which, in turn, can cause frustration for the user, so always try to make your
programs as robust as possible.

9.5 Screen Output

You will be well aware that output is directed to the screen by using the functions
p r i n t f and p u t c h a r. Hisoft supply an additional function called
r a w o u t which acts like p u t c h a r but avoids some problems which occur
due to the way the Amstrad screen interprets certain control characters.

In command mode it is possible to move the cursor about the screen using the
cursor control keys. With C we can program these standard ASCII characters
into statements using the p r i n t f functions giving us full cursor control.

example:
//define CURS L ’\010’ / * cursor left * /

//define CURS' R '\01 1 ' / * cursor right * /

//define curs' D ' \012 ' / * cursor down */

//define curs' U ' \013 ' / * cursor up * /

The usual procedure to output a single character is to call the function p u t c.
However, with the Amstrad, wierd and surprising effects can occur when certain
control characters are printed since the C world uses a different convention to
Amstrad when interpreting such characters. The solution is to call the Hisoft
function r a w o u t which will print exactly what is required.

This is illustrated in program 20 which will print five ‘V’s in a V formation. The
program also introduces an alternative syntax for expressing i f . . t h e n . .
else using the ternary operator ? :.

(expression!) ? (expression2) : (expression3)

expression! is evaluated; if it is non-zero (TRUE) expression is evaluated,

129

whilst if it is zero (FALSE) expression? is evaluated. This mechanism is very
convenient for conditional parameters to functions as required in program 20.

Program 20:

/*******************************
* CURSOR CONTROL CHARACTERS *
* --- *
* MRH May 85 *
*******************************/

#de-F i ne
ttde-f i ne
#def i ne
ttde-f i ne

CURS_L
CURS_R
CURS_D
CURS_U

’\O1O’
’\O11’
’\O12’
’\013’

mai n()
<
i nt x ;

for (x = 0; x < 5; x++)
<
rawout(CURS_R);
rawout((x < 3) ? CURS_D : CURS_U);
rawout(’V’);
>

while (! keyhit())
;

One other useful standard ASCII character to include in your repertoire is 7.

example:

fldefineBELL '\007'

belli) /*MRH.LIB */
<
printf("5c",BELL);
>

130

9.6 Animated Effects

With the aid of control characters and C control loops we can display a
sequence of characters to produce simple animation. The idea is to construct a
string which includes the characters to be displayed along with some cursor
control characters to move the characters from their previous print position and
some blank characters to overwrite the previous display. By controlling the
program execution with a loop we can print the string several times in succession
to produce some interesting effects.

Program 21: horizontal motion

/************************

* HORIZONTAL MOTION *
* --- *
* MRH May 85 *
*************************/

#def i ne
#def i ne
#def i ne
#def i ne
#define
ttdef i ne

CURS_L
CURS_R
CURS_D
CURS_U
CLS
SPACE

’\O1O’
’\O11’
’\012’
’\013’
’ \f ’

mai n ()
<
int j ;

rawout(CLS);
■for (; ;)

<
■For <j = 1; j < 75; j++)

<
rawout(SPACE);
rawout (’>’);
rawout(CURS_L) ;
delay(250) ;
>

for (j = 1; j < 75; j++)
<

131

rawout (SPACE) ;
rawout (CURS__L) ;
rawout(CURS_L);
rawout(’<’);
rawout(CURS_L);
delay(250);
>

>

#i nclude ?mrh.lib?

We could use a similar technique to achieve vertical movement. The next
example combines both horizontal and vertical movement to produce a
diagonal motion.

Program 22: diagonal motion

/************************
* DIAGONAL MOTION *
* --- *
* MRH May 85 *
*************************/

#de-f i ne
ttde-f ine
#de-f ine
#defi ne
#def i ne
#def i ne

CURS_L
CURS_R
CURS_D
CURS_U
CLS
SPACE

’\010’
’ \0U’
’\012’
’\013’
’ \-f ’

mai n ()
<
int j;

f or (; ;)
£
rawout(CLS);
■for (j = 1; j < 20; j++)

£
rawout(SPACE);

132

rawout(CURS_D);
rawout(214);
rawout(CURS_U);
rawout(CURS_U);
rawout(SPACE);
rawout(CURS_D);
rawout(214);
rawout(CURS_L);
rawout(CURS_L);
rawout(CURS_L);
rawout(CURS_D);
delay(200);

ttinclude ?mrh.lib?

9.7 Controlled Printing

The standard method of printing on the screen is either along a line or down a
column. This is perfectly acceptable for small quantities of data, but when
printing has reached the bottom row, the screen will scroll upwards.
Unfortunately, this means that the top of the display will vanish before you have
time to read the results!

Most software applications require controlled printing, where output can be
positioned anywhere on the screen by having full cursor control. Every system
will have a method of controlling the position of the cursor by sending a
sequence of characters followed by the screen coordinates of the position
required. Unfortunately, there is no standard for this cursor control sequence
and so you will have to consult your system documentation. The following
example positions the cursor to (x,y) on the Amstrad.

example:
cur sor_pos(x,y) /* MRH.LIB */

char x , y;
<
rawout(31);
rawout (y);
rawout(x);
>

133

Sending other sequences of characters in this fashion can have other effects -
such as changing the number of characters per line or the screen colours. Again
consult your documentation to see how to change screen modes, colour and
other possible screen effects. With the Amstrad:

example:
scree n_m o d e(m)

char m;
<
rawout (4) ;
r a w o u t (m) ;

/ * MRH . LIB */

clear screenO
<
rawout("\f") ;

/ * MRH . LIB * /

paper(ink) /*
char ink;
<
rawout(14);
rawout(in k) ;

MRH .LIB */

pen(ink) /* MRH.LIB */
char i n k ;
<
rawout(15);
rawout(ink);

ink(ink,coll,col2) /* MRH.LIB */
char ink,coll,col2;
<
rawout(28);
rawout(ink);
rawout(coH);
rawout(col2);
>

134

9.8 Menu Selection

We saw in Chapter 3 how we should structure our programs by breaking them
down into blocks or modules, each of which has a specific purpose. An ideal
method of producing a program that undertakes several functions is to write
each in a separate block of code and then allow the user to select the required
section by means of a menu displaying the various available options as in Figure
9.1.

Menu

1) Word processing
2) Stock Control
3) Accounts

9) Exit

/TH
W.P. S.C. Ac Exit

Figure 9.1

Of course there is no reason why selecting a certain option could not lead to
another menu displaying a further list of related options so that the user has to
make an additional selection or return back to the main menu.

There are numerous ways in which a menu selection program can be written.
The most common is the Chinese take-away method where the user selects a
letter or a number from a displayed list.

Our next program provides a general-purpose menu selection function. The
screen messages, their screen coordinates and the addresses of the functions to
be invoked are stored in a structure which is passed by address to the menu
selection function. The function undertakes any selection requested. By writing
a function in this fashion, it is easy to add extra options to a program with only
minimal changes to existing code.

135

Program 23: menu

/#*♦#*♦****■**##*##******
* MENU EXAMPLE *
---#
* M.R.H. May B5 *
*****♦******»*******#**/

^include <stdio.h>

fldefine TRUE 1
Kdefine FALSE O
#de-f ine CLS ’ \f ’
#define stdin 0

struct menu_tmp

<
char x_pos;
char y__pos;
char *text_ptr;
int (»■funct) () ;
>!

char company[3= "GAMMA SYSTEMS LTD";

mai n ()
<
mai n_process();
rawout(CLS) ;
>

dummy_process()
<
>

a5x_process()
<
not_avai1able("A3 X">;
>

a5y_process()
<
not_avai1ab1e("A5 Y">;
3

a5z_proces6()
<
not_avai1able("A5 Z")j
>

al_process()
<
not_avai1 able("Al");
>

a2_process()
<
not_avai1able("A2");
>

a3_process()
<
not_available("A3");
>

136

a4_proceBB(>
<
not_avai 1able("A4");

>

a5_procesB<)

<
static struct menu_tmp a5_opts[J «

<
7.10, " *** A5 ***",dummy_process,
9.10, "OPTION A5 X ",a5x_process,

10.10, "OPTION A5 Y ",a5y_process,
11.10, "OPT ION A5 Z ",a5z_process,
13.10, "EXIT TO PREVIOUS MENU",dummy_process

menu-prompt(4,a5_opts);

>

aaa_process()
<
static struct menu.tmp aaa_opts[J

<
7,10," *** AAAAAAA ***",dummy_process,
9,10,"OPTION

10.10, "OPTION
11.10, "OPTION
12.10, "OPTION
13.10, "OPTION
15, 10, "EXIT T(

Al",al_process,

A2",a2_process,
A3",a3_process,
A4",a4_process,
A5",a5_process,

I PREVIOUS MENU" dummy_process

menu.prompt(6,aaa_opts) ;
J

bbb_proces5()
<
not_avai1able("BBBBBBB") ;

>

ccc_process < >
<
not_avai1able <"CCCCCCC");

>

ddd_process(>
<
not.avai1 able("DDDDDDD")$

}

mai n_process()
<
static struct menu__tmp main_optsCJ =

<
7.10, " *»* MAIN MENU **#",dummy_process,
9.10, "FACILITY AAAAAAA",aaa_process,

10.10, "FACILITY BBBBBBB",bbb.process,
11.10, "FACILITY CCCCCCC",ccc_process,
12.10, "FACILITY DDDDDDD",ddd_process,
14.10, "EXIT FROM SYSTEM",dummy_process

menu_prompt(5,main_opts) ;
>

137

/* MRH.LIB */init_screen(msg_ptr)
char *msg_ptr;
<
i nt i ;

screen_mode<1)5
cursar_po5(1,10);
printf (‘"/.s" , msg_ptr) ;

cursor_pos(2,1);
for (i = 0; i < 40; i++)

rawout (’ _’) 5
cursor_pos(22,1);
for (i = 0; i < 40; i++)

rawout(’_’);
>

menu_prompt(no_options,ptr_options) /* MRH.LIB */
int no_options;
struct menu_tmp *ptr_options;
<
int j, val;
char optnC43;

i ni t_scrn(company);
while(TRUE)

<
for (j = 0; j <« no_options; j++)

<
cursor_pos((ptr_options + j)->x_pos,(ptr_options + j)->y pos);
i f (j)

printf("%2d ’/.s“, j,(ptr_options + j)->text_ptr);
el se

pr i ntf ("7.s" , (ptr_opti ons + j)->text ptr);
>

cursor_pos(23,1);
printf("Seiect facility required: ");
fgets(optn,4,stdin);
val = atoi(optn);
if (val < 1 I J val > no_options)

error_msg("Invalid option");
el se

<
if (val == no_options)

return;
el se

<
(*(ptr_options + val)->funct)();
init_scrn(company);
}

}
>

>

error_msg(msg_ptr)

char *msg_ptr;
<

cursor_pos(24,1);

ink(3,3,13);
paper(3);
printf("Zs",msg_ptr);
paper(0);
bel 1 () ;

>1

/* MRH.LIB */

138

not_avai1able(ptr)
char *ptr;
<
init_scrn(company);
cursor_pos(10,5);
pr i nt-f ("Faci 1 i ty 7.s not avai 1 abi e" , ptr) ?
cursor_pofi(12,5);
printf ("Press any key to continue")?

while (’keyhi t())

?
rawin();

>

(♦include ?stdio.lib?

♦(include ?mrh.lib?

/* MRH.LIB */

A slight variation on this method is to move the cursor up and down using the
cursor control keys until it is level with the option required. Then, by pressing
a specified key, the required option is undertaken. This is done by keeping a
counter which is decremented or incremented as the cursor is moved; on
selection the counter corresponds to the option required.

9.9 Screen Handlers

In many programs it is common to find that the user is prompted line by line for
information to be entered, For example:

Enter Input Device: $TERM
EnterOutput Device: $LP
Enter F i Lename: OUTPAY
Enter Access Mode: READ ONLY
EnterExclusionMode: SHARED

The entry of such data would be greatly facilitated if all the screen prompts
could be displayed simultaneously, and if the user could correct previously-
entered data. Such a routine that can handle this type of input is often referred
to as a Screen Requester or a Screen Handler.

Program 24 illustrates another general purpose routine for handling Screen
Requestors. As with the menu selection program, the definition of the screen is
set up in a structure and is passed to the screen requestor function. The
definition of the screen requires, for each data item to be input: a text string,
screen coordinates, the address where the value is to be placed and the address
of a function which validates the input item.

139

The user may tab between the data fields using the cursor left and right arrow
keys. Cursor down will accept the screen and cursor up will abort. The Delete
key will delete the last character while the CLR key deletes the complete field.
The actual keys for these operations are defined at the top of the program and
so could be changed if you feel that certain other keys are more convenient.

An example is given to input a name, address, etc. but the structure can easiliy
be amended to handle any input data required. Numerical values must be
entered as strings of characters and then converted.

Program 24: screen handler example

/*##**#*####***###**#*####
* SCREEN HANDLER EXAMPLE *
* --- *

* M.R.H. May 85 *
#♦*#***#*****#*»#«##*<#/

/*

♦♦include <stdio.h>

*/

#def i ne TRUE 1
#def i ne FALSE 0
#def i ne CLS ’ \f ’
♦♦def i ne CURSOR 207
#def i ne SPACE 32
#def ine MARK 95
#def i ne CURS_L 8
♦♦define stdin 0

♦♦define ACCEPT 241 /* CURSOR DOWN KEY */
♦♦def i ne ABORT 240 /* CURSOR UP KEY */
#def i ne TAB 243 /* CURSOR RIGHT KEY */
#def i ne BTAB 242 /* CURSOR LEFT KEY */
#def i ne DELETE 127 /* DELETE KEY */
#def i ne CLR 16 /* CLEAR KEY */

struct screen_tmp
<
char x_pos;
char y_pos;
char 1ength j
char *text_ptr;
i nt (*funct_ptr)
char *data_ptr;

struct ■staf f_tmp
<
char nameE213;
char adrssl£263;
char adrss2£263;
char adrss3C263;
char adrss4£263;
char phoneC163;
char dobirth£93;

140

char commentC213;
>J

static struct staff_tmp staff_rec;

char company Cl«3 "GAMMA SYSTEMS LTD";

int error_flg;

main <)

<
while(TRUE)

<
if (get_staff() — ACCEPT)

process_staif();
el se

printf ("7.c\n\nAB0RTED",CLS) ;
cursor_pos(24,1);
printf("Do you want to continue ? ");

if (!get_yn())
return;

>
>

process_staff()

<
printf ("7.c\nENTERED DATA« ",CLS> ;
printf ("\n\nNAMEi 7.s", staff _rec. name) ;
printf ("\n\nADDRESSi *Zs" , staf f _rec. adrssl) ;
printf ("\n 7.s" , staff_rec. adrss2) ;
printf ("\n *Zs" , staf f _rec. adrss3) ;
printf("\n Zs",staff_rec.adrss4);
printf ("\n\nPHONEi Zs",staff_rec.phone) ;
printf ("\n\nD 0 Bi Zs" , staf f _rec. dobirth) ;
printf ("\n\nCOMMENTs Zs" , staf f_rec. comment) ;

>

dummy_process()

<
>

name_val(>

<
if (staff_rec.nameCOJ == ’\000’)

<
cursor_poa(25,1);
printf("MANDATORY FIELD");
bel 1 (>;
error_flg «= TRUE;
return FALSE;

>
el se

return TRUE;
}

no_val()

<
return TRUE;

>

date_val()

<
int err;

141

cursor_pos(24,1);
err = validate_date(staff_rec.dobirth);

if (J err)
error.flg = TRUE;

return (err);
>

stati c struct screen.tmp staff.scrnC1

6, 4, 20, "NAME;", name.val, staff_rec.name,
8, 1 , 25, "ADDRESS:",i no.val, staff _rec.adrss 1,
9, 9, 25, ” " 9 no.val, staf f _rec.adrss2,

10, 9, 25, 9 no.val, staff _rec.adrss3,
11. ■7, 25, 9 no.val, staff _rec.adrss4,
13, 3. 15, "PHONE:", no.val, staf f _rec.phone,
15. 2, 8, "D.0.B.x", date_val, staff _rec.dobi rth
17, 1, 20, "COMMENT:",i no.val, staf f _rec.comment

>S

return (get_screen (8,staff scrn));
y

get_screen(no_f ields,scrn_ptr)
int no_fieldE;
struct 5creen_tmp *scrn_ptr;
<
int v, j, k, idx, char_pos, valid;
char key;

/* MRH.LIB */

ini t.scrn(company) ;
error_flg = FALSE;
for (j = 0; j < no_fields; j++)

<
cursor_pos((scrn_ptr + j)->x_pos,(scrn_ptr + j)->y_pos);

printf("7.s ", (scrn.ptr + j)->text_ptr);
for (k = 0; k < (scrn.ptr + j)->length ; k++)

<
*((scrn_ptr -► j)->data_ptr + k) » *\000’;
rawout(MARK);
>

>

idx = 0;
char_pos = 1;
while (TRUE)

<
cursor_pos((scrn_ptr + idx)->x_pos, (scrn_ptr + idx)->y_pos +

strlen((scrn_ptr + idx)->text_ptr) + char_pos) ;
rawout(CURSOR);
key =■ r awi n () ;
if (error_flg)

<
error_flg = FALSE;
clear_line(25,40);
>

cursor.pos((scrn_ptr + idx)->x_pos, (scrn.ptr + idx)->y_pos +

str1en((scrn.ptr + idx)->text_ptr) + char.pos);

switch (key)
<
case ACCEPT»

v = *((scrn_ptr + idx)->data_ptr + char.pos - 1);

142

rawout((char_pos > (scrn_ptr + idx)->1ength> ? SPACE
: (v) ? v : MARK);

valid = TRUE;
for (idx = 0; idx < no_fields && valid; idx++)

valid = (*(scrn_ptr + idx)->funct_ptr)();
if (valid)

return key;
idx — ;
char_pos = 1;
break ;

case ABORT:
return key;

case BTAB:
if (idx > 0)

<
V <= *((scrn_ptr + idx)->data_ptr + char.pos - 1);
rawout ((char_pos > (scrn_ptr + i dx)-->1 ength) ? SPACE

: (v) ? V : MARK);
i dx — ;
char_pos = 1;
>

el se
bel IO;

break ;

case TAB:
if (idx < (no_fields - 1))

<
v “ *((scrn_ptr + idx)->data_ptr + char.pos - 1);
rawout((char.pos > (scrn.ptr + idx)->1ength) ? SPACE

: 7v) ? v : MARK);

idx++;
char.pos = 1;
>

el se
bell () ;

break ;

case CLR:
cursor.pos ((scrn.ptr + idx)->x_pos, (scrn_ptr idx)->y_pos ♦

str1 en((scrn.ptr + idx)->text_ptr) + 1);
for (k ■ 0; k < (scrn.ptr + idx)->length ; k++)

<
*((scrn_ptr + idx)->data_ptr ♦ k) = ’\000F;
rawout(MARK);
>

rawout(SPACE) ;
char.pos == 1;
break ;

case DELETE:
if (char.pos > 1)

<
rawout((char.pos) > (scrn_ptr + idx)->length

? SPACE”: MARK);

rawout(CURS-L);
rawout(CURS_L);
char.pos—;
>

el se
bel 1 O ;

break ;

143

default :
if <char_pos <= (scrn_ptr + idx)->length && isprint(key))

<

rawout(key);
if (char_pos == 1)

<
cursor_pos((scrn.plr + idx)->x_pos, (scrn_ptr + idx)

->y_pos +str1en((scrn_ptr + idx)->text_ptr) + 2);
for (k « 1; k < (scrn.ptr + idx)->length ; k++)

<
*((scrn_ptr ♦ idx)->data_ptr + k) » ’\000’;
rawout(MARK);
>

rawout(SPACE);

>
*((scrn_ptr + i dx)->data_ptr * char_pos - 1) =■ key;
char_pos++;

>
el se

bel 1 () ;

>
>

>

clear_line(row,row_length) /* MRH.LIB */
int row, row length;

<

cursor.pos(row,1);
while (row_length—)

rawout(SPACE);

>

/*

♦»include ?mrh.lib?

Kinclude Tstdio.lib?

9.10 Report Generation

In C when we talk to a computers I/O devices we do so by means of files. To
communicate with the printer we open the list device just as any other file, and
then write to it using functions such as f p r i n t f. With the Amstrad life is
simple and we can talk to the printer simply by using a file pointer with a value
of 8.

example:
fprintf(8,"\nSIGMAPRESS");

Many modern day printers are very sophisticated and by sending certain control
characters we can print in a number of styles and widths, however using them

144

in a program can be quite tedious. To make the production of elaborate reports
simple, program 25 provides a general purpose routine that will enable a report
to be specified, once again, by defining it in a structure. The items that must be
specified are: its column position, the data length and the address of the data
item. In addition to data items, control characters may be specified by stating a
item length of CONT__CHAR (this is defined at the top of the program).

Program 25 uses the screen requestor routine from the previous program to
accept certain items of data for the production of a Staff Pay and Expenses Slip.

Program 25: staff pay & expenses

/*************************
* REPORT GENERATION #
* --- *

* M.R.H. May 85 *
it****#*****#***##***#****/

»include <stdio.h>

FILE *printer_stream = 8; /* 8 =» AMSTRAD */

/* 3 = SPECTRUM */

/* The following control characters may require amendments to
suit your own printer. Since Null characters are interpreted
in C as the end of a string, they must be represented by the
character 0

#def ine S_UNDRLN "\033-\lM /* set underline on */
#def i ne R_UNDRLN ”\O33-0" /* reset underline */
ttdef i ne S_ITALIC "\0334" /* set italic on */
#def i ne R_ITALIC "\0335" /* reset italic */
#def i ne S_EMPHZE “\033E" /* set emphasize on */
ttdef i ne R_EMPHZE "\033F“ /* reset emphasize */
#def i ne S_D_STRK "\033G" /* set double strike */
#def i ne R_D_STRK "\033H" /* reset double strike */
ttdef i ne S_D_WIDH "\016” /# set double width on */
#def i ne R_D_WIDH “\015" /* reset double width */
#def i ne LINEFEED ”\012" /* 1i nef eed */
#def i ne FORMFEED "\014" /* formf eed */

ttdef i ne TRUE 1
ttdef i ne FALSE 0
ttdef i ne CLS * \f ’
ttdef i ne CURSOR 207
ttdef i ne SPACE 32
ttdef i ne MARK 95
ttdef i ne CURS_L 8
ttdef ine stdin 0
ttdef i ne CONT_CHAR ’\177’

ttdef i ne ACCEPT 241 /* CURSOR DOWN KEY */
ttdef i ne ABORT 240 /* CURSOR UP KEY */
ttdef i ne TAB 243 /* CURSOR RIGHT KEY */
ttdef i ne BTAB 242 /* CURSOR LEFT KEY */
ttdef ine DELETE 127 /* DELETE KEY */
ttdef ine CLR 16 /* CLEAR KEY */

145

struct screen_tmp
C
char x_pos;
char y_posj
char length;
char *text_ptr;
int (*funct-ptr)();
char *data_ptr;

struct report-tmp
<
char info_pos;

char info_len;
char *info_ptr;
} ;

int error_flg, char_cntj

char name[21], periodC163, tax_codeC63, gross_payC93,
taxC93, nat_insC93, expenses[91, totalt93, comment[213 ;

char company!3 = "GAMMA SYSTEMS LTD";

mai n()

<
while(TRUE)

<
if (get_data() «« ACCEPT)

process_data();
el se

printf ("7,c\n\nAB0RTED" , CLS) ;
cursor_pos(24,1);
printf("Do you want to continue ? ");
if (!get_yn())

return;
>

>

no_val()
<
return TRUE;
>

get-data()
<
static

{
struct screen_tmp data_scrn C 3

6, 7, 20, "NAME:", no_val, name,
8, 5, 15, "PERIOD:", no_val, peri od,

10. 4, 4, "TAXCODE:", no_val, tax_code,
12, 2, 8, "GROSS PAY: ", nO-Val, gross_pay
13, 8, 8, "TAX:", no_val, tax ,
14, 4, 8, "NAT INS:", no_val, nat_i ns,
15, 3, 8, "EXPENSES:" , no_val, expenses,
16, 6, 8, "TOTAL:", no_val, total,
18, 4, 20, "COMMENT:", no_val, comment,

return (get_screen(9,data_scrn));
3

146

process_data()
<
static struct report_tmp pay_formatC] =

<
0,
0,
0,
0,

o,
0,
0,
0,
1»
O,
0,

O,
o,
1,
9,
O,
0,
1,
9,

30,
40,

O,
0,
1,
O,
0,
1,
O,
O,
1,

12,
22,
36,
49,

O,
0,
1»

0,

CONT.CHAR,
CONT.CHAR,
CONT.CHAR,

20,
CONT.CHAR,
CONT.CHAR,
CONT.CHAR,
CONT_CHAR,

22,
CONT_CHAR,
CONT_CHAR,
CONT CHAR,
CONT_CHAR,

5,
20,

CONT_CHAR,
CONT_CHAR,

7,
15,
9,
4,

CONT_CHAR,
CONT_CHAR,

50,
CONT_CHAR,
CONT_CHAR,

56,
CONT_CHAR,
CONT_CHAR,

8,
8,
8,
8,
8,

CONT_CHAR,
CONT CHAR,

20,
CONT CHAR,

LINEFEED,
S.EMPHZE,
S-D-WIDH,

company,
R_D_WIDH,
LINEFEED,
LINEFEED,
S_UNDRLN,
"Pay and Expense
R_UNDRLN,
R_EMPHZE,
LINEFEED,
LINEFEED,
"NAME:",

name,
LINEFEED,
LINEFEED,
"PERIOD:",
period,
"TAX CODE:",
tax_code,
LINEFEED,
LINEFEED,
"GROSS
LINEFEED,
S.UNDRLN,
"PAY TAX
R_UNDRLN,
LINEFEED,

gross_pay,
tax,
nat_i ns,

expenses,
total,
LINEFEED,
LINEFEED,
comment,
FORMFEED

Advi ce",

NATIONAL"

INSURANCE EXPENSES TOTAL

cursor.pos(24,1);
printfCDo you want to print payslip ? ");

i f (get.yn())
print-1ines(38,pay_format);

cl ear_line(24,40);
>

pri nt-1i nes(item_no,i tem_ptr)
int itein.no;
struct report_tmp *item_ptr;

<
int j, pos, lenj

/* MRH.LIB #/

char_cnt = 0;
for (j = 0; j < item.no; j++)

<
pos « (item_ptr + j)->info_pos;
len = (item_ptr + j)->info_len ;

if (len !“ CONT CHAR)

147

itein.no
item.no

<
■for (; char.cnt < pos; char_cnt++)

putc(SPACE,printer„stream);
char.cnt += pr i nt.data (1 en, (i tem_ptr + j)->info_ptr);

>
el se

<
print-data(CONT_CHAR,(item_ptr + j)->info_ptr);
if (strcmp((item_ptr + j)->info_ptr,LINEFEED) == 0)

char.cnt = 0;

>
>

print„data(data_len,data_ptr) /* MRH.LIB */

int data.len;
char *data_ptr;
<
int chars.inp;

for (chars.inp = 0; chars.inp < data_len; chars.inp++)
<
switch (#(data_ptr + chars.inp))

<
case NULL:

return chars.inp;
case * Q’:

putc((data_len == C0NT_CHAR) ? ’\000’ J ’9’,printer_stream);
break;

default:
putc(*(data_ptr + chars.inp),printer.strearn);
break;

>
>

return chars_inp;
>

♦♦include ?mrh.lib?

♦♦include ?stdio.lib?

Output from program:

GAMMA SYSTEMS 1_TD

Pay «nd Exoenee Advice

NAME: STEPHANIE J CLOUBH

PERIODI December 19B5 TAX CODE: 200L

GROSS NATIONAL
PAY___________ LAX___________INSURANCE EXPENSES________ TOTAL
B75.00 212.10 78.84 46.85 630.91

Happy New Year

148

9.11 Time Input / Firmware System Calls.

Most micros have an internal counter which comes into effect the moment the
machine is switched on. The counter is incremented at a steady rate, typically at
l/3OOth of a second, and is extremely accurate. By using this facility we can add
timing to our programs, for example as a clock, stop-watch or for timing moves
in games. We could also time the lengths of processes to compare the efficiency
of different programming algorithms. To see how to access this facility on your
system you should consult the documentation provided with your machine.

The Amstrad contains a four byte counter which is incremented every l/3OOth
of a second and can be accessed using the firmware routines. This can be done
neatly using the Hisoft inline function which provides a mechanism for
linking machine code into your C. Two calls can be made: one to read the clock
and another to reset it to a particular value. For further information on these
and other firmware calls, you are advised to read the Amstrad firmware manual.

The next two programs illustrate calling the firmware timing routines.

The first, program 26, obtains the lower sixteen bits of the clock and uses it to
seed the random number generator to randomize the position in the list of
sequential numbers. The program is a game of skill (a numeric form of
Mastermind) in which you have to crack a four digit code consisting of numbers
in the range of 1 to 6.

You enter your attempt and study the clues that are returned. The clue consists
of two digits. The first gives the number of attempt digits that are correct and
in the correct position; the second gives the number of digits that are correct but
in the wrong position. The game stops when the correct code has been entered.

Example:
Attempt Clue
4321 2/0
6565 0/1
5221 2/0
6621 1/0
3531 1/2
3511 2/2
5311 4/0

149

Program 26: code breaking

/************************
* CODE BREAKER *
* --- *
* MRH May 85 *
»it**#*»«***#***»********«/

#i nelude! <stdio.h>

#defi ne TRUE 1
#def i ne FALSE 0

#defi ne CALL OxCD
#def i ne LD_HL_into 0x22
#def i ne KL_TIME_PLEASE OxBDOD

int aC43 , bC43, cC43 ■

i nt j , k , dot, star;

mai n ()
<
pri ntf("CODE BREAKER");
randomize() ;
while (TRUE)

<
process();
printf("\nPlay again ? ");
if (! get_yn(>)

return;
>

>

process()
<
for (j =0; j < 4; j++)

bC j 3 = rnd(6);
printf("\n\n");
while (!get_attempt())

■
3

150

get_attempt()
<
dot = 0; star = 0;
printf("\nEnter attempt “);
for (j = 0; j < 4; j++)

<
cCjJ = get_digit(1,6);
aCj3 = btjl;

•for (j = 0; j < 4; j++)
if (aCj] == cCjJ)

5tar++;
atj] = -1;
ctj] = -2;
}

•for (j = 0; j < 4; j++)
for (k = 0; k< 4; k++)

if (aEjJ == cCkJ)
<
dot++;
aCj] = -1;
cEkJ = -2;
>

printf (" 7.d/7.d ", star,dot);
if (star =»= 4)

<
printf("WELL DONE");
return;
}

get_digit(min,max) /* MRH.LIB */
int min,max;
<
int v;

while (TRUE)
<
whi1e (!keyhit ())

151

v = rawinO - 48;
if (v >= min 8(8< v <= max)

<
printf ('7.d",v) ;
return v;
>

randomize() /* MRH.LIB */
<
static int seed;

inline(CALL, KL_TIME_PLEASE,
LD_HL_into, &seed);

srand(seed);

♦♦include ?mrh.lib?

♦♦include ?stdio.lib?

Program 27 illustrates the clock facility to time the speed of your reactions. Two
functions are used, one to reset the clock and the other to read the elapsed time.

Program 27:

/«##*#***«**#♦#****#*♦*#*
* REACTION TIMER *

♦♦include <stdio.h>

♦♦define TRUE
♦♦define FALSE
♦♦define SPACE
♦♦define CLS

O
32
\f

♦♦define CALL
♦♦define LD_HL_into
♦♦define LD_DE_into

♦♦define LD_HL_with
♦♦define LD_DE_with
«define TIME_PLEASE
♦♦define TIME SET

OxCD
0x22
OxED, 0x53
Ox2A
OxED, Ox SB
OxBDOD
OxBDIO

152

mai n ()
<
screenjnode (1) ;
prlntf("REACTION TIMER");
while (TRUE)

<
printf ("\n\nPress ESPACE BAR] to play");

while (îkeyhitO)

5
if (rawinO !- SPACE)

return;
rawout(CLS);
time_arrayE1] - time_arrayEO] “ 0;
while (rnd(lOO) !■ 1)

I
cursor_pos(6,10);
printfl"BANG!î");

bel 1();
set_time(time_array);
while (î keyhit O)

I
get_time(time_array);
rawin();
if (time_arrayEO])

printf("\n\n\nReacted in 7.d hundredths of
time_arrayE0] / 3);

el se
printf ("\n\n\nI am sorry but you cheated"

>

>

second",

get_time(time_ptr)
int *time-ptrj
<
static int reg_de, reg_hl;

inline(CALL, TIME-PLEASE,
LD-HL-into, ®_hl,
LD-DE_into, ®_de);

*time-ptr ■ reg-hl;
*(time_ptr + 1) « reg_de;
>

set-t i me(t i me_ptr)
int #time_ptr;
<
static int reg_de, reg_hl;

reg_hl - *time_ptr;
reg_de “ #(time_ptr + 1);
ini i ne (LD_HL_wi th, S<reg_hl ,

LD_DE_with, ®_de,
CALL,"TIME SET);

>

/* MRH.LIB */

/♦ MRH.LIB */

♦♦include ?mrh.lib?

♦♦include ?stdio.lib?

153

9.12 High Resolution Graphics

Up to now, we have always considered the display screen to be divided up into
a number of character positions. However, most screens can be divided up
further into a grid of smaller pixel dots that can either be illuminated or not.
The Amstrad, which is fairly typical, consists of 640 by 200 pixels in screen
mode 2. All systems will have different methods for controlling these pixels and
so, once again, you will have to refer to the documentation provided with your
compiler to find the appropriate methods.

To control the pixels on the Amstrad we shall use the inline statement to call
routines in the Amstrad firmware. In program 28, in addition to a touch of
modern art, are three useful functions for plotting a point, drawing a line from
the current plot position and for setting up the graphics pen. For detailed
information on them you should consult the Amstrad firmware manual.

Program 28: Picasso

/************************
* PICCASSO *
* --- *
* MRH May 85 *
*************************/

#define
#def i ne
#de-f i ne
#def i ne
#def i ne
ttde-f i ne
#defi ne

LD_A_wi th
LD_HL_with
LD_DE_with
CALL
GRA_PLOT_A
GRA_DRAW_A
GRA SET PEN

ttdefine CLS

Ox 3 A
Ox 2 A
OxED,0x5B
Ox CD
OxBBEA
0xBBF6
OxBBDE

’ \f ’

mai n ()
<
ink(0,24,24);
i nk(2,6,6) ;
screen_mode(1) ;
rawout(CLS);
proces5_screen() ;
rawin();

154

rawout(CLS);
screen_mode(2);
i nk(0,1,1);

process_screen()
<
i nt x;

•for (x = 0; x < 640; x++)
<
i -f (keyhit ())

return;
set_graphics_pen (x 7. 4);
plot (x , 0) ;
draw(640 - x, 399);

■for (x = 0; x < 400; x++)
<
i -f (keyhit ())

return;
set_graphics_pen (x 7. 4);
plot(0, x) ;
draw(639, 400 - x);
>

p1ot(x,y)
int x,y;
<
static int reg_de, reg_hl;

/* MRH.LIB */

reg_hl = y;
reg_de = x;
iniine(LD_HL_with, ®_hl,

LD_DE_with, ®_de,
CALL, GRA_PL0T_A);

155

draw(x,y)
i nt x,y;
£
static int reg_de, reg__hl ;

reg_hl = y;
reg_de = x;
inline(LD_HL_with, ®_hl,

LD_DE_with, ®_de,
CALL, GRA_DRAW_A);

set_graphi cs_pen(ink)
char ink;
£
static char reg_a;

/* MRH.LIB */

/* MRH.LIB */

reg_a = ink;
inline(LD_A_wi th,®_a,

CALL, GRA_SET_PEN);

ttinclude ?mrh.lib?

Program 29 will plot a three dimensional histogram for up to 18 values. The
main problem when drawing graphs is to choose a suitable scale for the data. By
inspecting the program you will see that a block of 300 units is drawn for the
largest item of data and that all the other blocks are drawn in proportion.

Program 29:
/************************
* 3D HISTOGRAM *
* ---*

* MRH May 85 *
************************/

♦»define TRUE 1
♦»define FALSE 0
♦»define CLS ’ \f’

int n, datat183;

mai n()
{
while (TRUE)

<

156

if (enter_data())
<

p1ot_hi stogram();
printf("\nDo you want to continue ? ");
if <•get_yn())

return ;
>

>
>

enter_data()
<
i nt i ;

printf ("\n\nEnter number of items (5 - IS) : ");

scanf (" 7.d " , 8<n) ;
if (n < 5 !! n > IB)

<
bel 1 () ;
printf("\nInvalid value");
return FALSE;
>

printf("Enter data (between 0 and 2000):\n");

for (i = 0; i < n; i++)

<
scanf (" */.d" , fcdataC i 3) ;
if (dataCil > 2000)

<
bel 1 () ;
printf("\nlnvalid value");
return FALSE;
>

>
return TRUE;
>

plot_hi stogram()
<
i nt i ;
unsigned len, max;

screen_mode(1);
pen(2) ;
printf("THREE DIMENSIONAL PLOT");
max = 0;
for (i = 0; i < n; i++)

<
i f (dataC i 3 > max)

max = dataCi3;
>

for (i =0; i < n; i++)
<
len = 30 * dataCi3 / max * 10; /* must not overflow 16 bits */
draw_bar(i, len);
>

if (!keyhi t())

5
rawi n();
pen(1);
5creen_mode(2);
ink(1,24,24);

3

157

draw_bar(pos,len)
unsigned pos, len;
<
i nt i ;

ink(2,8,8);
ink(3,7,7);
ink(1,4,4);
•for (i = 0; i < len; i++)

<
plot(32 * pos,i);
set_graphics_ink(2);
draw(32 * pos + 30, i);
set_graphics_ink(3);
draw(32 * pos + 40, i + 10);

set_graphi cs_i nk(1);
■for (i = 0; i < 10; i++)

<
plot(32 * pos + i, len + i);
draw(32 * pos + i + 32, len + i);

>

♦»include ?<nrh.lib?

In our final example, program 30, we can draw pictures by plotting lines and
curves under the control of the user. The direction of a plotted line is chosen by
selecting one of the following keys:

8
7 9

\|/
4 — + — 6

/|\
1 3

2

By pressing key B, the colour will be switched to the background colour; this is
useful if part of the picture is to be erased or if the current plot position is to be
moved elsewhere without leaving a trailing line.

By pressing N, the colour will return to normal foreground colour.

Finally, by pressing C the screen is cleared.

158

Program 30:

/*****#*###*###*#*#*#***#
* ETCHA SKETCH *

* ---*
* MRH May 85 #
******************♦**#**/

♦♦define TRUE 1
♦♦define FALSE 0
♦♦define CLS ’ \f ’

int key, x_pos, y_pos;

main()
<
x_pos - 320;
y.pos - 200;
screenjnode (1) ;
process();
>

process()
<
rawout(CLS) ;
while (TRUE)

<
key = rawi n();
i f (x_pos > 0

x_pos -= 2;
&& (key == *7* !! ! key == ’4’ !! 1 key == ’ 1’) >

if (xjjos < 638 (key == ’9’ 11 • key == *6’ !1 ! key == ’3*))

x_pos ♦= 2;
if (y_pos > 0 && (key »» ’ 1’ 1! ! key « *2’ !! ! key == ’3’))

y_pos -= 2;
if (y_pos < 398 && (key =- ’7’ 1! S key == ’8’ !! S key == *9*))

y_pos += 2;
if (key == 'C' SI key =■” *c’)

rawout(CLS);
if (key == ’X’ IS key == *x*>

return ;
if (key == ’N’ SS key ■== ’n’)

set_graphics_pen(1);
if (key ’B* IS key =« *b’)

set_graphics_pen(0);
plot(x_pos,y_pos);
>

>

♦♦include ?mrh.lib?

159

APPENDIX A.

THE STANDARD C
LIBRARY.

Function Page

abs..71
add... 73
a t o i.......................................72
c a L L o c................................. 77
copy.......................................74
ex i t.......................................85
fcLose................................. 80
tget s....................................83
topen....................................79
t p r i n 11.............................. 84
fputs....................................84
t r e e.......................................78
fscanf................................. 84
get c.......................................81
g e t c h a r.............................. 83
g e t s.......................................84
i ni t.......................................74
i s a L num.............................. 63
i s a l p h a.............................. 65
i s a s c i i.............................. 65
i s c n t r L.............................. 65
i s d i g i t.............................. 65
i s L o w e r.............................. 65
i sp r i nt.............................. 65
i s pu n c t.............................. 65
i s s pa c e.............................. 65
i s uppe r.............................. 65
k e y h i t............................... 126
ma x..71
m i n..71

Function Page

move..
mu 11 i p L y........................... 73
peek.......................................79
poke.......................................79
p r i n t f................................. 61
put c.......................................82
put char.............................. 83
puts.......................................84
qsort....................................69
rand.......................................74
r a w i n.................................. 125
rawout............................... 129
s b r k.......................................78
scant....................................60
set..74
sign....................................... 71
sprintt.............................. 84
s rand....................................74
s scant................................. 85
st rcat................................. 66
st rcmp.................................67
strcpy................................. 66
st meat.............................. 67
st rnemp.............................. 67
st rnepy.............................. 67
swap.......................................78
to Lower.............................. 65
toupper.............................. 65
unget c................................. 82

161

APPENDIX B.

THE MRH C LIBRARY.

Function Page

bell... 77
c a I c_day_no... 62
c I ea r_l i ne...140
c L ea r_sc reen... 134
curso r_pos...133
delay... 121
draw... 156
e r r o r_m s g..138
g e t_d ate..62
g e t_d i g i t..151
get_f ile..82
g e t_s c r e e n...138
g e t_s t r i ng...122
ge t_t i me...153
g e t_y n...121
i n i t_s c r e e n.. 138
i n k... 134
menu_p rompt.. 138
not_a va i I ab I e.. 139
paper 134
pen...134
plot..155
p r i n t_d ata...148
p r i n t_L i n e s.. 147
randomize..152
r nd...77
s c r eenjnode.. 134
s e t_g r a p h i c s_p e n... 156
set_t i me...153
validate date.. 127

162

APPENDIX C.

THE HISOFT C
LIBRARY.

The Hisoft C library is supplied in several files:

“stdio.h” contains commonly used constants and forward declarations
for library functions

“stdio.lib” contains machine independent library functions based on
those supplied with Unix systems
(see Appendix A)

“firmware.lib” contains simple functions to access the firmware jumpblock

“basic.lib” contains functions to provide access to the computers facilities
in a way that is intended to be familiar to the BASIC
programmer.

The Hisoft BASIC library includes the following functions:

after
border
cass_speed
catalog
cIe a r_g r a p h i c_s c r e e n
draw
d r a w r
event_d i sable
e v e nt_ena bIe
flash_speed
i n k
inkey
i np
instr
i tob
j oy

163

k e y_f unction
key_speed
key_t ranslation
out
plot
p L ot r
sound
sound_c heck
st r L owe r
strupper
symbo L
symbol_after
time
write file

164

APPENDIX D.

FURTHER READING

“The Amstrad Advanced User Guide” — Mark Harrison, Sigma Press.

“The Sinclair Spectrum in Focus” — Mark Harrison, Sigma Press.

“Successful Software for Small Computers” — Graham Beech, Sigma Press.

“The Big Red Book of C” — Kevin Sullivan, Sigma Press.

“The Amstrad Firmware Manual” — Amsoft

165

APPENDIXE.

The Amstrad/Hisoft
Memory Map

FFFF

BOFF

VIDEO

SYSTEM

Global Data

Stack

Code

Program text

Compiler
Code

Run Time Routines

SYSTEM

cooo

0040

0000
Standalone Compiler Hex- Address

Mode Loaded

166

APPENDIXE

The Spectrum/Hisoft
Memory Map

Hex. Address:

Standalone
Mode

Compiler
Loaded

167

INDEX

C commands and statements beginning with a non-alphabetic symbol:

S define
Sdirect

26
50
50

Serrar.. 51
Sinclude... 14, 51
Siisi... 51
Stranslate.. 51
%... 39
Wo... 58
%c..58
%d...58
%e..58
<Sof..58
%o...58
%s..58
°7ou...58
%x... 58
&.. 28
&&..27
*... 39
+... 39
+ + ... 39

\..
\"
\ '
<<
\\
\b
\f
\ n
\ r
\t

39
39
39
35
35
35
28
35
35
35
35
35
35
27

i 28
II.. 26
7.. 28
In the remainder of this index, entries beginning with a lower case letter are C commands or statements.

abs..21
Algebraic expressions... 38
Algorithm... 9
Amstrad...5
Animation..131

169

Arithmetic functions.. 71
Arithmetic, binary...18
Arrays.. 36
ASCII.. 35
Assembler... 6
atoi...72
auto.. <........47
Automatic (variable).. 33

BCPL.. 1
Binary numbers...16
Binary operator.. 39
Bit.. 17
bit...78
Bitwise operators..28
Block.. 2, 13
Bottom-up... 10
break..55
Bugs...2
Byte...17

calloc..77
Central Processor Unit... 5
char.. 37
Characters.. 35, 65
Circular list.. 103
Command line arguments... 47
Comments... 14
Compiler.. 8, 14
Compound statement..13
continue...55
Control statements... 52
Conversion specification..58
CPU.. 5

Data structures..89
Data structures, dynamic.. 96
Data structures, static..89
Data types... 31
Declarations.. 31
do...54
double... 73
Dynamic data structures... 96

Editor...15
exit... 85
Exponential... 31
External (variable).. 33

fclose..80
fgets... 83
Fibonacci...59
File Useage.. 85
Flowchart... 10
Flowline... 10

170

fopen..79
for.. 53
Format conversion...72
fprintf...84
free...78
fscanf...84
Function arguments.. 44
Functions...2

getc...81
getchar... 83
Global..33
goto..55
Graphs.. 106

Hardware...4
Heuristic programming..117
Hexadecimal.. 21
High level language...7
HiSoft..2
Hisoft C...15

I/O.. 58, 123
I/O device... 5
I/O function.. 13
if...then.. 52
inline.. 55
Input, screen..125
Input/Output.. 13, 58, 123
int...36
Integers.. 31
Interface, human... 123
Interpreter..8
inis..89
isalnum..63
isalpha... 65
isascii..65
iscntrl...65
isdigit...65
islower..65
isprint...65
ispunct... 65
isspace..65
¡supper... 65

keyhit..126

Library functions... 13 57
Line editor...15
Linked lists.. 97
Local..33
Logic..24
Logical operators..25
long.. 73
I ong functions..73

171

Machine code..6
Main.. 13
max.. 71
Memory... 5
Memory management..77
Menu selection...135
min...71
Mnemonics..7

Octal..23
Operators, logical..25
Output..13

pate.. 82
PDL..11
peek... 79
Pointer arrays.. 44
Pointers.. 42, 93
poke... 79
Preprocessor.. 14
Preprocessor commands..49
printf.. 13, 61
Program description language.. 11
ptr..42
putchar.. 83

qsort...69
Queues... 104

RAM... 5
rand... 74
Random numbers..74
rawin...125
rawout... 125, 129
Real numbers.. 31
Recursion... 72
Register (variable).. 33
Relocatable...14
Ring structure.. 103
ROM... 5

sbrk.. 78
scanf.. 60
Screen handlers... 139
sign...71
Sorting...69, 115
Spectrum...5
sprintf.. 84
srand..74
sscanf...85
Stacks... 104
Static (variable).. 33
stdio.h.. 57
stdio.lib..57
strcat..66

172

strcomp..67
strcopy... 66
Strings..37, 65
strlen.. 66
strncat..67
strncopy...67
struct..92
Structured design.. 10
Structured programming...2
Structures... 91
struncomp..67
swap... 78
switch...case... 52

tolower... 65
Top-down...10
toupper.. 65
Trees.. Ill
Truth table.. 25

Unary operator..39
ungetgc.. 82
UNIX...1

Variables...31
Variadic functions...47
void.. 74

while.. 54

173

- ttW awuûl ß f!

'Practical C’ is a collection of ideas and techniques written for both the newcomer to the
C programming language and the experienced C programmer who wishes to get the most
from an implementation of the language on a personal computer. An elementary
knowledge of programming is assumed.

The book starts with the basic principles of the language and then, building on this
introduction, the reader is taken on a programming course which leads up to some of the
most advanced techniques that can be used with the language. Some readers may prefer
to use the earlier sections of the book as a reference manual and jump into the sections
devoted to programming techniques and general purpose routines.

All of the techniques which are introduced are illustrated by tried and tested programs
written using the Hisoft implementation of the language on an Amstrad CPC 464/6128.
However, C programs can be easily ported on to other machines and so all the programs
will work, with just minimal changes, using other versions of the language. Any
differences between Hisoft C and the true definition of the language are highlighted for
the benefit of readers using other compilers.

Many of the C routines listed will provide the reader with advanced C tools. By working
through the book, the reader can build up a library of functions which will become
invaluable in future program development. A list of functions used in the book, along
with the Standard C and Hisoft C functions is given for reference in the Appendices.

About the Author
Mark Harrison is a freelance systems consultant providing consultancy and
microcomputer systems to business and comerce. His group specialises in applying
multi-user microcomputers to various applications and concentrates on systems
implemented using the C programming language and operating under the Unix or CP/M
operating system.

Mark Harrison (Systems and Technology) Ltd., may be contacted at: 12A Merton Close,
Owlsmoor, Camberley, Surrey GUI5 4TU.
About Us GB * NE'T

Sigma Press specialise in computing, science, &
technology. Write for a
catalogue or to tell us about
your own ideas for a book:

Sigma Press
98a Water Lane
Wilmslow
Cheshire SK9 5DT

ISBN 1-ÔS05Ô-D35-5

00795

9

	Practical C
	CONTENTS
	CHAPTER 1 - C—an overview
	1.1 Introduction

	CHAPTER 2 - HARDWARE AND SOFTWARE
	2.1 Introduction
	2.2 Hardware Components
	2.3 Types of Software and how they work

	CHAPTER 3 - THE DESIGN & DEVELOPMENT OF C PROGRAMS
	3.1 Introduction
	3.2 Program Development
	3.3 Structured Design
	3.4 A Brief Look at C Programming
	3.5 Using Hisoft C
	3.6 And so...

	CHAPTER 4 - DEEP C
	4.1 Introduction
	4.2. Binary Numbers
	4.3 Hexadecimal Numbers
	4.4 Octal Numbers
	4.5 Computer Logic
	4.6 Logical Operators (note the error in the book)
	4.7 Bitwise operators
	4.8 Stop

	CHAPTER 5 - DATA TYPES
	5.1 Introduction
	5.2 More on Numbering Notations
	5.3 Variables
	5.4 Declarations
	5.5 Characters
	5.6 Arrays
	5.7 Strings
	5.8 Initialising Arrays
	5.9 Algebraic expressions
	5.10 Pointers
	5.11 Pointer Arrays
	5.12 Pointers to Functions
	5.13 Function Arguments
	5.14 Variadic Functions
	5.15 Command Line Arguments

	CHAPTER 6 - MORE C STATEMENTS AND COMMANDS
	6.1 Introduction
	6.2 Preprocessor Commands
	6.3 Control Statements
	6.4. Some words of advice

	CHAPTER 7 - THE C STANDARD LIBRARY
	7.1 Introduction
	7.2 Simple I/O
	7.3 Character tests
	7.4 Character and String Manipulation
	7.5 Sorting Data
	7.6 Arithmetic Functions
	7.7 Format Conversion Functions
	7.8 32 Bit Number Arithmetic
	7.9 Memory Management
	7.10 Advanced I/O

	CHAPTER 8 - DATA STRUCTURES
	8.1 Introduction
	8.2 More on C Data Types
	8.3 Structures
	8.4 Dynamic Data Structures
	8.5 The Forward Linked List
	8.6 More Advanced Lists
	8.7 Circular Lists
	8.8 Double Linked Lists
	8.9 Stacks and Queues
	8.10 Graphs
	8.11 Trees
	8.12 Heuristic Programming

	CHAPTER 9 - ADVANCED INPUTOUTPUT TECHNIQUES
	9.1 Introduction
	9.2 Screen Input
	9.3 Raw Input
	9.4 Validity of Data
	9.5 Screen Output
	9.6 Animated Effects
	9.7 Controlled Printing
	9.8 Menu Selection
	9.9 Screen Handlers
	9.10 Report Generation
	9.11 Time Input / Firmware System Calls
	9.12 High Resolution Graphics

	APPENDIX A - THE STANDARD C LIBRARY
	APPENDIX B - THE MRH C LIBRARY
	APPENDIX C - THE HISOFT C LIBRARY
	APPENDIX D - FURTHER READING
	APPENDIX E - The Amstrad/Hisoft Memory Map
	APPENDIX F - The Spectrum/Hisoft Memory Map
	INDEX
	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ● 2020-06-07

