
16

EKPPERTMENTITS WNIT YOUR

 COMPOTER
Helen Davies

Designed by Graham Round and Kim Blundell
Programs by Chris Oxlade, Geoff Sheath, Bill Rivers, Philip Clarke and Chris Smith
Illustrated by Graham Round, Chris Lyon and Jeremy Banks

Contents

3 About this book
4 Computers in experiments and research 6 Using the programs in this book

7 Coin-tossing program 8 Bouncing ball
10 Pulse rate experiments 14 Ethel's journey 20 About economic models

21 Running an airline
24 Experiments with sensors
32 Storing information
37 Looking at results
40 Likely or unlikely?
42 Program conversions
46 Graphics routines
48 Index

About this book

This book contains lots of fun programs which enable you to use your computer to do experiments and analyze information. The programs are simple examples of how scientists, economists and other researchers use computers. They are designed for home computers and will run on the Commodore 64, VIC 20, TRS-80 Colour Computer (32K), Apple II, BBC (B), Electron and Spectrum. *

Some of the programs are themselves experiments. You can alter different factors in the program and see what happens. These programs are called models. They enable you to test theories and make predictions.

Other programs are designed to deal with results you collect from experiments or surveys. They help you analyze the data and also store and display it in useful ways.

On pages 24-31 there are step-by-step instructions for building temperature and light sensors for your computer. * Sensors are electronic devices which measure things like temperature or light and convert the measurements into electrical signals. Using sensorsa computer can take readings directly from an experiment and tell you what is happening.

You can find out how to type in anduse the programs on page 6. On pages 46-47 there is a graphics routine which you can add to several of the programs.
*The sensors on pages 24-31 only work with computers which have an "analogue" port, that is, the Commodore 64, VIC 20, TRS-80 and BBC.

Computers in experiments and research

The programs used by scientists and other researchers are often extremely complex and are run on powerful computers. There are some examples of how such programs are used in the pictures on these two pages. The programs in this book are much simpler than those described here but they do similar jobs.

Modelling the big bang

Computers are used to model events which are too vast or complex to be studied in reality. For instance, physicists in the USA are using one of the world's most powerful computers, a Cray-l, to model the birth of the Universe.

The model is a program based on physicists' theories that the Universe was born in a massive explosion called the big bang. The program uses mathematical equations to represent what happened during the first second of the explosion and traces the structure of the universe from then until now.

By comparing the model's predictions with actual observations scientists can see whether their theories seem right.

Sensors in brain research

This is a computer picture of someone thinking. To produce it sensors called electrodes were fitted to a person's head and the signals they picked up fed into a

Using the programs in this book

Before using the programs in this book read these hints on typing them in and running them. Some program lines need to be changed for different computers. These are marked with an
asterisk and the conversion linesare given on pages 42-45. When you have typed a program and checked it is working, save it on tape in case you want to use it again.

Type the programs exactly as they are printed. At the end of each line make sure there are no mistakes, then press RETURN (or ENTER on some computers).* When

Some of the programs need to have a graphics routine added before you can use them. There are different versions of the routine for each computer and these are given on pages 46-47. Make sure youadd the right one for your computer.

BREAK
TRS-80
RUN
STOP

C64 and VIC 20
Sometimes you need to add or change program lines. You may have to stop the program running in order to do this. Press the "escape" key (shown above).
you come to a line with an asterisk turn to pages 42-45 and look at the conversions for your computer. If there is no conversion you can type the line just as it is in the program.

To make the computer carry out a program you type RUN. If the program does not work first time, there is probably a mistake (called a bug) in it. To debug a program, list the program lines on the screen, then retype or edit the lines with mistakes.

Then list the program and type in the new lines with their line numbers. To rerun a program type run again.

Coin-tossing program

Here is a simple program to type in and try on your computer. It models a coin being tossed. You can experiment with

Running the program

When you run the program you tell the computer how many times to toss the coin. Itmodels the tosses and shows how many heads and tails you got.

Try modelling the toss ten times and see what result you get. Then try a hundred or a thousand tosses.

You should find the more times you model the toss the closer your result is to 50% heads and 50\% tails.

Bouncing ball

The program on this page modelsa bouncing ball. You can experiment with it and see what happens if you throw the ball from different heights, or throw it harder, or usea bouncier ball. You can even alter the force of gravity.

When you run the program you need to give the computer information about the ball as shown on the right.

This is the height above the ground of your hand when you let go of the ball. You could try 1 metre or 3 feet.

The direction of the ball is given as an angle, in degrees. For example, if you throw the ball up the angle is between 0° and 90°.

Bouncing ball program

Type in these program lines, then turn to pages $46-47$ and add the graphics routine for your computer. The program works out distances in metres. If you want it to use feetreplace lines $20,40,50,70$ and 170 with those given at the bottom of this page.

```
*10 CLS:PRINT
    20 PRINT "INITIAL HEIGHT (M)":INPUT H
    30 PRINT "INITIAL DIRECTION (DEGREES)":INPUT A
    40 PRINT "INITIAL SPEED (M/S)":INPUT V
    50 PRINT "GRAVITY (M/S/S)":INPUT G
    60 PRINT "BOUNCINESS (0-1)":INPUT B
    70 LET T$="":LET Y$="5 M":LET X$="20 M":LET M$="2.5"
    80 GOSUB 2000
    90 LET DT=0.01:LET TB=20:LET NB=0:LET K=3.14/180
100 LET HS=V*SIN(A*K):LET VS=V*COS (A*K)
110 LET NX=O:LET NY=H
120 LET PX=NX:LET PY=NY:LET US=VS
130 LET NX=PX+HS*DT
140 LET VS=US-G*DT
150 LET NY=PY+((US+VS)/2)*DT
160 IF NY<=O THEN GOSUB 200
                                    Remember to add the
                                    graphics lines for
                                    your computer.
```


This is the speed of the ball the moment after it leaves your hand. It is measured in metres per second (m / s) or feet per second (ft/s).

Gravity is the force which pulls things to the ground. It is measured in metres per second squared ($\mathrm{m} / \mathrm{s} / \mathrm{s}$) or feet per second squared ($\mathrm{ft} / \mathrm{s} / \mathrm{s}$).

Bounciness

This is a measure of how bouncy a ball you are using. It can vary between 0 and 1 . A hard rubber ball would be 0.9 . Try 0.5 or 0.7 .

Running the program

INITIAL HEIGHT (M)

?1.5
INITIAL DIRECTION (DEG) ? 45
INITIAL SPEED (M/S)
?6
GRAVITY (M/S/S) Experimentaltering
? 10
BOUNCINESS
?0. 7

Try the model with these values. Does it look like a bouncing ball? Run it again keeping everything the same except the direction. Try directions of $60^{\circ}, 20^{\circ}, 135^{\circ}$. Which makes the ball go furthest? Which gives the highest bounces?

How the model works

Like the big bang model on pages 4-5 this program is a mathematical model. It works out the path of the ball using equations based on standard laws of equations based on standard laws of physicist called Isaac Newton who
lived between 1642 and 1727 . The laws physicist called Isaac Newton who
lived between 1642 and 1727 . The laws relate to the movement of objects and the pull of gravity.

Mercury experiment the initial height or the bounciness of the ball.

On the planet Mercury gravity is only 3.7 $\mathrm{m} / \mathrm{s} / \mathrm{s}(12.1 \mathrm{ft} / \mathrm{s} / \mathrm{s})$. No-one has ever been there but you can use the model to find out what would happen to a bouncing ball on Mercury. Make gravity 3.7 (or 12.1) and keep everything else the same.

Ball bouncer's guide to the Universe

VENUS	$8.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $28.9 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
MARS	$3.7 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $12.1 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
JUPITER	$26.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $86.9 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
SATURN	$11.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $38.7 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
URANUS	$9.1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $29.6 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
NEPTUNE	$12 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $39.4 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
PLUTO	$0.4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $1.3 \mathrm{ft} \mathrm{s} / \mathrm{s}$

Here are the values for gravity on some other planets so you can take your ball on a trip round the Universe.

Pulse rate experiments

The program on the next two pages makes the computer store readings of your pulse rate and display them as a graph. You can use it to compare your pulse rate before and after exercise. You can find out about running the program opposite. Below there are some hints on how to use it.

There are several different ways to take your pulse. These are shown on page 13. Try them out before you start and use the one you find easiest.

Hints for using the program

Use the program to make a set of pulse readings before doing any exercise. The computer will display a graph of your normal pulse rate. Then do some exercise and give the computer another set of pulse readings.

The computer will draw a second graph in a different colour so you can see how much your pulse rate has increased and how quickly it returns to normal.

The program allows you to make a third set of readings, so you can do a different kind of exercise and compare your recovery rate for that.

Running the program

PRESS A KEY WHEN READY TO START

Start counting your pulse when the computer beeps and displays this message. After 15 seconds the computer beeps again and you should stop counting.

When you have entered the reading, you have about 15 seconds to find your pulse again. Start counting when the computer beeps.

Do some exercise and then take a second set of readings (called DATA SET 2). To make the computer start taking readings again press any key.

Pulse rate program

The main part of the program is given below and over the page. Type it in and then add the graphics routine on pages 46-47.

```
10 GOSUB 500
20 GOSUB 460
30 FOR S=1 TO 3:GOSUB 210
40 LET X$="TIME":LET Y $="150":LET M$="75"
50 LET T$="BEATS / MIN":GOSUB 2000
```

Listing continued over the page.
60 FRR J=1 TO S
70 LET DS=J:GOSUB 120
80 NEXT J
90 GOSUB 390
100 NEXT 5
110 GOSUB 390: STOP
120 LET DC=C(DS)
130 LET M\$="DATA SET "+CHR $\$(48+D S):$ GOSUB 2400
140 FOR K=1 TO TN-1
150 LET $D Y=(N(D S, K+1)-N(D S, K)) / 10$
160 FOR $W=0$ TO 9
170 LET $X=K * K 1+W * K 2-K 1:$ LET $Y=(N(D S, K)+D Y * W) * 6.6$
180 LET $N=N(D S, K):$ GOSUB 2200
190 NEXT W: NEXT K
200 RETURN
210 GOSUB 420:PRINT:PRINT
220 PRINT "PRESS A KEY WHEN"
230 PRINT "READY TO START"
240 GOSUB 390
250 FOR K=1 TO TN
260 GOSUB 420:PRINT:PRINT
270 PRINT "DATA SET ":S
280 PRINT "TEST ";K:PRINT:GOSUB 370
290 PRINT "START COUNTING...":GOSUB 350
300 GOSUB 440:PRINT "NOW":GOSUB 370
310 GOSUB 440:PRINT "STOP":PRINT
320 PRINT "HOW MANY PULSES ";:INPUT X
330 LET $N(S, K)=X * 4$: NEXT K
340 RETURN
350 FOR T=1 TO PT:NEXT T
360 RETURN
370 FOR T=1 TO FT:NEXT T
380 RETURN

- 390 GET I ${ }^{\text {韦 }}$
400 IF I $\$=" "$ THEN GOTD 390
410 RETURN
420 CLS
430 RETURN
* 440 PRINT CHR
450 RETURN
460 LET TN=10:LET K1=1000/(TN-1):LET K2=K1/10
470 DIM N(3,TN):DIM C(3)
480 LET $C(1)=1:$ LET $C(2)=2:$ LET $C(3)=3$
490 RETURN
* 500 LET FT=7285: LET PT=900
510 RETURN

Ways to take your pulse

The most common place to take your pulse is at the wrist. Roll up the sleeve on your right arm and hold out your right hand with the palm facing upwards. Put the first, second and third fingers of your left hand on

Another place to feel your pulse is your neck. Hold the fingers of your right hand on the lumpy part at the front. Then slide them round about 5 cm to the left. There is a dip in the skin where you can feel your pulse.

to your wrist, so they are pushing into the skin on the far side. There is an artery just under the skin at this point and you should feel a pulse under your fingertips.

If you cannot find your pulse see if you can feel your heart beating. Hold your hand about three or four ribs up on the left-hand side of your body. You may be able to feel your heart beating at this point.

How fit are you?

The fitter you are, the quicker your pulse returns to normal after exercise. The graphs below show the recovery rate for different levels of fitness. Compare your graph with these to see how fit you are.

If you are doing regular exercise you can use the program to find out if you are getting fitter. Repeat the pulse rate tests at intervals over several months and each

time note down the shape of the graphs.
By comparing the shapes you can see whether your recovery rate is improving.

Ethel's journey

Ethel has just moved house and wants to find out whether it is better to go to work by train or by bus. The program opposite can help her. It models the journeys by bus and train over and over again, so she can see which is better over a period of six months or a year. Models like this are used for
"operational research", that is, finding out the most efficient way to do things. For instance, how should a self-service restaurant be organized so people do not have to queue for a long time? Or what is the best way to organize ships unloading cargo at a port, or traffic flow in a city?

Bus or train?

Here is some information about Ethel's joumeys by bus and by train.

If Ethel gets the bus she has a three minute walk to the bus stop.

Journey model program

This program models the two routes, using random numbers to cope with variations from day to day. For instance, on a particular day Ethel's wait for the bus can be between 0 and 7 minutes. So each time the computer simulates the bus joumey it picks a random number between 0 and 7. It does a similar thing for the other stages of the
joumey and then adds the times together to give a total bus joumey time. Obviously the time for one bus journey is not much use, but if you make the computer simulate lots of joumeys, you can get a picture of bus journey times over several months and compare these with train journey times.
10 CLS20 GOSUB 860:PRINT "JOURNEY MODEL INFORMATION"
30 PRINT "(TIMES IN MINUTES)"
40 PRINT:PRINT "BUS":PRINT
50 PRINT "WALK TU BUS STOP": INPUT W1B
60 PRINT "TIME BETWEEN BUSES": INPUT FB
70 PRINT "SHORTEST BUS TIME": INPUT SB
80 PRINT "LONGEST BUS TIME": INPUT LB:LET DB=LB-SB+1
90 PRINT "PERCENTAGE DF BUSES CANCELLED" : INPUT PB
100 PRINT "WALK FROM BUS STOP": INPUT W2B
110 PRINT:PRINT "TRAIN":PRINT
120 PRINT "WALK TO STATION": INPUT W3T
130 PRINT "TRAIN TIMES (HRS.MINS)":FOR I=1 TO 6
140 INPUT TT:GOSUB 840:LET $T(I)=T T$
150 NEXT I
160 PRINT "TIME TRAIN TAKES": INPUT TJ
170 PRINT "PERCENTAGE OF TRAINS ON TIME": INPUT PT
180 PRINT "PERCENTAGE OF TRAINS MDRE THAN 5 MINUTESLATE": INPUT PS
190 PRINT "PERCENTAGE OF TRAINS CANCELLED": INPUT PC
200 PRINT "WALK FROM STATION": INPUT W4T
210 PRINT:PRINT
220 PRINT "TIME TO ARRIVE (HH.MM) ": INPUT A\$
230 LET TT=VAL (A $\$$): GOSUB 840:LET TA=TT
240 PRINT "TIME TO LEAVE (HH.MM) " INPUT L\$
250 LET TT=VAL (L\$):GOSUB B40:LET TL=TT
260 PRINT "HOW MANY JOURNEYS": INPUT NJ
270 FOR $I=1$ TO 2:FOR $J=1$ TD 3
280 LET $L(I, J)=0$
290 NEXT J:NEXT I
300 FOR $K=1$ TO NJ
310 LET TS=TL
320 LET OV=rnd*100
330 IF DV<2 THEN LET TS=TS+rnd*30
340 LET T=TS
350 G0SUB 610
360 LET $T=T S$
370 GOSUB 700
380 FOR $I=1$ TO 2
390 IF $J(I)<=0$ THEN LET $L(I, 1)=L(I, 1)+1$Listing continued over the page.

The command which produces random numbers varies. In this program it is written "rnd". When you type in the program replace md with your computer's command shown on pages 42-45.

Using the program

When you run the program you need to type in the information about the two routes, as shown on the right. The information for Ethel's routes is given in the picture on page 14.

JOURNEY MODEL INFORMATION (TIMES IN MINUTES)

BUS

WALK TO BUS STOP
? 3
TIME beTWEEN BUSES
?7
SHORTEST BUS TIME
? 30
Longest bus Time
? 50
PERCENTAGE OF BUSES CANCELLED ? 10
WALK FROM BUS STOP ? 10

BUS CANCELLATIONS $=1$ in 10 or $1 / 10$
$1 / 10 \times 100=10 \%$
Multiply by 100 to convert to a percentage.
TRAIN CANCELLATIONS $=1$ in 50 , or $1 / 50$
$1 / 50 \times 100=2 \%$
The bus and train cancellations have to be given as percentages. You can see how to convert the figures to percentages above.

4

ARRIVAL TIME (HRS.MINS) ?9. 00
DEPARTURE TIME (HRS. MINS) ?8.05

You also need to give the target arrival time and a departure time. Estimate the time Ethel should leave in order to get to work at 9 o'clock. You could try 8.00 or 8.05 a.m.

TRAIN TIMES (HRS.MINS) ?7.45
?8. 15
?8. 45
?9. 15
? 0
? 0

You can type in up to six train times. Choose trains around the time you think Ethel needs to set out. If you do not want to enter six times, miss out the last ones by pressing 0 , then RETURN.

The computer must simulate enough journeys to give you a true picture of journey times. A hundred simulations are equivalent to nearly six months' travel and should give a reliable answer.

Looking at the results

Here are some sample results for Ethel's journey. Your results will probably not be exactly the same because the simulations vary every time the model is run.
RESULTS
OUT OF 100 JOURNEYS
LEAVING AT 8.05
TO ARRIVE AT 9.00
BY BUS
ON TIME 39
LESS THAN 5 MINS LATE 31
MORE THAN 5 MINS LATE 30
BY TRAIN
ON TIME O 5 MINS LATE O
LESS THAN 5 MINS LATE 100
MORE THAN 5 MIN

By comparing the results for bus and train you can decide which is the best means of transport for the leaving time you gave.
$\mathbf{l}_{\text {Experimenting }}$

Assume Ethel's boss does not mind her being a bit late occasionally, but objects to very late arrivals or regular lateness. What time should Ethel leave? Should she travel by bus or train?

But is the same still true if you alter Ethel's leaving time? Run the model a few more times trying various departure times.
2

Ethel is put in charge of opening up the office and must never be late. Which means of transport should she use now? How much earlier does she need to leave?

Modelling your own journeys

To find information for the model get hold of bus and train timetables and ring local transport services to find out about lengths of journeys and cancellations. Ask people at the station and bus stops too.

If you like, you can model just one route. To miss out the other route press RETURN each time the computer asks for information about it.

More about modelling

In models which use random numbers it is important that the numbers give a realistic spread of values. For instance, Ethel's bus journey can take between 30 and 50 minutes, but it usually takes about 40. In the program the random number command for the bus is written so the majority of numbers fall around 40.

The program below generates 100 random numbers for Ethel's bus journey. It displays them on the screen as stars so you can see the spread of values. Try running the program a few times and see what pattern you get.

On the other hand, Ethel's wait at the bus stop is equally likely to be two or four or seven minutes so the number command for the wait produces a spread of values which reflects this.

If you replace lines $10,20,50,60$ and 120 with those in the box, the program generates Ethel's waits at the bus stop.

Compare the spread of values you get with the one for the bus journey times.

Bus journey program

10 LET SB=30:LET DB=21
20 LET L=21: LET $\mathrm{B}=29$
30 DIM FL)
40 FOR $\mathrm{N}=1$ TO 100

The TRS-80 can only display half the bus journey times at once. Press any key to see the rest.
50 LET BJ=SB+INT (DB (rnd+rnd)*0.5)
60 LET $\mathrm{P}=\mathrm{BJ}+1-\mathrm{SB}$
70 LET $F(P)=F(P)+1$
80 NEXT N
${ }^{*} 90$ LS
100 PRINT: PRINT
110 FOR $\mathrm{N}=1$ TO L
120 PRINT TAB (0); B+N; TAB (5);" ";
130 IF $F(N)=0$ THEN GOLD 150

* 140 FOR J=1 TO F(N):PRINT "*";:NEXT J

150 PRINT: NEXT N

About economic models

Economics is the study of how wealth is produced and distributed in a country. The economy of a country is incredibly complex. The only way economists can look at how all the different parts work together is by modelling it on a computer.

1
Governments use economic models to forecast inflation or employment, and to predict the effect of policies such as raising taxes. The models can also show what would have happened in the past if different policies had been pursued. on one another for imports and exports. An economic model must allow for the fact that the economy of one country can affect another.

Programs which model a country's economy are called macro-economic models (macro means large-scale). Microeconomic models are used to study a particular industry or company. They help companies to plan what they should do.

Some countries
 manufacture and export goods.

Running an airline

The program below is a very simple economic model of an airline company. You can use it to experiment with different business strategies and see which works best.

```
    10 LET G$=" G.":LET E$="TOO MANY"
    20 DIM A(5)
    30 LET AC=50000
    40 LET RC=10000
    50 LET M=500000
    60 LET A=0
    70 LET YR=1
    80 LET TC=M:LET VA=O
    90 gosub 880
100 LET P$="MACRO-ECONOMIC PREDICTIONS FOR NEXT 5 YEARS**"
110 GOSUB 800
120 PRINT "INFLATION RATE (%)"
130 GOSUB 860:LET FR=RT
140 PRINT "INTEREST RATE (%)"
150 GOSUB 860:LET TR=RT
160 LET P$="EXCHANGE RATE**1. RISING*2. STEADY*3. FALLING*"
170 GOSUB 800
180 INPUT ER:IF ER<1 OR ER>S THEN GOTO 180
190 LET ER=0.8+ER/10
200 GOSUB B8O
210 LET P$="POLICY FOR YEAR AHEAD**":GOSUB 800
220 PRINT "YEAR ";YR
230 LET X=0:LET P $="*YOU WILL START THE YEAR WITH:**":GOSUB 800
240 GOSUB 740
250 LET P$="*HOW MANY AIRCRAFT DO YOU WANT TO BUY*":GOSUB 800
260 INPUT NA:IF NA<O OR NA*AC>M THEN PRINT E$:GOTO 260
270 LET A(YR)=NA*AC:LET CS=NA*AC
280 LET P$="*HOW MANY CREW DO YOU WANT TO EMPLOY*":GOSUB BOO
290 INPUT NC:IF NC<O OR NC*RC+CS>M THEN PRINT E$:GOTO 290
300 LET CS=CS+RC*NC
310 LET P$="*HOW MUCH DO YOU WANT TO SPEND ON ADVERTISING*"
320 GOSUB 800
330 INPUT MV:IF MV<O OR MV+CS>M THEN PRINT E$:GOTO 330
340 LET CS=CS+MV
350 GOSUB 880
360 LET P$="RESULTS FOR YEAR "+STR$(YR) +"**":GOSUB 800
370 LET X=TC:GOSUB 900:LET SC=TC
380 LET P$="START DF YEAR"
390 GOSUB 730:LET A=A+NA
400 LET BC=1000+2000*A
410 LET CS=CS+BC
420 LET X=CS:GOSUB }90
430 LET P$="*CASH SPENT = "+STR$(X)+G$+"*":GOSUB 800
440 LET M=M-CS:IF M<O THEN PRINT "YOU ARE BANKRUPT!":STOP
450 LET F=NC/2: IF A<F THEN LET F=A
460 LET LF=1.4+(MV/(RC*F*2+1))*3
470 IF LF>2 THEN LET LF=2
480 LET CR=RC*F*LF*ER*2
490 LET X=CR:GOSUB 900
500 LET P$="CASH RECEIVED= "+STR$(x)+G$+"*":GGSUB 800
510 LET IN=INT (M*TR)
520 LET X=IN:GOSUB 900
530 LET P$="INTEREST ON CASH INVESTED= "+STR$(x)+G$+"**":GOSUB 800
540 LET M=M+IN+CR
550 LET VA=0
5 6 0 ~ F O R ~ I = 1 ~ T O ~ Y R ~
570 LET A(I)=A(I)*0.8
580 LET VA=VA+A(I)
```

 5 9 0 ~ N E X T ~ I ~
 600 LET AC=AC* (1+FR):LET RC=RC+(1+FR)
 610 LET TC=VA+M
 620 LET X=TC:GOSUB 900:LET P$="END OF YEAR":GOSUB }73
 630 LET DC=TC-SC:LET P$="PROFIT":IF DC<O THEN LET P$="LOSS"
 640 LET X=ABS (DC) : GOSUB 900:LET P$="*"+P$+" = "+STR\$ (X) +G$+"*" : GOSUB 800
650 LET Q$="START":LET R*="END"
660 IF DC<O THEN LET Q\$="END":LET R $="START"
670 LET P$="(CAPITAL AT "+R$+" OF YEAR*- CAPITAL AT "+Q$+" OF YEAR)"
6 8 0 GOSUB 800
690 PRINT:PRINT:PRINT "PRESS RETURN"
7 0 0 ~ I N P U T ~ X \$ \$
710 LET YR=YR+1:IF YR<6 THEN GOTO 200
720 PRINT:PRINT:STOP
730 LET P$="CAPITAL AT "+P吕";*":GOSUB 800
740 LET X=M:GOSUB 900:PRINT "";X;G*;" CASH"
750 LET X=VA:GOSUB 900
760 LET P$="AIRCRAFT WORTH "+STR\$ (X)+G\$+"*";GOSUB 800
770 LET X=VA+M:GOSUB 900

```

```

790 GOSUB 800:RETURN
800 FOR L=1 TO LEN(P\$)

810 LET M$=MID* (P$$,L,1)
820 LET PS=POS(O)-28
830 IF (M$=" " AND PS>0) OR M$="*" THEN PRINT:GOTO 850
840 PRINT M$;
850 NEXT L:RETURN
860 INPUT RT: IF RT<O OR RT>50 THEN GOTO B60
870 LET RT=RT/100: RETURN
880 CLS
890 PRINT:PRINT:RETURN
900 LET X=INT (X/1000+0.5)*1000
910 RETURN
```

## About the program

You are in control of a small airline and are planning your policy for the next five years. First you give the computer information about general macro-economic conditions which affect your business. These are the
predicted inflation, interest and exchange rates. You can find out more about them below. Then you decide your strategies for each year.

## Inflation rate

The inflation rate (the rate at which prices increase) affects the cost of buying new aircraft, paying the crew and other running costs.

## Interest rate

The interest rate determines how much you earn on money you leave in the bank.

## Exchange rate

The exchange rate indicates how much foreign currency you get in exchange for your money. It affects the number of tickets you sell abroad. A rising exchange rate means you sell fewer tickets because they are more expensive.

## Running the program

## 1 <br> Macro-economic predictions

Type in the predicted inflation, interest and exchange rates for the year ahead. You can invent the information or use real figures from newspapers.

MACRO-ECONOMIC PREDICTIONS FOR NEXT 5 YEARS

YEARLY INFLATION RATE (\%)
?
YEARLY INTEREST RATE (\%)
? 10
EXCHANGE RATE
1 RISING
2 STEADY
3 FALLING
? 1

## Deciding policies

POLICY FOR YEAR AHEAD
YEAR 1
YOU WILL START THE YEAR WITH 500000 G. CASH
AIRCRAFT WORTH 0 G. TOTAL $=500000 \mathrm{G}$.
HOW MANY AIRCRAFT DO YOU WANT
TO BUY
? 3
HOW MANY CREW DO YOU WANT TO EMPLOY ?6
HOW MUCH DO YOU WANT TO SPEND ON ADVERTISING ? 50000

These are the decisions you have to make each year. On the right there is information about costs and other factors which affect your decisions.

1. At the start of the five years an aircraft costs $50,000 \mathrm{G}$. and the price goes up each year by the rate of inflation.
2. You need two crew for each aircraft. Crew and other running costs for one aircraft for a year are $10,000 \mathrm{G}$ at the start of the five years. These costs also increase every year by the rate of inflation.
3. There is an automatic yearly cost of $1,000 \mathrm{G}$, plus $2,000 \mathrm{G}$ for each aircraft, which you pay whether or not you run the aircraft.
4. You make interest at the predicted rate on any money you do not spend.

Each year the computer works out your capital (that is, your money plus the value of your aircraft) at the start and end of the year. It also calculates how much profit (or loss) you have made.

Run the program a few times keeping inflation, interest and exchange rates the same whilst experimenting with different policies. Then keep your policies the same and see what happens if you alter the inflation, or exchange rate.

```
RESULTS FOR YEAR 1
CAPITAL AT START OF YEAR
500000 G. CASH This is the money you spent
AIRCRAFT WORTH O G. on aircraft and crew.
TOTAL =500000 G. This is the money you
CASH SPENT made by selling
tickets.
CASH RECEIVED =108000 G.<
INTEREST ON CASH INVESTED = 23000 G.
CAPITAL AT END OF YEAR This is the interest on
364000 G. CASH the money you did not
AIRCRAFT WORTH 120000 G. spend.
TOTAL = 484000 G
LOSS = 16000 G.
(CAPITAL AT START OF YEAR
- CAPITAL AT END OF YEAR)
```


## Experiments with sensors

On the next few pages you can find out how to make sensors which enable your computer to display graphs of temperature or light changes. You can use the sensors in lots of experiments, such as finding out what happens to your body temperature during exercise, or when you are asleep or ill.

Below there are instructions for making the temperature sensor using an electronic component called a thermistor. You can find out how to make the light sensor on pages 30-31.


A thermistor allows different amounts of electric current to flow through it according to how hot it is. It converts temperature measurements into electric signals which
the computer can recognize. You program the computer to translate the electric signals into temperature readings.

## Things you need

This is the equipment you need to make the temperature sensor. You can buy thermistors, resistors and other equipment at electonics components shops or send off
for them to an electronics supplier. Look in a hobby electronics magazine to find the address of a supplier.

A plug to fit the analogue port of your computer:


Insulated, stranded copper wire, e.g. "bell wire".

Scissors or wire cutters and strippers.

A soldering iron and some cored solder.

A type VA1067S thermistor. (If you cannot get this one, get any 100 K thermistor.)

For the Commodore 64, VIC 20 and BBC-a $1 \mathrm{Mohm}(\Omega), 0.25$ or 0.5 watt resistor. This has brown, black, green stripes.

For the TRS-80-a 100 K ohm, 0.25 or 0.5 watt resistor. This has brown, black, yellow stripes.


Insulating tape and a small polythene bag or some clingfilm.

## Making the sensor

In the picture on the right you can see what your sensor will look like when it is made. You need to solder wires to pins at the back of the plug and then fit the components to the wires. There are hints on soldering on page 29. The diagrams below show which pins the components should be soldered to. Make sure you follow the right diagram for your computer.

## Wiring diagrams





To wire the DIN plug take off the plastic casing and the metal cover underneath. Before soldering wires to the pins thread them through the plastic casing so you can put the plug back together when you have made the sensor.

## Hints

1. Use long wires (about 60 cm ) to connect the thermistor to the plug. This is so it will reach from the computer to an experiment. You can use much shorter wires for the resistor.
2. First solder the wires to the pins at the back of the plug, then solder the resistor and thermistor to the wires.
Check carefully that you have connected each wire to the correct pin on the plug.
3. When you have made the sensor, wrap insulating tape round all the joints and bare wires. Otherwise wires may touch one another and cause a short circuit which may damage your computer.

## Testing the thermistor

On this page there is a test to check that the thermistor is working. First switch off your computer and plug the thermistor into the analogue port. You can find out which $\left\{\begin{array}{l}\text { On the VIC 20 the analogue port is } \\ \text { labelled "control port" and on the }\end{array}\right.$ port to use on the right. Then switch on and type in the program below.

## Thermistor program

 Commodore 64 "control port l". Use the "right joystick" port on the TRS-80 and the port marked "analogue" on the BBC.

When you run the program a stream of large numbers appears on the screen. These are produced by the signals from the thermistor and are called $R$.

To check the signals are actually coming from the thermistor hold it against something hot. The values for $R$ should go
down, and then gradually up again when you take the thermistor away from the heat. If this does not happen, the sensor is not working. Check that all the connections are correct and firmly made, and no bare wires are touching one another.

## Calibrating the thermistor

Before you can use the thermistor in experiments you need to translate the $R$ values into temperatures. This is called
calibrating the thermistor. Below you can find out how to calibrate the thermistor using the readings it gives at $0^{\circ} \mathrm{C}$ and at $80^{\circ} \mathrm{C}$.


To find out what reading the thermistor gives at $0^{\circ} \mathrm{C}$ put it into a dish of melting ice. Make sure it is completely surrounded by the ice. The $R$ values on the screen go up. After about ten minutes they should reach a
steady level (though they will always fluctuate a bit). Press ESCAPE to stop the program.* From the numbers displayed on the screen pick out the most common value for $R$ and round it off to 3 decimal places.



To find the thermistor reading at the top of the temperature scale put it in water heated to about $80^{\circ} \mathrm{C}$. You can use a cooking thermometer to measure the water temperature. You need to match the computer's temperature reading to the thermometer's by altering the value of Kl in line 500 of the program.


To alter Kl stop the program and list it on the screen. Then experiment, making Kl bigger or smaller by two or three hundred and rerunning the program to check the computer's new temperature reading. Keep altering Kl until the computer's reading matches the thermometer's.

## Doing experiments

Here are some ideas for experiments to do using the thermistor.
You can make the computer display a graph as well as temperature readings by
adding the program lines at the bottom of the page and the graphics routine on pages 46-47.

## Ideas for things to do

1. Measure your body temperature. Grasp the thermistor tightly in your palm or put it under your armpit.
2. Put the thermistor into a cup of hot water placed in a cool draught and watch the shape of the cooling curve drawn by the computer.
Remember to put the thermistor in a polythene bag so it does not get wet.
3. Use the thermistor to measure temperature changes in a chemistry experiment. For instance, mix about a tablespoonful of vinegar with four or five lumps of washing soda and measure the temperature change when the acid and salt react.
4. Plot a graph of variations in the temperature of a room over a whole day, or night. To do this the computer must draw the graph very slowly. You can find out how to alter the program to make it do so below.


Graph lines

* 30 LET FT=10: LET DX=10

40 LET T $\$=" T E M P E R A T U R E ": L E T$ Y $\$=" 100 ": L E T$ X $\$=" T I M E "$
50 LET M末="50":gosub 2000
60 LET X=0
70 LET SM=0:FOR J=1 TO 5
80 GOSUB 1000: LET SM=SM+T
90 NEXT J:LET T=SM/5
100 LET $Y=T * 10:$ LET $N=I N T(T):$ GOSUB 2200
110 FOR L=1 TO FT:NEXT L
120 LET $X=X+D X: I F \quad X<1000$ THEN GOTO 70
130 LET M\$="PRESS A KEY":GOSUB 2400

* 140 GET I\$

150 IF I $\$=$ "" THEN GOTO 140
160 GOTO 40

Remember to add the graphics routine on pages 46-47.

The graph shows how the temperature varies over time.* The computer completes the graph in about a minute. To make it draw a new one press RETURN.
For some experiments you need the
computer to draw the graph more slowly, so it shows temperature variation over, say, ten minutes or 12 hours. To make it do this list the program and increase the value of FT in line 30.

[^0]
## Hints on soldering



Plug in the soldering iron and let it heat up. Take care to prop it up carefully as the end part, called the bit, gets very hot. Tape the plug onto a flat surface ready for soldering.


Cut two 60 cm wires for the thermistor, and two shorter wires for the resistor. At the ends strip off about lcm of the covering, then twist together the strands of bare wire and "tin" them (see below).


To solder a wire to a pin hold it in or against the back of the pin.


Touch the solder with the hot soldering iron so a drop of melted solder clings to the bit.


Then put the bit of the iron and the solder onto the joint and leave them until a blob of solder joins the wire to the pin.


To fit a component (e.g. the thermistor) to the wires, twist the leg of the component and the wire together as shown above. Then solder them.


When you have made the connections, cover all the bare wires with insulating tape to prevent short circuits. The easiest way is to fold the tape lengthways over the wires.

## How to tin wire

Tinning means coating wire with a thin layer of solder to hold the strands together. It makes the wire easier to solder.

To tin a wire twist the strands together. Then stroke them with the solder and the hot bit of the soldering iron.


## Making a light sensor

You can make the temperature sensor into a light sensor if you replace the thermistor with an LDR. LDR is short for lightdependent resistor. It is an electronic component which allows different amounts of electric current to flow through it according to how much light is falling on it.

The program for the light sensor is given opposite. You also need to add the graphics routine on pages 46-47.

## How to make the sensor

Below you can find out how to remove the thermistor, and solder the LDR in its place. If you want to build a separate light sensor


To take the thermistor off hold the hot soldering iron against the joint between the thermistor and the wire. As the solder melts pull the thermistor leg away.

buy another plug and resistor, and make the light sensor following the instructions on pages $24-25$ for the temperature sensor.


Solder the LDR in place of the thermistor and wrap insulating tape round the new joints.


The length of the tube determines how large an area the light sensor "sees". A longer tube makes the area smaller so the light sensor is more sensitive.

## Light sensor program

To use the light sensor type in the program lines below and add the graphics routine for your computer (see pages 46-47).


## Storing information

In this part of the book there are programs to make your computer store and analyse information you collect from experiments and surveys.

The program described on the next few pages is called a database. It allows you to store details of a survey or the
results of experiments. You can also use it to keep a record of a collection or hobby, such as plane spotting. The program listing is given on pages 35-36. Below there are some hints on how a database works.

## About the database

The database program stores information in files. A file is like a page of a notepad. It is divided into four "columns" with different information stored in each column.


You give each of the columns a heading. Then you can make "entries" by giving the computer information to store in each column.

Once the computer has a file with several
entries it can search through picking out particular pieces of information, such as rocks containing the mineral calcite or aircraft with four jet engines.

## Using the database

Here are some hints on running the database program. When you have made a file, save it on tape so you do not lose it when you switch off the computer or rerun the program. You can make as many different files as you like, though you can only load and use one at a time.

```
Themenu
 MAIN MENU
 1. LOAD FILE
 2. MAKE NEW FILE
 3. MAKE ENTRIES
 4. VIEW ENTRIES
 5. ALTER ENTRY
 6 SAVE FILE
 7 SEARCH FILE
 SELECT CHOICE
?
```

When you run the program the computer displays a "menu" showing the tasks it can do. You choose a task by typing its number and pressing RETURN. When you are using the program you can go back to the menu by pressing RETURN.

```
3 Making a new file
 MakE NEW FILE
 TYFE IN HEADINGS
 HEADING 1
 ?NAME
 HEADING }
 ?COLOUR
```

Option 2 is for making a new file. First you give the computer the four column headings. Each one must be no longer than ten letters or spaces, so you may need to abbreviate them.

## Viewing entries

VIEW ENTRIES
NOW ON ENTRY 2

| NAME | CHALK |
| :--- | :--- |
| COLOUR | WHITE |
| DATEFOUND | $5 / 7 / 82$ |
| MINERALS | CALCITE |

Option 4 allows you to look through the entries in the file one by one. You press the space bar to move onto the next entry.


If you want to look at a file you have already made and stored on tape, choose option 1 to load it into the computer. You need to give the computer the name of the file, then press PLAY on the tape recorder.

## 4 Making entries

MAKE ENTRY
NOW ON ENTRY 2 NAME ?SANDSTINE COLOUR ?RED/YELLOW

To make entries in a file choose option 3. The computer displays the column headings one by one and asks for information to put in them.

6 Altering entries
ALTEF ENTFY
NOW ON ENTRY 2
NAME
?CHALK
colour
?WHITE/YELLOW
You can alter the entry you are viewing by pressing RETURN to get back to the main menu, then choosing option 5 . This allows you to retype the whole entry.

## 7 Saving the file

SAVE FILE
FILE NAME?ROCKS

```
FRESS RECORD
AND FLAY ON TAPE
```

This message may be different or may not appear on your computer (though you still have to do it).

Make sure the tape is wound to the place where you want to save the file.

It is a good idea to save a file as soon as you have made it. Otherwise you may forget and lose it by rerunning the program or switching off the computer. To save a file
you type in a name for it, then press RECORD and PLAY on the tape recorder. Write filenames on the cassette label in case you forget them.

## 8 <br> Making a search

1. Option 7 makes the computer search through the files for information. On the right you can find out how to tell the computer what information to look for.
2. You also need to tell the computer what to display when it finds the information. For instance, if it is searching for three jet engines, you must tell it whether to display the names of aircraft, the airlines flying them or their maximum speed - or all three.

3. When the computer has searched the files it displays the information entry by entry. You need to press the space bar to move on to the next entry.

| SEARCHING FOR: |  |
| :--- | :--- |
| ENGINE | TWO JET |
| ENTRY 3 | DC 9 |
|  | SAS |

PRESS SPACE
SEARCH DVER
1 ENTRY FOUND


If you are interested in plants or fungi you could make a database showing their common names, what species they belong to and where and when you saw them.


A food database would help you check whether you are eating a balanced diet. You could record which vitamins, protein or fat different foods contain.

## Database program

This is the program for the database. The lines are quite long and complicated so type them carefully checking each line is
correct before you press RETURN.
Remember to make the conversions
necessary for your computer (see pages 42-45).


```
390 IF MID (S* K, LF)=F* THEN LET F=1:LET K=LS
 400 NEXT K
 410 IF F=O THEN LET FL=1:LET J=LP
 4 2 0 ~ N E X T ~ J : I F ~ F L = 0 ~ T H E N ~ G O S U B ~ 6 2 0 ~
 4 3 0 ~ N E X T ~ I ~
 440 PRINT:PRINT "SEARCH DVER":
 PRINT "FOUND ";C;" TIMES"
 450 GOSUB 750: RETURN
 460 LET TP=1:LET T年="VIEW ENTRIES"
 470 GOSUB 710:GOSUB 740:GOSUB 650:GOSUB 750
 4 8 0 ~ I F ~ K P = 3 2 ~ A N D ~ T P < L A S T ~ T H E N ~ L E T ~ T P = T P + 1 : G O T O ~ 4 7 0
 490 RETURN
 500 LET T事="SAVE FILE":IF CH=1 THEN LET T事=
 "LOAD FILE"
 510 GOSUB 710:PRINT "FILE NAME:";:INPUT F&
 520 IF CH=6 THEN LET R* ((LAST+1)*LP+1)="**"
* 530 IF CH=6 THEN DPEN 1,1,1,F方
* 540 IF CH=1 THEN DPEN 1,1,O,F多
 550 LET I=1
*50 IF CH=6 THEN PRINT林1,R事(I)
* 500 IF CH=1 THEN INPUT抽1,R予(I)
 580 IF R事(I)<>"**" THEN LET I=I+1:GOTO 560
* }590\mathrm{ CLOSE 1
 600 IF CH=1 THEN LET LAST=INT (I/LP)-1
 610 RETURN
 620 PRINT "ENTRY ":I;:LET C=C+1:FOR K=1 TD LP
 630 IF P(K)=1 THEN PRINT TAB(12):R* (I*LP+K)
 640 NEXT K:PRINT:PRINT "PRESS SPACE":
 PRINT:GOSUB 750:RETURN
 650 FOR K=1 TO LP
 *660 PRINT TAB(1);R各(K);TAB(15);R要(TP*LP+K)
 670 NEXT K:RETURN
 680 FOR I=1 TO LP:PRINT R事(I)
 690 LET A$="":INPUT A予:IF A方="" THEN LET A变="-"
 700 LET R音(IP*LP+I)=A龺+" ":NEXT I : RETURN
* }710\mathrm{ CLS:PRINT:PRINT
 720 PRINT "DATABASE":PRINT "--------":PRINT
 730 PRINT T事:PRINT:RETURN
 740 PRINT:PRINT "NOW ON ENTRY "gTP:PRINT:RETURN
* }750\mathrm{ GET I$
 760 IF I事="" THEN GOTD 750
*770 LET KP=ASC(I方): RETURN
780 LET T$="MAKE NEW FILE":GOSUB 710
 790 PRINT "TYPE IN HEADINGS":PRINT:FOR I=1 TO LP
 800 PRINT "HEADING ";I:INPUT A事
 810 IF LEN(A*)>10 THEN PRINT "TOO LONG":GOTO 800
 820 LET R* (I) =A $:NEXT I :GOSUB 850: RETURN
 830 LET NR=30:LET LP=4:LET ML=7
* }840\mathrm{ DIM R孛(NR*LP),P(LP)
 850 LET LAST=O:LET TP=1:RETURN
```


## Looking at results

Experiments and surveys often produce lots of figures. To find out what the figures show, scientists summarize
and test them in different ways. The programs below and over the page are simple examples of the things they do.

## Averages program

\author{

- 10 CLS
}

20 LET LT=100
30 DIM X(LT+1)
40 LET $N=1$
50 PRINT "VALUE ";N;" ";:INPUT A年
60 IF A丰="E" THEN GOTD 100
70 LET $X(N)=V A L$ ( $A *$ ) : LET $N=N+1$
80 IF $\mathrm{N}<L T+1$ THEN GOTO 50
90 PRINT "NO MORE ROOM"
100 PRINT "END OF DATA"
110 LET $\mathrm{N}=\mathrm{N}-1$
120 GOSUB 150:GOSUB 210
130 GOSUB 250:GOSUB 290
140 STOP
150 FOR $\mathrm{I}=1$ TO $\mathrm{N}-1:$ LET LW=X (I): LET $\mathrm{P}=\mathrm{I}$
160 FOR $\mathrm{J}=\mathrm{I}+1$ TO N
170 IF $X(J)<L W$ THEN LET LW $=X(J):$ LET $P=J$
180 NEXT J
190 LET $T=X(I):$ LET $X(I)=X(P):$ LET $X(P)=T$
200 NEXT I:LET $X(N+1)=X(N)+1:$ RETURN
210 LET $T=0: F O R \quad \mathrm{I}=1$ TO N
220 LET T=T+X(I):NEXT I
230 PRINT "MEAN $=\mathbf{~} ; T / N$


240 RETURN
250 LET $M X=N / 2$ : LET $M D=X(I N T(M X+1)$ )
260 IF $M X=I N T(M X)$ THEN LET $M D=(X(M X)+X(M X+1)) / 2$
270 PRINT "MEDIAN = ":MD
280 RETURN
290 LET $S P=1:$ LET LP=1:LET MD=0
300 LET $P=-1$
310 LET $P=P+1$
320 IF $X(S P)=X(S P+P)$ THEN GOTO 310
330 IF P>LP THEN LET MD=X(SP): LET LP=P
340 LET SP=SP+P
350 IF $S P<N+1$ THEN GOTD 300
360 IF MD $>0$ THEN PRINT "MODE $=" ; M D$
370 RETURN

To use the program type in a group of figures one by one, pressing RETURN after each one. Then type E to show you have finished.

An average is a way of summarizing figures.
For instance, you may read about the average daily rainfall, or average earnings in an industry.

In fact there are three different kinds of average-the mean, median and modeand they may give quite different pictures of the same set of figures.

This program works out all three averages so you can compare them. The mean is calculated by adding all the numbers in a group and dividing by the number of numbers. The median is the middle number when you arrange them in order of size. The mode is the number which occurs most frequently.

## Correlating program

Correlating means finding out whether two sets of measurements are related to one another. For instance, is the amount a plant grows related to how much light it gets? Do people's ears get bigger as they grow older?

The program below makes your computer test measurements to see whether they are correlated. Opposite there are some ideas for measurements to collect and correlate.



## Correlation experiments

Here are some ideas for things you can measure and test for correlation. If two things are correlated it often means one is caused by the other, but not always. Both may be caused by a third factor or the
correlation may be a coincidence. For instance, you might find a correlation between people's heights and their results in a French test.


Is the quantity of water people can drink related to how tall they are? Measure your friends and have a drinking contest.

Most daily newspapers give figures which you can test for correlation. For instance, you could test whether the exchange rate is related to the interest rate, or to the daily temperature.

## Likely or unlikely？

Before researchers accept that the results of an experiment or survey prove a theory，they need to find out what possibility there is of getting those results purely by chance．The program below is an example of a statistical test which checks the likelihood of a result occurring．

Imagine you are experimenting to find out whether a dice you have bought
is correctly weighted（so that there is an equal chance of it falling on any of its six sides）．Normally when you throw a dice the chances of getting a six are one in six． If you experiment and throw your dice 12 times you would expect to get two sixes． Say you get five sixes．Does this prove the dice is wrongly weighted？Or is it quite likely that the result happened by chance？Run the program to find out．

```
Chances program
 * CLS
 20 PRINT:PRINT
 30 PRINT "HOW MANY TRIALS":INPUT N
 40 PRINT "HOW MANY TIMES WOULD"
 50 PRINT "YOU EXPECT THE RESULT"
 60 PRINT "TO OCCUR":INPUT E
 70 PRINT "HOW MANY TIMES DID"
 80 PRINT "THE RESULT OCCUR":INPUT R
 90 IF E>=N OR E<=O DR R>N OR R<O THEN
 PRINT "CHECK!":GOTO 30
100 IF R<E THEN LET TL=R+1:LET BL=-1
110 IF R>=E THEN LET TL=N+1:LET BL=R-1
120 LET P=E/N
130 LET FR=P/(1-P)
140 LET PP=(1-P)^N
150 LET MP=0: IF BL=-1 THEN LET MP=PP
160 FOR I=1 TO N
170 LET PN=((N-I+1)/I)*PP*FR
180 LET PP=PN
190 IF I<TL AND I >BL THEN LET MP=MP+PN
200 NEXT I
210 PRINT:PRINT
220 LET M$="MORE":IF BL=-1 THEN LET M$="LESS"
230 PRINT "CHANCE OF A RESULT"
240 PRINT "OF ";R;" (OR ";M覀;") IS"
250 IF MP=0 THEN PRINT "TOO SMALL":GOTO 280
260 LET CH=1/MP:GOSUB 290
270 PRINT "1 IN ";CH;M主
280 PRINT:STOP
290 LET M$=""
300 IF CH>1EG THEN LET CH=CH/1E6:
 LET M卖=" MILLION"+M聿:GOTO 300
310 IF CH>1E3 THEN LET CH=CH/1ES:
 LET M$=" THOUSAND"+M$:GOTO 310
320 LET CH=INT (10*CH+0.5)/10
330 RETURN
```


## Running the program



First type in the number of times you threw the dice.


Then tell the computer how many times you expected the result (a six) to occur and how many times it actually did occur.

3

CHANCE OF A RESULT OF 5 (OR MQRE) IS
1 IN 27.5

Using the information you have given it the computer calculates that the likelihood of throwing five (or more) sixes is l in 27 . So your result is quite an unlikely one and the dice may well be wrongly weighted.

Scientists usually want the likelihood of getting a result to be less than lin 20 (e.g. 1 in 30 or 1 in 40) before they accept that the result did not happen just by chance.


3


## Program conversions

Here and on the next few pages there are conversion lines which enable you to adapt the programs for different makes of computer．To find a conversion line look in the section for

## BBC

Page 11
Pulse rate program
390 LET I $\$=$ INKEY $\$$（ 0 ）
500 LET FT＝22000：LET PT $=2000$
Page 15
Journey model program


50 LET BJ＝SB＋INT（DB＊ （RND（1）＋RND（1））＊0．5）

## Changes for wait

50 LET WT＝INT（RND（1）＊FB）
Page 21
Running an airline
820 LET FS＝POS－28

## Page 26

Thermistor program
1000 LET $V=1.8 * \operatorname{ADVAL}(1) / 65520$
1010 LET $R=V /(5-V)$
1020 LET $T=1 /((L N(R / K 2))$
／K1＋1／273）－273

## Page 28

Graph lines
30 LET FT＝100：LET DX＝5
140 LET I車＝INKEY丰（O）
Page 31
Light sensor program
10 LET FT＝100：LET DX＝5
110 I事＝INKEY丰（O）
140 LET LL＝1000－INT（ADVAL（1）／66）
Page 35

## Database program

```
530 IF CH=6 THEN }X=0\mathrm{ OPENOUT F
540 IF CH=1 THEN X=OPENIN F$
560 IF CH=6 THEN PRINT#X,R=(I)
570 IF CH=1 THEN INFUT#X,R=(I)
5 9 0 ~ C L O S E \# X ~
```

your computer and find the page number and name of the program．If there is no conversion，you can type the line just as it is in the main program．

## Electron

## Page 11

Pulse rate program
390 LET I $⿻=1=I N K E Y$（ 0 ）
500 LET FT＝7750：LET PT $=1000$
Page 15
Journey model program

（RND（1）＋RND（1））＊0．5）
Changes for wait
50 LET WT＝INT（RND（1）＊FB）

## Page 21

Running an airline
820 LET FS＝POS－28

## Page 35

Database program
530 IF $\mathrm{CH}=6$ THEN $\mathrm{X}=\mathrm{OFENOUT}$ F $⿻=$
540 IF CH＝1 THEN $X=0$ OENIN F $\$$
560 IF CH＝6 THEN FRINT\＃X，R丰（I）
570 IF CH＝1 THEN INFUT\＃X，R丰（I）
590 CLOSE\＃X
750 LET I条＝INKEY丰（0）
VIC 20
Page 7
Coin－tossing program
10 PRINT CHR （147）

## Page 8

Bouncing ball
10 PRINT CHR争（147）：PRINT

## Page 11

## Pulse rate program

420 PRINT CHR害（147）
440 POKE 36878，15：POKE 36876，200
442 FOR $W=1$ TO 100：NEXT $W$
444 POKE 36876，0
480 LET $\mathrm{C}(1)=2:$ LET $\mathrm{C}(2)=7:$
LET $\mathrm{C}(3)=5$
500 LET FT＝9000：LET PT＝1000

VIC 20 continued

## Page 15

Journey model program
10 PRINT CHR事（147）
Throughout the program change
md to RND（1）as shown here．

650 LET BJ＝SB＋INT
（DB＊（RND（1）＋RND（1））＊0．5）

## Page 19

Bus journey program
50 LET BJ＝SB＋INT（DB＊ （RND（1）＋RND（1））＊0．5）
90 PRINT CHR
140 FOR $J=1$ TO $F(N) / 2: P R I N T$ ＂＊＂；：NEXT J

Changes for wait
50 LET WT＝INT（RND（1）＊FB）
Page 21
Running an airline
820 LET PS＝POS（0）－13
880 PRINT CHR ${ }^{(147)}$
Page 26
Thermistor program
1000 LET TR＝1．84＊PEEK（36872）
Page 28
Graph lines
30 LET $\mathrm{FT}=10:$ LET $\mathrm{DX}=20$
Page 31
Light sensor program
10 LET FT＝10：LET $\mathrm{DX}=20$
140 LET LL＝1000－4＊PEEK（36872）

## Page 35

Database program
710 PRINT CHR事（147）：PRINT：PRINT

## Page 37

Averages program
10 PRINT CHR事（147）
Page 38
Correlating program
10 PRINT CHR $\$$（147）
Page 40
Likely or unlikely？
10 PRINT CHR $⿻$（147）

## Commodore 64

Page 7
Coin－tossing program
10 PRINT CHR事（147）

## Page 8

Bouncing ball
10 PRINT CHR $⿻=$

## Page 11

Pulse rate program
420 PRINT CHR
440 POKE 54276，15：POKE 54277，0
442 POKE 54278，240：POKE 54276，33
444 FOKE 54272，75：FOKE 54273，39
446 FOR $W=1$ TO 100：NEXT W
448 POKE 54276，32：POKE 54296，0
480 LET $\mathrm{C}(1)=2:$ LET $\mathrm{C}(2)=7:$ LET $C(3)=5$

Page 15
Journey model program
10 FRINT CHR ${ }^{(147)}$

Throughout the program change md to RND（1）as shown here．

650 LET BJ＝SB＋INT（DB＊ （RND（1）＋RND（1））＊0．5）

Page 19
Bus journey program
50 LET BJ＝SB＋INT（DB＊
（RND（1）＋RND（1））＊0．5）
90 FRINT CHR丰（147）
Changes for wait
50 LET WT＝INT（RND（1）＊FB）
Page 21
Running an airline
880 PRINT CHR $\$$（147）
Page 35
Database program
710 PRINT CHR事（147）：PRINT：FRINT
Page 37
Averages program
10 PRINT CHR $⿻$（147）
Page 38
Correlating program
10 PRINT CHR $\$$（147）
Page 40
Likely or unlikely？
10 PRINT CHR\＄（147）

## Apple

## Page 7

Coin－tossing program
10 HOME

## Page 8

Bouncing ball
10 HDME：PRINT
Page 11
Pulse rate program
390 LET I事＝＂＂：IF PEEK（－16384） $>127$ THEN GET I车
420 HOME
480 LET $C(1)=43:$ LET $C(2)=$ 46：LET $\quad C(3)=42$
500 LET FT＝9700：LET PT $=1000$
Page 15


Page 19
Bus journey program
50 LET BJ＝SB＋INT （DB＊（RND（1）＋RND（1））＊0．5）
90 HOME
120 PRINT TAB（1）；B＋N；TAB（5）；＂＂；
Changes for wait
50 LET WT＝INT（FND（1）＊FB）
120 FRINT TAB（1）；B＋N；＂－＂；
$\mathrm{B}+\mathrm{N}+1$ ；＂＂；
Page 21
Running an airline
880 HOME
Page 35
Database program
530 IF CH＝6 THEN FRINT CHR 5 （4）： ＂OPEN＂＋F事：PRINT CHR本（4）：
＂WRITE＂＋F事
540 IF $\mathrm{CH}=1$ THEN PRINT CHR $\$$（4）； ＂OFEN＂＋F事：PRINT CHR事（4）； ＂READ＂＋F丰
560 IF $\mathrm{CH}=6$ THEN PRINT R 5 （I）
570 IF $\mathrm{CH}=1$ THEN INFUT R $⿻$（ C （I）
590 PRINT CHR事（4）；＂CLOSE＂＋F
710 HOME：FRINT：PRINT
750 I丰＝＂＂：IF PEEK（－16384）＞127 THEN GET I
Page 37
Averages program
10 HOME
Page 38
Correlating program
10 HOME

## Page 40

Likely or unlikely？

## TRS－80

## Page 7

Coin－tossing program
70 LET $\mathrm{X}=\mathrm{RND}$（O）
Page 11
Pulse rate program
390 LET I $⿻=1$＝INKEY本
440 SOUND 100，1
480 LET $C(1)=4:$ LET $C(2)=2:$ LET $C(J)=1$
500 LET FT＝8700：LET PT $=1000$
Page 15
Journey model program
Throughout the program change rnd to RND（0）e．g．

650 LET $\mathrm{BJ}=\mathrm{SB}+\mathrm{INT}$
（ $\mathrm{DB} *(\mathrm{RND}(0)+\mathrm{RND}(0)) * 0.5)$
Page 19
Bus journey program
50 LET $\mathrm{BJ}=5 \mathrm{SB}+\mathrm{INT}$（DB＊（RND（O） ＋RND（0））＊0．5）
135 IF $N=15$ THEN IF INKEY $\$=$ ． ＂＂THEN GOTO 135 Typeinthis extra line．
Changes for wait
50 LET $W T=I N T(R N D(O) * F B)$
Page 21
Running an airline
820 LET PS＝POS（O）－24
Page 26
Thermistor program
1000 LET $V=J O Y S T K(0) * 0.0715+0.25:$
LET $\mathrm{F}=\mathrm{V} /(5-\mathrm{V})$
1010 LET $T=1 /((\operatorname{LOG}(\mathrm{R} / \mathrm{K} 2)) / \mathrm{K} 1+1$ 1273）－273
1020 RETURN
Page 28
Graph lines
30 LET FT＝30：LET DX＝10
140 LET I $=$＝INKEY $⿻$（
Page 31
Light sensor program
10 LET FT＝30：LET DX＝10
110 LET I $\$=I N K E Y \$$
140 LET LL $=1000-16$＊JOYSTK（0）
Page 35
Database program

## Letter O

530 IF CH＝6 THEN OFEN＂O＂，\＃－1，F $\ddagger$
540 IF $\mathrm{CH}=1$ THEN OPEN＂I＂，\＃－1，F
560 IF $\mathrm{CH}=6$ THEN PRINT\＃－1，R $\$$（I）
570 IF CH＝1 THEN INPUT\＃－1，R丰（I）
590 CLOSE\＃－1
750 LET I $\$=$ INKEY $\$$

## Spectrum

## Page 7 <br> Coin－tossing program <br> 70 LET $\mathrm{X}=$ RND

## Page 11

Pulse rate program
390 LET I $\$=I N K E Y \$$
440 BEEF $0.1,5$
480 LET $C(1)=2:$ LET $C(2)=6:$ LET $C(3)=4$
500 LET FT＝1950：LET PT $=300$

## Page 15

Journey model program
650 LET $B J=S B+I N T(D B *(R N D+R N D) * 0.5)$

## Page 19

## Bus journey program

50 LET $B J=5 B+I N T(D B *(R N D+R N D) * 0.5)$

## Changes for wait

So LET WT＝INT（RND＊FB）


## Page 21

## Running an airline

```
810 LET M*=P年(L)
820 LET PS=8-PEEK(23688)
```


## Page 35

## Database program

90 GOSUB $500 *(\mathrm{CH}=1)+780 *(\mathrm{CH}=2)+110 *(\mathrm{CH}=3)+460 *(\mathrm{CH}=4)+160 *$ $(\mathrm{CH}=5)+500 *(\mathrm{CH}=6)+180 *(\mathrm{CH}=7)$
225 PRINT A $\$$ Type in this extra line．
230 PRINT R $\ddagger$（VAL（A $\ddagger$ ））（ TO 10 ）；＂：＂；：INPUT W末：PRINT W
265 PRINT A $\$$ Type in this extra line．
300 IF Ris（ $(N R-1) * L P+I)(1)<>"$＂THEN PRINT

345 IF S丰（LEN（Sit）－1 TO LEN（St））＝＂＂THEN LET S丰＝S事（TO LEN（S车）－1）：GOTO 345 Kwo spaces here．
 LEN（F末）－1）：GOTO 355
357 IF $F=$＝＂THEN LET F $\ddagger=" "$
365 LET F $\ddagger=F={ }^{(1)}{ }^{\prime \prime}$

515 FRINT Fक $\ddagger$－Type in this extra line．
530 IF CH＝6 THEN SAVE F：DATA Ric（）
540 IF $\mathrm{CH}=1$ THEN LOAD F末 DATA Ris（）


Type in these extra lines．

## Graphics routines

On these two pages there are versions of the graphics routine which you need to add to the Bouncing ball, Pulse rate, Thermistor and Light sensor programs. Make sure you use the right version for
your computer. The program lines are quite complicated with lots of numbers and symbols, so type carefully and
check each line before pressing RETURN.

## Apple

2000 HIME
2010 FOR I=1 TO 22:VTAB(I):PRINT " !":NEXT I
2020 FOR I=1 TO 39:VTAB(23):HTAB(I):PRINT "-":NEXT I
2030 VTAB(2J) :HTAB(1) EPRTNT "O:
2040 VTAB (1): PRINT Y年; TAB (10); T $\$$
2050 VTAB(11): PRINT M主
2060 VTAB(24): HTAB(34):PRINT X $\$$;
2070 LET DC=43: RETURN
2200 VTAB(1): $\operatorname{HTAB}(34): P R I N T ~ N ; " ~ "$
2205 IF $X<0$ OR $Y<0$ OR $X>1000$ OR $Y>1000$ THEN RETURN
2210 LET QX=X/28:LET $Q Y=Y / 48$
2220 VTAB(22-QY): $\mathrm{HTAB}(\mathrm{QX}+3)$ :PRINT CHR $\$(\mathrm{DC})$
2230 RETURN Type 13 spaces here.
2400 VTAB(24): $\mathrm{HTAB}(5):$ PRINT "
";
2410 VTAB(24):HTAB(5):PRINT M $\mathbf{~}$;
2420 RETURN
BBC and Electron
2000 MIDE 1:VDU 19,3,2;0;:COLOUR2:CLS:GCOLO,2:DC=1
2010 MOVE O,100: DRAW 1200,100:MOVE 50,50:DRAW 50,1000
2020 PRINT TAB( 10,1$)$; T\$; TAB $(0,1)$; $\mathrm{Y} \$$; $\operatorname{TAB}(33,30)$; $X \$$
2030 PRINT TAB( 0,14 ); M ; $\operatorname{TAB}(0,28)$; "O": RETURN
2200 IF $\mathrm{X}<0$ OR $\mathrm{Y}<0$ THEN RETURN
2210 GCDLO,DC: PLOT 69, X+50, Y*0.88+100
2220 PRINT TAB(33,1); ${ }^{(1) " ~ " ~}$
2230 RETURN
2400 PRINT TAB(5,30);STRING(13," ");
2410 PRINT TAB(5,30); M\$;
2420 RETURN

## Spectrum

2000 PAPER O:CLS: INK 6:LET DC=2
2010 PLOT 0,15: DRAW 255,0
2020 PLOT 7,0:DRAW 0,175

2040 PRINT AT 21,25; $\mathbf{x}$; AT 10,0 ; M $\$$ : RETURN
2200 INK 6:PRINT AT 0,$27 ; \mathrm{Ng}$ " "
2210 IF $X<0$ OR $Y<0$ THEN RETURN
2220 LET QX=X/4+8: LET QY=Y/6.25+16
2230 IF $Q X>255$ OR QY>175 THEN RETURN
2240 INK DC:PLOT QX,QY: INK 6:RETURN
2400 PRINT AT 21,5;"
2410 PRINT AT 21,5;M\$:RETURN KType 13 spaces here.

## TRS－80

2000 CLS（0）
2010 FDR I＝0 TD 29：SET（1，I，2）：NEXT I
2020 FOR I＝0 TD 63：SET（I，28，2）：NEXT I
2030 PRINTe9，T年；：PRINTEO，Y東；
2040 PRINTe507，X\＄；：PRINT＠448，＂O＂；：PRINT＠192，M苇；
2050 LET DC＝4：RETURN
2200 IF $X<0$ DR $Y<0$ OR $X>1000$ OR $Y>1000$ THEN RETURN
2210 SET（ $\mathrm{X} / 16.5+2,27-\mathrm{Y} / 37.1, \mathrm{DC})$
2220 PRINT＠28，STR $\$(N)$ ；＂＂；
2230 RETURN $\quad$ Type 13 spaces here．
2400 PRINT＠484，＂
＂；
2410 PRINT＠484，M\＄；：RETURN

## Commodore 64

5 GOSUB 3000
2000 POKE 53281，0：POKE 53280，0
2010 PRINT CHR $\$$（158）；CHR $\$$（147）

Here press the $C=$ and $M$ keys together．

2020 PRINT HM $\$$ ；FOR CT＝1 TO SH－2：PRINT＂国＂
：NEXT Press the $G$ and $T$ keys
2030 PRINT＂O ⿴囗
2040 PRINT TAB（WS－5）；X $\ddagger$ ；HM年；Y $\ddagger$ ；HM丰；SPC（WS／5）；T

2060 DC＝2：RETURN
2200 IF $X<0$ OR $Y<0$ OR $X>1000$ OR $Y>1000$ THEN RETURN
2210 QX＝X／XK：QY＝Y／YK
$2220 \mathrm{ZX}=\mathrm{INT}(\mathrm{QX} / 2): \mathrm{ZY}=\mathrm{INT}(\mathrm{QY} / 2)$
$2230 B X=I N T(Q X-Z X * 2): B Y=I N T(Q Y-Z Y * 2)$
$2240 \mathrm{QD}=2 \uparrow(2-2 * B Y+B X): S N=B L+Z X-L C * Z Y$
2250 PN＝PEEK（SN）：FOR CT＝0 TO 15
2260 IF QQ（CT）＝PN THEN PN＝QQ（CT OR QD）：$C T=15$
2270 NEXT：POKE SN，PN：POKE SN＋DM，DC
2280 PRINT HM直；SPC（WS－S）；STR $\ddagger(N) ; "$＂：RETURN \＆Type 13 spaces here．

2410 PRINT HM丰；LEFT本（CU $\ddagger$ ，SH－1）；SPC（3）；M\＄；：RETURN
3000 DIM QQ（15）：FOR I＝0 TO 15：READ QQ（I）：NEXT
3010 HM $\$=$ CHR $⿻=$ ：NEXT
3020 LC＝40： $\mathrm{BL}=1905: \mathrm{DM}=54272$
3030 XK＝13：YK＝22．2：$S H=25: W S=40$
3040 RETURN
3050 DATA $32,126,124,226,123,97,255,236,108,127,225$ ， $251,98,252,254,160$

VIC 20
Use the Commodore 64 version，but change these lines．

| 2000 POKE 36879,8 | Press the $E$ and $T$ keys <br> together 20 times． |
| :--- | :--- |
| 2030 PRINT＂O G1T： |  |
| 3020 LC＝22： $\mathrm{BL=8121:DM=30720}$ | 47 |

## Index

acid and salt experiment, 28
analogue port, 24, 26 plugs for, 24
Apple, 3
conversions for, 44
graphics routine, 46
average, 37
Averages program, 37
BBC, 3, 24-25, 26 conversions for, 42 graphics routine, 46
big bang theory, 4
body temperature experiment, 28
Bouncing ball program, 8
brain research, 4
bug, in a program, 6
calibrating, 27
cards experiment, 41
cars database, 34
Chances program, 40
Coin-tossing program, 7
Commodore 64, 3, 24-25, 26
conversions for, 43
graphics routine, 47
control port, 26
conversions, for programs, 6 , 42-45
cooling curve experiment, 28
Correlating program, 38
correlations, 38-39
crime investigation, 5
Cray-l computer, 4
database, 5, 32-34
program, 35-36
debugging programs, 6
dice experiment, 40-41
DIN plug, 24, 25
drinking experiment, 39
economics, 20
electrodes, 4
Electron, 3
conversions for, 42
graphics routine, 46

ENTER, 6
escape key, 6
exercises, to do, 10
exchange rate, $22,23,39$
exports, 20
file, in database, 32-34
fitness, test, 13
food database, 34
fungi database, 34
graph, 10, 11, 24, 28,31
gravity, 9
imports, 20
inflation rate, 22, 23, 39
insulating tape, 24, 25, 29, 30
interest rate, 22,23
inverse correlation, 39
Journey model program, 15-16
Jupiter, gravity on, 9
kites experiment, 39
LDR (light-dependent resistor), 30
light sensor, to make, 30-31
light experiments, 31
Mars, gravity on, 9
macro-economic models, 20
mean, 37
median, 37
Mercury, gravity on, 9
micro-economic models, 20
mode, 37
model, 3, 4, 5
bouncing ball, 8-9
coin-tossing, 7
economic, 20-23
journey, 14-19
Neptune, gravity on, 9
Newton, Isaac, 9
operational research, 14
percentages, 17
plane spotting database, 32
plugs, for computers, 24,25
Pluto, gravity on, 9
pulse, how to take, 13
Pulse rate program, 11-12
positive correlation, 39
programs, typing and running, 6
random numbers, 15,19
RETURN, 6
resistor, 24,25
light dependent, 30
right joystick port, 26
rocket design, 5
rocks database, 32
room temperature experiment, 28
RUN, 6
Running an airline program, 21-22
Saturn, gravity on, 9
saving,
files on tape, 34
programs, 3
sensors, 3, 4, 24-31
light, 30-31
temperature, 24-29
solder, 24, 25 how to, 29
soldering iron, 24
Spectrum, 3 conversions for, 45 graphics routine, 46
temperature sensor, to make, 24-28
thermistor, 24-28, 30 how to calibrate, 27
tin, how to, 29
TRS-80 Colour Computer, 3, 19, 24, 25, 26
conversions for, 44
graphics routine, 47
Uranus, gravity on, 9
Venus, gravity on, 9
VIC 20, 3, 24, 25, 26
conversions for, 42-43
graphics routine, 47

First published by Usborne Publishing Ltd,
20 Garrick Street, London WC2E 9BJ, England.
(C) Usborne Publishing 1985

The name Usborne and the device are Trade Marks of Usborne Publishing Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

## Other Usborne Books

There are hundreds of colourful Usborne books for all ages on a wide range of subjects. Titles which may be of particular interest to you are:


This exciting new series takes a serious look at what is happening now in the world of new technology. Many people think that such things as lasers, robots, databases and interactive TV belong only to the world of science fiction but, as these brilliantly illustrated books show, many of them are already in use and affecting our everyday lives. The books take a straightforward approach to these apparently difficult subjects, making them easy for everyone to understand.
Page size: $240 \times 170 \mathrm{~mm} 48$ pages


This up-to-the-minute series on electronic technology explores the worlds of computers, TV and video, audio and radio and, in a new title, films and special effects. In a clear visual way, the books describe the very latest equipment and show what it does and how it works. They also explain much of the confusing technical jargon which usually surrounds these subjects. There are fascinating sections on what computers can do for us and how they do it, how TV and video cameras can turn an ordinary scene into a pattern of electronic signals that can be stored on tape, and how a recording studio works. Audio \& Radio also contains instructions for building a simple radio.
Page size: $276 \times 216 \mathrm{~mm} 32$ pages

## Usborne Computer Books

"Highly recommended to anyone of any age." Computing Today "Without question the best general introduction to computing I have ever seen. "Personal Computer World ". . . perhaps the best introduction around . . . outstanding . . ."Educational Computing
"These books are outstanding . . . they make all other young people's computer books look meretricious. "Times Educational Supplement

Guide to Computers Understanding the Micro Computer and Video Games Computer Jargon Computer Graphics Inside the Chip<br>Computer Programming<br>Practise Your BASIC Better BASIC

Machine Code for Beginners
Practical Things to do with a Microcomputer
Computer Spacegames
Computer Battlegames
Write Your Own Adventure Programs
Creepy Computer Games

## New Titles

## Programming Tricks \& Skills Professional tips and tricks for better programming.

Experiments With Your Computer An exciting introduction to scientific investigation with a microcomputer.

Expanding Your Micro A detailed guide to add-ons and interfaces.
Write Your Own Fantasy Games A step-by-step guide to writing fantasy games, with program listing.

Weird Computer Games, Computer Spy Games Short listings to run on most main home computers.

Mystery of Silver Mountain, Island of Secrets Unique adventure game books containing full program listings.



[^0]:    *On the TRS-80 the graph only shows temperature changes of $3^{\circ} \mathrm{C}$ or more.

