——IHE__ -
AMallAL

Issue No. 8 $3.00 U s E R September 1985

® EIGHT PAGE SOFTWARE REVIEW SUPPLEMEN T
® GRAPH PLOTTING & HOME BUDGET PROGRAMS
® SPEECH SYNTHESISER & PRINTER REVIEW

® USER GROUP INFORMATION

FOR THE NOVICE & EXPERIENCED USER

Registered by Australia Post — Publication No VBP7017

Have you really discovered
your Amstrad yet?

Want to get down to the nitty-gritty and start
to see what you can really do with your
Amstrad computer?

The following items are now in stock:

NEW Joysticks JY-2
Blank Discs CF-2
Dot Matrix Printer: 100 cps SP-1000
Colour Printer GP-700
Speech Synthesiser SSA-1
Light Pen | LP-1

RS232 Interface (available soon)
Keyboard Covers for CPC464
Starter Kits

Available from your Amstrad dealer

___THE__

AMGIRA

—USER

Issue No. 8

September 1985

CONTENTS

Editorial
Letters « o « o o o o o o o o o o
Graph Plotter ;

The Trials of Tony Blakemore PR . ..
Machine Code: Part Three ..

The Learning Centre -
Music - a preview of the next
User Group Information . . .

°.11
13
14

Learning Centre . . .

8 Page SUPPLEMENT OF SOF TWARE REVIEWS

Home Budget Program

Review of the SP-1000 Prmter e e o R A

Disc/Joystick Utility . - &

Speech Synthesiser Revnew s o kow EEE s W
New Book Review . . « v ¢ v v v v v 0 v v v o v v o

Maniac Mower - a game . . .

Sorting Methods ¢ oo v v v vt

. 16
20
22

. 26
. 27

. .28
. 31

For Tape Subscribers, the programs/routines can be found at these approximate counter readings:

Side 1 - Grafload: 2, Grafplot: 14, Noteplay: 58, Budget: 69, T.Bas: 110

Side 2 - Mower: 2

All enquiries and contacts concerning this Publication
should be made to The Amstrad User, Shop 2, 33 The
Centreway, Blackburn Road, Mt. Waverley, Victoria 3149,
Australia. [Telephone: (03) 232 7055].

The Amstrad User is published each month by Strategy
Publications. Reprinting of articles in The Amstrad User is
strictly forbidden without written permission. All rights
reserved. Copyright 1985 by Strategy Publications.

The single copy price of $3.00 is the recommended retail
price only. The subscription rate (for Australia only) is
$30.00 for 12 issues of the magazine only, or $70.00 for 12
issues of the magazine plus tape containing all programs

appearing in that issue. Postage is included in the above
prices. Overseas prices available upon application.

Please note that whilst every effort is made to ensure the
accuracy of all features and listings herein, we cannot accept
any liability whatsoever for any mistakes or misprints.

Contributions are welcome from readers or other interested
parties. In most circumstances the following payments will
apply to published material: Letters-$5.00, Cartoons-$5.00
and a rate of $10.00 per page for programs, articles etc.

Contributions will not be returned unless specifically
requested coupled with suitable stamped and addressed padded
bag (for tapes) or envelope.

2530 to 3060 on

G'day
failed to notice the duplicated lines

Hands up all those people who
month. Not 100 many hope!

r on the front of
has

printe
his printer whic
o pick up on th

e
ming available- you'll also

chosen t0 n
(s will be p

Letters

I am sure that there are many people
who have managed to reach a score that
was a personal best, yet find certain
games so easy that it is a bore. Then
there are others who spend countless
hours early in the morning tearing their
hair out in complete frustration because
they can't get passed a certain stage in a
game.

The point I am making is why don't
you devote one page in The Amstrad
User for top scores and hints on play. I
am sure that this would be beneficial to
many.

Just to get the ball rolling I scored
14,685 on Electro Freddy. My hints for
play are:

1. On the first two levels, get as many
points as possible by eating pies and
bumping your uncle.

2. On the third level, only bump your
uncle when he is near and try to eat all
the pies.

3. On the fourth level the game starts
to get difficult - only bump your uncle
when he is directly above or below,
don't chase him! Only eat the pies
when you are in the top right-hand
corner.

4. Good luck!

Nathan Yim,Victoria

We have received a number of requests
along the same lines as above.
Cognisant of these demands we will
include an ‘Amstrad Achievers’ column
next month if enough gamesters
respond. A form appears in a later page
of this issue to record your score. To
avoid cheating, the score must be
witnessed or, even better, shown on a
photograph. And you will need to be
quick to make the next issue - we
require any scores by the end of the first

week of the month prior to publication
to ensure inclusion. (If Nathan would
like to supply his full address, we can
organise a payment of $5 for this
letter).

Since my last letter I am continuing
to find bugs in the Locomotive Basic.
This time it is the CHAIN command
which causes the computer to get hung
up if an array is DIMensioned and
ERASEd. Try SAVing the following
two trivial programs, the first of which
loads the second.

PROG1.BAS
10 z=n1(6)
20 CHAIN"!PROG2.BAS"

PROG2.BAS
10 DIM X(200)
20 PRINT"start"
30 ERASE X
40 PRINT"finish"

RUN" the first and leave the play key
depressed so the second can be
CHAINed. The computer will get hung
up at line 30 in PROG2 and must be
reset. If the following line is added to
PROG1:

15 ERASE nl

then PROG2 will execute to
completion. However in a more
complex program PROG2 will
eventually get hung up again. Does
anyone have a solution?

Is there a list of bugs in Locomotive
Basic available from AWA or Amsoft
that we can get access to without
having to spend hours finding out the
hard way? Could I suggest that this
magazine devote a page to such bugs

and their solutions as a service to
readers. This should be reprinted every
issue and added to as more problems are
encountered and hopefully solved.

And what about the obvious bug of
being unable to merge Basic files on
disc?

B.M. Chapman, Valley Hts.,NSW

To our knowledge, no list of bugs in
Locomotive Basic exists in Australia
but we are taking up the point with
AWA. Your request for a page to be
devoted to informing readers of bugs
past and present would be an overkill at
the moment as we are happy to publish
letters as and when the problems occur.
Nevertheless, we will continue to
monitor the situation.

I have just purchased the Amsword
Word Processing program. As there are
a few commands that I do not
understand and they are not covered in
the instruction book, I wondered if you
could help me with them. The Tasprint
options are:

(V) Lectura Light
(W) Median

X) Compacta
(Y) Datarun

(Z) Palace Script

In the March edition of The Amstrad
User there is a review on the DDI-1. It
states that a second or backup drive can
be a 5.25" and with CP/M this makes
it compatible with most other micro
computers as so many of them use the
larger disc. I rang AWA in Sydney and
was told that a larger drive could not be
used unless costly modifications were
carried out. Could you clarify this for
me? C.W. Hall, Newcastle, NSW

The Amstrad User 3

Amsword will print in a type style or
font which is dictated by the printer
being used. To print in other styles, it
is necessary to have an extra piece of
software, like Tasprint. The ‘commands’
you mention are the different styles
which can be obtained using a dot
matrix printer and Tasprint. (See
example on this page).

On your other point, many users have
managed, quite successfully, to use a
5.25 inch disc as a second disc drive.
We are aware of a third party who
intends releasing this type of drive for
the Amstrad, and will notify readers
when this happens.

Amstrad Cordon Bleu

Somewhere between my submission

of the program "Recipe" and its
publication in the August issue of The
Amstrad User, someone has done a
RENUM with the result that the
accompanying text does not match the
program line numbers. The line
numbers for the program modules
should be:

10 to 60 Preface

80 to 600 Subroutines Area

610 to 2000 Main Prog. Area

700 Command 1: Add

1040 Command 2: Search

1370 Command 3: Display

1850 Command 4: Modify

2030 to 2370 Definition of
variables

2380 to 2440 Initialisation of

all indexes

Section 4 of the STARTING UP
paragraph needs to be altered to read
"GOTO 2390" and section 6 should read
"REM-out lines 2390 to 2430".

Sorry about the confusion, but I take
it as a lesson learned (hopefully other
program submitters will take note
also!) that software intended for manual
user input needs to be arranged so that
auto-line numbering can be used.

By the way, we recently had the
fortunate experience of being asked the
recipe of a certain dish during a dinner

4 The Amstrad User

AMSTRAD ACHIEVERS

Get your name in our "HALL OF FAME"

In the next month or so we will publish proven high
scores for games or adventures which have been
achieved on an Amtrad computer. Register your name
and score on the form below, and, if possible, send a

Telephone Number

Occupation

Amstrad Achievers, The Amstrad U

photograph to put doubt out of everyone's mind!

| confirm that the above claimed score is accurate and genuine

Post this form along with your tips for playing the game to:

ser, Shop 2, 33 The Centreway,

Blackburn Road, Mt. Waverley, Victoria 3149.

oF
OF
OF
Gy
oF

“AMPLE
EXAMPLE
EXAMPLE
E=ALPLE
EXAMFIE

FRIMTOUT
PRINTOUT
PRINTOUT
PRl diGuy
FPRITMITOUT

#%_ECTURA LIGHT#®#%
XEMED I AN**x
WECOMPACT Aok
#x0ATA RULi=*
##FILOYE BCRIFT#%

party. Boy, did we impress 'em! Good
old Ami.
AM. Urankar, Eltham, Vic

Yes, someone ‘very kindly’ did a
RENUM of the program before it was
printed for the magazine, but after the

narrative had been typeset! Mr. Urankar
is not the only one who has learnt a
lesson. He makes the valid point that
programs submitted for publication
should be RENUMbered to take
advantage of the AUTO function.

Graph Plotter

by Peter Campbell

FUN MATHEMATICS
If maths was not your forte at school,
you may be inclined to mutter
somewhat unkindly about that heading
and who is to blame you. Nonetheless,
fun can be had with mathematics. That
is the theme of the book, "Fun
Mathematics on your Microcomputer”,
by Czes Kosniowski (Cambridge
University Press, Cambridge, 1983,
ISBN 0 521 27451 6). I bought the
book a while back and while delving
into its pages came upon the author's
program for plotting graphs.

To quote the author: "The BASIC on
computers varies from one machine to
another and writing a general program
is quite hard. When it comes to a
graphics program the situation is
almost impossible." He therefore
presents three versions. One for
computers which understand an
implementation of Microsoft BASIC
(with hints for conversion), one for the
Vic 20 and one for the Sinclair
Spectrum.

"Well", thought I, "I can get that up
and running on my Amstrad" and
embarked on the project. It did not take
long to realise that the program was, of
necessity, written to suit the lowest
common denominator (and very
common it seems to be too!) A few
pages on and he was at it again, writing
programs to plot polar graphs.

It soon occurred to me that one
program could be written to plot both
types of programs, using the CPC464's
superior graphics and BASIC. From
that moment on the program took on a
life of its own, but I must thank
Kosniowski for the inspiration.

DESCARTES VS THE POLE

No it's not the bill for World

Championship Wrestling! There are
two ways of plotting a graph. The first,
attributed to Descartes, uses a
horizontal and a vertical axis. Any
point on a flat surface (plane) can be
described in terms of measurements
along these axes with just a pair of
numbers (X,y), x is measured from left
to right along the horizontal axis and y
is measured vertically upwards.
Negative numbers are measured in the
opposite direction. The pair (x,y) are
called co-ordinates, or cartesian
co-ordinates.

The second method of locating a point
in our plane is by means of polar
co-ordinates. Here we have only one
axis, with a point on it called the pole.
Our point is now represented by a pair
of numbers (r,z), where r is the distance
to the pole and z is the angle, measured
anticlockwise, between the axis and a
line from the pole to this point.
Confused? Good, because there is a
little more to come when we get to
plotting our graphs.

FUNCTIONS

I certainly hope it does! Actually the
word, function, is used to describe
expressions, such as y=x+1, y=sin(x),
and r=sin(z), and we say that y is a
function of x. In Locomotive BASIC
there is a method of DEfining a
FuNction for later use in a program.

A function which involves polar
co-ordinates is called a polar function
(and you thought it was a mid-winter
celebration in Antarctica!)

GRAPHS

The interesting part of functions is not
all the boring theory, which I have kept
as short as possible, but the graphs that
we can draw from them. A simple way
to see the difference between cartesian

and polar co-ordinates is to plot the
graphs of the similar functions, x=1 and
r=1. The first produces a straight line
parallel to the x axis, but one unit
(measured on the y axis) above it. The
axis itself is x=0. Ah, but r=1 produces
a circle!

To add even further convolutions to
our polar graphs, we can multiply the
angle z by a factor, say d, and I have
made provision in the program to do
just that.

A couple of things that
microcomputers do not like when it
comes to calculating the value of
functions are division by zero and very
large numbers. In the program I have
tried to circumvent Arnold's protests by
the use of a number of statements to
which the program is diverted by ON
ERROR GOTO. If you have the
misfortune to discover a circumstance I
missed, add another suitable statement
after line 2350 and let us all know what
was required, please!

There is one "bug" in the program. In
graphs of functions like 1/x"2 the graph
disappears into the wild blue yonder and
then re-emerges almost directly
opposite. What is happening, of course,
is that division by zero is approached,
giving the function a value too large to
be plotted. After the point of division
by zero is passed, the value of the
expression, whilst still large, becomes
opposite in sign. The vertical line at
the point of division by zero, which the
graph approaches but never touches
within a finite distance, is called an
asymptote and Arnold cheerfully draws
it in, if you use the D option. In any
one graph, it is quite easy to write a
statement to prevent this. For example:

175 IF abs(v)>=250 THEN PLOT

The Amstrad User 5§

u,v,1:goto 200

will prevent it happening in equation
1. However, the dysfunctional
consequence (I spent years studying the
jargon - I've got to use it on someone!)
is that other graphs will be interfered
with. If anyone comes up with a
general expression that appears to work
in all cases, please let me know! Of
course the "if" statement in line 175
could be altered so that it only applies
to equation 1, but what happens then if
I make equation 5: 1/(x3-1)?

HOW IT WORKS

Listing 1 is a loader screen, which not
only gives you something to look at
while the main program (listing 2) is
loading, but also shows off just a
couple of the CPC464's graphic
features. These are the ability to change
the colours on the screen and the ability
to mix text and graphics by printing
text at the graphic cursor position.

LINES 250-310: Initialise the screen
setting all four inks to black and
defining the windows used.

LINES 350-390: Set the transparent
mode and origin for the text "plotting".

LINES 40-170: Complete the screen
and turn off the transparent mode.

LINE 210: Loads and runs the main
program.

Main Program

LINES 2310-2340: Error handling.

LINE 60: Call &BB4E initialises the
text VDU in the same way as a "cold
start". This clears the loader screen
when first encountered and the graph
drawing screen when you elect to have
"Another Go" (line 1590 on). Call
&BBO3 resets and clears the keyboard
buffer.

LINES 1700-1730: Initialise the first
screen, setting paper and pen to blue
and assigning values to key variables.

LINES 1770-1960: The first screen
displays a brief explanation of the
program and invites the user to choose
mode and type of graph. Note line
1960, which ensures that the keyboard
buffer is clear before proceeding, could
be replaced with call &BBO03.

LINE 80: Branches to the information
screen for the chosen type of graph.

LINES 590-770: The second screen

6 The Amstrad User

lists the 8 graphs which can be plotted.
If amending the program to include
your own choice of functions,
substitute your choice for one of the 8.

LINES 780-790: These subroutines
enable the user to select one of the
functions, assess the appropriate scale
for the screen plot. plot the graph and
finally invite the user to have another
£0.

LINES 830-970: The third screen
performs the equivalent functions for
polar graphs. This time there are 7
choices. :

LINES 980-990: These subroutines
enable the user to make a choice not
only of function, but also the five
constants a,b,c,d and e, which are added
into and/or multiplied by the elements
of the various functions and, as
mentioned, used to vary the angle z. By
varying these, equation 2's simple circle
becomes a familiar logo. (Try a=0, b=0,
¢=0, d=1 and e=3). They also assess the
correct scale, plot the graph and invite
the user to continue.

Other lines of interest are lines 1080
and 1220 which select the appropriate
definition for the function from lines
1360-1570. The latter are where you
make your other sustitution if using the
program to plot a graph of your own
choice.

With the polar graphs you have a
choice of plotting or drawing (lines
2220 on), but for the other graphs you
have a third choice, that of shading in
the area below the graph (lines 2090
on).

VARIABLES USED

Loader Program

i: Control variable in the for.... next
loop.

title: String variable from which the
title is sliced a letter at a time using p.
Note that both are predefined as string
variables in line 250.

Main Program

T,Z,X,XX,y,yYY,u,v: The first six are
used in the functions from which the
graphs are plotted, whilst u and v are
used for the points to be plotted.

a,b: Used firstly as the lower and
upper limits of the range which is to be
plotted for ordinary graphs. For polar

graphs a,b,c,d and e are used as
explained earlier.

m: Calculated by sampling the
function at various points. Used to
scale the graph to the screen.

st: Step variable in for......
loops.

dgs: Number of degrees being plotted
in polar graphs.

p$: Required option from (p)lot,
(d)raw or s(hade).

n,n$: Equation number.

keystr$: The choice of equation
numbers. (An alternative approach to
coding the choices would have been ON
n GOSUB).

gsb: Used for the selection of graph
type.

HINTS:

The program will plot any range of
values of x in the ordinary graphs. Try
-50 to 50, -10 to 10, -2 to 2 and -1 to
L. If any of these ranges give a hint of
an interesting area of the graph, zero in
on it, by choosing the appropriate
range.

With the polar graphs an almost
infinite variety of patterns can be
created. Try the so-called standard plot.
Then try a=1, b=1, c=1, d=1 and e=1.
(Why doesn't that give a graph in the
case of function 7? If you apply a little
algebra, you will see that the variable,
z, is eliminated, leaving nothing to
graph!). A third choice is a=2, b=2,
¢=3, d=4 and e=1 and finally try a=2,
b=2, c=3.1, d=3 and e=3. By the time
you have tried all of those, you will
have an idea of the effect of changing
these numbers. Then do some
experimenting.

Use AUTO when typing the program
in. To make it more compact, type
<ENTER> instead of the REM and '
lines. These lines will then be omitted,
eliminating more than 50 lines. Also
omit the spaces used to indent
wrap-around lines.

If the graph seems to get "stuck”, a
touch of the ESC key will jump you.
forward to the "Another Go?" option.

Have fun!

1a
20
3a
40
S0
60
70
80
70

10a
110

120
130
140
150
160
170

REM *k*xkkkkkkk GRAFLOAD ***kkkkkdkk*
t]
GOSUB 250:GOSUB 350
FOR i=1 TO 340 STEP 35
MOVE 130,110
DRAW 180+180*SINCi), 100+100%C0S¢1),3
PLOT 180+180%SIN(i), 105+105%C08(i),0
PRINT CHR$(143) i :NEXT i
FOR i=420 TO 40 STEP-20
p=MID$(title, i/20, 1)
PLOT 180+180*SINCI),
105+105*C0S(i), |
IF NOT p="" THEN PRINT p;
NEXT i:TAGOFF:PEN 1:LOCATE 12,12
PRINT CHR$(144) ;CHR$(128);
PRINT "The Amstrad User"
LOCATE 16, 12:PRINT"1985"
PRINT CHR$(22) ;CHR$(0);

1ga !

190

REM ***%%*x* Load Grafplot #xkkkkk*

200 ¢

210
220
230

RUN"!grafplot®
5

REM #dkkkkk** Initialise kkkdskkdors

240

250
260
27a
280
290
300
310
320
330
340
330
340
370
380
370

DEF INT i:DEFSTR p,t:MODE 1
INK 0,0:INK 1,0:INK 2,0:INK 3,0
PEN#0, 0:PAPERH0, 1:CLS#0:EORDER S
WINDOW# 1, 2,39, 2, 24: PAPER# 1, 3:CLS#1
WINDOW42, 5, 34, 4, 22: PAPER#Z, 0:CLSH#2
WINDOW#3, &, 35,5, 21: PAPER#3, 2:CLS#3
RETURN

3

REM *#%%%%% Prepare Screen ¥¥kkxix
3

ING 1,241 INK 2,143 INK 3,7
PRINT CHR$(22) ;CHR$(1);
DEG:ORIGIN 130, 105:TAG

title=" # RETTOLP * GRAPH "
RETURN

10
20
30

40
S0
60
70
80

20

100
110
120
130

140
150
160
170
180

190
200
210
220
230
240
230
260
270
280
290
300

310

320
330
340
350
340
370

380
390
400
410
420
430
440
450
440
470

480

Y ok ok K ok ok ok ok ok ok kK ok ok sk Aok ok k kR kok ok ok ok kR ok kK ¥
¥k GRAPH PLOTTER *kkxk
5 oo ok o o oo o oo o o o o oo o o ok ok o kK ok Kok
5
ON ERROR GOTO Z310
CALL &BB4E:CALL &BBO3
GOsSUB 1700:GOSUE 1770
IF gsb=1 THEN GOSUB 830
ELSE GOSUB 590
]
REM s***#xt4%% Plot
3
MODE mde:y=FNa(x)ix=a-st
PLOT é30%(x-a)/(b-a),
1954195%FNa(x) /m
FOR x=a TO b STEP st
IF INKEY(&&)=0 THEN x=biGOTO 1430
y=FNza (x)
u=430% (z-a) /{b-a) tv=195+195*y/m
IF p$="p" THEN PLOT u,v,1
ELSE DRAW u, v, 1
IF p¥="s" THEN DRAW u,-v, 1
NEXT x:iRETUEN

REM
3
r=ABS (FNa (0}) :MODE mde
st=%/(atbtc+d+e)
IF st>1 THEN st=1
IF ¢t<0.25 THEN st=0.25
dgs=180/ct
IF dg=<{3%0 THEN dgs=3%0
IF NOT IMNTCa)+INTC(bY +INTCC) +INT(d) +
INT(e)=at+bt+c+d+e THEN dgs=3400:
st=2#ctim=1.25%m
PLOT xx+yy*COS(0) *r/m,

wy ey xS INCO) *1/m
FOR z=0 TO dgs STEP st
IF INKEY(&&)=0 THEN z=dgs:GOTO 1430
r=ABS(FNa(z))
u=xxtyy*COS(d*z) #1/m
v=yy+yykSINC(e*z) ¥r/m
IF p%="d" THEN DRAW u,v,1

EISSEREE By vyl

NEXT z:RETURN

5

REM
3
y=FNa(x)ist=(b-a)/S00:RAD

IF b-a>10 THEN st=(b-a)/1000
IF b-a{Z THEN st=(b-a)/5000
FOR x=a TO b STEP stx*5

m=MAX (m, y, ABS (FNa (x+2.5*st)))
IF m>30000 THEN m=75

NEXT x:RETURN

Graph *¥¥kkkkk

**4%%% Plot Polar Graph *¥#%x%%

¥kk4% flscess Graph Scale ##kxx

The Amstrad User 7

490
a00
310
Sz
330
940
950
940
S70
380
570
600
610
620
630
640
650
660
670
4680
690
700
710
720
730
740
750
740
770
780
770
800
810
820
830
840
850
860
870
880
870
200
?10
920
30
240
950
260
£ivs
270
980
990

PR
REM
s
DEG: r=RES (FNa(2z))

FOR z=0 TO 340 STEP 5

m=MAX (m, AES (FNa (z)), FNa (z+3))
NEXT z:RETURN

]

kH¥kkx fscsess Folar Scale *kk*x

REM **##%%% Graph Functions ##¥¥%xx
]

INK 1,1:CLS:LOCATE 21,2
PRINT'GRAPH PLOTTING G
WINDOWHO,4,78,2,24

LOCATE 1,4

PRINT"1. y=1/(x*2-1)"

LOCATE 40,4

PRINT®2, w=x¥sin(1/(x*3))"

LOCRTE 1,4

PRINT"3., y=sqr{(x*2+2)

LOCATE 40,46

PRINT"4. y=cos(x+exp(-x/5)"°
LOCATE 1,8

PRINT"S. y=6+2%x*2-x*4"

LOCATE 40,8

PRINT"S., y=sqr(x*Z+2)#*sin(x)"
LOCATE 1,10

PRINT"?. y=x*sin(1/x)#*sin(1/x)"
LOCATE 40,10

PRINT"8. y=sin(x/log(abs(x)+1.1))"
INK 1,24:G0SUB 1030:G0SUB 420
GOSUE 120:GOSUB 1810:RETURN

]

REM *%%#%%%% Polar Functions **¥*k*x%

]

INK 1, 1:CLS:LOCATE 21,2

PRINT"P O L AR GRAPHS"

WINDOWHO, 5, 78,2, 24

LOCATE 1,4:PRINT"1. r=atn(z)"

LOCATE 25,4:PRINT"2. r=1°"

LOCATE 44,4:PRINT"3. r=at+sin(b*z)"

LOCATE 1,6

PRINT*4, r=a*cos(c*z)+b*sin(c*z)"

LOCATE 33,4

FRINT"S. r=a+b*cos(c*z)+c*sin(cxz)"

LOCATE 1,8

PRINT"&. r=a+b*sin(c*z)+a*cos(b*z)"

LOCATE 33,8

PRINT
r=sin{z-z*a)*cos(z-z*b)*sin{z-z*c)
INK 1,24

LOCATE 1,10:G0SUB 1180:G0SUB 520

GOSUB 240:G0SUB 1610:RETURN

8 The Amstrad User

1000
1G10
1020
1430
1040
1050
1060
107G

1080

1070
1100
f110
f1za
1130

1140
1150
1140
1170
1180
1194
1200
1210

1220

1230
1240
1250
1250
1270
1280
1250
1300
1210
1320
1330
1340
1350
1340
1370
1380
1390
1400
1410
1420
1430
1440
1430
1460

REM ##% Graph Plot Parameters #x*%
]

Keystr3="12345478"

LOCATE 1,12

INFUT "ENTER EQUATION NCO. *,n$
n=VAL(n¥)

IF NOT n=INT(n)ORC(n<{i OR n>8) THEN

LOCRTE 1, 12:PRINT"EQUATIONS ARE *;
"{ - 8 ONLY!"jSPC(135):GOTO 1050
ON INSTR(Keystr$, n$)GOSUB 1340,
1270, 1280, 1370, 1400, 1410, 1430, 1450
LOCATE 1, 14

FRINT"VALUES OF x FOR PLOT®

LOCATE 1, 146: INPUT"LOWEST VALUE";a
LOCATE 40, 1&: INPUT"HIGHEST" b

IF NOT b>a THEN LOCATE 1, 18:PRINT
"Evror - Try again please!":LOCATE
1, 14:60TC 1090

GOSUB 2090:G0SUEB 2000:RETURN

REM #**%*%* Polar Parameters #**xx*xx*
3
Keystr$="1234567"
INPUT"EQUATION NO.
n=VAL (n$¥>

IF NOT n=INT(n)OR(n<{1 OR n>7) THEN
LOCATE 1, 10:PRINT"EQUATIONS ARE *j
"{ - 7 ONLY!"3;SPC(14):60T0 1190

ON INSTR(keystr$, n$) GOSUB 1470,
1480, 1490, 1500, 1520, 1540, 1540
LOCATE 1, 12:PRINT"STANDARD FPLOT";
PRINT®: a=0, b=1,c=5,d=1,e=1"
LOCATE 1, 14: INPUT; "VALUE OF a"ja
LOCATE 25, 14: INPUT; "VALUE OF b"ib
LOCATE 45, 14: INPUT; "VALUE OF c"jc
LOCATE 1, 14: INPUT; "VALUE OF d";d
LOCATE 45, 16: INPUT"VALUE OF e"je
GOSUB 2220:G0SUB 2000
tim=TIME:WHILE TIMECtim+&400:WEND
RETURN

¥

"y 0%

REM *x*%%x% Define Functions *#%*%x*
)

DEF
DEF
DEF

DEF

FNa{x)=1/(x*x-1) iRETURN
FNa(x)=x*SIN(1/(x*x*x)) :RETURN
FNa (x)=S0R(x*x+2) :RETURN
FNa(x)=COS{x*EXP(-x/5)) tRETURN
DEF FNa(x)=4+2%x*x—x*x*x*x:RETURN
DEF FNa(x)=SAR{(x*x+2) *SIN(x)
RETURN

DEF FNa(x)=x*SIN({/x)*SINC(1/x)
RETURN

DEF FNa(x)=SIN(x/LOG(ABS(x)+1.1)
RETURN

1470
1480
1450
1500
1510
1520
1530
15340
1550
1540

1570
1580
13%0
1600
1610
1620
1630
1640

1650
1640
1670
1680
1620
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900

1910
1920
1930
1940

1950

DEF FNa(z)=ATN{z) tRETURN *'""

DEF FNa(z)=1:RETURN

DEF FNa(z)=a+SIN(b*z) :RETURN

DEF FNa(z)=a*C0OS(c*z)+b*SIN(c*z)
RETURN

DEF FNa(z)=a+b*COS(c*z)+c*SIN(c*z)
RETURN

DEF FNa(z)=a+b*SIN(c*z)+a*C05{b*z)
RETURN

DEF FNa(z)=SIN(z-z*a)*C0S(z-z*b)*
SIN(z-z*C)

RETURN

REM #%#%%xkk%%* Another Go *k¥*kkkk*k#
¥

LOCATE !, 1iFRINT"*";

WHILE INKEY(47)=-1:WEND

FRINT" ANOTHER GO? Y OR N"

IF INKEY(43)=—1 AND INKEY(44)=-1
THEN 1640

IF INKEY(43)>=0 THEN &40

CALL &BEQ3:MODE 2:CLS:END

¥

REM #xkkkk¥%% [nitialise *kkkkkkk*
3

INK 0, 1:INK !, 1:MODE 2Z:BORDER 1
CLS:ORIGIN 0,0:INK 2,1 INK 3,1
m=0.001:xx=318:yy=1981x=21y=2
RETURN

b

REM

3

WINDOW# L, 1, 80,

WINDOWHO, 3, 78,

PEN 1:LOCATE 2

PRINT'G R A P

LOCATE 1,6

PRINT" THIS PROGRAM PLOTS AND *;

PRINT"DRAWS GRAPHS OF ";

PRINT"ORD INARY AND POLAR *;

PRINT*FUNCTIONS. ":PRINT

PRINT" GRAPHS MAY BE DRAWN IN *;

PRINT"MODES 0,1 OR 2°

LOCATE 1, 11:INK 1,24

INPUT" ENTER MODE REQUIRED:

IF (mde<0 OR mde>2) OR

NOT INT(mde)=mde THEN INK 1,1:

6OTO 1770

LOCATE 1,13

PRINT" DO YOU WANT POLAR GRAPHS®;

PRINT® - Y OR N?*

WHILE INKEY(43)=-1 AND
INKEY (46) =1 1 WEND

IF INKEY(43)=0 THEN gsb=1

ELSE gsb=2

xkkkkxkk Set Up Menu *kkktdks

1, 25:PAPER#1, 1:CLS#1
2, 24:PAPER#0, 0:CLS#0
1,3
H

PLOTTER"

", mde

1940
1970
1¢&0
1990
2000
2010
2020
2030
z2040
2050
2040
ZO70
2080
z09d
z21oa
21140
2120
2130
z2140
2150
2160

P,
21790

B2 P FY RO R R RN
[SSCI S I SUR NG T S T 2%, JSSOeY
[I o I N R e B R e ¢
o I s I o B o Y e Y o Y o QO e }

[2]
b

[N
)

LRI S o B T I N0 T S I S
[o B]

O Q) G L) R P B

L L0 N e O QO

O T

WHILE INKEY$<>"":WEND:RETURN

yE W

REM *#% Scale Acsessment Pauze **%
b}

FRINT"PREFARING GRAFH - *;

PRINT'"F LEARASE WAIT"
FRINT"A * WILL IMDICATE *;
PRINT"COMPLETICON OF GRAPH ";
FRINT"THEN PRESS {SPACE> ";
PRINT“TO CONTINUE":RETURN

3

FEM *%% Draw/Plot/Shade Choice ***
3

FRINT

PRINT"Use PLOT for *;

FRINT"the most accurate result!”

PRINT

FRINT"PLOT, DRAW, OR SHADE - ";

PRINT*P, D, OR S7*"

PRINT

WHILE INKEY(Z7)=-1 AND
AND INKEY(&1)=-1:WEND

IF INKEY(Z7>=0 THEN p%="p"ELSE

IF INKEY(é1)=0 THEN p%$="d"ELSE

p$=85 3

WHILE INKEY${>"":WEND:RETURN

b

KEM **% Folar Draw/Flot Choice **%

3

PRINT

FRINT"PLOT OR DRAMW - P OR D?*

PRINT

MHILE INKEY(27)=-1 AND
INKEY(&1)==1:KEND

IF INKEY(Z27)>=0 THEN p$="p"ELSE

IF INKEY(é1)>=0 THEN p$=*d*"

WHILE INKEY${>"":WEND:RETURN

]

INKEY(40)=-1

REM #*%¥x% Error Frocessing xkkksx
5

IF ABS(x){1E-15 THEN x=x+st

IF u>30000 THEN u=0.95%u

IF v>30000 THEN v={, 5%y

RESUME NEXT

Y\

The Amstrad User 9

The Trials of Tony Blakemore

A Column for the absolute beginner

Having learnt how to drive your friends crazy by redefining
the characters on the keyboard, this month we will move on
to graphic characters. The basics are exactly the same as
changing the B to an A as we did last month. Take a piece of
graph paper and mark off an eight by eight grid. The
character we are going to design is an aerial representation of
aracing car.

128 64 32 16 8 4 2 |

The symbol will be CHR$(201). Count the first row - it is
blank so has a value of zero. The second row should come to
231, the third another zero, the fourth and fifth rows are the
same with values of 255 and the last three are zero, 231 and
zero respectively.

The coding to change the character CHR$(201) from a
double slash to a car is:

10 SYMBOL AFTER 200
20 SYMBOL 201,0,231,0,255,255,0,231,0
30 PRINT CHR$(201)

Now we have a car and nowhere to go. Listed below is a
simple program to display and race six cars. All sections
have remarks (') to explain what is happening, and though
very simple, illustrates the ability of the Amstrad to produce
animation with the minimum amount of programming.

10 'Define variables as whole numbers

20 (integers) - this speeds up all the loops
30 and makes the cars go faster.

40 Define CHR$(201) as a car.

50 '

60 DEFINT A-Z:MODE 1

70 SYMBOL AFTER 200

10 The Amstrad User

80 SYMBOL 201,0,231,0,255,255,0,231,0

90 '

100 'Print numbers and the finish line

110 'Set start location of the cars

120 '

130 FOR NUMBER=1 TO 6:PEN 2

140 LOCATE 5,NUMBER+NUMBER:PRINT NUMBER
150 X(NUMBER)=7:NEXT

160 FOR NUMBER=1 TO 6

170 LOCATE 35,NUMBER+NUMBER:PRINT "|"
180 NEXT:PEN 1

190 '

200 'Print title

210 '

220 LOCATE 11,14

230 PEN 3:PRINT"AMSTRAD CAR RACES":PEN 1
240

250 'Print car at random location

260 'Check for first car finished

270 '

280 FOR NUMBER=1 TO 6

290 LOCATE X(NUMBER),NUMBER+NUMBER
300 PRINT " ";CHR$(201)

310 IF X(NUMBER)=34 AND Y=0 THEN Y=NUMBER
320 CAR=INT(RND*2+1)

330 IF CAR=1 THEN X(NUMBER)=X(NUMBER)+1
340 NEXT

350 IF Y=0 THEN 280

360 '

370 "Print winner and check for another game

380 '

390 'LOCATE 14,16:PEN 2

400 PRINT"NUMBER";Y;"WINS";CHR$(7):PEN 1
410 LOCATE 12,18:PEN 3

420 PRINT"ANOTHER RACE Y/N?":PEN 1

430 I$=UPPER$(INKEY$):IF I$="" THEN 430

440 TF I$="Y" THEN RUN

450 END

The remark symbol (') is the shifted 7. All remark lines can
be removed if you wish and are only there to explain how the
program works. Next month we will look at more
complicated characters and delve a little deeper into
animation.

The Learning Centre

An Introduction to Machine Code - Part Three
by Shane Kelly

What we will do now is to develop a general purpose
routine for passing parameters to a M/C routine that is
placed in a reserved area of memory. Cast your mind back to
last month's article. In it was a BASIC program that
POKED a value into a known area of memory and then a
subroutine picked up that value and manipulated it, and

finally displayed the result. Analysing theese concepts we

find that :-

a) The parameter was put in a known place.

b) The manipulating routine picked it up from the know
place.

¢) The second routine stored it (in that case, to the
screen).

So, our general purpose routine will follow along these
lines. We will set up a byte of memory for each of our
registers (including the FLAG register) in an area set aside
for that purpose. We will make this area known to our
machine code routine so that all registers may be loaded and
all results passed back to our BASIC program.

To set aside the memory type:-

PRINT HIMEM: MEMORY HIMEM-1024:
AREG=HIMEM+1: PRINT AREG

Take note of the value of AREG. It will form the base of
our 'known register area'. Use the above as the first line of
any BASIC program that uses this method of passing
parameters. The second line is as follows:-

FREG=AREG+1: CREG=AREG+2: BREG=AREG+3:
EREG=AREG+4: DREG=AREG+5: LREG=AREG+6:
HREG=AREG+7

You will note that the register areas are set up in reverse
order. This is because the Z80 expects the first place of data
in the lowest memory address and the most significant piece
of data in the next highest memory address. This means that
to load, say, the HL register pair, L (or Low register) is
loaded first from the Low byte address and then the Hi
register is loaded from the next Highest memory address.
(Why it is that way we need not concern ourselves). Now
follows the first part of any machine code routine that is to

be used if parameters need to be passed. I will present the
opcodes first, then the mnemonics followed by an
explanation.

DD 21 00 00 LD IX,0

DD 39 ADD IX,SP

31 00 00 LD SP,0

F1 POP AF

C1 POP BC

D1 POP DE

E1l POP HL

DD F9 LD SP,IX

CD FIRMWARE Call required firmware routine

Line one LOADS the IX register with zero. Line two
ADDS the contents of the STACK POINTER register to the
IX register. This is a normal method of saving the value of
the STACK POINTER without storing it in memory. IX
will now contain the value of the SP register. Line three
LOADS the SP register with zero. Line four is an opcode
that POPS out of memory a 16 bit value and places it into
the AF register. You may be wonderirng how the sytem
knows which area to take the data from in order to load into
the AF register pair. Bear with me and all will be revealed!
The following lines do the same for the other register pairs.
The next line puts the value held in the IX register into the
STACK POINTER register. You will remember that we
saved in the IX register the previous value of the STACK
POINTER register so it is now back as it was when we
entered our M/C routine. We are now able to call our
FIRMWARE ROUTINE knowing that all registers are set
up as required by POKING the required value into the
variable representing the register, namely: AREG,BREG etc.
Our FIRMWARE ROUTINE will return to the byte
following the high address byte of the firmware's address.
Now we will present the routine to pass back to BASIC the
values held in the registers when we return from our

CALLED FIRMWARE ROUTINE.
DD 21 00 00 LD IX,0
DD 39 ADD IX,SP
310000 LD SP,0
E§ PUSH HL
D5 PUSH DE

The Amstrad User 11

C5 PUSH BC

E5 PUSH AF
DD F9 LD SP,IX
(60) RETURN (TO BASIC)

You can see that it is very nearly the reverse of our routine
to load the registers. The PUSH opcode puts the values held
in the pushed registers into an area of memory 'pointed' to by
the STACK POINTER. You may still be wondering how
the system knows where to put the values that are returned
by our CALLED routine. The answer is that the BASIC
program supplies the addresses because, although they can be
in the same place for every program that will use CALLED
FIRMWARE routines, this could be inconvenient when
there is a need to move our M/C routine to a different area of
memory. So BASIC calculates the neccessary places for us
and POKES the values needed into our LOAD and SAVE
register routines.

Now we must set up some variables which are of great
importance for correctly interfacing of our BASIC program
and FIRMW ARE ROUTINE.

FIRMIN=HREG+3: PICKUP=FIRMIN+7:
DROP=FIRMIN+25

These variables are set to these values so that we may
easily tell the M/Code routine from where to POP the
register values and where to PUSH the returned values. The
SP register works like this: when a value is POPped from
the memory pointed to by the SP, then the SP is
automatically incremented by two. When values are PUSHed
into the memory area pointed to by the SP, the SP is
automatically decremented by two. Thus you can see how
our M/C routine will get the registers loaded as required. (if
you don't see, re-read this section and any other information
you have on the SP).

Now the following lines are to be incorporated into our
basic program:

POKE
PICKUP,VAL("&"+RIGHT$(HEX$(AREG),2)):POKE
PICKUP+1,VAL("&"+LEFT$(HEX$(AREG),2)):
POKE

DROP,VAL("&"+RIGHT$(HEX$(HREG),2)):

POKE

DROP+1,VAL("&"+LEFT$(HEX$(HREG),2))

Study this section until you are sure that you know what is
going on. It is not necessary to understand in intricate detail,
but the more you study the method of interfacing, the easier
it will be to use. It may seem that we can call only one
firmware routine with each set of the above routines. Not so!
We can call as many as we like merely by poking the
required addreses into the BASIC variable MCROUT which
is set up as above.

12 The Amstrad User

Let's now recap on the main points:

a) The basic routine reserves an area of high memory.

b) The general purpose PASS REGISTER and DROP
REGISTER ROUTINES are poked into it.

c¢) The basic variables are set up to allow us to tell the M/C
routine where to pick up its parameters and where to put the
returned values.

d) We poke the required values into our M/C routine using
BASIC.

e) We set up the address of the FIRMWARE ROUTINE to
be called.

10 MEMORY HIMEM-1024: AREG=HIMEM+1

20 FREG=AREG+1:
CREG=AREG+2:BREG=AREG+3:
EREG=AREG+4: DREG=AREG+5:
LREG=AREG+6: HREG=AREG+7

30 FIRMIN=HREG+3: PICKUP=FIRMIN+7:
DROP=FIRMIN+25: MCROUT=FIRMIN+16

40 FOR X=0 TO 33: READ A$: POKE
FIRMIN+X,VAL("&" +A$): NEXT

50 DATA DD,21,00,00,DD,39,31,00,00,F1,C1,
D1,E1, DD,F9,CD,00,00,DD,21,00,00,DD,39,31,
00,00,E5, D5,C5,F5,DD,F9,C9

60 POKE PICKUP,
VAL("&"+RIGHT$(HEX$(AREG),2)):
POKE PICKUP+1,
VAL("&"+LEFT$(HEX$(AREG),2)):
POKE DROP,
VAL("&"+RIGHT$(HEX$(HREG),2)):
POKE DROP+1,
VAL("&"+LEFT$(HEX$(AREG),2))

70 POKE MCROUT,&6E: POKE MCROUT+1,&BC:
"TURN ON CASSETTE FOR EXAMPLE

80 REM

" Both the Firmware Manual and 'The Ins and Outs' present
the address of the firmware routines with the high byte of the
address first followed by the low byte of the address.

Having used our firmware routine to do what we wanted, we
can now get any values that were returned by PEEKING the
appropriate register variable, e.g. PEEK HREG would return
any value left there by the firmware routine. NOTE that not
all firmware routines return valid data, so be sure to study
any EXIT CONDITIONS associated with your firmware
routine.

It was never the intention of these articles to teach you to
use specific FIRMWARE ROUTINES, but to give you a
method that is fairly painless to use and can be employed in
the majority of circumstances. Therefore I leave it up to you
to experiment with the above routines and hence to gain a
greater understanding of the workings of ARNOLD in
particular and computers in general.

Remember - experimentation is the first step to knowledge!

Music

A preview of next month's Learning Centre

Have you ever wanted to program music on your Amstrad,
but found that you can't read music? Or found, perhaps, that
you had forgotten how?

The latter was more my situation when I was showing off
my newly-acquired Amstrad to my nephew, last Christmas.
You see, it's about 37 years since I took a dislike to my
music teacher and refused to take any further lessons from
‘that man'! I might add I had not made much progress, only
being able to play a few scales and the simples of tunes.

What have these personal reminiscences to do with
programming music, you ask. Well, if I can do it, so can
you. It isn't necessary to be able to play an instrument, or to
be able to read music 'fluently'. As Arnold and the newcomer
(‘Fred'?) have only three voices, the music cannot contain
complex chords. All you need to be able to do is to decipher
musical notation and to translate the notes and their values
into the appropriate BASIC commands.

Of course, there are a few tricks to getting the best out of
Arnold's sound chip and so your esteemed Editor has come
up with the brilliant idea of a series of short articles on
music programming on the Amstrad. (The series in that
English magazine had nothing to do with it, despite what the
rumour mongers are suggesting!) Anyway, starting next
month (if I meet the deadlines, as promised) is all you need
to know to get started exploring this fascinating area of the
Amstrad computers' capabilities.

If you cannot wait until then, try this short program. It has
no frills and is not particularly user-friendly. What it does do,
however, is respond to the keys 'cdefgabCDEFGABH-""'
with two octaves of music, including FLATS (-) and
SHARPS (7). Pick out a tune and it will play it back and it
does not take all night to type the program in!

For something to play on this 'rudimenti synthesiza', try
the following and see if you can recognise the melody:

e f,9,2,0,C,a,q9,f,d,e,£,£,£,£,f,e,f,9,a,
a,a,g,a,b,C,a,9,£,4,4d4,4d4,%f,a,b,-,C,C,C,D,
a,f,a,9,9,9,9,9,e,f£,9,2,a,a,9,2,Db,C,a,
e, f,9,a,a,a,b,-,a,9,£,9,£,£, £,
F,r,FE,8E,D,C,D,C,a,f,£,£,C,D,
E,D,C,2,9,9,9,9,9.C,C,C,A,G,G,
£,f£,£,e,£,9,2,D0,C,a,9,f,d,e, £,

(That's the length of 142 notes; the '-' converts the

preceding note into 'b flat).

The program only accepts an input of one note at a time
and has no provision for correcting errors after <ENTER>. I
told you it wasn't user-friendly! Still, what do you expect of
873 bytes of BASIC?

[0 "#%%xx RUDIMENTARY NOTE-PLAYER #k%%x%
20 MODE 1:CLS:PEN 2:number=1

30 PRINT"CAPS LOCK for upper occtave.®

40 PRINT"Notes are *cdefgabCDEFGABH®*

S0 PRINT"Use’*?faor SHARF{'-'for FLAT,";
60 PRINT® entered as the next note.*

70 PRINT: INPUT"Length of tune®jlength
80 DIM music(length)

70 notenumber$="c d ef g a bC D EF GA B
H_I\ "

100 WHILE NOT number>length

110 INPUT"Enter a note®jnote$

éfo music(number)=INSTR(notenumber$, note
130 IF note$="-"0R note$="*" THEN number
=number-1

140 IF note$="-"THEN music(number)=music
{number)-1

{130 IF note$="""THEN music(number)=music
(riumber) +1

160 number=number+!:WEND

170 INPUT"Tempo: 1-9";tempo

180 FOR number={ TO length

190 IF music(number)=0 THEN 230

200 frequency=440%{2*(octave+{(music{num
ber)=-10)/12)))

210 pericd=ROUND(125000/frequency)

220 SOUND 1, period, 10*tempo,?

230 NEXT number

o
e
o)

L

The Amstrad User 13

USER GROUP
INFORMATION

You would have noticed that since the first issue of THE
AMSTRAD USER, the User Group Contact List has grown
quite considerably.

You may also have noticed that User Group news varies in
length from month to month depending on whether anyone
from the groups remembers to let us know what is
happening. (Now there's a thought - perhaps no one has been
allocated the post of 'The Amstrad User Liaison Officer' or
more simply, 'Publicity Officer'). Plus, it has not always
been absolutely clear as to which groups exist, where they
meet and so on.

Not any more! From now on, established groups will be
permanently listed and separated from the User Group
Contacts, the latter containing only those people who are
seeking to find other users in their area with a view to
setting up a group. We hope this will make things clearer.

Now we've got a new format, it is up to individual groups
to keep us advised of any changes to their listings. We
should also mention that there are a number of groups in
existance which are not listed. This is quite simply because
no one from the groups has officially contacted us. Now that
The Amstrad User is very firmly established throughout the
country as the only Australian Amstrad user's magazine
(reaching many thousands of enthusiasts every month), it
really does make sense to register your group so that
newcomers know where you are. You'll never grow if you
keep quiet, and we should remind you that it doesn't cost a
penny (or a cent!) to be included in either list. So - get to it!

NATIONWIDE
USER GROUPS

WESTERN AUSTRALIA

AMSWEST, Perth

President: Tony Clitheroe (09 275 1257)
Secretary: Mrs. P.T. Ardron (09 361 8975)
Treasurer: Eric Stallard (09 339 6361)

Regular meetings take place at a venue in Shenton Park on
the first and third Tuesdays of each month starting at
7.30p.m.

ROCKINGHAM/KWINANA USER GROUP

Contact Bob Harwood on 095 27 1777 for further details on
meeting times.

14 The Amstrad User

SOUTH AUSTRALIA

AMSTRAD COMPUTER CLUB INC.

President: Chris Sowden (08 295 5923)
Secretary: Vince Alfonso (08 384 2394)
Treasurer: Les Jamieson (08 356 9612)

The group meets each Tuesday at the Grange Primary School
between 6.30 p.m. and 9.00 p.m. but may be moving to

new premises shortly. You are advised to first check with
Chris Sowden. Any correspondence can be addressed to

PO Box 210, Parkholme, 5043.

PORT PIRIE AMSTRAD USER GROUP

President: Rick Cable (086 32 5967)
Secretary: John Coleman
Treasurer: Dave Green

The group meets at 7.30 p.m. on the first Monday of each
month at the Princess Park Scout Hall, Solomontown. For
further details contact Rick Cable.

VICTORIA

WESTERN AMSTRAD USER GROUP

President: Mike McQueen (03 312 5594)
Secretary: Peter Pilbeam (03 336 0705)
Treasurer: Frank Melino (03 337 2495)

The meetings are held on each alternate Tuesday and Sunday
(to allow for shift workers) at the Tottenham North Primary
School, South Road, Braybrook.

CENTRAL AMSTRAD USER GROUP

President: Rimon Russo (03 428 4281)
Secretary: Melanie Leith (03 383 1498)
Treasurer: Fred Gillan (03 598 5780)
Publicity: Don Leith (03 383 1498)

Meetings are held twice a month in the Hall at the corner of
Church and Somerset Streets, Richmond on a Sunday
afternoon commencing at 4.00 p.m. A short business
session is followed by a predetermined topic and concludes
with a friendly group session.

EASTERN AMSTRAD USER GROUP

President: Tony Blakemore (03 878 6212)
Secretary: Andrew Martin (03 729 8471)
Treasurer: Ron Dunn (03 277 7868)

Regular meetings are held on the first Sunday of every
month at the Box Hill Scout Hall, Tyne St. (The Hall is
located in Halligan Park between Watts and Mersey Streets).
Proceedings commence at 2.00 p.m.

SOUTHERN AMSTRAD USER GROUP

President: Mike Prezens (03 781 2158)
Secretary: Martin Scragg (059 78 6949)
Treasurer: Steve Issell (03 786 9340)

Meetings are held on the third Tuesday of every month
(except December) from 7.30 p.m. to 10.30 p.m. The venue
is the Senoir Campus at John Paul College, Frankston.

ACT

ACT AMSTRAD USER GROUP
Convenor: Arthur McGuffin
Secretary: Kevin Loughrey
Treasurer: Kevin Cryer

(062 31 9437)
(062 31 2991)
(062 91 9881)
The group meets at 7.30 p.m. on the first Wednesday of each
month in the Seminar Room of the Oliphant Building at the

Research School of Physical Science, Australian National

(07 371 9259)
(07 288 3578)

University.

QUEENSLAND

BRISBANE AMSTRAD COMPUTER CLUB
President: Paul Witsen

Secretary: Mal Harper

Treasurer: Ian Cartwright

(07 369 9364)

Meetings are held on the first Tuesday of each month at
Junction Park State School, Annerley starting at 7.30 p.m.

in Room 15a.

NSW

Mark Kelloway
Hans Hill

Chris Craven
Bruce Jones

T.J. Webb
David Higgins
John Patterson
Paul Wilson
Frank Humphreys
Martin Clift
Bob Hall

R. Vijayenthiran

Barrack Point
Blacktown
Canowindra
Coffs Harbour
Glossodia
Inverell
Lismore
Moruya
Mummulgum
Narrabri
Newcastle
Newtown

User Group Contact List

Please note that the following names are listed
as contact points for new user groups and should
NOT be viewed as a problem solving service.
See other list for established groups.

(042) 95 1581
(02) 671 2929
(063) 44 1150
(066) 52 8334
(045) 76 5291
(067) 22 1867
(066) 21 3345
(044) 74 3160
(066) 64 7290
(067) 92 3077
(049) 52 6915
(02) 519 4106

Ken Needs
Chas Fletcher
Nick Bruin Sor.
Jim Owen

John Harwood

ACT
Chris Rogers

Vic

David Carbone
Rod Anderson
Paul Walker
Andrew Portbury
Ron Butterfield
Sue Kelly

Alan Harris

Mrs. G. Chapman

QLD

Steven Doyle
Mick O‘Regan
Kylie Telford

D.F. Read

Tim Takken
Michael Toussaint
Alan Laird

R.C. Watterton

SA
Lindsay Allen

WA

Dave Andersen

Graeme Worth
P.M. Nuyens

TAS
Conal McClure

NT
G.P. Heron

St. Ives
Toongabbie
Tweed Valley
Uranga
Windale

Fraser

Burwood
Camperdown
Heathmont
Leongatha
Leopold
Manangatang
Sale

South Clayton

Caloundra
Gladstone
Goondiwindi

Ingham
Ipswich
Loganlea
Maryborough
Toowoomba

Murray Bridge

6 Kitchener Rd
Merredin, 6415
Scarborough
Waroona

Scottsdale

(02) 449 5416
(02) 631 5037
(066) 79 3280
(066) 55 6190
(049) 48 5337

(062) 58 5749

(03) 29 4135
(055) 93 2262
(03) 729 8657
(056) 62 3694
(052) 50 2251
(050) 35 1402
(051) 44 1454
(03) 551 4897

(071) 91 3147
(079) 79 2548
Calingunee246
(weekendsonly)
(077) 177 8576
(07) 202 4039
(07) 200 5414
(071) 22 1982
(076) 35 4305

(085) 32 2340

(09) 341 5211

(095) 33 1179

(003) 52 2514

(089) 27 8814

HAY-WHY DoN'T you Tr

The Amstrad User 15

Home Budget

A Program from R. Page

I'll wager that most domestic arguments are about money.
Where is all the money going? What have you/we spent it
on this month? How much did that cost?

If it sounds familiar, this Home Budget program could weil
provide the answers. It allows you to keep track of up to 100
items, calculate totals and store them for future use. It will
produce a list sorted by item name with a total at the end of
each entry. A prompt is given at the end of each update or
deletion stage until END is entered.

Since the program was originally written for a Commodore
64 not all the Amstrad facilities have been used to their
fullest extent, but you will still find this a handy utility
which will assist in keeping your accounts in order and
prove to your family (wife) that the computer is not just
another fancy video game.

The following list provides an explanation of the options
displayed in the menu:

DISPLAY (1) Displays a list of 20 items each with an
index number. This number is used in the
UPDATE/DELETE sections of the
program (Lines 1000-1999).

Allows you to initialise the list and add
new expenses. This section ends if you try
to enter more than 100 items or when you
type END and Enter. (Lines 2000-2999).
Allows you to correct any item name or
amount by using the index number from
the display screen when you receive the
ITEM £ prompt. On entering the number,
the item and amount will be displayed.
Again, type END to finish this section
(Lines 3000-3999).

Allows you to save the data for future
reference into a nominated file name which
is entered at the prompt FILE NAME.
Don't forget the name you use - I find that
by using the month and year, I can

keep a permanent record of each month's
expenses. Type END and Enter to finish
the section (Lines 4000-4999)

START AT and END AT uses the index
numbers to delete the items in between. To
delete one item line put a zero in END AT
(Lines 5000-5999).

NEW)

UPDATE (3)

SAVE (4)

DELETE (5)

16 The Amstrad User

OPTION (6) This displays the main menu (Lines 6000 -
6999).

Allows you to load data for studying and
modification (Lines 7000 - 7999).

Allows printer owners to get hard copy of
the screen display (Lines 9000-9999).

The end of program routine, which also has
a SAVE option in case you have omitted to
do so during the program (Lines 8000 -
8999).

This is used only when there are more than
20 line items. It provides the facility to
step back 20 items.

For viewing the next 20 line items on the
list. Remember that the CTRL and D keys
should be pressed at the same time.

LOAD (7)
PRINT (8)

END ©)

CTRLU

CTRLD

The program is written around various subroutines called by
the main loop (Lines 200-300). There are two utilities
included for use by any module - the sorting subroutine
(Lines 500-599) and an accumulator subroutine (Lines
300-399).

In line 275 there should be a symbol for CTRL U inserted
between the inverted commas. Similarly in line 280, there
should be a symbol inserted for CTRL D.

As you read through the listing, you will find that all the
functions on the menu go to various subroutines. This
makes it easier to trace through the steps of the program.

Actual

DN

Prmd

1 RE
R TH
2 RE
3 RE
5 SP

M BUDGET IS A PROGRAM ORIGINALLY PUBLISHED BY COMPUTE FO

E

M COMMODORE C64 AND CONVERTED BY R PAGE TO RUN ON THE CPC 464

M TO END ANY SUBROUTINE TYPE IN END

EED WRITE O

10 MODE 2

20 s
30 r
40 D

50 DEF FN rn (x)=

485
490
495
499
500
505
510
520
530
540
550
560
570
590
595
599
1000
1010
1020
1030
1040
1050
1060
1065
1070
1080
1090
1100
1110

z=100: 1i=-19
$=CHR$(18) : ta=0
IM a$(sz),ae(sz)

GOSUB 6000

INT (x%100+40.5>/100

z$=INKEY$: IF z$="" THEN GOTO 220

IF z$="1" THEN GOSUB 1000
IF z$="2" THEN GOSUB 2000
IF z$="3" THEN GOSUB 3000
IF z$="4" THEN GOSUB 4000
IF z$="5" THEN GOSUB 5000
IF z$="6" THEN GOSUB 6000
IF z$="7" THEN GOSUB 7000
IF z$="8" THEN GOSUB 9000
IF z$="9"” THEN GOSUB 8000

IF z$="" THEN 1=1-20:GOSUB 1000
IF z$="" THEN i=14+20:GOSUB 1000

GOTO 220

REM ACCUM TOTALS

ta=0

FOR j=1 TO mx
ta=tatae(j>

NEXT j

RETURN

REM load files

INPUT "File Name”;f$

IF f$="Xend"” THEN GOSUB 6000
OPENIN £$

INPUT #9 , mx

FOR j=1 TO mx

INPUT #9,y

INPUT #9,r$%

INPUT #9,a%(j>

INPUT #9,ae(j>

INPUT #9,r$%

NEXT j

CLOSEIN

RETURN

REM sorting by namne

IF mx=1 THEN GOTO 599
PRINT "Sorting”

FOR j=1 TO mx-1

FOR k=j+1 TO mx

IF a$(k>>a%$(j> THEN GOTO 590
sm$=ad (k) :sm=ae(k)
a$(k>=a$(jl:ae(k)=ae(j)
a$(j)=sm$:ae(jl)=sm

pr$=STR$(ae(J)+0.00l):pr$=MID$(pr$,2,(LEN(pr$)—2))

: RETURN

1080

} SEE NOTES

PRINT TAB(S—LEN(jS));J$;TAB(4);a$(J);TAB(66~LEN(pr$));pr$

NEXT k
NEXT j
RETURN

REM DISPLAY

IF (i<1> OR (i>mx)> THEN 1i=1

CLS: PRINT TAB(5)"Expenses "TAB(61)” Amt"
FOR j=i TO i+19

IF j>mx THEN PRINT " ":GOTO

IF ae(j)>=0 THEN pr$="0.00"

J$=MID$ (STR$(J), 2)

NEXT j

ta$=STR$ (ta+0.001)
ta$=LEFTS$ (ta$, LEN(ta$)-1)

IF ta=0 THEN ta$="0.00"

The Amstrad User 17

1120 PRINT:PRINT TAB(20)" TOTAL " ; TAB(66-LEN(ta$)); tas
1999 RETURN

2000 REM ADD NEW EXPENSES

2010 r=mx+1:n$="":els=""

2015 IF r=101 THEN GOTO 2999

2020 CLS:PRINT” Add New Expenses’

2030 PRINT:PRINT SPC(12) "Item #";r

2040 PRINT: INPUT ”Item Name " ;n$

2050 IF n$="end” OR n$="END” THEN GOTO 2999

2055 IF LEN(n$)>>30 THEN n$=LEFT$(n$,30)

2060 a$(r>=n%

2070 PRINT: INPUT "Item Amt ';el$

2080 IF els$="end” OR el$="END” THEN GOTO 2999

2085 IF VAL(el$)>=0 THEN ae(r)=0:GOTO 2100

2090 ae(r>=FN rn (VAL(el$))

2100 mx=mx+1

2105 IF mx=101 THEN GOTO 2999

2110 GOTO 2010

2115 IF mx=101 THEN GOTO 2999

2200 mx=mx+1

2999 GOSUB 500:GOSUB 300: GOSUB 6000: RETURN

3000 REM XXXXXXXXXXX%X UPDATE EXPENSES XXXXKKKXXXXXXKKKKKKXK
3010 CLS : PRINT”Expenses”;" Update"”

3020 PRINT: INPUT "Item # ";pl$

3025 IF pl$="end” OR pl$="END" THEN GOTO 3999

3026 IF (VAL(pl1$>=0)> OR (VAL(pl1$)><1)> THEN PRINT:PRINT” Input Error!”:GOTO 3

020
3027 p=INT (VAL(p1$))>
3030 n$="":el$=""

3040 IF p>sz THEN PRINT”Max Exceeded":p=sz:mx=p
3050 IF p>mx THEN mx=p

3060 pr$=STR$(ae(p)+0.001): pr$=MID$(pr$,2, (LEN(prs$>-2>)
3065 IF ae(p)=0 THEN pr$="0.00"

3070 PRINT p; TAB(4)a$(p)TAB(42-LEN(pr$))pr$
3080 PRINT: INPUT "Item Name';n$

3090 IF n$="end” OR n$="END” THEN GOTO 3999
3100 IF n$<>""” THEN a$(p)=n$

3105 IF LEN(a$(p>>>30 THEN a$(p)=LEFT$(a$(p),30)
3110 INPUT "Amt "”;el$

3120 IF el$="end” OR el$="END" THEN GOTO 3999

3125 IF els$="" GOTO 3010
3130 IF(VAL(el$>=0)> AND (el$%<>"0"”) THEN PRINT:PRINT" Input Error”:GOTO 31
10

3135 IF VAL(el$>=0 THEN ae(p>=0:GOTO 3800
3140 ae(p)>=FN rn(VAL(el$))

3800 GOTO 3010

3999 GOSUB 500:GOSUB 300: GOSUB 6000: RETURN
4000 REM SAVE FILE

4010 CLS :PRINT” Save Expense List”

4020 PRINT:PRINT: INPUT”File Name”;f$

4030 IF f$="end” OR f$="END" THEN GOSUB 6000: RETURN
4050 OPENOUT f£$%

4060 PRINT #9, mx

4070 FOR j=1 TO mx

4080 WRITE #9, j

4081 WRITE #9,r$

4082 WRITE #9,a$(Jj)

4083 WRITE #9,ae(j)

4084 WRITE #9,r$

4090 NEXT j

4100 CLOSEOQUT

4999 GOSUB 6000: RETURN

5000 REM DELETE

5005 dt=0:tm=0

5010 CLS :PRINT” Delete!

5020 s1%=""

5030 PRINT: PRINT: INPUT” Start at”;sl$

5040 IF sl1$="end” OR s1$="END" THEN GOTO 5900
5050 ds=INT(VAL(s1$))

18 The Amstrad User

5060 s1%=""

5070 IF ds=0 THEN PRINT: PRINT”
5080 sl1%$=""

5090 PRINT: PRINT: INPUT”End At”;sl$
5100 IF sl1%$="end” OR sl1$="END” THEN GOTO 5900

5110 IF s1%="" OR sl1%$="0" THEN de=0:GOTO 5200

5120 de=INT(VAL(s18$))>

5125 IF de>mx THEN de=mx

5130 IF de>ds THEN GOTO 5200

5135 PRINT:PRINT: PRINT” O or Number Greater”

5140 PRINT:PRINT: PRINT” Than'”;de;"”Required”

5150 GOTO 5080

5200 IF de=0 THEN de=ds

5205 tm=de-ds+l

5207 dt=dt+tm

5210 FOR j=ds TO de

5220 a$(j)>=CHR$(143)+CHR$(137):ae(j)>=0

5230 NEXT j

5240 GOTO 5010

5900 GOSUB 500

5910 mx=mx-dt

5999 GOSUB 300:GOSUB 6000: RETURN

6000 REM OPTIONS MENU

6010 CLS:PRINT” Options”

6020 PRINT > .

6030 PRINT: PRINT” 1 - DISPLAY EXPENSES CTRL U = LOWER INDEX"
6035 PRINT” CTRL D = HIGHER INDEX"

Input Error’:GOTO 5020

6040 PRINT:PRINT” 2 NEW EXPENSES”
6050 PRINT:PRINT” 3 UPDATE EXPENSES"
6060 PRINT: PRINT” 4 SAVE EXPENSES”
6070 PRINT:PRINT” 5 DELETE FROM LIST”
6080 PRINT: PRINT” 6 OPTIONS SCREEN"
6090 PRINT:PRINT” 7 LOAD FILES”

6100 PRINT:PRINT” 8 PRINTER”

6110 PRINT: PRINT"” 9 = END?

6999 RETURN

7000 REM LOAD

7010 CLS:PRINT"” Load"”

7020 PRINT:PRINT” Expense Files”
7030 INPUT"”Load (Y/N)>"; an$

7040 IF an$="y" OR an$="Y" THEN mx=0:GOSUB 400:GOTO 7999

7050 IF an$="end” OR an$="END"” THEN GOSUB 6000: RETURN

7060 IF an$="n" OR an$="N" THEN GOSUB 6000: RETURN

7065 GOTO 7030

7200 NEXT

7999 GOSUB 500:GOSUB 300: GOSUB 6000: RETURN

8000 REM.END OF JOB

8010 CLS:PRINT” End of Program”

8020 PRINT:PRINT: PRINT”Would you like to save (Y/N)": INPUT an$
8030 IF an$="end” OR AN$="END” THEN GOSUB 6000: RETURN

8040 IF an$="n" OR an$="N" THEN GOTO 8060

8050 GOSUB 4000

8060 CLS:PRINT" Thank you good-bye”

8070 END

9000 REM DISPLAY ON PRINTER

9010 IF (i<1) OR (i>mx) THEN i=1

9015 PRINT #8,CHR$(14)+"Budget” +CHR$(15)

9016 PRINT #8,

9017 PRINT #8,

9025 PRINT #8, TAB(5)"”Expenses "TAB(61)"Amt."

9030 FOR j=1 TO mx

9040 IF j>mx THEN PRINT " ":GOTO 9080

9050 pr$=STR$(ae(j)+0.001): pr$=MID$(prs, 2, (LEN(pr$>-2))

9060 IF ae(j>=0 THEN pr$="0.00"

9065 J$=MID$(STR$(j), 2>

9075 PRINT #8,TAB(3—LEN(J$));JS;TAB(4);a$(J);TAB(66—LEN(pr$));pr$
9080 NEXT j

9090 ta$=STR$(ta+0.001)>

9100 ta$=LEFT$(ta$,LEN(ta$)-1>
9110 IF ta=0 THEN ta$="0.00"

9125 PRINT #8, :PRINT #8, TAB(20)>” TOTAL

”; TAB(66-LEN(ta$)); tas
9999 RETURN

The Amstrad User 19

Review of the SP-1000 Printer

by Simon Anthony

Any printer, providing it has a
Centronics parallel interface, is capable
of being used on a 464/664. A
reasonably fair statement but some
printer owners will justifiably argue
that it often requires a deal of 'tinkering'
to make the statement true.

DMP-1 owners avoid this irritation
having invested in a piece of equipment
which is already set up for use on the
Amstrad, and it works well. Many
letters and other submissions to The
Amstrad User are printed on this
machine, and the results are quite
adequate. Nevertheless, one of the major
criticisms directed at the DMP-1 is the
lack of lower-case decenders. (This
makes the word 'program' look like
"Profram’ although a little exagerated in
this example).

A new printer, jointly marketed by
AWA and Seikosha, appears to answer
the requirements of those users who are
looking for a more professional finish
to their printed text. The SP-1000
weighs in at just under 5 kilos.

It takes either single sheet paper or
continuous stationery, and with the
latter, the tractor unit must be removed.
This is easily done. I searched vainly
for a friction/tractor switch and
discovered that the paper bail (the bar
that applies pressure to the paper
against the platen) was linked to a paper
loading knob situated next to the
paper-feed knob. When in the forward
position paper is free to be moved
around for loading or when on tractor
feed, and when pushed back, applies
friction for feeding single sheets.

Loading the ribbon cassette was
simple as was adjusting the head
position for multi-part paper. The
printer can certainly handle two part

20 The Amstrad User

paper but I didn't get the chance to try
anything thicker, although the specs
indicate that it is capable of handling
three part.

It has an automatic paper loading
function where the paper automatically
advances to the top of form position by
using just the paper loading knob and
will take paper from 4" to 10" wide.

It is a possibility that a cut sheet
feeder will be available by the end of
the year.

Margin designation and 1" Skip
perforation (for continuous paper) can

be set by either DIP switch or manual
commands.

The DIP switches are located at the
back of the printer and are protected by
a plastic cover (possibly to keep out
'small fingers'). These provide a number
of functions, for example: specifying
the paper length (1-6), selecting italic
characters (2-1), language fonts (1-1 to
1-3) and many more. On the subject of
language fonts, there are eleven from
which to choose, but not being a
linguist I can't tell you why Denmark
is allocated two of them!

Naturally, commands can be entered
through the Amstrad as the following
examples show:

1 OPEN "LPT1:” AS #1°

2 WIDTH #1,255

5§ 'HIGH QUALITY (CORRESPONDENCE)

19 PRINT #1,”NORMAL QUALITY 1”;CHR$(10);
29 PRINT #1,CHR$(27);”x1”; 'HIGH QUALITY
20 PRINT #),”HIGH QUALITY”;CHR$(10);

49 FRINT #1,CHR$(27);"x0";

41 'CLEARS HIGH QUALITY

50 FRINT #1,”NORMAL QUALITY 2"

NORMAL QUALITY 1
HIGH QUALITY
NORMAL QUALITY 2

1 OFEN "LFT1:” AZ #1

2 WIDTH #1,28S5

5 ’'SMALL CHARACTER

19 PRINT #1,”FPICA CHARACTER 1”;CHR$(10);
20 PRINT #1,CHR$(27);CHR$(15); 'SMALL

360 FPRINT #1,”SMALL CHARACTER” ;CHR$(10);
40 PRINT #1,CHR$(1€);'CLEARS SMALL

50 PRINT #1,”PICA CHARACTER 2"

PICA CHARACTER 1
SMALL CHARACTER
FPICA CHARACTER 2

It is worth noting here that the printer
has a 1.5k bytes RAM area. When the
DIP switch 2-4 is turned off, the printer
uses this area as a communications
buffer, and when on, it becomes a
down-load area.

Another useful function is the
Hexadecimal Dump List function. Input
data is printed in 2-digit hexadecimal
numbers with a space between each.
This allows 16 bytes of data to be
printed on each line. This function is
simply set by pressing the FF switch
when initially turning on the printer.

The SP-1000 offers Standard or Italic
Cursive characters in PICA, ELITE or
Condensed. Near letter quality can be
obtained with PICA or ELITE. Other
features include:

Proportional

Super and Subscripts

Underline

Double Width

Double Strike

Bold

If you've ever wondered how these are
achieved with a dot matrix printer, the
diagrams below give the answer in
relation to producing Bold and Double
Strike Characters.

o o) oe
o o oce oe
o o oe oe
00000 (93 080e0e080e
o o) oe
o o oe ce
o o oe oe
Standard Bold

'R

Standard Double Strike

The printing speeds tend to vary
depending upon the style chosen. For
example, standard PICA, which
consists of a 12x9 matrix (including
half dots), will print at 100 characters
per second. On the other hand, near
letter quality ELITE, a 24x18 matrix
including half dots, will print at just 24
characters per second.

The size of each printed character
determines the number of characters that
can be printed in a line. PICA will
produce 80 in a line, ELITE produces
96 and condensed gives an impressive
137.

There is also a Graphic Print mode -
in either standard or Double density.
The former has a maximum of 480
horizontal dots, whilst the latter has
960. However, the print speed is
halved, which is natural enough with
double density printing. Just to
complicate matters, it is possible to
print in Quadruple Density Graphic
mode where the maximum number of
horizontal dots is 1920, but I won't go
into detail now.

Printing is bi-directional.. To the
novice, this means that it will print
from left to right and again from right
to left as it performs a 'carriage return’.

Printout Sample

729 w=xT0ABCDEF
<=>7QRABCDEFGHIJKLM
789: ; <=>7Q@ABCDEFGHI
/8123456789 ;{=>7RABCOEFGHI
FEg] | T=rTRARCDEF
<=>7P7@ABCDEFGHIJKLM
789: ; <=> ?@ABCDEFGHI
EFGHIJKLIL

EFGHIJKLMNO
789:;<=>T7@ABCD Fa

I found the printing operation to be
smooth and quiet and the final result -
the all important printed page - to be of
good quality, and certainly very
acceptable for my needs, and indeed for
those in a business environment. In fact
a number of the program listings
appearing in this magazine have been
printed using the machine.

The documentation is very
comprehensive and consists of a manual
of nearly ninety pages in length. It's the
best I've seen for a printer for a long
time.

The price of the SP-1000 is likely to
be under $500 and is a most welcome
addition to the peripherals available for
the Amstrad.

Character Specification Table

%?:Jr;it:; Maximum | Character Print
Character Font (HXV Column | Spacing | Speed
Number | (Characterinch) | Character:Secona)
+Space)
Pica *12X9 80 10 100
Standard Elite *12X9 9% 12 50
Standard ’
Condensed | “14X9 137 17 70
Character
Near Pica *24X18 80 10 20
Letter
Quality Elite *24X18 9% 12 24
Pica “16X9 80 10 100
Standard Elite *16X9 9% 12 50
Italic
Cursive Condensed | *18X9 137 17 70
Character
Near Pica *32X18 80 10 20
Letter
Quality Elite *32X18 9% 12 24
Single Density 480 600
. nx8 -
Graphic dot column dot column
Double Density 960 490
. nx8 -
Graphic dot column dot column
Double Speed .
Double Density nx8 960 - 600
< dot column dot column
Graphic
Graphic Quadruple Density *1920 *980
; nx8 -
Graphic dot column dot column
640 Dot Graphic nx8 640 - 425
dot column dot column
576 Dot Graphic axg | 58 | _ -
dot column dot column
720 Dot Graphic nx8 t2i - 367
dot column dot column

* Indicates that the specified figure includes half dots.

The Amstrad User 21

Disc/Joystick Utility

by Andrew Martin

As my young children use the Amstrad for playing games
(and because I want them to continue to use the system), I
have developed a program which allows programs to be
loaded or run from disc using just a joystick or the cursor
keys. In addition, it provides for CAT, ERASE and
RENAME functions. I have called the program simply
T.BAS.

INITIAL LOADING
Once the program has been checked carefully and saved to
tape, you will need to take the following action to get it on
to disc:
1. Put the tape in the recorder and a disc in Drive A
2. Type |TAPE then CTLR and ENTER together. This
will load the program and do a CAT on the disc.
3. Using the Joystick or the cursor keys, move the cursor
across the top line and position on the word 'Break'.
4. Press the FIRE button or the Copy key.
5. Press number 1 on the numeric keypad. This will save
T.BAS to disc.
6. Press number 0 on the numeric keypad to re-load and
run T.BAS. This will check that the save was
successful.
Alternatively, you may type RUN and Enter.

LOADING OR RUNNING A PROGRAM

1. Move the cursor to Load or Run.

2. Press the Fire or Copy button.

3. The cursor will move to the top left corner of the screen
to indicate acceptance of the command.

4. Again, with the Joystick or cursor keys, move the
cursor to the first character of the program name.

5. Press the Fire or Copy key. The cursor will move to
the bottom left of the screen while the program loads or
runs.

BREAK

This function simply clears the screen and returns the user
to direct command mode.

CAT
Move the cursor to CAT and press the Fire or Copy button.

RENAME
1. Move the cursor to Rename and press the Fire or Copy

22 The Amstrad User

button.

2. Move the cursor to the first character of the program to
be renamed and press the Fire or Copy button.

3. Respond at the bottom centre of the screen with the new
program name in full. For example, COMBAT.BAK or
T.BAS etc.

4. Press Enter.

The program will change the name and perform a CAT with

the cursor positioned at the end of the line containing the
new name.

NON-STANDARD FILETYPE (NSF)

The CAT function lists programs/files in the following
format: PPPPPPPP.TTT where PPPPPPPP is the
program/file name of up to 8 characters and TTT is the file
type of up to 3 characters. Both are separated by a full stop.

T.BAS checks the file type and will only accept BAS, BAK
or ED. The latter, ED, is a non-standard file type name
which I use, but you can change it within T.BAS to
whatever name you prefer to use most often.

If a program has a non-standard file type, it can still be
loaded/run by specifying the NSF as follows:

1. Move the cursor to NSF and press the Fire or Copy

button.

2. Input the non-standard file type name (maximum 3

characters) and press Enter.

3. Move the cursor to Load/Run as required and press the

Fire/Copy button.

4. Move the cursor to the first character of the program

name to be loaded and press the Fire or Copy button.

Note that file types which consist of three blank characters
will not be accepted. If necessary they should be renamed to
an acceptable file type.

ERASE

To erase an unwanted file:

1. Move the cursor to Erase and press the Fire or Copy
button.

2. Move the cursor to the first character of the programy/file
name to be erased and press the Fire or Copy button.

T.BAS will erase the file and provide a CAT with the

cursor positioned where the erased file had been shown.

CHANGING USER AREA
1. Move the cursor to the location before the user number
if a single digit or on to the most significant digit if larger
than nine.
2. Press the Fire or Copy button.
3. Use the left or right cursor keys or move the joystick
left or right to change the numbers.
4. Press the Fire or Copy button when the correct number
is showing.

CHANGING DISC DRIVES

This feature is for owners of two disc drives only, and it is
necessary to REMout line 880. It provides a CAT of either
drive.

1. Move the cursor to the A or B after the word DRIVE'.

2. Press the Fire or Copy button. If the original letter is
A, then this will be changed to B and a CAT of that disc
provided, and vice-versa.

1O 7 4k K OK KOKKOK KKK KK K K KKK 3K XK KK KK HOK K K 3K KK KK XK 3K K AR HOK XK KK KKK KKK KKK K KK X

XOK KK OR K KKK

20 SIMULATED IKON CONTROL-JOYSTICK OR CURSOR KEYS
30 ANDREV MARTIN 6/8/85
40 KKOKKKOKKKOK K KK KK KK KK 3K K K KK K 3K K KK KK KK KK 3K K oK 3K K oK 3 30K KK K KK HOK KKK KOK KKK KK KK KK XK K

KK KKK K K KKK

50 DEFINT a-z:c=12
60 DISC

70 x=1:y=1

80 KEY 1,”save”+CHR$(34)+"t.bbs”+CHR$(13)
90 KEY 0, "run”+CHR$(34)+"t.bas”+CHR$(13): SYMBOL AFTER 32: INK 0, 1: INK 1

,26: GOTO 540

100 ' KXKKKAKKXKXKKkXXX READ CHARACTER FROM SCREEN XAKXXKKKXKKKKKKOKKKIKKKKKX

KK K K KK KK K
110 GOSUB 250
120 FOR a=1 TO c

130 IF usr=1 THEN LOCATE 7,2 ELSE LOCATE y,x

140 CALL mc

150 xx=PEEK(&97FF)

160 A$=CHR$(xx):TIT$=TIT$+AS
170 IF usr=1 THEN a=12: RETURN
180 Y=Y+1

190 NEXT

200 IF ER=1 THEN RETURN

210 ' XXXXXXXX¥%X%X CHECK FOR VALID FILETYPE

KK KKK KKK

KKK KKK KK KKK KK KKK KK KK KKK KKK

220 IF RIGHT$(tit$,3)<>"BAK"” AND RIGHT$(tit$,3)<>"BAS"” AND RIGHTS(tit
$,3)<>"ED” AND RIGHT$(tit$,3)<>ALTER$ THEN tit$="":can=1l:titl1=0:RETURN

230 IF tit$=""THEN titl1=0:can=1:RETURN

240 can=0:RETURN

250 ' XXXXXXXXXXXX PUT MACHINE CODE INTO RAM XXXXKANKRKNKKKKKNKKKKKKKAKKKKKK

KOKKKKK KKK

260 MC=&9700

270 POKE &9700, &D
280 POKE &9701, &0
290 POKE &9702, &BB
300 POKE &9703, &32
310 POKE &9704, &FF
320 POKE &9705, &97
330 POKE &9706, &C9
340 RETURN

350 ' XXXKXXXXX*X%X PRINT CURSOR AND CHECK FOR LOAD/RUN/PROG SELECTION XX

XAKKKKK K

360 LOCATE Y, X:CALL &BB81:1F LOD>0 THEN ON LOD GOSUB 600,660,720
370 ' xxk¥kkXxkkxX CHECK FOR POSITION/INPUT XXKXK%KKKKKKKKK KK KKKKKKKKKK KK

RRAKK KK X

380 IF (JOY(0>=1 OR INKEY(0)>=0)> AND x=1 THEN GOTO 500 ELSE IF (JOY(O)=

1 OR INKEY(0)>=0> THEN X=X-1

390 IF (JOY(0>=2 OR INKEY(2)=0)> AND x=24 THEN GOTO 500 ELSE IF (JOY(0)

=2 OR INKEY(2)=0) THEN x=x+1

400 IF (JOY(0)>=4 OR INKEY(8)=0)> AND y=1 THEN y=79:GOTO 500 ELSE IF <(JO

Y(0>=4 OR INKEY(8)>=0) THEN y=y-2

410 IF (JOY(0>=8 OR INKEY(1)>=0)> AND y=80 THEN y=1:GOTO 500 ELSE IF (JO

Y¢0>=8 OR INKEY(1>=0) THEN

y=y+2

420 IF (JOY(0>=16 OR INKEY(9)=0) AND X=1 AND Y>63 AND Y<70 THEN GOTO 7
90 ELSE IF (JOY(0>=16 OR INKEY(9)>=0)> AND X=1 AND Y>71 AND Y<80 THEN GO

TO 830

430 IF (JOY(0>=16 OR INKEY(9)>=0) AND X=1 AND Y>2 AND Y<7 THEN LOD=1:Y=
1:GOTO 510 ELSE IF (JOY(0>=16 OR INKEY(9)>=0)> AND X=1 AND Y>9 AND Y<13

THEN LOD=2:Y=1:GOTO 510

The Amstrad User 23

440 1F «(JOY(0>=16 OR INKEY(9)=0) AND X=1 AND Y>15 AND Y<21 THEN GOTO 1
010

450 IF (JOY(0>=16 OR INKEY(9)>=0)> AND tit=1 AND X<>1 AND (y=1 OR y=21 O

R y=61 OR y=41) THEN tit1l=1

460 IF (JOY(0>=16 OR INKEY(9)>=0) AND y=15 AND x=2 THEN GOTO 920

470 IF (JOY(0>=16 OR INKEY(9)=0)> AND X=1 AND Y>22 AND Y<26 THEN LOD=3:

Y=27:GOTO 510

480 IF (JOY(0)>=16 OR INKEY(9)=0) AND X=2 AND Y=7 THEN GOTO 880

490 IF (JOY(0>=16 OR INKEY(9)>=0)> AND X=1 AND Y>S8 AND Y<62 THEN LOCATE
1,2: PRINT CHR$(20): LOCATE 1, 1:CAT

500 IF tit=1 AND titl=1 THEN RETURN

510 IF Y<1 OR y>80 THEN Y=1 ELSE IF X<1 THEN X=1

520 IF y MOD 2=0 THEN y=y+1

530 GOTO 360

540 ' XXRKAKXAKXAKEXKX START OF PROGRAM KKK KKK KK K KK KK KK K K KK K KK KKK KK XK K K ok

KKK KK X %

550 MODE 2

560 CAT

570 t1t=0:tit1=0:10d=0

580 LOCATE 3, 1:PRINT "LOAD":LOCATE 10,1:PRINT "RUN":LOCATE 16,1: PRINT

"BREAK" : LOCATE 24, 1:PRINT "NSF”; SPACE$(33);"CAT RENAME ERASE”

590 GOTO 360

600 " RINKKAKKKKKXKKXK LOAD A PROGRAM KKKNKK KK KK KK KK KKK KK K KK KK KKK KKK KK KKK

KKK KK KKK

610 lod=0:tit=1:GOSUB 510

620 GOSUB 110

630 IF can=1 THEN can=0:GOTO 610

640 LOCATE 1,22

650 CLS:WHILE INKEY$<>"":WEND:LOAD tit$

660 ' AXKIKKXKXKKKK RUN A PROGRAM KKK K KK KK KK KA KKK KKK KKK KKK KK KK KKK KKKk K

KRR KKKk

670 lod=0:tit=1:GOSUB 510

680 GOSUB 110

690 IF can=1 THEN can=0:GOTO 670

700 LOCATE 1,22

710 WHILE INKEY$<>"":WEND:RUN tit$

720 " OKXKKAKKKKKXKXX CHANGE LAST 3 CHARACTERS XXKKKKKKKKKKKKKK KKK KKK KKK

KKKKK KKK XK

730 WHILE INKEY$<>"":WEND:LOCATE 29,1: INPUT " NON-STANDARD FILETYPE:"” ,A

LTERS: ALTER$=UPPER$(LEFT$ (ALTERS, 3)): GOTO 570

740 P RKKKAKRKKKKKKKK RENAME PROGRAM KKK KK KKK KKK KK KKK KK KKK KKK KKK KK KKK
KKKKK KKK XK

750 LOD=0:TIT=1:GOSUB 510

760 GOSUB 110

770 IF can=1 THEN can=0:GOTO 750

780 GOTO 710

790 WHILE INKEY$<>"'":WEND:LOCATE 1,22:PRINT"FILE NAME TO BE RENAMED 7"
:1lod=0:tit=1:GOSUB 510

800 ER=1:GOSUB 110:ER=0

810 WHILE INKEY$<>"":WEND:LOCATE 1,22:PRINT” NEW NAME FOR ";TITS$;: INPU
T N$: !REN,@N$,Q@TITS: TIT$="":GOTO 540

820 " XARKKXKKKKKXKKXKX ERASE A PROGRAM X KKKKNK AKX K KKK A KKK KKK KK KKK KKK KK KKK
KKK KKK K ,

830 WHILE INKEY$<>"'":VWEND: LOCATE 1,22:PRINT"FILE NAME TO BE ERASED ?":
lod=0:tit=1:GOSUB 510

840 ER=1:GOSUB 110:ER=0:IF tit$="" THEN GOTO 530

850 !ERA,QTITS

860 TIT$="":GOTO 540

870 ' KXXX¥*XXXX CHANGE DISC DRIVES ¥KKKKFKAKKKKKKKK KKK K KKKK KKK KK KKK KKK
HHOKKHOK KK K

880 GOTO 550:' (delete this line if using twin disc drives)

890 usr=1:GOSUB 110:usr=0: IF tit$="A" THEN !B:tit$="" ELSE IF tit$="B

" THEN iA:titg=""

900 GOTO 540

910 ' XKXXX%kXX* CHANGE USER AREA KOKKOK K KK KKK KKK K K KK K KKK K KK KK KK XK KKK KK XK K
KKK K KK K

920 er=1:c=2:LOCATE 2,15:G0OSUB 110:er=0:c=0:user=VAL(tit$)

930 IF (JOY(0)>=4 OR INKEY(8)>=0) THEN user=user-1

940 IF (JOY(0>=8 OR INKEY(1)>=0) THEN user=user+1

950 IF user=16 THEN user=0

960 IF user=-1 THEN user=15

970 LOCATE 15,2:PRINT user;

980 WHILE INKEY$<>"":WEND:FOR t=1 TO 1000:NEXT: IF (JOY(0>=16 OR INKEY(
9)=0) THEN !USER, user: RUN

990 FOR t=1 TO 200:NEXT:GOTO 930

1000 ' XXXXXX%XX break KK KK KK 3K 3K 3K K KK K 3K 3K XK K 3K 3K 5K K 3K 3K K 5K K K KK K 3K K K K KK 3K KK K K K K K K % kK
XX KK

1010 WHILE INKEY$<>"":WEND:CLS: END

24 The Amstrad User

JUNIOR JOTTERS

A Column for Young
Amstrad Users

A reminder from last month

As promised, I have now found the space to include a
special section for our younger readers.

Of course, to continue this page will mean that you will
have to keep me well supplied with information about your
Amstrad. This could cover small programs you have
developed to help you in a particular way (like the one
below) or a routine which you have found useful in your
programs, and you think would help other people.

Don't forget that I would prefer to receive a tape containing
your program as my typing is not very good, and a listing if
possible, together with an explanation of what the program
is supposed to do and any other information you think may
help.

Alternatively, you could tell me for what you use your
Amstrad - is it for playing games, for learning about
computers or helping you with your homework? Do you use
an Amstrad at school?

Whatever you send in, it would be helpful if you could
mention your age so that I can give a fair coverage to as
many age groups as possible.

1 look forward to hearing from you.

The Editor, Junior Jotters.

REVIEWS

QUACK a JACK - Reviewed by Stephen Kerr

This game is one of the best I have seen. After loading it
you are shown a demonstration, a list of the characters
(which also shows how they look), the keys to use and the
‘hi-scores to beat. At the bottom of each of these screens, it
gives you the chance to start at any time. This means you
can either play the game, set the level or check if the keys
work properly.

The keys you use are simply the cursor keys. On some
other games I have played, to use the keyboard instead of
joystick, you have to use certain letters, numbers or symbols
which becomes very confusing.

Now, back to the actual game itself. It is full of weird and
wonderful creatures like Sue's Nose, Vampire Rabbits,
Burgers, Computers and Kevin the Prawn. There are nine

levels and a number of monsters on each level.

The main character in the game is Red Jack, a pirate. When
he discovered that there were no diamonds in the Palace
Castle, he went to the Palace Dungeons. A mistake! That
was when he discovered the Vampire Rabbits, Spacehoppers,
etc. The only thing I thought was strange about this game
was that the pirate is supposed to be a duck!

. This game works fairly fast, especially on the hardest level.

It is very entertaining and it held my interest for a long time,
as it has many different nasties and screens.

By the way it is loosely based on the role-playing game
Fandonia. I would recommend this original game to almost
everyone and even my 5 year-old brother enjoyed it.

ROLAND IN TIME - Reviewed by R. Herbert

This game is quite complicated. For a start, you are in
Doctor Who's Tardus, flying through space to the tune of the
theme song from the T.V. show. You then get to choose a
time zone (there are 10 to choose from, but there are 53
scenes in all). The object of your mission is to collect as
many crystals as you can, with 10 lives. But don't be fooled.
This game is very difficult, and takes a long time to master,
because of all the different screens. There are also flying
birds, aliens, rolling wheels, polar bears, penguins, cotton
reels, and many other objects out to get you. Very
entertaining.

LETTERS

For those other J.J's who have pesky brothers or sisters
who get into your most secret programs, here is something
to put at the start, which makes sure that only the person
who knows the password can run the program. But beware! If
someone enters the wrong password, the whole program (and
listing) erases from the memory, so you can't list to find out
the program. I'm 13 years old, and I think the Amstrad is
great for playing games, but I haven't used if for homework
yet. (I don't know how to).

10 PRINT "ENTER PASSWORD"
20 INPUT P$
30 IF P$ =" your own password " THEN GOTO 60
40 PRINT "WRONG PASSWORD - ACCESS
DENIED"
50 NEW
60 The rest of your program
R. Herbert, Warmambool, Vic

(Make sure you have got a copy of your program hidden

away, so that if you do lose it from memory you can load it
again - Ed)

The Amstrad User 25

Speech Synthesiser Review

by Kevin Poynton

Speech output is one of the facilities
of which most computers are not
capable, yet, judging by the demand, is
one of the features a great number of
end users would like.

The major problems with building
speech synthesis into a production
model computer would appear to be
expense and usage of available memory.
Unfortunately the same is true when
speech synthesis is available as a
peripheral. AWA-Thorn, the Australian
distributors of both the 464 and 664
Amstrads, have now released the SSA-1
as their answer to providing speech at a
reasonable cost.

How does it stack up? - Read on.

Hardware

The unit is constructed from a gun
metal grey plastic similar to that used
in construction of the computer itself.
For 464 owners, provision is made to
connect at the same time as the disc
drive. The drive draws a sufficiently low
amount of power to allow its use at the
same time as the SSA-1.

Two speakers of average quality are
provided for sound output.

Sound Quality/ Speech Clarity

During operation, the unit finds
difficulty in reproducing some sounds
(more of that later) and produces
utterances a little like a Cylan warrior
from Battlestar Galactica.

However, accepting the limitations
mentioned, speech clarity is better than
adequate and should be easily understood
by most people.

Software

Software for the unit is provided on
tape only and is protected. This means
most 664 owners will have difficulty in
transferring the software to disc. It

26 The Amstrad User

seems to me to be a rather silly attitude
on the part of Amstrad to protect
software which will only be of use to
anyone with a SSA-1.

The software is relocatable (for
experienced programmers) or is located
in high memory by default and uses
approximately Sk of RAM.

Commands are activated by way of
RSX's, eg. [SAY, a$ will speak the
text currently in a$.

There are nine commands in all and
these should cover most situations.
Problems can arise using 'text to
speech' conversion. For example, the
software can have trouble with words
such as 'wall' which sounds fine in the
singular but has to be spelt 'worls' to
work in the plural. Some words don't
seem to work at all, in spite of
spending some time trying different
spellings. This can usually be
overcome by using allophones but this
will take some practice by the end user.

The manufacturers have thoughtfully
provided some pre-programmed
keywords. As an example, |[SAY,
"1234" will be spoken as "one thousand
two hundred and thirty four". Also
provided are 'Mr.' - speaks ‘Mister', 'Dr.’
- speaks 'Doctor' and others. All in all
the software provides sufficient tools to
produce intelligible speech of
reasonable quality.

Documentation

A manual, comprising of 20xAS5
pages, gives plenty of indications of
how to create good speech. Included is a
demonstration program of a talking
clock which is worth keying in. The
manual is well presented and easy to
follow, even for a first-time user.
Summary

Apart from the hobbyist aspect there

is good potential for commercial
software in games, education and
adventure programs. Indeed I saw (and
heard) a partially finished 'talking'
adventure featuring vampires. The extra
dimension given to programs using the
speech facility certainly adds something
to a program and I feel we can look
forward to a great many 'talking'
programs. The SSA-1 will provide
hours of fun and challenge to Amstrad
owners and represents good value for
money at around $75.

Seven Colour
Graphic Printing
for the Amstrads

Closely following the recent release of
the SP-1000 dot matrix printer for the
Amstrads comes the news that AWA
will also release the GP-700. This dot
matrix printer features a special printing
head that incorporates four logically
controllable 'Uni-hammers' and a four
colour cassette ribbon.

By combining Black, magenta, cyan
and yellow in one ribbon, and having
the facility to specify colours in units
of just one dot, it is possible to produce
'smudge-free' additional colours. .

The SEIKOSHA GP-700 prints from
left to right only (uni-directional) at
speeds from 38 characters per second to
50 characters per second. The graphics
printing has an arbitary combination of
8-dot graphic data with a maximum of
640 dot columns in a line.

The printer is fully compatible with
the Amstrads, and should retail at
around $850.

A New Book Review

by Robin Nicholas

Pitman Publishing in Australia don't
publish very many computer books,
but when they do, they do it properly.
This book is no exception. The cover
of the book states "Pitman's First Book
of Amstrad Games provides an
introduction to writing programs on the
Amstrad series of microcomputers”.
And that is certainly what the book
does.

Many authors and publishers have lost
track of what BASIC programming is
all about. There is an abundance of
books consisting of pages and pages of
program listings and maybe an
explanation of the BASIC keywords,
which claim to teach you how to write
programs. They appear to have
overlooked the fact that there is a lot
more to BASIC programming than
stringing keywords together on
consecutive line numbers.

This book takes a new approach.
While still placing a heavy emphasis
on typing in program listings, each
program listing introduces one or more
new programming concepts. Each
program is completely different but
expands upon the uses of the concepts
detailed in the previous programs. I was
very impressed. The book teaches
BASIC programming rather than
BASIC keyword familiarisation.

Enough of the ideology of the book,
you probably want to know what's
inside.

Well, it consists of twelve chapters.
The first chapter, an introductory
chapter, goes into some detail on the
pitfalls of programming and how to
overcome them. It describes some of
the most common error codes and what
they really mean in terms of your
program, and also covers the main
procedures for debugging programs that

won't run.

The second chapter gives a series of
listings for computer graphics.
Graphics programs are a favourite of
mine because they are short and easy to
type in and yet they give you so much
satisfaction. Those in the book are good
examples of what I mean. I especially
enjoyed the last one, "Wave", which
produces an effect similar to the arcade
game "QIX". The main feature of these
graphics listings is that each one is
based upon a single mathematical
formula. By expanding on these

programs it is easy to develop your
own graphics programs.

From here on each chapter consists of
a program listing complete with notes
on what it does, how it does it and how
the program has been written. Each
chapter introduces BASIC programming
concepts in such a way that makes the
book of great benefit to newcomers and
experienced programmers alike. As if
this feature alone is not enough to
warrant my recommendation for all
Amstrad programmers, the programs
themselves are excellent, both in
quality and content.

I won't go into detail on all the
programs in the book, but just to whet
your appetite, here are a few.

Touch Typing Tutor: If you can't
touch-type, this program will teach you
how, and if you can, this is a great way
to improve your speed and accuracy.

Maze Plays: Features include
randomly generated maze, level of
difficulty, timer, option to play same
maze or new one and computer replay.

Triathlon: If you have seen the arcade
game "Hyper-Olympics" then you'll
know what this one is about. This
program shows you how it's done.

Teledex: A telephone directory which
works like a phone book not a card file.
This program can easily be adapted for
many different applications.

That's just a sample. There are also
Ski Run, Emergency Landing, Draw
Straws, Stop the Invasion, Sound
Envelope Generator and Australiana
Smith and the Forbidden Temple.

The only criticism I could make would
be that there should be more of it. This
book may herald the coming of a new
style of computer-books. I will eagerly
await the release of "Pitman's Second
Book of Amstrad Games".

The Amstrad User 27

Maniac Mower

A Game from James Brown

Here's a frustrating game from James Brown in Moranbah,
Queensland. The object is to mow as many lawns as
possible without hitting any obstacles or running out of
fuel. It sounds easy, but once the "mower" is pointed in the
right direction it keeps on going! : =

It can be played using a joystick or the cursor keys where
A =UP,Z =DOWN, O = LEFT and P = RIGHT.

10 REM XXKXKXKXKKKXKKKKXXK

20 REM x X
30 REM X MANIAC X
40 REM X X
50 REM X MOVER X
60 REM X by James.B X
70 REM X X

80 REM XXXXXX%KkKKXXKXK)KX

90 SYMBOL 240,6,137,137,249,249,137,137,6
100 SYMBOL 241,96, 145, 145, 159, 159, 145, 145,96
110 SYMBOL 242,126, 129,129, 126,24,24,24,126
120 SYMBOL 243, 126, 24,24,24,126,129, 129, 126
130 SYMBOL 244,253, 253,253, 0,223,223,2283,0
140 SYMBOL 245,15, 31,31,15,3,3,3,7

150 SYMBOL 246,224,240,240,224, 128, 128, 128, 192
160 SYMBOL 247,0,15,31,68, 63,31, 15,0 I
170 SYMBOL 250, 0,240,248, 252, 252, 248,240, 0 P cnmmn.
180 MODE 0:PAPER 1:BORDER 1:CLS: INK 0,1
190 PEN 0:LOCATE 1,2:PRINT " MANIAC

MOVER "

200 SOUND 4,450,-32767,4,2,0,2

210 FOR x=1 TO 20

220 LOCATE x,10

230 PEN 3:PRINT CHR$(240)

240 FOR p=1 TO 150:NEXT

250 LOCATE x,10

260 PRINT " »

270 NEXT

280 SOUND 132,1

290 BORDER 9:PAPER 1:PEN 0:MODE 1

300 CLS:LOCATE 14,1:PRINT” INSTRUCTIONS”

310 LOCATE 2,2:PRINT”On the holidays you decided to earn someextra money by mowi
ng lawns.You must avoid the walls, trees, gnomes an

d garden ponds.If you hit any of these you will 1lose a life and get a kick in
the rear.”

320 PRINT "You will also lose a life if your fuel runs out.A bell will sound wh
en your fuel is low.Vhen you have finished mowing t

he lawn you may proceed to the next by leaving through the hole in the wall.”:L
OCATE 8, 15: PRINT”PRESS ANY KEY TO START”

330 a$=INKEY$: IF a$="" THEN GOTO 330

340 sc=0:1=3

350 £=999

28 The Amstrad User

360 MODE O:PEN 12

370 FOR x=1 TO 20

380 FOR y=1 TO 25

390 LOCATE x,y:PRINT CHR$(207);

400 NEXT: NEXT

410 PEN 3:LOCATE 1,1:PRINT STRINGS$(60, CHR$(244))

420 LOCATE 1,25:PRINT STRING$(19,CHR$(244))

430 LOCATE 1,1:PRINT"FUEL="; £:LOCATE 12, 1:PRINT"LIVES=";1
440 tree$=CHR$(245)+CHR$(246)

450 pond$=CHR$(247)+CHR$(250)

460 RANDOMIZE TIME

470 r1=INT(RNDX20):r2=INT(RNDXx23)
480 IF rl1=0 OR r2=0 THEN GOTO 470
490 IF r2<4 THEN GOTO 470

500 LOCATE ril,r2

510 PEN 6:PRINT pond$

520 RANDOMIZE TIME

530 sl=INT(RNDX20):s2=INT(RNDX23)
540 IF s1=0 OR s2=0 THEN GOTO 530
550 IF s2<4 OR s2=r2 THEN 530
560 IF sl=rl OR sl=rl1+1 THEN 530
570 IF sl=rl1-1 THEN 530

580 LOCATE sl,s2

590 PEN 9:PRINT tree$

600 RANDOMIZE TIME

610 al=INT(RNDX20):a2=INT(RNDXx23)
620 IF al=0 OR a2=0 THEN 610

630 IF a2<4 THEN 610

640 IF al=rl1 OR al=rl+l1 THEN 610
650 IF al=sl-1 THEN 610

660 IF al=sl OR al=sl1+1 THEN 610
670 IF al=rl-1 THEN 610

680 LOCATE al, a2

690 PRINT tree$

700 RANDOMIZE TIME

710 bl=INT(RNDX20): b2=INT(RNDX23)
720 IF bl=0 OR b2=0 THEN 710

730 IF b2<4 THEN 710

740 IF bl=rl OR bl=ril+1 THEN 710
750 IF bl=sl OR bl=sl1+1 THEN 710
760 IF bl=al OR bl=al+l THEN 710
770 IF bl=sl-1 THEN 710

780 IF bl=al-1 THEN 710

790 LOCATE b1, b2

800 PRINT tree$

810 t1=INT(RNDX20):t2=INT(RNDX23)
820 IF t2<4 OR t2=r2 OR t2=s2 THEN GOTO 810
830 IF t1=0 OR t2=0 THEN GOTO 810

840 IF t2<4 THEN 830

850 IF tl=rl OR tl=rl1+1 THEN 810

860 IF tl=sl1l OR til=sl1+1 THEN 810

870 IF tl=al OR tl=al+l THEN 810

880 IF tl1=bl OR t1=bl+1 THEN 810

890 IF tl=rl1-1 OR tl=sl1-1 THEN 810

900 IF tl=al-1 OR tl=bl-1 THEN 810

910 LOCATE t1,t2

920 PEN 7:PRINT CHR$(248);

930 RANDOMIZE TIME

940 cl1=INT(RND%20):c2=INT(RNDX23)

950 IF c1=0 OR c2=0 THEN 940

960 IF c2<4 THEN 940

970 IF cl=rl OR cl=rl+l1 THEN 940

The Amstrad User 29

980 IF cl=sl OR cl=sl+1 THEN 940
990 IF cl=al OR cl=al+l THEN 940

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1390
1120
1130
1140
1150
1160
L70
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
" .

1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

IF c1=bl OR cl=bl+1l THEN 940
IF cl=t1 OR cl=t1+1 THEN 940
IF cl=r1-1 OR cl=sl1-1 THEN 940
IF cl=al-1 OR cl=bl-1 THEN 940
IF cl=t1-1 THEN 940

LOCATE c1,c2

PRINT CHR$(248)

mo$=CHR$ (240)

x=1:y=24

SOUND 4,450,-32767,4,2,0,2

IF INKEY(27)>=0 OR INKEY(75)=0 THEN mo$=CHR$(240)
IF INKEY(34>=0 OR INKEY(74)>=0 THEN mo$=CHR$(241)
IF INKEY(69)>=0 OR INKEY(72)>=0 THEN mo$=CHR$(242)
mo$=CHR$ (243>

IF INKEY(71>=0 OR INKEY(73)>=0 THEN
X2=X: y2=y

IF mo$=CHR$(240) THEN x=x+1

IF x>20 THEN x=20

IF mo$=CHR$(241) THEN x=x-1

IF x<1 THEN x=1

IF mo$=CHR$(242) THEN y=y-1

IF mo$=CHR$(243) THEN y=y+1

IF y>25 THEN y=25

LOCATE =x,y

PEN 0:PRINT mo$

LOCATE x2,y2: PRINT” *

IF x=rl1 AND y=r2 THEN GOTO 1430
IF x=rl+1 AND y=r2 THEN GOTO 1430
IF y=s2 AND x=s1 THEN GOTO 1430
IF x=al AND y=a2 THEN 1430

IF x=al+l AND y=a2 THEN 1430

IF x=bl AND y=b2 THEN 1430

IF x=bl+1l AND y=b2 THEN 1430

IF x=sl+1 AND y=s2 THEN GOTO 1430
IF x=t1 AND y=t2 THEN GOSUB 1430
IF x=cl AND y=c2 THEN 1430

IF x=20 AND y=25 THEN SOUND 132, 1:sc=sc+f:GOTO 350

IF y<4 THEN GOTO 1430 ELSE f=f-1

IF y>24 THEN GOTO 1430

PEN 3:FOR p=1 TO 15:NEXT:LOCATE 6, 1:PRINT f
IF £=0 THEN PEN 0:SOUND 132, 1:GOTO 350

IF £<100 THEN SOUND 132, 1:PRINT CHR$(7):PEN 3:LOCATE 6,25:PRINT " FUEL LOW

LOCATE 18, 1:PRINT 1
GOTO 1100

SOUND 132, 1:FOR j=7 TO 1 STEP -2:SOUND 2,0,50,3j,0,0,31: NEXT
CLS: LOCATE 5,10: PRINT "YOU ARE DEAD”:1=1-1:IF 1<0 THEN GOTO 1460

FOR p=1 TO 1500:NEXT:GOTO 350
RESTORE 1460

SOUND 132,1:FOR n=1 TO 13

READ a

SOUND 1,a,60,15,7

NEXT n

MODE 1:CLS:PRINT"”TOO BAD.YOU RAN OUT OF LIVES"
LOCATE 3, 3:PRINT "YOU SCORED: -"; sc

LOCATE 10, 10:PRINT "ANOTHER GAME(Y/N) 72"
a$=INKEY$: a$=UPPERS$ (a%)

IF a$="Y” THEN GOTO 340

IF a%="N" THEN END

GOTO 1540

DATA 568, 0,568,568,568,0,478,506,506,568,568, 602,568, 999

30 The Amstrad User

Sorting Methods

by Arthur Harris

This article derives from research into
sorting methods over a number of years
and implementation on several
computers. I still own and use (for
various purposes) a TRS-80 Model I, a
Sharp PC-1500 and a Sharp PC-1211,
as well as "Arnold". The timings quoted
have been taken from these machines
and, in general, have been kept separate
because of the different machine clock
speeds and the form of the basic
program used (for instance, I ran a
compiled version on the TRS-80). The
computers listed above form my home
"stable".

From my reading over the years there
appear to be four methods of sorting
lists of items. The selection of the
most efficient sort routine for a
particular application is a complicated
business which basically requires a
prior knowledge of the condition of the
list before sorting. The condition of a
list is a measure of the disorder of that
list. The selection of the method used
depends on the time taken for the sort,
the amount of coding necessary and the
overhead required in terms of the extra
memory required for additional
variables.

The first method mentioned in almost
all texts is called the Bubble Sort. This
method compares the first and second
items in the list and exchanges them if
necessary. Then it compares the second
and third items and continues
comparing adjacent pairs of items until
a complete pass of the list has occurred.
At each comparison, a swap of the two
items occurs, if necessary. Each time a
swap is made, either a "flag" is set or a
counter is incremented. At the end of a
pass, the "flag" or the counter is tested.
If the "flag" is set or the counter is

greater than zero, another pass is made.
Thus one complete pass of the list is
made after the list is sorted. This is a
waste of time.

The reason for calling this routine the
Bubble Sort is obvious, after a little
thought. The "heavy" items sink to the
bottom, while the "light" ones
"bubble" to the top when sorting into
ascending order (which is the usual final
order). For short lists, the Bubble Sort
is reasonably efficient and this is
sometimes utilised in some of the
many variations in sort routines.

The next most popular method is
called the Insertion Sort. There are a
couple of variations of this method.
The first takes an item from the list
(sensibly the smallest) and moves the
whole list down to accommodate it.
Having moved the smallest item into
the first position, this position can then
be ignoted and the rest of the list dealt
with in the same manner. As each
position in the list is filled with the
correct item, the number of items to be
handled reduces. This greatly speeds up
the time taken to complete the sort.
There is no need to check whether a
swap has occurred.

The version that I prefer locates the
smallest item in the list and instead of
moving the list down to accommodate
it, simply exchanges it with the first
item. As each position in the list is
assigned the correct item, the length of
the list still to be dealt with decreases,
as above.

The third method is called the Shell
Sort (or sometimes the Shell-Metzner
Sort). This method is similar to the
Bubble Sort except that the distance
between the items being compared is
increased. Initially the two items are

separated by half the length of the list.
This sorts the list into two halves. The
lower half contains all items smaller
than the mid-point of the sorted list and
the upper half contains items greater
than the mid-point. The spacing of the
items to be compared is then reduced to
half of its previous value and each of
the halves is dealt with in the same
manner.

After each complete pass of the list,
the interval between items being
compared is halved until adjacent pairs
of items are being compared. There is
no need to check whether any swaps
have occurred. Once the complete
algorithm has been traversed, the sort
will be complete.

The final method is called the Quick
Sort. In this method, an item is chosen
from the list, by some method, and the
list is sorted into two partitions, one
containing all items smaller than the
chosen one and the other with all items
larger than the chose one. Each
partition is then dealt with in a similar
manner until the whole list has been
dealt with.

Variations in this method are based on
the algorithm used to choose the item
used for comparison. One algorithm
locates the median value in the list.
Another, which I prefer, simply takes
the first item in the list. To enable the
program to keep track of the start and
finish of the partitions, the method uses
an artificial stack. At each stage of the
sort, the limits of the partition are
initially pushed onto the stack and
when the program is ready to deal with
it, these limits are popped off again. I
have not seen any discussion on how
large this stack needs to be to cope with
a list of any given size.

The Amstrad User 31

Once again, there is no need to check
for swaps at any stage, as a complete
traverse of the algorithm ensures correct
ordering of the list.

The Bubble Sort is the only method
that admits to any variations that will
speed up the process. A little thought
will show that (for sorting into
ascending order) the largest item will be
carried to the end of the list on the first
pass. Thus this position can be ignored
on the next and all susequent passes.
Similarly on the second pass, the next
largest item will be carried to its correct
position, and so on. Thus one item of
the list can be removed from
consideration at each pass. This
additional condition can be
superimposed on the basic algorithm to
improve performance, while still
allowing an exit once the list is sorted,
if this occurs before the final pair of
items are compared.

Another modification, which appears
to be the ultimate, is the Modified
Bubble Sort. The basis of this method
is to keep track of the location of the
last swap during a pass through the list.
It is assumed, correctly, that the list
beyond this point is properly ordered
and need take no further part in the
process.

As an example of how involved the
procedures used for sorting may
become, I will quote one that I know
of. The list is first divided into short
segments of, say, 15 to 20 items. At
this size, a Bubble Sort is fairly
efficient, so it is used to sort each of
the segments. Following this a merge
routine is used to merge the sorted
segments into the final ordered list.

An example of choosing the sort
method to suit the initial condition of
the list occurs when maintaining, say,
address lists. In order to locate a name
and address quickly, the list is usually
kept in sorted order. When it is
necessary to add a name to the list,
these are usually added to the end and
the list resorted. In this case, it is
known that the list is initially in close
to the final ordered condition. The most
efficient method of re-ordering the list
is considered to be the Insertion Sort.

32 The Amstrad User

The final selection of the method used
to sort a given list depends on four
criteria - the inital condition of the list,
the amount of coding required to
implement the chosen method, any

overheads occasioned by the use of
additional variables used exclusively as
part of the sorting procedure and finally
the time taken to complete the sort.

Timings
(Bub M/Bub Inseri Shell @sort Items)
122.27 52.45 21.86 4.88 3.41 255
123.12 51.27 28.13 3.47 3.24 238 |
118.18 46.37 19.26 3.37 3.28 245 |
115.85 47.87 18,37 3.38 3.28 248 |
117.49 45.59 17.54 3.38 3.18 235
113,25 44,25 17.88 3.33 3.1 236 |
167.18 41,22 14.22 4.81 3.86 225 |
182.11 38.82 15.41 3.85 3.81 226 |
184.58 37.48 15.81 3.85 2.3 215 |
162.27 36.88 14.186 3.16 2.47 218 |
181,81 34.59 13.48 2.57 2.45 285 |
54.16 32,38 12.57 3.1% 2.227 288 |
45,59 29.46 12.21 3.18 2,37 195 |
47,27 28.18 {1.44 2,31 2,39 196 |
47,36 28.85 11.89 2.31 2,33 185 |
44.84 26,24 18,33 2,29 2.18 186 |
42,28 25.85 18.81 2,35 2.11 175
38.21 23.29 9.2 2,25 2.41 178
35.08 22.81 8.54 2.27 2.83 145 |
36,59 21.83 8.26 2.31 2,86 148 |
31.45 19.18 7,51 1.57 1.58 155 |
22.41 18,11 2,22 1.57 2.82 1568 |
29.30 17.21 6.51 1.55 1,51 145 |
27.45 15,56 4.25 1.49 1.4 148 |
24,33 14,51 4.88 1.51 1.46 135 |
22.66 13.16 5.31 1.59 1.36 138 |

NOTE :- Times are in the format H¥4.5S as timed by the PC-1588.

! Bub M/Bub Insert Shell Gsort Items
21.86 12.54 5.88 1.26 1.31 125
18.28 11.36 4.45 1,26 1.35 128
18.02 10.47 4.21 1,33 1.18 115
15.16 9.39 4.66 1.2 1.13 116
14.53 8.58 3.38 1.24 1.15 185
12,27 7.45 3.8 1.15 1.18 188
8.53 4.03 2.59 8.57 1.81 95
16.48 6.21 2.46 8,59 1.88 98
9.33 5.51 2.24 8.51 8.57 85
7.54 4,55 2.6 1.81 8.52 88
6.59 4.3 1.51 8.45 0.43 73
.82 346 1.37 6.56 8.42 78
5.52 3.25 1.26 0.41 8.45 435
4,34 2.5 1.12 8.32 8.3 48
2,53 2.89 1.81 8.29 0.3 39
3.62 1.49 6.51 8.38 8.27 58
2.45 1.42 8.43 6.21 8.24 45
2.864 1.5 8.33 6.18 6.20 48
1.26 6.57 8.25 0.18 0.14 35
1.12 8.43 6.1% 8.12 8.15 38
.46 8.29 06.14 0.18 0.18 25
§.19 8.15 8.16 8.86 6.67 28
8.8 6.16 8.84 8.83 8.85 15
8.85 6.85 6.63 6.81 8.82 18
8.61 8.1 8.08 6.81 8.681 5

Note:- The following timings are taken from the Amstrad CPC-464 and are in
seconds. The only explanation I can offer for the sudden very large jump in
Bubble and Modified Bubble Sorts for the 80, 90 and 100 item lists is that the
number of swaps carried out must have caused the dreaded "garbage collection”
routine to be called, despite having forced its invocation before starting the sort

each time.

Bubble M/Bubble Incertion Shell Quicksort Items
1.20 1.49 8.44 8.50 8.81 16.00
4.4a 2.89 1.84 1.16 1.21 26.60
2.80 6.67 3.84 1.78 1.94 36.00

15,52 i11.64 é6.72 3.44 2.71 46.608

25.87 16.96 16.15 4.085 4,82 50.00

39.95 24.89 14.42 5.594 4,49 46 .60

56.98 34.00 19.44 é.40 9:77 76.00

62.88 197.99 25.26 8.34 7.14 86.606

254.10 226.48 32.07 8.58 8.00 90.00
364.87 244,31 3%.81 11.48 9.89 166.60

DISCOUNTED BOOKS FOR SUBSCRIBERS ONLY

Title Subscriber Price Normal Price
Pitman's First Book of Amstrad Games $ 1165 $ 1295
The Ins and Outs of the Amstrad $ 17.95 $ 1995
Filing Sytems And Databases for the Amstrad $ 2245 $ 2495
Exploring Adventures on the Amstrad S 1710 $ 19.95
A Childs' Guide to the Amstrad Micro $ 89 $ 995
Basic BASIC $ 1145 $ 1275
Bells and Whistles on the Amstrad - SOLD OUT $ 16.15 2 17095
Dynamic Games for the Amstrad $ 1705 $ 1895
On the road to Artificial Intelligence $ 1795 $ 19.95
Your first Amstrad Program . . 3 1885 $ 20.95
Adventure Games for the Amstrad $ 1795 $ 19.95
Brainteasers for the Amstrad $ 17.95 $ 19.95
The Amstrad Games Book $ 14.35 $ 1595
Amstrad Computing $ 1435 5 1595
Basic Programming on the Amstrad $ 1795 $ 19.95
The Working Amstrad $ 17.95 $ 19.95
40 Educational Games for the Amstrad - SOLD OUT $ 1435 $ 15.95
Machine Code for Beginners on the Amstrad - $ 1615 $ 17.95
The Amstrad CPC464 Advanced User Guide $ 15865 $ 19.50
60 Programs for your Amstrad $ 17.95 $ 19.95
An Amstrad Compendium $ 20.65 $ 2295
We also offer a subscription to the English Amstrad User:
12 Issues from the JAN/FEB 1985 edition $ 40.00
12 Issues from the JULY 1985 edition $ 45.00
Back issues also available (subject to stock):
JAN/FEB, MAR, APR, MAY and JUN $ 4.00 (incl. postage)
JULY and onwards $ 4.50 (incl. postage)
Back Issues of the Australian Amstrad User $ 3.50 (incl. postage)
HOW TO ORDER

Send a list of the titles and quantities you require along with a cheque for the total plus $5.00 postage and
packing (regardless of the quantity you order) to:

STRATEGY PUBLICATIONS
Shop 2, 33 The Centreway, Blackburn Road, Mount Waverley, Victoria, 3149
Bankcard or Mastercard orders accepted by phone on (03) 232 7055

SAVE $450

How many computer magazines would I have to buy to get atleast 30 pages of
information and program listings for the new Amstrad CPC464?

'S

On average, most popular magazines will devote 2% pages to the AMSTRAD
CPC464. This means you will need to buy 12 magazines at a cost of around
9

$40 per month, or $480 per year!

Surely there must be a more sensible and cheaper way of getting the
information I need?

There is.
THE AMSTRAD USER is a brand new monthly publication packed with
articles, reviews, listings, hints etc. for Amstrad users only, and costs just

® $30 a year.

Q How can I get a copy delivered to my home each month with an optional

cassette containing all the program listings?

A. By completing and returning this order.

— — — — — — — — — — — — — — _— — — — —— —— — — — — — — — G— — — — —

Please send me THE AMSTRAD USER for 12 months
Magazine only: $300 Magazine and cassette: $70 O
Payment by: Cheque 0 Bankcard or Mastercard O

CardnepBlbieok o0 wnee o0 0 e e Expirydate
NEIe. e R e e e i PHONE 0. 0ol i
Addners - miNE S abE G S e e, B e
... Posteonie .. .t .
Stgned Choini Bles)l R Please start with Issue No

Returnto THE AMSTRAD USER, Suite 4a, 33-45 The Centreway
Blackburn Road, Mt. Waverley, Vic 3149 Tel 03-233 9227

(OVERSEAS PRICES ON APPLICATION TO ABOVE
ADDRESS)

