@,

WRITE YOUR OWN-

ADVENTURE

PROGRAMS
‘ FOR YOUR MICROCOMPUTER

x

£
ADVENTURE

PROGRAMS .

78
/b

Jenny Tyvler and Les Howarth

- Designed by Roger Priddy~ 4

Illustrated by Penny Simon,
[/ Rob McCaig and

o

ZX81 version of Haunted House by Chris Oxlade

-

Contents

3 About this book

4 Whatisanadventure game?

6 Whereto start

8 Drawingagrid

10 Hidingthe treasures

12 Useful objects. ..

13 ...and what canbe done withthem
14 The master plan

16 Putting the data into the computer

19 The program structure

20 Gettinginto the program

28 Changingand adding to the program
32 Debugging your adventure

33 Haunted House program listing

38 Changes for the Spectrum

39 Haunted House:ZX81 version

46 Extratipsand hints

47 Answersto puzzles

Index

T e
CIALNOTE
To write an adventure program, you need
3 to know a bit about the language BASIC.
=1 You can still have fun with this book,
though, without knowing any BASIC, by
typing in and playing the game Haunted :
"4 House which was written specially forit. If

1 youwant tolearn or improve your BASIC,
there are two Usborne books to help you:
Introduction to Computer Programming |
and Better BASIC.

I

About this book

Writing an adventure game from scratchis
quite a daunting task, especially if you are
new to computer programming. This book
allows you to start as gently as you like by
giving you an adventure listing which you
cantype inand play, change and add toas
much as youlike, or use as askeleton
program for your very own adventure story.
The game written for this book is called
Haunted House and you will find the main
listing for it on pages 33-38. This will work
on any computer which uses Microsoft-
style BASIC, including Commodore 64,
BBC, Dragon, Oric, TRS-80, Electronand
expanded VIC 20, and has changes tomake
it work on a 48K Spectrum. A special ZX81
version of the game is listed on pages 39-45.
Turn straight to these pages if you want to
play the game before you find out how it
works, It is a specially good idea to do thisif
you've never played an adventure game.

If you are used to looking at program
listings, you will probably pick up a few
clues about how the game works as you
type it in. To avoid this, you could try to
persuade someone else to type it in for you.

Asthe programis solongand
complicated, you will need to type itin
extremely carefully. It is worth typing
slowly and checking each line as you go, as

On pages 6-15, you will find out how to
plan an adventure and on pages 16-27 how
to structure and write the program for it.
You may find this section quite difficult.
Don’t worry if you do, just work through
each bit slowly and carefully until you feel
you have grasped the ideasinit, then goon
to the next bit.

As you work through these pagesitisa
good idea to write a practice game of your
own, following each step carefully. Don't
worry if it isn’t a specially good game; it will
help you to understand how the program
works and see the problems you need to
solve in order to write an adventure. A good
adventure needs careful planning to make
itinteresting and exciting to play.
Remember, you don’t need to touch your
computer until you have planned your
game down to the last detail.

You will find some extra tips and hints on
adventure writing on page 46, and on page
47 there are answers to the puzzles set inthe
book.

After playing Haunted House a few
times, you will probably want to make
changestoit. Pages 28-31 give yousome
ideas for producing your own version.

-
e

What are the rules?

If you have played an adventure game
before you will know what to expect
from Haunted House. If you haven't, all
you need to know is that the computer
will ask you what you want to do and you
tell it, using not more than two words.

It is a good idea to pick up anything on
the way that looks valuable or useful and
to try using these things in any way you
can think of to solve the problems you
encounter. Type SCORE to find out how
many points you have and if you have
won.

Whatis an adventure game?

An adventure game is like a story in which
the player is the hero. Unlike a book, where
the sequence of events is fixed, an
adventure game is different each time itis
played because the player chooses what
happens at each stage. By giving the
computer instructions in response to
descriptions which appear on the screen,
the player goes on a dangerous journey into
an unknown land. The aim is to survive
whatever dangers may arise and return
with treasures.

The first adventure game was written in
1976 on a mainframe computer at Stanford
University in the U.S.A. by William
Crowther and Don Woods. It is often
referred to as Colossal Cave, Colossal or
just Adventure, and a version of it isnow
available for most home computers. It was
written in the scientific computer language,
Fortran, which, unlike BASIC, cannot
handle words. All the data for the game
had to be indexed and stored ondisc.

The first people to play adventures were
computer professionals, as home
computers did not exist. A version of
Crowther & Woods' adventure is still
included with most large business
computer systems to show people who are
not used to computers that they canbe
“friendly”. These disc-based adventures
often occupy more than 250K and are very
complicated to play.

Micro adventures

There have been many adventures since
this first one. Perhaps the most famous are
those written by Scott Adams, an American
programmer who was the first to produce a
version of Adventure for a small micro. This
was Adventure Land for the TRS-80. Other
Scott Adams’ adventures to look out for are:
Pirate Adventure, The Count and Pyramid
of Doom.

The term “adventure” is now used to
describe a wide range of different games.
The game in this book is a traditional text
adventure based on the Crowther & Woods
type of game. The player takes the leading
role in the story, but he is not given a set of
attributes as in role-playing games. The
player uses his own intelligence, cunning,
and so on, not those of a character assigned
to him at the beginning of the game. Like
chess, traditional adventures are “mind”
games, involving puzzle-solving rather than
quick reactions or chance.

Graphics adventures

The original adventure did not use any
graphics, relying instead on the player’s
imagination to conjure up the monsters and
other terrors that make up the game. Some
people think that a game with graphicsis
not a true adventure, though there are some
very good graphics adventures now
available for micros. If you have sufficient
memory, you could add graphics routines
to your adventures or to the Haunted House
program in this book. This book does not
explain how to do this because
graphics instructions vary so much
from computer to computer.

fw)

hat kind of program isit?

An adventure program is really a kind of
database. A database is a computer filing
system which stores information and
allows it to be called up in a variety of
different ways, and it can have all kinds
of serious uses. An adventure programis
an “interactive” database. The player
moves through it, altering or “updating”
information as he does so. As you work
through the book, you will see how
particular words are used as “keys” to
unlock certain items of information. This
technique can be used to restrict access
to certain information in a “serious”
database.

You can learn some useful
programming techniques by writing an
adventure. As the programissucha
complicated one, it shows how important
itis to plan it in detail before switchingon
your computer. It also makes you think of
all the things a person using the program
might try to do. If you work out a way of
making the computer deal with any
input, however silly, you will be able to
write programs which don’t crash.

Many of the adventures you can buy
on cassette are written, at least partly, in
machine code. This allows more
information to be packed into the
computer and makes the game run
faster. If you know a bit about machine
code, you could experiment with adding
] machine code routines to your
adventures.

Turn the page now and start
planning your adventure
game.

%

- —..j -
L.gf'f .

PLANNING A GAME
Where to start

When you write an adventure game youare
inventing a fantasy world where you make
up all the rules. Youdecide where it is, what
sort of creatures and things live there and
what these creatures and things canand

C\ cannot do. Your world can be analien city,
%%\ for instance, or an underground palace

’«u

'

/‘:’,/.,74{“”
L

‘,;9:,
V4

where elves, wizards and trolls live ora
mysterious castle which is the home of
¥ dragons and other strange monsters. It
could even be a time in the past involving
actual historical people and facts.
Many adventures use magic of some
kind. You can decide how closely your
4 world sticks to the rules of the real world
: ¥ and how much magicis allowed. Whatever
¢ you choose to do, try to make sure the rules

and frustrating.
Having decided on a theme for your
adventure world, you then need todecide

have to escape, or returnto a certain place,
with treasures, or he might have torescue
someone, or find a secret place and do
something there (such as defusing the Mad
Scientist’s Evil Device for Blowing up the
World).

Y Working out the locations

The areas or rooms through which the
player moves during an adventure are
called locations. Later in the book, you will
see how these are numbered to put themin
the computer. For the moment, you need to
remember that the number of locations you
can have depends on the amount of

memory your computer has. More locations

can make the game more interesting, but
leave you less memory space for
descriptions of them all. The game in this

¥ are logical or players will find the game silly

on the point of your game. The player might

book has 64 locations with short
descriptions.

Alocation can be indoors or outand
could be aroom, a cave, half way alonga
passage, an area of forest, the middle of a
field, or anywhere else you like. It is best to
decide on the number of locations early on
and stick to it, as this affects the whole
structure of the game.

Makingamap
The next stage is tod awa rough sketch
map of your world. It need not be accurate
to the last detail but should show the overall
scale. While you are doing this, think of
some ideas for good hxdmg places for
treasures and other ob]ects thatthe
adventurer willneed.

Hereisarough sketchmap forthe

) Haunted House adventure written for this

k.

Kitchen

Spiral
staircase \A

Dark hall

Locked door

Secret | =
room

&

P

Haunted House is set in a weird house

standing on the edge of a sheer cliff. Its
strange twisted turrets loom out of an
always gloomy sky. No wall seems straight,
no corner a right-angle. Not surprisingly no
one lives there — well no human thatis. . .

People say the richest man in the world
spent his last days there. Strangely, noone
ever saw hisbody. ..

Magical

barrier

Ideas for themes

If you're stuck for an idea for your
adventure game, think of films or TV
programmes you have seen or books
you have read. Remember, though, if you
are writing a game to sell, you must not
stick too closely to the plot or use the
same names for copyright reasons.

Here are some ideas for adventure
themes.

DETECTIVE STORY -the playerisa
detective investigating a terrible crime.
The object of the game is to get back to
police headquarters with all the
evidence. (The items of evidence are the
“treasures”.)

PREHISTORIC ADVENTURE - the iw,
player has travelled through time to the b Sa
days of cavemen. The objectistoreturn | 3 ?k
to the present with The Stone, an object >

of immense power. The adventurer has

to make his own weapons and anything

else he needs, just as the cavemendo.

Prehistoric beasts and cave magic are

among the obstacles.

TEMPLE TERROR - the ancient ruins ofa
temple built by a mysterious, long-lost
race are reputed to contain the secret of
eternal life. Just hearing about the things
that are said to have happened there
makes your hair stand on end. The object
isto escape with the secret.

PLANNING A GAME r

Drawing a grid Working out the routes

The first stage in turning your adventure Mg;k lit{:e :a}:;ts from each location on your
: : grid, like this.

w;ﬂ:ﬁ&; coml:gfﬁ::;; gnagsf;;u Notice that some locations on this grid
ryt Lot mar; for each location, so.for s have one-way routes, so the player cannot
64 locationss qlthm e Haunted House game return the way he has come. Make sure
Assdsant >'< 8grid. there are reasons for thgse if you use them

This grid will become the master plan for in your adventure, even if the reasons are
your adventure, somake it as large and magic. In Haunted Hpuse the front door
cloaras i fe Eventually it will show all slams and locks behind the player once he
thelositionsan d.th e ways in and out of has entered, so he cannot go out again. The

them, and all the treasures and objects used \J° 1 2 3 Ep
inthe game.
Number each location, starting in the top DARK OVERGROWN | BY YARD
left-hand corner. Most computers start CORNER WOODPILE
counting at zero, so use zero as your first 3 :
location number. s Lk A
N N
CORNER OF SCULLER
o[[al3[elre]r HOUSE TOKITCHEN| KITCHEN [paop
L 4 IO“ﬂ /a|rd /14 |17
1 Ep
/6 |17 (13|19 (20| |22 23
24 |25 |26 |27 (28|29 (30 |3/
32 |33 |3¢ |35 (% |37 |32 |39
40 |\ |42 |43 U |45 |5 |47
48 |49 (5D |57 |52 |53 [s¢ |s5
5 |57 |58 |59 |60 |&r |42 |63
You may want to change the position of
walls and doorways when you work out the
routes the player can take, so start by

pencilling your map lightly onto the grid.
Label each location with a short
description, eg “dark cellar” or “dusty
room” and then think about the ways inand
out of each location. The usual way of
marking these is to use points of the
compass —north being towards the top of
the page, south down, east to the right and
west to the left.

By including staircases, ladders or
trapdoors in your descriptions, you can use

CLOSET

up and down for some of your routes 48
instead of compass points. This makes the SLOPING
game more interesting withouttheneedfor | VERANDAH CORRIDO
s |
v ED/4W ke
56 A
N
TWISTED PATH PATHBY |BENEATH
RAILINGS RAILINGS | TOWER

EP AW Ep W Ep 4qW

i o

marsh at locations 53 and 54 is also aone-

way route, because the boat gets stuck.

How many one-way routes can you think of?
When you have settled on your routes, ink

inthe walls and staircases to fit in with them

and make a chart, like the one onthe right,

listing the location number, its description

(this need not be your final version) and

its exits. You will find this helps enormously

when you start writing the program.

4w 4 |5
WEED

SLIPPERY

WIDE Ep<q STEPS

PASSAGE

SOGGY

BY WALL % ! PATH adventures which are set on several
% ”r % l‘w levels like the storeys of a house. Todo
= this you need two or more interlocking
1 : 62 : grids. Such games need alot of memory
pesrisl FaLLEN STONE | CRUMBLING (48K13pr_obably the minimum to make it
P BRICKWORK ARCH CLIFFTOP worthlvivhﬂ:‘):l andc.:mgetvery
complicated to write.
ED AW EDlqw ED 4W : y

To help you see how the information fits into
the program, you could complete this chart
using the map on pages 14-15 and checkit
against the listing on page 37.

GD games ¥

Itis possible to construct real 3D

10

PLANNING A GAME
Hiding the treasure

Having mapped out your adventure world,
you need to come back to thinking about
what the player hasto doinit. Inmany
adventures, the player has to find valuable
objects of some kind and take them
somewhere. These could be “real”
treasures, like gold and jewels, or they
could be something like secret plans and
documents, or items of evidence to help
solve a crime. If the purpose of your gameis
to rescue someone, then count thisas
having one “treasure”.

You can have general
obstacles and traps in your
game too; they don't all have
to be linked to a particular
treasure. Haunted House
has a marsh for instance.

Adding “props”

You need to decide what treasures to have
and where to hide them. Hiding the
treasures will probably involve including
some “props” in your plan. These are
pieces of furniture, carpets, items of
clothing and so on which the player can
open or examine, but which cannotbe
taken away from the location in which they
are found. Haunted House has a coffinas
one of its props.

r
Someideas to think about

Can you think of some “treasures” to fit
with these game settings?

1. The headquarters of an international
crime syndicate.

2. A distant planet which is known tobe
more technologically advanced than
Earth.

3. A secret scientific research
establishment.

Now can you think of some good
obstacles to getting them?

&k

Setting problems for the player

Next you must think about the problems the
player will have to solve in order to find and
carry away the treasures. The cleverer and
more original the problems you invent for
the player, the more interesting the game
will be to play. The solutions to many of the
problems will involve other objects which
the player must find and then use in the right
way. You will find out about “useful” objects
over the page.

Make a list of your valuable objects and
number them, starting with 1 this time. (You
will find out why on page 16.) Listthe
objects in order of value as this willbe
useful later on for setting up the scoring
system. This is the start of the list of words
you want your computer to recognize.

Make a note of the obstacles to getting
each treasure too. You might havea
monster guard, for example, or a mad axe-
wielding troll. Treasures might be inlocked
drawers, or in safes. They may prove
impossible to carry without a container of
some kind which is hidden elsewhere. On
the left are some puzzles you can think
about.

list-
S -
Haunted House 170 L,‘,’g‘,’,,'g’e"r
objed’w object. 26
ST
in
2 ok otspells
3 goblet 13
4 scrolls 18
5 coins 28
© statué 42
=T "candiestick
8
AN

6. Bag of gold coins
Youneed alight.

5. Ancient scroll
Guarded by bats.

1. Ebony statue

= - \DEEEE

3. Book of magic
spells
Hidden in secret
room behind false
wall.

Youneed alight.

’ Guarded by

ark your “treasures” on your master plan, magical barrier
using the numbers assigned to them on your and locked

Guarded by paralysing list. Then write the number of the location

door.

spirits and locked next to the object on your list too. (Youcan
door. only have one object in eachlocation.)

Detective game puzzle

In this game the valuable objects are:

1. Single red hair

2. Brown woollen thread
3. Footprint

4. Set of fingerprints

5. Blood stain

6. Heavy wooden stick

 whichmightbeonit.

~

3. The footprint is in a flower bed outside a
window.

4. The fingerprints are on the surface ofa
large table next to the body. They are
invisible.

5. The blood stain is on the carpet.

6. Touching the stick will destroy any prints

11

PLANNING A GAME

Useful objects. . .

To help the player solve the problems you set, you will have to include sometools,
weapons and other useful objects in the game. The player must find the appropriate
objects and use them in the right way to get round the obstacles. You cantestthe
player’s ingenuity by not including the most obvious objects. Instead of a key, for
example, you could include a hairpin or paperclip for opening a locked door. Youcan
make things more difficult, too, by hiding, say, a torch in one place and the batteries forit
in another. The player must find both before he can use them.

Add your objects to the word list you started for your treasures. Don’t forget thatsome
of your treasures can have uses too. (You don’t need to list themtwice.)

Haunted House problems and solutions
Here are the solutions to the Haunted House game problems

and the objects needed for them.
Problem Solution Objects needed
Too darkto see Put candle in candlestick Candle (hidden in desk drawer)
Light candle with match Matches
Candlestick (already in \
valuable objects list) ——
Bats Spray with “Baticide” Aerosol can i
Secret room Break down false wall Axe
Locked door Unlock Key
Paralysing ghosts Suck up with vacuum cleaner g:rtable vacuum cleaner g
tteries
Magical barrier Use magic spell Book of magic spells (already
in valuable objects list)
Marsh Getacrossin boat Boat m
(Can only be used once as
it gets stuck in mud) :
- Barred window Dig round edge to remove bars Shovel
Coffin Openlid Nothing

/ ; | | \
cide where the objeéts aretogoand
rk them on your master plan. They will

less conspicuous if you put themin | 3 e
aces where people would expect to find Haunted HoU Location

. knife in the kitchen, book inthe | - number.
,axe near the woodpile. You| || objec Qbjes T
ight want to add extra props (see prevgous ny 5 "3“;23':,,,,_ cleaner 254
age) at thisstage. Haunted House hasa 10 Béo-":%‘ 2
eskinwhichthe candleishidden. | p e A1
emember not to put your objects in 13 Raoaf ol can 64.3
possible places. It is no good putting the 15 Aerle 32
light behind a locked door and then putting ’161 Ke)") #h
the key in a dark room. ® N outh
Put the number of the location next to 20 W"ff
each object. Add to your list any other 2512 ES,,
Down 13

words (not verbs) that you will want the

computer to understand, too e.g. north, ‘
south, ghosts, bats, coffin. (Rememberto |
include all your props.)

...and what can be done with them

Now you have decided on the objects to go
in your game, what are you going to letthe
player do with them? You need tomakea
list of verbs and the things they apply to.
This should include “going” verbs too, so
that players can give instructions about
where they want to move to.

Many adventure programs are
constructed so that the computer accepts
commands of not more than two words from
the player. It checks the first word againsta
list of verbs you have put in its memory and
the second against the object and direction
words you have givenit. A lot of the funin
writing adventures is trying to think of all

the combinations of verbs and objects that
the player might try and deciding on what
action or reply the computer should give.
Writers of business programs need to think
in this way too, to prevent their programs
crashing because of an unexpected
response from the user. .
To deal with verbs (and objects) which /;

the computer cannot find in its memory, k.‘ i

you caninclude general replies, suchas
“Do what with the (object)?”. Group
together verbswhich meanthe same
thing, suchas getand take. You will be
able tosave memory space by sending
the computer to the same routine for both.

PLANNING A GAME

The master plan

Your master plan and the lists you have
made contain all the information, or data,
needed for your program. Here isthe
completed master plan for Haunted
House. (Don't worry if your master plan
doesn't look as elaborate as this.) Overthe
page, you will find out how to put this data
in your computer. Before you touch your
computer, though, make sure you have
planned out your game to the last detail.

Adventure brain teasers

Here are some situations players might
perhaps find themselves in during an
adventure. See how many solutions you
can think of for each one. There are
some suggestions on page 47.

1. You are trapped in a room about
three metres square. There areno
doors. There is a thick carpet.

2. As you enter aroom, a feeling of
extreme drowsiness comes over you.
You are carrying a small, but quite
heavy, rucksack and a handkerchief.

3. You are standing on the battlements
of a castle. Beneath you is a horde of
angry slaves and behind youarmed
soldiers. You have a parchment scroll
in your hand.

4. You have been invited to dinner by
the evil arch-villain. He has taken away
all your weapons. As dessert is served,
he shows you the remote control for his
world decimator weapon.

Can you think of
some more
adventure brain
teasers (and
solutions for them
of course)?

A A

R SV — T T U o=y K s . = ‘5

0 1 2
DARK ' OVERGROWN ' Axe uﬂﬁ
CORNER GARDEN oW

E w E BY
] o My > WOODPILE
v Ep
A
8 — 10
KITCHEN
CORNEROF ENTRANCE Matches
HOUSE TO KITCHEN

Zp 4«

16 17

SIDE OF
HOUSE

BACKOF

24

zZp 4=

CRUMBLING
WALL

FRONT) qw SITTING
HALL "o ROOM

s
ML

CLOSET FRONT
EP AW | OBBY

Front door

; \
Y Y ;

56 A 51 & 58
TWISTED PATH PATHBY
RAILINGS RAILINGS

Ep 4W Ep 4W Ep

® 8 4 § 6, BLASTED . 7
\”J/ Rubbish ——h LTREE % -
YARD Shovel FOREST FOREST Rope >
«w | WEEDPATCH

DINING
ROOM

COBWEBBY

ROOM COLD
ONEWAY—p CHAMBER
s Ep 4w Ep 4w

g—;’—‘!’-_-5 —
51 & 52

SLOPING UPPER
CORRIDOR GALLERY

ED AW Paralysing
ghosts
4w

59 |DEBRIS 60 61 62 63
Aerosol
BENEATH | q w/ % gp| FALLEN STONE CRUMBLING
TOWER BRICKWORK ARCH CLIFFTOP

<W Ep W ED 4w ED AW

STORING THE DATA

Putting the data into the computer

You now have all the data for your
adventure written out on pieces of paper.
The next problem is to work out how to put
itinto the computer’'s memory.

The computer needs the data stored in
such a way that it can get at eachitem
quickly and update things as the player
progresses through the game. To do this,
you set up storage areas called “arrays” in
the computer’'s memory. An array is likea
set of pigeon holes or filing boxes. You
give each arrayaname and eachboxinita
number, so the computer can find the box
you want when you refer to it in your

- |

2

This is an
array called “X*

Before you can give the computer any
data, you must decide how big eacharray
should be and tell the computer toreserve
and label that much space. This is called
“dimensioning” the array and is written
DIMinBASIC.

The arrays for Haunted House

Haunted House needs the following arrays
to hold its data. You will need similar arrays
whatever the theme of your adventure.

1. An array to hold the descriptions of the

locations. It needs 64 pigeon holes (one for

eachlocation). We've called it D$()and

numbered the holes 0 to 63 as on the master
16 plan.

The $ sign indicates that this is
a string array, that is, one for
storing letters and words.

This array is set up inthe
program by writing
DIM D$(63).

2. An array to hold the information about the
routes the player can take from one location
to another. Thisis R$(). It needsto bethe

same size and numbered in the same way as

D$().

3. An array for the objects and other words
on the word list. By dimensioning this DIM
O$(W), where W is the number of words on
your list, the computer will set up anarray
with one space for each word and an extra
space. This is because it always starts
numbering with zero and ends with the
number in the DIM statement. This is useful,
because the zero space can be used for
“word not found in memory”.

e.g. If W=4, the array would look like this.
DIM O$(4) gives five spaces labelled 0
to4.

This is why the word and
verb lists were]
numbered beginning at

1, not 0like the locations. | ~ ofs — P

Using variable names,
suchas W and V, makes
it easier to change the
number of words and
verbs at a later stage.

4. Averb array. This needs a space for each
verb and an extra space for “verb not
found”. Itis called V§()and needstobe
dimensioned DIM V§(V) where V isthe
number of verbs on your list.

More arrays

Locations, routes, object words and verbs
are not the only information that needs tobe
stored in the computer. You also need
arrays to store information about where the
objects are, which objects the playeris
carrying and such things as whether the
light is on or off.

There is no need to store the objectand
location words again. This extra information
can be stored as numbers to save space,
e.g. object 9is in location 10.

Array L() shows which location eacn
objectisin. It only needs spaces forthe
“gettable” objects such as the key, notthe
props or other words. If G is the number of
gettable objects then this array is
dimensioned DIM L(G).

Array C()is for information about which
objects the player is carrying. This also
needs spaces only for the gettable objects,
so is dimensioned DIM C(G).

Number arrays
don'tneed $
signs after their

names.

Flags

Aswell as keeping track of the things the
player is carrying, the computer needsto
be able to record other changes that
happen during the game, e.g. whether the
candle is alight, the door locked or the key
visible.

This can be done by using an array, F(),
of markers or “flags”, which contains W
spaces, i.e. one for each object word. By
putting 1s and Os in these spaces, the

computer can see what state the objectisin.
Ois used for the “normal” or “inactive” state,
such as light off, object visible. 1 showsthe
“active” or “not normal” state, such as light

Did you know that computers
have flag registers in their
CPUs which work like this flag
array? They use them to store
information about what is
hapgening while a programis
running.

17

18

STORING THE DATA
Putting the datainto the arrays

Having set up labelled storage areas inthe
computer's memory, youneed to tell it what
to put in them. One way of doing this is to list
the data, in order, and tell the computer to
loop round putting one item at atime inthe
spacesinanarray.* Here is how thisis
written in BASIC:

DIM 0% (N)

DATA PAINTING,RING,MAGIC SPELLS,GOBLET,ETC.
FOR 1=1 TO W

READ D$(1)

NEXT 1

P

Firsttime round, I=1, so
PAINTING is put in
0$(1). Computer goes
back for the next value of
Iand puts the next item,
RING, in O$(2) and so on.

Loop starts with 1 for
object, verb and the

three number arrays, so
computer leaves space

zero empty. For location
and route arrays, loop
starts at zero.

Commas separate
items of data.

This is the loop for READing the DATA into
O$(). Look at lines 1600 to 2100 inthe
program listing on pages 36 and 37 and see
if you can pick out the data loops for the
other arrays.

Data for the flags

The data for the flag array, F(), consists
only of 1s and zeros. Objects whichare
invisible at the start of the game have lin
theirboxin F(). When they are discovered
by the player the flag changes to zero. All
the other objects start with zero.

You only need to tell the computer which
boxesinF()need lsinthem. Leavingthe
rest empty is the same as filling them with
zeros. The easiest way tofill this array isas
shown in line 2090 (on page 37).

You may have noticed that some spaces
inF()are not used because some objects
donot change their “state”. These spare
flags can be used for other things. For
instance, in Haunted House, F(14) (the rope
flag) is used to show whether the playeris
up the tree. The candle needs two flags -
one to show if it is visible and anotherto
show if it is lit. The spare flag F(0) is used for
lighting it. If you want a spare flag for
something, use the ones for words that
won't need them, like “north”.

Data for the carrying array

The player isn’t carrying anything at the
beginning of the game, so to show thisthe
array C()isleft empty. When an objectis
picked up the computer puts a 1 into its box.
So, no data lines are needed for array C().

Initialization

Setting up the arrays and filling them with
data is called “initialization”. You cansee
inthe next section where this fits intothe
program structure.

*The ZX81 (Timex 1000) does not do this, see page 39.

WRITING THE PROGRAM

The program structure

In order to arrive at the overall structure of
the adventure program, you need to think
about the jobs the computer hastodo
during the game.

Computer jobS \

and put dota into them-
players Jocation and it

ctions

for r;ex'r set of instructions-

4. Ask player

-

wn
o
b—
[]
o
=
°
g
3
W
g
b S <4
B2
=%
28
=
>
&
&
e

: = mak
instructions dontma
& gr'c?mpf the player an
! insrrucﬁons.(RO Nt
. gh.Ifinstructions makes ropr'i
i ‘subroutine 10 take OPP
SUBROUT IN%

The list above shows the order in which the
computer needs to do things, but not
necessarily the order in which they need
appear in the program. A large chunk of the
program is the initialization routine which is
only needed once each game, and,
although it is the first thing the computer
must do, it is a good idea to put it at theend
of the program. This is because every time
the computer is told to GOTO or GOSUB it
goes back to the beginning of the program
and checks through each line number until
it finds the one it wants. This cantakea
noticeable amount of time in along
program. By putting initialization at the end,
the computer does not have to check
through it each time the player makesa
move.

The structure of the program actually looks
like this. As you can see, the biggest part of
itis the subroutine section. There needsto
be one subroutine for each verb used inthe
game. You will find out more about these on
page 25.

message for

Subroutines.

WRITING THE PROGRAM

Getting into the program

Now you have an overall idea of what the program will be like, you can start thinkingabout
each part in more detail. You have already seen on pages 16 to 18 how theinitialization
section works. The next eight pages describe how the other main parts of the program

work.

Description and feedback

Every go, the computer must tell the player where he is and the directions in which he can
move. It must also tell the player what happened as a result of his last instructions. Thisis
the description and feedback section and it looks something like this. See if youcan
identify each part in the program listing on pages 35 to 37.

0 90-PRINT—TITLE-OFBANE" -~ = o |
100 PRINT *-------—--—-- . :
110PRINTYOUR LOCATIONs " .

© 120" PRINT USi(RHT

2 180 FOR 1=1 70 LEN(RS(RHYY
150 PRINT MIDS(R$(RM),1,1)5","

=

“NWE"-so
LENRS(57)is 3.

RM s the number of the location the player
1sin. You must remember to set a starting
value for this in the initialization routine, (For
Haunted House 57 is the starting value for
RM, see line 2090).

The computer looks in D§ (the array
containing all the descriptions) and prints
what it finds in the box with the value RM.

Looks at the length of the string in box RMin
the routes array, R$. The computer then
loops round this number of times, printing
out each character in R§(RM) in turn,
putting a comma and a space between each
one.

Loops round to see if there isan object with
azero flagin the location (i.e. a visible
object) and prints out its name if there is.

M$ is a variable used to contain messages

o 190 IF L(I)=RN AND F(I)=0 THEN PRINT | o

II ns ¥ "

the computer has for the player, as a result
of instrucdons given in the previous go.
Look for M$ in the program listing on pages
33 to 37 and see how different messagesare
put into M$ depending on what the player
typed.

Atthe beginning of each go, M$ is set to

o 200-NEXT | —
220 PRINT N$

(<] [

o 205 WS="WHAT?" il

- = - o

Urgent

player from

Right-1'll take
“"WHAT?" out.

“WHAT?", so if there is no new message to
replace this, the computer just prints
“WHAT?"

The input section

An important feature of adventure games is the way the computer responds to instructions
typed into it by the player. Haunted House, like many adventures, limits the playerto
two-word sentences, plus a few special one-word commands such as HELP. The next
section of your program must ask the player for instructions and then tell the computer
what to do with them.

To start with the computer needs to split the player’s input into two words which itcan
then check against the words it has in its memory. The “word-splitter” routine used in
Haunted House works by scanning the player’s input until it finds a gap in the letters. Itis
listed below with a few extra lines so you can type it in by itself and see it working.*

100 CLS -| Gets player's instruction and puts

110 PRINT "PLEASE TYPE SOMETHING" itin Q$. Sets up two new string

120 INPUT B% variables: V$ and W$.

i‘;‘(}) ::=n . Looks to see how many
characters there are in Q$and

150 FOR I=1 TD LEN(E$) starts a loop which goes round this
many times.

Looks through Q$ for a space. Ifit
finds one and V§ is still empty, it
puts all the letters to the left of the
space into V.

160 IF MID$(Q¢,1,1)=" " AND V$=]
“" THEN V$=LEFT$(@$,1-1) 1

OK I'll put

I've found

this part / ~
. aspace /
n V$ p These line numbers
do not correspond
to numbers in main

program listing.

ntinues to look through Q$ until
it finds a letter following a space.
It then takes everything to the
right of this space and puts itin
W$. (This means it doesn't matter
how many spaces the player
types between his two words.)

170 IF WIDS(BS,1+1,1)0" * AND V$()** THEN WS=NID$ _
(88, 1+1,LEN(D$)-1) ; I=LEN(08) When Vand Wi are both filled,

the loop counter is set toits
maximum value to end the loop.

180 NEXT 1 '|
190 IF W$="" THEN V$=0 If the computer didn't find a gapin

$
= the letters then V$ and W$ will

% . y still be empty when the loop has
29(;?) :*;1 NTT”E‘;’EI R‘;’;E ';g‘]')'ffv:ms finished. It then takes the whole of
< : it Q% and putsitin V$,
220 PRINT “SECOND WORD=";W$
230 IF Ws="" THEN N$="YOU ONLY TYPED ONE WORD" B o e
240 IF W$="" AND V$="" THEN M$="YOU DIDN’T TYPE word-splitter by itself. It prints out
ANYTHING" = messages depending on what
250 PRINT M$ you typed in. Run the program
260 STOP g and see what happens.

*NB This will not work on Sinclair (Timex) computers. See pages 38 or 39.

21

WRITING THE PROGRAM
Analysis of input

The computer now has the player’s instructions stored in two strings V§ and W$, which
stand for “verb string” and “word string”. Its next job is to check these against the words
you have given it in the initialization procedure on page 66. It assumes the word in V§isa
verb and loops round seeing if it matches any of the verbs in the array V$(). (Notethe
difference between the string variable V§$ and the array V§()-they are completely
different things to the computer, so make sure you don’t confuse them.)

The computer then loops round in the same way trying to match up W$ with one ofthe

words in the array O$().

Here is the section of program which checks for a match between the player's words

and the words in the computer’s memory.

this case, VB= 10.

VBisanew variable set up to record the
box number containing the matching verb.
Ifthe player typed GET, for example, the
computer looks through V$() until it
reaches box 10 where GET is stored. So, in

CETE] CIC\CICEL
a = %

20 FOR I=1 TO V

30 IF V$=Y$(I) THEN VB=I
40 NEXT I _Su
30 0B=0

60 FOR I=1 TO W

70 IF W$=0$(I) THEN 0B=I
80 NEXT I

What if the words don’t match?

If no match was found, then VB and OB will
still be zero. The computer takes thisas
meaning that box zero in the array contains
the match for the player’s word. But when it
looks there to find out what the matching
word is it doesn't find anything because you
left this box empty when filling the arrays

1

I
f
=

|

{

The computer loops round V times (Vis the
number of verbs in the computer's
memory), comparing the player's verb with
each of those in its memory. Ifit findsone
that matches, it sets VB to the appropriate
number.

The loop for W§ works in the same way,
using OB to record the box number of the
matching word.

Silly combinations

Notice that this matching-up process only
checksif the two words are inthe
computer’s memory. It doesn’t check tosee
if the combination of words makes sense. A
silly combination such as UNLOCK
CANDLE gets through this stage of the
program, but will be rejected later on when
e computer tries to carry out the action. It
is much quicker just to check the separate
vords at this stage than to tell the computer

Atthe end of this section of the program,
the computer has a value for VB and avalue
for OB. You can see what it does with these
onthe next page.

Setting up error messages

The computer can use the values of VB and
OBto seeifthe player needsto be senta
message saying his instructions are no
good. This part of the program is like afilter
or grader. The player's instructions are fed
through a series of tests. If they don'’t pass
one of the tests, a new message is put in M§$.
If they pass through all the tests, M$ still
contains the message “WHAT?” which was
set up in line 220. (Remember that, at this
stage, the messages are just set up, they are
not printed on the screen and may be
changed again later in the program
anyway.)

Here are the program lines which set up
the error messages in Haunted House —see
if you can find them in the main listing. You
will need similar lines if you are writing your
own adventure.

Remember the message
in M$ might be changed
againlateroninthe

program.

The first test looks to see if there is a word in
WS (i.e. that the player typed two words)
and then checks if the value for OB is zero.

This line is to overcome a problem. You
cannot GOSUB on a value of zero. But
different BASICs vary in the way they cope
with being asked to do this. Most of them
ignore the GOSUB and carry onto the next
line. Some, however, such as the BBC,

® IF W$>"* AND DB=0 THEN M$="THAT’S SILLY':

object to the zero and produce an “on
range” error. To get round this, VB is
changed from zero to a value greater than V
(the number of verbs in the computer’s
memory), and the computerissenttoa
“dummy” subroutine.

® IF N$="" THEN M=

I need
.fwo words.

This line sets up ame

only typed one word and so W$ is empty. (If
the word is one of the allowed one-word
commands, this message will be changed
later in the program.)

You can't
“kill ghosts"

This line sets up a message if the computer
doesn’t have the verb in its memory, but
does have the object.

make sense.

If the computer doesn'’t have either of the
player's words in its memory it sets up this
message.

23

WRITING THE PROGRAM

= i S NN
IF-VB{V-_AND-DB0-AND-CLOB)<»1-THEN H$=.
© "YOU DON'T H_IWE "% (0R)

You don't
have candle.

Override conditions

Sometimes things happen in an adventure
which prevent the player from doing
anything until he has dealt with them. In
these circumstances, instructions which
would normally be valid need to be
overridden, so the computer needs
program lines which set flags* inits
memory to tell it that special conditions
apply.

In Haunted House, lines 420 to 450 are
override conditions. You can see themon
the right, with an explanation of how they
work.

e e -]
© 420 1F FI26Y=1 AND RN=13 AND RND(3}<)T
o AND VB{>21 THEN M$="BATS ATTACKING'": ©

I 607090 °
430 IF RM=44 AND RND{2)=1 AND F{24){}1

o THENFC2D)=t o
440-TF F(0)=1 THEN LL=LL-1

—_ i

Stop work
everyone -

Bats attacking

*See page 18 for more about flags.

© 450 IF LL{! THEN F(0)=0 °h

Ifbatsare present, player is in Rear Turret
Room, random number is not 3 and player
hasn'tused verb 21 (SPRAY) in his
instructions, then M$ is set to “"BATS
ATTACKING" and player cannot go any
further in the game.

Line 430

Ifplayer is in Cobwebby Room, random
number value is 1 and vacuum cleaneris
switched off, then flag is set for paralysing
ghoststo appear, i.e. F(27)issetto 1.

Line 440

If candle is lit, then light limit counter, LL, is
decreased.

Line 450

IfLLis zero, then candle on/off flag, F(0), is
set to zero.

Perhaps you can think of other override
conditions which could be added here.

Branch to subroutines

The computer’s next task is to attempt to
carry out what the player wants to do. Ifit
had to search through every possible action
until it found the one the player wanted each
time, the game would be very slow and
boring. To avoid this, you use lots of
subroutines - one for almost every verb on
the verb list. (A few, such as GET and TAKE,
can share the same one.)
YoucanthenuseanON. .. GOSUB lineto
tell the computer to branch to a different
subroutine depending on the value of VB.

ON VB GOSUB 500,570, 640, 640, 640, 640, ©
-‘ul-:v'n:v‘u'l'"&""'!'!,“l-l_l"l"ll"l' e
e 1180,1220,1250,1300,1340,1380,1400, e
H307 4601430151074 590

How the ON. . .GOSUB Iline works

The ON. .. GOSUB line on the opposite page works like this. If VB=1 the computer goesto
the first line number listed, if VB=2 it goes to the second, if VB=3 it goes to the third and so
on. Notice that the last line number listed is a “dummy” subroutine for VB=V+1 (the value
of VB when no matching verb was found in the computer’'s memory). The line it is sent to
just says RETURN and so sends the computer straight back up the programagain.

Look at the subroutines on pages 82 to 84 and see if you can work out what they alldo.
Here is the procedure for LIGHT (VB=19) as an example. You will find it at lines 1340-1370.

1. Ifthe object

¢ 3....AND player is not
word in player’s carrying object 8 '
instructions is (candlestick). ..

“candle”.

5.If objectis
4....thenthis message candle and
is put in M$. playeris
carryingit. . . 6....AND
player is not
carrying object 9
(matches). ..

8.If objectis
candle and
playeris
carryingit. ..

~-49....AND
playeris
carrying
candlestick
matches. ..

1....thenthis message
is putin M$.

<fg%’”, !

IF OB=17 AND (179¥=1 AND C(9)=1 AND C(8)+1
THEN M#=H$(11):F (0} =1

11....and candle or/off
flagischangedto 1 to
show itis lit.

10.. . .then this message
goesin M$. H$ () is used
when messages would
make line too long.

What happens if the objectis notcandle? Back to the main program

Ifthe object the player wanted to use was Although some of the verb routines are
not CANDLE, but one of the others inthe longer and more complicated than this one,
computer’'s memory, suchas DOOR, then they all work in a similar way: the value of

the message in M§ isunchanged fromwhen OB is checked, a special message is setup
itwas setup inline 220. When thecomputer if necessary and then the computer returns
returns to the main program and finds the to the main program. It checks the light limit

instruction PRINT M$ it will print the atlines 470 and 480 and is then sent back to
message “WHAT?”. the description and feedback section. Here

Notice thatthereisnoneed tosetupa it prints out the message it has putin M§and
message saying the candle isn't there, as waits for the next set of instructions from the
this is already covered in the error player.

messages section. 25

26

WRITING THE PROGRAM
The GO subroutine

The subroutine for the verb GO is so large
and important in an adventure game you
could almost think of it as a sub-program.
Seven verb commands are directed to it —
GO, N, S, W, E, Uand D. This routine isalso
special because it responds to single-letter
direction commands as well as two-word
ones. Youdon'’t have to include this facility
in your program, but it does help make the
game quicker and more interesting to play.
If you've played many adventures you will
realize how tedious it is to have to type GO
NORTH etc. every time.

This is how the GO routine works.

This is how the
GO routine works.

640 D=0
6350 IF 0B=0 THEN D=VB-3
660 IF 0B=19 THEN D=1
670 IF 0B=20 THEN D=2
680 IF 0B=21 THEN D=3
690 IF 0B=22 THEN D=4
700 IF 0B=23 THEN D=§
710 IF 0B=24 THEN D=b
720 IF RM=20 AND D=5 THEN D=1
730 IF RM=20 AND D=6 THEN D=3
740 IF RM=22 AND D=6 THEN D=2
750 IF RM=22 AND D=5 THEN D=3
760 IF RM=36 AND D=6 THEN D=1
770 IF RM=36 AND D=5 THEN D=2
780 IF F(14)=1 THEN N$="CRASH' YOU FELL OUT OF THE TREE'®
:F(14)=0:RETURN
790 IF F(27)=1 AND RM=52 THEN M$="GHOSTS WILL NOT LET YOU
HOVE*" :RETURN
800 IF RM=45 AND‘C(1)=1 AND F(34)=0 THEN M$=HS$(2):RETURN
B10 IF (RM=26 AND F(0)=0) AND (D=1 OR D=4) THEN M$="YOU N
EED A LIGHT*:RETURN
820 IF RM=54 AND C(15)<>1 THEN N$="YOU'RE STUCK'®":RETURN
830 IF C(15)=1 AND NOT(RM=33 OR RM=54 OR RM=55 OR RM=47)T

You can see now why
directions were
included on both the
verb and the object
lists.

HEN M$=H$ (3) :RETURN

BA0 IF (RN>26 AND RN(30) AND F(0)=0 THEN M$="TOO DARK TO

MOVE® : RETURN

First, a variable D is set up to hold

information about the direction in which the

player wants to move. Its values 1to 6
correspond to north, south, west, east, up
and down.

The next line checks to see if the player just
typed one word and then gives D a value
depending on the value of VB. (Notice that
by taking 3 away from VB, the computer
gets values for D which correspond to those
inlines 660t0710.)

The next six lines check if the player typed
atwo-word direction instruction. They use
the value of OB to set the value of D.

Asthisis not really a 3D adventure, the UP
and DOWN instructions need tobe
converted into north, south, east or west.
Lines 720 to 770 do this. (If you check back
to the master plan on pages 62 to 63, ycu will
see that this does work.)

Lines 780-840

F(14)=1,s0
he'sup the
tree !

The computer also needs to check ifthere
are any special conditions which affect the
player’s ability to move. For example if

F(14)=1, then the player is at the top of the

tree. If he tries to move without first

climbing down, he gets a message saying

he has fallen.
Checking for walls

If the move has not been stopped
by any of these special
conditions, the computer must
check that there isn’t a wall or
anything else blocking the way.
Here are the lines which do this.
They look quite complicated at
first sight, but if you look carefully
at each part, remembering what
all the variables are, you should
be able to see what is happening.
850 F(35)=0:RL=LEN{R$ (RM))—J
860 FOR I=1 TO RL
870 US=MID$(R$(RM),I,1) -
880 IF (U$="N" AND D=1 AND F{35)=0:
THEN RM=RM-B:F {35)=1
890 IF (U$="S" AND D=2 AND F(35)=0:
THEN RN=RM+8:F{35)=!
900 IF (U$="W" AND D=3 AND F(35)=0:
THEN RM=RM-1:F{35)=1
910 IF (U$="E" AND D=4 AND F(35)=0:
THEN RM=RM+1:F(35)=1
920 NEXT 1
930 M$="0K"
940 IF F(35)=0 THEN M$="CAN’T GO]_'
THAT WAY"
950 IF D{1 THEN M$="60 WHERE?" —J
960 IF RM=41 AND F{23)=1
THEN R$(49)="5W":M$-"THE DOOR
SLAMS SHUT!'":F(23)=0
970 RETURN

=
ot

Ifthe player is in location 52 and the ghost
flagis “on” then a message is sent to say he
cannot move. Each of these conditions
returns the computer to the main program.
See if you can work out what the rest ofthe
lines in this section do.

Thisis aflag for the computer to use toregister

RL is a new variable which holds the length of the
string which it finds in RE(RM). (This string isthe
routes, NSW etc., for the location the player isin.)

:whether it has found the exit the player wants.

Computer loops round RL times.

Each loop, computer takes one of the charactersin
R$(RM) and temporarily calls it U$.

It then runs a series of testson Uf and D. Ifthe
player's direction instruction matches an exit in the
location he isin, then the value of RM is changed to
move him to the appropriate place. F(35) is then set
to 1 to stop the computer trying to change RM again
on another trip through the loop. (If you think

r carefully, you will see that this could be possible as

the computer uses its new value of RM in line 870.)

If you check the master plan, you will see how
adding or subtracting 1 or 8 moves the player to the
correct next location.

Atthe end of the loop, M$ is set to “OK". Thiswill

=4 replace the "I NEED TWO WORDS" message set

in the error messages if the player typed aone-
word direction.

If F(35) is still zero, then the direction the player
wants to go is not allowed and M$ is changed to say so

IfDislessthanone (i.e. it wasn't assigned a value in

=lines 650 to 770), then M$ is changed to "GO WHERE?"

This line makes the front door a “once-only" route.
When the player enters location 41 (the lobby), the
exits from location 49 (front porch) are changed
from "NSW" to "SW", M$ is set to "THE DOOR
SLAMS SHUT" and the flag for the front door is set

to zero to show the computer it is now closed. (The
routes from location 41 do not need to be changed
because Swasn't included in them in the first place.)

27

28

MAKING CHANGES

Changing the program

You can change the program in thisbook as
much as you like, either to produce
variations on the haunted house theme orto
create games with completely different
settings, descriptions, objects, verbs and
messages. Remember that the more you
change, the more complicated it will get as
you will have to think about how everything
affects everything else.

If you are going to write a new game,
using this program as a guide, then you
should plan it as described on pages6 to 15.
It is worth spending the time planning out
your game properly as you are less likely to
find it full of mistakes when you come to run
the program.

Itis a good idea to start by making small
changes first to see what happens. If you
store the master program on tape, youcan
make changes, test them and adapt them
without losing the original.

How much spare memory
have you got?

The Haunted House program itself

occupies about 7K of RAM before it is run. It
then needs a further 3%2to 4K for the arrays
to store the data. Your computer will take
some memory for its own internal use —up
to 3K on some models —and it willusea
further 1K or more for the screen. (The
Spectrum uses 7K which is why Haunted
House won't fit into the 16K model.) So, if
you have a 16K computer, you won't have
much memory left over, and most of the
changes you make will have to be
replacements rather than additions.

Longer descriptions

If you have more than 16K, one of the easiest
ways of making the game more interesting
to play is to add longer descriptions.
Instead of “impressive vaulted hall” for

instance, you could say something like “You
have entered a vast, vaulted chamber with
pillars extending many times your height
above you. Light filters in from the eastand
there appears to be a doorway inthe
distance tothe west. . .”

Add a time limit

Haunted House already has a time limit on
the life of the candle. You could add an
overall time limit to the game as well by
getting the computer to count the number of
turns the player has had and stop the game
ata preset number.

You can do this by adding to line 70 and
putting an extra line at 485 like this.

70 V=25:W=36:6=18:T=0

Youmay not need to
dothisasnotall
computers need new
variables to be setup
before they can be
used.

485 T=T+1:1F T>200
"MIDNIGHT HAS STRUCK.
YOU?VE TURNED INTO A BAT":STOP

You can change this number to -
anything you like.

Puzzle

Can you think how to put a limit onthe
number of objects that can be carried at
any one time? (You will have to adjust the
scoring routine as well.)

Adding sounds

This is an effective way of adding tothe
game without having to make complicated
changes. You will need to know how your

=
.~
(7 A

“’(/'\S"'"'

computer’s sound instructions work. Test
some sound routines out first to make sure
they are what you wantand thenadda
GOSUB instruction to the line where the
action occurs, eg IF RM=46 AND C(1)=1
THEN M$="SOMETHING SCARY IS
HAPPENING”: GOSUB 6000
You could add sounds for the front door
slamming, the secret wall breaking, the key
turning in the door, magic happening when
you use the magic word and so on. This
chart gives a few sound routines for various
computers. The only limit on the number
you can add is memory.

POKE 36877,130

FOR L=15 TD 0 STEP -1
POKE 36878,L

FOR M=1 TO 2:NEXT N
NEXT L

POKE 36877,0

POKE 36877,130

FOR L=15 T0 0 STEP -1
POKE 36878,L

FOR M=1 TO 20:NEXT M
NEXT L

POKE 36877,0

POKE 36878,15

FOR 1=160 TO 240 STEP S
POKE 36876, 1

FOR M=1 TO 100:NEXT N
POKE 36876,0

POKE 36878, 15

FOR 1=1 T0 10

POKE 36877,200

POKE 36877,0

FOR N=1 TO 400:NEXT A
NEXT 1

POKE 36878, 15

FOR 1=1 70 2

POKE 36876, 200

POKE 36876,0

FOR M=1 TO 400:NEXT M
NEXT 1

FOR 1=5 10 40 STEP 3
BEEP 0.2,1
NEXT 1

FOR 1=1 T0O 10

BEEP 0.01,0.01

FOR M=1 TO 100:NEXT N
NEXT 1

FOR L=-15 T0 0
SOUND 0,L,5, 1
NEXT L

FOR L=-15 T0 -8
SOUND 0,L,5,0.6
NEXT L

FOR 1=40 TO 160 STEP 5
SOUND 2,-15,1,5
NEXT 1

FOR I=1 T0 10

SOUND 0,-15,5,1

FOR M= TO 1000:NEXT N
NEXT 1

SOUND 2,-15,100,2
FOR M=1 TO 1000:NEXT N
SOUND 2,-15,100,2

FOR 1=50 T0 230 STEP 10
SOUND 1,2
NEXT 1

SOUND 180.1
FOR M=1 TO S00:NEXT N
SOUND 180, 1

POKE 5429, 15:POKE 54277, 14

POKE 54278,200:POKE 34274,129
POKE 54272, 10:POKE 54273,30

FOR Le13 10 @ STEP-1:POKE S42%,L
FOR T=1 10 10:MEXT: NEXT

POKE 54296, 15:POKE S4270,120
POKE $4277, 1301POKE $4274,33
FOR W10 10 190 STEP 10

POKE S4272,8POKE 342730
FOR Tel 10 30:NEXT:RENT

PORE 54294,0

POKE 54296, 15:POKE 54277,14

POKE 34270,200:POKE 54276,129
POKE 54272, 10:POKE 34273,30

FOR L=13 T0 0 STEP-1:POXE 54296,L
FOR o] 10 SO0:MEXT:NEXT

FOR (=1 T0 S

POKE 5429, 15:POKE 34277,112

POKE 54778, 240: POKE 54206,129

POKE $4272,10:POKE 54273, 30

FOR L=13 TO 0 STEP -1:POKE 5429,
LaExr

FOR Tel TO J00:NEXT:NET

FOR [=1 T0 2

POKE 5429, 15:POKE 34277,134
POKE 34278, 248:POKE 5427433
POKE 54272,10:POKE 54273, 30
FOR T=1 7O 10:MEITIPOKE 3429,0
FOR Tl TO 300:METT:NEXT

MAKING CHANGES

Scoring = V
Addli umbers. =
Haunted House has a very simple scoring = . 07@ £

system, awarding one point for each object DIN T(6)

the player is carrying. You could changeto FOR 11 T0 6
amore interesting system, such as basing

the score on the value of the object. If you READ T(I)
assume that the objects are numbered in NEXT 1
descending order of value, then the

painting will be the most valuable and the

Dimensions new
array T withG

spaces (i.e. number
of gettable objects).

key the least. If you change line 1530like Also change line 1530 as follows:
this: 1530 IF C(I)=1then S=S+T(I)
1530 IF C(I)=1 THEN S=S+G—1 Penalties

then the painting will be worth 18—1=17 So far, the scoring :
and the key 18—18=0. (G is the number of routine has only :
gettable objects and I is the number of the counted plus points

object the player is carrying.) This makes and notbeen

the key valueless as an item of treasure but affected by silly

of great value as a useful object because things the player

without it, the player would not be able to might try todo. You

get the painting or the goblet. could add a penalty

system quite easily by using a counter, say
MK, for mistakes. Whenever the player
does something really silly, youadd to MK
and then subtract it from S when the scoreis
worked out at line 1530. If the player falls out
ofthe tree, for instance, you could award
one (or more) penalty points like this:

780 IF F{14)=1 THEN M$="CRASH YOU FELL OUT
OF THE TREE":F(14)=0:MK=MK+1:RETURN

Don't forget that some computers need
new variables to be defined before they can
be used. You can do this by adding MK=0
to the variables in line 70.

Saving the game

It would be nice to
be able to switch
off part way
through a game

If you wanted a more flexible system (and and then carryon
you have enough memory), you could set up later from where

an array to contain object values inthe you left off. With

initialization routine, like this: long, complicated
games thisisavery
important feature

and you caninclude it by adding SAVE and
LOAD to the verb list. In line 70, change the
value of Vto 27 and add the two new verbs,
separated by commas, to the end ofline

DATA 20,20,30,11,16,25,32,8,25,4,9,17,3,0, 1665. You will also need to change the ON
30 10,12,4,9 GOSUB line at line 460.

Put the line numbers of the twonew
subroutines (one for SAVE and one for
LOAD) between the last two numbers in line
460 so that they read:

... 1510,3000,4000,1590

First new number Second new number

Then add the new subroutines like this,
checking your computer’'s manual to make
sure the wording is correct.

3000 INPUT IS YOUR CASSETTE
READY TO RECORD";Y$
3010 IF Y$<>*Y" THEN 3000
3020 OPEN FILE FOR OUTPUT FROM
CONPUTER

Replace this line
with your

computer’'s own
instructions. You

3030 PRINT #1,RNM

This saves the
roomthe
playerisin.

This loop saves
| positions of
gettable objects.

3040 FOR I=1 TO 6
3050 PRINT #,L(I)
3060 NEXT I
3070 FOR I=1 TO W
3080 PRINT #1,C(1),F(D)
3090 NEXT I
3100 CLDSE
3200 RETURN

64000 INPUT *ARE YOU READY TO LOAD";Y$
4010 IF Y$COO'Y" THEN 4000
4020 OPEN FILE FOR INPUT TO COMPUTER
4030 INPUT #1,RN
4040 FOR I=1 TO 6
4050 INPUT #1,L¢])
4060 NEXT I
4070 FOR I=1 TO W
4080 INPUT #1,C(D),F(D)
4090 NEXT I
4100 CLOSE
4200 RETURN

This saves items the
player is carrying and
the state of the flags.

Note that this save routine does not save the
descriptions and routes in the game. This
means that the rooms and routes altered by
the player’s actions will return to their
original state — the secret wall will be
rebuilt, the door relocked and so on. (The
ghosts are probably responsible.) You
could save the D$ and R$ arrays if you
wanted to, by adding extra loops to each of
the SAVE and LOAD routines.

Do you givein?

Like most adventures, Haunted House
contains traps for the player which can only
be avoided by using a certain objectina
certain way. If the player doesn'’t have that
object he is stuck. A “quit” feature would be
useful in this situation so the player does not
have to press BREAK or ESCAPE to end the
game. You cando this by adding QUIT to
the verb list and putting in a new subroutine,
as for SAVE and LOAD described onthe
left.

Youdon't need this if you
haven't put the SAVE feature
in.

You must remember to change the
value of V in line 70, add QUIT to the end of
line 1665 and insert the new subroutine line
number in line 460, putting it in the second
to last position.

The QUIT subroutine should be
something like this:

5000 INPUT "WANT TO QUIT";@$
5010 IF @$<>"Y" THEN RETURA
5020 INPUT "LIKE TO SAVE GAME FIRST",@%
5030 IF @¢="Y" THEN GOSUB 3000

5040 PRINT "THANKS FOR PLAYINE"
3050 END

Notice that there isno RETURN at the end of

this subroutine. This is usually against the

rules in BASIC but, in this case, the

computer cannot get confused because the
program will no longer be running when it
reaches line 5050. 31

#*Ifyou have a BBC, you may need to replace semi-colon with a comma.

MAKING CHANGES i
Debugging your adventure

If you write your own version of Haunted House or use the routines in it to make anew
adventure, then you are quite likely to make mistakes. Finding mistakes and puttingthem
right is called debugging. Here are some of the problems you might come across and some
suggestions for fixing them.

32|

Comma missed out.

Error here.

enough space when you DIMmed the array or you

accidentally put an extra item in the DATA statement FOR 1=1 70 4

(perhaps by putting in an extra comma) and thencounted READ A(I)

this extra item when working out the number for the READ NEXT I

loop. DATA AXE,COFFIN,BLOOD,KEY

Ifyougetanarray error, it meansthatyoudidn'treserve |\ o ., T——

This could happen because the program is bemgdirectedfe thawrong subrontme by

the ON GOSUB line. Check each number in this line against the subrout

number. If these are all correct, check the DATA state

order coincides with the order of the subroutines.
If the program is going to the correct verb subroutin t

correct order, check that there isa RETURN line at the ¢

missing, the computer will “fall through” ﬂxepmqmmmmmmmhdownwlnch

may produce some strange results.
Ifnoneoftheaboveﬁungssolvestheproblemthenqheckthmnghmmmonsm

the subroutine carefully. You might have missed something out or got a sign wrong or

used the wrong variable by mistake. Check the override conditions and flags which

occur earlier in the program too.

If an object appears in the wrong place then you've probably made a mistake in thedata
for array L. If an object doesn’t appear at all, check the flag array. You must have setthe
flag with that object number to 1, which means that the object is there but the computer
won'ttell you. You need to set the flag to zero. Check the initialization routine wherethe
flags are set up and then the flag references throughout the program.

|

PROGRAM LISTING

The Haunted Houselisting

This is the program listing for the Haunted House adventure. It should run onany
computer which uses Microsoft-style BASIC and which has a minimum of 16K of RAM. You
may have to make a few minor changes for your computer - look out for comments nextto
certain lines in the listing. If you have a BBC Model A, use mode 7.

This listing will not work as it is on Sinclair computers. If you have a Spectrum, turnto
page 86 for changes to make to the program. If you have a ZX81 there is a special listing for
you on pages 87 to 93.

Asthis is a long program, you will have to be extremely careful when youtype it in. The
smallest mistake could prevent it running properly and will be very difficult to find once
you've typed the whole program in. Check each line as you go, especially the ON GOSUB
and DATA lines. Some of the program lines are so long that they take up two or more lines
onthe printed page. Look out for these and make sure you do not press RETURN or ENTER
until the end of the program line.

If you have a VIC or C64, change

CLS to PRINT CHR$(147). If you ‘ °
10 REM HAUNTED HOUSE ADVENTURE Ravoso Applectiang® 1 Ld
20 REM #Ebbditddiiidbibibees HOME. .-

30 REM THIS VERSION FOR ‘MICROSOFT‘ BASIC (
40 REM REQUIRES A MINIMUM OF 16K \/.\ i
50 REM SELECT ‘TEXT MODE' IF NECESSARY
50 REM 333 iirsiiiiibiiibadiiasiisg
65 CLEAR 100
70 V=25:W=36:6=18
0 GOSUB 1600 objects.
90 CLS:PRINT "HAUNTED HOU

100 PRINT "-==-=e=meme- y

110 PRINT "YOUR LOCATION" S i

120 PRINT D$ (RM) ' 232322§;§3§§2213§::f“ y
130 PRINT "EXITS:"; . ’ (\./ "’c,‘
140 FOR I=1 TO LEN(R$(RM)) e —

150 PRINT MID$ (R$(RM),I,1);",": See page 68 to find out
160 NEXT I how the descriptionand | — =
170 PRINT feedback section works.] y
180 FOR I=1 TO G
190 IF L(I)=RM AND F(I)=0 THEN PRINT "YOU CAN SEE ";0$(I);" HERE"
200 NEXT I

(| 210 PRINT * zasz®
\>>,2zo PRINT M$: Ms="WHAT?"

Line 70 sets up the
variables. V is number of
verbs, W is number of
object words, Gis
number of “gettable”

DESCRIPTION & FEEDBACK

230 PRINT "NHAT WILL YOU DO NOW*:INPUT s

280 V$=""1W$="":VB=0:0B=0

250 FOR 1=1 TO LEN(B$)

260 IF NID$(B$,1,1)=" * AND V$="" THEN V$=LEFT$(0s,I-1)

270 IF NIDS(QS,1+1,1))" "AND V$C)"* THEN W$=NIDS$(Q$,1+1,LEN(QS)-1): I=LEN(QS)
280 NEXT I

290 IF N$="" THEN V$=0$
300 FOR 1=1 T0 ¥

310 IF V$=V$(1) THEN VB=1
320 NEXT I

130 FOR I=1 TO W ¥ sk
340 IF W$=0$(1) THEN OB=I 33

See pages 69-70 to find
- out how the input section
.- works.

INPUT & INPUT ANALYSIS

ERROR MESSAGES
SUBROUTINES OVERRIDE CONDITIONS

BRANCHTO

VERB 2

VERBS 3-9

34

VERB 1

4

| PROGRAM LISTING

\ 330 NEXT I

7360 IF W$)'" AND DB=0 THEN M$="THAT'S SILLY" e
370 IF VB=0 THEN VB=V+1 B £)
380 IF W$="" THEN M$="I NEED TWO WORDS" #

See pages 71-72 to find
out how the error

messages section
works.

390 IF VB>V AND OB>0 THEN M$="YOU CAN'T '"+@$+"""
400 IF VB>V AND 0B=0 THEN M$="YOU DON'T MAKE SENSE" S

410 IF VBCV AND 0B>0 AND C(0B)=0 THEN M$="YOU DON'T HAVE ‘"+W§+"'
420 IF F(26)=1 AND RM=13 AND RND(3)<>3 AND VBC>21 THEN M$=H$(1):60TD 90
430 IF RM=44 AND RND(2)=1 AND F(24){>1 THEN F(27)=1

440 IF F(0)=1 THEN LL=LL-1

Use your computer’s

7455 IF VB>15 THEN BOTO 465

_ 620 GOSUB 1380
630 RETURN

450 IF LL(1 THEN F(0)=0

form of RND here.

450 ON VB 60SUBS00,570,640,640,640, 640v640.440,640,980,980,1030,1070,1140,1180
463 GOTD 470

470 IF LL=10 THEN M$="YOUR CANDLE IS WANING!®
480 IF LL=1 THEN M$="YOUR CANDLE 1S OUT!"
490 GOTO 90

500 PRINT "WORDS I KNOW:*
510 FOR 1=1 TO ¥

520 PRINT V$(I);*,"

| :ig HS"‘EHP;INT Take extu;:hsi)lecialcare
] o to type this line
550 BOSUB 1580 correctly. It will mess up
540 RETURN the game if you get it
wrong.

370 PRINT "YOU ARE CARRYING:"

580 FOR 1=1 TO 6

590 IF C(I)=1 THEN PRINT D$(I);",";
600 NEXT I

610 M$="":PRINT

The branchto

subroutines section and
640 D=0 the verb subroutines are
650 IF DB=0 THEN D=VB-3 ?gplained on pages 72-

660 IF 0B=19 THEN D=1

670 IF DB=20 THEN D=2

680 IF 0B=21 THEN D=3

690 IF DB=22 THEN D=4

700 IF 0B=23 THEN D=5

710 IF 0B=24 THEN D=6

720 IF RM=20 AND D=5 THEN D=1
730 IF RM=20 AND D=6 THEN D=3
740 IF RM=22 AND D=4 THEN D=2
750 IF RM=22 AND D=5 THEN D=3
760 IF RM=36 AND D=4 THEN D=1
770 IF RM=36 AND D=5 THEN D=2
780 IF F(14)=1 THEN M$="CRASH' YOU FELL DUT OF THE TREE'":F(14)=0:RETURN

790 IF F(27)=1 AND RM=52 THEN M$="GHOSTS WILL NOT LET YOU MOVE":RETURN

BOO IF RM=45 AND C(1)=1 AND F(34)=0 THEN M$=H$ (2) :RETURN

810 IF (RM=26 AND F(0)=0) AND (D=1 OR D=4) THEN M$="YOU NEED A LIGHT":RETURN

You can find out how the
GO subroutine works on
pages 74-75.

VERB12 VERBS10&11

VERB 13

VERB 14

VERB 17 VERB 16 VERB 15

B20 IF RM=54 AND C(15)¢<>1 THEN M$="YOU'RE STUCK'":RETURN
J B30 IF C(15)=1 AND NOT(RM=33 OR RM=54 OR RM=55 OR RM=47) THEN M$=HS$(3):RETURN
B40 IF (RM>26 AND RM(30) AND F(0)=0 THEN M$="TOD DARK TO MOVE":RETURN ")
830 F(35)=0:RL=LEN(R$(RN)) Ve,
1
N

B60 FOR I=1 TO RL : &
If you are using a VIC 20,

870 U$=MID$(R$(RM),I,1)
880 IF (U$="N" AND D=1 AND F(35)=0) THEN RM=RM-B8:F (33)=1
890 IF (U$="5" AND D=2 AND F(35)=0) THEN RM=RM+8:F (35)=1

900 IF (US="W* AND D=3 AND F(35)=0) THEN RM=RN-1:F (35)=1 iy il

910 IF (US="E* AND D=4 AND F(35)=0) THEN RN=RM¢1:F (35)=1 characters or make sure

920 NEXT I the hspalces falli.l;lthe
= right places so the

930 M$="0K messages look better on

940 IF F(35)=0 THEN M$="CAN'T GO THAT WAY'" the screen.
950 IF D(1 THEN M$="G60 WHERE?"

;60 IF RM=41 AND F(23)=1 THEN R$(49)="SW":M$="THE DOOR SLAMS SHUT!":F(23)=0

970 RETURN

980 IF 0BG THEN M$="I CAN'T GET "+W$:RETURN
985 IF L(DB)C>RM THEN M$="IT ISN'T HERE"

990 IF F(DB)C>0 THEN M$="WHAT "+W§+"?"

1000 IF C(OB)=1 THEN M$="YOU ALREADY HAVE IT"
|| 1010 IF 0BX0 AND L(OB)=RM AND F(DB)=0 THEN C(DB)=1:L(DB)=63:N$=H$ (4) +W$
>§920 RETURN

1030 IF RM=43 AND (DB=28B OR 0B=29) THEN F(17)=0:M$="DRAWER OPEN"

1040 IF RM=28 AND 0B=25 THEN M$="IT'S LOCKED"

1050 IF RM=38 AND 0B=32 THEN M$="THAT'S CREEPY!":F(2)=0 #3434 RIC USERS ##4

040 RETURN ORIC has a restricted line length, so
. o it a line won’t fit, try:

1070 IF 0B=30 THEN F(18)=0:M$="SOMETHING HERE' 3 Liadisg ot s A

1080 IF 0B=31 THEN M$="THAT'S DISBUSTING'" b) putting variables at the start of

1090 IF (DB=28 OR 0B=29) THEN M$="THERE IS A DRAWER" the progray :fe % LEL BMSTUO GRS

1100 IF 0B=33 OR 0B=5 THEN GOSUB 1140 Wik 3 S0 T

B
1110 IF RN=A3 AND OB=35 THEN N§="THERE 1S SOMETHING BEVOND..." | rest ot the tine 1o s reprine Pot the

30 RETURN
1140 IF RM=42 AND 0B=33 THEN M$="THEY ARE DEMONIC WORKS"
1150 IF (0B=3 OR 0B=34) AND C(3)=1 AND F(34)=0 THEN M$=H$(3)

;:20 IF 0B=32 THEN 6OSUB 1030 d) split data lines into two.

Use your computer’s

1160 IF C(5)=1 AND DB=3 THEN M$="THE SCRIPT IS IN AN ALIEN TONGUE" | form of RND here.

1170 RETURN
1180 M$="0K ‘"+W$+"'"

1190 IF C(3)=1 AND DB=34 THEN M$=H$(6):IF RM(>45 THEN RM=RND(63) ol
1200 IF C(3)=1 AND DB=34 AND RM=45 THEN F(34)=1
b

1210 RETURN
1220 IF C(12)=1 THEN M$="YOU MADE A HOLE"
1230 IF C{12)=1 AND RM=30 THEN M$=H$(7):D$(RM)="HOLE IN WALL":R$(RM)="NSE"
1240 RETURN
1250 IF C(14)<>1 AND RM=7 THEN M$="THIS IS ND TIME TD PLAY GAMES"
1260 IF 0B=14 AND C(14)=1 THEN M$="YOU SWUNG IT"
1270 IF 0B=13 AND C(13)=1 THEN M$="WHDOSH'"
35

24

INITIALIZATION

w
(*2]

VERB 23 VERB 22 VERB21VERB 20 VERB 19 VERB 18

VERB 25

)| PROGRAM LISTING

1280 IF 0B=13 AND C(13)=1 AND RM=43 THEN R$ (RM)="WN":D$ (RM)=H¢$ (8) :M$=H$(9)
1290 RETURN

71300 IF 0B=14 AND C(14)=1 THEN M$="IT ISN'T ATTACHED TO ANYTHING!"
1310 IF 0B=14 AND C(14)¢>1 AND RM=7 AND F(14)=0 THEN M$=H$(10):F(14)=1:RETURN

1320 IF 0B=14 AND C(14)<>1 AND RM=7 AND F(14)=1 THEN M$="GOING DOWN":F(14)=0
1330 RETURN

40 IF 0B=17 AND C(17)=1 AND C(8)=0 THEN M$="IT WILL BURN YOUR HANDS"
1350 IF 0B=17 AND C(17)=1 AND C(9)=0 THEN M$="NOTHING TO LIGHT IT WITH"
| 1360 IF 0B=17 AND C(17)=1 AND C(9)=1 AND C(B)=1 THEN M$=H$(11):F(0)=1
\ 1370 RETURN
1380 IF F(0)=1 THEN F(0)=0:M$="EXTINGUISHED"
\ 1390 RETURN
1400 IF DB=26 AND C(16)=1 THEN N$="HISSSS"
1410 IF 0B=26 AND C{16)=1 AND F(26)=1 THEN F(26)=0:N$="PFFT' GOT THEN®
\1420 RETURN
430 IF 0B=10 AND C(10)=1 AND C(11)=1 THEN M$="SWITCHED ON":F (24)=1
1440 IF F(27)=1 AND F(24)=1 THEN N$="NHIII-VACUUNED THE GHOSTS UP'*:F (27)=0
450 RETURN
1450 IF RN=43 AND (DB=27 OR 0B=28) THEN GOSUB 1030
1470 IF RMC)28 OR 0B<25 OR F(25)=1 OR C(18)=0 THEN RETURN
1475 F(25)=1:R$ (RM)="SEN":D$ (R)="HUGE OPEN DOOR":M$="THE KEY TURNS'®
\1480 RETURN
1490 IF C(OB)=1 THEN C(DB)=0:L(0B)=RM:N$="DONE"
00 RETURN
1510 §=0:LET Mg=""
1520 FOR I=1 T0 6
1530 IF C(I)=1 THEN S=5+i
1540 NEXT I
1550 IF S=17 AND C(15)¢<>1 AND RM()S7 THEN PRINT H$(12):PRINT H$(13)
1560 IF §=17 AND RM=57 THEN PRINT *DOUBLE SCORE FOR REACHING HERE'®:S=S#2
1570 PRINT *YOUR SCORE="3S:IF S)18 THEN PRINT H$(14):STOP
1580 INPUT *PRESS RETURN TO CONTINUE*;0$
1590 RETURN \\\\\\\
11600 DIN R$(63),D$(63),08 (W) ,V$ (V)
1610 DIN C(H),L(8),F(K)
1620 DATA 46,38,35,50,13,18,28,42,10,25,26,4,2,7,47,40,43,32
| 1630 FOR 1=1 T0 6
1640 - READ L(I)
1650 NEXT I

1660 DATA HELP,CARRYING?,60,N,S,W,E,U,D,GET, TAKE ,OPEN, EXANINE, READ, SAY
1665 DATA DIG,SWING,CLINB,LIGHT,UNLIGHT ,SPRAY, USE ,UNLOCK, LEAVE , SCORE
1680 FOR I=1 TD

1690 READ V$(I)

1700 NEXT I

If you have a BBC, you
may need a comma here
instead of a semi-colon.

v

1710 DATA SE,WE,WE,, SWE ,WE , WE, SWE , WS
1720 DATA NS,SE,WE, NN, SE, W, NE ,NSH
1730 DATA NS,NS,SE, WE, NHUD SE ,WSUD, NS
1740 DATA N,NS,NSE, WE, WE, NSH, NS, NS
1750 DATA §,NSE,NSH,5,NSUD,N,N,NS
1760 DATA NE,NW,NE,W,NSE, WE,W,NS

1770 DATA SE,NSW,E ,WE NH,S,5H,NH

1780 DATA NE,NWE,NE ,NE, NE, NHE ,NHE , W
1790 FOR 1=0 10 63

1800 READ R$(I)

1810 NEXT I

1820 DATA DARK CORNER,OVERGROWN GARDEN,BY LARGE WODDPILE,YARD BY RUBBISH

1825 DATA WEEDPATCH,FOREST,THICK FOREST,BLASTED TREE

1840 DATA CORNER OF HOUSE,ENTRANCE TO KITCHEN,KITCHEN & GRINY CODKER

1845 DATA SCULLERY DOOR,ROOM WITH INCHES OF DUST,REAR TURRET ROOM

1840 DATA CLEARING BY HOUSE,PATH,SIDE OF HOUSE,BACK OF HALLWAY,DARK ALCOVE

1845 DATA SNALL DARK RODM,BOTTOM OF SPIRAL STAIRCASE,WIDE PASSAGE

1880 DATA SLIPPERY STEPS,CLIFFTOP,NEAR CRUMBLING WALL ,GLOOMY PASSAGE

1885 DATA POOL OF LIGHT,INPRESSIVE VAULTED HALLWAY,HALL BY THICK WOODEN DOOR
1900 DATA TROPHY ROOM,CELLAR WITH BARRED WINDOW,CLIFF PATH

1905 DATA CUPBOARD WITH HANGING COAT,FRONT HALL,SITTING ROOM,SECRET ROOM

1920 DATA STEEP MARBLE STAIRS,DINING ROOM,DEEP CELLAR WITH COFFIN,CLIFF PATH
1925 DATA CLOSET,FRONT LOBBY,LIBRARY OF EVIL BOOKS

1940 DATA STUDY WITH DESK & HOLE IN WALL,COBWEBBY ROOM,VERY COLD CHAMBER

1945 DATA SPOOKY ROOM,CLIFF PATH BY NARSH,RUBBLE STREWN VERANDAH,FRONT PORCH
1960 DATA FRONT TOMER,SLOPING CORRIDOR,UPPER GALLERY,MARSH BY WALL,MARSH

1945 DATA SOGGY PATH,BY TWISTED RAILING,PATH THROUGH IRON GATE,BY RAILINGS

1970 DATA BENEATH FRONT TOWER,DEBRIS FROM CRUMBLING FACADE,FALLEN anxcxuonxzf~\\
1975 DATA ROTTING STONE ARCH,CRUMBLING CLIFFTOP A &9
1980 FOR 1=0 TO 63 e T

1990 READ D$(I)
2000 NEXT I .
2010 DATA PAINTING,RING,NAGIC SPELLS,GOBLET,SCROLL,COINS, STATUE, CANDLESTIZKY
2012 DATA MATCHES, YACUUN, BATTERIES, SHOVEL , AXE, ROPE, BOAT , AEROSOL , CANDLE ,KEY

Notice that data items
are separated by
commas. If you change
the data, make sure you
don'ttry toinclude
commas in it or you will
confuse the computer.

2014 DATA NORTH, SOUTH, NEST ,EAST UP, DOWN gxatkg sure youtype the
ata in the correct order

2016 DATA DOOR, BATS, GHOSTS, DRAWER, DESK, COAT RUBBISH e

2018 DATA COFFIN,BODKS, XZANFAR, WAL, SPELLS happen when you ry to

2060 FOR I=1 TO W play the game.
2070 READ O$(I):NEXT I 2
2090 F(1B)=1:F(17)=1:F(2)=1:F (26)=1:F (2B)=1:F (23)=1:LL=b0:RM=57 : N$="0K"

\ 2095 DIM H$(14)

2100 H$(1)="BATS ATTACKING'!":H$(2)="A MAGICAL BARRIER TD THE WEST"

2105 H$(3)="YOU CAN'T CARRY A BOAT!":H$(4)="YOU HAVE THE "

2110 H$(5)="USE THIS WORD WITH CARE - 'XZANFAR'":H$(b)="#MAGIC OCCURS*"

2113 H$(7)="DUG THE BARS OUT":H$(8)="STUDY WITH SECRET ROOM"

2120 H$(9)="YOU BROKE THE THIN WALL"

2125 H$(10)="YOU SEE THICK FOREST AND CLIFF TO THE SOUTH"

2130 H$(11)="IT CASTS A FLICKERING LIGHT":H$(12)="YOU HAVE EVERYTHING"

2135 H$(13)="RETURN TO THE GATE FOR FINAL SCORE" 37
2140 H$(14)="WELL DONE - YOU FINISHED THE GAME":RETURN

38

SPECTRUM VERSION

Changes for the Spectrum

Sinclair computers use a version of BASIC Use the lines listed below to replace lines
which differs quite a lot from the BASIC on in the main program and also change the
other popular computers, so you will have main program as follows:
to make quite a lot of changes to make it 1. The Spectrum needs LET every time you
work. These changes make the program assign a value to a variable e.g. LET V=25.
slightly too long to fit into a 16K Spectrum. This affects many lines, including all the
You could, however, try adapting the ones containing IF . . . THEN, so be careful.
program to fit by cutting out some of the 2. All the string data in lines 1660, 1665,
verbs, for example, and shortening the 1710-1780, 1820-1965 and 2010-2018 must be
messages. put in quotes, like this:

1820DATA“DARK CORNER”,

3.Inlines 1790 and 1980, change the loop to
read FOR I=1TO 64. (The Spectrum won't
allow you to use the box labelled zero inan
array.)

140 FOR I=1 TO LEN(R$ (RM+1))
150 PRINT R$ (RM+1) (1);*,";

240 LET ¥$="":LET W$="":LET VB=0:LET 0B=0
250 FOR 1=1 TO LEN(B$)-1

260 IF @$(1)=" * AND X$="* THEN LET X$=08(T0 I-1)

270 IF $(1+1))" * AND X$C** THEN LET W$=8$ (I+1 TO):LET I=LEN(B$)-1

Remember that if you type in the data
in capital letters, you must play the
game using capitals — the computer
does not recognize that “GO WEST”
and “go west” are the same thing. Itis
best to keep the caps lock onaall the
time.

290 IF W$="" THEN LET X$=0¢

295 IF LEN(X$)<9 THEN LET X$=X$+" ":60TO 295
310 IF X$=V$(I) THEN LET VB=I

325 IF LEN(WS$)C13 THEN LET W$=W$+" ":60TD 325 -
405 IF 0B=0 THEN GOTO 420 /’ c
420 IF F(26)=1 AND RM=13 AND RND>.7 AND VB(>21 THEN LET M$=H$(1):60T0 90 o
430 IF RM=44 AND RND>.S5 AND F(24)<>1 THEN LET F(27)=!

440 IF F(20)=1 THEN LET LL=LL-1 il

450 IF LLC1 THEN LET F(20)=0
460 BOSUB 500%(VB=1)+570% (VB=2) +640% (VB2 AND VBC10) +980% (VB=10 DR VB=11)+
1030# (VB=12) +1070% (VB=13) +1140# (VB=14) +1180# (VB=15)
445 GOSUB 1220% (VB=14) +1250% (VB=17) +1300% (VB=18) +1340% (VB=19) +1380# (VB=20) +1400#
(VB=21) +1430% (VB=22) +1460% (VB=23) +1490% (VB=24) +1510% (VB =25) +1590% (VB=26)
B10 IF (RN=26 AND F(20)=0) AND (D=1 DR D=4) THEN LET M$="YOU NEED A LIGHT":RETURN
840 IF (RM>26 AND RM(30) AND F(20)=0 THEN LET M$="TOD DARK TO MOVE":RETURN
850 LET F(35)=0:LET RL=LEN(RS (RN+1))
870 LET U$=R$ (RN+1,1)
960 IF RN=41 AND F(23)=1 THEN LET R$(50)="SW":LET M$="THE DOOR SLAMS SHUT'":LET F(23)=0
980 IF 0BG OR OB=0 THEN LET M$="I CAN'T GET "+H$:RETURN
1190 IF C(3)=1 AND 0B=34 THEN LET M$=H$(6):IF RMC)4S THEN LET RM=INT (RND¥44)
1230 IF C(12)=1 AND RM=30 THEN LET M$=H$(7):LET D$(RM+1)="HOLE IN WALL*:LET RS (RM+1)="NSE"
1280 IF 0B=13 AND C(13)=1 AND RM=43 THEN LET RS (RM+1)="NN":LET D$ (RM+1)=H$ (8) sLET N$=HS$(9)
1360 IF OB=17 AND C(17)=1 AND C(9)=1 AND C(B)=1 THEN LET M$=H$(11):LET F(20)=1
1380 IF F(20)=1 THEN LET F(20)=0:LET M$="EXTINGUISHED"
1475 LET F(25)=1:LET R$ (RM+1)="SEN*:LET D$(RN+1)="HUGE OPEN DOOR":LET N$="THE KEY TURNS'*
1600 DIN RS (64,4) :DIN D$ (64,31):DIN O$(W,13):DIN V$(V,9)
1610 DIN CH):DIN L(G):DIN F(N)
2095 DIN H$(14,43)

ZX81 version

The program listing on the next six pages
is a special version of Haunted House for
the ZX81. It sticks as closely as possible to
the structure of the main program, so you
can follow the explanations of the
program given throughout this part of the
book. The main differences are that the

ZX81 will accept only one statement on
eachline and it does not have the
commands READ. . .DATA. The program
has been rewritten to take account of
these and other differences in the BASIC
which you will see pointed out onthe
listing.

These changes take up quite a lot of
memory space. In order to make the game
fit, the number of locations has
been cut from 64 to 36 and other data

Notice that the locations are
numbered starting with 1, as
the ZX81 will not allow you to
use the zero box in an array.

changed slightly to fit with this. The ZX81
version of the master plan is shown below.
You can find out how the data is put into the

ZX81 masterplan

1

ENTRANCE
TOKITCHEN

1 i

BACK OF | SMALL

. | ROOM

> | wiTH
RUBBISH

SITTING
ROOM

computer's memory over the page.

6

CLOSET
WITH

COAT

10

STAIRCASE

COBWEBBY
ROOM

DESCRIPTION & FEEDBACK

INPUT & INPUT ANALYSIS

40

ZX81 LISTING
How to use the program

If you look through this listing, you will
notice that the data for the game is not
incorporated in the program. The program
works by asking you to type in the data and
then saving the whole program, including
the data, ontape. You only need do this
once —next time you want to play the game,
all you have to dois load the tape.

Follow these instructions to use the
program:
1. Type in the program (very carefully).
2. Type RUN 2440.

10 GOSUB 2200

20 CLS
30 PRINT "HAUNTED HOUSE ADVENTURE®
[T | S —————————— .

30 PRINT "YOUR LOCATION:"
60 PRINT D${(RM)

70 PRINT "EXITS:"

80 FOR I=1 TO LEN(R$(RM))
90 PRINT R$(RM)(I TO I)3",";
100 NEXT 1

110 PRINT

120 FOR I=1 TO 6

140 NEXT I

150 PRINT *)
160 PRINT M¢

170 LET M$="WHAT ?"

180 PRINT "WHAT WILL YOU DO NOW"
190 INPUT B%

200 LET X¢=""

210 LET Ws=""

220 LET VB=0

230 LET 0B=0

240 FOR I=1 TO LEN{@$)-1

270 IF W$<>"" THEN LET I=LEN(B$)-1
280 NEXT I
290 IF We="" THEN LET X$=0%

310 LET F=LEN(V${1))-LEN(X$)
320 LET X$=X$+F$(TD F)

330 FOR I=1 TO V

340 IF X$=V$(I) THEN LET VB=I
330 NEXT I

S\/

300 IF LEN(X$)JLENCV$(1)) DR X$="" THEN GOTD 420

3. Now type in the data in the following

order (see page 45 for lists of data):

a) location descriptions

b) routes

c) object words

d) verbs

The program stops after each section so
you can re-enter any data which you put
inincorrectly. If, for instance, you want to
put the verb data in again, type GOTO
2720. If you want to carry on to the next
input section, type CONT, followed by
NEWLINE.

4. Now SAVE the program on tape. This will

save all the data as well.

5. To start the game, type GOTO 10. DO

NOT TYPE RUN, as this will destroy all
the variables.

6. Now input the starting positions of the

objects. When you input the last of these
(18) the program will give you your
starting location.

1. Foranew game, repeat steps 5and 6.
8. When you load the program from tape,

start these instructions at step 5.

130 IF L(I)=RM AND F(I)=0 THEN PRINT "YOU CAN SEE ";0$(I);* HERE"

The ZX81 needs LET whena
value is assigned to a variable.

230 IF 9$(1 7O I)=" " AND X$="" THEN LET X$=0$(TO I-1)
260 IF @$(1+1 TO I+41)<3" ™ AND X$<>"* THEN LET W$=Q$(I+1 T0)

D

This section looks a bit
different to the main program
because the ZX81 does not use
MID$, LEFT$ and RIGHTS to
take a section of a string.

360 IF W$="" DR LEN(WS$)>LEN(DS$(1)) THEN 6OTD 430

ERROR MESSAGES
OVERRIDE CONDITIONS

BRANCH TO
VERB 1 SUBROUTINES

VERB 2

VERBS 3-9

7420 IF W$)"" AND OB=0 THEN LET N$="THATS SILLY" fhe Drinted inse or e DagS.
430 IF VB=0 THEN LET VB=V+l Make sure you don't press
440 IF W$="" THEN LET M$="1 NEED TWD WORDS" HEWPLINE belcravihe nd of

the program line.

650 RETURN
660 PRINT "YOU ARE CARRYING:"

370 LET F=LEN{D$(1))-LEN(W$)
380 LET WS=W$+F$(TO F)
390 FOR I=1 TO W

400 IF W$=0$(I) THEN LET OB=I
410 NEXT 1 Notice that some of the
program lines are longer than

450 IF VB>V AND 0B>0 THEN LET M$="YOU CANT "+@$

460 IF YB>Y AND OB=0 THEN LET M$="YOU DONT MAKE SENSE"
470 IF OB=0 OR DB>G THEN GOTO 490

480 IF VBCY AND DBX0 AND C(DB)=0 THEN LET M$="YOU DONT HAVE "+W$ >
490 IF F(26)=0 OR RM(>S OR INT(RND#3)=2 OR YB=21 THEN GOTO 520 3
300 LET M$="BATS ATTACKING"

310 60TO 20

520 IF RM=28 AND INT(RND¥2)=1 AND F(24)=0 THEN LET F{27)=1 L

40 TF LL<1 THEN LET F(20)=0
350 GOSUB 590%(VB=1)+5660%(VB=2) +730#(VB>2 AND VB{10)+1160%{VB=10 OR VB=11)+1270%(VB=12)
+1350% (VB=13) +1440% (VB=14) +1480% (VB=13) +1540% (VB=15)+1560%(VB=17)+1640#(V B=18) +1700% (YB=19)
+1760% (VB=20) +1800% {VB=21) +1850% (VB=22) +1920%(VB=23) +1990% (VB=24) +2040% (VB=25) +2190% (VB=24)
360 IF LL=10 THEN LET M$="YOUR CANDLE IS WANING" 4
570 IF LL=1 THEN LET M$="YOUR CANDLE IS DUT"

580 60OTO 20 -
This line replaces the ON
590 PRINT "WORDS 1 KNOW" GOSUB line. which the ZX81
600 FOR I=1 TO Y can't do. It works like one long
T calculation, using the value of
610 PRINT V${I)3*, " VB. The computer looks at
620 NEXT 1 each of the brackets containing
530 LET M$="" “VB="and putsa l ifthe
bracketistrue and a zeroif it
640 GOSUB 2160 isn't. Try working through the
calculation using a particular
value of VB to see how it works.

> 330 IF F(20)=1 THEN LET LL=LL-1 j
. Y

670 FOR I=1 TO 6
680 IF C{I)=1 THEN PRINT 0$(I);",";

690 NEXT I

700 LET M$=""

710 GOSUB 2160

720 RETURN

730 LET D=0

740 IF 0B=0 THEN LET D=VB-3

750 IF DB>18 AND 0B{23 THEN LET D=0B-18
760 IF RM=10 AND D=5 THEN LET D=1

770 IF RM=10 AND D=6 THEN LET D=3
= 1 ¢ N ﬁ /)
780 IF RM=12 AND D=5 THEN LET D=2 L
790 IF RM=12 AND D=5 THEN LET D=3 ¢ This replaces the tree section
80O IF RM=22 AND D=6 THEN LET D=1 o in the main program. Check

the plan if you want to see what

810 IF RM=22 AND D=5 THEN LET D=2 location 32 s.

820 IF RM(>32 OR D<>3 THEN GOTD B30
830 LET M$="I1TS A LONG DROP" 41

VERBS 10& 11

VERB 12

|

T T

ZX81 LISTING

840 RETURN

830 IF F{27)=0 OR RM<>34 THEN GOTD 880
850 LET M$="GHOSTS WILL NOT LET YOU MOVE®
870 RETURN

880 IF RM<>29 OR C(1)=0 OR F(34)=1 THEN B0TO 910

890 LET M$="MABICAL BARRIER TO THE WEST"
900 RETURN

910 IF RM(14 OR RM>17 OR F(20)=1 THEN 60TO 950
920 IF RM=14 AND D<>1 AND D<>4 THEN GOTD 950

930 LET M$="TOD DARK TO MOVE"

940 RETURN

950 IF C{13)=0 OR RM<>36 THEN GOTO 980

960 LET M$="THE BOAT IS TOD HEAVY"

970 RETURN

980 LET RL=LEN(R$(RM))

990 LET OM=RM

1000 FOR I=1 TO RL

1010 LET US=R$(RM) (1 TO I)

1020 IF U$="N" AND D=1 THEN LET OM=0M-b
1030 IF U$="5" AND D=2 THEN LET OM=0M+6
1040 IF Us="W" AND D=3 THEN LET OM=0M-1
1050 IF U$="E" AND D=4 THEN LET OM=0M+!

1060 NEXT I

1070 LET M$="0K"

1080 IF RM=0M THEN LET M$="CANT GO THAT WAY"
1090 LET RM=0M

1100 IF D<1 THEN LET M$="GD WHERE 2"

1110 IF RM(>25 OR F(23)=0 THEN GOTO 1150
1120 LET R$(31)=""

1130 LET M$="THE DOCR SLAMS SHUT BEHIND YOU*
1140 LET F{23)=0

1150 RETURN

1160 IF OB>0 AND DB<=6 THEN GOTD 1190

1170 LET M$="YOU CANT GET "+M¢

1180 RETURN

1190 IF L(DB) (RN THEN LET M$="ITS NOT HERE"
1200 IF F(DB)=1 THEN LET M$="WHAT ®+W$+* 7*

1210 IF C(OB)=1 THEN LET M$="YOU ALREADY HAVE IT"

1220 IF L{DB)<>RM OR F{0B)=1 THEN BOTO 1240
1230 LET C(OB)=1

1240 LET M$="YOU HAVE THE "+W$

1250 LET L{DR)=37

1260 RETURN

1270 IF RM<327 OR (DBC>28 AND 0B<>29) THEN GOTO 130

1280 LET M$="DRAWER OPEN"
1290 LET F{17)=0

1300 IF RM=16 AND 0B=25 THEN LET M$="IT IS LOCKED"

1310 IF RM(>24 OR DB¢>32 THEN GOTO 1340
1320 LET M¢="CREEPY"

)
b

4

Check each line before you
press NEWLINE. It is much
easier to try and spot your
mistakes as you type than
having to search through the
whole listing to find them.

See pages 24-25 for
more about how the
subroutines work.

)

Imagine your adventure is
going to be sold in a famous
chain of shops and design
and write an atmospheric
insert for its cassette box.

A8

VERB 13

VERB 14

VERB 15

VERB 19 VERB 18 VERB 17 16

VERB 20

&
% 1330, LET E(21=0 Check the two versions of
>‘340 RETURN Haunted House against each
1350 IF 0B<>30 THEN 6OTO 1380 other to see where the
1360 LET M$="SOMETHING HERE" programs differ.
1370 LET F(18)=0
1380 IF 0B=28 OR 0B=29 THEN LET M$="THERE IS A DRAWER®
| 1390 IF 0B=33 OR 0B=5 THEN GOSUB 1440
1400 IF RM=27 AND OB=35 THEN LET M$="SOMETHING BEYOND"
| 1410 IF 0B=32 THEN GOSUB 1270
é 1420 IF RM=9 AND 0B=31 THEN LET M$="THATS DISBUSTING"
>|430 RETURN
1440 IF RM=26 AND D0B=33 THEN LET M$="THEY ARE DEMONIC WORKS"
| 14530 IF (0B=3 OR 0B=34) AND C{3)=! AND F(34)=0 THEN LET M$="USE
THIS WORD WITH CARE - XIANFAR®
| 1460 IF C(S)=1 AND OB=5 THEN LET MS="AN ALIEN TONGUE"
1470 RETURN
1480 LET M$="0K "+W$ Don't forget, you can add
1490 IF C(3)=0 OR 0B¢>34 THEN GOTO 1520 ext;averbswithous{adding
1300 LET M$="MAGIC OCCURS" extra subroutines. You
1510 IF BNC29 THEN LET RN=INT(RNDS36) 41 i 4 2
the EXAMINE subroutine.

i 1520 IF C{3)=1 AND 0B=34 AND RM=29 THEN LET F(34)=1
1530 RETURN
1540 IF C{12)=1 THEN LET M$="YOU HAVE MADE A HOLE"
350 RETURN
1360 IF C{14)(>1 AND RM=11 THEN LET M$="THIS IS NO TIME FOR GAMES"
1570 IF 0B=14 AND C{(14)=1 THEN LET M$="YOU SWUNG IT"
1580 IF OB=13 AND C{13)=1 THEN LET M$="WHDOSH"
1390 IF 0B<>13 OR C{13)=0 DR RM(327 THEN BOTO 1630
1600 LET RS (RM)="WN"
| 1610 LET D$(RM)="STUDY WITH SECRET ROOM"
1620 LET M$="YOU BROKE THROUGH"
630 RETURN
1640 IF RM<>32 OR C(14)<>1 OR 0B{>14 THEN 6OTD 1480
1630 LET M$="GOING DOWN"
1660 LET RM=RM-1
1670 GOTO 1690
1680 LET M$="WHERE TO ?"
690 RETURN
1700 IF 0B=17 AND C(17)=1 AND C(B)=0 THEN LET M$="IT WILL BURN YOUR HANDS"
1710 IF OB=17 AND C(17)=1 AND C(9)=0 THEN LET M$="WHAT NITH ?*
1720 IF 0B<>17 OR C(17)=0 OR C{9)=0 OR C{B)=0 THEN B60TO 1750
1730 LET M$="IT CASTS A FLICKERING LIGHT"

-

1740 LET F(20)=1 ¥
750 RETURN o\
1760 IF F{20)=0 THEN GOTO 1790 Perhaps you can U
1770 LET N$="EXTINSUISHED" think of a better verb

1780 LET F(20)=0 than “unlight”.

790 RETURN

1800 IF 0B=26 AND C(16)=1 THEN LET M$="HIS5S5" 43

VERB 23 VERB 22

VERB 24

VERB 25

«» INITIALIZATION

-/

ZX81 LISTING

1810 IF 0B(>26 OR C(16)<>1 OR F(26)=0 THEN GOTD 1840
1820 LET M$="PFFT - GOT THEM"

1830 LET F(26)=0

840 RETURN

1850 IF 0B<>10 OR C{10)=0 OR C(11)=0 THEN GOTO 1910
1850 LET F(24)=1

1870 LET M$="SWITCHED ON"

1880 IF F(27)=0 OR F(24)=0 THEN 60TO 1910

1890 LET M$="YOU VACUUMED THEM UP*

1900 LET F(27)=0

910 RETURN
1920 IF RM=27 AND (0B=27 OR 0B=28) THEN GOSUB 1270
1930 IF RM<>16 OR DBC>25 OR F(25)=1 OR C(18)=0 THEN 0TD 1980
1940 LET F(25)=1

1950 LET M$="THE KEY TURNS - CLUNK"
1960 LET R$ (RM)="SEW"

Lines 2300 to 2350 set the flags
for the invisible ob)ects soyou
donot need to type in flag data
separately.

5

g

1970 LET D$(RM)="HUGE OPEN DOOR"
980 RETURN

1990 IF C{0B)=0 THEN 60TD 2030
2000 LET C(DB)=0

2010 LET M$="DONE"

2020 LET L{OB)=RM

2030 RETURN

2040 LET §=0

2050 FOR I=1 TO 6

2060 IF C(I)=1 THEN LET S§=5+1

When you DIMension a string
array onthe ZX81, youneed to
tell the computer the length of
the longest item you are going
to store in it. The computer then
reserves 36 (or however many)
spaces of this length. This
wastes memory space if you

have one item which is much
longer than all the others.

2070 NEXT I

[
|
2080 IF §=17 AND C(15)=0 AND RMC)31 THEN PRINT "YOU HAVE EVERYTHING /

RETURN TO PORCH FOR FINAL SCORE"

2090 IF 5¢>17 DR RM(>31 THEN 6070 2120
2100 PRINT *DOUBLE SCORE®

2110 LET 5=5#2

2120 PRINT "YOUR SCORE *;5

2130 IF 5¢1B THEN 6OTD 2140

2140 PRINT *WELL DONE - YOU HAVE FINISHED"
2150 STOP

2160 PRINT "PRESS NEW LINE TO CONTINUE®
2170 INPUT 0%

2180 LET M$="0K*

190 RETURN ;
2200 FOR I=1 TO W |
2210 LET F{I)=0
2220 LET C(I)=0
2230 NEXT 1
2240 LET R$(31)="N"

2250 LET R$(27)="W"

2250 LET R$116)="HE" :
2270 LET D$(27)="STUDY, DESK AND WALL"

2280 LET D$(16)="HALL WITH HUGE WOODEN DOOR"

Lines 2240 to 2380 reset the
variables which have been
changed during a game, so that
you can play a new game.

DATA INPUT SECTION

e ahe

2290 LET M$="0K"
2300 LET F{18)=1
2310 LET F(17)=1
2320 LET F(27)=1
A 2330 LET F(2)=1
2340 LET F(26)=1
2350 LET F(23)=1
360 LET LL=60
370 LET RM=31

2380 LET F¢=" ///"
2390 FOR I=1 T0 6

2400 PRINT 1

2410 INPUT L(I)

2420 NEXT I

2430 RETURN

2440 DIM R$(36,4)

2450 DIN D$(36,30)

[26 |

r 2460 LET V=25

2470 DIN V$(V,9)

| 2480 LET W=3s

2490 DIN 08 (W, 13)

1 2500 DM Com
2510 DIN F(N)

2520 LET =18

2530 DIN L{6)

2540 PRINT *DESCRIPTIONS®
2550 FOR 1=1 T0 3
2560 PRINT 1

2570 INPUT D$(I)
2580 NEXT I

2590 STOP

2600 PRINT "ROUTES"
2610 FOR =1 T0 36
2620 PRINT 1

2630 INPUT R$(1)
2640 NEXT I

2650 STOP

2660 PRINT *DBJECTS"
2670 FOR 1=1 TO W
2680 PRINT 1

2690 INPUT O$(1)
2700 NEXT 1

2710 STOP

2720 PRINT *VERBS®
2730 FOR 1=1 T0 V
2740 PRINT 1

2750 INPUT U$(I)
2760 NEXT 1

_L:/??O 5TOP

The data: Load the data in this order. (See page 40.)

13 SPACES

Dzscmp'r}:g;

g T 2 \

ENTRANCE TO KITCHEN, KITCHEN WITH GRIMY
COOKER, SCULLERY, DUSTY ROOM, REAR TURRET
ROOM, CLOSET WITH COAT, BACK HALLWAY, DARK
ALCOVE, SMALL ROOM WITH RUBBISH, SPIRAL
STAIRCASE, WIDE PASSAGE, SLIPPERY STEPS,
HALLWAY TO REAR, POOL OF LIGHT, VAULTED
HALL, HALL WITH HUGE WOODEN DOOR, TROPHY
ROOM, CELLAR ROOM, FRONT HALL, SITTING
ROOM, SECRET ROOM, STEEP MARBLE STAIRS,
DINING ROOM, VAULT WITH COFFIN, FRONT LOBBY,
LIBRARY OF EVIL BOOKS, STUDY WITH DESK. HOLE
IN WALL, COBWEBBY ROOM, VERY COLD CHAMBER,
SPOOKY ROOM, FRONT PORCH, TOP OF FRONT
TOWER, SLOPING CORRIDOR, UPPER GALLERY,
BOAT HOUSE. SOGGY PATH

ROUTES E

.vl.'l-—suk“‘\)
SE, WE, W, SE, WE, W,
NS, SE, WE, NWUD, SE, SWUD,
NS, NSE, WE, WE, NSW, NS,
NSE,NSW, S, NSUD, N, N,
N, NE, W, NSE, WE, SW,
N, WE, WE,NW,E,NW

The commas show
where you should press

NEWLINE between data
items. DON'T TYPE THE
COMMAS.

S \a
OBJECTS ‘

\ veres

PAINTING, RING, MAGIC SPELLS, GOBLET, SCROLL,
COINS, STATUE, CANDLESTICK, MATCHES,
VACUUM, BATTERIES, SHOVEL, AXE, ROPE, BOAT,
AEROSOL, CANDLE, KEY, NORTH, SOUTH, WEST,
EAST, UP, DOWN, DOOR, BATS, GHOSTS, DRAWER,
DESK, COAT, RUBBISH, COFFIN, BOOKS, XZANFAR,
| WALL, SPELLS

HELP, CARRYING?,GO,N, S, W,E, U, D,

GET, TAKE, OPEN, EXAMINE, READ, SAY,
DIG, SWING, CLIMB, LIGHT, UNLIGHT, SPRAY,
USE, UNLOCK, LEAVE, SCORE

STARTING LOCATIONS FOR OBJECTS \§
—) e —— s WA TR v,

(You must type in this set of data each time yourun

the program.)

30,24, 21,32,5,8,

16, 26, 2, 13, 14, 36,

18,11, 35,3, 21,6

= o = -y

.....

Extra tips and hints

1. Useinteger variables

5. Use REM statements

On some computers you can put a % sign
after number variable names to show that
you only want to put integers or whole
numbers in them (numbers without
anything to the right of the decimal point
that is). So variable V becomes V% and so
on. You can do this on the BBC, TRS-80,
Dragon, TRS-Color and Oric. It is useful to
do this because it saves memory space and
increases the speed by as much as 50%.
The speed is particularly noticeable when
the computer is executing long loops.

2. Think about screen presentation

If you have enough spare memory, you
could improve the way the game looks on
the screen. You could add a graphics
routine for the opening title for instance and
make the text flash on and off at particular
points in the game, such as when the candle
flickers or the ghosts appear. The textneed
not be printed at the edge of the screen, nor
need it all be the same colour. You could
make use of coloured borders and
backgrounds too.

When you are writing a program as long
and complicated as an adventure, itisa
very good idea to put REM statements in
front of each section. You are quite likely to
get confused as to which section is which if
youdon’t. When you have finished the
program, though, take the REMs out - they
take up memory space, slow the program
up and allow unscrupulous players to cheat.

6. Use helpful variable names

Try to name your variables so that it is easy
to remember what each one is e.g. OB for
objects, MK for mistakes, and so on. If you
have plenty of memory space and your
computer will allow you, itis a good ideato
use long variable names to help you
remember what each variable is, e.g.
instead of V use VERB. Make a list of your
variables and what they are anyway, so you
don’t mix them up while you are writing the
program.

7.Keepitsimple

3. Watch your spelling

If you are not quite sure how to'spell aword
you want to use in the game, checkitina
dictionary. Your computer doesn’t know
how to spell and will store whatever youtell
itin its memory. This could be very
frustrating for the player who is using the
correct version and keeps getting error
messages because the computer doesn’t
recognize the word.

4. Spread the action

Some adventure games are a bit boring to
play because everything happens inthe
same place. Try to make sure there are

46 interesting things all through the game.

Don't be too ambitious with your first
games. A simple, well-thought-out game
will be more fun to play than a confused,
complicated one. Not everyone wants to
play a game which goes on for days.

8.Keepitfriendly

When you have written your game, look at
the comments to make sure they are not
ambiguous or misleading. Instead of “TOO
DARK”, for instance, you could say “YOU
NEED A LIGHT TO GO HERE”. Remember,
something that is obvious to you will not be
at all obvious to a player. Make some of
your comments funny too as this will help
the player feel the computer is really talking
to him.

Answers to puzzles

Detective game puzzle (page 13)
Here are some suggested solutions for the problems in the detective game. See how
they compare with the solutions you thought of.

1. You will only see the hair if you instruct computer to examine coat. You cannottake
hair unless you have a clean envelope to put itin.

2. You need a key to open the drawer, a magnifying glass to see the thread and asecond
clean envelope to put itin.

3. You need plaster and a container of water to make a plaster cast of the footprint.

4, You need talcum powder to show up prints and sticky tape to lift print off surfaceto
take away.

5. You need a portable blood analysis kit (described in game as a box containing bottles
and other scientific equipment).

6. You need a handkerchief to pick up the stick and a polythene bag to carry itin.

Adventure brain teasers (page 15)
Remember there are no “correct” answers to these puzzles. Here are some suggested
solutions.

1. Lift the carpet and find a trap door.

2. Use the handkerchief as a mask (assuming drowsiness is caused by a gas inthe
room), look inside rucksack and find a flask. Open the flasl and find black coffee.

Drink coffee.
3. Read scroll (which is a proclamation to free the slaves).

4. Throw the dessert (which happens to be custard pie) in the arch-villain’s face. Grab
the remote control and escape.

Puzzle (page 28)
Here is how you can change the program to limit the number of objects that canbe
carried at one time.

You need two new variables, here they are called CO (which stands for “carried
objects”) and CL (which stands for “carrying limit”). Add these to the end of line 70like
this:
70...:CO=0:CL=8

You then need to tell the computer to add one to CO in the GET routine whenthe
player picks up an object and subtract one from it in the LEAVE routine if he dropsan
object. Do this by adding to the ends of lines 1010 and 1490 like this:
1010...:CO=CO+1
1490. . .:CO=CO—-1

Now add a new line to the GET routine to check if CO equals the limit before
proceeding with the rest of the routine.

(CLneed not be 8, but it cannot be less or the player would not be able to carry allthe
treasures to the finish.)

Going further

Once you have written an adventure, you could join the BBC Micro Adventure/Fantasy
Club. This is a postal club and it provides a library of adventure and fantasy games written
by members for the use of other members. To find out more, write to:

BBC Micro Adventure Club, 29 Blackthorne Drive, Larkfield, Kent ME20 6NR, England.

47

48

Index

Adams, Scott, 4

Adventure, 4

adventure games, different
types, 4

array error, 32

arrays, 16, 17, 18, 31, 38

BASIC 3, 4, 16, 18, 23, 38, 39, 40

BBC, 3, 23, 29, 31, 33, 36, 46

BBC Micro Adventure Club, 47

branch to subroutines, 19, 24,
34

caps lock, use of, 38

carrying array, 17, 18

chg.nging the program, 28-32,

8

Colossal Cave, 4
combinations of words, 22, 23
commas, indata, 18, 37,45
CPUs, 17
Crowther and Woods, 4
2D arrays, 17
2D games, 26
3D games, 9, 26
data, 16,17, 18
loops, 18
out of, 32
storing the, 16, 17, 18
for ZX81 game , 45
database, 5
debugging, 32
descriptions, 19, 20, 25, 28, 33
descriptions of the locations
array, 16, 17, 20, 31, 39
detective story adventure, 7, 11
DIM, 16, 17, 32, 44
dimensioning, 16, 17
disc-based adventures, 4
Dragon, 3, 29, 46
dummy subroutine, 23
error code, 32
error messages, setting up in
game, 19, 23, 24, 25, 34
feedback, 19, 20, 25, 33
first adventure game, 4
flag arrays, 17, 18, 24, 27, 32, 44
flagregisters, 17
Fortran, 4
“gettable” objects, 17
Go subroutine, 26, 27, 34,41
GOSUB, 19, 23,29
GOTO, 19
graphics, 4, 46
grid, drawinga, 8,9
HELP, 13,21
hiding places, 6
HOME, 33

IF...THEN, 38

initialization, 18, 19, 20, 30, 32,33

input, 19, 21,33

input analysis, 19, 22

instructions, player’s, 21

integer variables, 46

interactive database, 5

INVENTORY, 13

invisible objects, 17, 18

LEFTS$, 40

LET, 38,40

listing, program, 33-37
Spectrum (Timex 2000)
version, 38
ZX81 (Timex 1000) version,
39-45

LOAD subroutine, 30, 31

locations, 6, 8, 16, 17, 40,41
numbering of, 8, 12

locations array, 16, 17, 20, 39

loop, 18, 20

machine code, 5

magic, use of, 6

map, of adventure world, 6-7

master plan, 8, 11, 12, 14, 15, 16,
26

ZX81 version, 39

memory, amount used up by
game, 28

Microsoft-style BASIC, 3, 33

MIDS$, 40

mistakes, correcting, 32

no match, 22

number arrays, 17

numbering of locations, 8
objects, 10, 12

object word array, 17, 18

object words, 40

one-way routes, 8, 9

one-word commands, 21, 23, 26

ON...GOSUB, 24, 25, 30, 32, 33,
41

onrange error, 23

Oric, 3, 29, 33, 34, 37,46

out of data, 32

override conditions, 19, 24, 32

penalties, 30

planning, 5-15

point of the game, 6

problems for player, 10

program

changing the, 28-32

structure, 19

writing the, 19-27

props, 10, 12

QUIT, 31

READ...DATA, 18,39

REM statements, 46
RIGHTS, 40
RND, 34,35
routes, 8,9, 16, 17, 40
one-way, 8,9
routes array, 17, 18, 20, 31
rules, 3
saving the game, 30, 31
SCORE, 3
subroutine, 30, 36, 44
scoring,-10, 30
screen presentation, 46
Sinclair (Timex) computers, 3,
18,21, 33, 38, 40
single-letter commands, 26
sketchmap, 6
sounds, 29
Spectrum, 3, 29, 33
version, 38
spelling, 46
Stanford University, 4
storing the data, 16, 17, 18
string arrays, 16
string data (for Spectrum), 38
string variables, 21, 22
subroutines, 19, 24, 25, 26, 31,
34,42,43
dummy, 23
themes for games, 7
time limit, 28
Timex 1000, 3, 18, 21, 33, 39-45
Timex 2000, 3, 21, 33, 38
tools, 12
treasures, 8, 10, 11
TRS-80, 46
TRS-Color, 29, 46
two-word sentences, 3, 21
useful objects, 10, 11, 12, 13
variable names, 46
variables, 16, 20, 26, 30, 33, 38,
40,44
string, 21
verbs, 13, 17, 24, 25, 34, 40, 43
verbs array, 17, 18
verb string, 16, 22
VIC 20, 29, 33, 34, 35,37
walls, checking for, 27
weapons, 12
word list, 10, 12, 16
word not found in memory, 16
word-splitter routine, 21
word string, 16, 22
writing the program, 19, 20, 21,
22, 23, 24, 25, 26, 27
zero space, use of, 16
ZX81,3,18,21,33
version, 39-45

First published 1983 by Usborne Publishing Litd, 20 Garrick Street, London WC2E 9B], England.

Copryight (©) 1983 Usborne Publishing

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior

permission of the publisher.

The name Usborne and the devicee are Trade Marks of Usborne Publishing Ltd.

) : A
R o L
o gy

g e S . B4 e , -
. Sonec it 19 =l N e

> g
]) Ll
. _ - LT i -t i iy - y
e ERL e % R : .
: w S p - : : i E A
K : v - ol v gy S, ...,.,.1...1.? o K g
I ot i :
T e vy
o 1 i Ea - 3 &
i L :
: . e
= ke

||N4H|.._‘

v
— e

‘f&ﬂl.

Usborne Computer Books

"“Highly recommended to anyone of any age.” Computing Today

“Without question the best general introduction to computing | have ever
seen.’'Personal Computer World

.. . perhaps the best introductionaround. . . outstanding . . .""Educational
Computing

““These books are outstanding . . . they make all other young people’s
computer books look meretricious.” Times Educational Supplement

Guide to Computers Machine Code for Beginners
Understanding the Micro Practical Thingsto dowith a
Computerand Video Games Microcomputer
Computer Jargon Computer Spacegames
Computer Graphics Computer Battlegames
Inside the Chip Write Your Own Adventure
Computer Programming Programs
Practise Your BASIC Creepy Computer Games
Better BASIC

New Titles

Programming Tricks & Skills Professional tips and tricks for better
programming.

Experiments With Your Computer An exciting introduction to scientific
investigation with a microcomputer.

Expanding Your Micro A detailed guide to add-ons and interfaces.

Write Your Own Fantasy Games A step-by-step guide to writing fantasy
games, with program listing.

Weird Computer Games, Computer Spy Games Shortlistingstorunon
most main home computers.

Mystery of Silver Mountain, Island of Secrets Unique adventuregame
books containing full program listings.

Published in Canada by Hayes Publishing
Ltd, 3312 Mainway, Burlington, Ontario,
Canada, L7M 1A7.

@ Eu&u%lj%ﬁlgﬁygéngE.MmSml, lSBN 0 86020 741 2

Tulsa, Oklahoma 74145, USA.

PUBLISHING

