
. Mll:IIIIPlllll:1:ss1111 .
Programming
& Interfacing Book,

Elizabeth A. Nichols, Joseph C. Nichols,
ond Peter R. Rony

!
. r/,·· . .,;

CONTINUING EDUCATION SERIEST"'
. - . • .. FJLJ.IC'k'\5a.J"1[; ed;ted by Rony , mu,, mu, & Laman

The Blacksburg Continuing Education™ Series

The Blacksburg Continuing Education Series™ of books provide a laboratory-or experiment
oriented approach to electronic topics. Present and forthcoming titles in this series include:

• DBUG: An 8080 Interpretive Debugger
• Design of ~ive Filters, With Experiments
• Design of Op-Amp Circuits, With Experiments
• Design af Phase-locked loop Circuits, With Experiments
• Design of Transistor Circuits, With Experiments
• Design of VMOS Circuits, With Experiments
• The 8080A Bugbook®: Microcomputer Interfacing and Programming
• 8080/808.5 Software Design (2 Volumes)
• 5.55 Timer Applications Sourcebook, With Experiments
• Guide to CMOS Design Basics: Circuits and Experiments
• Interfacing and Scientific Data Communications Experiments
• Introductory Experiments in Digital Electronics and 8080A Microcomputer Programming

and Interfacing (2 Volumes)
• Logic & Memory Experiments Using m Integrated Circuits (2 Volumes)
• Microcomputer-Analog Converter Software and Hardware Interfacing
• Microcomputer Interfacing With the 8255 PPI Chip
• NCR Basic Electronics Course, With Experiments
• NCR Data Communications Concepts
• NCR Data Processing Concepts Course
• NCR EDP Concepts Course
• Programming and Interfacing the 6502
• 6800 Microcomputer Interfacing and Programming, With Experiments
• 6502 Software Design
• TEA: An 8080/808.5 Co-Resident Editor/Assembler
• TRS-80 I nterfocing
• Z-80 Microproce-r Programming & Interfacing (2 Volumes)

In most cases, these books provide both text material and experiments, which permit one to
demonstrate and explore the concepts that are covered in the book. These books remain among
the very few that provide step-by-step instructions concerning how to learn basic electronic con•
cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu
lar microprocessor chips. We have found that the books are very useful to the electronic novice
who desires to join the "electronics revolution," with minimum time and effort.

Additional information about the "Blacksburg Group" is presented inside the rear cover.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen
''The Blacksburg Group"

Bug symbol trademark Nanotran, Inc., Blacksburg, VA 24060
Bugbook la a registered Trademark of E & L Instruments, Inc., Derby, CT 06418

Z-80 Microprocessor

Programming & Interfacing

Book 1

by
Elizabeth A. Nichols, Joseph C. Nichols,

and Peter R. Rony

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright© 1979 by Elizabeth A. Nichols, Joseph C. Nichols,
and Peter R. Rony

FIRST EDmON
SECOND PRINTING-1980

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use
of the information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-21609-4
Library of Congress Catalog Card Number: 79-63822

Printed in the United States of America.

Preface

The microelectronics revolution is here, and gaining momentum.
It all began 30 years ago with the development of the transistor.
The transistor, a physically small, low-power amplifier, replaced the
large, power-hungry vacuum tubes of the first generation computers.
Due to a natural synergism between transistors and digital logic, their
small size and low cost, transistors have become the basic building
blocks for computer circuits. Transistors combine to form gates; gates
combine to form flip flops, counters, adders, and other logic flmc
tions; and these, in tum, combine to form the memory, control, arith
metic, and logic units which make up the central processing unit
(cpu) of a computer. Thus, the number of transistors in a logic cir
cuit has become a reasonable measure of its functional complexity.
In 1959, the first integrated circuits consisting of small groups of
planar transistors were developed on thin wafers of silicon or germa
nium. This began the era of Small Scale Integration (SSI) in which
12 or fewer gates could be incorporated into a single integrated cir
cuit (IC). Since 1959, the number of transistors in advanced ICs has
been at least doubling every year. Today, circuits containing 262,144
elements are available and the technology is still far from its theo
retical limits. The Z-80 CPU and support chips, introduced by Zilog
in 1976, represents the state-of-the-art in 8-bit microprocessors. Zilog
is currently developing a successor to the Z-80 line, the Z-8000 se
ries of cpu and support chips. However, the Z-8000 will be a 16-bit
cpu with computational capacity comparable to mid-range mini
computers, a significant jump in capability. And this is only the be
ginning. The real revolution will be manifest in the exponential pro
liferation of products and services dependent on microelectronics.

This book is one of two volumes on Z-80 microprocessor program
ming and interfacing. Book 1 is on Z-80 software-assembly and ma
chine language programming. Book 2 covers interfacing digital cir
cuits with the Z-80 CPU, PIO, and CTC chips. These books are
laboratory oriented texts that are designed to give an integrated ap
proach to microcomputer programming and interfacing. The strong
emphasis is on learning through experimentation. Each topic intro
duced is reinforced with laboratory work that shows not only how
ideas succeed, but also where they fail, and what the pitfalls are.

Book 1 requires no background in computer science, programming,
or digital electronics. Book 2 however, assumes familiarity with the
topics covered in Book 1. In both books, topics are presented in the
order that the authors feel is most conducive to learning in a self
study environment. Answers are provided for all the exercises, and
every attempt is made to anticipate questions and logical extensions
to the experiments.

To enhance the laboratory orientation in the books, the experiments
use a sophisticated Z-80-based single-board microcomputer manu
factured by SGS-ATES, called the Nanocomputer. The Nanocomputer
is an excellent educational computer because it is simple for a novice
to use, but incorporates enough options, flexibility, expandability, and
sophistication to keep the interest of the most experienced user. For
more information on the Nanocomputer, contact SGS-ATES Semi
conductor Corp., 240 Bear Hill Road, Waltham, MA 02154.

The authors are indebted to many members of the staff at SGS
A TES in Milano, Italy: R. Baldoni, A. Cattania, B. Facchi, F. Lu
raschi, C. Wallace, and especially A. Watts whose many ideas and
technical expertise on the Nanocomputer tremendously improved
these books. Also we wish to thank C. Edson and U. Broggi of SGS
ATES in the USA who greatly expedited progress by acting as liasons
between the US and Italian efforts on this project. Finally, much
credit is due to J. Titus and D. Larsen of the Blacksburg Group for
their efforts in coordinating with Howard W. Sams & Co., Inc. to
bring about the publication of these books.

ELIZABETH A. NICHOLS
JOSEPH C. NICHOLS
PETER R. RoNY

Contents

CHAPTER 1

DIGITAL CODES
Objectives - Languages, Communications, and Information - Bi
nary Coding - Bit - Digital Codes - Binary Code - Hexadeci
mal (HEX) Code - A Note on Notation - Demonstrations -
Demonstration No. 1 - Review

CHAPTER 2

AN INTRODUCTION TO MICROCOMPUTER PROGRAMMING
Objectives - What Is a Computer? - What Is a Microcomputer?
- What Is a Computer Program? - Instructions - Mnemonics -
Instructions - Machine Language - A Simple Program - Mem
ory - Memory Address - Range of Memory Locations - Hi and
Lo Memory Addresses - Demonstration No. 1 - Review

CHAPTER 3

SOME Z-8O MICROPROCESSOR CPU INSTRUCTIONS
Objectives - What Is a Computer Program? - Instructions and
Operations - Multibyte Instructions -Types of Information Stored
in Memory - Operation Code - Data Byte - Device Code - Hi
and Lo Address Bytes - Displacement Byte - What Is a Register?
- General-Purpose Registers - Accumulator - Some Z-80 Instruc
tions - Instruction Byte Nomenclature - Review

CHAPTER 4

THE NANOCOMPUTER (NBZ8O) AND THE SUPER NANO-

9

21

33

COMPUTER (NBZ8OS) 4 7
Objectives - The Nanocomputer - Central Processing Unit (CPU)
- Rules for Setting up Experiments - Experiment Instructions
Format - A Word of Caution - Introduction to the Experiments
- Experiment No. 1 - Experiment No. 2 - Experiment No. 3 -
Experiment No. 4 - Experiment No. 5

CHAPTER 5

SoME SIMPLE Z-80 MICROCOMPUTER PROGRAMS
Objectives - Review of Several Z-80 Instructions - Programming
Languages and Listings - Assembly Language Programming - In
troduction to the Experiments - Experiment No. 1 - Experiment
No. 2 - Experiment No. 3 - Experiment No. 4 - Experiment No.
5 - Review

CHAPTER 6

79

REGISTERS, MEMORY, AND DATA TRANSFER 99
Objectives - Z-80 Instruction Set - Z-80 Addressing Modes - Sin-
gle Register Load Instructions: Register Addressing Mode LD d,s -
Load Immediate to Register - Register Indirect Load With Accum
ulator LD A, (rp); LD (rp), A - Load Immediate Extended Pair
LD rp <B3><B2> - Load Extended Pair LD rp, (addr); LD
(addr), rp - Increment Register - Decrement Register - Jump
if not Zero JP NZ, <B3><B2> - Block Data Transfers LDD,
LDI, LDDR, LDIR - Introduction to the Experiments - Experi-
ment No. 1 - Experiment No. 2 - Experiment No. 3 - Experi-
ment No. 4 - Experiment No. 5 - Experiment No. 6

CHAPTER 7

Z-80 ADDRESSING MODES
Objectives - What Is an Addressing Mode? - Two's Complement
Binary Representation - Two's Complement Addition and Subtrac
tion - The Z-80 Address Modes - Register Addressing - Immedi
ate Addressing - Immediate Extended Addressing - Register In
direct Addressing - Extended Addressing - Modified Page Zero
Addressing - Implied Addressing - Bit Addressing - Indexed
Addressing - Relative Addressing - The Instruction Group Tables
-The 16-Bit Load Group - Block Transfer and Exchanges - In
troduction to the Experiments and Exercises - Review - Experi
ment No. 1 - Experiment No. 2 - Experiment No. 3

CHAPTER 8

139

JUMPS, CALLS, AND RETURNS • 175
Objectives - Program Control Transfers - Unconditional JUMP
Instructions - Flags and Conditional Jumps - Calls and Returns
- Introduction to the Experiments - Experiment No. 1 - Experi-
ment No. 2 - Experiment No. 3 - Experiment No. 4 - Experi-
ment No. 5

CHAPTER 9

LOGICAL INSTRUCTIONS • 205
What Is a Logical Instruction? - Boolean Algebra - Multibit Op
erations - NOT - De Morgan's Theorem - Z-80 Logical Instruc-
tion Group - Complement Accumulator: CPL - AND With Ac
cumulator: AND - Exclusive-OR With Accumulator: XOR - OR With
Accumulator: OR - Logical Instructions and External Device Moni
toring - Introduction to the Experiments - Experiment No. 1 -
Experiment No. 2 - Review

CHAPTER 10

BIT MANIPULATION, ROTATE AND SHIFT INSTRUCTIONS • 223
Objectives - Bit, Set, Test and Reset Process - ROTATE and
SHIFI' Instruction Group - ROTATE Instructions - SHIFI' In
structions - Introduction to the Experiments - Experiment No. 1
- Experiment No. 2 - Experiment No. 3

CHAPTER 11

ARITHMETIC AND BLOCK SEARCH INSTRUCTION • • 243
Objectives - 8-Bit Arithmetic Group- DAA Instruction - 16-Bit
Arithmetic Instructions - CP and Block Search Instructions: CPI,
CPD, CPIR. and CPDR - Introduction to the Experiments -
Experiment No. 1 - Experiment No. 2 - Experiment No. 3 -
Experiment No. 4

APPENDIX A

SUMMARY OF Z-80 Qp CODES AND EXECUTION TIMES

APPENDIX B

Z-80 CPU INSTRUCTIONS SoRTED BY MNEMONICS

APPENDIX C

Z-80 CPU INSTRUCTIONS SORTED BY OP CoDE

APPENDIX D

CoMPUTATION OF EXECUTION TIMES

APPENDIX E

PRECAUTIONS WmLE HANDLING MOS DEVICES .

MASTER SYMBOL TABLE .

REFERENCES

INDEX •

APPENDIX F

APPENDIX G

. 267

. 279

. 283

. 287

. 291

. 293

295

297

-

CHAPTER 1

Digital Codes

INTRODUCTION

Before you begin to program your microcomputer, it is necessary
that you understand how to convert 8-bit binary numbers into hexa
decimal code, and vice versa, as well as know certain basic facts
about digital codes.

OBJECTIVES

At the completion of this chapter, you will be able to do the fol-
lowing:

• Discuss what is meant by the term communication.
• Define bit.
• Define binary code.
• Define digital code.
• Define hexadecimal code.
• Convert an 8-bit binary number into a two-digit hexadecimal

number.
• Convert a two-digit hexadecimal number into a binary number.
• Distinguish between the binary, hexadecimal, and decimal count-

ing systems.
• List several different digital codes.
• List several different two-state devices.
• Provide one example where the quantity, bits per second, is a

measure of information flow.

LANGUAGES, COMMUNICATIONS, AND INFORMATION

One of the most important characteristics that any biological orga
nism (higher order animals) possesses is the ability to communicate

9

with other organisms of the same species. The ability to communicate,
which gives many animal organisms a definite survival advantage
in the Darwinian sense of the term-is found in most multicellular
creatures, starting with insects and progressing to man. With insects,
there exist several modes of communication, including the dance of
the bee and forms of chemical communication through remarkable
chemical agents called pheromones. Man can communicate with the
aid of his five senses, as illustrated by handicapped individuals who
have lost one or more of their senses but are, nevertheless, highly
communicative with those remaining.

Assuming that an individual wishes to communicate with another
through the sense of hearing and the use of speech, it is clear that
there must be some general agreement concerning how a spoken
sound will be interpreted by the individual who hears it. Over the
centuries, different regions around the world have each developed
their own consensus regarding the meaning of specific sounds and
their transcription onto paper. We call such a consensus a language
or, perhaps, a foreign language. Thousands of different languages
exist, although only a relatively modest number of them are in wide
spread use. The popularity of a specific language may wax and wane
over the course of several hundred years. Latin, once a dominant
language in Europe, is now considered to be a "dead" language, how
ever, it clearly has influenced most of the European languages in very
profound ways.

Communication can be defined as the imparting, conveying, or ex
changing of ideas, knowledge, information, etc. (whether by speech,
writing, or signs). 1* It is one of the most important and characteris
tic activities of mankind. As pointed out by James Martin in his ex
cellent book, Telecommunications and the Computer, 8 the capacity
of major telecommunication links, as measured by a quantity called
bits per second, has paralleled the advance of civilization over the
past one hundred years. The capacity of such links has changed from
a rate of 1 bit/second in 1840 to 50,000,000 bits/second in 1970,
i.e., a doubling every 5.08 years. Martin has also pointed out that
the sum total of human knowledge· changed very slowly prior to the
relatively recent beginnings of scientific thought. By 1800, it has been
estimated that the sum total was doubling every 50 years; by 1950,
doubling every 10 years; and that by 1970, it will be doubling every
5 years.

A language, which can be defined as the whole body of words and
of methods of combination of words used by a nation, people, or
race, 1 is just one form of communication. Egyptian hieroglyphics,
choreographic scores, mathematical symbols and equations, Ameri-

* See Appendix G for all references.

10

can Indian smoke signals, the sign language employed by the deaf,
and the Morse code are other forms of communication used by man.

BINARY CODING

The "information explosion" would have inundated mankind, at
least in the more advanced countries, had it not been for the use of
Two-State Coding to represent all kinds of information, such as the
ten decimal numerals (0 through 9), the twenty-six letters of the
English alphabet (A through Z), operations, symbols, motions, and
the like. We call such two-state coding Off-On or binary coding.
Binary coding can be represented or manifested by any type of two
state device, such as an on or off light, an open or closed switch, a
punched or nonpunched computer card, a "north" or "south" mag
netized magnetic core or region of magnetic tape or disc; two differ
ent voltage levels, two different current levels, two different frequen
cies; the words YES and NO; or the abstract symbols O (off) and 1
(on). The importance of binary coding resides in the fact that it is
possible to construct devices that will change state very quickly, in
times as fast as 5 nanoseconds (0.000000005 second). Such a device
could, in principle, manipulate, transmit, or receive information at
the rate of 200 million bits per second. Thirty-two such devices, op
erating simultaneously, could manipulate 6.4 billion bits per second.
This is the basic capability that has permitted society to store, ma
nipulate, and communicate enormous quantities of information.

BIT

The elementary unit of information is called the bit, which is
an abbreviation for Binary digiT. You can think of a bit as being a
light bulb that can be lit (on) or unlit (off) at any given time. Thus,
a bit can be pictured as a light bulb that is ON or a light bulb that
is OFF. Rather than drawing pictures of light bulbs, we can repre
sent each bulb that is in the lit state by the symbol 1 and each bulb
in the unlit state by the symbol 0.

So, a bit is equal to one binary decision, or the designation of one
of two possible and equally likely values or states (such as O or 1).

Information is typically represented by a series of bits. Thus,

1 0 0 0

represents decimal 8 in binary code. The series of bits,

11000001

represents the letter A in 8-bit ASCII code. We shall discuss these
two codes shortly.

11

DIGITAL CODES

A digital code is defined as a system of symbols that represent data
values and make up a special language that a computer or a digital
circuit can understand and use. 3 Digital codes can be considered
to be the digital "languages" that permit information to be stored,
manipulated, and communicated. Just as there are numerous spoken
languages, there also exists a variety of digital codes. Such codes can
be subdivided into several important categories:

Category 1. Codes employed by electronic circuitry to perform var
ious digital operations. Example: binary code.

Category 2. Codes employed to convert the decimal numbers 0
through 9 into digital form. ·Examples: binary code, binary
coded decimal (bed), and gray code.

Category 3. Codes employed to convert decimal numbers, the 26-
letter English alphabet, symbols, and operations into digital
form. Examples: ASCII code, EBCDIC code, and Baudot code.

Category 4. Instruction codes employed by large computers, mini
computers, and microcomputers that cause the computers to
perform a prescribed sequence of operations. Examples: IBM
370 instruction code, PDP 8/E instruction code, Z-80 instruc
tion code.

In this series of modules, we shall pay particular attention to four
codes: binary code, binary coded decimal (bed), ASCII code, and
the instruction code for the Z-80 microprocessor chip.

BINARY CODE

The simplest digital code is a two-state, or binary, code that con
sists of a O (off) and a 1 (on) state. We call these two states logic 0
and logic 1. In binary code, decimal O is represented by a logic O and
decimal 1 by a logic 1. This should be quite clear. How, on the other
hand, are higher decimal numbers, such as 3, 17, 568, etc., repre
sented using binary code? The answer is that we use a series of bits
to build a binary counting system that is formed on a base, or radix,
of two. For example, the binary number 1110h, where the subscript
(2) represents the binary counting system, is equivalent to

11101 (2) = (1 X2**4) + (1 X2**3) + (1 X2**2) + (OX 2**1) + (1 X2**0) = 29 (10)

where you should keep in mind that A**B is equivalent to AB.
Therefore,

12

2**4 = 16 in decimal notation= 1610
2**3 = 8 in decimal notation= 810
2**2 = 4 in decimal notation= 410

Therefore,

2**1 = 2 in decimal notation= 210
2**0 = 1 in decimal notation= 110

11101 (2) = 16(10) + 8(10) + 4(10) + 0 + l (10) = 29(10)

where the subscript (10) associated with these numbers represents
the decimal counting system, a system that is formed on a base, or
radix, of 10. A brief table follows that allows you to convert simple
decimal numbers into binary numbers.

Decimal Number Binary Number

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

Thus, a · series of four binary digits, or bits, can represent any of
sixteen different decimal numbers ranging from zero to fifteen. Deci
mal numbers larger than fifteen require additional bits, as shown in
the following table:

Decimal Number Binary Number

0 0
l l
2 10
3 11
4 100
7 111
8 1000
15 1111
16 10000
31 11111
32 100000
63 111111
64 1000000
127 1111111
128 10000000
255 11111111
256 100000000

13

511 111111111
512 1000000000
1023 1111111111
1024 10000000000
2047 11111111111
2048 100000000000
4095 111111111111
4096 1000000000000
8191 1111111111111
8192 10000000000000
16,383 11111111111111
16,384 100000000000000
32,767 111111111111111
32,768 1000000000000000
65,535 1111111111111111

Therefore, an 8-bit binary number can encode two hundred and
fifty-six different decimal numbers, ranging from O to 25510, or two
hundred and fifty-six different "things," no matter what they may be
(instructions, devices, pulses, etc.). The Z-80 is a microprocessor
chip that has a 16-bit memory address and an 8-bit 1/0 device word.
This means that it can directly address 65,536 different memory lo
cations and can generate at least 256 different 1/0 pulses or device
addresses.

HEXADECIMAL (HEX) CODE

It can be difficult to remember binary numbers that contain many
bits. For example, can you remember the following 8-bit binary
number,

10011101

after having looked at it for only one second? Quick, cover it up or
look away! Consider also the problem of remembering a list of such
8-bit numbers:

11011010
11100101
01101001
10101011

You probably will conclude that there must be a better way to
remember 8-bit binary numbers. We are using 8-bit numbers here
because you will encounter them frequently when you begin to pro
gram the 8-bit Z-80 microcomputer.

One approach to remembering multi-bit binary numbers is the use
of hexadecimal code. The term hex is simply an abbreviation for the
word hexadecimal. Hexadecimal code refers to the hexadecimal
counting system, a system that is formed on a base, or radix, of 16.
The hexadecimal counting system consists of sixteen different sym-

14

bols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. Just as we did with deci
mal numbers, it is possible to convert hexadecimal numbers into bi
nary numbers:

Decimal Number Hex Number Binary Number

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 f 1111
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010
19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22 16 0001 0110
23 17 0001 0111
24 18 0001 1000
32 20 0010 0000
40 28 0010 1000
48 30 0011 0000
56 38 0011 1000
63 3F 0011 1111

We have grouped the 8-bit binary numbers into two groups of four
bits each to help you understand how the hexadecimal number to bi
nary number conversion was made. While the space between each
4-bit group does not affect the value of the number, it does make the
binary number easier to read and bas become a standard convention.

We now address the question of how to convert an 8-bit binary
number into hex code. The procedure to accomplish this conversion
requires three steps:

1. Write down the full 8-bit binary number.
2. Split this 8-bit binary number into two groups with four binary

digits in each group.
3. Substitute the equivalent hex digit

0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

for each group of four bits.

15

Having done this you will have converted an 8-bit binary number into
a two-digit hex code. Each group of four binary digits is converted
independently of the other.

As an example, consider the 8-bit binary number,

10011101

First, split this binary number into two groups of four binary digits
each

1001 1101

Fmally, substitute the equivalent hex digit for each of these two
groups.

9D

This is the correct answer, 9D (16), where the subscript (16) means
"relative to" the hexadecimal counting system. Some additional hex
numbers and their corresponding 8-bit binary numbers are listed
below:

Decimal Number Binary Number Hex Number

64 0100 0000 40
72 0100 1000 48
73 0100 1001 49
74 0100 1010 4A
96 0110 0000 60
120. 0111 1000 78
127 0111 1111 7F
128 1000 0000 80
160 1010 0000 AO
184 1011 1000 BS
191 1011 1111 BF
248 1111 1000 F8
255 1111 1111 FF

A NOTE ON NOTATION

It may have occurred to you that dealing with all of these different
methods of number representation-binary, hex, and decimal-that
there is a possibility for some confusion. For example, the number 10
can be a decimal or a hex or a binary number. To remedy this prob
lem, whenever there is any possibility for ambiguity, all hexadecimal
numbers will be followed by the letter H, e.g., 1 OH, all decimal num
bers will be followed by a period or decimal point, e.g., 10., and all
binary numbers will appear without any special notation, e.g., 10 or
0110.

16

DEMONSTRATIONS

In the first three chapters we have included a collection of exer
cises that we have called demonstrations. These demonstrations are
designed to encourage you to operate the N anocomputer immedi
ately, even though you may not completely understand the Nano
computer at this time. It is important that you work through these
demonstrations even though you may feel at times that you are only
pushing buttons and not understanding what is happening.

DEMONSTRATION NO. 1
Step 1

Referring to the Nanocomputer Instruction Manual, apply power
to your Nanocomputer. Press the RESET key. Several seven-segment
display digits should become lit. H not, press RESET again. H re
peated depressions of the RESET key do not "bring up" your Nano
computer, you have a problem.

Step 2

Notice that the Nanocomputer keyboard has two keys with arrows
on them. Press one of these keys several times and observe what
happens.
We observed three things. First, we observed that the red selector
lamp cycles among ele\1en different possible positions. We also o~
served th~t the red lamp can be moved one step at a time by quickly
touching and releasing the key; alternatively, the red lamp can be
made to cycle automatically by holding down the key and then re
leasing the key when the selector lamp reaches the desired location.

Finally, we observed that the digits appearing on the red digit dis
plays changed according to the position of the red selector lamp.

Step 3

Press the other key that is labeled with an arrow and observe what
happens.

We observed that the red selector lamp cycled among the eleven dif
ferent possible positions in the opposite direction from that observed
in STEP 1.

Step 4
Position the selector lamp at the position labeled MEM. Notice

what appears on the four leftmost red digit displays.

We observed 0000.

17

Step 5
Press the key labeled INC several times and notice what happens.

We observed the following sequence of digits appearing on the left
most red digit display:

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009
OO0A 000b OOOC 000d OOOE 0OOF 0010 0011 0012 0013

and so on.

Notice that the hexadecimal digit sequence O,l,2,3,4,5,6,7,8,9,A,
b,C,d,E,F is displayed, right justified, in each group of four digits.
Notice also that the hexadecimal digits A,C,E, and F appear as capi
tal letters, but that the hexadecimal digits b and d appear as lower
case letters. This is simply an artifact of the seven-segment display
that is being used to represent the letter, and henceforth will be rep
resented by Band D, respectively. The four place hexadecimal digits
0000 through OOOF represent the decimal digits O through 15, the
hex digit 0010 represents the decimal digit 16, 0011 represents 17.,
and so on. Thus, we have a hexadecimal display. The conclusion is
that the Nanocomputer is going to talk to us using the hexadecimal
representation of numbers so it makes sense that we will talk to the
Nanocomputer using the same hexadecimal (hex) representation.

Step 6
Press the button labeled RESET. Notice that the selector lamp has

moved. Move the selector lamp back to the location labeled MEM.
We now have 0000 displayed once again, so that subsequent pushing
of the INC key will cause the Nanocomputer to begin displaying su~
cessive hex digits. What is the largest hex number that the Nano
computer will be able to display using only these four hex digits?
What is the decimal equivalent of this number?

Answer: The largest hex number that the Nanocomputer can display
is FFFF. The decimal equivalent of this number is 65,535.

REVIEW

The following questions will help you review digital codes.

I. What is a digital code?
2. List several different types of digital codes.
3. How many bits are there in the following binary numbers?

a. 11010011
b. 1000000000000011
c. 1001

4. To what decimal numbers do the following binary numbers correspond?
a. 11101
b. 11111111

18

c. 1111111111111111
d. 1001
e. 11010011
f. 10011

S. To what hexadecimal numbers do the following binary numbers correspond?
a. 11010011
b. 00111110
c. 01110110
d. 00111100
e. 11111111
f. 00110010
g. 11000011
h. 00000010
i. 110

6. To what binary numbers do the following hexadecimal numbers correspond?
a. D3H
b. FFH
c. 32H
d. 3EH
e. 76H
f. 02H
g. SH
h. 3CH
i. OOH

7. What is meant by the following subscripts?
a. (16)
b. (10)
c. (2)

8. Define the following terms.
a. hexadecimal counting system
b. bit
c. binary code
d. communication
e. language

9. Are the following numbers binary, hex, or decimal?
a. 1111
b. 1101.
c. 1100H

ANSWERS

1. A digital code is a system of symbols that represent data values and make
up a special language that a computer or a digital circuit can understand.

2. Binary code. Binary coded decimal. Gray code. ASCII code. EBCDIC code.
Baudot code. IBM 370 instruction code. Z-80 instruction code.

3. a. Eight
b. Sixteen
c. Four

4. a. 29.
b .. 255.
c. 65,535.
d. 9.
e. 211.
f. 19.

19

5. a. D3H
b. 3EH
c. 76H
d. 3CH
e. FFH
f. 32H
g. C3H
h. 02H
i. 06H

6. a. 11010011
b. 11111111
c. 00110010
d. 00111110
e. 01110110
f. 00000010
g. 101
h. 00111100
i. 00000000

7. a. Refers to the hexadecimal counting system
b. Refers to the decimal counting system
c. Refers to the binary counting system

8. a. A counting system that is based on a base, or radix of 16
b. An elementary unit of information that is equal to one binary decision,

or the designation of one of two possible and equally likely values or
states of anything used to store or convey information.

c. A code in which each code element is one of two different states, which
are commonly known as logic 0 and logic 1.

d. The imparting, conveying, or exchanging of ideas, knowledge, informa
tion, etc., (whether by speech, writing, or signs).

e. The whole body of words and of methods of combination of words used
by a nation, people, or race.

9. a. binary
b. decimal
c. hexadecimal

20

CHAPTER 2

An Introduction to
Microcomputer Programming

In the chapters that follow, you will perform two different kinds of
experiments: (a) experiments that require only microcomputer pro
gramming, and (b) experiments that require both microcomputer
programming and interj acing, i.e., the wiring of circuits that connect
the microcomputer to some kind of external device. Since a common
denominator of all experiments is programming, we would first like
to introduce you to the basic principles of programming and the char
acteristics of the programming language that you will use in this text:
the instruction set for the Z-80 microprocessor chip. Along the way,
we shall define a variety of important terms, including computer,
mnemonic language, machine language, microcomputer, and many
others. This introduction to programming will occupy twelve chapters.
We prefer to give you new programming instructions in groups of five
to ten, rather than all of them at once.

OBJECTIVES

At the end of this chapter, you will be able to do the following:

• Define digital computer.
• Define microcomputer.
• Distinguish between microcomputer instructions written in bi

nary code, hex code, or mnemonic code.
• Distinguish between mnemonic representations and machine

language.
• Define byte.

21

• Convert a 16-bit memory address into ID and LO address bytes.
• Convert 8-bit binary-coded instructions into hex-coded instruc-

tions, and vice versa.
• Distinguish between read/write memory and read-only memory.
• Define memory.
• Define computer program.
• State the range of memory locations, in binary or hex code, for

your microcomputer.
• Identify 8-bit bytes in a list of binary numbers.

WHAT IS A COMPUTER?

There are many different types of computers in the world-DIGI
T AL COMPUTERS, ANALOG COMPUTERS, FLUIDIC COM
PUTERS, MECHANICAL COMPUTERS. In this book, you will be
concerned only with DIGIT AL COMPUTERS, ·which comprise prob
ably 99% of all of the computers in use today. A digital computer
can be defined as follows:

Digital computer-An electronic device that is capable of accepting,
storing, and arithmetically manipulating information, which in
cludes both data and the controlling program. The information is
handled in the form of coded binary digits (0 and 1) that are rep
resented by dual voltage levels.4

-Any device, usually electronic, capable of accept
ing information, comparing, adding, subtracting, multiplying, di
viding, and integrating this information, which is in the form of
coded binary digits (0 and 1), and then supplying the results of
these processes in acceptable form. The major elements of a digi
tal computer usually include memory, control, arithmetic, logical,
and input and output facilities.2

It should be emphasized that a digital computer manipulates binary
information, of the kind that we discussed in Chapter 1. The binary
information is usually in the form of digital codes: instruction codes;
codes used to represent decimal numbers in digital form; codes em
ployed by electronic circuitry to perform various digital operations;
and codes used to represent in digital form the alphabet, decimal num
bers, symbols, and other operations.

WHAT IS A MICROCOMPUTER?

A microcomputer is a fully operational digital computer that is
based on a microprocessor chip. A microprocessor is a single inte
grated-circuit chip that possesses at least 75% of the computing and
data manipulation power of a digital computer. It usually cannot func-

22

tion without the aid of support chips and memory. An integrated-cir
cuit chip is an electronic device in which both active (i.e., transistors)
and passive (i.e., resistors) elements are contained within a single
package. In digital electronics, the term chiefly applies to circuits con
taining semiconductor elements. 2 The microprocessor chip is a prod
uct of advanced technology in the semiconductor industry, basically
the capability that manufacturers now have to fabricate thousands of
transistors on a single silicon chip no larger than 60 to 80 square mil
limeters.

WHAT IS A COMPUTER PROGRAM?

A computer program can be defined as a series of instructions or
statements prepared in a form acceptable to the computer, the purpose
of which is to achieve a certain result. 2 This definition does not imply
what the desired result may be. For example, you may simply be inter
ested in rearranging input digital data into a more convenient form,
which is either stored or provided as output. With microcomputers,
you will be increasingly interested in writing microcomputer programs
that control the operation of a device or machine. In a home clothes
washer, you may wish to control the amount of water used, the tem
perature of the water at different washing cycles, the number and
kinds of cycles used to wash a particular type of fabric, and the time
duration of each cycle. All this can be done with a properly written
computer program.

INSTRUCTIONS

A computer instruction can be defined as a set of characters that
define an operation. Either alone, or with other information, an in
struction causes a digital computer to perform the operation or manip
ulate the indicated quantities.

A character is one symbol of a set of elementary symbols, such as
those corresponding to typewriter keys. Symbols usually include the
decimal digits 0 through 9, the letters A through· Z, punctuation
marks, dollar signs, commas, operation symbols, and any other single
symbols that a computer may read, store, or write.11 In computer pro
gramming, it is not uncommon for one to use the entire typewriter
keyboard, including symbols such as @, :fl:, $, %, &, •, (,), /, and
possibly others.

Computer instructions may be expressed in a variety of forms. They
may be expressed as binary numbers,

11010011
00111110

hex numbers,
D3H
3EH

mnemonic code,

full words,

OUT 3EH
LD A,02H

OUTPUT ACCUMULATOR DATA TO DEVICE #3E (HEX)
LOAD DATA 02 HEX INTO REGISTER A

or full mathematical expressions,

X = A**2 + B*y + C

In this book, we will express instructions at the level of binary num
bers, hex numbers, and mnemonic representations.

MNEMONICS

Mnemonic is a term that describes something used to assist the
human memory. In view of this definition, we have the following:

mnemonic code--Computer instructions written in a form the pro
grammer can easily remember, but which must be converted into
machine language later by a computer or by the user.2

mnemonic language-A programming language that is based on easily
remembered symbols and that can be assembled into machine lan
guage by a computer.2

mnemonic operation--Computer instructions that are written in a
meaningful notation, for example, ADD, LD, and OUT.2

INSTRUCTIONS

In this series of chapters, we shall occasionally employ the mne
monic codes for the instructions that you will use when you program
the microcomputer. The mnemonic codes will be those suggested by
the ZILOG Corporation for its Z-80 microprocessor instruction set,
which contains 158 different machine instruction types. With time,
you should be able to readily convert from machine language (i.e.,
binary code) to mnemonic code, and vice versa.

MACHINE LANGUAGE

The modem electronic digital computer is capable of performing
manipulations using binary electronic signals, typically two voltage
levels (+5 volts and ground potential) that represent the logic states

24

1 and 0, respectively. Thus, each computer instruction is written ai,

a series of ls and Os that specifically characterize that instruction and
no other. Such a binary representation of a computer instruction is
called machine language or machine code. For example, the machine
language instruction 00000111 rotates the contents of the accumula
tor within the Z-80 microprocessor chip one bit to the left. The in
struction, 00001111, rotates the contents of the accumulator one bit
to the right.

In this series of chapters, you will be drilled in the use of machine
language instructions for the Z-80 microprocessor. The instructions
will be given to you in HEX CODE in order that you may remember
them easier. Some hex instruction codes that you will soon use in
simple microcomputer programming experiments include:

C3H Unconditional jump instruction
76H Halt instruction
3CH Increment contents of accumulator by 1
3EH Load accumulator immediate instruction

All of the new phrases that have been used in this section-uncondi
tional jump, load, halt, increment, etc.-will be discussed shortly.

A SIMPLE PROGRAM

Let us examine the following simple Z-80 program.

OOH No operation
3EH Load the contents of the next program byte into

the accumulator
FFH Data byte
76H Halt

It contains three instructions and one data byte. In this case, the pro
gram has been written in hex code, which you have studied in Chapter
1. This very same program also could have been written in binary
code, as shown below.

00000000 No operation
00111110 Load the contents of the next program byte

into the accumulator
11111111 Data byte
01110110 Halt

Alternatively, it could have been written in mnemonic code and
later converted to machine code with the aid of a special program
called an assembler. Thus, we have the following mnemonic program:

NOP
LD A,FFH
HALT

No operation
Load the data byte FF into the accumulator
Halt

25

Note that the mnemonic code program is mainly words or word abbre
viations, such as NOP, HALT, and LD.

How does the microcomputer execute this program? It does so step
by step, with the first instruction, NOP, being the first executed. The
following sequence of operations occurs:

1. The microcomputer executes the NOP instruction, which causes
the computer to "pause" for one instruction cycle. The computer
then advances to the next instruction. There is an important use
for the NOP instruction, which you will see in a later program.

2. As the microcomputer executes the LD instruction, which has
the 3B hex code, it looks at the next memory location to deter
mine what value to load into the accumulator.

3. The microcomputer goes to the next memory location, where it
finds an FF. It takes this value and stores it in the accumulator
of the microcomputer.

4. The microcomputer executes the final instruction, HALT. This
causes the computer to stop.

The above program may seem straightforward, or it may not. What
is memory? What is a byte? How does one distinguish between an
instruction and a data byte? Where is the accumulator? All of these
are very reasonable questions, some of which you may have asked
yourself as you studied the above program.

Let us proceed to answer some of these questions.

BYTE

A byte is a group of eight contiguous bits that occupy a single mem
ory location in a Z-80 based microcomputer. By "contiguous," we
mean adjacent or neighboring, or one-after-the-other. A byte can be
any of the 256 possible different arrangements of eight binary digits
each of which is either a O or a 1. The only restriction is that a byte
contains exactly eight bits. Thus, the binary number,

01101001

is a byte, whereas the binary number,

101001

is not a byte since it contains only six bits. The term, byte, has become
popular because many digital computers have word lengths that are
multiples of eight bits. To easily reference bits within a byte, the bits
are numbered from O through 7:

D7 D6 D5 D4 D3 D2 D1 DO

The "D" (probably short for Data) is sometimes not present. The
most significant bit (MSB) is D7. The least significant bit (LSB)
is DO.

26

In general, a word is the number of bits that a computer can manip
ulate simultaneously. H the number of bits in a word is eight, we
usually employ the term byte rather than word. In any case, the Z-80
has an 8-bit word length. The word length for a PDP 8 minicomputer
is twelve, which means that the PDP 8 minicomputer manipulates
twelve bits at a time when it is executing a program. The PDP 11
minicomputer has a word length of sixteen bits, and large computers
generally have word lengths of 32 bits, 36 bits or 60 bits.

MEMORY

Memory can be defined as any device that can store logic 1 and
logic O bits in such a manner that a single bit or group of bits can be
accessed and retrieved. 6 There are many different types of memory
that satisfy this requirement; in your microcomputer, however, you
have only two different kinds of memory:

read/write memory-A semiconductor memory into which logic 0
and logic 1 states can be written (stored) and read out again (re
trieved).6 These are also called random access memories (RAM).

read-only memory-A semiconductor memory from which digital
data can be repeatedly read out, but cannot be written into as in
the case for read/write memory.6 Abbreviated ROM.

Actually, the read-only memory in your microcomputer may be a
special kind of memory called an erasable programmable read-only
memory, or EPROM. We shall talk about EPROMs in a subsequent
chapter.

The important point here is that your memory consists of semicon
ductor devices. They are fast and relatively inexpensive, have no me
chanical parts, and do not take up much room on your printed-circuit
board. They are one reason why computer technology bas advanced
as fast as it has.

How much memory do you have? The simplest Nanocomputer that
you can use contains 4096 bytes of read/write memory and 2048
bytes of read-only memory. The program which allows you to enter
data on the keyboard and displays information on the seven-segment
displays is loaded into the 2848 bytes of read-only memory. We will
refer to this program as the Nanocomputer operating system.

Since a byte contains eight bits, this means that you have at least
a total of 49,152 bits of memory in your microcomputer. This is suffi
cient for all programming and interfacing experiments that you will
encounter throughout this book.

On the second level Nanocomputer you are able to increase the
number of bytes of read/write memory to 16,384 and increase the
number of bytes of read-only memory to 8192. A Nanocomputer with

27

this memory capacity has a total of 24,576 bytes of memory. It is
known as a 24K microcomputer, where the "K" represents roughly
one thousand (exactly 1024) different memory locations. A 4K
microcomputer would contain 4096 bytes of memory. A 64K micro
computer would contain 65,536 bytes of memory.

MEMORY ADDRESS

Memory address is defined as the storage location of a memory
word. Note that we said word, not byte. For some computers, a word
may contain 32 bits, so each different memory location will contain
32 bits. For the Z-80 microcomputer, each memory location contains
a single byte, i.e., eight bits.

With the standard Nanocomputer that you can use, there are 6144
different memory locations. These memory locations are subdivided
into two groups, which can be described as follows:

• Memory group 1: The first group of 4096 (4K) memory loca
tions, each containing eight bits. This is the read/write memory
that you will normally use when you program your microcom
puter.

• Memory group 2: The second group of 2048 (2K) memory loca
tions, each containing eight bits. This memory region is occupied
by read-only memory, or perhaps by erasable programmable
read-only memory, which contains the Nanocomputer operating
system that makes your microcomputer operate. YOU CANNOT
CHANGE THE CONTENTS OF THIS MEMORY GROUP.

RANGE OF MEMORY LOCATIONS

The Z-80 microprocessor chip is quite remarkable, it can address
up to 65,536 (64K) different memory locations, each containing
eight bits. The chip contains a 16-bit memory address word. If you
perform a simple calculation, you will conclude that 2 raised to the
16th power (2**16) does indeed equal 65,536.

As indicated above, your Nanocomputer may have only 6144 (6K)
memory locations available on the basic card. You might ask, which
locations among the possible 65,536 locations are they? Our answer:
the first 4K locations together with the last 2K locations.

Stated in another way, the possible range of usable memory ad
dresses for the standard N anocomputer is:

28

0000000000000000 (BASE 2) to 0000111111111111 (BASE 2) R/W Memory
1111100000000000 (BASE 2) to 1111111111111111 (BASE 2) ROM

This is a cumbersome notation, one that is very difficult to remember.
There is an easier way to identify memory locations and the range of
your microcomputer. This is discussed in the next section.

HI AND LO MEMORY ADDRESSES

It is difficult to remember a 16-bit memory address, considerably
more so than an 8-bit instruction code or data byte. The Z-80 micro
processor chip treats a 16-bit memory address as two 8-bit memory
address bytes, an 8-bit HI byte and an 8-bit LO byte. These are
defined as follows:

HI address byte-The eight most significant (or left-most) bits in the
16-bit memory address word for the Z-80 microprocessor chip.
Abbreviated H or Hi.

LO address byte-The eight least significant (or right-most) bits in
the 16-bit memory address word for the Z-80 microprocessor chip.
Abbreviated L or LO.

Therefore, the possible range of read/write memory locations for
your microcomputer is

HI = 00000000 (2)

LO = 00000000 (2)

to
HI = 00001111 (2)

LO = 11111111 (2)

Recall that you learned how to convert an 8-bit binary number into a
2-digit hex number. Applied to the above HI and LO memory ad
dresses, you should obtain the following range of read/write memory
locations:

HI = 00 (16)

LO= 00 (16)
to

HI = OF (16)

LO= FF (16)

Keep in mind the following rule: To specify a memory location,
you must specify both the HI address byte and the LO address byte,
which together comprise a memory address word of 16 bits.

DEMONSTRATION NO. 1

At each step in this demonstration, you should have the selector
lamp located at the MEM position. Notice in Fig. 2-1 that there are

· four hex digits displayed on the left-hand side of the red digit displays,

ADDRESS DATA
Fig. 2-1. Memory location demonstration.

29

and that there are two hex digits displayed on the right-hand side.
The four hex digits displayed on the left represent the address of a
memory location. The two hex digits displayed on the right represent
the contents of the memory location whose address is displayed on the
left. You could think of memory as being a collection of boxes. Each
box has a label permanently printed on it. These labels are actually
hexadecimal numbers starting with 0000,0001,0002,0003, and so on.
Inside each box you can put exactly one byte of information in the
form of exactly two hex digits. Using the Nanocomputer keyboard you
can examine individual memory locations and change the contents of
a given memory location.

Step 1
Set the selector lamp on MEM. We observed that the memory ad

dress displayed in the left-most four hex digits, called the address dis
play, was 0000. The contents of memory location 0000, displayed in
the right-most two hex digits, called the data display, was 00.

Let us change the contents of OOOOH from OOH to 23H. Push the
hex key labeled 2, then push the hex key labeled 3, and finally, push
the key labeled : s'fj. ST is a shorthand notation for the word STORE.
By pressing1sT" you will STORE 23H in location OOOOH. Notice that
now the address has automatically increased to 0001. So you are now
"looking" at memory location 0001H. Store 24H in this location.

Step 2
Now examine memory locations OOOOH and 0001H to verify that

you have actually stored 23H and 24H in them, respectively. Press
0,0,0,0 in sequence on the keyboard followed by the key labeled , LAj.
LA is shorthand for LOAD ADDRESS. You are loading the hex
address 0000 into the address display. Now you should observe that
23 is displayed on the data display as the contents of memory location
OOOOH. Press the key labeled INC. Notice that the memory address is
incremented by one and that the contents of memory location 0001H
are indeed 24H. You now should be able to determine the contents
of any memory location and to change the contents of any READ/
WRITE memory location to any value that you desire.

Step 3
You will look at the contents now of a memory location in ROM

(Read-Only Memory) and attempt to write into Read-Only Memory.
Look at the contents of FCOOH (press F,C,0,0 in order and then press
LA). We observed that the contents of FCOOH was 31H. Attempt to
store the hex value FF at this memory location (press F,F and then
press the ~T· key). Now examine the contents of FCOOH again. We
observed that the contents of FCOOH had not been changed, and are

30

still 31H. Thus we have NOT been able to write into read-only
memory.

REVIEW

1. Identify the following instructions as to whether they are in binary code, hex
code, or mnemonic code.

a. HALT
b. 11010011
c. 3E
d. LO
e. INC
f. 00111100
g. 76

2. Write the following bin_ary instructions in hex code.
a. 11010011
b. 01110110
c. 00111100
d. 00110010
e. 00000000
f. 11000011
g. 11111111

3. Which of the following is a byte?
a. 1001
b. 011
c. 0000001100000011
d. 1110001101
e. 111000
f. 0100110

4. Write the following 16-bit memory addresses as HI and LO hex bytes.
a. 0000001111111111
b. 0000000011111111
C. 0000000111111111
d. 0000001011111111
e. 0000000000000000
f. 0000000100000000
g. 0000001000000000
h. 0000001100000000

S. Which of the following instructions are in machine language?
a. NOP
b. HALT
c. LO
d. INC
e. 3EH
f. 76H
g. 11010011
h. OOH
i. 00111100

6. In terms of the HI and LO memory address bytes, write the memory range
of the following memory groups in the Z-80 microcomputer.

a. The first 4K bytes of memory (read/write)
b. The first 16K bytes of memory (read/write)
c. The last 4K bytes of memory (read only)
d. The last SK bytes of memory (read only)

31

7. Define the. following terms.
a. byte
b. memory address
c. mnemonic code

ANSWERS

1. a. mnemonic code
b. binary code
c. hexcode
d. mnemonic code
e. mnemonic code
f. binary code
g. hexcode

2. a. D3
b. 76
c. 3C
d. 32
e. 00
f. C3
g. FF

3. None of the examples is a byte. A byte must contain exactly eight bits.
4. a. Hl=03 LO=FF

b. Hl=OO LO=FF
c. Hl=Ol LO=FF
d. Hl=02 LO=FF
e. Hl=OO LO=OO
f. Hl=Ol L0=00
g. Hl=02 LO=OO
h. Hl=03 L0=00

5. Examples g and i are in machine language.
6. a. The Range is Hl=OO and LO=OO to Hl=OF and LO=FF

b. The Range is Hl=OO and LO=OO to Hl=4F and LO=FF
c. The Range is Hl=FO and LO=OO to Hl=FF and LO=FF
d. The Range is HI=EO and LO=OO to Hl=FF and LO=FF

7. a. A group of eight contiguous bits that occupy a single memory location in
a Z-80 microcomputer.

32

b. The storage location of a memory word.
c. Computer instructions written in a form that the programmer can easily

remember, but which must be converted into machine language later to
be in computer readable form.

CHAPTER 3

Some Z-80 Microprocessor
CPU Instructions

In this chapter, we shall define several important terms, including
operation, data byte, address byte, and device code. We will also in
troduce you to several simple Z-80 microprocessor instructions that
you will use in the programs provided in Chapter 5. Our objective is
to gradually introduce you to the· entire Z-80 instruction set and to
provide programs that permit you to see how some basic instructions
are used.

OBJECTIVES

At the end of this chapter, you will be able to do the following:

• Define computer program.
• Define operation.
• Provide simple representations for single-byte, two-byte, three

byte and four-byte instructions.
• Explain the differences between the following kinds of program

bytes: operation code, data byte, device code, HI address byte,
LO address byte, and displacement byte.

• Define register.
• List the two sets of six general-purpose registers, and the six

special-purpose registers in the Z-80 microprocessor chip.
• List which of the general-purpose registers are used as register

pairs.
• Define accumulator.
• Define increment.

33

• Explain the operation of five common Z-80 microcomputer in
structions: NOP, HALT, INC A, LD A,data, and JP address.

• Define the immediate addressing mode.
• For a 2.5-MHz Z-80 microcomputer, list the execution times of

the following microcomputer instructions: NOP, HALT, INC A,
LO A,data, and JP address.

WHAT IS A COMPUTER PROGRAM?

A computer program can be defined as a sequence of instructions
that, taken as a group, allow the computer to perform a sequence of
operations to accomplish a desired task. What is the task? It could
be anything within the capability of the computer, associated external
input-output devices, and memory.

Programs are stored in memory as a sequence of O's and l's (bits)
that the computer can read, interpret, and execute in sequence, one
at a time. For the Z-80, these bits are stored in 8-bit groups called
bytes. A single instruction may occupy one, two, three, or four con
secutive bytes of memory. The Z-80 executes a program by reading
an instruction, interpreting the bit patterns, and then performing the
tasks necessary to complete the operation defined by the instruction.
Consecutive memory locations are read until an instruction is reached
that tells the computer to halt or jump to another memory location for
the next instruction.

Programs do not include just instruction bytes. Data bytes must
also be included in programs to provide needed information. For ex
ample, a program designed to add two numbers must include the
numbers to be added (data bytes) as well as the instructions to per
form the addition operation (instruction bytes). Other types of bytes
that make up a program include address bytes, device code bytes, and
displacement bytes. These are discussed later in this chapter.

The minimum Nanocomputer configuration provides 4K bytes of
read/write memory for user program storage. This is sufficient to store
highly complex programs. Two very critical terms in our definition of
computer programs are "instruction" and "operation." Now let us
investigate their meaning further.

INSTRUCTIONS AND OPERATIONS

An instruction is a set of characters that defines an operation, alone
or together with other information, and which together causes the
computer to perform the operation. An operation is defined as a
specific action which a computer performs whenever an instruction
calls for it (e.g., division, addition, subtraction, oRing, etc.). The
number of different operations that a computer can perform and the

34

speed with which it can perform such operations provide a measure
of how "powerful" the computer is. The operations that the Z-80
microprocessor chip can perform can be subdivided into the following
groups:

Data transfer group
Arithmetic and Logic group
Rotate and Shift group
Bit Manipulation group
Jump, Call, and Return group
1/0 and machine control group.

MULTIBYTE INSTRUCTIONS

Many instructions within the Z-80 instruction set require only a
single byte, but others require two, three, or even four successive bytes
before they can be executed. We call these latter instructions multi
byte instructions. A few definitions are in order:

single byte instruction-An instruction consisting of eight contiguous
bits that occupy a single memory location.

two-, three- or four-byte instruction-An instruction consisting of in
formation that occupies two, three, or four successive memory
locations.

The number of bytes required for an instruction is closely related
to the complexity of the instruction and the information that it re
quires. The Z-80-instruction set was designed as an extension of the
instruction set for a microprocessor, the 8080, manufactured by Intel
Corporation. To maintain consistency between the two instruction
sets, certain compromises in the definition of the new Z-80 instructions
were necessary. This has resulted in making the structure of the Z-80
instructions a bit more complicated than that of the 8080. However,
this sacrifice more than compensated by the fact that almost any
program written for an 8080 microprocessor can be executed on a
Z-80 microprocessor without any changes. The 8080 microprocessor
is historically a very important microprocessor chip, for which a lot
of software already exists. Hence, this "upward compatibility" is espe
cially beneficial.

Simple representations for one-byte, two-byte, three-byte, and four
byte Z-80 instructions are given in the following paragraphs. Note that
in all but one four-byte instruction type, the first one or two bytes are
operation codes which specify what the instruction does, and the last
bytes are information needed to carry out the instruction. We shall
discuss this in great detail when we introduce specific instructions.
The instruction formats are presented here merely as a preview of

35

things to come. Since operation codes follow each other sequentially
in memory at numbered addresses, we write them down in vertical
columns like a table, unlike the page you are reading which is written
horizontally.

Single-byte instructions require only on operation code and no
auxiliary information.

I OPERATION CODE I
Two-byte instructions have four forms:

OPERATION CODE

OPERATION CODE

OPERATION CODE

Displacement byte

OPERATION CODE

Data byte

OPERATION CODE

Device code

We shall explain shortly what is meant by the terms data byte, device
code, and displacement byte.

Three-byte instructions have three forms:

OPERATION CODE

Data byte

Data byte

OPERATION CODE

LO address byte

HI address byte

OPERATION CODE

OPERATION CODE

Displacement byte

We have previously discussed the concepts of LO and HI memory
address bytes.

Four-byte instructions have four forms:

OPERATION CODE

OPERATION CODE

Data byte

Data byte

OPERATION CODE

OPERATION CODE

Displacement byte

OPERATION CODE

OPERATION CODE

OPERATION CODE

LO address byte

HI address byte

OPERATION CODE

OPERATION CODE

Displacement byte

Data byte

As you may well guess, the last two four-byte instruction types rep-
resent fairly complicated instructions. Several examples of these in
struction types are discussed in detail later.

36

TYPES OF INFORMATION STORED IN MEMORY

The memory in a Z-80 microcomputer consists of a sequence of
successive 8-bit locations. Everything that the microcomputer does
with respect to the memory is done eight bits at a time. There exist
six different kinds of information that can be stored in memory:

8-bit operation codes
8-bit data bytes
8-bit device codes
8-bit LO address bytes
8-bit HI address bytes
8-bit displacement bytes

Therefore, in a Z-80 program, we simultaneously store instruction
codes, data bytes, device codes, address bytes, and displacement bytes
in the same memory. All of these kinds of information can exist side
by side. It is reasonable to inquire how the microcomputer is able to
distinguish among them.

The basic answer is that the order in which the information appears
· dictates what type of information it is. Computer programming is a
precision activity: ONE programming mistake and your program will
not operate correctly. A microcomputer program starts at a chosen
memory address and then proceeds operation by operation to a final
memory address. The operation codes always tell you what to expect
in the program, i.e., whether the next memory byte is a data byte,
address byte, device code byte, another operation code, or a displace
ment byte.

OPERATION CODE

The first byte of a Z-80 instruction is always an operation code.
Note that some instruction types begin with two operation code bytes.
These instructions are extensions of the old 8080 instruction set. If
the first byte of an instruction is CB, DD, ED, or FD, then the second
byte must also be an operation code. The operation code byte(s)
define the specific action that the Z-80 microprocessor chip will per
form. Specific actions include data transfer, arithmetic operations,
logical operations, branch instructions, stack operations, 1/0 opera
tions, and machine control operations. If you desire to know what the
microcomputer will do next, the operation code(s) of the following
instruction will tell you. Synonyms for operation code are op code
and instruction code.

37

DATA BYTE

Data byte is defined as the 8-bit binary number that the Z-80 micro
processor chip will use in an arithmetic or logical operation or to store
in memory. The eight bits can be in any kind of digital code: binary
code, binary coded decimal, ASCII code, etc. When we use the term
data byte, we mean that the eight bits are not an operation code,
memory address, device code, or displacement byte. When you do
microcomputer programming, you will find it very convenient to in
clude data in your program where and when you need it, rather than
having to refer to a remote memory location for the eight or sixteen
bits of data that you need.

DEVICE CODE

Device code, for a Z-80 based microcomputer, is the identifier for
the specific input or output device with which you desire to exchange
eight bits of information and a device select pulse. We shall talk about
the details of how this is done later. The important point is that the
device code is an 8-bit code, which means that you can address two
to the eighth power, (2**8), or 256 different output devices. On your
microcomputer, output device codes 04 and 07 are reserved for the
Nanocomputer operating system.

As you proceed through this text, we encourage you to study care
fully what is meant by device code and device select pulse, and how
to use the latter to force input-output devices to operate in synchro
nization with your microcomputer program.

HI AND LO ADDRESS BYTES

We would like to remind you again that the HI address byte is the
eight most significant bits, or highest value bits, and the LO address
byte is the eight least significant bits, or lowest value bits, in the 16-bit
Z-80 microprocessor memory address word. Since the Z-80 is an 8-bit
microprocessor chip, which obtains data or instructions from memory
eight bits at a time, it has no choice but to handle the 16-bit memory
address information as a pair of 8-bit address bytes.

DISPLACEMENT BYTE

Displacement bytes appear in instructions which use Indexed Ad
dressing. Indexed Addressing is a technique for defining a two-byte
memory address by adding a Displacement to a 16-bit number which
resides in a special location on the microprocessor chip called an
Index Register. A Displacement is a signed two's complement number.

38

We will not attempt to define signed two's complement now. Suffice
it to say that it is a method of representing binary numbers which
facilitates manipulation of negative numbers. This will be carefully
explained later.

Do not feel overwhelmed if many of the above terms appear unfa
miliar. A complete understanding of all these terms will come only
from experience in using instructions to program your Z-80.

WHAT IS A REGISTER?

A register is a short-term storage circuit the capacity of which is
usually one computer word. Single registers in the Z-80 microproces
sor chip store a single byte, i.e., eight contiguous bits. A variety of
registers exist within the Z-80 chip, some of which you use to store
digital information and others which are used by the chip itself as it
performs instructions. In general, we can subdivide the registers of the
chip into two different sets: those that you can address from a pro
gram and those that you cannot address from a program. The pro
gram-addressable registers include:

• two sets of 8-bit general-purpose registers addressed singly or
in pairs,

Set 1: B register
C register
D register
E register
H register
L register

Set 2: B' register
C' register
D' register
E' register
H' register
L' register

Set 2 is referred to as the alternate register set (ARS).

• an 8-bit ACCUMULATOR for each set, also known as registers
A and A'.

• an 8-bit FLAG register for each set, also known as registers F
and F'.

• the 16-bit STACK POINTER register (SP).
• the 16-bit PROGRAM COUNTER REGISTER (PC).
• two 16-bit INDEX REGISTERS (IX) and (IY).
• the 8-bit INTERRUPT PAGE ADDRESS register (I).
• the 8-bit MEMORY REFRESH register (R).

These are the only registers with which you can directly exchange in
formation with the aid of a suitably written microcomputer program.

GENERAL-PURPOSE REGISTERS

The two sets of six general-purpose registers--B, C, D, E, H, and
L, and B', C', D', E', H', and L',-temporarily store single bytes of

at

information. Since they are located within the Z-80 microprocessor
chip, the exchange of information from one general-purpose register
to another can be very fast. The exchange of information between any
of these general-purpose registers and the accumulator is also fast.
These registers can be used singly or in pairs. For Set 1, the three
16-bit register pairs are:

• the 16-bit general-purpose register consisting of the B register
and the C register. When used for memory addressing, the B reg
ister corresponds to the HI memory address and the C register
to the LO memory address.

• the 16-bit general-purpose register consisting of the D register
and the E register. When used for memory addressing, the D reg
ister corresponds to the HI memory address and the E register
to the LO memory address.

• the 16-bit memory address register and general-purpose register
consisting of the H register and the L register. When used for
memory addressing, the H register corresponds to the HI mem
ory address and the L register corresponds to the LO memory
address.

The registers are similarly paired for set 2.

ACCUMULATOR

The accumulator is an 8-bit register within the Z-80 microprocessor
chip in which the result of most arithmetic and logical operations are
placed. In the case of the Z-80 microprocessor chip, the accumulator
register is located within the chip and contains a single byte of memory
storage capacity, i.e., eight bits. Pay particular attention to what you
can do to the contents of the accumulator. For example, you can add,
subtract, or compare data with the contents of the accumulator. You
can increment or decrement its contents by one. You can exchange the
contents of the accumulator with a memory location, or with input
output devices. You can rotate the bits in the accumulator either to
the left or to the right. You can perform logical operations on the
accumulator, including AND, OR, and exclusive-OR. You may not
understand some of these terms at the moment. Be patient, we shall
get to all of them. The other registers within the Z-80 microprocessor
chip will be discussed in more detail later.

SOME Z-80 INSTRUCTIONS

In Chapter 5, you will begin to test microcomputer programs. The
programs that you will try will contain some single-byte, two-byte,
and three-byte instructions, including the following:

40

00
3C
76
3E
<data>
32
LO
HI

C3
LO
HI

NOP
INC A
HALT
LD A,data

LD (addr),A

JP addr

No operation
Increment contents of accumulator by 1
Halt the microcomputer
Move the immediately following data byte
<data> to the accumulator
Store the contents of the accumulator in the
memory location addressed by the
following two bytes (addr) in this three-byte
instruction.
Unconditional jump to the memory address given
in the following two bytes in this three-byte
instruction.

Please note that the above list contains instructions with only single
byte operation codes, i.e., the first byte in each instruction. The hex
operation code appears in the first column next to its associated
mnemonic.

From this point forward, all operation codes, device codes, data
bytes, memory address bytes or displacement bytes will be written in
hex code. And all mnemonics containing addresses or data will carry
the hex digits followed by the character "H ."

An important notational convention is illustrated in the two in
structions:

LO (addr), A
JP addr

In the LD instruction, "addr" is enclosed in parentheses, while the
parentheses are absent in the JP instruction. A 16-bit address enclosed
by parentheses represents the data byte residing at location addr. For
example, the instruction

LO (0001 H) , A

is executed by placing the one byte of data in the accumulator into
the address specified by 0001. The " () " are read "the address spec
ified by." The address "addr" in the JP instruction refers to the ad
dress of the next instruction to be executed by the computer. Here,
program control is being transferred, as opposed to data in the LD
instruction. Hence, a 16-bit address appearing without parentheses is
a reference to the location itself, whereas the appearance of paren
theses implies that the reference is to the contents of that location.
This is a subtle distinction that will become more natural later.

INSTRUCTION BYTE NOMENCLATURE

The Intel Corporation literature describing 8080 microcomputer
mnemonics employs the following useful abbreviations or symbols for
the first, second, and third bytes in multibyte instructions:

41

<e 1 > First byte in an instruction
<e2> Second byte in an instruction
<B3> Third byte in an instruction

We shall extend this notation to facilitate our description of the Z-80
mnemonics. For example, the three-byte JP and LD instructions can
be written in the following manner:

JP <e3> <e2>
LO (<B3> <B2>), A

Similarly, the two-byte LD instruction can be written as

LO A, <B2>

No-Operation: NOP

The simplest Z-80 instruction is the no-operation instruction, NOP,
which has the instruction code 00.

00000000

No operation is performed. You can use this instruction whenever you
want to provide space in your program so that you can add instruction
bytes at a later time. In a later chapter, you will learn that your micro
computer operates at about 2.5 MHz, or 2.5 million states per second.
ALL MICROCOMPUTER INSTRUCTIONS TAKE TIME TO
EXECUTE. Though no operation is performed, i.e., the condition
of the registers and memory is not changed, the NOP instruction nev
ertheless requires four states, or a total time of 1.6 microseconds,
for execution. 1'he execution time depends on the speed of the micro
computer. If the Z-80 operated at 4 MHz, or 4,000,000 states per
second, the NOP instruction would require an execution time of 1
microsecond. Z-80A microprocessors can operate at 4 MHz, with
some special selected chips operating a bit faster than this.

We shall discuss precisely what is meant by a state in a subsequent
unit.

Halt: HALT

Another simple Z-80 instruction is the halt instruction, HALT,
which has instruction code 76,

01110110

As soon as this instruction is executed, the microcomputer comes to
a halt. It is frequently used to permit the microcomputer to "wait" for
an INTERRUPT from an external device. In a computer, an interrupt
is a break in the normal flow of a routine such that the fl.ow can be
resumed from that point at a later time. The HALT instruction re
quires seven states, or a total time of 2.8 microseconds, for execution.

42

Increment Accumulator: INC A

The term, increment, can be defined as follows:

increment-To increase the value of a binary word, typically, to in
crease the value by 1.

The increment instruction, INC A, which has an operation code of 3C,

0 0 1 1 1 1 0 0

increases the contents of the accumulator register by 1. The INC A
instruction requires five states, or a total time of 2.0 microseconds,
for execution.

Load Immediate to Accumulator: LD A, data

Immediate refers to the fact that the data byte is contained within
the multibyte instruction. In immediate instructions, an 8-bit data byte
or two 8-bit data bytes are acquired via a multibyte instruction that
contains the data byte(s) as byte(s) <B2> or <B3> and possibly
<B3> or <B4>. The load-immediate-to-accumulator instruction is
a 2-byte instruction that has an operation code of 3E, and mnemonics,
LO A, <B2>.

00111110
data byte

The second byte of the instruction is the 8-bit data byte that is to be
loaded into the accumulator register. The entire 2-byte instruction
requires seven states, or 2.8 microseconds, for execution. You will
find this to be a convenient way to alter the contents of the accumu
lator. It is a very popular instruction.

Load Accumulator Direct: LD (addr), A

The load accumulator direct instruction, LO (<B3><B2>), A is
a 3-byte instruction that has an operation code of 32. It permits you
to place the contents of the accumulator directly into a memory loca
tion, M, address by the second and third bytes in the instruction.
The second byte is the LO address byte and the third byte is the HI
address byte.

00110010
LO address byte
HI address byte

When the instruction is executed, the program does not change the
contents of the accumulator; it simply copies the accumulator byte
into the contents of the indicated memory location. This instruction is
executed in 13 states, or 5.2 microseconds for a microcomputer run
ning at 2.5 MHz.

43

Unconditional Jump: JP addr

The unconditional jump instruction, JP <B3> <B2>, is a 3-byte
instruction that has an operation code of C3. The second byte of the
instruction is the LO memory address byte, and the third byte is the
HI memory address byte,

11000011
LO address byte
HI address byte

When the instruction is executed, the program jumps to the 16-bit
memory address given by the HI and LO address bytes. We call this
type of instruction a Branch Instruction. It permits you to stop the
normal sequential program execution and jump somewhere else in
memory, at which point you resume program execution. The branch
instructions are very powerful. They permit you to write program
loops, groups of instructions that are executed repeatedly. In this man
ner, you are able to substantially reduce program complexity. The
unconditional jump instruction requires ten states for execution, or
4.0 microseconds. During this period of time, the entire 3-byte instruc
tion is executed.

REVIEW

1. What is the difference between an operation code, data byte, device code,
address byte, and displacement byte?

2. Provide the mnemonic code for the following 8-bit binary operation codes.
a. 01110110
b. 00111110
c. 11000011
d. 00110010
e. 00111100
f. 00000000

3. Write the two-digit hex operation code for the following Z-80 instructions.
a. HLT
b. JP <B2> <B3>
c. LO (<B2> <B3>),A
d. NOP
e. INCA
f. LDA, <B2>

4. In a multibyte Z-80 instruction, can the operation code be either the second
or third or fourth byte of the instruction?

5. For a microcomputer operating at 2.5 MHz how much time is required to
execute the following instructions?

a. JP
b. LOA, <B2>
c. INCA

6. List the six general-purpose registers and the six special-purpose registers in
the Z-80 microprocessor chip. Indicate which of the general-purpose registers
are used as register pairs. What do we mean by ARS?

44

ANSWERS

1. The operation code is the 8-bit, 16-bit, or 24-bit code for the specific action
that the Z-80 microprocessor will perform. A data byte is an 8-bit binary
number that the Z-80 will use in an arithmetic or logical operation, or store
in memory. A device code is the specific input or output device identification
with which a Z-80 microprocessor will exchange eight bits of information.
An address byte is either the eight most significant or eight least significant
bits in the 16-bit Z-80 memory address word. A displacement byte is an 8-bit
signed two's complement number that is used for indexed addressing.

2. a. HLT
b. LOA, <B2>
c. JP <B2> <BJ>
d. LO (<B2> <BJ>), A
e. INCA
f. NOP

J. a. 76
b. CJ
c. 32
d. 00
e. JC
f. JE

4. In a multibyte instruction, the first, second, and fourth bytes may be opera
tion codes. The first byte, which is always an operation code byte determines
the significance of the second byte. If the second byte is an operation code,
it determines the significance of the remaining byte(s), if any.

5. a. 4.0 microseconds
b. 2.8 microseconds
c. 2.0 microseconds

6. The six general-purpose registers are·B, C, D, E, H, and L.
The six special-purpose registers are SP, PC, IX, IY, I, and R
The general-purpose registers are paired into three 16-bit registers as follows:
BC, DE, and HL.
By ARS we mean the alternate register set, a second set of general-purpose
registers, flags, and accumulator: A', B', C', D', E', F', H', and L'.

45

CHAPTER 4

The Nanocomputer (NBZ80)
and the Super

Nanocomputer (NBZ80S)

In the chapters that follow, you will set up experiments that dem
onstrate the important concepts of microcomputer programming and
interfacing. To perform these experiments, you will use the Nano
computer (a Z-80-based microcomputer), and later some integrated
circuit chips, some extra breadboarding sockets, wire, and other elec
tronic components. This chapter will cover some of these items and
prepare you to use them properly as you perform the experiments.
The Z-80 Nanocomputer is manufactured by SGS-ATES Componenti
Electronici SpA headquartered at Via C. Olivetti 2-20041 Agrate
Brianza-Italy.

OBJECTIVES

By the end of this chapter you will be able to do the following:

• List the power requirements of the Nanocomputer.
• State the function of each of the 30 keys on the Nanocomputer

keyboard.
• Explain the significance of each of the 14 lights on the Nanocom

puter keyboard.
• Identify and define the significance of the 8 seven-segment dis

plays on the Nanocomputer keyboard.
• State the clock frequency and time duration of a single state for

the Nanocomputer.

47

• Load and execute a simple microcomputer program.
• State which solderless terminals are connected together electri

cally on a solderless breadboard.
• Explain the difference between read/write memory and program

mable read-only memory.
• Give the location of read/write and read-only memory in the

Nanocomputer and name the starting address of the operating
system in read-only memory.

THE NANOCOMPUTER

Purpose

The Nanocomputer shown in Fig. 4-1 is a small Z-80-based micro
computer with 4K of read/write memory and 2K of PROM/ROM
memory. There are two versions of the Nanocomputer:

(1) The NBZ80-an open board microcomputer with a data entry
and display station, which we usually refer to as the Nano
computer keyboard.

(2) The NBZ80S-an NBZ80 board encased in a desk cabinet in
cluding an experiment breadboard and power supply. The "S"
is for super.

Both N anocomputers are designed for educational and training use
in Z-80 CPU interfacing and programming. Both can be used inde
pendently as stand-alone microcomputers, or be integrated into com
plex systems consisting of other microc9mputers and/ or larger com
puters. The next chapters will give you experience in microprocessor
software development and later chapters on interfacing will introduce
you to practical experiments with the Nanocomputer. You will per
form three types of experiments:

(I) Experiments that require programming the Nanocomputer and
use only the NBZ80 Nanocomputer and NPZ80 power supply,

(2) Experiments that involve construction of digital circuits and
require a breadboard (NEZ80), power supply, and a few digi
tal components, and

(3) Experiments that involve both programming and digital inter
face circuit construction and require the Super Nanocomputer
(NBZ80S).

Description
The Nanocomputer is a self-contained, single board Z-80-based

microcomputer with a SGS-ATES Z-80 CPU and PIO, memory, and
a 30-key data entry/display station keyboard. The keyboard allows
the user to load programs into the microcomputer memory, select
specific memory locations for reading and writing of memory, execute

48

Courtesy SGS-ATES Componenti, Electronlci SpA
Fig. 4-1. NIZIO Nanocomputer with keyboard and NPZBO po_, supply.

programs at full speed, slow speed, or one step at a time, reset the
microcomputer to an initial state, and many more functions. We shall
describe all of these functions in detail.

Several diagrams and photographs of the Nanocomputer are shown
on the following pages. As shown in Figs. 4-2 and 4-3, the following
functional regions or blocks can be identified on a Nanocomputer
printed-circuit board:

• CPU
• RAMmemory
• ROM or EPROM memory
• 4 Parallel 1/0 Ports (2 PIO integrated circuits)
• 2 Serial 1/0 Ports (serial terminal and cassette tape interface)
• Bus Drivers
• Clock and Baud Rate Generator

It is not necessary for you to understand these functional blocks
when you first operate the Nanocomputer. Initially, you will be con
cerned with learning to use the keyboard and read and interpret the

49

SERIAL
INTERFACE

RAM

CLOCK and
AUDIO
GENERATOR

PIO PORTS

CPU

EPROM

Courtesy SGS-ATES Componentl: Electronici SpA
Fig. 4-2. Nanocomputer p-c board layout.

display. As you develop expertise in microcomputer programming,
you will begin to develop a more detailed understanding of the actual
circuitry of the Nanocomputer.

Power Requirements

The Nanocomputer requires a power supply of:

+5V ±5% at800mA
-5V ±5% at 200 mA

+12V±l0% at lO0mA
-12V±l0% atlO0mA.

Such a supply is included in the cabinet of the NBZ80S. For the
NBZ80, SGS-ATES manufactures a suitable power supply (NPZ80)
which can be purchased separately.

Nanocomputer Keyboard

The Nanocomputer keyboard is connected to the printed-circuit
board via a 40-wire cable. The Nanocomputer keyboard is shown in
Fig. 4-4. The following is an exhaustive description, for your refer
ence, of the function of each key. Do not attempt to memorize these
descriptions, but rather, skim the material first and then depend on
the experiments at the end of this and subsequent chapters to teach
you the keyboard functions.

0 through F-These keys enter a hexadecimal digit in the right
most position of the four-digit data display. As digits are entered on
the right, the remaining three digits are shifted left with the left-most
digit being lost.

50

Courtesy SGS.ATES Componenti: Electronici SpA
Fig. 4-3. N8Z80 open board microcomputer.

Left Arrow (+-) and Right Arrow (➔)-These keys are used to se
lect (light) one of the 14 lights just below the data and address dis
plays. All lights except ARS, BRK, and ER.I?. may be lit by shifting
the selected (lit) lamp left or right. Note that holding either of these
keys in a depressed position causes repeated shifts in the selector light.
Also note that a shift past the last lamp in either direction causes a
new cycle to begin.

Let us discuss the significance of the displays produced by choosing
different selector positions. For positions IR, AF, BC, DE, and HL,
four hex digits appear in the data display (the right-most four digits).
This represents two bytes of data. The left two digits depict the con
tents of the I, A, B, D, or H register, while the right two digits depict
the contents of the R, F, C, E, or L register depending on the position
of the selector light. For positions IX, IY, SP, PC, and MEM, the four
hex digits in the address display (on the left) represent the contents
of the selected 16-bit register while the two hex digits in the data dis
play give the contents of the memory location pointed to by the ad
dress register.

For the 1/0 position, the address display contains a one-byte device
code and the data display contains the contents of the device at that
port.

ST--ST is an abbreviation for STore. Its precise function depends
on the position of the selector lamp. If the selector lamp is in position

51

Fig. 4-4. NBZ80 keyboard.

Courtesy SGS-ATES Componenti: Electronici SpA

m, AF, BC, DE, or HL, the hex digits occupying the right-most posi
tions (i.e. the low order byte) in the data display are stored in register
R, F, C, E, or L, respectively. If the selector lamp is in position IX,
IY, SP, or PC, the four digits (two bytes) in the data display are
stored in the IX, IY, SP, or PC 16-bit registers.

If the MEM selector lamp is lit, the right-most two hex digits (one
byte) are stored in the address appearing in the address display, and
the address display is then increased (auto-incremented) to point to
the next sequential memory location.

Finally, if the 1/0 selector lamp is lit, the right-most two hex digits
(one byte) are output to the output port selected by the address dis
play which is then auto-incremented.

LA-LA is an abbreviation for Load Address. When the BRK
lamp is unlit (i.e., when the Nanocomputer is not in Breakpoint
Mode), the LA key may be used only when the selector lamp is in
position MEM or 1/0. In any other selector position, use of the LA

key will result in the red ERR error lamp being lit to indicate that an
illegal operation has been attempted. When the BRK lamp is lit, the

52

LA key has a different use. We shall defer further discussion of the
Breakpoint Mode use of LA until the paragraphs on the BRK key.

With the Nanocomputer NOT in Breakpoint Mode:

If the selector lamp is in position MEM, LA causes the following to
occur:

a) The four hex digits just entered and appearing in the data
display are entered into the address display, and

b) The contents of the memory location pointed to by the address
display are displayed in the data display.

If the selector lamp is in position 1/0, LA causes the following to
occur:

a) The two digit device code just entered and appearing in the
data display is entered into the address display, and

b) the contents of the 1/0 port of the address display are displayed
in the data display.

2ND-2ND refers to the second or high order byte in the register
pairs IR, AF, BC, DE, and HL, namely I, A, B, D, and H. To store
a byte (two hex digits) in these registers the procedure is:

STEP 1. Position the selector lamp to the desired register pair
(IR, AF, BC, DE, HL)

STEP 2. Enter two hex digits in the data display
STEP 3. Press the 2ND key
STEP 4. Press the ST key

The result is that the contents of the register pair are redisplayed in
the data display with the high order byte changed accordingly. The
low order byte is unchanged. Note that if more than two hex digits are
entered in STEP 2 above, the right-most two (i.e., the last two digits
entered) are the ones stored.

The 2nd key has no effect when the selector lamp is positioned at
IX, IY, SP, PC, MEM, or 1/0 since these "registers" are not PAIRS
of 8-bit registers, as are IR, AF, BC, DE, and HL.

SS-SS stands for Single Step. This is a very useful feature of the
Nanocomputer operating system in which programs may be exe
cuted one step at a time. After each step, the contents of various regis
ters may be examined, thus giving the user a powerful debugging aid
in the program development process.

We shall also make use of the single-step feature to illustrate some
of the details of how the Z-80 microprocessor works, something which
can only be seen when the Z-80 is operating in "slow motion."

An interesting fact about the single-step feature on the Nanocom
puter is that it is implemented in software. Most single-step features

53

are implemented in hardware. We shall talk more on this fascinating
subject later.

One uses the ss key by loading a program, placing its start address
into the PC register, and then pressing the ss key. Each time the ss
key is pressed, a single instruction is executed. Between successive
depressions of the ss key, the user may position the selector lamp
anywhere to choose information for display. The single-step execution
of a program may also begin after a breakpoint. (See BRK for infor
mation on breakpoints.)

Note that holding the ss key in a depressed position causes the
program to continue stepping slowly until pressure is released.

INC-INC is an abbreviation for INCrement. This key has two
functions. First, when the Nanocomputer is not in Breakpoint mode
and the selector lamp is in position MEM or 1/0, it causes the mem
ory location or device code in the address display to be increased by
one, thus displaying successive memory locations or 1/0 ports and
their contents. In any other selector position, use of the INC key causes
the ERR lamp to light up, indicating an illegal operation.

The second use of the INC key occurs when the Nanocomputer is
in Breakpoint mode. The exact use of the INC key in Breakpoint
mode is described below in the paragraphs on the BRK key.

ARS--ARS stands for Alternate Register Set. This key causes the
two sets of registers A, B, C, D, E, F, H, L, and A', B', C', D', E', F',
H', L' to be exchanged.

By pressing the ARS key once with the selector lamp in position
AF, you cause registers A' and F' to be displayed in the data display.
The results are similar for positions BC, DE, and HL of the selector
lamp. There is no change in the display for the other positions of the
selector lamp.

When the alternate register set is being displayed, the ARS lamp is
lit. Note that pressing the ARS key alternately turns the ARS lamp on
and off.

GO-This key has two functions. The first function is to initiate or
resume execution of a microcomputer program. The other function is
to remove breakpoints, which will be discussed in the paragraphs
describing the BRK key. In order to initiate execution of a microcom
puter program, one must specify the starting address of the program.
This can be accomplished in either of two ways:

1. Load the PC (Program Counter) with the starting address, then
press GO to begin execution.

2. Enter the starting address in the data display and immediately
press GO.

In either case, program execution will proceed until the program either
halts, returns control to the Nanocomputer operations system, or en-

54

counters a breakpoint. To resume execution after a breakpoint,
merely press GO again.

BRK-BRK is an abbreviation for breakpoint. This key is a switch
that places the Nanocomputer in and out of the Breakpoint Mode.
When in the Breakpoint Mode, the BRK selector lamp is lit; otherwise
it is unlit. Thus, alternate depressions of the BRK cause the lamp to
tum on and off.

Let us discuss what a breakpoint is and what it means for your
Nanocomputer to be in the Breakpoint Mode. A breakpoint is a break
in program execution. You define a breakpoint by specifying a pro
gram instruction where execution should stop. You may then examine
the registers and memory before continuing program execution. Exe
cution may be resumed in single-step mode (using the ss key) or at
full speed (pressing the GO key again). You specify a breakpoint by
giving an address (two bytes or four hex digits). This address MUST
point to the first byte of a multibyte instruction. It is important to
note that the instruction beginning at the breakpoint address is NOT
executed when the breakpoint is encountered. This instruction will
be executed only when program execution resumes.

You may define up to eight breakpoint addresses at one time.
These addresses are numbered O through 7. This numbering is only
for ease of reference and does not imply anything about the order in
which breakpoints must be entered. For example, breakpoint O may
occur later in the execution of a program than breakpoint 5. The fol
lowing sequence of steps describes how to define breakpoints as well
as the particular functions of the BRK, INC, and LA keys in this process
of program execution.

Step 1: Press the BRK key to enter Breakpoint Mode. The Nano
computer is now ready to accept breakpoint definitions.

Step 2: A single digit O should appear in the data display. Pressing
the INC key causes this number to be increased by one up to 7
and then back to O again. This digit indicates the current break
point number.

Step 3: Define the breakpoint address for the desired breakpoint
number by first displaying the correct single digit, and then typing
in a four-digit address followed by the LA key. The resultant
display should be such that
a) The first four digits are the address you entered.
b) There is a blank space followed by three digits.
c) The first digit of the three-digit group is the breakpoint

number.
d) The second and third digits of the three-digit group are the

contents of the breakpoint address, i.e., the first byte of the
breakpoint instruction.

55

Step 4: Successive breakpoints may be defined by INCrementing
to the desired breakpoint number, entering an address, and press
ing LA. Any currently defined breakpoint may be changed using
the same procedure.

Step 5: Press the BRK key again to exit from the Breakpoint Mode.

To remove a breakpoint, enter Breakpoint Mode, INCrement to the
breakpoint you wish to delete, then press GO. The resultant display
should contain only the breakpoint number.

LD and DP-If your Nanocomputer is equipped with a tape cas
sette recorder/player interface, you may use tape cassettes as a mass
storage medium. That is, you may dump to tape programs or data
which are stored in memory (the DP key); or you may load from tape
programs or data which have been previously saved (the LD key).

Since the contents of read/write memory are always destroyed
when the power to the N anocomputer is turned off, a mass storage
medium such as cassette tape greatly facilitates returning memory to
a desirable state after power-up. In fact, when you perform the pro
gramming experiments in this and subsequent chapters, we strongly
recommend that you dump the longer programs to tape after keying
them in. In this way, should it become necessary to reload the pro
gram, you won't have to re-key each byte ... you can just hit the
LD key!

It is important to mention also that the LD and DP keys can be
used in conjunction with devices other than cassette tape recorder/
players. Any ASCII serial device can send or receive data to/from
the Nanocomputer. That is, the LD and DP commands can be used
for output to paper-tape punches, printers, crts, etc., and for input
from paper-tape readers, crts, etc. You merely inform the Nanocom
puter, via the TTY/CASS switch on the keyboard, whether it is access
ing a serial digital teletype (TTY) or an audio cassette recorder/
player (CASS). We will specifically discuss audio cassette 1/0 in
more detail later.

Let us now discuss how to use the RCZ80 audio cassette-tape re
corder/player. Then we will fully describe the load and dump opera
tions.

The RCZ80 audio cassette-tape recorder/player is supplied by
SGS-ATES for interfacing with the Nanocomputer. However, any
standard recorder/player can be used. The discussion below applies
specifically to the RCZ80 unit, though, with only slight modification,
can apply equally to units manufactured by others. For these we
refer you to the unit operation manual.

56

To set up the recorder/player for operation:

• select the proper operating voltage (110/120 or 220/240 vac)
using the switch on the back of the recorder/player case

• connect the AC mains
• turn the volume control to maximum volume (10)
• with the power off to the Nanocomputer, connect the cassette

cable: The 7-pin round connector plugs into the mating outlet
on the side of the recorder/player, and the 8-pin flat connector
plugs into the J3 connector of the NBZ80 board (upper left).

• position the TTY/CASS switch on the Nanocomputer keyboard
to CASS.

The DP Operation

The DP key is used to initiate a cassette write operation. The pro
cedure for recording the contents of a contiguous block of Nano
computer memory (RAM, ROM, or EPROM) is as follows:

1. Apply power to the Nanocomputer.
2. Position the tape to the initial recording position (use the FAST

FORWARD(>>) and REWIND(<<) keys).
3. Position the selector lamp on the Nanocomputer keyboard to

MEM.
4. On the Nanocomputer keyboard, enter the first address of the

block of memory you wish to dump (up to four hex digits),
then press the LA key.

5. On the Nanocomputer keyboard, enter the length of the block
of memory you wish to dump (up to four hex digits). The key
board display should now show the start address on the left and
the block length on the right.

6. On the Nanocomputer keyboard, press the DP key. The key
board display will go dark. The cassette write operation has
been initiated.

7. Confirm that the TTY/CASS switch is in the CASS position.
Simultaneously press the red RECORD key and the FORWARD

key (>). The tape will not start to move yet.
8. Press the GO key. The tape will start to move slowly. After

about 20 seconds of continuous tone (written as a header),
the Nanocomputer will start to record data on the tape cas
sette.

9. When the cassette write operation terminates, the cassette will
stop automatically. Our experience is that it takes 20-25 sec
onds to write 256 bytes, so do not become alarmed if the write
operation seems to take longer than you expect. After the cas
sette stops, hit the recorder STOP key to acknowledge the end
of the write operation.

10. Press any key on the Nanocomputer keyboard to restart normal
operation. Also, at this point, you can rewind the tape and
remove it from the recorder/player, if you wish.

57

The LD Operation

The LD key is used to load programs and/ or data previously re
corded on a cassette into memory. The start address and number of
bytes have been stored on the tape along with the program and data
bytes, so it is not necessary to specify them again. Here is the sequence
of steps for a cassette read operation:

1. Apply power to the Nanocomputer.
2. Position the tape to the initial reading position (use the FAST

FORWARD(>>) and REWIND (<<)keys).
3. Double check the TTY/CASS switch on the Nanocomputer key

board to ensure that it is in the CASS position.
4. Press the LD key. The Nanocomputer display should go dark.

The load operation has now been initiated.
5. Press the FORWARD key (>) and listen for the high pitched

sound of data.
6. The cassette will stop when the cassette read operation is ter

minated. Also, you should hear an unmistakable sound which
we will not attempt to describe here.

7. When the cassette has stopped, press the RECORDER STOP key
to acknowledge the end of the read operation.

8. If the ERR light on the Nanocomputer keyboard is on, a
checksum error (error in data transmission) has occurred. Try
to read the tape again. If the ERR light comes on again, the
cassette is defective or incorrectly written.

9. If the load was successful, the ERR light will be off.
10. Press any key on the Nanocomputer keyboard to restart nor

mal operation.

NOTE 1:
At the termination of both load and dump operations, the tape cas
sette motion is disabled until acknowledgement is received and
normal operation resumed by pressing any key on the Nanocom
puter keyboard. This end sequence of steps is quite important, so
always adhere to it closely.

NOTE 2:

58

The speed of serial 1/0 during cassette tape reads and writes is
programmable. When the Nanocomputer is powered up or reset
(the RESET key is pressed), the speed is set to 600 baud or 60
characters per second, where each character consists of 10 bits (2
start bits, 7 bit ASCII code, and 1 stop bit). By changing the con
tent of memory locations BAUDRT and BAUDRT +1, serial 1/0
speeds of 110 and 300 baud can be obtained. The following ta-

hie gives the correspondence between the content of locations
BAUDRT and BAUDRT + 1 and the serial 1/0 speeds.

(BAUDRT) (BAUDRT + 1) BAUD Rate

9A 00 600
35 01 300
55 03 110

The absolute address associated with the label BAUDRT can be
obtained from the Master Symbol Table in Appendix F.

NOTE 3:
The format of the bytes recorded on tape is as follows:

• Each memory byte is translated into two ASCII characters,
one ASCII character for each hex nibble (half byte). For ex
ample, the binary memory byte 00101010 is translated into an
ASCII 2 and an ASCII A.

• Memory bytes are grouped eight to a record.
• Each record has the format:

NOTE 4:

Characten Contents

l Carriage return
2 Line feed
3 Colon

4-5 Record length
6-7 Record memory start address, HI byte
8-9 Record memory start address, LO byte

10--11 Not used
12-N Data memory bytes of 2 ASCII characters

per byte (number dependent on record
length field in characters 4-5)

(N + l)-(N + 2) Checksum

The Nanocomputer is capable of reading a cassette tape recorded
by another SGS-A TES product called the ClZ80 Z-80-based mi
crocomputer, if the tape was created using the MO-Z Monitor/
Debug or ASS-Z Assembler software. This is accomplished by
loading the memory location INMODE (see the Master Symbol
Table in Appendix F for the absolute address) with any byte not
equal to 00 (hex), and then following the usual Nanocomputer
tape load procedure. Note that tapes created by the Nanocomputer
may not be read by a CLZ80 operating under the MO-Z Monitor/
Debug or ASS-Z Assembler software.

BREAK-The BREAK key may be thought of as a "panic but
ton." Pressing the BREAK key causes a nonmaskable interrupt of
the CPU (NMI) which, in tum, causes immediate termination of

59

the program currently executing. Control is returned to the Nano
computer operating system with the selector lamp in position PC.
The address display points to the last instruction executed and the
other registers are preserved as they were after the last executed
program instruction.

RESET-The function of the RESET key is to restore the Nano
computer to its initial state. Execution of the operating system is
restarted at the beginning. Thus, all the registers are reset and all pre
existing breakpoint addresses are erased.

CASS/'ITY Switch-For Nanocomputers with both audio cas
sette recorder/players and serial teletype terminal devices interfaced
to them, this switch selects one of the two device types for serial 1/0.

This concludes our discussion of the Z-80-based Nanocomputer
keyboard.

CENTRAL PROCESSING UNIT (CPU)

The Nanocomputer is a Z-80-based microcomputer system. The
Z-80 40-pin dual-in-line package (DIP) chip was originally de
signed and produced by Zilog Corporation in 1976. The Z-80 micro
processor chip is now manufactured in Europe by SGS-A TES head
quartered in Italy.

Clock

The quartz crystal found in the lower left-hand comer of the Nano
computer pc board has a frequency of 2.4576 MHz. Associated with
the crystal is a clock generator and driver chip which outputs a clock
frequency of 2.4576 MHz. This 2.4576-MHz clock frequency drives
the Z-80 microprocessor chip through each of the computing steps
it performs. The maximum frequency that can be applied to Z-80A
chips is 4 MHz. Unfortunately, at this frequency, PROM devices
such as the 2708 or 2716 EPROMs are not fast enough. It is for
this reason that SGS-A TES has chosen the standard Z-80 CPU
operating at approximately 2.5 MHz. Note that at 2.5 MHz a single
state, or clock cycle, has a duration of 400 nanoseconds, or 0.4
microsecond.

Memory

The memory of the Nanocomputer is composed of dynamic read/
write memory and read-only memory. The dynamic RAM available
on the Nanocomputer is 4K bytes but can be expanded to 16K bytes.
The read/write memory is addressed in the first 4K region: locations
0OO0H through 0FFFH. The ROM on the Nanocomputer is 2K bytes
expandable to SK bytes. The ROM is addressed in the last 2K to SK
region, depending on ROM size.

60

1/0 Ports

The Nanocomputer provides for both parallel and serial 1/0. Two
280-PIO chips implement parallel 1/0, while serial device and dig
ital/ audio interface circuitry implement serial 1/0. While one PIO
chip is used for the display and keyboard interfaces, the other PIO
chip is available to the user for his/her own use. The serial device
drive circuits may be used to interface the Nanocomputer with most
serial terminals at a data rate of 110 baud; and the digital/audio
interface circuitry is for driving a tape cassette recorder/player.

Breadboard Description

For many experiments that you will perform with your Nanocom
puter you will be required to construct electrical circuits using a
breadboard, wire, integrated-circuit chips, and other electrical com
ponents. Here we give a brief description of a breadboard; however,
we shall cover this topic more thoroughly later.

The breadboard is designed to accommodate the many experiments
that you will perform in subsequent books. Integrated-circuit chips,
resistors, capacitors, wires, and additional digital devices all connect
to or tie in directly to the breadboard.

Top and bottom views of the breadboard are shown in Figs. 4-5
and 4-6. The breadboard contains 128 sets of 5 electrically connected
solderless terminals and 2 sets of 64 straddle both sides of a narrow

' .')·.1 ~~'.~,<<?:.::·.~,_,: . .. :
••••••• 11 •••.•••••••••••••••••• ,.,,, ,.,~_ ~, ••• ., ••
♦ •·• - ••••••••• - • !f ..,.,_ .. :••···•~--t#,;:11--•-~ ,
- , lit,,, ,i:,~---~:t:'-•. ..,, ,
........................... =a , ~ •.••• ~ •• =-.-~---· ·•-~!.ft:¥:
Ii lt ~- ,.,.:-.-,~ .•.• w •.• •·•

•

Fig. 4-5. Top view of solderless breadboard.

center groove. In addition, there are 8 sets of 25 electrically con
nected solderless terminals along the edges of the breadboard. The
term, solderless, is used here because you make electrical connec
tions between electronic components without the need for solder
or a soldering iron.

The center groups of five electrically connected terminals accom
modate integrated-circuit "chips" and permit up to four additional
connections to be made at each pin for the smaller 14-pin and 16-pin

61

Fig. 4-6. Bottom view of soldarlass breadboard.

chips. The groups of 25 electrically connected terminals at the edges
of the breadboard are tied to either +5 volts or to ground. They pro
vide power both to the integrated-circuit chips and to auxiliary
breadboarding station functions, which will be described in another
chapter.

RULES FOR SETTING UP EXPERIMENTS

In the following chapters, you will use the Nanocomputer to per
form experiments that demonstrate concepts of microcomputer pro
gramming and interfacing. Before you set up any experiment, we
recommend that you observe the following ground rules:

62

1. Plan your experiment beforehand. Know what types of results
you are expected to observe.

2. Clear the breadboarding socket of all unnecessary wires and
components from previous experiments.

3. IMPORTANT: Before you do any breadboarding, disconnect
the +5-volt wire connection to the outer bus strip on the
breadboarding socket. Note that we have not asked you to
disconnect power to the entire microcomputer, since by doing
so you will erase all read/write memory.

4. With the +5-volt wire connection on the breadboard discon
nected, carefully wire the interface circuit to the microcom
puter. Wire power connections to individual integrated-circuit
chips before you make any other connections.

5. Pay careful attention to the location of the various chips on
the breadboarding socket. The judicious location of these d~
vices can frequently minimize the jungle of wire connections
that is inherent in any digital circuit of modest complexity.

6. Check the wired circuit to make certain that it is correct. PAY
PARTICULAR ATTENTION TO THE POWER CONNEC
TIONS TO THE INTEGRAIBD CIRCUIT CHIPS. If they
are wrong, you will bum out your chip and perhaps erase the
read/write memory. Use a finger placed on the top surface of
a chip to determine how hot it is; if it is hot, you have done
something wrong.

7. Apply +5 volts of power to the bus strips when everything has
been checked. You can now apply the "touch" test to deter
mine if any chip becomes excessively warm.

8. Once you have finished with the experiment, do not disconnect
the circuit. Instead, check the following experiment to deter
mine whether or not it employs the same circuit.

9. Disconnect the main power to the microcomputer when you
are finished for the day. If you have a cassette recorder inter
faced to your Nanocomputer, you can store your programs
before disconnecting the power, a practice which we highly
recommend, since disconnecting the power erases read/write
memory.

EXPERIMENT INSTRUCTIONS FORMAT

The instructions for each experiment are presented in the following
format.

Purpose
The material presented under this heading states the purpose of

the experiment. It would be useful for you to have this intended
purpose in mind as you conduct the experiment.

Pin Configurations of Integrated-Circuit Chips
Pin configurations, shown with the permission of SGS-ATES, are

given under this heading for all of the integrated-circuit chips used
in the experiment. Note that all the experiments use SGS-ATES low
power Schottky TTL chips. If the circuit is identical to that given
in the immediately preceding experiment, the pin configurations may
be omitted.

Schematic Diagram of Circuit
You will be provided with a schematic diagram of the completed

circuit that you will wire in the experiment. You should analyze

63

this diagram in an effort to understand the circuit before you proceed
further with the experiment. Check the pin numbers of all connec
tions to integrated-circuit chips. KEEP IN MIND 'IHAT THE
POWER CONNECTIONS TO GATES HAVE BEEN OMITTED.
Pay special attention to all +5-volt and ground power connections;
your wired circuit will not operate at all if any of them are omitted.

Program

You will be provided with the microcomputer program that you
should load into memory at the indicated menrory addresses.

Steps

Under the heading of each sequential step, i.e., Step 1, Step 2, etc.,
are detailed instructions concerning how you should perform that
portion of the experiment. Questions also are asked during the ex
periment. You should answer the questions at the time that you are
performing the experiment. After you have written your answer,
determine whether the correct answer is provided in the text imme
diately following the questions. If such is the case, or if the two
answers disagree, make certain that you understand the discrepancy
(and correct your answer, if possible) before you continue further
with the experiment.

Questions

Questions will frequently be provided that probe (a) your under
standing of the experiment that you have just finished, (b) your abil
ity to anticipate future experiments or problems, (c) your ability
to correlate textual material with experimentally determined infor
mation, and, using this information, formulate answers to questions
covering material to which you have not been previously exposed.
The number of questions provided will depend on the nature of the
experiment, how far you are in the book, the phase of the moon,
and the fatigue of the authors. In many chapters, the questions will
be consolidated in a Review section at the end of the chapter. An
swers are provided for each Review section.

A WORD OF CAUTION

For the novice microcomputer programmers who are using this
text, we would like to make one point perfectly clear:

IT IS IMPOSSIBLE TO DAMAGE A MICROCOMPUTER
BY IMPROPER PROGRAMMING

You may erase the contents of read/write memory, but you cannot
destroy or damage the microcomputer system if you make errors in

64

a program and then attempt to execute it. Therefore, relax and have
fun with your micro~mputer. Make mistakes in programming.
Learn from them.
You can damage the Nanocomputer system if you:

• Apply power to it incorrectly.
• Allow metallic materials to accidentally short any wire inter

connections on the printed-circuit board.
• Make improper wire connections in an interface. Pay specific

attention to the input of data to the data bus; INPUT ALL
DATA WITH THE AID OF THREE-STATE BUFFERS.

• Drop it.
• Operate it in an excessively warm or corrosive environment.
• Tinker with it without knowing what you are doing.

Most laboratory instruments are housed in metal or heavy-duty
plastic and offer, to a reasonable extent, protection for the electronics
from the careless user. The Nanocomputer (NBZ80) is exposed, so
that you can observe how it is constructed and how it operates;
however, it is vulnerable as a result of this exposure. We believe
that it is important that you not be intimidated by your microcom
puter, and that it not be hidden from you with an opaque chassis.

Remember, if you are only doing microcomputer programming,
you cannot damage the microcomputer. If you are both programming
and interfacing the microcomputer, you will have to be careful. In
certain cases, you can damage a Z-80 chip by poor programming if
you use an interface circuit incorrectly.

We do ask you to be careful.

INTRODUCTION TO THE EXPERIMENTS

The following experiments are designed to demonstrate the opera
tion of the various keys on the Nanocomputer keyboard. To conduct
these experiments you will require:

1 Nanocomputer (NBZ80 or NBZS0S) that is in good working
order

1 Nanocomputer keyboard and software PROM/ROM (supplied
with the Nanocomputer)

1 power supply for your NBZ80 (the NBZ80S has its own supply)

The experiments that you will perform may be summarized as
follows:

Experiment No.
1

Comments
Demonstrates the operation of the O through F
numeric keys, the LEFT-ARROW key, and the

65

Purpose

RIGHT-ARROW key on the Nanocomputer key
board.

2 Demonstrates the function of the ST and 2ND keys
in loading registers with data.

3 Demonstrates the loading of information present
in the DATA DISPLAY into a specific memory
location in read/write memory. The function of
the INC key is also demonstrated as an excellent
way to display the contents of successive memory
locations.

4 Demonstrates the loading and execution of a very
simple microprocessor program in single step
mode (ss key). Also demonstrates the functions
of the GO and RESET keys.

5 Demonstrates two Nanocomputer utility routines
which are resident in read-only memory: RAM
test and Keyboard/Display tesL

EXPERIMENT NO. 1

The purpose of this experiment is to test the operation of the
numeric keys, the LEFT-ARROW key, and the RIGHT-ARROW key on the
Nanocomputer keyboard.

Step 1
Apply power to the Nanocomputer and press the RESET key. You

should observe four hex digits in the address display, two hex digits
in the data display, and the selector lamp should be in position PC.
In our case, the address display read 0000 and the data display
read 00.

Step 2
Press the 0 key. What do you observe in the data register?

We observed a 0 right justified with three leading blanks in the data
register. H this did not happen to you, then you have a problem with
your Nanocomputer. You should check it out before proceeding.
(See the write-up in Experiment No. 6 of this chapter of the memory
and keyboard/display self-diagnostic tests.)

Step 3
Press the 1 key and then the 2 key. The 0 should have shifted

left two digits to make room for the 1 and 2. Thus the data display

66

should contain a blank followed by 012. Enter 3, then 4. What do
you observe now?

We observed that O was shifted off the display to make room for
the digit 4. The data display has four digits illuminated: 1234.

Step 4

Continue entering digits. Each time a digit is entered, the four
digit data display is shifted left with the left-most digit disappearing.
What has happened to the address display? the selector lamp?

The address display and selector lamp remain unchanged.

Step 5
Now press the RIGHT-ARROW(➔) key once. What do you observe?

We observed several changes. First both the address and data dis
plays changed to read 0000 and 00 respectively. Your Nanocomputer
may not have produced those exact readings, but a change should
have occurred. Also, the selector lamp is now moved over to posi
tion MEM. You also should have observed this. The significance of
this display is that memory location 0000 contains the data byte 00.

Step 6

Press the LEFT-ARROW (+-) key. Your very first display should be
restored. Ours was 0000 00. This means that the 16-bit PC register
contains 0000 and the content of memory location 0000 is 00.

Step 7

How can you position the selector lamp at AF?

There are two ways to do this, one way using·the LEFT-ARROW (+-)
key and one way using the RIGHT-ARROW (➔) key. With either key,
merely press it down and bold it until the desired position is reached.
The lamp marches along one step at a time, lighting each selector
lamp until it reaches AF.

Step 8
What do you observe in the address and data displays with the

selector in position AF?

67

We observed a blank address display (you should also) and a data
display with the four hex digits 0000. This represents the contents
of the AF register pair, i.e., the accumulator contains 00 and the
flags contain 00. Your data display may have contained four different
hex digits.

Step 9

Continue to choose different selector positions. What can you say
about the address and data displays for positions IR, AF, BC, DE,
HL? How about positions IX, IY, SP, PC, and MEM? How about
the 1/0 position?

We observed that positions IR, AF, BC, DE, and HL produce a
blank address display and a four-digit data display signifying the
contents of the selected register pair. Positions IX, IY, SP, PC, and
MEM yield a four-digit address display and a two-digit data display.
For positions IX, IY, SP, and PC, the address display gives the
contents of the selected 16-bit register, while the data display gives
the contents of the memory location addressed by the register. The
significance of the displays for position MEM is given in Step 5.
, In the 1/0 position, two digits appear right justified in the address
and data displays. The address display contains a device code, while
the data display represents the one byte of information currently
at that device. We will spend considerable time discussing 1/0 and
device codes in later chapters.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to demonstrate the function of
the ST and 2ND keys in loading registers with data.

Step 1
Move the selector lamp to position BC, enter hex digits 11 into

the data display, and press the ST key. What did you observe?

You should see that the data display, which represents the contents
of the BC register pair, has 11 as its right-most digits. In other words,
you have stored a byte (11 hex or 00010001 binary) in the C reg
ister of the Z-80 CPU!

68

Step 2

Now try entering 22 into the data display, then press the 2ND key
followed by the ST key. What does the data display read now? Which
Z-80 register was changed this time?

It should read 2211. You just stored a byte in the high order register,
i.e., register B, of the register pair BC.

Step 3

How would you store the bytes 2103 in register pair HL?

Answer: Press the following keys in sequence.

1. RIGHT-ARROW (➔) , until the selector lamp is in position HL
2. 2
3. 1
4. 2ND
5. ST, to store high order byte 21 in H
6. 0
7. 3
8. ST, to store low order byte 03 in L

Is there any other way to accomplish the same thing?

The answer is yes; the key used to position the selector lamp could
have been the LEFT-ARROW (+-) key and the low order byte (03)
could have been stored in L before the high order byte (21) was stored
in H. Hence, with the Nanocomputer and its flexible set of keyboard
operations, there are many ways to perform simple tasks, such as
register loading.

Step 4
Try loading some other registers with data. In particular, try one

of the non-pairs like IX, IY, SP, or PC. Notice that if you enter
two hex digits and press ST the 16-bit register is loaded with 00 on
the left and the byte (two digits) you entered on the right. Now try
entering four hex digits, say ABCD, and press STORE. What happens?
Can you explain this?

69

We observe that ABCD appears in the address display indicating
that the 16-bit register has been loaded with two new bytes (namely
AB and CD). The explanation for the "leading zeros" when only
two digits (one byte) are stored, is as follows: Four digits (two
bytes) ALWAYS are stored with the selector lamp at IX, IY, SP,
or HL. The Nanocomputer fills in two zeros on the left if you only
enter two digits. What happens if you enter one digit and press ST?
Three digits and press ST? This is called left zero filling. It saves
typing leading zeros.

EXPERIMENT NO. 3
Purpose

The purpose of this experiment is to demonstrate the loading of
data into memory locations and the use of the INC key to display
the contents of successive memory locations.

Step 1
Since we are working with MEMory locations and their contents,

position the selector lamp at MEM. As we have mentioned before,
the four digits of the address display give the memory address and
the data display gives the contents of that location. Let us look at
the contents of location 0100. To do this enter 0100 or 100 via the
keyboard, then press LA, the LOAD ADDRESS key. What do you ob
serve?

You should notice that 0100 now appears in the address display. In
our case, the data display read 00. That is, in our case location 0100
contained 8 bits all set to 0, or the byte 00. Your data may be
different.

Step 2
Try to STore AA in location 0100. Enter AA, then press ST. What

happened?

The address display should read 0101 and, in our case, we observed
that the data display read 00.

What does this mean? It means that AA was stored at location
0100 and the computer is waiting for you to store a byte at the next
location (0101). Thecurrentcontentsofthatlocation (0101) appear
in the data display, (ours read 00). Try SToring BB by entering
BB and then pressing ST.

70

Step 3

Let us not trust our Nanocomputer too much. We should check
to be certain that 0100 contains AA and 0101 contains BB. How
can we do this?

To see the contents of 0100, we need to display 0100 as the address.
This requires the LA key. Type 0100 or 100 followed by LA. We
hope you see AA in the data display.

Step 4

What about 0101? You could enter the address 0101 (or 101)
followed by pressing LA. However, the Nanocomputer also can
INCrement a memory location by one, thus saving all the retyping
of addresses. Press the INC key once lightly. What do you see?

The address register is increased by one and the data register dis
plays BB. Press INC and hold the key down. As you can see, the
memory locations are shown in sequence.

The LA, ST, and INC keys are the major tools that you will use in
this book for Z-80 program loading and load verification. You will
see in the next experiment just how important these keys are.

Step 5

Reposition the selector lamp to any of the positions IR, AF, BC,
DE, HL, IX, IY, SP, or PC, enter 11 and press LA. What do you
observe?

The red error lamp is lit! We have led you astray. By using the LA

key with the selector lamp positioned anywhere but MEM or 1/0,
you have attempted an illegal operation. The only situation in which
LA can be used is in loading the address display with a MEMory
address or an 1/0 device code.

Note: To extinguish the error lamp, simply start entering the next
keyboard instruction.

Step 6

See if you can work out how to load a one-byte device code into
the address display, with the contents of the 1/0 ports appearing
automatically in the data display. The procedure is as follows: Posi
tion the selector lamp at 1/0, enter two hex digits, and press LA.

71

EXPERIMENT NO. 4

Purpose
The purpose of this experiment is to load and execute a very simple

microprocessor program both at full speed and in the single-step
mode. The ss, GO, and RESET keys are demonstrated.

Step 1
At the end of this step, we want the Nanocomputer memory loca

tions 0100 through 0105 to appear as follows:

Address Contenls

0100 3E
0101 00
0102 3C
0103 C3
0104 02
0105 01

Toward this end, position the selector lamp at MEM. Enter 0100 or
100 and press LA. The address display should read 0 100 signifying
that the Nanocomputer is ready to begin loading a program at 0100.
The following key-ins will load the program:

Step 2

3E press ST
00 press ST
3C press ST
C3 press ST
02 press ST
01 press ST

You must now verify that you have correctly loaded the program.
How can you do this?

Use the INC key: first display memory location 0100 (use LA key),
then press the INC key to display each successive memory location.
Be certain that you have the contents of each memory location
correct.

Step 3
Load the PC register with the program starting address, 0100. To

accomplish this, recall that you first position the selector lamp at
PC, enter 0100 or 100, and then press ST.

72

Step 4
Position the selector lamp at AF. This signifies to the Nanocom

puter that you wish to observe the contents of the AF register pair
as the program executes in slow motion. Repeatedly press the ss
key. What do you observe?

With every other depression of the ss key, you should notice that
the contents of the A register (the accumulator) increase by one.
Hold the ss key down. The A register will continue to count up.
Your Nanocomputer is executing a program in slow motion!

Step 5

Now press GO. What happened?

All the lamps and displays have gone dark. Did you break the Nano
computer? NO! It is now executing the program at full speed. You
can stop it by pressing the RESET key. How fast was full speed? The
accumulator was being incremented over one hundred thousand
times each second. Note that immediately after pressing RESET, the
displays of the Nanocomputer come on with the selector lamp in
position PC. Whenever the Nanocomputer "goes dark" as you just
observed, you can get control back by pressing RESET or BREAK.

You have just executed your first Z-80 microcomputer program.

EXPERIMENT NO. 5
Purpose

The purpose of this experiment is to investigate two utility rou
tines which SGS-ATES provides along with the Nanocomputer op
erating system in read-only memory. The two utility routines test
read/write memory and the keyboard/display software and hard
ware.

Step 1

Since the programs which you will execute in this experiment al
ready reside in read-only memory, there is no need to manually load
any bytes, as you did above.

Let us first examine the read/write memory test. This test is com
prised of two parts. The first part tests read/write memory locations
OFAB through OFFF. These memory locations are used by the Nano
computer operating system for storing data such as the bytes to be

73

displayed on the keyboard. Each memory location is tested by writ
ing zeros into it and then reading it to see if the zeros are indeed
there. This is certainly not an exhaustive test, but it does ensure
some functionality of each location. The test of locations OF AB
through 0FFF occurs automatically when the RESET key is pressed.
H no error is detected by the test, the Nanocomputer shows that it
is ready by lighting the PC lamp and displaying the contents of the
PC register on the left and the contents of the memory location
pointed to by the PC register on the right.

Press the RESET key several times. Hopefully you detect no errors!

Step 2 (Optional)
This step is NOT recommended for students without extra 4027

dynamic RAMS, because these chips are very sensitive to static elec
tricity and are easily damaged if removed from their socket or re
placed incorrectly.

Before performing Step 2, we urge you to read Appendix III on
Precautions While Handling MOS Devices.

Let us now fool the Nanocomputer into thinking it has some
faulty memory locations. First, REMOVE ALL POWER TO THE
NANOCOMPUTER. This is critical! You may damage the com
puter, if you leave the power attached. With the power off, and re
ferring to the illustration below, carefully remove RAM memory
chip No. 1 from its plastic socket. This is most easily accomplished
with a small screwdriver to pry up the chip. Be very careful to main
tain the wire leads on the memory chip as straight as possible. With
the memory chip out of its socket, tum on the Nanocomputer and
press the RESET key. What do you observe?

We observed the ERR lamp became lit and the display read

8-------
This unusual output is produced by the memory test routine which
detected an error in chip No. 1. The presence of the 8 (all seg
ments lit) corresponds to the errant chip. Similarly, removing the
RAM chip No. 3 would produce an 8 in the third position (given
that the rest of the chips were all right) . As it is very easy to break
off pins on semiconductor chips: we do not recommend that you
experimentally verify the correspondence between chip position and
the position of the 8 in the resultant error display.

REMOVE POWER TO THE NANOCOMPUTER and carefully
replace the memory chip. With the RAM chip residing properly in
its socket, re-apply power to the Nanocomputer and press the RESET

key. You should not encounter any error.

74

Step 3

Courtesy SGS.ATES Componenti: Electronici SpA
Fig. 4-7. CLZ80 RAM chip numbers and KID display digit numbers.

The second part of the read/write memory test tests user RAM
(Fig. 4-7), locations 0000 through 0FAA. For each memory location,
the following bytes are alternately loaded into and then read from it:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

01000000
1 0 0 0 0 0 0 0

This procedure is called "rotating a one bit through memory" and
is a common technique used in memory testing. This memory test can
be executed by typing the following sequence of keys:

1. Be sure the selector lamp is at position PC (use the RIGHT- and
left-arrow keys)

2. Enter the address associated with the label MEMTUT (see the
Master Symbol Table in Appendix F).

3. Press the GO key

You have just executed the program residing at memory location
MEMTUT, which, of course, is the memory test program. The displays

75

should all be dark as the computer busily rotates bits through mem
ory. This will go on virtually forever. The display will light only if
one of two events occurs:

1. You press the RESET or BREAK key, which terminates the test
and causes a return to normal operating status with the selector
lamp at the PC position.

2. The memory test detects a faulty memory location. In this
case, the display will show the following:

Error byte address in the left-most four digits
The data byte written in the next two digits
The data byte read in the next two digits

Naturally, the test failed because the last two pairs of digits
were unequal.

Step 4

The keyboard/ display test checks out all but two of the keys
(BREAK and RESET) and all of the LEDs on the Nanocomputer key
board/display unit. The program begins at location CONTST (see
the Master Symbol Table in Appendix F. Thus, to execute it:

1. Position the selector lamp at PC.
2. Enter the address associated with the label CONTST.
3. Press the GO key.

What do you observe?

We observed the BRK and IR LEDs were lit. Also, one of the seg
ments on each of the eight seven-segment displays was lit. For con
venience and ease of reference, the segments are lettered as shown in
Fig. 4-8 and the following list.

A correspondence between key row (numbered from bottom to
top) and lit LEDs and segments follows.

Key Row LED Lit Segment Lit

1 AF, 1/0 b
2 BC, MEM c
3 PC,DE d
4 SP, HL e
5 ERR, IX f
6 IY, ARS g
7 BRK, IR a

The BREAK and RESET keys cannot be tested, since pressing each will
terminate the test. Verify the above correspondence by pressing

76

Fig. 4-8. Seven-segment display
numbering scheme.

e

a

g

d

b

C

several keys in each horizontal row of keys on the Nanocomputer
keyboard.

77

CHAPTER 5

Some Simple Z-80
Microcomputer Programs

In this chapter, you will load and execute several simple micro
computer programs that employ the Z-80 instructions discussed in
Chapter 3.

OBJECTIVES

At the completion of this chapter, you will be able to do the
following:

• Define the terms binary code, hexadecimal code, assembly code,
and high level language.

• Explain the operation of the following Z-80 instructions:

NOP; INC A; HALT; LD A,<B2>; LD (<B3> <B2>),A;
and JP <B3> <B2>.

• Load and execute simple Z-80 microprocessor programs on the
Nanocomputer.

• Be able to read and understand Z-80 assembly language program
listings which show memory location, object code, source code,
and comments.

REVIEW OF SEVERAL Z-80 INSTRUCTIONS

In Chapter 3, we discussed the following Z-80 instructions:

79

Hex Machine Coda

00
3C
76
3E

<B2>

32
<B2>
<B3>

C3
<B2>
<B3>

Mnemonic Coda

NOP
INC A
HALT
LD A,<B2>

LD (<B3> <B2>),A

JP <B3><B2>

Operation

No operation
Increment the accumulator by 1
Halt the microcomputer
Move the immediately following
data byte to the accumulator

Store the contents of the accumu
lator in the memory location ad
dressed by the following two bytes
in this 3-byte instruction

Unconditional jump to the memory
address given in the following
two bytes of this 3-byte instruction

PROGRAMMING LANGUAGES AND LISTINGS

You read in Chapter 2 that a program is a series of instructions
and that instructions come in a variety of forms: binary, hexadecimal,
mnemonic code, and full words (high level language). Let us ex
amine these forms more closely.

Binary Code

This is the true language of the Z-80. Eventually, all program
instructions must be expressed in this form to be understandable to
the Z-80. li humans found this a natural mode of expressing them
selves, there would be no need for any other form for presenting in
structions to the computer. Each subsequent form, hexadecimal,
mnemonic, and high level language, is tailored more and more to the
human and less and less to the computer. Obviously, a price is paid
for each successive level of convenience to the human, namely time,
which is required to perform the translation to bits, and memory
space which is required to house a program to perform the transla
tion.

Let us look at a sample program, written in binary code. The fol
lowing program adds the two numbers in memory locations 0160H
and 0161H and stores the sum in location 0162H:

80

A Binary Coda Program Listing

00111010
01100000
00000001
01000111
00111010
01100001
00000001
10000000
0 0 1 1 0 0 1 0
0 1 1 0 0 0 1 0
00000001

This may look pleasing to your Nanocomputer, but it is hardly nat
ural to you.

Hexadecimal Code

This mode of instruction representation is an improvement over
the binary method because it abbreviates each group of 8-bits to
two hexadecimal digits. Let us list the preceding program using
hexadecimal code:

A Hexadecimal Coda Program Listing

3A
60
01
47
3A
61
01
80
32
62
01

This is certainly an improvement by human standards, but a Z-80
would not be able to interpret this program as it is. A hexadecimal
loader is required to take the above hexadecimal listing and convert
it to the binary code which is understandable to the Z-80. The Nano
computer operating system contains a hexadecimal loader which
senses when a hexadecimal key (0-F) has been depressed and con
verts the hex code to binary code for storage in read/write memory.

What are the advantages and disadvantages of hex loaders? The
advantages are:

1. Greater ease in programmer/machine interface, in that only
two digits instead of eight digits per byte must be dealt with.

2. Resultant increase in programmer efficiency, in that errors are
more easily detected and corrected.

However the disadvantages are:

1. The hex loader-a program itself-must reside in memory
so that hex input can be interpreted (i.e., converted to binary
representation) and stored.

2. The conversion process takes time.
In this day and age, programmers are becoming more expensive than
computers, so the human factors are in many cases considered to be
more important and will, most likely, gain in relative importance.

Mnemonic Code

This form of representing instructions carries us one step further
from the computer and closer to the programmer. Mnemonic code

81

uses alphabetic characters to describe instructions. For example LD
B,A is the mnemonic code for the hex coded 4 7 instruction. This
instruction causes the contents of the A register to be loaded into the
B register. Clearly, the mnemonic representation is more suggestive
of this (at least from a human viewpoint). Here is the mnemonic
listing for the previous addition program.

A Mnemonic Program listing or Assembly Listing

LD A, {0160H)
LD B, A
LD A, (0161H)
ADD A, B
LD {0162H),A

(The character "H" following the address indicates that it is in
HEX.) Note that:

a. Mnemonics are used to describe operations which the Z-80 is
to perform. For example, the "LD" mnemonic is an abbrevia
tion for "LOAD" which is an instruction which moves data
from a source to a destination in the general form:

LO "destination", "source"

The first Load instruction loads the A register or accumulator
with the contents of memory location 0160H.

b. Names have been assigned to the registers within the Z-80 CPU
chip. For example, registers A and B (known usually as 111
and 000 to the Z-80) are mentioned in the preceding program.

A program written using mnemonics is called an assembly language
program. The assembly language mnemonics used in the above pro
gram were developed by the Zilog Corporation when they developed
the Z-80 CPU and, as such, are the SGS-ATES recommended mne
monics. However, SGS-ATES certainly cannot force the user to
employ these mnemonics and many other companies have developed
alternate sets of mnemonics which they feel are better. For the Z-80,
the most widespread and universal mnemonic set is by SGS-ATES
and Zilog, so we will use their set in this book.

As you might well imagine, the process for translating an as
sembly language program to binary code is fairly involved. This is
true, but the process is so systematic and repetitive that it can be
programmed and implemented on the Z-80 itself. The program which
inputs an assembly listing (called source code) and outputs a binary
coded program (called object code) is called an assembler. SGS
ATES has written an assembler for the Nanocomputer which is cur
rently available on tape cassette ASS-Z or EPROM FR-Z. To use the
assembler, you need an upgraded version of the Nanocomputer, a
keyboard with ASCII characters (the alphabet, numbers, and special

82

characters such as period, comma, semicolon, etc.) to input the
mnemonics, and an ASCII display device for output, as well as a
minimum of 16K bytes of read/write memory and two audio cas
sette recorder/players. We will not assume that you have such a
sophisticated microcomputer configuration. Thus, in this book, we
will do our program assembly by hand.

By hand assembly, we mean that the programmer talces the set of
mnemonics and translates them one-by-one to hex code. Hex code
can then be input to the Nanocomputer whose hex loader malces the
final conversion to Z-80 intelligible binary code. The hand assembly
process malces extensive use of mnemonic-to-hex cross references.
There is an excellent set of cross-references in matrix form with in
structions grouped by similar function. These will all be presented
in this book.

A hand assembled program listing is given next. Note that the hex
code here is called object code, and the assembler code is called
source code. Note also that a semicolon (;) separates each comment
from its associated line of source code. The purpose of the semi
colon is to notify the assembler that it should ignore all that follows,
i.e., that which follows is for human benefit only. Also, assembler
listings strictly follow the conventions mentioned earlier about nu
meric representations: decimal numbers are followed by a period
(.), hexadecimal numbers are followed by the character "H," and
binary numbers appear without special notation.

Memory
Location ObjedCode Source Code Comments

0150 3A 60 01 LO A,(0160H) ;A=contents of location
0160

0153 47 LD B,A ;Load A from B
0154 3A 61 01 LD A,(0161H) ;A=contents of location

0161
0157 80 ADD A,B ;Add A and B
0158 32 62 01 LD (0162H),A ;Store sum in 0162

Thus, you can see that hand-assembly involves translation of the
mnemonics plus location of the resultant byte in read/write memory.
In the previous case, the program begins at location 0150 and ends
at 015A. The comments are; of course, optional but highly desirable.
This is the way all programs will be listed in this book.

High Level Languages

The last category of programming languages which we will discuss
is called high level languages. High level languages are one more step
removed from the computer than assemblers. Typically, high level
languages do not require programmers to know anything about reg
isters or memory addresses. Rather, these languages are designed to

83

allow a programmer to concentrate on the problem to be solved,
instead of concentrating on the computer. For example, in a high
level language such as FORTRAN, the program to add two numbers
would appear as follows

ANS= X + Y

Examples of other high level languages are COBOL, PL/ 1, ALGOL,
SNOBOL, PASCAL, JOVIAL, and many more. Each of these source
languages requires large translators called compilers to convert pro
grams to binary object code.

A high level language called BASIC can be implemented on an
upgraded Nanocomputer. The SGS-ATES BASIC is a language
oriented to control applications and is available in 8K of PROM/
ROM (BAS-Z). As each BASIC language statement is entered, the
BASIC translator interprets the statement, converts it to (many)
bytes of binary object code and then executes it immediately. This
is not like a FORTRAN or COBOL compiler or Z-80 assembler
which waits until the entire program is entered before starting the
translation. For this reason the BASIC translator is called an INTER
PRETER. The BASIC version of our addition program is:

LET Al= X + Y

High level languages have two major advantages which often out
weigh the disadvantages of large compilers or interpreters:

1. Programs are more "procedure oriented" and less computer
oriented.

2. Programs written in a high level language for one computer
can often run on another computer with little or no change, a
property called portability. This is almost never possible with
either assembly or hex codes, simply because they .are too
closely related to the machine.

ASSEMBLY LANGUAGE PROGRAMMING

As we mentioned earlier, in this series of chapters we will program
in assembly language and hand assemble programs to obtain hex
code to load into the Nanocomputer. Besides translating mnemonics
to hex codes, hand assembly involves the location of the microcom
puter program somewhere in the available read/write memory of
your Nanocomputer. Please note the first column in the assembly
listing given in the last section. This column, with the heading "Mem
ory Location," indicates the memory address of the first byte in that
program line. If more than one byte occupies that line, the next se
quential addresses contain those bytes, with the following program
line beginning at the next memory location.

84

Let us now try to execute some simple Z-80 programs on the
Nanocomputer.

INTRODUCTION TO THE EXPERIMENTS

The following experiments permit you to execute several simple
programs which are described in detail in each experiment. This will
give you experience in loading and executing microprocessor pro
grams as well as teach you some rudiments of programming.

The experiments you will perform can be summarized as follows:

Experiment No.

1

Comments

Demonstrates the execution of the NOP, HALT,
and LD A, <B2> instructions.

2

3

4

5

Demonstrates the execution of the INC A and
JP <B3><B2> instructions in a simple pro
gram loop.
Demonstrates the execution of a program with
a simple loop, and the INC B and INC C in
structions.
Demonstrates the LD (<B2>,<B3>), A in
struction for setting memory contents to a speci
fied value.
Demonstrates execution of the addition program
used as an example in the section on program
languages and listings.

EXPERIMENT NO. 1
Purpose

The purpose of this experiment is to demonstrate the execution
of three Z-80 instructions: NOP, HALT, and LD A,<B2>.

Program No. 1
Memory Object Source
location Code Code Comments

0100 3E BB LD A, BBH ;Load the accumulator with BB
0102 76 HALT ;Halt the microcomputer

Program No. 2
0103 3E BB LD A, BBH ;Load the accumulator with BB
0105 00 NOP ;No operation
0106 3E FF LD A, FFH ;Load the accumulator with FF
0108 76 HALT ;Halt

85

Step 1
Power up the Nanocomputer and press the RESET key a few times

to initialize the Z-80 CPU. Position the selector lamp at MEM, enter
0100, and press LA. You are now ready to begin loading a program
into memory beginning at location 0100. Enter Program No. 1 by
alternately entering object code bytes and pressing the ST key.

Step 2
Recheck to be sure that Program No. 1 has been loaded correctly

by repositioning the memory pointer at 0100 (enter 0100 followed
by LA) and pressing the INC key.

Step 3
Prior to executing this program, let us pause to reflect on what

we expect to happen. Please write in the following space what the
contents of the accumulator should be after program execution has
finished.

Given your prediction, let us now proceed to find out if it has any
merit. First let us check the accumulator to find out its contents now:
position the selector lamp at AF. What do the left-most two digits
in the data display read?

Step 4
Execute the program starting at O 100: position the selector lamp

at position PC, enter 0100, ST, then press GO. What happens?

The N anocomputer immediately goes dark! The computer is in the
HALT state.

Step 5
Revive the Nanocomputer by pressing the BREAK key. The com

puter immediately "wakes-up" with the selector lamp at position PC
showing the contents of the program counter or PC register to be
0103. This is the memory location of the next instruction to be exe
cuted. However, because the instruction at location 0102 is HALT
(76), the next instruction is not reached.

86

Step 6

Check the contents of the accumulator to see if your prediction at
Step 3 was correct: Move the selector lamp to AF. What do you see
as the contents of A?

We hope you see BB. The very first instruction of Program No. 1
instructs the microcomputer to put BB into register A, the accumu
lator. The next instruction, which halts the microprocessor, has no
effect on the A register, so after program execution, the contents of
A should be BB.

Step 7
Change the contents of A to 00 (00, 2ND, ST) and then execute

Program No. 1 in single-step mode, watching the accumulator: po
sition the selector lamp at PC, enter 0100, press ST, position the
selector lamp at AF, and press ss once. What happens?

Immediately the contents of the A register changed from 00 to BB.

Step 8
Press ss again. You will notice that nothing happens. The single

step mechanism does not allow the computer to halt. Thus, in single
step mode, the HALT command has no. effect.

Step 9
Load and check Program No. 2 beginning at location 0103. What

should be the contents of the A register at the conclusion of execut
ing this program?

Step 10
Execute Program No. 2. Again be sure to revive the Nanocomputer

using the BREAK key (do not use RESET as it changes the contents of
all of the registers). Check the A register.

We hope that you read FF as its contents. So, what happened is
that the original BB was over-written with an FF.

87

Step 11
Let us execute this program in single-step mode to observe the

effect of the NOP instruction at location 0105. Set the PC to 0103
and then position the selector lamp at AF to observe the single-step
execution. Press ss: the A register goes immediately to BB. Press
ss: Nothing happens. This is the execution of the NOP instruction.
If you position the selector lamp at PC you will see that the address
display reads 0106 indicating that 0105, the NOP, has just been
executed and that the instruction beginning at O 106 is next. Posi
tion the selector back at AF and press ss again. The A immediately
reads FF showing the effect of the LD A, FFH instruction.

Thus, you can see from the above steps that NOP has merely
one effect on a program and this is that it causes the program to do
nothing for one step.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to demonstrate the execution
of the INC A and JP <B3><B2> instructions in a simple program
loop.

Program No. 3
Memory
location

0109
0108
OlOC

Step 1

Object
Code

3E FF
3C
C3 OB 01

Source
Code

LO A, FFH
INC A
JP OlOBH

Comments

;load the accumulator with FF
;Increment the accumulator
;Jump to address 01 OB

Note that the INC A instruction is a one-byte instruction which
tells the computer to add one to the contents of the accumulator.
The JP instruction causes control to be transferred unconditionally to
the address given by the two bytes following the C3 op code. Notice
that the two address bytes appear with the LO address byte first
and the HI address byte second.

Step 2
Load and verify Program No. 3.

Step 3
Let us examine Program No. 3 to anticipate what it will do. Pro

gram No. 3 initializes the accumulator to FF and then increments
A by 1. The third instruction causes an unconditional branch back to
location 010B, i.e., the INC A instruction. So the accumulator is

88

incremented followed by a jump back to the INC A instruction. The
effect of all this is that the INC A instruction is executed repeatedly
until someone stops the "loop" by turning off the computer, or press
ing RESET or BREAK.

Step 4

Now let us execute the program in single-step mode to see what
happens to the accumulator (A) and program counter (PC). First
let us observe the accumulator, so, after loading the PC with the
program start address, 0109, move the selector lamp to the AF
position. Recall that the left-most two digits of the data display
represent the contents of the A register. Press the ss key once. What
happens to the A register?

We observed that its contents immediately became FF.

Step 5

The next instruction says to increment A. What should the con
tents of A be after the next step?

Press ss once to verify your conjecture. You should observe that
the contents of A went to 00. Did you also observe a change in the
F register? We will discuss this later.

Step 6

Hold the ss key down for awhile. You should observe the con
tents of the register incrementing as the INC A instruction is being
repeatedly executed.

Step 7

Now position the selector lamp at PC. Hold the ss key down and
observe what happens to the contents of the PC register. Write down
what you observed:

We observed the PC register alternating between OlOB and 0lOC.

89

EXPERIMENT NO. 3
Purpose

To demonstrate the execution of a program with a simple loop
and the INC B and INC C instructions.

Program No. 4
Memory
Location

Ol0F
0110
0120
0130
0131
0132

Object
Code

04
C3 20 01
C3 30 01
04
oc
C3 OF 01

Source
Code

INC 8
JP 0120H
JP 0130H
INC 8
INC C
JP 0lOFH

Comments

;Increment the 8 register
;Jump 10 location 0120
;Jump to location 0130
;Increment the 8 register
;Increment the C register
;Jump 10 location 0lOF

Step 1
Let us make a few observations about the listing of Program No. 4.

a. First note that a jump instruction such as JP 0130H translates
to the series of three hex bytes:

C3 Jump instruction operation code
30 LO address byte
01 HI address byte

There is always the temptation to translate the· instruction with
the address bytes in the reverse order. Every programmer seems
to fall into that trap at least once. All we can do is keep warn
ing you.

b. Two new instructions, INC B and INC C, appear in this pro
gram. They cause the computer to add one to the B and C
registers, respectively.

Step 2
Load and verify the Program No. 4. Note that you need only load

the bytes specified because no_other memory locations between Ol0F
and 0134 are ever used. Loading this program requires that you have
an excellent understanding of the LA and ST keys and the subtleties
of their usage.

Step 3
When you are convinced that you have loaded Program No. 4

correctly, study the mnemonic program statements very carefully and
try to determine exactly what the program is doing.

Let us describe in words, and then with a picture, what this pro
gram. does.

90

1. The first step in the program increments the B register, that
is, adds 1 to its current contents.

2. The next step is an unconditional branch to location 0120.
This means that this step instructs the computer to go to loca
tion 0120 for its next instruction.

3. Now the computer reaches 0120 and reads the instruction
there. Another unconditional branch! Where do we go this
time? 0130.

4. So, here we are at 0130, what now? The program says incre
ment B, so 1 is added to the B register.

5. The next instruction says increment the C register. So, add 1
to C.

6. The next instruction is a branch, so we transfer to location
0lOF. Notice that 0lOF is the instruction executed back at 1.
Thus we have a cycle going here: Steps 1-6 will be executed
repetitively until some outside force interferes.

Let us use the diagram in Fig. 5-1.

The end result of all this incrementing and jumping is that the B
register is incremented twice as often as the C register.

INC B
JP

LO Address

HI Ad dress

JP -
Fig. 5-1.

LO Addre88
HI Address

INC B
INC C

JP
LO Addre88
HI Address

91

Step 4
Let us now execute Program No. 4 in single-step mode. We will

want to observe what happens to the PC register and the BC register
pair during execution. First, load the BC register pair with zeros
to initialize both registers (position the selector lamp at BC, enter
00, 2ND, ST to initialize B, and enter 00, ST, to initialize C). Now
load the PC register with 0lOF, and leaving the selector lamp at PC,
press ss. How many times will you press ss before the PC reads
0120, 0130, 0l0F for the second time?

Your answer should be 2, 3, and 6, respectively. Thus, we have a
six-step program loop. When will this loop end? Never, unless we
stop it by pressing RESET or BREAK.

Step 5
Hold the ss key depressed and watch the recurrent pattern of six

PC addresses. Enter these addresses in the following space.

We observe the following PC addresses:

Step 6

OlOF
0110
0120
0130
0131
0132

Let us now observe the BC register pair during single-step execu
tion of Program No. 4. We predicted in Step 3, that the B register
will be incremented twice for every time that the C register is incre
mented. Let us see if this is the case. Read the BC pair and write
what you see in the following space. (Make sure you are at the be
ginning of a new cycle, i.e., PC= 0lOF.)

We observed 04 02. (Depending on how long you held the ss key
down in Step 5, your results may be different. However, the first

92

digit should be twice the second, no matter what.) That is, B has
been incremented from 00 to 04 while C has been incremented from
00 to 02. This would bear out our conjecture. To make sure, begin
pressing ss and write down your observations:

We observed the following:

During single step 1: B was incremented
During single step 4: B was incremented again
During single step 5: C was incremented

Single steps 2, 3, and 6 are occupied with jump instructions.

Step 7

Hold the ss key down for awhile. We observed the following se
quence of data displays:

08 04 oc 05 OE 07
09 04 OC 06 OF 07
OA 04 OD 06 10 07
OA 05 OE 06 10 08
08 05

Step 8

Let us make one last remark about this program. The first two
jump statements can be replaced by a single jump instruction. What
is it?

The answer is JP 0130H. The reason is that the first JP always
causes a jump to the statement at 0120, itself a jump to 0130.

EXPERIMENT NO. 4
Purpose

The purpose of this experiment is to demonstrate the LO (<B3>
<B2>),A instruction for setting memory contents to a specific value.

Program No. 5
Memory
Location

0136
0138

0138

Object
Code

3E 11
32 45 01

76

Source
Cod&

LD A,llH
LD (0145H},A

HALT

Comments

;Load with 11
;Load memory location 0145 with
the contents of A
;Halt

93

Step 1
The new instruction is the LD (0145H),A instruction at address

0138. This instruction copies the contents of the A-register into mem
ory location 0145. Notice that, like the jump instruction, the address
makes up the second and third bytes of this LD instruction with the
LO byte preceding the HI byte.

Step 2

Load and verify Program No. 5.

Step 3
Check the current contents of memory location O 145 and write

it in the following space.

We observed 00.

Step 4
Execute the above program either at full speed (GO) or single

step speed (SS). If you executed the program at full speed, return
control to the Nanocomputer operating system by pressing BREAK to
ensure that registers and memory are preserved. Check the accu
mulator and memory location 0145. What do they contain?

They should both contain 11.

Step 5
Write, load, and execute a program, starting at location 013C to

store 22 at memory location 0146. You can test to see if the program
works by looking at location 0146 after you have executed the pro
gram. We have written an exceptable answer in the following space.
Your answer may, of course, differ somewhat from ours.

Answer

Memory
Location

94

013C
013E

0141

Oblect
Code

3E 22
32 46 01

76

Source
Code

LD A,22H
LD (0146H),A

HALT

Comments

;Load A with 22H
;Load memory location 0146
from A
;Halt

EXPERIMENT NO. 5

Purpose

The purpose of this experiment is to demonstrate the execution
of the addition program used as an example in the section of this
chapter on programming languages and listings.

Program No. 6
Memory
location

0150
0153
0154
0157
0158
015B

Step 1

Object
Code

3A 60 01
47
3A 61 01
80
32 62 01
76

Source
Code

LD A,(0160H)
LD B,A
LD A,(0161H)
ADD A, B
LD (0162H),A
HALT

Comments

;A=contents of location 0160
;Load the B register with A
;A=contents of location 0161
;Add B to A, store result in A
;Store sum in location 0162

Notice that several new instructions have been introduced in this
program. These instructions are listed and explained below. They
all will be covered in detail in subsequent units.

Object Mnemonic
Code Code

3A LD A, (<B3><B2>)
<B2>
<B3>

47 LD B,A

80 ADD A, B

Step 2
Load and verify Program No. 6.

Step 3

Operation

Loads the contents of memory location
<e3> <e2> Into the accumulator.

Loads the contents of the accumulator
into the B register.
Adds the contents of the B register to
the contents of the A register storing
the resultant sum in the A register.

Let us now test the program by adding 2 and 3. To do this we
must store 2 in location 0160 and 3 in location 0161 (we could
store 2 in location 0161 and 3 in location 0160, it makes no differ
ence). Thus 02 and 03 (the hex equivalents of 2 and 3, respectively)
must be stored accordingly. Now load the PC register with 0150
and press GO.

Step 4

Press BREAK to restore control to the Nanocomputer operating
system and then look at the contents of the A register and memory
location 0162. What do you see?

95

We expect to see 05 and that is indeed what we find.

Step 5
Execute the program in single-step mode watching the contents

of the A and B registers.

Step 6
Try adding other pairs of numbers. To stay out of trouble, be sure

that the two given numbers do not sum to a number greater than
FFH or 255. (base 10), the capacity of one 8-bit byte.

Step 7
H you are feeling ambitious, see if you can deduce what happens

when the sum does exceed FFH (or 255. base 10).

REVIEW

The following questions will help you review the instructions
that you learned in this unit.
1. Explain what each of the following operations does.

a. 3E
5B

b. C3
AS
03

c. 3C
d. 32

E4
1B

e. 76
f. 00

2. Provide the correct hex code for the following operations by referring to the
text of this chapter or to Appendix B.

a. Jump to memory address Hl=24 and LO=53
b. Store the contents of the accumulator in memory location HI=02

and LO=38
c. Move the immediate data byte 92 to the accumulator
d. Increment the contents of the accumulator
e. Halt the microcomputer
f. No operation

Answers
1. a. Move the data byte 5B to the accumulator

b. Jump to memory address Hl=03 and LO=A5
c. Increment contents of accumulator
d. Store contents of accumulator in memory location HI=IB and L0=E4
e. Halt the microcomputer
f. No operation

2. a. C3
53
24

96

b. 32
38
02

c. 3E
92

d. 3C
e. 76
f. 00

91

CHAPTER 6

Registers, Memory,
and Data Transfer

In this chapter, you will learn some of the many ways to transfer
data between the Z-80 microprocessor chip and memory, as well as
between different locations in memory. You will get your first look
at the entire Z-80 instruction set, which should impress you at least
with its size and complexity. The JP NZ, INC, and DEC instructions
are introduced so that you may create time delay loops in your pro
grams.

OBJECTIVES

At the completion of this chapter, you will be able to do the fol
lowing:

• Understand what instruction decoding means
• Cite the 3-bit binary code assigned to each general-purpose

register
• Define the term addressing mode
• Define: register addressing

immediate addressing
immediate extended addressing
register indirect addressing
extended addressing

• Explain the increment register and decrement register instruc
tions

• Explain the LD instructions for the above addressing modes
• Explain the block transfer instructions

99

• Write a program that has a time delay loop
• Write programs for various kinds of data transfer

Z-80 INSTRUCTION SET

The complete Z-80 instruction set is given on the following pages in
a form similar to that first suggested by R. Baker for the Intel 8080A
microcomputer. This form of instruction set description first appeared
in Byte, a magazine devoted to microcomputer hobbyists. In Chapter
3, you learned that the operation code (op code) is the code for the
specific operation that the microprocessor executes. With eight bits of
information, or a one-byte op code, it is possible to have 2 to the
eighth power or 256 different operation codes; these are shown in
Table 6-1. The five binary digits in the left-hand column are the first
five binary digits of the 8-bit operation code. The remaining binary
digits are shown in columns across the top and are repeated in three
other locations in the table. The two-byte and three-byte op-code in
structions appear in Tables 6-2 through 6-5.

You will not be asked to memorize this instruction set. Our purpose
here is simply to show you the entire set so that you can refer to it as
you learn new instructions. For example, in Chapter 3, you learned
the following instructions:

Object Code Source Code

00 NOP
32 <B2> <83> LO (<B3><B2>), A
3C INCA
3E <B2> LO A, <B2>
76 HALT
C3 <B2> <B3> JP <B3><B2>

Can you find them in the table? (Hint: these are one-byte op-code
instructions.)

The Z-80 instructions presented in Tables 6-1, 6-2, 6-3, 6-4, and
6-5, provide an overview of its capabilities. In particular, one can
readily see how the Intel 8080A instruction set forms a basis for the
expanded language of the Z-80. All but twelve of the one-byte oper
ation codes are implemented on the 8080A. The new Z-80 one-byte
operation-code instructions are the exchange register sets instruction
(EXX) and the "relative jump" instructions (JR) which are enclosed
in boxes in Table 6-1. The other op codes, which are not used by
the 8080A, are CB, DD, ED, and FD. Each of these is always the
first byte of a multibyte op-code Z-80 instruction. We will discuss
each of these instruction codes later, but first, more about the one
byte op-code instructions.

If you examine the one-byte op codes in Table 6-1, you will notice
that the first two bits determine the general class of operation. All of

100

the single-byte load (LD) instructions in Table 6-1 have 01 for their
first two bits. All of the arithmetic and logic instructions begin with the
binary digits 10. With the exception of the relative jump (JR) instruc
tions (which all begin with 00), the branch instructions-jumps, calls,
and returns-have first bits equal to 11. In determining the relation
ships between individual bits in the op code and the actual operations
that are performed, you are decoding the operation code. This is es
sentially what the instruction decoder does electronically within the
microprocessor chip.

The above decoding of the first two op-code bits of Z-80 one-byte
op-code instructions is just the beginning. If you closely examine the
load instructions, with the first two bits equal to 01, you will notice the
following:

1. Each instruction moves the contents of one register to another
register.

2. Each register has a 3-bit code associated with it.

~ Binary Code

B 000
C 001
D 010
E 011
H 100
L 101
(HL) 110 (see note)
A 111 (see note)

Note: Remember that (HL) refers to the memory location addressed
by the contents of the HL register pair. The letter A refers to the
accumulator register, which we have discussed previously. Strictly
speaking, (HL) is not a register, but it is often referred to as one in
certain contexts. We will be careful to specify whether or not we wish
to include (HL) when we use the word "register."

To see how the three-bit code for registers applies to load instruc
tions, consider this 8-bit byte:

0 1 1 1 1 0 1 0

We can immediately see what this instruction does by decoding its bits
as follows:

0 1 • - • - - - - - - - - LD instruction
1 1 1 - - - - - A is destination register

0 1 0 D is the source register

Hence the mnemonic for this instruction is LD A,D (check Table
6-1) which means that the Z-80 puts the contents of the D-register
into the accumulator, i.e., the A-register is loaded with the contents of
the D-register.

101

i
Table 6-1. Z-80 One-Byte Operation Codes

000 001 010 011 100 101 110 111

IIO 000 NOP LO BC, <B3><B2> LD(BC),A INCBC INCB DECB LDB,<B2> RLCA

00001 EXAF,AF' ADD HL,BC LDA,(BC) DEC BC INCC DECC LDC,<B2> RRCA

D0010 DJNZ<B2> LO DE, <e3><e2> LO (DE}, A INCDE INCD DECO LDD,<B2> RLA

IIO 011 JR<B2> ADDHL,DE LOA, (DE) DEC DE INCE DECE LO E,<B2> RRA

IIO 100 JR NZ,<B2> LO HL, <B3><B2> LO (<B3><B2>), HL INCHL INCH DECH LO H,<B2> DAA

DO 101 JRZ,<B2> ADD HL, HL LO HL, (<B3><B2>) DEC HL INCL DECL LDL,<B2> CPL

DO 110 JR NC,<B2> LO SP, <B3><B2> LO (<B3><B2>), A INCSP INC(HL) DEC(HL) LD(HL),<B2> SCF

DO 111 JRC.<B2> ADD HL,SP LO A, (<B3><B2>) DEC SP INCA DECA LDA,<B2> CCF

000 001 010 011 100 101 110 111

inooo LDB,B LDB,C LDB,D LOB, E LDB,H LOB, L LOB, (HL) LDB,A

~1001 LDC,B LDC,C LDC,D LDC,E LDC, H LDC,L LO C,(HL) LDC,A

H 010 LOO, B LO D,C LDD,D LOO, E LDD,H LDD,L LO D, (HL) LDD,A

lt1 011 LO E,B LO E,C LDE,D LOE, E LO E,H LOE, L LOE, (HL) LDE,A

ltl 100 LO H,B LO H,C LO H,D LDH,E LOH, H LDH, L LOH, (HL) LDH,A

ltl 101 LO L, B LO L,C LO L, D LO L, E LO L,H LO L, L LO L, (HL) LDL,A

ltl 110 LO (HL), B LO (HL), C LO (HL), D LO (HL), E LO (HL),H LO (HL), L HALT LD (HL),A

ltl 111 LDA,B LDA,C LDA,D LOA, E LDA.H LOA, L LO A, (HL) LDA,A

i

000 001 010 011 100 101 110 111

10000 ADDA, B ADDA,C ADDA,D ADDA, E ADDA,H ADDA, L ADD A,(HL) ADDA,/!

~0001 ADCA, 8 ADCA,C ADCA,D ADCA, E ADCA,H ADCA, L ADC A, (HL) ADCA,A

10010 SUB B SUBC SUBD SUB E SUB H SUB L SUB (HL) SUSA

10 011 SBCA, B SBCA,C SBCA, D SBCA, E SBCA, H SBCA, L SBCA, (HL) SBCA,A

,o 100 ANDB ANDC ANDO ANOE ANDH ANDL AND (HL) ANDA

10101 XORB XORC XORD XORE XORH XORL XOR (HL) XORA

10110 ORB ORC ORD ORE CRH ORL OR (HL) ORA

10 111 CPB CPC CPD CP E CPH CPL CP (HL) CPA

000 001 010 011 100 101 110 111

11000 RETNZ POP BC JP NZ, <B3><B2> Jp<s3><B2> CALL NZ, <s3><B2> PUSH BC ADDA,<B2> RST0

11 001 RETZ RET JP z, <e3><B2> see note 1 CALL Z, <B3><B2> CALL <s3><B2> ADCA,<B2> RST B

11 010 RET NC POP DE JP NC, <B3><B2> OUT (<B2>), A CALL NC, <B3><B2> PUSH DE SUB<B2> RST l0H

~ 1 011 RETC EXX JP C, <B3><B2> INA,(<B2>) CALL C, <B3><B2> see note 1 SBCA,<B2> RST 18H

11100 RETPO POP HL JP PO, <B3><B2> EX (SP), HL CALL PO, <B3><s2> PUSH HL AND<B2> RST20H

11 101 RETPE JP (HL) JP PE, <B3><B2> EX DE, HL CALL PE, <B3><B2> see note 1 XOR<B2> RST28H

11110 RETP POP AF JP P, <B3><B2> DI CALL P, <s3><s2> PUSH AF OR<B2> RST30H

11111 RETM LDSP, HL JP M, <B3><s2> El CALL M, <B3><B2> see note 1 CP<B2> RST38H

NOTE: Bytes CB, DD, ED, and FD do not appear in the 8080A instruction set. In the Z-80 instruction set, they always appear as the first byte of a multibyte op-code
Instruction.

i
Table 6-2. Z-80 Two-Byte Operation Codes: Byte 1 = CB

000 001 010 011 100 101 110 111

00000 RLC B RLC C RLC D RLC E RLC H RLC L RLC (HL) RLC A

00001 RRC B RRC C RRC D RRC E RRC H RRC L RRC (HL) RRC A

00010 RL B RL C RL D RL E RL H RL L RL (HL) RL A

00 011 RR B RR C RR D RR E RR H RR L RR (HL) RR A

00100 SLA B SLA C SLA D SLA E SLA H SLA L SLA (HL) SLA A

00101 SRA B SRA C SRA D SRA E SRA H SRA L SRA (HL) SRA A

00110

00 111 SRL B SRL C SRL D SRL E SRL H SRL L SRL (HL) SRL A

000 001 010 011 100 101 110 111

01 000 BIT 0,8 BIT 0,C BIT 0,D BIT 0,E BIT 0,H BIT 0,L BIT 0,(HL) BIT 0,A

01 001 BIT 1,B BIT 1,C BIT 1,D BIT 1,E BIT 1,H BIT 1,L BIT 1,(HL) BIT 1,A

01 010 BIT 2,B BIT 2,C BIT 2,D BIT 2,E BIT 2,H BIT 2,L BIT 2,(HL) BIT 2,A

01 011 BIT 3,8 BIT 3,C BIT 3,D BIT 3,E BIT 3,H BIT 3,L BIT 3,(HL) BIT 3,A

01100 BIT 4,B BIT 4,C BIT 4,D BIT 4,E BIT 4,H BIT 4,L BIT 4,(HL) BIT 4,A

01 101 BIT 5,B BIT 5,C BIT 5,D BIT 5,E BIT 5,H BIT 5,L BIT 5,(HL) BIT 5,A

01110 BIT 6,B BIT 6,C BIT 6,D BIT 6,E BIT 6,H BIT 6,L BIT 6,(HL) BIT 6,A

01 111 BIT 7,B BIT 7,C BIT 7,D BIT 7,E BIT 7,H BIT 7,L BIT 7,(HL) BIT 7,A

i

000 001 010 011 100 101 110 111

10000 RES, O,B · RES O,C RES O,D RES O,E RES O,H RES O,L RES 0,(HL) RES O,A

10001 RES 1,B RES 1,C RES 1,D RES 1,E RES 1,H RES 1,L RES 1,(HL) RES 1,A

10010 RES 2,B RES 2,C RES 2,D RES 2,E RES 2,H RES 2,L RES 2,(HL) RES 2,A

10011 RES 3,B RES 3,C RES 3,D RES 3,E RES 3,H RES 3,L RES 3,(HL) RES 3,A

10100 RES 4,B RES 4,C RES 4,D RES 4,E RES 4,H RES 4,L RES 4,(HL) RES 4,A

10101 RES 5,B RES 5,C RES 5,D RES 5,E RES 5,H RES 5,L RES 5,(HL) RES 5,A

10110 RES 6,B RES 6,C RES 6,D RES 6,E RES 6,H RES 6,L RES 6,(HL) RES 6,A

10111 RES 7,B RES 7,C RES 7,D RES 7,E RES 7,H RES 7,L RES 7,(HL) RES 7,A

000 001 010 011 100 101 110 111

11000 SET O,B SET 0,C SET O,D SET O,E SET O,H SET O,L SET O,(HL) SET O,A

11 001 SET 1,B SET 1,C SET 1,D SET 1,E SET 1,H SET 1,L SET 1,(Hl, SET 1,A

11010 SET 2,B SET 2,C SET 2,D SET 2,E SET 2,H SET 2,L SET 2,(HL) SET 2,A

11011 SET 3,B SET 3,C SET 3,D SET 3,E SET 3,H SET 3,L SET 3,(HL) SET 3,A

11100 SET 4,B SET 4,C SET 4,D SET 4,E SET 4,H SET 4,L SET 4,(HL) SET 4,A

11101 SET 5,B SET 5,C SET 5,D SET 5,E SET 5,H SET 5,L SET 5,(HL) SET 5,A

11110 SET 6,B SET 6,C SET 6,D SET 6,E SET 6,H SET 6,L SET 6,(HL) SET 6,A

11111 SET 7,B SET 7,C SET 7,D SET 7,E SET 7,H SET 7,L SET 7,(HL) SET 7,A

NOTE: CB is the first byte of all two-byte op codes for the alDove instructions. The position of an instruction in the table
determines the second byte of the op code.

i

Table 6-3. Z-80 Two-Byte Operation Codes: First Byte= DD

000 001 010 011 100 101 110 111

00000

00001 ADD IX,BC

00010

00011 ADD IX,DE

00100 LD IX,<B4><B3> LD(<B4><B3>),IX INC IX

00101 ADD IX,IX LD IX,(<B4XB3>) DEC IX

00110 INC (IX-f-<B3>) DEC (IX+<B3>) LD (IX-f-<B3>l,<B4>

00111 ADD IX,SP

000 001 010 011 100 101 110 111

01 000 LD B,(IX-f-<B3>)

01 001 LD C,(IX-f-<B3>)

01 010 LD D,(IX-f-<B3>)

01 011 LD E,(IX-f-<B3>)

01100 LO H,(IX-f-<B3>)

01101 LD L,(IX-f-<B3>)

01 110 LD (IX-f-<B3>),B LD (IX-J-<B3>),C LD (IX-f-<83>),D LD (IX-f-<B3>),E LO (IX-f-<B3>),H LD (IX-J-<B3>),L LO (IX-f-<B3>),A

01 111 LD A,(IX-f-<B3>)

000 001 010 011 100 101 110 111

10000 ADD A,(IX+<B3>)

10001 ADC A,(IX+<B3>)

10010 SUB (IX+<B3>)

10011 SBC A,(IX+<B3>)

10 100 AND (IX+<B3>)

10 101 XOR (IX+<B3>l

10 110 OR (IX+<B3>l

10 111 CP (IX+<B3>) -
000 001 010 011 100 101 110 111

11 000

11 001

11 010

11 Oil

11 100 POP IX EX (SP),IX PUSH IX

11101 JP (IX)

11 110

11 111 LD SP,IX

NOTE: There are 70 Z-BO instructions with two- and three-byte op codes for the IY register. Their definition is exactly the same as the IX instructions with DD re
placed by FD as byte one.

Table 6-4. Z-80 Three-Byte Operation Codes:
Byte 1 = DD, Byte 2 = CB

000 001 010 011 100 101 110 111

00000 RLC (IX+<B3>)

00001 RRC (IX+<B3>)

00010 RL (IX+<B3>)

00011 RR (IX+<B3>)

00100 SLA (IX+<B3>)

00101 SRA (IX+<B3>)

00110 SRL (IX +<B3>)

00111

000 001 010 011 100 101 110 111

01000 BIT 0,(IX+<B3>)

01 001 BIT 1,(IX+<B3>)

01 010 BIT 2,(IX+<B3>)

01 011 BIT 3,(IX+<B3>)

01100 BIT 4,(IX+<B3>)

01101 BIT 5,(IX+<B3>)

01110 BIT 6,(IX +<B3>)

01111 BIT 7,(IX+<B3>)

000 001 010 011 100 101 110 111

10000 RES 0,(IX +<B3>)

10001 RES 1,(IX+<B3>)

10010 RES 2,(IX+<ea>)

10011 RES 3,(IX +<B3>)

10100 RES 4,(IX +<B3>)

10101 RES 5,(IX+<B3>)

10110 RES 6,(IX +<ea>)

10111 RES 7,(IX+<B3>)

000 001 010 011 100 101 110 111

11 000 SET 0,(IX+<B3>)

11 001 SET 1,(IX+<B3>)

11010 SET 2,(IX+<B3>)

11 011 SET a,ox+<ea>>

11100 SET 4,(IX+<B3>)

11101 SET 5,(IX +<B3>)

11110 SET 6,(IX+<B3>)

11111 SET 7,(IX+<B3>)

108

Table 6-5. Z-80 Two-Byte Operation Codes: Byte 1 = ED

000 001 010 011 100 101 110 111

01 000 IN B,(C) OUT (C),B SBC HL,BC LD (<B4><B3>),BC NEG RETN IMO LD l,A

01 001 IN C,(C) OUT (C),C ADC HL,BC LD BC,(<B4><B3>) RETI

01 010 IN D,(C) OUT (C),D SBC HL,DE LD (<B4><B3>),DE IMl LD A,I

01 011 IN E,(C) OUT (C),E ADC HL,DE LD DE,(<B4><B3>) IM2

01 100 IN H,(C) OUT (C),H SBC HL,HL RRD

01 IOI IN L,(C) OUT (C),L ADC HL,HL RLD

01110 SBC HL,SP LD (<B4><B3>),SP

01 111 IN A,(C) OUT (C),A ADC HL,SP lD SP,(<B4><B3>)

000 001 010 011

10000

10 001

10 010

10 011

10100 LDI CPI INI OUTI

10 101 LDD CPD IND OUTD

10 110 LDIR CPIR INIR OTIR

10 111 LDDR CPDR INDR OTDR

The arithmetic and logic instructions (those op codes beginning
with 10) illustrate register decoding also. For example, in the set

10000---
to 10111---

the last three bits correspond to the register involved. For the instruc
tions in the sets

0 0 0 0 0 1 0 0
to 00111100

and 0 0 0 0 0 1 0 1

to 00111101

and 0 0 0 0 0 1 1 1

to 0 0 1 1 1 1 1 1,

the third, fourth, and fifth bits (numbering from left to right) repre
sent the register that is involved in the operation.

So far, we have discussed only one-byte operation-code instructions.
Tables 6-2 through 6-5 display the instructions with multibyte opera
tion codes. None of the multibyte operation codes are implemented
on the Intel 8080A microprocessor. The entire 8080A instruction set
is comprised only of one-byte operation codes and, except for the
eight marked bytes, appears in Table 6-1. Hence, most of the new
instructions for the Z-80 appear in the multibyte operation-code Ta
bles 6-2 through 6-5.

The multibyte operation codes can be divided into four groups
based on their first byte-CB, DD, ED, or FD. We shall point out
some major properties of each of these groups.

The CB lnstrudions (Table 6-2)

The two-byte op codes with first byte equal to CB are displayed in
Table 6-2. The eight bits derived from the row and column position
of the instruction represent the second byte of the op code. For ex
ample, the instruction BIT 2,C corresponds to the two-byte op code:

Byte 1 = CB
Byte 2 = 51 (0 1 0 1 0 0 0 1)

The structure of byte 2 is easily discernible from Table 6-2.

First two bits =

110

00 - - - - - - a rotate or shift instruction in which the last. three bits are the code
for the register involved.

01 - - - - - - a BIT instruction in which the last three bits specify the register and.
the other three bits specify the bit to be addressed.

10 - - - - - - a RES instruction in which the last six bits have the same significance
as in the BIT instruction.

11 - - - - - - a SET instruction in which the last six bits have the same significance
as in the BIT instruction.

The DD and FD Instructions (Tables 6-3 and 6-4)

Instructions which begin with DD or FD may have two or three
byte op codes. Table 6-3 displays the two-byte op-code DD instruc
tions. Notice that they all involve the index register IX. The FD two
byte codes are analogously defined for the IY index register.

All the three-byte op codes implemented on the Z-80 have the
following structure:

Byte l: DD or FD depending on index register (IX or IY)
Byte 2: CB
Byte 3: displacement byte
Byte 4: First two bits indicate rotate or shift, BIT, RES, or SET as in the CB instruc·

tions above. The next three bits are always 110. The remaining bits indi
cate the type of rotate or shift or bit number as in the CB instructions
above.

The three-byte DD operation codes are displayed in Table 6-4 with
byte four determined by the row and column position of the instruc
tion.

The ED Instructions (Table 6-5)

The instructions which begin with ED all have two-byte op codes.
Table 6-5 displays these instructions, with the second byte being de
termined by the row and column position of the instruction. The pat
terns that emerge are left as exercises for the interested instruction
decoders among the readers.

Z-80 ADDRESSING MODES

Almost all of the Z-80 instructions involve operating on data that
can be stored in registers within the CPU chip, in memory, or can be
input or output from 1/0 ports. The term addressing mode refers to
the method by which this data is accessed by the instruction. Is the
data actually part of the instruction? Does the instruction contain a
code telling the computer where the data is? Does the instruction con
tain a pointer to the location in memory where the data is stored? In
all, the Z-80 has ten distinct addressing modes. We shall investigate
these in detail in this and subsequent chapters.

The variety and power of the Z-80 addressing modes contribute in
large measure to the many advantages the chip has over other 8-bit
microprocessors, such as the Intel 8080A. Unfortunately, they also
add to the complexity of the Z-80 instruction set. However, be assured
that the extra time and effort spent learning the addressing modes
will be amply repaid in many ways. First, the more ways in which data
can be retrieved and manipulated, the easier it is to write efficient pro
grams. Second, the Zilog Corporation has devised an excellent method
for cross-referencing Z-80 mnemonics and their associated hexadeci-

111

mal code which requires that the user know and understand the ten
addressing modes. Many more rewards will come to those who per
severe in learning the addressing modes, they are too numerous to try
to list here. One final bit of advice before plunging into the first set of
addressing modes: devote your initial efforts toward understanding
what the addressing modes mean, rather than memorizing their some
times fancy, unintuitive names. The memorization of the names can
come with experience later. The addressing modes are important,
though, and we urge you to spend the time necessary to learn them.

SINGLE REGISTER LOAD INSTRUCTIONS:
REGISTER ADDRESSING MODE

LD d,s

There exist 63 different single register LD instructions in the Z-80
instruction set. Each instruction has the mnemonic LD d,s where

d = destination register
s = source register

The instruction codes range exclusively from 40 to 7F, with the lone
exception of 76 which is the HALT instruction. The 8-bit form of the
LD instruction is,

0lDDDSSS

The values of DDD or SSS are the three bits that correspond to the
specific three-bit binary code for the register. Thus:

DDDorSSS

~ Binary Code

B 000
C 001
D 010
E 011
H 100
L 101
(HL) 110
A 111

We are now ready to define the register addressing mode:
register addressing-The technique of using groups of bits within the

Z-80 instruction code to specify which register(s) are involved.

Some examples of the use of this class of instructions are summarized
as follow:

112

Load register C from register B
load the accumulator from register C
load register D from register E
load the accumulator from register H
Load register L from the accumulator
Load the memory location addressed by the HL

register pair from the accumulator
Load the accumulator from the memory location

addressed by the Hl register pair

LD C,B
LD A,C
LD D,E
LD A,H
LD L,A

LD (HL),A

LD A,(HL)

The transfer of data between a memory location, (HL), and any other
register requires additional explanation, and will be discussed in a
subsequent section. The LD A,B; LD B,A; LD A,(HL); and LD
(HL) ,A instructions are shown in the illustration of Fig. 6-1. The
arrow points in the direction of data transfer.

LOAD IMMEDIATE TO REGISTER
LD r,<B2>

The term immediate refers to the addressing mode for which the
data to be loaded into register r is actually contained within the multi
byte instruction as byte number two, <B2>. In the load-immediate-to
register instruction, the destination of the data byte is indicated by the
bits marked "D,"

Bytel OODDD110
Byte 2 data byte <82>

The values for DOD are the register codes on the preceding page. The
mnemonic is LD r, <B2>. The number of states is 7, which cor
responds to an execution time of 2.8 microseconds, with the exception
of the LD (HL),<B2> instruction, which requires 10 states or 4.0
microseconds. In Fig. 6-1 we depict the eight different load-immedi-

B

C :~.
..,<:J~e, ---- ~,

<••> I~ ... ;-:=_-::=_-:~ .. : ~.~ ~,--A--
""~~._I __ H _ _.

~b~9 ~I __ L __

• r------,
:..!!:!1L..!

A

Fig. 6-1.

113

ate-to-register instructions. Byte <B2> is the second byte in the two
byte instruction; this information is transferred from the program to
the designated register.

Note that all register and data movement within the Z-80 and
within the Nanocomputer is in parallel,· eight bits of information are
transfe"ed at the same time. Special conditions are involved in the
transfer of data to and from the memory location (HL). This topic
is discussed below.

REGISTER INDIRECT LOAD WITH ACCUMULATOR
LD A,(rp); LD (rp),A

Register indirect is an addressing mode in which a register pair
BC, DE, or FIL-is used to point to a memory address whose con
tents are either being replaced with or loaded into the accumulator A.
For example LD A,(DE) places the 8-bit byte, the memory address
of which is contained in the register pair DE, into the accumulator.
LD (DE) ,A stores the contents of the accumulator in the memory
location that is addressed by the contents of register pair DE.

The op codes for these instructions are

LDA,(rp): 00rp1010 or LDA,(HL) 01111110
LD(rp),A: 00rp0010 or LD(HL),A 01110111

where the register pairs are encoded as follows. Fig. 6-2 shows how
register indirect addressing works.

Address

BC

DE
Accumulator

HL

Fi9.H.

114

i'
B C

¥' D E

t EX DE,HL (83) (82) I
~

"\' H L
JP (HLJ ! l'rDQram Counter .. 1 LO SP,HL

I Stack Pointer

Fi9.W.

...!?.. Two-lit Code

BC 00
DE 01

LOAD IMMEDIATE EXTENDED TO REGISTER PAIR
LD rp, <B3><B2>

The load immediate extended instructions belong to the so called
"16-bit load" group because these instructions cause the transfer of
two bytes from the instruction (bytes two and three) into a register
pair-BC, DE, HL, or SP. The term immediate extended refers to
another Z-80 addressing mode in which extended means a two-byte
transfer, and immediate means that the two data bytes are actually
part of the instruction. Fig. 6-3 shows several load immediate ex
tended instructions and a pictorial representation of their data trans
fer properties.

The register pair destination of the data bytes is indicated by the
bits marked "rp" in the op code for these instructions:

00rp0001

where the following correspondence exists between register pairs and
two-bit codes:

Register Pair

BC
DE
HL
SP

Binary Code

00
01
10
11

LOAD EXTENDED REGISTER PAIR
LD rp,(addr); LD (addr),rp

These instructions use extended addressing to move two bytes be
tween memory and a register pair BC, DE, or HL. Extended address-

us

ing means that two bytes contained within the instruction point to the
first of the two bytes in memory which are to be the source or destina
tion of the transfer. For example, the instruction

LD HL, (0100H)

loads register L with the data byte stored in location 0100 and register
H with the data byte stored in location 0101. Note that the second
register in the pair is loaded with the data from the lower of the two
addresses. The op code for this instruction is 2A so LD HL,(0lOOH)
translates to

2A op code
00 LO memory address byte
01 HI memory address byte

The analogous load operations for register pairs BC and DE have two
byte op codes. Rather than list the instructions and their op codes as
we have in the past, we will present them later in a more structured
format in the 16-bit load group table in the next chapter. The most
important idea here is to understand extended addressing.

INCREMENT REGISTER
INC r

To increment a register means to increase the contents of the regis
ter by 1. The single-byte instruction is simply,

OOrlOO

and has a mnemonic of DEC r. With the exception of DEC (HL), the
of the register being incremented. With the exception of INC (HL),
the increment register instruction requires only five states, or 2.0
microseconds, for execution.

DECREMENT REGISTER
DEC r

To decrement a register means to decrease the contents of the regis
ter by 1. The single-byte instruction is similar to the increment in
struction above,

00r101

and has a mnemonic of INC r, where r is the identity (A, B, C, etc.)
decrement register instruction requires five states, or 2.0 microseconds,
for execution. Both the increment and decrement instructions employ
the usual 3-bit binary code for the register.

116

JUMP IF NOT ZERO
JP NZ,<B3><B2>

This is your first conditional branch instruction, which is an instruc
tion that is subject to a condition. In this case, the jump occurs to the
memory address given in the second <B2> and third <B3> bytes of
the instruction if the zero flag is at logic 0. We are not prepared here
to talk about flags; for our purposes here, the jump occurs only if the
result of a register operation is not zero. If the result of the register
operation is zero then the JP NZ instruction is ignored and the pro
gram skips over the three instruction bytes to the following instruc
tion. The JP NZ instruction is a three-byte instruction,

11000010
LO address byte <B2>
HI address byte <B3>

that bas an execution time of 10 states, or 4.0 microseconds. The in
struction is widely used in the creation of time delay loops, an example
of which will be given in a program in this chapter.

BLOCK DATA TRANSFERS
LDD, LDI, LDDR, LDIR

So far, we have discussed many ways to transfer data between reg
isters and memory locations one byte at a time. The Z-80 has four
very powerful instructions designed to facilitate moving blocks of data
from one set of locations in memory to another. Prior to executing any
of these four instructions, a Z-80 program must initialize the BC, DE,
and HL registers as follows:

Hl= address of the first source byte
DE= address of the first destination byte
BC=number of bytes to be moved

Execution of the LOI (load-increment) instruction causes the fol
lowing steps to occur:

1. The byte in the memory location addressed by register pair HL
is loaded into the location addressed by register pair DE.

2. The contents of register pairs HL and DE are both incremented
(by 1).

3. The contents of the register pair BC are decremented (by 1).

Execution of the LDIR (load-increment-repeat) instruction causes
the following to occur:

1. The byte in the location pointed to by register pair HL is loaded
into the location addressed by register pair DE.

2. The contents of register pairs HL and DE are both incremented.

117

3. The contents of register pair BC are decremented.
4. The value of the register pair BC is checked. H BC is not equal

to 0000 then steps 1, 2, 3, and 4 are repeated.HBC is equal to
0000 then execution proceeds to the next instruction in the pro
gram.

Execution of the LDD (load-decrement) and LDDR (load-decre
ment-repeat) instructions result in very similar sequences of steps.
The only difference is that Step 2 decrements both HL and DE.

Fig. 6-4 shows the registers and memory locations before and after
execution of the LDIR instruction. This instruction is the subject of an
experiment which you will perform at the end of this chapter.

INTRODUCTION TO THE EXPERIMENTS

The following experiments are designed to demonstrate what you
have learned in Chapter 6 about transferring data between registers
and registers, between registers and memory locations, and between
memory locations and other memory locations.

The experiments you will perform may be summarized as follows:

Experiment No. Comments

1 Demonstrates the immediate and register address
ing modes.

2 Demonstrates the immediate extended, extended
and register indirect addressing modes.

3 Demonstrates the techniques for implementing
program loops. Specifically, the JP NZ instruction
is used to form a time delay loop.

4 Demonstrates the block move instruction LDDR.

5 Demonstrates the block move instruction LDI.
Two new conditional jumps as well as a logical
instruction are introduced.

6 Demonstrates the value of the block move instruc
tion by showing how it can save memory and pro
gram steps.

EXPERIMENT NO. 1
Purpose

The purpose of this experiment is to demonstrate the immediate
and register addressing modes.

118

BEFORE AFTER

Memory Memory
e • • •

HL polnh to
aource byte I source byte I

Register Pair HL eource byte 2 source byte 2

aource byte N aource byte N
0

HL + N I~
Ir L.,, Register Pair HL ,. I' i,..,

r,,.,. ,.,,,,

DE I polnh to
deatinatlon I source byte I

Register Pair DE deatlnatlon 2 aource byte 2

deatlnotion N source byte N

•
0

• .__....:D:;.;:;;E __ + N ____ ~I ~
• Register Pair DE •

N
Register Pair BC 0

-- Register Pair BC ..

Program No. 7
Memory Objed Source
Location Code Code Comments

0100 0680 LO 8,80H ; Immediate addressing: Data byte
; 80 is loaded into register B

0102 04 INCB ; Add one (to increment) register B
0103 48 LDC,B ; Register addressing: the contents

; of register B are loaded into reg-
; ister C

0104 oc INCC ; Increment the contents of the C
; register

0105 51 LO D,C ; Load D with C
0106 14 INC D ; Increment D
0107 5A LD E,D ; Load E with D
0108 1D DECE ; Decrease the contents of register

; E by 1 (decrement)
0109 63 LO H,E ; Load H with E
010A 25 DECH ; Decrement H
0108 6C LD L,H ; load L with H
OlOC 20 DECL ; Decrement L
0100 70 LDA,l ; Load A with L
OlOE 76 HALT ; Halt the microcomputer

Step 1

Load the preceding program into memory starting at location 0100.
Verify that it has been loaded correctly.

How many one-byte instructions are there in the above program?
How many two-byte instructions are there?
How many three-byte instructions are there?
How many four-byte instructions are there?

Your answers should have been 13, 1, 0, and 0, respectively. LD
B,SOH is the only two-byte instruction, while all of the other instruc
tions are one-byte instructions.

How many instructions use immediate addressing?
How many instructions use register addressing?

Your answers should have been 1 and 12, respectively. The LD B,S0H
instruction uses immediate addressing because the data is actually part
of the instruction (byte two). The other LO, INC, and DEC instruc
tions (all one byte long) use register addressing.

1H

Step 2
Analyze the program and predict the value which will be in each

register at the conclusion of execution. You can write your predictions
in the space provided.
B- __ _ c- __ _ n-. __ _ E- __ _
H- __ _ L- __ _ A-. __ _

Step 3

Verify your predictions by executing the program. If you execute
in single-step mode, you can check your prediction for each register
as it is changed. If you execute the program at full speed, remember
to press BREAK instead of RESET so that the register contents will be
saved.
Note: It is particularly interesting to watch the execution in single-step
mode because you can watch more than one register at a time. With
the selector lamp in position BC you can directly observe the effects
of the first four instructions, then move the selector lamp to position
DE for the next four instructions, to position HL for the next four in
structions, and to position AF for the final instructions.

The registers should now read as follows:

B=81, C=82, D=83, E=82, H=81, L=BO, and A=BO.

It is essential to be able to predict the contents of the registers that
are affected by a program, because then you can detect program bugs
if predictions do not match results. We recommend that you work
hard to develop this skill.

Step 4

Change the data byte at location 0101 to 01. Predict what the reg
isters B, C, D, E, H, L, and A will contain after executing the
changed program.
B- __ _ c- __ _ n-. __ _ E- __ _
H- __ _ L- __ _ A- __ _

Execute the program in single-step mode, watching the registers as
they change. After execution the registers should read

B=02, C=03, 0=04, E=03, H=02, L=Ol, and A=Ol.

Step 5

Change the data byte at location 0101 to FF. Predict what registers
B, C, D, E, H, L, and A will contain now. Check your predictions by
executing the program in single-step mode and watching the registers
as they change.

121

B-. __ _ c- __ _ n- __ _ E-. __ _
H- __ _ L- ___ _ A- __ _

We observed that B=OO, C=Ol, D=02, E=Ol, H=OO, L=FF, and
A=FF. These values are easily explained if you know one fact: addi
tion is cyclic on the Z-80 microcomputer. That is,

If we increment FF by one we get 00
If we decrement 00 by one we get FF

Another way of saying this is that the Z-80 adds modulo 256 (base
10) or modulo 100 (base 16). Whenever this happens, i.e., we "pass
through zero"; the event is noted by the Z-80 by setting a CARRY
FLAG. We will discuss this more in a subsequent chapter.

EXPERIMENT NO. 2

Purpose

The purpose of this experiment is to demonstrate the immediate
extended, extended, and register indirect addressing modes.

Program No. 8
Memory Object
location Code

0110 211co1

0113 36FF

0115 2C

0116 36EE

0118 2A 1C01

0118 76

Step 1

Source
Code

LD HL,011CH

LD (HL),FFH

INCL

LD (HL),EEH

LD HL,(0 11 CH)

HALT

Comments

; Immediate extended addressing:
; His loaded with 01 (HI)
; Lis loaded with lC(LO)
; Register indirect addressing:
; The memory location pointed to
; by the contents of HL is
; loaded with FF
; Increment register L- so that
; HL is pointing to the next
; sequential memory location
; Register indirect addressing:
; The memory location pointed to
; by the contents of HL is
; loaded with EE
; Extended addressing: Register
; L is loaded with the contents
; of memory location 01 lC and
; register H is loaded with the
; contents of memory location
;011D.
; Halt

Load the above program into memory starting at location 0110.
Verify that you have loaded the program correctly.

122

Step 2
Let us closely examine the above program to try to understand what

it does. Frrst note that the program involves the H and L registers and
two memory locations 011C and 011D. The program basically loads
these two locations with FF and EE, respectively, and then moves the
contents of the two locations to the HL register pair. This is not a
particularly exciting program but it does illustrate several important
facts about three kinds of addressing.

Consider the two mnemonic instructions:

LO HL,011CH
LO HL,(01 lCH)

The only difference is that the second instruction has parentheses sur
rounding the address. This difference is critical. In the first instruction
the 01 lC represents two data bytes to be loaded into H and L; in the
second instruction 01 lC is an address. Both of these instructions load
16-bits (or two bytes) of data but the first uses immediate extended
addressing and the second uses extended addressing.

The instructions LD (HL) ,FFH and LD (HL) ,EEH are both
8-bit loads because only one byte is involved. The parentheses around
HL are critically important here also. They imply that the instructions
do not change HL but, rather, change the memory location pointed to
byHL.

Step 3
Predict the values in the following registers and memory locations

after executing the preceding program:

H---- (OllC)- __ _

L---- (011D)- __ _

Step 4
Execute the program at full speed and then examine the registers

and memory to see if your predictions were correct. We observed
H=EE, L=FF, (0llC)=FF, (011D)=EE.

EXPERIMENT NO. 3

Purpose

The purpose of this experiment is to demonstrate the techniques for
implementing program loops. Specifically, the JP NZ instruction is
used to form a time-delay loop.

123

Program No. 9
Memory Object
Location Code

0120 OE 00
0122 OD
0123 C2 2201
0126 FF

Program No. 10
Memory
Location

0130
0132
0134
0135
0138
0139
013C

Step 1

Object
Code

0600
OEOO
OD
C2 34 01
05
C2 32 01
FF

LOOP:

Source
Code

LD C,OOH
DECC
JPNZ, LOOP
RST 38H

Source
Code

LD B,OOH
LOOP l: LD C, OOH
LOOP2: DEC C

JP NZ, LOOP2
DECB
JP NZ, LOOP!
RST38H

Load and verify Program No. 9.
Load and verify Program No. 10.

Step 2

Comments

; Load immediate C with 00
; Decrement C
; If C not zero, go back to LOOP
; If C is zero, return control
; to the Nanocomputer operating
; system.

Comments

; Load immediate B with 00
; Load immediate C with 00
; Decrement C
; If C not zero, go back to LOOP 2
; If C is zero, decrement B
; If B not zero, go back to LOOP l
; If B is zero, return control
; the Nanocomputer operating
; system.

Let us examine these two programs quite closely to understand
exactly what they are doing. First, let us concentrate on Program No.
9. Program No. 9 is a simple delay loop. Note that this program uses
labels. That is, in the source code, certain statements are assigned
names. In Program No. 9, the statement DEC C at location 0122 is
assigned the label LOOP. You can tell that LOOP is a label because
it is followed by a colon (:) and an instruction. Later on, the JP NZ,
LOOP instruction refers to the label as a synonym for the address
0122. That is, the instruction JP NZ, LOOP is equivalent to the in
struction JP NZ, 0122H and is converted by the assembler to hex
object code C2 22 01. It is important for you to realize that labels, as
entities used in source code statements, are always translated to hex
object code equivalents so that the Z-80 CPU NEVER sees the label.

Note also that Program No. 9 uses the instruction RST 38H which
we have not yet defined. This statement essentially tells the Z-80 CPU
to return control to the Nanocomputer operating system. Later on, we
discuss the RST instructions in detail.

Register C is loaded initially with zeros, then C is decremented
repeatedly until C reaches 00 again, whence the loop ends and control

124

is returned to the Nanocomputer operating system. Program No. 9 is
called a delay loop because it just performs busy work (decrement
ing C) for awhile and then stops. The net result is a time delay; note
that C starts out and finishes with zeros.

For programs with loops, it is often quite helpful to draw f/,ow
charts to illustrate the overall program logic. The flow chart for Pro
gram No. 9 is given in Fig. 6-5. We will explain the significance of
the shape of the "boxes" in the flow chart.

NO

START

INITIALIZE

REGISTER C

TO ZERO

DECREMENT

REGISTER C

YES

PROCESS BOX: Perform described action, move on to
next activity.

PROCESS BOX

DECISION BOX: Determine answer to stated question
and branch accordingly. Naturally, each branch must
be explicitly labeled with the associated answer.

Return Control to

NANOCOMPUTER PROCESS BOX

Operoting System

Fig. 6-5.

125

It is appropriate to make some general remarks about program
loops. All program loops can be analyzed as containing the following
four components:

1. Initialization Process-Counting variables, memory addresses,
registers, and other necessary variables are set to desired starting
values (e.g., LD C, OOH in Program No. 9).

2. Process to be Repeated-This component is made up of the
statements which will be executed on each loop. (Note: this
component is empty for Program No. 9. This is why it is called
a time-delay loop.)

3. Loop Control Process-The counting variables and any neces
sary memory pointers or other values which control how often
the loop is repeated are updated (e.g., DEC C in Program No.
9).

4. Loop Termination Process-The loop control variables are
checked to determine if a termination condition holds. Looping
either continues or stops accordingly (e.g., JP NZ,LOOP in
Program No. 9).

Step 3

Let us now analyze Program No. 10 in a similar fashion. First, try
to draw a fl.ow chart for Program No. 10. Compare yours with ours
which appears in Fig. 6-6.

Notice that from the fl.ow chart, the logical structure for Program
No. 10 is quite clearly shown: Program No. 10 is a loop within a loop.
For each time register B is decremented once, register C is decre
mented all the way from 00 back to 00 again, i.e., 256 decrements!
Please be sure that you understand what is happening here. A full set
of decrements on C results in B getting decremented once. Thus,
which program do you think forms a longer delay loop ... No. 9 or
No. 10?

We hope that you said No. 10!
Execute Program No. 9 at full speed. What do you observe? Exe

cute Program No. 10 at full speed. What do you observe, and how
does it compare with the behavior of Program No. 9?

In both cases, we observed that the Nanocomputer displays went dark
for a brief instant and then all of the displays came back on with the
selector lamp in position PC. For Program No. 9, the time between
pressing GO and the displays becoming lit was instantaneous, while the
length of time that elapsed between the same events for Program No.
10 was longer. Perhaps half a second.

126

NO

NO

START

INITIALIZE

REGISTER B

TO 00

INITIALIZE

REGISTER C

TO 00

DECREMENT

REGISTER C

YES

DECREMENT

REGISTER 8

Return Control to

NA NOCOMPUTER

Operating System

Fig.6-6.

127

Step 4
Let us investigate how we can make the delay longer between

pressing GO and seeing the displays light up. One way is to add an
other loop, thus making the program a loop within a loop, within a
loop. This technique is called forming nested loops. In Program No.
10, the loop which decrements register C is nested within the loop
which decrements register B.

Change Program No. 10 as follows:

Memory
Location

012E

Object
Code

16 30

Source
Code

LO D, 30H

Comments

; Initialize the outer-most
; counter

-------keep locations 0130-013B the same-----these instructions form the

- ----- - -- , inner loops now.----- - --- - - --- - - - - - - - - - - - - - -
013C 15 DEC D ; Decrement outer-most loop

013D

0140

Step 5

C2 3001

FF

JP NZ, 0130H

RST38H

; counter
; Start the two inner loops again
; if D not zero.
; If D is 0, return control to
; the Nanocomputer operating
; system.

Draw a flow diagram of the changed Program No. 10 whose starting
address is 012E. Study it thoroughly to understand the function of
each of the three loops.

Step 6
Execute the program starting at O 12E. You should be expecting a

much longer delay between pressing GO and control returning to the
N anocomputer operating system (displays relighting) . Wait patiently,
the delay is much longer. (If nothing has happened after one minute,
something is wrong. Press RESET and double check that your program
is loaded correctly.)

Step 7 v

You can change the time duration of the delay loop by varying the
initial value of the D-register. The higher the value, the longer the
delay loop. Try different values for the data byte at location 012F to
verify this.

EXPERIMENT NO. 4

Purpose
The purpose of this experiment is to demonstrate the block move

instruction LDDR.

128

Program No. 11
Memory Objed Source
location Code Code Comments -0150 217501 LO HL,0175H ; Specify the end address

; of the source block of data
0153 11 6F 01 LO DE,016FH ; Specify the end address

; of the destination
0156 010500 LO BC,0005H ; Specify the number of bytes to

; be transferred
0159 EDBS LDDR ; Move the entire block of bytes
0158 FF RST 38H ; Transfer control back to the

; Nanocomputer operating
; system.

Step 1

Load the program into memory starting at 0150. Verify that you
have loaded it correctly.

Step 2

Examine the program closely to discover exactly what it does.
Basically, the program utilizes the LDDR instruction to move five data
bytes. The LDDR instruction is one of the many very powerful capa
bilities of the Z-80 not implemented on the older Intel 8080 micro
processor. The following diagram illustrates how the LDDR instruc
tion performs in the preceding program:

LDDR: (0175) transferred to (016F)
(017 4) transferred to (016E)
(0173) transferred to (016D)
(0172) transferred to (016q
(0171) transferred to (016B)

A total of BC=0005 bytes are moved in the order in which they ap
pear in the diagram.

Step 3

Initialize the contents of memory locations 0171-0175 as follows:
(0171) = AA
(0172) = BB
(0173) = cc
(0174) = DD
(0175) = FF

Execute the program at full speed; then examine memory locations
016B-016F. Write your observations:

(016B) =
(016C) =
(016D) =
(016E) =
(016F) =

129

We observed AA, BB, CC, DD, and EE respectively, in the preceding
locations. Thus, the LDDR instruction causes five memory bytes to be
transferred. H BC were initialized to 0006 or 0003, then 6 or 3 bytes
would have been transferred. Reinitialize the memory bytes 016B-
016F to, say ll's, and try BC=0003 and BC=0006 by changing
the program (locations 0157 and 0158) accordingly.

Step 4

Let us now zero out the 20 bytes of memory from O 161 through
0175 inclusive by making some changes to the previous program.

1. Change LD DE, 016FH to LD DE, 0174H
2. Change LD BC, 0005H to LD BC, 0014H
3. Store 00 in memory location 0175 using the keyboard

Execute the program starting at 0150. Examine memory locations
0161 throug_h 0175. Are they all zero?

We observed that they were.

Step 5
Let us attempt to explain what we just did. First, here is the source

code for the program with the preceding changes incorporated:
LD HL,0175H
LD DE,0174H
LD BC,0014H
LDDR
RST38H

Therefore, the sequence of transfers is
(0175H0174)
(0174H0173J
(0173H0172J

(0162H0161J

A total of 20 (base 10) or 14 (base 16) bytes were transferred. Load
ing 00 into memory location 0175 (step 3 above), started a domino
effect. The first transfer zeroed out location 0174, then the contents
of 0174, zeros, were then transferred to 0173, and so on

Step 6

Note carefully the values of all three register pairs after program
execution:

HL- __ _
DE-. __ _
BC- __ _

130

Our observations
0161
0160
0000

HL is one less than the address of the last source byte transferred. DE
is one less than the address of the last destination byte transferred.
BC=OOOO. .

Step 7
What happens if we execute the above program with BC starting

out initialized to 0000? There are two possibilities depending on the
subtleties of the way in which the Z-80 executes an LDDR instruction.
Consider the following two operational scenarios for a Z-80 which
has just encountered an LDDR instruction:

Scenario No. 1:
Step 1-transferthe data byte: (HL) to (DE)
Step 2--decrement HL, DE, and BC
Step 3-check if BC=OOOO. If not, go back to Step 1, else go

on to next instruction.
Scenario No. 2:

Step 1-check if BC=OOOO. If not, continue to Step 2, else go
on to next instruction.

Step 2-transfer the data byte: (HL) to (DE)
Step 3--decrement HL, DE, and BC: return to Step 1

If BC initially is not zero, then the two scenarios above produce iden
tical results. What if BC is initialized to zero? Then the two scenarios
differ drastically. Scenario No. 1 will attempt to move 64K bytes while
Scenario No. 2 will move O bytes.

Let us make a simple test to see which scenario the Z-80 follows.
Simply change the current program by replacing the 14 in location
0157 with 00. What does this accomplish? The instruction LD BC,
0014 is replaced with the instruction LD BC, 0000.

Step 8
Execute the program (starting at 0150) in single-step mode. First,

watch the three register pairs get initialized (3 steps). Now watch the
BC register pair for Step 4. What did you observe? This observation
should settle our question. Which scenario does the Z-80 follow, 1 or
2?

We observed BC become FFFF! Thus the Z-80 decrements before
checking, so we may conclude that Scenario No. 1 is jmplemented,
not Scenario No. 2. We have just investigated a boundary condition of
the LDDR instruction. Boundary conditions related to loop control on
the first and/or last iteration are always extremely critical. Many pro
gram bugs in execution of loops are due to incorrectly implemented
boundary conditions.

131

Step 9
Let us pursue our preceding observations one more step. We have

just initiated a 64K byte block move! We do not even have 64K bytes
of memory. But, more importantly, we are heading towards over
writing our program. Consider the following transfers that will take
place:

(0175H0174)
(0174H0173)

(0160)-(015F)
(015FH015E)

(015B)-(015A)
(015BH0159)

With the transfer of the contents of memory location OISE to location
015D, we are beginning to alter the program that is currently being
executed. The Z-80 is not aware of this yet because it is merrily exe
cuting away on the LDDR instruction at locations 0159 and 0160.

Continue your step-by-step execution of the program watching the
DE register. When DE=0lSD you are beginning to over-write
(sometimes called "clobber" or "eat-up") your own program. How
far do you think you will get? Continue stepping. With each step the
DE register descends one byte closer to the LDDR instruction. When
does the DE register stop decrementing?

We observed that it stopped at 0159. That is, once the second byte of
the LDDR instruction was changed, the program fell apart. So, it
hung in there as long as it could! Once the very instruction it was exe
cuting was destroyed, it could no longer carry on.

You have just witnessed, under very controlled conditions, a pro
gram destroy itself. This, sadly, will not be the last time this happens
to you. Just keep in mind that it can happen and try your best to guard
against it. Whenever you execute a program which you are trying to
debug, prepare for the worst by first copying it out to cassette (if pos
sible) or at least have it well documented, because it may disappear
after you hit the GO key!

EXPERIMENT NO. 5
Purpose

The purpose of !his experiment is to demonstrate the LDI instruc
tion. Two new conditional jump instructions JP Z and JP PB are in
troduced. Also the logical instruction OR A is introduced.

132

Program No. 12
Memory Object
Location Code

0180 21 AOOI

0183 11 co 01

0186 01 10 00

Source
Code

LD Hl,OlAOH

LDDE,OICOH

LD 8C,0010H

Comments

; Specify the beginning address
; of the source block of data
; Specify the beginning address
; of the destination block of
; data.
; Specify the maximum number of
; bytes to be moved.

0189 7E LOOP: LD A, (Hl) ; Load the next source byte to be
; transferred into register A

018A B7

018B CA 93 01

OISE EDAO
0190 EA 8901

0193 FF QUIT:

Step 1

ORA

JP Z,QUIT

LDI
JP PE, LOOP

RST38H

; Set the zero flag to logic l if
;A is 0.
; If A is zero, jump to the end
; of the program
; Transfer the non-zero byte
; Jump back to transfer another
; byte if BC is not 0000.
; Return control to the Nano•
; computer operating system.

Load the preceding program starting at address 0180. Verify that
you have loaded it correctly.

Step 2

Let us first describe the new instructions which appear in this pro
gram:

Object
Coda

B7

CA
<B2>
<B3>

EA
<B2>
<B3>

Mnemonic
Coda

ORA

JP Z, <s3><B2>

JP PE, <BJ><B2>

Operation

Performs a bit by bit logical OR of the
accumulator with itself. The zero flag is
set to l if A is zero, otherwise the zero
flag is set to zero. See the chapter on log
ica I operations for a more complete dis
cussion of this instruction.
Conditional jump:jump to the address
given by <B3><s2> if the zero flag is
at logic 1
Conditional jump: jump to the address
given by <B3><B2> if the parity flag
is at logic 1

Both of the conditional jumps described are quite similar to the JP NZ
instruction. The only difference is the condition which is tested prior
to deciding whether or not to jump. These conditions always involve
flags, which we will discuss in great detail later. For now, we are tell
ing you just what you need to know to understand the preceding pro
gram.

133

Step 3

Let us now examine the program, as a whole, to understand exactly
what it is doing. The first three instructions initialize the register pairs
HL, DE, and BC in preparation for invoking the LDI instruction. The
next two instructions are designed to determine if the next byte to be
transferred is 00: the byte (pointed to by HL) is loaded into the ac
cumulator and then "oRed" with itself. The only way the result of this
OR operation can be zero is if A itself is zero. Thus, OR A sets the zero
flag to logic 1 only if A is zero. The next instruction, the conditional
jump JP Z, examines the zero flag, if it is set to logic 1 then A is zero,
that is, the next byte to be transferred is 00, so the jump to statement
QUIT is executed which returns program control to the Nanocom
puter operating system. On the other hand, the conditional jump at
location 018B is not executed if the next byte to be transferred is non
zero. Thus, the LOI instruction is executed (i.e., the byte is transferred
and HL, DE are incremented while BC is decremented). An often
ignored but crucial fact about the LOI and LDD instructions is that
as long as BC is NOT ZERO, the parity flag is set to logic 1. Hence,
when BC is decremented, a check is made and the parity flag updated
accordingly. So, the conditional jump JP PE checks the parity flag. If
it is at logic 1, then BC is not zero, so the cycle starts again with a
determination if the next byte to be transferred is zero. If the parity
flag is at logic 0, all the bytes have been transferred so control is re
turned to the Nanocomputer operating system, i.e., the JP PE is not
executed.

The last paragraph is a very complicated English-language descrip
tion of a program. You can probably now appreciate the saying "a
picture worth 1K words" when you look at the flow chart in Fig. 6-7.

By now, it should be clear that the program transfers a block of
memory a maximum of 16 bytes long. The first zero byte in the source
block terminates the transfer.

Step 4
Initialize the 16-byte memory block starting at 01AO to non-zero

bytes, say 11. Execute the program in single-step mode watching the
register pairs BC, DE, and HL change. What are the final values in
these registers after control is returned to the Nanocomputer operating
system?

HL=
DE=
BC=

We observed that HL=0lB0, DE=01DO, and BC=000O.

Step 5
Initialize the 16-bit memory block starting at 01AO as follows:

134

NO

START

INITIALIZE

REGISTER PAIRS

HL,DE and BC

DETERMINE

IF (HL)

EQUALS ZERO

NO

TRANSFER BYTE

DECREMENT BC

INCREMENT HL

YES

Return Control to

NANO COMPUTER

Operatino System

Fig. 6-7.

YES

135

0lA0= 10
0lAl =OF
01A2=0E
01A3=00
01A4 thru OlAF=FF

Execute the program again. Watch the BC register pair and the A
register. What happens to the BC register after the A register is loaded
with 00? What were the final values of the HL, DE, and BC registers?

You should have observed that the BC register remained constant at
000D. The-final values for HL and DE were 01A3 and 01C3, re
spectively. Just three bytes were transferred, as anticipated.

Note that this program cannot be implemented with the LDIR in
struction because some manipulation of the data between transfers is
required.

EXPERIMENT NO. 6
Purpose

The purpose of this experiment is to demonstrate the value of the
block move instruction by showing how it can save memory and pro
gram steps.

Program No. 13: With LDIR
Memory Objed Source
Location Code Code

0lD0 21 0002 LD HL, 0200H
01D3 11 01 02 LD DE, 0201H
01D6 016400 LD BC,0064H

01D9 ED BO LDIR
0lDB FF RST38H

Program No. 14: Without LDIR
Memory Objed Source
Location Code Code

01D0 21 0002 LD Hl,0200H
01D3 11 01 02 LD DE,0201H
01D6 016400 lD BC, 0064H
01D9 7E LOOP: LD A, (HL)
0lDA 12 LD (DE), A
0lDB 23 INC Hl
0lDC 13 INCDE
010D OB DEC BC

136

Comments

; Initialize the three block move
; register pairs to specify
; source, destination, and number
; of bytes.
; Move the block of data
; Transfer control to Nano-
; computer operating system

Comments

; Same as above
; Same as above
; Same as above
; load source byte to accumulator
; Store at destination
; Update HL: 16-bit increment
; Update DE: 16-bit increment
; Update BC: 16-bit decrement

OlDE
OlDF

OlEO

01E3

Step 1

78
Bl

C2 0901

FF

LO A, B ; Check to see if BC= 0000 • •
OR C ; this is a trick worth remember

; ing. It is discussed in detail in
; Unit 9.

JP NZ, LOOP ; If BC is not zero, transfer
; another byte

RST 38H ; Else return control to the
; Nanocomputer operating system

This experiment is designed to show you the incredible savings the
LDIR and other block move instructions can cause for programs
which move data. Both programs move a block of 100 consecutive
memory bytes. However, Program No. 13 takes 14 memory bytes and
2095 cpu states or (2095 x 0.000004) = .00838 second to execute.
Program No. 14 takes 22 memory bytes and 5000 cpu states or
(5000 X .000004) = .020 second to execute ... over twice as long!
(We discuss the methodology for obtaining these execution times in
detail in the appendix.)

Note that the discrepancy gets more pronounced as the number of
bytes to be transferred increases. The reason this comparison is inter
esting is because the Intel 8080 microprocessor does not have block
move instructions. Thus on an 8080, the procedure for moving blocks
of data must be that of Program No. 14.

Step 2

Note that there are several new instructions present in Program No.
14. Rather than provide detailed discussion here, we will defer more
explanation until later. Our major point here is illustration of the
utility and efficiency of the LDIR and other block instructions.

Step 3

Load and execute each of the preceding programs and demonstrate
that Program No. 13 performs precisely the same function as Program
No.14.

137

,

CHAPTER 7

Z-80 Addressing Modes

This chapter continues with the description of Z-80 addressing
modes begun in Chapter 6. In particular, the especially important
indexed addressing capability is investigated. As a knowledge of
two's complement arithmetic is necessary to understand indexed
addressing, we have included a section on this topic. At the end of
the chapter we introduce a . tabular form for displaying instruction
mnemonics and their associated op codes. This method was first
suggested by the Zilog Corporation in their Z-80 CPU Technical
Manual. We have found it quite useful.

OBJECTIVES

At the completion of this chapter, you will be able to do the
following:

• Define the two's complement binary representation for any
number.

• Use two's complement arithmetic to perform operations that
utilize indexed addressing.

• Explain all of the Z-80 addressing modes and give examples of
instructions for each.

• Define the stack and its associated operations--PUSH and POP.
• Explain and use the exchange instructions.
• Understand and use the Zilog instruction tables for the . follow

ing groups of Z-80 instructions:

8-bit loads
16-bit loads

119

block transfers
exchanges

WHAT IS AN ADDRESSING MODE?

The notion of addressing mode was introduced in the previous
chapter. For the sake of completeness we will give a formal defini
tion here.

addressing mode-The technique by which an instruction refers to
data on which it will operate. The Z-80 instructions implement a
total of ten addressing modes, with some instructions combining
two addressing modes to access the affected data.

In Chapter 6, we described the register, register indirect, imme
diate, immediate extended, and the extended addressing modes. The
other addressing modes are: modified page zero, relative, indexed,
implied, and bit addressing. Indexed and relative addressing provide
major capabilities for the Z-80 programmer and require a working
knowledge of two's complement binary arithmetic, the subject of
the next section.

TWO'S COMPLEMENT BINARY REPRESENTATION

In Chapter 1, we defined a digital code as a system of symbols that
represent data values in a way useful to computers or other digital
circuits. The two's complement representation is a way of encoding
integers which is very similar to binary encoding. The difference is
that negative as well as positive integers can be encoded using two's
complement representation. Moreover, two's complement represen
tation makes addition and subtraction particularly easy for imple
mentation by digital circuits.

In the brief table that follows, we show both positive and nega
tive decimal numbers and their associated 4-bit two's complement
representation. We must always specify the number of bits in the
two's complement representation (for reasons which will become
obvious later).

140

Decimal Number

7
6
5
4
3
2

0

4-Bit Two's Complement
Representation

0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0001
0 0 0 0

-1
-2
-3
-4
-5
-6
-7
-8

We can make several observations:

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0

1. Normal binary representation with four bits allows us to repre
sent the decimal numbers from 0 through 15. Four-bit two's
complement encoding encompasses the integers between -8
and + 7, half of the codes are positive and half of the codes are
negative. Hence, n-bit two's complement encodes the numbers
between -2**(N-l) and +(2**(N-1))-l.

2. The positive numbers all have two's complement codes with
first bit equal to zero, while codes of the negative numbers
begin with 1. Hence, given a four-bit two's complement number,
it is easy to determine whether the number is positive or nega
tive. Just examine the first (most significant) bit. This is true
also for n-bit two's complement numbers.

3. A positive decimal number two's complement code is identical
to its binary code.

4. While -8 has a four-bit two's complement representation, +8
does not. In the n-bit representation, -2** (N-1) is repre
sented but +2**(N-l) is not.

5. The "two's complement" of 0001 is 1111, of 0101 is 1011, of
1010 is 0110. That is, to say that two's complement numbers
"complement each other" means that they represent decimal
negatives of each other, or that they add to zero. Do they sum
to zero? Let us see.

0 0 0 1
+1 1 1 1

1 0 0 0 0

1 0 1 0
+o 1 1 o
1 0 0 0 0

0 1 0 1
+101 1

1 0 0 0 0

Performing the preceding binary addition yields something
that does not look like zero. But remember, we are using only
4-bit representations! Hence, by the time we carry the last one
in our addition, we have run out of bits! Hence, the answer is
zero. This is why we must always specify number of bits when
we speak of a two's complement representation for decimal or
other integers.

The last observation is especially important because it shows what
is the essence of two's complement encoding. It facilitates addition
of integers. It also facilitates subtraction because subtracting a num-

141

her is equivalent to adding its two's complement. Given an n-bit
binary number, how does one find its two's complement? We show
you by means of a 4-bit example. Consider the number 0001. To de
termine its two's complement, first change every bit which is logic
zero to logic one and every bit which is logic one to logic zero (re
sult so far for this example is 1110) ; next add 0001 to yield 1111.
Check the table to see if this is correct. Here are several examples.

Example 1

Find the two's complement of 1010.
Step 1: 0101
Step 2: +0001

Answer: 0110

Example 2

Find the two's complement of 0000.
Step 1: 1111
Step 2: +0001

Answer: 0000
Since -0=0 this is not surprising!

Example 3

Find the two's complement of 1000.
Step 1: 0111
Step 2: +0001
Answer: 1000

Note that the first bit is a logic one!
TROUBLE! The two's complement of a negative number
should be positive. We have pointed out why we say that -8
(whose two's complement representation is 1000) has no two's
complement. The reason for this is that its two's complement
is +8 which has no 4-bit two's complement representation. All
other 4-bit two's complement numbers (between -7 and +7)
have 4-bit complements.

Let us examine some 8-bit two's complement representations.

Example 4
What is the largest positive integer that can be represented with

8-bit two's complement code?

Answer: A positive number must begin with 0, hence, the largest
such integer is O 1 1 1 1 1 1 1 = 127 (base 10)
What is the largest negative integer (largest in absolute value)
that can be represented with 8-bit two's complement code? Is it

142

-127? What is the two's complement representation of -127?
To figure this out, all we need to do is to form the two's comple
ment of O 1 1 1 1 1 1 1-

Step 1. 1 O O O O O O 0
Step 2. +O O O O O O O 1

1 0 0 0 0 0 0 1

There is still one more number larger in absolute value than this
namely 1 0 0 0 0 0 0 0 which is the two's complement represen
tation of -128. Hence, the 8-bit two's complement codes encompass
the integers between -128 and + 127.

Given an 8-bit two's complement code, how does one determine
its decimal equivalent? Here are some more examples.

Example 5

What decimal number is represented by the following 8-bit two's
complement numbers?

a. 00001100
b. 01100001
c. 10001111
d. 11100001

A. Since the code begins with a zero, it represents a positive in
teger and we interpret the two's complement code as if it were
binary code. So, the answer is 12 (base 10).

B. Again we have a positive integer so we interpret the binary
code in the usual manner and obtain 97 (base 10).

C. Here we have a negative integer. To determine which nega-
tive integer, form its two's complement and decode it:

Two's complement of 10001111 is 01110001
01110001 is the two's complement representation of
-113 (base 10)
Thus, 10001111 is the two's complement representa
tion of ·-113 (base 10).

D. We have another negative number so we follow the same pro
cedure we followed in part C.
Step 1: Find the two's complement of 11100001 which is

00011111.
Step 2: Decode 00011111 as the two's complement represen

tation of 31 (base 10).
Step 3: Thus 11100001 is the two's complement represen

tation of ·-31 (base 10).

How about going the other way? That is, given a decimal integer
between -128 and +127, how do we find its two's complement rep-

143

resentation? The same basic techniques prevail as you will see in
the following example.

Example 6

Give the two's complement representation of the following deci
mal numbers.

a. 100
b. -13

A. Since 100 is positive, all we need to do is find its binary code.
This is easily seen to be 01100100.

B. We have a negative number this time so the old "complement
and code-the-positive" trick applies here: in particular we find
the two's complement representation for + 13 and then take
its two's complement!

The two's complement representation for + 13=the binary
representation for +13=00001101
The two's complement representation of 00001101=
11110011
Hence, the two's complement representation of -13=
11110011.

Example 7 and the accompanying discussion are for those of our
readers who wish to know a bit of the theory behind two's comple
ment representation. We would like to point out that an understand
ing of Example 7 is not necessary to be able to utilize all of the con
siderable power of the Z-80 for indexed addressing and relative
addressing. However, in our discussion of two's complement addi
tion and subtraction in the following paragraphs, we will make refer
ence to the expression (2**n)-x, just to indicate that some of the
(seemingly) arbitrary rules we set forth do have some mathematical
justification.

Thus far, we have not provided you with any reason why it makes
sense to represent positive numbers with the standard binary code
and negative numbers with a "crazy" code which is the result of a
two-step operation on the code for the positive opposite of the num
ber. The two-step operation, changing zeros to ones and ones to
zeros and then adding one, did not just appear out of the blue sky.
What you are doing with this procedure is finding the binary repre
sentation of (2**n)-x, where xis the positive integer whose binary
representation you started with (n is the number of bits in the bi
nary representation). Let us check this statement with an example:

144

Example 7

We know that 100 (base 10) has a two's complement represen
tation of 01100100 from Example 6. Let us now find the two's
complement of 100 (base 10) using the expression (2**n)-x.

(2**n)-x=(2**8)-100=156 (base 10)

The binary representation of 156 is 10011100.
Finding -100 using the two-step method yields this same binary

number. You should check this for yourself.

NOTE: H you think back to the results when we added a num
ber to its two's complement, you will recall that we always got
a 1 followed by n zeros, where n was the number of bits in the
representation. Of course, 1 followed by n zeros is the binary
representation of 2**n. So all we were doing was adding x and
(2**n)-x to get 2**n!

TWO'S COMPLEMENT ADDITION AND SUBTRACTION

Let us take up the subject of addition first. Once you can add
any two two's complement numbers, you are done. Why? Because
any subtraction problem (x-y) can be reduced to an addition prob
lem (x+(-y)). Find the two's complement of y, add it to x, and
you will have performed the subtraction.

Addition of two's complement numbers is performed exactly as if
the numbers were binary representations. This is a major advantage
of two's complement notation.

Example 8
a. 0 0 0 0 0 1 1 1 (+7}

+o o o o o o 1 o c+2>
0 0 0 0 1 0 0 1 (+9)

b. 1 1 1 1 1 1 0 0 (-4)
+o o o o o o 1 1 (+3)

1 1 1 1 1 1 1 1 (-1)

c. 1 1 1 1 1 0 0 1 (- 7)
+1 1 1 1 0 0 1 1 (-13)

1 1 1 0 1 1 0 0 (-20)

d. 0 1 1 0 0 0 0 O (+96)
+o 1 o 1 o o o o c+s2)

1 0 1 1 0 0 0 0 TROUBLE! Two positive numbers sum to a
negative number?

e. 1 0 1 1 1 O O 1 (-71)
1 0 1 1 1 0 0 0 (-72)

0 1 1 1 0 0 0 1 TROUBLE! Two negative numbers sum to
positive number.

145

In the last two addition problems (d and e), we ran into trouble.
What happened is called overff,ow. As you remember, 8-bit two's
complement numbers range between -128 and +127. When we
add 96 and 82 in d, and -71 and -72 in e, our sums are 178 and
-143, respectively. These are numbers outside of the -128 through
+ 127 limit. This phenomenon, called overff,ow in computer science,
exists whenever numbers are represented in codes of fixed bit length.
The usual way to handle overflow is to detect its occurrence and
branch to a set of instructions that print out an error message. So
the question is: How to detect overflow? For some codes this is a
nontrivial problem. Fortunately, one of the strengths of two's com
plement representation is ease of overflow detection. If two positive
numbers sum to a negative, or if two negatives sum to a positive,
then and only then does overflow exist. Checking for these condi
tions is easily accomplished by checking the first bit (most significant
bit) of each addend and the sum. Also the Z-80 sets a bit (the P /V
bit) in its FLAG REGISTER, if two's complement addition results
in overflow. The FLAG REGISTER will be discussed in detail in
a later chapter.

As we indicated earlier, subtraction is performed by complement
ing and adding the quantity to be subtracted.

This concludes our discussion of two's complement representation.

THE Z-80 ADDRESSING MODES

The next section covers the extensive addressing capabilities of
the Z-80. It is the ten addressing modes which contribute greatly
to the superiority of the Z-80 over the Intel 8080A microprocessor
chip in terms of the richness of its instruction set. For each address
ing mode, we give a fairly exhaustive discussion which includes defi
nitions and examples. To reiterate what we stated earlier in Chapter
6, read what follows placing an emphasis on what the addressing
mode does, how it compares to other addressing modes, and pay
close attention to the notation used in mnemonics for each address
ing mode.

The effort you put forth on this section will prepare you for read
ing and understanding the instruction tables which are essential for
all further work in this book. At the end of this chapter we provide
you with several exercises to help solidify your understanding of
these important concepts.

REGISTER ADDRESSING

Register addressing occurs when the op code of an instruction
contains information which specifies which CPU register(s) is/are

146

involved in the instruction execution. The op codes that contain the
3-bit register codes listed in Chapter 6 are examples of this . kind of
addressing. Consider the instruction:

LD A,B

whose op code is: 0 1 1....!..2 ~ or 78 hex.

A B
Register addressing is implemented twice in this instruction, first
for register A and second for register B.

IMMEDIATE ADDRESSING

The immediate addressing mode is used with multibyte instruc
tions that actually contain the 8-bit data byte to be operated on. The
following load instruction uses immediate addressing:

LD C,03H

whose associated hex code is: OE 03. Execution of this instruction
concludes with a hex 03 residing in the C register of the CPU. (Does
this instruction utilize any other addressing modes? The op code
indicates that register C is to be loaded, thus the register addressing
mode is used.)

IMMEDIATE EXTENDED ADDRESSING

This addressing mode requires that. the instruction provide two
immediate data bytes following the op code instead of the one byte
required by immediate addressing. Hence, this mode "extends" the
immediate addressing mode. Clearly the machine code for any in
struction utilizing this mode of addressing is at least three bytes long
with one byte for the op code and two bytes for the data. The in
struction:

LD BC,0421H

whose associated hex code is 01 21 04 uses immediate extended
addressing. Be sure to note the order in which the data bytes appear
in the machine code for this instruction. The byte for the C register
(21) is the LO byte and, therefore, comes first. This is true for all
of the register pair loads.

REGISTER INDIRECT ADDRESSING

We have seen modes for addressing registers and modes in which
the data is part of the instruction. The register indirect addressing

147

mode uses a register pair to indicate where in memory the data re
sides. That is, the register pair contains the address of the data that
the instruction requires. An instruction that uses register indirect
addressing is

LD A, (HL)

whose associated hex code is: 7E. To show that the contents of reg
ister pair HL are to be used as a pointer to memory, HL is en
closed in parentheses. This notation is standard for register indirect
addressing.

For some instructions, indirect addressing is used to specify two
bytes to be operated upon by an instruction. In such cases, the con
tents of the register pair specify the LO byte and the contents plus
one point to the HI byte. For example the instruction

POP BC

whose associated hex code is: Cl loads (SP) into C and (SP+ 1)
into B.

EXTENDED ADDRESSING

An instruction that uses extended addressing contains, as its last
two bytes, a 16-bit address. This address can be used as a pointer
to a memory location for required data or it can be the address to
which the program should jump. An example of the former use is,

LD (1203H),A

whose associated hex code is: 32 03 12. This instruction causes mem
ory location 1203 to be loaded with the contents of the accumulator.
Notice that, consistent with register indirect addressing, the address
is enclosed in parentheses. The generalized notation for this is (nn),
where n is an 8-bit byte.

An instruction in which the nn represents an address to which the
program should jump is the instruction JP nn, for example:

JP 1203H

whose associated hex code is: C3 03 12. Note that in this instruc
tion we are not transferring data but, rather, program control to the
instruction at address 1203. Hence, this time nn is not enclosed in
parentheses.

MODIFIED PAGE ZERO ADDRESSING

There are eight Z-80 instructions that utilize modified page zero
addressing. These instructions, called the restart instructions, cause

148

program control to be transferred to a section of the program called
a subroutine. We shall discuss this type of program control transfer
later. All of the restart instructions are just one byte long. The op
code specifies any one of eight possible addresses-0000, 0008, 0010,
0018, 0020, 0028, 0030, or 0038---one for each restart instruction.
As the high address byte is always 00, the addressing mode is called
modified page zero. The major purpose of restart instructions is to
access subroutines which are used often. The advantages of the
restart instructions are that they save time and space and they can
be jammed into the microprocessor chip during an interrupt. Com
parable subroutine "call" instructions use three bytes instead of the
one required by a restart. Here is a sample restart instruction:

RST 10H

whose associated hex code is: D7. This instruction transfers program
control to the subroutine located at 0010 (decimal 16).

IMPLIED ADDRESSING

Certain Z-80 instructions automatically apply to one particular
register. This kind of instruction utilizes implied addressing. The
8-bit arithmetic and logic group of instructions are examples of im
plied addressing instructions because they all involve operations on
the contents of the accumulator. The instruction

ADD A,B

whose associated hex code is: 80, adds the contents of the B register
to the accumulator and loads the accumulator with the sum.

BIT ADDRESSING

The Z-80 instruction set contains many instructions that address
individual bits within bytes stored in memory or registers. These bit
manipulation instructions use a combination of addressing modes.
Register, register indirect, or indexed addressing specifies the mem
ory location or CPU register of the byte involved; a 3-bit code within
the op code of the instruction specifies the bit-bit 0,l,2,3,4,5,6, or
7-where bits are numbered from right to left (low order to high
order) within a byte:

Byte MSB LSB

BIT NUMBER 7 6 5 4 3 2 1 0

An example of a bit addressing instruction is

SET 3,8

149

whose associated hex code is CB DB. This instruction "sets" to logic
t bit number decimal 3 of the B register. Many of the new Z-80
instructions not implemented on the Intel 8080A microprocessor are
the BIT, SET, and RESET instructions, which all utilize the bit
addressing mode.

INDEXED ADDRESSING

The Z-80 has two special purpose 16-bit registers called index
registers. They are referred to as the IX and IY registers. Their major
use is for the indexed addressing mode. Indexed addressing is very
similar to register indirect addressing in that the contents of a 16-bit
register point to the location in memory of the desired data. The one
important difference is that for indexed addressing, one must specify
a one-byte displacement in the first byte of the instruction after the
op code. This byte is an 8-bit two's complement number which tells
how many bytes lower or higher in memory from the address in the
index register is the location of the data byte to be operated on. For
example,

LO A,(IX+O2H)

whose associated hex code is: DD 7E 02, loads the accumulator with
the contents of the memory location two bytes higher than the loca
tion pointed to by IX. The instruction

LO (IY + FFH),A

whose associated hex code is: FD 77 FF loads the contents of the
accumulator into the location one lower than the address in register
IY, since FF is the two's complement representation of decimal -1.
Table 7-1 lists the preceding LD instructions.

Table 7-1. LD lnstrudions

Significance of Displacement With Respect
(IX+d) to Memory Location (in decimal)

(IX+7FH) 127 bytes higher than IX
(IX+OFH) 15 bytes higher than IX
(IX+09H) 9 bytes higher than IX
(IX+OlH) 1 byte higher than IX
(IX+OOH) (IX)
(IX+FFH) 1 byte lower than IX
(IX+FEH) 2 bytes lower than IX
(IX+FOH) 3 bytes lower than IX
(IX+FCH) 4 bytes lower than IX
(IX+FOH) 16 bytes lower than IX
CIX+EOH) 32 bytes lower than IX
CIX+DOH) 48 bytes lower than IX
(IX+aOH) 128 bytes lower than IX

150

The notation for indicating indexed addressing is (IX+d) or
(IY +d) where d represents the two's complement displacement byte.
The parentheses indicate that IX +d and IY +d are pointers to a
memory location. Fig. 7-1 summarizes the meaning of d in the in
structions which use indexed addressing such as LD A,(IX+d).

Memory
• • •

point■ to

IX register

.
• •

point-I to

IY regi1ter

• • .
Fig. 7°1.

IX+ FD
IX+FE
IX+FF
IX
IX+OI
IX+ 02 :;::::;':::::;::;=.:;=: ._ __
IX+03

IY+FF
IY
IY+OI

A register

Indexed addressing is a powerful tool for accessing tables of data
in memory. Typically, register IX or IY is loaded with the address
of the first entry of the table and then all other table entries are re
ferred to by their location relative to the first entry. That is, the dis
placement byte is appropriately changed according to the table entry
accessed. This illustrates the important fact that execution of an in
struction that uses indexed addressing does not change the contents
of the index register.

Several programs which use indexed addressing to access a table
appear at the end of this chapter.

RELATIVE ADDRESSING

Relative addressing is a very specialized addressing mode that
applies only to jump instructions called the relative jumps (JR). As
it is with indexed addressing, the first byte r.fter the op code is an
8-bit two's complement number representing a . displacement from
some address. Consider the instruction

JR 09H

whose associated hex code is: 18 09. The 09 is the displacement
from the address of the next instruction to the instruction to be exe
cuted next. That is, this is an unconditional relative jump to an in-

151

struction nine bytes further down in the program from the instruc
tion that normally would have been executed next. The instruction

JR FCH

whose associated hex code is 18 PC causes program control to be
transferred back four bytes from the next instruction since FC is
the 8-bit two's complement representation for -4. Illustrations of
these two instructions appear in Fig. 7-2.

The relative addressing mode of tlie Z-80 allows for a major
programming capability, the ability to write relocatable code. A pro
gram or block of hex instruction codes is said to be relocatable if it
is independent of where it physically resides in memory. To test a
program for relocatability, one just moves the program unchanged
to a new location in memory. H the program executes successfully,
then the program is relocatable. Clearly, any program with a normal
jump instruction, which uses extended addressing, is not relocatable.
A normal jump specifies an absolute address, so moving the program
to a new location requires that this absolute address be changed
prior to successful execution. The process of changing all absolute
addresses in conjunction with changing the location of a program
is called relocating the program. Another advantage of relative jumps
is that they require only two bytes of memory as opposed to the
three bytes required by the absolute jumps, but their range is limited
to +127 and -128 bytes.

This concludes the list of Z-80 addressing modes. As you un
doubtedly noticed, there were a number of new instructions intro
duced. We felt that each addressing mode should be illustrated by
at least one example, even if it meant introducing you to a new in
struction. Rest assured that we shall come back to each of these
new instructions with exhaustive discussions in subsequent chapters.

THE INSTRUCTION GROUP TABLES

Now that you are aware of all of the Z-80 addressing modes, we
would like to introduce you to an extremely useful method for dis
playing the Z-80 instructions with their associated hex machine
codes. The instruction group tables first appeared in Zilog's Z-80
CPU Technical Manual. Let us first examine the 8-bit load group
table, Table 7-2.

Note that the rows down the left-hand side as well as the columns
across the top are labeled with addressing modes. There are two
addressing modes used by each 8-bit load instruction---one for the
destination (rows) and one for the source (columns). Suppose you
wish to move the contents of register C to register D. Then Dis the
destination register so you locate the (horizontal) row labeled D in

152

I
Tranafer of L

Tranafer of
program control [

JR 09H

•
•
•

18
09

•
• •

JR FCH

•
• •
•

18
FC

• •
•

Fig. 7-2.

-3
-2
-I

o ·- Instruction normally
executed next

+I
+2
+3
+4
+5
+6
+7

t-8 ln1tructlon executed
+ 9 - next aa a reaull of

the Jump

-9
-8
-7
-6
-5
-4 - Instruction executed

-3
-2 _,

next 01 a result of
the Jump

0 - lnetructlon normally
executed next

+I
+2
+3

153

Table 7-2. The 8-Bit Load Group "LD"
SOURCE

EXT.
IMPLIED REGISTER REG INDIRECT INDEXED ADDR. IMME.

tHLI IBCJ IDEJ CIX ♦ di IIY + di Inn)
... ·.,:;

:~ ~~ " ,18-.· 1 . ,. ; ,:?A··•, Jr.' 'l ~---·j JD ~:, .;,, .. ~· .
DO FD
7E 7E
d d

DD FD
46 48
d d

DO FD
4E 4E
d d

DD FD
REGISTER D 56 56

d d

OD FD

" SE
d d

OD FD
d d

OD FD
6E 6E
d d

DESTINATION IHLI

:=:iAECT IBCI 41

IDEI ~¥,
IIX+d)

INDEXED i---+-+--+-=---+.-=-+-=--+.-=-+-=--+-=-+-=--1--+--1---+--1---+--+-!
IIY+dl

DD DD DD DD DO DO DO 36 77 70 71 n 73 74 75
~ d d d d d d d

FD FD FD FD FD FD FD ,:' 77 70 71 72 73 74 75
~ d d d d d d d

EXT. ADDR lnnl
fl~·· ,.
Af1:.

ED
47

-+--+--+--+--+--+--+--+--+-+---+-+---+--<
ED

"
Courtesy Zilog, Inc.

the table. Proceed across columns until you reach source register
column C and you will locate the hex machine code for the instruc
tion LD D,C which is 51. A hex code appears in each cell of this
table for which a Z-80 load instruction exists. Hence, this table tells
you what instructions are implemented, as well as their associated
hex code. Let us look at some examples.

LD A, (IX+d) has hex code DD 7E d, where the third byte dis the displacement
byte in this application of indexed addressing.

LD (nn),A has hex code 32 nn, where the first n is the LO byte and the
second n is the HI byte in the address to be loaded with the
contents of A.

LD (IY+d),n has hex code FD 36 d n, where d is the displacement and n is
the byte that will be loaded into the memory location d bytes
displaced from location IV.

LD (HL),(BC) is not implemented on the Z-80

Notice that certain addressing modes do not appear as labels for any
rows or columns. If an addressing mode does not appear in the table
for a group of instructions, the group does not use that addressing
mode. Thus, we can see that there are four addressing modes not
implemented by the 8-bit load group: bit, relative, extended imme
diate, and modified page zero.

154

THE 16-BIT LOAD GROUP

The 16-bit load group table appears in Table 7-3.
This is certainly more sparsely populated with instructions than is
the 8-bit load group in Table 7-2. Most of the 16-bit loads involve

Table 7-3. The 16-Bit Load Group "LD," "PUSH," and "POP''
SOURCE

IMM. EXT. REG.

REGISTER EXT. ADDR. INDIR.

AF BC DE HL SP IX IV nn (nnl (SP}

AF §,'f;J ..

01 ED

BC n 4B C1 n
·O n

z 11 ED
.. •,•

0
j:: R DE ·o 5B Dt
<(E n n
z G n

~ I HL 21 IA Et.
w s II n• Q T

E n n
R

SP F9 DD FD -~ ED
7B

F9 F9 i, !I'· n ... n
DD DD

IX 21 2A DD
n n E1
n n

"'
FD FD

z IV 21 2A FD
0 n n E1

~ n n

::, ED ml ED DD FD
:ca: EXT. Inn} 43 53 73 22 22

~~ ADDR. n n n n n
n n n n n ... ~

i,;,i} :(,!!1:' __. REG. (SPI ,,:,~ DD FD
IND. \ ;,,'. E5 E5 •,i.

NOTE: The Push & Pap Instructions adjust POP +
the SP after every execution INSTRUCTIONS

Courtesy Zilog, Inc.

either immediate extended or extended addressing with very few
16-bit transfers between register pairs. There is only one register
pair for which register indirect addressing is possible. This register,
the stack pointer SP, has a very special function that we will now
discuss in detail.

Push and Pop the Stack
The Stack-In computer science, the word stack refers to a data

structure, or way of storing data, that has the following "every-day
life" analogue:

155

The scene is a cafeteria. Clean trays for use by the customers
are kept in a stack on the counter. The most convenient tray
to handle is the tray on the top of the stack. Thus as new cus
tomers are served, trays are "popped" or removed from the
top of the stack. When used trays have been washed and dried,
they are "pushed" or piled onto the top of the stack. The critical
relationship to observe between using and replenishing the
stack items is:

LAST IN, FIRST OUT

This rule (LIFO) is what characterizes stacks as a data structure
of computer science. Let us illustrate this new concept with an ex
ample using bytes of computer memory instead of trays. Fig. 7-3

SP 00

SP+ I 01

SP+2 02

SP+3 03

Fig. 7-3.

shows a memory section where each location is labeled with its ad
dress. Note that in this discussion of stack operations, memory ad
dresses increase as you look down the page. This is a departure
from our normal treatment of memory diagrams. We do this be
cause the stack pointer, SP register, always points to the byte in
the stack with the lowest address. This set of memory locations can
be thought of as a stack with location SP (for stack pointer) repre
senting the address of the top byte. _The contents of the top of the
stack, (SP), is shown to be 00.

One may perform two operations on this stack of bytes:

1. POP bytes off the top.
2. PUSH new bytes onto the stack.

Both of these operations produce a new top btye on the stack. The Z-80
microprocessor has two instructions, POP and PUSH, which accom
plish 1 and 2 above for two bytes at a time. Both instructions require
that a register pair be specified as the source (for PUSH) or the
destination (for POP) of the data bytes being transferred. The ex
amples in Fig. 7-4 should make all of this clear. The most important
fact to keep in mind is that the top byte in the stack has the lowest
address.

156

8 I r-,
8 I

.. ; ? No lonoer I 00 I 01
t---1

SP+I 01 on etock I O I I

SPH 02 C I ? .. ~ C I 00

SP+3 03 SP+ I 03

Fig. 7-4.

Example 1

The instruction POP BC is illustrated in Fig. 7-4.
Execution of the instruction POP BC has the following effects:

1. The top byte of the stack (SP) is loaded into register C

c---<SP)

2. The second byte of the stack (SP+ 1) is loaded into register B

B+---1.SP+l)

3. The stack pointer (register SP) is updated to point to the
new top of the stack, thus eliminating the two bytes 00 and
01 from the stack. This change of SP just amounts to adding
2 to the original stack pointer to arrive at the new one.

SP-(SP+2)

Thus, POP operations cause the stack pointer to increase! Notice
that even though the bytes 00 and 01 remain where they were before
execution of POP BC, the location of the stack in memory has
changed in such a way as to exclude them. This does represent a
subtle difference between POPping bytes and POPping trays in a
cafeteria since the trays are physically removed from the stack.

Example 2

The instruction PUSH HL is demonstrated in Fig. 7-5:

-•
-I

SP

SP+ I

SP+2

r-- ..
I ? I
1,..,:_J
I ? I L_._J

Staci! ,,tor, ,aec11tion

Not port ot
,tack

Stack H~

El

SP

SP+ I

SP +2

SP+3

SP+ 4

Fig. 7-5.

Stack ofter txecutlon

H~

B

As you can see, PUSH HL has just the opposite effect as the POP
instruction:

157

1. The byte in register H is loaded into the memory location
one up from the top of the stack, SP-1.

(SP-1)-H

2. The byte in register L is loaded into the memory location
two up from the top of the stack, SP-2.

(SP-2)-L

3. The stack pointer is updated to point to the new top of the
stack.

SP-SP-2

(Two is subtracted from the stack pointer to give the new
stack pointer)

Thus, PUSH operations cause the stack pointer to decrease!
Both of the examples illustrate some facts that are very important

to remember:

A. The stack grows from high to low addresses in memory. That
is, "the stack grows downward in memory." POP increases the
SP and PUSH decreases the SP.

B. Two bytes are always pushed and popped. All pushing and
popping takes place between the stack and register pairs or
index registers: AF, BC, DE, HL, IX, or IY. The bytes come
off of the top LO byte first, then HI byte last. The bytes are
pushed on HI byte first, then LO byte last.

C. The PUSH and POP instructions differ from a normal 16-bit
load because the data transfer is accompanied by an update
of the stack pointer register.

D. The PUSH and POP instructions use register indirect address
ing because the memory location of the data is pointed to by
the contents of the 16-bit SP register.

The stack and its associated operations, PUSH and POP, are used
most commonly in conjunction with a program control transfer called
subroutine calling. The chapter on jumps, calls, and returns covers
this subject. We will defer further stack discussions to that chapter.
Our purpose in introducing the stack operations here is so that you
may have a full understanding of the 16-bit load group of Z-80
instructions.

BLOCK TRANSFER AND EXCHANGES

Before concluding this chapter, we will present two more small
tables: the block transfers and the exchanges in Tables 7-4 and 7-5,
respectively.

158

DESTINATION

Table 7-4. Block Transfer Group
SOURCE
-
REG.
INDIR.

-
(HL)

ED
AO

ED
BO

REG. (DE) INDIR.
ED
AS

ED
B8

'LDI' - Load (DEi-(HLI
Inc HL & DE, Dec BC

'LDIR,' - Load (DE)-(HL)
Inc HL & DE, Dec BC, Repeat until BC= 0

'LDD' - Load (DE)-(HL)
Dec HL & DE, Dec BC

'LDDR' - 'Load (DE)-(HL)
Dec HL & DE, Dec BC, Repeat until BC= 0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

Courtesy Zilog, Inc.

Table 7-5. Exchanges "EX" and ''EXX"

AF

BC,
OE

AF

08

IMPLIED ADDRESSING . . .
BC,DE & HL HL IX IV

IMPLIE &
D9

HL

DE

REG. ISP)
INOIR.

DD
E3

FD
E3

Courtesy Zilog, Inc.

We refer you to Chapter 6 for a discussion of block transfers.
The exchange instructions effect "swaps" of data bytes between

16-bit registers or register pairs. For example,

EX DE,HL

159

whose associated hex code is EB, swaps the contents of DE with
the contents of HL:

Before Execution of EX DE,HL Aher Execution of EX DE,HL
D 00 D 02
E 01 E 03
H 02 H 00
L 03 L 01

The instruction, EX (SP),HL swaps the contents of HL with the
top two bytes of the stack, similar instructions exist for the index
registers. The exchanges EXX and EX AF,AF' are the only Z-80
instructions that involve the second set of general-purpose registers
B', C', D', E', H', L', A', and F'. Thus, you can see that these al
ternate registers can only be used as temporary storage for the main
registers and cannot be accessed with any flexibility.

INTRODUCTION TO THE EXPERIMENTS AND EXERCISES

We have included both experiments and exercises at the end of
this unit to help you solidify your understanding of two's comple
ment binary representation, Z-80 addressing modes, stack opera
tions, and the use of the Zilog instruction tables. We recommend
that you work some of the exercises before performing the experi
ments. Therefore, we have positioned the review exercises ahead of
the experiments to encourage you.

The experiments you will perform may be summarized as follows:

Experiment No. Comments
1 Demonstrates table manipulation via indexed ad

dressing.
2 Demonstrates alternative methods for performing

table manipulation. A self-modifying program is
one of the examples.

3 Demonstrates the stack operations PUSH and POP
and the exchange instructions.

REVIEW

1. Find the 8-bit two's complement of the following 8-bit binary numbers:
a.00000001 e.00001110
b. 1 1 0 1 1 0 1 0 f. 1 0 0 0 0 0 0 0
c. 0 1 0 1 0 1 0 1 g. 1 1 1 1 1 1 1 1
d.11101110

2. a. What is the largest decimal integer which has a representation as an
8-bit two's complement number?

b. What is the largest (in absolute value) negative decimal integer which
has a representation as an 8-bit two's complement number?

c. Answer a and b for 16-bit two's complement numbers.

160

3. Find the decimal number represented by the following 8-bit two's comple-
ment numbers.

a.01111000
b. 1 0 1 0 0 0 1 1
C. 0 0 0 0 0 0 1 1
d.11111111

e. 1 1 1 1 0 0 1 1
f. 0 1 0 1 0 1 0 0
g.11011001

4. Find the 8-bit two's complement representation of the following decimal
numbers.

a. 1 e. 128
b. 16 f. 121
c. -16 g. -90
d. -128

5. The following is a list of relative jump instructions with their associated
hex machine code. Use this information to convert all "absolute" jump (JP)
instructions to relative jump (JR) instructions in the following programs.

Relative Jump Instruction
JR
JR NZ
JR Z
JR PE

Hex Operation Code
18
20
28
not implemented

a. Program No. 9 in Experiment No. 3 of Chapter 6.
b. Program No. 10 in Experiment No. 3 of Chapter 6.
c. Program No. 12 in Experiment No. 5 of Chapter 6.

6. For each of the following instructions, give the Z-80 addressing modes
used and give the associated hex code from the Zilog tables.

a. LO A,B g. LO SP,HL
b. JR FBH (Exercise 5 gives the hex code) h. LD BC,0109H
c. LD A,(IX+06H) i. LD (1030H),BC
d. LO (IX+06H),A j. LD IX,(lOOOH)
e. LO (1234H),A k. PUSH BC
f. LO (IX+09H),33 1. POP IX

7. Indicate whether the following instructions are implemented on the Z-80
microprocessor. If so, give the associated hex code.

a. LO AF,BC f. LO (1234H),56H
b. LO B,(BC) g. LO (1234H),B
c. LO (BC),B h. LO (DE), 45H
d. LO IX,IY i. PUSH 1234H
e. LO HL,BC j. POP SP

Answers

1. a. 1 1 1 1 1 1 1 1
b. 0 0 1 0 0 1 1 0
c.10101011
d.00010010

2. a. 0 1 1 1 1 1 1 1 = +127(base 10)
b. 1 0 0 0 0 0 0 0 = -128(base 10)

e. 1 1 1 1 0 0 1 0
f. none exists
g.00000001

c. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = (2**15-1) (base 10) = highest
d.1000000000000000=(-2**15) (base lO)=lowest

3. a. 120 e. -13
b. -93 f. 84
c. 3 g. -39
d. -1

161

4. a. 0 0 O O O O O 1
b.00010000
c.11110000
d.10000000

e. none exists
f. 0 1 1 1 1 0 0 1
g.10100110

S. a.

Memory Location

0120
0122
0123
0125

Object Code

OE 00
OD
20 FD
FF

Source Code

LD C,00H
LOOP: DEC C

JR NZ,LOOP
RST 38H

To determine what relative address should be used as <B2> of the JR
NZ instruction, use the following equation:

relative address = 8-bit two's complement of (absolute address of instruc
tion after the relative jump instruction less the absolute
address of the destination of the jump)

= 8-bit two's complement of (0125-0122)*
= 8-bit two's complement of the 8-bit byte 03
=11111101
=FD

* Note that the difference between these two 16-bit hex addresses must have
an 8-bit two's complement representation for a relative jump to be defined
between the two addresses.

This program was shortened by one byte by replacing an absolute with
a relative jump.

5. b.

Memory Address Object Code Source Code

0130 06 00 LD B,00H
0132 OE 00 LOOP! :LD C,OOH
0134 OD LOOP2:DEC C
0135 20 FD
0137 05
0138 20 F8
013A FF

For the instruction JR NZ,LOOP2:
relative address·= two's complement (0137-0134)

= two's complement 03
=FD

For the instruction JR NZ,LOOPl:
relative address= two's complement (013A-0132)

= two's complement (08)
·=F8

JR NZ,LOOP2
DEC 8
JR NZ,LOOPl
RST 38H

This program was shortened by two bytes by replacing two absolute
jumps with relative jumps.

s. c.

162

Memory Location

0180
0183
0186

Object Code

21 AO 01
11 co 01
01 10 00

Source Code

LD HL,0lA0H
LD DE,OlC0H
LD BC,00l0H

0189 7E LOOP: LD A,(HL)
018A B7 OR A
018B 28 05 JR Z,QUIT
018D ED AO LOI
018F EA 89 01 JP PE,LOOP
0192 FF QUIT: RST 38H

Of the two jumps in this program, only one, JP Z,QUIT, can be con
verted to a relative jump. A JP PE has no relative jump counter-part in the
Z-80 instruction set. Tims, for the instruction JP Z,QUIT:

relative address= two's complement (address after jump instruction less
the destination address)

= two's complement (0lSD-0192)
= (0192-0lSD)
=05

Note that for jumps to higher addresses, the computation is easier because
the two's complement operation is avoided by changing the order of sub
traction of addresses (the two's complement of A-B is equal to B-A). Also
the two's complement of the two's complement of A is A.

6. a. Register addressing for both source and destination-Hex code:78
b. Relative addressing-Hex code: 18 FB
c. Destination: register addressing-Hex code: DD 7E 06

Source: Indexed ;iddressing-(IX+d)
d. Destination: Indexed addressing-(IX+d)-Hex code:DD 77 06

Source: register addressing
e. Destination: extended addressing-(nn)-Hex code 32 34 12

Source: register addressing
f. Destination: Indexed addressing-(IX+d)-Hex code: DD 36 09 33

Source: Immediate addressing-n
g. Destination: register addressing-Hex code: F9

Source: register addressing
h. Destination: register addressing-Hex code: 01 09 01

Source: Immediate extended-nn
i. Destination: extended addressing-(nn)-Hex code: ED 43 30 10

Source: register addressing
j. Destination: register addressing-Hex code: DD 2A 00 10

Source: extended addressing-(nn)
k. Destination is (SP) and (SP-1): register indirect addressing-hex code

cs
Source is BC register pair: register addressing

I. Destination is IX: Register addressing-Hex code: DD El
Source is (SP) and (SP+ 1): register indirect addressing

7. None of these instructions are implemented.

EXPERIMENT NO. 1

Purpose

The purpose of this experiment is to demonstrate table manipula-
tion via indexed addressing. ·

163

Program No. 15

Memory Object
location Code Source Code Comments

0100 01 03 00 LD BC,0003H ;3 bytes per line
0103 FD 21 20 01 LD IY,0120H ; Table start address=0120

0107 FD 7E 00 LOOP: LD A,(IY) ;Load column 1 to A
010A B7 OR A ;Is it zero?
010B 28 OA JR Z,END ;If so, quit
010D FD 86 01 ADD (IY+OlH) ;if not, add column 2
0110 FD 77 02 LD (IY+02H),A ;Store sum in column 3
0113 FD 09 ADD IY,BC ;IY points to next line
0115 18 FO JR LOOP ;Repeat above procedure
0117 FF END: RST 38H ;Return control to operating

;system.

Step 1

Load the preceding program starting at location 0100. Verify that
you have loaded it correctly.

Step 2

This program manipulates a table made up of entries each three
bytes long. For each successive row or line of the table, the first
two columns or line entries are added together and the sum stored
in column three. This process continues until a line is encountered
whose first byte is 00. At that time, control is returned to the Nano
computer operating system. For the sake of simplicity, we shall as
sume for now that the addends in columns 1 and 2 are small enough
so that there is no possibility of additive overflow. Consider the fol
lowing diagram of a table in memory:

Address Col 1 Col 2 Col 3

line 1 0120 01 02 ?
Line 2 0123 10 04 ?
Line 3 0126 23 13 ?
Line 4 0129 06 24 ?
Line 5 012c 00

IY is initially set to 0120 and incremented by 0003 for each sequen
tial row entry.

Step 3
Initialize memory locations 0120 through 012C to the values ap

pearing in the above table.

Step 4

Execute the program in single-step mode watching what happens
to the IY and A registers as well as memory locations 0122, 0125,
0128, and 012B.

164

By now you have certainly noticed how suitable indexed addressing
is for manipulation of two dimensional tables of information. The
line in the table is established via the contents of the IY register
while the entry within each line is specified via the displacement
from IY.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to show you that there can be
many alternative ways to write a program to perform a given task.
One technique is self-modification, in which a program modifies its
own instructions as it executes. WARNING: WE ARE NOT AD
VOCATING THAT YOU EVER ADOPT THIS TECHNIQUE
BUT YOU SHOULD BE AW ARE OF ITS EXISTENCE.

Program No. 16
Memory Objed
Location Code

02FD 01 07 00
0300 IE 06

0302 FD 21 80 03

0306 21 11 03

0309 36 00
0308 3E 00
030D 16 06

030F FD 86 d

0312 00
0313 34
0314 15
0315 20 F8
0317 FD 77 06
031A FD 09
031D lD
031D 20 EA
031F FF

Program No. 17
Memory Objed
Location Code

0320 01 07 00
0323 lE 06

Source Code Comments

LD BC,0007H
LD E,06H

;BC=the number of columns per row
; The E-register will be used as a
;counter for the number of lines
;processed
;IY points to the line currently
;being processed

LD IY,0380H

LD HL,0311H ;HL points to the location of the
;displacement byte in the ADD(IY+d)

ROW: LD (HL),00H
LD A,00H
LD D,06H

;instruction
;Initialize the displacement
;Initialize the A register
; The D-register counts the number
;of column bytes added.

COL: ADD A,(IY+d) ;We used here because the dis•
;placement changes as the program
;executes

NOP ;No operation
INC (HL) ;Change the displacement
DEC D ;Update the column counter
JR NZ,COL ;If not zero, add more
LD (IY + 06H),A ;Store the sum in column 7
ADD IY,BC ;Set IY to next row
DEC E ;Update the row counter
JR NZ,ROW ;If not zero, process next row
RST 38H ;If zero, pass control back to

;operating system

Source Code

LD BC,0007H
LD E,06H

165

0325 FD 21 80 03 LD IY,0380H
0329 3E 00 ROW: LD A,00H
032B FD 86 00 ADD A,(IY)
032E FD 86 01 ADD A,(IY+0lH)
0331 FD 86 02 ADD A,(IY+02H)
0334 FD 86 03 ADD A,(IY + 03H)
0337 FD 86 04 ADD A,(IY+04H)
033A FD 86 05 ADD A,(IY+05H)
033D FD 77 06 LD (IY+06H),A
0340 FD 09 ADD IY,BC
0342 1D DEC E
0343 20 E4 JR NZ,ROW
0345 FF RST 38H

Program No. 18

0360 lE 06 LD E,06H
0362 FD 21 80 03 LD IY,0380H
0366 3E 00 ROW: LD A,00H
0368 16 06 LD D,06H
036A FD 86 00 COL: ADD (IY)
036D FD 23 INC IY
036F 15 DEC D
0370 20 FB JR NZ,COL
0372 lD DEC E
0373 FD 77 00 LD (IY+OOH),A
0376 FD 23 INC IY
0378 20 EC JR NZ,ROW
037A FF RST 38H

Step 1

First look at all of the above programs and notice that they all
perform exactly the same task. There is a table stored at memory
location 0380 with 6 rows and 6 columns. Each of these programs
computes a line total by adding successive column bytes of a given
row to the accumulator. These programs vary in their memory and
time requirements because they use different techniques. Let us
discuss each program in detail.

For all three programs, the overall program structure may be
represented by the flow chart in Fig. 7-6. The programs differ in the
methods chosen to implement the flow chart process boxes that have
been marked with an asterisk.

Program No. 16

The algorithm used by this program modifies the displacement
byte in the instruction ADD A,(IY+d). More specifically, the lil.,

register pair is loaded with the memory location of the third byte of
this instruction, namely the displacement. First the displacement is
initialized to zero and the accumulator is set to zero. As a column
counter tracks the number of entries processed, (IY+d) is added

166

NO

START

Register D • # rows

IV• addreaa of

flrat table entry

INITIALIZE

REGISTER A

TO ZERO

Add each col

umn entry ta

REGISTER A

Update IV to

point to next row
DECREMENT D

YES

Return Contra I to

NANO COMPUTER

Operating Sya tem

Fig. 7-6.

*

*

167

to the accumulator, and the displacement incremented, INC (HL).
Once all columns have been added, the column counter has been
decremented to zero. This is sensed by a JR NZ instruction which
causes a branch to instructions for processing the next row.

As we have already mentioned, this program modifies itself. The
four instructions which give this away are

LD HL,0311H
LD (HL),OOH
ADD A,(IY+d) where d is in location 0311
INC (HL)

Two of these instructions actually change the program. Hence the
program is treated as its own data! This is certainly a technique that
stimulates the imagination. Programs can write new programs or alter
themselves, dynamically changing their own characteristics. However,
three major disadvantages to this technique must be mentioned:

a. Self-modifying programs are often quite difficult to debug.
b. Self-modifying programs cannot be executed from read-only

memory.
c. Self-modifying programs are often quite difficult to change.

It is not easy to document such programs. Even the original
programmer may have great difficulty remembering the details
of how the program works.

Self-modification techniques are tremendously powerful and must
be used with extreme care.

Program No. 17

The algorithm used by this program is quite straightforward. The
six ADD A,(IY+d) instructions with d=00, ... ,05 quite clearly
document what the program is doing. Unfortunately this is not effi
cient with respect to space. Of course, as the number of bytes to be
ADDed increases, the more inefficient this method becomes. Thus,
this method is limited to applications in which few bytes must be
referenced, e.g., the program in Experiment No. 1.

Program No. 18

This program uses an algorithm which makes no use of nonzero
displacement bytes. The technique increments the IY register for
each byte ADDed to the accumulator. This works quite well in this
application and results in the smallest (number of bytes) program.
The technique used here somewhat obscures the tabular form of the
data because it is treated as a one dimensional array with lY as its
index. One reason this technique works out so nicely here is because
the locations to be referenced are in sequence, i.e., one right after

168

the other in memory. If the locations to be added were IY +0lH,
IY +09H, IY +43H, IY +44H, and IY +56H, this technique would
clearly have to be changed. In contrast, the technique of Program
No. 17 would work as is, i.e., just list the columns to be summed.

In the preceding paragraphs we alluded to several qualities attrib
uted to alternative programming techniques. Here is a summary:

a. Space-the number of memory bytes required to store the
program

b. Time-the number of CPU states required to execute the pro
gram

c. Flexibility-the ease with which a program can be changed
d. Self-Modifying-whether or not the program modifies itself

during execution
e. Logical Simplicity-the ease with which the program can be

read and understood.

This is certainly not an exhaustive list, but each of these attributes
must be considered as you try to determine the best way to build
a program. Typically, tradeoffs exist because you cannot optimize
one attribute without sacrificing on another. For example, to write
programs which economize on memory space, one often has to settle
for slower execution times. This is a time-space tradeoff. Similarly,
we have seen that logical simplicity often requires more space, a
simplicity-space tradeoff.

Step 2

Load Program No. 16 and execute it in single-step mode, paying
special attention to memory location 0311, the displacement byte of
the ADD A,(IY+d) instruction. Use the following table for data:

Memory Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

0380 01 02 03 04 05 06 X ROW 1
0387 02 02 02 02 02 02 X ROW 2
038E 01 03 01 03 01 03 X ROW 3
0395 03 03 03 03 03 03 X ROW 4
039C 08 08 01 01 08 08 X ROW 5
03A3 04 04 04 04 08 08 X ROW 6

NOTE: X means this byte computed by the program.

Step 3

Carefully scrutinize Program No. 17 to see if there is a change
which will result in making the program shorter. One improvement
that we saw is to replace all references to IY with HL. In general,
the analogous HL instruction is one byte shorter.

We hope that you have seen in this experiment how programming
is as much an art as a science. A given task can be performed by

169

many different sets of instructions with some sets more efficient than
others with respect to time, or space, or logical simplicity, or many
other attributes. The art lies in taking the trouble to analyze the
pros and cons of each alternative and working the tradeoffs to meet
the unique situation. It is not unusual for a programmer to rewrite
a program three or four times, if his constraints merit such perfec
tion. For example, a typical constraint is memory space. A 2708
EPROM will hold exactly 1024 bytes. A program may have to be
reworked many times to utilize those 1024 bytes most effectively.

EXPERIMENT NO. 3
Purpose

The purpose of this experiment is to demonstrate the use of the
stack operations PUSH and POP and the exchange instructions.

Program No. 19

Memory
location

0130

Step 1

Objad
Coda Source Coda

PUSH AF
PUSH BC
PUSH DE
PUSH Hl
EX, AF,AF'
EXX
POP Hl
POP DE
POP BC
POP AF
RST 38H

Comments

;AF to top of stack
;BC to top of stack
;DE to top of stack
;Hl to top of stack
;Exchange AF and AF'
;Exchange register pairs
;Top of stack to HL
;Top of stack to DE
;Top of stack to BC
;Top of stack to AF
;Return control to operating
;system

For this program, we will ask you to perform your own hand
assembly. Thus, you are given a start address and the source which
uniquely determines the object code. Below is a hex memory dump
for you to use to check your hand assembly:

Step 2

0130
0138

FS CS DS ES 08 D9 El Dl
Cl Fl FF

Load the object code starting at 0130 and verify its correctness.

Step 3
The next step is to locate the stack in read/write memory. We

have two choices: We can leave it where it is now or we can change it.
The following are the only instructions provided by the Z-80 to affect
the location of the stack:

170

LD SP,HL
LD SP,IX
LD SP,IY
LD SP,nn
LD SP,(nn)

Any one of these can be used at the beginning of the above program
to locate the stack because the stack pointer, SP, contains the memory
location of the top of the stack. For most programs, once established,
the SP register is updated only as a result of PUSH and POP in
structions.

Let us utilize a nice capability of the Nanocomputer operating
system and set the Stack Pointer to 0150 by positioning the selector
lamp at SP and SToring 0150 (Fig. 7-7).

l
PUSH

POP

+

Step 4

0148

014A

014C

014E

0150

• •

- SP at atepa 4, 5, and 6

-- SP at atepa 3 and 7

- SP at atepa 2 and 8

SP at atepa I and 9

- SP at atepa O and 10

Fig. 7-7.

Execute the program in single-step mode with the selector lamp
at position SP. Watch the stack first grow in size from O to 8 bytes
and then shrink back again:

Step 5

To help track which registers are stored in which order, initialize
the registers as follows:

A=Ol
F=02
8=03
C=04

D=05
E=06
H=07
L=OS

Execute the program in single-step mode until the last PUSH instruc
tion has been executed, i.e., until the PC=0134. Verify that the
register pairs have been pushed onto the stack as follows:

0148 1 l=OS I SP
H=07

171

014A E=06

0=05

014C C=04

8=03

014E F=02

A=Ol

0150

The HI byte occupies the memory location with the higher address.

Step 6
The next instruction to be executed is

08 EX AF,AF' (AF'=A' and F')

This instruction "swaps" the contents of these two register pairs.
Before executing this instruction write down the contents of these
register pairs:

AF=0102 AF'= (we observed 0044)

Recall that AF' may be observed by using the ARS key. When the
ARS lamp is lit, the alternate registers are being displayed. Press
the single-step key once to execute the EX AF,AF' instruction. Then

AF= (we observed 0044) ;AF'=0102

The next instruction is EXX which exchanges BC and BC, DE
and DE', HL and HL'. Write the contents of all these registers, first
before and then after EXX is excuted:

Our Observation

Before BC=0304 BC'= FFFF
DE=0506 DE'= FFFF
HL=0708 HL'= FFFF

Press the ss key.

Our
Observation

After BC= FFFF BC'=0304
DE= FFFF DE'=0506
HL= FFFF HL'=0708

Step 7
The next four instructions are all POP instructions which load the

top two bytes on the stack into the specified register pairs. Watch
the HL register pair as you press the ss key to execute POP HL.
The byte 08 in memory location 0148 is loaded into register L and
the 07 in memory location 0149 is loaded into register H.

172

Similarly, the next two POP instructions load register pairs DE
and BC with 0304 and 0102, respectively. Thus, we see that execu
tion of this program leaves each register pair loaded with the same
contents as its alternate register pair.

Step 8

Two very important facts about the stack operations should be
made clear:

I. PUSH and POP always move 16 bits or two bytes of informa
tion. Instructions such as POP C and PUSH F do not exist.

2. The order in which register pairs are PUSHed onto the stack
is opposite to the order in which the register pairs should be
POPped off if register contents are to be restored to their
original values. Specifically

PUSH HL
PUSH DE
POP HL
POP DE

is a sequence of instructions equivalent to the instruction

EX DE,HL.

Whereas,

PUSH HL
PUSH DE

(Any sequence of instructions including instructions which alter DE and HL)

POP DE
POP HL

preserve the DE and HL registers as they were before the sequence
of instructions was executed. This last sequence of instructions is quite
useful as you will see later when you study subroutines.

173

CHAPTER 8

Jumps, Calls, and Returns

Jump, call, and return instructions comprise the class of Z-80
instructions called branch instructions. They all cause the instruction
flow of the program to be transferred to places in memory other than
what normally would have occurred had the branch instruction not
appeared. In this chapter, you will extend your knowledge of these
instructions beyond the simple ones that you have already seen,
namely, JP and JR. In particular, you will learn about the technique
of using subroutines. The jump, call, and return instructions appear
in Table 8-1.

OBJECTIVES

After completing this chapter, you will be able to:

• Define transfer of program control in terms of what happens to
the program counter (PC) register.

• Define the zero, carry, parity/overflow, and sign flags.
• Define subroutine call and return in terms of what happens to

the program counter (PC), the stack pointer (SP), and the
stack.

• Define and use the restart instructions.

PROGRAM CONTROL TRANSFERS

By now, you are well aware that a program is merely a set of
memory bytes that represent instructions and data. Normally these
instructions are executed sequentially, i.e., one right after the next,

175

Table 8-1. JUMP, CALL, and RETURN Group

JUMP 'JP' IMMED.
EXT.

JUMP 'JR' RELATIVE

JUMP 'JP'

JUMP 'JP' REG.
INDIR.

JUMP 'JP'

'CALL' IMMED.
EXT.

DECREMENT B,
JUMP IF NON RELATIVE
.ZERO 'OJNZ'

RETURN REGISTER
'RET INDIR.

RETURN FROM REG.
INT'RETI' INDIR.

RETURN FROM
REG. NON MASKABLE

INT'RETN' INDIR.

NOTE-CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.
REFER TO SECTION
6.0 FOR DETAILS

UN•
COND. CARRY

c:a DA
M II II

II n

PC+e 18 38
e-2 e-2

IHL) Et

(IX) DD
E9

(IV) FD
E9

m DC
M n a

II II

PC+e

ISPI Cl 11B
{SP+t)

{SP) ED
ISP+tl 40

ISP) ED
ISP+l) 46

CONDITION

NON NON PARITY PARITY SIGN SIGN REG
CARRY ZERO ZERO EVEN 00D NEG POS •••

1112 CA CZ IA EZ FA FZ
• n • • II II • n n II a • a •
30 28 20
e-2 e-2 e-2

1M cc Cl EC E4 FC ,.
ft n • D II. n a
n II a a II It ·n

10
e-2

DO Cl CII a EO FB FD

Courtesy Zilog, Inc.

until something (like a JP instruction) changes that mode of execu
tion. Let us examine in detail how the Z-80 actually executes a pro
gram stored somewhere in memory.

The Z-80 CPU stores the address of the next instruction to be ex
ecuted in the PC (program counter) register. Hence, executing a
program amounts to repeating the following steps until the HALT
instruction is executed:

Step 1. Read (PC) into an instruction register internal to the
Z-80 chip. Recall that the notation (PC) means the con
tents of the memory location addressed by the 16-bit
program counter. (PC) is the first instruction byte, and,
therefore, is an op code that will begin to define the in
struction to be executed. In some cases, this byte will be
the entire instruction. In other cases, the CPU will have
to read another byte before it will actually know how
long, in bytes, the instruction is.

Step 2. Decode the first instruction byte and determine if addi
tional bytes need to be read. Increment the address in

176

the PC so that it points to the next memory location,
i.e., the next byte in the program.
If decoding indicates that the instruction is just one byte,
then go to step 4.

Step 3. Continue to read (PC) and increment PC until the entire
instruction has been read, a maximum of four bytes in all.

Step 4. Execute the instruction, then return to Step 1.

Notice that when it is time to begin execution of an instruction,
the 16-bit PC register always holds the address in memory of the
first byte of the next instruction. As you will see, all branch instruc
tions, namely jumps, calls, and returns, act directly on the PC register
to change the sequence in which memory locations are read and
executed as instructions.

UNCONDITIONAL JUMP INSTRUCTIONS

Jump instructions cause program control to be transferred to an
address specified within the instruction itself. After the first byte
of the jump instruction has been read and decoded by the Z-80 CPU,
the instruction type is fully determined. Hence, the execution of the
instruction is carried out by reading the next byte or bytes to de
termine the jump address, after which the jump address is loaded
into the PC register. When the CPU begins the next instruction cycle,
the PC contains the address of the instruction addressed by the
address byte(s) of the previous jump instruction. We illustrate the
effect of a JP instruction on the PC below:

Address
Sequence

1000
1001

[; 3
4
5

Instruction

LD A
OOH
INC A
JP
02H
10

(PC= 1000 initially)

PC= 1002 after execution of LD A,OOH
PC= 1003 after execution of INC A

PC= 1002 after execution of JP FDH (A
nonbranching three-byte instruction would
have left PC= 1006 after execution).

Notice that the JP instruction affects only the PC register. No other
operations take place. In the case of the JP instruction, the full
jump address is contained as the second and third (last) bytes of the
instruction. Thus, execution of the jump amounts to loading the last
two instruction bytes into the PC register. The effect of jump in
structions on program control is illustrated in Fig. 8-1.

Jumps can go "forward" or "backward." The program flow just
follows the changes in the PC register from location to location.

177

i,.e--Ma In Program Start

JP
LO Address
HI Addre11

JP
LO Adarees
HI Address

JP
LO Addre11
HI Address

• • •

JP
LO Addreaa
HI Address

Fig. 8-1.

Generally, the more jumps in a program, the more difficult it will
be to change and de-bug.

There are two major classes of jump instructions implemented on
the Z-80 microprocessor. Absolute jumps and relative jumps. The

178

JP instruction used in the above example is an absolute jump because
the actual two-byte jump address is specified as part of the instruc
tion. Relative jumps (JR) specify a one-byte two's complement dis
placement in the instruction. Thus, execution of a relative jump
involves the extra step of determining the jump address from the
sum of the current PC value and the displacement byte. Here we
list the same program as above, only in this case we use a relative
jump.

Address

1000
1001

@
lnstrudion

LO A,
OOH
INC A
JR
FOH

(PC= 1000, initially)

PC= 1002 after execution of LO A,OOH
PC= 1003 after execution of INC A

PC=1002 after execution of JR FOH (A
nonbranching two-byte instruction would
have left PC=1005 after execution)

Note that FD is the two's complement representation of -3. In
the relative jump instruction, the displacement byte gives the number
of bytes before (negative) or after (positive) the location pointed
to by a normally updated program counter. In the above example, the
PC would have normally become 1005 after execution of a non
branching two-byte instruction. Three bytes BEFORE 1005 is loca
tion 1002, the jump address, thus the displacement is -3 or FD. A
common mistake made by programmers is to determine the displace
ment byte relative to the PC just BEFORE execution of the JR in
struction. This is incorrect and invariably leads to trouble. Displace
ment for a relative jump instruction is always determined relative to
the first location after the two-byte JR instruction.

Let us list some differences between relative and absolute jumps:

1. The instruction JP uses three bytes per instruction, a one-byte
op code plus a two-byte address. A JR uses two bytes per in
struction, a one-byte op code plus a one-byte displacement.

2. The instruction JP can cause program control to transfer to
any location in memory. The JR instruction can cause program
control to transfer only to locations in memory within the range
of -128 to + 127 bytes of the memory location just after the
displacement byte. This is the limitation of a one-byte dis
placement.

3. The JP instructions are generally not relocatable while JR in
structions are. A very important attribute of the JR instruction
is that it relates only to relative memory locations of instruc
tions. This implies that JR instructions maintain their integrity
independent of their absolute memory location. Every pro-

179

grammer who has had to move a large portion of a program
down one byte in memory to insert a new instruction can ap
preciate the convenience of writing relocatable code (assuming
hand-assembly).

Before we consider conditional jumps, we would like to note that
there are three absolute jumps that use register indirect addressing.
That is, these jumps, JP (HL), JP (IX), and JP (IY), indicate the
jump address as the contents of one of the register pairs HL, IX,
or IY. These, as well as all Z-80 branch instructions, are contained
in Table 8-1.

FLAGS AND CONDITIONAL JUMPS

The JP and JR instructions are both unconditional jumps. This
means that program control is always transferred to the specified
absolute or relative address when the instruction is executed. Con
ditional jumps are instructions that transfer program control to a
different location contingent on some condition that must be met.
For example, the instruction JP NZ causes a branch to occur if the
zero flag is at logic 0. (Though the NZ, not zero, and logic O seem
contradictory, they really are not, as you will see.) When we intro
duced this instruction in Chapter 6, we did not discuss the flag reg
isters. We will do so now.

The Z-80 CPU contains two flag registers F and F', one each for
the two sets of general-purpose registers. Each flag register contains
six fl,ags, or bits of information, that are individually affected by
various Z-80 instructions. We say that a flag is set if its value is
logic 1, and reset if its value is logic 0. Four of the six flags are used
as conditions for jump, call, and return instructions. They are:

I. CARRY FLAG (C)-This flag is affected primarily by the
add, subtract, and rotate and shift instructions. During an add
operation, it is set if there is a carry from the most significant
bit of the accumulator. During a subtract operation, the carry
flag is set if a borrow occurs to the most significant bit of the
accumulator. Many rotates and shifts append the carry flag
to the accumulator as a ninth bit to manipulate. We shall in
troduce and fully discuss arithmetic and logic instructions in
subsequent chapters.

Two instructions directly manipulate the carry flag:

180

SCF-set carry flag forces the C bit to logic 1.
CCF-complement carry flag changes the current logic level

of the C bit. IF C = 1, CCF resets C (to logic O). IF C = 0,
CCF sets C (to logic 1) .

2. ZERO FLAG (Z)-The state of this flag is affected by many
instructions. Operations that change the accumulator usually
affect the zero flag by setting it if the accumulator is zero, and
resetting it if the accumulator is not zero. The BIT instruction
sets the zero flag if a specified bit is zero, and resets the zero
flag if the bit is one. The compare instruction, CP, checks for
equality of a specified byte with the accumulator. If there is
equality, the zero flag is set; if not, it is reset. Other instructions
that affect the zero flag will be discussed later. The Z flag is
the only flag for which there is some seeming inconsistency
and confusion with respect to the conditions on which the flag
is zero or one. The reason for this is the way in which the flag
is manipulated: the Z flag equals one means a result was zero
and the Z flag equals zero means a result was not zero. Thus,
when the instruction JP NZ appears in a program, it means
jump if the result is not zero; or, in terms of the Z flag, jump if
the Z flag is zero. The Z flag equal to zero means that the result
of a previous operation was not zero. This is most confusing.
Our best advice is to suggest that you memorize this fact and
think carefully when you use the Z flag as a condition for
jumping. The important fact is that the condition NZ refers
to the result of the previous operation, and not to the flag.

3. SIGN FLAG (S)-This flag is just a copy of the most signifi
cant bit of the result of an operation. Results are usually, but
not always, stored in the accumulator. The purpose of the S flag
is to indicate that the two's complement result is positive or
negative. Thus, the S flag is set (= 1) for negative and reset
(= 0) for positive results.

4. PARITY/OVERFLOW FLAG (P/V)-The P/V flag serves
two purposes:
(a) To indicate parity of the result of a logical, rotate, shift,

or input instruction.
(b) To indicate overflow as a result of two's complement

arithmetic.

The word parity refers to the number of bits in a byte that are at
logic 1. If the number of set bits is odd, then one says that the byte
has odd parity. If the number of set bits is even, then one says that
the byte has even parity. For example, the parity of FF is even, and
the parity of 01 is odd.

The parity flag is set if the parity of the result is even and is reset
if the parity of the result is odd.

In Chapter 6, we discussed overflow detection for two's comple
ment arithmetic. If the addition of two positive two's complement
numbers results in a negative two's complement number, the overflow

181

flag is set. Similarly, the flag is set if addition of two negatives yields
a positive result. The V flag is reset if no overflow occurs.

It is important to understand the difference between the carry flag
(C) and the overflow flag (V). H two binary numbers are added or
subtracted, the C flag is used to detect any overflow. If two two's
complement numbers are being added or subtracted, the V -flag is
used to detect any overflow. These two flags are not interchangeable.
Here is an example that proves this.

1 1 1 1 1 0 1 1 is the two's complement represen
tation for -5

+ 1 1 1 1 0 0 0 0 is the two's complement represen
tation for -16

SUM: 1 1 1 0 1 0 1 1 is the two's complement represen-
tation for -21

C = 1 because there is a carry from the most significant bit
V = 0 because -21 is correct; there is no overflow.

5. HALF-CARRY (H) and SUBTRACT (N) FLAGS-The
last two flags are highly specialized flags used only for arith
metic based on a binary encoding scheme called binary coded
decimal (BCD). At this time we shall only say that the two
flags are called the Half-Carry (H) and the Subtract (N) flags.
Both are important for the decimal adjust accumulator (DAA)
instruction. Neither the H nor N flags are used in connection
with branching, as are the first four flags, i.e., they cannot be
"tested" with any of. the conditional branch instructions. The
format of the flag registers is:

I s I z I X I H I X I P/V I N I C I
where X means that the value of the bit is not of interest. The X is
sometimes referred to as the "don't care" condition because no at
tention is ever paid to it. The SGS-A TES Z-80 CPU programming
reference card, as well as the Table in Appendix I, summarizes all of
the Z-80 instructions that affect the flags.

We have already discussed the JP NZ conditional jump, which
transfers program control to a specified address contingent on the
zero flag (Z) being reset. For each of the flags, S, Z, P/V, and C,
there is a conditional JP instruction that is subject to the flag's being
set or reset:

182

JP NZ--Jump if Z-flag is reset (result not zero)
JP Z--Jump if Z-flag is set (result zero)
JP NC-Jump if C-flag is reset (no carry)
JP C-Jump if C-flag is set (carry)

JP PO-Jump if P-ffag is reset (parity odd or no overflow on
previous operation

JP PE-Jump if P-flag is set (parity even or overflow on pre
vious operation

JP P-Jump if S-ffag is reset (result positive)
JP M-Jump if S-flag is set (result "minus")

There are four conditional relative jumps-JR NZ, JR Z, JR NC,
and JR C-in · addition to the unconditional relative jump, JR.

Let us look at the relative jumps whose actions are contingent on
the state of the carry-flag (C). The effects of these instructions JR
NC and JR Care diagrammed in Fig. 8-2A and 8-2B. In Fig. 8-2C,
the decision symbol, which is commonly used in program flowchart
ing, indicates that what happens next depends on the state of a flag.
Later in this chapter, and in subsequent chapters, you will see many
examples of programs that use conditional jumps.

There is one specialized conditional relative jump instruction
whose mnemonic is DJNZ. The instruction executes in three steps:

a. Register B is decremented (by 1).
b. A check is made to see if the contents of register B is 00.
c. If B is not 00, then the relative jump takes place. Otherwise,

the next sequential instruction is executed.

The flow chart in Fig. 8-3 shows how the DJNZ instruction works.
Quite often in programming, one may need to execute the same

group of instructions a specified number of times. The DJNZ in
struction is designed for this purpose. Fig. 8-4 shows how the DJNZ
instruction can be used. As you will see, this instruction is quite useful.

CALLS AND RETURNS

A call instruction is a jump instruction that "remembers" where
it jumped from. The return instruction causes the CPU to resume
program execution at the statement following the last executed call
statement. See Fig. 8-5.

As you may imagine, the CALL and RET instructions are very
useful for allowing the same block of code to be executed through
the use of call instructions from many different places in a program.
One of the common uses of subroutines is for program delay loops.
A delay subroutine can be written for one time period, say one
millisecond. Any time that the program requires a delay of n milli
seconds, the subroutine is called n times. Manufacturers of hard
ware, software developers, and various computer user groups keep
collections of· useful subroutines for use by programmers on their

· computers. These collections are called libraries. Sample libraries

183

Previous
instruct ion

JR NC

displacement

A Next C• I C•O To addreas determined
instruction by PC and displacement

Fig. 8°2A.

Previous
instruction

JR C
displacement

J...... Next C•O C• I To addrua determined
Instruction by PC and dlaplocement

Fig. 8-2B.

previous instruction

Fig. 8-2.C.

might include multiply and divide subroutines, subroutines to com
pute trigonometric, logarithmic, and exponential function values, and
other special-purpose tasks.

184

PREVIOUS
INSTRUCTION

DECREMENT

B REGISTER

YES

NEXT
SEQUENTIAL

INSTRUCTION

LD

NO

B
<B2>

r--

DJNZ
~ displacement

Next
instruction

To addreaa specified by

PC and displacement byte

Fig.W.

- Load B with number of
times block of instructions
is to be executed

Block of inatructions to
be executed a number
of times

Fig.8-4.

185

Main Program Subroutine

.---- First
instruction

CALL Progrom 11jump111 to specified address
LO addreH but "remembers " where to return later
HI addres1

Next
RET instruction control RETurns la Main Program Program

Fig.11-5.

Now that you know what the CALL and RET instructions do,
you must learn how they do it. First the CALL instruction. Just as
it was with the JP addr instruction, the CALL instruction specifies
a memory location in the second and third bytes of the instruction.
These two bytes are loaded into the PC register to accomplish the
transfer of program control. However, before the PC is changed,
the CALL instruction performs a first step that distinguishes it from
the JP instruction. To remember where in the main program to return
to, the PC is pushed onto the stack-first HI byte, then LO byte
while the PC still points to the next instruction after the three-byte
call.

The subroutine stays in control until a return instruction is en
countered. The unconditional return, RET, causes the PC to be
loaded with the top two bytes of the stack-the top byte becoming
the LO address byte, and the next stack byte becoming the HI ad
dress byte. H the stack has been properly used, the RET should come
when the top two stack bytes are the bytes pushed onto the stack
by the previous CALL. Hence, program control returns to the first
instruction after the CALL. To illustrate this process let us step
through a CALL and then a RET from a subroutine.

Aclclress

0300 LO SP Program start: Initialize the stack pointer at SP= 0400 [1)
0301 OOH 0400 pC= 0303
0302 04
0303 CALL Call the subroutine at 0310: Push 0306 onto SP= 03FE [2)
0304 10H stack; Decrement SP by 2; Load PC with 0310 pC= 0310
0305 03
0306 HALT Halt

186

0310 INC A Subroutine Start SP= 03FE
0311 INC B PC= 0311
0312 INC C
0313 DEC D
0314 DEC E PC= 0314
0315 RET Return to main program: Pop top two bytes off SP= 0400 [3]

stack into PC; Increment SP by 2. PC= 0306

STACK: The stack is changed only by the following instructions

[1] 0300 LD SP
[2] 0303 CALL
[3] 0315 RET

(Note that for the diagrams, addresses increase downwards.)

03FE
03FF
0400

Stack
After (1)

SP=0400

PC=0303

Stack
After (2)

(X is unknown and don't care)

SP=03FE

PC=0310

Stack
After (3)

SP=0400

PC=0306

Three critical pitfalls can trap even the most experienced pro
grammers:

1. The stack grows so large that it expands down in RAM until
it begins to "eat up" the program that is using it, or the data
that the program is operating on; or, the stack grows so large
that it trys to expand into ROM or PROM and can no longer
accept new bytes.

2. The subroutine called begins to manipulate the stack in such
a manner that the RET instruction is executed with the wrong
pair of bytes sitting at the top of the stack. Who knows where
the CPU will then send program control?

3. You forget to initialize the stack pointer and wind up with
the stack sitting anywhere in memory. In particular, "anywhere"
could be in the middle of your program, or in the "bit bucket"
at location FFFF, where you do not have read-write memory.

All three of the above instances of stack mismanagement may well
result in execution of stack data which is always adventuresome, if
not guaranteed trouble!

Even with these risks, the technique of subroutine calling is very,
very useful and is an excellent practice to develop. Rarely can it be
overdone. Programs that are structured around subroutines are usu
ally easier to understand, easier to change, and easier to debug than

187

if they had not used subroutines. Experiment No. 2 investigates the
issue of when to use subroutines.

Similar to the JP instruction, CALL and RET have conditional
counterparts that perform a call or return contingent on the status of
a flag. These all appear in Table 8-1. Table 8-2 lists the restart in
structions, RST N. These are one-byte instructions that perform a

Table 8-2. Restart Group
--
OP
CODE

0000,, C, 'RSTO'

oooa,. CF 'RST8'

C 0010H D7
A 'RST 16'

L
L

0019w OF
A

'RST 24'

D
D
R 0020H E7
E "RST 32'

s
s

0028H EF 'RST40'

0030H F7 'RST48'

0038H FF 'RST 56'

Courtesy Zilog, Inc.

call to an address specified within the op code. In other words, the
RST instructions are one-byte unconditional CALLS. The two-byte
address necessary in a CALL instruction is circumvented by modified
page zero addressing. Depending on three bits within the op code,
one of eight hex subroutine addresses can be specified:
0000, 0008, 0010, 0018, 0020, 0028, 0030, and 0038.

INTRODUCTION TO THE EXPERIMENTS

This set of exercises concentrates on important programming
techniques that utilize the various Z-80 branching instructions. The
first experiments introduce you to the instructions by giving you
simple programs to execute while closely watching the program
counter (PC) register as well as other affected registers and memory
locations. The latter experiments discuss such techniques as passing
parameters to subroutines and using jump tables. The experiments
you will perform may be summarized as follows:

188

Experiment No. Comments

1 Demonstrates the DJNZ instruction for use in a
delay loop routine. Also execution breakpoints are
demonstrated.

2 Demonstrates how to convert the program of Ex
periment No. 1 to a subroutine and gives a sample
calling program. The question of when to use sub
routines is discussed.

3 Demonstrates the RST N instruction.
4 Demonstrates four techniques for passing param

eters to subroutines.
5 Demonstrates the technique of using jump tables.

EXPERIMENT NO. 1

Purpose

The purpose of this experiment is to demonstrate the DJNZ in
struction by using it to implement a delay loop. Also, the technique
for inserting, using, and removing program execution breakpoints
is demonstrated.

Program No. 20
Memory Object
Location Code

0100 06 09
0102 OE FF
0104 16 FF
0106 15
0107 20 FD
0109 OD
010A 20 FB
0lOC 10 F4

OlOE FF

Step 1

Source Code

LD B,09H
LOOPl: LD C,FFH
LOOP2: LD D,FFH
LOOP3: DEC D

JR NZ,LOOP3
DEC C
JR NZ,LOOP2
DJNZ LOOPl

RST 38H

Comments

;Initialize register B
;Initialize register C
;Initialize register D
;Inner-most loop
;Decrements register D
;Middle loop decrements
;register C
;Outer loop decrements
;register B
:Return control to the Nanocomputer
;operating system

Load the above program and execute it with several different
initial values for register B. As you can see, we used 09 above.
Notice how widely you can vary the time the display remains dark
by changing the initial value of register B. Appendix D contains
a complete discussion of how to calculate the execution time of a
given program. We have calculated the following execution times for
three different initial values of the B register.

189

B Register

01
09
FF

Total Execution Time of Program
in Experiment No. 1

0.4420844 second (approximately)
3.66123772 seconds (approximately)
105.47 seconds (approximately)

The DJNZ instruction automatically decrements the B register. Thus
one instruction, namely DEC B, is saved by using this specialized
jump.

Step 2
Suppose that you wish to observe what happens to register B as

the above program executes the DJNZ instruction. You could single
step through decrementing C and D, with C decremented 255 times
for every time Dis decremented once. However, this could be time
consuming. The best alternative is to insert a program breakpoint
just before the DJNZ instruction is executed. For example, the
breakpoint could be inserted at location 0lOC, since the instruction
at the breakpoint address is not executed before the program stops.
Then, placing the selector lamp at position BC and pressing the ss
key will allow you to see register B being decremented. Press GO

again and execution will stop at the next time the PC equals the
breakpoint address, i.e., when the DJNZ instruction is about to be
executed again.

To set the breakpoint, enter Breakpoint Mode by pressing the BRK

key. The BRK lamp should light and you should see a lone zero in
the data display. Press and hold down the INC key. You should see
the 0 change to 1,2,3, up to 7 and· back to zero again. If there are no
other breakpoints set, no other digits should appear in either the
data or address displays. Increment the breakpoint counter (the
single displayed digit) to read 3. Enter OlOC and press LA. You
should then see:

OlOC 310

0 1 0 C is the breakpoint address, 1 0 is the content of that address
(the DJNZ op code), and 3 is the breakpoint counter. This break
point could have been entered as any breakpoint number 0 through
7. We chose 3 arbitrarily. Exit Breakpoint Mode by pressing the
BRK key again. The BRK lamp will go dark. Execute the program at
full speed starting at location 0100. The display should darken mo
mentarily, then come up reading:

OlOC 10

That is, the PC=0 1 0C and the next instruction to be executed is
DJNZ. Position the selector lamp at BC and press the ss key once.
The B register should decrease by 1 and the PC register should read

190

0102. To see the DJNZ instruction execute a second time, press GO

again. Execution will stop at PC=0 1 OC again. It is possible for you
to single step through each occurrence of the DJNZ instruction in
the execution of the program in this manner.

Step 3

Remove the breakpoint by entering Breakpoint Mode, displaying
the breakpoint to be deleted by using the INC key, and finally press
ing GO.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to demonstrate how to convert
the program of Experiment No. 1 into a subroutine and give an
example program to call the subroutine. The question of when to
use subroutines is also discussed.

Program No. 21

Memory
Location

011B
OllE
0120
0123
0125

Object
Code

31 FF 01
06 03
CD 02 01
3E 00
FF

Subroutine Delay
Memory Object
Location Code -0102 OE FF

0104 16 FF
0106 15
0107 20 FD
0109 OD
010A 20 FB
OlOC 10 F4
OlOE C9

Step 1

Source
Code

LO SP,OlFFH
LO B,03H
CALL DELAY
LO A,OOH
RST 38H

Source Code

DELAY: LO C,FFH
LOOP2: LO D,FFH
LOOP3: DEC D

Comments

;Locate the system stack
;Specify B register value
;Call the subroutine
;Load the accumulator with 00
;Return control to the operating system

JR NZ,LOOP3
DEC C
JR NZ,LOOP2
DJNZ DELAY
RET

The program from Experiment No. 1 appears above under the
heading Subroutine Delay. We have converted it to a subroutine by,
among other things, replacing the final RST 38H statement with the
RET statement. Thus, now the subroutine returns control to the
calling routine, listed as Program 21, instead of jumping back to the
Nanocomputer operating system. Two other modifications were made.
First the label LOOPl was changed to DELAY. This was purely for

191

aesthetic reasons as it seemed more "self-documenting" for the calling
program to call subroutine DELAY instead of subroutine LOOPl.
So this change was not really a necessary one. The second change was
to omit the LD B,<B2> statement from the subroutine. We moved
this statement to the calling program so that the calling program could
specify the length of the delay by loading register B just prior to turn
ing control over to subroutine DELAY. This was not a required
change to make the program of Experiment No. 1 into a subroutine.
However, it does add a great deal of flexibility to the way the sub
routine can be used. In particular, the subroutine can be used to cause
delays of 256 different time intervals depending on the contents of
register B just prior to its being called. This technique of having the
calling program specify values crucial to the operation of a subroutine
is termed parameter passing. In this case, the parameter is the content
of the B register that determines the duration of delay. There are
other ways of passing parameters to subroutines which are discussed
in Experiment No. 4.

In conclusion, let us summarize the changes necessary to make a
program into a subroutine. Moreover, let us also identify the neces
sary elements of a calling routine.

To change a program to a subroutine:
The only necessary change is to insert conditional or absolute RET
statements where control should be passed back to the calling
program. Since the RET statement uses one byte of memory, this
may result in a savings of memory space, for example, if the RET
statements replace two- or three-byte JR or JP statements. At
worst, the program is lengthened by one byte for each new RET
instruction.
For a calling program: '.'
It is critical to explicitly specify· where the system stack should
reside in memory. This is accomplished via the three-byte in
struction

LO SP,<e3><s2>

If the program has no other use '.for the stack, i.e., there are no
PUSH and POP instructions in the program, then subroutine calls
have cost three bytes of memory to set up the stack. If the pro
gram uses the stack for other purposes already, then the stack has
to be set up anyway.

For each call to a subroutine, three bytes are normally required.
(The RST instructions can be used only for special cases.) If the
call statement replaces an absolute jump (JP) statement, the pro
gram is not lengthened. At worst, the program is increased by three
bytes for each call.

192

Load the PROGRAM and SUBROUTINE at the indicated ad
dresses. (Much of the SUBROUTINE should already be loaded from
Experiment No. 1.)

Step 2

Insert an execution breakpoint at location 0lOE, i.e., just before
the RET instruction. Execute the calling program in single-step mode
starting at location 01 lB. Look at the SP register just before and
just after execution of the CALL DELAY statement:

Before: SP-----
After: SP- ___ _

We observed that before the subroutine call SP=0lFF, and after the
subroutine call SP=0lFD.

Step 3
Observe the top two bytes on the stack, i.e., locations 0lFE and

0lFD. You should see that the address of the next instruction after
the CALL DELAY statement has been PUSHed onto the stack
(i.e., (SP)~(01FD)=23 and (SP+l)=(0lFE)=0l). Note also,
that the PC= 0102, the address of the first instruction of the DE
LAY subroutine.

Step 4

Press the GO key to continue program execution until the RET in
struction at location 0lOE is encountered. Check the SP and PC reg
isters before and after the RET instruction is executed:

Before: SP- ___ _ PC- ___ _
After: SP- ___ _ pc- ___ _

We observed that before, SP=OlFD and PC=0l0E, while after,
SP=0lFF and PC=0123. The top two bytes of the stack have been
POPped into the PC register so that execution may resume at the
next instruction, LD A,00H, after the CALL DELAY instruction.

Step 5

Let us now analyze when to use subroutines. Two criteria must be
applied in making a decision concerning whether or not a group of
instructions should be a subroutine:

1. Functional Criterion-Does the set of instructions form a log
ical unit with well-defined inputs and well-defined outputs?
That is, does it make sense to separate the function of the in
struction group from the rest of the program.

2. Efficiency Criterion-Does converting a set of instructions to
a subroutine cost more in time and memory space than is

193

merited by the functional considerations of the first criterion~
Consider the following "worst case analysis":
Suppose we are analyzing whether or not a set of instructiom
equivalent to M bytes of memory should be converted to a sub
routine and then called from the program of which it is current!)
a part. Suppose further that this group of instructions appear!
R times in the program. Theq,

of bytes .used as = (# occurrences in program) X
part of program (# bytes per occurrence)

=RxM
Maximum # bytes used = (# bytes in subroutine includini
as subroutine RET)

+ (# calls in program) X (# byte1
per call)

+(3 bytes for setting up stack)
+ (2 bytes of stack for return ad

dress)
= M + (# RETs) + 3 R + 3 + ~
= M + (# RETs) + 3 R + 5

The criterion of space efficiency is satisfied as long as:

RxM > M+(#RE'l's) + 3R + 5

With respect to the criterion of time efficiency, the use of subrou•
tines is always slower than repeating sets of instructions over anc
over again in a program. The CALL instruction is one of the mon
time consuming instructions in the Z-80 instruction set. The reasor
for this is that the CPU not only has to read three bytes of memo~
to interpret the instruction and change the PC register, but also th€
old PC value has to be PUSHed on the stack.

The RET instruction is time consuming because it POPs the stacl
to change the PC register. For every set of instructions which ar€
extracted from a sequential flow of program logic to form a sub
routine, the addition of the CALL and RET statements is pure over
head in terms of time. In most cases, the space savings outweigl
the timing considerations. In cases where timing is critical, the slight!)
faster RST instructions can be used, or, in the extreme, space effi
ciency will be sacrificed in the interest of speed.

Step 6
Analyze the sample program and subroutine given in this experi

ment to determine if using a subroutine was efficient in terms of time
and space. Defend your answer.

194

Our answer is that, based strictly on the space criterion, it was not a
good idea to use a subroutine. Since subroutine DELAY was called
only once, the memory space utilized is smaller for the "non-sub
routine" implementation:

DELAY:
LOOP2:
LOOP3:

Total bytes = 19

LD B,03H
LD C,FFH
LD D,FFH
DEC D
JR NZ,LOOP3
DEC C
JR NZ,LOOP2
DJNZ DELAY
LD A,OOH
RST 38H

Savings = (# bytes used in sample program and subroutine)
+ 2 bytes of stack for return address -19
= 9 bytes

Note: 9=(2 bytes for stack) + (3 bytes for LD SP,<B3>)
+ (3 bytes for CALL DELAY) + (1 byte for RET).

It is NEVER FASTER to use a subroutine than to insert the desired
instructions in-line with no branching. However, a sacrifice in speed
or a sacrifice in memory utilization (as would be necessary in the
example above) is often overshadowed by the advantages inherent in
writing well-structured, modular programs which are easier to debug
and easier to maintain and modify.

Step 7
Execute the calling program varying the value of the timing

parameter passed to the subroutine via the B register.

EXPERIMENT NO. 3
Purpose

The purpose of this experiment is to demonstrate the RST N in
struction.

Program No. 22
Memory
Location

0130
0133
0136
0139
013A

Objed
Code

31 FF 01
01 00 01
21 00 04
07
FF

Source
Code

LO SP,0lFFH
LO BC,0lOOH
LO Hl,0400H
RST 16
RST 3BH

Comments

;locate the system stack
;BC = # bytes of memory to zero out
;HL=start address
;Call the zero-out routine
;Return control to the operating system

195

Subroutine
Memory Object Source

Location Code Code Comments

0010 F5 PUSH AF ;Save the registers as they were be-
0011 cs PUSH BC ;fore the subroutine call
0012 D5 PUSH DE
0013 ES PUSH HL
0014 36 00 LD (HL),OOH ;Load l st location with zeros
0016 54 LD D,H ;Move address in register pair HL to

;register pair DE
0017 SD LD E,L
0018 13 INC DE ; Increment DE
0019 ED BO LDIR ;Zero out all locations from DE
001B 06 03 LD B,03H ;Set timing byte for Delay
0010 CD 02 01 CALL DELAY ;Call the DELAY routine
0020 Fl POP HL ;Restore registers to original
0021 Cl POP DE ;Status prior to subroutine
0022 Dl POP BC ;call
0023 El POP AF
0024 C9 RET

Step 1

Load the above program and subroutine at the indicated addresses.
Be sure that subroutine DELAY from Experiment No. 2 is also
loaded into memory.

Step 2

The main program (listed under PROGRAM No. 22) uses BC and
HL register pairs to pass two parameters to the subroutine located
at 0010. BC contains the number of memory bytes to load 00 into,
HL contains the address of the first byte, and the subroutine uses
the LDIR instruction to zero out "BC" consecutive memory loca
tions starting at location "HL." Notice that due to the special start
address of the subroutine, 0010, there are two call instructions used
to call the subroutine, namely CALL 0010H and RST 16H. The
CALL 0010H instruction occupies three bytes of memory since its
associated hex code is CD 10 00. The RST 16H instruction hex code
is D7, just one byte. Both perform the identical function.

The subroutine at 0010 uses a standard technique for preserving
the registers A, F, B, C, D, E, H, and L exactly as they were when
the subroutine was called. The first four instructions of the subrou
tine PUSH the registers onto the stack. The last four instructions prior
to RETurning restore the registers using four POP instructions. Pay
special attention to the relationship between the order in which the
register pairs were PUSHed and POPped. The "PUSHing-order" is
the exact reverse of the "POPping-order." The reason for this is
the last-in-first-out processing discipline of the stack. When the net
effect of a subroutine on all the registers is zero, the subroutine is

196

said to preserve the state of the CPU. Thus, the subroutine at 0010
preserves the state of the CPU, while subroutine DELAY (at loca
tion 0102) does not.

Note that the subroutine at 0010 itself calls a subroutine, see the
CALL DELAY statement at location 001D. This is called a nested
subroutine call. Thus, there is no rule against subroutines calling
subroutines which, in turn, may call subroutines. Subroutines can
even call themselves! The technique of recursive programming, in
which subroutines call themselves, is very powerful, but also very
difficult to conceptualize. We shall not discuss it here.

What happens with nested subroutine calls? Basically return ad
dresses keep getting pushed onto the stack until finally a subroutine
executes a RET, RET NZ, RETZ, RET C, RET NC, RET P, RET
M, RET PE, or RET PO statement, at which time an address pops
off the stack.

Execute the program at location 0130. Insert program breakpoints
judiciously so that you can watch the stack grow and shrink as
execution proceeds.

Step 3
Currently, a program, two subroutines, a stack, and a memory

block of program data occupy read/write memory. It is often an

00 00

00 10
00 20
00 25

00 30
01 00

01 02
01 OD

01 10
01 20

01 30
01 3D

01 40

01 EO
01 ES
01 FO
01 FS
01 FF
02 00

04 00

05 00

SUBROUTINE

SUBROUTINE
DELAY

MAIN
PROGRAM

STACK

DATA

Loads BC bytes of memory starting
at location HL (preserves CPU state)

Delay dependent on contents of B
register

All routines called from this program

The memory block to be loaded with
zeros

Fig. 8-6. Memory map.

197

excellent idea to keep a map of memory utilization. Fig. 8-6 g:. ,es
a memory map for this experiment.

EXPERIMENT NO. 4
Purpose

The purpose of this experiment is to demonstrate four techniques
for passing parameters to subroutines.

Technique No. 1

Passing parameters via registers.

Program No. 23

Memory Object
Location Code

0200 31 FF 08
0203 01 00 01
0206 21 00 04
0209 CD 10 02
020C FF

Subroutine

Memory Object
Location Code

0210 36 00
0212 54
0213 SD
0214 13
0215 ED BO
0217 C9

Technique No. 2

Source
Code

LD SP,OSFFH
LD BC,OlOOH
LD HL,0400H
CALL ZERO!
RST 38H

Source Code

Comments

;Locate the system stack
;BC= bytes of memory to zero out
;HL= start address
;Call the zero out routine
;Return control to the operating system

Comments

ZERO!: LD (HL),OOH
LD D,H

;Set first location to zeros
;Move the address in register
;pair HL to register pair DE
;Increment DE

LD E,L
INC DE
LDIR
RET

;Zero out locations starting at DE
;Return control to main program

Passing parameters via the stack.

Program No. 24

0220
0223
0226
0229
022A
022B
022E

Subroutine

0231
0232
0233
0234
0235

198

31 FF 08
01 00 01
21 00 04
cs
ES
CD 31 02
FF

Dl
El
Cl
DS
36 00

LD SP,08FFH
LD BC,OlOOH
LD HL,0400H
PUSH BC
PUSH HL
CALL ZER02
RST 38H

ZER02: POP D~
POP HL
POP BC
PUSH DE
LD (HL),OOH

;Push parameters onto stack

;Pop return address off stack
;Pop parameters off stack

;Push return address back onto
;stack

0237
0238
0239
023A
023C

54
5D
13
ED BO
C9

Technique No. 3

LD D,H
LD E,L
INC DE
LDIR
RET

Passing parameters via a control block in memory.

Program No. 25
0240
0243
0246
0249

024D
0250
0253

31 FF 08
01 00 01
21 00 04
ED 43 00 08

22 02 08
CD 56 02
FF

Subroutine
0256 ED 4B 00 08
025A 2A 02 08
025D 36 00
025F 54
0260 5D
0261 13
0262 ED BO
0264 C9

Technique No. 4

LD SP,08FFH
LD BC,0lOOH
LD HL,0400H
LD (0800H),BC

LD (0802H),HL
CALL ZERO3
RST 38H

ZERO3: LD BC,(0800H)
LD HL,(0802H)
LD (HL),00H
LD D,H
LD E,L
INC DE
LDIR
RET

;Store parameters in control
;block in memory

;Load parameters stored
;in memory to proper
;registers

Passing parameters via memory locations immediately following
the CALL statement.

Program No. 26
0265 31 FF 08
0268 CD 72 02
026B 00 01
026D 00 04

026F FF

Subroutine
0272 DD El
0274
0277
027A
027D
0280
0283
0285

DD 4E 00
DD 46 01
DD 6E 02
DD 66 03
11 04 00
DD 19
DD ES

LD SP,08FFH
CALL ZERO4
DEFW 0100H
DEFW 0400H

RST 38H

ZERO4: POP IX
LD C,(IX)
LD B,(IX+0lH)
LD L,(IX+02H)
LD H,(IX+03H)
LD DE,0004H
ADD IX,DE
PUSH IX

;DEFW is a "pseudo operator"
;implemented by many
;assemblers
;to allow data to be interspersed
;with instructions.

;IX= address of flrst parameter

;Load data into registers

;Add 0004 to IX to obtain the re
;turn address of the subroutine
;Push return address onto stack

199

0287 36 00 LD (HL),OOH
0289 54 LD D,H
028A 5D LD E,L
0288 13 INC DE
028C ED 80 LDIR
028E C9 RET

Step 1
Load all four sets of programs and subroutines. Verify that you

have loaded them correctly.

Step 2
Study all four parameter passing techniques carefully to make

sure you understand how each works. Note that each program-sub
routine pair performs exactly the same function. Also, one cannot use
any program to call any subroutine. These are matched pairs in the
sense that coordination as to how parameters will be passed must take
place between calling program and called subroutine. How do these
techniques compare? Let us first look at memory requirements.

Technique Program Subroutine Total No. Bytes

1 15 8 23
2 17 12 29
3 22 15 37
4 13 27 40

Although Technique No. 1 has the lowest overall memory require
ments in this set of examples, other examples could easily be devised
in which Technique No. 4 is lowest. Each time subroutine ZEROl
is called, it takes nine bytes of space in the calling program to set
up the parameters and call the subroutine. To set up and call ZER04
only takes seven bytes. The large number of bytes added to ZER04
to implement the more complicated technique is a ONE-TIME
COST. The more ZER04 is called, the less significant the additional
subroutine bytes become, and the more significant the savings in
the calling sequence become.

To use Technique No. 1, all parameters must fit into the available
registers. Sometimes this can be a serious constraint. Techniques No.
2 and No. 3 both use memory for passing parameters. Technique
No. 2 is excellent for passing lots of parameters which get used and
discarded by the subroutine in a particular sequence. Technique No.
3 is the only practical way to pass matrices or long character strings
between routines.

Step 3
Execute all the program-subroutine pairs. Pay special attention to

Technique No. 4 which is less straightforward than the rest.

200

EXPERIMENT NO. 5
Purpose

The purpose of this experiment is to demonstrate the use of jump
tables.

Program

Memory Object
location Code Source Code Comments

0900 61 DEFB 61H ;Value #1
0901 41 09 DEFW 0941H ;Address for Process # 1
0903 62 DEFB 62H ;Value #2
0904 45 09 DEFW 0945H ;Address for Process #2
0906 63 DEFB 63H ;Value #3
0907 50 09 DEFW 0950H ;Address for Process #3
0909 64 DEFB 64H ;Value #4
090A 55 09 DEFW 0955H ;Address for process # 4
090C 00 DEFB OOH ;END OF JUMP TABLE INDICATOR
0915 21 FD 08 START:LD Hl,0BFDH ;Initialize HL
0918 23 NEXT: INC HL ;Increment HL to point to
0919 23 INC HL ;value entry in jump table
091A 23 INC HL
0918 7E LD A,(HL) ;Load value to accumulator
091C 87 OR A ;Set zero flag if A is zero
091D cc 38 00 CALL Z,0038H ;If A=0, then end of jump table

;has been reached-pass control
;back to operating system

0920 88 CP B ;Does B=A?
0921 20 FS JR NZ,NEXT ;If not, try next value in

;jump table
0923 23 INC HL ;If so, next two positions hold

;address of routine to perform
0924 SE LD E,(HL) ;load the address into DE-
0925 23 INC HL ;First LO, then HI
0926 56 LD D,(HL)
0927 62 LD H,D ;Move contents of DE to HL
0928 68 LD L,E
0929 E9 JP (HL) ;Jump to address in HL

Step 1

Let us first discuss the new instructions appearing in the above
program. To understand DEFB and DEFW, examine closely the
object code associated with these instructions. For example DEFB
41H has 41 as its associated hex code. In general,

DEFB <Bl>

has <Bl> as its associated hex code. Instruction DEFB appropriately
stands for DEFine Byte because all the instruction does is give a
byte which is placed directly into memory. A DEFW has a similar
effect for two-byte addresses:

201

DEFW <B2><B l >
has <Bl><B2> as its associated hex code. Instruction DEFW
stands for DEFine Word, where word in this context is a two-byte
absolute address. It is important to notice a very subtle difference
between the DEFB or DEFW instructions and all the other instruc
tions discussed so far. All instructions we have discussed so far cor
respond to operations which the Z-80 CPU performs. DEFB and
DEFW do not correspond to operations performed by the Z-80, but
rather cause direct insertion of data into memory. In this manner,
the assembler (either human or software) initializes memory to
desired values.

The DEFB and DEFW statemeQts described previously are called
assembly language pseudo-op codes. The reason these statements are
called pseudo-ops is because they are not Z-80 executable instruc
tions. Instead, they are instructions which the ASSEMBLER exe
cutes in generating the object code. Another pseudo-op implemented
by most assemblers is the DEFINE STORAGE statement whose
format is

DEFS n

The DEFS pseudo-op is used to tell the assembler to reserve a speci
fied number, n, of bytes in the object code for storage. The assembler
does not insert any particular values in the storage space, it just
skips the next n bytes before continuing to load memory with gen
erated object code. The number n can be a hexadecimal number
(followed with an H) or a decimal number (followed with a
period .).

The CP B instruction at location 0920 will be discussed in detail
in a subsequent chapter. The associated hex code for this instruction
is BS. The instruction compares the contents of register B with those
of register A. If they are equal, the zero flag is set to logic 1, other
wise it is reset to logic 0. Thus, the program of this experiment uses
the CP B and JR NZ instructions to determine if A and B are equal
and branch in either of two directions according to the result.

Load the program at the indicated location.

Step 2
A jump table is a very efficient method for implementing program

branching logic which looks like the example in Fig. 8-7.
That is, a process ends with a certain result, and then based on the
result, one of many other processes (N above, 4 in the sample jump
table) is performed. The software term for this is case analysis. Each
possible result constitutes a case; or, in CASE the result is X, perform
process J. The sample jump table given previously has the general
format:

202

PROCESS

CASE CASE CASE 8 CASE

Fig. 8•7. Jump table.

VALUE 1

ADDRESS 1

VALUE 2

ADDRESS 2

VALUE 3

ADDRESS 3

•
•
•

VALUE N

ADDRESS N

00

Each possible result is listed with the address of its associated rou
tine immediately following. 00 denotes the end of the jump table.
To perform the case analysis, the result (in register B) is compared
(CP B) with each value in the jump table until a match is found or
until the end of the table is reached. On finding a match, control is
passed to the address immediately following the VALUE byte by
jumping to the address contained in the HL register pair.

Store a jump back to the operating system (FF) at each address
in the jump table. Normally, a special-purpose set of instructions
would be stored at these addresses, of course.

Load the B register (via the operating system) with values such
as 45, 55, and 41 which are in the jump table, and 01, or 09 which
are not in the jump table, and then execute the program in single

203

step mode starting at 0915. What happens if you start execution
at 0900?

Then you are executing your data. This is almost never a good idea.
Keep in mind the fundamental difference between data and execut
able code (the computer won't).

Step 3
There are alternative methods to the one presented in Step 2 for

implementing jump tables. A common and efficient method is to
segregate the values and addresses into two separate tables:

VALUE 1 ADDRESS 1

VALUE 2 ADDRESS 2

VALUE 3 ADDRESS 3

• •
• •
• •

VALUE N ADDRESS N

The value table is first searched for a match. If the Ith value was a
match then control is passed to the routine at the Ith address in the
address table. As an exercise, try to implement this method for case
analysis. Here are some hints:

1. Use 00 to mark the end of each table. Note that if 00 is a pos
sible value or address byte, a new end marker must be chosen;
or a new method of detecting the end of the table must be
devised.

2. Note that the value table has one-byte entries, but the address
table has two-byte entries.

3. As in the sample program assume the value to be matched is
already in one of the CPU registers (pick the most conve
nient one).

4. Use the DEFB and DEFW instructions to set up the tables.

Once you have the program written, load and execute it. You will
know then how you did.

204

CHAPTER 9

Logical Instructions

Table 9-1 contains the Z-80 Arithmetic and Logic Instructions.
Table 9-2 contains the Z-80 instructions which manipulate just the
accumulator and flags, the general-purpose AF instructions. We will
cover the instructions contained in these tables in this chapter and in
Chapter 11. This chapter will b1troduce you to logical instructions
which perform logical operations on 8-bit binary words. The mne
monics for these instructions are AND, XOR, OR, and CPL. Since a
full understanding of multibit logic operations is required in order
to effectively use these instructions, we have included introductory
material on this subject.

At the completion of this chapter, you will be able to do the
following:

• Summarize the truth tables for the one-bit AND, OR, XOR, and NOT
logic operations. ·

• List the correct Boolean symbols for AND, OR, XOR, and NOT.
• Explain how multibit logic operations are performed.
• Perform the logic operations AND, OR, and xoR. on pairs of

8-bit data bytes. The NOT operation is performed on single
data bytes.

• Write De Morgan's theorem in Boolean algebra.
• State De Morgan's theorem using logic symbols.
• List the logic instructions in the Z-80 instruction set.
• Explain how logic instructions can be used in a microcomputer

program.
• Define masking.

205

Table 9-1. The 8-Bit Arithmetic and logic Groups

'ADD'

ADDwCARRY
'ADC'

SUBTRACT
·sue·

SUBwCARRY
'SBC'

'AND'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'INC'

DECREMENT
'DEC'

206

SOURCE

REG.
REGISTER ADDRESSING INDIR. INDEXED IMMED.

A B C D E H L IHI,) IIX+dl IIY+dl n

Courtesy Zilog, Inc.

Table 9-2. General.Purpose AF Operations

Decimal Adjust Ace, 'DAA'

Complement Ace, 'CPL'

Negate Ace, 'NEG'
12'1 complementl

Complement Carry Fl119, 'CCF'

Set Carry Flag. 'SCF'

CourtnyZilog,lnc.

WHAT IS A LOGICAL INSTRUCTION?

In this section we shall be concerned with the logical operations
AND, OR, XOR (Exclusive OR), and CPL (complement). A two-byte
logic operation or logic instruction is performed with two 8-bit data
bytes, the corresponding bits of each byte being subject to a 2-bit
logic operation such as AND, OR, or XOR. In the Z-80 microprocessor,
one of the data bytes is originally present in the accumulator, and
the final result is stored in the accumulator. This is one indication·
of why we call the accumulator an "ACCUMULATOR"; it accu
mulates the final results of logic and arithmetic operations. The
one-byte logical instruction, CPL, operates directly on the accumulator
and no other register or memory cell is involved.

Truth Table for One-Bit Logic Operations

AND OR XOR NOT
B A Q BA Q B A Q m 0 0 0 0 0 0 0 0 0 l
0 l 0 0 1 1 0 l 0
1 0 0 1 0 1 1 0
1 l 1 l 1 1 l l 0

We call these truth tables "1-bit tables" because the data words, A
and B, each contain only a single bit. The XOR is an abbreviation
for Exclusive-OR.

BOOLEAN ALGEBRA

When we discuss logic instructions, it is helpful to use Boolean
symbols. Such symbols originate from the subject of Boolean al
gebra, which is the mathematics of logic systems. Alphabetic symbols
such as A, B, C, ... , Q are used to represent logical variables and the
symbols 1 and O are used to represent logic states. This particular
form of mathematics was originated in England by George Boole in
1847. It did not become widely used until 1938, when Claude Shan~
non adapted it to analyze multicontact networks for telephone
systems.

What you should learn about Boolean algebra are the basic
Boolean symbols that are employed in Boolean algebra computa
tions and thus, are employed in all digital logic. These symbols in
clude the following:

+ which means logical addition and given the name OR
• which means logical multiplication and is given the name AND

@ which is given the name Exclusive-OR or XOR

207

- which means logical complementation and is given the name
NOT

The complementation symbol is a solid bar over a logical variable
such as A, B, C, ... , Q. Thus, the Boolean statement for a 2-input
AND state is Q=A • B, or simply Q=AB. The Boolean statements for
different types of gates are shown in Fig. 9-1. Note the use of the
bar, - , for the NANO and NOR gates.

It is useful to summarize the symbol operations for the four
logic operations that we are considering:

A =D- A D-Q 8 Q
8 C

Q = A·B Q=A·B·C

® ®

:=D- A =C)-Q 8 Q
C

Q = A· B Q=A·B·C

© ©

:=D-- A =D--Q Q
8

Q= A+B Q =A+ B

® ®
A =)D-Q
8

Q=A(±)B
@

fig. 9-1. Boolean statements.

AND OR XOR NOT

o•o = o o+o=o OEBO=O 0=1
O • 1 = 0 0+1=1 o EB 1 = 1 l=O
1 • 0 = 0 1+0=1 lEBO=l
1 -1 = 1 1 + 1 = 1 1EB1=0

208

These are 1-bit logic operations.

MULTIBIT OPERATIONS

Multibit logic operations are treated as many one-bit logic opera
tions. No new principles of logic are involved. The corresponding
bits of one binary word logically operate with the corresponding bits
of the second binary word to produce an overall multibit logic result.
Consider the 8-bit logic variable, A. The individual bits in the 8-bit
word can be labeled as A7, A6, AS, A4, A3, A2, Al, and AO, with
AO being the least significant bit (the 2**0 bit) and A7 being the
most significant bit (the 2••7 bit). Also consider the 8-bit logic
variable, B, which has individual bits B7, B6, BS, B4, B3, B2, Bl,
and BO, with BO being the least significant bit and B7 being the
most significant bit. The logic operation, A • B = Q, means the fol
lowing:

AO•BO=QO
Al• Bl= Ql
A2•B2=Q2
A3•B3=Q3
A4•B4=Q4
A5•B5=Q5
A6•B6=Q6
A7•87=Q7

The result of the logic operation is the logic variable, 0, which has a
least significant bit of QO and a most significant bit of 07. In other
words, multibit logic operations are performed bit by bit in a series
of one-bit logic operations.

It is easier to perform multibit logic operations if the multibit
binary words are placed one under the other. Thus, if A=ll 110000
and B=OOl 11100, then AB is

11110000
00111100

00110000

or 0=00110000. We have performed a logical AND, and have used
the relationships O • 1 = 0 and 1 • 1 = 1 in deriving the final result.

In a similar manner, the multibit logic operation, A + B = O,
means the following:

AO+ BO= QO
Al+ Bl= Ql
A2+B2=Q2
A3+B3=Q3
A4+B4=Q4
A5+85=Q5
A6+B6=Q6
A7+B7=Q7

209

Again, the result of the logic operation is the logic variable, O,
which contains eight bits. If A= 11110000 and B = 00111100, then
O=A + B becomes

11110000
00111100

11111100

or 0=11111100. We have performed a logical OR, and have used
the relationships O+l=l, l+l=l, and O+O=O in deriving the final
result. Note that the + sign represents the OR logical operation and
the "plus" arithmetic operation. There is a bit of confusion here, and
you will have to watch out for it.

The final logic operation of interest, A EB B = 0, means the fol-
lowing:

AO EB BO= QO
AlEBBl=Ql
A2 EB B2 = Q2
A3 EB B3 = Q3
A4EBB4=Q4
A5EBB5=Q5
A6 EB B6 = Q6
A7 EB B7 = Q7

The result of this Exclusive-OR operation is an 8-bit logic variable,
O. If A=ll 110000 and B=OOll 1100, then O=A EB B becomes

11110000
00111100

11001100

or 0=11001100. We have performed a logical Exclusive-OR and
have used the relationships O EB O = 0, 0 EB 1 = 1, 1 @ 0 = 1, and
1 EB 1 = 0 in deriving the final result.

NOT

The NOT logic operation complements any binary digit or group
of binary digits. If A= 11110000, then O = 00001111.

DE MORGAN'S THEOREM

An important theorem in Boolean algebra is De Morgan's
Theorem, which can be written in either of two different ways:

A•B=A+B

A+ B =A•B
A more interesting statement of De Morgan's theorem occurs through
the use of logic symbols (Fig. 9-2). This is an important result, and

210

Fig. 9-2. Logic symbols.

one that you will find to be quite useful in digital electronics and
microcomputer interfacing. It states that you can accomplish a NOR

function by negating all of the inputs and applying them to an AND

gate; alternatively, you can accomplish a NANO function by negating
all of the inputs and applying them to an OR gate.

De Morgan's theorem can also be represented by the logic sym
bols in Fig. 9-3. They state that you can accomplish an AND func-

Fig. 9-3. Logic symbols.

tion by negating all of the inputs and applying them to a NOR gate;
alternatively, you can accomplish an OR function by negating all of
the inputs and applying them to a NANO gate. NANO gate integrated
circuit chips are very common and quite inexpensive. De Morgan's
theorem demonstrates how you can readily create OR and NOR gates
from NANO gates. We will discuss NAND, NOR, AND, OR, and other
gates in detail in Book 2.

Z-80 LOGICAL INSTRUCTION GROUP

All of the logical operations which we have discussed are imple
mented by the Z-80 CPU as instructions in the 8-bit logical instruc
tion group. Let us investigate these instructions in detail. Pay par
ticular attention to the manner in which these instructions affect the
flag register F as this aspect of their operation is often essential to
their effective use.

211

COMPLEMENT ACCUMULATOR: CPL

To complement the accumulator is to perform a NOT operation on
the 8-bit accumulator byte. This single-byte instruction has a hex
code of 2F and a mnemonic of CPL. The carry, zero, P /V, and sign
flags are not affected by this instruction, for example:

Accumulator Contents

Before Execution of CPL 10111010
After Execution of CPL 01000101

A good application of the CPL instruction is as follows:
CPL A
INC A

These two instructions find the 8-bit two's complement of the con
tents of the accumulator.

AND. WITH ACCUMULATOR: AND

The 11 different AND instructions in the Z-80 instruction set have
the general mnemonic AND S where S depends on the addressing
mode. The carry flag is reset by this instruction and both the sign
and the zero flags are affected as a result of the operation. The P /V
flag senses the parity of the result and is set if the parity (number
of set bits) is even and reset otherwise. For example, consider the
execution of the instruction AND B. This instruction causes the Z-80
to perform a logical AND between the contents of the B register and
the contents of the accumulator. The result is stored in the accu
mulator. For example:

Before Execution of AND B
After Execution of AND B
(X = Don't Care)

Accumulator I-Register

11001100 10001011
10001000 10001011

S Flag

X
1

Z Flag P/V Flag

X X
0

Notice that while the instruction AND A, which computes the logical
AND of the accumulator with itself, might appear to be a useless in
struction, it actually has some utility. Both the zero flag and the sign
flag are affected as a result of this instruction. The AND A sets the
zero flag if and only if the contents of the accumulator is 00. Simi
larly, AND A sets the sign flag if, and only if, the contents of the
accumulator is a negative two's complement number. For example:

Before execution of AND A
After execution of AND A
(X=Don't Care)

Accumulator

10000001
10000001

S Flag Z Flag

X X
0

P/V Flag

X

Another useful application of the AND instruction is to implement
a technique called masking. The term masking is defined as follows:

212

masking-A logical technique in which certain bits of a multibit
word are blanked out or inhibited.

A face mask covers part of the face. In the same sense, a mask,
used in a computer operation, covers some or most of the bits of a
multibit word, leaving only those bits that are important for the
continued execution of the program. Consider the following sequence
of instructions:

LD A,(0F32H)
AND 0lH

The zero flag is set or reset depending on the value of the least sig
nificant bit of the byte at memory location ~F32. This instruction
sequence uses a mask to test bit D~ of a byte in memory, the mask
being the byte 01 of the AND instruction. Similarly, the technique
can be used to test other bits. Masking can also be used to look at
subsets of bits in a byte. For example, the instruction sequence

LD A,(0F32H)
AND OFH

zeros out the most significant four bits and leaves unchanged the
least significant four bits of the accumulator, allowing a program to
look at just the least significant half of the byte located at OF32.

EXCLUSIVE-OR WITH ACCUMULATOR: XOR

The general mnemonic for the exclusive-OR instruction is XOR S,
where S depends on the addressing mode. As with the AND instruction,
the carry flag is reset and the sign, zero, and parity/ overflow flags
are affected as a result of the operation.

For example, consider the instruction XOR (HL) where register
pair HL contains the address 1AB6. This instruction causes the Z-80
to perform a logical exclusive-OR between the contents of the accumu
lator and the contents of the memory location 1AB6 pointed to by the
HL register pair, and leave the result in the accumulator.

Before Execution
After Execution

Accumulator

10010001
10100001

HL

1AB6
1AB6

(HL) S Flag Z Flag P/V Flag

00110000 X X X
00110000 1 0 0

Thus, xoRing the byte 00 with the contents of the accumulator leaves
the accumulator unchanged, but affects the sign and zero flags in
informative ways. The instruction XOR A zeros out the accumulator
via a one-byte instruction and, thus, is preferable to LD A,OOH. The
process of xoRing FF with the accumulator has the same effect as

213

the CPL instruction except that the carry, zero, and sign flags are
affected.

OR WITH ACCUMULATOR: OR

The eleven OR instructions have the general mnemonic OR S, where
S depends on the addressing code. The flags are affected by the OR

instruction in the same manner as are the flags for the XOR and the
AND instructions. That is, the carry flag is reset and the sign, zero,
and parity/ overflow flags are affected according to the result of the
operation. For example, consider instruction OR (IX+02H). This
instruction causes the Z-80 to perform a logical OR between the con
tents of the accumulator and the contents of the memory location two
bytes above the location addressed by index register IX.

Before Execution
After Execution

Accumulator
(binary)

00000011
00110011

IX
(hex)

1AB4
1AB4

(IX+02)
(binary)

00110010
00110010

S Flag

X
0

Z Flag P/Y Flag

X X
0

Thus, the OR instruction cannot be used to zero out the accumulator.
As you have already seen in several experiments, OR A can be used
to determine if the accumulator is zero. An excellent use of the OR

instruction is for determining if a register pair is zero. For example,
the following sequence of instructions determines if DE=OO00:

LD A,D
ORE

The only way the OR E operation can leave the zero flag set is if both
D and E are equal to 00. You saw this technique applied to the BC
register pair in the last experiment of Chapter 6. The reason this
technique is so useful is that the 16-bit increment and decrement
instructions do not affect any of the flags. Thus, if a register pair is
used as a loop counter, the zero flag has to be explicitly set if the
register pair equals 0000 is a loop termination condition.

LOGICAL INSTRUCTIONS AND
EXTERNAL DEVICE MONITORING

Logical instructions permit you to determine whether external
devices are on or off or whether specific events have occurred or not.
As an example, assume that you use logic 0 and logic 1 to represent
one of the following situations:

A. On/ off state of a device
Logic O=device is off
Logic 1 =device is on

214

B. Occurrence of an event
Logic 0=the event has not occurred
Logic 1 =the event has occurred

In a subsequent chapter, you will learn how to use the IN micro
computer instruction to input eight bits of data into the accumulator.
You will learn that you can use each bit to represent the on/ off state
of a specific device, or the occurrence or nonoccurrence of a specific
event. With eight bits, you can represent the state of eight different
devices or events. Consider the following eight devices, each of which
can be either on or off:

Bit 0: Pressure measuring device
Bit 1 : Temperature measuring device
Bit 2: Velocity measuring device
Bit 3: Flow measuring device
Bit 4: Voltage measuring device
Bit 5: Current measuring device
Bit 6: ASCII terminal input device (keyboard)
Bit 7: ASCII terminal output device (printer or crt screen)

These eight devices have eight associated bits, which can be collec
tively input at the same instant of time into the accumulator of the
Z-80 microprocessor chip. Once inside the microprocessor, you can
employ logical instructions to determine whether specific devices are
on or off.

INTRODUCTION TO THE EXPERIMENTS

The following experiments are designed to demonstrate what you
have learned in Chapter 9 about logic instructions. The experiments
you will perform may be summarized as follows:

Experiment No.
1
2

Comments
Demonstrates a 16-bit AND routine
Demonstrates the use of the AND, CPL, and XOR
instructions in device monitoring applications.
These instructions are used to determine whether
a device lias changed status, and if so, in which
direction, on to off or off to on.

EXPERIMENT NO. 1
Purpose

The purpose of this experiment is to demonstrate a program which
performs a logical AND between the contents of register pairs BC
and DE and leaves the result in HL.

215

Program No. 28

Memory Object
Location Code Source Code Comments

0200 78
0201 A2
0202 67

AND16: LO A,B
AND D
LO H,A
LO A,C
AND E
LO L,A
OR H

;AND the most significant 8 bits
;Load result into register H

0203 79
0204 A3
0205 6F

;AND the least significant 8 bits
;Load result into register L

0206 B4 ;Set the zero flag if the contents of HL
;is 00, otherwise reset the zero flag.

0207 FF RST 38H

Step 1

Load the above program at the indicated address. Initialize the
BC and DE register pairs to each of the following values and then
execute the program. Enter your observations for the contents of
register pair HL and the zero, sign, P /V, and carry flags.

Note that the zero flag is bit D6 of the F register, the sign flag is
bit D7, the P /V flag is bit D2, and the carry flag is bit DO, as illus
trated next:

76543 2 10

!s I z I x I H I x I P/v I N I cl
BC=O O l 1 0 0 1 1 1 1 0 0 1 0 0 1 or 33 C9
DE= 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 or FO 73
HL=
Zero flag= Sign flag= P/V flag= Carry flag=

We observed that HL= 30 41 and that the flags were set as follows:

Zero Flag= 0 Sign Flag= 0
BC= 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
DE=l 1 0 0 1 1 0 0 0 1 0 1 l 1 1 1
HL=
Zero Flag= Sign Flag=

P/V Flag= 1
o·r A5 A5
or CC 5F

P/V Flag=

Carry Flag= 0

Carry Flag=

We observed that HL= 84 05 and that the flags were set as follows:

Zero Flag= 0 Sign Flag= 1 P/V Flag= 0
BC= 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 or FF 00
DE=O O O O O O O O 1 1 1 1 1 1 1 1 or 00 FF
HL=
Zero Flag= Sign Flag= P/V Flag=

Carry Flag= 0

Carry Flag=

We observed that HL= 00 00 and that the flags were set as follows:

Zero Flag= 1 Sign Flag= 0 P/V Flag= 1 Carry Flag= 0

Step 2
Write, load, and debug a program to perform a 16-bit OR between

register pairs BC and DE, leave the result in HL, and set or reset the

216

Z-flag accordingly. Test the program to verify its correctness by load
ing sample data values into BC and DE and checking predicted versus
program generated values for HL and the zero flag.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to determine which of eight
devices has changed status between two status readings and in which
direction the status change occurred, on to off or off to on. The eight
devices are listed next with their associated bit number:

Bit 0: Pressure measuring device
Bit 1 : Temperature measuring device
Bit 2: Velocity measuring device
Bit 3: Flow measuring device
Bit 4: Voltage measuring device
Bit 5: Current measuring device
Bit 6: Liquid-level measuring device
Bit 7: Frequency measuring device

A logic 1 will indicate that a device is on, and a logic O will indicate
that a device is off. The input of two distinct status bytes is simulated
by two LD r,<B2> instructions.

Program No. 29
Memory
location

0100

0102

0104
0105

0106
0107

0108
0109

OlOA

010B
OlOC

Objed
Code

06 88

3E 09

4F
AS

57
AO

67
2F

A2

6F
FF

Source
Code

LD 8,88H

LD A,09H

LD C,A
XOR B

LD D,A
AND B

LD H,A
CPL

AND D

LO l,A
RST 38H

Comments

;Simulate the input of a previous status byte to
;the B register
;Simulate the input of a current status byte to
;the accumulator
;Copy current status to C register
;Exclulsive-OR between the contents of A and
;B. In the result logic I marks devices whose
;status changed
;Save this information in register D
;AND between the contents of A and B. In the
;result, logic l marks the devices which changed
;status from on to off
;Save this information in H
;Complement the accumulator. In the result,
;logic l marks a device which did NOT change
;status from on to off, i.e., a device which main
;tained constant status or changed from off to
;on.
;AND between the contents of A and D. In the
;result, logic l marks a device whose status
;changed from off to on.
;Save this information in register L
;Return control to the operating system

217

Step 1
Load the preceding program at the indicated memory location.

Verify that you have loaded the program correctly.

Step 2
Examine the program carefully to verify the following summary:

a. H bit n in register D is a logic 1, then the associated device
changed status.

b. If bit n in register L is at logic 1, then the associated device
went from off to on.

c. If bit n in register H is at logic 1, then the associated device
went from on to off.

d. If bit n in register L is a logic 0, then the associated device
either did not change status or went from on to off.

e. If bit n in register H is at logic 0, then the associated device
either did not change status or went from off to on.

To summarize, with the aid of logical instructions, you can answer
the following types of questions via microcomputer programs:

• Is the logic st.ate of the status bit 0 or 1?
• When compared to the previous logic state, has the status bit

state changed or does it remain unchanged?
• If the staus bit logic state has changed, has the change been from

0tolorlto0?

Step 3
Before you execute the program, perform the following logical

operations.

Let 10001000= Previous status byte
Let 00001001= Current status byte

a. 10001000 XOR 00001001

10001000 =Previous status byte
00001001 =Current status byte

The result of this logical operation tells you which of the devices
have changed state. Device n has changed state if and only if bit n
is set in the result of the XOR operation.

b. 10000001 AND 10001000

10001000 = Previous status byte
10000001 = Result form part (a) telling which devices have

changed state

218

The result of this logical operation tells you which of the devices
have changed state from on to off. Device n has changed state
from on to off if and only if bit n is set.

c. CPL 10000000, the complement of 10000000

10000000 is the result from part (b) and tells you which devices
have changed state from on to off. Thus the result of this logical
operation will tell you which devices did NOT change their state
from on to off.

d. 01111111 AND 10000001
01111111 = result from (c)
10000001 = result from (a)

The result of this logical operation tells you which of the devices
have changed state from off to on.

Step 4

Execute the preceding program on your microcomputer. What
information appears in register L after execution?

Those devices that have changed state from off to on have their
associated bits set in register L.

Step 5

What information appears in register H?

Those devices that have changed state from on to off have their
associated bits set in register H.

Step 6

What information appears in register C?

The current status byte, i.e., which devices are on and which devices
are off.

219

REVIEW

The following questions will help you review the use of logical
instructions, Boolean algebra, and multibit operations.

1. Perform the indicated multibit Boolean logic operations.

a. 11001011 • 01011010
b. 00100000 + 11011111
c. 00100000 • 11011111
d. 10101010 (£) 10100100
e. CC•OB
f. A6 Ef) 80
g. 31 EB 04
h. 49 • lB

2. An 8-bit status byte is associated with eight different devices:

Bit 0: Pressure measuring device
Bit 1 : Temperature measuring device
Bit 2: Velocity measuring device
Bit 3 : Flow measuring device
Bit 4: Voltage measuring device
Bit 5: Current measuring device
Bit 6: Liquid-level measuring device
Bit 7: Frequency measuring device

For the hex status bytes given next, indicate which of the devices given in
Question No. 2 are on. A logic 1 for the indicated bit means that the device
is on.

a. 53
b. 40
c. 64
d. 20
e. 02
f. 30
g. 30
h. CO
i. 01
j. 28

3. For the hex status bytes given next, including both the prior status byte
and the current status byte, use Boolean algebra techniques to determine
which of the eight different devices listed in Question No. 2 changed state
from on to off or off to on. Show your Boolean algebra calculations.

a.
b.
c.
d.

Answers

1. a. 01001010
b. 11111111
c. 00000000

220

Prior Status Byte

84
27
02
A7

Current Status Byte

46
63
07
DB

d. 00001110
e. 00001000 = 08
f. 001()()110 = 26
g. 00110011 = 33
h. 00001001 = 09

2. a. liquid-level, voltage, temperature, and pressure measuring devices
b. liquid-level measuring device
c. liquid-level, current, and velocity measuring devices
d. current measuring device
e. temperature measuring device
f. current and voltage measuring devices
g. velocity and temperature measuring devices
h. frequency and liquid-level measuring devices
i. pressure measuring device
j. current and flow measuring devices

3. a. You first convert the two bytes into binary code.

84 = 10000100 (prior status byte)
46 = 01000110 (current status byte)

Next, you perform an Exclusive-OR operation on these two data bytes.

10000100 EB 01000110 = 11000010

Using the result, 11000010, you perform an AND operation between it
and the prior status byte,

10000100 • 11000010 = 10000000

You perform a NOT operation on this result,

10000000 = 01111111

Finally, you employ the result of the NOT operation and perform an
AND operation between it and the result of the initial Exclusive-OR op
eration,

01111111 • 11000010 = 01000010

Now we can make the proper conclusions.
1. The frequency, liquid-level, and temperature measuring devices

changed state.
2. The frequency measuring device went from on to off.
3. The liquid-level and temperature measuring devices went from

off to on.
By inspection of the two status bytes, you should conclude that the
Boolean algebra has provided the correct answers.

b. Convert hex status bytes into binary code,

27=00101111 (prior status byte)
63=01100011 (current status byte)

Perform an Exclusive-OR operation.

00101111 EB 01100011 = 01001100

Use the result and perform an AND operation with prior status byte,

221

00101111 · 01001100 = 00001100

So far, we can conclude that the liquid-level, flow, and velocity measur
ing devices have changed state. The flow and velocity measuring devices
have gone from on to off.
Complement the result of the AND operation.

00001100 = 11110011

AND this result with the result of the initial XOR operation,

11110011 · 01001100 = 01000000

Therefore, the liquid-level measuring device went from off to on.

c. Convert hex status bytes into binary code,

02 = 00000010 (prior status byte)
07 = 00000111 (current status byte)

Perform an XOR operation,

00000010 EB 00000111 = 00000101

Use this result and perform an AND operation with prior status byte,

00000010 • 00000101 = 00000000

The velocity and pressure measuring devices changed state. Neither
went from on to off.
Complement the result of the AND operation.

00000000 = 11111111

AND this result with the result of the initial XOR operation,

11111111 • 0000101 = 00000101

Both the velocity and pressure measuring devices went from off to on.

d. Convert hex status bytes into binary code,

222

A7 = 10100111 (prior status byte)
DB= 11011011 (current status byte)

Perform an XOR operation,

10100111 EB 11011011 = 01111100

Use this result and perform an AND operation with prior status byte,

01111100 • 10100111 = 00100100

The liquid-level, current, voltage, flow, and velocity measuring devices
changed state. The current and velocity measuring devices went from
on to off.
Complement the result of the AND operation,

00100100 = 11011011
AND this result with the result of the initial XOR operation,

11011011 • 01111100 = 01011000

The liquid-level, voltage, and flow measuring devices went from off to on.

CHAPTER 1 0

Bit Manipulation,
Rotate and Shift

Instructions

In this chapter, we shall examine two groups of instructions that
significantly enrich the instruction set of the Z-80, the BIT MANIPU
LATION group and the ROT ATE AND SHIFT group. The in
structions in the bit manipulation group will allow you to test and/
or change register and memory cell values at the individual bit level.
Actually, the bit manipulation instructions comprise over 50% of
the new Z-80 instructions that are not available on 8080-based
systems.

OBJECTIVES

At the completion of this chapter, you will be able to do the fol-
lowing:

• Use the bit manipulation instructions, BIT, SET, and RESET.
• Use the rotate and shift instructions.
• Understand why each of the bit manipulation, rotate and shift

instructions are useful.
• Understand the applicability of the RRD and RLD instructions

to processing bed numbers.

223

BIT SET, TEST, AND RESET PROCESS

One simple and universal example of the use of the set, reset, and
test bit process is the procedure followed by rural mail carriers and
residents to facilitate the delivery of mail. Every mailbox, like those
in Fig. 10-1, on a rural mail route in the United States has a red flag
attached to it which can be in either the up position, flag set (logic
one state), or in the down position, flag reset (logic zero state).
If the resident wants the postman to stop at his mailbox to pick up

Fig. 10-1. Flag positions.

some letters, the resident SETS the flag (raises the flag to the up
position). The postman drives by and looks (TESTS the flag) to
see if the flag is set. If the flag is set, the postman stops, picks up the
letters, and then RESETS the flag so that the process can be repeated
with the same convention the next day.

If the flag is not set, the postman does not "service" the mailbox
unless he has some letters to deliver to the resident. Thus, without
the flag setting and resetting convention, the only time that the resi
dent could send a letter would be on those days that the resident was
receiving letters and the postman had to stop anyway. This would
be an awkward situation for those of us who never get any mail.

A lot of information is being conveyed from the resident to the
postman with this one flag convention. The reason this procedure
works is, of course, because there is an agreement between the resi
dent and the postman as to the conditions under which each shall
SET and RESET the flag. This is an example of a very simple proto
col. According to Webster, a protocol can be defined as a code pre
scribing strict adherence to correct etiquette and precedence. The
notion of a protocol will be very important when you begin inter
facing microcomputers to other devices and other microcomputers.

The Z-80 instruction set in Table 10-1 includes 240 different bit
manipulation instructions:

80 set bit instructions ("SET''),
80 reset bit instructions ("RES"), and
80 test bit instructions ("BIT'') .

For example the set bit instruction, SET 0,A (op code: CB C7),
puts a logic 1 into bit number zero of the accumulator. Note that the

224

Table 10-1. Bit Manipulation Group lnstrudions

REG.
REGISTER ADDRESSING INOIR. INDEXED

A B C D E H L IHLI (IX+dl (IY+dl
BIT

DO FD
0 CB CB CB CB CB CB CB CB CB CB

47 40 41 42 43 44 45 46 d d
46 46

CB
00 FD

1 CB CB CB CB CB CB CB CB CB
4F 48 49 4A 4B 4C 40 4E d d

4E 4E

2 C9 CB C9 CB CB CB CB CB
OD FD
CB CB

57 50 51 52 53 54 66 66 d d
66 58

3 C9 CB CB CB CB CB C9 CB
00 FD
C9 CB

TEST
SF 5B 59 SA SB SC 50 SE d d

SE SE
'BIT' 00 FD

4 CB CB CB CB CB C9 CB CB CB CB
67 60 61 62 63 64 65 66 d d

66 66

CB CB CB CB CB
DO FD

5 CB CB CB CB C9
BF 6B 69 BA BB BC 60 6E d d

6E 6E

CB
DD FD

6 C9 CB CB CB CB CB GB CB CB
77 70 71 72 73 74 75 76 d d

76 76

7 CB CB CB CB CB CB CB CB
00 FD
CB C9

7F 78 79 7A 7B 7C 70 7E d d
7E 7E
DO FD

0 C9 CB C9 CB CB C9 CB CB CB CB
B7 BO Bl B2 BJ B4 B5 6B d d

B6 B6

CB CB C9 C9 C9 C9 CB CB
DO FD

1 CB CB
BF 8B B9 BA BB BC 80 BE d

BE
d
BE

2 CB CB CB CB CB C9 CB CB
DD
C9

FD
CB

97 9D 91 92 BJ 94 B5 98 d d
98 98

3 CB CB CB CB CB CB C9 CB
DD FD
CB C9

RESET 9F 9B 99 9A 9B 9C 90 9E d d
BIT 9E 9E

'RES'
4 CB CB CB CB CB CB C9 C9

OD FD
C9 CB

A7 AO Al A2 A3 A4 A5 AS d d
AS A6

CB CB CB CB CB CB CB C9
DD FD

5 CB C9
AF AB A9 AA AB AC AD AE d d

AE AE

6 CB CB CB CB CB C9 C9 C9
OD FD
CB C9

B7 BO 81 B2 BJ B4 B5 BS d
86

d
BS

CB C9 C9 C9 CB CB
DD FD

7 C9 C9 CB CB
BF BB B9 BA BB BC 80 BE d d

BE BE
00 FD

0 C9 C9 C9 C9 C9 C9 CB CB CB CB
C7 00 Cl C2 C3 C4 C5 C6 d d

C6 C6
DD FD

1 C9 C9 C9 CB C9 CB CB CB CB C9
CF CB C9 CA CB cc CD CE d d

CE CE
OD FD

2 C9 C9 CB CB CB C9 C9 C9 CB C9
07 DO 01 02 03 04 05 06 d d

06 06
DO FD

3 C9 CB CB C9 C9 C9 CB C9 C9 C9
SET OF DB 09 DA DB DC DD DE d d

BIT
DE DE
00 FD -SET' 4 CB C9 CB C9 CB CB CB CB CB CB

E7 EO El E2 E3 E4 ES E6 d d
E6 E6
00 FD

6 CB CB CB CB CB CB CB CB CB CB
EF E6 EB EA EB EC ED EE d d

EE EE
DD FD

6 CB CB CB CB CB CB CB CB CB CB
F7 FO F1 F2 F3 F4 F6 FB d d

FB FB

CB
DO FD

7 CB CB CB C9 C9 CB CB CB CB
FF FB F9 FA FB FC FD FE d

1E FE

Courtesy Zttog. Inc.

225

number specifying the bit (0 in this example) is not a data or a<
dress byte and is not followed by an H meaning hexadecimal or
meaning decimal. Consider the following two examples:

Example 1
Before Execution of SET o,A
After Execution of SET O,A

Example 2
Before Execution of SET O,A
After Execution of SET O,A

Accumulator

1 0 0 1 0 0 0
1 0 0 1 0 0 1

11110011
11110011

Remember that the eight bits in any register or memory location ai

always numbered from right to left, starting with bit zero and endir
with bit seven.

A common way of describing the SET O,A instruction is to SE

that it "SETS" the zeroth bit of the accumulator to 1. A shorter an•
hence, more popular way of saying this is to say that the instructic
"SETS" the zeroth bit of the accumulator. Common usage has d,
termined that the phrase "SE'ITING" a bit implies that the valt
of ·the bit is 1 after the instruction has been executed. Similarly, tl
phrase "RESETTING" a bit means that the value of the bit is O aftt
the "RESETTING" instruction has been executed.

One should note that both the set bit instruction and the reset 1::
instruction are independent of the original value of the bit. Thus,
previously "SET" bit can be "SET" again for no net change on tl
bit. The instruction, RES O,D (op code: CB 82), will reset bit ze1
of the D register.

Example 3
Before Execution of RES O,D
After Execution of RES O,D

Example 4
Before Execution of RES 0,D
After Execution of RES O,D

D Register

1001111
1001110

00000000
00000000

Neither the "SET" nor the "RESET" instructions affect any flag
A somewhat more complicated instruction is the test bit instru4

tion. For example, the instruction, BIT O,A (op code: CB 4T
tests bit zero of the accumulator. H bit zero of the accumulator is.
zero then this instruction will set the zero flag. That is, the value c
the zero flag will be 1 if the zeroth bit of the accumulator is zero.

Example 5

226

Before Execution of BIT O,A
After Execution of BIT O,A

Accumulator

10011100
10011100

Zero Flag

X
1

Example 6
Before Execution of BIT O,A
After Execution of BIT O,A

Example 7
Before Execution of BIT O,A
After Execution of BIT O,A

(X=Don't care)

1 1 1 0 0 1
1 1 1 0 0 1

1 1 1 1 1
1 1 1 1 1

X
0

X
0

Note that in no case does this instruction, BIT 0,A, change the value
of the accumulator.

You will find the test bit instruction to be quite useful. For ex
ample, this instruction allows you to determine the value of a par
ticular bit in any register or any memory location without having to
create a mask byte and alter the contents of the accumulator. Con
~ider the following two instruction sequences which perform the
same function, namely that of determining whether bit D4 of location
OlFF is logic 1 or logic 0:

Sequence 1:

Sequence 2:

LO A,(OlFFH)

AND 08H

LO A,(OlFFH)

BIT 4,A

Sequence 1 uses the mask byte 08 to change the contents of the ac
cumulator with the zero flag set according to the result. Sequence
2 affects the zero flag in precisely the same manner as does Sequence
1 without changing the contents of register A. Both sequences re
quire five bytes of memory.

ROTATE AND SHIFT INSTRUCTION GROUP

There are 74 rotate and shift instructions for the Z-80, as pre
sented in Table 10-2. The four Intel 8080A compatible rotate accu
mulator instructions RLCA, RRCA, RLA, and RRA are almost
redundant. They were included in the Z-80 instruction set only to
maintain compatibility with the Intel 8080A instruction set. One
should note that these four instructions affect no flag other than the
carry flag. The execution of any of these four instructions does not
affect the zero, parity/overflow, or sign flags. However, all of the
remaining 70 rotate instructions affect all of the carry, zero, parity/
overflow, and sign flags. In addition to these 74 instructions, there
are two very special decimal-digit instructions that we will discuss
separately.

227

TYPE
OF
ROTATE
OR
SHIFT

'RLC'

'RRC'

'Rl'

'RR'

'SLA'

'SRA'

'SRL'

'RLD'

'ARD'

A

CB
07

CB
OF

CB
17

CB
1F

CB
27

CB
2F

CB
3F

B C

CB CB
00 01

CB CB
08 09

CB CB
10 11

CB CB
1B 19

CB CB
20 21

CB CB
2B 29

CB CB
38 39

Source and Destination

0 E H

CB CB CB
02 03 04

CB CB CB
OA OB oc

CB CB CB
12 13 14

CB CB CB
1A 1B 1C

CB CB CB
22 23 24

CB CB CB
2A 2B 2C

CB CB CB
3A 3B 3C

L IHLI UX +d)

CB CB
DD
CB

05 06 d
06

CB CB
DD
CB

OD OE d
OE

CB CB
OD
CB

15 16 d
16

CB CB
OD
CB

1D 1E d
1E

CB CB
DD
CB

25 26 d
26

CB CB gg
20 2E d

2E

CB CB
DD
CB

3D 3E d
3E

ED
6F

ED
67

UY +di

FD
CB
d
06
FD
CB
d
OE
FD
CB
d
16
FD
CB
d
1E
FO
CB·
d
26
FD
CB
d
2E
FD
CB
d
3E

Ef.Yb,-•o~ Rotate
Left Circular

&Y ~ Rotate - Right Circular

~ ~ - Rotate
~ ~ - Rotate

Right

r::1..-_·~-- Shift
~ D Left arithmetic

Shift
Right Arithmetic

Shift
Right Logical

lba~;? .. 1IHLJ ~;:"
ACC c__5 D" Left

L-___Jl'---,.........,H Q I IHLI ~7:."
ACC fc_ ____ ==r _ ___J Right

Rotate Left Circular (RLC) (Fig. 10-2)

We can interpret this diagram by examining the contents of the
carry bit and the accumulator both before and after the execution
of the instruction RLC A. Thus:

Before Execution of RLC A
After Execution of RLC A

For example:

Before Execution of RLC A
After Execution of RLC A
(X = Don't care)

fig. 10.2.

Carry Bit

C
D7

X
1

Rotate Right Circular (RRC) (Fig. 10-3)

Accumulator

D7 D6 D5 D4 D3 D2 Dl DO
D6 D5 D4 D3 D2 Dl DO D7

1 1 0 1
1 0 1 1

1 0 0
0 0 1

This diagram implies that the following changes are made to the
carry bit and to the C register during the execution of the instruc
tion RRC C:

Fig.10,3.

Before Execution of RRC C
After Execution of RRC C

For example:

Before Execution of RRC C
After Execution of RRC C

Carry Bit

C
DO

X
0

C Register

D7 D6 D5 D4 D3 D2 Dl DO
DO D7 D6 D5 D4 D3 D2 Dl

1 1 0 1 1 1 0 0
01101110

Note that, for both the RRL and RRC instructions, the original
content of the carry flag is destroyed by the execution of the in
struction.

Fig. HM.

229

Rotate Left (RL) (Fig. 10-4)

This diagram implies that the following changes are made to the
carry bit and to the accumulator for the RL A instruction.

Before Execution of Rl A
After Execution of Rl A

For example:

Before Execution of Rl A
After Execution of Rl A

Rotate Right (RR) (Fig. 10-S)

Carry Bit

C
D7

0

Accumulator

D7 D6 D5 D4 D3 D2 Dl DO
D6 D5 D4 D3 D2 Dl DO C

l l 0 0 0
l O l l l O O 0

This diagram implies that the following changes are made to the
carry bit and to the D register for the RR D instruction:

Before Execution of RR D
After Execution of RR D

For example:

Before Execution of RR D
After Execution of RR D

Carry

C
DO

0
0

Fig.10.S.

D Register

D7 D6 D5 D4 D3 D2 Dl DO
C D7 D6 D5 D4 D3 D2 Dl

11011100
01101110

The four rotate instructions are often used to examine successive
bits in a particular register or memory location. For example, if you
want to find the highest order nonzero bit in the accumulator, you
can perform successive "rotate left" instructions until the carry flag
is set equal to 1 :

LD A,X
LD C,OSH

CHECK: DEC C
JP M,END
RL A
JP NC,CHECK

END: RST 38H

;load Accumulator with byte X to be tested
;Bit counter
;Update bit counter
;All bytes checked?
;Rotate next most significant bit to C
;Is it O or l? If 0, then try next bit
;Otherwise, return control to the operating system

In the preceding instruction sequence, register C returns the num
ber (7 for most significant bit, ... ,0 for least significant bit) of the
highest order nonzero bit in the accumulator. Note that the one-byte
RLA instruction could be used instead of the two-byte RL A in
struction previously given because only the carry flag is important
to the program logic.

230

Another interesting application of the rotate instructions can be
,een in the following example. Suppose there are eight processes
.hat must be performed in sequence, i.e., Process 1 first, Process 2
;econd, etc. However, not all processes are always performed. For
:xample, in some situations, the appropriate sequence of processes is:

Process 1
Process 3
Process 5
Process 8

Process 5
OR Process 7

Process 3
OR Process 6

Process 8

Jr any other of the 256 possible sequences. To implement the pro
~ram logic required to handle this situation, one can use a rotate
right instruction.

First, subroutines for each process, SUBl for Process 1, ... ,SUBS
:or Process 8, are developed. Then each time a sequence of processes
nust be performed, a one-byte description of the sequence is gen
~rated by setting bit O if Process 1 is to be performed, setting bit 1
if Process 2 is to be performed, setting bit 7 if Process 8 is to be
oerformed. If a bit is at logic 0, its associated process is not per
cormed. The branching logic for performing any so specified process
;equence can be implemented as follows: (Note that the instruction
R.RA is almost identical to the instruction RR.)

RRA
CALL C,SUBl
RRA
CALL C,SUB2
RRA
CALL C,SUB3
RRA
CALL C,SUB4
RRA
CALL C,SUBS
RRA
CALL C,SUB6
RRA
CALL C,SUB7

We assume that the sequence byte has been loaded into the accumu
ator. Note that the above instruction sequence uses the one-byte
lRA instruction instead of the two-byte RRA instruction because
>nly the carry flag is important to the program logic.

The next group of instructions that we will discuss is called the
mIFT GROUP. The rotate and shift instructions are often used in
:onjunction with each other to perform many important programming
'unctions. We will discuss several of these examples in this and the
1ext chapters.

231

SHIFT INSTRUCTIONS
Shift Left Arithmetic (SLA) (Fig. 10-6)

This diagram implies that the following changes are made to the
carry bit and to the accumulator.

0 Fig.10-6.

Carry Bit Accumulator

Before Execution of SLA A C 07 06 05 04 03 02 01 DO
After Execution of SLA A 07 06 05 04 03 02 01 DO 0

This instruction has the effect of multiplying the contents of the
accumulator by 2 with an overflow signal provided when the carry
bit is set equal to 1. Consider the following examples:

Example 1 Carry Bit Accumulator

Before Execution of SLA A X O O 1 1 0 0 1 1 =51 {decimal)
After Execution of SLA A O (no overflow) 0 1 1 0 0 1 1 0 = 102 (decimal)

Example 2
Before Execution of SLA A X O 1 1 0 0 1 1 0 = 102 {decimal)
After Execution of SLA A O (no overflow) 1 1 0 0 1 1 0 0 = 204 {decimal)

Example 3
Before Execution of SLA A X
After Execution of SLA A 1 (overflow)

1 0 0 1 1 0 0 0 =152{decimal)
0 0 1 1 0 0 0 0 =48{decimal)"

In the first two examples, the contents of the accumulator were
doubled by the SLA A instruction. But in Example 3, the contents
of the accumulator went from 152 to 48, hardly doubling the initial
value. The reason for this is that 2 times 152 equals 304 which is
greater than 256, the maximum positive integer that can be repre
sented in eight bits (using binary, not two's complement, represen
tation). When the original number being shifted is larger than 128,
the result of the shift will not be 2 times the number (but rather 2
times the number minus 256) and the carry bit will be set to in
dicate this.

The SLA instruction can also be used in conjunction with the RL
instruction to perform multibyte left shifts. The following instruc
tion sequence shifts the DE register pair left one bit, zero-filling the
vacated bit:

SLA E
Rl D

Note that we can also shift left pairs of memory bytes. To shift
left and zero fill memory locations 0100 and 0101, we can use the
following instruction sequence.

232

LD IX,OlOOH
SLA (IX)
RL (IX+OlH)

Multibyte shifts are extremely important in programming multibyte
arithmetic operations such as multiplication and division.

Shift Right Arithmetic (SRA) (Fig. 10-7)

This diagram implies that the following changes are made to the
carry bit and to the accumulator.

Fig. 10-7.

Before Execution of SRA A
Aher Execution of SRA A

Carry Bit Accumulator

C D7 D6 D5 D4 D3 D2 Dl DO
DO D7 D7 D6 D5 D4 D3 D2 D1

Note that the value of the carry bit is destroyed.
This instruction has the effect of dividing the contents of the given

register by 2, putting the "remainder" of this division into the carry
bit. Division is carried out in two's complement form, i.e., the in
struction assumes that the number in the register is in two's com
plement form and produces a quotient in the same register in two's
complement form. Consider the following examples:

Example 4 Carry Bit Accumulator

Before Execution of SRA A X O O O O 1 1 = 15 (decimal)
= 7 (decimal) Aher Execution of SRA A 1 (remainder) 0 0 0 0 0 1

Example 5
Before Execution of SRA A X
After Execution of SRA A O (remainder)

1 0 0 0 1 1 1 0 = -114 (decimal)
1 1 0 0 0 1 1 1 = -57(decimal)

The SRA instruction can be used in conjunction with the RR in
struction to perform multibyte right shifts in much the same manner
as the SLA and RL instructions perform left shifts. For example, the
HL register pair can be right shifted, with bit D7 of the H register
filling in the vacated bit, as follows:

SRA H
RR L

Shift Right Logical (SRL) (Fig. 10-8)

Before Execution of SRL A
After Execution of SRL A

Carry Bit

C
DO

Accumulator

D7 D6 D5 D4 D3 D2 Dl DO
0 D7 D6 D5 D4 D3 D2 D1

233

Fig.10-8.

0

This instruction has the effect of dividing the number in the reg
ister by 2, when the number in the register is viewed as a positive
8-bit binary number. The quotient appears in the register after the
execution of the instruction and the remainder appears in the carry
bit.

Example 6 Carry Bit Accumulator

Before Execution of SRL A X 1 0 0 0 0 0 1 1 =131 (decimal)
After Execution of SRL A 1 (remainder) 0 1 0 0 0 0 0 1 = 65 (decimal)

To shift right, zero-fill multibyte sequences, you can use the SRL
and RR instructions. For example, to shift right zero-fill an eight
byte sequence residing at memory locations 0100 through 0107 you
can use the following instruction sequence:

LD B,08H
LD HL,0107H
SRL (HL)

SHIFT: DEC HL
DEC B
JP Z, END
RR (HL)
JP SHIFT

END: RST 38H

Let us now discuss the two special rotate decimal-digit instructions.
First we describe the RLD and RRD instructions and then we give
examples of how they can be used.

Rotate Digit Left (RLD) (Fig. I 0-9)

Before Execution
of RLD
After Execution
of RLD

Accumulator Memory Cell Pointed to by HL
D7 D6 D5 D4 D3 D2 Dl DO B7 B6 B5 B4 B3 B2 Bl BO

D7 D6 D5 D4 B7 B6 B5 B4 B3 B2 Bl BO D3 D2 Dl DO

;,_________,j ,.____.:
Accumulator NL

Fig.1G-9.

234

For example:

Before Execution
of RLD
After Execution
of RLD

11011000 0 0 1 0 1 1 0 0

11010010 11001000

Note that this instruction rotates half bytes (NIBBLES) at a time.
It does not simply rotate bits at a time. In other words, the four bits
1000 in the low order nibble of the accumulator appear at their final
destination as 1000, not as 0001.

Rotate Digit Right (RRD) (Fig. 10-10)

Accumulator Memory Cell Pointed to by HL

Before Execution D7 D6 D5 D4 D3 D2 Dl DO 87 86 85 84 83 82 Bl BO
of RRD
After Execution D7 D6 D5 D4 83 82 81 BO D3 D2 DI DO 87 86 85 84
of RRD

:
Accumulator Fig. 10.10.

For example:

Before Execution
of RRD
After Execution
of RRD

1 1 0 1 0 0 0 1

1 1 0 1 1 1 1 0

t I :
HL

1 0 1 1 1 1 1 0

00011011

The RLD and RRD instructions are especially useful for process-
. ing which involves manipulating nibbles instead of bits and bytes.
Programs which use the binary coded decimal (bed) representation
for numbers are excellent examples of this kind of nibble-oriented
processing. Recall that bed number representation equates four bits
to a decimal number, thus, allowing for two decimal numbers per
byte. For example, the bed representation for the decimal number
83 is

10000011

nibble 1 =8 nibble 2=3

Conversely, the bed interpretation of the byte:

0 1 1 1 0 0 0 0

is the decimal number 70. Thus, in terms of bed representation, the
RLD instruction rotates decimal digits left between the memory cell
pointed to by HL and the accumulator. Similarly, the RRD instruc
tion rotates bed digits to the right.

235

For example, the following sequence of instructions will shift
left zero-fill a sequence of eight bed digits residing in the four se
quential memory locations from 0100 through 0103:

LD 8,04H
LD HL,0lOOH
LD A,OOH

AGAIN: RLD
INC HL
DEC B
JP NZ,AGAIN
RST 38H

Note that the high order decimal digit (the high order nibble of
memory location 0103) is left in the low order nibble of the accu
mulator.

The high order nibble of the accumulator is not affected by the
whole operation. The following diagram illustrates the effects of the
above routine on the accumulator and memory locations 0 100
through 0103.

Before:

After:

Accumulator

D
D

0103

8 7

7 6

0102

6 5

5 4

0101 0100

4 3 2 1

3 2 1 0

An additional application for these rotate instructions, translation of
bed to ASCII representation, is explored in Experiment No. 2.

INTRODUCTION TO THE EXPERIMENTS

The following experiments are designed to help you understand
how the bit manipulation, rotate and shift instructions work and to
illustrate their uses to you. In Experiment No. 1, we introduce you
to the ASCII representation of numbers. In each of the three ex
periments, we give you programs that convert numbers between three
forms of representation: binary, bed, and ASCII.

Experiment No.
1

236

2

3

Comments
Demonstrates the use of the BIT and RR instruc
tions in program to convert binary to ASCII rep
resentation.
Demonstrates the use of the RL instruction in a
program to convert ASCII to binary representation.
Demonstrates the use of the RRD instruction in a
program to convert bed to ASCII representation.

EXPERIMENT NO. 1
Purpose

The purpose of this experiment is to demonstrate the use of the
BIT instruction in a program to convert binary to ASCII represen
tation. The ASCil representation of the numbers 0 through 9 is given
by the following table:

DECIMAL NO.
0
1
2
3
4
5
6
7
8
9

ASCII REPRESENTATION IN HEX
30
31
32
33
34
35
36
37
38
39

ASCII is just another method for representing numbers using 8-bit
bytes. For many crt and printer terminals, ASCII is the standard
code for representing numbers, letters, and special characters such
as ;, !, <, >, ?, etc. Binary to ASCII conversion means inputting a
string of Os and ls and outputting a corresponding sequence of 30s
and 31s. For example, the byte 0 1 0 0 1 1 0 1 would be converted
to the following eight-byte string (represented in hex):

30 31 30 30 31 31 30 31

The following program converts the byte currently in the B reg
ister to an eight-byte string stored in memory beginning at location
0200.

Program No. 29
Memory
Location

0100
0102
0105
0107
0109
0108
OlOC
0100
OlOF
0110
0112

Object
Code

OE 08
21 00 02
36 30
CB 40
28 01
34
23
CB 18
OD
20 F3
FF

Source Code

LO C,OBH
LO HL,0200H

NXTBlT: LO (HL),30H
BIT 0,8
JR Z,ZERO
INC (HL)

ZERO: INC HL
RR B
DEC C
JR NZ,NXTBIT
RST 38H

Comments

;Bit counter
;Start of ASCII string
;ASCII zero
;Test the bit
;If not zero, increment
;the 30 to 31
;Increment ASCII string pointer
;Rotate B to look at next bit
;Update the bit counter
;All bits translated?

217

Step 1

Load the above program at the indicated address. Execute it using
several different sample bytes in the B register. For example, if the
contents of the B register are

0 1 1 1 1 0 0 0
then memory locations 0200 through 0207 should read (in hex)

(0200)=30
(0201)=30
(0202)=30
(0203)=31
(0204)=31
(0205)=31
(0206)=31
(0207)=30

Step 2
Replace the preceding program to utilize a rotate instruction and

the carry flag to translate each bit from binary to ASCII. Test and
debug your program to make sure it works properly.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to demonstrate the use of the
RL instruction in a program to convert ASCII to binary represen
tation. In this program, a string of eight ASCII Os and ls (hex 30s
and 31 s) is input and a single byte with the proper bits set to logic 0
and logic 1 is output. The following program converts the string of
eight bytes starting at location 0200 to a single byte which is con
tained in the B register.

Program No. 30
Memory Object
Location Code

0120 OE 08
0122 21 00 02
0125 7E
0126 lF
0127 CB 18
0129 23
012A OD
012B 20 F8
012D FF

Step 1

Source Code

LD C,08H
LD HL,0200H

NXT: LD A, (HL)
RRA
RR B
INC Hl
DEC C
JR NZ,NXT
RST 38H

Comments

;Bit counter
;Start address of-ASCII string
;Get byte
;Move bit O to C flag
;Rotate C flag into register B
;Point to next byte
;Update bit counter
;Have we looked at all bytes?

Load and execute the above program using several sample ASCII
strings as input.

238

Step 2

Rewrite the program to process the ASCII byte string from loca
tion 0207 down to 0200. How will this influence the rotate instruc
tions? Test and debug your program to make sure that it works
properly.

EXPERIMENT NO. 3
Purpose

The purpose of this experiment is to demonstrate the use of the
RRD instruction in a program to convert bed to ASCII represen
tation. In this program, bed to ASCII conversion means inputting a
string of "packed bed" bytes, i.e., bytes which contain two four-bit
bed numbers, and outputting a string of ASCII numbers, one per
byte. For example,

Byte 1 0 0 1 1 1 0 0 1 =39 (bed)

Byte 2 0 1 0 1 1 0 0 0 =58 (bed)

Byte 3 0 0 0 0 0 0 0 1 =01 (bed)

Byte 4 0 1 1 1 0 0 0 0 =70 (bed)

converts to the eight-byte ASCII string (written in hex)

33 39 35 38 30 31 37 30

The following program converts a string of packed bed bytes,
whose start address is contained in register pair HL, to a string of
ASCII bytes whose start address is contained in register pair DE.
Register pair HL is set to 0210 and DE is set to 0301 initially. Reg
ister C contains the number of packed bed bytes to be converted.
We have set the contents of C to 04.

Program No. 31
Memory Object
Location Code

0130 3E 30

0132 21 10 02
0135 11 01 03

0138 OE 04
013A ED 67

Source Code

LO A,30H

LO HL,0210H
LO OE,0301H

LO C,04H
BCD: RRD

Comments

;lnitia lize high order nibble of
;accumulator to 3
;Source address (packed bed)
;Destination address (ASCII
;string)
;Number of source bytes
;Rotate low order nibble to ac
;cumulator. Since high order

239

;nibble is 3 we have the ASCII
;equivalent.

013C 12 LD (DE),A ;Store ASCII byte
013D 1B DEC DE ;Decrement destination pointer

;for high order bed number
013E ED 67 RRD ;Rotate high order nibble to

;accumulator
0140 12 LD (DE),A ;Store ASCII byte
0141 ED 67 RRD ;Rotate h:gh order nibble back

;to source byte restoring it to
;initial form

0143 13 INC DE ;Update destination pointer
0144 13 INC DE
0145 13 INC DE
0146 23• INC HL ;Update source pointer
0147 OD DEC C ;Update source byte counter
0148 20 FO JR NZ,BCD ;Are we done?
014A FF RST 38H

Step 1
Load the above program at the indicated address. Execute the

program in single step mode for several sample packed bed strings
to try to understand how it works.

Step 2
Let us discuss how the above program operates. Consider the

diagram in Fig. 10-1.
Memory High Order
Location BCD No.

D7 D6 D5 D4

0210 BCDl
0211 BCD3
0212 BCD5
0213 BCD7

0300 ASClll
0301 ASCll2
0302 ASCll3
0303 ASCll4
0304 ASCll5
0305 ASCll6
0306 ASCll7
0307 ASCIIS

Low Order
BCD No.

D3 D2 Dl DO

BCD2
BCD4
BCD6
BCDS

loaded after 2nd RRD
loaded after 1st RRD
loaded after 5th RRD
loaded after 4th RRD
loaded after 8th RRD
loaded after 7th RRD
loaded after 11th RRD
loaded after 1 0th RRD

Memory
Location

Accumulator 0210

Initial configuration 13 o! j3<:D1 BCD2 !
After first RRD instruction 13 BCD2I ~ BCDl I

Note: 3 BCD2 = ASCII2 is stored in (0301)

240

After second RRD instruction 13 ecoil §02 o I
Note: 3 BCDl = ASCill is stored in (0300)

After third RRD instruction 13 q ~co1 eco2 I
Note: Everything is restored, translation of

source byte is complete.

(Everything restored, translation of source byte complete.)
There are three crucial facts to understand about this program:

1. The RRD instruction operates to move nibbles between mem
ory and the accumulator. This is shown in Fig. 10-1.

2. The operation of the RRD instruction requires that BCD2 is
converted to ASCII2 before BCDl is converted to ASCill.
This explains why register DE is initialized to 0301, decre
mented, and then incremented three times.

3. The operation of the RRD instruction allows us to initialize
the accumulator to 30 and perform the bed to ASCII transla
tion by merely rotating bed digits into the low order nibble,
keeping the high order nibble constant.

Note that this program departs from our normal practice of associat
ing high order halves of pairs with higher memory locations: BCDl,
the high order nibble, is translated to ASCill at location 0300 and
BCD2, the low order nibble, is translated to ASCII2 at location 0301.
This departure is due to the fact that it is normally desirable to print
the high order digit first. Thus, the ASCII string starting at location
0300 can be output in sequence to a printer and, thus, appear in the
normal "printed" order with high order digits preceding low order
digits.

241

CHAPTER 11

Arithmetic and Block
Search Instructions

In this chapter we shall continue our discussion of the 8-bit Arith
metic and Logic Instruction Group and the General-Purpose AF In
struction Group. We shall also investigate the 16-bit Arithmetic In
struction Group and the powerful Block Search Instruction Group.
These four instruction groups appear in Tables 11-1, 11-2, 11-3, and
11-4, respectively. At the end of this chapter, you will have had ex
perience in using every instruction that the Z-80 microprocessor can
perform except the input, output, and interrupt related instructions,
which will be covered in detail in a subsequent volume.

OBJECTIVES

At the completion of this chapter you will be able to:

• Write programs to add, subtract, multiply, and divide 8-bit bi
nary integers.

• Write programs to add, subtract, multiply, and divide 16-bit
binary integers.

• Understand and use the decimal adjust accumulator (DAA) in
struction in conjunction with bed arithmetic.

• Describe the functions of the H and N flags in conjunction with
bed arithmetic and the DAA instruction.

• Understand and use the add-with-carry and subtract-with-carry
instructions.

243

Table 11-1. The 8-Bit Arithmetic and logic Groups
SOURCE

'ADD'

ADDwCARRY
'ADC'

SUBTRACT
'SUB'

SUBwCARRY
'SBC'

'AND'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'INC'

DECREMENT
'DEC'

REG.
REGISTER ADDRESSING INDIR. INDEXED IMMED.

Courtesy Zilog, Inc.

Table 11-2. General.Purpose Af Operations

Decimal Adjust Ace, 'DAA'

Complement Ace, 'CPL·

Negate Ace, 'NEG'
(2's complementl

Complement Carl",' Flag, 'CCF'

Set Cany Flag. 'SCF'

Courtesy Zilog, Inc.

• Understand and use the compare instruction, CP, and the power
ful block search instructions which are an extention of it.

244

DESTINATION

Table 11-3. The 16-Bit Arithmetic Group

SOURCE

BC DE HL

•, ',. ·.·.'
HL • ·W::l •· ,.

'ADD' IX DD DD
09 19

IV FD FD
09 19

ADD WITH CARRY AND HL ED ED ED
SET FLAGS 'ADC' 4A 5A 6A

SUB WITH CARRY AND HL ED ED ED
SET FLAGS ·sec· 42 52 62

INCREMENT 'INC' oa 13 23

DECREMENT 'DEC' OB 18 -
Table 11-4. Block Search Group
SEARCH
LOCATION -
REG.
INDIR. -
(HL)

ED 'CPI'
Al Inc HL, Dec BC

ED 'CPIR', Inc HL, Dec BC
Bl repeat until BC = 0 or find match

ED 'CPD' Dec HL & BC
A9

ED 'CPDR' Dec HL & BC
B9 Repeat until BC= 0 or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

Courtesy Zllog, Inc.

SP IX IV

'.

' ,39.,

DD DD
39 29

FD FD
39 29

ED
7A

ED
72

33 DD FD
23 23

38 DD FD
28 28

Courtesy Zilog, Inc.

245

8-BIT ARITHMETIC GROUP

The instructions in the 8-bit arithmetic group all involve addition
or subtraction of 8-bit bytes. The INC and DEC instructions add or
subtract hexadecimal 01 from a specified register or memory byte.
The ADD and SUB instructions specify a byte in a register or mem
ory location to be ADDed or SUBtracted to/from the byte in the
accumulator with the resultant sum/ difference residing in the accu
mulator. The INC, DEC, ADD, and SUB instructions for 8-bit opera
tions all affect the flags as follows:

Zero Flag: If the result in the accumulator is zero then the Z-flag
is set, otherwise it is reset.

Sign Flag: If the result in the accumulator is negative (i.e., most
significant bit is logic 1) , the S-flag is set, otherwise it is reset.

Carry Flag: If the operation, INC, DEC, ADD, or SUB, re
sulted in a carry or borrow to/from a "phantom" 9th bit,
the C-flag is set, otherwise it is reset.

P /V (parity/ overflow) Flag: The P /V flag performs strictly as
a two's complement arithmetic overflow indicator. See the
discussion of this in Chapter 8.

H Flag: The Half Carry (H) flag is set if there is a carry or
borrow as a result of adding or subtracting the low order
digits of two packed bed numbers, otherwise it is reset. We
will discuss this flag at length in the section on the DAA
instruction.

N Flag: The Subtract Flag (N) is set for all operations related to
subtraction, and reset for all operations related to addition.
This flag will also be discussed at length in the section on
the DAA instruction.

Here are several examples which illustrate the operations INC,
DEC, ADD, and SUB. The entry , • , under a column labeled with a
flag indicates that the flag is not affected by the operation, i.e., the
instruction leaves it unchanged.

Accumulator Accumulator Flags After Execution
Before After (X = don't care)

Instruction Execution Execution s z H P/V N C

INC A 04 05 0 0 0 0 0
INC A FF 00 0 1 1 0 0
DEC A 00 FF 1 0 1 0 1
ADD A,80H 00 80 0 0 0 0 0 0
ADD A,80H 80 F0 1 0 0 1 0 0
ADD A,F0H F0 E0 1 0 0 0 0 1
ADD A,1 lH 22 33 0 0 0 0 0 0
ADD A,18H 29 41 0 0 1 0 0 0
ADD A,94H 93 27 0 0 0 1 0

246

ADD A,99H
SUB 33H
SUB 02H
SUB 22H

99
33
10
10

32
00
OE
EE

0 0 1
0 1 0
0 0

0

1
0
0
0

0 1
0
0

To understand each of the above examples, perform the indicated
binary arithmetic and follow the rules described previously for set
ting and resetting the affected flags. For example, consider the in
struction.

ADD 18H

where the accumulator already contains 29. Then the binary addition
can be written:

0010 001
+0001 000

0 0 0 0 0 0

S Flag: 0 because bit D7 is zero
Z Flag: 0 because result not zero

Accumulator

H Flag: 1 because there was a carry from bit D3 to bit D4 during the bit by bit
addition

P /V Flag: 0 because two positive two's complement numbers ·summed to a positive
two's complement number

N Flag: 0 because the operation is addition
C Flag: 0 because there was no carry beyond bit D7

The 8-bit ADC, add-with-carry, and the SBC, subtract-with-carry,
instructions perform a three-step operation:

Step 1 : Add or subtract the indicated byte to/from the accumu
lator as if performing an ADD or SUB instruction. Do not
change any flag bits.

Step 2: Add or subtract the C-flag to/from the accumulator. That
is, if the C flag was set just prior to execution of the ADC or
SBC instruction, add or subtract 01 from the byte in the accu
mulator. If the C-flag was reset, the accumulator is not changed.

Step 3: Adjust the flags based on the results of both previous
steps.

Here are some examples to illustrate the ADC and SBC instruc
tions.

Accumulator C-Flag Accumulator Flags After Execution
Instruction Before Execution After Exec. s z X H X P/V N C

ADC A,OOH 01 1 02 0 0 0 0 0 0
ADC A,OOH 01 0 01 0 0 0 0 0 0
ADC A,90H 97 28 0 0 0 1 0 I
ADC A,19H 39 53 0 0 I 0 0 0
SBC A,OOH 00 FF 1 0 1 0 1 I
SBC A,OlH 00 00 0 I 0 0 I 0
SBC A,80H 00 7F I 0 I 1

247

The ADC and SBC instructions are especially useful for multibyte
oinary arithmetic operations. Consider the following program which
performs a multibyte or multiple precision addition of two binary
numbers stored in memory. The maximum number of bytes in each
addend is stored in register C. The strings of bytes representing the
first and second addends start with their least significant bytes at the
memory locations pointed to by registers HL and IX, respectively.
IY points to the start address (least significant byte) of the string
representing the sum.

LD C,0BH
LD HL,0200H
LD IX,0210H
LD IY, 0220H
SUB A

ADDB: LD A,(HL)
ADC A,(IX)
LO (IY),A
INC HL
INC IX
INC IY
DEC C
JR NZ,ADDB
JR C,ERROR
RST 38H

;Eight bytes in each addend
;Addend #1
;Addend #2
;Sum
;Clear the accumulator and C flag
;Get byte from string # 1
;Add byte from string #2
;Store sum in string #3
;Update memory pointers

;Have we processed all bytes?
;If not, add next bytes
;If so, check for carry. Overflow if C= 1
;Return control to operating system

Let us discuss how this program operates. Fig. 11-1 shows the
addends and sum in their respective memory locations and how the
program manipulates them. The initial values for HL, IX, and IY
are shown. These registers are updated as successive pairs of memory

Byte in
accumulator ___ ____., +

I LD A,(HL)

First Byte -HL

+

Lael Byte

248

Byte pointed Sum in
lo by IX Carry ace um ulator

+ □
lADC (IX) ! LD (IY), A

First Byte -IX First Byte -1v

+ Cy -

Last Byte Last Byte

Fig.11-1.

bytes are added. Notice how the carry, if any, is added in to the next
higher order byte by the ADC instruction. The SUB A instruction
initially clears or resets the C flag so that the first addition is equiva
lent to a straightforward ADD. After all the pairs of bytes from
string number 1 and string number 2 have been added together, a
check is made for the presence of a carry by the JP C,ERROR in
struction. The ADC (IX) instruction was the last instruction to
affect the C flag so the C flag still represents the existence or non
existence of overflow from addition of the last two (most significant)
bytes. ERROR represents the memory location of a routine that
prints out overflow messages, not shown here.

The preceding program is equally applicable to multibyte two's
complement addition, provided that the two addends are n-bit two's
complement numbers, where n=8 x (length in bytes of the two
addends). For two's complement addition the P/V flag should be
checked as the overflow indicator, instead of the C flag as above.

DAA INSTRUCTION

For binary coded decimal (bed) arithmetic a special instruction
is required to convert results based on binary operations to results
in proper bed format. The Z-80 only knows one method of addition
and subtraction, namely binary. Since two's complement and binary
addition and subtraction are essentially the same (except for over
flow detection), the Z-80 can also perform two's complement arith
metic. Decimal arithmetic is not the same as binary arithmetic. Con
sider the following addition problem, solved first as a binary addition
and second as a decimal addition of two packed bed bytes:

0 0 0 0 1 0 0 0 = 8 (base 10) or 08 (packed bed)
0 0 0 0 1 0 0 1 = 9 (base 10) or 09 (packed bed)

0 0 0 1 0 0 0 1 = 17 (base 10) or 11 (packed bed)

Note that the result, interpreted as a binary number, is correct, but
interpreted as a packed bed number is incorrect. The reason for this
is the difference between number base. The Z-80 treats the two digits
of a packed bed number as two hexadecimal digits because four bits
in binary representation can represent 16 different values. Hence,
during an arithmetic operation such as addition, a carry from the
right digit to the left digit occurs when the sum is greater than 16.
For bed addition, this carry should occur when the sum is greater
than 10. Thus bed and binary addition do not produce the same
result when

a. The sum of two 4-bit nibbles is between 10 and 15 inclusive,
e.g.,

249

1 0 0 1 9
+ 0010 2

1 0 1 1 Bas hex sum, should be 11 as packed bed sum.

In this case, binary produces no carry to the next nibble when
decimal addition would.

b. The sum of two 4-bit nibbles is greater than or equal to 16, e.g.,

I O O 1 9
+ 1 0 0 1 9

1 0 0 1 0 12 as a hex sum, should be 18 as packed bed sum.

In this case, binary produces a carry to the next nibble but it is
six digits "too late."

In both cases presented, the hex answer minus the decimal answer
is six. It turns out that when (a) or (b) occurs this is always true.
Thus, the Z-80 CPU has a special instruction, the Decimal Adjust
Accumulator instruction, which can detect when either (a) or (b)
occurs and add six to a nibble if appropriate. The detection process
is quite simple. Any incidence of (a) yields a nibble with a nondeci
mal hex equivalent such as A, B, C, D, E, or F. Thus, a nibble whose
value is greater than nine in a result indicates that six must be added
to that nibble. Any incidence of (b) is detected by a carry flag, either
C or H, being set. The H flag is set if a carry occurs as a result of
adding the two low order nibbles. The C flag is set if a carry occurs
as a result of adding the two high order nibbles.

Consider the following sequence of instructions which performs a
packed bed add of the contents of the accumulator and B register:

ADD A,B
DAA

Let's see how these instructions operate on five different sets of data:

Set 1 Set 2 Set3 Set 4 Set 5

B register 11 19 91 99 09

Accumulator before

ADD A,B 22 18 81 88 05

After ADD, A, B:
Accumulator 33 31 12 21 OE
H flag 0 1 0 1 0
C flag 0 0 1 1 0

Accumulator
After DAA 33 37 72 87 14

The third and fourth set of data values (91 and 81; 99 and 88)
represent sums which are greater than 99, the maximum packed bed
value that the accumulator can hold. Thus the final 1 which should be

250

carried as a third digit in the 1 00's place is dropped. Note that 172
and 187 are the correct answers. The overflow in such cases is indi
cated by the C flag being set. The last data pair (09 and 05) is an
example of an occurrence of the preceding condition (a). Neither
H nor C is set but an adjustment to the low order nibble is required
since E is not a decimal number.

Thus, to convert our sample program which adds multibyte binary
numbers to a program which adds multibyte packed bed numbers
required just one simple change. Merely insert a DAA instruction
between the ADC A,(IX) and LD (IY),A instructions.

16-BIT ARITHMETIC INSTRUCTIONS

The 8-bit ADD, ADC, SBC, INC, and DEC instructions have
16-bit analogs which perform essentially the same operation only

Table 11-5. The 16-Bit Arithmetic Group
Flap Op<ode

Symbolic
Mnemonic Operation IC z l'i, s N H 76 543 210

ADDHL, ss HL-HL+ss * •
. • 0 X 00 ssl 001

ADCHL.ss HL-HL+ss+cY t * V t 0 X 11 IOI 101

01 ssl 010

SBC HL,ss HL-HL-ss-CY I I V I I X 11 IOI 101

01 ssO 010

ADDIX,pp IX-IX+pp I • . • 0 X 11 Oil 101

00 ppl 001

ADD IY,rr IY-IY+rr * •
. . 0 X II Ill 101

00 rrl 001

INC ss ss+-ss+I . . • • . . 00 ss0 011

INCIX IX-IX+ I II 011 IOI
00 100 Oil

INCIY IY-IY+ I II Ill 101
00100011

DEC ss ss ss -I . . . • . . 00 ssl 011

DECIX IX-IX-I • • . . • . 11 011 101
00 101 Oil

DECIY IY-IY· 1 II 111 101
00 IOI OIi

Notes: ss is any of the register pairs BC, DE, HI., SP
pp is any of the register pairs BC. DE. IX. SP
rr is any of the register pairs BC, DE, IV. SP.

No. No.
or ofM
Bytes Cycles

I 3

2 4

2 4

2 4

2 4

I I

2 2

2 2

I I

2 2

2 2

Flag Notation: • = tlag not affc1:led, 0 = flag reset, I = flag set, X = flag is unknown.
t = flag is affcctccJ according to the result of the opera lion.

No.
orT
Stales Comments

11 .. Reg •

00 BC
15 01 OE

10 HL
11 SP

15

15 pp Reg.
00 BC
01 OE
10 IX
II SP

15 n Reg •

00 IIC
01 OE
10 IY
II SP

6

10

10

6

10

JO

Courtesy Zilog, Inc.

251

using 16-bit register pairs. The 16-bit instructions treat the flags
somewhat differently. These instructions with their associated hex
codes appear in Table 11-3. The details of bow the 16-bit arithmetic
instructions manipulate the flags appear in Table 11-5. As you can
see, it contains a great deal of information not appearing in Table
11-3. In Appendix A, we introduce a full set of instruction tables.

CP AND BLOCK SEARCH INSTRUCTIONS:
CPI, CPD, CPIR, and CPDR

The CP s instruction compares the contents of the accumulator
with a specified 8-bit byte s by computing the difference A-s and
setting the C, Z, P /V, as overflow-not parity, S and H flags according
to the result. The N flag is set, due to the subtraction. Note that
neither the accumulator nor the byte s is changed as a result of the
CP operation. The difference, A-s, is stored elsewhere, internal to
the CPU, so that the net effect of the CP instruction to the program
mer is that the flags are changed. Thus, for example, the CP B in
struction has the same effect on the A,B and F registers as the
sequence

LO C,A
SUB B
LO A,C

;Save the accumulator
;Perform the subtraction and set the flags
;Restore the accumulator

You have seen an application of the CP instruction in the experiment
which demonstrates jump tables at the end of Chapter 7.

The block search instructions which appear in Table 11-4 operate
in a manner similar to the block transfer instructions. The LD opera
tion is the basis for the block transfers while the CP instruction is
the basis for the block search group. The block search instructions
facilitate the process of searching sequential memory locations for a
match with a "key byte" contained in the accumulator. As with the
block transfer instructions, certain registers must be initialized prior
to execution of any block search instruction:

BC = number of memory locations to be searched
HL = address of the byte to be compared with the contents of the accumulator
A = the key value to be matched with successive memory bytes

Execution of the CPI, compare-increment, instruction causes the
following steps to occur:

1. The byte in the location addressed by register pair HL is com
pared with the contents of the accumulator. The Z, S, and H
flags are set according to the result of the compare. (The CP
(HL) instruction affects the C flag, while the CPI instruction
(as well as the other block search instructions) does not affect

252

the C flag. So, this step is not identical to the execution of a CP
(HL) instruction, strictly speaking.)

2. The contents of the HL register pair are incremented.
3. The contents of the BC register pair are decremented. At this

point, the Z-flag is set if A = (HL), reset otherwise. The P /V
flag is reset if register pair BC = 0000, set otherwise.

Execution of the CPIR, compare-increment-repeat, instruction
causes the following to occur:

1. The byte in the location addressed by register pair HL is com
pared with the contents of the accumulator. The Z, S, and H
flags are set according to the result.

2. The contents of the HL register pair are incremented.
3. The contents of the BC register pair are decremented. At this

point the Z-flag has been set if A=(HL), reset otherwise. The
P /V flag is reset if register pair BC=0000, set otherwise.

4. If either register pair BC=0000 or A= (HL), then execution
proceeds to the next instruction. Otherwise, steps 1, 2, and 3,
are repeated.

Execution of the CPD, compare-decrement, and the CPDR, com
pare-decrement-repeat, instructions result in very similar sequences
of steps. The only difference is that Step 2 decrements HL. Fig. 11-2
illustrates the registers and memory locations before and after exe
cution of the CPIR and CPDR instructions.

INTRODUCTION TO THE EXPERIMENTS

The following experiments are designed to give you an idea of
how to program the Z-80 to perform basic arithmetic operations.
Some applications of the block search group are also investigated.

The experiments which you will perform may be summarized as
follows:

Experiment No.
1

2

3

4

Comments
Demonstrates a method for programming multiple
precision binary multiplication.
Demonstrates a method for programming multibyte
bed subtraction.
Demonstrates a method for programming a division
operation in which a 16-bit binary number is di
vided by an 8-bit binary number to compute a
quotient and remainder.
Demonstrates the block search and compare in
structions in two useful applications.

253

BEFORE

F 3 I
Accumulator ...

f" --~ l 0 0 0

Register Pair

8
BC

Memory block
to be searched

Memory

•
•
•
•

01 00--HL

01 01
01 02-HL

F3 01 03
01 04--HL

01 05
01 06
01 07-HL

•
•
•

AFTER

F 3 ' be fare CPIR Accumulator

after CPDR CPDR:

i 0 0 ' 0 3
after CPIR Register Pair BC

before CPDR CPIR'

i 0 0 0 4

Re~ister Pair BC

EXPERIMENT NO. 1
Purpose

The purpose of this experiment is to demonstrate a method for
programming multiple-precision binary arithmetic. The next program
listed multiplies two 16-bit binary numbers stored at locations 0130-
0131 and 0132-0133 and places the product in locations 0134-0135.
Later we show you a program which multiplies two binary numbers
of equal length to produce a product of the same length. Thus, you
will see how your Nanocomputer can multiply 64-bit numbers just
like large mainframe computers. (It is only fair to mention that the
speed is not comparable.)

Program No. 32

Memory
Location Objad Coda Source Code Comments

0100 21 00 00 MLT16:LD HL,OOOOH ;HL = product, initialize at 0
0103 ED SB 30 01 LD DE,(0130H) ;DE= Multiplicand
0107 ED 4B 32 01 LD BC,(0132H) ;BC= multiplier
010B 7A LD A,D ;Check if DE= 0
0l0C B3 ORE
010D cc 38 00 CALL Z,0038H ;If DE=O, jump to monitor
0110 CB 38 MLT: SRL B ;BC: shift right, zero fill
0112 CB 19 RR C ;C flag equals current multi•

;plying bit
0114 30 04 JR NC,NCF ;Check the C flag
0116 19 ADD HL,DE ;C flag is set, add DE to HL
0117 DC 38 00 CALL C,0038H ;If ADD causes carry, overflow
011A 78 NCF: LD A,B ;If C flag is reset, check to sea
011B Bl OR C ;if BC=0
011C CA 29 01 JP Z,ANS ;If BC=0 then store answer
011F CB 23 SLA E ;Otherwise rotate DE left
0121 CB 12 RL D
0123 DC 38 00 CALL C,0038H ;If C is sat, overflow has oc-

;curred so return to monitor
0126 C3 10 01 JP MLT ;Otherwise continue
0129 22 34 01 ANS: LD (0134H),HL ;Stora answer
012C FF RST 38H ;Return to monitor

Step 1

Let us briefly discuss the methodology used in this program to
perform binary multiplication. For convenience, let us multiply two
4-bit binary numbers. The principle shown next for 4-bit multipli
cation apply equally to 8-bit, 16-bit, or any other precision-binary
multiplication. Suppose that we wish to multiply 0011 times 0101.
One procedure, quite similar to the usual methods of decimal arith
metic, is as follows:

255

0 0 1 1 Multiplicand
0 1 0 1 Multiplier

0011 1X0011
0000 OXOOl

0011 lXOOl
0000 OXOOl

0001111

Thus, a clear pattern develops: Each occurrence of a 1 bit in the
multiplier causes some shifted version of the multiplicand to be
added into a sum which gives the product. The shifts, of course,
fill-in zeros from the right. The preceding program implements the
technique of shifting and adding as illustrated previously. The HL
register pair holds the product; the BC register holds the multiplier;
and the DE register pair holds the multiplicand.

Step 2
Load and execute the sample program for several pairs of 16-bit

binary riumbers. Note that as long as the numbers are kept relatively
small the computed product is correct. For example:

0400 X 0020 = 8000
OOFF X OOFF = FEOl
0100 X OOFF = FFOO

What about 0100 X 0100 = ?

We get 0000 in the HL register which is wrong. Let us try the com
putation by hand. The answer is 1 followed by 16 zeros, or in three
hex bytes,

010000.

Unfortunately, we allowed for only two bytes in our answer, so byte
three, the most significant byte, cannot appear in the answer. This
is an occurrence of overfl,ow which is detected in the preceding pro
gram by the CALL C,0038H and CALL 0038H instructions. In this
program, we just inserted the operating system address for the address
of a routine which would somehow report an overflow condition back
to the user. Note that overflow is checked for in two places.

Let us look at two 4-bit examples to see why:

256

1 O O O Multiplicand
0 1 1 0 Multiplier

0 0 0 0
1 0 0 0 Overflow exists because the carry flag is set as a re

sult of shifting the multiplicand. A set carry flag indi
cates that the product contains more than four bits.

0 1 1 0 Multiplicand
0 0 1 1 Multiplier

0 1 1 0
0 1 1 0

Partial sum 1 0 0 1 0 Overflow exists because the shift-add operation causes
the carry flag to be set, thus indicating the product
contains more than four bits.

Thus, to detect overflow in both of the above situations, the carry
flag is checked after shifting the multiplicand (register pair DE)
and after adding the shifted multiplicand to the HL register pair to
form a partial sum.

Step 3
The same techniques used previously for 16-bit or two-byte

multiplication can be applied to multiplication of n-byte binary num
bers, where n is any positive integer. The following sequence of in
structions multiplies two NUM-byte binary numbers that are stored
in NUM sequential memory locations with the least significant byte
starting at addresses XNUM and YNUM, respectively. The product
is stored in NUM sequential memory locations with the least signifi
cant bytes starting at address ZNUM.

MLTN:

INIT:

SHIFTX:

RTX:

LO B,NUM

LO HL,ZNUM

LO (HL),OOH
INC HL
DJNZ INIT
LO B,NUM

LO IX,XNUM+NUM-0lH

XOR A
RR (IX)
DEC IX
DJNZ RTX
JR NC,ZERO

LO B,NUM

LO HL,ZNUM
LO IY,YNUM
CCF

NXTBYT: LO A,(IY)
ADC A,(HL)

;Load number of bytes per number into reg
;ister B (NUM=one-byte hex constant)
;Load HL with address of product (ZNUM=
;two-byte hex constant)
;Initialize product to Os in each byte

;Shift multiplier XNUM right one bit and
;zero fill: Initialize register B to the number
;of bytes
;IX=address of most significant byte of
;multiplier (XNUM=two-byte hex constant)

;If no carry, current bit in multiplier is zero
;so do not add in multiplicand
;If carry bit set, current bit in multiplier Is
;one so add in multiplicand to partial prod
;uct residing at location ZNUM

;YNUM=two-byte hex constant
;Complement the carry flag which was set
;for these instructions. Thus, C flag is now
;zero.
;Add multiplicand to product

257

LD (HL),A ;Store sum in product string
INC IV ;Update byte pointers
INC HL
DJNZ NXTBYT

ZERO: LO B,NUM ;Check if multiplier is zero. If so, we are
;done

LD IX,XNUM
XOR A ;Clear A for zero check

ZCHK: OR (IX) ;Check to see if multiplier=0
JR NZ,SHIFTY ;If multiplier not zero, then shift multipli•

;cand again
INC IX
DJNZ ZCHK
RST 38H ;Return to monitor if multiplier is zero.

SHIFTY: LD B,NUM ;Shift multiplicand YNUM right one bit, zero
;fill vacated bit

LD IY,YNUM
XOR A ;Clear carry bit

LFTY: RL (IY) ;Start shifting
INC IY
DJNZ LFTY
JP SHIFTX
RST 38H ;Multiplier=0, hence we are done.

Go over this routine carefully to make sure that you understand
it thoroughly. For the first time we have used variables like NUM,
XNUM, YNUM, and ZNUM for one-byte and two-byte hex con
stants. This is a very common practice in the literature on software
development, so you should become used to it.

Step 4
Hand assemble the NUM-byte multiply program substituting your

own values for NUM, XNUM, YNUM, and ZNUM. See if you can
execute some sample programs.

Step 5
Note that the NUM-byte multiply program does not check for

overflow. Put in your own checks and see if they work.

EXPERIMENT NO. 2
Purpose

The purpose of this experiment is to demonstrate a method for
programming multibyte bed subtraction. The following program in
puts two NUM-byte bed numbers whose least significant bytes are
at locations XNUM and YNUM, respectively, computes their differ
ence (the string starting at address YNUM is subtracted from the
string starting at address XNUM), and stores the difference starting
at location ZNUM.

258

Program No. 33
Memory
location Object Code Source Code Comments

0200 06 N SUBN: LD B,NUM ;Register B counts the num-
;ber of bytes

0202 D021 X2X1 LO IX,XNUM
0206 FD 21 Y2 Yl LD IY,YNUM
020A 21 Z2 Zl LO HL,ZNUM
020D 37 SCF ;Set carry flag: 1 OO's com•

;plement for first subtract
020E 3E 99 NXTBYT: LD A,99H ;Find 99 or lOO's comple-

;ment of subtrahend
0210 CE 00 ADC A,OOH
0212 FD 96 00 SUB (IV)
0215 DD 86 00 ADD A,(IX) ;Add minuend byte
0218 27 DAA ;Adjust for decimal arith-

;metic
0219 77 LD (HL),A
021A DD 23 INC IX ;Update pointers
021c FD 23 INC IV
021E 23 INC HL
021F 10 ED DJNZ NXTBYT ;Keep subtracting until all

;bytes processed
;No carry after last byte
;indicates overflowl

0221 FF RST 38H

Step 1

Let us discuss how this program works. Recall that in our dis
cussion on subtraction of two's complement numbers, we said that
subtraction of a two's complement number is equivalent to forming
its two's complement and then adding it. The same is true for packed
bed subtraction, only instead of forming a two's complement, you
form a lO0's complement. Let us look at some examples:

Packed BCD byte
l OO's complement

03
97

94
06

30
70

01
99

50
50

Hence, to find the 1 00's complement of a packed bed byte, merely
subtract the byte from 100 as a decimal two digit number. Similarly,
you can compute the l0's complement of a bed nibble, but we do not
need to use this fact here. Let us now perform a three-byte bed sub
traction using t_he complement and add technique.

Find the difference: 256925-133639

Step 1: Form l00's complement of least significant byte of sub
trahend

100-39=61
Step 2: Add 61 to least significant byte of minuend (decimal ad

dition)

259

25 + 61 = 86

No carry occurred
Step 3: Since Step 2 resulted in no carry, form the 99' s comple

ment of the next least significant byte of the subtrahend

99-36=63

Step 4: Add 63 to the next least significant byte of the minuend

69 + 63 = 32
Carry Occurred

Step 5: Since Step 4 resulted in a carry, form the lO0's comple
ment of the most significant byte of the subtrahend

100-13=87

Step 6: Add 87 to the most significant byte of the minuend

25 + 87 = 12
Carry Occurred

Step 7: Answer is 123286 which is correct. The correctness is
assured because a carry occurred. Had there been no carry,
the answer would have been wrong, and overflow would have
occurred. Since bed numbers are always greater than or equal
to zero, overflow occurs whenever the subtrahend is greater
than the minuend.

We will not dwell on a mathematical proof of the preceding tech
nique. Suffice it to say that the 1 00's complement is formed when a
borrow from the next higher byte has not occurred, while the 99's
complement is formed when a borrow has occurred in order to per
form the subtraction of one packed bed byte from another. In terms
of the complement and add technique:

A borrow in the subtraction process is equivalent to
no carry in the complement and add process.

Thus, if the carry flag is SET at the end of the bed subtraction, there
is no overflow. This may at first seem somewhat "unintuitive," but
it will become more natural as you think about it.

Step 2
Load and execute the above program with several sample bed

strings to subtract. Be sure to supply values for:

260

NUM =1 byte hex constant representing the number of
packed bed bytes

XNUM=2 byte address of minuend (hex)

YNUM=2 byte address of subtrahend (hex)
ZNUM =2 byte address of difference (hex)

EXPERIMENT NO. 3
Purpose

The purpose of this experiment is to demonstrate a method for
programming a division operation in which a 16-bit binary number
is divided by an 8-bit binary number to compute a quotient 'and a
remainder. In the program listed next, it is assumed that initiall}
register HL contains the 16-bit binary dividend and register D con
tains the 8-bit binary divisor. At the completion of execution, the
8-bit quotient is in register L and the 8-bit remainder is in register H.
For the division algorithm implemented in Program No. 34 to func
tion properly, we must assume that the divisor and dividend are in
normalized form. That is:

a. The most significant bit of the 16-bit dividend is zero, and
b. The most significant byte of the dividend is less than the divisor

to ensure that the quotient will fit into the 8 bits allotted for it.

Program No. 34
Memory Objed
location Code

0300 06 08
0302 lE 00
0304 29
0305 AF
0306 ED 52
0308 23
0309 30 02
0308 19
030C 28
030D 10 F5
030F FF

Step 1

Source Code

DIV: LD B,0BH
LD E,00H

NXTBIT: ADD HL,HL
XOR A
SBC HL,DE
INC HL
JR NC,NXT
ADD HL,DE
DEC HL

NXT: DJNZ NXTBIT
RST 38H

Com111ents

;# bits in divisor
;Divisor in DE
;Shift HL left, zero fill
;Reset the carry flag
;Will DE go?
;Assume, yes
;If not, undo the damage
;Add DE back in
;Set quotient bit to zero

Let us first look into how this program operates. The algorithm
used is quite similar to the method used for hand calculating decimal
long division problems. However, it is easier because only Os and ls
are involved. Let us look at an example in which the 4-bit binary
number 8 is divided into the 8-bit binary number 6E. Set up the
problem as you would a normal long-division problem, writing all
numbers in binary:

1000101101110
To determine successive bits in the quotient, merely enter a 1 if the
divisor "will go" or a O if it "won't go" into the most significant bits

261

of the residue of successive subtractions of the divisor from the
dividend:

1 1 0 1
1000101101110

1 0 0 0

1 0 1 1
1 0 0 0

0 1 1 1 0
1 0 0 0

1 1 0

Hence the quotient is ll0l=D (base 16) and the remainder is
0110= 6 (base 16).

In the preceding program, the registers are initialized as follows:

H L

16-bit dividend

B

0
D E

Divisor 001

Since the most significant bit of HL is zero and the contents of D
are greater than the contents of H (see assumptions about normalized
dividend and divisor), the first step in the program is to shift left,
zero fill HL by one bit (ADD HL,HL) and then compare the con
tents of DE and HL. H DE is less than or equal to HL, the quotient
is set to one, otherwise it is zero. Notice how the quotient is rotated
into the lower four bits of register pair HL. This is possible because
as each quotient bit is added, an old dividend bit is discarded. The
method for determining whether the new quotient bit (which is
always the least significant bit of register L) should be zero or one,
DE is subtracted from HL. A carry indicates the quotient bit should
be zero, while no carry implies DE "went into" HL so the quotient
bit should be 1 (INC HL). Note that the HL-DE subtraction must
use the SBC instruction since there is no 16-bit SUB instruction.
This necessitates the XOR A instruction just before the SBC instruc
tion to ensure a zero carry flag. If DE "will not go" into HL, the
value of the last residue in HL must be restored by adding DE back
and decrementing HL.

262

Step 2

Load and execute the preceding program in single-step mode for
several sample problems.

EXPERIMENT NO. 4
Purpose

The purpose of this experiment is to demonstrate the block search
and compare instructions in two useful applications. We present two
programs which utilize these instructions to perform often required
programming tasks.

Program No. 35

SEARCH a string of characters for a particular character.

Memory Object
Location Code Source Code Comments

0400 21 00 0A LD HL,OA00H ;Start address of character
;string

0403 01 20 00 LD BC,0020H ;Number of characters in
;string

0406 3E 24 LD A,24H ;Character to locate: 24 is an
;ASCII'$'.

0408 ED Bl CPIR ;Find the$
040A C2 OF 04 JP NZ,NOFIND ;If Z flag= 0, the character

;was not found
0400 2B DEC HL ;Subtract 1 from HL so it

;points to the character
040E 03 INC BC ;Increment BC so it gives
040F FF NOFIND: RST 38H ;character number in string

Program No. 36

Search a table of records for a particular record identified by a
three-character string.

Memory Object
Location Code Source Code Comments

0412 31 00 OF LD SP,0FOOH ;Locate the stack
0415 21 00 oc LD HL,0C00H ;Address of last record in table
0418 01 06 00 LD BC,0006H ;Number of records in table
041B 3A 00 OB LD A,(0BOOH) ;First character in identifying

;3 character string
041E 11 F9 FF LD DE,FFF9H ;-(record length -1): 16-bit

;two's complement
0421 ED A9 NREC: CPD ;Match?
0423 28 09 JR Z,CHECK •
0425 E2 42 04 JP PO;NOFIND ;All records examined?
0428 19 UPD: ADD HL,DE ;Update HL to beginning of

;next record
0429 3A 00 OB LD A,(0BOOH) ;Reset accumulator

261

042C 18 F3 JR NREC ;look at next record
042E 3A 01 08 CHECK: LD A,(0801 H) ;Compare second bytes
0431 ES PUSH HL ;HL now points to last byte

;of record 1mmediatetly pre-
;ceding record to be checked

0432 DD El POP IX ;Load IX with HL
0434 DD BE 02 CP (IX+02H)
0437 20 EF JR NZ,UPD ;Go back to search if no match
0439 3A 02 08 LD A,(OB02H) ;Compare third bytes
043C DD BE 03 CP (IX+03H)
043F 20 E7 JR NZ,UPD ;Go back to search if no match
0441 23 INC HL ;Hl now points to first byte of

;matching record. Z-flag is set
0442 FF NOFIND: RST 38H

Step 1
Let us examine Program No. 35. This program begins by loading

register pair HL with the address of byte 1 of a string of bytes, reg
ister pair BC with the number of bytes in this string, and the accu
mulator with the key byte, i.e., the byte to match in the search. The
CPIR instruction sequentially checks each byte in the string until a
match is found or there are no more bytes to check. If a match is
found, the CPIR instruction sets the Z-flag which causes the DEC
HL and INC BC instructions to be executed so that HL does indeed
point to the matching string byte, and BC does represent the byte
number in the string of the matching byte. If no match is found,
control returns to the operating system with the Z-flag reset, the
P /V-flag reset, and BC=0000.

This program, set up as a subroutine, could be used in implement
ing jump tables much like the one demonstrated in Chapter 7. The
values to be searched can be stored in a separate block of memory
away from their associated jump addresses. Program No. 35 would
be called on to search the values for a match and return the index
of the matched value in register pair BC. The index would then be
used to find the proper jump address for subsequent transfer of
control.

Step 2
Load and execute Program No. 35. Use several sample strings

and key values to thoroughly test the logic of the program.

Step 3
Let us examine Program No. 36. Suppose we have a table located

in memory as follows:
Byte No.

2 3 4 5 6 7 8

Location
OBDS 41 51 46 31 32 33 30 36 Record 1
OBEO 42 46 47 33 36 30 30 34 Record 2

264

OBEB 41 42 43 36 35 34 32 31 Record 3
OBFO 43 42 41 36 36 36 36 36 Record 4
OBFB 43 41 42 34 33 34 33 34 Record 5
ocoo 42 42 42 31 32 33 32 31 Record 6

Identifying Telephone Extension
Initials

The table consists of six records with each record containing eight
bytes. For each record:

Bytes 1-3 are a three-character identification code
Bytes 4-8 represent a five-digit telephone extension

Hence, we have a telephone directory for a six person office. To look
up a person's telephone number, merely match the ASCII represen
tation of his initials with the first three bytes of some record in the
table, and the next five bytes are the phone number. Here is an
ASCII-HEX table of equivalent representations for the alphabet.

A 41 J 4A s 53
B 42 K 4B T 54
C 43 L 4C u 55
D 44 M 4D V 56
E 45 N 4E w 57
F 46 0 4F X 58
G 47 p 50 y 59
H 48 Q 51 z SA
I 49 R 52

Recall that from an earlier experiment, the ASCII representation
for characters 0 through 9 runs from 30 through 39. Hence "AQF'
has the phone number 12306.

Program No. 36 reads a table such as the one presented earlier and
returns a pointer to the record whose first three characters match a
key string, stored at memory locations 0B00, 0B0l, and 0B02. The
program starts out by loading the HL register pair with the address
of the last record, the BC register pair with the number of records
in the table, and the accumulator with the first byte of the key string.
The CPD in combination with successive adds of - 7 to the HL reg
ister pair checks first bytes of each record, from record number 6
to record number 35, for a match with byte 1 of the three-byte key.
(Note that - 7 is added to HL instead of -8 because the CPD in
struction decrements HL.) When a match is found, bytes two and
three must be checked. This is accomplished by the instruction se
quence beginning at statement CHECK. This sequence can be easily
changed to accommodate a need to check more bytes by introducing
a loop, but for just two bytes, a loop is not necessary.

265

APPENDIX A

Summary of Z-80
Op Codes and Execution

Times

The following tables summarize the Z-80 instruction set. The in
structions are arranged into groups as shown earlier in the instruction
tables appearing in Chapters 6 through 12. Each table shows the as
sembly language mnemonic, a symbolic shorthand description of the
operation of the instruction, the contents of the flag register after the
instruction execution, the binary op code, the number of bytes, as
well as the number of memory cycles and total number of T-states
(external clock periods) required for fetching and executing of the
instruction. Where applicable, additional comments are included.

267

Tabla A-1. The 8-Bit Load Group

Flap OP-Code No. :ri.i Symbolic or
Mnemonic Operation C ZPN. S N H 76 543 210 Bytes Cycles
LDr, r' ,_,. - 01 r r' I I
LDr,n r-n 00 r 110 2 2 - n ➔

LDr,(HL) r-(HL) 01 r 110 I 2

LDr,(IX+d) r-([X+dl • 11 Oll 101 3 s
01 r 110 - d ➔

LDr,(IY+d) ,-(IY+d) 11 lll 101 3 5

01 r 110 - d ➔

LD(HL),r (HL)-r • 01 llO r I 2

LD ([X+d),r (IX+d)-r 11 011 IOI 3 s
01 llO r

- d ➔

LD ([Y+d),r (IY+d)-r 11 Ill 101 3 s
01 llO r - d ➔

LD(HL),n (HL)-n 00 110 110 2 3 - n ➔

LD (IX+d), n (IX+d)-n • 11 011 IOI 4 s
00 110 110 - d ➔

- n ➔

LD (IY+d),n (IY+d)-n • ll 111 101 4 s
00 110·110 - d ➔

- n ➔

LDA,(BC) A-(BC) 00 001 010 I 2

LDA,(DE) A-(DE) 00 Oll 010 I 2

LD A, (nn) A-(nn) •• 00 lll 010 3 4 - n ➔

- n ➔

LD(BC),A (BC)-A 00 000 010 I 2

LD(DE):A (DE)-A 00 010 010 I 2
LD (nn), A (nn)-A . . . • • • 00 110 010 3 4 - n ➔

- n ➔

LDA,l A-I . t !Ff I 0 0 11 101 IOI 2 2

I 01 010 Ill

LDA,R A-R . 'l 0 0 11 101 IOI 2 2

01 011 111

LDl,A I-A 11 IOI 101 2 2
01 000 111

LDR,A R-A 11 IOI 101 2 2

OJ 001 111

Notes: r, r' means any of the registers A, 8, C, D, E, H, L

268

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set. X = Oag is unkno\\<n,

i = flag is affected according to the result of the operation.

No.
oCT
Cycles Comments
4 r, r' Reg.
7 000 B

001 C
7 010 D

19 Oil E
100 H
IOI L

19 111 A

7
19

19

10

19

19

7
7
13

7
7
13

9

9

9

9

Courtesy Zilog, Inc.

Table A-2. The 16-Bit Load Group

Fbp n.r ... , No. No. No.
Symbolic

·~ s
of ofM ofT

Mnemonic Operation C Z NH 76 543 210 - Cyc"' Commenb

LDdd,nn dd+-nn 00 ddO 001 3 3 10 dd - n - 00 BC - n - 01 DE

LD IX, nn IX-nn 11 Oil 101 4 4 14 10 HL

00 100 001 11 SP

- n -- n -
LDIY,nn IY-nn 11 Ill 101 4 4 14

00 100 001

- n -- n -
LO HL, (nn) H-(nn+I) 00 101 010 3 5 16

L-(nn) - n -- n -
LD dd, (nn) ddH -(nn+l) 11 101 101 4 6 20

ddL -(nn) 01 ddl 011

- n -- n -
LD IX, (nn) IXH+-(nn+l) II 011 101 4 6 20

IXL -(nn) 00 101 010 - n -- n -
LDIY,(nn) IYH+-(nn+l) II Ill IOI 4 6 20

IYL -~nn) 00 101 010

- n -- n -
LD (nn), HL (nn+l)-H 00 100 010 3 5 16

(nn)-L - n -- n -
LO (nn},dd (nn+l)-ddH 11 101 101 4 6 20

(nn)-ddl 01 ddO 011

- n -- n -
LD (nn), IX (nn+l) +-IXH 11 Oil IOI 4 6 20

(nn)+-IXL 00 100 010

- n -- n -
LD (nn), IY Cnn+I) - IYu 11 111 101 4 6 20

(nn)+-IYL 00 100 010

- n -- n -
LDSP, HL SP-HL 11 Ill 001 1 1 6

LDSP,IX SP+-IX II 011 101 ' ' IO

11 Ill 001

LDSP, IV SP-IY 11 Ill IOI ' ' IO

II Ill 001
PUSH qq (SP-2) -qqL II qqO 101 1 3 11 00 BC

(SP-1)-qqH 01 DE

PUSH IX (SP-2) +-IXL 11 Oll 101 ' 4 15 10 HL

(SP-1)+-IXH II 100 101 11 AF

PUSH IY (SP-2) +-IYL 11 111 101 ' 4 15

(SP-1)-IYH II 100 101

POPqq qq8 -(SP+l) 11 qq0 001 1 3 10

qqL -(SP)

POPIX IXn-<SP+l) 11 011 101 ' 4 14

IXL -(SP) 11 100 001

POPIY lYn-<SP+I) 11 Ill 101 ' 4 14

IYL -(SP) 11 100 001

Notes: dd is any or the register pairs BC, DE, HL, SP
qq is any or the. register pain AF, BC, DE, HL
(PAIR)H' (PAIR)L rerer to high order and low order eipt bits or lhc register pair respecth'ely.

E.g. BCL., C, AFH = A

Flaa Notation: • ., flag not af£ccted, 0 ., fll& reset, I .. Ill& set, X"' flag is unknown,
I flag is af£ccted according to the result of the open.tion.

Courtesy Zilog, Inc.

269

Table A-3. Exchange Group and Block Transfer and Search Group

270

Flap Op-code

~ Symbolic
Mnemonic Operation (' Z V S N H 76 543 210

EX DE,HL DE•·HL 11 IOI Oil

EX AP.AF' AF·• AF' 00 001 000

EXX

(~D
. 11 Oil 001

EX(SP), HL H-tSP+l) 11 100 Oil

L - (SP)

EX (SP), IX IXH-!SP+I) 11 Oil IOI

IXL - (SP) 11 100 Oil

fX(SP), IV IYH-tSP+I) 11 111 101

IYL -(SP)

<D
II 100 011

LDI tDE)-IHLJ . . l . 0 0 II IOI 101

DE--DE+l JO 100 000

HL-HL+I

BC-- BC-I

LDIR (DEi- IIIL) . . 0 . 0 0 11 ·1ot. IOI

DE l>E+I 10 110 000

HL- Ill-ti

BC'-BC-1

Rt·pcut until

UC= 0
<D

I.OD IUl::J .. ·(IILJ . . l . 0 0 ll IOI 101

DE- DE-I IO IOI 000
HL- HL-1

BC•·IK-1

LDOR (DE) llill . . 0 . I) 0 ll 101 IOI

DE- Dl:.-1 10 ll I 000

IIL-HL-1

UC'-BC-1

Repeat until

BC= 0

a><D
C'PI A-CHLJ . I I I I I II IOI IOI

HL- HL+I 10 100 001

sc ... ec-1
Q) (i)

CPIR A-(HL) . I I I I I II IOI 101

HL-HL+I IOIIOOOI

BC- BC'-1

Rep'-'al until

A"' {Ill) or

BC• 0

<i;ICi:
CPD A-(HLI . I I ' I I II 101 IOI

HL•-HL-1 10 101 001

BC--BC-1

<XICi:
CPOR A - HIL) . I I I I ' II IOI 101

HL-HL-1 IO Ill 001

BC:-BC'•I

Repeal until

A"' IHL)or
BC'. 0

Noles: © p,·v nag is O if 1hc rciult of BC-I "' O. otherwise P/V"' I

@ l Rag 1s I if A= IHL}, otherwise Z "'0.

No. No.
of ofM
Syta Cycles
I I

I I
I I

I 5

2 6

2 6

2 4

2 5

2 4

2 4

2 5
2 4

2 4

2 5

2 4

l 4

1 5

1 4

Flag Nolalion: • = nag no1 affected, 0"' flag reset. I = flag set, X"' na~ 1s unknown.

I = llag i, :1ffected according to the remll of the operation.

No,
ofT
States Commenu
4

4
4 Register bank and

auxWary register
bank exchange

19

23

23

16 Load (HL) into
(DE), increment the
pointcriand
decrement th~ byte
counter (BC)

21 If BC P 0

16 tree• o

16

21 If BC"' 0

16 tree• o

16

21 lfBCPOandA<l-(H L)

16 lfBCaOorA=(HL)

lb

21 If BC¢ 0 and A,;, {H L)

16 lfBC=OorA:.:(ffL)

Courtesy Zilog, Inc.

Table A-4. The 8-lit Arithmetic and logical Group

Flags ,,
Symbolic

Mnemonic Operation C Z V s N H

ADDr A-A+r I I V I 0 I
ADDn A-A+n I I V I 0 I

ADD(HL) A• A+(HLJ I I V I 0 I
ADD(IX+d) A-A+ (IX+d) I I V I 0 I

ADD (IY+d) A-A+UY+d) I I V I 0 I

ADCs A-A+s+CY I I V I 0 I
SUBs A-A-s I I V I I I
SBCs A-A-s-CY I I V I I I
ANDs A-A /\ s 0 I p I 0 I
ORs A-AV s 0 I p I 0 I
XORs A-A•s 0 I p I 0 I
CPs A-s I I V I I I
INCr r-r+ I . I V I 0 I
INC(HL) JHL) - JH L)+ I . I V I 0 I
INC(IX+d) (IX+d)- . I V I 0 I

(IX+dJ+I

INCIIY+dl (IY+dl- . I V I 0 I
(IY+d} + I

l>U' d J-J - I . l V I l I

Op-Code
No.
or

76 543 210 Bytes

1o@Q] r I
11 (QQQ) 110 2

- n -
10 (QQQ) 110 I

11 Oil 101 l
10 [@ I IO

- d -
II Ill 101 l

JO@QIIIO

- d -
lr&il
lfilQ)
lmil
[iQQ]
[ill)
(j]I]
[ill]

00 r O]ill I

00 I I O IIliru I
11 011 101 J
00 110 i::@Qj

J -
II Ill 101 l
00 11o(]ifil

- d

wITJ

No. No,
olM on
Cycles Slates

I 4

2 7

2 7

5 19

s 19

I 4

l II

b 2J

b 23

Commenls

r Reg.
000 B
001 C
010 D
Oil E
100 II
101 L
111 A

s1sany of P",n,
(HL). IIX+d),
(IY+d) '" ,hown f or
ADU imtrm:llon

The ind1c.i.tcd bats
rcphu:c lhc 000 in
Ute AOD ,i:1 abov ..

«.11, ,my of r. (Ill).
(IX+dl, ()Y+d) a-.
)1.1\uwn for INC
Sam1.• fom1.11 .md
,1at1.•,.1 .. IN<"
R.:pl.il·c I 110 with
IOI III OP \ode.

Noles: The V symbol in the P/V mag column ind1cah.·, I hat the P'\' nag ,:ontam~ lhe over0ow of U11.: rnult ol the
operation Similarly lhc P symbol ind11:atcs pam~·. V::: I mean, owrllow. V"' 0 mean~ not owrlluw. P = I
means parity of Che resull is even, P = 0 mean~ p.inty of lh'-· rc,ult 1, uJd.

1-'lagN01a1ion: •=flag not affocted, 0 = tlag rc~t. I= flag """t. X = Ila!:! b unknown.
l = flag is affected according to the rc,ull of lhc upcrJIIOn.

Courtesy Zllog, Inc.

271

Table A-5. General.Purpose Arithmetic and CPU Control Group

Flags

Symbolic ~
Mnemonic Operation C z " s N H

DAA Converts acc. i i p i • i
content into
packed BCD
following add
or subtract
with packed
BCD operands

CPL A-A • . . • I I

NEG A-0-A i i V i I i

CCF CY-CY i • • • 0 X

SCF CY-I I • • • 0 0

NOP No operation • • • • . .
HALT CPU halted • • • . • •
DI IFF-0 • • • • • .
EI IFF-1 • • • • • .
IMO Set intenupt • . • • • •

modeO

!Ml Set intenupt • . • • • •
mode I

IM2 Set intenupt • . . • • •
mode 2

Notes: !FF indicates the intenupt enable flip-flop
CY indicates the carry flip-flop.

Oi>Code
No. No.
or orM

76 543 210 Bytes Cycles

00 100 111 I I

00 IOI Ill I I

11 101 101 2 2

01 000 100
00 111 111 I I

00 110 Ill I I

00 000 000 I I

01 110 110 I I

II 110 Oil I I

11 Ill 011 I I

II 101 IOI 2 2

01 000 110

11 101 IOI 2 2

01 010 110
11 101 101 2 2

01 011 110

Flag Notation: • = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown,

i = flag is affected according to the result or the operation.

272

No.
orT
States Comments

4 Decimal adjust
accumulator

4 Complement
accumulator
(one's complemt

8 Negate acc. (twc
complement)

4 Complement ca,
flag

4 Set carry flag

4

4

4

4

8

8

8

Courtesy Zilog, Inc,

Table A-6. The 16-Bit Arithmetic Group

Flap Op-Code Symbolic
Mnemonic Opentlon IC z ;p" s N H 76 543 210

ADDHL, ss HL-HL+ss i . . . 0 X 00 ssl 001

ADCHL, ss HL-HL+u+CY f i V i 0 X II IOI 101

01 ssl 010
SBCHL,ss HL-HL-ss-CY i i V f I X II 101 IOI

01 ssO 010

ADDIX,pp IX-IX+pp i . . . 0 X II Oil IOI

00 ppl 001

ADDIY,rr IY-IY+rr i . . . 0 X II Ill IOI

00 nl 001

INC ss n-u+l 00 ssO 011

JNCJX IX-IX+ I II Oil 101

00 100 Oil
JNCIY JY-IY+ I II 111 IOI

00 JOO Oil
DEC ss ss -ss•I 00 ssl Oil

DECJX IX-IX-I II 011 IOI

00 IOI 011
DECIY JY-IY-1 11 Ill 101

00 101 Oil

Notes; ss is any of the register pairs BC, DE, HI., SP
pp is any of the register pairs BC, DE. IX, SP
rr is any of the register pain BC, DE, IV. SP.

No. No.
of ofM
Bytea Cycles

I 3

2 4

2 4

2 4

2 4

I I

2 2

2 2

I I

2 2

2 2

Flag Notation: • = flag not affected, O = llag rcsel, I ,; Oas set. X = flag is unknown,
f = flag ii; affected according to the result ofthe opcnllion.

No.
orT
Stares Comments

II .. Reg.

00 BC

15 01 DE
10 HL
II SP

15

15 pp Res-
00 BC
01 DE
10 IX
II SP

15 .. Res .
00 BC
01 DE
10 IY
11 SP

6

10

10

6

10

10

Courtesy Zilog, Inc.

274

Table A-7. Rotate and Shift Group

flap Op-Cod,

~
No.

Symbollc of
Mnemonic Opention C Z V s N H 76 543 110 Bytes

RLCA

~ I . . . 0 0 00 000 111 I

RLA ~ I . . . 0 0 00 010 111 I

RRCA ~ I . . . 0 0 00 001 Ill I

RRA ~ I . . . 0 0 00 Oil 111 I

RI.Cr I I p I 0 0 II 001 Oil 1

OO~r
RLC(HL) I I p I 0 0 II 001 Oil 1

~
oo(gjiji]110

RLC(IX+d) I I p I 0 0 II Oil 101 4
r,IHL),CIX+dl,UY•dJ II 001 Oil

d -
00~•10

RLC(IY+d) I I p I 0 0 II 11) IOi 4
II 001 011 - d -
oo[w110

RLs ~ I I p I 0 0 wfil
S•,tKU.UX+cll.llY-odJ

RRCs ~ I I p I 0 0 @!ill
S•r.nu.1.ux...:1.nY..,>

RRs ~ I I p I 0 0 wil
S•t.(HI.I.UX+dl.HYOdl

SLAs ~o I I p I 0 0 ~
5•1.(KU,CIX+d),tlY+cl)

SllAs ~ I I p I 0 0 QfilJ
S•1,(HLI.IIX..SI.IIY<dl

SRLs ~ I I p I 0 0 IIIIl S•r,IKLl,IIX><II.OY~

RLD ,~m"• I p I 0 0 II 101 101 2

01 IOI Ill

4~!HlJ e RRD I p I 0 0 II 101 IOI 2
01 100 Ill

Flq:Notation: •"' tlag not aff~tcd, 0'" Oag reset, 1 "'Oagsct, X =-Oasis unknown,
i .. ftag is affected according to the result or the operation.

No.
orM
Cycles

I

I

I

I

2

4

6

6

s

s

No.
orT
States Comments

4 Rotate left circular
accumulator

4 Rotate left
accumulator

4 Rolate right circular
accumulator

4 Rotate right
accumulator

8 Rotate left circular
registerr

15 r Ros-
000 B

23 001 C
010 D
Oil E
100 H
IOI L

13
Ill A

Jmuuction format and
llateameushown
for RLC.s. To form
new 01¼:odo replace
~ofRLC,1with
lhownoode

18 Rotate digit lort and
right between the
accumulator
and location (HL).

18 The content of the
upper halt of the
accumulator is
unaffected

Courtesy Zilog, Inc.

Table A-8. Bit SET, RESET, and TEST Gntup

Flap O!K"ode
!llo.

'
No.

Symbolic al alM
Mnemoalc Operation C Z V S N ff 76 543 210 8yta Cy-

BITb.r z-rb • i X X 0 I II 001 OIi 2 2
01 b r

BITb.(HL) Z-(ffLli, • i XX 0 I II 001 OIi 2 3
01 b 110

BIT b. (IX+d) Z-(IX+d)b . i XX 0 I II Oil 101 4 s
II 001 011 - d ➔

01 b 110
BIT b. (IY+d) z - liV+<lli, . i X X 0 I 11 111 IOI 4 s

II 001 011 - d ➔

01 b 110

SETb. r rb-1 II 001 Oil 2 2

ITII b r
SETb,(HL) (HL>i,-1 II 001 011 2 4

ITII b 110
SET b. (IX+d) (IX+d)b-1 II Oil 101 4 6

II 001 Oil

- d ➔

ITII b 110
SET b, (IY+d) (IY+d)b -1 • II 111 IOI 4 6

II 001 011

- d ➔

!III b 110

RESb,s 'b-o [Iru
'"'r,(HL),

(IX+d),
(IY+d)

Notes: The notation 'b indicates bit b (0 to 7) or locations.

Flag Notation: • = flag not affected, 0 = flag reset, I = Oag 5el, X"" flag is unknown,
i = flag is affected according to the remit of lht: operation.

No.
alT
Slota c-meau
8 r

000 B

12 001 C
010 D
011 E

20 100 ff
IOI L
Ill A

b Bit Tos!od
20 000 0

001 I
010 2
011 3
100 4
IOI 5
110 6
Ill 7

8

IS

23

23

To form new OP.
code replace ITII
of SET b,s with
!IT!!-Hass aod Ume
atates for SET
instruction

Courtesy Zilog, Inc.

275

Table A-9. JUMP Gntup

Flags Op-Code

~
No.

Symbolic of
Mnemonic Operation C z vs N H 76 543 210 Bytea

JPnn PC-nn JI 000 011 3

- n -- n -
JP cc, nn If condition cc JI c:c 010 3

is true PC -rv'• - n -otherwise - n -continue

IRe PC-PC+e 00 011 000 2 - e-2 -
IRC,e IIC=O, 00 111 000 2

continue - e-l -
lfC= I, 2
PC-PC+e

IR NC,e lfC= I, 00 110000 2
continue - e-2 -
If C = 0, 2
PC-PC+e

IR Z,e If Z = 0 00 101 000 2
continue - e-2 -
lfZ = I, 2
PC-PC+e

IR NZ,e If Z = I, 00 100 000 2
continue - e-2 -
lfZ =O, 2
PC-PC+e

IP(HL) P<" -HL II 101 001 I

JP(IXJ P<'.-IX II Oil IOI 2
II IOI 001

IP(IY) PC-IY II Ill IOI 2
JI IOI 001

DINZ,e e-e-1 00 010 000 2
lfB = 0, - e-2 -continue

lfB ,.0, 2
PC-PC+e

Notea: e represents the extension in the relative addressing mode.

e is a signed two's complement number in the range <-126, 129>

e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of c.

No.
olM
Cycles

3

3

3

2

3

2

3

2

3

2

3

I

2

2

2

3

Flag Notation: • = Oas not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

t = flag is affected according to the result of the operation.

276

No.
olT
States Comments

10

cc Condition

10 000 NZ non zero
001 z zero
010 NCnon carry
OJI C carry
100 PO parity odd
101 PE parity even
110 P sign positive

12 Ill M sign negative

7 If condition not met

12 If condition is met

7 Jr condition not met

12 If condition is met

7 If condition not met

12 If condition is met

7 If condition not mt·

12 If condition met

4

8

8

8 lfB = 0

13 If B" 0

Courtesy Zilog, Inc.

Table At-10. CALL and RETURN Group

Flap Op-Code

'
No. No.

Symbolic of ofM
Mnemonic Operation C Z V s N H 76 543 210 Bytes Cycles

CALLM (SP-1)-PCH II 001 JOI 3 5
(SP-2)-PCL - n -
PC- - n -

CALLcc, nn If condition II cc JOO 3 3
cc is false - n -continue,
otherwise - n - 3 5
same as
CALLnn

RET PCL--{SP) II 001 001 I 3
PCH--{SP+I)

RETcc If condition II cc 000 1 I
cc is false
continue,

1 3 otherwise
same as
RET

RETI Return from 11 JOI 101 2 4
interrupt

OJ 001 101

RETN Return from 11 101 101 2 4
non maskablc
interrupt 01 000 101

RSTp (SP-1)-PCH II t 111 I 3

(SP-2)-PCL

PCH-0

PCL-P

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
l = flag is affected according to the result of the operation.

No.
ofT
Stales

17

10

17

JO

s

II

14

14

11

Comments

lf cc is false

If cc is true

If cc is false

lfcc is true
cc Condition

000 NZ non zero
001 z zero
010 NC non carry
011 C carry
100 PO parity odd
101 PE parity even
110 p sign positive
111 M sign negative

.!,_ _.!,_
000 OOH
001 08H
OJO !OH
011 18H
100 20H
IOI 28H
110 JOH
II I 38H

Courtesy Zilog, Inc.

277

Table A• 11. Input and Output Group

Flap OpCode
No.

'
No.

Symbolic of oCM
Mnemonic Operation C Z V s N H 76 543 210 Bytes Cycles

IN A, (n) A-(n) . . . • • • II Oil Oil 2 3 - n -
IN r,(C) r-(C) . I p t 0 I II 101 101 2 3

if r = 110 only 01 r 000
the Dagswill
be affected

(jJ
lNI (HL)-(C) . t XX I X II 101 101 2 4

B-B· 1 10 100 010

HL-HL+ I

INIR (HL)-(C) • I XX I X II IOI 101 2 s
B-B·l 10 110 010 (lfB,.0)

HL-HL+J 2 4
Repeat until (If 8 =O)
B=O

Ci:
IND (HL)-(C) • t XX I X II IOI IOI 2 4

B-B-1 10 101 010

HL-HL·l

INDR (HL)-(C) . I XX I X 11 101 JOI 2 s
B-B-1 10 111 010 (If B,. 0)

HL-HL-1
2 4

Repeat until UfB=O)
B=O

OUT (n), A (n)-A 11 010 011 2 3

OUT(C),r (C)-r . • • . . . II 101 JOI 2 3
01 r 001

k1
OUTI (C)-(HL) • I X X I X 11 101 101 2 4

B-B-1 10 100 011

HL-HL+ I

OTIR (CJ-(HL) • I XX I X 11 IOI 101 2 s
B-B-1 10 110 011 (If B" 0)

HL-HL + I
2 4

Repeat until (If B = OJ
B=O

kI
OUTD (C)-(HL) . I X X I X II IOI 101 2 4

B-B-1 10 IOI Oil

HL-HL I

OTDR (C)-(HL) . I X X I X II 101 101 2 s
B-B· 1 10 Ill Oil (If B" 0)

HL-HL-1 2 4
Repeat until (If B = 0)
B=O

Notes: Q) If the result of B - l is zero the Z flag is set. otherwise it is reset.

Flag Notation: • = flag not affected, 0 = flag reset 1 l = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

271

No.
ofT
States Comments

10 ntoA 0 -~

Ace to AB - AlS
II Cto¾-A?

BtoA 8 - A15

15 CtoA 0 -A 7
BtoA 8 -A 15

20 CtoA 0 -~

Bto AB - A15

IS

IS CtoA 0 -~
BtoA 8 - A15

20 Cto A0 - A7
B to As - A1s

IS

II ntoA 0 -~

Ace to AB - AIS
12 CtoA 0 -~

Bio AB - AIS

IS Cto AO - A7
B to Ag - AIS

20 Cto A0 - A7
B to As - AIS

IS

IS <.'h,A 0 ~A 7

Bto AB - AIS

20 Cto AO - A7
Bto A8 - Ats

IS

Courtesy Zilog, Inc.

OBJ
CODE

00
018405
02
03
04
05
0620
07
08
09
OA
08
oc
OD
OE20
OF
102E
118405
12
13
14
15
1620
17
182E
19
1A
18
IC
ID
1E20
lF
202E

APPENDIX B

Z-80 CPU Instructions
Sorted by Mnemonic

SOURCE OBJ SQUACE OBJ SOURCE
STATEMENT CODE STATEMENT CODE STATEMENT

NOP 218405 LDHL,NN 42 LD B. D
LD BC,NN 228405 LD (NN),HL 43 LD B. E
LD (BC),A 23 INC HL 44 LD B. H. NN
INCBC 24 INCH 45 LD B, L
INC B 25 DECH 46 LD B. (HLJ
DEC B 2620 LDH,N 47 LD B.A
LD 8, N 27 DAA 48 LDC. B
RLCA 282E JR Z, DIS 49 LDC,C
EX AF, AF' 29 ADDHL,HL 4A LDC,D
ADD HL. BC 2A8405 LD (HL), (NN) 48 LDC. E
LD A,(BCI 28 DECHL 4C LDC. H
DEC BC 2C INCL 4D LDC. L
INCC 2D DECL 4E LDC. IHLI
DECC 2E20 LDL,N 4F LDC.A
LDC,N 2F CPL 50 LD D. 8
RRCA 302E JR NC, DIS 51 LDD.C
DJNZ DIS 318405 LDSP,NN 52 LD D.D
LD DE, NN 328405 LD(NN),A 53 LD D. E
LD (DE), A 33 INCSP 54 LD D. H
INC DE 34 INC(HL) 55 LD D. L
INCD 35 DEC(HL) 56 LD D. (Hll
DEC D 3820 LD (HL),N 57 LD D.A
LDD.N 37 SCF 58 LD E. B
RLA 382E JR C, DIS 59 LD E,C
JR DIS 39 ADD HL,SP SA LD E, D·
ADD HL,DE 3A8405 LOA, (NN) 58 LD E. E
LDA,(DE) 38 DEC SP SC LD ~. H
DEC DE JC INCA 5D IDE, L
INCE. 3D DECA SE LD E. (HL)
DECE 3E20 LDA,N SF LOE.A
LD E,N JF CCF 60 LDH,8
RRA 40 LD 8,8 61 LDH,C
JR NZ,DIS 41 LDB,C 62 LDH,D

Courtesy Zllog, Inc.

279

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

63 LD H. E AS AND L E9 JP (HL)

64 LD H, H A6 AND IHLI EA8405 JE PENN

65 LD H, L A7 AND A EB EX DE, HL

66 LD H, IHL) A8 XOR B EC8405 CALL PE, NN
67 LOH.A A9 XOR C EE20 XOR N
68 LD L. B AA XOR D EF RST 28H
69 LD L,C AB XOR E FO RET P
6A LD L. D AC XOR H Fl POP AF
68 LD L, E AD XOR L F28405 JP P. NN
6C LD L. H AE XOR IHL) FJ DI
6D LD L, L AF XOR A F48405 CALL P. NN
6E LD L, (HLI BO ORB F5 PUSH AF
SF LD L, A 81 OR C F620 ORN
70 LD (HL), B 82 ORD F7 RST JOH
71 LD (HL).C 83 ORE FB RET M
72 LD (HL). D 84 OR H F9 LD SP. HL
73 LD (HL). E 85 OR L FA8405 JP ·M. NN
74 LD (HL). H 86 OR (HL) FB El
75 LD (HL). L 87 OR A FGB405 CALL M, NN
76 HALT 88 CP B FE20 CP N
77 LD (HL),A 89 CPC FF RST JBH
78 LDA,B BA CPD CBOO RLC B
79 LDA,C BB CP E CBOl RLC C
7A LD A. D BC CP H CB02 RLC D
78 LD A. E 8D CPL CBOJ RLC E
7C LD A. H BE CP IHL) CB04 RLC H
7D LD A. L BF CPA CB05 RLC L
7E LD A. iHLI co RET NZ CB06 RLC (HLI
7F LD A. A Cl POP BC CB07 RLC A
80 ADD A. B C28405 JP NZ. NN CBOB ARC B
81 ADD A, C C38405 JP NN CB09 ARC C
82 ADD A, D C48405 CALL NZ, NN CBOA ARC D
83 ADD A. E cs PUSH BC CBOB RRC E
84 ADD A. H C620 ADDA,N CBOC ARCH
85 ADD A. L C7 ASTO CBOD ARC L
86 ADD A. IHLI ca RETZ CBOE RRC IHLI
87 ADD A, A C9 AET CBOF RAC A
88 ADC A. B CA8405 JP Z, NN CB10 RL B
89 ADC A. C CC8405 CALL Z, NN CB11 RL C
SA ADC A. D CDB405 CALL NN CB12 AL D
BB ADC A. E CE20 ADC A, N CB13 ALE
BC ADC A, H CF RST 8 CB14 RL H
BD ADC A. L DO AET NC CB15 RL L
BE ADC A. iHLI Dl POP DE CB16 RL IHU
BF ADC A. A D28405 JP NC, NN CB17 RL A
90 SUB 8 D320 OUT INl,A CB18 RR B
91 SUB C D48405 CALL NC, NN CB19 RR C
92 SUB D DS PUSH DE CBlA RR D
93 SUB E D620 SUB N CBlB ARE
94 SUB H D7 AST 10H CBlC AR H
95 SUB L DB RET C CBlD RR L
96 SUB IHLI D9 EXX CB'1E RR IHLI
97 SUB A DA8405 JP C, NN CBlF RA A
98 SBC A. B DB20 !NA.IN) CB20 SLAB
99 SBC A. C DCB405 CALL C. N CB21 SLAC
9A SBC A. D DE20 SBC A. N CB22 SLAD
9B SBC A, E DF RST 18H CB23 SLA E
9C SBC A. H EO RET PO CB24 SLA H
9D SBC A. L El POP HL CB25 SLA L
9E SBC A. IHLI E28405 JP PO, NN CB26 SLA (HLI
9F SBC A, A EJ EX ISP), HL CB27 SLAA
AO AND B E48405 CALL PO, NN CB28 SRA B
Al ANDC ES PUSH HL CB29 SRA C
A2 AND,D E620 AND N CB2A SRA D
AJ AND E E7 AST 20 H CB2B SRA E
A4 AND H EB RET PE CB2C SRA H

Courtesy Zilog, Inc.

280

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT cooE STATEMENT CODE STATEMENT

CB20 SRA L CB77 BITS, A CBB9 RES7,C
CB2E SRA (HL) CB78 BIT 7, B CBBA RES 7, D
CB2F SRAA CB79 BIT7,C CBBB A.ES 7, E
CB38 SALB CB7A BIT 7, D CBBC RES 7, H
CB39 SAL C CB7B BIT 7, E CBBD RES 7, L
CBJA SRL D CB7C BIT7, H CBBE RES 7, IHLI
CBJB SRL E CB70 BIT 7, L CBBF RES7,A
CBJC SRL H CB7E BIT 7, (HL) CBC□ SET 0, B
CBJD SALL CB7F BIT 7, A CBC! SET 0, C
CBJE SAL (HLI CBBO RES 0, B CBC2 SET 0, D
CBJF SAL A CBBl RES 0, C CBC3 SET 0, E
CB40 BIT 0, 8 CB82 RESO, D CBC4 SET 0, H
CB41 BITO,C CB83 RES 0, E CBCS SET 0, L
CB42 BIT 0, D CB84 RES 0, H CBC6 SET 0, IHL)
CB43 BIT 0, E CB85 RES 0, L CBC7 SET 0, A
CB44 BIT .0, H CB86 RES 0, (HL) ceca SET 1, B
CB45 BITO, L CB87 RES 0, A CBC9 SET 1,C
CB4S BITO, (HLI CBBB RES 1, B CBCA SET 1, D
CB47 BIT 0, A CB89 RES 1,C CBCB SET 1, E
CB48 BIT 1. B CBBA RES 1, D CBCC SET 1. H
CB49 BIT 1, C CBBB RES 1, E CBCD SET 1, L
CB4A BIT 1, D CBBC RES 1, H CBCE SET 1. IHLI
CB48 BIT 1, E cBeo RES 1, L CBCF SET 1. A
CB4C BIT 1, H CBBE RESl,IHL) cBoo SET 2, B
CB40 BIT 1, L CBBF RES 1, A CBDl SET 2. C
<:B4E BIT 1, IHLI CB90 RES 2. B CBD2 SET 2. D
C84F BIT 1,A CB91 RES 2, C CB03 SET 2. E
CBS□ BIT2, B CB92 RES 2, D CB04 SET 2, H
CB51 BIT2,C CB93 RES 2, E CBOS SET 2, L
CB52 BIT2, D CB94 RES 2, H CBDS SET 2, (HLI
CB53 BIT2, E CB95 RES 2, L CB07 SET 2, A
CB54 BIT2, H CB96 RES 2, (HLI CBOB SET 3, B
CBSS BIT2, L CB97 RES 2, A CBD9 SET 3,C
CB56 BIT 2, (HLI CB98 RES 3, B CBOA SET 3, D
CB57 BIT2,A C899 RES 3, C CBDB SET 3, E
CB58 BIT 3, B CB9A RES 3, D CBDC SET 3, H
CB59 BIT3,C CB9B RES 3, E CBDD SET 3, L
CBSA BIT3, D CB9C RES 3, H CBDE SET 3, (HLI
CBSB BIT3, E CB9D RES 3, L CBDF SET 3, A
CBSC BIT3, H CB9E RES 3, (HLI CBEO SET 4. B
CBSD BIT'3, L CB9F RES 3, A CBEl SET 4, C
CBSE BIT 3, (HL) CBAO RES 4, B CBE2 SET 4, D
CBSF BIT 3,A CBAl RES 4, C CBE3 SH4,E
CB60 BIT4, B CBA2 RES 4, D CBE4 SET 4, H
CB61 BIT4,C CBA3 RES 4. E CBES SET 4, L
CB62 BIT4, D CBA4 RES 4, H CBE6 SET 4, IHLI
CBS3 BIT4, E CBAS RES 4, L CBE7 SET 4, A
CBS4 BIT4, H CBA6 RES 4, IHLJ CBEB SET 5, B
CB65 BIT4, L CBA7 RES 4, A CBE9 SET 5, C
CBS6 BIT 4, (HL) CBAB RES 5, B CBEA SET 5, D
CB67 BIT4,A CBA9 RES 5, C CBEB SET 5, E
Cll68 BITS,B CBAA RE95; D CBEC SET 5. H
CB69 BITS,C CBAB RES 5, E CBED SET 5, L
CB6A BITS, D CBAC RES 5, H CBEE SET 5, IHLI
CB6B BITS, E CBAO RES 5. L CBEF SET 5, A
CB6C BITS, H CBAE RES 5, IHLI CBFQ SET 6, B
CBSO BIT 5, L CBAF RES 5, A CBFl SET 6, C
CB6E BIT 5, (HL) CBBO RES 6, B CBF2 SET 6, D
CBSF BITS,A CBBl RES 6, C CBF3 SET 6, E
CB70 BITS, B CBB2 RES 6, D CBF4 SET 6, H
CB71 BIT6,C CBB3 RES 6, E CBF5 SET 6, L
CB72 BITS, D CBB4 RES 6, H CBF6 SET 6, IHLI
CB73 BITS, E CBBS RES 6, L CBF7 SET 6, A
CB74 BITS, H CBB6 RES 6, IHLI CBFB SET 7, 8
CB75 BITS, L CBB7 RES 6, A CBF9 SET 7. C
CB76 BITS, (HL) CBBB RES 7, B CBFA SET 7, D

Courtesy Zilog, Inc.

281

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT COOE STATEMENT CODE STATEMENT

DDCBOSBE RES 7. IIX + di FD23 INC IY CBFB SET7.E
DDCB05C6 SETO. IIX +di FD29 ADD IY. IY CBFC SET 7. H
DDCB05CE SETl.llX+d) FD2A8405 LD IY. (NNJ CBFD SET 7. L
DDCB05D6 SET 2. IIX + di FD2B DECIY CBFE SET 7. (HLJ
DDC805DE SET 3. IIX + di FD3405 INC (IY +d) CBFF SET 7. A
DDCB05E6 SET 4. IIX +di FD3505 DEC (IY +di DD09 ADD IX. BC
DDCBOSEE SET 5. IIX + di FD360520 LDIIY+dl,N DD19 ADDIX'DE
DDCB05F6 SET 6. IIX +di FD39 ADD IY, SP DD218405 LDIX.NN
DDCBOSFE SET7,IIX +di FD4605 LD B. (IY +d) DD228405 LD (NNJ, IX
ED40 IN B, IC) FD4E05 LD.C. (IY +d) DD23 INC IX
ED41 OUT ICJ. B FD5605 LD D, (IY +di DD29 ADD IX.IX
ED42 SBC HL, BC FD5E05 LD E. (IY +d) DD2A8405 LD IX. (NNJ
ED438405 LD INN). BC FD6605 LD H, (IV +d) DD28 DECIX
ED44 NEG FD6E05 LD L. (IY +di DD3405 INC IIX +di
ED45 RETN FD7005 LD (IY +dJ. B DD3505 DEC IIX +di
ED46 IMO FD7105 LD(IY+d),C DD360520 LDIIX+dl.N
ED47 LD l,A FD7205 LD (IY +di. D DD39 ADD IX, SP
ED48 INC, (Cl FD7305 LD IIY +di. E DD4605 LD B. (IX +dJ
ED49 OUT (Cl, C FD7405 LDIIY+dl,H DD4E05 LDC. IIX +di
ED4A ADC HL. BC FD7505 LD IIY +di. L DD5605 LD D, IIX +di
ED4B8405 LD BC, (NNJ FD7705 LDIIY+d).A DDSEOS LD E. IIX +di
ED4D RETI FD7E05 LD A. (IV +di DD6605 LD H. IIX +di
EDSO IND. (Ci FD8605 ADD A, (IY +di DD6E05 LD L. IIX +di
ED51 OUT ICI. 0 FDBEOS ADC A. (IY +di DD7005 LD IIX +di. 8
ED52 SBC HL, DE FD9605 SUB (IY +di DD7105 LD IIX +dJ.C
ED538405 LD INN). DE FD9E05 SBC A, IIY +di DD7205 LD IIX +di. D
ED56 IMl FDA605 AND IIY +dJ DD7305 LD IIX +di. E
ED57 LD A, I FDAEOS XOR (IY +di DD7405 LD (IX +d). H
EDSB IN E, (Cl FDB605 OR IIY +di DD7505 LD IIX +di. L
ED59 OUT IC), E FDBEOS CP IIY +dJ DD7705 LD IIX+dl. A ED5A ADC HL, DE FDEl POPIY DD7E05 LDA.IIX+d) ED5B8405 LD DE. (NNI FDE3 EX (SP). IV DD8605 ADD A. (IX·+dl ED5E IM2

FDE5 PUSHIY DDBE05 ADCA,(IX+d) ED60 IN H. (CJ
FDE9 JP (IY) DD9605 SUB (IX +di ED61 OUT (Cl, H
FDF9 LD SP. IY DD9E05 SBC A, (IX +di ED62 SBC HL, HL FDCB0506 RLC (IY +di DDA605 AND (IX +di ED67 ARD FDCBOSOE RRC IIY +di DDAE05 XOR (IX +di ED68 IN L, (Cl FDCB0516 RL (IY +di DDB605 OR (IX +dJ ED69 OUT (Cl. L FDCB051 E RR llY + di DDBE05 CP (IX +dJ ED6A ADC HL, HL FDCB0526 SLA UY +di DDEl POPIX ED6F RLD FDCB052E SRA UY +di DDEJ EX ISP), IX ED72 SBC HL, SP FDCB053E SRL (IY +di DDE5 PUSH IX ED738405 LD (NNI. SP FDCB0546 BIT 0, (IY + d) DDE9 JP (IXJ ED7B INA,(CI FDCB054E BIT 1, (IY + di DDF9 LD SP. IX ED79 OUT (CJ,A FDCB0556 BIT 2, (IY +di DDCB0506 RLC (IX+ di ED7A ADC HL.SP FDCB055E BIT 3, (IY + di DDCB05QE R RC II X + di ED7B8405 LD SP. INN) FDCB0566 BIT 4, (IY + d) DDCB0516 RL (IX +dJ EDAO LDI FDCB056E BIT 5, (IY +di DDCB051E RR (IX +di

EDAl CPI FDCB0576 BIT 6, (IY +di DDCB0526 SLA IIX +di EDA2 INI FDCB057E BIT 7, (IY + di DDCB052E SRA IIX +di EDAJ OUTI FDCB0586 RES 0, (IY +dJ DDCB053E SAL IIX +di EDAB LDD FDCB058E RES 1. (IY +di DDCB0546 BIT 0. IIX +dJ EDA9 CPD FDCB0596 RES 2, (IY +di DDCB054E BIT 1. IIX +di EDAA IND FDCB059E RES 3. (IY + dJ DDCB0556 BIT 2. IIX + di EDAB OUTD FDCB05A6 RES 4. IIY + dJ DDCB055E BIT 3, IIX +di EDB0 LDIR FDCB05AE RES 5, (IY + di DDCB0566 en 4, IIX +dJ EDBl CPIR FDCB05B6 RES 6, (IY + di DDCB056E BIT 5. IIX +dJ EDB2 INIR FDCB05BE RES 7, (IY + di DDCB0576 BIT 6. IIX +dJ EDB3 OTIR FDCB05C6 SET 0, (IY + di DDCB057E BIT 7, IIX +di EDBB LDDR FDCBOSCE SET 1, (IY + di DDCB0586 RESO. IIX +dJ EDB9 CPDR FDCB05D6 SET 2, (IY + di DDCB058E RES 1, IIX + di EDBA INDR FDCBOSDE SET 3. (IY + di DDCB0596 RES 2. IIX + di EDBB OTDR FDCB05E6 SET 4, (IY +di DDCB059E RES 3. IIX + di FD09 ADD IV.BC FDCB05EE SET 5, (IY + di DDCB05A6 RES 4. IIX + di FD19 ADDIY,DE FDCB05F6 SET 6, (IY + di DDCB05AE RES 5. IIX + di FD218405 LDIY.NN
FDCBOSFE SET 7, (IY +di DDCB05B6 RES 6. (IX + di FD228405 LD (NNJ, IY

Courtesy ~log,

212

OBJ
COOE

BE
DDBE05
FDBE05
BF
88
89
BA
BB
BC
80
CE20
ED4A
E05A
ED6A
E07A
86
008605
FD8605
87
80
81
82
83
B4
85
C620
09
19
29
39
DD09
DD19
DD29
0039

APPENDIX C

Z-80 CPU Instructions
Sorted by Op Code

SOURCE OBJ SOURCE OBJ SOURCE
STATEMENT COOE STATEMENT COOE STATEMENT

ADCA,(HL) FD09 ADD IY,BC CB4D 811 1, L
ADCA,(IX+d) FD19 ADD IV,DE CBS& BIT 2, (HL)
ADCA,(IV+d) FD29 ADD IV, IV DDCB0556. BIT 2, (IX +d)
ADCA,A FD39 ADDIV,SP FDCB0556 BIT 2, (IY +d)
ADCA,B A6 AND (HL) CB57 BIT2,A
ADCA,C DDA605 AND(IX+d) ceso BIT2, 8
ADCA,D FDA605 AND(IV+d) CB51 BIT2,C
ADCA,E A7 ANDA C852 BIT2, D
ADCA,H AO ANDS CB53 BIT2, E
Al:ICA,L Al ANDC C854 BIT2,H
ADCA,N A2 ANDO CB55 BIT2, L
ADC HL,BC A3 ANOE C85E BIT 3, (HL)
ADC HL, DE A4 ANDH DDCB055E Bl1'3, OX +di
ADC HL, HL A5 ANDL FDCB055E BIT 3, (IV +di
ADCHL, SP E620 ANON C85F BIT3,A
ADDA,(HLI C846 BITO, (HL) CB58 BIT3,B
ADDA,IIX+d) DDCB0546 BITO, (IX +d) C859 BIT3,C
ADDA,(IV+d) FDCB0546 BITO,(IV+d) CB5A BIT3,D
ADDA.A C847 BITO,A C85B BIT3,E
ADDA,B CB40 BITO,B CB5C BIT3,H
ADDA,C CB41 BIT!),C CB5D BIT3,L
ADDA,D CB42 BITO,D CB&& BIT4,(HL)
ADDA,E CB43 BITO,E DDCB0566 BIT4, (IX +d)
ADDA,H CB44 BITO,H FDCB0566 BIT 4, (IV +d)
ADDA,L CB45 BITO, L CB67 BIT4,A
ADDA,N CB4E BIT 1,(HL) CB&O BIT4,B
ADDHL,BC DDC8054E BIT 1, (IX +d) C861 BIT4,C
ADDHL,DE FDCB054E BIT 1, (IV+d) C862 BIT4, D
ADDHL,HL CB4F BIT1,A CB63 BIT4,E
ADDHt,SP BC48 BIT 1,8 C864 BIT4,H
ADD IX.BC CB49 BIT 1,C CB65 BIT4, L
ADDIX,DE CB4A BIT1,D CB&E BIT 5, (HL)
ADD IX,IX CB4B BIT 1,E DDCB056E BIT 5, (IX +d)
ADD IX SP CB4C BIT1 H FDCB056E BIT5 (IY +d)

Courtesy Zllog, Inc. -

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEME.NT CODE STATEMENT CODE STATEMENT

CB6F BITS.A 0028 DECIX 71 LD(HLl,C

CB68 BITS,B F028 OECIY 72 LD(HLl,D

CB69 BITS,C 20 DEC L 73 LO (HL). E

CB6A BITS, D 38 DEC SP 74 LO (HLI.H

CB6B BITS, E Fl DI 75 LO (HLI.L

CB&C BITS, H 102E OJNZ DIS 3620 LO (HL), N

CB&D BITS, L FB El 007705 LO(IX+d).A
CB76 BIT&, (HL) El EX (SP), HL 007005 LO IIX +d). B
OOCB0576 BIT&, (IX +di DDE3 EX (SP), IX 007105 LO(IX+d).C
FDCB0576 BIT 6, (IV +d) FOE3 EX (SP), IY 007205 LD(IX+d),D
CB77 BIT&,A OB EX AF, AF' D07305 LO (IX +d). E
CB70 BIT&,B EB EX DE, HL D07405 LD(IX+d).H
CB71 BIT6,C 09 EXX D07505 LO(IX+d).L
CB72 BIT&,D 76 HALT 0D360520 LD(IX+d).N
CB73 BIT6,E ED46 IMO F07705 LO (IV +d),A
CB74 BIT&,H EDS& IM 1 F07005 LO (IV +d), B
CB75 BIT&, L EDSE IM2 F07105 LO (IV +d), C
CB7E BIT 7, (HL) ED78 INA,(C) FD7205 LO (IV +d), D
DDCB057E BIT 7, (IX +di DB20 INA,(N) FD7305 LO (IV +d). E
FDCB057E BIT 7, (IV +d) ED40 IN B,(C) FD7405 LDIIY+d),H
CB7F BIT7,A ED48 INC,(C) FD7505 LO (IV +d), L
CB7B BIT7, B EDSO IND, IC) FD360520 LO (IV +d), N
CB79 BIT7,C EDSB IN E. IC) 328405 LD INN),A
CB7A BIT7, D ED&O IN H,(CI ED438405 LO INN), BC
CB7B BIT 7,E ED68 IN L,(CI ED538405 LO (NN),DE
CB7C BIT 7,H 34 INC(HL) 228405 LO (NN),HL
CB7D BIT7., L D03405 INC (IX +d) 0D228405 LO (NN), IX
DC8405 CALLC, NN FD3405 INC (IV +d) FD228405 LO (NN), IY
FC8405 CALL M,NN 3C INCA ED738405 LO (NN),SP
048405 CALL NC, NN 04 INCB OA LO A, (BC)
CD8405 CALL NN 03 INCBC 1A LO A, (DE)
C48405 CALL NZ, NN oc INCC 7E LOA, (HL)
F48405 CALL P, NN 14 INCD DD7E05 LOA, (IX+d)
EC8405 CALLPE,NN 13 INC DE FD7E05 LO A, (IV +d)
E48405 CALL PO,NN 1C INCE 3A8405 LO A, (NN)
CC8405 CALL Z,NN 24 INCH 7F LDA,A
3F CCF 23 INCHL 78 LDA,B
BE CP(HL) 0D23 INCIX 79 LDA,C
DDBE05 CP (IX +d) FD23 INCIY 7A LDA,D
FDBE05 CP (IV +d) 2C INCL 7B LO A,E
BF CPA 33 INCSP 7C LDA,H
BB CP B EDAA IND ED57 LDA,I
B9 CPC EDBA INDR 7D LOA, L
BA CPD EDA2 INI 3E20 LDA,N
BB CP E EDB2 INIR 46 LOB, IHL)
BC CP H E9 JP IHL) D04605 LD B, (IX +d)
BO CPL DDE9 JP (IX) FD4605 LD B, IIY +di
FE20 CPN FDE9 JP UY) 47 LDB,A
EDA9 CPD DA8405 JP C, NN 40 LOB. B
EDB9 CPDR FA8405 JP M. NN 41 LD B,C
EDAl CPI D28405 JP NC, NN 42 LD B,D
EDBl CPIR C38405 JP NN 43 LOB, E
2F CPL C28405 JP NZ, NN 44 LOB, H, NN
27 DAA F2B405 JP P, NN 45 LD B. L
35 DEC IHL) EA8405 JP PE, NN 0620 LDB,N
D03505 DEC (IX +d) E28405 JP PO, NN ED4B8405 LD BC, (NN)
FD3505 DEC (IV +di CA8405 JP?, NN 018405 LO BC. NN
3D DECA 382E JR C, DIS 4E LO C, (HL)
05 DEC B 182E JR DIS DD4E05 LO C, (IX +di
OB DEC BC 302E JR NC, DIS FD4E05 LO C, (IY +di
OD DECC 202E JR NZ, DIS 4F LDC.A
15 DEC D 282E JR Z, DIS 48 LO C,B
1B DEC DE 02 LD (BC). A 49 LO C,C
1D DEC E 12 LD (DE), A 4A LO C, D
25 DECH 77 LD(HL),A 48 LO C, E
2B DEC HL 70 LO (HL), B 4C LO C,H

Courtesy Zilog, lclc:.

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE S"tATEMENT CODE STATEMENT

4D LO C, L DDB605 OR IIX +cl) CB9F RES 3, A
OE20 LD C,N FDB605 OR (IY +di CB98 RES 3, B
56 LO D. IHLI B7 ORA CB99 RES 3, C
DD5605 LO D, (IX +d) BO ORB CB9A RES 3, D
F05605 LO D. IIY +di Bl ORC CB9B RES 3, E
57 LDD,A B2 ORD CB9C RES 3. H
50 LO D,B B3 ORE CB9D RES 3. L
51 LO D,C B4 OR H CBA6 RES 4. iHLI
52 LDD.D BS OR L DDCBOSA6 RES 4, (IX +di
53 LO D. E F620 ORN FDCBOSA8 RES 4. IIY +<Ji
54 LO 0.H EDBB OTDR CBA7 RES 4, A
55 LO D. L EDB3 OTIR CBAO RES 4, B
1620 LO D.N ED79 OUT ICI. A CBA1 RES 4, C
EDSB8405 LO DE. INN) E041 OUT ICI. B CBA2 RES 4. D
118405 LO DE. NN ED49 OUT ICI.C CBA3 RES 4, E
SE LD E, (HLI E051 OUT IC), D CBA4 RES4.H
DDSEOS LOE, IIX +di E059 OUT ICI. E CBAS RES4.L
F DSEOS LOE. (IY +di ED61 OUT IC). H CBAE RES 5, IHLI
SF LOE. A E069 OUT ICI. L DDCBOSAE RESS.IIX +cl)
58 LOE. B D320 OUT INI.A FOCBOSAE RES 5, IIY + di
59 LO E,C EDAB OUTD CBAF RES 5, A
SA LOE. D EDA3 OUTI CBAB RES 5, B
SB LOE, E Fl POP AF CBA9 RES 5, C
SC LOE. H Cl POP BC CBAA RESS., D
SD LOE, L Dl POP DE CBAB RES 5, E
1E20 LO E,N El POP HL CBAC RES 5, H
66 LDH.IHLI DDE1 POPIX CBAD RES 5. L
006605 LOH, (IX +d) FDEl POPIY CBB6 RES 6, IHLI
FD6606 lD H. IIY +di FS PUSH AF DDCBOSB6 RES 6, IIX + <JI
67 LOH.A cs PUSH BC FDCB05B6 RES 6. IIY +di
60 LOH. B 05 PUSH DE CBB7 RES 6. A
61 LD H.C ES PUSH HL CBBO RES 6. B
62 LD H, D ODES PUSH IX CBBl RES 6, C
63 LO H,E FOES PUSHIY CBB2 RES 6. D
64 LO H,H CB86 RES O. IHLI CBB3 RES 6. E
65 LOH. L DDCB0586 RESO. IIX +di

CBB4 RES6, H
2620 LD H,N FDCBOSB6 RESO, IIY +di

CBBS RES 6, L
2AB405 LO HL. (NNI CBB7 RESO, A

CBBE RES 7. IHLI
218405 LD HL, NN CB80 RES 0. B

DDCBOSBE RES 7, IIX +di
ED47 LOI.A CBBl RES 0. C

FDCBOSBE RES 7. IIY +di
DD2A8405 LD IX, INN) CBB2 RES 0, D

CBBF RES 7. A
DD218405 LDIX,NN CB83 RES 0, E

CBBB RES 7, B
FD2AB405 LO IY. INN) CBB4 RES 0. H

CBB9 RES 7, C
FD218405 LD IY, NN CBB5 RES 0, L CBBA RES 7, D
6E LO L. (HL) CBBE RES 1, IHLI Cl!BB RES 7, E
DD6E05 LO L, IIX +d) DDCB058E RES 1, IIX +di CBBC RES 7, H
FD6E05 LO L, IIY +di FOCBOSBE RES 1. IIY +di CBBD RES 7. L
6F LO L,A CBBF RES 1,A C9 RET
68 LD L. B CBBB RES 1, B D8 RET C
69 LO L,C CB89 RES 1,C FB RET M
6A LO L. D CBSA RES 1, D DO RETNC
6B LD L,E CBBB RES 1, E co RETNZ
6C LDL. H CBBC RES 1,H FO RET P
60 LD L. t: CBBD RES 1, L EB RETPE
2E20 LDL,N CB96 RES 2 IHLI EO RET PO
ED7B8405 LO SP. INN) DDCBd596 RES 2, (IX +di

CB RETZ
F9 LO SP. HL FDCB0596 RES 2, (IY +d)

ED4D RETI DDF9 LO SP. IX CB97 RES 2. A
ED45 RETN FDF9 LDSP, IY CB90 RES 2. B
CB16 RL (HLI 318405 LDSP, NN CB91 RES 2. C
DDCB0516 RL (IX+d) EDAB LDD CB92 RES 2. D
FDCB0516 RL IIY +di EDBB LDDR CB93 RES 2. E
CB17 RLA EDAO LOI CB94 RES 2, H

EDBO LDIR CB95 RES 2. L CB10 RL B

ED44 NEG CB9E RES 3, (HLI CB11 RL C

00 NOP DDCB059E RES 3, IIX +di CB12 RL D
B6 DR (HLI FDCB059E' RES 3. (IY +d) CB13 RL E

Courtesy Zilog, l111t.

285

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CB14 RL H CBCO SET 0, B CBFE SET 7, (HLI

CB15 RL L CBC! SETO,C DDCBOSFE SET 7, (IX +di

17 ALA CBC2 SETO, D FDCB05FE SET7, (IV +di

CB06 RLC (HLI CBC3 SET 0, E CBFF SET 7. A
DDCB0506 RLC(IX+dl CBC4 SET 0, H CBF8 SET 7, B
FDCB0506 RLC (IV +di CBC5 SET 0, L CBF9 SET 7,C
CB07 RLCA CBCE SET 1, (HLI CBFA SET 7, D
CBOO RLC B DDCB05CE SETl,(IX+dl CIIFB SET ,7, E
CBOI RLCC FDCB05CE SETl,(IV+dl CBFC SET 7, H
CB02 RLC D CBCF SETI.A CBFD SET 7, L
CB03 RLC E CBCB SET 1. B CB26 SLA (HLI
CB04 RLCH CBC9 SET 1,C DDCB0526 SLA (IX + di
CB05 RLC L CBCA SET 1,0 FOCB0526 SLA (IV +di
07 RLCA CBCB SET 1,E CB27 SLAA
E06F RLD CBCC SET 1, H CB20 SLAB
CBIE RR (HLI CBCD SET 1. L CB21 SLAC
DDCB051E RR (IX+dl CBD6 SET2, (HLI CB22 SLA D
FDCB051E RR (IV +di DDCB05D6 SET 2, (IX +di CB23 SLA E
CBIF RR A FDCB05D6 SET 2, (IV+ di CB24 SLAH
CB18 RR B CBD7 SET 2, A CB25 SLA L
CB19 ARC CBDO SET 2, B CB2E SRA (HLI
CBIA RR D CB01 SET 2, C DDCB052E SRA (IX + di
CBIB RR E CBD2 SET 2, D FDCB052E SRA (IV +di
CB1C RR H CBD3 SET 2, E CB2F SRAA
CBID RR L CBD4 SET 2, H CB28 SRA B
IF ARA CBD5 SET 2, L CB29 SRAC
CBOE ARC (HLI CBDB SET 3. B CB2A SAAD
DDCB050E ARC (IX +di CBDE SET 3, (HLI CB2B SRA E
FDCBOSOE ARC (IV +di DDCB05DE SET 3, (IX +di CB2C SRAH
CBOF ARCA FDCB050E SET 3, (IV +di CB2D SRA L
CBOB RRCB CBDF SET 3, A CBJE SAL (HLI
CB09 RRCC CBD9 SET 3, C DDCB053E SR L II X + di
CBOA ARC D CBDA SET 3, D FDCB053E SAL (IV +di
CBOB ARCE CBDB SET 3, E CBJF SAL A
CBOC ARCH CBDC SET 3. H CBJB SALB
CBOD ARC L CBDD SET 3. L CB39 SRLC
OF ARCA CBE6 SET 4, (HL) CBJA SAL D
ED67 ARD DDCB05E6 SET 4, (IX +di CBJB SALE
C7 RSTO FDCBOSE6 SET4, (IV +di CBJC SAL H
D7 RSTIOH CBE7 SET 4, A CB3D SALL
OF AST 18H CBEO SET 4, B 96 SUB (HLI
E7 AST 20H CBEI SET 4,c· 0D9605 SUB (IX +di
EF AST 28H CBE2 SET 4, D F09605 SUB (IV +di
F7 AST JOH CBE3 SET 4, E 97 SUBA
FF AST 38H CBE4 SET4,H 90 SUB B
CF RSTB CBE5 SET 4, L 91 SUBC
9E SBC A, (HLI CBEE SET 5, (HLI 92 SUB D
009E05 SBC A, (IX +di DDCBOSEE SET 5, (IX+ di 93 SUB E
FD9E05 SBCA, (IV +di FOCBOSEE SET 5, (IV +di 94 SUB H
9F SBC A,A CBEF SET 5, A 95 SUB L
98 SBC A, B CBEB SET 5, B 0620 SUBN
99 SBC A,C CBE9 SET 5,C AE XOR (HLI
9A SBCA, D CBEA SET5,D DOAEOS XOR (IX +di
9B SBCA, E CBEB SET 5, E FOAE05 XOR (IV +di
9C SBC A,H CBEC SET 5, H AF XORA
90 SBCA,L CBED SET 5, L AB XOR B
DE20 SBCA,N CBF6 SET6, (HLI A9 XORC
E042 SBC HL. BC DDCB05F6 SET 6, (IX+ di AA XOR D
ED52 SBC HL, OE FDCBOSF6 SET6, (IV +di AB XOR E
ED62 SBC HL, HL CBF7 SET6, A AC XOR H
ED72 SBC HL, SP CBFO SET6, B AD XOR L
37 SCF CBFI SET6, C EE20 XORN
CBC6 SETO. (HLI CBF2 SET6, D
DDCBOSCS SET 0, (IX +di CBF3 SET6, E
FOCB05C6 SET 0, (IV +di CBF4 SET 6, H
CBC7 SET 0, A CBF5 SET 6, L

Courtesy Zilog, Inc.

APPENDIX D

Computation of
Execution Times

The following information addresses the question of how to com
pute execution times for sequences of Z-80 instructions. Execution
time is usually an important attribute of a program which must be
considered when selecting alternative methods of implementation.

Consider the following sequence of instructions:

LD A, 36H
LD B, 49H
OR B
AND 99H
RL A

How much time will it take your Nanocomputer to execute these in
structions? To determine the answer to this question you must know
the clock rate of the external clock of the Nanocomputer. It is 2.5
MHz or 2.5 Megahertz or 2,500,000 cycles per second. That is, each
cycle lasts for

1
2_5 x 106 second = .0000004 second

Since 1 sec.= 1()3 milliseconds (msec) = 106 microseconds (µ.sec)
= 109 nanoseconds (nsec), the cycle time of your Nanocomputer is
0.0004 msec or 0.4 µ,sec or 400 nsec. Specially selected Z-80 CPU
chips can run at 4 MHz, or a cycle time of 250 nsec. The tables in
Appendix A give the number of T-states, or external clock cycles,

287

required to execute each Z-80 instruction. Thus, using these tables,
we may make the following computation.

No. Times Total Execution
Instruction No. T-st■tes Executed Time (µsec)

LO A,36H 7 7 T-states = 2.8
LO B,49H 7 2.8
OR B 4 1.6
AND 99H 7 2.8
RL A 4 1.6

Thus, the execution time for the instruction sequence is 11.6 µsec.
For the above example, the number of times each instruction is

executed is uniformly 1. Let us look at a delay loop for our next
example.

LO A,06H
LO B,08H

LOOP: INC A
DEC B
JP NZ,LOOP

The timing computation for this instruction sequence is as follows:

No. Times Total Execution
Instruction No. T-st■tes Executed Time (µsec)

LO A,06H 7 1 2.8
LO B,08H 7 1 2.8
INC A 4 9 14.4
DEC B 4 9 14.4
JP NZ,LOOP 12 (condition met) 1 4.8

7 (condition not met) 8 22.4

Total: 61.6 µ.sec

H the above delay loop were set up as a subroutine, the delay caused
by the routine would also include the time required to execute both
the initial CALL statement and the final RET statement:

CALL
RET

17
10

6.8
4.0

New Total: 72.4 µ.sec

Let us now look at one final example which utilizes the LDIR
instruction:

LO HL,0lOOH
LO DE,0200H
LO BC,0010H
LDIR

281

No. Times Execution Time
lnstrudion No. T-stffll Executed (µsoc)

LD HL,0lOOH 10 1 4.0
LD DE,0200H 10 1 4.0
LD BC,0010H 10 1 4.0
LDIR 21 (If BC =I= 0) 15 126.0

16 (If BC= 0) 1 6.4

Total: 144.4 µ.sec

289

APPENDIX E

Precautions While
Handling MOS Devices

MOS devices are extremely sensitive and can be damaged by:

• Static electricity and
• Incorrect insertion into socket on the Nanocomputer board.

The following precautions should be observed when handling
MOS devices:

1. Ensure that you are statically discharged immediately before
touching the device. This can be accomplished by rubbing your
hands on conductive material.

2. Avoid touching the pins.
3. Avoid pin contact with any material likely to hold a static

charge, e.g., a nylon carpet.
4. If it is necessary to transport an MOS device outside of its

normal operating environment, the device should be mounted
on conductive foam to effectively prevent the pins from being
subjected to different static potentials.

5. Ensure replacement parts are mounted properly, e.g., pin 1
oriented correctly.

291

APPENDIX F

Master Symbol Table

Label Address

BAU0RT 0FAE
CONTST FB43
INMO0E 0FAB
METUT FA0C

293

APPENDIX G

References

1. The Compact Edition of the Oxford English Dictionary, Oxford
Univ. Press, 1971.

2. Rudolf F. Graf, Modern Dictionary of Electronics, Howard W.
Sams & Co., Inc., Indianapolis, Indiana, 1977.

3. James Martin, Telecommunications and the Computer, Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1969.

4. Abraham Marcus and John D. Lenk, Computers for Technicians,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

5. Microdata Corporation, Microprogramming Handbook, Santa
Ana, California, 1971.

6. J. Blukis and M. Baker, Practical Digital Electronics, Hewlett
Packard Company, Santa Clara, California, 1974.

7. Donald E. Lancaster, TTL Cookbook, Howard W. Sams & Co.,
Inc., Indianapolis, Indiana, 1974.

8. H. V. Malmstadt, C. G. Enke, and S. R. Crouch, Instrumenta
tion for Scientists Series, Module 3. Digital and Analog Data
Conversions, W. A. Benjamin, Inc., Menlo Park, California,
1973-4.

9. H. V. Malmstadt and C. G. Enke, Digital Electronics for Scien
tists, W. A. Benjamin, Inc., New York, 1969.

10. J. D. Lenk, Handbook of Logic Circuits, Reston Publishing
Company, Inc., Reston, Virginia, 1972.

11. A. James Diefenderfer, Principles of Electronic Instrumentation,
W. B. Saunders Company, Philadelphia, Pennsylvania, 1972.

295

12. P. R. Rony and D. G. Larsen, Logic &: Memory Experiments
Using TTL Integrated Circuits, Book 2, Howard W. Sams & Co.,
Inc., Indianapolis, Indiana, 1979.

13. Robert L. Morris and John R. Miller, Editors, Designing with
TTL Integrated Circuits, McGraw-Hill Book Company, New
York, 1971.

14. Charles J, Sippl, Microcomputer Dictionary and Guide, Matrix
Publishers, Inc., Champaign, Illinois, 1976.

1S. Donald Eadie, Introduction to the Basic Computer, Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1973.

16. Texas Instruments Incorporated, Microprocessor Handbook,
Dallas, Texas, 197S.

296

Index

A

Absolute jump, 178-180
Accumulator, 40, 207
Add, 243

-with-carry, 243, 247
Address

byte
hi, 29
lo, 29

display, 30
memory, 28

Addressing mode, 99, 111-112, 139-
173

ALGOL, 84
Alternate Register Set {ARS), 39

key, 53
Analog computer, 22
AND, 205, 209, 212-213
Arithmetic instructions, 243-265
ASCII code, 11
Assembly

code, 79
language, 82

programming, 84-85
pseudo-up code, 202

B

Base, 12
BASIC, 84
Baudot code, 12
Baud rate generator, 49
BAUDRT, 58-59

Binary
code, 9, 12-14, 79-81
coded decimal {BCD) code, 12, 182
coding, 11
information, 22-23

Bit, 9, 11
addressing, 149-150
manipulation, 223-241

instructions, 225
process, 224
set, reset, and test group, 275

"bit bucket," 1'87
Bits per second, 10
Block

transfer instructions, 99, 140, 158-
160, 270

LDD,118
LDDR, 118
LDI, 117
LDIR, 117-118

search instructions, 243-245
group, 245

Boolean
algebra, 207
statements, 208
symbols, 207-208

Branch instruction, 44
Breadboard description, 61-62
BREAK {"panic button") key, 59-60
Breakpoint {Bll) key, 55-56
Buffers, three-state, 65
Bus drivers, 49
Byte, 21

data, 26-27

297

C

Call group, 277
Calls, 175, 183-188
Carry flag, 175, 180
Case analysis, 202-203
CASS switch, 56-57
CB instructions, 110
Central Processing Unit (CPU), 60-62
C flag, 252
Character, 23
Chip

integrated-circuit, 22-23
microprocessor, 22

Clock, 49, 60
COBOL, 84
Code(s)

ASCII, 11
assembly, 79
Baudot, 12
binary, 9, 79-81

coded decimal (bed), 12
digital, 9-21
EBCDIC, 12
gray, 12
hexadecimal, 9, 79-81
instruction, 12

two-digit, 9
mnemonic, 80, 81-83
object, 82-83
relocatable, 152
source, 82-83

Coding
binary, 11
off-on, 11
two-state, 11

Communication, 9-11
Compare-decrement (CPD), 253

-repeat (CPDR), 253
Compare-increment (CPI), 252

-repeat (CPIR), 253
Compiler, 84
Computation of execution times,

287-289
Computer

analog, 22
digital, 21-22
fluidic, 22
mechanical, 22
program, 23, 33-34

298

Conditional
branch instruction, 117
jumps, 180, 182-183
relative jump instructions (DJNZ),

183
Counting systems

binary, 9, 12
decimal, 9
hexadecimal, 9, 14-17

CP instruction, 244
CPL instruction, 205, 212
CP s instructions, 252-253
CPU instructions, 33-45, 279-286
Criterion

efficiency, 193-194
functional, 193

D

DAA instruction, 249-251
Data "D", 26

byte, 26, 36, 38
transfer, 99-137

DD instructions, 111
Decimal adjust accumulator (DAA),

182, 243
instruction, 249-251

Decoding, 101 ·
Decrement register, 99, 116-117
DeMorgan's theorem, 205, 210-211
Device

code, 36, 38
select pulse, 3 8

Digital
code(s), 9-21
computer, 21-23

Displacement byte, 36, 38-39
Divide, 243
Don't care, X, 187
DP operations, 57
Dual-in-line package (DIP) chip, 60
Dump (DP) key, 56

E

EBCDIC code, 12
ED instructions, 111
Efficiency criterion, 193-194

8-bit
arithmetic and logic groups, 206,

244-249, 271
binary number, 14
load(s), 139

group, 268
EPROM memory, 49
Even parity, 181
Exchange

group, 270
instructions, 139

Execution times, 267-278
computation of, 287-289

Extended addressing, 99, 115-116, 148
External device monitoring, 214-215

F

FAST FORWARD(>>) key, 58
FD instructions, 111
Flag, 39

C, 252
carry, 175, 180

half-, 182
parity/overflow, 175, 181
register, 146
sign, 175, 181
subtract, 182
zero, 175, 181

Flexibility, 169
Fluidic computer, 22
FORTRAN, 84
Four-byte instructions, 36
Functional criterion, 193

G

General-purpose
AF operations, 206, 244
arithmetic and CPU control group,

272
register, 33, 39-40

Go key, 53-54
Gray code, 12

H

Half
bytes, 235
-carry (H) flag, 182

Halt: HALT, 42
Hexadecimal code, 9, 14-17, 79, 81

two-digit, 9
H flag, 243, 246
HI

byte, 186
memory addresses, 29

High level language, 79, 83-84

Immediate addressing, 99, 113, 147
mode, 34

Immediate extended addressing,
99, 115, 147

Implied addressing, 149
Increment

accumulator: INC A, 43
(INC) key, 54
register, 99, 116

Index register, 38, 39
IX, 111
IY, 111

Indexed addressing, 38, 150-151
Initialize, 117
Input group, 278
Instruction, 23-24

code, 12
cycle, 177
decoding, 99
group tables, 152-154

Instructions, 33, 34-35
arithmetic, 243-265
block search, 243-265
CB,110
DD, 111
ED, 111
FD, 111
logical, 205-222
multibyte, 35-36
single byte, 35-36
unconditional jump, 177-180
Z-80 microprocessor CPU, 33-45

Integrated-circuit chip, 22-23
Interfacing, 21
INTERPRETER, 84
Interrupt page address, 39
1/0 ports, 61

299

J

JOVIAL, 84
JP instruction, 41
JR instruction, 179
Jump

group, 276
if not zero, 117
table, 203

Jumps, 175-183
absolute, 178-180
conditional, 180, 182-183
relative, 178-180

"K,"28
Keyboard, 48-49
"Key byte," 252

K

L

Language(s), 9-11
high level, 79, 83-84

Last in, first out (LIFO), 156
LO

instruction, 41
operation, 58-59

LEFT ARROW key, 51
Libraries, 183-184
LO

byte, 186
Memory address, 29

Load
Address (LA) key, 52-53
accumulator direct: LD (addr), A,

43
immediate to accumulator: LO A,

data, 43
(LD) key, 56

Load-decrement (LDO), 118
-repeat (LOOR), 118

Load-increment (LOI), 117
-repeat, (LDIR), 117-118

Logic
1 state, 12
symbols, 211
0 state, 12

300

Logical
instructions, 205-222

Z-80 group, 211
symplicity, 169

Loops, 44
time delay, 99

LSB (least significant bit), 26

M

Machine language, 21, 24-25
Masking, 205, 213
Master symbol table, 293
Mechanical computer, 22
Memory, 22, 27-28, 60, 99-137

address, 28
hi, 29
lo, 29

locations, range of, 28-29
read-only, 22, 27-28
read/write, 22, 27-28
refresh, 39

Microcomputer, 21
programming, 21-32

Microprocessor
chip, 22

Minicomputer, 27
Mnemonic

code, 24, 80, 81-83
language, 21, 24
operation, 24

Modified page zero addressing,
148-149

MOS devices, precautions, 291
MSB (most significant bit), 26
Multibit operations, 209
Multibyte instructions, 35-36
Multiple precision addition, 248
Multiply, 243

N

NAND gate, 211
Nanocomputer NBZ80, 47-77

p-c board layout, 50
N flag, 243, 246
Nibbles, 235
No-operation: NOP, 42

NOT, 205, 210
Notation, 16
NUM-byte, 257-261

0

Object code, 82
Odd parity, 181
Off-on coding, 11
One-byte operation codes, 102-103
One-time-cost technique, 200
Op codes, 267-278
Operation, 33, 34-36

code(s), 36, 37
one-byte, 102-103
three-byte, 108
two-byte, 104-107, 109

OR, 205, 210, 214
0 through F keys, SO
Output group, 278
Overflow, 146

p

"Panic button" BREAK key, 59-60
Parallel 1/0 ports, 49
Parentheses, 41
Parity, 181

even, 181
odd, 181
/overflow flag, 175, 181

PASCAL, 84
Pheromones, 10
Pin configurations for IC chips, 63
PL/1, 84
POP, 139, 156
Portability, 84
Power requirements, 50
Precautions (MOS), 291
Program

control transfer, 175-177
counter (PC) register, 39, 175

Programming
language(s), 21, 80

_ microcomputer, 21-32
Protocol, 224
Pseudo-ops, 202
PUSH, 139, 156

and POP the stack, 155

P /V flag, 246

Q

Q, logic variable, 209

R

Radix, 12
RAM memory, 49
Range of memory locations, 28-29
Read-only memory, 22, 27-28
Read/write memory, 22, 27-28
Register, 33, 39-40

addressing, 99, 112-113, 146-147
general-purpose, 33
special-purpose, 33

Register indirect addressing, 99, 114-
115, 147-148

Registers, 99-137
Relative

addressing, 151-15 2
jump, 178-180

Relocatable code, 152
Relocating, 152
Reset, 223

key, 60
process, 224

Restart
instruction, 148-149

(RST N), 188
group, 188

Return group, 277
Returns, 175, 183-188
REWIND(<<) key, 58
RIGHT ARROW key, 51
RL (rotate left), 230
RLD instructions, 223, 228
ROM memory, 49
Rotate

digit
left (RLD), 234-235
right (RRD), 235-236

group, 274
instructions, 223, 227
left circular (RLC), 229
right circular (RRC), 229

RR (rotate right), 230
RRD instructions, 223, 228

301

s
Schottky ITL chips, 63
Search group, 270
2ND key, 53
"Self-documenting," 192
Self-modifying, 169
Serial 1/0 ports, 49
Set, 223

process, 224
Seven-segment display numbering

scheme, 77
Shift

group, 274
instructions, 223, 227, 232
left arithmetic (SLA), 232-233
right arithmetic (SRA), 233-234

Sign flag, 175, 181, 246
Single

byte instructions, 35-36
Step (SS), 53-54

16-bit
arithmetic

group, 273
instructions, 251-252

load group, 155, 269
loads, 139

"Slow motion," 53
SNOBOL, 84
Solderless breadboard, 61-62
Source code, 82-83
Space, 169
Special-purpose register, 33
Stack, 139, 155-156

pointer (SP), 39, 155, 175
STORE (ST) key, 51-52
Subtract (N) flag, 182, 243
Subtract-with-carry, 243, 247
Super Nanocomputer NBZ80S, 47-77
"Swaps," 159-160
Symbols, 23

T

Test process, 224
"the address specified by," 41
Three-byte

instructions, 3 6
operation codes, 108

Three-state buffers, 65

Time, 169
delay loops, 99

Transfer of program control, 175-177
TTY/CASS switch, 56-57, 60
Two-byte

instructions, 36
operation codes, 104-107, 109

Two-digit hexadecimal code, 9
Two's complement, 139-146

number, 38-39
Two-state coding, 11

u

"Upward compatibility," 35
Unconditional jump: JP addr, 44

instructions, 177-180

V

Value byte, 203

w

Word, 27
of caution, 64-65

X, don't care, 187
XNUM, 257-261

X

XOR, 205, 210, 213-214

y

YNUM, 257-261

z

Z-80
CPU, 48-49
instruction set, 100-110
microcomputer programs, 79-96
microprocessor CPU instructions,

33-45
Zero (Z) flag, 117, 175,181,246
ZNUM, 257-261

TO THE READER

This book is one of an expanding series of books that will cover the field of basic
electronics and digital electronics from basic gates and flip-flops through microcomputers
and digital telecommunications. We are attempting to develop a mailing list of individ
uals who would like to receive information on the series. We would be delighted to
add your name to it if you would fill in the information below and mail this sheet to us.
Thanks.

1. I have the following books:

2. My occupation is: D student D teacher, instructor

D housewife D scientist, engineer, doctor, etc.

D Other: _____________ _

0 hobbyist

D businessman

Name (print): ----------------------------

Address

City ------------------
State _________ _

Zip Code-------------

Mail to:
Books
P.O. Box 715
Blacksburg, Virginia 24060

The Blacksburg Group

cording to Business Week mogazine (Technology July 6, 1976) large scale integrated circuits
LSI "chips" are creating a second industrial revolution that will quickly involve us all. The

•ed of the developments in this orea is breathtaking and it becomes more and more difficult to

•P up with the rapid advances that are being made. It is also becoming difficult for newcomers
"get on board."

has been our objective, as The Blacksburg Group, to develop timely and effective educational
,terials and aids that will permit students, engineers, Kientists and others to quickly learn how
apply new technologies to their particular needs. We are doing this through a number of
ans, textbooks, short courses, monthly computer interfacing columns and through the develop

nt of educational "hardware" or training aids.

r group members make their home in Blacksburg, found in the Appalachian Mountains of
,thwestern Virginia. While we didn't actively start our group collaboration until the Spring

1974, members of our group have been involved in digital electronics, minicomputers and
:rocomputers for some time.

ne of our past experiences and on-going efforts include the following,

he design and development of the Mark-8 computer, featured in Radio-Electronics magazine
July 1974. This is generally recognized as the first widely available hobby computer. It was
1ed upon the 8008 processor chip. Since then we have designed the Micro-Designer (MD-1) and

Mini-Micro Designer (MMD-1). This last computer was also featured in Radio-Electronics as

Dyna-micro.

he Blacksburg Continuing Education SeriesT11 covers subjects ranging from basic electronics
1>ugh microcomputers, operational amplifiers, and active filters. Test experiments and examples
,e been provided in each book. We are strong believers in the use of detailed experiments and
1mples to reinforce basic concepts. This series originally started as our Bugbook series and many
es are now being translated into Chinese, Japanese, German and Italian.

1/e have pioneered the use of small, self-contained computers in hands-an courses aimed at
:rocomputer users. Our expanding line of solderless breadboarding modules or OUTBOARDs®
ke the design and testing of circuits much easier than was possible in the past. Our educational
·dware is marketed by E & L Instruments, Inc., Derby, CT 06418, USA.

lur short course programs have been presented throughout the world. Programs are offered
,ugh Tychon Incorporated and Virginia Polytechnic Institute and State University Extension
ision. Each provides hands-an experiences with digital electronics and microcomputer hard
re and software. Continuing Education Units (CEUs) are provided. Courses are presented to
1n groups, companies, Khools and other groups. We are strong believers in hands-on experi
:e in these courses, so much time is spent in laboratory sessions.

additional information about the short course programs, we encourage you to write or call
Linda Leffel, Continuing Education Center, VPI & SU, Blacksburg, VA 24061. Phone (703) 961-

11, or Dr. Chris Titus at Tychon, Inc., Blacksburg, VA 24060. Phone (703) 951-9030.

, David Larsen is on the faculty of the Department of Chemistry at Virginia Polytechnic lnsti
• and State University. Dr. Jonathan Titus and Dr. Christopher Titus are with Tychon, Inc.,

of Blacksburg, Virginia.

rbook and OUTBOARDS are registered trademarks of E & L Instruments, Inc., Derby, CT 06418

l~IICRIIIIIIII 1: I: S S 1111
Programming & Interfacing

Book 1
This book is one of two volumes that covers Z-80 microprocessor programming anc
interfacing. Book 1 is on .:-80 software-assembly and machine language programm
Ing. Book 2 addresses Interfacing digital circuits with the Z-80 CPU, PIO, and CTC
chips. Book 1 requires no background in computer science, programming, or digita
electronics. Book 2, however, assumes that the reader is familiar with topics coverec
In Book 1. Both books are laboratory oriented texts designed to give an integrated ap
proach to microcomputer programming and interfacing with strong emphasis or
learning through experimentation. Laboratory work provides relnforcemnnt for eact
topic that is Introduced to show not Just how Ideas succeed, but also where they de
not, and make you aware of the pitfalls.

Dr. Elizabeth A. Nichols Is a systems consultant with CENTEC Corporation, Resto,
Virginia, speclallzlng in microelectronic applications to energy and environmental pre
blems. or: Nichols received a Ph.D. In mathematics from Duke University in 1974.

Dr. Joseph C. Nichols is a systems consultant with Network Analysis Corporation,
Washington, DC specializing In the anarysis and design of communications networks
and distributed systems. Dr. Nichols received a Ph.D. in mathematics from Duke Univer-
sity in 1970. ·

Dr. Peter R. Rony is a professor in the Department of Chemical Engineering at Virginl
Polytechnic Institute & State University. He has considerable interest in digital alee
Ironies and microcomputers since they will play an Increasingly important role in pre
cess control. He is coauthor of many other books in the Blacksburg Continuing Educ1
tlon Series-™ and of monthly columns on microcomputer Interfacing that appear I
American Laboratory, Computer Design, Ham Radio Magazine, the German magazln
Electroniker, and other U.S. and foreign magazines.

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. IN0IANAPOLIS, INOIANA 46268 USA

ISBN: 0-6.72021609-4

