

USBORNE

FIRST COMPUTER LIBRARY

Helen Davies Illustrated by Graham Round

Programs written by
Robert Schifreen, Nick Tatchell and Paul Shreeve

Contents

3 About this book
4 A home computer
6 Other kinds of computers
810 A computer program12 Computer calculations14 Inside a computer
16 Making pictures
18 More ways to make pictures
19 Turtlegraphics
20 Special effects
22 Sounds and music
26 Robots
28 Electronic mail
30 Computer equipment
32
Hints on typing in programs
Rocket Lift-off program
Seconds
Spider and Bee game
Knock, knock
Code-breaker
Raincloud
42 Graphics program
46 Program conversions

About this book

This book is all about computers. It explains how they work and what they can do. Most of the book is about home computers but you can also find out about big, powerful computers which are used for making special effects in films or working out weather forecasts.

You can find out how computers play games, do calculations and make pictures, and how they can talk and make sounds.

You can also read about robots, and electronic mail a way of sending messages between computers in different towns or on opposite sides of the world.

There are lots of different kinds of equipment you can plug into a home computer to make it more useful and fun. You can find out about these things later in the book.

There are also some simple programs to type in and try on a home computer. On pages 32-33 there are tips and hints on typing in programs.

A home computer

This is a picture of a home computer. It is running a computer game which you can see on the TV screen. On these two pages you can find out about the different parts of a computer and how they work.

2 The instructions are carried out inside the carried out inside the
computer. You can see what the inside of a computer looks like opposite.

3 The top of the computer is called the keyboard and the buttons are called keys. When you are playing a game you press the keys to tell the computer to do things, for instance, to move the bike.

1 This box is called a cartridge. It contains coded instructions which tell the computer how to make the game work. The instructions are called a program.

Other kinds of computers

The proper name for a home computer, like the one shown on the last two pages, is a microcomputer. Computers can be lots of different shapes and sizes and do all kinds of different jobs. Here are some other computers.

A tiny computer

A computer which only does one job is called a dedicated computer.

Screen on watch face.

Inside this watch there is a tiny computer? It measures the hours, minutes and seconds and displays them on the watch face. The working parts of this computer are all on one chip inside the watch.

Car computer

Some cars have a computer built into the dashboard. The computer can tell the driver how much petrol the car is using or what its average speed is.

Dashboard

The driver questions the computer by pressing buttons on a panel in the dashboard. The information is displayed on a small computer screen.

Making a computer do things

A dedicated computer, such as an electronic watch or an arcade game, can only do one thing. A home computer can do lots of different jobs. Some of these are shown in the pictures below. For each job the computer needs instructions telling it what to do.

Δ Computers can do calculations very fast - far more quickly than humans can. You can get programs to make a computer give you a maths test, or work out a financial forecast.
\triangle Programs to make a computer draw pictures on the screen are called graphics programs. You can find out more about these on pages 16-18.

- A computer

can store information, and find it for you when you need it. To do this the computer needs a program called a database program.

More about programs

If you know how, you can write computer programs yourself, or you can buy them from computer shops.

In the pictures below you can see three different forms in which computer programs are sold.

A computer program

On this page you can see what a program listing for a computer looks like. The program tells the computer to display a joke on the TV screen. It is written in a special computer language called BASIC. Most programs for home computers are written in BASIC. whill
written in BASIC .

The line numbers usually
go up in jumps of ten so
you can add extra program
lines if you need to.

and

BASIC is like a code made up of symbols and words. Most of the words are like English words and it is quite easy to
guess what they mean. In the program each instruction is on a separate line. The lines are numbered
so the computer carries out the instructions in the right order.

Giving a computer instructions is like talking to a French or German person. You have to speak to the computer in its own language or else it cannot understand you.

Computer calculations

Computers were first invented to do sums and they are very good at them. A computer can do a really difficult calculation in seconds and always get the right answer. Opposite there is a multiplication program to try on a home computer.

Useful computers

Rockets and spacecraft have very powerful computers on board. These can do enormous calculations in seconds. The calculations
have to be done very quickly to keep the spacecraft on the correct course, or make sure it lands safely.

Ships and aeroplanes use computers for navigation. The computers calculate where the ship or plane is, and in what direction it should travel.

Multiplication program

10 PRINT "CHOOSE A NUMBER"

20 INPUTA

30 PRINT "CHOOSE"

40 PRINT "ANOTHER NUMBER"

50 INPUTB

$6 \emptyset$ PRINTA;" X "; ${ }^{\prime \prime} ;{ }^{\prime \prime}={ }^{\prime \prime} ; A * B$

To try this program type it in exactly as it is written and run it. Make sure you type all the punctuation marks and spaces. (For hints on typing in and running programs see pages 32-33).

When you run the program the computer asks you to choose two numbers as shown here. Type them in, pressing the RETURN key after each one.

In a flash the computer multiplies the numbers and displays the answer on the screen. You can run the program lots of times and make the computer multiply different numbers.

Some shop tills are computers, with a drawer to hold money. The assistant types in a code for each item you buy and the computer displays the price.

Then it adds up the total and works out how much change you need. It also keeps a record of what has been sold and how much stock is left in the shop.

Banks use computers to keep track of money. Nowadays bank robbers do not have to blow the safe, they just need to crack the computer's password.

Inside a computer

When you type in a program, each word and symbol is changed into a code of electrical pulses. The chips inside the computer use this code to carry out the instructions.

These two pages show what happens to the program inside the computer.

Control centre

You can think of this as the computer's brain. It organizes all the work, makes sure the program instructions are carried out and does calculations too. The proper name for the control centre is CPU. CPU stands for Central Processing: Unit.

Decoding room

 When the control centre has done its work, the results are decoded here. Then they are displayed on the TV screen so that you can see them.

3 When you tell the computer to run the program, the control centre takes the instructions out of the storeroom and carries them out one by one.

4 The control centre does all its work in the electrical pulse code. When it has finished, the results are sent to the decoding room to be decoded.

5 Then the results are sent to the TV. The TV displays them by lighting up different parts of the screen to make words, numbers or pictures.

Making pictures

To make a computer draw a picture you have to give it a graphics program. The program tells the computer which parts of the screen to light up to make the shapes you want.

How a computer makes pictures

A computer makes pictures by lighting up tiny squares on the screen called pixels (short for picture elements).
If you look closely at a computer picture you can see that the pixels make the edges of the picture jagged.

Inside its memory the computer has a map showing the rows and columns of pixels on the screen. Each column and row has a number. In a graphics program you tell the computer which pixels to light up by giving their row and column numbers.

More ways to make pictures

On this page you can find out about
graphics and about special drawing equipment programs you can buy to help you do which you plug into the computer.

Graphics programs

Graphics programs enable you to draw lines and coloured shapes on the screen just by pressing certain keys.

With some programs you can use a joystick to draw lines. The computer draws lines in the direction you move the stick.

You can store the shapes you draw in the computer's memory, and then bring them all onto the screen at once to make one big picture.

Another way to make pictures is to draw straight onto the screen using a light pen. When you move the pen across the screen, the pixels it crosses light up.

Turtle graphics

Pictures like these are made using a computer language called LOGO. In LOGO the computer displays a pointer

called a turtle, on the screen. You can make the turtle move and draw lines using simple LOGO commands.

To tell the turtle to move forward or back you use the commands FORWARD and BACKWARD with a number telling the turtle how far to go.

4 Imagine a real turtle, like this	$\text { RIGHT } 6 \varnothing$			

To make the turtle change direction you use the commands LEFT or RIGHT
with a number for how far to turn. The amount the turtle turns is called an angle.

After making the turtle turn you can tell it to move forward in a new direction.

To make pictures you give the turtle a list of commands telling it to move forward, then turn, then move forward again.

Turtle puzzle

The first command to draw this picture is FORWARD 50. Can you work out what the rest are? You can check your answer on page 45.

Special effects

You can have lots of fun with computer graphics, telling a computer to distort a picture or change the colours.

These and other techniques are used in films to create strange and wonderful worlds.

In films like TRON, real, live actors appear in a makebelieve world. This is done by combining ordinary film of the actors with a background scene made by a computer.

Strange effects can be made by filming a person or object with a computerized camera, called a digitizing camera. The camera divides what it sees into tiny squares.

It records the colour of each square in the computer's memory. Once the computer has the picture it can do amazing things with it, as shown in the pictures below.

Distorting pictures

By changing the pixels a computer can stretch the picture to make it look fat.

Or it can squash it up and make it look thin.

The computer can change all the colours in a picture or make it transparent.

It can display the picture over and over again on the screen.

It can change the picture into a wavy shape, or make it lie down like this.

It can even transform the shape into another one with funny or horrifying effects.

Computer cartoons

A computer can make a picture, such as this train, move across the screen. It does this by switching the pixels for the train shape on, and then off and on again in a new position.

Spaceships, aliens and missiles in computer same way.

If the computer changes the picture a little each time, as shown in this picture, it can make a more life-like cartoon. This is called computer animation.

Making pictures look real

Middle ground

To make a more realistic picture, like this one, the computer must give it depth. It does this by dividing the picture into three layers
which it displays one on top of the other. In this picture the mountains and castle are on the background layer so they appear far away in the
distance. The knight is on the layer for the middle ground and the spaceship is on the foreground layer.

Sounds and music

A computer can be used to compose music or make exciting sound effects. The whizzes and bangs in arcade and computer games are made by the computer, following
instructions in the games program. On these two pages you can see how computers make sounds. Over the page you can find out about talking computers.

To make a home computer produce a sound you have to give it a BASIC command such as BEEP or SOUND.

To play a tune you have to write a program of commands, one for each note. Some home computers can play several notes at once so you can make them play chords.

This is followed by numbers which tell the computer what note to play and how loud and long it should be.

For composing music, you can buy programs which make the computer show a stave (lines for music notes) on the screen. You can use a light pen to put notes on the stave.

How a computer makes sounds

Sounds are made by a chip
 (that is, the control centre) sends a message to the synthesizer.

Talking computers

Some computers, for instance, car computers, can speak. They have strange electronic voices though. In order to speak a

To say a word, the computer sends messages to the speech synthesizer telling it which sounds the word contains. The speech synthesizer sends the signals for these sounds to the amplifier and loudspeaker.

Some home computers have a built-in speech synthesizer, or you can buy one to plug in.
The speech synthesizer in this picture contains 62 speech sounds. From these it can make any word in the English language.

Computer conversations

It is harder to make computers understand speech than it is to make them talk. This is because everybody says words in a slightly different way so it is difficult for the computer to recognize them.

This picture shows a recording studio with a computer specially designed for making sound effects. A sound, for instance, bubbles
in a drink is recorded and fed into the computer. Then the computer can make it louder, or echo and fade away. It can even play it on different

At the moment, scientists are working on computers which can be trained to recognize the voice of one particular person. Then the computer could obey simple commands such as "Stop" or "Go" or "Switch on the headlights".

Robots

A robot is a computercontrolled machine. In science fiction films, robots act almost like humans. In real life, though, they are mainly factory machines which do jobs that are boring or dangerous for people to do.

You can also get small robots which can be controlled by a home computer. These are called micro-robots.

Factory robots

Most factory robots are like gigantic metal arms. The design of the arm and the "hand" depend on the job the robot has to do. The hand is called a gripper.

Robot's arm

Robot's wrist.

This robot has a suction pad hand for picking things up.

To make the turtle move you give it commands in the computer language LOGO. See page 19.

The picture above shows a micro-robot called a turtle. It has wheels and a pen underneath, and can draw a picture as it moves about.

to the computer. Then, if something unexpected happens, the computer can stop the robot, or make it move, depending on the information it has received.

Robots are sent into space to explore planets which are too distant for humans to travel to. This picture shows a robot landingcraft carried to Mars by the spacecraft Viking 1.

This robot moves along the seabed photographing and checking underwater pipelines to see if they are broken.

Electronic mail

Electronic mail is a way of sending letters using a computer. The letters travel from one computer to another along telephone lines. To send electronic mail you have to pay a fee to the telephone company. You also need a piece of equipment called a modem.

Long-distance letters

 Large companies send electronic mail right across the world. This picture shows how Slimy Sid's message would be sent to Australia by electronic mail.

The Earth station changes the signals into radio waves and beams them up to a satellite in space.

Computer information

You can use a modem to call up a computerized information centre called a viewdata system. This sends information such as train timetables, sports results or news, direct to your computer screen. Viewdata systems are usually run by telephone companies.

You pay a fee and are given a password which you use when you call up the information centre.

The information centre is a powerful computer. It has a huge memory called a databank.

Computer equipment

These two pages show some of the extra equipment and programs you can buy for a home computer. Things you connect to a computer are called add-ons, or peripherals.

You can draw pictures on a graphics pad and the computer then displays them on the screen.

A modem is for converting computer codes into signals that can be sent along telephone cables.
A light pen draws pictures directly onto the computer's screen.

A cassette recorder is for saving and loading programs on cassettes.

A printer is a machine which prints computer information onto paper. Some printers can print pictures as well as words.

Interfaces

Most peripherals use electrical signals which are different from the computer's. To make the computer and peripheral understand one another a special device called an interface is needed. The interface changes the peripheral's signals into computer signals.

Useful programs

A database program enables you to store lots of information and use your computer to organize it. The computer can search through the database and find any piece of information in a fraction of a second.

You can buy programs to test your maths or spelling, or your knowledge of a subject such as geography or French.

Simulations are programs which recreate real-life situations. Simulations are very useful for teaching people new skills.

Adding memory

A computer has two kinds of memory, one called ROM and one called RAM. Programs are stored in the
\rightarrow ROM is short for Read Only Memory. This memory is like an instruction manual. It holds information telling the computer how to work.
\langle RAM is short for Random Access Memory. You can think of it as a notepad where the computer stores programs.

Hints on typing in programs

On the next few pages there are some programs to try on a home computer. The programs are written to run on Commodore 64, VIC 20, BBC, Electron, Spectrum and Apple computers. Some
program lines vary from one computer to another. These lines are printed on grey stripes, and conversion lines for different computers are given on pages 46-47.

32 *If your computer has an ENTER key press it each time you are told to press RETURN in this book.

Bugs in programs

If a program does not work you have probably made a typing mistake. Mistakes in programs are called bugs.

To find a bug, first type LIST and press RETURN. This puts the program lines on the screen. Check each one

Stopping programs

Commodore 64 and VIC 20	$\begin{aligned} & \text { RUN } \\ & \text { STOP } \end{aligned}$
BBC and Electron	ESCAPE
Spectrum ${ }_{\text {SAPS }}^{\text {SHIFT }}$	BREAK SPACE
Apple CTRL	C

Some programs carry on running until you stop them. Above you can see which keys to press to stop a program.

Changing programs

In this book there are some suggestions for improving the programs by adding or changing lines. You can find out how to do this below.

First you need to stop the program, and type CLS (or your computer's word) to clear the screen. Then list the program lines on the screen.

Type in the new lines with their line numbers, as shown here. If you list the program again you will see the computer puts in the new lines in the right places.

Rocket Lift-off program

The program on this page makes the computer count down to 1 and then launch a rocket on the screen. When you type in the program remember to check the conversion pages to see if you need to change the lines on grey stripes.
10 CLS
20 LET $X=16: L E T Y=2 \emptyset: L E T ~ A \$="!": G O S U B 23 \emptyset$
30 FOR X=17 TO 19
$4 \emptyset$ LET $Y=19:$ LET A\$="****":GOSUB $23 \emptyset$
50 NEXT X
60 PRINT "WHAT NUMBER DO YOU"
$7 \emptyset$ PRINT "WANT TO START FROM?"
80 INPUT Z
90 FOR C=Z TO 1 STEP - 1
100 LET $X=5:$ LET $Y=5:$ LET A $\$=$ STR $\$(C)$
110 GOSUB 230
120 FOR $V=1$ TO $100:$ NEXT V
130 LET A\$="'"ם
140 NEXT C
150 LET $Y=1$
160 LET A\$="LIFT-OFF!":GOSUB $23 \emptyset$
$17 \emptyset$ FOR $X=16$ TO 2 STEP - 1
180 LET Y=2ض:LET A\$="!":GOSUB 230
190 FOR $\mathrm{S}=1$ TO $30:$ NEXT S
$20 \emptyset$ LET A\$="ロ":GOSUB $23 \emptyset$
210 NEXT X
220 STOP
230 PRINT TAB (Y,X); A\$; "ロ": RETURN

Running the program.

When you type RUN the computer puts a rocket and launch pad on the screen. Then it asks you what number you want the countdown to start from.

2
49
XXX
$\times X \times$
XXX
WHAT NUMBER DO YOU WANT TO START FROM? ? 56

Choose any number you like, type it in and press RETURN. Then the computer starts the countdown.

When the computer reaches 1, the rocket is launched. If you want to run the program. again type RUN.

Seconds

This program makes a computer calculate the number of seconds you have been alive. Before you run the program, see if you can guess how old you are in seconds.

When you run the program the computer asks what date it is. Type the day, month and year as numbers and press RETURN after each one. Then the computer asks for your date of birth. Type it as numbers, in the same way as you did before.

The computer works out how many seconds have passed since the day you were born. The number is only a rough guide because it does not take into account what time you were born, or what time it is now.

Spider and Bee game

This program is for a game to play on a computer. In the game you are a bee and you have to catch a spider which is running over an invisible web on the screen.
10 CLS
20 LET $Y=12:$ LET $X=16$
30 LET $\mathrm{Q}=12:$ LET $\mathrm{W}=16$
40 LET $\mathrm{A}=\mathrm{X}:$ LET $\mathrm{D}=\mathrm{Y}: G O S U B$ 240:PRINT " $\mathrm{O}^{\prime \prime}$
50 LET A=Q:LET D=W:GOSUB 240:PRINT "*"
60 LET AS=INKEY\$
70 IF A\$<>'"' THEN LET A=X:LET D=Y
80 GOSUB 240:PRINT " \square "
$9 \emptyset$ IF $Y=W$ AND $X=0$ AND $A \$<\gg^{\prime \prime \prime}$ THEN GOTO 22ø
100 IF $A \$=" N^{\prime \prime}$ THEN LET $X=X-1$
110 IF $\mathrm{A} \$=$ " M " THEN LET $\mathrm{X}=\mathrm{X}+1$
120 IF $A \$=" Z$ " THEN LET $Y=Y+1$
130 IF $A \$=" A^{\prime \prime}$ THEN LET $Y=Y-1$
140 LET A=Q:LET D=W:GOSUB 240:PRINT " \square "
150 LET R=INT(RND(1)*4)+1
160 IF $\mathrm{R}=1$ AND $\mathrm{W}>1$ THEN LET $\mathrm{W}=\mathrm{W}-1$
170 IF $\mathrm{R}=2$ AND $\mathrm{W}<19$ THEN LET $\mathrm{W}=\mathrm{W}+1$
180 IF $\mathrm{R}=3$ AND $\mathrm{Q}>1$ THEN LET $\mathrm{Q}=\mathrm{Q}-1$
190. IF $\mathrm{R}=4$ AND $\mathrm{Q}<19$ THEN LET $\mathrm{Q}=\mathrm{Q}+1$
200 IF $Y<1$ OR $Y>2 \emptyset$ OR $X<1$ OR $X>2 \emptyset$ THENPRINT "FALLEN FROM THE WEB.":STOP210 GOTO 40
$22 \emptyset$ LET A=ø:LET D=10:GOSUB $24 \emptyset$
230 PRINT "CAUGHT IT!":STOP
240 PRINT TAB(A,D);
250 RETURN

Sound effect

Here are some sound effect lines for the Spider and Bee program. To add the lines, first list the program, and then type them in. The lines are different for each make of computer, so make sure you use the right ones.
When you run the program, a star and a circle appear on the screen. The star is the spider and the circle is the bee.

The spider starts moving about. To catch it you have to move the bee, using the direction keys shown above.

If the bee falls off the web, the computer stops the game and shows this message on the screen.

The computer displays this message when the bee catches the spider. If you want to play the game again, type RUN.

Commodore 64

224 POKE 54296,15:POKE 54278,128
226 POKE 54276,33:POKE 54273,34
228 FOR G=1 TO 500:NEXT G:POKE 54276, \varnothing

VIC 20
224 POKE 36878,15:FOR T=1 TO $8 \varnothing$
226 POKE 36874,243:NEXT T:POKE 36878, \varnothing

Knock, knock

This is a good program to try on your friends. It makes your computer tell knock-knock jokes.

10 DIM A\$(8),B\$(8)

20 FOR J=1 TO 8:READ A\$(J):NEXT J
30 FOR J=1 TO 8:READ B\$(J):NEXT J
40 DATA "POLICE", "DOCTOR", "ISOBEL", "AMOS"
50 DATA "ALEC", "JOANNA", "NANA","ARTHUR"
$6 \emptyset$ DATA "COME IN", "WHO AND THE DALEKS"
$7 \emptyset$ DATA "NECESSARY ON A BICYCLE"
$8 \emptyset$ DATA "QUITO", "TRICIAN", "NICECREAM"
$9 \emptyset$ DATA "YOUR BUSINESS", "MO"

100 CLS

110 PRINT "KNOCK KNOCK"
120 INPUT N\$
$13 \emptyset$ LET C=INT(RND(1)*8+1)
140 PRINT A\$(C)
150 INPUT N\$
160 CLS

$17 \emptyset$ PRINT:PRINT A\$(C);"ロ";B\$(C):PRINT
180 INPUT D\$:IF D\$<>"S" THEN GOTO $1 \emptyset \emptyset$
190 STOP

Running the program

1
KNOCK KNOCK ?WHO'S THERE?

When you run the program the computer displays the words "Knock knock". Type "Who's there?" and press RETURN.

2
KNOCK KNOCK
WHO'S THEFE?
JOANNA
?JUANNA WHO?

When the computer gives you an answer, type "Who?" again and press RETURN. Then you will find out the punchline.
3
JOANNA NICECFEAM

If you want another joke, press RETURN. The computer picks the jokes randomly so you may get the same one twice. To stop press S and then RETURN.

Changing the jokes

You can put new jokes in the program when you get tired of the old ones. To do this you need to retype the

DATA lines, putting your new joke instead of one that is there. Make sure you put
each part of your joke in the same position as the one you take out.

Code－breaker

This program is for a number game to play on your computer．In the game you are given a secret code which has a number missing．To crack the code you must work out what the number is．

$$
\begin{aligned}
& 10 \text { LET V=ø:LET } \mathrm{S}=\varnothing \\
& 20 \text { FOR P=1 TO 1000:NEXT P } \\
& 30 \text { CLS } \\
& 40 \text { LET } \mathrm{X}=\mathrm{INT}(\mathrm{RND}(1) * 9+1) \\
& 5 \emptyset \text { LET } N=\varnothing \\
& 60 \text { IF V=10 THEN GOTO } 150 \\
& 7 \emptyset \text { PRINT X;"ロ"; X*2;"םロ?ロ";X*4:PRINT } \\
& 8 \emptyset \text { INPUT "MISSING NUMBER";P } \\
& 9 \emptyset \text { IF } \mathrm{P}=\mathrm{X} * 3 \text { THEN PRINT "GOT IT!": } \\
& \text { LET } S=S+1: L E T V=V+1: G O T O 2 \emptyset \\
& \text { Type this as one long line. } \\
& 1 \emptyset \emptyset \text { IF } N=\emptyset \text { THEN LET } N=1: \text { PRINT "NO, } \\
& \text { TRY AGAIN.":GOTO 8甲 } \\
& \text { This is one long line. } \\
& 110 \text { PRINT "YOU FAILED." } \\
& 120 \text { PRINT "THE CODE IS" } \\
& 130 \text { PRINT X;"‘"; X*2;"ロ"; } \mathrm{X} * 3 \text {;"ロ"; } \mathrm{X} * 4 \text { 亿 } \\
& 140 \text { LET V=V+1:GOTO 2ø } \\
& 150 \text { PRINT:PRINT "YOU GOTם";S;"ロCODES." } \\
& 160 \text { IF S }>7 \text { THEN PRINT "YOU ARE A - One long } \\
& \text { SUPERSPY!" }
\end{aligned}
$$

170 STOP

How to play

When you run the program the computer displays a row of numbers on the screen．One of the numbers is missing．

See if you can work out what the missing number should be．Then type in your answer and press RETURN．If you get the number right，the computer gives you a new code to break．

If your answer is wrong the computer gives you another attempt to break the code．Then it tells you the answer．

Raincloud

This program makes the computer draw a sun and a cloud on your TV screen．
You can move the cloud across the screen and block out the sun．Then， see what happens．

There is a different version of the program for each make of computer，so make sure you type in the right one for yours．

When you run the program the computer draws a sun on one side of the screen and a cloud on the other．

You can move the cloud by pressing any of the letter keys on your computer．

Commodore 64

10
PRINT CHR \＄（147）
20
PRINT CHR\＄（30）：FOR Y＝1 TO 17：PRINT：NEXT Y

40
50
60
$9 \emptyset$ PRINT CHR\＄（19）CHR\＄（144）
100 PRINT TAB（X）；＂ㅁㅁㅁㅁㅁㅁ）＂
110 PRINT TAB（X）；＂ㅁ（ם）
120 PRINT TAB（X）；＂ㅁㅁ）
130 PRINT TAB（X）；＂‘＂
140 GET A\＄：IF A\＄＝＂＂＇THEN GOTO 140
150 NEXT X
160 FOR X＝1 TO 13
170 PRINT CHR\＄（159）：PRINT＂ TAB（22）；＂ロ！口！口！口！口＂
180 FOR V＝1 TO 200：NEXT V
190 PRINT＂\uparrow＂；＇TAB（22）；＂‘＂ 200 NEXT X

30 PRINT CHR\＄（158）：PRINT CHR\＄（19） CHR\＄（101）CHR\＄（105）

70 PRINT TAB（25）；CHR\＄（106）CHR\＄（102） CHR\＄（102）CHR\＄（107）
80 FOR X＝Ø TO 22
 ；＂‘ロ＂；CHR\＄（104）

One long． line．

VIC 20

10 PRINT CHR \＄（147）
$2 \emptyset$ PRINT CHR $\$(3 \emptyset)$
One long line．
30 FOR $Y=1$ TO 17：PRINT：NEXT Y
40 PRINT CHR\＄（158）：PRINT CHR \＄（19）
50 PRINT TAB（16）；CHR\＄（117）CHR\＄（99） CHR \＄（105）
60 PRINT TAB（16）；CHR\＄（98）；＂ロ＂；CHR\＄（104）
70 PRINT TAB（16）；CHR\＄（98）；＂口＂；CHR\＄（104）
80 PRINT TAB（16）；CHR\＄（106） CHR\＄（102）CHR\＄（107）
90 FOR X＝Ø TO 12
100 PRINT CHR\＄（19）CHR\＄（144）
110 PRINT TAB（X）；＂ㅁㅁㅁㅁㅁㅁ）＂
120 PRINT TAB（X）；＂ㅁㅁ）＂
130 PRINT TAB（X）；＂ㅁㅁ）＂

140 PRINT TAB（X）；＂‘व⿰口口（ם）＂
150 GET A\＄：IF A\＄＝＂＂＇THEN GOTO 150 160 NEXT X
170 FOR $\mathrm{X}=1$ TO 7 180 PRINT CHR \＄（159） The symbol， 4 means press this 190 PRINT＂＂ 4 ＂．TAB（13） 200 FOR V＝1 TO 200：NEXT V
210 PRINT＂ 4 ＂；TAB（13）；＂＂ם＂ 220 NEXT X

When the cloud covers the sun raindrops fall down the screen，like this．

On page 45 there are some program lines which make flowers on the screen．When the rain falls，the flowers blossom．

BBC and Electron＊

10 MODE 2
$2 \emptyset$ MOVE 100り，948：FOR A＝0 TO $36 \emptyset$ STEP 10
30 LET $X=58 * \operatorname{SIN}(\operatorname{RAD}(A))+100 \emptyset$
$4 \emptyset$ LET $Y=58 * \operatorname{COS}(\operatorname{RAD}(A))+89 \emptyset$
50 GCOL $\emptyset, 3:$ DRAW X，Y：NEXT A
60 FOR X＝2 TO 12
$7 \emptyset$ COLOUR 7：PRINT TAB（X，2）；＂ㅁ（ㅁ）＂
80 PRINT TAB（X－1，3）；＂ㅁ（ㅁㅁㅁ）＂
90 PRINT TAB $(X-1,4)$ ；＂ㅁ（םa口）＂
100 PRINT TAB（X，5）；＂ロ（ㅁ）＂
110 LET G\＄＝INKEY\＄（1）：IF G\＄＝＇＂＇THEN GOTO 110
120 NEXT X
130 FOR X＝7 TO 28
140 COLOUR 6：PRINT TAB（10，X）；＂ㅁ！口！口！口！口＂
150 FOR V＝1 TO 80：NEXT V
$16 \emptyset$ PRINT TAB（10，X）；＂‘＂
$17 \emptyset$ NEXT X

Spectrum

10 CIRCLE INK 6；220，150，13
20 FOR X＝5 TO 25
30 PRINT AT \emptyset, \emptyset
40 PRINT TAB X；＂（ロロ）＂
50 PRINT TAB X－2；＂（ㅁםㅁㅁㅁ）＂
60 PRINT TAB X－2；＂＇（ㅁำロロロ）＂
70 PRINT TAB X；＂＂（ロロ）＂
80 PAUSE $0:$ NEXT X
90 FOR $\mathrm{X}=5$ TO 20

110 FOR V＝1 TO 50：NEXT V
120 PRINT AT X，23；＂‘ロםロם
130 NEXT X

Graphics program

Here and on the next two pages there is a graphics program to try on your computer. It draws a stickman in colour and makes him bounce a ball.

Graphics commands vary between computers, so there is a different version of the program for each make of computer. The version for the Commodore 64 and VIC 20 is over the page.

Apple

10 HGR:HOME
20 HCOLOR=1
30 HPLOT 80,130 TO 95,100 TO 110,130
HPLOT 95,100 TO 95,60
$\mathrm{K}=3.14 / 18 \emptyset$
FOR $A=20$ TO 360 STEP $2 \emptyset$
HPLOT TO $95+10 * \operatorname{SIN}(A * K), 5 \emptyset+10 * \operatorname{COS}(A * K)$
NEXT A
HPLOT 89,90 TO 79,75 TO 95,60 TO 111,75 TO 121,61
100 HCOLOR=0:HPLOT 111,75 TO 121,61
110 HCOLOR=1:HPLOT 111,75 TO 121,75
120 HCOLOR=2: $\mathrm{X}=120: \mathrm{Y}=80$
130 GOSUB 220:GOSUB 210
140 HCOLOR=ø:GOSUB $22 \emptyset$
150 HPLOT 111,75 TO 125,75
160 HCOLOR=1:HPLOT 111,75 TO 121,61
170 HCOLOR=2:X=120:Y=125
180 GOSUB 220:GOSUB 210
$19 \emptyset$ HCOLOR=ø:GOSUB $22 \emptyset$
200 GOTO 100
210 FOR T=1 TO 100:NEXT T:RETURN
220 HPLOT X,Y TO X+5, Y TO X+5,Y+5 TO X,Y+5 TO X,Y
230 RETURN

2

3

To stop the program press your computer＇s escape key．See page 33.
4

BBC and Electron

10 MODE 2
20 MOVE 300，300
30 GCOL $0,1:$ DRAW 400，500
40 DRAW 500，300

50 DRAW 400，500
60 DRAW 400，700
70 DRAW 275，600
80 DRAW 350，550
90 MOVE 400，700
100 DRAW 525，600
110 DRAW 600，650
120 MOVE 400，800
130 FOR A＝1 TO 360 STEP 10
When you have finished with this program type MODE 7 to get normal letters on the screen．

$140 \mathrm{X}=50 * \mathrm{SIN}(\operatorname{RAD}(\mathrm{A}))+40 \emptyset: Y=50 * \operatorname{COS}(\mathrm{RAD}(\mathrm{A}))+750$
150 DRAW X，Y：NEXT A：REPEAT
160 GCOL $\emptyset, \emptyset:$ MOVE 525，600：DRAW 600，650
170 GEOL $0,1:$ MOVE 525，600：DRAW 600，60
180 PRINT TAB $(9,14) ;{ }^{\prime \prime} \mathrm{O}^{\prime \prime}: G O S U B 25 \emptyset$
190 PRINT TAB $(9,14) ; " \square "$
$20 \emptyset$ GEOL $0, \emptyset: M O V E 525,600: D R A W$ 600，60り
210 GEOL $\emptyset, 1: M O V E 525,60 \emptyset: D R A W$ 600，65
$22 \emptyset$ PRINT TAB（9，22）；＂${ }^{\prime \prime}$＂：GOSUB $25 \emptyset$
230 PRINT TAB（9，22）；＂ロ＂
240 UNTIL FALSE
250 FOR N＝1 TO 500：NEXT N：RETURN

Spectum

10 PLOT 80，20
20 INK 2：DRAW 15，30

30 DRAW 15，－30
40 PLOT 95，50
50 DRAW 0,40
60 DRAW $-16,-16$
70 DRAW 10，－14
80 PLOT 95，90
90 DRAW 16，－16
100 DRAW 10，14
110 CIRCLE 95，100，10
120 INK 2：PLOT 111，74
130 DRAW INVERSE 1；10，14
140 PLOT 111，74：DRAW 14，\varnothing
150 INK 6：PRINT AT 13，15；＂O＂：GOSUB 230
160 PRINT AT 13，15；＂ロ＂
170 INK 2：PLOT 111，74
180 DRAW INVERSE 1；14，0
190 PLOT 111，74：DRAW 10，14
200 INK 6：PRINT AT 18，15；＂O＂：GOSUB 230
210 PRINT AT 18，15；＂ロ＂
220 GOTO $12 \emptyset$
230 FOR N＝1 TO 100：NEXT N：RETURN
Press the Spectrum＇s RETURN key here．

Commodore 64 and VIC 20

On the Commodore 64 and VIC 20 the stickman is made from symbols on the front of the computer keys. These symbols are called graphics characters. To get the right-hand character on a key, you press it with the Shift key. To
get the left-hand character on a key, you press it with the key marked $(=$

Below you can see the graphics characters used in this program, and the keys they are on.

Making flowers

Below there are program lines which add flowers to the Raincloud program on pages 40－41．Before adding the lines you must type in the whole of the original program．

Rocket Lift－off sound effects

The program lines below make the computer play notes as it does the countdown．Then it makes a blast－off sound when the rocket is launched．On the Commodore 64，VIC 20 and Spectrum the sound effect only works if you start the countdown from below a certain number．The number is shown on the screen．

Commodore 64

70 PRINT＂TO START FROM（1 TO 68）？＂ 95 POKE 54296，15：POKE 54278，64
96 POKE 54276，17：POKE 54273，50＋C＊3
125 POKE 54276，0
185 POKE 54276，129：POKE 54273，5
215 POKE 54276，0

If you have a

Commodore computer
turn up the TV sound to hear the sound effect．

VIC 20

70 PRINT＂TO START FROM（1 TO 63）？＂
95 POKE 36878，15：POKE 36876，128＋C＊2
125 POKE 36876，0
185 POKE 36877，20
215 POKE 36877，0
15 COLOUR 2：PRINT TAB（10，29）；＂VロVaVaVaV＂
180 COLOUR 5：PRINT TAB $(10,28) ; " * \square * \square * \square * \square *^{\prime \prime}$

Spectrum

5 PRINT AT 21，23；INK 4；＂VロVロVロVaV＂ 150 PRINT AT 20，23；INK 2；＂＊ロ＊ロ＊ロ＊ロ＊＇

Turtle puzzle

 These are the commands you need to give the turtle to make it draw the diamond shape．

FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90
FORWARD 50

Apple

105 PRINT CHR $\$(135)$
175 FOR S＝1 TO 5：N＝PEEK（－16336）：NEXT S
185 FOR S＝1 TO 5：N＝PEEK（－16336）：NEXT S
190
BBC and Electron
105 SOUND 1，－15，100＋C＊2，3
185 SOUND $0,-15,5,3$

Spectrum

70 PRINT＂TO START FROM（1 TO 49）？＂
105 BEEP ． $1,20+\mathrm{C}:$ BEEP ．1，C
185 BEEP ． $05,25-X$
190

Program conversions

Here are the lines to type instead of the ones on grey stripes. To find a conversion line look under the section for your computer and find the name of the program you are typing. The conversion

Commodore 64

Pages 10 and 32
Joke
10 PRINT CHR\$(147)

Page 34

Rocket Lift-off
10 PRINT CHR\$(147)
120 FOR V=1 TO 25ض:NEXTV
150 LET Y=4
190 FORS $=1$ TO 70 :NEXTS
230 PRINT CHR $\$(19):$ FOR L=3 TO X:PRINT:NEXT L
240 PRINT TAB(Y);A\$;" $\square^{\prime \prime}:$ RETURN

Page 35
Seconds
10 PRINT CHR\$(147):DIM N(12)

Page 36

Spider and Bee
10 PRINT CHR\$(147)
60 GET A\$
240 PRINT CHR\$(19):FOR L=1 TO D:PRINT:NEXT L
250 PRINT TAB(A);:RETURN

Page 38

Knock, knock
100 PRINT CHR\$(147)
160 PRINT CHR\$(147)
Page 39
Code-breaker
30 PRINT CHR\$(147)
line has the same line number as the one on the grey stripe. If there is no conversion line for your computer you can type the line on the grey stripe just as it is.

VIC 20

Pages 10 and 32
Joke
10 PRINT CHR\$(147)
Page 34
Rocket Lift-off
10 PRINT CHRP(147)
120 FOR V=1 TO 250:NEXT V
150 LET $Y=4$
170 FOR $\mathrm{X}=13$ TO 2 STEP -1
190 FOR $\mathrm{S}=1$ TO 70 :NEXTS
230 PRINT CHR $\$(19):$ FOR L=3 TO X:PRINT:NEXT L
240 PRINT TAB(Y);A\$:RETURN
Page 35
Seconds

This is an extra line.

Page 36
Spider and Bee
10 PRINT CHR\$(147)
60 GET A\$
240 PRINT CHR\$(19):FOR L=1 TO D:PRINT:NEXT L
250 PRINT TAB(A);:RETURN
Page 38
Knock, knock
100 PRINT CHR\$(147)
160 PRINT CHR\$(147)
Page 39
Code-breaker
$3 \emptyset$ PRINT CHR\$(147)

Apple

Pages 10 and 32

Joke

10 HOME

```
Page 24
Rocket Lift-off
10 HOME
120 FOR V=1 TO 25ض:NEXTV
190 FOR S=1 TO 70:NEXT S
230 VTAB X:HTAB Y:PRINT A\$:RETURN
```


Page 35

Seconds
10 HOME:DIM N(12)

Page 36

Spider and Bee
10 HOME
60 LETA\$="":IF PEEK(-16384)>127 THEN GETA\$
240 HTAB A:VTAB D
250 RETURN

Page 38

Knock, knock
100 HOME
160 HOME

Page 39

Code-breaker
30 HOME

Spectrum

Page 34
 Rocket Lift-off

$23 \emptyset$ PRINT AT X,Y;A\$:RETURN

Page 36

Spider and Bee
10 RANDOMIZE
150 LET R=INT(RND*4)+1
240 PRINT AT D,A;
250 RETURN

Page 38

Knock, knock
10 DIM A\$(8,13):DIM B\$(8,26)
130 LET C=INT(RND*8+1)

Page 39

Code-breaker
20 FOR $\mathrm{P}=1$ TO 300 :NEXT P
40 LET X=INT(RND*9+1)

Index

add-ons, 30
amplifier, 23
animation, computer, 21
BASIC, 10-11
bugs, 33
calculations, on computers, 8, 12-13
calculator, 12
car computer, 6
cartoons, 21
cartridge, 4, 9, 14
cassette, 9, 14
recorder, 9, 30
central processing unit, see CPU
chips, 5, 14
conversions, 46-47
how to make, 33
CPU, 14-15, 22
databank, 28-29
database, program, 8, 31
dedicated computer, 6,8
digitizing camera, 20
disk, 30
drive, 30
Earth station, 28, 29
films, use of computers in, 20-21
games,
arcade, 7
pocket electronic, 7
graphics, 16-21
characters, 44
pad, 18
hackers, 29
interface, 30
joke programs, 12, 32, 38
joystick 6, 18, 30
keyboard
computer, 4
music, 23, 25
kilobyte, 31
light pen, 18, 22, 25
listing, 9
LOGO, 19, 27
loudspeaker, 23
mainframe, 6
memory, 14-15, 31
microrobot, 26
modem, 28, 30
music, computer, 22-25
pictures, see graphics
pixels, 16
printer, 30
print out, 30
programs, 10, 14-15, 31
hints for typing in, 32-33
to try, 34-45
RAM (random access
memory), 31
pack, 31
robots, 26-27

ROM (read only memory), 31
satellite, 28
sensors, 26
simulation, 31
sound, computer, 22-25
effects, 22, 25
synthesizer
chip, 22
speech, 24, 26
talking computers, 6, 24-25
telesoftware, 29
Topo, 26
Tron, 20
turtle, 19, 27
graphics, 19
puzzle, 19
viewdata system, 28-29
voice recognition, 24-25
watch, electronic, 6
weather forecasts, 6

First published in 1984 by Usborne Publishing Ltd, 20 Garrick Street, London WC2E 9BJ, England.
(C) 1984 Usborne Publishing Ltd.

The name Usborne and the device - are Trade Marks of Usborne Publishing Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transriitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

FIRST COMPUTER LIBRARY

The First Computer Library is a lively and colourful new series for young beginners to computing．A gang of friendly ghosts and monsters show the reader what computers can do，how they work and how to program them．The books are packed with short，entertaining programs which will run on most makes of home computer．

All About Computers

This colourful introduction explains in simple terms what a computer is，how it works and what it can do．Short programs are included to illustrate the explanations．

Simple BASIC
A simple and fun introduction to programming in BASIC， with masses of entertaining programs to try and puzzles to solve．

Computer Fun
This book is packed with programs to make a computer flash messages，play games， make pictures and lots besides． No previous programming knowledge is needed．

The Usborne First Guide to the BBC Micro

This friendly guide for young readers explains exactly how to set up and use a BBC computer．A group of little monsters explain how to program in BBC BASIC，give helpful advice on things that can go wrong and show what the BBC micro can do．

ISBN ロ－8เロ2ロ－79ワ－4

