Issue No. 6 L9 Tuly 1985

® REVIEW OF THE NEW CPC 664
® INTRODUCTION TO MACHINE CODE

® USER GROUP INFORMATION AND CONTACTS
® MACHINE CODE ROUTINES AND CP/M UTILITY

FOR THE NOVICE & EXPERIENCED USER

Registered by Australia Post — Publication No VBP7017

Have you really discovered
your Amstrad yet?

Want to get down to the nitty-gritty and start
to see what you can really do with your
Amstrad computer?

The following packages will get you started:

Teach yourself BASIC - Part 1 Soft 111
Teach yourself BASIC - Part 2 Soft 156
DEVPAC Assembler/Disassembler Soft 116
Concise Basic Specification Soft 157
Concise Firmware Guide Soft 158
DDI-1 Firmware Guide ' Soft 158a
PASCAL Soft 155
Screen Designer Soft 197
Pitmans Typing Tutor Soft 924

Available from your Amstrad dealer

AMGIRA

Issue No. 6

July 1985

CONTENTS

BAIorial. . o« ccommannunsmbosmnssessssssassessassssss

LBttOTS, « s cs v s movnmemamannnbbddssbdbEdsonsssesssss

BUZZIINES - A SAMC . s s s ssscssswsssnssssonsssasssns
The Learning Centre - Introduction to Machine Code

The Trials of Tony Blakemore,

User Group Information and Contact List
Review of the CPCO64 oot iiiiiiiiiieiiieennnenns

2

3

5

8

9

Bytes and Pieces - Useful Machine Code routines 10
13

15

18

Discounted Books for Subscribersottt

The Ins and Outs of the Amstrad - a book review 22
FLASH - 2 SAME. o v v vvvnssncassssssssssnsssansasssses 2
Gencom ~a CPIM ULy s s s v svocsssssssensasnsesnns 20
Retrieving Erased CP/Mfiles..........coovevvenia... 28
Typnig Errors - correcting some mistakes. 29
History of Progamming Languages 30
CompPetitionvvvveeenneeeeeeennnneeenennneeaans 32

All enquiries and contacts concerning this Publication
should be made to The Amstrad User, Shop 2, 33 The
Centreway, Blackburn Road, Mt. Waverley, Victoria 3149,
Australia. [Telephone: (03) 232 7055].

The Amstrad User is published each month by Strategy
Publications. Reprinting of articles in The Amstrad User is
strictly forbidden without written permission. All rights
reserved. Copyright 1985 by Strategy Publications.

The single copy price of $3.00 is the recommended retail
price only. The subscription rate (for Australia only) is
$30.00 for 12 issues of the magazine only, or $70.00 for 12
issues of the magazine plus tape containing all programs

appearing in that issue. Postage is included in the above
prices. Overseas prices available upon application.

Please note that whilst every effort is made to ensure the
accuracy of all features and listings herein, we cannot accept
any liability whatsoever for any mistakes or misprints.

Contributions are welcome from readers or other interested
parties. In most circumstances the following payments will
apply to published material: Letters-$5.00, Cartoons-$5.00
and a rate of $10.00 per page for programs, articles elc.

Contributions will not be returned unless specifically
requested coupled with suitable stamped and addressed padded
bag (for tapes) or envelope.

that are in the
- ps. If the S 0
ope i ill be.
mally presented.

expensive mac
worry about: For es
he emph si ASI
i more in the uture. (Of course:
an hear the cries of

This months’ magaz
Machine Code take ightin
cont ers and T t you]
ot got the har' f B yet, now there is
an effort 10 add moré

hence

2
The Amstrad Uses

l.etters

I have just bought the book "Sixty
Programs for the Amstrad CPC464"
and having had a biorhythm program
for my previous computer, I thought I
would try the one from this book.

Unfortunately an error exists, and the
program does not work without the
following changes:

230 DAY=TOTAL2-TOTAL1
(Delete the "1")
320 PLOT N-(P*C),167+167*s
(N/(11.5*PI)),1
(The "11.5" should be "23")
350 The "14" should be "28"
400 The "16.5" should be "33’

J. Steendam, Dee Why, NSW.

In the Amsoft "Master Chess"
program there is a very annoying bug.
In some situations the program allows
a pawn on the 3rd rank to move 2
spaces; this is supposed to occur on the
second rank only. How can I rectify
this?

In your first publication of "THE
AMSTRAD USER", you list a
program which improves the pontoon
program given in the instruction
manual. It works perfectly for just one
game but it doesn't keep a record of
how many times you have beaten the
computer. To do this I devised a very
simple counting system to display the
player's and computer's wins. In
keeping with the same line numbers as
given in that publication, here it is
with line number changes only listed:

16 DIM suit$(4)
17 DIM pack(52)
70 (blank)

130 (blank)

500 LOCATE 12,17

510 PRINT"YOU'RE BUST":
HOUSE=HOUSE+1
LOCATE 12,19:PRINT
"WINS: PLAYER:";YOU;"
HOUSE:";HOUSE

IF x$="y" THEN 20
LOCATE 12,17

PRINT "YOU WIN":YOU=
YOU+1

LOCATE 12,17
PRINT"THE HOUSE WINS"
‘HOUSE=HOUSE+1

515

540
670
680

700
720

David R. Hearder, Rivett, ACT.

We can only advise you to refer the
problem to AWA who distribute this
software in Australia as there is no way
we can, nor would want to break into
the software to trace the problem. On
the other hand we could suggest you
confine yourself to making legal chess
moves, in which case the bug would
not appear! Nevertheless, thanks for
pointing out the problem - perhaps
other owners of this game would care to
comment.

In Issue 4 (May 1985) of THE
AMSTRAD USER one of your readers
(JE, Brisbane) complained of a mistake
in the listings for the game Pontoon
from the book 'Sensational Games for
the Amstrad'. Apart from the missing
subroutine 11100, there are several
other mistakes. The following patches
will allow the game to run
satisfactorily (although further
development is needed to simulate all
the betting rules of the casino game):

1. Add subroutine 11100:
11090 REM ** DEAL CARDS
TO BANK **

11100 c=(RND(1)*51)=1

11110 IF av(c)=0 THEN 11100

11120 nc=nc+1

11130 be(nc)=c

11140 av(c)=0

11150 RETURN

2. Add this line to give a more
unpredictable deal:

14 RANDOMISE TIME

3. Add this line:

517 LOCATE 1,25:PRINT
"Both players win":
GOSUB 19500

4. Subroutine 15000 is not necessary
and subroutine 15500 does not work as
intended. Delete lines 14990 to 15510
inclusive.

-5. In line 14515 replace GOSUB
15000 with GOSUB 18000.

6. In line 14520 replace GOSUB
15500 with GOSUB 16500.

7. Line 20010 replace with GOSUB
16500.

8. Line 18205
RETURN.

9. Delete lines 17500 - 17510 which
are not necessary and never called.

In addition I have amended line
14513 to replace 'END' with
'pl(q)=0:GOTO 14526' so that one
player can quit without ending the game
for the other player. I have also replaced
the 'GOTO 10' in line 22005 with
'CLS:END' to give a natural game end
when the Bank has won all the money.

I hope the above will prove useful to
your readers.

replace with

P.H. Stehn, Garran, A.C.T.

Firstly let me congratulate you on
producing and distributing a very
informative and useful magazine. I am
fortunate to have been a subscriber of
'The Amstrad User' since its first issue

The Amstrad User 3

and have found many of its hints and
listings of great value.

Through the development of listings
and ideas found in your magazine and
elsewhere, I have evolved a very simple
program that allows my young children
to draw pictures on the monitor with
the aid of a joystick. I intend further
extending this program to allow more
complicated pictures to be drawn.

My children have gained a lot of
enjoyment from this activity but
unfortunately as soon as the computer
is switched off, their hard work
disappears instantly.

As yet I don't have the knowledge
needed to write a routine that allows the
user to dump the screen graphics to a
printer or to save it on to tape for later
retrieval. I feel that this topic would be
of interest to many budding
programmers and I would appreciate it
if any useful information on this topic
could be forwarded to me and/or
included in a future issue of your
magazine.

Robert Wright, Bradbury, N.S.W.

Here's a chance for you more
experienced programmers to show us
and Robert what you're made of by
providing the solution.

I would like to propose the idea of a
marketplace in The Amstrad User.
These are quite a regular feature of most
English magazines, and while every
care should be taken not to publish ads
which would be in breach of copyright,
such as the selling of software, I feel
the market would soon open up for
items such as printers, modems and
other peripherals. Although things may
start slowly, I'm sure people would
soon realise the benefits of being able
to sell or swap items that they find are
not suitable for their own particular
use, or things they may wish to
upgrade, having learnt from experience.
And since this is the Amstrad
magazine, there is a pretty good chance
many things would be compatible
already.

Russell Cheek, Newcastle, NSW.

4 The Amstrad User

We have had a number of requests to
incorporate an exchangelmarket column
in this magazine, but few requests with
specific advertisements. To avoid a
‘Catch 22" situation, we have included a
space in this months’ magazine for just
such a column headed MICRO-MART.

We will let it run for a couple of
months to gauge the response, so now
it is upto you to take advantage of
this opportunity to sell that old printer
or the software you have been
developing for the last six months.

Firstly, I would like to hear from
other Amstrad CPC464 users in the
Geelong area who would like to
establish a user group. I can be
contacted by phone on (052) 50 2251
after S p.m. or by writing to me at:

10 Allambie St, Leopold, 3224

Secondly, could you answer the
following questions?

1. Can you use the PRINT USING
command to format strings in an
orderly fashion, as it can be done with
numbers?

2. Is it possible to use the SYMBOL
command to form a character of more
than one line (in a block)? I can use it
OK in the form:

120 PRINT CHR$(128)+CHR$(129)

130 PRINT CHR$(130)+CHR$(131)

to create a character over two lines. Is
there a simpler way of doing this?

3. Is it possible to,use the ON
BREAK routine with an "Input"? It
works well during any other parts of
my programs, but will not work while
waiting for an input.

R.G. Butterfield, Leopold, Vic.

To answer your questions in the
same order:

1. You can format strings with "!" or
"&" or "\spaces\". "!" will only print
the first character of the string. "&"
will print the whole string as is, and
will ignore the internal zoning of the
machine allowing you to print a string
near the left edge of the screen and wrap
around. Try these two examples:

10 LOCATE 37,10:PRINT "ABCDE

FGHI"
10 LOCATE 37,10:PRINT USING
"&";"ABCDEFGHI"

“\spaces\" will only print the
characters selected from the start of the
string. For example, if you try

PRINT USING™\ \";"ABCDEFGH"
and you place four spaces between the
"\" symbols, you will get ABCDEF.
Note that the "\" symbols are counted
in the total of characters to be selected.

2. You can only define an 8x8
character with the symbol command,
but by re-defining characters available
from the keyboard you could simply
use: PRINT "AB¢ «| CD"

You may find that you will need to
use the above PRINT USING "&" if
the string is to be printed towards the
right edge of the screen.

3. The on-break gosub does not
appear to work while waiting for an
input as, at this point, the computer
has temporarily returned to direct mode
where only one press of the Escape key
will break the program.

MICRO-MART

The Market Place for The
Amstrad User Readers

THREE INCH DISCS - now
available on mail order in packs
of five discs for $42.50 plus
$2.50 airmail postage, from The
Amstrad User. Bankcard or
Mastercard accepted including
phone orders on 03-232 7055.

YOUR PROGRAMS - if you
think they are marketable could
be sold through this column.

MICRO-MART is available for
all readers to advertise for a
nominal cost of $10 per
insertion. For further details
ring Strategy Publications on
03-232 7055 or send your ad
with cheque to Shop 2, 33 The
Centreway, Mt. Waverley, Vic
3149.

Buzzlin

S3S¢ §235

BoR BARTLETT

es

A Game from Roger Fraser

About BUZZLINES

The core of this game came
originally from a listing in the
'Advanced User Guide'. This enhanced
version bears liitle resemblance to the
original as many features have been
added in an attempt to provide an
appealing game of skill, but it does
illustrate the fact that if you are
prepared to spend a little time you can

REM SOFTWARL TYPE :
A ke LAS1 UPDATED :
v COMMON NAME :
'DESCRIPTI1ON
a ring along &
version however,

(o2 RGN~ VU G g

you

turn a mediochre program into a more
satisfying one.

The concept is simple. Using your
joystick you must draw a YELLOW
line between two RED lines. Any
accidental touching of the red lines will
result in a BUZZ that will delay you by
about one second.

Once you press the FIRE button, the
timer ticks away furiously, recording

GOTO 8§
SAVE "BUZZ4LINE.BAS" STOP
Game - Action:F1RST ENTERED

27/04/85
Buzzlines
A computer version of the game where you heve to move
pent wire without the ring ana wire touching. 1In

the time you take to move from the left
of the screen to the right. The elapsed
time is measured in hundreths of a
second. You may only move at right
angles not diagonally - you don't want
it too easy! If it gets too hard, or
downright impossible to finish a
screen, just press the Escape key to
abort. You will then be returned to the
start of a new and easier screen.

06/ 04/ 85

this

7 'have to draw a yellow line between two parallel rec lines, without
touching them. This program illustrates tne TEST tunction.

8 CALL &BBEE PEN 1

tion

PAPER 0 : :

REM * A kA

Generel Purpose lnitilalisa

9 'WARNING: Pressing the Escape Key does not break the program!l!!

10 MODE 0:BORDER 2,5
20 ON BREAK GOSUB 1410

30 PEN 3:PRINT #p:PRINT 4p," B U Z 2 L 1 N E S":FRINT {p:PRINT 4p
40 PEN Z:PRINT #p,"ln this game you":PRINT #p:PRINT #p, "have to draw a
":PRINT 4p:PEN 1:PRINT #p,"yellow ";:PEN Z:PRINT #p,"line between":PR1

NT #p:PRINT $p,"two ";

:PEN 3:PRINT #p,"reu";:FEN Z:PRINT #p,"

lines"

50 PRINT #p:PRINT §p,"from LEFT to RIGHI":PRINT #p:PRINT #p:PEN 15:PR1

NT #p,"WLITHOU1l ITOUCHING !!!
W1CE ii";:PRINT #p:PRINT #p,"screen is too hard.":PEN 4

60 FOR pause%=1 10 16000:NEXT pause%

70 numpoints=4

80 GOSUB 340:REM **** Set pattern

90 first=0
100 GOSUB 440:REM

110 oldelapsed=elapsed

120 t=TIME

130 WHILE px<630

140 GOSUB 780:REM **** Move

150 GOSUB §70:REM **** Display time
160 WEND

170 IF px>900 THEN 80

180
150

elapsea=(T1ME-t)/300

***3% Draw screen

GOSUB 1180:REM **** Scoring

:LOCATE 1,20:PEN 5:PRINT #p,"Press <BSC> 1

The Amstrad User §

200 first=1

210 GOSUB G920:REM **** 'Same Again?'

220 1F LOWERS(ans$)="y" OR ans$="X" THEN 100

230 ERASE y

240 GOSUB 1000:REM **** 'Harder Screen?'

250 1F LOWERS$(&ns$)="y" OR ans$="X" THEN numpoints=numpolints+z:GOTO o0
260 GOSUB 1060:REM **** 'pEasier Screen?'

270 1F LOWERS(ans$)="y" OR ans$="X" THEN numpoints=numpoints-z:1F nump
oints<l THEN numpoints=1:GOTO 80:ELSE GOTO &0

260 GOSUB 1120:REM **** 'Giving up?'

250 IF LOWERS(ans$)="y" THEN GOTO 320

300 'no change in numpoints

310 GOTO 80

320 MODE 1:LOCATE 1,24:BORDER 1:PEN 1:PAPER O:END

330

340 REM **** SCREEN CO-ORDINATES

350 erea=1

360 DIM y(numpoints)

370 steppoint=INT(640/numpoints)

380 startpoint=steppoint-1

390 FOR points=0 TO numpoints

400 y(points)=RND*200+100

410 NEXT points

420 RETURN

430 !

440 REM **** DRAW SCREEN

450 SPEED INK &,3:INK 11,6,13:INK 14,24:INK 1%5,10,23:FArFER 5:CLS5:BORDE
K 3

460 WINDOW $1,1,20,1,3:PAPER #1,7:CLS 41

470 WINDOW $2,1,20,21,25%:FAFER 42,7:CLS 42

40 MOVE 0,0:DRAWR 0,329,3:DRAWR 63Y%,0:DRAWR 0,-32Y9:DRAWR -639,0

490 MOVE 0,y(0)+20:points=0

500 FOR x=startpoint TO 63¢ STkP steppoint

510 DRAW x,y(points)+z0

520 points=points+l

£30 NEXT x

540 MOVE 0,y(0)+21l:points=0

550 FOR x=startpoint 10 639 STEP steppoint

5060 DRAW x,y(points)+2l

570 points=points+l

580 NEXT x

590 MOVE 0,y(0)-20:points=0

600 FOR x=startpoint TO 639 STEP steppoint

610 DRAW x,y(points)-20

620 points=points+l

630 NEXT x

640 MOVE 0,y(0)-21:points=0

650 FOR x=startpoint TO 63% STEP steppoint

660 DRAW x,y(points)-21

670 points=points+l .

680 NEXT x

690 px=10:py=y(0)

700 LOCATE #1,2,2:PEN 41,4:PRINT 41,"TIME ELAPSED ";:PEN $1,5:PRINT #1
,"00.00";

710 LOCATE %2,2,2:PEN 42,15:PRINT %2,"PRESS ";:PEN $2,11 :PRINT §2,"FIR
E"; :PEN $2,15:PRINT $2," BUTTON"; :LOCATE %2,5,4:PRINT {2, "WHEN READY"

720 GOSUB 1330

730 IF ans$<>"X" AND ans$<>"y" THEN PRINT CHR$(7);:GOTO 720
740 LOCATE $2,2,2:PRINT $2,SFACES$(18)

750 LOCATE 42,2,4:PEN %2,2:PRINT #2," GO GO GO GO GO ";

760 SPEED INK 1,1

170 *

780 REM **** MOVEMENT ROUTINE

790 a=px:a=py

800 px=px-4*(JOY(0)=8)+4*(JOY(0)=4)

810 py=py-2*(JOY(0)=1)+2*(30Y(0)=2)"

820 SOUND 2,(py/2-30),1,3

830 IF TEST(px,py)=3 THEN BORDER 3,6:INK 14,1,24:px=a:py=c:SOUND 1,100
0,20:FOR pause=0 TO 15:GOSUB 870:NEXT pause:BORDER 3 :INK 14,24
840 PLOT px,py.,l4

650 RETURN

860

6 The Amstrad User

§70 REM **** PRINT ELAPSED T1ME
6§80 LOCATE #1,14,2:PEN #1,5
890 PRINT #1,USING "###.4#+";(TIME-t)/300;

200 RETURN
L}

910

920 REM **** 'SAME AGAIN' ROUTINE
630 LOCATE $2,3,4:FEN 12,5

940 PRINT 42,"SAME AGAIN Y/N7";
950 GOSUB 1330

960 LOCATE $2,2,4

570 P

980 RETURN

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
seq; :
1230

RINT $2,SPACES$(18)

KeM **** 'HARDER SCREEN' ROUTINE
LOCAYLE %2,2,4:PEN $2,12

PRINT #2,"HARDER SCREEN Y/N%";
GOsuB 13306

RETURN

)

RLM **** 'EASIER SCREEN' ROUTINE
LOCATE 42,2,4:PEN 2,13

PRINT #2,"EAS1ER SCREEN Y/N7";
GOSUB 1330

RETURN

)

REM **** 'GIVING UP SCREEN' ROUTINE
LOCATE %2,2,4:PEN %2,14

PRINT #2,"YOU GIVING UP Y/N%";
GOSUB 1330

RETURN

L}

REM **** SCORING

LOCATE %2,2,2

IF oldelapsed=0 THEN 1250

1F iirst=0 THEN PEN 15:GOSUB 1280:GOTO 1260

IF clapsed<oldelapsed THEN PRINT #2,USING “4##.44" ;olde lapsed-elap
PRINT 42," SECs. BETTER";:GOTO 1260

1F elapsed=oldelapsed THEN PEN $2,5:PRINT #2," NO 1MPROVEMENT "

; :GOTO 1260

1240
sed; :
1250
1260
1270
1280
1290

IF elapsed>oldelapsea THEN PRINT #2,USING "#4%.44" ;elapsed-oldelap
PRINT %2," SECs. WORSE!";:GOTO 1260

PEN £2,5:PRINT $2," FIRST T1ME LUCKY ";:GOTO 1260

LOCATE #2,2,4:PRINT #2,SPACES$(18)

RETURN

REM **** First time THIS screen, message

1F elapsed<oldelapsed THEN 1F elapsed+4<oldelapsed THEN PRINT +Z,

"THAT WAS TOO EASY ";:ELSE PRINT §2,"SMARTIE AREN'T YOU" ;

1300

IF elapsea>oldelapsed THEN 1F elapsed-4>o0ldelapsed THEN PRINT $2,

"HARDER, WASN'T 1T ";:ELSE PRINT $2,"YOU NEED PRACTISE ";

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

RETURN
L)

REM **** Y/N (INKEY$) ROUTINE

ans$=INKEYS$:1F ans$<>"" THEN 1340

ans$=INKEY$:1F ans$="" THEN 13%0

1F ans$="X" THEN 1390

ans$=LOWERS (ans$)

IF ans$<>"y" AND ans$<>"n" THEN PRINT CHRS$(7); :GOTO 1340
RETURN

1

REM **** ON BREAK ROUTINE

numpoints=numpoints-2

IF numpoints<l THEN numpoints=1

px=501

LOCATE %2,2,2:PRINT $2,SPACES$(18);

LOCATE #2,2,4:PEN 42,11

PRINT $2," YOU GAVE UP !!! ";

FOR pause$=1 TO 1700:NEXT pause?

LOCATE 1,12:PEN 15

PRINL CHRS(22)+CHRS$(1)+" PRESS FI1RE BUTTON"+CHRS (22) +CHR$ (0)

aS=1INKEYS:IF a$<>"" THEN 1510
IF era=1 THEN era=0:ERASE Yy
RETURN

The Amstrad User 7

The Learning Centre

An Introduction to Machine Code

MACHINE CODE! Mumbo Jumbo
that "real" programmers use? Some
mysterious cult that only "advanced"
computerists use? Not at all!

It is the purpose of these articles to
gently introduce to the BASIC
programmer the subject of machine
code. I suppose that before you will
become interested in this subject you
must be convinced as to the value of
machine code to you. By that I mean
what can M/C do for you that BASIC
can't? Let me count the ways:-

1) Speed - all (good?) arcade games
are written in M/C because if they were
written in BASIC the aliens would be
flying through thick soup!

2) Graphics - Arnold's graphics are
well implemented in BASIC, but are
still limited by the BASIC interpreter.

3) Control - Arnold is unique in
offering real time interrupt handling
from BASIC, but so much more can be
done with it if you have a knowledge
of how to control the peripherals
attached.

These three reasons are the ones
usually quoted when extolling the
virtues of M/C. On Arnold there is one
reason that outweighs them all. When
they designed Arnold they put "hooks"
into the firmware (firmware is just the
name for the programs already built
into Arnold, i.e. the BASIC language)
so that it becomes so easy to use M/C
to create all those dazzling effects that
make your eyes pop when you see them
in other people's programs.

Now, before you run off and start
key-bashing you are going to need a
little reference material. First you will
need a guide to those "hooks" into
Arnold's firmware routines. There are
two that I know of:- The CPC464
FIRMWARE MANUAL (scarce as

8 The Amstrad User

Hen's teeth) and a book called the "INS
and OUTS of the Amstrad” which has
the same information as the
FIRMWARE GUIDE, but in a
condensed format.

You will also need a reference work
on the Z80 processor, mainly for its
list of information (usually in an
Appendix) called "opcodes". Opcodes is
a contraction of two words, Operation
and code and simply means the
particular code that will cause the
microprocessor to perform a certain
operation. Listed alongside the opcodes
are what is known as the
MNEMONICS a funny looking word
that means memory aid. These
MNEMONICS are simply labels that
make it easier to remember the codes
and are used by a program called an
ASSEMBLER that will "assemble" the
opcodes from the mnemonics. A small
example: Which is the clearer?

a) 21 00 00 01 01 02 ES
b) LD HL,0 LD BC,201, PUSH HL

While (a) is the opcodes represented
by the mnemonic of (b) you will find it
easier to remember (b) than (a).

OK, now, being armed with this
reference material you are beginning to
at least look like you know a M/C
program from a BASIC keyword!

Let's now use our reference material
to do some M/C programming. If you
have the FIRMWARE GUIDE, turn to
page 14.127 (PAGE 61 in the INS and
OUTS). Look at the entry there. It is
the specification of a routine called
CAS START MOTOR. Place a
program tape in Arnold's datacorder,
press the play button. Now type the
following:

CALL &BC6E <ENTER>

The cassette springs to life! Now
type this:

CALL &BC71 <ENTER>

The cassette stops because we told it
to!

Seriously though, this trivial
example should serve to show you that
because of the thoughtfulness of
Arnold's designers, it is nearly that easy
to control all of Arnold's M/C
Routines.

Yes, I did say it was nearly that easy
to control all of Arnold's M/C routines.
There is an almost universal problem
with interfacing M/C routines to
BASIC, namely, the routines need data
to work on and the BASIC program
must make the data available. Arnold's
designers have provided a method of
passing data from BASIC to a M/C
program, but it is tricky and best left
until we have progressed a little further.

Instead, we will use a method that is
slower but easier to understand, by
placing the data to be passed in a
location known to both BASIC and the
M/C routine.

From reading your BASIC manual
you will be aware of the BASIC
commands - MEMORY and HIMEM.
HIMEM, when used in the following
manner, will give you a number that
represents the highest location usable
by BASIC.

xx = HIMEM

Now, to reserve some space for our
data, we use the following statement:

MEMORY xx-10

This will reserve 10 memory
locations that BASIC will be aware of
but will not use. Our M/C routine can
be made to get its data from this area.
In addition, when the routine has
finished, we can deposit any data that
needs to be returned to BASIC.

To practice this concept of passing
data from one routine to another, enter
the following program:

10 xx=HIMEM:MEMORY =xx-10:
BASE=xx-9

20 INPUT "Enter a number
between 0 and 255", DATA

30 IF DATA <0 OR DATA >255

THEN GOTO 20 ELSE POKE
BASE, DATA

40 GOSUB 100

50 GOTO 20

100 PRINT "Press any key to see
your number minus 5"

110 A$=INKEY$:IF A$="" THEN
GOTO 110

120 PRINT PEEK(BASE)-5

130 RETURN

I will leave you to work out how the
program functions - there is nothing
difficult even for the novice BASIC
programmer. However, note that the
subroutine at line 100 is called, picks

up the data, works on it and returns. In
the future, we will be substituting a
M/C routine for the BASIC subroutine.

That about wraps up this month's
article. Hopefully I have whetted your
appetite for more. In the next article we
will be delving a little deeper into
Arnold to see just where he stores
certain routines and how the Z80
processor works.

In the meantime, experiment with
your reference books and Arnold and
remember the other person's programs
may "look" better than yours, but that's
only because he knows how to utilise
the full potential of the machine.

The Trials of Tony

Blakemore

A column dedicated to the
absolute beginner

What a month it has been. User
groups are springing up all over
Australia and the combination of the
knowledge from the members is
producing some exciting discoveries. It
is terrific to see the real beginners at
last starting to join the groups and
learning the basics of the CPC464 from
experienced users and not just from
books.

As last month's issue contained an
excellent article on key re-defining, I
will move on to a subject that really
drove me crazy when I first started,
namely Character re-defining. My first
computer did not have the facility to
change any of the characters so it came
as quite a suprise to find out that on
most computers you could.

The first article I read was very
interesting but all the numbers related
to hexadecimal. (That's the type of
number that computers and experts use
just to confuse the beginner!). So off to
another book to Ilearn about
hexadecimal numbers. At this stage I
was convinced that the more I learnt the
less I knew. Thank goodness the
CPC464 understands ordinary numbers,
so learning hexadecimal numbers at this
stage is not necessary.

The CPC464 has in the ROM
memory a program that sets up all of

the characters, required. This is done
automatically when you switch the
machine on. The list of characters and
their ASCII codes, eg. chr$(65) for the
A, are all listed in the Users' Manual
(Appendix IIT page 2).

Even though the complete set is
quite comprehensive, there will be
occasions when you will want to design
your own characters. This is achieved
by using SYMBOL AFTER commands
(Chapter 8 page 47) to let the computer
know from where you are going to
change the characters. The SYMBOL
command (Chapter 8 page 46) is then
used to establish the new values.

1286432 16 8 4 2 1

O N O U A NN -

The above grid illustrates the letter A

If you refer to the diagram above,
you will see eight rows numbered one
to eight. These are the positions in the
SYMBOL command after the symbol
number (the ASCII number) where you
will place the new values to change the
character.

Across the top of the grid are eight

more numbers. These numbers (added
up come to 255) are used to establish
the new values to be placed in the eight
positions in the SYMBOL command.

To establish values for the letter A:

1. Look at the first row and you will
see filled squares under the pixel
numbers eight and sixteen (each square
is a pixel). Now add the two values
together and you get 24. This is the
first value in the SYMBOL command
after the character number (ASCII 65).

2. Count the second row;

4+8+16+32=60

This is the second value.
3. Count the third row;

2+4+32+64=102

This is the third value.

4. The fourth, fifth, sixth and
seventh rows will result in the
following values: 102, 126, 102, and
102.

5. Row eight has no filled pixels, so
the eighth value is 0.

The SYMBOL command then for A
is: SYMBOL 65,24,60,102,102,126,

102,102,0

To change the letter B to an A, type
the following small program:

10 SYMBOL AFTER 65

20 SYMBOL 66,24,60,102,102,126,

102,102,0

Now press the B key and an A will
appear. Practice changing various keys
until you understand the principle
thoroughly.

Next month we will have a look at
producing graphic characters

The Amstrad User 9

Bytes and Pieces

Useful Machine Code Routines from Sydney Brown

This month I will present you with some short but very
handy machine code routines which you can add to your own
programs.

I have included the source code for each routine which may
help you to understand how each one works, as well as a
BASIC loader which will allow you to experiment. The
loader can be found at the end of this article and, as its name
suggests, provides the BASIC code necessary to load each
routine. Merely select the relevant lines of code for insertion
into your own programs, or run the complete program to
experiment. The machine code routines are held in the data
statements in hexadecimal form

Routine # 1

COPY SCREEN

2100 CO LD HL,#C000 Load source address (SCREEN)

110040 LD DE,#4000 Load destination address(RAM)

010040 LD BC,#4000 Load length to move (16k)

ED BO LDIR Perform block move

C9 RET Return to Basic

This routine will copy the screen into a second 16k block
of memory located at 4000H which can be useful to
re-display a title page at game over or reset the game
background after it has been corrupted.

Routine # 2

RESET SCREEN

210040 LD HL,#4000 Load source address (RAM)

11 00 CO LD DE,#C000 Load destination address

(SCREEN)

010040 LD BC,#4000 Load length to move (16k)

ED BO LDIR Perform block move

C9 RET Return to Basic

This routine transfers all the data back to the screen. Both
routines #1 and #2 could be modified to suit other

requirements but TAKE CARE!!
"Routine # 3
GET SCREEN MODE
D5 PUSH DE Save address of chosen variable

CD 11 BCCALL #BC11 Call Firmware GET MODE

El POP HL Get variable address off stack
77 LD (HL),A Place mode value into variable
C9 RET Return to Basic

In some programs you may need to tell which mode the

10 The Amstrad User

computer is currently using while it is still running.

This routine will call the Firmware GET MODE routine
and return the mode value into a chosen integer variable.

It can be used as follows:-

10 CALL SMODE,A% : REM A% will now contain the
current screen mode.

Routine #4

FILL BLOCK

3E FC LD A#FC Load encoded ink into A.

26 02 LD H,#02 Load Left column of block.
2E 03 LD L,#03 Load Top row of block.

16 0A LD D,#0A Load Right column of block.
IE 0B LD E,#0B Load Bottom row of block.
CD 44 BCCALL #BC44 Call SCR FILL BOX

C9 RET Return to Basic.

This routine will fill a rectangular area of the screen with a
chosen solid or striped colour in an instant which can be
useful when setting up backgrounds or borders around
windows.

The encoding used by the Amstrad can be very confusing,
but with a bit of time and some experimenting you should
be able to get the colours you require.

The ink colour is encoded differently for each mode.

Mode 2 is quite simple as each pixel represents one bit of
the byte.

Mode 1 is more complicated, as the byte is split into 4
sections.

Bits 3 and 7 determine the colour of the left most pixel in
the byte, (Ink O to 3).

Bits 2 and 6 are next, then bits 1 and 5, and lastly Bits 0
and 4 control the colour of the right-most pixel.

Mode 0 is the most complicated as bits 1,5,3 and 7
control the left pixel and bits 0,4,2 and 6 control the right
pixel.

Take particular notice of the order of bits as it does not
seem to make sense.

The following is a diagramatic representation of what I am
trying to explain.

LeftPixel ~ bits 1,5,3,7 bit 3,7 bit 7
bit6
bit 2,6 bit 5
bitd
bits 0,4,2,6 bit 1,5 bit 3
bit2
bit 0,4 bit 1
Right Pixel bitQ

Each byte in mode 1 is split into four two bit binary
numbers, this allows you to select upto 4 stripes per byte in
any of the four set colours:

00=Ink 0 Ol=Ink 1 10=Ink2 11=Ink3

So if you are in mode 1 and want a solid yellow area, you
would select as follows:

Yellow is the default colour for ink 1 or 01 in 2 bit binary
so Yellow, Yellow, Yellow, Yellow = 01-01-01-01.
However, each 2 bit number is REVERSED giving
10-10-10-10.

The reversed byte is broken into bit pairs, namely 7 and 3,
6 and 2, 5 and 1, and 4 and 0, giving a new bit pattern of
11-11-00-00.

The diagram below may help you to understand.

76543210
1 0
1 0

1 .0

1 0
11110000

11110000 Binary = FOHEX = 240 Decimal

Try these others:15, 201, 252, 255.

Poke the new colour and boundary values directly into the
program, variables have already been set up in the
demonstration progranyBasic Loader.

COL = Colour of encoded ink to fill with.

TOP = Top character row included in block.

BOT, LFT and RIT set the other sides.

Routine #5

Get CHARACTER

D5 PUSH DE Save address of variable
CD 60 BB CALL #BB60 Call GET CHAR routine
El POP HL. Get address of variable
77 LD (HL),A Store character value

69 RET Return to Basic

This routine will look at the current cursor position and
return the value of the character at that spot if it is readable.
If the character is recognised then the value will be placed in
the chosen integer variable, if not then a value of O will be
returned instead.

You will get a failed read unless either the pen or paper of
the character is the same as the current pen or paper. You can
select the position to check by moving the cursor with the
normal LOCATE X,Y command.

Routine #6

Write 16k Block.

2100 CO LD HL,#C000 START OF DATA BLOCK
11 0040 LD DE, #4000 Length of Data Block

3E 16 LD A,#16 Sync Byte #16 for Data
CD 9E BC CALL #BC9E Call CASS WRITE
C9 RET RETURN TO BASIC

This routine will save the complete 16k screen block in
one go without headers or inter-record gaps, giving a huge
advantage in time, as the screen saved at the slow, super-safe
speed with this method will save and load in the same time
as the high speed save normally does.

This routine can be used to save any size block up to a
theoretical 64k with very little modification.

Routine #7

Read 16k Block

2100 CO LD HL,#C000 START OF LOAD AREA.
110040 LD DE, #4000 Length of Load block.

3E 16 LD A#16 Sync byte #16 for Data.
CD A1 BC CALL #BCAI Call CASS READ
C9 RET RETURN TO BASIC.

This routine will load the block saved by the program
above.

In both routines the sync byte is #16 Hex which
represents a data block and #2C Hex represents a header
block.

Have cassette deck ready before calling these routines as no
PRESS KEY message is displayed.

The accompanying program loads and sets up all the
previous routines, once run the program will stop and you
can experiment with the different effects.

In the GET MODE and GET CHARACTER routines you
must initialise the variable you are going to use before you
call and you must also make sure that the variable is defined
as an integer as the machine code routine requires its
particular storage format to return the correct value.

All of the routines contain default values to prevent chaos
if run without placing the required values in the programs.

Each routine can be used separately, and can be placed
anywhere in memory, just remember to set HIMEM with the
MEMORY XXXXX command and set the call label to
HIMEM+1.

Remember you can experiment with any of these routines,
change values and produce a program to suit your own needs
but take care as you may destroy your program or anything
in memory, but as long as you save your routines first there
is no lasting damage as you can not physically destroy
anything in your Amstrad with pokes or machine code.

The whole program could be made to take up much less
memory by removing the REMS and making the machine
code routines run consecutively in memory, I spaced them
out for the sake of clarity.

I have used the following variable names in the
Demonstration program but you can allocate any names you
wish as long as you set them to equal the start of the chosen
routines.

CALL CHAR Gets character from screen.
CALL SMODE Gets current Screen Mode.
CALL COPY Copies Screen to Ram.
CALL RESET Copies Ram to Screen.

The Amstrad User 11

CALL SSAVE Screen Save in one 16k Poke BOT with Bottom character row.

Block. Poke LFT with left column of area.
CALL SLOAD Loads Screen in one 16k Poke RIT with Right column of area.
c B_lock. . All poke values related to the fill routine are inclusive.
ALL FILL Fills Rectangular area with e.g. if you poke TOP with 2 and BOT with 7 then the
colour. block will be 6 characters high, 2 to 7 inclusive.

The variables TOP,
to the fill routine.

BOT, LFT, RIT and COL are related I am not quite sure what is causing the problem but if you
try to put a 1 into TOP then you miss a bit of the top line

Poke COL w‘ith encoded colour. of the block, it seems to be a fault somewhere in the
Poke TOP with top character row. Firmware routine.

520
530
540

560
570
580
590

12 The Amstrad User

MLMORY 329¢¢:GOSUB 30:a%=0

STOP

REM

REkM COPY SCREEN 1NTO MEMORY

REM

copy=33000:m=0

READ d:1F d<99S THEN FPOKE mt+copy,d:m=m+l:GCl0 70

DATA &21,&00,&c0,&11,&00,&4C,&0],&00,4&40,&ca,&D0, &C¢,599

REM

RLM RLSLET SCREEN FROM MEMORY

REM

reset=33020:m=0

READ d:IF d<999 THEN POKE m+reset,d:m=m+1:GO10 150
DATA &21,&00,&40,&11,&00,&c0,&01 ,&00,&40,&cd, &bC, &S ,999
REM

REM GET SCREEN MODE

REM

REM use with CALL SMODE,@A%

KREM Screen mode value now in A%

REM

smode=33040:m=0

READ d:1F d<999 THEN POKE m+smode,a:m=m+l1:GOTO 220
DATA &d&t,&cd,&ll,&bc,&el,&77,&c9,99¢

REM

REM FILL RECTANGULAR AREA OF ThE

REM SCREEN WITH COLOUR OR STRIPES

REM

REM poke COL with ENCODED COLOUR

REM poke TOP with TOP ROW of arecea

REM poke BOT with BOTTOM ROW

RbLM poke LFT with LEFT COLUMN

REM poke RIT with RIGHT COLUMN

REM
£111=33050:col=fill+1l:1tt=fill+3:top=iill+5:rit=fill+7:bot=£111+9:
READ d:1F d<S99% THEN POKE m+fill,d:m=m+1:GOTO 3tC
DATA &3e,&ﬁO,&26,&02,&2e,&03,&lb,&Oa,&le,&Oo,&cd,&44,&bc,&c9,999
REM

REM GET CHARACTER FROM SCRLEEN

REM

REM Locate cursor as per normal

REM use with CALL CHAR,@A%

REM Character value now in A%

REM

char=33070:m=0

READ d:1F d<999 THEN POKE m+cher,c:m=m+1:GOTO 45C
DATA &d5,&cd,&60,&Db,&el,&77,&cS,999

REM

REM SAVE SCREEN 1IN ONE 16K BLOCK

REM

ssave=33080:m=0

READ d:1F d<9%Y THEN POKE m+ssave,d:m=m+1:GO10 £10C
DATA &21,&00,&c0,&11,&00,&40,&3¢,&16,&cd,&9e,&bc, &9 ,999
REM

REM LOAD SCREEN 1N ONE 16K BLOCK

REM

sload=33100:m=0

RLAD d:IF d<999 THEN POKE m+sload,a:m=m+1:GOTO 570
DATA &21,&00,&cU,&11,&00,&40,&3¢c,&16,&cd,&al,&bc, &9 ,999
RETURN

User Group Information

This month it is our sad task to report the death of Norm
Hart, the Treasurer of the Amstrad Southern Group. He died
in a car accident on 11th June. As a founder member of the
Southern Group, Norm was an avid Amstrad user both at
group meetings and at home. He was dedicated to the group
and carried out his official function in a quietly efficient
manner. He was enthusiastic in teaching his children the use
of the computer.

The funeral was held on 14th June at which a large
number of relatives and friends attended.

Norm leaves a wife, son and daughter to whom we extend
our sympathy.

GROUP NEWS

Things appear to be a little quiet this month after the burst
of information in the last issue which took nearly three
pages. The User Group Contact list continues to expand with
44 people now listed as contact points. We look forward to
Tasmania enlarging their section and would welcome some
news from the Northern Territory.

South Australia (Grange)

The new title of this group is The Amstrad Computer
Club Inc.(SA). They were officially incorporated in June.
Chris Sowden is the new President - (08) 295 5923. Further
details concerning their Constitution may be available next
month.

AMSWEST, Perth

At the last meeting of the above group it was suggested
that they contact some Eastern States User Groups with a
view to exchanging news and programs on a personal basis.

Any group wishing to make contact with Amswest for
further details should write to: Mrs. P.T. Ardron, 6 Weston
Street, Carlisle, W.A. 6101.

Amstrad Eastern Users Group

Following the first meeting last month which went on for
"just a little longer than planned”, the attendance at the next
meeting is expected to double to 50. Beginners, intermediates
and experienced users are all catered for in seperate groups at
the meetings. The contact point is Tony Blakemore on 878
6212.

Western Amstrad Users Club

This is a new group, established to cover the west of
Melbourne, which had its preliminary meeting recently.
During these initial discussions, it was decided to meet twice
each month at the Tottenham North Primary School, South
Road, Braybrook from 6.30 p.m. The next two meeting are
planned for 9th and 23rd July. For further details contact
Mike McQueen on 312 5594

User Group Contact List

NSW

John Patterson
Chris Craven
Paul Wilson
Frank Humphreys
R. Vijayenthiran
Hans Hill
Martin Clift
Mrs. D. Sparks
Jim Owen

Chas Fletcher
Bruce Jones
Mark Kelloway

ACT
Arthur McGuffin
Chris Rogers

Vic

R.A. Russo
Tony Blakemore
Martin Scragg
Don Leith
Michael Prezens
Mrs. G. Chapman
Mike McQueen
Paul Walker
David Carbone
Sue Kelly

Alan Harris

Ron Butterfield
Rod Anderson

QLD

Paul Witsen
Mick O‘Regan
R.C. Watterton
D.F. Read
Kylie Telford

Michael Toussaint
Tim Takken
Steven Doyle

SA

Chris Sowden
Lindsay Allen
Rick Cable

WA
Bob Harwood
Dave Andersen

Graeme Worth
Tony Clitheroe
Mrs. P. Ardron
P.M. Nuyens

TAS
Conal McClure

Lismore
Canowindra
Moruya
Mummulgum
Newtown
Blacktown
Narrabri

East Gosford
Uranga
Toongabbie
Coffs Harbour
Barrack Point

Kambah
Fraser

Richmond
Nunawading
Pearcedale
Brunswick
Frankston
South Clayton
Braybrook
Heathmont
Burwood
Manangatang
Sale

Leopold
Camperdown

Bulimba
Gladstone
Toowoomba
Ingham
Goondiwindi

Loganlea
Ipswich
Caloundra

Morphettville
Murray Bridge
Pt. Pirie

Cooloongup

6 Kitchener Rd
Merredin, 6415
Scarborough
Morley
Carlisle
Waroona

Scottsdale

(066) 213345
(063) 441150
(044) 743160
(066) 647290
(02) 519 4106
(02) 6712929
(067) 92 3077
(043) 243342
(066) 556190
(02) 631 5037
(066) 52 8334
(042) 951581

(062) 319437
(062) 58 5749

(03) 428 4281
(03) 878 6212
(059) 78 6949
(03) 383 1498
(03) 7812158
(03) 551 4897
(03) 312 5594
(03) 729 8657
(03) 29 4135
(050) 35 1402
(051) 44 1454
(052) 502251
(055) 93 2262

(07) 3719259
(079) 79 2548
(076) 354305
(077) 77 8576
Calingunee246
(weekendsonly)
(07) 200 5414
(07) 202 4039
(071) 913147

(08) 295 5923
(085) 322340
(086) 5967

(095) 27 1777

(09) 341 5211
(09) 275 1257
(09) 361 8975
(095) 33 1179

(003) 522514

The Amstrad User 13

TWO SPECIAL ANNOUNCGEMENTS
The English CPC464 User

ONE - We have obtained a limited supply of back copies of the
English CPC464 User. These are available on a first come first

served basis at $4.00 per copy (including postage) from Strategy
Publications.

TWO = We can now offer a twelve month subscription starting from

the July 1985 issue at a cost of $45 (including postage) or backdate

to January 1985 at a cost of $40 (including postage) if we have
sufficient stocks.

Copies of the magazine will be flown in from the UK each month as
soon as they are published and posted to you within 48 hours.
However please allow at least 21 days for receipt of your first
copy(ies).

HOW TO ORDER
Complete the relevant section of this order (or a copy) and return to Strategy Publications.

Back Orders: Please supply one copy of the English CPC464 User at $4.00 per copy
as indicated below:

JAN /FEB..... MARCH..... APRIL..... MAY..... JUNE..... Total: §................

(Note: Jan/Feb issue is a single magazine)

12 Month Subscription: Please register a subscription for the English CPC464 User
as indicated below. | understand that | can only start my subscription with the Jan/Feb
issue or the July issue.

JAN/FEB 1985 to JAN 1986 inclusive - $40.00 including postage
JULY 1985 to JUNE 1985 inclusive - $45.00 including postage

(Subscriptions will automatically start at July 1985 if stocks of previous issues are exhausted)

| enclose a cheque or debit my Bankcard or Mastercard for $.......c.cccoeu........
Credit Card NO......oooee et e Expires

(Telephone orders accepted) 1 =T PO e P S D WP RS
STRATEGY PUBLICATIONS

Shop 2, 33 The Centreway, Mt. Waverley, Victoria 3149
Telephone: (03) 232 7055

14 The Amstrad User

A Review of the CPC664

Simon Anthony takes a look at 'Arnold' Mark 11

There is no question that the
CPC464 is an amazing machine within
its range and it was fairly inevitable
that an upgrade would be just a matter
of time. In fact, installing a disc drive
instead of a cassette was suggested at
the 464 launch over a year ago! It was
inevitable too that the 664 would be
priced as competitively as its brother
(now affectionately known as Arnold) -
the green screen version is expected to
retail at $799 and the colour screen
version at $999.

The hardware consists of the main
keyboard with computer and disc
system, the choice of green or colour
monitor, and the provision for a
cassette recorder and a second disc drive
to be attached.

The colour scheme has changed a
little: the main keyboard cabinet and
screen housing being in the same dark
grey but the non-printing keys are now
a light blue and the rest light grey. The
numbers on the numeric keypad are
preceded with the letter 'f' to denote
function keys. All the keys are slightly
dished.

The cursor keys are the most notable
change apparently pandering to the
trendy new design allowing larger keys
for games enthusiasts to hit. (They still
haven't put them in the right place for
me - I'm left handed.)

Overall, the keys have a positive
action with the minimum of touch,
something to do with the membrane
construction, but I haven't yet decided if
I like the 'stepped height' arrangement
of the rows of keys, probably because I
have used the 464 for so long.

Naturally, the disc drive, which is
located in the same place as the cassette
unit on the 464, is taller, but smaller
than a separate DDI-1 (disc drive

“RIA-30TSHaNn Ra:
2 INFALL COMPARISON—]

available for the 464). One very useful
feature appears on the top of the disc
housing, an inlay containing a list of
the 27 colours available together with
their reference numbers plus a diagram
showing the various key numbers.

Having a disc drive instead of a
'datacorder' is like moving into the
'turbo charged' class. Anyone who has
only tape facilities will know that to
load a lengthy program normally gives
you enough time to make a cup of
coffee. With a disc drive, you can pay
for it by the money you save on coffee!
It takes just a second or so to load a
program and cataloguing is almost
instantaneous. So it was a joy to use.
The discs are the same as those used in
the 464, 3 inch compact floppies with
each side capable of holding 169k of
formatted space with CP/M system
tracks attached.

You get a copy of Digital Research's
CP/M operating system and Dr. Logo
programming language free as part of

the 664 package. Also available is a
modulator/power supply (an MP2) to
link to a domestic TV if required. A
standard cassette recorder is connected to
a socket marked TAPE with a special
cable (CL-1). The existing additional
disc drive (FD1) can be connected to the
664 with a DI-2 cable.

Most current 464 software is, as they
say, 'upwards compatible'. That means
it should be able to run on a 664.
However, do check first. Some software
may use areas of memory that the new
disc operating system now occupies,
whilst others may break so many 'rules'
as laid down in the Firmware Guide that
they are unlikely to run on the 664
without a great deal of time and effort.
Most reputable dealers and software
houses should be able to advise you
whether or not a particular piece of
software is capable of being run on
both machines.

While I am on the subject of
software, I should mention that the 664

Tiic Amstrad User 15

has a few new BASIC commands.
Naturally, any programs which contain
these cannot be run on a 464.

MASK - a graphics command which
allows a template to be specified when
drawing lines. This means that you can
draw various dotted or dashed lines,
even round corners if the template has

been designed this way.
GRAPHICS PEN - allows you to set
the ink for drawn graphics

independently of the text ink, and
specify an opaque or transparent
background.

GRAPHICS PAPER - allows you to

set the area behind the drawn graphics
independently by allowing the selection
of colour of the undrawn areas of dotted
lines.

FRAME - this synchronises moving
graphics with the display frame
scanning frequency. (&BD19 on the
464) and provides much smoother
movement of graphics.

FILL - from the graphics cursor
position, allows you to fill an area of
screen with a given colour to the drawn
boundaries or the edge of the screen.

COPYCHRS$ - lets you copy a
character from a screen area into
memory.

CURSOR - allows you to switch the
cursor on or off,

CLEAR PRINT - allows you to clear
the keyboard buffer.

ON BREAK CONT - a facility to
make a program continue despite the
fact that the Escape key is hit.

DEC$ - produces a number in
decimal string form.

DERR - provides 'values' to disc
errors.

There have been many enhancements
to existing commands, graphics in
particular. MOVE, MOVER, PLOT,
PLOTR, DRAW and DRAWR can
have a specified parameter to set the
graphics ink mode. Using XOR, AND,
OR or normal mode determines the way
drawn graphics will interact with those
already put on the screen.

You can draw a multicoloured line
where each single pixel in a group of
eight pixels is a different colour, using
the XOR with a MASK command. You
can also set the ink colour of the next
point to be plotted or drawn with the
enhanced MOVE and MOVER
commands.

Documentation for the 664 is
unquestionably better than the 464. For
a start, the manual (or Users' Guide) is
almost twice the size, part of which
goes into much more detail in the areas
of graphics and sound. The format, like
the 464, guides the novice programmer

through a foundation course, then steps
through program development, followed
with a chapter documenting all the
BASIC keywords with examples. The
next three chapters take a look at the
disc drive and offers an introduction to
CP/M and AMSDOS (Amstrad Disc
Operating System) and the Dr. Logo
programming Language. Further
chapters reveal information on control
codes, error messages, key and joystick
codes, memory map and pin-out/socket
connection details amongst other
things. The final chapters explain the
664 in more detail, general computing
principles and provides a glossary and
Six games programs.

The CPC664 clearly does not replace
the 464 but opens another market for
one of the lowest priced disc based
machines available. It would seem that
AMSTRAD are broadening their
horizons into the business area with
this upgraded 464, coupled with the fact
that they are looking closely at the
possibility of producing a computer
with an integrated modem.

There is no question of the 464 being
dropped. Far from it, with the
combination of the 464 and 664,
AMSTRAD expect to sell 600,000
computers this year. Sounds like a lot
of bleary eyes in the early hours!

(Continued from Page 31)

were prolific producers of languages.
They produced Algol 6, Scalp (Self-
Contained ALgol Processor), Dope
(Dartmouth Over-simplified Program-
ming Experiment) and finally BASIC
(Beginners All-purpose Symbolic
Instruction Code).

Joss (Johnniac Open-Shop System)
was an early attempt to design an
interactive language. It is no longer
used.

One of the newer languages, fast
gaining popularity, is Pascal. It was
developed by Niklaus Writh in
Switzerland and released in 1968.
Several extensions have evolved and
a number of compilers are available.

This has only skimmed the surface
of the history of programming
languages. Ladder was developed by

16 The Amstrad User

SRI International to deal with large
complex data basis. Terry Winagard
at MIT created Shrdlu in 1970 as a
natural-language processor. Yale
developed a language called Sam in
1977. Charles Moore created Forth to
control telescopic equipment at Kitt
Peak National Observatory. General
Motors developed a language called
Dyana, an extension to Fortran, to
help measure vibrational and other
dynamic systems.

The latest offering to emerge is
Ada which was devleoped as the
language to end all languages. Time
will prove the durability of this latest
offspring of a very fertile industry.

Next month I will attempt to
compare and contrast BASIC, Fortran
and Pascal

ONLY A FEW MOorEL Bus
AND VLU HAVE Twig
PROGRAMN WORK ING RIGHT

Subcribers Bonus Offer
Valid to 31st July 1985

1. Choose and pay for any title from List 1 and receive any
title from List 2 absolutely free.

OR

2. Choose and pay for any two titles from List 2 and
receive any title from List 3 absolutely free.

LIST ONE
Amsforth $49.95 Tasword $49.50
Graphic Magic $39.95

LIST TWO
3D Monster Chase $19.95 Alien Break-in $19.95
Amstrad Unlocked $19.95 Atom Smasher $19.95
Dragon's Gold $19.95 'Er*Bert $19.95
Global War Il $19.95 Moors Challenge $19.95
Nightmare Park $19.95 Rollaball $19.95
Royal Quest $19.95 Soccer Boss $19.95
Tasprint $19.95 Trek $19.95

LIST THREE
House of Horrors Jigsaw Magic
Crazy Maze Maths 1
Diamond Miner Maths and Physics
Entrepreneur Pathfinder
Extra Value Pack 1 Forgotten Planet
Pharaoh's Tomb Shifty
Tee Off
ORDER FORM

Please supply from List 1 (fitle)........ccccerurrrrrncrrnnnsnncnrccnsennnscnensensnsnnne at$...........
and include free of charge from List 2 (title).......cocceeverreeenieeieecieceeceeeee,
OR
Please supply from List 2 (titles).....cccovererenerieierececeeceseececenen, i f ———

... atP.........
and include free of charge from List 3 (title).......cccvvverererrrennenrreee e
| enclose a cheque or debit my Bankcard or Mastercard for $..........cccu........
LO7 (=T 11 = o [[TS Expires
Name and Address (in CAPItalS)........cc.ceereuererererererureeseiesese e ese e sereseneas
.. Post Code............
(Telephone orders accepted) Signed.....coooiveeeiereeere e,

STRATEGY SOFTWARE

Shop 2, 33 The Centreway, Mt. Waverley, Victoria 3149
Telephone: (03) 232 7055

The Amstrad User 17

)5
ged
Disc"““ £ib® yset

The

00“5

x5 o8

prices of titles below have been reduced by 10% for the benefit of

T“e subscribers. We are constantly reviewing the availability of books
suitable for the CPC464, and only offer those which we consider

worthwhile to users.

The Ins and Outs of the Amstrad $17.95
The next best book to the Firmware Guide. Deals clearly with
how the CPC464 works with external equipment and studies
the internal system. Although based on the cassette version of
the CPC464, areas can be modified for disc systems. Sideways
ROM, operating system, peripherals - it is all here.

Filing Systems

and Databases for the Amstrad $22.45
A useful book devoted to the storage, manipulation and
retrieval of data using a cassette tape unit, much of which is
relevant to disc drives. Contains major programs - a general
purpose filing system and multiple choice tests - as well as a
RAM-based serial filing system and searching and sorting
routines.

Exploring Adventures on the Amstrad $17.10
This book is of major interest to an adventure enthusiast who
has always wanted to write one of his own adventures but
thought it was too difficult. Carefully guides the programmer
through room mapping, data structure, input routines and verb
handling with a main game example called Underground
Adventure.

18 The Amstrad User

AMSTRAD MICRO'

A Childs' guide to the Amstrad Micro $8.95
An excellent publication to introduce younger children to the
power of the Amstrad. It is cleverly illustrated throughout to hold
the readers attention. Five "characters" guide the new user and
show not just what the computer can do, but what he/she can
make it do.

Basic BASIC $11.45
A "mini-course" in BASIC which strives, in a serious manner, to
teach new BASIC programmers the right way to structure their
programs, and keep them falling into 'the hacker' mould. There
is a sensible emphasis on mathematics and chapters on loops,
graph plotting, tables and flow charts.

Bells and Whistles on the Amstrad ~ $16.15
This book contains nearly all you need to know about
producing unusual, varied and exciting sounds on the CPC464.
A rudimentary knowledge of BASIC is required. It will teach you
to develop the sounds of different musical instruments, scales
and ragtime, but above all, to produce your own sounds.

Dynamic Games for the Amstrad $17.05

50 games covering a wide range from Arcade and Gambling
themes to Graphics and Sound, with the emphasis on making
the games interesting and fun. This book should give you plenty
of ideas and routines to develop your own games if you wish, or
keep you occupied by itself for many hours.

The Amstrad User 19

On the Road to Artificial Intelligence $17.95
This teaches how to use the commands that are responsible for
handling information and to combine them into programs that
communicate with the user. It contains two programs to turn
your computer into an intelligent companion, also an anti-crash
course in BASIC.

Your first Amstrad Program $18.85
A publication somewhat different from the 'norm'. It is intended
for the beginner who has no prior technical knowledge; is
simple, straightforward and amusing. A pleasant introduction to
BASIC for the young at heart.

464

A_LERADBURY |

Adventure Games for the Amstrad $17.95
Whether you're an experienced programmer or a complete
novice, you will find all the information needed to prepare, map
and program complete adventures. It deals specifically with the
range of LOCOMOTIVE BASIC instructions most likely to be
needed when writing adventure programs.

Brainteasers for the Amstrad $17.95
A collection of programs (28 in all) written to test your logic,
general knowledge and mathematical skills. Many programs
contain an IQ rating at the end. All exploit the graphics
capabilities of the Amstrad.

20 The Amstrad User

The Amstrad Games Book
A collection of exciting games for your Amstrad, including arcade-style space and combat
games, maze games, impossible and dangerous missions for superheroes and more. $14.35

Amstrad Computing

Takes you step by step, in detail, through the commands of your CPC464. You will find

how business calculations are worked out, how vivid displays are obtained and how
attention-catching sounds can be arranged. $14.35

Basic Programming on the Amstrad

The first two chapters are for the complete beginner, the rest introduces the majority of the

Basic commands available and deals with topics of more specialised interest, such as use of

sound and how to create files and read data from them. $17.95

The Working Amstrad

This book is a collection of solid application programs. The areas covered include home

finance and tax, information storage and retrieval, household and diary management,

creative graphics and effective display techniques. $17.95

40 Educational Games for the Amstrad

The programs in this book have been designed to help the younger members of a family

to handle the Amstrad and to increase their general knowledge - whilst enjoying themselves.
Subjects include languages, mathematics and science. $14.35

Machine Code for Beginners on the Amstrad

As the title suggests, this book is intended for the beginner wishing to learn how to use

Machine Code on the Amstrad. Extensive use is made of the machine operating system

allowing results from programs to be seen immediately. $16.15

The Amstrad CPC464 Advanced User Guide

This book assumes you have got your CPC464 working and have already done some

simple programming. It provides explanations on how the CPC464 communicates with

external devices, on strings and characters, data structures, graphics and sound. $15.65

60 Programs for your Amstrad

A massive software library for the price of a single cassette. Explosive games, dynamic

graphics and invaluable utilities, this specially commisioned collection takes Basic to the

limits and beyond. $17.95

An Amstrad CPC464 Compendium

A fascinating selection of thirty games, each presented with a complete listing in

Locomotive Basic, a helpful introductory description and a screenshot. There is something

to appeal to the traditional and ultramodern computer gamesters alike. $20.65

Please note: The CP/M Handbook with MP/M, The CP/M User Guide and Logo Programming
are currently unavailable. New stocks of these titles are expected in October 1985.

HOW TO ORDER
Send a list of the titles and quantities you require along with a cheque for the total plus $5.00
postage and packing (regardless of the quantity you order) to:
Strategy Publications, Shop 2,
33 The Centreway, Blackburn Road,
Mount Waverley, Victoria, 3149
Bankcard or Mastercard orders accpeted by phone on (03) 233 9227

The Amstrad User 21

gl ¥
I he F NG

| B =)
A AAN AARD

If you judge a computer's popularity
by the number of books being written
for it then Arnold is one of the most
popular home computers on the market.
A better way to judge is by the quality
of the books published. Arnold wins
using this method also. Having said
that, I must say that this book will not
be to everyone's taste. It is
unashamedly a hardware buffs book that
will allow those of you hooked on the
fumes of hot solder to be high for
weeks.

The book is divided into two sections
- the INS and OUTS. Taking the INS
first, the book takes the reader through
the System Overview and memory
systems fairly quickly and then delves
into the more important parts of Arnold
e.g. the I/O address map, the video gate
array, the screen controller, the parallel
peripheral interface and the printer port.
In each of the sections listed above the
reader is given information on the way
Arnold is put together, how to utilise
those functions that are usable
(pointing out 'grey' areas that are either
not fully defined or not enough is
known about) and pinouts of the
various ports where appropriate.

In each section clear diagrams are
given, clearing away a lot of the fog
generated by the use of ‘jargon'. Also
where appropriate, the reader is given
those operating system calls that are
directly applicable to the section being
discussed.

Moving on, but still within the INS
portion of the book, there is a
discussion on the sound generator,
keyboard and cassette. Each section is
treated in a reasonable amount of depth
and many of the ambiguities of the
FIRMWARE GUIDE are dispelled,
especially in the sound generator

22 The Amstrad User

department.
Now we come to the real meat of
this book. The OPERATING

SYSTEM. Pages 29 to 84 are given
over to an excellent but not too detailed
look at the firmware resident in Arnold.
This section admittedly covers the same

ground as the FIRMWARE GUIDE but
with a little less technical verbage and
hence the reader comes away with a
much clearer understanding of the way
the operating system actually knits all
the pieces together. This section of the
book is worth the price alone.
However, that's not all you get!

The next section deals with the
expansion capabilities of Arnold. A
detailed look at the expansion port is
given along with an explanation of the
signal lines emanating from it. This is
the 'OUTS' section. Here the hardware
buff is given all the necessary
information to interface his/her
'ultimate' peripherals to Arnold.
Software support is also covered, but
not to the same degree as the hardware
side. Still, this book does not purport
to be a software guide to interfacing.
Also given is an explanation of external
ROM's and details of an alternative
printer port and an analogue port (using
the resistive ladder technique).

All in all, a comprehensive coverage
of much the same ground as the official
FIRMWARE GUIDE from AMSOFT,
but to my mind, in a clearer and
simpler format.

A final word of caution before you
rush out to purchase this book. It is not
for beginners and you will need a good
knowledge of machine code and some
knowledge of hardware before this book
can be of maximum value to you.
There is some joy in it for the BASIC
programmer and for those venturing to
use the firmware routines already built
into Arnold, but it is mainly aimed at
the hardware 'hacker'. It is definitely
easier to understand than the official
firmware guide, and that being so, may
be of more use to the BASIC
programmer than the former heavy
tome, but I cannot in all honesty
recommend it solely on those grounds.

For the hardware buff, for the
practiced BASIC programmer and for
those whose curiosity extends to what
actually makes an Arnold's personality,
this book is recommended without
hesitation.

A Game from Roger

FLLASH

Fraser

About FLASH

How good is your memory? In this
'Simple Simon Says' type of game, the
computer FLASHes a random sequence
of coloured squares into the four corners
of the screen and then asks you to

C for Cyan B for Blue

The sequence is initially only one
FLASH, but each time you correctly
repeat the sequence, another flash is
added. Each flash requires you to press
the appropriate key (once per flash) to
cause the sequence to be repeated

multiple flashes of the same colour and
wait before you repeat the sequence
until you are prompted to do so.

You must complete the sequence as
quickly as possible as the program will
detect if you are too slow or just plain
wrong. If you fail, the correct sequence

repeat the sequence using the keys:

! COMMON NAME : Repeat The FLASHing sequence

s DESCRIPTION : The purpose ot this program is to test your short-
term memory by repeating an ever increasing string of FLASHed squares
ot colour.
8]
king!!!

9 CALL &BBFF : PAPER 0 : PEN 1 : REM - General Purpose lnitialisation

10 ' the actual program code begins here ...
20 DIM m$(7)
30 FOR x=1 TO

R forRed Y for Yellow exactly as you watched it. Beware of ~ will be repeated for you.
1 GOIO Y
2 SAVE "FLASH.BAS" : STOP
3 ' SOF1TWARE TYPL : Game (reAction)
4 ' F1RST ENTERED : Jan '85
5 ' LAST UPDAIED : 01/05/85
6
7

SOURCE : Original idea from somewhere - Much lmproved & Wor

7:READ m$(x):NEXT

40 DATA "WATCH","REPEAT","Correct !","Wrong !"

50 DATA "The correct sequence was ...","Too s
low"

60 DATA "WAIT FOR 1T ..."

70 MODE O

80 hh$=STRINGS$(6,CHR$(143))
90 INK 0,0:INK 1,2:INK 2,18:1NK 3,24:INK 4,6:INK 5,10 :INK 6,4:1INK 7,26

:INK 8,13,26:1NK $,12,25:INK 10,20

100 GOSUB 1380

110 REM **** New Game Begins Here

120 CLS:PAPER 0:BORDER 0

130 RANDOMI1ZE TI1ME

140 LOCATE 13,1:PEN 4:PRINT #p,CHR$(143)+CHRS$(143)+CHR$(143)+CHRS(128)

; :PEN 3:PRINT p,CHR(143)+CHR$(143)+CHRS$(143)

150 LOCATE 13,2:PEN 4:PRINT #p,CHR$(143)+"R"+CHR$(143)+@R$(128);:PEN

3:PRINT #p,CHRs(l43)+“¥"+CHR$(l43)

160 LOCATE 13,3:PEN 4:PRINT #p,CHR$(143)+CHRS(143)+CHRS$(143)+CHRS(128)
:PEN 3:PRINT #p,CHRS$(143)+CHR$(143)+CHRS(143)

170 LOCATE 13,5:PEN 10:PRINT #p,CHR$(143)+CHRS(143)+C@RS(143)+CHRS (126

); :PEN 1:PRINT #p,CHR$(143)+CHR$(143)+CHRS(143)

180 LOCATE 13,6:PEN 10:PRINT p,CHR(143)+"C"+CHRS$(143) +CHRS(128);:PEN
1:PRINT #p, CHR$(143)+“B"+CHR$(143)

190 LOCATE 13,7:PEN 10:PRINT p,CHR(143)+CHRS(143)+®HRS(143)+CHRS (128

); :FEN 1:PRINT #p,CHRS(l43)+CHR$(143)+CHR$(143)

200 PEN 7:LOCATE 2,10:PRINT %p,"PRESS:";

210 PEN 8:PRINT #p,CHR$(146)+CHRS(156)

220 SPEED INK £,2

230 LOCATE ¢,11:PRINT 4p,CHRS$(149)

240 LOCATE 9,12:PRINT #p,CHR$(149)

250 LOCATE S,13:PRINT 4p,CHRS$(241)

260 PEN 11

The Amstrad User 23

270 LOCATE S,15:PRINT $p,"1. SLOW"

280 LOCATE ¢,17:PRINT $p,"2. FAST"

290 LOCATE 9,19:PRINT $p,"3. HELP"

300 LOCATE 9,Z21:PRINT §p,"4. END GAME"

310 PEN S:LOCATE 3,2:PRINT 4p,"BEST":LOCATE 4,4 :PRINT tp, "OF":LOCATE 3
;6 :PRINT #p,"LUCK"

320 z$=INKEYS:1F 2z$="" THEN 320

330 IF z$="1" THEN x%=40 ELSE 1F z$="2" THEN x%=10 ELSE 1F z$="3" THEN
GOTO 100 ELSE 1F z$="4" THEN MODE 1:END ELSE PRINT CHRS$(7);:GOTO 320
340 sc=0:ac=0:b$="":REM **** pS holds sequence

350 WHILE ac=0

360 GOSUB 600:REM **** adu lctter to sequence

370 GOSUB 700:REM **** suproutine to display the sequence

380 GOSUB 850:REM **** try to repeat sequence

350 1F ti=x%*4 THLN CLS:BORDER 1,11:LOCATE 7,10:PLN £ :PRINT %p,m$(6):a
¢c=1:GOTO 460

400 IF aa$<>M1D$(D$,2x,1) THEN CLS:BORDER 3,6:PEN 8:LOCATL 8,10:PRINI
#p,m$(4):ac=1:GOTO 460

410 sc=sc+l

420 CLS:PEN &:LOCATE &5,10:PRINT 4p,m$(3)

430 PEN 1:LOCATL 5,13:PRINT #p,"Score is";sc

440 FOR pause$=0 TO 500:NEXT pause%

450 WEND

460 SOUND 1,4000,%0,7

470 FOR pause$=0 10 2000:NEXT pause$

480 CLS:BORDELR O:PEN 4:LOCATE 5,10:PRINT p,mSS(5)

450 FOR pause%=0 170 2000:NEXT pauses$

500 BORDER 0:CLS:PEN 8:LOCATE 8,10:FPRINL #p,m$S(1):GOSUB 700

510 FOR pause%=0 TO 1600:NEXT pause$%

520 CLS:BORDER sc MOD z6

530 PEN 6:LOCATEL 4,6:PRINT 4p,"You SCORED :";:PEN 4:FRINT {p,sc

540 1F hsc>0 THEN PEN 6:LOCATE 6,S%:PRINI #p,"H1l SCORE :"; :PEN 4:PRINT
#p,hsc

550 1F hsc<sc THEN LOCATE 4,12:PEN 9:PRINT ¢{p,"WELL DONE !!!":1F hsc=
0 THEN hsc=sc LELSE hsc=sc:PEN $:LOCATE 16,9:FRINT #p, hsc

560 PEN 7:LOCATE 1,20:PRINT 4p,"PRESS <";:PEN E:PRINT 4p, "SPACE"; :PEN
7 :PRINT 4p,"> par":LOCATE 7,23:FPRINT §p,"to continue..."

570 aa$=INKEY$:1F aa$<>" " THEN 570

580 GOTO 110

550 END

600 REM **** suproutine to select a ranoom letter &nd ada it to D$
610 a=1INT(RND(1)*4)+1

620 IF a=1 THEN a$="r"

a=
630 1F a=2 THEN a$="y"
640 IF a=3 THEN a$="c"
650 1F a=4 THEN a$="b"

660 1F a=5 OR a=0 THEN GOTO 610

670 a$=LOWERS$(&$)

680 LET p$=b$+&$

690 RETURN

700 REM **** display the sequence

710 IF ac<>0 THEN 750

720 FOR x=1 TO 1000 :NEXT x:REM **** time delay

730 dummy$=1NKEYS$:1F dummy$<>"" THEN 730 : REM **** clcars inkey bufte

r
740 CLS:LOCATE 8,10:PEN 7:PRINT ip,m$(1)

750 FOR x=1 TO 1000 :NEXT x:REM **** time delay

760 CLS

770 LET xy=LEN(DS$) :xx=0

760 WHILE xx<xy

790 c$=M1D$(b$,xx+1,1)

800 IF c$="r" THEN s=1 ELSE 1F c$="y" THEN s=2 ELSL 1F c$="c" THEN s=3
ELSE s=4

810 1IF s=1 THEN GOSUB 1060 ELSE 1F s=2 THEN GOSUB 1140 ELSE 1l s=3 THE
N GOSUB 12Z0 ELSE GOSUB 1300

820 xx=xx+1

830 WEND

840 RETURN

650 REM **** Repeat sequence

6§60 CLS

870 dummy$=INKEYS$

880 1F aummy$="" THEN 920

890 LOCATE 3,10:FPEN 15:PRINT 4p,m$(7)

900 FOR pause%=1 TO 1783:NEXT pause$ REM **** time delay ot 1 sccond

24 The Amstrad User

Yl0 dummy$=INKLYS$:1F dummy$<>"" THEN 910 : ReM **** clears inkey butle

r

Y20 CLS:LOCATE 6,l0:PEN 7:PRINT 4p,m$(2)

330 FOR pause%=1 10 6Y1:NEXL pauset : REM **** timc¢ aclay ol 1/2z sccon

940 t1=0:CLS:2zx=0

¢50 WHILE zx<>LEN(b$) AND ti<x%*4

960 ti=ti+l

970 aa$=1NKEYS

980 aa$=LOWERS$(aa$)

990 IF aaS$<>"r" AND aa$<>"y" AND aa$<>"c" AND aa$<>"p" THEN 1030

1000 zx=zx+1

1010 IF aaS="r" THEN GOSUB 1060 ELSE 1F a@a$="y" THEN GOSUB 1140 LLSE 1

F zaS="c" THEN GOSUB 1220 ELSE 1F aa$="b" THEN GOS5UB 1300

1020 IF MIDS$(bS$S,zx,1)<>za$ THEN 1040

1030 WEND

1040 RETURN

1050 REM **** draw graphic blocks

1060 REM **** top lett

1070 PEN 4:CLS

1080 FOR x=1 TO 6

1090 LOCATE 2,x+2

1100 PRINT #p,hh$

1110 NEXT

1120 SOUND 1,478,40

1130 RETURN

1140 REM **** top right

1150 PEN 3:CLS

1160 FOR x=1 TO 6

1170 LOCATE 12,x+2

1180 PRINT #p,hh$

1190 NEXT

1200 SOUND 1,239,40

1210 RETURN

1220 REM **** pottom leit

1230 PEN 10:CLS

1240 FOR x=1 TO 6

1250 LOCATE 2,x+12

1260 PRINT #p,hh$

1270 NEXT

1280 SOUND 1,119,40

1290 RETURN

1300 REM **** pottom right

1310 PEN 1:CLS

1320 FOR x=1 TO 6

1330 LOCATE 12,x+1iz

1340 PRINT 4p,hh$

1350 NEXT

1360 SOUND 1,60,40

1370 RETURN

1380 REM **** instructions

1390 BORDER 0:MODE 1:LOCATE 1%5,1:INK 2,18,0:INK 3,15 :FLEN 2 :FRINT "F L
A S H"

1400 PEN 3:PRINT #p:PRINT #p:PRINT #p,"
MON SAYS"

1410 PRINT $p:PRINT ip," Watch the screen while colourca sguares FLASH
1n a random sequence."

1420 PRINT 4p:PRINT {p," You must try to duplicate the scquence, using
the tour blue keys (sce below). These keys represent the tLtour cor

ners of the screen ana colours that apply to them. "

1430 LOCATE 10,17:PRINT §p,"0 W B R T X 10 p"

1440 LOCATE 10,1%:PRINT 4p," A S D F GHJ KL "

1450 LOCATE 10,21:PRINT %p," 2 X CV BNM, . /"

1460 PLOL 126,160,3:DRAWR 36&,0:DRAWR G,-11Z:DRAWR -3¢t ,0 :DRAWR 0,11z

1470 PRINT #p:PRINT #p:PRINT #p:PEN 1:PRINT §p," PRESS the <SPACE> ber
to continue ..."

1480 LOCATE 16,17 :BRINT #p,"R":LOCATE 20,17 :PRINT tp, "X

145G LOCATE 16,21 :PRIN1 #p,"C":LOCATIE 20,21:PRINT $p, "B"

1500 aaS=INKEYS:1F aa$<>"" THEN 1500

1810 aaS=1NKEYS:1F aa$<>" " IHEN 1510

1520 INK 2,18:1NK 3,24

1530 MODE O

1540 RETURN

This is & GAME OF MEMORY - S1

The Amstrad User 25

Gencom - a CP/M Utility

from Hans Hill

The utilities provided with the CP/M
disc are now (dare I say it?) outdated,
but as yet the excellent CP/M packages
around are not available for the
Amstrad. (Starcomm Systems are
currently working on downloading 8"
CP/M software onto the Amstrad 3"
floppies, but for now let's use what we
have).

GENCOM was developed to convert
an object code file produced by the
Hisoft DEVPAC (Soft 116) into an
executable CP/M file. This allows the
program to run by typing in the
filename from CP/m without the need
for BASIC loader programs or CALLSs
to a specific address. All Amstrad ROM
routines can be used so nothing is
sacrificed by using CP/M.

HOW TO USE GENCOM

As you may know, AMSDOS
creates a 128 byte header record that
needs to be removed before CP/M can
execute the file. What GENCOM does
is to load the file generated by GENA 3
and resave it without the header record
under (your filename).COM .

Now you have an executable CP/M
file. To use the file so created:

A> (your filename) [Enter]

If your program is correctly written,

it will run.

To get GENCOM onto disc, run the
Hisoft DEVPAC and start assembly at
100h - you can ignore the comments if
you wish. Assemble the program using
the A command. The object code is
automatically saved to disc under the
file GENCOM.ASM . After assembly,
save the source file with:

Q 1,166, GENCOM.SRC

We now have to enter CP/M in the
following manner:

A> DDT GENCOM.ASM - DDT
will be loaded bringing GENCOM with
1t.

DDT VERS 2.2

NEXT PC

0300 0100
DDT prompt.

-M180,2FF,100 [Enter]

-GO - this will return control to
CP/M.

A> SAVE 2 GENCOM.COM

Now that we have GENCOM on disc
let's demonstrate it by using Hisoft
DEVPAC and entering the following

routine:
ORG £100

LD B,26
IJI) 1\,u1\"
LOOP: CALL £BB5A

- you will see the

1 #H GENCOM developed for AMSTRAD users by STARCOMN SYSTENS

2

3 ;The purpose of this little routine is to convert an assesbly
4 ;program generated by GENA 3.1 into a (filename).CON file for
5 jexecution direct froa CP/M.

[

7 ;File manipulation routines have been extensively docusented
8 jto allow users of this prograa to apply thea in their own
9 ;prograas.

10
1

12 ;GENCOM written by H.Hill of STARCOMM SYSTEMS...4th April 1985
13 jintended for the public domain.

14

15 FHEHH R

16 3

17 jequates table

18 ;

26 The Amstrad User

INC A

DINZ LOOP

JP £00

Assemble this little routine and save
the object code to tape using

0O, TEST>0BJ

then exit to CP/M. After the prompt

A> GENCOM TEST.OBJ

GENCOM should burst into life and
go to work. When complete you should
see the 'PROCESS COMPLETE'
message followed by the prompt.

Type in TEST [Enter]

and you should see 26 letters of the
alphabet printed on the screen.
GENCOM works !! Now it is up to
you to write some really flash programs
for other CP/M users. Get to it.

For those people who do not already
have the Hisoft DEVPAC, Starcomm
Systems can purchase, transfer onto
disc and include GENCOM for a lousy
$75.00 with a 24 hour turn-round. If
you already have DEVPAC but not on
disc, send the front page of the manual
for the transfer and GENCOM for
$20.00 .

Starcomm Systems, 48 Tara Road

Blacktown, NSW, 2148

(02) 672292

005C 19 FCB: EQU £5C 014E EDBO % LDIR

0100 20 TPA: EQU £100 0150 DS 99 PUSH DE
007C 21 FCBCR: EQU FCB+£20 100
1000 22 FXAREA: EQU £1000 0151 1BEO 101 JR RDSER
0005 23 BDOS: EQU £05 0153 102 PROCES:
0000 24 BOOT: EQU £00 0153 115C00 103 LD DE,FCB itransfer new file name to FCB and zero all
000F 25 OPENF: EQU £OF 0156 21AF01 104 LD HL,NEWFLE ;remaining bytes in FCB.
0014 26 READF: EQU £14 0159 012100 105 LD BC,33
0010 27 CLDSEF: EQU £10 015C EDBO 106 LDIR
0009 28 PRINTF: EQU £09 107
0016 29 MAKEF: EQU £16 015 115C00 108 LD DE,FCB idelete any file of the same name
0015 30 WRITEF: EQU £13 0161 0E13 109 LD C,DELETF
0013 31 DELETF: EQU £13 0163 CD0S00 110 CALL BDOS
32 11
33 ;uuuunuuuuunuuuunuuuuuuuuwuuuu 0166 11500 :12 LD DE,FCB ;make a new file entry
0100 34 ORG TPA 0169 OE14 13 LD C,MAKEF
35 0168 CD0500 114 CALL BDOS
36 #T+ GENCOM.ASH 115 5
375 016E 110202 116 LD DE,SPCFL ;if no space on disk print error message
0100 010900 38 LD BC,£09 ;move filename up to storage area 0171 3 117 INC A ;and abort.
0103 11AFO1 39 LD DE,NEWFLE 0172 FE00 118 P 0
0106 215C00 40 LD HL,FCB 0174 2831 119 IR 1,FINIS
0109 EDBO L LDIR 120 ;
42 0176 218010 121 LD HL,£1080 jset up transfer back to DMA buffer area
010B 216800 3 LD HL,FCB+12 ;zero extents and records 0179 €S 122 PUSH HL
010E 0617 44 IEROFL: LD B,23 123
0110 3600 45 LD (HL),0 ‘ 017A EL 124 WRTSEQ: POP HL
0112 23 46 INC HL 0178 118000 125 LD DE,f80
0113 10F9 47 DINZ 1EROFL 017 018000 126 LD BC,£80
48 0181 EDBO 127 LDIR
49 ;OPENING THE DEFAULT FCB 0183 E5 128 PUSH HL
50 ;1 your progras takes a fileref as its first operand 129
51 jyou can use the FCB set up at £3C in low storage. 0184 115C00 130 LD DE,FCB
52 ;The CCP sets it up ready to open. 0187 OE15 131 LD C,WRITEF
533 0189 CD0500 132 CALL BDOS
54 j#eeseseaCHECK THE BYTE AT £3D 133
55 jif it is a blank, then no operand was given. 018C 111402 134 LD DE,WRTFL ;failed to write error message
56 3if it is a valid character, simply request service 15. 018F FE00 135 P 0
57 0191 2014 136 JR NI,FINIS
0115 3ASD00 58 LD A, (FCB+1) 137
0118 FE20 59 cP £20 0193 3A7C00 138 LD A, (FCBCR)
0114 113E02 60 LD DE,NOFILE 0196 210401 139 LD HL,RCCNT+1
011D CAA701 61 JP 1,FINIS 0199 BE 140 CP (HL)
(Y 0194 20DE 141 JR NZ,WRTSE@
63 142
0120 115C00 (1] LD DE,FCB 019C 115C00 143 LD DE,FCB
0123 OEOF 65 LD C,OPENF 019F 0E10 144 LD C,CLOSEF
0125 CD0500 b6 CALL BDOS 01A1 CDO500 145 CALL BDOS
67 144
0128 11IF101 68 LD DE,OPENFL jprints an error message if file not open 01A4 112002 147 LD DE,NSB ;prints successful message
0128 3C 69 INC A 0147 OE09 148 FINIS: LD C,PRINTF
012C CAA701 70 JP 1,FINIS 0149 CDOS00 149 CALL BDOS
71 01AC C30000 150 JP BOOT
13 151
012F 110010 73 LD DE,£1000 jset up fix area 01AF 152 NEWFLE: DEFS 9
0132 D5 74 PUSH DE 01B8 434F4D 153 DEFN °CON*
75 01BB 00000000 154 DEFB 0,0,0,0,0,0,0,0
0133 115C00 76 RDSEQ: LD DE,FCB 01C3 00000000 155 DEFB 0,0,0,0,0,0,0,0
0136 OE14 7 LD C,READF 01CB 00000000 156 DEFB 0,0,0,0,0,0,0,0
0138 CDOS00 78 CALL BDOS 0103 0000 157 RCCNT: DEFB 0,0
0138 FE0O 79 e 0 01D5 20444149 158 READFL: DEFM * FAILED TO READ THE SECTOR $*
013D C25301 80 JP NZ,PROCES 01F1 20444149 159 OPENFL: DEFM " FAILED TD OPEN $°
81 0202 204E4F20 160 SPCFL: DEFM ™ NO SPACE ON DISK$®
0140 3ADAOL 82 LD A, (RCCNT+1) 0214 20464149 161 WRTFL: DEFM * FAILED TD WRITE RECORD$"
0143 3C 83 INN A 022C 2050524F 162 MS6: DEFM * PROCESS COMPLETES®
0144 320401 84 LD (RCCNT+1),A 023F 204EAF20 163 NOFILE: DEFM * NO FILE REFERENCE GIVEN$"
85 0257 A74S4E43 164 DEFM "GENCOM VS1.0 by H.Hill®
B84 ;SETTING THE DATA BUFFER 026D 166 END
B7 ;BDOS ngeds to know where to put the 128 byte data records
BB jonce they have been read. In GENCOM the file is placed from Pass 2 errors: 00
89 ;address £1000 up, with the butfer address kept in DE. BDOS 0005 BOOT 0000 CLOSEF 0010
90 ;DE is changed to point to the mext buffer area after each read DELETF 0013 FCB 00SC FCBCR 007C
91 FINIS 01A7 FXAREA 1000 MAKEF 0016
b NS6 0220 NEWFLE OLAF NOFILE 023
g OPENF 00OF OPENFL OLFI PRINTF 0009
94 PROCES 0153 RCCNT 0103 RDSER 0133
0147 DI 95 POP DE saove records up to fix area for processing READF 0014 READFL 01D5 SPCFL 0202
0148 218000 96 LD HL,£80 TPA 0100 HRITEF 0015 WRTFL 0214
0148 018000 97 LD BC,£80 WRTSE@ 0177 ZERDFL O10E

The Amstrad User 27

Retrieving Erased CP/M files

A machine code utility for Basic programmers
from Martin Scraggs and Tony Blakemore

In the March 1985 issue of the English CPC464 User was
a very interesting article on CP/M Assembler. The article
explained a little bit about CP/M COM files and adding a
new file UNERA.COM - a file to retrieve CP/M files that
had been accidentally erased. As an accomplished expert at
accidentally erasing files, this had to be the best thing since
sliced bread. Unfortunately, because of the nature of CP/M
files which all start at hex100 (well below the normal area
for the start of BASIC), a BASIC program was not available
to produce this new file.

Talk about indian givers - here was the answer to my
prayers and I could not get my hands on it. I contacted a good
friend of mine Martin Scraggs who had helped out before
when I had problems related to machine code. I wanted to
find out if it was possible to enter the machine code using
DDT on the CP/M disc. To complicate matters even further
the listing contained Macros, a type of machine code
subroutine, that made direct entry impossible. I left the
problem with Martin who, amidst vague mutterings about
"basic programmers who should not get involved with things
they know nothing about", promised to see what he could
do.

Listed below, thanks to Martin, is a method that will
allow us BASIC programmers to enter and raise a new CP/M
file called UNERASE.COM. Before entering the program
which contains nearly two hundred entries I would stress the
need for accuracy. If a mistake is made the whole procedure
must be started again.

1. Place your CP/M disc into the disc drive and type |cpm
and press ENTER. When A> appears type DDT and press
ENTER. On the screen will appear:

DDT VERS 2.2
- (cursor here)

2. Type S100 and ENTER. The screen will now show:

DDT VERS 2.2
S100
0100 01 (cursor here)

3. This is the start address for entry of a new CP/M file.
Listed below are the hex numbers that will enable the
program to be entered. I would suggest taking a photocopy
of this page and crossing off each number as it is entered.

28 The Amstrad User

Start at the left side of the listing and work to the end of the
line. Type in each number and press ENTER. After three
entries the screen will look like this:

DDT VERS 2.2

S100

0100 01 ED

0101 BC 7B

0102 OF 06

0103 C3 (cursor here)

You can ignore the second column, i.e. 01,BC,0F etc as
they are only numbers that you are replacing. They will
come up automatically as you press the ENTER key.

ED 7B 06 00 11 5C 00 OE 11 CD 93 01 3C C2 00 00
21 C3 01 22 9D 01 11 80 00 OE 1A CD 93 01 11 9F
01 OE 11 CD 93 01 3C 28 40 3D 87 87 87 87 87 16
00 S5F 21 80 00 19 E5 23 06 OB 11 5D 00 1A 4E CB
B9 B9 23 13 20 18 10 F5 E1 E5 7E FE E5 20 OF 36
00 ED 5B 9D 01 01 20 00 ED BO ED 53 9D 01 E1 11
9F 01 OE 12 CD 93 01 18 BD 11 C3 01 2A 9D 01 B7
ED 52 CA 00 00 D5 21 OC 00 19 7E 32 68 00 11 5C
00 OE 16 CD 93 01 D1 OE 10 CD 93 01 21 20 00 19
EB 18 D9 E5 D5 C5 CD 05 00 C1 D1 E1 C9 00 00 3F
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 00 00 00 00 00

- Now look at the entry opposite 01AB - if it is the first 00
after 3F then you have the right amount of entries. Press the
CTRL key and C. This will return you to CP/M. When the
A> appears type SAVE 1 UNERASE.COM & ENTER.

UNERASE.COM has now been placed on the CP/M disc.
Type DIR to make sure that it is on the directory, if not the
whole program will have to be done again.

To test the new file, filecopy any program onto the CP/M
disc, make a note of its name and erase it. Return to CP/M
and type UNERASE and the name of the file you have just
erased. The program should now be restored to the directory.
Run the restored program and check that it works. If it does,
you have a very useful CP/M file.

UNERASE will only work if it resides on the same disc
as the file accidentally erased. To use UNERASE on all your
discs, filecopy it onto the disc when you format it. It only
occupies 1K so you will not lose much space. As you
become more confident and less accident prone you can leave
it off the discs.

Typnig Errors

Correcting some mistakes so far detected

Errors are bound to occur from time to time, despite our
efforts to check the contributions we receive before they go
to press. We rely upon the readers of this magazine to be our
back-stop to catch those we miss.

So we are grateful to those people who took the time to
write and identify the mistakes.

3D ball (Page18, Issue 4) - Line 60 should read as follows
Draw SizeX*sin(A)+320,sizeY *cos(A)*sin(A*0.95)+200

1460 FOR L=1 10 s1zc

Down the Mine (Page28, Issue 3) - Line 4600 has a colon
missing. It should be inserted following the quote at the end
of the PRINT statement, ie ..hammer.":b14=1:GOTO 2450

MAP-CODE (Pagel0, Issue 5) - This problem will
mainly concern disc drive owners. The program will lock if
the drive is resident in the system. To correct this, merely
change start=39000 in line 30 to start=HIMEM-5000.

Computerised Address Book (Issue 3) - The program
listing has probably caused the most headaches. It was very
difficult to distinguish between lower case L and number 1.
Below is a listing of all lines containing lower case L's
which we have changed to upper case. Anything else that
looks like an 'el' should be read as a one.

1450 INPUL $9,nemtla$(L):1NFPUL $#9,strLld$(L) :1NPUL aS,twnglo$(L))
1500 INPUT §9:bubtlo$(L):1NkUT #S, telfla$(L) :1INPUT #¢, moaf ld$ (L) : INPUT $+9,posila$(L)

3110 FOR L=1 10 1

5120 1F INKBY$<>" " 1lhun L=0
3130 NEXT L

3730 L=0

3750 FOR L=1 10 1

3520 1k choi<l THEN L=0

3830 IF choi>7 THEN L=0

3640 NEXT L

5160 FOR L=1 10 1

£170 1F LNKEYS<>" * THEN L=0
£160 NeXT L

6040 FOR L=0 10 saize

6050 1F UPPERS (frt$)=UFPERS (twnfld$(L)) THEN town$(L)="yes" ELSE town$(L)="no"

6060 NEX1 L

701% 1IF namfld$(z)="" THEN L=size:GOTO 7030

7130 FOKR L=0 TO size

7140 1IF UPPER$(an$)=UPPER$(namfld$(L)) THEN c=L:L=size-1

7240 FOR L=1 10 1
7260 IF a<l OR a>6 THEN L=0
8020 FOR L=0 IO size

3030 IF UPPbRs(owr$)=UPPER$(namiIQS(L)) THEN c=L:L=size

8060 FOR L=c TO size

8070 namfla$(L)=namfld$(L+1)
8060 strfld$(L)=stritld$(L+1)
8090 twnfld$(L)=twnild$(L+1)
8100 subfld$(L)=subtld$(L+1)
8110 telfldS(L)=telbfld$(L+1)
8130 modfld$(L)=modtla$(L+1)
8135 posfloS(L)=postld$(L+l)

10255 IF n$="" THEN size=size-1:RETURN

10260 FOR L=1 TO LEN(n$)

10270 temp$=MIDS$(n$,L,1)

10320 NEXT L

10350 FOR L=1 TO LEN(nS$)

10360 1F MIDS(n$,L,1)=" " THEN s=L
10370 NEXT L

10400 FOR L=1 TO s-1

10410 IF ASC(M1D$(n$,L,1))>64 THEN cnam

10420 NEXT L
10450 FOR L=s+1 10 LEN(n§$)

10460 IF ASC(M1D$(n$,L,1))>64 THEN snam

10470 NEXT L)
12050 FOR L=0 TO size

12060 PRINT #9,namtld$(L):PRINT %9,str

$=cnam$+M1D$(n$,L,1)

$=snam$+M1IDS(n$,L,1)

£1dS(L) :PRINT $9,twnfld$(L)

12070 PRINT #9,subtld$(L):PRINT 49, telE1d$ (L) :PRINT #$, modf 1d$ (L) : PRINT §9,postld$(L)

12080 NEXT L

The Amstrad User 29

History of Programming Languages

Arthur Harris provides the background to the evolution of programming languages from 1940
to today. To new computer buffs it is historical, to the old it is nostalgic.

In the early 1940’s, computers like
ENIAC were controlled by thousands
of wires and switches. These physically
controlled the flow of electrons
through the computer and hence its
performance. Each program required
a different configuration and rewiring,
from one program to another, took
many hours. During the late 1940’s,
IBM developed the Card-Programmed
Calculator. This was a large step
forward. A set of pre-wired, special-
purpose boards performed generalised
functions. These boards made the
CPC emulate a floating-point machine
with built-in functions like square
roots, sines and exponents. This
arrangement was still not a saved-
program computer. Each program
had to be entered each time it was to
be run.

These computers understood only
machine code - a series of bit
configurations that the computer
coverted to internal operations. Each
code gave the machine one instruction,
similar to throwing one switch or
plugging in one wire on ENIAC.
Developing and entering a substantial
program took a long time and was
very error prone, resulting in prog-
rams that were hard to debug.

As hardware became more sophis-
ticated, it was realised that computers
were useful and efficient tools. This
realisation focused interest on auto-
matic programming.

One effort to produce a system, or
language, that would make it easier
for the programmer to write programs
that the computer would automatically
convert to machine code through
compilation, was centred around
Massachusetts Institute of Technology.
This effort produced the Whirlwind

30 The Amstrad User

computer which was
between 1947 and 1951.

The first commercial venture into
automatic programming was led by
Dr. Grace Hooper of the Eckert-
Maunchly Computer Corp. The result
was Univac 1, which was programmed
in mnemonic code known as Assembly
Language. This was still rather clumsy
and required several instructions to
produce simply functions. Because
Assembly Language is close to the
language used by the computer, it is
considered to be a low level language
like machine code. Dr. Hooper’s
group continued along this line and
laid the ground-work for most
current high-level languages.

A high level language has a syntax
far removed from the internal working
of the computer. Ideally, it should be
more easily understood by humans.
Dr Hooper's efforts produced several
compilers. The A2 compiler, the most
widely used, uses a series of floating-
point subroutines in main memory.
This compiler depended on a sequence
of compiling instructions, but acquired
a pseudo-code after May 1954.

The Algebraic Translator, AT3
(called Math-Matic), was not com-
mercially successful but a number of
its concepts were used in the develop-
ment of Algol. AT3 was not completed
before Univac became obsolete as a
scientific computer.

The B@ compiler (called Flow-
Matic) contributed largely to the
development of Cobol. Released in
1956, B@ relied on English-like syntax
and was one of the first languages
suitable for business applications.

At the same time, another Univac
team was working on another compiler.
Anatol Holt and William Turanski

developed

produced the GP (Generalised Prog-
ramming) system, based on hier-
archies of library subroutines. This
language was extended as GPX for
the Univac II. This was the first
computer language which primarily
took account of the computer system,
program segmentation and memory
allocation.

Meanwhile, IBM released the IBM
701 one of the first commercial large-
scale computers. The Speedcode
language it used (developed in 1952)
was easy to program but slow in
operation. Next came the Pact system
but, like AT3, it was not completed
before the 7@1 became obsolete.

The development of a medium-
sized magnetic drum encouraged
software evolution. A number of
interpretive languages appeared and
the IBM 350 showed how proper data
placement on the drum could optimise
programming effort. Soap (Symbolic
Optimiser and Assembly Program)
utilised these features but was
overshadowed by progress in other
languages.

Dr. Al Perlis wrote the IT compiler
at Carnegie Tech. IT took alpha-
numeric card input from the IBM 650
and produced a program in Soap.
Later a program called Fortransit
translated Fortran into IT, through
Soap, to machine language.

Hardware technology continued
to direct the progress of computer
languages. The IBM 704 used magnetic
core memory instead of electrostatic
tube storage and incorporated many
other improvements.

While developing the 704, in 1954,
IBM placed John Backus in charge of a
team to write a high-level, automatic
program language for scientists,

mathematicians and engineers. The
team included Irving Ziller, Harlan
Herrick and Roy Nutt. Backus is
quoted as saying the team “simply
made up the language as they went
along”. In April, 1957, after some 25
man-years of work, the first Fortran
(FORmula TRANSlation) compiler
was produced. At first it did not
always work but after modification
and improvement, it did produce
executable code. This relatively easy-
to-use language promoted practical
use of computers.

Since then, several enhancements
have produced new versions -
Fortran II in 1957, and Fortran III and
IV in 1962. IBM and a users group,
SHARE, promoted use of the language.
In May, 1962, a committee tried to
develop standards for the language.
In 1966, the American Standards
Association (now the American
National Standards Institute — ANSI)
published its guidelines. The committee
produced two standard Fortran
languages — Basic Fortran for smaller
computers and USA Standard Fortran
for larger machines. Later, Fortran VI
was developed and renamed PL/1.

Meanwhile, a European computer
group, GAMM, was interested in
developing an algebraic compiler for
a variety of machines to try to produce
a universal standard. Because of the
international complications of the
effort, Dr. Perlis and John Backus
were named in its American faction.
Although the group eventually dis-
carded the idea of an international
language, it published a report, The
Preliminary Report on an International
Algebraic Language, in the (northern)
spring of 1958. The language, at first
called IAL, became known as Algol.
Later versions included Algol 58,
Algol 60 and Algol 68.

Other algebraic languages, based
on Algol included Balgol (from
Burroughs), Jovial (Jules Schwartz’
Own Verion of the International
Algebriac Language — from the
Systems Development Corp.), Mad
(from the University of Michigan)
and Neliac (from the Naval Electronics

Lab.).

By mid-1959, most computers
accepted Fortran and it seemed a
universal language in USA. However,
several of its features were awkward.
Fortran suffered the drawback of
being developed by IBM. This
impeded its adoption as a universal
language.

Further algebraic languages include
Alpak and its successor, Alltran, from
Bell Labs. SAC-1 was a large collection
of Fortran subroutines. Algo! was
never successful in USA.

The US Government could afford
complex systems and would require
complex languages. It needed a new
language that was compatible with
may computers and was suitable for
data processing, not scientific applica-
tions. In 1959, the Secretary of
Defence called a meeting of represent-
atives of manufacturers, users and
academic institutions to form Codasyl
(Committee on Data Systems Langu-
ages). Up till then, no one had paid
much attention to business applica-
tions. Even B@ was limited by
hardware inadequacy. Other attempts
at business oriented languages include
Aimaco (Air Material Command,
1959) and IBM’s Comtran (1959).

Because of the urgency of the
project, Codasyl selected two com-
mittees one to work on a short term
solution based on existing languages
and one to examine the recommenda-
tions of the first committee. The short
term group recommended the develop-
ment of a new language — Cobol. By
the time the recommendation was
presented, Honeywell had released
Fact. A dispute ensued over these two
languages, but eventually Cobol was
accepted. The first report was released
in April, 1960 and refinements
resulted in Cobol 61. Fact was a
powerful data processing compiler
that relied on English syntax and
worked for configurations as small as
4K. Cobol became widely accepted
and became a commercial success.
Cobol became the COmmon Business-
Oriented Language. It was followed
by Cobol 61 Extended in 1963, Cobol

65 and 68. ANSI approved a version
in 1968 and approved revised stand-
ards in 1974, known as American
National Standard Cobol 1974.

In 1963, 3 representatives of IBM
and 3 members of SHARE formed the
Advanced Language Development
Committee. They aimed to produce a
language called NPL (New Program-
ming Language). This was changed to
MPPL (Multi-Purpose Programming
Language) and finally PL/1. This was
released in April, 1964, revised in
June, 1964 and refined until the
release of 1976 PL/1 American
National Standard.

IBM, meanwhile, was working on
many other languages. One of them
was RPG (Report Program Generator),
released in the early 1960's and was
followed by RPG II and RPG IIL

The languages mentioned are only
some of the 209 or more languages
implemented since the 195@'s with
over 100 more no longer in use.

While scientific and data processing
have dominated the computer world,
scores of languages have been
developed for list or string applica-
tions or specialised functions.

Amongst the oldest of the list-
processing languages is IPLV (Informa-
tion Processing Language V), released
in 1958. It was one of the first to use
memory cell lists linked with pointers.
Other list processing languages
include Sail POP-2 and Slip, a
descendant of FLPL, KLS, Threaded
Lists and IPL-V. The most popular
today seems to be Lisp.

Lisp 1.6, the latest version, has had
a great influence on the development
of Logo. Focus on string processing
resulted in Comit, released in 1957.
Snobol, a string oriented symbolic
language was released in 1962.

The favourite language imple-
mented on micro’s is BASIC. It was a
late development, since interpretive
languages were not respected during
the compiler period. Beginning in
1965, Prof. John Kemeny devised
Darsimco (Dartmouth Simplified
Code). Prof. Kemeny and Dartmouth

(Continued on Page 16)

The Amstrad User 31

-COMPETITION-

$2500 worth of prizes to be won over four classes

How to enter

Think about your program and map it
out in a series of events or features.
Write the program onto cassette
based around these events and check
that the program runs as intended.
Once you are satisified, send a copy of
the cassette in a suitable envelope
along with the following;:

1 A brief summary of the
program in 500 words or
less.

2 A clear program listing if
available.

3 A stamped, self addressed
envelope of adequate dimen-
sions if you would like your
entry returned.

4 Your name and address.

You may make as many submissions
as you want, but no entrant may win
more than one prize.

32 The Amstrad User

Class 2
Best amusement/ adventgre
Wins a new DD1 disk drive

B Class 3
st educationg]

WlnS a new DDI

software

disk drive

Class 4
Best business software
Wins a new DD1 disk drive

Conditions of Entry

1

3

4

All entries must run on a CPC464,
and must include a cassette copy
of the program (plus loading
instructions where necessary), a
brief summary of the program
and its purpose and, if possible, a
full listing.

All entries must arrive by 15th
August 1985, and winners will be
printed in the October edition of
The Amstrad User.

The decision of the judges is
final

It is a condition of entry that all
entrants have exclusive ownership
of the copyright of the material
submitted, and the winners agree
to assign all copyright in the
winning submissions to The
Amstrad User. Where the entrant
is more than one individual, then
one person must be nominated
and empowered to act on behalf

of the entire group. All entrants
must undertake not to submit the
same or a similar program to any
other magazine, publisher or

organisation until after the
announcement of the winning
entries.

5 We, The Amstrad User, may offer
to publish programs other than
the winners in the magazine or as
commercial software, in which
case we will agree terms on an
individual basis with the author(s)
concerned. We reserve the right
to amend, alter or revise any
program we publish.

6 No employees of The Amstrad
User or Strategy Publications, or
their relatives may enter this
ccmpetition.

7 The Amstrad User cannot be held
responsible for any loss or
damage to any submission.

8 No entrant may win more than
one prize.

e

U] llllll

[)

They are disappearing FAST - and we wont be printing
anymore! If you've missed any copies order NOW.

MAG TAPE MAG TAPE

Number 1 - Feb Number 4 - May
Number 2 - Mar Number 5 - June

Number 3 - Apr v e

The cost of a single magazine is $3.00 plus 50 cents postage
and the cost of a single tape is $4.50 plus 50 cents postage.

Please send your order and remittance to:
The Amstrad User, Shop 2, 33 The Centreway,
Mt. Waverley, Victoria 3149 Tel: (03) 232 7055
(Bankcard and MasterCard accepted)

RS-232 INTERFACES ffor CPC464

Communicate with your Modem
Talk to other computers
Use Serial Printers
Split Baud Rates
Standard 25 way 'D' Connector

$149.95

Units are cased and include through connector for interstacking
or connection of further add-ons (disc drive etc.)
Literature supplied and Software on tape

Enquiries to:
Strategy Computers
Shop 2, 33 The Centreway, Mt. Waverley, Vic 3149
Telephone: (03) 232 7055

SAVE $450

How many computer magazines would I have to buy to get at least 30 pages of
information and program listings for the new Amstrad CPC464?

On average, most popular magazines will devote 2V pages to the AMSTRAD
CPC464. This means you will need to buy 12 magazines at a cost of around
&

$40 per month, or $480 per year!

Surely there must be a more sensible and cheaper way of getting the
information I need?

PY $30 a year.

How can I get a copy delivered to my home each month with an optional
cassette containing all the program listings?

!.
Thereis.
THE AMSTRAD USER is a brand new monthly publication packed with
articles, reviews, listings, hints etc. for Amstrad users only, and costs just
!.

Please send me THE AMSTRAD USER for 12 months
Magazine only: $300 Magazine and cassette: $70 O
Payment by: Cheque 0 Bankcard or Mastercard O

Bt Gy T TR SRR R S e I G St Expiry date
e ek R R e S T PhORE: ..o s it
e TR BT SR e R D R e e P S
... Pastentler ol nniy
Signéd Please start with Issue No

Returnto THE AMSTRAD USER, Suite 4a, 33-45 The Centreway
Blackburn Road, Mt. Waverley, Vic 3149 Tel 03-233 9227

(OVERSEAS PRICES ON APPLICATION TO ABOVE
ADDRESS)

