

Efvrru(Jrt71[rn5(Jrt'r"ttrtuutLtft Ir5uil..É\trrDUrt,Éïrrùurt^rrrbu't^/ribul Lt-\t tt>utL/
isoft Amsofr Arnsoft A msoft Amsoft Amso ft Amsoft Amsoft Arnsoft An s
FArnsoftArnsoftAms oft Amsoft AmsoftAmsoft Amsoft Amsoft Amsofr)
lsoft nrns aft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amscft Ams
I Amsoft Amsoft Amsoft Amsoft Amsoft AmsofT Amsoft Amsofl Amsoft ,
lsoft Ams oft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Ams
tAmsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft t
rsoft Ams oft Amsoft Amsoft Amsoft Amsoff Amsoft Amscff Amsoft Arns
ft Amsoft Amsoft Amsoft AmsoftAmsoft Amsoft Amsoft Amsoft Amsoft ,
rcoft Ams oft Amsoft AmsoftAmsoft Amsoft Amsofl Amsoft Amscft Arns
tt Amsoft Amsort Amsoft Amsorï Amsoft Amsoft Amsoft Amsoft Amsoft r

moft Amsoft Amsoff Amsoft Amsoft Arnsoft Amsoft Amsoft Amsoft Ams
ft Amsoft Amsoff Amsoft Amsoft Amsoft Amsoff Amsoft Amsoft Amsoft r

tsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Ams
ft Amsoft Amsoft Amsoft AmsoftAmsoft Amsoft Amsoft Amsoft Amsoft r
isoft Amsoft Amso ft Amsoft AmsoftAmsoff AmsoftAmsoft Amsoft Ams
ttAmsoft Amsoft Amsoft Amsoft Amsoft Amsoff Amsoft Amsoft Amsoft t
rsoft Amsoft Amsoft Amsoft Amsoft Amsorl Amsoft Amsoft Amsoft Amc
ffAmsoft Amsoft AmsoftAmsoft Amsoft Amsoft Amsoft Amsoft Ams
tsoft AmsoftAmsoft Amsoft Amsoft Amsoft AmsoftAmsoft Amsoft,
î A ryîc,,-t i-Î ^.- inî\

i#n'À;'-r ÆJ.!!IfTP_y:Pt.:::l?'fy"ll9_tl't. Â7"i;ft h=-soft Amsfsolt Aml
IAmsoft Amsoft r
lsoft Ams soft Ams,
ft Amsoft , oft Amsoft r
lsoft Ams msofl Ams,
ft Amsoft oft Amsoft t
isoft Ams msoftAnrs,
tAmsoff oft Anso{t r
tsoft Ams rnsoft Ams,
t Amsoff oft Amsoft r

moftAms msoff Ams,
ft,Amsoft c{l Arnsoft t
lsoft Am soft Atns,
Amsoft cft Amsoft t

ft scff Ams,
y''rnsoft Amsoft Amsort Amsoff Anscft Arnsoft Arrsoft Arnsc,'1 Anscft r
bftAmsoft Amsoft Amsoft Amsoft Annsoft Antsctt A,rn-coff Amscft Ams,

:r{ps6114msoft AmsoftAmsofl Amsotl Amscft Amcofl Arrsoft t
ft AmSOftAmSOftAm'cOIt Amg6rft Ar,caft Ânrcnft Ânrcn# Â,nrgltt Âpp3

rlso/t Ar[]sorl Arnsolt Amsotl Amson Amsoru Amson Amsoll Amsolf AmsÙ
:ft Amsoft Amsoft Amsoft'Amsoff Amsorl Amsoft Amsoft Amsoft Amsofl A
nsoft Amsoft Amsoft Amsoft Amsoft Amso/t Amsoft AmsoftAmsoft Amsc
ft AmsoftAmsoft AmsoftAmsoftAmsoff Amsoft AmsoftAmsorl Amsoft A
nsoft Amsoft Amsoft Amsoff Amsoft Amsoft Amsoft Amsoft Amsoft Amsô
rff Amsoff Amsoft AmsorI Amsoft Amsoft Annsoft Amsoft Amsoft Amsoft A
'ncnff Arncnft Ârncn# Ârncn# Amc,nfl A ry:'o r''fl An-tc r:ft A.'.'rc-.--,{* A,.-,n,-.,{} A,." .,^

Amsoft Amsoft Amsoft Amsolt Amsoft Amsoft Amsoft Amsoft Amsof
;oft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Am
Amsoft Amsoft Amsoft Anisoft Amsoft Amsorl Amsoft Amsoft Amsof
;oft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Amsoft Am
Amsoft.Amsoft Amsoft Amsoft Amsoft Amsort Amsoft Amsoft Amsof
rnff Amcnft Amqnft Amcnfi Amcnff Amsnff Amsoff Amsofl Amsoft Am

AMSOFT
Soft\ryare for the Aill$IRA[[P t 4E4

SOFT
t

cPc 464

fuffi.
AËliID BASIC ' A TUTORIAL GUIDE PART 1

stoc
I

_â
-OA.l g.ess C-F- ard ta.l É\]Tc (êr5 e- -F€neo-9}

.-.$ >-;v .- lâ:a: c'lê
e avsef 3#

SOFT
t

CPC 464

M.
IEIIAD BASIC , A TUTORIAL GUIO€ PAFT 1

SIDC
,.

To LOAO p.Êss CTR!..ld
-l

ÊNtfR tâys tndt .r.osCy.
p.!ss PLAY o.\ D.bcûrL. tt nrYtry

c^.,<Or_ r$t

SOFT
ttt fuffi.

AISTiADBAS]C SELF ASSESSI'IE\TTES-S

CFC 464
SIDE
I

-o .OAD o.es CTA! and .id EÀTEF rers eFUi'ân€o!+
rês 1Av ô. Dar4sdêr:*r an! (et

.:\rs::- _ iar

SOFT
t

cPc 464
SIDC

a

M,
IETTID BASIC, SELF ASSESSMENT TESTS

To LOAD p...s CTBI ûd -J
ENTER reF.irrJr..t o6tt,

r!.. PLAY oî O.ÈcûtL. Itgr ttt El
a ausof- 1s.a

')

AMffiMAD
BASIG

a tutorial guide

AffiSMA[D
BASIG

tutorial guide

FIRST
Part I
STEPS

4

Copyright @ 1984 Amstrad Consumer Electronics plc
All rights reserved

First edition 1984

Reproduction or translation of any part of this work or the cassette computer
program tapes that accompany this publication without permission of the copyright
owner is unlawful.

Amstrad Consumer Electronics plc
Brentwood House
169 Kings Road
Brentwood
Essex

Amstrad BASIC
A Tutorial Guide
Part 1: First Steps

soFTlll ISBN I 85084 000 8

r Programming by Dave Atherton

r Written by Dave Collier and Ceorge Tappenden

I Production by Peter Hill and Ray Smith

I Printed in England by Horwood Printers

CONTENTS

Pretaco 7 Chapter 4' Puttlng thlngr ln thelr placc 26
Coordinates 27

Chapter 1 A la mode 28
What it'r all about I ln position again 29

BASIC I Game number 3 30
How to use this book 9 Testint 30

Chapter 2 Chapter 5
Setting up and gottang 10 Drawang a plcture 32
downtoit A square program 33

HELTO 12 Changing colour 35
Game number 1 15 Housing 36
Testing 15 Testing 39

Chapter 3 Chapter 6
Using the keyboard 16 llumbcrr, lêtter3 and words 40

Main keyboard: character keys 17 Letting 40
Main keyboard: control keys 17 Strings and things 42
Numeric keypad 20 What's in a name? 43
Cursor 20 Savings 44
Datacorder controls 21 More printing 45
Practical work 22 Barchart 46
Game number 2 24 Game number 4 49
Testing 24 Testing 49

Chapter 7

Getting it right
Changing lines 50
Editing 51

To let 52
Branch lines 53
What happens next? 53
Coing places 55
Bug hunting 55
Renovation 57
Testing 61

Chapter I
Hourc improYementa

Looping 62
Relativity 64
Doing the windows 65
Finishing off 70
Exercises 70
Testing 71

Chapter 9

Program derlgn
Working f rom objectives 73
Program for robot postman 74
Exercises 76
Building blocks 77
Routine work E0

Documentation 81

Chapter 10
Sounds fantartic

Tuning up 83
Sounds BASIC 84
Noisy sounds 86
Exercises 87
Playtime 87
Testing 91

Chapter 11

Jlumber crunchlng
BASIC Arithmetic 92
Elementary logic 95

String logic 96
Homes and gardens 97

Testing 101

Chapter 12

Playlng gamc.
Random events 102
Time out 103
BTACKJACK 1M
Simple Simon 108
Testing 112

Llrt of kcywordr

Llrt of progr.m.

Indcx

u

62

92

102

113

115

116

PREFAGE

This is Part 1of a self-study course on
programming in BASIC using the Amstrad
CPC 464 Colour Personal Computer. The two
datacassettes that accompany this written text
contain computer programs which are an
integral part of the course.

Datacassette A contains:

I Protrams to help explain the principles of
simple and entertaining programming

I Games for your amusement and to help
you get used to using a computer

Datacassette B contains:

r Self-assessment tests to make sure you
have understood the concepts described
in each chapter

Further and more advanced programming
principles are covered in Part 2 of this course,
More BASIC.

I

I

WHAT IT'S ALL ABOUT

lf you are reading these words you are almost
certainly the proud owner of an Amstrad
CPC 464 Microcomputer. lts superb display
and excellent sound quality will have already
opened up an exciting new world o{ fun and
excitement for you. Also you will have
realised that to do more than run standard
games and programs, you need to learn the
CPC 464's language - BASIC.

BASIC

BASIC is the world's most popular computer
language. lt is also the ideal language for the
beginner since it is possible to write your first
program after only a few hours of study. The
satisfaction to be gained from this is

enormous for, make no mistake,
programming is fun. lt can even become a

hobby in itself.

So, what is programming? Well, you have to
remember that a computer can do many
things but it cant think. You have to do its
thinking for it. This thinking - that is, working
out what needs to be done toachieve an end -
is in the form of a seriesof instructions known
as a program. Fed into a computer, a program
can make it become, for example, an arcade
game, or a word processor, or a machine that
looks after your accou nts.

You will probably find that programs written
specially for the CPC 464 will not work
unchanged on other computers. This is

because the Amstrad BASIC used by the
CPC 464 contains many unique commands
and functions not available on less
sophisticated equipment.

BASIC has its own vocabu lary, the same as any
other language. Th is vocabulary is made up of
'keywords' and you are about to learn what
these keywords are, and what they mean to
the CPC 464. Each time a new keyword is

described in this manual it is printed in the
outside margin so that you can easilyflip back
through the book to refresh your memory on
individ ual keywords.

How to urê thlr book

Each chapter of this book represents about
one or two evenings'work. Typically it will
contain:

I Written explanation

Practical work on the computer
Examples for you to program yourself

There are exercises to reinforce what you
have learned, and there is a programmed self-
assessment test to go with each chapter.

Don't skip chapters. New information is

introduced progressively through the book
and is built on to the knowledge obtained
from previous chapters. If you think a chapter
or a section of a chapter looks a bit com-
plicated, lust read it quickly once or twice and
then work through it slowly. Make sure that
you understand by means of the self-
assessment tests.

After completing this part of the course you
should be able to write simple, reliable
programs for your own purposes. Part 2 of this
course, More BASIC, explains the more
advanced features of Amstrad BASIC and will
teach you how to write rather more compli-
cated programs.

a

I

SETTING UP AND GETTING
DOWN TO IT2

10

Firstly you have to unpack your CPC 464. lf
you have already done this you can skip the
next few paragraphs.

When you open the boxes they should
contain the following items:

I CPC 464 Colour Personal Computer
! GT 64 Monitor, CTM 640 Colour Monitor
! MP1 Modu lator/Power su pply (optional)
. Amstrad CPC 464 User Cuide
I Demonstrationcassette

Find a reasonably large desk or table in a quiet
part of the house and place the CPC 454 and
its monitor (or MP1 Modu latorlPower Supply
and domestic TV receiver) on it. Carefully
insert the two leads from the front of the
monitor or MP1 into their sockets in the back
of the CPC 464 (see diagram). Do not plug the
monitor or MP1 into the 13-amp mains yet.
Make sure that the plugs are fully in place in
the back o{ the CPC 464 but do not use too
much force. Plugs and sockets can be
damaged by constant plugging in and out so,

)

if possible, try to f ind a permanent home {or
your CPC 46,1- at leastfor the duration o{ this
course.

lf you are using a domestic TV receiver with
your CPC 464, make sure that you have two
13-amp sockets available, or use a double
adaptor so that you can plug in the TV and the
MP1 at the same time. Then connect the co-
axial lead f rom the MP1 into the aerial socket
of the TV and tune the TV to channel 36.

Find yourself a nice comfortable chair to sit on
and then arrange the monitor or TV so that it is
1 metre (about three feet) from your nose -
working with your face too close to a screen
can be very tiring and may cause eye strain,

)

Place this book in such a position that you can
easily read it while using the keyboard and
still be able to watch the screen. lt is also a
good idea to put the Amstrad CPC 464 User
Guide somewhere within easy reach.

Then plug into the mains and switch on. You
should get the following words on the screen:

Ànstraal 64K Microconpùter (vL)

O 1984 Ànstlad Consune! Electlonics plc
ànd Locorrctive Software Ltd.

BÀSrC 1.0

Ready

I

lf you don't see this (yellow characters on a
blue background if you have a CTM 640
Colour Monitor or a colour TV) turn off and
try again or, i{ you are using a TV, check that it
is properly tuned to channel 36. lf you still
have diff iculty, check if the ON indicator of 11

the CPC 464 is showing red. lf not, verify that:

r The CPC 4&t's ON/OFF switch is ON
I There is no general power failure
r The power lead is f irmly plugged into the

cPc 464

r The fuse in the 13-amp plug is intact

lf all these tests fail, contact your dealer for
further advice.

HELLO

Once you have the'welcome'on your screen,
we can start getting down to it. 'Ready' means
that the computer is ready for you to enter
commands or a program. The square blob is

known as the'cursor', and shows you where
the next thing you type on the keyboard will
be placed.

So away we go. Put the cassette, First steps in
BASIC - Datacassette A, into the datacorder
and type the following on the keyboard:

',,,"" f[Efl
To type " you have to hold down one of the
keys marked SHIFT, on either side of the
lower row of letters of the keyboard, while
you press the key marked " (it is over the '2' on
the left-hand side of the top row). Pressing the
ENTER key signals to the CPC 464 that you
have finished typing and that you expect it to
do something. lf you have typed the
command correctly the CPC 464 will reply by
adding another line to the message on the
screen:

12

ÀDslrad 64K l{lcrocoDputer (vl)

@ 1984 Àlslrad Consulre! lllectlonics plc
and Irconotive Softrrare Ltd .

saslc I.0

Ready

Press PLÀY then any key: I

Make sure that the tape is at the beginning by
pressing RIW on the datacorder, and then
follow the instruclions. Push down PLAY and
then press the ENTER key. You will hear a

high-pitched sound from the built-in loud-
speaker as the first program is read into the
cPc 464.

)'

lf you make a mistake while typing in (and
before you press ENTER) use the

key. This is the DELete key, which backspaces
and deletes the last character you typed. You
can then retype the letter you got wrong.

lf you have made a mistake and then pressed
ENTER, don'tworry. TheCPC 464will merely
put another line on the screen as shown in the
following example:

lf you get this message you will iust have to
start all over again and retype the line.

Àmstrad 64K llicroconputer (vl,

@ 1984 Àrnsuad Consûner Electlonics plc
and lpconptive Soft9are Ltd.

BÀsrc 1.9

Ready

Syntax error
Ready
I

13

All being well (and if you have typed in the
command correctly), the following messa8e
will appear brief ly on the screen:

Ànstrad 64K uictocomputer (vl)

O 1984 Ànstrad Cons\rser Electronics plc
and LocotrFtive Softuare Lld.

BÀsrc 1..0

Ready

Pless PIÀY then any keyl
Loading tlELLo block I

This message will be followed almost
immediately by the HELLO program, which
will give you a friendly welcome to the world
of computers,

When you have seen the HELLO program
several times through, look at the top left
corner of the keyboard and you will see a red
key. This is the ESCape key. Press it twice:

The CPC 464 will reply with a message such as

the following:

Break in I4l
Ready

I
The number need not be '140. And it doesn't
mean that either you or the CPC 464 should
take time off for the next 140 seconds,
minutes, hours, or days. Nor areyou expected
to smash your way into house number 140 in
your street. Whatever the number is, ignore
it. We'll learn about line numbers later on. ln
any case, you will have stopped the HELLO
program from running and are now ready to
.tackle the rest of this chapter.

lncidentally, notethattheCPC 464insiststhat
there is a difference between 0 (nothing or
zero) and O (oh, as in'hello') by putting a
diagonal line through it when it is not the
alphabetic character.

14 @@

Game number I

Let's play a game. Computer tames may not
strike everyone as the best way to spend their
time and money, but there is a lot more to
them than meets the eye. Firstly you soon
become familiar with the machine without
the tedium of lormal exercises, and secondly
tames can make you realise that computers
are fun.

We'll do somethint different this time. Type
into the CPC ,,{54 the following line:

load"simon'r ![[A
Don't forget to hold down the SHIFT key to
type the quotation marks ("). The CPC 464
will answer with the following message:

Press PI"AY then any key:
Follow the instructions again. Push down
PLAY on the datacorder and then press the
ENTER key on the main keyboard. lf you
typed the name in correctly and all is well, the
CPC 464 will start running the cassette in the
datacorder and loading a program called
SIMON. Programs always have names so that
you can find them when you want them. This
time the program will only be fetched into the
CPC 464's memory and it will do nothing
until you tell it to.

The CPC 464 will give the message:

Loading SIMON block I
changing to:

Loading SIMON block 2

Don't worry about what this means. After the
cassette has stopped in the datacorder, a

further message will be given:

Ready

This is when you have to instruct the CPC 4&
what to do with the program it now has in
memory. You type:

'""$[ll
Have fun.

lerting

When you are tired of playing SIMON, stop it
by pressing the ISCape key twice as explained
above. Your first test is to try the same
procedure that you used for SIMON to load
the first of our Self-assessment Tests, SAT2,
from Datacassette B. When you run this
program it will ask you questions about this
chapter so you can see if you need to go back
over anyrhing. 15

USING T}IE KEYBOARD

We said earlier that you have to learn the
BASIC language to communicate wilh the
CPC 464. As you will have realised, you tellthe
CPC 464 what to do by typing words and
numbers on the keyboard. This chapter is all
about just that - getting to know the positions
of keys and learning how to press the right
ones at the right time.

The CPC ,154 has five separate troups of keys:

r Character keys

I Control keys

r Numeric keypad

I Cursor keys

r Datacorder controls

Etc !

1

It
2

*
3

i
4

%

5
&
6

I

7
I
a

l
I o

fI CLR DEL

rt8 o w E R T Y U o P @ f
I

ENTER
cArStær A S o F G H J K L

* + l
gxtfT z X c V B N M ? SHIFl

cTnl

ain keyboard: character keys

You have already been using these. lf you
have ever used a typewriter you will need no
further explanation. This part of the keyboard
comprises letters, numbers, a lot of
punctuation marks known as 'special

characters', and a 'space' bar for putting in
blanks. lf you hold any of these keys down
for more than about half a second, it will
repeat as though you had pressed it again and
go on repeating until you take your finger off. 17

ESC
n
2

*
3 a

r
5

&
6

t
7

,I 6 CLR DEL

TAB o w E R T Y U I o P @ f
|

ÊNrER
CAPS
LOCK A s D F G H J K L

t +
a

l
SHIFT z x c v B N M ? SHIFT

CTB L

ain keyboard: control key$

facing arrow on the screen. This key will not
be used in this part of the course, and its use

ESC stands for ESCape. lf you press it while a will be fully explained in Part 2.

program is running, it will stop the CPC 464in
its tracks, but you may restart the program by
pressing any other key on the keyboard.
Pressing ESC a second time will bring the CPC
464 back to the READY condition. SHIFT changes the symbols produced when

you press character keys. Holding down
SHIFT will give you the capital letters on the
letter keys and the upper symbols on thesf! sHtFT will give you the capital lette
letter keys and the upper symbol

lf you press the TAB key you will see a right- number and special character keys.18

Pressing CAPS LOCK gives you capitals on the
letter keys until you press it again. lt has the
same effect as holding your finger on the
SHIFT key except that you still get the lower
symbols on the number and special character
keys.

CLR (for CLeaR) is rather similar to the DEL
key. lt deletes a character, but not the one to
the left of the cursor as the DEL key does; it
'eats'the character under the cursor, without
moving position, and everything to the right
of the cursor moves up one place to the left.

You may remember the DEL key from the
previous chapter. When you are typing in
lines, pressing the DEL key DELetes the
character to the left of the cursor, and then
backspaces the cursor to take its place.

The ENTER key is something like the carriage
return key on an electric typewriter. You have
to press it at the end of every line you type
into the CPC 464 to let it know that you have
finished. Normally, the cursor will be taken
from the end of the iast word or number
typed and put at the beginning of the next
line down. Sometimes the CPC 464 will also
say:

Syntax error
This is BASIC for'l don't understand'and is

known as an 'error message'. We will see
more of these later in the course.

This stands for ConTRoL. Holding down CTRL
will give you yet another set of symbols on the
letter keys and some of the number keys, in
addition to those inscribed on the key tops.
When used with other control keys, this key
also instructs the CPC 464 to do certain things
- we will see what they are later on. 19

7 8 9

4 5 6

1 2 3

o lNttt

Numeric keypad

These keys are arranged conveniently for
typing in lots of numbers. Apart from the
extra ENTER key they are identical to the
number keys on the top row of the main
keyboard except that, unless they are
specially programmed, they are not affected
by SHItT or CTRL. This special programming
will not be described in this part oT the course,
but later in this chapter you will see how this
ENTER key can have an extra function.

Cursor

The'arrow' keys are used to move the cursor
around the screen in the appropriate direc-
tions. The COPY key will be described lateron
in this cou rse.

20

REC PTAY REW F.f .
sT0?
EJECT

Datacorder controlr

There is only one difference between these
keys and the controls on an audio cassette
recorder. After the PLAY (or PIAY and REC)
keys have been depressed, the datacorder
will not operate until it has been instructed to
by the CPC 454.

21

Practical work

Check that the cassette is properly inserted in
the datacorder. lf you still have the remains of
SAT2 all over the screen from your work on
the previous chapter, you can get rid of it by
typing the following line:

.r= t[ftfl
This means Clear kreen and, as you willsee,
it does just that. Try it. No matter what you
were doing before, the result will be as

follows:

Ready
I

program. Type the following line:

run "Ietters" f[[fl
Now you can just press keys on the keyboard
and see what happens. Try pressing more than
one key at a time.

While using this program you can see many of
the characters that can be shown on the
screen but are not marked on the keytops.
This is done by holding down the CTRL key at
the same time as you press the letter and
number keys, although not all the keys have
'hidden' characters.

Once you have started running a computer
protram it will go on running until it reaches
the end. Or, if it is designed to repeat ilself
continually, like LETTERS, you have to stop it.
You saw above that pressing the ESC key twice
will do the trick. Another way of doing it is to
'force a restart'. This has the same effect as
turning the power off for a few seconds and
then turning it on again. This is how you do it.
Hold down

EB.*f@!
and press

22 Magical, isn't it? Now we can run the next

As you will see, the CPC 464 Boes back to the
'welcome' screen you saw when you turned
power on. From now on we willrefer tothis as

CTR L,/SH IFTlESC.

Warning When you do this the CPC will
'forget' any program it had in memory.

All right so far? The next program is a very
simple one but we shall now learn a novel way
ro RUN ir. Hold down

@
Press

on the numeric keypad (not the big ENTER
key this time).

The CPC 464 will reply exactly as if you had
typed in a whole line of instruction. Do you
recognise it? You will remember that we said
earlier that this ENTER key had an additional
f unction !

REPEAT NAME (the program you just loaded)
won't keep you amused for very long so use
CTRL,/SHIFT/ESC to reset the CPC 464, and
then load and run the next program:
KEYBOARD.

KEYBOARD is a training program to get you

i

used to the keys on the CPC Æ4. Once you
have spent a little time on it you will begin to
remember where things are. lt is probably
worth comint back to this program f rom time
to time to improve your typing speed.

23

Gemo numbcr 2 ïcrtlng

You must have played this one as a paper Beforegoing on to the nextchapter, loadand
game. lt's called HANCMAN. You now know run SAT3.
several ways to load and run programs but,

. ,just to make sure, here is one of them again:

run " hangman" @

24

25

PUTTING THINGS IN
THEIR PLACE
You will have seen from the demonstration
cassette and the previous programs in this
course that the CPC 464 has superb graphics.
ln this chapter we are going to make a start on
what you need to know to draw the
appropriate lines and shapes on the screen for
your own designs.

The CPC 464 displays all characters and
graphics in a 'window'on the monitor screen.
The sides, top and bottom are known as the
border, and are never used. You can change
the colour of this border though. Enter the
following:

lf you have already read the User Cuide,you
will know that the CPC 464 has a range ol 27

colours to choose from. Even if you don't
have a CTM 540 Colour Monitor, or a colour
TV, going through the numbers in this way
will not be a waste of time since the ascending
number order corresponds to the equivalent
grey scale in black and white.

border O t[D
Black, isn't it? Now try:

border ,u GilED
The opposite extreme. Now you can amuse
yourself by trying all the numbers in between.

26

Goordlnater

Every line, shape, or character you see on the
screen is made up of a number of tiny dots.
The position of each tiny dot is described by
its 'x' and 'y' coordinates.

The horizontal position is given by 'x' and the
vertical position by ry'.

Run the next program. lt's called DRAW. You
can draw straight lines on the screen by
holding down the TAB key at the same time
as you press one of the cursor keys. lf you
want to move position without drawing, you
just press the cursor keys. You can speed
things up by holding down a SHIFT key at the
same time.

i

As you can see, the program gives you the'x'
and 'y' coordinates for the current position of
the cursor. lf you keep the cursor going
upwards it will eventually disappear from the
window. Note the value of the 'y' coordinate
where this happens. Do the same thing for the
'x'coordinate. You will now have discovered
that the CPC 464 has a graphics screen 400
points high by 640 points wide.

Try drawing a square in a particular position
on the screen. The following is an example:

Put a square 50 x 50 on trre screen with its
bottom left-hand corner at x = 3N, y = 150.

First, move the cursor in the'x'direction until
it reads 300. Then move the cursor in the 'y'
direction until it reads 150. lf the square is

50 x 50, we have to draw a line from this point
to x = 300 + 50 = 350. Draw this line. lf you go
too far you can 'eat' the line by making the
cursor go in the other direction until the 'x'
count is correct. The count will now be:
x=35ô y=L50
Now draw a vertical line untily= 150+ 50=200.
Then draw to x = 350 - 50 = 300. And finally y =
200 - 50 = 150, and we are back where we
started.

Don't worry if it doesn't come out exactly
right - it's the principle that counts.

v

0

27

A la modc

Before we continue with coordinates, let's
explore another thing about the screen
display.

When you first switch the CPC 464 on, the
'welcome' comes up in characters about
twice the size of those on this page. You will
have noticed, however, that some of the
programs use larger characters. There are, in
fact, three sizes of character and they are
selected by the keyword MoDE.

Try it out. Cet the 'welcome' back on your
screen by forcing a restart (CTRL/SHIFT/ESC -
remember?), and then type in:

node p t[[[
You can see that the characters are now twice
as wide as they were before. Now enter:

mode 1@
we are now back to the size of characters we
started with. Now try:

mode 2 f[[[
And we have characters half the previous
width. So there are three modes, namely:

I Mode 0 - 20 characters per line
I Mode 1 - 40 characters per line
I Mode 2 - 80 characters per line

Note that only the width changes and that
there are still 25 lines of characters possible on
the screen at any one time.

The keyword MODE also affects the screen
graphics. But in the case of graphics we don't
talk about characters but 'pixels'.

A pixel is the smallest size of dot you can draw
on the screen. We saw that the graphics
screen is 640 points by 400 points, but the
width of the pixel is different for each mode:

r Mode0-4pointswide
. Mode 1- 2 points wide
I Mode2-lpointwide

Pixel height is always two points and does not
vary with the mode.

28

ln position again

So, back to coordinates. Later on we will see
how to position text and numbers on the
screen, but for the moment we will
concentrate on graphics. The next program is

called COORGEOM, but before we load it
here is a very useful keyword, CAT.

CAT is short for catalogue, and is used to find
what programs are on a datacassette. Wind
the datacassette back to the beginning by
pressing the REW key and then enter:

""t GIED
The CPC 464 will respond by giving the
message:

Press PLAY and then any key I
It is just as if you had given a LOAD or RUN
command except that, instead of loading a

program, the CPC 464 will put a 'found'
message on the screen such as:

DRAW block I $

Programs are always stored on cassette in
blocks of 2,000 characters. Long programs
may comprise many blocks stored individu-
a lly. The CPC 464 not only puts a message on
the screen for each block in turn, but also 29

checks that there are no recordinS errors and
will then put 'OK' at the end of the line.

lf you ask the CPC 464 to load a program by
name, you will also get 'found' messages for
the other programs before it on the tape, but
no checking is carried out.

Anyway, by now you should have found
COORCEOM, so load up and away you go.

:.'l

)

31

DRAWING A PICTURE

The PLOT keyword is going to be the first
BASIC 'Command' we are going to look at in
detail. Up to now you have been entering
things like RUN and BORDER without
realising that they are commands or that they
have to follow a precise set of rules.

To create commands you often have to add
'arguments' to the keyword to provide the
details of the operation to be performed. ln
the case of PLOT the arguments give the
desired position on the screen as specified by
the x, y coordinates. For example, enter the
following:

plot 319,199 f[[fl
You will now have a yellow dot of 1 pixel
almost exactly in the middle of the screen.

lf you have trouble remembering which is x
and which is y, don't forget that you have to go
in through the door of a house before you can
climb the stairs, i.e. left-right before up-
down. After the PLOT command has been
executed, the CPC 464 leaves the graphics

cursor at those x, y coordinates until told
otherwise.

Here we go with another graphics command:

draw Q,0 trfifl
The DRAW command has an identical
structure to PLOT, except that the arguments
give the point to which the line must be
drawn - specified, of course, by the x, y
coordinates. The diagonal line you will now
have on the screen starts atthecentre (x = 319,
y = 199) and goes down to the bottom left-
hand corner (x = 0, y = 0). Now try drawing the
same square that we tried in the previous
chapter. Here are the commands:

|:ffi]

lrFT

tr@
Glll?:l:'l

@
E@
@

move 3b@,L5@

draw 35Q,L5Ô

dr aw 35Q,2QQ

dr aw 3@Q,2QQ

dr aw 3@Q,L5b32

The MOVE command puts the graphics
cursor at the x, y coordinates specified in its
arguments, without putting anythinS on the
screen.

)

A aqurra progtam

Until now we have been entering commands
for direct execution by the CPC 464. Now we
shall learn about entering and storing a
protram for later execution. Before we do
this we have to clean out the CPC 464 by
entering the following:

"""[$[
This has the same effect on the CPC 464's
memory as a wet cloth on a blackboard.
Although the screen is not cleared, NEW
erases any program that had previously been
loaded or entered. Only use this command
when you are sure that no harm will come of
ir!

So, here we go with our first stored program.
It is the same square again, only this time we
have added line numbers:
IQ cIg
2Q rcve 3M,L56
3É draw 354,150
4Q draw 350,2Q0
5d draw 3@,200
6Q draw 300,L5Q

Line 10 is another new command for you.
Whereas the CLS command clears the screen
and puts the text cursor at the top left corner, 33

lffi:i]

IÏilffiiI

the CLC command also clears the screen but
then puts the graphics cursor at the bottom
left corner (x = 0, y = 0). These two commands
may puzzle you a little since they are
apparently very similar. ln Part 2, however,
you will learn to handle text and graphics on
the screen at the same time and their
usefu lness will become apparent.

Enter the six lines of this program exactly as

shown, and press ENTER at the end of each
line. From now on in this course, you must
remember to press the ENTER key at the end
of each line.

These line numbers are necessary so that you
can indicate to the CPC 464 in which order
you want the commands to be stored. Unless
told otherwise it will also execute the
commands in this order. The line numbers go
u p in tens so that extra lines can be slotted in if
necessary. lt doesn't matter in which order
you enter the lines. ln fact, if you make a
mistake in one of the lines and don't notice it
until after pressing the ENTER key, you can
replace the incorrect line in memory by
simply re-entering the line.

When you are satisfied that all is well, RUN the
program by entering:

'"" flEfl
Pretty, isn't it? The CPC 464 stored your
program in memory and only executed it
when you gave it the RUN command. And it's
still there. You can look at it by entering:

ri"t f[[ff

u

Ghanging colour

The three graphics commands we have just
learned have an optional extra argument, the
lNK. Try re-entering line 50 of the square
program as follows:

5P draw 3W,2W,3
When you run the program this time, the left-
hand side and top of the square will be drawn
in red. This is because the '3'we added
indicated that the DRAW command should
be executed using INK number 3. The
CPC 4U will then continue to use this INK
until told to change. The range of different
lNKs that can be specified in DRAW
commands depends on the mode being used.

The maximum number of different lNKs
which can be used for each mode are as
follows:

r Mode 0 - 16 lNKs
r Model -4lNKs
r Mode 2-2lNKs

Now try entering the following:

ink 3,0 f[[[
You will immediately see the red line change
to black. Do the same thing as we did with
EORDER in the previous chapterand try some
other colours for INK number 3. You could
also try changing lNKs 0,'l and 2 as well.

35

hffiË!1
L,ffifill

Housing

The next program on Datacassette A is called
HOUSE. lt uses all the commands we have
learned so far plus two more. The f irst one is

REM for REMark. When the CPC 464 comes
across REM, it ignores the rest of the line. This
allows you to put comments and explanations
into protrams so that other people (or your-
self, if you have forgotten after a period of
time) can understand what the program is all
about.

The other new command is PAPER, which
enables you to specify the background colour
of the screen window. The argument for
PAPER must be the number of one of the lNKs
specified for the current mode. lf you
changed INK 0 when suggested above you
will have seen that this was the one
automatically selected for the PAPER when
the CPC 464 was f irst switched on.

Before running the program, study the
following program listing.

36

lct REM Drawing a houEe
3Ô MODE O
3O CLS
40 REM ** start **
50 BORDER T2
6cJ INK O, 12: REM ye1l ow
70 INK 1,3:REM rEd
80 INK ?,6:RElrl bright red
9ô INK 3,9:REM gleen
roô pâpER o
11O REM dnaw f nont
lro MovE 100,50
13ô DRÊht toÔ,25o, I
14ù DRATJ 40O, ?50
15Ct DRÊIJ 4OO,50
16ô DRAW 100, EO
I 7tr REFI d naw s i de
lg(r lrlOVE 4OO,zEO
190 DRAW 600, ?50
:.)o DRAW 6ô(r" 50
:tô DRAh' 4CrO,50
2?O DRAW 400,250
l3O REM draw gable end
?40 REM al ready at start point
15û REIYI so no need fon a MOVE
:êo DRAr.t 500,350

(Continued)
37

';7(l DRÊt^l ÉOO" 25(,
28O DRATJ 4OO, ?5O
29O REM draw roof
3ôO REm only two lines needed
Slcr MBVE 100,250
3?0 DRÊW :O0,350
33ô DRAL.I 5(lO" 35O
34O REM draw doo r
350 HOVE tt5,50
36(:, DRAt^r ??8, 140, ?
37$ DRAh.l 273,14rJ
380 DRAh' 275,50
3BO REF! draw windows
4rl{) REM l ef t hand bot t om
410 MoVE 1:C,,70
4:0 DRAt^t 1211, 13O,3
43Cr DRRW l8O, 13O
44û DRAH 180,70
450 DRÊW 1?O,70
460 REM left hand top
47r) MBVE 120, 170
4êO DRAW 1?O,230
49Ct DRAII 1êO,23O
5Ot) DRât^l 18O, 17O
510 DRAIJ l2O, 17O
52O REM night hând top

38
(Continued)

53(l I{OVE
54{I DRAW
550 DRA!{
560 DRAW
57r! DRAht
sEO REH
59e mOVE
6ûô DRÊt^t
6lt] DRAW
6?0 DRÊl^r
Ë3ô DRAI.I

320, 170
3?ô, ?30
3Sô, t30
380, 170
320, 170

l. i g ht hand bot t orrr
320,70
3?O, 130
38O, 130
380,70
3?0,70

Tcctlng

You may like to go over this chapter again
before running SAT5. We have covered quite
a lot of ground in a short time but are now
getting down to real programming.

39

NUIUTBERS, LETTERS AND
WORDS
It's about time we learned some of the
keywords connected with putting numbers
and words on the screen. The first one is
PRINT. Try typing this on the keyboard:

plint 2+2 GIED
As you will have guessed, the answer is put on
the next line of the screen and is, of course,4.
Now try th is:

print "Hello" f[!fl
ln this case we had to surround what we
wanted on the screen by double quotes. The
reason for this will become obvious later on.
ln the meantime we will explore another
keyword.

lÏE.'Nil

lTErl

Letting

Sometimes the world of computing seems to
be a very strange place indeed. BASIC
keywords are normal English words but they
can have special meanings for the CPC 464.
One of these is the keyword LET. ln ordinary
algebra you can write:

Let x=5

You cannot, however, write the following:

Let x=x+5

This is perfectly acceptable in BASIC. lt
means: 'Take the previous value of x, add 5 to
it, and then take this number as the new value
of x.' But why x? Well, we havejust come
across something called a variable - and for
very good reason.

Variables are like something out of A/ice
Through the looking Class. They contain
anything you care to put in them. There is

nothing in BASIC that will stop you from40

writing:

Let hundred = 87

lf you don't like 'hundred'you could use'h'
or 'C', since what we are talking about are
labels for empty boxes. When you use LET to
define a variable as shown above, the
CPC 464 writes the name on an empty box
and then puts into it the value given on the
right of the '=' sign.

Try typing this on your CPC 4U

Let
You

hundred

will type:

on your

prinÈ

Reaaly
1et hundred=87
Ready
p!i'lt hunabed
a7
Ready
I

ndred = rr GIED
I get the reply'Ready'. Then

hundred trfifl

So, we are now at a point where we can enter
ou r second program. The following five lines
should be entered exactly as shown:

I@ c.l-s
2Q LeL a=L5
3Q Let b=7
4@ let a=a+b
5@ print a

Remember to press ENTER at the end of each
line. Now try running this program. You
should get the following result.

You will now
screen:

have the following
41

22
Ready
I

That may have seemed a

next one might not be:
bit obvious, but the

Iet a=5
let b=I@
let a=b
let b=a
print a+b

Try it for yourself . Can you see why the answer
is 20? lt may help you to think about numbers
being moved from box to box. Remember
that it is the variable to the left of the '=' sitn
that is changed by putting a new value into it,
and that the CPC 464 is going to step th rough
the program one line after the other.

Strings and things

We have seen that we can def ine a variable for
numbers, and use it as if it were an actual
figure. BASIC also allows us to define
variables that may contain a series of letters,
numbers and special characters. These are
known as'strings'.

A string variable is exactly the same as an
ordinary variable except that you must end
the variable name with a'$'sign. ln addition
you must always put quotation marks (") on
either side of the characters you wish it to
contain, otherwise the CPC 464 thinks you
are trying to tell it about some other variable.
Enter the following line:

You will get the errol messate:

Type mlsmatch

The CPC 464 thought that you were trying to
put into the string variable a$ the numerical
value of another variable called'hello'. What
you should have entered is:

rer a$="!rerr". GIEII
This time you can enter:

L0
20
30
40
50

let a$=Hello f[[fl

42 print ag f[[[

LQ

2a
3A
40
sa
60
7A
eQ

Try it.

Now enter the following program. See if you
can work out what the results are going to be
before you run it.

Iet aç=" 5"
let b$-'r 12 "
let a=5
let b=12
leÈ c=a+b
Iet c$ =aEa5E
print c
print c$

What'! in a name?

You can use any name you like for a variable
except that the CPC 464 will object to the use
of any BASIC keyword. For example it will not
accept:

lêr save=s+p GIED
This gives a 'syntax error' message. You would
have to change this variable name to 'savers'
or 'savings'. There is a complete list of
keywords at the back of the CPC 464 User
Cuide i| you want to f ind out which ones to
avoid.

You have probably noticed that the CpC 464
doesn't mind whether you enter commands
in either upper or lower case. But whatever
you do it will always show keywords in upper
case when a program is listed. lf you keep all
your variable names in lower case it will make
them easier to pick out from a listing.

43

Savings

Until now, you have either been loading
programs f rom the two datacassettes supplied
with this course, or entering them on the
keyboard. Now is your chance to save the
above program for posterity, or, more to the
point, so that we can use it again in this
chapter and the next without having to enter
it all over again. Take the datacassette out of
the datacorder and replace it with a new one
which has not had the record tag knocked
out. Ordinary cassettes will do although
anything larger than a C60 should be avoided
because the tape is too thin, You should also
beware of the tape leader on ordinary
cassettes.

Rewind the cassette to the beginning and
enter the following:

save "variabi."" @ftfl

You can choose a different name instead of
VARIABLES if you wish, with upper and lower
case letters and spaces in between words. You
must always, however, put quotation marks
on either side of the name. The CPC 464 will
reply:

Press REC and PIÂY and then any key:

Follow the instructions. You will then get the
message:

Saving VARIABLES block I
The CPC 464 will start the datacorder running
and you will hear your program being
transferred to the cassette. While the program
is being saved the cursor will disappear lrom
the screen, but willreturn when the CPC 464

has finished the operation and gives the
'ready' message. lt is always good practice to
have two copies of a program in case of
accidents to the cassette, so repeat the above
to save the program a second time. Don't
forget to release the REC key on the
datacorder afterwards.

44

l

tore printing

lf you have just run the program above, the
CPC will still have the variables in memory. lf
not, load and run the program again so that
we can use the variables to investigate
another thing or two about the PRINT
command. Enter the following:

print a,b,c GffiEA
You can see that this puts the three numbers
up on the screen on the same line, but 13

characler positions apart. lt's a nice easy way
of tabulating numbers but it only works for
modes'l and 2. Try the same thing in mode 0
to find out why. lf you don't want the
numbers spaced out you can do the
following:

print a;b;c GNIEA
This time the numbers are printed on the
same line but with no spacing between them
at a ll, so we often have to add spaces as in the
following example:

print "The value of c is ";c;" not "; c$

We can put letters and numbers anywhere we
like on the screen by means of the keyword
LOCATE. The command structure is:
locate x,y

This looks familiar, doesn't it? Be warned
though. These x, y coordinates are not the
same as the graphic coordinates. LOCATE
moves the text cursor to the position on the
screen given by the arguments of the
command. Text coordinates start at the top
left-hand corner of the screen (which has the
coordinates x = 1, y = 1), and are counted
across and down the screen.

Enter the following:

7s locate ,P,tt GtrED
Clear the screen with CLS. lf you now run the
program again with this new line, you will see
that the value of c$ is printed in the middle of
the screen, starting at character position 20 in
line 13.

I+Hffi,.Ttr
45

BARGHARl

The name of the next protram on the
datacassette is BARCHART. lt gives you a

visual representation of four numbers
between 0 and 290 - the sort of thing you see
for election results or opinion polls. This type
of program has to wait at certain pointsfor the
numbers to be entered into memory through
the keyboard before it can continue. The
keyword which does this is INPUT and a

typical command is as follows:

I0 INPUT nane$

The CPC 464 willwait patiently at line 10 until
something is typed in and the ENTER key
pressed. The information is then put into the
string variable'name$' and processing
continues.

Now run BARCHART before studying the
listing below. You will see that the CPC 464
puts a question mark (?), followed by the
cursor, when it is waiting for input. lt also puts
a 'prompt' to let the user know what sort of
information it is waiting for. You do this by
putting a message after the INPUT keyword as

follows:

INPUT "Anoun E (I-29Q) " t a

The prompt messate must be enclosed by
quotation marks (") and separated from the
variable by a semi-colon (;).

You can see that many of the lines in
BARCHART comprise several commands
separated by colons (:). These colons serve
the same purpose as starting a command with
a line number and finishing it with ENTER. lt is
a good way of keeping a series of related
commands together, particularly if they are
very short.

A very good use of the colon is:

5@ b=S@;REM bar size
Putting a REM alongside a command to
explain its function makes the program easy
to read at a later date.

46

1ô REM 3D Bar Chart
?O REltl by Dave At lrert on
30 FroDE 1

4{) BORDER 14! INK O, 14! INK 1,0: INK ?,3: INK 3,24
5t) b=S0l REM ban size
EO LOËATE 1,23! INPUT "Êûrount (1*29O) " ;a
7O x=100:FLOT x,55, 1

8t) DRAtd x-b*Z, 55: DRAl"l x-b*2, a+55
9ô DRAt^l x-b, a+55+b!DRAW x+b, a+55+b
Itlô DRAhI x, a+5s:DRAI'l x-b*?, â+55
11O MBVE x+b, a+b+55 ! DRAù.| x+b, b+55
1?(l DRAI^J x,55;DRAtl x,55+a
130 LOËÂTE 1,23
140 PRINT"
15O LOCÊTE 1,?3:INFUT "Aûtount (1-29O)";a
16Cr x=?6rl: PLOT x, 55, 2
170 DRAW x*b*Z,55rDRAW x*b*z,a+55
160 DRAW x-b,a+55+b:DRAW x+b.a+5$+b
19ô DRÊt^, x,a+55!DRAW x-b*z,a+55
200 IqOVE x+b,a+b+55:DRAI^I x+b, b+55
tlO DRAû{ x,55rDRÊl.l x,55+a
:?(:r LOCATE 1, Ë3
?3Ô PRINT''
?40 LOCATE 1,23:INPUT "Êrrount (1*29ô)";a
25tJ x=4!Or PLOT x,55,3
260 DRÊIJ x-b*Z,55!DRAW x-b*Z, a+35
27û DRAW x-b,a+55+b:DRÊW x+b,à+55+b

(Continued)
47

2SO DRAW x,a+55rDRÊ.hl x-b*z,a+55
?9O MqVE x+b,a+b+55:DRnH x+b,b+55
3OO DRAI| x r 55 : DRAW x, 55+a
3r0 LocATE 1,23
32Ô PRINT.,
33O LOCATE. 1,23:INPUT "Flrnount (1-29O)"
34O 4=$$6;PLBT x,55, I
350 DRAtt x-b*Z, 15!DRAW x-b*z,a+55
360 qRAW x:-b,a+53+b:DRAl,l x+b,a+55+b
37O D.RAt^l x, à+5S:DRFIW x-b*2, a+35
38O MIIVE x+b,è+b+55:DRflW x+b, b+35
39O DRâW x,E5:DRAtl x,55+a

;a

4g

Game number 4 Testing

Some people use a lot of clever-sounding Run 5AT6 to see if you need to re-read any of
words - especially in the computer world. this chapter before going on to the next one.
Our automatic BUZZWORD generator will
help you to strike back at them.

43

T

50

GETTING IT RIGHT

A lot of this chapter is about corrections and
changes to programs. The program you
entered in the previous chapter will be ideal
for this purpose so rewind the cassette and get
the program back into memory by entering:

ioad "varraor"=" f[[fl
'Variables' is the name you gave to the
program when you used SAVE to store it on
the datacassette.

Changing lines

When you are entering a program by typing
on the keyboard you are almost certain to
make mistakes, even if you are just copying
from a printed page. The most common
mistake is when you hit the wrong key. You
usually realise at once what you have done so,
before pressing the ENTER key, backspace
and rub out the offending characters by using
the DEL key.

While you are still entering a line (this is called
the 'current' line), you can move the cursor
backwards and forwards over this line by
using the cursor keys. New characters can be
inserted by just typing them in, and you can
remove characters by means of the CLR and
DEL keys.

ln the previous chapter we also saw that you
can replace complete lines by merely re-
entering them. The CPC 464 will then auto-
matically put the new line in place of the old
one.

As you write more of your own programs, you
are going to find that they will not usually run
properly the first time round. The CPC 464
will give you some error messages as you
enter lines, and others when you try to run the
program. But it cannot tell you, for example, if
you have left out commands or forgot to
move the cursor to a new position before
drawing a line. This is the reason why the line
numbers we have used go up in tens. As you
saw in the previous chapter, we added a line
between 70 and 80 by entering:

75 LocaEe 2Q,L3

ln extreme cases there is nothing to stop you
adding up to nine lines in this or any other
position. ln the same way, you may delete
lines by entering a blank line. The line we
added in the above example can be removed
as follows:

The CPC 464 will then eliminate line 75 f rom
the program. Try it and then LlSTthe program
to see what has happened.

Editing

When you need to modify a program that has
already been entered or loaded, you can use
the EDIT function of the CPC 464. Using the
example above, enter the following:

edit 4@ @
As you can see, line 40 is displayed on the
screen with the cursor over the first character
of the line. You then use the left and right
cursor keys to position the cursor over the
part of the line you want to change as if you
were working on the current line. Try this out
for yourself by changing the value of b from
15 to 26. Position the cursor over the r1' oI'15'
and then press the CLR key twice. This will
erase the 15. Now enter 26 and press the
ENTER key. The cursor need not be at the end
of the line. lf you now LIST or RUN the
program you will see that the CPC 464 has
altered the line in the way you wanted.

An easier way of editing lines is to use the
COPY key. A second cursor, called the copy
cursor, is used to pick out lines or parts of lines
from anywhere on the screen.

The copy cursor is obtained by holding down
SHIFT while pressing one of the cursor keys.
List the program again and try it, positioning

75

51

the copy cursor at the beginning of one of the
lines. You can see that the normal cursor has
stayed in place. Press the COPY key to copy
each character onto the current line with the
normal cursor. lf you hold the COPY key
down it will repeat automatically, You can
stop copying at any position on the original
line and then enter new or changed infor-
mation on the current line before resuming
copying again.

Once you have got used to using the copy
cursor you probably won't use the EDIT
command very often. The effect is almost
identical but with the added advantage that
you can leave out of a line the characters that
you no longer want.

1o let

You may have found it a bit tedious typing in
LET at the beginning of lines in the last
chapter. lt's time to make confession. You
don't need 10 use this keyword in Amstrad
BASIC.

Try editing VARIABLES again to remove all the
LETs. lf you now run the modified program
you'll f ind that it has made no difference at
all!

52

Branch lines

We said earlier that line numbers show the
CPC 464 the order in which commands are to
be stored, but we also said that they are not
always executed in that order. There are times
when we want to sk ip backwards or forwards
through a program, and the keyword to use is
COTO. The command is formed by adding a

line number, for example:

7Q goto L3@

This line will make the CPC 464 skip all the
lines in a program between 70 and 130. You
can do the same thing in reverse:

L3Q goto 7Q

The program will now go back to line 70 and
execute the lines up to 130 - and continue
doing so until you switch off or press the
ESCAPE key.

What happens nêrt?

We are f aced with decisions every hour of our
waking lives, even if they are only trivial things
such as choosing whether to drink coffee or
tea, or decide which shoes to put on before
going out. Having made up our minds what to
do next, e.g. drink coffee, tea, or nothing; or
put on black, red, or no shoes, we then take
an appropriate course of action. The CPC 464
carries out alternative courses of action by
means of the keyword lF.

The following line could be from a program to
check the amount of money you have saved
up, the variable'money'being the current
balance:

IF rnoney=@ THEN PRINT "Hard up"

The interesting thing is that the PRINT
command will on/y be executed if 'money' is 0

- otherwise the CPC 464 iust steps on to the
next line in the program.

An even better way of doing the same thing is

to include yet another keyword, ELSE, in the
following way:

fffirl
tïl

FffiilII

53

IF money>o THIIN PRINT "Rich" ELSE PRINT

The sign '> ' means 'greater than' or 'more
than' and takes care of the situation where
you owe the bank money! lf 'money' is zero
or less, the CPC 464 ignores what is between
THEN and ELSE, and executes whatever is after
ELSE. ELSE gives you the possibility of an
alternative course of action before going on
1o the next line in the program.

ln the previous chapter we looked at a

program called BARCHART. There was an
input statement which said:

Aûpunt @-294, ?

lf yo tried to enter a number over 290 the
program didn't seem to notice and drew the
bar off the top of the screen. You could stop
this from happening by limiting the variable
'a'to its maximum value. For example:

rF a>296 THEN a=29d

As you can see, the lF . . . THEN command isn'l
restricted to PRINT statements, and this line
would limit 'a'to a value that would fit on the
screen.

"Hard up"

54

Going places

The lF keyword really comes inlo its own
when you use it with GOTO. lt is like a

signpost that tells the CPC 464 which part of
the program it should execute next.
Supposing you wanted to stop people
entering numbers larger than 295 for the
BARCHART program. The following lines
would do the trick:

b0 INPUT "Amount (Q-29@) " i a
65 IF a> 29Ô GOTO 60

Until a number less than or equal to 290 is
entered, the CPC 464 will just keep looping
back to line 60. This 'trap' will actually stop
out-of-range numbers being entered rather
than just cutting them down to size.

Bug hunting

You may imagine that if you made a small
error in writing one of the instructions above,
the CPC 464 could go to the wrong place in a
program. You're right. We have just come
across one of the classic jargon words in
computing - the bug.

Machines develop faults, people make
mistakes. Earlier on we said that computers
can't think, and that the programmer has to
do a computer's thinking for it. lf the
programmer does make a mistake, and even
the best are not immune, it usually is only
obvious after an attempt is made to run the
protram. The CPC 454 does what it was told
to do but that may not be what the
programmer originally intended.

De-bugging is the process of going through a
program and correcting the errors of logic or
understanding that it contains. There is no
shame or ignominy in writing a program with
bugs in it. Admittedly, experienced
programmers have fewer bugs to remove
when they have finished a program than do
beginners, but this is just a matter of
knowledge and practice. ln time you will find
that you will introduce fewer and fewer bugs
inlo your programs. 55

It is good practice to check through a
protram before running it. One way of doing
this is to give it a 'dry run' - goingthrough the
program line by line and writing down the
values of variables and the products of sums.
Let's go through an example:

LQ a=Q
2Q pxint a
3@ a=a+I
4Q if a<4 then goto 20

Before entering this into the CPC 4U, get a
piece of paper and write down the following
three headings:

Step tine number Val. of a

Now go through the program and execute
each instruction exactly thewaytheCPC 464
would. This is how it ihould look:

Step Line number Val. of a

The technique of using a dry run is a good way
of forcing yourself to see the program from
the machine's point of view. Any problems
often then become obvious. When you have
just written a program your main difficulty
can be that you know exactly how you expect
it to work and can't bring yourself to see how
it might nott

Another technique is to add temporary PRINT
instructions at certain points in the program
to show the value of the variable atthat point.

0
0
1

1

1

2
2
2
3
3
3
4
4

110
220
330
440
520
630
740
820
930

10 40
11 20
12 30
13 40

56

A simple example would be to add
following line to the above program.

35 print "Line 35 a= ";a
You can also use the command STOP.
example:

35 sÈop

The CPC 464 will STOP executing the
pro8ram at this point and you can ask it to
print the varia ble or variables that interest you
by direct print commands. The program is

restarted by entering:

c",,r GIED
This stands for CONT|nue. Remember that it
won't work if any lines are added or deleted
after the program has been STOPped.

the

For

Fenovatlon

Yes, it's back to the house again. This time it
could do with a lick of paint here and there so
get out the colour charts and load the
program DECO.

This isn't really a game, just an entertaining
way of combining all the commands you have
learned so far. You may also liketo modify the
program to give your picture a bit of
individuality. You should now know enough
to do this using the techniques described at
the beginning of this chapter.

Don't worry about any unfamiliar keywords
in the listing of DECO given on the next few
pages. All will be made clear in later chapters.

57

l tlr REM deco'tt M0DE 0
311 CLS
4È REM ** start **
50 FT]RDER 12
Ë0 INK 0, 12:RElq yellow
7t) INK 3,SIREM red
SO INX 6,6!REM bright ned
90 INK 9,9:REN greell
100 pApER o
11O REftl dnaw f ront
120 MoVE 100,50
13ô DRAt^r r00, t50, 3
140 DRAtt 4OO,25O
150 DRÊW 400,50
1Ëo DRAt^l 1.)Cr,50
t7O REM draw side
lSO MOVE 400, ?50
19O DRAt^t 600, ?5O
?o0 DRAH 6r)0,50
210 DRÊH 400,50
22O DRAht 4O0,25O
23O REM draw gable end
24O REl(already at start
25O REll so no need for a
260 DRAH 500,350
27O DRAH 600,25O
28O DRâ].| 4OO,25O

point
MOVE

58
(Continued)

:?(J REftl d raw roof
f,(:,O REM otrly two lines needed
f,i(:r iYIOVE 1ôô,25O
SL={l DRA[^' 2C}ô" 350
3JO DRAi^l 50r),35ô
34c-r PEg draw door
:50 IYIOVE t:5,5ô
390 DRAt,l t?5, 14r), Ë
370 DRAI^' 175, 140
380 nRÊhl 275,5(r
39ô REIYI d raw w i nd ows
4txt RËF'l left hand bottom
frlô MOVE 1lO,70
4:r) DRÊl^l l2O, 13O, I
4Jû DRAW 160, 130
440 DRAW 180,70
450 DRÊW lzrt, 70
4êO REM left hand top
47C, MOVE tzo, 17O
4Sô DRAW 1?O, ?30
49ô DRAI^, lgr)" 23O
5r)O DRAI.I 1SO, 17O
5lt DRAI^' 1Ëô, 170
5':O REM right hand top
830 MOVE 320, 170
540 DRAt^l 32O, l3O
55O DRRW 3BO, ?3.)
5ËO DRât^' 38ô, 170 (Continued)

59

570 DRRH 32A,L70
5SO REM right hend bottom
59C, MOVE 32O,7O
600 DRâr.l 320, 130
610 DRAt^t 38O, 13O
62ô DRAW 38O,70
630 DRAI^J 52O,70
64Ô REM *** DEC0 ***
65O r$=CHR$(18)
66ô LOCÊTE 1,25
67C, PRINT"Type a coIour t1-15)";
6BcJ FOR i=l TO 15
Ê,9C' INK i, i!NEXT i
7OO LOOATE 1,1:PRINT N'È;
7f0 INPUT "Roof eoloun";n
72O FOR i=1O7 TO 399 STEP 2
73Cr MoVË i, ?52:DRAl,,l i+96,349, r
740 NEXT i
75CI LOCÊTE I,1:PRINT n$;
760 INPUT "Gable end";g
77C, FUR i=?52 TO 346
7êO MOVE i+154, i:DRAW 648-i, i, q
790 NEXT i
gOO LOCATE 1" 1:FRINT r$;gl0 INPUT "End wall";e
S2O FOR i=St TO 249 STEP 2
ê30 MOVE 404, i:DRAt^t 598, i, e
s4ô NEXT i

60
(Continued)

S5O LOCATE 1,1:PRINT r$;
S60 INPUT "Front";f
S7O FOR i=52 TO 248 STEP 2
8SO MttVE 1O4, i IDRAW 398, i, f
ê90 NËXT i
9ô0 LoCflTE 1,1IPRINT r$;
91O INPUT "Door";d
92O FOR i=52 TU l3B
930 ltlOVE 229, i:DRâW 268, i, d
940 NEXT i
950 LoCATE 1,1!pRINT rS;
960 INPUT "l.lindow":w
97O FOR J=O T0 1OO STEP 1OO
9S0 FOR i=7O+J TO 130+.1
99O MOVE 120, i:DRAtl 1&0, i, w
1OOO MOVE 32O, i lDRRt^l 38O, i
1r)10 NEXT i
1o2O NEXT .1

IOSO END

Tecting

Running SATT will allow you to check how
well you understood this chapter. Don't
worry if you have to thumb back through the
pages before answering a question, Not many
programmers work without a reference book
at their elbow. 61

HOUSE IMPROVEMENTS

ln computer programming there are some
tasks, like housework, that need to be done
over and over again. The CPC 464, like any
other computer, is very good at repetitive
tasks. lf we give it the appropriate program it
will keep repeating it until we tell it otherwise.
So, we are going back to the house again to
see how we can fill in a lot of details without
having to do a lot of programming.

Load the next program on the cassette,
MANSION. lt may seem to be the same old
house, but this time we are going to see how
we can produce very clever visual displays by
using the principles of the 'loop' and the
'subroutine'.

L0
2@

3@

4a

Looping

Surprising as it may seem, you have already
seen a loop in the previous chapter. Although
we didn't call it that at the time, the following
program contains a loop:

a=@
print a
a=a+l-
if a<4

What th is protram means is 'Print the value of
a, loop back to line 20, and do this until a is

greater than 3'.

We could have written the program as

follows:

LQ for a=0 xo 3
2A pr]-nL a
3@ next a

lf you look at the listing of the MANSION
program, printed below,you willsee that it no
longer ends at line 640. We are first going to
look at the new lines from 640 to 680 inclusive.62

)

lf you run the program, it will draw the house
as usual. When it reaches the STOP command
you can run the next bit by entering:
coNr,GIED
Try it. What do you think of the fence? lt may
even keep the neighbour's dog out of the
garden !

The key to this operarion is line 650, so let's
have a close look at it:

65@ FOR p=Q ,rO 62@ srEP 2Q

The FOR command tells the CPC 464 thar it is
just going into a loop. 'F = 0'says where the
loop starts; 'TO 620' says where the loop
stops. The instruction 'STEP 20' gives the
distance between fence posts by teHing the
CPC ,164 to increase 'F' by 2Oeach time it goes
round the loop.

Line 660 uses the current value of the variable
'F' to move the graphics cursor to the next
fence post position and to draw the line ofthe
post.

The instruction that completes the loop is
NEXT, as you can see in line 670. lt means 'Give
me the next value of F', using the 'step' we
described previously.

5o, to summarise, the CPC 464goesthrougha
loop which steps through F = 20,40, 60,80,
etc., until the'next' number is 640, i.e. past the
end of the loop. The CPC 4U then 'drops
through'the NEXT and executes line number
680 to draw the cross beams on the fence.

Ilffi-TI

lffir

63

Relativity

Before we go on to the next bit, let'sjust finish
oTf our study of graphics commands with the
'relafive' versions of PLOT, DRAW and
MOVE. You will remember that with all three
commands the arguments are the x and y

coordinates measured from the graphics
origin of 0,0. For the commands PLOTR,

DRAWR and MOVER, the arguments are the
required x and y displacement startinB from
the current position of the graphics cursor.

From the above diagram you can see that the
following instruction would move the
graphics cursor to x = 150, y = 200:

nover 5Q,5@ f[ftf|
The same philosophy applies to the DRAWR
and PLOTR commands. Their arguments will
always apply 1o the relative coordinates
starting from the current cursor position, and
thereby allow the programmer to avoid
having to calculate the coordinates every
time. Their usefulness will become obvious
before the end of the chapter.

u

Dolng thr wlndow.

You will not have failed to notice that we
haven't finished with the house yet. After the
fence-drawing loop there is another STOP
command in line 685, followed by some lines
which include a new command - COSUB.
Run the protram through to the end by
entering CONT.

Well, it was about time we had some panes of

glass in the windows. This was done by means
of a 'subroutine', which is the term used in
computer programming for a series of
instructions that can be called up repeatdly
as and when necessary. lf we didn't use a
subroutine for the window panes it would
have meant writing the same set of instruc-
tions 16 times. COSUB stands for CO to
SUBroutine and is always followed by the
line number of the first instruction of the
su broutine.

IO REM rvransi sn
20 lrloDÊ 0
3ô CLS
40 REFI ** stant **
50 BORDER 1?
6ô INK o, lt:RElrl yellow
7ô INK 3,3:REM ned
êo INK 6,6rREM bnight red
90 INtt 9, 9: REM g l.een
95 INK 15, 15 ! RElrl o range
r00 pâpER o
I 10 REIYI d raw f ront
l2(l MOVE 1ô{),50
130 DRAW 1.)O" 25O,3 (Continued)

65

140 DRAt^t 4(tO" 150
150 DRATJ 400,50
t6o DRAH lC,ô,50
17O REM draw s ide
18C' FTOVE 400, ?50
r90 DRAI^J 600, ?50
?ôô DRAr^l 6ôô,50
?1O DRAW 4OO,50
r:o DRAI^J 400, 150
230 REM draw gable end
t4t) REM àl reàdy at start point
?5O REM go no need fon a MOVE
t6û DRÊW 500,350
270 DRAI^J 600, ?5O
?êcl DRAht 40ô,25O
290 REIYI d raw no o f
3O(:, REM otrly two lines needed
310 MOVE 100,250
320 DRnN 200,350
330 DRAH 5.)O,350
34O REFI dnaw doon (in red)
35O MOVE 225,50
360 DRAH 2?5, 14O,6
370 DRAr^J 275, 140
3BO DRAbI 275,50
39O REFI draw window; (in green)
4OO REt'l left hand bottorn
41O MOVE L2O,7O

66
(Continued)

À2O DRAH 12O, 13O, I
43O DRÊW tgo, 13O
4/r0 DRA[", 190,7ô
450 DRAr.t r20,70
460 REM left hand top
470 MOVE 120, 170
4SO DRAW 12O,23O
49O DRAW tgo,23O
5OO DRAW 1gO, t7O
51O DRAW 12O, 17O
520 REf'l right hand top
53O MOVE 52O, 17O
540 DRAW 32O,?5O
550 DRâW 3SO,230
560 DRAW 3SO, 170
57O DRnW 32O, 17O
58O REI'I right hand bottom
590 MUVE 32O,7O
6r)0 DRAW 520, 130
610 DRAH 3gO, 130
620 DRâH 3S0,70
630 DRâl.l 52O,7O
635 STOp
640 REM fence
650 FOR F=O T0 620 STEP 20
660 ilBVE F,O!DRAl.l F,60, ts
670 NEXT F
6S0 MOVE O,4slDRAl.l 6.20,43 (Continued)

67

6S5 STOp
690 REM fnames in windows
70O REM usie e square drawing subr
71û size=18
720 MOVE 130,78:G0SUB 9ôO
73O MBVE 156,79:GO5UB 90O
74o MOVE l3O, 1(,3!6USUB 9OO
75o MovE 15Ë, 103:GOSUB 9oO
76rl MOVE 13ô, lTgrGOSUB 9OO
770 MOVE 156, 179:Ei0SUB 9O0
78C, MOVE 13ô,?ô3:ËOSUB 90ô
790 MOVE 156,203:G0SUB 900
8ôO MBVE 33(-J,7ê:GOSiUB 9ô0
81(l tYtovE 356,79!GOSUB 900
820 MOVE 330, ICI3:GOSUE 900
830 MOVE 356, 103:G05UB 900
ê4Cl MOVE '33ô, l7ê:GOSUB 9OO
850 MOVE 356, 179:G05UB 300
960 FtovE 33ô,?03:GO5UB 9OO
s7ô MOVE 356,203:60SUB 900
88(-'t END
ê9O REM sub ro ut i ne f o r sq ua l'ê
900 DRAI'R t], si ee, I
91ô DRÊt^lR sire,O
9?0 DRAIIR ô,-sire
93.1 DRAHR -size,O
94C} RETURN

68

Now you can see why we had to tackle the
relative graphic commands before
continuing with this part of the chapter. lf we
have a standard subroutine for a particular
task, in this case the drawing of a square, it
must be possible to describe that task in a

universal way. ln our window pane
subroutine you can see that the use of
DRAWR and the variable 'size' enable us to
draw a square of any size, starting at any
position on the screen.

A subroutine should start with at least one
REM to describe what it does. ln a long
program with many subroutines it would be
foolish not to. ln Chapter 9 we will see how
important this is and learn what other infor-
mation must be given. You must, however,
end a subroutine with the command
RETURN.

When the CPC 464 comes across a GOSUB
command it makes a note of where it had got
to in the program before going off and
executing the commands in the subroutine.
The RETURN at the end of the subroutine is a

bit like the NEXT instruction in a FOR loop,
but whereas NEXT takes you back to the
beginning ol the loop, RETURN sends the
CPC 464 back to the next instruction afterthe
COSUB rhar called the subroutine.

A program can use subroutines to draw a

picture of a house in the same way that a

builder uses subcontractors to build one.
Tradesmen such as bricklayers, carpenters,
plumbers and tilers are called in to do specific
jobs. And these specialists may themselves
subcontract ceriain parts of their tasks. For
example, a bricklayer will almost certainly get
a labourer to mix his mortar for him and the
days when he would have made his own
bricks are long past. Furthermore, the same
labourer could also work for any ofthe others
trades.

You can construct programs in the same
manner. A subroutine called by a COSUB can
call another subroutine to carry out part of its
task, and so on. The CPC 4U can keep track
of many levels of COSUBs and will still find its
way back to where each one was called.

69

Finishing off

Subroutines are always put at the end of a

protram. But what happens when the last
command has been executed? Well, if you
don't take any precautions the program will
drop straight into the beginning of the first
subroutine with occasionally comic but
usually silly results. one way lo avoid trouble
is to put in an END command. Quite simply it
is, as you can see in MANSION:

8OO END

When the CPC 464 reaches such a line it stops
running the program and goes back to
READY.

Another method is to put in a loop such as:

8@ @rc 8AA

This will keep running until either you press
ESC or you do a general reset. lt's useful if you
don't want READY to appear on the screen.

Exercirer

Try using the window subroutineto put a nice
big picture window in the right-hand end of
the house lo overlook the garden.

Write a subroutine that will draw a chimney
and then use this subroutine to put the
chimney on the left, right, or centre of the
roof .

70

Testing

This time you will not only be tested on the
subjects covered in this chapter, you will also
be given a bit of revision on previous subjects.
It is quile reasonable for you to check back
through the book to find the answer to a

question. No one can be expected to
memorise the amount of information you
have been given in such a short period of
time.

71

PROGRAM DESIGN

It cannot be overemphasised that there is as
much craft in programming as there is art and
science. You will remember that we have
already said, more than once, that computers
can't think. The craft in computer
programming is the careful analysis of a
problem or task and the conversion of the
information obtained into a logical, coherent
program that will not use too much memory
space and will be fast enough to do the job
properly.

Obviously you can't expect to do this without
knowledge and experience, but this chapter
may help you to acquire certain habits and
techniques of good programming that will
serve you well in years to come.

72

Worklng from objectlves

For any program longer than, say, 20 lines,
there is only one way to approach the task.
You have to break it down into manageable
pieces. No matter how good you are, amateur
or professional, it is not possible to carry all
the aspects of a large program in your head at
the same time.

So, the first thing to do when starting on a

program is to divide it into parts and write
down what each part is supposed to do. lt is

worth starting a'project'book to record all
these design parameters for each program
and its subroutines. lf you don't, you may get
half way through writing a program and then
find that you have forgotten the reason for a
specific requirement, or the exact
specification for what a subroutine does.
From the overall description of what the
program does, you must then break it down
into an ordered, logical structure of tasks.

l

And quite how is this done, you ask? Well,
there are various methods in use, but we are
going to explain.just one of them. lt makes use
of something called Programming
Development Language - better known as

PDL. Let's take a familiar example. A postman
has to go through a series of decisions and
actions as he goes on his round. lmagine that
you had to program a robot postman to do the
same thing. Since robots are controlled by
computers, you have to tell them what to do
in every case. So take a look at the following:

73

Program for
robot po.tman WalK to flrst house in street

For everv house in the street
If there is something for this house
I hen Hepeat

-- c"t packet from bag
Until no more for thls house

If t nffiJs a front gate
Fen o pen it

Step through it
Close gate

While not at the front door

-h/al
k towards door

If any recorded dellvery/excess post/parcel
Then ring doorbel l

l^Jait for an swer
For each pac ket

Tn case:
Recorded: get signature
Excess: collect money
Otherwise: hand over pac kage

El"e pusr' everyÏÏÏÏ[TFFoush letterbox
Wh1le not at entrance

-u,Jalk
to entrance

If there is a front gate
Then open gat e

-
Step through
Cl-o se gate

Else walK to next house
Next Îffie

74

We have written a plan for the program using
ordinary English in a very formal and
organised fashion.

There are a number of important things to
note about the above example. The first is that
there are a small number of building blocks
for the program, some of which you will
recognise as BASIC commands and some not.
Another is that the text is indented to show
which actions take place inside loops or lF-
THEN-ELSE blocks. Pay careful attention to
this when writing your own programs in this
way or you may get very confused !

Perhaps the term 'routine' needs to be
explained. A series of actions (or commands)
that perform a particular task are grouped
to8ether to form a routine. Look at the second
line of the example above:
For every house i.n the street
This is the start of a routine. that may be
repeated for any house in any street, as long as

the rest of the program takes care of the rest
of the problem.

within this routine there are several
subroutines (yes, this is the real meaning of
the term). The following one is typical:
While not at front door--wa r n towôrds door

You can see that this could be handled by a
subroutine that took care of walking from any
starting point to any finishing point.

The most important point about our example
is that not too much attention is paid to
defining each action in detail at this stage. lf
you continued breaking this program down
you would find that 'walk' alone would
represent pages and pages of work even
without the problems of balancing on two
feet. But at this level a simple general
description is enough.

When all the tasks are broken down
successively, we would eventually reach a

point where each action of the program
corresponded to individual actions
concerning our robot's sensors or control
mechanisms.

lf the above boggles your mind, here is a

comforting thought. lt would take the
average team of programmers many years of
hard work to actually write the above
program, so it is probably a good idea to
scratch it off your list of projects. The reason
we chose this example, however, is to show
you how even the most complex tasks can be
expressed simply.

75

Exorclror

There are several design pârameters missing
from the above program. See if you can

design the subroutines to take care of:

r No answer to the bell
r No letterÈor
r Hands too full to open the gate

r Street with house names only

And you can probablythink upothersaswell.
Don't be discouraged if you can't solve many
of them. The things that we human beings
take in our stride can be unbelieveably com-
plicated.

76

)

)
Bulldlng block.

Here are some of the building blocks of our
postman protram with examples of how they
might be translated into Amstrad BASIC.

)

For every house in the street
Next house

800 FOR house=firsthouse TO lasthouse

870 NEXT

Repeat
cet paeKet from bag
UntiL no more for this house

IW! @SvB I2Q@:REltt get packet fron bag

1110 IF waslastpacket=o THEN @Io IM

This assumes that the subroutine at line 12,m0
sets the variable'waslastpacket'.

77

l^/hiLe not at the front door

-l,Jul
k towards door

2QQ@ æsvs L3Q@Ô:RE,t'r see if we are at door
20LQ rF atdoor<>@ l-hen 2Q4Q

2A2O cosvB I46Q@ zRevr walk towards door
2Q3A cfiro 2Q@
2Q4Q Ps'yt end of while

The subroutine at line 13,000 would set the
variable 'atdoor'.

In case;
Recorded: get signat ure
Excess l collect money
0therwise: hand over pac ket

30gA æsvB L5Q@ *BM get type of packet
3QL0 rF packettype-recd THEN @SoB I6ffiz c;€.To 304Q
302Q IF packettype=excess THEN @SVB LTQW: CfiTO 3Q4Q
303P cosuB LBQ@:RF!4 hand over packet
3044 P.EM end of "in caser'

The subroutine at '15,000 sets the variable
'packettype' and the variables 'recd' and
'excess' have been set to suitable values.

78

!| uny recorded delivery/excess post/parcel
Then ring doorbel l
Else push everything through letterbox

Here is one possible translation:

4@0 @stJB l@60'Rilu! see if recorded/excesê/parcel

THEN GOSUB 2OWO EI,SE C{.SUB 2IM4Q7Q rF needring<>@

Or you may want to keep the actual routines
close to the IF-THEN-ELSE commands for
reasons of clarity, rather than use subroutines,
so the trenslation could also be:

4Wg rF needring=@ THEN Gcrro 4IPP
. . . : REl.[get answer etc .

4090 cfrTo 42@
4L00 RE,vt donrt need to ring

...:REM put evelything thlough J.etterbox
42@ WM end of "IF need,ringrl

i:',,..
,."..

7g

Routine work

Here is a checklist of what you should work
out before you write a routine:

r Name of routine (f or your own use - not
the CPC 464)

t Names of variables that need to be set
before using the routine

r Effect of routine on variables
r Any side-effects of the routine

When you design programs it is a good idea to
use separate sheets of paper that can later be
put into a ring binder to form your project
book. Each sheet should have the above
information written at the top. This has two
advantages:

1 You can see at a glance what you intend to
write.

2 lt is easier to identify two very similar sub-
routines that could be combined into a

single one to save you having to do the
same thing twice.

Do you remember the routine that drew the
window panes on the house? lt started with a
REM:

REM subroutine for square

The only variable set up before calling the
subroutine was 'size', and the subroutine
merely used the variable but did not change
it. Finally, the routine did not have any other
effect on other parts of the program or the
CPC 464 itself.

Designing routines in this way makes them
'watertight'. You know exactly what to do to
use them, you know what they do for you, and
you know what they may affect. Not only are
programs designed this way much easier to
debug; such a design avoids having
unexpected results spreading round untilthe
whole program sinks faster than, and just as
catastroph ically, as the Ïiranic.

Designing programs using this routine-by-
routine melhod means that by the time you
have finished, you end up with a sheaf of
paper that tells you exactly what to write.

80

Documcntation

As an amateur programmer, you probably
work entirely on your own. Thus, any
programs you write will tend to be proud
possessions which you will be unwilling to
either disclose to the outside world, or have
subjected to critical scrutiny. Professional
protrammers don't work like this. Most
professionals work in teams on the same
program, or set of programs, and therefore
must be able to read and understand what-
ever anyone else has written without
difficulty.

BASIC is an accessible, tolerant language that
doesn't insist on any rigid structure or form to
a program. This is all very well when you are a
beginner, but as soon as the tasks become a

little more complex it is necessary to start
making the programs clear and easy to under-
stand. Otherwise you will find yourself re-
writing programs you only finished a month
previously simply because you can no longer
make head or tail of them, or you can't see
how to change them.

)

The secret of success is REM. And REM and
REM again. When you have a branch or a

COSUB in your program just put a REM in to
say why and where it is going. Putting COSUB
4,000, for example, is acceptable until there
are 50 other subroutines. when th is is the case
you need to write (for example again):

C;OSVB 4QQ@ IP'EM Move cursor to posj-tion

We talked about clearly defining what a
routine has to do and the variables involved.
The way to do this within a program is to put
all the appropriate inlormation in a series of
REMS at the beginning of each routine. lt
doesn't have much effect on the processing
time and has a magical effect on readability,
both for yourself and for other programmers.

81

l0
SOUNDS FANTASTIC

When we said earlier that BASIC programs
written for the CPC 464 might not work on
other computers, it was particularly with the
sound commands in mind. The range and
power of the CPC 464's BASIC sound
commands are such that few other computers
can equal them.

But this creates a problem as well. lt would be
quite possible to write a separate book on the
sound commands alone. So, in keeping with

the intention of learning the first steps in
Amstrad BASIC, a lot of information has been
left out of this chapter.

Having said all that, load the next program
from the cassette. lt is called ZAPPOW, and
will give you an idea of what can be achieved
with these sound commands. A listing of this
program is given at the end o{ this chapter so
that you can copy the interesting bits into
your own proSrams.

82

Tuning up

As you may have guessed, the command that
produces the sound is SOUND. Enter the
following:

sound I,478 f[@
That was middle C. The number 478 is called
the'period', and determines the note to be
played. A f ull list of notes and their associated
periods is given in the Amstrad CPC 464lJser
Cuide. The 1 is the sound 'channel' to be
used. Part 2 of this course describes how to
use the other two channels.

Now enter the following:

sound 1,478,r00 GIEEI
When you press the ENTER key this time the
sound will go on for precisely 2 seconds. This
is governed by the 200 which defines the
'duration' of the sound in hundredths of a

second. lf you omit this part of the command,
the CPC 464 assumes that the duration
wanted is 20. You may now write a program to
play a familiar tune. For example:

l@ rem A Familiar Tune
2Q sound L,2L3
3@ sound L,253 ,6A
4@ sound L,Q,40

5@ sound
60 sound
7@ sound
8@ sound
9@ sound

l@É sound
I]0 sound
L2Q end

L,253
L ,239
L ,2L3
L,L27,44
L,O,L
L,L27 t40
L , L59 ,6Q

Lines 40 and 90 are interesting. To give a 'rest'
(music terminology for a pause) between two
notes, you must put in a command whose
period is zero - silence, in other words. ln line
40 we have a rest for two beats; in line 90 an
extremely brief rest makes sure that the
repeated note does not merte with the first
one.

For those of you who are familiar with music,
the same tune is shown above in normal
notation so that you can compare it with the
program.

A Familiar Tune

83

Sounds BASIC

Before we go any further it is necessary to
have a look at how sounds are built up. ln its
simplest form a sound can be represented
graphically by a sine wave, as you can see
below.

Perhaps it will now be clear what the period
part of the SOUND command really means. lt
is the time that elapses between two waves of
the sound, measured in steps of I
microseconds (millionths of a second). The
shorter the time between waves, the hither
the sound, and the longer the time between
waves, the lower the sound.

The height of the waves is known as the
volume, and we can specify this in the sound
command. Try entering our middle C line
again, only this time put a 2 on the end as

follows:

That makes it very quiet doesn't it? The
volume can be specif ied between 0 and 7, 0
meaning no volume at all (yes, it can be
useful) and 7 meaning maximum volume. The
sound we looked at above started and
finished at the same volume. ln the realworld
things aren't usually like that. lt is quite
normal to have a sound which changes in
volume from start to finish.

We do this on the CPC 464 with the ENV
command, which gives you an 'envelope'that
can vary the volume of a sound throughout its
duration. Enter the following two lines and
run them:

L@ env L 16,I,3Q
3l sound I,47d , LAl ,L ,L

You will probably need to study the following
diagram closely to understand how this
works. Don't worry about the missing line 20 -
we'll come to that in due course.

l-- period --*l

84 sound 1,478,20@,, GIED

ô

You can have up to '15 different volume
envelopes in one program, and the first 1 in
the ENV command above merely identifies it
as the firsl. The next number,6, means that
you want the volume to change in 6 equal
steps. Ihe next number,'1, gives the amount
by which you want the volume to increase. lf
this was -1, it would decrease the volume.
And finally, the 30 gives the length of the step
in hundredths of a second.

Be careful about the volume specified in the
SOUND command. The CPC 464 can actually
set the volume at sixteen different levels
when a volume envelope is specified. The
range then becomes 0 to '15 where levels 0, 2,

4,6,8,10, '12, and 14 correspond to the range 0

to 7 that you get when a volume envelope is

not speci{ied.

)

Now let's analyse how SOUND and ENVwork
together in our example. The volume is set at
1 in the SOUND command, and ENV l gives
six steps of increasing the volume by one
level, so the final volume will be 1+ 6= 7. Note
that the first step takes place immediately the
SOUND command is executed, so the initial
volu me is 1 + 1 = 2. Note also that the six steps
of the envelope multiplied by the pause
duration shouldn't be longer than the
duration specified in the SOUND command,
or otherwise the end of the envelope will be
lost.

So now let's have a look at the missing line
number 20. ln the same way that the volume
levels in a SOUND command are modified by
a volume envelope, the frequency of the
sou nd can be modif ied by a 'tone' envelope.
The command used is ENT. Here is line 20 in
place at last:

LQ env L,6,1,3Q
2@ ent L,LBQ,I,L
3@ sound L,478,LBA,L,I,L

As you can see, our SOUND command has
acquired yet another 1 10 indicate that ENT 1 is

to be used.

The structure of the ENT command is very
similar to ENV, as you can see from the

time

85

diagram below. This time, though, it is the
period of the sound that is increased one at a

time for 180 steps, each one being one-
hundredth of a second long.

lf you haven't already done so, run the
program above several times, Then change
the step value of both the ENV and ENT
commands to -'l instead of 1, change the
initial volume setting of the sound command
to 7, and then run it again.

l{oiry roundc

The CPC 464 can add a little noise to any
sound to give it extra interest.

You may think that the SOUND command
already looks like a Christmas tree since we
added the ENV and ENT numbers. Here is

positively the last thing you can tack onto it -
the noise. Edit line 30 of our program to give
you :

3P sound L,478,L80,L,L,L,5
lf you run the program now you will notice
quite a difference. Try experimenting with
the 31 different sorts of noise which can be
specified by putting the appropriate number
in this part of the command. Leaving it off or
puttint 0 means zero noise.

86

Exercises

Add tone and volume envelopes to the
'familiar tune'and then change them to get
different sounds. Then add different sorts of
noise to some of the sound commands.

Write your own program for a few bars of a

familiar tune. Even if you don't know music
very well, it is possible to do quite a lot by trial
and error. lf you do know about music, don't
be too ambitious at first. A nursery rhyme is

quite sufficient to start with.

)

Playtime

Well, it isn't really. The next program on the
datacassette is called ORGAN. Not only can
you pick out tu nes directly from the keyboard
but you have the opportunity to analyse the
program to see how it can be done. You
should be starting to understand enough
about BASIC to list and understand what a
program is supposed to do, although this
particular program contains some rather
advanced programming. Don't be afraid totry
changing things to see what will happen.

As promised, here is the ZAPPOW listing:

87

lO REM Zappow
?O REM by Dave Flt he nt otr
50 MODE 1

35 INK O, I : INN 1, ?5
40 LOCATE 13,4:PRINT"SOIJND DEMO"
50 LOCATE 1O,7:pRINT"1. Explosion"
6ô LOCATE lO,8:pRINT".l. Dog Earking"
7Ct LOCATE 1C',9!pRINT"3. Siren"
gO LOCATE lO, 1C,:pRINT"4. Toilet Flrrslr"
90 LOCATE 1ô, 1l ! pRINT"5. Cr-rekoo"
lOCt LOCATE 10, 12!pRINT"6. Machine Gun"
11O LOCATE 1O, l3:pRINT"7. Space Invader"
120 LOCATE 5, 17:pRINT"Select a Eound from I to 7"
13O IF INKEY$)"" THEN T3O
l4O a$=INltEY$!IF a$="" THEN l4O
15Ct IF OR a$) "7" THEN 140
16O a=VAL(a$)
17O LOCATE :O, 19!PRINT a$
18ô IF a=l THEN 6OSUB t6(t
19O IF a=2 THEN GOSTJE 33O
2OO IF a=3 THEN 6OSUE 3gô
21O IF a=4 THEN 6USUB 43C)
22O IF a=5 THEN 60SUB 48(.r
23O IF a=6 THEN GOSUE 530
24O IF a=7 THEN GOSUB 5g(l
25O FOR J=O TO IOÔO:NEXT
260 LoCATE 2ô, 19:pRINT ,' "
27ô GOTO 13(:r

88
(Continued)

260 REltl Explosion
29O ENV 1,11,-1,25
3OO ENT 1,9,49,5,9, -1O, 15
31O SOUND 1, 145,255, O, t, 1, t2
32O RETURN
33O REFI Dog Eark
340 ENV 1,4,7, 10
35O ENT 1,7,-8,3,6,24,2
360 SOUND 1, 12O,33,8, l, 1,3
37O RETURN
3BO REM Eiiren
39O ENV 1,2,9,45
4ôO ENT 1,2,9,45
41O SoUND 1, 15O,90,6, 1,1
42O RETURN
43O REM Toilet Flush
44O ÉNV 1,3,-2,95
45O ENT 1,5, -1,51
460 SOUND 1, 15O,254, 11, l, 1, g
47O RETURN
4BO REm Cuekoo
490 ENV 1,4, 12, 11
st)o ENT 1,5, 12,8
5ro SBUND 1, 165,40, 13, l, 1

52O RETURN
53O REI'(Maehine Giun
54O ENV 1,21, -5,4
55O ENT 1 (Continued)

89

560 SOUND 1,162,92, 15, 1,1,11
57O RETURN' "5SO RElrl Space Invader
590 ENV 1,4,30, 19
600 ENT 1,9,49,5, 1, -1O,26
Ë10 SOUND 1, 136,68, 15, 1, 1, O
620 RETURN

90

)

ïesting

It would be quite surprising if you didn't have
to keep checking back through this chapter to
answer the questions in SAT10. Don't let this
worry you. lf you already knew all about the
SOUND commands of the CPC 464, you
wouldn't be reading this book.

g1

tl
Function
+

X

3+7
15 x 4
8+ 2

17 -8
15 + 3
20x 17

NUMBER CRUNGHING

As we have said several times the CPC 464,
like any other computer, is good at boring
repetitive tasks. lt is also good at crunching
numbers. ln fact it is the only thing it is good
at. Everything we have seen is achieved by the
CPC 464's internal processing of lots of
numbers at incredible speed, Even the
graphic and sound functions work this way.

lf you aren't particularly good at maths this
chapter won't be easy. But give it a try anyway.
The simple arithmetic isn't too bad, and
BASIC is fairly straightforward in the way it is

presented. ln any case the really difficult stuff
is not covered in this part of the course.

BASIC arathmêtic

The CPC 464 does its sums by using the four
familiar arithmetic f unctions, but two of them
have different symbols:

Meaning BASIC

add +

su btract
multiply +

divide /
Thus, sums written in BASIC look a bit
different to what you may be used to.

ln Chapter 4 we entered:

pt inE 2+2

You can do the same thing with the following
sums by referring to the list of f unctions above
and using the correct BASIC symbols:

92 For more complicated sums we have to tell

the CPC 464 that certain operations have to LQ a=2
be done before others. The following, for 20 b=5
example, is perfectly clear in ordinary 3Q c=LÔ
arilhmetic: 4@ print a+b+c

15x7;---; âxa bxc

ln BASIC this is not written: c - (a x b) b - a

L5*7/7-2 [= l3wrongll c c-b
We have to show that the multiplication 15+7 b - a c + b

and the subtraction 7 - 2 must be carried out
belore the division. This is done by putting The first two are straithtforward enough, but
them between brackets as follows: what did you think of the answers to the other

(15*7) / (7-2) r= 21 rishtlr *;î1"'$Ji:".iî:li:;:,ff't-iT:î:i:
you should now be able to do the sums the digits before and after the decimal point

below: for the last three answers, you will find that
there are always nine. This is the way the

30 15 x 6 CPC 4U normally displays numbers on the
3 + 2 g screen. The snag is, though, that sometimes a

series of calculations will give a very slightly
24-(4\3) 5x(2+8) inaccurate result. lnsteadof 5.0youcouldget:

The same rule applies to variables as well as 5 'W0@0AL
numbers. Enter the following program and or:
then keep changing line 40 so that you can ,4 oooooôoo
solve the other sums shown below. Don'Î
forget to use the correct symbols and to put Tricky, isn't it. Fortunately we don't often
brackets in the right place. need such extreme accuracy. Sometimes, in 93

fact, we only want whole numbers, since the u= uL1=Q .QQQffiI
difference between 276.25 and 276, tor rF ABS (a-5)<vsnall THEN ccxto
example, is not often very significant. The
keyword we can use to give a result as a whole Don't worry about the keyword ABS. lt just
number is ROUND. A typical command gives you the difference between'a'and 5, as

would be: you will see in Part 2.

x=round (26*17) /r'6
The next program on Datacassette A is agood

Try it. lf the part after the decimal point is less crib for multiplication tables as well as being
than 0.5 the result is rounded down to the an example of simple maths on the CPC 464.

next whole number, and if it is 0.5or'more, it is Ask it to give you the 13.87 times table! After
rounded up to the next whole number. running this program it may be worth your

Another thing you must remember is that, iLil.t:" list it on the monitor screen to see

arthough the cpc lol putr'I"'iÀ; :;;;; how it is put tosether'

numbers that are accurate to 9 d igits, it may be
holding even more digits in memory. For
example, you may end up with a value of :

s.@00A0A0L (ten disits)

The CPC 464 will insist that this is 5.0 every
time you ask it! But, and this is important, if
the next command is something like:

IF a=5 THEN GOTO
the COTO will never be executed.

A standard programming technique to avoid
such problems is never to use the line above
but rather the following:94

I

Elementary logic

There are lots of things we mentioned in
earlier chapters without explaining them in
detail, the reason being quite simply that it
was too soon to have explained them at that
point and would have confused rather than
helped you. One of these is the use of 'logical
operators'.

Cast your mind back to our study of loops. We
used signs like '<' and '>'. There is a

complete list of these symbols, known as
'logical operators':

(less than
> greater than
= equal to

<> not equal to
(: less than or equal to
>: greater than or equal to

Even if these terms are unfamiliar, it is fairly
clear what they mean. When you need to
compare two variables so that you know
when to end a loop or decide between two

)

courses of action, these operators give you
the means to discriminate between them. The
lF commands we studied in Chapter 7 are
entirely dependent on these operators.

A subtlety you must remember about logical
operators is that they take into account
whether a number is negative or positive, so if
a=5andb=3:
a>b

Butifa=-5andb=3:
a<b

95

Strlng loglc

Do you remember that we started off saying
that the CPC 464 only knew how to handle
numbers? How then,. you should be asking,
can it store and process characters in string
variables, as we learned in Chapter 6?

The answer is that each character is identified
by a number called its 'character code', so
characters are simply treated as a series of
numbers. Thus, the logical operators can test
strings for their alphabetic order, 'A' being
less than 'Z', but this is because of the numeric
value of the character code. lf we try the
following command:

rF 'tApple" <rrorangel THEN PRrNT "Lemon"

the answer is a 'lemon' since 'apple' is before
'orange' alphabetically. All capital letters are
less than any lower-case letters, and a short
string is less than a longer one that starts in the
same way, so:

ln this case, the CPC 464 is testing the
'numerical' valle of each letter of a word and
comparing it with the numerical value of the
letter in the same position in the word on the
other side of the operator.

"aardvark" < "abbey"
'"love" > "locksmith"
"box" < "BOX"
"Zoo" > "Zookeeper"
"apple" > "Apples"

is true
is true
is false
is false
is tiue96

Homee and gardenc

The house is in pretty good shape now. lt has a
picture window on one end, a chimney, and a

fence to keep the neighbour's dog out. All it
needs now is a bit of work on the garden.

Being a practical sort of machine, the
CPC 464 is not much use {or planning an
attractive flower border. But it can help you to
plan the vegetable plot. So load the next
program from Datacassette A. lt's called
CARDEN.

The garden is 6 metres long by 4 metres wide
and we are going to plant things in 4-metre
rows. Different vegetables need to be sown in
rows of different widths and each will give a

different weight of produce per square metre
of cultivation. When you run the program it
will ask you how many rows you want of each
vegetable, and will tell you if you have any
space left for another row or two.

l

Assuming a good soil, and a reasonable year
for weather, you can then get a summary
showing the weight of produce that can be
expected for each vegetable. The listing for
this program is shown below. As you can see,
the maths are fairly simple, and are based on
the following table:

Vegetable Row width Produce per
(metres) row (kg)

Onions 0.30
Carrots 0.30
Potatoes 1.0
Cabbages 0.60
Beans 1.0
Parsnips 0.50

You don't like parsnips? Try altering this
program to include something you do like.

9
3

50
8

30
11

10
to
30
40
50
60

REM Ganden
MODE 1

INt(O, ô:ÊURDER O

INK 1,26
I engt h=Ë
cLs (Continued)

97

70 PRÏNT"GARDEN"
gO FRINT"Length rÊrnàining : r' ; length; "rret nes"
9t) pRlNT"hlhich vegetable do you want to grow"
lOO PRINT
l1O PRINT" width yield rows"
l2O PRINT"I. ONIONS O.3û 9KS ";onions
l3O PRINT"2. CÊRRBTS t).Sm 3KS ";canrots
14O FRINT"S. FUTATOES lin SOKg ";potatoes
15O PRINT"A. CAEBAGES ô.6m âKS ";cabbages
tËO PRïNT"5. BEANS lrn SOK9 ";beens
17O PRINT"6. PARSNIFS O.5m tKS ";parsnips
lSO PRINT
l9O pRINT"Enter a nurrber between l and 6"
2OO FRINT"on 7 to ghow total. output"
210 INPUT veg
2?0 lF veg(=O OR veg)7 THEN GOTO 19O
23O IF veg=7 THEN GOTO 320
240 IF veg=l THEN GOSUB 47O
250 IF veg=z THEN GOSUB 54O
260 IF veg=s THEN 6OSUB 6tO
27A IF veg=4 THEN 6OSUE 6S0
2SO IF ves=5 THEN GUSUB 75O
29ô IF v€rg=6 THEN 6USUB Ê2O
3OO PRINT "
310 ÊOTO 60
32O REm Surtrvrary
34O PRINT"SUMI{âRY"
35O PRINT"EARDEN TIUTFUT IN KILOS"

98
(Continued)

37O PRINT
59ô pRINT"Onions ! ";onions*9; "K9"
39O PRINT"CarnotE : ";carrots*S; "Kg"
4OO pRINT" potatoes : " ; potat oe5*50 ; "Kg "
41O pRINT"Eabbages: " ;eabbages*g ; "Kg"
42O PRINT'Beatrs : ";beans*So; "Kg"
43O PRINT" Pansni ps: "; pansni ps*l1 ; "K9"
450 60T0 450
/16O :
47O REM 0nions
4gO PRINT"Onions"
490 rowwidth=O.3
500 GiosuB ê90
51O oni otrg=rows
52O RETURN
530 :
540 REM Eanrots
5EO PRINT"CannotE"
56O nowwidt h=o. 3 ! pnoduce=S
870 GOSUB S90
5BO carrots=t'owg
59Ô RETURN
600 :
610 REM Fotatoes
620 PRINT"Potatoes"
63O rowwidth=l
6ô0 GUSUB 990
65O p of at oes= r oe{s (Continued)

99

660 RETURN
67Ct t
6g0 REM Cabbages
690 PRINT"Êabbages"
7OO nowwidth=0.6
710 GoSUB S90
72O cabbages=nohrs
73O RETURN
74A 2

75ô REFI Beans
760 PRINT"Beàns"
77ll roww idt h*l
7êO GOSUB S90
79tJ beang= nows
SOÔ RETURN
ê1O !
SeO REM Parsnips
S3O PRINT"Fansnips"
ê4ô nowwidth=O.5
ê50 GOSUB S90
86O pa nsni pei=nows
g7O RETURN
êgo :
S90 REI'I Details
9OO INpUT"How many rowg do you want to plant";nows
91O teEt Iengt h=lengt h-nows*rowwidt h
92O lF testlength(O THEN PRINT"No room"!EiOTO 9OO
93O Iength=testlength
95O RETURN100

)

!5tlnj
You really murt run SAT11 to get a lot of
practice in handling the mathematical
op€rators of the CPC {d. Most programs
requ.ire a certain amountpû:lple!ûrpmf{hi ri.,,,.L;(- .,tQ((.su ,(,J1i
for th€m to be of any usçr,s l|bi*ilctÉ$ûhflÊr p m ryvl.,ar ,:,rrnç,. ou , .
spending as much time o1pæibùa iasFdçrrt," i ,,r.r,r ,.rl,r" ,[,0, it,"

this aspect _of ldà.€tÇcÉS.Qge'1tno; or qa,e1s'. , ,1r'. n,,h*,
of the lbaÊi [rctrgEfiAùn .vqu,rl{,qti. r 6 ,,LG:.,i

CPC .l{ô rdme3d pg soqt9rr.JrrLd ur...:p6r sr.ilil6
mathst ocr"rr.,criiii o1r s r,r..t

11 ti I rn csll.r '.É;t-r.16l'lr1{;r
(pçr

pûof?' I.oa .9rru9[i;rbnct t."., broSr : u.r n p:;1
O{ "t.l/.ii; r u..{.r.??3r.j' r,J f)9(,: '.) 1..)fr! iJr,'.i i
i1 Àoir r',1r,; 1c qe artu iigt-rr€?' l.ro^r rjr. (;: ' ,' .,n !.)!q

btctrs(!luJruk'
qou.l uc6q to FUc'.J. sr'\1prut gpi:nf Esr_.r'.,;
uriru)\ uonla:r1 blsszi:r.e r!r tpr? À\9À suq }r.rn
bioit suJ or 5u s!C9q6 Elure ,nr11 Êrr.,; i.:rn
;',cn Frsr,6 io l-r1ri lSsruar sli iljt,.;6 ,r, (.lrL,a?

cccnli6uc6?' or gâ$ru?(tpù cicJcf . ?otl6tulr6t
:pi;1tÀ sBlrual oi:bouci;iz' sSgruzt <-i.;suca
rur'o;rre br;truÊ Àcrrii. ltpÀ;'r:si slJq r!6ur rl
Wo?I E'Jrrr6?'!,I.ri., Lro{ ot.rt^ Loitlbatçr Rgtu{;?'

()

;c,n$r,e;:r,, "r l5u{TL'l.u iro?lrtou olJ ll_]'-. ?cLG6rJ.

Ii/ ,Â'.;ftUii \ 3lJ,.ri. i)Lr)H!9lrr Iô D:it i 3UJqli

:ruq ^
r:O(]rglUglÇa ;,), 6ç4.1

ectÈr,r, rra.€, i!:,+, (il!1;{li-rliGq lp?, t .t/l|!ni! X

/4uî t;uq nb ru .t r g qrr:J irc. ,lrolJ ûi! rUÊ
L)il U(;' iu lHc L,s?6 cp$/,c'IpG RtJi.rl:r|? r-nl'r,r
, .-ril'Oti 40fi Cihcq llr t;rç CôLt:itr{ j,l Ol
llr,a .l'r,:\ Àr:n l.rgr,e .o urn;trbr) lf p) i;e ;9tf,6;21
tiHû 8lA{.r àrrr "t qSr.lr:1 unlup6t p6rri\,rÉ1, af

ir,r.rJ),€i i: lrq+,11 la. Ëi:tlr:rôit
(,rtu PË r'iJriq;

-. i:+; .lr11cr*r:,1-l z q;r e. '':.lbls r;i f lrÉ /',9À B:h[)

1.0rj-.,hnt(r blt;i}. ' r.l.'

f,r!lrts!t,3 :rtr i.,lçlr|{iuI ot cptuc; iulo x

llldD {luL lisi,4Dor,,t)' rvlFll:]P ld nàÊ;li1i [or.
q" (; PÀ l:.'.13 rrtS riêG Ol 9 t uLitou i(,i(\r U t;
qrll,rr{,rri blgL€? rr, tpe pauLPrltpt. lp}â râ3?

t' (p{j <ririr.! rbscçapiir F6iJl $bb€qrlu8 rt
;.,,'À!,,,u),r:rr l)ir),..i| ilo!.{A[g prcr ru Cuçhtql

Hù|lqors $Â*ûta

the

t5] 101

r2
PLAYING GAMES

Most tames, and not only computer games,
involve pitting your physical and mental
ability against opponents, against chance
occurrences, or against the clock. Sometimes
you have to play against all three. A chess

program or an arcade game will give you
many hours of pleasure in this way and you
don't need to know anything about games
programming.

lf you want to design games, however, a word
of advice is necessary. Co back to your maths
books. You cannot expect to program a ball
bouncing off a wall if you can't remember the
formulae for calculating ricochet angle,
speed and traiectory. Admittedly we aren't
going to cover this level of detail at this stage
of the course, but you must realise that the
two games given in this chapter cover only a

tiny fraction of what the CPC 464 can really
do.

Random eventt

when you played BOMBER back in Chapter
4, the alien spaceship kept appearing at
different places in the bombsight. This was
done by making use of a function known as

RND (for RaNDom), which is useful for
bringing an element of chance into a

computer proSram.

The following is an example of the way RND
can be used:

move rnd*539, rnd*399

RND gives you a decimal number between 0

and 1, so you have to multiply it by the largest
number you expect in the command or
routine. ln the caseabove, the graphics cursor
will end up in a random position on the
screen since we multiplied the maximum x
and y coordinates by RND.

Try writing a short program to put a small
square in a random position on the screen.

't02

Time out

Another useful funclion in the CPC 464, and
not only for games, is TIME. From the moment
that the CPC 464 is switched on or restarted, it
counts the time elapsed every three-
hundredth of a second and stores it in TIME.
This count is only suspended when a program
is loaded or saved on the dalacassette. The
following protram is an example of how this
can be used:

I@ print "Press any key"
2@ if inkey$="'t goto 2Q

3@ 1.or E=I to rnd*Sffiznexl
4@ a=time
5@ print "again"
6@ if inkey$="'t gobo 6@

7@ b=time
8@ print "Reaction time=" i |.b-al /3Q9i I' secondsrl
9Q end

What we are doing here is to sample the value
of TIME before and after the word'again'
appears on the screen, the reaction time
being the difference between the two.

You will have noticed another new keyword
in lines 20 and 60, INKEY$. lt is similar to
INPUT except that it gives you only one

t.

character and it doesn't need to be followed
by ENTER. Here we are using it to detect when
any key is pressed - any key, that is, except
SHIFT, CTRL, CAPS LOCK, and ESC.

l-ffifrËffiil
103

BLACKJACK

Playing cards with the CPC 464 is more fun
than playing solitaire all by yourself. The next
program on Datacassette A is BLACKIACK. ln
case you don't know the game, the idea is to
keep asking for cards until their total value is

as close as possible to 21. lf you get more than
21 you have'bust'and lose the hand. lf not,
the CPC 464 then deals itself a hand and tries
to get a higher score than you without
'busting'.

Other ru les are:
I Five cards that add up to 21 orlesswillbeat

anything
r Aces can be counted as either 1 or 11

r Picture cards count as 10

Although there are several commands that we
will not study until Part 2 of this course, the
listing for BLACKIACK is shown below for you
to study.

10 REM ** BLACI(JAC}T **
?O REM
3Ô REM ** STARTIJF **
4Ô MODE I:BORDËR 4
50 INt{ (1, 17: INK l" O

6Ô LT]ËATE 16,5:PRINT "ELACKJÊCK"
70 LtcATE IC,, 12
gO PRINT"Press a key to start"
9ô suit$=cHR$ (?26) +CHRtÈ (217) +CHR!È (2lg) +cHR$ (229)
IrJO candr$="Fl:34567g9TJGlH"
l1O CSti="5 card trick - I win"
1?0 myace=O!youtàce=È
13Ct Myqa'y'es=o : yourgaûres=O
14ô t,HILE INltEyr$=,,,, !WEND

104
(Continued)

150 ËLs
16Ô REM ** YOUR TIJRN **
17O yourcands=O !youraee=O
18O younhand=O
190 L0eATE 20, 1

20ô FRINT"Eames Me! rr ;ûygaûes;
2lO PRINT "You! ";youngemEs
220 y=tQ: x=5
23O youncards=O
240 60SUB 770
25O you rea pds=yoqrcands+1
?60 IF value=l THEN yourace=youFece+ I
270 yourhand=yourhand+val ue
2gO ÊOSUB ê3O:x=x+S
29O IF yourhand)zl THEN EOTO 690
300 Ê0suB 930
310 oneaceSgn6l=yourhand
320 IF younàce) =1 THEN oneacehand=younhand+1O
35O IF yourcarde=5 THEN 440
560 IF yourhând=zl THEN 44O
37O IF oneacehand=Zl THEN 42O
3SO IF younece=O AND yourhand(=11 THEN 240
39O IF yourcards=l THEN 240
4ût) lNPuT"l,,lant another cand (Y/N) ";qtË
41O IF UPFERiq)='rY" THÊN ËOTO 24O
42O IF olleacehand (=21 THEN younhand-oneacehand
44O REH ** FIY TTJRN **
ô5O y=lQ: Y=$ (Continued)

105

46t) rrryhatrd=O : rryca 1. dE=Q ! sy6ss=Q
470 6t15UË 770
48O rrycardslïyÊards+1
490 IF value=l THEN myaee= yace+l
SOCI rrryhand=myhànd+va I ue
51O GOSUB ê3Olx=x+E
s?Ct FOR delay=o T0 IOOO:NEXT
53O IF rtyhand)2l GBTO 720
540 IF nycards=5 THEN ËBSUB 93O:PRINT Cs*lEOTo 71O
55O IF youneards=S THEN 47û
560 mineA=ntyhand
57O IF rtyaee)=1 ÊND nryhand(12 THEN rrineâ=myhand+l0
600 IF rïyhand)=yourhand THEN 640
Ë10 IF mineâ)=yor.rrhand THEN myhand=rnineÀ:EiOTO 64û
630 ÊUTO 470
640 REITI ** TEËT RËSULTs **
650 BttsuB 930
660 PRINT"I have";ûryhand;
670 PRINT"and you have";yourhand
680 IF ilyhand (yourhand 60T0 73O ELSE GUTO 7OO
690 BOSUB 930:pRINT"You have bustl,,
7O0 FRINT.'I win"
71O rnygames=rûygames+1 !60T0 14O
7?O BUSUB 93O:PRINT"I have bust!,,
730 PRINT'rYou win"
74O youngafiesEyourgemes+l : BOT0 14O
75O END
760 REM ** BENERATE CARD ** (Continued)

1o€

77O cand=INT (RND*13) +1
7êO suit=INT(RND*4)+1
79O val ue=card
8OO IF value) 10 THEN vâlue=l0
8IO RETURN
g2O REM ** PRINT CARD **
83O LOCATE x, y
S4O PRINT trHRtt (24) ; " ";CHRS (24)
85O LOEÊTE x, y+l
660 FRINT CHRS(24);'r ";
870 PRINT MID$ (candtl, card, 1) ;
8S0 PRINï MIDS(suit6, suit, t) ;
B9O PRINT' 'r;CHR$ (24)
9OO LOCATE x, y+2
91O PRINT CHR$(24);" ";CHRS(24)
92O RETURN
930 LOCflTE 1,24!PRINT SpACES(40)
94O LOCATE 1,24:RETURN

107

Slmplo Slmon

As you can see from the listing below, it isn't
as simple as all thatt Again, there are some
commands that will have to wait until Part 2of
this course. There is one keyword in it,
however, that you may like to know abouq it
is CHR$.

Way back in Chapter 3 we saw that we can get

some fancy special characters on the screen
that don't appear on the keytops. CHR$ (for
CHaracteR$) allows you to call them up by
their character code. For example, to put a
little spaceship on the screen the command
would be:

print chrg (239)

The full list of CPC 464 characters is in the
Amstrad CPC 464 User Cuide.

1t) crtS=CHRtù (13)
20 REFI Sirvron
3r) REM **** INSTRUCTIONS +***
40 MT]DE 1:BORDER ?O!INK O,20:INK I,1
50 LOCâTE 16,2:pRINT CHRS(24) ;',Simon,,;CHR$(24)60 PRINT:PRINT
7O PRINT"In this gârne, you have to watch the,,
60 pRINT"fIashing circles and nememben the,'
9O PRINT"pattenn, l,lhen the sêquelrcer ends you'r
1OO FRINT"rnust copy it out on the cursor keys,,
Il0 pRINT"Tlre sequence incneases by otre àftÊt "
12O PRINT"eàÊh cornect attempt. ":PRINT
130 pRINT"Fol. exaûple, a ci ncle at the top of ,,

14O FRINT"the scFeen should be indicated by,,
150 pRINT"the up eursor. The cunsor keys are',
16O PRINT"above the nufieric key pad, and are,,
17Cr FRINT"màrked âE follows:',:pRINT

108
(Continued)

).

1êO PRINT TAE(?O) ;CHRS(24O)
190 pRINT TAB(19) ;ÊHR$t242) ;'t ";CHR$(243)
z0tl PRïNT TAE(tO) ;CHR$(?41)
210 LOCATE 7,?2:pRINT"PFtEs ENTER to continue"
??O LOCATE 5,Z4:PRINT "there will be a short pause!"
?3O WHILE INKEY$()er$:tlEND
24ô REM **** sET-UP **+*
:5() MODE r)
:6(:t tlINDOtl 7" 14" 1O, 16
!7rlr 6=17; f=3: REM Eackg round /Fo neg round
2SÔ BORDER b
?9(:, INN O, 17
300 FOR i=l TO 15!INK i,b:NEXT
f, lt) y=JtS:y=7O:c=': :6OSUB 94O
32Ô y=f,36;"=1 !eig5gg 94O
33r-r x=126;t-2{)ô:c=3:GOSUE 94O
340 x=Slt):c=4:605lJB 94O
35t INN 5,f:pEN 5
360 RANDOMIZE TII{E
37O a9-""
38Ô REM **** DISPLAY SEOUENCE ****
390 atË=atÈ+ËHRrF (RND*3+1)
40O FBR i=l TB LEN(aS)
41(l FOR J=l TO ZOC,INEXT
4?O x=ASC (MID$ (a$" i, 1))
43ô INK x,2*x+1
44ô SOUND 1,lO+x*lOô
45Cl FOR J=1 TO zOO:NËXT (continued)

109

46O INK x, b
47O NEXT
48ô FOR i=l T0 IOOINEXT
49O REM **** GiET ÊNSWER ****
5O0 FOR i=l TO LEN(a$)
51r] HH ILE k!È) ', ,' : k$= I NKEY$: WEND
52O FOR L=t TO ?OOO:19-11119Y9
530 IF k$)"" THEN 560
54Û NEXT
55û k$=" "
56ô k=âSC(k$)*239!IF k(1 OR k)4 THEN 52O
57O x=AËiC (M ID$ (a$, i, 1))
5êO IF k()x 6OTO 73û:REM wrong
59O INK x,2*x+1
600 SIIUND 1,1O+x*100
61Ô F[tR J=l TO $O:NEXT
62O INK x, b
630 FOR J=l TU 2OSNEXT
640 NEXT
650 REfti **** RIÊHT! ****
660 CLs:PRINT" RIBHTI"
670 PRINT:PRINT:PRINT" SCORE!"
6ê0 PRINT ! PRINT" 'r ; LEN (At3)
690 FOR Jlel Ttl 60O1115117
7OO L0CâTE 1,I:PRINT" ',
710 60T0 390
72O REtil **** l.lRONB it**
730 SOUND 1,2000

110
(Continued)

74.:, CLS ! PRINT" l,Jrong,,
75O FOR J-1 TO 3o.)!NEXT
76t:t pRINT ! pRINT"Sequence was!',
770 FOR i=l TO LEN(a$)
7âO x=ASË(MID9(aS, i,l))
79O INK x,2*x+1
8ôO SOUND l,lO+x*1O0
S1ù FOR J=l TO 2ÔO:NEXT
62O INK x, b
S3Ô FOR J=l TO 2OO:NEXT
84O NEXT
B5t] REM **** END & RESTFIRT ****
gêo cLs
STCI PRINT" You"
6gô PRINT' scored"
g9O PRINT:PRINT" ";LEN(a$)
9OO PRINT:PRTNT" PRESS"
91O PRINT.. ENTER''
92O I^IHILE INKEY$ () CR$:WEND
930 GOTO 360
94tl REM **** CIRCLESi ****
95O r=6O
960 FOR i=-r T0 r STEP 2
97rl h=SGIR(n*r-i*i)
9êO TIIUVE x-h, i+y!DRFIW x+h, i+y, c
99O NEXT
lOOÔ RETURN

111

l.|tlns
,r r Before you go on to Part 2 ofthis course, More

8ASrC, get in as much practice as possible in
. writing !our. progrâ s2 and go through the

.. lalt. of our tests, SAT12. tt will give you
questions on a the chapters of this part ofthe

,.. course ànd will show you if you need to go
baçk over any topic.

. Good l-uckt

ri

LIST OF KEYWORDS
The following is a list, chapter by chapter, of
all the Amstrad BASIC keywords covered in
this book. Not all the variations or extensions
have been dealt with since this is, after all, a

book for beginners. Part 2 of this course,
More BASIC, covers further keywords and
more advanced programming techniques'

A description of all keywords can be found
in the Amstrad CPC 464 User Guide.

Chapter 2

RUN
LOAD

Chapter 3

crs
RUN

Chapter 4

BORDER
MODE
CAT

Chapter 5

cLc
INK
DRAW
LIST
MOVE
NEW
PAPER 113

PtOT
REM

Chapter 6

INPUT
LET

LOCATE
PRINT
SAVE

Chapter 7

CONT
EDIT
ELST

GOTO
IF

STOP
THEN

Chapter I
,DRAWR
END
FOR

$,' ,.. cosuB r n'ntt6 : MovER -'

ENT
ENV
SOUND

NEXl
PLOTR
RETURN
STEP

Chapter 10

Chapter 11

ROUND

Chapter 12

CHR$
INKEYi
RND
TIME

,)

LIST OF PROGRAMS

Datacassette A contains the following
programs in the same order that they are
referred to in this book. Datacassette B

Chapter 2

HELTO
SIMON (See also Chapter 12)

Chapter 3

LETTERS

REPEAT NAME
KEYBOARD
HANCMAN

Chapter 4

DRAW
COORGEOM
BOMBER

Chapter 5

HOUSE

Chapter 6

BARCHART
BUZZWORD

Chapter 7

DECO

Chapter I
MANSION

contains the Self-assessment Tests (SATS)

which the reader should complete at the end
of every chapter except Chapters 1 and 9.

Chapter 10

ZAPPOW
ORGAN

Chapter 11

MUtT TABLES
GARDEN

Chapter 12

BLACKJACK
PONTOON
SIMON

'115

INDEX
Adding lines, 51

Arguments,32
Arithmetic functions, 92

BARCHART,46, 54
BAS|C, 8,80
BLACKJACK, 104
BOMBER,30
Book, project, 73
BORDER,26
Branching,53
Break, 14

Bug, 55
BUZZWORD,49

CAT, 29

Capital letters, 19
CAPS LOCK key, 18
Cassettes, r|4

Changing colour, 35
lines,50

Character code, 96, 108
keys, 17

Characters, special, 17
cHR$, 108

Clear screen, 22
crc, 33
CIR key, 19,50
cLs,22,33
Colon, ,16

Colour, changing, 35
Command, 32

relative graphic, 64
coNT, sT
Control keys, 18
Controls, Datacorder, 21

Coord inates:
x, y, 27
text, 45

cooRcEoM,29
Copy cursor, 51

COPY key, 20, 51

CTRL key, 19

CTRL/ENTER, 23

CTRL,/SHIFT,/ESC, 22
Current line, 50, 51

Cursor,12, 52
copy, 5'l
graphics,32
keys, 20, 50
text, 45116

Datacorder control, 21

Debugging,55
DECO, 57
Deleting lines,51
DEL key, 13, 19, 50
Design:

games, 102
program, 72

Documentation, 81

DRAW,32
DRAW (program), 27
DRAWR,64
Dry run, 56

EDIT, 51

Editing,5l
ELSE, 54
END, 70
Ending a program, 70
ENT, 85
ENTER key, '12,19, 20,50
ENV, 85
Envelope:

tone, 85
volume,85

Error:
message, 19, 51

syntax, 13, 19
ESC key, 14, 19

FF (fast forward) control, 21

FOR, 63
Force a restart, 22
Found message, 29

Games:
designing, 102
BLACKJACK, 104
BOMBER,30
BUZZWORD,49
HANCMAN,24
SIMON, 15

CARDEN,97
cosuB,65
GOTO,53,5s
Craphics,24

cursor, 32
Graphic commands, 32

relative,64
Crey scale, 26

HANGMAN,24
HELLO, 14
HOUSE, 36
How to use this book, 9

rF,53
INK, 35
INKEY$, 103
INPUT, 46 117

lnput statement, 54

Keyboard, 16

KEYBOARD, 23
Keypad, numeric, 20
Keys:

character, 17

control, 18
cursor,20

Keywords, 9, 46
list of, 113

tET, 40, 52
LETTERS, 22
Line:

current, 50, 51

number,33,51
Lines:

adding, 51

deleting,5l
replacing, 50

LIST, 34
Listing, 36
List of keywords, 113
LOAD, 15

Loading programs, 15

LOCATE,45
Logical operators, 95
Loops, 62

Main keyboard:
character keys, 17

control keys, 18

MANSION,62
Mathematics,92
Message, error, 19

MODE,28,35
MOVE,33
MOVER,64
MUIT TABLES, 94
Music,83

NEW,33
NEXT,63
Noise, 86
Numeric keypad, 20

ORCAN,87

PAPER, 36

PAUSE control, 21

PDI: See Programming Development
Language

Pixel, 28
PtoT, 32
PLOTR, 64
Postman, robot, 73
Prelace, 7
PRINT,l(),45
Programming, E, 72118

)

Programming Development Language
(PDL), 73

Program storage, 29
Project book, 73
Prompt,46

Random number, 102
Ready, 12, 18
Relative graphic commands, 54
REC control, 21

REM, 36
REPEAT NAME, 23
Replacing lines,50
Restart, force a, 22
RETURN, 69
REW control, 13, 21

RND, 102
Robot postman, 73
ROUND, 94
Rounding numbers, 94
Routine, 75, 80
RUN, 12, 15

SATs: See Self-assessment tests
SAVE, 44
Screen border, 26
Self -assessments tests (SATs):

SAT2, 15

sAT3,24
SAT4, 30

sAT5, 39
5AT6, 49
SAT7, 61

sAT8, 71

SAT1O, 91

sAT11, 101

sAT12, 112
SHIFT key, 12, 19
srMoN, 15, 106

SOUND,83
Sound:

commands, S3

volume,84
Special characters, 17
STEP, 63
sToP, 57
STOP EJECT control, 21

Storage, program, 29 (see also
String variable, 42, 96
Subroutine, 65,75, n
Syntax error, 13, 19

TAB key, 18
Text cursor, 45
THEN, 53
TIME, 103

Tone envelope, 85
Trap,55

Using the keyboard, 18

SAVE)

119

Variable, 40, 93

string,42
VARIABLES, 44,50,52
Volume:

sound,84
envelope, S5

Welcome, 12

Window,26
Working {rom objectives, 73

ZAPPOW, 82

120

	clean
	original scan

