
BEGINNERS'

UIC
C-64

TRS-80

.APPLE
.ADAl1

HAYES

BEGINNERS'

by Peter Lear

Editor

Illustrator

Designers

Carol Batchelor, BA, MA
Graham Richards

Ron Migliore

Karen McArdle
Margaret Horvath
Pat Strachan

Hayes Publishing Ltd., 3312 Mainway, Burlington, Ontario L7M 1A7

NOTE

The publisher and author have made
every effort to assure that the computer
programs are accurate and complete.
However, this publication is prepared for
general readership, and neither the pub
lisher nor the author have any knowledge
about or ability to control any third party's
use of the programs and programming
information. There is no warranty or repre
sentation by either the publisher or the
author that the programs or programming
information in this book will enable the
reader or user to achieve any particular
result.

Copyright ©1984 by Hayes Publishing Ltd.
All rfghts reseNed. No part of this book may
be reproduced or transmitted in any form
or by any means, electronic or mechan
ical, including photocopying, recording or
by an information storage and retrieval
system, without permission from the pub
lisher.

Copyright©1984 by Hayes Publishing Ltd.
Burlington, Ontario

ISBN 0-88625-075-7

Printed in Hong Kong.

ADAM is a registered trademark of Coleco.
Apple is a registered trademark of Apple
Computers, Inc.
Atari is a registered trademark of Atari, Inc.
VIC 20, PET and Commodore 64 are all
registered trademarks of Commodore
Computer Systems.
TRS-80 Color Computer is a registered
trademark of Radio Shack, Divison of
Tandy Corporation.

CONTENTS <
Introduction · 4
Your First Command· . · · · · · · · 6
Programs·· · ··· · ··· ·8
Saving 9
Loading ... · -11
Fun Time -Age Finder······ 12
Input and Output··························· · ··············· 13
Variables · 15
Loops Repeat Things · · · · · ·. · 16
String Variables · 18
IF/THEN Decisions··············· · ···························· 22
Fun Time - Word Guesser···································· 24
Stringing Along · 25
Data and Read ... 29
Random Numbers · · · · · · · · · · · · . · · · 31
Fun Time- Capitals Tester···············.· .. ·········· 32
Graphics · 34
Other Graphics 38
Loop d'Loop · · · 40
Arrays 42
Subroutines · · · · · · · · · · · · · · · ... · ... · 44
Decisions, Decisions · · · · · · · 4 7
Programming Tips · ... · .. 48
Building a Game - Memory Tester · 50
Debugging . · · ·. ·. ·. · · · · · 54
Bubble Sort · 56
Fun Time - Code Cracker· 57
Basic Conversion Chart · 60
Glossary · 62

INTRODUCTION <
This book will help you learn most of the
common BASIC language words you'll need to
write your own computer programs. To learn the
fastest and to have the most fun, sit at your
computer and type in the examples that are
given.

BASIC varies slightly from one brand of
computer to another. Because of this, the book
uses a "generic " form of BASIC throughout, so

4

you'll have to consult the BASIC CONVERSION
CHART on page 60 to find the variations used
by Apple, ADAM Commodore, Atari and TRS-80
Color Computers. Make sure you type in the
proper words and format for your computer!
(There are reminders of this throughout the
book.)

Now let's have some fun and learn BEGINNERS'
BASIC!

BASIC <
This book is about "BASIC." BASIC is a language
just like English is a language, French is a
language and Spanish is a language.

~I want to talk to someone in Spain, I must
speak to that person in Spanish so he will
understand. It is the same with computers. If I
want to communicate with a computer, I must ·
use a language the computer will understand.
One of the languages a computer understands
is BASIC.

By the way, BASIC stands for "Beginner's All
purpose Symbolic Instruction Code." If you want
to confound your enemies and amaze your
friends, you can tell them you're studying
Beginner's All-purpose Symbolic Instruction
Code. It sounds more profound than, ''I'm
studying BASIC." You'll find many people like to
confound their friends with computer jargon, so
study this book and join the club.

BASIC as a language is quite similar to English.
There are words like "PRINT," "SAVE" and "LIST."
BASIC tends to use English words so you can
understand them easily. It also takes other
English words and compresses or shortens them.

For example, "GOTO" is a BASIC word which is
the same as "go to" in English. BASIC takes out
the space between the English words because
the computer wants short, concise statements
as commands. In English I could say, "Please go
to the store." But when I am communicating
with the computer I must use the exact form of
the BASIC command so that it will understand.

When you are communicating with the
computer and you use a word it does not
understand or you misspell a word, the
computer usually responds with the expression
"SYNTAX ERROR." This is the computer's way of
saying "I do not understand" or "The spelling of
that word is not correct' or "That word is not in
my vocabulary." The computer, you see, has a
very limited vocabulary. This is sometimes good
and sometimes bad. Ifs good because you
don't have to learn a lot to become a good
programmer, but bad because it has a limited
number of phrases to tell you whafs wrong or
why something isn't working .

The important thing for now is to learn the
commands precisely so that when you use
BASIC the computer will understand what you
want it to do and not respond with SYNTAX
ERROR every time you try to do something.

5

YOUR FIRST COMMAND <
"PRINT" is a very powerful BASIC command.
PRINT tells the computer to write something,
either on the screen or on paper through a
printer. Telling the computer to PRINT in BASIC is
like saying, "Speak to me," or "Write for me," or
"Respond to me," in English. Someday when all
home computers can talk, we will probably
have a command in BASIC called SPEAK but
for now we must use PRINT. So let's see what
PRINT can do.

Turn on your computer and type the command
word PRINT. Now you must tell the computer
what you want it to PRINT. It will PRINT whatever
you type next, providing you put your request
inside double quotation marks (" "). So enter
this:

Now press "ENTER" or "RETURN." What did the
computer do? You can put anything you want
in between the quotes: spaces. words,
numbers. symbols and punctuation. Try your
name. Try:

PRINT "HELLO, MR. SMITH"
or
PRINT "HELLO, MOM"

CHARACTER STRINGS
In computer language any series of words or
numbers in quotes is called a "STRING." Also in
computer language letters. numbers. symbols
and even spaces are called "CHARACTERS."

Here are some examples of STRINGS or, to be
more precise, CHARACTER STRINGS. That's a
good term in computer jargon - "character
string ." Remember it!

Examples of CHARACTER STRINGS:

6

BAS IC lS FUN"
TBSTING l 2 3"
CHARAC'r-IR STRING"

PRINT them on your screen. Remember to type
PRINT first. then your string in quotes. This
method of instructing the computer is known as
command structure.

PRINT " "
Press ENTER or RETURN.

As you've seen from the examples, the
computer can PRINT numbers on the screen if
told to with the PRINT command.

Type in this PRINT statement:

PRINT "l 2 3 4"

Remember the quotes. What is the character
string? 1 2 3 4, that's correct. Numbers may also
be PRINTed out of quotes. Try these:

PRINT l; 2; 3; 4
PRINT l, 2, 3, 4

Notice how the first example only left one
space between the numbers, while the second
example put 10 spaces between the numbers.

The reason for this is that the semicolon (;) in the
first example instructs the computer just to
separate the numbers, and the comma(.) in
the second instructs the computer to space
over 10 spaces between the numbers. Try:

PRINT 27, 34, 4763, 1

Make up some examples of your own and use
commas and semicolons to mix up the
numbers.

..
PRACTICAL STUFF <

When numbers are not in quotes, we can do
moth with them.

Addition uses the+ sign.
Subtraction uses the- sign.
Multiplication uses the· sign.
Division uses the I sign.

Type in the following examples. Remember to
press ENTER or RETURN after each line.

PRIN'l' 14+8
PRIN'l' 12. 5- 3. 75
PRIN'l' 6*4
PRINT 376 *238
PRINT 12/3
PRINT 4+7-1'J
PRINT 6*3-11
PRINT 4*7-1 , 16/4;7*8

The computer can become a good homework
helper. Try some questions from your moth
book.

Brackets may be used to have the operations
performed in the order you want. The computer
will do the calculations in brackets first, then
use the answers it got to do the other
calculations. Try these examples:

PRIN'l' 27-(6*7)
PRINT ((3*17)+(18*19))/5

PROBLEM:
You went to the store and bought four candy
bars that cost 42 cents each. What change did
you get from $5.00? The computer will g ive you
the answer if you write the problem in BASIC.
Here is how it looks:

PRINT 5-(4*.42)

Try this one:
You got $100 dollars for your birthday and
bought 3 pets for $27 each. How much have
you got left?

Think of some more examples for yourself and
try them. Use your moth book or help your morn
with her shopping list.

I COMBINING STRINGS <
Numbers and strings may be COMBINED in a
PRINT statement. Here are some examples to
type in:

ARE DAYS IN A EK
YEAR THERE ARE ";52;" WEEKS"
THERE ARE ";7*52;" DAYS IN A YEAR"

Make up some more examples like this and try
them. (How many minutes are there in a year?)

7

I PROGRAMS <
When Y<?~ have several PRINT statements. they
can be JOined together by putting a number
before each PRINT statement line. These
numbers are called "LINE NUMBERS." By putting
statements together in this way you create
what is known as a "PROGRAM." A computer
program is a series of instructions for the
computer to carry out in the sequence given
by the line numbers.

Notice there is a space between the line
number and the PRINT statement. strictly
speaking ifs not required. but almost
everybody follows this convention because it
makes programs easier to read. Here is a PRINT
program to type in:

PRINT "HELLO"
PRINT "THERE ARE ":
24*69;" MINUTES IN A
PRINT "GOOD BYE"

Whoops! The computer did not write anything
on the screen this time. There is a reason .
Because you used line numbers. the computer
accepted and stored each line (so it wouldn't
forget what you'd told it) and waited for the
next line you typed in. In computer terms. the
computer put the small program in its
"MEMORY." Now in order to get it back so we
can use it, we must instruct the computer to
recall it with a BASIC command word. "RUN" is
the BASIC command that tells the computer to
go get a program from its memory and then
do what the program tells it to do. (Of course.
you must still press ENTER or RETURN.) When you
do so, the computer will "call up" the program
and perform each instruction in the numerical
order in which you have entered it. It will do
what's on line 10 first. line 20 second. line 30
third. and so on. RUN the above program.

8

LIST <
You can look at the program lines you have
entered by typing the BASIC command "LIST."
Do so now.
The computer LISTs out the whole program. You
can ask the computer to LIST only one line. like
this: c __ LI_S_T_1_9 _______________)

Or a number of lines. like this:

(LIST 29-39)
---~~~~~~~---

Atari users check the conversion chart.
Make sure you use the right SYNTAX (the right
commands and the proper spelling) or you'll
get a SYNTAX ERROR.
Find the SYNTAX ERROR in this line:

(19 RPINT "HELLO")

You can a lso add to your program. Enter these
lines:

(45~ PRINT
_ u PRINT "HELLO AGAIN"

e you pressing ENTER or
ETURN after each line?

Now LIST your program again. RUN the
program. What did line 40 do? Why do you
think it did that?

Program lines are generally numbered 10. 20.
30 and so on. so that if you have to. you can
insert new lines between the existing lines
without retyping all the line numbers. Type
these lines:

15 PRINT "DID YOU KNOW THAT"
25 PRINT "WHICH IS ";24*69*

69;" SECONDS"

LIST and RUN your program again.

DELETE <
You may also take out or "DELETE" lines. To do
so. you simply type in the line number without
any statement at all. To delete line 30. type:

(39)

CR=:-~~
LIST the program now. Line 30 no longer exists.
Put it back in by retyping it. (Again. remember
to press ENTER or RETURN.)

... SAVING
Programs only need to be typed in once. Then
you may use a program as many times as you
want with the BASIC command RUN. There is a
catch though; when you turn the computer off,
the program is lost forever. A computer's
memory is not like your brain . You can
remember things from way back, but a
computer only remembers as long as it has
power going to its memory. (If you want to learn
more about a computer's memory and how it
works, read "Micro World," another book in this
series.) But you can save all your hard work by
saving your program some place other than
the computer's own memory. ------

t;§-v 0

To use a disk to store
programs. you must first

prepare the floppy disk to
receive information. This process is

called "INITIALIZING" the disk (some
computers use the term "FORMATIING").

Each computer has its own way of
initializing a disk. Check your

disk drive or computer manual
for details.

"SAVE" is the BASIC command word that
instructs the computer to store information
somewhere other than its own memory. You
can SAVE a program:

1) on a "CASSETTE TAPE" by means of a
"CASSETTE TAPE RECORDER." or

2) on a "FLOPPY DISK" by means of a
"DISK DRIVE."

The instructions to connect your cassette
recorder or disk drive to your computer w ill be in
your owner's manual. If you are going to use a
tape recorder, skip the yellow circle.

9

SAVING <
When you are ready to store a program on
cassette tape or disk, you must instruct the
computer to do so by using the BASIC
command SAVE. This is normally followed by a
name for the program, in quotation marks. You
should make sure that the name you give the
program will help you remember what the
program is about. We will now store the
"minutes in a day" program we have just done.
Type:

SAVE "

Check your computer manual's section on
SAVEing programs in case the instructions are
slightly different for your computer.

I VERIFY YOUR PROGRAM<:
After storing a program you should check that it
was stored correctly. This is called ''VERIFYing."
When the computer VERIFYes a program it
compares the program it has in its memory to
t~e one you have just stored on tape or floppy
disk.

To VERIFY a program on tape, you must first
rewind the tape to where the program starts.
This step is not needed when using a floppy

10

disk. You then use the BASIC command VERIFY
followed by the name you gave the program.
Type:

For some computers this may vary. Refer to your
owne(s manual.

If your equipment is working and the computer
gives you an error message, there could be one
of several reasons why.

TAPE 1) There is no tape in the tape recorder.
2) The tape is worn out.

DISK 3) You did not initialize your floppy disk.
4) There is no disk in the disk drive.
5) The disk is worn out.

When the program is VERIFYed properly you
can turn the computer off. When you turn the
computer on again you can retrieve that
program by either rewinding the tape to where
the program starts, or rewinding the tape to the
beginning.

TIP - This can be a very slow process, so if your
cassette recorder has a counter, make a note
of where each program you have saved starts
and ends.

If you have a disk drive, you don't have to do
anything yet.

LOADing <
Taking a program from tape or disk and putting
it back into the computer is called "LOADing."
The BASIC command for most computers to
LOAD a program is simply LOAD followed by
the program's name in quotes.

LOAD "NAME"

Once the program is LOADed into the
computer's memory you can RUN it by typing
RUN or you can change it by typing LIST and
making whatever changes you want.
Remember, if you change the listings (lines) you
should SAVE and VERIFY the program again.

NEW
If you want to get rid of a program in the
computer's memory, you don't have to turn the
computer off. If you're sure you won't be using a
program again and you'd like to start a new
one, all you have to do is type the BASIC word
"NEW' and press ENTER or RETURN. This clears
the computer's memory and lets you start fresh .

We're moving right along. We now know these
BASIC words and how to use them:

RUN

LIST

SAVE

NEW

And we also know these computer terms:

CHARACTER STRING

DELETE
-

' .,..-.;:r '. - • ·--;.; • l':' •• ~ .--."'
•• • • l - •• ~ ":· • t

·.~I .,; ~. • .·_· --~-·-•- '__,._1__-l

Practice doing small programs. It will not only
be fun, it will help you remember your new
language BASIC and its vocabulary.

For Disk Users:
A feature the disk drive has that the cassette
tape does not is a table of the contents on your
floppy disk. This table of contents is referred to
as a "CATALOG" or a "DIRECTORY." Refer to your
disk drive manual for information on the
particular command to see the catalog or
directory.

11

RJN TIME! <
You've learned a lot, so oow we'll break for
some fun . While you will oot be familiar with all
the BASIC words in this next program. it will be
good practice for you to enter a program.
Make sure that you enter all the words exactly
or it's SYNTAX ERROR time!

AGE FINDER <
100 DIM N(l2)
110 FOR I=l TO 12
120 READ N(I)
130 NEXT I
140 PRINT "WHAT'S TODAY'S DATE?"
150 INPUT "DAY (1-31) II; Dl
160 INPUT "MONTH (1-12) II; Ml
170 INPUT "YEAR II; Yl
180 PRINT "WHEN WERE YOU BORN?"
190 INPUT "DAY (1-31) II; D2
200 INP UT "MONTH (1-12) II; M2
210 INPUT "YEAR ";Y2
220 DA = Dl D2
230 MA = Ml - M2
240 YA = Yl - Y2
250 IF DA > = 0 THEN 280
260 DA = DA + N(Ml)
27 0 MA = MA -1
280 IF MA > = 0 THEN 310
290 MA = MA + 12
300 YA = YA - 1
310 IF YA I 4 < >

THEN 330
320 IF Ml = 3 AND M2 = 2

DA = DA + 1
330 PRINT "YOUR AGE IS"
340 PRINT YA;" YEARS ";MA;

" MONTHS "; DA; " D

The program is called "AGE FINDER" and it asks
for today's date and your birth date. With this
information it calculates your exact age in
years. months and days. Here is the program:

350 DATA
360 DATA

INPUT and OUTPUT
INPUT <

"INPUT" is a computer term that refers to any
information or "RAW DATA" a computer is given
to work with. In the last section we gave the
computer words, numbers, strings and
equations to work with . All these things are
INPUT.

The computer received this information through
the keyboard; we typed it in. Since the
keyboard is used to INPUT information into the
computer, it is called an "INPUT DEVICE."

"INPUT" is also a BASIC language word. It can
be used in a program to tell the computer to
expect some incoming data. Here is how INPUT
Is used in a program:

SAVE this program using "MULTIPLY" as its name.
RUN the program and enter a number for A
and another number for B. The program
instructs the computer to figure out the product
of the two numbers.

OUTPUT <
"OUTPUT" is the answer the computer gives you
after it has worked on your information. If A and
Bin the MULTIPLY program were the INPUT, what
was the OUTPUT? If you said "C" - you're right!

Just as there are INPUT devices. there are also
"OUTPUT DEVICES." The screen is an OUTPUT
device; it displays the answer information. If you
wanted a paper copy of your OUTPUT. you
could direct the information to another OUTPUT
device, the "PRINTER." and it would print out
your answer. Can you think of another OUTPUT
device? How about your cassette recorder or
disk drive?

You can OUTPUT information to your tape or disk
by SAVEing it; but you can INPUT information
into your computer by LOADing a program
from your tape or disk. Cassette recorders and
disk drives are both INPUT and OUTPUT devices.

FOR YOU TO DO:

Go back to the little program "MULTIPLY" and
create a new program called "ADD" by
retyping lines 50 and 60 to read:

Now create similar programs called "SUBTRACT"
and "DIVIDE." Are you SAVEing your programs
as you go along?

14

I CHARACTER STRINGS <
A "CHARACTER STRING" is a series of words or
numbers inside quotation marks, like this:

"WORDS AND OR NUMBERS LIKE 2 3 4"

Most computers allow you to use a CHARACTER
STRING with an INPUT statement. like this:

INPUT "FIRST NUMBER ";A
INPUT "SECOND NUMBER
C=A*B
PRINT A;"*";B;"=";C

Notice how this program does the same thing
as the "MULTIPLY" program but is 2 lines shorter.
Programming shortcuts like this one can come
in very handy when you've advanced to longer
and more complex programs.

FOR YOU TO DO: Shorten your "ADD,"
"SUBTRACT," and "DIVIDE" programs by using
strings with your INPUT statements.

VARIABLES
A 'VARIABLE" is something which represents or
stands for something else. For example. B= 12.
The variable "B" has the value of or represents
the number 12.

For the moment we're going to look at
variables that represent only numbers. These
are called "NUMBER VARIABLES."

But we've already used variables, haven't we?
Take another look at our "MULTIPLY" program.

The variables we've seen so far have all
represented the values of positive whole
numbers. Variables can also have the value of
negative numbers or decimal numbers. Here
are some examples:

A=-47
G=.75

Variables can be PRINTed too. Wait a minute.
we've already done that too! That "MULTIPLY"
program taught you more than you thought!

Variable names. like the "B" in the example
above. can be longer than a single character.
(Remember what a character is? Right. a letter.
number or symbol.) Variable names can be
letters and numbers together. two or more
letters. or even whole words.

There's something you have to remember when
you make up variable names: most computers
are lazy things. THEY ONLY READ THE FIRST TWO
CHARACTERS.

Now PRINT the variables. like this:

PRINT Xl,AA,BOOKS,BOYS

What happened to BOOKS? Books and boys
both start with "BO," so when you entered the
second BO variable. the computer thought you
were changing the value of the first one and
not creating a second variable at all!
Remember this when you are making up
variable names. the computer only reads the
first two characters; make them different.

There's one other thing 1o remember. You
CANNOT use BASIC language words as variable
names. The computer would read them as
commands and not variables and become
terribly confused. So no BASIC words as variable
names.

15

LOOPS Repeat Things <
A "LOOP" is a section of a program that is
designed to perform the same set of
instructions (or "ROUTINE") over and over again.
The number of times the routine is repeated
can be specified or unspecified.

A computer will go on doing the same thing
forever if you let it. Thafs why computers are
given lots of boring, repetitive jobs. because
they just don't get bored.

GOTO <
Like everything else with a computer. you must
instruct it to go into a loop with a BASIC
command word. There are several words that
will do this; we'll look at the BASIC command
"GOTO" first. GOTO in BASIC translates as "go
to" in English.

What do you think the computer will do with
the following program?

HJ PRINT" HELLO"
29 GOTO 19

Key it in (thafs another way of saying type it in)
and RUN it to see if you were right.

Good grief, what do you do now? It won't stop!
You have put the computer in what is known as
a "CONTINUOUS LOOP"**and the only ways out
are (1) to turn off the computer. or (2) to press
the BREAK key (or the ESCape or the RUN/STOP
key, or CTRL and C on Apples.)

Press the BREAK key and see what happens.

**A continuous loop is one in which the number
of repetitions is unspecified, so the computer
just keeps doing it, and doing it, and doing it...

16

FOR, TO, NEXT <
Let's look at another way of putting the
computer into a loop - but this time we'll
specify the number of repetitions! We'll use the
BASIC words "FOR," "TO" and "NEXT." We'll need
a variable to count the number of repetitions
we specify. This type of variable is known as a
"COUNTER VARIABLE," it counts. When the
counter stops, the loop stops.

39 NEXT I

Key in the program and RUN it.

This next example will show you exactly what
the counter variable is doing. Try it.

10 FOR I=l TO 10
20 PRINT I
39 NEXT I -

STEP <
The computer counted to 10 by ones. If you
wanted it to, it could count by 2's or 5's or by
anything. We tell it to do this by using the BASIC
word "STEP.'' For example:

This means, for a count from 5 to 50, STEP over
every 5 - in other words. count by 5's.

Key in and RUN this program to see.

10 FOR I=S TO 50 STEP 5
20 PRINT I
30 NEXT I

FOR YOU TO DO: Make the computer count
from 10 to 100 by 10's.

STEP Backwards <
OK. lets make the computer really do its stuff!
Lets make it count backwards! We'll have to
start at a big number and count to a smaller
one. We'll still use STEP, but how will we show the
computer we want it to go the other way? We'l l
use a negative number after STEP.

Remember this: With STEP, positives count
forwards and negatives count backwards.

RUN this example and see:

1a
29
31

DELAYS <
The computer is a very obedient thing; if there
are ~o instructions in the FOR TO, NEXT loop,
nothing for the computer to do. it will do just

that- nothing! This results in a "DELAY" while the
computer sits there and just counts. Here's an
example:

PRINT"WAIT 5 SECONDS"
FOR I=l TO seee
NEXT I
PRINT"THANKS
FOR THE REST"

NOTE: For every second of delay you want,
make the computer count to 1000. This method
works on most computers up to a delay of 15
seconds.

FOR YOU TO DO.: Have the computer PRINT the
word 'hello' and your name, then wait 10
seconds and PRINT 'goodbye' to you.

17

STRING VARIABLES
Way back in "YOUR FIRST COMMAND" we told
you what a character string was. Do you
remember? "A series of words or numbers in
quotes" - right! In the 'VARIABLES" section we
looked at number variables. We had letters and
numbers representing the values of other
numbers. Now we're going to look at "STRING
VARIABLES."
A string variable represents one or more words
or numbers (in quotes) the same way that a
number variable represents the value of a
number. The computer needs to know which
type of variable is which, so string variable
names are followed by the dollar sign symbol
(S). This symbol is read as "string ." Here are some
examples of string variables:

A$="HELLO"
K1$="ARE COMMON PETS"
KE$="HOW ARE YOU?"

Like number variables, string variables can be
PRINTed. Try these:

PRl

FOR YOU TO DO: Make and PRINT a string
variable with your name in it. Call it NAMES.

-Says PRINT the words of AS, then right beside
that PRINT one space, and right beside that
PRINT the words of KES
- What symbol tells the computer you want
these things PRINTed "right beside" each
other? The semicolon .

.------- ------------- -Why is no space required here between the
PRINT A$ 1 KE$ strings? Because the comma tells the

PRI NT C$,IC1$

PRINT C$

18

computer to space over 10 spaces .

- Why is no space required here between the
strings? Because the space to separate the
last word of CS from the first word of K1 S is
built in at the end of CS.

Combined Strings Are Not Knotsl <
Stnng variables can be combined. We'll use the
same string variables .

FOR YOU TO DO: Combine AS with your NAMES
under the name NS .

String variables can be used in programs the
same way number variables are. Enter and RUN
this program

19 INPUT"WHAT IS YOUR
NAME ";NAME$

29 PRINT"HELLO "·NAME
Remember that a string variable is a series of
words or numbers in quotes. Write a program to
INPUT today's date Oust the month and date)
as a string variable, and PRINT it.

LEFT$ and RIGHT$ <
There are BASIC command words that allow
you to use only part of an existing string
variable.

"LEFTS" lets you take as many characters as you
want from the left side of the string. "RIGHTS"
lets you do the same but starts from the right
side of the string. To see how these commands
work, enter these strings:

A$="SPRING FEVER"
N$="I HAVE A DOG"
D$="IT IS TIME TO START"

To PRINT only "SPRING" from AS, you would tell
the computer to PRINT only the first six
characters starting from the left. This is the
command you would use.

Try it.

If you wanted to put the three right-most
characters of NS into a new variable called
PETS, this is how you would do it:

PRINT the new variable PETS.

Here are a few more examples to try that use
the string variables given above. Use PRINT to
see the results.

$•LEPT$(N$,7)+A$
G$•LEPT$(D$,6)+RIGHT$(N$,5)
C$=LEFT$(N$,6)+RIGHT$

(D$,9)+" FEEDING MY"+
RIGHT$(N$,4)

FOR YOU TO DO: Using the proper commands
and combinations of the above strings, PRINT a
new variable called VS that contains the string
"IT IS SPRING" (The answer is below.)

SA J.NHid
(9'$Y)$J.43~+(9'$0)$.La3~=$A

19

MID$
"MIDS" is another BASIC command that lets
you use only part of an existing string variable.
With MIDS you specify what character you
want to start taking characters from and how
many you want to take.

Using our original DS="IT IS TIME TO START", try:

What command would PRINT "IS TIME TO" on
the screen? (See answer below.)

(lt't'$0)$0IN

20

Using our original 3 string variables, AS, NS, and
DS, enter the following:

PO$• ID$(A$, t,S)
PRINT PO$

0$ M1D$(D$,,,3)+LBFT$(D$,3)
+Lll"1'$(A$,7)+MID$(D$ 1 7 , 4)

PRINT Q$

Using everything you know so far about
manipulating string variables, create one that
represents this sentence:
SPRING IS THE TIME TO START TRAINING A DOG
(See answer below.)

(S'$N)$~HDIH+u DNINIYHi u
+(E1'$0)$iHDIH+u aH~ u+
(Z't'$0)$0IW+(L'$Y)$iaa~=$10

:we~+ JO euo S! eJeH
·sJeMSuo peJJo~ Auow em eJe41 : JeMSUV

ATARI STRINGS
To use string variables with an ATARI computer,
a dollar sign must follow the variable name
and you must specify the maximum number of
characters that the variable will hold.
Specifying the number of characters is done
with the BASIC word "DIM" which is short for the
word DIMension. For example, to have a
variable called CS that will hold 30 characters
you enter.

DIM C

Now CS can have a string assigned to it:

(C$= "CATS AND DOGS ")

You can PRINT CS like this:

(PRINT C$)

Here are some more examples of string
variables and PRINT statements:

DIM K1$(29),KE$(15),A$(25)

A$="HELLO"
K1$="ARE COMMON PETS"
KE$="HOW ARE YOU?"

PRINT A$
PRINT A$,KE$

Strings can be added together. K1 S is added to
the end of CS this way:

Another example is:

A$(LEN(A$)+1)z" "
A$(LEN(A$)+1)=KE$
PRINT A$

The result is "HELLO HOW ARE YOU".

The ATARI can also use parts of a string, but it
doesn't use LEFTS, RIGHTS or MID$. When
PRINTing the seventh to ninth characters of AS
you enter.

PRillT A$ (7,-9)

If you want to take "ARE" out of AS and put
them into XS, you need the eleventh to
thirteenth characters, and you must use DIM to
give XS enough space to hold these
characters:

C DIM X$ (3))
X$=A$(11,13) -----

LEFTS and RIGHTS can be simulated on the
ATARI. To assign the three left-most characters of
CS to XS, use this structure:

If you want the three right-most characters of
CS in XS, use this:

X$=C$(LEN(C$)-2,LEN(C$))

to this
string

1 - find the end of the string
2 - count back 2 more characters for a total of

3 and put them in XS

If you take a look at how the other computers
use MID$ you will see that it is very similar to the
way the ATARI deals with all strings.

21

IF THEN-Makin
"IF" you want a program to make a decision
"THEN" you must tell it what choices to expect
and what it should then do. To do this use the
BASIC command words IF and THEN.

Key in this example:

10 INPUT"IS TODAY YOUR
BIRTHDAY (YES OR NO)";A$

20 IF A$="YES" THEN PRINT
"HAPPY BIRTHDAY"

Key in "YES" and see what happens. What
happens if you key in "NO"? Why? Nothing
happens because the program doesn't tell the
computer what to do if you choose "NO." Add
this line:

30 IF A$="NO" THEN PRINT
"TOO BAD"

In IF THEN situations the computer must
recognize your response and decide what it
should do next based on the instructions it was
given.

Notice how you can jump to different lines of
the program depending on your answers.

In this next program you choose between
adding two numbers and subtracting them.
First, the program asks for the numbers, then it
asks what you want to do with them, and finally

Decisions
it gives you the proper answer. Here is the
program:

HJ lNPU'l' X ; X
2fl INPUT"Y";Y
31 PRINT"CHOOSE 1 OR 2:"
49 PRINT"l - ADDITION (X+Y)
59 PRINT"2 - SUBTRACTION

(X-Y)"
61 INPUT A$
71 IF A$="1" THEN GOTO 110
89 IF A$•"2" THEN GOTO 12fl
99 GOTO 61
llfl
118
129
131

Most computers don't require GOTO after THEN
when a branch is made. Lines 70 and 80 could
be retyped to look like this:

79 IF A$="1" THEN 199
88 IF A$="2" THEN 128

FOR YOU TO DO: Write a program with four
options, whether you want to add, subtract.
divide or multiply the two numbers

••

22

..
I RELATIONAL OPERATOR <
In the last example we had alternatives for
the conditions AS ="1" and AS="2". But
variables don't always have to exactly equal
something else.

What happens in the following example?

10 INPUT"ENTER YOUR AGE";AGE
20 IF AGE<16 THEN PRINT"YOU

ARE NOT OLD ENOUGH TO
DRIVE."

30 IF AGE>16 THEN PRINT"YOU
ARE OLD ENOUGH TO
DRIVE."

RUN the program. Experiment with the numbers
you key in. What happens if you enter your age
as 16?Why?

Add this line:

40 IF AGE=16 THEN PRINT"HAVE
YOU GOT YOUR LICENSE YET?"

The equals sign, the less than sign and the
greater than sign are known in the computer
world as "RElATIONAL OPERATORS." Here is a list
of relational operators and their meanings.

MEANING

equal to

less than

less than or equal to
greater than or equal to

not equal to

FOR YOU TO DO: Write a program that asks for
options which include 3 or 4 of these relational
operators:

Here's an example to get you started:

19 INPUT"WHAT IS YOUR AGE ";A
29 INPUT"WHAT IS YOUR BROTHER'S AGE ";B
39 IF A>B THEN PRINT"YOU ARE OLDER THAN YOUR BROTHER"
49 IF A<B THEN PRINT"YOUR BROTHER IS OLDER THAN YOU"
59 IF A=B THEN PRINT"YOU MUST BE TWINS!"

23

RJN TIMEI
What a lot we've ereQ. It's time for a
break. We have w~game for you and a
friend. (The co ter 1s the referee.) One of you
enters three w ds il;lto the computer while the
other has his her eyes closed. The words may
be between 4 and 10 letters long. With your
words entered, you're ready to play.

WORD GUESSER
100 CLS
110 PRINT"HAVE ONE PLAYER

SE HIS EYES"
120 PRINT"WHILE TH E OTHER

ERS"
130 PRINT"THRE WORDS. E CH M

UST HAVE"
140 PRINT"BETWEEN .FOUR ND TE

N LETTERS."
150 INPUT"PRESS ETURN TO STA

RT";Z$
160 CLS
170 INPUT"WORD ONE ";Wl$
180 IFLEN(Wl$)>10THEN170
190 IFLEN(Wl$)<4THEN170
200 INPUT"WORD TWO ";W2$
210 IFLEN(W2$)>10THE~200
220 IFLEN(W2$)<4THEN200
230 INPUT"WORD THREE ";W3$
240 IFLEN(W3$)>10THEN230
250 IFLEN(W3$)<4THEN230
260 CLS
270 PRINT"OK, HAVE THE OTHER

PLAYER"
280 PRLNT"OPEN HIS EYES."
290 PR T"THERE ARE TEN GUESS

ES
300 PR WORD."
310 PR
320 PR T"WORD ONE STARTS WI

TH "
330 PRINTLEFT$(Wl$,3)
340 FOIU=l T010
350 PRI "GUESS #";I
360 INP G$
370 N=I
380 IFG$<>Wl$THEN410
390 PRINT"VERY GOOD! YOU GOT

IT! II
400 !=10

24

The computer will display the first three letters of
the first word and the person who did not enter
them must guess the words. Clues may be
given by the enterer. The computer will allow
you ten guesses per word. Good luck.

410 NEXT!
420 G=G+N
430 PRINT"WORD TWO STARTS WI

HEN520
YOU GOT

IT! II
510 !=10
520 NEXT I
530 G=G+N
540 PRINT 11 WORD THREE STARTS

TH II

550 PRINTLEFT$(W3$,3)
560 FORI=lT010
570 PRINT 11 GUESS #II; I
580 INPUTG$
590 N=I
600 IFG$<>W3$THEN630
610 PRINT"VERY GOOD! YOU GOT

IT! II
620 !=10
630 NEXT I
640 G=G+N
650 CLS
660 PRINT"Tl;IE WORD
670 PRIN
680 PRIN
690
700
710
720

ES"

WI

I STRINGING ALONG ... <
You already know that a string is a collection of
characters inside quotation marks. You also
know how to combine strings by adding them
together; and you can use the BASIC words,
LEFTS, RIGl-fTS AND MID$ to take strings apart.
There are other BASIC words that manipulate
strings, they are known as "STRING FUNCTIONS."
Lers look at a few.

INKEV$ <
The BASIC word "INKEYS" allows you to go get a
single character for use in a string. This may be
a response to a "YES" or "NO" question using
"Y" for yes and "N" for no, like this:

11 PRINT "ARE YOU OLD ENOUGH TO DRIVE? Y OR N?"
21 A$=INKEY$
31 IF A$="Y" THEN PRINT"YOU MUST BE 16 OR OLDER"
41 IF A$="N" THEN PRINT"YOU MUST BE UNDER 16" -------
51 GOTO 21

~this program doesn't RUN properly, check the
BASIC conversion chart on page 60 for
commands specific to your computer.

You may also use INKEYS to build a delay into a
program. For example, a program will delay
until a key is pressed. Here's one:

11 CLS
21 PRINT "THIS PROGRAM DEMONSTRATES HOW TO"
39 PRINT "MAKE THE COMPUTER WAIT UNTIL" ,9 PRINT "A KEY HAS BEEN PRESSED"
59 PRINT
61 PRINT "PRESS A KEY TO CONTINUE"
71 A$•INKEY$
8-f CLS

PRINT "THIS PROGRAM IS DONE"

LEN < K=LEN("THIS IS A STRING")
PRINT K

The BASIC word "LEN, " short for LENgth, is used
to count the number of characters in a string. It
is used like this:

A$="BASIC IS A
PRINT LEN($)

The next little program will count the number of
characters in any string:

Your string doesn't even need a variable name;
but if it doesn't have a name, it must be in
brackets. like this:

11 INPUT"WHAT IS YOUR
STRING ";S$

21 L=LEN(S$)
31 PRINT"THERE ARE ";L;"

CHARACTERS IN ";S$

Try "TESTING 1 2 3''. Now try strings of your own.

Write yourself a little program to add or subtract
the number of characters in 2 strings.

25

VAL <
The BASIC word "VAL." short tor VALue. is a string
function that assigns a numerical value to a
number string Here's how it works·

Here's a little example to show you how VAL is I
C ~=VAL (SC$) *10) I

. PRINT S _

used:

INPUT"WHAT'S YOUR AGE
IN YEARS ";A$

PRINT"YOU ARE AT LEAST "
;12*VAL(A$);" MONTHS

I

STR$ <
The BASIC word "STRS," short for STRing plus the
string symbol. functions the opposite to VAL.
STRS changes a number into a number string,
like this:

Now PRINT BS .

26

X=-6
A$="THE ANSWER IS "
D$=A$+STR$(X)
PRINT 0$

11'!111:::»\1!"'1

I
ASCII American Standard Code

for Information Interchange

To the computer, every character has a
numerical value. When you key in the letter A in
a string. the computer reads it as 65. It reads B
as 66. C as 67 and so on. The computer also
reads numbers in a string, but again it reads
the values it has already assigned to the
numbers. Zero (0) is 48. 1 is 43. 2 is 50 and on it
goes.

If you would like to know the value the
computer has assigned to any character in a
string, you can find out by using the BASIC string
function "ASC." ASC is the BASIC short form for
ASCII (pronounced ASH-KEY or ASK-KEY), which
stands for the "American Standard Code for
Information Interchange." These values are
standard to most computers.

Finding ASCII
Try this example:

PRINT ASC("=")

CHARACTER ASCII CHARACTER
NUMBER

space 32 4
! 33 5
II 34 6
35 7
$ 36 8
% 37 9
& 38 . .
I 39 . ,
(40 <
) 41 =
* 42 >
+ 43 ?
, 44 @

- 45 A . 46 B
I 47 c
0 48 D
1 49 E
2 50 F
3 51 G

We said that the ASC command will return
numbers from 0 to 255. 'Where are all the rest?"
you ask. The unlisted numbers have various

The numbers that the ASC command returns
will normally be in the range of 0 to 255.
although some computers only range from 0 to
127.

If you don't want to go through the above
procedure every time you need an ASC
number, you could keep this chart close to your
computer and simply look them up as you
need them. This is a chart of ASCII computer
character numbers.

ASCII CHARACTER ASCII
NUMBER NUMBER

52 H 72
53 I 73
54 J 74
55 K 75
56 L 76
57 M 77
58 N 78
59 0 79
60 p 80
61 Q 81
62 R 82
63 s 83
64 T 84
65 u 85
66 v 86
67 w 87
68 x 88
69 y 89
70 z 90
71

assignments in different computers. Check your
owner's manual to see if the rest of the numbers
are listed for your computer.

27

CHR$
The BASIC word that does the opposite of ASC is
"CHRS ." CHRS lets you work with characters

PRINT B$

You can use CHRS to see the characters not
listed in the ASCII reference chart. For example:

(PRINT CHR$(93))

(one at a time) by giving the computer their
ASCII numbers. Enter these lines:

String functions allow the easy manipulation of
your character strings. Practice using them:
they come in very handy in more advanced
programming.

I STRINGING THE ATARI ALONG <
ATARI computers don't use the command
INKEYS to get a one-character response;
instead they use the BASIC word "GET." Before
GET can be used though, this line must appear
in your program:

(10 OPENtl,4,0,"K:")

The key that is pressed will be assigned to a
variable. As with all variables on the ATARI, this
variable must first be DIMensioned:

(20 DIM X$ (1)

28

)

An actual GET statement looks like this:

(30 GETtl,A)
The variable used with the GET line is the
numeric variable A not XS, because the ATARI
computer assigns to the variable the ASCII
value of the response key. Now to put this ASCII
value into your prepared string (see line 20) use
this line:

(40 X$=CHR$(A))

I DATA and READ Statements < More Ways To Store Information.

DATA Statements <
Variables and strings both store information for
later use. Another method of storing information
is to use the BASIC word "DATA" A DATA
statement can store lots and lots of information
until it is needed. Quite often the information is
not needed all at once, or it is information that
Is only needed once. Lists of information are

often stored this way because each piece of
data can be taken and used separately, as
needed. Computer quizzes, for example, make
extensive use of DATA statements.
DATA statements are set up with commas
between the various pieces of information, like
this:

19 DATA FROG,29,S

Use LIST to see the DATA statement. This one
holds 3 pieces of information.

Notice in line 10 above that DATA statements
hold strings as well as numbers. These strings

SS DATA MICE,CAT,DOG

don't even need quotes unless there are
spaces or punctuation in them. Here are some
more examples of DATA statements with strings:

69 DATA HOT,"SUNNY AND DRY",COLD,"WET AND MILD"
7S DATA CARS,19,TRUCKS,S
as DATA "BUMPER STICKERS",199,WIPERS,2

READ Statements <
You've used your DATA statements correctly
and you've got all your information stored
neatly away. Now how do you get it out to use
it? Simple; you use the BASIC word "READ." Here
is an example of a READ statement:

1''9 READ Z$, Y ,X

READ is followed by variables separated by
commas the same way DATA was followed by
pieces of information between commas. If

you've figured out that their structures are
related, you're right!
READ takes its first variable, in this case ZS, and
goes looking in the first available DATA
statement for something to put in that variable.
Here READ would have found DATA line 10 first
and would have assigned to ZS, the string of
"FROG.'' READ would then take its second
variable and assign it the value of the second
piece of information in the DATA statement.
and so on until it had used up or filled all of its
variables.
Following the example, what would X be? If
you said "5" from line 10, you're right.

29

READ Statements
When the READ statement is assigning values
to variables and runs out of usable DATA in one
line, it automatically jumps to the next DATA
statement and keeps going.

READ uses both number variables and string
variables, but the variables and information
must match up and be of the same type or
you'll come up with a TYPE MISMATCH ERROR.

To see how READ works with DATA enter and
run this short program:

199 DATA CATS,19
129 READ A$
139 PRINT A$
149 READ X
151 PRI X

ANIMAL GUESSER <:
Now it's time for a quiz program using READ
and DATA. You must guess the right animal. The

HJ FOR I=1T09
29 READ CLUE$,ANIMAL$
3fl PRINT CLUE$

Here's a slightly longer one:

19 DATA CATS,19,DOGS,9
29 DATA MICE,3,SQUIRRELS,2
30 READ A$,X,B$,Y,C$,Z,D$,W
40 PRINT "ANIMAL BASEBALL

LEAGUE"
50 PRINT
60 PRINT "SCORES:"
70 PRINT
80 PRINT A$;" - ";X
99 PRINT B$;" - ";Y
190 PRINT
119 PRINT C$;" - ";Z
129 PRINT D$;" - ";W

Remember to READ numbers into number
variables and strings into string variables!

computer will give you clues. Here's the
program:

49 INPUT "WHAT IS THE ANIMAL ";REPLY$
59 IF REPLY$=ANIMAL$ THEN PRINT "VERY GOOD, YOU'RE RIGHT"
69 IP REPLY$<>ANIMAL$ THEN PRINT "WRONG - THE ANIMAL IS ";

ANIMAL$
79 NEXT I
81 DATA "A HORSE IN PYJAMAS",ZEBRA,"IT LOVES HONEY",BEAR,"IT

CHASES MICE",CAT
98 DATA "IT CHASES CATS",OOG,

"IT EATS CHEESE",MOUSE,"IT
EATS CARROTS",RABBIT

199

lHJ

DATA "IT EATS WORMS",BIRD,
IT BUILDS DAMS",BEAVER

DATA "IT LIVES IN WATER",
FISH

In this program the DATA statements were at
the end, but DATA statements can be placed
anywhere in a program; the computer will
always find them.

If you need all your information repeated. you
can use the same DATA statements over again.

30

The BASIC word RESTORE sets this up with the
computer. Add these lines to ANIMAL GUESSER
and it will start over again using all the same
DATA

129 RESTORE
139 GOTO 19

RANDOM NUMBERS
A random number is a number that is chosen
for no reason If someone said to you, "Pick a
number," you would quickly say the first
number that came into your head. There would
have been no reason for its selection, you just
needed a number.

Computer games and many other types of
programs often use random numbers. The
computer does the choosing. "RND," a
contraction of the English word RaNDom, is the
BASIC command word to produce random
numbers.

To have the computer select and PRINT a
random number between one and four. you
would type:

PRINT RND(4)

Say you want to flip a coin but you don't have
a coin, you only have a computer. Well. get the
computer to simulate coin flipping using the
RND function. Let's call the number 1, heads
and 2, tails. This line will flip your "coin":

(2)

FOR YOU TO DO: Write a line to simulate the
rolling of a six-sided die.

(9)0NH J.NIHd

Aren't random numbers simple? You can use
them when you write programs for games of
chance, like the many card and dice games
you've seen on computers. These games use
the RND function . And many computer video
games use RND for the unpredictable
movement of aliens and other creatures.

31

RJN TIME
CAPITALS TESTER <

Can you believe how much you've
learned so far! INPUT allows almost any
information to be entered during a program.
Variables are used to manipulate information.
Loops force the computer to do the same thing
as often as required. String variables let you
work with words. String functions let you \NOrk
with strings. IF and THEN give the computer a
way to make decisions. READ and DATA make
use of all kinds of information. The computer will

10 CLS
15 RESTORE
20 PRINT "CHOOSE ONE:"
30 PRINT "1-CANADIAN PROVINCES"
40 PRINT "2-AMERICAN STATES"
50 R$=INKEY$
60 IF R$="l"THEN 100
70 IF R$="2"THEN 150
80 GOTO 50
100 N=RND(l2)
110 GOTO 200
150 N=RND(50)+12
200 FOR I=lTON
210 READ SP$,CAP$
220 NEXT I

even pretend to roll a die for you with RND.
Isn't that great?

Well. learning is fun, but games are more fun!
Let's do a game. The program CAPITALS TESTER
given here uses most of these BASIC \NOrds and
functions. The program will give you a
Canadian province or an American state and
you have to tell the computer the capital city.
Good luck!

Remember
to check the

Conversion Chart
for things like CLS.

INKEYS and
random numbers.

230 IF R$="l"THEN PRINT "THE PROVINCE IS ";SP$
240 IF R$="2"THEN PRINT "THE STATE IS ";SP$
250 INPUT "WHAT IS THE CAPITAL ";AN$
260 IF AN$=CAP$ THEN PRINT "GOOD WORK, YOU'RE RIGHT"
270 IF AN$<>CAP$ THEN PRINT "WRONG, THE ANSWER IS ";CAP$
280 INPUT "DO YOU WANT TO PLAY AGA IN? (YES OR NO) ";A$
290 IF A$="YES" TH EN 10
300 IF A$= "NO" TH EN END ._------------41
310 GOTO 280
320 DATA YUKON ,WHITEHORSE,"NORTHWEST TERRITORIES",YELLOWKNIFE
330 DATA "BR ITISH COLUMBIA'',VICTORIA,ALBE RTA,EDMbNTON,

SASKATCH EWAN
340 DATA REGINA,MANITOBA,WINNIPEG,ONTARIO, TORONTO,QUEBEC,"QOBBBC

CITY"
350 DATA NEWFO UNDLAND,"ST JOHN'S","NOVA SCOTIA",HALIFAX,"NEW

BRUNSWICK"
360 DATA FREDERI CTON,"PRINCE EDWARD IS LAND",CHARLOTTETOWN,ALA
370 DATA MONTGOMERY,ARIZONA,PHOENIX,ALASKA,JUNEAU,ARKANSAS
380 DATA "LITTLE ROCK",CALIFORNIA,SACRAMENTO,COLORADO,DENV

390 DATA CONNECTICUT,HARTFORD,DELAWARE,DOVER,FLORIDA
400 DATA TALLAHASSEE,GEORGIA,ATLANTA,HAWAII,HONOLULU,IDAHO,BOISE,

410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

ILLINOIS
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

SPRINGFIELD,INDIANA,INDIANAPOLIS,IOWA,"DES MOINES"
KANSAS,TOPEKA,KENTUCKY,FRANKFORT,LOUISIANA,"BATON ROUGE"
MAINE,AUGUSTA,MARYLAND,ANNAPOLIS,MASSACHUSETTS,BOSTON
MICHIGAN,LANSING,MINNESOTA,"ST PAUL",MISSISSIPPI,JACKSON
MISSOURI,"JEFFERSON CITY",MONTANA,HELENA,NEBRASKA
LINCOLN,NEVADA,"CARSON CITY","NEW HAMPSHIRE",CONCORD
"NEW JERSEY",TRENTON,"NEW MEXICO","SANTA FE","NEW YORK"
ALBANY,"NORTH CAROLINA",RALEIGH,"NORTH DAKOTA",BISMARCK
OHIO,COLUMBUS,OKLAHOMA,"OKLAHOMA CITY",OREGON,SALEM
PENNSYLVANIA,HARRISBURG,"RHODE ISLAND'',PROVIDENCE
"SOUTH CAROLINA",COLUMBIA,"SOUTH DAKOTA",PIERRE
TENNESSEE,NASHVILLE,TEXAS,AUSTIN,UTAH, 11 SALT LAKE CITY"
VERMONT,MONTP i LIER,VIRGINIA,RICHMOND,WASHINGTON,OLYMPIA
"WEST VIRGINIA",CHARLESTON,WISCONSIN,MADISON,WYOMING
CHEYENNE

•
•

•

• •
• • • •

•

GRAPHICS <
"GRAPHICS" is the name given to the pictures
and patterns you've all seen on computer
screens. Every computer has its own way of
producing graphics. Some computers draw
very detailed images using tiny dots that are
called "PIXELS." Take a close look at your
computer screen right now. Can you see the
small dots that make up the letters and
numbers? These are the pixels. Computers that
make pictures using the dots are said to use
"HIGH RESOLUTION GRAPHICS." But some
computers draw pictures using BLOCKS of
pixels. We'll look at those later.

When you put letters and numbers on the
screen, your computer is said to be in "TEXT
MODE," and when you are drawing pictures
you are in "GRAPHICS MODE." Some computers
with hi-res (You're a real computer buff when
you use short formsO have several different
graphics modes. The difference between them
usually has to do with the detail of the pictures
and the number of colors you can use. You
must instruct the computer as to which n:iode
you want. Some typical BASIC commands for
these are: "GRAPHICS," "GR," and "HGR." Once
you have selected a mode you are ready to
begin drawing.

There are a certain number of pixels on your
screen, there are so many across in each row
and there are just so many rows. You select

APPLE and ADAM

19 INPUT "X (9-279) ";Xl
29 INPUT "Y (9-159) ";Yl
39 INPUT "COLOR (9-7) ";C
49 HGR
59 HCOLOR=C
69 HPLOT Xl,Yl

Type in "TEXT" to return to text mode.

34

which pixels you want to use in your drawing by
calling for them by number. You need two
numbers to call up one pixel; one number
shows the row that the pixel is in and the other
shows what column it is in . These two numbers
are called "CO-ORDINATES." Check your
owne(s manual for the numbers you would use
on your computer. ex is used to reference
which row and Y is used to reference which
column. You use them as X,Y. When you put in
your own numbers it could be 10,4. That would
be the tenth pixel over from the left in the fourth
column).

The BASIC command to turn on or light up a
pixel is "PLOT" (or sometimes "SET") followed by
the co-ordinates of the desired pixel. On certain
computers you must choose a color before you
can PLOT a pixel. Each color your computer
uses is also given a number reference. Your
owne(s manual will tell you more about the
colors you can use. But often the command for
choosing a color is simply "COLOR=" followed
by the number reference of the color you want.

Let's see what we've learned so far with a little
program. Actually four are given; the first is for
Apple and Adam computers, the second is for
Atari computers. and the last two are for Radio
Shack TRS-80 Color Computers. We'll be
drawing or PLOTting pixels.

ATARI

19 PRINT"PIXEL CO-ORDINATES"
29 PRINT"X (9-159)"
39 INPUT X
49 PRINT"Y (9-79)"
59 INPUT Y
69 PRINT"COLOR (9-255)"
79 INPUT C
89 GRAPHICS 7
99 COLOR C
lfH PLOT X, Y

Type in GRAPHICS 0 to return to text mode.

TRS-80
COLOR COMPUTER

lfl I PU'f
28 INPtrr"'f (I '.l
38 INPU'l""COLO
48 CLS(9)
58 SET(X,Y,C)
69 GOTO 68

Hit the BREAK key to return to text mode.

<

RANDOM POINTS <
~you don't want to figure out which pixels to
light up, you can have the computer pick the
points and colors itself. It will use its random
function to select the number co-ordinates and
colors. Here are some pixel drawing programs
using random numbers. Remember to type in
NEW before you start these.

APPLE and ADAM <
21 X • INT(R.llD(l)*279+9.5)
31 Y • INT(RND(l)*l59+0.5)
48 C • INT(RND(l)*7+8.5)
59 HGR
68 HCOLOR•C
79 HPLOT X,Y

TRS-80 COLOR
COMPUTER WITH
EXTENDED BASIC

19 X•RND(256)-l
28 Y•RND(l92)-l
39 C•RND(B)-1
48 PMODE 3 1 1
58 SCREEN 3,1
69 PCLS
79 PSET (X,Y,C)
89 GOTO 89

TRS-80 COLOR
COMPUTER WITH
EXTENDED BASIC

, 18 INPUT "X (8-255)";X
29 INPUT"Y (9-19l)";Y
39 INPUT"COLOR (9-7) "; C
49 PMODE 3,1
Sfl SCREEN 3,1
69 PCLS
78 PSET (X,Y,C)

\... 89 GOTO 88

Hit the BREAK key to return to text mode.

ATARI

TRS-80
COLOR COMPUTER

18 X=RND(64)-l
29 Y=RND(32)-l
39 C=RND(8)-l
48 CLS (9)
59 SET (X, Y ,C)
6fl GOTO 6fl

""'

,J

<

<

35

LINES <
Most computers can draw lines with these
BASIC commands: "PLOT," "LINE" or "DRAW." If
your computer uses PLOT or LINE, you follow the
command with the starting co-ordinate,
followed by the word "TO" (or perhaps a dash;
check your owner's manual) and final ly the
ending point co-ordinates. For computers that
use DRAW (or possibly DRAWTO), you must first

use PLOT to place the sta rting co-ordinate.
DRAWTO is followed by the ending co
ordinate.

In these next three programs, you enter the start
and end co-ordinates of a line and the
computer draws the line.

APPLE and ADAM < _I __ M_J\R_I __ <_
18 PRl T "STARTING POINT CO-

ORDINATES"
28 INPUT "X (8-279) ";Xl
38 INPUT "Y (8-159) ";Yl
48 PRINT "ENDING POINT CO-OR

DINATES"
SI INPUT "X (8-279) ";X2
61 INPUT "Y (8-159) ";Y2
79 INPUT COLOR (1-7) "1C
81 HGR
99 HCOLOR-C

Xl
The TRS-80 COLOR COMPUTER without
extended BASIC has no command to draw
lines.

TRS-80 COLOR
COMPUTER WITH
EXTENDED BASIC

11 PRINT"STARTING POINT
RDINATES"

21 INPUT"X (8-255)";Xl
31 INPUT"Y (8-191)";Yl
41 PRINT"END POINT CO-ORDINA

TES"
51 INPUT"X (8-255)";X2
61 INPUT"Y (8-191)";Y2
71 INPUT"COLOR (9-8)";C
89 PMODE 3,1
91 SCREEN 3,1
111 PCLS
119 COLOR C,9
121 LINE (Xl,Yl) - (X2,Y2),P

SET
131 GOTO 139

36

11 PRINT"STARTING POINT C0-0
RDINATES

21 PRINT"X (1-159)"
31 INPUT Xl
41 PRINT"Y (8-79)"
51 INPUT Yl
61 PRINT"END POINT CO-ORDINA

TES"
78 PRINT"X (1-159)"
81 INPUT X2
91 PRINT"Y (1-79)"
111 INPUT Y2
111 PRINT COLOR (1-255)"
121 INPUT C
131 GRAPHICS 7
141 COLOR C
151 PLOT Xl,Yl
161 DRAWTO X2,Y2

Type in GRAPHICS 0 to return to normal.

FOR YOU TO DO: Write a program that uses
random numbers to select the starting and
ending co-ordinates and the colors of your
lines.

L£

1Rs-eO COLOR COMPUIER
WITH EXTENDED BASIC
28 Xl•RND(256)-l
38 Yl•RND(l92)-l
58 X2•RND(256)-l
68 Y2•RND(l92)-l
78 C•RND(8)-l
88 PHODE 3,1
98 SCREEN 3,1
181 PCLS
llfl COLOR C,8
128 LINE (Xl,Yl)

-(X2,Y2),PSET
131 GOTO 138

ATARI
38 Xl•INT(RND(l)*l59+8.S)
58 Yl•INT(RND(l)*79+8.5)
88 X2•INT(RND(l)*l59+8.5)
188 Y2•INT(RND(l)*79+8.5)
128 C•INT(RND(l)*255+1.5)
138 GRAPHICS 7
148 COLOR C
158 PLOT Xl,Yl
168 DRAWTO X2,Y2

APPLE and ADAM
28 Xl•INT(RND(l)*279+8.5)
31 Yl•INT(RND(l)*l59+8.5)
51 X2•INT(RND(l)*279+8.5)
68 Y2•INT(RND(l)*l59+8.5)
71 C•INT(RND(l)*7+8.5)
81 HGR
98 HCOLOR•C
118 HPLOT Xl,Yl TO X2,Y2

:lJO!Pel9S JOtoO puo euu
wopuDJ JOI peJfnbeJ seOuet.p eutl et# 8ID esEM.11

'9JOW
4:)nW puo S96ppq 's9uo1d 'SJD:) pe.j.D:)!.J.S!4dos

MDJP UD:) s1eeu16u9 u61s9p puo '/I.OM
S!4+ UMDJP U9.IJO 910 s9wo6 OOP!" fo S:)!4do16

UO!PD P91!D.j.9p 941 'D.j.Dp fo SUOS!JOOWO:J
M04S O.j. UMDJP 9q UD:) s4do16 9U!I puo

JDq :s/l.DM /l.uow U! lnf9Sn 910 S:)!4do16 S91-!H

::> saJ-IH

OTHER GRAPHICS
Does your computer not have hi-res graphics
commands? It can still draw pictures with
regular characters. Just as there are rows
and columns of pixels on your screen, there are
also co-ordinates for characters. Each of these

POKE <
Using the BASIC command "POKE," you can
put any character you want anywhere on the
screen. If you have a Commodore computer
(Commodore 64, VIC 20, or PEl) clear your
screen and try one of these examples:

c __ P_O_K_E_ l_0_2_4_,_1_6_0 ____ • ___________)

(POKE 7680, 160 •)

(POKE 4096, 160 •)

(POKE 32768, 160 •)

Unless you're using a PET, you won't see
anything yet. The other computers also need a
color to be put on the screen. The place you tell
it to put the color must be the same place you
have put your character. The position used
above was the first screen position, so the color

(POKE 55296,2 •
(POKE 38400,2 •

)

)
(POKE 37888,2 • _ ___ _ _)

In the next program you may enter any screen
position number, character number, color
position and color number. It then POKEs the
character into the screen position and the color
into the color position. Following the program is
a table of the numbers to enter for the various
Commodore computers.

38

screen positions has a number. Look for these in
your owner's manual under "SCREEN MEMORY
MAPS." Every character that your computer can
draw also has a number. Again, look in your
manual, this time under "CHARACTER SETS."

C64

VIC 20 with less than 8K of memory

VIC 20 with 8K or more memory

PET

position must also be the first. As with hi-res
graphics, each color has a number. Check your
owner's manual for these numbers.

Here are the POKE statements to enter a color
into the first color position:

C64

VIC 20 with less than 8K of memory

VIC 20 with 8K or more memory

11 tNPUT POSITION";P
21 INPUT CHARACTER";CH
39 INPUT"COLOR POSITION";C
51 INPUT"COLOR";CO
61 CLS
71 POKE P,CH
81 POKE C,CO

1024

7680

4096

32768

PEEK <
The BASIC command word "PEEK" is the
opposite of POKE. PEEK is used to see what
character is in a certain position on the screen
or what color is in a color position. When you
PEEK a screen or color location, you will get a
number; this number will correspond to the set

(PRINT PEEK(l024) ,. ______)
(PRINT PEEK(7680) .. ______)
(PRINT PEEK(4096) .. ______)
(PRINT PEEK(32768) .. ______)

Positions to be PEEKed must always be in round
brackets!
You probably saw a value of 32. 32 is the value
for a space on Commodore computers.

STMl'OF
COL OR
POSmoNS

END OF
COL OR
POSITIONS

of numbers that you used with POKE.

If you have a Commodore computer, try one of
the following lines to see the number value of
the first character on the screen:

C64

VIC 20 with less than 8K of memory

VIC 20 with 8K or more of memory

PET

To find the number value of the first color
position on the Commodore 64 or VIC, key in
one of these lines:

(_P_R_I_N_T_ P_E_EK_ < s_s_2_9_6_>_• _____) C64

(PRINT PEEK (38400) ~----)~vie 20 with less than 8K of memory

(PRINT PEEK (37888) ,.) VIC 20 with 8K or more of memory

POKE and PEEK are not only used with graphics;
they can do many things for you. The extent of
what they can do depends on which
computer you are using and the values you

give them to work with . Look in your owne(s
manual for more information on how to use
POKE and PEEK in your computer.

39

We've covered a lot of ground so far, so maybe
you should go back and review LOOPS,
because now we're going to build on that
knowledge.

It is possible to place loops within loops. 'Wh'f?"
you ask. With 2 counters ticking away, you can
keep track of 2 different things at the same
t ime.

Putting a loop inside another loop is known as
"NESTING." The first thing you have to do is give
each loop a separate counter or the
computer will really become confused. The
inner loop is the nested loop. Enter and RUN this
example:

This next program is a practical example of
nested loops; it simulates a stop watch.

POR M•ITOS9
POR S•ITOS9
PRI T M; :

BXT S
EXT M

To make your stop watch tick off real seconds,
add these lines:

35 POR I•l TO 1118
37 NEXT I

Now try these
examples:

11 !'OR I•lTOS ~J'ARIUS81S
2S PRINT seepage60.
3S FOR J•lTOS
4S PRINT SPC(J)"BASIC IS FUN"
50 NEXT J
6S NEXT I

11 FOR I=lT010
21 FOR J=-1T06
31 PRINT SPC(J);"COMPUTERS"
4S NEXT J
51 PRINT " ••• ARE FAST"
61 NEXT I

If you have graphics commands, try one of
these programs:

TRS-80 <
COLOR COMPUTER

~ CLS (8)
2S FOR Y=0 TO 31
3S FOR X=0 TO 63
48 C=RND(8)-l
SS SET(X,Y,C)
60 NEXT X
7S NEXT Y
89 GOTO as

ATARI

10 GRAPHICS 7
20 FOR Y=9 TO 79
39 FOR X=9 TO 159

<
49 COLOR INT(RND(l)*255+9.5)
59 PLOT X,Y
69 NEXT X
79 NEXT Y

APPLE and ADAM <
19 HGR
29 FOR Y=9T0159
39 FOR X=9T0279
49 HCOLOR=INT(RND(1)*7+9.5)
59 HPLOT X,Y
69 NEXT X
79 NEXT Y

TRS-80 COLOR
COMPUTER WITH
EXTENDED BASIC

19 PMODE 3,1
29 SCREEN 3,1
39 PCLS
40 FOR Y=9 TO 255
59 FOR X=9 TO 191
69 C=RND(8)-l
79 PSET(X,Y,C)
89 NEXT X
9S NEXT Y
199

41

ARRAYS
An "ARRAY" is a group of related pieces of
information stored under one variable name.

Q

174 365

1 2 3 4

Arrays have names, like other variables, but
they also have "SUBSCRIPTS." A subscript,
sometimes called an "INDEX," tells the
computer exactly which piece of information is
required . Subscripts refer to information, or
information is "REFERENCED" by subscripts.

What is referenced by Q(1)? The first piece of
information or the first "ELEMENT" in the list .

DIM <
You can use arrays to store information. But how
much information? That's the first thing your
computer will want to know too. You tell it how
much by using the BASIC word "DIM" short for
DIMension. For example, for an array called "C"
that will hold twelve pieces of information (or 12
"ELEMENTS"), enter.

42

Suppose you wanted the seventh element in C
to be 27. You would tell the computer:

If you don't give a value to any of your
elements, the computer will. It will give a value
of zero to any unassigned elements. See your
computer do this by typing:

PRINT C (1) ,C (2) ,C (3) ,C (4),
C(S) ,C(6) ,C(7) ,C(8),
C(9) ,C(l0) ,C(ll) ,C(l2)

The seventh element was 27, just like you told
the computer above.

Using ARRAYS <
Arrays are useful when you have a list of similar
things to keep track of. If you wanted to keep a
list of your fami ly's birth years. an array would be
a good thing to keep them in. Yes, it's time for
another program. This one lets you enter three
birth years in an array. Then it asks for the
current year. With this information it calculates
the person's age. Here is the program:

19 DIM BY(3)
29 INPUT "BIRTH YEAR NUMBER

1 ";BY(l)
39 INPUT "BIRTH YEAR NUMBER

2 ";BY(2)
49 INPUT "BIRTH YEAR NUMBER

3 ";BY(3)
59 INPUT "PRESENT YEAR ";Y
69 PRINT "THE CURRENT AGES

ARE:"
79 PRINT Y-BY(l) Y-BY(2),

Y-BY (3) ATARI users
see page 60.

Arrays are easily handled with loops. Since the
only difference in the three INPUT lines is the
subscript. a loop could count through them .
Here's the same program using a loop:

19 DIM BY(3)
20 FOR I=l TO 3
39 PRINT "BIRTH YEAR t";I
49 INPUT BY(!)
59 NEXT I
60 INPUT "CURRENT YEAR ";Y
79 PRINT "THE AGES ARE:"
80 FOR I=l TO 3
90 PRINT Y-BY(I),
100 NEXT I

ATARI users
see page 60.

FOR YOU TO DO: Modify the program to accept
5 birth years and then PRINT the 5 ages.

These are the lines and changes you would
have to make:

S OJ. l=I HOa 08
S OJ. l=I HOa 0Z

(S) .Xa WIO 01 =EMSNV

Say you're going to round up all your friends
and enter all their birth years. but you don't
know how many friends you're going to be able
to find on such short notice. Don't worry, you
can set up the program to accept as many
birth years as you may need. Simply add this
line as line 5:

C 5 INPUT "NUMBER OF BIRTH)
YEARS ";N _ _....;....._ __

And change lines 10. 20 and 80 to read:

19 DIM BY(N)
29 FOR I=l TO N
89 FOR I=l TO N

Now you can amaze as many friends as you
can find.

43

SUBROUTINES <
A subroutine is a part of a longer program; it
does one thing. It could actually be a short
program on its own. Subroutines can be
entered once and used as many times as you
want. They do simple and frequently needed
tasks.

You may have a lot of "YES" and "NO"
questions in a program. By using a subroutine
you can get answers to all the questions with
one INPUT or INKEYS. This next program, SILLY
INTERVIEW, uses an INKEYS subroutine.

44

SILLY INTERVIEW <
5 PRINT"ANSWER EACH QUESTION Y FOR YES, N FOR NO"
10 PRINT "DO YOU LIKE TV?"
20 GOSUB 1000
30 PRINT "DO YOU LIKE TENNIS?"
40 GOSUB 1000
50 PRINT "DO YOU LIKE HOCKEY?"
60 GOSUB 100'0
70 PRINT "DO YOU LIKE SWIMMING?"
80 GOSUB 1000
90 PRINT "DO YOU LIKE SINGING?"
100 GOSUB 1000
110 PRINT "DO YOU LIKE COMPUTERS?"
120 GOSUB 1000
130 PRINT "THANKS FOR THE INFO!"
150 END
1000 A$=INKEY$
1010 IF A$<>"Y" AND A$<>"N" THEN 1000
1020 RETURN

SUBROUTINES <(
The BASIC word "GOSUB" directs the computer
to your subroutine. Then after the instructions of
the subroutine have been performed, the BASIC
word "RETURN" sends the computer back to the
main program, to the line immediately after
the GOSUB. Here's another example:

10 PRINT "A SUBROUTINE
DEMONSTRATION"

20 GOSUB 1000
30 IF R$<>"Y"THEN10
40 END
1000 PRINT "ARE YOU FINISH

ED? (TYPE YORN)"
1010 R$=INKEY$
1020 RETURN

How does the second program work? Line 10
PRINTs a message. In line 20 GOSUB sends the
computer to line 1000. Line 1000 is where the

5 CLS

subroutine starts. There a question is asked. Line
1010 gets a response from the keyboard. The
subroutine is then done so line 1020 sends the
computer back to the line after GOSUB, line 30.
On line 30 the computer checks the answer. If
the response was "Y" the program ends;
otherwise it goes back to line 10 and starts
again.

The subroutines in the demonstration programs
were short and simple. They did one thing; they
waited for answers to a question. Subroutines
should always be as short as possible and do
only one thing .

Subroutines are best used in repetitive or
complicated programs. When you use
subroutines, your programs are shorter and
easier to understand. It is also easier to trace a
problem in a program that uses subroutines
tha.n it is in a very long, unco-ordinated
program.

This next example uses 2 subroutines. One
subroutine waits for a key to be pressed, the
other is a delay loop. RUN it and examine it.

10 PRINT "THIS PROGRAM SHOWS"
20 PRINT "HOW A SUBROUTINE CAN BE"
30 PRINT "USED MORE THAN ONCE."
40 GOSUB 1000
45 CLS
50 PRINT "BY USING THE SAME SUBROUTINE"
60 PRINT "YOUR PROGRAMS CAN BE MADE"
70 PRINT "MUCH SHORTER AND SIMPLER"
80 GOSUB 1000
90 CLS
100 PRINT "YOU HAVE FIVE SECONDS TO"
110 PRINT "READ THIS SCREEN!"
120 GOSUB 1100
130 CLS
140 PRINT "AS YOU CAN SEE, SUBROUTINES"
150 PRINT "SAVE TIME AND SPACE"
160 GOSUB 1100
170 CLS
180 PRINT "HAVE FUN WITH BASIC!"
190 END
1000 PRINT "PRESS A KEY TO CONTINUE"
1010 A$=INKEY$
1020 RETURN
1100 FOR I=lT05000
1110 NEXT I
1120 RETURN

45

SUBROUTINES FOR RANDOM LINES <
Remember the program in the GRAPHICS
section that drew random lines on the screen?
You could use a subroutine to do that. Enter
one of these programs and see. .

APPLE and ADAM <
29 Xl=INT(RND(1)*279+9.S)
39 Yl=INT(RND(1)*191+9.5)
49 X2=INT(RND(1)*279+9.5)
se Y2=INT(RND(l)*l91+9.5)
69 C=INT(RND(l)*7+9.S)
79 GOSUB 119
89 GET A$
99 TEXT
199 STOP
119 HGR2
129 HCOLOR=C
139 HPLOT Xl,Yl TO X2,Y2
149 RETURN

ATARI

39 Xl=INT(RND(l)*159+9.S)
59 Yl=INT(RND(1)*79+9.S)
89 X2=INT(RND(1)*159+9.5)
199 Y2=INT(RND(1)*79+9.S)
129 C=INT(RND(1)*255+9.S)
139 GOSUB 299
149 STOP
299 GRAPHICS 7
219 COLOR C
229 PLOT Xl,Yl
239 DRAWTO X2,Y2
249 RETURN

<

The TRS-80 COLOR COMPUTER without
extended BASIC has no command to draw
lines.

TRS-80 COLOR
COMPUTER WITH
EXTENDED BASIC

29 Xl=RND(256)-l
39 Yl=RND(192)-1
59 X2=RND(256)-1
69 Y2=RND(192)-1
79 C=RND(8)
89 GOSUB 299
99 GOTO 99
299 PMODE 3,1
219 SCREEN 3,1
229 PCLS
239 LINE(Xl,Yl)-(X2,Y2),PSET
249 RETURN

DECISIONS,
DECISIONS

We hope you remember a[I your IF/THEN
decisions.information, because we're going to
move on from there now.

COMPUTED GOTO <
Sometimes several IF/THEN statements can be
replaced with what is known as a "COMPUTED
GOTO". A computed GOTO sends the
computer to a new line, providing a certain
condition is met. The BASIC word "ON" is used
with GOTO to form a computed GOTO.

Remember the moth program on page 22? It
can be made shorter with a computed GOTO.
Here is the same program using our new trick:

10 INPUT "X ";X
20 INPUT "Y ";Y
30 PRINT "CHOOSE ONE:"
40 PRINT "1-ADDITION"
50 PRINT "2-SUBTRACTION"
60 INPUT "1 OR 2 ";A
70 ON A GOTO 90,110
80 END
90 PRINT X + Y
100 STOP
110 PRINT
130 STOP

COMPUTED GOSUB
A GOSUB can also be computed. The word ON
is used again. The only difference between a
computed GOTO and a computed GOSUB is
that the computer RETURNs to the line after the
computed GOSUB when the subroutine is
finished. The moth problem can also be written
to use a computed GOSUB.

HJ INPUT "X "; X
20 INPUT "Y ";Y
30 PRINT "CHOOSE ONE:"
49 PRINT "1-ADDITION"
59 PRINT "2-SUBTRACTION"
60 INPUT "1 OR 2 ";A

70 ON A GOSUB 90,110
80 END
90 PRINT X + Y
100 RETURN
110 PRINT X - Y
120 RETURN

CONDITIONAL "AND" <
Sometimes a decision must be based on
whether two conditions are true. The BASIC
word "AND" allows us this option. Simply state
your first condition, then use AND, and then
state your second condition. Go back and look
at the AGE FINDER program on page 12; it used
an AND condition in line 320. Here is another
simple example:

10 INPUT"ARE YOU HUNGRY ;Q1$
21 INPUT"IS IT LUNCHTIME ;Q2
31 IP Qi$•"YES AlllD Q2$• BS

'1'ff 58
41 END
SI PRINT"HURRY UP AND EAT AND

GET BACK TO WORK!"

Try the program several times with different YES
and NO combinations.

CONDITIONAL "OR" <
In some cases a decision must be based on
whether either one of two conditions is true. The
BASIC word "OR" helps with the job. Just insert
OR between your two conditions. Here's an OR
condition program:

10 INPUT"IS IT LUNCHTIME ";
Q1$

20 INPUT"IS IT DINNERTIME "
;Q2$

30 IF Q1$="YES" OR Q2$="YES"
THEN 50

40 END
50 PRINT" IT IS TIME TO EAT

SOMETHING"

Try the program several times with different YES
and NO combinations.

47

PROGRAMMING TIPS <
In this section we'll give you some helpful tips
on programming. They aren't rules or anything,
but we have found that they make life a whole
lot easier.

There are two ways to write a program; you can
write it directly into the computer as it comes to
you or you can take pencil in hand and make
a paper plan. Short programs (10 lines or less)
don't usually have to be planned; but for a
long program it's a good idea to know where
you're going.

First of all, the basic ideas for your long program
should be written down. Think about your
objective and decide what you want the
computer to do. Note the special features you
want the program to have.

With your ideas organized, you can then draw
up a flowchart. This is a chart of boxes, circles
and diamonds that you will connect with lines
and arrows. Each figure represents a part of
your program ideas. The purpose of the
flowchart is to help you organize your ideas into
a logical pattern, and if there's one thing the
computer loves, it's logic.

48

FLOWCHART SYMBOLS:

~
/=:/
I CALCUIAIE

Here is a flowchart for a simple addition
program:

add the
two numbers

In longer, more complicated flowcharts,
subroutines can branch off your main program
flowchart. Use arrows to show how they can be
used again and again. (Remember GOTO,
GOSUB and RETURN .)

Back to the actual program. It's best to group
your subroutines together. Put them either at
the beginning of your program (use GOTO to
get to the main program) or at the end (use
END or STOP to prevent the computer from
continuing into the subroutines).

REMARKS <
To help you remember what the various parts of
your program do, you can include comments
or short explanations. The BASIC word "REM,"
short for REMarl<, allows you to do this. When the
computer sees REM, it ignores what follows and
continues on with the next line. REM lines are for
your use, not the computers. REM is used like
this:

19 REM PROGRAM TO ADD TWO NU
MBERS

29 REM ASK FOR TWO NUMBERS
30 INPUT A
49 INPUT B
50 REM ADD THE TWO NUMBERS
60 C=A+B
70 REM DISPLAY ANSWER
80 PRINT C

REM makes understanding a program easier.

VARIABLES <
Your program will probably use some variables.
Remember to make up names that link the
variable to its use. And don't forget that the
computer looks at the first two characters. CARS
and CABS may be different to you, but the
computer sees them both as CA - And no
BASIC words as variables; that really throws the
computer.

DATA STATEMENTS <
When your programs need DATA statements,
group them together. Put them near the
beginning or near the end. When they are
grouped, it's easier to find them if you need
them. (The computer won't have any trouble,
but you might). And be sure that the number of
items in the DATA statements equals in quantity
and kind the number the program will READ.

PRECAUTIONS <
Typing in a program is a lot of work; protect
yourself against frustration. Power failures can
happen at any time, or the cat could knock
out your plug. SAVE copies of your program
often, at least once an hour. Then if a disaster
happens, you only have to LOAD the last SAVEd
copy, instead of screaming and then starting
all over again.

A good program will move from your head to
paper and then to the computer. Here are
some good habits to get into:

' 2 Draw up a flowchart. -. --- - ": ~-1 - ~

. . . . ~
. .J

Use REM to make comments.

5 Assign suitable variable names.

SAVE your program frequently.

49

BUILDING A GAME <
We have another game for you; ifs called
MEMORY TESTER. The program will flash a short
message on the screen. Then you must quickly
recall the message. Ifs not as easy as it sounds!

To show you how the game was made, we'll
take you through the same steps we went
through.

1) First, the ideas for the program were written
down.

MEMORY TESTER GAME - IDEAS
- message is flashed on screen for a

few seconds

- number of seconds is determined by
selecting a level (1-9)

- computer then asks how many words
were in message

- computer asks what the words were
- words player enters are compared to

correct message

- computer evaluates a score for
the player

- messages are random word combinations,
4-6 words long

2) The next step was to draw up a flowchart.

3) With the flowchart drawn up, it was time to
write the program. We took each part of the
flowchart and wrote the program lines. Where
possible and practical we used subroutines.

MEMORY TESTER MAIN PROGRAM <

2

50

(see subroutine
on next page)

form
message

REM MEMORY TESTER
REM SET UP ARRAYS
CLEAR
DIM MESSAGE$(6),WSEEN$(6)

140 CLS
150 REM GET LEVEL (1-9)
160 INPUT "LEVEL (1-9) ";

LEVEL

170 IF LEVEL < 1 OR LEVEL >
9 THEN 160

180 REM FORM MESSAGE
190 GOSUB 1000

(see subroutine
on next page)

200 REM FLASH MESSAGE ON
CREEN

CLS
FOR I=lTO AW
PRINT MESSAGE$(!);"
NEXT I
REM DELAY TIME=LEVEL*
.5 SECONDS

260 GOSUB 1200
270 CLS

2
..,...., __, 280 REM GET PLAYER'S

ANSWER
290 INPUT "NUMBER OF

WORDS IN MESSAGE
"; NW

&...A. 295 numu:11
IF NW<40R NW>6THEN290

~-(~
T no

ask
for words

380 REM CHECK CORRESPONDING ~
WORDS I numUl:lr

3 9 0 14 compare es A>t words
GOSUB 1 °0 corresponding.._y - seen= nu~

(see subroutine words Of words 19'
on ne<t par m

no

400 IF SC=l00 __ c_o_m~pa-~----
THEN 430 all

500
510

520
530

no

yes

REM PLAY AGAIN OPTION
PRINT "PLAY AGAIN?

(YORN)"
REM GET ONE KEY REPLY

REP L r" IN KEY$

words
---r---

300 REM INPUT WORDS
310 FOR I=lTO NW
320 PRINT "WORD #";I
330 INPUT WSEEN$(I)
340 NEXT I

350 REM CHECK WHETHER
NUMBER OF WORDS

360 REM SEEN EQUALS
NUMBER IN MESSAGE

370 IF NW<>AW THEN 410

410 REM CHECK EACH WORD
420 SC=0:GOSUB 1600

(see subroutine
on next page)

430 REM DISPLAY
MESSAGE AND SCORE

440 PRINT "THE MESSAGE
WAS •.. "

450 FOR I=lTO AW
460 PRINT MESSAGE$(!)

·" "· , ,
470 NEXT I
480 PRINT
490 PRINT "YOUR SCORE

IS ";SC;"%"

540 IF REPLY$="Y"THEN
140

550 IF REPLY$<>"N"THEN
520

560 REM END OF GAME
570 END

51

52

MEMORY TESTER
SUBROUTINES

1098 REM SUBROUTINE TO
FORM MESSAGE

1919 RESTORE
1928 AW=3+RND(3)
1839 FOR I=lTO AW
1948 W=RND(6)
1959 FOR J=lTO W
1969 READ MESSAGE$(!)
1978 NEXT J
1989 IF W=6 THEN 1129
1999 FOR K=1T06- W
1190 READ DU$
1119 NEXT K
1129 NEXT I
1139 RETURN

Rowchart for subroutine to check
corresponding words

set
score
to 100

get word
from

answer

get word
from

message

no set
score
too

no

Rowchart for subroutine to form message

1200
1210

1220
1230
1240

1400
1410
1429

1430
1440
1450

1469
1470

no

generate
number of
words (4-<>)

pick 1 of
6words

REM SUBROUTINE TO DELAY
REM DELAY TIME=LEVEL*
.5 SECONDS

FOR I=lTO LEVEL*559
NEXT I
RETURN

REM SUBROUTINE TO CHECK
REM CORRESPONDING WORDS
REM SET SCORE TO 9

IF NOT
SC=100
FOR I=lTO AW
IF WSEEN$(I)<>MESSAGE$
(I) THEN SC•9
NEXT I
RETURN

1600 REM SUBROUTINE TO
CHECK WORDS

1610 REM IN PLAYER'S ANSWER
TO MESSAGE

1620 FOR I=lTO AW
1630 FOR J=lTO NW
1640 IF MESSAGE$(I)<>WSEEN$

(J) THEN 1700
1650 REM ADD TO SCORE
1660 S=(100/AW)/2
1670 IF I=J THEN S=S*2
1680 SC=SC+S
1690 J=NW
1700 NEXT J
1710 NEXT I
1720 RETURN

Data for subroutine to form message

2089 REM DATA TO FORM
MESSAGES

2010 DATA JACK,SUSAN,JEFF,
SANDY,DAVE,DOUG

2020 DATA OUICKLY,SLOWLY,
SWIFTLY,BRISKLY,RAPID
LY,SPEEDILY

2030 DATA RUNS,JUMPS,WALKS,
SWIMS,GOES,FOLLOWS

2040 DATA SOUTH,NORTH,EAST,
WEST,UP,DOWN

2050 DATA OVER,ONDER,ACROSS
,THROOGH,BETWEEN,
BENEATH

2060 DATA CARS,CATS,DOGS,
DARTS,CABS,DOORS

Rowchart for subroutine to check words

get word
from

answer

get word
from

message

add
full

value
to score

I DEBUGGING<:
After painstaking care in designing and
creating a program, it usually won't work the
first time it's RUN. There are bound to be a few
"BUGS" in your program. A bug is any problem
that prevents a 'program from working correctly,
or from working at all.

You may have skipped a crucial step in putting
the program together; maybe you didn't type it
in or even think of it. Quite often those kinds of
errors become obvious when you RUN your
program and something important fails to

Oh no, you got the dreaded SYNTAX ERROR!
Even they sometimes aren't that obvious. Can
you figure out what's wrong with this line?

219 F9R I=l TO NWO

The word F0R should be changed to FOR.
Mistaking the number zero (0) for the capital
letter "O" is quite common.

Here's another tough one:

239 PRlNT "ANOTHER GAME?"

PR1 NT should be PRINT. Confusing the number
one (1) for the capital letter "I" is also common.

54

happen. Perhaps on first RUNning the MEMORY
TESTER you didn't have time to read the
message. Check, maybe you missed the delay
routine. Just go back and enter it.

Sometimes errors aren't that obvious. The
computer may simply stop executing the
program. It will give you the line number where
it stopped and an error message. But the
computer has a very limited vocabulary so
these messages may not always pinpoint the
exact problem.

Or perhaps you entered:

PRINT ANOTHER GAME"

This time the beginning quotes on the
character string were missing .

There could be a problem with your DATA
statements. Look at this line:

2999 DATA FROG,OOG CAT

The comma is missing between DOG and CAT.

Another possible DATA problem is the old "OUT
OF DATA ERROR." OUT OF DATA means that
there are not enough items in your DATA
statements to match the READ statements.

ERROR
MESSAGES

Another common error message is "UNDEF'D
STATEMENT" OR "LINE NOT FOUND. " This means
that you used a GOTO or GOSUB to branch to
a line that did not in fact exist. Perhaps you
haven't entered that line yet, or you might have
entered it under the wrong line number.

Did you get a "RETURN WITHOUT GOSUB" error?
This means a subroutine was reached without a
GOSUB. You may have used a GOTO instead of
a GOSUB. If the subroutines are at the end of
your program, you may have left out an END
statement that would separate the main
program from the subroutines. If your
subroutines are at the beginning of the
program, you may need a GOTO to get to the
main program.

Should you get a "NEXT WITHOUT FOR ERROR ,"
the computer has found one more NEXT than
there are FOR statements. You may have
forgotten one of your FOR lines, or there may be
an extra NEXT line, or the variable used with a
FOR does not match the one with NEXT.

Some bugs can be very difficult to find, but if
there is a bug, your program won't RUN
properly- it might not work at all! When you
can't find a bug, try retyping suspected or
complex lines. You may correct the problem
without even noticing the error.

55

BUBBLE SORT <
Whenever someone hands you a long list of
names, he usually wants it put into
alphabetical order. Sorting a list like that is
not only dull, its frustrating - you make one
mistake and it's all wrong! Well, now you can
pass the buck to your computer! With a sorting
program it will happily sort your list into perfect
order. We're going to be very generous and
give you a sorting program. Ifs called "BUBBLE
SORT."

5 CLS
10 INPUT "NUMBER OF WORDS

TO SORT";N
29 DIM W$(N)
25 PRINT "ENTER WORDS:"
39 FOR I=lTO N
35 PRINT "WORD t";I
4 9 INPUT W$ {I)
59 NEXT I
69 PRINT "NOW SORTING •••

PLEASE WAIT"
79 PRINT
89 FOR I=lTON-1
90 FOR J•I+lTON
100 IF W$(I)<W$(J)THEN159
119 DU$=W$ (J)
129 W$ (J) •W$ {I)
130 W$ (I) =DU$
159 NEXT J
169 NEXT I
179 FOR I=lTON
180 PRINT W$ {I)
199 NEXT I

Can you figure out how the bubble sort
program works? After all the words have been
entered, the computer looks at each word. It
compares each word to every word that comes
after it in the list. If two words are in the wrong
order, they are swapped. When every word has
been checked this way, the list is in order.

This method of sorting is the slowest there is, but
it's easy to understand. Other sorting methods,
such as the "QUICK SORT, "are much faster, but

56

the programs are longer and more complex
than the bubble sort. You can find other sort
programs in computer books.

RJN TIME <
Well, you've done it! You are now a computer
person. BASIC is your second language, your
first computer language. We haven't taught
you everything there is to know aoout BASIC,
but you've learned enough to call yourself a
BASIC buff.

Special Note: The program will not allow
double digits, that's too confusing; so numbers
like 988 are out. And here's a brief explanation
of the hints the computer will g ive:

DIGIT 0 POSITION 0
All that work deserves some kind of reward, so
we've got another game for you now. This
game is called CODE CRACKER. The computer
creates a three-digit code (actually a number
between 100 and 999). You have 15 tries to
crack the code and guess the number. As you
go along the computer will tell you how many
digits you have right; it will also state how many
are in the right position. Use this information
logically to determine the code. Have fun!

- no numbers right

DIGIT 0 POSITION 1

- 1 digit in the right position

DIGIT 1 POSITION 0

- 1 digit right but in wrong position

CODE CRACKER <
100 REM CODE CRACKER GAME
110 REM SET UP ARRAYS
120 DIMG$(15),RP(l5),RD(l5)
130 REM GIVE INSTRUCTIONS
140 CLS

GO FOR IT!

150 PRINT" IN THIS GAME I ,MAKE UP A"
160 PRINT"THREE DIGIT CODE. THE CODE"
170 PRINT"WILL BE BETWEEN 100 AND 999."
180 PRINT YOU HAVE FIFTEEN GUESSES."
190 PRINT AFTER EACH GUESS I WILL"
200 PRINT TELL YOU HOW MANY DIGITS"
210 PRINT ARE CORRECT AND HOW MANY"
220 PRINT ARE IN THE RIGHT POSITION."
230 PRINT IF YOU ENTER AN INVALID GUESS"
240 PRINT OR A DUPLICATE GUESS,"
250 PRINT I WILL LET YOU TRY AGAIN."
260 PRINT
270 PRINT"PRESS A KEY TO CONTINUE"
280 REM WAIT FOR KEY PRESS
290 GOSUB1000
300 REM MAKE CODE
310 CLS
320 CODE=RND(999)
330 IFCODE<l00THEN320
340 CODE$=RIGHTS(STR$(CODE) ,3)

57

58

CODE CRACKER <
350 REM CHECK FOR DUPLICAT~ DIGITS
360 D$=CODE$
370 FLAG=0
380 GOSUB1500
390 IFFLAG~lTHEN320
400 REM GET GUESSES
410 FORI=lT015
420 CLS
430 REM DISPLAY PREVIOUS RESULTS
440 IFI=lTHEN500
450 FORJ=lTOI-1
460 PRINT"GUESS #";J;"; ";G$(J);
4 7 0 p R I NT II D I G I T s : II ; RD (J) ;
480 PRINT" POSITIONS: ";RP(J)
490 NEXT J
500 REM ENTER NEXT GUESS
5 10 PRINT
5 20 PRINT"ENTER GUESS #";I
530 INPUTG
54 0 IFG<l000RG>999THEN520
55 0 G$(I)=STR$(G)
560 IFLEN(G$(I))>4THEN520
570 G$(I)=RIGHT$(G$(I) ,3)
580 REM CHECK FOR DUPLICATE DIGITS
590 D$=G$(I)
600 FLAG=0
610 GO SUB1500
620 IFF LAG=lTHEN520
630 FLAG=0
640 REM CHECK FOR DUPLICATE AN SWER
650 GOSUB1400
660 IFFLAG=lTHEN520
670 REM COMPARE TO GUESS
680 GOSUB1100
690 REM CHECK IF ANSWER IS RIGHT

700 I FRP(I)<>3THEN730
710 PRINT"VERY GOOD! YOU GOT IT IN ";I;" GUESSES."
72 0 END
730 NEXTI
740 REM DIDN'T GET THE CODE
750 CLS
760 PRINT"THAT WAS ALL YOUR GUESSES."
770 PRINT"THE CODE WAS ";CODE$
780 END
1000 REM WAIT FOR KEY PRESS
1010 R$=INKEY$
1020 RETURN
1100 REM COMPARE GUESS TO CODE
1110 FORK=lT03
1120 FORL=lT03
1130 REM SEPARATE DIGITS IN GUESS
1140 REM AND ANSWER
1150 G$=MID$(G$(I) ,K,l)
1160 C$=MID$(CODE$,L,l)
1170 REM COMPARE DIGITS
1180 IFG$<>C$THEN1220
1190 REM COMPARE DIGIT POSITIONS
1200 IFK<>LTHENRD(I)=RD(I)+l
1210 IFK=LTHENRP(I}=RP(I)+l
1220 NEXTL
1230 NEXTK
1240 RETURN
1400 REM CHECK FOR DUPLICATE ANSWER
1410 IFI=lTHENRETURN
1420 FORK=lTOI-1
1430 IFG$(I}=G$(K)THENFLAG=l
1440 NEXTK
1450 RETURN
1500 REM CHECK FOR DUPLICATE DIGITS
1510 FORK=lT03
1520 FORL=K+lT03
1530 IFMID$(D$,K,l}=MID$(D$,L,l)TH
1540 NEXTL
1550
1560

59

BASIC CONVERSION CHART <
IN BOOK COMMODORE APPLE/ADAM

LIST 10 - 30 LIST 10 - 30 LIST 10 - 30

10 INPUT"STRING ";A 10 INPUT"~TRING";A 10 INPUT"STRING ";A

X$=INKEY$ 10 GET X$ GET X$
20 IF X$= '"'THEN 10

D=RND(6) D=INT(RND(l)*6+1) D=INT(RND(l)*6+1)

CLEAR CLR

ATARI users. here are the line changes and
the additional lines you require.

AGE FINDER on page 12, make these line changes:

120 READ T
125 N(I)=T

THE FIRST NESTED LOOP PROGRAM on page 41 , make these
additions and changes:

35 FORL=lTOJ
36 PRINT " ";
37 NEXT L
40 PRINT "BASIC IS FUN "

THE FIRST ARRAY PROGRAM on page 43. make these
additions and changes:

20 PRINT " BIRTH 'fEAR NUMBER 1 II;: !NP
UT BY:BY(l)=B'f

30 PRINT "BIRTH 'fEAR NUMBER 2 ";: INP
UT BY :B'f(2)=BY

40 PRINT " BIRTH YEAR NUMBER 3 II;: !NP
UT BY : BY(3)=-BY

THE SECOND ARRAY PROGRAM on page 43, make this
change

40 INPUT BY :B'f(I)=B'f

60

CLEAR

MEMORY TESTER on page 50. make these line changes:

120 CLR
130 DIMMESSAGE${7*10) , WSEEN$(7 *10),

DU$(10) , REP LY$(1) ,A L (6) , ML(6)
140 PRINT CH R$(125)
160 PRINT "LEVE L (1-9)"
210 PRINT CHR$(125)
230 PR INT DU$;" ";
270 PRINT CHR$(125)
290 PRINT " NUMBER OF WORDS IN MESSAG

E"
330 INPUT DU$
460 PRINT DU$;" ";
530 GET#l , REPL'f
1020 AW=3+INT(RND(l)*3+1)
1040 W=INT(RND(l)*6+1)
1050 FOR J=lTOW - 1
10b0 NEXT J
1070 MESSAGE$(I *l0)=DU$
1220 FOR I=lTOLEVEL*l00
1450 IF WSEEN$(I*l0 , I*l0+AL(I))<>ME

SSAGE$(I*l0 ,I*l0+ML(I))THENSC=
0

1640 IFMESSAGE$(I*l0 , I *l0+ML(I))<>W
SEEN$(J*l0 ,J*l0+AL(J))THEN1700

And add these additional lines·

10 OPEN#l,4 ,0,"K:"
165 INPUT LEVEL
225 DU$=MESSAGE$(I*l0,I*l0+ML(I))
295 INPUT NW
333 AL(I)=LEN(DU$) - l
335 WSEEN$(I*l0)=DU$
455 DU$=MESSAGE$(I*l0 , I*l0+ML(I))
535 REP LY$=CHR$(REPL'f)
1045 IF W=l THEN 1062
1055 READ DU$
1062 READ DU$
1063 ML(I)=LEN(DU$)-l

TRS-80 ATARI

LIST 10 - 30 LIST 10,30

10 X$=INKEY$
20 IF X$="" THEN 10

D=RND(6) D=INT(RND(1)*6+1)

CLEAR CLR

CODE CRACKER on page 57. make these line changes·

120 DIMG$(16*3) ,DU$(4) ,CODE$(3) ,D$(
3) ,C$ (3) ,RP (15) , RD (15)

140 PRINT CHR$(125)
310 PRINT CHR$(125)
320 CODE=INT(RND(l)*999+1)
340 CODE$=STR$(CODE)
420 PRINT CHR$(125)
460 PRINT"GUESS #";J;" ";G$(J*3,J*3

+2)
550 G$(I*3,I*3+2)=STR$(G)
590 D$=G$(I*3,I*3+2)
750 PRINT CHR$(125)
1010 GET#l ,A
1150 D$=G$(I*3+K-l , I*3+K-l)
1160 C$=CODE$(L , L)
1180 IFD$<>C$THEN1220
1430 IF G$(I*3 , I*3+2)=G$(K*3 , K*3+2)

THEN FLAG=l
1530 IF D$(K , K)=D$(L,L) THEN FLAG=l

Delete lines 560 and 570 And add these additional lines·

90 OPEN#l 4 0 " K·"
122 FOR I~l

1

TO lS
124 RP(I)=0
125 RD(I)=0
128 NEXT I
1525 IF K>3 OR L>3 THEN 1540

BUBBLE SORT on page 56. make these line c hanges·

5 PRINT CHR$(125)
10 PRINT "NUMBER OF WORDS TO SORT"
20 DIM W$(N*20+20) , DU$(20) ,L(N)
40 INPUT DU$
100 IF W$(I*20,I*20+L(I))<W$(J*20,J

*20+L(J))THEN150
110 DU$=W$(J*20 , J*20+L(J))
120 W$(J*20,J*20+L(I))=W$(I*20,I*20

+L (I))
130 W$(I*20,I*20+L)=DU$
180 PRINT W$(I*20,I*20+L(I))

And add these new lines:

15 INPUT N
45 L(I)=LEN(DU$)-l
48 W$(I*20)=DU$
115 L=L{J)
125 L(J)=L{I)
135 L(I)=L

61

GLOSSARY OF BASIC COMMANDS
AND COMPUTER TERMS

AND - A BASIC language word, it is a conditional operator; it ensures that two or more conditions are true
before any action is taken.

array - A moth term also used by computer people, it refers to a collection of related information stored under
one variable name.

ASC -A BASIC command word used to convert a character to its ASCII code number.

ASCII - A contraction of "American Standard Code for Information Interchange," pronounced ASK-KEY or ASH
KEY.

BASIC - A contraction of "Beginner's All-purpose Symbolic Instruction Code"; it is a computer language, a
variation of which is common to most home computers.

branch - A computer term for the switching from one part of a program to another.

bubble sort - A type of program that organizes a list into alphabetical or numerical order.

bug -A computer term for an error in a program that stops it from running properly or from running at all.

character - A computer term referring to a number. letter, symbol or space.

character string - A computer term referring to a series of characters inside quotation marks.

CHR$ - A BASIC command word used to convert a number into its ASCII code number.

CLEAR - A BASIC command word used to empty variables.

CLS - A BASIC command word used to clear the screen.

computed GOSUB - A computer term that refers to a branch to a subroutine depending on the value of a
variable.

computed GOTO - A computer term that refers to a branch to a line number depending on the value of a
variable.

co-ordinates - A computer term referring to a set of numbers that specify a row and column on the computer
screen.

DATA- A BASIC command word used to store a list of information. to be used by a READ statement.

debug - A computer term that means "to correct errors."

delay- Used in computer terminology to refer to a pause while the computer does nothing for a specified
period of time.

delete - Used in computer terminology to mean take something out; take out a character. number. space. a
whole line or a program.

DIM -A BASIC command word short for DIMension; it tells the computer to expect an array of a given size.

disk, diskette, floppy diskette - A round flat piece of plastic with a specially magnetized surface on which
information is stored.

disk drive -A device that rotates (spins) a disk so that information can be read or written.

element - Used in computer terminology to refer to a single piece of information in an array.

END - A BASIC command word used to stop a program.

flowchart -A computer term that refers to a series of boxes. diamonds and circles which graphically outlines
the logical sequence of a program.

FOR/TO/NEXT - BASIC command words for a type of loop that specifies the number of repetitions.

GOSUB - A BASIC command word that sends the computer to a subroutine.

GOTO - A BASIC command word that sends the computer to a line number.

graphics - In computer terminology refers to pictures or graphs on a computer screen.

62

high resolution - In computer terminology refers to very detailed graphics pictures, usually drawn with
individual pixels.

hi-res - A short form for high resolution.

IF/ THEN - BASIC command words that tell the computer to make a branch depending on the information it
receives.

index - In computer terminology it is used with arrays, the number indicating a particular piece of information,
the information is numbered sequentially in the array.

INKEY$ - A BASIC command word that takes a single character keyboard response and assigns it to a variable.

input - In computer terminology, any information that the computer is given to work with.

INPUT - A BASIC command word which tells the computer to expect some in-coming information.

LEFT$ - A BASIC command word that tells the computer to use part of a string, starting from the left side;
reference numbers given tell it how many characters to use.

LEN - A BASIC command word short for LENgth; this word tells the computer to count the number of characters
in a string .

LINE NOT FOUND - An error message; a line number was referenced that did not exist.

line number - A number given to a line of programming instructions.

LIST - A BASIC command word to have the computer display a line or program.

LOAD - A BASIC command word that tells the computer to put a program into its memory.

loop - A computer term that refers to having the computer do something again and again.

memory - The space where the computer stores information and/or instructions.

MID$ -A BASIC command word that tells the computer to use part of a string, reference numbers given tell it
how many characters to use, starting at a specified middle point.

nested loop - A loop within a loop; the inner loop is performed as many times as the outside loop tells it to.

NEW - A BASIC command word that tells the computer to clear its memory.

NEXT - A BASIC command word that tells the computer to keep doing something until it has reached the
specified number of times it is supposed to do it; used with FOR, TO and STEP.

NEXT WITHOUT FOR - An error message; the computer found an extra NEXT command otter it has finished a
loop.

ON - A BASIC command word used with GOTO or GOSUB to perform a computed GOTO or GOSUB.

OR - A BASIC command word that allows one of two or more given conditions to be true before any action is
taken.

OUT OF DATA - An error message; the number of variables in a READ statement outnumber the pieces of
information to be read from the available DATA statements.

output - A computer term that refers to the result or the answer the computer has arrived at.

PEEK - A BASIC command word used to examine a screen or memory location.

pixel - Short for picture element. it is a tiny dot on the computer screen; groups of these lighted at any given
time form letters, numbers and graphics.

POKE - A BASIC command word used to put something into a screen or memory location.

PRINT - A BASIC command word that tells the computer to display something on the screen.

program -A series of instructions for the computer to perform.

quick sort - A type of program that organizes a list into alphabetical or numerical order.

random number - A number that is selected for no apparent reason.

READ - A BASIC command word that takes information from DATA statements and assigns it to variables.

relational operator - Used both in computer and moth terminologies, something that compares two or more
things as to size, eg . greater than, less than, etc.

63

[
Al

t

C l

A

A
I

B.

b

b

b

c
c
c
c
c
c

c

c

[

c

REM - A BASIC word short for REMark. which allows the programmer to make notes inside a program; these are
not read by the computer.

RESTORE -A BASIC command word that tells the computer to go back to the first DATA statement and start
using the information again.

RETURN - When a computer finishes a subroutine. this BASIC word sends it back to the main program.

RETURN WITHOUT GOSUB - An error message; the computer got to a RETURN statement without having gone
through a GOSUB statement.

RIGHT$ - A BASIC command word that tells the computer to use a part of a string, starting with the right-most
character; a number is then given to tell the computer how many characters to take.

RND - A BASIC command word, a contraction of RaNDom, that is used to create random numbers.

RUN - A BASIC command word that tells the computer to execute the program it has in its memory.

SAVE - A BASIC command word that tells the computer to tnke the information it has in its memory and store
it on either tape or disk.

sort - A computer program to organize a list into alphabetical or numerical order; there are many types.

STEP - A BASIC command word used with loops to specify how to go through the loop; used with FOR. TO and
NEXT.

STOP - A BASIC command word used to end a program.

STR$ - A BASIC command word that changes a number variable into a string variable.

string - In computer terminology, a series of characters inside quotation marks.

subroutine - A computer term that refers to a small section of a program. a section that does one specific
thing.

subscript - A number which designates a certain piece of information in an array.

SYNTAX ERROR - An error message; the computer has not understood a command due to misspelling or some
other mistake.

tape - Even in computer terminology, it refers to ordinary audio cassette tape.

tape recorder - It usually refers to an ordinary cassette player.

text - Written words and numbers, as opposed to graphics.

TO - A BASIC command word used in FOR/TO/NEXT loops.

THEN - A BASIC command word that tells the computer to follow the instructions that come after it. if one or
more conditions is true.

UNDEPD STATEMENT - An error message; a line number was referenced that does not exist.

VAL -A BASIC command word short for VALue that converts a number string into a number value.

variable - That which stands for or represents something else.

VERIFY - A BASIC command word that tells the computer to check what it h just stored on either tape or disk
with what it still has in its own memory.

64

Other computer titles from Hayes

MICRO WORLD
An introduction to home computers. this book will help
you select the one that's right for you .

WHAT ELSE YOU CAN DO WITH
YOUR MICROCOMPUTER

Computers do more than play games. Here are lots of
practical programs to be used by every member of the
family.

FANTASTIC GAMES for the VIC 20
FANTASTIC GAMES for the Commodore 64

FANTASTIC GAMES for the
TRS-80 Color Computer

Each has listings for six arcade style games as well as
suggestions for writing your own games.

EXPLORING THE VIC 20
EXPLORING THE COMMODORE 64

A wealth of information and activities for the most
popular home computers.

APPLE GRAPHICS
Shows by example how to write arcade style games
using Applesoft BASIC.

SPACE ADVENTURES for the VIC 20
SPACE ADVENTURES for the Commodore 64

Listings for six terrific space adventure games.

ISBN 0-88625-075-7

HAYES PUBLISHING LTD.
331 2 MAINWAY, BURLI NGTON, ONTARIO, CANADA L7M 1A7

