
THE AMSTRAD
CPC-464
ADVANCED USER GUIDE

The Amstrad CPC-464
Advanced User Guide

by Mark Harrison

SIGNA
PRESS

Copyright © 1984, Mark Harrison

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the pruposes
of review, or as provided for by the Copyright (Photocopying) Act or in order
to enter the programs herein onto a computer for the sole use of the purchaser
of this book.

ISBN 185058 014 6

Published by:

SIGMA PRESS,
5 Alton Road,
Wilmslow,
Cheshire,
U.K.

Distributors:

UK, Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester,
West Sussex, England.

A r t c 3 •

JOHN WILEY & SONS INC.,
GPO Box 859, Brisbane,
Queensland 40001, Australia.

Acknowledgments

CPC-464 is a registered Trade Mark of Amstrad Consumer Electronics pic. We
gratefully acknowledge the permission granted by Amsoft, the computer
products division of Amstrad, to endorse this book as "Approved for Users
of the CPC-464 by Amsoft".

Figure 1.2 is reproduced by kind permission of Spectron Artists Ltd.

Printed and bound in Great Britain by
J. W. Arrowsmith Ltd., Bristol

PREFACE
Any new microcomputer attracts a following of publishers and authors; a really
interesting and feature packed machine provides fertile territory for the
imaginative author, so we at Amsoft are particularly grateful to Mark Harrison
for filling in most of the gaps that inevitably occurred in the original user
handbook, as well as adding much to the general utility of the machine in
the hands of the user.

It was a considerable relief to find an author who understook the machine
so well from his brief acquaintance - so many early books on new machines
are very thinly disguised reincarnations of similar works for other computers.
And it was even more gratifying to find a publisher willing to continue the
style we had established for reference books on the system - and thus hopefully
reducing the scope for problems arising from misinterpretation to a minimum.

There's plenty more to be said about the CPC464 - it really is a machine for
anyone from the outright beginner to the inveterate hacker. We hope that
Mark Harrison finds time to continue his exploration, as books such as this
can do nothing but good for both the product and its users.

William Poel

AMSOFT

CONTENTS

1. Amstrad & Beyond: an introduction .. 1
The Principle Components of the Amstrad CPC-464 1
Z80 Processor... 1
Input/Output Devices .. 2
Memory.. 2
The Amstrad's Programming Language... 4
Amstrad BASIC Commands... 6

System commands .. 6
Assignment statements... 7
Control statements .. 7
Input/Output statements.. 9
Graphic statements..10
Other statements ... 11

Amstrad BASIC Functions..11
Simple numeric and mathematical functions................................. 12
String functions.. 13
I/O functions.. 14
System functions ... 14

2. Strings and Character Manipulation..17
The Amstrad Character Set...17
String Operators...19
String Manipulation Functions...18
More String Functions..20
Word Searches... 21

3. Simple Input/Output Techniques ...25
Screen Input...26

Non-stop Input..27
Redefinition of Keys...29
Validity of Data..30

Screen Output... 30
PRINT USING...31
Control Characters ..32
Animated Effects ...33
Controlled Printing..34
Screen Modes ... 35
Colour...36
Menu Selection ..37
Screen Requesters...39
Flashing Colours ...41

Streams..41
Windows...42

4. Computers, Numbers and Mathematics...
Numbers on the Amstrad...
Simple Numeric Functions ..
Mathematical Functions..
Trigonometric Functions..
Recursive Programming..
Simulation...

5. The Amstrad Memory Map..
Binary Numbers..
The Memory Map...

6. Time, Clocks and Interrupts ...
Timing Facility ..
Interrupts..
Error Traps...

7. Data Structures ..
Arrays - static data dtructures..
Dynamic Data Structures ...

Forward Linked List..
Circular List..
Double Linked Lists..
Stacks and Queues...
Graphs ...
Trees ...

Heuristic Programming ..

8. Data Processing..
Techniques for Sorting...

Bubble Sort...
Insertion Sort ..
Shell Sort..
Quick Sort...
Alphabetical Sorting ...

Cassette Files ..
Disk Files...

9. Amstrad Graphics..
User Defined Characters...
Transparent Printing...
High Resolution Control...
Three Dimensional Plotting...

10. Sound and Synthesis...119
Characteristics of Sound Waves..119
SOUND and the Amstrad..120

Channel Status... 121
Tone Period .. 122
Duration .. 122
Volume..123

Sound Synthesis.. 123
Attack...123
Decay...123
Sustain ..124
Volume Envelope Control..124
Sound Interrupts .. 128

Appendix A: ASCII Character Set ...131
Appendix B: Key Handler Codes..133
Appendix C: Colour Codes ...134
Appendix D: Error Codes ..135

LIST OF PROGRAMS
These programs illustrate useful CPC-464 programming techniques and are
useful in their own right.

Number Name Page

1 The Amstrad Character Set.. 18
2 Mary Whitehouse... 19
3 Word Search.. 21
4 Database.. 22
5 MANARAG! (anagrams).. 23
6 Calendar.. 34
7 Cursor Selection ...38
8 Screen Requester...40
9 Highest Common Factor ... 48
10 Dice Distribution...50
11 Enigma..51
12 Quadratic Equations...54
13 Prime Numbers.. 55
14 Triangle .. 59
15 Recursion ... 60
16 Rabbits..61
17 Reaction.. 69
18 Missile Attack... 70
19 Clock Skeleton .. 71
20 F.A. Cup.. 76
21 Linked List .. 81
22 Shortest Routes..86
23 Animals .. 92
24 Bubble Sort..97
25 Insertion Sort... 98
26 Shell Sort ... 98
27 Quick Sort... 99
28 Alphabetical/Tree Sort..100
29 Address Book... 103
30 Bubbles..Ill
31 Epicyclics...Ill
32 Sine/Cosine Waves..112
33 Three Dimensional Plots ..113
34 Three Dimensional Histogram...114
35 Galaxy Explorer.. 115
36 Animation... 116
37 Rotation .. 117
38 Simple Keyboard Instrument... 122
39 OGONEK ... 127
40 Alien Attack.. 128

CHAPTER ONE
AMSTRAD & BEYOND

- an introduction
The Amstrad CPC 464 microcomputer was launched in mid 1984. It looks
extremely elegant and unlike the majority of other micros within the same
price range, the Amstrad is unique in being sold with its own display unit
and built in cassette player. This gives it a distinct advantage over its competitors
in that the complete system consists of just two units and a single power
lead; gone are the large quantities of wire or 'spaghetti' found with many
other micro systems.

In many respects the Amstrad resembles an iceberg with two thirds of its
power hidden from view. It is the aim of this book to progress beyond an
understanding of the basic functions in order to reveal the whole range of
the Amstrad's capabilities. It is assumed that the reader has read the standard
Amstrad users manual and is conversant with such terms as program, program
flow, variables, BASIC, processing of data, software, hardware and so on. We
won't waste your time with these things here! So, let's start with an overview
of the Amstrad system.

The principle components of the Amstrad CPC
464
The Amstrad CPC 464, just like any other computer, has several components
or items of 'hardware' in common, notably the memory, the I/O devices and
the central processing unit.

Fig 1.1 The principle components of the Amstrad CPC 464.

In detail, the components are:

Z80 Processor
The Amstrad's central processing unit (CPU) is a Z80A and is responsible
for controlling all the operations of the computer. This is a relatively low cost

1

processor suitable for small systems and is used on many other popular machines
i.e. Lynx, Sord, Sinclair to name just a few. One other function of the CPU
is to evaluate any mathematical expressions involving addition, subtraction,
multiplication and division (arithmetic) and also to test if numbers are positive,
negative or zero (logic). Whilst the requirement of the arithmetic function is
fairly obvious, the logic function is needed so that the computer can make
decisions and know what actions to perform next.

Input/Output Devices

Data is entered into and accessed from the Amstrad by means of input and
output (I/O) devices, examples of which include the keyboard and joysticks
for input, the screen and loudspeaker for output, and a cassette unit or disk
drive for both input and output. The Amstrad is available with either a colour
medium resolution display or green monochromatic high resolution display.
The moving-key keyboard is layed out in the standard 'qwerty' arrangement
with an additional numerical keyboard. The supplied cassette recorder uses
an advanced recording method for data transfer and is not compatible with
other systems. At the rear of the machine are several expansion ports for
interfacing to a printer, disk drive and other peripherals. A disk file system
is currently being developed which will be compatible with CP/M.* *
Sound output is via a built-in loudspeaker or in stereo form from a Sony
Walkman earphone socket; a volume control is also incorporated.

Memory

It is the function of the computer's memory to store all of the data that is
held in the system. The Amstrad contains two different types of memory -
these are read only memory (ROM) and random access memory (RAM), the
difference being: -

ROM

Is memory that is preprogrammed
when manufactured with permanent
data. The contents cannot be
changed by the user.

_____________ RAM

Is general purpose memory
in which data may be stored
and then retrieved when
required. RAM loses its
contents when the power is
switched off.

In addition to storing a user's program and its associated data in RAM, a
section of the Amstrad's memory is reserved for 'system software'. This is

• CP/M (Control Monitor and Program) is a disk based operating system for the control of
a microcomputer and its peripherals. It was written by Digital Research and has since become
an industry standard because it has been used so widely by over 80 computer manufacturers.
The advantage of this standard operating system is that software written on a CP/M based
machine is portable and can run on any other machine running under CP/M providing that
there is sufficient memory available.

2

Some fea tures of in teres t on thelo wer circui t board are:

The back row of chips is (left to right):
The sound generator; peripheral controller Z80A processor; Ferranti ULA.
The chips on the right (in front of the ULA) are the RAM chips - 64K
in all.

The Amstrad ROM is on the extreme left, in front of the sound generator
chip.

Also clearly visible are, on the back of the board-left to right: Input/Output
port; User ports; Printer interface; Disk interface; 5Vpower input (from monitor)
and monitor socket.

The small circuit board at centre-right is for control of the cassette player.

The larger circuit board beneath the keyboard is the keyboard matrix.

Fig 1.2 The Amstrad CPC 464 microcomputer system.

3

a set of programs that is stored permanently in the computer and is used
to control all the operations of the computer system; it is often referred to
as the 'operating system'. Since this must not be altered either by a user's
program or by switching the power off, a computer manufacturer always stores
the system software in ROM. Remember that since a user's program and its
data are stored in RAM, if the power is ever removed, they will be lost for
ever. We shall see later how the Amstrad's memory is layed out but all we
shall say for now (for the initiated) is that the Amstrad has 64K of RAM and
32KofROM.

We shall now see how we can make the Amstrad carry out a required list
of instructions.

The Amstrad's Programming Language
Briefly, the Amstrad may be described simply as an electronic device that
utilizes a stored list of instructions called a program to receive, memorize,
process and return data. Sometimes these instructions are referred to as
'software' while actual physical components of the system are called the
'hardware'. It is interesting to note that when computers were first produced
the cost of commercial software was relatively cheap in comparison to the
expensive hardware. Nowadays this trend has been reversed due to the mass
production and miniaturization in electronics, while the labour costs of
programmers who are developing more complicated software has increased.

Unfortunately a computer is relatively stupid and can only recognize program
instructions in the form of simple numeric codes such as 50,27 or 114. For
example, the instruction on a particular machine to add two specified values
together might be 35. Since a program would contain more than one instruction
for it to be of any practical use, such a program might look like this:

35,27,133,211,23,39,5,221,10,......etc...

Obviously such a program is meaningless to anyone who does not know what
instruction each code represents. This type of program is known as a machine
code program and although it may seem both tedious and difficult to use,
computer programmers in the days of the first computers had no alternative
to this type of programming. It soon became obvious to the programmers
that it would be easier for them to use codes that bore some resemblance
to the instructions (such as "ADD", "LOAD") they referred to. At this stage
it is important for the reader to remember that a computer can only ever
understand programs in the machine code format; thus if a program is written
with instructions referred to by different codes then it must at some stage
be translated into the equivalent machine code program. This translation process
is accomplished by yet another computer program - ultimately written in
machine code.

A further advance in software was the development of several sophisticated
programming languages known as high level languages. There are many
different ones, the most common being Fortran, ALGOL, COBOL, Pascal,
CORAL and BASIC. The choice of which language to use depends on the
application. For example, a business application would probably use COBOL,

4

a scientific application might use Fortran and an application that required
results to be produced within strict time limits could well use CORAL. Unlike
the low level codes such as "ADD" and "LOAD", the codes in high level
languages do not correspond one to one with the machine code values but,
instead, allow the program to relate to the nature of the problem to be solved.
For example, requiring a message "Correct" to be output if the answer to a
question is 99 in a high level language might be written as:

INPUT answer;
IF answer = 99
THEN OUTPUT "Correct";
STOP;

It should be evident at this stage that a high level language, when compared
to other types of software, is far easier to read. As before, for a computer
to understand the codes of a high level language it must be translated into
its machine code equivalent; so long as the machine code version works the
computer does not care where it came from. It might be reassuring to know
that you are totally isolated from this translation process - you do not need
to know how it works, just that it does. All that we shall say on this subject
is that there are two methods used for translating high level languages into
machine code versions. The first method uses software called a 'compiler' which
converts the whole high level language program into machine code once and
for all, leaving the machine code version to be used time after time. The second
method, which is used by the Amstrad and many other micros running BASIC,
uses software called an 'interpreter' which converts each small part of the high
level language program into machine code as it is being executed. Interpreted
programs are slower than compiled versions but generally are easier to use
on a personal computer.

The programming language used by the Amstrad is just one of the many versions
of the BASIC (Beginners All-purpose Symbolic Instruction Code) language that
are now available. This simple language was designed originally for beginners
in computing but has since become one of the most popular computer languages.
Although efforts were initially made to standardize the statements in BASIC,
there has recently been a tendency for computer manufacturers to produce
versions of BASIC with statements that are unique to their machine. As a
result there are some statements available on other computers which are absent
from the Amstrad but this minor drawback can usually be overcome by the
use of one or more of the available Amstrad statements. Similarly the Amstrad
has several statements that are not found on other computers.

Although the Amstrad BASIC statements are listed below, they are mentioned
for reference only - it is not the aim of this book to teach the fundamentals
of BASIC programming since there are numerous books on the subject. You
are recommended to use the rest of this chapter simply as a reference list.
Have a quick look through it now, and refer back to it as necessary. It is
not intended as "easy reading"!

For each BASIC keyword mentioned, the required syntax will be stated using
the following notation:

5

AMSTRAD BASIC COMMANDS

BASIC keywords are written in capitals.
variable data is written within angle brackets' < >'
optional data is written within square brackets'[]'
data items which may be repeated are followed by......

SYSTEM COMMANDS

These are separated from other types of statements since they are not usually
used within a program. They are used in the operation of the computer system
and are accessed by typing the required statement without a preceding line
number.
Command Purpose Syntax

AUTO Automatically generates line
numbers

AUTO [<line no>][, <increment >]

CAT Displays files on tape CAT

CLEAR Clears all variables CLEAR

DELETE Deletes lines from program in a
given range

DELETE [<line no>][-][<line no>]

EDIT Enters edit mode EDIT <lineno>

LIST Lists program LIST [<line no>][-][Mine no>]
[,# <stream>|

LOAD Loads program into memory LOAD <filename>[,<address>]

MEMORY Resets BASIC memory pointers MEMORY <address>

MERGE Merges program from cassette
into current program

MERGE <filename>

NEW Erases contents of memory NEW

RENUM Renumbers part or all of

current program

RENUM [< new line no >][,[<old line
no>][,<increment>]|

RUN Executes program loaded from
cassette or in current memory

RUN [<filename> or <lineno>]

SAVE Saves program or memory onto

cassette

SAVE <filename> [, <filetype>][[,<
parameters>]]

TROFF Turns off trace facility TROFF

TRON Turns on trace facility TRON

6

ASSIGNMENT STATEMENTS

These are used to allocate either numeric values or a sequence of characters
to specific sections or locations in a computer's memory.

Command Purpose Syntax

DATA Specifies list of values to
be used by the READ statement.

DATA <item>[,<item>]....

LET Assigns either a numerical
value or a sequence of
characters to a variable.

[LET]<variable> - <expression>

MID$ Replaces part of a string
•Note that MID$ can also be
used as function (see string
functions).

MID$(<string>,<start pos>
<length>]) - <string>

POKE Assigns a value to a specific
memory location.

POKE <address>,<expression>

READ Takes as many items as required
from the current position in the
DATA statement and assigns each
value in turn to the listed
variables.

READ < variable> [,variable>]....

RESTORE Repositions the READ pointer to
the first item in a specified
DATA statement or (if no line is
specified) to the first item in
all the DATA statements.

RESTORE [<lineno>]

CONTROL STATEMENTS
These are some of the most vital statements in a computer's repertoire and
allow us to control the order in which the program's instructions are carried
out.

Command Purpose Syntax

AFTER Invokes subroutine at a time
interval

AFTER < integer expression >[,<
integer expression]GOSUB<lineno>

CALL Calls external subroutine CALL <address>[,<parameter>]....

CHAIN Loads and execute program
(from line no if present)

CHAIN [MERGE]<filename>|,Cline
no>]

CONT Continues from previously
halted position

CONT

7

END End of program END

ERROR Causes error action to be taken ERROR < integer expression >

EVERY Regularly invokes subroutine at
time intervals

EVERY < integer expression > [,
< integer expression >] GOSUB
Cline no>

FOR Control loop - section of code
is continually executed as a
variable is incremented until it
exceeds a terminating value.

FOR <variable> z <initial value>
TO terminating value> STEP

<increment>

GOSUB Calls internal subroutine GOSCB <lineno>

GOTO Jumps to given line GOTO <lineno>

IF...
THEN...
ELSE

If condition is true control
undertakes the following state
ments or jumps to the specified

line.

lF<condition> THEN[<statement(s)
>or tine no>][ELSE<statement(s)>]

NEXT End of FOR control loop NEXT [<variable>]

ONLGOSUB
GOTO)

Control is passed to the line or
subroutine whose position in the
list is the integer component of
the expression.

ON <expression>{GOSUBorGOTO}

< line no> [, tine no>]....

ON BREAK
GOTO

Enables a BREAK interrupt routine
to be undertaken

ON BREAK GOTO <lineno>

ON BREAK Disable BREAK interrupt routine ON BREAK STOP

STOP

ON ERROR
GOTO

Sets error trap ON ERROR GOTO < 1 ine no>

ONSQ
GOSUB

Enables sound queue interrupt ONSQ <channel> GOSUB <lineno>

RESUME Resumes normal execution after

error trap

RESUME[{NEXTor<lineno>)J

RETURN Returns to calling GOSUB statement RETURN

WEND End of WHILE loop WEND

WHILE Control loop - section of code is WHILE <conditiion>
continually executed while a
condition is true.

8

INPUT/OUTPUT STATEMENTS

These are used to allow information to be entered into (input) and obtained
from (output).

separator><item>]

Command Purpose Syntax

CLOSEIN Closes cassette input file CLOSEIN

CLOSEOUT Closes cassette output file CLOSEOUT

ENT Defines sound tone envelope ENT <envelopeno>[,<parameter>]..

ENV Defines sound volume envelope ENV <envelopeno>[,<parameter>]..

INPUT Input data items INPUT]# < stream>,][;][" <prompt>";]
< variable> [,< variable>]...

LINE Input line INPUT]# <stream>,][;][" <prompt> ";]
INPUT < string variable >

OPENIN Opens cassette file for input OPENIN' <filename>

OPENOUT Opens cassette file for output OPENOUT <filename>

OUT Output value to I/O port OUT <portno>,<expression>

PRINT Outputdata PRINT] #< stream >,]< item >[Separator >
<item>]....

RELEASE Releases sound channels RELEASE <channels>

SOUND Put sound onto sound queue SOUND<status>,<toneperiod>[,<
duration > [,<volume> [/volume
envelope> |, <tone envelope!* [/noise
period>]]]|]

SPEED Defines keyboard repeat speed SPEED KE Y< start delay >, <repeat
KEY delay>

SPEED
WRITE

Define cassette write speed SPEED WRITE <expression>

WAIT Waits on I/O port WAIT <portno.>,<mask>|,<
inversion!*]

WIDTH Sets width of line printer WIDTH < expression >

WRITE Output data (similar to PRINT) WRITE |#<stream>,|<item>[<

9

GRAPHIC STATEMENTS

These are used to control the excellent display features available on the Amstrad.

Command Purpose Syntax

BORDER Changes colour of border BORDER <colour 1 >[,<colour 2>|

CLG Clears graphics screen CLG|<inkmask>]

CLS Clears screen window CLS|#<stream>|

DRAW Draws line from current plot
position to an absolute position.

DRAW <xcoord>,<ycoord>|,<ink
mask>]

DRAWR Draws line from current plot
position to a relative position.

DRAWR <x offset>,<y offset> [,<ink

mask>]

INK Setsink colour INK <ink>,<colourl>[,<colour2>]

LOCATE Moves current cursor position LOCATE |#<stream>,]<xcoord>,<y

cord>

MODE Sets screen mode MODE <expression>

MOVE Moves current plot position to an
absolute position.

MOVE <xcoord>,<ycoord>

MOVER Moves current plot position to a
relative position.

MOVE <xoffset>,<yoffset>

ORIGIN Relocates screen origin (0,0) ORIGIN <x>,<y>[,<left>,<right>,
<top>,<bottom>]

PAPER Sets background ink for characters PAPER | # <stream >,] <ink mask>

PEN Sets foreground ink for characters PEN |#<stream>,|<inkmask>

PLOT Plots a single point at an
absolute position

PLOT <xcoord>,<ycoord>[,<ink

mask>]

PLOTR Plots a single point at a relative
position to the current plot

position

PLOTR <x offset>,<y offset> [,ink

mask>|

SPEED INK Sets flashing inks period SPEEDINK <period 1 >,< period 2 >

SYMBOL Defines character symbol by
specifying bit matrix

SYMBOL <characterno>[,<row

data> |....

10

TAG Enables text at current plot
position

TAG[#<stream>]

TAGOFF Cancels TAG for given stream TAGOFF [#<stream>]

WINDOW Sets up text window WINDOW]# <stream>,] <left >,<right >
<top>,<bottom>

ZONE Sets print zone ZONE <integerexpression>

And finally,

Other Statements

Command Purpose Syntax

DEFFN Defines user functions DEFFN <name>(<parameter>[,
parameter]....) = <expression>

DEFINT}
DEFREAL}
DEFSTR }

Sets default types
(integer, real or string)

DEFINT < letter range >
DEFREAL <letterrange>
DEFSTR <letter range >

DEG Sets degrees mode DEG

DI Disable interrupts DI

DIM Declares arrays DIM <variable>(Subscript>[,
<subscript>],...)[,< variable>(
<subscript>[,subscript>]...]....

El Enable interrupts El

ERASE Clears arrays ERASE <variable>[,<variable>]...

KEY Sets function key KEY< token no.>,<stringexpression>

KEY DEF Redefines key KEYDEF <key no>,<repeat>
[, <normal> [/shifted > [,<control>]]]

RAD Sets radians mode RAD

RANDOMIZE Randomises current seed RANDOMIZE [<numericexpression>]

REM Remark REM <comment>

AMSTRAD BASIC FUNCTIONS
Briefly, a function can be described as a rule which relates one set of values
to another. The value in the first set is known as the argument and the value
in the second set is the result.

11

SIMPLE NUMERIC & MATHEMATICAL FUNCTIONS

These are specialised functions which have numerous applications in
mathematics, science and engineering. Also included is a random numbet
generator.

Function Purpose (Returns) Syntax

ABS Absolute value ABS (<numeric expression >)

ATN Arctangent ATN (<numericexpression>)

CINT Convert to integer CINT (< n umeric expression >)

COS Cosine COS (<numeric expression >)

CREAL Convert to real CREAL (<numericexpression>)

EXP Exponential value EXP(<numericexpression>)

FIX Truncate to integer FIX (<numeric expression:*)

INT Round down to integer lNT(<numeric expression:*)

LOG Natural logarithm value LOG (<numeric expression >)

LOGIO Common logarithm value LOGIO (<numeric expression>)

MAX Determines maximum value MAX (< numeric expression >[,< numeric
expression>]....)

MIN Determines minimum value MIN (< numeric expression >[,< numeric
expression >|.....)

PI Constant 3.141592653 PI

RND Random number generator RND |(<numericexpression>)|

ROUND Rounds value to a given number
of decimal places

ROUND (<numeric expression > ,| <
places>|)

SGN Signum value SGN (< numeric expression >)

SIN Sine SIN (<numeric expression:*)

SQR Square root SQR (< numeric expression >)

TAN Tangent TAN(<numeric expression^

UNT Converts unsigned value to integer UNT(<address>)

12

STRING FUNCTIONS

These are used for manipulating characters and text.

Function Purpose (Returns) Syntax

ASC ASCII Character code ASC (< string >)

BINS Converts a number into a string
of binary digits

BIN$(<unsigned integer> [, <field
width>])

CHR$ Character whose ASCII code is
specified

CHR$ (< numeric expression >)

HEX$ Converts a number into a string
of hexadecimal digits

HEX$(<unsigned integer>[,< field
width>])

INSTR Search for a substring INSTR ([< start pos>,] <searched
string>,<searchedforstring>)

LEFTS Extracts left hand part of a

string

LEFTS (<string> ,<length>)

LEN Obtains length of string LEN (<string>)

LOWERS Converts string to lowercase LOWERS (<string>)

MID$ Extracts substring MID$ (<string>,<start pos>,
<length>)

RIGHTS Extracts right hand part of a

string

RIGHTS (<string>,<length>)

SPACES String of spaces SPACES (< length >)

STRS Converts a number into a string
ofdigits

STRS (<numeric expression >)

STRINGS String of a specified character STRINGS (< length >, < character >)

UPPERS Converts string to uppercase UPPERS (<string>)

VAL Converts a stringof digits into
a numeric value

VAL(<string>)

13

I/O functions
These are used with I/O operations.

Function Purpose (Returns) Syntax

INKEY State of a key on the keyboard INKEY (< key no. >)

INKEYS Input key from keyboard INKEYS

INP Input from I/O port INP(<portno.>)

JOY State of joystick JOY (joystick no. >)

POS Stream position POS(#<stream>)

REMAIN Remain count on delay timer REMAIN(<timerno.>

SQ State of sound queue SQ(<channel>)

VPOS Vertical stream position VPOS(# <stream>)

SYSTEM FUNCTIONS
These are used to enquire into the state of the system.

Function Purpose (Returns) Syntax

EOF End of file test EOF

ERR Error number ERR

ERL Line number on which error occured ERL

FRE Amount of free memory
or 'Garbage collection' - frees
unused space

FRE(O)
FRE(" ")

HIMEM Address of top of memory avail
able to BASIC

HIMEM

PEEK Contents at a specified address
in the memory

PEEK(<address>)

TEST Enquires on ink at specified
position

TEST (< x coord >, <y coord >)

TESTR Enquires on ink at relative
position to current plot position

TESTR (<xoffset>,<y offset >

TIME Time (1/300 seconds) since
switch on

TIME

14

XPOS Horizontal coordinate of current XPOS
plot position

YPOS Vertical coordinate of current YPOS
plot position

For more detailed information about the available statements, the reader is
referred to the AMSTRAD user's manual.

Following on from this general information, the reader will now be taken on
a programming course which will explore some of the most advanced techniques
possible on the Amstrad. All the facilities demonstrated are illustrated with
numerous programming examples - they are there to be used, altered, added
to and subtracted from to meet your own requirements so please feel free
to change them as much as you like!

15

16

CHAPTER TWO
STRINGS & CHARACTER

MANIPULATION
A sequence of alpha numeric or graphic characters, that is characters which
need not be of a numeric nature, are usually referred to as a "string". The
Amstrad has a number of string facilities enabling us to use strings of characters
in addition to pure numbers to greatly increase the versatility of our programs.
We shall soon see that the Amstrad's string functions are fundamental to
programs requiring the manipulation of characters.

THE AMSTRAD CHARACTER SET
The Amstrad has a character set of 256 items which can be visualised as its
own unique alphabet. It includes alphabetic and numeric characters, Greek
letters, pixel graphic symbols, punctuation marks, mathematical symbols,
control characters, etc. The Amstrad character set is based upon the ASCII
character set which stands for American Standard Code of Information
Interchange, however, like so many other micro manufacturers, Amstrad have
altered it to suit their own requirements - so it's not really standard at all!
Each character is distinguished by its own character code which is a unique
number between 0 and 255. Characters and their codes, which are listed in
appendix A, can be converted between one and another by using the string
functions A S C and C H R $.

For example:
Each of the expressions
ASCCA") and ASC("AMSTRAD") examines the first character
and returns 65, the ASCII code of "A"

Similarly
CHR$(65)
returns the character " A "

Try confirming the ASCII codes of other characters on your Amstrad; of course
you will have to use the PRINT command to display the results, i.e. PRINT
ASC("464")
The following program displays all the Amstrad's character set:

10 FOR j = 0 TO 255
20 PRINT CHR$(j);
30 NEXT j

In addition to the expected characters (such as a, b, c....or 1, 2, 3...) there are
a number of characters which represent control functions and cause some
irregularities on the screen. These are standard ASCII characters and are located

17

in the first 32 character positions. The following amended program reduces
our displayed character set to one of printable characters only.

PROGRAM 1: THE AMSTRAD CHARACTER SET

10 FOR j = 32 to 255
20 PRINT CHR$(j);
30 NEXT j

STRING OPERATORS
Two strings may be compared with each other by using the = sign and will
return a result of true if the strings are identical, i.e. all the characters are
the same and the spaces are in the same position (including those at the end).
The most obvious use of this is the incorporation within an I F ... THEN
statement.

eg-
100 INPUT "CONT INUE";q$
110 IF q$ = "NO" OR q$ = "no" THEN STOP
120 'continuation of program (The ' acts like a rem)

Sometimes spaces lurking at the end of a string can play havoc with such
comparisons. Such spaces can be exposed by the LEN function which returns
the number of characters in the string.

e.g.PRINT LEN(aS)

Strings may also be compared with the '>' and '<’ operators; one string is
less than another if it precedes the other alphabetically, as in a telephone
directory. We shall later use this to write an alphabetical sorting program.

Finally, strings may be joined together (concentrated) by using the'+' operator

eg-
10 aS = "AMSTRAD "
20 b$ = "CPC 464"
30 c$ = aS + b$
40 PRINT c$

Note however that strings may not be subtracted, multiplied, divided or raised
to a power.

STRING MANIPULATION FUNCTIONS
The Amstrad has three string functions which are invaluable for manipulating
text and characters. These are LEFTS, RIGHTS and MIDS and are used for
extracting a sub-string or slice from another string. LEFT$(a$zn) and

18

RIGHT$(a$zn) extract n characters from the left hand end or right hand
end of string a $ respectively.

eg-
if a$ = "ABODE FGHIJ "
then LEFT (a $ z 3) would return "ABC"
and RIGHT (a $ z 4) would return " G H I J "

A more powerful statement is MIDS which can be used to obtain slices from
within the string, unlike LEFTS and RIGHTS which are limited to starting
from one end of the string.
MID$(a$znzm) will extract m characters starting at the n'th
character from the string. If the last argument m is omitted then all succeeding
characters from the n'th are obtained.

Amstrad BASIC has a further advantage over other versions in that MIDS
can also be used for assigning a string to a subsection of another. The slice
that MIDS specifies will be the destination of the string to be assigned.

e.g. MID$(a$znzm) = b$ will assign the first m characters of b$ into a$
starting at the nth character

Program 2 illustrates the use of slicing strings with the MIDS function. A
sentence of English can be entered and then re-displayed but with all the
four letter words blotted out.

A string a$ is entered so that the first and last characters are blank. A pointer
x is set up to move along each character in turn. The computer first checks
that character x is a space, then that the next four characters are all non spaces
and, finally, that the next character is another space. If all these conditions
are found to be true then a four letter word is present and so this subsection
must be replaced by four stars. If it is found that not all the conditions are
true then x is incremented by 1 and the next set of six characters is considered.

example

w H A T H A P P E N E D T 0 P E T E T H E C H 0 P ?

PROGRAM 2: MARY WHITEHOUSE

10 CLS
20 PRINT "THE SI LICON C ENS OR STRIKES AGAIN
30 PRINT : PRINT "Enter yo u r sentence"
40 PRINT : INPUT a $: a $ = II "+a$+" "
50 FOR x = 1 TO LEN(aS) -5
60 IF MID$(a$zxz 1)0" " TH EN 120

19

70 FOR y = 1 TO 4
80 IF MID$(aS,x+y,1) = " " THEN 120
90 NEXT y
100 IF MID$(a$,x+5,1)<>" " THEN 120
110 MID$(a$,x+1,4) = "****"
120 NEXT x
130 PRINT : PRINT a$
140 PRINT : INPUT "Continue";q$
150 IF LEFT$(q$,1) = "y" OR LEFT$(q$,1) = "Y"
THEN 10
160 END

MORE STRING FUNCTIONS
In some applications it is advisable to store numbers as strings of digit
characters. For example you may wish to locate the decimal point in a number;
this is much easier if the number is converted to a string and each character
is then examined. It is also recommended practice to input strings and convert
them into a numerical value. This avoids the problem of crashing a program
by inadvertently entering non numeric characters when numeric variables
requesting numeric data are specified in the INPUT statement. We will see
more on how to avoid such problems in chapter 3 when we study validation
of input data. Numbers are converted to and from character strings using STRS
and V A L.

STRS when applied to a numeric value, converts the number to a
character string in the same format that the number would normally be printed.

eg-
STRSC-12.01) would return "-12.01"
STRS (1 000000000) would return "1E + 09"

Similarly, VAL when applied to a string, returns the numerical value of the
digits (if any) in the string. Thus we can safely enter a number by:

INPUT v$: v$ — VAL(v$)

If any extra characters are entered they are ignored and the preceding number
is returned. If the first character is unrecognised as a number then a value
of 0 is returned.

It is also a common requirement to convert strings between upper and lower
case; this can be done readily by the string functions UPPERS and LOWERS.
When used, any non alphabetic characters present will remain unchanged.

e-g-
UPPERS("amstrad") would return "AMSTRAD"
LOW E RS (" C OMPUT E R") would return "computer"

Finally, two other functions SPACES and STRINGS return a string of spaces
or a specified character of a required length.

20

eg-
SPACE$(5) would return 5 space characters
STRING$(10,"*") would return "*****★***★"

WORD SEARCHES
Amstrad BASIC has the string function INSTR which enables us to search
for specific words or characters in a sentence; program 3 illustrates this. It
allows a sentence and a keyword to be entered and then searches to see if
the keyword is in the sentence; the sentence will then be re-displayed with
all occurrences of the keyword highlighted.

PROGRAM 3: WORD SEARCH

10 CLS : PEN 1
20 PRINT "WORD SEARCH"
30 PRINT : PRINT "Enter keyword"
40 INPUT k$
50 PRINT : PRINT "Enter sentence"
60 INPUT s$
70 CLS
80 p=1 : v=1
90 WHILE v<>0
100 v = INSTR(p,s$,k$)
110 FOR j=p TO LEN (s$)
120 IF v=0 OR j<v THEN PEN 1 ELSE PEN 2
130 PRINT MID$(s$,j ,1);
140 IF v<>0 AND j>v+LEN(k$)-2 THEN
p=v+LEN(k$):GOTO 160
150 NEXT j
160 WEND
170 PRINT : PRINT : INPUT "Hit ENTER to
conti nue";q$
180 IF q$ = "" THEN 10
190 END

One small point about this program is that PEN 1 and PEN 2 are used to
alternate the colour of text being printed - we shall meet them again in more
depth when we study colour in chapter 3.

The next example demonstrates the search technique applied to a series of
as many items as you require, each contained in DATA statements. In addition
to locating the keyword, program 4 also returns a word that is related to the
keyword. So that you can understand the program, here is a little background
information.

The following program has been devised for a hypothetical software house
which has a large number of staff, each with various skills and experience
of different machines and languages. The staff scheduler needed a means of
keeping a record of each employee's skills and a method of obtaining the
names of all those who were familiar with a specified subject item. So some
sort of database was required.

21

The names of each employee are stored in DATA statements followed by their
computer skills. To distinguish between a name and a skill, the name is preceded
by the symbol The program does a word search on each item; if a word
is preceded by then the employee's name is temporarily stored while
his/her skills are examined. If a required skill is found, then the employee's
name can be displayed. The program then continues to search through the
remaining items until the termination symbol'%' is located.

This is probably one of the simplest forms of database programs in existence,
but it can be very useful and is only limited by the memory size of the computer.
It has the advantage that the staff scheduler can easily add to his records as
the skills of his staff expand by amending the appropriate DATA statements.
You can change the DATA statements to set up a database with something
more relevant to your own needs, for example, a book or record library.

PROGRAM 4: DATABASE

10 CLS
20 PRINT : PRINT "SOFTWARE SKILLS LTD"
30 RESTORE : n$ = ""
40 PRINT : PRINT "Enter skill required"
50 INPUT s$: s$ = UPPER(s$)
60 PRINT
70 READ w$
80 IF w$ = "%" THEN 120
90 IF LEFT$(w$,1) = "#" THEN n$ = MID$(w$,2)
100 IF w$ = s$ THEN PRINT n$,s$
110 GOTO 70
120 PRINT : INPUT "Hit ENTER to continue";q$
130 IF q$ = "" THEN 10
140 END

1000 'DATA ITEMS
1010 DATA #BR0WN N, ADA, FORTRAN, VAX
1020 DATA flCLOUGH J, BASIC, COBOL, DEC, TAL
1030 DATA flFIELDS D, CORAL 66, COBOL, ARGUS,
TANDEM
1040 DATA flMACALISTER C, BASIC, COBOL, PDP, ARMY
SYSTEMS
1050 DATA flSINCLAIR M, ALGOL, COBOL, BURROUGHS
1060 DATA flSTEVENS G, CAD/CAM, UNIX, PROLOG,
MICROCOBOL
1070 DATA tfTHOMPSON P, PASCAL, POLICE SYSTEMS
1080 DATA #YATES D, BASIC, Z80, 8088, CP/M,
MICROS
1090 DATA 7.

The final example of this chapter illustrates how we can manipulate text. A
word is chosen at random from a list contained in DATA statements and then
the letters are jumbled up to produce an anagram. The anagram is then displayed
for a player to find the original word. The list of words can be expanded
on if required by adding them in additional DATA statements.

22

PROGRAM 5: MANARAG!

10 CLS
20 PRINT "ANAGRAM"
30 PRINT : PRINT "Find the scrambled word"
40 a$ = "" : g$ = "" : RESTORE
50 n = 80 : 'number of words
60 FOR j = 1 TO RND*n+1
70 READ w$
80 NEXT j
90 x = LEN(w$) : ww$ = w$
100 FOR j = 1 TO x
110 n = INT(1+RND*x)
120 x$ = MID$(w$,n,1) : IF x$ = THEN 110
130 MID$(w$,n,1) = "*"
140 a$ = a$ + x$
150 NEXT j
160 IF a$ = ww$ THEN 60
170 PRINT : PRINT,aS
180 PRINT : INPUT "Enter guess";g$: g$ =
UPPER$(g$)
190 IF g$ = "" THEN 180
200 IF LEFT(g$,1) = "?" THEN PRINT : PRINT
"Answer",ww$: GOTO 230
210 IF gOww THEN PRINT "try again" : GOTO 180
220 PRINT : PRINT "WELL DONE"
230 PRINT : INPUT "Hit ENTER to continue";q$
240 IF q$ = "" THEN 10
250 END

1000 1 word List
1010 DATA HYDROGEN, MONOPOLY, LOOPHOLE, CHIMNEY,
PACK, CHORAL, CHRONIC, DUET, ELLIPSE
1020 DATA FASCISM, MONEY, GRUEL, MALARIA,
RATIONAL, RATIO, SCOLD, CRY, COAX, LIBEL, QUIZ
1030 DATA EGOTISM, SAINT, BAPTIZE, ABACUS, AEON,
SKULL, TRIPOD, DELAY, FLINT, KNUCKLE
1040 DATA BERET, SLIT, MEMORY, SERVICE, OMEGA,
SOCIABLE, NEGLECT, HOBBY, RACQUET, SLASH
1050 DATA RACKET, WARRANT, COLUMN, CAVALIER,
GROSS, RECEIVE, TRAITOR, SCAB, SWINE, WOE
1060 DATA WHIRL, ACIDIC, POWER, AROUSE, INNINGS,
JEWEL, GRUDGE, CARNIVAL, GIGGLE, BIKINI
1070 DATA JUGGLE, FOXY, KHAKI, ACQUIT, JUBILEE,
ENIGMA, LOCH, POULTRY, ORACLE, POTTERY
1080 DATA ORTHODOX, INTERNAL, SQUEEZE, LACQUER,
IRONY, FLEXIBLE, HORRIFIC, COMPUTE, JUT, FLUID
1 090etc

If you get stuck whilst using this program, enter and the answer will be
revealed. One point about program 5 should be mentioned - RND is a pseudo

23

random number generator which returns a number 0 and 1. In chapter 4 we
shall see what arguments can be passed to R N D and see how the numbers
are generated.

24

CHAPTER THREE
SIMPLE INPUT/OUTPUT

TECHNIQUES
It probably comes as no great surprise to the reader that a computer, including
the Amstrad, is useless unless it receives information that it can understand.
The transfer of such information is done by means of input devices as discussed
in chapter one. Similarly it is pointless in letting a computer process this
information if we cannot access the results from the machine; this information
may be transferred through output devices, also mentioned in chapter one.
Devices that are capable of both input and output are called Input/Output
(I/O) devices. In this chapter we shall discuss I/O techniques on the Amstrad
and look at methods for improving the relationship between man and machine,
sometimes called "the interface".

It is often the case that a programmer will spend much of his/her efforts
improving the processing efficiency of a program whereas time spent on the
ease of input for the user, eliminating the entry of invalid data, keeping the
user fully aware of a program's state and the presentation of results would
be far more beneficial. Information may be output directly to the user by three
distinct methods; Shapes, Colours and Sounds, each of which is important
in its own way.

Shapes can take the form of pictures or symbols, which can be recognised
immediately or text, which although has to be deciphered should not pose
too much of a problem. Whilst to the user text is less direct than symbols,
it can often say much more in an efficient way. A further extension to shapes
is animation in which the screen is updated rapidly to produce a dynamic
display. Such displays are sensed quickly by the user; for example, a flashing
error message has more effect than a static one. Dynamic displays can provide
realistic images and are popular in arcade type games.

Colour is less powerful than shape but can be used to aid the identification
of undistinguishable shapes. For example, a colour display with the top half
in blue and the bottom half in green would resemble sky and grass far better
than a monochromatic display can. Colour can also be used to highlight certain
areas of the screen; for example, an error message displayed in a vivid red
would soon be brought to the attention of the user. Finally, a colour display
is nicer to look at if the colours are chosen carefully, than a two tone display.

Whilst the user must watch the screen to receive information in shape and
colour form, sound output can reach the user even when he/she is not paying
direct attention. Thus sound can be useful for attracting the attention of the
user, if for example an operation is complete or an error has occurred. Such
notes should be high and pleasant for correct operations and long low dirges

25

for the occurrence of errors. Sound can also add additional reality to a display.
In a space invader type game, zapping and explosion sounds add realism as
well as signalling to the player the results of his operations.

One major cause of user dissatisfaction is the long delays that occur in programs
with long detailed numerical calculations. If programs are as efficient as possible
then lengthy inactive screens with the computer showing no sign of life, should
be reduced by showing screen messages such as "Program initiated", "Stage
one complete" etc. This will not only reassure the user but also keep him/her
informed of the program's position. At the end of a long process it is probably
advisable to attract the user's attention with a bleep type sound.

The user may enter data directly into the computer by using either the keyboard
or a games controller. The keyboard is by far the most flexible and powerful
means of allowing entry of text, numerical values or single key responses.
The Amstrad has over 75 keys, but each has an alternative meaning when
pressed simultaneously with the [SHIFT] or [CONTROL] keys. Unfortunately
it is common for a programmer who uses a keyboard frequently to forget that
the users of their programs might not feel equally at ease. In this chapter
we shall see how to make the entry of data via a keyboard as simple as possible.
Whenever a user has to enter data, clear prompts should be given and any
invalid data should be rejected with an error message explaining the problem
and the opportunity given for the user to re-enter the data. Since keys have
predefined labels it makes sense to try and use these labels as much as possible.
For example, the best key to use for ending a program might be [CONTROL
X] (eXit) or [CONTROL Q] (Quit) whereas to use something like [CONTROL
4] would be, to me, meaningless.
An alternative to the keyboard, is a game controller such as a joystick or paddle;
these have severe limitations but can be preferable for some applications. A
joystick has a set of five switches. Each of the first four are set when a knob
is pushed left, right, up or down; diagonal movements cause two switches
to be set. The fifth switch is set when a separate push button is pressed.
A paddle is similar to the volume control on a radio and enters a single value,
within a limited range, into the computer. However, the real advantage of
a game controller is that the interface to the machine becomes second nature;
a few minutes of moving the joystick to the left or right in order to move
something on the screen left or right and one will start to do it without giving
it any thought.

We shall now proceed and study some I/O techniques but remember the points
we have covered in this introduction, notably:

1) ease and validation of input,
2) keeping the user fully aware, and
3) presentation of results.

SCREEN INPUT
The most obvious and commonly used method for entering data is with the
INPUT statement which we have already used several times. There are a couple
of points worth emphasising. It is possible to input several variables with
one input statement; they are simply listed together separated by commas,

26

and when executed, the data is entered separated by commas. If the number
of entered items does not match the requirement a request is made for the
data to be re-entered. If you are entering a string that requires a comma to
be entered, then it will be interpreted as the input separator between different
items. This can be overcome by entering the string surrounded by quotes
and then the string between the quotes will be accepted as a single input
item.

As we have seen already, it is possible to include a prompt message within
the input statement which is printed before the request for the entry of data.
Following this prompt by using a semicolon produces a question mark after
the prompt whilst a colon suppresses the question mark. Following the INPUT
statement, but preceding the prompt, with a semicolon will cause the line
feed character at the end of the entry of data to be suppressed i.e. printing
will continue at the point of the last entered item.

A whole line of data, regardless of the comma separators, can be read by using
LINE INPUT in which just a single string variable is specified

e.g. 100 LINE INPUT"prompt";a$

We shall see later the use of these two statements with other devices by
specifying a stream number.

NON-STOP INPUT

An excellent feature of the Amstrad is its ability to sense which key is being
pressed during the execution of a program. The function INKEYS is used
but without any argument. If control comes across I N K E Y $ when a program
is being executed, INKEY$ returns the character read from the keyboard;
the pressing of [SHIFT] or [CTRL] along with another key is valid. If no key
is pressed, then I N K E Y $ returns the empty string thus we have a method
of creating a temporary halt, until any key is pressed.

eg-
100 PRINT "Press any key to continue"
110 IF INKEYS = "" THEN 110
120 'continuation of program

The input of information using INKEY$ has the advantage over INPUT in
that it does not have to be followed by [ENTER] but remember, unlike INPUT,
it will not wait for you to press a key. To input information using INKEYS,
a loop is set up so that if no key is being pressed the empty string is recognised
and the program does not proceed. An important thing to notice is that I N K E Y $
could possibly change between lines and so it is advisable that as soon as
INKEYS is read it is assigned to a string variable and, from then onwards,
that variable is used instead.

eg-
100 q$ = INKEYS

27

110 IF q$ = "" THEN 100
120 'continuation of program

The following example uses concatenation with the INKEY$ function to force
the user to enter a date string of the correct format and is a good alternative
to a simple INPUT statement. The complete string can then be checked for
validity.

100 d$ = ""
110 PRINT "En ter DD/MM/YY
120 FOR j = 1 TO 8
130 IF j = 3 OR j = 6 THEN c$ = "/"
140 c$ = INKE Y$
150 IF c$ = " " TH EN 140
160 PRINT c$;
170 d$ = d$ + c$
180 NEXT j
190 PRINT
200 'va L i da t i on a nd continuation

GOTO 160

A slight extension to INKEY$ is the function INKEY which interrogates the
keyboard and returns a value which indicates the state of a specified key,
analysing it whether it is pressed and, if so, along with the [SHIFT] or [CTRL]
key. The values returned are listed in figure 3.1. The argument to INKEY
is an integer value which identifies a key uniquely; a full list of key codes
is given in appendix B.

This function is useful for detecting responses such as Y/N (yes/no) where
the state of the SHIFT key is unimportant. From figure 3.1 it can be seen
that the returned value is not -1 if the key is pressed.

eg-
100 PRINT "Do you wish to continue (Y/N)?"
110 IF INKEY (43)0-1 THEN GOTO 140
120 IF INKEY (46)<>-1 THEN STOP
130 GOTO 110
140 'continuation

Figure 3.1 INKEY VALUES

KEYS VALUE RETURNED

KEY SHIFT CTRL

UP 7 7 -1
DOWN UP UP 0
DOWN DOWN UP 32
DOWN UP DOWN 128
DOWN DOWN DOWN 160

28

REDEFINITION OF KEYS

There are often many situations when a string, perhaps in a command line,
has to be continually re-entered. On the Amstrad we have the facility to program
keys, so that when pressed they can return a sequence of characters; such
keys are then referred to as function keys. There are 32 characters, ASCII values
128-159, which can each be expanded up to a maximum of 32 characters,
however, the total number of expanded characters is 120.

Let us, for example, suppose we wanted to program a single key so that when
it was pressed it would return

RUN "TAXPOINT" followed by the ['ENTER'] character.

First we must decide what key we want to use. For the time being, we are
restricted to using keys that return an ASCII value in the range 128-159. It
so happens that the keys on the numeric pad return values between 128 and
140, and that [CTRL] pressed simultaneously with the [ENTER] on the numeric
pad will return 140. So to program this key the following command is used

KEY 140,"RUN" + CHR$(34) + "TAXPOINT" + CHR$(34)
+ CHR$(13)

Now try it.

By using KEY DEF we can amend the ASCII values returned by a certain
key; the most obvious use of this is to amend keys so that they return ASCII
values in the range that enables them to be programmed into function keys.
Another use would be to disable the [ESC] (Break) key. The following parameters
are specified in the given order:

keynumber
repeat switch
normal
shifted

, see appendix B
, set to 1 to enable repeat, 0 to disable repeat
, ASCII character value when key pressed alone
, ASCII character value when key pressed with [SHIFT]
(not [CTRL])

control , ASCII character value when key pressed with [CTRL]

When no new value is specified, the previous value remains. For example
to program the key [CTRL E] to return EDIT:

KEY DEF 58, 0, 101, 69, 128
KEY 128 , "EDIT"

Having just mentioned the ability to enable/disable key repeat, it is worth
mentioning that the auto repeat periods may be altered using SPEED KEY
specifying the start delay, repeat period in 0.02 second units.

e.g.SPEEDKEY 10, 10

29

VALIDITY OF DATA

One method of preventing programs from crashing is to check that the data
being entered is of the correct form. If the data is not correct then control
should jump back to the same INPUT statement. The program should only
continue if data of the correct form is entered. It is a good idea to display
a message to indicate to the user what the problem with the input data was.

i.e.
IN PUT data
I F data not of correct form THEN GOTO
continuation of program

Unlike many micros, the Amstrad checks that the entered data is of the correct
type, i.e. string or numeric, to match the specified variables in the INPUT
statement and so instead of crashing, requests that the data is re-entered.

We saw earlier when we studied INKEY$ that we can often force the user
to enter data of the correct format, in our case a date string, but this doesn't
guarantee that the entered values are valid, i.e. a month of 13 could have
been given. It is, however, a simple task to then check that the month lies
between 1 and 12 and then by referring to a list of days in each month that
the date is valid - of course leap years must be taken into account. The numeric
values are extracted from the date string using the VAL and MID$ string
functions which we met in chapter 2.

Other methods for checking the validity of data include inspecting the lengths
of strings using LEN, checking values are in a given range using the '>' and
'<' operators, and checking certain characters are present by inspecting the
ASCII character codes.

Another problem that can occur is when the user enters valid but incorrect
input data. If this creates results that are difficult to rectify it is a good idea
to re-display the entered data and ask the user to confirm it by pressing Y
or N before further actions are undertaken.

Carelessness in checking input data can result in unnecessary time wasting
which, in turn, can cause frustration for the user, so always try to make your
programs as robust as possible.

SCREEN OUTPUT
You will be well aware that output is directed to the screen by using the
command PRINT, we will see later that by specifying a stream number it is
possible to output data to other devices. The statement is followed by the
print item which can be a variable, arithmetic expression, strings, print control
functions, control characters and if required a format mask. It is possible to
include several print items within one PRINT statement by separating them
with either a semicolon or comma.

30

Semicolon ;
A semicolon separating two print items causes the second item to be displayed
immediately after the preceding item.

Comma,
The television screen may be visualised as consisting of a sequence of print
zones each, at switch on, of 13 characters. A comma separating two print items
causes the second item to be displayed at the first position in the next print
zone.

123456789 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 32 33 34 35 36 37 38 39

1 1

------------------- Zone 1---------------------► ------------------- Zone 2---------------------»..•------------------- Zone 3---------------------►

Figure 3.2

It is possible to alter the default print zone of 13 to your own requirements
by the ZONE command

e.g. ZONE 10

PRINT USING

The Amstrad has a PRINT USING command that enables us to print the
results in any format we want. The USING part specifies a format template
consisting of the characters "# + -.*$ f , ! \ Each character in
the template is inspected one by one and controls the image printed. Characters
other than those format characters above, or format characters out of context
or preceded by a '__' will also be printed. A full list of definitions is given
in figure 3.3 (see next page) - note that exponential numbers are explained
in chapter 4.

Any field overflow will be indicated by a'%' symbol.

examples
PRINT USING " it##" ; a
PRINT USING"Cost +$##,##.##";c
PRINTUSING"\ \";a$

Fig. 3.3 PRINT USING format field specifiers - see next page

31

SPECIFIER POSSIBLE
NO. OF
DIGITS

NO.
OF
CHARS

DEFINITION

NUMERIC # 1 1 Digit position
(max 20 0 1 Decimal point
chars 1 1 Digit position, puts comma every 3
excluding digits to left of decimal point
signs and $$ 1 2 Floating dollar sign which precedes
exponent- leading digit
ial ** 2 2 Fills with leading asterisks
digits) **$ 2 $ Floating dollar sign and leading

asterisks
+ 0 1 Print either'+'or'-'. May appear

at start or end of format template.

t t T t

0 1 Print'-' if negative. May only
appear at end of format template.

0 4 Exponential format

STRING ! First character only
\<nspaces>\ First n characters
& Whole string

Figure 3.3 PRINT USING format field specifiers.

CONTROL CHARACTERS

In command mode it is possible to move the cursor about the screen using
the cursor control keys. Amstrad BASIC enables such control functions to be
programmed into PRINT statements, enabling cursor control during program
mode. When programmed into a string, each control character is represented
by a unique graphic symbol and is displayed in the program listing - another
alternative is to access the character via the C H R $ function.

<— Move cursor one space to the left C H R $ (8) or [CONTROL H]

—> Move cursor one space to the right C H R $ (9) or [CONTROL I]

J, Move cursor one space down C H R $ (10) or [CONTROL J]

| Move cursor one space up CHR$ (11) or[CONTROLK|

The next example produces five 'V's in a V formation

10 CLS
20 PRINT

By experimenting you will see that there are a number of other keys which

32

can be programmed into PRINT statements. Three useful ones to include in
your repertoire are:

CHR$ (7) [CONTROL G] - sound bleeper
CHR$ (24) [CONTROL X] - exchange pen and paper inks
CHR$ (30) [CONTROL f] - re-position cursor to top left hand

corner of screen

In some cases it may be necessary to print the symbol associated with one
of these control characters rather than use its control action. This can be done
by first printing C H R $ (1)

e.g. PRINT CHR$(1)+CHR$(8)

ANIMATED EFFECTS

With the aid of control characters and FOR. . . - NEXT loops we can display
a sequence of characters to produce simple animation. The idea is to construct
a string which includes the characters to be displayed along with some cursor
control characters to move the characters from their previous print position
and some blank characters to overwrite the previous display. By controlling
the program execution with a FOR. ...NEXT loop we can print the string
several times in succession to produce some interesting effects.

CHR$(60)

10 1 h o r i z o n t a I m o t i on
20 CLS
30 PRINT : PR INT : PRINT
40 FOR j = 1 TO 35
50 PRINT CHR$ (32) + CHR$(6 2) + CHR$(8);
60 FOR k = 1 TO 20 : NEXT k
70 NEXT j
80 FOR j = 1 TO 35
90 PRINT CHR$ (32) + CHR$(8) + CHR$(8) +
+ C HR$(8) z
100 FOR k = 1 TO 20 : NEX T k
110 NEXT j
120 GOTO 40

We could use a similar technique to achieve vertical movement. The next
example combines both horizontal and vertical movement to produce a diagonal
motion.

10 'diagonal motion
20 CLS
30 FOR j = 1 TO 23
40 PRINT CHR$(32) + CHR$(10) + CHR$(214) +
CHR$(11) + CHR$(11 + CHR$(32) + CHR$(10);
50 PRINT CHR$(214) + CHR$(8) + CHR$(8) + CHR$(8)
+ CHR$(10);
60 NEXT j
70 GOTO 20

33

CONTROLLED PRINTING

The standard method for printing information on the screen is either along
a line or down a column. This is perfectly acceptable for small quantities of
data, but when printing has reached the 25th row, the screen will scroll upwards.
Unfortunately, this means that the top of the display will vanish and you
won't have time to read the results!

One way of avoiding this is to count the output lines on a clear screen and
then freeze the display when the screen becomes full. You can carry on by
pressing a specified key. In addition, titles could be displayed at the top of
each fresh page.

A second problem that often occurs is when the value of a numeric variable
increases (compared to a previous value) and its number of digits changes
and all the following data is shifted over. This can happen partway down
a screen which may slightly upset legibility or a layout, particularly in a table
of results.

With Amstrad BASIC we can easily program our way out of this problem
since there are two functions TAB and SPC that are used in conjunction with
the PRINT command to direct output into specific screen columns.

The SPC is used to output a fixed number of spaces to the screen, or as we
shall see later, to other peripherals whilst the TAB function is used to move
the cursor a fixed number of column positions relative to the start of the current
print line, starting on a new line if the column has already been passed. A
semicolon is assumed to terminate both the SPC and TAB functions at all
times.

These two functions are illustrated in program 6, CALENDAR.

This displays the calendar for any particular month and year. The original
calendar was devised by Julius Caesar, but he fixed the year to be too long
by eleven minutes. This was corrected with the introduction of the Gregorian
calendar in Italy in 1582, although it was not introduced into England until
1752. The program will not give correct answers before this date.

The program uses a formula in a subroutine at line 1000 to calculate the day
of the week on which a particular month commences. To use the program
enter the month as a number from 1 to 12, followed by the year using all
four digits.

PROGRAM 6: CALENDAR

10 CLS
20 PRINT "CALENDAR"
30 PRINT "Enter month MM/YYYY:
40 d$ = ""
50 FOR j = 1 TO 7
60 IF j = 3 THEN c$ = "/" : GOTO 80
70 c$ = INKEY$: IF c$ = "" THEN 70

34

80 PRINT c$;
90 d$ = d$ + c$
100 NEXT j
110 m = V A L (L E F T $ (d $, 2)) : y = V A L (R I G H T $ (d $, 4))
120 IF m<1 OR m>12 THEN 10
130 CLS
140 PRINT " CALENDAR"
150 PRINT : PRINT "Month";m;SPC(5);"Year " ; y
160 PRINT : PRINT "SUN MON TUE WED THU FRI SAT"
170 GOSUB 1000
180 d = dd : m = m+1
190 IF m>12 THEN m = 1 : y = y+1
200 GOSUB 1000
210 IF dd<d THEN dd = dd+7
220 n = 28+dd-d
230 p = 4*d+1
240 FOR x - 1 to n
250 PRINT TAB(p);x;
260 p = p+4 : IF p> = 26 THEN p = 1
270 NEXT x
280 PRINT : PRINT : INPUT "Hit ENTER to
conti nue",q$
290 IF q$ = "" THEN 10
300 END
1000 mm = m-2 : yy = y
1010 IF mm>0 THEN 1030
1020 mm = mm+12 : yy = yy-1
1030 c - INT(y/100) : yy = yy-100*c
1040 dd = 1 + I NT(2.6*mm-0.19)+yy + INT(yy/
4) + IN T (c / 4) - 2 * c
1050 dd = dd MOD 7
1060 RETURN

Amstrad BASIC has yet another way of repositioning the current print position;
this uses the command LOCATE where the new x and y coordinates are
specified.

e.g. LOCATE 10,1

We shall meet this command on numerous occasions throughout the book.

SCREEN MODES

Up to now the screen has consisted of 25 rows of 40 character positions which,
on the Amstrad, are set automatically at switch on. Each individual character
position is, in fact, built up of an 8 x 8 matrix of dots or pixels which may
or may not be illuminated. Thus we can describe the display as being made
up of 320 x 200 pixels. Later we shall see how, by controlling the individual
pixels, we can produce a high resolution display as opposed to a character
display. When the screen is in this state it is said to be in default mode or

35

MODE 1. There are two other modes, called logically, MODE 0 and MODE
2 which take the attributes given in 3.4.

Figure 3.4: Screen Modes

MODEO MODE1 MODE 2

CHARACTERS 25 lines of
20 characters

25 lines of
40 characters

25 lines of
80 characters

PIXELS 200 high by
160 wide

200 high by
320 wide

200 high by
640 wide

Each of the screen modes may be selected by the command MODE, i.e. MODE
0, etc.

COLOUR

At last we have reached the exciting topic of colour, a subject whose importance
has already been mentioned in the introduction to this chapter. The Amstrad
is capable of displaying information in 27 colours although the number that
can be displayed simultaneously is restricted, depending on the screen mode,
to values shown in figure 3.5.

MODEO MODE1 MODE 2

Max number of colours 16 4 2

Figure 3.5: Colour maximums

Each of the 27 colours available is identified uniquely by a colour code number
which are listed in appendix C. Each character position has two associated
colours. The background colour is chosen by the command PAPER and the
colour of the character itself is chosen by PEN. The number associated with
both these commands is not the colour code, instead an ink number is specified
which has a colour code associated with it, which in turn is set up by the
INK command.

the two inks set to the same colour!

eg
PEN 1 means set the foreground of future printed to the colour

PAPER 2
assigned to I N K 1
means set the background of future printed characters to the
colour assigned to I N K 2

while
INK 1,0 means assign colourO to ink number 1

Thus it should
time and if you

be evident that we have two ink colours in use at any one
want to see what you are printing it makes sense not to have

36

The colour of the screen border is controlled independently by the BORDER
command and this time the actual colour code is specified e.g. BORDER 0
means set the border to the colourO.

Try the following example to flick through the colours by pressing any key
on the keyboard (except [ESC])

10 PEN 2 : PA PER 1
20 FOR j = 0 TO 26
30 CLS
40 BORDER j
50 INK 1 , j INK 2 z < j + 1 2) MOD 26
60 LOCATE 15, 10 p RI NT II COLOUR";j
70 IF INKE Y$ — II II T HE N 70
80 NEXT j

MENU SELECTION

It is common practice for programmers to start with an initial idea and then
continue to add extra refinements until the logic behind the program resembles
a 'spaghetti like' structure with numerous jump statements sending control
in all directions; a better approach is to use 'structured programming'. This
is a methodology whereby a program is broken down into blocks or modules
each of which has a single specific purpose. Structured programming also tries
to avoid the GOTO statement in an effort to make understanding the logic
in a program simple. Also, breaking down a program in this way means that
each function can be tested in isolation so that any bugs present can be easily
located.

An ideal- method of producing a program that undertakes several functions
is to write each in a separate block of code and then allow the user to select
the required section by means of a menu displaying the available options.

Menu

1) Word processing
2) Stock Control
3) Accounts

9) Exit

/ I
W.P. S.C. Ac. Exit

Figure 3.6: Menu Selection

Of course there is no reason why selecting a certain option could not lead
to another menu displaying a further list of related options so that the user
has to make an additional selection or return back to the main menu.

37

There are numerous ways in which a menu selection program could be written.
The most common is the 'Chinese Take Away' method where the user selects
a letter or number from a displayed list. Consider the example given below;
in this case the user has four options to choose from by pressing 1, 2, 3 or
4. On selection, the program checks that the required key is contained in a
string, say K$ and then, if present, undertakes the required option as a
subroutine, or if absent returns to re-display the main menu. By constructing
a program in this fashion, it is easy to add extra functions to the program
with only a minimal number of changes to the existing code.

Figure 3.7

A slight variation on this method is to move the cursor up and down using
the cursor control keys until it is level with the option required. Then by
pressing a specified key the required option is undertaken. This is done by
keeping a counter which is decremented or incremented as the cursor is moved;
on selection the counter will correspond to the option required.

Program 7: CURSOR SELECTION

10 CLS
20 LOCATE 10 ,6 : PRI NT " *** MA IN MENU ***"
30 RESTORE : READ n
40 FOR j = 1 TO n
50 READ a$
60 LOCATE 10 ,7+j : P RINT j; a $
70 NEXT j
80 P = 1
90 IF p>n TH EN p = 1
100 IF p<1 T HEN p = n
110 PP = P
120 LOCATE 9 ,7 + p : P RINT ■ ■ j. ■>

130 FOR j = 1 TO 200 : N EXT j
140 IF INKEY (18) <>- 1 TH EN 190
150 IF INKEY (0) < >-1 THE N p = P-1
160 IF INKEY (2) < >-1 THE N p = P+1
170 IF p<>pp THEN LO CATE 9,7 + p P = PRINT " "

38

GOTO 90
180 GOTO 140
190 ON p GOSUB 1000,2000,3000,4000,5000
200 GOTO 10
210 DATA 5
220 DATA "Exi t"
230 DATA "Display record"
240 DATA "Delete record"
250 DATA "Add record"
260 DATA "Help"
1000 END
2000 RETURN
3000 RETURN
4000 RETURN
5000 RETURN

The program has been written so that it is easy for you to tailor it to your
own requirements. To do so amend the data statements to contain your own
options, line 210 should contain the number of options and then add your
subroutines, (ensure that it is called in line 190). The cursor control keys, up
and down, will move the cursor and the option is selected by pressing [ENTER].

SCREEN REQUESTERS

In many programs it is common to find that the user is prompted line by
line for information to be entered. For example,

Enter Input Device ? $TERM
Enter Output Device ? $LP
Enter Filename ? OUTPAY
Enter Access Mode ? READ ONLY
Enter Exclusion Mode ? SHARED

The entry of such data would be greatly improved if all the screen prompts
could be displayed simultaneously and if the user could correct previously
entered data. Such a routine that could handle this input is often referred
to as a 'Screen Requester'.

We shall now see an example screen requester which handles the entry of
a name, address and telephone number for use in such applications as a mailing
list. It has been written in a form that can easily be amended to handle your
own requirements. The list of prompts along with the maximum length of
the input field is held in D A T A statements at the end of the program.

Input data is entered on the screen at the position of the cursor. The cursor
can be moved about the screen using the cursor control keys. When all the
data has been entered the screen can be accepted by pressing the [COPY]
key.

Two counters are used, LP and CP. LP is altered by the cursor up and cursor
down keys; it points to the line being entered. Similarly, CP is altered by

39

the cursor left and cursor right keys; it points to the character in the line
being entered. An array F$ is used to record the entered data. As alphabetic
and numeric keys are pressed, they are displayed on the screen, added to
the array F$ in the appropriate position and finally the cursor position is
updated.

Name JOE PUBLIC
Street 99, THE HIGH STREET
Town NEWTOWN
County SURREY
Post Code GU11 1AA
Phone 34567

Figure 3.8: Example Screen

Program 8: SCREEN REQUESTER

10 PAPER 0 : CLS
20 READ aS
30 LOCATE 14,4 : PRINT aS
40 READ n
50 DIM f$(n),x(n)
60 cp - 1 : Ip = 1 : v = 0
70 FOR j = 1 TO n
80 READ a$,x(j)
90 LOCATE 2,5 + j : PRINT aS
100 f$(j) = SPACE$(x(j))
110 NEXT j
120 I F Lp>n THEN c p = 1 : Lp = 1
130 I F cp<1 THEN c p = 1
140 I F c p> x(Ip) THEN cp = 1 : IF v<>2 THEN lp
lp+1
1 50 I F lp>n THEN cp = 1 : lp = 1
160 I F lp<1 THEN c p = 1 : I p = n
170 FOR j = 1 TO n
180 PAPER 3
190 LOCATE 14,5+j : PRINT f$(j)
200 NEXT j
210 PAPER 0
220 LOCATE cp+13,lp+5 : PRINT CHR$(143)
230 v = 0
240 c$ = INKEYS
250 IF c$ = "" THEN 240
260 c = ASC(c$)

c p+1

270 I F c = 224 THEN 400
280 I F c = 13 THEN cp - 1 : lp = lp+1 : v = 2
290 I F c = 244 OR c = 240 THEN IP = lp-1 : v = 2
300 I F c = 241 OR c = 245 THEN lp = lp+1 : v = 2
310 I F c = 242 OR c = 246 THEN cp = c p- 1 : v = 1
320 I F c = 247 OR c = 243 THEN cp = c p+ 1 : v = 1
330 I F V = 0 THEN MID$(f$(lp), cp, 1) = c$: cp =

40

340 GOTO 120
400 CLS
410 FOR j = 1 TO n
420 PRINT f$(j)
430 NEXT j
440 END
1000 DATA "A D DRE S S BOOK"
1010 DATA 6
1020 DATA "N a me" / 20
1030 DATA "S t ree t ",25
1040 DATA "T 0 wn" z 1 5
1050 DATA "C 0 unt y ",12
1060 DATA " P 0 s t c ode",10
1070 DATA "P h one It ,15

FLASHING COLOURS

To make either the text, background or border flash we can specify a secondary
colour in either the INKorBORDER statements.

eg-
INK 1,10,20 any colour associated to ink 1 will alternate between colour
10 and colour 20
BORDER 10,20 similarly the border will alternate between colour 10 and
colour 20

The frequency of the alternating colours can be set by the SPEED INK
command, the first value specifies the period of the primary colour and the
second value specifies the period of the secondary colour - all timed in periods
of 0.02 seconds.

The use of colour adds a powerful facility to our programming skills and there
will be numerous examples of its use in the rest of this book.

STREAMS
When we 'talk' to the Amstrad's I/O devices we do so by means of streams.
The ideas behind streams are quite common in computing and are not a difficult
concept to grasp. On the Amstrad there are ten input and ten output streams
and each is associated with one of the I/O devices as given in figure 3.9.
To communicate to a specific device we must specify the stream number after
the I/O command. Up to now we have omitted the stream number from our
program as the Amstrad's operating system defaults to stream 0.

41

Stream Number Device

0
1
2
3
4
5
6
7

window

0
1
2
3
4
5
6
7

8 Printer
9 Cassette Unit

Figure 3.9

So, for example, to output a listing to the printer we would use LI ST, #8 .
We shall meet I/O to the cassette unit and cassette files in chapter 8. What
is interesting from figure 3.9 is that up to eight streams are linked to the
screen and we shall see how this enables us to divide up the screen into
separate areas, each of which may have different screen attributes or be used
for distinct purposes. Such areas of screen are referred to as windows.

WINDOWS
To set up a screen window we must define its position on the screen and
then use the WINDOW command which specifies a stream number followed
by the left, right, top and bottom screen coordinates of the window. For example
consider the screen window in figure 3.10.

1 11 23 40

_______________________________7
Figure 3.10

42

To define this window to stream 1 we would use
WINDOW #1, 11, 23, 10, 17
and from then onwards any I/O commands specifying stream 1 would be via
the new window. When using the inner window we must remember that
new screen coordinates apply with 1,1 as usual being the top left hand corner.

Consider the following example which can easily be customised and included
in your own programs. The idea is that if an error occurs the subroutine at
line 1000 is called up which displays a flashing error message on the bottom
line. A sound bleep is also given and the user must acknowledge the error
by hitting any key before continuing. Note that because window 0 overlaps
the whole of the error text line, clearing window 0 automatically clears the
error message. In chapter 6 we shall see how to cause error traps that
automatically call an error subroutine.

10 e$ = "user message"
20 WINDOW #1,1,40,25,25
30 INK 3,3,26
40 PAPER #1,3 : PEN #1,0
50 CLS
60 PRINT "Press 1 e
70 IF INKEYS <>"e" THEN 70
80 GOSUB 1000
90 GOTO 50
1000 LOCATE #1,1,1
1010 PRINT #1,"Error : ";e$: PRINT CHRSC7)
1020 IF INKEYS = "" THEN 1020
1030 RETURN

This now concludes the chapter on simple I/O and hopefully has demonstrated
the objectives set out in the introduction. The functions we have met so far,
such as colour, screen modes, controlled printing, streams, windows, etc, will
be encountered again and again as we lead into more advanced I/O including
graphics and sound synthesis.

43

44

CHAPTER FOUR
COMPUTERS, NUMBERS

AND MATHEMATICS
While everybody realises that a computer can handle very complicated
arithmetic expressions, it is a common misconception for people to think that
this is a simple task - in fact it is probably one of the hardest!! There are
two main reasons for this; the first being that a computer is expected to be
able to cope with a vast range of numbers and secondly that all the individual
locations that make up a computer's memory are restricted to whole numbers
within a specific range; on the Amstrad this is 0 to 255 inclusive. It is, however,
comforting to know that when a high level language is used, a programmer
need not have any knowledge of the complicated methods used to evaluate
arithmetic expressions and mathematical functions as this is undertaken
automatically by a section of software contained in the operating system. When
programming in machine code it is still possible to call up these mathematical
routines in the operating system but much more care is required with passing
the operands and operators in a form that the routines comprehend, checking
that no mathematical overflow occurs, accessing the results from the correct
locations in memory and interpreting the results by converting them from
the form returned to the required form.

Mathematics is a huge subject and its use within computing is very common.
Computers controlling finance, navigation, defence, computer aided design
& manufacture, office automation, stock control, arcade games, etc all require
numerical evaluations whether it is for the complex task of tracking and flight
planning aircraft which involves such factors as speed, weather conditions,
the spherical shape of the world, or just simply keeping the score in a computer
game. There are many levels of mathematics and there is no need to worry
if you do not understand some of the more complex mathematical functions
which are given on the Amstrad. While such mathematics as addition,
multiplication, etc should be second nature, do not be alarmed if the latter
section in this chapter seems double dutch; some of it is very specific to the
requirements of engineers, scientists and technicians and so should not put
you off in any way. Even if the reading does get difficult it is worth trying
out the examples as they illustrate what your Amstrad is capable of. Mathematics
can be fun and using a computer can be an excellent way of making the subject
more enjoyable. Any reader who has an interest in such topics is referred
to the following book:

"MATHS + COMPUTERS = FUN" by G T Childs
(published by Sigma Technical Press)

This book is useful for both children and many adults, since it shows that
mathematics need not be a hard subject. It deals with many topics ranging
from junior mathematics to those at an 'A' level standard and contains numerous
aids, entertaining puzzles and over 50 BASIC programs.

45

NUMBERS ON THE AMSTRAD
Those readers who have little experience in mathematics have probably never
given a great deal of thought to the many notations in which numbers may
be written. For example, the first three different numbers we ever learnt about
were whole numbers, fractions and decimals. In a similar fashion, there are
three particular notations that we shall consider, all of which are commonly
used in computing. You will recognise the first two notations although the
names given to them might be new.

INTEGER Integers, commonly called whole numbers, are numbers which
are a sequence of digits and which do not involve a decimal
point or any fractional component. They may be either positive
or negative, e.g. -156, -22, -1,0,3,69,999

REAL Real numbers are a sequence of decimal digits with a single
decimal point either at the end, the beginning or between
two digits. The digits to the left of the decimal point are
weighted in positive powers of 10 and form the integer
component of the number. Likewise the digits to the right
of the decimal point are weighted in negative powers of 10
and form the fractional component of the number. Real
numbers may be positive or negative, e.g. -2.3, 0.4, 31.0234.
.125, -0.275

To illustrate this idea:

Negative powers of 10

Positive powers of 10

617.105

10~3 = 5 X 0.001 = 0.005
10~2 = 0 X 0.01 = 0.00
10"1 = 1 X 0.1 = 0.1
10° = 7 X 1 = 7.0
101 = 1 X 10 = 10.0
102 = 6 X 100 = 600.0

EXPONENTIAL Exponential numbers are written in a notation which is
suitable for either very large or very small numbers. They
are written using a real number followed by the symbol 'E'
and an integer number. 'E' means "times 10 to the power
of". Thus yEx means 'y times 10 to the power of x'.

e-g-
1.234E-2 = 1.234 x 10“2 = 0.01234
1.234E0 =1.234x10° = 1.234
1.234E2 = 1.234 x 102 = 123.4

46

The effect of the integer following the 'E' is to indicate how
many places the decimal point has to be shifted. A positive
value means a shift to the right and a negative value means
a shift to the left.

e.g. 1E10 means 1 followed by 10 zeros,
i.e. 10.000,000,000

Using this scientific notation, the largest number (the furthest
away from zero) which the Amstrad is capable of storing is
approximately 1.7 x 1038 and the smallest number (the number
nearest to zero) is approximately 2.9 x 10-39. Numbers are
stored to an accuracy of between 9 and 10 digits.

In chapter 5 we shall meet the binary and hexadecimal numbering systems
which are forms of expressing numbers which bear more resemblance to the
way that numbers are stored and operated on in the internal workings of
a computer; until then, the above notations will suffice.

Variables

All readers should be fully aware that any items of user data stored in the
Amstrad's memory are given symbolic names, referred to as variables. Variables
may be used to locate integer, real or string data, and distinguished by a
type marker i.e. %,! or $ respectively.

eg-
a% integer
a! real
a$ string

In fact the same name may be used for all three since they constitute separate
variables. By omitting the type marker, a default type is assumed, at switch
on it is set to real for all variables. It is possible to re-define the default by
the commands DEFINT, DEFREAL and DEFSTR; these specify a range of
letters for which all variables, whose names lie within the range, take the
corresponding default type.

e.g. DEFINT I- N variables commencing with I, J, K, L, M, N
refer to integer variables if the type marker
is omitted.

So let us look at the Amstrad's functions.

SIMPLE NUMERIC FUNCTIONS
INT
The INT function returns the integer component of the argument by rounding
down.

47

e.g. PRINT INT(-5.6),INT(0),INT(5.6)
will cause -6,0 and 5 to be displayed

PRINT (X + 0.5) will round X to the nearest integer

Program 9 demonstrates the use of the INT function by finding the highest
common factor of two positive integers, i.e. it finds the largest number that
can be divided into both numbers exactly. It uses a well known algorithm
which can be easily understood by following the program on paper. Draw
three columns labelled A, B and C and record the value of each variable in
the corresponding column as it changes.

Program 9: HIGHEST COMMON FACTOR

10 CLS
20 PRINT "HIGHEST COMMON FACTOR"
30 PRINT
40 INPUT "Enter first number";a
50 INPUT "Enter second number";b
60 IF a<1 OR b<1 THEN 40
70 c = b : b = a-b*INT(a/b) : a = c
80 IF b<>0 THEN 70
90 PRINT : PRINT "H.C.F. is";c
100 IF INKEYS = "" THEN GOTO 100
110 GOTO 10

CINT
The CINT function returns the integer component of the argument by rounding
to the nearest integer in the range -32768 to 32767
e.g. PRINT CINT(n)

CREAL
The CREAL function returns the argument to a real number
e.g. PRINT CREAL(n)

FIX
The FIX function returns the integer component of the argument by truncating
the fractional component
e.g.PRINT FIX(n)

ROUND
The ROUND function returns the argument rounded to a specified number
of decimal digits or powers of ten
e.g. PRINT ROUND (3419882,-4) woulddisplay 342000

PRINT ROUND (3.1415926,4) would display 3.1 4 1 6

MIN
The MIN function when applied to a list of argument returns the minimum
value
e.g. PRINTMIN (10,5,15,25,10) would display 5

MAX
The MAX function is similar to MIN but returns the maximum value
e.g. PRINT MAX (-1 ,-2 ,-1 ,-4) would display - 1

48

RND
The RND function is a RaNDom number generator which can be extremely
useful for games requiring an element of luck. It has random displays which
produce random data, etc and its use is usually only limited by your imagination.
The number generator is not truly random since it works by returning values
sequentially from a very long list of numbers. Since the list is so long a random
number generator of sorts can be achieved by starting at an unknown position
which is more than adequate for the requirements of most users.

e.g. LET a = RND will assign a value to a that is greater than or equal to
0 and less than 1

RND is illustrated in program 10 which simulates a dice being rolled 100 times;
this is achieved by obtaining a random integer between 1 and 6 inclusive
by using:

INK RND*6 + 1)

Since the randomness of RND is in question, the program continues to evaluate
two mathematical values, average and variance. Averages are very common
and you are probably well aware that an average is the sum of the value of
item? divided by the number of items; when throwing a "truly" random dice,
an expected average would be 3.5. Variances are less common to non
mathematicians and indicate the extent to which values tend to be spread
about the average value, or simply, it is a measure of the "width" of distribution.
So that we are not side-tracked from our topic of simple numeric functions,
the mathematical formulae for evaluating averages and variances will just be
stated and so may be meaningless to a few readers. However it may help
to know that 2 means "sum of" and so

n

2 Xj would mean the sum of xlz x2, x3.... uptoxn.
i=i

n

S X,
Average: x = —-----

n

Variance: <T = 2 (x;-x)2

n
- X? 2 -2■ Xj -x (re-arrangingmathematically)

To some readers it may not be apparent how variances work; an explanation
has been omitted as it involves mathematics which are not relevant to the
Amstrad user. It is, however, common practice in commercial programming
for an algorithm or method to be devised by a different person to the one
that actually codes the program; it is sufficient for the programmer just to
know that the algorithm works. As you can see, you may now be in the position
of many a commercial programmer; do not let it put you off!!

49

Returning to random numbers, there is a command RANDOMIZE which sets
the position in the random number sequence to a specific position. The
parameter to this command is a numerical value often referred to as the seed.
Resetting the seed to a previous value guarantees that the same sequence of
numbers is achieved. To really randomize the generator we should use
RANDOMIZE TIME which sets the seed to a value based on the Amstrad's
internal clock and as a result it would be difficult to repeat. Incidentally, if
the command is executed with the seed omitted then the user will be prompted
for a seed value. And so to our program:

Program 10: DICE DISTRIBUTION

10 RANDOMIZE TIME
20 CLS
30 PRINT "DICE DISTRIBUTION" : PRINT
40 s = 0 : ss = 0
50 FOR x = 1 TO 100
60 d = INT(RND*6+1)
70 s = s+d : ss = ss+d*d
80 PRINT d;
90 NEXT x
100 a = s/100
110 PRINT : PRINT : PRINT "AVERAGE";a
120 v = ss/100-a*a
130 PRINT : PRINT "VARIANCE";v
140 PRINT : PRINT "Press any key"
150 IF INKEY$ = "" THEN 150
160 GOTO 20

Of course you could change the input of the average and variance routines
to something which is more appropriate for you; I'm sure your bank manager
would be impressed if you quoted both the average and variance of your
bank balance if you had to persuade him to let you off your bank charges!

There is a further extension to the function RND which is obtained by passing
an argument which gives you the following results:
If positive - returns random number (as if argument was absent).
If zero - returns previous random number again.
If negative - resets position in sequence and returns the first

number from the new position.

The next program demonstrates how setting the RANDOMIZE seed to the
same value always produces the same sequence of generated numbers. Program
11 is used to code and decode secret messages and works on a similar method
to the German 'Enigma' coding device used in World War Two. This machine
was dependent on an entered 'codeword' and would then code messages by
replacing the characters in the message by other characters. To make things
more difficult, when a character appeared several times in a message it would
never be replaced by the same character each time.

After the program has been executed and a codeword has been entered press
'c' to code a message

50

'd' to decode a message
'r' to reset the codeword
'n' to enter a new codeword
's' to return to the command mode.

The program uses the random number generator to choose the replacement
characters. The basic idea lies in the fact that when we execute RANDOMIZE
n we always commence at the same position in the sequence list. The seed
used is dependent on the character codes of the characters in the codeword.
Pressing 'r' will reset the sequence of random numbers to its initial position
for the entered codeword. When sending the message it is important that the
receiver knows the codeword so that he can set the random number generator
to the correct starting position (on his Amstrad of course!!) Remember to keep
resetting the codeword when necessary and make sure you inform your ally
of the position of all spaces (if there is a space at the start of your input string
then you should enter the message within quotes).

Program 11: ENIGMA

10 b$ = SPACE$(1) +
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
20 b$ = b$ + b$
30 CLS : PRINT "ENIGMA CODER"
40 PRINT : INPUT "Enter Codeword";c$:
c$=UPPER$(c$)
50 IF LEN(c$)<2 THEN 40
60 RANDOMIZE 10*ASC(LEFT$ (c$, 1)) +
ASC(RIGHT$(c$,1))
70 CLS : PRINT "ENIGMA CODER"
80 PRINT "Enter:"
90 PRINT "s)ST0P"
"d)DECODE"
100 PRINT "r)RESET
CODEWORD"
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

PRINT
PRINT
PRINT "c)CODE" : PRINT

CODEWORD" PRINT "n)NEW

PRINT
I F
I F
I F
I F
I F

INPUT a$
THEN
THEN
THEN
THEN

"S"
"R"
"N"
"C"

: a $ = U P P E R $ (a $)
CLS:END
60
30
250

a$
a $
a$
a $
a$O"D" THEN PRINT CHR$(7) : GOTO 70

PRINT : PRINT "Enter message to decode"
PRINT : INPUT m$: m$=UPPER$(m$) : PRINT
GOSUB 360
p = INT(RND*26+1)
PRINT MID$(b$,v+p,1);
m$ = MID$(m$,2)
IF m$ = "" THEN 330
GOTO 190
PRINT : PRINT "Enter message to code"
PRINT : INPUT m$: m$=UPPER$(m$) : PRINT
GOSUB 360
p = INT(RND*26+1)

II

51

290 PRINT MID$(b$,37+v-p,1);
300 m$ = MID$(m$,2)
310 IF m$ = "" THEN 330
320 GOTO 270
330 PRINT : PRINT : PRINT "Press any key to
continue"
340 IF INKEY$ = "" THEN 340
350 GOTO 70
360 v = ASC(m$)
370 IF v<48 OR v>90 THEN v=47
380 IF v>64 AND v<91 THEN v = v-7
390 v = v-46
400 RETURN

MATHEMATICAL FUNCTIONS
We shall now take a look at a number of functions available on the Amstrad
which are commonly used in mathematical and scientific applications; however,
as previously warned, some readers may find them far too specific for their
own needs.

EXP
EXP(x) is equal to a constant 'e' raised to the power of x where e is defined
as 2.718281828. To explain how such a curious number was chosen, consider
what happens to the expression (1 + '//n)n as n gets very large (mathematicians
would say "as n tends to infinity" and write it as n^>o°). By running the program
below we see that our expression tends to this number e, as defined above,
as n tends to infinity.

i.e. written mathematically Limit (1 + '/n)n = e
n^oo

It turns out that a more general result is obtained from the expression (1 + x/n)n.
This is found to tend to ex as n tends to infinity.

i.e. Limit (1 + x/n)n = ex
n—>o°

So, we can now write a simple program to calculate e:

10 PRINT "exponential e"
20 FOR x = 0 TO 5
30 n = 10 T x
40 e = (1 + 1/n)t n
50 PRINT n;TAB(10);e
60 NEXT x

Note that we cannot fully demonstrate n tending to infinity for if we do, large
inaccuracies occur due to us 'stretching' the restrictions contained in the
Amstrad's O.S. numerical routines.

52

A graph of ex plotted against x would look like this, such a curve is called
an 'exponential curve'.

LOG
The LOG function produces the "natural logarithm" of a number. The logarithm
of a number is the power needed to produce that number by raising the base
to the power. Natural logarithms use a base of e.

e.g. LOG (25) = 3.21887583becausee321887583 = 25

From natural logarithms it is possible to find the logarithm in any base using
the following relationship.

Logs(x) = LOG(x)
LOG(s)

LOGIO
If in the above equation the value of s was 10, then the resultant logarithms
are called "common logarithms". LOGIO will produce the common logarithm
of a number directly.

SQR
The SQR function returns the square root of a number, i.e. if the argument
is positive the function returns the number that when multiplied by itself
is equal to the argument. Care must be taken since the square root of a negative
number will result in an error.

SQR(x) = j1 Vxif x is greater than or equal to 0
| error if x is less than 0

ABS
The ABS function returns the absolute value of a number, this has the same
magnitude as the argument but with a positive sign.

ABS(x)=][x if x is greater than or equal to 0
1 -x if x is less thanO

53

SGN
The SGN functions returns the signum of a number, this is +1 if the argument
is positive, -1 if the argument is negative or 0 if the argument is zero.

SGN(x) =
+1 if x is greater than 0
Oifx is equal toO
-1 ifx is less than 0

So let's now look at a few examples where such functions are utilised.

Quadratic Equations

This program illustrates the use of the square root function, SQR. A quadratic
equation is one of the form:

ax2 + bx + c = 0

where a, b and c are known constants and x is required to be found so that
the above equation is true. The following formula for the solutions to the
equation can be proved correct mathematically but we will, once again, take
the role of the commercial programmer and assume that the given method
is correct. So, the solutions are

x = -b±V(bU*a*c)

2*a

If b2^l*a*c is greater than zero then the expression within the square root
can be evaluated and two solutions of x can be found. These are known as
real solutions.

If b2—4*a*c is equal to zero than the square root part does not exist and so
there is only one solution of x. This is also a real solution.

If b2-4*a*c is less than zero then the square root of the expression does not
exist. Most readers would be content to say that no solutions exist - but do
they? Well mathematicians, clever chaps, get around such problems by using
a number notation called complex numbers. Complex numbers are written
x + iy where x is the real component, y is the imaginary component and i
represents V(-l). So returning to our problem, the solutions to our equation
are complex with a real part equal to -b/(2*a) and the imaginary part equal
to V(4*a*c-b2)/(2*a) both of which are expressions which can be evaluated.
Note that complex solutions cannot be evaluated directly with Amstrad BASIC
and care must be taken not to use SQR on a negative number as an error
will occur and stop execution. Fortunately for most of us, complex numbers
are not used in everyday life.

Program 12: QUADRATIC EQUATIONS

10 CLS : PRINT "QUADRATIC EQUATIONS" : PRINT
20 INPUT "Enter first coefficienta

54

30 INPUT "Enter second coefficientb
40 INPUT "Enter third coefficientc
50 PRINT
60 d = b*b-4*a*c
70 IF d<0 THEN 120
80 PRINT "Real roots"
90 PRINT "1. x = (-b+SQR(d))/(2*a)
100 PRINT "2. x = "; (-b-SQR(d))/(2*a)
110 GOTO 150
120
130
140
150
160

PRINT "Complex roots"
PRINT "real part = ";-b/(2*a)
PRINT "Imag part = SQR(-d)/(2*a)
PRINT : PRINT "Press any key to continue"
IF INKEY$ = "" THEN 160

170 GOTO 10

PRIME NUMBERS

A prime number is an integer that is only divisible exactly by 1 and itself.
Program 13 prints out the first 100 prime numbers by assuming that the first
two prime numbers are 2 and 3 and that all other prime numbers are odd.

The program tests to see if the odd number x is prime by dividing it by
all the prime numbers less than Vx that have already been found; if, in each
case, the remainder is non-zero the number x is also prime. There is one point
here that needs further explanation - why only divide by prime numbers
previously obtained that are less than Vx? Non-prime numbers are not used
since these would have at least two smaller prime numbers as factors. Numbers
greater than Vx are also not used since, if they were factors, then a factor
less than Vx must also exist.

As each prime number is obtained, it is stored in the array P(100) so that
it can be used in testing future numbers. Because the Amstrad's arithmetic
is only accurate to 9^/2 significant figures, a number is assumed to be a factor
if it has a remainder of less than IE -10.

Program 13: PRIME NUMBERS

10 CLS : PRINT "PRIME NUMBERS"
20 DIM p(100)
30 p(1)=2 : p(2)=3 : x=5 : n=3
40 PRINT "Prime number";1;TAB(18); "is" ; p(1)
50 PRINT "Prime number";2;TAB(18); "is" ; p(2)
60 FOR j = 2 TO n
70 IF x/p(j) - INT(x/p(j)) <1E-10 THEN 130
80 IF SQR(x) < p(j) THEN 100
90 NEXT j
100 p(n) = x
110 PRINT "Prime number";n;TAB(18); "is" ; p(n)
120 n = n+1
130 x = x+2
140 IF n<101 THEN 60

55

TRIGONOMETRIC FUNCTIONS
The Amstrad has four trigonometric functions available, SIN (sine), COS
(cosine), TAN (tangent) and A T N (arctangent).

Trigonometric functions are all about angles and this is where we encounter
our first problem. The majority of people measure angles in degrees; where
a circle is divided into 360 degrees, a right angle is 90 degrees and a straight
line is 180 degrees. Mathematicians, however, prefer to measure angles with
a larger unit called the radian where one radian is the angle subtended by
an arc of unit length on a circle of unit radius.

Figure 4.2

By definition there are two Pi radians in a circle where Pi is approximately
3.14159265358 and can be written as ir. Thus 1 radian is 36%r degrees which
is about 57.3 degrees.

To convert radians into degrees, we multiply by 18%

e.g.’/3 radians = ’/3*18% = 60 degrees

To convert degrees into radians multiply by ’/iso

e.g. 45 degrees = 45 * ’/iso = % radians.

We can access w directly from the Amstrad by the function PI. We also have
the option of selecting either radians or degrees with trigonometric operations
by using the commands DEG and RAD; note that radians are used by default.
Whilst the definitions of the trigonometric functions are relatively simple, an
explanation of their use is not. A list of applications using them would be
endless and so it is sufficient to say that they are invaluable; their importance
to science and technology is probably equivalent to that of oxygen to life form.

We shall now look at the four functions. Consider the following right angled
triangle with an angle of X radians and the sides labelled opposite, adjacent
and hypotenuse.

Opposite
(O)

Adjacent (A)Figure 4.3

56

Sine, cosine and tangent are defined as the ratio of lengths of certain sides
to other sides.

SIN
The sine of angle X is defined as the ratio of the length of the opposite side
to the length of the hypotenuse in any right angled triangle with an angle
of X radians.

SIN(X) = O
H

A graph of SIN(X) plotted against X would look like :

COS
The cosine of angle X is defined as the ratio of the length of the adjacent
side to the length of the hypotenuse in any right angled triangle with an angle
of X radians.

COS(X) = ^

A graph of COS(X) plotted against X would look like:

57

TAN
The tangent of angle X is defined as the ratio of the length of the opposite
side to the length of the adjacent side in any right angled triangle with an
angle of X radians.

TAN(X) =

A graph of TAN(X) plotted against X would look like:

The remaining trigonometric function is

ATN
The arctangent of y turns the angle whose tangent is y.

The arcsine and arccosine values, which are inverse sine and cosine functions
respectively, can be found using the following formulae

Arcsine (y) = ATN
y

SQR(l-y2)

Arccosine (y) = ATN
y

SQR(l-y2)

7T

Note that in both cases y is always in the range -1 < = y < = +1

Whilst it is unfortunate that the Amstrad lacks the functions to obtain arcsine
and arccosine values, the following program shows that their evaluation using
ARCTAN is relatively simple.

Program 14 calculates the angles of triangles where the lengths of all three
sides are known. Consider the triangle on the following page where lengths
A, B and C are known.

58

The following relationship is known to exist (remember the commercial
programmer!)

C2 = A2 + B2-2* A*B*Cosine (c)

(A2 + B2-C2)
Rearranging the equation mathematically gives: c = arccos

(2* A*B)

Similar relationships exist for the remaining two angles. Program 14 allows
the lengths of all three sides to be entered and then calculates the angles in
degrees. Note that the sum of all three angles in a triangle is always 180°,
thus we have a little test to illustrate the Amstrad's accuracy.

Program 14: TRIANGLE

10 CLS : PRINT " TRIANGLE" : PRINT
20 DEF FN t(x,y, z) = (y*y+z*z-x*x)/(2*y*
30 DEF FN a (x) = 90- ATN(x/SQR(1 -x*x))
40 INPUT "Enter side one";a
50 INPUT "Enter side two";b
60 INPUT "Enter side three"; c
70 PRINT : PRINT
80 DEG
90 x = FN t(a,b,c)
100 I F ABS(x)>1 THEN PRINT "Invalid! !" ; GOTO
110 a a = FN a(x)
120 X = FN t(b,a,c)
130 I F ABS(x)>1 THEN PRINT "Invalid! !" ; GOTO

230

230

230

140 bb = FN a(x)
150 x = FN t (c , a , b)
160 IF ABS(x)>1 THEN PRINT "Inva lid!!" ; GOTO
170 c c = FN a(x)
180 PRINT "Angle oppos i te side one" ; ROUND
(a a , 2)
190 PRINT "Ang le oppos i t e side two" ; ROUND
(bb,2)
200 PRINT "Ang I e oppos i te side three" ; ROUND
(c c , 2)
210 PRINT
220 PRINT "Sum of angles iis" ; aa + bb + cc

59

230 PRINT
240 PRINT "Press any key to continue"
250 IF INKEYS = "" THEN 250
260 GOTO 10

RECURSIVE PROGRAMMING
We shall now take a brief look at a software technique called recursion which
can often be useful especially for evaluating mathematical functions which
involve a repetitive processing loop. In BASIC, a recursive subroutine is one
that calls itself and can often result in neat and elegant solutions.

For example, consider the mathematical expression factorial n (or n!) which
expands to:

n! = n * (n-1) * (n-2) *...... *3 * 2 * 1

where n is a positive integer (i.e. 6! =6*5*4*3*2*1 = 720)

which is equivalent to

n! =
n*(n-l)! n>l

n = 11

Thus a subroutine to evaluate n! could be written as n multiplied by the result
of calling itself to evaluate (n-1)! Care has to be taken to stop at 1! i.e. to
stop the recursive calls.

At this stage it is necessary to see how the operating system keeps control
of nested subroutine calls by using what is called the GOSUB stack. We shall
meet stacks in more detail in chapter 7; until then it is sufficient to know
that when a subroutine is called the line number of the calling GOSUB statement
is stored until a RETURN statement is encountered; control then returns to
the line following the most recent stored line number which is now removed
from the stack. If more RETURNS are executed than calling GOSUB statements
then the stack becomes empty and an error occurs.

Program 15: RECURSION

10 CLS
20 INPUT II Enter va lue";x
30 GOSUB 1 000
40 PRINT PRINT "Factorial value";f
50 END
1000 f = 1
1010 IF x>1 THEN f = f*x : x = x-1 : GOSUB 1010
1020 RETURN

60

SIMULATION
Many processes or systems for example, chemical reactions, population models,
queues, traffic flow, battles, electronic circuits, etc may be examined on a
computer by simulating the items that are liable to change. What is required
is for the programmer to build a mathematical model which finds relationships
between the variables and takes into account the effect of time and external
events. Simulations on computers have many advantages. Some processes can
take a very long time to complete, a simulation can present the result in seconds.
It is also a lot less expensive for a trainee pilot to crash a flight simulator
than the real thing!

Mathematical models relying on simulations can involve extremely complicated
models which are far beyond the scope of this book. However, let us examine
a simple model that simulates a simple population model.

In the thirteenth century, an Italian mathematician Leonardo Fibonacci studied
the vast explosion in the rabbit population. He considered how the population
grew, starting with just one pair of rabbits and assumed that it took a pair
of newborn rabbits one month before they became fertile and could reproduce.
From then on they would breed an additional pair each month. It is assumed
that no deaths or migration occurred in the timespan under consideration.

Analysing the problem it can be seen that if the population of month n is
Pn then

Pn - Pn-l +

in the preceding
month and so still

i.e. the new
population

alive

Pn-2

+ one more pair from
' each of those fertile
i.e. those alive 2
months ago

It is also known that Pi = 1 and P2 = 1

The values of Pn are found from program 16, the sequence of numbers obtained
are known as the Fibonacci sequence.

Program 16: RABBITS

10 CLS : PRINT "FIBONACCI SEQUENCE"
20 p1 = 1 : p2 = 1 : m = 2
30 PRINT "Month 1 :";p1;" Rabbit"
40 PRINT "Month 2 :";p2;" Rabbi t"

61

50 p = p1 + p2 : m = m + 1
60 PRINT "Month";m; p; "Rabbi ts"
70 p1 = p2 : p2 = p
80 IF m<36 THEN 50

62

CHAPTER FIVE
THE AMSTRAD MEMORY

MAP
Up to now we have regarded the Amstrad's memory as just a hardware
component whose function it is to store all the data held in the ROM and
RAM system described in chapter one. The best way of describing the internal
structure of the computer's memory is to visualise a long sequence of storage
boxes or cells each identified by a unique numerical label commencing with
zero and incremented by one each time, just like lockers at a railway station.
The label of each cell in the memory is called an address. In each box or cell,
a number may be stored, which in the case of the Amstrad and most other
personal computers, is restricted to the range of 0 to 255. In addition to numbers,
it is possible to store characters and program instructions represented by
numerical values; these values are known as character codes and instruction
codes. When referring to a size of memory, the abbreviation K is frequently
chosen to represent 1024 (or 2 raised to the power 10) cells of memory.

BINARY NUMBERS
We shall now see the simple form in which the Amstrad stores its data. The
nature of electronics restricts components to being either switched on or off
and this means that the computer can only recognise two states; these are
usually written for convenience as '0' or '1' . Just as words and sentences
are built up by using more than one letter and numbers consist of several
digits, so computer expressions are represented by sequences of '0's and 'l's.
Such patterns of '0's and 'l's are called 'binary numbers'.

When numbers are written in the normal decimal or base 10 representation
the digit furthest to the right gives the number of units, the digit to its left
gives the number of tens (the base of our number system), the next digit
to the left gives the number of hundreds (the base squared), and so on. Binary
numbers use a base of 2; the digit furthest to the right gives the number
of units, the digit to its left gives the number of twos (the base), the next
digit gives the number of fours (the base squared), the following digit gives
the number of eights (the base cubed) and so on.

Conventionally, the number 345 in the decimal numbering system that we
use means:

3 4 5 decimal
I I----------------- 5xl0° = 5xl =5
I------------------------4x10'= 4x10 =40

--------------------------------3xl02 = 3x100 = 300

345 decimal

63

Likewise a binary number such as 11001 is equivalent to:

11 °J 1 binary
I I----------------1x2° = lxl '= 1
1------------------- 0x2’= 0x2 = 0

----------------------- 0x22 = 0x4 = 0
--1x23 = 1x8 = 8

----------------------------- 1 x 24 = 1 x 16 = 16

25 decimal

When counting, a decimal '1' is carried over into the next column, wherever
a '1' is reached i.e. after 0 comes 1, after 1 comes 10, after 1 comes 11, after
11 comes 100, and so on. This sequence can be illustrated by the following
routine which uses the string function BINS which converts a numerical
argument in the range -32768 to 65535 to a string containing its equivalent
binary form.

10 CLS
20 FOR x = 0 TO 255
30 PRINT "Decima I ";x;TAB(13);"Binary ”;BIN$(x)
40 NEXT x

It can be seen that the binary numbering system works on the same principle
as decimal but since more digits are required to represent a number in binary
than in decimal, it would be more cumbersome for us humans to use. If we
want to use binary numbers on the Amstrad we must precede the digits with
&X so as to distinguish them from decimal.

It is now possible to explain why a number stored at a particular address
in the Amstrad's memory has to be restricted to the range 0 to 255. This is
because a storage cell contains exactly eight binary digits; thus the range is
from 0000 0000 (0 decimal) to 1111 1111 (255 decimal). When referring to binary
numbers in computing, an individual digit is called a bit and a group of eight
bits at an address is called a byte. The bits are often numbered 0 to 7 with
bit 0 being the least significant bit and bit 7 the most significant bit.

bit
i.e.

7 6 5 4 3 2 1 0
r

0
L

1
0

l

1
0

1
1 1 0

1
0

1
1

128
Figure 5.1

64 32 16 8 4 2 1

value

Numbers other than integers between 0 and 255 are stored by combining several
bytes.

Since long strings of '0's and 'l's are difficult to memorize and awkward to
work with, some simpler notations have been developed. One such system
uses a numbering system with a base of sixteen and is known as the
heaxadecimal system. This requires 16 digits but instead of designing six new

64

symbols, the first letters of the alphabet are used. The sixteen digits are
0,l,2,3,4,5,6,7,8,9,A,B,C,D,E,F. It is important in this context not to interpret
the new symbols as letters but as digits capable of the mathematical operations
of addition, subtraction etc. As an example consider the hexadecimal number
2FA:

2 F A (hex)
I---------- Ax 16° = Ax 1 = 10 (decimal) x 1 =10

--------------------Fxl6’ = Fxl6---= 15 (decimal) x 16 =240
---------------------------- 2 x 162 = 2 x 256 = 2 (decimal) x 256 = 512

762 (decimal)

H E X $ returns its argument in hexadecimal form

eg-
10 CLS
20 FOR x = 0 TO 255
30 PRINT "Decima I";x;TAB(13);"Hex.";HEX$(x)

With a byte containing eight bits, its value may be expressed with just two
hexadecimal digits; thus with the possible exception of decimal numbers the
hexadecimal numbering system is often used in computing in preference to
any other numbering system

eg-

A

7 6 5 4 3 2 1 0

1
1

0 1
1

0

1

0 0 1

------ V---------

/\ ___ /

The Amstrad interprets numbers as hexadecimal if preceded by & e.g. & A B

THE MEMORY MAP
The Amstrad's memory is subdivided into several distinct sections each of
which has a specific purpose. The visual structure of the memory is given
in a diagram called a memory map, as shown in Figure 5.2 - see next page.

65

RAM ROM
Address (hex)

FFFF

Address(hex)
FFFF

C000

B100

ACOO

HIMEM

00400

SCREEN MEMORY Upper ROMs
(bank switched)

STACK, SYSTEM DATE
& JUMP BLOCKS

FOREGROUND DATA

BACKGROUND DATA

MEMORY POOL
(users program,
variables)

BACKGROUND DATA

FOREGROUND DATA

Lower ROM

C000

4000

FIRMWARE AREA

7

0000 0000

Figure 5.2: AMSTRAD MEMORY LAYOUT

The memory map is complicated because although there are only 64K
addressable locations available, the Amstrad system contains 64K of RAM and
32K of ROM, in fact there is provision for ROM expansion of up to 252*16K
(nearly 4 Mega) bytes.

The standard 32K of ROM is split into two groups of 16K; the top 16K, addresses
C000-FFF contains the BASIC interpreter ROM, and the bottom 16K, addresses
0000-3FFF contains the Amstrad's firmware which is software to control the
hardware and routines which may be called by a user's machine code program.
It can be seen from figure 5.1 that the BASIC interpreter overlays a section
of RAM which contains the contents of the screen memory (i.e. the data
displayed). An electronic component called a gate array switches in either ROM
or RAM depending on the access requirement of the firmware. The display
controller and C.P.U. are timed so that they never need to access these addresses
simultaneously.

As stated previously, up to 252 of the 16K ROMS may be overlayed on the
top 16K and are defined to be either foreground or background (max 7) ROMS.

66

A foreground ROM contains single programs (e.g. other languages, operating
systems, business applications, games) executed one at a time whereas a
background ROM contains routines (e.g. expansion peripheral routines) that
may be called up.

At switch on, the firmware searches through these 'banked' ROMS one by
one (or page by page) and executes a start-up on the first one encountered.
On an unexpanded Amstrad, the first (and only) ROM present is BASIC which
is obtained at switch on. BASIC lies in page 1; if any other program, such
as a game on a cartridge, has to be obtained at switch on then it must lie
in page 0. Any ROM present may be called by using a vertical bar ' I' followed
by a ROM name. Thus we can call a start up on the BASIC interpreter ROM
by the command I BASIC.

Fortunately, the Amstrad has an excellent BASIC which makes occasions for
delving directly into the Amstrad's memory very rare. However machine code
programmers will need to know the memory layout in detail and the position
of the firmware's routines. Detailed information on this is available from
Amstrad in their firmware manual. Since the position of these routines could
well change if the firmware ROM is updated, calling these routines from your
program would mean that it would only run on the original version. To overcome
this problem, a jump block at locations BB00 to BD39 is used; a program calls
a routine at a specific address in the jump block which in turn calls up the
routine required. Future updates to the firmware would mean the contents
of the jump block would have to be amended but a user's machine code program
would be unaffected. It is also possible to amend the contents of the jump
block to point to your own routines thus altering the effect of the firmware
- note that all the registers and values returned must be compatible with the
original system.

A BASIC program and its variables are stored in the memory pool shown
in figure 5.2. The lowest address is set by the firmware when BASIC is entered.
The highest address is located by a pointer called HIMEM and can be accessed
directly by the BASIC function HIMEM. We can 'trick' the Amstrad into thinking
it has less memory by changing HIMEM, using the command MEMORY, to
point to a lower address and so releasing a section of memory that is safe
from the system for such uses as machine code programs, graphics data etc.

e.g. to release 10 bytes from BASIC :MEMORYHIMEM-10

The function F R E (0) returns the number of bytes free to BASIC; try executing
PRINT FRE(O) before and after the above MEMORY command to prove that
10 bytes were released.
We can write and read directly in to the Amstrad's RAM by using the two
commands POKE and PEEK respectively.

i.e.
POKE A,V
will write the value V into the address A
(V is restricted to integers in the range 0 to 255)

V = PEEK(A)
will assign the contents at address A to variable V

67

Whilst many other micros require these functions to get below the surface
of their machines, the equivalent control on the Amstrad can usually be obtained
by using its powerful BASIC.

68

CHAPTER SIX
TIME, CLOCKS AND

INTERRUPTS
Timing Facility
The Amstrad has an internal counter which comes into effect the moment
the machine is switched on. The counter is incremented by 1 every ’/300th
of a second and it is extremely accurate. We now have the facility to add
timing to our programs and the counter can be used, for example, as a clock,
stop-watch or for timing moves in games. We can also time the lengths of
processes to compare the efficiency of different programming methods.

To access this counter we use the command TIME and to find a time length
in seconds we need to know initial and final values of TIME and then divide
the difference by 300. For example, program 17 illustrates the TIME function
by testing the speed of your reactions. Note that it is necessary to subtract
’/iooth of a second from the time evaluated to allow for processing time - try
running the program with line 120 absent.

PROGRAM 17: REACTION

10 CLS
20 LOCATE 10,10 : PRI NT " Pre s s E NT E R to s tart"
30 IF INKEY(18) = -1 THEN 30
40 CLS
50 FOR x = 0 TO 3000* RND
60 IF INKEY(47)< >-1 T HEN CLS P RI N T "C HE AT ! ! "
END
70 NEXT x
80 LOCATE 10,10 : PRI NT " Pre s s S PA C E BA R ! ! "
90 BORDER 7,16
100 t1 = TIME
110 PRINT CHR$(7)
120 IF INKEYC47) = -1 THE N 1 20
130 t2 = TIME
140 BORDER 1
150 LOCATE 8,13
160 PRINT "Time taken z ROU ND ((t 2 - t1- 3) /
300 ,2);"seconds"
170 FOR x = 0 TO 3000 : N EXT X

180 GOTO 10

It is difficult to describe precisely what makes a computer game addictive,
but including a 'highest score obtained' feature is likely to increase addiction!

69

This gives the players a tendency to keep having 'just one more go' to be
top - and of course paying you their lOp pieces!!

Program 18 demonstrates such a facility with a simple arcade type game. The
player has to dodge a missile attack by moving a little man to the left or
right under the control of the cursor keys. The object of the game is to survive
as long as possible and a record of the best time is kept.

PROGRAM 18: MISSILE ATTACK

10 DEFINT p : DIM m(25) : RANDOMIZE TIME
20 CLS : BORDER 2+RND*25
30 n = 20 : t = 100 : z1 = TIME
40 p = 40*RND+1
50 LOCATE p,25 : PEN 1
60 x = x+1 : IF x>25 THEN x = 1
70 m (x) = p : v = 0
80 PRINT CHR$(239) : PRINT
90 IF m((x+3)M0D 25) = n + 1 THEN 170
100 IF INKEY(8) <>-1 AND n>1 THEN n = n-1 : v = 3
110
2

IF INKEY(1) <>-1 AND n<38 THEN n = n+1 : v =

120 LOCATE n,1 : PEN 2
130 PRINT SPACE$(1) + CHR$(248+v) + SPACE$(1)
140 FOR j = 1 TO t : NEXT j
150 IF t = 1 THEN t = t-1
160 IF m((x+2) MOD 25) <> n+1 THEN 40
170 z2 = ROUND ((TIMEzI)/300,2)
180 PRINT CHR$(7)
190 LOCATE n+1,1 : PRINT CHR$(238)
200 FOR j = 1 TO 300 : NEXT j
210 IF z2>h OR h = 0 THEN h = z2
220 CLS : PEN 2
230 LOCATE 14,10 : PRINT "Time";z2
240 LOCATE 14,12 : PRINT "Highest";h
250 LOCATE 14,15 : PRINT "Play again Y/N"
260 IF INKEY (43)0-1 THEN ERASE m : GOTO 10
270 IF INKEY(46)<>-1 THEN CLS : BORDER 1 : END
280 GOTO 260

INTERRUPTS
The occurrence of interrupts is a common feature in computing. An interrupt
occurs, when under certain conditions, the processor stops whatever it was
doing , carries out another bit of processing, and then on completion, returns
to complete the previous task. Interrupt handling is usually written in machine
code; however the Amstrad has some unique BASIC commands that can handle
time interrupts, that is after specified times a subroutine may be evoked and
then when the routine is completed, control returns to the position in the
program where the interrupt occurred. Two commands may be used, AFTER

70

and EVERY; the first sets up a time interrupt to occur after a specified time
whilst the second command sets up time interrupts to occur regularly at a
specified frequency period. There are four timers available for such interrupts
and therefore, up to four time interrupt subroutines may be used. Each interrupt
timer has a priority - timer 3 has the highest and timer 0 the lowest. If an
interrupt occurs during the processing of another interrupt subroutine, the
interrupt will occur instantly if the timer is of a higher priority, otherwise
the interrupt will be queued until the first interrupt has been completed. When
setting an interrupt one must state the time period to elapse in l/50ths of
a second followed by the interrupt timer number to be used.

eg-
AFTER 100,3 GOSUB 1000 - execute the subroutine at line 1000

once every two seconds

EVERY 50 GOSUB 1000 - execute the subroutine at line 1000
every second. Note that since no timer
number is specified, 0 is used
by default.

Care must be taken when using these commands since the subroutines can
be executed at any point in the program.

The following example of time interrupts displays a clock in the top left hand
corner which chimes every hour. Since the clock is processed in an interrupt
subroutine it may be incorporated with your own programs. A window #1
has been set up to display the clock and so your program should avoid that
stream.

PROGRAM 19: CLOCK SKELETON

10 WINDOW #1,1, 9,1,1 : WI ND0W #0, 1 z 40,2,25
20 CLG : PRINT "Enter t i m e : " :: PR I N T
30 INPUT "Enter hours"; h
40 IF h<0 OR h> 23 THEN 20
50 INPUT "Enter minutes z m
60 IF m<0 OR m> 59 THEN 20
70 INPUT "Press ENTER o n time s i g n a l";q$
80 CLS
90 EVERY 50 GOS UB 1000
100 'cont i nuati on of pr og ram
110 GOTO 110

SPACES!1)
1050 LOCATE #1,1,1

1000 s = s + 1
1010 I F s>59 THEN s = s MOD 60 : m = m+1
1020 I F m>59 THEN m = m MOD 60 : h - h+1 : PRINT
CHR$(7)
1030 I F h>23 THEN h = h MOD 24
1040 I F s MOD 2 = 0 THEN c $ = ' ELSE c$ =

71

1060 PRINT #1, USING "##!";h;c$;
1070 PRINT #1, USING
1080 PRINT #1, USING
1090 RETURN

There may be cases where it is important that no interrupt occurs - this may
be done by disabling interrupts at the start with the command D I and then,
when interrupts are allowed again, they can be enabled with the command
E I. Finally, it is possible to disable a single timer with the function REMAIN
which also returns the remaining time count.

BREAK INTERRUPT
The break interrupt has a higher priority than anything else. [BREAK] involves
hitting the [ESC] key twice - pressing [ESC] once will temporarily halt execution
until any other key is pressed. Whilst [BREAK] normally returns control to
command mode, we have the option of directing execution to a 'BREAK'
subroutine using ON BREAKGOSUB.

e.g. 10 CLS
20 ON BREAK GOSUB 1000
30 'continuation of program

1000 CLS
1010 PRINT "Do you wish to save results (y/n)"
1020 IF INKEY(46)<>-1 THEN END
1030 IF INKEY143) = -1 THEN 1020
1040 'save results

A dangerous, or perhaps useful, trick is to put a single RETURN statement
at the BREAK subroutine which means that the user cannot [BREAK] out
of a program (except at an INPUT statement).

Break interrupts may be disabled by:ONBREAKSTOP
The commands D I and E I do not affect BREAK interrupts.

ERROR TRAPS
Normally when an error occurs in our BASIC programs, execution ceases and
control returns to command mode signalling that an error has occurred.
However, the Amstrad has the powerful facility to set up error traps. This
means that when an error occurs, instead of the program returning to command
mode, an error section is undertaken which could either rectify the problem
or give the user more information about what has happened.

To set up an error trap we use the statement ON ERROR GOTO followed
by the line number to which control is to be transferred.

e.g.ON ERROR GOTO 1000.

72

Similarly, the error trap may be disabled by specifying a line number of 0
e.g. ON ERROR GOTO 0

Two functions which give additional information on the error are ERL which
returns the line number of the statement where the error occurred and ERR
the error number (see appendix D).

e.g. PRINT "Error"; ERR; "occurred on L i ne" ; ERL

At this stage the reader is reminded of how we set up a window in chapter
3 for user error messsages in which, when the line was displayed at the base
of the screen, a beep was sounded and the user had to press any key to continue
- an ideal use for error traps.

Having entered an error trap we may use the command RESUME to continue
program execution at either the line where the error occurred, the following
line after the error line or at a specified line.

eg-
RESUME
RESUME NEXT
RESUME 500

continue at line ERL
continue at line following ERL
continue at line 500

Finally, it is possible to program user errors with the command ERROR followed
by an error number which need not be in the range of BASIC error numbers.
Whilst program errors are picked up by the BASIC interpreter; invalid data,
which has to be trapped by the program, can now be handled in a similar
fashion.

eg-
100 INPUT "Enter account number";an$
110 IF LEN(an$)<>7 THEN ERROR 100

73

74

CHAPTER SEVEN
DATA STRUCTURES

We shall now take a look at the advanced topic of data structures which is
a means of manipulating collections of similar data efficiently. To begin with
we shall refresh our memories on the subject of arrays.

ARRAYS - STATIC DATA STRUCTURES
We often have a requirement to reserve a block of cells in the Amstrad's memory
that can be referred to by a single name (referring to the block) and a number
(referring to the particular cell in the block); such a structure is called an array.
Control is instructed to reserve blocks of a particular length by the DIMension
statement.

e.g. DIMx(15) instructs the computer to reserve an array called
'x' consisting of sixteen elements

Fig. 7.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Each cell can store one number. When the block is declared, each cell is initialised
to zero. We may refer to any cell by the variable name followed by the cell
number in paranthesis. For example, cell 5 is referred to as x(5). The term
in brackets is called the subscript. The same cell could be referred to with
a variable subscript for example x(a) if the variable a had been set to a value
of 5. Subscripts may also be variable expressions but their results must lie
in the range specified by the DIM statement. If an array is referred without
ever being DIMensioned, it is assumed to have a length of eleven elements.

It is also possible to set up arrays with more than one subscript
e.g. DIMy(3,4)

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)

Fig-7.2

Such a structure is called a two dimensional array; remember however that
the cells are physically stored sequentially in the computer's memory. The
same idea works for an n dimensional array. If the array variable is followed
by either a % or $ sign, then, as usual, the variables are either integers or
strings respectively.

75

Program 20 demonstrates arrays by simulating a knock-out football competition
consisting of six rounds with 64 competing clubs. Each club is stored in a
DATA statement along with a value representing the quality of the team. If
your favourite club is absent from the list then exchange it with one that
is present. An array r(7,64) is used to store the team numbers of the clubs
that reach each round. Matches are drawn at random; when a club has been
selected its team number in the array is negated so that it is not selected
again. The number of goals scored is dependent on the value of the team
and home advantage. If a match is drawn then a replay takes place at the
previous visitors' home ground - the semi finals and final, of course, are played
on neutral grounds. Have fun!!

PROGRAM 20: F. A. CUP

10 RANDOMIZE TIME
20 CLS : PEN 1
30 PRINT "F.A. CUP" : PRINT "========" ; PRINT
40 PRINT "Will your football team win the F.A.

Cup" : PRINT
50 PRINT "Find out by watching the

Grandstand"/"teleprinter": PRINT
60 PRINT "The semi-finals and final match

are","played on neutral grounds" : PRINT
70 PRINT "Press ENTER to continue"
80 IF INKEYM8) = -1 THEN 80
90 CLS : PEN 2
100 CLEAR
110 DIM t$(64),r(7,64),g(64)
120 FOR x = 1 TO 64
130 READ t$(x),g(x)
140 r (1 , x) = x
150 NEXT x
160 FOR y = 1 TO 6
170 PEN 1 : PRINT "Round";y
180 IF y = 5 THEN PRINT "Semi-"; : IF y>5 THEN

PRINT "Final"
190 PEN 2
200 n = 2 T (7-y)
210 FOR x - 1 TO n/2
220 d1 = INT(1+RND*n)
230 IF r(y,d1)<0 THEN 220
240 r(y,d1) = -r(y,d1)
250 d2 = INT(1+RND*n)
260 IF r(y,d2)<0 THEN 250
270 r(y,d2) = -r(y,d2)
280 d1h = I NT(RND*g(d1)*RND* (3+(y>4)))
290 d2a = INT(RND*g(d2)*RND*2)
300 PRINT t$(-r(y,d1));TAB(13);d1h:TAB(18);t$(-

r(y,d2)); TAB(30);d2a
310 IF d1hod2a THEN 350
320 PEN 3 : PRINT "Replay" : PEN 2
330 t = d1 : d1 = d2 : d2 = t

76

340 GOTO 290
350 IF d1h>d2a THEN r(y+1,x) = -r(y,d1)
360 IF d1h<d2a THEN r(y+1,x) = -r(y,d2)
370 PRINT
380 FOR z = 1 TO 500 : NEXT z
390 NEXT x
400 NEXT y
410 PEN 1
420 PRINT : PRINT "CHAMPI ONS";t$(r(7,1)) : PRINT
430 PRINT "PRESS SPACE BAR to play again"
440 IF INKEY(47) = -1 THEN 440
450 GOTO 10
460 DATA "Torquay",2, "Reading",3, "Blackburn

R",4, "Norwich City",4
470 DATA "Portsmouth",3 , "BarnsIey",4, "High

Wycombe",2, "Bolton Wand",3
480 DATA "Fulham",3, "Shrewsbury",3, "Charlton

A",4, "Brighton",4
490 DATA "Leicester C",4, "Southampton",5, "Crewe

Alex",2, "A Idershot",3
500 DATA "Sheffield U",3, "Stockport C",2,

"Swansea C",3, "Wigan Ath",2
510 DATA "Orient",4, "C Palace",4, "Oxford U",3,

"Carlisle" 3
520 DATA "Grimsby T",4, "Oldham Ath",4,

"Hereford",2, "Bristol Rov",3
530 DATA "Dar I ington",3, "Doncaster R",3,

"Cardiff City",4, "Wrexham",3
540 DATA "SunderI a nd",4, "Tottenham H",5, "Aston

Vi I la",5, "Blackpool",3
550 DATA "West Brom A",5, "Birmingham C",4,

"Cambridge U",3, "Manchester U",5
560 DATA "Everton",4, "Coventry",5, "Derby Co",3,

"Gi llingham",3
570 DATA "Halifax T",2, "Wolves",3, "Notts F",5,

"Notts Co",4
580 DATA "Arsenal",4, "Leeds Utd",2, "Bristol

fitv" 2 "Uatfnrd" A
590 DATA "Li verpool",6' "Chelsea",4, "West

Ham",4, "Q.P.R.",4
600 DATA "Newcastle U",4, "Ipswich T",4,

"Brentford",3, "Sheffield W",4
610 DATA "Barnet",2, "Luton Town",3, "Manchester

C",4, "Stoke City",4

There are, however, occasions when we require a more flexible system of
ordering and so we turn to several different methods which can be covered
by the general title 'dynamic data structures'. While many of these techniques
can be handled more suitably by other languages - for example ALGOL or
Pascal - they can all be undertaken with Amstrad BASIC.

77

DYNAMIC DATA STRUCTURES
As an example of what dynamic data structures are all about, consider the
following table which contains a list of customers orders with a car dealer.
All the records are kept in the order of the customer's surname as in Fig.
7.3 which enables the information referring to a particular customer to be found
easily. Suppose further that a record for the customer HARRISON has to be
added to the list.

Fig. 7.3

NAME INITIAL MODEL COLOUR DATE DUE

BANKS M 240 DL Green 04.5.83
BEECH G 760 GLE Silver 30.6.83
GRAHAM R 360 GLT Red 25.5.83
HART W 240 GL White 25.5.83
HOPTON J 360 GLS Blue 17.6.83
TROWSDALE D 260 GLE Black 19.6.83
TURNER M 340 DL Red 17.6.83

HARRISON M 340 GL Silver 30.6.83

So that the table remains in order, the new record must be placed between
HART and HOPTON. If these records were kept using normal office index
cards any new record could be added by slotting the new card in at the
appropriate position. Likewise, when the customer's order had been completed
the corresponding record could be deleted from the system simply by removing
the card

Fig. 7.4

Our problem is to simulate such a system where we can add and delete records
and, by re-using any vacated space, we keep the occupied memory down to
a minimum. One data structure that can be used for this application is called
a linked list. When using linked lists for small quantities of data the advantages
of flexibility are offset by the disadvantages of complexity. However, it is useful
to learn the techniques since general and more complicated structures can then
be handled in a similar fashion.

78

THE FORWARD LINKED LIST

Unlike static data structures, the ordering of a linked list is contained alongside
the data. Each element in the structure will contain two pieces of information;
the first item will be the data itself and the second item will be a pointer
which relates the element with another element. The data could contain several
fields, e.g. name, address, telephone number, etc; but for simplicity, our
explanations will consider just a single data field.

(null)

Fig. 7.5

Since element 1 is linked to element 2 the pointer in element 1 will have
the value 2; similarly, pointers 2, 3 and 4 will have values 3, 4 and 5 respectively.
As element 5 is the last element in the list its pointer is 'null' and so this
could be indicated by a negative value, say -1.

Another method would involve setting the pointer to the address in the memory
where the element is situated. This is a form of "indirect addressing" that
we need not discuss further.

The structure shown in Fig. 7.5 could be stored on the Amstrad by using
a two dimensional array where x$(e,l) would contain the data of element e
and x$(e,2) would contain the pointer to the next element. A variable ROOT
can be used to point to the first element i.e.

ROOT = 1
= "data 1"

x$(2,1) = "data 2"
x$(3,1) = "data 3"
x$(4,1) = "data 4"
x$(5,1) = "data 5"

x$(1,2) = "2"
x$(2,2) = "3"
x$(3,2) = "4"
x$(4,2) = "5"
x$(5,2) = "-1"

To retrieve the data we access all the elements in the list; this is done by
starting from ROOT and then moving along the structure, accessing each item
of data, until the null pointer is reached.

An item can easily be deleted from a linked list by amending the pointer
from the previous element so that it points instead to the next item. The pointer
of the element that has been deleted should then be changed to a value to
signal that it is empty - the only point of this is so that we can re-use that
element in the array.

79

ROOT

Fig. 7.6

If instead we want to insert an item into our list there are two stages to undertake;
firstly, we must find where in the list the item should be placed, and secondly,
amend the pointers to include the new item. The position where the new
item is placed depends on what the user wants; it could be simply to put
the new item immediately after the last item or perhaps, if the list is ordered,
in the correct position as in our example below:

ROOT

Fig. 7.7

First the pointer from element 6 should be changed to point to element 4

Fig.7.8

i.e.
x$(6z1) = "data 6"
x$(6,2) = "4"
x$(3,2) = "6"

We shall now see some routines that can handle linked lists; note that special
considerations have to be made when the data is to be placed at the beginning
or end of the list.

80

PROGRAM 21: LINKED LIST

10 CLS
20 null = -1
30 n = 100 : DIM x$(n,2) GOSUB 1000
40 CLS
50 LOCATE 10,10 : PRINT II LINKED LISTS"
60 LOCATE 10,12 : PRINT II F1 ...Initialise"
70 LOCATE 10,13 : PRINT II F2 ...List"
80 LOCATE 10,14 : PRINT II F3 ...Delete I tern
90 LOCATE 10,15 : PRINT II F4 ...Add I tern"
100 k$ = INKEYS : IF k$ = II " THEN 100
110 k = ASC(k$)-48
120 IF k<1 OR k>4 THEN 100
130 ON k GOSUB 1000, 2000, 3000, 4000
140 GOTO 40

1000 root = null
1010 FOR x = 1 TO n
1020 x$(x,2) = ""
1030 NEXT x
1040 LOCATE 10,17 : PRINT "Initialisation
Comp lete"
1050 FOR j = 1 TO 500 : NEXT j
1060 RETURN

2000 CLS
2010 p = root
2020 WHILE pOnull
2030 PRINT x$(p,1)
2040 p = VAL(x$(p,2))
2050 WEND
2060 PRINT : PRINT "End of list"
2070 IF INKEYS = "" THEN 2070
2080 RETURN

3000 CLS
3010 LOCATE 1,10
3020 PRINT "Enter data item to be deleted" :
INPUT d$
3030 IF d$ = "" THEN 3000
3040 IF root = null THEN 3120
3050 p = root
3060 IF x$(p,1) = d$ THEN root = VAL(x$(p,2)) :
x$(p,2) = "" : GOTO 3100
3070 pp = p : p = VAL(x$(p,2)) : IF p = null THEN
3120
3080 IF x$(p,1X>d$ THEN 3070
3090 x$(pp,2) = x$(p,2) : x$(p,2) = ""
3100 PRINT "Item deleted"
3110 GOTO 3130
3120 PRINT "Item not in list"

81

3130 FOR j = 1 TO 500 : NEXT j
3140 RETURN

4000 CLS
4010 LOCATE 1,10
4020 PRINT "Enter data item to be inserted" :
INPUT d$
4030 FOR x = 1 TO n
4040 IF x$(x,2) = "" THEN p = x : GOTO 4070
4050 NEXT x
4060 STOP
4070 x$(p,1) = d$
4080 IF root = null THEN x$(p,2) = STRS(root) :
root = p : GOTO 4150
4090 IF d$<x$(root, 1) THEN x$(p,2) = STRS(root) :
root = p : GOTO 4150
4100 q = root
4110 qq = q : q = VAL(x$(q,2))
4120 IF q = null THEN x$(qq,2) = STR$(p) :
x$(p,2) = STR$(null) : GOTO 4150
4130 IF x$(p,1)>x$(q,1) THEN 4110
4140 x$(qq,2) = STR$(p) : x$(p,2) = STR$(q)
4150 PRINT "Inserted"
4160 FOR j = 1 TO 500 : NEXT j
4170 RETURN

MORE ADVANCED LISTS
Although most applications can be handled by forward linked lists there are
a couple of amendments that can be made which enhance the power of the
structures we have seen.

CIRCULAR LIST
In a circular list or ring the last element is made to point back to the first
element. The main advantage of such a structure is that an item which precedes
an element identified, can still be accessed without having to restart at the
ROOT.

L(5,2) = 1

Fig. 7.9

DOUBLE LINKED LISTS

Even greater power can be added to linked lists by including a backward
pointer which links up an element with its predecessor in the structure.

82

Fig. 7.10

This enables the structure to be searched in either direction. By using more
than one pointer it is possible to order the list in more than one type of order.

In the small applications which we are likely to meet, the advantage of such
a structure will be offset by an increase in the memory required for additional
pointer storage.

STACKS AND QUEUES

There are two very useful linear data structures that are commonly used in
computing called stacks and queues.

A stack is a method of storing and retrieving data in the computer with the
basic principle that the most recent item of data stored will be the first retrieved.
Storing information is known as pushing onto the stack and retrieving
information is known as popping the stack. In our example, the top of the
structure is indicated by a pointer called TOP.

Fig. 7.11

Although it is never obvious to the programmer, the operating system uses
a stack structure when dealing with subroutines. When control executes GOSUB,
the line and statement position numbers are pushed onto a stack and then
control continues from the line specified in the statement. When control executes
RETURN, it continues from the position that is popped from the stack. This
technique enables subroutines to be nested several levels deep although careful
management is required by the programmer. If a RETURN is executed without

83

a corresponding GOSUB statement an empty stack will be present and, when
popped, an error occurs.

A queue structure differs in its rule that the earliest item stored will be the
first retrieved. Two pointers are required, HEAD and TAIL which point in
the structure to the first and last items respectively.

A queue structure is used with the keyboard buffer where keys are stored
as they are pressed. Since it is a queue, the earliest keys pressed are accessed
before the more recent keys. Any released space is then available to store
future key presses.

HEAD

Fig. 7.12

When an item is retrieved, HEAD is made to point to the next element in

Fig. 7.13

Fig. 7.14

The main problem is that a queue gradually drifts through the memory as
retrievals and additions occur. One solution is to use a circular list so that,
if all the memory at the end of a structure runs out, then items can be added
at the beginning. If T A I L ever reaches HEAD then we have run out of space.

84

GRAPHS

Although the concepts of the linked lists are very useful as an insight into
data structures, their use is severely limited as they can only function in one
dimension, either forwards or backwards. In order to utilize these techniques
with any practical ideas we often need to handle data structures in more than
one dimension; such structures are called graphs.

Consider for example the following which represents the air routes that a certain
air company undertakes.

Fig. 7.15

This could be represented by the following structure.

Fig. 7.16

Additional data items could be included which, for example, could give the
cost, distance, etc. between two cities.

When referring to graphs; the intersecting points are called nodes and the
links that join the nodes are called edges. Edges can be either directed or
undirected and may or may not contain a value (for example, in our above

85

example cost, distance etc). Nodes can represent many things; such as towns
or positions, production output, steps in a process, etc.

Graphs have many applications - as an example we shall take a look at the
problem of finding the shortest path between two nodes, e.g. referring to Fig.
7.15, what is the shortest route from London to Berlin?

The algorithm that we shall use calculates the shortest paths between all pairs
of nodes in the given graph and can also print out the optimum route.

The graph of n nodes may be represented in the computer by a n x n array
(or matrix), say x(n,n) where element x(s,d) would be the distance from a source
town s to a destination town d.

Fig.7.17

Any two towns that are not directly connected take a distance value of infinity
- on the Amstrad we have to make do with a very large value, say IE + 20.

The procedure for calculating the shortest routes is:
The distance of each route is considered separately with the distance of the
same'route but going through each other town (if possible), e.g. Distance 1
—> 6 is compared to the distances 1—>2—>6, 1—>3—>6, 1—>4—>6 and
1 —»5 —> 6, and the shortest value is placed into our array at element x(l,6).
A separate array is used to record the optimal route.

Program 22 will allow you to enter a graph, edge by edge by specifying a
source town number, a destination town number and a distance. When you
have entered all the information, you simply input a set of invalid data, such
as 0,0,0. The program will then work out the shortest distances between each
pair of towns. Then by specifying two town numbers the program will display
the shortest route and its distance. Press the [SPACE BAR] to enter another
pair or key 's' to start again.

PROGRAM 22: SHORTEST ROUTES

10 CLS : CLEAR
20 ON ERROR GOTO 10
30 INPUT "Enter maximum number of towns";n
40 DIM x(n,n),y(n,n)
50 CLS

86

60 FOR p = 1 TO n : FOR q - 1 TO n
70 IF p<>q THEN x(p,q) = 1E+20
80 NEXT q : NEXT p
90 PRINT
100
110
120
= d
130
140
150
160
170
180
190
200
210
220
230
240
250
260

town sz town dz distance""Enter
INPUT szdzv
IF s = d OR
x(szd) = v
: GOTO 100
PRINT "Please wait"

p = 1 TO n
q = 1 TO n
r= 1 TO n
x(q,p) + x(pzr)

<= d THEN 200
d : y(qzr) = y(q,p)

: NEXT q : NEXT p

s<1 OR s>n OR d<1 OR d>n THEN 130
: x(dzs) = v : y(d,s) = s : y(s,d)

FOR
FOR
FOR
d =
IF x (q , r)
x (q , r)
NEXT r
CLS
PRINT
PRINT
INPUT
IF s<1
IF x (s , d)

"Lowest cost between two towns"
"Enter two towns"
s , d

OR s>n OR d<1 OR d>n
1E+20 OR x(s,d)

PRINT

x(s,d)

"Not connected" : GOTO 380
270 PRINT
280 PRINT "Cost from";s; " to";d; "i s";
290 PRINT : PRINT "Via Towns" : PRINT
300 IF y(s,d)<>d THEN 340
310 PRINT "Direct"
320 GOTO 380
330 PRINT "Passing through • 1 .

r
340 IF y(s,d) = d THEN 380
350 PRINT y(s,d);
360 s = y(szd)
370 GOTO 340
380 PRINT : PRINT : PRINT "Press SPACE
cont i nue"
390 k$ = INKEY$
400 IF k$ = "s" OR k$ = "S " THEN 10
410 IF k$ = SPACE$(1) THEN 210
420 GOTO 390

BAR to

THEN 240
= 0 THEN PRINT

TREES

There is one special type of graph commonly used in computing called a tree.
A tree is a graph that contains no isolated nodes and no cycles, that is, there
is one and only one route for getting from one node to another. We are usually
concerned with trees in which all nodes are directed away from one specific
node called the ROOT; every node except for the root has exactly one edge
entering it.

87

ROOT —

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 1

Fig. 7.18

The number of nodes away from the ROOT is often called the level where
the ROOT is situated at level 1. The depth of a tree is its maximum level.
Often a preceding node is called a parent node and a descending node is
called a sibling.

In order to keep things simple we shall restrict ourselves to binary trees: these
have a maximum of two edges leading from each node.

Binary trees may be stored on the Amstrad using arrays in a similar fashion
to linked lists except that three fields are required; one is used to contain
the data and the remaining two to contain the pointers.

Fig. 7.19

As with linked lists we require the data to be set up in some logical order.
For example, let us see how we would store the following sequence of car
names in alphabetical order in a binary tree.

MERCEDES, FERRARI, PORSCHE, LOTUS, VOLVO, BMW, SAAB.

We commence with the first name, MERCEDES, as the root of our tree, and
at this stage the node has no descendants.

Fig. 7.20

Next we introduce FERRARI and since it precedes MERCEDES alphabetically
it will become a descendant on the left.

88

Fig. 7.21

The next item, PORSCHE follows MERCEDES and so becomes a right
descendant of it.

ROOT

Fig. 7.22

After examining all the information and arranging it alphabetically the tree
will resemble

ROOT
__ »____

pVIERCEDEs|

J FERRARI

PT BMW pH [

Fig. 7.23

With Amstrad BASIC we could use the arrays n$ to store the data items and
1 and r to store the left and right pointers. Other data items such as performance
details about the cars can be added to the structure by storing them in arrays
and using the corresponding subscripts.

1 n$(l) = "MERCEDES 1(1) = 2 r(l) = 3
2 n$(2) = "FERRARI 1(2) = 6 r(2) =4
3 n$(3) = "PORSCHE 1(3) = -1 r(3) =5
4 n$(4) = "LOTUS 1(4) = -1 r(4) =-l
5 n$(5) = "VOLVO K5) = 7 r(5) = -l
6 n$(6) = "BMW 1(6) - -1 r(6) =-1
7 n$(7) = "SAAB 1(7) = -1 r(6) = -l

89

The next obvious task is to be able to select a name and to request all the
data that is associated with it. Having entered a name, the program searches
down the tree starting at the ROOT and then travelling either left or right
depending on the alphabetical order of the entered name and the one stored
at the present node. If the null pointer is reached before the entered name
is located then the name is not present in the tree. This method of searching
is a form of what is called a binary chop and can be very fast, even with
vast quantities of data. For example, by making seven comparisons we can
get down to level 8 of the tree which could mean that up to 255 elements
have been searched through.

To output all the data in the tree in the order set up, we require a systematic
method of travelling to each node once and in the order of the leftmost nodes
before those to their right.

If we consider any node in the binary tree, providing its pointers are not
null, it is linked to two binary subtrees. Similarly, all the nodes in each of
these subtrees are joined to further subtrees. Thus a binary subtree may be
abbreviated to

Fig. 7.24

If we travel to each of these three components in a fixed order it is called
a traversal.

There are three traversals that we can make.

1) Left Subtree
2) Node
3) Right Subtree

(LNR)

1) Left Subtree
or 2) Right Subtree

3) Node

(LRN)

1) Node
or 2) Left Subtree

3) Right Subtree

(NLR)

Further traversals using the same fixed order should be made at each subtree.
If we use the order LNR we can obtain our data in the order that the structure
was setup with.

Consider the following tree under a LNR traversal

90

Fig. 7.25

Thusourorderwould be Lj.IOO.Rj

Subtree L | can be traversed LNR to give L2,50,59
and L2 can be traversed LNR to give 10,25,27.
Thus our order so far is 10,25,27,50,59,100,Rj.
When R | has traversed LNR will have accessed the whole tree in order.

In chapter 8, when we study 'methods of sorting data' we shall see how to
sort a sequence of numbers by creating a binary tree and then undertaking
an LNR traversal - you may like to have a quick browse through chapter 8
now while the topic is fresh in your mind.

HEURISTIC PROGRAMMING
By now you should have some ideas of the flexibility that dynamic data
structures can provide. Trees are the most common form found in computing
and are used in a varied range of unusual subjects. Many games can be studied
using trees, where different branches provide the various options available;
by using some optimizing algorithms a computer can examine all the possible
states that could occur for any feasible move it next makes.

A similar idea is used when a program learns from previous operations and
remembers what results occur for certain moves by building onto the tree.
The program commences with a tree consisting of a single node, the ROOT,
and at that stage knows nothing; with time the tree will have expanded and
soon can become "intelligent". Programs that learn with experience are called
heuristic.

Heuristic programming is demonstrated in program 23 which starts off with
a small number of animals and facts in its memory. It asks you to think of
an animal and then it tries to guess your animal by asking a series of questions
to which you reply 'yes' or 'no'. If the computer is unable to guess the animal
it will ask you for a question and answer that it can use in the future.

The program builds up a binary tree with animals stored at the bottom nodes
in the tree and questions in the other nodes. By asking questions and analysing

91

the answers the program can decide on which path to travel down the tree.
When an animal is reached the computer asks if it is correct; if not, it asks
for a question that distinguishes between the animal in the tree and the animal
chosen.

PROGRAM 23: ANIMALS

10 GOSUB 380
20 CLS : PRINT "ANIMALS" : PRINT
30 PRINT "Think of an animal" : PRINT
40 FOR j = 1 TO 2500 : NEXT j
50 PRINT "Answer Y/N to the following questions
: PRINT
60 p = 1
70 IF l(p) = 0 AND r(p) = 0 THEN 140
80 FOR j = 1 TO 1000 : NEXT j
90 PRINT q$(p);" 9 II .

Z

100 k$ = INKEYS : I F k$ = " II THEN 100 ELSE k$ =
LOWERS(k$)
110 IF k$ = "n" THEN PRINT 11 n " : p = r (p) :: GOTO
70
120 IF k$ = "y" THEN PRINT 11

y " : p = I (p) :: GOTO
70
130 GOTO 100
140 FOR j = 1 TO 1000 : NEXT j
150 PRINT "IS THE ANIMAL A II

z
q$(p);" ? "

160 k$ = INKEYS : IF k$ = " 11 THEN 160 ELSE k$ =
LOWERS(kS)
170 IF k$ = "y" THEN PRINT 11 I thought so" :: GOTO
330
180 IF k$o"n" THEN 160
190 nf = nf+2 : IF nf>n THEN PRINT "Increase
array sizes" : STOP
200 PRINT
210 INPUT "What had you chosen";q$(nf + 1) :
q$(nf + 1) = U P P E R $ (q $ (n f + 1))
220 q$(nf) = q$(p)
230 PRINT
240 PRINT "Enter a question that distinguishes”
250 PRINT "a ";q$(nf); " from a ";q$(nf+1)
260 PRINT : INPUT q$(p) : q$(p) = UPPER$(q$(p))
270 PRINT : PRINT "Would the answer be Y or N for

GOTO 330
320 GOTO 290
330 PRINT : PRINT "Would you like to play again?"

280 PRINT q$ (nf) .11 Q
z

II

290 k$ = INKEYS : I F k$ = "" THEN 290 ELSE k$
LOWERS(k$)
300 I F k$ = "y" THEN I(p) = nf : r (p) = nf + 1
GOTO 330
310 I F k$ = "n" THEN r(p) - nf : I (p) = nf + 1

92

THEN 340 ELSE k$II II340 k$ = INKEYS
LOWERS(k$)

I F k$

350 I F k $ = "n" THEN END
360 IF k$ = "y” THEN 20
370 GOTO 340
380 REM initialise
390 n = 150 : nf = 12
400 DIM q$(r>),l(n),r(n)
410 FOR j = 1 TO 13
420 READ q$(j),l(j),r(j)
430 NEXT j
440 RETURN
450 DATA "IS IT A BIRD",3,2
460 DATA "IS IT A MAMMAL",4,5
470 DATA "DOES IT FLY",6,7
480 DATA "DOES IT HAVE A TRUNK",8,9
490 DATA "FROG",0,0
500 DATA "ROBIN",0,0
510 DATA "OSTRICH",0,0
520 DATA "ELEPHANT",0,0
530 DATA "DOES IT HIBERNATE",10,11
540 DATA "SQUIRREL",0,0
550 DATA "DOES IT SWIM",12,13
560 DATA "SEAL",0,0
570 DATA "DOG",0,0

One small snag: when you turn off your 464, it will forget all that it has ever
learned about frogs, elephants and so on. You can rectify this by replacing
the DATA statements by a file of records which is updated before switch-off.

Since the topic of data structures is both large and complicated anyone interested
in further study should obtain one of the numerous books specializing in
the subject. A recommended book is "Successful Software for Small Computers"
by G Beech, published by Sigma Technical Press. This contains numerous
BASIC programs relevant to various data structures.

93

94

CHAPTER EIGHT
DATA PROCESSING

TECHNIQUES FOR SORTING
One of the few advantages a computer has over the human brain is its ability
to undertake long and laborious, but relatively simple tasks, in a short time.
One such task we shall examine is the mundane job of sorting data comprised
of numeric or alphabetic items into some sequence - usually into increasing
or alphabetic order. There have been many algorithms devised for doing such
operations although their efficiency is usually inversely proportional to their
complexity.

We will restrict ourselves to looking at the following four algorithms.

Fig. 8.1

METHOD COMPLEXITY EFFICIENCY
Small
quantities
of data

Large
quantities
of data

Bubble sort Very simple Excellent Poor
Insertion sort Very simple Excellent Poor
Shell sort Average Good Good
Quick sort Complex Good Very Good

For each method it is usual to store the data in arrays - the size of which
need only be limited by the availability of RAM. Thus one thing which should
always be considered when deciding on an algorithm is the storage requirement;
some methods require a great deal of memory in addition to the array containing
the items of data.

Each of the algorithms mentioned above will now be explained in detail with
a program routine to illustrate it.

The main code below can be used to set up random data and to call each
sort program. In order that the programs can be compared, the code will also
give the processing time involved.

MAIN CODE

10 CLS : PRINT "SORTING TECHNIQUES" : PRINT
20 ZONE 8
30 INPUT "Enter number of items";n
40 IF n<5 OR n>1000 THEN 10

95

DIM d(n),s(40,2)
FOR j = 1 TO n
d(j) = INT(RND*2500)
NEXT j
C LS :

PRINT
PRINT
PRINT
PRINT
PRINT
k$ =

PRINT
"Enter

F 1 . . .
F2 . . .
F3. . .
F4 . . .

INKEYS :

PRINT

II
II
11
II

"SORTING TECHNIQUES"
" : PRINT
Bubble sort"
Insertion sort"
Shell sort
Quick sort"

IF k$ = "" THEN 150 ELSE k

IF k<1 OR k>4 THEN 150
t1 = TIME
ON k GOSUB 1000,2000,3000,4000
t = ROUND ((TIME-t1)/300,2)
PRINT
PRINT
PRINT
k$ =

: PRINT
: PRINT
"Do you

INKEYS :

"Data sorted"
"Time taken
wish to
I F k$

t;"seconds"
see the data? (y/n/s)"
"" THEN 230 ELSE k$ =

50
60
70
80
90
100
1 1 0
120
130
1 40
150
ASC(k$)-48
160
170
180
190
200
210
220
230
LOWERS(k$)
240
250
260
270
280
290
300
310
320

IF k$ = "n"
IF k$ = "s"
IF k$o"y"
CLS : PRINT
FOR j = 1
PRINT d (j)
NEXT j
FOR j = 1
GOTO 60

THEN
THEN

60
END

THEN 230
"Sorted

TO n
data" PRINT

z

TO 5000 NEXT j

Bubble Sort

The first method of sorting is called a 'bubble sort' because the lowest values
can be thought of as floating upwards to one end of the array and the highest
values sink to the bottom. The array is continually scanned and two
neighbouring items are swapped if the first has a higher value than the other;
if no exchanges are made, the list is in order.
Example

SCAN ONE

96

SCAN TWO

SCAN THREE

2
3
4
6
7
8

Fig. 8.1

No exchanges are made on scan 3 which implies that the list is ordered.

PROGRAM 24: BUBBLE SORT

1000 REM bubble sort
1010 FOR j = 1 TO n-1
1020 f = 0
1030 FOR i = 1 TO n-j
1040 IF d(i) < = d(i+1) THEN 1070
1050 f = 1
1060 t = d(i+1) : d(i+1) = d(i) : dCi) = t
1070 NEXT i
1080 IF f - 0 THEN 1100
1090 NEXT j
1100 RETURN

Insertion Sort

The 'insertion sort' method enables a list of items to be ordered with a single
scan of the array. When an item is found to be out of order, its correct position
is found and then by moving the other items one place along the array, it
can be correctly positioned.

97

Example:

Fig. 8.3

PROGRAM 25: INSERTION SORT

2000 REM insertion sort
2010 FOR j = 2 TO n
2020 t = d(j)
2030 FOR i = j-1 TO 1 STEP -1
2040 IF d(i) <= t THEN 2070
2050 d (i+ 1) = d(i)
2060 NEXT i
2070 d(i+1) = t
2080 NEXT j
2090 RETURN

Shell Sort

Whereas the 'bubble sort' only compares adjacent data items in the array,
a shell sort makes initial comparisons between items that are far apart, on
the assumption that if elements are far apart and have to be swapped it is
more efficient to do it as soon as possible. The separation between data elements
is called the 'sort interval'. Initially, the sort interval is set to the number of
elements and then on each scan the interval is reduced by one half until the
final scan is equivalent to the 'bubble sort'.

PROGRAM 26: SHELL SORT

3000 REM shell sort
3010 si = n
3020 IF si<1 THEN 3120
3030 si = INT(si/2)
3040 f = 0
3050 FOR i = 1 TO n-si
3060 IF d(i) <= d(i+si) THEN 3090
3070 f = 1
3080 t = d(i+si) : dCi+si) = d(i) : d(i) = t
3090 NEXT i
3100 IF f = 0 THEN 3020
3110 GOTO 3040
3120 RETURN

98

Quick Sort

Finally, we have the 'quick sort' algorithm. It is one of the more complex
sorting algorithms but usually gives the fastest results. The general idea is
that the items are split up (partitioned) into sub-groups which, in turn, are
partitioned further until the sub-groups are small enough so that a form of
'bubble sort' can be applied on the group efficiently. However, while the sub
groups are being sorted the program must remember the position of the
remaining unsorted data items. This is done by storing the 'start' and 'end'
position of the array of the items that remain unsorted. These positions are
stored in a second array so that the first positions stored are the first positions
retrieved; such a structure is called a stack. The sort is complete when the
stack becomes empty.

Two pointers are used in the quick sort, one indicates the start and the other
the end item in the array. One of the two pointers will always point to the
element in the array which was initially at the first position in the array;
this pointer is called the pivot. The two items that are currently pointed to
are swapped if the one nearer the start of the array is greater than the other.
The second pointer is then moved one position along the array towards the
pivot and the process is repeated. This continues until the two pointers meet,
in which case the array is partitioned about the pivot into sub-groups and
the process is then repeated on each new sub-group. The positions are stored
in the array s(n,2). If, because of vast quantities of data a 'stack overflow'
message appears, then the dimension of the array must be increased.
Example:

PIVOT

4 I —► sub-group 1J-* 99 4 J —► 4 J----- 4
75 75 75 I*-* 75
46 46 I—“■ 46 46
80 / l—*■ 80 80 80

I-* 4 99 99 99

sub-group 2

Fig. 8.4

These two sub-groups are
then sorted.

PROGRAM 27: QUICK SORT

4000 REM quick sort
4010 ps = 1
4020 s(1,1) = 1
4030 s(1,2) = n
4040 IF ps = 0 THEN 4200

99

4050 ii = s(p s,1) : j j = s (p s, 2) : ps = ps-1
4060 p=0:i=ii:j= j j
4070 IF d(i) < = d(j) THEN 41 00
4080 P - 1 "P
4090 t = d (i) : d(i) = d(j) ■ d(j) = t
4100 IF p = 0 THEN i = i + 1
4110 IFp=1THENj=j- 1
4120 IF i<j THEN 4070
4130 IF i >= jj THEN 4170
4140 ps = ps+1
4150 IF ps>40 THEN PRINT "ST AC K OVERFLOW" : STOP
4160 s(ps,1) = i+1 : s(ps ,2) = j j
4170 j j - i-1
4180 IF j j >i i THEN 4060
4190 GOTO 4040
4200 RETURN

ALPHABETICAL SORTING

One final sorting program demonstrates how to sort a sequence of strings
alphabetically. This is done by creating a binary tree and then undertaking
an LNR traversal (see chapter 7). The traversal is done by starting at the ROOT
and continually travelling left, popping the nodes onto a stack. Wherever a
null pointer is reached we pop the stack and print out the data value of the
node. Having gone as far as possible we then backtrack to the parent node
by again popping the stack and printing its data value. Then if there is a
right-hand edge, we undertake the same process on its subtree. This process
is repeated for the whole tree. Remember that when comparing strings, a string
is found to be less than another if it comes first in alphabetical order (for
example, as in a dictionary).

PROGRAM 28: ALPHABETICAL/TREE SORT

10 CLS
20 null = -1 : m = 150
30 DIM n$ (m),r(m),l(m),s(m)
40 GOSUB 250
50 CLS : PRINT "ALPHABETICAL
60 PRINT "Enter" : PRINT
70 PRINT " F 1 . . .Initialise"
80 PRINT "F2 . . . Add to tree"
90 PRINT " F3. . . Li s t tree"
100 k$ = INKEYS : IF k$ = "" THEN 100 ELSE k =
ASC(k$)-48

PRINT

110 IF k<1 OR k>3 THEN 100
120 ON k GOSUB 200,400,600
130 GOTO 50

200 REM initialise
210 PRINT : PRINT Unitialise"
220 PRINT : PRINT "Are you sure?"

100

230 k$ = INKEYS : IF k$ = "" THEN 230
240 IF k$ = "n" THEN 310
250 FOR j = 1 TO m
260 n$(j) = "" : r(j) =0 : l(j) =0
270 NEXT j
280 root = null : v = 0
290 PRINT : PRINT "Initialisation complete"
300 FOR j = 1 TO 1000 : NEXT j
310 RETURN

400 REM add
410 CLS : PRINT "Add to tree" : PRINT
420 INPUT "Enter data";d$
430 V - v+1 : IF v>m THEN PRINT "Inc r e a s e array
size II : STOP
440 I F d$ - "" THEN 420
450 I F root = null THEN n$(v) = d$: r (v) = nu I I
: I (v) = null : root - v : GOTO 530
460 V V = ROOT
470 I F n$(vvXd$ THEN 500
480 I F Kvv) = null THEN Kvv) = v : GOTO 520
490 vv = Kvv) : GOTO 470
500 I F r (vv) - null THEN r(vv) = v : GOTO 520
510 V V - r (v v) : GOTO 470
520 n $ (v) = d$: r (v) = null : I (v) = null
530 PRINT : PRINT "Item added"
540 PRINT : PRINT "Exit y/n"
550 k$ = INKEYS : IF k$ = "" THEN 550
560 IF k$O"y" THEN 400
570 RETURN

600 REM list
610 CLS : PRINT "Press SPACE BAR to list" : PRINT
620 IF INKEYS <> SPACESd) THEN 620
630 IF root = null THEN 730
640 vv = root : p = 1
650 IF vv = null THEN 690
660 s(p) = vv : p = p+1
670 vv = l(vv)
680 GOTO 650
690 p = p-1 : vv = s(p)
700 PRINT n$(vv)
710 vv = r(vv)
720 IF p>0 THEN 650
730 PRINT : PRINT "End of list"
740 IF INKEYS = "" THEN 740
750 RETURN

CASSETTE FILES
By now you should be well aware (maybe due to a previous mistake!) that
when the power is disconnected from the Amstrad, the stored program and

101

its data are lost for ever. Programs are easily stored on normal domestic cassette
tape for later retrieval as explained in the Amstrad users manual. Information
may be stored permanently in a similar fashion by communicating with stream
number 9 - however, this technique does have some severe limitations. The
standard system contains just a single cassette unit, so to handle cassette input
and output one has to keep swapping tapes when appropriate. Also, there
is a long time delay if the section of tape containing the information required
is a long way away from the present tape position. Since all the information
is stored and accessed one item after another, the cassette files are said to
be organised sequentially. Data is input and output to cassette files in blocks
of 2K - these are small enough to be stored in the main memory and are
stored on the tape with small intervals between them which enables the cassette
unit to have time to stop and start, see figure 8.5. When data is loaded from
the tape, one block is loaded into the cassette buffer and the data can then
be read from it. Similarly, when data is being stored on tape it is written
to the cassette buffer which is transferred to the tape when it becomes full
or the end of the file is signalled. This technique avoids having to continually
stop and start the tape for each data item, and so enables the data to be more
closely packed onto the tape.

Interblock

TAPE
MOTION

NEXT [DATA DATA DATA DATA PREVIOUS
BLOCK I ITEM ITEM ITEM ITEM BLOCK

Figure 8.5 : Sequential Storage on Tape

In large commercial installations, the slowness of sequential files on magnetic
tape means that most amendments are made to large data files by using
'transaction files'. Consider, for example, a bank with all the current accounts
of its customers stored on magnetic tape. During the day the value of some
of the accounts will be altered as cheques are received and cashed. It would
be very inefficient, if not impossible, to change the values of the accounts
as each alteration occurs. Instead, a transaction file is built up during the day
which contains each amendment to an account as it takes place. At the end
of the day, the transaction file is sorted using some unique key (probably
the account number) until the records are in the same order as the records
appear on the master tape file. The two tapes can then be matched to update
the accounts and produce a new master file.

The one difference between communicating with cassette files and other I/O
streams is that the files have to be opened using the commands OPEN IN
and OPENOUT for input and output respectively. In both cases the file name
should be specified - note that if the first character is ! then the cassette
operational prompts are omitted.

e.g.OPENIN " ! ACCOUNTS"

Information may now be passed to and from the cassette by using any of
the I/O statements specifying a stream number of 9.

102

Finally, when all I/O is complete, the files should be closed, using the C LO S E I N
and CLOSEOUT. Note that with output this is vital since it writes the remaining
contents of the buffer to tape and appends an end-of-file (EOF) marker to
the file. This marker may be tested for during INPUT to signal that all the
data has been read using the function EOF.

The following program demonstrates cassette files by keeping a file of names
and addresses. The file is read into memory and then the user may elect to
add, delete or access names and addresses to the file. If the file is amended
the user may rewrite the updated file to tape. In practice, it is recommended
that you use three tapes; one for the program, another for the master file and
the remaining as a back-up containing the second most recent version.

The maximum number of names in this program is 75 but this may be increased
by amending the variable in line 70.

PROGRAM 29: ADDRESS BOOK

CLS
ON BREAK GOSUB 200
WINDOW #1,1,40,25,25 : PEN #1,3 :
e$ = CHR$(164)+ " Mark R Har
GOSUB 7000
name = 1 : st reet = 2 :

phone=6
75 : DIM d$(m,6) : ptr

PRINT "ADDRESS BOOK"
"Select:" : PRINT

11

town=3

INK
r i son"

3,3,24

county=4

1 : f $
PRINT

"DATA"

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
k$ =

F1...Ret ri eve f i le"
F2...Save file"
F3...Add record"
F4 . . .Delete record"
F5...Display record"
F6...Display names"

INKEYS : IF k$ = "" THEN 160 ELSE k

If

II

11
II
II

10
20
30
40
50
60
postcode=5
70 m
80 CLS :
90 PRINT
100
110
120
130
140
150
160
ASC(k$)-48
170 IF k<1 OR k>6 THEN e$
GOSUB 7000 : GOTO 160
180
190
200
210
220
LOWERS(kS)
230 IF k$ <> "n"
240 END

"Inva lid opt i on"

ON k GOSUB 1000,2000,3000,4000,5000,6000
GOTO 80
CLS : PRINT "BREAK"
PRINT "Do you want to
k$ = INKEYS IF k$

save data?"
"" THEN 220 ELSE k$

THEN GOSUB 2000

1000 CLS : PRINT "Retrieve file"
1010 PRINT
1020 OPENIN f$
1030 FOR ptr = 1 TO m
1040 FOR j = 1 TO 6

103

1050 INPUT #9,d$(ptr,j)
1060 NEXT j
1070 IF EOF THEN 1100
1080 NEXT ptr
1090 e$ = "Structures full" : GOSUB 7000
1100 CLOSEIN
1110 RETURN

2000 CLS : PRINT "Save file"
2010 PRINT : PRINT "Enter cassette speed"
2020 PRINT "0...Supersafe"
2030 PRINT " 1 ... Speed load"
2040 k$ = INKEYS : IF k$ = "" THEN 2040
2050 IF k$ = "0" THEN SPEED WRITE 0 ELSE SPEED
WRITE 1
2060 PRINT
2070 OPENOUT f$
2080 FOR ptr - 1 TO m
2090 IF d$(ptr,name) = "" THEN 2130
2100 FOR j = 1 TO 6
2110 WRITE #9,d$(ptr,j)
2120 NEXT j
2130 NEXT ptr
2140 CLOSEOUT
2150 RETURN

unique" : GOSUB 7000 : GOTO 3190
3080 NEXT j

3000 CLS : ptr = 0
3010 PRINT "Add record" : PRINT
3020 PRINT "Enter:" : PRINT
3030 INPUT "NAME";n$
3040 I F n$ = "" THEN e$ = "No name specified"
GOSUB 7000 : GOTO 3000
3050 FOR j - m TO 1 step -1
3060 IF d$(j,name) = nil THEN ptr = j
3070 IF d$(j,name) = n$ THEN e$ = "Name not

3090 IF ptr = 0 THEN e$ = "Fi le ful 1" : GOSUB
7000 : GOTO 3190
3100 d$(pt r , name) = n$
3110 INPUT "STREET ";d$(pt r,street)
3120 INPUT "TOWN"; d$(pt r,town)
3130 INPUT "COUNTY ";d$!ptr,county)
3140 INPUT "POST CODE";d$!ptr,postcode)
3150 INPUT "PHONE" ;d$! pt r,phone)
3160 PRINT : PRINT "Correct?"
3170 k$ = INKEYS : IF k$ = "" THEN 3170 ELSE
LOWERS!k$)
3180 IF k$ = "n" THEN PRINT : GOTO 3110
3190 RETURN

4000 CLS : PRINT "Delete record" : PRINT

104

4010 INPUT "Enter name";n$: PRINT
4020 FOR ptr = 1 TO m
4030 IF d$(ptr,name) = n$ THEN d$(ptr,name) = ""
: GOTO 4060
4040 NEXT ptr
4050 e$ = "Name not in list" : GOSUB 7000 : GOTO
4080
4060 PRINT : PRINT "Name deleted"
4070 FOR j = 1 TO 2500 : NEXT j
4080 RETURN

5000
5010
5020
5030
5040
5050
GOTO
5060
5070
5080
5090
5100
5110

CLS : PRINT "Display record" : PRINT
INPUT "Enter name";n$: PRINT
FOR ptr = 1 TO m
IF d$(ptr,name) = n$ THEN 5060
NEXT ptr
e$ = "Record not present" : GOSUB 7000
5120
PRINT "STREET",d$(ptr, street)
PRINT "TOWN",d$(ptr,town)
PRINT "COUNTY",d$(ptr,county)
PRINT "POST CODE",d$(ptr,postcode)
PRINT "PHONE",d$(ptr,phone)
IF INKEYS = "" THEN 5110

5120 RETURN

6000 CLS
6010 FOR ptr = 1 TO m
6020 IF d$(ptr,name) <> "" THEN WRITE
d$(ptr,name)
6030 NEXT ptr
6040 PRINT : PRINT "EOF"
6050 FOR j = 1 TO 2500 : NEXT j
6060 RETURN

7000 PRINT CHR$(7)
7010 PRINT #1,e$
7020 IF INKEYS = "" THEN 7020
7030 PRINT #1 ,SPACE$(20)
7040 RETURN

It is very important to make sure that the tape heads of the cassette unit are
kept clean at all times. When cassette tape passes over the tape head, it leaves
a small deposit; after a time these deposits will collect to such an extent that
the recordings will be muffled and the Amstrad will not be able to decipher
the signals. It is also worth using high quality tapes since some poor quality
ones may not give a large enough signal for the system to interpret. If the
signal is too low the Amstrad will search indefinitely for a program or data
file. Another fault with poor quality tapes is that they shed their magnetic
coating more easily. This can cause a more rapid build up of metal oxide
on the heads but, more seriously, the tape may lose an item of vital information.

105

Disk Files
At the time of writing it is envisaged that CP/M, a disk operating system,
will soon be available on the Amstrad. The disk drive is now becoming the
most common item of hardware for storing information used by a
microcomputer. Their advantages include good reliability and fast access times.
Unfortunately their cost has led them to be regarded by some hobbyists as
expensive luxuries.

CP/M is discussed in more depth in "CP/M - The Software Bus" (published
by Sigma Press) which is an ideal companion for both novice and experienced
programmers alike.

106

CHAPTER NINE
AMSTRAD GRAPHICS

Every reader of this book will probably have a friend who, at first sight of
your machine, will invite you to switch it on and expect to see graphics like
those found in amusement arcades. We shall now take our first step towards
achieving such displays.

There are two methods of amending the information displayed on the screen;
these are:

1) Clearing the screen with the command CLS and then rebuilding the display;
this is done line by line, each of which has to be stored and so uses up
valuable memory space. Another disadvantage is that the screen rebuilding
can take a long time.

2) Amending the required section of the screen by repositioning the cursor,
either with cursor control characters or the command LOCATE, and then
printing over the original section.

Some readers may be accustomed to a technique called PEEK/POKE graphics;
where information is displayed on the screen by P 0 K Eing the section of memory
which contains the screen information and then by P E E King the same area
we can work out the position of the characters. Unfortunately, because of the
layout of the Amstrad's screen memory, the PEEK/POKE graphics technique
is not really feasible. However, we can always get round this problem by using
the LOCATE command and storing the position of characters in variables.

USER DEFINED CHARACTERS

Whilst the standard character set has an excellent range of symbols there will
always be a time when the user requires a symbol that is not available. We
shall now see how to define our own characters and create graphic symbols
such as mathematic symbols, animals, rockets, explosions, space invaders, etc,
-the list is endless.

All characters are defined by eight bytes in memory which represent the 8
x 8 grid of pixel dots that make up the character. Each bit that is set to a
'1' in a byte represents a pixel illuminated in the current INK colour, see
figure 9.1.

107

eg-
DECIMAL BINARY
24 0 0 0 1 1 0 0 0
60 0 0 1 1 1 1 0 0

102 0 1 1 0 0 1 1 0
102 0 1 1 0 0 1 1 0
126 0 1 1 1 1 1 1 0
102 0 1 1 0 0 1 1 0
102 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0

Fig-9.1

CHARACTER

All character formation data originates from the Amstrad's ROM at a section
known as the character generator. So that the user can amend some of the
formation data values to create new characters, the data has to be placed into
RAM at a pre-determined position; however, if all 256 characters were stored
in RAM, a mammoth 256 x8 or2K bytes would be required. So, as a compromise,
at switch on the Amstrad gets the formation data for the first 240 characters
from ROM and for the remaining 16 characters from a copy of the ROM located
in RAM. This may be altered by SYMBOL AFTER which specifies the ASCII
code of the first character to be located in RAM e.g. SYMBOL AFTER 128
- characters 128 to 255 can be redefined. Note that when SYMBOL AFTER
is executed all previously redefined characters are returned to their original
values.

A character is redefined by the command SYMBOL which specifies the character
code followed by up to eight values defining the pixel data. If less than eight
values are specified, then zero is assumed for the latter absent values.

As an example let's define CHR$(255) to be a friendly space invader.

Fig-9.2

DECIMAL BINARY

66 0 1 0 0 0 0 1 0
36 00100100

189 10111101

189 10 11110 1
255 11111111

60 00111100

36 0 0 1 0 0 1 0 0

231 1110 0 111

CHARACTER

And so, all we need to tell the Amstrad is:
SYMBOL255,66,36,189,189,255,60,36,231
Now by printing the character CHR$(255) our invader appears.

108

10 CLS
20 SYMBOL 255,66,36,189,189,255,60,36,231
30 INK 1,21,17 : INK 0,0
40 PEN 1 : PAPER 0 : BORDER 0
50 x = 20 : y = 12
60 x = x + INT(RND*3-1) : y = y + INT(RND*3-1)
70 IF x<1 OR x>40 OR y<1 OR y>25 THEN END
80 LOCATE x,y : PRINT CHRSC255)
90 FOR j = 1 TO 1000 : NEXT j
100 LOCATE x,y : PRINT SPACE$(1)
110 GOTO 60

Notice how, by making the invader flash slowly, the effect is improved.
Of course larger characters could be obtained by printing four more characters
next to each other.

Animation effects can be achieved by designing several characters to make
up a series of frames, and then printing them rapidly over each other. The
following example shows a little stick man dancing:

10 CLS
20 v = INT(RND*4+248)
30 LOCATE 20,12
40 PRINT CHR$(v)
50 FOR k = 1 TO 200 : NEXT k
60 GOTO 20

TRANSPARENT PRINTING
One control character we have not seen yet is CHRSC22) which is used
to enable/disable the transparent printing option. A second character is also
used which acts as the switch.

i.e.
PRINT CHR$(22) + CHR$(0) disables option
PRINT CHR$(22) + CHR$(1) enables option

Normally, when a character is printed, the character that was originally present
at the print position is completely removed. If the transparent mode is enabled
then the character being printed is superimposed on top of the first character,
and the background pixels take the previous colours that were present. This
enables several colours to be displayed at one character position. This is
illustrated in the following example which uses the Sigma Press logo.

10 CLS
20 PRINT CHR$(22) + CHR$(1)
30 LOCATE 25,1
40 INK 3,20 : PEN 3
50 PRINT STRINGS(13,CHR$(143))
60 LOCATE 25,1
70 INK 2,0 : PEN 2

109

80 PRINT CHR$(190) + CHR$(8) +
STRING$(13,CHR$(210))
90 LOCATE 26,1
100 INK 1,15 : PEN 1
110 PRINT "Sigma Press"
120 PRINT CHR$(22) + CHR$(0)

HIGH RESOLUTION CONTROL
Initially we considered the Amstrad's display as being divided up, in MODE
1, into 25 lines of 40 characters; we then went on to see how each character
position was further divided up into an 8 x 8 grid of smaller pixel dots that
could be either illuminated or not. We shall now see how to control the
individual pixel dots. Just as with character positions, the number of pixels
present depends on the screen mode as shown in figure 9.3.

Figure 9.3

MODE No. of pixels

0
1
2

160x200
320x200
640x200

A specific pixel is referred to by a two number coordinate (x,y) where x is
the horizontal position and y is the vertical position that the pixel lies in.

Figure 9.4: The Amstrad's pixel layout

It is important to remember that the coordinates in figure 9.4 are the same
for all screen modes; thus in some modes certain coordinates will refer to

110

the same pixel. The ratio of the vertical/horizontal mapping is arranged to
have a ratio of 1; (so that if we plot a circle it won't appear squashed). It
is possible to ink in a particular pixel by the statement PLOT x,y or PLOT
x,y,i where i is an ink number. A further extension to this is the PLOTR
statement whereby the x and y values specified are offsets from the previous
plot position.

Similarly, DRAW causes a line to be drawn from the present position to a
new point (x,y) relative to the origin (0,0); alternatively DRAWR causes the
line to be drawn from the present position to a new point specified by offsets
relative to the previous plot position. We may enquire at any time on the
x and y coordinates of the current plot position with the functions XPOS
and YPOS.

So let's look at a few simple examples:

PROGRAM 30: BUBBLES

10 CLS : PRINT "BUBBLES"
20 DEG : RANDOMIZE TIME
30 FOR j = 1 TO 25
40 x = INT(RND*640)
50 y = INT(RND*350)
60 r = INT(RND*75+25)
70 i = INT(RND*3+1)
80 PLOT x+r,y
90 FOR q = 0 TO 360 STEP 10
100 DRAW x +r* cos(q),y+r*sin(q)
110 NEXT q
120 NEXT j

Try replacing line 90 with: FORq = 0TO7200STEP123

This illustrates how we
can draw circles by plotting

all the points which are
given by (a cos 0 ,a sin 9)

where a is the radius

PROGRAM 31: EPICYCLICS

10 CLS : PRINT "EPICYCLICS"
20 v = 4/3
30 MOVE 400,200
40 FOR j = 0 TO 6*PI STEP PI/40

111

50 x = 300+100*COS(j*v)*COS (j)
60 y = 200+100*COS(j*v)*SIN(j)
70 DRAW x,y
80 NEXT j

Try replacing the value of v to other values such as %; in some cases it may
be necessary to increase the terminating value of the control loop in line 40.

PROGRAM 32: SINE/COSINE WAVES

10 CLS This plots a cosine wave
20 p = 0 (yellow) on top of a sine
30 PRINT CHR$(23) + CHR$(p) wave (bright blue)
40 FOR j = 0 TO 10*PI STEP PI/25
50 x = j*50/PI
60 y1 = 100*SIN(j)
70 y2 = 100*COS(j)
80 PLOT x,150 : DRAWR 0,y1z2
90 PLOT xz150 : DRAWR 0,y2,1
100 NEXT j

Try replacing the value of p in line 20 to 3 - what do you notice when you
rerun the program? Areas of the cosine wave covering the sine wave should
now appear to be coloured red. Whilst control character CHR$(23) followed
by CHR$(0) sets the ink to normal, CHR$(23) followed by CHR$(3)
causes the displayed ink to take a value dependent on both the ink that is
already present and the ink that was specified. The new ink value is found
by finding the 'logical OR' of the two inks; that is, inspect the two ink values
in binary form and obtain a new ink value consisting of bits set, if and only
if, a corresponding bit is set in either ink.

e.g. the two inks are 1, and 2 - DEC BINARY
1 01
2 10

3 11

thus the ink where the areas are superimposed will take the colour of ink
3.

A full list of values that can follow CHR$(23) are summarised in fig. 9.6.

CHR$(23)+

CHR$(0)
CHR$(1)
CHR$(2)
CHR$(3)

Norma I
XOR
AND
OR

New ink binary value consists of bits set if
and only if:-

Corresponding bits are not equal
Both of the corresponding bits are set
Either of the corresponding bits are set

Fig. 9.6 INK MODES

112

Program 33 demonstrates that it is possible to draw a function of two variables
as three dimensional solid surfaces. To see how the program works, consider
figure 9.7. The picture is built up by plotting parallel curved lines at positions
on the screen which relate to the value at the plotted position. If you refer
to figure 9.7, you will see that we are generating one slice at a time, from
the front to the back of the 'solid' surface.

To produce the three dimensional effect, the program considers the line ST
and all lines parallel to it, and calculates the value of the function at the points
where the straight lines meet the curved lines. The point is plotted on the
screen at a position which takes into account the value of the function and
also which curved line is being considered. However, to give the impression
of a solid surface, the point would only be plotted if there was no surface
in front of it, thus a point is only potted if the y coordinate of the plot position
is higher than any previous value found on the line being considered.

Figure 9.7: THREE DIMENSIONAL PLOT

PROGRAM 33: THREE DIMENSIONAL PLOTS

10 DEF FN a(j,k) = 50*(S IN *j+k*k)/1000))
20 CLS
30 q = 175
40 FOR x = 0 TO q STEP 2
50 y = SQR(q*q-x*x)
60 m = -1E+09
70 FOR z = -y TO y STEP 4
80 v = FN a(x,z)
90 P = v + z / 3 + 100
100 I F p <= m THEN 120 E LS E m = p

113

110 PLOT 320 + x,p : PLOT 320-x,p
120 NEXT z
130 NEXT x

Try experimenting with your two variable functions in line 10, but remember
that they should be scaled so that the PLOT ting does not leave the screen.

Program 34 will plot a three dimensional histogram for up to 18 values. The
main plotting is undertaken in the subroutine situated at line 200 and is written
in a form that should be easy to incorporate into your own programs. Two
values need to be set up before it is called; q is a number between 1 and
18 which corresponds to the position on the screen where the block is to be
displayed and y is the vertical length of the block. The three dimensional
effect is achieved by colouring the three visible sides of the block in different
shades of mauve.

A new statement, ORIGIN, has been introduced which allows us to reposition
the graphics screen coordinate grid. Coordinate (0,0) is moved to the specified
position. It is also possible to specify a further four values which set up a
new graphics screen window, as shown below:

ORIGIN x,y,left,right,top,bottom

In our program, the y coordinate has been shifted vertically upwards which
makes plotting simple with a line of text underneath the histogram.

The main problem is for the program to choose a suitable scale for the data.
In this case, by inspecting line 120, you can see a block of 300 units drawn
for the largest item of data and that all the other blocks have been drawn
in proportion.

PROGRAM 34: THREE DIMENSIONAL HISTOGRAM

10 CLS
20 ORIGIN 0,25
30 DIM d(20)
40 READ v$
50 LOCATE 3,25 : PRINT v$
60 FOR j = 1 TO 18
70 READ v : IF v = -1 THEN 110
80 n = j : d(j) = v
90 IF v>m THEN m = v
100 NEXT j
110 FOR q = 1 TO n
120 y = d(q)/m*300
130 GOSUB 200
140 NEXT q
150 PEN 2
160 LOCATE 1,1 : END

200 FOR p = 0 TO y
210 PLOT 32*q,p

114

220 INK 2,8 : DRAWR 30,0, 2
230 INK 3,7 : DRAWR 10,10 ,3
240 NEXT p
250 FOR p = 1 TO 10
260 PLOT 32*q+p,y+p
270 INK 1,4 : DRAWR 32,0, 1
280 NEXT p
290 RETURN

500 DATA "J F M A M J J A S 0 N D SALES 1984"
510 DATA 100,77,155,,77,23 ,56,24,100,78, 145,166,66
520 DATA -1

We can check which colours are placed at a particular position by using the
functions TEST and TESTR; the first requires absolute coordinates to be
specified and the second requires relative offsets from the current plot position.
This is demonstrated in program 35 in which you are in charge of a spaceship
under the control of the onboard computer - an Amstrad and its cursor control
keys!! The objective is to navigate the ship and avoid stars, your trail and
the edge of the universe. The best time achieved is recorded and displayed
continually - good luck!

PROGRAM 35: GALAXY EXPLORER

10 MOD E 1 : RANDOMIZE TIME
20 CLS : PRINT "GALAXY EXPLORER" : PRINT
30 INPUT "Enter skill level 1 - 99";sf
40 I F sf<1 OR sf>99 THEN 30
50 s f = sf/100
60 h = 0
70 INK 0,0 : INK 1,24 : INK 2,23 : INK 3,26
80 BOR DER 0 : PAPER 0 : CLS
90 PRI NT "Best ti me";h,
100 PLOT 0,0
110 DRAW 639,0,1 : DRAW 639, 380, 1 : DRAW 0,380 ,1
: DRAW 0,0,1
120 X = 300 : y = 190 : k = INT (RND*4) : kk = 3-k
130 t1 = TIME
140 k$ = INKEYS : IF k$<>"" THEN kk = ASC(k$)- 240
150 I F kk >= 0 AND k<4 THEN k = kk
160 I F k = 0 THEN y = y+2
170 I F k = 1 THEN y = y-2
180 1 F k = 2 THEN x = x-2
190 I F k = 3 THEN x = x + 2

I F200
250
210
220
230
240

TEST(x,y)<>0 THEN PRINT "CRASH!!!" : GOTO

PLOT x,y,2
p = I NT(RND*638+1) : q = I NT(RND*378+1)
IF TEST(p,q) = 0 AND RND<sf THEN PLOT p,q,3
GOTO 140

115

250 t = ROUND((TIME-t1)/300,2)
260 IF t>h THEN h = t
270 IF INKEY$ <> "" THEN 270
280 IF INKEY$ = "" THEN 280
290 GOTO 80

Up to now we have considered the screen with two separate types of windows
- character and pixel graphics. However, there may be times when we want
to integrate the two. With the command TAG we are able to redirect the output
of a stream so that it can be written at the current plot position allowing
text and symbols to be combined with graphics. Since the resolution of the
graphics screen is greater, using TAG enables us to obtain smoother scrolling.

eg-
TAG # 0 - tags the top left of the character output to stream 0

to the current graphics position.

This mode may be disabled by T A G 0 F F

eg-
TAGOFF #0

When printing characters in TAG mode they should be followed by a semi-colon
to suppress control characters such as line feed and carriage return. The next
example illustrates the smooth animation effects that can be achieved by using
TAG.

PROGRAM 36: ANIMATION

10 CLS
20p=0:s=10
30 TAG #0
40 PLOT 0,183 : DRAWR 639,0,1
50 RESTORE
60 FOR j = 1 TO 4
70 READ v
80 p = p+1 : IF p = 285 THEN 160
90 MOVE p,200
100 PRINT SPACE$(1);CHR$(v);
110 MOVE 600-p,200
120 PRINT SPACE$(1);CHR$(v);
130 FOR q = 1 TO s : NEXT q
140 NEXT j
150 GOTO 50
160 PLOT 315,211,3 : PRINT CHR$(228);
170 DATA 248,250,249,251

One excellent effect of movement can be achieved by drawing an object with
pixels of various colours and then rotating the colours through it. This is
illustrated in program 37 which shows a rotating sphere.

116

PROGRAM 37: ROTATION

10 DEG
20 INK 0,1 INK 1,1 INK 2,
30 PAPER 3 BORDER 1 CLS
40 i(0) = 1 3 : i(1) = 2 4 : i (
50 b = 100
60 1 = 0
70 ORIGIN 3 20 ,200
80 FOR a = -b TO b ST EP 5
90 MOVE 0,b
100 FOR t = 0 TO 180 ST EP 1I8
110 DRAW a* SI N(t),b*C OS < t) ,. i
120 NEXT t
130 i = (i + 1) MOD 3
140 NEXT a
150 FOR a = 0 TO 2
160 INK 0,i (a)
170 INK 1,i ((a+1)MOD 3)
180 INK 2,i ((a+2)M0D 3)
190 FOR b = 0 TO 200 NEXT b
200 NEXT a
210 GOTO 15 0

INK 3,1

= 0

This, then, ends our look at graphics on the Amstrad. You have been given
an insight into the vast range of graphics control possible on the Amstrad.
I leave you to carry on making discoveries that could last a programming lifetime!

117

118

CHAPTER TEN
SOUND AND SYNTHESIS

Many Amstrad owners will be extremely proud of the excellent sound facilities
of their machines. Our next topic is to investigate these features and see what
sounds can be produced. There is only room in this book to scratch the surface
of the subject. Anyone who has ever learned to play a musical instrument
will know that it takes years of practice to achieve proficiency and the same
is true of playing music on the Amstrad. Once you've read this chapter, the
only way to master these skills is to experiment and learn from the results
obtained.

Before we enter the realms of sound synthesis on your Amstrad let us take
a brief look at what sound is.

Characteristics of Sound Waves
We all have plenty of experience with sound in everyday life and know that
different sounds can be distinguished from one another - but what makes
one sound different from another? Each sound is made by a transfer of energy
caused by the disturbance of air from one point (called the source) to the
ear. The difference in the sounds are effected by three factors: i) pitch ii) quality
and iii) volume.

If the source oscillates f times a second, the sound emitted is said to have
a frequency of f Hz (Hertz). Also, if the energy travels a distance of X from
the source in one second then the sound produced has a wavelength of This
can be represented diagramatically as in Figure 10.1.

displacement

119

The pitch of a note is dependent on the frequency of the sound wave produced;
a high frequency produces a high pitched note and a low frequency produces
a low pitched note. The musical interval between two notes is proportional
to the ratio of the frequencies rather than the difference. Thus, the difference
in pitch to the ear is the same if a note increases from 250 Hz to 500 Hz
as from 1000 Hz to 2000 Hz. If one note has twice the frequency of another
then the two notes are said to be one octave apart.

A tune which is played on several different musical instruments can still be
differentiated even if exactly the same notes are played. This is because the
quality of the waveforms from each instrument differs. For example, while
a tuning fork would produce a waveform like that in Figure 10.1, a musical
instrument would probably look more like that in Figure 10.2

SOUND and the Amstrad
Sounds can be obtained on the Amstrad by using the BASIC command SOUND
which has a list of parameters; all are optional except for the first two. When
a parameter is absent a default value is used.

SOUND cs , tpzd , v,ve,te,np

where cs - channel status
tp - tone period
d - duration
v -volume

ve - volume envelope
te - tone envelope

np -noiseperiod

We shall now carry out an in depth investigation into each of the parameters: -

120

CHANNEL STATUS
The Amstrad has three independent sound oscillators (sometimes referred to
as voices on other computers) and so in our SOUND statement we must specify
the voice channels to where our sound output is to be sent. We can combine
two or more voices together but must take care that the notes are synchronised
correctly. The three voice channels are referred to as A, B and C; each of which
can have up to five sounds queued up. The channel status parameter is a
bit pattern which directs the sound output to the required channels as shown
in Figure 10.3.

Fig. 10.3 Channel Status

7 6 5 4 3 2 1 0 bit

command FLUSH HOLD rendez- rendez- rendez- send send A
vousC vousB vous A toC toB

128 64 32 16 8 4 2 1 value

In the next section, remember that binary numbers are understood by the
Amstrad if preceded by &X.

To output sound to channel A the channel status needs to have just the first
bit set i.e. 00000001 (binary) or 1 (decimal). Similarly, to output to channels
B or C the channel status needs to be set to either 00000010 (binary), 2 (decimal)
or 00000100 (binary), 4 (decimal) respectively.

To send output to several channels the channel status needs to be set to the
sum of the status of the corresponding single channels. So, to output sound
to all three channels, the channel status has to have all three bits set, i.e. 00000111
(binary) or 7 (decimal).

As you can see from Figure 10.3 there are several other bits that may be set.
Two channels may be synchronised (rendezvous) so that they are actioned
simultaneously by setting the rendezvous bits of the opposite voice channel
in each channel status.

Bit 6 in the channel status is called the hold bit and when set instructs the
sound queue of the channels flagged to be frozen, i.e. no more sounds on
those particular channels are emitted. The queues may be thawed by the
RELEASE command which enables the sound processing of specified channels
to continue. The value passed is a value between 1 and 7 (3 bits) and specifies
the following channels:

BitO: Channel A
Bit 1: Channel B
Bit 2 : Channel C

In a similar fashion, bit 7 is called the flush bit and when set deletes all sounds
queued up in the flagged channels and activates the current SOUND statement
immediately. The flush bit can also be used to thaw a sound channel but
remember that the queued sounds are lost. The sound queues are also flushed
when the control character C H R $ (7) is printed.

121

TONE PERIOD
The period of a note gives the pitch characteristics and is inversely proportional
to the frequency which was introduced at the start of this chapter. The exact
relation between the two is found using the following formula:

frequency = 125000 / period.

Values that we can use for the musical scale are given in Figure 10.4. Remember
that notes one octave apart have a frequency ratio of 2; as a result, the period
of any note can be easily calculated.

Setting a period of 0 achieves 'white noise' where the emitted waveform is
randomly generated; however a noise period parameter (1 to 15) must be passed
as the seventh parameter to S 0 U N D.

451 402
\ /

C# D#

338 301 268
\ I /
F# G# A#

Although our sound control at this stage is very elementary, program 38
demonstrates a crude key instrument operated by the keys 0 to 9.

PROGRAM 38: SIMPLE KEYBOARD INSTRUMENT

10 DIM n(10)
20 ON BREAK GOSUB 80
30 SPEED KEY 5,1
40 FOR j = 1 TO 10 : READ n(j) : NEXT j
50 k$ = INKEYS : IF k$ = "" THEN 50 ELSE k =
ASC(k$)-47
60 IF k>0 AND k<11 THEN SOUND 1,n(k) ELSE 50
70 GOTO 50
80 SPEED KEY 10,3
90 END
100 DATA 284,478,451,426,402,379,358,338,319,301

DURATION
At present, the length of each sound note defaults to ’/sth of a second but
this may be altered by specifying a third parameter which gives the length
in Viooth second units. The range of values is -32767 to 32767; negative and
zero values have their uses when we study sound synthesis.

122

VOLUME
The loudness of the sound is given by the fourth parameter and should range
from 0 (off) to 7 (full); values 8 to 15 are used with sound synthesis.

SOUND SYNTHESIS
Before we explore the synthesiser capabilities of the Amstrad let us look at
what makes the synthesiser so different from other musical instruments.

In Figure 10.2 we saw how the waveform of a sound emitted from a musical
instrument differed from a pure note such as the sine wave of Figure 10.1.
It is the way these waveforms are modified that gives a sound its specific
character, and this modification is called 'envelope control'. The volume
envelope is split into three sections: Attack, Decay and Sustain (ASD) as shown

Fig. 10.5: The ASD (volume) Envelope

ATTACK:
This is the length of time it takes to reach the peak of the wave. This is best
seen by examining two musical instruments, the piano and the violin. The
piano uses a hammer mechanism to create the sound; the hammer strikes
the string, the string vibrates and the sound is created. Because the sound
reaches its peak virtually as soon as the hammer strikes, the attack is short
or steep. The violin, however, requires a bow to be stroked across the strings
and the vibration of the string is built up to a peak as the bow moves across.
This, therefore, has a long attack.

DECAY:
This is the length of time it takes to travel from the peak of a wave to its
end. When the piano hammer has struck the string it continues to vibrate,
until the energy created by the hammer is dissipated; therefore the decay is
long. A flute's sound, however, ends almost immediately the player ceases
to blow; therefore, it has a short decay.

123

SUSTAIN:
This is the amount of time a wave remains at its peak.

Rapid changes about a frequency, which causes an effect vailed vibrato, can
be obtained by controlling the tone envelope, as for example in Figure 10.6

Figure 10.6: The Tone envelope

So to produce characteristic sounds, as opposed to simple bleeps, we use
envelope shapers to control the shapes of its synthesised waves. How do we
program the facilities of envelope control on the Amstrad?

VOLUME ENVELOPE CONTROL
To control the volume envelope, it must first be defined using the statement
ENV, and then referenced in the SOUND statement. In fact, up to 15 envelopes
(labelled 1 to 15) are allowed, each of which may have up to 5 sections (attack,
delay or sustain periods).
To define the envelope we use:
ENV numberzP1zQ1zRizP2zQ2zR2z........... z P 5 z Q5 z R5
where P^Q^Rj define the characteristics of each section of the envelope
Pi = Step counts (0—> 127)
Qi = Step size (-128 —> 127)
Ri = Pause time (0—> 251)

Considering an envelope with only three sections:

124

Volume

Fig. 10.7

For each section, subdivide it into steps, each a multiple of l/iooth seconds.
For example we could divide Figure 10.7 as follows:

section 1 = 3* */ioo
section 2 = 1* ”/ioo
section 3 = 3* 3/ioo _

t \step counts pause times

and so the following parameters are required:-

Pj = 3, R, = 1 ;P2 = 1, R2 = 11; P3 = 3, R3 = 3

The step sizes are evaluated by calculating the number of volume units increased
within one step count.
i.e. Qi = '% = 5 ; Q2 = 0 ; Q3 = = -5

Finally, we require a label in the range 1 to 15 so that we can refer to this
envelope definition in our SOUND statements; e g. 1.

Thus our E N V statement has become
ENV 1,3,5,1,1,0,11,3,-5,3

The ENV label is passed to the SOUND statement as the fifth parameter. The
initial volume is controlled by the fourth parameter as before but when an
envelope is featured the range is 8 (off) to 15 (full). The number of times the
volume envelope should be repeated is passed as a negated value to the third
(duration) parameter.

You have probably realised by now, that unless you are an expert on acoustics,
the only way of achieving the exact sound you require is to experiment.

125

TONE ENVELOPE CONTROL
The tone envelope is controlled in a similar fashion to the volume envelope;
again five sections can be defined using the ENT command:
ENT number , P / ■ ■ ■■■•z^sz^sz^s
where Pj,Qi,Ri are as before but have the following ranges
Pi = Step counts (0 —> 239)
Qi = Step size (-128—> 127)
Ri = Pause time (0—> 255)

The tone envelope will be repeated for the length of the sound envelope if
a negative envelope number is used (though its positive argument is specified
in the SOUND statement).

Fig.10.8

In figure 10.8 we define the sections as:
section 1 = 1 x 2/ioo
section 2 = 2 x 5/ioo
section 3 = 1 x 2/kxl

, * , \
step counts pause times

so that:
Pi — 1 Ql = 4 Ri = 2
P2 = 2 Q2 = ^ R2 = 5
P3 = l Q3 = 4 R3 = 2

So, for envelope number 1 we would use
ENT -1,1,4,2,2,-4,5,1,4,2

The tone envelope number is the sixth parameter to S 0 U N D.

126

The next program is written with apologies to all music lovers. Its idea is
to play the tune 'Ogonek' but has been written in a skeleton form in order
that you can experiment with envelope control. Tone periods for 40 notes are
set up in the array n(39). The subscripts of required notes are stored in DATA
statements, and, when read, they are played on channels A and B which are
synchronised by setting the rendezvous bits. Channel B is organised to play
two octaves lower than A by dividing its tone period by four. Having played
around with the envelope controllers you will have seen the problems of trying
to get a required sound in all its glory I!

PROGRAM 39: OGONEK

10 GOSUB 200 : REM initialisation
20 ENV 1 ,3,20,1 ,1,0,20,1 ,-1 ,1
30 ENT -2,1,1,20,2,-1,50,1,1,20
40 READ v : IF v = -1 THEN END
50 SOUND 16 + 1,n(v) ,-1 ,15,1,2
60 SOUND 8 + 2,n(v)/4,-1,15,1,2
70 GOTO 40

200 DIM n(39)
210 FOR k = 0 TO 3
220 RESTORE
230 FOR j = 0 TO 9
240 READ v
250 n(k*10+j) = v/(k+1)
260 NEXT j
270 NEXT k
280 RETURN
290 DATA 478,451,426,402,379,358,338,319,301,284

1000 REM example tune
1005 DATA 0,4,9,12,16,4,14,2,6,4,14,4,8,1,14,4,

11,12,14,4,11,12,9
1010 DATA 0,4,9,12,9,4,0,4,16,17,19,8,17,16,19,

8,11,17,17,9,14,9,17,9,17,19,21
1015 DATA 9,19,21,16,4,8,11,16,14,11,8,0,12,24,

24,24,12,23,21,24,12,16,23,17
1020 DATA 9,14,9,17,9,17,9,1,7,19,21,9,19,21,16,

8,12,16,8,12,16,0,8,11,16
1025 DATA 0,4,9,12,16,4,14,2,6,4,14,4,8,1,14,4,

11,12,14,4,11,12,9
1030 DATA 12,16,12,9,21
1035 DATA -1

SQ
With the S Q function we can enquire into the state of one of the sound channels.
The passed argument is either 1 (channel A), 2 (channel B) or 4 (channel C)
and returns a value comprised of the following bits specifying the state of
the channel:

127

Fig. 10.9: Channel status function

7 6 5 4 3 2 1 0

Set if
Active

Set if
Held

Rendezvous state
(as in Fig.10.3)

number of free entries
in queue (0-4)

128 64 32 16 8 4 2 1

SOUND INTERRUPTS

There will be many occasions when sound is wanted as a background facility
to the actual program. Trying to place sound commands within a program
such that the sound queues were always primed to ensure a continuous tune/
sound would be extremely difficult. We can set up sound interrupts to occur
whereby a sound subroutine is executed whenever a gap occurs within the
sound queue. As with other subroutines, on completion, control returns to
the position at which the interrupt occurred. By controlling all the sound output
within this subroutine we have the sound facility running as a background
task to the main program. Separate interrupts, of equal priority, are enabled
by:
ON SQ (x) GOSUB Line no where x takes the values 1,2, or 4, as

usual depending of the channel.

However, when sound interrupts occur, or the SOUND or SQ statements are
executed, then sound interrupts are disabled; thus if sound interrupts are to
continue then they should be re-enabled in the sound subroutines.

Our final program demonstrates sound interrupts. The program displays a
simple arcade-type screen, on which a number of fearless aliens scroll
continually across the screen and approach the earth's surface. You have control
over a laser, by using the left and right cursor control keys, and a fire [COPY]
button. The objective is to destroy all the aliens before they land, but take
care - if you shoot and miss, an extra alien will join those already present.

A sound interrupt is set up to produce a sound of the aliens groaning - a
good incentive for you to quickly destroy them all! Note that the interrupt
is reset whenever the sound subroutine is called. Another sound is emitted
whenever an alien is destroyed. Since we want this sound to be produced
immediately, rather than just put on the end of the sound queue, we flush
the sound channel by setting the seventh bit of the channel status. As before,
the sound interrupt is reset.

PROGRAM 40 : ALIEN ATTACK

10 ENV 1 ,1 ,15,5,1,0,20,5,-3,2
20 ENT 1,10,1,1,40,-1,1,60,1,5
30 SPEED KEY 1,1

128

INK 3,13,2240 INK 0,0 : INK 1,24 : INK 2,15 :
50 PAPER 0 : BORDER 0
60 CLS
70 z$ = CHR$(95) + CHR$(95) + CHR$(244) +

CHRSC95) + CHR$(95)
80 p = 1 : z = 20 : pp = 800
90 t$ = ""
100 FOR k = 1 TO 20 : t$ = t$ + SPACE$(1) +

CHR$(225) : NEXT k
110 PLOT 0,16 : DRAWR 639,0,2
120 ON BREAK GOSUB 800
130 EVERY 500 GOSUB 400
140 ON SQ(1) GOSUB 1000
150 FOR j = 1 TO 40
160 PEN 3
170 LOCATE 1,p : PRINT MID$(t$,j,40);MID$(t$, 1,j -

1)
180 PEN 2
190 LOCATE z,24 : PRINT z$
200 k$ = INKEY$: IF k$ = "" THEN 240 ELSE k =

ASC(k$)
210 IF INKEY(8)<>-1 AND z>3 THEN z = z-2
220 IF INKEY(1)<>-1 AND z<36 THEN z = z+2
230 IF INKEY(9)<>-1 THEN GOSUB 600
240 NEXT j
250 GOSUB 150

400 p = p+1
410 pp = pp*0.9
420 IF p<32 THEN 460
430 LOCATE 12,25
440 PRINT "Invasion complete";
450 GOTO 800
460 LOCATE 1,p-1 : PRINT SPACE$(40)
470 RETURN

600 v = j+z + 1 : IF v>40 THEN v = v-40
610 q = A S C (M I D $ (t $, v , v))
620 MOVE 16*z+22,25 : DRAWR 0,380,1
630 FOR k = 1 TO 50 : NEXT k
640 DRAWR 0,-380,0
650 IF q<>225 THEN 740
660 LOCATE z + 2,p : PRINT CHR$(238)
670 SOUND 128+1,1000,40,15
680 ON SQ(1) GOSUB 1000
690 MID$(t$,v,v) = SPACE$(1)
700 IF t$<>SPACE$(40) THEN 750
710 LOCATE 12,25
720 PRINT "Invasion repelled";
730 GOTO 800
740 MID$(t$,v,v) = CHR$(225)
750 RETURN

129

800 PRINT CHR$(7)
810 INK 1,24 : PEN 1
820 SPEED KEY 10,3
830 LOCATE 1,1
840 END

1000 SOUND 1 ,pp,-5,15,1,1
1010 ON SQ(1) GOSUB 1000
1020 RETURN

That, then, concludes both this chapter on sound and the whole book. Hopefully,
as you have worked your way through all ten chapters, you have increased
your repertoire of programming skills and improved your technique. If this
is the case, then the aim of this book has been achieved.

130

APPENDIXA
The ASCII Charactei Set

Remember that 0 to 31 are control characters and so are only printable if preceded
byCHR$(l).

131

1 133130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

J

X

2
3
HZ▼

£i
~Z| ~

138

143

148

153

158

163

168

173

178

183

188

193

198

203

208

213

218

223

228

233

238

243

248

253

I
I

©_

d

&

TV

♦
3
X
I

134

139

144

149

154

159

164

169

174

179

184

189

194

199

204

209

214

219

224

229

234

239

244

249

254

132

APPENDIXB
Key Handler Codes

(as used with INKEY)

@0000000000000 E00
r^l 0 0 0 00 0000000 L |0
I 70 | 0 0 0 [53] [5Z] 0 [45] 0 0 [S] @ ____

I * I [0] E @ @ 0 @ E0 00 00 [0] 03 I zi j

□
E □ □

E

00 0
00 0
@0 0
@0 0

Joystick 0

72

I
74 -<---- ----► 75

73

fire 1 : 77
fire 2 : 76

Joystick 1

48
M

50 ----------► 51

'f

49

fire 1: 53
fire 2 : 52

133

APPENDIX C
COLOUR CODES

CODE COLOUR CODE COLOUR

0 Black 14 Pastel Blue
1 Blue 15 Orange
2 Bright Blue 16 Pink
3 Red 17 Pastel Magenta
4 Magenta 18 Bright Green
5 Mauve 19 Sea Green
6 Bright Red 20 Bright Cyan
7 Purple 21 Lime Green
8 Bright Magenta 22 Pastel Green
9 Green 23 Pastel Cyan
10 Cyan 24 Bright Yellow
11 Sky Blue 25 Pastel Yellow
12 Yellow 26 Bright White
13 White

134

APPENDIXD
ERROR CODES

ERROR
CODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

ERROR

Unexpected NEXT
Syntax error
Unexpected RETURN
DATA exhausted
Improper argument
Overflow
Memory full
Line does not exist
Subscript out of range
Array already dimensioned
Division by zero
Invalid direct command
Type mismatch
String space full
String too long
String expression too complex
Cannot CONTinue
Unknown user function
RESUME missing
Unexpected RESUME
Direct command found
Operand missing
Line too long
EOF met
File type error
NEXT missing
File already open
Unknown command
WEND missing
Unexpected WEND

135

INDEX
Note: definitions of BASIC keywords are all contained in Chapter 1. Entries
in the index are selected references which illustrate specific uses of the keywords.

ABS.. 53
AFTER..70
Alphabetical sort................... 100
Animation..................................... 33
Arrays..75
ASC.. 17
ASCII...17
Assignment statements.............. 7
ATN ... 58
Attack 123

Banked ROMs 67
BINS... 64
Binary .. 64
Bit... 64
BORDER...41
BREAK..72
Bubble sort.................................. 96
Byte.. 64

Cassette file............................ 102
Channel.................................. 121
CHRS... 17
CINT...48
Circular List.................................. 82
CLOSE IN............................... 103
CLOSEIN 103
CLOSEOUT............................ 103
Colour..36
Compiler...5
Control characters......................32
CONTROL key............................ 26
Control statements........................7
COPY...39
COS ...57
CP/M...2
CREAL..48
Cursor keys 32, 38

DATA ..21
Decay... 123
DEFINT ...47
DEFREAL..................................... 47
DEFSTR ...47
DIM..75

DRAW...................................... Ill
DRAWR................................... Ill

Edges... 85
ENT.. 126
ENV ... 124
Envelope (sound)................... 123
ERL.. 72
Error taps......................................72
EVERY.................................... 70
EXP.. 52
Exponential.................................. 46

Fibonacci.................................. 61
FIX.. 48
FRE.. 67
Frequency............................... 120
Functions statements10

GOSUB..60
Graph ..85
Graphic statements10

Heuristic...91
HEXS... 65
High level..4
High resolution...................... 110
HIMEM ...67

I/O functions................................14
INK.. 36
INKEY.. 28
INKEYS ...27
INPUT..26
Input/Output statements 9
Insertion sort............................... 97
INT.. 48
Integer..46
Interpreter..5
Interrupt...72

KEY DEF29

LEFTS .. 18
LEN...18
LINE INPUT 27

137

Linked List...................... ... 79 RESUME............................... . . 72
LNR 90 RIGHTS 18
LOCATE 35 Ring 82
LOG 53 RND..................................... . . 49
LOGIO............................... ... 53 ROM..................................... ... 2
LOWERS............................ ... 20 ROUND 48
LRN 90

SGN 54
Master file......................... . . 102 Shell sort 98
Mathematical functions . 12, 52 SHIFT key............................ . . 26
MAX.................................. ... 48 Simulation............................ . . 61
MEMORY......................... ... 67 SIN.. . . 57
Memory map................... ... 66 Sorting.................................. . . 95
Menus............................... ... 37 SOUND 120
MID$................................... ... 19 Sound interrupt 128
MIN 48 SPACES 20
MODE............................... ... 36 SPC.. . . 34

SPEED INK......................... . . 41
NLR 90 SPEED KEY 29
Nodes 85 SQ .. . 127
Numeric functions 12, 47 SQR.. . . 53

Stack 83
ON BREAK...................... ... 72 STRS..................................... . . 20
ON ERROR...................... ... 72 Streams.................................. . . 41
OPENIN............................ . . 102 String..................................... . . 17
OPENOUT......................... . . 102 String functions 12
ORIGIN 114 STRINGS............................... . . 20

Structural programming 37
PAPER 36 Subscript............................... . . 75
PEEK.................................. . . . 67 Sustain.................................. . 124
PEN 21............................... . . . 36 SYMBOL............................... . 108
Pitch.................................. . . 119 SYMBOL AFTER............... . 108
Pixel 35 System commands............ ... 6
PLOT.................................. . . Ill System functions............... . . 14
Pointer (in lists)............ . . . 79 System software............... ... 2
POKE.................................. . . . 67
Pop (stack) 83 TAB.. . . 34
PRINT...................... 17 TAG 116
PRINT............................... . . . 30 TAGOFF............................... . 116
PRINT USING 31 TAN 58
PRINT zones................... . . . 31 TEST..................................... . 115
Push (stack)...................... . . . 83 TESTR 115

Three dimensions............ . 113
Queue............................... . . . 84 TIME..................................... . . 69
Quick sort......................... . . . 99 Transaction file.................. . 102

Traversal (tree).................. . . 90
RAM..................................2 Tree.. . . 87
Random numbers 49 Trigonometric functions 56
RANDOMIZE................... . . . 50
Real..................................... . . . 46
Recursion 60 UPPERS 20
RELEASE 121 User defined characters . . . 107

138

VAL ...20
Variance.. 49
Volume 119, 123

White Noise 122
Windows.. 42

XPOS.. Ill

YPOS.. Ill

Z80 processor................................. 1
Z80A...1

139

Join the Winning
Team!

Sigma Press have an enviable reputation for producing a top-class range of
computer books. Soon there'll be over a hundred, spanning all aspects of
computing from BASIC to Artificial Intelligence. We concentrate on the upper-end
of the market, so that even our books on very popular micros tend to emphasise
techniques and applications other than collections of games.

Perhaps you could write a book for us. If so, write to the publisher, Graham Beech
at the address below for full details - including a helpful advice sheet on how to
submit a synopsis of your book in the best possible way.

We are interested in all aspects of computing - after all, we ourselves are computer
enthusiasts! Dealing with Sigma is dealing with someone who understands your
subject - someone who can advise you on what to emphasise in your book to make
it a success. That's so much better than dealing with a multinational corporation!

Sigma work with technology, not against it. So, we welcome authors who submit
manuscripts on word-processor disks from which we typeset automatically. This
is just one of the methods we use to get your book on the market in the shortest
possible time.

Marketing and distribution is, of course, of the highest calibre - through John
Wiley & Sons Ltd., who are a well-known international publisher and with whom
we have worked for several years with great success.

So, when you want your book to be a success, just write to:

Graham Beech
Sigma Press
5 Alton Road,
Wilmslow,
Cheshire.
SK9 5 DY.

or, telephone: 0625 - 531035

140

Easily the Best -
for you and your 464!

A book has got to be really good to gain approval from AMSOFT, the computer
products division of AMSTRAD. Just one glance through this spectacular new
book by our top-selling author will tell you why its so good, and why every 464
owner needs it by his computer as a constant companion.

The book assumes that you have got your 464 working, and have already done
some simple programming. But, even at a simple level, the organisation of the
book is attractive as it opens with a description of how the 464 works, how it
communicates with external devices, and a quick summary of BASIC. There is
a comprehensive reference section for you to find an explanation of any BASIC
command or keyword in the Amstrad's repertoire.

Other important sections of the book cover: Strings and characters; Input/
Output; Arithmetic; Memory Map; Time, Clocks and Interrupts; Data
Structures; Data Processing; Graphics; Sound.

The book contains FORTY complete programs ready-to-run on the 464, ranging
from very short ones to demonstrate how your 464 works, through to large,
challenging programs that are themselves worth the cover price.

Programs are included for:

Code breaking;
Simple databases;
Sorting information into any order;
Drawing 3-D Pictures;
Business applications.

And, most spectacular of all, you'll find arcade-style space-games and a complete
SOUND SYNTHESISER program.

For the best in personal computing
read a Sigma book!

Sigma Press
5 Alton Road
Wilmslow
Cheshire
SK9 5DY 9

5
5

I

	The AMSTRAD CPC 464 advanced user guide
	Preface
	Contents
	List of programs
	1. Amstrad & Beyond: an introduction
	2. Strings and Character Manipulation
	3. Simple Input/Output Techniques
	4. Computers, Numbers and Mathematics
	5. The Amstrad Memory Map
	6. Time, Clocks and Interrupts
	7. Data Structures
	8. Data Processing
	9. Amstrad Graphics
	10. Sound and Synthesis
	Appendix A: ASCII Character Set
	Appendix B: Key Handler Code
	Appendix C: Colour Codes
	Appendix D: Error Codes
	Index
	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

