
USBORNE GUIDE TO

BETTER
A beginner's guide to writing programs

®RIGBYr USBORNE

USBORNE GUIDE TO

BETTER
Brian Reffin Smith

and Lisa Watts
Illustrated by

Graham Round

Designed by Graham Round
Additional artwork by Martin Newton

Contents

4 Introducing BASIC
5 Guide to BASIC

10 The BASIC in this book
12 Learning BASIC by studying programs

14 Using strings
16 Loops and random numbers
18 Making a soccer database

26 Instant graphics
30 Programs for sorting data

36 Drawing graphs
38 More string handling
46 Converting the programs
48 Answers and Index

|,

About this book
This book is a step-by-step guide to understanding programs and improving
your BASIC. Not everyone wants to write their own programs, but once you
understand how BASIC works, it is easy to adapt or debug other people's

programs and from there it is a short step to writing your own.
At the beginning of the book there is a short guide to the main BASIC

commands, with lots of examples to show how they work. The next part of the
book shows how the commands are used in programs to do quite

complicated things, such as creating a database, making patterns on the
screen and sorting data.

The programs are written in "standard" BASIC, that is, a version of BASIC
which, with minor alterations, will work on most microcomputers. There is a
guide to converting the programs to work on your computer on pages 10-11
and the conversions for Sinclair computers, which use slightly non-standard

BASIC, are given at the end of the book.
Alongside all the programs there are detailed explanations of how they

work and of useful techniques and routines which you could use in your own
programs. There are lots of ideas, too, for experimenting with the programs

and adapting them for carrying out different tasks.

Introducing BASIC
The programmingjanguage BASIC
consists of about a hundred words. Each
word is an instruction telling the
computer to do something. To make the
computer carry out a particular task you
give it a list of instructions and
information to work on called a
program. You can use only BASIC
words as instructions, and you must
follow the rules, called the syntax, of the
language, too.

In BASIC each line of instructions has
a number. The numbers usually go up in
tens so you can add extra lines without
renumbering the whole program.

10 CLS

2O PRINT "STARSHIP TAKEOFF"

30 LET G=INT<RNDU>»2O+1)

4O LET W=INT(RND(1)»4O+1) . !

50 LET R=6«W

60 PRINT "BRAVITY="SB

70 PRINT "PLEASE TYPE IN FORCE"

80 FOR C=l TO 10

90 INPUT F

1OO IF F>R THEN PRINT "TOO HI8H";

110 IF F<R THEN PRIfc

120 IF F=R THEN BOTtj This is part Of 3

130 IF CO10 THEN PI

140 NEXT C

ISO PRINT

l&O PRINT "YOU FAILED-"

17O PRINT "THE ALIENS BO;

180 STOP

190 PRINT "GOOD TAKE

Typing in a program
When you are typing a program into the computer you have to type RETURN (or ENTER, or
NEWLINE, it varies on different computers) at the end of each line. This makes the
computer store that line in its memory and wait for the next line. When you have typed in all
the lines of the program you type RUN. This tells the computer to carry out the instructions.

PRINT is the instruction to
tell the computerto
display something on the
screen, in this case, the
word BANANAS.

PRINT "BANANAS
BANANAS

Thisisthecursor. Itshows
where the next character will
appear.

A character is any letter,
number orsymbol.

If you type in an instruction without a line
number the computer will carry it out
straight away, as soon as you press
RETURN (or ENTER or NEWLINE). This is
called a direct command. For instance, to
tell the computer to display the lines of a
program you have given it, you type LIST as
a direct command. To clear the screen on
most computers you type CLS.

You have to be very careful to type
programs in accurately. If you misspell any
of the BASIC words, or type wrong letters,
numbers or punctuation, the computer will
not be able to follow the instructions. A
mistake in a program is called a bug. Most
bugs are typing mistakes, but sometimes
they are errors in the logic of a program and
can lead to surprising results.

Guide to BASIC
On the next few pages there is a guide to the main BASIC commands and how to
use them. If you have a computer you should check the commands in your manual
as some of the words and rules vary slightly on different computers.

PRINT ^
This tells the computer to display
something on the screen. Letters or
symbols should be in quotation marks, but
numbers need not be, as shown in the
examples on the right. In these examples
there are no line numbers, so the computer
carries out each instruction as soon as you
press RETURN. It will print exactly what you
typed between the quotation marks,
including any spaces. The word PRINT by
itself on a line tells the computer to leave an
empty line.

Doing calculations ^-
You can also use PRINT to display the
answers to calculations. The computer uses
the usual signs for adding and subtracting,
but for multiplying it uses a * and for
dividing a / sign. SQR(N) is the instruction
for finding the square root of a number, N,
and | or A or* * means to the power of.
For example, 3 | 2 means 3 to the power of
2 , or 3 squared.

In complicated calculations the computer
always works out multiplications and
divisions before it adds or subtracts. To
override this you can use brackets to tell the
computer in which order to work out the
sums. In calculations with lots of brackets,
the computer works out the innermost
brackets first.

The word PRINT by
itself made this empty
line.

PRINT "***
ZEBRAS

PRINT "RATS
RATS

12095+277

239-51

17*5

221/13

~1

Brackets to make
computer dp
calculation in
order you want.

PRINT SQR(9)

3

PRINT SQR(9)+3A 2

12
PRINT 2*17-5

2*(17-5)

Commas and semi-colons ^
These tell the computer where to print the
next character on the screen. A semi-colon
tells it not to leave any space and a comma
tells it to move along a certain amount (the
amount varies on different computers).

Some computers need a comma or semi­
colon to separate PRINT statements and
data or variables (letters representing
pieces of data in the computer's memory).
Try the examples on the right to see how
they work on your computer.

INT "TOGETHER"5"AND","APART"
TOBETHERAND
PRINT "TaTAL="j2*17
TOTAL=34
PRINT "TaTAL=",2*17
TOTAL= 34
PRINT 12,24
12 24

Variables >•
Information which you give the computer to
work on is called data. When you give the
computer a piece of data to store in its
memory you have to give it a label, too. The
label is called a variable and when you want
the computer to do something with the data
you refer to it by its variable name. It is
called a variable because the data to which
it refers can change during the program.

You use letters of the alphabet, or a letter
and a number, e.g. A6, as labels for number
data. Apiece of data consisting of letters
and symbols is called a string and for
strings you use a letter of the alphabet, or a
letter and a number, with a dollar sign, e.g.
P$ (pronounced P dollar or P string), or P6$.
Different computers have different rules for
variable names, so check in your computer
manual.

LET*
This is one way to give the computer data.
LET A=5 tells the computer to store the
figure 5 in its memory and label it A and LET
C$="RABBITS" stores the string of letters in
a memory space labelled C$. Strings must
always be in orioles but numbers do not
need quotes.

INPUT*
This is a way of giving the computer data
while the program is running. The word
INPUT is followed by a variable name and
when the computer reaches an INPUT
command it prints a question mark (or other
symbol) on the screen and waits for you to
type in the data. If the INPUT variable is a
number variable you must give it number
data and if it is a string variable you must
give it a string.

On most computers you can put words in
quotes in an INPUT instruction to make it
clearer, as shown in the second example on
the right. Do not use this method on the VIC
computer, though, as the VIC will store the
words in the variable along with your input.
Most computers need a semi-colon
between the words and the variable name.

On some computers you
can use words as labels
for number data and
words with $ signs for
strings.

Be careful notto use
words which contain
BASIC words, though,
such as LETTER, DATA or
SPRINTER, as this would
confuse the computer.

use PRINT
with the name
of the variable
toteljthe
computerto
display the data
on the screen.

1O LET A=5

2O LET C*="RABBITS

3O PRINT A

40 PRINT C*

RUN

5

RABBITS

1O PRINT "WHAT IS YOUR NAME?

20 INPUT N*

RUN

WHAT IS YOUR NAME?

f ?JACK

Computer's
question mark Person's reply is

stored in N$.

10 INPUT "WHAT'S YOUR
20 INPUT "HOW OLD ARE YOU";A
RUN
WHAT'S YOUR NAME? JACK
HOW OLD ARE YOU?!21

Computer's
question marks

Madea
mistake? Most computers have special keys to delete

characters typed by mistake. To correct a line in a
prog ram you can type the whole line again,
including the line number. The new line will replace
the line with the mistake. To delete aline altogether,
type just the line number by itself.

READ/DATA ^
This is another way of giving the computer
data. The word READ is followed by one or
several variable names and the data for the
variables is in a line starting with the word
DATA. The data line can be anywhere in the
program. When the computer comes
across the instruction READ it looks for the
word DATA and then puts each data item in
order into the variables. The data items
must be separated by commas and with
some computers, string data must be in
quotes. Others need quotes only if the
strings contain spaces or punctuation.

IF/THEN >
This is a way of testing data and telling the
computer to do certain things depending on
the result. You can test to see if two pieces
of data are equal, not equal, or if one is
greater than or less than the other, using the
symbols shown on the right. Almost any
instruction can follow the word THEN, but if
the test is not true, the computer ignores the
THEN and carries on with the rest of the
program.

GOTO >
This tells the computer to go to another line
in the program. It is usually used with IF/
THEN so the computer branches only if
certain conditions are true. Be careful when
using GOTO by itself as it can make a
continuous loop, as shown in line 185 on the
right. The only way to stop this program
running would be to type BREAK or
ESCAPE (this command varies on different
computers).

GOSUB/RETURN >
GOSUB makes the computer go to a
subroutine, a special part of the program for
carrying out a particular task. The word
RETURN at the end of the subroutine sends
the computer back to the instruction after
the GOSUB command. You get a bug if you
forget the word RETURN.

REM >
This is short for reminder, or remark. The
computer ignores lines starting with the
word REM and it is useful for inserting notes
in the program to remind you what is
happening.___________________

Line 540 sends the computer back to
the next instruction after GOSUB.

1O READ A*, B, C*, N.

This data item is in
quotes because it
contains a space.

1OO DATA WHEELS, 20OO

110 DATA "DRIVE SHAFTS", 500

IF A=B THEN PRINT "EQUAL"

IF XOY THEN PRINT "NOT EQUAL"

IF X>Y THEN PRINT "X BIBBER"

IF X<Y THEN PRINT "X SMALLER"

IF A*="NO" THEN STOP

IF X+Y=5 THEN LET X=X-H

This tells computer to
stop running the
program.

1OO IF A=5 THEN GOTO 175

Avoid using GOTO to
make an endless loop
as in line 185.

175 PRINT "CONGRATULATIONS"

ISO PRINT "****YOU WON****"

185 GOTO ISO

INPUT "WANT TO PLAY?

11O IF T*="YES" THEN GOSUB

120 REM START GAME

The computer ignores this
line.

50O REM HELLO SUBROUTINE.

510 PRINT "WHAT'S YOUR NAME?"

52O INPUT N*

530 PRINT "HELLO ";N*

54O RETURN

FOR/ NEXT loops ^
The words FOR , TO and NEXT make the
computer repeat part of a program a certain
number of times. In the example on the
right, lines 10 to 30 are repeated three times
and each time the computer prints out the
message in line 20. J is a variable to count
the number of repeats. Line 30 sends the
computer back to find the next value of J
and each time the loop is repeated one is
added to J. When J=3 the computer carries
on with the rest of the program.

STEP**
This changes the way J counts the number
of repeats. For example, FORJ= 1 TO 10
STEP 2 makes J increase by 2 each time and
STEP X would make it increase by whatever
amount was stored in X. In the example on
the right, STEP - 1 makes J count
backwards.

Nested loops >
You can make quite complicated repeats
by using loops inside loops. These are
called nested loops. For example, in the
program on the right, each time the loop
from lines 10 to 50 is repeated, the loop from
lines 20 to 40 runs 12 times. Each time the
inner loop is repeated, line 30 prints out the
value of J XI.

Graphics commands ^
The computer makes pictures by lighting
up little so^iares, called pixels, on the
screen. The instruction for lighting up
pixels varies on different computers. The
programs in this book use the instruction
PLOT X, Y where X and Y are the
co-ordinates of a pixel. To draw a line the
programs use DRAW X, Y. Most computers
have similar instructions, but some may
need an extra instruction to tell them which
graphics mode you want. *

1O FOR J=l TO 3
(2O PRINT "J LOOP
^ 3O NEXT J
4O PRINT

RUN
J LOOP 1
J LOOP 2
J LOOP 3

The variable J at the
end of the line makes
the computer print out
the valueof J each
timethe loop repeats.

1O FOR J=1O TO 1 STEP-1

20 PRINT J;" DAYS TO CHRISTMAS
30 NEXT J

4O PRINT "HAPPY CHRISTMAS

RUN

1O DAYS TO CHRISTMAS

9 DAYS TO CHRISTMAS

B DAYS TO CHRISTMAS^ ___

.7 DAYS TO CHRISTI
Both parts of the
inner loop must
beinsidethe
outerlooporyou
getabug.

, 1O FOR 1=2 TO 12

,2O FOR J=l TO 12

30 PRINT J; " TIMES

1 4O NEXT J

V 50 NEXT I

!; =

The numberof pixels the
computercan plotacross
the screen is called the
screen width and the
number up (or down on
some computers) is the
screen height.

This makes the computer produce a
random number but the precise instruction
varies on different computers. On some
RND(9) produces a number between 1 and
9. Others need a more complicated
instruction like this: INT(RND(1)*9+1).
The computer works out everything in the
brackets first. RND(1) makes it produce a
number between 0 and 1. It multiplies this
by 9, the highest number you want, then
adds 1 because the word INT makes it a
whole number by rounding down.
*Most computers have several different "modes" and in each mode they can work with different
numbers of colours and pixels.

PRINT RND<9)

7
PRINT INT(RND(1)*9-H)

7

Some computers (
useRND(O)
instead of
RND(1).

0.0109425*9+1 =

Arrays y

An array is a set of data items held together under one variable name. You could imagine
the variable as a space in the computer's memory with lots of compartments. Arrays canbe
one-dimensional, that is, a single row of boxes, or two-dimensional and have several rows
of boxes. You refer to an item in a one-dimensional array by the number of the box it is in,
e.g. in the picture below A$(4) is PLUM. For two-dimensional arrays you have to give the
number of the row and the column, e.g. D(3,2) is 15. The numbers in brackets are called
subscripts.

DIMA$(5)andDIMD(4,3)

Before you use an array you have to tell the
computer how big it will be using the word
DIM (short for dimension) as shown on the
right. To put the data in an array you use
READ/DATA with a loop. For a two-
dimensional array you need nested loops,
as shown on the right.

In this example I is the row number and J
is the column number. Each time the inner
loop J repeats, it puts a piece of data into the
next column in the row. When the I loop
repeats the computer starts a new row.

LEFT$ and RIGHT$ ^
These are for doing things with the
characters held in string variables. For
example, LEFT$(A$,4) tells the computer to
take four characters from the left of A$ and
RIGHT$(A$,5) means take five characters
from the right. Sinclair computers do not
use these commands. For the instructions to
use on Sinclair computers see page 11.

L.

u
2O DIM D(4,3)
30 FOR 1=1 TO 4
4O FOR J=l TO 3

5O READ D(I,J)
60 NEXT J

70 NEXT I
SO DATA 5, 12, 16

9O DATA 3, 2, 7
1OO DATA 8, 15, 11

110 DATA 4, 1, 7

The DIM statement
should be atthe
beginning of the
program as it must
only be used once.

1O LET A*="PARAKEET"
20 PRINT LEFT*(A*,4)

25 PRINT LEFT*(A*,2)
3O PRINT
40 PRINT RIBHT*<A*,5>

RUN
PARA
PA

AKEET

MIDSandLEN^
MID$ tells the computer to take some
characters from the middle of a string and
LEN tells you how many characters,
including punctuation and spaces, there are
in a string. For instance, MID$(K$,2,4)
means take four characters from the middle
of K$, starting with the second character.
See page 11 for the instructions to use on
Sinclair computers. ..;....;

10 LET K*="TRAVESTY"

2O PRINT MID*<K*,2,4)
25 PRINT MID*(K*,4,4)

30 PRINT
35 PRINT LEN(K*>

RUN
RAVE ^" ""r^l This is the number
VEST L_ H_ / of characters in K$.

The BASIC in this book
The programs in this book are written in "standard" BASIC. Some computers,
though, have their own special ways of doing things and you may have to make
some minor changes to run the programs on your computer. On these two pages
there are some points you should watch out for.

The programs are written to run on many different makes of computer so they do
not take into account the special features of any one particular machine. Once you
know how the programs work, though, you could adapt them so they make use of
some of your computer's special features.

Variable names >
Some computers can use words as variable
names and others will accept only letters, or
letters and digits. For instance, on Sinclair
computers you can use short words for
number variables, but you are only allowed
to use one letter for string variable names.
In the programs in this book, most of the
variables are labelled with words to make
them easier to understand. If your computer
does not accept words, use just the first
letter of the word for the variable name.

Some computers
treataandAasthe
same variable.

Most computers do not need the word
LET in a statement such as
LET FRUIT$="APPLE". Some computers
also do not need the THEN in
IF ... THEN statements. All the programs
in this book use LET and THEN, but you can
leave them out if your computer does not
need them.

Initializing variables ^
On some computers you have to set up, or
initialize a variable before you can use it.
This means you have to give the variable a
value at the beginning of the program, as
shown on the right. Others will assume a
number variable is 0 and a string variable is
empty without you initializing them. The
programs in this book include lines to
initialize the variables, but you can leave
them out if your computer does not need
them.

INPUTS
Most computers will accept words in quotes
with an INPUT statement. * They vary,
though, as to whether they need a semi­
colon before the INPUT variable and
whether they automatically leave a space
between the words and the data you input.
You can find out what your computer needs
by experimenting, or by looking in your

10 manual.

1OO FRUIT*="APPLE"
11O COUNT=COUNT+1
120 IF COUNT=1O PRINT "READY"

1O LET A=O
20 LET PHRASE*= l^r An empty string*

.. n / iscalledanull
If £ (string.

1OO LET PHRASE*=PHRASE*+ 11 K
11O LET A=A+1

_J

1O INPUT"WHAT IS YOUR NAME
2O PRINT "HELLO ";N*

I "SN*1

With some computers
you need a space inside
the quotes orthe data will
be squashed up against
the words.

*D6 not use this method on the VIC computer, though, as it will put the words in the variable as well as
the data.

FT)ATA
I 10O DATA MOUSE, BERBIL, RAT

11O DATA SNU, "THREE-TOED SLOTH"
L 120 DATA "DEER, RED", "RHINO, BLACK", BIRAFFE

V nuntfisrnunr)
y data items

JT~_^~~~\ which include
["••"]) spaces and
J ••-T I punctuation.

..._Bfc_....._......................_n^l
Be especially careful typing in data lines.
Each data item must be separated by a
comma and it is very easy to make
mistakes. Some computers also need their

data words in quotes. Others only need
quotation marks if the data includes spaces
or punctuation.

Multiple statement lines
5OO PLOT 4O,1: DRAW 1,1

ISO IF A=10 THEN PRINT "CORRECT": BOTO 100

This only
happens if
A=10.

Most computers will accept several
instructions on the same line, separated by
a colon as shown above. This uses less
memory space and can make the program
easier to read. If your computer does not
accept multiple statement lines, put each

instruction on a new line. If you are using
multiple statement lines in your own
programs, beware of putting extra
statements after IF ... THEN instructions as
they will only be carried out if the IF
condition is true.

RND and graphics commands

These commands vary on all computers. In
the programs in this book the instruction to
produce a random number between 1 and
N (where N is any number), is
INT(RND(1)*N+1). The graphics
commands are PLOT X, Y for a point and

DRAW X, Y for drawing a line. You will need
to substitute your computer's commands for
all of these. If your computer also needs a
general graphics instruction you will need
to insert this in the programs.

Sinclair computers and strings
Sinclair computers handle strings in a
non-standard way. They do not use
LEFTS, RIGHTS or MID$. Instead you ,
have to tell them exactly which
characters to pick from a string. For
example, on a Sinclair computer PRINT
A$(1 TO 4) is the same as PRINT
LEFT$(A$,4) and PRINT A$(4 TO 8) is
the same as MID$(A$,4,5).

In string arrays, each string must
have the same number of characters
(you can pad out short strings with
spaces) and each character of a string
is stored in a separate compartment in
the array. Some of the programs in this
book need converting to run on Sinclair
computers and the conversions are
given on pages 46-47.________

Changing the programs

Once you have got a program running
on your computer, and you have an
idea of how it works, you can change
and adapt it by inputting different data
or by adding sound and colour.

When you are changing a program,
check each line very carefully. Make
sure you have enough loops, but not too
many, to read in the new data, and
remember to change DIM statemen

11

Learning BASIC by studying programs
One good way to learn BASIC is to study other people's programs and see how
they work. By studying the programs in this book you can see how to use loops and
strings, how to write simple graphics programs and different ways of storing and
sorting data. At first glance, some of the programs look really complicated. A
'complicated program, though, is only a long list of BASIC commands put together
in an orderly way. On these two pages there are some tips and hints to help you
study and understand programs.
Studying a program
Most programs are made up of several different parts (sometimes called routines or
modules) for carrying out different tasks. For instance, in a rocket chase game one part of
the program will be for plotting the rockets on the screen and other parts will register
attacks and hits, keep track of fuel levels and speed and print out the final scores.

1. Plotting the
rockets.

2. Registering
attacks
and hits.

3. Calculating fuel
levels and speed.

The first stage in studying a program is to
try and recognize the different parts and
work out what they are for. This gives you a
general idea of how the program works.
Look out for subroutines for carrying out
particular tasks and for big jumps in the line

4. Printing out
scores.

numbers - lines starting at the next hundred
or thousand often indicate a new part of the
program. Sometimes the different parts of
the program are labelled with REM
statements.

Deciphering variables

12

Probably the most difficult thing to
understand in the program is the variables.
Before you type a program into a computer
it is a good idea to work out the role of each
variable and make a note of it. Certain

variables are often used for the same tasks,
so you can instantly recognize them. For
instance, the letters I, J, K, L are usually used
for loops and Z or Z$ is used for data that will
only be needed for a short while.

Running and debugging programs

After working out what the variables are
for, type the program into a computer. Since
the programs are written in standard
BASIC, you may have to change some of the
BASIC commands to suit your computer.

Then try and run the program. There will
probably be some bugs so list the program
on the screen and look for typing errors or
commands which are incorrect for your
computer.

Once you have found all the bugs, run the
program a few times to see how it works. It
is a good idea to save it on a cassette or disk
at this stage so you never have to type it in
again.

Then turn back to the listing and study each
line and try and work out what it does. Look
out for short routines which you might be
able to incorporate in your own programs.

LIST 2OO
2OO LET A=1OO/B-H

You can use the computer to help you
understand how the program works. Try
altering the value of one of the variables and
see how it affects the program. Make only
one small change at a time so you can see
what effect each change has. Remember to
type in the correct figures again when you
have finished.

STOP command
makes computer
stop here.

2OO LET A=1O/B+I
2O3 PRINT A
205 STOP

You can also insert lines to print out the
values of variables so you can see how they
change during the program. You may find it
useful to insert STOP commands, too, so you
can study the program in stages, but
remember to delete them afterwards. Some
computers have a command CONTINUE
which you can use after STOP. 13

Using strings
This program shows how you can combine quite simple BASIC commands to make
the computer carry out complex tasks. The program is a word-spotting game in
which the computer asks you for a word, then prints the letters randomly across the
screen and asks you to spot how many times the word appears. It uses the
string-handling commands MID$, RIGHT$ and LEN, and random numbers. *

There are two main tasks to carry out in the program. One is to print the letters
randomly on the screen and the other is to get the computer to count the number of
times the word occurs correctly.
rWORD SPOTTING GAME
PLEASE TYPE IN A SHORT WORD
7CAKE
NOW SEE IF YOU CAN SPOT YOUR
WORD AS THE LETTERS APPEAR
ON THE SCREEN.
PRESS RETURN TO START

CKEKAECAAKCKA
AKECEAKCEAKCA
ACAEECKKCCAEC
TYPE AS A FIGURE HOW MANY
TIMES YOU THINK YOUR WORD
APPEARED ON THE SCREEN ?1
WRONG!
YOUR WORD APPEARED 2 TIMES

Choosing the random letters
MID$(W$,R,1) means take one

letter from W$ starting at
letter number R.

, Pick a number
between 1

) and 4.

The program uses MID$ with a random
number to choose which letters to print.
Your word is stored in W$. At line 160 it
picks a random number from 1 to the length
of your word and stores it in R. Then in line
170 it uses the number in R to decide which

letter to select from W$. It stores the letter in
L$ and then prints it on the screen in line
180. Each time the loop from line 150 to 220
is repeated, a new number is stored in R
and a new letter is chosen from W$.

Checking for the word

Line 200 After the loop from lines 150-220
has repeated several times
CHECK$ is full of letters.

14

At the beginning of the program the
computer sets aside a memory space called
CHECKS and fills it with the same number of
stars as there are letters in your word. Each
time it picks a new random letter it throws

out the first character in CHECKS and adds
the random letter to the end of the string
(line 200). Then, in line 210 it compares
CHECKS with W$ and if the letters are in the
same order it adds 1 to N.

*To convert the program for Sinclair (Timex) computers see page 46.

Word spotting game
1O CLS

2O PRINT "WORD SPOTTING GAME": PRINT

30 LET CHECK*=
40 LET N=0

..... }

45 PRINT "PLEASE TYPE IN A SHORT WORD"
SO INPUT W*

i(>O FOR 1 = 1 TO LEN(W*> "I___________
7O LET CHECK*=CHECK*+"*" I

1 BO NEXT I J
90 PRINT
100 PRINT "NOW SEE IF YOU CAN SPOT"
11O PRINT "YOUR WORD AS THE LETTERS"
115 PRINT "APPEAR ON THE SCREEN"
120 INPUT "PRESS RETURN TO START";Z*

^-————-—•-——~^—
This is a useful way of
making computer wait
until you are ready.

130 CLS

14O REM CHOOSING RANDOM LETTERS
,150 FOR 1 = 1 TO 50*LEN(W*) T—————

16O LET R=INT(RND(1)*LEN(W*)-H)

170 LET L*=MID*(W*,R, 1)

Useyour
computer's RND
command.

ISO PRINT L*+"
190 REM CHECKING FOR WORD

2OO LET CHECK*=RIGHT*(CHECK*,LEN(W*)-l)+L*}-

Use your computer's command to
clear the screen.
This is a multiple statement line with a
colon to separate the two instructions.
Sets up empty variables to use later in
the program.
Asks for your word and puts it in W$.
Loop to run as many times as there

. are letters in your word, i.e. LEN(W$)
Each time the loop repeats, a * is put
in CHECKS.

Line 120 makes computer wait for you
to type something in. On most
computers you can just press
RETURN but on the Oric, hit a key,
then press RETURN.

Sets up a loop from lines 150 to 220 to
run 50 X no. of letters in your word.
Chooses random number from Ito
length of word and puts it in R.
Uses number in R to pick a letter from
W$ and stores it in L$.
Prints letter in L$ followed by a space.
Semi-colon makes computer stay on
same line to print each letter.
This means take LEN(W$)-1 letters
from the right of CHECK$, add the

1210 IF CHECK*=W* THEN LET N=N+1]-
*22O NEXT I ———

N keeps count of number of times
' word occurs correctly.

.f23O FOR
T240 REM

250 NEXT

This is a useful way of making computer search
through data to find a particular word. You could
use this routine in other programs. You need the
loop from lines 60 to 80 as well. _,

This is a "delay loop". There are no
1=1 TO 1OOO " __________________ instructions to be carried out but it

DO NOTHING makes the computer pause for a few
seconds while it runs through all the
values for I.Some computers are faster than

others so change this figure to suit
your computer. A higher number
in line 230 makes a longer pause.

26O CLS
265 PRINT "TYPE AS A FIGURE HOW MANY TIMES-
270 PRINT " YOU THINK YOUR WORD APPEARED ON THE SCREEN"

275 INPUT G J——————————————————

2BO PRINT
29O IF G=N THEN PRINT "CORRECT! 1
3OO IF GON THEN PRINT "WRONG!"
31O PRINT "YOUR WORD APPEARED ";N;" TIMES'

• Stores your guess in G.

Compares G with N (the variable the
computer used to count the number
of correct words).

15

Loops and random numbers
This program is a spacegame which
also tests your mental arithmetic. It
shows some of the ways in which you
can use loops and random numbers and
there are some special screen effects
which you could incorporate in your
own programs. It is quite a long
program, but most of the lines are
PRINT statements to set the scene for
the game.

THIS IS YOUR SHIP'S COMPUTER
SPEAKING.
WE ARE IN TROUBLE. I CANNOT
CALCULATE FUEL FEED RATES.
AS WE APPROACH EARTH, YOU WILL
HAVE TO DO THE CALCULATIONS.
I CAN TELL YOU HOW MUCH FUEL WE
NEED AT EACH STAGE, AND THE TIME
PERIOD IN WHICH IT MUST BE USED.
YOU MUST DIVIDE THE FUEL BY THE
TIME TO GIVE ME THE RATE AT
WHICH THE SHIP MUST BURN THE FUEL.

Spacef light emergency game
10O CLS
11O FOR 1=1 TO 2O

fl 15 PRINT "**** WARNING **";
/ 118 PRINT "** RED ALERT ****";
Ll2O FOR J=l TO 1O
(125 REM DO NOTHING
\M30 NEXT j /Change the figures
V135 NEXT I I in the delay loops
140 CLS ^10 suit your computerv
,150 FOR 1=1 TO 2O
M55 PRINT "**** CIRCUIT DAMAGE **»*";
Ll6O FOR J=l TO 1O
(165 REM DO NOTHING
\Al70 NEXT J
V 18O NEXT I
190 CLS
2OO PRINT "THIS IS YOUR SHIP'S COMPUTER
SPEAKING
21O PRINT
22O PRINT "WE ARE IN TROUBLE. I CANNOT
CALCULATE FUEL FEED RATES."
230 PRINT
24O PRINT "AS WE APPROACH EARTH, YOU WILL
HAVE TO DO THE CALCULATIONS."
25O PRINT]—————————————————————————————

260 PRINT "I CAN TELL YOU HOW MUCH FUEL
WE NEED AT EACH STAGE, AND THE TIME PERIOD
IN WHICH IT MUST BE USED."
270 PRINT
280 PRINT "YOU MUST DIVIDE THE FUEL BY
THE TIME TO GIVE ME THE RATE AT WHICH
THE SHIP MUST BURN THE FUEL."
29O PRINT
3OO PRINT "HERE IS AN EXAMPLE"

FUEL=24"
TIME=6"

310 PRINT
320 PRINT
330 PRINT
345 PRINT
350 INPUT

• Use your computer's command to
clear the screen.

• Lines 110 to 135 are nested loops.
Each time the I loop is carried out the
warning in lines 115-118 is printed,
then the J loop repeats ten times. The J
loop is a delay loop to make the
computer pause a moment so you can
read the warning.

• Lines 150-180 work like lines 110-135.

The next part of the program
prints a description of the
game on the screen. If the
sentences are too long for your
screen insert extra PRINT
lines.

1 PRINT by itself leaves empty lines.

If your computer scrolls the
text off the screen before you
havetimeto read it, delete
some of the empty PRINT

. lines.

. Underlines words in the line
above.

"PLEASE DIVIDE FUEL BY TIME AND
TYPE IN THE ANSWER QUICKLY ";ANSWER J
360 PRINT
370 IF ANSWERO4 THEN PRINT "NO. TRY "I
AGAIN, YOUR LIFE DEPENDS ON IT": GOTO 35O J~~
38O CLS

I— Your reply is stored in ANSWER.

The GOTO is carried out only if
ANSWER is not 4. (If your computer
does not use multiple statement lines,
repeat IF ... THEN on a new line with
GOTO.)

oooo
WARNING

RED ALERT

CIRCUIT DAMAGE

f This game has no
graphics or sound effects,
but you could add the
instructions for your
computer.

——— — — - ——————————————— 'm

39O
THE
395
400
405
410
42O

PRINT "OK. NOW YOU
ANSWERS RIGHT"
PRINT "OR THE SHIP
PRINT "IF YOU MAKE
PRINT "WE WILL ALL
PRINT
INPUT "PRESS RETURN

MUST GET ALL

WILL BE DAMAGED"
MORE THAN TWO MISTAKES,"
BE DESTROYED"

TO TELL "1
ME YOU ARE READY";!*
43O CLS
44O PRINT "LOOK OUT - WE'RE
450 LET DAMAGE=O T————————

STARTING!

460 FOR FUEL=72O TO 12O STEP-12O ~l

47O LET T=INT<RNDU>*5+2) "1————

480 PRINT
490 PRINT "FUEL=";FUEL
500 PRINT "TIME=";T
51O PRINT

Waits for you to press
RETURN. (For the Oric
computer hit a key, then press
RETURN.)

• Sets up a variable called DAMAGE.

FUEL is a variable to count the loops. It is
also used in the calculations. At line 460
FUEL=720 and then decreases by 120
each time the loop repeats. These
figures were chosen so that the answer
to sum in line 520 is always a whole
number.

• Gives random numbers from 2 to 6 which
will divide exactly into figure for FUEL.

520 LET R=FUEL/T] Computer works out sum using values
530 INPUT "GIVE ME THE RATE NOW "; ANSWER h f°r FUEL and T and stores answer in R. If
540 IF ANSWERER THEN GOTO 600 J you give the correct answer computer

goes to line 600.
• Variable DAMAGE keeps count of your
mistakes.

If you make more than two
1 mistakes the computer jumps

out of the loop and goes to line
640.
Only prints this line if you make
less than two mistakes.

550 LET DAMA6E=DAMAGE+1]—————
560 PRINT
57O PRINT "****DAMAGE****"
580 PRINT
590 IF DAMAGE>2 THEN BOTO 64O ~\—————————
6OO NEXT FUEL
61O CLS _.
620 PRINT "CONGRATULATIONS - YOU HAVE
DONE JUST AS WELL AS I COULD. YOU HAVE ——
REACHED EARTH SAFELY!!!" J
630 GOTO 720
64O CLS
65O FOR 1=1 TO 20

/660 PRINT "*";
f.,670 FOR J=l TO INT(RND(1)*I+50)
(680 PRINT " "!
V69O NEXT J
X700 NEXT I
71O PRINT: PRINT "THE SHIP IS DESTROYED
72O END

These nested loops print a
random pattern of stars on the
screen. Each time the I loop
repeats, the computer prints a
star and then the J loop makes it
leave a random number of
spaces.

Making a soccer database
A database is a large amount of information stored in a computer. The information
is organized so that the computer can combine and compare the facts and figures
in various different ways and a person using the database can receive useful
information in a very short time.

On the next few pages there is a program for a soccer World Cup database. This
is an example of a small database which you can use to find out which team won the
Cup in any year since 1930, or in which year a particular team won the Cup. At the
end of the program there are some ideas for converting the database to hold
different information, such as a magazine index or the data for a nature survey.

There are three main parts to a database program. You need a suitable way of
storing the information, a means of retrieving it and a "menu". A menu is a list ofthe
various things a program can do, from which you can choose what you want. The
program should also be "user-friendly", that is, it should give the person usingthe
database clear instructions, and should not "crash", or break down, if they makea
mistake. "•
Sample database runs

J PLEASE TYPE IN THE NAME OF
I THE TEAM, OR TYPE MENU TO SEE
I THE LIST A6AIN WEST GERMANY

5EE 1 [PL
' T!

WEST GERMANY
WON THE WORLD CUP IN 1954
WAS A FINALIST IN 1966
WON THE WORLD CUP IN 1974
WAS A FINALIST IN 1?B2

PLEASE TYPE IN THE YEAR, OR
TYPE MENU TO SEE THE LIST
AGAIN 1938

IN 1938
ITALY WON THE CUP

PRESS RETURN FOR MENU

PRESS RETURN FOR MENU

Storing the information

URUGUAY

ARGENTINA

ITALY

CZECHOSLOVAKIA

HUNGARY

WEST GERMANY

BRAZIL

SWEDEN

ENGLAND

HOLLAND

1930

1

2

0

0

0

0

0

0

0

0

1934

0

0

1

2

0

0

0

0

0

0

1938

0

0

1

0

2

0

0

0

0

0

1950

1

0

0

0

0

0

0

0

0

0

1954

0

0

0

0

2

1

0

0

0

0

1958

0

0

0

0

0

0

1

2

0

0

1962

0

0

0

2

0

0

1

0

0

0

1966

0

0

0

0

0

2

0

0

1

0

1970

0

0

2

0

0

0

1

0

0

0

1974

0

0

0

0

0

1

0

0

0

2

1978

0

1

0

0

0

0

0

0

0

2

1982

0

0

1

0

0

2

0

0

0

0

To match the teams and years the program
uses a "matrix" of information and looks up
a team or year in the same way as you would
on this chart. In the chart a figure 1 shows
that a team won the Cup and a 2 shows that it

18 was a finalist. By reading along the rows and

down the columns you can see which team
won in which year. The program is an
automatic way of doing this, and of course,
with large amounts of information, it is much
quicker than a chart.

Building the matrix
It is quite easy to make a computer version of the chart on the opposite page using arrays.
An array is a variable which can hold lots of separate items of data.

To referto an item in an array
you use the name of the
array and the position of the
item in it. For example,
YEAR(5) means the fifth item
in YEAR and M(7,3) means
the item in row7, column 3
of M. The numbers in
brackets are called
subscripts.

You need two single arrays, one with 12
compartments to hold the list of years and
one with 10 to hold the teams. These are
called YEAR and TEAM$ in the program.

How the computer uses
the matrix

To hold all the data figures for the chart you
need a two-dimensional array with 10 rows
and 12 columns. This is called M (for matrix)
in the program.

To find which team won the World Cup in,
say, 1938, the computer looks for 1938inthe
YEAR array and notes that it is in
compartment 3. Then it looks through

column 3 of the matrix and when it finds a
1 or 2 it notes the row number and uses this
number to look up the name of the team in
TEAM$. 19

The database program
There are seven main parts^to the program,
and each part is dealt with in a separate
subroutine. The first few lines tell the
computer which subroutine to use and after
carrying out a subroutine it returns to these
lines.

The subroutines starting at lines 200 and
300 are for printing out the list of teams and
years. Lines 400-500 are for finding out in
which year a particular team won the Cup,
while lines 500-600 are for finding out which
team won the Cup in a particular year. All
the data is listed towards the end of the
program, followed by the menu. It is usually
best to put the data towards the end of the
program, and keep the working part of the
program at the beginning.

The menu

Lines 10-130
call up the subroutines.

Lines 200-250
print the teams list.

Lines 300-360
print the years list.

Lines 400-490 search matrix
to find year for a team.

Lines 500-580 search matrix
to find team for a year.

Lines 1000-1310
read in all the data.

Lines 2000-2180
print the menu.

TO SEE THE LIST OF TEAMS TYPE 1
TO SEE THE LIST OF YEARS TYPE 2
TO ENTER THE NAME OF A TEAM TYPE 3
TO ENTER A YEAR TYPE 4
TO END TYPE 5
TYPE THE NUMBER OF YOUR CHOICE
THEN PRESS RETURN

The menu is the part of the
program which tells you
what the program can do,
and how to use it. In this
program, you choose what
you want by typing in a
number. The number is
stored in a variable C and
the computer uses this
number to call up the
correct subroutine for
carrying out the task you
want,

Calling up the subroutines

20

"

Line 120 in the program controls which
subroutine the computer uses. The letter C
is the variable which contains the number
you typed in after seeing the menu. The
computer uses the number in C to decide
which subroutine to go to. If C= 1 it goes to
the first subroutine listed in line 120, i.e. the
one starting at line 200. If C=2 it goes to the

second, i.e. line 300. If C=3 it goes to the
third, etc. ON GOSUB is a useful BASIC
command to make the computer go to
different subroutines depending on some
test. If your computer does not have the
command ON, you can use several IF ...
THEN statements instead, e.g. IF C= 1
THEN GOSUB 200.

What the variables are for
YEAR

The array to hold the
years.

C

The variable to hold the
number you type in after
seeing the menu.

TEAM$

The array to hold the
names of the teams.

z$
The name of the team or
year you type in.

M

The two-dimensional
array to hold all the data
figures.

X$ jfc
^ Temporary data. ^

Usejustthe
first letters
if your
computerwill
not accept
words as
names for
arrays.

The program
10 DIM TEAM*(1O): DIM YEAR(12): DIM M(1O,12) J-

10O BOSUB 10OO: REM READ DATA J——————————————

110 BOSUB 2000: REM PRINT MENU T————————————,

When you run the program the
first thing the computer does is
to go to the subroutine at line
1000 to read the data.
Next, it goes to line 2000 to print
the menu on the screen.

The brackets on the left of the
listing show the different parts of
the program. This sends it to the correct

subroutine to carry out the task
you chose in the menu. After

' the subroutine computer
returns to line 130 which sends
it back to line 110 to print menu
again.

230 FOR 1=1 TO 1O: PRINT TEAM*(I)s NEXT I
235 PRINT

24O INPUT "PRESS RETURN TO SEE MENU";X*

250 RETURN

120 ON C SOSUB 200,300,400,500,600 "j——————

130 BOTO 110

'200 REM SUBROUTINE TO PRINT TEAMS LIST

210 CLS

220 PRINT "TEAMS LIST": PRINT "———————" 1—Underlines the words TEAMS
~* LIST.

Loop to print names of teams.
Each time loop repeats, I
increases by 1 and computer
prints out the next name in
TEAM$.

Makes computer wait for you
to press RETURN before it
goes on to next line. (On the
One you must hit a key.)

300 REM SUBROUTINE TO PRINT YEARS LIST
310 CLS
32O PRINT "YEARS LIST": PRINT "—————————"

Loop to print out the
years.

335 PRINT
340 PRINT "THERE WAS NO COMPETITION IN 1942 OR 1946"
345 PRINT
350 INPUT "PRESS RETURN TO SEE MENU"jX* y-.-y ^ Backtoline 130again.
360 RETURN]—————————————————————————

330 FOR I»l TO 12: PRINT YEAR(I): NEXT I

21

*To conven this program to run on Sinclair (Timex) computers see page 46.

-4OO REM SUBROUTINE TO INPUT TEAM
405 CLS

410 INPUT "PLEASE TYPE IN THE NAME OF THE "L The name of a team or the word
TEAM, OR TYPE MENU TO SEE THE LIST AGAIN "|Z*J "menu" is stored in Z$.

415 IF Z*="MENU" THEN RETURN

4 420 FOR 1=1 TO 1O
(425 IF Z*=TEAM«<I) THEN GOTO 44O

430 NEXT I

, If Z$=MENU computer returns
to line 130 and from there to line
110 to print the menu.

Loop to compare Z$ with each
• name in TEAMS. When it finds a
name which equals Z$ it goes to
line 440.

435 PRINT: PRINT "TEAM NOT FOUND - PLEASE
TRY AGAIN": PRINT: GOTO 41O

440 PRINT
445 PRINT Z*: PRINT

,450 FOR J=l

IfyouareusingaBBC
micro, see note on
page 46.

12
455 IF M(I,J)=1 THEN PRINT "WON THE WORLD
CUP IN "; YEAR<J) :PRINT
46O IF M<I,J>«2 THEN PRINT "WAS A FINALIST
IN "!YEAR(J): PRINT
465 NEXT J

470 PRINT
480 INPUT "PRESS RETURN FOR MENU";X* }•

• This line is a safeguard in case
you misspell the name of a team,
or type in a name not in the
database.

Prints the name of the team.

Loop to make computer find
details for your team in the
matrix. I is the row number. The
value for I is set by the loop at
lines 420-430 and it is the
subscript (the number which
shows its position in the array)

- for your team in TEAM$. J is the
column number and each time
the loop repeats the computer
looks in the next column along
row I.

• Same as line 240.

"-490 RETURN

-500 REM SUBROUTINE TO INPUT YEAR
505 CLS

510 INPUT "PLEASE TYPE IN THE YEAR, OR
TYPE MENU TO SEE THE LIST A6AIN ";Z*

515 IF Z*-"MENU" THEN RETURN

>520 FOR I«l TO 12
(525 IF VAL(Z*)=YEAR(I) THEN GOTO 54O
\530 NEXT I

22

_ Same as line 410, but this time
" your year is held in Z$.

Loop to compare Z$ with each of
the years in YEAR. You cannot

. compare a string variable with a
number variable, though, so you
need the BASIC command VAL.
This tells the computer to treat
the characters in Z$ as a number.

535 PRINT: PRINT "YEAR NOT FOUND - TRY
AGAIN": PRINT: GOTO 510

540 PRINT: PRINT "IN ";Z*: PRINT
.550 FOR J=l TO 1O
555 IF M(J,I)=1 THEN PRINT TEAM*<J>;" WON
THE CUP"
^560 NEXT J

565 PRINT

57O INPUT "PRESS RETURN FOR MENU"JX*

•580 RETURN T———————————————————————

This loop works in the same way
as lines 450-460. This time the
column number is set by the
subscript of the year in YEAR
and the row number changes
each time the loop repeats.

I-6OO REM SUBROUTINE TO END PROGRAM
61O INPUT "END - SURE (Y/N)"iX*

•-62O IF X*O"Y" THEN RETURN ELSE END

Ifyourcomputerdoesnot
use ELSE, you can put the
word END on a new line by
itself.

r 1OOO FOR 1=1 TO 12: READ YEAR(I): NEXT I
101O DATA 193O, 1934, 1938,195O
1O2O DATA 1954, 1958, 1962, 1966

L- 1O3O DATA 197O, 1974, 1978, 1982

r 110O FOR 1=1 TO 1O: READ TEAM* (I): NEXT I
1110 DATA URU6UAY, ARGENTINA
1115 DATA ITALY, CZECHOSLOVAKIA, HUNGARY
112O DATA WEST GERMANY, BRAZIL

!- 1125 DATA SWEDEN, ENGLAND, HOLLAND

Checks to make sure you want to
stop. If you type Y the BASIC
command END tells the computer
to stop running the program.
If you type anything else, it goes
back to line 130. The word
ELSE is a useful way of adding
more conditions to IF ... THEN
statements. For more about this,
see over the page.

Loop to read the data into YEAR.

• Loop to read the data into
TEAM$.

Be very careful typing in this
data. If you missoutany
commas or figures you will
get a bug.

r 12OO FOR 1=1 TO 1O:
1205 READ M<I,J)
1210 NEXT J: NEXT I

FOR =1 TO 12

1^10

1220
123O
124O
1250
126O
127O
1280
1290
13OO
1310

Kt 1UI

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

<N

1,

2,
0,
o,
o,
0,
0,
0,
o,
o,

o,
o,
1,
2,
0,
0,
0,
0,
0,
0,

o,
o,
1,
o,
2,
0,
0,
0,
0,
0,

1,
o,
o,
o,
o,
o,
o,
o,
o,
o,

o,
o,
o,
o,
2,
1,
o,
o,
o,
o,

o,
o,
o,
o,
o,
o,
1,
2,
o,
o,

o,
o,
o,
2,
o,
o,
1,
o,
o,
o,

[
0,0
0,0
0,2
O,O
0,0
2,0
0,1
0,0
1,0
0,0

Ir
,0,
,0,
,0,
,0,
,0,
,1,
,0,
,0,
,0,
,2,

^
0,0
1,0
0,1
0,0
0,0
0,2
0,0
0,0
0,0
2,0

Back to line 110
thistime.

Nested loops to read data into
the two dimensional array M.

. This is the data for M.

LISTING CONTINUED OVER THE PAGE

It is a good idea to check the
data several times by
reading along the rows and
down the columns. If any
of the figures are wrong the
computerwill give you the
wrong information when it
looks in the matrix.

23

-2000 REM SUBROUTINE TO PRINT MENU

2010 CLS

2020 PRINT " MENU" 1_________

2030 PRINT " ****" J

2040 FOR 1=1 TO 6: PRINT: NEXT I H—————————

2030 PRINT "TO SEE THE LIST OF TEAMS TYPE 1"

206O PRINT

2070 PRINT "TO SEE THE LIST OF YEARS TYPE 2"

2080 PRINT

2090 PRINT "TO ENTER THE NAME OF A TEAM TYPE 3"

2100 PRINT

2110 PRINT "TO ENTER A YEAR TYPE 4"

2120 PRINT

2130 PRINT "TO END TYPE 3"

2140 PRINT

2150 PRINT "TYPE THE NUMBER OF YOUR CHOICE'-

2160 INPUT "THEN PRESS RETURN "JC ~~\————————

Leave about 15 spaces here to
• centre the word menu above the
list of choices.

• Loop to leave six empty lines.

These lines print out
the menu. A menu
mustbeclearand
"user-friendly" so the
person runningthe
prog ram knows

, exactly whatto do.

The number of your choice is
stored in C.

2170 IF C<1 OR 05 THEN PRINT "PLEASE ENTER I Thisline isasafeguardincase
A FISURE BETWEEN 1 AND 5": BOTO 215O _n J you type in something other than

a number between 1 and 5. For
2180 RETURN —7^ —^ ^ ^——r\,- J more about OR see below.

Back to line 120 to select
the correct subroutine.

AND, OR and ELSE*

IF A=3 AND C*="YES" THEN LET D=D+1

IF X<0 OR XMOO THEN PRINT "OUT OF RANGE"

IF A6E<36 THEN PRINT "YOUNG" ELSE
PRINT "OLD"

You can use these BASIC words to add more tests and
instructions to IF ... THEN statements, as shown in the
examples above. When you use AND the computer will
carry out the THEN instruction only if both the tests in the IF
statement are true. OR tells it to carry out the instruction if
either of the tests are true. The word ELSE enables you to
give the computer instructions to carry out if none of the
tests are true. Can you write a short program using ELSE to

24 solve the problem on the right?

Puzzle

Champion robot runner,
Zak, can run 500 metres a
second. If the temperature
goes above or below 60°
though, Zak speeds up or
slows down by 10 metres a
second. Can you write a
program to print out how far
Zak can run depending on
the temperature and
number of seconds you
input? (Answer page 48.)

* These BASIC words are not available on all computers.

Converting the database
Once you understand how the program works it is quite easy to convert it to make a
database for a different subject. There are some ideas for different databases below.

When you have decided on a subject for the database, draw up a chart with all the
figures for the data, like the one on page 18. Your chart may have a different number of
rows and columns, in which case you will need to change the size of the arrays in the
program. Then put all your data in the data lines in the program, and rewrite the
questions in the menu, too. Remember to change the DIM statements and the number of
times the loops run to read the data into the arrays.

Magazine database

WEEKS

i MATRIX

You could use a magazine database to see which month
a subject appeared, or which subjects were covered in
any one month. This could save hours skimming through
magazines looking for a particular article. You would
need an array called WEEK$ and another called
SUBJECTS, as well as the matrix.

Wildlife database

BIRDS

MATRIX

A database of birds or plants could show either when, or
where you spotted them. You would need one array for
the names of the birds or plants and another for the place
or time of year when you spotted them. Wildlife
organizations are compiling databases like this to keep a
record of the distribution of different species.

Food and vitamins database

FOODS

MATRIX

This database would enable you to find out which foods
contained a certain vitamin, or which vitamins are
present in a particular food. Another idea would be a
foods and calories database, so you could see how many
calories there are in a particular food, or which foods
have more than a certain number of calories.

25

Instant graphics
This program draws simple shapes on the screen and fills them with a criss-cross
grid of lines. Grids are often used in computer graphics to help make shapes look
more three-dimensional or give them a space-age look.

The program uses the graphics command PLOT X, Y for plotting a point and
DRAW X, Y for drawing a line. The co-ordinates X and Y are measured from the
edge of the screen. You will have to convert these instructions for your computer,
and add any special graphics commands that your computer may need. *

There are two different ways of writing graphics programs. You can tell the
computer to calculate and plot all the points as it goes along and build up the
picture gradually on the screen. Or you can make it do all the calculations first,
store them in arrays, then plot the complete picture almost instantly. The following
program uses the "instant graphics" approach.

You can make all kinds of shapes and
.* patterns by changing the data in the

program. You can also draw the grid lines

in different colours. There are some hints
for adapting the program at the end of the
listing.

Parts of the program

There are three main parts to the program.
The first part (lines 100-190) plots the
corners of the grid and draws lines
between them. The second part (lines 200-

360) works out the co-ordinates for the grid
lines and the third part (line 400-550) draws
the lines.

Storing all the data
CX holds the
X co-ordinates
andCYholds
the Y co­
ordinates.

The program uses four arrays for storing all
the data for the co-ordinates. CX and CY
hold the X and Y co-ordinates for the four

26 comers of the grid. You give the computer

the data for these arrays at the beginning of
the program. CX(l)andCY(l)containthe
co-ordinates for the first comer of the grid,
CX(2) and CY(2) for the second, and so on.

*On some computers, e.g. Spectrum and the Oric, the X and Y co-ordinates for a line are measured
from the last point plotted. To convert the program for these computers see page 47.

These hold the co­
ordinates for the grid

lines.

LX and LY are the arrays for holding the X
and Y co-ordinates for the grid lines. They
are two-dimensional arrays and they each
have four rows. The number of columns is
set in the program by the number of grid
The program
10O INPUT "HOW MANY GRID LINES 1.
DO YOU WANT? ";N _j
110 DIM CX<4),CY<4) ~|_____
115 DIM LX(4,N), LY(4,N) J
12O CLS
13O REM DRAW SIDES OF GRID
135 REM INSERT YOUR COMPUTER'
GRAPHICS MODE INSTRUCTION

,140 FOR 1=1 TO 4
145 READ CX(I), CYU)

k 150 NEXT I

lines you want. Each row holds the co­
ordinates for the lines for one side of the
grid and row 1 equals side 1, etc. The
computer stores the data in LX and LY as it
works out the calculations in the program.

Try 20 for computers with hi­
res graphics and 5 for low-res.

_ Tells the computer how big to
"make the arrays.

The figures given^
here are for the
grid on the left
ontheopposite"
page.Change
these figures to
make different
shaped grids.

16O DATA 1OO,5O,7OO,5O,5OO,70O,150,500

170 PLOT CX(4),CY(4)

ISO FOR 1=1 TO 4
185 DRAW CX(I), CY(I)
190 NEXT I

Useyour
computer's
commands for
PLOT and DRAW.

Loop to read data for comers
into CX and CY. Each time the
loop repeats, the next two
figures in line 160 are read into
CXandCY.
These are the co-ordinates for
the comers. You may need to

. change these figures to fit your
screen.

• Plots comer 4 using the figures
stored in CX(4) and CY(4).

LISTING CONTINUED OVER THE PAGE

Loop to draw the sides of the
grid.

Drawing the sides

Comer 4 CX(4),CY(4)

CX(1),CY(1)

CX(3),CY(3)

CX(2),
CY(2)

To draw the sides of the grid the computer
plots corner 4 first (line 170). Then the loop
from lines 180-190 makes it draw a line to

corner 1. Each time the loop repeats, the I
variable increases by one and the computer
draws a line to the next comer.

27

200 REM CALCULATE CO-ORDINATES FOR GRID LINES

^~ Remember, CX(1) and CX(2)
are the X co-ordinates for
corners 1 and2,andCY(1)
andCY(2)arethe Y
co-ordinates.

,210 FOR 1=1 TO

220 LET LX<1,I)=CX(1)-KCX<2)-CX<1))*I/N ~\-

230 LET LY(1, I)=CY(1)-KCY(2)-CY(1))*I/N ~\-

240 NEXT I

LISTING CONTINUED BELOW

The next part of the program
consists of four loops to
calculate the co-ordinates for
the grid lines. You can find out
how in the pictures below.

N is the number of grid lines
' you chose.
Works out X co-ordinates for

, grid lines along side 1 and
stores them in LX row 1,
columns 1 to N.
Works out Y co-ordinates for
side 1 and stores them in LY
row 1 columns 1 to N.

Calculating the co-ordinates
Y

This isthe number
of X points along
side"!.

Each loop calculates the co-ordinates for
the grid lines along one side of the grid. For
example, lines 210-240 work out the
co-ordinates for side 1. At line 220 the
computer subtracts CX(1) from CX(2). This
gives the number of X points along side 1.
The first time through the loop it multiplies
this figure by 1/N (N is the number of grid
lines you chose). If, say, N is 5, this gives

1/5 of the length of side 1. Then it adds this
figure to CX(1) and stores the answer in
LX(1,1). The second time through the loop
1=2 so it multiplies by 2/5 and stores the
answer in LX(1,2). It does this for all the
values for I from 1 to N to find all the X
co-ordinates for the grid lines along side 1.
Line 230 uses the same method to find the Y
co-ordinates.

28

250 FOR 1=1 TO N

260 LET LX<3,I)=CX(4)+(CX<3)-CX(4))*I/N

270 LET LY(3,I)=CY(4)+(CY(3)-CY(4))*I/N

280 NEXT I

290 FOR 1=1 TO N

30O LET LX(2, I)=CX <2> + <CX <3>-CX <2»*I/N

310 LET LY(2,I)=CY(2)+(CY(3)-CY(2))*I/N

320 NEXT I

Loop to work out the
co-ordinates for side 3. To
store them in the same order as
for side 1 (i.e. from left to right),
the computer has to do the sum
in the opposite order. It
subtracts corner 4 from comer
3, then adds the result to comer 4.

Try changing these
lines so they are like
the other loops and see
what happens.

-~-———.———--
Loop to work out co-ordinates
for side 2.

LISTING CONTINUED OPPOSITE

33O FOR 1-1 TO N

340 LET LX<4,I)=CX(1)+(CX(4)-CX<1))*I/N

35O LET LY(4,I)-CY(1)-KCY(4)-CY(1»*I/N

360 NEXT I

400 REM DRAW 3RID LINES

410 LET ROW-1: GOSUB 5OO

420 LET ROW-2: GOSUB 500

430 STOP

— Loop to work out co-ordinates for side 4.

This line sets up a variable called ROW
and gives it a value of 1. Then the
computer goes to the subroutine at line
500. After the subroutine it returns to line
420 and changes ROW to 2, then goes to
the subroutine again.

500 REM SUBROUTINE

510 FOR 1=1 TO N

520 PLOT LXCROW,I),LY(ROW,I)

53O DRAW LX(ROW+2,I),LY<ROW+2,I>

540 NEXT I

55O RETURN "1——————————————————

Drawing the grid lines

This stops the program after the
subroutine has been carried out twice-

ROW and I are the subscripts for LX and
LY. They tell the computer which
compartment to look in to find the X and
Y co-ordinates for each grid line. ROW is
the row number and I is the column. Row
1 holds the co-ordinates for side 1, row 2
for side 2, etc.

Back to line 420 the first time through the
subroutine and 430 the second time.

Side 2

Side 1
The first time through the subroutine
ROW= 1 so at line 520 the computer plots a
point on side 1. At line 530 it adds 2 to ROW
and so draws a line to side 3. The second

time through the subroutine ROW=2 so it
plots points on side 2 and draws lines to
side 4.

Ideas for altering the program
1. To make different shaped grids, work out the co-ordinates for a shape you like on
paper first. Remember that the first pair of figures in line 160 are the co-ordinates for
corner 1, the second pair for corner 2, etc. If you make two comers the same you will
get a triangle. See if you can make the sides cross over, as shown in the picture on the
right on page 26.
2. You can use INPUT with a loop to make the computer ask you for the data.
Replace lines 140-160 with the following lines:

140 FOR 1=1 TO 4
ISO PRINT "WHAT ARE THE CO-ORDINATES FOR CORNER ";I
155 INPUT CX(I),CY(I)
160 NEXT I

3. To make coloured grid lines, insert your computer's colour command before the
GOSUB in lines 410 and 420. Remember to put a colon to separate the colour
command from the GOSUB.

29

Programs for sorting data
Sometimes you need to sort data into alphabetical or numerical order, for instance,
to arrange a magazine index, or analyze data collected about, say, the weather or
wildlife sightings, or a local history survey. Short lists are quite easy to sort by hand,
but with lots of data, a computer is far quicker and more accurate.

Special programs for sorting data are called "sorts". There are lots of different
sort programs already written in BASIC - you may come across some in
magazines. The different programs use different programming techniques and are
useful for different tasks.

On the next few pages there are two different kinds of sort program. One is
called a "bubble sort"(you can find out why below)and the other is a Shellsort
(named after the person who wrote it). A bubble sort is one of the slowest kinds of
sort and is only useful for small amounts of data. A Shell sort is much, much quicker.
On page 35 there are some lines you can add to the programs to compare them and
see how fast your computer is.

To sort these numbers
without a computer you
would probably check
each numberagainstall
the others and keep
shuffling the order.

A computer uses a similar
method, but it is much
quickerandmore
methodical.

Bubble sort
In a bubble sort the computer starts at the beginning of the unsorted list and compares the
first two items. If they are in the wrong order it swaps them around and then compares the
next two items. It carries on like this all through the list so the larger numbers gradually
"bubble" to the end of the list.

The following program is a bubble sort for numbers. Over the page there is another
version of the program for sorting words.

1OO REM BUBBLE SORT FOR NUMBERS
11O INPUT "HOW MANY NUMBERS TO BE
SORTED? ";T
12O DIM N(T)] ———————————————————

130 FOR 1=1 TO T
PRINT "NUMBER "

.
(140
I 150
\

Sets up an array called N with T
compartments. T is the total
number of numbers you wish tc
sort.
Asks you for the numbers to be
sorted and stores them in the
array.

In this example there
are five numbers.

Sets up another variable called
MAX to keep a record of the
total because the value of T will
change during the program.

X is a counter.

FOR C=l TO T-o
LET S1=N<C): LET S2=N(C-H>

z.
~7\

NiL-t-u r

^

\

52

*t

^

4
IF SK=S2 THEN GOTO 250

LET TEMP=N(C)

Each time theloop
repeats, the number
will be moved one
place to the right
until it is in its
correct position.

220 LET N(C)=N(C+1)

23O LET N<C+1>=TEMP

The second time
through the loop C=2
soN(C)=N(2)and
N(C+1)=N(3).

24O LET X=X + 1

25O NEXT C

260 IF X>0 THEN LET T=T-1: GOTO 175
27O PRINT "THE SORTED NUMBERS ARE"
28O FOR 1 = 1 TO MAX _
290 PRINT N(l) /^RepeatthelF...JHEI\r

Loop to run T-1 tir^s. This is
the number of times needed to
compare each pair in the list.
The variables S1 and S2 are for
holding each pair of numbers
while they are compared. The
first time through the loop C= 1
so Nl and N2 are put in SI and
S2.
Compares the two numbers. If
S1 is smaller than 82 the
numbers are in the correct
order and line 250 sends
computer back to the
beginning of the loop to select
next pair of numbers. If SI is
bigger than S2, the computer
carries on with the next few
lines which swap the positions
of these numbers in the array.

Number in N(C) is put in a
variable called TEMP.

Number in N(C+1) is moved to
position N(C) in the array.

Number in TEMP is put in
position N(C+1).

\ 3OO NEXT I if you put the GOTO in
. line 260 on a new line.

Adds one to X to show a swap
has taken place.
Sends computer back to
compare next pair of numbers.
After repeating the loop T-1
times the computer has
compared all the numbers
once and it carries on with line
260.
If X is more than 0 a swap has
taken place so computer
subtracts 1 from T as one :
number is now in its correct
position. Then it goes back to
the beginning of the loop. If
X=0 the numbers are in the
right order and computer goes
on to line 270.
MAX is the total number of
numbers sorted.

31

Word bubble sort

The next program is a bubble sort for words. It is the same as the number bubble
sort, except that the variables for holding the data (N, SI, S2, and TEMP) are string
variables. *

The computer uses the same method to compare letters as it does numbers.
Inside the computer letters and symbols are represented by numbers, so when
you give the computer characters to compare, it compares their number codes. To
compare two words, it checks the first letter of each word and if they are the same it
compares the second and then the third and so on. You can put numbers as well as
letters into string variables, so you can use the word bubble sort for data which
contain words and numbers such as addresses or the entries for an index.

HOW MANY ITEMS TO BE SORTED? 4
ITEM 1
7DISK DRIVES 34 76 82 93
ITEM 2
7MACHINE CODE 55 72 85
ITEM 3
7SOUND 32
ITEM 4
7GRAPHICS 8 23 45
THE SORTED LIST IS
DISK DRIVES 34 76 82 93
GRAPHICS 8 23 45
MACHINE CODE 55 72 85
SOUND 32

HOW MANY ITEMS TO BE SORTED? 4
ITEM 1
?KELLER MARY 12 PANSY PLACE
ITEM 2
?SMITH JOHN 12 QUEEN STREET
ITEM 3
?JONES PETER 3356 WESTSIDE
ITEM 4
7FLAK JANE 34 RINB ROAD
THE SORTED LIST IS
FLAK JANE 34 RING ROAD
JONES PETER 3356 WESTSIDE
KELLER MARY 12 PANSY PLACE
SMITH JOHN 12 QUEEN STREET

In this example the computer is sorting
items for an index, and on the right,
addresses. The items were typed in without
commas as for most computers a comma is

The program

a separator, or "delimiter" between
different items of information. If you want to
use commas in strings, put the string in
quotes.

100
110
120

j

I 140
I 150
* 16O
170
175
180

190
200
210
220
23O
240
'25O
26O
270

32

(290
' 300

REM BUBBLE SORT FOR WORDS
INPUT "HOW MANY ITEMS TO BE SORTED? ";T
DIM N*(T)]————————————————————————————

FOR 1=1 TO T

Sets up array called N$ with T
 compartments.

"51PRINT "ITEM
INPUT N*(I)
NEXT I
LET MAX=T
LET X=O
FOR C=l TO T-l

LET S1*=N*(C): LET S2*=N*(O1)]•
IF S1*<=S2* THEN GOTO 25O ~
LET TEMP*=N*<C)
LET N*(C)=N*(C+1)
LET N*(C+1)=TEMP*
LET X=X+1
NEXT C
IF X>O THEN LET T=T-1: GOTO 175 J

Try entering items
starting with a symbol,
a number, a capital
letter and a small letter
and see what order
you r computer sorts
them into.

BOI

PRINT "THE SORTED LIST
FOR 1=1 TO MAX
PRINT N*(I)
NEXT I

IS"

Repeat the IF... THEN
if you put the GOTO in
line 260 on a new line.

> First two items are put in S1$
andS2$.

 Compares S1$ and S2$.

Swaps the positions of the first
two items in N$.

If X>0, subtracts 1 from total
and goes back to beginning of
loop to check through list
again.

*For Sinclair (Timex) computers change line 120 to read DIM N$(T,N) where N is the length of the
longest string you want to input.

Shell sort
If you want to sort lots of items the bubble sort is very slow. It can take almost a minute to
sort fifty items on some computers. The next program is a Shell sort for numbers and it is
about three times faster than a bubble sort.

In a Shell sort, the computer divides the list of items to be sorted in half, and checks all the
items in one half against those in the other half. Then it divides the list in half again and does
a lot more comparing and moving the larger numbers up the list using the same swapping
technique as in the bubble sort.

This is quite a
complicated
program. Overthie
page there are
some lines you ican
inserttohelpycou
understand howvit
works.

U-—1

The program
1OO REM SHELL SORT FOR NUMBERS
HO INPUT "HOW MANY NUMBERS TO"
BE SORTED? ";T

12O DIM N(T)

FOR 1=1 TO T

PRINT "NUMBER ";I

INPUT N(I)

16O NEXT I
17O LET C=T "I—————————————————

13O

/140

I 15O

These lines are just like the bubble
sort. T is the total number of numbers
to be sorted and lines 120 to 160 ask
you for the numbers and store them in
array N.

r
180 LET C=INT<C/2>]]-

19O IF C=O THEN GOTO 330

Sets variable C to equal the total
number of items.
Divides C in half to give the number of
items in the first half of the list. INT
makes the computer discard any
figures after the decimal point to
make C a whole number.
The program repeatedly divides C in
half, and when C=0 the computer
goes to line 330 to print out the sorted
list.
D is the number of items in the second
part of the list.

210 LET E=l

220
230

LET F=E
LET G=F+C

E is a counter.

The variables F and G are for setting
the subscripts for N, the array where
all the numbers are stored. 33

LISTING CONTINUED OVER THE PAGE

240 IF N(FX=N<G) THEN GOTO 30O

& -7 a e> \oX^

If the number in N(F) is smaller
than the number in N(G) the
computer goes to line 300, adds
one to E and then goes back to
reset F and G for the subscripts
for the next pair of numbers.

In this example there are ten
numbers to sort. The first
time through the program
C=5sothecomputerchecks
the numbers in subscripts 1
to 5 against those in 6to 10.

250 LET TEMP=N<F>

260 LET N<F)=N(G)

270 LET N(B)=TEMP
If N(F) is bigger than N(G) the
computer swaps them round.

}

'360

LET F-F-C

IF F>0 THEN GOTO 230

LET E=E+1

IF E>D THEN GOTO ISO

GOTO 220]

PRINT "SORTED LIST IS"

FOR 1=1 TO T

PRINT N(I)

NEXT I

Checks the value of F then
^^ adds one to the counter E to
—— change the values of F and G at

lines 220 and 230.
___ Makes sure E is within the D

part of the list. If it is not, goes
-. back to line 180 to divide the list

again.
L— If E is less than D, computer

goes to line 220 to set the
_ subscripts for the next pair of

numbers.
I—— Prints out the sorted list.

Can you insert extra lines
so that after the computer
has sorted a listittellsyou
how many comparisons
and swaps were made?
(Answer page 48.) Then
you couldtry the program
on different lists and see
howthey vary.

To convert this program to sort strings,
change the variable N to N$(in lines 120,
150,240-270, and 350), changeTEMPto
TEMP$ (lines 250 and 270) and rewrite
the PRINT statements. If you have a
Sinclaircomputerchangeline 120to
DIM N$(T,N) where N is the length of the
longest string you wish to input.

34

How does it work?
To get a better idea of how the Shell sort works you could insert these extra lines. They
print out the values of the variables so you can see which numbers the computer is
comparing.

233 PRINT
235 PRINT
237 PRINT
245 PRINT
274 PRINT

•F=";F;",G=";G
-COMPARE N(";F;") AND N<";G;">"
-SWAP N<";F;"> AND N<";G;">" }—
"LIST=";

275 FOR J=l TO
276 PRINT N(J) ;
277 NEXT J
278 PRINT
279 INPUT"PRESS RETURN TO CONTINUE";Z*

]T T
;" "; h

. F and G are the subscripts of
the numbers to be compared.

. Tells you the subscripts of the
numbers to be swapped.

, Prints out the current
arrangement of the list.

Comparing sorts
If you tested the bubble and Shell sorts with just a few numbers, you may not have noticed
how much faster the Shell sort is. To test the two sorts you could make them both generate a
list of random numbers, and then time how long each program takes to sort them into
order. The longer the list of numbers, the more the difference in time between the two sorts
increases. Over the page there are some programs to plot graphs to show the difference
between the two sorts.

Generating the numbers
14O LET N<I)=INT(RND(1)*2OO+1)
ISO PRINT N(I)
165 INPUT "SET YOUR WATCH AND
PRESS RETURN TO START THE
SORT";Z*

To make the programs generate their own
list of numbers to sort you need to replace
lines 140 and 150 in both programs and
insert a new line 165 so you can control
when the sort begins.

You could changethis
figure toanynumber
you want.

Line 140 generates random numbers
between 1 and 200 and stores them in array
N. Line 150 prints the numbers on the
screen and line 165 makes the program wait
until you press RETURN.

Running the test
To test each program you should run it several times, the first time to see how long it takes
to sort, say, 10 numbers, then 20,30,40, etc. Different makes of computer will sort the lists at
different speeds and some, like the ZX81 have a fast and slow mode. The following are the
speeds on an Apple II.

Sorts test

No. of
numbers
sorted

Bubble sort

Shell sort

10

2 sec

1 sec

20

5 sec

2 sec

30

11 sec

4 sec

40

18 sec

6 sec

50

29 sec

8 sec
35

Drawing graphs
Results from a computer are much easier to read and understand if you present
them in an interesting way, using graphics as well as words. Below there is a
program for a bar chart to show the difference between the bubble and Shell sorts.
On the opposite page you can find out how to convert the bar chart program to
make a line graph.

The programs are quite straightforward, and you could easily adapt them to
display different information. You could also improve them by adding the colour
commands for your computer to draw the graphs in different colours.

These are the screen displays for the two
graph programs. Both the graphs compare
the time taken by the two sorts to sort 10,20,
30, 40 and 50 numbers. The time is shown up
the Y axis and the number of numbers

Bar chart program

sorted is along the X axis. If your computer
can print text at pixel positions you can add
labels to make the graphs clearer. You can
find out how to do this for the BBC micro on
the opposite page.

1OO DIM B(5): DIM S(5) J—————————————

HO LET N=O
12O FOR 1=10 TO 5O STEP 1O
130 LET N=N+1
140 PRINT FOR "5 I;" NUMBERS"
150 INPUT "HOW MANY SECONDS DID THE
BUBBLE SORT TAKE? ";B<N>
160 INPUT "AND THE SHELL SORT? ";S(N)
170 NEXT I
18O INPUT "HOW MANY PLOT POSITIONS UP"
YOUR SCREEN? ";H
190 INPUT "AND HOW MANY ACROSS? ";W
20O REM GIVE GRAPHICS MODE COMMAND
IF NECESSARY

The figures for PLOT and DRAW
are measured from the edge of
the screen. Ifyourcomputer
needs co-ordinates which are
measured from the last point
plotted, see page 47 for howto
convertthe program.

 Sets up arrays B and S to hold
data for bubble and Shell sorts.

 Loop to input data into the
arrays. N is a counter to set the
subscripts for the arrays.

Note howthe loop
variable I is also used to
count the numbers.

210 REM DRAW AXES

220 PLOT l,Hi DRAW 1,1: DRAW W,

230 REM DRAW GRAPH

24O LET X=(W*O.75)/5 ~|______

36 250 LET Y=(H*0.75)/B(5)

Draws the axes 1 pixel in from
. the edge of the screen. H and

W are the height and width of
your screen.

The figures for X and Y set the scale
for the graph along the X and Y axes.
X is three quarters of the width
divided by 5, the number of tests for
each sort. Y is three-quarters of the
height divided by the longest time,

LISTING CONTINUED OPPOSITE

260 FOR 1=1 TO 5

270 PLOT INT(I*X)

Can you change the bar
chart program to make it
draw thicker bars?
(Answer page 48.)

280 DRAW INT(I*X),INT(B<I)»Y)T-

290 PLOT INT(I*X-4),1

300 DRAW INT(I*X-4),INT(S(I)*Y)

I31O NEXT I

Forthe BBC micro
changethefigure
-4to-10.

Sets up loop to draw the bars.
The loop variable I counts the tests
and each time the loop repeats the
computer draws a bar for each sort.

Plots a point I * X along, and 1 pixel
up. The first time through the loop I is
1 and X is the figure for the scale
along the X axis.
Draws a line to B(I) * Y. The first time
through the loop I is 1 so B(I) is the
time taken for 10 numbers and Y is the
figure for the scale along the Y axis.

Plots a point I *X—4 points along, i.e.
4 points to the left of the bar for the
bubble sort.

— DrawsalinetoS(I)*Y.

Goes back to the beginning of the
loop to plot the next pair of bars.

Ifyourcomputercan print text at pixel
positions you can add lines to label the
graphs. For instance, to do this on the BBC
micro you would need the linesgiven
below.

3O5 VDU 5:MOVE <I*X),INT(B(I)*Y)+5OsPRINT "B"
3OB VDU 5:MOVE (I*X)-7O,INT(S(I)*Y)+5O:PRINT "S"

Line graph program
For a line graph you need to plot the first point of the graph, then draw a line to each point
along the graph. To do this you need separate loops for each sort. To convert the bar
chart program to make a line graph replace lines 270 onwards with the following lines:

27O PLOT INT(X), INT<BU)*Y>

f 28O FOR N=2 TO 5

29O DRAW INT(N*X),INT<B(N)*Y)

3OO NEXT N

310 PLOT INT<X),INT(S(1)*Y)

' 32O FOR N=2 TO 5

33O DRAW INT(N*X),INT<S(N)*Y)

34O NEXT N '

. Plots the first point of the bubble sort
X pixels along and B(1) * Y pixels up.

Loop to draw graph for bubble sort.
Each time the loop repeats, N
increases by 1 and the computer
draws a line to the next point along
the graph.

• Plots the first point for the Shell sort, X
pixels along and S(1) * Y pixels up.

Loop to draw graph for Shell sort.

37

More string handling
The program on the next few pages makes the computer appear to have a
conversation with you. Of course, the computer is only as clever as the program
you give it and all the words and phrases for its replies are held in string arrays in
the program. *

The program's main task is to make the computer choose the right words to
reply to you. It contains some BASIC string handling routines which make its

' replies seem almost "intelligent" at times. The success of such a program lies not
only in the structure of the program but also in the words and phrases you build in
to it. You could try changing the computer's vocabulary to make it "talk" about
different subjects, or make its replies more friendly... or grumpy.

Sample runs

HELLO, WHAT'S YOUR NAME? JUDY
TALK TO ME, JUDY
7HELLO COMPUTER
WHAT DO YOU THINK ABOUT THE NEWS?
?WHAT NEWS?
THAT'S A GOOD QUESTION
?AREN'T YOU GOING TO TELL ME?
LISTEN JUDY, I THINK YOU ARE JUST
AS FRIENDLY AS THE OTHER PEOPLE I
HAVE TALKED TO
?THANKS
DON'T MENTION IT

?WHAT DO YOU WANT TO TALK ABOUT?
TELL ME ABOUT THE WEATHER, JUDY
?IT'S RAINING
WHAT MAKES YOU SO SURE
?I CAN SEE IT
I'VE HEARD THAT YOU ARE SOME KIND
OF WITTY GENIUS JUDY
?WHO TOLD YOU?
IT DOESN'T MATTER
?WHY WON'T YOU ANSWER MY QUESTIONS?
MY DEAR FRIEND JUDY, YOU DON'T
THINK ALL HUMANS ARE RUDE DO YOU?

How it works
There are two different methods in the program for producing the computer's replies. One
is a "phrase checking" routine and the other is a random sentence generator.

DOESN'T MATTER

The phrase checking routine has a list of
frequently used words and phrases stored
in an array called 0$. For each word or

38 phrase there is a suitable reply stored in

M$. When you type something in the
computer checks to see if you have used
any of the 0$ phrases, and if you have, it
uses the corresponding reply from M$.

*To convert the program for Sinclair (Timex) computers see page 47.

Sentence generator
<j>~ <V"

The random sentence generator consists of in arrays in the computer's memory and
half-formed sentences which the computer they have been specially chosen to make
completes with verbs, nouns and adjectives sense in the sentences,
chosen at random. All the words are stored

What the variables are for
V$ N$

Verbs

A*

Nouns

HJ
Adjectives More nouns

s*
Words to start
sentences.

These are the arrays to hold the words for the random sentences.

Q$ ——————————— M*

Phrases Phrases for computer's
reply.

r
Keeps a record of which
replies the computer has
used.

D$
Your name

T$J
Your input

R$
Computer's reply

The program
10O CLS
11O DIM V*UO) ,N*(1O) , A*(1O)
12O DIM T*(10),S*(10)

130 DIM M*(3O),Q*(3O),C<3O)
14O REM READ IN DATA
15O GOSUB 1OOO]———————————————————————

200 REM PERSON'S INPUT
21O INPUT "HELLO, WHAT'S YOUR NAME? ";D*

22O PRINT
230 PRINT "TALK TO ME, ";D*
240 INPUT I*]—————————————————————————
25O IF 1*="" THEN GOTO 22O]————————————

260 IF I*="BYE" THEN GOTO 91O "1————————

Sets up the arrays to hold the
words and phrases. (N.B. On some
computers you do not need to
dimension arrays of less than ten
elements.)

• Goes to a subroutine to read all the
words and phrases into the arrays.

Your reply to computer is held in 1$.
Safeguard in case user just
presses RETURN and 1$ is empty.
If you type BYE the computer goes
to line 910 to ask if you want to stop
running the program. 39

LISTING CONTINUED OVER THE PAGE.

3OO REM COMPUTER'S RESPONSE

310 LET REPLY=INT(RND(1)*8-H)

32O IF REPLY<6 THEN GOTO 49O

33O GOTO 600 J——————————————

34O PRINT

350 PRINT R* "I______________

360 PRINT |

4OO

The random number in the variable REPLY
decides which method the computer will
use for its response. If REPLY is less than 6 it
uses the phrase checking routine which
starts at line 490.
If REPLY is 6 or above it goes to the sentence
generator at line 600.

.After working out its reply the computer stores
it in R$, then prints it on the screen at line 350.

REM CHECK HOW MANY RESPONSES HAVE BEEN USED

LISTING CONTINUED BELOW

Lines 400-470 check how many of the C. This stops it using the reply for that
replies in M$ have been used. Each time the phrase again. Lines 400-470 check how
computer finds one of the 0$ phrases in many markers there are in C and if there are
your input, it puts a figure 1 as a marker in a more than 12, reset all the markers to zero,
corresponding position in an array called

4O5
>410

I 42O
*430

44O

45O

46O

47O

4VO

5OO

LET T=O
FOR K=l TO 3O

LET T=T+C<K)

NEXT K

IF T<12 THEN GOTO 46O

FOR K=l TO 3O: LET C(K)=O: NEXT K

LET T=0

GOTO 240

REM PHRASE CHECKING ROUTINE

FOR PHRASE=1 TO 3O

51O LET L1=LEN<Q*<PHRASE))

520 LET L2=LEN(I»)

53O FOR TEST=1 TO L2

540 IF MID*(I*,TEST,LI)=Q*
(PHRASE)THEN GOTO 56O

\
550 NEXT TEST: NEXT

40 PHRASE: GOTO 6OO

Loop to count how many markers there are in the
C array. The total is stored in T.

If T is less than 12, fewer
than 12 replies have been used

______ and the computer does not
reset the markers.

—— Loop to reset each number to 0.
~ Variable T (the variable for

counting the markers) is reset to 0.
• Back to line 240 to wait for person's input.

Loop to run as many times as there are phrases in 0$.*

Each time the loop repeats the computer
measures the length of the next phrase in 0$ and
stores the length in LI.
The number of characters in your input (1$) is
stored in L2.
TEST is a nested loop to run as many times as
there are characters in your input. Each time the
loop repeats the computer checks the
characters in 1$ against those in the Q$ phrase. If
they match it goes to line 560.

If, after repeating all the loops, the
computer cannot find any of the 0$

. phrases in 1$, it goes to the sentence
generator at line 600.

*If you are using a BBC micro, see note on page 46.

560 IF C<PHRASE) >O THEN GOTO 55O

57O LET C<PHRASE)=C<PHRASE)+!

58O LET R*=M*(PHRASE)

59O BOTO 34O

LISTING CONTINUED BELOW

If it finds a matching phrase it jumps out
of the loop and comes to line 560. Then it
checks the marker in C array which
corresponds to the phrase. If the marker
is not 0 it goes back to the loops to see if
there is another matching phrase in 1$. If
the marker is 0 it changes it to 1 at line
570. Then at line 580 it looks up the
corresponding phrase in M$ and puts it
in R$ ready to be printed out at line 350.

WHAT PO YOU AA6AN

How the phrase checker works

The first time through the phrase checking
routine PHRASE= 1 so the computer
examines the first phrase in 0$. The first
time through the TEST loop, TEST= 1 so the
computer compares the Q$ phrase with
characters 1 to 7 (the length of 0$) of 1$. If

they are not equal it repeats the TEST loop.
This time TEST=2 so it compares
characters 2 to 8, and so on. If the characters
in I $ do not equal 0$ the computer goes
back to the beginning of the PHRASE loop
to select the next phrase from Q$.

6OO REM SENTENCE GENERATOR

61O LET E=INT<RND<1)*1O+1)

62O LET F=INT(RND<1)*1O+1)

63O LET G=INT(RND(1)*10+1)

64O LET H=INT(RND(1)*1O+1)

65O LET L=INT<RND(1)*1O-H)

66O ON E GOTO 7OO, 720,740,76O, I_______
78O,8OO,83O,85O,B7O,89O J

7OO LET R*="WHAT DO YOU THINK
ABOUT "+N*<H)-t-"?"

71O GOTO 34O

72O LET R*=S*<L>+" "+D*+" YOU DON'T
THINK ALL HUMANS ARE 11 +A*<G)+" DO YOU?"

73O GOTO 34O D$ holds your name.

740 LET R*="I'VE HEARD THAT YOU ARE
SOME KIND OF "+A*<6)+ 11 "+T*(H) +" "+D*

750 GOTO 340

76O LET R*=S*(L)+" "+D*-!-" , I THINK YOU
JUST AS "+A*<G)

Random numbers to choose which
words and sentence to use. The number
for E decides which sentence the
computer will use. F is for verbs, G is for

' adjectives, H is for nouns and L is for
sentence starters.

The number in E tells the computer
• which line number to go to. If E= 1 it goes
to the first number in the list. If E=2 it
goes to the second, etc. For more about
the BASIC word ON, see page 20.

Lines 700-900 contain ten partly
formed sentences which the
computer fills in with the words
from N$, V$, etc. To make the
computer add strings like this
you use a + sign. You have to
be careful to put spaces in
quotes, too, so that the
sentences are properly
spaced. The computer puts the
complete sentence in R$ and
then goes back to line 340 to
print it out.

ARE
41

LISTING CONTINUED OVER THE PAGE

765
770
780
79O
BOO
81O
S2O
83O
B4O
850
B60
B7O
880
89O
9OO
91O
920
930
94O
950
96O
10OO
1010
102O
1030
1O4O
105O
1O6O
107O
11OO
1110
112O
113O

"SSSHHHH..... I
"+V*(F)+"

AM THINKING .
I THINK

11 +D*

"+N*<H>+"

LET R*=R*+" AS THE OTHER PEOPLE I'VE TALKED TO"
GOTO 340
LET R*="I AM FEELING "+A*<G)+" NOW"
GOTO 34O
PRINT: PRINT
LET R*="LETS
GOTO 34O
LET R*="TELL ME ABOUT "-HM* < H >
GOTO 340
LET R*="DO YOU THINK I AM "+A*(G)+
GOTO 34O
LET R*="LETS "+V*<F)-«-
GOTO 34O
LET R*="GUESS WHAT I AM THINKING
GOTO 34O
REM BYE ROUTINE]——————————————
PRINT "HAD ENOUGH ALREADY?"
PRINT "ISN'T THERE ANYONE HERE I CAN TALK TO
INPUT Z*: IF Z*="YES" GOTO 21O
PRINT: PRINT "BYE THEN"
END

"+A*<6>

You could change any
of these sentences to
make the computer
say something else.

SOMETHING ELSE MORE "+A*(G)

•+D*

If your reply to computer
is BYE, line 260 sends
computer here.

42

REM PHRASES FOR PHRASE CHECKING ROUTINE
FOR 1=1 TO 30: READ Q*(I): NEXT I
DATA WHO ARE, WHAT, ?, MEAN, WHY, YOUR
DATA "ME ","I "," IT ",TALK, " NO "

DATA ?," ARE "," MY ","YES",YOU,?
DATA THINK, CLEVER, RUDE, THANK," OFF"
DATA THEY,?, UNDERS," NOT "," IS "
DATA TO, ?, KNOW
REM COMPUTER'S REPLIES TO PHRASES IN Q*
FOR 1=1 TO 30: READ M*(I): NEXT I
DATA I AM ONLY A COMPUTER
DATA IT DOESN'T MATTER, THAT'S A

GOOD QUESTION
114O DATA I DON'T KNOW, "WELL, WHY NOT?"
115O DATA HOW DO YOU MEAN, "WHO ARE YOU?"
116O DATA OH, WHAT DOES 'IT' MEAN
117O DATA DO YOU WANT ME TO SHUT UP,
YOU'RE BEING A BIT NEGATIVE
1180 DATA YOU TELL ME, HOW DO YOU MEAN
1190 DATA MY-MY-MY, SO YOU AGREE
12OO DATA DON'T YOU LIKE ME
121O DATA WHY, MAKE UP YOUR MIND, THANKS
122O DATA YOU'VE SEEN NOTHING YET
1230 DATA DON'T MENTION IT
124O DATA AND YOU, I DON'T CARE, WHAT A
STUPID QUESTION
1250 DATA YOU'VE GOT A LOW I.Q., RUBBISH
126O DATA WHAT MAKES YOU SO SURE, GO AWAY
1270 DATA GET LOST, KNOWLEDGE IS A PROBLEM FOR ME
13OO REM READ IN NOUNS
131O FOR 1=1 TO 10: READ N*(I): NEXT I
1320 DATA FOOTBALL, BALLROOM DANCING
1340 DATA THE WEATHER, THE NEWS
135O DATA MY CPU, FISHING
1360 DATA THE BLUE WHALE, EVOLUTION
1370 DATA GEOGRAPHY, FOOD

These lines contain the phrases
which the computer looks for

_ in your input. Be careful to type
them in exactly as they are here
as the spaces inside the quotes
are part of the data.

These are the computer's
replies for each of the
phrases in 0$. The replies

— are in the same order as the
phrases. For example, the
fifth item in M$ is the reply
for the fifth phrase in Q$.

These are the nouns to put in
" the random sentences.

14OO REM READ IN VERBS
141O FOR 1=1 TO 1O: READ V*<I): NEXT I
142O DATA THINK ABOUT, TALK ABOUT
143O DATA DISCUSS, CONTEMPLATE
144O DATA REFLECT ON, MEDITATE ON
145O DATA COBITATE, PONDER
146O DATA CEREBRATE, CONSIDER
15OO REM READ IN ADJECTIVES
151O FOR 1=1 TO 1O: READ A*(I): NEXT I
152O DATA STUPID, CLEVER
1530 DATA INTELLIGENT, WISE
1540 DATA WITTY, FRIENDLY
1550 DATA TEDIOUS, TIRESOME
156O DATA RUDE, NEUROTIC
16OO REM READ IN SENTENCE STARTERS AND
OTHER NOUNS, IN PAIRS
161O FOR 1=1 TO 1O: READ S*(I),T*(I): NEXT I
162O DATA BOOD HEAVENS, BORE ~|
163O DATA "WELL, ", TOAD
164O DATA LET'S SEE, WHIZZ KID
165O DATA LISTEN, BENIUS
1660 DATA LOOK, DUMBO
1670 DATA "UMMM...",MORON
16BO DATA NOW, PARASITE
169O DATA REALLY, PRODIBY
17OO DATA OH NO, MONSTER
1710 DATA MY DEAR FRIEND, COMPUTER-FREAK
1720 RETURN

_ These are the verbs for the
' random sentences.

^"~~~^———"
You can change any o^
these words, but make
sure the new words make
sense in the sentences.

These are the adjectives.

When you type in your
replies to the computer do
not use any commas. If you
do, the computer will think
the comma indicates the end
of your reply and itwill
ignore the words afterthe
comma.

Each pair of data items consists
of a word to start a sentence

' and a noun. They are read in
pairs to save space.

Ideas for changing the program
1. The easiest way to alter the program is to change the words and sentences. It is best to
check each word in each sentence to make sure it makes sense. At the moment, all the
nouns in N$ are singular. If you use plural nouns, you will need to change the verbs. You
could add extra words if you like. If you do, you will need to change the size of the arrays,
the loops to read in the data and the random numbers in lines 610-650.
2. You could also try changing the words in 0$ to make the computer spot different
phrases. You will need to think up suitable replies for each new phrase and put the replies
in the correct positions in M$.
3. To make the computer use the random sentence generator more often, change the
figure 6 in line 320 to a lower number. You can also change the frequency with which the
computer resets the response markers in array C. To do this, change the figure 12 inline
440.

Daydream mode
You can make the computer "talk" to itself
by adding the following lines to the program:
16O PRINT "CONVERSATION OR DAYDREAM
MODE? (PLEASE TYPE C OR D)"
17O INPUT K*
ISO IF K*="D" THEN LET D*=
"ROM": BOTO 6OO
470 IF K*="C" THEN BOTO 24O
475 IF K*= M D" THEN LET I*=R*
4BO LET R*="":BOTO 31O

LISTeN.R.OAA,
YOU DON'TTHINX)
ALL HU/WANS AR£ J

'STUPID DO YOU? f

D$ was the variable to hold your name. In
daydream mode the computer uses the
word ROM as a name for itself, then goes to
line 600 to generate a random sentence.
The computer's response, R$, becomes the
new input, 1$. Then the computer goes back
to line 310 to choose its method of reply.

43

Answering back routine
On these two pages there is another routine you could add to the conversation program. It
makes the computer answer you back using your own words. The conversions for Sinclair
computers are given at the bottom of the opposite page.

THINK you
ARE STUPID

The answering back routine works in a similar way to the phrase checking routine. There
are two data arrays, U$ and W$. U$ contains phrases you might use in your input and W$
contains the computer's replies. If you use one of the U$ phrases, the answering back
routine replaces it with the corresponding W$ phrase then adds the rest of your sentence.

135 DIM U*(9),W*(9)
13B DIM Z*(5)

155 6OSUB 22OO]———

Sets up the arrays for U$ and W$ and
. another array called Z$ to hold the
computer's replies.

• Goes to the subroutine to read in the data.

325 IF REPLY=7 THEN GOTO 20OO • Tells the computer when to use the answering
back routine.

200O REM ANSWERING BACK ROUTINE

2010 LET Z=0 1 ——————————————— • Z is a counter.

2O2O LET P=LEN(I») T- • i.e. the number of characters in your input.

2O3O FOR A=l TO P

2O4O FOR B=l TO 9

________ Loop to run as many times as there are
characters in your input. *

————————— Loop to run as many times as there are
characters in the longest item in W$.

_________ Each time B loop repeats, length of the next item
in U$ is put in L.
Compares characters A to L of your input with

206O IF MID*(I*,A,L)=U*(B) THEN |_the phrase with the subscript of the value of Bin
GOTO 214O J U$ (B is set by loop). If phrases match, computer

goes to line 2140.

2O5O LET L=LEN(U*(B)>

\
207O NEXT B: NEXT A

44
2O8O IF Z*<1)="" THEN GOTO 6OO

Each time B loop repeats computer checks next
phrase in U$. When the A loop repeats it takes
the next sequence of characters in 1$.
Back to random sentence generator if no
phrases match.

*If you are using a BBC micro, see note on page 46.

,2O9O
21OO

211O

212O

213O

214O

215O

FOR J=l TO Z
PRINT Z*(J);

LET Z*(J)=""

NEXT J

LET R*=I»: 6OTO 35O
LET Z=Z+1 1————————

IF A>1 THEN LET Z*(Z)=LEFT*
i-l)+"

216O IF A<2 THEN LET Z*(Z)=W*(B)+"

• Prints out all the replies in Z$.

Puts any remaining part of your sentence in
1 R$ then goes back to line 350 to print it out.
• Z keeps count of replies in Z$.
Variable A is set by loop at line 2030 and it is

I

the number of the first character of the
phrase in I $ which matches the U$ phrase. If
A> 1 line 2150 puts the characters to the left
of the phrase in Z$, then adds the reply from
W$.

, ~l_ If A<2 then the matching phrase is at the ;
_T beginning of 1$ so computer puts just its ;

reply in Z$.
2170 LET I*=MID*<I*,A+L,P> T-

218O
22OO

^2210
f 2220
\223O
224O
225O
226O
227O
228O
2290

GOTO 2O2O
REM DATA FOR ANSWERING BACK ROUTINE
FOR 1=1 TO 9

READ U*(I),W*(I)
NEXT I
DATA I AM, YOU ARE,

DATA "I ", YOU, " ME",
DATA " MY ", "YOUR ",

Puts the rest of your sentence into Z$ then
goes back to the loops to see if there is
another matching phrase.

YOU ARE, I AM

DATA " YOUR ", " MY
DATA YOU, COMPUTERS
RETURN

YOU
"YOURS ",
" MINE",

MINE
YOURS

— This is the data for U$ and W$.

Answering back routine for Sinclair computers
Insert the following lines for both the Spectrum and the ZX81. For the ZX81, though.you will
have to use the method given on page 47 for the Conversation program to input the data.
Put the ZXSl's input loop between lines 1000 and 1720 and the DIM statements before line
1000.
135 DIM U*(9,7)
136 DIM W*(9,9)
137 DIM Z*(5,20)
2042 LET P*=""
2O44 FOR 1=1 TO LEN<U*(B»
2O46 IF U*<B) (I TO DO 11 *"

2O48 NEXT I

Puts a U$ phrase in P$ using the
* s to find the end of the phrase.

THEN LET P*=P*-MJ* (B) < I TO I)

2050

2055

2060

2O8O
2150
216O
2170
224O
225O
2260
2270
2280
229O

LET L=LEN(P*>

IF L+A-1>P THEN GOTO 2O7O 1 ————————

IF I* (ft TO A+L-1>=P* THEN GOTO 214O

IF Z=O THEN GOTO 6OO Jj —————————————

IF A>1 THEN LET Z*(Z)^I*(TO
IF A<2 THEN LET Z* <Z> =W* (B)
LET I*=I*(ft+L TO)

A-l)+"

DATA
DATA
DATA
DATA
DATA
RETURN

•I AM***"

'I *****"
• MY ***"
1 YOUR *"

'YOU ***"

"YOU ARE","YOU ARE","I AM"
1 YOU"," ME****",•YOU"
•YOUR","YOURS *","MINE"
"MY"," MINE**", "YOURS"

•COMPUTERS"

If P$ is longer than 1$ phrase,
goes back to select next phrase.
If 1$ phrase=P$ phrase goes to 2140.
—— If no phrases match, goes to

. .."1 random sentence generator.
J~ If A> 1 puts characters at

beginning of 1$ into Z$ and
adds W$ phrase. If A<2 just
puts W$ phrase in Z$.

— The spaces are an important
part of the data, so you have to
pad out the strings with * s.

45

Converting the programs
These two pages show you how to convert the programs to run on the ZX81 and
Spectrum and how to convert the graphics programs to run on computers which
draw lines relative to the last point plotted. As well as inserting the lines given
here, you also have to make the other changes necessary for your computer, e.g.
use your computer's graphics commands and RND instruction and change
variable names if necessary.

Sinclair (Timex) computers
Word Spotting Game

Change CHECKS to C$ and replace lines 170
and 200 with the following:
17O LET L*=W*(R TO R)
2OO LET C*=C*<2 TO)+L*

Spectrum (Timex 2000) Database
10 DIM T*(1O,14):DIM Y(12>:
15 DIM M(1O,12)
120 "I
417 ——SameasZXSl
425 J

Remember to put quotes round each item in
the DATA lines.

ZX81 (Timex 1000) Database
10 DIM T*(10, 14) "I
12 DIM Y<12) ————————————————————————
14 DIM M*(1O,12) J
120 GOSUB 1OO+1OO*C]-————————————————————
417 LET L=LEN(Z*) 1
425 IF Z*=T*(I)(1 TO L) THEN GOTO 44O J
455 IF VAL(M*(I,J))=1 THEN PRINT "WON
THE WORLD CUP IN ";Y(J)
460 IF VAL(M*(I,J))=2 THEN PRINT "WAS A
FINALIST IN ";Y(J)
555 IF VAL(M*<J,I)=l THEN PRINT T*<J);" WON
THE CUP"
2170 IF C>0 AND C<6 THEN GOTO 218O
2175 PRINT "PLEASE ENTER A FIGURE
BETWEEN 1 AND 5"
2176 GOTO 215O

Second subscript is the length of
the longest string.

• Uses C to calculate line number.

. Tells the computer which
characters to check.

The matrix data is stored in a string
array, so you need VAL to tell
computer to take numeric value.

46

Instead of inputting all the years you can make
the computer calculate them with the following
lines:
10OO FOR 1=1 TO 3
1010 LET Y(I)=1926+I*4
1020 NEXT I
1030 FOR I=O TO B
1040 LET Y(1+4)=1950+4*1
1050 NEXT I

Replace lines 1100 to 1120 with ten LET
statements, e.g.
11OO LET T«(1)="URUGUAY"
1110 LET T*(2)="ARGENTINA"

Replace lines 1200-1310 with ten more LET
statements, e.g.
12OO LET M*(1)="1OO1OOOOOOOO"
121O LET M*(2)="2OOOOOOOOO10"

Add a new line:
131O RETURN

BBC Database and Conversation
program
Both these programs use loops to check
through data, then jump out of the loops when
the data item has been found. The BBC micro
will only let you do this ten times after which
you will get the error message "TOO MANY
FORS". To avoid this, change the loops to
variable counters with IF ... THEN
statements. For example, use the following
lines in the Database:

420 LET I=O
422 LET 1=1+1
43O IF K1O GOTO 422
520 LET 1=0
522 LET 1=1+1
53O IF K12 GOTO 522

You will need to do the same for lines 500-550
of the Conversation program and lines 2030-
2070 of the answering back routine.

Instant Graphics and drawing graphs
For computers (e.g. Spectrum and Oric) which draw lines to a point X,Y measured from the
previous point plotted and not from the corner of the screen replace the following lines in the
Instant Graphics and graphs programs. (You will need to replace DRAW and PLOT with your
computer's graphics commands.)

Instant Graphics
175 DRAW CX(1)-CX(4),CY(1)-CY(4)
1BO FOR 1=2 TO 4
185 DRAW CX(I)-CXd-l) ,CY<I>-CY<1-1>
53O DRAW LX<ROW+2,I)-LX(ROW,I),
LY (ROW-i-2, I) -LY (ROW, I)

To find the co-ordinates for the end of the
lines the computer subtracts the co-ordinates
of the last point plotted.

Bar Chart
22O PLOT 1,H:DRAW O,-H+l:DRAW W,O
3OO DRAW O, INT(B(I)*Y)
32O DRAW O, INT(S(I)*Y)

Line Graph
29O DRAW X, INT«B<N>-B<N-1»*Y>
33O DRAW X, INT((S(N)-S(N-l))*Y)

Spectrum (Timex 2000) Conversation program'
Make the following changes for the Soectrum:

11O DIM V*(1O, 11):DIM N*(1O, 16) :DIM A*UO,11>
12O DIM T*(1O,14):DIM S«(1O,14)
13O DIM M*(3O,29):DIM Q*(3O,7) DIM C<3O)
245 PRINT I*
5OO FOR Q=l TO 3O]—————————————————————————

510 LET P*=""
512 FOR 1 = 1 TO LEN <Q*<QM
514 IF B*(D)(I TO DO" " THEh
LET P*=P*+Q*(Q)(I TO I)
516 NEXT I
53O FOR T=l TO L2-LEN(P*)+1
54O IF I*(T TO T-M_EN(P*)-1)=P* THEN
BOTO 56O
55O NEXT T:NEXT Q: BOTO 6OO
56O~|
57O [-Change variable PHRASE to Q.
580 J
66O BOTO < <E<7)*<68O+E*2O) > + «E>6)
<81O+(E-6)*2O))

• Use Q instead of PHRASE.

Puts Q$ phrase in P$.

Checks to see if I$=P$.

This means ifE<7GOTOline
number 680+E * 20 and if E>6

- GOTO line number
(810+(E-6)*20).

ZX81 (Timex 1000) Conversation program
For the ZX81 you need a method of inputting
all the data. You can do this with INPUT
statements and loops. To run the program on
the ZX81, make the following changes:
1. Make the same changes given for the
Spectrum above, but put the DIM statements
in lines 970-990.
2. Replace the READ/DATA lines with INPUT
statements, e.g.

1OOO REM PHRASES FOR PHRASE
CHECKINB ROUTINE
1O1O FOR 1=1 TO 3O
1O2O INPUT Q*(I)
1O3O NEXT I

3. Change line 1720 to read:
172O STOP

4. Type the program in, then type RUN 970
and type in all the data as the computer asks
you for it.

5. Then, to try the program, type GOTO 100.
Do not press RUN, as if you do all the data will
be lost.

6. Now you can save the program on cassette.
When you load it, always type GOTO 100 to
run the program.

47

Books about programming
The Usborne Guide to Better BASIC is a sequel to Practise your BASIC by G. Waters and N. Cutler
the Usborne Introduction to Computer
Programming - a guide to the main BASIC
commands for absolute beginners. Other books
which you might find useful are:
Illustrating BASIC by Donald Alcock
(Cambridge University Press, 1977)

Answers
Robot runner puzzle (page 24)
10 INPUT "WHAT IS THE TEMPERATURE? "5 TEMP
2O INPUT "HOW MANY SECONDS? ";S
3O IF TEMPO6O THEN LET D=S* <5OO+1O* (TEMP-6O))
ELSE LET D=5OO*S
4O IF D<1 THEN PRINT "TOO COLD FOR ZAK"
5O PRINT "AT ";TEMP;" DEBREES, ZAK CAN
RUN "5D;" METRES IN";S5" SECONDS"

(Usborne, 1983)
Practical Things to do with a Microcomputer by
J. Tatchell and N. Cutler (Usborne, 1983)
Brainteasers for BASIC computers by Gordon
Lee (Shiva, 1983)

The computer works out the
10*(TEMP-60) calculation first and this
gives the difference in distance for TEMP
degrees. (If TEMP is below 60, the answer
to this calculation is negative.) Adding the
answer to 500 gives the distance Zak can
run in one second and multiplying by S
gives distance in S seconds.

Shell sort swaps (page 34)
90 LET X=O
95 LET SWAP=0
231 LET X = X+1
271 LET SWAP=SWAP-H
365 PRINT "THERE WERE "5X5"
AND ";SWAP!" EXCHANGES"

Index
adding, 5,41
AND, 24
Answering Back routine, 44
Apple II computer, 35
arrays, 9,19,25,26
Bar chart, 36
BBC micro, 22,36,37,40,44,46
brackets, 5
BREAK,?
Bubble sorts, 30-31,32,35
bugs, 4,6,7,13,23
calculations, 5
characters, 4,32
CLS,4
colon, 11
comma, 5,7,11,23,32,43
CONTINUE, 13
Conversation program, 38-45
co-ordinates, 8,26,36
cursor, 4
DAT A, 7,11
Database program, 18-25
Daydream mode, 43
debugging, 6,13
delay loops, 15,16
delimiter, 32
DIM, 9,11,25
dimensioning arrays, 9,39
direct command, 4
dividing, 5
DRAW, 8,26,27,36
drawing

axes, 36
graphs, 36-37
grid lines, 26

ELSE, 23,24

Wider bars (page 37) You may need to
change the figures
to suit your computer.

COMPARISONS

285 FOR J=l TO 8 STEP 2
2VO PLOT INT(I*X+J),1
3OO DRAW INT(I*X-i-J) , INT(B(I)*Y)
31O PLOT INT(I*X-4-J),1
320 DRAW INT<I*X-4-J),INT(S(I)*Y)
325 NEXT J

END, 23
ENTER, 4
ESCAPE, 7
FOR/NEXT, 8
GOSUB,7,20
GOTO, 7
graphics commands, 8,11,26
graphs, 36-37
IF/THEN,?, 10,11,24
initializing variables, 10
INPUT, 6,10
INT.8
LEFTS, 9,11
LEN.9,14
LET, 6,10
Line graph program, 36-37
line numbers, 4,6,12
LIST, 4
loops, 8,11,12,24,27
matrix, 15,21
menu, 18,20,24
MID$, 9,14
module, 12
multiple statement lines, 11,15,16
multiplying, 5
nested loops, 9,16,17,23
NEWLINE.4
number variables, 6,10,22
ON, 20,21,41
OR, 24
Oric computer, 15,17,26,47
pixel, 8,36
PLOT, 26,27,36
PRINT, 5
quotation marks, 5,11
random numbers, 8,35

READ, 7,9
REM, 7,12
RETURN, 4,7
RIGHTS, 9,14
Robot runner puzzle, 24
routine, 12,13,38

checking for word, 14
choosing random letters, 14
making computer wait, 15,21
phrase checking, 38
random sentence generator, 39

RND.8
RUN, 4
semi-colons, 5,6
Shell sort programs, 30,33-34,35
Sinclair computers, 9,10,11,45-47
Spectrum computer, 26,45,46,47
square roots, 5
standard BASIC, 10,13
STEP, 8
STOP, 13
string

handling, 14,38
variables, 10,22,32

subroutines, 7,12,20
subscript, 9,19
subtracting, 5
syntax, 4
two-dimensional arrays, 9,23
user-friendly, 18,24
VAL.22
variable names, 6,10
variables, 5,6,8,9,12,15
VIC-20 computer, 6,10
ZX81 computer, 35,45,46-47

48

First published in 1983 by Usborne Publishing Ltd, 20
Garrick Street, London WC2E 9BJ.
© 1983 Usborne Publishing
The name Usborne and the device ^?
are Trade Marks of Usborne Publishing Ltd. All
rights reserved. No part of this publication may be

reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the
prior permission of the publisher.
Printed in Spain by Printer Industria Grafica, S.A.
Deposito Legal B-2152771983

Usborne Computer Books
Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of all ages.

Usborne Guide to Computers A colourful introduction to the world of
computers. "Without question the best general introduction to computing I have
ever seen. "Personal Computer World

Understanding the Micro A beginner's guide to microcomputers, how to use
them and howthey work. "This introduction to the subject seems to get
everything right. "Guardian

Computer Programming A simple introduction to BASIC for absolute
beginners. "... lucid and entertaining.. ."Guardian

Computer and Video Games All about electronic games and how they work,
with expert's tips on how to win. "The ideal book to convert the arcade games
freak to real computing. "Computing Today

Computer Spacegames, Computer Battlegames Listingsto run ontheZXSI,
Spectrum, BBC, TRS-80, Apple, VIC 20 and PET. "Highly recommended to
anyone of any age. "Computing Today

Practical Things to do with a Microcomputer Lots of programs to run and a
robot to build which will work with most micros.

Computer Jargon An illustratedguidetoallthejargon.

Computer Graphics Superbly illustrated introduction to computer graphics
with programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to writing adventure
games programs, with lots of expert'stips.

Machine Code for Beginners A really simple introduction to machine code for
the Z80 and 6502.

Better BASIC A beginner's guide to writing programs in BASIC.

Inside the Chip A simple and colourful account of how the chip works and what
it can do.

XT . ., .. c First distributed in Australia byNational Library of Australia . Rigby Publishers,
T'sRN 07970 1 Q9O 1 176SouthCreekRoad,
1M31MU ///U 1VZU 1 , Dee Why West, NSW 2099.

