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PREFACE

This book has been designed as a complete self-contained text for
learning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach
specific programming techniques using (or working around) the speci­
fic characteristics of the Z80. This text covers the elementary to inter­
mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person
who wished to program using this microprocessor. Naturally, no book
will effectively teach how to program, unless one actually practices.
However, it is hoped that this book will take the reader to the point
where he feels that he can start programming by himself and can solve
simple or even moderately complex problems using a microcomputer.

This book is based on the author's experience in teaching more than
1000 persons how to program microcomputers. As a result, it is strongly
structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro­
ductory chapter may be skipped. For others who have never program­
med, the final sections of some chapters may require a second reading.
The book has been designed to take the reader systematically through
all the basic concepts and techniques required to build increasingly
complex programs. It is, therefore, strongly suggested that the ordering
of the chapters be followed. In addition. for effective results, it is
important that the reader attempt to solve as many exercises as possible.
The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is
really understood. Without doing the programming exercises, it will
not be possible to realize the full value of this book as an educational
medium. Several of the exercises may require time, such as the multi­
plication exercise. However, by doing those, you will actually program
and learn by doing. This is indispensable.

For those who have acquired a taste for programming when reaching
the end of this volume, a companion volume is planned: the "Z80
Applications Book."
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Other books in this series cover programming for other popular
microprocessors.

For those who wish to develop their hardware knowledge, it is
suggested that the reference books "Microprocessors" (ref. C20l) and
"Microprocessor Interfacing Techniques" (ref. C207) be consulted.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical or
other errors will be found. The author will be grateful for any comments
by alert readers so that future editions may benefit from their experience.
Any other suggestions for improvements, such as other programs
desired, developed, or found of value by readers, will be appreciated.

14



1

BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re­
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested. however,
that even the experienced reader look at the contents of this intro­
ductory chapter. Many significant concepts are presented here in­
cluding, for example. two's complement. BCD. and other represen­
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem. one must first devise a solution. This solution.
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim­
ple example of an algorithm is:

I-insert key in the keyhole
2-turn key one full turn to the left
3-seize doorknob
4-turn doorknob left and push the door

15



PROGRAMMING THE Z80

At this point. if the algorithm is correct for the type of lock in­
volved. the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human language). The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be "understood" by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro­
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program­
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
"data structures" which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms. but
also the skillful use of all the computer hardware resources, such as
internal registers, memory. and peripheral devices. plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. It is called a flowchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or "executable
statements." Diamonds are used for tests such as: If information

16



BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.

Flowcharting is a highly recommended intermediate step be­
tween the algorithm specification and the actual coding of the solu­
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with­
out having to flowchart. Unfortunately, it has also been observed
that 90070 of the population believes it belongs to this lO%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel­
dom see the necessity of drawing a flowchart. This usually results
in "unclean" or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

2

NO

(ROOM

TOO COW)

YES

(ROOM
TOO HOTl)

4

(OPTIONAL DElAY)

5

(OPTIONAL DElAY)

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant
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PROGRAMMING THE Z80

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un­
fortunately, in such cases the programs that they write will usual­
ly be hard to understand for anybody else without the documenta­
tion provided by flowcharts. As a result, it is universally recom·
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us exarnine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit("O" or "1 "). Because of the limitations
of conventional electronics, the only practical representation of infor­
mation uses two-state logic (the representation of the state "0" and
"1 "). The two states of the circuits used in digital electronics
are generally "on" or "off", and these are represented logi­
cally by the symbols "0" or "I". Because these circuits are
used to implement "logical" functions, they are called "binary
logic." As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the Z80 in particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha­
numerics.
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Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called "short instruction" is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the Z80 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore. a single-byte
instruction always has a potential for executing faster than a two­
or three-byte instruction. It will be seen later that this is an impor­
tant feature of the instruction set of any microprocessor and in
particular the Z80, where a special effort has been made to pro­
vide as many single-byte instructions as possible in order to im­
prove the efficiency of the program execution. However, the limita­
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be­
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
Z80, like any other microprocessor, comes equipped with a· fixed
instruction set. These instructions are defined by the manufac­
turer and are listed at the end of this book. with their code. Any
program will be expressed as a sequence of these binary instruc­
tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers. then
signed numbers. Le.. positive and negative numbers. and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system. the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2. and the left-most bit
represents 2 to the power 7 = 128.

b7b6b5b.b3b2btbo
represents

b727 + b626 + b525 + b.2· + b323 + b222 + bt2 1 + bo2°
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The powers of 2 are:

27 = 128. 26 = 64, 25 = 32, 24 = 16. 23 = 8, 22 = 4, 21 = 2, 2° = 1

The binary representation is analogous to the decimal representa­
tion of numbers. where "123" represents:

1 X 100 = 100
+ 2 X 10 = 20
+3X 1= 3

= 123

Note that 100 = 102
• 10 = 101

• 1 = 10°.
In this "positional notation," each digit represents a power of 10.
In the binary system. each binary digit or "bit" represents a power
of 2. instead of a power of 10 in the decimal system.

Example: "00001001" in binary represents:

1 X 1 = 1 (2°)
OX 2 = 0 (2 1

)

o X 4 = 0 (22
)

1 X 8 = 8 (2 3
)

o X 16 = 0 (2 4
)

o X 32 = 0 (25
)

o X 64 = 0 (26
)

o X 128 = 0 (27
)

in decimal: = 9

Let us examine some more examples:

"10000001" represents:

1 X 1 = 1
OX 2= 0
OX 4= 0
OX 8= 0
o X 16 = 0
o X 32 = 0
o X 64 = 0
1 X 128 = 128

in decimal: = 129

"10000001" represents, therefore, the decimal number 129.
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By examining the binary representation of numbers. you will
understand why bits are numbered from 0 to 7. going from right to
left. Bit 0 is "bo" and corresponds to 2°. Bit 1 is "bl" and cor­
responds to 21

• and so on.

Decimal Binary Decimal Binary

0 00000000 32 00100000
1 00000001 33 00100001
2 00000010 ·3 00000011 ·4 00000100 ·5 00000101 63 00111111
6 00000110 64 01000000
7 00000111 65 01000001
8 00001000 ·
9 00001001 ·

10 00001010 127 01111111
11 00001011 128 10000000
12 00001100 129 10000001
13 00001101
14 00001110 ·15 00001111
16 00010000 ·
17 00010001 ···· 254 11111110
31 00011111 255 11111111

Fig. 1.2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of "11111100"?
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Decimal to Binary

Conversely, let us compute the binary equivalent of "11"
decimal:

11 -;.- 2 = 5 remains 1 - 1
5 -;.- 2 = 2 remains 1 - 1
2-;.-2= 1 remains 0-0
1 -;.- 2 =0 remains 1 - 1

(LSB)

(MSB)

0+0= 0
0+ 1= 1
1+0= 0
1+ 1=(1) 0

The binary equivalent is 1011 (read right-most column from bot­
tom to top).
The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of 0 is obtained.

Exercise 1.2: What is the binary for 257?

Exercise 1.3: Convert 19 to binary, then back to decimal.

Operating on Binary Data

The arithmetic rules for binary numbers are straightforward.
The rules for addition are:

where (1) denotes a "carry" of 1 (note that "10" is the binary
equivalent of "2" decimal). Binary subtraction will be performed
by "adding the complement" and will be explained once we learn
how to represent negative numbers.

Example:

(2) 10
+(1) +01

=(3) 11

Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column:

10
+01

(0 + 1 = 1. No carry.'
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Adding the next column:

10
+01

11 (l + 0 =1. No carry.'

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010
+0001

=0011

(2)
(1,

(3)

0011
+0001

=0100

(3)
(1)

(4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (11 0
A carry of 1 is generated. which must be added to the next bits:

001 - column 0 has just been added
+000 -
+ 1 (carry)

= (Ii 0 - where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example:

0111 (7)
+0011 + (3)

1010 =(10)

In chis example. a carry is again generated. up to the left-most co­
lumn.

Exercise 1.5: Compute the result of:

1111
+0001

=?
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Does the result hold in four bits?

With eight bits. it is therefore possible to represent directly the
numbers "00000000" to "11111111," i.e., "0" to "255". Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second. the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in­
dicate the sign of the number. Traditionally. "0" is used to denote
a positive number while" 1" is used to denote a negative number.
Now "11111111" will represent -127, while "01111111" will
represent + 127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127.

Example: "0000 0001" represents +1 (the leading "0" is "+".
followed by "000 0001" = 11.

"10000001" is -1 (the leading "1" is "-").

Exercise 1.6: What is the representation of "-5" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers. it will be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from -32K to
+32K in signed binary (1K in computer jargon represents 1.024).
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 215 = 32K. If this magnitude is still
too small. we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter­
nally to represent them. This is why most simple BASICs. and
other languages, provide only a limited precision for integers. This
way. they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC. or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
Weare going to attempt performing an addition in the signed
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binary representation which we have introduced. Let us add" -5"
and "+7".

+7 is represented by
-5 is represented by

The binary sum is :

00000111
10000101

10001100, or -12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de­
pending on the sign. This results in increased complexity and re­
duced performance. In other words, the binary addition of signed
numbers does not "work correctly." This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the two's complement
representation, which will be used instead of the signed binary
representation. In order to introduce two's complement let us first
introduce an intermediate step: one's complement.

One's Complement

In the one's complement representation, all positive integers are
represented in their correct binary format. For example "+3" is
represented as usual by 00000011. However, its complement" -3"
is obtained by complementing every bit in the original representa­
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a O. In our example, the one's complement representation of "-3"
will be 11111100.

Another example:

+2 is 00000010
-2 is 11111101

Note that, in this representation, positive numbers start with a
"0" on the left, and negative ones with a "1" on the left.

Exercise 1.7: The representation of "+6" is ."oo110סס0" What is
the representation of "-6" in one's complement?

As a test, let us add minus 4 and plus 6:
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-4 is 11111011
+6 is 00000110

(1) 00000001 where (1) indicates a
carry

The "correct result" should be "2", or "00000010".

Let us try again:

The sum is:

- 3 is 11111100
- 2 is 11111101

(1) 00000001

or "1," plus a carry. The correct result should be "- 5." The repre­
sentation of " - 5" is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out "correctly." We will use still another representa­
tion. It is evolved from the one's complement and is called the
two's complement representation.

Two's Complement Representation

In the two's complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one's com­
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is
obtained by first computing the one's complement, and then ad­
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one's com­
plement representation is 11111100. The two's complement is ob­
tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011
+(5) +00000101

=(8) =00001000

The result is correct.
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Let us try a subtraction:

(3 00000011
(-5 +11111011

=11111110

Let us identify the result by computing the two's complement:

the one's complement of 11111110 is
Adding 1

therefore the two's complement is

00000001
+ 1

00000010 or +2

Our result above. "11111110" represents "-2". It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two's complement works!

Exercise /.8: What is the two's complement representation of
"+127"?

Exercise /.9: What ~s the two's complement representation of
"-/28 "?

Let us now add +4 and -3 (the subtraction is performed by add­
ing the two's complement):

+4 is 00000100
-3 is 11111101

The result is: (II 00000001

If we ignore the carry. the result is 00000001, Le., "I" in decimal.
This is the correct result. Without giving the complete mathe­
matical proof. let us simply state that this representation does
work. In two's complement, it is possible to add or subtract signed
numbers regardless of the sign. Using the usual rules of binary addi­
tion, the result comes out correctly, including the sign. The carry
is ignored. This is a very significant advantage. If it were not the
case, one would have to correct the result for sign every time. caus­
ing a much slower addition or subtraction time.

For the sake of completeness. let us state that two's complement
is simply the most convenient representation to use for simpler
processors such as microprocessors. On complex processors, other
representations may be used. For example, one's complement may
be used. but it requires special circuitry to "correct the result."
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From this point on, all signed integers will implicitly be represented
internally in two's complement notation. See Fig. 1. 3 for a table of
two's complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which one may represent in two's complement notation, using only
one byte?

Exercise 1.11: Compute the two's complement of 20. Then com­
pute the two's complement of your result. Do you find 20 again?

The following examples will serve to demonstrate the rules of two's
complement. In particular. C denotes a possible carry (or borrow)
condition. (It is bit 8 of the result.)

V denotes a two's complement overflow, Le.. when the sign of the
result is changed "accidentally" because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry "C" and the overflow
"V".

The Carry C

Here is an example of a carry:

(128) 10000000
+(129) + 10000001

(257) = (1) 00000001

where (1) indicates a carry.

The result requires a ninth bit (bit "8", since the right-most bit is
"0"). It is the carry bit.

If we assume that the carry is the ninth bit of the result. we
recognize the result as being 100000001 = 257.

However. the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, only bits 0 to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
carry means either storing it somewhere (with a special instruc­
tion). or ignoring it, or deciding that it is an error (if the largest
authorized result is "11111111").
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+
2's complement 2's complement

code code

I
+ 127 01111111 -128 10000000
+ 126 01111110 -127 10000001
+ 125 01111101 126 10000010
· .. -125 10000011

· ..
+65 01000001 65 10111111
+64 01000000 -64 11000000
+63 00111111 -63 11000001
· .. · .. !

+33 00100001 -33 11011111
+32 00100000 32 11100000
+31 00011111 -31 11100001
· .. · ..
+ 17 00010001 -17 11101111
+16 00010000 -16 11110000
+ 15 00001111 -15 11110001
+14 00001110 -14 11110010
+ 13 00001101 13 11110011
+12 00001100 -12 11110100
+ II 00001011 - I I 11110101
+10 00001010 10 11110110
+9 00001001 -9 llllOl! I
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -5 11111011
+4 00000100 I -4 11111100
+3 00000011 I -3 11111101
+2 00000010 -2 11111110
+1 00000001 I 11I11I11
+0 00000000

Fig. 1.3: 2's Complement Table
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Overflow V

Here is an example of overflow:

bit 6
bit 7 ,~

01000000
+01000001

= 10000001

(64)
+(65)

=(-127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, "by accident." This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111
+ 11111111

(-1)
+(-1)

=(-2)=(1) 11111110
'(

carry

In this case. an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have
examined in the preceding section). The rules of two's complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000
+ 10111111

(-64)
(-65)

(+127)=(1) 01111111
'(

carry

This time. there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect. as bit 7
has been changed. An overflow condition should be indicated.

30



BASIC CONCEPTS

Overflow will occur in four situations:

I-adding large positive numbers
2-adding large negative numbers
3-subtracting a large positive number from a large negative

number
4-subtracting a large negative number from a large positive

number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and called a "flag," will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, i.e., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit;. Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re­
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Overflow

The carry and the overflow bits are called "flags." They are pro­
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or "status"
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = O. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.,
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Positive-Positive

00000110 (+6)
+ 00001000 (+8)

= 00001110 (+14) V:O C:O

(CORRECT)

Positive-Positive with Overflow

01111111 (+127
+ 00000001 (+ 1

= 10000000 (-128) V:1 C:O

The above is invalid because an overflow has occurred.

(ERROR)

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (-2)

=(1)00000010 (+2)

(CORRECT)

V:o C:1 (disregard)

Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (-4)

= 11111110 (-2)

(CORRECT)

Negative-Negative

11111110 (-2)
+ 11111010 (-4)

=(1)11111010 (-6)

(CORRECT)

V:o

V:o

C:o

C: 1 (disregard)

Negative-Negative with Overflow

10000001
+ 11000010

= (l)01000011

(ERROR)

32
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This time an "underflow" has occurred, by adding two large
negative numbers. The result would be -189, which is too large to
reside in eight bits.

Exercise 1.12: Complete the following additions. Indicate the
result. the carry C, the overflow V, and whether the result is correct
or not:

10111111 (_I
+ 11000001 (_)

= V:__ C:__
o CORRECT 0 ERROR

00010000 (_)
+01000000 (-I
= V:__ C:__
o CORRECT 0 ERROR

11111010 (_I
+11111001 (_)

= V:__ C:__
o CORRECT 0 ERROR

01111110 (_)
+00101010 (_I

= V:__ C:__
o CORRECT 0 ERROR

Exercise 1.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently. it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes using two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the processor we will use operates internally on eight bits
at a time. However. this restricts us to the numbers in the range
-128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may
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then be used. For example. let us examine a 16-bit. "double-pre­
cision" format:

00000000 00000000 is "0"
00000000 00000001 is "1"

01111111 11111111 is "32767"
11111111 11111111 is "-1"
11111111 11111110 is "-2"

Exercise 1.15: What is the largest negative integer which can be
represented in a two's complement triple-precision format?

However. this method will result in disadvantages. When adding
two numbers, for example. we will generally have to add them
eight bits at a time. This will be explained in Chapter 3 (Basic Pro­
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number. even if it could be
represented with only eight bits. It is. therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two's complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significantI and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system. using a six digit
representation:

123456
X 1.2

246912
123456

= 148147.2

The result requires 7 digits! The "2" after the decimal point will be
dropped and the final result will be 148147. It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-
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plication will be shown in Chapter 4.
This fixed-format representation may cause a loss of precision,

but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en­
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits "0" through "9". It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-31. This will result later on in a po­
tential problem during additions and subtractions, which we will
have to solve. Since only four bits are needed to encode a BCD

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 0 1000 8
0001 I 1001 9
0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
0101 5 IIOJ unused
OJ 10 6 1110 unused
0111 7 111I unused

Fig. 1.4: BCD Table
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digit, two BCD digits may be encoded in every byte. This is called
"packed BCD. "

As an example, "00000000" will be "00" in BCD. "10011001"
will be "99".

A BCD code is read as follows:

0010 0001

BCD digit "2" ...J J
BCD digit "1" .....'----­
BCD number "21"

Exercise 1.16: What is the BCD representation for "29"? "91 "?

Exercise 1.17: Is "10100000" a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con­
ventions may vary.

Here is an example of a representation for multibyte BCD m­
tegers:

3 + 2 2 ] (3 bytes)

• i~
number ~

number "221"

of digits
(up to 255; sign

This represents +221
(The sign may be represented by 0000 for +, and 0001 for -, for
example.,

Exercise 1.18: Using the same convention, represent "-23123".
Show it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for "222" and "111 ", then for the re­
sult of222 X 111. (Compute the result by hand, then show it in the
above representation,)

The BCD representation can easily accommodate decimal
numbers.
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For example. +2.21 may berepresented by:

3 2 + 2 2 1

~ ~ ~
~

221

3 digits "." is on the +
left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode "9999" in
BCD? And in two's complement?

We have now solved the problems associated with the represen­
tation of integers. signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers. with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for­
mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits. the representation
will normalize all the numbers.

For example. "0.000123" wastes three zeros on the left of the
number. which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in .123 X 10-3

•

".123" is called a normalized mantissa, "-3" is called the expo­
nent. We have normalized this number by eliminating all the meaning­
less zeros on the left of it and adjusting the exponent.

Let us consider another example:

22.1 is normalized as .221 x 102

or M X lOE where M is the mantissa, and E is the exponent.
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I t can be readily seen tha t a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre­
sented mathematically by:

.1 ~ M < 1 or 10-1 ~ M < 100

Similarly, in the binary representation:

2-1~M<2° (or .5~M<ll

Where M is the absolute value of the mantissa (disregarding the
sign).

For example:

111.01 is normalized as: .11101 X 23•

The mantissa is 111Ol.

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen­
tation appears below.

I : ! 5 51! A
EXP _5_1-- M__A.L..;_N__T ...I. _

31

1<
24 23 16 15 8 7 o

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man­
tissa will be represented in two's complement. As a result, the
maximum exponent will be - 128. "S" in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two's complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man­
tissa.
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Exercise 1.21: How many decimal digits can the mantissa repre­
sent with the 23 bits?

This is only one example of a floating point representation. I t is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation.

We have now explored the problems associated with the rep­
resentation of numbers and we know how to represent them in in­
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com­
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world. the
ASCII Code. and the EBCDIC Code. ASCII stands for "American
Standard Code for Information Interchange," and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26
letters of the alphabet for both upper and lower case, plus 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.l-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech­
nique for verifying that the contents of a byte have not been ac­
cidentally changed. The number of l's in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
i.e. writing the eighth bit (the left-most) so that the total number of
l' s in the byte is odd.

Example: letus compute the parity bit for "0010011" using even
parity. The number of 1's is 3. The parity bit must therefore be a 1
so that the total number of bits is 4. i.e. even. The result is
10010011. where the leading 1 is the parity bit and 0010011 iden­
tifies the character.

39



PROGRAMMING THE l80

The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used "as is," i.e. without parity, by adding a 0 in the left-most
position. or else with parity. by adding the appropriate extra bit on
the left.

Exercise 1.2J' Compute the 8-bit representation of the digits "0"
through "9", using even parity. (This code will be used in applica­
tion examples of Chapter 8.)

Exercise 1.23: Same for the letters "A" through "F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is "0"), indicate the binary contents of the 4 bytes below:

HEX MSD 0 1 2 3 4 5 6 7

LSD BITS 000 001 010 011 100 101 110 111
0 0000 NUL DLE SPACE 0 @ P - P
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V f v
7 0111 BEL ETB , 7 G W 9 w
8 1000 BS CAN ( 8 H X h x
9 1001 HT EM ) 9 I Y i Y
A 1010 LF SUB * J Z j z
B 1011 VT ESC + K [ k {
C 1100 FF FS < L \ I --
D 1101 CR GS = M ] m }
E 1110 SO RS > N /\ n ,..,
F 1111 81 US I ? 0 -E- 0 DEL

Fig. 1.6: ASCII Conversion Table
(see Appendix B for abbreviations)

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.
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We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex­
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre­
sented to the user, i.e. generally to the programmer. Information
may be presented externally in essentially three formats: binary,
octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits (O's or 1's). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam­
ple is provided by Light Emitting Diodes (LEDs) which are essen­
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter­
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus "9" is much
easier to understand or remember than" 1001 ". More convenient
representations have been devised, which improve the person­
machine interface.

2. Octal and Hexadecimal

"Octal" and "hexadecimal" encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be­
tween 0 and 7.

"Octal" is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7:
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binary octal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
III 7

Fig. 1.7: Octal Symbols

100 100" binary is represented by;
'f Y
4 4

For example, "00
'f
o

or "044" in octaL

Another example: 11

'f
3

III 111 is:

'f 'f
7 7

or "377" in octaL

Conversely, the octal "211" represents:

010 001 001

or "10001001" binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en­
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D, E, F. For example, "0000" is represented by "0", "0001" is
represented by "1" and "1111" is represented by the letter "F"
(see Fig. 1-8).
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DECIMAL BINARY HEX OCTAL

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 I 5

6 0110 6 6

7 0111 7 7

8 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100

I
r- 14\J

13 1101 0 15

14 1110 E 16

15 1111 F 17

Fig. 1.8: Hexadecimal Codes
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Example: 1010 0001 in binary is represented by---- ----A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
"10101010?'

Exercise 1.26: Conversely, what is the binary equivalent of "FA"
hexadecimal?

Exercise 1.27: What is the octal of "01000001"?

Hexadecimal offers the advantage of encoding eight bits into on­
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num­
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.' Unfortu­
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be
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available on the less expensive systems. An alternative type of rep­
resentation is then used, and in this case hexadecimal is the domi­
nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.l

We have seen how to represent information internally and exter­
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises

Exercise /.28: What is the advantage of two's complement over
other representations used to represent signed numbers?

Exercise /.29: How would you represent "1024" in direct binary?
Signed binary? Two's complement?

Exercise /.30: What is the V-bit? Should the programmer test it
after an addition or subtraction?

Exercise /.3/: Compute the two's complement of "+16", "+17",
"+18", "-16", "-17", "-18".

Exercise /.32: Show the hexadecimal representation of the follow­
ing text, which has been stored internally in ASCII format, with
no parity: = "MESSAGE".
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Z80 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary to
understand in detail the internal structure of the processor that one is
using. However, in order to do efficient programming, such an
understanding is required. The purpose of this chapter is to present the
basic hardware concepts necessary for understanding the operation of
the Z80 system. The complete microcomputer system includes not only
the microprocessor unit (here the Z80), but also other components.
This chapter presents the Z80 proper, while the other devices (mainly
input/output) will be presented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the Z80.
We will examine, in particular, the various registers. We will then study
the program execution and sequencing mechanism. From a hardware
standpoint, this chapter is only a simplified presentation. The reader in­
terested in gaining detailed understanding is referred to our book ref.
C201 ("Microprocessors," by the same author).

The Z80 was designed as a replacement for the Intel 8080, and to of­
fer additional capabilities. A number of references will be made in this
chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1.
The microprocessor unit (MPU), which will be a Z80 here, appears on
the left of the illustration. It implements the functions of a central­
processing unit (CPU) within one chip: it includes an arithmetic-logical
Unit (ALU), plus its internal registers, and a control unit (CU), in
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charge of sequencing the system. Its operation will be explained in this
chapter.

PORT A

d

~
lao

PQRT B

RST

T

dv GND

Fig. 2.1: Standard Z80 System

The MPU creates three buses: an 8-bit bidirectional data bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a control bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele­
ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in­
put/output chip. (An input/output chip is a component in charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which will
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The control bus carries tile various synchronization signals required
by the system.

Having described the purpose of buses, let us now connect the addi­
tional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied by
a clock and a crystal. In most "older" microprocessors, the clock-oscil­
lator is external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-
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nal to the system. The crystal and the clock appear on the left of the
MPU box in Figure 2.1.

Let us now turn our attention to the other elements of the system.
Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the
system. The advantage of the ROM memory is that its contents are per­
manent and do not disappear whenever the system is turned off. The
ROM, therefore, always contains a bootstrap or a monitor program
(their function will be explained later) to permit initial system opera­
tion. In a process-control environment, nearly all the programs will
reside in ROM, as they will probably never be changed. In such a case,
the industrial user has to protect the system against power failures; pro­
grams must not be volatile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests his program), most of the
programs will reside in RAM so that they can be easily changed. Later,
they may remain in RAM, or be transferred into ROM, if desired.
RAM, however, is volatile. Its contents are lost when power is turned
off.

The RAM (random-access memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will
typically be small (for data only). On the other hand, in a program­
development environment, the amount of RAM will be large, as it will
contain programs plus development software. All RAM contents must
be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used
interface chip is the PIO or parallel input/output chip. It is the one
shown on the illustration. This PIO, like all other chips in the system,
connects to all three buses and provides at least two 16-bit ports for
communication with the outside world. For more details on how an ac­
tual PIO works, refer to book C201 or, for specifics of the Z80 system,
refer to Chapter 7 (Input/Output Devices).

All the chips are connected to all three buses, including the control
bus. However, to clarify the illustration, the connections between the
control bus and these various chips are not shown on the diagram.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we could use combina­
tion chips, which may include both PIO and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-
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ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finally, some signals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader in­
terested in specific assembly and interfacing techniques is referred to
book C207 "Microprocessor Interfacing Techniques."

INSIDE A MICROPROCESSOR

The large majority of all microprocessor chips on the market today
implement the same architecture. This "standard" architecture will be
described here. It is shown in Figure 2.2. The modules of this standard
microprocessor will now be detailed, from right to left.

EXTERNAL DATA BUS

SP PC

---------­8 BIT DATA
REGISTERS

EXTERNAL
ADDRESS BUS

(16BITS)

Fig. 2.2: "Standard" Microprocessor Architecture

The control box on the right represents the control unit which syn­
chronizes the entire system. Its role will be clarified within the re­
mainder of this chapter.
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The ALU performs arithmetic and logic operations. A special
register equips one of the inputs of the ALU, the left input here. It is
called the accumulator. (Several accumulators may be provided.) The
accumulator may be referenced both as input and output (source and
destination) within the same instruction.

The ALU must also provide shift and rotate facilities.
A shift operation consists of moving the contents of a byte by one or

more positions to the left or to the right. This is illustrated in Figure
2.3. Each bit has been moved to the left by one position. The details of
shifts and rotations will be presented in the next chapter.

SHIFT LEFT

11

ROTATE LEFT

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as illustrated in Figure 2.2, or
may be on the accumulator input.

To the left of the ALU, the flags or status register appear. Their role
is to store exceptional conditions within the microprocessor. The con­
tents of the flags register may be tested by specialized instructions, or
may be read on the internal data bus. A conditional instruction will
cause the execution of a new program, depending on the value of one of
these bits.

The role of the status bits in the 280 will be examined later in this
chapter.

so



zao HARDWARE ORGANIZATION

Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc­
tions. This is essential in understanding the way a pr<. .sram is being ex­
ecuted. Such a chart for the Z80 is shown in the Appendix.

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the
registers of the microprocessor appear. One can distinguish the general
purpose registers and the address registers.

The General-Purpose Registers

General-purpose registers must be provided in order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which it is reasonable to provide within an instruction, the number
of (directly addressable) registers is usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MaS flip-flops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually labelled from 0 to n. The role of these
registers is not defined in advance: they are said to be "general
purpose." They may contain any data used by the program.

These general-purpose registers will normally be used to store eight­
bit data. On some microprocessors, facilities exist to manipulate two of
these registers at a time. They are then called "register pairs." This ar­
rangement facilitates the storage of 16-bit quantities, whether data or
addresses.

The Address Registers

Address registers are 16-bit registers intended for the storage of ad­
dresses. They are also often called data counters or pointers. They are
double registers, i.e., two eight-bit registers. Their essential
characteristic is to be connected to the address bus. The address
registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4.
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The only way to load the contents of these 16-bit registers is via the
data bus. Two transfers will be necessary along the data bus in order to
transfer 16 bits. In order to differentiate between the lower half and the
higher half of each register, they are usually labelled as L (low) or H
(high), denoting bits 0 through 7, and 8 through 15 respectively. This
label is used whenever it is necessary to differentiate the halves of these
registers. At least two address registers are present within most
microprocessors. "MUX" in Fig. 2.4 stands for multiplexer.

DATA BUS (8)

INDEX I REGISTER

STACK 1 POIlITER

PROGRAM I COUNTER

16-BIT

ADDRESS REGISTERS

ADDRESS BUS (16)

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contains
the address of the next instruction to be executed. The presence of the
program counter is indispensable and fundamental to program execu­
tion. The mechanism of program execution and the automatic sequenc­
ing implemented with the program counter will be described in the next
section. Briefly, execution of a program is normally sequential. In
order to access the next instruction, it is necessary to bring it from the
memory into the microprocessor. The contents of the PC will be
deposited on the address bus, and transmitted towards the memory.
The memory will then read the contents specified by this address and
send back the corresponding word to the MPU. This is the instruction.
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In a few exceptional microprocessors, such as the two-chip F8, there is
no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct­
lyon the memory chip, for reasons of efficiency.

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in "software," i.e., within the memory. In order
to keep track of the top of this stack within the memory, a 16-bit
register is dedicated to the stack pointer or SP. The SP contains the ad­
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (IX)

Indexing is a memory-addressing facility which is not always pro­
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data in the memory with a single instruction. An index register will
typically contain a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace­
ment). In short, indexing is used to access any word within a block of
instructions.

The Stack

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first element introduced into the stack is
always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There is a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest) is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normal
use, a stack is only accessible via two instructions: "push" and "pop"
(or "pull"). The push operation results in depositing one element on
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top of the stack (two in the case of the Z80). The pull operation consists
of removing one element from the stack. In the case of a
microprocessor, it is the accumulator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of the
stack into the accumulator. Other specialized instructions may exist to
transfer the top of the stack between other specialized registers, such as
the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program­
ming facilities within the computer system: subroutines, interrupts, and
temporary data storage. The role of the stack during subroutines will be
explained in Chapter 3 (Basic Programming Techniques). The role of
the stack during interrupts will be explained in Chapter 6 (Input/Out­
put Techniques). Finally, the role of the stack in saving data at high
speed will be explained during specific application programs.

We will simply assume at this point that the stack is a required facility
in every computer system. A stack may be implemented in two ways:

1. A fixed number of registers may be provided within the micro­
processor itself. This is a "hardware stack." It has the advantage of
high speed. However, it has the disadvantage of a limited number of
registers.

2. Most general-purpose microprocessors choose another approach,
the software stack, in order not to restrict the stack to a very small
number of registers. This is the approach chosen in the Z80. In the soft­
ware approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, i.e., the address of the top element
of the stack (or, sometimes, the address of the top element of the stack
plus one). The stack is then implemented as an area of memory. The
stack pointer will therefore require 16 bits to point anywhere in the
memory.

BASE

STACK

7 MEMORY 0

D
MICROPROCESSORr--------...,i REGISTER I

I I
I I
I I PUSH

I
I
I POP~ _

I
I
I
I
L... .J

Fig. 2.5: Tile Two-Stack Manipulation Instructions
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The Instruction Execution Cycle

Let us refer now to Figure 2.6. The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data. Here, we
will fetch one instruction from the memory to illustrate the role of the
program counter. We assume that the program counter has valid con­
tents. It now holds a I6-bit address which is the address of the next in­
struction to fetch in the memory. Every processor proceeds in three
cycles:

I-fetch the next instruction
2-decode the instruction
3-execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
memory (on the address bus). Simultaneously, a read signal may be
issued on the control bus of the system, if required. The memory will
receive the address. This address is used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address it has received, through internal decoders, and will select
the location specified by the address. A few hundred nanoseconds later,
the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word is the instruction
that we want to fetch. In our illustration, this instruction will be
deposited on top of the data bus.

Let us briefly summarize the sequencing: the contents of the program
counter are output on the address bus. A read signal is generated. The
memory cycles, and perhaps 300 nanoseconds later, the instruction at
the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register.
The IR is the instruction register: it is eight-bits wide and is used to con­
tain the instruction just fetched from the memory. The fetch cycle is
now completed. The 8 bits of the instruction are now physically in the
special internal register of the MPU, the IR register. The IR appears on
the left of Figure 2.7. It is not accessible to the programmer.
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MPU

PC

ADDRESS BUS

ROM/RAM

PC: INSTRUCTION

Fig. 2.6: .Fetching an Instruction from the Memory

Decoding and Execution

Once the instruction is contained in IR, the control unit of the
microprocessor will decode the contents and will be able to generate the
correct sequence of internal and external signals for the execution of the
specified instruction. There is, therefore, a short decoding delay fol­
lowed by an execution phase, the length of which depends on the nature
of the instruction specified. Some instructions will execute entirely
within the MPU. Other instructions will fetch or deposit data from or
into the memory. This is why the various instructions of the MPU re­
quire various lengths of time to execute. This duration is expressed as a
number of (clock) cycles. Refer to the Appendix for the number of

MEMORY

MPU
DATA BUS

o

SIGNALS

S6

Fig. 2.7: Automatic Sequencing
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cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in number of nanoseconds.

RN

•••

Rl
REGISTERS

Ril

EXTERNAL /'- ...I.Uu.lollolllllo...I/,Il,j,~illIi_ ....,

BUS

RESULT <DESTINATION) BUS

Fig. 2.8: Single-Bus Architecture

Fetching the Next Instruction

We have described how, using the program counter, an instruction
can be fetched from the memory. During the execution of a program,
instructions are fetched in sequence from the memory. An automatic
mechanism must therefore be provided to fetch instructions in se­
quence. This task is performed by a simple incrementer attached to the
program counter. This is illustrated in Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the program counter
contained the value "0", the value "0" would be output onthe address
bus. Then the contents of the program counter would be incremented
and the value" I" would be written back into the program counter. In
this way, the next time that the program counter is used, it is the in­
struction at address I that will be fetched. We have just implemented an
automatic mechanism for sequencing instructions.

It must be stressed that the above descriptions are simplified. In reali­
ty, some instructions may be two- or even three-bytes long, so that suc­
cessive bytes will be fetched in this manner from the memory. However,
the mechanism is identical. The program counter is used to fetch
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successive bytes of an instruction as well as to fetch successive instruc­
tions themselves. The program counter, together with its incrementer,
provides an automatic mechanism for pointing to successive memory,
locations.

INTERNAL DATA BUS

EXTERNAL
BUS

•••

R0 Rl

REGISTERS

Fig. 2.9: Execution of an Addition-RO into ACC

R0

INTERNAL DATA BUS

~...,..--~~~~~~

.~ ~

II ' ~

•Rl RN

REGISTERS

EXTERNAL
BUS

Fig. 2.10: Addition-Second Register Rl into ALU
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We will now execute an instruction within the MPU (see Figure 2.8).
A typical instruction will be, for example: RO = RO + Rl. This means:
"ADD the contents of RO and Rl, and store the results in RO." To per­
form this operation, the contents of RO will be read from register RO,
carried via the single bus to the left input of the ALU, and stored in the
buffer register there. R I will then be selected and its contents will be
read onto the bus, then transferred to the right input of the ALU. This
sequence is illustrated in Figures 2.9 and 2.10. At this point,
the right input of the ALU is conditioned by Rl, and the left
input of the ALU is conditioned by the buffer register, containing the
previous value of RO. The operation can be performed. The addition is
performed by the ALU, and the results appear on the ALU output, in
the lower right-hand corner of Fig. 2.11. The results wiII be deposited
on the single bus, and will be propagated back to RO. This means, in
practice, that the input latch of RO wiII be enabled, so that data can be
written into it. Execution of the instruction is now complete. The
results of the addition are in RO. It should be noted that the contents of
RI have not been modified by this operation. This is a general prin­
ciple: the contents of a register, or of any read/write memory, are not
modified by a read operation.

The buffer register on the left input of the ALU was necessary in
order to memorize the contents of RO, so that the single bus could be
used again for another transfer. However, a problem remains.

EXTERNAL INTERNAL DATA BUS
BUS C:~;Z:Z~W4@~~~~::ZZ~::;;;~-;::=:::;l

•••

U
Rl N

ACC + Rl- R0

Fig. 2.11: Result Is Generated and Goes into RO
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The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor­
rectly.

Question: What is the timing problem?

Answer: The problem is that the result which will be propagated out
of the ALU will be deposited back on the single bus. It will not pro­
pagate just in the direction of RO, but along all of the bus. In particular,
it will recondition the right input of the ALU, changing the result coming
out of it a few nanoseconds later. This is a critical race. The output of
the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possible which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register
could be placed on the output of the ALU, or on its input. It is usually
placed on the input of the ALU. Here it would be placed on its right in­
put. The buffering of the system is now sufficient for a correct opera­
tion. It will be shown later in this chapter that if the left register which
appears in this illustration is to be used as an accumulator (permitting
the use of one-byte long instructions), then the accumulator will require
a buffer too, as shown in Figure 2.13.

Fig. 2.12: The Critical Race Problem
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EXTERNAL INTERNAL DATA BUS
BUS /'------------:==:..:;.:,;.;.;.;...;;.;;.;;.---------,

R0

•••

Rl

REGISTERS

RN

Fig. 2.13: Two Buffers Are Required

INTERNAL ORGANIZATION OF THE Z80

The terms necessary in order to understand the internal elements of
the microprocessor have been defined. We will now examine in more
detail the Z80 itself, and describe its capabilities. The internal organiza­
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical
description of the device. Additional interconnections may exist but are
not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical unit (the
ALU) may be recognized by its characteristic "V" shape. The accumu­
lator register, which has been described in the previous section, is iden­
tified as A on the right input path of the ALU. It has been shown in the
previous section that the accumulator should be equipped with a buffer
register. This is the register labeled ACT (temporary accumulator).
Here, the left input of the ALU is also equipped with a temporary
register, called TMP. The operation of the ALU will become clear in the
next section, where we will describe the execution of actual instructions.
Theflags register is called" F" in the Z80,and is shown on the right of the

accumulator register. The contents of the flags register are essentially
conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers
labelled respectively A, A' and F, F'. This is because the Z80 is
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equipped internally with two sets of registers: A + F, and A' + F'.
However, only one set of these registers may be used at anyone time. A
special instruction is provided to exchange the contents of A and F with
A' and F'. In order to simplify the explanations, only A and F will be
shown on most of the diagrams which follow. The reader should
remember that he has the option of switching to the alternate register
set A' and F' if desired.

The role of each flag in the flags register will be described in Chapter
3 (Basic Programming Techniques).

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.
Each one includes six registers labeled B, C, D, E, H, L. These are the
general-purpose eight-bit registers of the Z80. There are two peculiari­
ties of the Z80 with respect to the standard microprocessor which has
been described at the beginning of this chapter.

First, the Z80 is equipped with two banks of registers, i.e., two iden­
tical groups of 6 registers. Only six registers may be used at anyone
time. However, special instructions are provided to switch between the
two banks of registers. One bank, therefore, behaves as an internal
memory, while the other one behaves as a working set of internal
registers. The possible uses of this special facility will be described in
the next chapter.

Conceptually, it will be assumed, for the time being, that there are
only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be ignored, in order to avoid confusion.

The MUX symbol which appears above the memory bank is an ab­
breviation for multiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register. However,
only one of these registers can be connected to the internal data bus at
anyone time.

A second characteristic of these six registers, in addition to being
general-purpose eight-bit registers, is that they are equipped with a con­
nection to the address bus. This is why they have been grouped in
pairs. For example, the contents of Band C can be gated simultaneous­
ly onto the 16-bit address bus which appears at the bottom of the illustra­
tion. As a result, this group of 6 registers may be used to store either
eight-bit data or else 16-bit pointers for memory addressing.

The third group of registers, which appears below the two previous
ones in the middle of Figure 2.14, contains four "pure" address
registers. As in any microprocessor, we find the program counter (PC)
and the stack pointer (SP). Recall that the program counter contains
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the address of the next instruction to be executed.
The stack pointer points to the top of the stack in the memory. In the

case of the Z80, the stack pointer points to the last actual entry in the
stack. (In other microprocessors, the stack pointer points just above the
last entry.) Also, the stack grows "downwards, "i.e. towards the lower
addresses.

This means that the stack pointer must be decremented any time a
new word is pushed on the stack. Conversely, whenever a word is
removed (popped) from the stack, the stack pointer must be in­
cremented by one. In the case of the Z80, the "push" and "pop"
always involve two words at the same time, so that the contents of the
stack pointer will be decremented or incremented by two.

Looking at the remaining two registers of this group of four registers,
we find a new type of register which has not been described yet: two
index-registers, labeled IX (Index Register X) and IY (Index Register
Y). These two registers are equipped with a special adder shown as a
miniature V-shaped ALU on the right of these registers in Figure 2.14.
A byte brought along the internal data bus may be added to the con­
tents of IX or IY. This byte is called the displacement, when using an in­
dexed instruction. Special instructions are provided which will
automatically add this displacement to the contents of IX or IY and
generate an address. This is called indexing. It allows convenient access
to any sequential block of data. This important facility will be des­
cribed in Chapter 5 on addressing techniques.

Finally, a special box labeled" ± I " appears below and to the left of
the block of registers. This is an increment/decrement. The contents of
any of the four registers belonging to the group we have just described
(the"pure-address" registers) may be automatically incremented. or
decremented every time they deposit an address on the internal address
bus. This is an essential facility for implementing automated program
loops, which will be described in the next section. Using this feature, it
will be possible to access successive memory locations conveniently.

Let us move now to the left of the illustration. One register pair is
shown, isolated on the left: I and R. The I register is called the interrupt­
page address register. Its role will be described in the section on inter­
rupts of Chapter 6 (Input/Output Techniques). It is used only in a
special mode where an indirect call to a memory location is generated in
response to an interrupt. The I register is used to store the high-order
part of the indirect address. The lower part of the address is supplied by
the device which generated the interrupt.
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The R register is the memory-refresh register. It is provided to refresh
dynamic memories automatically. Such a register has traditionally been
located outside the microprocessor, since it is associated with the
dynamic memory. It is a convenient feature which minimizes the
amount of external hardware for some types of dynamic memories. It will
not be used here for any programming purposes, as it is essentially a
hardware feature (see reference C207 "Microprocessor Interfacing
Techniques" for a detailed description of memory refresh techniques).
However, it is possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control
section of the microprocessor is located. From top to bottom, we find
first the instruction register IR, which will contain the instruction to be
executed. The IR register is totally distinct from the "I, R" register pair
described above. The instruction is received from the memory via the
data bus, is transmitted along the internal data bus and is finally
deposited into the instruction register. Below the instruction register ap­
pears the decoder which will send signals to the controller-sequencer
and cause the execution of the instruction within the microprocessor
and outside it. The control section generates and manages the control
bus which appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e., the data
bus, the address bus, and the control bus, propagate outside the
microprocessor through its pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure: 2.14.

All the logical elements of the Z80 have now been described. It is not
essential to understand the detailed operation of the Z80 in order to
start writing programs. However, for the programmer who wishes to
write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, it is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to
demonstrate the role and use of the internal registers and buses.
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INSTRUCTION FORMATS

The Z80 instructions are listed in the Appendix. Z80 instructions may
be formated in one, two, three or four bytes. An instruction specifies
the operation to be performed by the microprocessor. From a
simplified standpoint, every instruction may be represented as an op­
code followed by an optional literal or address field, comprising one or
two words. The opcode field specifies the operation to be carried out.
In strict computer terminology, the opcode represents only those bits
which specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it is con­
venient to call opcode the operation code itself, as well as any register
pointers which it might incorporate. This "generalized opcode" must
reside in an eight-bit word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long
(see Figure 2.15). However, the Z80 is equipped with additional indexed
instructions, which require one more byte. In the case of the Z80, op­
codes are, in general, one byte long, except for special instructions
which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In
such a case, the instruction will be a two-byte instruction, the second
byte of which is data (except for indexing, which adds an extra byte).

In other cases, the instruction might require the specification of an
address. An address requires 16 bits and, therefore, two bytes. In that
case, the instruction will be a three-byte or a four-byte instruction.

For each byte of the instruction, the control unit will have to perform
a memory fetch, which will require four clock cycles. The shorter the
instruction, the faster the execution.

A One-Word Instruction

One-word instructions are, in principle, fastest and are favored by
the programmer. A typical such instruction for the Z80 is:

LD r, r'

This instruction means: "Transfer the contents of register r' into r."
This is a typical "register-to-register" operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine's registers into
another one. Instructions referencing special registers of the machine,
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II-WORD
__GE_N_ERA_l_I_ZE_D_O_PC_O_DE__ INSTRN

3-WORD
OPT! ONAl DATA OR

ADDRESS

OPT! ONAl ADDRESS

Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a
special opcode.

After execution of the above instruction, the contents of r will be
equal to the contents of r'. The contents of r' will not have been
modified by the read operation.

Every instruction must be represented internally in a binary format.
The above representation "LD r,r' " is symbolic or mnemonic. It is
called the assembly-language representation of an instruction. It is
simply meant as a convenient symbolic representation of the actual
binary encoding for that instruction. The binary code which will repre­
sent this instruction inside the memory is: OlD DDS S S (bits 0 to 7).

This representation is still partially symbolic. Each of the letters S
and D stands for a binary bit. The three D's, "D DO", represent the
three bits pointing to the destination register. Three bits allow selection
of one out of eight possible registers. The codes for these registers ap­
pear in Figure 2.16. For example, the code for register B is "000", the
code for register C is "0 0 1", and so on.

Similarly, "S S S" represents the three bits pointing to the source
register. The convention here is that register r' is the source, and that
register r is the destination. The placement of the bits in the binary
representation of an instruction is not meant for the convenience of the
programmer, but for the convenience of the control section of the
microprocessor, which must decode and execute the instruction. The
assembly-language representation, however, is meant for the conve­
nience of the programmer. It could be argued that LO r,r' should really
mean: "Transfer contents of r into r'." However, the convention has
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been chosen in order to maintain compatibility with the binary
representation in this case. It is naturally arbitrary.

Exercise 2.]: Write below the binary code which will transfer the con­
tents of register C into register B. Consult Fig. 2.16 for the codes cor­
responding to C and B.

Another simple example of a one-word instruction is:

ADD A, r

This instruction will result in adding the contents of a specified
register (r) to the accumulator (A). Symbolically, this operation may be
represented by: A = A + r. It can be verified in Appendix C that the
binary representation of this instruction is:

10000SSS

were S S S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2.2:' What is the binary code of the instruction which will add
the contents of register D to the accumulator?

CODE REGISTER

o0 0 B

o 0 I C

o 1 0 D

o 1 1 E

1 0 0 H

101 l

110 - (MEMORY>

1 1 1 A

Fig. 2.16: The Register Codes

A Two-Word InstruCltion

ADD A, n

This simple two-word instruction will add the contents of the second
byte of the instruction to the accumulator. The contents of the second
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word of the instruction are said to be a "literaL" They are data and are
treated as eight bits without any particular significance. They could
happen to be a character or numerical data. This is irrelevant to the
operation. The code for this instruction is:

1 1 0 0 0 I 1 0 followed by the 8-bit byte "n"

This is an immediate operation. "Immediate," in most programming
languages, means that the next word, or words, within the instruction
contains a piece of data which should not be interpreted (the wayan op­
code is). It means that the next one or two words are to be treated as a
literal.

The control unit is programmed to "know" how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the possible
number of words for the instruction, the more complex it is for the con­
trol unit to decode.

A Three-Word Instruction

LD A, (nn)

The instruction requires three words. It means: "Load the ac­
cumulator from the memory address specified in the next two bytes of
the instruction." Since addresses are 16-bits long, they require two
words. In binary, this instruction is represented by:

o0 I 1 1 0 1 0:
Low address:
High address:

8 bits for the opcode
8 bits for the lower part of the address
8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z80

We have seen that all instructions are executed in three phases:
FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several clock cycles. The
Z80 executes each phase in one or more logical cycles, called a
"machine cycle." The shortest machine cycle lasts three clock cycles.

Accessing the memory requires four clock cycles. Since each instruc­
tion must be fetched first from the memory, the fastest instruction will
require four clock cycles. Most instructions will require more.

Each machine cycle is labeled as Ml, M2, etc., and will require three
or more clock cycles, or "states," labeled TI, T2, etc.
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The FETCH Phase

The FETCH phase of an instruction is implemented during the first
three states of machine cycle Ml; they are called Tl, T2, and T3. These
three states are common to all instructions of the microprocessor, as all
instructions must be fetched prior to execution. The FETCH
mechanism is the following:

Tl : PC OUT

The first step is to present the address of the next instruction to the
memory. This address is contained in the program counter (PC). As the'
first step of any instruction fetch, the contents of the PC are placed on
the address bus (see Figure 2.17). At this point, an address is presented
to the memory, and the memory address decoders will decode this ad­
dress in order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 10-' second) will elapse before the
contents of the selected memory location become available on the out-

D~TA BUS

16 TO MEMORY
~~~~~~~~CZZ~~~~~ADDRESS BUS

II L.§~~~~lcDHTROL
L.:::: ISIGUALS

Fig. 2.17: Instruction Fetch-(pC) Is Sent to the Memory
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put pins of the memory, which are connected to the data bus. It is standard
computer design to use the memory read time to perform an operation
within the microprocessor. This operation is the incrementation of the
program counter:

T2: PC = PC + I

While the memory is reading, the contents of the PC are incremented
by I (see Figure 2.18). At the end of state T2, the contents of the
memory are available and can be transferred within the micro­
processor:

T3 : INST into IR

nATA BUS

16
ADDRESS BUS

II ~~~~~~~~~~~I(ONTROLL.:: SIGIIALS

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases

During state T3, the instruction which has been read out of the
memory is deposited on the data bus and transferred into the instruc­
tion register of the Z80, where it will be decoded.
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16
ADDRESS BUS

L~~~~~~~~~~~~~~~~~~~5l COlITROLSIGIlALS

Fig. 2.19: The Instruction Arrives from the Memory into IR

It should be noted that state T4 of Ml will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to
decode and execute it. This will require at least one machine state, T4.

A few instructions require an extra state of Ml (state T5). It will be
skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than Ml, i.e., Ml, M2 or more cycles,
the transition will be directly from state T4 of Ml into state T1 of M2.
Let us examine an example. The detailed internal sequencing for each
example is shown in the tables of Figure 2.27. As these tables have not been
released for the Z80, the 8080 tables are used instead. They provide an in­
depth understanding of instruction execution.

IDD,C

This corresponds to MOV rl, r2 for the 8080. Refer to line I of Fig. 2.27.
By coincidence, the destination register in this example happens to be

named "0". The transfer is illustrated in Figure 2.20.
This instruction has been described in the previous section. It

transfers the contents of register C, denoted by "C", into register D.
The first three states of cycle M 1 are used to fetch the instruction

from the memory. At the end of T3, the instruction is in IR, the In­
struction Register, where it can be decoded (see Figure 2.19).

During T4: (S S S) ~ TMP.

The contents of C are deposited into TMP (SeeFigure2.21).
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During T5: (TMP) ~ DOD.

The contents of TMP are deposited into D. This is shown in Figure 2.22.

D

o0 G1 000 1

1000100 0

c
I 100 0 1 0 0 0

BEFORE

I 10001000
AFTER

Fig. 2.20: Transferring C into D

DATA BUS

16
ADDRESS BUS

L~~§§§§§§§§§§§§§~~~~~I COIiTROlSIGIIAlS

Fig. 2.21: The Contents of C Are Deposited into TMP
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9ATA E~S

16
ADDRESS BUS

L:::=================:>1 CO~TROLISIGflALS

Fig. 2.22: The Contents of TMP are Deposited into D

Execution of the instruction is now complete. The contents of
register C have been transferred into the specified destination register
D. This terminates execution of the instruction. The other machine
cycles M2, M3, M4, and M5 will not be necessary and execution stops
withMl.

It is possible to compute the duration of this instruction easily. The
duration of every state for the standard Z80 is the duration of the clock:
500 ns. The duration of this instruction is the duration of five states, or
5 x 500 = 2500 ns = 2.5 us.

Question: Why does this instruction require two states, T4 and T5,
in order to transfer the contents C into D, rather than just one? It'
transfers the contents ofC into TMP, and then the contents of TMP in­
to D. Wouldn't it be simpler to transfei' the contents ofC into D direct­
ly within a single state?

Answer: This is not possible because of the implementation chosen
for the internal registers. All the intenal registers are, in fact, part of a
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single RAM, a read/write memory internal to the microprocessor chip.
Only one word may be addressed or selected at a time within an RAM
(single-port). For this reason, it is not possible to both read and write
into, or from, an RAM at two different locations. Two RAM cycles are
required. It becomes necessary first to read the data out of the register
RAM, and store it in a temporary register, TMP, then, to write it back
into the final destination register, here D. This is a design inadequacy.
However, this limitation is common to virtually all monolithic
microprocessors. A dual-port RAM would be required to solve the
problem. This limitation is not intrinsic to microprocessors and it normally
does not exist in the case of bit-slice devices. It is a result of the constant
search for logic density on the chip and may be eliminated in the future.

Important Exercise:

At this point, it is highly recommended that the user review by him­
self the sequencing of this simple instruction before we proceed to more
complex ones. For this purpose, go back to Figure 2.14. Assemble a few
small-sized "symbols" such as matches, paperclips, etc. Then move the
symbols on Figure 2.14 to simulate the flow of data from the registers
into the buses. For example, deposit a symbol into Pc. Tl will move
the symbol contained in PC out on the address bus towards the
memory. Continue simulated execution in this fashion until you feel
comfortable with the transfers along the buses and between the
registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: "Add the contents of register r (specified by
a binary code S S S) to the accumulator (A), and deposit the result in
the accumulator." This is an implicit instruction. It is called implicit as
it does not explicitly reference a second register. The instruction expli­
citly refers only to register r. It implies that the other register involved
in the operation is the accumulator. The accumulator, when used in
such an implicit instruction, is referenced both as source and destina­
tion. Data will be deposited in the accumulator as a result of this addi­
tion. The advantage of such an implicit instruction is that its complete
opcode is only eight bits in length. It requires only a three-bit register
field for the specification of r. This is a fast way to perform an addition
operation.

Other implicit instructions exist in the system which will reference
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other specialized registers. More complex examples of such implicit in­
structions are, for example, the PUSH and POP operations, which will
transfer information between the top of the stack and the accumulator,
and will at the same time update the stack pointer (SP), decrementing it
or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be examined in
detail. This instruction will require two machine cycles, M I and M2. As
usual, during the first three states of M I, the instruction is fetched from
the memory and deposited in the IR register. At the beginning of T4, it
is decoded and can be executed. It will be assumed here that register B is
added to the accumulator. The code for the instruction will then be:
1 aaaaaaa (the code for register B is a a 0). The 8080 equivalent is

ADD r.
T4: (S S S) ~ TMP, (A) ~ ACT

DATA BUS

16
ADDRESS BUS

~==================51 ~~~~~
Fig. 2.23: Two Transfers Occur Simultaneously

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, I.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con­
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use d,ifferent paths within the system. The
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transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to
gain time, both transfers are done simultaneously. At this point, both
the left and the right input of the ALU are correctly conditioned. The
left input of the ALU is now conditioned by the accumulator contents,
and the right input of the ALU is conditioned by the contents of register
B. We are ready to perform the addition. We would normally expect to
see the addition take place during state T5 of M1. However, this state is
simply not used. The addition is not performed! We will enter machine
cycle M2. During state T1, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD r in Figure 2.27):

T2 of M2: (ACT) + (TMP) ~ A

The contents of ACT are added to the contents of TMP, and the
result is finally deposited in the accumulator. See Figure 2.24. The
operation is now complete.

DATA BUS

16
ADDRESS BUS

L~~~~~~~~~~~~~~~~~~~~! CONTROLSIGIIALS

Fig. 2.24: End of ADD r

Question: Why was the completion of the addition deferred until
state T2 of machine cycle M2, rather than taking place during state T5
ofMl? (This is a difficult question, which requires an understanding of
CPU design. However, the technique involved is fundamental to clock­
synchronous CPU design. Try to see what happens.)
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Answer: This is a standard design "trick" used in most CPU's. It is
called "fetch/execute overlap." The basic idea is the following: looking
back at Figure 2.23 it can be seen that the actual execution of the addi­
tion wiII only require the use of the ALU and of the data bus. In parti­
cular, it wiII not access the register RAM (register block). We (or the
control unit) know that the next three states which will be executed after
completion of any instruction will be T 1, T2, T3 of machine cycle M I
of the next instruction. Looking back at the execution of these three
states, it can be seen that their execution will only require access to the
program counter (PC) and use of the address bus. Access to the pro­
gram counter will require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r,r'.) It is
therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during state T I of M 1 to carry status informa­
tion out. It cannot be used for the addition that we wish to perform.
For that reason, it becomes necessary to wait until state T2 before the
addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state T5 of machine cycle

~ ,8
~ I .,,-- REAL

INSTRUCTIONN~:~' END
I

f-- FETCH ... .. I EXECUTE-J
I

INSTRUCTIONN+I: ;~----
I
I I

ro----FETCH,---- EXECUTE­
I ,

:~:
I~I
I.. OVERLAP '" I
I I

Fig. 2.25: FETCH-EXECUTE Overlap during TI-T2

MI. The duration of the ADD instruction would have been 5 x 500 =

2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is initiated. In a manner
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that is invisible to this next instruction, the "clever" control unit will
use state T2 to carry out the end of the addition. On the chart T2 is
shown as part of M2. Conceptually, M2 will be the second machine cy­
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical
to machine cycle M1 of the next instruction. For the programmer, the
delay introduced by ADD will be only four states, i.e., 4 x 500 = 2000
ns, instead of 2500 ns using the "straightforward" approach. The
speed improvement is 500 ns, or 20010!

The overlap technique is illustrated on Figure 2.25. It is used when­
ever possible to increase the apparent execution speed of the micropro­
cessor. Naturally, it it not possible to overlap in all cases. Required
buses or facilities must be available without conflict. The control unit
"knows" whether an overlap is possible.

H 100

A 111 B 00

E 011

SSS or DOD Value rp Value

cce
000
001
010
011
100
101
110
111

17. CONDITION

NZ - not zero (2 = 0)

Z-zeroIZ=11
NC no carry (CY = 0)

C - carry (CY = 1)

PO - pantvodd IP :; OJ
PE - panty even IP = 11

P - plus (S = OJ
M minus (S '" 1)

I-_-'B"- +__:~~~-+ __ ~__ +---- "Itj
n 010 SP 11 1

18. I/O sub'cvcle; the 110 port's 8-bit select code is dupli­
cated on address lines 0-7 (Ao-7 l and 8-15 (AB_1SJ.

19. Output sub·cycle.

20. The processor will remain idle in the halt state until
an interrupt, a reset or a hold is accepted. When a hold reo
quest is accepted. the CPU enters the hold mode; after the
hold mode IS terminated. the processor returns to the halt
state. After a reset IS accepted, the processor beginS execu­
tion at memory locatIOn zero. After an mterrupt IS accepted,
the processor executes the instruction forced onto the data
bus (usuallv a restart instructIon).

12. If the conditIon was met, the contents of the regIster
paIr WZ are output on the address lines (Ao-lsl Instead of
the contents of the program counter (PCI.

13. If the conditIon was not met. sub-cvcles M4 and M5
are skipped; the processor Instead proceeds Immediatelv to
the Instruction fetch (Ml j of the next instructIon cycle.

14. If the conditIon was not met, sub-cycles M2 and M3
are skipped; the processor Instead proceeds immediately to
the Instruction fetch (M1l of the next instructIon cycle.

15. Stack read sub-cycle.

16. Stack write sub-cycle.

NOTES:

1. The first memory cycle {M 1} is always an Instruction
fetch; the first (or only) byte. containing the ap code, is
fetched during this cycle.

2. If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a walt
state (TWl until READY is sampled as high.

3. States T4 and TS are present. as required. for opera­
tions which are completelv mternal to the CPU. The con·
tents of the Internal bus durmg T4 and T5 are available at
the data bus: this 1$ deSigned for testmg purposes onIv. An
"X" denotes that the state IS present, but IS only used for
such internal operations as mstruction decoding.

4. Onlv regIster paIrs rp :; B (regIsters Band Cl or rp = 0
(regIsters D and EJ may be specified.

5. These states are skipped.

6. Memory read sub'cycles; an Instruction or data word
will be read.

7. Memorv write sub-cvcle.

8. The AEADY SIgnal is not reqUIred dUflng the second
and third sub·cycles (M2and M3j. The HOLD SIgnal is
accepted during M2 and M3. The SYNC Signal is not gene­
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an Internal register-pair add;
memory is not referenced.

9. The results of these arithmetIc, logical or rotate in­
structIOns are not moved into the accumulator (AJ until
state T2 of the next InstructIOn cycle. That IS, A IS loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processIng.

10. If the value of the least sIgnificant 4·bits of the accumu·

lator is greater than 9~ if the auxiliary carry bIt IS set, 6
IS added to the accumulator. If the value of the most sIgnifi­
cant 4-bits of the accumulator IS now greater than 9, or if
the carrv bit is set, 6 is added to the most sIgnificant ­
4·bits of the accumulator.

11. ThIS represents the first sub-cycle {the instructIon
fetchl of the next instruction cvcle.

L 101 ..J

Fig. 2.26: Intel Abbreviations
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"\1m

°7°6°5°4 D30201 0 0 I nl21 n l2l

MQV,j,,2 reDUT
5T,\TUS

x13) HLQUT
STATUsI6!

i HLOUT
STATUSI7l

" "------

MVI r.d~l~ ! PCOUT
5TATUsl61

MVrM,d>u I iI
i I

I I
I
I

I' , peoUT
STATusl61

LDAX,p!4]
~T~~0s161

STAX,p!4] I' , , ,pOUT
STATUS!7l

ISSSI-TMP
(Al--ACT

IA1~ACT HlOUT
STATusl61

1"'I-AC1 peOUT B2..J.TMP
STATUS!61

I$SS]-TMP '" lACT)'(TMP)<-(;Y_A
tAl_ACT

HLOUT
STATusl61

peOUT
STATtJS161

(SSSI_TMP
(A}-ACT

HlOUT
STATusl61

""mIT I PC~ 1'C +l " ...TMP
STATusl61

(SSS)_TMP lAcn~ITMP1-cY_A

(AI-ACT

HlOUT
STATusl 61

peOUT
STATUS161

lOOOl-1MP
(TMPj+ l-AlU

~iA~~~n>1
DATA

l~~(TMPIH

roOO)-1MP
fTMPJ'l-ALU

HLOUT OATA .. 1MI'
STATusl6] ITMP1~1 .cu

IRPl+l~flP '<
I (RPI-I_Rl'

OADtpllll I {Lr-TMP.
jACT!+(TMPI-ALU

OM-A, FLAGS!10! •i 1 ISSSI-Tt.IP '91 IACTI+jTMPI-A. {Al-ACT

peoUT PC ~ PC +1 lNST_TMPIlR 1M-ACT HLOUT OATAi.. TMP
STATUS STATUS[61

Fig. 2.27: Intel Instruction Formats

80



nl21

HLQUT
STATUS17J

peoUT
STATusIG)

n(2J

Z80 HARDWARE ORGANIZATION

n l2J

WZOUT OATA_ A
STATusl61

WZOUT
STATUSPJ

WZOVT OATA------ , WZOUT DATA .-H
STATUS(61 Wt-WZ+l STATusl51

reoUT WZOUT i~~~ WZoUT n'!l~ o.OATAllUS
STATusl61 STATUS!71 STATUSPJ

!91 (ACT1+lTMP!-A

'01

Ill! lACTJ+ITMP1+CY-A

'01

'"
I!ll IACT1-ITMI'I-CV-A

[9l (ACT1·(TMPj·CV-A

HLOVT
$TATUs[7l

HLQUT ALV .OATABUS
STATUS!71

hM-ACT IH1-TMP
lACT1+lTMl'!-l-CY-A\,U

(!II {Acn+[TMP)_A

Fig.2.27: Intel Instruction Formats (continued)
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Ml[ll

, I

~~Tlfl"S PC"PC+1 lNST_TMP/lR

[AI-ACT
[SSS!_TMI'

(A)_ACT
ISSS!-TMP

! (A)_ACT

IAl-ALU
ROTATE

fCDUT
STATUSlffi

'"
HLOUT
STATUsllil

I'COUT
STATUsl6l

t1LOUT
STATUSl61

peOUT
STATusl lil

191

HLOUT
5TATU5161

peOUT
STATusl61

,

'01

'01

nl21

IIACTl-I™Pl.FLAGS

AtIJ-A.CY

ALlJ-A.CY

.TMP

'A~A =1=+=
---=---l---I---l-I--+--L-j---;-+---+-~,--ec_ec.-,' ---+---I

STATusI6!

I'COUT
STATUsl61

reOUT
STATusl 51

PUSH.p

I ~w

lNST-TMI'IIR

JUDGE CONOIT10~'

IFTRIJLSP·SI'-I

JUDGE CONO!TIONIl~l

I'COUT
STATusl 61

SPOUT
5TATU5[151

SPOUT
STATUSl1S1

SPOUT
STATusl1G1

lI'CH1 l--OATA6US

POI'I'SI'/

-",,-.-,,---:---+---+-!~:-+-!--+-+----~~(~,d-I~ou, [L:_::_:_:~_:__+ _
:;,';C::; ~~2~JsIl5J SI'· 51'. 1 I.FLAGS

SPOUT
STATUS[lSI

PCOUT
STATUS1E[

----+----1----+-I--+--+1,-I-----j--+----+j- ~. ".,"~
PC OUT PC - PC + 1 lNST_TMPfIR
STATUS

Fig. 2.27: Intel Instruction Formats (continued)
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WZOUT
STATUsl l1 !

PCOVT \,/ZOUT
STATUS!61 STATUS!1l.J21

PC OUT IVZOVT
STATUSl61 STATUS[l1l

PC OUT WZOUT
STATUs!Gf STATUS!'1,!2!

SPOUT
~ZA~~~ll11STATUS[15[

SPOUT WZOUT
STATUS!lS! STATUsl l1 ,121

SPOUT WZOUT
STATUSll51 STATUslll ]

SPOUT
STATUsl l61

SPOUT
STATUS1161

",mIT
STATusl1:;)

"OUT
S'TATUSl1S!

SPOUT
5TATusI15[

WZOUT
STATUsl1aJ

nl21 nl21 T:212J

,OJ

,OJ

,.

,.
,OJ

lACTI-fTMPJ;fLAGS

,OJ lACTj.jTMP]; fLAGS

Fig. 2.27: Intel Instruction Formats (continued)
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Question: Would it be possible to go further using this scheme, and
to also use state T3 ofM2 if we have to execute a longer instruction?

In order to clarify the internal sequencing mechanism, it is suggested
that you examine Figure 2.27, which shows the detailed instruction
execution for the 8080. The Z80 includes all 8080 instructions, and
more. The information presented in Figure 2.27 is not available for the
Z80. It is shown here for its educational value in understanding the in­
ternal operation of this microprocessor. The equivalence between Z80 and
8080 instructions is shown in the Appendix.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 10000110. This instruction means
"add to the accumulator the contents of memory location (HL)." The
memory location is specified through a rather strange system. It is the
memory location whose address is contained in registers Hand L. This
instruction assumes that these two special registers (HL) have been
loaded with contents prior to executing the instruction. The 16-bit con­
tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the
result will be left in the accumulator.

This instruction has a history. It has been supplied in order to pro­
vide compatibility between the early 8008, and its successor, the 8080.
The early 8008 was not equipped with a direct-memory addressing
capability! The procedure used to access the contents of the memory
was to load the two registers Hand L, and then execute an instruction
referencing Hand L. ADD A, (HL) is just such an instruction. It must
be stressed that the 8080 and the Z80 are not limited in the same way as
the 8008 in memory-addressing capability. They do have direct-memory
addressing. The facility for using the Hand L registers becomes an
added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called
ADD M for the 8080 and is the 16th instruction on Figure 2.27). States
Tl, T2, and T3 of Ml will be used, as usual, to fetch the instruction.
During state T4, the contents of the accumulator are transferred to its
buffer register, ACT, and the left input of the ALU is conditioned.

~em~rymust be accessed in order to provide the second byte ofdata
WhICh WIll be added to the accumulator. The address of this byte of
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data is contained in Hand L. The contents of Hand L will therefore
have to be transferred onto the address bus, where they will be gated to
the memory. Let us do it.

Fig. 2.28: Transfer Contents of HL to Address Bus

During machine cycle M2,we read: HL OUT. Hand L are deposited on
the address bus, in the same way PC used to be deposited there in
previous instructions. As a remark, it has already been indicated
that during state Tl status is output on the data bus, but no use of
this will be made here. From a simplified standpoint, it will require two
states: one for the memory to read its data, and one for the data to
become available and transferred onto the right input of the ALU,
TMP.

Both inputs of the ALU are now conditioned. The situation is analo­
gous to the one we were in with the previous instruction ADDA, r: both
inputs of the ALU are conditioned. We simply have to ADD as before.
A fetch/execute overlap technique will be used, and, instead of exe­
cuting the addition within state T4 of M2, final execution is postponed
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in­
deed have: ACT + TMP A. The addition is finally performed, the con­
tents of ACT are added to TMP, and the result deposited into the ac­
cumulator A.
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Question: What is apparent execution time (to the programmer) for this
instruction? Is it 7.5 us, or is it 4.5 us?

Another more complex instruction will now be examined which is a
direct-memory addressing instruction using two invisible Wand Z
registers:

LD A,(nn)

The opcode is 00111010. The 8080 equivalent is LDA addr. As usual,
states Tl, T2, T3 of Ml will be used to fetch the instruction from the
memory. T4 is used, but no visible result can be described. During state
T4, the instruction is in fact decoded. The control unit then finds out
that it has to fetch the next two bytes of this instruction in order to ob­
tain the address from which the accumulator will be loaded. The effect
of this instruction is to load the accumulator from the memory contents
whose address is specified in bytes 2 and 3 of the instruction. Note that
state T4 is necessary to decode the instruction. It could be considered a
waste of time since only part of the state is necessary to do the
decoding. It is. However, this is the philosophy of clock-synchonous
logic. Because microinstructions are used internally to perform the
decoding and execution, this is the penalty that has to be paid in return
for the advantages of microprogramming. The structure of this instruc­
tion appears in Figure 2.29.

(BllLD AN:

N+l: (B2)
-ADDRESS-

:OPCODE

/16-BlT

N+2: B3) \ADDRESS
'------'

Fig. 2.29: LD A, (ADDRESS) Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will
specify an address (see Figure 2.30).
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II 1 1 /0 1 0 Y(H
1
E
OO
Xl.I--::-::'-:-:''"':'-::""'':''"":::---1

PC .......~~~~-:----i
1""'0""'0""'0~O':;"0""'0"""0*0 0 0 0 0 0 g 101:t--~-:::-::-::-::~:---i

102.
t--------i

Fig. 2.30: Before Execution of LD A

10 0 0 0 0 0 0 ~o 0 0 0 0 0 111

Fig. 2.31: After Execution of LD A

LOA

11002
\(HEX>

The effect of the instruction is shown in Figures 2.30 and 2.31 above.
Two special registers are available to the control unit within the Z80

(but not to the programmer). They are "W" and "Z", and are shown
in Figure 2.28.
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Second Machine Cycle M2: As usual, the first 2 states, Tl and T2, are
used to fetch the contents of memory location Pc. During T2, the pro­
gram counter, PC, is incremented. Sometime by the end ofT2, data be­
comes available from the memory, and appears on the data bus. By the
end of T3, the word which has been fetched from memory address PC
(B2, second byte of the instruction) is available on the data bus. It must
now be stored in a temporary register. It is deposited into Z: B2 ~ Z
(see Figure 2.32).

B2~Z

DATA BU

rlPU

~
Z

PC

Z80-jIl>-Z80

ADDRESS
ADDRESS DECODER

MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC is deposited on the address bus, incre­
mented, and finally the third byte, B3, is read from the memory and de­
posited into register W of the microprocessor. At this point, i.e., by the
end of state T3 of M3, registers Wand Z inside the microprocessor con­
tain B2 and B3, i.e., the complete 16-bit address which was originally
contained in the two words following the instruction in the memory.
Execution can now be completed. Wand Z contain an address. This ad­
dress will have to be sent to the memory, in order to extract the data.
This is done in the next memory cycle:

Machine Cycle M4: This time, Wand Z are output on the address bus.
The 16-bit address is sent to the memory, and by the end of state T2,
data corresponding to the contents of the specified memory location
becomes available. It is finally deposited in A at the end of state T3.
This terminates execution of this instruction.
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This illustrates the use of an immediate instruction. This instruction
required three bytes in order to store a two-byte explicit address. This
instruction also required four memory cycles, as it needed to go to the
memory three times in order to extract the three bytes of this three­
word instruction, plus one more memory access in order to fetch the
data specified by the address. It is a long instruction. However, it is also
a basic one for loading the accumulator with specified contents residing
at a known memory location. It can be noted that this instruction re­
quires the use of Wand Z registers.

Question: Could this instruction have used other registers than W, Z
within the system?

Answer: No. If this instruction had used other registers, for example
the Hand L registers, it would have modified their contents. After ex­
ecution of this instruction, the contents of Hand L would have been
lost. It is always assumed in a program that an instruction will not
modify any registers other than those it is explicitly using. An instruc­
tion loading the accumulator should not destroy the contents of any
other register. For this reason, it becomes necessary to supply the extra
two registers, Wand Z, for the internal use of the control unit.

Question: Would it be possible to use PC instead of Wand Z?

Answer: Positively not. This would be suicidal. The reader should ana­
lyze this.

One more type of instruction will be studied now: a branch or jump
instruction, which modifies the sequence in which instructions are
executed within the program. So far, we have assumed that instructions
were executed sequentially. Instructions exist which allow the pro­
grammer to jump out of sequence to another instruction within the
program, or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27 as "JMP addr."
Its execution will be described by following the horizontal line
of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the

89



PROGRAMMING THE zao

16-bit address, to which the jump will be made. Conceptually, the ef­
fect of this instruction is to replace the contents of the program counter
with the 16 bits following the "JUMP" opcode. In practice, a some­
what different approach will be implemented, for reasons of efficiency.

As before, the first three states of M I correspond to the instruction­
fetch. During state T4 the instruction is decoded and no other event is
recorded (X). The next two machine cycles are used to fetch bytes B2
and B3 of the instruction. During M2, B2 is fetched and deposited into
internal register W. The next two steps will be implemented by the pro­
cessor during the next instruction-fetch, as was the case already with the
addition. They will be executed instead of the usual steps for Tl and T2
of the next instruction. Let us look at them.

The next two steps will be: WZ OUT and (WZ) + 1 ~ Pc. In other
words, the contents of WZ will be used instead of the contents of PC
during the next instruction-fetch. The control unit will have recorded
the fact that a jump was being executed and will execute the beginning
of the next instruction differently.

The effect of these two extra states is the following:
The address placed on the address bus of the system will be the ad­

dress contained in Wand Z. In other words, the next instruction will be
fetched from the address that was contained in Wand Z. This is effec­
tively a jump. In addition, the contents of WZ will be incremented by I
and deposited in the program counter, so that the next instruction will
be fetched correctly by using PC as usual. The effect is therefore cor­
rect.

Question: Why have we not loaded the contents of PC directly? Why
use the intermediate Wand Z registers?

Answer: It is not possible to use PC. If we had loaded the lower part
of PC (PCL) with B2, instead of using Z, we would have destroyed PC!
It would then have become impossible to fetch B3.

Question: Would it be possible to use just Z, instead of Wand Z?

Answer: Yes, but it would be slower. We could have loaded Z with
B2, then fetched B3, and deposited it into the high order half of PC
(PCH). However, it would then have become necessary to transfer Z in­
to PCL, before using the contents of Pc. This would slow down the
process. For this reason, both Wand Z should be used. Further, and in
order to save time, Wand Z are not transferred into Pc. They are
directly gated to the address bus in order to fetch the next instruction.
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Understanding this point is crucial to the understanding of efficient ex­
ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only). What happens
in the case ofan interrupt at the end ofM3? (If instruction execution is
suspended at this point, the program counter points to the instruction
following the jump, and the jump address, contained in Wand Z, will
be lost.)

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation
of the Z80.

ClOCK ~ 6

BUS {BUSRQ-!25
CONTROL BUSAK 23

NMI 17
i'Nf 16

MPU WAiT 24
CONTROL HALT 18

RESET 26

MREQ 19

MEMORY
Mi
10RQ 20

AND 110
RD 21

CONTROL WR 22

RFSH 28
29

GND

30 fa 40

and
I fa 5

7 fa 15

(excepf 11)

II

+5V

AO

A15

DO
07

ADDRESS

BUS

DATA

BUS

TheZ80 Chip

POWER

Fig. 2.33: Z80 MPU Pinout

For completeness, the signals of the Z80 microprocessor chip will be
examined here. It is not indispensable to understand the functions of
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the Z80 signals in order to be able to program it. The reader who is not
interested in the details of hardware may therefore skip this section.
The pinout of the Z80 appears on Fig. 2.33. On the right side of the
illustration, the address bus and the data bus perform their usual role,
as described at the beginning of this chapter. We will describe here the
function of the signals on the control bus. They are shown on the left of
Figure 2.33.

The control signals have been partitioned in four groups. They will
be described, going from the top of Figure 2.33 towards the bottom.

The clock input is O. The Z80 incorporates the clock oscillator within
the microprocessor chip. Only a 330-ohm pull-up resistor is necessary
externally. It is connected to the 0 input and to 5 volts. However, at 4
MHz, an external clock driver is required.

The two bus-control signals, BUSRQ and BUSAK, are used to dis­
connect the Z80 from its busses. They are mainly used by the DMA, but
could also be used by another processor in the system. BUSRQ is the
bus-request signal. It is issued to the Z80. In response, the Z80 will place
its address bus, data bus, and tristate output control signals in the high­
impedance state, at the end of the current machine cycle. BUSAK is the
acknowledge signal issued by the Z80 once the busses have been placed
in the high-impedance state.

Six Z80 control signals are related to its internal status or to its se­
quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt
request. Interrupts will be described in Chapter 6. A number of in­
put/output devices may be connected to the INT interrupt line. When­
ever an interrupt request is present on this line, and when the internal
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter­
rupt (provided the BUSRQ is not active). It will then generate an
acknowledge signal: IORQ (issued during the MI state). The rest of the
sequence of events is described in Chapter 6.

NMI is the non-maskable interrupt. It is always accepted by the Z80,
and it forces the Z80 to jump to location 0066 hexadecimal. It too is
described in Chapter 6. (It also assumes that BUSRQ is not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or
input/output devices. When active, this signal indicates that the
memory or the device is not yet ready for the data transfer. The Z80
CPU will then enter a special wait state until the WAIT signal becomes
inactive. It will then resume normal sequencing.

HALT is the acknowledge signal supplied by the Z80 after it has ex-
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ecuted the HALT instruction. In this state, the Z80 waits for an exter­
nal interrupt and keeps executing NOPs to continually refresh memory.

RESET is the signal which usually initializes the MPU. It sets the
program counter, register I and R to "0". It disables the interrupt
enable flip-flop and sets the interrupt mode to "0". It is normally used
after power is applied to the board.

Memory and I/O Control

Six memory and I/O control signals are generated by the Z80. They are:
MREQ is the memory request signal. It indicates that the address pres­
ent on the address bus is valid. A read or write operation can then be
performed on the memory.

M I is machine cycle 1. This cycle corresponds to the fetch cycle of an
instruction.

IORQ is the input/output request. It indicates that the I/O address
present on bits 0-7 of the address bus is valid. An I/O read or write
operation can then be carried out. IORQ is also generated together with
M 1 when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal I/O operations never occur during the Ml state. The
combination IORQ plus Ml indicates an interrupt-acknowledge situa­
tion.)

RD is the memory-read signal. It indicates the Z80 is ready to read
the contents of the data bus into its accumulator. It can be used by any
external chip, whether memory or I/O, to deposit data onto the data
bus.

WR is the memory write signal. It indicates that the data bus holds
valid data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.
The MREQ signal is then used to perform the refresh by reading the
memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the
Z80. The exact hardware details of the Z80 are not important here.
However, the role of each of the registers is important and should be
fully understood before proceeding to the next chapters. The actual in­
structions available on the Z80 will now be introduced, and basic pro­
gramming techniques for the Z80 will be presented.
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BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present the basic techniques neces­
sary in order to write a program using the Z80. This chapter will intro­
duce new concepts such as register management, loops, and sub­
routines. It will focus on programming techniques using only the inter­
nal Z80 resources, i.e., the registers. Actual programs will be de­
veloped, such as arithmetic programs. These programs will serve to il­
lustrate the various concepts presented so far and will use actual in­
structions. Thus, it will be seen how instructions may be used to
manipulate the information between the memory and the MPU, as well
as to manipulate information within the MPU itself. The next chapter
will then discuss in complete detail the instructions available on the Z80.
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre­
sent the techniques available for manipulating information outside the
Z80: the Input/Output Techniques.

In this chapter, we will essentially learn by "doing." By examining
programs of increasing complexity, we will learn the role of the various
instructions, of the registers, and we will apply the concepts developed
so far. However, one important concept will not be presented here; it is
the concept of addressing techniques. Because of its apparent complexi­
ty, it will be presented separately in Chapter 5.

Let us immediately start writing some programs for the Z80. We will
start with arithmetic programs. The "programmer's model" of the Z80
registers is shown in Figure 3.0.
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MAIN SET AlTERNATE SET
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(010)
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(III)

I )1 R
(inlerrup' veelor) (mem refresh)

IX

IY

SP
(slack pOlnler)

PC
(program eounler)

INDEX
REGISTERS

Fig. 3.0: The Z80 Registers

ARITHMETIC PROGRAMS

Arithmetic programs include addition, subtraction, multiplication,
and division. The programs presented here will operate on integers.
These integers may be positive binary integers or may be expressed in
two's complement notation, in which case the left-most bit is the sign
bit (see Chapter I for a description of the two's complement notation).

8-Bit Addition

We will add two 8-bit operands called OP I and OP2, respectively
stored at memory address ADR I, and ADR2. The sum will be called
RES and will be stored at memory address ADR3. This is illustrated in
Figure 3.1. The program which will perform this addition is the follow­
Ing:

Instructions Comments

LD A, (ADRI)
LD HL, ADR2
ADD A, (HL)
LD (ADR 3), A

LOAD OPR INTO A
LOAD ADDRESS OF OP2 INTO HL
ADD OP2 TO OPl
SAVE RESULT RES AT ADR3
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MEMORY

ADRl ----....~i

ADR2 ----....~I

ADR3 ---...........1

OP]

OP2

RES

(FIRST OPERAND)

(SECOND OPERAND)

(RESULT)

ADDRESSES

Fig. 3.1: Eight-Bit Addition RES = OPt + OP2

This is our first program. The instructions are listed on the left and
comments appear on the right. Let us now examine the program. It is a
four-instruction program. Each line is called an instruction and is ex­
pressed here in symbolic form. Each such instruction will be translated
by the assembler program into one, two, three or four binary bytes. We
will not concern ourselves here with the translation and will only look at
the symbolic representation.

The first line specifies loading the contents of ADRI into the accu­
mulator A. Referring to Figure 3.1, the contents of ADRI are the first
operand, "OP1". This first instruction therefore results in transferring
OPI from the memory into the accumulator. This is shown in Figure
3.2. "ADR1" is a symbolic representation for the actual 16-bit address
in the memory. Somewhere else in the program, the ADRI symbol will
be defined. It could, for example, be defined as being equal to the ad­
dress "100".

This load instruction will result in a read operation from address 100
(see Figure 3.2), the contents of which will be transferred along the data
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zeo ""-MOOY

(ADRI) ....

ADORESSBUS

Fig. 3.2: LD A, (ADRl): OPt is Loaded from Memory

bus and deposited inside the accumulator. You will recall from the pre­
vious chapter that arithmetic and logical operations operate on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values OPI and
OP2 together, we must first load OPI into the accumulator. Then, we
will be able to add the contents of the accumulator, i.e., add OPI to
OP2. The right-most field of this instruction is called a comment field.
It is ignored by the assembler program at translation time, but is pro­
vided for program readability. In order to understand what the pro­
gram does, it is of paramount importance to use good comments. This
is called documenting a program.

Here the comment is self-explanatory: the value of OPI, which is
located at address ADRI, is loaded into the accumulator A.

The result of this first instruction is illustrated by Figure 3.2. The
second instruction of our program is:

LDHL, ADR2

It specifies: "Load from (ADR2) into registers Hand L." In order·
to read the second operand, OP2, from the memory, we must first ~lace;

its address into a register pair of the Z80, such as Hand L. Then, we
can add the contents of the memory location whose address is in Hand
L to the accumulator.

Referring to Figure 3.1, the contents of memory location ADR2 are
OP2, our second operand. The contents of the accumulator are now
OPI, our first operand. As a result of the execution of this instruction,
OP2 will be fetched from the memory and added to OPI. This is il­
lustrated in Figure 3.3.
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Z80 M.I.MORY

rF8~~=TII~K;===DA=lA=BU='==f~~~'-'---lA '- -- -; I

(_Op, ) I '
, '. '

ADR2 tl =3i~~~

(ADR2)

ADDRESS BUS

Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will
remember that, in the case of the Z80, the results of the arithmetic oper­
ation are deposited back into the accumulator. In other processors, it
may be possible to deposit these results in other registers, or back into
the memory.

The sum of OPI and OP2 is now contained in the accumulator. To
complete our program, we simply have to transfer the contents of the
accumulator into memory location ADR3, in order to store the results
at the specified location. This is performed by the fourth instruction of
our program:

LD (ADR3), A

This instruction loads the contents of A into the specified address
ADR3. The effect of this final instruction is illustrated by Figure 3.4.

Z80 WMORV

II
------1

DATA BUS I I,
I ,, ,

A I J
, ,

RES , I, I

I ,
0(7

ADR3 RES, '>" ..

(ADRJ

ADDRESS !3U~

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory)
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Before execution of the ADD operation, the accumulator contained
OPI (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is "OPI + OP2". Recall that the contents of
any register within the microprocessor, as well as any memory location,
remain the same after a read operation has been performed on this
register. In other words, reading the contents of a register or memory
location does not change its contents. It is only, and exclusively, a write
operation into this register location that will change its contents. In this
example, the contents of memory locations ADRI and ADR2 remain
unchanged throughout the program. However, after the ADD instruc­
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator. The
previous contents of A are then lost.

Actual numerical addresses may be used instead of ADRI, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-called "pseudo-instructions" which specify the value of these
symbolic addresses, so that the assembly program may, during transla­
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADRI
ADR2
ADR3

IOOH
I20H
200H

Exercise 3.1: Now close this book. Refer only to the list of instructions
at the end of the book. Write a program which will add two numbers
stored at memory locations LOCI and LOC2. Deposit the results at
memory location LOC3. Then, compare your program to the one
above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac­
tical applications it is necessary to add numbers having 16 bits or more,
i.e., to use multiple precision. We will here present examples of arith­
metic on I6-bit numbers. They can be readily extended to 24, 32 bits or
more (always multiples of 8 bits). We will assume that the first operand
is stored at memory locations ADRI and ADRI-l. Since OPI is a I6-bit
number this time, it will require two 8-bit memory locations. Similarly,
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OP2 will be stored at ADR2 and ADR2-1. The result is to be deposited
at memory addresses ADR3 and ADR3-1. This is illustrated In hgure
3.5. H indicates the high half (bits 8 through 15), while L indicates the
low half (bits 0 through 7).

(OPl)H

(OPl)l

jOPR11H

{oPR2)l.

I {RE5JH

jR'ES)l

ADRI 1

ADR'

ADR3-

ADR,

AOR2-1

ADRI

Fig. 3.5: 16-Bit Addition-The Operands

The logic of the program is exactly like the previous one. First, the
lowet half of the two operands will be added, since the microprocessor
can only add on 8 bits at a time. Any carry generated by the addition of
these low order bytes will automatically be stored in the internal carry
bit ("C"). Then, the high order half of the two operands will be added
together along with any carry, and the result will be saved in the
memory. The program appears below:

LD A, (ADRI)
LD HL, ADR2
ADD A, (HL),
LD (ADR3), A
LD A, (ADRI-l)
DEC HL
ADC A, (HL)
LD (ADR3-I), A

LOAD LOW HALF OF OPI
ADDRESS OF LOW HALF OF OP2
ADD OPI AND OP2 LOW
STORE RESULT, LOW
LOAD HIGH HALF OF OPI
ADDRESS OF HIGH HALF OF OP2
(OPI + OP2) HIGH + CARRY
STORE RESULT, HIGH
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The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant halves (bits 0-7) of OPI and OP2. The sum, called
"RES" is stored at memory location ADR3 (see Figure 3.5).

Automatically, whenever an addition is performed, any resulting
carry (whether "0" or "I ") is saved in the carry bit C of the flags
register (register F). If the two numbers do generate a carry, then the C
bit will be equal to "I" (it will be set). If the two 8-bit numbers do not
generate any carry, the value of the carry bit will be "0".

The next four instructions of the program are essentially like those
used in the previous 8-bit addition program. This time they add
together the most significant half (or high half, i.e., bits 8-15) of OPI
and OP2, plus any carry, and store the result at address ADR3-1.

After execution of this 8-instruction program, the 16-bit result is
stored at memory locations ADR3 and ADR3-1, as specified. Note,
however, that there is one difference between the second half of this
program and the first half. The "ADD" ins/rue/ion which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction), we had used the "ADD" instruction. This instruc­
tion adds the two operands, regardless of the carry. In the second half,
we use the"ADC" instruction, which adds the two operands together,
plus any carry that may have been generated. This is necessary in order
to obtain the correct result. The addition initially performed on the low
operands may result in a carry. Such a possible carry must be taken into
account in the second half of the addition.

The question which comes naturally then is: what if the addition of
the high half of the operands also results in a carry? There are two pos­
sibilities: the first one is to assume that this is an error. This program is
then designed to work for results of only up to 16 bits, but not 17. The
other one is to include additional instructions to test explicitly for the
possibility of a carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is
stored "on top of" the lower part, i.e., at the lower memory address.
This need not necessarily be the case. In fact, addresses are stored by
the Z80 in the reverse manner: the low part is first saved in the memory,
and the high part is saved in the next memory location. In order to use a
common convention for both addresses and data, it is recommended
that data also be kept with the low part on top of the high part. This is
illustrated in Figure 3.6.
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MEMORY

/OPRlll

I jOPRljH

/OPR2IL

I (OPR21H

(RESll

I (RE$IH

AORI

AOR3+

AOR3

ADR2+

ADR2

ADR1.,.

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it is important to keep in mind
two essential conventions:

-the order in which data is stored in the memory.
-where data pointers are pointing: low byte or high byte.
Exercises 3.2 and 3.3 are designed to clarify this point.

t.xercise 3.2: Rewrire rhe 16-hir addif/on program a!Jove wirh rhe
memory layour indicated in Figure 3.6.

Erercise 3.3: Assume now rhar ADR 1 does nor jJoint to the lower Iw((
of OPRI (as in Figures 3.5 or 3.6), bur points to the h(f5her pal'! of
OPR I. This is illustrated in Figure 3. 7. Again, write rhe corresponding
program.
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MEMORY

AOR1-J

---.. ADRI

AOR2·1

--.. ADR'

ADR3·1

--.. ADRJ

(OPRlll

(OPRljH

(OPR'~

(OPR2IH

IRE5~ !
(Rf5IH

Fig. 3.7: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (i.e., low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers. This
is another choice which you will learn to make when designing
algorithms or data structures.

The programs presented above are traditional programs, using the
accumulator. We will now present an alternative program for the 16-bit
addition that does not use the accumulator, but instead uses some of
the special 16-bit instructions available on the Z80. Operands will be
assumed to be stored as indicated in Figure 3.6. The program is:

LD HL, (ADR1)
LD Be, (ADR2)
ADD HL, BC
LD (ADR3), HL

LOAD HL WITH OP1
LOAD BC WITH OP2
ADD 16 BITS
STORE RES INTO ADR3

Note how much shorter this program is, compared to our previous ver­
sion. It is more "elegant." In a limited manner, the Z80 allows registers
Hand L to be used as a 16-bit accumulator.
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Exercise 3.4: Using the 16-bit instructions which have just been intro­
duced, write an addition program jor 32-bit operands, assuming that
operands are stored as shown in Figure 3.8. (The answer appears
below.)

Answer:

LD HL, (ADRl-l)
LD BC, (ARR2-1)
ADD HL,BC
LD (ADR3-1), HL
LD HL, (ADRl-3)
LD BC, (ADR2-3)
ADC HL,BC
LD (ADR3-3), HL

MEMORY

ADRI-3

ADRI

ADR2

ADR3

HIGH

OPRI

lOW

HIGH

OPR2

lOW

HIGH

RES

lOW

Fig. 3.8: A 32-Bit Addition

104



BASIC PROGRAMMING TECHNIQUES

Now that we have learned to perform a binary additIon, let us turn to
subtraction.

Subtracting l6-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex­
ercise and directly perform a 16-bit subtract. As usual, our two num­
bers, OP I and OP2, are stored at addresses ADR I and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to
subtract, we will use a subtract operation (SBC) instead of an add
operation (ADD).

Exercise 3.5: Now write a subtraction program.

The program appears below. The data paths are shown in Figure 3.9.

LD HL, (ADRI)
LD DE, (ADR2)
ANDA
SBC HL, DE
LD (ADR3), HL

OPI INTO HL
OP2 INTO DE
CLEAR CARRY
OPI - OP2
RES INTO ADR3

The program is essentially like the one developed for 16-bit addition.
However, the Z80 instruction-set has two types of additions on double
registers: ADD and ADC, but only one type of subtraction: SHC.

As a result, two changes can be noted.
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MEMORY

H l

I (OPIIH I (OPI)l I/>
~i (OPlll

(OPI)H

ADRI

ADRI + I

Fig. 3.9: 16-Bit Load - LD HL, (ADRl)

A first change is the use of SBC instead of ADD.
The other change is the" AND A" instruction, used to clear the carry

flag prior to the subtraction. This instruction does not modify the value
of A.

This precaution is necessary because the Z80 is equipped with two
modes of addition. with and without carryon the Hand L register. but
with only one mode of subtraction. the SBC instruction of "subtract
with carry" when operating on the HL register pair. Because SBC auto­
matically takes into account the value of the carry bit, it must be set to 0
prior to starting the subtraction. This is the role of the "AND A" in­
struction.

Erercise 3.6: Rea'rite the subtract1011 program withollt IISlIIg the
speeiali:::ed f 6-blt illS IruetiOIl.

Erercise 3.7: Write the subtract program for 8-IJII operallds.

It must be remembered that in the case of two's complement arithme­
tic. the final value of the carry flag has no meaning. II' an overflow con­
dition has occurred as a result of the subtraction. then the overflow bit
(bit V) of the flags register will have been set. It can then be tested.
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The examples just presented are simple binary additions or subtrac­
tions. However, another type of arithmetic may be necessary; it is BCD
arithmetic.

BCD ARITHMETIC

8-Bit BCD Addition

The concept of BCD arithmetic has been presented in Chapter I. Let
us recall its features. It is essentially used for business applications
where it is imperative to retain every significant digit in a result. In the
BCD notation, a 4-bit nibble is used to store one decimal digit (0
through 9). As a result, every 8-bit byte may store two BCD digits.
(This is called packed BCD). Let us now add two bytes each containing
two BCD digits.

In order to identify the problems, let us try some numeric examples
first.

Let us add "01" and "02":

"01" is represented by: 00000001
"02" is represented by: 00000010

The result is: 00000011

This is the BCD representation for "03". (II' you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the book.)
Everything worked very simply in this case. Let us now try another ex­
ample.

"08" is represented by 0000 1000
"03" is represented by 00000011

Exercise 3.8: Compute the sum of the two numbers above in the BCD
representation. What do you obtain? (answer follows)

If you obtain "0000 10II", you have computed the binary sum of 8
and 3. You have indeed obtained II in binary. Unfortunately, "lOll"
is an illegal code in BCD. You should obtain the BCD representation of
"II", i.e.. 0001 0001!

The problem stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbols 0 through 9. The remaining six possible combinations of 4
digits are unused, and the illegal" 1011" is one such combination. In
other words, whenever the sum of two binary digits is greater than 9,
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then one must add 6 to the result in order to skip over the 6 unused
codes.

Add the binary representation of "6" to 1011:

The result is:

1011
+ OlIO

0001 0001

(illegal binary result)
(+ 6)

This is, indeed, "II" in the BCD notation! We now have the correct
result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. A special in­
struction, "DAA", called "decimal adjust," must be used to adjust the
result of the binary addition. (Add 6 if the result is greater than 9.)

The next problem is illustrated by the same example. In our example,
the carry will be generated from the lower BCD digit (the right-most
one) into the left-most one. This internal carry must be taken into ac­
count and added to the second BCD digit. The addition instruction
takes care of this automatically. However, it is often convenient to
detect this internal carry from bit 3 to bit 4 (the "half-carry"). The H
flag is provided for this purpose.

As an example, here is a program to add the BCD numbers" II" and
"22":

LD A,IIH
ADD A, 22H
DAA
LD (ADR), A

LOAD LITERAL BCD 'Ii'
ADD LITERAL BCD '22'
DECIMAL ADJUST RESULT
STORE RESULT

In this program, we are using a new symbol "H". The" H" sign
within the operand field of the instruction specifies that the data which
follows is expressed in hexadecimal notation. The hexadecimal and the
BCD representations for digits "0" through "9" are identical. Here we
wish to add the literals (or constants) "II" and "22". The result is
stored at the address ADR. When the operand is specified as part of the
instruction, as it is in the above example, this is called Immediate ad­
dressing. (The various addressing modes will be discussed in detail in
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A
is called absolute addressing when ADR represents a 16-bit address.
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MEMORY

LOA

I
!

1

t
ADC

2
I

2
I

(RESULT) (AOR)

00100010 (22)
+ 00111001 (39)

Fig. 3.10: Storing BCD Digits

This program is analogous to the 8-bit binary addition, but uses a
new instruction: "DAA". Let us illustrate its role in an example. We
will first add" II" and "22" in BCD:

0001000 I (11)
+ 00100010 (22)

= 00110011 (33)----3 3

The result is correct, using the rules of binary addition.
Let us now add "22" and "39", by using the rules of binary addi­

tion:

= 01011011---­5 'I

"1011" is an illegal BCD code. This is because BCD uses only the
first 10 binary codes, and "skips over" the next 6. We must do the
same, i.e. add 6 to the result:

01011011
+ 0110

01100001------6
This is the correct BCD result.

(binary result)
(6)

(61 )
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Erercise 3.9: Could we /1/ove the DAA instruction in the program ajier
the Iflstruction LD (ADR), A?

BCD Subtraction

BCD subtraction is, in appearance, complex. In order to perform a
BCD subtraction, one must add the fen's complement of the number,
just as one adds the two's complement of a number to perform a binary
subtracL The ten's complement is obtained by computing the comple­
ment to 9, then adding" I". This requires typically three to four opera­
tions on a standard microprocessor. However, the Z80 is equipped with
a powerful DAA instruction which simplifies the program.

The DAA instruction automatically adjusts the value of the result in
the accumulator, depending on the value of the C and H flags before
DAA, to the correct value. (See the next chapter for more details on
DAA.)

16-Bit BCD AdditiolI1

16-bit addition is performed just as simply as in the binary case. The
program for such an addition appears below:

LD A, (ADRI)
LD HL, ADR2
ADD A, (HL)
DAA
LD (ADR3), A
LD A, (ADRI + I)
INC HL
ADC A, (HL)
DAA
LD (ADR3 + I), A

Packed BCD Subtract

LOAD (OPl) L INTO A
LOAD ADR2 INTO HL
(OPI + OP2) LOW
DECIMAL ADJUST
STORE (RESULT) LOW
LD (OPI) H INTO A
POINT TO ADR2 + I
(OPI + OP2) HIGH + CARRY
DECIMAL ADJUST
STORE (RESULT) HIGH

Elementary BCD addition and subtraction have been described.
However, in actual practice, BCD numbers include any number or
bytes. As a simplified example of a packed BCD subtract, we will
assume that the two numbers N I and N2 include the same number of
BCD bytes. The number of bytes is called COUNT. The register and
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memory allocation is shown in Figure 3.11. The program appears
below:

BCDPAK LD B, COUNT
LD DE, N2
LD HL, Nl
AND A

MINUS LD A, (DE)
SBe A, (HL)
DAA
LD (HL), A
INC DE
INC HL
DJNZ MINUS

CLEAR CARRY
N2 BYTE

N2 - I

STORE RESULT

DEC B, LOOP UNTIL B = O.

B I COUNT

N2

D N2 1COUN'
H NI

NI

Fig. 3.11: Packed BCD Subtract: Nl~ N 2 • Nl

N I and N2 represent the addresses where the BCD numbers are stored.
These addresses will be loaded in register pairs DE and HL:

BCDPAK LD
LD
LD

B, COUNT
DE,N2
HL, NI
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Then, in anticipation of the first subtraction, the carry bit must be
cleared. It has been pointed out that the carry bit can be cleared in a
number of equivalent ways. Here, for example, we use:

AND A
The first byte of N2 is loaded into the accumulator, then the first byte
of NI is subtracted from it. The DAA instruction is then used, to obtain
the correct BCD value:

MINUS LD
SBC
DAA

A, (DE)
A, (HL)

The result is then stored into N I:

LD (HL), A

Finally, the pointers to the current byte are incremented:

INC DE
INC HL

The counter is decremented and the subtraction loop is executed until it
reaches the value "0":

DJNZ MINUS

The DJNZ instruction is a special Z80 instruction which decrements
register B and jumps if it is not zero, in a single instruction.

Etercise 3.10: Compare the program above to the one for the 16-bit
binaryaddi{ion. Wha{ is {he difference?

Etercise 3.1I: Can you exchange {he roles of DE and HL? (Hin{: Be
careful wi{h SBC.)

Exercise 3./2: Write {he sub{raction program for a 16-bi{ BCD.

BCD Flags

In BCD mode, the carry nag during an addition indicates the fact
that the result is larger than 99. This is not like the two's complement
situation, since BCD digits are represented in true binary. Conversely,
the presence of the carry flag during a subtraction indicates a borrow.

Instruction Types

We have now used two types of microprocessor instructions. We
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have used LD, which loads the accumulator from the memory address,
or stores its contents at the specified address. This is a data trallsfer in­
struction.

Next, we have used arithmetic instructions, such as ADD, SUB,
ADC and SBe. They perform addition and subtraction operations.
More ALU instructions will be introduced soon in this chapter.

Still other types of instructions are available within (he micropro­
cessor which we have not used yet. They are in particular "jump" in­
structions, which will modify the order in which the program is being
executed. This new type of instruction will be introduced in our next ex­
ample. Note that jump instructions are often called "branch" for con­
ditional situations, i.e. instances where there is a logical choice in the
program. The "branch" derives its name from the analogy to a tree,
and implies a fork in the representation of (he program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the multi­
plication of binary numbers. In order to introduce the algorithm for a
binary multiplication, let us start by examining a usual decimal multi­
plication: We will multiply 12 by 23.

12
x 23

36
+ 24

276 (Final Result)

The multiplication is performed by multiplying the right-most digit of
the multiplier by the multipiicand, i.e., "3" x "12". The partial prod­
uct is "36". Then one multiplies the next digit of the multiplier, I.e.,
"2", by "12". "24" is then added to the partial product.

But there is one more operation: 24 is offset to the left by one posi­
tion. We will say that 24 is shifted left by one position. Equivalently, we
could have said that the partial product (36) had been shifted one posi­
tioll to the right before adding.

The two numbers, correctly shifted, are then added and the sum is
276. This is simple. The binary multiplication is performed in exactly
the same way.
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Let us look at an example. We will multiply 5 x 3:

(MPD)
(MPR)

(PP)

101
x 011

101
101

000

(IS) 01111 (RES)

(5)
(3)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure
3-12. It is a flowchart for the algorithm, our first flowchart. Let us ex­
amine it more closely.

NO

NO

,
Fig. 3.12: The Basic Multiplicatiol1l Algorithm-Flowchart

This flowchart is a symbolic representation of the algorithm we have
just presented. Every rectangle represents an order to be carried out. It
will be translated into one or more program instructions. Every
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diamond-shaped symbol represents a test being performed. This will be
a branching point in the program. If the test succeeds, we will branch to
a specified location. If the test does not succeed, we will branch to
another location. The concept of branching will be explained later, in
the program itself. The reader should now examine this flowchart and
ascertain that it does indeed exactly represent the algorithm which has
been presented. Note that there is an arrow coming out of the last dia­
mond at the bottom of the flowchart, back to the first diamond on top.
This is because the same portion of the flowchart will be executed eight
times, once for every bit of the multiplier. Such a situation, where ex­
ecution will restart at the same point, is called a program loop for ob­
vious reasons.

t:'.xercise 3.13: Multiply "4" by "7" in binary, using the jlowchart, and
verify that you obtain "28". If you do not, try again. It is only if you
obtain the correct result that you are ready to translate this jlowchart
into a program.

8-By-8 Multiplication

Let us now translate this flowchart into a program for the Z80. The
complete program appears in Figure 3.13. We are going to study it in
detail. As you will recall from Chapter I, programming consists here of
translating the flowchart of Figure 3.12 into the program of Figure
3.13. Each of the boxes in the fiowchart will be translated by one or
more instructions.

It is assumed that MPR and MPD already have a value.

MPY88 LD
LD
LD
LD
LD

MULT SRL

JR
ADD

NOADD SLA
RL
DEC
JP
LD

BC, (MPRAD)
B,8
DE, (MPDAD)
0,0
HL,O
C

NC, NOADD
HL, DE
E
o
B
NZ, MULT
(RESAD), HL

LOAD MULTIPLIER INTO C
B IS BIT COUNTER
LOAD MULTIPLICAND INTO E
CLEAR 0
SET RESULT TO 0
SHIFT MULTIPLIER BIT INTO
CARRY
TEST CARRY
ADD MPD TO RESULT
SHIFT MPD LEFT
SAVE BIT IN 0
DECREMENT SHIFT COUNTER
DO IT AGAIN IF COUNTER i= 0
STORE RESULT

Fig. 3.13: 8 x 8 Multiplication Program
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The first box of the flowchart is an initialization box. It is necessary
to set a number of registers or memory locations to "0", as this pro­
gram will require their use. The registers which will be used by the
multiplication program appear in Figure 3.14.

(MPDAD)

RES (RESAD)
1---------1

Fig 3.14: 8 x 8 MuItiplicatioDl-The Registers

Three register pairs of the Z80 are used for the mUltiplication pro­
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assumed to reside at memory ad­
dress MPDAD. The multiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter.

Registers D and E will hold the multiplicand as it is shifted left one
bit at a time.

Note that, even though only C and E need to be loaded initially, a 16­
bit load must be used, so that Band D will also be loaded from memory,
and will have to be reset respectively to "8" and to "0".

116



BASIC PROGRAMMING TECHNIQUES

Finally, the results of an 8-bit by 8-bit multiplication may require up
to 16 bits. This is because 2' x 2' = 2'6. Two registers must therefore
be reserved for the result. They are registers Hand L, as indicated on
Figure 3. 14.

The first step is to load registers B, C, and E with the appropriate
contents, and to initialize the result (the partial product) to the value
"0" as sped fied by the flowchart of Figure 3.12. This is accomplished
by the following instructions:

MPY88 LD
LD
LD
LD
LD

BC, (MPRAD)
B, 8
DE, (MPDAD)
D,O
HL, 0

The first three instructions respectively load MPR into the register pair
BC, the value "8" into register B, and MPD into the register pair DE.
Since MPR and MPD are 8-bit words, they are, in fact, loaded into
registers C and E respectively, while the next words in the memory after
MPR and MPD get loaded into Band D. This is shown in Figure 3.15
and 3.16. The next instruction will zero the contents of D.

In this multiplication program, the multiplicand will be shifted left
before being added to the result (remember that, optionally, it is pos­
sible to shift the result right instead, as indicated in the fourth box of
the flowchart of Figure 3.12). The multiplicand MPD will be shifted in­
to register D at each step. This register D must therefore be initialized to
the value "0". This is accomplished by the fourth instruction. Finally,
the fifth instruction sets the contents of registers Hand L to 0 in a single
instruction.

MEMORY

MPRAD

Fig. 3.15: LD Be, (MPRAD)
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MEMORY

D LJL11
1

we", ·I! /~e~ . ,

I------+-f-----' I !
~

Fig. 3.16: LD DE, (MPDAD)

Referring back to the Oowchart of Figure 3.12, the next step is to test
the least significant bit (the right-most bit)of the multiplier MPR. 'I' this
bit is a "''', then the value of MPD must be added to the partial result,
otherwise it will not be added. This is accomplished by the next three in­
structions:

MULT SRL C
JR NC, NOADD
ADD HL,DE

The first problem we must solve is how to test the least significant bit of
the multiplier, contained in register C. We could here use the BIT in­
struction of the Z80, which allows testing any bit in any register. How­
ever, in this case, we would like to construct a program as simple as
possible, using a loop. If we were using the BIT instruction here, we
would first test bit 0, then later test bit I, and so on until we reached bit
7. This would require a different instruction every time, and a simple
loop could not be used. In order to shorten the length of the program,
we must use a different instruction. Here we are using a shift instruc­
tion.

Note: There is a way to use the BIT instruction and a loop, but this
would require the program to modify itself, a practice we will avoid.
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SRL is a new type of operation within the arithmetic and logical unit.
It stand for "shift right logical." A logical shift is characterized by the
fact that a "0" comes into bit position 7. This can be contrasted to an
arithmetic shift, where the bit coming into position 7 is identical to the
previous value of bit 7. The different types of shift operations will be
described in the next chapter. The effect of the SRL C instruction is il­
lustrated in Figure 3.14 by an arrow coming out of register C and into
the square used to designate the carry bit (also called "e"). At this
point, the right-most bit of the MPR will be in the carry bit C, where it
can be tested.

The next instruction, "JR NC, NOADD", is a jump operation. It
means "jump on no carry" (NC) to the address (the label) NOADD. If
the contents of the carry bit are "0" (no carry), then the program will
jump to the address NOADD. If the contents of Care" 1" (the carry
bit is set), then no branch will occur, and the next sequential instruction
will be executed, i.e., the instruction "ADD HL, DE" will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the result in Hand L. Since E contains the multiplicand
MPD (see Figure 3.14), this adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the
result or not, the multiplicand must be shifted left (this is the fourth box
in the flowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for "shift left arithmetic." It has just been explained above
that there are two types of shift operations, a logical shift and an arith­
metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least
significant bit) be a "0" Uust as in the case of an SRL before).

As an example, let us assume that the initial contents of register E
were 00001001. After the SLA instruction, the contents of E will be
00010010. And the contents of the carry bit will be O.

However, looking back at Figure 3.14, we really want to shift the
most significant bit (called the MSB) of E directly into D (this is il­
lustrated by the arrow on the illustration coming from E into D).
However, there is no instruction which will shift a double register such
as D and E in one operation. Once the contents of E have been shifted,
the left-most bit has "fallen into" the carry bit. We must collect this bit
from the carry bit and shift it into register D. This is accomplished by
the next instruction:

RL D
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RL is still another type of shift operation. It stands for "rotate left."
In a rotation operation, as opposed to a shift operation, this bit coming
into the register is the contents of the carry bit C (see Figure 3.17). This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effectively transferred the left­
most bit of E.

This sequence of two instructions is illustrated in Figure 3.18. It can
be seen that the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant
position of D. Effectively, it will have been shifted from E into D.

At this point, referring back to the flowchart of Figure 3.12, we must
point to the next bit of MPR and check for the eighth bit. This is ac­
complished by decrementing the byte counter, contained in register B
(see Figure 3.14). The register is decremented by:

DEC B

This is a decrement instruction, which has the obvious effect.
Finally, we must check whether the counter has decremented to the

value zero. This is accomplished by checking the value of the Z bit. The
reader will recall that the Z (zero) flag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX,
DEC SP do not affect the Z flag. If the counter is not "0", the opera­
tion is not finished, and we must execute this program loop again. This
is accomplished by the next instruction:

lP NZ MULT

CARRY

SHIFT LEFT

CARRY

ROTATE LEFT

Fig. 3.17: Shift and Rotate
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c

xSL-xE

Fig. 3.18: Shifting from E into D

This is a jump instruction which specifies that whenever the Z bit is
not set (NZ stands for non-zero), a jump occurs to location MULT. This
is the program loop, which will be executed repeatedly until B decre­
ments to the value 0. Whenever B decrements to the value 0, the Z bit
will be set, and the J P NZ instruction will fail. This will result in the
next sequential instruction being executed, namely:

LD (RESAD), HL

This instruction merely saves the contents of Hand L, i.e., the result of
the multiplication, at address RESAD, the address specified for the
result. Note that this instruction will transfer the contents of both regis­
ters Hand L into two consecutive memory locations, corresponding to
addresses RESAD and RESAD + 1. It saves 16 bits at a time.

Exercise 3.14: Could you write the same multiplication program using
the BIT instruction (described in the next chapter) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3.15: Can iR be substituted for iP at the end of the program?
If so, what is the advantage?

Exercise 3.16: Can you use DiNZ to shorten the end of the program?
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Exercise 3.17: Examine the two instructions: LD D, 0 and LD HL, 0 at
the beginning of the program. Can you substitute:

XOR A
LD D, A
LD H, A
LD L, A

If so, what is the impact on size (number of bytes) and speed?

Note that, in most cases, the program that we have just developed
will be a subroutine and the final instruction in the subroutine will be
RET (return). The subroutine mechanism will be explained later in this
chapter.

Important Self-Test

This is the first significant program we have encountered so far. It in­
cludes many different types of instructions, including transfer instruc­
tions (LD), arithmetic operations (ADD), logical operations (SRL,
SLA, RL), and jump operations (JR, JP). It also implements a pro­
gram loop, in which the lower seven instructions, starting at address
MULT, are executed repeatedly. In order to understand programming,
it is essential to understand the operation of such a program in com­
plete detail. The program is much longer than the previous simple arith­
metic programs we have developed so far, and it should be studied in
detail. An important exercise will now be proposed. The reader is
strongly urged to do this exercise completely and correctly before pro­
ceeding. This will be the only real proof that the concepts presented so
far have been understood. If a correct result is obtained, it will mean
that you have really understood the mechanism by which instructions
manipulate information in the microprocessor, transfer it between the
memory and the registers, and process it. If you do not obtain the cor­
rect result, or if you do not do this exercse, it is likely that you will ex­
perience difficulties later in writing programs yourself. Learning to pro­
gram requires personal practice. Please pause now, take a piece of
paper, or use the illustration of Figure 3.19, and do the following exer­
cise:

Exercise 3.18: Every time that a program is written, it should be verified
by hand, in order to ascertain that its results will be correct. We are go­
ing to do just that: the goal of this exercise is to fill in the table ofFigure
3.19 completely and accurately.
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LABEL INSTRUCTION B C C D E H L
ICARRY)

I
I

I
I
I

I I
I I
I !

I

I

I I
II

I
Fig. 3.19: Form for Multiplication Exercise

You may want to write directly on Figure 3.19 or make a copy of it.
You must determine the contents of every relevant register in the Z80
after the execution of each instruction in the program, from beginning
to end. All the registers used by the program of Figure 3.13 are shown
in Figure 3.19. From left to right. they are registers Band C, the carry
C, registers D and E, and, finally, registers Hand L. On the left pan of
this illustration, fill in the label, if applicable, and then the instructions
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being executed. On the right of the instruction, fill in the contents of
each register after execution of the instruction. Whenever the contents
of a register are not known (indefinite), you may use dashes to repre­
sent its contents. Let us start filling in this table together. You will then
have to fill it out by yourself until the end. The first line appears below:

LABEL INSTRUCTION B C C D E H L

-- -- - -- -- -- --
MP488 LD BC.(02oo) 00 03 - -- -- -- --

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying "3" (MPR) by "5"
(MPD).

The first instruction to be executed is "LD BC, (MPRAO)". The
contents of memory location MPRAD is loaded into registers Band C.
It has been assumed that MPR is equal to 3, i.e., "00000011". After ex­
ecution of this instruction, the contents of register C have been set to
"3". Note that this instruction will also result in loading register B with
whatever followed MPR in the memory. However, the next instruction
in the program will take care of this by loading register B with "8", as
shown in Figure 3.21. Note that, at this point, the contents of 0 and E
and Hand L are still undefined, and this is indicated by dashes. The LD
instruction does not condition the carry bit, so that the contents of the
carry bit C are undefined. This is also indicated by a dash.

LABEL INSTRUCTION B C C D E H L

-- -- - -- -- -- --
MP488 LD BC, (0200) 00 03 - -- -- -- --

LD B08 08 03 - -- -- -- --
Fig. 3.21: Multiplication: After Two Instructions

The situation after the execution of the first five instructions of the
program (just before the MULT) is shown in Figure 3.22.
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LABEL INSTRUCTION B C I C D I E H l

-- --
I

- -- -- -- --
MP488 LD BC, (0200) 00 I 03 - -- -- -- --

LD B, 08 08 03 I - -- -- -- --
LD DE, (0202) 08

03 I - 00 05 -- --
LD D, 00 08 03 - 00 05 -- --
LD HL,OOOO 08 03 I - 00 05 00 00

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right­
most bit of MPR will fall into the carry bit. You can see in Figure 3.23
that the contents of MPR and after the shift is "00000001". The carry
bit C is now set to "1". The other registers are unchanged by this opera­
tion. Please continue to fill out the chart by yourself.

A second iteration is shown at the end of this chapter in Fig. 3.41.

LABEL INSTRUCTION B C C D E H L

-- -- - -- -- -- --

MP488 LD BC, (0200) 00 03 - -- -- -- --

LD B,08 08 I 03 i - -- -- -- --
LD DE, (0202) I 08 03 - 00 05 -- --

I
LD D, 00 08 03 - 00 05 -- --
LD HL,OOOO 08 03 - 00 05 00 00

MULT SRLC 08 01 1 00 05 00 00

JR NC,0114 08 01 1 00 05 00 00

ADD HLDE 08

I
01 0 00 05 00 05

NOADD SLAE 08 01 0 00 OA 00 05

RLD 08 01 0 00 OA 00 05

DECB 07 01 0 00 OA 001 05

JP NZ,010F 07 01 0 00 OA 001 05 I

Fig. 3.23: One Pass Through The Loop.
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A complete listing showing the contents of all the Z80 registers and
the flags is shown in Fig. 3.39 at the end of this chapter for the complete
multiplication. A hex or decimal listing is shown in Fig. 3.40.

Programming Alternatives

The program that we have just developed could have been written~in

many other ways. As a general rule, every programmer can usually find
ways to modify, and often improve, a program. For example; we have
shifted the multiplicand left before adding. It would have been mathe­
matically equivalent to shift the result one position to the right before
adding it to the multiplicand. As a matter of fact, this is an interesting
exercise!

Exercise 3./9: Write an 8 x 8 multiplication program using the same
algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it .to the
previous program, and determine whether this different approach
would be faster or slo wer than the preceding one. The speeds of the Z80
instructions are given in the next chapter and also in the appendix.

Improved Multiplication Program

The program that we have just developed is a straightforward trans­
lation of the algorithm to code. However, eJfective progralllllling re­
qlllres close allellllOn /() detail, and the length of the program can often
be reduced or its execution speed can be Improved. We are now going to
study alternatives designed to improve this basic program.

Step I

A first possible improvement lies in the better utilization of the Z80
instruction set. The second-to-Iast instruction as well as the preceding
one can be replaced by a single instruction:

DJNZLOOP

This is a special Z80 "automated jump" which decrements the B register
and branches to a specified location if it is not "0". To be absolutely
correct, the instruction is not completely identical to the previous pair:

DEC B
JP NZ, MULT
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for it specifies a displacement, and one can only jump within the range
of 256 to + 256. However, we must here jump to a location which is
only a few bytes away, and this improvement is legitimate. The
resulting program is shown in Figure 3.24 below:

MP488B LD
LD
LD
LD

MULT SRL
JR
ADD

NOADD SLA
RL
DJNZ
LD
RET

DE, (MPDAD)
BC, (MPRAD)
B,8
HL,O
C
NC, NOADD
HL, DE
E
o
MULT
(RESAD), HL

BIT COUNTER

Fig. 3.24: Improved Multiply, Step I

Step 2

In order to improve this multiplication program further, we will
observe that three different shift operations are used in the initial pro­
gram of Figure 3.13. The multiplier is shifted right, then the multipli­
cand MPD is shifted left, in two operations, by first shifting register E
left, then rotating register 0 to the left. This is time-consuming. A stan­
dard programming "trick" used in the case of multiplication is based
on the following observation: every time that the multiplier is shifted by
one bit position, another bit position becomes available in the multi­
plier register. For example, assuming that the multiplier shifts right (111

the previous example), a bit position becomes available on the left.
Simultaneously, it can be observed that the first partial product (or
"result") will use, at most, 9 bits. If a single register had been allocated
to the result in the beginning of the program, we could then use the bit
position that has been vacated by the multiplier to store the fourth bit
of the result.

After the next shift of the MPR, the size of the partial product will be
increased by just one bit again. In other words, a single register can be
reserved intially for the partial product, and the bit positions which are
being freed by the multiplier can then be used as the MPR is being
shifted. In order to improve the program, we are therefore going to
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assign MPR and RES to a register pair. Ideally, they should be shifted
together in a single operation. Unfortunately, the Z80 shifts only 8-bit
registers at a time. Like most other 8-bit microprocessors, it has no in­
struction that allows shifting 16 bits at a time.

However, another trick can be used. The Z80 (like the 8080) is
equipped with special 16-bit add instructions that we have already used.
Provided that the multiplier and the result are stored in the register pair
Hand L, we can use the instruction:

ADD HL, HL

which adds the contents of Hand L to itself. Adding a number to
itself is doubling it. Doubling a number in the binary system is equiva­
lent to a left shift. We have just obtained a 16-bit shift in a single in­
struction. Unfortunately, the shift occurs to the left when we would like
it to occur to the right. This is not a problem.

Conceptually, the MPR can be shifted either left or right. We have
used a right shift algorithm because this is the one which is used in or­
dinary addition. However, it does not necessarily need to be so. The
addition operation is commutative, and the order can be reversed: shif­
ting the MPR to the left is just as valid.

In order to take advantage of this simulated 16-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register
H and the result in register L. The resulting register configuration is
shown in Figure 3.25.

BI COUNTER

o

MPR

MPD

RES

E

Fig. 3.25: Registers for Improved Multiply
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The rest of the program is essentially identical to the previous one.
The resulting program appears below:

MUL88C LD
LD
LD
LD
LD

MULT ADD
JR
ADD

NOADD DJNZ
LD
RET

HL, (MPRAD-I)
L, 0
DE, (MPDAD)
D,O
B,8
HL,HL
NC, NOADD
HL,DE
MULT
(RESAD), HL

COUNTER
SHIFT LEFT

Fig. 3.26: Improved Multiply, Step 2

When comparing this program to the previous one, it can be seen that
the length of the multiplication loop (the number of instructions be­
tween MULT and the jump) has been reduced. This program has been
written in fewer instructions and this will usually result in faster execu­
tion. This shows the advantage of selecting the correct registers to con­
tain the information.

A straightforward design will generally result in a program that
works. It will not result in a program that is optillll::;ed. It is therefore
important to understand and use the available registers and instructions
in the best possible way. These examples illustrate a rational approach
to register selection and instruction selection for maximum efficiency.

Etercise 3.20: Compute the speed of a multiplicatIOn operatIOn uSlllg
this last program. Assume that a branch will occur in 50% of {he cases.
Look up the number ofcycles requlI'ed by every instruction III the Index
section. Assume a clock rate of 2 MHz (one cycle = 2 us).

Etercise 3.2/: Note that here we have used the register pair D and E to
contain the multiplicand. How would the above program be changed U
we had used the register pair Band C instead? (Him: this would re­
quire a modification at the end.)

Exercise 3.22: Why did we have to bother zerolllg register D when
loading MPD into E?

Finally, let us address a detail which may look irritating to the pro­
grammer who is not yet familiar with the Z80. The reader will have
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noticed that, in order to load MPD into E from the memory, we had to
load both registers D and E at the same time from a memory address.
This is because, unless the address is contained in registers Hand L,
there is no way to fetch a single byte directly and load it into register K
This is a feature carried over from the early SOOS', which had no direct
addressing mode. The feature was carried forward into the S080, with
some improvements, and improved still further in the ZSO, where it is
possible to fetch 16 bits directly from a given memory address (but not
S bits).

Now, having solved this possible mystery, let us execute a more
complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we will multiply
two 16-bit numbers. However, we will assume that the result requires
only 16 bits, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, is contained in
registers Hand L (see Figure 3.27). The multiplicand MPD is contained
in registers D and E.

c

o

H

Fig. 3.27: 16 X 16 Multiply-The Registers
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It would be tempting to deposit a multiplier into register Band C.
However, if we want to take advantage of the DJNZ instruction,
register B must be allocated to the counter. As a result, half of the
multiplier will be in register C, and the other half in register A (see
Figure 3.27). The multiplication program appears below:

MULl6 LD A, (MPRAD + I) MPR, HIGH
LD C,A
LD A, (MPRAD) MPR, LOW
LD B, 16 COUNTER
LD DE, (MPDAD) MPD
LD HL,O

MULT SRL C RIGHT SHIFT MPR,
HIGH

RRA ROTATE RIGHT MPR,
LOW

JR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT

NOADD EX DE,HL
ADD HL. HL DOUBLE - SHIFT MPD

LEFT
EX DE, HL
DJNZ MULT
RET

Fig. 3.28: 16 X 16 Multiplication Program

The program is analogous to those we have developed before. The
first six instructions (from label MULl6 to label MULT) perform the
initialization of registers with the appropriate contents. One complica­
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations. It is assumed that MPRAD points to the
low part of the MPR in the memory, followed in the next sequential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, it must
be transferred into C:

LD A, (MPRAD + I)
LD C, A

Finally, the low part of MPR can be read directly into the accumulator:

LD A, (MPRAD)
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The rest of the registers, B, D, E, H, and L are initialized as usual:

LD B, 16
LD DE, (MPDAD)
LD HL,O

A 16-bit shift must be performed on the multiplier. It requires two
separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR, i.e., the LSB, is
contained in the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multiplicand is not added to the result if the carry bit is
"0". and is added to the result if the carry bit is "I":

ADD HL, DE

Next, the multiplicand MPD must be shifted by one position to the left.
However, the Z80 does not have an instruction which will shift the

contents of register 0 and E simultaneously to the left by one bit posi­
tion, and it can also not add the contents of 0 and E to itself. The con­
tents of 0 and E will therefore first be transferred into Hand L, then
doubled, and transferred back to 0 and E. This is accomplished by the
next three instructions:

NOADD EX
ADD
EX

DE,HL
HL,HL
DE,HL

Finally. the counter B is decremented and a jump occurs to the begin­
ning of the loop as long as it does not decrement to "0":

DJNZ MULT

As usual, it is possible to consider other register allocations which may
(or may not) result in shorter codes:

Erercise 3.23: Load the lIIultiplier into registers Band C. Place the
counter in A. Write the corresponding lIIultiplication program and
discuss the advantages or disadvantages of this register allocation.
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Erercise 3.24: Referring to the uriginal 16-bit mulliplication program
of Figure 3.28, can you propose a way to shift the MPD, contamed in
regislers D and E, wilhout transferring it inlO registers Hand L?

!::rercise 3.25: Wrile a 16-by-16 mulliplication program which detects
thefael that the result has more than 16 bits. This !:S' a slIIlple Improve­
ment of our basic program.

Erercise 3.26: Write a 16-by-16 multiplication program with a 32-bil
result. The suggesled register allocation appears in Figure 3.29.
Remember that Ihe initial resull aJler the firsl addition [/I the loo!} will
require only 16 bits, and that the multiplier will ji"ee one bit for each
subsequenl ileration.

B'i..------,Mri..-D -----,I C
D I M~R IE

H I RES IL

RESULT
AFTER
MULTIPLICATION

Fig. 3.29: 16 x 16 Multiply with 32-Bit Result

Let us now examine the last usual arithmetic operation, the division.

BINARY DIVISION

The algorithm for binary division is analogous to the one which has
been used for the multiplication. The divisor is successively subtracted
from the high order bits of the dividend. After each subtraction, the
result is used instead of the initial dividend. The value of the quotient is
simultaneously increased by I every time. Eventually, the result of the
subtraction is negative. This is called an overdraw. One must then
restore the partial result by adding the divisor back to it. Naturally, the
quotient must be simultaneously decremented by I. Quotient and divi­
dend are then shifted by one bit position to the left and the algorithm is
repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring melhod. A variation
of this method which yields an improved speed of execution is called the
non-restoring method.
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INITIALIZE
QUOTIENT = 0

SHIFTCOUNTER = 4

SHIFTlEFT
DIVIDEND

(WITH 8 LEADING 0'5)
AND QUOTIENT

TRIAL SU8TRACT:
LECT (DIVIDENDj-DIVISOR

NO

END (REMAINDER IN LEFT (DIVIDEND)

RESTORE:
ADD DIVISOR

Fig. 3.30: 8-Bit Binary Division f<'lowchart

B ICOUNTER: IC

D L----,'-====!__-,

Fig. 3.31: 16 x 8 Division-The Registers
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16-by-8 Division

As an example, let us here examine a 16-by-8 division, which will
yield an 8-bit quotient and an 8-bit remainder dividend. The register
allocation is shown in Figure 3.31.

The program appears below:

DIV168 LD A, (DVSAD) LOAD DIVISOR
LD D,A INTO D
LD E,O
LD HL, (DVDAD) LOAD 16-BIT DIVIDEND
LD B,8 INITIALIZE COUNTER

DIV XOR A CLEAR C BIT
SBC HL,DE DIVIDEND - DIVISOR
INC HL QUOTIENT = QUOTIENT +
JP P,NOADD TEST IF REMAINDER

POSITIVE
ADD HL,DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT - 1

NOADD ADD HL,HL SHIFT DIVIDEND LEFT
DJNZ DIV LOOP UNTIL B = 0
RET

Fig. 3.32: 16 x 8 Division Program

The first five instructions in the program load the divisor and the divi­
dend respectively into the appropriate registers. They also initialize the
counter, in register B, to the value 8. Note again that register B is a pre­
ferred location for a counter if the specialized Z80 instruction DJNZ is
to be used:

DIV168 LD
LD
LD
LD
LD

A, (DVSAD)
D,A
E,O
HL, (DVDAD)
B, 8

Next, the divisor is subtracted from the dividend. Since an SBC in­
struction must be used (there is no 16-bit subtract without carry), the
carry must be set to the value "0" before subtracting. This can be ac­
complished in a number of ways. The carry can be cleared by perform-
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ing instructions such as:

XORA
AND A
ORA

Here, an XOR is used:

DIV XOR A

The subtraction can then be performed:

SBC HL, DE

It is anticipated that the subtraction will be successful, i.e., that the re­
mainder will be positive. This is called the "trial subtract" step (refer to
the flowchart of Figure 3.30). The quotient is therefore incremented by
one. If the subtraction has in fact failed (i.e., if the remainder is
negative), the quotient will have to be decremented by one later on:

INC HL

The resuit of the subtraction is then tested:

JP P, NOADD

If the remainder is positive or zero, the subtraction has been successful,
and it is not necessary to store it. The program jumps to address
NOADD. Otherwise, the current dividend must be restored to its
previous value, by adding the divisor back to it, and the quotient must
be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend is shifted left, in anticipation of the
next trial subtract operation. Finally, the B counter is decremented and
tested for the value "0". As long as B is not zero, this loop is executed:

NOADD ADD HL, HL
DJNZ DIV
RET

Exercise 3.27: Verify the operation of this division program by hand,
by filling out the table of Figure 3.33, as in Exercise 3.18 for the multi­
plication. Note that the contents of D need not be entered on the form
of Figure 3.33, since they are never modified.
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LABEL INSTRUCTION B H I I

I
!

I
1

I I
, I
I III I

Fig. 3.33: Form for Division Program

8-Bit Division

The following program uses a restoring method, and leaves a com­
plemented quotient in A. It divides 8 bits by 8 bits (unsigned).

E IS DIVIDEND
C IS DIVISOR
A IS QUOTIENT
B IS REMAINDER

DIV88 XOR
LD

LOOP88 RL

RLA
SUB
JR
ADD
DJNZ
LD
LD
RLA

CPL
RET

A
B,8
E

C
NC, $ + 3
A,C
LOOP88
B,A
A,E

CLEAR ACCUMULATOR
LOOP COUNTER
ROTATE CY INTO ACC­
DIVIDEND
CY WILL BE OFF
TRIAL SUBTRACT DIVISOR
SUBTRACT OK
RESTORE ACCUM, SET CY

PUT REMAINDER IN B
GET QUOTIENT
SHIFT IN LAST RESULT BIT

COMPLEMENT BITS

Note: the "$" symbol in the sixth instruction represents the value of the
program counter.
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Non Restoring Division

The following program performs a 16-bit by IS-bit integer division,
using a non-restoring technique. IX points to the dividend, IY to the
divisor (not zero). The resulting address is left in IX (see Figure 3.34).

Al DVD,HI I
BI COUNTER II DVD,LO IC

DI DiViSOR IE

REM

IX I DVD ADDRESS

IY I DVSADDR

Fig. 3.34: Non-Restoring Divisor-The Registers

Register B is used as a counter, initially set to 16.
A and C contain the dividend.
D and E contain the divisor.
Hand L contain the result.
The 16-bit dividend is shifted left by:

RL C
RLA

The remainder is shifted left by:
ADC HL, HL.

The final quotient is left in B, C, with the remainder in HL. The
program follows.
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DIVI6 LD B, (IX + I)
LD C, (IX)
LD D,(IY + I)
LD E, (IY)
LD A,D
OR E (DIVISOR) HIGH OR

(DIVISOR) LOW
JR Z, ERROR CHECK FOR DIVISOR =

ZERO
LD A,B GET (DVD)HI
LD HL,O CLEAR RESULT
LD B, 16 COUNTER

TRIALSB RL C ROTATE RESULT + ACC
LEFT

RLA
ADC HL,HL LEFT SHIFT. NEVER SETS

CARRY.
SBC HL, DE MINUS DIVISOR

NULL CCF RESULT BIT
JR NC, NGV ACCUMULATOR

NEGATIVE?
PTV DJNZ TRIALSB COUNTER ZERO?

JP DONE
RESTOR RL C ROTATE RESULT + ACC

LEFT
RLA
ADC HL,HL AS ABOVE
AND A
ADC HL,DE RESTORE BY ADDING DVSR
JR C, PTV RESULT POSITIVE
JR Z, NULL RESULT ZERO

NGV DJNZ RESTOR COUNTER ZERO?
DONE RL C SHIFT IN RESULT BIT

RLA
ADD HL,DE CORRECT REMAINDER
LD B,A QUOTIENT IS IN B, C
RET
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Exercise 3.28: Compare the previous program to the following one, us­
ing a restoring technique:

DIVIDEND IN AC
DIVISOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

DIVI6

LOOPI6

LD
LD
RL
RLA
ADC
SBC
JR
ADD
CCF
DJNZ
RL
RLA
RET

HL,O
B, 16
C

HL, HL
HL,DE
NC, $ + 3
HL,DE

LOOPl6
C

CLEAR ACCUMULATOR
SET COUNTER
ROT ACC-RESULT LEFT

LEFT SHIFT
TRIAL SUBTRACT DIVISOR
SUB WAS OK
RESTORE ACCUM
CALC RESULT BIT
COUNTER NOT ZERO
SHIFT IN LAST RESULT BIT

Note: The symbol "$" means "current location" (eighth instruction).

LOGICAL OPERAnONS

The other class of instructions which can be executed by the ALU in­
side the microprocessor is the set of logical instructions. They include:
AND, OR and exclusive OR (XOR). In addition, one can also include
here the shift and rotate operations which have already been utilized,
and the comparison instruction, called CP for the Z80. The individual
use of AND, OR, XOR, will be described in Chapter 4 on the instruc­
tion set.

Let us now develop a brief program which will check whether a given
memory location called LOC contains the value "0", the value" I", or
something else.

The program will introduce the comparison instruction, and perform
a series of logical tests. Depending on the result of the comparison, one
program segment or another will be executed.
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The program appears below:

LD A, (LOC)

CP DOH
JP Z, ZERO

CP OIH
JP Z,ONE

READ CHARACTER IN
LOC
COMPARE TO ZERO
IS IT A a?
COMPARE TO ONE

ONEFOUND

ZERO

ONE

The first instruction: "LD A, (LOC)" reads the contents of memory
location LOC, and loads it into the accumulator. This is the character
we want to test. It is compared to the value a by the following instruc­
tion:

CP DOH

This instruction compares the contents of the accumulator to the hex­
adecimal value "00", i.e., the bit pattern "0000 0000". This compan­
son instruction will set the Z bit in the flags register to the value" I", if
it succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

Thc jump instruction tests the value of the Z bit. If the comparison suc­
ceeds, the Z bit has been set to one, and the jump will succeed. The pro­
gram will then jump to the address ZERO. If the test fails, then the next
sequential instruction will be executed:

CP OIH

Similarly, the following jump instruction will branch to location ONE
if the comparison succeeds. If none of the comparisons succeed, then
the instruction at location NONEFOUND will be executed.

JP Z, ONE
NONEFOUND
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This program was introduced to demonstrate the value of the com­
parison instruction followed by a jump, This combination will be used
in many of the following programs.

Lrercise 3.29: Refer to the definition (~lthe LD A. (LDC) instruction in
the next chapter. t,:nlll/il/e the e.!lect (~r thiS lIIStrt/ctlOl/ Ol/ the jlags. ~l

any. Is the second instruction of this program necessary (ep OOH)?

I:~rercise 3.30: "Vrite the progralll which will read the contellfs of
lIIelllOIY locatlOl/ "24" and branch to an address called' :')7A R"II there
was a "*" in lIIelllOIY location 24, The Int paffem for a "*" in blllwy

nofaflon will be assulIIed to be re/Jresel/ted by "00101010".

INSTRUCTION SUMMARY

We have now studied most of the important instructions of the Z80
by using them. We have transferred values between the memory and the
regIsters. We have performed arithmetic and logical operations on such
data. We have tested it. and depending on the results of these tests.
have executed various portions of the program. In particular. special
"automated" Z80 instructions such as DJNZ have been used to shorten
programs. Other automated instructions: LDDR, CPIR, INIR will be
introduced throughout the remainder of this book.

Full use has been made of special Z80 features. such as 16-bit register
instructions (0 simplify the programs. and the reader should be careful
not to use these programs on an 8080: they have been optimized for the
Z80.

We have also introduced a structure called a loop. Another impor­
tant programming structure will be introduced now: the subroutine.

SUBROUTINES

In concept. a subroutine IS SImply a block of instructions which has
been given a name by the programmer. From a practical standpoint. a
subroutine must start with a special instruction called a subroUfil/e
declaratf()!l. which identifies it as such for the assembler. It is also ter­
minated by another special instruction called a return. Let us first il­
IW,(fate the use of a subroutlI1e in a program in order to demonstrate its
value. Then. we will examine how it IS actually implemented.
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MAIN PROGRAM

5UBRQUT1Nl

RETURN

(AU SUB

CAll SUB ~
--:I!.. - - Oi:1!

l--57!

--- -- --
'--------'

Fig. 3.35: Subroutine Calls

The use of a subroutine is illustrated in Figure 3.35. The main pro­
gram appears on the left of the illustration. The subroutine is shown
symbolically on the right. Let us examine the subroutine mechanism.
The lines of the main program are executed successively until a new in­
struction "CALL SUB" is met. This special instruction is the
subroutine call and results in a transfer to the subroutine. This means
that the next instruction to be executed after the CALL SUB is the first
instruction within the subroutine. This is illustrated by arrow I on the
illustration.

Then, the subprogram within the subroutine executes just like any
other program. We will assume that the subroutine does not contain
any other calls. The last instruction of this subroutine is a RETURN.
This IS a special instruction which will cause a return to the main pro­
gram. The next instruction to be executed after the RETURN is the one
following the CALL SUB in the main program. This is illustrated by ar­
m\\ 3 on the illustration. Program execution continues then. as il­
lustrated by arrow 4.

In the body of the main program a second CALL SUB appears. A
ne\\ I rans fer occurs. shown by arrow 5. This means that the body of the
subroutine is again executed following the CALL SUB instruction.

\\'henever the RETURN within the subroutine b encountered, a
return occurs to the Il1struction followll1g the CALL SUB in question.
This is illustrated by arrow 7. Following the return to the main pro­
gram, program execution proceeds normally. as illustrated by arrow 8.

The effect of the two special instructions CALL SUB and RETURN
should now be clear. What is the value of the subroutine mechanism?

TilL' essential value of the subroutine is that it ean be called from any
number of points in the main program. and used repeatedly without
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rewnllng II. A first advantage is that this approach saves memory
space, since there is no need to rewrite the subroutine every time. A se­
cond advantage is that the programmer can design a speci fic subroutine
only once and then use it repeatedly. This is a significant simplification
Il1 program design.

El:ercise 3.31: Whal Is Ihe lIlain dlsadvanlage o/a suhrouIllle? (Answer
follows. )

The disadvantage of the subroutine should be clear just by examining
the flow of execution between the main program and the subroutine. A
subroutine results in a s!ower execulion. since extra instructions must
be executed: the CALL SUB and the RETURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL SUB
and RETURN, are implemented internally within the processor. The
elTect of the CALL SUB instruction is to cause the next instruction to
be fetched at a new address. You will remember (or else read Chapter
I again) that the address of the next instruction to be executed in a
computer is contained 111 the program counter (PC). This means that
the effect of the CALL SUB is to substitute new contents in register Pc.
Its erl'cct is to load the start address or the subroutine in the program
counter. Is l!lal rea!!y sl~l.!iClenl?

To answer this question, let us consider the other instruction which
has to be implemented: the RETURN. The RETURN must cause, as its
name Il1dicates, a return to the instruction that follows the CALL SUB.
This is possible only if the address of this instruction has been preserved
somewhere. This address happens to be the value of the program
counter at the time that the CALL SUB was encountered. This is
because the program counter is automatically incremented every time it
is used (read Chapter I again). This is precisely the address that we want
to preserve, so that we can later perform the RETURN.

The next problem is: where can we save this return address? This ad­
dress must be saved in a location where it is guaranteed that it will not
be erased.

However, let us now consider the following situation, illustrated by
Figure 3.36. In this example, subroutine I contains a call to SUB2. Our
mechanism should work in this case as well. Naturally, there might even
be more than two subroutines, say N "nested" calls. Whenever a new
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CALL is encountered, the mechanism must therefore again store the
program counter. This implies that we need at least 2N memory loca­
tions for this mechanism. Additionally, we will need to return from
SUB2 first and SUBI next. In other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved.

The structure has a name and has already been introduced. It is the
stack. figure 3.38 shows the actual contents of the stack during suc­
cessive subroutine calls. Let us look at the main program first. At ad­
dress 100, the first call is encountered: CALL SUB\. We will assume
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequential address is therefore not "101", but
"103", The CALL instruction uses addresses "100", "101", "102".
Because the control unit of the Z80 "knows" that it is a 3-byte instruc­
tion, the value of the program counter, when the call has been com­
pletely decoded, will be "103". The effect of the call will be to load the
value "280" in the program counter. "280" is the starting address of
SUBl.

Fig. 3.36: Nested Calls

V·ic are now ready to demonstrate the effect of the RETURN instruc­
tion and the correct operation of our stack mechanism. Execution pro­
ceeds within SUB2 until the RETURN instruction is encountered at
time 3, The effect of the RETURN instruction is simply to pop the top
of the stack into the program counter. In other words, the program
counter is restored to its value prior to the entry into the subroutine.
The top of the stack in our example is "303". Figure 3.38 shows that, at
time 3, value "303" has been removed from the stack and has been put
back into the program counter. As a result, instruction execution pro­
ceeds from address "303". At time 4, the RETURN of SUBl is encoun­
tered. The value on LOp of the stack is "103", It is popped and is in­
stalled in the program counter. As a result, program execution will pro­
ceed from location" 103" on within the main program. This is, indeed,
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is
again empty. The mechanism works.

The subroutine call mechanism works up to the maximum dimension
of the stack. This is why early microprocessors which had a 4- or
8-register stack were essentially limited to 4 or 8 levels of subroutine
calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been
shown to the right of the main program. This is only for the clarity of
the diagram. In reality, the subroutines are typed by the user as regular
instructions of the program. On a sheet of paper, when producing the
listing of the complete program, the subroutines may be at the begin­
ning of the text, in its middle, or at the end. This is why they are pre­
ceded by a subroutine declaration: they must be identified. The special
instructions tell the assembler that what follows should be treated as a
subroutine. Such assembler directives will be discussed in Chapter 10.

ADDRESS (MAIN)

CAll SUB 1

(SUB 1)
280"- r-----'----,

0 900

CAllSUB2

RETURN

(SUB 2)

. 0

RETURN
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Fig. 3.37: The Subroutine Calls

TIME CD TlME@ TIME@) T1ME0/

103 103 103

303

Fig. 3.38: Stack vs. Time
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Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a l6-bit stack-pointer register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (lK = 1024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max­
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

The subroutine-call instruction, in the case of the Z80, is called
CALL, and comes in two versions; the direct or uncondit iOllal call.
such as CALL ADDRESS, is the one we have already described. In ad­
dition, the Z80 is equipped with a conditional call instruction which will
call a subroutine if a condition is met. For example: CALL NZ, SUBI
will result in a call to subroutine I if the result of the previous operation
is non-zero. This is a powerful facility, since many subroutine calls are
conditional, i.e., occur only if some specific condition is met.

CALL Cc. NN is executed only if the condition specified by "CC"
is true. CC is a set of three bits (bits 4, 5 and 6 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four flags "Z", "C", "P/V", "s" 0eing either zero or non-zero.

Similarly, two types of return instructions are provided: RET and
RET CC.

RET is the basic return instruction. It occupies one byte, and causes
the top two bytes of the stack to be re-installed in the program counter.
It is unconditional.

RET CC has the same effect except that it is executed only if the con­
ditions specified by CC are true. The condition bits are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used to terminate interrupt routines: RETl, RETN. They are described
in the section on the Z80 instructions as well as in the section on inter­
rupts.

Finally, one more specialized instruction is provided which is analo­
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located in page zero. This is the RST P in­
struction. This is a one-byte instruction which automatically preserves
the program counter in the stack, and causes a branch to the three-bit
address specified by the P field. The P field corresponds to bits 4, 5,
and 6 of the instruction, multiplied by eight.
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In other words, if bits 4, 5, 6 are "000", the jump wiII occur to loca­
tion OOH. If these bits are "001 ", the branch will occur to U~H, elc. lip
to 111, which will cause a branch to location 38H. The RST instruction
is very efficient in terms of speed since it is a single-byte instruction.
However, it can jump to only eight locations, in page O. Additionally,
these addresses in page 0 are only eight bytes apart. This instruction is a
carry-over from the 8080 and was extensively used for interrupts. This
will be described in the interrupt section. However, this instruction may
be used for any other purpose by the programmer, and should be con­
sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example, the
multiplication program is likely to be used by many areas of the pro­
gram. In order to facilitate and clarify program development, it is
therefore convenient to define a subroutine whose name would be, for
example, MULT. At the end of this subroutine we would simply add
the instruction RET.

Exercise 3.32: If MULT is used as a subroutine, would it "damage"
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling itself.
If you have understood the implementation mechanism, you should
now be able to answer the following question:

Exercise 3.33: Is It legal to let a subroutine call itself? (In other words,
will everything work even if a subroutine calls itself?) If you are not
sure, draw the stack and fill it with the successive addresses. Then, look
at the registers and memOlY (see Exercise 3.18) and determine if a pro­
blem exists.

Interrupts will be discussed in the input/output chapter (Chapter 6).
All returns are one-byte instructions; all calls are 3-byte instructions
(except RST).

Exercise 3.34: Look at the execution times of the CALL alld Ihe RLT
instructions in the next chapter. Why IS the return from a subroutine so
much faster than the CALL? (Hint: if the answer is not obvious, look
again at the stack implementation of the subroutine mechanislll, and
analyze the internal operations that must be pefjormed.)
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Subroutine Parameters

When calling a subroutine, one normally expects the subroutine to
work on some data. For example, in the case of multiplication, one
wants to transmit two numbers to the subroutine which will perform
the multiplication. We saw in the case of the multiplication routine that
this subroutine expected to find the multiplier and the multiplicand in
given memory locations. This illustrates one method of passing para­
meters: through memory. Two other techniques are used, so that we
have three ways of passing parameters.

I-through registers
2-through memory
3-through the stack

Registers can be used to pass parameters. This is an advantageous
solution, provided that registers are available, since one does not need
to use a fixed memory location: the subroutine remains memory-inde­
pendent. If a fixed memory location is used, any other user of the sub­
routine must be very careful that he uses the same convention and that
the memory location is indeed available (look at Exercise 3.19 above).
This is why, in many cases, a block of memory locations is reserved
simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying the subroutine to a
given memory area.

Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturally, it has disadvantages: it clutters the stack with data
and, therefore, reduces the number of possible levels of subroutine
calls. It also significantly complicates the use of the stack. and may re­
quire multiple stacks.

The choice is up to the programmer. In general, one wishes to remain
independent from actual memory locations as long as possible.

If registers are not available, a possible solution is the stack. How­
ever, if a large quantity of information should be passed to a sub­
routine, this information may have to reside directly in the memory. An
elegant way around the problem of passing a block of data is simply to
transmit a pointer to the information. A pointer is the address of the
beginning of the block. A pointer can be transmitted in a register, or in
the stack (two-stack locations can be used to store a 16-bit address), or
in a given memory location(s).
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Finally, if neither of the two solutions is applicable, then an agree­
ment may be made with the subroutine that the data will be at some
fixed memory location (the "mail-box").

I:..~.xercise 3.35: Which of the three methods above IS best for recursion?

Subroutine Library

There is a strong advantage to structuring portions of a program into
identifiable subroutines: they can be debugged independently and can
have a mnemonic name. Provided that they will be used in other areas
of the program, they become shareable, and one can thus build a
library of useful subroutines. However, there is no general panacea in
computer programming. Using subroutines systematically for any
group of instructions that can be grouped by function may also result in
poor efficiency. The alert programmer will have to weigh the advan­
tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside
the Z80 by instructions. Increasingly complex algorithms have been in­
troduced and translated into programs. The main types of instructions
have been used and explained.

Important structures such as loops, stacks and subroutines, have
been defined.

You should now have acquired a basic understanding of program­
ming, and of the major techniques used in standard applications. Let
us study the instructions available.
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A=OO BC=OOOO DE=OOOO I-IL=OOOO 8=0300 P'~0100 0100' LD BC,(0200>
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00 (0200' )

A=OO BC=OO03 DE=OOOO I-IL=OOOO 8=0300 P=0104 0104' LD £1,08
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00

A=OO BC=0803 DE=OOOO I-IL=OOOO 8=0300 P=0106 0106' UJ DE, (0202)
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00 (0202' )

A=OO BC=0803 DE=0005 I-IL=OOOO 8=0300 P=010A 010A' LD D.OO
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00

A=OO· BC=0803 DE=0005 I-IL=OOOO 5=0300 P=010C 010C' LD HL,OOOO
A'=OO £1'=0000 D'=OOOO H'=OOOO X=OOOO y=OOOO 1=00 (0000' )

A=OO BC=0803 DE=0005 I-IL=OOOO 5=0300 P=010F 010F' 5RL C
A'=OO D'=OOOO D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00

C A=OO BC=0801 DE=0005 HL=OOOO 8=0300 P=Ol11 0111 ' .JR NC,0114
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00 (OU4' ,

C A=OO BC=0801 DE=0005 HL=OOOO 8=0300 F'=0113 0113' ADD HL,DE
A'=OO D'=OOOO D'=OOOO H'=OOOO X=OOOO y=OOOO 1=00

A=OO BC=0801 DE=0005 HL=0005 S=0300 F'=0114 0114' 5LA E
A'=OO £1'=0000 D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00

V A=OO DC=0801 DE=OOOA I-IL=0005 8=0300 P=0116 0116' RL D
A'=OO D'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00

Z V A=OO BC=0801 DE=OOOA I-IL=0005 8=0300 P=0118 0118' DEC £I
A'=OO D'=OOOO D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00

N A=OO BC=0701 DE=OOOA I-IL=OO05 8=0300 P=0119 O:l19' .JP NZ,010F
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00 (010F' )

N A=OO BC=0701 DE=OOOA HL=OO05 8=0300 P=010F 010F' 3RL C
A'=OO D'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00

Z V C A"'OO BC=0700 DE=OOOA I-IL=OO05 S=0300 P=0111 0111 ' JR NC,0:l:l4
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00 (OlH' )

Z V C A=OO BC=0700 DE=OOOA HL=OOO5 5=0300 P=0113 OlD' ADD HL,DE
A'=OO B'=OOOO D'=OOOO H'~'OOOO X=OOOO yo.,OOOO 1=00.. V A'''OO DC=OlOO DE=OOOA HL=OOOF S'''0300 P=0114 OU4 ' SL(.) E:
A "'00 B'=OOOO D'=OOOO H""()OOO X=OOOO y=OOOO 1=00

V A=OO BC=OlOO DE=OO14 I-IL=OOOF S=0300 P=O;l16 0116' RL D
A'=OO B'=OOOO D'=OOOO W=OOOO X=OOOO y=OOOO 1=00

Z V A=OO BC=OlOO DE:=OO14 I-IL=OOOF S=0300 P=0118 01113' DEC D
A'=OO B'=OOOO D'=OOOO H"~OOOO X=OOOO Y=OOOO 1=00

N A"OO DC=0600 DE=OO14 HL=OOOF S=0300 P=0119 Oll'?' •.JF' NZ, 010F
A'=OO B'=OO()O D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1=00 (0101'" )

N A=OO BC=0600 DE=OO14 I-IL=OOOF S=0300 P,"010F 010F' SRL C
A'=OO B'=OOOO D'=OOOO H'=OOOO X=OOOO Y=OOOO 1=00

Z V A=OO BC=0600 DE=0014 I-IL=OOOF 8=0300 P=011l 011l ' JR NC,01l4
A' ~'OO B'=OOOO D""OOOO H'=OOOO X=OOOO Y,~OOOO 1=00 fOll4 )

Z V A=OO BC=0600 DE=0014 HL"'OOOF S'''0300 P=Oll4 0114 ' SL.A I':
A""OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00

V A=OO BC=0600 DE=00213 I-IL=OOOF S=0300 P'~0116 0116 ' F,L D
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00

Z V A=OO DC=0600 DE=OO28 HL=OOOF S=O;500 P=Oll13 0:l18' DEC F.<

A'=OO B'=OO()O D'=OOOO 1-1'=0000 X"'OOOO y"OOOO 1=00
N A=OO BC=0500 DE,o.OO~!8 HL~'OOOF S=0300 F'=Oll9 0119' .JP N2:'O:lOF

A'=O() B'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO 1=00 (Ol ()f7 " .'

N A=OO BC=0500 DE=OO28 I-IL=OOOF S=0300 P=OlOF 010F' SRL C
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X"'OOOO y=OOOO 1=00

Z V A=OO BC=0500 DE=OO28 I-IL=OOOF S=0300 P=Ol:1.1. OUl .m NC,O:ll4
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO y=OOOO 10.,00 (OU4 .'

Z V A=OO BC=0500 mo=002B I-IL"'OOOF S=0300 P=0114 Ol14' SI.J) F
A'=OO B'=OOO() [1'"'0000 1-1'=0000 X=OOOO y=OOOO 1=O()

V A=OO BC=0500 [IE=OO:50 I-IL=OOOF 5=0300 1""'0116 O11b' RL D
A'=OO B'=OOOO D'=OOOO 1-1'=0000 X=OOOO y=OOOO 1"'00

Z V A=OO BC=0500 DE=OO50 HL=OOOF S=0300 P=011 13 oI1f:1 ' [IEC B
A'=OO B'=O()OO D'=OOOO 1-1'=0000 X'''OOOO y'-'OOOO ["00

N A=()O BC=0400 DE=0050 HL~'OOOF S'-'0300 P"'Ol19 OU'I .JP ;~Z,()lOF

A ',00 B'=OOOO D"'-0000 1-1' "0000 X=OOOO Y"OOOO 1=00 ' 010F' )

N A'''OO BC=0400 DE=0050 I-IL=OOOF S.... 0300 P'=010F 0101'" ERL C
A'=OO B'=OOOO D'=OOOO H'=OOOO X=OOOO y=OOOO 1=00

Fig. 3.39: Multiplication: A Complete Trace
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z V A~OO BC~0400 DE~OO50 HL~OOOF S""0300 P~01:1.l. 0:1.:1.1 ' ,m NC,01:l4
A'=OO D'=OOOO D'=OOOO H'~OOOO X~OOOO Y~'OOOO l~OO (0:1.14'.'

~ V A~OO BC~0400 DE>OOoiO HL.~'OO(W S'~();300 F"~OI14 0114 ' ~:)LA E,.
A'~OO [1"'0000 D'=OOOO 1-1' '=0000 X'~OOOO y,,,OOOO 1=00

S V A=OO DC~0400 [lE"'OOAO HL.~OOOF ~,"'0300 P=O:ll6 01.16 ' F(l. [I

A'=OO B'=OOOO [1'=0000 w=OOOO x=OOOO Y'=OOOO 1"00
Z V A=OO BC=0400 [lE=OOAO HL.=OOOF S=0300 P'''0118 OU8 ' [lEC B

A'=OO B'=OOOO [1'=0000 H' ',0000 X'~()OOO y,=OOOO 1'·'00
1'1 A=OO BC=0300 [lE=OOAO HL.'=OOOF S~0300 P~Ol:1. '? OJ.:l9' ..IF' NZ,O:l.OF

A'=OO D'=OOOO I!'"OOOO H''''OOOO x=OOOO Y=OOOO I~O() (010F "
N A=OO EtC'=0300 [lE=OOAO I-IL=OOOF S=0300 F'=O:l.OF 01(W' sr';:L C

A'=OO B'=OOOO [1'=0000 1-1'=0000 x=OOOO Y=OOOO 1=00
Z V A~OO DC=0300 [lE=OOAO HL.=OOOF S=0300 P=OUI OUI ..m NC,O.1l4

A'=OO B"=OOOO [1'=0000 1-1'=0000 X=OOOO Y'=OOOO 1=00 (0:1.14' )
Z V A=OO DC=O;lOO [lE=OOAO I-IL=OOOF C;=0300 F'=O:l.14 0:l14' SLA E

A'=OO B'=OOOO [1'=0000 1-1 "°0000 x=OOOO Y'=OOOO 1=()0
C A=OO EtC=0300 [lE=0040 HL=OOOF S"O;IOO P=0116 OU6 . r'L. D

A'=OO D'=OOOO [1'=0000 1-1'=0000 x=OOOO Y=OOOO 1=00
A=OO BC=0300 DF>0140 I-II,=OOOF S=0300 F'=0118 O:l.lEJ' DEC D

A'=OO D'=OOOO D'=OOOO 1-1'=0000 X=OOOO Y=OOOO I"OO
N A=OO D(>0200 DE=0140 I-IL.·=OOOF S"0300 1"'''0:1.1 '7 0119" ..IP NZ,()l OF

A'=OO B"'OOOO [1'=0000 1-1"'0000 X=()OOO Y=OOOO 1~'()O (OlOF' )
N A=OO DC=0200 [lE=0140 I-IL.=OOOF S""0300 1"=0101' OlOF' SI~L C

A'=OO B'=OOOO [1'=0000 1-1"'0000 x=OOOO Y=OOOO 1=00
Z V A=OO BC=0200 DE=O:l.40 I-IL.=OO(W S=0300 P=Olll. OUI ,m NC ,OU4

A'=OO B'=OOOO [1',,0000 H'''OOOO x=OOOO Y=OOOO I=()O (O:ll4 .' )
z V A=OO BC>=0200 DE=O:l.40 HL."OOOF S=0300 1"'=01:1.4 0114' r:;L(.l E

A'=OO D'=OOOO [1'=0000 H'''OOOO X=OOOO Y"OOOO 1"'00
C' A·=OO DC=0200 [lE=O:lfJO HL."OOOF S=0300 P=O:l16 OU6 ' F(L D..,

A'=OO D'=()OOO [1'=0000 H'=OOOO x"OOOO Y=OOOO I=()O
A=OO BC"0200 [lE=02EJO I-IL.'·'OOOF S=0300 P=OI:1.EJ Ol1EJ' [lET B

A'=OO B'=OOOO [1'=0000 H'=OOOO X"OOOO Y"OOOO 1"'00
1'1 A=OO BC=O:l.OO DE=0280 HL=OOOF S=0300 P"OU9 O:l.l'?' •.11'" NZ'()j OF

A'=OO D'=OOOO [1'=0000 1-1',,0000 x,=OOOO Y=OOOO 1=00 (010F')
1'1 A=OO BC=0100 [lE=0280 HL."OOOF 5=0300 F'''OlOF OlOF' SRL C

A'=OO [1"'0000 [1'=0000 1-1'=0000 X=OOOO Y"OOOO 1=00
Z V A"OO BC=0100 [lE=0280 HL.~OOOF 5"0300 P=O:l1 1 0111 ' ..II, NC,O:l.14

A'=OO E<' =0000 D'=OOOO 1-1' ,,0000 X=OOOO Y'''OOOO 1=00 (0114 "
Z V A=OO [lC=0100 [lE=02EJO HL.=OOOF S'=0300 F"'Ol :1.4 O:l:l4 ' SL.(~ E

A'''OO B'''OOOO [1'=0000 H'=OOOO x'''OOOO Y=OOOO 'E"'OO
Z V C A=OO BC"0100 [lE=0200 HL.=OOOF 5"0300 P=0116 01.1f> ' F<l. [I

A'=OO B'=OOOO [1'=0000 H''''OOOO x=OOOO Y=OOOO 1=00
V A=OO E<C=0100 [lE=0500 HL.=OOOF 5=0300 F'''OJ.:l.B 011B' [IEC D

A'='00 [I' ~'OOOO [1'=0000 H' "0000 x'=OOOO Y"OOOO 1='00
Z 1'1 A=OO BC=OOOO [lE",,0500 HL=OOOF 8"0;lOO P=O:ll'l 011'? ' .JP NZ,010F

A'=OO f)'=OOOO [1'=0000 H'=OOOO x=OOOO Y·~OOOO 1"00 (O:lOF "
Z 1'1 A=OO BC"OOOO DE=0500 HL.=OOOF 8=0300 P"O:l.1C O:llC' I,D (0204' ,I-IL

A'=OO B'=OOOO [1'=0000 H'=OOOO X=OOOO Y=OOOO 1"00 (0204! )
Z 1'1 A=OO BC=OOOO [lE"0500 HL.=OOOF 8=0300 P=OllF 011F' NOP

A'''OO B'=OOOO [1'=0000 H'=OOOO X=OOOO Y'=OOOO T=OO

Fig. 3.39: Multiplication: A Complete Trace (continued)
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ANSWERS TO EXERCISE 3.18 (MULTIPLICATION):

aooo' 0001 or~G 0100H
(0::00) 000:: MPRAD [>L 0200H
(0202) 0003 MPDArI [>L 0202H
(0204 ) 0004 RE~31':}rl D! \l:!.(HH

OOO~ ;

0100 ED·nWOO2 0006 MP'188 LD DC, (I'lF'F:flf,)
0101 0608 0007 LD n .8
0106 E05.80202 aOoo L[> DE~ (MP[lliIr)
OlOA 1600 0009 LD [1,0
010e 210000 i)O:l 0 L.D HI_,O
OlOF CB39 0011 NUU !:;r~l r:
0111 3001 0012 Jl;; NC1NUfll)1:
0113 19 001:\ AnD HL,DE
0114 C[<!] 001.'1 NOArm SLA
0116 CB12 0015 r,L
01:1.0 0:::; OOlb VEe l'
O.IJt.) C20FOJ (IO.!.? JP NZ.MULT
ouc 220'102 0018 L[I tf"i:ES(lV> ,flL
OIlF (0000) 001 f; ENn

Erl'ors

; LOriD HUL r rr'L JEri 1Nl 0 J'

;[1 Tf:i flIT COUNTEr,'
'LO{\D MUTTFLII:AND INTI] E
1CLEr\I~: [I

"~FI fi'FSU1.-I Tn 0
~{:;I-!lT l' MlH,"r n'LJF:R H n UHO Cr')f\RY
,'TEST Ctlll:i1;'i
,i'lllll MF'D TO RESlILI
;~jHIFT Mr:'[r LEFT
;S{\I)E [lIT HI il
,;!I[(:F:FMEill SHIFT cnUN"1[r~

; DO I i' (ll,tl rP .f ~ COl )fIlER ()
; ~:i ru!,;[ [-,;[8UL f

Fig. 3.40: The Multiplication Program (Hex)

LABEL INSTRUCTION B C C D E H L
(CARRYI

00 00 0 00 00 00 00
MP488 LD BC, (0200) I 00 03 0 00 00 00

I
00

LD B, 08 08 03 0 00 00 00 00

ILD DE, (0202) 08 03 0 00 05 00 00

ILD D, 00 08 03 0 00 05 00 00I
LD HL,OOOO 08 03 0 00 05 00 00

IMULT SRLC 08 01 1 00 05 I 00 00
JR NC,0114 08 01 1 00 05 00 00
ADD HL,DE 08 01 1 00 05 00 05

NOADD SLAE 08 01 0 00 OA 00 05
RL D 08 01 0 00 OA 00 05,
DEC B 07 01 0 00 OA 00 05
JP NZ,010F 07 01 0 00 OA 00 05

MULT SRLC 07 00 1 00 OA 00 05
JR NC,01l4 07 00 1 00 OA 00 05

I ADD HL,DE 07 00 ° 00 OA 00 OF
NOADD SLA E 07 00 0 00 14 00 OF

RL D 07 00 0 00 14 00 OF

IDECB 06 00 0 00 14 00 OF
JP NZ,OlOF 06 00 0 00 14 00 OF

Fig. 3.41: Two Iterations Through the Loop
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THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions
which should be available in a general-purpose computer. It will then
analyze one by one all of the instructions available for the Z80, and ex­
plain in detail their purpose and the manner in which they affect flags
or can be used in conjunction with various addressing modes. A de­
tailed discussion of addressing techniques will be presented in Chapter
5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions:

I-data transfers
2-data processing
3-test and branch
4-input/output
5-control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be­
tween a register and memory, or between a register and an input/output
device. Specialized transfer instructions may exist for registers which
playa specific role. For example, push and pop operations
are provided for efficient stack operation. They will move a word of
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data between the top of the stack and the accumulator in a single in­
struction, while automatically updating the stack-pointer register.

Data Processing

Data processing instructions fall into five general categories:

I-arithmetic operations (such as plus/minus)
2-bit manipulation (set and reset)
3-increment and decrement
4-logical operations (such as AND, OR, exclusive OR)
5-skew and shift operations (such as shift, rotate)

It should be noted that, for efficient data processing, it is desirable to
have powerful arithmetic instructions, such as multiply and divide.
Unfortunately, they are not available on most microprocessors. It is
also desirable to have powerful shift and skew instructions, such as
shift n bits, or a nibble exchange, where the right half and the left half
of the byte are exchanged. These are also usually unavailable on most
microprocessors.

Before examining the actual Z80 instructions, let us recall the dif­
ference between a shift and a rotation. The shift will move the contents
of a register or a memory location by one bit location to the left or to
the right. The bit falling out of the register will go into the carry bit.
The bit coming in on the other side will be a "0" except in the case of an
"arithmetic shift right," where the MSB will be duplicated.

In the case of a rotation, the bit coming out still goes in the carry.
However, the bit coming in is the previous value which was in the carry
bit. This corresponds to a 9-bit rotation. It is often desirable to have a
true 8-bit rotation where the bit coming in on one side is the one falling
from the other side. This is not provided on most microprocessors
but is available on the Z80 (see Figure4.1).

Finally, when shifting a word to the right, it is convenient to have one
more type of shift, called a sign extension or an "arithmetic shift
right." When doing operations on two's complement numbers, parti­
cularly when implementing floating-point routines, it is often necessary
to shift a negative number to the right. When shifting a two's comple­
ment number to the right, the bit which must come in on the left side
should be a "I" (the sign should get repeated as many times as needed
by the successive shifts). This is the arithmetic shift right.
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SHIFT LEFT

•

ROTATE LEFT

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for "0" or
"I ", or combinations. At a minimum, it must be possible to test the
flags register. It is, therefore, desirable to have as many flags as pos­
sible in this register. In addition, it is convenient to be able to test for
combinations of such bits with a single instruction. Finally, it is

desirable to be able to test any bit position in any register, and to test
the value of a register compared to the value of any other register
(greater than, less than, equal). Microprocessor test instructions are
usually limited to testing single bits of the flags register. The Z80, how­
ever, offers better facilities than most.

The jump instructions that may be available generally fall into
three categories:

I-the jump, which specifies a full 16-bit address
2-the relative jump, which often is restricted to an 8-bit displace­

ment field
3-the call, which is used with subroutines
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It is convenient to have two- or even three-way jumps, depending, for
example, on whether the result of a comparison is "greater than," "less
than," or "equal." It is also convenient to have skip operations, which
will jump forward or backwards by a few instructions. However, a
"skip" is equivalent to a "jump." Finally, in most loops, there is
usually a decrement or increment operation at the end, followed by a
test-and-branch. The availability of a single-instruction increment!
decrement plus test-and-branch is, therefore, a significant advan­
tage for efficient loop implementation. This is not available in most
microprocessors. Only simple branches. combined with simple tests,are
available. This, naturally, complicates programming and reduces effi­
ciency. In the case of the Z80. a "decrement and jump" instruction is
available. However, it only tests a specific register (B) for zero.

Input/Output

Input/output instructions are specialized instructions for the hand­
ling of input/output devices. In practice, a majority of the 8-bit micro­
processors use memory-mapped 1/0: input/output devices are con­
nected to the address bus just like memory chips, and addressed as
such. They appear to the programmer as memory locations. All
memory-type operations normally require 3 bytes and are, therefore,
slow. For efficient input/output handling in such an environment, it is
desirable to have a short addressing mechanism available so that I/O
devices whose handling speed is crucial may reside in page O. However,
if page 0 addressing is available, it is usually used for RAM memory,
which prevents its effective use for input/output devices. The
Z80, like the 8080, is equipped with specialized I/O instructions. As a
result, in the case of the Z80, the designer may use either method: in­
put/output devices may be addressed as memory devices, or else as in­
put/output devices, using the I/O instructions.

They will be described later in this chapter.

Control Instructions

Control instructions supply synchronization signals and may suspend
or interrupt a program. They can also function as a break or a simu­
lated interrupt. (Interrupts will be described in Chapter 6 on In­
put/Output Techniques.)
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THE Z80 INSTRUCTION SET

Introduction

The Z80 microprocessor was designed to be a replacement for the
8080, and to offer additional capabilities. As a result of this design
philosophy, the Z80 offers all the instructions of the 8080, plus addi­
tional instructions. In view of the limited number of bits available in an
8-bit opcode, one may wonder how the designers of the Z80 succeeded
in implementing many additional ones. They did so by using a few
unused 8080 opcodes and by adding an additional byte to the opcode
for indexed operations. This is why some of the Z80 instructions oc­
cupy up to five bytes in the memory.

It is important to remember that any program can be written in many
different ways. A thorough knowledge and understanding of the in­
struction set is indispensable for achieving efficient programming.
However, when learning how to program, it is not essential to write op­
timized programs. During a first reading of this chapter, it is therefore
unimportant to remember all the various instructions. It is important to
remember the categories of instructions and to study typical examples.
Then, when writing programs, the reader should consult the Z80
instruction-set description, and select the instructions best suited to his
needs. The various instructions of the Z80 will therefore be reviewed in
this section with the intent of simplifying them and grouping them in
logical categories. The reader interested in exploring the capabilities of
the various instructions is referred to the individual descriptions of the
instructions.

We will now examine the capabilities provided by the Z80 in terms of
the five classes of instructions which have been defined at the beginning
of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified in four
categories: 8-bit transfers, 16-bit transfers, stack operations, and
block transfers. Let us examine them.

Eight-Bit Data Transfers

All eight-bit data transfers are accomplished by load instructions.
The format is:

LD destination, source
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For example, the accumulator A may be loaded from register B by
using the instructions:

LD B, A

Direct transfers may be accomplished between any two of the
working registers (ABCDEHL).

In order to load any of the working registers, except for the accu­
mulator, from a memory loca tion, the address of this memory loca­
tion must first be loaded into any register pair, such as registers H
and L .

For example, in order to load register C from memory location 1234,
register Hand L will first have to be loaded with the value" 1234". (A
load instruction operating on 16 bits will be used. This is described in
the following section.)

Then, the instruction LD C, (HL) will be used and will accomplish
the desired result.

The accumulator is an exception. It can be loaded directly from any
specified memory location. This is called the extended addressing
mode. For example, in order to load the accumulator with the contents
of memory location 1234, the following instruction will be used:

LD A, (l234H) (Note the use of "()" to denote "contents of.")

The instruction will be stored in the memory as follows:

address PC :3A
PC + 1:34
PC + 2:12

(opcode)
(low order half of the address)
(high order half of the address)

Note that the address is stored in "reverse order" in the instruction
itself:

3A I low addr Ihigh addr I
All the working registers may also be loaded with any specified eight-bit
value, or "literal," contained in the second byte of the instruction (this
is called immediate addressing). An example is:

LD E, 12H

which loads register E with the value 12 hexadecimal.
In the memory, the instruction appears as:

PC: IE
PC + I: 12

(opcode)
(literal operand)
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As a result of this instruction, the immediate operand, or literal value
will be contained in register E.

The indexed addressing mode is also available for loading register
contents, and will be fully described in the next chapter on addressing
techniques. Other miscellaneous possibilities exist for loading specific
registers, and a table listing all the possibilities is shown in Figure 4.2
(tables supplied by Zilog, Inc.). The grey areas show instructions
common with the 8080A.

4. 40 'E
00 Fe
4E 4E
d d n

61 62 63 64 G5

6A 6C GO 6E

77 7071 72 13 74 75

00 00 00 00 00 00 00
n 70 71 n 7J 74 75
d d d d d d d

FO Fe FO FD FD Fe FO
77 70 71 n 7J 74 75
d d d d d d d

x"
n
ED

"
ED

"

00 FO
56 56
d d n

DO FO
5E 5E
d d n

00 FD
66 66

nd d

00 FO
6E 6E
d d n

K

50 6E5. 5.

51 52REGISTER 0

O£lTINATION IHLJ

REG !BC)
INDIRECT

IDE I

(IX+d1

INDEXED

lIV+d!

EXT. ADDA InnJ

IMPLIED

8 BIT LOAD GROUP
'LD'

TABLE 5.3-1

Fig. 4.2: Eight-Bit Load Group-'LD'

16-Bit Data Transfers

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX, IY,
may be loaded with a literal 16-bit operand, or from a specified
memory address (extended addressing), or from the top of the stack,
i.e., from the address contained in IP. Conversely, the contents of these
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register pairs may be stored in the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be
loaded from HL, IX, and IY. This facilitates creating multiple stacks.
The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown in Figure 4.3. The stack
push and pop operations are included as parts of the 16-bit data
transfers. All stack operations transfer the contents of a register pair to
or from the stack. Note that there are no single push and pop instruc­
tions for saving individual eight-bit registers.

SOURCE

REGISTER

IMM. EXT. REG.
EXT. ADDR. INDIR.

AF

AF Be DE HL SP IX IV nn (nnJ (SP)

Fl

DESTINATION

R
E
G
I
S
T
E
R

EXT.
ADDR.

BC

DE

HL

SP

IX

IV

ED ED .,f: EDInnI 43 53 • 73
n n n

DO
F9

DO
22
n
n

DO
E5

FO
F9

FO
22
n
n

FO
E5

'n
n

21'

n

n

DO
21
n
n

FO
21
n
n

ED •
~B ..
n

ED
5B
n
n

2A £1

n
ED
7B
n
n
DO
2A DO
n EI
n

FO
2A FO
~ El

NOTE: The Push & Pop Instructions adiust
the SP after every execution PDP

INSTRUCTIONS

Fig. 4.3: 16-Bit Load Group-'LD', 'PUSH' and 'POP'

A double-byte push or pop is always executed on a register pair: AF,
BC, DE, HL, IX, IY (see the bottom row and right-most column in
Figure: 4.3).

When operating on AF, BC, DE, HL, a single-byte is required for the
instruction, resulting in good efficiency. For example, assume that the
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stack pointer SP contains the value "0100". The foilowing instruc­
tion is executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack
pointer SP is first decremented, then the contents of register A are de­
posited on top of the stack. Then the SP is decremented again, and the
contents of F are deposited on the stack. At the end of the stack trans­
fer, SP points to the top element of the stack, which in our example
is the value ofF.

It is important to remember that, in the case of the Z80, the SP
points to the top of the stack and the SP is decremented whenever a
register pair is pushed. Other conventions are often used in other pro­
cessors, and this may be a source of confusion.

The effect of this instruction is illustrated by the following diagram:

IMPLIED ADDRESSING

AF BC. DE & HL HL IX IV

AF 08

BC.
DE

D9
IMPLIED &

HL

DE

~REG. (SP) DD FD
INDIR. E3 E3

Fig. 4.4: Exchanges 'EX' and 'EXX'

Exchange Instructions

Additionally. a specialized mnemonic EX has been reserved for ex­
change operations. EX is not a simple data transfer, but a dual data
transfer. It actually changes the contents of two specified locations. EX
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may be used to exchange the top of the stack with HL, IX, IY and also
to swap the contents of DE and HL and AF and AF' (remember that
AF' stands for the other AF register pair available in the Z80).

Finally, a special EXX instruction is available to exchange the con­
tents of Be, DE. HL with the contents of the corresponding registers in
the second register bank of the Z80.

The possible exchanges are summarized in Figure 4.4.

SOURCE

DESTINATlON

-
REG.
INDIR.

-
(Hll

ED 'lD!' - load (DEI-(HU
AD Inc Hl & DE, Dec BC

ED 'lDIR.' - load (DEI-(Hll
BO Inc Hl & DE, Dec BC, Repeat until BC = 0

REG.
(DEIINDIR.

ED 'lDD' - load (DEI-(Hll
A8 Dec Hl & DE, Dec BC

ED 'lDDR' - load (DEI-(Hll
B8 Dec Hl & DE, Dec BC. Repeat until BC = 0

Reg Hl points to source
Reg DE points to destmation
Reg BC is byte counter

Fig. 4.5: Block Transfer Group

Block Transfer Instructions

Block transfer instructions are instructions which will result in the
transfer of a block of data rather than a single or double byte. Block
transfer instructions are more complex for the manufacturer to imple­
ment than most instructions and are usually not provided on micropro­
cessors. They are convenient for programming, and may improve the
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performance of a program, especially during input/output operation.
Their use and advantages will be demonstrated throughout this book.
Some automatic block transfer instructions are available in the case of
the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of
registers: BC, DE, HL:

BC is used as a l6-bit counter. This means that up to 2 16 = 64K bytes
may be moved automatically. HL is used as the source pointer. It may
point anywhere in the memory. DE is used as the destination pointer
and may point anywhere in the memory.

Four block transfer instructions are provided:

LDD, LDDR, LDI, LDIR

All of them decrement the counter register BC with each transfer. Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others increment DE and HL, LDl and LDIR. For each
of these two groups of instructions, the letter R at the end of the
mnemonic indicates an automatic repeat. Let us examine these instruc­
tions.

LDI stands for "load and increment." It transfers one byte from the
memory location pointed to by Hand L to the destination in the
memory pointed to by D and E. It also decrements Be. It will automati­
cally increment Hand Land D and E so that all register pairs are pro­
perly conditioned to perform the next byte transfer whenever required.

LDIR stands for "load increment and repeat," i.e., execute LDI
repeatedly until the counter registers BC reach the value "0". It is used
to move a continuous block of data automatically from one memory
area to another.

LDD and LDDR operate in the same way except that the address
pointer is decremented rather than incremented. The transfer therefore
starts at the highest address in the block instead of the lowest. The ef­
fect of the four instructions is summarized in Figure 4.5.

Similar automated instructions are available for CP (compare) and
are summarized in Figure 4.6.

Data Processing Instructions

Arithmetic

Two main arithmetic operations are provided: addition and subtrac­
tion. They have been used extensively in the previous chapter. There are
two types of addition, with and without carry, ADD and ADC respec-
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SEAACH
LOCATION

AEG.
INDIA.

I---

(HL)

ED 'CPI'
A1 Inc HL. Dec BC

ED 'CPIA', Inc HL, Dec BC
B1 ropeat until BC = 0 or find match

ED 'CPD' Dec HL & BC

~-I
--

'CPDA' D.c HL & BC
Repeat until BC = 0 or find matchL __

HL POlllts to ioeatlOn In memory
to be compared with accumulator
contents

BC is byte counter

Fig. 4.6: Block Search Group

tively. Similarly, two types of subtraction are provided with and
without carry. They are SUB and SBC.

Additionally. three special instructions are provided: DAA. CPL.
and NEG. The Decimal Adjust Accumulator instruction DAA has been
used to implement BCD operations. It is normally used for each BCD
add or subtract. Two complementation instructions also are available.
CPL will compute the one's complement of the accumulator. and NEG
will negate the accumulator into its complement format (two's comple­
ment).

All the previous instructions operate on eight-bit data. 16-bit opera­
tions are more restricted. ADD. ADC, and SBC are available on
specific registers. as described in Figure 4.8.

Finally. increment and decrement instructions are available which
operate on all the registers, both in an eight-bit and a 16-bit format.
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (l6-bit opera­
tions).
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SOURCE

REGISTER ADDRESSING
REG.

INDIR. INDEXED IMMED.

'ADD'

ADD w CARRY
'ADC'

SUBTRACT
'SUB'

SUBw CARRY
'SBC'

'AND'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'INC'

DECREMENT
'DEC'

A B c o E H L IHLI (IX-t1l1 (IY-t1l1 n

FD
35
d

Fig. 4.7: Eight-Bit Arithmetic and Logic

Note that, in general, all arithmetic operations modify some of the
flags. Their effect is fully described in the Appendix at the end of this
book. However, it is important to note that the INC and DEC instruc­
tions which operate on register pairs do not modify any of the flags.
This detail is important to keep in mind. This means that if you incre­
ment or decrement one of the register pairs to the value "0", the Z-bit
in the flags register F will not be set. The value of the register must be
explicitly tested for the value "0" in the program,

Also, it is important to remember that the instructions ADC and SBC
always affect all the flags. This does not mean that all the flags will
necessarily be different after their execution. However, they might.
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SOURCE

zo
i=
<I:
Z
i=
1I)
w
C

BC DE HL SP IX IV

HL 09 19 29 39

'ADD' IX DD DD DD DD
09 19 39 29

I IV FD FD I FD FD
I 09 19 39 29

ADD WITH CARRV AND HL ED ED ED ED
SET FLAGS 'ADC' 4A 5A 6A 7A

SUB WITH CARRV AND HL ED ED ED ED
SET FLAGS 'SBC' I 42 52 62 72

INCREMENT 'INC' I 03 13 23 33 DD FD
23 23

I

DECREMENT 'DEC' I OB 1B 2B 3B DD FD
28 28

Fig. 4.8: Sixteen-Bit Arithmetic and Logic

Logical

Three logical operations are provided: AND, OR (inclusive) and
XOR (exclusive), plus a comparison instruction CP. They all operate
exclusively on eight-bit data. Let us examine them in turn. (A table list­
ing all the possibilities and operation codes for these instructions is part
of Figure 4.7.)

AND

Each logical operation is characterized by a truth table, which ex­
presses the logical value of the result in function of the inputs. The
truth table for AND appears below:
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OANDO =0
OAND 1 = 0
1 ANDO = 0 or
1 AND 1 = 1

AND 0 1

0 0 0

1 0 1

The AND operation is characterized by the fact that the output is
"1" only if both inputs are" 1". In other words, if one of the inputs is
"0", it is guaranteed that the result is "0". This feature is used to zero
a bit position in a word. This is called "masking."

One of the important uses of the AND instruction is to clear or
"mask out" one or more specified bit positions in a word. Assume for
example that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LD
AND

A, WORD
11110000B

WORD CONTAINS '10101010'
'11110000' IS MASK

Let us assume that WORD is equal to '10101010'. The result of this
program is to leave the value' 10101010' in the accumulator. "B" is
used to indicate a binary value.

Exercise 4.1: Write a three-line program which will zero bits 1 and 6 of
WORD.

Exercise 4.2: What happens with a MASK = '11111111 '?

OR

This instruction is the inclusive OR operation. It is characterized by
the following truth table:

oOR 0 =0
oOR 1 1
lOR 0 1
1 OR 1 1

or

OR
,

0 I

0 0 1

1 1 1

The logical ORis characterized by the fact that if one of the operands
is "1", then the result is always" 1". The obvious use of OR is to set
any bit in a word to "1".

Let us set the right-most four bits of WORD to 1'so The program is:

LD A, WORD
OR A,0000l111B
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Let us assume that WORD did contain' 10101010'. The final value of
the accumulator will be '10101111'.

Exercise 4.3: What would happen if we were to use the instruction
ORA,lOlOll11B?

Exercise 4.4.' What is the effect of ORing with "FF" hexadecimal?

XOR

XOR stands for "exclusive OR." The exclusive OR differs from the
inclusive OR that we have just described in one respect: the result is
"0" only if one, and only one, of the operands is equal to "1". If both
operands are equal to "1", the normal OR would give a "1" result.
The exclusive OR gives a "0" result. The truth table is:

OXORO =0
OXOR 1 = 1
1 XORO = 1
1 XOR 1 = 0

or

XOR 0 1

i 0 0 1

1 1 0

The exclusive OR is used for comparisons. If any bit is different, the
exclusive OR of two words will be non-zero. In addition, in the case of
the Z80, the exclusive OR may be used to complement a word, since
there is no complement instruction on anything but the accumulator.
This is done by performing the XOR of a word with all ones. The pro­
gram appears below:

LD A, WORD
XOR r,llllllllB

where" r" designates the register.
Let us assume that WORD contained" 10101010". The final value of

the register will be "01010101". You can verify that this is the comple­
ment of the original value.

XOR can be used to advantage as a "bit toggle."

Exercise 4.5: What is the effect ofXOR using a register with "00" hex­
adecimal?

Skew Operations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,
which are illustrated in Figure 4.9. In a shift operation, the contents of
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the register are shifted to the left or to the right by one bit position. The
bit which falls out of the register goes into the carry bit C, and the bit
which comes in is zero. This was explained in the previous section.

SHIFT LEFT

p:1r~,
---1D

ROTATE LEFT

1'f~\ =~~f------
Fig. 4.9: Shift and Rotate

One exception exists: it is the shift-right-arithmetic. When perform­
ing operations on negative numbers in the two's complement format,
the left-most bit is the sign bit. In the case of negative numbers it is
"1". When dividing a negative number by "2" by shifting it to the
right, it should remain negative, i.e., the left-most bit should remain a
" 1". This is performed automatically by the SRA instruction or Shift
Right Arithmetic. In this arithmetic shift right, the bit which comes in
on the left is identical to the sign bit. It is "0" if the left-most bit was a
"0", and" I" if the left-most bit was a "1". This is illustrated on the
right of Figure 4.10, which shows all the possible shift and rotate opera­
tions.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the
register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nine-bit rotation.

The nine-bit rotation is illustrated in Figure 4.11. For example, in the
case of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the right part of the register
goes, as usual, into the carry bit. At this time the bit which comes in on
the left end of the register is the previous value of the carry bit (before it
is overwritten with the bit falling out.) In mathematics this is called a
nine-bit rotation since the eight bits of the register plus the ninth bit (the
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carry bit) are rotated to the right by one bit position. Conversely, the
left rotation accomplishes the same result in the opposite direction.

l lHtl mc,d1luv'dl

" " " " " " " "" 00 " " " ~ '" ffi

" " I " " " " " ""' 00 00 M '" oc 00 "
'RL" " " '" '" " co

" " " " " " " "
TVPE ." " " " " " cu " "Of " " " " " " m "ROTATE

0' " " " " " "
co

SHIFT " " " " " "
,.

" " " '" co " " I
co

" '" "
,.

" " " "
" " " co " " " "" '" "

,.
'" " " "

w

"
'""

00 FO

ell ~

co

",
"

GO fO

'",6 26
00 FO
ell ell

, "
gg ~R

3£ JF

flllA 1F

Fig. 4.10: Rotates and Shifts

7 REGISTER ° C

RIGHT nr-!-==--;ta
7 REGISTER ° C

LEFT Or-,--=-=":":':=---=tDJ
Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit °is copied into
bit seven, or else bit seven is copied into bit 0, depending on the direc­
tion of the rotation. In addition, the bit coming out of the register is
also copied in the carry bit. This is illustrated by Figure 4.12.

RIGHT y_7 0HJ

LEFT YL11 ---i0pL[]

Fig. 4.12: Eight-Bit Rotation
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Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con­
tained in the memory location pointed to by the HL registers and one
digit in the lower half of the accumulator. This is illustrated by Figure
4.13.

MEMORY

A

RIGHT:

H I ADDRESS L-J
-----------'~

LEFT:

MEMORY

-i-T~~1-----1E!~?iJ

Fig. 4.13: Digit Rotate Instructions

Bit Manipulation

It has been shown above how the logical operations may be used to
set or reset bits or groups of bits in specific registers. However, it is con­
venient to set or reset any bit in any register or memory location with a
single instruction. This facility requires a considerable number of op­
codes and is therefore usually not provided on most microprocessors.
However, the Z80 is equipped with extensive bit-manipulation
facilities. They are shown in Figure 4.14. This table also includes the
test instructions which will be described only in the next section.

Two special instructions are also available for operating on the carry
flag. They are CCF (Complement Carry Flag) and SCF (Set Carry
Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register,
we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.
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REG.
REGISTER ADDRESSING INDIA. INDEXED

A B C 0 E H L (HLI (lX+d) (lY+d}
BIT

DO FD
0 CB CB CB CB CB CS CB CB CB CB

47 40 41 42 43 44 45 46 d d
46 46

CB CB CB
DO FD

1 CB CB CB CB CB CB CB
4F 4B 49 4A 4B 4C 40 4E d d

4E 4E

2 C9 CB
DO FD

CB CB CB CB CB CB CB CB
57 50 51 52 53 54 55 56 d d

56 56

3 CB CB CB CB CB CB CB CB
DO FD
CB CB

TEST SF 58 59 SA 5B 5C 50 5E d d
5E 5E

'BIT'
DO FD

4 CB CB CB CB CB CB CB CB CB CB
67 60 61 62 63 64 65 66 d d

66 66

5 CB CB CB CB
DO FD

CB CB CB CB CB CB
6F 6B 69 6A 6B 6C 60 6E d d

6E 6E

CB CB OB CB
DO FD

6 CB CB CB CB CB CB
77 70 7J 72 73 74 75 76 d d

76 76

7 CB CB CB CB CB CB CB CB
DO FD
CB CB

7F 7B 79 7A 7B 7C 70 7E d d
7E 7E

0 CB CB CB CB
DO FD

CB CB CB CB CB CB
B7 BO Bl B2 B3 54 85 00 d d

B6 B6

CB CB CB CB CB CB CB CB
DO FD

1 CB CB
8F BB B9 BA BB BC BD BE d d

BE BE

2 CB CB CB CB CB CB CB CB
DO FD
CB CB

97 00 91 92 93 94 95 96 d d
96 96

3 CB CB CB CB CB CB CB CB
DO FD
CB CB

RESET 9F 98 99 9A 9B 9C 90 9E d d
BIT 9E 9E
'RES' , CB CB CB CB CB CB CB CB

DO FD
CB CB

A7 AO Al A2 A3 A' AS A6 d d
A6 A6

5 CB CB CB CB CB CB CB CB
DO FD
CB CB

AF AS A9 AA AB AC AD AE d d
AE AE

6 CB CB CB CB CB CB CB CB
DO FD
CB CB

B7 BO Bl B2 B3 B4 B5 B6 d d
B6 B6

7 CB CB CB CB CB CB CB CB
DO FD>
CB CB

BF BB B9 BA BB BC BD BE d d
BE BE

DO FD
0 CB CB CB CB CB CB CB CB CB CB

C7 en Cl C2 C3 C4 C5 C6 d d
C6 C6
DO FD

1 CB CB CB CB CB CB CB CB CB CB
CF CB C9 CA CB Cc CD CE d d

CE CE
DO FD

2 CB CB CB CB CB CB CB CB CB CB
07 DO 01 02 03 04 05 06 d d

06 06

DO FD
3 CB CB CB CB CB CB CB CB CB CB

SET OF 08 DB DA DB DC DO DE d d
BIT DE DE

DO FD'SET' 4 CB CB CB CB CB CB CB CB CB CB
E7 EO El E2 E3 E' E5 E6 d d

E6 E6

DO FD
5 CB CB CB CB CB CB CB CB CB CB

EF EB E9 EA EB EC ED EE d d
EE EE

DO FD
6 CB CB CB CB CB CB CB CB CB CB

F7 FO F1 F2 F3 F4 F5 F6 d d
F6 F6

CB
DO FD

7 CB CB CB CB CB CB CB CB CB
FF FB F9 FA FB FC FD FE d d

FE FE

Fig. 4.14: Bit Manipulation Group
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Decimal Adjust Acc, 'DAA' 27

Complement Ace, 'CPL' 2F

Negate Ace, 'NEG' ED
12's complement) 44

Complement Carry Flag, 'CCF' 3F

Set Carry Flag, 'SCF' 37

Fig. 4.15: General-Purpose AF Operations

7 6

(T) (T)

5 4 3 2 1 0

._~
(T) (T)

Fig. 4.16: The Flags Register

C is the carry, N is add or subtract, PIV is parity or overflow, H is half
carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used
("0"). The two flags Hand N are used for BCD arithmetic and cannot
be tested. The other four flags (C, P IV, Z, S) can be tested in conjunc­
tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 in par­
ticular, the carry bit assumes a dual role. First, it is used to indicate
whether an addition or subtraction operation has resulted in a carry (or
borrow). Secondly, it is used as a ninth bit in the case of shift and rotate
operations. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear
from the explanation of the multiplication which has been presented in
the previous chapter.
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When learning to use the carry bit, it is important to remember that
all arithmetic operations will either set it or reset it, depending on the
result of the instructions. Similarly, all shift and rotation operations use
the carry bit and will either set it or reset it, depending on the value of
the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR), the carry bit
will always be reset. They may be used to zero the carry explicitly.

Instructions which affect the carry bit are: ADD A,s; ADC A,s;
SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD,ss; ADC
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; DDA; SCF; CCF; NEGs;

Subtract (N)
This flag is normally not used by the programmer, and is used by the

Z80 itself during BCD operations. The reader will remember from the
previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the
valid BCD results. However, the "adjustment" operation is different
after an addition and after a subtraction. The DAA therefore executes
differently depending on the value of the N flag. The N flag is set to
"0" after an addition and is set to a "I" after a subtraction.

The symbol used for this flag, "N", may be confusing to program­
mers who have used other processors, since it may be mistaken for the
sign bit. It is an internal operation sign bit.

N is set to "0" by: ADD A,s; ADC A,s;ANDs;ORs; XORs; INCs;
ADD DD,ss; ADC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m;
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; IN r,
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A, r; BIT b, s.

N is set to "I" by: SUB s; SBC A,s; CP s; NEG; DEC m; SBC HL, ss;
CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI;
CPIR; CPD; CPDR.

Parity/Overflow (P/ V)
The parity/overflow flag performs two different functions. Specific

instructions will set or reset this flag depending on the parity of the
result; parity is determined by counting the total number of ones in the
result. If this number is odd, the parity bit will be set to "0" (odd pari­
ty). If it is even, the parity bit will be set to "I" (even parity). Parity is
most frequently used on blocks of characters (usually in the ASCII for­
mat). The parity bit is an additional bit which is added to the seven-bit
code representing the character, in order to verify the integrity of data
which has been stored in a memory device. For example, if one bit in
the code representing the character has been changed by accident, due
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to a malfunction in the memory device (such as a disk or RAM
memory), or during transmission, then the total number of ones in the
seven-bit code will have been changed. By checking the parity bit, the
discrepancy will be detected, and an error will be flagged. In particular,
the flag is used with logical and rotate instructions. Also, naturally,
during an input operation from an I/O device, the parity flag will in­
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flag in
the 8080 is used exclusively as such. In the case of the Z80, it is used for
several additional functions. This flag should therefore be handled with
care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag is as an
overflow flag (not available in the 8080). The overflow flag has been de­
scribed in Chapter I, when the two's complement notation was intro­
duced. It detects the fact that, during an addition or subtraction, the
sign of the result is "accidentaIly"changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,
the largest positive number is + 127, and the smallest negative number
is - 128 in two's complemenL)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions.

During the block transfer instructions (LDD, LDDR, LDI, LDlR),
and during the search instructions (CPO, CPDR, CPI, CPIR), this flag
is used to detect whether the counter register B has attained the value
"0". With decrementing instructions, this flag is reset to "0" if the
byte counter register pair is "0". When incrementing, it is set if BC - 1
= 0 at the beginning of the instruction, i.e., if BC will be decremented
to "0" by the instruction.

Finally, when executing the two special instructions LD A, I and LD
A,R, the P IV flag reflects the value of the interrupt enable flip-flop
(IFF2). This feature can be used to preserve or test this value.

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C).

The V flag is affected by: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s;
NEG; INC s; DEC m; ADC HL,ss; SBC HL, ss; NEG.

It is also used by: LDlR; LDDR (set to "0"); LDI; LDD; CPI;
CPIR; CPO; CPDR.

The Half-Carry Flag (H)

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur­
ing an arithmetic operation. In other words, it represents the carry from
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it
is primarily used for BCD operations. In particular, it is used internally
within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value.

This flag will be set during an addition when there is a carry from bit
3 to bit 4 and reset when there is no carry. Conversely, during a subtract
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset
if there is no borrow.

The flag will be conditioned by addition, subtraction, increment,
decrement, comparisons, and logical operations.

Instructions which affect the H bit are: ADD A, r ; ADD A,s; SUB s;
SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA;
RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m;
SRL m; RLD; RRD; DAA; CPL; SCF; IN r,(C) ; LDI; LLD; LDIR;
LDDR; LD A; LD A,r; BIT b,r; NEG s;

Note that the H bit is not affected by the 16-bit add and subtract in­
structions.

Zero (Z)

The Z flag is used to indicate whether the value of a byte which has
been computed, or is being transferred, is zero. It is also used with com­
parison instructions to indicate a match, and for other miscellaneous
functions.

In the case of an operation resulting in a zero result, or of a data
transfer, the Z bit is set to "1" whenever the byte is zero. Z is reset to
"0" otherwise.

In the case of comparison instructions, the Z bit is set to "1" when­
ever the comparison succeeds and to "0" otherwise.

Additionally, in the case of the Z80, it is used for three more functions:
it is used with the BIT instruction to indicate the value of a bit being
tested. It is set to "1" if the specified bit is "0" and reset otherwise.

With the special "block input-output instructions" (INI, IND,
OUTI, OUTD), the Z flag is set if B-1 = 0, and reset otherwise; it is
set if the byte counter will decrement to "0" (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions IN r,(C), the Z flag is set to "I"
to indicate that the input byte has the value "0".

In summary, the following instructions condition the value of the Z
bit: ADD A,s; ADC A, s; SUB s; SBC A,s; CP s; NEG; AND s; OR s;
XOR s; INC s; DEC m; ADC HL, ss; SBC HL,ss; RL m; RLC m;
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RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C);
INI; IND; OUT!; OUTD; INIR; INDR; OTIR; OTDR; CPI; CPIR;
CPD; CPDR; LD A,I; LD A,r; BIT b,s; NEG s.

Usual instructions which do not affect the Z bit are: ADD DD,ss;
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR;
LDDR; INC DD; DEC DD.

Sign (Sj

This flag reflects the value of the most significant bit of a result or of
a byte being transferred (bit seven). In two's complement notation, the
most significant bit is used to represent the sign. "0" indicates a posi­
tive number and a "I" indicates a negative number. As a result, bit
seven is called the sign bit.

In the case of most microprocessors, the sign bit plays an important
role when communicating with input/output devices. Most micropro­
cessors are not equipped with a BIT instruction for testing the contents
of any bits in a register or the memory. As a result, the sign bit is usual­
ly the most convenient bit to test. When examining the status of an in­
put/output device, reading the status register will automatically condi­
tion the sign bit, which will be set to the value of bit seven of the status
register. It can then be tested conveniently by the program. This is why
the status register of most input/output chips connected to micropro­
cessor systems have their most important indicator (usually ready/not
ready) in bit position seven.

A special BIT instruction is provided in the case of the Z80.
However, in order to test a memory location (which may be the address
of an I/O status register), the address must first be loaded into registers
IX, IY or HL. There is no bit instruction provided to test a specified
memory address directly (I.e., no direct addressing mode for this in­
struction). The value of positioning an input/output ready flag in bit
position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in­
dicate the sign of the data being read.

Instructions which affect the sign bit are: ADD A,s; SUB s; SBC A,s;
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL, ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD ;
RRD; DAA; IN r,(C); CPR; CPIR; CPD; CPDR; LD A,I; LD A,r;
NEG.
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Summary of the Flags

The flag bits are used to automatically detect special conditions with­
in the ALU of the microprocessor. They can be conveniently tested by
specialized instructions. so that specific action can be taken in response
to the condition detected. It is important to understand the role of the
various indicators available. since most decisions taken within the pro­
gram will be taken in function of these flag bits. All jumps executed
within a program will jump to specified locations depending on the
status of these flags. The only exception involves the interrupt
mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is
received on specialized pins of the 280.

At this point, it is only necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de­
scription of the instructions in the Appendix section of the book to
verify the effect of every instruction of the various flags. Most flags can
be ignored most of the time. and the reader who is not yet familiar with
them should not feel intimidated by their apparent complexity. Their
use will become clearer as we examine more application programs.

A summary of the six flags and the way they are set or reset by the
various instructions is shown in Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran­
ching to a specified program address. It changes the normal flow of
execution of the program from a sequential mode into one where a dif­
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs to a specific address, regardless of any other con­
dition.

A conditional jump is one which occurs to a specific address only if
one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed results.

In order to explain the conditional jump instructions, it is necessary
to understand the role of the flags register. since all branching decisions
are based upon these flags. This was the purpose of the preceding sec­
tion. We can now examine in more detail the jump instructions pro­
vided by the 280.

Two main types of jump instructions are provided: jump instructions
within the main program (they are called "jumps"), and the special
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INSTRUCTION C Z \, S N H COMMENTS

AOD A. s; ADC A. 1 V B-bit add or add with carry

SUB s; sec A. s. CP " NEG V 8-blt subtract, subtract with
carry. compare and
negate accumulator

ANDs P 0 Logical operations

OR s; XQR 1 P 0 And ,eu different flags

INCt V 0 B-blt Increment

DEC m V 1 a-bit decrement

ADD 00. U 0 X 16-bll add

AOC HL,,, V 0 X 16-blt add with carry

sec HL. u V I X 16-blt subtract with carry

RLA:RlCA,RRARRCA 0 0 Rotate accumulator

RL m: RLe m; RR m; RRC m 0 0 Rotate and shift location m

SLA m; SRA m: SRL m

RLD.RRC 0 0 Rotate dIgit left and fight

OAA I DeCimal adlust accumulator

CPl 1 Complement accumulator

SCF 0 Set carry

CCF X Complement carry

IN " ICI P 0 Input register indirect

INI; INO; OUTl: auro I X X X Block mput and output

INIR; INOA; OTIR- OTOR 1 X X X Z .:: 0 If B F 0 otherwue Z '" 1

LDI. LDD X X 0 Block transfer InstructIOnS

LOIR. LOCR X X 0 P/V :: , if Be .e O. otherwise
PIV " 0

CPI. CPIR CPO. CPOR X BlOCk search Instructions
Z~llfA:lHLJ,

otherwISe Z :: 0
PIV :: 1 If Be ~ a v

otherwISe P/V :: 0 .E

LD A, I: LO A A IFF The content of the mterrupt rn
-"enable flip· flop IIFf} IS N

COPied IOta the PlY flag '0
BIT b. s X X The complement of bit b of ",

locatIOn IS copied IOta the

~NEG V
Z flag

Negate accumulator 0
U

The followmg notation II u1ltd '" thll table:

SYMBOL OPERATION
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C Carryllink flag. c·, if the operation produced a Cllrry from the MSB of the operand or result.
Z Zero f1aQ. Z.l if the result of the operation II lOro.
S Sign flag. 5·' if the MSB of the ruult IS one.
PN Parity or overflow flag, Parity IPI and overflow IVI share the same flag. Logical operations

affect thIS flag with the parlty of the result while arlthmetlc operations affect thiS flag with
the oYerflow of the result. If P/V holds panty. P/V·' if the result of the operation IS even.
P/V..O If result II odd. If P/V holds overflow. P/V·l if the result of the operation produced
an overflow.

H Half-carry flag. H.' if the add or subtract operation produced a carry Into or borrow from

bit 4 of the accumulator.
N Add/Subtract flag, N"l if the pnlVIOUS operation was a subtract.

Hand N flags are used 10 conjunction with tho deCimal adjust instruction lDAA}to properly
correct tho result IOto packed BCD format follOWing addition or subtractIOn uSing operands

With packed BCD format.
The nag IS affected according to the result of the operation.
The flag It unchanged by the operation.

o The flag is reset by the operation.
1 The flag IS set by the operation.
X The flag IS • ··don-·t care."
V P/V flag affected according to the overflow result of the operation"
P PN flag affected according to the partty result ot the operation.

Anyone of the CPU registers A, B. C, 0, E. H, L.
Any S-bit locatlon for all the addreSSing modes allowed tor thl!! particular instruction.
Any 16-bit locatlon for all the addreSSing modes allowed for that instructIOn.
Anyone of the two mdex regISters IX or IV.

R Refresh counter.
S-blt value m range <0.255>
16-bit value In ranqe <.0. 65535>
Any 8-bit location for all the addreSSing modes allowed for the pa."tlcular Instructlon.

Fig. 4.17: Summary of Flag Operation
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type of branch instructions used to jump to a subroutine and to return
from it ("call" and "return"). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided by the microprocessor. This
part of the discussion will be deferred until the next chapter, where the
addressing modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional (branching to a specified memory ad­
dress) or else conditional. In the case of a conditional jump, one of four
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of
them may be tested for the value "0" or "1".

The corresponding abbreviations are:

Z = zero (Z = 1)
NZ = non zero (Z = 0)
C = carry (C = 1)
NC= no carry (0 = C)
PO = odd parity
PE = even parity
P = positive (S = 0)
M = minus (S = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad­
dress as long as it is not zero. This is a powerful instruction used to ter­
minate a loop, and it has already been used several times in the prevous
chapter: it is the DJNZ instruction.

Similarly, the CALL and the RET (return) instructions may be condi­
tional or unconditional. They test the same flags as the branch instruc­
tion which we have already described.

The availability of conditional branches is a powerful resource in a
computer and is generally not provided on other eight-bit micropro­
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise.

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RETI and RETN. They will be described
in the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown in Figure 4.18.
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CONDITION

~- ~--

UN~ NON NON PARITY PARITY SIGN SIGN REG
CONO. CARRY CARRY ZERO ZEAO EVEN 000 NEG POS .-.

.--~

C3 DA D2 CA C2 EA E2 FA F2
JUMP °JP' IMMEO. nn n n n n n n n n n

EXT. n n n n n n n n n

JUMP 'JR' RELATIVE PC'" '8 38 30 28 20
e-2 e-2 e-2 e-2 e-2

JUMP 'JP' IHLI E9

JUMP 'JP' REG. I.XI DO
INDIR. E9

----
JUMP 'JP' IlYI FO

E9

CD DC D4 CC C4 EC E4 FC F4
'CAlL' IMMED. nn n n n n n n n n n

EXT. n n n n n n n n n

DECREMENT B.
JUMP IF NON RELATIVE PC+'& 10
ZEAO 'OJNZ' e-2

RETURN REGISTER ISPI C9 08 DO C8 ClJ E8 EO F8 FO
'RET' INDIA. (SP+11

--
RETURN FROM AEG~ IsPI ED
INT'RETI' INDIA. IsP+1) 40

RETURN FROM
AEG. ISPINON MASKABlE ED

INT'RETN' INDIA. (SP+'I 45

Fig. 4.18: Jump Instructions

A detailed discussion of the various addressing modes is presented
in Chapter 5.

By examining Figure 4.18, it becomes apparent that many ad­
dressing modes are restricted. For example, the absolute jump JP nn
can test four flags, while JR can only test two flags.

Note an important observation: JR tends to be used whenever
possIble as it is shorter than JP (one less byte) and facilitates program
relocation. However, JR and JP are not interchangeable: JR cannot
test the parity or the sign flags.
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One more type of specialized branch is available; this is the restart or
RST instruction. It is a one-byte instruction which allows jumping to
anyone of eight starting addresses at the low end of the memory. Its
starting addresses are, in decimal, 0,8, 16,24,32,40,48 and 56. It is a
powerful instruction because it is implemented in a single byte. It is the
fastest branch that can be used, and for this reason, is used essentially
to respond to interrupts. However, it is also available to the program­
mer for other uses. A summary of the opcodes for this instruction is
shown in Figure 4.19.

.---
OP
CODE

OOOOH' C7

OOOSH I CF

C 0010 I D7
A H
L
L

001SH OF
A
D
0
R 0020H E7
E
S
S

002SH EF

0030H F7

003SH FF

'RST 0'

'RST S'

'RST 16'

'RST 24'

'RST 32'

'RST 40'

'RST 4S'

'RST 56'

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail in Chapter 6.
Simply, input/output devices may be addressed in two ways: as
memory locations, using anyone of the instructions that have already
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been described, or using specific input/output instructions. Usual
memory addressing instructions use three bytes: one byte for the op­
code and two bytes for the address. As a result, they are slow to ex­
ecute, since they require three memory accesses. The main purpose of
specialized input/output instructions is to provide shorter and,
therefore faster, instructions. However, input/output instructions have
two disadvantages.

First, they "waste" several of the precious few opcodes available
(since usually only 8 bits are used to supply all opcodes necessary for a
microprocessor). Secondly, they require the generation of one or more
specialized input/output signals, and therefore "waste" one or more of
the few pins available in the microprocessor. The number of pins is
usually limited to 40. Because of these possible disadvantages, specific
input/output instructions are not provided on most microprocessors.
They are, however, provided on the original 8080 (the first powerful
eight-bit general-purpose microprocessor introduced) and on the Z80,
which we know is compatible with the 8080.

The advantage of input/output instructions is to execute faster by re­
quiring only two bytes. However, a similar result can be obtained by
supplying a special addressing mode called "page 0" addressing, where
the address is limited to a field of eight bits. This solution is often
chosen in other microprocessors.

The two basic input/output instructions are IN and OUT. They
transfer either the contents of the specified I/O locations into any of
the working registers or the contents of the register into the I/O device.
They are naturally two bytes long. The first byte is reserved for the op­
code, the second byte of the instruction forms the low part of the ad­
dress. The accumulator is used to supply the upper part of the address.
It is therefore possible to select one of the 64K devices. However, this
requires that the accumulator be loaded with the appropriate contents
every time, and this may slow the execution.

In the register-interrupt mode, whose format is IN r, (C), the register
pair Band C is used as a pointer to the I/O device. The contents of B
are placed on the high-order part of the address bus. The contents of
the specified I/O device are then loaded into the register designated by
r

Additionally, the Z80 provides a register-indirect mode, plus four
specialized block-transfer instructions for input and output.

The same applies to the OUT instruction.
The four block-transfer instructions on input are: INI, INIR

(repeated INI), INO and INOR (repeated INO). Similarly, on output,
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they are: OUTI, OUTIR, aUTO, and OUTOR.
In this automated block transfer, the register pair Hand L is used as

a destination pointer. Register C is used as the I/O device selector (one
out of 256 devices). In the case of the output instruction, Hand L point
to the destination. Register B is used as a counter and can be incre­
mented or decremented. The corresponding instructions on input are
INI when incrementing and INO when decrementing.

INI is an automated single-byte transfer. Register C selects the input
device. A byte is read from the device and is transferred to the memory
address pointed to by Hand L. Hand L are then incremented by I, and
the counter B is decremented by I.

INIR is the same instruction, automated. It is executed repeatedly
until the counter decrements to "0". Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact­
ly 256, register B should be set to the value "0" prior to executing this
instruction.

The opcodes for the input and output instructions are summarized in
Figures 4.20 and 4.21.

Control Instructions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The Nap instruction is a no-operation instruction which does
nothing for one cycle. It is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps
created in a program during the debugging phase. In order to facilitate
program debugging, the opcode for the Nap is traditionally all O's.
This is because, at execution time, the memory is often cleared, i.e., all
O's. Executing Nap's is guaranteed to cause no damage and will not
stop the program execution.

The HALT instruction is used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU. The CPU will then
resume operation whenever either an interrupt or a reset signal is re­
ceived. In this mode, the CPU keeps executing NaP's. A halt is often
placed at the end of programs during the debugging phase, as there is
usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized instructions are used to disable and enable the inter­
nal interrupt flag. They are EI and OJ. Interrupts will be described in
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SOURCE

REG.
REGISTER IND.

A S C 0 E H c IHLI

IMMEO. (n) lii%3
'OUT'

REG. ICI ED ED ED ED ED ED ED
IND. 19 4' 49 5' 59 6' 69

'OUTI' - OUTPUT REG. ICI ED
Inc HL. Dec b IND. A3

'OTtR' - OUTPUT, Inc Hl. REG. ICI ED
Doc B, REPEAT IF 8:#:0 IND. S3

'OUTO' - OUTPUT REG. ICI ED
Dec Hl& B IND. AS

'OTOR' - OUTPUT. Dllc HL REG. ICI ED
& S. REPEAT IF B;'l) IND. SS

'---v---'
PORT
DESTINATION
ADDRESS

Fig. 4.20: Output Group

SOURCE
PORT ADDRESS

IMMED. REG.
INOIR.

Inl leI

A DO EO
n 18

ED
'0

ED
48

INPuT'lN' A
0
0 ED
R 50
E
S

EOs
INPUT

, 58

DESTINATION EO
60

EO
58

'INI' - INPUT a. EO
Inc; Hl.. o.c B A:J.

'INIA'-INP. Inc: HL. EO
OK8,REPEATIFB$()

REG, 82
IHLJ BLOCK INPUTINOIR

'INO'-INPUT & ED COMMANDS
0.(: Hl. D-e 8 AA

I 'INOR'-INPUT O.c Hl... EDI OK 8. RfPEAT If 8.-.0 BA

Fig. 4.21: Input Group
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Chapter 6. The interrupt flag is used to authorize or not authorize the
interruption of a program. To prevent interrupts from occurring during
any specific portion of a program, the interrupt flip-flop (flag) may be
disabled by this instruction. It will be used in Chapter 6. These in­
structions are shown in Figure 4.22.

'NOP'

'HALT' ,

DISABLE INT '(01)'
,-

ENABLE INT '(EI)' H ,

SET INT MODE 0 ED
'IMO' 46

SET INT MODE 1 ED
'IM1' 56

SET INT MODE 2 ED
'1M2' 5E

8080A MODE

CALL TO LOCATION 0038H

INDIRECT CALL USING REGISTER
I AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

Fig. 4.22: Miscellaneous CPU Control

Finally, three interrupt modes are provided in the Z80. (Only one is
available on the 8080). Interrupt mode 0 is the 8080 mode. interrupt I is
a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register I, plus 8 bits provided by the in­
terrupting device as a pointer in the memory to the interrupt routine.
These modes will be explained in Chapter 6.

Finally, special pins on the Z80 will trigger an interrupt mechanism
which will also be explained in Chapter 6. They are the IRQ and the
NMI pins.
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SUMMARY

The five categories of instructions available on the Z80 have now
been described. The details on individual instructions are supplied in
the following section of the book. It is not necessary to understand the
role of each instruction in order to start to program. The knowledge of
a few essential instructions of each type is sufficient at the beginning.
However, as you begin to write programs by yourself, you should learn
about all the instructions of the Z80 if you want to write good pro­
grams. Naturally, at the beginning, efficiency is not important, and this
is why most instructions can be ignored.

One important aspect has not yet been described. This is the set of
addressing techniques implemented on the Z80 to facilitate the retrieval
of data within the memory space. These addressing techniques will be
studied in the next chapter.
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THE ZSO INSTRUCTIONS: INDIVIDUAL DESCRIPTION

ABBREVIAnONS

FLAG ON OFF

Carry C (carry) NC (no carry)
Sign M(minus) P (plus)
Zero Z (zero) NZ (non zero)
Parity PE (even) PO (odd)

• changed according to operation
o flag is set to zero
1 flag is set to one
? flag is set randomly by operation
X special case, see accompanying note on that page

bit positions 3 and 5 are always random
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ADCA,s

Function:

Format:

Add accumulator and specified operand with
carry.

A--A+s+C

~: may be r, n, (HL),(IX + d), or (IY + d)

r~l~r:-1

n=

--I 7-:--
byte 1: CE

byte 2: immediate
data

(HL) = SE

(lX+d) 11 11I~~ byte I: DO

= byte2:SE

I.:::'~:.::~.::-'----'-~---'--:--,----,-I_'I byte 3: 0 ffset value

(IY+d) = bytel:FO

=byte2:SE

1-'-:--- ~ ---I_. I byte 3: offset value

r may be anyone of:
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A-III
B 000
COOl
0-010

E - 011
H - 100
L - 101
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Description: The operand s and the carry flag C from the status
register are added to the accumulator, and the
result is stored in the accumulator. s is defined in
the description of the similar ADD instructions.

A

B C
Dt----t----J

E

H l

Data Flow:
.---------~

Timing: usee I
s: M cycles: T slates: @ 2 MHz:

r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(lY + d) 5 19 9.5

Address/llg Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (lY + d): indexed.

Byte Codes: ADC A,r r: ABC D E H l

~

Flags: 5 Z H P;@ N C

~

Example: ADC A,IA

Before: After:

hrl
~

Al...l__0_6_-,--_1_3_-,1 F

OBJECT CODE

191
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ADC HL, ss

Function:

Add with carry HL and register pair ss.

HL ...- HL + ss + C

Format:
byte 1: ED

byte 2

Description: The contents of the HL register pair are added to
the contents of the specified register pair, and then
the contents of the carry flag are added. The final
result is stored back in HL. ss may be anyone of:

Data Flow:

BC 00
DE - 01

HL 10
SP - 11

Af---__-+-__.....[C"""i'~ F ==>
B C

D E AW

IT_H~_W8_.~_"_._L---..::::=~\.::===:::rr+=-----J_/_II

sp ....l _

Timing: 4 M cycles; 15 T states: 75 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

192

ss: Be DE HL SP

·ED-~



THE zao INSTRUCTION SET

Flags: s Z H

~
H is set if there is a carry from bit II.

Example: ADC HL, DE

Before: After:

41 IF BIB_"
3291

I~ D~3291_E
OF18 H1/¥f' L~11--------~

E==:3
OBJECT

CODE:

193
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ADD A, (HL) Add accumulator with indirectly addressed
memory location (HL).

Function: A ~ A + (HL)

Formal:

Descriplion: The contents of the accumulator are added to the
contents of the memory location addressed by the
HL register pair. The result is stored in the ac­
cumulator.

A

B C
1------.-+----1

D E

H

DATA

I W I MEMORY

Timing:

Addressing Mode:

Flags:

194

2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Indirect.

s Z H P/@ N C

[il.~



Example: ADD A, (HL)

Before:

H 1l- 9_62_0 _

THE zao INSTRUCTION SET

After:

HIL 96_2o__----'

~ "w~
OBJECT CODE

195
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ADD A, (IX + d) Add accumulator with indexed addressed

memory location (IX + d)

Function:

Format:

A ~ A + (IX + d)

= bytel:DD

I'; :< :
llll~

: : I

byte 2: 86

byte 3: offset value

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the IX register plus the immediate off­
set value. The result is stored in the accumulator.

A

BI--__-+ --ic
D E

H L

1Xc====}-------.J

I~
I ,

~

ADD

d

Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

196

s Z H P,@ N c

~



Example: ADD A, (IX + 3)

Before:

AIL....__11__

IX L....I o_86_1__----'

THE zao INSTRUCTION SET

After:

A~.

IXIL.... 06_6_1---

DD 0661 04 0861 04

86 0862 82 0862 82

03 0863 36 0863 36

0864 91 0864 91

08JECT CODE

197
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ADD A, (IY + d) Add accumulator with indexed addressed
memory location (IY + d)

Function: A +- A + (IY + d)

Format: = bytel:FD= byte 2: 86

-:-:-~--- byte 3: offset value

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the IY register plus the given offset
value. The result is stored in the accumulator.

A
B C
I------l-----j

D E

H L

'YL j----------'

DATA

.--- -"

t=-LD-=
d

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags:

198

S Z H PA21 N C

~



Example:

FD

86

01

OBJECT
CODE

ADD A, (lY + 1)

Before:

A 1__31_

IX IL- 00_2_B _

oo2B~
OO2C~

THE'ZSO INSTRUCTION SET

After:

A~:~:~

IX I 002B

oo2B M
oo2C~
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ADD A, n

Function:

Format:

Description:

Add accumulator with immediate data n.

A ...... A+n

=bytel:C6

1_'-:--I 7-:--:_.j ~~~: 2: immediate

The contents of the accumulator are added to the
contents of the memory location immediately
following the op code. The result is stored in the
accumulator.

A

B C
1-------+-----1

D E

H L L.---~
MEMORY

Timing:

Addressing Mode:

Flags:

Example:

2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Immediate.

S Z H P/@ N C

~

ADD A, E2

~
~
OBJECT CODE

200

Before:

A LI_-.::43:"--l

After:



ADDA,r

Function:

Format:

Description:

THE zao INSTRUCTION SET

Add accumulator with register r.

A"-A+r

The contents of the accumulator are added with
the contents of the specified register. The result is
placed in the accumulator. r may be anyone of:

Data Flow:

A-Ill
B - 000
C - 001
D - 010

A_~~
B I--__-+ ---lc
D E

H L

E - 011
H - 100
L - 101

Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz.

Addressing Mode: Implicit.

Byte Codes:

Flags:

r: A B C D E H L

~8~1821~~~

S Z H P/@ N C

~

201
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Example:

OBJECT CODE

202

ADD A, B

Before:

A I 3D

B I 02

After:

BI 02



THE zao INSTRUCTION SET

ADD HL,ss Add HL and register pair ss.

Function: HL +- HL + ss

Format:

Description: The contents of the specified register pair are
added to the contents of the HL register pair and
the result is stored in HL. ss may be anyone of:

BC - 00
DE - 01

HL 10
SP - 11

E

C

A

B

D

H
, ...

Data Flow:
~-----------------,

sp 1-' ---J

Timing: 3 M cycles; 11 T states: 5.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: ss: BC DE HL SP

~

Flags: s Z H p/V N C

~
C is set by carry from bit 15, reset otherwise.

H is set by a carry from bit 11

203,
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Example: ADD HL, HL

Before: After:

~
OBJECT
CODE

204

HLI__o::..::.6B::..:.l__--..JIL H,,:§,si~:~L



ADD IX, rr

Function:

Format:

Description:

THE laO INSTRUCTION SET

Add IX with register pair rr.

IX +- IX + rr

=bytel:DD

=byte2

The contents of the IX register are added to the
contents of the specified register pair and the
result is stored back in IX. rr may be anyone of:

Data Flow:

Be - 00
DE - 01

A

~ B1----+---1
, D

H f-----t----j

sP,-' --'

IX 10
SP - 11

Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr: Be DE I X SP

DD-~

205
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Flags:

Example:

S Z H PlY N C

~
H is set by carry out of bit 11.
e is set by carry from bit 15.

ADD IX, SP

3021~.DD

~
OBJECT
CODE

206

Before:

IX 1L.. 0_00_0__--l

SP [
'------------'

After:

spi 3021



ADD IY, rr

Function:

Format:

Description:

THE zao INSTRUCTION SET

Add IY and register pair rr.

IY -- IY + rr

=byteI:FD

=byte2

The contents of the IY register are added to the
contents of the specified register pair and the
result is stored back in IY. rr may be anyone of:

Data Flow:

Be - 00
DE - 01

A
\--------\---~

( B1D1----+------1

H L-__---i ---l

IY - 10
SP II

Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr: Be DE IY sp

FD-~

207
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Flags:

Example:

S Z H PIV N C

~
H is set by carry out of bit 11.
e is set by carry out of bit 15.

ADD IY, DE

~
E9

OBJECT
COOE

208

Before:

0LI 6_1_22 IE

lyLI 3o_51 _

After:

oiL 6_1_22=--_----l1 E



AND s

Function:

Format:

THE zao INSTRUCTION SET

Logical and accumulator with operand s.

A+-Ai\s

s: may be r, n, (HL), (IX + d), or IY + d)

r ~-;-r-;--I

n ~ 0I 01 1 rn byte 1: E6

1--i-:7-:-:-·1 byte 2: immediate
data

(HL) =96

(IX + d) = byte 1: DD= byte 2: 96

(IY + d) 1---:---1---:--1 byte 3: offset value

=byte1:FD= byte 2: 96

1---:---1---:-·1 byte 3: offset value

r may be anyone of:

A-Ill
B - 000
C - 011
D - 010

E - 011
H - 100
L - 101

Description: The accumulator and the specified operand are
logically 'and'ed and the result is stored in the ac­
cumulator. s is defined in the description of the
similar ADD instructions.
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Data Flow:

C
t-----+------i

E
t-----+------i
'-----__-L__--' L

z:M cycles: I T states:
usec

s: @2MH

- I I 4
-

r 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IY + d) 5 19 9.5

- --

Timing:

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (lY + d): indexed.

Byte Codes: AND r r: ABC D E H L

~

Flags: s z

[!l!]

Example: AND4B

Before: After:

h==i
~

OBJECT
CODE

A 1'---_36_-'

210



BIT b, (HL)

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Test bit b of indirectly addressed memory location
(HL)

z +- (HL)b

=bytel:CB

The specified bit of the memory location address­
ed by the contents of the HL register pair is tested
and the Z flag is set according to the result. b may
be anyone of:

0-000 4 - 100
1 - 001 5 - 101
2 - 010 6 - 110
3 - 011 7 111

Data Flow:
A z F DATA
B C

D

~ 11 1 JH

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: S Z H P/v N C

~

211
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Byte Codes:

Example:

b: 0 1 2 3 4 5 6 7

CB-~

BIT 3, (HL)

Before: After:

L...-_oo_---'I F __ F

H LJ__--=6A:..::4:.:2__--....Jll H LJ__--=6A:..::4:.:2__--....J1 L

M 6A42~
~ t=:=j
OBJECT CODE

212
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BIT b, (IX + d) Test bit b of indexed addressed memory location
(IX + d)

Function: Z -<- (IX + d)b

Format: = bytel:DD= byte2:CB

I· : 1 : ·1 byte 3: offset value

~I--+ b+-I~ byte 4

Description: The specified bit of the memory location address­
ed by the contents of the IX register plus the given
offset value is tested and the Z flag is set according
to the result. b may be anyone of:

0-000
1 - 001
2 - 010
3 - 011
4 - 100

5
6
7

101
110
III

Data Flow:
A F
B I----t---'=--jc

D E

H L

IXL J-------------<,

213
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Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b: 0 1 2 3 4 5 6 7

DD-CB-d-~

Flags:

Example:

SZ H PNNC

~

BIT 6, (IX + 0)

Before:

,--_c_l_--,I F

After:

DD
CB
o

76

OBJECT CODE

214

IX LI AA__11__----1 IX LI AA_l_l__--.J!
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BIT b, (IY + d) Test bit b of the indexed addressed memory loca­
tion (lY + d)

Function:

Format:

Description:

Z +- (IY + d)b

= byteI:FD= byte2:CB

E: 1 : ., byte 3: offset value

~I-+b-i-~ byte 4

The specified bit of the memory location ad­
dressed by the contents of the IY register plus the
given offset value is tested and the Z flag is set ac­
cording to the result. b may be anyone of:

Data Flow:
A
f-----+--"UM---I

81--__-+ -1

01--__-+ -1
Hl...-__-----'- -'

o 000
I - 001
2 010
3 - 011

4 100
5 - 101
6 - 110

DATA

IYL J------------{+

BIT

d

b

215
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Timing: 5 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b:

Flags:

Example:

o 1 2 3 4 5 6 7

~16616EEEJ

S Z H PN N C

~

BIT 0, (IY + 1)

FD

CB

01

46

OBJECT CODE

216

Before:

L~F

IY
'------------'

FF12~
FFI3~

After:

FF12

FF12M

FF13~



BIT b, r

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Test bit b of register r.

=byteI:CB

~l-+b-~-+--+r+-1 byte 2

The specified bit of the given register is tested and
the zero flag is set according to the results. band r
may be anyone of:

b:

r:

o -- 000
I -- 001
2 -- 010
3 -- 011

A -- III
B -- 000
C -- 001
D -- 010

4 -- 100
5 -- 101
6 -- 110
7 -- III

E -- OIl
H 100
L -- 101

Data Flow:

Timing:

A

B

D

H

£7 {;
Fil· F

\ Ic
E ALU

L

~
I ,

2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.
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,.

47 40 41 42 43 44 45

4F 48 49 4A 4B 4C 4D

57 50 51 52 53 54 55

5F 58 59 5A 5B 5C 5D

67 60 61 62 63 64 65

6F 68 69 6A 6B 6C 6D

77 70 71 72 73 74 75

7F 78 79 7A 7B 7C 7D7

4

6

3

2

5

b: r' ABC D E H

o
Byte Codes:

Flags: S Z H PlY N C

~

Example: BIT 4, B

~
~

Before:

B ,-I__6_1---'

After:

B ,-I_-,-61_-,

OBJECT CODE

218



CALL CC, pq

Function:

THE laO INSTRUCTION SET

Call subroutine on condition.

if cc true: (SP - 1) +- PChigh; (SP - 2) +­

PC[ow; SP +- SP - 2; PC +- pq

If cc false: PC +- PC + 3

Format:

1-':-~--:-'I
I-';-~--:I

byte 1
byte 2: address,
low order
byte 3: address,
high order

Description: If the condition is met, the contents of the pro­
gram counter are pushed onto the stack as de­
scribed for the PUSH instructions. Then, the con­
tents of the memory location immediately follow­
ing the opcode are loaded into the low order of the
PC and the contents of the second memory loca­
tion after the the opcode are loaded into the high
order half of the Pc. The next instruction fetched
will be from this new address. If the condition is
not met, the address pq is ignored and the follow­
ing instruction is executed. cc may be anyone of:

NZ
Z

NC
C

000
001
010
011

PO
PE

P
M

100
101
100
III

An RET instruction can be used at the end of the
subroutine being called to restore the Pc.
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Dala Flow:

AI- t-__--j

BI----t-----j
D
I-----t-----j

H '-- -'---__---1

PC•••~

SP

Timing: usee
M cycles: T slales: @2MHz

condition
true: 5 17 8.5
condition
not true: 3 10 5

Addressing Mode: Immediate.

Byle Codes:

Flags:

220

CC: NZ. Z NC C PO PE P M

B~~~-q-p

S Z H PIV N C

ITLIT=crn (no effect)



Example:

CC

42

BO

OBJECT CODE

CALL Z, B042

Before:

,--_8_5_-,1 F

PC 1'- 0_B_01__---'

SP 1I- B_B_12__----'

BB10 8F

BBll 04

BB12 32

THE zao INSTRUCTION SET

After:

85 IF

SP 1<--__BB_1_2__--'

BBlD 8F
I-------j

8Bll 04
BB 12 1---3- 2----j

221
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CALL pq

Function:

Format:

Description:

Data Flow:

Call subroutine at location pq.

(SP 1) ~ PChigh; (SP - 2) ~ PClow; SP ~ SP
- 2; PC ~ pq

=bytel:CD

-:-:-~

E
r--~T--r- I I ( I
_L_L_L_LL-L_~ byte 3: address, high order

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc­
tions. The contents of the memory location im­
mediately following the opcode are then loaded in­
to the low order half of the PC and the contents of
the second memory location after the opcode are
loaded in the high order half of the Pc. The next
instruction will be fetched from this new address.

A
f-------f----,

B
f-----t----1

D
1-----+----1

H
'------'-----'

pc•••••

SP

Timing: 5 M cycles; 17 T states: 8.5 usec @ 2 MHz

Addressing Mode: Immediate.
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Flags:

Example:

THE laO INSTRUCTION SET

S Z H PlY N C

ITITD I I (no effect)

CALL 40Bl

CD
B1

40

OBJECT CODE

Before:

PC LI__-.:A_A_40__~

SP I OB14L- _

OB121--_9_A_-l

OB131--_0,-,-1_-1

OB141--_F_4_-l

After:

PC~9i~

SP~~

OB12

OB13

OB141-----1

223
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CCF

Function:

Format:

Description:

Complement carry flag.

C +- C

=3F
The carry flag is complemented.

Data Flow:
AI-__--+ ---j

B C

D E

H L

Timing: I M cycle; 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

224



CPs

Function:

Format:

THE zao INSTRUCTION SET

Compare operand s to accumulator.

A - s

s: may be n, (HL), (IX + d), or (IY + d).

r ~I--+r+--I

n 8±J 1 1 1
J

1 rn FE

1-';-:7-:- .. I byte 2: immediate
data

(HL) = byte 1: BE

(IX + d) = byte I: DO= byte 2: BE

----1 : ·1 byte 3: offset value

(IY+d) =
-:-:-1--;'1

r may be anyone of:

byte I: FD

byte 2: BE

byte 3: offset value

A - III
B - 000
C - 001
0-010

E - 011
H 100
L - 101

Description: The specified operand is subtracted from the ac­
cumulator, and the result is discarded. s is defined
in the description of the similar ADD instructions.
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Data Flow

Timing:

~> ..; 7-

/A F

\B C

D E ALU I s

H L -

I I

usee
s: M cycles: T states: @2 MHz:

r I 4 2
n 2 7 3.5

I
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IY + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; (HL): indirect;
(IX + d), (l Y + d): indexed

Byte Code~· CP r: r: ABCDEHL

~
Flags:

Example:

5 Z H P,@ N C

~

CP (HL)

~
~

OBJECT
CODE

226

Before:

AI 96 36 IF

HI B203 IL

After:

AI 96 .Sf8F

HI B203 IL



THE l80 INSTRUCTION SET

CPD Compare with decrement.

Function: A- [HL]; HL -HL-l; BC -BC-l

Format:
=bytel:ED

[H!J 0 I 1 I 0 I 0 LiJ byte 2: A9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded.
Then both the HL register pair and the BC register
pair are decremented.

DATAA

B C

D E

H~••••l

Data Flow: ,--- --,

Timing: 4 M cycles; 16 T states: 8 usee @ 2 MHz

Addressing Mode: indirect.

Flags:
S Z H PIV N C

fiTXTIiTIXT11I r- Reset ifBe = 0 after execution; set otherwise
~ rSetifA= [HL]
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Example: CPO

Before: After:

:\ 2A 06

l~ :_-~3154

HI 8685 Il HWIA~Jf1'" l

M
~
OBJECT CODE

228



CPDR

Function:

Format:

Description:

DataFlow:

THE zao INSTRUCTION SET

Block compare with decrement.

A- [HL]; HL- HL-l; BC- BC-l;
Repeat until BC = 0 or A = [HL]

[~Il:lllo~ bytel:ED= byte2:B9

The contents of the memory location addressed by
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded.
Then both the BC register pair and the HL register
pair are decremented. If BC = 0 and A = [HL],
the program counter is decremented by two and
the instruction is re-executed.

A F

B C

D EHr.••••l

DATA

Timing:

Flags:

BC = 0 or A = [HL]: 4 M cycles; 16 T states:
8 usec@2MHz
BC = 0 and A = [HL]:5 M cycles; 21 T states:
10.5 usec @ 2 MHz

[

Reset ifBe = 0 after
~ execution; set otherwise

~'- :'- Set if A = [HL]

229



PROGRAMMING THE Z80

Example: CPDR

Before:

A.
B
!1--_9A_--,-__0_0_....,

. 0002

After:

H L.I 61_00__--'1 L H~1i~ L

[ij ~"i 60FE 08

B9 60FF 00 60FF 00

6100 2A 6100 2A

OBJECT CODE
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CPI

Function:

Format:

Description:

THE zao INSTRUCTION SET

Compare with increment.

A- [HL]; HL- HL + 1; BC -BC-l

l'I'I'lil'I '~ bytel:ED

[] 0 I I I 0 I 0 I 0 I 0 I I I byte 2: Al

The contents of the memory location addressed by
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded.
The HL register pair is incremented and the BC
register pair is decremented.

Data Flow:

A FB.. C
D E

H••••• l

DATA

Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz

Addressing Mode: indirect.

Flags:

s Z H PIV N CI_I xI I_I Ix II IJ J Reset ifBe = 0 after execution set otherwise
t • I I Set if A = [HL]
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Example: CPI

Before: After:

;1 09 00

I~ .iM0510

HI 86B9 IL H~~~L

~
~
OBJECT CODE

232



CPIR

Function:

Format:

Description:

Data Flow:

THE zao INSTRUCTION SET

Block compare with increment.

A-[HL];H - HL + I;BC-BC -I;
Repeat until BC = 0 or A = [HL]

1111111o~ bytel:ED

~I J 101 o~ byte2:BI

The contents of the memory location addressed by
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC ~ 0 and A
,e [HL], then the program counter is decremented
by 2 and the instruction is re-executed.

A F

B C

D E

H l

Timing: BC = 0 or A = [HL] : 4 M cycles; 16 T states:
8 usec@2MHz
BC t=- 0 and A t- [HL] : 5 M cycles; 21 T states:
10.5 usee @ 2 MHz

Addressing Mode: indirect.
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Flags:

S Z H P/V N C1-111 I_I Ix11 I I r: Reset ifBe = 0 after execution; set otherwise
_ 1" ~ Set if A = [HL]

Example: CPIR

Before: After:

;1 9B 00 A~_
0051 B~

HI 039B IL H~"'L

§ij ""00 ""00B1 039C 9B 039C 9B

039D 06. 039D 06
OBJECT CODE

234



CPL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

THE zao INSTRUCTION SET

Complement accumulator.

=2F
The contents of the accumulator are com­
plemented, or inverted, and the result is stored
back in the accumulator (one's complement).

>--__----l- ~C

~---+---_1E
l

'------'-----'

I M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

s Z H P/v N C=
CPL

OBJECT
CODE

Before:

A I 3D

After:
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DAA

Function:

Format:

Description:

Decimal adjust accumulator.

See below.

=27

The instruction conditionaly adds "6" to the
right and/or left nibble of the accumulator, based
on the status register, for BCD conversion after
arithmetic operations.

value of value of # added C after
N C high nibble H low nibble to A execution

0 0 0-9 0 0-9 00 0
(ADD, 0 0-8 0 A-F 06 0
ADC, 0 0-9 I 0-3 06 0
INC) 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

1 0 0-9 0 0-9 00 0
(SUB, 0 0-8 1 6-F FA 0
SBC, I 7-F 0 0-9 AO 1
DEC, 1 6-F 1 6-F 9A 1
NEG)

Data Flow:

236

A
f---.,.,--j-------1

B

D

H
/



Timing:

THE laO INSTRUCTION SET

1 M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

S Z H (j»v N C

~

DAA

~
OBJECT

CODE

Before:

AI B2 94

After:
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DEem

Function:

Format:

Decrement operand m.

m~m-l

m: may ber, (HL), (IX+d), (IY+d )

(HL) =35

(IX + d)~ 1 1 1 1 1Jill byte 1: DD

~_>-J1_1-J1,-1-J~ byte 2: 35

,.: : : 1 : .j byte 3: offset value

(IY + d) = byte 1: FD= byte 2: 35

I~'-:---~---: -·1 byte 3: offset value

Description: The contents of the location addressed by the
specific operand are decremented and stored back
at that location. m is defined in the description of
the similar INC instructions.

Data Flow:
Ar-------,

B C
1-----+----1

D E

H L
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Timing: usee
m: M cycles: T states: @ 2 MHz:

r I 4 2
(HL) 3 II 5.5
(IX + d) 6 23 11.5
(lY + d) 6 23 11.5

Addressll1g Mode: r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed.

Byte Codes: DEC r r: ABC D E H l

~

Flags:

Example: DEC C

OF

§j
OBJECT
CODE

Before:

Ie
'-----'

After:
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DEC rr

Function:

Format:

Description:

Decrement register pair rr.

rr ..- rr - 1

The contents of the specified register pair are
decremented and the result is stored back in the
register pair. rr may be anyone of:

Be 00
DE - 01

HL 10
SP - 11

Data Flow:

Timing: 1 M cycle; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:
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rr : Be DE HL SP

~



Flags: s z

m

THE l80 INSTRUCTION SET

H P/v N C

I [ m:J (no effect).

Example:

OBJECT CODE

DEC BC

Before:

B,-C 3_B_II_=:=JC

After:
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DEC IX

Function:

Format:

Description:

Decrement IX.

IX +- IX - I

11 I II 0 I <["!] 1 I0 II Ibyte I: DD

I 0 I 0 I 1 I 0 I 1 I 0 11 11 Jbyte 2: 2B

The contents of the IX register are decremented
and the result is stored back in IX.

Data Flow:
Aj-.__-+ ,
B C

D E

HL-__---'- --'

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Modes: Implicit.

Flags:

Example:

s Z H pN N C

OT~I-"---'IIIJ (no effect).

DEC IX

~
~
OBJECT CODE

242

Before:

IxLI 6_1_14 _

After:



DEC IY

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Decrement IY.

IY +- IY - I

[}I!J!I!I!J!J~ byte I: FD

I °I °I 1 I °I 1 l1iIiJ byte 2: 2B

The contents of the IY register are decrementea
and the result is stored back in IY.

Data Flow:
A
f.----J..-------,

B C
f.----J..-----j

D E

H L

IY

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

s Z H PlY N C= (no effect).

DEC IY

~
R=J
OBJECT CODE

Before:

IY 1 90_0_F -'

After:
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DJ

Function:

Format:

Description:

Timing:

Disable interrupts.

IFF - 0

=F3

The interrupt flip-flops are reset, thereby disabling
all maskable interrupts. A maskable interrupt may
be disabled during its execution by DI. It is re­
enabled by an EI instruction.

1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

244
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DJNZ e

Function:

Format:

THE laO INSTRUCTION SET

Decrement B and jump e relative on no zero.

B -- b - 1; if B #- 0: PC -- PC + e

= byte 1: 10

byte 2: offset value

Description: The B register is decremented. If the result is not
zero, the immediate offset value is added to the
program counter using two's complement
arithmetic so as to enable both forward and
backward jumps. The offset value is added to the
value of PC + 2 (after the jump). As a result, the
effective offset is -126 to +129 bytes. The as­
sembler automatically subtracts from the source
offset value to generate the hex code.

Data Flow:

DJNZ

e-2

PC ~B~~BB~:====[=~co~n~fr~o~' ]!!?J lOGIC

Timing: B #- 0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz.
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Modes: Immediate.
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Flags:

Example:

S Z H P/v N C= (no effect)

DJNZ $ - 5 ($ = current PC)

M
~
OBJECT CODE

246

Before:

PC i

After:

51 IB B9_B
OOEl I pC~qQRS~



EI

Function:

Format:

Description:

Timing:

THE zao INSTRUCTION SET

Enable interrupts.

IFF -- I

=FB

The interrupt flip-flops are set, thereby enabling
maskable interrupts after the execution of the in­
struction following the EI instruction. In the mean­
time maskable interrupts are disabled.

I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: S Z H

ITTTJ
PN N C

I I n (no effect).

Example: A usual sequence at the end of an interrupt routine is:
EI
RET!
The maskable interrupt is re-enabled following
completion of RET!.
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EXAF,AF I

Function:

Format:

Description:

Data Flow:

Exchange accumulator and flags with alternate
registers.

The contents of the accumulator and status
register are exchanged with the contents of the
alternate accumulator and status register.

F <=lA'.
C B'

E D'

l H'

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

s Z H PNN C

1.-1--,-1--,--,---,-1--'-.-1-LI_O (no effect).

EX AF, AFI

Before: After:

OBJECT CODE
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AI-I__o_4_-'---_8_1_--,I F AlL _-..:.9.::...0_L---=.3A:"':"---.......J1 F

AILI__9_0_-L__3A_---" F' AllL __0_4_....L__81_--..-J1 FI



EXDE,HL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

THE zao INSTRUCTION SET

Exchange the HL and DE registers.

DE-HL

=EB

The contents of the register pairs DE and HL are
exchanged.

A
c-----c----~

B 1-- -I----,--jC

~ ~8

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

S Z H PN N C= (no effect).

EX DE, HL

OBJECT CODE

Before:

~1-1 ~_4~-.:...: 1~

After:
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EX (SP), HL

Function:

Format:

Description:

Data Flow:

Exchange HL with top of stack.

(SP) --L; (SP + 1) ~ H

=E3
The contents of the L register are exchanged with
the contents of the memory location addressed by
the stack pointer. The contents of the H register
are exchanged with the contents of the memory
location immediately following the one addressed
by the stack pointer.

AI-__-+ .....,
B C

o E
H L

SP,--I _

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

250

S Z H PlY N C= (no effect).



Example:

THE zao INSTRUCTION SET

EX (SP), HL

Before: After

HIL- 82_90 lc H~9~L

spi B409 SP! B409

OBJECT CODE

B409~
B40At==j

B409~
B40A~
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EX (SP), IX

Function:

Format:

Description:

Data Flow:

Exchange IX with top of stack.

(SP) +-+ IXlow; (SP + I) ++ IXhigh

~ 1 11 11 rn byte I: DD

=byte2:E3

The contents of the low order of the IX register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con­
tents of the high order of the IX register are ex­
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

A
BI-----+----,C

D E

H L

IX
l.--~..__--L-__=--'

~_._--_..

SP
'---------'

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

252

SZ H PNNC= (no effect).



Example: EX (SP), IX

Before:

THE zao INSTRUCTION SET

After:

Ixl 9234 Ixl 016B »;/

Spi 0402 Spl 0402 I

~
~
OBJECT CODE

0402.~6B

0403~
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EX (SP),IY

Function:

Format:

Description:

Dala Flow:

Exchange IY with top of stack.

(SP) ~IYlow; (SP + 1) ++IYhigh

= bytel:FD= byte2:E3

The contents of the low order of the lY register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con­
tents of the high order of the IY register are ex­
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

A
BI----+-----,c

D E

H L

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

254
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Example:

~
E23
OBJECT CODE

EX (SP),IY

Before:

lyl,-__-=B:...:F0c::...3__-,

SP 1'- 6_21_1 _

6211~.90

6212E23

THE Z80 INSTRUCTION SET

After:

'Y_;i§Z9~

SP I 6211
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EXX Exchange alternate registers.

Function:

Format: =09
Description: The contents of the general purpose registers are

exchanged with the contents of the corresponding
alternate registers.

Data Flow:
A

B

D

H

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: S Z H PN N C= (no effect).

Example: EXX

Before: After:

F'

C'

E'
L'

I 3F 2A

I 39 26

I 54 02

"/ Fl .DO <//

F A m:-""'-':"..:...,,,d_......:.:.2B::'--j F
C B 00 C

E D DO E

L H E3 L

04 2B

39 26

54 02

Fl DO

I 3F 2A

BC 00
I 93 DO
I 4F E3

A

B

D

H

A

B'
D
H

E;a
I~

OBJECT
CODE

256



HALT

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

THE zao INSTRUCTION SET

Halt CPU.

CPU suspended.

=76
CPU suspends operation and executes NOP's so
as to continue memory refresh cycles, until in­
terrupt or reset is received.

1 M cycle; 4 T states; 2 usee @ 2 MHz + inde­
finite Nop's.

Implicit.

S Z H PN N C

c:c:ccIJ I I J (no effect).
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IMO

Function:

Format:

Description:

Timing:

Set interrupt mode 0 condition.

Internal interrupt control.

= bytel:ED= byte2:46

Sets interrupt mode o. In this condition, the in­
terrupting device may insert one instruction onto
the data bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle.

2 M cycle; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

258
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IMl

Function:

Format:

Description:

THE laO INSTRUCTION SET

Set interrupt mode 1 condition.

Internal interrupt control.

=bytel:ED

~ 1 I 0 1 1 rn byte 2: 56

Sets interrupt mode 1. A RST 0038H instruction
will be executed when an interrupt occurs.

DataFlow: 00 38

U PC ~~
0038 I NT

ROUTINE

~
Eg

STACK

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: S Z H PIV N C= (no effect).

259



PROGRAMMI NG THE laO

1M2

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

260

Set interrupt mode 2 condition.

Internal interrupt control.

G 11 1 1O~ bytel:ED

= byte2:5E

Set interrupt mode 2. When an interrupt occurs,
one byte of data must be provided by the peripheral
which is used as the low order of an address. The
high order of this vector address is taken from the
contents of the I register. This points to a second
address stored in memory,which is loaded into the
program counter and begins execution.

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.

s Z H P/v N C=
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IN f, (C) Load register r from port(C)

FunctIOn: r ....... (C)

Format:

Description: The peripheral device addressed by the contents of
the C register is read and the result is loaded into
the specified register.
C provides bits AO to A7 of the address bus.
B provides bits A8 to AIS.

PORT

c I
E

l

r-----
A
sl---

D
HI---

Data Flow:

r may be anyone of:

A - III
B - 000
C - 001
D - 010

E - 011
H 100
L - 101

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Byte Codes: r: A seD E H l

ED~~

261



PROGRAMMI NG THE zao

Flags: S Z H PIV N C

Example:

It is important to note that INA,(N) does not have
any effect on the flags, while IN r, (C) does.

IN D, (C)

Before:

~ oil--_09--1

OBJECT CODE

262

After:

A5 IC

6A IPORT D.~.
A5

A5 Ic
6A !PORT
A5



IN A, (N)

Function:

Format:

Description:

Data Flow:

Timing:

THE laO INSTRUCTION SET

Load accumulator from input port N.

A - (N)

C=bytel:DB

I, : ~ I byte 2: port address

The peripheral device N is read and the result is
loaded into the accumulator.
The literal N is placed on lines AO to A7 of the
address bus. A supplies bits AS to A15.

3 M cycles; 11 T states; 5.5 usec @ 2 MHz

Addressing Mode: External.

Flags: s z

OJ
H PlY N C

I I I [J (no effect).

Example: IN A, (B2)

Before: After:

~
~
OBJECT CODE

A LI----:8_4---J L-_
F
_
1_I PORT A-t­

B2
l..-.--=-:F1,....-_1PORT

B2
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INC r

Function:

Format:

Description:

Increment register r.

r ~ r + 1

The contents of the specified register are in­
cremented. r may be anyone of:

Data Flow:

A - III
B - 000
C - 001
D - 010

E - 011
H 100
L - 101

Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

Flags:

Example:

r: ABC D E H L

j3c10410c~

S Z H p~ N C

~
INC D

~
OBJECT
CODE

264

Before:

D I 06
After:



INC rr

Function:

Format:

Description:

THE laO INSTRUCTION SET

Increment register pair rr.

rr ...- rr + 1

The contents of the specified register pair are in­
cremented and the result is stored back in the
register pair. rr may be anyone of:

Data Flow:

Be - 00
DE - 01

~\ ~I-----I-~
(SP'--I-------,

HL 10
SP - 11

Timing: 1 M cycle; 6 T states; 3 usee @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr: Be DE Hl SP

~
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Flags:

Example:

S Z H PN N C= (no effect).

INC HL

Before: After:

OBJECT
CODE

266

HI'--__O_B_14__......JIL H~9Et~jL



INC (HL)

Function:

Format:

Description:

THE zao INSTRUCTION SET

Increment indirectly addressed memory location
(HL).

(HL) ~ (HL) + 1

=34
The contents of the memory location addressed by
the HL register pair are incremented and stored
back at that location.

Data Flow:
~--~

A
Bf-----+-----,c

D E

H L

Timing:

Addressing Mode:

Flags:

Example:

3 M cycles; 11 T states; 5.5 usec @ 2 MHz

Indirect.

S Z H pASO N C

~

INC (HL)

Before:

H L.I 06_B_1__----'IL

OBJECT
CODE

After:

H L.I 06_B_1__----'IL
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INC (IX + d)

Function:

Format:

Description:

Increment indexed addressed memory location
(IX + d).

(IX + d) ~ (IX + d) + 1

=bytel:DD

~byte2:34

~---1 : ., byte 3: offset value

The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are incremented and stored back at that
location.

Data Flow:
.----~

AI--__-+ ~

B C

D E

H L

Timing: 6 M cycles; 23 T states; 11.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags:

268

s Z H P;@ N C

~



Example: INC (IX + 2)

Before:

IX L.I__--=-03:..:-B_1 _

THE zao INSTRUCTION SET

After:

IX LI 03_B_1 _

DD 03B1 B1 03B1

34 03B2 85 03B2

02 03B3 B9 03B3

OBJECT
CODE
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INC (IY + d)

Function:

Format:

Increment indexed addressed memory location (IY
+ d).

(IY +d) +- (IY + d) + I

=bytel:FD

I 0 I 0 11

I.. :

~ byte 2: 34

4 : ·1 byte 3: offset value

Description: The contents of the memory location addressed by
the contents of the IY register plus the given offset
value are incremented and stored back at that
location.

Data Flow:
...-----,

A
BI----+---..c
D E

H l

lyL -l-,

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

270
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Example:

FD

34

00

OBJECT
CODE

INC (IY + 0)

Before:

IY 1-' 0_60_1__---'

0601M

0602~

THE Z80 INSTRUCTION SET

After:

IyLI 0_60_1__---'

0601~
0602~
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INC IX Increment IX.

Function: IX +- IX + 1

Format: = byte 1:00= byte 2: 23

Description: The contents of the IX register are incremented
and the result is stored back in IX.

A
I------t----,

B C
Dt-----t----i E

H L

IX

Data Flow:

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s Z H PN N C= (no effect).

Example: INC IX

Before: After:

B1BOh:=l
b29

IX I
'-----------'

OBJECT CODE
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INC IY Increment IY

Function: IY +- IY + 1

Format:
=bytel:FD

~byte2:23

Description: The contents of the IY register are incremented
and the result is stored back in IY.

A
~---+----,

B C
r-----t-----I

D E

H L

IY

Data Flow:

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s zrn H PlY N C

I I I I D (no effect).

Example: INC IY

Before: After:

~
E29

IYIL- 3_6B_1 _

OBJECT CODE
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IND

Function:

Format:

Description:

Data Flow:

Timing:

Input with decrement.

(HL) ~ (C); B ~ B-1; HL ~ HL - 1

= byte 1: ED

[71 0 11I~~ byte 2: AA

The peripheral device addressed by the C register
is read and the result is loaded into the memory
locaton addressed by the HL register pair. The B
register and the HL register pair are then each
decremented.

4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:

274

s Z H ~

[lx.=.....,I---rI-!.?l,l--,I~I~I~ I Set if B = 0 after execution
t I Reset otherwise



Example: IND

THE Z80 INSTRUCTION SET

Before:

81 AI 85 Ic

HI 068A IL

26 IPORT

85

After:

8!B:*9:. 85 Ic

H~i?""L

26 IPORT

85

OBJECT CODE
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INDR

Function:

Format:

Description:

Block input with decrement.

(HL) ..... (C); B ..... B-1; HL ..... HL - 1
Repeat until B = 0

I 1 I 1 I 1 ~l 1 I 1 I 0 I 1 I byte 1; ED

=byte2:BA

The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. Then
the B register and the HL register pair are
decremented. If B is not zero, the program
counter is decremented by 2 and the instruction is
re-executed.

Data Flow:

A

B

D

H

11COUNTER~ I
I
c ----.I-=~-v~==~
E PORT

l

Timing: B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz.
B :1= 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz.

Addressing Mode: External

Flags:

276



Example: INDR
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Before: After:

BI 03 56 Ic B_§§B 56 Ic

HI 09F2 IL H~9:€~r,:~L

86 IpORT BF IpORT

56 56

09EF 6A 09EF

~ 09FO EB 09FO
BA

09Fl 48 09Fl

09F2 9A 09F2
OBJECT CODE
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INI

Function:

Format:

Description:

Input with increment.

(HL) .- (C); B .- B-1; HL .- HL + 1

CiI 1 I II 0 III~ byte 1: ED

~ 0 I 0 1 1 [j]byte 2: A2

The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented.

The contents of C are placed on the low half of the
address bus. The contents of B are placed on the
high half. I/O selection is generally made by C,
i.e., by AD to A7. B is a byte counter.

DataFlow: ~
A DATA
B~~"??:!?!?~----'c -fL.._---.J. ._
D E ~~

H l------

Timing: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: External.

Flags:
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Reset otherwise
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Example: INI

Before: After:

86 IpORT

21

B=.=mULt.~.=1..--_2_1 --lIe

'-- -lIL H..:~F;~L

BI 09 21

HI A112

86

21

OBJECT CODE
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INIR Block input with increment.

Function: (HL)-(C);B-B -I;HL-HL + I; Repeat
until B == 0

Format: = byte 1: ED

=byte2:B2

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented. If B is not zero, the program counter
is decremented by 2 and the instruction is re­
executed.

DATAA
B bzr.=="WZl------,c
D E
H L ---...,

Data Flow:

Timing: B == 0: 4 M cycles; 16 T states; 8 used @ 2 MHz.
B :1= 0: 5 M cycles; 21 T states; 10.5 usee @ 2 MHz.

Addressing Mode: External.

Flags: S Z H PIV N C=
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Example: INIR

Before: After:

91A5

91A6

91A71--~~-1

C 21
51

B.ij,i. 51 Ie BB§o=- 51 Ie

HI-I__9:...:.:1A..=5__--lIL H~~L

!PORT .~~ PORT
51

91 A51--_8:::..F_-l
91A6 3D

1-----l
91 A71--_0:::..9_-l

OBJECT CODE

M
~
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JP CC, pq

Function:

Format:

Description:

Jump on condition to location pq.

if cc true: PC +- pq

rn-+cc+--I 0 II I0 I byte 1

,. : ~ : ., byte 2: address,
low order

byte 3: address,I, : i : 'I high order

If the specified condition is true, the two-byte ad­
dress immediately following the opcade will be
loaded into the program counter with the first byte
following the opcode being loaded into the low
order of the Pc. If the condition is not met, the
address is ignored. cc may be anyone of:

Data Flow:

NZ
Z

NC
C

PO
PE

P
M

000
001
010
all
100
101
110
III

no zero
zero
no carry
carry
parity odd
parity even
plus
minus

A
B>----I-------j

DI- I-__-I
H L...-.__--! .....J

F CONTROL
C LOGIC JP CC

E -------
------ q

L -------
------- p

PC
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Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate.

Byte Codes: cc NZ Z NC C PO PE P M

~

Flags:

Example:

S Z H P/V N C

DJL-L--L_ITIJ (no effect)

JP C. 3B24

DA
24

3B

OBJECT CODE

Before:

PC LI o_o3_2__---'

After:
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JP pq Jump to location pq.

Function: PC ~pq

Format:
~Iol~

1--:-~--:·1

byte 1: C3

byte 2: address,
low order

I~:--~--:I
Description:

byte 3: address,
high order

The contents of the memory location immediately
following the opcode are loaded into the low order
half of the program counter and the contents of
the second memory location immediately follow­
ing the opcode are loaded into the high order of
the program counter. The next instruction will be
fetched from this new address.

Data Flow:
A

B C JP

D E q

H L P

PC

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate.

Flags:

Example:

s Z H PIV N C

=(NOeffect)

JP 3025

Before: After:

PC 1L.-__-=5::::52:.:0__---!

C3

25

30

OBJECT CODE
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JP (HL)

Function:

Format:

DescrIp(lOn:

Data Flow:

THE laO INSTRUCTION SET

Jump to HL.

PC +- HL

~1'1'~E9

The contents of the HL register pair are loaded in­
to the program counter. The next instruction is
fetched from this new address.

:I----I------,c
D E

H l

PC

Tillllflg: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

S Z H P/v N C= (no effect).

JP (HL)

OBJECT CODE

Before:

H LI O_41_1__---Jll
PC 1L- B~OO_l _J

After:

H LI O_4_11__---'ll
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JP (IX)

Function:

Format:

Jump to IX.

PC -IX

byte I: DD

byte 2: E9

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

The contents of the IX register are loaded into the
program counter. The next instruction is fetched
from this new address.

A e----t-----,
B C
1------+----1

D E

H L

PC_

2 M cycles: 8 T states; 4 usec @ 2 MHz

Implicit.

5 Z H PlY N C= (no effect).

JP (IX)

3B4A
~
~
OBJECT CODE

286

Before:

IX L[ BO_F_l__----'

PC I
'-----------'

After:

IX I BOFl



JP (IY)

Funclion:

THE laO INSTRUCTION SET

Jump to IY.

PC +- IY

FOrll/al: byte 1: FD

byte 2: E9

Deseriplion:

Dala flow:

The contents of the IY register are moved into the
program counter. The next instruction will be fet­
ched from this new address.

A
1-----+-----

BI-- +--__---'c
D E

H l

PC~

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressltlg Mode: Implicit.

s zFlags:

Example:

~
b29
OBJECT CODE

H P/v N C

L---L--.-,-_rr=rTD (no effect).

JP (I Y)

Before: After:

Iyl AA4B IY! AA4B

pcl E410 PC~;g4!rIAJ
Uf ((
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JR CC, e

Function:

Format:

Description:

Jump e relative on condition.

if cc true, PC +- PC + e

= byte 1

1---:--Ie>-i--:_., byte 2: offset value

If the specified condition is met, the given offset
value is added to the program counter using two's
complement arithmetic so as to enable both for­
ward and backward jumps. The offset value is
added to the value of PC + 2 (after the jump). As
a result, the effective offset is -126 to +129 bytes.
The assembler automatically subtracts 2 from the
source offset value to generate the hex code. If the
condition is not met, the offset value is ignored
and instruction execution continues in sequence.
cc may anyone of:

Data Flow:
r-'--'-------,------,

A F
I------il------j

B C

D E

H L

PC

NZ 00
Z - 01

CONTROL I I
LOGIC I:________ J I

_________ J

NC
C

10

11

Timing:

288

usee
M cycles: T states: @ 2 MHz:

condition
met: 3 12 6
condition
not met: 2 7 3.5



Addressing Mode:

Byte Codes:

Flags:

THE laO INSTRUCTION SET

Immediate.

co: NZ Z NC C

~

S Z H PIV N C

ITIJL---L---L---L---L--JI (no effect).

Example: JR NC, $

Before:

3 $ = current PC

After:

~
OBJECT CODE

'--_OO_---'IF

PC LI B_OO_O__--'

,--_00_-<1 F
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JRe

Function:

Format:

Description:

Jump e relative.

PC - PC + e= byte 1: 18

1-'-:--Ie> -:--:-,I byte 2: offset value

The given offset value is added to the program
counter using two's complement arithmetic so asto
enable both forward and backward jumps. The off­
set value is added to the value of PC + 2 (after the
jump). As a result, the effective offset is -126 to
+ 129 bytes. The assembler automatically subtracts
2 from the source offset value to generate the hex
code.

Data Flow:
A
81-----t----,C

D E

H L-...-_-;=:=====--.-J

PC

JR
e -2

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: Immediate.

Flags:

Example:

S Z H PlY N C= (no effect)

JR D4

~
~
08JECT CODE

290

Before:

PC 1'- 8_10_0__----'

After:



LD dd, (nn)

Function:

Format:

Description:

THE zao INSTRUCTION SET

Load register pair dd from memory locations ad­
dressed by nn.

ddlow +- (nn); ddhigh +- (nn + 1)

= byte I:ED

Id : d 1 1 : 0 I~ byte 2

I ' : n; I , I byte 3: address,
L.~--l-.~~~~~~-L.=-~;==~=~=~. low order

IL--'~L-:-_~-=---=-:-=--nL.-;-=---=:===='="'\ ~r;~ ~~::rdress,

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the
specified register pair. The contents of the
memory location immediately following the one
previously loaded are then loaded into the
high order of the register pair. The low order byte
of the nn address immediately follows the opcode.
dd may be anyone of:

Data Flow:

Be - 00
DE - 01

A 1-----+----,
B 1------+----4 C
D E

H L

SP!'- L--__-'

HL 10
SP - 11

ED

n

n
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Timing: 6 M cycles: 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Byte Codes:

Flags:

Example:

dd: BC DE HL SP

~

s Z H PlY N C

1-----'-----'-----'-----'rn=IJ (no effect)

LD DE, (5021)

ED

5B

21

50

OBJECT CODE

292

Before:

DIL__~D=..:BE=-2__~_--,E

5021~
5022~

After:

5021~
5022~



LDdd, nn

Function:

Format:

Description:

THE laO INSTRUCTION SET

Load register pair dd with immediate data nn.

dd +- nn

ffi d : d ~EJ byte 1

I· : : 7 : : 'I byte 2: immediate
data, low order

I· : : 7 : : 'I byte 3: immediate
data, high order

The contents of the two memory locations im­
mediately following the opcode are loaded into the
specified register pair. The lower order byte of the
data occurs immediately after the opcode. dd may
be anyone of:

Be - 00
DE - 01

HL
SP

10
II

Data Flow:
A

B

I~\~
D

LD

n
H

n

sp!

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate.

Byte Codes:

Hags:

dd: BC DE Hl SP

~

s Z H PIV N C= (no effect)
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Example:

11

31

41

OBJECT CODE

294

LD DE,4131

Before:

DC 0394

After:



LDr, n

Function:

Format:

Description:

THE laO INSTRUCTION SET

Load register r with immediate data n.

G ?l~rT-~ byte 1

I. : : ~ ; : :. Ibyte 2: immediate data

The contents of the memory location immediately
following the opcode location are loaded into the
specified register. r may be anyone of:

A III
B - 000
COOl
D - 010

E - 011
H 100
L - 101

Data Flow:

~ 1-------1I------l ~I/'-__-+__l_~--I

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Immediate.

Byte Codes: r: ABC D E H l

~

Flags: s Z H P/V N C

[I I LJIOJ (no effect).
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Example:

r=rl
e=3
OBJECT CODE

296

LD C,3B

Before:

C I 01

After:



LD r, r'

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Load register r from register r'.

r ..... r'

The contents of the specified source register are
loaded into the specified destination register. rand
r' may be anyone of:

Data Flow:

A III
B - 000
C - 001
D - 010

A
1-----+----,

8 C
1-------11-------1

D E

H L

E - 011
H 100
L - 101

Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:
A

B

C

D

E
H

L

(des!.)

A8CDEH

7F 78 79 7A 78 7C 7D

47 40 41 42 43 44 45

4F 48 49 4A 48 4C 4D

57 50 51 52 53 54 55

4F 58 59 5A 58 5C 5D

67 60 61 62 63 64 65

6F 68 69 6A 68 6C 6D

(source)

Flags: s Z ,H'-'-r-r-:PI--,-V N C

ITIJ I CD (no effect).
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Example:

OBJECT CODE

298

LD H, A

Before: After:



LD(BC), A

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load indirectly addressed memory location (Be)
from the accumulator.

(BC) ~ A

~~lllolo2

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the Be register pair.

A f.-----l=====;--------,

~ :L
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

[I]~J-=II[IJ
Flags: s z H PlY N C

(no effect).

Example: LD (Be), A

OBJECT CODE

B

A j_----=-:3F_---l. _
~. 4..:..:10:..;..9 1C

",,8

Before:

; ....lr===3_F__-_-4~lO=9======lc

~ ""~

After:
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LD (DE), A

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Load indirectly addressed memory location (DE)
from the accumulator.

(DE) ~ A

~12

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the DE register pair.

AI- fc===:::;------,
B C

~f-----+-----j ~~

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.

Flags:

Example:

s Z H PIV N C=
LD (DE), A

(no effect)

Before:

A LI__ED_---'

D LI 0_39_2__--1

After:

D I 0392

~ ""~ ""8
OBJECT CODE

300



LD (HL), n

Function:

Format:

Description:

Data Flow:

THE ZaG INSTRUCTION SET

Load immediate data n into the indirectly ad­
dressed memory location (HL).

(HL) +- n

r: T- [ -T----~--r-.--,:J byte 2: immediate
L~_L __L --l~ [ [ [ data

The contents of the memory location immediately
following the opcode are loaded into the memory
location indirectly addressed by the HL data
counter.

A
1-----1------,

BI-- I--__---I c
D E

H L-__--'- -'

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate/indirect.

Flags: S Z H PIV N C= (no effect).
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Example: LD (HL), SA

Before:

HIL A_3_42__~1 L

After:

HLI A_3_42__~1 L

OBJECT CODE

302



LD (HL), r

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Load indirectly addressed memory location (HL)
from register r.

(HL) -- r

The contents of the specified register are loaded
into the memory location addressed by the HL
register pair. r may be anyone of:

Data Flow:

A - III
B - 000
C - 001
D - 010

E - 011
H 100
L - 101

Timing:

Addressing Mode:

Byte Codes:

2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Indirect.

r:ABCDEHL

~
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Flags:

Example:

S Z H PIV N C=
LD (HL), B

(no effect).

Before: After:

B I 81 BI__8_1_

H LI C_50_1 1L H LI C_50_1 1 L

OBJECT CODE

304
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LD r, (IX + d) Load register r indirect from indexed memory
location (IX + d)

Function: r +- (IX + d)

Format:

Description:

= bytel:DD

G 1 I-~r-:-~ byte 2

I·: : : 1 : : : I byte 3: offset value

The contents of the memory location addressed by
the IX index register plus the given offset value,
are loaded into the specified register. r may be any
one of:

A - III
B 000
C - 001
D - 010

E 011
H 100
L - 101

DATA

Data Flow:
A

B C

D E
+

H L LD

IX d

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: r:ABCDEHL

DD-~-d
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Flags:

Example:

S Z H PIV N C=
LD E. (IX + 5)

(no effect).

Before: After:

03 IE ~.E

Ixl 3020 Ixl 3020 I

DD 3020 2A 3020 2A

5E

05
3025 15 3025 15

OBJECT CODE

306
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LD r, (IY + d) Load register r indirect from indexed memory
location (IY + d)

Function: r ..- (IY + d)

Format:

Description:

=bytel:FD

~~r-:~~ byte 2

I.: : : ~ : : .. I byte 3: offset value

The contents of the memory location addressed by
the IY index register plus the given offset value,
are loaded into the specified register. r may be any
one of:

Data Flow:

A-Ill
B - 000
C - 001
D - 010

A
1--------1----

~ ~---+----~
H L

IY C====:J-----'

E - 011
H 100
L - 101

Timing: 5 M cycles, 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed.
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Byte Codes:

Flags:

Example:

r: ABC D E H L

FD-~-d

S Z H PIV N C= (no effect).

LD A, (IY + 2)

61

OBJECT CODE

308

Before:

A ,-I__E3_-,

IY 1 Bo_0_5__--'

B005
I-----J

B007 I--_F9_~

After:

A~R

I B005

B005 1--_6_1~

B007 I--_F_9 _



THE laO INSTRUCTION SET

LD (IX + d), n Load indexed addressed memory location (IX +
d) with immediate data n.

Function: (IX + d) ~ n

Format: = byte 1: DO= byte 2: 36

1- : : 1----·\ byte 3: offset value

1_'-:--:- ~ . I byte 4: immediate
L---L-----l-----'_-'---L---'---l'----' data

Description: The contents of the memory location immediately
following the opcode are transferred into the
memory location addressed by the contents of the
index register plus the given offset value.

Data Flow:
A
1----+------,

B
DI----+----I

H
'------'-------'

IX
'-----------'

LD

d

n

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed/immediate.

Flags:
(no effect).
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PROGRAMMING THE l80

Example: LD (IX + 4), FF

Before:

Ixl B_l_09__---'

After:

Ixl'- B_1O_9 _

DD B109 60 B109

36

04

FF B10D 4E BJOD

OBJECT CODE

310



LD (IY + d), n

Function:

Format:

Description:

Data Flow:

THE laO INSTRUCTION SET

Load indexed addressed memory location (IY +
d) with immediate data n,

(IY + d) -<- n

=bytel:FD= byte 2: 36

I· I I 1 : : ·1 byte 3: offset value

I· : : 7 : :
1 byte 4: immediate
'data

The contents of the memory location immediately
following the opcode are transferrea into the me­
mory location addressed by the contents of the
index register plus the given offset value,

A l
LD

!eB

D I :E
i i L d

H
n

Ixl

~
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed/immediate,

Flags: S Z H PIV N e= (no effect).

311



PROGRAMMING THE Z80

Example: LD (IY + 3), BA

Before:

IY LI 0_10_0__---'

After:

IY I
L

O_1OO -'

FD 0100 D2 0100

36 62

03 OF

BA 0103 04 0103

OBJECT CODE

312



LD (IX + d),f

Format:

Description:

THE l80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d) from register r.

= bytel:DD

~-+r+-I byte2

I·: : :d: : : :. I byte 3: offset value

The contents of the specified register are loaded in­
to the memory location adressed by the contents of
the index register plus the given offset value. r may
be anyone of:

Data Flow:

A - III
B - 000
C - 001
D 010

A
1-----4---~

B C
1-----4---.--1o E

H L

IX L .r-------"

E - 011
H 100
L - 101

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz
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Addressing Mode: Indexed.

Byte Codes:

Flags:

Example:

r: ABC D E H L

DD-~-d

S Z H PN N C=
LD (IX + 1), C

(no effect).

6B

Before:

__6B_--Jlc

After:

Ie
---~

DD

71

01

OBJECT CODE

314

IX IL 4_46_2__----.J

4462~
4463~

IX1,-- 44_62 -,

4462~
4463~



THE l80 INSTRUCTION SET

LD (IY + d), r Load indexed addressed memory location (IY +
d) from register r.

Function: (IY + d) +- r

Formal:

Description:

= byteI:FD

~I--+r+--I byte 2

I·: : : 1 : : :. I byte 3: offset value

The contents of the specified register are loaded
into the memory location addressed by the con­
tents of the index register plus the given offset
value. r may be anyone of:

Data Flow:

A - III
B - 000
C - 001
D - 010

A 1------+-----,
B C

D E

H L

IYL j-----'

E - all
H 100
L - 101

Timing:

Addressing Mode:

5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Indexed.

Byte Codes: r: ABC D E H L

FD-~-d
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Flags:

Example:

S Z H P/V N C= (no effect).

LD (IY + 3), A

21 21FD

77

03

Before:

AIL...__3E_---'

1y
L
I 5_A_B4 -'

5AB4
f----~

After:

A 1'---_3.:.::E_--'

lyLI 5_A_B_4 _

5AB4
1------1

OBJECT CODE

316

5AB71---=5.:...A~.:... 5AB7



LD A, (nn)

Function:

THE zao INSTRUCTION SET

Load accumulator from the memory location
(nn).

A+- (nn)

Format:
byte 1: 3A

byte 2: address, low
order byte
byte 3: address, high
order byte

Description:

Data Flow:

The contents of the memory location addressed by
the contents of the 2 memory locations immediate­
ly following the opcode are loaded into the ac­
cumulator. The low byte of the address occurs im­
mediately after the opcode.

~I----I-<-----l~ L!:@j
LD

n

n

Timing: 4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

S Z H PIV N C= (no effect).

LD A, (3301)

Before: After:

3A

01

33

OBJECT CODE

318



LD (nn),A

Function:

Format:

THE Z80 INSTRUCTION SET

Load directly addressed memory location (nn)
from accumulator.

(nn) ~ A

--:...-.:.-..:--:7: :. I

byte 1: 32
byte 2: address, low
order
byte 3: address, high
order

Description:

Data Flow:

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the memory locations immediately following the
opcode. The low byte of the address immediately
follows the opcode.

LD

q

p

Timing: 4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

S Z H P/v N C= (no effect)

LD (0321), A

Before: After:

32

21

03

OBJECT CODE

320



LD (nn), dd

Function:

Format:

THE zao INSTRUCTION SET

Load memory locations addressed by nn from
register pair rr.

(nn) ~ddlow; (nn + 1) ~ddhigh

Glld:dlo~byte2

I.: : I I I I '~
.~-"-"------l---""_~ L_...L__L=:J

1-':--:~: :,1
byte 3: address,
low order

byte 4: address,
high order

Descriptions: The contents of the low order of the specified
register pair are loaded into the memory location
addressed by the memory locations immediately
following the opcode. The contents of the high
order of the register pair are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.dd
may be anyone of:

Data Flow:

Be - 00
DE - 01

A
t------t----,

B C
t------t----l

o E
H L

HL
SP

LD

dd
n

n

10
11
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Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Byte Codes:

Flags:

Example:

dd: BC DE HL SP

ED-~

S Z H PIV N C= (no effect).

LD (040B), Be

Before: After:

BLI__----=..:02:::2.:.-.1__-----llc B
L
! 0_22_1__---llc

ED

43

OB
04

OBJECT
CODE

322

""~
040C~

040B

040C



LD (nn), HL

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load the memory locations addressed by nn from
HL.

(nn) ....... L; (nn + 1) ....... H

I 01 011~o 11 I~ byte 1: 22
~-.---.,--,-,--.----.--.---, byte 2: address,
L--.-'--'-~~..L--...1 L_.-'L_-'---' low order
I~ n -----1 byte 3: address,
L __-'--..-'. __ l_.. L high order

The contents of the L register are loaded into the
memory location addressed by the memory loca­
tions immediately following the opcode. The con­
tents of the H register are loaded into the memory
location immediately following the location
loaded form the L register. The low order of the
nn address occurs immediately after the opcode.

LD

n

A
BI-----I-----,C
1-----1-------1

D E

H L

n

Timing: 5 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Direct.

323



PROGRAMMING THE Z80

Flags:

Example:

S Z H P/V N C

O=C:O-~ (no effect).

LD (40B9). HL

Before: After:

H

22

B9

40

OBJECT
CODE

324

40B9W

40BA~
40B9~
40BA~



LD (nn), IX

Function:

Format:

Description:

Data Flow:

THE zao INSTRUCTION SET

Load memory locations addressed by nn from IX.

(nn) +- IXlow; (nn + 1) +- IXhigh

=bytel:DD= byte 2: 22

~: : ~ : I .1 byte 3: address,
C::==~~---i--. low order

:

~ : 1 byte 4: address.
----.- ,-.----. high order

The contents of the low order of the IX register
are loaded into the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the op code.

LD

A
B }-------t-----,c

}-------t-------i
D E

H L

n

n

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

S Z H PIV N C

ITJIITIIJ

LD (012B), IX

(no effect).

Before:

IXC_ 0406
-----'

After:

IX 1L-. 0_40_6__---'

326

DD
22

2B

01

OBJECT
CODE

012B~.D3

012C~
012B~
012C~



LD (nn),IY

Function:

Format:

Description:

Data Flow:

THE laO INSTRUCTION SET

Load memory locations addressed by nn from IY.

=bytel:FD

~~~byte 2: 22

I.: : ~ : :=:1 ~~~e :r:d:~dress,

I·: : ~: :' I~r~~ ~~::rdress,

The contents of the low order of the IY register are
loaded into the memory location addressed by the
contents of the memory locations immediately
following the opcode. The contents of the high
order of the IY register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.

LD

A

B C n

0 E n

H L

IY

Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

S Z H P/V N C

ITIlJ------'----L--1IJ

LD (BD04), IY

(no effect)

FD

22

04

BD

OBJECT CODE

328

Before:

1YC= D204

BD04~
BD05~

After:

IY ,-I D_20_4__-----J

BD04~
BD05~
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LDA, (Be) Load accumulator from the memory location in­
directly addressed by the BC register pair.

Function: A +- (BC)

Format: =OA
Description: The contents of the memory location addressed

by the contents of the BC register pair are loaded
into the accumulator.

Data Flow:

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H P/V N e= (no effect).

Example: LD A, (BC)

After:

A~_

Ie IeB 3201

n"E2j

Before:

A

B

~_.:..:A.::.B_-L. _

. 3201

E2j nDI~
OBJECT CODE

329
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LD A, (DE)

Function:

Format:

Description:

Data Flow:

Load the accumulator from the memory location
indirectly addressed by the DE register pair.

A +- (DE)

=lA

The contents of the memory location addressed by
the contents of the DE register pair are loaded into
the accumulator.

~rn-I~-·EjJ
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

Example:

S Z H P/v N CrrrrrrCD (No effect).

LD A, (DE)

OBJECT CODE

330

Before:

D I 6051

After:

A.:§¥.:m
DI 6051



LD A,I

Function:

Format:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET

Load accumulator from interrupt vector register I.

A - I

[~]!I~EI~[EEJ byte I: ED

[~L'I~J~~J~l~'-~J byte 2: 57

The contents of the interrupt vector register are
loaded into the accumulator.

2 M cycles; 9 T states; 4.5 usee @ 2 MHz

Addressing Mode:

Flags:

Example:

Implicit.

S Z H PlY N C

IiTe~fOTl,Set to the contents
~I ofIFF2

LD A, I

~.ED

~
OBJECT CODE

Before:

A.IL: _3_0_-----' I 1'--_4B_-----'

After:
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LD I, A

Function:

Format:

Description:

Load Interrupt Vector register I from the ac­
cumulator.

~ 1 I 0 1 1~ byte I: ED= byte 2: 47

The contents of the accumulator are loaded into
the Interrupt Vector register.

Data Flow: A

B

D

H

C

E

L

I~<=-

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

S Z H PlY N C= (no effect)

LD I,A

w
~
OBJECT CODE

332

Before:

A !~_o_6_-J1 I I D2

After:



LD A,R

Function:

Format:

Description:

THE zao INSTRUCTION SET

Load accumulator from Memory Refresh register
R.

=bytel:ED

=byte2:5F

The contents of the Memory Refresh register are
loaded into the accumulator,

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

A

B

D

H

A

C

E

L

R

2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Implicit.

s Z H PlY N C

~
L- set to contents of IFF2

LD A, R

[;2j
~
OBJECT CODE

Before:

A :-i_---.:6::.=2_---'; R LI__4_A_--,

After:
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LD HL, (nn)

Function:

Format:

Load HL register from memory locations addres­
sed by nn.

L - (nn); H - (nn + 1)

=bytel:2A

I, : : ~ : : ., byte 2: address, low
order

I : : ~ : : ' I byte 3: address, high
order

Description: The contents of the memory location addressed by
the memory locations immediately after the op­
code are loaded into the L register. The contents
of the memory location after the one loaded into
the L register are loaded into the H register. The
low byte of the nn address occurs immediately
after the opcode.

Data Flow: LD

A n

B C n

0 E

H l

x

y

Timing: 5 M cycles, 16 T states; 8 usee @ 2 MHz

Addressing Mode: Direct.

Flags:

334

s Z H PIV N Crr-=-rrrro=J (no effect)



Example:

THE laO INSTRUCTION SET

LD HL, (0024)

Before: After:

HI
L

0_8B_F__--.-Jll H_~l

2A

24

00

OBJECT CODE

0024~
0025~

0024[d

0025~

335
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LD IX, nn

Function:

Format:

Load IX register with immediate data nn.

IX ~ nn

= byte 1: DD= byte 2: 21

___:_~: :Ibyte 3: immediate
'---'----'----'.-.....! - .......---'--'--~. data, low order

----:----;----:-:_?: .j byte 4: immediate
'---'-----'-----L.-'--.----'-.-'---'---'. data, high order

Description: The contents of the memory locations immediate­
ly following the opcode are loaded into the IX
register. The low order byte occurs immediately
after the opcode.

n

n

LD

A
BI----jL-------,c

D E

H l

IX

Data Flow:

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Immediate.

Flags: S Z H PIV N C= (no effect)
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Example:

DD

21

B1

BO

OBJECT CODE

LD IX, BOBI

Before:

IX IL __---=-30.-.:6.:...-F__-----I

THE Z80 INSTRUCTION SET

After:
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LD IX, (nn)

Function:

Format:

Descriptions:

Data Flow:

Load IX register from memory locations ad­
dressed by nn.

IXlow +- (nn); IXhigh +- (nn + 1)

~~Il~l~~EEI~EJ byte 1: DO

[~l~I0iEJiIQ~J byte 2: 2A

E ll I I I. i byte 3: address,
~ I~.L-1--_-j---i-. low order

The contents of the memory location addressed by
the memory locations immediately following the
opeode are loaded into the low order of the IX
register. The contents of the memory location im­
mediately following the one loaded into the low
order are loaded into the high order of the IX reg­
ister. The low order of the nn address immediately
follows the opcode.

AC-- f--__---,

B C

o E

H l

LD

n

n

Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

THE zao INSTRUCTION SET

S Z H PN N C= (no effect).

LD IX, (OIOB)

DD

2A

OB
01

OBJECT CODE

Before:

IxLI FF_4B ----'

"08~
01OC~

After:

01OB~
01OC~
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LD IY, (nn)

Function:

Format:

Description:

Data Flow:

Load IY register with immediate data nn.

IY ~ nn

=bytel:FD

= byte 2: 21

I_:__-;-_~ : byte 3: immediate
. ... data, low order

1_.-:--I-7-:--I_./ byte 4: immediate
---"-.---eL-...L._L..---l.._1----'---'. data, high 0 rder

The contents of the memory locations immediate­
ly following the opcode are loaded into the IY
register. The low order byte occurs immediately
after the opcode.

A

B

D

H

IY

I
I
C

E

LD

Timing:

Addressing Mode:

340

4 M cycles: 14 T states: 7 usee @ 2 MHz

Immediate.



Flags:

Example:

THE zao INSTRUCTION SET

SZ H PiVNC= (no effect)

LD lY,21

FD

21

21

00

OBJECT CODE

Before:

IY L.I 0_6_9B__---,

After:
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LD IV, nn

Function:

Format:

Description:

Data Flow:

Load register IY from memory locations addressed
bynn.

IYlow ...- (nn); IYhigh ...- (nn + 1)

~I~r~ byte 1: FD

[~]~J=:EI~I~I2J~byte 2: 2A

,.: : ~ : If~~e ~~d~~dress,
,.: : ~: .1 byte 4: address,
.. ... high order

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the IY
register. The contents of the memory location im­
mediately following the one loaded into the low
order are loaded into the high order of the IY
register. The low order of the nn address im­
mediately follows the opcode.

LD

Af--__-\
Bf--__-\f--__-\c
D E

H L

n

n

342
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Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Flags:

Example:

S Z H PN N C= (no effect).

LD lV, (5000)

Before: After:

IY,-I 6_00_2__lly~j~9i~

FD

2A

aD
50

OBJECT
CODE

500D~.03

500E~
500D.W03

500E~

343
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LD R,A

Function:

Format:

Load Memory Refresh register R from the ac­
cumulator.

= bytel:ED

~ 011 I lEE] byte 2: 4F

Description: The contents of the accumulator are loaded into
the Memory Refresh register.

Data Flow: A
B

D

H

C

E

l

R~~

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

SZ H PNNC= (no effect)

LD R, A

w
~
OBJECT CODE

344

Before: After:



LD SP, HL

Function:

Formal:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load stack pointer from HL.

SP ~ HL

The contents of the HL register pair are loaded in­
to the stack pointer.

A
f-----+---~

B C

D E

H L===il
sp~¢==:J

Timing: 1 M cycles; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

s Z H PlY N C

IT::CLL_rr=IJ (no effect)

LD SP, HL

Before: After:

OBJECT
CODE

H [ O_6A_F 1L H 1 O_6_A_F__---'I L

SP LI__D_B_OE I sP~$N~
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LD SP, IX

Function:

Format:

Description:

Data Flow:

Load stack pointer from IX register.

SP +- IX

= byte I:DD

un2IE~Ebyte 2: F9

The contents of the IX register are loaded into the
stack pointer.

A f--------j-----,
B C

D
i-----~--_l__----I

H L-__-'- --'

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

SZ H PNNC

[I]-_T~-[_[~r]-J (no effect)

LD SP, IX

~.
~

OBJECT
CODE

346

Before:

IX 1 O_9_D2. -'

sp\L 54_A-=.O -'

After:

IX c== 09D2

SP~9?91~



LD SP,IY

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

THE Z80 INSTRUCTION SET

Load stack pointer from IY register.

SP ~ IY

~~bytel:FD

~~byte2:F9

The contents of the IY register are loaded into the
stack pointer.

A
f-----+---~Bf--__-+- C

D E

H L

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.

S Z H PIV N C= (no effect)

LD SP,IY

~.
~
OBJECT CODE

IY

Before: After:

IY i 09AB
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LDD

Function:

Format:

Description:

Block load with decrement.

(DE) +- (HL); DE +- DE - 1; HL +- HL - 1;

BC +- BC - 1

= bytel:ED

The contents of the memory location addressed by
HL are loaded into the memory location address­
ed by DE. Then BC, DE, and HL are all
decremented.

Data Flow:
A
B

D

H DATA

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Modes: Indirect.

Flags:

348

S Z H PlY N C

~
L- Reset if BC = 0 after

execution, set otherwise.



Example: LDD

Before:

THE Z80 INSTRUCTION SET

After:

B~ O_B_04 ...jC

D 6211 C

H 8438 L

C

E

L

§ij ""~ ""~AS

OBJECT CODE

""Eg M"~
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LDDR

Function:

Format:

Description:

Data Flow:
A

B

D

H

Repeating block load with decrement.

(DE) - (HL); DE - DE - I; HL - HL - I;
BC - BC - I; Repeat until BC = 0

= bytel:ED

8 0 1 1 1 1~ byte 2: B8

The contents of the memory location addressed by
HL are loaded into the memory location address­
ed by DE. Then DE, HL, and BC are all
decremented. If BC 1= 0, then the program counter
is decremented by 2 and the instruction re­
executed.

--------,
L":-":-":-":-~-' :
___ -, I : I

I I I :
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

..; I.J I
I r I
~ h­
_.1
2

Timing: BC 1= 0: 5 M cycles; 21 T states; 10.5 usee @ 2
MHz.
BC = 0: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H PIV N C=
350



Example:

THE l80 INSTRUCTION SET

LDDR

B

D

H

Before:

0003

06B2

iT 9035

C B

E D

L H

After:

C

E

L

~
06AF B1 06AF

B8 06BO 04 06BO
06B1 DF 06B1

06B2 36 06B2
OBJECT CODE

9032

9033

9034

9035

92 9032 1---,-,92'-----1
DE 90331--_DE_--I

E1 9034 f-_E1_-l

BF 90351--_BF_--I
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LDI

Function:

Format:

Description:

Block load with increment.

(DE) -- (HL); DE -- DE + 1; HL -- HL + 1;
BC -- BC - 1

=bytel:ED

=byte2:AO

The contents of the memory location addressed by
HLare loaded into the memory location addressed
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

Data Flow:
A

B

D

H

c/
E

l DATA

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

'11..-__ Reset if BC = 0 after
execution, set otherwise.
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Example:

OBJECT CODE

LDI

Before:

Bf.- OO.:...:O-=.6 C

D 34B1 E

H 3902 L

THE Z80 INSTRUCTION SET

After:

BI " 1'-

<

HI

""~

353
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LDIR

Function:

Format:

Description:

Data Flow:

Timing:

A

B

D

H

Repeating block load with increment.

(DE) ~ (HL); DE ~ DE + 1; HL ~ HL + 1;
BC ~ BC - 1; Repeat until BC = 0

= bytel:ED= byte2:BO

The contents of the memory location addressed by
HL are loaded into the memory location ad­
dressed by DE. Then both DE and HL are in­
cremented. BC is decremented. If BC "* 0 then
the program counter is decremented by 2 and the
instruction is re-executed.

2
--,

.::1 ~_3_1
_~ 1- I
,I I
1 1 I
I 1 1
,I 1
I 1 ,

L~ DATA :: :
I' 1

" 1I 2 I-----C_=-__=_=_=_.J: i
I---~ -- 1 I

I 3 --------- I
I---~ .J

For BC -4= 0: 5M cycles; 21 T states; 10.5 usec @ 2
MHz.
For BC = 0: 4 M cycles; 16 T states; 8 usec @ 2
MHz

Addressing Mode: Indirect.
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Flags:

Example:

THE Z80 INSTRUCTION SET

S Z H PIV N C

CIII'--"o1~I":"':"":"'o[Q[]

LDIR

Before:

D
B1- 0:.:0=02=--__--1 EC

4A03

H 962A L

After:

~-~H 62C L

~
4A03 12 4A03

BO 4A04 F4 4A04

4A05 AA 4A05

OBJECT CODE

962A 3B
f----------l

962B f----_90-'---------l

962C 1----=-6=-E_--I

962A 3B

962B f----_9..;..0_-i

962C f-------=6:.::.E---i
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LD r, (HL) Load register r indirect from memory location
(HL).

Function: r ...- (HL)

Format:

Description: The contents of the memory location addressed by
HL are loaded into the specified register. r
may be anyone of:

A-Ill
B - 000
C - 001
D - 010

E - all
H 100
L - 101

,

A

B C ~D EH L-'---=--r-----====_
Data Flow:

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: r: ABC D E H L

~

356



Flags:

Example:

THE zao INSTRUCTION SET

s Z H PlY N C= (no effect).

LD 0, (HL)

OBJECT CODE

Before:

H
D ~__3A_-+-_

. OC y=]l

After:

D_~I--_~

HOC I 32 Il
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NEG Negate accumulator.

Function: A~O-A

Format: = bytel:ED= byte 2: 44

Description: The contents of the accumulator are subtracted
from zero (two's complement) and the result is
stored back in the accumulator.

Ilv
31I

IX ;;;;<

C

E AlU

l

A

B

D

H

Data Flow:

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: S Z H p~ N C

~
C will be set if A was 0 before the instruction.
P will be set if A was 80H.

Example: NEG

~
8

OBJECT
CODE

Before:

AI 32

After:

A.~

358



NOP

Function:

Format:

Description:

Data Flow:

THE l80 INSTRUCTION SET

No operation.

Delay.

~oo

Nothing is done for 1 M cycle.

A No action
B C
1----1-----1

D E

H L

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit

Flags: SZ H P/vNC

LCJILJ I D (no effect).

359



PROGRAMMING THE Z80

OR s

Function:

Format:

Logical or accumulator and operand s.

A---AVs

.§.: may be r, n, (HL), (IX + d), or (IY + d)

r~ol~r~1

n = bytel:F6

byte 2: immediate
data

(HL) = byte I: 86

(lX+d) = byte 1: DO= byte 2: 86

----1---- byte 3: offset value

(IY + d) = byte 1: FD= byte 2: 86

~---1 : ·1 byte 3: offset value

r may be anyone of:

A - 111
8 - 000
C - 001
0-010

E - all
H 100
L - 101

Description:

360

The accumulator and the specified operand are
logically 'or'ed, and the result is stored in the ac­
cumulator. s is defined in the description of the
similar ADD instructions.
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Data Flow:

A_~~
BI-__-t -lc
D E

H L

Timing: usec
s: M cycles: T states: @2MHz:

r 1 4 4
n 2 7 3.5
(HL) 2

I
7 3.5

(IX + d) 5 19 9.5

I(IY + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.

Byte Codes: OR r r: ABC D E H l

~

Flags:

Example:

S Z H ®'\tN C

~

OR B

OBJECT
CODE

Before:

A~
B~

After:

A__

B~
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OTDR

Function:

Format:

Description:

Data Flow:

Block output with decrement

(C)+{HL); B B-1; HL"'-HL - 1; Repeat untii B = O.

=byte1:ED

=byte2:BB

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Both the B register and the HL register pair are
then decremented. If B =/= 0, the program counter
is decremented by 2 and the instruction is re­
executed. C supplies bits AO to A7 of the address
bus. B supplies (after decrementation) bits A8 to
A15.

DATA

Timing:

r---
II C==:::J---~i 3

A I __ ....-l2

B~~~r-----,c --"-"---I------1J' 1
DEPORT

H l-------------=--

B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.
B =/= 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz

Addressing Mode: External.

Flags:

362

S Z H PlY N C=



Example: OTOR

THE l80 INSTRUCTION SET
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OTIR

Function:

Format:

Description:

Data Flow:

Block output with increment.

(C)+-(HL);B+-B -1;HL+-HL + I; Repeat
until B = 0

ITII()EEl~ byte I: ED

=byte2:B3

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
The B register is decremented and the HL register
pair is incremented. If B of. 0, the program counter
is decremented by 2 and the instruction is re­
executed. C supplies bits AO to A7 of the address
bus. B supplies (after decrementation) bits A8 to
A15.

A
B 1?i?J'~"'7"'%t----,

D

H

c "t j:I I_
E I

L
,,=
L__

Timing: B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.
B of. 0: 5 M cycles; 21 T states; 10.5 usee @ 2 MHz

Addressing Mode:

Flags:

364

External.

S Z H PiV N C=



THE Z80 INSTRUCTION SET

Example: OTlR

Before: After:

BI 03 AO Ie B_9_ AO Ie

HI 5550 IL H"'~~~L

85 IPORT E§.PORT

AO AO

~ 5550 6B 5550 6B

B3 5551 02 5551 02

5552 9A 5552 9A

OBJECT CODE 5553 65 5553 65

365
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OUT (C), r

Function:

Format:

Description:

Output register r to port C.

(C) -- r

= byte 1: ED

~byte2

The contents of the specified register are output to
the peripheral device addressed by the contents of
the C register. r may be anyone of:

Alii
B - 000
COOl
o - 010

E - 011
H - 100
L - 101

Data Flow:

Register C supplies bits AD to A7 of the address
bus. Register B supplies bits A8 to A15.

A ~~

~_~_I~~
I L-I-----JJ

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Flags: s z

IT]
H PN N C

I I I 0 (no effect).

Byte Codes:

366

r: ABC D E H L

~



Example:

THE laO INSTRUCTION SET

OUT (C), B

Before: After:

~
~
OBJECT CODE

B<-I__o9_-,-__Fl_.....Jlc B1<---_o_9_-'-__Fl_-'1 C

B8 IPORT

Fl

367
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OUT (N), A

Function:

Format:

Description:

Output accumulator to peripheral port N.

(N) ~ A

=bytel:D3

---'-'---'-I--0- i: :. I byte 2: port address

The contents of the accumulator are output to the
peripheral device addressed by the contents of the
memory location immediately following the op­
code.

Data Flow:

~I : I~~ ~
L PORT-a

Timing: 3 M cycles, II T states; 5.5 usec @ 2 MHz

Addressing Mode: External.

Flags: S Z H P/v N C= (no effect).

Example: OUT (OA), A

Before: After:

~ AI,--_51_-,1 I OA IpORT AI

~
OBJECT CODE

368

51



OUID

Function:

Format:

Description:

THE laO INSTRUCTION SET

Output with decrement.

(C) +- (HL); BC +- B-1; HL +- HL - 1

=byte1:ED

~ 0 11 II I byte 2: AB

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Then both the B register and the HL register pair
are decremented. C supplies bits AO to A7 of the
address bus. B supplies (after decrementation) A8
to A15.

DataFlow: ~

: ~~~~----i C --_. DATA
DEPORT

H L -----

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:
S Z H PIV N C

~ r--- Set if B = ~ after execution,
I I reset otherWise.
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Example: OUTD

Before: After:

OBJECT CODE

370



OUTI

Function:

Format:

Description:

Data Flow:

THE laO INSTRUCTION SET

Output with increment.

(C) +- (HL); B +- B-1; HL +- HL + 1

= bytel:ED= byte2:A3

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the C register. The B register
is decremented and the HL register pair is incre­
mented.

C supplies bits AO to A7 of the address bus.
B (after decrementation) supplies bits A8 to AIS.

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:
S Z H PlY N C

[~D=IIJ=O I
t ---'I

Set if B = 0 after execution,
reset otherwise.
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Example: OUTI

Before:

__---Jlc

After:

IC

OBJECT CODE

372

OfOA~



POPqq

Function:

Format:

Description:

THE laO INSTRUCTION SET

Pop register pair qq from stack.

qqlow ~ (SP); qqhigh~ (SP + I); SP~ SP + 2

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the specified register pair and then the stack
pointer is incremented. The contents of the
memory location now addressed by the stack
pointer are loaded into the high order of the
register pair, and the stack pointer is again in­
cremented. qq may be anyone of:

Data Flow:

Be - 00
DE - 01

~f------i-----;~

D E

H l

HL
AF

10
I I

DATA
~---r------

]
Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: qq: Be DE Hl AF

~
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Flags:

Example:

374

S Z H P/v N C

'-----L..-I-LI_[] I I D. (no effect).

POP Be

After:

0158 OA

015C 42

015D D3



POP IX

Function:

Format:

Descnption:

Data Flow:

Timing:

THE laO INSTRUCTION SET

POP IX register from stack.

IX
I

+- (SP); IX
h

· h +- (SP + I); SP +- SP + 2
ow 19

[1J1J 0 I' 11 11 I0 I' I byte I: DD

I:~' ~I 1 i 0 I0 I0 10 8 byte 2: El

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the IX register. and the stack pointer is in­
cremented. The contents of the memory location
now addressed by the stack pointer are loaded in­
to the high order of the IX register, and the stack
pointer is again incremented.

A~·-----

B - ~c
D E

H L

sp~

4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags:

Example:

S Z H PIV N C

mIl UTI (no effect).

POP IX

Before:

IX 1L- 0_00_1__-----'

SP 1L-_---'0:..:.:90;:::B-------'

After:

IX"§jj£~

SP "'§2i?ij,.,.

~
090B 36 090B 36

El 090C 04 090C 04

090D B2 090D B2

OBJECT CODE

376



POPIY

Function:

Format:

Description:

THE zao INSTRUCTION SET

POP IY register from stack.

IY I +- (SP); IY hO h +- (SP + I); SP +- SP + 2ow Ig

=bytel:FD

=byte2:EI

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the IY register, and then the stack pointer is incre­
mented. The contents of the memory location now
addressed by the stack pointer are loaded into the
high order of the IY register, and the stack pointer
is again incremented.

Data Flow: A ---- .-

S

D

H

C

E

L

Timing: 4 M cycles; 14 T states; 2 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H P/V N C= (no effect).
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032A

Example:

OBJECT CODE

378

POP IY

Before:

IY!L...- --'

SP,-I 3:..:0::-04:.......-_--'

3004 61
3005 r---

4
-
0
----j

3006 39
f--------j

After:

IY~~

Sp~JfAW__

3004 61
3005 r---4~0--j

3006 39



PUSH qq

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Push register pair onto stack.

(SP I) -qqhigh; (SP - 2) -qqlow;
SP - SP - 2

The stack pointer is decremented and the contents
of the high order of the specified register pair are
then loaded into the memory location addressed
by the stack pointer. The stack pointer is again
decremented and the contents of the low order of
the register pair are loaded into the memory loca­
tion currently addressed by the stack pointer. qq
may be anyone of:

Data Flow:

Be 00
DE - 01

- .----..,.---~
A 1-- 1--_ F

B __---JC

D ---JE

H l----- --

LCJ55 3
sp

HL
AF

10
II

Timing: 3 M cycles; II T states; 6.5 usee @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: q q: BC DE Hl AF

~
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Flags: S Z H PIV N CITIJ"'-:-:"-'-"--';"':""...:....,.I~I :::"""1 (no effect).

After:

380

OOAF
OOBO
OOBl



- ---

PUSH IX

FunctIOn:

Format:

Description:

Data Flow:

THE zao INSTRUCTION SET

Push IX onto stack.

(SP - 1) <- IXhigh; (SP - 2) <- IXlow;
SP <- SP - 2

GI~J~rIJ-=J~ byte I: DD

=byte2:E5

The stack pointer is decremented, and the contents
of the high order of the IX register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and then the contents of the low order of the IX
register are loaded into the memory location ad­
dressed by the stack pointer.

A
B 1--------1'---------, C

o E
H L

IX ,-I--.-,------'-_----.-._'-->J

1 1
--

J
Tim/l1g: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H P/V N C

CITrol., I" T~1~] (no effect)
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Example:

Before:

PUSH IX

After:

04A2 04A2IX [
---------'

SP 1.-1 00-,---9-=-6 __-1

Ixl
,'---------

hrl
~
OBJECT CODE

382

0094 t--_8B_-t

0095 f---_9_F_-I

0096 r---_0_4_-I

0094

0095

0096



PUSH IV

Function:

Format:

Description:

THE laO INSTRUCTION SET

Push II' onto stack.

(SP - I) +- II' high; (SP - 2) +- II'low;
SP +- SP - 2

~~E~I~ byte I: FD

I I I I I I Ia Ia ! I : a 11 i byte 2: E5

The stack pointer is decremented and the contents
of the high order of the II' register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and the contents of the low order of the II' register
are loaded into the memory location addressed by
the stack pointer.

Data Flow:
A !
B

i
c

D E

H I L

sP~~~
'--------

Timing: 3 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Indirect.

s zFlags: H PlY N C

'---L-L..-----,CO I=] (no effect)

383



PROGRAMMING THE Z80

90BF

Example:

OBJECT CODE

384

PUSH IY

Before:

IY I
'---------

SP

0084 I--_FF_---i

0085 85
1-----1

0086 9D
1-----1

After:

IY I __---'-90~8"__F 1

SP~§91;~

0084

0085

0086
I---~--I



RLCA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

THE laO INSTRUCTION SET

Rotate accumulator left with branch carry.

~ 0 I 0 I 0 0iliEJ 07

The contents of the accumulator are rotated left
one bit position. The original contents of bit 7 is
moved to the carry flag as well as to bit O.

A~~JQ
B C

D E

H L

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

S Z H P/v N C

~
C is set by bit 7 of A.

RLCA

~
OBJECT CODE

Before:

ALI__6_B_--L-_0_1_-,' F

After:
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RES b, S

Function:

Reset bit b of operand s.

(IX + d)

(IY + d)

Format: s:

r

(HL)

= bytel:CB

8~}-+b-i1--+ r +-1 byte 2= bytel:CB

[i] aI~b+-I~ byte 2= bytel:DD

=byte2:CB

I : : : 1 : : : ·1 byte 3: offset value

[i]j}-+b+-~ byte 4= bytel:FD

~I a I a I I~ byte 2: CB

I·: : : 1 : : : ,I byte 3: offset value

Gil-+~G=:EJ byte 4

b may be anyone of:

0-000
I - 001
2 - 010
3 - 011

r may be anyone of:

A - III
B - 000
C - 001
o 010

386

4 100
5 - 101
6 - 110
7 - III

E - 011
H - 100
L - 101



THE l80 INSTRUCTION SET

Description: The specified bit of the location determined by s is
reset. s is defined in the description of the similar
BIT instructions.

Data Flow:
A
f------l-------,

8l- t-__-I C

D E

H L

Timing: usec
s: M cycles: T states: @2MHz:

r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed.

87 80 81 82 83 84 85

8F 88 89 8A 88 8C 8D

97 90 91 92 93 94 95

9F 98 99 9A 98 9C 9D
f-- -- -

A7 AD AI A2 AD A4 A5
-

AF A8 A9 AA A8 AC AD

87 80 81 82 83 84 85

8F 88 89 8A 88 8C 8D

6

7

5

4

3

2

b: r" A 8 C D E H L

CB- 0

RES b, rByte Codes:

RES b, (HL)
b: 0 1 2 3 4 5 6 7

CB-~

387
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RES b, (IX + d)

RES b, (lY + d)

b:
00-

CB­
FD-

o 1 2 345 6 7

~~A6IAE~

Flags:

Examples:

S Z H PN N C

=<Noeffect)

RES 1, H

M
~
OBJECT CODE

388

Before: After:



RET

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Return from subroutine

PCIow ~ (SP); PChigh ~ (SP + 1); SP ~ SP + 2

=C9
The program counter is popped off the stack as
described for the POP instructions. The next in­
struction fetched is from the location pointed to
by PC.

A
1-----+-----,

B C
D\-----+----; E

H L

PC

SP

STACK

PCL

PCH

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H P/v N C= (noeffecl)
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Example:

OBJECT CODE

390

RET

Before:

PC ,-I 08_B1__---'

sp ,-I 3_3_10__---'

3310H

3311~

After:

pcWI&Ri~j~

SpWI&JmrIM

3310~
3311~



RETcc

Function:

Format:

Description:

Data Flow:

THE laO INSTRUCTION SET

Return from subroutine on condition.

If cc true: PClow ..- (SP); PChigh ..- (SP + 1);
SP-SP + 2

If the condition is met, the contents of the pro­
gram counter are popped off the stack as described
for the POP instructions. The next instruction is
fetched from the address in PC. If the condition is
not met, instruction execution continues in
sequence.

A F
f------\-----f

B C

D E

H L

PC

CONTROL
LOGIC

cc may be anyone of:

NZ - 000 PO - 100
Z - 001 PE - 101

NC - 010 P 110
C - all MIll

Timing: Condition met: 3 M cycles; II T states; 6.5 usec @

2 MHz.
Condition not met: 1 M cycle; 5 T states; 2.5 usec
@2MHz

Addressing Mode: Indirect.
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Byte Codes: CC: NZ Z NC C PO PE P M

~

Flags: s Z

CD H ilOI I (no effect)

Example: RET NC

Before: After:

00 IF 00 IF

PC I 0124 pc-':~JJ~'"

SP I 8511 sp-':~ff1'"

~ ""§ill ""§ill8512 B1 8512 B1

OBJECT CODE

392



RET!

Function:

Formal:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Return from interrupt.

Pqow +- (SP); PChigh +- (SP + 1); SP +- SP + 2

=bytel:ED

~ 0 II II-.rn byte 2: 40

The program counter is popped off the stack as
described for the POP instructions. This instruc­
tion is recognized by Zilog peripheral devices as
the end of a peripheral service routine so as to
allow proper control of nested priority interrupts.
An EI instruction must be executed prior to RETI
in order to re-enable interrupts.

A
I-----l-----,

B C
1------1-------1

D E

H l

PC

SP

STACK

PCl

PCH

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Modes: Indirect.

Flags: S Z H PlY N C= (no effect).
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Example: RET!

Before:

PCIl- 8_4_El__---'

SP ''--__8_9_B2__---'

After:

PC...J:+]:_
sp"'!?E~

~
~
OBJECT CODE

394

89B2M.A4

89B3~
89B2M

89B3~



RETN

Function:

THE Z80 INSTRUCTION SET

Return from non-maskable interrupt.

PCIow - (SP); PChigh - (SP + 1); SP +-- SP +
2; IFF 1 +-- IFF2

Format:
byte 1: ED

byte 2: 45

Description: The program counter is popped off the stack as
described for the POP instructions. Then the con­
tents of the IFF2 (storage flip-flop) is copied back
into the IFFI to restore the state of the interrupt
flag before the non-maskable interrupt.

Data Flow:
A

8 C

D E

H L

PC

STACK

pel
PCH

SP

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags:

Example:

S Z H PN N C

LIJL--L.---,-IILD (no effect).

RETN

A5Fl

H
~
OBJECT CODE

396

Before:

pcl
'----------'

SP 1'-- 8_84_c__--1

884CH
8B4D~

After:

PC~__

SP~

884CM
8B4D~



RL s

Function:

Format:

THE l80 INSTRUCTION SET

Rotate left through carry operand s.

s:
r=bytel:CB

~-+r +--1 byte 2

(HL)~ a Ia 11 Ia 1 1 GJ byte 1: CB= byte 2: 16

(IX + d) = byte I: DD

11[1 Ia 0 1Ia I~[i] byte 2: CB

I·: : : 1 : : : Ibyte 3: offset value= byte 4: 16

(IY + d) = byte I: FD

=byte2:CB

I: : 1 : ·1 byte 3: offset value= byte 4: 16

r may be anyone of:

A - III
B - 000
C - 001
D - 010

E - all
H 100
L - 101

Description: The contents of the location of the specific
operand are shifted left one bit place. The con­
tents of the carry flag are moved to bit a and the
contents of bit 7 are moved to the carry flag. The
final result is stored back in the original location. s
is defined in the description of the similar RLC in­
structions.
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Data Flow:

A
B1-----+----"=1

D
H 1-----+-------1

Timing: usee
s: M cycles: T slales: @ 2 MHz:

r 2 8 4
(HL) 4 15 7.5

(IX + d) 6 23 11.5
(lY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d). (lY + d): in­
dexed.

Byle Codes: RL r r: ABC D E H L

CB-~

Flags:

Example:

SZ H CEYVNC

~
C is set by bit 7 of source.

RL E

~
Eg
OBJECT CODE

398

Before: After:

__F

E§1i.E



RLA

Function:

Format:

Description:

THE Z80 INSTRUCTION SET

Rotate accumulator left through· carry flag.

r-;=.;--u J
"-lJ---J 7-ol

ef A

=17
The contents of the accumulator are shifted left
one bit position. The contents of the carry flag are
moved into bit 0 and the original contents of bit 7
are moved into the carry flag. (9 bit rotation.)

Data Flow:

A

B

D

H

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

s Z H P/V N C

~
C is set by bit 7 of A.

RLA

OBJECT CODE

Before: After:
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RLC r

Function:

Format:

Description:

Rotate register r left with branch carry.

=byte1:CB

~I-;-r+-lbyte 2

The contents of the specified register are rotated
left. The original contents of bit 7 are moved to
the carry flag as well as bit O. r may be anyone of:

A
B
C
D

III
000
001
010

E
H
L

011
100
101

Data Flow:

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

400

r: ABC D E H L

CB-~



Flags:

Example:

THE Z80 INSTRUCTION SET

SZ H ®,VNC

~
C is set by bit 7 of source register.

RLC B

~
~
OBJECT CODE

Before:

B I 62 I I 56 IF

After:
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RLC (HL)

Function:

Format:

Description:

Rotate left with branch carry memory location
(HL).

= bytel:CB= byte2:06

The contents of the memory location addressed by
the contents of the HL register pair are rotated left
one bit position and the result is stored back at
that location. The contents of bit 7 are moved to
the carry flag as well as to bit O.

Data Flow:

A [C F

BI--__-t- -jC

~ ~ l~\'------yL--~_J
Timing: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: H ®'v N C

~
C is set by bit 7 of the memory location.

402



Example: RLC (HL)

THE zao INSTRUCTION SET

Before: After:

D3 IF .?iBF
HI 6114 IL HI 6114 IL

OBJECT CODE

403



PROGRAMMING THE Z80

RLC (IX + d)

Function:

Format:

Description:

Data Flow:

Rotate left with branch carry memory location (IX
+ d)

D~7_oIJ
ef (IX + d)

=bytel:DD

= byte 2: CB

I-'-:---~---:-'I byte 3: offset value= byte 4: 06

The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are rotated left and the result is stored back
at that location. The contents of bit 7 are moved
to the carry flag as well as to bit O.

A
B1-----+-----"=1

D
HI-------+----I

IXL J-i

RlC

d

404



Timing:

THE l80 INSTRUCTION SET

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

SZ H ®'VNC

~
C is set by bit 7 of memory location.

RLC (IX + 1)

DD

CB

01

06

OBJECT CODE

Before:

IX 1<--__0_4_B1__---'

04B1~
04B2ES

After:

Ixll--__0_4_B1__---'

04Bl~
04B2~
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RLC (lY + d) Rotate left with carry memory location (IY + d).

Function:

c [ \Y + d]

Format:

Description:

=bytel:FD

=byte2:CB

/_.-:---1---:_., byte 3: offset value= byte 4: 06

The contents of the memory location addressed by
the contents of the IY register plus the given offset
value are rotated left and the result is stored back
at the location. The contents of bit 7 are moved to
the carry flag as well as bit O.

Data Flow:

A C F

B 1------+-----1 c
o E
H L

\yL-----Y--i
+

RLC

d

406



Timing:

Addressing Mode:

Flags:

Example:

THE zao INSTRUCTION SET

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Indexed.

SZ H ®'VNC

~
C is set by bit 7 of memory location.

RLC (IY + 2)

Before:

'---_C_4_--'1 F

IY LI 0_02_1__---'

After:

IY LI__---"0-'-02_1__---'

FD 0021 05 0021

CB 0022 B1 0022
02 0023 A2 0023

06

OBJECT CODE

407
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RLD

Function:

Rotate left decimal.

Format: byte 1: ED

byte 2: 6F

Description: The 4 low order bits of the memory location ad­
dressed by the contents of HL are moved to the
high order bit positions of that same location. The
4 high order bits are moved to the 4 low order bits
of the accumulator. The low order of the ac­
cumulator is moved to the 4 low order bits of the
memory location originally specified. All of these
operations occur simultaneously.

Data Flow:

A

B C

D E

H L

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.

408



Flags:

Examples:

THE Z80 INSTRUCTION SET

SZ H ®,VNC

~

RLD

Before:

H LI B4_F2 1L

OBJECT CODE

After:

H LI B_4_F2 1 L

409
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RR s

Function:

Format:

Rotate right s through carry.

r

(HL)

(IX + d)

(IY + d)

byte I: CB

byte 2

byte I: CB

byte 2: IE

byte I: DD

byte 2: CB

byte 3: offset value

byte 4: IE

byte I: FD

byte 2: CB

byte 3: offset value= byte4:1E

r may be anyone of:

A - III
B - 000
C - 001
D - 010

E - 011
H 100
L - 101

Description:

410

The contents of the location determined by the
specific operand are shifted right. The contents of
the carry flag are moved to bit 7 and the contents
of bit 0 are moved to the carry flag. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in­
structions.
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H L

B1--__-l-__--lC

D E

A ~; F

Data Flow:
~--~--..,)"n\

Timing: usee
s: M cycles: T states: @ 2 MHz:

r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed.

Byte Codes: RR r: r: ABC D E H L

CB-~

Flags: S Z H P/v N C

~
C is set by bit 0 of source data.

Example: RR H

Before: After:

~.CB

~

HI 6B I I 41

OBJECT CODE
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RRA

Function:

Format:

Description:

Rotate accumulator right through carry.

=IF
The contents of the accumulator are shifted right­
one bit position. The contents of the carry flag
are moved to bit 7 and the contents of bit 0 are
moved to the carry flag (9-bit rotation).

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

I M cycle; 4 T states; 2 usec @ MHz

Implicit.

S Z H PlY N C

~
C is set by bit 0 of A.

RRA

OBJECT CODE

412

Before:

AI__F_4__ 95 JF

After:



RRC s

Function:

Format:

THE Z80 INSTRUCTION SET

Rotate right with branch carry s.

s: s is any of r, (HL), (IX + d), (IY + d).

r=byteI:CB

~I-+r+-I byte 2

(HL) = byte I: CB

C=byte2:0E

(IX + d) = byte I: DD

=byte2:CB

I.. :. 1 : .. I byte 3: offset value

byte 4: OE

(lY + d) byte I: FD

=byte2:CB

1. : ~ : 3 byte 3: offset value

C=byte4:0E

r may be anyone of:

A III
B - 000
COil
D 010

E - 011
H 100
L 101

Description: The contents of the location determined by the
specified operand are rotated right and the result
is stored back in the original location. The con­
tents of bit 0 are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions.
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Data Flow:

A r.C F

B C
DI-----+------1 E
H l

Timing:

I
usee

s: M cycles: Tstates: @ 2 MHz:

r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(I Y + d) 6 23

1
11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (I Y + d): in­
dexed.

Byte codes:

Flags:

Example:

s Z H (~)/V N C

~~
C is set by bit 0 of source data.

RRC (HL)

Before:

'---_81_---'1 F

H 1-1 3_FF_2__-----lll

OBJECT CODE

414

After: ._F
H1-1 3_FF_2__-----lll



RRCA

Function:

Formal:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

THE laO INSTRUCTION SET

Rotate accumulator right with branch carry.

G ~I 0 ! 0 I 1 11 ! I I I IOF

The contents of the accumulator are rotated right
one bit position. The contents of bit 0 are moved
to the carry flag as well as to bit 7.

A_IC:=J£]
B

D

H

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

s Z H P/v N C

~
C is set by bit 0 of A.

RRCA

OBJECT CODE

Before:

A IL __D_4_--'--_5_1_---.J\ F

After:
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RRD Rotate right decimal.

Function:

Format:

Description:

I I I I I I I 0 I I [JOJ!J byte 1: ED

~olill~ byte2:67

The 4 high order bits of the memory location ad­
dressed by the contents of the HL register pair are
moved to the low order 4 bits of that location. The
4 low order bits are moved to the 4 low order bits
of the accumulator. The low order bits of the ac­
cumulator are moved to the 4 high order bit posi­
tions of the memory location originally specified.
All of the above operations occur simultaneously.

Data Flow:

C
f-----I-----j

E
1-----+----1

L

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.

416



Flags: :; z

~

THE zao INSTRUCTION SET

H ®,V N C

101 I~ill

Example: RRD

Before:

HIl- F.:...EB_l__......JI L

After:

A~_

Hl-I__-:.F..=EB::..:..l__...-lll

M
t2:j
OBJECT CODE

417
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RST p

Function:

Format:

Description:

Restart at p.

(SP - 1)"- PChigh; (SP - 2) ..- PCjow; SP ..- SP
- 2; PChigh ..- 0; PCjow ..- p

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc­
tions. The specified value for p is then loaded into
the PC and the next instruction is fetched from
this new address. p may be anyone of:

OOH - 000
OSH 001
10H - 010
ISH - Oil

20H - 100
2SH - 101

30H - 110
3SH III

This instruction performs a jump to any of eight
starting addresses in low memory and requires only
a single byte. It may be used as a fast response to
an interrupt.

Data Flow:
A

B C

D E

H l

P

0

PC

sP_
'------

418



Timing:

THE laO INSTRUCTION SET

3 M cycles; 11 T states; 5.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes:

Flags:

Example:

p: 00 08 10 18 20 28 30 38

Ic71 CF ID71~@] EF IF7 EJ

S Z H PlY N C= (no effect).

RST 38H

441A

Before:

PC I
'---------'

SP 1'-- 0_26_B__-----'

After:

PC"'§9!~

SP 1,a.§I€?::'-

~ 0269 51 0269

026A BF 026A

OBJECT CODE 026B 03 026B
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SHeA, S Subtract with borrow accumulator and specified
operand.

Function: A-A-s c

Format: s: may be r, n, (HL), (IX + d), or (IY + d)

r ~1'--+r71

n = byte 1: DE

I" in: byte 2: immediate
data

(HL) = byte 1: 9E

(lX+d) = byte I: DD

~'II II~ 9E

I., :< : .. I byte 3: offset value

(IY + d) = byte I: FD

= byte 2: 9E

---,d : : ·1 byte 3: offset value

r may be anyone of:

A - III
B 000
COOl
D - 010

E - 011
H 100
L - 101

Description:

420

The specified operand s, summed with the con­
tents of the carry flag, is subtracted from the con­
tents of the accumulator, and the result is placed
in the accumulator. s is defined in the description
of the similar ADD instructions.
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Data Flow:

A'_~~
BI--__-+-__---IC
D E

H l

Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

-.

j M cycles:
usec

s: T states: @ 2 MHz:

r

I
1 4 2

n 2 7
I

3.5
I(HL)

i 2 7

j
3.5 I(IX + d)

I
5 19 9.5 I

(IY + d) 5 19 9.5 i'.

r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.

SBC A, r r: ABC D E H l

~~

S Z H p~ N C

~

SBC A, (HL)

Before:

AIL..-_B2_.....L-_5_1_...JIF
HI 3600 Il

OBJECT CODE

After:

HIL. 3_6_00__--'ll
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SHe HL, ss

Function:

Format:

Description:

Subtract with borrow HL and register pair ss.

HL +- HL - ss - C

=bytel:ED

~ s : s I 0 Io~ byte 2

The contents of the specified register pair plus the
contents of the carry flag are subtracted from the
contents of the HL register pair and the result is
stored back in HL. ss may be anyone of:

BC - 00
DE - 01

HL - 10
SP - 11

Data Flow: ,- ...,

spIL _

Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

422

ss: Be DE HL SP

ED.-~



Flags: s Z H

~-l I-I

THE Z80 INSTRUCTION SET

P,@ N C

I-II [8]

Example:

H is set if borrow from bit 12.
C is set if borrow.

SBC HL, DE

~
~

OBJECT
CODE

Before:

~1---°-3~-~~:--------jl ~

After:

B§~.F

~~;~~
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SCF

Function:

Set carry flag.

Formal:
37

Description:

Timing:

The carry flag is set.

1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

424

S Z H PIV N C

ITIJQ[IJQEJ
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SET b, s Set bit b of operand

Function: sb ....... I

Format: s:

r

(HL)

(IX + d)

(IY + d)

1~1'loG~
I [ I ' I-+b+--F~-:=:J

=LlJ-:b+--Il~

=[~:EEGI~:r~ I ' I [ I
\. : : : 1 : : : ·1

ITI--+b-;I~

=~~J~ 10 118
I, : : : 1 : : : I
[i] 1 I--+b+--I~

byte I: CB

byte 2

byte 1: CB

byte 2

byte 1: DO

byte 2: CB

byte 3: offset value

byte 4

byte 1: FO

byte 2: CB

byte 3: offset value

byte 4

r may be anyone of:

A - III
B - 000
C - 001
o - 010

b may be anyone of:

o - 000
I - 001
2 - 010
3 - 01 I

E - 001
H - 100
L - 101

4 - 100
5 - 101
6 - 110
7 - III

Description: The specified bit of the location determined by sis
set. s is defined in the description of the similar
BIT instructions.
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Data Flow:
r"----,

A
1------+----,

Bf-__-t -jC
o E
H L

Timing: usec
s: M cycles: T states: @ 2 MHz:

r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed.

Byte Codes: SET b, r

b: r: ABC 0 E H L

SET b, (HL)

CB- 0

2

3

4

5

6

7

C7 ~ICl C2 C3 C4 C5
I--

CF C3 I C9 CA CB CC CO
I-- ---.1-

07 ~IOI 02 D3 04 D5
I--

DF DBI D9 DA DB DC DD
1--1---

E7 I EO El E2 E3 E4 E5

EF EB E9 EA EB EC ED

F7 Fa Fl F2 F3 F4 F5

FF FB F9 FA FB FC FD

SET b, (IX + d)

SET b, (lY + d)

426

b: a 1 2 3 4 5 6 7

~



Flags:

Example:

THE zao INSTRUCTION SET

S Z H PiV N C

DIIIJ I I (no effect)

SET 7, A

y
e
OBJECT CODE

Before: After:
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SLA s

Function:

Format: s:

Arithmetic shift left operand s.

[J--17_0\--O
C S

byte 1: CB

byte 2

byte 1: CB

byte 2: 26

byte 1: DD

byte 2: CB

byte 3: 0 ffset value

byte 4: 26

byte 1: FD

byte 2: CB

byte 3: offset value

byte 4: 26

r may be anyone of:

A-Ill
BODO
COOl
D - 010

E - 011
H 100
L - 101

Description:

428

The contents of the location determined by the
specific operand are arithmetically shifted right
with the contents of bit 7 being moved to the carry
flag and a 0 being forced into bit O. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in­
structions.
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Dara Flo\\':
~--~--~=

A 1--__-+-_----1.1'""'!c:
B
1------\-------'

DI-__-+ '""'!
H '--__--1. -----l

Till/ing: usee
s: M evdes: T states: @ 2 MHz:

r 2 8 4
(HLl 4 15 7.5
(IX + d) 6 23 11.5
(IV + d) 6 23 11.5

Addressing Mode: r: implicit; (Hl): indirect; (IX + d), (IV + d): in­
dexed.

Byte Codes: SLA

Flags:

Emil/pie:

SZ H @'\INC

~
C is set by bit 7 of source data.

SLA (Hl)

Before: After:

10 IF ~.F

HI OFF2 Il HI OFF2 Il

OBJECT CODE
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SRA s Shift right arithmetic s.

Function:
d1-0~D

s c

Format:
byte 1: CB

byte 2

byte 1: CB

byte 2: 2E

byte 1: DD

byte 2: CB

byte 3: offset value

[OJOJ~H~ byte 4: 2E

(lY + d) rn 111 II II 1 0 1 1 I byte 1: FD

~ll111 byte2:CB

I-+--+~-~1···--:~T I byte 3: offset value

=byte4:2E

E - 011
H 100
L - 101

r may be anyone of:

A-Ill
B - 000
C - 001
D - 010

Description: The contents of the location determined by the
specific operand are arithmetically shifted right.
The contents of bit 0 are moved to the carry flag
and the contents of bit 7 remain unchanged. The
final result is stored at the original location. s is
defined in the description of the similar RLC in­
structions.
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Data Flow:
: Ic
:

,
i

F

C

E

L

Tillllllg: usee
s: M (vcles: T states: @ 2 MHz:

r 2 8 4
(Hl) 4 15 7.5
(IX + d) 6 23 11.5

(IV + d) 6 23 11.5

Addressing Mode:

Byte Codes:

Flags:

Example:

r: implicit; (Hl): indirect; (IX + d). (IV + d): in­
dexed.

SZ H (jjVVNC

[iJiilQJ]~QI~
C is set by bit 0 of source data.

SRA A

~
t29
OBJECT CODE

Before:

A LI_.:..:8B,---,--_.:..:04:.---,1 F

After:

A_QRiB~.F
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SRL s Logical shift right s.

Function:
0--1 7--01--0

Format:

c

s:
r~llolTI

0irn 1 I-+r+-I
(HL)~

=(lX+d) ~~III~

~
E: : : 1 : : : ·1
~I 0 I 1 I 1 I=:J 1 11 I0 J

byte 1: CB

byte 2

byte 1: CB

byte 2: 3E

byte I: 00

byte 2: CB

byte 3: offset value

byte 4: 3E

(IY + d) = byte 1: FO

=byte2:CB

1-+-: : 1-:-+-+--1 byte 3: offset value

I 01ol~ byte4:3E

r may be anyone of:

A - 111
B - 000
C - 001
0-010

E all
H 100
L - 101

Descnption:

432

The contents of the location determined by the
specific operand are logically shifted right. A zero
is moved into bit 7 and the contents of bit a are
moved into the carry flag. The final result is stored
back in the original location.
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Timing: usee
s: M (~vcles: Tstates: @ 2 MHz:

r 2 8 4
(Hl) 4 15 7.5
(IX + d) 6 23 II.5
(lY + d) 6 23 I I.5

c- --

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed.

Byte Codes: SRL r r- ABC D E H l

CB.~

Flags:

Example:

~e
OBJECT CODE

SZ H (])rvNC

~
C is set by bit 0 of source data.

SRL E

Before: After:

01 IF .OO.F
02 IE B:9).E
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SUB A, S Subtract operand s from accumulator.

Function: A ~ A - s

Format: s: may be r, n, (HL), (IX + d) or (IY + d)

n = bytel:D6

I.: :0 : ~-:_;'1 byte 2: immediate
data

(HL) rn 0 1 1 1 0~ 96

(IX + d) = byte 1: DD

~j 0 11 I 0~ byte 2: 96

1---;---1---:-' I byte 3: offset value

(IY + d) = byte 1: FD= byte 2: 96

~--:- ~ -:--I_.\ byte 3: offset value

r may be anyone of:

A - III
B - 000
C - 001
D - 010

E - 011
H 100
L - 101

Description:

434

The specified operand s is subtracted from the ac­
cumulator and the result is stored in the ac­
cumulator. The operand s is defined in the
description of the similar ADD instructions.
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Data Flow:

c
1-----+----1

E
1------+----1
L..-__-.-1 -1 l

Timing: usec
s: M cycles: T states: @2MHz.

r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IX + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed

Byte Codes: SUB A, r r: ABCDEHl

~

Flags:

Example: SUB A, B

OBJECT CODE

Before:

A~
B~

After:

A~
B~
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XOR s

Function:

Format:

Exclusive or accumulator and s.

A ~ A-V-s

~: may be r, n, (HL), (IX + d), or (IY + d)

r ~-;-r~1

n = bytel:EE

I.. : : ~-:-;'I
byte 2: immediate
data

(IX + d)

=AE= bytel:DD= byte2:AE

(IY + d)

1-'-:--~---

I·: : : ~ : ·1

byte 3: offset value

r may be anyone of:

A - III

B - 000
C - 001
D - 010

E 011
H - 100
L - 101

Description:

436

The accumulator and the specified operand s are
exclusive 'or'ed, and the result is stored in the ac­
cumulator. s is defined in the description of the
similar ADD instructions.
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Date Flow:

A,_~~

B C
f------+-----j

D E

H L

Timing: usec
s: M cycles: T slales: @2 MHz:

r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IY + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed

Byte Codes: XOR r r: ABC D E H L

EEJA9 ]AAJAB~

Flags:

Example:

SZ H ®'\INC

~

XOR A, BIH

Before: After:

AI 36
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ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing and the
various techniques which have been developed to facilitate the retrieval
of data. In a second section, the specific addressing modes available in
the Z80 will be reviewed. along with their advantages and limitations.
Finally. in order to familiarize the reader with the various trade-oils
possible, an applications section will demonstrate possible trade-oils
between the various addressing techniques by studying specific applica­
tion programs.

Because the Z80 has several I6-bit registers. in addition to the pro­
gram counter. which can be used to specify an address. it is important
that the Z80 user understand the various addressing modes. and in par­
ticular, the use of the index registers. Complex retrieval modes may be
omitted at the beginning stage. However. all the addressing modes are
useful in developing programs for this microprocessor. Let us now
study the various alternatives available.

POSSIBLE ADDRESSING MODES

Addressing refers to the specification. within an instruction. of the
location of the operand on which the instruction will operate. The main
addressing methods will now be examined. They are all illustrated in
Figure 5. I.

Implicit Addressing (or "Implied." or "Register")

Instructions which operate exclusively on registers normally use im­
plicit addressing. This is illustrated in Figure 5.1. An implicit instruc-

438



ADDRESSING TECHNIQUES

tion derives its name from the fact that it does not specifically contain
the address of the operand on which it operates. Instead, its opcode
specifies one or more registers, usually the accumulator, or else any
other register(s). Since internal registers are usually few in number
(commo' Jly eight), this wiIl require a small number of bits. As an exam­
ple, three bits within the instruction wiIl point to one out of eight inter­
nal registers. Such instructions can, therefore, normally be encoded
within eight bits. This is an important advantage, since an eight-bit in­
struction normally executes faster than any two- or three-byte instruc­
tion.

An example of an implicit instruction is:

LD A, B

which specifies "transfer the contents of B into A " (Load A from B.)

Immediate Addressing

Immediate addressing is illustrated in Figure 5.1. The eight-bit op­
code is followed by an 8- or 16-bit literal (a constant). This type of
instruction is needed, for example, to load an eight-bit value in an
eight-bit register. Since the microprocessor is equipped with 16-bit reg­
isters, it may also be necessary to load 16-bit literals. An example of an
immediate instruction is:

ADD A, OH

The second word of this instruction contains the literal "0", which is
added to the accumulator.

Absolute Addressing

Absolute addressing usually refers to the way in which data is retrieved
from or placed in memory, in which an opcode is followed by a 16-bit
address. Absolute addressing, therefore, requires three-byte instruc­
tions. An example of absolute addressing is:

LD (l234H), A

It specifies that the contents of the accumulator are to be stored at
memory location" 1234" hexadecimal.

The disadvantage of absolute addressing is to require a three-byte in­
struction. In order to improve the efficiency of the microprocessor,
another addressing mode may be made available, whereby only one
word is used for the address: direct addressing.
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7 0

IMPLICIT/IMPLIED 11...__O_p_CO_DE_A__...J\I...R_l

IMMEDIATE

EXTENDED/ABSOLUTE

DIRECT/SHORT

OPCODE

LITERAL

-,
I LITERAL I
L J

OPCODE

FULL 16-BIT

-
ADDRESS

OPcaDE

SHORT ADDRESS

1"----------,
I OPCODE I
I I

INDEXED OPCODE IX REG

DISPLACEMENT

I OR ADDRESS ,
L. .J

Fig. 5.1: Basic Addressing Modes

440



ADDRESSING TECHNIQUES

Direct Addressing (or "Short," or "Relative")

In this addressing mode, the opcode is followed by an eight-bit ad­
dress. This is also illustrated in Figure 5. I. The advantage of this ap­
proach is to require only two bytes instead of three for absolute ad­
dressing. The disadvantage is to limit all addressing within this mode to
addresses 0 to 255 or else - 128 to + 127. When using 0 to 255 ("page
zero"), this is also called short addressing, or O-page addressing. When­
ever short addressing is available, absolute addressing is often called ex­
tended addressing by contrast. The range -128 to + 127 is used with
branch instructions. This is called relative addressing.

Relative Addressing

Normal jump or branch instructions require eight bits for the op­
code. plus the 16-bit address to which the program has to jump. Just as
in the preceding example, this mode has the disadvantage of requiring
three words, i.e., three memory cycles. To provide more efficient
branching, relative addressing uses only a two-word format. The first
word is the branch specification, usually along with the test it is imple­
menting. The second word is a displacement. Since the displacement
must be positive or negative, a relative branching instruction allows a
branch forward to 127 locations (seven-bits) or a branch backwards to
128 locations (usually + 129 or -126, since PC will have been incre­
cremented by 2). Because most loops tend to be short, relative branch­
ing can be used most of the time and results in significantly improved
performance for such short routines. As an example. we have already
used the instruction JR NC, which specifies a "jump if no carry" to a
location within 127 words of the branch instruction (more precisely
+ 129 to - 126).

The two advantages of relative addressing are improved performance
(fewer bytes used, higher speed) and program relocatability (indepen­
dence from absolute addresses).

Indexed Addressing

Indexed addressing is a technique used to access the elements of a
block or of a table successively. This will be illustrated by examples
later in this chapter. The principle of indexed addressing is that the in­
struction specifies both an index register and an address. The contents
of the register are added to the address to provide the final address. In
this way, the address could be the beginning of a table in the memory.
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The index register would then be used to access all the elements of a
table successively in an efficient way. (This requires the availability of
increment/decrement instructions for the index register). In practice,
restrictions often exist which may limit the size of the index register, or
the size of the address or displacement field.

OPCODE

DISPLACEMENT I-----C.i--..,--f

I

BASE ----lJo--

I TABLE

d",lo<emeo' ~ ~%~~~L.--~

MEMORY

INDEX REGISTER

Fig. 5.2: Addressing (Pre-indexing)

Pre-Indexing and Post-Indexing

Two modes of indexing may be distinguished. Pre-indexing is the
usual indexing mode in which the final address is the sum of a displace­
ment or address and of the contents of the index register. It is shown in
Figure 5.2, assuming an 8-bit displacement field and a I6-bit index
register.

Post-indexing treats the contents of the displacement field like the
address of the actual displacement, rather than the displacement itself.
This is illustrated in Figure 5.3. In post-indexing, the final address is the
sum of the contents of the index register plus the contents of the mem­
ory word designated by the displacement field. This feature utilizes, in
fact, a combination of indirect addressing and pre-indexing. But we
have not defined indirect addressing yet. Let us do that.
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Y (index)

I I N I
I

8OPCODE

ADDRE55

I-- POINTER -

JMEMORY

FINAL
168fT

ADDRE55

POINTER =BASE
'-- DATAN -

N

Fig. 5.3: Indirect Indexed Addressing (post-Indexing)

Indirect Addressing

We have already seen that two subroutines may wish to exchange a
large quantity of data stored in the memory. More generally, several
programs, or several subroutines, may need to access a common block
of information. To preserve the generality of the program, it is desira­
ble not to keep such a block at a fixed memory location. In particular,
the size of this block might grow or shrink dynamically, and it may
have to reside in various areas of the memory, depending on its size. It
would, therefore, be impractical to try to access this block using abso­
lute addresses, that is without rewriting the program every time.

The solution to this problem lies in depositing the starting address of
the block at a fixed memory location. This is analogous to a situation in
which several persons need to get into a house, and only one key exists.
By convention, the key to the house will be hidden under the mat. Every
user will then know where to look (under the mat) to find the key to the
house (or, perhaps, to find the address of the scheduled meeting, to
propose a stricter analogy). Indirect addressing, therefore, normally
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uses an opcode (16 bits in the case of the Z80) followed by a 16-bit ad­
dress. This address is used to retrieve a word from the memory. Usu­
ally, it will be a 16-bit word (in our case, two bytes) within the memory
since it is an address. This is illustrated by Figure 5.4. The two bytes at
the specified address A I contain"A2". A2 is then interpreted as the ac­
tual address of the data that one wishes to access.

INSTRUCTION MEMORY

OPCODE

INDIRECT (A,) FINAL

- - -
ADDRESS A, ADDRESS (Al)

A, DATA -4-

Fig. 5.4: Indirect Addressing

Indirect addressing is particularly useful any time that pointers are
used. Various areas of the program can then refer to these pointers to
access a word or a block of data conveniently and elegantly. The final
address may also be obtained by pointing within the instruction to a
16-bit register in which it is contained. This is called "register indirect."

Combinations of Modes

The above addressing modes may be combined. In particular, it
should be possible in a completely general addressing scheme to use
many levels of indirection. The address A2 could be interpreted as an
indirect address again, and so on.

Indexed addressing can also be combined with indirect access. This
allows the efficient access to word n of a block of data, provided one
knows where the pointer to the starting address is (see figure 5.2).
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We have now become familiar with all usual addressing modes that
can be provided in a system. Most microprocessor systems, because of
the limitation on the complexity of an MPU, which must be realized
within a single chip, do not provide all possible modes but only a small
subset of these. The Z80 provides a good subset of possibilities. Let us
examine them now.

Z80 ADDRESSING MODES

Implied Addressing (Z80)

Implied addressing is essentially used by single-byte instructions
which operate on internal registers. Whenever implicit instructions
operate exclusively on internal registers, they require only one cycle to
execute.

Examples of instructions using implied (or "register") addressing
are: LD r,r'; ADD A,r; ADC A,s; SUB s; SBC A,s; AND s; OR s;
XOR s; CPs; INC r.

Zilog further distinguishes between "register addressing" and "im­
plied addressing." Implied addressing is then limited, in that definition,
to instructions that do not have a specific field to point to an internal
register. This introduces one more addressing mode. This is one reason
why the number of addressing modes is insufficient to characterize the
capabilities of a microprocessor.

Immediate Addressing (Z80)

Since the Z80 has both single-length registers (eight bits), and double­
length register pairs (16 bits), it provides two types of immediate ad­
dressing, both with 8- bit and 16-bit literals. Instructions are then
either two or three bytes long. The first byte contains the constant, or
literal, to be loaded in a register or used for an operation. Exceptions
are LD IX and LD IY, which require 16-bit opcodes.

Examples of instructions using the immediate addressing mode are:

LD r,n (two bytes)
LD dd,nn (three bytes)

and
ADD A,n (two bytes)

When the literal is two bytes long, the mode is called "immediate ex­
tended," in the case of the Z80.
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Absolute or "Extended" Addressing (Z80)

By definition, absolute addressing requires three bytes. The first byte
is the opcode and the next two bytes are the 16-bit address specifying
the memory location (the "absolute address").

By contrast with "short addressing" (eight-bit address), this mode is
also called "extended addressing."

Examples of instructions using extended addressing are:

LD HL, (nn) and JP nn

where nn represents the 16-bit memory address, and (nn) represents the
contents of the specified location.

Modified Zero-Page Addressing (Z80)

Zero-page addressing is not available in the Z80, except through the
CALL instruction. The special addressing mode used by this instruction
is called "modified z.ero -page addressing."

The CALL instruction contains a 3-bit field in bit positions bs b4 b3
used to point to one of 8 locations in page 0 of memory. The effective
address is bsb4b3000 and is loaded into PC. Since it requires only a
single byte, this instruction executes rapidly, and is easily generated in
hardware. It was generally used to respond to multiple interrupts (up to
8). Its disadvantage is either to limit the execution sequence to 16 loca­
tions, or to require a jump eliminating the speed advantage. This is
because each of the 8 branch addresses are 16- bytes apart.

This instruction is used less frequently now that priority interrupt
controller chips (PIC's) have become available (see refs C201 or C207
for a detailed description of PIC's). A PIC will automatically output a
three-byte absolute jump in response to an interrupt acknowledge.

This instruction is now generally used as a restart.

Relative Addressing (Z80)

By definition, relative addressing requires two bytes. The first one is
the "jump relative" opcode, whereas the second one specifies the dis­
placement and its sign.

In order to differentiate this mode from the absolute jump instruc­
tion, it is labeled "JR".

From a timing standpoint, this instruction should be examined with
caution. Whenever a test fails, i.e., whenever there is no branch, this in-
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struction requires only seven "T cycles." This is because the next
instruction to oe executed is already pointed to by the program counter.

However, when the test succeeds, i.e., whenever the jump takes
place, this instruction requires 12 "T- states"; a new effective address
must be computed and loaded into the program counter.

When computing the duration of the execution of a program seg­
ment, caution must be exercised. Whenever one is not sure whether or
not the jump will succeed, one must take into consideration the fact
that sometimes the jump will require 12 T-states, (condition met),
sometimes 7 (condition not met).

When designing a loop, execution will, therefore, be faster using a
JR(Jump Relative) testing a condition usually not met, such as a non­
zero condition for the counter.

When JR's are used outside of loops, and the condition under test is
unknown, an average timing value is often used for the duration
of JR.

This timing problem does not apply to the unconditional jump JR e. It
does not test any condition, and always lasts 12 T-states.

Indexed Addressing (Z80)

This addressing mode did not exist in the 8080, and was added to the
Z80 (as well as the two index registers). As a result, it became necessary
to add an extra byte to the opcode, making it a 16-bit opcode in the Z80
instruction set (LDIR is another example of a 16-bit opcode). The
structure of an indexed instruction is shown on Figure 5.5.

OPCODE

OPCODE

DISPLACEMENT

LITERAL
1. .J.

BYTE 1

BYTE 2

BYTE 3

BYTE 4

Fig. 5.5: Indexed Addressing Has 2-byte Opcode
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Instructions allowing indexed addressing are:

LD, ADD, INC, RLC, BIT, SET

This mode will be used extensively in the programs operating on
blocks of data, tables or lists.

Indirect Addressing (Z80)

The Z80 provides a limited indirect addressing capability called
"Register Indirect Addressing." In this mode, each of the 16-bit regis­
ter pairs BC, DE, HL may be used as a memory address.

Whenever they point to 16-bit data, they point to the lower part. The
higher part resides at the next (higher) sequential address.

Combinations of Modes

Combinations of modes are essentially non-existent, except that in­
structions referring to two operands may use a different type of ad­
dressing for each.

Thus, a load or an arithmetic instruction may access one operand in
the immediate mode, and the other one through an indexed access.

Also, the bit addressing mechanism may access the eight-bit byte
through one of three addressing modes, as explained in the previous
paragraph.

The specific addressing modes available for each instruction are indi­
cated in the tables of the preceding chapter.

Bit Addressing

Bit addressing is generally not considered an addressing mode if ad­
dressing is defined as accessing a byte. However, whether defined as a
mode or a group of instructions, it is a valuable facility. Since it is de­
fined as an "addressing mode" in Zilog nomenclature, it will be so de­
scribed here. It is specific to the Z80 and was not provided on the 8080.

Bit addressing refers to the access mechanism to specified bits. The
Z80 is equipped with special instructions for setting, resetting and test­
ing specified bits in a memory location or a register. The specified byte
may be accessed through one of three addressing modes: register, regis­
ter-indirect, and indexed. Three bits are used within the opcode to select
one of eight bits.

448



ADDRESSING TECHNIQUES

USING THE Z80 ADDRESSING MODES

Long and Short Addressing

We have already used relative jump instructions in various programs
that we have developed. They are self-explanatory. One interesting
question is: What can we do if the permissible range for branching is
not sufficient for our needs? One simple solution is to use a so called
long jump. This is simply a jump to a location which contains an abso­
lute or "long" jump specification:

JRNC, $ + 3

JP FAR

BRANCH TO CURRENT ADDRESS
+3 IF C CLEAR
OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location FAR
whenever the carry is set. This solves our long- jump problem. Let us
therefore now consider the more complex addressing modes, i.e., in­
dexing and indirection.

Use of Indexing for Sequential Block Accesses

Indexing is primarily used to address successive locations within a
table. The restriction is that the maximum length must be less than 256
so that the displacement can reside in an eight-bit index register.

We have learned to check for a character. Now we will search a table
of 100 elements for the presence of a '*'. The starting address for this
table is called BASE. The table has only 100 elements. The program ap­
pears below: (see flowchart on Figure 5.6):

SEARCH LD IX, BASE
LD A ,*,,
LD B,COUNT

TEST CP (IX)
JR Z, FOUND
INC IX
DEC B
JR NZ, TEST

NOTFND

An improved program will be presented below in the section on
Block Transfer.
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YESf-----_ STARFOUND

NO

Fig. 5.6: Character Search Flowchart

A Block Transfer Routine for Fewer Than 256 Elements

We will call "COUNT" the number of elements in the block to be
moved. The number is assumed to be less than 256. FROM is the base
address of the block. TO is the base of the memory area where it should
be moved. The algorithm is quite simple: we will move a word at a time,
keeping track of which word we are moving by storing its position in
the counter C. The program appears below:

BLKMOV LD IX, FROM
LD IY, TO
LD C,COUNT

NEXT LD A, (IX) GET WORD
LD (IY), A
INC IX
INC IY
DEC C
JR NZ,NEXT

Let us examine it:

BLKMOV LD IX,FROM
LD IY,TO
LD C,COUNT

These three instructions initialize registers IX, IY, and C respectively, as
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ci COUNT

IX DESTINATION

NEXT

Fig. 5.7: Block Transfer: Initializing the Register

illustrated in Figure 5.7. Index register IX is used as the source pointer,
and will be incremented regularly. Index register IY is used as the desti­
nation pointer, and would be incremented regularly. Register C is load­
ed with the maximum number of elements to be transferred (limited to
256 since this is an eight-bit register) and will be decremented regularly.
Whenever C decrements to zero, all elements have been transferred.
The next two instructions:

LD A, (IX)
LD (IY), A

load the contents of the memory location pointed to by IX into the ac­
cumulator, then transfer it into the memory location pointed to by reg­
ister IY. In other words, these two instructions transfer an element of
the source block into the destination block. The two index registers are
then incremented:

INC IX
INC IY

And the counter register is decremented:

DEC C

Finally, as long as the counter is not 0, the program loops back to the
label NEXT:

JR NZ, NEXT
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This is an example of the possible utilization of index registers. How­
ever, let us compare it to the same program written for another micro­
processor, the MOS Technology 6502, which is also equipped with an
indexing capability, but uses different conventions (Le., has different
limitations on a general-purpose indexing facility).The program appears
below:

NEXT
LOX
LOA
STA
OEX
BNE

#NUMBER
FROM, X
TO,X

NEXT

Without going into the details of the above program, the reader will
immediately notice how much shorter it is than the previous one. This is
because the index register X is used as a variable displacement, whereas
BASE and OEST are used as the fixed source and destination ad­
dresses.

This example should point out that although in theory indexing is a
powerful facility, it does not necessarily lead to efficient coding, due to
the addressing limitations imposed on it in the case of various micro­
processors. Truly general-purpose indexing requires the possibility of a
16-bit displacement or address field as well as a 16-bit index register.

However, it should be noted that this specific problem is solved, in
the Z80 by the presence of specialized instructions. A general-purpose
block transfer will now be described which can be implemented in just
four instructions. However, to be fair to the Z80, let us suggest addi­
tional exercises for the reader:

Exercise 5.1: Write the block transfer program for the 280 in the style
of the above program for the 6502, i. e., assuming that the index register
contains a displacement. Assume that the source and the destination
block are located in page 0, i.e., at addresses 0 to 256. Naturally, it will
be assumed that the number of elements within each block is small
enough that they do not overlap.

Exercise 5.2: Assume now that the source and the destination blocks are
located anywhere in the memory, except that they are both within the
same page. Rewrite the above program in that case.

Generalized Block Transfer Routine (More Than 256 Elements)

The register allocation and the memory map are shown in Figure 5.8.
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The program is shown below:

LD Be. COUNT
LD DE, TO
LD HL, FROM
LDIR

Memory used: II bytes
Timing: 21 cycles/byte

The first instruction is:

LD BC, COUNT

NUMBER OF BYTES
DESTINAnON ADDRESS
START ADDRESS
TRANSFER ALL BYTES

It loads the number of elements to be transferred (a 16-bit value) into
the register pair Be. The next two instructions initialize the register pair
DE and the register pair HL respectively:

LD DE, TO
LD HL, FROM

Finally the fourth instruction:

LDIR

performs the complete transfer.
LDIR is an automated block-transfer instruction. Its power- should

be obvious from this example. LDIR results in the following sequence:
The contents of the memory location pointed to by Hand L are trans­
ferred into the memory location pointed to by DE: (DE) = (HL). Next,
DE is incremented: DE = DE + 1. Then, HL is incremented: HL =
HL + I. Next, BC is decremented: BC = BC - 1. If BC becomes 0, the
instruction is terminated. Otherwise, the instruction is repeated.

REGISTERS

B

D

H

COUNTER

DESTINATION

SOURCE I-

MEMORY

Fig. 5.8: A Block Transfer-Memory Map
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The value and power of the LDIR instruction should be apparent at
this point without further comments. Similarly, our search for the char­
acter "star"can be improved by the use of an automated instruction,
CPIR, special to the Z80. The corresponding program appears below:

STAR

NOSTAR

LDA,'*
LD BC, COUNT
LD HL, STRING
CPIR
JR Z, STAR

The first instruction loads the accumulator with the code for the
character star. Next, the register pair BC is initialized to the count of
the number of words to be searched within the block:

LD BC, COUNT

The register pair Hand L is set to the starting address of the block to
be searched (STRING). The automated instruction is then executed:

LD H L , STRING
CPIR

The CPIR instruction is an automated compare instruction. The con­
tents of the memory location specified by the address contained in H
and L is compared to the contents of the accumulator. If the compari­
son succeeds, then Z of the flags register will be set to 1. Then, the reg­
ister pair Hand L is decremented. The instruction is repeated until
either the pair BC goes to 0 or else the comparison succeeds. After the
instruction CPIR is executed, it is therefore necessary to test the Z flag
to determine whether the comparison has succeeded (the CPIR might
have looped through 64K words without success in the extreme case).
This is the purpose of the last instruction of the program:

JR Z, STAR

Exercise 5.3: Rewrite the above program so that a search proceeds
backwards. (Hint: Use the CPIR instruction) "Continue the block
transfer until star isfound. "

Let us now develop a program combining the features of the two pre­
vious ones. We will implement the block transfer from location FROM
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to location TO, which shall stop automatically whenever an escape
character, "star", is found. The program appears below:

LD BC, COUNT
LD HL, FROM
LD DE, TO
LD A '* DECIMITER,

TEST CP (FROM) COMPARE WITH MEMORY
CHARACTER

JR Z, END END IF SUCCESS
LDI TRANSFER CHARACTER AND

UPDATE POINTERS AND
COUNT

JR PE, TEST KEEP TESTING UNLESS DONE
P INDICATES WHETHER BC = 0

The first three instructions of the program perform the usual initiali­
zation, setting up the counter registers and the source and destination
pointers:

LD BC, COUNT
LD HL, FROM
LD DE, TO

The star character is deposited, "as usual" into the accumulator, so
that it can be compared to the character read from a memory location.

LD A, ,*

This is exactly what is done by the next instruction:

TEST CP (FROM)

The success or failure of the comparison is determined by testing the Z
bit. The Z bit will have been set if the comparison has succeeded. This is
performed by the next instruction:

JR Z, END

The next instruction is an automated transfer instruction:

LDI

This instruction transfers the character, and updates the pointers and
the count in a single instruction. LDI transfers the contents pointed to
by Hand L into the memory location pointed to by D and E: (DE) =
(HL). It"increments DE and HL:

DE = DE + I
HL = HL + 1
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Finally, it decrements BC: BC becomes BC -1. The particularity of
this instruction is that the P IV flag is set if BC decrements to "0" and
reset otherwise. This will be explicitly tested by the last instruction in
the program to determine whether exit should occur:

JR PE, TEST

Adding Two Blocks

A program will be developed here to add. element! by I element two
blocks starting respectively at addresses BLKl, and BLK2, and having
equal numbers of elements, COUNT. The program is shown below:

BLKADD

LOOP

LD
LD
LD
XOR
LD
ADC
LD
DEC
DEC
DEC
JR

IX, BLKl
IY, BLK2
B, COUNT
A
A, (IX + 0)
A, (IY + 0)
(IX), A
IX
IY
B
NZ, LOOP

BI COUNTER

IX,

IY

BU< 1

BlK2

REGISTERS

MEMORY

Fig. 5.9: Adding Two Blocks: BLKI = BLKI + BLK2
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The memory layout is shown in Figure 5.9. The program is straightfor­
ward. The number of elements to be added is loaded into the counter
register B, and the two index registers IX and IY are initialized to their
values BLKI and BLK2:

BLK ADD LD IX,BLKI
LD IY, BLK2
LD B, COUNT

The carry bit is then cleared in anticipation of the first addition:

XOR A

The first element is loaded into the accumulator:

LOOP LD A, (IX + 0)

The corresponding element of BLK2 is then added to it:

ADC A, (IY +0)

and finally saved into the element of BLKl:

LD (IX), A

The two pointer registers X and Yare decremented:

DEC IX
DEC IY

as well as the counter register:

DEC B

As long as the counter register is not 0, the addition loop is executed:

JR NZ, LOOP

Exercise 5.4: Can you use the above program to perform a 32-bit addi­
tion?

Exercise 5.5: Can you use the above program to perform a 64-bit addi­
tion?

Exercise 5.6: Modify the above program so that the result is stored in a
separate block starting at address BLK3.

Exercise 5.7: Modify the above program to perform a subtraction
rather than an addition.
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Exercise 5.8: Modify the original program above so that BLKI and
BLK2 are at the top ofeach block rather than the bottom (see Fig.5. 10).

SOURCE BLOCK

FROM-~TI-~ --j

COUNT Nl TRANSFER

COUNTER

x

Fig. 5.10: Memory Organization for Block Transfer

SUMMARY

A complete description of addressing modes has been presented. It
has been shown that the Z80 offers many possible mechanisms, and the
specific addressing modes available on the Z80 have been analyzed.
Finally, several application programs have been presented to demon­
strate the value of the various addressing mechanisms. Programming
the Z80 efficiently requires an understanding of these mechanisms.
They will be used throughout the programs in the remainder of this
book.

EXERCISES

5.9: Write a program to add the first 10 bytes of a table stored at loca­
tion "BASE". The result will have 16 bits. (This is a checksum com­
putation).
5.10: Can you solve the same problem without using the indexing
mode?
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5.11: Reverse the order of the 10 bytes of this table. Store the result
at address "REVER".

5.12: Search the same table for its largest element. Store it at memory
address "LARGE".

5.13: Add together the corresponding elements of three tables, whose
bases are BASEl, BASE2, BASE3. The length of these tables is stored
in page zero at address "LENGTH".

459



6

INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how to exchange information between the
memory and the various registers of the processor. We have learned to
manage the registers and to use a variety of instructions to manipulate
the data. We must now learn to communicate with the external world.
This is called input/output.

Input refers to the capture of data from outside peripherals (key­
board, disk, or physical sensor). Output refers to the transfer of data
from the microprocessor or the memory to external devices such as a
printer, a CRT, a disk, or actual sensors and relays.

We will proceed in two steps. First, we will learn to perform the input/
output operations required by common devices. Secondly, we will
learn to manage several input/output devices simultaneously, i.e., to
schedule them. This second part will cover, in particular, polling vs. in­
terrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple signals,
such as pulses. Then we will study techniques for enforcing or measur­
ing correct timing. We will then be ready for more complex types of in­
put/output, such as high-speed serial and parallel transfers.

The Z80 IlIlput/Output Instructions

The Z80 is equipped with a special set of input and output instruc­
tions. Most eight-bit microprocessors are not equipped with a special
set of input and output instructions, and use the general instruction set
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on input/output devices. The Z80, like the 8080, is equipped with basic
input and output instructions. However, the Z80 is also equipped with
additional I/O instructions. These will be described in more detail here
in order to facilitate understanding of the programs that will be pre­
sented throughout this section.

The basic input and output instructions are respectively: IN A, (n)
and OUT (n),A. These two instructions are inherited from the 8080.
They will respectively read or write one byte between the selected port
and the accumulator. The actual addressing process is such that the 1,0
device address "n" is gated on lines AO through A7 of the address bus),
while the contents of the accumulator appear on address lines A8 through
A15. When only 256 devices are addressed, it may be necessary to zero
the contents of the accumulator explicitly if any of the address lines A8
through Al5 may be decoded by an I/O device. In the simple examples
that follow, we will assume that fewer than 256 devices are present and
that they are not connected to addresses A8 through A15, so that it will
not be necessary to zero the contents of the accumulator explicitly, for
example prior to using the IN instruction.

A special input instruction: IN r, (C), allows using the contents of
register C as the I/O device address. When using this instruction, the
contents of register B automatically provide the top part of the address
(A8 through Al5). The specified register r is loaded from the specified
address. "r" may be any of the usual seven general-purpose registers.

Generate a Signal

In the simplest case, an output device will be turned off (or on) from
the computer. In order to change the state of the output device, the pro­
grammer will merely change a level from a logical' '0" to a logical" ! " ,
or from "l" to "0". Let us assume that an external relay is connected
to bit "0" of a register called "OUT I". In order to turn it on, we will
simply write a "I" into the appropriate bit position of the register. We
assume here that OUTl represents the address of this output register
within our system. A program which will turn the relay on is:

TURNON LD A, 00000001 B
OUT (OUn), A

LOAD PATTERN INTO A
OUTPUT IT TO DEVICE

where OUT is the output instruction.
We have assumed that the state of the other seven bits of the register

OUTI is irrelevant. However, this is often not the case. These bits
might be connected to other relays. Let us, therefore, improve this sim­
ple program. We want to turn the relay on, without changing the state
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of any other bit within this register. We will assume that it is possible to
read and write the contents of this register. Our improved program now
becomes:

TURNON IN
OR
OUT

A, (OUTI)
OOOOOOOIB
(OUTI), A

READ CONTENTS OF OUT!
FORCE BIT "0" TO "I" IN A

The program first reads the contents of location OUTI, then per­
forms an inclusive OR on its contents. This only changes bit position 0
to "I", and leaves the rest of the register intact. (For more details on
the OR operation, refer to Chapter 4.) This is illustrated by Figure 6. I.

BEFORE AFTER

OAfA BUS

RELAY RElAY

a OFF --DON

OUT I OUT 1

Fig. 6.1: Turning on a Relay
Pulses

Generating a pulse is accomplished exactly as in the case of the level
above. An output bit is first turned on, then later turned off. This re­
sults in a pulse. This is illustrated in Figure 6.2. This time, however, an
additional problem must be solved: one must generate the pulse for the
correct length of time. Let us, therefore, study the generation of a com­
puted delay.

CPU OUTPUTPQRT
REGISTER

SIGNAL

4&-- N USEe --....

~
----_~ L-o

0_ I 1 ,1

THE PROGRAM: SELECT OUTPUT PORT
LOAOOUfPUT PORT REGISTER WITH PAnERN
WAlT {LOOP FOR N USECj
LOAD OUlPU'l" PORT WITH ZERO
RETURN

Fig. 6.2: A Programmed Pulse
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Delay Generation and Measurement

A delay may be generated by software or by hardware methods. We
will here study the way to perform it by program, and later show how it
can also be accomplished with a hardware counter, called a program­
mable interval timer (PIT).

Programmed delays are achieved by counting. A counter register is
loaded with a value, then is decremented. The program loops on itself
and keeps decrementing until the counter reaches the value "0". The
total length of time used by this process will implement the required
delay. As an example, let us generate a delay of 67 clock cycles:

DELAY
NEXT

LD
DEC
JP

A,5
A
NZ,NEXT

A IS COUNTER
DECREMENT
NEXT TEST

This program loads A with the value 5. The next instruction decre­
ments A and the following instruction will cause a branch to NEXT to
occur as long as A does not decrement to "0". When A finally decre­
ments to zero, the program will exit from this loop and execute what­
ever instruction follows. The logic of the program is simple and appears
in the flowchart of Figure 6.3.

Let us now compute the effective delay which will be implemented by
the program. In the Appendix section of the book, we will look up the
number of cycles required by each of these instructions:

LOA in the immediate mode, requires nine clock cycles. DEC will use
four cycles. Finally, JP will use seven cycles except during the last itera­
tion, where it will use 12 cycles. When looking up the number of cycles
for JP in the table, verify that two possibilities exist: if the branch does
not occur, JP will only require seven cycles. If the branch does succeed,
which will usually be the case during the loop, then 12 cycles are re­
quired.

The timing is, therefore, seven cycles for the first instruction, plus II
cycles for the next two, multiplied by the number of times the loop will
be executed, plus an extra five-cycle delay for the last unsuccessful JP:

Delay = 7 + II x 5 + 5 = 67 cycles

Assuming a .5 microsecond cycle, this programmed delay will be 33.5
microseconds.
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COUNTER=VALUE

DECREMENT COUNTER

NO

YES

OUT

Fig. 6.3: Basic Delay IFlowchart

The delay loop which has been described is used by most input/output
programs. It should be well understood. Try to do the following exercises:

Exercise 6./: What are the maximum and the minimum delays which
can be implemented with these three instructions?

Exercise 6.2: Modify the program to obtain a delay ofabout 100 micro­
seconds.

If one wishes to implement a longer delay, a simple solution is to add
extra instructions in the program, between DEC and lP. The simplest
way to do so is to add NOP instructions. (The NOP does nothing for
four cycles.)

Longer Delays

Generating longer delays by software can be achieved through using
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a wider counter. A register pair can be used to hold a 16-bit count. To
simplify, let us assume that the lower count is "0". The lower byte will
be loaded with "255", the maximum count, then go through a decre­
mentation loop. Wheneve~ it is decremented to "0", the upper byte of
the counter will be decremented by I. Whenever the upper byte is decre­
mented to the value "0", the program terminates. If more precision is
required in the delay generation, the lower count can have a non-null
value. In this case, we would write the program just as explained and
add at the end the three-line delay generation program, which has been
described above.

A 24-bit delay program appears below:
DEL24 LD B, COUNTH COUNTER HIGH (8 BITS)
DELl6 LD DE,-l
LOOPA LD HL, COUNTL COUNTER LOW
LOOPB ADD HL,DE DECREMENT IT

JR C, LOOPB GO ON UNTIL NULL
DJNZ LOOPA DECREMENT B AND JUMP

Note that DE is loaded with" - I", and used to decrement the 16-bit
counter HL.

Naturally, still longer delays could be generated by using more than
three words. This is analogous to the wayan odometer works on a car.
When the right-most wheel goes from "9" to "0", the next wheel to the
left is incremented by 1. This is the general principle when counting
with multiple discrete units.

However, the main disadvantage of this method is that when one is
counting delays, the microprocessor will be doing nothing else for hun­
dreds of milliseconds or even seconds. If the computer has nothing else
to do, this is perfectly acceptable. However, in general the microcom­
puter should be available for other tasks, so that longer delays are nor­
mally not implemented by software. In fact, even short delays may be
objectionable in a system if it is to provide some guaranteed response
time in given situations. Hardware delays must then be used. In addi­
tion, if interrupts are used, timing accuracy may be lost if the counting
loop can be interrupted.

Exercise 6.3: Write a program to implement a 100 ms delay (typical ofa
Teletype).

Hardware Delays

Hardware delays are implemented by using a programmable interval
timer or "timer" in short. A register of the timer is loaded with a value.
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The difference is that the timer will automatically decrement the
counter periodically. The period can usually be adjusted or selected by
the programmer. Whenever the timer has decremented to "0", it will
normally send an interrupt [0 the microprocessor. It may also set a
status bit which can be sensed periodically by the computer. The use of
interrupts will be explained later in this chapter.

Other timer operating modes may include starting from "0" and
counting the duration of the signal, or, counting the number of pulses
received. When functioning as an interval timer, the timer is said to
operate in a one-shot mode. When counting pulses, it is said to operate
in a pulse counting mode. Some timer devices may even include mul­
tiple registers and a number of optional facilities which the programmer
can select.

Sensing Pulses

The problem with sensing pulses is the reverse of that of generating
pulses, and includes one more difficulty: whereas an output pulse is
generated under program control, input pulses occur asynchronously
with the program. In order to detect a pulse, two methods may be used:
polling and interrupts. Interrupts will be discussed later in this chapter.

Let us now consider the polling technique. Using this technique, the
program reads the value of a given input register continuously, testing a
bit position, perhaps bit O. It will be assumed that bit 0 is originally
"0". Whenever a pulse is received, this bit will take the value" I ". The
program continuously monitors bit 0 until it takes the value" I". When
a "1" is found, the pulse has been detected. The program appears
below:

POLL
ON

IN
BIT
JR

A, (INPUT)
0, A
Z, POLL

READ INPUT REGISTER
TEST FORO

KEEP POLLING IF 0

Conversely, let us assume that the input line is normally" I " and that
we wish to detect a "0". This is the usual case for detecting a START
bit, when monitoring a line connected to a Teletype. The program ap­
pears below:

POLL

START
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JR

A, (INPUT)
0, A
NZ,POLL

READ INPUT REGISTER
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Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in the
same way as computing the duration of an output pulse. Either a hard­
ware or a software technique may be used. When monitoring a pulse by
software, a counter is regularly incremented by 1, then the presence of
the pulse is verified. If the pulse is still present, the program loops upon
itself. Whenever the pulse disappears, the count contained in the
counter register is used to compute the effective duration of the pulse.
The program appears below:

DURTN LD B,O CLEAR COUNTER
AGAIN IN A, (INPUT) READ INPUT

BIT 0, A MONITOR BIT 0
JR Z, AGAIN WAIT FOR A "I"

LONGER INC B INCREMENT COUNTER
IN A, (INPUT) CHECK BIT 0
BIT 0, A
JR NZ, LONGER WAIT FOR A "0"

Naturally, we assume that the maximum duration of the pulse will
not cause register B to overflow. If this were the case, the program
would have to be changed to take that into account (or else it would be a
programming error!).

Since we now know how to sense and generate pulses, let us capture
or transfer larger amounts of data. Two cases will be distinguished:
serial data and parallel data. Then we will apply this knowledge to ac­
tual input/output devices.

PARALLEL WORD TRANSFER

It is assumed here that eight bits of transfer data are available in par­
allel at address "INPUT" (see Fig. 6.4). The microprocessor must read
the data word at this location whenever a status word indicates that it is
valid. The status information will be assumed to be contained in bit 7 of
address "STATUS". We will here write a program which will read and
automatically save each word of data as it comes in. To simplify, we
will assume that the number of words to be read is known in advance
and is contained in location "COUNT". If this information were not
available, we would test for a so-called break character, such as a
rubout, or perhaps the character "*". We have learned to do this al­
ready.
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I/O DEVICE

7 o

Fig. 6.41: Parallel Word Transfer - The Memory

The flowchart appears in Figure 6.5. It is quite straightforward. We
test the status information until it becomes" I", indicating that a word
is ready. When the word is ready, we read it and save it at an appropri­
ate memory location. We then decrement the counter and test whether
it has decremented to "0". If so, we are finished; if not, we read the
next word. A simple program which implements this algorithm appears
below:

7, A
Z, WATCH
A, (INPUT)
AF

PARAL LD
LD

WATCH IN

BIT
lP
IN
PUSH
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DEC B DECREMENT COUNT
lP NZ, WATCH DO IT UNTIL ZERO

It is assumed that the "data ready" flag is automatically cleared when
STATUS is read, as is usually the case on a device controller.

The first two instructions initialize the counter register B:

PARAL LD A, (COUNT)
LD B,A

Note that there is no easy way to load B only from memory. One must
either load A, then transfer its contents to B, or load Band C
simultaneously.

POLLING OR SERVICE REQUEST

NO

TRANSFER
WORD

DECREMENT

COUNTER

NO

OUT

Fig. 6.5: Parallel Word Transfer: Flowchart
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The next three instructions of the program read the status informa­
tion and cause.a loop to occur as long as bit seven of the status register
is "0". (It is the sign bit, i.e., bit N.)

IN A, (STATUS)
BIT 7, A "IN" DOES NOT SET THE FLAGS
JP Z, WATCH

When JP fails, data is valid and we can read it:

IN A, (INPUT)

The word has now been read from address INPUT where it was, and
must be saved. Assuming that a sufficient stack area is available, we
can use:

PUSH AF

which saves A (and F) in the stack. If the stack is full, or the number of
words to be transferred is large, we could not push them on the stack
and we would have to transfer them to a designated memory area, us­
ing, for example, an indexed instruction. However, this would require
an extra instruction to increment or decrement the index register.
PUSH is faster (only 11 clock cycles).

The word of data has now been read and saved. We will simply decre­
ment the word counter and test whether we are finished:

DEC B

JP NZ,WATCH

We keep looping until the counter eventually decrements to "0".
This nine-instruction program can be called a benchmark. A bench­

mark program is a carefully optimized program designed to test the
capabilities of a given processor in a specific situation. Parallel trans­
fers are one such typical situation. This program has been designed for
maximum speed and efficienty. Let us now compute the maximum
transfer speed of this program. We will assume that COUNT is con­
tained in memory. The duration of every instruction is determined by
inspecting the table at the end of the book and is found to be the follow­
ing:

PARAL LD A, (COUNT) 13
LD B,A 4

WATCH IN A, (STATUS) 11
BIT 7, A 8
JP Z, WATCH 7/12
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JP

A, (INPUT)
AF
B
NZ, WATCH
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II
II
4
7/12

The minimum execution time is obtained by assuming that data is
available every time that we sample STATUS. In other words, the first
JP will be assumed to fail every time. Timing is then:

13 + 4 + (I I + 8 + 7 + I! + I I + 4 + 7) + COUNT

Neglecting the first 17 cycles necessary to initialize the counter regis­
ter, the time used to transfer one word is 59 clock cycles or 29.5 micro­
seconds with a 2 MHz clock.

The maximum data transfer rate is, therefore:

= 33 K bytes per second

Exercise 6.4: Assume that the number of words to be transferred IS

greater than 256. Modify the program accordingly and determine the
impact on the maximum data transfer rate.

t.:'.xercise 6.5: Modify this program in order to try in improve its speed:
I-using JR instead of JP
2-using DJNZ
3-using INIR or INDR

Was the above program truly optimal?

We have now learned to perform high-speed parallel transfers. Let us
consider a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (O's or I 's) come
in successively on a line. These bits may come in at regular intervals.
This is normally called synchronous transmission. Or, they may come
as bursts of data at random intervals. This is called asynchronous trans­
mission. We will develop a program which can work in both cases. The
principle of the capture of sequential data is simple: we will watch an
input line, which will be assumed to be line O. When a bit of data is de­
tected on this line, we will read the bit in, and shift it into a holding reg­
ister. Whenever eight bits have been assembled, we wiII preserve the
byte of data into the memory and assemble the next one. In order to
simplify, we will assume that the number of bytes to be received is
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known in advance. Otherwise, we might, for example, have to watch
for a special break character, and stop the bit-serial transfer at this
point. We have learned to do that. The flowchart for this program ap­
pears in Figure 6.6. The program appears below:

SERIAL

LOOP

LD
LD
LD
IN
BIT
JR
SRL
RL
JR

C.O
A, (COUNT)
B,A
A, (INPUT)
7, A
Z.LOOP
A
C
NC,LOOP

CLEAR INPUT WORD
LOAD B WITH BYTE COUNT

READ PORT
BIT 7 IS STATUS, BIT 0 IS DATA
WAIT FOR A "I"

SHIFT DATA BIT INTO CARRY
SAVE INPUT B INTO C
CONTINUE UNTIL 8 BITS IN

POlLING OR SERVICE REQUEST

NO

STORE BIT
iNCREMENT COUNTER

NO

STORE WORD
RESET BIT COUNTER

DECREMENT WORD COUNT

NO

472

DONE

Fig. 6.6: Bit Serial Transfer-Flowchart
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PUSH BC SAVE WORD IN STACK
LD C. 01 H RESET MARKER BIT
DEC B DECREMENT BYTE COUNTER
JR NZ, LOOP ASSEMBLE NEXT WORD

This program has been designed for efficiency and will use new tech­
niques which we will explain (see Fig. 6.7).

The conventions are the following: memory location COUNT is as­
sumed to contain a count of the number of words to be transferred.
Register C will be used to assemble eight consecutive bits coming in.
Address INPUT refers to an input register. It is assumed that bit posi­
tion 7 of this register is a status flag, or a clock bit. When it is "0", data
is not valid. When it is "I", the data is valid. The data itself will be as­
sumed to appear in bit position 0 of this same address. In many in­
stances, the status information will appear on a different register than
the data register. It should be a simple task, then, to modify this pro­
gram accordingly. In addition, we will assume that the first bit of data
to be received by this program is guaranteed to be a "1". It indicates
that the real data follows. If this were not the case, we will later see an
obvious modification to take care of it. The program corresponds ex­
actly to the flowchart of Fig. 6.6. The first few lines of the program im­
plement a waiting loop which tests whether a bit is ready. To determine
whether a bit is ready, we read the input register, then test the zero bit
(Z). As long as this bit is "0", the instruction JR will succeed, and we
will branch back to the loop. Whenever the status (or clock) bit
becomes true (" 1"), then JR will fail and the next instruction will be
executed.

This initial sequence of instructions corresponds to arrow 1 in Fig.
6.7.

At this point, the accumulator contains a "1" in bit position 7 and
the actual data bit in bit position O. The first data bit to arrive is going
to be a "I". However, the following bits may be either "0" or "1". We
now wish to preserve the data bit which has been collected in position O.
The instruction:

SRL A

shifts the contents of the accumulator right by one position. This causes
the right-most bit of A, which is our data bit, to fall into the carry bit.
We will now preserve this data bit into register C (this process is illus­
trated by arrows 2 and 3 in Fig. 6.7):

RL C
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STATUS
I------i OR

CLOCK
~-----+-

L---~<D~--.-..{~;~~::;'"TT_jSERIAL
X DATA

L--------::-="i-.c<I.ii..Lii!.i.!.~!Lii...........:_i IN
INPUT

o

Fig. 6.7: Serial-to-ParalBel: The Registers

The effect of this instruction is to read the carry bit into the right-most
bit position of C. At the same time, the left-most bit of C falls into the
carry bit. (If you have any doubts about the rotation operation, refer to
Chapter 4!)

It is important to remember that a rotation operation will both save
the carry bit, here into the right-most bit position, and also recondition
the carry bit with the value of bit 7.

Here, a "0" will fall into the carry. The next instruction:

JR NC, LOOP

tests the carry and branches back to address LOOP as long as the carry
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is "0". This is our automatic bit counter. It can readily be seen that, as a
result of the first RL, C will contain "0000000 I". Eight shifts later, the
"I" will finally fall into the carry bit and stop the branching. This is an
ingenious way to implement an automatic loop counter without having
to waste an instruction to decrement the contents of an index register.
This technique is used in order to shorten the program and improve its
performance.

When JR NC finally fails, 8 bits will have been assembled into C.
This value should be preserved in the memory. This is accomplished by
the next instruction (arrow 4 on Fig. 6.7):

PUSH BC

We are here saving the contents of Band C into the stack. Saving into
the stack is possible only if there is enough room in the stack. Provided
that this condition is met, it is usually the fastest way to preserve a word
in the memory, even though we save an unnecessary register (B). The
stack pointer is updated automatically. If we were not pushing a word
in the stack, we would have to use one more instruction to update a
memory pointer. We could equivalently perform an indexed addressing
operation, but that would also involve decrementing or incrementing
the index, using extra time.

After the first word of data has been saved, there is no longer any
guarantee that the first data bit to come in will be a "I". It can be any­
thing. We must, therefore, reset the contents to "00000001" so that we
can keep using it as a bit counter. This is performed by the next instruc­
tion:

LD C. OIH

Finally, we will decrement the word counter, since a word has been
assembled, and test whether we have reached the end of the transfer.
This is accomplished by the next two instructions:

DEC B
JR NZ, LOOP

The above program has been designed for speed, so that one may
capture a fast input stream of data bits. Once the program terminates,
it is naturally advisable to immediately read away from the stack the
words that have been saved there and transfer them elsewher.e into the
memory. We have already learned to perform such a block transfer in
Chapter 2.
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Exercise 6.6: Compute the maximum speed at which this program will
be able to read serial bits. Look up the number of cycles required by
every instruction in the table at the end of this book, then compute the
time which will elapse during execution of this program. To compute
the length of time which will be used by a loop, simply multiply the
total duration of this loop, expressed in microseconds, by the number
of times it will be executed. Also, when computing the maximum speed,
assume that a data bit will be ready every time that the input location is
sensed.

This program is more difficult to understand than the previous ones.
Let us look at it again (refer to Fig. 6.6) in more detail, examining some
trade-offs.

A bit of data comes into bit position 0 of "INPUT" from time to
time. There might be, for example, three "Is" in succession. We must,
therefore, differentiate between the successive bits coming in. This is
the function of the "clock" signal.

The clock (or STATUS) signal tells us that the input bit is now valid.
Before reading a bit, we will therefore first test the status bit. If the
status is "0", we must wait. If it is "I", then the data bit is good.

We assume here that the status signal is connected to bit 7 of register
INPUT.

Exercise 6.7: Can you explain why bit 7 is used for status, and bit 0 for
data? Does it matter?

Once we have captured a data bit, we want to preserve it in a safe
location, then shift it left, so that we can get the next bit.

Unfortunately, the accumulator is used to read and test both data
and status in this program. If we were to accumulate data in the accu­
mulator, bit position 7 would be erased by the status bit.

Exercise 6.8: Can you suggest a way to test status without erasing the
contents of the accumulator (a special illstructioll)? If this call be done,
could we use the accumulator to accumulate the successive bits coming
in? Can you improve speed by using an "automated jump"?

exercise 6.9: Rewrite the program, using the accumulator to store the
bits coming ill. Compare it to the previous one in terms of speed and
number of instructions.

Let us address two more possible variations.
We have assumed that, in our particular example, the very first bit to

come in would be a special signal, guaranteed to be "I". However, in
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general, it may be anything.

E'lercise 6.10: Modify the program above, assuming that the very first
bit to come 111 is valid data (not to be discarded), and can be "0" or
"I". Hint: our "bit coumer" should still work correctly, ifyou lI1itial­
lze it with the correct value.

Finally, we have been saving the assembled word in the stack, to gain
time. We could naturally save it in a specified memory area.

Exercise 6.//: Modify the program above, and save the assembled word
in the memolY area starting at BASE.

Exercise 6.12: Modify the program above so that the transfer will stop
when the character "s" is detected in the input stream.

The Hardware Alternative

As usual for most standard input/output algorithms, it is possible to
implement this procedure by hardware. The chip is called a UART. It
will automatically accumulate the bits. However, when one wishes to
reduce the component count, this program, or a variation of it, will be
used instead.

Exercise 6./3: ModiJ:v the program, asslil//Ing that data is available in bit
position 0 of location INPUT, while the status information is available
in bit position aofaddress INPUT + /.

BASIC I/O SUMMARY

We have now learned to perform elementary input/output opera­
tions as well as to manage a stream of parallel data or serial bits. We are
now ready to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

In order to exchange data with input/output devices, we will first
have to ascertain whether data is available, if we want to read it; or
whether the device is ready to accept data, if we want to send it. Two
procedures may be used: handshaking and interrupts. Let us study
handshaking first.

Handshaking

Handshaking IS generally used to communicate between any two
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~ D STATUS(READ

STATUS) REGiSTER
;--vES7NQ

OUTPUT

MPU DATA DEVICE

OUTPUTD~
REGISTER r----v

I/QCHIP

Fig. 6.8: Handshaking (Output)

asynchronous devices, i.e., between any two devices which are not syn­
chronized. For example. if we want to send a word to a parallel printer,
we must first make sure that the input buffer of this printer is available.
We will, therefore, ask the printer: Are you ready? The printer will say
"yes" or "no." If it is not ready we will wait. If it is ready, we will send
the data (see Fig. 6.8).

DATA

INPUTD ¢=REGISTER

INPUT

MPU DEVICE

~ DSfAfUSREADY?

~
REGISTER

Fig. 6.8a: Handshaking (Input)

Conversely, before reading data from an input device, we will verify
whether the data is valid. We will ask: "Is data valid?" And the device
will tell us "yes" or "no." The "yes or no" may be indicated by status
bits, or by other means (see Fig. 6.8a).

As an analogy, whenever you wish to exchange information with
someone who is independent and might be doing something else at the
time, you should ascertain that he is ready to communicate with you.
The usual rule of courtesy is to shake his hand. Data exchange may then
follow. This is the procedure normally used in communicating with in-
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put/output devices.
Let us now illustrate this procedure with a simple example.

Sending a Character To The Printer

The character will be assumed to be contained in memory location
CHAR. The program to print it appears below:

WAIT IN
BIT
JR
LD
OUT
JR

A, (STATUS)
7, A
Z, WAIT
A, (CHAR)
(PRNTD), A
WAIT

TEST IF READY
OTHERWISE WAIT
GET CHARACTER
PRINT IT
GO FOR NEXT

The print program is straightforward and uses the handshaking pro­
cedure which has been described above. The data paths are shown in
Figure 6.9.

CHAR DATA

MEMORY zao

Fig. 6.9: Printer-Data Paths

STATUS

PRNTD

PRINTER

The character (called OAT A) is located at memory location CHAR.
First, the status of the printer is checked. Whenever bit 7 of the status
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regIster becomes I, it indicates that the printer is ready for output, i.e.,
its output buffer is available. At this point, the character is loaded into
the accumulator, then output to the printer. via the accumulator. As
long as the status bit remains 0, the program will remain in a loop,
called WAIT in the program.

Er:ercise 6./4.' How many instructions would be saved in the above pro­
gram if it were possible /() load data directly into register C as well as
output the contents of register C directly?

Exercise 6. 15: When using an actual printer, it is usually necessary to
send a start order before using the device. Modify this program to gen­
erate such an order, assuming that the start command is obtained by
writing a 1 in bit position 0 of the STATUS register, which is assumed
to be bidirectional.

Exercise 6.16.' If the BIT instruction were not available, could you use
another instruction instead, in line 4 of the program? If so, explain the
advantage of using the BIT instruction, if any.

Exercise 6. 17: Modify the program above to print a string of n charac­
ters, where n will be assumed to be less than 255.

Exercise 6. 18: Modify the above program to print a string ofcharacters
until a "carriage-return" code is encountered.

Let us now complicate the output procedure by requiring a code con­
version and by outputting to several devices at a time:

Output To a Seven-Segment LED

A traditional seven-segment light-emitting diode (LED) may display
the digits "0" through "9". or even "0" through "F" hexadecimal by
lighting combinations of its 7 segments. A seven-segment LED is shown
in Figure 6.10. The characters that may be generated with this LED
appear in Figure 6.11.

The segments of an LED are labeled "a" through "g" in Figure 6.10.
For example, "0" will be displayed by lighting the segments abcdef.

Let us assume, now, that bit "0" of an output port is connected to seg­
ment "a", that" I" is connected to segment "b", and so on. Bit 7 is
not used. The binary code required to light up fedcba (to display "0")
is, therefore. "0111111". In hexadecimal this is "3F". Do the follow­
ing exercise.
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A

F

A/ A/
A/ /'.,,1f,

I
;; tJ A/

E C

A/ A./
/"vI /"vI

./ ./
D

Fig. 6.10: Seven-Segment LED

A

I / I / L/ /
/ /- - 7/ /-

I /- I /1 1_' /1
/ / / I I ,LI

1_' ,- , I I ,-
I , 1_' I- I I ,- I

Fig. 6.11: Hexadecimal Characters Generated
with a Seven-Segment LED
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Exercise 6./9: Compute the seven-segment equivalent for the hexadeci­
mal digits "0" through "F". Fill out the table below:

Hex LED code Hex LEX code Hex LED code Hex LED code
0 3F 4 8 C
1 5 9 D
2 6 A E
3 7 B F

Let us now display hexadecimal values on several LED's.

Driving Multiple JLED's

An LED has no memory. It will display the data only as long as its
segment lines are active. In order to keep the cost of an LED display
low, the microprocessor will display information on each of the LED's
in turn. The rotation between the LED's must be fast enough so that
there is no apparent blinking. This implies that the time spent from one
LED to the next is less than 100 milliseconds. Let us design a program
which will accomplish this. Register C will be used to point to the LED
on which we want to display a digit. The accumulator is assumed to
contain the hexadecimal value to be displayed on the LED. Our first
concern is to convert the hexadecimal value into its seven-segment rep­
resentation. In the preceding section, we have built the equivalence
table. Since we are accessing a table, we will use the indexed addressing
mode, where the displacement index will be provided by the hexadeci­
mal value. This means that the seven-segment code for hexadecimal
digit "3" is obtained by looking up the third element of the table after
the base. The address of the base will be called SEGBAS. The program
appears below:

LEOS LD
LD
LD
ADD
LD
LD

OUT
DELAY DEC
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E,A
0,0
HL. SEGBAS
HL.DE
A, (HL)
B.50H

(C). A
B

A CONTAINS HEX DIGIT
USE "DE" AS DISPLACEMENT
USE "HL" AS INDEX
TABLE ADDRESS
READ CODE FROM TABLE
DELAY VALUE = ANY
LARGE NBR
OUTPUT FOR SET DURATION
DELAY COUNTER



OUT

JR
DEC
LD
CP
JR
LD
RET

NZ,DELAY
C
A,C
MINLED
NZ,OUT
BC, (MAXLED)

INPUTIOUTPUT TECHNIQUES

KEEP LOOPING
C IS PORT NUMBER

DONE FOR LAST LED?

IF SO, RESET C TO TOP LED

The program assumes that register C contains the address of the LED
to be illuminated next, and that the accumulator A contains the digit to
be displayed.

The program first looks up the seven-segment code corresponding to
the hexadecimal value contained in the accumulator. Registers D and E
are used as a displacement field, and registers Hand L are used as a
16-bit index register. The code for the hexadecimal digit is added to the
base address of the table:

LEDS LD
LD
LD
ADD

E,A
D,O
HL, SEGBAS
HL,DE

7-SEGMENT CODE

A delay loop is then implemented, so that the code obtained from the
table is displayed for an appropriate duration. Here the constant "50"
hexadecimal has been arbitrarily chosen:

LD
LD

A, (HL)
B, SOH

READ CODE FROM TABLE
DELAY VALUE

The delay is accomplished using a classic delay loop. The first instruc­
tion:

OUT (C), A

outputs the contents of the accumulator at the I/O port pointed to by
register C (the LED number). The next two instructions implement the
delay loop:

DELAY DEC B
JR NZ, DELAY

Once the delay has been implemented, we must simply decrement the
LED pointer, and make sure that we loop around to the highest LED
address if the smallest LED address has been reached:

DEC C
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OUT

LD
CP
JR
LD
RET

A,C
MINLED
NZ, OUT
Be. (MAXLED)

It is assumed here that the above program has been written as a sub­
routine, and the last instruction is then RET:" return from subroutine".

Exercise 6.20: It is usually necessary to turn off the segment drivers/or
the LED prior to displaying the digit. Modify the above program by
adding the necessary instructions (output "00" as the character code
prior to output! ing the charactel).

Exercise 6.21: What would happen to the display if the DELA Y label
were moved up by one line position? Would this change the timfl1g?
Would this change the appearance of the display?

Exercise 6.22: You will notice that the first four instructions of the pro­
gram are, in fact, pel/onning a I6-bit indexed memOlY access. How­
ever, it seems'clumsy, without uSfl1g the indexing mechanism. Assume
that the SEGBAS address is known in advance. Call SEGBSH the
high-order part of this address, and SEGBSL the low par! of this ad­
dress. Store SEGBSH in the high-order part of the IX register. Now
write the above program, using the Z80 index-addressing mechanism,
and using SEGBSL as the displacement field of the instruclOn. What
are the advantages and disadvantages of this approach?

Exercise 6.23: Assuming that the above program is a subroutine, you
will notice that it uses registers B, D, E, Hand L internally, and modi­
fies their contents. If the subroutine Illay freely use the memOlY area
designated by address n, n, n, T4, n, could vou add It1structions at
the beginning and at the end of this program w/1;'cIz will guarantee that,
when the subroutine returns, the contents of registers B, D, E, Hand L,
will be the same as when the subroutine was entered?

Exercise6.24: Same exercise as above. but assume that the melllOlY
area n, etc., is not available to the subroutine. (Hint: remember that
there is a built-in mechanism in evelY computerfor preserving informa­
tion in a chronological order.)

, We have now solved common input/output problems. Let us con­
SIder the case of a common peripheral: the Teletype.
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Teletype Input-Output

MARK - n_~ ..It f j I 2 1 3~ 9 10
SPACE - - --- ~--L._---'_-----J~

I
I

9.09 MS ---..r--f
I
I

Fig. 6.12: Format of a Teletype Word

One-hundred-and-ten bits per second implies that bits are separated
by 9.09 milliseconds. This will have to be the duration of the delay loop
to be implemented between successive bits. The format of a Teletype
word appears in Figure 6.12. The flowchart for bit input appears in
Figure 6.13. The program follows:

TTYIN

NEXT

IN
BIT
JR
CALL
IN
OUT
CALL
LD
IN
OUT
SRL

A, (STATUS)
7, A
Z, TTYIN
DELAYI
A, (TTYBIT)
(TTYBIT), A
DELAY9
B,08H
A, (TTYBIT)
(TTYBIT), A
A

DATA READY?
OTHERWISE WAIT
CENTER OF PULSE
START BIT
ECHO IT
NEXT PULSE (9 MS)
BIT COUNT
READ DATA BIT
ECHO IT
SAVE IT IN CARRY
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TTYIN

NO

NO

YES

WAIT 4.5ms

ECHO START BIT

WA1T9.09ms

SHIFT IN DATA BIT

ECHO IT

YES

WAIT9.09ms

OUTPUT STOP BIT

WAIT 13.59ms

Fig. 6.13: TTY Input with Echo
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RR
CALL
DEC
JR
IN
OUT
CALL
RET

C
DELAY9
B
NZ,NEXT
A, (TTYBIT)
(TTYBIT), A
DELAY9

INPUT/OUTPUT TECHNIQUES

PRESERVE IT INTO C
NEXT PULSE (9 MS)
DECREMENT BIT COUNT

READ STOP BIT
ECHO IT
SKIP SECOND STOP

Fig. 6.14: Teletype Program

Let us examine the program in detail. First, the status of the Teletype
must be tested to determine if a character is available:

TTYIN IN A, (STATUS)
BIT 7, A
JR Z, TTYIN

The "BIT" instruction is a useful Z80 facility which allows testing
any bit in any data register. It does not modify the contents of the regis­
ter under test. The Z flag is set if the specified bit is 0, and reset other­
wise.

This program will, therefore, loop until the status finally becomes
"}". It is a classic polling loop.

Note also that, since the STATUS does not need to be preserved, we
could advantageously use

AND 10000000B
instead of

BIT 7, A

Using the AND instruction saves two bytes. However, it destroys the
contents of A (acceptable here).

When optimizing a program, remember that each new instruction
may introduce side-effects.

Next, a 4.5 ms delay is implemented in order to sense the start bit in
the middle of the pulse.

CALL DELAY}

where DELAY} is the delay subroutine implementing the required
delay. The first bit to come is the start bit. It should be echoed to the
Teletype, but otherwise ignored. This is done by the next instructions:

TTYIN IN
OUT

A, (TTYBIT)
(TTYBIT), A
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We must then wait for the first data bit. The necessary delay is equal to
9.09 milliseconds and is implemented by a subroutine:

CALL DELAY9

Register B is used as a counter and is loaded with the value 8 in order to
capture the S data bits:

LD B,OSH

Next, each data bit will be read in turn into the accumulator, then
echoed. It is assumed to arrive in bit position 0 of the accumulator. The
data bit will then be preserved into register C, where it will be shifted in.
The transfer from A to C is performed through the carry bit:
NEXT IN A, (TTYBIT)

OUT (TTY BIT), A
SRL A

C C

This sequence is illustrated in Figure 6.15.

A

B

COUNTER X

c

x

TTYBIT

I/O SPACE

DATA

Fig. 6.15: Teletype Input

Next, the usual 9 millisecond delay is implemented, the bit-counter is dec­
remented, and the loop is entered again as long as the eight bits have
not been captured:

CALL DELAY9
DEC B
JR NZ, NEXT

Finally, the STOP bit is captured, and echoed. It is usually sufficient to
send a single STOP bit, however both could be sent back using two
more instructions:
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CALL
RET
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The program should be examined with attention. The logic is quite
simple. The new fact is that whenever a bit is read from the Teletype (at
address TTYBIT), it is echoed back to the Teletype. This is a standard
feature of the Teletype. Whenever a user presses a key, the information
is transmitted to the processor and then back to the printing mechanism
of the Teletype. This verifies that the transmission lines are working
and that the processor is operating when a character is, indeed, printing
correctly on the paper.

ENTER

Fig. 6.16: Teletype Output

Exercise 6.25: Write the delay routine which results in the 9.09 millisec­
ond delay. (DELA Y subroutine)

Exercise 6.26: Using the example of the program developed above,
write a PRINTC program which will print on the Teletype the contents
of memOlY location CHAR (see Fig. 6.15).

The answer appears below:

PRINTC LD
LD
OR
RLA

B, 11
A, (CHAR)
A

COUNTER = 11 BITS
GET CHARACTER
CLEAR CARRY = START BIT
CARRY INTO A
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NEXT OUT
CALL
RRA
SCF
DEC
JR
RET

(TTYBIT), A
DELAY

B
NZ,NEXT

OUTPUT

NEXT BIT
CARRY = 1 (STOP BIT)
BIT COUNT

Register B is used as a bit counter for the transmission. The contents
of bit 0 of A will be sent to the Teletype line ("TTYBIT"). Note how
the carry is used to provide a ninth bit (the START bit). Also, note that
the carry is cleared by:

OR A

At the end of the program, the carry is set to one by:

SCF

in order to generate a stop bit.

Exercise 6.27: Modify the program so that it waits for a START bit in­
stead of a STATUS bit.

Printing a String of Characters

DO IT AGAIN

B, NBR
HL, START
A, (HL)
PRINTC
HL
B
NZ,NEXT

LD
LD
LD
CALL
INC
DEC
JR
RET

PSTRING

NEXT

We will assume that the PRINTC routine (see Exercise 6.26) takes
care of printing a character on our printer, or displaY,or any output de­
vice. We will here printthe contents of memory locations (START) to
(START + N).

The program is straightforward (see Figure 6.17):

"LENGTH OF STRING
BASE ADDRESS
GET CHARACTER
PRINT IT
NEXT ELEMENT
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OUTPUT REGISTER

B

COUNTER

A

INPUT/OUTPUT TECHN IQUES

MEMORY

n
START

START +N

TO PRI~ITER

Fig. 6.17: Printing a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical input/output devices. In addition to the data
transfer, it will be necessary to condition one or more control registers
within each I/O device in order to condition the transfer speeds, the in­
terrupt mechanism, and the various other options correctly. The man­
ual for each device should be consulted. (For more details on the spe­
cific algorithms for exchanging information with all the usual peripher­
als, the reader is referred to our book, C207, Microprocessor Interfac­
ing Techniques.)

We have now learned to manage single devices. However, in a real
system, all peripherals are connected to the buses, and may request
service simultaneously. How are we going to schedule the processor's
time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a scheduling
mechanism must be implemented in every system to determine in which
order service will be granted. Three basic input/output techniques are
used, which can be combined with each other. They are: polling, inter­
rupt, DMA. Polling and interrupts will be described here. DMA is
purely a hardware technique, and as such will not be described here. (It
is covered in the reference books C201 and C207.)
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Polling

Conceptually, polling is the simplest method for managing multiple
peripherals. With this strategy, the processor interrogates the devices
connected to the buses in turn. If a device requests service, the service
is granted. If it does not request service, the next peripheral is exam­
ined. Polling is used not just for the devices, but for any device service
routine. .

As an example, if the system is equipped with a Teletype, a tape re­
corder, and a CRT display, the polling routine would interrogate the
Teletype: "Do you have a character to transmit?" It would interrogate
the Teletype output routine, asking: "Do you have a character to
send?" Then, assuming that the answers are negative so far, it would
interrogate the tape-recorder routines, and finally the CRT display. If
only one device is connected to a system, polling will be used as well to
determine whether it needs service. As an example, the flowcharts for
reading a paper-tape reader and for printing on a printer appear in Fig­
ures 6.20 and 6.21.

DMA

DATA BUS

1----------,-..,..-----.-.,.---- INTERRUPT

I/I.------::.'------------J", POLLING

l..- - - - _ - - - - - - - - - - - - --J

?

'---------

Fig. 6.18: Three Methods of I/O Control
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Example: a polling loop for devices 1, 2, 3, 4 (see Fig. 6.19):

POLL4IN
BIT
CALL
IN
BIT
CALL
IN
BIT
CALL
IN
BIT
CALL
JR

A, (STATUS 1)
7, A
NZ,ONE
A, (STATUS2)
7, A
NZ, TWO
A, (STATUS3)
7, A
NZ, THREE
A, (STATUS4)
7, A
NZ, FOUR
POLL4

GET STATUS OF DEVICE 1
SERVICE REQUEST?
BIT 7 = I?
DEVICE 2

DEVICE 3

DEVICE 4

NO REQUEST, TRY AGAIN

Bit 7 of the status register for each device is "I" when it wants serv­
ice. When a request is sensed, this program branches to the device
handler, at address ONE for device 1, TWO for device 2, etc.

A fine point is worth noting here. For each instruction, it is impor­
tant to verify carefully the way in which it affects the condition codes.
It should be noted that the input instruction does not change the flags.
If a memory-load instruction has been used instead of an input instruc­
tion, bit 7 of the input would automatically be reflected as the SIGN
bit in the flags register. The special instruction "BIT 7,A" would be­
come unnecessary. However, because the IN instruction does not
change the flags, this extra test must be included in the program.

In some hardware implementations, input/output devices may be
treated as memory devices for purposes of addressing. This is called
memory-mapped input/output. In this case, the IN instruction would
be replaced by an LD instruction and the rest of the program would be
modified as indicated above.

The advantages of polling are obvious: it is simple, does not require
any hardware assistance, and keeps all input/output synchronous with
the program operation. Its disadvantage is just as obvious: most of the
processor's time is wasted looking at devices that do not need service.
In addition, by wasting so much time, the processor might give service
to a device too late.

Another mechanism is, therefore, desirable in order to guarantee that
the processor's time can be used to perform useful computations rather
than polling devices needlessly all the time. However, let us stress that
polling is used extensively whenever a microprocessor has nothing bet-
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Fig. 6.19: Polling Loop Flowchart

SET READER
ENABLE ON

Fig. 6.20: Reading from a Paper-Tape Reader

494



INPUT/OUTPUT TECHNIQUES

NO

TRANSMIT

DATA

Fig. 6.21: Printing on a Punch or Printer

ter to do, as it keeps the overall organization simple. Let us examine the
essential alternative to polling: interrupts.

Interrupts

The concept of interrupts is illustrated in Figure 6.18. A special hard­
ware line, the interrupt line, is connected to a speciaiized pin of the mi­
croprocessor. Multiple input/output devices may be connected to this
interrupt line. When anyone of them needs service, it sends a level or a
pulse on this line. An interrupt signal is the service request from an in­
put/output device to the processor. Let us examine the response of the
processor to this interrupt.

In any case, the processor completes the instruction that it was cur­
rently executing; otherwise, this would create chaos inside the micro­
processor. Next, the microprocessor should branch to an interrupt-han­
dling routine which will process the interrupt. Branching to such a sub­
routine implies that the contents of the program counter must be saved
on the stack. An interrupt must, therefore, cause the automatic preser­
vation of the program counter on the stack. In addition, the flag regis­
ter F should be also preserved automatically, as its contents will be
altered by any subsequent instruction. Finally, if the interrupt-handling
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routine should modify any internal registers. these internal registers
should also be preserved on the stack (see Figures 6.22 and 6.23).

SP

Fig. 6.22: Z80 Stack After Interruption

E
D

c
B

F

A

Fig. 6.23: Saving Some Working Registers

After all these registers have been preserved. one can branch to the
appropriate interrupt-handling address. At the end of this routine, all
the registers should be restored, and a special interrupt return should be
executed so that the main program will resume execution. Let us exam­
ine in more detail the interrupt lines of the Z80.

Z80 Interrupts

An interrupt is a signal sent to the microprocessor, which may re­
quest service at any time and is asynchronous to the program. When­
ever a program branches to a subroutine, such branching is synchron­
ous to program execution, Le .• scheduled by the program. An inter­
rupt, however, may occur at any time, and will generally suspend the
execution of the current program (without the program knowing it).
Because it may happen at any time relative to program execution, it is
called asynchronous.

Three interruption mechanisms are provided on the Z80: the bus re­
quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter­
rupt (INT).

Let us examine these three types.
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The Bus Request

The bus request is the highest priority interrupt mechanism on the'
Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. As a
general rule, no interrupt will be sensed by the Z80 until the current
machine cycle is completed. The NMI and INT interrupts will not be
taken into account until the current instruction is finished. However,
the BUSRQ will be handled at the end of the current machine cycle,
without necessarily waiting for the end of the instruction. It is used for

1,.\51
SI;.lE OF
..·.At..H·r~t
O(lt

~
ES

1..1,\1

OR lNT

.....0

I

FfSlT

Fig. 6.24: Interrupt Sequence
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a direct memory access (DMA), and will cause the Z80 to go into DMA
mode (see ref. C201 for an explanation of the DMA mechanism). If the
end of an instruction has been reached, and if any NMI or INT were
pending, they would be memorized internally in the Z80 by setting spe­
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA
mode, the Z80 suspends operation and releases its data-bus and
address-bus in the high-impedance state. This mode is normally used by
a DMA controller to perform transfers between a high-speed input­
output device and the memory, using the microprocessor data-bus and
address-bus. The end of a DMA operation is indicated to the Z80 by
BUSRQ changing levels. At this point, the Z80 will resume normal
operation. In particular, it will first check whether its internal NMI or
INT flip-flops had been set and, if so, execute the corresponding inter­
rupts.

The DMA should normally not be of concern to the programmer, un­
less timing is important. If a DMA controller is present in the system,
the programmer must understand that the DMA may delay the
response to an NMI or an INT.

The Non-Maskable Interrupt

This type of interrupt cannot be inhibited by the programmer. It is
therefore said to be non-maskable, hence its name. It will always be ac­
cepted by the Z80 upon completion of the current instruction, assuming
no bus request was received. (If an NMI is received during a BUSRQ,
it will set the internal NMI flip-flop, and will be processed at the end of
the BUSRQ.)

The NMI will cause an automatic push of the program counter into
the stack and branch to address 0066H: the two bytes representing the
address 0066H will be installed in the program counter. They represent
the start address of the handling routine for the NMI (see figure 6.25).

This interrupt mechanism has been designed for speed, as it is used in
case of "emergencies". Therefore, it does not offer the flexibility of the
maskable interrupt mode, described below.

Note also that an interrupt routine must have been loaded at address
006H prior to using the NMI.
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MEMORY

11'1'1 11'1'2

O~D "'0 0066

NMI

0066 HANDLER

0
~ 7

I I

IIPC 8
,... PC stack

(preserve program counter)
(preserve IFF)
(reset IFF)
(execute interrupt handler)

STACK
IFF2
IFFI

Fig. 6.25: NMI Forces Automatic Vectoriug

NMI causes an automatic restart at location 0066H. The sequence of
events is the following:

PC II

IFFI ...
o II

JUMP TO 0066H

Also, the status of interrupt-mask-bit flip-flop (IFFl) at the time that
NMI was received is preserved automatically into IFF2. Then, IFFl is re­
set in order to prevent any further interrupts. This feature is important to
prevent the loss of lower-priority INT's and simplifies the external hard­
ware: the status of a pending INT is preserved internally in the Z80.

The NMI interrupt is normally used for high priority events such as a
real-time clock or a power failure.

The return from an NMI is accomplished by a special instruction, RETN:
"return from non-maskable interrupt." The contents of IFFl are restored
from IFF2, and the contents of the program counter PC are restored from
their location in the stack. Since IFFl had been reset during execution
of the NMI, no external INT's could be accepted during the NMI: there
has been no loss of information.

Upon termination of the interrupt handler, the sequence is:
IFF2 II IFFI (restore IFF)
STACK II PC (restore program counter)

Note that, once IFFl is restored, maskable interrupt enable status is
restored.
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Interrupt

The ordinary, maskable, interrupt INT may operate in one of three
modes. They are specific to the Z80, as the 8080 is equipped with only a
single interrupt mode. The ordinary interrupt INT may also be masked
selectively by the programmer. Setting the interrupt flip-flops IFFl and
IFF2 to a "l" will authorize interruptions. Setting them to a "0"
(masking them) will prevent detection of INT. The EI instruction is
used to set them, and the DI instruction is used to reset them. IFFl and
lFF2 are set or reset simultaneously. During execution of the EI and DI
instructions, INT's are disabled in order to prevent any loss of informa­
tion.

Let us now examine the three interrupt modes:

Interrupt Mode 0

This mode is identical to the 8080 interrupt mode. The Z80 will
operate in interrupt mode 0 either when initially started (when the RE­
SET signal has been applied) or else when an IMO instruction has been
executed. Once mode 0 has been set, an interrupt will be recognized if
the interrupt enable flip-flop IFFl is set to l,provided no bus-request
or non-maskable interrupt occurs at the same time. The interrupt will
be detected only at the end of an instruction. Essentially, the Z80 will
respond to the interrupt by generating an IORQ (as well as an Ml sig­
nal), and then do nothing, except wait.

It is the responsibility of an external device to recognize the IORQ
and M1 (this is called an interrupt acknowledge or INTA) and to place
an instruction on the data-bus. The Z80 expects an instruction to be
placed on its data bus by the external device within the next cycle. Typi­
cally, an RST or a CALL instruction is placed on the bus. Both of these
instructions automatically preserve the program-counter in the stack,
and cause branching to a specific address. The advantage of the RST in­
struction is that it resides within a single byte, i.e., it executes rapidly.
Its disadvantage is to branch to only one of eight possible locations in
page zero (addresses 0 through 225). The advantage of the CALL in­
struction is that it is a general-purpose branch instruction which speci­
fies a fulll6-bit address. However, it requires three bytes and therefore
executes less rapidly.

Note that once the interrupt processing starts, all further interrupts
are disabled. IFFI and IFF2 are automatically set to "0". It is then the
responsibility of the programmer to insert an EI instruction (Enable In-
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terrupts) at the appropriate location within his program if he wishes to
enable interrupts, and, in any case, before returning from the interrupt.

The detailed sequence corresponding to the mode 0 interrupt is
shown in Figure 6.26.

·.~O:::>E :2

I

;.c STACK

':, s.;.3~E NTERIlUPTS
·~2 '" l)

IEl ~E"'A3.ES iNTERRUPTS}I
I

MODE I

JUMP TO OOJBH

I
t:;CECUTE iNSTRuCTION i

I

,\\00£ 0

I
u!5A6lE ~:"J1ERRUPfS

~Fl 'l-~] :::. 0

'--_-,-__-' ) FOR CAll
'I OR RST

,-----0:-,---, ) ONt '(

Fig. 6.26: Interrupt Modes

The return from the interrupt is accomplished by an RET! instruc­
tion. Let us remind the programmer at this point that he/she is usually
responsible for explicitly clearing the interrupt which has been serviced
on the I/O device, and always for restoring the interrupt disable flag in­
side the Z80. However, the peripheral controller may use the INTA sig­
nal to clear the INT request, thus freeing the programmer of this chore.

In addition, should the interrupt-handling routine modify the con­
tents of any of the internal registers, the programmer is specifically re­
sponsible for preserving these registers in the stack prior to executing
the interrupt-handling routine. Otherwise, the contents of these regis­
ters will be destroyed, and when the interrupted program resumes exe-
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cution, it will fail. For example, assuming that registers A, B, C, D, E,
Hand L will be used within the interrupt handler, they will have to be
saved (see Figure 6.27).

s L

H

E

D

C

B

F

A

PCL

PCH

DECREASING
ADDRESSES

STACK

Fig. 6.27: Saving the Registers

The corresponding program is:

SAVREG PUSH AF
PUSH BC
PUSH DE
PUSH HL

Upon completion of the interrupt-handling routine, these registers must
be restored. The interrupt handler will terminate with the following se­
quence of instructions:

HL
DE
BC
AF

POP
POP
POP
POP
EI (unless EI was used earlier in

the routine)

Additionally, if registers IX and IY are used by the routine they must
also be preserved, then restored.
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Interrupt Mode I

This interrupt mode is set by executing the 1M I instruction. It is an
automated interrupt handler which causes an automatic branch to loca­
tion 0038H. It is therefore essentially analogous to the NMI interrupt
mechanism except that it may be masked. The Z80 automatically pre­
serves the contents of PC into the stack (see Figure 6.28).

IMl INT o

automatic
,---------.38 I--------J INTERRUPT

vectOring ROUTINE
1-------1

MEMORY

STACK

PROGRAM
SP 1-------1

~=~au~t~om~at~lc~=~t_-~t-I}LOCATION OFPC 00 I.~ INTERRUPTION
A. preserve

l ('
0038

(automatic)

Fig. 6.28: Mode 1 Interrupt

This automated interrupt response, which "vectors" all interrupts to
memory location 38H, minimizes the amount of external hardware nec­
essary for using interrupts. Its possible disadvantage is to cause a
branch to a single memory location. In case several devices are con­
nected to the INT line, the program starting at location 38H will be re­
sponsible for determining which device requested service. This problem
will be addressed below.

One precaution must be taken with respect to the timing of this inter­
rupt: when performing programmed input/output transfers, the Z80
will ignore any data that may be present in the data bus during the cycle
which follows the interrupt (the interrupt acknowledge cycle).
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Interrupt Mode 2 (Vectored Interrupts)

This mode is set by executing an 1M2 instruction. It is a powerful
mode which allows automatic vectoring of interrupts. The interrupt
vector is an address supplied by the peripheral device which generated
the interrupt, and used as a memory pointer to the start address of the
interrupt-handling routine. The addresssing mechanism provided by
the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup­
plies a seven-bit branching address which is appended to the 8-bit ad­
dress contained in the special I register in the Z80. The right-most bit of
the final 16-bit address bit 0 is set to "0". This resulting address points
to an entry in a table anywhere in the memory. This table may contain
up to eight double-word entries. Each of these double words is the ad­
dress of the interrupt handler for the corresponding device. This is illus­
trated in Figures 6.29 and 6.30.

-["NT
2

7 BIT VECTOR o~
START

ADDRESS f--

II v

y I I

DEVICE I--
HANDLER

X VECTOR

MEMORY

Fig. 6.29: Mode 2 Interrupt

The interrupt table may have up to 128 entries.
In this mode, the Z80 also automatically pushes the contents of the

program counter into the stack. This is obviously necessary, since PC
will be reloaded with the contents of the interrupt table entry corre­
sponding to the vector provided by the device.

Interrupt Overhead

For a graphic comparison of the polling process vs. the interrupt
process, refer to Figure 6.18, where the polling process is illustrated on
the top, and the interrupt process underneath. It can be seen that in the
polling technique the program wastes a lot of time waiting.
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I I PROGRAM
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VECTOR ...... 0500
TABLE

Spi 10 00

BEFORE 0504

MEMORY

Fig. 6.30: Mode 2· A Practical Example

Using interrupts, the program is interrupted, the interrupt is serviced,
then the program resumes. However, the obvious disadvantage of an
interrupt is to introduce several additional instructions at the beginning
and at the end, resulting in a delay before the first instruction of the de­
vice handler can be executed. This is additional overhead.

Exercise 6.28: Using the table indicating the number of cycles per in­
struction, in the Appendix, compute how much time will be lost to save
and then restore registers A, B, D, H.

Having clarified the operation of the interrupt lines, let us now con­
sider two important remaining problems:

I-How do we resolve the problem of multiple devices triggering an

505



PROGRAMMING THE l80

interrupt at the same time?
2-How do we resolve the problem of an interrupt occurring while

another interrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor branches to a specified
address. Before it can do any effective processing, the interrupt han­
dling routine must determine which device triggered the interrupt. Two
methods are available to identify the device, as usual: a software
method and a hardware method.

In the software method, polling is used: the microprocessor interro­
gates each of the devices in turn and asks them, "Did you trigger the in­
terrupt?" If the answer is negative, it interrogates the next one. This
process is illustrated in Figure 6.31. A sample program is:

POLINT IN
BIT
lP
IN
BIT
lP
etc.

A, (STATUSI)
7, A
NZ,ONE
A, (STATUS2)
7, A
NZ, TWO

READ STATUS
DID DEVICE REQUEST INT?
HANDLEITIFSO

-

- SERVICE
ROUTINE P

POLLING 3
ROUTINE f-

SERVICE
ROUTINE

-
SERVICE
ROUTI NE N

The hardware method uses additional components but provides the
address of the interrupting device simultaneously with the interrupt re­
quest. The device now universally used to provide this facility is called a
"PIC", or prioritY-interrupt-controller. Such a PIC will automatically

!NT 1 POLLING INTERRUPT VECTORED

L
WHICH 2
DEVICE?

Fig. 6.31: Polled vs. Vedored Interrupt
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place on the data bus the actual required branching address for the in­
terrupting peripheral.

To be more precise, when operating in mode 0, the PIC will supply a
one-byte RST or a three-byte CALL on the data bus in response to the
interrupt acknowledge, thus automating the interrupt vectoring, and
minimizing the overhead.

Note that a subroutine call instruction is required as the Z80 does not
save the PC when operating in mode O.

In most cases, the speed of reaction to an interrupt is not crucial, and
a polling approach is used. If response time is 'a primary consideration,
a hardware approach must be used.

Simultaneous Interrupts

The next problem which may occur is that a new interrupt can be trig­
gered during the execution of an interrupt-handling routine. Let us
examine what happens and how the stack is used to solve the problem.
We have indicated in Chapter 2 that this was another essential role of
the stack, and the time has come now to demonstrate its use. We will
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from
left to right in the illustration. The contents of the stack are shown at
the bottom of the illustration. Looking at the left, at time TO, program
P is in execution. Moving to the right, at time TI, interrupt II occurs.
We will assume that the interrupt mask was enabled, authorizing II.
Program P will be suspended. This is shown at the bottom of the illus­
tration. The stack will contain the program counter and the status reg­
ister of program P, at least, plus any optional registers that might be
saved by the interrupt handler or II itself.

- .-
1/0 I/O~JMPU

,INTERF.ACE ••• INTERFAC
INT 1 n I
t • INT 1 • INT H

Fig. 6.32: Several Devices May Use the Same Interrupt Line

At time Tl, interrupt II starts executing until time T2. At time T2, in­
terrupt 12 occurs. We will assume that interrupt 12 has a higher priority
than interrupt II. If it had a lower priority, it would be ignored until 1I
had been completed. At time T2, the registers for II are stacked, and
this appears at the bottom of the illustration. Again, the contents of the
program counter and AF are pushed into the stack. In addition, the
routine for 12 might decide to save an additional few registers. 12 will
now execute to completion at time T3.
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When 12 terminates, the contents of the stack are automatically
popped back into the Z80, and this is illustrated at the bottom of Figure
6.33. Thus, automatically II resumes execution. Unfortunately, at time
T4, an interrupt I3 of higher priority occurs again. We can see at the
bottom of the illustration that again the registers for I I are pushed into
the stack. Interrupt I3 executes from T4 to TS and terminates at TS. At

IIM[ I" r. ], I, I, I, T.

PROGRAM I-' ~---- - -
i

lNTERRUPl It 1----- - -I 1- - -- ,""---I

INTERRUPI I J

lNH:RRUPf II

I ,
I I
I 1

,
I

8
I BI , ,

SlACK c:J tJ rJ
T, T, T, T,

Fig. 6.33: Stack Contents During Multiple Interrupts

that time, the contents of the stack are popped into Z80, and interrupt
I I resumes execution. This time it runs to completion and terminates at

T6. At T6, the remaining registers that have been saved in the stack are
popped into 280, and program P may resume execution. The reader
will verify that the stack is empty', this point. In fact, the number of
dashed lines indicating program suspension indicates at the same time
how many levels there are in the stack.

Exercise 6.29: Assume that the area available to the stack is limited to
300 locations in a specific program. Assume that all the registers must
always be saved and that the programmer allows interrupts to be nest­
ed, i.e., to interrupt each other. Which is the maximum number of
simultanenus interrupts that can be handled? Will any other/actor con­
tribute to still reduce further the maXlIllum number ofsimultaneous in­
terrupts?

It must be stressed, however, that, in practice, microprocessor sys­
tems are normally connected to a small number of devices using inter­
rupts. It is, therefore, unlikely that a high number of simultaneous in­
terrupts will occur in such a system.

We have now solved all the problems usually associated with inter­
rupts. Their use is, in fact, simple and they should be employed to ad­
vantage even by the novice programmer.
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SUMMARY

In this chapter we have presented the range of techniques used to
communicate with the outside world. From elementary input/output
routines to more complex programs for communication with actual
peripherals, we have learned to develop all the usual programs and have
even examined the efficiency of benchmark programs in the case of a
parallel transfer and a parallel-to-serial conversion. Finally, we have
learned to schedule the operation of multiple peripherals by using poll­
ing and interrupts. Naturally, many other exotic input/output devices
might be connected to a system. With the array of techniques which
have been presented so far, and with an understanding of the peripher­
als involved, it should be possible to solve most common problems.

In the next chapter, we will examine the actual characteristics of the
input/output interface chips usually connected to a Z80. Then, we will
consider the basic data structures that the programmer may use.

Exercise 6.30: Compute the overhead when operating in mode 0, as­
suming that all registers are saved, and that an RST is received in re­
sponse to the interrupt acknowledge. The overhead is defined as the
total delay incurred, exclusive of the instructions required to implement
the interrupt processing proper.

Exercise 6.31: A 7-segment LED display can also display digits other
than the hex alphabet. Compute the codes for: H, 1, J, L, 0, P, S, U,
Y, g, h, i, j, I, n, 0, p, r, t, u, y.

Exercise 6.32: The flowchart for interrupt management appears in Fig­
ure 6.34 Answer the following questions:

a-What is done by hardware, what is done by software?
b-What is the use of the mask?
c-How many registers should be preserved?
d-How is the interrupting device identified?
e- What does the RETI instruction do? How does it differ from a

subroutine return?
f-Suggest a way to handle a stack overflow situation.
g- What is the overhead ("lost time") introduced by the interrupt

mechanism?
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RETURN

Fig. 6.34: Interrupt Logic
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INPUT/OUTPUT DEVICES

INTRODUCTION

We have learned how to program the Z80 microprocessor in most
usual situations. However, we should make a special mention of the
input/output chips normally connected to the microprocessor. Be­
cause of the progress in LSI integration, new chips have been intro­
duced which did not exist before. As a result, programming a system
requires, naturally, first to program a microprocessor itself, and then
to program the input/output chips. In fact, it is often more difficult
to remember how to program the various control options of an input!
output chip than to program the microprocessor itself! This is not be­
cause the programming in itself is more difficult, but because each of
these devices has its own idiosyncrasies. We are going to examine here
first the most general input!output device, the programmable input/
output chip (in short a "PIa"), then some Zilog I/O devices.

The "Standard PIO"

There is no "standard PIa". However, each PIadevice is essentially
analogous in function to all similar PIa's produced by other
manufacturers for the same purpose. The purpose of a PIa is to
provide a multiport connection for input!output devices. (A "port" is
simply a set of 8 input!output lines.) Each PIa provides at least
two sets of 8-bit lines for I/O devices. Each I/O device needs a data
buffer in order to stabilize the contents of the data bus on output at
least. Our PIO will, therefore, be equipped at a minimum with a
buffer for each port.

In addition, we have established that the microcomputer will use
11 handshaking procedure, or else interrupts to communicate with the
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I/O device. The PIO will also use a similar procedure to communicate
with the peripheral. Each PIO must, therefore, be equipped with at
least two control lines per port to implement the handshaking
function.

The microprocessor will also need to be able to read the status of
each port. Each port must be equipped with one or more status bits.
Finally, a number of options will exist within each PIO to configure its
resources. The programmer must be able to access a special register
within the PIO to specify the programming options. This is the
control-register. In some cases the status information is part of the
control register.

CAl
foo---CA2

l---_CB2

CBl

I'\r---.-v PORT A

i"v--..---./ PORT B

CRA DDRA PDRA

",<:2 "'" n '" m
m 0 m",o mo'"
G) Z G)m}> 0}>=oDATA BUS Ui ..... U;n-i Ul ..... I..... '" .....:j}> ..... }>mm

~
mo m '"

'" "'z '" ~

-'

CRB DDRB PDRB

- n0
II B
0'::'

REGISTER I --...: RS0
c z
..... "

SELECT I I RS 1 "cS .....
IRQA

IRQB

Fig. 7.1: Typical PIO

One essential faculty of the PIO is the fact that each line may be
configured as either an input or an output line. The diagram of
a PIO appears in illustration 7. 1. The programmer may specify
whether any line will be input or output. In order to program the
direction of the lines, a data-direction register is provided for each
port. A "0" in a bit position of the data-direction register specifies an
input. A "1" specifies an output.

It may be surprising to see that a "0" is used for input and a "1"
for output when really "0" should correspond to output and "1" to
input. This is quite deliberate: whenever power is applied to the
~ystem, it is of great importance that all the I/O lines be configured as
mput. Otherwise, if the microcomputer is connected to some
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dangerous peripheral, it might activate it by accident. When a reset is
applied, all registers are normally zeroed and that will result in con­
figuring all input lines of the PIa as inputs. The connection to the
microprocessor appears on the left of the illustration. The PIa
naturally connects to the 8-bit data bus, the microprocessor address
bus, and the microprocessor control-bus. The programmer will simply
specify the address of any register that it wishes to access within the
PIa.

The Internal Control Register

The Control Register of the PIa provides a number of options for
generating or sensing interrupts, or for implementing automatic hand­
shake functions. The complete description of the facilities provided is
not necessary here. Simply, the user of any practical system which uses
a PIa will have to refer to the data-sheet showing the effect of setting
the various bits of the control register. Whenever the system is
initialized, the programmer will have to load the control register of the
PIa with the correct contents for the expected application (see ref.
D380 for a detailed description).

IRQA~-------------j.~W

D~-D7 .

CONTROL

(CHIP SElECT

IREGISTER
SELECT

IRQB-l------------....:-n~l

Fig. 7.2: Using a PIO-Load Control Register

PA¢-PA7

PB¢-PB7
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Fig. 7.3: Using a PIO-Load Data Direction

IRQA-t---------------~]~J

Dfb-D7

CONTROL

(CHIP SELECT

IREGISTER
SELECT

CONTROL

(CRB)
IRQB-t------------~D~l

Fig. 7.4: Using a PIO-Read Status
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IRQA -+---------------f:Br?:l

00-D7

CONTROL

!CHIP SELECT

'I REGISTER
SELECT

CONTROL

(CRB)
IROB -1--------------.:..=.r':Si~~T!?TG::ls

Fig. 7.5: Using a PIO Read INPUT

Programming a PIO

PAB-PA7

PBB-PB1

CB 1
CB 2

A typical sequence, when using a PIa channel, is the following (as­
suming an input):

Load the control register
This is accomplished by a programmed transfer between a Z80 re­

gister (usually the accumulator) and the PIO control register. This sets
the options and operating mode of the PIa (see Figure 7.2). It is nor­
mally done only once at the beginning of a program.

Load the direction register
This specifies the direction in which the I/O lines will be used. (See

Figure 7.3.)

Read the status
The status register indicates whether a valid byte is available on in­

put. (See Figure 7.4).

Read the port
The byte is read into the Z80. (See Figure 7.5).
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{
DO 18 ARDY

OJ 16 AST8

O 2
DATA D 3
BUS 0 4

A O

Os Al PORT A

0 6
A 2

I/O

0 7 A3
A 4

{ eoow""
AS

CONTROl/DATA SEl
Z80 - PIO

A 6

PIO . A 7
CONTROl CHIP ENA8lE 4

M)-- 37

10RQ 36 80
RD 3S B)

82

INTERRUPT {
INT 23 B3

CONTROL INT ENABLE IN 24 B 4 PORT B
INT ENABLE OUT 22 BS I/O

B6
CLOCK <P 2S B 7

< + SV BRDY
POWER

GND BSTB

Fig. 7.6: Z80 PIO pinout

The Zilog Z80 PIO

The Z80 PIa is a two-port PIa whose architecture is essentially
compatible with the standard model we have described. The actual
pinout is shown in Figure 7. 6. and a block diagram is shown in Figure
7.7.

Each PIa port has six registers: an 8-bit input register. a 9-bit
output register, a 2-bit mode-control register. an 8-bit mask register,
an 8-bit input/output select (direction register), and a 2-bit mask­
control register. The last three registers are used only when the port is
programmed to operate in the bit mode.

The PIa may operate in one of four modes, as selected by the con­
tents of the mode-control registers (2 bits). They are: byte output,
byte input, byte bidirectional bus, and bit mode.

The two bits of the mask control registers are loaded by the pro­
grammer, and specify the high or low state of a peripheral device
which is to be monitored. and conditions for which an interrupt can be
generated.

The 8-bit input!output select register allows any pin to be either an
input or an output when operating in that mode.

516



INPUT/OUTPUT DEVICES

PORT
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DATA

IN

READY
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DATA
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Fig. 7.7: Z80 PIO Block Diagram
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Programming the Zilog PIO

A typical sequence for using a PIO, say in bit mode, would be the
following:

Load the mode control register to specify the bit mode.
Load the input/output select register of port A to specify that

lines 0-5 are inputs and lines 6 and 7 are outputs.
Then a word would be read by reading the contents of the input

buffer.
Additionally, the mask register could be used to specify the status

conditions.
For a detaiied description of the operation of the PIO, the reader is

referred to the companion volume in this series, the Z80 Applications
Book.

TheZ80SIO

The SIO (Serial Input/Output) is a dual-channel peripheral chip de­
signed to facilitate asynchronous communications in serial form. It in­
cludes a UART, Le., a universal asynchronous receiver-transmitter.
Its essential function is serial-to-parallel and parallel-to-serial conver­
sion. However, this chip is equipped with sophisticated capabilities,
like automatic handling of complex byte-oriented protocols, such as
IBM bisync as well as HDLC and SDLC, two byte-oriented protocols.

Additionally, it can operate in synchronous mode like a USRT, and
generate and check CRC codes. It offers a choice of calling, interrupt,
and block-transfer modes. The complete description of this device is
beyond the scope of this introductory book and appears in the
Z80 Applications Book.

Other I/O Chips

Because the Z80 is commonly used as a replacement for the 8080, it
has been designed so that it can be associated with almost any of the
usual 8080 input/output chips, as well as the specific I/O chips manu­
factured by Zilog. All the 8080 input/output chips may be considered
for use in a Z80 system.
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SUMMARY

In order to make effective use of input/output components it is
necessary to understand in detail the function of every bit, or group of bits,
within the various control registers. These complex new chips automate a
number of procedures that had to be carried out by software or special
logic before. In particular, a good deal of the handshaking procedures are
automated within components such as an SIO. Also, interrupt handling
and detection may be internal. With the information that has been pre­
sented in the preceding chapter, the reader should be able to understand
what the functions of the basic signals and registers are. Naturally, still
newer components are going to be introduced which will offer a hardware
implementation of still more complex algorithms.
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INTRODUCTION

This chapter is designed to test your new programming skills by pre­
senting a collection of utility programs. These programs or "routines"
are frequently encountered in applications, and are generally called
"utility routines." They will require a synthesis of the knowledge and
techniques presented so far.

We are going to fetch characters from an I/O device and process
them in various ways. But first, let us clear an area of the memory (this
may not be necessary-each of these programs is only presented as a
programming example).

CLEARING A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from address
BASE + 1 to address BASE + LENGTH, where LENGTH is less then
256.

The program is:

ZEROM LD B, LENGTH LOAD B WITH LENGTH
LD A,O CLEAR A
LD HL, BASE POINT TO BASE

CLEAR LD (HL), A CLEAR A LOCATION
INC HL POINT TO NEXT
DEC B DECREMENT COUNTER
JR NZ,CLEAR END OF SECTION?
RET

In the above program, the length of the section of memory is as­
sumed to be equal to LENGTH. The register pair HL is used as a point­
er to the current word which will be cleared. Register B is used, as
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usual, as a counter.
The accumulator A is loaded only once with the value 0 (all zeros),

then copied into the successive memory locations.
In a memory test program, for example, this utility routine couid be

used to zero the contents of a block. Then the memory test program
would usually verify that its contents remained O.

The above was a straightforward implementation of a clearing rou­
tine. Let us improve on it.

The improved program appears below.

ZEROM LD B,LENGTH
LD HL, BASE

LOOP LD (HL),O
INC HL
DJNZ LOOP
RET

The two improvements were obtained by eliminating the LD A, 0 in­
struction and loading a "zero" directly into the location pointed to by H
and L, and also by using the special Z80 instruction DJNZ.

This improvement example should demonstrate that every time a
program is written, even though it may be correct, it can usually be im­
proved by examining if careful/yo Familiarity with the complete con­
struction set is essential for bringing about such improvements. These
improvements are not just cosmetic. They improve the execution time
of the program, require fewer instructions and therefore less memory
space, and also generally improve the readability of the program and,
therefore, its chances of being correct.

Exercise 8./: Wnte a memory test program which zeroes a 256- word
block, then verifies that each location is O. Then, it will write all 1's and
verify the contents of the block. Then It will write 01010101 and verify
the contents. Finally, it will write 10101010, and verify the contents.

Exercise 8.2: Modify the above program so that it will fill the memory
section with alternating O's and 1's (all O's, then all 1 's).

Let us now poll our I/O devices to find which one needs service.

POLLING I/O DEVICES

We will assume that those I/O devices are connected to our sys­
tern. Their status registers are located at addresses lOSTATUS I,
lOSTATUS2, lOSTATUS3. The program is:

521



TEST

PROGRAMMING THE laO

IN A, (STATUSl) READ 10 STATUSl

BIT 7, A TEST "READY" BIT (BIT 7)
JP NZ, FOUNDl JUMP TO HANDLER 1
IN A, (STATUS2) SAME FOR DEVICE 2
BIT 7, A
JP NZ, FOUND2
IN A, (STATUS3) SAME FOR DEVICE 3
BIT 7, A
JP NZ, FOUND3
(failure exit)

The MASK will contain, for example, "10000000" if we test bit posi­
tion 7. As a result of the BIT instruction, the Z bit of the status flags
will be set to 1 if "MASK AND STATUS" is non-zero, Le., if the cor­
responding bit of STATUS matches the one in MASK. The JP NZ in­
struction Uump if non-equal to zero) will then result in a branch to the
appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the keyboard.
Let us accumulate characters in a memory area called BUFFER until we
encounter a special character called SPC, whose code has been previ­
ously defined.

The subroutine GETCHAR will fetch one character from the key­
board (see Chapter 6 for more details) and leave it in the accumulator.
We assume that 256 characters maximum will be fetched before an SPC
character is found.

STRING LD
NEXT CALL

CP
JR
LD
INC
JR

OUT RET

HL, BUFFER
GETCHAR
SPC
Z, OUT
(HL), A
HL
NEXT

POINT TO BUFFER
GET A CHARACTER
CHECK FOR SPECIAL CHAR
FOUND IT?
STORE CHAR IN BUFFER
NEXT BUFFER LOCAnON
GET NEXT CHAR

Exercise 8.3: Let us improve this basic routine:
a-Echo the character back to the device (for a Teletype, for example).
b-Check that the input string is no longer than 256 characters.

We now have a string of characters in a memory buffer. Let us proc-
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ess them in various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is equal to
0, 1, or 2:

ZOT LD A, (CHAR) GET CHARACTER
CP 00 IS IT A ZERO?
JP Z,ZERO JUMP TO ROUTINE
CP 01 A ONE?
JP Z,ONE
CP 02 A TWO?
JP Z, TWO
JP NOTFND FAILURE

We simply read the character, then use the CP instruction to check its
value.

Let us run a different test now.

BRACKET TESTING

Let us determine if the ASCII character at memory location LOC is a
digit between 0 and 9:

BRACK LD
AND
CP
JR
CP
JR
CP

OUT RET

A,(CHAR)
7FH
30H
C,OUT
39H
NC,OUT
A
EXIT

GET CHARACTER
MASK OUT PARITY BIT
ASCII 0
CHAR TOO LOW?
ASCII 9
CHAR TOO HIGH?
FORCE ZERO FLAG

ASCII "0" is represented in hexadecimal by "30" or by "DO", de­
pending upon whether the parity bit is used or not. Similarly, ASCII
"9" is represented in hexadecimal by "39" or by "B9".

The' purpose of the second instruction of the program is to delete bit
7, the parity bit, in case it was used, so that the program is applicable to
both cases. The value of the character is then compared to the ASCII
values for "0" and "9". When using a comparison instruction, the Z
flag is set if the comparison succeeds. The carry bit is set in the case of
borrow, and reset otherwise. In other words, when using the CP in­
struction, the carry bit will be set if the value of the literal that appears
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in the instruction is greater than the value contained in the accumu­

lator. It will be reset ("0") if less than or equal.
The last instruction, CP A, forces a "0" into the Z flag. The Z flag is

used to indicate to the calling routine that the character in CHAR was
indeed in the interval (0, 9). Other conventions can be used, such as
loading a digit in the accumulator in order to indicate the result of the
test.

Exercise 8.4: Is the jollawing program equivalent to the one above?:

LD A, (CHAR)
SUB 30H
JP M, OUT
SUB 10
JP P, OUT
ADD 10

Exercise 8.5: Determine ifan ASCll character contained in the accumu­
lator is a letter oj the alphabet.

When using an ASCII table, you will notice that parity is often used.
For example, the ASCII for "0" is "0110000", a 7-bit code. However,
if we use odd parity, for example, we guarantee that the total number
of ones in a word is odd; then the code becomes: "10110000". An extra
(, 1" is added to the left. This is "BO" in hexadecimal. Let us therefore
develop a program to generate parity.

PARI1'V GENERATION

This program will generate an even parity in bit position 7:

PARITY LD
AND
JR

OR
OUT LD

A, (CHAR)
7FH
PE,OUT

80H
(LaC), A

GET CHARACTER
CLEAR PARITY BIT
CHECK IF PARITY
ALREADY EVEN
SET PARITY BIT
STORE RESULT

The program uses the internal parity detection circuit available in the
Z80.

The third instruction: JR PE, OUT checks whether parity of the
word in the accumulator is already even. This instruction will succeed if
the parity is even, "PE", and will exit.

If the parity is not even, Le., if the jump instruction failed, then the
parity is odd, and a "1" must be written in bit position 7. This is the
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purpose of the fourth instruction:

OR 80H

Finally, the resulting value is saved in memory location LaC.

Exercise 8.6: The above problem was too simple to solve, using the in­
ternal parity detection circuitry. As an exercise, you are requested to
solve the same problem without using this circuitry. Shift the contents
of the accumulator, and count the number of l's in order to determine
which bit should be written into the parity position.

Exercise 8. 7: Using the above program as an example, verify the parity
ofa word. You must compute the correct parity, then compare it to the
one expected.

CODE CONVERSION: ASCII TO BCD

Converting ASCII to BCD is very simple. We will observe that the
hexadecimal representation of ASCII characters °to 9 is 30 to 39 or BO
to B9, depending on parity. The BCD representation is simply obtained
by dropping the "3" or the "B", i.e., masking off the left nibble (4
bits):

ASCBCD CALL
lP
LD
AND
LD

BRACK CHECK THAT CHAR IS°TO 9
NZ, ILLEGAL EXIT IF ILLEGAL CHAR
A, (CHAR) GET CHARACTER
OF MASH HIGH NIBBLE
(BCDCHAR), A STORE RESULT

Exercise 8.8: Write a program to convert BCD to ASCIJ.

Exercise 8.9: Write a program to convert BCD to binary (more diffi­
cult).
Hint:N 3 N 2 N, No in BCDis(((N3 x 10) + N2 ) x 10 + N,) x 10 + Noin
binary.

To multiply by 10, use a left shift (= x 2), another left shift (= x 4),
an ADC (= x 5), another left shift (= x 10).

In full BCD notation, the first word may contain the count of BCD
digits, the next nibble contain the sign, and every successive nibble con­
tain a BCD digit (we assume no decimal point). The last nibble of the
block may be unused.

CONVERT HEX TO ASCII

"A" contains one hexadecimal digit. We simply need to add a "3" (or a
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"B") into the left nibble:

AND
ADD
CP
JP
ADD

FH
A,30H
A,3AH
M,OUT
A,7

ZERO LEFT NIBBLE (optional)
ASCII
CORRECTION NECESSARY?

CORRECTION FOR A TO F

Exercise 8.10: Convert HEX to ASCII, assuming a packedformat (two
hex digits in A).

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address
BASE in page zero. The first entry of the table is the number of bytes it
contains. This program will search for the largest element of the table.
Its value will be left in A, and its position will be stored in memory loca­
tion INDEX.

This program uses registers A, B, Hand L, and will use indirect ad­
dressing, so that it can search a table anywhere in the memory (see Fig­
ure 8.1).

MAX LD HL, BASE TABLE ADDRESS
LD B, (HL) NBR OF BYTES IN TABLE
LD A, 0 CLEAR MAXIMUM VALUE
LD (INDEX), HL INITIALIZE INDEX
INC HL NEXT ENTRY

LOOP CP (HL) COMPARE ENTRY
JR NC, NOSWITCH JUMP IF LESS THAN MAX
LD A, (HL) LOAD NEW MAX VALUE
LD (INDEX), HL LOAD NEW MAX VALUE

NOSWITCH INC HL POINT TO NEXT ENTRY
DEC B DECREMENT COUNTER
JR NZ, LOOP KEEP GOING IF NOT ZERO
RET

This program tests the nth entry first. If it is greater than 0, the entry
goes in A, and its location is remembered into INDEX. The (n-l )st en­
try is then tested, etc.

This program works for positive integers.

Exercise 8.11: Modify the program so that it works also for negative
numbers in two's complement.

exercise 8./2: Will this program a/so work for ASCII characters?

Exercise 8.13: Write a program which will sort n numbers in ascending

526



APPLICATION EXAMPLES

A

B

HL

~
.... POINTER TO - INDEX

MAX

II CURRENT MAX ... COUNT=N BASE

'ELEMENT 1

[ COUNTER I
••

I ~ •

ELEMENT N
--"'\...- .-.

"'-

Fig. 8.1: Largest Element in a Table

order.

Exercise 8./4: Write a program which will sort n names (3 characters
each) in alphabelical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N entries of a table. The
starting address of the table is contained at memory address BASE, in
page zero. The first entry of the table contains the number of elements
N. The 16-bit sum will be left in memory locations SUMLO and
SUMHI. If the sum should require more than 16 bits, only the lower 16
will be kept. (The high order bits are said to be truncated.)

This program will modify registers A, B, H, L, IX. It assumes 256
elements maximum (see Figure 8.2).

SUMIG LD
LD

INC
LD
LD

HL, BASE
B, (HL)

HL
IX, SUMLO
A,O

POINT TO TABLE BASE
READ LENGTH INTO
COUNTER
POINT TO FIRST ENTRY
POINT TO RESULT, LOW
CLEAR RESULT
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ADLOOP

NOCARRY

LD
LD
LD
ADD
LD
JR
INC
INC
DEC
JR
RET

(IX+O), A

(IX + I), A
A, (HL)
A, (IX +0)
(IX +0), A
NC,NOCARRY
(IX + I)
HL
B
NZ,ADLOOP

LOW
AND HIGH
GET TABLE ENTRY
COMPUTE PARTIAL SUM
STORE IT AWAY
CHECK FOR CARRY
ADD CARRY TO HIGH BYTE
POINT TO NEXT ENTRY
DECREMENT BYTE COUNT
KEEP ADDING TILL END

B

HL

IX

A

I COUNT I"
,J LENGTH=N

r BASE ELEMENT 1

ED

r 1- e
Ell

ELEMENT N

•

BASE

SUMLO

SUMH I

Fig. 8.2: Sum of N Elements

This program is straightforward and should be self-explanatory.

Exercise 8./5: Modify this program to:
a-compute a 24-bit sum
b-compute a 32-bit sum
c-delecl any overflow.

A CHECKSUM COMPUTATION

A checksum is a digit or set of digits computed from a block of suc­
cessive characters. The checksum is computed at the time the data is
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stored and put at the end. In order to verify the integrity of the data, the
data is read, then the checksum is recomputed and compared against
the stored value. A discrepancy indicates an error or a failure.

Several algorithms are used. Here, we will exclusive-OR all bytes in a
table of N elements, and leave the result in the accumulator. As usual,
the base of the table is stored at address BASE in page zero. The first
entry of the table is its number of elements N. The program modifies A,
B, H, L. N must be less than 256.

CHECKSUM LD HL, BASE LEAD ADDRESS OF TABLE
INTO HL

LD B, (HL) GET N = LENGTH
XOR A CLEAR CHECKSUM
INC HL POINT TO FIRST ELEMENT

CHLOOP XOR (HL) COMPUTE CHECKSUM
INC HL POINT TO NEXT ELEMENT
DEC B DECREMENT COUNTER
JR NZ, CHLOOP DO IT AGAIN IF NOT END
LD (CHECKSUM),A PRESERVE CHECKSUM
RET

COUNT THE ZEROES

This program will count the number of zeroes in our usual table, and
leave it in location TOTAL. It modifies A, B, C, H, L.

ZEROS LD HL, BASE
LD B, (HL)
LD C,O
INC HL

ZLOOP LD A, (HL)
OR 0
JR NZ,NOTZ
INC C

NOTZ INC HL
DEC B
JR NZ,ZLOOP

LD A,C
LD (TOTAL), A

POINT TO TABLE
READ LENGTH INTO COUNTER
ZERO TOTAL
POINT TO FIRST ENTRY
GET ELEMENT
SET ZERO FLAG
IS IT A ZERO?
IF SO, INCREMENT ZERO COUNT
POINT TO NEXT ENTRY
DECREMENT LENGTH COUNTER

SAVE IT

Erercise 8. /6: Madify this program ta caunt
a-the number af stars (the character "*")

b-the number af le{{ers af the alphabet
c-the number af digits between "0" and "9"
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BLOCK TRANSFER

Let us pick up every third entry in the source block at address FROM
and store it into a block at address TO:

FER3 LD
LD
LD

LOOP LDI
INC
INC
JR

HL, FROM
DE, TO
BC, SIZE

HL
HL
PE, LOOP

SET UP POINTERS

AUTOMATED TRANSFER

SKIP 2 ENTRIES

BCD BLOCK TRANSFER

We will push up BCD digits in the memory, i.e, shift 4-bit nibbles
(see Figure 8.3). The program appears below:

B

H

COUNT

BLOCK

~O

COUNT

Fig. 8.3: BCD Block Transfer -The Memory

DMOV LD
LD
XOR

LOOP RLD
INC
DJNZ
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The program uses the RLD instruction, which we have not used yet.
RLD rotates a BCD digit left between A and (HL). (HL) or M designate
the contents of the memory location pointed to by Hand L.

M LOW goes into M HIGH
M HIGH goes into A LOW
A LOW goes into M LOW

Here, "low" and "high" refer to a 4-bit nibble.
In order to use the powerful DJNZ instruction, register B is used as

the digit counter. HL is set to point to the beginning of the block.
A is used to store the left digit displaced by each rotation between

two successive accesses to the block.
By convention, "0" will be entered at the bottom of the block.

COMPARE TWO SIGNED 16-BIT NUMBERS

IX points to the first number NI.
IY points to N2 (see Figure 8.4).

BOTH SIGNS NEG

N2 IS NEG

SIGNS ARE BOTH pas

SIGN BIT INTO CY
SIGNS DIFFERENTC

A, B
(IY + 1)
NZ
A, (IX)
(lY)

The program sets the carry bit ifNI< N2, and the Z bit if Nl = N2.
CaMP LD B, (IX + I) GET SIGN OF NI

LD A,B
AND 80H TEST SIGN, CLEAR CY
JR NZ, NEGMI NI IS NEG
BIT 7, (IY+l)
RET NZ
LD A,B
CP (IY+l)
RET NZ
LD A, (IX)
CP (IY)
RET

NEGMl XOR (IY + I)

RLA
RET
LD
CP
RET
LD
CP
RET

The program first tests the signs of Nl and N2. If NI is negative, a
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jump occurs to NEGML Otherwise, the top of the program is executed.

MEMORY

Nl. HIGH

IX

IY

IHIGH ADDRESSES

Fig. 8.4: Comparing Two Signed Numbers

Note that the BIT instruction is used in the 5th line to test directly the
sign bit of N2 in the memory:

BIT 7, (lY + I)

The same could have been done for N I, except that we will need the
value of NI shortly. It is therefore simpler to read NI from memory
and preserve it into B:

COMP LD B, (IX + I)

It is necessary to preserve N I into B because the AND may destroy the
contents of A:

LD A,B
AND 80H

Note also that a conditional return is used (line 6):

RET NZ
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This is a powerful feature of the Z80 which simplifies programming.
Note that the comparison instruction executes directly on the con­

tents of memory, in indexed mode:

CP (lY + 1)

When comparing the two numbers, the most significant byte is com­
pared first, the least significant one second.

Note the extensive use of the indexing mechanism in this program,
which results in efficient code.

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements of a
table in ascending or descending order. The bubble-sort technique de­
rives its name from the fact that the smallest element "bubbles up" to
the top of the table. Every time it "collides" with a "heavier" element,
it jumps over it.

A practical example of a bubble-sort is shown on Figure 8.5 The list
to be sorted contains: (l0, 5, 0, 2, 100), and must be sorted in descend­
ing order ("0" on top). The algorithm is simple, and the flowchart is
shown on Figure 8.7

The top two (or else bottom two) elements are compared. If the lower
one is less ("lighter") than the top one, they are exchanged. Otherwise
not. For practical purposes, the exchange, if it occurs, will be remem­
bered in a flag called "EXCHANGED". The process is then repeated
on the next pair of elements, etc., until all elements have been com­
pared two by two.

This first pass is illustrated by steps 1,2,3,4,5,6 on Figure 8.5, go­
ing from the bottom up. (Equivalently we could go from the top down.)

If no elements have been exchanged, the sort is complete. If an ex­
change has occurred, we start all over again.

Looking at Figure 8.6, it can be seen that four passes are necessary in
this example.

The process is simple, and is widely used.
One additional complication resides in the actual mechanism of the

exchange.
When exchanging A and B, one may not write

A B
B=A

as this would result in the loss of the previous value of A (try it on an
example).
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§! m= m=5

~ 1=3

5 1=2

0 : -,=3

2 1=4 2 1=4

100 1=5 100 100

100> 2: 2>0 0<5
NO CHANGE NO CHANGE EXCHANGE'

(0 0 0)

~
m=.~. §~o _'=2

5

2

100 100 100

EXCHANGED 0< 10: EXCHANGE 0
EXCHANGE' END OF PASS I

0 CD (0
END OF PASS 1

§ I ~
10 10

5 5 _'=3

2 _1=4 2 _'=4

100 _1=5 100 100

100>2: 2< 5: EXCHANGED
NO CHANGE EXCHANGE!

0 CD 0

§t,., §t ;=..2 _'=2

2 1=3 10

5 5

100 100 100

2<10:
EXCHANGED 2>0:

EXCHANGE NO CHANGE

@ @ @
END OF PASS 2

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12
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0

2
---

10

5 ~

100 -
100) 5

NO CHANGE

@

1 4

I 5

0

2

10 -
5 -

100

5,,10:
EXCHANGE'

8

1=3

1=4

o

5

10

100

EXCHANGED

0

L -
5 ~

10

100

5 --' 2:
NO CHANGE

G

0

2

5 -
10 -

100

10)5:
NO CHANGE

@

0 1= I

1= 2 1=2

1=3 5

10

100

2>0:
NO CHANGE

0
END OF PASS 3

0

2 1=2

1=3 5 1=3

1=4 10

100

5) 2:
NO CHANGE

@

0

2

5

10 -
100 -

1(0) 10:
NO CHANGE

@

0 ~

2 -
5

10

100

2)0:
NO CHANGE

@
END

1=4

1=5

1=1

1=2

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21

The correct solution is to use a temporary variable or location to pre­
serve the value of A:

TEMP
A
B

A
B

= TEMP

It works (try it on an example). This is called a circular permutation.
This is the way all programs implement the exchange. This technique

is illustrated on the flowchart of Figure 8.7.
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YES

EXCHANGE E AND E'
TEMP = E(I)
E(I) = E'(I)

E'(I) = TEMP

YES

DONE

Fig. 8.7: Bubble-Sort Flowchart
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Al I
B I PTR II
DI NEXT ]I
H

IX

APPL/CAnON EXAMPLES

EXCHANGE/NOT

mH FLAG

COUNT

CURRENT

Fig. 8.8: Bubble- Sort

The register and memory assignments are shown on Figure 8.8, and
the program is:

BUBBLE LD (TEMP), HL TEMP=(H, L)
AGAIN LD IX, (TEMP) (IX) = (HL)

RES FLAG, H EXCHANGED FLAG = 0
LD B,C
DEC B

NEXT LD A, (IX)
LD D,A D = CURRENT ENTRY
LD E, (IX+l) E = NEXT ENTRY
SUB E COMPARE
JR NC, NOSWITCH GO TO NOSWITCH IF

CURRENT> NEXT
XCHANGE LD (IX), E STORE NEXT INTO

CURRENT
LD (IX+l), D STORE CURRENT INTO

NEXT
SET FLAG, H EXCHANGED FLAG = 1
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NOSWITCH INC IX
DJNZ NEXT

BIT FLAG, H
JR NZ, AGAIN
RET

SUMMAlRY

NEXT ENTRY
DEC B, CONTINUE UNTIL
ZERO
EXCHANGED = I?
RESTART IF FLAG = I

Common utility routines have been presented in this chapter which
use combinations of the techniques we have described in the previous
chapters. They should allow you to start designing your own programs
now. Many of these routines have used a special data structure, the
table. Other possibilities exist for structuring data, and will now be re­
viewed.
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DATA STRUCTURES

PART I - THEORY

INTRODUCTION

The design of a good program involves two tasks: algorithm design
and data structures design. In most simple programs, no significant
data structures are involved, so the main objective in learning program­
ming is designing algorithms and coding them efficiently in a given
machine language. This is what we have accomplished here. However,
designing more complex programs also requires an understanding of
data structures. Two data structures have already been used through­
out the book: the table and the stack. The purpose of this chapter is to
present other, more general, data structures that you may want
to use. This chapter is completely independent of the microprocessor,
or even the computer, selected. It is theoretical and involves the logical
organization of data in the system. Specialized books exist on the topic
of data structures, just as specialized books exist on the subject of
efficient multiplication, division or other usual algorithms. This
chapter, therefore, will be limited to essentials only. It does not claim
to be complete. The most common data structures will now be reviewed.

POINTERS

A pointer is a number which is used to designate the location of the
actual data. Every pointer is an address. However, every address is not
necessarily called a pointer. An address is a pointer only if it points at
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some type of data or at structured informatIOn. We have already en­
countered a typical pointer: the stack pointer, which points to the top
of the stack (or usually just over the top of the stack). We will see that
the stack is a common data structure, called an LIFO structure.

As another example, when using indirect addressing, the indirect ad­
dress is always a pointer to the data that one wishes to retrieve.

Exercise 9./: Examine Fig. 9.1. At address 15 in the memory, there is a
pointer to Table T. Table T starts at address 500. What are the actual
contents of the pointer to T?

15

16

500

"- POINTER TO T

TABLE T

Fig. 9.1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various kinds.

Sequential Lists

A sequential list, or table, or block, is probably the simplest data
structure, and is one that we have already used. Tables are normally
ordered in function of a specific criterion, such as alphabetical ordering
or numerical ordering. It is then easy to retrieve an element in a table,
using, for example, indexed addressing, as we have done. A block nor­
mally refers to a group of data which has definite limits but whose con­
tents are not ordered. It may contain a string of characters; it may

540



DATA STRUCTURES

be a sector on a disk; or It may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random ele­
ment of the block.

In order to facilitate the retrieval of blocks of information, directo­
ries are used.

Directories

A directory is a list of tables or blocks. For example, the file system
will normally use a directory structure. As a simple example, the master
directory of the system may include a list of the users' names. This is il­
lustrated in Figure 9.2. The entry for user "John" points to John's file
directory. The file directory is a table which contains the names of all of
John's files and their location. This is, again, a table of pointers. In this
case, we have just designed a two-level directory. A flexible directory
system will allow the inclusion of additional intermediate directories, as
may be found convenient by the user.

USER DIRECTORY

JOHN'S
FilE DIRECTORY

JOHN
JOHN'S FILE

ALPHA

ALPHA

SIGMA - DATA

SIGMA

-

Fig. 9.2: A Directory Structure

Linked List

In a system there are often blocks of information which represent
data, events, or other structures which cannot be moved around eas-
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ily. If they could, we would probably assemble them in a table in order
to sort or structure them. The problem now is that we wish to leave
them where they are and still establish an ordering among them such as
first, second, third, fourth. A linked list will be used to solve this prob­
lem. The concept of a linked list is illustrated by Figure 9.3. On the il­
lustration, we see that a list pointer, called FIRSTBLOCK, points to the
beginning of the first block. A dedicated location within Block 1 such
as, perhaps, the first or the last word in it, contains a pointer to Block
2, called PTR 1. The process is then repeated for Block 2 and Block 3.
Since Block 3 is the last entry in the list, PTR3, by convention, either
contains a special "nil" value, or points to itself, so that the end of the
list can be detected. This structure is economical, as it requires only a
few pointers (one per block) and frees the user from having to physi­
cally move the blocks in the memory.

;~:;K1__Bl_O_CK_l__~ "'OC" &1L.-__Bl_OC_K_3_....Jlp

Fig. 9.3: A Linked List

Let us examine, for example, how a new block will be inserted. This
is illustrated by Figure 9.4. Let us assume that the new block is at ad­
dress NEWBLOCK, and is to be inserted between Block 1 and Block 2.
Pointer PTR 1 is simply changed to the value NEWBLOCK, so that it
now points to Block X. PTRX will contain the former value of PTR 1,
Le., it will point to Block 2. The other pointers in the structure are left
unchanged. We can see that the insertion of a new block has simply re­
quired updating two pointers in the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be removed
from this structure.

BLOCK I
FIRST

BLOCK '-- ---'--'

BLOCK X

BLOCK2 _____BL_OC_K_3_-J[rp

Fig. 9.4: Inserting a New Block
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Several types of lists have been developed to facilitate specific types
of access, insertions, and deletions to and from the list. Let us examine
some of the most frequently used types of linked lists.

Queue

A queue is formally called a FIFO, or first-in-first-out list. A queue
is illustrated in Figure 9.5. To clarify the diagram, we can assume, for
example, that the block on the left is a service routine for an output
device, such as a printer. The blocks appearing on the right are the re­
quest blocks from various programs or routines, to print characters.
The order in which they will be serviced is the order established by the
waiting queue. It can be seen that the first event which will obtain serv­
ice is Block I, the next one is Block 2, and the following one is Block 3.
In a queue, the convention is that any new event arriving in the queue
will be inserted at the end. Here it will be inserted after PTR3. This
guarantees that the first block to be inserted in the queue will be the
first one to be serviced. It is quite common in a computer system to
have queues for a number of events whenever they must wait for a
scarce resource, such as the processor or some input/output device.

SERVICE ROUTINE

NEXT

BLOCK I

r-- PTRl

1'--------'

1-
BLOCK 3

,

Ie PTR 3

+
L

BLOCK 2

pTR 2 -

Fig. 9.5: A Queue
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Stack

The stack structure has already been studied in detail throughout the
book. It is a last-in-first-out structure (LIFO). The last element depos­
ited on top is the first one to be removed. A stack may either be im­
plemented as a sorted block, or it may be implemented as a list. Because
most stacks in microprocessors are used for high-speed events, such as
subroutines and interrupts, a continuous block is usually allocated to
the stack instead of using a linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved
locations. The advantage of using a continuous block is fast retrieval
and the elimination of the pointers. The disadvantage is that it is usu­
ally necessary to dedicate a fairly large block to accommodate the
worst-case size of the structure. Also, it makes it difficult or impractical
to insert or remove elements from within the block. Since memory is
traditionally a scarce resource, blocks have usually been reserved for
fixed-size structures or structures requiring the maximum speed of re­
trieval, such as the stack.

Circular List

"Round robin" is a common name for a circular list. A circular list is
a linked list in which the last entry points back to the first one. This is il­
lustrated in Figure 9.6. In the case of a circular list, a current-block
pointer is often kept. In the case of events, or programs, waiting for
service, the current-event pointer will be moved by one position to the
left or to the right every time. A round robin usually corresponds to a
structure in which all blocks are assumed to have the same priority.
However, a circular list may also be used as a subcase of other struc­
tures simply to facilitate the retrieval of the first block after the last
one, when performing a search.

As an example of a circular list, a polling program usually goes in a
round robin fashion, interrogating all peripherals and then coming
back to the first one.

Trees

Whenever a logical relationship exists among all elements of a struc­
ture (this is usually called a syntax), a tree structure may be used. A sim­
ple example of a tree structure is a descendant, or genealogical, tree.
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YL-_EV_ENT_'---l~I-----.EVEN:--T2_r-- ... -1__EV_ENTN_0

CURRENT EVENT

Fig. 9.6: Round Robin is Circular List

This is illustrated in Figure 9.7. It can be seen that Smith has two chil­
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max
and Chris. However, Robert, on the left of the illustration, has no de­
scendants.

This is a structured tree. We have, in fact, already encountered an ex­
ample of a simple tree in Figure 9.2. The directory structure is a two­
level tree. Trees are used to advantage whenever elements may be classi­
fied according to a fixed structure. This facilitates insertion and re­
trieval. In addition, they may establish groups of information in a
structured way_ which may be required for later processing, such as in a
compiler or interpreter design.

Fig. 9.7: Genealogical Tree

Doubly-Linked Lists

Additional links may be established between elements of a list. The
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simplest example is the doubly-linked list. This is illustrated in Figure
9.8. We can see that we have the usual sequence of links from left to
right, plus another sequence of links from right to left. The goal is to
allow easy retrieval of the element just before the one which is being
processed, as well as just after it. This costs an extra pointer per block.

BLOCK 2 IHI BLOCK 3

Fig. 9.8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorting elements of a list depends directly on the type
of structure which has been used for the list. Many searching algo­
rithms have been developed for the most frequently used data struc­
tures. We have already used indexed addressing. This is possible when­
ever the elements of a table are ordered in function of a known
criterion. Such elements may then be retrieved by their numbers.

Sequential searching refers to the linear scanning of an entire block.
This is clearly inefficient but may have to be used when no better tech­
nique is available, for lack of ordering of the elements.

Binary, or logarithmic, searching attempts to find an element in a
sorted list by dividing the search interval in half at every step. Assum­
ing that we are searching an alphabetical list, one might start, for exam­
ple, in the middle of a table and determine if the name we are looking
for is before or after this point. If it is after this point, we will eliminate
the first half of the table and look at the middle element of the second
half. We compare this entry again to the one we are looking for, and we
restrict our search to one of the two halves, and so on. The maximum
length of a search is then guaranteed to be log2n, where n is the number
of elements in the table.

Many other search techniques exist.

SECTION SUMMARY

This section was intended as only a brief presentation of usual data
structures which may be used by a programmer. Although most com-
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mon data structures have been organized in types and given a name, the
overall organization of data in a complex system may use any combina­
tion of them, or require the programmer to invent more appropriate
structures. The array of possibilities is only limited by the imagination
of the programmer. Similarly, a number of well-known sorting and
searching techniques have been developed for coping with the usual
data structures. A comprehensive description is beyond the scope of
this book. The contents of this section were intended to stress the im­
portance of designing appropriate section structures for the data to be
manipulated and to provide the basic tools to that effect.

Actual programming examples will now be presented in detail.
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PART II - DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data struc­
tures: table, sorted list, linked list. Practical searching and insertion and
deletion algorithms will be programmed for these structures.

The reader interested in these advanced programming techniques is
encouraged to analyze in detail the programs presented in this section.

However, the beginning programmer may skip this section initially,
and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part of
this chapter is necessary to follow the design examples. Also, the pro­
grams will use all of the addressing modes of the Z80, and integrate
many of the concepts and techniques presented in the previous chapters.

Three structures will now be introduced: a simple list, an alphabetical
list and a linked-list plus directory. For each structure, three programs
will be developed: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common repre­
sentation for each list element:

c c c D D

~-----~----------3-byte label Data
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ENTER NEW ELEMENT

ENTRY

F ENTRIES

YTES

M= LENGTH OF

N= NUMBER 0

>-- -LABEL _I>--
MB

DATA

liVvvv ...

ENTlEN

ENTRY

TABLEN

TAB BASE

Fig. 9.9: The Table Structure

ENTlEN

\ ~ '"''
"eM,,' : I 'Nn"

, /r=JlOA>A
Fig 9.10: Typical List Entries in the Memory
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Each element, or "entry", includes a 3-byte label, and an n-byte block
of data, with n between 1 and 253. Thus, at most, each entry uses one
page (256 bytes). Within each list, all elements have the same length (see
Figure 9.10). The programs operating on these two simple lists use some
common variable conventions:

ENTLEN is the length of an element. For example, if each element
has 10 bytes of data, ENTLEN = 3 + 10 = 13

TABASE is the base of the list or table in the memory
POINTR is a running pointer to the current element
OBJECT is the current entry to be located, inserted or deleted
TABLEN is the number of entries.

All labels are assumed to be distinct. Changing this convention would
require a minor change in the programs.

TABASE

PQ1NTR

FREE SPACE

ElEMENT I

ElEMENT 2

CURRENT
ElEMENT

OBJECT
TO BE INSERTED

t lENGTH ""+ ENTLEN
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A SIMPLE LIST

The simple list is organized as a table of n elements. The elements are
not sorted (see Figure 9.11). When searching, one must scan through
the list until an entry is found or the end of the table is reached. When
inserting, new entries are appended to the existing ones. When an entry
is deleted, the entries in higher memory locations, if any, will be shifted
down to keep the table continuous.

Searching

A serial search technique is used. Each entry's label field is compared
in turn to the OBJECT's label, letter by letter.

The running pointer POINTR is initialized to the value of TABASE.

SEARCH

fOUND
(SET A TO "ff")

YES

YES
>-----1... fAILURE EXIT

Fig. 9.12: Table Search Flowchart
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The search proceeds in the obvious way. and the corresponding flow­
chart is shown on Figure 9.12. The program appears on Figure 9.16
at the end of this section (program "SEARCH"). A sample run of the
program is shown in Figure 9.17.

Inserting

When inserting a new element, the first available memory block of
(ENTLEN) bytes at the end of the list is used (see Figure 9.11).

The program first checks that the new entry is not already in the list
(all labels are assumed to be distinct in this example). If not, it incre­
ments the list length TABLEN, and moves the OBJECT to the end of
the list. The corresponding flowchart is shown in Figure 9.13.

The program is shown in Figure 9.16. It is called "NEW" and resides
at memory locations 0135 to 015E.

The index register IY points to the source. HL and DE are destina­
tion pointers.

IS OBJECT IN? >-....;Y..::;:ES~ EXIT

INSERT OBJECT

END

Fig. 9.13: Table Insertion Flowchart
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Deleting

In order to delete an element from the list, the elements following it
in the list at higher addresses are merely moved up by one element posi­
tion. The length of the list is decremented. This is illustrated on Figure
9.14.

The corresponding program is straightforward and appears on Fig­
ure 9.16. It is called "DELETE", and resides at memory addresses
015Fto 0187. The flowchart is shown in Figure 9.15.

Memory location TEMPTR is used as a temporary pointer pointing
to the element to be moved up.

During the transfer, POINTR always points to the "hole" in the list,
i.e., the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.
Note how the LDIR instruction is used for efficient automated block

transfer (refer to address 0178 in Figure 9.16).

NEWBLOC
LD
LD
LDlR
DEC
lP

A,B
BC, (ENTLEN)

A
NZ, NEWBLOC

BLOCK COUNTER
BLOCK LENGTH

BEFORE AFTER

DELETE

TEMPTR

8
G
0)

- 8

~- 0
8

MOVE

MOVE

8
-e.' G

(2)
0
G

Fig. 9.14: Deleting an Entry (Simple List)
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FIND ENTRY

NO
FOUND? >---.... OUT

DECREMENT TABLE LENGTH

FIND NBR OF ENTRIES
AFTER OBJECT IN TABLE

O?
YES

>---.... EXIT

DECREASE COUNT OF
ENTRIES REMAINING
AFTER THE ONE SHIFTED

NO
>---.... OUT

Fig. 9.15: Table Deletion Flowchart
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0000 ORG 0100H
(0187) ENTLEN ['L ENDER
(0189> TABLEN DL ENIlER+2
( 018A) TABASE DL ENDEfN3
<018C) TEMP DL ENDER+5

0100 1600 SEARCH LD D,D CLEAR D
0102 3A8901 LD A, (TABLEN) CHECK FOR A ZERO TABLE LENGTH
0105 A7 AND A SET FLAGS
0106 C8 RET Z
0107 47 LD EI,A ;STORE TABLE LENGTH
0108 DD2A8AOl LD IX,<TABASE) ,PUT BASE ADDR. IN IX
Oloe D[l7£00 LOOP LD A,(IX+O) jCH£CK FIRST LETTER OF ENTRY
010F FDBEOO CP <IHO)
0112 C22701 JP NZ,NEXTONE
0115 [I[l7E01 Lt' A, (IX+l j ;CHECK 2ND LETTER
0118 FDBEOI CP (IY+l )
011B C22701 JP NZ,NEXTONE
011E DD7ED;: LD A,(IX+2) ; CHECK 3RD LETTER
0121 FDBE02 CP (IY+2 )
01.24 CA3201 JP Z,FOUND ;EXIT IF ALL LETTERS MATCH
0127 05 NEXTONE [lEC B ;[lECREMENT TABLE LENGTH COUNTER
0128 C8 RET Z jEXrT IF AT END OF TABLE
0129 £[1588701 LD DE,(ENTLEN) ;SET IX TO NEXT ENTRY ADDR.
012[1 D[119 ADD IX,DE
012F C30COl JP LOOP iTRY AGAIN
0132 16FF FOUND LD [l,OFFH ;SET D TO SHOW IX CONTAINS ADDR.
0134 C9 RET ; .• OF ENTRY IN TABLE

0135 CDOOOl NEW CALL SEARCH ;SEE IF OBJECT IS THERE
0138 14 INC D
0139 CASED1 JP Z,OUTE ;IF D WAS FF, EXIT
013C 3A8901 LD A, (TABLEN)
013F 5F LD E,A ;LOAD E WITH TABLE LENGTH
0140 3C INC A
0141 328901 LD (TABL£N),A ; INCREMENT TABLE LENGTH
0144 1600 LD [1,0
0146 2A8AOl LD HL,{TAFASE)
0149 ED4B8701 LD Be, ( ENTLEN ) ;SET B TO LENGTH OF AN ENTRY
014[1 41 LD F.t,C
014E 19 LOOPE ADD HLrDE
014F 10FD DJNZ LOOPE ;ADD HL TO <ENTLEN"TABLEN)
0151 ED4B8701 LD BC,{ENTLEN)
0155 FDE5 PUSH IY ;MOVE IY TO DE
0157 Dl POP DE
0158 EB EX DE,HL
0159 EDBO LDIR ;MOVE MEMORY FROM OEUECT TO END
015B 01FFFF LD BC,OFFFFH ; •• OF TABLE
015E C9 OUTE RET

015F CDOOOl DELETE CALL SEARCH ;FIND ENTRY TO BE DELETED
01i'J2 14 INC D ;SEE IF IT WAS FOUND
0163 C28601 JP NZrOUT
0166 3A8901 LD Ad TABLEN) ;DECREMENT TABLE LENGTH
0169 3D DEC A
016A 328901 LD (TA!iLEN) .A
016[1 05 DEC B ;B NOW=~ OF ENTRIES LEFT IN TABLE
016E CA8301 JP Z,EXIT ; .. AFTER ONE TO BE DELETED
017.1 [IDES PUSH IX ;MOVE IX TO DE
0173 Dl POP DE
0174 2A8701 LD HL,(ENTLEN) ;5ET HL ONE ENTRY AHEAD OF DE
0177 19 ADD HL,DE
0178 78 LD A,B ;5£T BLOCK COUNTER
0179 E[l4B8701 NEWBLOC LD BC,{ENTLEN) ;SET BLOCK LENGTH COUNTER
017D EDBO LDIR ;SHIFT 1 ENTRY OF TABLE
017F 3D DEC A
0180 C27901 JP NZ,NEWBLOC ;SHIFT ANOTHER BLOCK
0183 01FFFF EXIT LD BC,OFFFFH ;SHOW THAT IT WAS DONE
0186 C9 OUT RET

0187 (0000) ENDER END

Fig. 9.16: Simple List-The Programs
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SYMBOL TABLE

DELETE 015F ENDER 0187 ENTLEN 0187 EXIT 0183 FOUND 0132
LOOP 010C LfJOPE 014E NEW 0135 NEWBLO 0179 NEXTON 0127

OUT 0186 OUTE 015E SEARCH 0100 TABASE O18A TABLEN 0189

TEMP 018C

Fig. 9.16: Simple List- The Programs (cont.)

Display Memory Listing of Objects

wHh their locations
In memory

. DM3QO
0300 53 4F 4E 31 31 31 31 31-31 31 31 31 31 00 00 00 SON1111111111. .•
03JO 44 41 44 31 32 32 32 32-32 32 31 31 32 00 00 00 DAD2222222222 •••
0320 4[1 4F 4D 33 33 33 33 33-33 33 33 33 33 00 00 00 MOM3333333333 •••
0330 55 'IE 43 34 34 34 34 34-34 34 34 34 34 00 00 00 lINC4444444444 •• ,
0340 41 4E 54 35 35 35- 35 35-35 35 35 35 35 00 00 00 ANT5555555555 •••
0350 00 00 00 00 00 00 00 00·_()0 00 00 00 00 00 00 00 .............. "
0360 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ., ..............
0370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .... , ...........
-5Y
y=oooo 300 Set HY to 0300H (pointer to OBJECT)

-8193/196

P=0196 0196 . Run 'INSERT'
Table configuration

-[IM400
after program run

0400 53 4F 'IE 31 31 31 31 31-31 31 31 31 31 00 00 00 50N1111111111. ••
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .... , ...........
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............ , ...
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
-5Y
Y=0300 310 Set IY to 0310H (next OBJECT)

-G193/196

F'=0196 0196 ' Run 'INSERT'

Table configuration
after second insert

-[IM400
0400 53 'IF 4E 31 31 31 3.1 31-31 31 31 31 31 44 41 44 SON1.111111111DAD
04.10 32 32 32 32 32 32 32 32-32 31 00 00 00 00 00 00 """""""''''''14.__ 4.~ ... _.,;..,;..,;. ••••••

0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .... , ...........
0440 00 00 00 00 00 00 00 00'-00 00 00 00 00 00 00 00 ................
0450 00 00 00 00 00 00 00 00'-00 00 00 00 00 00 00 00 .', ... , ... , .....
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .. , .... , .. " ....

(More insertions)
.

Table configuration
after several inserts

-[IM400
0400 53 'IF 4E 31 31 31 31 31--31 31 31 31 31 44 41 44 SON1111111111DAD
0410 32 32 32 32 32 32 32 32·-32 32 55 'IE 43 34 34 34 2222222222UNC444
0420 34 34 34 34 34 34 34 4[1-4F 4[1 33 33 33 33 33 33 4444444MOM333333
0430 33 33 33 33 41 'IE 54 35-35 35 35 35 35 35 35 35 3333ANT555555555
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 J •••••••••••••• ,

0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .. ,' .. ,., ..... "
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............... ,
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ..... , .. , .......

Fig. 9.17: Simple List-A Sample Run
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-SY
Y=0340 3:20
-0190/193

P=0193 0193' Run 'SEARCH'

-[lR
Z N

I
Reg D shows that Object was found

Register contents

A=4D BC=02FF DE=FFOD HL=034D 5=0100 P=0193 0193' CALL 0135
A'=OO B'=OOOO D'=OOOO H'=OOOQ X=0427 Y=0320 1=00 (0135')

LAddress of Object

-G196/199

P=0199 0199' Run 'DELETE' Table configuration
aftef deletion

-DM400
0400 53 4F 4£ 31 31 31 31 31-31 31 31 31 31 44 41 44 SONI111111111DAD
0410 32 32 32 32 32 32 32 32-32 32 55 4£ 43 34 34 34 2222222222UNC444
0420 34 34 34 34 34 34 34 41-4£ 54 35 35 35 35 35 35 4444444ANT555555
0430 35 35 35 35 41 4E 54 35-35 35 35 35 35 35 35 35 5555ANT555555555
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 5 •.•.••••••.•••.
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 , ........ , ... , ..
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................

-SY

Y=0240 340 I
-G196/199 Delete last entry in table Note: no apparent

P=0199 0199' change in table

-DM400
configuration

0400 53 4F 4E 31 31 31 31 31-31 31 31 31 31 44 41 44 SON1111111111 DAD
0410 32 32 32 32 32 32 32 32-32 32 55 4£ 43 34 34 34 222222222211NC444
0420 34 34 34 34 34 34 34 41-4£ 54 35 35 35 35 35 35 4444444ANT555555
0430 35 35 35 35 4.1 4E 54 35-35 35 35 35 35 35 35 35 5555ANT555555555
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 5 •••••••• > •••• >.

0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............... ,
0460 00 00 00 00 00 00 00 00-·00 00 00 00 00 00 00 00 ................
0470 00 00 DO 00 00 00 00 00-00 00 00 DO 00 00 00 00 ................

-[lM189S1

~6nO/n3-- Memory location 'TARLEN' - shows true length of table

P=0193 0193' Run 'SEARCH' for deleted Object

-Dr,
Z N

...c--DShOWS that Object was not found

A::::55 BC=OOFF DE=OOO[l Hl=0441 5=0100 P::::0193 0193' CALL 0135
A'=OO 9'=0000 D'=OOOO H'::::OOOO X::::041A Y=0340 1=00 (0135")

Fig. 9.17: Simple List- A Sample Run (cont.)
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ALPHABETIC LIST

The alphabetic list, or "table," unlike the previous one, keeps all
its elements sorted in alphabetic order. This allows the use of fast­
er search techniques than the linear one. A binary search is used here.

Searching
The search algorithm is a classic binary search. Let us recall that

the technique is essentially analogous to the one used to find a name in
a telephone book. One usually starts somewhere in the middle of the
book, and then, depending on the entries found there, goes either back­
wards or forward to find the desired entry. This method is fast and
reasonably simple to implement.

The binary search flowchart is shown in and the program Fig. 9.18,
is shown in Fig. 9.23.

This list keeps the entries in alphabetical order and retrieves them by
using a binary or "logarithmic" search. An example is shown in Figure
9.19. The search is somewhat complicated by the need to keep track of
several conditions. The major problem to be avoided is searching for an
object that is not there. In such a case, the entries with immediately
higher and lower alphabetic values could be alternately tested forever.
To avoid this, a flag is maintained in the program to preserve the value
of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented
reaches a value of "1", another flag called' "CLOSENOW", which we
will abbreviate to "CLOSE", is set to the value of the COMPRES
flag Thus, since all further increments will be "1", if the pointer goes
past the point where the object should be, COMPRES will no longer
equal CLOSE and the search will terminate. This feature also enables
the NEW routine to determine where the logical and physical pointers
are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the table, and the running
pointer is incremented by one, the CLOSE flag will be set. On the next
pass of the routine, the result of the comparison will be opposite to the
previous one, The two flags will no longer match, and the program will
exit indicating "not found".
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FLAGS = 0

LOGICAL POSITION =
INCREMENT VALUE =
TABLE LENGTH /2
(ADD 1 IF IT WAS ODD)

~---.-. NOT FOUND

'-------,-----;==::::..---(ENTRY)

YES
>---'-'FQUND

YES

(NEXT TEST) (LAST ONE)

Fig. 9.18: Binary Search Flowchart
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(NEXTTEST)

NOT FOUND

SUB fF

(lAST ONe I

YES

I ADO

w~ I~A~~E~~~T ").:;"::5 -.
OF TABLE?

NOT
FOUND

(ENTRY)

YES Will INCREMENT
r------~C GO PAST END

OF TABLE?

560
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The other major problem that must be dealt with is the possibility of
running off one end of the table when adding or subtracting the incre­
ment value. This is solved by performing a test "add" or "subtract"
using the logical pointer and length value which record the actual num­
ber of entries, not the physical positions in memory used by the physical
pointers. '

In summary, two flags are used by the program to memorize infor-

(0121) LD A, C
SRL A
ADC 0

LD C, A

o~ HSYBH

TABASE

AAA

BAC

Fil

'~ TES

1"0'
TES XYZ

XYZ

FIRST TRY
SEARCH INTERVAL 5

SECOND TRY
SEARCH INTERVAL = 2

Fig. 9.19: A Binary Search
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mation: COMPRES and CLOSE. The COMPRES flag is used to preserve
the fact that the carry was either' '0" or "1" after the most recent com­
parison. This determines if the element under test was larger or smaller
than the one with which it was compared. The C indicates the relation.
Whenever the carry C was "1", and the element was smaller than the
object COMPRES is set to "1". Whenever the carry C was "0", indi­
cating that the element was greater than the object, COMPRES will be
set to "FF" .

The second flag used by the program is CLOSE. This flag is set equal
to COMPRESS when the search increment INCMNT becomes equal to
" I". It will detect the fact that the element has not been found if
COMPRES is not equal to CLOSE the next time around.

Other variables used by the program are:

LOGPOS which indicates the logical position in the table
(element number)

INCMNT which represents the value by which the running
pointer will be incremented or decremented if
the next comparison fails

TABLEN represents as usual the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to
assure that the limits of the list are not exceeded.

The program called "SEARCH" is shown on Figure 9.23. It resides
at memory locations 0100 to 0 ICF, and deserves to be studied with care,
as it is much more complex than in the case of a linear search.

An additional complication is due to the fact that the search interval
may at times be either even or odd. When it is odd, a correction must
be introduced. (It cannot, for instance, point to the middle element of a
four-element list.) When it is odd, a "trick" is used to point to the
middle element: the division by 2 is accomplished by a right shift. The
bit" falling off" into the carry after the SRL instruction will be "I" if
the interval was odd. It is merely added to the pointer.

The OBJECT is then matched against the entry in the middle of the
new search interval. If the comparison succeeds, the program exits.
Otherwise ("NOGOOD"), the carry is set to "0" if the OBJECT is less
than the entry. Whenever the INCMNT becomes" I", the CLOSE flag
(which had been initialized to "0") is then checked to see if it was set. If
it was not, it gets set. If it was set, a check is run to determine whether we
passed the location where the OBJECT should have been but is not.
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Also note that when the carry was" 1", the running pointer will point
to the entry below the OBJECT.

Element Insertion

In order to insert a new element, a binary search is conducted. If the
element is found in the table, it does not need to be inserted. (We
assume here that all element are distinct). If the element was not found
in the table, it must be inserted immediately before or immediately after
the last element to which it was compared. The value of the CaMPRES
flag after the search indicates whether it should be inserted immediately
before or immediately afterwards. All the elements following the new
location where it is going to be placed are moved down by one block
position, and the new element is inserted.

BEFORE

TABASE- AAA

ABC

BAT

TAR

ZAP

AFTER

AAA

ABC

BAC

BAT

TAR

ZAP

_NEW
ElEMENT

OBJECT --{,-__B_A_C IMOVE DOWN

Fig. 9.20: Insert: "BAC"
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The insertion process is illustrated in Figure 9.20, and the corre­
sponding program appears in Figure 9.23.

The program is called NEW, and starts at memory location OIDO.
Note that the automated Z80 instructions LDDR and LDIR are used for
efficient block transfers.

Element Deletion

Similarly, a binary search is conducted to find the object. If the
search fails, it does not need to be deleted. If the search succeeds, the
element is deleted, and all the following elements are moved up by one
block position. A corresponding example is shown in Figure 9.21, and
the program appears in Figure 9.23. The flowchart is shown in Fig.
9.22.

The program is called "DELETE" and resides at address 0221.

A sample run of the above programs is shown in Fig. 9.24.
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MOVE UP

BEFORE

AAA

ABC

BAC -

BAT

TAR

ZAP

DELETE

Fig. 9.21: Delete "RAC"

AFTER

AAA

ABC

BAT

TAR

ZAP
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DELETE

NO

,...----------

COUNT HOW MANY
ElEMENTS FOllOW THE

ONE TO BE DELETED

RESULT = COUNTER
(LOG POS)

TRANSFER IT UP ONE BLOCK

POINT TO NEXT ENTRy
POINTER = POINTER IDESTINATiON,

DECREMENT LOGPOS

SET 2 flAGS

RTS

NO

Fig. 9.22: Deletion Flowchart (Alphabetic List)
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0000 nr';:[i o lOOH
(0:14f'\ ) CLOSENOW m FN[lEf!
(024fl) CllMPRES D! ENVFD+l
(024C) TABLEN flL fNDED+2
(024[1 ) TABf'lSF [ll ENDELl+:j
<024Fi ENTLEN V1 ENJ)Elil5

OlOO 3(00 SEAr~CH ID A,O
0102 324AO:' LV (CLOSENOW) '/1 ,lETiO FLAG Ll.lCAT ION!;
010~:i 324B():~ LV (COMPRFS),A
0108 57 LD [Iff'!

0109 2A4[102 L[l HI. 1 (TAI3ASE i ;INITIALIZE Hl
Oloe 3A4CO:! L[l A, ("fr"lBL.ENl
OlOF CB3F !Jf...:t A ;ilTVIDE flY
0111 eEOO ADC 0 ;ADD 1. 'S 1)1 T BACK IN
0113 4F LLl e,A iSTOHE AS I Ncr...;EMEN', VALUF
0114 47 LD lirA ;STfJRE AS LOGICAL POSITION I)ALUE
011::; CABAOI ,IF" Z,NOTFOUND ; CHECK IF LENGTH IS ZEF\!J
OUll 5F Lfi E,A 'MUL TIFT Y (E-l )::ENTLEN
O.11Q ", [lEC E
01 iA CnElDal CALl MULl
011[1 19 ADD HI. r DE ;5(T Ht. TO MIDDLE OF T(')BLE
OUE £5 ENTRY PUSH HL ;LflAD Ht. INTO IX
OllF (I[lE1 PDf' 'X
0121 79 LD ArC iI.iIVlfrE lNCREMENl IJALUE flY lWO
OJ c2 CB3F SRL A
Ol~4 CEOO ADC 0
0126 4F LD e,A
0127 [lD7EOO LD A,(!X+O) ; C()HF'ARE FIRST LETTER
012A FDBEoO CP <IY+O)
012[1 C24201 . IF' NZ,NOGOOD
0130 [I[l7E01 LV A, (TX+1.1 ;COMPARE 2ND LETTER
0133 F[l£IEOl CF' (IY+l)
0136 C24201 .JF' N!,NOGOOD
0139 DD7E02 LD ArCIX+2) ICOMPARE 3RD LETTER
013C FDBE02 CF' (IYt:-: )
013F CABCOl ,'F' Z,FOllNn
0142 3EOl NnGOOD LD Ad ; SET COMPARE RESULl FLAG IO
0144 [tA4901 ,JF' C, TESTS ; •• RESULT OF COMPARE (1 ,FF)
0147 3EFF LD A,OFFH
0149 324B02 TESTS LD <COHPRES),A
014C 79 LD ('\,e ; IS INCREMEN1 VALUE l?
O14D 3D [IEC A
O!4E C26901 .IF' N7,NEXTEST
0151 3A4A02 LD A,(CLOSENOWl iYES, IS CLOSE FLAG SET'?
0154 A7 AND A
0155 CA6301 JP Z, NOTCLOSE
0158 57 LD [I,A : YES, SEE IF HAVE PASSED WHERE
0159 JA4B02 LD A,(COMF'RES) ; •• ENTRY SHOULD BE BUT ISN'T
Dl5C 92 SUB D
015[1 CA6901 .JP Z, NEXTES'I
0160 C3BAOl .JP NOTFOUND
0163 3A4Et02 NOTCUJSE LD A,(COMPRES) ISET CLOSE FLAG Til DIRECTION OF
0166 324A02 LV (CLOSENOW) 1 A ••• SEARCH Tll PI:":EVENT F:EPETI TI ON
0169 [lDE5 NEXTEST FUSH IX ; F'REF'ARE HL AND DE FOR AnD m,
016B El POP ilL " .SUB llF INCREMENT VALUE
016C 59 LD E,C
016D CDBDOI CALL MULl
0170 3A4B02 LD A,(COMPRES) 'TEST IF WANT fO AnD 01;: SUE!
0173 3C [NC A
0174 C29601 .JP NZ,A[l[lIT
0177 78 LD A,El ,TEST TO SEE IF SUFI WILL RUN
017S 91 SlJIl C ; •• OFF rlCHTOM OF TABLE
017Q CASSOl ,JP Z,TOOLOW
017e DAS501 JP C,TOOLOW
017F 47 L[I i'{rA ;SET NEW LOGICAL POSITION VALUE
0180 £[152 SElC HL,DE ;CHf')NGE ADDRE~:iS ITSELF
0182 C31EOl JF' ENTRY
0185 78 TOOL OW L[I ArB ;SEE [F POSITION IS 1
0186 3[1 DEC A
0187 CABAOl JP Z,NOTFOUND ;IF ~W, EXIT
01SA ED5B4F02 L[I DE, (ENTLEN > ,JUST SUB 1 ENTRY PlJSITION
018E 37 SCF
018F 3F CCF
0190 ED52 SHe HL,DE
0192 05 DEC Eo ;CHANGE LOGICAL. POSITION
0193 C3AFOl JP REALCLOS

Fig. 9.23: Binary Search Program
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0196
0199
0191\
Ollf[i
OlIfF
OlifF
OlAO
OlAJ
OlA:'
OIAS
OlA6
OJ A9
OlA[I
OlAE
OlAF
OIB I
OlB4
01B?
01 BA
01 Br:

()1 l-lrr
01 BE
01BF
OleJ
() I r,4
01C8
0[C9
01 CA
01 ee
1)1 ell
() I cF
01 cr

OHIO
01 II,}
01 [r4

Ot Tl7
01 DA
01 IrB
OtTrE
011:!
nlF:'
{)1 E~

01F9
OlEn
()lEfr
()1EE
01FI
OlF:2
01F5
01F6
01F9
OlFA
01FEI
01FT
01FF
0:'00
0201
O:~05

0207
0208
O:::'OB
020C
020F
O:'OF
0210
0:'14
0216
0219
0:'1 A
0:'1 D
O:~:"O

3A4[02
909,
[IAA~jOl

19
78
81
47
C31 E01
81
CA[lA01
FDSEI4FO:'
19
04
OEOl
3A4BO::'
3241'10:'
C31EOI
16FF
[9

[5
1600
:::'10000
[I!4Fl4FO~'

41
J 9

10FII
C1
Ff!
E 1
e'l

[nooo!
14
C:-';-'002
.3A4CO:'
A]

CAOCO~

3A4B07
1C
CA[jID!
E!l5tI4FO:'
19
[3FE01
O:i
:~A4r:O~

90
CAOCO~

CIrflDOl
19
7Fr
EB
:'A4FO:'
19
fB
Ffi4F!4F02
F fiBS
][1

C20 I 0:'
:::'3
FfIE:;
['1
EB
E[t4FI4FO:'
~[rFlO

3A4C02
3C
T24CO:::'
01FfTF
C9

AVIllT 1..[1

SUB
SUIl
,JF'
Allll
LI:t
AIID
Llr
,If-'

TunlHGH (HrIt
.Jf'
LD
trltlt

INC
F:E()L CLUS LD

Lfr

LV
,W

N()TFDUNft LV
FOUNtt h:f I

MIll 1 f'U'../H
f<U~;H

I.ft
Lfl
I,ll
111

t"lP!l[M AIlll
U,JNl
PDP
EX
~'[Jr'

fa j

NFW Ct"ll!
INC
1f'

I,il
ANn
Jf-'
LV
fN!:
.Jf'

APlr
,IF'

HI~:;fnF nEe
SFIUP Lir

SUB
,Jf'

Ln
CAL!
APT!
[tEC
EX
LII
fl[l[l
EX

MflVEM 1.[1

L[lflF\
nEe
.IF'
INC

INSERT PUSH
P1W
EX
Ln
LitIR
Lfl
1NC
1.[1

Lfl
mJ'J h'Fl

A. (T ABLLN)
;,
e
C,lODHIGH
HL,[W
A,fl
C
fr,A
ENlf\Y
r.
Z, NUITUUNfi
[IE, (ENTLEN)
HI.. .ltt
!<
C, [
A. (CUMPr-.:rs>
(Cl nSENllW) ,A
EN Tr,'Y
jl.OFTll

1<1
E1C
[lrO

HI. ,()OOO
Ilf::,(nnl IN)
H, C
Hl • fir
AflIlfM
[If:
[l[ rill

111

SFt"lRCH

"NZ .OUl
A.(TM:l! FN)
o
711 NSERf
A. (crlMJ'RF~J>
o
7, HI!; ifl!
ltF. (FNT! FN)
HL, [IF
Sf I Uf'
!,
(). (T()HI.fN)

"?, IN~~r· In
F.A
MULl
HL.flJ
Hl
rrF .HI
HL.fENnFN)
HL,ItE
DE·HI
F1C, (FNTLFN)

o
NZ. M(Jl)FM
HI
IY
DE
flF,HL
llC, (ENT[FN >

tr, (r()BLEN)
A
(rABLENl.()
BC.OFFFFH

DATA STRUCTURES

;TE!1! Tf) SEE IF C1JRRENl POSIlTON
; • F'LU~~; f NCI\FMFNI WI U GO PAS·I

• FNfr Of THC TM.1Li

• J S 01\, CHflNGf ACTUA! Af.JI1R[SS
; CHANGE" Lon I (:AI POS. l)ALUE

;S[E IF f'Usn ION IS AT HJF' OF
• ,TliFll[ (!;I'lMF AS rAI.HFN·-·Er)
, Allfr 1 ENTriY r'us l' T rON

• fNCI~[MFNI 1.. Uf-iTCil( F'OSITTUN
;!:jF'I INCREMrNI 10 I
;!:iFr CUJSF FIM; TO COMl"ilRf

.I\LSUL J

~MllJ lIF'I.IFS f HY (INIlrN)~

,1}trlllF TN IIF (IN FXli

;~;F!' [f UBnTI 1':; Alh:l:l'lltY IHrr~:F

;CHFL:h Fill,: 0 IArllf·

; r:OMF'Rf:!) I ':;FT HL AFlUVf. WHFf;'1

• .. OBJECT SHDUt lJ GO

;COMPRES-O. Sfl B FOR S!JBT'R()C'I
; SE.F HOW Mf-lNY tNl RES fll\'f. l.FF'1

;SC'i HI 111 LAS·I POSITION TN LM; T
.FNlrn

; SF r rtF I FNl RY nBOVE HI

;SHlf~'T IJP ONE FNTRY OF MEMORY

;REF'EA'I ff NECCES~1Iih'Y

;~fL 15 FRONT OF NOW EMPTY SPACE
;LOnD OB,IECr INfO EMPTY SPACE

'fNCf\FMENT fABLE LENGTH

;SHOW THAT IT WnS DONE

Fig. 9.23: Binary Search Program (cont.)
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0221 eDDOO! DELETE CALL SEARCH ;GET ADDRESS OF OB.JECT
0224 14 INC D ;SEE IF OBJECT IS THERE
0225 CA4902 JF' Z ,OUTE

0228 ED5EI4F02 LD DE, (ENTLEN)
022C EB EX DE,HL
022D 19 ADD HL,DE j[lE IS LOC. OF OBJECT, HL IS
022E 3A4C02 LD A, (TAEtLEN) , •• ONE ENTRY OBOVE
0231 90 SUB B ;SEE HOW MANY ENTRIES ARE LEFT
0232 CA3F02 JF' Z,DOWNTAB
0235 ED4B4F02 SHIFTIN LD BC,(ENTLEN)
0239 EDBO LDIR ; SHIFT DOWN 1 ENTRY LENGTH
023B 3D DEC A
023C C23502 Jf' NZ,SHIFTIN
023F 3A4C02 rrOWNTAB LD A,(TABLEN> ; [lECREMENT TABLE LENGTH

0242 3D DEC A

0243 324C02 LD (TABLEN) ,A

0246 01FFFF LD BC,OFFFFH ;SHOW THAT ACTION WAS TAKEN
0249 C9 OUTE RET

024A (0000) ENDED END

SYMBOL TABLE

ADDEM 01C9 ADDIT 0196 CLOSEN 024A COMPRE 0248 DELETE 0221
DOWNTA 023F ENDED 024A ENTLEN 024F ENTRY 011E FOUND 01BC
HISIDE 01ED INSERT 020C MOVEM 0201 MULT OlBD NEW 01DO
NEXTES 0169 NOGGOD 0142 NOTCLO 0163 NOTFOU 01BA OUT 0220
OUTE 0249 REALCL OlAF SEARCH 0100 SETUP 01EE SHIFTI 0235
TABASE 024D TABLEN 024C TESTS 0149 TOOHIG OlAS TOOL OW 0185

Fig. 9.23: Binary Search Program (cont.)

UNKEDUST

The linked list is assumed to contain, as usual, the three alphanu­
meric characters for the label, followed by one to 250 bytes of data, fol­
lowed by a two-byte pointer which contains the starting address of the
next entry, and lastly followed by a one-byte marker. Whenever this
one-byte marker is set to "1", it will prevent the insert-routine from
substituting a new entry in the place of the existing one.

Further, a directory contains a pointer to the first entry for each let­
ter of the alphabet, in order to facilitate retrieval. It is assumed in the
program that the labels are ASCII alphabetic characters. All pointers at
the end of the list are set to a NIL value which has been chosen here to
be equal to the table base, as this value should never occur within the
linked list.

The insertion and the deletion program perform the obvious pointer
manipulations. They use the flag INDEXED to indicate if a pointer
pointing to an object came from a previous entry in the list or from the
directory table. The corresponding programs are shown in Figure 9.29.

The data structure is shown in Figure 9.25.
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DATA STRUCTURES

-[fM400 Jniliallahll'
0400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .......... , .. ,.,
0410 00 00 on 00 00 00 00 00-00 00 00 00 00 00 00 00 , ........ " .....
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .... , .... "., ...
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0440 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ................
04'30 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 .... , ... , .......
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............ , ...
0470 00 00 (>0 00 00 00 00 00-00 00 00 00 00 00 00 00 ........ , .......

ListIng of ObJeds

and their Im'utions

-DM300
mmcmnrl

0300 53 4F 4E 31 31 31 31 31-31 31 31 31 31 00 00 00 SONll11111111 ••.
03JO 44 41 44 3::' 3::' 3? 3:' 3~:-'-3:: 3:1 3c 3'2 3:~ 00 00 00 i1AfJ2:::'.::'.'2::'.:222::'. •••
03:?O 4[< 4F 4[< 33 ~n :n 3J 33-33 33 33 33 33 00 00 00 MOM3333333333 •• ,
0330 55 4£ 43 34 34 34 34 34-- 34 34 34 34 34 00 00 00 UNC4444444444. , •
0340 41 4[ 54 35 35 3~j 3:i 35-<i5 35 35 35 35 00 00 00 ANT5555555555 •• ,
03~;O 00 00 00 00 00 00 00 00'·-00 00 00 00 00 00 00 00 ................
0360 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ........ , .......
0370 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ............ , .. ,

-Sy
y=oooo 3:'0)-G26;3,':7t~/' Run 'INSERT'
r'''''O:'66 02bf, .

- IrM400 Table after Insertion
r)400 4r, 4F <H,1 33 33 33 33 33-3~_; 33 33 33 33 00 00 00 MOM3333333333 •••
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............ , ...
04~0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 , .............. ,
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ", ....... , ....
0440 00 00 00 00 00 00 00 OO~-OO 00 00 00 00 00 00 00 _ .. , ............
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .. , ......... , ...
1)4 ..iO 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 , ..... , .........
04'70 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .... , .......... ,

-Sy

J
Y=0320 310
-G2t~J/266 Run 'INSERT' on anolher Objecl
f''--"O:_~,',6 0:'.'<':,6 Llsling of lablc aftcl'"

insertion. Note: table

-IIM'lOO
IS kep1 alphabetic

0400 44 41 44 32 32 3:' 3::' 32-"32 32 3c 32 32 4[1 4F 4[1 DAD2'222222222MOM
0410 33 33 33 33 33 33 33 33---33 33 00 00 00 00 00 00 3333333333 ••.•••
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 , ........ ,'., ...
0430 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ............... ,
0440 00 00 00 00 00 00 00 00,-00 00 00 00 00 00 00 00 ........ , .......
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
04bO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ., ..............
0"1'/0 00 00 00 \H) 00 00 00 00-00 00 00 00 00 00 00 00 ..... , ..... " ...

• (additional inserts) •

Fig. 9.24: Alphabetic List-A Sample Run

569



PROGRAMMING THE zao

Table configuration
afler all Objeels

-DM400 have been inserted

0400 41 4E 54 35 35 35 35 35-35 35 35 35 35 44 41 44 ANT5555555555DAD
0410 32 32 32 3:- 32 32 32 32-32 32 4[1 4F 4[1 33 33 33 2222222222MOM333
0420 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 3333333S0N111111
0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 l111UNC444444444
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 4 ...............
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ,., .............
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................

-SY IY=0340.300
-G260/263 Run 'SEARCH' for "SON" (at address 0300)
P=0263 0263'

-DR .....c;;::- Found
z A=4E BC=0401 DE=odoD HL=0427 5=0100 P=0263 0263' CALL 01DO

A'=OO B'=OOOO [1'=0000 H'=OOOO X=0427 Y=Q300 1=00 <OlDO'i

'---C..-.Address of Object in table
(verify ill Table above that it is "SON")

-G266/269

-DM400
0400 41 4E 54 35 35 35 35 35-35 35 35 35 35 44 41 44
0410 32 32 32 32 32 32 32 32-32 32 4[1 4F 4[1 33 33 33
0420 33 33 33 33 33 33 33 55-4E 43 34 34 34 34 34 34
0430 34 34 34 34 55 4E 43 34-34 34 34 34 34 34 34 34
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

-G260/263
Try run of "SEARCH again (on "SON")

P=0263 0263'

P=0269 0269'
Run 'DELETE' on "SON"

Table configuration
after deletion. Note:
thaI UNC was shifted
up. The last UNC
entry must be

disregarded

ANT555555555SDAD
2222222222MOM333
3333333UNC444444
4444UNC444444444
4 •••••••••••••••

-DR ,..c.:;- Not found
5 N A=FE BC=0401 DE=FFOD HL=0427 5=0100 P=0263 0263' CALL 01DO

A'=OO 8'=0000 D'=0000 H'=OOOO X=0427 Y=0300 1=00 (OlDO')
-G263/266

Re-insert Object ("SON")
P=0266 0266'

-DM400
0400 41 4E
0410 32 32
0420 33 33
0430 31 31
()440 34 00
0450 00 00
0460 00 00
0470 DO 00

-DR

Current table
configuration.
Compare to the one
prior 10 the
DELIo,E

54 35 35 35 35 35-35 35 35 35 35 44 41 44 ANT5555555555DAD
32 32 32 32 32 32-32 32 4I> 4F 4[1 33 33 33 2222222222MOH333
33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 3333333S0N111111
31 31 55 4E 43 34-34 34 34 34 34 34 34 34 l1111JNC444444444
00 00 00 00 00 00-00 00 00 00 00 00 00 00 4 •••••••••••••••
00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
~ Shows that action was executed

BC:oFFFF DE=0434 HL=030D S=0100 P=0266 0266' CALL 0221
B' =0000 [1'=0000 H' =0000 X=0427 Y=0300 1=00 (0221')

Fig. 9.24: Alphabetic List-A Sample Run (cont.)
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DATA STRUCTURES

DIRECTORY

"A"

"R"

POINTER

Il A

ilPOINTER A

~
Nil

POINTER

Fig. 9.25: Linked List Structure

An application for this data structure would be a computerized ad­
dress book, where each person is represented by a unique three-letter
code (perhaps the usual initials) and the data field contains a simplified
address, plus the telephone number (up to 250 characters). Let us exam­
ine the structure in more detail on Figure 9.23. The entry format is:

~::-::::::~===~v-~~-,--::,=- v:::::::_~+-;-'

unique label data (l to 250 bytes) pointer to
(ASCII) next

occupied

As usual the conventions are:

ENTLEN:
TABASE:

total element length (in bytes)
address of base of list

The address of the OBJECT is always assumed to reside in the IY register
prior to entering the program. Here, REFBASE points to the base ad­
dress of the directory, or "reference table."

Each two-byte address within this directory points to the first occur­
rence of the letter to which it corresponds in the list. Thus, each group
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PROGRAMMING THE Z80

of entries with an identical first letter in their labels actually forms a sep­
arate list within the whole structure. This feature facilitates searching
and is analogous to an address book. Note that no data are moved dur­
ing an insert or delete. Only pointers are changed, as in every well­
behaved linked list structure.

If no entry starting with a specific letter is found, or if there is no en­
try alphabetically following an existing one, their pointers will point to
the beginning of the table (= "NIL"). At the bottom of the table, by
convention a value is stored such that the absolute value of the differ­
ence between it and "z" is greater than the difference between "A"
and "Z". This represents an End Of Table (EaT) marker. The EaT
value is assumed here to occupy the same amount of memory as a nor­
mal entry but could be just one byte if desired. The letters are assumed
to be alphabetic letters in ASCII code. Changing this would re­
quire changing the constant in the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the
table ("NIL").

By convention, the "NIL pointers", found at the end of a string, or
within a directory location which does not point to a string, are set to
the value of the table base to provide a unique identification. Another
convention could be used. In particular, a different marker for EaT
results in some space savings, as no NIL entries need be kept for non­
existing entries.

Insertion and deletion are performed in the usual way (see Part I of
this chapter) by merely modifying the required pointers. The
INDEXED flag is used to indicate if the pointer to the object is in the
reference table or another string element.

Searching
The SEARCH program resides at memory locations 0100 to 0155

an uses subroutine PRETAB at address 0ID2.
The search principle is straightforward:
I-Get the directory entry corresponding to the letter of the alphabet

in the first position of the OBJECT's label.
2-Get the pointer. Access the element. If NIL, the entry does not

exist.
3-If not NIL, match the element against the OBJECT. If a match is

found, the search has succeeded. If not, get the pointer to the next entry
down the list.

4-Go back to 2.
An example is shown in Figure 9.26.
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DATA STRUCTURES

A·POINTER

B-POINTER

CD __AB_C_-ILf-I__:Z_llC__

OBJECTIf-__A_ZC__

(FOUND I

(4 STEPS REQUIRED)

Fig. 9.26: Linked List-A Search

Inserting

The insertion is essentially a search followed by an insertion once a
"NIL" has been found.

A block of storage for the new entry is allocated past the EOT
marker by looking for an occupancy marker set at "available".

The program is called "NEW" in Figure 9.29 and resides at ad­
dresses 0156 to lA3. An example is shown in Figure 9.27.

Fig. 9.27: Linked List: Example of Insertion
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Deleting

The element is deleted by setting its occupancy marker to "available"
and adjusting the pointer to it from the directory or else the previous
element.

The program is called "DELETE", and resides at addresses 01A4 to
0101.

An example of a deletion is shown in Figure 9.28.

IBEFORE)

A
B
(
o

OAF POINTER

DELETE

!AFTER)

DOC POINTER

r-------
lOAF I_______ ..J

NOTE OAF 1$ NOT ERASED. BUT ··INVISIBlE"

DQCU ,

I NIL I

Fig. 9.28: Example of Deletion (Linked List)
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DATA STRUCTURES

~ fl' ~:inML IllTNII It:} lIIFPF. If,''( Af1(llN

;.JUMI' 10 F'OTNTFE' OF' FNTf.~"(

;IOAII rx WITH ['!lINTEh'

:'~;lnH[ /innr,. rJI ~'lirl)fnU'; FNIHY
',lNTI Sf'Al.T IN ] ()flU: rrw NFW
;MLJI)] HI [Nil fll UFXl INfF~Y

;f:llMF'(lh'[ "Nfl ('f] JFI;:~;

; ",('II)! j,'ry:; f J JON UI FMF' I Y (T(lI~r

; HIP)I 1"( Tn HI

;IOfll', Al rTf.:~~;1 tFl'lFh' Of FN1F:Y
;~;Fr II f"; Inl Milld'.Ff:

;I'UI (l! I [IF: or FN1F,:Y ()F IFI;" (HUFel
; .nl I'OINII:I~ !'osr'l]f)N

; [;;-] iillJlf': n! I NJlF X I'll f I'll FI~'

; MlP)1 j'n I N IF-!,' UINI! 1'1'1 ,; HI III

1( /)11
Urll!·>
WIII-: I I
tHIf'!, I .~

NIH I·" ,

I>:
HI
fiE .111
1111.) .F

HI
(Ill) .11

HI..
<Hl).l

(1. ( f x 10'
7r:H
Nl:.Nf) [FIlIlI'Ill
Ii, ( TX !'(»)

(1 Y 10)
c.rmljl){l[1

Nl.N[IIfrHINJl
1\. < IX!) )

r Y II )
r:. N(lrjUfHl
N.'· NOTrOlJN!l
Ii, (1 X 1-:"' \
I r Y-l:')
/.[fJUN!l
NC·NOITfllJtJII
IX
[Ii
III , ([Nil! N I
HI .Il!
l;.(lll)

H'
fl,fl!! )

IIC
, x
rl. (J

I INIir Xl-II) ,f'1

CfJMf"(jf-,T
fl,or VI-!

Z·UU!
lW
HI (! (l!fIi~:-iF

flE.!!1
HI ,,([N1Ift-!)

HI
HI.
III
HI,ilf:
(1.(11l )
(,

T,Nr· x lONI
ll[

[If

ff

'"flLyfunlfN)

ellil
INC
If'

r'lJSH

In
I: X
I .. il
INC
INC
INC
('dlrl

!.II
fl(_L

If'
JNl:

F'USH
I'Will
I'or'
Lli

1"IITh
r'USH
F'ur'
L,X
Lit
iNC

III
INC
Ifl

Ni:. >; TntH

cnMr'IiI~'[ L [I

cr'
.JF"
L[I
cr,'
If'
!I'

, "

fOUNl1 Lit
NOfFDUNfi I,li

H>
.1f'
t fl
ry
If'

'f'
NOGOOn r<U~:;H

r'nr'
III
r'lIiV
It I

[Nt

1.11
PUSH
r'Of'
III

Lit

III li,ll

1!1 !l,rl
I Uf' (F

III I rNfl! Xll!) • (I

{'iii I )'h:1-: T(\!{

I II (,,1[11)
I il 1,(1
INI ill
III (l.I}11

I J! H of,
r'USH HI
[,'m' IX

NEW

IH,:!;

rN!lf. /1 II ill

IMIIi::!! III
f\fT illi~;r III
r-NTLfN ill

')000 '
(Olf
{ottn)
<01[/i)
<OlEf:)

0100 JFOO
010:' 47
()I03 3[
0104 .L'I/01
()10? CflIl:'O I
OJOA , A

010n ;"F
010C 13
()JO[I 1(,
OJOE 6/
010F E5
OJ j 0 f1[I[ I
011 :~ IID/LOO
,) 1 1 ~~, FE7r:
01 I [I:~~-,~,O 1
OJ I A [If!?;: 00
011 Ii FllBEOO
01 :"10 [l1i3F01
OJ :'3 r:'5~'iO I
01 :"6 \lV7EOJ
fJl :.:'9 F(IFlF01
01:'[ {IA3FOI
OJ :'F [:':,';;,01
OJ 3:' {ITi7LO:'
01 :'~:c, FVHF'O:'
OJ 3B Cf.l~,301

1)13B L!:'~j~',O1
o I ,~F LlfIF:',
0140 ['J
0141 :!AEC01
0144 I'?
0145 41~

01411 C}
O! 4? 4/,
0148 C:i
OJ 49 [I[lFl

0148 ,~F 00
O14!1 ,;:'[/01
o1 ~'jO C31 :','0 I
() 1 ~C,J OMI
o 1 ~'j~:J 1:'1

OJ:-i6 [fIOOO!
o1 ~:;'I 04
OJ SA CAA301
()15LI jl:i
fJ 1 ~:, I' ','AE80 I
(jj h t i'f-f
']1 b::' :'A[ r01
Olf,~) :'3
011>A ;,'3
0167 :"}j

f)J 1,8 J'?
OJ f.,9 /1
01;,,() \I'
016B U"lf,JOI
0161: t :}

OIM tI ~:J

01/0 F [lE~,

01/:' E J
Ii I 7:~ LV4(~FCO t
OJ 7/ ErH10
OJ 7'} [I[lF~'j

017Fl El
01 Jr' EB
017[1 /J
OJ 7E :.'3
017F '-
()1 [30 :'3
0181 ~(,OJ

Fig. 9.29: Linked List-The Programs
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0183 El POP HL 'GET ADDR OF WHERE THIS SPACE 15
0184 3AE701 Lfl A, (IN[IEXED) ~ SEE WHAT F'REI)IOUS POINTERS MUST

0187 3[1 flEe ~
, .BE SET

0188 CA9801 JP Z,SETINX
018[1 E3 EX (SF') ,HL ;[iET A[lDR OF ENTRY PREVIOUS TO
018C EDSBECOl L[I [IE, (ENTLEN) .. .OBJECT & HOVE fa F"DINTER AREA
0190 19 ADD HL,DE
0191 [11 POP DE ; RETRIEI.,IE flDflR OF OfUECT
O!92 73 LD (HL) ,E ,PUT [1 AT POINTER POSITION
0193 23 INC HL
0194 72 LII <HL) ,fr
01'15 C3AOOl JP FINISH
01t18 Cl SET INX POP ElC ;CL.£(\f" OUT ST~CK

01 (19 CDD201 CALL PRETAB ;GEl INDEX ADI:tI>:ESS

01'1C EB EX nE,HL ;L(lAD HL INTO IT
019[t 73 CD (HL) ,E
019E 23 INC HL
019F 72 l..ft <HI....1 ,[1

OlAO 01FFFF FINISH LD BC,OFFFFH ~SHOW HU'l1 If WAS DONE
01A3 C9 (JUT RE'j

01A4 C[l0001 [lELEIE CALL SEARCH ;GEl AflDf-.:ESS OF OFUECT
OlA7 04 INC f< ;SEE IF IT IS THERE
OlAR C2[1101 .IF' NZ,()UTE
QIAB DDE5 F'USH IX ;SET HI.. TO POINTER AREr'l [)F Cm.lEC1
OlAD El POP HL
QlAE ED4£lECOl lD flC·(ENTLEN)

OlB: ()9 ADD HL,BC
01B3 4E tn CdHL) ;RFndEIJE POINTER
OiB,' 23 INC HL
01B5 46 LD B, (HL)
OH~6 23 INC HL
OlfO 3600 L"D (HI....l.O ;RFMtlUE OCCUPANCY MARKER
01f~9 3AE701 LD A,(INI:rEXFD) ;SEE IF [NDEX NEEDS CHANGINlJ
OlHC 3D I)EC

"01[([1 [::'C701 ,IF' NZ·CHANGEM
01CO CDD201 CALI_ F'F.;ETAFl .YES-PUT IiDDR fNTlJ HI
OJ£:3 En EX DE.HI
01(;4 C3CBOl JP MOVIN
01C7 ~:AECOI CHI')NGEM LD HL, (ENTLEN) ;;otT HI TO POINTEr.;: OF PREl}IDUS
OleA 19 ADD HL.DE
()lCf{ 71 Mm·'IN LV (HL) .r; ;F'lJT A[lrrR OF NEXT lNTO IJH riTE 1}F.Ji'

~)1CC ::~ :~ INC HL , • 'EITHEr-; fNfll::X OF? ENTRY)
Ole[l ~'O Ion <HL.l,f!
OlC[ 01FFFF tD BC ,OFFFFl--1
011H C', UUTE RET

otD2 £5 PRETA£l F'USH HI..
01[1] F[l7EOO L[t 1i,(TY+O~ ;(1E1 Flj;:ST LETTEH OF U[l.JECT
01[16 3D nEC A ;RFMOVF. I'ISCI I LEADFF:
OJ[l7 [lt140 ~:;UB 40H
01[1'1 CE1~_17 SLA A :MLlLTIF-'LY BY
OJ [IB 2(\£1'101 I'on HL ~ (REFHf'lSF ,
()J fiE 85 i"lDD L
OlftF 6F LD L.A
OlEO [1~E-10-' ,IF' NC,FIXUP
01E:3 24 INC H
01£4 FEI FIXllP F~X DE.HI.
Oll:~i E j PDF' HI
01 E6 (;9 RET

01E7 (0000) ENDER END

SYMBOL rAl~LF

CHANGE Ole7 COMF'AR 0112 DEL ETE 01A4 ENDER 01E7 ENTLEN 01EC
FINISH 01AO FIXUP 01£4 FDUND 0153 INDEXE 01£7 Ml)VIN 01CB
NEW 0151.) NEXTON 0161 NOGOOD 013E NilTFOU 0155 0/.11 OlA3
nUTE o lDl F'F'ETAB 01D2 REF BAS OlEA SEI'Ir,'CH 0100 SETINX 0198
rABASF 01E8

Fig. 9.29: Linked List-Tille Programs (cont.)
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i1MJOO
OjOO
OJ I 0
'U:'O

0360
OJ:'O

The Objects in memory

~J," '11 <11 ,11 :11 1J 31 3J ',11 >51 :11 ,';!';I 00 00 00

44 '11 44 'lj" .L' L' .1:' .'i" J.' ::C' .Ll 1_ :L' 00 00 00
'1[1 41 ,HI ::L) 'U .:U U :u .L~ -1."'1 3-1 00 00 00
:,:-j '11 ,U .)4 :~'1 j,j :~'l -~4 :14 )'1 H 11 ,1'1 00 00 no
4 [ 4f 54 T-'; 3S 3~-; 3:', .55 3:'; TOj 3"'; 00 00 00
41 4 I 41 3h :V, J5 3/, J6 J/; :.V' :Vi 00 00 00
41 SA SA 37 3 J!)7 J7 37 .'17 j'? ]} 3/ e)(} a() 00

- 49 iH .18 "H-l JHHJ Jfl JH JH 'JjFl W 'W 00 00 00

LislIng (If OhJccts

and their localions

In memory

~:;nN 1 J J J 11111 l •.

MOWLP;3333J31.
IJNI>1'l'l444444<1 ••

!'IN' ~'i~~155"'i~i5;j7';~j.
AAA/dd}61,,~/dlfJl). , ,
f'll Z7]7-:'7777T/ •.

S TflW-18RB8SHFJ8 •

on no
00 00

[1/1'l(JO

0'100
0410
,) 4~:'0

04:W

')4!,O

0470

r- EOT character In1 ,","allahle

?V O(J 00 00 on Of) 00 00 00 00 00 00 00 00 00 00 ( .•.. ,. > •••• , , •

00 00 OP 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 O() 00 00 00 (II) 00 00 00 00 O() 00 00 00 00 ()a

00 00 00 00 00 00 Of) 00 00 no 00 GO 00 DO 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 (1) DO 00 00 00 00 On 00 00 00 00 00 00
00 00 00 (HI 00 00 (HI 00 00 n() 00 00 00 00

·):"j30
,Y"j40
()~:;~IO

O~,I,O

0"j70

-flWjOO

0500 00 O~

00 0"
00 0"
00 04
00 00
00 00
00 00

00 00

()O ()4 00 0'1 00 Oll-O() 04 (l() 0" 00 04 00 04
00 04 00 04 00 04 00 ()4 O() 04 00 (I" 00 ()4
00 04 i) C) 0" 00 ()" C)O (14 (1) 04 00 04 ()O 04

00 0'1 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00- 00 00 00 00 00 00 00 00
OC) ()a 00 ()() 00 00 ()O 00 ()O 00 00 00 O() 00
00 00 00 00 00 00 "00 00 00 00 00 00 00 00
00 00 00 00 00 00 -00 00 00 00 00 00 00 00

InlltaIDirl't'flIr)

00 00 00 or) 00 00 00 00
r',t! .,.,- ',~ej ~:-j 3"; \~, ~:-, ~',

,,4 d. ,L' ;:' :~:' 3:' :1~' ~"

4 J :~/) ~/, 7,/, 3;', 3/, 36 3/,
"I' 31 31 ~I 31 J1 ·31 31
'1 [I :3 J T~ ~''i:,~ :L~ :1:1 :,n T:;
,,4 :W :W ~n 3D 3fl 3B 3H
','d\ :1.' ~;J ?-, ~"! 1/

[IM'l{)1)

0400 :]:( 00
0'110 4 I 4f
1)'1:,:l O 44 '11
O'1,W 41 "I
<)440 :',3 4F
')4~'jO 4[1 'H
')460 '53 1'/
'>'170 41 "dl

::;:.Y ly"o,3;"O "j J 0

1;:':'c,/;':'7.

r', O:':"jl O:'~Hi'

Delete an entry

Occupann markers-

p;ml'~ll
00 On 00 ()o 00 ()()
,;','; ~:", ,5~', /0 04 01
:L' L' 1.' 00 0 <1 O!
~;', V) ,-~.', 10 04 0)1
:~I 31 ~1 00 04 01
~~ 31 ~~ Oi) ()4 01
~~8 :~n 3H 40 (H 01
T/ I;' r/ 00 0" () J

Table configuration

after se\"l'ral
insertions.

{)N 1'~;''i''j''';';:;''i','-,';''f ,
fl(\V:':':',':':":,';.':'::':',.>
(\nnl,;',,',;',;',,',,',,','!,'!, •

::inN I I 111 J I I J J,
MOM:rUTL'li3::Ln •.
c; I nU8HBB8nnnnFl, ,

()()tl.t.,.'l,",'l66h.'Sr.h. ,
';ilNlllllll III,
MUM:'13·:SJ:{:1:1:i:'1J.
~,; r nDnBnnnFJB8Bf;l
(17/7 J7}7777}':', > •

00 00 00 00
3~i 70 04
:;)'1 00 04
-~.'l J 0 0'1
51 <)0 04
1·~ ()O ()4
~n '10 04
'i J 00 04

~61.'l ·V,
H 31~1

n

00 00/H 01) 00 00 on 00 no
41 4[ "i" ,~:" .~::J ~~', J~'; :;:" :>;5 ~:'I T', T";
4441 '1<1 '~:' .1:·'{:' ~'1:' ;<1 3~' ';:' 7,:' .~:~

4 l 41 4 1 ~v, ·V:' 3,", j,lJ '~t, 3t,
:":1 'If 41 31 '~l ~I 31 :'1'1 ]1
411 '1f' 4[1.U C '< .-n·q
:,:1 4{i Il '! 1t! -1fl 'lifl :Hl JU- 'W ~H 'W 3H
41 ",(1 re,n 3/ '> ;/il -1/ '-1] ;7 '~7 ·~7

fld'Jo:H)
0'1(1)
('4 I (I

04:'0
<)<130
,,440
l,) '1 ~''iO

()~,',o

0470

Fig. 9.30: Linked List-A Sample Run

577



PROGRAMMING THE l80

-G220/223

Run 'SEARCH' for deleted entry
F'=0223 O:.~23'

-nr.;
N

-Not found
A=3l BC=OOFF DE=0400 HL=OOOO S=0100 P=0223 0223' CALL 0171

A'=()O El' 'cOOOO [l'""OOOO H'=OOOO X=040a Y=0310 1=00 (0171')

5=0100 P=0223 0223' CALL 0171
X=~ Y=034() T=OO (OJ71' i

' Address of entry in tableDelete

-SY I
y ~G- ~.). 3._.. ol 0,. :-.:4

3
0

_ c' 'c.' Run "SEARCH" for an existent entry

F'=0223 O~I:l3'

. [or< J,,-Entry found
Z N A=54 BC=:FFIO D£=0430 HL=043E

A'=OO B'=OOOO [1'=0000 H'=OOOO
-G226/229

Nole: Changes in

- f1M400
pointers.

0400 7[1 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 e, "
.,

0410 41 4£ 54 35 35 35 35 35-35 35 35 35 35 70 04 00 ANT5555~i::=j5555p••
0420 44 41 44 32 32 32 32 3:?-32 3:~ 3" 3:~1 32 00 04 00 DAD2222222222.
0430 41 41 41 3b 3t, 3b 36 36"3\~J 36 3/1 3b 36 70 04 01 AAAb6666666b6r:, •

0440 53 41 4E 31 31 31 31 31-<31 31 31 31 31 0'0'0"r' 01 SON:1IJll 1.1111.
(}450 4[0 4F 4[1 33 33 33 33 33--33 33 33 33 33 00 04 OJ MOM3333333333.
0460 53 49 44 3fl 38 38 38 38-38 38 38 38 38 40 04 ot S I rr88888888881~ ,
047() 41 ;:iA SA 37 37 37 37 37-37 37 37 37 37 00 04 01 AIZ]7?777?77? .

Fig. 9.30: Linked List- A Sample Run (cont.)

SUMMARY

The beginning programmer need not concern himself yet with the
details of data structures implementation and management. However,
efficient programming of non-trivial algorithms requires a good under­
standing of data structures. The actual examples presented in this
chapter should help the reader achieve such an understanding and solve
all the common problems encountered with reasonable data structures.
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PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have been
developed by hand without the aid of any software or hardware re­
source. The only improvement over straight binary coding has been the
use of mnemonic symbols, those of the assembly language. For effec­
tive software development, it is necessary to understand the range of
hardware and software development aids. It is the purpose of this chap­
ter to present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writing a program in binary or hexa­
decimal, writing it in assembly-level language, or writing it in a high­
level language. Let us review these alternatives.

Hexadecimal Coding

The program will normally be written using assembly language mne­
monics. However, most low-cost, one-board computer systems do not
provide an assembler. The assembler is the program which will auto­
matically translate the mnemonics used for the program into the re­
quired binary codes. When no assembler is available, this translation
from mnemonics into binary must be performed by hand. Binary is
unpleasant to use and error-prone, so that hexadecimal is normally
used. It has been shown in Chapter 1 that one hexadecimal digit will
represent four binary bits. Two hexadecimal! digits will, therefore, be
used to represent the contents of every byte. As an example, the table
showing the hexadecimal equivalent of the Z80 instructions appears in
the Appendix.
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PROGRAMMING THE Z80

In short, whenever the resources of the user are limited and no assem­
bler is available, he will have to translate the program by hand into hex­
adecimal. This can reasonably be done for a small number of instruc­
tions, such as, perhaps, 10 to 100. For larger programs, this process is
tedious and error-prone, so that it tends not to be used. However, near­
ly all single-board microcomputers require the entry of programs in
hexadecimal mode. They are not equipped with an assembler and a full
alphanumeric keyboard, in order to limit their cost.

In summary, hexadecimal coding is not a desirable way to enter a
program in a computer. It is simply an economical one. The cost of an
assembler and the required alphanumeric keyboard is traded-off
against increased labor required to enter the program in the memory.
However, this does not change the way the program itself is written.
The program is still written in assembly-level language so that it can be
examined by the human programmer and be meaningful.

Assembly Language Programming

Assembly-level programming covers both programs that may be
entered in hexadecimal and those that may be entered in symbolic
assembly-level form in the system. Let us now examine the entry of a
program directly in its assembly language representation. An assembler
program must be available. The assembler will read each of the mne­
monic instructions of the program and translate it into the required bit
pattern using 1 to 5 bytes, as specified by the encoding of the instruc­
tions. In addition, a good assembler will offer a number of additional
facilities for writing the program. These will be reviewed in the section
on the assembler below. In particular, directives are available which
will modify the value of symbols. Symbolic addressing may be used and
a branch to a symbolic location may be specified. During the debugging
phase, when a user may remove or add instructions, it will not be neces­
sary to rewrite the entire program if an extra instruction is inserted be­
tween a branch and the point to which it branches, as long as symbolic
labels are used. The assembler will take care of automatically adjusting
all the labels during the translation process. In addition, an assembler
allows the user to debug his program in symbolic form. A disassembler
may be used to examine the contents of a memory location and recon­
struct the assembly-level instruction that it represents. The various soft­
ware resources normally available on a system will be reviewed below.
Let us now examine the third alternative.
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POWER OF
THE

LANGUAGE

SYMBOLIC

APl
COBOL

fORTRAN

Pl/M
PASCAL

BASIC

MINI·BASIC

MACRO
CONDITIONAL
ASSEMBLY

HEXADECIMAl!
OCTAL

BINARY

)
~ ASSEMBLY·lEVEl

I
\ MACHINE·lEVEl

Fig. 10.1: Programming Levels

High-Level Language

A program may be written in a high-level language such as BASIC,
APL, PASCAL, or others. Techniques for programming in these vari­
ous languages are covered by specific books and will not be reviewed
here. We will, therefore, only briefly review this mode of program­
ming. A high-level language offers powerful instructions which make
programming much easier and faster. These instructions must then be
translated by a complex program into the final binary representation
that a microcomputer can execute. Typically, each high-level instruc­
tion will be translated into a large number of individual binary instruc­
tions. The program which performs this automatic translation is called
a compiler or an interpreter. A compiler will translate all the instruc­
tions of a program in sequence into object code. In a separate phase,
the resulting code will then be executed. By contrast, an interpreter will
interpret a single instruction, then execute it, then "translate" the next
one, then execute it. An interpreter offers the advantage of interactive
response, but results in low efficiency compared to a compiler. These
topics will not be studied further here. Let us revert to the programming
of an actual microprocessor in the assembly-level language.
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SOFTWARE SUPPORT

We will review here the main software facilities which are (or should
be) available in the complete system for convenient software develop­
ment. Some of the definitions have already been introduced. They will
be summarized here and the rest of the important programs will be de­
fined before we proceed.

The assembler is the program which translates the mnemonic repre­
sentation of instructions into their binary equivalent. It normally trans­
lates one symbolic instruction into one binary instruction (which may
occupy 1, 2 or 3 bytes). The resulting binary code is called object code.
It is directly executable by the microcomputer. As a side effect, the
assembler will also produce a complete symbolic listing of the program,
as well as the equivalence tables to be used by the programmer and the
symbol occurrence list in the program. Examples will be presented later
in this chapter.

In addition, the assembler will list syntax errors such as instructions
misspelled or illegal, branching errors, duplicate labels or missing
labels.

It will not delete logical errors (this is your problem).
A compiler is the program which translates high-level language in­

structions into their binary form.
An interpreter is a program similar to a compiler, which also trans­

lates high-level instructions into their binary form but does not keep the
intermediate representation and executes them immediately. In fact, it
often does not even generate any intermediate code, but rather executes
the high-level instructions directly.

A monitor is the basic program which is indispensable for using the
hardware resources of this system. It continuously monitors the input
devices for input and manages the rest of the devices. As an example, a
minimal monitor for a single-board microcomputer, equipped with a
keyboard and with LED's, must continuously scan the keyboard for a
user input and display the specified contents on the light-emitting
diodes. In addition, it must be capable of understanding a number of
limited commands from the keyboard, such as START, STOP, CON­
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys­
tem, the monitor is often qualified as the executive program, when
complex file management or task scheduling is also provided. The over­
all set of facilities is called an operating system. If files are residing on a
disk, the operating system is qualified as the disk operating system, or
DOS.
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An editor is the program designed to facilitate the entry and the mod­
ification of text or progams. It allows the user to enter characters con­
veniently, append them, insert them, add lines, remove lines, search for
characters or strings. It is an important resource for convenient and ef­
fective text entry.

A debugger is a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no indication
whatsoever of the cause. The programmer, therefore, wishes to insert
breakpoints in his program in order to suspend the execution of the
program at specified addresses, and to be able to examine the contents
of registers or memory at this point. This is the primary function of a
debugger. The debugger allows for the possibility of suspending a pro­
gram, resuming execution, examining, displaying and modifying the
contents of registers or memory. A good debugger will be equipped
with a number of additional facilities, such as the ability to examine
data in symbolic form, hex, binary, or other usual representations, as
well as to enter data in this format.

A loader, or linking loader, will place various blocks of object code
at specified positions in the memory and adjust their respective sym­
bolic pointers to that they can reference each other. It is used to relocate
programs or blocks in various memory areas. A simulator or an emu­
lator program is used to simulate the operation of a device, usually the
microprocessor, in its absence, when developing a program on a simu­
lated processor prior to placing it on the actual board. Using this ap­
proach, it becomes possible to suspend the program, modify it, and
keep it in RAM memory. The disadvantages of a simulator are that:

I-It usually simulates only the processor itself, not input/output
devices.

2-The execution speed is slow, and one operates in simulated time.
It is therefore not possible to test real-time devices, and synchronization
problems may still occur even though the logic of the program may be
found correct.

An emulator is essentially a simulator in real time. It uses one proces­
sor to simulate another one, and simulates it in complete detail.

Utility routines are essentially all the routines which are necessary in
most applications and that the user wishes the manufacturer had pro­
vided!

They may include multiplication, division and other arithmetic oper­
ations, block move routines, character tests, input/output device han­
dlers (or "drivers"), and more.
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THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an assembly­
level program. We will assume that all the usual software facilities are
available in order to demonstrate their value. If they should not be
available in a particular system, it will still be possible to develop pro­
grams, but the convenience will be decreased and, therefore, the
amount of time necessary to debug the program is likely to be in­
creased.

The normal approach is to first design an algorithm and define the
data structures for the problem to be solved. Next, a comprehensive set
of flowcharts is developed which represents the program flow. Finally,
the flowcharts are translated into the assembly-level language for the
microprocessor; this is the coding phase.

Next, the program has to be entered on the computer. We will exam­
ine in the next section the hardware options to be used in this phase.

The program is entered in RAM memory of the system under the
control of the editor. Once a section of the program, such as one or
more subroutines, has been entered, it will be tested.

First, the assembler will be used. If the assembler did not already
reside in the system, it would be loaded from an external memory, such
as a disk. Then, the program will be assembled, i.e., translated into a
binary code. This results in the object program, ready to be executed.

One does not normally expect a program to work correctly the first
time. To verify its correct operation, a number of breakpoints will nor­
mally be set at crucial locations where it is easy to test whether the inter­
mediate results are correct. The debugger will be used for this purpose.
Breakpoints will be specified at selected locations. A "Go" command
will then be issued so that program execution is started. The program
will automatically stop at each of the specified breakpoints. The pro­
grammer can then verify, by examining the contents of the registers, or
memory, that the data so far is correct. If it is correct, we proceed until
the next breakpoint. Whenever we find incorrect data, an error in the
program has been detected. At this point, the programmer normally
refers to his program listing and verifies whether his coding has been
correct. If no error can be found in the programming, the error might
be a logical one and one might refer to the flowchart. We will assume
here that the flowcharts have been checked by hand and are assumed to
be reasonably correct. The error is likely to come from the coding. It
will, therefore, be necessary to modify a section of the program. If the
symbolic representation of the program is still in the memory, we will
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simply re-enter the editor and modify the required lines, then go
through the preceding sequence again. In some systems, the memory
available may not be large enough, so that it is necessary to flush out
the symbolic representation of the program onto a disk or cassette prior
to executing the object code. Naturally, in such a case, one would have
to reload the symbolic representation of the program from its support
medium prior to entering the editor again.

The above procedure will be repeated as long as necessary until the
results of the program are correct. Let us stress that prevention is much
more effective than cure. A correct design will typically result in a pro­
gram which runs correctly very soon after the usual typing mistakes or
obvious coding errors have been removed. However, sloppy design may
result in programs which will take an extremely long time to be de­
bugged. The debugging time is generally considered to be much longer
than the actual design time. In short, it is always worth investing more
time in the design in order to shorten the debugging phase.

However, using this approach, it is possible to test the overall organi­
zation of the program, but not to test it in real time with input/output
devices. If input/output devices are to be tested, the direct solution con­
sists of transferring the program onto EPROM's and installing it on the
board and then watching whether it works.

There is a better solution. It is the use of an in-circuit emulator. An
in-circuit emulator uses the Z80 microprocessor (or any other one) to
emulate a Z80 in (almost) real time. It emulates the Z80 physically. The
emulator is equipped with a cable terminated by a 40-pin connector, ex­
actly identical to the pin-out of a Z80. This connector can then be in­
serted on the real application board that one is developing. The signals
generated by the emulator will be exactly those of the Z80, only perhaps
a little slower. The essential advantage is that the program under test
will still reside in the RAM memory of the development system. It will
generate the real signals which will communicate with the real in­
put/output devices that one wishes to use. As a result, it becomes possi­
ble to keep developing the program using all the resources of the devel­
opment system (editor, debugger, symbolic facilities, file system) while
testing input/output in real time.

In addition, a good emulator will provide special facilities, such as a
trace. A trace is a recording of the last instructions or status of various
data busses in the system prior to a breakpoint. In short, a trace pro­
vides the film of the events that occurred prior to the breakpoint or the
malfunction. It may even trigger a scope at a specified address or upon
the occurrence of a specified combination of bits. Such a facility is of
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great value. since when an error is found it is usually too late. The in­
struction. or the data, which caused the error has occurred prior to the
detection. The availability of a trace allows the user to find which seg­
ment of the program caused the error to occur. If the trace is not long
enough, we will simply set an earlier breakpoint.
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Fig. 10.2: A Typical Memory Map

This completes our description of the usual sequence of events in­
volved in developing a program. Let us now review the hardware alter­
natives available for developing programs.
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HARDWARE ALTERNATIVES

Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to
program development. It is normally equipped with a hexadecimal key­
board, plus some function keys, plus 6 LED's which can display ad­
dress and data. Since it is equipped with a small amoun t of memory, an
assembler is not usually available. At best, it has a small monitor and
virtually no editing or debugging facilities, except for a very few com­
mands. All programs must, therefore, be entered in hexadecimal form.
They will also be displayed in hexadecimal form on the LED's. A sin­
gle-board microcomputer has, in theory, the same hardware power as
any other computer. Simply because of its restricted memory size and
keyboard, it does not support all the usual facilities of a larger system
and makes program development much longer. Because it is tedious to
develop programs in hexadecimal format, a single board microcom­
puter is best suited for education and training where programs of lim­
ited length have to be developed and their short length is not an obstacle
to programming. Single-boards are probably the cheapest way to learn
programming by doing. However, they cannot be used for complex
program development unless additional memory boards are attached
and the usual software aids are made available.

The Development System

A development system is a microcomputer system equipped with a
significant amount of RAM memory (32K, 48K) as well as the required
input/output devices, such as a CRT display, a printer, disks, and, usu­
ally, a PROM programmer, as well as, perhaps, an in-circuit emulator.
A development system is specifically designed to facilitate program
development in an industrial environment. It normally offers all, or
most, of the software facilities that we have mentioned in the preceding
section. In principle, it is the ideal software development tool.

The limitation of a microcomputer development system is that it may
not be capable of supporting a compiler or an interpreter. This is be­
cause a compiler typically requires a very large amount of memory,
often more than is available on the system. However, for developing
programs in assembly-level language, it offers all the required facilities.
But because development systems sell in relatively small numbers com­
pared to hobby computers, their cost is significantly higher.
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Hobby-Type Microcomputers

The hobby-type microcomputer hardware is naturally exactly analo­
gous to that of a development system. The main difference lies in the
fact that it is normally not equipped with the sophisticated software
development aids which are available on an industrial development sys­
tem. As an example, many hobby-type microcomputers offer only ele­
mentary assemblers, minimal editors, minimal file systems, no facilities
to attach a PROM programmer, no in-circuit emulator, no powerful
debugger. They represent, therefore, an intermediate step between the
single-board microcomputer and the full microprocessor development
system. For a user who wishes to develop programs of modest complex­
ity, they are probably the best compromise, since they offer the advan­
tage of low cost and a reasonable array of software development tools,
even though they are quite limited as to their convenience.

Time-Sharing System

It is possible to rent terminals from several companies which will con­
nect to time-sharing networks. These terminals share the time of the
larger computer and benefit from all the advantages of large installa­
tions. Cross assemblers are available for all microcomputers on vir­
tually all commercial time-sharing systems. A cross assembler is simply
an assembler for, say, a Z80 which resides, for example, in an IBM370.
Formally, a cross assembler is an assembler for microprocessor X,
which resides on processor Y. The nature 0 f the compu ter being used is
irrelevant. The user still writes a program in Z80 assembly-level lan­
guage, and the cross assembler translates it into the appropriate binary
pattern. The difference, however, is that the program cannot be ex­
ecuted at this point. It can be executed by a simulated processor, if one
is available, provided it does not use any input/output resources. This
solution is used, therefore, only in industrial environments.

In-House Computer

Whenever a large in-house computer is available, cross assemblers
may also be available to facilitate program development. If such a com­
puter offers time-shared service, this option is essentially analogous to
the one above. If it offers only batch service, this is probably one of the
most inconvenient methods of program development, since submitting
programs in batch mode at the assembly level for a microprocessor re­
sults in a very long development time.
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Front Panel or No Front Panel?

The front panel is a hardware accessory often used to facilitate pro­
gram debugging. It has traditionally been a tool for conveniently dis­
playing the binary contents of a register or of memory. However, all the
functions of the control panel may be accomplished from a terminal,
and the dominance of CRT displays now offers a service almost equiva­
lent to the control panel by displaying the binary value of bits. The ad­
ditional advantage of using the CRT display is that one can switch at
will from binary representation to hexadecimal, to symbolic, to decimal
(if the appropriate conversion routines are available, naturally). The
disadvantage of the CRT is that one must hit several keys to obtain the
appropriate display rather than turn a knob. However, since the cost of
providing a control panel is quite substantial, most recent microcom­
puters have abandoned this debugging tool. The value of the control
panel is often considered more on the basis of emotional arguments in­
fluenced by one's own past experience than by the use of reason. It is
not indispensable.

Summary of Hardware Resources

Three broad cases may be distinguished. If you have only a minimal
budget and if you wish to learn how to program, buy a single-board
microcomputer. Using it, you will be able to develop all the simple pro­
grams in this book and many more. Eventually, however, when you
want to develop programs of more than a few hundred instructions,
you will feel the limitations of this approach.

If you are an industrial user, you will need a full development system.
Any solution short of the full development system will cause a signifi­
cantly longer development time. The trade-off is clear: hardware re­
sources vs. programming time. Naturally, if the programs to be devel­
oped are quite simple, a less expensive approach may be used. How­
ever, if complex programs are to be developed, it is difficult to justify
any hardware savings when buying a development system, since the
programming costs will be by far the dominant cost of the project.

For a personal computerist, a hobby-type microcomputer will typi­
cally offer sufficient, although minimal, facilities. Good development
software is still to come for many of the hobby computers. The user will
have to evaluate his system in view of the comments presented in this
chapter.

Let us now analyze in more detail the most indispensable resource:
the assembler.
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THE ASSEMBLER

We have used assembly-level language throughout this book without
presenting the formal syntax or definition of assembly-level language.
The time has come to present this definition. An assembler is designed
to allow the convenient symbolic representation of the user program,
and yet to make it simple for the assembler program to convert these
mnemonics into their binary representation.

Assembler Fields

When typing in a program for the assembler, we have seen that fields
are used. They are:

The label field, optional, which may contain a symbolic address for
the instruction that follows.

The instruction field, which includes the opcode and any operands.
(A separate operand field may be distinguished.)

The comment field, far to the right, which is optional and is intended
to clarify the program.

These fields are shown on the programming form in Figure 10.3.

Once the program has been fed to the assembler, the assembler will
produce a listing of it. When generating a listing, the assembler will
provide three additional fields, usually on the left of the page. An ex­
ample appears on Figure 10.4. On the far left is the line number. Each
line which has been typed by the programmer is assigned a symbolic line
number.

The next field to the right is the actual address field, which shows in
hexadecimal the value of the program counter which will point to that
instruction.

Moving still further to the right, we find the hexadecimal representa­
tion of the instruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts
only hexadecimal, we should still write the program in assembly-level
language, providing we have access to a system equipped with an as­
sembler. We can then run the programs on the system, using the assem­
bler. The assembler will automatically generate the correct hexadecimal
codes on our system. This shows, in a simple example, the value of ad­
ditional software resources.
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Fig. 10.3: Microprocessor Programming Form
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Tables

When the assembler translates the symbolic program into its binary
representation, it performs two essential tasks:

I-It translates the mnemonic instructions into their binary en­
coding.

2-lt translates the symbols used for constants and addresses into
their binary representation.

In order to facilitate program debugging, the assembler shows at the
end of the listing the equivalence between the symbol used and its hexa­
decimal value. This is called the symbol table.

Some symbol tables will not only list the symbol and its value, but
also the line numbers where the symbol occurs, thereby providing an
additional facility.

Error Messages

During the assembly process, the assembler will detect syntax errors
and include them as part of the final listing. Typical diagnostics in­
clude: undefined symbols, label already defined, illegal opcode, illegal
address, illegal addressing mode. Many more detailed diagnostics are
naturally desirable and are usually provided. They vary with each as­
sembler.

The Assembly Language

Opcodes have already been defined. We will here define the symbols,
constants and operators which may be used as part of the assembler
syntax.

Symbols

Symbols are used to represent numerical values, either data or ad­
dresses. Symbols may include up to six characters, and must start with
an alphabetical character. The characters are restricted to letters of the
alphabet and numbers. Also, the user may not choose names identical
to the opcodes utilized by the Z80, the names of registers such as A,B,
C,D,E,H,L, BC, DE, HL, AF, BC, DE, IX, IY, SP, as well as the
various short names used as pseudo-operators by the assembler. The
names of these assembler "directives" are listed below in the corre­
sponding sections. Also, the abbreviations used to designate the flags
should not be used as symbols: C,Z,N,PE,NC,P,PO.
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Assigning a Value to a Symbol

Labels are special symbols whose values do not need to be defined by
the programmer. The value will automatically be defined by the assem­
bler program whenever it finds that label. The label value thus auto­
matically corresponds to the number of the line where it appears.
Special pseudo-instructions are available to force a new starting
value for labels, or to assign them a specific value.
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Fig. 10.4: Assembler Output-An Example
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However, other symbols used for constants or memory addresses
must be defined by the programmer prior to their use.

A special assembler directive may be used to assign a value to any
symbol. A directive is essentially an instruction to the assembler which
will not be translated into an executable statement. For example, the
constant LOG will be defined as:

LOG DFW 3002H

This assigns the value 3002 hexadecimal to the variable LOG. The
assembler directives will be examined in detail in a later section.

Constants or Literals

Constants may traditionally be expressed either in decimal, in hexa­
decimal, in octal, or in binary, or as alphanumeric strings. In order to
differentiate between the base used to represent the number, a symbol
must be used. To load "0" into the accumulator, we will simply write:

LD A,O

Optionally a "D" may be used at the end of the constant.
A hexadecimal number will be terminated by the symbol "H". To

load the value "FF" into the accumulator, we will write:

LD A, FFH

An octal symbol is terminated by the symbol "0" or "Q". A binary
symbol is terminated by "8".

For example, in order to load the value" 11111111" into the accumu­
lator, we will write:

LD A, 111111118

Literal ASCII characters may also be used in the literal field. The
ASCII symbol must be enclosed in single quotes.

For example, in order to load the symbol "S" into the accumulator,
we will write:

LD A, 'S'

Exercise 10.1: Will the following two instructions load the same value
in the accumulator: LD A, T, and LD A, 5H?
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Note that in the Zilog convention, parentheses denote an address.
For example:

LD A, (10)

specifies that the accumulator is loaded from the contents of memory
location 10 (decimal).

Operators

In order to further facilitate the writing of symbolic programs, as­
semblers allow the use of operators. At a minimum, they should allow
plus and minus so that one can specify, for example:

LD A, (ADDRESS)
LD A, (ADDRESS + 1)

It is important to understand that the expression ADDRESS + I will
be computed by the assembler in order to determine the actual memory
address which must be inserted as the binary equivalent. It will be com­
puted at assembly time, not at program-execution time.

In addition, more operators may be available, such as multiply and
divide, a convenience when accessing tables in memory. More special­
ized operators may be also available, such as greater than and less
than, which truncate a two-byte value respectively into its high and low
byte.

Naturally, an expression must evaluate to a positive value. Negative
numbers may normally not be used and should be expressed in a hexa­
decimal format.

Finally, a special symbol is traditionally used to represent the current
value of the address of the line: "$". This symbol should be interpreted
as "current location" (value of PC).

Exercise 10.2: What is the difference between the following instruc­
tions?

LD A, 1OlOlOlOB
LD A, (lOIOIOIOB)

Exercise 10.3: What is the effect of the following instruction?

lP NC, $ - 2

Expressions

The Z80 assembler specifications allow a wide range of expressions
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with arithmetic and logical operations. The assembler will evaluate the
expressions in a left-to-right manner, using the priorities specified by
the table in Figure 10.5. Parentheses may be used to enforce a specific
order of evaluation. However, the outermost parentheses will denote
that the contents are to be treated as an address.

Assembler Directives

Directives are special orders given by the programmer to the assem­
bler, which result either in storing values into symbols or into the mem­
ory, or in controlling the execution or printing modes of the assembler.
The set of commands which specifically controls the printing modes of
the assembler is also called "commands" and is described in a separate
section.

To provide a specific example, let us review here the 11 assembler
directives available on the Zilog development system:

ORG nn

This directive will set the assembler address counter to the value nn. In
other words, the first executable instruction encountered after this
directive will reside at the value nn. It can be used to locate different
segments of a program at different memory locations.

EQU nn

This directive is used to assign a value to a label.

DEFL nn

This directive also assigns a value n to a label, but may be repeated
within the program with different values for the same label, whereas
EQU may be used only once.

DEFB n

This directive assigns eight-bit contents to a byte residing at the current
reference counter.

DFB'S'

assigns the ASCII value of "S" to the byte.

DEFW nn

This assigns the value nn to the two-byte word residing at the current
reference counter in the following location.
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OPERATOR FUNCTION PRIORITY

+ UNARY PLUS 1

- UNARY MINUS 1

.NOT. or \ LOGICAL NOT 1

.RES. RESULT 1

** EXPONENTIATION 2

* MULTIPLICATION 3
I DIVISION 3
.MOD. MODULO 3

.SHR. LOGICAL SHIFT RIGHT 3

.SHL. LOGICAL SHIFT LEFT 3

+ ADDITION 4

- SUBTRACTION 4

.AND. or & LOGICAL AND 5

.OR. or 1 LOGICAL OR 6

.XOR. LOGICALXOR 6

.EQ. or = EQUALS 7

.GT. or > GREATER THAN 7

.LT. or < LESS THAN 7

.UGT. UNSIGNED GREATER THAN 7

.ULT. UNSIGNED LESS THAN 7

Fig. 10.5: Operator Precedence

DEFS nn

reserves a block of memory size nn bytes, starting at the current value
of the reference counter.

DEFM'S'

stores into memory the string'S' starting at the current reference coun­
ter. It must be less than 63 in length.

MACRO PO Pl ... Pn

is used to define a label as a macro, and to define its formal parameter
list. Macros are defined in another section below.

END

indicates the end of the program. Any other statements following it will
be ignored.

ENDM

is used to mark the end of a macro definition.
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Assembler Commands

Commands are used to modify the format of the listing to control the
printing modes of the assembler. All commands start with a star in col­
umn one. Seven commands are provided by the Z80 assembler. Typical
examples are:

EJECT

which causes the listing to move to the top of the next page; and

LIST OFF

which causes the printing to be suspended, effective with this com­
mand. The others are: "*HEADING S", "*LIST ON", "*MACLIST
ON", "*MACLIST OFF", "*INCLUDE FILENAME".

Macros

A macro is simply a name assigned to a group of instructions. It is a
convenience to the programmer. If a group of instructions is used sev­
eral times in a program, we could define a macro to represent them, in­
stead of always having to write this group of instructions.

As an example, we could write:

SAVREG MACRO PUSH AF
PUSH BC
PUSH DE
PUSH HL
ENDM

then simply write the name "SAVREG" instead of the above instruc­
tions. Any time that we write SAVREG, the five corresponding lines
will get substituted instead of the name. An assembler equipped with a
macro facility is called a macro-assembler. When the macro assembler
encounters a SAVREG, it performs a mere physical substitution of
equivalent lines.

Macro or Subroutine?

At this point, a macro may seem to operate in a way analogous to a
subroutine. This is not the case. When the assembler is used to produce
the object code, any time that a macro name is encountered, it will be
replaced by the actual instructions that it stands for. At execution time,
the group of instructions will appear as many times as the name of the
macro did.
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By contrast, a subroutine is defined only once, and then it can be
used repeatedly; the program will jump to the subroutine address. A
macro is called an assembly-time facility. A subroutine is an execution­
time facility. Their operation is quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As an
example, let us consider the following macro:

SWAP MACRO
LD
LD
LD
LD
LD
LD
END

#M,#N,ffT
A, #M
ffT, A
A, #N
#M,A
A, ffT
#N, A
M

M INTO A
A INTO T (=M)
N INTO A
A INTO M (=N)
T INTO A
A INTO N (=T)

This macro will result in swapping (exchanging) the contents of mem­
ory locations M and N. A swap between two registers, or two memory
locations, is an operation which is not provided by the Z80. A macro
may be used to implement it. "T" in this instance is simply the name
for a temporary storage location required by the program. As an exam­
ple, let us swap the contents of memory locations ALPHA and BETA.
The instruction which does this appears below:

SWAP (ALPHA), (BETA), (TEMP)

In this instruction, TEMP is the name of some temporary storage
location, which we know to be available and which can be used by the
macro. The resulting expansion of the macro appears below:

LD A, (ALPHA)
LD (TEMP), A
LD A, (BETA)
LD (ALPHA), A
LD A, (TEMP)
LD (BETA), A

The value of a macro should now be apparent: it is convenient for the
programmer to use pseudo-instructions, which have been defined with
macros. In this way, the apparent instruction set of the Z80 can be ex­
panded at will. Unfortunately, one must bear in mind that each macro
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directive will expand into whatever number of instructions were used. A
macro will, therefore, run more slowly than any single instruction. Be­
cause of its convenience for the development of any long program, a
macro facility is highly desirable for such applications.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a sim­
ple macro facility; macros may be nested, i.e., a macro call may appear
within a macro definition. Using this facility, a macro may modify it­
self with a nested definition! A first call will produce one expansion,
whereas subsequent calls will produce a modified expansion of the same
macro. This is allowed by the Z80 assembler, but nested definitions are
not allowed.

CONDITIONAL ASSIEMBLY

Conditional assembly is another facility provided in the Z80 assem­
bly. With a conditional assembly facility, the programmer can devise
programs for a variety of cases, and then conditionally assemble the
segments of codes required by a specific application. As an example, an
industrial user might design programs to take care of any number of
traffic lights at an intersection, for a variety of control algorithms. He
will then receive the specifications from the local traffic engineer, who
specifies how many traffic lights there should be and which algorithms
should be used. The programmer will then simply set parameters in his
program and assemble conditionally. The conditional assembly will
result in a "customized" program which will retain only those routines
which are necessary for the solution to the problem.

Conditional assembly is, therefore, of specific value to industrial
program generation in an environment where many options exist and
where the programmer wishes to assemble portions of programs quick­
ly and automatically in response to external parameters.

Only two conditional pseudo-OPs are provided in the standard
micro-assembler version supplied by Zilog. They are respectively:

COND NN and ENDC

where NN represents an expression. The pseudo-OP "COND NN" will
result in the evaluation of the expression NN. As long as the expression
evaluates to a true value (non-zero), the statement following the COND
will be assembled. However, if the expression should be false, Le., eval-
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uate to a zero value, the assembly of all subsequent statements will be
disabled up to the ENOC instruction.

ENOC is used to terminate a CONO, so that the assembly of subse­
quent statements is re-enabled. The CONO pseudo-OP's cannot be
nested.

In theory, more powerful conditional assembly facilities could exist,
with "IF" and "ELSE" specification. They may become available in
future versions of the assembler.

SUMMARY

This chapter has presented the techniques and the hardware and soft­
ware tools required to develop a program, along with the various trade­
offs and alternatives.

These range at the hardware level from the single-board microcom­
puter to the full development system; at the software level, from binary
coding to high-level programming.

You will have to select them on the basis of your goals and resources.
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CHAPTER 11

CONCLUSION

We have now covered all important aspects of programming, from
definitions and basic concepts to the internal manipulation of the Z80
registers, to the management of input/output devices, as well as the
characteristics of software development aids. What is the next step?
Two views can be offered, the first one relating to the development of
technology, the second one relating to the development of your own
knowledge and skill. Let us address these two points.

TECHNOLOGICAL DEVELOPMENT

The progress of integration in MOS technology makes it possible to
implement more and more complex chips. The cost of implementing the
processor function itself is constantly decreasing. The result is that
many of the input/output chips or the peripheral-controller chips used
in a system now incorporate a simple processor. This means that most
LSI chips in the system are becoming programmable. An interesting
conceptual dilemma is now developing. In order to simplify the soft­
ware design task, as well as to reduce the component count, the new
I/O chips now incorporate sophisticated programmable capabilities:
many programmed algorithms are now integrated within the chip.
However, as a result, the development of programs is complicated by
the fact that all these input/output chips are radically different and
need to be studied in detail by the programmer! Programming the
system is no longer programming the microprocessor alone, but also
programming all the other chips attached to it. The learning time for
every chip can be significant.

Naturally, this is only an apparent dilemma. If these chips were not
available, the complexity of the interface to be realized, as well as of the
corresponding programs, would be still greater. The new complexity
that is introduced is the need to program more than just a processor,
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and to learn the various features of the different chips in a system. How­
ever, it is hoped that the techniques and concepts presented in this book
will make this a reasonably easy task.

THE NEXT STEP

You have now learned the basic techniques required to program sim­
ple applications on paper. That was the goal of this book. The next step
is actual practice for which is no substitute. It is impossible to learn pro­
gramming completely on paper; experience is required. You should
now be in a position to start writing your own programs. It is hoped
that this journey will be a pleasant one.

For those who feel they would benefit from the guidance of an addi­
tional book, the companion volume to this one in the series is the Z80
Applications Book (refD380), which presents a range of actual appli­
cations which can be executed on a real microcomputer.
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APPENDIX A
HEXADECIMAL CONVERSION TABLE

HEX a 1 2 3 4 " " 7 A a A B r 0 E F 00 000

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768

9 144 145 146 147 148 ~1~1~ 12~1~1~1~~71~1~ 2304 36864

A ~ 1~ 12~~ ~ffi6~lMl~lm In 172rnl~ m 2560 40960

B 176 177 178 179 180 181 132 183 184 185 186 187 188 189 190 191 2816 45056

C ~1~1~ 1~1%m71%1%200~m2m3m4m5m6m7 3072 49152

0 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

5 4 3 2 1 0

HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEXI DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1.048.576 1 65.536 1 4.096 1 256 1 16 1 1
2 2.097.152 2 131.072 2 8.192 2 512 2 32 2 2
3 3.145.728 3 196.608 3 12.288 3 768 3 48 3 3
4 4.194.304 4 262.144 4 16.384 4 1,024 4 64 4 4
5 5,242.880 5 327.680 5 20.480 5 1.280 5 80 5 5
6 6.291,456 6 393.216 6 24,576 6 1.536 6 96 6 6
7 7.340.032 7 458.752 7 28,672 7 1.792 7 112 7 7
8 8,388.608 8 524,288 8 32.768 8 2.048 8 128 8 8
9 9.437.184 9 589.824 9 36.864 9 2.304 9 144 9 9
A 10.485.760 A 655.360 A 40,960 A 2,560 A 160 A 10
B 11.534.336 B 720.896 B 45.056 B 2.816 B 176 B 11

C 12.582.912 C 786,432 C 49.152 C 3.072 C 192 C 12
D 13.631.488 D 851.968 D 53.248 D 3,328 D 208 D 13
E 14,680.064 E 917,504 E 57.344 E 3,584 E 224 E 14

F 15.728.640 F 983.040 F 61,440 F 3.840 F 240 F 15
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APPENDIXB
ASCII CONVERSION TABLE

HEX MSD 0 1 2 3 4 5 6 7
LSD BITS 000 001 010 011 100 101 110 111
0 0000 NUL DLE SPACE 0 @ p - P
1 0001 SOH DC1 ! 1 A Q a q
2 0010/ STX DC2 .. 2 B A b r
3 0011 ETX DC3 # 3 C S C S

4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e U

6 0110 ACK 8YN & 6 F V f v
7 0111 BEL ETB , 7 G W 9 w

8 1000 BS CAN ( 8 H X h x
9 1001 HT EM ) 9 I y i y
A 1010 I~ SUB . J Z j Z_r-

B 1011 VT ESC + K [ k {
C 1100 FF FS . < L \ I --

CA GS M ] 1

D 1101 - = m J
E 1110 SO AS > N /\ n ,..,
F 1111 81 US I ? 0 ~ 0 DEL

THE ASCII SYMBOLS

NUL -Null
SOH - Start of Heading
STX - Start of Text
ETX -End olText
EOT -End of Transmission
ENQ -Enquiry
ACK -Acknowledge
BEL -Bell
BS - Backspace
HT - HorIzontal Tabulation
LF - Line Feed
VT - vertical Tabulation
FF - Form Feed
CR -Carriage Return
SO -Shift Out
SI -Shift In

OLE -Data Link Escape
DC - Device Control
NAK -Negative Acknowledge
SYN -Synchronous Idle
ETB -End of Transmission Block
CAN -Cancel
EM -End of Medium
SUB -Substitute
ESC -Escape
FS - File Separator
GS -Group Separator
RS -Record Separator
US - Unit Separator
SP -Space (Blank)
DEL -Delete
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APPENDIXC
RELATIVE BRANCH TABLES

FORWARD RELATIVE BRANCH TABLE

~ 0 1 2 5 7 8 9 A 8 C D E F3 4 6
MSD

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 '18 119 '20 121 122 123 124 125 126 127

BACKWARD RELATIVE BRANCH TABLE

~MSD
0 1 2 3 4 5 6 7 8 9 A 8 C D E f

8 128 127 126 125 124 '23 122 121 120 119 118 117 116 115 114 113
9 112 III 110 109 108 107 '06 105 104 103 102 101 100 99 98 97
A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

8 80 79 78 77 76 75 74 73 72 7j 70 69 68 67 66 65
C 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
D 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
f 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
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APPENDIXD
DECIMAL TO BCD CONVERSION

DECIMAL BCD DEC BCD DEC BCD

0 0000 10 00010000 90 10010000

1 0001 11 00010001 91 10010001

2 0010 12 00010010 92 10010010

3 0011 13 00010011 93 10010011

4 0100 14 00010100 94 10010100

5 0101 15 00010101 95 10010101

6 0110 16 00010110 96 10010110

7 0111 17 00010111 97 10010111

8 1000 18 00011000 98 10011000

9 1001 19 00011001 99 10011001
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APPENDIXE
Z80 INSTRUCTION CODES

OBJ SOURCE
CODE STATEMENT

8E ADC A,IHLI
DD8EOS ADC A,IIX+dl
FD8EOS ADC A,IIY+dl
8F ADC AA
88 ADC A,B
89 ADC A,C
8A ADC A,D
8B ADC A,E
8C ADC AH
80 ADC A,L
CE20 ADC A,n

ED4A ADC HL,BC
EDSA ADC HL,DE
ED6A ADC HL,HL
ED7A ADC HL,SP

86 ADD A,IHLI
008605 ADD A,lIX+dl
FD860S ADD A.IIY+dl
87 ADD A.A
80 ADD A.B
81 ADD A.C
82 ADD A,D
83 ADD A,E
84 ADD A.H
85 ADD A,L
C620 ADD A,n

09 ADD HL.BC
19 ADD HL,DE
29 ADD HLHL
39 ADD HL,SP

0009 ADD IX,BC
0019 ADD IX,DE
0029 ADD IX,IX
0039 ADD IX,SP

FD09 ADD IY,BC
FD19 ADD IY,DE
FD29 ADD IY,IY
FD39 ADD IYSP

A6 AND IHLI
DDA60S AND IIX+dl

FDA60S AND IIY+dl
A7 AND A
AD AND B
A1 AND C
A2 AND 0
A3 AND E
A4 AND H
AS AND L
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OBJ SOURCE

CODE STATEMENT

E620 AND n

CB46 BIT O,IHLI
DDCBOS46 BIT O,lIX+dl
FDCBOS46 BIT O.IIY+dl
CB47 BIT OA
CB40 BIT O,B
CB41 BIT O,C
CB42 BIT 0.0
CB43 BIT O,E
CB44 BIT O,H

CB4S BIT o ,L
CB4E BIT 1 IHLI
DDCBOS4E BIT 1,lIX+dl

FDCBOS4E BIT l,(IY+dl
CB4F BIT 1.A
CB48 BIT 1.B
CB49 BIT l.C
CB4A BIT 1.0
CB4B BIT 1.E
CB4C BIT 1,H
CB4D BIT 1,L
CBS6 BIT 2,IHU
DDCBOSS6 BIT 2,lIX+dl

FDCBOSS6 BIT 2,IIY+dl
CBS7 BIT 2,A
CBSO BIT 2,B
CBSl BIT 2,C
CBS2 BIT 2,0
CBS3 BIT 2.E
CBS4 BIT 2,H

CBSS BIT 2.L
CBSE BIT 3.IHU
DDCB055E BIT 3.IIX+dl

FDCB05SE BIT 3,IIY+dl
CB5F BIT 3.A
CB5B BIT 3,B
CB59 BIT 3,C
CBSA BIT 3,0
CBSB BIT 3,E

CBSC BIT 3,H
CBSD BIT 3,L
CB66 BIT 4,IHLI
DDCB0566 BIT 4,(IX+dl

FDCBOS66 BIT 4,(IY+dl
CB67 BIT 4,A
CB60 BIT 4,B
CB61 BIT 4.C
CB62 BIT 4.0



OBJ SOURCE
CODE STATEMENT

CB63 BIT 4,E
CB64 BIT 4,H
CB65 BIT 4,L
CB6E BIT 5,IHlI
DDCB056E BIT 5,(IX+dl
FDCB056E BIT 5,(IY+dl

CB6F BIT 5,A
CB68 BIT 5,B
CB69 BIT 5,C
C86A BIT 5.D
CB6B BIT 5.E
CB6C BIT 5,H
CB6D BIT 5,L
CB76 BIT 6,IHlI
DDCB0576 BIT 6,(IX+dl
FDCB0576 BIT 6,(IY+dl
CBn BIT 6,A
CB70 BIT 6,B
CB71 BIT 6,C
CBn BIT 6,D
CB73 BIT 6,E
CB74 BIT 6,H
CB75 BIT 6,L
CB7E BIT 7,IHlI
DDCB057E BIT 7,(IX+dl
FDCB057E BIT 7,IIYtdi
CB7F BIT 7.A
CB78 BIT 7,B
CB79 BIT 7,C
CB7A BIT 7,D
CB7B BIT 7,E
CB7C BIT 7,H
CB7D BIT 7,L

DC8405 CALL C,nn

FC8405 CALL M,nn

D48405 CALL NC.nn

C48405 CALL NZ,nn

F48405 CALL P,nn
EC8405 CALL PE.nn
E48405 CALL PO,nn
CC8405 CALL Z.nn
CD8405 CALL nn
3F CCF
BE CP IHlI
DDBE05 CP IIX+dl
FDBE05 CP (IY+dl
BF CP A
B8 CP B
B9 CP C
BA CP D
BB CP E
BC CP H
BD CP L
FE20 CP n
EDA9 CPD
EDB9 CPDR

APPENDIX

OBJ SOURCE
CODE STATEMENT

EDB1 CPIR
EDA1 CPI
2F CPL
27 DAA
35 DEC IHlI
DD3505 DEC (IX+dl

FD3505 DEC IIY+dl
3D DEC A
05 DEC B
OB DEC BC
OD DEC C
15 DEC D
1B DEC DE
1D DEC E
25 DEC H
2B DEC HL
DD2B DEC IX
FD2B DEC IY
2D DEC L
3B DEC SP
F3 DI
102E DJNZ e
FB EI
E3 EX ISPI,HL
DDE3 EX ISPI,IX
FDE3 EX (SPI,IY
08 EX AF,AF'
EB EX DE,HL
D9 EXX
76 HALT
ED46 1M 0
ED56 1M 1
ED5E 1M 2
ED78 IN A,ICI
ED40 IN B.ICI
ED48 IN C,ICI
ED50 IN D.ICI
ED58 IN E,ICI
ED60 IN H,ICI
ED68 IN L,ICI
34 INC IHlI
DD3405 INC (IX+dl
FD3405 INC (IY+dl

3C INC A
04 INC B
03 INC BC
OC INC C
14 INC D
13 INC DE
lC INC E
24 INC H
23 INC HL
DD23 INC IX
FD23 INC IY

2C INC L
33 INC SP
DB20 IN A.lnl
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PROGRAMMING THE Z80

OBJ SOURCE

CODE STATEMENT

EOAA INO
EOBA INOR
EOA2 INI
EOB2 INIR

C3B405 JP nn

E9 JP IHLI

00E9 JP II XI

FOE9 JP IIYI

OAB405 JP C,nn

FAB405 JP M,nn

028405 JP NC.nn

C28405 JP NZ.nn

F28405 JP P,nn

EA8405 JP PE,nn
E28405 JP PO,nn
CA8405 JP Z,nn

382E JR C,e

302E JR NC,e

202E JR NZ,e

282E JR Z,e
182E JR e I,ll...

02 LO ItlCI,A
12 LO IDEI,A
77 LO IHLI,A
70 LO IHLI,B
71 LO IHLI,C
72 LO IHLI,O
73 LO IHLI,E
74 LO IHLI,H
75 LO IHLI,L
3620 LD IHU,n

007705 LO (IX+d) A
007005 LO (IX+dl,B

007105 LO (IX+d).C

007205 LO (IX+dl.O

007305 LO (IX+dl.E

007405 LO IIX+dl.H

007505 LO IIX+dl.L

OD360520 LD (IX+dl,n

FD7705 LD (IY+d).A

FD7005 LD (IY+dl.6

FD7105 LD IIY+dl,C

FD7205 LD (IY+dl.D

FD7305 LD (IY+dl,E

FD7405 LD (IY+dl.H

FD7505 LD (IY+d),L

FD360520 LD (IY+dl.n
328405 LD InnlA
ED438405 LD Innl.BC
ED538405 LD Innl,DE

228405 LD Innl.HL
DD228405 LD Innl.IX
FD228405 LD Innl.IY
ED738405 LD Innl,SP
OA LD A.IBC)
lA LD A,IDEI
7E LD A.IHLI
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OBJ SOURCE
CODE STATEMENT

DD7E05 LD A.(IX+dl

FD7E05 LD A.(IY+dl

3A8405 LD A.lnnl
7F LD A.A

78 LD A.B

79 LD A.C

7A LD A.D

7B LD A,E

7C LD A,H

ED57 LD A.I
7D LD A,L
3E20 LD A.n
ED5F LD A.R
46 LD B.IHLI
DD4605 LD B.(IX+dl
FD4605 LD B.IIY+dl
47 LD B,A
40 LD B,B
41 LD B.C
42 LD B.D
43 LD B.E
44 LD B,H
45 LD B.L
0620 LD B,n
ED4B8405 LD BC.lnni
018405 LD BC.nn
4E LD C.IHLI
DD4E05 LD C.IIX+d)
FD4E05 LD C.IIY+d)
4F LD C.A
48 LD C,B
49 LD C,C

4A LD C.D
4B LD C,E
4C LD C,H
4D LD C,L
OE20 LD C.n
56 LD D,IHU

DD5605 LD D.(IX+dl
FD5605 LD D,(IY+d)

57 LD D,A
50 LD D,B
51 LD D,C

52 LD D.D
53 LD D.E
54 LD D.H
55 LD D.L
1620 LD D,n
ED5B8405 LD DE.lnnl
118405 LD DE.nn
5E LD E.IHLI
DD5E05 LD E.IIX+dl
FD5E05 LD E,IIY+dl
5F LD E,A
58 LD E,B
59 LD E.C

5A LD E,D



OBJ SOURCE
CODE STATEMENT

5B LD E,E
5C LD E,H
5D LD E,L
lE20 LD E,n
66 LD H,IHLI
DD6605 LD H,OX+d)
FD6605 LD H,OY+d)
67 LD H,A
60 LD H,B
61 LD H,C
62 LD H,D
63 LD H,E
64 LD H.H
65 LD H,L
2620 LD H.n
2A8405 LD HL.lnnl

218405 LD HL,nn

ED47 LD I.A
DD2A8405 LD IX,lnnl
DD218405 LD IX.nn
FD2A8405 LD IY,lnn)
FD218405 LD IY,nn
6E LD UHLI
DD6E05 LD L,IIX+d)
FD6E05 LD L,IIY+dl
6F LD LA
68 LD L.B
69 LD L,C
6A LD L.D
6B LD L,E

6C LD L,H
6D LD L,L
2E20 LD L.n
ED4F LD R.A
ED7B8405 LD SP,lnnl
F9 LD SP.HL
DDF9 LD SP.lX
FDF9 LD SP,IY
318405 LD SP,nn
EDA8 LDD
EDB8 LDDR
EDAO LDI
EDBO LDIR
ED44 NEG
00 Nap
B6 OR IHLI
DDB605 OR IIX+dl
FDB605 OR (IV+dl

B7 OR A
BO OR B
Bl OR C
B2 OR D
B3 OR E
B4 OR H
B5 OR L
F620 OR n
ED8B OTDR

APPENDIX

OBJ SOURCE
CODE STATEMENT

EDB3 OTIR
ED79 OUT ICI,A
ED41 OUT IC),B
ED49 OUT {CI,C
ED51 OUT {CI,D

ED59 OUT (CI,E
ED61 OUT ICI,H
ED69 OUT ICI,L
D320 OUT InlA
EDAB OUTD
EDA3 OUTI
Fl POP AF
Cl POP BC
Dl POP DE
El POP HL
DDEl POP IX
FDEl POP IV
F5 PUSH AF
C5 PUSH BC
D5 PUSH DE
E5 PUSH HL
DDE5 PUSH IX
FDE5 PUSH IV
CB86 RES O,IHLI
DDCB0586 RES O,IIX+dl
FDCB0586 RES O,OY+dl
CB87 RES O.A
CB80 RES 0.8
CB81 RES O,C
CB82 RES O,D
CB83 RES O.E
CB84 RES O.H
CB85 RES O,L
CB8E RES l,lHLI
DDCB058E RES l,OX"'d)
FDCB058E RES 1,(IY+dl
CB8F RES l,A
CB88 RES 1,B
CB89 RES l,C
CB8A RES 1.D
CB8B RES 1.E
CB8C RES 1.H
CB8D RES l.L
CB96 RES 2,{HLI
DDCB0596 RES 2,IIX+dl

FDCB0596 RES 2,OV+d)

CB97 RES 2.A
CB90 RES 2.B
CB91 RES 2.C
CB92 RES 2,D
CB93 RES 2.E
CB94 RES 2.H
CB95 RES 2,L
CB9E RES 3,{HLI
DDCB059E RES 3,OX+dl
FDCB059E RES 3,OY+dl
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PROGRAMMING THE Z80

OBJ SOURCE

CODE STATEMENT

CB9F RES 3.A
CB98 RES 3.8
CB99 RES 3,C

CB9A RES 3.D
CB9B RES 3,E

CB9C RES 3.H

CB9D RES 3,L

CBA6 RES 4,IHLI

DDCB05A6 RES 4,{IX+dl

FDCB05A6 RES 4,{IY+dl

CBA7 RES 4,A

C8AO RES 4,8

CBAl RES 4,C

CBA2 RES 4.D
DBA3 RES 4,E

CBA4 RES 4.H

CBA5 RES 4.L
CBAE RES 5,IHLI
DDCB05AE RES 5,IIX+dl
FDCB05AE RES 5,{IY+dl
CBAF RES 5,A

CBA8 RES 5,B
CBA9 RES 5,C
CBAA RES 5,D
CBAB RES 5,E
CBAC RES 5,H
CBAD RES 5,L
CBB6 RES 6,IHLI

DDCB05B6 RES 6,{IX+dl
FDCB05B6 RES 6,{IY+dl
CBB7 RES 6,A
CBBO RES 6,B
CBBl RES 6,C

CBB2 RES 6,D

CBB3 RES 6,E
CBB4 RES 6,H

CBB5 RES 6,L
CBBE RES 7,IHLI
DDCB05BE RES 7,IIX+dl
FDCB05BE RES 7,IIY+dl
CBBF RES 7,A
CBBB RES 7,B
CBB9 RES l,C

CBBA RES 7,D
CBBB RES 7,E
CBBC RES 7,H
CBBD RES 7.L
C9 RET
D8 RET C
F8 RET M
DO RET NC
CO RET NZ
FO RET P
E8 RET PE
EO RET PO
C8 RET Z
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OBJ SOURCE
CODE STATEMENT

ED4D RETI
ED45 RETN
CB16 RL IHLI
DDCB0516 RL IIX+dl

FDCB0516 RL IIY+dl

CBl? RL A
CB10 RL B
CBll RL C
CB12 RL D
CB13 RL E
CB14 RL H
CB15 RL L
17 RLA
CB06 RLC IHLI

DDCB0506 RLC (IX+dl

FDCB0506 RLC {IY+dl

CB07 RLC A

CBOO RLC B
CBOl RLC C
CB02 RLC D
CB03 RLC E

CB04 RLC H
CB05 RLC L
07 RLCA
ED6F RLD
CB1E RR IHLI

DDCB051 E RR {IX+dl

FDCB05l E RR {IY+dl

CB1F RR A

CB18 RR B

CB19 RR C

CB1A RR D

CB1B RR E

CB1C RR H

CB1D RR L
1F RRA
CBOE RRC IHLI
DDCB050E RRC (IX+dl
FDCB050E RRC IIY+dl
CBOF RRC A
CB08 RRC B
CB09 RRC C
CBOA RRC D
CBOB RRC E
CBOC RRC H
CBOD RRC L
OF RRCA
ED67 RRD
C7 RST OOH
CF RST 08H
D7 RST 10H
DF RST 18H
E7 RST 20H
EF RST 28H
F7 RST 30H
FF RST 38H
DE20 SBC A,n



OBJ SOURCE
CODE STATEMENT

9E SBC A,IHLI
DD9E05 SBC A,(IX+dl

FD9E05 S8C A,IIY+dl
9F S8C A,A
98 S8C A,8
99 SBC A,C
9A S8C A,D

98 S8C A.E
9C S8C A.H
9D S8C A,L
ED42 S8C HL,8C
ED52 S8C HL,DE
ED62 S8C HL,HL
ED72 S8C HL,SP
37 SCF
C8C6 SET O,IHLI
DDC805C6 SET O,(IX+dl
FDC805C6 SET O,(IY+dl
CBC7 SET O,A
C8CO SET 0,8
C8Cl SET O,C
C8C2 SET O,D
C8C3 SET O.E
C8C4 SET O,H
C8C5 SET O,L
C8CE SET 1,IHU
DDC805CE SET 1,(IX+d)
FDC805CE SET 1,(IY+dl
C8CF SET l,A
C8C8 SET 1,8
C8C9 SET 1,C
C8CA SET 1,D

C8C8 SET 1,E
C8CC SET l.H
C8CD SET 1,L
C8D6 SET 2,IHLI
DDC805D6 SET 2,(IX+d)
FDC805D6 SET 2.(IY+d)
C8D7 SET 2,A
C8DO SET 2.8
C8Dl SET 2,C
CBD2 SET 2.D
C8D3 SET 2,E
C8D4 SET 2,H
C8D5 SET 2,L

C8D8 SET 3,8
C8DE SET 3,IHLI
DDC805DE SET 3,(IX+dl
FDC805DE SET 3,(IY+d)
C8DF SET 3,A
C8D9 SET 3,C
C8DA SET 3,D
C8D8 SET 3,E
C8DC SET 3,H
C8DD SET 3,L
C8E6 SET 4,IHU

APPENDIX

OBJ SOURCE
CODE STATEMENT

DDC805E6 SET 4,(IX+d)
FDC805E6 SET 4,(IY+d)
C8E7 SET 4,A
C8EO SET 4.8
C8El SET 4,C
CBE2 SET 4.0
C8E3 SET 4,E
C8E4 SET 4.H
C8E5 SET 4,L
C8EE SET 5,IHU
DDC805EE SET 5,(IX+dJ
FDC805EE SET 5,(IY+dl
C8EF SET 5.A
C8E8 SET 5,8
C8E9 SET 5,C
C8EA SET 5,D
C8E8 SET 5.E
C8EC SET 5,H
C8ED SET 5,L
C8F6 SET 6,IHU
DDC805F6 SET 6,(IX+d)

FDCB05F6 SET 6.(IY+dJ
CBF7 SET 6.A
C8FO SET 6,8
C8Fl SET 6,C
C8F2 SET 6,D
C8F3 SET 6,E
C8F4 SET 6,H
C8F5 SET 6,L
C8FE SET 7,IHLI
DDC805FE SET 7,(IX+d)
FDC805FE SET 7.IIY+d)
C8FF SET 7,A
C8F8 SET 7.B
C8F9 SET 7,C
C8FA SET 7,D
C8FB SET 7.E
C8FC SET 7,H
C8FD SET 7,L
CB26 SLA IHLl
DDC80526 SLA IIX+dl
FDC80526 SLA (IY+d)

C827 SLA A
C820 SLA 8
C82l SLA C
C822 SLA D
C823 SLA E
CB24 SLA H
C825 SLA L
C82E SRA IHU
DDC8052E SRA IIX+dl
FDC8052E SRA IIY+d)
C82F SRA A
C828 SRA 8
C829 SRA C
C82A SRA D
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OBJ SOURCE
CODE STATEMENT

CB2B SRA E
CB2C SRA H
CB2D SRA L
CB3E SRL IHLI
DDCB053E SRL (lX+dl
FDCB053E SRL IIY+d)
CB3F SRL A
CB38 SRL B
CB39 SRL C
CB3A SRL D
CB3B SRL E
CB3C SRL H
CB3D SRL L
96 SUB IHLI
DD9605 SUB (IX+dl
FD9605 SUB IIY+dl
97 SUB A
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
D620 SUB n

AE XOR IHLI
DDAE05 XOR (lX+dl
FDAE05 XOR (lY+dl
AF XOR A
A8 XOR B
A9 XOR C
AA XOR D
AB XOR E

AC XOR H
AD XOR L
EE20 XOR n

(Courtesy ofZilog fllc.)
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APPENDIXF
Z80 to 8080 EQUIVALENCE

Z80 8080 Z80 8080 Z80 8080

ADCA, (Hl) ADCM EX (SP), Hl XTHl OR n ORI [B2]
ADCA, n ACI [B2] HALT HlT OR, ORA,
ADCA, , ADC, INA, (n) IN [B2] OR (Hl) ORAM
ADDA, (Hl) ADDM INCBC INXB OUT(n), A OUT [B2]
ADDA, n ADI [B2] INCDE INXD POPAF POPPSW
ADDA, , ADD, INCHl INX H POPBC POPB

ADD Hl, BC DADB INC, fNR r POP DE POPD

I
ADD Hl, DE DADD INCSP INXSP POPHl POPH

ADD Hl, Hl DADH INC(Hl) INRM PUSH AF PUSH PSW

ADD Hl, SP DADSP JPC nn JC [B2J [B3J PUSH BC PUSH B

ANDn ANI [B2] JPM, nn JM [B2J[B3] PUSH DE PUSHD

AND, ANAr JP NC, nn JNC [B2] f63J PUSH Hl PUSHH

AND(Hl) ANAM JP nn JMP (B2J [B3J RET RET

CALL C. nn CC [B2J [B3J JPNZ, nn JNZ [B2J [B3] RETC RC

CAllM, nn CM [B2J [B3] jP P, nn JP [B2] [B3J RETM RM

CAll Nc. nn CNC [B2J [B3] JP PE, nn JPE [B2][B31 RETNC RNC

CAllnn CAll JP PO, nn JPO [B2J[B3J RETNZ RNZ

CAll NZ, nn CNZ [B2J [B3J JP Z. nn JZ [B2] [B3] RET P RP

CAll P, nn CP 162J [B3] JP(Hl) PCHl RET PE RPE

CAll PE, nn CPE IB2J [B3] LD A, (DE) LDAX RET PO RPO

CAll PO. nn CPO [B2]IB31 LDA, (nn) lDA [B2J [B3( RET Z RZ

CAllZ, nn CZ [B2] [B3J LD DE, nn lXID, 1621 (B3( RLA RAl

CCF CMC LD SP, nn lXI SP, fB2J [B31 RlCA RlC

CP, CMP, lD (BC), A STAXB RRA RAR

CP(Hl) CMPM lD (DE), A STAXD RRCA RRC

CPl CMA LD(Hl), , MOVM"
RST P RST P

CP n CPI [B2J lD(nn), A STA (B2] [B3] SBCA, (Hl) SBBM

DAA DAA LD (nn), Hl SHlD [B2J [B3J
SBCA, n SBI [B2J

DECBC DCXB LDA, (BC) LDAXB SBCA, , SBB r

DEC DE DCXD LD Be, nn lXIB, 162][B3( SCF STC

DEC Hl DCX H lD Hl, (nn) lHlD [B211B31 SUB n SUI [B21

DEC, DCRr LD Hl, nn lXI H [B2] rB3J
SUBr SUB,

DECSP DCXSP lD" (HC) MOVI,M SUB(Hl) SUBM

DEC (Hl) DCRM LD r, n MVlr, [B2J XORn XRI [B2J

DI DI LOr. r
,

MOVrJ,r2 XORr XRAr

EI EI lDSP, Hl SPHl XOR(Hl) XRAM

EX DE, Hl XCHG NOP NOP
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8080 to Z80 EQUIVALENCE

8080 Z80 8080 Z80 8080 Z80

ACI [B2] ADCA. n IN [B2] INA, (n) POPH POPHl

ADCM ADCA, (Hl) INRM INC (Hl) POP PSW POPAF

ADC, ADCA, , INR, INC, PUSH B PUSH BC

ADDM ADDA, (Hl) INXB INCBC PUSH 0 PUSH DE
ADD, ADDA, , INXD INCDE PUSH H PUSH Hl

ADI [B2] ADDA, n INXH INCHl PUSH PSW PUSHAF

ANAM AND (Hl) INXSP INCSP RAl RLA

ANA, AND, JC [B2] [B3] JPC, nn RAR RRA

ANI [B2] ANDn JM [B2] [B3] JPM, nn RC RET C

CAll CAlLnn JMP [B2] [B3] JP nn RET RET

CC [B2] [B3] CALL C, nn JNC [B2] [B3] JP NC. nn RlC RlCA

CM [B2] [B3] CALlM, nn JNZ [B2] [B3] JP NI, nn RM RETM

CMA CPl JP [B2] [B3] JP p, nn RNC RET NC

CMC CCF JPE [B2] [B3] JP PE, nn RNZ RETNZ

CMPM CP(Hl) JPO [B2] [B3] JP PO, nn RP RET P

CMP, CP, JZ [B2] fB3] JP Z, nn RPE RET PE

CNC [B2] [B3] CAll NC, nn lOA [B2] [B3] LO A, (nn) RPO RET PO

CNZ [B2] [B3] CAllNZ, nn LOAXB lD A, (BC) RRC RRCA

CP [B2] [B3] CALL P, nn LOAXD LOA, (DE) RST RST P

CPE [B2] [B3] CAll PE, nn lH lD [B2] [B3] LOHl, (nn) RZ RET Z

CPI [B2] CP n lXI B [B2] [B3] LD Be. nn SBBM SBCA, (Hl)

CPO [B2] [B3] CAll PO, nn LOID [B2] fB3] lD DE, nn SBB, SBCA, ,

CZ [B2] [B3] CALL Z, nn lXI H fB2] [B3] lDHl, nn SBI [B2] SBCA, n

DAA DAA lXI SP [B2] [B3] LD SP. nn SHlD [B2] [B3] LO (nn), Hl

DADB ADD HL BC I MOVM, , LO(Hl), , SPHl LO SP, Hl

DADO ADD Hl, DE MOV"M lD" (Hl) STA [B2] [B3] lD(nn), A

DADH ADD Hl, Hl MOVrf,r2 lOr, r
, STAXB LO (BC), A

DADSP ADDHL SP MVIM lD(Hl), n STAXD LO (DE), A

DCRM DEC(Hl) MVI,[B2] lO r. n STC SCF

OCR, DEC, NOP NOP I SUBM SUB(Hl)

DCXB DECBC ORAM OR (Hl) SUBr SUBr

DCXD DEC DE ORA, ORr SUI [B2] SUB n

DCX H DECHl ORI [B2] ORn XCHG EX DE, Hl

DCXSP DECSP OUT fB2] OUT (n), A XRAM XOR (Hl)

01 01 PCHl JP(Hl) XRA, XOR,

EI EI POPB POPBC XRI [B2] XOR n

HALT HlT POP 0 POP DE XTHl EX (SP), Hl
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A B
absolute addressmg 108,439,446 B 62
ACT 61 banks of registers 62
accumulator 439 BASIC 24
ADC 101 basIC architecture 46
ADC, A, s 190 basic concepts 15
ADC HL, ss 192 baSIC programmIng chOices 579
ADD 101 baSIC programming techniques 94
ADDA, (HLJ 84,194 BCD 35,37,525
ADD A, (IX + dl 196 BCD addition 107,110
ADD A, (lY + dl 198 BCD anthmetlc 107
ADD A, n 67,200 BCD block transfers 530
ADDA, r 67,75,76,201 BCD !lags 112
ADD HL, ss 203 BCD representatIon 35
ADD IX, rr 205 BCD subtractIon 110
ADD IY, rr 207 BCD table 35
addition 58,95,100, 105 benchmark 470
address bus 47 bInary 20,21,22,41,45
address registers 51 binary code 19
addreSSIng 438,442 binary digit 18
addreSSIng modes 438,440,444,445 bInary division 133
addreSSIng technIques 438 binary logiC 18
algorithm ]5,16, ] 14, 539 binary representation 41
alphabetic list 558,565,569,570 binary search 546,558,559,560,
alphanumeric data 39 561,566,567,568
ALU 46,77,85 BIT b, (HLJ 211
AND 166,167 BIT b, (IX + d) 213
ANDs 209 BIT b, (lY + d) 215
applicatIOn examples 520 BIT b, r 217
arithmetic-logical unit 46,61 bit 18,20,41
arithmetIc programs 94 bit addreSSIng 448
arithmetic shift 119 bit manipulation 172,173
ASCII 39,524,525 bit serial transfer 471, 472
ASCII converSIOn table 40 block 540,542,544
assembler 96,582,590 block transfer 450,451,453,458,530

assembler directives 596,598 block transfer
assembler fields 590 Instructions 163,450,452
assembly-language 67,580,592 bootstrap 48
assignIng a value 593 bracket testing 523
asynchronous 471,496,518 branch Instruction 441
automated Z80 branchIng point 115

mstructlOns 142,453,455 break character 467
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breakpoint
bubble-sort
buffer register
buffered
buffers
bus request
BUSRQ
byte

584,586
533,534.535.536.537

59,61
49
61

497
92.497

18,19.41.444

CP1
CPIR
CPL
CPU
critical race
CRT display
crystal
CU

231
233

165.235
46,187

60
44,587

47
46

62. 74
109.236

51 I
47
51

512
155
164
469
548
539

154,158,160
583

18
20,21.22

238
240
242
243

71, 86
56
49

164,442
596
596
597
597
596
463

464,483
553,565.574

548
67

587
596
244

439,441
19

515

D
D
DAA
data buffer
data bus
data counters
data direction register
data processing
data processing instructions
data ready
data representation
data structures
data transfers
debugger
debugging
decimal
DECm
DEC rr
DEC IX
DECIY
decode
decoding
decoding logic
decrement
DEFB
DEFL
DEFM
DEFS
DEFW
delay generation
delay loop
deleting
design examples
destination register
development systems
DFB
DI
direct addressing
direct binary
direction register

C
C 28.30,31.62.73
CALL 145,156.446.500
CALL cc. pq 219
CALLpq 222
CCF 224
CALL SUB 143. 144. 145
carry 22,23.26,28.30.174
central-processing unit 46
checksum computation 528
circular list 544, 545
classes of instructions 154
clearing memory 520
clock 47
clock cycles 69
clock-synchronous logic 86
code conversion 525
coding 16
combination chips 48
commands 16
comment field 590
compare 531
compiler 545. 581, 582
COND 600
conclusion 602

conditional assembly 600
conditional instruction 50
constants 439. 445. 594
control box 49
control bus 47
control instructions 157. 185
control registers 512,513.515
control signals 91
control unit 46
count the zeroes 529
counter 463. 465
CP 1~

CPs 2~

CPD 227
CPDR 229
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F
F 61
fetch 55.70,84
fetch-execute overlap 78
FIFO 543
file directory 541
flags 31,50,51,179,180
flags register 61
flip-flops 51
floating point representation 37, 38
flowcharting 16,17, 114,

450,464,469,494,559
front panel 45,589

146,571,580,594
541,545
541,582

63
442
245

491,498
97

582
545,546

34
49

directives
directories
disk operating system
displacement
displacement field
DJNZe
DMA
documenting
DOS
doubly-linked lists
double-precision format
drivers

I
1 63
IFFI 499
IFF2 499
illegal code 107
IMO 258
1M I 259
1M2 260
immediate addressing 108,159,439,445
immediate operatIOn 69
implicit addressing 438, 445
implied addressing 438
improved multiplication 126, 128, 129
IN r. (C) 261
IN A, (N) 263
in-circuit emulator 585
INC(HL) 267

E
E
EBCDIC
echo
editor
EI
8-bit addition
8-bit division
element deletion
element insertion
emulator
END
ENDC
ENDM
EPROM's
EQU
error
error messages
EXAF,Apl
exchange instructions
Exclusive ORing
EX DE, HL
executable statements
execute
execution
execution cycle
exponent
EX (SP), HL
EX (SP), IX
EX(~;P), IY
extended addressing
external representation

of information
EXX

62
39

486
583
247

95
134, 137

564
550,563

583
597
600
597
585
596
586
592
162
162
31

249
16
71

56,69,599
55

37,38
250
252
254

160,441,446

41, 44
256

G
general purpose registers
getting characters in

H
H
half-carry flag (H)
HALT

handshaking
hardware
hardware delays
hardware organization

hardware resources
HEX
hexadecimal
hexadecimal coding
high byte
high level language

51
522

62, 176
176

92, 185.257
477, 478, 511

93
465
46

587.589
525

41,42.481
43.579

103
581
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INCr 264 interrupt table 504
increment 164,442 interrupt vector 498
incrementer 57 interrupts 495
INCrr 265 I/O control 92
INC (IX + d) 268 10RQ 92,500
INC (IY + d) 270 IR 55
INC IX 272 IX 53,63
INCIY 273 IY 63
IND 274
index register 53,63,441. 442 J
indexed addressing 160,441,447,540 JP cc, pq 282
indexing 63 JP nn 89
indirect addressmg 443,444,448,540 JPpq 284
indirect indexed addressing 443 JP(HL) 285
indirect memory access 499 JP (IX) 286
INDR 276 JP (IY) 287
mformation representation 18 JR cc, e 288
in-house computer 588 JRe 290
INI 278 JUMP 90,172,179,441
INIR 280 jump instruction 156,182
input/output 157,460,518 jump relative (JR) 446,447
input/output devices 511,521
input!output instructions 183,460 K
input register 466 1K 24
inserting 552,573
instruction 96 L
instruction field 590 L 62
instruction formats 66 label field 590
instruction register 55,64 largest element 526,527
instruction set 154 LDA, (n, n) 69,86
instruction types 112 LDD,C 72

INT 91 LDD 164
internal control registers 51,513 LDDR 164
internal representation LDI 164

of information 18 LDIR 142,164
interpreted 69 LD dd, (nn) 291
interpreter 545,581, 582 LDdd, nn 293
interrupt 466,496,497,500,505, LDr, n 295

508, 509, 511 LDr, r 66
interrupt acknowledge 500 LDr, rl

297
interrupt flag 187 LD(BC), A 299
interrupt handler 502 LD(DE),A 300
interrupt logic 510 LD(HL), n 301
interrupt-mask-bit 499 LD(HL), r 303
interrupt mode 0 500 LDr, (HL) 356
interrupt mode 1 503 LD r, (IX + d) 305
interrupt mode 2 504 LD r, (IY + d) 307
interrupt overhead 504 LD(IX + d), n 309
interrupt-page addressing register 63 LD(IY + d), n 311
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LD (IX + d), r 313
LD(lY + d),r 315
LD (nn), A 317
LD (nn), A 319
LD (nn), dd 321
LD (nn), HL 323
LD (nn), IX 325
LD (nn), IY 327
LD A, (BC) 329
LD A, (DE) 330
LDA.l 331
LD 1, A 332
LDA. R 333
LD HL. (nn) 334
LD IX. nn 336
LD IX. (nn) 338
LD IY. (nn) 340
LD IY. nn 342
LD R. A 344
LDSP. HL 345
LDSP. IX 346
LDSP.IY 347
LDD ~8

LDDR 3m
LDI 352
LDIR 354
LED 41.480
LIFO structure 540, 544
light emitting diodes 41
linked list 542.544.568,571.573.

574,577.578
linked loader 583
list 540.548.549.550.555.556,557
listing 590
list pointer 542
literal 69.439.455.594
load 96. 106
loader 583
logarithmic searching 546. 562
logical 166.558
logical errors 582
logical operations 141
logical shi ft 119
long addressing 449
longer delay 464

38
168,522

55
453.586

157
64
86

67,579
92

444
48,582

467
452

52,59
91
92

34
358

24.26.32
145

18,36
91.92.498

498
133
359
92
37
37

506
482

98
52,62

113.114.115.116,
124.151.152.153

52.62

41.42
465

25
466

66,86,439.444.446
100, 102.438.439

582
587

166.168
360

N
N
NEG
negative
nested calls
nibble
NMI
nonmaskable interrupt
nonrestoring method
NOP
NOPs
normalize
normalized mantissa

o

mantissa
MASK
memory cycles
memory map
memory-mapped i/O
memory-refresh register
micro instructions
mnemonic

octal
odometer
one's complement
one-shot
opcode
operand
operating system
operator precedence
OR
ORs

MUX

Ml
modes
monitor
monitoring
MOS Technology 6502
MPU
MPU pinout
MREQ
multiple devices
multiple LED's
multiple precision
multiplexer
multiplication

69
597,598.600

M

machine cycle
MACRO
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ORO
OTDR
OTIR
OUT(C), r
OUT (N), A
OUTD
OUTI
output register
overdraw
overflow
overlap technique

596
362
364
366
368
369
371
461
133

28,30,31,32
79

pulse
pulse counting
punch
PUSH qq
PUSH IX
PUSHIY
push

Q
queue

462,467
466
495
379
381
383

53,76, 154

543,544

p

packed BCD 36,107
packed BCD subtract 110, I II
paper-tape readers 494
parallel input/output 48
parallel work transfer 467,468,469
parity bit 39,40
parity generation 524
parity/overflow (PIV) 175
PC 52
PIC 446,506
PIO 48,511,512,513,514,515,518
pointers 51,62,444,539,544,550,551
polling 466,469,492, 521, 544
polling loop 493,494
POP qq 373
POP IX 375
POP IY 377
pop 53,76, 154
port 511,515,516
positional notation 20
positive 24, 26, 32
post-indexing 442,443
power failures 48
pre-indexing 442
printer 44,479,495
program 16,48
program counter 52
program development 579,584
program loops 63, 121
programmable input/output chip 511
programmable interval

timer (PIT) 463, 465
programmer's model 94
programming 15, 16,515,518,602
programming language 16
pseudo-instructions 98
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R
R 64
RAM 48,75, 584, 587
random element 541
RLCA 3~

RD 92
read operation 96, 515
read-only memory 48
read-write memory 48,75
recursion 148
reference table 571
register addressing 438
register indirect addressing 444, 448
register-interrupt 184
register pairs 51
registers 31,51, 149,439,474
relative addressing 441, 446
relative jump 156
relays 461,462
request blocks 543
RES b, s 386
RESET 92
restoring method 133
RET 389
RET cc 391
RETI 181,393,501
RETN 181, 395,499
RETURN 144, 145
RFSH 93
RL s 397
RU ~9

RLC r 103
RLC(HL) 402
RLC (IX + d) 404
RLC (IY + d) 406
RLD 408
ROM 48
rotation 120,155,170,171
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477,518
32

583

U
UART
underflow
utility routines

T
tables 526,539,540,551,554,592
technological development 602
teletype 466,485,487,488,489
temporary register 61
test 16, 156, 172
testing a character 523
timer 465
time-sharing system 588
timing 463
trace 585
transfers 52
trees 544, 545
truncating 34
truth table 167
two's complement 25,26,27,29
two-level directory 541

SRA s 430
SRL s 432
stack 53, 146, 149,496,508,539,544
stack pointer 53,540
standard architecture 49
standard P10 511
status 31,85,476,515
status bits 50,512
status register 50
storing operands 102
string of characters 490
SUB A, s 434
subroutine call 143, 146
subroutine library 15U
subroutine mechanism 144
subroutine parameters 149

subroutines 142,147,443,598
subtraction 104
subtract (N) 175
sum of N elements 527, 528
symbolic 41,44
symbols 592, 593
synchronous 471,496
syntactic ambiguity 16
syntax 544
system architecture 46

50,156
544,545

410
412
413
415
416

183,500
418
467

178
502
420
422
424
491

551,558,572
484

480,541
466
540
546
492
425

rotate
round robin
RRs
RRA
RRCs
RRCA
RRD
RST
RSTp
rubout

s
S
saving the registers
SBC A, s
SBC HL, ss
SCF
scheduling
searching
segment drivers
segments
sensing pulses
sequential lists
sequential searching
service routing
SET b, s
seven-segment light-emitting

diode (LED) 480,481
shift 50,118, 120, 155, 156
short addressing 441, 446, 449
short instruction 19
sign 178
signal 461
signed binary 24, 25
signed numbers 532
simple list 551
simulator 583
simultaneous interrupts 507
single-board microcomputers 587
16-bit accumulator 103
16 by 8 division 134, 135
16 by 16 multiplication 130,131
skew operations 169
skip 157
SLA s 428
software aids 582, 587
SP 53
special digit instructions 172
speed 476

623



PROGRAMMING THE zao

v
v
$

vectoring of interrupts

w
W

WAIT
work ing registers
WR

624

28,30,31
137
504

87
92

496
92

X
XOR
XORs

Z
2
280 registers
zero
zero page addressing
Zilog Z80 PIO
2ilog 280 510

166,169
436

87,177
95

177
441,446
516,517
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