

WELCOME

Thank you for purchasing Blitz Basic 2.1 We at Acid Software hope that it
provides you with an environment, that gives you the total freedom you need to
explore your ideas on the Amiga computer.

Blitz Basic 2.1 gives you the power to make commercial quality games such as
Super Skidmarks or BlitzBombers and the flexibility to create applications such as
paint packages and spreadsheets.

WHAT YOU SHOULD HAVE RECEIVED

P R O G R A M DISK

This disk is installed with a limited Workbench 1.3 environment so that floppy
disk users can boot straight from this disk. It contains six main files:

Acidlibs - The standard Blitz2 commands.
Blitz2 - The compiler.
Deflibs - The additional commands created from third party libraries.
Help - The on-line help program.
Help.dat - The data file for the on-line help program.
Ted - The editor.

E X A M P L E S DISK

This disk is full of demos and examples written in BlitzBasic 2.1 They provide a
wealth of information for Blitz Basic 2,1 programmers to advance their skills. The
examples have been placed into seven separate directories:

Amigamode

AndrewsDemos
Blitzmode

MarksDemos
SimonsDemos
TedsDemos
Tools

A

Applications related examples on gadgets, windows,
arexx, etc.
Games/graphics related examples by Andrew Blackbourne.
Game/graphics related examples on scrolling, blitting,
animation, etc.
Applications related examples by Mark Sibly.
Games related examples by Simon Armstrong.
Demo/graphics related examples by Ted Bailey.
Application and games related tools and source code.

EXTRAS DISK

This disk is full of additional utilities and programs for users with more than 1 Mb
of memory and a hard drive. To squeeze as much as possible onto the disk, the files
have been compressed using an 'archiver' called Lha. The evaluation version of this
program is required so that you can unpack the files. This disk contains five
archives:

BigDeflibs.lha - All the amigalibs and third party libraries compiled into
one file.

Blitzlibs.lha - All the object code for amigalibs and the third party
libraries and the Blitz resident files and utilities.

LibsDev.lha - An archive for advanced users wanting to create their
own libraries. It contains documentation, example
library source code and test example code for the third
party libraries.

NewDebugger.lha - An advanced debugging utility that allows you to view
copperlists, memory etc.

NewTeditor.lha - An Amiga style guide compliant editor that requires
Workbench 2.0 or greater.

MANUAL

This manual contains detailed descriptions of all the standard commands found in
Acidlibs. It also contains some helpful examples and hints on how to get the best
performance from Blitz.

REGISTRATION CARD

Please fill out this card and mail it back to your Acid Software Distribution Centre.
Once we have received your card, you will be allocated a Blitz User number, please
quote it in all subsequent communications. You will not be eligible for any support,
bug fixes and updates without registering yourself as a Blitz Basic 2.1 user.

B

INSTALLING BLITZ

NB: Please make backup copies of all your disks before using Blitz.

Floppy disk users

You can start using Blitz Basic 2.1 straight away. Insert the program disk and switch
on your Amiga. Double-click on the Blitz2 icon and after a short pause an 'okee
dokee' requester will appear. Click on this and you are now ready to start. Please
refer to chapter one 'Getting Started' for instructions on how to load the
examples.

Hard disk users

1. Create a new directory on your hard disk. Blitz is a good name to

2. Copy the following files from your Blitz Program floppy disk into the
new directory on your hard disk:

3. Create two new sub-directories in your blitz directory:
Blitzlibs
Userlibs

4. Add the following two assigns to your start-up sequence:

Assign Blitz2: <hard drive>:<new directory>
Assign Blitzlibs: <hard drive>:<new directory>/<new sub-directory>

e.g: Assign Blitz2: DH1:Blitz
Assign Blitzlibs: DH1:Blitz/Blitzlibs

5. Restart your Amiga and you are ready to run Blitz from your hard disk

choose.

acidlibs
Blitz2
Blitz2.info
deflibs
help
help.dat
Ted
Ted.info

INSTALLING THE ADDITIONAL UTILITIES AND EXTRAS

You do not need to install the additional utilities and extras in order to use Blitz.
You can simply boot from your Blitz Program disk and start writing your programs.
The extras disk is provided for users with more memory and hard disk drives and
for the more advanced programmers out there.

All the additional files will need to be un-archived before they can be installed or
used. In order to do this you will need the evaluation version of Lha by Stefan
Boberg, which unfortunately wouldn't fit on the disk. It is available from most
Public Domain software suppliers, Aminet and most magazine coverdisks.

One way to extract the files from the archives once you have the Lha program, is:

1. Load up Workbench.

2. Copy the Lha program file into your Workbench:C drawer.

3. Open a shell by double-clicking on the shell icon in the system drawer.

4. Type: Lha x
e.g: Lha x Extras:BigDeflibs.lha Ram:

5. Copy the un-archived file into its correct place
e.g: copy deflibs DH1:Blitz

D

What's in the archives and where do the files go?

BigDeflibs.lha:

Blitzlibs.Iha:

LibsDev.lha:

NewDebugger.lha:

NewEditor.lha:

This contains a single 159K deflibs file that is a direct
replacement for the small 55K deflibs file in your Blitz
drawer. Floppy disk users do not have enough room on their
program disk to install this file.

This contains two directories and several resident files and
utilities. Floppy disk users should format a blank disk and
rename it Blitzlibs and then un-archive the file onto this disk.
Hard disk users should un-archive this file into the Blitzlibs
drawer they created when installing Blitz.

This contains six directories and a documentation file.
Floppy disk users should format a blank disk and un-archive
the file onto this disk. Hard disk users should create a new
sub-directory in their Blitz drawer (a good name would be
developers) and then un-archive this file into the new
directory.

This contains the new 152K defaultdbug file, documentation
on its use and an example directory containing test
programs. The file is a direct replacement for the small 33K
defaultdbug in your Blitz drawer. The examples and
documentation can be installed in any suitable directory.
Floppy disk users will not be able to install this file as there is
not enough room on their program disk. NB: The big 159K
deflibs file must be installed to use the advanced debugging
utility.

This contains the new 57K Ted file and some documentation
on its use. The file is a direct replacement for the 59K Ted file
in your Blitz drawer. The documentation can be installed in
any suitable directory. Floppy disk users will not be able to
install this file and the additional libraries it requires as there
is not enough room on their program disk. NB: The new
editor requires Workbench 2.0 or greater.

E

Directory Tree for Hard Disk users

Userlibs

NB: The developers and examples directories are optional. Blitzlibs is mainly
required for the resident files that some programs use. Userlibs is only required
for testing beta-versions of your own libraries.

F

acid library source code
system includes
developer tool source code
docs for third party libs
test programs for third party libs
source code for third party libs

example code

program files

Blitzlibs resident files

amigalibs
otherlibs

amiga libraries
third party libraries

documentationDevelopers

acidlibsrc
amigaincludes
toolsource
userlibdocs
userlibprogs
userlibsource

Examples

amigamode
andrewsdemos
blitzmode
marksdemos
simonsdemos
tedsdemos
tools

BUM SUBSCRIPTIONS AND SUPPORT

If you want to receive the latest additions, fixes and example code, you can
subscribe to the Blitz User Magazine currently at issue eight. We are hoping to
have BUM9 ready shortly after Christmas 1995 and it will consist of two disks that
will unpack onto four disks (this is the standard BUM format). For £10.00,
registered users can have the next two issues of BUM delivered to their door.
Please note, existing BUM subscribers have already paid for the next two issues.

UK and European registered users should contact:

Acid Software
c/o Guildhall Leisure Services
Unit 15, Guildhall Industrial Estate
Kirk Sandall
Doncaster
D N 3 1QR

Phone: +44 (0)1 302 890000
Fax: +44 (0)1 302 890010
Email: Ted@blitzuk.demon.co.uk

US and Australasian registered users should contact:

Email: acid@iconz.co.nz

G

mailto:Ted@blitzuk.demon.co.uk
mailto:acid@iconz.co.nz

PROBLEMS YOU MAY ENCOUNTER

Error Type Explanation and Solution

Can't compile the program, there are
??????'s instead of Blitz commands

The program may be using a Blitz
command from the third party
libraries, you got the large deflibs
installed in your Blitz drawer ? NB:
Floppy users cannot install the
large deflibs file as there isn't
enough room on their program
disk

Can't load resident A few programs use resident files
which are contained in the blitzlibs
archive. Floppy users have you
named a blank disk Blitzlibs and
un-archived the file blitzlibs.lha
onto it? Hard Disk users have you
un-archived the blitzlibs.lha file
into the correct drawer on your
hard drive ? Have you added the
assign for Blitzlibs: to your startup
sequence ?

Please insert volume Blitzlibs: See above explanation and is your
deflibs file in the same drawer as
the Blitz2 program file ?.

Can't load graphic/shape/sound/include
file

Blitz can't find the file to be
loaded. Have you used the Change
Directory gadget on the file
requester ?

H

CONTENTS

1. GETTING STARTED 1 4. PROCEDURES 31

Installing Blitz 1
Registration Card 1
OkeeDokee? 1
Running the Examples 1
Current Directories 2
Using Ted the Blitz2 Editor 2
Entering Text 3
Highlighting blocks of text 3
The Editor Menus 4
The Blitz File Requester 7
The Compiler Menu 8
Compiler Options 9
Keyboard Shortcuts 10

2. BLITZ BASIC’S 11

My First Program 11
The Print Command 11
Formatted Printing 12
A Simple Variable 12
Blitz2 Operators 12
Boolean Operators 14
Binary Operators 14
Multiple Commands 14
A Simple Loop 14
Nested Loops 15
While..Wend and Repeat..Until 15
Endless Loops 16
Using String Variables 16
Program Flow 17
Jumpin’ Around 17
Getting Input from the User 18
Arrays 19

3. TYPES, ARRAYS AND LISTS 21

Numeric Types 21
Default Types
The Data Statement

22
22

Numeric Overflows 23
String Types 23
System Constants 23
Primitive Types Summary 23
NewTypes 24
Arrays inside NewTypes 25
The UsePath Directive 26
ARRAYS 27
LISTS 28
Dimming Lists 28
Adding items to a list 28
Processing Lists 29
Removing Items From a List 30
List Structure 30
The Pointer Type 30

Introduction 31
Statements 31
Functions 32
Recursion 33
Accessing Global Variables 33
Procedures Summary 33
Assembler in Blitz Procedures 34

5. ERROR CHECKING&DEBUGGING 35

Compile Time Errors 35
The CERR Directive 36
Runtime Errors 36
The Blitz Debugger 37
The Debugger Gadgets 38
Tracing program execution 38
Resuming Normal Execution 39
Viewing command history 39
Direct Mode 39
Debugger Errors 40

6. BLITZ OBJECTS 41

Blitz2 Objects Overview 41
Object Similarities 41
Object Maximums 42
Using an Object 42
Input/Ouput Objects 43
Object structures 43
The Blitz Objects 44
Screens 44
Windows 44
Gadget and Menu lists 44
Palettes 44
BitMaps 45
Shapes 45
Sprites 45
Slices 45
Files 46
Objects Summary 46

7. BLITZ MODE 47

Introduction to Blitz Mode 47
Slice Magic 47
Smooth Scrolling 48
Dual-Playfield 48
Copper Control 48
The Blitter 49
QAmiga Mode 50
Summary 51

8. ADVANCED TOPICS 53 11. THE DISPLAYLIBRARY&AGA 89

Resident Files 53 Introduction 89
Operating System Calls 54 Initialising 89
Operating System Libraries 54 Flags used with InitCopList 90
Accessing OS Structures 55 Colors 90
Locating Variables & Labels 55 SmoothScrolling 90
Constants 56 DualPlayfield 91
Conditional Compiling 57 Sprites 91
Macros 58 FetchMode 91
Macro Parameters 59 Multiple Displays 91
The ‘0 Parameter 60 Advanced Copper Control 92
Recursive Macros 60 Display Example 1 93
Replacing Functions with Macros 61 Display Example 2 94
The CMake Character 61
Inline Assembler 62
GetReg & PutReg 62 COMMAND REFERENCE SECTION
Assembler in Procedures 63

R-1: PROGRAM FLOW 95
R-2: VARIABLE HANDLING 101

9. PROGRAMMING & OPTIMIZING 65 R-3: INPUTOUTPUT COMMANDS 105
R-4: FILE HANDLING & IFFINFO 109

Label and Variable Names 65 R-5: NUMERIC&STRING FUNCTIONS 113
Style 65 R-6: COMPILER DIRECTIVES 121
Naming related problems 66 R-7: ASSEMBLER DIRECTIVES 125
Remarks and Comments 66 R-8: MEMORY CONTROL 127
Structured programming 67 R-9: PROGRAM STARTUP 129
Keeping things modular 67 R-10: SLICE COMMANDS 131
Along the way... 68 R-11: DISPLAY LIBRARY 135
Keeping your code readable 68 R-12: BLITZMODE IO COMMANDS 140
Optimising Code 69 R-13: BITMAP COMMANDS 144
Algorithms 69 R-14: 2D DRAWING COMMANDS 146
Loops 69 R-15: ANIMATION SUPPORT 148
Lookup tables 70 R-16: SHAPE HANDLING 149
Using Pointers 70 R-17: BLITTING COMMANDS 153
Testing Performance 70 R-18: SPRITE HANDLING 159
Optimising Games 71 R-19: COLLISION DETECTION 161

R-20: PALETTE COMMANDS 163
R-21: SOUND MUSIC & SPEECH 168

10. PROGRAM EXAMPLES 73 R-22: SCREEN COMMANDS 173
R-23: WINDOW COMMANDS 176

Number Guessing 73 R-24: GADGET COMMANDS 188
Standalone WorkBench progs 74 R-25: MENU COMMANDS 195
A Graphic Example 75 R-26: GADTOOLS COMMANDS 198
Using Menus & File Requesters 76 R-27: ASL LIBRARY COMMANDS 202
String Gadgets 77 R-28: AREXX CONTROL 203
Prop Gadgets 78 R-29: BREXX COMMANDS 211
Database Type Aplication 79 R-30: SERIAL PORT COMMANDS 214
List Processor for Exec 82
Prime Number Generator 83
Clipped Blits 84 APPENDIX
Dual Playfield Slice 85
Double Buffering 86 A-1: COMPILE TIME ERRORS 217
Smooth Scrolling 87 A-2: OPERATINGSYSTEM CALLS 227

A-3: AMIGA HARDWARE REGISTERS 237
A-4: 68000 ASSEMBLY LANGUAGE 247
A-5: RAWKEY CODES 253

1. GETTING STARTED

Installing Blitz

There are two install programs included on D isk 1 of the Blitz disks, HDInstall and
Floppylnstall. From Workbench click on the one that is applicable. Those installing
onto harddisk will want to make sure they have at least 4 megs free in the partition
they are installing to while floppy users will be inform ed by the F loppylnstall
program of the number of blank disks they will need to unpack all the data onto.

Registration Card

Please fill out this card and mail it back to Acid Software. You will not be eligible for
any support, bug fixes and updates without registering yourself as a Blitz2 user. We
would also like to here about what you want to use Blitz2 for and any things you
think need adding to Blitz2.

OkeeDokee?

Once you have a working backup of the disks or have installed Blitz 2 onto your
harddisk its time to take your new programming language for a spin.

Double click the Blitz2 icon to run the editor/com piler. The editor screen should
appear with a copyright notice (which should NOT be ignored!). Click on OkeeDokee
and you’re up and running.

Running the Examples

Okee dokee, if you have got this far without any problems you’re ready to drive the
speed machine (thats the Blitz 2 editor/compiler we’re talking about).

Select the LOAD menu item, insert the examples disk or select the Blitz2:Examples
drawer on your harddisk and load in one of the examples. Any file ending with the
suffix .bb2 is a source file able to be loaded into the Blitz2 editor/compiler. Once you
have loaded a .bb2 file have a read, guess what it’s going to do then select compile
and run from the compiler menu.

The only problem you should have with running the examples is to do with ‘Current
Directories’.

1

Current Directories

If you changed the pathname in the file-requester to locate the example you loaded,
you will usually need to click on the CD gadget before selecting OK on the file-
requester. This changes the current directory to that which you loaded the example.

By changing the current directory, any files the program attem pts to use will be
loaded from the same directory as that from which the source code was loaded.

This means that when the program is executed (run) and attempts to load any data or
graphics from disk, the default path (directory it looks for files) will be set to the same
directory as where the program itself was loaded.

If the example comes up with a runtime error "Couldn’t Load Shape" or the like it
will be because the current directory has not been to set. Hit Escape to exit the
debugger and return to the editor.

If the example crashes the machine, it is because the same error occurred but error
checking was disabled on the compiler options menu.

Using Ted the Blitz2 Editor

To enter and compile your programs you need an editor. Blitz2 comes with a text
editor that acts both as an interface to the Blitz2 compiler as well as a standalone ascii
editor (ascii is the computer standard for normal text).

The horizontal and vertical bars are called ‘scroll bars’, when the file you are editing
is longer or wider than the screen you can position your view of the file by dragging
these bars inside their boxes with the left mouse button.

At the bottom of the screen is information about the cursor position relative to the
start of the file you are editing as well as a memory monitor that lets you know the
largest block of memory available in your Amiga system.

Using the left mouse button you can drag the Blitz2 screen up and down like just like
any other Amiga screen as well as place it to the back with the front to back gadgets
at the top right of the screen.

2

Entering Text

The editor can be treated just like a standard typewriter, just go ahead and type, using
the return key to start a new line.

The small box that moves across the screen as you type is called the cursor. Where
the cursor is positioned on the screen is where the letters will appear when you type.

By using the arrow keys you can move the cursor around your document, herein to be
known as the file.

If you place the cursor in the middle of text you have already typed you can insert
letters just by typing, the editor will move all the characters under and to the right of
the cursor along one and insert the key you pressed into the space created.

The DEL key will rem ove the character directly under the cursor and move the
remaining text on the line left one character to cover up the gap.

The key to the left of the DEL key will also remove a character but unlike the DEL
key it removes the character to the left of the cursor moving the cursor and the rest of
the line to the left.

The TAB key works sim ilar to a typewriter moving the cursor and any text to the
right of the cursor right by so many columns.

The RETURN key as m entioned allows you to start a new line. If you are in the
middle of a line of text and want to move all text to the right of the cursor down to a
new line use shift RETURN, this is known as inserting a carriage return.

To join two lines of text use the AmigaJ keyboard combination.

Using the shift keys in combination with the arrow keys you can move the cursor to
the very start or end of a line and up and down a whole page of the document.

By pointing with the mouse to a position on the screen you can move the cursor there
by clicking the left mouse button.

See keyboard shortcuts at the end of this chapter for other important keys used with
the Blitz2 editor.

Highlighting blocks of text

When editing text, especially programs you often need to operate on a block of text.
Position the mouse at the start or end of the block, hold down the left mouse button
and drag the mouse to highlight the area you wish to copy, delete, save or indent.
W hile holding down the button you can scroll the display by moving the pointer to
the very top or bottom of the display.
You can also select a block with the keyboard, position the cursor at the start of the
block of text, hit the F 1 key then position the cursor at the end of the text and hit F2.

3

A special feature for structured programmers is the Amiga-A key combination, this
automatically highlights the current line and any above or below that are indented the
same number of spaces.

The Editor Menus

Using the right mouse button you can access the menu system of the Blitz2 editor.
The following is a list o f the features accessible from these menus in order from left
to right.

The P R O JE C T M enu

NEW Kills the file you are editing from the Amiga’s memory. If the file
has been changed since it was last saved to disk a requester will ask
you if you really wish to NEW the file.

LOAD Reads a file from disk. A file requester appears when you select
LOAD which enables you to easily select the file you wish to edit.
See later in this chapter for a full description o f using the file
requester.

SAVE W rites your file to disk. A file requester appears when you select
SAVE which enables you to easily select the file name you wish to
save your file as. See later in this chapter for a full description of
using the file requester.

D EFA U LTS Changes the look of the Blitz2 editor. You can edit the palette,
select the size o f font and tell the system if you wish icons to be
created when your files are saved. The scroll margins dictate how
far from the edge of the screen your cursor needs to be before Blitz
scrolls the text.

ABOUT Displays version number and credits concerning Blitz2.

PRIN T Sends your file to an ouput device usually PRT: the printer device.

C L I Launches a com m and line in terface from the ed ito r, use the
ENDCLI command to close this CLI and return to the Blitz2 editor.

CLOSEW B Closes WorkBench if it is currently open. This option should only
be used if you are running very short on m em ory as c losing
WorkBench can free about 40K of valuable ChipMem.

QUIT Close the Blitz2 editor and returns you to workbench or CLI.

4

The EDIT Menu

COPY Copies a block of text that is highlighted with the mouse or
f 1-f2 key combination to the current cursor position. The F4
key is another keyboard shortcut for COPY.

K ILL Deletes a highlighted block of text (same as shift F3 key).

B LOCKTODISK Saves a highlighted block of text to disk in ascii format.

IN S E R T F R O M D IS K Loads a file from disk and inserts it into the file you are
editing at the current cursor position.

FO RG ET De-selects a block of text that is selected (highlighted).

INSERTLINE Breaks the line into two lines at the current cursor position.

DELETE LINE Deletes the line of text the cursor is currently located on.

D ELETE R IG H T Deletes all text on the line to the right of the cursor.

JO IN Places the text on the line below the cursor at the end of the
current line.

BLOCK TAB Shifts all highlighted text to the right by one tab margin.

B LO CK UNTAB Shifts all highlighted text to the left by one tab margin.

The SOURCE Menu

TO P Moves the cursor to the top of the file.

BOTTOM Moves the cursor to the last line of the file.

G O TO LINE Moves the cursor to the line number of your choice.

5

The SEARCH Menu

FIND Will search the file for a string of characters.

NEXT Positions the c u r s or at the next occurence of the Find-String
entered using the FIND menu option (as below).

PR EV IO U S W ill position the c u r s or at the last occurence of the Find:
String entered using the FIND menu option (as below).

R EPL A C E Will carry out the same function as discussed in the FIND
requester below.

After selecting FIND in the SEARCH menu the following requester will appear:

Type the string that you wish to search for into the top string gadget and click on
NEXT. This will position the cursor at the next occurence of the string, if there is no
such string the screen will flash.

Use the PREVIOUS icon to search backwards from the current cursor position.

The CASE SENSITIVE option will only find strings that have the same le t te rs
capitalised, default is that the search will ignore whether letters are caps or not.

To replace the find string with an alternate string click on the box next to REPLACE:
and type the alternate string. REPLACE will search for the next occurence o f the
Find: string, delete it, and insert the Replace: string in it’s place.

REPLACE ALL will carry on through the file doing replaces on all occurences of the
Find: string.

6

The Blitz File Requester

When you select load or save, Blitz2 places a file requester on the screen. With the
file requester you can quickly and easily find the file on a disk.

Clicking on the top left of the window or on the CANCEL gadget at the bottom right
will cancel the file requester returning you to the editor.

The slider at the right enables you to scroll up and down through the files in the
currently selected directory (drawer).

Double clicking on a file name (pointing to the name and pressing the left mouse
button twice) will select that file name.

Clicking on a <DIR> will change to that directory and list the files contained in it.

Clicking on PARENT will return you to the parent directory.

Clicking on drives adds a list of all drives, volumes and assigned devices to the top of
the file list so you can move into their directories.

You can also enter path and file names with the keyboard by clicking on the boxes
next to PATH: and FILE: and entering the suitable text. Then C lick on the OK
gadget.

CD is a special command used when programming in Blitz2 to change the editors
current directory to that specified in the path name. This means that when you select
CLI or launch a task from the editor its root directory will be that selected by the CD
gadget.

The last feature o f the Blitz2 FileR equester is the ability to size its window, by
dragging the bottom right of the window with the left mouse button you can see many
more files at one time.

7

The Compiler Menu

The following is a discussion of the extra options and commands available with Ted
when used in B litz2 program m ing mode. The C om piler m enu includes all the
commands needed to control the Blitz2 compiler.

COMPILE/RUN Compiles your Blitz2 program to memory and if there are no
errors run the program.

RUN Runs the program if it has already been successfully
compiled to memory.

CREATE FILE C om pile your B litz2 program to d isk as an executable
program.

OPTIONS See next page for details about Blitz2 compiler options.

CREATERESIDENT Will create a ‘resident file’ from the current file. A resident is
a file including all constants and macro definitions as well as
new type defin itions. By rem oving large chunks o f these
defin itions from your code and creating a resident (pre
compiled) file a dramatic increase in compile speed can be
attained.

VIEW TYPE Allows you to view all currently resident types. Click onthe
type name and its definition will be shown. Subtypes can be
viewed from this expansion also.

CLI ARGUM ENT Enables you to pass param eters to your program when
executing it from the Blitz2 editor environment just as if you
had run the program from the CLI.

CALCULATOR Allows you do to calculations in base 2, 10 and 16. Precede
hex values with $ and binary with %. It also supports multi
levels of parenthesis.

RELOAD ALL LIBS W ill read all files from BLITZLIBS: back into the Blitz2
compiler environment. This is useful when writing your own
Blitz2 libraries and wish to test them without having to re-run
Blitz2.

8

Compiler Options

The following is a discussion of the Options requester found in the Compiler menu.

Create Icons for Executable Files: if on, the compiler creates an icon to accompany
the file created with the CREATE FILE option. This means the program will be
accessable from the WorkBench. Note: for the program to execute correctly when run
from workbench the WBStartUp command should be included at the top of the source
code.

Enable Runtime Errors:when on will trap runtime errors and invoke the Blitz2
debugger. See Chapter 5 for a thorough discussion of runtime errors in Blitz2.

Make Smallest Code: selects two pass compile mode, which always calculates the
m inim um am ount o f m em ory requ ired fo r the ob jec t code. M ake Sm allest is
automatically selected when creating executable files. Unselected, programs will
compile quicker.

Debug Info: creates a symbols table during CREATE FILE so executable can be
debugged more easily with debuggers such as Metadigm’s excellent MetaScope.

Buffer Sizes: allows different buffers to be altered when using Blitz2 as a one pass
compiler. These buffers are automatically optimised when using MakeSmallest (two
pass compile). The one exception is the string buffer setting, if using large strings
(such as reading entire files into one string) the string workspace buffer should be
increased in size to handle the largest string used.

Object Maximums: allows setting of maximum number of Blitz2 objects, such as
screens, shapes etc. See Chapter 6 for a thorough explanation of Blitz2 objects and
their maximum settings.

Resident: adds precompiled resident files to the Blitz2 environment. Click in the box
and type in the resident file name.

9

Keyboard Shortcuts

Having to reach for the mouse to execute some of the editor commands can be a
nuisance. The following is a list of keyboard shortcuts that execute the same options
that are available in the menus.

The right Amiga key is just to the right of the space bar and should be used like the
shift key in combination with the stated keys to execute the following commands:

A A SELECTs all text that is indented the same amount as the current line (strictly
for structured programming housekeeping)

A B BOTTOM will position cursor on last line of file

A D DELETE LINE rem oves the line o f text on which the cursor is currently
positioned

A F FIND/REPLACE executes the FIND command in the SEARCH menu

A G GOTO LINE moves cursor to specific line of file

A I INSERT LINE moves all text at and below the cursor down one line

A J JOIN LINE adjoins next line with current line

A L LOAD reads a file from disk

A N NEXT searches for the next occurence of the ’find string’

A P PREVIOUS searched for previous occurence of the ’find string’

A Q QUIT will exit the Blitz2 editor

A R REPLACE will replace text at cursor (if same as find string) with the alternate
string specified with the Find command.

A S SAVE writes a file to disk

A T TOP moves the cursor to the top of the file

A W FORGET will unhighlight a selected block of text

A Y DELETE TO RIGHT of cursor

A Z CLI

A ? DEFAULTS allows the user to change the look and feel of the Blitz2 editor

A] BLOCK TAB moves whole block right one tab

A [BLOCK UNTAB moves whole block left one tab

10

2. BLITZ BASIC’S

My First Program

Type in the following two lines:

Print "This is my first program written in Blitz2!"
MouseWait
End

Then using the right button select COMPILE&RUN from the top right menu.

If you have typed the program in correctly a Blitz2 CLI Window will appear with the
message, click the mouse button to return to the editor. Thats all there is to it!

The Print Command

Position the cursor on the Print statement and press the HELP key, the syntax for the
Print command appears at the top of the screen. It should read:

Print Expression[,Expression...]

The square brackets mean that the Print com m and will accept any num ber of
expressions separated by commas. An expression can be any number, string (text in
"quotes"), variable or BASIC calculation. The following is an example of all these.

D on’t forget to include the M ouseW ait command when you test this, otherwise
Blitz2 will print the message and return you to the editor before you even have time to
read it!

Print 3,"CARS",a,a*7+3

The following should be printed out on the CLI window:

3CARS03

If we add some spacing between each expression like so:

Print 3," CARS ",a," ",a*7+3

The result will be the line:

3 CARS 0 3

11

Formatted Printing

We can change the way Blitz2 prints numbers using the Format command, this is
useful if want to print a list of numbers, in a column.

The NPrint command is used to move the cursor to a newline after printing the
expressions.

Format "###.00"
Nprint 23.5
Nprint 10
Nprint .5
Nprint 0
MouseWait

A Simple Variable

The main power of a programming language lies in it’s ability to manipulate numbers
and text. Variables are used to store these pieces of information.

The following line will store the value 5 in the variable a:

a=5

The variable a now holds the value 5. We can tell the computer to add 1 to the value
of a making it 6 using the following expression:

a=a+1

An expression can contain more than one operation, brackets can be used to make one
operation be evaluated before the others:

a=(a+3)*7

Blitz2 Operators

An evaluation is a collection o f variables, constants, functions and operators.
Examples of operators are the plus and minus signs.

An operator will generate an outcome using either the variable on it’s right:

a=NOT 5

or from the variables on it’s left and right:

a=5+2

An evaluation can include multiple operators:

a=5*6+3

12

As in mathematics the order the operators are evaluated will affect the outcome, if the
multiply is done first in the above example the result is 33, if the addition was done
first, 5*(6+3), the result will be 40.

When Blitz performs an evaluation some operators have precedense over others and
will be evaluated first, the follow ing two evaluations will have the same result
because Blitz2 will always evaluate multiplication before addition:

a=5*6+3 is the same as a=3+5*6

To override the order which Blitz2 evaluates the above, parenthesis can be added,
operations enclosed in parenthesis will be evaluated first:

a=5*(6+3)

The following table lists the Blitz2 operators grouped in order of priority (LHS=left
hand side, RHS=right hand side). Operators in the same box have the same priority.

NOT RHS logically NOTted
- RHS arithmetically negated

BITSET LHS with RHS bit set
BITCLR LHS with RHS bit cleared
BITCHG LHS with RHS bit changed
BITTST true if LHS bit of RHS is set

A LHS to the power of RHS

LSL LHS logically shifted left RHS times
ASL LHS arithmetically shifted left RHS times
LSR LHS logically shifted right RHS times
ASR LHS arithmetically shifted right RHS times

& LHS logically ANDed with RHS
| LHS logically ORed with RHS

* LHS multiplied by RHS
/ LHS divided by RHS

+ LHS added to RHS
- RHS subtracted from LHS

true if LHS is equal to RHS
<> true if LHS is not equal to RHS
< true if LHS is less than RHS
> true if LHS is greater than RHS
<= true if LHS is less than or equal to RHS
>= true if LHS is greater than or equal to RHS

AND LHS logically ANDed with RHS
OR LHS logically ORed with RHS

13

Boolean Operators

The boolean system can only operate with two values, true and false. In Blitz2 false is
represented by the value 0, true with the value -1. The operators =, <>, <=, =>, > and
< all generate a boolean result (true or false).

N Print 2=2 will print the value -1 as the result o f the operation 2=2 is true. The
operators OR, AND and NOT can be used as boolean operators, Nprint 2=2 AND
5=6 will print 0 as the result is false. The OR operator will return true if either the left
or the right hand side is true. The NOT operator returns false if the following operand
is true and true if the operand is false.

Binary Operators

Many of the Blitz2 operators perform binary type arithmetic. These operations are
very fast as they d irectly correspond to instructions built into the com puter’s
microprocessor.

The binary system means that all numbers are represented by a series of 1s and 0s. A
byte is made up of 8 such bits, a word 16 and a long word 32.

Further discussion of the binary operators in Blitz2 can be found in any text covering
the 68000 microprocessor.

Multiple Commands

The following program starts a with a value of 0, it then proceeds to add 12 to the
value of a and print the result 4 times.

a=0
a=a+12:Nprint a
a=a+12:Nprint a
a=a+12:Nprint a
a=a+12:Nprint a
MouseWait

Note how we can put two commands on the same line by separating each command
with a colon character. Also, the first line a=0 is not needed as variables in Blitz2
always start out with a value of 0 anyway.

A Simple Loop

The following program prints out the 12 times table. Instead of typing in 12 lines to
do this we use a F or..N ext loop. A loop is where the program is told to repeat a
section of program many times.
For i= l To 12..Next will execute the commands between the For and Next 12 times,
the variable i is used to keep count.

The asterisk * means m ultiply, a=i*12 means the variable a now equals 12 x the

14

variable i. Because i is counting up from 1 to 12 the variable a is assigned the values
12, 24, 36, 48.. as the program loops.

For i=1 To 12
a=i*12
NPrint i,"*",12,"=",a

Next
MouseWait
End

Note how the 2 lines inside the loop are indented across the page. This practise makes
it easy to see which bits o f the program are inside loops and which are not.

The Tab key can be used to move the cursor across the page so many spaces when
typing in lines that are indented.

Now try changing the first line to For i= 1 To 100, as you can see the computer has no
problem what so ever doing it’s 12 times table!

We could also change the num ber 12 in the first 3 lines to any other num ber to
generate an alternative times table.

Nested Loops

The following program is an example of nesting loops, a term that refers to having
loops inside o f loops. By indenting the code that is inside the inner loop even further
we can keep a check to make sure each For statem ent lines up with each Next
statement.

For y=1 To 12
For x=1 To 12

NPrint y,"*",x,"=",x*y
Next

Next
MouseWait

The nesting of the For x=l To 12 inside the For y=l To 12 means the line inside the
For x will be executed 1 2x12 times, each time with a new combination of x and y.

While..Wend and Repeat..Until

There are two other simple ways to program loops in Blitz2 besides using For..Next.

While..Wend and Repeat..Until loops are used as follows:

While a<20
Nprint a
a=a+1

Wend

15

Repeat
Nprint a
a=a+1

Until a>=20

As with a lot of BASIC commands they are pretty much self explanatory, the inside
of a While..Wend will be repeated while the condition remains true, a Repeat..Until
will loop until the condition is true.

A condition can be any evaluation such as While a+10<50, While f=0, While b o x * 2
and so on.

The difference between the two loops above is that if a was greater than 20 to start
with, the Repeat..Until would still execute the code inside the loop once, where as the
While..Wend would not.

Endless Loops

When a program gets into the situation of repeating a loop for ever it is called an
endless loop. In this situation the programmer must be able to override the program
and tell it to stop.

To interrupt a program the Ctrl/Alt C keyboard sequence must be used. Holding down
the Ctrl key and the LeftAlt key press C, this will stop the program and the debugger
screen will appear. To exit from the debugger and return to the editor use the Esc key
(top left of the keyboard). The debugger is covered in detail in Chapter 5.

Using String Variables

Variables that contain text not numbers are called string variables. String variables
require the $ signs after their names. The following shows a simple example of a
string variable:

a$="Simon"
Nprint a$
MouseWait

Similar to numeric variables the = sign is used to assign the string variable a value.
The + sign can be used to add strings together (concatenate):

a$="Simon":b$="Armstrong":c$=a$+b$

The variable c$ will now contain the string "SimonArmstrong". Other functions that
manipulate strings are detailed in the reference section of this manual.

16

Program Flow

Often a program will have to decide to do either one thing or another, this is called
program flow. The If Then commands are used to tell the program to do something
only If some condition is true. The following will only print "Hello" if the variable a
has the value 5:

If a=5 Then Print "Hello"

The above line could be changed to do a section of commands if a was equal to 5
using the IF..EndIf structure:

If a=5
Print "Hello"
a=a-1

EndIf

The Else command is used to execute an alternative section if the condition is not
true:

If a=5
Print "Hello"

Else
Print "GoodBye"

EndIf

Note how we indent code inside conditional blocks just like we did with loops. This
makes the code more readable, it is easier to see which lines of code will be executed
when the condition is true etc.

The condition after the If command can be any complex expression, the following are
some examples of possible test conditions:

If a=1 OR b=2
If a>b+5
If (a+10)*50 <> b/7-3

An appendix at the end of this manual contains a com plete description of using
multiple operators and their precedence.

Jumpin’ Around

Often the program will need to jump to a different section of the code. The Goto and
Gosub routines are used for this. The location that the program is jumping to needs a
label so that Goto and Gosub can reference the location they are jum ping to. The
following uses the label start:

Goto start
NPrint "HI THERE"
start
MouseWait

17

Because the Goto statement makes the program jump to the label start, "Hi There" is
never printed.

The Gosub command is used to jump to a subroutine, a subroutine is a piece of code
terminated with a Return statement. This means that after executing the subroutine,
the program flow returns to where the Gosub command was executed and carries on.

.start:
Gosub message
Gosub message
Gosub message
MouseWait
End

.message:
NPrint "Hello"
Return

Note how the labels are preceeded with a period. This makes them mousable labels
which appear in a list on the right of the editor screen. We can make the cursor jump
to a label by clicking it in this list. This is extremely useful for finding your way
around when editing large programs.

Getting Input from the User

A program will often require input from the user when it is running either via the
keyboard or mouse. For instance, the M ouseW ait command will stop the program
until the user clicks the left mouse button.

Keyboard input can be obtained using the Edit and Edit$ functions which is the same
as the Input command in other languages.

The following asks the user for their name, and places what they type into a string
variable:

Print "What is your name?"
a$=Edit$(80)
NPrint "Hello ",a$
MouseWait

The number 80 in Edit$(80) refers to the maximum number of characters the user can
type.

To input numbers from the user the Edit function is used, a=Edit(80) will let the user
type in any number up to 80 digits long and will place it in the variable a.

18

Arrays

Often a program will need to manipulate groups of numbers or strings. An array is
able to hold such groups. If we needed to keep track of ten numbers that were all
related, instead of using ten different variables we can define an array to hold them.

The Dim statement is used to define an array:

Dim a(10)

The variable a can now hold 10 (actually 11) numbers, to access them we place an
index number inside brackets after the variable name:

a(1)=5
a(2)=6
a(9)=22
NPrint a(9)
a(1)=a(1)+a(2)
NPrint a(1)

The power of an array is that the index number can be a variable, if i=2 then a(i)
refers to the same variable as a(2).

The following inputs 5 strings from the user using a For..Next loop, because the
strings are placed in an array they can be printed back out:

Dim a$(20)

NPrint "Type in 5 names"
For i=1 To 5

a$(i)=Edit$(80)
Next

NPrint "The names you typed were"
For i=1 To 5

NPrint a$(i)
Next

MouseWait Next

NPrint "The names you typed were"
For i=1 To 5

NPrint a$(i)
Next

MouseWait

19

20

3. TYPES, ARRAYS AND LISTS

Numeric Types

Blitz2 supports 6 different types of variables. There are 5 numeric types for storing
numeric values with differing ranges and accuracies as well as a string type used to
store strings of characters (text).

The following table describes each Blitz2 numeric variable type with details on its
range and accuracy and how many bytes of memory each requires:

Type Suffix Range Accuracy Bytes

Byte .b +-128 integer 1

Word .w +/-32768 integer 2

Long .1 +/-2 147483648 integer 4

Quick .q +/-32768.0000 1/65536 2

Float .f +/-9*10^ 18 1/10^ 18 4

The Quick type is a fixed point type, less accurate than floating point but faster.

The Float type is the Floating Point type supported by the Amiga Fast Floating Point
libraries.

A variable is assigned a certain type by adding the relevant suffix to it’s name. After
the first reference to a variable, its type is assigned and any future references do not
require the suffix unless it is a string variable.

The following are some examples of typical numeric variables with their relevant
suffix.

mychar.b=127
my_score.w=32000
chip.l=$dff000 ;$ denotes a hex value
speed3.q=500/7 ;a quick has 3 d.p. accuracy
Iight_speed.f=3e8 ;e is exponent i.e. 3x10^8

21

Default Types

If no suffix is used in the first reference of a variable, Blitz2 will assign that variable
with the default type. This is initially the Quick type.

There are two forms of the DefType command, one which changes the default type
the other which defines the type of a list o f variables supplied but which does not
affect the default type.

The following code illustrates both uses of DEFTYPE:

a=20 ;a will be a quick
DEFTYPE .f ;vars without suffix will now default to float
b=20 ;b will be a float
DEFTYPE .w c,d ;c & d are words, default still float

Note: the second instance of DEFTYPE should be read define type rather than its first
use which stands for change default type. The default type can also be set to a
newtype (see following section).

O ther B litz2 structures that work w ith a certain type such as data statem ents,
functions, peeks and pokes will also all use the default type if no type suffix is
included.

The Data Statement

The Data statement is used to hold a list of values that can be read into variables. The
Restore command is used to point the data pointer at a certain Data statement.

A .type suffix is added to the data statement to define what type the values listed are.

The following is an example of using Data in Blitz2:

main:
Read a,b,c
Restore myfloats
Read d.f
Restore mystrings
Read e$,f$,g$

myquicks:
Data 20,30,40

myfloats:
Data.f 20.345,10.7,90.111

mystrings:
Data$ "Hello","There","Simon"

Note: if the data pointer is pointing to a different type than the variable listed in the
Read statement a Mismatched Types runtime error occurs.

22

Numeric Overflow & Unsigned Integers

When a variable is assigned a value outside of it’s range (too large), an overflow error
will occur. The following code will cause an overflow error when it is executed:

a.w=32767 ;a is a word containing the number 32767
a=a+1 ;overflow occurs as result is out of range

Overflow checking is optional and can be enabled/ disabled in the RunTime errors
options of the Compiler Configuration. The default setting is off meaning the above
code will not generate a runtime error. In some instances, the integer types will be
required to represent unsigned (positive only) numbers. For example, a byte variable
will be required to hold values between 0 and 255 rather than -127 to 128. Overflow
checking has to be disabled in the Error Checking requester of the Compiler Options
window to use unsigned ranges such as this.

String Types

A string is a variable that is used to store a string o f characters, usually text. The
suffix for a string variable is either a .s or the traditional $ character.

Unlike numeric variables the suffix must always be included with the name. Also,
string variable names MAY be re-used as numeric variable names.

The following is quite legal:

a$="HELLO"
a.w=20
NPrint a,a$

System Constants

Blitz2 reserves a few variables that hold special values known as system constants.
The following variables are reserved and contain the listed values:

Pi = 3.1415
On = -1
Off = 0
True = -1
False = 0

Primitive Types Summary

Blitz2 currently supports 6 primitive types. Byte, Word and Long are signed 8, 16 and
32 bit variable types. The Quick type is a fixed point type, less accurate than floating
point but faster. The Float type is the Floating Point type supported by the Amiga Fast
Floating Point libraries.

The String type is a standard BASIC implementation of string variable handling.

23

Using the DefType directive, variables can be defined as certain types without adding
the relevant suffix. Once a variable is defined as a certain type the suffix is not
necesary except in the case of string variables when the suffix must alw ays be
included.

A variable can only be of one type throughout the program and cannot be defined as
any other except again in the case of strings where the variable name can ALSO be
used for a numeric type.

NewTypes

In addition to the 6 prim itive types available in B litz2, program m ers also have
available the facility to create their own custom types.

A NewType is a collection of fields, similar to a record in a database or a C structure.
This enables the programmer to group together relevant fields in one variable type.

The following code shows how fields holding a person’s name, age and height can be
assigned to one variable:

NEWTYPE .Person
name$
age.b
height.q

End NEWTYPE

a.Person\name="Harry",20,2.1

NPrint a\height

Once a NewType is defined, variables are assigned the new type by using a suffix of
.NewTypename for example a.Person

Individual fields within a NewType variable are accessed and assigned with the
backslash character "\" for example: a\height=a\height+1.

When defining a NewType structure, field names without a suffix will be assigned the
type of the previous field. More than one field can be listed per line of a NewType
definition, they must how ever be separated by colons. The follow ing is another
example of a NewType definition:

NewType .nme
x.w:y:z ;y & z are also words (see above)
value.w
speed.q
name$

End NewType

References to string fields when using NewTypes do not require the $ or .s suffix as
normal string variables do, including the suffix will cause a Garbage at End o f Line
compile time error.

24

From the first example:

a\name="Jimi Hendrix" ; this is cool
a\name$="Bob Dylan" ;this is uncool!

Previously defined NewTypes can be used within subsequent NewType definitions.
The following is an example of a NewType which itself includes another NewType:

NewType .vector
x.q
y .q
z.q

End NewType

NewType .object
position.vector
speed.vector
acceleration.vector

End NewType

DefType .object myship ;see following paragraph!

myship\position\x=100,0,0

Note how we now need to use two backslashes to access the fields in myship just like
a pathname in DOS.

A NewType, once defined, can be used in com bination with both form s o f the
DefType command just as though it was a another primitive type.

Arrays inside NewTypes

Besides including primitives and other newtypes within newtypes, it is also possible
to include arrays inside NewTypes. The square brackets [&] are used when defining
arrays inside newtypes.

Unlike normal arrays, arrays in newtypes are limited to a single dimension and their
size must be dimensioned by a constant not a variable. However the array may be of
any type including newtypes.

Also unlike arrays, the dimension size between the square brackets is the size of the
array so address.s[4] allocates 4 strings indexed 0..3.

The following is an example of using an array inside a newtype:

NEWTYPE .record
name$
age.w
address.s[4] ;same as address$[4]

End NEWTYPE

25

DEFTYPE record p

p\address[0]="10 St Kevins Arcade"
p\address[1]="Karangahape Road"
p\address[2]="Auckland"
p\address[3]="New Zealand"

For i=0 To 3
NPrint p\address[i]

Next

MouseWait

The [index] can be ommitted in which case the first item (item 0) will be used.

Defining an array inside a newtype with 0 elements creates a union with the following
field (both fields occupy the same memory in the NewType).

The UsePath Directive

Often when using complex NewTypes, pathnames to access fields within fields can
become very long.

Often a routine will be dealing only with one particular field within a newtype. By
using the UsePath directive large pathnames can be avoided.

When a backslash preceeds a variable or field name Blitz2 will insert the UsePath
path definition when it compiles the program.

The following code:

UsePath shapes(i)\pos
For i=0 To 9

\x+10
\y+20
\z-10

Next

is expanded internally by the compiler to read:

For i=0 To 9
shapes(i)\pos\x+10
shapes(i)\pos\y+20
shapes(i)\pos\z-10

Next

The UsePath directive can help to make routines a lot more readable and can save a
lot of typing!

Note that UsePath is a compiler directive, this means that it affects the compiler as it
reads through your program top to bottom not the processor when it runs your

26

program.

This means that if a routine jumps to somewhere else in the program the UsePath in
effect will be governed by the closest previous usepath in the listing.

ARRAYS

A rrays in B l itz2 fo llow norm al B A SIC co n v en tio n s. A ll A rrays M U ST be
dimensioned before use, may be of any type (primitive or NewType) and may be any
number of dimensions.

All arrays are indexed from 0..n where n is the size. As with most BASIC’s an array
such as a(50) can actually hold 51 elements indexed 0..50 inclusive.

As with all variable definitions an array will be of default type unless a .type suffix is
added to the array name:

Dim a.w(50) ;an array of words

The ability to use arrays of NewTypes often reduces the number of arrays a BASIC
program requires.

The following:

Dim Alienflags(100),Alienx(100),Alieny(100)

can be implemented with the following code:

NEWTYPE .Alien
flags.w
x.w
y.w

End NEWTYPE

Dim Aliens.Alien(100)

You may now access all of the required alien data using just one array.
To set up all of the aliens x and y entries with random coordinates:

For k=1 To 100
Aliens(k)\x=Rnd(320),Rnd(200)

Next

This also makes it much easier to expand the amount of information for the aliens
simply by adding more entries to the NewType definition, no new arrays are required.

Note: unlike most compilers, Blitz2 DOES allow the dimensioning of arrays with a
variable number of elements for example: Dim a(n). Also strings in arrays do not
require a maximum length setting as is the case with some other languages.

27

LISTS

Blitz2 also supports an advanced form of the array known as the List. Lists are arrays,
but with slightly different characteristics.

Often only a portion of the elements in an array will be used and the programmer will
keep a count in a separate variable of how many elements are currently stored in the
array. In this situation the array should be replaced with a list which will make things
both simpler and faster for managing the array.

Dimming Lists

A list is dimensioned sim ilar to an array except the word List is inserted after the
word Dim. Lists are currently limited to one dimension.

Here is an example of setting up a list:

NEWTYPE.AIien
flags.w:x:y

End NEWTYPE

Dim List Aliens.Alien(100)

The difference between a list and an array is that Blitz2 will keep an internal count of
how many elem ents are stored in the list (reset to zero after a Dim List) and an
internal pointer to the current element within the list (cleared after a Dim List).

Adding items to a list

A list starts out as empty, items can be added using the A ddItem and AddLast
functions. Because the list might be full both commands return a true or false to
indicate whether they succeeded.

The following adds one alien to the previously dimmed list:

If Addltem(Aliens())
Aliens()\x=Rnd(320),Rnd(200)

EndIf

Note how there is no index variable inside the brackets in either use of Aliens().
Although Blitz2 will not flag an error when an index is used, indexes should never be
used with list arrays. The empty brackets represent the current item in the list, in this
case, the newly added item.

Because AddItem returns false when the list is full we can use a While..Wend loop to
fill an entire list with aliens (then kill ’em off slowly!):

While Addltem(Allens())
Aliens()\x=Rnd(320)
Aliens()\y=Rnd(200)

Wend

28

The above loops until the list is full. If we wanted to add 20 aliens to a list we could
use a For..Next but would still need to check if the list was full each time we added
an alien:

For i=1 To 20
If Addltem(Aliens())

Aliens()\x=Rnd(320)
Aliens()\y=Rnd(200)

EndIf
Next

Note that lists can be dimensioned to hold any type not just aliens! (They’re not just
for games that is.)

Processing Lists

As mentioned, when an item is successfully added, that item becomes the current
item. This current item may then be referenced by specifying the list array name
followed by empty brackets ().

To process a list (loop through all the items added to a list), we reset the list pointer to
the beginning using R esetL ist and then use the NextI tem com m and to step the
pointer through the items in the list. This internal pointer points to the current item.

The following moves all the aliens in the list in a rather ineffective manner (towards
the middle of the screen I suspect):

USEPATH Aliens()

ResetList Aliens()

While Nextltem(Aliens())
If \x>160 Then \x-1 Else \x+1
If \y>100 Then \y-1 Else \y+1

Wend

The While N extItem (Aliens())..W end structure loops until each item in the list has
been the current item. This means that any alien that has been added to the list will be
processed by the loop.

The function NextItem returns false if the loop comes to the end of the list

Again, NextItem returns a true or false depending on whether there actually is a next
item to be processed. This example illustrates the convenience lists offer over normal
arrays, no "for i= 1 to num" to step through arrays using the old index method, instead
a clean While..Wend with a system that is faster than normal arrays!

29

Removing Items From a List

It is often necessary to remove an item from a list while you are processing it.
This may be achieved with KillItem. This example again works with the
Aliens list:

ResetList Aliens()

While Nextltem(Aliens())
If Aliens()\flags=-1 ;if flag=-1

KillItem Aliens();remove item from list
EndIf

Wend

Note: after a K illItem , the current item is set to the previous item. This means the
While NextItem() loop will not miss an item if an item is removed.

List Structure

Although it is possible to access items in a list by treating them as normal arrays with
an index variable it should never be attempted.

The order of items in a list is not always the same as the order thay are in memory.
Each item contains a pointer to the item before and the item after. When Blitz2 looks
for a next item it just looks at the pointer attached to the current item, its physical
memory location is NOT important. When an item is added to a list, an arbitrary
memory location is used, the current item’s NextItem pointer is changed to point to
the new item and its old value is given the new items NextItem pointer.

Confused? Well don’t worry, just don’t ever treat lists as normal arrays by trying to
access items with the index method.

The Pointer Type

The pointer type in Blitz2 is a complex beast. When you define a variable as a pointer
type you also state what type it is pointing to. The following defines biggest as a
pointer to type Customer.

DefType *biggest.Customer

The variable biggest is just a long word that holds a memory location where some
other Customer variable is located.

As an example we may have a large list of customers, our routine goes through them
one by one, if the turnover of a customer is larger than the one pointed to by Biggest
then we point Biggest towards the current customer: *biggest=CustomerArray()

Once we have looped through the list we could print out the Biggest data just as if it
was type Customer when it is actually only a pointer to a variable with type customer
with Print *biggest\name.

30

4. PROCEDURES

Introduction

A procedure is a way of ‘packaging’ routines into self contained modules.

Once a routine is packaged into a procedure, it can be ‘called’ from your main code,
parameters can be passed, and an optional value returned to your main code.

Because a procedure contains its own ‘local’ variable space, you can be sure that none
of your main or ‘global’ variables will be changed by the calling of the procedure.
This feature means procedures are very portable, in effect they can be ported to other
programs with out conflicting variable name hassles.

Procedures that return a result are called functions in Blitz2, ones that do not are
known as statements.

Functions and Statements in Blitz2 have the following characteristics:

• the number of parameters is limited to 6
• gosubs and gotos to labels outside a procedure’s code is strictly illegal
• any variables used inside a procedure will be initialised with every call
Statements

A procedure that does not return a value is called a Statement in Blitz2.

Here is an example of a statement type procedure which prints out the factorial of a
number:

Statement fact{n}
a=1
For k= 2 To n

a=a*k
Next
NPrint a

End Statement

For k=1 To 5
fact{k}

Next
MouseWait

Note the use of curly brackets { and } to both define parameters for the procedure,
and in calling the procedure. These are necessary even if the procedure requires no
parameters.

If you type in this program, compile and run it, you will see that it prints out the

31

factorials of the numbers from 1 to 5. You may have noticed that the variable k has
been used in both the procedure and the main code. This is allowable because the k in
the procedure is local to the fa c t procedure, and is completely separate from the k in
the main program. The k in the main program is known as a global variable.

You may use up to six variables to pass parameters to a procedure. If you require
more than this, extra parameters may be placed in special shared global variables (see
Shared below).

Also, variables used to pass parameters may only be of primitve types, you cannot
pass a NewType variable to a procedure however you can pass pointer types.

Functions

In Blitz2, you may also create procedures which return a value, known as functions.
The following is the same fact procedure implemented as a function:

Function fact{n}
a=1
For k=2 To n

a=a*k
Next
Function Return a

End Function

For k=1 To 5
NPrint fact{k}

Next
MouseWait

Note how Function Return is used to return the result of the function. This is much
more useful than the previous factorial procedure, as we may use the result in any
expression we want. For example:

a=fact{k}*fact{j}

A function may return a result of any of the 6 primitive types. To inform a procedure
what type of result you are wanting to return, the type descriptor may be appended to
the Function command. If this is om itted, the current default type will be used
(normally .q):

The following is an example of a string function:

Function$ spc{n}
For k=1 To n

a$=a$+" "
Next
Function Return a$

End Function
Print spc{20},"Over Here!"
MouseWait

32

Recursion

The memory used by a procedure’s local variables is unique not only to the actual
procedure, but to each calling of the procedure. Each time a procedure is called a new
block of memory is allocated and freed only when the procedure ends.

The implications of this are that a procedure may call itself without corrupting it’s
own local variables. This allows for a phenom enon known as recursion. Here is
another version of the factorial procedure which uses recursion:

Function fact{n}
If n>2 Then n=n*fact{n-1}
Function Return n

End Function

For n=1 To 5
NPrint fact{n}

Next
MouseWait

This exam ple relies on the concept that the factorial o f a number is actually the
number multiplied by the factorial of one less than the number.

Accessing Global Variables

Sometimes it is necessary for a procedure to access one or more of a programs global
variables. For this purpose, the Shared command allows certain variables inside a
procedure to be treated as global variables.

Statement example{}
Shared k
NPrint k

End Statement

For k=1 To 5
example{}

Next
MouseWait

The Shared command tells Blitz2 that the procedure should use the global variable k
instead of creating a local variable k. Try the same program with the Shared removed.
Now, the k inside the procedure is a local variable, and will therefore be 0 each time
the procedure is called.

Procedures Summary

Blitz2 supports two sorts of procedures, the function and the statement. Both are able
to have their own local variables as well as access to global variables through the use
of the Shared statement.

33

Up to six values can be passed to a Blitz2 procedure.

A Blitz2 function can return any primitive type using the Function Return commands.

Using Assembler in Blitz Procedures

Procedures also offer an excellent method o f incorporating assem bly language
routines into Blitz programs.

The Statement or Function is defined as usual with a list of parameters enclosed in
curly brackets. When using assembler, the parameters passed to the procedure are
loaded in data registers D0..D5.

Care must be taken to ensure that address registers A4-A6 are restored to their inital
state before the code exits from the procedure using the AsmExit command.

To set the return value in assembler for Functions simply load the register DO with the
value before the AsmExit command.

The following code is an example of an assembler procedure in Blitz:

34

5. BLITZ ERROR CHECKING AND DEBUGGING

Compile Time Errors

Blitz2 reports two types of errors. Compile time errors are those found when Blitz
attempts to compile your code, runtime errors occur when your program is being
executed.

The first type, compile time errors, cause a message to appear on the editor screen.
When OK is selected you are returned to the offending line of code in your program.

Appendix 2 of the Blitz2 Reference Manual contains a description of all the possible
errors at compile time. The following list repeats some Blitz2 rules that have to be
abided by for your program to be successfully compiled:

1. Any B litz 2 functions (com m ands that return a value) m ust have the ir
parameters inside brackets:

If ReadFile(0,"ram:test")

2. B litz2 com m ands that are not functions must not have their param eters in
brackets:

BitMap 0,320 ,256 ,3

3. Using a .type suffix when referring to items in a NewType will cause a garbage
at end of line error:

person\name$="Harry" ;(drop the $)

4. A numeric variable can only be one .type, a MisMatched Type error will occur
if you attempt to use a different .type suffix further down the program with the
same variable name (with the exception of string variables).

Of course there are many hundreds of mistakes that can cause your program to fail to
compile, most will require a quick look in the Blitz2 Reference M anual to check
syntax of a command and maybe cross reference your code with one of the examples.

Don’t forget the Help key to quickly check the syntax of a command.

35

The CERR Directive

When using macros and conditional compiling you may wish to generate your own
compile time errors.

The CERR directive is used to generate user defined com pile-tim e errors. The
fo llow ing will halt the co m p ile r and genera te the m essage "Should H ave 3
Parameters":

CERR "Should Have 3 Parameters!"

See conditional compiling in Chapter 9 for more information on CERR.

Runtime Errors

Errors that occur while your program is executing are called runtime errors.

When developing programs in Blitz2, the Runtime Error Debugger should always be
enabled on the Compiler Options window. If it is not and an error occurs the system
will crash.

If you need to run your program without runtime errors enabled for speed purposes a
SetErr directive should be included to stop the system crashing, the system will then
jump to the code listed after the SetErr.

The following line included at the top of your program is suggested:

SetErr:End:End SetErr

Any programs that use filehandling should always include some sort of error trapping
to handle situations where the program cannot locate a file, or the file is the wrong
type.

Any operating system based software should also always include error checking as
Screens and Windows may fail to open due to low memory.

Y ou m ay a lso se tu p an e r ro r h a n d le r ju s t fo r one s e c tio n o f c o d e . The
SetErr..errorhandler..End SetErr should be at the start of the section and a ClrErr
at the end of the section.

The following will flash the screen and end if LoadShapes fails:

SetErr
DisplayBeep_ 0
End

End SetErr

LoadShapes 0,"filename"

ClrErr

36

The Blitz Debugger

If a runtime error occurs when a program is run from the editor the Blitz2 debugger
will be activated. O f course Runtim eErrors must also be enabled in the com piler
options requester.

The debugger will not be activated if there is an error-handier already enabled in the
program using the SetErr command.

The d eb u g g er can a lso be a c tiv a te d by using the C T R L /A L T C k eyboard
combination, clicking on the "BRK gadget o f the debugger window or including a
STOP command in your program.

The debugger is a powerful tool in finding out causes of errors and locating bugs. The
ability to step back through code executed prior to the break gives the programmer an
excellent understanding of how an error has occurred. The following is a screenshot
of the debugger after the program encountered a STOP command.

Note that by making the debugger window larger more of the program can be viewed.

37

The Debugger Gadgets

The following is a description of the debugger gadgets:

BRK Click on this to stop a program running and enable the Blitz
debugger.

STP Use this to stop a program during Trace mode.

SKP Skip causes the debugger to skip a command, program execution
will continue from the next command when then RUN.

TRC T race mode allows the programmer to single step through their
code, by increasing the size of the debugger window program flow
can be viewed.

RUN RUN causes program execution to resume after being stopped.

<< View previous command history allows the programmer to review
the commands that were executed prior to the program being
stopped.

>> View forward allows the user to forward through the command
history after using the view previous gadget.

EXC Execute allows the program m er to m anually enter a B litz
command to be executed by the debugger.

EVL Evaluate allows the programmer to view any variable simply by
entering it’s name after clicking on EVL.

Tracing program execution

The debugger allows the user to single step through or trace program execution,
displaying in it’s window which command is currently being executed.

Step is used to single step through your program, each time you click on STP the
debugger will execute the command pointed to by the arrow and stop.

Trace steps continuously through the code displaying each command as it goes. To
stop the Trace use the STP gadget.

Level is used to change the trace level, if Level is toggled on, the debugger will not
trace or single step through the inside of For..Next loops but execute normally until
the loop exits.

It will also not trace the execution of any procedures or subroutines called, this is
most useful for watching the program’s main loop while not having to sit through the
trace of each subroutine when called.

38

Resuming Normal Execution

Program execution can return normally after the debugger is activated using the Run
gadget.

If the debugger was activated using the STOP command the arrow will be pointing to
the STOP, before continuing the command must be skipped over using the Ig n o re
com m and. This is true for any com m and that has caused a RunTim e error and
invoked the debugger.

To return to the editor from the debugger either hit the Escape key or click on the
close window gadget of the debugger Window.

Viewing command history

The debugger keeps a record of the com m ands executed before the program is
stopped in a large buffer.

The Back-up command will step backwards from where the program halted, allowing
the programmer to view the previous commands executed by the computer. A hollow
arrow marks the current position in the history buffer.

The Forward command is used to step forwards through the history buffer, attempting
to step past where the program was stopped will produce a AT END OF BUFFER
error.

These features are invaluable to following through program execution up to where the
program was halted. If a program halted in the middle of a subroutine or procedure
you can step backwards to find where the routine was called from.

Direct Mode

While the debugger is activated the programmer has two tools available to examine
the internal state of the program.

To find out the value of any variables the EVaLuate command can be used. A prompt
will appear, after typing the name of the variable and hitting return the value will be
printed on the debugger display.

The EXeCute command is used to run a Blitz2 command. A prompt will appear and
the programmer can then type in any Blitz2 command such as CLS or n=20.

39

Debugger Errors

The following errors may occur when using the direct mode commands Evaluate and
eXecute:

Can’t Create in Direct Mode

Occurs if you try and Evaluate a variable that does not exist (hasn’t been created) in
the program.

Library Not Available in Direct Mode

Occurs when a Blitz2 command is eXecuted and is from a command library not used
by the program. If the program does not use strings for instance, the string command
library will not be part of the object code and so any string type commands will not be
able to be eXecuted.

Not Enough Room in Direct Mode Buffer

This error should never occur, if it does the object buffer size in the Compiler Options
requester should be increased.

AT END OF BUFFER

Occurs if the programmer tries to view Forward of where the program stopped (see
viewing command history).

40

6. BLITZ OBJECTS

Blitz2 Objects Overview

This chapter covers the use and handling of Blitz2 objects, structures designed to
control multiple system elements such as graphics, files, screens etc.

Blitz2 looks after all memory requirements for objects including freeing it up when
the program ends.

Although most objects have their own specific commands, the standard way they are
handled in Blitz2 means the programmer is never faced with unusual syntax. Instead,
they can depend on a standard m odular way of program m ing the m ultitude of
elements available in Blitz2.

The following is a list of the main Blitz2 objects:

Files for sequential and random access DOS file handling
Modules soundtracker compatible music objects
Blitzfonts 8x8 fonts for fast BitMap text output
IntuiFonts any size fonts for Window text output
Shapes standard Blitz2 graphics element
Palettes colour palette structure
BitMaps standard Blitz2 display element
Sounds digitised sound sample element
Sprites Blitz mode hardware sprite element
Screens standard Intuition type screens
Windows standard Inuition type windows
Gadgets standard Intuition type gadgets
Menus standard Intuition type menus

Object Similarities

Blitz2 objects all have a set o f commands allowing the program to create or define
them, manipulate and of course destroy them.

Most objects have a chapter in the Blitz2 reference manual devoted to them, outlining
all the special commands used to create and manipulate the object.

All Blitz2 objects can be destroyed using the Free command. If an object has not
been destroyed when a program ends, Blitz2 will automatically Free that object.

Free BitMap 0 will free up all memory allocated for object BitMap 0, this is useful
when using objects tem porarily and will need the memory later in the program,
otherwise it is usual to let Blitz2 free up all objects automatically when the program

41

ends.

Object Maximums

Each object has its own maximum, this number defines how many of one type of
object can be created and manipulated by the program. The maximum can be changed
for each object in the Compiler Options window of the editor.

The runtime error Value Out O f Maximum Range means you have tried to use an
object num ber greater than that set in the m axim um s window o f the C om piler
Options.

Using an Object

Many commands need previously created objects present to operate properly. For
example, the Blit command, which is used to place a shape onto a bitmap, needs both
a previously created shape object and a bitmap object.

When you use the Blit command, you specify the shape object to be blitted and Blitz
will blit that shape onto the currently used bitmap.

Use BitMap 0 ;m a k e b itm a p th e c u r re n t ly u s e d b itm a p
Blit 3,10,10 ;b l it s h a p e 3 o n to c u r re n t ly u s e d b itm a p

The Use com m and in the previous exam ple makes BitM ap 0 the currently used
bitmap. Screens, Windows and Palettes are three other Blitz2 objects that often need
to be currently used, for commands to work properly.

It should also be noted that when an object is created, it also becomes the currently
used object of it’s class.

Blitz2 makes extensive use of this currently used object idea. It’s advantages include
faster program execution, less complex looking commands, and greater program
modularity.

42

Input/Ouput Objects

BitMap, File and Window objects can all operate as I/O devices. The ObjectInput
and O bjectO utput commands allow the user to channel input and output to different
places.

The Print command will always write to the current output object, edit and inkey$
will always attempt to read from the current input object.

WindowOutput 2;window 2 is the current output object
Print "HELLO"
BitMaplnput 1 ;make bitmap 1 the current input object
a$=Edit$(80)

Object structures (for advanced users)

Appendix 1 of the Blitz2 reference manual contains descriptions of each of the Blitz2
object’s structures. The Addr command is used to find the location in memory of a
particular objects structure.

A dvanced users can use the A ddr com m and w ith peek and poke and in line
assembler routines to access important values in an object’s structure. This is often
helpful with system type objects such as Screens and Windows that contain pointers
to their Intuition counterparts.

The following calls the system command ScreenToFront_ obtaining the location of
the Inuition Screen structure from the Blitz2 Screen object in memory.

ScreenToFront_ Peek.l(Addr Screen(0))

This next listing illustrates obtaining a Window’s system structure and assigning it to
a pointer type .W indow. Am igaLibs.R es should be resident before running this
example.

FindScreen 0
Window 0,10,10,100,100,9,"SIZE ME!'',1,2
*w.Window=Peek.l(Addr Window(0))
WindowOutput 0
Repeat

ev.l=WaitEvent
WLocate 0,0
NPrint *w\Width
NPrint *w\Height

Until ev=$200

Note: the NewType .Window refers to the system (Intuition) window structure where
as the NewType .window refers to the Blitz2 window structure.

43

Overview of the primary Blitz2 Objects

Screens

Screens are created using the Screen and FindScreen commands. The first will open
a new screen while the second will make an existing Screen (usually the WorkBench
screen) a Blitz2 Screen.

Free Screen n should only be attempted after any Windows open on the Screen are
closed (freed) first.

Screen objects both configure the resolution of the display and its palette as well as
being the p lace w here W indow s are opened. Any W indow s opened, RGB or
UsePalette commands will use the currently used screen.

The function Peek.l(addr Screen(n)) can be used to obtain the location of the system
.Screen structure when calling system routines.

Windows

W indows are created with the W indow command. Gadgets and menus are always
added to the currently used window while the drawing commands WPlot, WCircle,
WLine and WBox all render to the currently used Window.

W indow ob jec ts can be used fo r in p u t/o u tp u t using the W in d ow ln p u t and
W indowOuput commands. The cursor position for input/ouput can be controlled
with the WLocate command.

Windows can be freed without the worry of freeing any attached gadget or menulists.

Gadget and Menu lists

Gadgets and menus must be grouped together in Blitz objects known as, yes you
guessed it, gadgetlists and menulists. These lists are attached to a Window when the
window is first created (opened). This means that gadgets and menus should all be
pre-defined in their lists at the start of the program.

Palettes

A palette object contains RGB inform ation for each o f the colours in a display.
Palettes are a little different to regular Blitz objects in the following ways.

Use Palette will set the current screen or slice to the colours in the palette.

The RGB command as well as the Red(), Green() and Blue() functions apply to the
colours in the current Slice or Screen NOT in the current palette.

There is no create palette command, they are either created when loaded from an IFF
file or when using PalRGB, if no palette object exists with either command Blitz2
will create one.

44

BitMaps

A bitmap refers to the array of pixels that make up the display. A bitmap can either be
created with the BitMap command, loaded from disk or fetched from a Screen using
the ScreensBitMap command.

A Bitmap command can be freed using the Free BitMap command, you can not free
bitmaps created with the ScreensBitMap command.

As w ith w ind o w s, b itm ap s can be used as in p u t/ o u tp u t d ev ice s w ith the
B itM ap In p u t and B itM ap O u tp u t com m ands. T hese are used p rim arily in
BlitzMode.

In BlitzMode the keyboard should be enabled with BlitzKeys On before attempting
to use BitMapInput.

When using BitMapOutput the Locate command can be used to position the cursor.

Shapes

Shapes are used to contain graphic images. They can be initialised by either loading
them from disk or being clipped from a bitm ap ob jec t using the G etA Shape
command.

Shapes are freed using the standard Free Shape n syntax. Shapes should not be freed
if they are used with gadgets or menu items until the relevant gadget or menulist is
freed first.

There are many powerful commands in Blitz2 to manipulate shapes including rotation
and scaling.

Sprites

Sprites are initialised by either loading them from disk or converting a shape object to
a sprite object using GetaSprite. The shape object can be freed once it has been
converted to a sprite.

Free Sprite n will free a sprite.

Sprites can currently only be used in Blitz mode however in Amiga mode, the pointer
can be assigned to a single sprite object.

Slices

A slice is used to configure a display in Blitz mode. They are initialised with the Slice
command.

Unlike other objects, single slices cannot be freed. FreeSlices is used to free all slices
currently initialised.

The commands Show, ShowF, ShowB and ShowSprite all use the currently used

45

slice. The RGB command also affects the colour registers in the currently used slice
as does the Use Palette command.

Files

Unlike other Blitz2 objects files are opened and closed rather than initialised and
killed.

Files are initialised with the O penFile(), ReadFile() and W riteFile() functions.
Unlike other Blitz2 objects a function is used so the program can tell if the file was
successfully opened.

The CloseFile n command is used to ‘free’ a file object. The command Free File n
may also be used, unlike other objects it is best to close all files yourself rather than
rely on Blitz2 to close them when the program exits.

A file is of course an input/output object, the commands Filelnput and FileOutput
are used to direct input and output to files.

Get, Put, ReadMem and WriteMem require file# parameters and so do not require
the use of Filelnput and FileOutput commands.

Objects Summary

Blitz2’s objects are custom data structures used by the libraries to handle a whole
assortm ent o f entities. B litz2 manages the memory required by these structures,
freeing them automatically when a program ends.

They provide a simple interface to many of the more complex Blitz2 commands.
Parameter passing is minimised as many of the Blitz2 commands take advantage of
the currently used object.

As libraries are upgraded and added to B litz2, more objects will be added and
versatility and functionality of existing objects will be increased.

46

7. BLITZ MODE

Introduction to Blitz Mode

Although the A m iga’s operating system is very powerful, it’s ability to take full
advantage of the graphics capacity of the m achine is lim ited. B litz mode is for
programmers wanting to produce smooth animated graphics for games and the like.

The com m and B litz puts your program in B litz m ode. W hen this happens the
operating system is disabled and your program takes over the whole machine. This
means that it will not multi-task and file access is no longer possible.

The benefits of Blitz mode are that programs run a lot quicker and display options
such as smooth scrolling and dual-playfield are possible.

Blitz mode is not a permanant state, when your program re-enters Amiga mode or
exits, the operating system is brought back to life as though nothing happened.

Careful attention must be payed regarding entering Blitz mode, version 1.3 and older
of the operating system can take up to 2 seconds to flush any buffers after a file is
closed. You should always ensure that absolutely no disk or file access is taking place
before entering B litz mode. A t the time o f this w riting, no softw are m ethod of
achieving this has yet been discovered. The best we can suggest is that a VWAIT 100
should always be executed before using Blitz mode.

Slice Magic

The designers of the Amiga hardware have implemented many features for acheiving
smooth, fast graphics. After entering Blitz mode the display is controlled using Slices.
Slices are much more flexible than the operating system ’s Screens, they allow
features such as smooth scrolling, double buffered displays and much more.

The ability to have more than one slice means that the display can be split into
different regions each with their own resolution.

The following is a description of the main display features accessible with slices:

47

Smooth Scrolling

Smooth scrolling is acheived by displaying only a portion of a large bitmap. The
Amiga hardware enables us to move the display window around the inside of a large
bitmap as the following diagram shows:

The display window represents what is shown on the monitor, as we move the display
window across the bitm ap to the righ t the im age we see on the screen scrolls
smoothly to the left.

The Blitz commands Show, ShowF and ShowB allow us to set the position of the
display window inside the bitmap.

The above diagram lim its the amount we can scroll to the size of the bitmap. By
duplicating the left portion of the bitmap on the right we can smoothly scroll the
display across, and when it reaches the right, reset it back to the far left. As there is no
change when the display is reset to the left the illusion of continuous scrolling is
created.

Dual-Playfield

In some situations, the display will be made up of a background and a foreground.
The Amiga has the ability to display one bitmap on top of the other called dual-
playfield mode to acheive this effect.

In a dual-playfield display, two 8 colour bitmaps can be displayed, one infront of the

48

other, any pixels set to colour zero in the front playfield will be transparent letting the
back playfield show through. Each playfield can have its own colours.

Copper Control

Smooth animation is acheived by moving graphics in sync with the video display.
The display is created by a video beam that redraws the screen line by line every 50th
of a second. Often, it is useful to sync things to the vertical position of the vertical
beam. This is acheived using the Amiga graphics co-processor known as the Copper.

Blitz2 offers several ways of taking advantage of the copper hardware. The most
popular is to change the colour of the background colour to produce rainbow type
effects on the display. This is acheived using the ColSplit command.

Those with a good knowledge of the Am iga hardw are may wish to program the
copper to make other changes at different vertical places, this can be acheived using
the CustomCop command.

The Blitter

The Amiga has custom hardware specifically to transfer graphic images onto bitmaps
known as the Blitter. Blitz2 offers several ways of blitting shapes onto a bitmap and a
special Scroll command to shift areas of a bitmap around using the blitter.

The following is a brief overview of the various blitter based commands in Blitz2:

Blit used to put shapes onto bitmaps.

QBlit same as Blit but Blitz2 remembers where the shape was put and will erase it
when it is time to move the shape somewhere else on the bitmap.

BBlit same as QBlit but when it is time to move the shape, instead of erasing
the shape, Blitz2 replaces what was on the bitmap previous to the BBlit.

SBlit sames as Blit but with a stencil feature which protects certain areas of the
bitmap from being blitted on.

Block fast version of Blit that works only with rectangular shapes a multiple of
16 pixels wide.

49

ClipBlit Slow version of Blit which will clip the shape to fit inside the bimap.

Scroll used to copy sections of a bitmap from one position to another.

QAmiga Mode

It is also possible to jum p out of B litz mode and back into Amiga mode. This can
done using either the QAmiga or Amiga statement.

Using Am iga to go back into Amiga mode will fully return you to the A m iga’s
normal display, complete with mouse pointer.

Using QAmiga will return you to Amiga mode, but will not affect the display at all.
This allows your Blitz mode programs to jum p into Amiga mode for operations such
as file I/O, then to jum p back to Blitz mode without having to destroy a Blitz mode
display.

An Important note!!!!!

You should always ensure that absolutely no disk or file access is taking place before
entering Blitz mode. At the time of this writing, no software method of achieving this
has yet been discovered.

By following these guidelines using Blitz mode should be pretty safe:

• Always wait for the floppy drive light to go out if you have saved some source code
before Compiling/Running a program which launces straight into Blitz mode.

• A590 Hard drive users - always wait for the second blink of the drive light when
using Workbench 1.3, 2.0 users have there buffers flushed in one go.

• If you use the QAmiga statement for the purpose of writing data to disk, it’s a good
idea to execute a delay before going back to Blitz mode - In effect, simulating the
above. Executing a VW ait 250 will provide a delay of about five seconds - a safe
delay to use. After reading data use a VWait 50.

A nother im portant thing to rem em ber about B litz mode is that any com m ands
requiring the presence of the operating system become unavailable while you’re in
Blitz mode. For example, if you attempt to open a Window in Blitz mode, you will be
greeted with an ‘Only available in Am iga M ode’ error at com pile time. For this
reason, the Reference Guide clearly states which commands are available in which
mode.

The Blitz, Amiga, and QAmiga statements are all compiler directives. This means
they must appear in applicable order in your source code.

Summary

50

Blitz2 provides two environm ents for your programs to execute in. Amiga mode
should be used for any applications software and whenever your game needs to load
data from disk. Blitz mode is for programs that need to take advantage of the special
display modes we have provided in Blitz2. These provide performance that is just not
available in Amiga mode but will halt the Amiga’s operating system.

To conclude, the only time it is acceptable to close down the Amiga’s multi tasking
environment is when the software is dedicated to entertainment, any applications
software that uses Blitz mode will NOT be welcomed by the Amiga community.

51

52

8. ADVANCED TOPICS

Resident Files

To make writing programs which manipulate large number of NewTypes, macros or
constants easier, Blitz2 includes a feature known as resident files.

A resident file contains a pre-compiled list of NewTypes, macros and constants. By
creating resident files, all these definitions can be dropped from the main code
making it smaller and faster to compile.

To create a resident file you will need a program which contains all the NewTypes,
macros and constants you want to convert to resident file format. The following is an
example of a such a program:

NEWTYPE.test
a.I
b.w

End NEWTYPE

Macro mac
NPrint "Hello"

End Macro

#const=10

N ow , to c o n v e rt th e se d e f in itio n s to a re s id en t f ile , all you need to do is
C O M PIL E & R U N the p rog ram , then se lec t C R EA TE R E SID E N T from the
COMPILER menu.

At this point, you will be presented with a file requester into which you enter the
name of the resident file you wish to create. That’s all there is to creating a resident
file!

Once created, a resident file may be installed in any program simply by entering the
name of the resident file into one of the ‘RESIDENT’ fields of the compiler options
requester. Once this is done, all NewType, macro and constant definitions contained
in the resident file will automatically be available.

The resident file AMIGALIBS.RES contains all the structures, constants and macros
associated with the Amiga operating system. Those familiar with programming the
operating system will find not havine to include all the usual library header files will
save minutes every compile time.

53

Operating System Calls

M uch effort has been made to let the B litz2 program m er make the m ost o f the
Amiga’s powerful operating system.

Calling Operating System Libraries

Often the programmer with a good knowledge of the Operating System will want to
access routines that have not been supported by the ‘internal’ Blitz2 command set. All
routines in the Exec, Intuition, DOS and Graphics libraries are accessible from Blitz2
(see appendix 5 in the Blitz2 Reference Manual).

Support for other Amiga standard libraries is available by purchasing the Blitz2
advanced programmers pack from Acid Software.

The following is an example of calling routines in the Amiga ROM ’s graphics and
intuition libraries:

FindScreen 0

;open gimmezerozero window

Window 0,0,10,320,180,$408,"",
rp.l=RastPort(0)
win.l=Peek.l(Addr Window(0))

DrawEllipse_ rp,100,100,50,50
MoveWindow_ win,8,0
BitMap 1,320,200,2
Circlet 160,100,100,1

;then transfer it to window

BltBitMapRastPort_ Addr BitMap(1),0,0,rp,0,0,100,100,$c0

WaitEvent

The final command BltBitM apRastPort_ is very useful for transferring graphics
drawn with the faster bitmap based Blitz2 commands onto a Window. This is a very
system friendly way of acheiving this objective.

;use workbench screen

1,2
;get rastport for window
;find window structure

;graphics library
;intuition library
;set up work bitmap
;draw something

54

Accessing Operating System structures

With the file AMIGALIBS.RES resident (see start of chapter) even more control of
the operating system is possible. The following is an example of accessing operating
system structures.

;variable *exec points to the ExecBase struct
;variable *mylist points to a List type
;variable *mynode points to a system node

*exec.ExecBase=Peek.I (4)
*mylist.List=*exec\LibList
*mynode.Node=*mylist\lh_Head

While *mynode\ln_Succ
a$=Peek$(*mynode\ln_Name);print node name
NPrint a$
*mynode=*mynode\ln_Succ;go to next node

Wend

MouseWait

The use of the asterisk in *variablename.type means that instead of Blitz2 creating a
variable of a certain type it actually just creates a ‘pointer’ to that type. The type
(structure) can then be accessed just like it was an internal Blitz2 variable.

The command Peek$ is an excellent way of retrieving text from operating system
structures, it reads memory directly into a Blitz2 string variable until it hits a null
(chr$(0)).

Locating Variables and Labels in Memory

The ampersand (‘& ’) character can be used to find the address of a variable in the
Amiga’s memory. For example:

; An example of using to find the address of a var.

Var.l=5
Poke.l &Var,10
NPrint Var
MouseWait

This is similiar to the VarPtr function supplied in other BASIC’s.

When asking for the address of a string variable, the returned value will point to the
first character of the string. The length of the string is a 4 byte value, located at the
address-4.

The ' ?' character can be used to find the address of a program label in the Amiga’s

55

memory. For example:

; An example of finding the address of a program label

MOVE #10,There ;wo! assembly code on this line
NPrint Peek.w(?There)
MouseWait
End

There:Dc.w 0 ;wo! and again here

These features are really only of use to programmers with some assembly language
experience who need unconventional means for their ends.

Constants

A ‘constan t’, in BASIC program m ing term s, is a value which does not change
throughout the execution of a program. The 5 in a=5 is a constant.

A hash sign (#) before a variable name means that it is a constant (no longer a
variable!) and cannot change in value when the program is running. #width=320
means the variable #width is a constant and will always be equal to 320.

Constants have the following properties:

• are faster than variables and do not require any memory
• make programs more readable than using numbers
• can be used in assembler
• can be used with conditional compiling evaluations
• can only hold integer values
• make it easier to change a constant amount used throughout a program
• can be altered through the source at compile time but NOT at runtime

The most important aspect of constants from a BASIC programmers point of view is
that any ‘magic num bers’ that appear throughout their code can be replaced by
meaningful words such as #width.

If the program ever has to be modified to work with a new width, instead of going
through all the source changing any mention of the numbers ‘320’, the programmer
can ju s t change the constan t equate at the top o f the program #w idth= 320 to
#width=640 etc.

56

Conditional Compiling

Conditional compiling allows the programmer to switch the compiler on and off as it
reads through the source code, controlling which parts of the program are compiled
and which are not.

Conditional compiling is useful for producing different versions of the same software
without using two differnt source codes. It can also be used to cripple a demo version
of the software or produce different programs for different hardware configurations.

Tracking down bugs can also involve the use of conditional compiling, by turning off
any unecesary parts of the code it becomes easier to pinpoint where exactly the error
is occurring. However we hope the Blitz2 debugger will make this practise obsolete.

The conditional compiler directives are as follows:

CNIF -compiler on if numeric comparison is true, off otherwise
CSIF -compiler on if string comparison is true, off otherwise
CELSE -switch compiler from previous state on=>off off=>on
CEND -end of conditional block (restores previous state)

The com piler has an internal on/off switch, after a CNIF or CSIF comparison the
compiler switches on for true, off for false. A CELSE will toggle the compiler switch
and the CEND will restore the on/off state to that of the previous CNIF/CSIF.

CNIF/CEND blocks can be nested.

It is im portant to rem em ber that the CNIF directive only works with constant
parameters - for example, ’5 ’, ’#test’ - and not with variables. This is because Blitz2
must be able to evaluate the comparison when it is actually compiling, and variables
are not determined until a program is actually run.

The following code illustrates using conditional compiling:

#crippled=1 ;is a crippled version

NPrint "Goo Goo Software (c)1993"

CNIF #crippled=1
NPrint "DEMONSTRATION VERSION"

CELSE
NPrint "REGISTERED VERSION"

CEND

; and later on in the program...

.SaveRoutine
CNIF #crippled=0;only if not crippled

;do save routine

CEND

57

Return

The benefit over using a straight If crippled=()..E ndIf is that the crippled version of
the above code will not contain the saveroutine in the object code so that there is no
way it can be un-crippled by hackers.

The conditional compiler directives however come into their own when doing macro
programming.

Macros

Macros are a feature usually only found in Assemblers or lower level programming
languages. They can be used to save typing, to replace simple procedures with faster
‘inline’ versions, or at their most powerful to generate code that would be impractical
to represent with normal code.

A macro is defined in a Macro name..End Macro structure. The code between these
two commands is not com piled but placed in the com piler’s memory. W hen the
compiler reaches a !macroname it then inserts the code defined in the macro at this
point of the source code.

The following code:

Macro mymacro
a=a+1
NPrint "Good Luck"

End Macro

NPrint "Silly Example v1.0"
!mymacro
!mymacro
MouseWait

is expanded internally by the the compiler to read:

NPrint "Silly Example v1.0"
a=a+1
NPrint "Good Luck"
a=a+1
NPrint "Good Luck"

MouseWait

58

Macro Parameters

To make things a little more useful, parameters can be passed in a macro call using
the squigly brackets { and }. These parameters, are firstly inserted into the macro text,
then the macro text is inserted into the main code.

When a macro is defined the use of the back apostrophe (above the TAB key on the
Amiga keyboard) before a digit or letter (1-9, a-z) marks the point where a parameter
will be inserted.

The following illustrates passing two parameters to a macro:

Macro distance
Sqr(‘1*‘1+‘2*‘2)

End Macro

NPrint !distance{20,30}

MouseWait

the compiler expands the nprint line to read:

NPrint Sqr(20*20+30*30)

replacing every ‘1 with the first parameter and ‘2 with the second etc.

If there are more than 9 parameters letters are used: ‘a signifying the tenth parameter
‘b the eleventh and so on.

Parameters can be any text, the {20,30} could just as easily been {x,y} in the previous
example.

Note: when passing complex expressions as parameters care should be taken to make
sure parenthesis are correct:

!distance{x*10+20,(y*10+20)}

will expand to

Sqr(x*10+20*x*10+20+(y*10+20)*(y*10+20)}

The above does not expand correctly for the first half. Due to the parenthesis around
the second parameter the second half does expand properly.

59

The ‘0 Parameter

The ‘0 parameter is special, it returns the number of parameters passed to the macro.
This is useful for both checking to see that the correct number of parameters was
passed as well as generating macros that can handle different numbers of parameters.

The following macro checks to see if two parameters were passed and generates a
compile time error if there was not:

Macro Vadd
CNIF 0=2

‘ 1= ‘ 1+‘2
CELSE

CERR "Illegal number of ’!Vadd’ Parameters"
CEND
End Macro

!Vadd{a}

If you compile and run this program, you will see that it generates an appropriate
error message when ‘!Vadd{a}’ is encountered. The C E R R compiler directive is a
special d irec tive used to generate a custom error m essage when a program is
compiled.

Recursive Macros

Macros are recursive and can call themselves, the following macro prints the first
parameter and then calls itself, minus the first parameter, effectively stepping through
the list of parameters passed until a null character (no parameter) is reached.

Macro dolist ;l is t u p to 16 v a ria b le s
NPrint ‘1
CSIF "‘2">""
!dolist{‘2,'3,'4,'5,'6,'7 ,'8,‘9,'a,'b,'c,'d,'e,'f,'g}
CEND

End Macro
!dolist {a,b,c,d,e,f,g,h,i}
MouseWait

60

Replacing Functions with Macros

Macros are an excellent replacement for functions that do not use any local variables
but need to generate more than one return variable. The following macro project takes
x, y, z coordinates and projects them onto a 2D x,y plane. It can then be used to
generate x,y projections for drawing.

Macro project #xm +‘1*9-‘2*6,#ym+‘1 *3+‘2*6-‘3*7:End Macro

#xm=320:#ym=256

Screen 0,28:ScreensBitMap 0,0

For z=-15 To 15
For y=-15 To 15

For x=-15 To 15
Circlef !project{x,y,z},3,x&y&z

Next
Next

Next

MouseWait

The CMake Character

A special character known as the cmake character can be used to evaluate constant
expressions and insert the literal result into your code. This can be very useful for
generating label and variable names when a combination of macro parameters and
constant settings are needed to generate the right label.

var2=20
var3=30

Macro Ivar
NPrint var~‘1~

End Macro

!lvar{2+1}

MouseWait

The above example without the cmake characters ~ would print the value 21 as Blitz2
would expand the the code after the NPrint to read var2+1, instead it evaluates the
expression between the cmake characters and generates a 3 which it then inserts into
the macro text.

61

Inline Assembler

It is possible to include 68000 machine code inside Blitz2 programs using the inline
assem bler. This offers the experienced program m er a way of speeding up their
programs by replacing certain routines with faster machine code equivalents.

There are three methods of including assembler in Blitz2:

• in line using the GetReg and PutReg commands to access variables

• inside statements and functions

• developing custom Blitz2 libraries

GetReg & PutReg

The GetReg and PutReg commands allow the assembly programmer access to the
BASIC variables in the program. The following listing illustrates the use of GetReg
and PutReg:

a.w=5 ;use words
b.w=10
GetReg d0,a ;value of a=>d0
GetReg d1,b ;value of b=>d 1
MULU d0,d1
PutReg d1,c.w ;value of d1=>c
NPrint c
MouseWait

The next exam ple inverts the first bitplane of bitm ap 0. Note how any complex
expression can be used after a GetReg command. Because GetReg can only use data
registers, we place the location of the bitmap structure in d0 and then move it to a0 .

Screen 0,3
ScreensBitMap 0,0
While Joyb(0)=0

VWait 15
Gosub inverse

Wend
End

inverse: ; memory location of bitmap struct=>d0
GetReg d0.Addr BitMap(0)
MOVE.I d0,a0
MOVEM (a0),d0-d1
MULU d0,d1
LSR.I#2,d1
SUBQ#1 ,d1
MOVE.I 8(a0),a0

loop:
NOT.I (a0)+
DBRA d1,loop

62

Return

Using Assembler with Procedures

A more efficient method of using assembler in Blitz2 is to put machine code routines
inside functions and statements. Parameters are automatically placed in d0-d5 and if
using functions, the value in register d0 will be returned to the calling routine.

Because address register a4 is used as the local variable base, the UNLK a4 command
must be at the top of a procedure, the procedure must be 100% assembler code and
the address registers a4-a6 must not be destroyed.

The following listing illustrates the use of assembler in a statement qplot{} which sets
a pixel on the first bitplane of the bitmap supplied. Note how more than one assembly
instruction can be used per line of source code.

Statement qplot{bmap.l,x.w,y.w}
MOVE.I d0,a0:MULU (a0),d2
MOVE.I 8(a0),a0:ADD.I d2,a0
MOVE d1 ,d2:LSR#3,d2:ADD d2,a0:BSET.b d1 ,(a0)
AsmExit

End Statement

Screen 0,1
ScreensBitMap 0,0
bp.l=Addr BitMap(O)
For y.w=0 To 199

For x.w=0 To 319
qplot{bp,x,y}

Next
Next
MouseWait

Programmers wanting to develop their own libraries of machine code routines should
purchase the Blitz2 advanced programmers pack from Acid Software. Blitz2 contains
an ex trem ely pow erfu l lib rary system g iv ing the experienced m achine code
programmer a highly productive and powerful environm ent to develop advanced
software.

63

64

9. PROGRAMMING TECHNIQUE & OPTIMIZING

Label and Variable Names

The following are rules that must be conformed to when using variable and label
names in Blitz2.

• names can be of any length

• they must start with a letter (a..z, A..Z) or an underscore

• must only contain alphanumeric chars and underscores

• must not start with the same letters as any Blitz2 command

Also, label and variable names in Blitz2 are always treated as case-sensitive, this
means that the variables myship and MyShip are entirely different.

Style

There are many variable and label naming approaches that can make programming
much easier. The following are a few guidelines that can help keep things in control
as your program grows in size and more and more variables and labels are in use.

Consistancy is essential, if you use any of the following styles, stick to them.

By separating different groups of variables and labels with the following methods,
names can have added meaning.

• full caps "NAME", inital cap "Name" and lower case "name"

• letters "1", words "Loop" and double words "MainLoop"

• initial underscore "_loop" and mid underscores "main_loop"

• numeric suffixes such as "loop1", "loop2" etc.

Nomenclature is a personal thing, by sticking to a certain style with variable and label
names many problems associated with debugging can be avoided. Using good names
for everything can make your program far more readable and will greatly aid in
finding mistakes.

65

Common naming related problems

The following is a summary of certain problems that can arise when variable and
label names become messy.

Using the wrong variable name will often not flag an error. If it has not previously
been assigned, B litz2 will create a new variable with a defau lt value o f zero.
Avoiding a mix of different naming styles will greatly reduce these mistakes.

Forgetting variable names can slow program development, by using logical names
and keeping a list of your main variables on a scrap of paper next to your keyboard
helps keep things organised.
Using lengthy names can aid readability, however it will also increase incidents of
typing errors and slow development.

Use o f rude or obscene labels can make program m ing a little more enjoyable,
however it should be avoided if your source code will be read by others.

Remarks and Comments

U nlike o ther B A SIC ’s that use the REM statem ent, B litz2 uses the sem icolon
character. Any text after a semicolon on a line will be ignored by the Blitz2 compiler.
This feature is used to document programs.

Adding remarks, the programmer can document each routine in a program for future
reference. One of the main curses of programming is having to return to a section of
code developed earlier only to find you can not make head or tail of its logic.

Although it can seem a little tedious, adding accurate explanations of each routine as
you write it will save many headaches later.

A section o f docum entation at the top o f program s is also usefu l, copy righ t
inform ation, lists of bugs fixed and when as well as full descriptions of all main
variables should all be maintained at the top of your program.

66

Structured programming techniques

The main technique in developing structured program s is a m ethod known as
indenting. Indenting means that instead of each line being flush with the left margin,
spacing is inserted at the start of the line to ‘indent’ it across the page.

Indenting lines of code that are ‘nested’ inside loops or other program flow structures
creates a useful aid in visualising the structure of your source code.

The Blitz2 editor has several features for indenting code. The tab key is used to move
the cursor across the page. By changing the tab setting in Ted’s defaults requester the
size of indent can be altered.

By highlighting a block of code, block tab and untab (A[and A]) will move the whole
block left or right.

Shift cursor left will move the cursor to the same indent as the line above.

Keeping things modular

There is nothing m ore valuable than good in itia l p lanning when it com es to
developing software. Breaking down your project into modular pieces before you
start is a must to avoid the creation of huge spaghetti nightmares.

After deciding on how each section of the program is going to function it is usually
best to start with the most difficult sections. Getting the hardest bits going first while
the program is small can save a lot of headaches in the long run.

Time spent waiting for your program to compile & initialise compounds itself when
you are bug hunting or making small adjustments to a certain section of code. In these
situations it is usually best to remove the code from the main program, spend an hour
writing a shell that you can test it in and then set about making it bullet proof.

A few things to keep in mind when developing routines:

• make sure it will handle all possible situations called for
• convince yourself you are using the most efficient method
• keep it modular i.e. the routine must return to where it was called
• keep it well documented
• include comments regarding global variables and arrays it uses
• make sure it’s bullet proof (won’t fall over with bad parameters)
• indent nested code and limit lengths of lines to aid readability

67

Along the way...

Besides keeping routines well documented it is always a good idea to keep a piece of
paper handy to jo t down the im portant bits. Lists of variables that are common
between routines as well as things still ‘to do’ in unfinished routines should always be
written down.

The ‘to do’ list is always a good way of thinking out all the problems in advance.
Always keep in mind what extra routines will be needed to implement the next one on
the list.

One of the biggest mistakes a programmer can make is to start a routine that needs all
sorts of other routines to function. By starting with the standalone/ independent bits
you can make sure they are working. This keeps you well clear o f the headaches
caused where you have just added 5 routines, tested none of them and are trying to
find a bug which could be located in any one o f them. D eveloping a m odular
approach to programming is definately the most effective way of finishing a piece of
software.
Keeping your code readable

Keeping your code readable is next on the list of requirements that will aid in the
completion of a piece of software.

The two main keys to readability are indenting nested code and keeping the amount
of code on one line to a minimum.

The following is an illustration of indenting nested code:

If ReadFile (0,"phonebook.data")
Filelnput 0
While NOT Eof(O)

If Addltem(people())
For i=0 To #num-1
\info[i]=Edit$(128)
Next

Endlf
Wend

Endlf

This method means that it is very easy to see at a glance what code is being executed
inside each structure. Using this method it is very difficult to make a mistake like
leaving out the terminating E ndlf or W end’s as just by finding the line above at the
same level of indentation we can match up each Wend with it’s corresponding While
etc.

68

Optimising Code

It is always im portant to have a firm grasp on how much time is being taken by
certain routines to do certain things. The following are a few things to keep in mind
when trying to get the best performance from your Blitz2 programs.

Performance is most important with arcade type games where a sluggish program will
invariably destroy the playability of the game. H owever, it is also im portant in
applications and other types o f softw are to keep things as efficient as possible.
Anything that makes the user wait will detract from the productivity of the package in
general.

Algorithms

The most important key to optimising different routines is the overall approach taken
to implementing them in the first place. There will always be half a dozen ways of
approaching a problem giving half a dozen possible solutions. In programming, it is
usually best to pick the solution that will produce the result in the quickest time.

Loops

When looking for ways to optimise a routine the best place to start is to examine the
loops (for..next, while..wend etc.). The time it takes to perform the code inside a loop
is multiplied by the number of times it loops. This may seem rather logical but often
programmers will equate the number of lines of code in a routine to the time taken to
execute it.

The code:

For i=1 to 100
Nprint "hello"

Next

Will take exactly the same amount of time as typing:

For i=1 to 1
Nprint "hello"

Next

one hundred times, which will equate to 300 lines of code!

Once one can visualise loops expanded out, the notion that if anything can be
removed from inside a loop to before or after the loop then DO IT!

69

Lookup tables

Replacing numeric functions with look up tables is an effective way of gaining
excellent speed increases. A look up table or LUT for short, is an array that contains
all the possible solutions that the numeric function would be expected to provide.

The most common example of using LUPs for healthy speed increases is when using
trig functions such as Sine or Cosine. Instead of calling the Sin function, an array
containing a sine wave is created, the size of the array depends on the accuracy of the
angle parameter in your program.

If a was an integer variable containing an angle between 0 and 360 we could replace
any Sin functions such as x=Sin(a* 180/pi) with x=sinlup(a) which will of course be
more than 10 times as quick. The array would be setup in the program initialisation as
follows:

Dim sinlup(360)
For i=0 To 360

sinlup(i)=Sin(i*180/pi)
Next

Using Pointers

When doing many operations on a particular subfield in a NewType a temporary
pointer variable of the same subfield type can be created and that used instead of the
larger (and slower) path name:

UsePath a(i)\alien\pos

replaced by:

UsePath *a
*a.pos=a(i)\alien

Testing Performance

Often it is im portant to test two different routines to see which offers the faster
solution. The easiest way is to call each of them 5000 times or so and time which is
quicker by hand.

When writing arcade games that will be perform ing a main loop each frame, it is
useful to poke the background colour register before and after a specific routine to see
how much of the frame it is using.

70

The following will show how much of a frame it takes to clear a bitmap:

While JoyB(0)=0
VWait
CLS
move #$f00,$dff180;poke background colour red

Wend

Different colours can be used for different parts of the main loop. Remember that at
the top of each slice the background colour will be reset.

Optimising Games

A quality arcade game should always run to a 50th, meaning the main loop always
takes less than a frame to execute and so animation etc. are changed every frame
giving the game that smooth professional feel.

This time frame means the programmer will often have to sacrifice certain elements
in the game and maybe reduce colours and size of shapes to get the main loop fast
enough.

The following are several methods for optimising code main loops in games:

• Disable Runtime Errors in the compiler options when testing speed of code as
the error checker slows code dramatically.

• Poke the background colour reg ister with d ifferent values betw een main
routines to work out which ones are taking too long:

MainLoop:
VWait
Gosub movealiens
move.w #$f00,$dff180 ;turn background red
Gosub drawaliens
move.w #$0f0,$dff180 ; turn background green

• Use QBlits if possible as they are the fastest way of implementing animated
graphics in Blitz2.

• If aliens change direction using complex routines, split up the aliens into groups
and every frame select a different group to have their directions changed, the others
can move in the same direction until it is their turn. This method applies to any
routines that do not have to happen every frame but can be spread across several
frames in tidy chunks.

• Decrease the size of the display. During a frame, the display slows down the
processor and blitter. A smaller display increases the amount of time given to the
processor and blitter.

There is an infinite number of ways to increase the speed of Blitz2 code, subscribing
to Blitz User Magazine is one of the best ways of speeding up your code!

71

Those developing games on machines with fast mem and faster processors should
remember that most people do not have either! It is a good idea to disable fastmem
when testing the speed of your code.

72

10. PROGRAM EXAMPLES

Number Guessing

The following is a small program where the computer guesses a random number and
you have to guess it in less than ten turns.

NPrint "I just picked a number from 0 to 100"
NPrint "I’ll give you ten turns to guess it:"

a=Rnd(100)
n=1

Repeat
Print "Attempt #",n," ?"
b=Edit(10)
If b=a Then NPrint "Lucky Guess":Goto finish
If b<a Then NPrint "Too Small"
If b>a Then NPrint "Too Large"
n+1

Until n=11

NPrint "Out of turns!"

finish:

NPrint "Press mouse button to exit."
MouseWait

First up, you’ll find it pretty hard to guess the number, this is because the number
Blitz2 generates is not by default an integer and will hence include some fractional
part.

Change the line a=Rnd(100) to either a.w=Rnd(100) or a=Int(Rnd(100)).

The .w suffix m eans the variable a is now a word type (an integer w ith range -
32768..32767). If you use the Int function in the second option, a is still a quick type
but the random number has its fractional part chopped.

When you use variables in Blitz2 without a .type suffix they default to the quick type
w hich is a num ber with range -32768..32767 with 1/65536 accuracy. See the
Variable Types section for a more indepth discussion of this topic.

73

If you want all the variables in the program to default to the integer word type, not
quick then add the following line to the top of the program:

DEFTYPE .w ;all variables without suffix default to words

As with other BASICs once the variable is used once, it’s type is defined and future
references do not require the .type suffix.

Unlike other BASICs the Print command does not move the cursor to a new line
when finished, the command NPrint is used for this.

The Edit() function is used instead of the older input command.

Also the semicolon is used instead of the REMark command in Blitz2 and does not
retain any of it’s older functionality in Print statements.

Creating a standalone Workbench program

The number guessing program can be made to run from W orkbench with its own
icon. Add the following lines to the start of your code.

The text after the semicolons are known as remarks, as mentioned, the semicolon in
Blitz2 replaces the old REMark command in older BASICs.

;
; Number Guessing Program
;
WBStartup ;necessary for prog to be run from WorkBench
FindScreen 0 ;get front most Intuition screen

Window 0,0,0,320,210,$1000,"Hello World",1,2

When you compile&execute the program now, the window replaces the default CLI
for input and output.

One thing that you should replace is the b=Edit(10) function to:

b=Val(Edit$(10))

This gets rid of the default 0 character that appears in the window form of the Edit()
function.

Ensure the Create Executable Icon option in the Compiler Options is set to ON.

Now, select Create Executable from the compiler Menu or use the AmigaE keyboard
shortcut.

Type the name of the program you wish to create and hit return. You have now
created your first stand alone program with Blitz2, go to the Workbench and click on
the new program’s icon to test it.

74

A Graphic Example

The following program opens its own screen and draws what is known as a rosette, a
pattern where lines are connected between all the points around a circle.

;

; ro s e tte e x a m p le

n=20

NEWTYPE .pt
x.w:y

End NEWTYPE

Dim p.pt(n)

For i=0 To n-1
p(i)\x=320+Sin(2*i*Pi/n)*319
p(i)\y=256+Cos(2*i*Pi/n)*255

Next

Screen 0,25 ;h ire s 1 c o lo u r in te r la c e s c re e n
ScreensBitMap 0,0

For i1 =0 To n-2
For i2=i1+1 To n-1

Line p(i1)\x,p(i1)\y,p(i2)\x,p(i2)\y,1
Next

Next

MouseWait

The NewType .pt defined in the program has two items or fields x & y. This means
that instead of dimming an array of x.w(n) and y.w(n) we can dim one array of p.pt(n)
which can hold the same information.

The backslash "\" character is used to access the separate fields of the newtype. The
first For..Next loop assigns the points of a circle into the array of points.

The ScreensBitM ap command allows us to draw directly onto the screen with the
Plot, Line, Box and Circle commands. Programs that use windows should not use
this method, rather they should draw into specific windows using the WPlot, WLine,
WBox and WCircle commands.

75

Using Menus and the Blitz2 File Requester

The following program opens its own screen & window, attaches a menu list, and
depending on what the user selects from the menus, either opens the B litz2 file
requester or exits.

; A S im p le F ile R e q u e s te r e x a m p le

Screen 0,11,"Select A Menu";open o u r o w n in tu it io n s c re e n

MenuTitle 0,0,"P ro jec ts e tu p a m e n u lis t
Menultem 0,0,0,0,"Load ","L"
Menultem 0,0,0,1,"Save ","S"
Menultem 0,0,0,2,"Quit ","Q"

MaxLen path$=192 ;M U S T b e e x e c u te d b e fo re a file re q u e s te r is u s e d
MaxLen name$=192

;S e t up a B A C K D R O P (ie - in v is ib le) w in d o w
Window 0,0,0,320,200,$1900,'"',1,2
WLocate 0,20 ;m o v e c u rs o r to to p le f t o f w in d o w
SetMenu 0 ;a tta c h o u r m e n u lis t to o u r w in d o w

Repeat
Select WaitEvent

Case 256 ; its a m e n u e v e n t!
Select ItemHit

Case 0;lo a d ; its ite m 0 w h ic h m e a n s lo a d
p$=FileRequest$("FileToLoad",path$,name$)
NPrint "Attempted to Load ",p$

Case 1 ;s a v e ; its ite m 1 w h ich m e a n s s a v e
p$=FileRequest$("FileToSave",path$,name$)
NPrint "Attempted to Save ",p$

Case 2 ;its ite m 2 w h ic h m e a n s q u it
End

End Select

End Select
Forever

The MaxLen command is used to allocate a certain amount of memory for a string
variable in Blitz2. This is necessary so that the two string variables required by the
file requester command are large enough for the job.

The menus created by the MenuTitle and M enultem commands are attached to the
Window using the SetMenu command.

76

The Select..Case..End Select structures are the best way of handling information
coming from a user. When the user selects a menu, closes a window, clicks on a
gadget an ‘event’ is sent to your program. Usually an application program will use the
W aitE vent com m and, w hich m akes the program ‘s le e p ’ until the user does
something. When multitasking, a program that is ‘asleep’ will not slow down the
execution of other programs running.

Once an event is received, the event code returned by WaitEvent specifies what type
of an event occurred. A menu event returns 256 ($100 hex), a close window event
returns 512 ($200 hex). A full list of events and their IDCMP codes is listed on page
25-5 of the Blitz2 reference manual.

String Gadgets

The following program demonstrates the use of string gadgets. These allow the user
to enter text via the keyboard. The following sets up 3 string gadgets for decimal, hex
and binary input/output.

When the user types a number into one of the gadgets and hits return, the program
receives a gadgetup event. The GadgetHit function returns which gadget caused the
event. The program then converts the number the user typed into the other number
systems (decimal, hex or binary) and displays the results in each of the string gadgets.

The ActivateString command means the user does not need to click on the gadget to
reactivate it so that they can type in another number.

d e c im a l h e x b in a ry c o n v e r te r

FindScreen 0

StringGadget 0,64,12,0,0,18,144
StringGadget 0,64,26,0,1,18,144
StringGadget 0,64,40,0,2,18,144

Window 0,100,50,220,56,$1008,"BASE CONVERTER",1,2,0

WLocate 2,04:Print "DECIMAL"
WLocate 2,18:Print " HEX$"
WLocate 2,32:Print "BINARY%"

DEFTYPE.I value

Repeat
ev.l=WaitEvent
If ev=$40 ; g a d g e t u p

Select GadgetHit
Case 0

value=Val(StringText$(0,0))
Case 1

77

r$=UCase$(StringText$(0,1))
value=0:i=Len(r$):b=1
While i>0

a=Asc(Mid$(r$,i,1))
If a>65 Then a-55 Else a-48
value+a*b
i-1:b*16

Wend
Case 2

r$=StringText$(0,2)
value=0:i=Len(r$):b=1
While i>0

a=Asc(Mid$(r$,i,1))-48
value+a*b
i-1 :b*2

Wend
End Select
ActivateString 0,GadgetHit
SetString 0,0,Str$(value)
SetString 0,1 ,Right$(Hex$(value),4)
SetString 0,2,Right$(Bin$(value),16)
Redraw 0,0:Redraw 0,1 :Redraw 0,2

EndIf
Until ev=$200

Prop Gadgets

The following program creates a simple RGB palette requester, allowing the user to
adjust the colors of the screen. PropGadgets can be thought of as sliders, in this
example we create three vertical PropGadgets to represent the Red, Green and Blue
components of the current color register selected.

The 32 color registers are represented with 32 text gadgets. The gadget’s colour is set
by changing G adgetPens before the gadget is added to the gadget list. U sing
GadgetJam 1 the two spaces are shown as a block of colour.

s im p le p a le tte re q u e s te r

FindScreen 0

For p=0 To 2
PropGadget 0,p*22+8,14,128,p,16,54

Next

For c=0 To 31
GadgetJam 1 :GadgetPens 0,c
x=c AND 7:y=Int(c/8)
TextGadget 0,x*28+72,14+y*14,32,3+c," " ; < -2 s p a c e s

Next

78

W indow 0 ,100 ,50 ,300 ,72 ,$100A,"PALETTE REQ U ESTER",1 ,2,0

cc=0:Toggle 0,3+cc,On:Redraw 0,3+cc

Repeat
SetVProp 0,0,1 -Red(cc)/15,1/16
SetVProp 0,1,1-Green(cc)/15,1/16
SetVProp 0,2,1-Blue(cc)/15,1/16
Redraw 0,0:Redraw 0,1:Redraw 0,2
ev.l=WaitEvent
If ev=$40 AND GadgetHit>2

Toggle 0,3+cc,On:Redraw 0,3+cc
cc=GadgetHit-3
Toggle 0,3+cc,On:Redraw 0,3+cc

Endlf
If (ev=$20 OR ev=$40) AND GadgetHit<3

r.b=VPropPot(0,0)*16
g.b=VPropPot(0,1)*16
b.b=VPropPot(0,2)*16
RGB cc,15-r,15-g,15-b

Endlf
Until ev=$200

Database Type Aplication

The following listing is a simple data base program to hold a list o f names, phone
numbers and addresses.

The user interface can either be typed in as listed or created using the IntuiTools
tutorial later in this manual.

If a text file exists called phonebook.data we read it into a list, each item of the list
has been set up to hold 4 strings using the NewType person.

Using a list instead of a normal array means that we think of each record inside the
list as connected to the one before and the one after ra ther than ju s t being an
individual item. Blitz2 keeps an internal pointer to the ‘current’ item and the various
list commands enable us to change that internal pointer and operate on the item it
points to.

phone book program

FindScreen 0

;the following is from ram:t as created in the intuitools tutorial

Borders On:BorderPens 1,2:Borders 4,2
StringGadget 0,72,12,0,1,40,239

79

StringGadget 0,72,27,0,2,40,239
StringGadget 0,72,43,0,3,40,239
StringGadget 0,72,59,0,4,40,239
GadgetJam 0:GadgetPens 1,0
TextGadget 0,8,75,0,10,"NEW ENTRY"
TextGadget 0,97,75,0,11 ,"| <“
TextGadget 0,129,75,0,12,"<<"
TextGadget 0,161,75,0,13,">>"
TextGadget 0,193,75,0,14,">| "
TextGadget 0,226,75,0,15,"DIAL"
TextGadget 0,270,75,0,16,"LABEL"

SizeLimits 32,32,-1 ,-1
Window 0,0,24,331,91,$100E,"MY PHONE BOOK",1,2,0
WLocate 2,19:WJam 0:WColour 1,0
Print "Address"
WLocate 19,50
Print "Phone"
WLocate 27,3
Print "Name"

; and now we start typing...

#num=4 ;4 strings for each person

NEWTYPE .person
info$[#num]

End NEWTYPE

Dim List people.person(200)

USEPATH people()

;read in names etc from sequential file

If ReadFile (0,"phonebook.data")
Filelnput 0
While NOT Eof(0)

If Addltem(people())
For i=0 To #num-1 :\info[i]=Edit$(128):Next

Endlf
Wend

Endlf

ResetList people()

;if empty add blank record

If NOT Nextltem(people()) Then Addltem people()

refresh:

80

ref=0
For i=0 To #num-1

SetString 0,i+1,\info[i]:Redraw 0,i+1
Next
ActivateString 0,1:VWait 5
Repeat

ev.l=WaitEvent

If ev=$200 ;c lo s e w in d o w e v e n t
Gosub update
If WriteFile (0,"phonebook.data“);save d a ta to f ile

FileOutput 0
ResetList people()
While Nextltem(people())

For i=0 To #num-1 :NPrint \info[i]:Next
Wend
CloseFile 0

Endlf
Endlf

If ev=64
If GadgetHit=#num Then ActivateString 0,1
If GadgetHit<#num Then ActivateString 0,GadgetHit+1

Select GadgetHit
Case 10

Gosub update:lf Addltem(people()) Then ref=1
Case 11

Gosub update:lf Firstltem(people()) Then ref=1
Case 12

Gosub update:lf Prevltem(people()) Then ref=1
Case 13

Gosub update:lf Nextltem(people()) Then ref=1
Case 14

Gosub update:lf Lastltem(people()) Then ref=1
End Select

Endlf
Until ref=1
Goto refresh

update:
For i=0 To #num-1 :\info[i]=StringText$(0,i+1):Next:Return

81

List Processor for Exec based Lists

The Following program is an example of accessing Operating System structures.
Before entering this program you will need to add the AmigaLibs.res file to the Blitz
2 environment. To do this open the Compiler Options requester from the Compiler
Menu. Click in the Residents box and type in AmigaLibs.Res.

You may need a pathname. AmigaLibs is found in the Resident directory of the Blitz
2 program disk.

By selecting ViewTypes from the compiler menu the entire set of structs should be
listed that are used by the Amiga’s operating system.

The first line of our program defines the variable exec as a pointer to type ExecBase.
As the Amiga keeps the location of this variable in memory location 4 we can use the
Peek.l (long) com m and to read the 4 byte value from m emory into our pointer
variable.

Blitz 2 now knows that exec points to an execbase structure and using the backslash
character we can access any of the variables in this stucture by name.

If you select V iew Types from the com piler menu and type in ExecB ase (case
sensitive) you can view all the variables in the execbase structure.

We then define another pointer type called *mylist.List. We can then use this to point
to any List found in execbase such as LibList or DeviceList.

An exec list consists of a header node and a series of link nodes that hold the list of
devices or libraries or what have you.

We point mynode at the lists first link node in the third line of code.

The next line loops through the link nodes until the node’s successor=0 which means
we have arrived back at the header node.

Peek$ reads ascii data from memory until a zero is found, this is very useful for
placing text pointed to by a C definition such as *ln_Name.b into Blitz 2 ’s string
work area.

We then point mynode at the next node in the list.

Exec list processor

*exec.ExecBase=Peek.l (4)

*mylist.List=*exec\LibList

*mynode.Node=*mylist\lh_Head

While *mynode\ln_Succ

82

a$=Peek$(*mynode\ln_Name)
NPrint a$
*mynode=*mynode\ln_Succ

Wend

MouseWait

Prime Number Generator

The follow ing program generates a list o f prim e num bers from 2 up to a lim it
specified by the user. A list of all the prime numbers found is kept in a Blitz 2 List
structure.

We begin by inputting the upper limit from the user using the default input output and
the edit() command, the numeric form of the edit$() command.

The While..Wend structure is used to loop through the main algorithm until the upper
limit is reached. The algorithm simply takes the next integer, loops through the list of
the prime numbers it has already generated until either it finds a divisible number or it
is too far through the list (the item in the list is greater than the square root of the
number being checked).

If the algorithm does not find a divisor in its search through the list it prints the new
prime and adds it to the end of the list.

Print "Primes to what value “;find out limit to run program to
v=Edit(80) ;input numeric
If v=0 Then End ;if 0 then don’t carry on
tab.w=0:tot.w=0 ;reset counters
Dim List primes(v) ;dim a list to hold primes
p=2 ;add the number 2 to our list
AddItem primes()
primes()=p

While p<v ;loop until limit reached
p+1 ; increment p
flag=1 ;se t flag
6=0
q=Sqr(p) ;set search limit
ResetList primes();loop through list
While Nextltem(primes()) AND d<q AND flag

d=primes()
flag=p MOD d

Wend
If flag<>0 ; if found print and add it to list

Print p,Chr$(9) ;chr$(9) is a TAB character
tab+1:tot+1
If tab=10 Then NPrint "":tab=0
AddLast primes()
primes()=p

EndIf

83

Wend

NPrint Chr$(10)+"Found ",tot," Primes between 2 & ",v
NPrint "Left Mouse Button to Exit"

MouseWait

Clipped Blits

The following program illustrates a method to clip blits. When a shape is blitted
outside the area of a bitmap an error occurs. To have shapes appear half inside a
bitmap and half outside we use a larger bitmap and position the display inside. The
size of the outer frame is dependent on the size of the shapes that will be drawn.

In the following example we are using 32x32 pixel shape and so need an extra 32
pixels all round the bitmap. The Show 0,32,32 centres the display inside the larger
bitmap.

We also have to use the extended form of the slice command as we are displaying a
bitmap wider than the display.

The RectsHit(x,y,1,1,0,0,320+32,256+32) function returns true if the shape is inside
the larger bitmap and should be blitted. If the shape was larger or it had a centred
handle the parameters would need to be changed to accomadate these factors.

The .makeshape routine creates a temporary bitmap to draw a patern and then transfer
it to a shape object using the GetaShape command.

BLITZ

Gosub makeshape

BitMap 0,320+64,256+64,3
Slice 0,44,320,256,$fff8,3,8,8,320+64,320+64
Show 0,32,32

While Joyb(0)=0
x.w=Rnd(1024)-512
y.w=Rnd(1024)-512
If RectsHit(x,y,1,1,0,0,320+32,256+32)

Blit 0,x,y
Endlf

Wend

.makeshape:
BitMap 1,32,32,3
For i=1 To 15:Circle 16,16,i,i:Next
GetaShape 0,0,0,32,32
Free BitMap 1
Return

84

Dual Playfield Slice

The following program demonstrates the use of a dual playfield display. As described
in the previous chapter dual playfield lets us display two bitmaps simultaneously
using the ShowF and ShowB commands.

The macro rndpt simply inserts the code Rnd(640),Rnd(512) into the source each
time it is called. For instance Line !rndpt,!rndpt,Rnd(7) is expanded internally by the
compiler to read:

Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(7)

Once againg the extended form of the slice command has to be used with flags set to
$fffa giving us a lores dualplayfield scrollable display.

In dualplayfield we can think of having two displays, the ShowF command positions
the front display inside BitM ap 1, the ShowB com m and positions the backdrop
display inside BitMap 0. Note that we must pass the x position of the other display
with ShowF and ShowB so that Blitz2 can calculate internal variables properly.

BLITZ

Macro rndpt Rnd(640),Rnd(512):End Macro

BitMap 0,640,512,3
For i=0 To 255

Line !rndpt,!rndpt,Rnd(7)
Next

BitMap 1,640,512,3
For i=0 To 255

Circlef !rndpt,Rnd(15),Rnd(7)
Next

Slice 0,44,320,256,$fffa,6,8,16,640,640

While Joyb(0)=0
VWait
x1=160+Sin(r)*160
y1=128+Cos(r)*128
x2=160-Sin(r)*160
y2=128-Cos(r)*128
ShowF 1,x1,y1,x2
ShowB 0,x2,y2,x1
r+.05

Wend

85

Double Buffering

The following code illustrates the use of a double buffered display, necessary to
acheive smooth moving graphics. The trick with double buffering is that while one
bitmap is displayed we can change the other without any glitches happening on the
display.

The VW ait command waits for the vertical beam to be at the top of the display,
which is when we are allowed to swap the bitmaps being displayed without getting
any glitches.

The db=1-db equation will mean that db alternates between 0 & 1 each frame. We
Show db, toggle it (db=1-db) and then Use Bitmap db, to acheive the "draw to one
bitmap while displaying the other" technique known as double buffering.

Because we have two bitmaps, we need two queues to use QBlit properly. QBlits
work by doing a normal Blit and storing the position of the Blit in a queue. The
UnQueue command will erase all parts of the screen listed in the queue so we can
draw the balls in their new positions with out them leaving "trails" behind them from
their old position.

The move # -1,$dffl80 pokes the background color to white, this allows us to see how
much of the frame has been taken since the VWait to execute the code. If we increase
the number of balls, the moving and drawing loop will take longer than a frame (50th
of a second) and the white will start flashing as the poke will only be happening every
second frame. See chapter 10 for a more thorough discussion of frame rates etc.

Hmm, the only other thing I’ll mention is the bounce logic used when the ball moves
outside the bitmap. We reverse the direction but also add the new direction to the
position so the program never attempts to Blit the shape outside of the bitmap.

BLITZ

n=25

NEWTYPE .ball
x.w:y:xa:ya

End NEWTYPE

Dim List b.ball(n-1)
While Addltem(bO)

b()\x=Rnd(320-32),Rnd(256-32),Rnd(4)-2,Rnd(4)-2
Wend

Gosub getshape

BitMap 0,320,256,3
BitMap 1,320,256,3
Queue 0,n
Queue 1,n
Slice 0,44,3

86

While Joyb(0)=0
VWait
Show db
db=1-db
Use BitMap db
UnQueue db
ResetList b()
USEPATH b()
While Nextltem(b())

\x+\xa:\y+\ya
If NOT RectsHit(\x,\y,1,1,0,0,320-32,256-32)

\xa=-\xa:\ya=-\ya
\x+\xa:\y+\ya

Endlf
QBlit db,0,\x,\y

Wend
MOVE #-1 ,$dff180

Wend

End

.getshape:
BitMap 1,32,32,3
For i=1 To 15:Circle 16,16,i,i:Next
GetaShape 0,0,0,32,32
Free BitMap 1
Return

Smooth Scrolling

This final exam ple dem onstrates smooth scrolling as discussed in the previous
chapter.

The Scroll commands are used to copy the left side of the bitmap to the right and the
top half of the bitmap to the bottom. This in effect means the large bitmap is the same
in each quarter.

Because of this we can scroll the display across the bitmap, and when we hit the right
edge reset the display back to the left edge without any jum p in the display as both
left and right sides of the bitmap are the same. This is the same for scrolling the
display down the bitmap.

Note how to be able to access mouse moves we need the Mouse On command. We
can then take the amount the mouse has been moved by the user and add it to the
speed in which we are moving the display around the bitmap.

The QLimit(xa+M ouseXSpeed,-20,20) command makes sure that the xa (x_add)
variable always stays inside the limits -20..20.

The x=QWrap(x+xa,0,320) command means that when the displays position inside

87

the bitmap reached the right edge of the bitmap it wraps around to the left.

BLITZ
Mouse On
n=25
BitMap 0,640,512,3

For i=0 To 150
Circlef Rnd(320-32)+16,Rnd(256-32)+16,Rnd(16),Rnd(8)

Next

Scroll 0,0,320,256,320,0
Scroll 0,0,640,256,0,256

Slice 0,44,320,256,$fff8,3,8,8,640,640

While Joyb(0)=0
VWait
Show db,x,y
xa=QLimit(xa+MouseXSpeed,-20,20)
ya=QLimit(ya+MouseYSpeed,-20,20)
x=QWrap(x+xa,0,320)
y=QWrap(y+ya,0,256)

Wend

88

11. DISPLAY LIBRARY & AGA PROGRAMMING

Introduction

The Display Library is a recent addition to Blitz. Developed as a replacem ent to
Slices it not only offers games programmers access to all of the new AGA features
but offers a slightly more m odular approach to controlling the A m iga’s graphics
hardware.

The Amiga’s display is controlled by the copper. The copper is a secondary processor
that executes a list of instructions every frame. For those new to such concepts, the
Amiga redraws the screen 50 times a second, each redraw is known as a frame. The
video beam which sweeps across the screen drawing each pixel is controlled by
certain hardware registers, these registers are poked by the copper whose job it is to
keep everything in sync.

A coplist contains information about the colours, bitplanes, sprites, resolution and
more that the video beam requires to render a typical display.

Initialising

Unlike Slices which appear as soon as they are initialised the display library requires
coplists to be initialised (using InitCopList) prior to a display being created (using
CreateDisplay). The important difference here is that Slices require memory to be
allocated each time a change to the video display is required while the Display library
allows multiple CopLists to be initialised before any displays are created.

There are two forms of the InitCopList command. The short version simply requires
the CopList# which is to be initialised and the flags. The height o f the display will
default to 256 pixels high. A width of 320, 640 or 1280 will be used depending on the
resolution set in the flags as will the number of colors.

The longer version has the following format:

InitCopList C o p L is t# ,y p o s ,h e ig h t,ty p e ,s p r ite s ,c o lo rs ,c u s to m s

The ypos is usually set to 44 the standard top of fram e for a PAL display. If the
CopList is to be used below another coplist on the same display ypos should be set to
2 scan lines below the last CopLists bottom line.

Sprites should always be set to eight, even if they are not all available, colors should
be set to the num ber requ ired . W hen using m ore than 32 co lours ensure that the
#agacolors flag MUST be set.

Customs allocate enough room for advanced custom copper lists to be attached to
each display. See later on in this chapter for a discussion on using customcops.

89

Flags used with InitCopList

The flags value is calculated by adding the following values together.

Note: variables must be long (32 bits) when used as the flags param eter for the
InitCoplist command.

#onebitplane= $01
#twobitplanes= $02
#threebitplanes= $03
#fourbitplanes= $04
#fivebitplanes= $05
#sixbitplanes= $06
#sevenbitplanes= $07*
#eightbitplanes= $08*

#smoothscrolling= $10 ;set if you will be scrolling the bitmap
#dualplayfield= $20 ;enable dual playfield mode
#extrahalfbrite= $40 ;forces 6 bitplane display into ehb mode
#ham= $80 ;display in ham

#lores= $000
#hires= $100
#superhires= $200

#loressprites= $400
#hiressprites= $800*
#superhiressprites= $c00*

#fetchmode0= $0000
#fetchmode1 = $1000*
#fetchmode2= $2000*
#fetchmode3= $3000*

#agacolors= $10000*

* These flags should only be used with AGA Amigas.

Colors

The #agacolors flag must ALWAYS be set when more than 32 colours are in use or
when 24 bit color definition is required.

SmoothScrolling

By setting the smooth scrolling flag the extended form of DisplayBitmap may be used
which allows the bitmap to be displayed at any offset. This enables the programmer to
scroll the portion of the bitmap being displayed. See BlitzMode programming chapter
for an explanation of hardware scrolling.

Notes:

* Always use the extended form of DisplayBitmap with smoothscrolling set, even
when offset is 0,0.

90

DisplayBitmap accepts quick types for the x offset and will position the bitmap
in fractions of pixels on AGA machines.

The width of the display will be less than the default 320/640/1280 when
smooth scrolling is enabled.

DualPlayfield

By setting the DualPlayfield flag two bitmaps may be displayed on top of each other
in one display. A combination of DualPlayfield and SmoothScrolling is allowed for
parallax type effects. Note that with AGA machines, it is possible to display two 16
colour bitmaps by enabling DualPlayfield and setting number of bitmaps to 8.

Sprites

The number of sprites available will depend on the type of display and the fetchmode
settings. Most AGA modes will require the display to be shrunk horizontally for 8
sprites to be displayed. Currently this can only be acheived using the DisplayAdjust
command, certain examples of this can be found on the Blitz examples disk.

AGA hardware allows the programmer to display sprites in lores, hires or superhires.
The higher resolutions allow graphics dithering by the artist, essential if 3 coloured
sprites are in use. Larger sprites are also available using the SpriteMode command.
Dithered large, super hi-res sprites can be created to look better than lower resolution
16 color sprites using such tools as ADPro.

Note that it is unrealistic to display more than 4 bitplanes and have more than 3 sprite
channels available, the adjust required results in a very narrow display indeed.

FetchMode

AGA hardware allows bitplane data to be fetched by the DMA in 16,32 or 64 pixel
groups. The larger fetches give the processor more bandwidth, this is especially
noticable with AGA Amiga’s running without additional fastmem.

When using increased fetchmodes bitplanes must always be a multiple of 64 pixels
wide.

Those wanting to attempt D isplayAdjusts on displays with larger fetchmodes will
encounter severe difficulties in creating a proper display. We think it is actually
impossible for displays to run at fetchmode 3 with more than 1 sprite without having
to adjust the display to around 256 pixels across.

Multiple Displays

When more than one CopList is to be displayed care must be taken that there is a gap
of at least 3 lines between each. This means the ypos of a lower coplist must be equal
or greater than the above’s ypos+height+3.

91

Advanced Copper Control

The long format of the InitCopList command allows allocation for custom copper
commands. Certain commands have been added to the Display Library which will
require this paramater to be set.

There are two forms of custom copper commands, the first will allow the copper to
affect the display every scanline while the second defines a certain line for the copper
to do it’s thing. These new commands include:

The following require a negative size, this denotes that so many instructions must be
allocated for every scanline of the display.

DisplayDblScan CopList#,Mode[,copoffset];(size=-2)
DisplayRainbow CopList#,Register,Palette[,copoffset] ;(ecs=-1 aga=-4)
DisplayRGB CopList#,Register,line,r,g,b[,copoffset] ;(ecs=-l aga=-4)
DisplayUser CopList#,Line,String[,CopOffset];(size=-len/4)
DisplayScroll CopList#,&xpos.q(n),&xpos.q(n) [,CopOffset] ;(size=-3)

The following require the size be specified as a p o s itive parameter denoting that so
many instructions be allocated for each instance of each command. Note that these
two commands may NOT be mixed with the commands above.

CustomColors CopList#,CCOffset,YPos,Palette,startcol,numcols
CustomString CopList#,CCOffset,YPos,Copper$

The use of these commands is illustrated by code included in the Blitz examples
drawer.

92

Display Example 1

This first example creates two large bitmaps. It renders lines to one and
boxes on the other. A 32 color palette is created, the first 16 colors are used
by the back playfield and second 16 by thr front playfield.

The flags in the InitCopList command are the sum of the following:

#eightbitplanes= $08
#smoothscrolling= $10
#dualplayfield= $20
#lores= $000
#fetchmode3= $3000*
#agacolors= $10000*

Note how the InitCopList command can be executed before going into Blitz
mode. All the d isp lay commands are mode independent except for
CreateDisplay which can only be executed in Blitz mode.

Finally note the extended form of the DisplayBitmap command. This allows
the offset position of both bitmaps to be assigned with the one command.

two 16 color playfield in dualplayfield mode

BitMap 0,640,512,4
BitMap 1,640,512,4

For i=0 To 100
Use BitMap 0:Box Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)
Use BitMap 1:Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)

Next

InitPalette 0,32
For i=1 To 31:AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

InitCopList 0,$13038

BLITZ

CreateDisplay 0
DisplayPalette 0,0

While Joyb(0)=0
VWait
x=160+Sin(r)*160:y=128+Cos(r)*128
DisplayBitMap 0,0,x,y,1,320-x,256-y
r+.05

Wend

End

9 3

Display Example 2

This second example demonstrates the use of sprites on a Display. The DisplayAdjust
is required so as to allow us access to all 8 sprite channels. Unfortunately it is difficult
to up the fetch mode in this example without resorting to a very thin display.

The SpriteMode2 tells Blitz to create 64 pixel wide sprites for each channel. With out
the SpriteMode each sprite would require 4 channels, again this is one of the better
new features of AGA.

It should be noted also that the D isplaySprite command also accepts fractional x
parameters and will position the sprite at fractional pixel postions if possible.

s m o o th s c ro llin g 16 c o lo r s c re e n w ith 8 6 4 w id e s p r ite s

SpriteMode 2
InitShape 0,64,64,2:ShapesBitMap 0,0
Circlef 32,32,32,1:Circlef 16,8,6,2:Circlef 48,8,6,3:Circlef 32,32,8,0
GetaSprite 0,0

BitMap 0,640,512,4

For i=0 To 100
Use BitMap 0:Box Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)

Next

InitPalette 0,48

For i=1 To 31:AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

InitCopList 0,$10014

DisplayAdjust 0,-2,8,0,16,0;u n d e r s c a n !

BLITZ

CreateDisplay 0
DisplayPalette 0,0

For i=0 To 7
DisplaySprite 0,0,20+i*30,(20+i*50)&127,i

Next

While Joyb(0)=0
VWait
x=160+Sin(r)*160:v=128+Cos(r)*128
DisplayBitMap 0,0,x,y
r+.05

Wend

End

94

R-1: PROGRAM FLOW COMMANDS

A com puter program is made up of a sequence o f com m ands that are executed
sequentially (one after the other). Certain commands are used to interrupt this process
and cause program execution to jump to a different location in the program. There are
several different ways of controlling this program flow in Blitz.

Standard BASIC com m ands to change program flow such as Goto, Gosub are
standard in Blitz, unlike older BASIC’s, locations are specified as program labels and
not line numbers. M ore modern structured BASIC features such as Procedures
(known as Statements and Functions), While..Wend, Repeat..Until, Select..Case and
more allow a more structured approach to programming.

Finally Blitz allows control over interrupts, this allows external events to override
normal program flow and jump (temporarily) to a predefined location in the program.

Goto Program Label

Goto causes program flow to be transferred to the specified program label.
This allows sections of a program to be ’skipped’ or ’repeated’.

Gosub Program Label

Gosub operates in two steps. First, the location of the instruction following the
Gosub is rem em bered in a special storage area (known as the ’stack ’).
Secondly, program flow is transferred to the specified Program Label.
The section o f program that program flow is transferred to is known as a
’subroutine’ and should be terminated by a Return command.

Return

R eturn is used to return program flow to the instruction follow ing the
p rev io u sly ex ecu ted G osub com m and. T his a llo w s the c rea tio n o f
’subroutines’ which may be called from various points in a program.

On Expression Gotol Gosub Program Label[,Program Label...]

On allows a program to branch, via either a Goto or a Gosub, to one of a
num ber o f Program Labels depending upon the resu lt o f the specified
Expression.
If the specified Expression results in a 1, then the first Program Label will be
branched to. A result of 2 will cause the second Program Label to be branched
to and so on. If the result of Expression is less than one, or not enough
Program Labels are supplied, program flow will continue without a branch.

End

End will halt program flow completely. In the case o f programs run from the
Blitz editor, you will be returned to the editor. In the case of executable files,
you will be returned to the Workbench or CLI.

95

Stop

The Stop command causes the Blitz Debugger to interrupt program flow. Place
Stop commands in your code as breakpoints when debugging, ensure runtime
errors are enabled. Click on Run from the debugger to continue program flow
after a Stop.

If Expression [Then...]

If allows execution of a section of program depending on the result o f an
expression. The Then command indicates only the rest of the line will be
defined as the section of code to either execute or not. W ithout a Then the
section of code will be defined as that up to the EndIf command.

EndIf

EndIf is used to terminate an ’If block’. An If block is begun by use of the If
statement without the Then present. Please refer to If for more information on
If blocks.

Else [Statement...]

Else may be used after an If to cause program instructions to be executed if the
expression specified in the If proved to be false.

While Expression

The While command is used to execute a series of commands repeatedly while
the specified Expression proves to be true. The commands to be executed
include all the commands following the While until the next matching Wend.

Wend

Wend is used in conjunction with While to determine a section of program to
be executed repeatedly based upon the truth of an expression.

Select Expression

Select examines and ’remembers’ the result of the specified Expression. The
Case commands may then be used to execute different sections of program
code depending on the result of the expression in the Select line.

Case Expression

A Case is used following a Select to execute a section of program code when,
and only when, the Expression specified in the Case statement is equivalent to
the Expression evaluated in the Select statement.
If a Case statement is satisfied, program flow will continue until the next Case,
Default or End Select statement is encountered, at which point program flow
will branch to the next matching End Select.

96

Default

A Default statement may appear following a series of Case statements to cause
a section of program code to be executed if NONE of the Case statements
were satisfied.

End Select

End Select terminates a Select...Case...Case...Case sequence. If program flow
had been diverted through the use of a Case or D efault statem ent, it will
continue from the terminating End Select.

For Var=Expression1 To Expression2 [Step Expression3]

The For statement initializes a For...Next loop. All For/Next loops must begin
with a For statement, and must have a terminating Next statement further
down the program. For..Next loops cause a particular section of code to be
repeated a certain number of times. The For statement does most of the work
in a For/N ext loop. When For is executed, the variable specified by Var
(known as the index variable) will be set to the value Expression1. After this,
the actual loop commences.
At the beginning of the loop, a check is made to see if the value of Var has
exceeded Expression2. If so, program flow will branch to the command
following the For/Next loop’s Next, ending the loop. If not, program flow
continues on until the loop’s Next is reached. At this point, the value specified
in Expression3 (the ’step’ value) is added to Var, and program flow is sent
back to the top of the loop, where Var is again checked against Expression2. If
Expression3 is omitted, a default step value of 1 will be used.
In order for a For/Next loop to count ’down’ from one value to a lower value,
a negative step number must be supplied.

Next [Var[,Var...]]

Next terminates a For..Next loop. Please refer to the For command for more
information on For..Next loops.

Repeat

Repeat is used to begin a Repeat...Until loop. Each Repeat statem ent in a
program must have a corresponding Until further down the program.
The purpose of Repeat/Until loops is to cause a section of code to be executed
AT LEAST ONCE before a test is made to see if the code should be executed
again.

Until Expression

Until is used to terminate a Repeat/Until loop. If Expression proves to be true
(non 0), then program flow will continue from the command following Until.
If Expression proves to be false (0), then program flow will go back to the
corresponding Repeat, found further up the program.

97

Forever

Forever may be used instead of Until to cause a Repeat/Until loop to NEVER
exit. Executing Forever is identical to executing ’Until 0 ’.

Pop Gosubl Fori Selectl IfI Whilel Repeat

Sometimes, it may be necessary to exit from a particular type of program loop
in order to transfer program flow to a different part of the program. Pop must
be included before the Goto which transfers program flow out from the inside
of the loop.
Actually, Pop is only necessary to prematurely terminate Gosubs, Fors and
Selects. If, While and Repeat have been included for completeness but are not
necessary.

MouseWait

MouseWait simply halts program flow until the left mouse button is pushed. If
the left mouse button is already held down when a MouseW ait is executed,
program flow will simply continue through.
M ouseW ait should normally be used only for program testing purposes, as
MouseWait severely slows down multi-tasking.

VWait [Frames]

VWait will cause program flow to halt until the next vertical blank occurs. The
optional Frames param eter may be used to wait for a particular number of
vertical blanks.
VWait is especially useful in animation for synchronizing display changes
with the rate at which the display is physically redrawn by the monitor.

Statement Procedurename{[Parameter1[,Paramater2...]]}

Statement declares all following code up to the next End Statement as being a
’statement type’ procedure.
Up to 6 Parameters may be passed to a statement in the form of local variables
through which calling parameters are passed.
In Blitz, all statements and functions must be declared before they are called.

End Statement

End Statement declares the end of a ’statement type’ procedure definition. All
statement type procedures must be terminated with an End Statement.

Statement Return

Statement Return may be used to prematurely exit from a ’statement type’
procedure. Program flow will return to the command following the procedure
call.

98

Function [.Type] Procedurename{[Parameter1[,Parameter2...]]}

Function declares all following code up to the next End Function as being a
function type procedure. The optional Type param eter may be used to
determine what type of result is returned by the function. Type, if specified,
must be one Blitz’s 6 primitive variable types. If no Type is given, the current
default type is used.
Up to 6 Parameters may be passed to a function in the form of local variables
through which calling parameters are passed. Functions may return values
through the Function Return command.
In Blitz, all statements and functions must be declared before they are called.

End Function

End Function declares the end of a ’function type’ procedure definition. All
function type procedures must be terminated with an End Function.

Function Return Expression

Function Return allows ’function type’ procedures to return values to their
calling expressions. Function type procedures are always called from within
Blitz expressions.

Shared Var[, Var...]

Shared is used to declare certain variables within a procedure definition as
being global variables. Any variables appearing within a procedure definition
that do not appear in a Shared statement are, by default, local variables.

SetInt Type

SetInt is used to declare a section of program code as ’interrupt’ code. Often,
when a computer program is running, an event of some importance takes place
which must be processed immediately. The different types of interrupt on the
Amiga are as follows:

Type Cause of Interrupt

0
1

Serial transmit buffer empty
Disk Block read/written

2 Software interrupt
3 Cia ports interrupt
4 Co-processor (’copper’) interrupt
5 Vetical Blank
6 Blitter finished
7 Audio channel 0 pointer/length fetched
8 Audio channel 1 pointer/length fetched
9 Audio channel 2 pointer/length fetched
10 Audio channel 3 pointer/length fetched
11 Serial receive buffer full
12 Floppy disk sync
13 External interrupt

99

The most useful of these interrupts is the vertical blank interrupt. This interrupt
occurs every time an entire video frame has been fully displayed (about every
sixtieth of a second), and is very useful for animation purposes. If a section of
program code has been designated as a vertical blank interrupt handler, then
that section of code will be executed every sixtieth of a second.
Interrupt handlers must perform their task as quickly as possible, especially in
the case of vertical blank handlers which must NEVER take longer than one
sixtieth of a second to execute.
In terrupt handlers in B litz must NEVER access string variables or literal
strings. In Blitz mode, this is the only restriction on interrupt handlers. In
Amiga mode, no blitter, Intuition or file i/o commands may be executed by
interrupt handlers.
To set up a section of code to be used as an interrupt handler, you use the SetInt
command followed by the actual interrupt handler code. An End SetInt should
follow the interrupt code. The Type parameter specifies the type of interrupt,
from the above table, the interrupt handler should be attached to. For example,
SetInt 5 should be used for vertical blank interrupt code.
M ore than one interrupt handler may be attached to a particu lar type of
interrupt.

End SetInt

End SetInt must appear after a SetInt to signify the end of a section of interrupt
handler code. Please refer to SetInt for more information of interrupt handlers.

ClrInt Type

ClrInt may be used to remove any interrupt handlers currently attached to the
specified interrupt Type. The SetInt command is used to attach interrupt
handlers to particular interrupts.

SetErr

The SetErr command allows you to set up custom error handlers. Program
code which appears after the SetErr command will be executed when any Blitz
runtime errors are caused. Custom error code should be ended by an End
SetErr.

End SetErr

End SetErr must appear follow ing custom error handlers installed using
SetErr. Plase refer to SetErr for more information on custom error handlers.

ClrErr

ClrErr may be used to remove a custom error handler set up using SetErr.

ErrFail

ErrFail may be used within custom error handlers to cause a ’normal’ error.
The error which caused the custom error handler to be executed will reported
and transfer will be passed to direct mode.

100

R-2: VARIABLE HANDLING COMMANDS

To keep track of numbers and text program variables are required. These variables are
assigned a name and given a type which dictates the sort of information they are able
to contain. Blitz supports 5 standard numeric types and the string type which is used
to store text type information.

Variable "arrays" are used to store a large collection of values all of one type, these
arrays are similar to normal variables except they must be dimensioned (the number
of elements defined) before they are used.

Blitz offers many extensions to these BASIC features. NewTypes may be defined
which are a collection of several standard types, a single NewType variable can
contain an assortment of numeric and string information similar to structures in C.

List arrays offer the programmer more control over standard arrays, they are also
much faster to manipulate. Blitz contains many commands for operating on linked
lists of data.

Let Var=Expression

Let is an optional command used to assign a value to a variable. Let must
always be followed by a variable name and an expression. Normally, an equals
sign (’= ’) is placed between the variable name and the expression. If the
equals sign is omitted, then an opertor (eg: ’+’, ’*’) must appear between the
variable name and the expression. In this case, the specified variable will be
altered by the specified operator and expression.

Exchange Var,Var

Exchange will ’sw ap’ the values contained in the 2 specified variables.
Exchange may only be used with 2 variables of the same type.

MaxLen StringVar=Expression

MaxLen sets aside a block of memory for a string variable to grow into. This
is normally only necessary in the case of special B litz commands which
require this space to be present before execution. Currently, only 2 Blitz
commands require the use of MaxLen - FileRequest$ and Fields.

DEFTYPE .Typename [Var[, Var...]]

DEFTYPE may be used to declare a list of variables as being of a particular
type. In this case, Var parameters must be supplied.
D EFTYPE may also be used to select a default variable type for future
’unknow n’ variables. Unknown variables are variables created with no
Typename specifier. In this case, no Var parameters are supplied.

101

NEWTYPE .Typename

NEW TYPE is used to create a custom variable type. NEW TYPE must be
followed by a list of entry names separated by colons and/or newlines.
NEWTYPEs are terminated using End NEWTYPE.

SizeOf .Typename[,Entrypath]

SizeOf allows you to determine the amount of memory, in bytes, a particular
variable type takes up. SizeOf may also be followed by an optional Entrypath,
in which case the offset from the start of the type to the specified entry is
returned.

Dim Arrayname [List] (Dimension1[,Dimension2...])

Dim is used to initialize a BASIC array. Blitz supports 2 array types - simple
arrays, and list arrays. The optional List parameter, if present, denotes a list
array. Simple arrays are identical to standard BASIC arrays, and may be of
any number dimensions. List arrays may be of only 1 dimension.

ResetList Arrayname()

ResetList is used in conjunction with a list array to prepare the list array for
NextItem processing. After executing a ResetList, the next Nextitem executed
will set the list array’s ’current elem ent’ pointer to the list array’s very first
item.

ClearList ArraynameQ

ClearList is used in conjunction with list arrays to completely ’empty’ out the
specified list array. L ist arrays are autom atically em ptied when they are
Dimmed.

AddFirst (Arrayname())

The AddFirst function allows you to insert an array list item at the beginning
o f an array list. AddFirst returns a true/false value reflecting whether or not
there was enough room in the array list to add an element. If an array element
was available, AddFirst returns a true value (-1), and sets the list array’s
’current item ’ pointer to the item added. If no array element was available,
AddFirst returns false (0).

AddLast (Arrayname())

The AddLast function allows you to insert an array-list item at the end of an
array list. AddLast returns a true/false value reflecting whether or not there
was enough room in the array list to add an element. If an array element was
available, AddLast returns a true value (-1), and sets the list array’s ’current
item’ pointer to the item added. If no array element was available, AddLast
returns false (0).

102

AddItem (Arrayname())

The AddItem function allows you to insert an array list item after the list
array’s ’current’ item. AddItem returns a true/false value reflecting whether or
not there was enough room in the array list to add an element. If an array
elem ent was available, AddItem returns a true value (-1), and sets the list
array’s ’current item ’ pointer to the item added. If no array elem ent was
available, AddItem returns false (0).

KillItem ArrayName()

K illItem is used to delete the specified list a rray ’s current item . A fter
executing KillItem, the list array’s ’current item’ pointer will be set to the item
before the item deleted.

PrevItem (Arrayname())
PrevItem will set the specified list array’s ’current item ’ pointer to the item
before the list array’s old current item. This allows for ’backwards’ processing
of a list array. PrevItem returns a true/false value reflecting whether or not
there actually was a previous item. If a previous item was available, PrevItem
will return true (-1). Otherwise, PrevItem will return false (0).

NextItem (Arrayname())

NextItem will set the specified list array’s ’current item ’ pointer to the item
after the list array’s old current item. This allows for ’forwards’ processing of
a list array. NextItem returns a true/false value reflecting whether or not there
actually was a next item available or not. If an item was available, NextItem
will return true (-1). Otherwise, NextItem will return false (0).

FirstItem (Arrayname())

Executing FirstItem will set the specified list array’s ’current item’ pointer to
the very first item in the list array. If there are no items in the list array,
FirstItem will return false (0) otherwise, FirstItem will return true (-1).

LastItem (Arrayname())

Executing LastItem will set the specified list array’s ’current item’ pointer to
the very last item in the list array. If there are no items in the list array,
LastItem will return false (0), otherwise LastItem will return true (-1).

PushItem Arrayname()

Executing PushItem causes the specified list array’s ’current item’ pointer to
be pushed onto an internal stack. This pointer may be later recalled by
executing PopItem. The internal item pointer stack is set for up to 8 ’pushes’.

PopItem Arrayname()

PopItem ’pops’ or ’recalls’ a previously pushed current item pointer for the
specified list array. Arraynam e() must match the arraynam e o f the most
recently executed PushItem.

103

ItemStackSize Max Items

ItemStackSize determines how many ’list’ items may be pushed (using the
PushItem command), before items must be ’Pop’ped off again. For example,
executing ItemStackSize 1000 will allow you to push up to 1000 list items
before you run out of item stack space.

SortList Arrayname()

The SortList command is used to rearrange the order of elements in a Blitz
linked list. The order in which the items are sorted depends on the first field of
the linked list type which must be a single integer word. Sorting criteria will
be extended in future releases.

Sort Arrayname()

Sort will cause the specified array to be sorted. Only primitive type, ’non-list’
arrays may be sorted; it is not possible to sort newtype arrays, or ’list’ arrays.
The d irection o f the sort may be specified using e ither the SortU p or
SortDown commands. The default direction used for sorting is ascending - ie:
array elements are sorted into a ’low to high’ order.

SortUp

SortUp may be used to force the Sort command to sort arrays into ascending
order. This means that, after being sorted, an array’s contents will be ordered
in a ’low to high’ manner.

SortDown

SortD ow n may be used to force the Sort com m and to sort arrays into
descending order. This means that, after being sorted, an array’s contents will
be ordered in a ’high to low’ manner.

104

R-3: INPUTOUTPUT COMMANDS

Input Output is essential for programs to function. Input includes reading data from
both disk files and data statements and getting input from the user. Output options
include writing data to files, displaying information on the screen and so on.

Input and Output are most commonly acheived with the Edit and Print commands,
Edit replacing the standard BASIC Input nomenclature. An assortment of commands
are available to redirect input and output to and from Files, Windows etc. Refer to the
File and Window handling sections for more information.

Those developing games in Blitz should refer to the BlitzIO section for Input Output
commands more suited to their particular requirements.

Print Expression[,Expresion...]

Print allows you to output either strings or numeric values to the current
output channel. Commands such as WindowOutput or BitMapOutput may be
used to alter the current output channel.

NPrint Expression[,Expresion...]

NPrint allows you to output either strings or numeric values to the current
output channel. Commands such as WindowOutput or BitMapOutput may be
used to alter the current output channel.
After all Expressions have been output, NPrint automatically prints a newline
character.

Format FormatString

Format allows you to control the output of any numeric values by the Print or
NPrint commands. FormatString is an 80 character or less string expression
used for formatting information by the Print command. Special characters in
FormatString are used to perform special formatting functions. These special
characters are:

Char Format effect

If no digit to print, insert spaces into output
0 If no digit to print, insert zeros (’0’) into output

Insert decimal point into output
+ Insert sign of value
- Insert sign of value, only if negative

, Insert commas every 3 digits to left of number

Any other characters in FormatString will appear at appropriate positions in
the output.
Format also affects the operation of the Str$ function.

105

FloatMode Mode

FloatMode allows you to control how floating point numbers are output by the
Print or NPrint commands.
Floating point numbers may be displayed in one of two ways - in exponential
format, or in standard format. Exponential format displays a floating point
number as a value multiplied by ten raised to a power. For example, 10240
expressed exponentially is displayed as ’1.024E+4’, ie: 1.024 times 10 to the
power of 4. Standard format simply prints values ’as is’.
A Mode param eter of 1 will cause floating point values to ALWAYS be
displayed in exponential format. A Mode parameter of -1 will cause floating
point values to ALWAYS be displayed in standard format. A Mode parameter
of 0 will cause Blitz to take a ’best guess’ at the most appropriate format to
use. This is the default mode for floating point output.
Note that if Format has been used to alter numeric output, standard mode will
always be used to print floating point numbers.

Data [.Type] ltem[,Item...]

The D ata statem ent allow s you to include pre-defined values in your
programs. These ’data items’ may be transferred into variables using the Read
statement. When data is read into variables, the Type of the data
being read MUST match the type of the variable it is being read into.

Read Var[,Var...]

Read is used to transfer items in Data statem ents into variables. Data is
transferred sequentially into variables through what is known as a ’data
pointer’. Each time a pice of data is read, the data pointer is incremented to
point at the next piece o f data. The data pointer may be set to point to a
particular piece of data using the Restore command.

Restore [Program Label]

Restore allows you to set Blitz’s internal ’data pointer’ to a particular piece of
data, after executing a Restore, The first item of data following the specified
Program Label will become the data to be read when the next Read command
is executed. Restore with no parameters will reset the data pointer to the very
first piece of data in the program.

Edit$ ([DefaultString$], Characters)

Edit$ is B litz’s standard text input command. When used with Window and
BitM ap Input Edit$ causes the optional D efaultString$ and a cursor to be
printed to the display. It then waits for the user to hit RETURN. Edit$ returns
the text entered by the program user as a string of character.
During FileInput Edit$ reads the next n characters from the open file or until
the next endofline character (chr$(10)). To read data from files that is not
standard ascii (ignore EOL term inators) Inkey$ should be used instead of
Edit$. Characters specifies a maximum number of allowable characters for
input. This is extremely useful in preventing Edit$ from destroying display
contents.

106

Edit ([DefaultValue], Characters)

Edit is B litz’s standard numeric input command. The same characteristics
apply as those for Edit$ however Edit of course only accepts numeric input,
program user.

Inkey$ [(Characters)]

Inkey$ may be used to collect one or more characters from the current input
channel. The current input channel may be selected using commands such as
WindowInput, FileInput or BitMapInput. Inkey$ MAY NOT be used from the
Defaultlnput input channel as the CLI does not pass input back to the program
until the user hits return. Characters refers to the number of characters to
collect. The default is one character.

DefaultInput
DefaultInput causes all future Edit$ and Inkey$ functions to receive their input
from the CLI window the Blitz program was run from. This is the default
input channel used when a Blitz program is first run.

DefaultOutput
DefaultOutput cause all future Print statements to send their output to the CLI
window the Blitz program was run from. This is the default output channel
used when a Blitz program is first run.

FileRequest$ (Title$,Pathname$,Filename$)

The FileRequest$ function will open up a standard Amiga-style file requester
on the currently used screen. Program flow will halt until the user either
selects a file, or hits the requester’s ’Cancel’ button. If a file was selected,
FileRequest$ will return the full file name as a string. If ’Cancel’ was selected,
FileRequest$ will return a null (empty) string.
Title$ may be any string expression to be used as a title for the file requester.
Pathnam e$ M UST be a string variable with a M axLen of at least 160.
Filename$ MUST be a string variable with a MaxLen of at least 64.

PopInput

After input has been re-directed (eg using Windowlnput/Filelnput), PopInput
may be used to return the channel to it’s previous condition.

PopOutput

A fter output has been re-directed (eg using W indow O utput/FileO utput),
PopOutput may be used to return the channel to it’s previous condition.

Joyx (Port)

Joyx will return the left/right status of a joystick plugged into the specified
port. Port must be either 0 or 1 , 0 being the port the mouse is normally
plugged into. If the joystick is held to the left, Joyx will return -1. If the
joystick is held to the right, Joyx will return 1. If the joystick is held neither
left or right, Joyx will return 0.

107

Joyy (Port)

Joyy will return the up/down status of a joystick plugged into the specified
port. Port must be either 0 or 1 , 0 being the port the mouse is normally
plugged into. If the joystick is held upwards, Joyy will return -1. If the joystick
is held downwrads, Joyy will return 1. If the joystick is held neither upwards
or downwards, Joyy will return 0.

Joyr (Port)

Joyr may be used to determine the rotational direction of a joystick plugged
into the specified port. Port must be either 0 or 1, port 0 being the port the
mouse is normally plugged into. Joyr returns a value from 0 through 8 based
on the following table:

Direction Value

Up 0
Up-Right 1
Right 2
Down-Right 3
Down 4
Down-Left 5
Left 6
Up-Left 7
No Direction 8

Joyb (Port)

Joyb allows you to read the button status of the device plugged into the
specified port. Port m ust be either 0 or 1, 0 being the port the mouse is
normally plugged into. If the left button is held down, Joyb will return 1. If the
right button is held down, Joyb will return 2. If both buttons are held down,
Joyb will return 3. If no buttons are held down, Joyb will return 0.

GameB (Port#)

GameB returns the button states of CD32 style game controllers. The values of
all buttons pressed are added together to make up the value returned by
Gam eB. To check a certa in button is dow n a logical AND should be
performed, buttonvalue AND returnvalue will evaluate to 0 if the button is not
held down. The button values are:

Button Value

Play/Pause 1
Reverse 2
Forward 4
Green 8
Yellow 16
Red 32
Blue 64

108

R-4: FILE HANDLING & IFF INFO COMMANDS

Blitz supports 2 modes of file access - sequential, and random access. The following
section covers the Blitz commands that open, close and operate on these two types of
files.

Blitz also contains special commands for finding information about ILBM files which
are standard on the Amiga for containing graphics in the form of bitmaps and brushes.

For specialised com m ands that read and w rite graphics and sound files more
information and command descriptions are available in the appropriate sections.

OpenFile (File#,Filename$)

OpenFile attempts to open the file specified by Filename$. If the file was
successfully opened, OpenFile will return true (-1), otherwise, OpenFile will
return false (0).
Files opened using OpenFile may be both written to and read from. If the file
specified by Filename$, did not already exist before the file was opened, it
will be created by OpenFile.
Files opened with OpenFile are intended for use by the random access file
commands, although it is quite legal to use these files in a sequential manner.

ReadFile (File#,Filename$)

ReadFile opens an already existing file specified by Filename$ for sequential
reading. If the specified file was successfully opened, ReadFile will return true
(-1), otherwise ReadFile will return false (0).
Once a file is open using ReadFile, FileInput may be used to read information
from it.

WriteFile (File#,Filename$)

W riteFile creates a new file, specified by Filenam e$, for the purpose of
sequential file writing. If the file was successfully opened, W riteFile will
return true (-1), otherwise, WriteFile will return false (0).
A file opened using W riteFile may be written to by using the FileOutput
command.

CloseFile File#

CloseFile is used to close a file opened using one of the file open functions
(FileOpen, ReadFile, WriteFile). This should be done to all files when they are
no longer required.

Fields File#,Var[, Var...]

Fields is used to set up fields of a random access file record. Once Fields is
executed, Get and Put may be used to read and write information to and from
the file.
The Var parameters specify a list of variables you wish to be either read from,

109

or written to the file.
When a Put is executed, the values held in these variables will be transferred
to the file. When a Get is executed, these variables will take on values read
from the file.
Any string variables in the variable list MUST have been initialized to contain
a maximum number of characters. This is done using the MaxLen command.
These string variables must NEVER grow to be longer than their defined
maximum length.

Put File#,Record

Put is used to transfer the values contained in a Fields variable list to a
particular record in a random access file. When using Put to increase the size
of a random access file, you may only add to the immediate end of file. For
example, if you have a random access file with 5 records in it, it is illegal to
put record number 7 to the file until record number 6 has been created.

Get File#,Record

Get is used to transfer information from a particular record of a random access
file into a variable list set up by the Fields command. Only records which also
exist may be ’got’.

FileOutput File#

The FileOutput command causes the output of all subsequent Print and NPrint
commands to be sent to the specified sequential file. When the file is later
closed, Print statements should be returned to an appropriate output channel
(eg: DefaultOutput or WindowOutput).

FileInput File#

The F ile Input com m and causes all subsequent Edit, Edit$ and Inkey$
commands to receive their input from the specified file. When the file is later
closed, input should be redirected to an appropraite channel (eg: DefaultInput
or WindowInput).

FileSeek File#,Position

FileSeek allows you to move to a particular point in the specified file. The first
piece of data in a file is at position 0, the second at position 1 and so on.
Position must not be set to a value greater than the length of the file.
Used in conjunction with OpenFile and Lof, FileSeek may be used to ’append’
to a file.

Lof (File#)

Lof will return the length, in bytes, of the specified file.

Eof (File#)

The Eof function allows you to determine if you are currently positioned at the
end of the specified file. If so, Eof will return true (-1), otherwise Eof will
return false (0).

110

If you are at the end of a file, any further writing to the file will increase it’s
length, while any further reading from the file will cause an error.

Loc (File#)

Loc may be used to determine your current position in the specified file. When
a file is first opened, you will be at position 0 in the file.

DosBuffLen Bytes

All Blitz file handling is done through the use of special buffering routines.
This is done to increase the speed of file handling, especially in the case of
sequential files.
Initially, each file opened is allocated a 2048 byte buffer. However, if memory
is tight this buffer size may be lowered using the DosBuffLen command.

KillFile Filename$

The KillFile command will simply attempt to delete the specified file. No
error will be returned if the file could not be deleted.

CatchDosErrs

Whenever you are executing AmigaDos I/O (for example, reading or writing a
file), there is always the possibility of something going wrong (for example,
disk not inserted... read/w rite error etc.). Normally, when such problems
occur, AmigaDos displays a suitable requester on the WorkBench window.
However, by executing CatchDosErrs you can force such requesters to open
on a Blitz window.
The window you wish dos error requesters to open on should be the currently
used window at the time CatchDosErrs is executed.

ReadMem File#,Address,Length

ReadMem allows you to read a number of bytes, determined by Length, into
an absoulte memory location, determ ined by Address, from an open file
specified by File#.
Be careful using ReadMem, as writing to absolute memory may have serious
consequences if you don’t known what you’re doing!

WriteMem File#,Address,Length

WriteMem allows you to write a number of bytes, determined by Length, from
an absolute memory location, determined by Address, to an open file specified
by File#.

Exists (FileName$)

Exists actually returns the length of the file, unlike Lof() Exists() is for files
that have not already been opened. If 0 the file either does not exist or is empty
or is perhaps not a file at a ll! Hmmm, anyway the following poke turns off the
"Please Insert Volume Blah:" requester so you can use Exists to wait for disk
changes:
Poke.l Peek.l(Peek.l(4)+276)+184,-1

111

ILBMInfo Filename$

ILBM Info is used to exam ine an ILBM file. Once ILBM Info has been
executed, ILB M W idth, IL B M H eight and ILB M D epth may be used to
examine properties of the image contained in the file.

ILBMWidth

ILBMWidth will return the width, in pixels, of an ILBM image examined with
ILBMInfo.

ILBMHeight

ILBMHeight will return the height, in pixels, of an ILBM image examined
with ILBMInfo.

ILBMDepth

ILBMDepth will return the depth, in bitplanes, of an ILBM image examined
with ILBMInfo.

ILBMViewMode

ILBM ViewM ode returns the viewmode of the file that was processed by
ILBMInfo. This is useful for opening a screen in the right mode before using
LoadScreen etc. The different values of ViewM ode are as follows (add/or
them for different combinations):

Mode Value

HiRes 32768
Ham 2048
HalfBrite 128
Interlace 4
LoRes 0

112

R-5: NUMERIC & STRING FUNCTIONS

This section covers all Blitz functions which accept and return numeric and string
values. Note that all the transcendental functions (eg. Sin, Cos) operate in radians.

Functions that return information about system time and date, workbench parameters
and so forth are also listed in this section.

True

True is a system constant with a value of -1.

False

False is a system constant with a value of 0.

NTSC

This function returns 0 if the display is currently in PAL mode, or -1 if
curren tly in NTSC m ode. This may be used to w rite softw are w hich
dynamically adjusts itself to different versions of the Amiga computer.

DispHeight

DispHeight will return 256 if executed on a PAL Amiga, or 200 if executed on
an NTSC Amiga. This allows programs to open full sized screens, windows
etc on any Amiga.

VPos

VPos returns the video’s beam vertical position. Useful in both highspeed
animation where screen update may need to be synced to a certain video beam
position (not just the top of frame as with VW ait) and for a fast random
nember generator in non frame-synced applications.

Peek [.Type](Address)

The Peek function returns the contents o f the absolute memory location
specified by Address. The optional Type parameter allows peeking of different
sizes. For example, to peek a byte, you would use Peek.b; to peek a word, you
would use Peek.w; and to peek a long, you would use Peek.l
It is also possible to peek a string using Peek$. This will return a string of
characters read from consecutive memory locations until a byte of 0 is found.

Abs (Expression)

This function returns the positive equivalent of Expression.

Frac (Expression)

Frac() returns the fractional part of Expression.

113

Int (Expression)

This returns the Integer part (before the decimal point) of Expression.

QAbs (Quick)

QAbs works just like Abs except that the value it accepts is a Quick. This
enhances the speed at which the function executes quite dram atically. Of
course you are limited by the restrictions of the quick type of value.

QFrac (Quick)

QFrac() returns the fractional part of a quick value. It works like Frac() but
accepts a quick value as it’s argument. It is faster than Frac() but has the
normal quick value limits.

QLimit (Quick,Low,High)

QLimit is used to limit the range of a quick number. If Quick is greater than or
equal to Low, and less or equal to High, the value of Quick is returned. If
Quick is less than Low, then Low is returned. If Quick is greater than High,
then High is returned.

QWrap (Quick,Low,High)

QWrap will wrap the result of the Quick expression if Quick is greater than or
equal to high, or less than low. If Q uick is less than Low, then Quick-
Low+High is returned. If Quick is greater than or equal to High, then Quick-
High+Low is returned.

Rnd [(Range)]

This function returns a random number. If Range is not specified then a
random decimal is returned between 0 and 1. If Range is specified, then a
decimal value between 0 and Range is returned.

Sgn (Expression)

Sgn returns the sign of Expression. If Expression is less than 0, then -1 is
returned. If Expression is equal to 0, then 0 is returned. If Expression is greater
than 0, then 1 is returned.

Cos (Float)

Cos() returns the Cosine of the value Float.

Sin (Float)

This returns the Sine of the value Float.

Tan Tan (Float)

This returns the Tangent of the value Float.

114

ACos (Float)

This returns the ArcCosine of the value Float.

ASin (Float)

This returns the ArcSine of the value Float.

ATan (Float)

This returns the ArcTangent of the value Float.

HCos (Float)

This returns the hyperbolic Cosine of the value Float.

HSin (Float)

This returns the hyperbolic Sine of the value Float.

HTan (Float)

This returns the hyperbolic Tangent of the value Float.

Exp (Float)

This returns e raised to the power of Float.

Sqr (Float)

This returns the square root of Float.

Log10 (Float)

This returns the base 10 logarithm of Float.

Log (Float)

This returns the natural (base e) logarithm of Float.

QAngle (Src X,Src Y,Dest X,Dest Y)

QAngle returns the angle between the two 2D coordinates passed. the angle.q
returned is a value from 0..1, 1 representing 360 degrees in standard polar
geometry.

Left$ (String$,Length)

This function returns Length leftmost characters of string String$.

Right$ (String$,Length)

Right$() returns the rightmost Length characters from string String$.

115

Mid$ (String$, Startchar[, Length])

This function returns Length characters of string String$ starting at character
Startchar. If the optional Length parameter is omitted, then all characters from
Startchar up to the end of String$ will be returned.

Hex$ (Expression)

H ex$() re tu rns an 8 ch a rac te r s tring eq u iv a len t to the hexadecim al
representation of Expression.

Bin$ (Expression)

Hex$() returns a 32 character string equivalent to the binary representation of
Expression.

Chr$ (Expression)

Chr$ returns a one character string equivalen t to the A SCII character
Expression.A scii is a standard way of coding the characters used by the
computer display.

Asc (String$)

Asc() returns the ASCII value of the first characters in the string String$.

String$ (String$,Repeats)

This function will return a string containing Repeats sequential occurrences of
the string String$.

Instr (String$,Findstring$[,Startpos])

Instr attempts to locate FindString$ within String$. If a match is found, the
character position of the first matching character will be returned. If no match
is found, 0 will be returned.
The optional Startpos parameter allows you to specify a starting character
position for the search.
CaseSense may be used to determine whether the search is case sensitive or
not.

Replace$ (String$,Findstring$,Repiacestring$)

Replace$() will search the string String$ for any occurrences of the string
Findstring$ arid replace it with the string Replacestring$.
CaseSense may be used to determine whether the search is case sensitive or
not.

Mki$ (Integer)

This will create a two byte character string, given the two byte numeric value
Numeric. Mki$ is often used before writing integer values to sequential files to
save on disk space. When the file is later read in, Cvi may be used to convert
the string back to an integer.

116

Mkl$ (Long)

This will create a four byte character string, given the four byte numeric value
Long. Mkl$ is often used when writing long values to sequential files to save
on disk space. When the file is later read in, Cvl may be used to convert the
string back to a long.

Mkq$ (Quick)

This will create a four byte character string, given the four byte numeric value
Quick. Mkq$ is often used when writing quick values to sequential files to
save on disk space. When the file is later read in, Cvq may be used to convert
the string back to a quick.

Cvi (String$)

Cvi returns an integer value equivalent to the left 2 characters of String$. This
is the logical opposite of Mki$.

Cvl (String$)

Cvl returns a long value equivalent to the left 4 characters of String$. This is
the logical opposite of Mkl$.

Cvq (String$)

Cvq returns a quick value equivalent to the left 4 characters of String$. This is
the logical opposite of Mkq$.

Len (String$)

Len returns the length of the string String$.

UnLeft$ (String$, Length)

UnLeft$() removes the rightmost Length characters from the string String$.

UnRight$ (String$,Length)

UnRight$() removes the leftmost Length characters from the string String$.

StripLead$ (String$,Expression)

StripLead$ removes all leading occurrences of the ASCII character specified
by Expression from the string String$.

StripTrail$ (String$,Expression)

StripTrail$ removes all trailing occurrences of the ASCII character specified
by Expression from the string String$.

LSet$ (String$,Characters)

This function returns a string of Characters characters long. The string String$

117

will be placed at beginning of this string. If String$ is shorter than Characters
the right hand side is padded with spaces. If it is longer, it will be truncated.

RSet$ (String$,Characters)

This function returns a string of Characters characters long. The string String$
will be placed at end of this string. If String$ is shorter than Characters the left
hand side is padded with spaces. If it is longer, it will be truncated.

Centre$ (String$,Characters)

This function returns a string of Characters characters long. The string String$
will be centered in the resulting string. If String$ is shorter than Characters the
left and right sides will be padded with spaces. If it is longer, it will be
truncated on either side.

LCase$ (String$)

This function returns the string String$ converted into lowercase.

UCase$ (String$)

This function returns the string String$ converted to uppercase.

CaseSense On/ Off

CaseSense allows you to control the searching mode used by the Instr and
Replace$ functions.
CaseSense On indicates that an exact match must be found.
CaseSense O ff indicates that alphabetic characters may be matched even if
they are not in the same case.
CaseSense On is the default search mode.

Val (String$)

This functions converts the string String$ into a numeric value and returns this
value. When converting the string, the conversion will stop the moment either
a non numeric value or a second decimal point is reached.

Str$ (Expression)

This returns a string equivalent of the numeric value Expression. This now
allows you to perform string operations on this string.
If the Format command has been used to alter numeric output, this will be
applied to the resultant string.

UStr$ (Expression)

This returns a string equivalent of the numeric value Expression. This now
allows you to perform string operations on this string.
Unlike Str$, UStr$ is not affected by any active Format commands.

118

System Date

System Date returns the system date as the number of days passed since
1/1/1978.

Date$ (days)

Date$ converts the form at returned by System D ate (days passed since
1/1/1978) into a string format of dd/mm/yyyy or mm/dd/yyyy depending on
the dateformat (defaults to 0).

NumDays (date$)

Numdays converts a Date$ in the above format to the day count format, where
numdays is the number of days since 1/1/1978.

DateFormat format# ; 0 or 1

D ateForm at configures the way both date$ and num days treat a string
representation of the date: 0=dd/mm/yyyy and 1=mm/dd/yyyy

Days

Days Months and Years each return the particular value relevant to the last
call to SystemDate. They are most useful for when the program needs to
format the output o f the date other than that produced by date$. WeekDay
returns which day of the week it is with Sunday=0 through to Saturday=6.

Months

See description of Days.

Years

See description of Days.

WeekDay

See description of Days.

Hours

Hours, Mins and Secs return the time of day when SystemDate was last called.

Mins

Hours, Mins and Secs return the time of day when SystemDate was last called.

Secs

Hours, Mins and Secs return the time of day when SystemDate was last called.

119

WBWidth

The functions WBWidth, WBHeight, WBDepth & WBViewMode return the
width, height, depth & view m ode o f the current W orkBench screen as
configured by preferences.

WBHeight

See Description of WBWidth.

WBDepth

See Description of WBWidth.

WBViewMode

See Description of WBWidth.

Processor

The function Processor returns the type of processor in the computer on which
the program is currently running.

0=68000
1=68010
2=68020
3=68030
4=68040

ExecVersion

The function ExecVersion returns the relevant information about the system
the program is running on.

33=1.2
34=1.3
36=2.0
39=3.0

120

R-6: COMPILER DIRECTIVES & OBJECT HANDLING

The following section refers to the Blitz Compiler Directives, commands which affect
how a program is compiled. Conditional compiling, macros, include files and more
are covered in this chapter.

Information regarding control of Blitz Objects is also listed in this section. Objects
are Blitz’s way of controlling speicalised data concerned with windows, shapes etc.

USEPATH Pathtext

U SEPA TH allow s you to specify a ’sh o rtcu t’ path when dealing w ith
NEWTYPE variables. Consider the following lines of code:

aliens()\x=160
aliens()\y=100
aliens()\xs=10
aliens()\ys=-10

USEPATH can be used to save you some typing, like so:
USEPATH aliens()
\x=160
\y=100
\xs=10
\ys=-10

W henever Blitz encounters a variable starting with the backslash character
(’\ '), it simply inserts the current USEPATH text before the backslash.

BLITZ

The BLITZ directive is used to enter B litz mode. For a full discussion on
Am iga/Blitz mode, please refer to the program m ing chapter o f the Blitz
Programmers Guide.

AMIGA

The AMIGA directive is used to enter Amiga mode. For a full discussion on
Am iga/Blitz mode, please refer to the program m ing chapter o f the Blitz
Programmers Guide.

QAMIGA

The QAM IGA directive is used to enter Quick Am iga mode. For a full
discussion on Amiga/Blitz mode, please refer to the programming chapter of
the Blitz Programmers Guide.

INCLUDE Filename

INCLUDE is a com pile tim e directive which causes the specified file,
Filename, to be compiled as part of the programs object code. The file must be
in tokenised form (ie: saved from the Blitz editor) - ascii files may not be
INCLUDE’d. INCDIR may be used to specify a path for Filename. Filename
may be optionally quote enclosed to avoid tokenisation problems.

121

XINCLUDE Filename

XINCLUDE stands for exclusive include. XINCLUDE works identically to
INCLUDE with the exception that XINCLUDE’d files are only ever included
once. For example, if a program has 2 XINCLUDE statements with the same
filename, only the first XINCLUDE will have any effect.
INCDIR may be used to specify a path for Filename.
Filename may be optionally quote enclosed to avoid tokenisation problems.

INCBIN Filename

INCBIN allows you to include a binary file in your object code. This is mainly
of use to assembler language programmers, as having big chunks of binary
data in the middle of a BASIC program is not really a good idea.
INCDIR may be used to specify an AmigaDos path for Filename.
Filename may be optionally quote enclosed to avoid tokenisation problems.

INCDIR Pathname

The IN CD IR com m and allow s you to specify an Am igaDos path to be
prefixed to any, filenames specified by any of INCLUDE, XINCLUDE or
INCBIN commands.
Pathname may be optionally quote enclosed to avoid tokenisation problems.

CNIF Constant Comparison Constant

CNIF allows you to conditionally compile a section of program code based on
a comparison of 2 constants. Comparison should be one of ’<’, ’>’, ’= ’, ’<>’,
’<=’ or If the comparison proves to be true, then compiling will continue
as normal. If the comparison proves to be false, then no object code will be
generated until a matching CEND is encountered.

CEND

CEND marks the end of a block of conditionally compiled code. CEND must
always appear somewhere following a CNIF or CSIF directive.

CSIF "String" Comparison "String"
CSIF allows you to conditionally compile a section of program code based on
a comparison of 2 literal strings. Comparison should be one of ’>’, ’= ’,
’<>’, ’<=’ or ’>=’. Both strings must be quote enclosed literal strings. If the
comparison proves to be true, then compiling will continue as normal. If the
comparison proves to be false, then no object code will be generated until a
matching CEND is encountered.
CSIF is of most use in macros for checking macro parameters.

CELSE

CELSE may be used between a CNIF or CSIF, and a CEND to cause code to
be compiled when a constant comparison proves to be false.

122

CERR Errormessage

CERR allows a program to generate compile-time error messages. CERR is
normally used in conjunction with macros and conditional com piling to
generate errors when incorrect macro parameters are encountered.

Macro Macroname

Macro is used to declare the start of a macro definition. All text following
Macro, up until the next End Macro, will be included in the macro’s contents.

End Macro

End Macro is used to finish a macro definition. Macro definitions are set up
using the Macro command.

Runerrson

These two new com piler directives are for enabling and disabling error
checking in different parts of the program , they override the settings in
Compiler Options.

Runerrsoff

See description of Runerrson.

Use Objectname Object#

Use will cause the Blitz object specified by Objectnam e and O bject# to
become the currently used object.

Free Objectname Object#

Free is used to free a Blitz object. Any memory consumed by the object’s
existance will be free’d up, and in the case of things such as windows and
screens, the display may be altered.
Attempting to free a non-existant object will have no effect.

USED ObjectName

Used returns the currently used object number. This is useful for routines
which need to operate on the currently used object, also interrupts should
restore currently used object settings.

Addr Objectname(Object#)

Addr is a low-level function allowing advanced programmers the ability to
find where a particular Blitz object resides in RAM. An appendix at the end of
this manual lists all Blitz object formats.

Maximum Objectname

The Maximum function allows a program to determine the ’maximum’ setting
for a p a rticu la r B litz ob jec t. M axim um settings are en tered into the

123

’OPTIONS’ requester, accessed through the ’COMPILER’ menu of the Blitz
editor.

124

R-7: ASSEMBLER DIRECTIVES

A powerful feature of Blitz is it’s built in assembler. This allows the programmer to
include machine code in their programs. Those familiar with 68000 assembler will
find the ability to mix easy to code BASIC with their own lightning fast machine code
routines a powerful concoction.

There are three ways of including assembler in Blitz programs:

Inline: using PutReg and GetReg BASIC variables can be exchanged with the
68000’s data and address registers.

Procedures: Statements and Functions can contain 100% assembler, parameters are
passed in registers d0..d5 and in the case of Functions the value in DO is returned to
the ca ller. The A sm Exit com m and is used in p lace of S tatem entR etu rn or
FunctionReturn.

Libraries: Actual commands can be added to Blitz using assembler, see the libsdev
archive in the blitzlibs: volume for more information.

Please note that when using assmbler inline and within procedures address registers
A4-A6 must be preserved. Blitz uses A5 as a global variable base, A4 as a local
variable base, and tries to keep A6 from having to be re-loaded too often.

Also note that Absolute Short addressing mode and Short Branches are not supported.

DCB [.Size] Repeats,Data

DCB stand for ’define constant block’. DCB allows you to insert a repeating
series of the same value into your assembler programs.

EVEN

EVEN allows you to word align Blitz’s internal program counter. This may be
necessary if a DC, DCB or DS statement has caused the program counter to be
left at an odd address.

GetReg 68000 Reg,Expression

GetReg allows you to transfer the result of a BASIC expression to a 68000
register. The result of the expression will first be converted into a long value
before being moved to the data register.
GetReg should only be used to transfer expressions to one of the 8 data
registers (d0-d7).
GetReg will use the stack to temporarily store any registers used in calculation
of the expression.

PutReg 68000 Reg, Variable

PutReg may be used to transfer a value from any 68000 register (d0-d7/a0-a7)

125

into a BASIC variable. If the specified variable is a string, long, float or quick,
then all 4 bytes from the register will be transferred. If the specified variable is
a word or a byte, then only the relevant low bytes will be transferred.

SysJsr Routine

SysJsr allows you to call any o f B litz ’s system routines from your own
program. Routine specifies a routine number to call.

TokeJsr Token[,Form]

TokeJsr allows you to call any of B litz’s library based routines. Token refers
to either a token number, or an actual token name. Form refers to a particular
form of the token. A full list of all token numbers with their various forms will
be available shortly from Acid Software.

ALibJsr Token[,Form]

ALibJsr is only used when writing Blitz libraries. ALibJsr allows you to call a
routine from another library from within your own library. Please refer to the
Library Writing section of the programmers guide for more information on
library writing.

BLibJsr Token[,Form]

BLibJsr is only used when writing Blitz libraries. BLibJsr allows you to call a
routine from another library from within your own library. Please refer to the
Library Writing section of the programmers guide for more information on
library writing.

AsmExit

AsmExit is used to exit from functions and statements written in assembler.
Rem em ber also that registers A4-A6 must be preserved in functions and
statements written in assembler.

126

R-8: MEMORY CONTROL COMMANDS

This section deals with low-level commands which allow you access to the Amiga’s
memory. Care must be taken when accessing memory in this way or an invitation to
the alert guru may be mistakenly made.

Poke [.Type] Address,Data

The Poke command will place the specified Data into the absolute memory
location specified by Address. The size of the Poke may be specified by the
optional Type param eter. For example, to poke a byte into memory, you
would use Poke.b; to poke a word into memory you would use Poke.w; and to
poke a long word into memory you would use Poke.l
In addition, strings may be poked into memory by use of Poke$. This will
cause the ascii code o f all characters in the string specified by Data to be
poked, byte by byte, into consecutive memory locations. An extra 0 is also
poked past the end of the string.

Peek [Type](Address)

The Peek function returns the contents o f the absolute memory location
specified by Address. The optional Type parameter allows peeking of different
sizes. For example, to peek a byte, you would use Peek.b; to peek a word, you
would use Peek.w; and to peek a long, you would use Peek.l
It is also possible to peek a string using Peek$. This will return a string of
characters read from consecutive memory locations until a byte of 0 is found.

Peeks$ (Address,length)

Peeks$ will return a string of characters corresponding to bytes peeked from
consective memory locations starting at Address, and Length characters in
length.

Call Address

Call will cause program flow to be transferred to the absolute memory location
specified by Address.
PLEASE NOTE! Call is for advanced programmers only, as incorrect use of
Call can lead to severe problems - GURUS etc!
A 68000 JSR instruction is used to transfer program flow, so an RTS may be
used to transfer back to the Blitz program.
Please refer to the ’Assembler’ section of the manual for the rules machine
code programs must follow to operate correctly within the Blitz environment.

127

Bank (Bank#)

Returns the memory location of the given memory Bank, replaces the older
and more stupidly named BankLoc command.

BankSize (Bank#)

BankSize returns the size of the memory block allocated for the specified
Bank#.

InitBank Bank#,size,memtype
InitBank allocates a block of memory and assigns it to the Bank specified. The
memtype is the same as the Amiga operating system memory flags:

1 = public
2 = chip
65536 = clear memory

FreeBank Bank#

FreeBank de-allocates any memory block allocated for the Bank specified.

LoadBank Bank#,FileName$[,MemType]

The LoadBank command has been modified, instead of having to initialise the
bank before loading a file, LoadBank will now initialise the bank to the size of
the file if it is not already large enough or has not been initialised at all.

SaveBank Bank#,filenames

SaveBank will save the m emory assigned to the Bank to the filenam e
specified.

AllocMem (size,type)

Unlike calling Exec’s AllocMem_ command directly Blitz will automatically
free any allocated memory when the program ends. Programmers are advised
to use the InitBank command.

Flags that can be used with the memory type parameter are:
1=public ;fast if present
2=chipmem
65536=clear ;clears all memory allocated with 0’s

FreeMem location,size

Used to free any memory allocated with the AllocMem command.

128

R-9: PROGRAM STARTUP COMMANDS

This section covers all commands dealing with how an executable file goes about
starting up. This includes the ability to allow your programs to run from Workbench,
and to pick up parameters supplied through the CLI.

WBStartup

By executing WBStartup at some point in your program, your program will be
given the ability to run from W orkbench. A program run from Workbench
which does NOT include the WBStartup command will promptly crash if an
attempt is made to run it from Workbench.

NumPars

The NumPars function allows an executable file to determ ine how many
parameters were passed to it by either W orkbench or the CLI. Parameters
passed from the CLI are typed following the program name and separated by
spaces.
For example, let’s say you have created an executable program called myprog,
and run it from the CLI in the following way:

myprog file1 file2
In this case, NumPars would return the value ’2’ - ’file1’ and ’file2’ being the 2
parameters.
Programs run from Workbench are only capable of picking up 1 parameter
through the use of either the parameter file’s ’Default Tool’ entry in it’s ’.info’
file, or by use of multiple selection through the ’Shift’ key.
If no parameters are supplied to an executable file, NumPars will return 0.
D uring program developm ent, the ’CLI A rguem ent’ menu item in the
’COMPILER’ menu allows you to test out CLI parameters.

Par$ (Parameter)

Par$ return a string equivalent to a parameter passed to an executable file
through either the CLI or W orkbench. Please refer to NumPars for more
information on parameter passing.

CloseEd

The CloseEd statement will cause the Blitz editor screen to ’close down’ when
programs are executed from within Blitz. This may be useful when writing
programs which use a large amount of chip memory, as the editor screen itself
occupies about 40K of chip memory.
CloseEd will have no effect on executable files run outside of the Blitz
environment.

NoCli

NoCli will prevent the normal ’Default Cli’ from opening when programs are
executed from within Blitz. NoCli has no effect on executable files run outside
of the Blitz environment.

129

FromCLI

Returns TRUE (-1) if your program was run from the CLI, or FALSE (0) if
run from the WorkBench.

ParPath$ (parameter,type)

ParPath$ returns the path that the parameter resides in, ‘type’ specifies how
you want the path returned:

0 You want only the directory of the parameter returned.
1 You want the directory along with the parameter name returned.

If you passed the parameter "FRED" to your program from WorkBench, and
FRED resides in the directory "work:mystuff/myprogs” then ParPath$(0,0)
w illreturn "w ork:m ystuff/m yprogram s", but P a rP a th $ (0 ,1) w ill return
”work:mystuff/myprograms/FRED".
The way WB handles argument passing of directories is different to that of
files. When a directory is passed as an argument, ArgsLib gets an empty string
for the name, and the directory string holds the path to the passed directory
AND the directory name itself.

130

R-10: SLICE COMMANDS

Slices are Blitz objects which are the heart o f Blitz mode’s powerful graphics system.
Through the use of slices, many weird and w onderful graphical effects can be
achieved, effects not normally possible in Amiga mode. This includes such things as
dual playfield displays, smooth scrolling, double buffering and more.

A slice may be thought of as a ’description’ of the appearance of a rectangular area of
the Am iga’s display. This description includes display mode, colour palette, sprite
and bitplane information. M ore than one slice may be set up at a time, allowing
different areas of the display to take on different properties.

Slices must not overlap in any way (at least two scan lines is required between each
slice). They may not be positioned side by side.

Slice Slice#,Y,Flags
Slice#,Y,Width,Height,Flags,BitPianes,Sprites,Colours,w1,w2

The Slice command is used to create a Blitz slice object. Slices are primarily
of use in Blitz mode, allowing you to create highly customized displays.
In both forms of the Slice command, the Y parameter specifies the vertical
pixel position of the top of the slice. A Y value of 44 will position slices at
about the top of the display.
In the first form of the Slice command, Flags refers to the number of bitplanes
in any bitmaps (the bitmap’s depth) to be shown in the slice. This form of the
Slice command will normally create a lo-res slice, however this may be
changed to a hi-res slice by adding eight to the Flags parameter. For instance,
a Flags value of four will set up a lo-res, 4 bitplane (16 colour) slice, whereas
a Flags value of ten will set up a hi-res, 2 bitplane (4 colour) slice. The width
of a slice set up in this way will be 320 pixels for a lo-res slice, or 640 pixels
for a hi-res slice. The height of a slice set up using this syntax will be 200
pixels on an NTSC Amiga, or 256 pixels on a PAL Amiga.
The second form of the Slice command is far more versatile, albeit a little
more complex. W idth and Height allow you to use specific values for the
slice’s dimensions. These parameters are specified in pixel amounts.
BitPlanes refers to the depth of any bitmaps you will be showing in this slice.
Sprites refers to how many sprite channels should be available in this slice.
Each slice may have up to eight sprite channels, allow ing sprites to be
’multiplexed’. This is one way to overcome the Amiga’s ’eight sprite limit’. It
is recom m ended that the top-m ost slice be created with all eight sprite
channels, as this will prevent sprite flicker caused by unused sprites.
Colours refers to how many colour palette entries should be available for this
slice, and should not be greater than 32.
Width1 and Width2 specify the width, in pixels, of any bitmaps to be shown in
this slice. If a slice is set up to be a dual-playfield slice, Width1 refers to the
width of the ’foreground’ bitm ap, and W idth2 refers to the width of the
’background’ bitmap. If a slice is NOT set up to be a dual-playfield slice, both
Width1 and Width2 should be set to the same value. These parameters allow
you to show bitmaps which are wider than the slice, introducing the ability to
smooth scroll through large bitmaps.

131

The Flags parameter has been left to last because it is the most complex. Flags
allows you control over many aspects of the slices appearance, and just what
effect the slice has. Here are some example settings for Flags:

Flags Effect Max BitPlanes

$fff8A Standard lo-res slice 6
$fff9A Standard hi-res slice 4
$fffaA Lo-res, dual-playfield slice 6
$fffbA Hi-res, dual-playfiled slice 4
SfffcA HAM slice 6

WARNING - the next bit is definitely for the more advanced users out there!
Knowledge of the following is NOT necessary to make good use of slices.

Flags is actually a collection of individual bit-flags. The bit-flags control how
the slices ’copper list’ is created. Here is a list of the bits numbers and their
effect:

Bit# Effect

15 Create copper MOVE BPLCON0
14 Create copper MOVE BPLCON1
13 Create copper MOVE BPLCON2
12 Create copper MOVE DIWSTRT and MOVE DIWSTOP
10 Create copper MOVE DDFSTRT and MOVE DDFSTOP
8 Create copper MOVE BPL1MOD
7 Create copper MOVE BPL2MOD
4 Create a 2 line ’blank’ above top of slice
3 Allow for smooth horizontal scrolling
2 HAM slice
1 Dual-playfield slice
0 Hi-res slice - default is lo-res

Clever selection of these bits allows you to create ’minimal’ slices which may
only affect specific system registers.
The BitPlanes parameter may also be modified to specify ’odd only’ or ’even
only’ bitplanes. This is o f use when using dual playfield displays, as it
allow ins you to create a mid display slice w hich may show a d ifferent
foreground or background bitmap leaving the other intact. To specify creation
of foreground bitplanes only, simply set bit 15 of the BitPlanes parameter. To
specify creation o f background bitplanes only, set bit 14 of the BitPlanes
parameter.

Use Slice Slice#

Use Slice is used to set the specified slice object as being the currently used
slice. This is required for commands such as Show, ShowF, ShowB and Blitz
mode RGB.

132

FreeSlices

FreeSlices is used to completely free all slices currently in use. As there is no
capability to Free individual slices, this is the only means by which slices may
be deleted.

Show Bitmap#[,X,Y]
Show is used to display a bitmap in the currently used slice. This slice should
not be a dual-playfield type slice. Optional X and Y parameters may be used
to position the bitmap at a point other than it’s top-left. This is normally only
of use in cases where a bitmap larger than the slice width and/or height has
been set up.

ShowF BitMap#[,X, Y[,ShowB X]]

ShowF is used to display a bitmap in the foreground of the currently used
slice. The slice must have been created with the appropriate Flags parameter in
order to support dual-playfield display.
Optional X and Y parameters may be used to show the bitmap at a point other
than it’s top-left. Omitting the X and Y parameters is identical to supplying X
and Y values of 0.
The optional ShowB x parameter is only of use in special situations where a
dual-playfield slice has been created to display ONLY a foreground bitmap. In
this case, the X offset of the background bitmap should be specified in the
ShowB x parameter.

ShowB BitMap#[,X,Y[,ShowF X]]

ShowB is used to display a bitmap in the background of the currently used
slice. The slice must have been created with the appropriate Flags parameter in
order to support dual-playfield display.
Optional X and Y parameters may be used to show the bitmap at a point other
than it’s top-left. Omitting the X and Y parameters is identical to supplying X
and Y values of 0.
The optional ShowF x parameter is only of use in special situations where a
dual-playfield slice has been created to display ONLY a background bitmap.
In this case, the X offset of the foreground bitmap should be specified in the
ShowF x parameter.

ColSplit Colour Register,Red,Green,Blue, Y

ColSplit allows you to change any of the palette colour registers at a position
relative to the top of the currently used slice. This allows you to ’re-use’
colour registers at different positions down the screen to display different
colours.
Y specifies a vertical offset from the top of the currently used slice.

CustomCop Copin$, Y

CustomCop allows advanced programmers to introduce their own copper
instructions at a specified position down the display. Copins$ refers to a string
o f characters equivalent to a series of copper instructions. Y refers to a

133

position down the display.

ShowBlitz

ShowBlitz redisplays the entire set up of slices. This may be necessary if you
have made a quick trip into Amiga mode, and wish to return to Blitz mode
with previously created slices intact.

CopLoc

CopLoc returns the memory address of the Blitz mode copper list. All Slices,
ColSplits, and CustomCops executed are merged into a single copper list, the
address of which may found using the CopLoc function.

CopLen

CopLen returns the length, in bytes, of the Blitz mode copper list. All Slices,
ColSplits, and CustomCops executed are merged into a single copper list, the
length of which may found using the CopLen function.

Display On/ Off

Display is a blitz mode only command which allows you to ’turn on’ or ’turn
off’ the entire display. If the display is turned off, the display will appear as a
solid block of colour 0.

SetBPLCON0 Default

The SetBPLCON0 command has been added for advanced control of Slice
display modes. The BPLCON0 hardware register is on page A4-1 o f the
reference manual (appendix 4). The bits of interest are as follows:

bit#1 ERSY external sync (for genlock enabling)
bit#2 LACE interlace mode
bit#3 LPEN light pen enable

134

R-11: DISPLAY LIBRARY COMMANDS

The new display library is an alternative to the slice library. Instead of extending the
slice library for AGA support a completely new display library has been developed.

Besides support for extended sprites, super hires scrolling and 8 bitplane displays a
more modular method of creating displays has been implemented with the use of
CopLists. CopLists need only be initialised once at the start of the program. Displays
can then be created using any com bination of CopLists. M ost im portantly the
C reateD isplay com m and does not allocate any m emory avoiding any memory
fragmenting problems. The new display library is for non-AGA displays also.

To create displays the InitCopList command is used to allocate memory for what
were up till now known as Slices. A display is then created by linking one or more of
these coplists together into a single display.

With many of the new AGA modes sprite DMA has been screwed up something
severe. Those wanting to use 8 bitplanes and 8 sprites in lores will be disapointed to
hear that their displays must be modified to some 256 pixels across.

The way the Amiga fetches data for each scanline is also a little different with the
AGA machines. The effect is that displays have to be created more to the right than
usual so the system has time to fetch sprites.

InitCopList CopList#,ypos,height,type,sprites,colors,customs

In itC opL ist is used to create a C opList for use w ith the C reateD isplay
command.

The ypos and height parameters define the vertical section of the screen the
display will take up.

Sprites, Colors and Customs will allocate instructions for that many sprites
(always=8!) colors (yes, as many as 256!) and custom copper instructions
(which need to be allocated to take advantage of the custom commands listed
at the end of this section).

A shortened version of the InitCopList command is available that simply
requires the CopList# and the Type. From the Type it fills in the missing
parameters.

As with slices several lines must be left between coplists when displaying
more than one.

135

The following constants make up the type param eter, add the number of
bitplanes to the total to make up the type parameter:

Type Value

#smoothscroll $10
#dualplayfield $20
#extrahalfbrite $40
#ham $80
#lores $000
#hires $100
#super $200
#loressprites $400
#hiressprites $800
#supersprites $c00
#fmode0 $0000
#fmode1 $1000
#fmode2 $2000
#fmode3 $3000
#agapalette $10000

For displays on non-AGA m achines only #fm ode0 and #loressprites are
allowed. More documentation, examples and fixes will be published soon for
creating displays.

CreateDisplay CopList#[,CopList#..]

CreateDisplay is used to setup a new screen display with the new display
library. Any number of CopLists can be passed to CreateDisplay although at
p resen t they m ust be in o rd er o f vertica l p o sitio n and not overlap .
C reateD isplay then links the CopLists together using internal pointers,
bitmaps, colours and sprites attached to coplists are not affected.

DisplayBitMap CopList#,bmap[,x,y] [,bmap[,x,y]]

The DisplayBitMap command is similar in usage to the slice libraries’ show
commands. Instead of different commands for front and back playfields and
smooth scroll options there is only the one DisplayBitM ap command with
various parameter options. With AGA machines, the x positioning of lores and
hires coplists uses the fractional part of the x param eter for super smooth
scrolling. The CopList must be initialised with the smooth scrolling flag set if
the x,y parameters are used, same goes for dualplayfield.

DisplaySprite CopList#,Sprite#,X,Y,Sprite Channel

DisplaySprite is similar to the slice libraries ShowSprite command with the
added advantage of super hires positioning and extra wide sprite handling. See
also SpriteMode and the Usage discussion above.

DisplayPalette CopList#,Palette# [,coloroffset]
D isplayPalette copies colour inform ation from a Palette to the C opList
specified.

136

DisplayControls CopList#,BPLCON2,BPLCON3,BPLCON4

DisplayControls allows access to the more remote options available in the
Amiga’s display system. The following are the most important bits from these
registers (still unpublished by Commodore!*()@GYU&^)

The default values are given at the top of the table, the param eters are
exclusive or’d with these values.

To set all the sprite color offsets to 1 so that sprite colours are fetched from
color registers 240..255 instead of 16..31 we would use the parameters:

DisplayControls 0,0,0,$ee

Bit# BPLCON2 BPLCON3 BPLCON4
($224) ($c00) ($11)

15 * BANK2 * activecolorbank BPLAM7 ;xorithbitplane
14 ZDBPSEL2 B A N K 1* BPLAM6 ;DMA altering
13 ZDBPSEL1 BANK0 * BPLAM5 ;effectivecolour
12 ZDBPSEL0 PF20F2 coloffset pfield 2 BPLAM4 ;look up
11 ZDBPEN PF20F1 BPLAM3
10 ZDCTEN PF2OF0 BPLAM2
09 KILLEHB * LOCT *palette hi/lo nibble BPLAM1
08 RDRAM=0 * BPLAM0
07 SOGEN SPRES1 *sprite res ESPRM7 high order color
06 PF2PRI H SPRES0 * ESPRM6 offset for even
05 PF2P2 BRDRBLANK border ESPRM5 sprites
04 PF2P1 BRDNTRAN zd=border ESPRM4
03 PF1P0 OSPRM7 hiorder color
02 PF1P2 ZDCLCKEN zd=14mhz OSPRM6 offset for odd
01 PF1P1 BRDSPRT spritesinborders! OSPRM5 sprites
00 PF1P0 EXTBLKEN blank output? OSPRM4

! = Don’t touch
H -See standard hardware reference manual
* - controlled by display library
ZD - any reference to ZD is only a guess (just sold my genlock)

DisplayAdjust CopList#,fetchwid,ddfstrt,ddfstop,diwstrt,diwstop

Temporary control of display registers until I get the widthadjust parameter
w orking with InitC opL ist. C urrently only standard w idth displays are
available but you can modify the width manually (just stick a screwdriver in
the back o f your 1084) or with some know ledge of Com m odores AGA
circuitry. Ha ha ha. No to be quite serious I really do not have a clue how they
cludeged up the Amiga chip set. When ECS was introduced suddenly all
display fetching moved to the right. Now they seem to have done the same to
sprites so it is near impossible to have them all going without limiting yourself
to a seriously thin display.
If you hack around with the system copperlists you’ll find they actually
change fetch m odes as you scroll a v iew port across the d isp lay and

137

commodore say you should not use sprites anyway so as to be compatible with
their new hardware which is rumoured to run WindowsNT, yipeee. By then
we will be hopefully shipping the Jaguarlib for Blitz, (close than you think)...

CustomColors CopList#,CCOffset, YPos,Palette,startcol,numcols

Using the custom copper space in a display, Custom Colors will alter the
displays palette at the given YPos. The number of customcops required is
either 2+numcols for ecs displays and 2+n+n+n/16 for aga displays. In aga,
numcols must be a multiple of 32.
Note that large AGA palette changes may take several lines of the display to
be complete.

CustomString CopList#, CCOffset, YPos, Copper$

CustomString allows the user to insert their own copper commands (contained
in a string) into the d isplay’s copper list at a given vertical position. The
amount of space required is equal to the number of copper instructions in the
Copper$ (length of string divide by 4) plus 2 which of course have to be
allocated with InitCopList before CustomString is used.

CustomSprites Coplist#,CCOffset,YPos,NumSprites

CustomSprites inserts a copper list that reinitialises the sprites hardware at a
certain vertical position in the display. These lower sprites are assigned sprite
numbers of 8..15. CustomCops required = 4 x numsprites + 2

DisplayDblScan mode

DisplayDblScan is used to divide the vertical resolution of the display by 2,4,8
or 16 using Modes 1,2,3 and 4. This is most useful for fast bitmap based
zooms. A Mode of 0 will return the display to 100% magnification.
As with the DisplayRainbow, DisplayRGB, DisplayUser and DisplayScroll
commands DisplayDblScan uses the new line by line copper control of the
display library. To initialise this mode a negative param eter is used in the
CustomCops parameter of the InitCopList command. DisplayDblScan requires
2 copper instructions per line (make CustomCops=-2).

DisplayRainbow CopList#,Register,Palette[,copoffset]

DisplayRainbow is used to alter a certain colour register vertically down a
display. It simple maps each colour in a palette to the coresponding vertical
position of the display. ECS displays require one copper instruction per line
while AGA displays require 4.

DisplayRGB CopList#,Register,line,r,g,b[,copoffset]

D isplayRG B is a single line version of D isplayR ainbow allow ing the
p ro g ram m er to a lte r any re g is te r o f any p a r t ic u la r lin e . As w ith
D isplayRainbow ECS displays require 1 copper instruction while AGA
requires 4.

138

Display User CopList#,Line,String[,Offset]

DisplayUser allows the programmer to use their own Copper$ at any line of
the display. O f course copper instructions have to be allocated with the
number of copper instructions in the InitCoplist multiplied by -1.

DisplayScroll CopList#,&xpos.q(n),&xpos.q(n)[,Offset]

DisplayScroll allows the program to dynamically display any part of a bitmap
on any line o f the d isp lay . D isp lay S cro ll shou ld a lw ays fo llow the
DisplayBitM ap command. The parameters are two arrays holding a list of
xoffsets that represent the difference in horizontal position from the line
above. AGA machines are able to use the fractional part of each entry for
super hiresolution positioning of the bitmap. Three instructions per line are
required for the DisplayScroll command.

139

R-12: BLITZMODE IO COMMANDS

This sections refers to various Input/Output commands available in Blitz mode.

It should be noted that although the Joyx, Joyy, Joyr, and Joyb functions do not
appear here, they are still available in Blitz mode (yes your honour).

BlitzKeys On/ Off

BlitzKeys is used to turn on or off Blitz mode keyboard reading. If Blitz mode
keyboard reading is enabled, the Inkey$ function may be used to gain
information about keystrokes in Blitz mode.

BlitzQualifier

BlitzQualifier returns any qualifier keys that were held down in combination
with the last inkey$ during BlitzMode input.

BlitzRepeat Delay,Speed

BlitzRepeat allows you to determine key repeat characteristics in Blitz mode.
Delay specifies the amount of time, in fiftieths of a second, before a key will
start repeating. Speed specifies the amount of time, again in fiftieths of a
second, between repeats of a key once it has started repeating.
BlitzRepeat is only effective when the Blitz mode keyboard reading is enabled.
This is done using the BlitzKeys command.

RawStatus (Rawkey)

The RawStatus function can be used to determine if an individual key is being
held down or not. Rawkey is the rawcode of the key to check for. If the
specified key is being held down, a value of -1 will be returned. If the
specified key is not being held down, a value of zero will be returned.
RawStatus is only available if Blitz mode keyboard reading has been enabled.
This is done using the BlitzKeys command.

Mouse On/ Off

The Mouse command turns on or off Blitz mode’s ability to read the mouse.
Once a Mouse On has been executed, programs can read the mouse’s position
or speed in Blitz mode.

Pointer Sprite#,Sprite Channel

The Pointer command allows you to attach a sprite object to the m ouse’s
position in the currently used slice in Blitz mode.
To properly attach a sprite to the mouse position, several commands must be
executed in the correct sequence. First, a sprite must be created using the
LoadShape and GetaSprite sequence of commands. Then, a slice must be
created to display the sprite in.
A Mouse On must then be executed to enable mouse reading.

140

MouseArea Minx,Miny,Maxx,Maxy

MouseArea allows you to limit Blitz mode mouse movement to a rectangular
section of the display. Minx and Miny define the top left corner of the area,
Maxx and Maxy define the lower right corner.
MouseArea defaults to an area from 0,0 to 320,200.

MouseX

If Blitz mode mouse reading has been enabled using a Mouse On command,
the MouseX function may be using to find the current horizontal location of
the mouse. If mouse reading is enabled, the mouse position will be updated
every fiftieth of a second, regardless of whether or not a mouse pointer sprite
is attached.

MouseY

If Blitz mode mouse reading has been enabled using a Mouse On command,
the MouseY function may be using to find the current vertical location of the
mouse. If mouse reading is enabled, the mouse position will be updated every
fiftieth of a second, regardless of whether or not a mouse pointer sprite is
attached.

MouseXSpeed

If Blitz mode mouse reading has been enabled using a Mouse On command,
the MouseXSpeed function may be used to find the current horizontal speed of
mouse movement, regardless of w hether or not a sprite is attached to the
mouse.
If MouseXSpeed returns a negative value, then the mouse has been moved to
the left. If a positive value is returned, the mouse has been moved to the right.
M ouseXSpeed only has relevance after every vertical blank. Therefore,
MouseXSpeed should only be used after a VWait has been executed, or during
a vertical blank interrupt.

MouseYSpeed

If Blitz mode mouse reading has been enabled using a Mouse On command,
the MouseYSpeed function may be using to find the current vertical speed of
mouse movement, regardless of w hether or not a sprite is attached to the
mouse.
If MouseYSpeed returns a negative value, then the mouse has been moved
upw ards. I f a po sitiv e value is re tu rned , the m ouse has been m oved
downwards.
M ouseYSpeed only has relevance after every vertical blank. Therefore,
MouseYSpeed should only be used after a VWait has been executed, or during
a vertical blank interrupt.

LoadBlitzFont BlitzFont#,Fontname.font$

LoadBlitzFont creates a blitzfont object. Blitzfonts are used in the rendering of
text to bitmaps.
N orm ally, the standard rom resident topaz font is used to render text to

bitmaps. However, you may use LoadBlitzFont to select a font of your choice
for bitmap output.
The specified Fontname.font$ parameter specifies the name of the font to load,
which MUST be in your FONTS: directory.
LoadBlitzFont may only be used to load eight by eight non-proportional fonts.

Use BlitzFont BlitzFont#

If you have loaded two or more blitzfont objects using LoadBlitzFont, Use
BlitzFont may be used to select one of these fonts for future bitmap output.

Free BlitzFont BlitzFont#

Free BlitzFont ’unloads’ a previously loaded blitzfont object. This frees up
any memory occupied by the font.

BitMapOutput BitMap#

BitMapOutput may be used to redirect Print statements to be rendered onto a
bitmap. The font used for rendering may be altered using LoadBlitzFont.
Fonts used for bitmap output must be eight by eight non-proportional fonts.
BitM apOutput is mainly of use in Blitz mode, as. other forms of character
output become unavailable in Blitz mode.

Colour Foreground Colour[,Background Colour]

C olour allow s you to a lte r the colours use to render tex t to bitm aps.
Foreground colour allows you to specify the colour text is rendered in, and the
optional Background colour allows you to specify the colour of the text
background.
The palette used to access these colours will depend upon whether you are in
Blitz mode or in Amiga mode. In Blitz mode, colours will come from the
palette of the currently used slice. In Amiga mode, colours will come from the
palette of the screen the bitmap is attached to.

Locate X, Y

If you are using BitMapOutput to render text, Locate allows you to specify the
cursor position at which characters are rendered.
X specifies a character position across the bitmap, and is always rounded
down to a multiple of eigth.
Y specifies a character position down the bitmap, and may be a fractional
value. For exam ple, a Y o f 1.5 will set a cusor position one and a half
characters down from the top of the bitmap.

CursX

When using BitMapOutput to render text to a bitmap, CursX may be used to
find the horizontal character position at which the next character Printed will
appear.
CursX will reflect the cursor position of the bitmap specified in the most
recently executed BitMapOutput statement.

142

CursY

When using BitMapOutput to render text to a bitmap, CursY may be used to
find the vertical character position at which the next character Printed will
appear.
CursY will reflect the cursor position of the bitmap specified in the most
recently executed BitMapOutput statement.

BitMapInput

BitM apInput is a special command designed to allow you to use Edit$ and
Edit in B litz mode. To work properly, a B litzK eys On must have been
executed before BitMapInput. A BitMapOutput must also be executed before
any Edit$ or Edit commands are encountered.

143

R-13: BITMAP COMMANDS

Blitz BitMap objects are used primarily for the purpose of rendering graphics. Most
com m ands in B litz for generating graphics (excluding the W indow and Sprite
commands) depend upon a currently used BitMap.

BitMap objects may be created in one of two ways. A BitM ap may be created by
using the BitMap command, or a BitMap may be ’borrowed’ from a Screen using the
ScreensBitMap command.

BitMaps have three main properties. They have a width, a height and a depth. If a
BitMap is created using the ScreensBitMap command, these properties are taken from
the dimensions of the Screen. If a BitM ap is created using the BitMap command,
these properties must be specified.

BitMap BitMap#,Width,Height,Depth

BitMap creates and initializes a bitmap object. Once created, the specified
bitmap becomes the currently used bitmap. Width and Height specify the size
of the bitmap. Depth specifies how many colours may be drawn onto the
bitmap, and may be in the range one through six. The actual colours available
on a bitmap can be calculated using 2^depth. For example, a bitmap of depth
three allows for 2^3 or eight colours.

Use BitMap BitMap#

Use BitMap defines the specified bitmap object as being the currently used
BitM ap. This is necessary for commands, such as Blit, which require the
presence of a currently used BitMap.

Free BitMap BitMap#

Free BitMap erases all information connected to the specified bitmap. Any
memory occupied by the bitmap is also deallocated. Once free’d, a bitmap
may no longer be used.

CopyBitMap BitMap#,BitMap#

CopyBitMap will make an exact copy of a bitmap object into another bitmap
object. The first BitMap# parameter specifies the source bitmap for the copy,
the second BitMap# the destination.
Any graphics rendered onto the source bitmap will also be copied.

ScreensBitMap Screen#,BitMap#

Blitz allows you the option o f attaching a bitm ap object to any Intuition
Screens you open. If you open a Screen without attaching a bitmap, a bitmap
w ill be c rea ted anyw ay . You may then find th is b itm ap using the
ScreensBitM ap command. Once ScreensBitM ap is executed, the specified
bitmap becomes the currently used bitmap.

144

LoadBitMap BitMap#,Filename$[,Palette#]

LoadBitM ap allows you to load an ILBM IFF graphic into a previously
initialized bitmap object. You may optionally load in the graphics’s colour
palette into a palette object specified by Palette#. An error will be generated if
the specified Filename$ is not in the correct IFF format.

SaveBitmap BitMap#,Filename$[, Palette#]

SaveBitM ap allows you to save a bitmap to disk in ILBM IFF format. An
optional palette may also be saved with the IFF.

BitPlanesBitMap SrcBitMap, DestBitMap, PlanePick

BitPlanesBitMap creates a ‘dummy’ bitmap from the SrcBitMap with only the
bitplanes specified by the PlanePick mask. This is useful for shadow effects
etc. where blitting speed can be speed up because o f the few er bitplanes
involved

ShapesBitMap Shape#,BitMap#

ShapesBitMap creates a dummy BitMap so drawing commands can be used
directly on a shapes image data.

CludgeBitMap BitMap#, Width,Height,Depth,Memory

C ludgeB itM ap will create a bitm ap object with the proportions for that
specified using the memory location given. Of course, the memory location
specified must be in chipmem and it is upto the user to ensure that sufficient
memory has been allocated. This commands is most useful for games where
memory fragm entation can be a big problem , by allocating one block of
memory on program initialisation for all bitmaps CludgeBitMap can be used
so that creating and freeing of BitMaps is not necessary.

BitMapWindow srcbitmap#,destbitmap#,x,y,w,h

BitMapWindow creates a dummy bitmap inside another bitmap. Both x and w
param eters are rounded to the nearest 16 pixel boundary. Any rendering,
printing and blitting to the new bitmap will be clipped inside the area used.

BitMapOrigin BitMapOrigin BitMap#,x,y

BitMapOrigin allows the programmer to relocate the origin (0,0) of the bitmap
used by the drawing commands line, poly, box and circle.

DecodeILBM DecodeILBM BitMap#,MemoryLocation

A very fast method of unpacking standard iffilbm data to a bitmap. Not only
does this command allow a faster method of loading standard IFF files but
allows the program m er to "incbin" iff pictures in their program s.See the
discussion above for using DecodeILBM on both files and included memory.

145

R-14: 2D DRAWING COMMANDS

This section covers all commands related to rendering arbitrary graphics to bitmaps.
All commands perform clipping - that is, they all allow you to draw ’outside’ the
edges of bitmaps without grievous bodily harm being done to the Amiga’s memory.

Cls [Colour]

Cls allows you to fill the currently used bitmap with the colour specified by
the Colour parameter. If Colour is omitted, the currently used bitmap will be
filled with colour 0. A Colour parameter of -1 will cause the entire bitmap to
be ’inverted’.

Plot X,Y, Colour

Plot is used to alter the colour of an individual pixel on the currently used
bitmap. X and Y specify the location of the pixel to be altered, and Colour
specifies the colour to change the pixel to. A Colour parameter of -1 will cause
the pixel at the specified pixel position to be ’inverted’.

Point (X,Y)

The Point function will return the colour of a particular pixel in the currently
used bitmap. The pixel to be examined is specified by the X and Y parameters.
If X and Y specify a point outside the edges of the bitmap, a value of -1 will
be returned.

Line [X1,Y1,]X2,Y2,Colour

The Line command draws a line connecting two pixels onto the currently used
bitmap. The X and Y parameters specify the pixels to be joined, and Colour
specifies the colour to draw the line in. If X 1 and Y1 are omitted, the end
points (X2,Y2) of the last line drawn will be used. A Colour parameter of -1
will cause an ’inverted’ line to be drawn.

Box X1,Y1,X2,Y2,Colour

The Box command draw a rectangular outline onto the currently used bitmap.
X 1, Y 1, X2 and Y2 specify two corners of the box to be drawn. Colour refers
to the colour to draw the box in. A Colour param eter of -1 will cause an
’inverted’ box to be drawn.

Boxf X1, Y1,X2, Y2, Colour

Boxf draws a solid rectangular shape on the currently used bitmap. X1,Y1,X2
and Y2 refer to two corners of the box. Colour specifies the colour to draw the
box in. A C olour param eter o f -1 will cause the rectangular area to be
’inverted’.

Circle X,Y,Radius[,Y Radius],Colour

Circle will draw an open circle onto the currently used bitmap. X and Y

146

specify the mid point of the circle. The Radius parameter specifies the radius
of the circle. If a Y Radius param eter is supplied, then an ellipse may be
drawn. A Colour parameter of -1 will cause an ’inverted’ circle to be drawn.

Circlef X,Y,Radius[,Y Radius],Colour

C irclef will draw a filled circle onto the currently used bitmap. X and Y
specify the mid point o f the circle - Colour, the colour in which to draw the
circle. The Radius parameter specifies the radius of the circle. If a Y Radius
parameter is supplied, then an ellipse may be drawn.
A Colour parameter of -1 will cause an ’inverted’ circle to be drawn.

Scroll X1, Y1, Width,Height,X2, Y2[,Source BitMap]

Scroll allows rectangular areas within a bitmap to be moved around. X 1, Y 1,
Width and Height specify the position and size of the rectangle to be moved.
X2 and Y2 specify the position the rectangle is to be moved to.
An optional Source BitMap parameter allows you to move rectangular areas
from one bitmap to another.

FloodFill X,Y,Colour [,Border Colour]

FloodFill will ’colour in’ a region o f the screen starting at the coordinates
X,Y. The first mode will fill all the region that is currently the colour at the
coordinates X,Y with the colour specified by Colour. The second mode will
fill a region starting at X,Y and surrounded by the BorderColour with Colour.

FreeFill

FreeFill will deallocate the memory that Blitz uses to execute the commands
Circlef, FloodFill, ReMap and Boxf.
Blitz uses a single monochrome bitmap the size of the bitmap being drawn to
to do it’s filled routines, by using the FreeFill command this BitMap can be
’freed’ up if no more filled commands are to be executed.

ReMap colour#0,colour#1[,Bitmap]

ReMap is used to change all the pixels on a BitMap in one colour to another
colour. The optional BitMap parameter will copy all the pixels in Colour#0 to
their new colour on the new bitmap.

Poly numpoints,*coords.w,color

Poly is a bitmap based commands such as Box and Line. It draws a polygon
using coordinates from an array or newtype of words.

Polyf numpoints, *coords.w,color[,color2]

Sam e as Poly except P o ly f draw s filled polygons and has an optional
parameter color2, if used this colour will be used if the coordinates are listed
in anti-clockwise order, useful for 3D type applications. If color2= -1 then the
polygon is not drawn if the verticies are listed in anti-clockwise order.

147

R-15: ANIMATION SUPPORT COMMANDS

The following 4 commands allow the display of standard IFF animations in Blitz. The
animation must be compatible with the DPaint 3 format, this method uses long delta
(type 2) compression and does not include any palette changes.

Anims in nature use a double buffered display, with the addition of the ShowBitMap
command to Blitz we can now display (play) Anims in both Blitz and Amiga modes.
An Anim consists of an initial frame which needs to be displayed (rendered) using the
InitAnim command, subsequent frames are then played by using the NextFrame
command. The Frames() function returns the number of frames of an Anim.

We have also extended the LoadShape command to support Anim brushes.

LoadAnim Anim#,FileName$[,Palette#]

The LoadAnim com m and will create an Anim object and load a D Paint
com patible anim ation. The ILBM Info com m and can be used to find the
correct screensize and resolution for the anim file. The optional Palette#
parameter can be used to load a palette with the anims correct colours.

InitAnim Anim#[,Bitmap#]

InitAnim renders the first two frames of the Anim onto the current BitMap and
the BitMap specified by the second parameter. The second BitMap# parameter
is optional, this is to support Anims that are not in a double-buffered format
(each frame is a delta of the last frame not from two frames ago). However,
the two parameter double buffered form of InitAnim should always be used,
(hmmm don’t ask me O .K .!)

NextFrame Anim#

NextFrame renders the nextframe of an Anim to the current BitMap. If the last
frame of an Anim has been rendered NextFrame will loop back to the start of
the Animation.

Frames (Anim#)

The Frames() function returns the number of frames in the specified Anim.

148

R-16: SHAPE HANDLING COMMANDS

Shape objects are used for the purpose of storing graphic images. These images may
be used in a variety of ways. For example, a shape may be used as the graphics for a
gadget, or as the graphics for a menu item or perhaps an alien being bent on your
destruction.

See the Blitting section for the many commands that are available for the purpose of
drawing shapes onto bitmaps. These commands use the A m iga’s blitter chip to
achieve this, and are therefore very fast.

Note that Blitz supports two different file formats for storage of shapes. Standard IFF
brush files (such as c rea ted w ith D P ain t) as w ell as an im brushes use the
LoadShape/SaveShape commands and the faster Blitz format uses the LoadShapes
and SaveShapes format.

LoadShape Shape#,Filename$[,Palette#]

LoadShape allows you to load an ILBM IFF file into a shape object. The
optional P ale tte# param eter lets you also load the co lour inform ation
contained in the file into a palette object.
The LoadShape command has now been extended to support anim brushes, if
the file is an anim brush the shapes are loaded into consecutive shapes starting
with the Shape# provided.

SaveShape Shape#,Filename$,Palette#

SaveShape will create an ILBM IFF file based on the specified shape object. If
you want the file to contain colour information, you should also specify a
palette object using the Palette# parameter.

LoadShapes Shape#],Shape#], Filename$

LoadShapes lets you load a ’range’ of shapes from disk into a series of shape
objects. The file specified by Filename$ should have been created using the
SaveShapes command.
The first Shape# parameter specifies the number of the first shape object to be
loaded. Further shapes will be loaded into increasingly higher shape objects.
If a second Shape# parameter is supplied, then only shapes up to and including
the second Shape# value will be loaded. If there are not enough shapes in the
file to fill this range, any excess shapes will remain untouched.

SaveShapes Shape#,Shape#,Filename$

SaveShapes allows you to create a file containing a range of shape objects.
This file may be later loaded using the LoadShapes command.
The range of shapes to be saved is specified by Shape#,Shape#, where the first
Shape# refers to the lowest shape to be saved and the second Shape# the
highest.

149

GetaShape Shape#,X,Y,Width,Height

GetaShape lets you transfer a rectangular area of the currently used bitmap
into the specified shape object. X, Y, Width and Height specify the area of the
bitmap to be picked up and used as a shape.

CopyShape Shape#,Shape#

CopyShape will produce an exact copy of one shape object in another shape
object. The first Shape# specifies the source shape for the copy, the second
specifies the destination shape.
CopyShape is often used when you require two copies of a shape in order to
manipulate (using, for example, XFlip) one of them.

AutoCookie On/ Off

When shapes objects are used by any of the blitting routines (for example,
Blit), they usually require the presence of what is known as a ’cookiecut’.
These cookiecuts are used for internal purposes by the various blitting
commands, and in no way affect the appearance or properties of a shape. They
do, however, consume some of your valuable Chip memory.
When a shape is created (for example, by using LoadShape or GetaShape), a
cookiecut is automatically made for it. However, this feature may be turned
off by executing an AutoCookie Off.
This is a good idea if you are not going to be using shapes for blitting - for
example, shapes used for gadgets or menus.

MakeCookie Shape#

M akeCookie allows you to create a ’cookiecut’ for an individual shape.
Cookiecuts are necessary for shapes which are to be used by the various
blitting commands (for example, QBlit), and are normally made automatically
whenever a shape is created (for example, using LoadShape). However, use of
the AutoCookie command may mean you end up with a shape which has no
cookiecut, but which you wish to b lit at some stage. You can then use
MakeCookie to make a cookiecut for this shape.

ShapeWidth (Shape#)

The ShapeWidth function returns the width, in pixels, of a previously created
shape object.

ShapeHeight (Shape#)

The ShapeHeight function returns the height, in pixels, of a previously created
shape object.

Handle Shape#,X, Y

All shapes have an associated ’handle’. A shape’s handle refers to an offset
from the upper left of the shape to be used when calculating a shapes position
when it gets blitted to a bitmap. This is also often referred to as a ’hot spot’.
The X param eter specifies the ’acrossw ards’ offset for a handle, the Y

150

Let’s have a look at an example of how a handle works. Assume you have set
a shapes X handle to 5, and it’s Y handle to 10. Now let’s say we blit the shape
onto a bitmap at pixel position 160,100. The handle will cause the upper left
corner of the shape to actually end up at 155,90, while the point within the
shape at 5,10 will end up at 160,100.
When a shape is created, it’s handle is automatically set to 0,0 - it’s upper left
corner.

parameter specifies a ’downwards’ offset.

MidHandle Shape#

MidHandle will cause the handle of the specified shape to be set to it’s centre.
For example, these two commands achieve exactly the same result:

MidHandle 0
Handle 0,ShapeWidth(0)/2,ShapeHeight(0)/2

For more information on handles, please refer to the Handle command.

XFlip Shape#

The X Flip com m and is one o f B litz ’s pow erfu l shape m anipu la tion
commands. XFlip will horizontally ‘mirror’ a shape object, causing the object
to be ’turned back to front’.

YFlip Shape#

The YFlip command may be used to vertically ’mirror’ a shape object. The
resultant shape will appear to have been ’turned upside down’.

Scale Shape#,X Ratio,Y Ratio[,Palette#]

Scale is a very powerful command which may be used to ’stretch’ or ’shrink’
shape objects. The Ratio parameters specify how much stretching or shrinking
to perform. A Ratio greater than one will cause the shape to be stretched
(enlarged), while a Ratio of less than one will cause the shape to be shrunk
(reduced). A Ratio of exactly one will cause no change in the shape’s relevant
dimension.
As there are separate Ratio param eters for both x and y, a shape may be
stretched along one axis and shrunk along the other!
The optional Palette# parameter allows you to specify a palette object for use
in the scaling operation. If a Palette# is supplied, the scale command will use a
’brightest pixel’ method of shrinking. This means a shape may be shrunk to a
small size without detail being lost.

Rotate Shape#,Angle Ratio

The Rotate com m and allow s you to ro tate a shape object. A ngle Ratio
specifies how much clockwise rotation to apply, and should be in the range
zero to one. For instance, an Angle Ratio of .5 will cause a shape to be rotated
180 degrees, while an Angle Ratio of .25 will cause a shape to be rotated 90
degrees clockwise.

151

DecodeShapes Shape#],Shape#],MemoryLocation

DecodeShapes, similar to DecodeMedModule ensures the data is in chip and
then configures the Shape object(s) to point to the data.

InitShape Shape#,Width,Height,Depth

InitShape has been added to simple create blank shape objects. Programmers
who make a habit of using ShapesBitMap to render graphics to a shape object
will appreciate this one for sure.

152

R-17: BLITTING COMMANDS

The process of putting a shape onto a bitmap using the blitter is often referred to as
’blitting’ a shape. The speed at which a shape is blitted is important when you are
writing animations routines, as the smoothness of any animation will be directly
affected by how long it takes to draw the shapes involved in the animation.

The two main factors which affect the speed at which a shape is blitted are it’s size
and the technique used to actually blit the shape.

This section will cover all commands which allow you to draw shapes onto bitmaps
using the Amiga’s ’blitter’ chip.

Blit Shape#,X,Y[,Excessonoff]

Blit is the simplest of all the blitting commands. Blit will simply draw a shape
object onto the currently used bitmap at the pixel position specified by X,Y.
The shape’s handle, if any, will be taken into account when positioning the
blit.
The optional Excessonoff parameter only comes into use if you are blitting a
shape which has less bitplanes (colours) than the bitmap to which it is being
blitted. In this case, Excessonoff allows you to specify an on/off value for the
excess bitplanes - ie, the bitplanes beyond those altered by the shape. Bit zero
of Excessonoff will specify an on/off value for the first excess bitplane, bit one
an on/off value for the second excess bitplane and so on.
The manner in which the shape is drawn onto the bitmap may be altered by
use of the BlitMode command.

BlitMode BLTCON0

The BlitM ode command allows you to specify just how the Blit command
uses the blitter when drawing shapes to bitmaps. By default, BlitMode is set to
a ’cookiemode’ which simply draws shapes ’as is’. However, this mode may
be altered to produce other useful ways of drawing. Here are just some of the
possible BLTCON0 parameters and their effects:

CookieMode: Shapes are drawn ’as is’.
EraseMode: An area the size and shape of the shape willbe ’erased’ on the

destination bitmap.
InvMode: An area the size and shape of the shape willbe ’inversed’

on the destination bitmap.
SolidMode: The shape will be drawn as a solid area of one colour.

Actually, these modes are all just special functions which return a useful
value. Advanced programmers may be interested to know that the BLTCON0
parameter is used by the Blit command’s blitter routine to determine the blitter
MINITERM and CHANNEL USE flags. Bits zero through seven specify the
miniterm, and bits eight through eleven specify which of the blitter channels
are used. For the curious out there, all the blitter routines in Blitz assume the
following blitter channel setup:

153

BlitterChannel Used For

A Pointer to shape’s cookie cut
B Pointer to shape data
C Pointer to destination
D Pointer to destination

CookieMode

The CookieMode function returns a value which may be used by one of the
commands involved in blitting modes.
Using CookieMode as a blitting mode will cause a shape to be blitted cleanly,
’as is’, onto a bitmap.

EraseMode

The EraseM ode function returns a value which may be used by one the
commands involved in blitting modes.
Using EraseM ode as a blitting mode will cause a blitted shape to erase a
section of a bitmap corresponding to the outline of the shape.

InvMode

The InvM ode function returns a value w hich may be used by one the
commands involved in blitting modes.
Using InvMode as a blitting mode will cause a shape to ’invert’ a section of a
bitmap corresponding to the outline of the blitted shape.

SolidMode

The SolidM ode function returns a value which may be used by one the
commands involved in blitting modes.
Using SolidMode as a blitting mode will cause a shape to overwrite a section
of a bitmap corresponding to the outline of the blitted shape.

Queue Queue#,Max Items

The Queue com m and creates a queue object for use with the Q Blit and
UnQueue commands. What is a queue? Well, queues (in the Blitz sense) are
used for the purpose of multi-shape animation. Before going into what a queue
is, let’s have a quick look at the basics of animation.
Say you want to get a group of objects flying around the screen. To achieve
this, you will have to construct a loop similar to the following:

Step 1: Start at the first object
Step 2: Erase the object from the display
Step 3: Move the object
Step 4: Draw the object at it’s new location on the display
Step 5: If there are any more objects to move, go on to the next

object and then go to step 2, else...
Step 6: go to step 1

154

Step 2 is very important, as if it is left out, all the objects will leave trails
behind them! However, it is often very cumbersome to have to erase every
object you wish to move. This is where queues are of use.
Using queues, you can ’remember’ all the objects drawn through a loop, then,
at the end of the loop (or at the start of the next loop), erase all the objects
’remembered’ from the previous loop. Lets have a look at how this works:

Step 1: Erase all objects remembered in the queue
Step 2: Start at the first object
Step 3: Move the object
Step 4: Draw the object at it’s new location, and add it to the

end of the queue
Step 5: If there are any objects left to move, go on to the next

object, then go to step 3; else...
Step 6: Go to step 1

This is achieved quite easily using B litz ’s queue system . The UnQueue
command performs step 1, and the QBlit command performs step 4.
Queues purpose is to initialize the actual queue used to remember objects in.
Queue must be told the maximum number of items the queue is capable of
remembering, which is specified in the Max Items parameter.

QBlit Queue#,Shape#,X,Y[,Excessonoff]

QBlit performs similarly to Blit, and is also used to draw a shape onto the
currently used bitm ap. W here Q B lit d iffers, how ever, is in that it also
remembers (using a queue) where the shape was drawn, and how big it was.
This allows a later UnQueue command to erase the drawn shape.
Please refer to the Queue command for an explanation of the use of queues.
The optional Excessonoff param eter works identically to the Excessonoff
parameter used by the Blit command. Please refer to the Blit command for
more information on this parameter.

UnQueue Queue#[,BitMap#]

UnQueue is used to erase all ’remembered’ items in a queue. Items are placed
in a queue by use of the QBlit command. Please refer to Queue for a full
explanation of queues and their usage.
An optional BitMap# parameter may be supplied to cause items to be erased
by way of ’replacem ent’ from another bitmap, as opposed to the normal
’zeroing out’ erasing.

FlushQueue Queue#

FlushQueue will force the specified queue object to be ’emptied’, causing the
next UnQueue command to have no effect.

QBIitMode BLTCON0

QBlitM ode allows you to control how the blitter operates when QBlitting
shapes to bitmaps. Please refer to B litM ode for more inform ation on this
command.

155

Buffer Buffer#,Memorylen

The Buffer command is used to create a buffer object. Buffers are similar to
queues in concept, but operate slightly differently. If you have not yet read the
description of the Queue command, it would be a good idea to do so before
continuing here.
The buffer related commands are very similar to the queue related commands -
Buffer, BBlit, and UnBuffer, and are used in exactly the same way. Where
buffers differ from queues, however, is in their ability to preserve background
graphics. Whereas an UnQueue command normally trashes any background
graphics, U nB uffer will politely restore w hatever the B B lits may have
overwritten. This is achieved by the BBlit command actually performing two
blits.
The first blit transfers the area on the bitmap which the shape is about to cover
to a temporary storage area - the second blit actually draws the shape onto the
bitmap. When the time comes to UnBuffer all those BBlits, the temporary
storage areas will be transferred back to the disrupted bitmap.
The M em orylen param eter o f the B uffer com m and refers to how m uch
m em ory, in by tes, should be pu t aside as tem porary sto rage for the
preservation o f background graphics. The value of this param eter varies
depending upon the size of shapes to BBlited, and the maximum number of
shapes to be BBlited between UnBuffers.
A Memorylen of 16384 should be plenty for most situations, but may need to
be increased if you start getting ’Buffer Overflow’ error messages.

BBlit Buffer#,Shape#,X, Y[,Excessonoff]

The BBlit command is used to draw a shape onto the currently used bitmap,
and preserve the overwritten area into a previously initialized buffer. For more
information on how buffers work, please refer to the Buffer command.
The optional Excessonoff param eter works identically to the Excessonoff
parameter used by the Blit command. Please refer to the Blit command for
more information on this parameter.

UnBuffer Buffer#

UnBuffer is used to ’replace’ areas on a bitmap overwritten by a series of
BBlit commands. For more information on buffers, please refer to the Buffer
command.

FlushBuffer Buffer#

FlushBuffer will force the specified buffer object to be ’emptied’, causing the
next UnBuffer command to have no effect.

BBlitMode BLTCON0

BBlitM ode allows you to control how the blitter operates when BBlitting
shapes to bitmaps. Please refer to BlitM ode for more inform ation on this
command.

156

Stencil Stencil#,BitMap#

The Stencil command will create a stencil object based on the contents o f a
previously created bitmap. The stencil will contain information based on all
graphics contained in the bitm ap, and may be used w ith the SB lit and
ShowStencil commands.

SBlit Stencil#,Shape#,X, Y[,Excessonoff]

SBlit works identically to the Blit command, and also updates the specified
Stencil#. This is an easy way to render ’foreground’ graphics to a bitmap.

SBIitMode BLTCON0

SBlitmode is used to determine how the SBlit command operates. Please refer
to the BlitMode command for more information on blitting modes.

ShowStencil Buffer#,Stencil#

ShowStencil is used in connection with BBlits and stencil objects to produce a
’s ten c il’ effect. S tencils allow you create the effect of shapes m oving
’between’ background and foreground graphics. Used properly, stencils can
add a sense of ’depth’ or ’three dimensionality’ to animations.
So what steps are involved in using stencils? To begin with, you need both a
bitmap and a stencil object. A stencil object is similar to a bitmap in that it
contains various graphics. Stencils differ, however, in that they contain no
colour information. They simply determine where graphics are placed on the
stencil. The graph ics on a stencil usually correspond to th e graphics
representing ’foreground’ scenery on a bitmap.
So the first step is to set up a bitmap with both foreground and background
scenery on it. Next, a stencil is set up with only the foreground scenery on it.
This may be done using either the Stencil or SBlit command. Now, we BBlit
our shapes. This will, of course, place all the shapes in front o f both the
background and the foreground graphics. However, once all shapes have been
BBlitted, executing the ShowStencil command will repair the damage done to
the foreground graphics!

Block Shape#,X,Y

Block is an extremely fast version of the Blit command with some restrictions.
Block should only be used with shapes that are 16,32,48,64... pixels wide and
that are being blitted to an x position of 0,16,32,48,64... Note that the height
and y destination of the shape are not limited by the Block command.
Block is intended for use with map type displays.

BlitColl (Shape#,x,y)

BlitColl is a fast way of collision detection when blitting shapes. BlitColl
returns -1 if a collision occurs, 0 if no collision. A collision occurs if any pixel
on the current BitMap is non zero where your shape would have been blitted.
ShapesHit is faster but less accurate as it checks only the rectangular area of
each shape, where as BlitColl takes into account the shape of the shape and of
course c an not tell you what shape you have collided with.

157

ClipBlit ClipBlit Shape#,X,Y

ClipBlit is the same as the Blit command except ClipBlit will clip the shape to
the inside o f the used bitm ap, all b lit com m ands in B litz are due to be
expanded with this feature.

ClipBlitMode BPLCON0

Same as BlitMode except applies to the ClipBlit command. Another oversight
now fixed.

BlockScroll X1,Y1,Width,Height,X2,Y2[,BitMap#]

Same as the Scroll command except that BlockScroll is much faster but only
works with 16 bit aligned areas. This means that X 1, X2 and Width must all be
multiples of 16. Useful for block scrolling routines that render the same blocks
to both sides of the display, the programmer can now choose to render just one
set and then copy the result to the other side with the BlockScroll command.

158

R-18: SPRITE HANDLING COMMANDS

Sprites are another way of producing moving objects on the Amiga’s display. Sprites
are, like shapes, graphical objects. However unlike shapes, sprites are handled by the
Amiga’s hardware completely separately from bitmaps. This means that sprites do not
have to be erased when it’s time to move them, and that sprites in no way destroy or
interfere with bitmap graphics. Also, once a sprite has been displayed, it need not be
referenced again until it has to be moved.

In this release of Blitz, sprites are only available in Blitz mode and have either 3 or 15
colours (2 or 4 bitplanes). Each slice may display a maximum of up to 8 sprites. Other
conditions may lower this maximum such as the width, depth and resolution of the
slice. The Amiga hardware has 8 sprite channels, standard 16 wide 3 colour sprites
require a single channel, 15 colour sprites need two and sprites wider than 16 will
require extra channels also. 15 color sprites must use an even numbered channel, the
subsequent odd channel then becomes unavailable.

Sprites also require a special colour palette set up. Fifteen colour sprites take their
RGB values from colour registers 17 through 31. Three colour sprites, however, take
on RGB values depending upon the sprite channels being used to display them. The
following table shows which palette registers affect which sprite channels:

Sprite Channel Colour Registers
0,1 17-19
2,3 21-23
4,5 25-27
6,7 29-31

GetaSprite Sprite#,Shape#

To be able to display a sprite, you must first create a sprite object. This will
contain the image inform ation for the sprite. G etaSprite will transfer the
graphic data contained in a shape object into a sprite object. This allows you to
perform any of the Blitz shape manipulation commands (eg Scale or Rotate)
on a shape before creating a sprite from the shape.
Once GetaSprite has been executed, you may not require the shape object
anymore. In this case, it is best to free up the shape object (using Free Shape)
to conserve as much valuable chip memory as possible.

ShowSprite Sprite#,X,Y,Sprite Channel

ShowSprite is the command used to actually display a sprite through a sprite
channel. X and Y specify the position the sprite is to be displayed at. These
parameters are ALWAYS given in lo-resolution pixels. Sprite Channel is a
value 0 through 7 which decides which sprite channel the sprite should be
display through.

InFront Sprite Channel

A feature of sprites is that they may be displayed either ’in front o f’ or

159

’behind’ the bitmap graphics they are appearing in. The InFront command
allows you to determine which sprites appear in front of bitmaps, and which
sprites appear behind.
Sprite Channel m ust be an even num ber in the range 0 through 8. A fter
executing an InFront command, sprites displayed through sprite channels
greater than or equal to Sprite Channel will appear BEHIND any bitmap
graphics. Sprites displayed through channels less than Sprite Channel will
appear IN FRONT OF any bitmap graphics. For example, after executing an
InFront 4, any sprites displayed through sprite channels 4,5,6 or 7 will appear
behind any bitm ap graphics, while any sprites displayed through sprite
channels 0,1,2 or 3 will appear in front of any bitmap graphics.
InFront should only be used in non-dualplay field slices.

InFrontF Sprite Channel

InFrontF is used on dualplayfield slices to determine sprite/playfield priority
with respect to the foreground playfield. Using combinations of InFrontF and
InFrontB (used for the background playfield), it is possible to display sprites at
up to 3 different depths - some in front of both playfields, some between the
playfields, and some behind both playfields.

InFrontB Sprite Channel

InFrontB is used on dualplayfield slices to determine sprite/playfield priority
with respect to the background playfield. Using combinations of InFrontB and
InFrontF (used for the foreground playfield), it is possible to display sprites at
up to 3 different depths - some in front of both playfields, some between the
playfields, and some behind both playfields.

LoadSprites Sprite#[, Sprite#], Filename$

LoadSprites lets you load a ’range’ of sprites from disk into a series of sprite
objects. The file specified by Filename$ should have been created using the
SaveSprites command. The first Sprite# parameter specifies the number of the
first sprite object to be loaded. Further sprites will be loaded into increasingly
higher sprite objects. If a second Sprite# param eter is supplied, then only
sprites up to and including the second Sprite# value will be loaded. If there are
not enough sprites in the file to fill this range, any excess sprites will remain
untouched.

SaveSprites Sprite#,Sprite#,Filename$

SaveSprites allows you to create a file containing a range of sprite objects.
This file may be later loaded using the LoadSprites command.
The range of sprites to be saved is specified by Sprite#,Sprite#, where the first
Sprite# refers to the lowest sprite to be saved and the second Sprite# the
highest.

SpriteMode mode

For use with the capabilities of the new Display library SpriteMode is used to
define the width of sprites to be used in the program. The mode values 0, 1
and 2 correspong to the widths 16, 32 and 64.

160

R-19: COLLISION DETECTION COMMANDS

This section deals with various com m ands involved in the detection o f object
collisions.

SetColl Colour, Bitplanes[, Playfield]

There are 3 different commands involved in controlling sprite/bitmap collision
detection , o f w hich SetC oll is one (the o ther 2 being SetC ollO dd and
SetCollHi). All three determine what colours in a bitmap will cause a collision
with sprites. This allows you to design bitmaps with ’safe’ and ’unsafe’ areas.
SetColl allows you to specify a single colour which, when present in a bitmap,
and in contact with a sprite, will cause a collision. The Colour parameter refers
to the ’collidable’ colour. Bitplanes refers to the number of bitplanes (depth)
of the bitmap collisions are to be tested for in.
The optional PlayField param eter is only used in a dualplayfield slice. If
Playfield is 1, then Colour refers to a colour in the foreground bitmap. If
Playfield is 0, then Colour refers to a colour in the background bitmap.
DoColl and PColl are the commands used for actually detecting the collisions.

SetCollOdd

SetCollO dd is used to control the detection o f sprite/bitm ap collisions.
SetC ollO dd will cause ONLY the co llisions betw een sprites and ’odd
coloured’ bitmap graphics to be reported. Odd coloured bitmap graphics refers
to any bitmap graphics rendered in an odd colour number (ie: 1,3,5...). This
allows you to design bitmap graphics in such a way that even coloured areas
are ’safe’ (ie: they will not report a collision) whereas odd colour areas are
’unsafe’ (ie: they will report a collision).
The DoColl and PColl commands are used to detect the actual sprite/bitmap
collisions.

SetCollHi BitPlanes

SetCollHi may be used to enable sprite/bitmap collisions between sprites and
the ’high h a lf colour range of a bitmap. For example, if you have a 16 colour
bitmap, the high half of the colours would be colours 8 through 15.
The BitPlanes parameter should be set to the number of bitplanes (depth) of
the bitmap with which collisions should be detected.
Please refer to the SetColl command for more information on sprite/bitmap
collisions.

DoColl

DoColl is used to perform sprite/bitmap collision checking. Once DoColl is
executed , the PColl and/or SColl functions may be used to check for
sprite/bitmap or sprite/sprite collisions.
Before DoColl may be used with PColl, the type of bitmap collisions to be
detected must have been specified using one of the SetColl, SetCollOdd or
SetCollHi commands.

161

After executing a DoColl, PColl and SColl will return the same values until
the next time DoColl is executed.

PColl (Sprite Channel)

The PColl function may be used to find out if a particular sprite has collided
with any bitmaps. Sprite Channel refers to the sprite channel the sprite you
wish to check is being displayed through.
If the specified sprite has collided with any bitmap graphics, PColl will return
a true (-1) value, otherwise PColl will return false (0).
Before using PColl, a DoColl must previously have been executed. Please
refer to DoColl for more information.

SColl (Sprite Channel, Sprite Channel)

SColl may be used to determ ine whether the 2 sprites currently displayed
through the specified sprite channels have collided. If they have, SColl will
return true (-1), otherwise SColl will return false (0).
DColl must have been executed prior to using SColl.

ShapesHit (Shape#,X,Y,Shape#,X,Y)

The ShapesHit function will calculate whether the rectangular areas occupied
by 2 shapes overlap. ShapesHit will automatically take the shape handles into
account. If the 2 shapes overlap, ShapesHit will return true (-1), otherwise
ShapesHit will return false (0).

ShapeSpriteHit (Shape#,X, Y,Sprite#,X, Y)

The ShapeSpriteH it function will calculate w hether the rectangular area
occupied by a shape at one position, and the rectangular area occupied by a
sp rite at an o th e r p o s itio n are o v erlap p ed . I f the a reas do o v erlap ,
ShapeSpriteHit will return true (-1), otherwise ShapeSpriteHit will return false
(0). ShapeSpriteHit automatically takes the handles of both the shape and the
sprite into account.

SpritesHit (Sprite#,X, Y,Sprite#,X, Y)

The SpritesHit function will calculate whether the rectangular areas occupied
by 2 sprites overlap. SpritesHit will automatically take the sprite handles into
account. If the 2 sprites overlap, SpritesHit will return true (-1), otherwise
SpritesHit will return false (0).
Care should be taken with the pronunciation of this command.

RectsHit (X1,Y1,Widthl,Height1 ,X2,Y2,Width2,Height2)

The R ectsH it function may be used to determ ine w hether 2 arb itrary
rectangular areas overlap. If the specified rectangular areas overlap, RectsHit
will return true (-1), otherwise RectsHit will return false (0).
Care should be taken with the pronunciation of this command.

162

R-20: PALETTE COMMANDS

Amiga colours are represented as values for the three primary colours red, green and
blue. These values are combined as an RGB value. Palettes are Blitz objects that
contain a series of RGB values that represent the colours used by the display.

P a le tte in fo rm atio n can be loaded from an IFF file or d e fin ed using the
PalRGB/AGAPalRGB commands. Palettes can be assigned to screens and slices with
both the Use Palette and ShowPalette commands.

Many commands are available for manipulating the colours within a palette.

Colour values on slices and screens can also be changed directly without the use of
palettes using the RGB and AGARGB commands.

LoadPalette Palette#,Filename$[,Palette Offset]

LoadPalette creates and initializes a palette object. Filename$ specifies the
name of an ILBM IFF file containing colour information. If the file contains
colour cycling information, this will also be loaded into the palette object.
An optional Palette Offset may be specified to allow the colour information to
be loaded at a specified point (colour register) in the palette. This is especially
useful in the case of sprite colours, as these must begin at colour register
sixteen.
LoadPalette does not actually change any display colours. Once a palette is
loaded, Use Palette can be used to cause display changes.

ShowPalette Palette#

ShowPalette replaces Use Palette for copying a palette’s colours to the current
Screen or Slice.

Use Palette Palette#

Use Palette transfers palette information from a palette object to a displayable
palette. If executed in Amiga mode, palette information is transferred into the
palette o f the currently used Screen. If executed in B litz m ode, palette
information is transferred into the palette of the currently used Slice.

NewPaletteMode On/ Off

The NewPaletteMode flag has been added for compatibility with older Blitz
programs. By setting NewPaletteMode to On the Use Palette command merely
makes the specified palette the current object and does not try to copy the
colour information to the current Screen or Slice.

Free Palette Palette#

Free Palette erases all information in a palette object. That Palette object may
no longer be Used or Cycled.

163

SavePalette Palette#,FileName$

Creates a standard IFF "CMAP" file using the given Palette’s colors.

CyclePalette Palette#

CyclePalette uses the standard color cycling parameters in the palette object to
cycle the colors. Unlike the Cycle command which copied the resulting palette
to the current screen the CyclePalette command just m odifies the palette
object and can hence be used with the DisplayBitmap command in the new
Display library.

FadePalette SrcPalette#,DestPalette#,Brightness.q ;palettelib

FadePalette multiplies all colours in a Palette by the Brightness argument and
places the result in the DestPalette.

InitPalette Palette#,NumColors

InitPalette simply initialises a palette object to hold NumColors. All colors
will be set to black.

DecodePalette Palette#,MemoryLocation[,Palette Offset]

D ecodeP ale tte allow s the p rogram m er to unpack included iff pa le tte
information to Blitz palette objects.

PalRGB Palette#,Colour Register,Red,Green,Blue

PalRGB allows you to set an individual colour register within a palette object.
Unless an RGB has also been executed, the actual colour change will not come
into effect until the next time Use Palette is executed.

RGB Colour Register,Red,Green,Blue
} " *

RGB enables you to set individual colour registers in a palette to an RGB
colour value. If executed in Amiga mode, RGB sets colour registers in the
currently used screen. If executed in Blitz Mode, RGB sets colour registers in
the currently used slice. Note that RGB does not alter palette objects in any
way.

Red (Colour Register)

Red returns the amount of RGB red in a specified colour register. If executed
in Amiga mode, Red returns the amount of red in the specified colour register
of the currently used screen. If executed in Blitz mode, Red returns the amount
of red in the specified colour register of the currently used slice.
Red will always return a value in the range zero to fifteen.

Green (Colour Register)

Green returns the am ount of RGB green in a specified colour register. If
executed in Amiga mode, Green returns the amount of green in the specified
colour register of the currently used screen. If executed in Blitz mode, Green

164

returns the amount of green in the specified colour register o f the currently
used slice. Green will always return a value in the range zero to fifteen.

Blue (Colour Register)

Blue returns the amount of RGB blue in a specified colour register. If executed
in A m iga mode, Blue returns the am ount o f blue in the specified colour
register of the currently used screen. If executed in Blitz mode, Blue returns
the amount of blue in the specified colour register of the currently used slice.
Blue will always return a value in the range zero to fifteen.

AGARGB Colour Register,Red,Green,Blue

The AGARGB command is the AGA equivalent of the RGB command. The
’R ed’, ’G reen’ and ’B lue’ param eters must be in the range 0 through 255,
while ’Colour Register’ is limited to the number of colours available on the
currently used screen.

AGAPalRGB Palette#,Colour Register,Red,Green,Blue

The AGAPalRGB command is the AGA equivalent of the PalRGB command.
AGAPalRGB allows you to set an individual colour register within a palette
object. This command only sets up an entry in a palette object, and will not
alter the actual screen palette until a ’Use Palette’ is executed.

AGARed (colour register)

The AGARed function returns the red com ponent of the specified colour
register within the currently used screen. The returned value will be within the
range 0 (being no red) through 255 (being full red).

AGAGreen (colour register)

The AGAGreen function returns the green component of the specified colour
register within the currently used screen. The returned value will be within the
range 0 (being no green) through 255 (being full green).

AGABlue (colour register)

The AGABlue function returns the blue component of the specified colour
register within the currently used screen. The returned value will be within the
range 0 (being no blue) through 255 (being full blue).

SetCycle Palette#,Cycle,Low Colour,High Colour [,Speed]

SetCycle is used to configure colour cycling inform ation for the Cycle
command. The low and high colours specify the range of colours that will
cycle. You may have a maximum of 7 different cycles for a single palette. The
optional param eter Speed specifies how quickly the colours will cycle, a
negative value will cycle the colours backwards.

165

Cycle Palette#

Cycle will cause the colour cycling information contained in the specified
palette to be cycled on the currently used Screen. Colour cycling information
is created when LoadPalette is executed or with the SetCycle command.

StopCycle
StopCycle will halt all colour cycling started with the Cycle command.

FadeIn Palette#[,Rate[,Low Colour, High Colour]]

Fadein will cause the colour palette of the currently used slice to be ’faded in’
from black up to the RGB values contained in the specified Palette#.
Rate# allows you to control the speed of the fade, with 0 being the fastest fade.
Low Colour and High C olour allow you to control which colour palette
registers are affected by the fade.

FadeOut Palette#[,Rate[,Low Colour, High Colour]]

Fadeout will cause the colour palette of the currently used slice to be ’faded
out’ from the RGB values contained in the specified Palette# down to black.
Rate# allows you to control the speed of the fade, with 0 being the fastest fade.
Low Colour and High C olour allow you to control which colour palette
registers are affected by the fade.
For FadeOut to work properly, the RGB values in the currently used slice
should be set to the specified Palette# prior to using FadeOut.

ASyncFade On/ Off

ASyncFade allows you control over how the FadeIn and FadeOut commands
work. Normally, FadeIn and FadeOut will halt program flow, execute the
entire fade, and then continue program flow. This is ASyncFade Off mode.
ASyncFade On will cause FadeIn and FadeOut to work differently. Instead of
performing the whole fade at once, the programmer must execute the DoFade
command to perform the next step of the fade. This allows fading to occur in
parallel with program flow.

DoFade

DoFade will cause the next step of a fade to be executed. ASyncFade On, and
a FadeIn or FadeOut must be executed prior to calling DoFade.
The FadeStatus function may be used to determine whether there any steps of
fading left to perform.

FadeStatus

FadeStatus is used in conjunction with the DoFade command to determine if
any steps of fading have yet to be performed. If a fade process has not entirely
finished yet (ie: more DoFades are required), then FadeStatus will return true
(-1). If not, FadeStatus will return false (0). Please refer to ASyncFade and
DoFade for more information.

166

PaletteRange Palette#,StartCol,EndCol,r0,g0,b0,r1 ,g1 ,b1

PaletteRange creates a spread of colors within a palette fe.iiiil-..-..) DPaint's
spread function PaletteRange takes a start and end color , v * . es the color
tweens between them.

DuplicatePalette SrcPalette#,DestPalette#

D uplicatePalette simply creates a new Palette which exactly m atches the
SrcPalette.

167

R-21: SOUND MUSIC & SPEECH COMMANDS

Sound objects are used to store audio information. This information can be taken
from an 8SVX IFF file using LoadSound, or defined by hand through a BASIC
routine using InitSound and SoundData. Once a sound is created, it may be played
through the Amiga’s audio hardware.

Blitz supports loading and playing of both soundtracker and medmodule music files.

The Amiga speech synthesiser is also accessible from Blitz. The narrator.device has
been upgraded in 2.0 increasing the quality of the speech. W ith a bit o f messing
around you can have a lot of fun with the Amiga’s ’voice’.

LoadSound Sound#,Filename$

LoadSound creates a sound object for later playback. The sound is taken from
an 8SVX IFF file. An error will be generated if the specified file is not in the
correct IFF format.

Sound Sound#,Channelmask[,Vol1[,Vol2...]]

Sound causes a previously created sound object to be played through the
Amiga’s audio hardware.
Channelmask specifies which of the Amiga’s four audio channels the sound
should be played through, and should be in the range one through fifteen.

The following is a list of Channelmask values and their effect:

Mask Channel0 Channel1 Channei2 Channel3

1 on off off off
2 off on off off

3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

In the above table, any audio channels specified as ’o f f are not altered by
Sound, and any sounds they may have previously been playing will not be
affected.

168

The Volx param eters allow individual volume settings for different audio
channels. Volume settings must be in the range zero through 64, zero being
silence, and 64 being loudest. The first Vol parameter specifies the volume for
the lowest numbered ’on’ audio channel, the second Vol for the next lowest
and so on.
For example, assume you are using the following Sound command:

Sound 0,10,32,16
The Channelmask of ten means the sound will play through audio channels
one and three. The first volume of 32 will be applied to channel one, and the
second volume of 16 will be applied to channel three.
Any Vol parameters omitted will be cause a volume setting of 64.

LoopSound Sound#,Channelmask[,Vol1[,Vol2...]]

LoopSound behaves identically to Sound, only the sound will be played
repeatedly. Looping a sound allows for the facility to play the entire sound just
once, and begin repeating at a point in the sound other than the beginning.
This information is picked up from the 8SVX IFF file, when LoadSound is
used to create the sound, or from the offset parameter of InitSound.

Volume Channelmask, Vol1[, Vol2...]

Volume allows you to dynamically alter the volume of an audio channel. This
enables effects such as volume fades. For an explanation of Channelmask and
Vol parameters, please refer to the Sound command.

InitSound Sound#,Length[,Period[,Repeat]]

InitSound initializes a sound object in preparation for the creation of custom
sound data. This allows simple sound waves such as sine or square waves to
be algorithm ically created. SoundData should be used to create the actual
wave data.
Length refers to the length, in bytes, the sound object is required to be. Length
MUST be less than 128K, and MUST be even.
Period allows you to specify a default pitch for the sound. A period of 428 will
cause the sound to be played at approximately middle ’C’.
Offset is used in conjunction with LoopSound, and specifies a position in the
sound at which repeating should begin. Please refer to LoopSound for more
information on repeating sounds.

SoundData Sound#,Offset,Data

SoundData allows you to manually specify the waveform of a sound object.
The sound object should norm ally have been created using InitSound,
although altering IFF sounds is perfectly legal.
SoundData alters one byte of sound data at the specified Offset. Data refers to
the actual byte to place into the sound, and should be in the range -128 to
+127.

PeekSound (Sound#,Offset)

PeekSound returns the byte of a sample at the specified offset of the sound
object specified.

169

DecodeSound Sound#,MemoryLocation

D ecodeSound, sim ilar to the o ther new D ecode com m ands allow s the
programmer to include sound files within their program’s object code.

SetPeriod Sound#,Period

This command allows the programmer to manually adjust the period of the
sound object to change it’s effective pitch.

DiskPlay Filename$,Channelmask[,Vol1[,Vol2...]]

DiskPlay will play an 8SVX IFF sound file straight from disk. This is ideal for
situations where you simply want to play a sample without the extra hassle of
loading a sound, playing it, and then freeing it. The DiskPlay command will
also halt program flow until the sample has finished playing.
DiskPlay usually requires much less memory to play a sam ple than the
LoadSound. Sound technique. Also, DiskPlay allows you to play samples of
any length, whereas LoadSound only allows samples up to 128K in length to
be loaded.

DiskBuffer Bufferlen

D iskBuffer allows you to set the size of the memory buffer used by the
DiskPlay command. This Buffer is by default set to 1024 bytes, and should not
normally have to be set to more than this.
Reducing the buffer size by too much may cause loss of sound quality of the
DiskPlay command.
If you are using DiskPlay to access a very slow device, the buffer size may
have to be increased.

Filter On/ Off

LoadModule loads in from disk a soundtracker/noisetracker music module.
This module may be later played back using PlayModule.

Free Module Module#

Free Module may be used to delete a module object. Any memory occupied by
the module will also be free’d.

PlayModule Module#

PlayModule will cause a previously loaded soundtracker/noisetracker song
module to be played back.

StopModule

StopModule will cause any soundtracker/noisetracker modules which may be

170

LoadModule Module#,Filename$

F i l t e r m a y b e u s e d t o t u r n o n o r o f f t h e A m i g a ' s l o w p a s s a u d i o f i l t e r .

currently playing to stop.

LoadMedModule MedModule# Name

The LoadM edM odule com m and loads any version 4 channel Octam ed
module. The following routines support upto and including version 3 of the
Amiganut’s Med standard.
The number of MedModules loaded in memory at one time is only limited by
the MedModules maximum set in the Blitz Options requester. Like any Blitz
com m ands th a t access f ile s L oad M ed M o d u le can only be used in
AmigaMode.

StartMedModule MedModule#

StartMedModule is responsible for initialising the module including linking
after it is loaded from disk using the LoadMedModule command. It can also
be used to restart a module from the beginning.

PlayMed

PlayMed is responsible for playing the current MedModule, it must be called
every 50th of a second either on an interrupt (#5) or after a VWait in a program
loop.

StopMed

StopMed will cause any med module to stop playing. This not only means that
PlayMed will have no affect until the next StartMedModule but silences the
audio channels so they are not left ringing as is the effect when PlayMed is not
called every vertical blank.

JumpMed Pattern#

JumpMed will change the pattern being played in the current module.

SetMedVolume Volume

SetMedVolume changes the overall volume that the Med Library plays the
module, all the audio channels are affected. This is most useful for fading out
music by slowly decreasing the volume from 64 to 0.

GetMedVolume Channel#

GetM edVolum e returns the current volume setting of the specified audio
channel. This is useful for graphic effects that you may wish to sync to certain
channels of the music playing.

GetMedNote Channel#

GetMedNote returns the current note playing from the specified channel. As
with GetMedVolume this is useful for producing graphics effects synced to
the music the Med Library is playing.

171

GetMedlnstr Channel

GetM edlnstr returns the current instrum ent playing through the specified
audio channel.

SetMedMask Channel Mask

SetMedMask allows the user to mask out audio channels needed by sound
effects stopping the Med Library using them.

DecodeMedModule MedModule#,MemoryLocation

DecodeMedModule replaces the cludgemedmodule, as med modules are not
packed bu t used raw , D ecodeM edM odule sim ply checks to see the
memory location passed is in ChipMem (if not it copies the data to chip) and
points the Blitz MedModule object to that memory.

Speak string$

The Speak command will first convert the given string to phonetics and then
pass it to the Narrator.Device. Depending on the settings of the N arrator
device (see SetVoice) the Amiga will "speak" the string you have sent in the
familiar Amiga synthetic voice.

SetVoice rate,pitch,expression,sex, volume,frequency

SetVoice alters the sound of the Am iga’s speech synthsiser by changing the
vocal characteristics listed in the parameters above.

Translate$ (string$)
Translate$() returns the phonetic equivalent of the string for use with the
Translate

PhoneticSpeak phonetic$

PhoneticSpeak is similar to the Speak command but should only be passed
strings containing legal phonemes such as that produced by the Translate$()
function.

VoiceLoc

VoiceLoc returns a pointer to the internal variables in the speech synthesiser
that enable the user to access new param eters added to the V37 N arrator
Device. Formants as referred to in the descriptions are the major vocal tracts
and are separated into the parts of speech that produce the bass, medium and
trebly sounds.

172

R-22: SCREEN COMMANDS

The following section covers the Blitz commands that let you open and control
Intuition based Screen objects.

Command Description

Screen Screen#,Mode[,Title$]
Screen#,X, Y, Width,Height,Depth, VMode, Title$,Dpen,Bpen[,BMap#]

Screen will open an In tu ition screen. The are 2 form ats o f the screen
command, a quick format, and a long format.
The quick format of the Screen commands involves 3 parameters - Screen#,
Mode and an optional Title$.
Screen# specifies the screen object to create.
Mode specifies how many bitplanes the screen is to have, and should be in the
range 1 through 6. Adding 8 to Mode will cause a hi-res screen to be opened,
as opposed to the default lo-res screen. A hi-res screen may only have from 1
to 4 bitplanes. Adding 16 to M ode will cause an interlaced screen to be
opened. Title$ allows you to add a title to the screen.
The long format of Screen gives you much more control over how the screen
is opened.
The VMode parameter refers to the resolution of the Screen, add the values
together to make up the screenmode you require:

hires=$8000
ham=$200
superhires=$20
interlace=4
lores=0

ShowScreen Screen#

ShowScreen will cause the specified screen object to be moved to the front of
the display.

WbToScreen Screen#

WbToScreen will assign the Workbench screen a screen object number. This
allows you to perform any of the functions that you would normally do own
your own screens, on the Workbench screen. It’s main usage is to allow you to
open windows on the Workbench screen.
After execution, the Workbench screen will become the currently used screen.

FindScreen Screen#[,Title$]

This command will find a screen and give it an object number so it can be
referenced in your programs. If Title$ is not specified, then the forem ost
screen is found and given the object number Screen#. If the Title$ argument is
specified, then a screen will be searched for that has this name.
After execution, the found screen will automatically become the currently
used screen.

173

LoadScreen Screen#,Filename$[,Palette#]

LoadScreen loads an IFF ILBM picture into the screen object specified by
Screen#. The file that is loaded is specified by Filename$.
You can also choose to load in the colour palette for the screen, by specifying
the optional Palette#. This value is the object number of the palette you want
the pictures colours to be loaded into. For the colours to be used on your
screen, you will have to use the Use Palette statement.

SaveScreen Screen#,Filename$

SaveScreen will save a screen to disk as an IFF ILBM file. The screen you
wish to save is specified by the Screen#, and the name of the file you to create
is specified by Filename$.

SMouseX

SMouseX returns the horizontal position of the mouse relative to the left edge
of the currently used screen.

SMouseY

SMouseY returns the vertical position of the mouse relative to the top of the
current screen.

ViewPort (Screen#)

The ViewPort function returns the location of the specified screens ViewPort.
The ViewPort address can be used with graphics.library commands and the
like.

ScreenPens active text, inactive text, hilight, shadow, active fill, gadget fill

ScreenPens configures the 10 defau lt pens used for system gadgets in
WorkBench 2.0. Any Screens opened after a ScreenPens statement will use
the pens defined. This com m and w ill have no affect when used w ith
Workbench 1.3 or earlier.

CloseScreen Screen#

CloseScreen has been added for convenience. Same as Free Screen but a little
more intuitive (especially for those that have complained about such matters
(yes we care)).

HideScreen Screen#

Move Screen to back of all Screens open in the system.

BeepScreen Screen#

Flash specified screen.

174

MoveScreen Screen#, deltax,deltay

Move specified screen by specified amount. Good for system friendly special
effects.

ScreenTags Screen#,TitleS [&TagList] or [[,Tag,Data]...]

Full access to all the A m iga’s new display resoutions is now available in
Amiga mode by use of the Screen Tags command. The following tags are of
most interest to Blitz programmers: (see autodocs/

#Left=$80000021 :#Top=$80000022:#Width=$80000023
#Height=$80000024:#Depth=$80000025:#DetailPen=$80000026
#BlockPen=$80000027
#Title=$80000028:#Colors=$80000029:#ErrorCode=$8000002A
#Font=$8000002B:#SysFont=$8000002C:#Type=$8000002D
#BitMap=$8000002E
#PubName=$8000002F:#PubSig=$80000030
#PubTask=$80000031 :#DisplayID=$80000032
#DClip=$80000033:#Overscan=$80000034
#ShowTitle=$80000036:#Behind=$80000037:#_Quiet=$80000038
#AutoScroll=$80000039:#Pens=$8000003A
#FullPalette=$8000003B:#ColorMapEntries=$8000003C
#Parent=$8000003D:#Draggable=$8000003E
#Exclusive=$8000003F
#SharePens=$80000040:#BackFill=$80000041
#_Interleaved=$80000042
#Colors32=$80000043:#VideoControl=$80000044
#FrontChild=$80000045:#BackChild=$80000046
#LikeWorkbench=$80000047:#Reserved=$80000048

ShowBitMap [BitMap#]

The Show B itM ap com m and is the A m iga-m ode version o f the Show
com m and. It enables you to change a Screens bitm ap allow ing double
buffered (flicker free) animation to happen on a standard Intuition Screen.
Unlike Blitz mode it is better to do ShowBitMap then VWait to sync up with
the Amiga’s display, this will make sure the new bitmap is being displayed
before modifying the previous BitMap.

175

R-23: WINDOW COMMANDS

Windows are the heart of the user friendly Amiga operating system. Not only are they
the graphics device used for both user input and display but are the heart of the
messaging system that communicates this information to your program by way of the
events system.

Typically a Blitz program will either open or find a screen to use, define a list of
gadgets and then open a window on the screen with the gadget list attached. It will
then wait for an event such as the user selecting a menu or hitting a gadget and act
accordingly.

The program can specify which events they wish to receive by modifying the IDCMP
flags for the window. Once an event is received Blitz has a wide range of commands
for finding out exactly what the user has gone and done.

Blitz also offers a number of drawing commands that allow the programmer to render
graphics to the currently used window.

Command Description

Window Window#,X, Y, Width,Height,Flags,Title$,Dpen,Bpen[,GadgetList#]

Window opens an Intuition window on the currently used screen. Window# is
a unique object number for the new window. X and Y refer to the offset from
the top left of the screen the window is to appear at. Width and Height are the
size of the window in pixels.
Flags are the special window flags that a window can have when opened.
These flags allow for the inclusion of a sizing gadget, dragbar and many other
things. The flags are listed as followed, with their corresponding values. To
select more than one of these flags, they must be logically Or’d together using
the ’| ’ operator.
For example, to open a window with dragbar and sizing gadget which is active
once opened, you would specify a Flags parameter of $1| $2| $1000.
Title$ is a BASIC string, either a constant or a variable, that you want to be
the title of the window.
Dpen is the colour of the detail pen of the window. This colour is used for the
window title.
BPen is the block pen of the window. This pen is used for things like the
border around the edge of the window.
The optional GadgetList# is the number of a gadgetlist object you have may
want attached to the window.
After the window has opened, it will become the currently used window.
The W indow library has been extended to handle super bitm ap windows.
SuperBitMap windows allow the window to have it’s own bitmap which can
actually be larger than the window. The two main benefits of this feature are
the window’s ability to refresh itself and the ability to scroll around a large
area "inside" the bitmap.
To attach a BitMap to a Window set the SuperBitMap flag in the flags field
and include the BitMap# to be attached.

176

Window Flag Value Description

WINDOW SIZING $0001 Attaches sizing gadget to bottom right corner
of window and allows it to be sized.

W INDOW DRAG $0002 Allow s window to be dragged w ith the
mouse by it’s title bar.

WINDOWDEPTH $0004 Lets windows be pushed behind or pulled in
front of other windows.

W INDOW CLOSE $0008 Attaches a closegadget to the upper left
corner of the window.

S IZ E B R IG H T
0

0W ith G IM M E Z E R O Z E R O a n d
W INDOW SIZING set, this will leave the
right hand margin, the width of the sizing
g ad g e t, c lea r , and any d raw in g to the
w indow w ill not ex tend over th is righ t
margin.

SIZEBBOTTOM $0020 Same as SIZEBRIGHT except it leaves a
m argin at the bottom o f the w indow, the
width of the sizing gadget.

BACKDROP $0100 This opens the window behind any other
window that is already opened. It cannot
have the WINDOWDEPTH flag set also, as
the window is intended to stay behind all
others.

GIMME00 $0400 This flag keeps the windows border separate
from the rest o f the w indow s area. Any
drawing on the window, extending to the
bo rders, w ill not ov erw rite the border.
NOTE: Although convevient, this does take
up more memory than usual.

BORDERLESS $0800 Opens a window without any border on it at
all.
Activates the window once opened.ACTIVATE $1000

Use Window Window#

Use Window will cause the specified window object to become the currently
used window. Use Window also automatically performs a WindowInput and
WindowOutput on the specified window.

Free Window Window#

Free Window closes down a window. This window is now gone, and can not
be accessed any more by any statem ents or functions. Once a window is
closed, you may want to direct the input and output somewhere new, by
calling Use Window on another window, DefaultOutput/Defaultlnput, or by
some other appropriate means. W indow# is the window object number to
close.

177

WindowInput Window#

W indowInput will cause any future executions of the Inkey$, Edit$ or Edit
functions to receive their input as keystrokes from the specified window
object.
W indowInput is automatically executed when either a window is opened, or
Use Window is executed.
After a window is closed (using Free Window), remember to tell Blitz to get
i t ’s inpu t from som ew here e lse usefu l (fo r exam ple , using ano ther
W indowInput command) before executing another Inkey$, Edit$ or Edit
function.

WindowOutput Window#

W indowOutput will cause any future executions of either the Print or NPrint
statements to send their output as text to the specified window object.
WindowOutput is automatically executed when either a window is opened, or
Use Window is executed.
After a window is closed (using Free W indow), remember to send output
somewhere else useful (for example, using another WindowOutput command)
before executing another Print or NPrint statement.

DefaultIDCMP IDCMP_Flags

DefaultIDCMP allows you to set the IDCMP flags used when opening further
windows. You can change the flags as often as you like, causing all of your
windows to have their own set of IDCMP flags if you wish.
A window’s IDCMP flags will affect the types of ’events’ reportable by the
window. Events are reported to a program by means of either the WaitEvent or
Event functions.

To select more than one IDCMP Flag when using DefaultIDCM P, combine
the separate flags together using the OR operator (’| ’).

Any windows opened before any DefaultIDCMP command is executed will be
opened using an IDCMP flags setting of:

$2| $4| $8| $20| $40| $100| $200| $400| $40000| $80000.

This should be sufficient for most programs.

If you do use DefaultIDCMP for some reason, it is important to remember to
include all flags necessary for the functioning of the program. For example, if
you open a window which is to have menus attached to it, you MUST set the
$100 (menu selected) IDCMP flag, or else you will have no way of telling
when a menu has been selected.

178

IDCMP FlagEvent

$2 Reported when a window has it’s size changed.
$4 R eported w hen a w indow s co n ten ts have been

corrupted. This may mean a windows contents may
need to be re-drawn.

$8 Reported when either mouse button has been hit.
$10 Reported when the mouse has been moved.
$20 Reported when a gadget within a window has been

pushed ’down’.
$40 Reported when a gadget within a window has been

’released’.
$100 Reported when a menu operation within a window has

occured.
$200 Reported when the ’close’ gadget o f a window has

been selected.
$400 Reported when a keypress has been detected.
$8000 Reported when a disk is inserted into a disk drive.
$10000 Reported when a disk is removed from a disk drive.
$40000 Reported when a window has been ’activated’.
$80000 Reported when a window has been ’de-activated’.

AddIDCMP IDCMP_Flags

AddIDCMP allows you to ’add in’ IDCMP flags to the IDCMP flags selected
by DefaultIDCMP. Please refer to DefaultIDCMP for a thorough discussion of
IDCMP flags.

SubIDCMP IDCMP_Flags

SubIDCMP allows you to ’subtract out’ IDCMP flags from the IDCMP flags
selected by DefaultIDCM P. Please refer to DefaultIDCM P for a thorough
discussion of IDCMP flags.

WaitEvent

W aitEvent will halt program excution until an Intuition event has been
received. This event must be one that satisfies the IDCMP flags of any open
windows. If used as a function, W aitEvent returns the IDCMP flag of the
event (please refer to DefaultIDCMP for a table of possible IDCMP flags). If
used as a statement, you have no way of telling what event occured.
You may find the window object number that caused the event using the
EventWindow function.
In the case o f events concerning gadgets or menus, further functions are
available to detect which gadget or menu was played with.
In the case of mouse button events, the MButtons function may be used to
discover exactly which mouse button has been hit.
IM PORTANT NOTE: If you are assigning the result of W aitEvent to a
variable, MAKE SURE that the variable is a long type variable.

179

For example: MyEvent.l=WaitEvent

Event

Event works similarly to W aitEvent in that it returns the IDCMP flag of any
outstanding windows events. However, Event will NOT cause program flow
to halt. Instead, if no event has occured, Event will return 0.

EventWindow

EventW indow may be used to determine in which window the most recent
window event occured. W indow events are detected by use of either the
WaitEvent or Event commands.
EventW indow return the window object number in which the most recent
window event occured.

FlushEvents [IDCMP_Flag]

When window events occur in Blitz, they are automatically ’queued’ for you.
This means that if your program is tied up processing one window event while
others are being created, you wont miss out on anything. Any events which
may have occured between executions of WaitEvent or Event will be stored in
a queue for later use. However, there may be situations where you want to
ignore this backlog of events. This is what FlushEvents is for.
Executing FlushEvents with no param eters will com pletely clear B litz’s
internal event queue, leaving you with no outstanding events. Supplying an
IDCMP_Flag parameter will only clear events of the specified type from the
event queue.

GadgetHit

GadgetHit returns the identification number of the gadget that caused the most
recent ’gadget pushed’ or ’gadget released’ event.
As gadgets in different windows may possibly posess the same identification
numbers, you may also need to use EventWindow to tell exactly which gadget
was hit.

MenuHit

MenuHit returns the identification number of the menu that caused the last
menu event. As with gadgets, you can have different menus for different
windows with the same identification number. Therefore you may also need to
use EventWindow to find which window caused the event.
If no menus have yet been selected, Menuhit will return -1.

ItemHit

ItemHit returns the identification number of the menu item that caused the last
menu event.

SubHit

SubHit returns the identification number of the the menu subitem that caused
the last menu event. If no subitem was selected, SubHit will return -1.

180

MButtons

MButtons returns the codes for the mouse buttons that caused the most recent
’mouse buttons’ event. If menus have been turned off using Menus Off, then
the right mouse button will also register an event and can be read with
MButtons.

RawKey

RawKey returns the raw key code of a key that caused the most recent ’key
press’ event.

Qualifier

Qualifier will return the qualifier of the last key that caused a ’key press’ event
to occur. A qualifier is a key which alters the meaning of other keys; for
example the ’shift’ keys. Here is a table of qualifier values and their equivalent
keys:

Key Left Right

UnQualified
Shift
Caps Lock Down
Control
Alternate
Amiga

$8000
$8001
$8004
$8008
$8010
$8040

$8000
$8002
$8004
$8008
$8020
$8080

A combination of values may occur, if more that one qualifier key is being
held down. The way to filter out the qualifiers that you want is by using the
logical AND operator.

WPIot X,Y,Colour

WPlot plots a pixel in the currently used window at the coordinates X,Y in the
colour specified by Colour.

WBox X1,Y1,X2,Y2, Colour

WBox draws a solid rectangle in the currently used window. The upper left
hand coordinates of the box are specified with the X 1 and Y1 values, and the
bottom right hand corner of the box is specified by the values X2 and Y2.

WCircle X,Y,Radius,Colour

W Circle allows you to draw a circle in the currently used window. You
specify the centre of the circle with the coordinates X,Y. The Radius value
specifies the radius of the circle you want to draw. The last value, Colour
specifies what colour the circle will be drawn in.

181

WEllipse X,Y,X Radius,Y Radius,Colour

W Ellipse draws an ellipse in the currently used window. You specify the
centre o f the ellipse w ith the coordinates X,Y. X Radius specifies the
horizontal radius of the ellipse, Y Radius the vertical radius.
Colour refers to the colour in which to draw the ellipse.

WLine X1, Y1,X2, Y2[,Xn, Yn..],Colour

W line allows you to draw a line or a series of lines into the currently used
window. The first two sets of coordinates X 1,Y 1,X2,Y2, specify the start and
end points of the initial line. Any coordinates specified after these initial two,
will be the end points of another line going from the last set of end points, to
this set. Colour is the colour of the line(s) that are to be drawn.

WCls [Colour]

WCls will clear the currently used window to colour 0, or colour is specified,
then it will be cleared to this colour. If the current window was not opened
with the GIM M EZEROZERO flag set, then this statem ent will clear any
border or title bar that the window has. The InnerCls statement should be used
to avoid these side effects..

InnerCls [Colour]

InnerCls will clear only the inner portion of the currently used window. It will
not clear the titlebar or borders as Cls would do if your window was not
opened with the GIMMEZEROZERO flag set. If colour is specified, then that
colour will be used to clear the window.

WScroll X1,Y1,X2,Y2,Delta X,Delta Y

WScroll will cause a rectangular area of the currently used window to be
moved or ’scrolled’. X 1 and,Y 1 specify the top left location of the rectangle,
X2 and Y2 the bottom right. The Delta parameters determine how far to move
the area. Positive values move the area right/down, while negative values
move the area left/up.

Cursor Thickness

Cursor will set the style of cursor that appears when editing strings or numbers
with the Edit$ or Edit functions. If Thickness is less than 0, then a block cursor
will be used. If the Thickness is greater then 0, then an underline Thickness
pixels high will be used.

Editat

After executing an Edit$ or Edit function, Editat may be used to determine the
horizontal character position of the cursor at the time the function was exited.
Through the use of Editat, EditExit, EditFrom and Edit$, simple full screen
editors may be put together.

182

EditFrom [Characterpos]

EditFrom allows you to control how the Edit$ and Edit functions operate when
used within windows.
If a Characterpos parameter is specified, then the next time an edit function is
executed, ed iting will commence at the specified character position (0 being
the first character position).
Also, ed iting may be terminated not just by the use of the ’return’ key, but
also by any non printable character (for example, ’up arrow’ or ’Esc’) or a
window event. When used in conjunction with Editat and EditExit, this allows
you to put together simple full screen editors.
If Characterpos is omitted, Edit$ and Edit return to normal - ed iting always
beginning at character postition 0, and ’return’ being the only way to exit.

EditExit

EditExit returns the ASCII value of the character that was used to exit a
window based Edit$ or Edit function. You can only exit the edit functions with
keypresses other than ’return’ if EditFrom has been executed prior to the edit
call.

WindowFont IntuiFont#

WindowFont sets the font for the currently used window. Any further printing
to this window will be in the specified font. IntuiFont# specifies a previously
initialized intuifont object created using LoadFont.

WColour Foreground Colour[,Background Colour]

W Colour sets the foreground and background colour of printed text for the
currently used window. Any further text printed on this window will be in
these colours.

WJam Jammode

W Jam sets the text draw ing mode of the currently used window. These
drawing modes allow you to do inverted, complemented and other types of
graphics. The drawing modes can be OR’ed together to create a combination of
them.

J a m 1=0
This draws only the foreground colour and leaves the background transparent.
Eg For the letter O, any empty space (inside and outside the letter) will be
transparent.

Jam2=1
This draws both the foreground and background to the window. Eg With the
letter O again, the O will be drawn, but any clear area (inside and outside) will
be drawn in the current background colour.

Complement=2
This will exlusive or (XOR) the bits of the graphics. Eg Drawing on the same

183

place with the same graphics will cause the original display to return.

Inversvid =4
This allows the display of inverse video characters. If used in conjunction with
Jam2, it behaves like Jam2, but the foreground and background colours are
exchanged.

Activate Window#

Activate will active the window specified by Window#.

Menus On/ Off

The M enus com m and may be used to turn ALL menus either on or off.
Turning menus off may be useful if you wish to read the right mouse button.

WPointer Shape#

W Pointer allows you to determ ine the mouse pointer imagery used in the
currently used window. Shape# specifies an initialized shape object the pointer
is to take it’s appearance from, and must be of 2 bitplanes depth (4 colours).

WMove X,Y

WMove will move the current window to screen position X,Y.

WSize Width,Height

WSize will alter the width and height of the current window to the values
specified by Width and Height.

WMouseX

WMouseX returns the horizontal x coordinate of the mouse relative to the left
edge of the current window. If the current window was opened without the
GIMMEZEROZERO flag set, then the left edge is taken as the left edge of the
border around the window, otherwise, if GIMMEZEROZERO was set, then
the left edge is the taken from inside the window border.

WMouseY

WMouseY returns the vertical y coordinate of the mouse relative to the top of
the cu rren t w indow . If the cu rren t w indow was opened w ithou t the
GIMMEZEROZERO flag set, then the top is taken as the top of the border
around the window, otherwise, if GIMMEZEROZERO was set, then the top is
taken from inside the window border.

EMouseX

EMouseX will return the horizontal position of the mouse pointer at the time
the most recent window event occured. Window events are detected using the
WaitEvent or Event commands.

184

EMouseY

EMouseY will return the vertical position of the mouse pointer at the time the
most recent window event occured. Window events are detected using the
WaitEvent or Event commands.

WCursX

WCursX returns the horizontal location of the text cursor of the currently used
window. The text cursor position may be set using WLocate.

WCursY

WCursY returns the vertical location of the text cursor of the currently used
window. The text cursor position may be set using WLocate.

WLocate X,Y

W Locate is used to set the text cursor position within the currently used
window. X and Y are both specified in pixels as offsets from the top left of the
window. Each window has it’s own text cursor position, therefore changing
the text cursor position of one window will not affect any other window’s text
cursor position.

WindowX

W indowX returns the horizontal pixel location of the top left corner of the
currently used window, relative to the screen the window appears in.

WindowY

W indowY returns the vertical pixel location of the top left corner o f the
currently used window, relative to the screen the window appears in.

WindowWidth

WindowWidth returns the pixel width of the currently used window.

WindowHeight

WindowHeight returns the pixel height of the currently used window.

InnerWidth

InnerW idth returns the pixel w idth of the area inside the border o f the
currently used window.

InnerHeight

InnerH eight returns the pixel height of the area inside the border of the
currently used window.

185

WTopOff

W TopOff returns the number of pixels between the top of the current window
border and the inside of the window.

WLeftOff

W LeftOff returns the number of pixels between the left edge of the current
window border and the inside of the window.

SizeLimits Min Width,Min Height,Max Width,Max Height

SizeLimits sets the limits that any new windows can be sized to with the sizing
gadget. After calling this statement, any new windows will have these limits
imposed on them.

RastPort (W in d ow#)

RastPort returns the specified W indow’s RastPort address. Many commands
in the graphics.library and the like require a RastPort as a parameter.

PositionSuperBitMap x,y

PositionSuperBitMap is used to display a certain area of the bitmap in a super
bitmap window.

GetSuperBitMap

After rendering changes to a superbitmap window the bitmap attached can
also be updated with the GetSuperBitM ap. A fter rendering changes to a
bitmap the superbitmap window can be refreshed with the PutSuperBitMap
command. Both commands work with the currently used window.

PutSuperBitMap

See GetSuperBitmap description.

WTitle windowtitle$,screentitie$

WTitle is used to alter both the current window’s title bar and it’s screens title
bar. Useful for displaying important stats such as program status etc.

CloseWindow Window#

CloseWindow has been added for convenience. Same as Free Window but a
little more intuitive (added for those that have complained about such matters).

WPrintScroll

W PrintScroll will scroll the current window upwards if the text cursor is
below the bottom of the window and adjust the cursor accordingly. Presently
W PrintScroll only works with windows opened with the gimme00 flag set
(#gimmezerozero=$400).

186

WBlit Shape#,x,y

WBlit can be used to blit any shape to the current window. Completely system
friendly this command will completely clip the shape to fit inside the visible
part of the window. Use GimmeZeroZero windows for clean clipping when
the window has title/sizing gadgets.

BitMaptoWindow Bitmap#, Window#[,srcx,srcy,destx,desty, wid,height]

BitM aptoW indow will copy a bitmap to a window in an operating system
friendly manner (what do you expect). The main use of such a command is for
program s w hich use the raw bitm ap com m ands such as the 2D and Blit
libraries for rendering bitmaps quickly but require a windowing environment
for the user inyerface.

EventCode

EventCode returns the actual code of the last Event received by your program,
EventQualifier returns the contents of the Qualifier field. Of use with the new
GadTools library and some other low level event handling requirements.

EventQualifier

EventCode returns the actual code of the last Event received by your program,
EventQualifier returns the contents of the Qualifier field. Of use with the new
GadTools library and some other low level event handling requirements.

WindowTags Window#,Flags,Title$,[&TagList]l[[Tag,Data]...]

Similar to ScreenTags, WindowTags allows the advanced user to open a Blitz
window with a list of OS Tags as described in documentation for the operating
system prior to 2.0.

LoadFont IntuiFont#,Fontname.font$, Y Size [style]

LoadFont is used to load a font from the fonts: directory. Unlike BlitzFonts
any size IntuiFont can be used. The command WindowFont is used to set text
output to a certain IntuiFont in a particular Window.
The LoadFont command has been extended with an optional style parameter.
The following constants may be combined:

#underlined=1
#bold=2
#italic=4
#extended=8 ;wider than normal
#colour=64 ;hmm use colour version I suppose

187

R-24: GADGET COMMANDS

Blitz provides extensive support for the creation and use of Intuition gadgets. This is
done through the use of GadgetList objects. Each gadgetlist may contain one or more
of the many types of available gadgets, and may be attached to a window when that
window is opened using the Window command.

The following is a table of the gadget flags and the gadget types which they are
relevant to:

Bit# Meaning Text String Prop Shape

0 Toggle On/Off yes no no yes
1 Relative to Right Side of Window yes yes yes yes
2 Relative to Bottom of Window yes yes yes yes
3 Size Relative to Width of Window no no yes no
4 Size Relative to Height of Window no no yes no
0 Box Select yes yes yes yes
6 Prop Gadget has Horizontal Movement no no yes no
7 Prop Gadget Has Vertical Movement no no yes no
8 - No Border around Prop Gadget no no yes no
9 Mutually Exclusive yes yes no no
10 Attach to Window’s Right Border yes yes yes yes
11 Attach to Window’s Left Border yes yes y es yes
12 Attach to Window’s Top Border yes yes yes yes
13 Attach to Window’s Bottom Border yes yes yes yes
14 Use GimmeZeroZero Border yes yes yes yes

Note:

If Relative Right is set the gadgets X should be negative, as so should i t’s Y if
Relative to Bottom is set. When relative Width or Height flags are set negative Width
and/or Height parameters should be specified as Intuition calculates actual widt h as
WindowWidth+GadgetWidth as it does height when relative size flags are set.

Mutually exclusive radio button type gadgets DO NOT require W orkBench 2.0 to
operate, see ButtonGroup for more information.

The attach flags are for attaching the gadget to one of the windows borders, the
GZZGADGET flag is for attaching the gadget to the "outer" rastport/ layer of a
gimme zero zero window.

Here is an example of setting up some radio button style text gadgets:

TextGadget 0,16,16,512,1,"OPTION 1":Toggle 0,1,On
TextGadget 0,16,32,512,2,"OPTION 2"
TextGadget 0,16,48,512,3,"OPTION 3"

Text Gadgets may now be used to create ’cycling’ gadgets. Again, these gadgets DO

188

NOT require kickstart 2.0 to work.

If you create a text gadget which contains the ’| ’ character in the gadget’s text, Blitz
will recognize this as a ’cycling’ gadget, using the ’| ’ character to separate the
options - like this:

TextGadget 0,16,16,0,1," HELLO | GOODBYE| SEEY A | "

Now, each time this gadget is clicked on, the gadgets text will cycle through ’Hello’,
’GOODBYE’ and ’SEEY A ’. Note that each option is spaced out to be o f equal
length. This feature should not be used with a GadgetJam mode of 0.

TextGadget GadgetList#,X, Y,Flags,Id, Text$

The TextGadget command adds a text gadget to a gadgetlist. A text gadget is
the simplest type of gadget consisting of a sequence of characters optionally
surrounded by a border.
Flags should be selected from the table at the start of the chapter.
Boolean gadgets are the simplest type of gadget available. Boolean gadgets
are ’off’ until the program user clicks on them with the mouse, which turns
them ’on’. When the mouse button is released, these gadgets revert back to
their ’off’ state. Boolean gadgets are most often used for ’OK’ or ’CANCEL’
type gadgets.
Toggle gadgets differ in that each time they are clicked on they change their
state between ’on’ and ’o f f '. For example, clicking on a toggle gadget which is
’on’ will cause the gadget to be turned ’off’, and vice versa.
X and Y specify where in the window the gadget is to appear. Depending upon
the Flags setting, gadgets may be positioned relative to any of the 4 window
edges. If a gadget is to be positioned relative to either the right or bottom edge
of a window, the appropriate X or Y parameter should be negative.
Id is an identification value to be attached to this gadget. All gadgets in a
gadgetlist should have unique Id numbers, allowing you to detect which
gadget has been selected. Id may be any positive, non-zero number.
Text$ is the actual text you want the gadget to contain.

ButtonGroup Group

ButtonGroup allows you to determine which ’group’ a number of button type
gadgets belong to. Follow ing the execution o f ButtonG roup, any button
gadgets created will be identified as belonging to the specified group. The
upshot of all this is that button gadgets are only mutually exclusive to other
button gadgets within the same group.
’Group’ must be a positive number greater than 0. Any button gadgets created
before a ’ButtonGroup’ command is executed will belong to group 1.

SetGadgetStatus GadgetList#,Id, Value

SetGadgetStatus is used to set a cycling text gadget to a particular value, once
set ReDraw should be used to refresh the gadget to reflect it’s new value.

189

GadgetPens Foreground Colour[,Background Colour]

GadgetPens determines the text colours used when text gadgets are created
using the TextGadget command. The default values used for gadget colours
are a foreground colour of 1, and a background colour of 0.

GadgetJam Jammode

GadgetJam allows you to determine the text rendering method used when
gadgets are created using the TextGadget command. Please refer to the WJam
com m and in the w indow s chapter for a full descrip tion o f jam m odes
available.

SelectMode mode

SelectMode is used to predefine how gadget rendering will show a gadget
selection, modes are 1 for box and 0 for inverse. Use prior to creation of
gadgets.

ShapeGadget GadgetList#,X, Y,Flags,Id,Shape#[,Shape#]

The ShapeG adget com m and allow s you to create gadgets with graphic
im agery. The Shape# param eter refers to a shape object containing the
graphics you wish the gadget to contain.
The ShapeGadget command has been extended to allow an alternative image
to be displayed when the gadget is selected.
All other parameters are identical to those in TextGadget.

StringGadget GadgetList#,X, Y,Flags,Id,Maxlen, Width

StringGadget allows you to create an Intuition style ’text entry’ gadget. When
clicked on, a string gadget brings up a text cursor, and is ready to accept text
entry from the keyboard.
X and Y specifies the gadgets position, relative to the top left of the window it
is to appear in.
See the beginning of the chapter for the relevant Flags for a string gadget.
Id is an identification value to be attached to this gadget. All gadgets in a
gadgetlist should have unique Id numbers, allowing you to detect which
gadget has been selected. Id may be any positive, non-zero number.
Maxlen refers to the maximum number of characters which may appear in this
gadgets.
Width refers to how wide, in pixels, the gadget should be. A string gadget may
have a width less than the maximum number of characters it may contain, as
characters will be scrolled through the gadget when necessary.
You may read the current contents of a string gadget using the StringText
function.

StringText$ (GadgetList#,ld)

The Stringtext$ function allows you to determine the current contents o f a
string gadget. StringText$ will return a string of characters representing the
string gadgets contents.

190

ActivateString Window#,Id

ActivateString may be used to ’automatically’ activate a string gadget. This is
identical to the program user having clicked in the string gadget themselves, as
the string gadget’s cursor will appear, and further keystrokes will be sent to
the string gadget.
It is often nice of a program to activate important string gadgets, as it saves the
user the hassle of having to reach for the mouse before the keyboard.

ResetString GadgetList#,ld

ResetString allows you to ’reset’ a string gadget. This will cause the string
gadget’s cursor position to be set to the leftmost position.

ClearString GadgetList#,ld

ClearString may be used to clear, or erase, the text in the specified string
gadget. The cursor position will also be moved to the leftmost position in the
string gadget.
If a string gadget is cleared while it is displayed in a window, the text will not
be erased from the actual display. To do this, ReDraw must be executed.

SetString Gadget List#, ID,String$

SetString may be used to initialize the contents of a string gadget created with
the StringGadget command. If the string gadget specified by GadgetList# and
Id is already displayed, you will also need to exeucte ReDraw to display the
change.

PropGadget GadgetList#,X, Y,Flags,Id, Width,Height

The P ropG adget com m and is used to create a ’p ropo rtiona l g ad g e t’ .
Proportional gadgets present a program user with a ’slider bar’, allowing them
to adjust the slider to achieve a desired effect. Proportional gadgets are
commonly used for the ’R G B ’ sliders seen in many paint packages.
Proportional gadgets have 2 main qualities - a ’pot’ (short for potentiometer)
setting, and a ’body’ setting.
The pot setting refers to the current position of the slider bar, and is in the
range 0 through 1. For example, a proportional gadget which has been moved
to ’half way’ would have a pot setting of ’.5’.
The body setting refers to the size of the units the proportional gadget
represents, and is again in the range 0 through 1. Again taking the RGB colour
sliders as an example, each slider is intended to show a particular value in the
range 0 through 15 - giving a unit size, or body setting, of 1/16 or ’.0625’.
Put simply, the pot setting describes ’where’ the slider bar is, while the body
setting describes ’how big’ it is.
Proportional gadgets may be represented as either horizontal slider bars,
vertical slider bars, or a combination of both.
See the beginning of the chapter for relevant Flags settings for prop gadgets.
X and Y refer to the gadgets position, relative to the top left of the window it is
opened in.
Width and Height refer to the size of the area the slider should be allowed to

191

move in.
Id is a unique, non zero number which allows you to identify when the gadget
is manipulated.
Proportional gadgets may be altered using the SetVProp and SetHProp
com m ands, and read using the V PropPot, V PropB ody, H PropPot and
HPropBody functions.

SetHProp GadgetList#,ld,Pot,Body

SetHProp is used to alter the horizontal slider qualities o f a proportional
gadget. Both Pot and Body should be in the range 0 through 1.
If SetHProp is executed while the specified gadget is already displayed,
execution of the ReDraw command will be necessary to display the changes.
For a full discussion on proportional gadgets, please refer to the PropGadget
command.

SetVProp GadgetList#,ld,Pot,Body

SetVProp is used to alter the vertical slider qualities of a proportional gadget.
Both Pot and Body should be in the range 0 through 1.
If SetVProp is executed while the specified gadget is already displayed,
execution of the ReDraw command will be necessary to display the changes.

HPropPot (GadgetList#,ld)

The HPropPot function allows you to determine the current ’pot’ setting of a
proportional gadget. HPropPot will return a number from 0 up to, but not
including, 1, reflecting the gadgets current horizontal pot setting.

HPropBody (GadgetList#,ld)

The HPropBody function allows you to determine the current ’body’ setting of
a proportional gadget. HPropBody will return a number from 0 up to, but not
including, 1, reflecting the gadgets current horizontal body setting.

VPropPot (GadgetList#,ld)

The VPropPot function allows you to determine the current ’pot’ setting of a
proportional gadget.
VPropPot will return a number from 0 up to, but not including, 1, reflecting
the gadgets current vertical pot setting.

VPropBody (GadgetList#,ld)

The VPropBody function allows you to determine the current ’body’ setting of
a proportional gadget.
VPropBody will return a number from 0 up to, but not including, 1, reflecting
the gadgets current vertical body setting.

Redraw Window#,id

ReDraw will redisplay the specified gadget in the specified window. This
command is mainly of use when a proportional gadget has been altered using
SetHProp or SetVProp and needs to be redrawn, or when a string gadget has

192

been cleared using ClearString, and, likewise, needs to be redrawn.

Borders [On/ Off]l [Width,Height]

Borders serves 2 purposes. First, Borders may be used to turn on or off the
automatic creation of borders around text and string gadgets. Borders are
created when either a Textgadget or StringGadget command is executed. If
you wish to d isab le th is, B orders O ff should be execu ted before the
appropriate TextGadget or StringGadget command.
Borders may also be used to specify the spacing between a gadget and it’s
bo rder, W idth re fe rrin g to the le f t/r ig h t spac in g , and H eigh t to the
above/below spacing.

BorderPens Highlight Colour,Shadow Colour

BorderPens allows you to control the colours used when gadget borders are
created. Gadget borders may be created by the TextGadget, StringGadget and
GadgetBorder commands.
HighLight Colour refers to the colour of the top and left edges of the border,
while Shadow Colour refers to the right and bottom edges.
The default value for HighLight Colour is 1. The default value for Shadow
Colour is 2.

GadgetBorder X, Y, Width,Height

The GadgetBorder command may be used to draw a rectangular border into
the currently used window.
Proportional gadgets and shape gadgets do not have borders automatically
created for them. The GadgetBorder command may be used, once a window is
opened, to render borders around these gadgets.
X,Y, Width and Height refer to the position of the gadget a border is required
around. GadgetBorder will automatically insert sapces between the gadget and
the border. The Borders command may be used to alter the amount of spacing.
Of course, GadgetBorder may be used to draw a border around any arbitary
area, regardless of whether or not that area contains a gadget.

GadgetStatus (GadgetList#,ld)

GadgetStatus may be used to determine the status of the specified gadget. In
the case of ’toggle’ type gadget, G adgetStatus will return true (-1) if the
gadget is currently on, or false (0) if the gadget is currently off.
In the case of a cycling text gadget, GadgetStatus will return a value of 1 or
greater representing the currently displayed text within the gadget.

ButtonId (GadgetList#,ButtonGroup)

ButtonId may be used to determine which gadget within a group of button
type gadgets is currently selected. The value returned will be the GadgetId of
the button gadget currently selected.

193

Enable GadgetList#,Id

A gadget when disabled is covered by a "mesh" and can not be accessed by the
user. The commands Enable and Disable allow the programmer to access this
feature of Intuition.

Disable GadgetList#,Id

A gadget when disabled is covered by a "mesh" and can not be accessed by the
user. The commands Enable and Disable allow the programmer to access this
feature of Intuition.

Toggle GadgetList#,ld [,On/ Off]

The T o g g le command in the gadget library has been extended so it will
actually toggle a gadgets status if the On/ Off parameter is missing.

194

R-25: MENU COMMANDS

Blitz supports many commands for the creation and use of Intuition menus.

Menus are created through the use of MenuList objects. Each menulist contains an
entire set of menu titles, menu items and possibly sub menu items.

Menulists are attached to windows through the SetMenu command.

Each window may use a separate menulist, allowing you to attach relevant menus to
different windows.

MenuTitle Menulist#,Menu, Title$

MenuTitle is used to add a menu title to a menulist. Menu titles appear when
the right mouse button is held down, and usually have menuitems attached to
them.
Menu specifies which menu the title should be used for. Higher numbered
menus appear further to the right along the menu bar, with 0 being the leftmost
menu. Menutitles should be added in left to right order, with menu 0 being the
first created, then 1 and so on...
Title$ is the actual text you want to appear when the right mouse button is
pressed.

MenuItem MenuList#,Flags,Menu,Item,ltemtext$[,Shortcut$]

MenuItem is used to create a text menu item. Menu items appear vertically
below menu titles when the mouse is moved over a menu title with the right
mouse button held down.
Flags affects the operation of the menu item.
A value of 0 creates a stand ’seleect’ menu item.
A value of 1 creates a ’toggle’ menu item. Toggle menu items are used for
’on/off type options. When a toggle menu item is selected, it will change state
between on and off. An ’on’ toggle item is identified by a ’tick’ or check
mark.
A value of 2 creates a special type of toggle menu item. Any menu items
which appear under the same menu with a Flags setting of 2 are said to be
mutually exclusive. This means that only 1 of them may be in the ’on’ state at
one time. If a menu item of this nature is toggled into the ’on’ state, any other
mutually exclusive menu items which may have previously been ’on’ will be
automatically turned ’off’.
Flags values of 3 and 4 correspond to values 1 and 2, only the item will
initially appear in the ’on’ state.
Menu specifies the menu title under which the menu item should appear.
Item specifies the menu item number this menu item should be referenced as.
Higher numbered items appear further down a menu item list, with 0 being the
topmost item. Menu items should be added in ’top dow n’ order, with menu
item 0 being the first item created.
Itemtext$ is the actual text for the menu item.
An optional Shortcut$ string allows you to select a one character ’keyboard

195

shortcut’ for the menu item.

ShapeItem MenuList#,Flags,Menu,Item,Shape#

ShapeItem is used to create a graphical menu item.
Shape# refers to a previously initialized shape object to be used as the menu
item’s graphics. All other parameters are identical to those for MenuItem.

Subitem MenuList#,Flags,Menu,Item,Subitem,Subitemtext$[,Shortcuts]

All menu items may have an optional list of sub menu items attached to them.
To attach a sub menu item to a menu item, you use the Subitem command.
Item specifies the menu item to attach the sub item to.
Subitem refers to the number of the sub menu item to attach. Higher numbered
sub items appear further down a sub item list, with 0 being the topmost sub
item. Sub items should be added in ’top down’ order, with sub item 0 being
created first.

• Subitemtext$ specifies the actual text for the sub item. As with menu items,
sub items may have an optional keyboard shortcut character, specified using
the Shortcuts paramater.
All other parameters are identical to the MenuItem command.

ShapeSub MenuList#,Flags,Menu,Item,Subitem,Shape#

ShapeSub allows you to create a graphic sub menu item. Shape# specifies a
previously created shape object to be used as the sub item’s g r a phics.
All other parameters are identical to those in Subitem.

SetMenu MenuList#

SetMenu is used to attach a m enulist to the currently used window. Each
window may have only one menulist attached to it.

MenuGap X Gap, Y Gap

Executing M enuGap before creating any menu titles, items or sub items,
allows you to control the layout of the menu.
X Gap refers to an amount, specified in pixies, to be inserted to the left and
right of all menu items and sub menu items. Y Gap refers to an amount, again
in pixels, to be inserted above and below all menu items and sub menu items.

SubItemOff X Offset,Y Offset

SubItemOff allows you to control the relative position of the top of a list of
sub menu items, in relation to their associated menu item.
Whenver a menu item is created which is to have sub menu items, it’s a good
idea to append the name of the menu item with the ’» ’ character. This may
be done using Chr$(187). This gives the user a visual indication that more
options are available. To position the sub menu items correctly so that they
appear after the ’» ’ character, SubItemOff should be used.

196

MenuState MenuList#[,Menu[,ltem[,Subitem]]],Onl Off

The MenuState command allows you to turn menus, or sections of menus, on
or off.
MenuState with just the MenuList# parameter may be used to turn an entire
menu list on or off.
MenuState with MenuList# and Menu parameters may be used to turn a menu
on or off.
Similarly, menu items and sub items may be turned on or off by specifying the
appropriate parameters.

MenuColour Colour

MenuColour allows you to determine what colour any menu item or sub item
text is rendered in. M enuColour should be executed before the approprate
menu item commands.

MenuChecked (MenuList#,Menu,ltem[,Subitem])

The MenuChecked function allows you to tell whether or not a ’toggle’ type
menu item or menu sub item is currently ’checked’ or ’on’. If the specified
menu item or sub item is in fact checked, MenuChecked will return ’true’ (-1).
If not, MenuChecked will return ’false’ (0).

197

R-26: GADTOOLS COMMANDS

GadTools are a new system of Gadgets added to the Am iga’s operating system in
version 2.0. They are improved in both looks and performance over the older standard
Gadgets.

In order for certain GadTools gadgets to function correctly the first thing to make sure
is that the Window has the correct IDCMP flags set:

#MOUSEMOVE=$10 ;needed when user drags a slider
#INTUITICKS=$400000 ;needed when user holds down an arrow
AddIDCMP #MOUSEMOVE+#INTUITICKS

To add GadTools Gadgets to the window simply create a list from the commands
listed below and use the AttachGTList command to add them to the window.

For most GTGadgets your program should only act on a #GadgetUp message. The
GadgetHit function will return the ID of the gadget the user has just hit and the
EventCode function will contain it’s new value.

Use GTGetString and GTGetInteger functions to read the contents of the GadTools
string gadgets after a #GadgetUp message.

GTadgetFlag Value

#_LEFT = 1
#_RIGHT = 2
#_ABOVE = 4
#_BELOW = 8
#_IN = $10
#_Highlight = $20
#_Disable = $40
#_Immediate = $80
#_BoolValue = $100
#_Scaled $200
#_Vertical = $400

;position of text label

;gadget is highlighted initially
;gadget is disabled initially
;report GadgetDown flag
;gadget is on initially
;scale arrowsize on scroller gadget
;make GTPropGadget vertical

GTButton GTList#,id,x,y,w,h,Text$,flags

Same as Blitz’s TextGadget but with the added flexibility of placing the label
Text$ above, below to the left or right of the button (see flags).

GTCheckBox GTList#,id,x,y,w,h,Text$,flags

A box with a check mark that toggles on and off, best used for options that are
either enabled or disabled.

GTCycle GTList#,id,x,y,w,h,Text$,flags,Options$

Used for offering the user a range of options, the options string should be a list

198

of options separated by the | character eg. "HIRES | LORES | SUPER
HIRES"

GTInteger GTList#,id,x,y,w,h,Text$,flags,default

A string gadget that allow s only num bers to be entered by the user. See
GTSetInteger and GTGetInteger for information about accessing the contents
of a GTInteger gadget.

GTListView GTList#,id,x,y,w,h,Text$,flags,list()

The ListView gadget e n a b le s the user to scroll through a list of options.
These options m ust be contained in a string field of a B litz linked list.
Currently this string field must be the second field, the first being a word type.
*See the GTChangeList command for more details.

GTMX GTList#,id,x,y,w,h,Text$,flags,Options$

GTMX is an exclusive selection gadget, the Options$ is the same as GTCycle
in format, GadTools then displays all the options in a vertical list each with a
hi-light beside them.

GTNumber GTList#,id,x,y,w,h,Text$,flags,value

This is a read only gadget (user cannot interact with it) used to display
numbers. See GTSetInteger to update the contents of this readonly "display”
gadget.

GTPalette GTList#,id,x,y,w,h, Text$,flags,depth

Creates a number of coloured boxes relating to a colour palette,

GTScroller GTList#,id,x,y,w,h,Text$,flags, Visible,Total

A prop type gadget for the user to control an amount or level, is accompanied
by a set of arrow gadgets.

GTSlider GTList#,id,x,y, w,h, Text$,flags,Min,Max

Same as Scroller but for controlling the position of display inside a larger
view.

GTString GTList#,id,x,y,w,h,Text$,flags,MaxChars

A standard string type gadget. See G T SetS tring and G T G etS tring for
accessing the contents of a GTString gadget.

GTText GTList#,id,x,y,w,h,Text$,flags,Display$

A read only gadget (see GTNum ber) for displaying text m essages. See
GTSetString for updating the contents of this read only "display" gadget.

GTShape GTList#,id,x,y,flags,Shape#[,Shape#]

Similar to the Blitz ShapeGadget allowing IFF graphics that are loaded into

199

Blitz shape objects to be used as gadgets in a window.

AttachGTList GTList#, Window#

The AttachGTList command is used to attach a set of GadTools gadgets to a
Window after it has been opened.

GTTags Tag, Value [, Tag, Value...]

The GTTags command can be used prior to initialisation of any of the 12
gadtools gadgets to preset any relevant Tag fields. The following are some
useful Tags that can be used with GTTags:

#tag=$80080000
#GTCB_Checked=#tag+4
#GTLV_Top=#tag+5
#GTLV_ReadOnly=#tag+7
#GTMX_Active=#tag+10
#GTTX_Text=#tag+11
#GTNM_Number=#tag+13
#GTCY_Active=#tag+15
#GTPA_Color=#tag+17
#GTPA_ColorOffset=#tag+18
#GTSC_Top=#tag+21
#GTSC_Total=#tag+22
#GTSC_Visible=#tag+23
#GTSL_Level=#tag+40
#GTSL_MaxLevelLen=#tag+41
#GTSL_LevelFormat=#tag+42
#GTSL_LevelPlace=#tag+43
#GTLV_Selected=#tag+54
#GTMX_Spacing=#tag+61

State of checkbox
Top visible item in listview
Set TRUE if listview is ReadOnly
Active one in mx gadget
Text to display
Number to display
The active one in the cycle gad
Palette color
First color to use in palette
Top visible in scroller
Total in scroller area
Number visible in scroller
Slider level
Max length of printed level
* Format string for level
* Where level should be placed
Set ordinal number of selected
* Added to font height

All of the above except for those marked * can be set after initialisation of the
Gadget using the GTSetAttrs command.

The follow ing is an exam ple o f creating a slider gadget with a num eric
display:

f$="%21d"
GTTags #GTSLLevelFormat,&f$,#GTSLMaxLevelLen,4
GTSlider 2,10,320,120,200,20,"GTSLIDER",2,0,10

GTGadPtr (GTList#,id)

GTGadPtr returns the actual location of the specified GadTools gadget in
memory.

GTBevelBox GTList#,x,y,w,h,flags

GTBevelBox is the GadTools library equivalent of the Borders command and
can be used to render frames and boxes in the currently used Window.

200

GTChangeList GTList#,id [,List()]

GTChangeList must be used whenever a List attached to a GTListView needs
to be modified. Call GTChangeList without the List() parameter to free the
List, modify it then reattach it with another call to GTChangeList this time
using the List() parameter.

GTSetAttrs GTList#,id [,Tag, Value...]

GTSetAttrs can be used to modify the status of certain GadTools gadgets with
the relevant Tags. See GTTags for more information.

GTSetString GTList#,id,string$

Used with both GTString and GTText gadgets, GTSetString will not only
update the contents of the gadget but redraw it also.

GTSetInteger GTList#,id,value

Used with both GTInteger and GTNumber gadgets, GTSetInteger will not
only update the contents of the gadget but redraw it also.

GTGetString GTList#,id

Used to read the contents from a GTString gadget.

GTGetInteger GTList#,id

Used to read the contents from a GTInteger gadget.

GTGetAttrs (GTList#,Id,Tag)

A 3.0 specific command. See C= documentation for more information.

GTEnable GTList#,Id

Allows GTGadgets to be enabled and disabled.

GTDisable GTList#,Id

Allows GTGadgets to be enabled and disabled.

GTToggle GTList#,Id [,On| Off]

GTToggle allows the programmer to set Boolean gadgets such as GTButton
and GTCheckbox to a desired state.

GTStatus (GTList#,Id)

GTStatus returns the status of and gadtools toggle gadgets, a value of 1 means
the the gadget is selected, 0 deselected.

201

R-27: ASL LIBRARY COMMANDS

The ASL Library features several friendly requesters that program s can use on
machines equipped with WorkBench 2.0 and above.

ASLFileRequest$ (Title$,Pathname$,Filename$ [,Pattern$] [,x,y,w,h])

The ASL File Requester is nice. Except for the highlight bar being invisible on
directories you get to use keyboard for everything, stick in a pattern$ to hide
certain files and of course you get what ever size you want. I made it call the
Blitz file requester if the program is running under 1.3 (isn’t that nice!). There
is a fix that patches the ReqTools file requester but that doesn’t have the date
field.
I couldn’t get the Save-Only tag or the "Create Directory" option working
maybe next upgrade.

ASLPathRequest$ (Title$,Pathname$ [,x,y,w,h])

Same as ASLFileRequest$ except will just prompt the user for a path name
(directory) rather than an actual file.

ASLFontRequest (enable flags)

The ASL Font Requester is also pretty useful. The flags parameter enables the
user to modify the following options:

#pen=1 :#bckgrnd=2:#style=4:#drawmode=8:#fixsize=16

It doesn’t seem to handle colour fonts, no keyboard shortcuts so perhaps
patching ReqTools is an option for this one. The following code illustrates
how a .fontinfo structure is created by a call to ASLFontRequest (just like
programming in a high level language man!).

ASLScreenRequest (enable_flags)

Those who are just getting to grips with 2.0 and above will find this command
makes your programs look really good, however I haven’t got time to explain
the difficulties of developing programs that work in all screen resolutions
(what are ya?).

202

R-28: AREXX CONTROL COMMANDS

ARexx allows communication between different Amiga applications allowing for
some extensive and powerful control over applications by the programmer.

CreateMsgPort ("Name")

CreateMsgPort is a general Function and not specific to ARexx.
CreateMsgPort opens an intuition PUBLIC message port of the name supplied
as the only argument. If all is well the address of the port created will be
returned to you as a LONGWORD so the variable that you assign it to should
be of type long.
If you do not supply a name then a private MsgPort will be opened for you.

Port.l=CreateMsgPort("PortName")
It is important that you check you actually succeeded in opening a port in your
program. The following code or something similar will suffice.

Port.l=CreateMsgPort("Name")
IF Port=0 THEN Error_Routine{}

The name you give your port will be the name that Arexx looks for as the
HOST address,(and is case sensitive) so take this into consideration when you
open your port. NOTE IT M UST BE A UNIQUE NAME AND SHOULD
NOT INCLUDE SPACES.
D eleteM sgPort() is used to rem ove the port later but this is not entirely
necessary as Blitz will clean up for you on exit if need be.

DeleteMsgPort (Port)

D e le te M sg P o rt d e le te s a M e ssa g e P o rt p re v io u s ly a llo c a te d w ith
CreateMsgPort(). The only argument taken by DeleteMsgPort is the address
returned by CreateM sgPort(). If the Port was a public port then it will be
removed from the public port list.

Port.l=CreateMsgPort("Name")
IF Port=0 Then End
DeleteMsgPort Port

Error checking is not critical as if this fails we have SERIOUS PROBLEMS.
YOU M U ST W A IT FO R A LL M ESSA G ES FRO M A R EX X TO BE
RECEIVED BEFORE YOU DELETE THE MSGPORT. IF YOU NEGLECT
TO D E L E T E A M S G P O R T B L IT Z 2 W IL L D O IT F O R Y O U
AUTOMATICALLY ON PROGRAM EXIT.

CreateRexxMsg (ReplyPort, "exten", "HOST")

CreateRexxMsg() allocates a special Message structure used to communicate
with Arexx. If all is successful it returns the LONGWORD address of this
rexxmsg structure.
The argum ents are R ep lyP ort w hich is the long address re tu rned by
CreateMsgPort(). This is the Port that ARexx will reply to after it has finished
with the message.

203

EXTEN which is the exten name used by any ARexx script you are wishing to
run. i.e. if you are attempting to run the ARexx script test.rexx you would use
an EXTEN of "rexx".
HOST is the name string of the HOST port. Your program is usually the
HOST and so this equates to the name you gave your port in CreateMsgPort().
REMEMBER IT IS CASE SENSITIVE.
As we are allocating resources error checking is im portant and can be
achieved with the following code:

msg.l=CreateRexxMsg(Port,"rexx","HostName")
IF msg=0 THEN Error_Routine{}

DeleteRexxMsg rexxmsg

DeleteRexxMsg simply deletes a RexxMsg Structure previously allocated by
CreateRexxMsg(). It takes a single argument which is the long address of a
RexxMsg structure such as returned by CreateRexxMsg().

msg.l=CreateRexxMsg(Port,"rexx","HostName")
IF msg=0 THEN Error_Routine{}
DeleteRexxMsg msg

Again if you neglect to delete the RexxMsg structure Blitz will do this for you
on exit of the program.

ClearRexxMsg *rexxmsg

ClearRexxMsg is used to delete and clear an ArgString from one or more of
the Argument slots in a RexxMsg Structure. This is most useful for the more
advanced programmer wishing to take advantage of the Arexx #RXFUNC
abilities.
The argum ents are a LO N G W O RD address o f a R exxM sg structu re .
ClearRexxMsg will always work from slot number 1 forward to 16.

FillRexxMsg (rexxmsg,&FillStruct)

FillRexxM sg allows you to fill all 16 ARGSlots if necessary with either
ArgStrings or numerical values depending on your requirement. FillRexxMsg
will only be used by those programmers wishing to do more advanced things
with Arexx, including adding libraries to the ARexx library list, adding
H osts,V alue T okens etc. It is also needed to access A rexx using the
#RXFUNC flag. The arguments are a LONG Pointer to a rexxmsg. The
LONG address of a FillStruct NEWTYPE structure. This structure is defined
in the Arexx.res and has the following form.

NEWTYPE .FillStruct
Flags.w ;Flag block
Args0 .l ; argument block (ARG0-ARG15)
Args1.l ; argument block (ARG0-ARG15)
Args2.l ; argument block (ARG0-ARG15)
Args3.l ; argument block (ARG0-ARG15)
Args4.l ; argument block (ARG0-ARG15)
Args5.l ; argument block (ARG0-ARG15)
Args6.l ; argument block (ARG0-ARG15)
Args7.l ; argument block (ARG0-ARG15)
Args8.l ; argument block (ARG0-ARG15)

204

Args9.l ; argument block (ARG0-ARG15)
Args10.l ; argument block (ARG0-ARG15)
Args11.l ; argument block (ARG0-ARG15)
Args12.l ; argument block (ARG0-ARG15)
Args13.l ; argument block (ARG0-ARG15)
A rgs14.l ; argument block (ARG0-ARG15)
Args15.l ; argument block (ARG0-ARG15)
EndMark.l ;End of the FillStruct

End NEWTYPE

The Args?.l are the 16 slots that can possibly be filled ready for converting
into the RexxMsg structure. The Flags.w is a WORD value representing the
type of LONG word you are supplying for each ARGSLOT (Arg?.l).

Each bit in the Flags WORD is representative of a single Args?.l, where a set
bit represents a numerical value to be passed and a clear bit represents a string
argument to be converted into a ArgString before installing in the RexxMsg.
The Flags Value is easiest to supply as a binary number to make the bits
visible and would look like this.

%0000000000000000 ;represents that all Arguments are Strings.
% 0110000000000000 ;represent second&third as being integers.

FillRexxMsg expects to find the address of any strings in the Args?.l slots so it
is im portant to rem em ber when filling a FillStruct that you must pass the
string address and not the name of the string. This is acomplished using the
’&’ address of operand.

So to use FillRexxMsg we must do the following things in our program:

1. Allocate a FillStruct
2. Set the flags in the FillStruct\Flags.w
3. Fill the FillStruct with either integer values or the addresses of our string
arguments.
4. Call FillRexxMsg with the LONG address of our rexxmsg and the LONG

address of our FillStruct.

To accomplish this takes the following code:

;Allocate our FillStruct (called F)
DEFTYPE.FillStruct F
;assign some string arguments
T$="open":T1$="0123456789"
;Fill in our FillStruct with flags and (&) addresses of our strings
F\Flags= %0010000000000000,&T$,&T1$,4
;Third argument here is an integer (4).
Port.l=CreateMsgPort("host")
msg.l=CreateRexxMsg(Port," vc", "host")
FillRexxMsg msg,&F
;<-3 args see #RXFUNC

SendRexxCommand msg,"",#RXFUNCI #RXFF_RESULTI 3

205

CreateArgString ("this is a string")

CreateArgString() builds an ARexx compatible ArgString structure around the
provided string. All strings sent to, or received from Arexx are in the form of
ArgStrings. See the TYPE RexxARG.
If all is well the return will be a LONG address of the ArgString structure. The
pointer will actually point to the NULL terminated String with the remainder
of the structure available at negative offsets.

DeleteArgString ArgString

DeleteArgString is designed to Delete ArgStrings allocated by either Blitz or
A R exx in a system fr ie n d ly w ay. It tak es on ly one a rg u m en t the
LONGWORD address of an ArgString as returned by CreateArgString().

SendRexxCommand rexxmsg, "commandstring",#RXCOMM| #RXFF_RESULT

SendRexxCom m and is designed to fill and send a RexxM sg structure to
ARexx inorder to get ARexx to do something on your behalf. The arguments
are as follows;

rexxmsg: the LONGWORD address of a RexxMsg structure as returned by
CreateRexxMsg().

commandstring: the command string you wish to send to ARexx. This is a
string as in "this is a string” and will vary depending on what you wish to do
with ARexx. Normally this will be the name of an ARexx script file you wish
to execute. ARexx will then look for the script by the name as well as the
name with the exten added.(this is the exten you used when you created the
RexxMsg structure using CreateRexxMsg()). This could also be a string file.
That is a complete ARexx script in a single line.

ActionCodes: the flag values you use to tell ARexx what you want it to do
with the commandstring you have supplied.

COMMAND (ACTION) CODES

The command codes that are currently implemented in the resident process are
described below. Commands are listed by their mnemonic codes,followed by
the valid modifier flags. The final code value is always the logical OR of the
code value and all o f the m odifier flags selected. The com m and code is
installed in the rm_Action field of the message packet.

RXADDCON:
This code specifies an entry to be added to the Clip List. Param eter slot
ARGO points to the name string,slot ARG1 points to the value string,and slot
ARG2 contains the length of the value string.
The name and value arguments do not need to be argstrings,but can be just
pointers to storage areas. The name should be a null-terminated string,but the
value can contain arbitrary data including nulls.

206

RXADDFH:
This action code specifies a function host to be added to the Library List.
Parameter slot ARGO points to the (null-terminated) host name string,and slot
ARG1 holds the search priority for the node. The search priority should be an
integer between 100 and -100 inclusive;the rem aining priority ranges are
reserved for future extensions. If a node already exists with the same name,the
packet is returned with a warning level error code.
Note that no test is made at this time as to whether the host port exists.

RXADDLIB:
This code specifies an entry to be added to the Library List. Parameter slot
ARGO points to a null-terminated name string referring either to a function
library or a function host. Slot ARG1 is the priority for the node and should be
an integer between 100 and -100 inclusive;the remaining priority ranges are
reserved for future extensions. Slot ARG2 contains the entry Point offset and
slot ARG3 is the library version number. If a node already exists with the
same name,the packet is returned with a warning level error code. Otherwise,a
new entry is added and the library or host becom es available to ARexx
programs. Note that no test is made at this time as to whether the library exists
and can be opened

RXCOMM [RXFF_TOKEN] [RXFF_STRING] [RXFF_RESULT] [RXFF_NOIO]
Specifies a command-mode invocation of an ARexx program. Parameter slot
ARGO m ust contain an argstring P o in ter to the com m and string. The
RXFB_TOKEN flag specifies that the command line is to be tokenized before
being passed to the invoked program. The RXFB_STRING flag bit indicates
that the com m and string is a "string file." Command invocations do not
normally return result strings,but the RXFB_RESULT flag can be set if the
caller is prepared to handle the cleanup associated with a returned string. The
RXFB_NOIO m odifier suppresses the inheritance of the host’s input and
output streams.

RXFUNC [RXFF_RESULT] [RXFF_STRING] [RXFF_NOIO] argcount
This command code specifies a function invoction. Param eter slot ARGO
contains a pointer to the function name string,and slots ARG1 through ARG15
point to the argument strings,all of which must be passed as argstrings. The
lower byte of the command code is the argument count;this count excludes the
function name string itself. Function calls normally set the RXFB_RESULT
flag,but this is not mandatory. The RXFB_STRING modifier indicates that the
function name string is actually a "string file". The RXFB_NOIO modifier
suppresses the inheritance of the host’s input and output streams.

RXREMCON: This code requests that an entry be removed from the Clip List.
Parameter slot ARGO points to the null-terminated name to be removed. The
Clip List is searched for a node matching the supplied name,and if a match is
found the list node is removed and recycled. If no match is found the packet is
returned with a warning error code.

RXREMLIB: This command removes a Library List entry. Param eter slot
ARGO points to the null term inated string specifying the library to be
rem oved. The L ibrary L ist is searched for a node m atching the library
name,and if a match is found the node is removed and released. If no match is
found the packet is returned with a warning error code. The libary node will

207

not be removed if the library is currently being used by an ARexx program.

RXTCCLS:
This code requests that the global tracing console be closed. The console
window will be closed immediately unless one or more ARexx programs are
waiting for input from the console. In this event,the window will be closed as
soon as the active programs are no longer using it.

RXTCOPN:
This command requests that the global tracing console be opened. Once the
console is open,all active ARexx programs will divert their tracing output to
the console. Tracing input(for interactive debugging)will also be diverted to
the new console. Only one console can be opened;subsequent RXTCOPN
requests will be returned with a warning error message.

MODIFIER FLAGS

Command codes may include m odifier flags to select various processing
options. M odifier flags are specific to certain commands,and are ignored
otherwise.

RXFF_NOIO:
This modifier is used with the RXCOMM and RXFUNC command codes to
suppress the automatic inheritance of the host’s input and output streams.

RXFF_NONRET:
Specifies that the message packet is to be recycled by the resident process
rather than being returned to the sender. This implies that the sender doesn’t
care about whether the requested action succeeded,since the returned packet
provides the only means o f acknowledgem ent. (RXFF_NONRET M UST
NOT BE USED AT ANY TIME)

RXFF_RESULT:
This m odifer is valid with the RXCOM M and RXFUNC com m ands,and
requests that the called program return a result string. If the program EXITs(or
RETURNs)with an expression,the expression result is returned to the caller as
an argstring. This ArgString then becomes the callers responsibility to release.
This is automatically accomplished by using GetResultString(). It is therefore
im p e r i t iv e th a t i f you use R X F F _ R E S U L T th e n you m u st use
GetResultString() when the message packet is returned to you or you will
incure a memory loss equal to the size of the ArgString Structure.

RXFF_STRING:
This modifer is valid with the RXCOMM and RXFUNC command codes. It
indicates that the command or function argument(in slot ARGO)is a "string
file" rather than a file name.

RXFF_TOKEN:
This flag is used with the RXCOMM code to request that the command string
be com pletely tokenized before being passed to the invoked program .
Programs invoked as commands normally have only a single argument string.
The tokenization process uses "white space" to separate the tokens,except
w ithin quoted strings. Q uoted strings can use e ither single or double

208

quotes,and the end of the command string(a null character) is considered as an
implicit closing quote.

ReplyRexxMsg ReplyRexxMsg rexxmsg,Result1,Result2,"ResultString"

When ARexx sends you a RexxMsg (Other than a reply to yours i.e. sending
yours back to you with results) you must repl to the message before ARexx
w ill co n tin u e or free th a t m em ory a sso c ia te d w ith th a t R exxM sg .
ReplyRexxMsg accomplishes this for you. ReplyRexxMsg also will only reply
to m essage that requires a reply so you do not have to include m essage
checking routines in your source sim ply call R eplyR exxM sg on every
message you receive wether it is a command or not.

The arguments are:

rexxm sg is the LONGW ORD address of the RexxM sg Arexx sent you as
returned by GetMsg_(Port).

Result1 is 0 or a severity value if there was an error.

Result2 is 0 or an Arexx error number if there was an error processing the
command that was contained in the message.

ResultString is the result string to be sent back to Arexx. This will only be sent
if Arexx requested one and Result1 and 2 are 0.

ReplyRexxMsg rexxmsg,0,0,"THE RETURNED MESSAGE"

GetRexxResult() Result.l=GetRexxResult(rexxmsg,ResultNum)

GetRexxResult extracts either of the two result numbers from the RexxMsg
structure. Care must be taken with this Function to ascertain wether you are
dealing with error codes or a ResultString address. Basically if result 1 is zero
then resu lt 2 will e ither be zero or contain a A rgString po in te r to the
ResultString. This should then be obtained using GetResultString().

The arguments to GetRexxResult are;

rexxmsg is the LONGWORD address of a RexxMsg structure returned from
ARexx.

R esultNum is either 1 or 2 depending on wether you wish to check result 1 or
result 2.

GetRexxCommand (rexxmsg,ARGnum)

GetRexxCommand allows you access to all 16 ArgString slots in the given
RexxMsg. Slot 1 contains the command string sent by ARexx in a command
message so this allows you to extract the Command.

Arguments are:

209

rexxmsg is a LONGWORD address of the RexxMsg structure as returned by
RexxEvent()
ARGNum is an integer from 1 to 16 specifying the ArgString Slot you wish to
get an ArgString from.
YOU MUST KNOW THAT THERE IS AN ARGSTRING THERE.

GetResultString (rexxmsg)

G etResultString allows you to extract the result string returned to you by
ARexx after it has completed the action you requested. ARexx will only send
back a result string if you asked for one (using the ActionCodes) and the
requested action was successful.

Wait

W ait halts all program execution until an event occurs that the program is
interested in. Any intuition event such as clicking on a gadget in a window
will start program execution again.
A message arriving at a MsgPort will also start program execution again. So
you may use Wait to wait for input from any source including messages from
ARexx to your program.
Wait should always be paired with EVENT if you need to consider intuition
events in your event handler loop.

RexxEvent (Port)

RexxEvent is our Arexx Equivalent of EVENT(). It’s purpose is to check the
given Port to see if there is a message waiting there for us.
It should be called after a WAIT and will either return a NULL to us if there
was no message or the LONG address of a RexxMsg Structure if there was a
message waiting.
Multiple Arexx MsgPorts can be handled using separate calls to RexxEvent():

Wait:Rmsg1.l=RexxEvent(Port1):Rmsg2.1=RexxEvent(Port2):etc
RexxEvent also takes care of automatically clearing the rexxmsg if it is our
message being returned to us.
T he a rg u m en t is the LO N G ad d re ss o f a M sg P o rt as re tu rn e d by
CreateMsgPort().

IsRexxMsg (rexxmsg)

IsRexxM sg tests the argum ent (a LONGW ORD poin ter hopefully to a
message packet) to see if it is a RexxMsg Packet. If it is TRUE is returned (1)
or FALSE if it is not (0).
As the test is non destructive and extensive passing a NULL value or a
LONGWORD that does not point to a Message structure (Intuition or Arexx)
will safely return as FALSE.

RexxError() ErrorString$=RexxError(ErrorCode)

R exxError converts a num erical error code such as you would get from
G etRexxResult(msg,2) into an understandable string error message. If the
ErrorCode is not known to ARexx a string stating so is returned this ensures
that this function will always succeed.

210

R-29: BREXX COMMANDS

The Blitz BRexx commands allow you to take control of certain aspects of Intuition.
Through BRexx, your programs can ’fool’ Intuition into thinking that the mouse has
been played with, or the keyboard has been used. This is ideal for giving your
programs the ability to perform ’macros’ - where one keystroke can set off a chain of
pre-defined events.

The BRexx commands support tape objects. These are predefined sequences of events
which may be played back at any time. The convenient Record command can be used
to easily create tapes.
Using the MacroKey command, tapes may also be attached to any keystroke to be
played back instantly at the push of a button!

Please note that none of the BRexx commands are available in Blitz mode.

AbsMouse X,Y

AbsMouse allows you to position the mouse pointer at an absolute display
location. The X parameter specifies how far across the display the pointer is to
be positioned, while the Y parameter specifies how far down the display. X
must be in the range zero through 639. Y must be in the range zero through
399 for NTSC machines, or zero through 511 for PAL machines.

RelMouse X Offset, Y Offset

RelMouse allows you to move the mouse pointer a relative distance from it’s
current location. Positive offset parameters will move the pointer rightwards
and downwards, while negative offset param eters w ill move the pointer
leftwards and upwards.

MouseButton Button,On| Off

MouseButton allows you to alter the status of the Amiga’s left or right mouse
buttons. Button should be set to zero to alter the left mouse button, or one to
alter the right mouse button. On/Off refers to whether the mouse button should
be pressed (On) or released (Off).

ClickButton Button

ClickButton is identical to executing two MouseButton commands - one for
pressing the mouse button down, and one for releasing it. This can be used for
such things as gadget selection.

Type String$

Type causes Intution to behave exactly as if a certain series of keyboard
characters had been entered. These are normally sent to the currently active
window.

211

Record [Tape#]

Record allows you to create a tape object. Tape objects are sequences of
mouse and/or keyboard events which may be played back at any time.
When a tape# parameter is supplied to the Record command, recording will
begin. From that point on, all mouse and keyboard activity will be recorded
onto the specified tape.
The Record command with no parameters will cause any recording to finish.

PlayBack [Tape#]

PlayBack begins playback of a previously created tape object. When a Tape#
parameter is supplied, playback of the specified tape will commence. If no
parameter is supplied, any tape which may be in the process of being played
back will finish.

QuickPlay On| Off

QuickPlay will alter the way tapes are played using the PlayBack command. If
QuickPlay is enabled by use of an On parameter, then all PlayBack commands
will cause tapes to be played with no delays between actions. This means any
pauses which may be present in a tape (for instance, delays between mouse
movements) will be ignored when it is played back. QuickPlay Off will return
PlayBack to it’s default mode of including all tape pauses. This is sometimes
necessary when playing back tapes which must at some point wait for disk
access to finish before continuing.

PlayWait

PlayW ait may be used to halt program flow until a PlayBack of a tape has
finished.

XStatus

XStatus returns a value depending upon the current state of the BRexx system.
Possible return values and their meanings are as follows:

0 BRexx is currently inactive. No tapes are either being recorded or
played back.

1 BRexx is currently in the process of recording a tape.
This may be due to either the Record or TapeTrap commands.

2 BRexx is currently playing a tape back.

SaveTape Tape#,Filename$

SaveTape allows you to save a previously created tape object out to disk. This
tape may later be reloaded using LoadTape.

LoadTape Tape#,Filename$

LoadTape allows you to load a tape object previously saved with SaveTape for
use with the PlayBack command.

212

TapeTrap [Tape#]

T apeT rap allow s you to record a sequence o f A bsM ouse, R elM ouse,
MouseButton and ClickButton events to a tape object.
TapeTrap works similarly to Record, in that both commands are used to create
a tape. However, whereas Record receives information from the actual mouse
and keyboard , T apeT rap rece iv es in fo rm ation from any A bsM ouse,
RelMouse, MouseButton and ClickButton commands which may be executed.
TapeTrap with no parameter will finish tape creation.

QuietTrap On| Off

QuietTrap determines the way in which any TapeTrapping will be executed.
Q uietTrap On will cause any A bsM ouse, RelM ouse, M ouseB utton and
ClickButton commands to be recorded to tape, but not to actually have any
effect on the porgram currently running.
Q uietTrap O ff will cause any AbsM ouse, RelM ouse, M ouseButton and
C lickButton commands to be recorded to tape, AND to cause their usual
effects. QuietTrap Off is the default mode.

MacroKey Tape#,Rawkey,Qualifier

M acroK ey causes a prev iously defined tape object to be a ttached to a
particular keyboard key. RawKey and Qualifier define the key the tape should
be attached to.

FreeMacroKey Rawkey,Qualifier

FreeMacroKey causes a previously defined macro key to be removed so that a
BRexx tape is no longer attatched to it.

213

R-30: SERIAL PORT COMMANDS

The following are a set of commands to drive both the single RS232 serial port on an
Amiga as well as supporting multiserial port cards such as the A2232 card. The unit#
in the following commands should be set to 0 for the standard RS232 port, unit 1
refers to the default serial port set by the advanced serial preferences program and
unit 2 on refer to any extra serial ports available.

OpenSerial devices,unit#,baud,io_serfiags

OpenSerial is used to configure a Serial Port for use. As with OpenFile,
OpenSerial is a function and returns zero if it fails. If it succeeds advanced
users may note the return result is the location of the IOExtSer structure.
The device$ should be "serial.device" or compatible device driver.
The baud rate should be in the range of 110-292,000.
The io_serflags parameter can include the following flags:

#serf_xdisabled=128 ; disable xon/xoff
#serf_eofmode=64 ;enable eo f checking
#serf_shared=32 ;set i f you don’t need exclusive use o f port
#serf_rad_boogie=16 ;high speed mode
#serf_queuedbrk=8 ; if set a break command waits fo r buffer empty
#serf_7wire=4 ; i f set use 7 wire RS232
#serf_parity_odd=2 ;select odd parity (even i f not set)
#serf_parity_on=l ; enable parity checking

WriteSerial unit#,byte

WriteSerial sends one byte to the serial port. Unit# defines which serial port is
used. If you are sending characters use the Asc() function to convert the
character to a byte e.g. WriteSerial 0,asc("b").

WriteSerialString unit#,string

WriteSerialString is similar to WriteSerial but sends a complete string to the
serial port.

ReadSerial (unit#)

ReadSerial returns the next byte waiting in the serial port’s read buffer. If the
b u f fe r is e m p ty it r e tu rn s a -1 . I t is b e s t to u se a w o rd ty p e
(var.w=ReadSerial(0)) as a byte will not be able to differentiate between -1
and 255.

ReadSerialString (unit#)

ReadSerialString puts the serial port’s read buffer into a string, if the buffer is
empty the function will return a null string (length=0).

214

CloseSerial unit#

The CloseSerial command will close the port, enabling other programs to use
it. Note: B litz will autom atically close all ports that are opened when a
program ends.

SetSerialBuffer unit#,bufferiength

SetSerialBuffer changes the size of the ports read buffer. This may be useful if
your program is not always handling serial port data or is receiving and
processing large chunks of data. The smallest size for the internal serial port
(unit#0) is 64 bytes. The bufferlength variable is in bytes.

SetSerialLens unit#,readlen, writelen,stopbits

SetSerialLens allows you to change the size of characters read and written by
the serial device. Generally readlen=writelen and should be set to either 7 or 8,
stopbits should be set to 1 or 2. Default values are 8,8,1.

SetSerialParams unit#

For advanced users, SetSerialParams tells the serial port when parameters are
changed. This would only be necesary if they were changed by poking offsets
from IOExtSer which is returned by the OpenSerial command.

SerialEvent (unit#)

SerialEvent is used when your program is handling events from more than 1
source, Windows, ARexx etc. This command is currently not implemented

ReadSerialMem Unit#,Address,Length

ReadSerialM em will fill the given memory space with data from the given
serial port.

WriteSerialMem Unit#,Address,Length

WriteSerialMem send the given memory space out the given serial port.

215

216

APPENDIX 1: COMPILE TIME ERRORS

The following is a list of all the Blitz 2 compile time errors. Blitz 2 will print these
messages when unable to compile a line of your code and fails. The cursor will be
placed on the line with the offending error in most cases.

Sometimes the cause of the error will not be directly related to where Blitz 2 ceased
compiling. Any reference to an include file or a macro could mean the error is there
and not on the line referenced.

General Syntax Errors

Syntax Error: Check for typing mistakes and check your syntax with the reference
manual.

Garbage at End of Line: A syntax error of sorts. Causes are usually typos and
missing semi colons from the beginning of Remarks. Also a .type suffix when
accessing NewType items will generate this error.

Numeric Over Flow: The signed value is too large to fit in the variable space
provided, if you need bytes to hold 0..255 rather than -128..127 etc turn off Overflow
checking in the runtime errors section of the Options requester.

Bad Data: The values following the Data.type statement are not of the same type as
precedes the Data statement.

Procedure Related Errors

Not Enough Parameters: The command, statement or function needs more
paramaters. Use the HELP key for correct number and meaning of parameters with
Blitz] [commands and check Statement and Function definitions in your code.

Duplicate parameter variable: Parameters listed in statements and functions must be
unique.

Too many parameters: The statement or function was defined needing less
parameters than supplied by the calling routine.

Illegal Parameter Type: NewTypes cannot be passed to procedures.

Illegal Procedure return: The statement or function return is syntatically incorrect.

Illegal End Procedure: The statement or function end is syntatically incorrect.

Shared outside of Procedure: Shared variables are only applicable to procedures.

217

Variable already Shared: Shared variables must be unique in name.

Can’t Nest Procedures: Procedures may NOT be defined within procedures, only
from the primary code.

Can’t Dim Globals in Procedures: Global arrays may only defined from the
primary code.

Can’t Goto/Gosub a Procedure: Goto and Gosub must always point to an existing
part of the primary code.

Duplicate Procedure name: A procedure (statement or function) of the same name
has been defined previously in the source.

Procedure not found: The statement or function has not previously been defined in
the source code.

Unterminated Procedure: The End Function or End Statement commands must
terminate a procedure definition.

Illegal Procedure Call: The statement or function call is syntatically incorrect.

Illegal Local Name: Not a valid variable name.

Constants Related Errors

Can’t Assign Constant: Constant values can only be assigned to constants, no
variables please.

Constant not defined: A constant (such as #num) has been used in an expression
without first being defined

Constant already defined: Constants can only be defined once, i.e. cannot change
their value through the code.

Illegal Constant: Same as can’t assign constant

Fractions Not allowed in Constants: Blitz 2 constants can only contain absolute
values, they are usually rounded and no error is generated.

Can’t Use Constant: Caused by a clash in constant name definitions.

Constant Not Found: The Constant has not been defined previously in the source
code.

Illegal Constant Expression: A constant may only hold whole numbers, either a
decimal place, text or a variable name has been included in the constant definition.

218

Expression Evaluation Errors

Can’t Assign Expression: The expression cannot be evaluated or the evaluation has
generated a value that is incompatible with the equate.

No Terminating Quote: Any text assigns should start and end with quotes.

Precedence Stack Overflow: You have attained an unprecedented level of
complexity in your expression and the Blitz 2 evaluation stack has overflowed. A rare
beast indeed!

Illegal Errors

Illegal Trap Vector: The 68000 has only 16 trap vectors.

Illegal Immediate Value: An immediate value must be a constant and must be in
range. See the 68000 appendix for immediate value ranges.

Illgeal Absolute: The Absolute location specified must be defined and in range.

Illegal Displacement: The Displacement location specified must be defined and in
range.

Illegal Assembler Instruction Size: The Intstruction size is not available, refer to the
68000 appendix for relevant instruction sizes.

Illegal Assembler Addressing Mode: The addressing mode is not available for that
opcode, refer to the 68000 appendix for relevant addressing modes.

Library Based Errors

Illegal TokeJsr token number: Blitz 2 cannot find the library routine referred to by
the TokeJsr command, usually caused by the library not being included in DefLibs,
not present in the BlitzLibs: directory or the calculation being wrong (token number =
libnumber*128 + token offset).

Library not Found : ’library number’: Blitz2 cannot find the library routine
referred to by a Token, usually caused by the library not being included in DefLibs or
the library not present in the BlitzLibs: directories.

Token Not Found : ’token number’: When loading source, Blitz 2 replaces any
unfound tokens with ?????, compiling your code with these unknown tokens present
will generate the above error.

219

Include Errors

Already Included: The same source code has already been included previously in the
code.

Can’t open Include: Blitz 2 cannot find the include file, check the pathname.

Error Reading File: DOS has generated an error during an include.

Program Flow Based Errors

Illegal Else in While Block: See the reference section for the correct use of the Else
command with While..Wend blocks.

Until without Repeat: Repeat..Until is a block directive and both must be present.

Repeat Block too large: A Repeat..Until block is limited to 32000 bytes in length.

Repeat without Until: Repeat..Until is a block directive and both must be present.

If Block too Large: Blitz 2 has a limit of 32K for any blocks of code such as
IF..ENDIF blocks.

If Without End If: The IF statement has two forms, if the THEN statement is not
present then and END IF statment must be present to specify the end of the block.

Duplicate For...Next Error: The same variable has been used for a For..Next loop
that is nested within another For..Next loop.

Bad Type for For...Next: The For..Next variable must be of numeric type.

Next without For: FOR..NEXT is a block directive and both commands must be
present.

For...Next Block to Long: Blitz 2 restricts all blocks of code to 32K in size.

For Without Next: FOR..NEXT is a block directive and both commands must be
present.

220

Type Based Errors

Can’t Exchange different types: The Exchange command can only swap two
variables of the same type.

Can’t Exchange NewTypes: The Exchange command can not handle NewTypes at
present.

Type too Big: The unsigned value is too large to fit in the variable space provided.

Mismatched Types: Caused by mixing different types illegaly in an evaluation.

Type Mismatch: Same as Mismatched Types.

Can’t Compare Types: Some Types are incompatible with operations such as
compares.

Can’t Convert Types: The two Types are incompatible and one can not be converted
to the other.

Duplicate Offset (Entry) Error: The NewType has two entries of the same name.

Duplicated Type: A Type already exists with the same name.

End NewType without NewType: The NewType..End NewType is a block directive
and both must be present.

Type Not Found: No Type definition exists for the type referred to.

Illegal Type: Not a legal type for that function or statement.

Offset not Found: The offset has not been defined in the NewType definition.

Element isn’t a pointer: The variable used is not a *var type and so cannot point to
another variable.

Illegal Operator for Type: The operator is not suited for the type used.

Too many comma’s in Let: The NewType has less entries than the number of values
listed after the Let.

Can’t use comma in Let: The variable you are assigning multiple values is either not
a NewType and cannot hold multiple values or the NewType has only one entry.

Illegal Function Type: A function may not return a NewType.

221

Conditional Compiling Errors

CNIF/CSIF without CEND: CNIF and CSIF are block directives and a CEND must
conclude the block.

CEND without CNIF/CSIF...: CNIF..CEND is a block directive and both
commands must be present.

Resident Based Errors

Clash in Residents: Residents being very unique animals, must not include the same
Macro and Constant definitions.

Can’t Load Resident: Blitz 2 cannot find the Resident file listed in the Options
requester. Check the pathname.

Macro Based Errors

Macro Buffer Overflow: The Options requester in the Blitz 2 menu contains a
macro buffer size, increase if this error is ever reported. May also be caused by a
recursive macro call which generates endless code.

Macro already Defined: Another macro with the same name has already been
defined, may have been defined in one of the included resident files as well as
somewhere in the source code.

Can’t create Macro inside Macro: Macro definitions must occur in the primary
code.

Macro without End Macro: End Macro must end a Macro definition.

Macro too Big: Macro’s are limited to the buffer sizes defined in the Options
requester.

Macros Nested too Deep: Eight levels of macro nesting is available in Blitz 2.
Should never happen!!

Macro not Found: The macro has not been defined previous to the !macroname{}
call.

Array Errors

Illegal Array type: Should never happen.

Array not found: A variable name followed by parenthises has not been previously
defined as an array. Other possible mistakes may be the use of brackets instead of
curly brackets for macro and procedure calls, Blitz 2 thinking instead you are
referring to an array name.

222

Array is not a List: A List function has been used on an array that was not
dimensioned as a List Array.

Illegal number of Dimensions: List arrays are limited to single dimensions.

Array already Dim’d: An array may not be re-dimensioned.

Can’t Create Variable inside Dim: An undefined variable has been used for a
dimension paramater with the Dim statement.

Array not yet Dim’d: See Array not found.

Array not Dim’d: See Array not found.

Interrupt Based Errors

End SetInt without SetInt: SetInt..SetInt is a block directive and both commands
must be present.

SetInt without End SetInt: SetInt..SetInt is a block directive and both commands
must be present.

Can’t use Set/ClrInt in Local Mode: Error handling can only be defined by the
primary code.

SetErr not allowed in Procedures: Error handling can only be defined by the
primary code.

Can’t use Set/ClrInt in Local Mode: Error handling can only be defined by the
primary code.

End SetInt without SetInt: SetInt..SetInt is a block directive and both commands
must be present.

SetInt without End SetInt: SetInt..SetInt is a block directive and both commands
must be present.

Illegally nested Interrupts: Interrupt handlers can obviously not be nested.

Can’t nest SetErr: Interrupt handlers can obviously not be nested.

End SetErr without SetErr: SetErr. .End SetErr is a block directive and both must
be present.

Illegal Interrupt Number: Amiga interrupts are limited from 0 to 13. These
interrupts are listed in the Amiga Hardware reference appendix.

223

Label Errors

Label reference out of context: Should never happen.

Label has been used as a Constant: Labels and constants cannot share the same
name.

Illegal Label Name: Refer to the Programming in Blitz2 chapter for correct variable
nomenclature.

Duplicate Label: A label has been defined twice in the same source code. May also
occur with macros where a label is not preceded by a \@ .

Label not Found: The label has not been defined anywhere in the source code.

Can’t Access Label: The label has not been defined in the source code.

Direct Mode Errors

Cont Option Disabled: The Enable Continue option in the Runtime errors of the
Options menu has been disabled.

Cont only Available in Direct Mode: Cont can not be called from your code only
from the direct mode window.

Library not Available in Direct Mode: The library is only available from within
your code.

Illegal direct mode command: Direct mode is unable to execute the command
entered.

Direct Mode Buffer Overflow: The Options menu contains sizes of all buffers, if
make smallest code is in effect extra buffer memory will not be available for direct
mode.

Can’t Create in Direct Mode: Variables cannot be created using direct mode, only
ones defined by your code are available.

Select... End Select Errors

Select without End Select: Select is a block directive and an End Select must
conclude the block.

End Select without Select: Select..End Select is a block directive and both must be
present.

Default without Select: The Default command is only relevant to the Select..End
Select block directive.

Previous Case Block too Large: A Case section in a Select block is larger than 32K.

224

Case Without Select: The Case command is only relevant to the Select..End Select
block directive.

Blitz Mode Errors

Only Available in Blitz mode: The command is only available in Blitz mode, refer
to the reference section for Blitz/Amiga valid commands.

Only Available in Amiga mode: The command is only available in Amiga mode,
refer to the reference section for Blitz/Amiga valid commands.

Strange Beast Errors

Optimizer Error! - $ ’: This should never happen. Please report.

Expression too Complex: Should never happen. Contact Mark directly.

Not Supported: Should never happen.

Illegal Token: Should never happen.

225

226

APPENDIX 2: OPERATING SYSTEM CALLS

B LITZLIB S:A M IG A LIB S curren tly supports the EX EC, DOS, G RA PH ICS,
INTUITION and DISKFONT amiga libraries. Parameter details for each command
are given in brackets and are also available via the Blitz 2 keyboard help system.

Each call may be treated as either a command or a function. Functions will always
return a long either containing true or false (signifying if the command was successful
or failed) or a value relevant to the routine.

The relative offsets from the library base and 68000 register parameters are included
for the convenience of the assem bler program m er. w hen using library calls an
underscore character (_) should follow the token name.

An asterisk (*) preceding routine names specifies that the calls are private and should
not be called from Blitz 2.

EXEC

-30 Supervisor(userFunction)(a5)
---- special patchable hooks to internal exec activity —
-36 *execPrivate1()()
-42 *execPrivate2()()
-48 *execPrivate3()()
-54 *execPrivate4()()
-60 *execPrivate5()()
-66 *execPrivate6()()
— module creation —
-72 lnitCode(startClass,version)(d0/d1)
-78 lnitStruct(initTable,memory,size)(a1/a2,d0)
-84 MakeLibrary(funclnit,structlnit,liblnit,dataSize,segList)(a0/a1/a2,d0/d1)
-90 MakeFunctions(target,functionArray,funcDispBase)(a0/a1/a2)
-96 FindResident(name)(a1)
-102 lnitResident(resident,segList)(a1 ,d1)
— diagnostics —
-108 Alert(alertNum)(d7)
-114 Debug(flags)(d0)
— interrupts —
-120 Disable()()
-126 Enable()()
-132 Forbid()()
-138 Permit()()
-144 SetSR(newSR,mask)(d0/d1)
-150 SuperState()()
-156 UserState(sysStack)(d0)
-162 SetIntVector(intNumber,interrupt)(d0/a1)
-168 AddIntServer(intNumber,interrupt)(d0/a1)
-174 RemIntServer(intNumber,interrupt)(d0/a1)
-180 Cause(interrupt)(a1)
— memory allocation —
-186 Allocate(freeList,byteSize)(a0,d0)
-192 Deallocate(freeList,memoryBlock,byteSize)(a0/a1 ,d0)
-198 AllocMem(byteSize,requirements)(d0/d1)
-204 AllocAbs(byteSize,location)(d0/a1)
-210 FreeMem(memoryBlock,byteSize)(a1 ,d0)
-216 AvailMem(requirements)(d1)
-222 AllocEntry(entry)(a0)

227

-228 FreeEntry(entry)(a0)
— lists —
-234 Insert(list,node,pred)(a0/a1/a2)
-240 AddHead(list,node)(a0/a1)
-246 AddTail(list,node)(a0/a1)
-252 Remove(node)(a1)
-258 RemHead(list)(a0)
-264 RemTail(list)(a0)
-270 Enqueue(list,node)(a0/a1)
-276 FindName(list,name)(a0/a1)

-282 AddTask(task,initPC,finalPC)(a1/a2/a3)
-288 RemTask(task)(a1)
-294 FindTask(name)(a1)
-300 SetTaskPri(task,priority)(a1 ,d0)
-306 SetSignal(newSignals,signalSet)(d0/d1)
-312 SetExcept(newSignals,signalSet)(d0/d1)
-318 Wait(signalSet)(d0)
-324 Signal(task,signalSet)(a1 ,d0)
-330 AllocSignal(signalNum)(d0)
-336 FreeSignal(signalNum)(d0)
-342 AllocTrap(trapNum)(d0)
-348 FreeTrap(trapNum)(d0)
— messages —
-354 AddPort(port)(a1)
-360 RemPort(port)(a1)
-366 PutMsg(port,message)(a0/a1)
-372 GetMsg(port)(a0)
-378 ReplyMsg(message)(a1)
-384 WaitPort(port)(a0)
-390 FindPort(name)(a1)
— libraries —
-396 AddLibrary(library)(a1)
-402 RemLibrary(library)(a1)
-408 OldOpenLibrary(libName)(a1)
-414 CloseLibrary(library)(a1)
-420 SetFunction(library,funcOffset,newFunction)(a1 ,a0,d0)
-426 SumLibrary(library)(a1)
— devices —
-432 AddDevice(device)(a1)
-438 RemDevice(device)(a1)
-444 OpenDevice(devName,unit,ioRequest,flags)(a0,d0/a1 ,d1)
-450 CloseDevice(ioRequest)(a1)
-456 DolO(ioRequest)(a1)
-462 SendlO(ioRequest)(a1)
-468 ChecklO(ioRequest)(a1)
-474 WaitlO(ioRequest)(a1)
-480 AbortlO(ioRequest)(a1)
— resources —
-486 AddResource(resource)(a1)
-492 RemResource(resource)(a1)
-498 OpenResource(resName)(a1)
— private diagnostic support —
-504 *execPrivate7()()
-510 *execPrivate8()()
-516 *execPrivate9()()
— misc —
-522 RawDoFmt(formatString,dataStream,putChProc,putChData)(a0/a1/a2/a3)
-528 GetCC()()
-534 TypeOfMem(address)(a1)
-540 Procure(semaport,bidMsg)(a0/a1)
-546 Vacate(semaport)(a0)
-552 OpenLibrary(libName,version)(a1 ,d0)
*** functions in Release 1.2 or higher ***
— signal semaphores (note funny registers found in 1.2 or higher)—

228

-558 lnitSemaphore(sigSem)(a0)
-564 ObtainSemaphore(sigSem)(a0)
-570 ReleaseSemaphore(sigSem)(a0)
-576 AttemptSemaphore(sigSem)(a0)
-582 ObtainSemaphoreList(sigSem)(a0)
-588 ReleaseSemaphoreList(sigSem)(a0)
-594 FindSemaphore(sigSem)(a1)
-600 AddSemaphore(sigSem)(a1)
-606 RemSemaphore(sigSem)(a1)
— kickmem support —
-612 SumKickData()()
— more memory support —
-618 AddMemList(size.attributes,pri,base,name)(d0/d1/d2/a0/a1)
-624 CopyMem(source,dest,size)(a0/a1 ,d0)
-630 CopyMemQuiok(source,dest,size)(a0/a1 ,d0)
*** functions in Release 2.0 or higher ***
_cache
-636 CacheClearU()()
-642 CacheClearE(address,length,caches)(a0,d0/d1)
-648 CacheControl(cacheBits,cacheMask)(d0/d1)
— misc —
-654 CreatelORequest(port,size)(a0,d0)
-660 DeletelORequest(iorequest)(a0)
-666 CreateMsgPort()()
-672 DeleteMsgPort(port)(a0)
-678 ObtainSemaphoreShared(sigSem)(a0)
— even more memory support —
-684 AllocVec(byteSize,requirements)(d0/d1)
-690 FreeVec(memoryBlock)(a1)
-696 CreatePrivatePool(requirements,puddleSize,puddleThresh)(d0/d1/d2)
-702 DeletePrivatePool(poolHeader)(a0)
-708 AllocPooled(memSize,poolHeader)(d0/a0)
-714 FreePooled(memory,poolHeader)(a1 ,a0)
— misc —
-720 AttemptSemaphoreShared(sigSem)(a0)
-726 ColdReboot()()
-732 StackSwap(newStack)(a0)
— task trees —
-738 ChildFree(tid)(d0)
-744 ChildOrphan(tid)(d0)
-750 ChiIdStatus(tid)(d0)
-756 ChitdWait(tid)(d0)
— future expansion —
-762 CachePreDMA(address,length,flags)(a0/a1 ,d1)
-768 CachePostDMA(address,length,flags)(a0/a1 ,d1)
-774 *execPrivate10()()
-780 *execPrivate11 ()()
-786 *execPrivate12()()
-792 *execPrivate13()()

DOS

-30 Open(name,accessMode)(d1/d2)
-36 Close(file)(d1)
-42 Read(file,buffer,Iength)(d1 /d2/d3)
-48 Write(file,buffer,Iength)(d1/d2/d3)
-54 lnput()()
-60 Output()()
-66 Seek(file,position,offset)(d 1 /d2/d3)
-72 DeleteFile(name)(d1)
-78 Rename(oldName,newName)(d1/d2)
-84 Lock(name,type)(d1/d2)
-90 UnLock(lock)(d1)
-96 DupLock(lock)(d1)
-102 Examine(lock,filelnfoBlock)(d1/d2)

-108 ExNext(lock,filelnfoBlock)(d1/d2)
-114 lnfo(lock,parameterBlock)(d1/d2)
-120 CreateDir(name)(d1)
-126 CurrentDir(lock)(d1)
-132 IoErr()()
-138 CreateProc(name,pri,segList,stackSize)(d1/d2/d3/d4)
-144 Exit(returnCode)(d1)
-150 LoadSeg(name)(d1)
-156 UnLoadSeg(seglist)(d1)
-162 *dosPrivate1()()
-168 *dosPrivate2()()
-174 DeviceProc(name)(d1)
-180 SetComment(name,comment)(d1/d2)
-186 SetProtection(name,protect)(d1/d2)
-192 DateStamp(date)(d1)
-198 Delay(timeout)(d1)
-204 WaitForChar(file,timeout)(d1/d2)
-210 ParentDir(lock)(d1)
-216 IsInteractive(file)(d1)
-222 Execute(string,file,file2)(d1/d2/d3)
*** functions in Release 2.0 or higher ***
—DOS Object creation/deletion—
-228 AllocDosObject(type,tags)(d1/d2)
-234 FreeDosObject(type,ptr)(d1/d2)
...Packet Level routines"”"
-240 DoPkt(port,action,arg1,arg2,arg3,arg4,arg5)(d1/d2/d3/d4/d5/d6/d7)
-246 SendPkt(dp,port,replyport)(d1/d2/d3)
-252 WaitPkt()()
-258 ReplyPkt(dp, res 1, res2) (d1/d2/d3)
-264 AbortPkt(port,pkt)(d1/d2)
—Record Locking—
-270 LockRecord(fh,offset,length,mode,timeout)(d1/d2/d3/d4/d5)
-276 LockRecords(recArray,timeout)(d1/d2)
-282 UnLockRecord(fh,offset,Iength)(d1/d2/d3)
-288 UnLockRecords(recArray)(d1)
—Buffered File I/O—
-294 Selectlnput(fh)(d1)
-300 SelectOutput(fh)(d1)
-306 FGetC(fh)(d1)
-312 FPutC(fh,ch)(d1/d2)
-318 UnGetC(fh,character)(d1/d2)
-324 FReadffh,block,blocklen,number)(d1/d2/d3/d4)
-330 FWrite(fh,block,blocklen,number)(d1/d2/d3/d4)
-336 FGets(fh,buf,buflen)(d1/d2/d3)
-342 FPuts(fh,str)(d1/d2)
-348 VFWritef(fh,format,argarray)(d1/d2/d3)
-354 VFPrintf(fh,format,argarray)(d1/d2/d3)
-360 Flush(fh)(d1)
-366 SetVBuf(fh,buff,type,Size)(d1/d2/d3/d4)
—DOS Object Management—
-372 DupLockFromFH(fh)(d1)
-378 OpenFromLock(lock)(d1)
-384 ParentOfFH(fh)(d1)
-390 ExamineFH(fh,fib)(d1/d2)
-396 SetFileDate(name ,date) (d1/d2)
-402 NameFromLock(lock,buffer,Ien)(d1/d2/d3)
-408 NameFromFH(fh,buffer,Ien)(d1/d2/d3)
-414 SplitName(name,seperator,buf,oldpos,size)(d1/d2/d3/d4/d5)
-420 SameLock(lock1 ,lock2)(d1/d2)
-426 SetMode(fh,mode)(d1/d2)
-432 ExAII(lock,buffer,size,data,control)(d1/d2/d3/d4/d5)
-438 ReadLinkfport,lock,path,buffer,size)(d1/d2/d3/d4/d5)
-444 MakeLink(name,dest,soft)(d1/d2/d3)
-450 ChangeMode(type,fh,newmode)(d1/d2/d3)
-456 SetFileSize(fh,pos,mode)(d1/d2/d3)

230

—Error Handling—
-462 SetloErr(result)(d1)
-468 Fault(code,header,buffer,Ien)(d1/d2/d3/d4)
-474 PrintFault(code,header)(d1/d2)
-480 ErrorReport(code,type,arg1 ,device)(d1/d2/d3/d4)
-486 RESERVED
—Process Management—
-492 Cli()()
-498 CreateNewProc(tags)(d1)
-504 RunCommand(seg,stack,paramptr,paramlen)(d1/d2/d3/d4)
-510 GetConsoleTask()()
-516 SetConsoleTask(task)(d1)
-522 GetFileSysTask()()
-528 SetFileSysTask(task)(d1)
-534 GetArgStr()()
-540 SetArgStr(string)(d1)
-546 FindCliProc(num)(d1)
-552 MaxCli()()
-558 SetCurrentDirName(name)(d1)
-564 GetCurrentDirName(buf,len)(d1/d2)
-570 SetProgramName(name)(d1)
-576 GetProgramName(buf,len)(d1/d2)
-582 SetPrompt(name)(d1)
-588 GetPrompt(buf,len)(d1/d2)
-594 SetProgramDir(lock)(d1)
-600 GetProgramDir()()
—Device List Management—
-606 SystemTagList(command,tags)(d1/d2)
-612 AssignLock(name,lock)(d1/d2)
-618 AssignLate(name,path)(d1/d2)
-624 AssignPath(name,path)(d1/d2)
-630 AssignAdd(name,lock)(d1/d2)
-636 RemAssignList(name,lock)(d1/d2)
-642 GetDeviceProc(name,dp)(d1/d2)
-648 FreeDeviceProc(dp)(d1)
-654 LockDosList(flags)(d1)
-660 UnLockDosList(flags)(d1)
-666 AttemptLockDosList(flags)(d1)
-672 RemDosEntry(dlist)(d1)
-678 AddDosEntry(dlist)(d1)
-684 FindDosEntrV(dlist,name,flags)(d1/d2/d3)
-690 NextDosEntry(dlist,flags)(d1/d2)
-696 MakeDosEntry(name,type)(d1/d2)
-702 FreeDosEntry(dlist)(d1)
-708 lsFileSystem(name)(d1)
—Handler Interface—
-714 Format(filesystem,volumename,dostype)(d1/d2/d3)
-720 Relabel(drive,newname)(d1/d2)
-726 lnhibit(name,onoff)(d1/d2)
-732 AddBuffers(name,number)(d1/d2)
—Date, Time Routines—
-738 CompareDates(date1 ,date2)(d1/d2)
-744 DateToStr(datetime)(d1)
-750 StrToDate(datetime)(d1)
—Image Management—
-756 InternalLoadSeg(fh,table,funcarray,stack)(d0/a0/a1/a2)
-762 InternalUnLoadSeg(seglist,freefunc)(d1/a1)
-768 NewLoadSeg(file,tags)(d1/d2)
-774 AddSegment(name,seg,system)(d1/d2/d3)
-780 FindSegment(name,seg,system)(d1/d2/d3)
-786 RemSegment(seg)(d1)
—Command Support-—
-792 CheckSignal(mask)(d1)
-798 ReadArgsftemplate,array,args)(d1/d2/d3)
-804 FindArg(keyword,template)(d1 /d2)

-810 Readltem(name,maxchars,cSource)(d1/d2/d3)
-816 StrToLong(string,value)(d1/d2)
-822 MatchFirst(pat,anchor)(d1/d2)
-828 MatchNext(anchor)(d1)
-834 MatchEnd(anchor)(d1)
-840 ParsePattern(pat,buf,buflen)(d1/d2/d3)
-846 MatchPattern(pat,str)(d1/d2)
-852 * Not currently implemented.
-858 FreeArgs(args)(d1)
-864 *— (1 function slot reserved here) —
-870 FilePart(path)(d1)
-876 PathPart(path)(d1)
-882 AddPart(dirname,filename,size)(d1/d2/d3)
—Notification—
-888 StartNotify(notify)(d1)
-894 EndNotify(notify)(d1)
—Environment Variable functions—
-900 SetVar(name,buffer,size,flags)(d1/d2/d3/d4)
-906 GetVar(name,buffer,size,flags)(d1/d2/d3/d4)
-912 DeleteVar(name.flags) (d1/d2)
-918 FindVar(name,type)(d1/d2)
-924 *dosPrivate4()()
-930 ClilnitNewcli(dp)(a0)
-936 ClilnitRun(dp)(a0)
-942 WriteChars(buf,buflen)(d1/d2)
-948 PutStr(str)(d1)
-954 VPrintf(format,argarray)(d1/d2)
-960 *— (1 function slot reserved here) —
-966 ParsePatternNoCase(pat,buf,buflen)(d1/d2/d3)
-972 MatchPatternNoCase(pat,str)(d1/d2)
-978 dosPrivate5()()
-984 SameDevice(lock1, lock2)(d1/d2)

GRAPHICS

-30 BltBitMap
(srcBitMap,xSrc,ySrc,destBitMap,xDest,yDest,xSize,ySize,minterm,mask,tempA)
(a0,d0/d1/a1,d2/d3/d4/d5/d6/d7/a2)

-36
BltTemplate(source,xSrc,srcMod,destRP,xDest,yDest,xSize,ySize)(a0,d0/d1/a1,d2/d3/d4/d5)
— Text routines —
-42 ClearEOL(rp)(a1)
-48 ClearScreen(rp)(a1)
-54 TextLength(rp,string,count)(a1 ,a0,d0)
-60 Text(rp,string,count)(a1 ,a0,d0)
-66 SetFont(rp,textFont)(a1,a0)
-72 OpenFont(textAttr)(a0)
-78 CloseFont(textFont)(a1)
-84 AskSoftStyle(rp)(a1)
-90 SetSoftStyle(rp,style,enable)(a1 ,d0/d1)

Gels routines —
-96 AddBob(bob,rp)(a0/a1)

-102 AddVSprite(vSprite,rp)(a0/a1)
-108 DoCollision(rp)(a1)
-114 DrawGList(rp,vp)(a1 ,a0)
-120 lnitGels(head,tail,gelslnfo)(a0/a1/a2)
-126 lnitMasks(vSprite)(a0)
-132 RemlBob(bob,rp,vp)(a0/a1/a2)
-138 RemVSprite(vSprite)(a0)
-144 SetCollision(num,routine,gelslnfo)(d0/a0/a1)
-150 SortGList(rp)(a1)
-156 AddAnimOb(anOb,anKey,rp)(a0/a1/a2)
-162 Animate(anKey,rp)(a0/a1)
-168 G«tGBuffers(anOb,rp,flag)(a0/a1 ,d0)

232

-174 lnitGMasks(anOb)(a0)
General graphics routines —

-180 DrawEllipse(rp,xCenter,yCenter,a,b)(a1 ,d0/d1/d2/d3)
-186 AreaEllipse(rp,xCenter,yCenter,a,b)(a1,d0/d1/d2/d3)
-192 LoadRGB4(vp,colors,count)(a0/a1 ,d0)
-198 lnitRastPort(rp)(a1)
-204 lnitVPort(vp)(a0)
-210 MrgCop(view)(a1)
-216 MakeVPort(view,vp)(a0/a1)
-222 LoadView(view)(ai)
-228 WaitBlit()()
-234 SetRast(rp,pen)(a1 ,d0)
-240 Move(rp,x,y)(a1 ,d0/d1)
-246 Draw(rp,x,y)(a1 ,d0/d1)
-252 AreaMove(rp,x,y)(a1 ,d0/d1)
-258 AreaDraw(rp,x,y)(a1,d0/d1)
-264 AreaEnd(rp)(a1)
-270 WaitTOF()()
-276 QBIit(blit)(a1)
-282 lnitArea(arealnfo,vectorBuffer,maxVectors)(a0/a1 ,d0)
-288 SetRGB4(vp,index,red,green,blue)(a0,d0/d1/d2/d3)
-294 QBSBIit(blit)(a1)
-300 BltClear(memBlock,byteCount,flags)(a1 ,d0/d1)
-306 RectFill(rp,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3)
-312 BltPattern(rp,mask,xMin,yMin,xMax,yMax,maskBPR)(a1 ,a0,d0/d1/d2/d3/d4)
-318 ReadPixel(rp,x,y)(a1,d0/d1)
-324 WritePixel(rp,x,y)(a1,d0/d1)
-330 Flood(rp,mode,x,y)(a1 ,d2,d0/d1)
-336 PolyDraw(rp,count,polyTable)(a1 ,d0/a0)
-342 SetAPen(rp,pen)(a1,d0)
-348 Se!BPen(rp,pen)(a1,d0)
-354 SetDrMd(rp,drawMode)(a1,d0)
-360 lnitView(view)(a1)
-366 CBump(copList)(a1)
-372 CMove(copList,destination,data)(a1 ,d0/d1)
-378 CWait(copList,v,h)(a1 ,d0/d1)
-384 VBeamPos()()
-390 lnitBitMap(bitMap,depth, width,height)(a0,d0/d1/d2)
-396 ScrollRaster(rp,dx,dy,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3/d4/d5)
-402 WaitBOVP(vp)(a0)
-408 GetSprite(sprite,num)(a0,d0)
-414 FreeSprite(num)(d0)
-420 ChangeSprite(vp,sprite,newData)(a0/a1/a2)
-426 MoveSprite(vp,sprite,x,y)(a0/a1 ,d0/d1)
-432 LockLayerRom(layer)(a5)
-438 UnlockLayerRom(layer)(a5)
-444 SyncSBitMap(layer)(a0)
-450 CopySBitMap(layer)(a0)
-456 OwnBlitter()()
-462 DisownBlitter()()
-468 lnitTmpRas(tmpRas,buffer,size)(a0/a1 ,d0)
-474 AskFont(rp,textAttr)(a1 ,a0)
-480 AddFont(textFont)(a1)
-486 RemFont(textFont)(a1)
-492 AllocRaster(width,height)(d0/d1)
-498 FreeRaster(p,width,height)(a0,d0/d1)
-504 AndRectRegion(region,rectangle)(a0/a1)
-510 OrRectRegion(region,rectangle)(a0/a1)
-516 NewRegion()()
-522 ClearRectRegion(region,rectangle)(a0/a1)
-528 ClearRegion(region)(a0)
-534 DisposeRegion(region)(a0)
-540 FreeVPortCopLists(vp)(a0)
-546 FreeCopList(copList)(a0)

ClipBlit(srcRP,xSrc,ySrc,destRP,xDest,yDest,xSize,ySize,minterm)(a0,d0/d1/a1,d2/d3/d4/d5/d6)
-558 XorRectRegion(region,rectangle)(a0/a1)
-564 FreeCprList(cprList)(a0)
-570 GetColorMap(entries)(d0)
-576 FreeColorMap(colorMap)(a0)
-582 GetRGB4(colorMap,entry)(a0,d0)
-588 ScrollVPort(vp)(a0)
-594 UCopperListlnit(uCopList,n)(a0,d0)
-600 FreeGBuffers(anOb,rp,flag)(a0/a1 ,d0)
-606 BltBitMapRastPort(srcBM,x,y,destRP,x,y,Wld,Height,minterm)(a0,d0/d1/a1,d2/d3/d4/d5/d6)
-612 OrRegionRegion(srcRegion,destRegion)(a0/a1)
-618 XorRegionRegion(srcRegion,destRegion)(a0/a1)
-624 AndRegionRegion(srcRegion,destRegion)(a0/a1)
-630 SetRGB4CM(colorMap,index,red,green,blue)(a0,d0/d1/d2/d3)
-636 BltMaskBitMapRastPort

(srcBM,x,y,destRP,x,y,Wid,High,mterm,Mask)(a0,d0/d1/a1,d2/d3/d4/d5/d6/a2)
-642 RESERVED
-648 RESERVED
-654 AttemptLockLayerRom(layer)(a5)
*** functions in Release 2.0 or higher ***
-660 GfxNew(gfxNodeType)(d0)
-666 GfxFree(gfxNodePtr)(a0)
-672 GfxAssociate(associateNode,gfxNodePtr)(a0/a1)
-678 BitMapScale(bitScaleArgs)(a0)
-684 ScalerDiv(factor,numerator,denominator)(d0/d1/d2)
-690 TextFit
(rp,string,strLen,textExtent,constrainingExtent,strDirection,constrainingBitWidth,constrainingBitH
eight)(a1,a0,d0/a2)

-552

INTUITION

-30 OpenIntuition()()
-36 Intuition(iEvent)(a0)
-42 AddGadget(window,gadget,position)(a0/a1 ,d0)
-48 ClearDMRequest(window)(a0)
-54 ClearMenuStrip(window)(a0)
-60 ClearPointer(window)(a0)
-66 CloseScreen(screen)(a0)
-72 CloseWindow(window)(a0)
-78 CloseWorkBench()()
-84 CurrentTime(seconds,micros)(a0/a1)
-90 DisplayAlert(alertNumber,string,height)(d0/a0,d1)
-96 DisplayBeep(screen)(a0)

-102 DoubleClick(sSeconds,sMicros,cSeconds,cMicros)(d0/d1/d2/d3)
-108 DrawBorder(rp,border,Ieft0ffset,top0ffset)(a0/a1 ,d0/d1)
-114 Drawlmage(rp,image,Ieft0ffset,top0ffset)(a0/a1 ,d0/d1)
-120 EndRequest(requester,window)(a0/a1)
-126 GetDefPrefs(preferences,size)(a0,d0)
-132 GetPrefs(preferences,size)(a0,d0)
-138 lnitRequester(requester)(a0)
-144 ltemAddress(menuStrip,menuNumber)(a0,d0)
-150 ModifylDCMP(window,flags)(a0,d0)
-156 ModifyProp
(gadget,window,requester,flags,horizPot,vertPot,horizBody,vert Body)(a0/a1/a2,d0/d1/d2/d3/d4)
-162 MoveScreen(screen,dx,dy)(a0,d0/d1)
-168 MoveWindow(window,dx,dy)(a0,d0/d1)
-174 OffGadgetfgadget,window,requester)(a0/a1/a2)
-180 OffMenu(window,menuNumber)(a0,d0)
-186 OnGadget(gadget,window,requester)(a0/a1/a2)
-192 OnMenu(window,menuNumber)(a0,d0)
-198 OpenScreen(newScreen)(a0)
-204 OpenWindow(newWindow)(a0)
-210 OpenWorkBench()()

234

-216 PrintlText(rp,iText,left,top)(a0/a1 ,d0/d1)
-222 RefreshGadgets(gadgets,window,requester)(a0/a1 /a2)
-228 RemoveGadget(window,gadget)(a0/a1)
-234 ReportMouse(flag,window)(d0/a0)
-240 Request(requester,window)(a0/a1)
-246 ScreenToBack(screen)(a0)
-252 ScreenToFront(screen)(a0)
-258 SetDMRequest(window,requester)(a0/a1)
-264 SetMenuStrip(window,menu)(a0/a1)
-270 SetPointer(window,pointer,height,width,xOffset,yOffset)(a0/a1,d0/d1/d2/d3)
-276 SetWindowTitles(window,windowTitle,screenTitle)(a0/a1/a2)
-282 ShowTitle(screen,showlt)(a0,d0)
-288 SizeWindow(window,dx,dy)(a0,d0/d1)
-294 ViewAddress()()
-300 ViewPortAddress(window)(a0)
-306 WindowToBack(window)(a0)
-312 WindowToFront(window)(a0)
-318 WindowLimits(window,widthMin,heightMin,widthMax,heightMax)(a0,d0/d1/d2/d3)
-324 SetPrefs(preferences,size,inform)(a0,d0/d1)
-330 IntuiTextLength(iText)(a0)
-336 WBenchToBack()()
-342 WBenchToFront()()
-348
AutoRequest(window,body,posText,negText,pFlag,nFlag,width,height)(a0/a1/a2/a3,d0/d1/d2/d3)
-354 BeginRefresh(window)(a0)
-360 BuildSysRequest(window,body,posText,negText,flags,width,height)(a0/a1/a2/a3,d0/d1/d2)
-366 EndRefresh(window,complete)(a0,d0)
-372 FreeSysRequest(window)(a0)
-378 MakeScreen(screen)(a0)
-384 RemakeDisplay()()
-390 RethinkDisplay()()
-396 AllocRemember(rememberKey,size,flags)(a0,d0/d1)
-402 AlohaWorkbench(wbport)(a0)
-408 FreeRemember(rememberKey,reallyForget)(a0,d0)
-414 LocklBase(dontknow)(d0)
-420 UnlocklBase(ibLock)(a0)
*** functions in Release 1.2 or higher ***
-426 GetScreenData(buffer,size,type,screen)(a0,d0/d1/a1)
-432 RefreshGList(gadgets,window,requester,numGad)(a0/a1/a2,d0)
-438 AddGList(window,gadget,position,numGad,requester)(a0/a1 ,d0/d1/a2)
-444 RemoveGList(remPtr,gadget,numGad)(a0/a1 ,d0)
-450 ActivateWindow(window)(a0)
-456 RefreshWindowFrame(window)(a0)
-462 ActivateGadget(gadgets,window,requester)(a0/a1/a2)
-468 NewModifyProp

(gadget,window,requester,flags,horizPot,vertPot,horizBody,vertBody,numGad)
(a0/a1/a2,d0/d1/d2/d3/d4/d5)

*** functions in Release 2.0 or higher ***
-474 QueryOverscan(displaylD,rect,oScanType)(a0/a1 ,d0)
-480 MoveWindowlnFrontOf(window,behindWindow)(a0/a1)
-486 ChangeWindowBox(window,left,top,width,height)(a0,d0/d1/d2/d3)
-492 SetEditHook(hook)(a0)
-498 SetMouseQueue(window,queueLength)(a0,d0)
-504 ZipWindow(window)(a0)
— public screens —
-510 LockPubScreen(name)(a0)
-516 UnlockPubScreen(name,screen)(a0/a1)
-522 LockPubScreenList()()
-528 UnlockPubScreenList()()
-534 NextPubScreen(screen,namebuf)(a0/a1)
-540 SetDefaultPubScreen(name)(a0)
-546 SetPubScreenModes(modes)(d0)
-552 PubScreenStatus(screen,statusFlags)(a0,d0)
-558 ObtainGIRPort(glnfo)(a0)
-564 ReleaseGIRPort(rp)(a0)

235

-570 GadgetMouse(gadget,glnfo,mousePoint)(a0/a1/a2)
-576 *intuitionPrivate1()()
-582 GetDefaultPubScreen(nameBuffer)(a0)
-588 EasyRequestArgs(window,easyStruct,idcmpPtr,args)(a0/a1/a2/a3)
-594 BuildEasyRequestArgs(window,easyStruct,idcmp,args)(a0/a1,d0/a3)
-600 SysReqHandler(window,idcmpPtr,waitlnput)(a0/a1 ,d0)
-606 OpenWindowTagList(newWindow,tagList)(a0/a1)
-612 OpenScreenTagList(newScreen,tagList)(a0/a1)
—new Image functions—
-618 DrawlmageState(rp,image,leftOffset.topOffset,state,drawlnfo)(a0/a1 ,d0/d1/d2/a2)
-624 Pointln I mage(point, image)(d0/a0)
-630 Eraselmage(rp,image,Ieft0ffset,top0ffset)(a0/a1 ,d0/d1)
-636 NewObjectA(classPtr,classlD,tagList)(a0/a1/a2)
-642 DisposeObject(object)(a0)
-648 SetAttrsA(object,tagList)(a0/a1)
-654 GetAttr(attrlD,object,storagePtr)(d0/a0/a1)
—special set attribute call for gadgets—
-660 SetGadgetAttrsA(gadget,window,requester,tagList)(a0/a1/a2/a3)
-666 NextObject(objectPtrPtr)(a0)
-672 *intuitionPrivate2()()
-678 MakeClass(classlD,superClasslD,superClassPtr,instanceSize,flags)(a0/a1/a2,d0/d1)
-684 AddClass(classPtr)(a0)
-690 GetScreenDrawlnfo(screen)(a0)
-696 FreeScreenDrawlnfo(screen,drawlnfo)(a0/a1)
-702 ResetMenuStrip(window,menu)(a0/a1)
-708 RemoveClass(classPtr)(a0)
-714 FreeClass(dassPtr)(a0)
-720 *intuitionPrivate3()()
-726 *intuitionPrivate4()()

DISKFONT

-30 OpenDiskFont(textAttr)(a0)
-36 AvailFonts(buffer,bufBytes,flags)(a0,d0/d1)
*** functions in Release 1.2 or higher ***
-42 NewFontContents(fontsLock,fontName)(a0/a1)
-48 DisposeFontContents(fontContentsHeader)(a1)
*** functions in Release 2.0 or higher ***
-54 NewScaledDiskFont(sourceFont,destTextAttr)(a0/a1)

236

APPENDIX 3: AMIGA HARDWARE REGISTERS

The following are a list of memory locations where direct access to the Agnus, Denise
and Paula chips is possible. It is illegal to access any of these registers if you wish
your program to behave correctly in the Amiga environment. However in BlitzMode
most of these registers may be accessed taking into consideration the accompanying
documentation.

An * next to any description states that the option is available only with the new ECS
(Enhanced Chip Set). Also note that any reference to memory pointers MUST point
to chip mem as the Amiga Chip Set is NOT capable of accessing FAST mem. This
includes BitPlane data, copper lists, Sprite Data, Sound DATA etc. etc.

BitPlane & Display Control

The Amiga has great flexibility in displaying graphics at different resolutions and
positions on the monitor. The hardware registers associated with the display are
nearly always loaded by the copper and not with the 68000 processor.

#BPLCON0=$100
#BPLCON1=$102
#BPLCON2=$104
#BPLCON3=$106 ; (ECS only)
#BPLCON4=$10c ; (AGA only)

BIT# BPLCON0 BPLCON1 BPLCON2 BPLCON3 BPLCON4

15 HIRES COLBANK2 BPLAM7
14 BPU2 ZDBPSEL2 COLBANK1 BPLAM6
13 BPU1 ZDBPSEL1 COLBANK0 BPLAM5
12 BPU0 ZDBPSEL0 PF20F2 BPLAM4
11 HAM ZDPEN PF20F1 BPLAM3
10 DBLPF ZDCTEN PF2OF0 BPLAM2
09 COLOR KILLEHB LOCT BPLAM1
08 GAUD RDRAM=0 BPLAM0
07 PF2H3 SOGEN SPRES1 ESPRM7
06 *SHRES PF2H2 PF2PRI SPRES0 ESPRM6
05 *BPLHWRM PF2H1 PF2P2 BRDRBLNK ESPRM5
04 *SPRHWRM PF2H0 PF2P1 BRDRTRAN ESPRM4
03 LPEN PF1H3 PF2P0 OSPRM7
02 LACE PF1H2 PF1P2 ZDCLCKEN OSPRM6
01 ERSY PF1H1 PF1P1 BRDSPRT OSPRM5
00 PF1 HO PF1P0 EXTBLKEN OSPRM4

BPUn = number of bitplanes
PFnHn = playfield horizontal positioning
ZD... = genlock enable bits
PFnPn = Playfield priorities
COLBANKn = active color bank in AGA
PF2OFn = color offset for playfield 2 in dpf mode
LOCT = hi/lo nibble select for 24 bit color access
SPRESn = Sprite resolution
BRD... = Border settings
BPLAMx = xor mask for bitplane fetch
ESPRMn = color offset for even sprites

237

#BPL0PTH= $E0 ,BitPlane Pointer 0 High Word
#BPL0PTL= $E2 ;BitPlane Pointer 0 Low Word
#BPL1PTH= $E4
#BPL1PTL= $E6
#BPL2PTH= $E8
#BPL2PTL= $EA
#BPL3PTH= $EC
#BPL3PTL= $EE
#BPL4PTH= $F0
#BPL4PTL= $F2
#BPL5PTH= $F4
#BPL5PTL= $F6

Each pair of registers contain an 18 bit pointer to the address of BitPlanex data in chip
memory. They MUST be reset every frame usually by the copper.

#BPL1MOD=$108 ;Bitplane Modulo for Odd Planes
#BPL2MOD=$10A ;Bitplane Modulo for EvenPlanes

At the end of each display line, the BPLxMODs are added to the the BitPLane
Pointers so they point to the address of the next line.

#DIWSTOP=$090 ; display window stop
#DIWSTRT=$08E ; display window start

These two registers control the display window size and position. The
following bits are assigned

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

V7 V6 V5 V4 V3 V2 V1 V0 H7 H6 H5 H4 H3 H2 H1 HO

For DIWSTRT V8=0 & H8=0 restricting it to the upper left of the screen. For
DIWSTOP V8=1 & H8=1 restricting it to the lower right of the screen.

#DDFSTOP=$094 ; data fetch stop
#DDFSTRT= $092 ; data fetch start

The two display data fetch registers control when and how many words are fetched
from the bitplane for each line of display.

Typical values are as follows:

lores 320 pixels, DDFSTRT & DDFSTOP = $38 & $D0
hires 640 pixels, DDFSTRT & DDFSTOP = $3C & $d4

If smooth scrolling is enabled DDFSTRT should be 2 less than above.

#BPL1 DAT $110; BitPlane Data parallel to serial converters
#BPL2DAT $112
#BPL3DAT $114
#BPL4DAT $116
#BPL5DAT $118
#BPL6DAT $11A

These 6 registers receive the DMA data fetched by the BitPlane engine, and output it
serially to the Amiga DACS, triggered by writing to BPL1DAT. Not intended for
programmer access.

238

The Copper

The Copper is found on the Agnus chip, it’s main job is to ’poke’ values into the
hardware registers in sync with the video beam. The main registers it updates are
BitPlane ptrs, Sprites and other control words that HAVE to be reset every frame. It’s
also used to split the screen vertically as it is capable of waiting for certain video
beam positions before writing data. Its also capable of waiting for the blitter to finish
as well as skipping instructions if beam position is equal to certain values.

#COP1LCH=$080
#COP1LCL=$082

#COP2LCH=$084
#COP2LCL=$C)86

Each pair of registers contain an 18 bit pointer to the address of a Copper List in chip
mem. The Copper will automatically jump to the address in COP1 at the beginning of
the frame and is able to jump to COP2 if the following strobe is written to.

#COPJMP1=$88
#COPJMP2=$8A

When written to these addresses cause the copper to jump to the locations held in
COP1LC & COP2LC. The Copper can write to these registers itself causing its own
indirect jump.

#COPCON=$2E

By setting bit 1 of this register the copper is allowed to access the blitter hardware.

The copper fetches two words for each instruction from its current copper list. The
three instructions it can perform and their relevant bits are as follows:

Bit# MOVE WAIT UNTIL SKIP IF

15 X RD15 VP7 BFD VP7 BFD
14 X RD14 VP6 VE6 VP6 VE6
13 X RD13 VP5 VE5 VP5 VE5
12 X RD12 VP4 VE4 VP4 VE4
11 X RD11 VP3 VE3 VP3 VE3
10 X RD10 VP2 VE2 VP2 VE2
09 X RD09 VP1 VE1 VP1 VE1
08 DA8 RD08 VP0 VE0 VP0 VE0
07 DA7 RD07 HP8 HE8 HP8 HE8
06 DA6 RD06 HP7 HE7 HP7 HE7
05 DA5 RD05 HP6 HE6 HP6 HE6
04 DA4 RD04 HP5 HE5 HP5 HE5
03 DA3 RD03 HP4 HE4 HP4 HE4
02 DA2 RD02 HP3 HE3 HP3 HE3
01 DA1 RD01 HP2 HE2 HP2 HE2
00 0 RD00 1 0 1 1

The MOVE instruction shifts the value held in RD15-0 to the destination address
calculated by $DFF000 +DA8-1.

The WAIT UNTIL instruction places the copper in a wait state until the video beam
position is past HP,VP (xy coordinates). The Copper first logical ANDS (masks) the

239

video beam with HE, VE before doing the comparison. If BFD is set then the blitter
must also be finished before the copper will exit its wait state.

The SKIP IF instruction is similar to the WAIT UNTIL instruction but instead of
placing the copper in a wait state if the video beam position fails the comparison test
it skips the next MOVE instruction.

Colour Registers

The following 32 color registers can each represent one of 4096 colors.

#COLOR00=$180
#COLOR01=$182
#COLOR02=$184
#COLOR03=$186
#COLOR04=$188
#COLOR05=$18A
#COLOR06=$18C
#COLOR07=$18E

#COLOR08=$190
#COLOR09=$192
#COLOR10=$194
#COLOR11=$196
#COLOR12=$198
#COLOR13=$19A
#COLOR14=$19C
#COLOR15=$19E

#COLOR16=$1AO
#COLOR17=$1A2
#COLOR18=$1A4
#COLOR19=$1A6
#COLOR20=$1A8
#COLOR21=$1AA
#COLOR22=$1AC
#COLOR23=$1AE

#COLOR24=$1BO
#COLOR25=$182
#COLOR26=$1B4
#COLOR27=$1B6
#COLOR28=$1B8
#COLOR29=$1BA
#COLOR30=$1BC
#COLOR31=$1BE

The bit usage for each of the 32 colors is:

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

x x x x R3 R2 R1 R0 G3 G2 G1 GO B3 B2 B1 B0

This represents a combination of 16 shades of red, green and blue.

Blitter Control

The Blitter is located on the Agnus, it’s main function is to move blocks of data
around chip mem. It has 3 input channels A,B & C and 1 output channel D. A simple
block move would use 1 input channel and the 1 output channel, taking 4 clock ticks
per cycle. A complex move such as a moving a shape to a destination with a cookie
cut would use all 3 input channels and the output channel taking 8 clock ticks per
cycle.

The main parameters of the blitter include the width and height of the
block to be moved (width is in multiples of words), a start address for each channel, a
modulo for each channel that is added to there address at the end of each line so they
point to the next line, a logic function that specifies which input channels data will be
sent to the destination channel .

The following is a table to work out the logic function (known as the minterm) for a
blitter operation.

A B c D

0 0 0 LF0
0 0 1 LF1
0 1 0 LF2
0 1 1 LF3
1 0 0 LF4
1 0 1 LF5
1 1 0 LF6
1 1 1 LF7

240

If the Blitter is set up so that channel A points to the cookie, B points to the shape to
be copied and C&D point to the destination bitplane (such as how Blitz 2 uses the
blitter) we would specify the following conditions:

When A is 1 then make D=B
When A is 0 then make D=C

Using the above table we calculate the values of LF0-LF7 when these two conditions
are met. The top line has A=0 so LF0 becomes the value in the C column which is a
0. A is 0 in the first 4 rows so LF0-LF3 all reflect the bits in the C column (0101) and
A=1 in the lower 4 rows so LF4-LF7 reflect the bits in the B column (0011).

This generates a minterm LF0-LF7 of %10101100 or in hex $AC.

Note: read the values of LF7 to LF0 from bottom to top to calculate the correct
hexadecimal minterm.

#BLTAPTH= $50
#BLTAPTL= $52

#BLTBPTH= $4C
#BLTBPTL= $4E

#BLTCPTH= $48
#BLTCPTL= $4A

#BLTDPTH= $54
#BLTDPTL= $56

Each pair of registers contain an 18 bit pointer to the start address of the 4 blitter
channels in chip mem.

#BLTAMOD=$64
#BLTBMOD=$62
#BLTCMOD=$60
#BLTDMOD=$66

The 4 modulo values are added to the blitter pointers at the end of each line.

#BLTADAT=$74
#BLTBDAT=$72
#BLTCDAT=$70

If a blitter channel is disabled the BLTxDAT register can be loaded with a constant
value which will remain unchanged during the blit operation.

#BLTAFWM=$44 ; Blitter first word mask for source A
#BLTALWM=$46 ; Blitter last word mask for source A

During a Blitter operation these two registers are used to mask the contents of
BLTADAT for the first and last word of every line.

241

#BLTCON0=$40
#BLTCON1=$42

The following bits in BLTCON0 & BLTCON1 are as follows.

BIT# BLTCON0 BLTCON1

15 ASH3 BSH3
14 ASH2 BSH2
13 ASH1 BSH1
12 ASH0 BSH0
11 USEA X

10 USEB x
09 USEC x
08 USED x
07 LF7 X
06 LF6 X
05 LF5 X
04 LF4 EFE
03 LF3 IFE
02 LF2 FCI
01 LF1 DESC
00 LF0 0 (1=linemode)

ASH is the amount that source A is shifted (barrel rolled)
USEx enables each of the 4 blitter channels
LF holds the logic function as discussed previously in this section
BSH is the amount that source B is shifted (barrel rolled)
EFE is the Exclusive Fill Enable flag
IFE is the Inclusive Fill Enable flag
FCI is the Fill Carry Input
DESC is the descending flag (blitter uses decreasing addressing)

#BLTSIZE=$58

By writing the height and width of the blit operation to BLTSIZE the the blitter will
start the operation. Maximum size is 1024 high and 64 words (1024 bits) wide. The
following defines bits in BLTZSIZE

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

h9 h8 h7 h6 h5 h4 h3 h2 h1 h0 w5 w4 w3 w2 w1 w0

#BLTSIZV= $5C ;(ECS ONLY)
#BLTSIZH =$5E ;(ECS ONLY)

With the new ECS writing to BLTSIZV first and then BLTSZH the blitter can operate
on blocks as large as 32K x 32K pixels in size.

The Blitter is also able to perform linedrawing and filled polygon functions. Details
about using the blitter for these functions can be found on the examples disk included
with Blitz 2.

242

Audio Control

The Amiga has 4 channels of 8 bit audio, each with their own memory access, period
and volume control. The following are a list of the applicable hardware registers.

#AUD0LCH=$A0 ;pairs of 24 bit memory pointers to audio data in chip mem
#AUD0LCL=$A2
#AUD1LCH=$B0
#AUD1 LCL=$B2
#AUD2LCH=$C0
#AUD2LCL=$C2
#AUD3LCH=$D0
#AUD3LCL=$D2

#AUD0LEN=$A4 ; volume registers (0-63)
#AUD1LEN=$B4
#AUD2LEN=$C4
#AUD3LEN=$D4

#AUD0PER=$A6 ;period
#AUD1PER=$B6
#AUD2PER=$C6
#AUD3PER=$D6

#AUD0VOL=$A8
#AUD1VOL=$B8
#AUD2VOL=$C8
#AUD3VOL=$D8

#AUD0DAT=$AA
#AUD1DAT=$BA
#AUD2DAT=$CA
#AUD3DAT=$DA

Sprite Control

The Amiga hardware is capable of displaying eight 4 colour sprites or four 16 colour
sprites. Standard control of sprites is done by using the copper to setup the 8 sprite
pointers at the beginning of each frame.

#SPR0PTH=$120 ;pairs of 24 bit memory pointers to sprite data in chip mem
#SPR0PTL=$122
#SPR1PTH=$124
#SPR1PTL=$126
#SPR2PTH=$128
#SPR2PTL=$12A
#SPR3PTH=$12C
#SPR3PTL=$12E
#SPR4PTH=$130
#SPR4PTL=$132
#SPR5PTH=$134
#SPR5PTL=$136
#SPR6PTH=$138
#SPR6PTL=$13A
#SPR7PTH=$13C
#SPR7PTL=$13E

The pointers should point to data that begins with two words containing the
SPRPOS & SPRCTL values for that sprite, followed by its image data and with two
null words that terminate the data.

243

#SPR0POS = $140
#SPR1POS = $148
#SPR2POS = $150
#SPR3POS = $158
#SPR4POS = $160
#SPR5POS = $168
#SPR6POS = $170
#SPR7POS = $178

#SPR0CTL = $142
#SPR1CTL = $14A
#SPR2CTL = $152
#SPR3CTL = $15A
#SPR4CTL = $162
#SPR5CTL = $16A
#SPR6CTL = $172
#SPR7CTL = $17A

#SPR0DATA = $144
#SPR1DATA = $14C
#SPR2DATA = $154
#SPR3DATA = $15C
#SPR4DATA = $164
#SPR5DATA = $16C
#SPR6DATA = $174
#SPR7DATA = $17C

#SPR0DATB = $146
#SPR1DATB = $14E
#SPR2DATB = $156
#SPR3DATB = $15E
#SPR4DATB = $166
#SPR5DATB = $16E
#SPR6DATB = $176
#SPR7DATB = $17E

Using standard sprite DMA the above registers are all loaded from the sprite data
pointed to in chip mem by the sprite pointers. These registers are only of interest to
people wanting to ’multiplex’ sprites by using the copper to load these registers rather
than sprite DMA.

The following is bit definitions of both SPRPOS and SPRCTL.

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

POS SV7 SV6 SV5 SV4 SV3 SV2 SV1 SV0 SH8 SH7 SH6 SH5 SH4 SH3 SH2 SH1

CTL EV7 EV6 EV5 EV4 EV3 EV2 EV1 EV0 ATT X X X X SV8 EV8 SH0

SV is the vertical start position of the sprite
SH is the horizontal position of the sprite (calculated in lores pixels only)
EV is the end vertical position
ATT is the sprite attached bit (connects odd sprites to their predecessors)

Interrupt Control

#INTENA=$9A ;interrupt enable write address
#INTENAR=$1C ;interrupt enable read address

#INTREQ=$9C ;interrupt request write address
#INTREQR=$1E ;interrupt request read address

INTENA is used to enable or disable interrupts. If the value written to INTENA has
bit 15 set any other of the bits enable their corresponding interrupts. If bit 15 is clear
any of the other bits set will disable their corresponding interrupts.

INTENAR will return which interrupts are currently enabled.

INTREQ is used to initiate or clear an interrupt. It is mostly used to clear the interrupt
by the interrupt handler. Again Bit# 15 states whether the corresponding interrupts will
be requested or cleared.

INTREQR returns which interrupts are currently requested.

244

The following bit definitions relate to the 4 interrupt control registers.

BIT# NAME LEVELDESCRIPTION

15 SET/CLR determines if bits written with 1 are set or cleared
14 INTEN master interrupt enable
13 EXTER 6 external interrupt
12 DSKSYN 5 disk sync register (same as DSKSYNC)
11 RBF 5 serial port Receive Buffer Full
10 AUD3 4 audio channel 3 finished
09 AUD2 4 audio channel 2 finished
08 AUD1 4 audio channel 1 finished
07 AUD0 4 audio channel 0 finished
06 BLIT 3 blitter finished
05 VERTB 3 start of vertical blank interrupt
04 COPER 3 copper
03 PORTS 2 I/O ports and timers
02 SOFT 1 reserved for software initiated interrupts
01 DSKBLK 1 disk block finished
00 TBE 1 serial port Transmit Buffer Empty

The following locations hold the address of the 68000 interrupt handler code in
memory for each level of interrupt.

LEVEL 68000 Address

6 $78
5 $74
4 $70
3 $6c
2 $68
1 $64

DMA Control

DMA stands for direct memory access. Chip mem can be accessed by the display,
blitter, copper, audio, sprites and diskdrive without using the 68000 processor.
DMACON enables the user to lock out any of these from having direct memory
access (DMA) to chipmem.

As with INTENA bit 15 of DMACON signals whether the write operation should
clear or set the relevant bits of the DMA control.

DMACONR will not only return which channels have DMA access but has flags
BBUSY which return true if the blitter is in operation and BZERO which return if the
Blitter has generated any 1’s from it logic function (useful for collision detection etc.)

#DMACON=$96 ; DMA control write (clear or set)
#DMACONR=$02 ;DMA control read (and blitter status) read

245

The following are the bits assigned to the two DMACON registers:

BIT# NAME DESCRIPTION

15 SET/CLR determines if bits written with 1 are set or cleared
14 BBUSY blitter busy flag
13
12
11
10

BZERO blitter logic zero
A

X
BLTPRI "blitter nasty" signals blitter has DMA priority over CPU

09 DMAEN enable all DMA below
08 BPLEN BitPlane DMA enable
07 COPEN Copper DMA enable
06 BLTEN Blitter DMA enable
05 SPREN Sprite DMA enable
04 DSKEN Disk DMA enable
03 AUD3EN Audio channel 3 DMA enable
02 AUD2EN Audio channel 2 DMA enable
01 AUD1EN Audio channel 1 DMA enable
00 AUD0EN Audio channel 0 DMA enable

Amiga CIAs

The Amiga has two 8520 Complex Interface Adapter (CIA) which handle most of the
Amiga I/O activities. Note that each register should be accessed as a byte and NOT a
word. The following is an address map of both Amiga CIAs.

CIA-A

CIA-B

Address Register
$BFE001 pra
$BFE101 prb
$BFE201 ddra
$BFE301 ddrb
$BFE401 talo
$BFE501 tahi
$BFE601 tblo
$BFE701 tbhi
$BFE801 todlo
$BFE901 todmid
$BFEA01 todhi
$BFEB01
$BFEC01 sdr
$BFED01 icr
$BFEE01 cra
$BFEF01 crb

Address Register
$BFD000 pra
$BFD100 prb
$BFD200 ddra
$BFD300 ddrb
$BFD400 talo
$BFD500 tahi
$BFD600 tblo
$BFD700 tbhi
$BFD800 todlo
$BFD900 todmid
$BFDA00 todhi
$BFDB00
$BFDC00 sdr
$BFDD00 icr
$BFDE00 cra
$BFDF00 crb

b7 b6 b5 b4 b3 b2 b1 b0
FIR1 FIR0 RDY TK0 WPR0 CHNG LED OVL
Parallel Port
Direction for Port A (1=output)
Direction for Port B (1=output)
Timer A High Byte
Timer A High Byte
Timer B Low Byte
Timer B High Byte
50/60 Hz Event Counter bits 7-0
50/60 Hz Event Counter bits 15-8
50/60 Hz Event Counter bits 23-16
not used
Serial Data Register (connected to keyboard)
Interrupt Control Register
Control Register A
Control Register B

b7 b6 b5 b4 b3 b2 b1 b0
DTR RTS CD CTS DSR SEL POUT BUSY
MTR SEL3 SEL2 SEL1 SEL0 SIDE DIR STEP
Direction for Port A (1=output)
Direction for Port B (1=output)
Timer A High Byte
Timer A High Byte
Timer B Low Byte
Timer B High Byte
Horizontal Sync Event Counter bits 7-0
Horizontal Sync Event Counter bits 15-8
Horizontal Sync Event Counter bits 23-16
not used
Serial Data Register (connected to keyboard)
Interrupt Control Register
Control Register A
Control Register B

246

APPENDIX 4: 68000 ASSEMBLY LANGUAGE

Although Blitz 2 is a BASIC compiler, it also has an ’inline assembler’ and can be
used as a fully fledged assembler. Assembly language is the language of the
microprocessor, in the case of the Amiga, the 68000 microprocessor.

The following is a brief description of the Motorola 68000 microprocessor and its
instruction set, for more information we recommend the data books published by
Motorola themselves as the best source of reference material.

Registers

The 68000 has 16 internal registers, these may be thought of as high speed variables each
capable of storing a long word (32 bits). The 8 data registers are used mainly for calculations
while the 8 address registers are mostly used for pointing to locations in memory.

The registers are named D0-D7 and A0-A7. The 68000 also has several specialised registers,
the program counter (PC) and the status register (SR). The program counter points to the current
instruction that the microprocessor is executing, while the status register is a bunch of flags with
various meanings.

Addressing

The main job of the microprocessor is to read information from memory, perform a calculation
and then write the result back to memory.

For the processor to access memory it has to generate a memory address for the location it
wishes to access (read or write to). The following are the different ways the 68000 can generate
addresses.

Register Direct: MOVE d 1,d0
The actual value in the register d 1 is copied into d0

Address Register Indirect: MOVE (a0),d0
a0 is a pointer to somewhere in memory. The value at at this location is copied
into the register d0.

Address Register Indirect with Postincrement: MOVE (a0)+,d0
The value at the location pointed to by a0 is copied into the register d0 , then a0
is incremented so it points to the next memory location.

Address Register Indirect with Predecrement: MOVE -(a0),d0
a0 is first decremented to point to the memory location before the one it
currently points to then the value at the new memory location is copied into d0 .

Address Register Indirect with Displacement: MOVE 16(a0),d0
The memory location located 16 bytes after that which is pointed to by address
register a0 is copied to d0 .

247

Address Register Indirect with Index: MOVE 16(a0,d1),d0
The memory location is calculated by adding the contents of a0 with d 1 plus
16.

Absolute Address: MOVE $dff096,d0
The memory location $dff096 is used.

Program Counter with Displacement: MOVE label(pc),d0
This is the same as absolute addressing but because the memory address is an
offset from the program counter (no bigger than 32000 bytes) it is MUCH
quicker.

Program Counter with Index: MOVE label(pc,d l),d()
The address is calculated as the location of label plus the contents of data
register d1.

Immediate Data: MOVE #20,d0
The value 20 is moved to the data register.

Program Flow

As mentioned previously the microprocessor has a special register known as the program
counter that points to the next instruction to be executed. By changing the value in the program
counter a ’goto’ can be performed. The JMP instruction load the program counter with a new
value, it supports most of the addressing modes.

A branch is a program counter relative form of the JMP instruction. Branches can also be
performed on certain conditions such as BCC which will only cause the program flow to change if
the Carry flag in the status register is currently set.

A ’gosub’ can be performed using the JSR and BSR commands. The current value of the program
counter is remembered on the stack before the jump or branch is performed. The RTS command
is used to ’return’ to the original program location.

The Stack

The Amiga sets aside a certain amount of memory for each task known as a stack. The address
register A7 is used to point to the stack and should never be used as a general purpose address
register.

The 68000 uses predecrement addressing to push data onto the stack and postincrement
addressing to pull information off the stack.

JSR is the same as MOVE.l pc,-(a7) and then JMP

RTS is the same as MOVE.l (a7)+,pc

The stack can be used to temporarily store internal registers. To save and restore all the 68000
registers the following code is often used

ASubroutine:
MOVEM.l d0-d7/a0-a6,-(a7) ;push all register on stack
;main subroutine code here which can stuff up registers without worrying
MOVEM.l (a7)+,d0-d7/a0-a6 ;pull registers off stack
RTS ;return from subroutine

248

Condition Flags

The status register is a special 68000 register that holds, besides other things all the condition
codes. The following are a list of the condition flags:

Code Name Meaning

N negative reflects the most significant bit of the result of the last operation.
Z zero is set if the result is zero, cleared otherwise.
c carry is set when an add, subtract or compare operation generate a carry
X extend is a mirror of the carry flag, however its not affected by data movement.
V overflow is set when an arithmetic operation causes an overflow, a situation where

the operand is not large enough to represent the result.

Conditional Tests

Branches and Sets can be performed conditionally. The following is a list of the possible
conditions that can be tested before a branch or set is performed.

cc condition coding test

T true 0000 1
F false 0001 0
HI high 0010 not C & not Z
LS lowsam 0011 CI Z
CC carry clr 0100 not C
CS carry set 0101 C
NE not equal 0110 not Z
EQ equal 0111 Z
VC overflow clr 1000 not V
VS overflow set 1001 V
PL plus 1010 not N
Ml minus 1011 N
GE greater equal 1100 N&V | notN¬V
LT less than 1101 N¬V | notN&V
GT greater than 1110 N&V¬Z | notN¬V¬C
LE less or equal 1111 Z | N¬V | notN&V

Operand Sizes

The 68000 can perform operations on bytes, words and long words. By adding a suffix .b .w or .l
to the opcode, the assembler knows which data size you wish to use, if no suffix is present the
word size is default. There is no speed increase using bytes instead of words as the 68000 is a
16 bit microprocessor and so no overhead is needed for 16 bit operations. However 32 bit long
words do cause overhead with extra read and write cycles needed to perform operations on a
bus that can only handle 16 bits at a time.

249

The 68000 Instruction Set
The following is a brief description of the 68000 instruction set.

Included with each are the addressing mode combinations available with each opcode. Their
syntax are as follows:

Dn data register
An address register
Dy,Dx data registers source & destination
Rx,Ry register source & destination (data & address registers)
<ea> effective address - a subset of addressing modes
#<data> numeric constant

Special notes:

The address register operands ADDA, CMPA, MOVEA and SUBA are only word and long word
data sizes. The last ’A’ of the operand name is optional as it is with the immediate operands
ADDI, CMPI, MOVEI , SUBI, ORI, EORI and ANDI.

The ADDQ and SUBQ are quick forms of their immediate cousins. The immediate data range is
1 to 8. The MOVEQ instruction has a data range of -128 to 127, the data is sign extended to 32
bits, and long is the only data size available.

The <ea> denotes an effective address, not all addressing modes are available with each
effective address form of the instruction, as a rule program counter relative addressing is only
available for the source operand and not the destination.

The Blitz2 compiler will signal any illegal forms of the instruction during the compile stage.

ABCD Add with extend using BCD
ABCD Dy,Dx
ABCD -(Ay),-(Ax)

ADD Add binary
ADD <ea>,Dn
ADD Dn,<ea>
ADDA <ea>,An
ADDI #<data>,<ea>
ADDQ #<data>,<ea>

ADDX Add with Extend
ADDX Dy,Dx
ADDX -(Ay),-(Ax)

AND AND logical
AND <ea>,Dn
AND Dn,<ea>
ANDI #<data>,<ea>

ASL Arithmetic Shift Left
ASL Dx,Dy
ASL #<data>,Dy
ASL <ea>

ASR Arithmetic Shift Right
ASR Dx,Dy
ASR #<data>,Dy
ASR <ea>

Bcc Branch Conditionally
Bcd <label>

BCHG Test a Bit & Change
BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR Test a Bit & Clear
BCLR Dn,<ea>
BCLR #<data>,<ea>

BRA Branch Always
BRA <label>

BSET Test a Bit & Set

250

BTST

CHK

CLR

CMP

CMPM

DBcc

DIVS

DIVU

EOR

EXG

EXT

ILLEGAL

JMP

JSR

LEA

LINK

LSL

LSR

MOVE

MOVEM

MOVEP

MULS

MULU

NBCD

NEG

NEGX

BSET Dn,<ea>
BSET #<data>,<ea>
Test a Bit
BTST Dn,<ea>
BTST #<data>,<ea>
Check Register Against Bounds
CHK <ea>,Dn
Clear an Operand
CLR <ea>
Compare
CMP <ea>,Dn
CMPA <ea>,An
CMPI #<data>,<ea>
Compare Memory
CMPM (Ay)+,(Ax)+
Test Condition, Decrement, and Branch
DBcc Dn,<label>
Signed Divide
DIVS <ea>,Dn Data
Unsigned Divide
DIVU <ea>,Dn
Exclusive OR Logical
EOR Dn,<ea>
EORI #<data>,<ea>
Exchange Registers
EXG Rx,Ry
Sign Extend
EXT Dn Data
Illegal Instruction
ILLEGAL
Jump
JMP <ea>
Jump to Subroutine
JSR <ea>
Load Effective Address
LEA <ea>,An
Link and Allocate
LINK An,#<displacement>
Logical Shift Left
LSL Dx,Dy
LSL #<data>,Dy
LSL <ea>
Logical Shift Right
LSR Dx,Dy
LSR #<data>,Dy
LSR <ea>
Move Data from Source to Destination
MOVE <ea>,<ea>
MOVEA <ea>,An
MOVEQ #<data>,Dn
Move Multiple Registers
MOVEM <register list>,<ea>
MOVEM <ea>,<register list>
Move Peripheral
MOVEP Dx,d(Ay)
MOVEP d(Ay),Dx
Signed Multiple
MULS <ea>,Dn
Unsigned Multiple
MULU <ea>,Dn
Negate Decimal with Extend
NBCD <ea>
Negate
NEG <ea>
Negate with Extend

NOP

NOT

OR

PEA

RESET

ROL

ROR

ROXL

ROXR

RTE

RTR

RTS

SBCD

Scc

STOP

SUB

SUBX

SWAP

TAS

TRAP

TRAPV

TST

UNLK

NEGX <ea>
No Operation
NOP
Logical Complement
NOT <ea>
Inclusive OR Logical
OR <ea>,Dn
OR Dn,<ea>
ORI #<data>,<ea>
Push Effective Address
PEA <ea>
Reset External Device
RESET
Rotate Left (without Extend)
ROL Dx,Dy
ROL #<data>,Dn
ROL <ea>
Rotate Right (without Extend)
ROR Dx,Dy
ROR #<data>,Dn
ROR <ea>
Rotate Left with Extend
ROXL Dx,Dy
ROXL #<data>,Dn
ROXL <ea>
Rotate Right with Extend
ROXR Dx,Dy
ROXR #<data>,Dn
ROXR <ea>
Return from Exception
RTE Data
Return and Restore Condition Codes
RTR
Return from Subroutine
RTS
Subtract Decimal with Extend
SBCD Dy,Dx
SBCD -(Ay),-(Ax)
Set according to Condition
Scc <ea>
Load Status Register and Stop
STOP #xxx
Subtract Binary
SUB <ea>,Dn
SUB Dn,<ea>
SUBA <ea>,An
SUBI #<data>,<ea>
SUBQ #<data>,<ea>
Subtract with Extend
SUBX Dy,Dx
SUBX -(Ay),-(Ax)
Swap Register Halves
SWAP Dn
Test & Set an Operand
TAS <ea>
Trap
TRAP #<vector>
Trap an Overflow
TRAPV
Test an Operand
TST <ea>
Unlink
UNLK An Data

252

APPENDIX 5: RAW KEY CODES

The following keycodes are in hex, and are for use with the blitzmode command
RawKeyStatus.

253

254

COMMAND INDEX
ACos 115 Borders 193 Cvi 117 Enable
AGABIue 165 Box 146 Cvl 117 End
AGAGreen 165 Boxf 146 Cvq 117 End
AGAPalRGB 165 Buffer 156 Cycle 166 End
AGARGB 165 ButtonGroup 189 CyclePalette 164 End
AGARed 165 Button Id 193 End Function
ALibJsr 126 DCB 125 End Setlnt
AMIGA 121 CELSE 122 DEFTYPE 101 End Statement
ASLFileRequest$ 202 CEND 122 Data 106 Endlf
ASLFontRequest 202 CERR 123 Date$ 119 Eof
ASLPathRequest$ 202 CNIF 122 DateFormat 119 EraseMode
ASLScreenRequest 202 CSIF 122 Days 119 ErrFail
ASin 115 Call 127 DecodelLBM 145 Event
ASyncFade 166 Case 96 DecodeMedModule 172 EventCode
ATan 115 CaseSense 118 DecodePalette 164 EventQualifier
Abs 113 CatchDosErrs 111 DecodeShapes 152 EventWindow
Activate 184 Centre$ 118 DecodeSound 170 Exchange
ActivateString 191 Chr$ 116 Default 97 ExecVersion
Add First 102 Circle 146 DefaultlDCMP 178 Exists
AddIDCMP 179 Circlef 147 Defaultlnput 107 Exp
Addltem 103 ClearList 102 DefaultOutput 107
AddLast 102 ClearRexxMsg 204 DeleteArgString 206 FadeIn
Addr 123 ClearString 191 DeleteMsgPort 203 FadeOut
AllocMem 128 ClickButton 211 DeleteRexxMsg 204 FadePalette
Asc 116 ClipBlit 158 Dim 102 FadeStatus
AsmExit 126 ClipBlitMode 158 Disable 194 False
AttachGTList 200 CloseEd 129 DiskBuffer 170 Fields
AutoCookie 150 CloseFile 109 DiskPlay 170 FileInput

CloseScreen 174 DispHeight 113 FileOutput
BBlit 156 CloseSerial 214 Display 134 FileRequest$
BBIitMode 156 CloseWindow 186 DisplayAdjust 137 FileSeek
BLITZ 121 ClrErr 100 DisplayBitMap 136 FillRexxMsg
BLibJsr 126 Clrlnt 100 DisplayControls 137 Filter
Bank 128 Cls 146 DisplayDblScan 138 FindScreen
BankSize 128 CludgeBitMap 145 DisplayPalette 136 Firstltem
BeepScreen 174 ColSplit 133 DisplayRGB 138 FloatMode
Bin$ 116 Colour 142 DisplayRainbow 138 FloodFill
BitMap 144 CookieMode 154 DisplayScroll 139 FlushBuffer
BitMaplnput 143 CopLen 134 DisplaySprite 136 FlushEvents
BitMapOrigin 145 CopLoc 134 DisplayUser 139 FlushQueue
BitMapOutput 142 CopyBitMap 144 DoColl 161 For
BitMapWindow 145 CopyShape 150 DoFade 166 Forever
BitMaptoWindow 187 Cos 114 DosBuffLen 111 Format
BitPlanesBitMap 145 CreateArgString 206 DuplicatePalette 167 Frac
Blit 153 CreateDisplay 136 Frames
BlitColl 157 CreateMsgPort 203 EMouseX 184 Free
BlitMode 153 CreateRexxMsg 203 EMouseY 185 Free BitMap
BlitzKeys 140 CursX 142 EVEN 125 Free BlitzFont
BlitzQualifier 140 CursY 143 Edit 107 Free Module
BlitzRepeat 140 Cursor 182 Edit$ 106 Free Palette
Block 157 CustomColors 138 EditExit 183 Free Window
BlockScroll 158 CustomCop 133 EditFrom 183 FreeBank
Blue 165 CustomSprites 138 Editat 182 FreeFill
BorderPens 193 CustomString 138 Else 96 FreeMacroKey

194
100
123
95
97
99
100
98
96
110
154
100
180
187
187
180
101
120
111
115

166
166
164
166
113
109
110
110
107
110
204
170
173
103
106
147
156
180
155
97
98
105
113
148
123
144
142
170
163
177
128
147
213

214

162
164
167
129
130
113
127
169
127
172
212
171
170
212
146
146
140
127
147
147
98
107
103
107
186
103
105
120
191
103
110
125
186

121
114
115
155
155
114
114
114
181
154
212
213

164
118
186
181
140
147
106
109
111

128 HTan 115 LoadPalette 163 OpenSerial
133 Handle 150 LoadScreen 174
130 Hex$ 116 LoadShape 149 PColl
99 HideScreen 174 LoadShapes 149 PalRGB
99 Hours 119 LoadSound 168 PaletteRange

LoadSprites 160 Par$
200 ILBMDepth 112 LoadTape 212 ParPath$
198 ILBMHeight 112 Loc 111 Peek
201 ILBMInfo 112 Locate 142 Peek
198 ILBMViewMode 112 Lof 110 PeekSound
198 ILBMWidth 112 Log 115 Peeks$
201 INCBIN 122 Log10 115 PhoneticSpeak
201 INCDIR 122 LoopSound 169 PlayBack
200 INCLUDE 121 PlayMed
201 If 96 MButtons 181 PlayModule
201 InFront 160 Macro 123 PlayWait
201 InFrontB 160 MacroKey 213 Plot
199 InFrontF 160 MakeCookie 150 Point
199 InitAnim 148 MaxLen 101 Pointer
199 InitBank 128 Maximum 123 Poke
199 InitCopList 135 MenuChecked 197 Poly
199 InitPalette 164 MenuColour 197 Polyf
199 InitShape 152 MenuGap 196 Pop
201 InitSound 169 MenuHit 180 Poplnput
201 Inkey$ 107 Menultem 195 Popltem
201 InnerCls 182 MenuState 197 PopOutput
199 InnerHeight 185 MenuTitle 195 PositionSuperBitMap
199 InnerWidth 185 Menus 184 Prevltem
201 Instr 116 Mid$ 116 Print
199 Int 114 MidHandle 151 Processor
200 InvMode 154 Mins 119 PropGadget
199 IsRexxMsg 210 Mki$ 116 Pushltem
201 ItemHit 180 Mkl$ 117 Put
193 ItemStackSize 104 Mkq$ 117 PutReg
180 Months 119 PutSuperBitMap
190 Joyb 108 Mouse 140
190 Joyr 108 MouseArea 141 QAMIGA
193 Joyx 107 Mouse Button 211 QAbs
108 Joyy 108 MouseWait 98 QAngle
110 JumpMed 171 MouseX 141 QBlit
172 MouseXSpeed 141 QBIitMode
171 KillFile 111 MouseY 141 QFrac
171 KillItem 103 MouseYSpeed 141 QLimit
125 MoveScreen 175 QWrap
210 LCase$ 118 Qualifier
209 LSet$ 117 NEWTYPE 102 Queue
209 Lastltem 103 NPrint 105 QuickPlay
186 Left$ 115 NTSC 113 QuietTrap
150 Len 117 NewPaletteMode 163
159 Let 101 Next 97 RGB Colour
95 Line 146 NextFrame 148 RSet$
95 LoadAnim 148 Nextltem 103 RastPort
164 LoadBank 128 NoCli 129 RawKey

LoadBitMap 145 NumDays 119 RawStatus
115 LoadBlitzFont 141 NumPars 129 ReMap
192 LoadFont 187 Read
192 LoadMedModule 171 On 95 ReadFile
115 LoadModule 170 OpenFile 109 ReadMem

ReadSerial 214 SetMenu 196
ReadSerialMem 215 SetPeriod 170
ReadSerialString 214 SetSerialBuffer 214
Record 212 SetSerialLens 215
RectsHit 162 SetSerialParams 215
Red 164 SetString 191
Redraw 192 SetVProp 192
RelMouse 210 SetVoice 172
Repeat 97 Sgn 114
Replace$ 116 ShapeGadget 190
ReplyRexxMsg 209 ShapeHeight 150
ResetList 102 ShapeItem 196
ResetString 191 ShapeSpriteHit 162
Restore 106 ShapeSub 196
Return 95 ShapeWidth 150
RexxError() 210 ShapesBitMap 145
RexxEvent 210 ShapesHit 162
Right$ 115 Shared 99
Rnd 114 Show 133
Rotate 151 ShowB 133
Runerrsoff 123 ShowBitMap 175
Runerrson 123 ShowBlitz 134

ShowF 133
SBlit 157 ShowPalette 163
SBIitMode 157 ShowScreen 173
SColl 162 ShowSprite 159
SMouseX 174 ShowStencil 157
SMouseY 174 Sin 114
SaveBank 128 SizeLimits 186
SaveBitmap 145 SizeOf 102
SavePalette 164 Slice 131
SaveScreen 174 SolidMode 154
SaveShape 149 Sort 104
SaveShapes 149 SortDown 104
SaveSprites 160 SortList 104
SaveTape 212 SortUp 104
Scale 151 Sound 168
Screen 173 SoundData 169
ScreenPens 174 Speak 172
ScreenTags 175 SpriteMode 160
ScreensBitMap 144 SpritesHit 162
Scroll 147 Sqr 115
Secs 119 StartMedModule 171
Select 96 Statement 98
SelectMode 190 Statement 98
SendRexxCommand 206 Stencil 157
SerialEvent 215 Stop 96
SetBPLCON0 134 StopCycle 166
SetColl 161 StopMed 171
SetCollHi 161 StopModule 170
SetCollOdd 161 Str$ 118
SetCycle 165 String$ 116
SetErr 100 StringGadget 190
SetGadgetStatus 189 StringText$ 190
SetHProp 192 StripLead$ 117
Setlnt 99 StripTrail$ 117
SetMedMask 172 SubHit 180
SetMedVolume 171 SubIDCMP 179

Subitem 196 WMove 184
SubltemOff 196 WPIot 181
SysJsr 126 WPointer 184
SystemDate 119 WPrintScroll 186

WScroll 182
Tan 114 WSize 184
TapeTrap 213 WTitle 186
TextGadget 189 WTopOff 186
Toggle 194 Wait 210
TokeJsr 126 WaitEvent 179
Translate$ 172 WbToScreen 173
True 113 WeekDay 119
Type 211 Wend 96

While 96
UCase$ 118 Window 176
USED 123 WindowFont 183
USEPATH 121 WindowHeight 185
UStr$ 118 Windowlnput 178
UnBuffer 156 WindowOutput 178
UnLeft$ 117 WindowTags 187
UnQueue 155 WindowWidth 185
UnRight$ 117 WindowX 185
Until 97 WindowY 185
Use 123 WriteFile 109
Use BitMap 144 WriteMem 111
Use BlitzFont 142 WriteSerial 214
Use Palette 163 WriteSerialMem 215
Use Slice 132 WriteSerialString 214
Use Window 177

XFlip 151
VPos 113 XINCLUDE 122
VPropBody 192 XStatus 212
VPropPot 192 YFlip 151
VWait 98
Val 118 Years 119
ViewPort 174
VoiceLoc 172
Volume 169

WBDepth 120
WBHeight 120
WBStartup 129
WBViewMode 120
WBWidth 120
WBlit 187
WBox 181
WCircle 181
WCls 182
WColour 183
WCursX 185
WCursY 185
WEllipse 182
WJam 183
WLeftOff 186
WLine 182
WLocate 185
WMouseX 184
WMouseY 184

1

Blitz Basic Addendum

Page # Line # Mistake Type Change from Change to
5 7 Font/Insert INSERTFROMDISKL INSERTFROMDISK Loads

6 3,5,14 Spelling 3 curosr

5 curosr

14 lettters

3 cursor

5 cursor

14 letters

10 4 Spelling avaiiable available

11 16 Spelling calulation calculation

17 25 Font or OR

19 27 Delete MouseWait Next MouseWait

Delete all text after

the first MouseWait

25 30 Spelling addess.s address.s

28 13 Insert flags.w x y flags.w:x:y

29 24,25,

29

Font/Insert 24 If...Then...Else

25 If...Then...Else

29 comes to the

24 If...Then...Else

25 If...Then...Else

29 comes to the end

of the list.

30 3,8,21 Font/Delete 3 Killltem

8 Killltem

21 given the the new

3 Killltem

8 Killltem

21 given the new

31 16 Font Statements Statements
34 13 Delete The fo llow ing code

is an example of an

assembler procedure

in Blitz:

For an example of an

assembler procedure

in Blitz, turn to page

63.

38 23 Spelling it's its'

39 5 Spelling Igonore Ignore

42 18 Spelling Pallettes Palettes

45 5 Font/Insert Free Bitmap Free Bitmap n

55 36 Spelling adress-4 address-4

60 6 Spelling is if

63 6,7 Delete Because address

register a4 is used as

the local variable

base, the UNLK a4

command must be

placed at the top of a

procedure,

Delete this sentence

as UNLK a4 is no

longer required.

AsmExit is used at

the bottom of an

assembler procedure

fo r this purpose.

2

Page # Line # Mistake Type Change from Change to

68 16 Font Keeping your code

readable.

Keeping your code

readable.

71 17,24,

26

Insert 17 codeas

24 $f00

26 $f00

17 code as

24 #$f00

26 #$f00

82 15 Spelling charcter character

83 13 Spelling simple take simply takes

85 2 Spelling demonstrate demonstrates

89 31 Spelling/Insert tha #agacolors that the #agacolors

91 16 Spelling 3 colours sprited 3 coloured sprites

92 15 Spelling poistive positive

94 6 Spelling againg again

100 25,38 Spelling/Insert 25 attached

38 w ill reported

25 attach

38 w ill be reported

103 8 Font Killltem Killltem

104 13 Delete Only prim itive type,

'non -lis t' arrays may

be sorted; it is not

possible to sort

newtype arrays, or

'lis t' arrays.

Delete this line.

List arrays can be

sorted using the

SortList command.

106 37 Spelling character characters

107 4 Delete program user.

108 9 Spelling beng being

114 13,33 Insert/Delete 13 and less or

33 Tan Tan(float)

13 and less than or

33 Tan (float)

115 26 Insert Length leftmost the leftmost Length

118 1 Insert at beginning at the beginning

130 10 Spelling mystuff/myprogs m ystuff/myprograms

131 11 Spelling lice slice

135 8 Insert commanddoes command does

140 17 Spelling will when

141 8,14,30 Spelling 8 using

14 using

30 using

8 used

14 used

30 used

142 31 Insert/Spelling of eigth of an eighth

145 21 Spelling commands command

146 27 Spelling draw draws

153 4 Spelling animations animation

3

Page # Line # M istake Type Change from Change to

156 20 Insert to BBIited to be BBIited

157 42 Spelling/Insert 1bcan

shapeyou

can

shape you

159 38 Spelling display displayed

161 12 Delete Bitplanes refers to

the number of

bitplanes (depth) of

the bitmap collisions

are to be tested for

in.

Bitplanes refers to

the number of

bitplanes (depth) that

b itmap collision are

to be tested in.

162 5 Insert channel the sprite channel of the sprite

164 21 Delete Use Palette ShowPalette

Use Palette no

longer copies a

palettes colours onto

the display. The

commands

ShowPalette and

DisplayPalette are

for this purpose.

165 18 Delete Use Palette ShowPalette

See explanation

above.

166 26,31 Insert 26 thewhole

31 there any steps

26 the whole

31 there are any steps

172 10,22 Insert/Delete 10 memorylocation

22 Translate

10 m em ory location

22 PhoneticSpeak

command

173 25,31 Insert/Spelling 25 Omission from

description

31 own

25 The Dpen

parameter is the

detail pen colour

used fo r the screen

title.

The Bpen parameter

is the block pen

colour used fo r the

screens' borders.

31 on

4

Page # Line # M istake Type Change from Change to

174 7 Delete Use Palette ShowPalette

See explanation for

error on page 7 64

(above).

175 7 Delete (see autodocs/

176 34 Delete you have may want you may want

180 10,20 Spelling 10 return

20 Supplyng

10 returns

20 Supplying

182 13,20,

21

Spelling/Insert 13 clour

13 or colour

20 CIs

21 If colour

21 specfied

13 colour

13 or a colour

20 WCIs

21 If a colour

21 specified

183 5,7,11,

29,32

Spelling/Insert 5 editting

7 editting

11 editting

29 gaphics

32 leavesthe

5 editing

7 editing

11 editing

29 graphics

32 leaves the

184 7 Spelling active activate

186 11 Spelling (winodw#) (window#)

187 22 Delete/Spelling

Insert

22 descibed

22 descibed in

22 described

22 described in the

188 25,27 Delete/Spelling 25 as so should

27 w itdh

25 as should

27 w id th

189 6 Font hello HELLO

190 32 Spelling gadgets gadget.

191 38 Delete may be be may be

194 11,12 Spelling/Delete 11 Togggle

12 if the no On

11 Toggle

12 if the On

196 20,28 Spelling 20 grpahics

28 pixies

20 graphics

28 pixels

199 8,17,26 Spelling/Insert 8 enaables

17 readonly

26 of display

8 enables

17 read only

26 of the display

200 3 Spelling AttchGTList AttachCTList

201 4,29 Spelling 4 reattache

29 of and gadtools

4 reattach

29 of the gadtools

5

Page # Line # Mistake Type Change from Change to
202 21 Insert The fo llow ing code

(....etc.)

Insert the code

shown at the end of

this error report.

204 21 Insert one ormore of one or more of

205 29 Insert theLONG the LONG

206 18 Font the the

208 22 Spelling th t that

213 23 Spelling BRex BRexx

214 6 Delete/Spelling and unit 2 or refer to and unit 2 refers to

215 25 Spelling/Insert 25 send

25 out the given

25 sends

25 out to the given

217 22,23 Spelling 22 Blitz][

23 Parmaters

22 Blitz2

23 Parameters

218 4 Insert may only defined may only be defined

219 24 Spelling Blitz][Blitz2

222 16 Insert wellas well as

223 10,12,

19,21

Insert 10 SetIn t..SetInt

12 SetIn t..SetInt

19 SetIn t..SetInt

21 SetIn t..Setlnt

10 SetIn t..End SetInt

12 SetIn t..End SetInt

19 SetIn t..End SetInt

21 SetIn t..End Setlnt

224 5 Spelling Blitz][Blitz2

240 29 Spelling there their

242 30,32,

36

Delete/Spelling 30 the the blitter

32 BLITZSIZE

36 #BLTSIZH=$5C

30 the b litter

32 BLTZSIZE

36 #BLTSIZH=$5E

243 48 Delete data that is begins data tha t begins

244 25 Font $1e $1E

245 37 Spelling it its'

247 25 Delete The value at at this The value at this

248 18,23 Spelling 18 load

23 prformed

18 loads

23 performed

249 9,21 Spelling 9 aritmetic

21 ot

9 arithmetic

21 not

250 3,20 Spelling 3 addrssing

20 sourse

3 addressing

20 source

252 6 Spelling Inclusice Inclusive

Back

Page 23 Spelling appeard appeared

Example code missing from page 202 (ASLFontRequest):

NEWTYPE .fontinfo

name.s

ysize.w

style.b:flags.b

pen1.b:pen2:drawmode:pad

End NEWTYPE

FindScreen 0

*f.fontinfo=ASLFontRequest(15)

If *f

N P rin t * f\nam e

N P rin t *f\ysize

N P rin t *f\pen1

N P rin t *f\p e n 2

N P rin t *f\d raw m ode

Else

N P rin t "cancelled"

Endlf

M ouseW ait

Copyright

C opyrigh t 1994 by A cid Softw are, a d iv is ion o f A rm strong C om m unications L im ited, New
Z ealand. T his docum ent m ay not, in w hole o r in part, be cop ied , pho tocopied , reproduced ,
translated , o r reduced to any electron ic m edium w ithout p rio r consent, in w riting, from Acid
Software.

The distribution and sale o f this product are intended for the use o f the original purchaser only.
Lawful users o f this program are hereby licensed only to read the program and its libraries from
its medium into the m em ory o f the com puter solely for the purpose o f executing the program .

Duplicating, copying, selling or otherw ise distributing this product is a violation of the law.

Note: Acid Softw are claim no intellectual or any o ther copyright over softw are developed in
Blitz2 by registered Blitz2 users.

Disclaimer

A cid Softw are accept no responsib ility for the perform ance o f B litz2 or softw are developed
with Blitz2. How ever, we will endeavour to solve any problem s registered users have with the
product and hope to support the product to the best o f our ability.

Credits

Developed by M ark S ib ly using H iSoft’s Devpac2.
Printed in the United Kingdom by G uildhall Leisure Services
M anual produced with Soft L og ik 's PageStream 2 & PageLiner.

Technical Support

Users are not entitled to any support unless registration cards are returned. Support is available
via email from acid@ iconz.co.nz. Acid Software can also be contacted via fax in New Zealand
on + 649 358 1658. A lte rn a tiv e ly m ail any q u e s tio n s to the ad d ress th a t appeared on the
registration card enclosed in this package.

Upgrades

B litz B A SIC fo r the A m iga is co n tin u a lly being im proved . U pdates are p ro v id ed free by
subscrib ing to the B litz U ser M agazine (B U M), details are included on the reg istra tion card.
Significant additions to the language are planned for 1995 including Atari Jaguar support, 3D
graphics support for both A m iga and Jaguar, as well as a powerful new editor.

mailto:acid@iconz.co.nz

CONTENTS
Chapters

1. Program Flow
2. Variable Handling
3. Procedures
4. I nput Output
5. Numeric Functions
6. String Functions
7. File Access
8. Compiler Directives
9. Assembler
10. Memory Access
11. Program Startup
12. Object Handling
13. Bitmaps
14. Shapes
15. ILBM
16. 2D Drawing
17. Palettes, Fades and Cycling
18. Sound
19. Slices
20. Sprites
21 . Blitting
22. Collisions
23. Blitz I/O
24. Screens
25. Windows
26. Gadgets
27. Menus
28. Brexx

Appendicies

1 . Blitz 2 Object
2. Compile Time Errors
3. Amiga Library Routines
4. Hardware Registers
5. 68000 Assembly Reference
6. Rawkey Table

Index

Blitz BASIC 2 was developed by Mark Sibly

COPYRIGHT
This manual is Copyright Acid Software, a member of Armstrong
Communications.

This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium without prior
consent, in writing, from Acid Software.

The distribution and sale of this product are intended for the use of the
original purchaser only. Lawful users of this program are hereby licensed
only to read the program and its libraries from its medium into memory of
the computer solely for the purpose of executing the program.

Duplicating, copying, selling or otherwise distributing this product is a
violation of the law.

Printed in Auckland, New Zealand by 1'J:ljOill;,'

I
I
I
I

I
I
I
I
I
I
I

1. Program Flow
i'!r .. ~

-.. ===-:~

-.. .-
Program flow refers to the order in which a program's instructions are executed. When a program is
run, it's commands are executed in a top-down manner. This means instructions are executed one
after another, from the top of your program to the bottom. This section deals with commands which
interupt this normal process, and cause commands to be executed from a different point in the
program.

Amiga interupt control commands are also covered at the end of this section.

Statennent: {;oto
Syntax: Goto Program Label

Modes: Amiga/Blitz

Description:

Goto causes program flow to be transferred to the specified program label. This allows sections of a
program to be 'skipped' or 'repeated'.

Example:

.
; goto program example

Gotothere
NPrint "What happened to me?"

there:
NPrint "Program flow has reached 'there'"
MouseWait

See Also:

Gosub

Statennent: {;osub
Syntax: Gosub Program Label

Modes: Amiga/Blitz

Description:

Gosub operates in two steps. First, the location of the instruction following the Gosub is remembered
in a special storage area (known as the 'stack'). Secondly, program flow is transferred to the specified

1-1

Program Label.

The section of program that program flow is transferred to is known as a 'subroutine' and is usually
terminated by a Return command. The Return command has the effect of returning program flow to
the location remembered by the previous Gosub command.

This allows a section of a program to be used by many other parts of the same program.

Example:

; gosub program example

Gosubtwo
NPrint "Three!"
MouseWait
End

two:
Gosubone
NPrint "Two!"
Return

one:
NPrint "One!"
Return

See Also:

Return

Statement: Return
Syntax: Return

Modes: Amiga/Blitz

Description:

Return is used to return program flow to the instruction following the previously executed Gosub
command. This allows the creation of 'subroutines' which may be called from various points in a
program.

See Also:

Gosub

Statement: On ... Gotol Gosub
Syntax: On Expression Gotol Gosub Program Label[,Program Label ...]

Modes: Amiga/Blitz

1-2

Description:

On allows a program to branch, via either a Goto or a Gosub, to one of a number of Program Labels
depending upon the result of the specified Expression.

If the specified Expression results in a 1, then the first Program Label will be branched to. A result of 2
will cause the second Program Label to be branched to and so on.

If the result of Expression is less than one, or not enough Program Labels are supplied, program flow
will continue from the command following the On.

Example:

,
; on .. ,gosub prgram example

For k=l To 3
On k Gosub one,two,three

Next

MouseWait
End

one:
NPrint "One!"
Return

two:
NPrint "Two!"
Return

three:NPrint "Three!"
Return

NPrint "Click mouse button to return to the editor .. ,"
MouseWait

Statement: MouseWait
Syntax: MouseWait

Modes: AmigalBlitz

Description:

MouseWait simply halts program flow until the left mouse button is pushed, If the left mouse button is
already held down when a MouseWait is executed, program flow will simply continue through.

This is often useful in Blitz 2 to prevent a program from terminating too quickly and leaving you back in
the editor.

MouseWait should normally be used only for program testing purposes, as MouseWait severely
slows down multi-tasking.

1-3

Example:

,
; mousewait program example

a=10
NPrint "Click mouse button, then type 'NPrint a'"
MouseWait
Stop

Statement: End
Syntax: End

Modes: Amiga/Blitz

Description:

End will halt program flow completely. In the case of programs run from the Blitz 2 editor, you will be
returned to the editor. In the case of executable files, you will be returned to the Workbench or CLI.

End is often also useful to prevent program flow from running into a subroutine.

Example:

,
; end program example

Gosubthere
MouseWait
End
there:
NPrint "Hello!"
Return

See Also:

Stop

Statement: Stop
Syntax: Stop

Modes: Amiga/Blitz

Description:

The Stop command will cause program flow to stop, and user control to be transferred to Blitz 2 direct
mode.

The Stop command is really only useful in debugging situations, as it allows the programmer a chance

1-4

to have a look at program variables via Blitz 2's direct mode.

Example:

; stop program example

a=lO
NPrint "Click mouse button, then type 'NPrint a'"
MouseWaif
Stop

See Also:

End, Cont

Statement: Cont
Syntax: Cont [NJ

Modes: AmigalBlitz

Description:

The Cont command is only available in Blitz 2 direct mode. Cont will cause program flow to continue
from the instruction following the instruction which caused a jump to direct mode. This instruction may
have been either a Stop or a program error of some kind.

The optional N parameter can be used to tell Blitz 2 programs to ignore a number of Stop commands
after a Cont. This is useful in debugging as it allows you to insert a Stop inside a program loop, but
not have to Cont every pass of the loop.

See Also:

Stop

Statement: If
Syntax: If Expression [Then. ..]

Modes: AmigalBlitz

Description:

If allows you to execute a section of program depending on the value of program variables. Expression
usually includes some form of comparison operator.

If an If is followed by a Then, and the expression proves to be true, then the instructions following the
Then will be executed. If the expression proves to be false, then the instructions following the Then
are ignored, and program flow continues from the line following the If.

If an If is NOT followed by a Then, and the expression proves to be true, then program flow will
continue from the instruction following the If. If the expression proves to be false, then program flow

1-5

will continue from the instruction following the next matching Endlf or Else command. Blocks of
program instructions inside an If and an Endlf are known as 'If blocks'.

Example:

,
; if ... then program example

For k= 1 To 10
If k=5 Then NPrint "k is 5!"
Ifk<5

NPrint "k is less than 5!"
Else

NPrint "k is not less than 5!"
Endlf

Next
MouseWait

See Also:

Else, Endlf

Statement: EndIf
Syntax: Endlf

Modes: Amiga/Blitz

Description:

Endlf is used to terminate an 'If block'. An If block is begun by use of the If statement. Please refer to
If for more information on If blocks.

See Also:

If, Else

Statement: Else
Syntax: Else [Statement ... j

Modes: Amiga/Blitz

Description:

Else may be used after an If to cause program instructions to be executed if the expression specified
in the If proved to be false.

Example:

1-6

,
; if ... else ... endif program example

NPrint "Type a number from 1 to 10"
a=Edit(3)

Ifa<5
NPrint "Your number is less than 5"

Else
NPrint "Your number is greater than or equal to 5"

Endlf

MouseWait

See Also:

If, Endlf

Statement: While
Syntax: While Expression

Modes: AmigaiBlitz

Description:

The While command is used to execute a series of commands repeatedly while the specified
Expression proves to be true. The commands to be executed include all the commands following the
While until the next matching Wend.

Example:

,
; while ... wend program example

While a<10
NPrint a
0+ 1

Wend

MouseWait

See Also:

Wend, Repeat

Statement: Wend
Syntax: Wend

Modes: AmigaiBlitz

1-7

Description:

Wend is used in conjunction with While to determine a section of program to be executed repeatedly
based upon the truth of an expression.

See Also:

While

Statement: Select
Syntax: Select Expression

Modes: Amiga/Blitz

Description:

Select examines and 'remembers' the result of the specified Expression. Later in the program, Case
may used to executed different sections of program code depending on this result. Here is an example
of a typical Select ... Case ... End Select sequence:

Select Expression
Case 1
;execute this if expression evaluated to 1
Case 2
;execute this if expression evaluated to 2

.may have many more 'Case's ...

Default
;execute this if expression did not match any of the cases.
End Select

Example:

1-8

; select ... case program example

Print "Enter a number from 1 to 3:"
n=Edit(80)

Select n
Case 1

NPrint "One!"
Case 2

NPrint "Two!"
Case 3

NPrint "Three!"
Default

NPrint "That number was not 1.2 or 3!"
End Select

MouseWait

See Also:

Case, Default, End Select

Statement: Case
Syntax: Case Expression

Modes: Amiga/Blitz

Description:

A Case is used following a Select to execute a section of program code when, and only when, the
Expression specified in the Case statement is equivalent to the Expression specified in the Select
statement.

If a Case statement is satisfied, program flow will continue until the next Case, Default or End Select
statement is encountered, at which point program flow will branch to the next matching End Select.

See Also:

Select, Default, End Select

Statement: Default
Syntax: Default

Modes: Amiga/Blitz

Description:

A Default statement may appear following a series of Case statements to cause a section of program
code to be executed if NONE of the Case statements were satisfied.

See Also:

Select, Case, End Select

Statement: End Select
Syntax: End Select

Modes: Amiga/Blitz

Description:

End Select terminates a Select ... Case ... End Select sequence. If program flow had been diverted
through the use of a Case or Default statement, it will continue from the terminating End Select.

See Also:

Select, Case, Default

1-9

Statement: For
Syntax: For Var=Expression1 To Expression2 [Step Expression3J

Modes: Amiga/Blitz

Description:

The For statement initializes a For ... Next loop. All For/Next loops must begin with a For statement,
and must have a terminating Next statement further down the program. For/Next loops cause a
particular section of code to be repeated a certain number of times. The For statement does most of
the work in a For/Next loop. When For is executed, the variable specified by Var (known as the index
variable) will be set to the value Expression 1. After this, the actual loop commences.

At the beginning of the loop, a check is made to see if the value of Var has exceeded Expression2. If
so, program flow will branch to the command following the For/Next loop's Next, ending the loop. If
not, program flow continues on until the loop's Next is reached. At this pOint, the value specified in
Expression3 (the 'step' value) is added to Var, and program flow is sent back to the top of the loop,
where Var is again checked against Expression2. If Expression3 is omitted, a default step value of 1
will be used.

An interesting feature of For/Next loops is the ability to use the loop's index variable within the loop.
In order for a For/Next loop to count 'down' from one value to a lower value, a negative step number
must be supplied.

Example:

,
; nested for ... next loops program example

For 0= 1 To 3 ;start up a for next loop
For b=3 To 1 Step -1 ;and another, 'inner' loop

NPrint "0=",0," b=",b ;show what's happening to the index variables.
Next ;next for 'b' For/Next loop .. .

Next ;next for 'a' For/Next loop .. .

MouseWait

See Also:

Next, Step

Statement: ~ext
Syntax: Next [Var£, Var .. .]J

Modes: Amiga/Blitz

Description:

Next terminates a For/Next loop. Please refer to the For command for more information on For/Next
loops.

1-10

See Also:

For, Step

Statement: Repeat
Syntax: Repeat

Modes: Amiga/Blitz

Description:

Repeat is used to begin a Repeat ... Untii loop. Each Repeat statement in a program must have a
corresponding Until further down the program.
The purpose of RepeatJUntilloops is to cause a section of code to be executed AT LEAST ONCE
before a test is made to see if the code should be executed again.

Example:

; repeat ... until program example

Repeat

Print "Type a number (0 to quit):"
n=Edit(80)

If n/2=lnt(n/2)
NPrint n," is an even number"

Else
NPrint n," is an odd number"

Endlf

Until n=O

See Also:

Until, Forever

Statement: Until
Syntax: Until Expression

Modes: Amiga/Blitz

Description:

Until is used to terminate a RepeatJUntilloop. If Expression proves to be true (non 0), then program
flow will continue from the command following Until. If Expression proves to be false (0), then program
flow will go back to the corresponding Repeat, found further up the program.

See Also:

1-11

Repeat, Forever

Statement: Forever
Syntax: Forever

Modes: Amiga/Blitz

Description:

Forever may be used instead of Until to cause a Repeat/Until loop to NEVER exit.

Executing Forever is identical to executing 'Until 0'.

See Also:

Repeat, Until

Statement: Pop
Syntax: Pop Gosubl Fori Selectllfl Whilel Repeat

Modes: Amiga/Blitz

Description:

Sometimes, it may be necessary to exit from a particular type of program loop in order to transfer
program flow to a different part of the program. However, to achieve this Blitz 2 must be told that the
relevant loop should be 'forgotten'. This is the purpose of Pop.

Actually, Pop is only necessary to prematurely terminate Gosubs, Fors and Selects. If, While and
Repeat have been included for completeness.

Example:

1-12

; guessing game program example (pop example in here somewhere)

Repeat

NPrint "Think of a number between 1 and 1000 ... "
NPrint "I Shall try to guess it in ten goes!"

I=O:h=lOOO

For k= 1 To 10
n=lnt«h-I)/2)+1

Repeat
Print "Is your number ",n,"? (y)es, (h)igher, (l)ower ?"

a$=LCase$(Edit$(1))
Until a$="y" OR a$="h" OR a$="I"

Select a$
Case "y"

NPrint "Clever, aren't I?"
NPrint "I got it in ",k," guesses!"
Pop Select:Pop For
Goto right

Case "I"
h=n

Case "h"
I=n

End Select

Next

NPrint "Huh??? You must have CHEATED!"

right:
Print "Another Game? (y)es, (n)o ?"
a$=LCase$(Edit$(1))

Until a$="n"

Statement: SetInt
Syntax: Setlnt Type

Modes: Amiga/Blitz

Description:

Setlnt is used to declare a section of program code as 'interupt' code. Before going further into the
details of Setlnt, let's have a quick look at what interupts are.

Often, when a computer program is running, an event of some importance takes place which must be
processed immediately. This is done through interupts. When an interupt occurs, whatever program
may be currently running is completely halted by the 68000. Then, a program known as an 'interupt
handler' is started. Once the interupt handler has done it's work, the program which was originally
interupted is restarted, without any knowledge of having been disturbed.

So what can cause an interupt? On the Amiga, there are 14 different types of possible interupts, each
assigned it's own special number. These interupts are as follows:

1-13

Interupt Cause of Interupt

0 Serial transmit buffer empty
1 Disk Block read/written
2 Software interupt
3 Cia ports interupt
4 Co-processor ('copper') interupt
5 Vetical Blank
6 Blitter finished
7 Audio channel 0 pointerilength fetched
8 Audio channel 1 pOinterilength fetched
9 Audio channel 2 pointerilength fetched
10 Audio channel 3 pointerilength fetched
11 Serial receive buffer full
12 Floppy disk sync
13 External interupt

The most useful of these interupts is the vertical blank interupt. This interupt occurs every time an
entire video frame has been fully displayed (about every sixtieth of a second), and is very useful for
animation purposes. If a section of program code has been deSignated as a vertical blank interupt
handler, then that section of code will be executed every sixtieth of a second.

Interupt handlers must perform their task as quickly as possible, especially in the case of vertical blank
handlers which must NEVER take longer than one sixtieth of a second to execute.

Interupt handlers in Blitz 2 must NEVER access string variables or literal strings. In Blitz mode, this is
the only restriction on interupt handlers. In Amiga mode, no blitter, Intuition or file i/o commands may
be executed by interupt handlers.

To set up a section of code to be used as an interupt handler, you use the Setlnt command followed
by the actual interupt handler code. An End Setlnt should follow the interupt code. The Type
parameter specifies the type of interupt, from the above table, the interupt handler should be attached
to. For example, Setlnt 5 should be used for vertical blank interupt code.

More than one interupt handler may be attached to a particular type of interupt.

Example:

; vertical blank interrupt routine program example

Setlnt 5
a+ 1
Poke.w $dff180,a
End Setlnt

MouseWait

See Also:

End Setlnt, Clrlnt

1-14

; vertical blank handler follows
;add one to 'a'

; this little poke will change background colour
;end of interupt handler

; wait for mouseclick - handler still going!

Statement: End Setlnt
Syntax: End Setlnt

Modes: Amiga/Blitz

Description:

End Setlnt must appear after a Setlnt to signify the end of a section of interupt handler code. Please
refer to Setlnt for more information of interupt handlers.

See Also:

Setlnt, Clrlnt

Statement: Clrlnt
Syntax: Glrlnt Type

Modes: Amiga/Blitz

Description:

Clrlnt may be used to remove any interupt handlers currently attached to the specified interupt Type.
The Setlnt command is used to attached interupt handlers to particular interupts.

Example:

,
; end setint program example

Setlnt 5
a+ 1
Poke.w $dff180,a
End Setlnt

;interupt handler follows ...
;add one to 'a'

;set background colour
;end of handler

NPrint "Hit return ... " ;handler going till return is hit ...
b=Edit(l) ;do an edit function
elrlnt 5 ;turn of all type 5 interupt handlers
NPrint "Click Mouse button .. ."
MouseWait

See Also:

Setlnt, End Setlnt

1-15

Statement: SetErr
Syntax: SetErr

Modes: Amiga/Blitz

Description:

The SetErr command allows you to set up custom error handlers. Program code which appears after
the SetErr command will be executed when any Blitz 2 runtime errors are caused. Custom error code
should be ended by an End SetErr.

Example:

; error handler example program

SetErr ;install error handler
NPrint "RUNTIME ERROR!" ;this is our handler ...
NPrint "Click Mouse Button."
MouseWait
ErrFail

End SetErr ;end of error handler

Dim 0(10)
For k= 1 To 11
o(k)=k
NPrint o(k)
Next

See Also:

ClrErr, ErrFail

;dim an array
;going to cause an error!

Statement: End SetErr
Syntax: End SetErr

Modes: Amiga/Blitz

Description:

End SetErr must appear following custom error handlers installed using SetErr. Plase refer to SetErr
for more information on custom error handlers.

See Also:

SetErr, ClrErr, ErrFail

1-16

Statement: ClrErr
Syntax: ClrErr

Modes: Amiga/Blitz

Description:

ClrErr may be used to remove a custom error handler set up using SetErr.

See Also:

SetErr, ErrFail, ClrErr

Statement: ErrFaii
Syntax: ErrFaii

Modes: Amiga/Blitz

Description:

ErrFaii may be used within custom error handlers to cause a 'normal' error. The error which caused
the custom error handler to be executed will reported and transfer will be passed to direct mode.

See Also:

SetErr, ClrErr

Statement: VWait
Syntax: VWait [Frames]

Modes: Amiga/Blitz

Description:

VWait will cause program flow to halt until the next vertical blank occurs. The optional Frames
parameter may be used to wait for a particular number of vertical blanks.

VWait is especially useful in animation for synchronizing display changes with the rate at which the
display is physically redrawn by the monitor.

1-17

1-18

2. Variable Handling
~

IA$\ (9
~r.r.' :;..-Ii . ' -

This section covers all commands related to Blitz 2 variable handling. This includes the handling of
standard types as well as Blitz 2's NewTypes, arrays, lists, and data statements. NewTypes are Blitz's
answer to C structures while Lists refer to Blitz's linked list capabilities including a whole command set
supporting all standard operations on linked lists.

Statement: Let
Syntax: Let Var=! Operator Expression

Modes: Amiga/Blitz

Description:

Let is an optional command used to assign a value to a variable. Let must always be followed by a
variable name and an expression. Normally, an equals sign ('=') is placed between the variable name
and the expression. If the equals sign is omitted, then an opertor (eg: '+', '*') must appear between the
variable name and the expression. In this case, the specified variable will be altered by the specified
operator and expression. Here are some examples of Let:

Example:

,
; let program example

Let 0=10
Let 0=b*5
Let k+ 1
Let z*5

;assign 10 to 'a'
;assign 'b times 5' to 'a'

;add 1 to 'k'
;multiply 'z' by 5.

Statement: I>ata
Syntax: Data [. Type] /tem[,/tem ...]

Modes: Amiga/Blitz

Description:

The Data statement allows you to include pre-defined values in your programs. These 'data items' may
be transferred into variables using the Read statement.
When data is read into variables, the Type of the data being read MUST match the type of the variable
it is being read into.

2-1

Example:

,
; read data program example

Read as,b,c.w
NPrint as
NPrint b
NPrint c
MouseWait
End

;read next 3 pieces of data.
;print them out ...

DataS "Some data to be read" ;data to be read - string ...
Data 10 ; quick .. .
Data.w -5 ;and word.

See Also:

Read, Restore

Statement: Read
Syntax: Read Var[, Var ...]

Modes: Amiga/Blitz

Description:

Read is used to transfer items in Data statements into variables. Data is transferred sequentially into
variables through what is known as a 'data pointer'. Each time a pice of data is read, the data painter is
incremented to paint at the next piece of data. The data pointer may be set to point to a particular
piece of data using the Restore command.

See Also:

Data, Restore

Statement: Restore
Syntax: Restore [Program Label]

Modes: Amiga/Blitz

Description:

Restore allows you to set Blitz 2's internal 'data pointer' to a particular piece of data. after executing a
Restore, The first item of data following the specified Program Label will become the data to be read
when the next Read command is executed.

Restore with no parameters will reset the data pointer to the very first piece of data in the program.

2-2

See Also:

Data, Read

Statement: Exchange
Syntax: Exchange Var, Var

Modes: Amiga/Blitz

Description:

Exchange will 'swap' the values contained in the 2 specified variables. Exchange may only be used
with 2 variables of the same type.

Example:

,
; exchange program example

a=lO
b=20
NPrint a
NPrint b
Exchange a ,b
NPrint a
NPrint b
MouseWait

;put 70 into 'a'
;put 20 into 'b'
;printa & b

;exchange variables ...
;print a & b again ...

Statement: MaxLen
Syntax: MaxLen SfringVar=Expression

Modes: Amiga/Blitz

Description:

MaxLen sets aside a block of memory for a string variable to grow into. This is normally only
necessary in the case of special Blitz 2 commands which require this space to be present before
execution. Currently, only 2 Blitz 2 commands require the use of MaxLen - FileRequest$ and Fields.

Example

; filerequest program example

WbTo$creen 0
WBenchToFronC
MaxLen pa$= 160
Max Len fi$=64

;pick up workbench as currently used screen
;bring workbench to front of view
;these are necessary for FileRequest$...

;to operate properly!

2-3

o$=FileRequest$("Select a File",po$,fiS) ;bring up a file requester

WBenchToBack_

See Also:

FileRequest$, Fields

;workbench back to rear of view.

Statement: DEFTYPE
Syntax: DEFTYPE . Typename [Var£, Var ...]]

Modes: Amiga/Blitz

Description:

DEFTYPE may be used in 2 ways:

* DEFTYPE may be used to declare a list of variables as being of a particular type. In this case, Var
parameters must be supplied.

* DEFTYPE may be used to select a default variable type for future 'unknown' variables. Unknown
variables are variables created with no Typename specifier. In this case, no Var parameters are
supplied.

Please refer to the Programming chapter of the Blitz 2 Programmers guide for more information on
variable types and the use of DEFTYPE.

Example:

,
; deftype program example
,
DEFTYPE.lo,b,c ; these variables are 01/ 'longs'
d= 1 0 ; 'd' is a quick (the initial default type)
DEFTYPE.w ;set default type to 'word'
e=lO ;'e'is a word

See Also:

NEWTYPE

Statement: NEWTYPE
Syntax: NEWTYPE . Typename

Modes: Amiga/Blitz

Description:

NEWTYPE is used to create a custom variable type. NEWTYPE must be followed by a list of entry

2-4

names separated by colons (':') and/or newlines. NEWTYPEs are terminated using End NEWTYPE.
Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
setting up and using custom variable types.

Example:

,
; newtype program example
i

NEWTYPE.test
a.l
b.w
c.q
End NEWTYPE

a.test\a= 10.20,30

;start of custom variable type.
;contents of type ...

;end of custom variable type.

;assign some values.

NPrint a\a,a\b,a\c ;output values

MouseWait

See Also:

DEFTYPE,USEPATH

Function: SizeOf
Syntax: SizeOf . Typename[,Entrypath]

Modes: AmigalBlitz

Description:

SizeOf allows you to determine the amount of memory, in bytes, a particular variable type takes up.
SizeOf may also be followed by an optional Entrypath, in which case the offset from the start of the
type to the specified entry is returned.

Example:

; sizeof program example

NEWTYPE.test ;create a custom variable type ...
a.1
b.w
c.q
End NEWTYPE ;end of custom variable type.

NPrint SizeOf.b ;print size of a byte!

NPrint SizeOf.test ;print size of our custom type

NPrint SizeOf.test\ b ;print offset to 'b' entry of our type.

2-5

MouseWait

See Also:

NEWTYPE

Statement: Dim
Syntax: Dim Arrayname [List] (Dimension1[,Dimension2 .. .])

Modes: Amiga/Blitz

Description:

Dim is used to initialize a BASIC array. Blitz 2 supports 2 array types - simple arrays, and list arrays.
The optional List parameter, if present, denotes a list array. Simple arrays are identical to standard
BASIC arrays, and may be of any number dimensions. List arrays may be of only 1 dimension.

Lists are covered fully in the Blitz 2 programmers guide, under the programming section.

Example:

,
; array example

Dim 0(3,3)

For k=l To 3
For j=l To 3
o(k,j)=c
c+l

Next
Next

;initialize 'a' array

; outer loop .. .
;inner loop .. .

;assign array element
;increment 'c'
;end of inner loop
;end of outer loop

For k= 1 To 3 ;outer loop .. .
For j= 1 To 3 ;inner loop .. .
NPrint "0(" ,k,"," ,j,")=" ,a(k,j) ;print out array elements

Next ;end of inner loop
Next

MouseWait

Statement: ResetList
Syntax: ResetList ArraynameO

Modes: Amiga/Blitz

Description:

ResetList is used in conjunction with a list array to prepare the list array for Nextltem processing.

2-6

After executing a ResetList, the next Nextitem executed will set the list array's 'current element'
pointer to the list array's very first item.

Example:

; list program example

Dim List o(1 0)

While AddFirst(o(»
oO=c
c+ 1

Wend

NPrint "Contents of 00 ... "

ResetList 00

While Nextltem(o(»
NPrint 00

Wend

MouseWait

See Also:

Nextltem

Statement: ClearList
Syntax: ClearList Arrayname()

Modes: Amiga/Blitz

Description:

;initialize a list array ...

; fill it up with stuff

;back to first item in list

;process list
;output value of element

ClearList is used in conjunction with list arrays to completely 'empty' out the specified list array. List
arrays are automatically emptied when they are Dimmed.

See Also:

Dim, ResetList

Function: AddFirst
Syntax: AddFirst (Arrayname())

Modes: Amiga/Blitz

Description:

2-7

The Add First function allows you to insert an array list item at the beginning of an array list. AddFirst
returns a true/false value reflecting whether or not there was enough room in the array list to add an
element. If an array element was available, Add First returns a true value (-1), and sets the list array's
'current item' pointer to the item added. If no array element was available, Add First returns false (0).

Example:

,
; addfirst program example

Dim List a(loo)

While AddFirst(a())
aO=c
c+1

Wend

;initialize list array

;while an item is available ...
;set it to something ...

;increment counter

NPrint c," items successfully added." ; output how many items added

MouseWait

See Also:

Add Last, Addltem, Killitem

Function: AddLast
Syntax: Add Last (Arrayname())

Modes: Amiga/Blitz

Description:

The Add Last function allows you to insert an array list item at the end of an array list. Add Last returns
a true/false value reflecting whether or not there was enough room in the array list to add an element.
If an array element was available, Add Last returns a true value (-1), and sets the list array's 'current
item' pointer to the item added. If no array element was available, AddLast returns false (O).

See Also:

AddFirst, Addltem, Kililtem

Function: Addltem
Syntax: Addltem (ArraynameO)

Modes: Amiga/Blitz

Description:

The Addltem function allows you to insert an array list item after the list array's 'current' item. Addltem
returns a true/false value reflecting whether or not there was enough room in the array list to add an
element. If an array element was available, Addltem returns a true value (-1), and sets the list array's

2-8

'current item' pointer to the item added. If no array element was available, Addltem returns false (0).

Example:

; list handling program example

Dim List 0(10)

If AddFirst(o()) Then 00= 1

If Addltem(o()) Then 00=2

NPrint "List Array (first to last) is ... "

ResetList 00

While Nextltem(o())
NPrint 00

Wend

MouseWait

See Also:

AddFirst, AddLast, Killitem

Statement: Killltem
Syntax: Kiliitem ArrayName()

Modes: Amiga/Blitz

Description:

Killitem is used to delete the specified list array's current item. After executing Killitem, the list array's
'current item' pointer will be set to the item before the item deleted.

Example:

; process list with killitem program example

Dim List 0(10)

While Addltem(oO)
oO=c
c+l

Wend

ResetList 00

;initialize list array

;til/list ...
; with sequential values ...

;reset list ...

2-9

While Nextltem(oO)
If 00/2<>lnt(00/2)

KiIIltem 00
Endlf

Wend

;process list ...
;is item odd?

;yes, kill it!

NPrint "Final Ust (Odd elements deleted) is ... "

ResetList 00 ;reset list

While Nextltem(oO) ; output all elements ...
NPrint 00

Wend

MouseWait

See Also:

Add First, Add Last, Addltem

Function: Prevltem
Syntax: Prevltem (Arrayname())

Modes: Amiga/Blitz

Description:

Prevltem will set the specified list array's 'current item' pOinter to the item before the list array's old
current item. This allows for 'backwards' processing of a list array. Prevltem returns a true/false value
reflecting whether or not there actually was a previous item. If a previous item was available, Prevltem
will return true (-1). Otherwise, Prevltem will return false (0).

Example:

2-10

; print list backwards program example

Dim List o(10) ;initialize list array

While AddLast(o(» ; fill list .. .
oO=c ;with 0, 72 .. .
c+ 1

Wend

NPrint "List contents (backwards) are ... "

If Lastltem(a(»
Repeat

NPrint 00

;go to last item in list
;repeat ...

Until NOT Prevltem(oO)
Endlf

; until no more previous items

MouseWait

See Also:

Nextitem

Function: Nextltem
Syntax: Nextltem (Arrayname())

Modes: Amiga/Blitz

Description:

Nextltem will set the specified list array's 'current item' pointer to the item after the list array's old
current item. This allows for 'forwards' processing of a list array. Nextltem returns a true/false value
reflecting whether or not there actually was a next item available or not. If an item was available,
Nextltem will return true (-1). Otherwise, Nextltem will return false (0).

Example:

; print list forwards program example

Dim List 0(10) ;initialize list array

While AddLast(oO) ;til/list
oO=c ; with stuff ...
c+ 1

Wend

NPrint "List contents (forwards) are ... "

ResetList 00 ;reset list

While Nextltem(o(» ;output items in list ...
NPrint 00

Wend

MouseWait

See Also:

Prevltem

Function: Firstltem
Syntax: Firstltem (Arrayname())

Modes: Amiga/Blitz

2-11

Description:

Executing Firstltem will set the specified list array's 'current item' pOinter to the very first item in the list
array. If there are no items in the list array, Firstltem will return false (0) otherwise, Firstltem will
return true (-1).

Example:

,
; print /astitem in list

Dim List a(1O) ;initialize list array

While AddFirst(a()) ; fill list array ...
a()=c
c+l

Wend

If Firstltem(a()) ;if there is a /astitem ...
NPrint "First Item in list is:",aO ;print it out ...

Endlf

MouseWait

See Also:

Lastltem

Function: Lastltem
Syntax: Lastltem (ArraynameO)

Modes: Amiga/Blitz

Description:

Executing Lastltem will set the specified list array's 'current item' pOinter to the very last item in the list
array. If there are no items in the list array, Lastltem will return false (0), otherwise Lastltem will return
true (-1).

Example:

,
; print /astitem in list

Dim List a(1O) ;initialize list array

While AddLast(a()) ; fill list array ...
aO=c
c+ 1

Wend

2-12

If Lastltem(aQ) ;if there is a lastitem ...
NPrint "Last Item in list is:",aO ;print it out ...

Endlf

MouseWait

See Also:

Firstitem

Statement: Pushltem
Syntax: Push Item Arrayname()

Modes: Amiga/Blitz

Description:

Executing Pushltem causes the specified list array's 'current item' pointer to be pushed onto an
internal stack. This pointer may be later recalled by executing Popltem.
The internal item pointer stack allows for up to 8 'pushes'.

Example:

,
; pushing items on stack with list

Dim List a(l 0) ;initialize list array

While AddLast(aQ) ;fill array up with 0 ... 9
aO=c
c+1

Wend

ResetList aO ;reset list

While Nextltem(a()) ;process all items
If aO=5 Then Push Item aO ;remember when '5' found

Wend

Popltem aO ;recal/ '5'
Killltem 00 ;delete it.

ResetList 00 ;reset list

While Nextltem(o()) ;output list contents
NPrint 00

Wend

MouseWait

End

2-13

See Also:

Popltem

Statement: Pop Item
Syntax: Popltem Arrayname()

Modes: Amiga/Blitz

Description:

Popltem 'pops' or 'recalls' a previously pushed current item pointer for the specified list array.
Arrayname() must match the arrayname of the most recently executed Pushltem.

See Also:

Pushltem

Statement: ItemStackSize
Syntax: ItemStackSize Max Items

Modes: Amiga/Blitz

Description:

ItemStackSize determines how many 'list' items may be pushed (using the Push Item command),
before items must be 'Pop'ped off again. For example, executing ltemStackSize 1000 will allow you to
push up to 1000 list items before you run out of item stack space.

See Also:

Pushltem, Pop item

Statement: Sort
Syntax: Sort Arrayname()

Modes: Amiga/Blitz

Description:

Sort will cause the specified array to be sorted. Only primitive type, 'non-list' arrays may be sorted; it is
not possible to sort newtype arrays, or 'list' arrays.

The direction of the sort may be specified using either the SortUp or Sort Down commands.

The default direction used for sorting is ascending - ie: array elements are sorted into a 'low to high'
order.

2-14

Example:

,

" a sort of an example
,
Dim a(9)
For k=O To 9

a(k)=Rnd
Next
Sort aO
For k=O To 9

NPrint a(k)
Next
MouseWait

See Also:

SortUp, SortDown

;dimension an 'a' array
; fill array with random values ...

;sort the array
;print out sorted array

; wait for mouse click

Statement: SortUp
Syntax: SortUp

Modes: AmigaiBlitz

Description:

SortUp may be used to force the Sort command to sort arrays into ascending order. This means that,
after being sorted, an array's contents will be ordered in a 'low to high' manner.

See Also:

Sort, SortDown

Statement: SortDown
Syntax: SortDown

Modes: AmigaiBlitz

Description:

SortDown may be used to force the Sort command to sort arrays into descending order. This means
that, after being sorted, an array's contents will be ordered in a 'high to low' manner.

See Also:

Sort, SortUp

2-15

3. Procedures

This section covers the commands related to Statements and Functions in Blitz 2. Local and global
variables as well as recursion are all discussed in detail.

Statement: Statement
Syntax: Statement Procedurename{[Parameter1 [, Paramater2 ...]]}

Modes: AmigalBlitz

Description:

Statement declares all following code up to the next End Statement as being a 'statement type'
procedure.

Up to 6 Parameters may be passed to a statement in the form of local variables through which calling
parameters are passed.

In Blitz 2, all statements and functions must be declared before they are called.

Example:

,
; declare a statement program example

Statement hexprint{ o} ;declare statement with one parameter
NPrint Hex$(o) ;print out hex value of parameter

End Statement ;end of statement

hexprint{ 16384} ; call statement

MouseWait

See Also:

End Statement, Statement Return, Function

Statement: End Statement
Syntax: End Statement

Modes: AmigalBlitz

Descri ption:

3-1

End Statement declares the end of a 'statement type' procedure definition. All statement type
procedures must be terminated with an End Statement.

See Also:

Statement, Statement Return

Statement: Statement Return
Syntax: Statement Return

Modes: AmigalBlitz

Description:

Statement Return may be used to prematurely exit from a 'statement type' procedure. Program flow
will return to the command following the procedure call.

Example:

; statement variable passing program example

Statement printeven{ o} ;start of procedure
If 0/2<>lnt(0/2) Then Statement Return ;if parameter is odd, exit.
NPrint 0 ;else print parameter

End Statement ;end of procedure

For k= 1 To 10
printeven{ o}
Next

MouseWait

See Also:

End Statement, Function Return

Statement: Function

;start of loop
; call statement

;end of loop

Syntax: Function [. Type] Procedurename{[Parameter1[,Parameter2 ...]]}

Modes: AmigalBlitz

Description:

Function declares all following code up to the next End Function as being a function type procedure.
The optional Type parameter may be used to determine what type of result is returned by the function.
Type, if specified, must be one Blitz 2's 6 primitive variable types. If no Type is given, the current
default type is used.

Up to 6 Parameters may be passed to a function in the form of local variables through which calling

3-2

parameters are passed.

Functions may return values through the Function Return command.

In Blitz 2, all statements and functions must be declared before they are called.

Example:

; function program example

FunctionS hexof{a} ;declare function with one parameter
Function Return Hex$(a) ;return hex value of parameter

End Function ;end of function

NPrint hexof{ 16384} ; call function

MouseWait

See Also:

End Function, Function Return, Statement

Statement: End Function
Syntax: End Function

Modes: Amiga/Blitz

Description:

End Function declares the end of a 'function type' procedure definition. All function type procedures
must be terminated with an End Function.

See Also:

Function, Function Return

Statement: Function Return
Syntax: Function Return Expression

Modes: Amiga/Blitz

Description:

Function Return allows 'function type' procedures to return values to their calling expressions.
Function type procedures are always called from within Blitz 2 expressions.

3-3

Example:

,
; function example

Function double{a} ;start of function code ...
Function Return a+a ;return double the passed parameter

End Function ;end of function code.

For k= 1 To 10 ;start of loop
NPrint double{k} ;output 'k' doubled

Next ;end of loop

MouseWait

See Also:

End Function, Statement Return

Statement: Shared
Syntax: Shared Var[, Var ...]

Modes: Amiga/Blitz

Description:

Shared is used to declare certain variables within a procedure definition as being global variables. Any
variables appearing within a procedure definition that do not appear in a Shared statement are, by
default, local variables.

Example:

,
; local variable program example

3-4

Statement test{a}
Shared k
NPrint k*a

End Statement

For k=l To 10
NPrint test{5}

Next

MouseWait

;start of procedure definition
;use global 'k' variable
;output 'k' times parameter

;end of procedure definition

;start of loop
;call 'test

;end of loop

4. Input/Output
---;;.,.-.

The following section details Blitz 2's BASIC input/output commands including the print and edit
commands as well as joystick input, print formatting and default input and output redirection.

Statement: Print
Syntax: Print Expression[,Expresion ... j

Modes: AmigalBlitz

Description:

Print allows you to output either strings or numeric values to the current output channel. Commands
such as WindowOutput or BitMapOutput may be used to alter the current output channel.

Example:

,
; print program example
,
Print "Hello"
Print "There! "
a=2
Print "Blitz Basic ",a," at work!"
MouseWait

See Also:

NPrint

Statement: NPrint
Syntax: NPrint Expression[,Expresion. .. j

Modes: Amiga/Blitz

Description:

NPrint allows you to output either strings or numeric values to the current output channel. Commands
such as WindowOutput or BitMapOutput may be used to alter the current output channel.

After all ExpressiOns have been output, NPrint automatically prints a newline character.

4-1

Example:

; nprint program example

NPrint "Hello"
NPrint "There!"
a=2
NPrint "Blitz Basic ",a," at work!"
NPrint "Goodbye ... "
MouseWait

See Also:

Print

Statement: Format
Syntax: Format FormatString

Modes: Amiga/Blitz

Description:

Format allows you to control the output of any numeric values by the Print or NPrint commands.
FormatString is an 80 character or less string expression used for formatting information by the Print
command. Special characters in FormatString are used to perform special formatting functions. These
special characters are:

Character Format effect

If no digit to print, insert spaces into output
0 If no digit to print, insert zeros ('0') into output

Insert decimal point into output
+ Insert sign of value
- Insert sign of value, only if negative
, Insert commas every 3 digits to left of number

Any other characters in FormatString will appear at appropriate positions in the output.

Here are some example of FormatStrings and their output:

FormatString Value printedOutput

"####.00" 5.2 5.20
"0000.00" 5.20005.20
"###,###.00" 10240.25 10,240.25
"Total: -#####" -10.5Total: - 11

Format affects the operation of the Str$ function.

4-2

See Also:

Str$

Statement: FloatMode
Syntax: FloatMode Mode

Modes: Amiga/Blitz

Description:

FloatMode allows you to control how floating point numbers are output by the Print or NPrint
commands.

Floating point numbers may be displayed in one of two ways - in exponential format, or in standard
format. Exponential format displays a floating point number as a value multiplied by ten raised to a
power. For example, 10240 expressed exponentially is displayed as '1.024E+4', ie: 1.024 times 10 to
the power of 4. Standard format simply prints values 'as is'.

A Mode parameter of 1 will cause floating point values to ALWAYS be displayed in exponential format.
A Mode parameter of -1 will cause floating point values to ALWAYS be displayed in standard format.
A Mode parameter of 0 will cause Blitz 2 to take a 'best guess' at the most appropriate format to use.
This is the default mode for floating point output.

Note that if Format has been used to alter numeric output, standard mode will always be used to print
floating pOint numbers.

Example:

,
;f/oatmode program example

a.f= 10240.25
NPrint a
FloatMode 1
NPrint a
FloatMode -1
NPrint a
MouseWait

Function: Joyx
Syntax: Joyx (Port)

Modes: Amiga/Blitz

Description:

Joyx will return the leWright status of a joystick plugged into the specified port. Port must be either 0 or
1, 0 being the port the mouse is normally plugged into. If the joystick is held to the left, Joyx will return
-1. If the joystick is held to the right, Joyx will return 1. If the joystick is held neither left or right, Joyx
will return o.

4-3

See Also:

Joyy, Joyr, Joyb

Function: Joyy
Syntax: Joyy (Port)

Modes: Amiga/Blitz

Description:

Joyy will return the up/down status of a joystick plugged into the specified port. Port must be either 0
or 1,0 being the port the mouse is normally plugged into. If the joystick is held upwards, Joyy will
return -1. If the joystick is held downwrads, Joyy will return 1. If the joystick is held neither upwards or
downwards, Joyy will return o.
See Also:

Joyx, Joyr, Joyb

Function: Joyr
Syntax: Joyr (Port)

Modes: Amiga/Blitz

Description:

Joyr may be used to determine the rotational direction of a joystick plugged into the specified port.
Port must be either 0 or 1, port 0 beng the port the mouse is normally plugged into.

Joyr returns a value from 0 through 8 based on the following table:

Joystick direction Joyr value

Up 0
Up-Right 1
Right 2
Down-Right 3
Down 4
Down-Left 5
Left 6
Up-Left 7
No Direction 8

See Also:

Joyx,Joyy,Joyb

4-4

Function: Joyb
Syntax: Joyb (Port)

Modes: Amiga/Blitz

Description:

Joyb allows you to read the button status of the device plugged into the specified port. Port must be
either 0 or 1 , 0 being the port the mouse is normally plugged into.

If the left button is held down, Joyb will return 1. If the right button is held down, Joyb will return 2. If
both buttons are held down, Joyb will return 3. If no buttons are held down, Joyb will return o.

See Also:

Joyx, Joyy, Joyr

Statement: Defaultlnput
Syntax: Defaultlnput

Modes: Amiga/Blitz

Description:

Defaultlnput causes all future Edit$ functions to receive their input from the CLI window the Blitz 2
program was run from. This is the default input channel used when a Blitz 2 program is first run.

See Also:

DefaultOutput

Statement: DefaultOutput
Syntax: DefaultOutput

Modes: Amiga/Blitz

Description:

DefaultOutput cause all future Print statements to send their output to the CLI window the Blitz 2
program was run from. This is the default output channel used when a Blitz 2 program is first run.

See Also:

Defaultlnput

4-5

Function: FileReguest$
Syntax: FileRequest$ (Title$,Pathname$,Filename$)

Modes: Amiga

Description:

The FileRequest$ function will open up a standard Amiga-style file requester on the currently used
screen. Program flow will halt until the user either selects a file, or hits the requester's 'Cancel' button.
If a file was selected, FileRequest$ will return the full file name as a string. If 'Cancel' was selected,
FileRequest$ will return a null (empty) string.

Title$ may be any string expression to be used as a title for the file requester.

Pathname$ MUST be a string variable with a MaxLen of at least 160.

Filename$ MUST be a string variable with a MaxLen of at least 64.

Example:

,
; file request example program
,
WbToScreen 0 ;use workbench
WBenchToFront_ ;workbench to front
MaxLen pa$= 160 ;set 'path' string var
MaxLen fi$=64 ;set 'file' string var
a$=FileRequest$("Select a File",pa$.fi$) ;do file requester
WBenchToBack_ ; Workbench to back

See Also:

MaxLen

Function: Edit$
Syntax: Edit$ ([DefauItString$j,Characters)

Modes: Amiga/Blitz

Description:

Edit$ is Blitz 2's standard text input command. Edit$ normally causes the following chain of events:

* The optional DefaultString$ and a cursor is printed to the display.

* The program user types in a string of text.

* When 'RETURN' is hit, Edit$ returns the text entered by the program user as a string of character.

Edit$ operates slightly differently depending on the mode of input at the time of execution. For
instance, executing a Windowlnput command will cause Edit$ to receive and print it's input to an
Intuition window, whereas executing Filelnput will cause Edit$ to receive it's input from a file.

Characters specifies a maximum number of allowable characters for input. This is extremely useful in

4-6

preventing Edit$ from destroying display contents.

Example:

,
; editS program example
,
Print "Please Type in your name:" ;prompt for a name

;receive input a$=Edit$(40)
NPrint "Hello There ",0$," !"
MouseWait

See Also:

Edit, Inkey$

Function: Edit
Syntax: Edit ([DefaultValueJ,Characters)

Modes: Amiga/Blitz

Description:

;print message and name

Edit is Blitz 2's standard numeric input command. Edit normally causes the following chain of events:

.. The optional Defaultvalue and a cursor is printed to the display .

.. The program user types in a numeric value .

.. When 'RETURN' is hit, Edit returns the value entered by the program user.

Edit operates slightly differently depending on the mode of input at the time of execution. For instance,
executing a Windowlnput command will cause Edit to receive and print it's input to an Intuition
window, whereas executing Filelnput will cause Edit to receive it's input from a file.

Characters specifies a maximum number of allowable characters for input. This is extremely useful in
preventing Edit from destroying display contents.

Example:

,
; edit program example
,
Print "Type in your age:"
a=Edit(40)

;prompt ...
;receive age!

If 0>=21 ;are they over 21?
NPrint "I hope you enjoyed your twenty first!" ;ye5!

Else ;e/5e ...
NPrint "I bet you're looking forward to your twenty first!" ;no!
Endlf

MouseWait

4-7

See Also:

Edit$, Inkey$

Function: Inkey$
Syntax: Inkey$ [(Characters)]

Modes: Amiga/Blitz

Description:

Inkey$ may be used to collect one or more characters from the current input channel. The current
input channel may be selected using commands such as Windowlnput, Filelnput or BitMaplnput.
Inkey$ MAY NOT be used from the Oefaultlnput input channel.

Characters refers to the number of characters to collect. The default is one character.

Example:

,
; inkey$ program example
,
Screen 0,3
Window 0,0,0,320.200,$1 OOf,"My Window!", 1.2
NPrint "Type away - hit Mouse Button to Quit!"

While Joyb(O)=O ;Ioop continuously until a mousebutton down
WaitEvent
Print Inkey$

Wend

See Also:

Edit$, Edit

4-8

This section covers all functions which accept and return only numeric values. Note that all the
transcendental functions (eg. Sin, Cos) operate in radians.

Function: NTSC
Syntax: NTSC

Modes: Amiga/Blitz

Description:

This function returns 0 if the display is currently in PAL mode, or -1 if currently in NTSC mode. This
may be used to write software which dynamically adjusts itself to different versions of the Amiga
computer.

Example:

,
; NTSC test example program
,
If NTSC Then Print "Yo Dude" Else Print "Hello Chaps"
MouseWait

See Also:

DispHeight

Function: DispHeight
Syntax: DispHeight

Modes: Amiga/Blitz

Description:

DispHeight will return 256 if executed on a PAL Amiga, or 200 if executed on an NTSC Amiga. This
allows programs to open full sized screens, windows etc on any Amiga.

Example:

,
; max display height example program

Print "Maximum display height is ",DispHeight
MouseWait

5-1

See Also:

NTSC

Function: Peek
Syntax: Peek [. Type](Address)

Modes: Amiga/Blitz

Description:

Peek returns the value found at the memory location specified by Address. The value returned
depends on the size of the peek. If Peek.b is used the byte at memory location MemLoc is returned.

If Peek.w is used the word at memory location MemLoc is returned. And for Peek.l or Peek.q the long
word of the memory location is returned.

Peek$ may be used to read a null terminated string from memory.

Example:

,
; peek example program
,
NPrint "Exec Base can be found at"
Print Peek.l (4)
MouseWait

See Also:

Poke

Function: Abs
Syntax: Abs (Expression)

Modes: Amiga/Blitz

Description:

This function returns the positive equivalent of Expression.

Example:

Print Abs(-23) ; Prints 23 too

See Also:

QAbs

5-2

Function: Frac
Syntax: Frae (Expression)

Modes: Amiga/Blitz

Description:

Frae() returns the fractional part of Expression.

Example:

Print Frac(23.456) ; Will print .456

See Also:

QFrae

Function: Int
Syntax: Int (Expression)

Modes: Amiga/Blitz

Description:

This returns the Integer part (before the decimal point) of Expression.

Example:

Print Int(23.456) ; Will simply print 23

Function: QAbs
Syntax: QAbs (Quick)

Modes: Amiga/Blitz

Description:

QAbs works just like Abs except that the value it accepts is a Quick. This enhances the speed at
which the function executes quite dramatically. Of course you are limited by the restrictions of the
quick type of value.

Example:

Print QAbs(-23) ; Prints 23

See Also:

Abs

5-3

Function: QFrac
Syntax: QFrac (Quick)

Modes: Amiga/Blitz

Description:

QFracO returns the fractional part of a quick value. It works like FracO but accepts a quick value as
ifs argument. It is faster than FracO but has the normal quick value limits.

Example:

Print QFrac(23.4) ; Prints .4

See Also:

Frac

Function: QLimit
Syntax: QLimit (Quick,Low,High)

Modes: Amiga/Blitz

Description:

QLimit is used to limit the range of a quick number. If Quick is greater than or equal to Low, and less
or equal to High, the value of Quick is returned. If Quick is less than Low, then Low is returned. If
Quick is greater than High, then High is returned.

Example:

Print QLimit(150,0,140) ; Prints 740

Print QLimit(75,90,200) ; Prints 90

See Also:

QWrap

Function: QWrap
Syntax: QWrap (Quick,Low,High)

Modes: Amiga/Blitz

Description:

QWrap will wrap the result of the Quick expression if Quick is greater than or equal to high, or less
than low. If Quick is less than Low, then Quick-Low+High is returned. If Quick is greater than or equal
to High, then Quick-High+Lowis returned.

5-4

Example:

Print QWrap(-5,0,320) ; Prints 375

Print QWrap(325,0,320) ; Prints 5

See Also:

QLimit

Function: Rnd
Syntax: Rnd [(Range)]

Modes: AmigalBlitz

Description:

This function returns a random number. If Range is not specified then a random decimal is returned
between 0 and 1. If Range is specified, then a decimal value between 0 and Range is returned.

Example:

,
; random numbers program example

Screen 0,0,0,320.200,2,0,"1000 RANDOM PLOTS", 1 ,2
ScreensBitMap 0,0
BitMapOutput °
,
For i= 1 To 1000
Plot Rnd(320) ,Rnd(200), 1 ;generate random numbers for x & y
Next

MouseWait

Function: Sgn
Syntax: S9n (Expression)

Modes: AmigalBlitz

Description:

S9n returns the sign of Expression. If Expression is less than 0, then -1 is returned. If Expression is
equal to 0, then ° is returned. If Expression is greater than 0, then 1 is returned.

Example:

Print S9n(-23) ; Prints-I
Print S9n(0) ; Prints 0
Print S9n(123) ; Prints 1

5-5

Function: Cos
Syntax: Cos (Float)

Modes: Amiga/Blitz

Description:

CosO returns the Cosine of the value Float.

Example:

,
; cosine curve program example
,
Screen 0,0,0,320,200,2,0,"A COSINE CURVE",1 ,2
ScreensBitMap 0,0
BitMapOutput °
Locate O,2:Print " 1"
Locate 0, 12:Print "0"
Locate 0,22: Print "-1"
Locate 19, 13:Print "Pi"
Locate 37,13:Print "2Pi"
,
Line 16,20,16,180,2
Line 16,100,319,100,2
,
For k.f=O To 1 Step .0025
,
Plot k*303+ 16,Cos(Pi*2*k)*80+ 100,3
,
Next
,
MouseWait

Function: Sin
Syntax: Sin (Float)

Modes: Amiga/Blitz

Description:

This returns the Sine of the value Float.

Example:

5-6

,
; sine curve program example

Screen 0,0,0,320,200,2,0,"A SINE CURVE",1 ,2
ScreensBitMap 0,0
BitMapOutput °

Locate O,2:Print • 1"
Locate 0, 12:Print" O·
Locate 0,22: Print ·-1"
Locate 19, 13:Print "Pi"
Locate 37, 13:Print "2Pi"
,
Line 16,20,16,180,2
Line 16,100,319,100,2
,
For k.f=O To 1 Step .0025
,
Plot k*303+ 16,Sin(Pi*2*k)*80+ 100,3
,
Next
,
MouseWait

Function: Tan
Syntax: Tan (Float)

Modes: Amiga/Blitz

Description:

This returns the Tangent of the value Float.

Example:

,
; tangent function program example
,
; for this to work, you'l/ have to turn off overflow
; checking from the runtime errors requester!
,
Screen 0,0,0,320,2oo,2,0,"A TAN CURVE",1,2
ScreensBitMap 0,0
BitMapOutput 0
,
Locate 0,2:Print " 10"
Locate 0, 12:Print" 0"
Locate 0,22: Print "-10"
Locate 19, 13:Print "Pi"
Locate 37, 13:Print "2Pi"
,
Line 16,20,16,180,2
Line 16,100,319,100,2
,
For k.f=O To 1 Step .0025
,
Plot k*303+ 16,Tan(Pi*2*k)*8+ 100,3
,
Next

5-7

MouseWait

Function: ACos
Syntax: ACos (Float)

Modes: Amiga/Blitz

Description:

This returns the ArcCosine of the value Float.

Function: ASin
Syntax: ASin (Float)

Modes: Amiga/Blitz

Description:

This returns the ArcSine of the value Float.

Function: A Tan
Syntax: ATan (Float)

Modes: Amiga/Blitz

Description:

This returns the ArcTangent of the value Float.

Function: HCos
Syntax: HCos (Float)

Modes: Amiga/Blitz

Description:

This returns the hyperbolic Cosine of the value Float.

5-8

Function: HSin
Syntax: HSin (Float)

Modes: AmigalBlitz

Description:

This returns the hyperbolic Sine of the value Float.

Function: HTan
Syntax: HTan (Float)

Modes: AmigalBlitz

Description:

This returns the hyperbolic Tangent of the value Float.

Function: Exp
Syntax: Exp (Float)

Modes: AmigalBlitz

Description:

This returns e raised to the power of Float.

Function: Sqr
Syntax: Sqr (Float)

Modes: AmigalBlitz

Description:

This returns the square root of Float.

Example:

; square root program example
,
opp=20
adj=50
hypot=SqrCopp/\2+adj/\2) ; Mr. Pythagoras' Rule
Print hypot
MouseWait

5-9

Function: LoglO
Syntax: Log10 (Float)

Modes: Amiga/Blitz

Description:

This returns the base 10 logarithm of Float.

Function: Log
Syntax: Log (Float)

Modes: Amiga/Blitz

Description:

This returns the natural (base e) logarithm of Float.

5-10

6. String Functions

String functions include any functions which either return or accept a string expression.

Function: Left$
Syntax: Left$ (String$,Length)

Modes: Amiga/Blitz

Description:

This function returns Length leftmost characters of string StringS.

Example:

Print Left$("Hello there.",5): ; Will only print Hello

See Also:

UnLeft$, Right$

Function: Right$
Syntax: Right$ (String$,Length)

Modes: Amiga/Blitz

Description:

Right$() returns the rightmost Length characters from string StringS.

Example:

Print Right$("Hello there",5): ; Wi/ljust print there

See Also:

UnRight$, Left$

Function: Mid$
Syntax: Mid$(String$, Startchar[, Length])

Modes: Amiga/Blitz

6-1

Description:

This function returns Length characters of string StringS starting at character Startchar. If the optional
Length parameter is omitted, then all characters from Startchar up to the end of StringS will be
returned.

Example:

Print Mid$("Hello there"A.5): ; Will Print the characters ·/0 thO

Function: Hex$
Syntax: Hex$ (Expression)

Modes: Amiga/Blitz

Description:

Hex$() returns an 8 character string equivalent to the hexadecimal representation of Expression.

Example:

Print Hex$(32): ; Will print the string 00000020

See Also:

Bin$

Function: Bin$
Syntax: Bin$ (Expression)

Modes: Amiga/Blitz

Description:

Hex$O returns a 32 character string equivalent to the binary representation of Expression.

Example:

Print Bin$(32): ; Will print 00000000000000000000000000700000

See Also:

Hex$

Function: Chr$
Syntax: Chr$ (Expression)

Modes: Amiga/Blitz

6-2

Description:

Chr$ returns a one character string equivalent to the ASCII character Expression.Ascii is a standard
way of coding the characters used by the computer display.

Example:

Print Chr$(65): ; Will print the letter A

See Also:

Ase

Function: Asc
Syntax: Ase (String$)

Modes: Amiga/Blitz

Description:

AseO returns the ASCII value of the first characters in the string StringS.

Example:

Print AscCA"): ; Will print the number 65

See Also:

Chr$

Function: String$
Syntax: String$(StringS, Repeats)

Modes: Amiga/Blitz

Description:

This function will return a string containing Repeats sequential occurrences of the string StringS.

Example:

Print String$CHi!" ,3): ; Will print HifHi!Hi!

Function: Instr
Syntax: Instr (String$,Findstring$[,Startposj)

Modes: Amiga/Blitz

Description:

6-3

Instr attempts to locate FindString$ within String$. If a match is found, the character position of the
first matching character will be returned. If no match is found, 0 will be returned.

The optional Startpos parameter allows you to specify a starting character position for the search.

CaseSense may be used to determine whether the search is case sensitive or not.

Example:

Print Instr("Helio there all" ,"all"): : Will print 13

Print Instr("Helio Hello" ,"Hello· ,2): : Will print 7

See Also:

CaseSense

Function: Replace$
Syntax: Replace$ (String$,Findstring$,Replacestring$)

Modes: Amiga/Blitz

Description:

Replace$O will search the string String$ for any occurrences of the string Findstring$ and replace it
with the string Replacestring$.

CaseSense may be used to determine whether the search is case sensitive or not.

Example:

Print Replace$("a a a ","a ","b-"): : Will print b-b-b

See Also:

CaseSense

Function: Mki$
Syntax: Mki$ (Integer)

Modes: Amiga/Blitz

Description:

This will create a two byte character string, given the two byte numeric value Numeric.

Mki$ is often used before writing integer values to sequential files to save on disk space. When the file
is later read in, Cvi may be used to convert the string back to an integer.

Example:

6-4

Print Mki$($414l): ; Prints "AA"

See Also:

Cvi

Function: Mkl$
Syntax: Mkl$ (Long)

Modes: Amiga/Blitz

Description:

This will create a four byte character string, given the four byte numeric value Long.

Mkl$ is often used when writing long values to sequential files to save on disk space. When the file is
later read in, Cvl may be used to convert the string back to a long.

See Also:

Cvl

Function: Mkq$
Syntax: Mkq$ (Quick)

Modes: Amiga/Blitz

Description:

This will create a four byte character string, given the four byte numeric value Quick.

Mkq$ is often used when writing quick values to sequential files to save on disk space. When the file is
later read in, Cvq may be used to convert the string back to a quick.

See Also:

Cvq

Function: Cvi
Syntax: Cvi (String$)

Modes: Amiga/Blitz

Description:

Cvi returns an integer value equivalent to the left 2 characters of StringS. This is the logical opposite of
Mki$.

6-5

Example:

Print Cvi(IAA"): ; Prints 76705

See Also:

Mki$

Function: Cvl
Syntax: Cvl (String$)

Modes: Amiga/Blitz

Description:

Cvl returns a long value equivalent to the left 4 characters of String$. This is the logical opposite of
Mkl$.

See Also:

Mkl$

Function: Cvq
Syntax: Cvq (String$)

Modes: Amiga/Blitz

Description:

Cvq returns a quick value equivalent to the left 4 characters of String$. This is the logical opposite of
Mkq$.

See Also:

Mkq$

Function: Len
Syntax: Len (String$)

Modes: Amiga/Blitz

Description:

Len returns the length of the string String$.

Example:

Print Len("Hippo"): ; Will print 5

6-6

Function: UnLeft$
Syntax: UnLeft$ (String$,Length)

Modes: Amiga/Blitz

Description:

UnLeft$() removes the rightmost Length characters from the string String$.

Example:

Print UnLeft$("GoodBye" ,3): ; Will print Good
MouseWait

See Also:

Left$

Function: UnRight$
Syntax: UnRight$ (String$,Length)

Modes: Amiga/Blitz

Description:

UnRight$() removes the leftmost Length characters from the string String$.

Example:

Print UnRight$("GoodBye" ,4): ; Will print Bye

Function: StripLead$
Syntax: StripLead$ (String$,Expression)

Modes: Amiga/Blitz

Description:

StripLead$ removes all leading occurrences of the ASCII character specified by Expression from the
string String$.

Example:

Print StripLead$("AABBAAB" ,65) ; Will print BBAAB

See Also:

StripTrail$

6-7

Function: StripTrail$
Syntax: StripTrail$ (String$,Expression)

Modes: Amiga/Blitz

Description:

StripTrail$ removes all trailing occurrences of the ASCII character specified by Expression from the
string String$.

Example:

Print StripTrail$("AABBAAB",66): ;Wi/I print AABBAA

See Also:

StripLead$

Function: LSet$
Syntax: LSet$ (String$,Characters)

Modes: Amiga/Blitz

Description:

This function returns a string of Characters characters long. The string String$ will be placed at
beginning of this string. If String$ is shorter than Characters the right hand side is padded with spaces.
If it is longer, it will be truncated.

Example:

Print LSet$("Guy Fawkes",6): ; Will print "Guy Fa"
Print LSet$("Guy",6): ; Will print "Guy "

See Also:

RSet$, CentreS

Function: RSet$
Syntax: RSet$ (String$,Characters)

Modes: Amiga/Blitz

Description:

This function returns a string of Characters characters long. The string String$ will be placed at end of
this string. If String$ is shorter than Characters the left hand side is padded with spaces. If it is longer,
it will be truncated.

Example:

6-8

Print RSet$("Guy Fawkes" ,6): ; Will print ·Fawkes·
Print RSet$("Guy",6): ; Will print· Guy'

See Also:

LSet$, Centre$

Function: Centre$
Syntax: Centre$ (String$,Characters)

Modes: Amiga/Blitz

Description:

This function returns a string of Characters characters long. The string StringS will be centered in the
resulting string. If StringS is shorter than Characters the left and right sides will be padded with spaces.
If it is longer, it will be truncated on either side.

Example:

Print Centre$("Guy Fawkes",6): ; Will print "y Fawk"
Print Centre$("Guy" ,6): ; Will print" Guy "

See Also:

LSet$, RSet$

Function: LCase$
Syntax: LCase$ (String$)

Modes: Amiga/Blitz

Description:

This function returns the string StringS converted into lowercase.

Example:

Print lCase$("ABCDEFG"): ; Prints abcdefg

See Also:

UCase$

Function: UCase$
Syntax: UCase$ (String$)

Modes: Amiga/Blitz

6-9

Description:

This function returns the string StringS converted to uppercase.

Example:

Print UCase$("hijklm"): ; Prints HIJKLM

See Also:

Lease$

Function: CaseSense
Syntax: CaseSense Onl Off

Modes: Amiga/Blitz

Description:

CaseSense allows you to control the searching mode used by the Instr and Replace$ functions.

CaseSense On indicates that an exact match must be found.

CaseSense Off indicates that alphabetic characters may be matched even if they are not in the same
case.

CaseSense On is the default search mode.

See Also:

Instr, Replace$

Function: Val
Syntax: Val (String$)

Modes: Amiga/Blitz

Description:

This functions converts the string StringS into a numeric value and returns this value. When converting
the string, the conversion will stop the moment either a non numeric value or a second decimal point is
reached.

Example:

6-10

Print Val(" 1234") ; Will Print 1234
Print Val("-23") ; Prints -23
Print Val("One hundred") ; Will Print 0

See Also:

Str$, UStr$

Function: Str$
Syntax: Str$ (Expression)

Modes: Amiga/Blitz

Description:

This returns a string equivalent of the numeric value Expression. This now allows you to perform string
operations on this string.

If the Format command has been used to alter numeric output, this will be applied to the resultant
string.

Example:

o$=Str$(12345)
Print Len(o$) ; Prints 5

See Also:

Val, UStr$, Format

Function: UStr$
Syntax: UStr$ (Expression)

Modes: Amiga/Blitz

Description:

This returns a string equivalent of the numeric value Expression. This now allows you to perform string
operations on this string.

Unlike Str$, UStr$ is not affected by any active Format commands.

See Also:

Val, Str$, Format

6-11

7. File Access

Blitz 2 supports 2 modes of file access - sequential, and random access. The following section covers
the Blitz 2 commands that open, close and operate on these two types of files.

Function: OpenFile
Syntax: Open File (File#,Filename$)

Modes: Amiga

Description:

Open File attempts to open the file specified by Filename$. If the file was successfully opened,
Open File will return true (-1), otherwise, Open File will return false (0).

Files opened using Open File may be both written to and read from. If the file specified by Filename$,
did not already exist before the file was opened, it will be created by Open File.

Files opened with OpenFile are intended for use by the random access file commands, although it is
quite legal to use these files in a sequential manner.

Example:

,
; random access file program example

If OpenFile(O,"rom:test") ;open random access file.
;set maximum length of c$

;set up fields in a record
;initialize some variables ...

MaxLen c$=32
Fields O,o,b,c$
0=10
b=16
c$="Helio There!"
Put 0,0 ; write record 0
CloseFile ° ; close the file
If OpenFile(O,"rom:test") ;reopen file

Fields O,o,b,c$;set up fields again
0=0 ; clear variables
b=O
C$=IIII

Get 0,0 ;read record 0
NPrint "0=",0," b=",b," c$=",c$
CloseFile ° ;close the file
MouseWait
End

Endlf
Endlf

NPrint "Couldn't open rom:test" ;file open failed!

7-1

MouseWait

See Also:

CloseFile, Fields, Get, Put, MaxLen

Function: ReadFile
Syntax: ReadFile (File#,Filename$)

Modes: Amiga

Description:

ReadFile opens an already existing file specified by Filename$ for sequential reading. If the specified
file was successfully opened, ReadFile will return true (-1), otherwise ReadFile will return false (0).

Once a file is open using ReadFile, Filelnput may be used to read information from it.

Example:

; read file program example

If WriteFile(O,"ram:test")
FileOutput 0
Print "Hello!"
CloseFile 0
DefaultOutput
If ReadFile(O,"ram:test")

Filelnput 0
NPrint Edit$(80)
CloseFile 0
Defaultlnput
MouseWait
End

End/f
Endlf

;try to write file ...
;send print statements to file 0

;write "Hello!" to file
;close the file

;use default output.
;try to read file ...

;get input from file 0
;read from file and print it out

;close file
;normal input

NPrint "Couldn't open ram:test!"

MouseWait

;file open failed!

See Also:

CloseFile, WriteFile, Filelnput, FileOutput

7-2

Function: WriteFile
Syntax: Write File (File#,Filename$)

Modes: Amiga

Description:

WriteFile creates a new file, specified by Filename$, for the purpose of sequential file writing. If the file
was successfully opened, WriteFile will return true (-1), otherwise, WriteFile will return false (0).

A file opened using Write File may be written to by using the FileOutput command.

See Also:

CloseFile, ReadFile, Filelnput, FileOutput

Statement: CloseFile
Syntax: Close File File#

Modes: Amiga

Description:

CloseFile is used to close a file opened using one of the file open functions (FileOpen, ReadFile,
WriteFile). This should be done to all files when they are no longer required.

See Also:

Open File, ReadFile, WriteFile

Statement: Fields
Syntax: Fields File#, Var[, Var ...]

Modes: Amiga/Blitz

Description:

Fields is used to set up fields of a random access file record. Once Fields is executed, Get and Put
may be used to read and write information to and from the file.

The Var parameters specify a list of variables you wish to be either read from, or written to the file.

When a Put is executed, the values held in these variables will be transferred to the file.

When a Get is executed, these variables will take on values read from the file.

Any string variables in the variable list MUST have been initialized to contain a maximum number of
characters. This is done using the MaxLen command. These string variables must NEVER grow to be
longer than their defined maximum length.

7-3

Example:

; put and get random access file program example

If OpenFile(O,"rom:test")
MaxLen c$=32
Fields O,o.f,c$,b.w
o=Sqr(Pi)
b=16

; open random access file.
;set maximum length of c$

;set up fields in a record
;initialize some variables ...

c$="RANDOM ACCESS!"
Put 0,0 ; write record 0
CloseFile ° ; close the file
If OpenFile(O,"rom:test") ;reopen file

Fields O,o,b,c$;set up fields again
0=0 ; clear variables
b=O
C$=IIII

Get 0,0 ;read record 0
NPrint "0=",0," b=",b," c$=",c$
CloseFile ° ; close the file
MouseWait
End

Endlf
Endlf
NPrint "Couldn't open rom:test" ;file open failed!
MouseWait

See Also:

Open File, CloseFile, Get, Put, MaxLen

Statement: Put
Syntax: Put File#, Record

Modes: Amiga

Description:

Put is used to transfer the values contained in a Fields variable list to a particular record in a random
access file. When using Put to increase the size of a random access file, you may only add to the
immediate end of file. For example, if you have a random access file with 5 records in it, it is illegal to
put record number 7 to the file until record number 6 has been created.

See Also:

OpenFile, CloseFile, Fields, Get

7-4

Statement: Get
Syntax: Get File#,Record

Modes: Amiga

Description:

Get is used to transfer information from a particular record of a random access file into a variable list
set up by the Fields command. Only records which also exist may be 'gof.

See Also:

Open File, CloseFile, Fields, Put

Statement: FileOutput
Syntax: FileOutput File#

Modes: Amiga/Blitz

Description:

The FileOutput command causes the output of all subsequent Print and NPrint commands to be sent
to the specified sequential file. When the file is later closed, Print statements should be returned to an
appropriate output channel (eg: DefaultOutput or WindowOutput).

See Also:

WriteFile, CloseFile

Statement: Filelnput
Syntax: Filelnput File#

Modes: Amiga/Blitz

Description:

The Filelnput command causes all subsequent Edit, Edit$ and Inkey$ commands to receive their
input from the specified file. When the file is later closed, input should be redirected to an appropraite
channel (eg: Defaultlnput or Windowlnput).

See Also:

ReadFile, CloseFile

7-5

Statement: FileSeek
Syntax: FileSeek FileH,Position

Modes: Amiga

Description:

FileSeek allows you to move to a particular point in the specified file. The first piece of data in a file is
at position 0, the second at position 1 and so on. Position must not be set to a value greater than the
length of the file.

Used in conjunction with Open File and Lof, FileSeek may be used to 'append' to a file.

Example:

,
; file seek random access file program example

If WriteFile(O,"ram:test") ; create new file
FileOutput 0
NPrint "Hello!"
CloseFile 0

;send print there ...
;print something!

;close file
If OpenFile(O ,"ram :test")

FileSeek O,Lof(O)
NPrint "There!"
CloseFile 0
DefaultOutput

; open file again
; fileseek to end of the file

;add to the file
;close file again

If ReadFile(O,"ram:test")
Filelnput 0
NPrint Edit$(80)
NPrint Edit$(80)

If ReadFile(O,"ram:test")
Filelnput 0
NPrint Edit$(80)
NPrint Edit$(80)
MouseWait
End

Endlf
Endlf

Endlf

NPrint "Couldn't open ram:test!"

MouseWait

;send output back to normal
;open file for reading
;get input from file

;read file and print to screen
;diffo

;open file for reading
;get input from file

;read file and print to screen
;diffo

;file open failed!

See Also:

Open File, CloseFile, Lof, Eof, Loc

7-6

Function: Lof
Syntax: Lof (File#)

Modes: Amiga

Description:

Lot will return the length, in bytes, of the specified file.

See Also:

OpenFile, CloseFile, Eot, Loc

Function: Eof
Syntax: Eof (File#)

Modes:Amiga

Description:

The Eot function allows you to determine if you are currently positioned at the end of the specified file.
If so, Eot will return true (-1), otherwise Eot will return false (0).

If you are at the end of a file, any further writing to the file will increase it's length, while any further
reading from the file will cause an error.

Example:

,
; random access file program example

If WriteFile(O,"ram:test") ;create a new file
FileOutput 0 ;send print to the file ...
For k= 1 To Rnd(50)+50 ;print a random number of
Print Chr$(Rnd(26)+65) ;random alphabetic characters
Next ,
CloseFile 0 ;close the file
DefaultOutput ;send output back to screen
If ReadFile(O,"ram:test") ;open file for reading

Filelnput 0 ;get input from file
While NOT Eof(O) ;while end of file not reached ...

Print Inkey$;print next character from file
Wend ;and back for more
MouseWait
End

Endlf
Endlf

NPrint "Unable to open ram:test" ;couldn't open file

End

7-7

See Also:

Lof, Loc

Function: Loc
Syntax: Loc (File#)

Modes: Amiga

Description:

Loc may be used to determine your current position in the specified file. When a file is first opened,
you will be at position 0 in the file.

See Also:

Lof, Eof

Statement: DosBuflLen
Syntax: DosBuffLen Bytes

Modes: Amiga/Blitz

Description:

All Blitz 2 file handling is done through the use of special buffering routines. This is done to increase
the speed of file handling, especially in the case of sequential files.

Initially, each file opened is allocated a 2048 byte buffer. However, if memory is tight this buffer size
may be lowered using the DosBuffLen command.

Statement: KillFile
Syntax: Kill File Filename$

Modes: Amiga

Description:

The KiliFile command will simply attempt to delete the specified file. No error will be returned if the file
could not be deleted.

7-8

Statement: CatchDosErrs
Syntax: CatchDosErrs

Modes: Amiga/Blitz

Description:

Whenever you are executing AmigaDos I/O (for example, reading or writing a file), there is always the
possibility of something going wrong (for example, disk not inserted ... read/write error etc.). Normally,
when such problems occur, AmigaDos displays a suitable requester on the WorkBench window.
However, by executing CatchDosErrs you can force such requesters to open on a Blitz 2 window.

The window you wish dos error requesters to open on should be the currently used window at the time
CatchDosErrs is executed.

Example:

,
; catdoserrs example program

Screen 0,3
Window 0,0, 12,320,DispHeight-12,$1008,"My Window", 1,2
Catch Dos Errs ;trap dos errs to our window!
If ReadFile(O,"dummydev:dummyfile") ;nonsense device

Else
Print "Can't open file!"

Endlf
Repeat ; wait ...
Until WaitEvent=$200

Statement: ReadMem
Syntax: ReadMem File#,Address,Length

Modes: Amiga

Description:

;for window closed.

ReadMem allows you to read a number of bytes, determined by Length, into an absoulte memory
location, determined by Address, from an open file specified by File#.

Be careful using ReadMem, as writing to absolute memory may have serious consequences if you
don't known what you're dOing!

See Also:

WriteMem

7-9

Statement: WriteMem
Syntax: WriteMem File#,Address,Length

Modes: Amiga

Description:

WriteMem allows you to write a number of bytes, determined by Length, from an absolute memory
location, determined by Address, to an open file specified by File#.

See Also:

ReadMem

7-10

8. Compiler DirectiveSr~~~

The following section refers to the Blitz 2 Compiler Directives, commands which affect how a program
is compiled. Conditional compiling, macros, include files and more are covered in this chapter

Directive: USEPATH
Syntax: USEPATH Pathtext

Modes: AmigalBlitz

Description:

USEPATH allows you to specify a 'shortcut' path when dealing with NEWTYPE variables. Consider
the following lines of code:

aliensO\x= 160
aliensO\y=l00
aliensO\xs= 10
aliensO \ ys=-l 0

USEPATH can be used to save you some typing, like so:

USEPATH aliensO
\x=160
\y=100
\xs=lO
\ys=-lO

Whenever Blitz2 encounters a variable starting with the backslash character ('\'), it simply inserts the
current USEPATH text before the backslash.

See Also:

NEWTYPE

Directive: BLITZ
Syntax: BLITZ

Modes: AmigalBlitz

Description:

The BLITZ directive is used to enter Blitz mode. For a full discussion on AmigalBlitz mode, please
refer to the programming chapter of the Blitz 2 Programmers Guide.

8-1

See Also:

AMIGA, QAMIGA

Directive: AMIGA
Syntax: AMIGA

Modes: Amiga/Blitz

Description:

The AMIGA directive is used to enter Amiga mode. For a full discussion on Amiga/Blitz mode, please
refer to the programming chapter of the Blitz 2 Programmers Guide.

See Also:

BLITZ, QAMIGA

Directive: QAMIGA
Syntax: QAMIGA

Modes: Amiga/Blitz

Description:

The QAMIGA directive is used to enter Quick Amiga mode. For a full discussion on Amiga/Blitz mode,
please refer to the programming chapter of the Blitz 2 Programmers Guide.

See Also:

BLITZ, AMIGA

Directive: INCLUDE
Syntax: INCLUDE Filename

Modes: N/A

Description:

INCLUDE is a compile time directive which causes the specified file, Filename, to be compiled as part
of the programs object code. The file must be in tokenised form (ie: saved from the Blitz 2 editor) -
ascii files may not be INCLUDE'd.

INCDIR may be used to specify a path for Filename.

Filename may be optionally quote enclosed to avoid tokenisation problems.

8-2

See Also:

XINCLUDE, INCBIN

Directive: XINCLUDE
Syntax: XINCLUDE Filename

Modes: N/A

Description:

XINCLUDE stands for exclusive include. XINCLUDE works identically to INCLUDE with the exception
that XINCLUDE'd files are only ever included once. For example, if a program has 2 XINCLUDE
statements with the same filename, only the first XINCLUDE will have any effect.

INCDIR may be used to specify a path for Filename.

Filename may be optionally quote enclosed to avoid tokenisation problems.

Example:

XINCLUDE incfilenameS ;this will do nothing ... 'incfile' has already been ;included

See Also:

INCLUDE, INCBIN

Directive: INCBIN
Syntax: INCBIN Filename

Modes: N/A

Description:

INCBIN allows you to include a binary file in your object code. This is mainly of use to assembler
language programmers, as having big chunks of binary data in the middle of a BASIC program is not
really a good idea.

INCDIR may be used to specify an AmigaDos path for Filename.

Filename may be optionally quote enclosed to avoid tokenisation problems.

8-3

Directive: INCDIR
Syntax: INCDIR Pathname

Modes: Amiga/Blitz

Description:

The INCDIR command allows you to specify an AmigaDos path to be prefixed to any filenames
specified by any of INCLUDE, XINCLUDE or INCBIN commands.

Pathname may be optionally quote enclosed to avoid tokenisation problems.

Example:

INCDIR ":Myincs/"
INCLUDE mysource.src

See Also:

INCLUDE, XINCLUDE, INCBIN

Directive: CNIF
Syntax: CNIF Constant Comparison Constant

Modes: N/A

Description:

CNIF allows you to conditionally compile a section of program code based on a comparison of 2
constants. Comparison should be one of '<', '>', '=', '<>', '<=' or '>='. If the comparison proves to be
true, then compiling will continue as normal. If the comparison proves to be false, then no object code
will be generated until a matching CEND is encountered.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
conditional compiling.

Example:

; conditional debugging example

#debugit=l ;0 debug flag.

For k= 1 To 10 ;start of loop
CNIF #debugit= 1 ;is debug flag= 7 ?
NPrint k ;yes, print out value of 'k'
CEND ;end of conditional compiling.

Next

MouseWait

8-4

See Also:

CEND, CELSE, CSIF

Directive: CEND
Syntax: CEND

Modes: N/A

Description:

CEND marks the end of a block of conditionally compiled code. CEND must always appear
somewhere following a CNIF or CSIF directive.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
conditional compiling.

See Also:

CNIF, CSIF, CELSE

Directive: CSIF
Syntax: CSIF "String" Comparison "String"

Modes: N/A

Description:

CSIF allows you to conditionally compile a section of program code based on a comparison of 2 literal
strings. Comparison should be one of '<', '>', '=', '<>', '<=' or '>='. Both strings must be quote enclosed
literal strings. If the comparison proves to be true, then compiling will continue as normal. If the
comparison proves to be false, then no object code will be generated until a matching CEND is
encountered.

CSIF is of most use in macros for checking macro parameters.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
conditional compiling.

Example:

,
; macro example program with cerr

Macro test ;define test macro!
CSIF'l='''' ; check parameter
CERR "Illegal Macro Parameter" ;generate error if null!

CEND ;NPrint "']" :print parameter
End Macro ;end of macro definition

!test{heilo} ;this will compile OK

8-5

!test ;this will generate an error!

See Also:

CEND, CNIF, CELSE

Directive: CELSE
Syntax: CELSE

Modes: N/A

Description:

CELSE may be used between a CNIF or CSIF, and a CEND to cause code to be compiled when a
constant comparison proves to be false.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
conditional compiling.

See Also:

CNIF, CSIF, CEND

Directive: CERR
Syntax: CERR Errormessage

Modes: N/A

Description:

CERR allows a program to generate compile-time error messages. CERR is normally used in
conjunction with macros and conditional compiling to generate errors when incorrect macro
parameters are encountered.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
conditional compiling.

Directive: Macro
Syntax: Macro Macroname

Modes: N/A

Description:

8-6

Macro is used to declare the start of a macro definition. All text following Macro, up until the next End
Macro, will be included in the macro's contents.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
macros.

Example:

,
; simple macro program example

Macro test ;start of 'test' macro definition
NPrint "Hello!" ;macro contents ...
NPrint "This is a Macro!" , ...

End Macro ;end of 'test' macro

!test ;insert macro ... !test

MouseWait

See Also:

End Macro

Statement: End Macro
Syntax: End Macro

Modes: N/A

Description:

;insert macro

End Macro is used to finish a macro definition. Macro definitions are set up using the Macro
command.

Please refer to the Programming chapter of the Blitz 2 Programmers Guide for more information on
macros.

See Also:

Macro

8-7

9. Assembler

This section will cover commands related to Blitz 2's in-line assembler. It is assumed that readers of
this section are already knowledgable in 68000 assembly language, as no attempt will be made to
teach this subject.

Blitz 2's assembler is very easy to use. All 68000 mnemonics are tokenised as if they were BASIC
keywords, and are assembled into machine code when a program is compiled. 68000 code may be
intermixed freely with basic, though of course care must be taken not to upset the system.

If you are wanting to use the Blitz 2 assembler for writing straight machine code programs, then you
are free to treat Blitz 2 as if it was simply an assembler instead of a compiler. In fact, if you enable
runtime error checking, Blitz 2 will even attempt to trap any GURU's in your code!However, if you are
wanting to intermix assembly language with BASIC, there are some important rules you must follow:

* Address registers A4-A6 must be preserved and restored by any assembly language routines. Blitz 2
uses A5 as a global variable base, A4 as a local variable base, and tries to keep A6 from having to be
re-Ioaded too often.

The Blitz 2 assembler does have some limitations:

* The Absolute Short addressing mode is not supported.

* Short Branches are not supported.

* Any assembler expressions MUST use curly brackets ('{' and '}') to force operator precedence.

Apart from this, the Blitz 2 assembler operates identically to most commercially available assemblers.

Statement: DC
Syntax: De [.Size] Data[,Data ...]

Description:

De stands for 'define constant', and may be used to define areas of data for assembler programs.

Statement: DCB
Syntax: DCB [.Size] Repeats,Data

Description:

DeB stand for 'define constant block'. DeB allows you to insert a repeating series of the same value
into your assembler programs.

9-1

Statement: DS
Syntax: Ds [.Size] Length

Description:

DS stands for 'define storage'. This simply inserts a 'gap' into a program, which may be used as a data
storage area. The constents of DS storage areas will be unpredictable when a program is first run.

Statement: EVEN
Syntax: EVEN

Description:

EVEN allows you to word align Blitz 2's internal program counter. This may be necessary if a DC, DCB
or DS statement has caused the program counter to be left at an odd address.

Statement: (;etlteg
Syntax: GetReg 68000 Reg,Expression

Description:

Get Reg allows you to transfer the result of a BASIC expression to a 68000 register. The result of the
expression will first be converted into a long value before being moved to the data register.

GetReg should only be used to transfer expressions to one of the 8 data registers (dO-d7).

GetReg will use the stack to temporarily store any registers used in calculation of the expression.

Statement: Putlteg
Syntax: PutReg 68000 Reg, Variable

Description:

PutReg may be used to transfer a value from any 68000 register (dO-d7/aO-a7) into a BASIC variable.
If the specified variable is a string, long, float or quick, then all 4 bytes from the register will be
transferred. If the specified variable is a word or a byte, then only the relevant low bytes will be
transferred.

Statement: SysJ sr
Syntax: SysJsr Routine

Description:

9-2

SysJsr allows you to call any of Blitz 2's system routines from your own program. Routine specifies a
routine number to call.

Statement: TokeJsr
Syntax: TokeJsr Token[,Formj

Description:

TokeJsr allows you to call any of Blitz 2's library based routines. Token refers to either a token
number, or an actual token name. Form refers to a particular form of the token. A full list of all token
numbers with their various forms will be available shortly from Acid Software.

Statement: ALibJsr
Syntax: ALibJsr Token[,Formj

Description:

ALibJsr is only used when writing Blitz 2 libraries. ALibJsr allows you to call a routine from another
library from within your own library. Please refer to the Library Writing section of the programmers
guide for more information on library writing.

Statement: BLibJsr
Syntax: BLibJsr Token[,Formj

Description:

BLibJsr is only used when writing Blitz 2 libraries. BLibJsr allows you to call a routine from another
library from within your own library. Please refer to the Library Writing section of the programmers
guide for more information on library writing.

9-3

9-4

1 O. Memory Access

This section deals with low-level commands which allow you access to the Amiga's memory.

Be very careful when using any of the commands in this section, as it is very easy to crash you Amiga
by careless Pokeing or Calling.

Statement: Poke
Syntax: Poke [. Type] Address,Data

Modes: Amiga/Blitz

Description:

The Poke command will place the specified Data into the absolute memory location specified by
Address. The size of the Poke may be specified by the optional Type parameter. For example, to poke
a byte into memory, you would use Poke.b; to poke a word into memory you would use Poke.w; and
to poke a long word into memory you would use Poke.1

In addition, strings may be poked into memory by use of Poke$. This will cause the ascii code of all
characters in the string specified by Data to be poked, byte by byte, into consecutive memory
locations. An extra 0 is also poked past the end of the string.

See Also:

Peek,Peeks$,Call

Function: Peek
Syntax: Peek [. Type](Address)

Modes: Amiga/Blitz

Description:

The Peek function returns the contents of the absolute memory location specified by Address. The
optional Type parameter allows peeking of different sizes. For .example, to peek a byte, you would use
Peek.b; to peek a word, you would use Peek.w; and to peek a long, you would use Peek.l

It is also possible to peek a string using Peek$. This will return a string of characters read from
consecutive memory locations until a byte of 0 is found.

See Also:

Poke, Peeks$, Call

10-1

Function: Peeks$
Syntax: Peeks$ (Address,length)

Modes: Amiga/Blitz

Description:

Peeks$ will return a string of characters corresponding to bytes peeked from consective memory
locations starting at Address, and Length characters in length.

See Also:

Peek, Poke, Call

Statement: Call
Syntax: Call Address

Modes: Amiga/Blitz

Description:

Call will cause program flow to be transferred to the absolute memory location specified by Address.
PLEASE NOTE! Call is for advanced programmers only, as incorrect use of Call can lead to severe
problems - GURUS etc!

A 68000 JSR instruction is used to transfer program flow, so an RTS may be used to transfer back to
the Blitz 2 program.

Please refer to the' Assembler' section of the reference guide for the rules machine code programs
must follow to operate correctly within the Blitz 2 environment.

Example:

10-2

,
; a machine code example

a.I=AllocMem_ (14,1)
;read machine code and poke it in:
For k=O To 12 Step 2

Readw.w
Poke.wa+k,w

Next
;call machine code:
Calla
MouseWait
;free up allocated memory:
FreeMem_ a, 14
,
;a machine code program. ..
Oata.w $70ff,$33cO,$OOdf,$fl80,$51 c8,$fff8,$4e75

See Also:

Poke,Peek,Peeks$

10-3

10-4

11. Program StartuP~h/~'~.
This section covers all commands dealing with how an executable file goes about starting up. This
includes the ability to allow your programs to run from Workbench, and to pick up parameters supplied
through the CLI.

Statement: WBStartup
Syntax: WBStartup

Modes: Amiga/Blitz

Description:

By executing WBStartup at some point in your program, your program will be given the ability to run
from Workbench. A program run from Workbench which does NOT include the WBStartup command
will promptly crash if an attempt is made to run it from Workbench.

Function: NumPars
Syntax: NumPars

Modes: Amiga/Blitz

Description:

The NumPars function allows an executable file to determine how many parameters were passed to it
by either Workbench or the CLI. Parameters passed from the CLI are typed following the program
name and separated by spaces.

For example, let's say you have created an executable program called myprog, and run it from the CLI
in the following way:

myprog file1 file2

In this case, NumPars would return the value '2' - 'file1' and 'file2' beng the 2 parameters.

Programs run from Workbench are only capable of picking up 1 parameter through the use of either
the parameter file's 'Default Tool' entry in it's' .info' file, or by use of multiple selection through the
'Shift' key.

If no parameters are supplied to an executable file, NumPars will return o.
During program development, the 'CLI Arguement' menu item in the 'COMPILER' menu allows you to
test out CLI parameters.

11-1

Example:

,
; numpars program example

;before running this program, enter several items of text, space
;separated, into the 'eLI Arguement' requester.

For k= 1 To NumPars
NPrint Par$(k)

Next

MouseWait

See Also:

Pars$

Function: Par$
Syntax: Par$ (Parameter)

Modes: Amiga/Blitz

Description:

Par$ return a string equivalent to a parameter passed to an executable file through either the CLI or
Workbench. Please refer to NumPars for more information on parameter passing.

Statement: CloseEd
Syntax: CloseEd

Modes: Amiga/Blitz

Description:

The CloseEd statement will cause the Blitz 2 editor screen to 'close down' when programs are
executed from within Blitz 2. This may be useful when writing programs which use a large amount of
chip memory, as the editor screen itself occupies about 40K of chip memory.

CloseEd will have no effect on executable files run outside of the Blitz 2 environment.

Example:

,
; closeed program example

CloseEd

Print "Hello ... The editor screen has gone!"

11-2

MouseWait

See Also:

NoCIi

Statement: NoCIi
Syntax: NoCIi

Modes: AmigalBlitz

Description:

NoCli will prevent the normal 'Default Cli' from opening when programs are executed from within Blitz
2. NoCIi has no effect on executable files run outside of the Blitz 2 environment.

See Also:

CloseEd

11-3

11-4

12. Object Handling

Objects are Blitz 2's way of controlling data concerned with windows, shapes etc. The following section
covers the commands available to operate on such objects.

Statement: Use
Syntax: Use Objectname Object#

Modes: Amiga/Blitz

Description:

Use will cause the Blitz 2 object specified by Objectname and Object# to become the currently used
object.

Example:

,
; screens and windows program example

Screen 0,3 ;open a screen & 4 windows ...

Window 1,0,0,160,100,$100f,"Window 1",1,2
Window 2,160,0,160, 100,$100f,"Window 2",1,2
Window 3,0,100,160, 100,$100f,"Window 3",1,2
Window 4,160,100,160,100,$1 OOf,"Window 4",1,2

For k=l To 4
UseWindowk
NPrint "Currently using"
NPrint "Window#:" ,k

Next

MouseWait

See Also:

Free

Statement: Free
Syntax: Free Objectname Object#

Modes: Amiga/Blitz

Description:

;start of loop
;use window 'k'

;output text ...

;end of loop

12-1

Free is used to free a Blitz 2 object. Any memory consumed by the object's existance will be free'd up,
and in the case of things such as windows and screens, the display may be altered.
Attempting to free a non-existant object will have no effect.

Example:

.
; screens and windows program example

Screen 0.3 ;open intuition screen & 4 windows ...

Window 1.0.0.160.100.Sf,"Window 1".1.2
Window 2.160.0. 160. 100.Sf."Window 2".1.2
Window 3.0. 100. 160. 100.Sf:Window 3".1.2
Window 4.160.100.160.100.Sf."Window 4".1.2

c=O ;counter for number of windows closed
Repeat ;repeat ...
a.I=WaitEvent ; wait for something to happen
If a=512 ;close window?

Free Window EventWindow ; Yes, free window ...
c+ 1 ;and increment counter

Endlf
Until c=4 ; until a/l windows closed.

See Also:

Use

Function: USED
Syntax: Used ObjectName

Modes: Amiga/Blitz

Description:

Used returns the currently used object number. This is useful for routines which need to operate on the
currently used object, also interrupts should restore currently used object settings.

Example:

12-2

.
; used example

BitMap 0.320.200.1
BitMap 1.320.200.1
Use BitMap 0

NPrint Used BitMap ; used returns currently used object number

MouseWait

See also:

Use

Function: Addr
Syntax: Addr Objectname(Object#)

Modes: AmigalBlitz

Description:

Addr is a low-level function allowing advanced programmers the ability to find where a particular Blitz
2 object resides in RAM. An appendix at the end of this manual lists all Blitz 2 object formats.

Example:

,
; object addr program example

Screen 0,3

Window 0,0,0,320,200,$1 OOf,"My Window!" ,1,2

NPrint "Window object 0 resides at:" Addr Window(O)
NPrint "Intuition Window structure is at: ",Peek.l(Addr Window(O))

MouseWait

Function: Maximum
Syntax: Maximum Objectname

Modes: AmigalBlitz

Description:

The Maximum function allows a program to determine the 'maximum' setting for a particular Blitz 2
object. Maximum settings are entered into the 'OPTIONS' requester, accessed through the
'COMPILER' menu of the Blitz 2 editor.

Example:

; maximum program example

NPrint "Maximum Windows avaiiable:",Maximum Window

MouseWait

12-3

12-4

13. BitMaps

Blitz 2 BitMap objects are used primarily for the purpose of rendering graphics. Most commands in
Blitz 2 for generating graphics (excluding the Window and Sprite commands) depend upon a currently
used BitMap.

BitMap objects may be created in one of two ways. A BitMap may be created by using the BitMap
command, or a BitMap may be 'borrowed' from a Screen using the ScreensBitMap command.

BitMaps have three main properties. They have a width, a height and a depth. If a BitMap is created
using the Screens BitMap command, these properties are taken from the dimensions of the Screen. If
a BitMap is created using the BitMap command, these properties must be specified.

Statement: BitMap
Syntax: BitMap BitMap#, Width,Height, Depth

Modes: Amiga/Blitz

Description:

BitMap creates and initializes a bitmap object. Once created, the specified bitmap becomes the
currently used bitmap. Width and Height specify the size of the bitmap. Depth specifies how many
colours may be drawn onto the bitmap, and may be in the range one through six. The actual colours
available on a bitmap can be calculated using 2A depth. For example, a bitmap of depth three allows for
2A3 or eight colours.

Example:

,
; a bitmap program example
,
BitMap 0,320,200,3 ;A standard lo-res, 8 colour BitMap, Now

;currently used
Circlef 160,100,50,3 ;draw something onto the used BitMap
Screen 0,0,0,320,200,3,0,"My Screen", 1,2,0 ;Affach BitMap to Screen
MouseWait
End

See Also:

Use BitMap, Free BitMap

Statement: Use BitMap
Syntax: Use BitMap BitMap#

Modes: Amiga/Blitz

13-1

Description:

Use BitMap defines the specified bitmap object as being the currently used BitMap. This is necessary
for commands, such as Blit, which require the presence of a currently used BitMap.

See Also:

BitMap, Free BitMap

Statement: Free BitMap
Syntax: Free BitMap BitMap#

Modes: Amiga/Blitz

Description:

Free BitMap erases all information connected to the specified bitmap. Any memory occupied by the
bitmap is also deallocated. Once free'd, a bitmap may no longer be used.

See Also:

BitMap, Use BitMap

Statement: CopyBitMap
Syntax: CopyBitMap BitMap#, BitMap#

Modes: Amiga/Blitz

Description:

CopyBitMap will make an exact copy of a bitmap object into another bitmap object. The first BitMap#
parameter specifies the source bitmap for the copy, the second BitMap# the destination.

Any graphics rendered onto the source bitmap will also be copied.

Statement: ScreensBitMap
Syntax: ScreensBitMap Screen#,BitMap#

Modes: Amiga/Blitz

Description:

Blitz 2 allows you the option of attaching a bitmap object to any Intuition Screens you open. If you open
a Screen without attaching a bitmap, a bitmap will be created anyway. You may then find this bitmap
using the ScreensBitMap command. Once Screens BitMap is executed, the specified bitmap
becomes the currently used bitmap.

13-2

Example:

,
; using a screen's bitmap program example
,
Screen 0,3,"My Screen"
ScreensBitMap 0,0
Circlef 160,100,50,3
MouseWait
End

See Also:

Screen

;A Simple Screen.
;pick up it's BitMap ...

Statement: LoadBitMap
Syntax: LoadBitMap BitMap#,Filename$[,Palette#j

Modes: Amiga

Description:

LoadBitMap allows you to load an ILBM IFF graphic into a previously initialized bitmap object. You
may optionally load in the graphics's colour palette into a palette object specified by Palette#. An error
will be generated if the specified Filename$ is not in the correct IFF format.

Example:

,
; loadbitmap from disk and display program example
,
Screen 0,3,"My Screen"
ScreensBitMap 0,0
LoadBitMap O,"MyPic.iff",O
Use PaleHe °
MouseWait
End

Statement: SaveBitMap
Syntax: SaveBitMap BitMap#,Filename$[,Palette#j

Modes: Amiga

Description:

SaveBitMap allows you to save a bitmap to disk in ILBM IFF format. An optional palette may also be
saved with the IFF.

13-3

Example:

,
; saving a bitmap to disk program example

13-4

,
Screen 0,3,"My Screen"
ScreensBitMap 0,0
Circlet 160,100 ,50 ,3
SaveBitmap O,"MyBitMap.iff"
End

;create an IFF!

* 14. Shapes f~* • Shape objects are used for the purpose of storing graphic images. These images may be used in a
variety of ways. For example, a shape may be used as the graphics for a gadget, or as the graphics for
a menu item.

Many commands are available for the purpose of drawing shapes onto a bitmap. These commands
use the Amiga's blitter chip to achieve this, and are therefore very fast. The process of putting a shape
onto a bitmap using the blitter is often referred to as 'blitting' a shape. The speed at which a shape is
blitted is important when you are writing animations routines, as the smoothness of any animation will
be directly affected by how long it takes to draw the shapes involved in the animation.

There are 2 main factors which affect the speed at which a shape is blitted - it's size, and the
technique used to actually blit the shape. Let's have a look at how the size of a shape affects it's'blit
speed'.

Obviously, larger shapes take longer to blit than smaller shapes. Not so obviously, shapes with more
colours in them take longer to blit than shapes with fewer colours. A 2 bitplane (4 colour) shape will
take twice as long to blit as a 1 bitplane (2 colour) shape. A 3 bitplane (8 colour) shape will take three
times as long to blit as a 1 bitplane shape and so on.

The technique used to blit a shape also affects it's speed. The fastest blitting command you can use is
the simple Blit command. However, this provides no way of erasing of shapes to allow for movement.
QBlit is the fastest way to achieve this. BBlit is the slowest of the blit commands, but also the most
versatile and least memory intensive.

One of a programmers most difficult tasks is that of achieving acceptable compromises. This is
especially true in the case of blitting shapes. While it certainly would be nice to have 50 individual 64
colour shapes flying smoothly around the screen, the Amiga is not really up to it. Therefore, the
programmer must decide on an acceptable compromise - Should less shapes be used? Maybe less
colours? A combination of both? The answer will depend on what you as a programmer decide is best
in the situation.

Statement: LoadShape
Syntax: LoadShape Shape#,Filename$[,Palette#j

Modes: Amiga

Description:

LoadShape allows you to load an ILBM IFF file into a shape object. The optional Palette# parameter
lets you also load the colour information contained in the file into a palette object.

Example:

,
; simple blit shape example

14-1

Screen 0,3 ;open an intuition screen
ScreensBitMap 0,0 ;get its bitmap
LoadShape O,"MyShape.iff",O ;Ioad a shape from disk
Use PaleHe ° ;use its palette
Blit 0,0,0 ;blit it onto the screen
MouseWait

See Also:

LoadShapes,SaveShape,SaveShapes

Statement: SaveShape
Syntax: SaveShape Shape#, Filename$,Palette#

Modes: Amiga

Description:

SaveShape will create an ILBM IFF file based on the specified shape object. If you want the file to
contain colour information, you should also specify a palette object using the Palette# parameter.

See Also:

SaveShapes, LoadShape, LoadShapes

Statement: LoadShapes
Syntax: LoadShapes Shape#[,Shape#j,Filename$

Modes: Amiga

Description:

LoadShapes lets you load a 'range' of shapes from disk into a series of shape objects. The file
specified by Filename$ should have been created using the SaveShapes command.

The first Shape# parameter specifies the number of the first shape object to be loaded. Further shapes
will be loaded into increasingly higher shape objects.

If a second Shape# parameter is supplied, then only shapes up to and including the second Shape#
value will be loaded. If there are not enough shapes in the file to fill this range, any excess shapes will
remain untouched.

See Also:

SaveShapes, LoadShape, LoadShapes

14-2

Statement: SaveShapes
Syntax: SaveShapes Shape#,Shape#,Filename$

Modes: Amiga

Description:

SaveShapes allows you to create a file containing a range of shape objects. This file may be later
loaded using the LoadShapes command.

The range of shapes to be saved is specified by Shape#,Shape#, where the first Shape# refers to the
lowest shape to be saved and the second Shape# the highest.

See Also:

LoadShapeslLoadShape,SaveShape

Statement: GetaShape
Syntax: GetaShape Shape#,X, Y, Width,Height

Modes: BlitzlAmiga

Description:

GetaShape lets you transfer a rectangular area of the currently used bitmap into the specified shape
object. X, Y, Width and Height specify the area of the bitmap to be picked up and used as a shape.

Example:

,
; getashape and randomly blit it example
,
Screen 0,3
ScreensBitMap 0,0
Cis
Boxt 10,10,29,29,2
Box 12,12,27,27,3
Circlet 20,20,5,4

;an intuition screen
;pick up it's bitmap

;clear bitmap
; draw some stuff for a shape

GetaShape 0,10,10,20,20 ;pick shape 0 up off bitmap
Cis ;clear bitmap again

For k= 1 To 100 ;start of loop
Blit O,Rnd(l 60)+80,Rnd(1 00)+50 ;blit shape 0 at random position

Next ;end of loop

MouseWait

14-3

Statement: CopyShape
Syntax: CopyShape Shape#,Shape#

Modes: Amiga/Blitz

Description:

CopyShape will produce an exact copy of one shape object in another shape object. The first Shape#
specifies the source shape for the copy, the second specifies the destination shape.

CopyShape is often used when you require two copies of a shape in order to manipulate (using, for
example, XFlip) one of them.

Statement: AutoCookie
Syntax: AutoCookie Onl Off

Modes: Amiga/Blitz

Description:

When shapes objects are used by any of the blitting routines (for example, Blit), they usually require
the presence of what is known as a 'cookiecuf. These cookiecuts are used for internal purposes by the
various blitting commands, and in no way affect the appearance or properties of a shape. They do,
however, consume some of your valuable Chip memory.

When a shape is created (for example, by using LoadShape or GetaShape), a cookiecut is
automatically made for it. However, this feature may be turned off by executing an AutoCookie Off.
This is a good idea if you are not going to be using shapes for blitting - for example, shapes used for
gadgets or menus.

See Also:

MakeCookie

Statement: MakeCookie
Syntax: MakeCookie Shape#

Modes: Amiga/Blitz

Description:

MakeCookie allows you to create a 'cookiecuf for an individual shape. Cookiecuts are necessary for
shapes which are to be used by the various blitting commands (for example, QBlit), and are normally
made automatically whenever a shape is created (for example, using LoadShape). However, use of
the AutoCookie command may mean you end up with a shape which has no cookiecut, but which you
wish to blit at some stage. You can then use MakeCookie to make a cookiecut for this shape.

See Also:

AutoCookie

14-4

Function: Shape Width
Syntax: ShapeWidth (Shape#)

Modes: Amiga/Blitz

Description:

The ShapeWidth function returns the width, in pixels, of a previously created shape object.

See Also:

ShapeHeight

Function: ShapeHeight
Syntax: ShapeHeight (Shape#)

Modes: Amiga/Blitz

Description:

The ShapeHeight function returns the height, in pixels, of a previously created shape object.

See Also:

ShapeWidth

Statement: Handle
Syntax: Handle Shape#,X, Y

Modes: Amiga/Blitz

Description:

All shapes have an associated 'handle'. A shape's handle refers to an offset from the upper left of the
shape to be used when calculating a shapes position when it gets blitted to a bitmap. This is also often
referred to as a 'hot spot'.

The X parameter specifies the 'acrosswards' offset for a handle, the Y parameter specifies a
'downwards' offset.

Let's have a look at an example of how a handle works. Assume you have set a shapes X handle to 5,
and it's Y handle to 10. Now let's say we blit the shape onto a bitmap at pixel position 160,100. The
handle will cause the upper left corner of the shape to actually end up at 155,90, while the pOint within
the shape at 5,10 will end up at 160,100.

When a shape is created, it's handle is automatically set to 0,0 - it's upper left corner.

See Also:

MidHandle

14-5

Statement: MidHandle
Syntax: MidHandle Shape#

Modes: Amiga/Blitz

Description:

MidHandle will cause the handle of the specified shape to be set to it's centre.
For example, these two commands achieve exactly the same result:

MidHandleO

Handle 0 ,ShapeWidth(O) /2,ShapeHeight(0) /2

For more information on handles, please refer to the Handle command.

See Also:

Handle

Statement: XFlip
Syntax: XFlip Shape#

Modes: Amiga/Blitz

Description:

The XFlip command is one of Blitz 2's powerful shape manipulation commands. XFlip will horizontally
'mirror' a shape object, causing the object to be 'turned back to front'.

Example:

,
; xflip example

Screen 0,3 ;an intuition screen
ScreensBitMap 0,0 ;it's bitmap
Cis ;c/ear it
Circlef 32,32,32,3 ; draw ...
Boxf 32,0,63,63.2 ;some weird shape
GetaShape 0,0,0,64,64 ;pick it up off bitmap
Cis ;c/ear bitmap again
CopyShape 0,1 ;make a copy of shape
XFlip 1 ;x flip copy
Blit 0,0,0 ;showoriginal
Blit 1,0,100 ;show flipped copy
MouseWait

See Also:

YFlip

14-6

Statement: YFlip
Syntax: YFlip Shape#

Modes: Amiga/Blitz

Description:

The YFlip command may be used to vertically 'mirror' a shape object. The resultant shape will appear
to have been 'turned upside down'.

Example:

,
; yflip example

Screen 0,3 ;open an intuition screen
ScreensBitMap 0,0 ;borrow it's bitmap
Cis ;clear the bitmap
Circlet 32,32,32,3 ; draw some ...
Boxt 0,32,63,63.2 ; weird shape
GetaShape 0,0,0,64,64 ;pick shape 0 up from bitmap
Cis ; clear bitmap
CopyShape 0,1 ;make copy of shape
YFlip 1 ; Y Flip the copy
Blit 0,0,0 ;showoriginal
Blit 1,160,0 ;show flipped copy
MouseWait

See Also:

XFlip

Statement: Scale
Syntax: Scale Shape#,X Ratio, Y Ratio[,Palette#j

Modes: Amiga/Blitz

Description:

Scale is a very powerful command which may be used to 'stretch' or 'shrink' shape objects. The Ratio
parameters specify how much stretching or shrinking to perform. A Ratio greater than one will cause
the shape to be stretched (enlarged), while a Ratio of less than one will cause the shape to be shrunk
(reduced). A Ratio of exactly one will cause no change in the shape's relevant dimension.

As there are separate Ratio parameters for both x and y, a shape may be stretched along one axis and
shrunk along the other!

The optional Palette# parameter allows you to specify a palette object for use in the scaling operation.
If a Palette# is supplied, the scale command will use a 'brightest pixel' method of shrinking. This
means a shape may be shrunk to a small size without detail being lost.

14-7

Example:

,
; scale shape example
,
Screen 0,3 ;An intuition screen
ScreensBitMap 0,0 ;the screens bitmap
Cis ;clear the bitmap
For k=7 To 1 Step -1 ;a loop to generate some
Circlet 32,32,k*4,k ;kind of shape
Next
GetaShape 0,0,0,64,64 ;pick up the shape

Fork=l To6
CopyShape O,k
Scale k,k/4,k/4

Next

Cis

For k=l To 6
Blit k,k*32,0

Next

MouseWait

;start of loop
;copyshape

;resize it
;endofloop

;start of loop
;show shapes we just generated

;end of loop

See also:

Rotate

Statenaent: Ito tate
Syntax: Rotate Shapeff,Angle Ratio

Modes: Amiga/Blitz

Description:

The Rotate command allows you to rotate a shape object. Angle Ratio specifies how much clockwise
rotation to apply, and should be in the range zero to one. For instance, an Angle Ratio of .5 will cause
a shape to be rotated 180 degrees, while an Angle Ratio of .25 will cause a shape to be rotated 90
degrees clockwise.

Example:

14-8

,
; rotate shape example with qblit for smooth spinning
,
Screen 0,1
ScreensBitMap 0,0
BitMapOutput ° ;grab it's bitmap

; use bitmap for 'Print' commands
;set up a Queue for the QBlit ... Queue 0,1

Cis ; clear the bitmap
Boxt 0,0,15,63,1
GetaShape 0,0,0,16,64

; draw a rectangle
;grab it as a shape

Cis ;clear bitmap
Print "Please Wait"

For k=l To 64
CopyShape O.k
Rotate k.k/64
MidHandlek
Print". "

Next

;start of loop
;make 64 copies of original shape!

;rotate each copy a little more than last
;and handle in the middle

; tell user we' re doin the job
;end of copy loop

Cis ;clear bitmap

While Joyb(O)=O
For k=l To 64
VWait
UnQueueO
QBlit O.k.160.100
Next

Wend

; while joystick button not down. ..
;show all shapes

; wait for top of frame
;clear the Queue
;Draw next shape

See Also:

Scale

14-9

15.ILBM

ILBM stands for InterLeaved BitMap. This refers to a format many art packages use to store image
files in. Electronic Art's excellent DPaint, for example, uses the ILBM format to save it's picture and
brush files.

Blitz 2 supplies various commands to examine the attributes of ILBM files.

Statement: ILBMlnfo
Syntax: ILBMlnfo Filename$

Modes: Amiga

Description:

ILBMlnfo is used to examine an ILBM file. Once ILBMlnfo has been executed, ILBMWidth,
ILBMHeight and ILBMDepth may be used to examine properties of the image contained in the file.

Function: ILBMWidth
Syntax: ILBMWidth

Modes: Amiga

Description:

ILBMWidth will return the width, in pixels, of an ILBM image examined with ILBMlnfo.

Function: ILBMHeight
Syntax: ILBMHeight

Modes: Amiga

Description:

ILBMHeight will return the height, in pixels, of an ILBM image examined with ILBMlnfo.

Statement: ILBMDepth
Syntax: I LBM Depth

Modes: Amiga

15-1

Description:

ILBMDepth will return the depth, in bitplanes, of an ILBM image examined with ILBMlnfo.

15-2

16. 2D Drawing

This section covers all commands related to rendering arbitrary graphics to bitmaps.

All commands perform clipping - that is, they all allow you to draw 'outside' the edges of bitmaps.

Statement: Cis
Syntax: CIs [Colour]

Modes: Amiga/Blitz

Description:

CIs allows you to fill the currently used bitmap with the colour specified by the Colour parameter. If
Colouris omitted, the currently used bitmap will be filled with colour O.
A Colour parameter of -1 will cause the entire bitmap to be 'inverted'.

Example:

,
; simple cis example
,
Screen 0,3
ScreensBitMap 0,0
Cis 2
MouseWait

Statement: Plot
Syntax: Plot x, Y, Colour

Modes: Amiga/Blitz

Description:

;open an intuition screen
; use it's bitmap

; fill bitmap with colour 2

Plot is used to alter the colour of an individual pixel on the currently used bitmap. X and Y specify the
location of the pixel to be altered, and Colour specifies the colour to change the pixel to.

A Colour parameter of -1 will cause the pixel at the specified pixel position to be 'inverted'.

Example:

,
; simple plot example
,
Screen 0,3 ;an intuition screen

16-1

ScreensBitMap 0,0

For x=O To 319
Plot x,loo,3

Next

MouseWait

See Also:

Point

Function: Point
Syntax: Point (X, Y)

Modes: Amiga/Blitz

Description:

;the screen's bitmap

;start of loop
; what a boring plot!

;endofloop

The Point function will return the colour of a particular pixel in the currently used bitmap. The pixel to
be examined is specified by the X and Y parameters.
If X and Y specify a point outside the edges of the bitmap, a value of -1 will be returned.

Example:

,
; point example
,
Screen 0,3,"HELLO THERE"
Screens BitMap 0,0

For y=O To 9
For x=O To 47

;intuition screen ...
;and bitmap of screen

;oneloop ...
; another

Plot x,y,7-Pointex,y)
Next

;calc inverse colour for plot
;end ofx loop

Next ;end of y loop

MouseWait

See Also:

Plot

Statement: Line
Syntax: Line [X1, Y1,]X2, Y2,Colour

Modes: Amiga/Blitz

Description:

The Line command draws a line connecting two pixels onto the currently used bitmap. The X and Y

16-2

parameters specify the pixels to be joined, and Colour specifies the colour to draw the line in.

If X1 and Y1 are omitted, the end points (X2, Y2) of the last line drawn will be used.

A Colour parameter of -1 will cause an 'inverted' line to be drawn.

Example:

,
; line example
,
Screen 0,3
ScreensBitMap 0,0

;an intuition screen
;it's bitmap

For k= 1 To 100 ;start ofloop ...
Line Rnd(320) ,Rnd(200) ,Rnd(7)+ 1 ;random lines!

Next ;end of loop

Statement: Box
Syntax: Box X1, Y1,X2, Y2,Colour

Modes: Amiga/Blitz

Description:

The Box command draw a rectangular outline onto the currently used bitmap. X1, Y1, X2 and Y2
specify two corners of the box to be drawn. Colour refers to the colour to draw the box in.

A Colour parameter of -1 will cause an 'inverted' box to be drawn.

Example:

,
; simple box example
,
Screen 0,3
ScreensBitMap 0,0

;intuition screen
;it's bitmap

For k= 1 To 100 ;start ofloop
Box Rnd(320),Rnd(200),Rnd(320),Rnd(200),Rnd(7)+ 1 ;random boxes

Next ;end of loop

MouseWait

See Also:

Boxf

Statement: Boxf
Syntax: Boxf X1, Y1,X2, Y2,Colour

Modes: Amiga/Blitz

16-3

Description:

Boxf draws a solid rectangular shape on the currently used bitmap. X1 ,Y1 ,X2 and Y2 refer to two
corners of the box. Colour specifies the colour to draw the box in.

A Colour parameter of -1 will cause the rectangular area to be 'inverted'.

Example:

,
; boxf example
,
Screen O,3,"Helio There"
ScreensBitMap 0,0
Boxf 0,0,47,9,-1
MouseWait

See Also:

Box

Statement: Circle

;an intuition screen
;bitmap of the screen

;an inver sed box

Syntax: Circle X, Y,Radius[, Y Radius],Colour

Modes: Amiga/Blitz

Description:

Circle will draw an open circle onto the currently used bitmap. X and Y specify the mid point of the
circle. The Radius parameter specifies the radius of the circle. If a Y Radius parameter is supplied,
then an ellipse may be drawn.

A Colour parameter of -1 will cause an 'inverted' circle to be drawn.

Example:

16-4

,
; circle example
,
Screen 0,3
ScreensBitMap 0,0

;an intuition screen
;bitmap of screen

For k= 1 To 10 ;start of loop
Circle Rnd(320),Rnd(200),Rnd(lOO),Rnd(7)+ 1 ;random circles

Next ;end of loop

MouseWait

Statement: Circlef
Syntax: Circlef X, Y,Radius{, Y Radius],Colour

Modes: Amiga/Blitz

Description:

Circlef will draw a filled circle onto the currently used bitmap. X and Y specify the mid point of the
circle - Colour, the colour in which to draw the circle. The Radius parameter specifies the radius of the
circle. If a Y Radius parameter is supplied, then an ellipse may be drawn.

A Colour parameter of -1 will cause an 'inverted' circle to be drawn.

Example:

,
; circlef example
,
Screen 0,3
ScreensBitMap 0,0

;an intuition screen

For k= 1 To 10 ;start of loop
Circlef Rnd(320) ,Rnd(200) ,Rnd(l (0) ,Rnd(7)+ 1 ;random circles

Next ;end of loop

MouseWalt

Statement: Scroll
Syntax: Scroll X1, Y1,Width,Height,X2, Y2[,Source BitMap]

Modes: Amiga/Blitz

Description:

Scroll allows rectangular areas within a bitmap to be moved around. X1, Y1, Width and Height specify
the position and size of the rectangle to be moved. X2 and Y2 specify the position the rectangle is to
be moved to.

An optional Source BitMap parameter allows you to move rectangular areas from one bitmap to
another.

Example:

,
; scroll example
,
Screen 0,3,"YEEEEEHHHHHAAAAAA!" ;an intuition screen
ScreensBitMap 0,0 ;it's bitmap

For k= 16 To 192 Step 16
Scroll 0,0,320, 1 O,O,k

Next
MouseWalt

;start of loop
;move title bar!

; end of loop

16-5

Statement: FloodFlll
Syntax: FloodFiII X, Y,Colour [,Border Colour]

Modes: AmigaIBlitz

Description:

FloodRil will 'colour in' a region of the screen starting at the coordinates X, Y.

The first mode will fill all the region that is currently the colour at the coordinates X,V with the colour
specified by Colour.

The second mode will fill a region starting at X,V and surrounded by the BorderColour with Colour.

Statement: FreeFiU
Syntax: FreeFili

Modes: AmigaIBlitz

Description:

FreeFili will deallocate the memory that Blitz 2 uses to execute the commands Circlef, FloodFill,
ReMap and Boxf.

Blitz 2 uses a single monochrome bitmap the size of the bitmap being drawn to to do it's filled routines,
by using the FreeFili command this BitMap can be 'freed' up if no more filled commands are to be
executed.

16-6

16-7

16-8

17. Palettes, Fades
and Cycling

Palette objects are temporary storage areas of RGB and colour cycling information. This information is
normally taken from an ILBM IFF file.

Blitz 2 supports colour cycling.

Blitz 2 also supports the ability to 'fade in' or 'fade out' colour palettes in Blitz mode.

Statement: LoadPalette
Syntax: LoadPalette Palette#,Filename$[,Palette Offset]

Modes: Amiga

Description:

LoadPalette creates and initializes a palette object. Filename$ specifies the name of an ILBM IFF file
containing colour information. If the file contains colour cycling information, this will also be loaded into
the palette object.

An optional Palette Offset may be specified to allow the colour information to be loaded at a specified
point (colour register) in the palette. This is especially useful in the case of sprite colours, as these
must begin at colour register sixteen.

LoadPalette does not actually change any display colours. Once a palette is loaded, Use Palette can
be used to cause display changes.

Example:

,
; palette program example
,
Screen 0,3 ;open a simple, 8 colour screen
LoadScreen O,"picture.iff" ;Ioad a picture into the screen
LoadPaleHe O,"picture.iff" ;Ioad pictures colours
Use PaleHe ° ;display the colours.
MouseWaif
End

Statement: Use Palette
Syntax: Use Palette Palette#

17-1

Modes: Amiga/Blitz

Description:

Use Palette transfers palette information from a palette object to a displayable palette. If executed in
Amiga mode, palette information is transferred into the palette of the currently used Screen. If
executed in Blitz mode, palette information is transferred into the palette of the currently used Slice.

Example:

,
; loadscreen program example with palette
,
Screen 0,3 ;open a simple, 8 colour screen
LoadScreen O,"picture.iff",O ;Ioad a picture into the screen, and palette as well
Use Palette ° ;display the colours.
MouseWait
End

Statement: Free Palette
Syntax: Free Palette Palette#

Modes: Amiga/Blitz

Description:

Free Palette erases all information in a palette object. That Palette object may no longer be Used or
Cycled.

See Also:

Use Palette, LoadPalette

Statement: PalRGB
Syntax: PalRGB Palette#,Colour Register, Red, Green, Blue

Modes: Amiga/Blitz

Description:

PalRGB allows you to set an individual colour register within a palette object. Unless an RGB has also
been executed, the actual colour change will not come into effect until the next time Use Palette is
executed.

Example:

17-2

; setting up a palette program example

PalRGB 0,0,6,6,6
PalRGB 0,1,15,15,15
PalRGB 0,2,0,0,0

PalRGB 0,3,15,15,0
Screen O,3:A Manually created palette object!"
Use Palette 0
MouseWait

See Also:

Use Palette, RGB, LoadPalette

Statement: SetCycle
Syntax: SetCycie Palette#,Cyc/e,Low Colour,High Colour [,Speed}

Modes: Amiga

Description:

SetCycle is used to configure colour cycling information for the Cycle command. The low and high
colours specify the range of colours that will cycle. You may have a maximum of 7 different cycles for a
single palette. The optional parameter Speed specifies how quickly the colours will cycle, a negative
value will cycle the colours backwards.

Statement: Cycle
Syntax: Cycle Palette#

Modes: Amiga

Description:

Cycle will cause the colour cycling information contained in the specified palette to be cycled on the
currently used Screen. Colour cycling information is created when LoadPalette is executed or with the
SetCycle command.

Example:

,
; loading a palette and cycling colours program example

Screen 0,3 ;open a simple, 8 colour screen
LoadScreen O,"picture.iff" ;Ioad a picture into the screen
LoadPalette O,"picture.iff" ;Ioad pictures colours
Use Palette 0 ;display the colours.
Cycle 0
MouseWait
End

See Also:

LoadPalette, SetCycle, StopCycle

17-3

Statement: StopCycle
Syntax: StopCycie

Modes: Amiga

Description:

StopCycle will halt all colour cycling started with the Cycle command.

Statement: Rgb
Syntax: Rgb Colour Register, Red, Green, Blue

Modes: AmigalBlitz

Description:

Rgb enables you to set individual colour registers in a palette to an RGB colour value. If executed in
Amiga mode, Rgb sets colour registers in the currently used screen. If executed in Blitz Mode, Rgb
sets colour registers in the currently used slice. Note that Rgb does not alter palette objects in any
way.

Example:

,
; setting a palette colour program example

Screen 0,3
RGB 0,15,0,0
MouseWait

See Also:

PaIRGB, Red, Green, Blue

Function: Red

;open up an Intuition Screen
;this will set background colour to red

Syntax: Red (Colour Register)

Modes: AmigalBlitz

Description:

Red returns the amount of RGB red in a specified colour register. If executed in Amiga mode, Red
returns the amount of red in the specified colour register of the currently used screen. If executed in
Blitz mode, Red returns the amount of red in the specified colour register of the currently used slice.

Red will always return a value in the range zero to fifteen.

17-4

Example:

,
; redO function program example
,
Screen 0,3
ScreensBitMap 0,0
BitMapOutput °
RGB 0,8,4,2
NPrint "Red of colour 0= ";Red(O)
MouseWait
End

See Also:

Green, Blue, RGB

Function: Green
Syntax: Green (Colour Register)

Modes: Amiga/Blitz

Description:

Green returns the amount of RGB green in a specified colour register. If executed in Amiga mode,
Green returns the amount of green in the specified colour register of the currently used screen. If
executed in Blitz mode, Green returns the amount of green in the specified colour register of the
currently used slice.

Green will always return a value in the range zero to fifteen.

Example:

; greenO program example

Screen 0,3
ScreensBitMap 0,0
BitMapOutput °
RGB 0,8,4,2
NPrint "Green of colour 0= ";Green(O)
MouseWait
End

See Also:

Red, Blue, RGB

Function: Blue
Syntax: Blue (Colour Register)

17-5

Modes: Amiga/Blitz

Description:

Blue returns the amount of RGB blue in a specified colour register. If executed in Amiga mode, Blue
returns the amount of blue in the specified colour register of the currently used screen. If executed in
Blitz mode, Blue returns the amount of blue in the specified colour register of the currently used slice.

Blue will always return a value in the range zero to fifteen.

Example:

; blue() program example
,
Screen 0,3
ScreensBitMap 0,0
BitMapOutput °
RGB 0,8A.2
NPrint "Blue of colour 0= ";Blue(O)
MouseWait

See Also:

Red, Green, RGB

Statement: Fadeln
Syntax: Fadeln Palette#[,Rate[,Low Colour, High Colour]]

Modes: Blitz

Description:

Fadein will cause the colour palette of the currently used slice to be 'faded in' from black up to the
RGB values contained in the specified Palette#.

Rate# allows you to control the speed of the fade, with 0 being the fastest fade.

Low Colour and High Colour allow you to control which colour palette registers are affected by the
fade.

Example:

17-6

,
; fadein example
,
For k= 1 To 15 ;set up our own palette object ...

PalRGB 0,k,k,0,15-k
Next

BitMap 0,320,200A ;set up a 76 colour bitmap

For k=l To 100 ;draw 700 random circles

Circlet Rnd(320),Rnd(200),Rnd(40),Rnd(15)+ 1
Next

BUTZ ;go into blitz mode
Slice OM,320,200,$fff8A,8,32,320,320;a simple slice

For k=OTo 15
RGB k,O,O,O

Next

Show 0
VWalt50
Fadeln 0,1
MouseWait

See Also:

FadeOut

;set all RGBs in slice to black

;show bitmap
;pause for effect
;fade in palette# 0 at a rate of 1

Statement: FadeOut
Syntax: FadeOut Palette#[,Rate[,Low Colour, High Colour}}

Modes: Blitz

Description:

Fadeout will cause the colour palette of the currently used slice to be 'faded out' from the RGB values
contained in the specified Palette# down to black.

Rate# allows you to control the speed of the fade, with 0 being the fastest fade.

Low Colour and High Colour allow you to control which colour palette registers are affected by the
fade.

For FadeOut to work properly, the RGB values in the currently used slice should be set to the
specified Palette# prior to using FadeOut.

See Also:

Fadein

Statement: ASyncFade
Syntax: ASyncFade OnlOff

Modes: Amiga/Blitz

Description:

ASyncFade allows you control over how the Fadeln and FadeOut commands work. Normally, Fadeln
and FadeOut will halt program flow, execute the entire fade, and then continue program flow. This is
ASyncFade Off mode.

17-7

ASyncFade On will cause Fadeln and FadeOut to work differently. Instead of performing thewhole
fade at once, the programmer must execute the Do Fade command to perform the next step of the
fade. This allows fading to occur in parallel with program flow.

See Also:

DoFade, FadeStatus

Statement: DoFade
Syntax: DoFade

Modes: Amiga

Description:

DoFade will cause the next step of a fade to be executed. ASyncFade On, and a Fadeln or FadeOut
must be executed prior to calling DoFade.

The FadeStatus function may be used to determine whether there any steps of fading left to perform.

See Also:

ASyncFade, FadeStatus

Function: FadeStatus
Syntax: FadeStatus

Modes: Blitz

Description:

FadeStatus is used in conjunction with the Do Fade command to determine if any steps of fading have
yet to be performed. If a fade process has not entirely finished yet (ie: more DoFades are required),
then FadeStatus will return true (-1). If not, FadeStatus will return false (0). Please refer to
ASyncFade and Do Fade for more information.

See Also:

ASyncFade, Fadeln, FadeOut, Do Fade

17-8

18. Sound

Sound objects are used to store audio information. This information can be taken from an 8SVX IFF
file using LoadSound, or defined by hand through a BASIC routine using InitSound and SoundData.
Once a sound is created, it may be later played back.

Statement: LoadSound
Syntax: LoadSound Sound#,Filename$

Modes: Amiga

Description:

LoadSound creates a sound object for later playback. The sound is taken from an 8SVX IFF file. An
error will be generated if the specified file is not in the correct IFF format.

Example:

,
; a sound program example
,
LoadSound O:Zap.ifr
Sound 0,1
MouseWait
End

See Also:

Sound

Statement: Sound
Syntax: Sound Sound#,Channelmask[, VOI1[, VoI2 ...]]

Description:

Sound causes a previously created sound object to be played through the Amiga's audio hardware.
Channelmask specifies which of the Amiga's four audio channels the sound should be played through,
and should be in the range one through fifteen.

The following is a list of Channelmask values and their effect:

18-1

ChannelMask Channel 0 Channel 1 Channel 2 Channel 3

1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on

10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

In the above table, any audio channels specified as 'off' are not altered by Sound, and any sounds
they may have previously been playing will not be affected.

The Volx parameters allow individual volume settings for different audio channels. Volume settings
must be in the range zero through 64, zero being silence, and 64 being loudest. The first Vol
parameter specifies the volume for the lowest numbered 'on' audio channel, the second Vol for the
next lowest and so on.

For example, assume you are using the following Sound command:

Sound 0,10,32,16

The Channelmask of ten means the sound will play through audio channels one and three. The first
volume of 32 will be applied to channel one, and the second volume of 16 will be applied to channel
three.

Any Vol parameters omitted will be cause a volume setting of 64.

Example:

; a very sound program example

LoadSound O,"Mysound.iff"
Sound 0,15,8,16,32,64
MouseWaif
End

See Also:

LoadSound

Statement: LoopSound
Syntax: LoopSound SoundU,Channelmask[, Vo11£, VoI2 ...]]

Modes: Amiga/Blitz

18-2

Description:

LoopSound behaves identically to Sound, only the sound will be played repeatedly. Looping a sound
allows for the facility to play the entire sound just once, and begin repeating at a point in the sound
other than the beginning. This information is picked up from the 8SVX IFF file, when LoadSound is
used to create the sound, or from the offset parameter of InitSound.

Example:

; loop sound program example
,
LoadSound O,"MySound.off"
LoopSound 0,15
MouseWait

Statement: Volume

;Ioad sound and loop info.

Syntax: Volume Channelmask, Volt[, VoI2 ...]

Modes: Amiga/Blitz

Description:

Volume allows you to dynamically alter the volume of an audio channel. This enables effects such as
volume fades. For an explanation of Channelmask and Vol parameters, please refer to the Sound
command.

Example:

,
; sound fader program example

LoadSound O,"MySound.iff"
Sound 0,1

For v=64 To 0 Step -16
VWait ; wait a frame
Volume 1,v ;set new volume

Next

MouseWait
End

See Also:

Sound

Statement: InitSound
Syntax: InitSound $ound#,Length[,Period[,Repeatll

18-3

Modes: Amiga/Blitz

Description:

InitSound initializes a sound object in preparation for the creation of custom sound data. This allows
simple sound waves such as sine or square waves to be algorithmically created. Sound Data should
be used to create the actual wave data.

Length refers to the length, in bytes, the sound object is required to be. Length MUST be less than
128K, and MUST be even.

Period allows you to specify a default pitch for the sound. A period of 428 will cause the sound to be
played at approximately middle 'e'. .

Offset is used in conjunction with LoopSound, and specifies a position in the sound at which repeating
should begin. Please refer to LoopSound for more information on repeating sounds.

Example:

,
; custom waveform program example
,
InitSound 0,32
co.f=Pij32j2

For k=O To 31

;to convert from radians to a '32 degree'
;system.

SoundData O,k,Sin(k*co)* 127
Next

LoopSound 0,15
MouseWait

See Also:

SoundData, Sound

Statement: SoundData
Syntax: SoundData Sound#,Offset,Data

Description:

Sound Data allows you to manually specify the waveform of a sound object. The sound object should
normally have been created using InitSound, although altering IFF sounds is perfectly legal.

SoundData alters one byte of sound data at the specified Offset. Data refers to the actual byte to
place into the sound, and should be in the range -128 to +127.

Example:

,
; make a square wave program example

InitSound 0,32 ;Get a sound object ready.

18-4

For k=O To 31 ;Here, we will make a 'Square' waveform.
If k<16
SoundData O,k,127

Else
SoundData O,k,-128

Endlf
Next

LoopSound 0,15

MouseWait

See Also:

;Play the sound.

InitSound, Sound, LoopSound

Function: PeekSound
Syntax: PeekData (Sound#,Offset)

Modes: Amiga/Blitz

Description:

PeekSound returns the byte of a sample at the specified offset of the sound object specified.

See Also:

SoundData, InitSound

Statement: DiskPlay
Syntax: DiskPlay Filename$,Channelmask[, Vo11[, VoI2 ... J]

Modes: Amiga

Description:

DiskPlay will play an 8SVX I FF sound file straight from disk. This is ideal for situations where you
simply want to playa sample without the extra hassle of loading a sound, playing it, and then freeing it.
The DiskPlay command will also halt program flow until the sample has finished playing.

DiskPlay usually requires much less memory to playa sample than the LoadSound, Sound
technique. Also, DiskPlay allows you to play samples of any length, whereas LoadSound only allows
samples up to 128K in length to be loaded.

For information on the Channelmask and Vol parameters, please refer to the Sound command

18-5

Example:

,
; diskplay program example
,
DiskPlay "Introduction.iff", 1 ,64

See Also:

DiskBuffer, Sound

Statement: DiskBufTer
Syntax: DiskBuffer Bufferlen

Modes: AmigaIBlitz

Description:

DiskBuffer allows you to set the size of the memory buffer used by the DiskPlay command. This
Buffer is by default set to 1024 bytes, and should not normally have to be set to more than this.
Reducing the buffer size by too much may cause loss of sound quality of the DiskPlay command.
If you are using DiskPlay to access a very slow device, the buffer size may have to be increased.

See Also:

DiskPlay

Statement: Filter
Syntax: Filter OnlOff

Modes: Amiga/Blitz

Description:

Filter may be used to turn on or off the Amiga's low pass audio filter.

Example:

,
; filter on program example

Filter On
DiskPlay "MySound", 1

18-6

Music Modules
The Soundtracker and Noisetracker format for creating sequenced music has become pretty much an
Amiga standard. Blitz 2 supports commands for the loading and playing of songs ('modules') created
using Soundtracker or Noisetracker compatible sequencer programs.

Blitz 2 uses module objects to keep track of different pieces of music, allowing you to have more than
one module loaded at a time.

Statement: LoadModule
Syntax: LoadModule Module#,Filename$

Modes: Amiga

Description:

LoadModule loads in from disk a soundtracker/noisetracker music module. This module may be later
played back using PlayModule.

See Also:

PlayModule, StopModule

Statement: Free Module
Syntax: Free Module Module#

Modes: Amiga/Blitz

Description:

Free Module may be used to delete 8 module object. Any memory occupied by the module will also
be free'd.

See Also:

LoadModule

Statement: PlayModule
Syntax: PlayModule Module#

Modes: Amiga/Blitz

Description:

PlayModule will cause a previously loaded soundtracker/noisetracker song module to be played back.

18-7

See Also:

LoadModule, StopModule

Statement: StopModule
Syntax: StopModule

Modes: Amiga/Blitz

Description:

StopModule will cause any soundtracker/noisetracker modules which may be currently playing to
stop.

See Also:

LoadModule, PlayModule

18-8

19. Slices
-~

Slices are Blitz 2 objects which are the heart of Blitz mode's powerful graphics system. Through the
use of slices, many weird and wonderful graphical effects can be achieved, effects not normally
possible in Amiga mode. This includes such things as dual playfield displays, smooth scrolling, double
buffering and more!

Blitz mode's main feature is it's flexible control over the Amiga's display. This control is achieved
through the use of slices. A slice may be thought of as a 'description' of the appearance of a
rectangular area of the Amiga's display. This description includes display mode, colour palette, sprite
and bitplane information. More than one slice may be set up at a time, allowing different areas of the
display to take on different properties.

There are some limits placed upon how multiple slices may be arranged:

* Slices must not overlap in any way

* Slices must not be positioned horizontally 'beside' each other. This means multiple slices must be
positioned vertically 'on top of' each other.

* When you specify an area for a slice, you only have control over the slices vertical position, it's width
and it's height. A slice's horizontal starting position will be automatically calculated in a way which
causes the slice to be horizontally centred based on it's width.

* Slices normally require a gap of at least two horizontal lines between the bottom of one slice and the
top of another, although there are some situations where this is not necessary.

Here is a simple example of setting up a basic slice driven Blitz mode display:

BLITZ
Slice 0,44 ,3
MouseWait

;go into Blitz mode!
;set up slice 0

We wont go too deeply into how the slice command actually works just now, but this example will set
up a lo-res eight colour slice - 320 pixels across by either 200 or 256 pixels down, depending on
whether you are using an NTSC or PAL machine.

If you type in and compile this example, you will notice that the display contains some fairly random
graphics. This is because slices Simply control how the display appears - they don't control what is
actually to appear. To use slices to display graphics, a bitmap and some form of the Show command
is required:

,
; slice showing a bitmap program example
,
BLITZ ;Go into Blitz mode!
BitMap 0,320,DispHeight.3 ;set up an 8 colour bitmap
Cis 2 ;fill bitmap with colour 2
Slice 0,44,3 ;set up a slice
Show ° ;show bitmap 0 in the slice
MouseWait

19-1

Once the bitmap is initialized and Shown in this way, any bitmap related commands may be used to
render graphics. Here is an example of the Circlet command at work in a slice:

,
; a functional slice program example
,
BLITZ ;go into Blitz mode
BitMap 0,320 ,DispHeight ,3 ;set up an 8 colour bitmap
Slice 0,44,3 ;set up a slice
Show 0

For k= 1 To 100 ;draw 700 circles.
Circlet Rnd(320) ,Rnd(DispHeight) ,Rnd(1 0)+5 ,Rnd(7)+ 1

Next

MouseWait

These examples are all very simple in nature, but illustrate the minimum necessary steps involved in
putting Single slices to work.

The form of the Slice command used in the above examples is a 'quick' form of the standard Slice
command. Using Slice this way limits you to having just one slice active on the display at once. If you
are wanting multiple slices, you must use the more complex Slice command.

Here's a quick example of multiple slices:

,
; multi slice program example
,
BLITZ ;Blitz mode! Yeah!
BitMap 0,320,100,3 ;make a bitmap
Cis 2 ;fill it with colour 2
BitMapOutput 0 ;we're going to print to it ...
Print "Hello - Slice Magic!" ;Iike so ...
Slice 0,44,160, 100,$fff8,3,8,32,320,320 ;whew!
RGB 1,15,15,15 ; this affects slice 0'5 palette
RGB 2,8,0,15 ;so does this
Show 0 ;show the bitmap
Slice 1 ,146,320,100 ,$fff9 ,3 ,8 ,32 ,320 ,320 ;more whew!
RGB 1,15,15,0 ; this affects slice 7' s palette
RGB 2,0,8.15 ; ditto
Show 0 ;show the bitmap (same one!)
MouseWait

Note that the text 'Hello - Slice MagiC!' appears at two different places on the display, even though it
was only printed once! This is because both slices are Showing the same bitmap, and it is on this
bitmap that the text is rendered.

Also note that the top slice is in la-res mode, whereas the bottom slice is in hi-res mode.

Finally, note that the positioning of the slices follows the rules outlined above. The slices are stacked
vertically, and there is a two line gap between them.

One final important word about slices - slice objects can not be individually Free'd. This means once a
slice is created - it's there for good. The only way to free up slices is to free the lot of them at once
using the FreeSlices command.

19-2

Statement: Slice
Syntax:Slice SliceD, Y, Flags

Slice SliceD, Y, Width,Height,Flags,BitPlanes, Sprites, Colours, Width 1, Width2

Modes: Amiga/Blitz

Description:

The Slice command is used to create a Blitz 2 slice object. Slices are primarily of use in Blitz mode,
allowing you to create highly customized displays.

In both forms of the Slice command, the Y parameter specifies the 'downwards' pixel position of the
top of the slice. A Yvalue of 44 will position slices at about the top of the display.

In the first form of the Slice command, Flags refers to the number of bitplanes in any bitmaps (the
bitmap's depth) to be shown in the slice. This form of the Slice command will normally create a lo-res
slice, however this may be changed to a hi-res slice by adding eight to the Flags parameter. For
instance, a Flags value of four will set up a lo-res, 4 bitplane (16 colour) slice, whereas a Flags value
of ten will set up a hi-res, 2 bitplane (4 colour) slice. The width of a slice set up in this way will be 320
pixels for a lo-res slice, or 640 pixels for a hi-res slice. The height of a slice set up using this syntax will
be 200 pixels on an NTSC Amiga, or 256 pixels on a PAL Amiga.

The second form of the Slice command is far more versatile, albeit a little more complex.

Width and Height allow you to use specific values for the slice's dimensions. These parameters are
specified in pixel amounts.

BitPlanes refers to the depth of any bitmaps you will be showing in this slice.

Sprites refers to how many sprite channels should be available in this slice. Each slice may have up to
eight sprite channels, allowing sprites to be 'multiplexed'. This is one way to overcome the Amiga's
'eight sprite limit'. It is recommended that the top':most slice be created with all eight sprite channels,
as this will prevent sprite flicker caused by unused sprites.

Colours refers to how many colour palette entries should be available for this slice, and should not be
greater than 32.

Width1 and Width2 specify the width, in pixels, of any bitmaps to be shown in this slice. If a slice is set
up to be a dual-playfield slice, Width1 refers to the width of the 'foreground' bitmap, and Width2 refers
to the width of the 'background' bitmap. If a slice is NOT set up to be a dual-playfield slice, both Width1
and Width2 should be set to the same value. These parameters allow you to show bitmaps which are
wider than the slice, introducing the ability to smooth scroll through large bitmaps.

The Flags parameter has been left to last because it is the most complex. Flags allows you control
over many aspects of the slices appearance, and just what effect the slice has. Here are some
example settings for Flags:

Flags setting EffectMax BitPlanes

$fff8 A standard lo-res slice6
$fff9 A standard hi-res slice4
$fffa A lo-res, dual-playfield slice6
$fffb A hi-res, dual-playfiled slice4
$fffc A HAM slice6 only

19-3

WARNING - the next bit is definitely for the more advanced users out there! Knowledge of the
following is NOT necessary to make good use of slices.

Flags is actually a collection of individual bit-flags. The bit-flags control how the slices 'copper lisf is
created. Here is a list of the bits numbers and their effect:

Bit # Effect

15 Create copper MOVE BPLCONO
14 Create copper MOVE BPLCON1
13 Create copper MOVE BPLCON2
12 Create copper MOVE DIWSTRT and MOVE DIWSTOP
10 Create copper MOVE DDFSTRT and MOVE DDFSTOP
8 Create copper MOVE BPL 1 MOD
7 Create copper MOVE BPL2MOD
4 Create a 2 line 'blank' above top of slice
3 Allow for smooth horizontal scrolling
2 HAM slice
1 Dual-playfield slice
0 Hi-res slice - default is lo-res

Clever selection of these bits allows you to create 'minimal' slices which may only affect specific
system registers.

The BitPlanes parameter may also be modified to specify 'odd only' or 'even only' bitplanes. This is of
use when using dual playfield displays, as it allowins you to create a mid display slice which may show
a different foreground or background bitmap leaving the other intact. To specify creation of foreground
bitplanes only, simply set bit 15 of the BitPlanes parameter. To specify creation of background
bitplanes only, set bit 14 of the BitPlanes parameter.

Example:

,
; slice with circle program example
,
BLITZ ;Goodbye OS!
BitMap 0,320.200,3 ;make a bitmap
Circlet 160,100,50.2 ; draw a circle
Slice 0,44,320.2oo,$fff8,3,8,32,320,320 ;set up a slice
Show 0 ;show the bitmap
MouseWait

See Also:

Use Slice, Show, FreeSlices

Statement: Use Slice
Syntax: Use Slice Slice#

Modes: Amiga/Blitz

Description:

. Use Slice is used to set the specified slice object as being the currently used slice. This is required for
commands such as Show, ShowF, ShowB and Blitz mode RGB.

19-4

Example:

,
; program example
,
BLITZ ;into blitz mode ...
BitMap 0,320.200,3 ;set up a bitmap
Circlet 160,100,80,2 ;draw a circle on it
Slice OM,320,100,$fff8,3,8,8,320,320 ;one slice .. .
Slice 1,44,320, 146,$fff8,3,8,8,320,320 ;another .. .
Use Slice 0 ;use the first one ..
Show 0
RGB 2,15,15,0 ;Rgb/Show affects slice 0
Use Slice 1 ; use slice 7
Show 0
RGB 2,0,8,15 ;Rgb and Show into it
MouseWait

See Also:

Slice, FreeSlices

Statement: FreeSlices
Syntax: FreeSlices

Modes: Amiga/Blitz

Description:

FreeSlices is used to completely free all slices currently in use. As there is no capability to Free
individual slices, this is the only means by which slices may be deleted.

See Also:

Slice

Statement: Show
Syntax: Show Bitmap#[,X, Yj

Modes: Amiga/Blitz

Description:

Show is used to display a bitmap in the currently used slice. This slice should not be a dual-playfield
type slice. Optional X and Yparameters may be used to position the bitmap at a point other than it's
top-left. This is normally only of use in cases where a bitmap larger than the slice width and/or height
has been set up.

19-5

Example:

; scrolling bitmap program example
,
BLITZ ; Go into Blitz Mode
BitMap 0,640,200,2 ;create bitmap 0
Circlet 320,100,80,1 ; draw a cricle on it ..
Circlet 320,100,40,2 ; and another ...
Slice 0,44,320,200,$fff8,2,8,4,640,640 ;create slice 0

For k=O To 319
VWait
Show O,k,O

Next

MouseWait

;start of loop
; wait for top of frame
;show bitmap 0

;end of loop

See Also:

ShowF, ShowB

Statement: ShowF
Syntax: ShowF BitMap#[,X, Y[,ShowB X]]

Modes: Amiga/Blitz

Description:

ShowF is used to display a bitmap in the foreground of the currently used slice. The slice must have
been created with the appropriate Flags parameter in order to support dual-playfield display.

Optional X and Y parameters may be used to show the bitmap at a point other than it's top-left.
Omitting the X and Y parameters is identical to supplying X and Yvalues of O.

The optional ShowB x parameter is only of use in special situations where a dual-playfield slice has
been created to display ONLY a foreground bitmap. In this case, the X offset of the background bitmap
should be specified in the ShowB x parameter.

Example:

19-6

; dpf slice example program example

BLITZ ;blitz mode
BitMap 0,640,200,2 ; create a bitmap
Circlet 320,100,80,1 ;put a circle on it
Circlet 320,100,40,2 ;and another
Slice 0,44,320,200,$fffa,4,8,32,640,640 ;dual-playfield slice!
ShowB 0,160,0 ;show background bitmap

For k=O To 319
VWait
ShowF O,k,O

Next

;begin a loop
;wait for vertical blank

;show foreground bitmap
;end of loop

MouseWait

Statement: ShowB
Syntax: ShowB BitMap#[,X, Y[,ShowF X]]

Modes: AmigaiBlitz

Description:

ShowB is used to display a bitmap in the background of the currently used slice. The slice must have
been created with the appropriate Flags parameter in order to support dual-playfield display.

Optional X and Y parameters may be used to show the bitmap at a point other than it's top-left.
Omitting the X and Y parameters is identical to supplying X and Yvalues of o.
The optional ShowF x parameter is only of use in special situations where a dual-playfield slice has
been created to display ONLY a background bitmap. In this case, the X offset of the foreground bitmap
should be specified in the ShowF x parameter.

Example:

,
; showb and showf program example
,
BLITZ ;blitz mode
BitMap 0,640,200,2 ;create a bitmap
Circlef 320,100,80,1 ;put a circle on it
Circlef 320,100,40,2 ;and another
Slice 0,44,320,200 ,$fffa,4,8 ,32 ,640 ,640 ; dual-playfield slice!
ShowF 0,160,0 ;show background bitmap

For k=O To 319
VWait
ShowB O,k,O

Next

MouseWait

Statement: ColSplit

;begin a loop
; wait for vertical blank

;show foreground bitmap
;end of loop

Syntax: ColSplit Colour Register, Red,Green, Blue, Y

Modes: AmigaiBlitz

Description:

ColSplit allows you to change any of the palette colour registers at a position relative to the top of the
currently used slice. This allows you to 're-use' colour registers at different positions down the screen
to display different colours.

Y specifies a vertical offset from the top of the currently used slice.

19-7

Example:

,
; colsplit program example
,
BUll ; enter blitz mode
BitMap 0.320,200,1 ;get an empty bitmap
Slice 0,44,320.2OQ,$fff8,1 ,8,32,320,320 ;set up a slice
Show ° ;show the bitmap

For k=O To 15
ColSplit ° ,k,k,k,k* 17

Next

MouseWait

;begin loop
;set background register at
; a clever Y position
; end loop

Statement: Custom Cop
Syntax: CustomCop Copin$, Y

Modes: Amiga/Blitz

Description:

CustomCop allows advanced programmers to introduce their own copper instructions at a specified
position down the display. Copins$ refers to a string of characters equivalent to a series of copper
instructions. Y refers to a pOSition down the display.

Example:

19-8

,
; custom copper list program example
,
BUll ;Blitz mode
#BPLMOD 1 =$1 08
#BPLMOD2=$10A
BitMap 0,320,400,3

For k=7 To 1 Step -1
Circlef 160.250 ,k* 1 O,k

Next

;some clever stuff ..
; ditto

;draw the SUN!

Slice 0,44,320.200,$fff8,3,8,32,320,320 ;set up a slice
RGB 0,0,8,15

For k=l To 7
RGB k,15,k*2,0

Next

ColSplit 0,0,0,8,150 ;groovy colour split
co$=Mki$(#BPLMOD 1)+Mki$(-122)
co$+Mki$(#BPLMOD2)+Mki$(-122)
CustomCop co$, 150+44 ; custom copper instructions

For k=O To 199
VWait
ShowO,O,k

Next

MouseWait

See Also:

ColSplit

Statement: ShowBlitz
Syntax: ShowBlitz

Modes: Blitz

Description:

; up comes the sun ...

ShowBlitz redisplays the entire set up of slices. This may be necessary if you have made a quick trip
into Amiga mode, and wish to return to Blitz mode with previously created slices intact.

Function: CopLoc
Syntax: CopLoc

Modes: Amiga/Blitz

Description:

CopLoc returns the memory address of the Blitz mode copper list. All Slices, ColSplits, and
CustomCops executed are merged into a single copper list, the address of which may found using the
CopLoc function.

Example:

,
; print out of copper list program example

Slice 0,44,3

For k=O To CopLen-l Step 4
NPrint Hex$(k) ,":" ,Hex$(Peek.I(CopLoc+k))

Next

MouseWait

See Also:

CopLen

19-9

Function: CopLen
Syntax: CopLen

Modes: Amiga/Blitz

Description:

CopLen returns the length, in bytes, of the Blitz mode copper list. All Slices, ColSplits, and
CustomCops executed are merged into a single copper list, the length of which may found using the
CopLen function.

See Also:

CopLoc

Statement: Display
Syntax: Display OnlOff

Modes: Blitz

Description:

Display is a blitz mode only command which allows you to 'turn on' or 'turn off' the entire display. If the
display is turned off, the display will appear as a solid block of colour O.

19-10

20. Sprites
_~,-J"

---~i~; .
~;

Sprites are another way of producing moving objects on the Amiga's display. Sprites are, like shapes,
graphical objects. However unlike shapes, sprites are handled by the Amiga's hardware completely
separately from bitmaps. This means that sprites do not have to be erased when it's time to move
them, and that sprites in no way destroy or interfere with bitmap graphics. Also, once a sprite has been
displayed, it need not be referenced again until it has to be moved.

However, all this power does not come cheap. There are some limitations that must be observed when
using sprites:

* In this release of Blitz 2, sprites are only available in Blitz mode.

* Sprites must be of either 3 or 15 colours (2 or 4 bitplanes).

* Each Blitz mode slice may display a maximum of up to 8 sprites. Other conditions may lower this
maximum.

* Sprites are always displayed in low resolution mode, regardless of the display mode of the slice they
are in.

* Sprites may only be positioned at low resolution pixel positions.

Sprites are displayed through the use of eight 'sprite channels', numbered 0 through 7. To display a
sprite, you tell a sprite channel to display a specific image at a specific position. If you are displaying a
three colour sprite, you may specify any of the eight sprite channels (0 through 7).

If you are displaying a fifteen colour sprite, you may only specify an even-numbered sprite channel
(0,2,4,6). Fifteen colour sprites also 'tie-up' the associated odd-numbered sprite channel. For example,
displaying a fifteen colour sprite through sprite channel 2 will make sprite channel 3 unavailable. This
is because each 15 colour sprites requires 2 sprite channels.

The Amiga's hardware actually limits individual sprites to a maximum width of 16 lo-res pixels.
However, Blitz 2 allows you to display sprites of greater width by splitting a shape up into groups of
sixteen pixels. This means that a Blitz 2 'sprite' may take up more than one sprite channel. For
example, a 32 pixel wide 3 colour 'sprite' displayed through sprite channel 4 will actually be converted
to two 16 pixel wide sprites displayed through channels 4 and 5. Similarly, a 48 pixel wide 15 colour
'sprite' displayed through sprite channel 0 will take up sprite channels 0 through 5.

Sprites also require a special colour palette set up. Fifteen colour sprites take their RGB values from
colour registers 17 through 31. Three colour sprites, however, take on RGB values depending upon
the sprite channels being used to display them.

The following table shows which palette registers affect which sprite channels:

Sprite Channel Colour Registers

0,1 17-19
2,3 21-23
4,5 25-27
6,7 29-31

20-1

Statement: GetaSprite
Syntax: GetaSprite Sprite#,Shape#

Modes: Amiga/Blitz

Description:

To be able to display a sprite, you must first create a sprite object. This will contain the image
information for the sprite. GetaSprite will transfer the graphic data contained in a shape object into a
sprite object. This allows you to perform any of the Blitz 2 shape manipulation commands (eg Scale or
Rotate) on a shape before creating a sprite from the shape.

Once GetaSprite has been executed, you may not require the shape object anymore. In this case, it is
best to free up the shape object (using Free Shape) to conserve as much valuable chip memory as
possible.

Example:

,
; simple sprites example
,
BitMap 0,320,DispHeight,2 ;create a bitmap
Boxf 0,0,63,63,1 ; draw some stuff on it ..
Boxf 8,8,55,55,2
Boxf 16,16,47,47,3
GetaShape 0,0,0,64,64
GetaSprite 0,0

; turn stuff into a shape
;turn shape into a sprite

Free Shape °
BLITZ
Cis
Slice 0,44,2

Show °
For k=O To 1
RGB k*4+17,15,15,0
RGB k*4+ 18, 15,8,0
RGB k*4+ 19, 15,4,0
Next

;we don't need the shape anymore ...
;go into blitz mode.
;clear bitmap

; create a slice
;show bitmap 0 in the slice
;Since the sprite is 64 pixels wide,

;it will require 4 sprite channels (64/16)
;therefore, we must set palette
;registers appropriately

For k=O To 319 ;start of loop
VWait ; wait for vertical blank
ShowSprite O,k, 100,0 ;show the sprite ...

Next ;end of loop

MouseWait

See Also:

Free Sprite, ShowSprite

20-2

Statement: ShowSprite
Syntax: ShowSprite Sprite#,X, Y,Sprite Channel

Modes: AmigaIBlitz

Description:

ShowSprite is the command used to actually display a sprite through a sprite channel. X and Y
specify the position the sprite is to be displayed at. These parameters are ALWAYS given in 10-
resolution pixels. Sprite Channel is a value 0 through 7 which decides which sprite channel the sprite
should be display through.

See Also:

GetaSprite

Statement: InFront
Syntax: InFront Sprite Channel

Modes: AmigaIBlitz

Description:

A feature of sprites is that they may be displayed either 'in front of or 'behind' the bitmap graphics they
are appearing in. The In Front command allows you to determine which sprites appear in front of
bitmaps, and which sprites appear behind.

Sprite Channel must be an even number in the range 0 through 8. After executing an InFront
command, sprites displayed through sprite channels greater than or equal to Sprite Channel will
appear BEHIND any bitmap graphics. Sprites displayed through channels less than Sprite Channel will
appear IN FRONT OF any bitmap graphics.

For example, after executing an InFront 4, any sprites displayed through sprite channels 4,5,6 or 7 will
appear behind any bitmap graphics, while any sprites displayed through sprite channels 0,1,2 or 3 will
appear in front of any bitmap graphics.

InFront should only be used in non-dualplayfield slices. For dualplayfield slices, use InFrontF and
InFrontB.

Example:

,
; sprite priorities example
,
BitMap 0,320,DispHeighf,2 ;create a bitmap
Boxf 0,0,63,63,1 ; draw some stuff on it ..
Boxf 8,8,55,55.2
Boxf 16,16.47.47,3
GetaShape 0,0,0,64,64
GetaSprite 0,0

;turn stuff into a shape
;turn shape into a sprite

Free Shape 0
BLITZ

;we don't need the shape anymore ...
;go into blitz mode.

Cis ;clear bitmap

20-3

Slice 0,44,2
Show °
For k=O To 3

RGB k*4+17,15,15,0
RGB k*4+ 18, 15,8,0
RGB k*4+ 19, 15,4,0

Next

;create a slice
;show bitmap 0 in the slice

; This loop will set all 3 colour
;sprites to the same colours ...

Circlet 0,160,100,90,3 ;a circle + ...
Circlet 0,160,100,80,0 ; a hole = a donut!
InFront 4 ;sprites 4-7 are 'behind'

For k=O To 319 ;start of loop
VWait ; wait for vertical blank
ShowSprite 0,k.20,0 ;show in front sprite ...
ShowSprite 0,k,120,4 ;show behind sprite

Next ;end of loop

MouseWait

See Also:

InFrontF,lnFrontB

State.ment: InFrontF
Syntax: InFrontF Sprite Channel

Modes: Amiga/Blitz

Description:

InFrontF is used on dualplayfield slices to determine sprite/playfield priority with respect to the
foreground playfield. Using combinations of InFrontF and InFrontB (used for the background
playfield), it is possible to display sprites at up to 3 different depths - some in front of both playfields,
some between the playfields, and some behind both playfields.

Please refer to InFront for more information on the Sprite Channel parameter.

Example:

20-4

; sprites example
,
BitMap 1,320.200.2
Boxf 80,50.240,150,3
BitMap 0,320,200,2
Boxf 0,0,63,63,1
Boxf 16,16.47.47,3
GetaShape 0,0,0,64,64
GetaSprite 0,0

;create 'background' bitmap
; draw a box on it for scenery
;create 'foreground' bitmap

; draw some boxes .. .Boxf 8,8,55,55,2

;pick up a shape
;turn it into a sprite

Free Shape °
Cis

;free shape as we no longer need it
; clear bitmap

Circlet 160,100,90,3 ;make some foreground scenery
Circlet 160,100,80,0
BLITZ ;go into BLITZ mode
Slice 0,44,320.200,$fff2,4,8,32,320,320 ;a dualplayfield slice!
ShowF ° ;show foreground bitmap
ShowB 1 ;show background bitmap

For k=O To 3
RGB k*4+17,15,15,0
RGB k*4+ 18, 15,8,0
RGB k*4+ 19,15,4,0

Next

InFrontF °
InFrontB 4

;set all sprite colours ...

; foreground is in front of sprites 2-7
;background is in front of sprites 4-7

For x=O To 319 ; loop for sprite move
VWait ; wait for vertical blank
ShowSprite 0,x.20,0 ;sprite behind foreground, infront of background
ShowSprite O,X, 120,4 ;show sprite behind everything

Next ;end of sprite move loop

MouseWait

See Also:

In Front, InFrontB

Statement: InFrontB
Syntax: InFrontB Sprite Channel

Modes: Amiga/Blitz

Description:

InFrontB is used on dualplayfield slices to determine sprite/playfield priority with respect to the
background playfield. Using combinations of InFrontB and InFrontF (used for the foreground
playfield), it is possible to display sprites at up to 3 different depths - some in front of both playfields,
some between the playfields, and some behind both playfields.

Please refer to InFront for more information on the Sprite Channel parameter.

See Also:

In Front, InFrontF

20-5

Statement: LoadSprites
Syntax: LoadSprites Sprite#[,Sprite#j,Filename$

Modes: Amiga

Description:

LoadSprites lets you load a 'range' of sprites from disk into a series of sprite objects. The file specified
by Filename$ should have been created using the SaveSprites command.

The first Sprite# parameter specifies the number of the first sprite object to be loaded. Further sprites
will be loaded into increasingly higher sprite objects.

If a second Sprite# parameter is supplied, then only sprites up to and including the second Sprite#
value will be loaded. If there are not enough sprites in the file to fill this range, any excess sprites will
remain untouched.

See Also:

SaveSprites

Statement: SaveSprites
Syntax: SaveSprites Sprite#, Sprite#, Filename$

Modes: Amiga

Description:

SaveSprites allows you to create a file containing a range of sprite objects. This file may be later
loaded using the LoadSprites command.

The range of sprites to be saved is specified by Sprite#,Sprite#, where the first Sprite# refers to the
lowest sprite to be saved and the second Sprite# the highest.

See Also:

LoadSprites

20-6

21. Blitting rr:;}L~
f(~!-rS
\t~T~\S ~,~

This section will cover all commands which allow you to draw shapes onto bitmaps using the Amiga's
'blitter' chip.

Statement: Blit
Syntax: Blit Shape#,X, Y[,Excessonoffj

Modes: Amiga/Blitz

Description:

Blit is the simplest of all the blitting commands. Blit will simply draw a shape object onto the currently
used bitmap at the pixel position specified by X, Y. The shape's handle, if any, will be taken into
account when positioning the blit.

The optional Excessonoff parameter only comes into use if you are blitting a shape which has less
bitplanes (colours) than the bitmap to which it is being blitted. In this case, Excessonoff allows you to
specify an on/off value for the excess bitplanes - ie, the bitplanes beyond those altered by the shape.
Bit zero of Excessonoffwill specify an on/off value for the first excess bitplane, bit one an on/off value
for the second excess bitplane and so on.

The manner in which the shape is drawn onto the bitmap may be altered by use of the BlitMode
command.

Example:

,
; getashape and Blit example
,
Screen 0,3
ScreensBitMap 0,0
Cis
Circlet 32,32,32,3
Circlef 32,32,16,2
GetaShape 0,0,0,64,64
Cis
Blit 0,160,100
MouseWait

See Also

BlitMode, QBlit, BBlit

21-1

Statement: BlitMode
Syntax: BlitMode BL TCONO

Modes: Amiga/Blitz

Description:

The BlitMode command allows you to specify just how the Blit command uses the blitter when
drawing shapes to bitmaps. By default, BlitMode is set to a 'cookiemode' which simply draws shapes
'as is'. However, this mode may be altered to produce other useful ways of drawing. Here are just
some of the possible BL TCONO parameters and their effects:

BL TCONO Mode Effect

Cookie Mode Shapes are drawn 'as is'.

EraseMode An area the size and shape of the shape willbe 'erased' on the
destination bitmap.

InvMode An area the size and shape of the shape willbe 'inversed'
on the destination bitmap.

SolidMode The shape will be drawn as a solid area of one colour.

Actually, these modes are all just special functions which return a useful value. Advanced
programmers may be interested to know that the BL TCONO parameter is used by the Blit command's
blitter routine to determine the blitter MINITERM and CHANNEL USE flags. Bits zero through seven
specify the miniterm, and bits eight through eleven specify which of the blitter channels are used. For
the curious out there, all the blitter routines in Blitz 2 assume the following blitter channel setup:

Channel Use

A Pointer to shape's cookie cut

B Pointer to shape data

C Pointer to destination

D Pointer to destination

Example:

; different b/itmode examples

21-2

Screen 0,3
ScreensBitMap 0,0
Cis

For k=7 To 1 Step -1
Circlet 32,32,k*4,k

;open an intuition screen
;and use it's bitmap

; clear bitmap

;start of loop
;groovy circles

Next ;end of loop

GetaShape 0,0,0,64,64
Cis 2
Circlef 160,100,120,90,6
BlitMode CookieMode
Blit 0,0,0
BlitMode EraseMode
Blit 0,160,0
BlitMode InvMode
Blit 0,0,100
BlitMode Solid Mode
Blit 0,160,100

MouseWait

See Also:

QBlitMode, BBlitMode, SBlitMode

;pick shape up
;clear bitmap again, with colour 2

;draw a circle.
; try a blit mode

; another ...

;onother ...

;ond a last ...

Function: CookieMode
Syntax: CookieMode

Modes: AmigalBlitz

Description:

The CookieMode function returns a value which may be used by one of the commands involved in
blitting modes.

Using CookieMode as a blitting mode will cause a shape to be blitted cleanly, 'as is', onto a bitmap.

See Also:

BlitMode, BBlitMode, QBlitMode, SBlitMode, EraseMode, InvMode, SolidMode

Function: EraseMode
Syntax: EraseMode

Modes: AmigalBlitz

Description:

The EraseMode function returns a value which may be used by one the commands involved in blitting
modes.

Using EraseMode as a blitting mode will cause a blitted shape to erase a section of a bitmap
corresponding to the outline of the shape.

21-3

See Also:

BlitMode, BBlitMode, QBlitMode, SBlitMode, CookieMode, InvMode, Solid Mode

Statement: InvMode
Syntax: InvMode

Modes: Amiga/Blitz

Description:

The InvMode function returns a value which may be used by one the commands involved in blitting
modes.

Using InvMode as a blitting mode will cause a shape to 'invert' a section of a bitmap corresponding to
the outline of the blitted shape.

See Also:

BlitMode, BBlitMode, QBlitMode, SBlitMode, Cookie Mode, EraseMode, SolidMode

Statement: SolidMode
Syntax: SolidMode

Modes: Amiga/Blitz

Description:

The SolidMode function returns a value which may be used by one the commands involved in blitting
modes.

Using SolidMode as a blitting mode will cause a shape to overwrite a section of a bitmap
corresponding to the outline of the blitted shape.

See Also:

BlitMode, BBlitMode, QBlitMode, SBlitMode, CookieMode, EraseMode, InvMode

Statement: Queue
Syntax: Queue Queue#,Max Items

Modes: Amiga/Blitz

Description:

The Queue command creates a queue object for use with the QBlit and UnQueue commands. What
is a queue? Well, queues (in the Blitz 2 sense) are used for the purpose of multi-shape animation.
Before going into what a queue is, let's have a quick look at the basics of animation.

21-4

Say you want to get a group of objects flying around the screen. To achieve this, you will have to
construct a loop similar to the following:

Step 1: Start at the first object
Step 2: Erase the object from the display
Step 3: Move the object
Step 4: Draw the object at ifs new location on the display
Step 5: If there are any more objects to move, go on to the next object and then go to step 2, else ...
Step 6: go to step 1

Step 2 is very important, as if it is left out, all the objects will leave trails behind them! However, it is
often very cumbersome to have to erase every object you wish to move. This is where queues are of
use.

Using queues, you can 'remember' all the objects drawn through a loop, then, at the end of the loop (or
at the start of the next loop), erase all the objects 'remembered' from the previous loop. Lets have a
look at how this works:

Step 1: Erase all objects remembered in the queue
Step 2: Start at the first object
Step 3: Move the object
Step 4: Draw the object at ifs new location, and add it to the end of the queue
Step 5: If there are any objects left to move, go on to the next object, then go to step 3; else ...
Step 6: Go to step 1

This is achieved quite easily using Blitz 2's queue system. The UnQueue command performs step 1,
and the QBlit command performs step 4.

Queues purpose is to initialize the actual queue used to remember objects in. Queue must be told the
maximum number of items the queue is capable of remembering, which is specified in the Max Items
parameter.

Example:

,
; queue and unqueue blitting example
,
Screen 0,1 ;open intuition screen
ScreensBitMap 0,0 ;use it's bitmap
Cis ;clear the bitmap
Circlef 16,16,16,1 ; draw a circle
GetaShape 0,0,0,32,32 ;turn it into a shape
Cis ;clear the screen again
Queue 0,8 ;initia/ized our queue - 8 items max!
BLITZ ;go into blitz mode for speed!

For y=O To 160
VWait
UnQueueO
For x=l To 8
QBlit 0,0,x*32,y

Next
Next

MouseWait

;move down the bitmap
; wait for top of frame

;erase all previously QBlitted items
;move across the bitmap
;draw object and remember it in queue 0

;again ...
; again ...

21-5

See Also:

QBlit, UnQueue

Statement: QBlit
Syntax: QBlit Queue#,Shape#,X, Y[,Excessonoffj

Modes: Amiga/Blitz

Description:

QBlit performs similarly to Blit, and is also used to draw a shape onto the currently used bitmap.
Where QBlit differs, however, is in that it also remembers (using a queue) where the shape was
drawn, and how big it was. This allows a later UnQueue command to erase the drawn shape.

Please refer to the Queue command for an explanation of the use of queues.

The optional Excessonoff parameter works identically to the Excessonoff parameter used by the Blit
command. Please refer to the Blit command for more information on this parameter.

See Also:

Queue, UnQueue, Blit

Statement: UnQueue
Syntax: UnQueue Queue#[,BitMap#]

Modes: Amiga/Blitz

Description:

UnQueue is used to erase all 'remembered' items in a queue. Items are placed in a queue by use of
the QBlit command. Please refer to Queue for a full explanation of queues and their usage.

An optional BitMap# parameter may be supplied to cause items to be erased by way of 'replacement'
from another bitmap, as opposed to the normal 'zeroing out' erasing.

Example:

21-6

; un queueing from separate bitmap

Screen 0,1
ScreensBitMap 0,0
Cis
Circlet 16,16,16,1
GetaShape 0,0,0,32,32
Cis

For k= 1 To 100

;open intuition screen
;use it's bitmap

;c/ear the bitmap
; draw a circle

;turn it into a shape
;c/ear the screen again

Circlet Rnd(320) ,Rnd(DispHeight) ,Rnd(50), 1
Next

;draw some circles

CopyBitMap 0,1
Queue 0,8
BLITZ

For y=o To 160
VWait
UnQueueO,l
Forx=l T08
QBlit 0,0,x*32,y

Next
Next

MouseWait

;make an identical copy of bitmap 0
;initialized our queue - 8 items max!

;go into blitz mode for speed!

;move down the bitmap
; wait for top of frame

; erase aI/ previously QBlitted items
;move across the bitmap
;draw object and remember it in queue 0

;again ...
;again ...

Statement: FlushQueue
Syntax: FlushQueue Queue#

Modes: Amiga/Blitz

Description:

FlushQueue will force the specified queue object to be 'emptied', causing the next UnQueue
command to have no effect.

See Also:

Queue, QBlit

Statement: QBlitMode
Syntax: QBIitMode BL TCONO

Modes: Amiga/Blitz

Description:

QBlitMode allows you to control how the blitter operates when QBlitting shapes to bitmaps. Please
refer to BlitMode for more information on this command.

See Also:

BlitMode

Statement: Buffer
Syntax: Buffer Buffer#,Memorylen

Modes: Amiga/Blitz

Description:

21-7

The Buffer command is used to create a buffer object. Buffers are similar to queues in concept, but
operate slightly differently. If you have not yet read the description of the Queue command, it would be
a good idea to do so before continuing here.

The buffer related commands are very similar to the queue related commands - Buffer, BBlit, and
UnBuffer, and are used in exactly the same way. Where buffers differ from queues, however, is in
their ability to preserve background graphics. Whereas an UnQueue command normally trashes any
background graphics, UnBuffer will pOlitely restore whatever the BBlits may have overwritten. This is
achieved by the BBlit command actually performing two blits.

The first blit transfers the area on the bitmap which the shape is about to cover to a temporary storage
area - the second blit actually draws the shape onto the bitmap. When the time comes to UnBuffer all
those BBlits, the temporary storage areas will be transferred back to the disrupted bitmap.

The Memory/en parameter of the Buffer command refers to how much memory, in bytes, should be
put aside as temporary storage for the preservation of background graphics. The value of this
parameter varies depending upon the size of shapes to BBlited, and the maximum number of shapes
to be BBlited between UnBuffers.

A Memory/en of 16384 should be plenty for most situations, but may need to be increased if you start
getting 'Buffer Overflow' error messages.

Example:

,
; buffer b/itting example
,
BitMap 0,64,64,1
Boxf 0,0,63,63,1
GetaShape 0,0,0,64,64
FindScreen °
ScreensBitMap 0,0
Buffer 0,16384 ; 76384 bytes for buffer

For x=o To 600
VWait
UnBufferO
BBlit O,O,x, 192

Next

MouseWait

;undo eny blits
;buffer blit

Statement: BBIit
Syntax: BBlit Buffer#,Shape#,X, Y[,Excessonoff]

Modes: Amiga/Blitz

Description:

The BBlit command is used to draw a shape onto the currently used bitmap, and preserve the
overwritten area into a previously initialized buffer. For more information on how buffers work, please
refer to the Buffer command.

The optional Excessonoff parameter works identically to the Excessonoff parameter used by the Blit

21-8

command. Please refer to the Blit command for more information on this parameter.

Example:

,
; buffer blitting example
,
Screen 0,3
ScreensBitMap 0,0
Cis
Circlef 8,8,8,7
GetaShape 0,0,0.20,16
Cis

;open intuition screen
;use it's bitmap for our graphics

;clear the bitmap
; draw a circle

;get it for use as a shape
;clear bitmap again

For k= 1 To 100 ;draw 100 random box's
Boxf Rnd(320) ,Rnd(200) ,Rnd(320) ,Rnd(200) ,Rnd(6)+ 1

Next

Buffer 0,16384 ;set buffer memory size

While Joyb(O)=O ;Ioop into mouse button clicked
VWait ; wait for vertical blank
UnBuffer ° ;replace areas on bitmap
BBlit 0,0,SMouseX/2+80,SMouseY /2+50 ;blit object - add to buffer

Wend

See Also:

Buffer, UnBuffer

Statement: UnBuffer
Syntax: UnBuffer Buffer#

Modes: Amiga/Blitz

Description:

UnBuffer is used to 'replace' areas on a bitmap overwritten by a series of BBlit commands. For more
information on buffers, please refer to the Buffer command.

See Also:

Buffer, BBlit

Statement: FlushBuffer
Syntax: FlushBuffer Buffer#

Modes: Amiga/Blitz

Description:

21-9

FlushBuffer will force the specified buffer object to be 'emptied', causing the next UnBuffer command
to have no effect.

See Also:

Buffer, BBlit

Statement: BBlitMode
Syntax: BBlitmode BL TCONO

Modes: Amiga/Blitz

Description:

BBlitMode allows you to control how the blitter operates when BBlitting shapes to bitmaps. Please
refer to BlitMode for more information on this command.

See Also:

BlitMode

Statement: Stencil
Syntax: Stencil Stencil#,BitMap#

Modes: Amiga/Blitz

Description:

The Stencil command will create a stencil object based on the contents of a previously created
bitmap. The stencil will contain information based on all graphics contained in the bitmap, and may be
used with the SBIit and ShowStencil commands.

Example:

; stencil blit examples

For k= 1 To 7 ; draw some concentric circles
Circle 160, 115,k* 1O,k

Next

Stencil 0,0
Buffer 0,16384
BLITZ

;make a stencil out of bitmap 0
;set up a buffer for BB/it

;into Blitz mode!

For x=O To 280 ;move shapes across ...
VWoit ;wait for vertical blank
UnBuffer ° ;replace BB/its
For y=50 To 150 Step 50
BBlit Q,O,x,y ;BBIit some of our shapes

Next
ShowStencilO,O ;replace stencil area

21-10

Next

MouseWait

Statement: SBlit
Syntax: SBlit Stenci/#,Shape#,X, Y[,Excessonoff]

Modes: Amiga/Blitz

Description:

SBIit works identically to the Blit command, and also updates the specified Stenci/#. This is an easy
way to render 'foreground' graphics to a bitmap.

Example:

; more stencil blitting
,
Screen 0,3 ;open an intuition screen
ScreensBitMap 0,0 ;find it's bitmap
Boxf 0,0,31 ,31 ,3 ; draw a box on the bitmap
GetaShape 0,0,0,32,32 ;pick it up as shape 0
Cis ; clear bitmap
Boxf 0,0,15,15,4 ;draw another box
GetaShape 1.0,0,16,16 ;pick it up as shape 7
Cis ;another cis
Stencil 0,0 ;create a stencil

For k=7 To 1 Step -1 ;draw a background 'bullseye'
Circlef 160,115,k*10,k

Next

For k= 1 To 50 ;draw up 50 random 'foreground' blocks
SBIit 0,1 ,Rnd(320-16),Rnd(200-16)

Next

Buffer 0,16384 ;initialize buffer

BLITZ ;into BLITZ MODE!

For x=O To 280 ;start of loop
VWait ; wait for vertical blank
UnBuffer ° ;replace buffer contents
For y=50 To 150 Step 50

BBlit O,O,x,y ;blit up our shape
Next
ShowStencii 0,0 ;cover-up stenciled areas

Next

MouseWait

21-11

Statement: SBlitMode
Syntax: SBlitMode BL TeONO

Modes: AmigaIBlitz

Description:

SBlitmode is used to determine how the SBlit command operates. Please refer to the BlitMode
command for more information on blitting modes.

See Also:

BlitMode

Statement: ShowStencii
Syntax: ShowStencii Buffer#,Stencil#

Modes: Amiga/Blitz

Descri ption:

ShowStencii is used in connection with BBlits and stencil objects to produce a 'stencil' effect. Stencils
allow you create the effect of shapes moving 'between' background and foreground graphics. Used
properly, stencils can add a sense of 'depth' or 'three dimensionality' to animations.

In order to understand the following, it is recommended that the description of the Buffer command
first be read, as stencils and buffers are closely connected.

So what steps are involved in using stencils? To begin with, you need both a bitmap and a stencil
object. A stencil object is similar to a bitmap in that it contains various graphics. Stencils differ,
however, in that they contain no colour information. They simply determine where graphics are placed
on the stencil. The graphics on a stencil usually correspond to the graphics representing 'foreground'
scenery on a bitmap.

So the first step is to set up a bitmap with both foreground and background scenery on it. Next, a
stencil is set up with only the foreground scenery on it. This may be done using either the Stencil or
SBlit command. Now, we BBlit our shapes. This will, of course, place all the shapes in front of both
the background and the foreground graphics. However, once all shapes have been BBlitted, executing
the ShowStencil command will repair the damage done to the foreground graphics!

Example:

,
; bblits with stencils
,
Screen 0,3
ScreensBitMap 0,0
Cis
Boxf 0,0,7,15,1
Boxf 8,6,15,11 ,2

;an intuition screen
;it's bitmap ... now ours

;c/ear bitmap
;draw a shape ...

GetaShape 0,0,0,16,16 ;pick it up as our shape.
Cis ;c/ear bitmap again
Boxf 80,50.240,150,3 ; draw some stuff ...
Boxf 90,60.230,140,0

21-12

Box 85,55,235,145,0
Stencil 0,0 ;make a stencil out of the bitmap
Cis ;clear bitmap again
Circlef 160,100,90.4 ;draw background graphics ...
Boxf 80,50,240,150,3 ;and foreground (again!)
Boxf 90,60,230,140.4
Box 85,55,235,145.4
Buffer 0,16384
BLITZ

;set up a buffer for BBlit
;go into blitz mode for more speed

For x=O To 300 ;start of loop
VWait:UnBuffer 0 ; wait for top of frame; replace buffer
For y=4O To 140 Step 50 ;start of loop to draw 3 shapes

BBlit O,O,x,y ;put up a shape
Next
ShowStencii 0,0 ;replace foreground

Next

MouseWait

See Also:

Buffer, BBlit, Stencil, SBlit, UnBuffer

21-13

22. Collisions

This section deals with various commands involved in the detection of object collisions.

Statement: SetColl
Syntax: SetGolI Colour,Bitplanes[,Playfield]

Modes: Amiga/Blitz

Description:

There are 3 different commands involved in controlling sprite/bitmap collision detection, of which
SetColI is one (the other 2 being SetColIOdd and SetCoIIHi). All three determine what colours in a
bitmap will cause a collision with sprites. This allows you to design bitmaps with 'safe' and 'unsafe'
areas.

SetColI allows you to specify a single colour which, when present in a bitmap, and in contact with a
sprite, will cause a collision. The Colour parameter refers to the 'collidable' colour. Bitplanes refers to
the number of bitplanes (depth) of the bitmap collisions are to be tested for in.

The optional PlayField parameter is only used in a dualplayfield slice. If Playfield is 1, then Colour
refers to a colour in the foreground bitmap. If Playfield is 0, then Colour refers to a colour in the
background bitmap.

DoColI and PColI are the commands used for actually detecting the collisions.

Example:

,
; death star collision example
,
BitMap 0,320,200.4
BitMapOutput °
Boxf 0,0]],1
GetaShape 0,0,0,8,8
GetaSprite 0,0

;create a 16 colour bitmap
;send print statements there

; draw a box on the bitmap
;pick it up as a shape

;tum shape into a sprite
Free Shape °
Cis

;free shape - we don't need it
; Clear the bitmap

BLITZ ; BLITZ MODE!
Slice 0,44,320,200,$fff8.4,8,32,320,320 ;simple slice
Show ° ;show bitmap in slice

For k= 1 To 100 ;draw 100 stars
Plot Rnd(320),Rnd(200),Rnd(14)+ 1 ;in any colour but 15!

Next

22-1

Circlef 160,100,40,15 ;the death star! in colour 75!
SetColl15,4 ;collide with colour 75
Mouse On ;enable mouse
Pointer 0,0 ;set mouse pointer
While Joyb(O)=O ;while the mouse button is left alone ...
VWait ; wait for vertical blank
DoColI ; ask Blitz) (to suss collisions
Locate 0,0 ; text cursor position
If PColI(O) ; did sprite channel 0 collide with bitmap?

Print "BANG!" ; Yes - BANG!
Else
Print" ;No

Endlf
Wend

See Also:

SetColIOdd, SetColIHi, DoColI, PColI

Statement: SetCollOdd
Syntax: SetColiOdd

Modes: Amiga/Blitz

Description:

SetColIOdd is used to control the detection of sprite/bitmap collisions. SetColIOdd will cause ONLY
the collisions between sprites and 'odd coloured' bitmap graphics to be reported. Odd coloured bitmap
graphics refers to any bitmap graphics rendered in an odd colour number (ie: 1 ,3,5 ...). This allows you
to design bitmap graphics in such a way that even coloured areas are 'safe' (ie: they will not report a
collision) whereas odd colour areas are 'unsafe' (ie: they will report a collision).

The DoColI and PColI commands are used to detect the actual spritelbitmap collisions.

See Also:

SetColI, SetColIHi, DoColI, PColl

Statement: SetCollHi
Syntax: SetColiHi BitPlanes

Modes: Amiga/Blitz

Description:

SetColIHi may be used to enable sprite/bitmap collisions between sprites and the 'high half' colour
range of a bitmap. For example, if you have a 16 colour bitmap, the high half of the colours would be
colours 8 through 15.

The BitPlanes parameter should be set to the number of bitplanes (depth) of the bitmap with which
collisions should be detected.

22-2

Please refer to the SetColI command for more information on spritelbitmap collisions.

See Also:

SetColI, SetColIOdd, DoColI, PColI

Statement: DoColl
Syntax: DoColi

Modes: Blitz

Description:

DoColl is used to perform spritelbitmap collision checking. Once DoColl is executed, the PColl and/or
SColl functions may be used to check for sprite/bitmap or sprite/sprite collisions.

Before DoColI may be used with PColI, the type of bitmap collisions to be detected must have been
specified using one of the SetColI, SetColIOdd or SetColIHi commands.

After executing a DoColI, PColl and SColl will return the same values until the next time DoColl is
executed.

See Also:

SetColI, SetColIOdd, SetColIHi, PColl

Function: PColl
Syntax: PCOII (Sprite Channel)

Modes: Blitz

Description:

The PColl function may be used to find out if a particular sprite has collided with any bitmaps. Sprite
Channel refers to the sprite channel the sprite you wish to check is being displayed through.
If the specified sprite has collided with any bitmap graphics, PColl will return a true (-1) value,
otherwise PColl will return false (0).

Before using PColI, a DoColl must previously have been executed. Please refer to DoCol! for more
information.

See Also:

SetColI, SetColiOdd, SetColIHi, poColi

22-3

Function: SColl
Syntax: SColl (Sprite Channel, Sprite Channel)

Modes: Blitz

Description:

SColl may be used to determine whether the 2 sprites currently displayed through the specified sprite
channels have collided. If they have, SColl will return true (-1), otherwise SColl will return false (O).
DColl must have been executed prior to using SCol1.

See Also:

DoColl

Function: ShapesHit
Syntax: ShapesHit (Shape#,X, Y,Shape#,X, Y)

Modes: AmigalBlitz

Description:

The ShapesHit function will calculate whether the rectangular areas occupied by 2 shapes overlap.
ShapesHit will automatically take the shape handles into account.
If the 2 shapes overlap, ShapesHit will return true (-1), otherwise ShapesHit will return false (O).

See Also:

ShapeSpriteHit, SpritesHit

Function: ShapeSpriteHit
Syntax: ShapeSpriteHit (Shape#,X, Y,Sprite#,X, Y)

Modes: AmigalBlitz

Description:

The ShapeSpriteHit function will calculate whether the rectangular area occupied by a shape at one
position, and the rectangular area occupied by a sprite at another position are overlapped. If the areas
do overlap, ShapeSpriteHit will return true (-1), otherwise ShapeSpriteHit will return false (0).

ShapeSpriteHit automatically takes the handles of both the shape and the sprite into account.

See Also:

ShapesHit, SpritesHit

22-4

Function: SpritesHit
Syntax: SpritesHit (Sprite#,X, Y,Sprite#,X, Y)

Modes: Amiga/Blitz

Description:

The SpritesHit function will calculate whether the rectangular areas occupied by 2 sprites overlap.
SpritesHit will automatically take the sprite handles into account.

If the 2 sprites overlap, SpritesHit will return true (-1), otherwise SpritesHit will return false (0).

See Also:

ShapesHit, ShapeSpriteHit

Function: RectsHit
Syntax: RectsHit (X1, Y1,Width1,Height1,X2, Y2,Width2,Height2)

Modes: Amiga/Blitz

Description:

The RectsHit function may be used to determine whether 2 arbitrary rectangular areas overlap. If the
specified rectangular areas overlap, RectsHit will return true (-1), otherwise RectsHit will return false
(0).

22-5

23. BlitzlO

This sections refers to various Input/Output commands available in Blitz mode.

It should be noted that although the Joyx, Joyy, Joyr, and Joyb functions do not appear here, they
are still available in Blitz mode.

Statement: BlitzKeys
Syntax: BlitzKeys Onl Off

Modes: Blitz

Description:

BlitzKeys is used to turn on or off Blitz mode keyboard reading. If Blitz mode keyboard reading is
enabled, the Inkey$ function may be used to gain information about keystrokes in Blitz mode.

Example:

,
; bitmap output with blitzkeys on program example
,
BLITZ
BitMap 0,320 ,DispHeight ,3
BitMapOutput 0
Slice 0,44 ,3
Show 0
BlitzKeys On
NPrint "Type Away (Click mouse to exit)"

While Joyb(O)=O
Print Inkey$

Wend

End

See Also:

BlitzRepeat

Statement: BlitzRepeat
Syntax: BlitzRepeat DelaY,Speed

Modes: Blitz

23-1

Description:

BlitzRepeat allows you to determine key repeat characteristics in Blitz mode. Delay specifies the
amount of time, in fiftieths of a second, before a key will start repeating. Speed specifies the amount of
time, again in fiftieths of a second, between repeats of a key once it has started repeating.

BlitzRepeat is only effective will the Blitz mode keyboard reading is enabled. This is done using the
BlitzKeys command.

See Also:

Blitz Keys

Function: RawStatus
Syntax: RawStatus (RawkeYJ

Modes: Blitz

Description:

The RawStatus function can be used to determine if an individual key is being held down or not.
Rawkey is the rawcode of the key to check for. If the specified key is being held down, a value of -1 will
be returned. If the specified key is not being held down, a value of zero will be returned.

RawStatus is only available if Blitz mode keyboard reading has been enabled. This is done using the
BlitzKeys command.

Example:

23-2

,
; rawkey program example

BLITZ
BitMap 0,320 ,DispHeight ,3
BitMapOutput 0
Slice 0,44,3
Show 0
BlitzKeys On
NPrint "Click Mouse to exit ... "

While Joyb(O)=O

Locate 0,1
Print "F1 Key is Currently:"
If Rawstatus(80)

Print "Down"
Else

Print "Up"
Endlf

Wend

End

Statement: Mouse
Syntax: Mouse Onl Off

Modes: Amiga

Description:

The Mouse command turns on or off Blitz mode's ability to read the mouse. Once a Mouse On has
been executed, programs can read the mouse's position or speed in Blitz mode.

Example:

,
; blitz mouse program example

BLITZ
BitMap 0,320,DispHeight ,3
Slice 0,44,3
Show °
Mouse On

While Joyb(O)=O
Line 160, 100,MouseX,MouseY, 1

Wend

End

Statement: Pointer
Syntax: Pointer Sprite#,Sprite Channel

Modes: Blitz

Description:

The Pointer command allows you to attach a sprite object to the mouse's position in the currently used
slice in Blitz mode.

To properly attach a sprite to the mouse position, several commands must be executed in the correct
sequence. First, a sprite must be created using the LoadShape and GetaSprite sequence of
commands. Then, a slice must be created to display the sprite in.

A Mouse On must then be executed to enable mouse reading.

Finally, Pointer is executed to attach the Sprite.

Example:

; custom pOinter program example
,
LoadShape O,"MySprite"
LoadPaleHe 0,"MySprite",16
GetaSprite 0,0

;Must be 4 or 16 colour shape
;pick up palette

;make shape into sprite!

23-3

BLITZ
BitMap 0,320 ,DispHeight ,3
Slice 0,44,3
Use Palette °
Show °
Mouse On
Pointer 0,0
MouseWait

;go into BLITZ MODE!
;set up a bitmap

;turn on slice
;add sprites palette to slice

;show bitmap
;turn pon blitz mode mouse reading

;attach pointer

See Also:

Mouse

Statement: MouseArea
Syntax: MouseArea Minx,Miny,Maxx,Maxy

Modes: Blitz

Description:

MouseArea allows you to limit Blitz mode mouse movement to a rectangular section of the display.
Minx and Miny define the top left corner of the area, Maxx and Maxy define the lower right corner.

MouseArea defaults to an area from 0,0 to 320,200.

Example:

; mouse area program example
,
LoadShape O,"MySprite" ;Must be 4 or 76 colour shape
LoadPalette O,"MySprite", 16 ;get the sprites palette
GetaSprite 0,0 ;turn shape into a sprite
BLITZ ;go into blitz mode
BitMap 0,320,DispHeight,3 ;initialize a bitmap
Slice 0.44,3 ; create a slice
Use Palette 0 ;add sprites colours to slice
Show 0 ;show bitmap
Mouse On ; turn mouse on
MouseArea 80,50.240,150 ;Iimit mouse to 'middle' area of display
Pointer 0,0 ;attach pointer
MouseWait

Function: MouseX
Syntax: MouseX

Modes: Blitz

Description:

23-4

If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseX function
may be using to find the current horizontal location of the mouse. If mouse reading is enabled, the
mouse position will be updated every fiftieth of a second, regardless of whether or not a mouse pointer
sprite is attached.

Example:

,
; pretty lines program example
,
BLITZ ;into blitz mode
BitMap 0,320,DispHeight,3 ;make a bitmap
Slice 0,44,3 ; and a slice
Show ° ;show bitmap in slice
While NOT Joyb(O) ; while LMB not pushed ...

VWait ; wait for vertical blank
Line 160, 100,MouseX,MouseY,Rnd(7)+ 1 ;pretty lines

Wend

See Also:

MouseY, MouseXSpeed, MouseYSpeed

Function: MouseY
Syntax: MouseY

Modes: Blitz

Description:

If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseY function
may be using to find the current vertical location of the mouse. If mouse reading is enabled, the mouse
position will be updated every fiftieth of a second, regardless of whether or not a mouse pointer sprite
is attached.

See Also:

MouseX, MouseXSpeed, MouseYSpeed

Function: MouseXSpeed
Syntax: MouseXSpeed

Modes: Blitz

Description:

If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseXSpeed
function may be used to find the current horizontal speed of mouse movement, regardless of whether
or not a sprite is attached to the mouse.

If MouseXSpeed returns a negative value, then the mouse has been moved to the left. If a positive
value is returned, the mouse has been moved to the right.

23-5

MouseXSpeed only has relevance after every vertical blank. Therefore, MouseXSpeed should only
be used after a VWait has been executed, or during a vertical blank interupt.

See Also:

MouseX, MouseY, MouseYSpeed

Function: Mouse YSpeed
Syntax: MouseYSpeed

Modes: Blitz

Description:

If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseYSpeed
function may be using to find the current vertical speed of mouse movement, regardless of whether or
not a sprite is attached to the mouse.

If MouseYSpeed returns a negative value, then the mouse has been moved upwards. If a positive
value is returned, the mouse has been moved downwards.

MouseYSpeed only has relevance after every vertical blank. Therefore, MouseYSpeed should only
be used after a VWait has been executed, or during a vertical blank interupt.

See Also:

MouseX, MouseY, MouseXSpeed

Statement: LoadBlitzFont
Syntax: LoadBlitzFont BlitzFont#,Fontname.font$

Modes: Amiga

Description:

LoadBlitzFont creates a blitzfont object. Blitzfonts are used in the rendering of text to bitmaps.
Normally, the standard rom resident topaz font is used to render text to bitmaps. However, you may
use LoadBlitzFont to select a font of your choice for bitmap output.

The specified Fontname.font$ parameter specifies the name of the font to load, which MUST be in
your FONTS: directory.

LoadBlitzFont may only be used to load eight by eight non-proportional fonts.

Example:

23-6

,
; blitzfont program example

LoadBlitzFont O,"Myfont.font"
Screen 0,3

; load blitzfont #0
; open a screen

ScreensBitMap 0,0
BitMapOutput a
Print "Hello - this is my font"
MouseWait

See Also:

;get the screens bitmap
;send Print to bitmap ...
;do a Print

Use BlitzFont, Free BlitzFont, BitMapOutput

Statement: Use BlitzFont
Syntax: Use BlitzFont BlitzFont#

Modes: Amiga/Blitz

Description:

If you have loaded two or more blitzfont objects using LoadBlitzFont, Use BlitzFont may be used to
select one of these fonts for future bitmap output.

Example:

,
; use blitztont program example
,
LoadBlitzFont 0,"MyFont1.font" ;Ioad in a blitzfont ...
LoadBlitzFont 1,"MyFont2.font" ;and another ...
Screen 0,3 ;open a screen
ScreensBitMap 0,0 ;get bitmap of screen
BitMapOutput a ;send 'Print' there ...
Use BlitzFont a ; use first blitztont ...
NPrint "This is My Font 1 ... " ;print something
Use BlitzFont 1 ;use second blitztont ...
NPrint "And this is My Font 2!" ;print something
MouseWait

See Also:

LoadBlitzFont, Free BlitzFont

Statement: Free BlitzFont
Syntax: Free BlitzFont BlitzFont#

Modes: Amiga/Blitz

Description:

Free BlitzFont 'unloads' a previously loaded blitzfont object. This frees up any memory occupied by
the font.

23-7

See Also:

LoadBlitzFont, Use BlitzFont

Statement: BitMapOutput
Syntax: BitMapOutput BitMap#

Modes: Amiga/Blitz

Description:

BitMapOutput may be used to redirect Print statements to be rendered onto a bitmap. The font used
for rendering may be altered using LoadBlitzFont. Fonts used for bitmap output must be eight by
eight non-proportional fonts.

BitMapOutput is mainly of use in Blitz mode, as other forms of character output become unavailable
in Blitz mode.

Example:

; bitmapoutput program example
,
Screen 0,3
ScreensBitMap 0,0
BitMapOutput a
Print "Printing on a bitmap!"
MouseWait

See Also:

LoadBlitzFont, Locate

Statement: Colour

;open an Intuition screen
;get it's bitmap

;send Print statements there ...
;print something!

Syntax: Colour Foreground Colour[,Background Colour]

Modes: Amiga/Blitz

Description:

Colour allows you to alter the colours use to render text to bitmaps. Foreground colour allows you to
specify the colour text is rendered in, and the optional Background colour allows you to specify the
colour of the text background.

The palette used to access these colours will depend upon whether you are in Blitz mode or in Amiga
mode. In Blitz mode, colours will come from the palette of the currently used slice. In Amiga mode,
colours will come from the palette of the screen the bitmap is attached to.

23-8

Example:

; colourful program example

Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0

Locate 0,2

For k=O To 7
For J=O To 7

If k<>j
Colour k,j
Print "* "

Endlf
Next

Next

MouseWait

See Also:

BitMapOutput

Statement: Locate
Syntax: Locate X, Y

Modes: Amiga/Blitz

Description:

;open an Intuition screen
;use it's bitmap

;send Print statements

;Ioop 7 .. .
; loop 2 .. .

;some trickery ...

If you are using BitMapOutput to render text, Locate allows you to specify the cursor position at
which characters are rendered.

X specifies a character position across the bitmap, and is always rounded down to a multiple of eigth.

Y specifies a character position down the bitmap, and may be a fractional value. For example, a Yof
1.5 will set a cusor position one and a half characters down from the top of the bitmap.

Each bitmap maintains it's own cursor position. The Locate statement alters the cursor position of the
bitmap specified in the most recently executed BitMapOutput statement.

Example:

,
; more colour program example

Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0

For k= 1 To 100

;open an Intuition screen
;borrow it's bitmap

;send print statements to bitmap 0

;start of loop ...

23-9

Locate Rnd(40),Rnd(DispHeight/8-7) ;random cursor position
Colour Rnd(7)+ 1 ;random colour
Print "." ;print a 'star'

Next ;end of/oop ...

MouseWait

See Also:

BitMapOutput, CursX, CursY

Function: Cursx
Syntax: CursX

Modes: Amiga/Blitz

Description:

When using BitMapOutput to render text to a bitmap, CursX may be used to find the horizontal
character position at which the next character Printed will appear.
CursX will reflect the cursor position of the bitmap specified in the most recently executed
BitMapOutput statement.

Example:

; cursx program example

Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
Locate 0,2

For k=l To 16

While k>CursX
Print "*"

Wend

;open an Intuition screen
; find it's bitmap

;send Print statements there ...
;position bitmap cursor

;start a loop ...

;some trickery!

NPrint '''' ;print a newline

Next

MouseWait

See Also:

BitMapOutput, CursY, Locate

23-10

Statement: Curs Y
Syntax: CursY

Modes: Amiga/Blitz

Description:

When using BitMapOutput to render text to a bitmap, CursY may be used to find the vertical
character position at which the next character Printed will appear.

CursY will reflect the cursor position of the bitmap specified in the most recently executed
BitMapOutput statement.

See Also:

BitMapOutput, CursX, Locate

Statement: BitMaplnput
Syntax: BitMap Input

Modes: Blitz

Description:

BitMaplnput is a special command designed to allow you to use Edit$ and Edit in Blitz mode.

To work properly, a BlitzKeys On must have been executed before BitMaplnput. A BitMapOutput
must also be executed before any Edit$ or Edit commands are encountered.

Example:

,
; bitmap input program example
,
Screen 0,3 ;open an intuition screen
ScreensBitMap 0,0 ; find it's bitmap
BitMapOutput ° ;send Print statements there
BLITZ ;go into the infamous BLITZ mode!
BlitzKeys On ;turn on blitz mode keyboard reading.
BitMaplnput ;get input from bitmap
Locate 0,2 ;position cursor
o$=Edit$("Type Something!"AO) ;get some input

See Also:

BitMapOutput, BlitzKeys

23-11

24. Screens

The following section covers the Blitz 2 commands that let you open and control Intuition based
Screen objects.

Statement: Screen
Syntax: Screen Screen#,Mode[, Title$]

or Screen Screen#,)(, Y, Width, Height, Depth, Viewmode, Title$, Open, Bpenf, BitMap#]

Modes: Amiga

Description:

Screen will open an Intuition screen. The are 2 formats of the screen command, a quick format, and a
long format.

The quick format of the Screen commands involves 3 parameters - Screen#, Mode and an optional
Title$.

Screen# specifies the screen object to create.

Mode specifies how many bitplanes the screen is to have, and should be in the range 1 through 6.
Adding 8 to Mode will cause a hi-res screen to be opened, as opposed to the default lo-res screen. A
hi-res screen may only have from 1 to 4 bitplanes. Adding 16 to Mode will cause an interlaced screen
to be opened.

Title$ allows you to add a title to the screen.

The long format of Screen gives you much more control over how the screen is opened.

Statement: ShowScreen
Syntax: ShowScreen $creen#

Modes: Amiga

Description:

ShowScreen will cause the specified screen object to be moved to the front of the display.

24-1

Statement: WbToScreen
Syntax: WbToScreen Screen#

Modes: Amiga

Description:

WbToScreen will assign the Workbench screen a screen object number. This allows you to perform
any of the functions that you would normally do own your own screens, on the Workbench screen. It's
main usage is to allow you to open windows on the Workbench screen.

After execution, the Workbench screen will become the currently used screen.

Example:

,
; open a window on the workbench example program

WBenchToFronC
WbToScreen 0

; actually an OS call!
;pick up workbench screen!

Window 0,2,1,600,180, 15,"A Window on the WorkBench screen" ,0, 1
Print "Click the right mouse button to quit"
While Joyb(0)<>2:Wend
WBenchToBack_

See Also:

FindScreen

Statement: FindScreen
Syntax: FindScreen Screen#!, Title$]

Modes: Amiga

Description:

This command will find a screen and give it an object number so it can be referenced in your
programs. If Title$ is not specified, then the foremost screen is found and given the object number
Screen#. If the Title$ argument is specified, then a screen will be searched for that has this name.

After execution, the found screen will automatically become the currently used screen.

Example:

,
; open a window on the front screen example program

24-2

FindScreen 0
Window 0,0,0,100, 100,0,"Our window",O, 1
MouseWait

;get frontmost screen
;open window

See Also:

WBToScreen

Statement: LoadScreen
Syntax: LoadScreen Screen#,Filename$[,Palette#j

Modes: Amiga

Description:

LoadScreen loads an IFF ILBM picture into the screen object specified by Screen#. The file that is
loaded is specified by Filename$.

You can also choose to load in the colour palette for the screen, by specifying the optional Palette#.
This value is the object number of the palette you want the pictures colours to be loaded into. For the
colours to be used on your screen, you will have to use the Use Palette statement.

Example:

,
; loadscreen example program
,
Screen 0,3,"Click LMB to quit"
LoadScreen 0 ,"T estScreen320x20Ox3",0
Use PaieHeO
MouseWait

See Also:

SaveScreen

Statement: SaveScreen
Syntax: SaveScreen Screen#,Filename$

Modes: Amiga

Description:

;open an intuition screen
;Ioad an IFF ILBM pic.
; use it's palette

SaveScreen will save a screen to disk as an IFF ILBM file. The screen you wish to save is specified by
the Screen#, and the name of the file you to create is specified by Filename$.

Example:

,
; draw, save and then load screen example program
,
Screen 0,3 ;open Intuition screen.
ScreensBitMap 0,0 ;pinch it's bitmap
BitMopOutput 0 ;send Print statements to screen's bitmap
Print "Draw on screen with LMB"
Print "Press RMB to save picture as file RAM:picture"

24-3

While JB<>2 ; wait for RMB
JB=Joyb(O)
If JB=' Then Plot SMouseX,SMouseY,2

Wend

Print "Saving the screen"
SaveScreen O,"ram:picture" ;save the screen
Cis ; clear bitmap (will affect screen)
Print "Press LMB to load it back in"
MouseWait
LoadScreen O,"ram:picture",O ;Ioad back in.
Print "Press LMB to quit"
MouseWait

See Also:

LoadScreen

Function: SMouseX
Syntax: SMouseX

Modes: Amiga

Description:

SMouseX returns the horizontal position of the mouse relative to the left edge of the currently used
screen.

Example:

,
; smousex&y progf'CIm example program
,
Screen 0,2
ScreensBitMap 0,0
BitMapOutput 0
Print "Click LMB to quit"

While Joyb(O)=O
Locate 0,'
Print SMouseX," ",SMouseY

Wend

See Also:

SMouseY;

24-4

;open a simple screen
;grab it's bitmap
;send Print to bitmap

; while no Mouse buttons pressed ...
;position bitmap cursor
;print X&Y of mouse

Function: SMouseY
Syntax: SMouseY

Modes: Amiga

Description:

SMouseV returns the vertical position of the mouse relative to the top of the current screen.

See Also:

SMouseX

Function: ViewPort
Syntax: ViewPort(Screen#)

Modes: Amiga

Description:

The ViewPort function returns the location of the specified screens ViewPort. The ViewPort address
can be used with graphicsJibrary commands and the like.

See Also:

RastPort

Statement: ScreenPens
Syntax: ScreenPens (active text, inactive text, hilight, shadow, active fill, gadget fiI~

Modes: Amiga

Description:

Screen Pens configures the 10 default pens used for system gadgets in WorkBench 2.0. Any Screens
opened after a ScreenPens statement will use the pens defined.

This command will have no affect when used with Workbench 1.3 or earlier.

24-5

24-6

25. Windows

Windows are basically separate areas of a screen that are used for displaying information. These
areas are independent, so if you write on one window, you will not write all over another, even if it is on
top of the one you are writing on.

Windows must always appear within an Intution screen of some kind, be it the Workbench screen, or
your own custom screen.

To efficiently handle windows, the following steps are recommended:

1) Set up a screen of some kind, using either Screen or WBToScreen

2) Open any windows you require on the screen

3) Use WaitEvent to detect any user activity in any of the windows

4) Decide what to do with the event, do it, then go back to step 3

Statement: Window
Syntax: Window Window#,X, Y, Width,Height, Flags, Title$,Dpen,Bpen[,GadgetUst#j

Modes: Amiga

Description:

Window opens an Intuition window on the currently used screen. Window# is a unique object number
for the new window. X and Y refer to the offset from the top left of the screen the window is to appear
at. Width and Height are the size of the window in pixels.

Flags are the special window flags that a window can have when opened. These flags allow for the
inclusion of a sizing gadget, dragbar and many other things. The flags are listed as followed, with their
corresponding values. To select more than one of these flags, they must be logically Or'd together
using the 'I ' operator.

For example, to open a window with dragbar and sizing gadget which is active once opened, you
would specify a Flags parameter of $11 $21 $1000.

Title$ is a BASIC string, either 'a constant or a variable, that you want to be the title of the window.
Dpen is the colour of the detail pen of the window. This colour is used for the window title.

BPen is the block pen of the window. This pen is used for things like the border around the edge of the
window.

The optional GadgetUst# is the number of a gadgetlist object you have may want attached to the
window.

After the window has opened, it will become the currently used window.

25-1

Window Flag Value Description

WINDOWSIZING $0001 Attaches sizing gadget to bottom right corner of window and allows it
to be sized.

WINDOWDRAG $0002 Allows window to be dragged with the mouse by it's title bar.

WINDOWDEPTH $0004 Lets windows be pushed behind or pulled in front of other windows.

WINDOWCLOSE $0008 Attaches a closegadget to the upper left corner of the window.

SIZEBRIGHT $0010 With GIMMEZEROZERO and WINDOWSIZING set, this will leave the
right hand margin, the width of the sizing gadget, clear, and any
drawing to the window will not extend over this right margin.

SIZEBBOTTOM $0020 Same as SIZEBRIGHT except it leaves a margin at the bottom of the
window, the width of the sizing gadget.

BACKDROP $0100 This opens the window behind any other window that is already
opened. It cannot have the WINDOWDEPTH flag set also, as the
window is intended to stay behind all others.

GIMMEZEROZERO $0400 This flag keeps the windows border separate from the rest of the
windows area. Any drawing on the window, extending to the borders,
will not overwrite the border. NOTE: Although convevient, this does
take up more memory than usual.

BORDERLESS $0800 Opens a window without any border on it at all.

ACTIVATE $1000 Activates the window once opened.

Example:

,
; window on workbench example program
,
WbTo$creen ° ;use workbench screen
WBenchToFronC ;bring it to front.
Window 0,2,2,600,160,$11 $21 $41 $8,"A Window",O, 1
MouseWaif
WBenchToBack_

Statement: Use Window
Syntax: Use Window Window#

Modes: Amiga

Description:

Use Window will cause the specified window object to become the currently used window. Use
Window also automatically performs a Windowlnput and WindowOutput on the specified window.

25-2

Example:

,
; use window example program
,
W8enchToFront_ ;From Intuition Ubrary.
WbToScreen ° ;Use Workbench as Screen #0.
Window 1,0,0,100,1 OQ,$f,"Window One",O,l
Window 2,100,100,100, 100,$f,"Window Two",O, 1 ; automatically 'used'
Print "This is in window two"
Use Window ° ; use window 0
Print ''This is in window one"
MouseWait

Statement: Free Window
Syntax: Free Window Window#

Modes: Amiga

Description:

Free Window closes down a window. This window is now gone, and can not be accessed any more
by any statements or functions. Once a window is closed, you may want to direct the input and output
somewhere new, by calling Use Window on another window, DefaultOutput/Defaultinput, or by
some other appropriate means. Window# is the window object number to close.

Example:

; free window example program

W8enchToFronC ;bring workbench screen to front of view.
WbToScreen ° ;use workbench as screen 0
Window 0,0,0,300, 100,$f,"Click to say bye bye",O,l
MouseWait
Free Window °

Statement: Windowlnput
Syntax: Windowlnput Window#

Modes: Amiga/Blitz

Description:

Windowlnput will cause any future executions of the Inkey$, Edit$ or Edit functions to receive their
input as keystrokes from the specified window object.

Windowlnput is automatically executed when either a window is opened, or Use Window is
executed.

After a window is closed (using Free Window), remember to tell Blitz 2 to get it's input from

25-3

somewhere else useful (for example, using another Windowlnput command) before executing
another Inkey$, Edit$ or Edit function.

See Also:

WindowOutput, Window, Use Window

Statement: WindowOutput
Syntax: WindowOutput Window#

Modes: Amiga/Blitz

Description:

WindowOutput will cause any future executions of either the Print or NPrint statements to send their
output as text to the specified window object.

WindowOutput is automatically executed when either a window is opened, or Use Window is
executed.

After a window is closed (using Free Window), remember to send output somewhere else useful (for
example, using another WindowOutput command) before executing another Print or NPrint
statement.

See Also:

Windowlnput, Window, Use Window

Statement: DefauitIDCMP
Syntax: DefaultlDCMP IDCMP_Flags

Modes: Amiga

Description:

DefaultlDCMP allows you to set the IDCMP flags used when opening further windows. You can
change the flags as often as you like, causing all of your windows to have their own set of IDCMP flags
if you wish.

A window's IDCMP flags will affect the types of 'events' reportable by the window. Events are reported
to a program by means of either the WaitEvent or Event functions.

To select more than one IDCMP Flag when using DefaultlDCMP, combine the separate flags together
using the OR operator ('I ').

Any windows opened before any DefaultlDCMP command is executed will be opened using an
IDCMP flags setting of: $21 $41 $81 $201 $401 $1001 $2001 $4001 $400001 $80000. This should be
sufficient for most programs.

If you do use DefaultlDCMP for some reason, it is important to remember to include all flags
necessary for the functioning of the program. For example, if you open a window which is to have
menus attached to it, you MUST set the $100 (menu selected) IDCMP flag, or else you will have no

25-4

way of telling when a menu has been selected.

Here is a table of possible events and their IDCMP flags:

IDCMP Flag Event

$2 Reported when a window has it's size changed.
$4 Reported when a windows contents have been corrupted. This may

mean a windows contents may need to be re-drawn.
$8 Reported when either mouse button has been hit.
$10 Reported when the mouse has been moved.
$20 Reported when a gadget within a window has been pushed 'down'.
$40 Reported when a gadget within a window has been 'released'.
$100 Reported when a menu operation within a window has occured.
$200 Reported when the 'close' gadget of a window has been selected.
$400 Reported when a keypress has been detected.
$8000 Reported when a disk is inserted into a disk drive.
$10000 Reported when a disk is removed from a disk drive.
$40000 Reported when a window has been 'activated'.
$80000 Reported when a window has been 'de-activated'.

Example:

,
; simple idcmp example program
,
Screen 0,2 ;simple screen

DefaultlDCMP $8 ;simple 'mouse buttons' IDCMP flag

Window 0,0,0,320,1 OO,O,"Closes on mouseclick" ,0, 1
Window 0,0,0,320,1 OO,O,"Closes on mouseclick" ,0, 1

DefaultlDCMP $400 ;simple 'key press' IDCMP flag

Window 1,0,100,320, 100,Q,"Closes on keypress",Q,1

ev.I=WaitEvent

If ev=$8 Then Free Window Q Else Free Window 1 ;c1ose approprate window

WaitEvent

Statement: AddIDCMP
Syntax: AddlDCMP /DCMP_Flags

Modes: Amiga/Slitz

Description:

AddlDCMP allows you to 'add in' IDCMP flags to the IDCMP flags selected by DefaultlDCMP. Please
refer to DefaultlDCMP for a thorough discussion of IDCMP flags.

25-5

Example:

,
; addidcmp example program
,
Screen 0,3
WindowO,0,0,320,DispHeight,$10Qf,"MyWindow",1,2

Repeat ;repeat ...
ev.I=WaitEvent
If ev=$l ° ;has mmouse moved?

If WCursY+8>=lnnerHeight Then InnerCls:WLocate 0,0
NPrint "Mouse moved!"

Endlf
Until ev=512 ; until window closed

See Also:

DefaultlDCMP, SublDCMP

Statement: SubIDCMP
Syntax: SublDCMP IDCMP _Flags

Modes: Amiga/Blitz

Description:

SublDCMP allows you to 'subtract out' IDCMP flags from the IDCMP flags selected by DefaultlDCMP.
Please refer to DefaultlDCMP for a thorough discussion of IDCMP flags.

See Also:

DefaultlDCMP, AddlDCMP

StatementlFunction: WaitEvent
Syntax: WaitEvent

Modes: Amiga

Description:

WaitEvent will halt program excution until an Intuition event has been received. This event must be
one that satisfies the IDCMP flags of any open windows. If used as a function, WaitEvent returns the
IDCMP flag of the event (please refer to DefaultlDCMP for a table of possible IDCMP flags). If used as
a statement, you have no way of telling what event occured.

You may find the window object number that caused the event using the EventWindow function.

In the case of events concerning gadgets or menus, further functions are available to detect which
gadget or menu was played with.

25-6

In the case of mouse button events, the MButtons function may be used to discover exactly which
mouse button has been hit.

IMPORTANT NOTE: If you are assigning the result of WaitEvent to a variable, MAKE SURE that the
variable is a long type variable. For example: MyEvent.I=WaitEvent

Example:

; wait event example program

Screen 0,2 ;open a simple screen
Window 0,0,0,320,1 OO,O,"Click in me to close" ,0, 1 .
ev.I=WaitEvent ;wait for an event.

See Also:

Event, GadgetHit, MenuHit, ItemHit, SubHit, EventWindow

Function: Event
Statement: Event

Modes: Amiga

Description:

Event works similarly to WaitEvent in that it returns the IDCMP flag of any outstanding windows
events. However, Event will NOT cause program flow to halt. Instead, if no event has occured, Event
will return O.

Example:

; key press idcmp example program

Screen 0,3
ScreensBitMap 0,0
DefaultlDCMP $400

;open a simple screen
;pick up it's bitmap
;set 'key press' IDCMP for window

Window 0,0,0,320,200,$ 1 000 ,"Press a key to exit",O,l

While Event=O ;while no event ...
Circlet Rnd(300) ,Rnd(200) ,Rnd(100) ,Rnd(8)

Wend

See Also:

WaitEvent

25-7

Function: EventWindow
Syntax: EventWindow

Modes: Amiga/Blitz

Description:

EventWindow may be used to determine in which window the most recent window event occured.
Window events are detected by use of either the WaitEvent or Event commands.

EventWindow return the window object number in which the most recent window event occured.

Example:

,
; EventWindow exmaple program NOTE: hit 'Esc' to exit this example!
,
Screen 0,3 ;open a screen and 4 windows
Window 0,0,0,160,100,$1 OOf,"Window 0",1,2
Window 1,160,0,160,100,$1 OOf,"Window 1",1.2
Window 2,0,100,160, 1oo,$100f,"Window 2",1,2
Window 3,160,100,160, 100,$10Of,"Window 3",1,2

Repeat
ev.l=WaitEvent ;wait for an event

Use Window Iw ;use LAST event window
InnerCls ;c/s inside area of window
Use Window EventWindow ;use THIS event window
WLocate 0,0 ;text cursor to top left ...
Print "Event here!" ;tell 'em aboutit
Iw=EventWindow ;make THIS window LAST window

Untillnkey$=Chr$(27) ;escape to quit!

See Also:

WaitEvent, Event

Statements: FlushEvents
Syntax: FlushEvents [lDCMP _Flag]

Modes: Amiga/Blitz

Description:

When window events occur in Blitz 2, they are automatically 'queued' for you. This means that if your
program is tied up processing one window event while others are being created, you wont miss out on
anything. Any events which may have occured between executions of WaitEvent or Event will be
stored in a queue for later use. However, there may be situations where you want to ignore this
backlog of events. This is what FlushEvents is for.

Executing FlushEvents with no parameters will completely clear Blitz 2's internal event queue, leaving
you with no outstanding events. Supplyng an IDCMP _Flag parameter will only clear events of the
specified type from the event queue.

25-8

See Also:

WaitEvent, Event

Function: GadgetHit
Syntax: GadgetHit

Modes: Amiga

Description:

GadgetHit returns the identification number of the gadget that caused the most recent 'gadget pushed'
or 'gadget released' event.

As gadgets in different windows may possibly posess the same identification numbers, you may also
need to use EventWindow to tell exactly which gadget was hit.

Example:

,
; simple gadget list example program using gadget hit

Screen 0,3
TextGadget 0,20.20,0,1 ,"Click here"
TextGadget 0.20,40,0,2,"Or in here"
TextGadget 0,20,60,0,3,"Quit here"

;simple Intuition screen
;make up a gadgetlist ...

Window 0,0,0,320,200,0,"Window and gadgets",O,l ,0

Repeat
Repeat
ev.I=WaitEvent

Until ev=$40
If GadgetHit=3 Then End

Forever

See Also:

WaitEvent, Event

Function: MenuHit
Syntax: MenuHit

Modes: Amiga

Description:

; wait for an event.
;but only 'gadget released'
;if gadget was #3, then end

MenuHit returns the identification number of the menu that caused the last menu event. As with
gadgets, you can have different menus for different windows with the same identification number.
Therefore you may also need to use EventWindow to find which window caused the event.

25-9

If no menus have yet been selected, Menuhit will return -1.

Example:

,
; simple menu example program
,
Screen Q,3 ;open a simple Intuition screen

Window Q,Q,Q,32Q.200,Q,"Window with menus" ,Q, 1

MenuColour 2
MenuTitle Q,Q,"Menus"
Menultem Q,Q,Q,Q,"ltem"
Menultem Q,Q,Q,l ,"Quit"
SetMenu Q
While MenuHit<>Q

ev.l=WaitEvent
Wend

See Also:

WaitEvent, Event, ItemHit, SubHit

Function: ItemHit
Syntax: ItemHit

Modes: Amiga

Description:

;change menu rendering pens
;create a simple menu
; with only one item in it.
;and a quit item!

;add it to window

ItemHit returns the identification number of the menu item that caused the last menu event.

Example:

,
; exit on quit menu program example

Screen Q,3 ;open a simple screen

Window Q,Q,Q,32Q.2QQ,Q,"Window with menus" ,Q, 1

MenuColour 2 ;change menu drawing pen
MenuTitle Q,Q,"Menus" ;title of menu 0
Menultem Q,Q,Q,Q,"First" ;item 0 .. .
Menultem Q,Q,Q,l,"Second" ;item 7 .. .
Menultem Q,Q,Q.2,"Third" ;item 2 .. .
Menultem Q,Q,Q,3,"Quit" ;item 3 .. .
SetMenu Q ;attach menulist to window

Repeat
WaitEvent

UntilltemHit=3

25-10

;quit when 'Quit' selected.

See Also:

WaitEvent, Event, MenuHit, SubHit

Function: SubHit
Syntax: SubHit

Modes: Amiga

Description:

SubHit returns the identification number of the the menu subitem that caused the last menu event. If
no subitem was selected, SubHit will return -1.

Example:

,
; subitems program example
,
Screen Q,3 ;open a simple screen

Window Q,Q,Q,32Q.2QQ,Q,"Window with menus" ,Q, 1

MenuColour 2 ;set menu drawing pens
MenuTitle Q,Q,"Menus" ;menu title ...
Menultem Q,Q,Q,Q,"More "+Chr$(l87) ;item O.
Subltem Q,Q,Q,Q,Q,"Quit" ;sub item 0
SetMenu Q ;attach menulist

Repeat
WaitEvent

Until SubHit=Q

See Also:

WaitEvent, Event, MenuHit, ItemHit

Function: MButtons
Syntax: MButtons

Modes: Amiga

Description:

MButtons returns the codes for the mouse buttons that caused the most recent 'mouse buttons' event.
If menus have been turned off using Menus Off, then the right mouse button will also register an event
and can be read with MButtons.

The following are the values returned for the buttons by MButtons.

25-11

Button Down Up

Left 1 5
Right 2 6

Example:

,
; mbuttons program example
,
Screen 0,3 ;open a simple Intuition window

Window 0,0,0,320.200 ,$1000 ,"Click right button to exit" ,0,1

Repeat
WaitEvent

Until MBuHons=6

See Also:

WaitEvent, Event

Function: RawKey
Syntax: RawKey

Modes: Amiga

Description:

RawKey returns the raw key code of a key that caused the most recent 'key press' event.

Example:

,
; qualifiers and keyboard events example
,
Screen 0,3

Window 0,0,0,320.200,0,"Type a control character to quit",O,l

While (Qualifier AND $8) = °
ev=WaitEvent
WLocateO,O
a$=lnkey$
Print Hex$(RawKey)

Wend

See Also:

WaitEvent, Event, Qualifier, Inkey$

25-12

Function: Qualifier
Syntax: Qualifier

Modes: Amiga

Description:

Qualifier will return the qualifier of the last key that caused a 'key press' event to occur. A
qualifier is a key which alters the meaning of other keys; for example the 'shift' keys. Here is a table of
qualifier values and their equivalent keys.

Key Left Right

UnQualified $8000 $8000
Shift $8001 $8002
Caps Lock Down $8004 $8004
Control $8008 $8008
Alternate $8010 $8020
Amiga $8040 $8080

A combination of values may occur, if more that one qualifier key is being held down. The way to filter
out the qualifiers that you want is by using the logical AND operator.

See Also:

WaitEvent, Event, RawKey, Inkey$

Statement: WPlot
Syntax: WPlot X, Y,Colour

Modes: Amiga

Description:

WPlot plots a pixel in the currently used window at the coordinates X, Y in the colour specified by
Colour.

Example:

,
; wplot example

Screen 0,3
Window 0,0,0,320.200,0,"",0,1

Fort=lTo 40
For g=l To 40
WPlott,g.2

Next
Next

MouseWait

25-13

Statement: WBox
Syntax: WBox X1, Y1,X2, Y2,Colour

Modes: Amiga

Description:

WBox draws a solid rectangle in the currently used window. The upper left hand coordinates of the
box are specified with the X1 and Y1 values, and the bottom right hand comer of the box is specified
by the values X2 and Y2.

Example:

,
; wbox example program
,
Screen 0,3
Window 0,0,0,320.200,0,IBoxes",0,1

For t= 1 To 1000
WBox Rnd(320) ,Rnd(200) ,Rnd(300) ,Rnd(200) ,Rnd(8)

Next

MouseWait

Statement: WCircle
Syntax: WCircle X, Y,Radius,Colour

Modes: Amiga

Description:

WCircle allows you to draw a circle in the currently used window. You specify the centre of the circle
with the coordinates X, Y. The Radius value specifies the radius of the circle you want to draw. The last
value, Colour specifies what colour the circle will be drawn in.

Example:

,
; wcircle example program
,
Screen 0,3
Window 0,0,0,320,200,0,ICircles".O, 1

For t= 1 To 1000
WCircle Rnd(320) .Rnd(200) ,Rnd(300) .Rnd(8)

Next

MouseWait

25-14

Statement: WElIipse
Syntax: WEllipse X, Y,X Radius, Y Radius, Colour

Modes: Amiga

Description:

WEllipse draws an ellipse in the currently used window. You specify the centre of the ellipse with the
coordinates X, Y. X Radius specifies the horizontal radius of the ellipse, Y Radius the vertical radius.

Colour refers to the colour in which to draw the ellipse.

Example:

,
; wellipse example program
,
Screen 0,3
Window 0,0,0,320.200,0,"Ellipses" ,0, 1

Fort=l To 1000
WEllipse Rnd(320) ,Rnd(200) ,Rnd(300) ,Rnd(300) ,Rnd(8)

Next

MouseWait

Statement: WLine
Syntax: WLine X1, Y1,X2, Y2[,Xn, Yn..],Colour

Modes: Amiga

Description:

Wline allows you to draw a line or a series of lines into the currently used window. The first two sets of
coordinates X1, Y1,X2, Y2, specify the start and end pOints of the initial line. Any coordinates specified
after these initial two, will be the end pOints of another line going from the last set of end pOints, to this
set. Colour is the colour of the line(s} that are to be drawn.

Example:

; wline example program
,
Screen 0,3
Window 0,0,0,320.200,0,"A Polygon",O,l
Wline 150,10,200,60,150,110,100,60,160,10,3
MouseWait
End

25-15

Statement: WCls
Syntax: WCls [Colour]

Modes: Amiga

Description:

WCls will clear the currently used window to clour 0, or colour is specified, then it will be cleared to this
colour. If the current window was not opened with the GIMMEZEROZERO flag set, then this
statement will clear any border or title bar that the window has. The InnerCls statement should be
used to avoid these side effects ..

Example:

,
; wcls example
,
Screen 0,3
Window 0,0,0,320.200,$400,"Window Cls",O, 1
WCIs2
MouseWait

See Also:

InnerCls

Statement: InnerCls
Syntax: InnerCls [Colour]

Modes: Amiga

Description:

InnerCls will clear only the inner portion of the currently used window. It will not clear the titlebar or
borders as Cis would do if your window was not opened with the GIMMEZEROZERO flag set. If colour
is specfied, then that colour will be used to clear the window.

Example:

,
; innercls example

Screen 0,3
Window 0,0,0,320.200,0,"Not a GIMMEZEROZERO window",O,l
InnerCls 2
MouseWait

See Also:

WCls

25-16

Statement: WScroll
Syntax: WScroll X1, Y1,X2, Y2,Delta X,Delta Y

Modes: Amiga

Description:

WScroll will cause a rectangular area of the currently used window to be moved or 'scrolled'. X1 and
Y1 specify the top left location of the rectangle, X2 and Y2 the bottom right. The Delta parameters
determine how far to move the area. Positive values move the area righVdown, while negative values
move the area leWup.

Statement: Cursor
Syntax: Cursor Thickness

Modes: Amiga

Description:

Cursor will set the style of cursor that appears when editing strings or numbers with the Edit$ or Edit
functions. If Thickness is less than 0, then a block cursor will be used. If the Thickness is greater then
0, then an underline Thickness pixels high will be used.

Example:

; cursor example
,
Screen 0,3
Window 0,0,0,320.200,0,"Cursor types" ,0, 1
Print "This is a block cursor."
a$=Edit$("Hello",lO)

;open a simple creen
;and a window

;show a block cursor

Cursor 1 ;change cursor to underline
Print "This is an underline one."
a$=Edit$("Hello",lO)
End

Function: Editat
Syntax: Editat

Modes: Amiga

Description:

After executing an Edit$ or Edit function, Editat may be used to determine the horizontal character
position of the cursor at the time the function was exited.

Through the use of Editat, EditExit, EditFrom and Edit$, simple full screen editors may be put
together.

25-17

Example:

,
; cursor example with edit$
,
Screen 0,3
Window 0,0,0,320200,0,"Cursor types" ,0, 1
Print "This is a block cursor."
a$=Edit$("Hello",10)
Cursor 1
Print "This is an underline one."
a$=Edit$("Hello",10)
End

See Also:

EditFrom, Edit$, Edit

Statement: EditFrom
Syntax: EditFrom [Characterpos]

Modes: Amiga

Description:

;open a simple creen
;and a window

;show a block cursor

;change cursor to underline

EditFrom allows you to control how the Edit$ and Edit functions operate when used within windows.

If a Characterpos parameter is specified, then the next time an edit function is executed, editting will
commence at the specified character position (0 being the first character position).

Also, editting may be terminated not just by the use of the 'return' key, but also by any non printable
character (for example, 'up arrow' or 'Esc') or a window event. When used in conjunction with Editat
and EditExit, this allows you to put together simple full screen editors.

If Characterpos is omitted, Edit$ and Edit return to normal - editting always beginning at character
postition 0, and 'return' being the only way to exit.

Example:

,
;a simple full screen editor.
,
Dim Iines$(20) ;enough for 20 lines
Screen 0,0,0,320, 172,2,0,"Blitz Edit - Hit 'ESC' to Quit", 1,2
Window 0,0,0,320,172,$1900,"" 2, 1
Y= 1 ;starting line
WLocate 0,12 ;prepare to number lines
Format "##"

For k=l To 20
NPrint k,":"

Next

25-18

;Ioop to print line numbers.

Repeat

Repeat ;first, we should handle all events (gadgets, menus etc)
ev.l=Event
Select ev ;this is where actual handling should take place.

End Select
Until ev=O ;until no more events to handle

WLocate 24,y*8+4 ;now, prepare to edit 'current' line
EditFrom x ;start at character position 'x'
Iines$(y)=Edit$(lines$(y) ,37)
x=Editat ; character position at time of 'edit exit'

Select EditExit ;How did they exit?
case 13 ;Return?
x=O ;back to left of line
If y<20 Then y+ 1 ;and possibly down a line

Case 28 ;Up arrow?
If y> 1 Then y-1 ;possibly up a line

Case 29 ;Down arrow?
If y<20 Then y+ 1 ;possibly down a line

End Select

Until EditExit=27

See Also:

Editat, EditExit, Edit$, Edit

Function: EditExit
Syntax: EditExit

Modes: Amiga/Blitz

Description:

;until 'Escape' hit

EditExit returns the ASCII value of the character that was used to exit a window based Edit$ or Edit
function. You can only exit the edit functions with keypresses other than 'return' if EditFrom has been
executed prior to the edit call.

Example:

,
; edit exit example

Screen 0,2 ;open a simple screen
Window 0,0,0,320,200,$1 OOO,"Press ESCAPE to quit" ,0, 1
Repeat

Flush Events
WLocateO,O
EditFrom Editat
a$=Edit$(a$,38)

;to get rid of outstanding window events.
; to top left ...
;edit from last quit position

25-19

Until EditExH=27

See Also:

EditFrom, Editat, Edit$, Edit

Statement: WindowFont
Syntax: WindowFont IntuiFont#

Modes: Amiga

Description:

WindowFont sets the font for the currently used window. Any further printing to this window will be in
the specified font. IntuiFont# specifies a previously initialized intuifont object created using LoadFont.

Example:

,
; window font example

Screen Q,3 ;a simple screen and window ...
Window Q,Q,Q,32Q.2QQ,$100Q,"Groovy font",Q, 1
LoadFont Q,"topaz.font", 11 ;get into topaz 11
WindowFont Q ;set this as the font for the window
Print "This is in Topaz 11" ;show the font
MouseWait
End

See Also:

LoadFont

Statement: WColour
Syntax: WColour Foreground CO/ourf,Background Colour]

Modes: Amiga

Description:

WColour sets the foreground and background colour of printed text for the currently used window. Any
further text printed on this window will be in these colours.

Example:

,
; wcolour example
,
Screen Q,3 ;open Intuition screen and window ..
Window Q,Q,Q,32Q.2OQ,$100Q,"Colours",Q, 1

25-20

ForT=l To 7
For G=l To 7
WColourT,G
Print "Wow! "

Next
NPrint ""

Next

MouseWait
End

See Also:

WJam

; foreground colour loop
;background colour loop
;set window colour

;print some text ...

Statement: WJam
Syntax: WJam Jammode

Modes: Amiga

Description:

WJam sets the text drawing mode of the currently used window. These drawing modes allow you to
do inverted, complemented and other types of gaphics. The drawing modes can be OR'ed together to
create a combination of them. Here are the different modes.

Mode Value Description

Jam1 0 This draws only the foreground colour and leaves the background
transparent. Eg For the letter 0, any empty space (inside and outside the
letter) will be transparent.

Jam2 1 This draws both the foreground and background to the window. Eg With the
letter 0 again, the 0 will be drawn, but any clear area (inside and outside)
will be drawn in the current background colour.

Complement 2 This will exlusive or (XOR) the bits of the graphics. Eg Drawing on the
same place with the same graphics will cause the original display to return.

Inversvid 4 This allows the display of inverse video characters. If used in conjunction
with Jam2, it behaves like Jam2, but the foreground and background
colours are exchanged.

Example:

; wjam examples

Screen Q,3 ;open Intuition screen and window ..
Window Q,Q,Q,32Q.2QQ,Q,"DrawModes" ,Q, 1
Print "Overlapping characters" ;print some stuff in different modes
WJamQ

25-21

Print "Hello"
WLocateO,O
Print "Bye"
WJam 1
Print "Overwriting characters"
Print "Hello"
WLocate 0,16
Print "Bye"
Print "Bye"
Print "Complemented characters disappear"
WJam2
Print "Hello"
WLocate 0,32
Print "Hello"
WJam4
Print "This is in inverse video"
MouseWait
End

See Also:

WColour

Statement: Activate
Syntax: Activate Window#

Modes: Amiga

Description:

Activate will active the window specified by Window#.

Example:

; activate windows example
,
Screen 0,2
Window 0,0,0,320, 100,0,"Window 1",0,1
Window 1 ,0,100,320, 100,0,"Window 2",0,1
Activate 0
Print "Hello"
Activate 1
Print "Good Bye"
MouseWait
End

25-22

Statement: Menus
Syntax: Menus ani Off

Modes: Amiga

Description:

The Menus command may be used to turn ALL menus either on or off. Turning menus off may be
useful if you wish to read the right mouse button.

Statement: WPointer
Syntax: WPointer Shape#

Modes: Amiga

Description:

WPointer allows you to determine the mouse pointer imagery used in the currently used window.
Shape# specifies an initialized shape object the pointer is to take ifs appearance from, and must be of
2 bitplanes depth (4 COlours).

Example:

,
; wpointer example
,
Screen 0,2 ;Open a simple screen and window.
Window 0,0,0,320,200,$1000, "New Pointer" ,0,1
LoadShape O,"TestPointer" ;Ioad a shape.
WPointer 0 ;make it the pointer
MouseWait

Statement: WMove
Syntax: WMove X, Y

Modes: Amiga

Description:

WMove will move the current window to a screen position specified by X and Y.

Example:

,
; wmove example
,
Screen 0,2
Window 0,0,0,100,100,$1 OOO,"Moving window!" ,0, 1

For k=l To 50

25-23

WMovek,k
Next

MouseWait

See Also:

WSize

Statement: WSize
Syntax: WSize Width,Height

Modes: Amiga

Description:

WSize will alter the width and height of the current window to the values specified by Width and
Height.

Example:

,
; wsize example

Screen 0,2
Window 0,0,0,10,10,$ 1000,"",0, 1
VWait 100
WSize 320,100
Print "Click Mouse to Quit"
MouseWait

See Also:

WMove

Function: WMouseX
Syntax: WMouseX

Modes: Amiga

Description:

WMouseX returns the horizontal x coordinate of the mouse relative to the left edge of the current
window. If the current window was opened without the GIMMEZEROZERO flag set, then the left edge
is taken as the left edge of the border around the window, otherwise, if GIMMEZEROZERO was set,
then the left edge is the taken from inside the window border.

25-24

Example:

,
; wmousex and wmousey example
,
Screen 0,2
Window 0,0,0,320,200,0,"Window",0, 1

While Joyb(O)=O
WLocateO,O
Print WMouseX," ",WMouseY

Wend

See Also:

WMouseY

Function: WMouse Y
Syntax: WMouse Y

Modes: Amiga

Description:

WMouseY returns the vertical y coordinate of the mouse relative to the top of the current window. If
the current window was opened without the GIMMEZEROZERO flag set, then the top is taken as the
top of the border around the window, otherwise, if GIMMEZEROZERO was set, then the top is taken
from inside the window border.

See Also:

WMouseX

Function: EMouseX
Syntax: EMouseX

Modes: Amiga/Blitz

Description:

EMouseX will return the horizontal position of the mouse pointer at the time the most recent window
event occured. Window events are detected using the WaitEvent or Event commands.

Example:

,
; emousex & y program example
,
Screen 0,3
ScreensBitMap 0,0

25-25

Repeat ;repeat ...
ev.I=WaitEvent ; wait for a window event
If MBuHons= 1 ;if left mouse button down ...
x=EMouseX:y=EMouseY ;grab mouse x and y at time of event
Repeat ;repeat ...
ev2.I=WaitEvent ; wait for a window event
If ev2=$10 ;mouse moved?
Wline x,y,EMouseX,EMouseY, 1 ;join up a line ...
x=EMouseX:y=EMouseY ;grab new mouse x and y

Endlf
Until MBuHons=5 ; until left button up

Endlf
Until ev=$200 ;until window closed.

See Also:

EMouseY, WMouseX, WMouseY, WaitEvent, Event

Function: EMouse Y
Syntax: EMouseY

Modes: Amiga/Blitz

Description:

EMouseY will return the vertical position of the mouse pointer at the time the most recent window
event occured. Window events are detected using the WaitEvent or Event commands.

See Also:

EMouseX, WMouseX, WMouseY, WaitEvent, Event

Function: WCursX
Syntax: WCursX

Modes: Amiga

Description:

WCursX returns the horizontal location of the text cursor of the currently used window. The text cursor
position may be set using WLocate.

Example:

; wcursx example
,
Screen 0,2
Window 0,0,0,320,200,0,"Window",0,1
ForT=l To5

25-26

Print WCursX;" ";
Next
MouseWait
End

See Also:

WCursY, WLocate

Function: WCursY
Syntax: WCursY

Modes: Amiga

Description:

WCursY returns the vertical location of the text cursor of the currently used window. The text cursor
position may be set using WLocate.

Example:

; wcursyexample
,
Screen 0,2
Window 0,0,0,320,200,0,"Window" ,0, 1
ForT=l To 5

NPrint WCursY
Next
MouseWait
End

See Also:

WCursX, WLocate

Statement: WLocate
Syntax: WLocate X, Y

Modes: Amiga/Blitz

Description:

WLocate is used to set the text cursor position within the currently used window. X and Yare both
specified in pixels as offsets from the top left of the window. Each window has it's own text cursor
position, therefore changing the text cursor position of one window will not affect any other window's
text cursor position.

25-27

See Also:

WCursx, WCursy

Function: WindowX
Syntax: WindowX

Modes: Amiga

Description:

WindowX returns the horizontal pixel location of the top left corner of the currently used window,
relative to the screen the window appears in.

Example:

,
; window>< example
,
Screen 0,2
Window 0, 1O,0,300,200,0,"Window" ,0, 1
Print WindowX
MouseWait
End

See Also:

WindowY, WindowWidth, WindowHeight

Function: WindowY
Syntax: WindowY

Modes: Amiga

Description:

WindowY returns the vertical pixel location of the top left corner of the currently used window, relative
to the screen the window appears in.

Example:

,
; windowy example program
,
Screen 0,2
Window 0,0,10,320, 180,0,"Window" ,0, 1
Print WindowY
MouseWait

See Also:

WindowX, WindowWidth, WindowHeight

25-28

Function: WindowWidth
Syntax: WindowWidth

Modes: Amiga

Description:

WindowWidth returns the pixel width of the currently used window.

Example:

Screen Q,2
Window Q,Q,Q,32Q,2OQ,Q,"WindowWidth",Q,1
Print WindowWidth
MouseWait
End

See Also:

WindowX, WindowY, WindowHeight

Statement: Window Height
Syntax: WindowHeight

Modes: Amiga

Description:

WindowHeight returns the pixel height of the currently used window.

See Also:

WindowX, WindowY, WindowWidth

Function: InnerWidth
Syntax: InnerWidth

Modes: Amiga

Description:

InnerWidth returns the pixel width of the area inside the border of the currently used window.

See Also:

Inner Height

25-29

Function: InnerHeight
Syntax: InnerHeight

Modes: Amiga

Description:

InnerHeight returns the pixel height of the area inside the border of the currently used window.

See Also:

InnerWidth

Function: WTopOff
Syntax: WTopOff

Modes: Amiga

Description:

WTopOff returns the number of pixels between the top of the current window border and the inside of
the window.

See Also:

WLeftOff

Function: WLeftOff
Syntax: WLeftOff

Modes: Amiga

Description:

WLeftOff returns the number of pixels between the left edge of the current window border and the
inside of the window.

Statement: SizeLimits
Syntax: SizeLimits Min Width,Min Height,Max Width,Max Height

Modes: Amiga

Description:

SizeLimits sets the limits that any new windows can be sized to with the sizing gadget. After calling
this statement, any new windows will have these limits imposed on them.

25-30

Example:

,
; sizelimits program example
,
Screen 0,2 ;A simple screen
SizeLimits 20,20,150,150 ;set limits for windows
Window 0,0,0,100,100, lS,"SizeLimits",O, 1
Print "Click RMB"
Print "to quit"
While Joyb(O)<> 2
Wend

Function: RastPort
Syntax: RastPort (Winodw#)

Modes: Amiga

Description:

RastPort returns the specified Window's RastPort address. Many commands in the graphics.library
and the like require a RastPort as a parameter.

See Also:

ViewPort

25-31

26. Gadgets
r····-

(/f 00 --1 (!>(9

;-: t.. ,tJ
~ -

Blitz 2 provides extensive support for the creation and use of Intuition gadgets. This is done through
the use of GadgetList objects. Each gadgetlist may contain one or more of the many types of available
gadgets, and may be attached to a window when that window is opened using the Window command.

The following is a table of the gadget flags and the gadget types which they are relevant to:

Bit# Meaning Text String Prop Shape

0 Toggle OniOff yes no no yes

1 Relative to Right Side of Window yes yes yes yes

2 Relative to Bottom of Window yes yes yes yes

3 Size Relative to Width of Window no no yes no

4 Size Relative to Height of Window no no yes no

5 Box Select yes yes yes yes

6 Prop Gadget has Horizontal Movement no no yes no

7 Prop Gadget Has Vertical Movement no no yes no

8 No Border around Prop Gadget Container no no yes no

Note:

If Relative Right is set the gadgets X should be negative, as should it's Y if Relative to Bottom is set.

When relative Width or Height flags are set negative Width and/or Height parameters should be
specified as Intuition calculates actual witdh as WindowWidth+GadgetWidth as it does height when
relative size flags are set.

Statement: TextGadget
Syntax: TextGadget GadgetUstU,X, Y,Flags,ld, Text$

Modes: Amiga/Blitz

Description:

The TextGadget command adds a text gadget to a gadgetlist. A text gadget is the simplest type of
gadget consisting of a sequence of characters optionally surrounded by a border.

Flags should be selected from the table at the start of the chapter.

26-1

Boolean gadgets are the simplest type of gadget available. Boolean gadgets are 'off until the program
user clicks on them with the mouse, which turns them 'on'. When the mouse button is released, these
gadgets revert back to their 'off state. Boolean gadgets are most often used for 'OK' or 'CANCEL' type
gadgets.

Toggle gadgets differ in that each time they are clicked on they change their state between 'on' and
'off. For example, clicking on a toggle gadget which is 'on' will cause the gadget to be turned 'off, and
vice versa.

X and Y specify where in the window the gadget is to appear. Depending upon the Flags setting,
gadgets may be positioned relative to any of the 4 window edges. If a gadget is to be positioned
relative to either the right or bottom edge of a window, the appropriate X or Yparameter should be
negative.

Id is an identification value to be attached to this gadget. All gadgets in a gadgetlist should have
unique Id numbers, allowing you to detect which gadget has been selected. Id may be any positive,
non-zero number.

Text$ is the actual text you want the gadget to contain.

Example:

,
; textgadget example
,
TextGadget 0,8,180,0,1," EXIT· ;add to gadget/ist 0
TextGadget 0,216,180,0,2," STAY HERE" ;add this too
Screen 0,3 ;open screen
Window 0,0,0,320,200,$100f,"GADGETSI", 1 ,2,0
Repeat ; wait for 'EXIT'
Until WaitEvent=64 AND GadgetHit= 1

See Also:

ShapeGadget, StringGadget, PropGadget

Statement: GadgetPens
Syntax: GadgetPens Foreground Colour[,Background Colour]

Modes: Amiga/Blitz

Description:

GadgetPens determines the text colours used when text gadgets are created using the TextGadget
command. The default values used for gadget colours are a foreground colour of 1, and a background
colour of o.

Example:

,
; gadget pens example program
,
BorderPens 3,3 ;change gadget border colours

26-2

TextGadget Q,8,DispHeight-16,Q, 1," OK "
GadgetPens 2 ;change gadget pens
TextGadget Q,32Q-88,DispHeight-16,Q,2," CANCEL"
,
Screen Q,3 ;open a screen
RGB 1 ,Q, 15,Q ;set some colours
RGB 2,15,Q,Q
RGB 3,15,15,15
,
Window Q,Q,Q,32Q,DispHeight,$100f:My Window",Q,Q,Q
,
Repeat ; wait for gadget hit ...
Until WaitEvent=64

See Also:

GadgetJam

Statement: GadgetJam
Syntax: GadgetJam Jammode

Modes: Amiga/Blitz

Description:

GadgetJam allows you to determine the text rendering method used when gadgets are created using
the TextGadget command. Please refer to the WJam command in the windows chapter for a full
description of jam modes available.

See Also:

GadgetPens

Statement: SbapeGadget
Syntax: ShapeGadget GadgetList#,X, Y,Flags,ld,Shape#

Modes: Amiga/Blitz

Description:

The ShapeGadget command allows you to create gadgets with graphic imagery. The Shape#
parameter refers to a shape object containing the graphics you want the gadget to contain.

All aother parameters are identical to those in TextGadget.

Example:

,
; shapegadget example

26-3

Screen 0,3
ScreensBltMap 0,0

For k=7 To 1 step-1
Circlet 16,16,k*2,k
Next
GetaShape 0,0,0,32,32

ShapeGadget 0,148,50,0,1,0
TextGadget 0,140,180,0,2," EXIT n

Window 0,0,0,320,200,$1 OOf;More Gadgets'", 1,2,0

Repeat
Until WaItEvent=64 AND GadgetHit=2

See Also:

TextGadget, StringGadget, PropGadget

Statement: Toggle
Syntax: Toggle GadgetList#,ld,Onl Off

Modes: AmigalBlitz

Description:

Toggle allows you to 'turn on' or 'turn off' a text or shape gadget created with a 'toggle' flags setting.

Toggle will not affect the gadget's imagery if it is already displayed.

See Also:

TextGadget

Statement: StringGadget
Syntax: StringGadget GadgetList#,X, Y,Flags,ld,Maxlen, Width

Modes: AmigalBlitz

Description:

StringGadget allows you to create an Intuition style 'text entry' gadget. When clicked on, a string
gadget brings up a text cursor, and is ready to accept text entry from the keyboard.

X and Y specifies the gadgets position, relative to the top left of the window it is to appear in.

See the beginning of the chapter for the relevant Flags for a string gadget.

Id is an identification value to be attached to this gadget. All gadgets in a gadgetlist should have
unique Id numbers, allowing you to detect which gadget has been selected. Id may be any positive,

26-4

non-zero number.

Max/en refers to the maximum number of characters which may appear in this gadgets.

Width refers to how wide, in pixels, the gadget should be. A string gadget may have a width less
than the maximum number of characters it may contain, as characters will be scrolled through
the gadget when necessary.

You may read the current contents of a string gadget using the StringText function.

Example:

,
; string gadget example
,
StringGadget 0,80,16,0,1,40,160
StringGadget 0,80,32,0,2,40,160
TextGadget 0,8,180,0,3," EXIT"

Screen 0,3

; add string gadget to gadgetlist 0
;add another string gadget
;add an 'EXIT' gadget

;open a screen, and window ...

Window 0,0,0,320,200,$100f,"String Gadgets!", 1,2,0

WLocate 8,8
Print "Name:"
WLocate 8,24
Print "Address:"

;print some text ...

;and some more ...

Repeat ;wait for 'QUIT'
Until WaitEvent=64 AND GadgetHit=3

See Also:

TextGadget, ShapeGadget, PropGadget, StringText, ActivateString, ClearString, ResetString

Function: StringText$
Syntax: StringText$ (GadgetList#,1d)

Modes: Amiga/Blitz

Description:

The Stringtext$ function allows you to determine the current contents of a string gadget. StringText$
will return a string of characters representing the string gadgets contents.

Example:

; activated string gadget example
,
StringGadget 0,128,16,0,1,40,160 ;make a string gadget
TextGadget 0,8,180,0,2," EXIT" ;and an exit gadget
Screen 0,3 ;open screen and window

26-5

Window 0,0,0,320,200,$100f:'StringText$ demo ... ",1 ,2,0

WLocate4,8
Print 'Type your name:"
ActivateString 0,1 ;turn on string gadget

Repeat ; wait for' EXIT'
a.I=WaitEvent
If 0=64 AND GadgetHit= 1 ;string entry complete?

WLocate 8,96
Print Centre$("Helio there "+StringText$(0,1),38)
ClearString 0,1
Redraw 0,1
ActivateString 0,1

Endlf
Until 0=64 AND GadgetHit=2

See Also:

StringGadget

Statement: ActivateString
Syntax: ActivateString Window#,ld

Modes: Amiga/Blitz

Description:

ActivateString may be used to 'automatically' activate a string gadget. This is identical to the program
user having clicked in the string gadget themselves, as the string gadget's cursor will appear, and
further keystrokes will be sent to the string gadget.

It is often nice of a program to activate important string gadgets, as it saves the user the hassle of
having to reach for the mouse before the keyboard.

Example:

; string gadget input example
,
StringGadget 0,128,16,0,1,40,160 ;make a string gadget
TextGadget 0,8,180,0,2," EXIT" ;and an exit gadget
Screen 0,3 ;open screen and window

Window 0,0,0,320,200,$100f,"String Gadget Activated ... ", 1 ,2,0

WLocate 4,8 ;prompt ...
Print "Type your name:"
ActivateString 0,1 ;turn on string gadget
Repeat ; wait for 'EXIT'
Until WaitEvent=64 AND GadgetHit=2

26-6

See Also:

StringGadget, ResetString, ClearString

Statement: ResetString
Syntax: ResetString GadgetList#,ld

Modes: Amiga/Blitz

Description:

ResetString allows you to 'reset' a string gadget. This will cause the string gadget's cursor position to
be set to the leftmost position.

Example:

,
; reset string gadget example

StringGadget 0, 12B, 16,0, 1.40.160 ;make a string gadget
TextGadget 0.B.1BO.0.2." EXIT" ; and an 'exit' gadget
Screen 0.3 ;open a screen and a window ...

Window 0.0.0.320.200.$1 OOf."ResetString demo ... " .1.2.0

WLocate4.B
;prompt ... Print "Type your name:"

ActivateString 0.1 ;click on string gadget for them. ..

Repeat ;do ...
a.I=WaitEvent ; wait for something to happen
If a=64 AND GadgetHit= 1 ;string entry complete?

ResetString 0.1 ;yes. reset string gadget ...
ActivateString 0.1 ;and re-activate it!

Endlf
Until a=64 AND GadgetHit=2 ;until 'QUIT' hit.

See Also:

StringGadget, ActivateString, ClearString

Statement: ClearString
Syntax: ClearString GadgetList#,ld

Modes: Amiga/Blitz

Description:

ClearString may be used to clear, or erase, the text in the specified string gadget. The cursor position
will also be moved to the leftmost position in the string gadget.

26-7

If a string gadget is cleared while it is displayed in a window, the text will not be erased from the actual
display. To do this, ReDraw must be executed.

Example:

,
; clear string gadget example

StringGadget 0,128,16,0,1,40,160 ;make a string gadget
TextGadget 0,8,180,0,2," EXIT" ;and an 'EXIT' gadget
Screen 0,3 ;open intuition screen and window ...
Window 0,0,0,320,200,$1 OOf, "ClearString demo .. .", 1,2,0
WLocate4,8
Print "Type your name:" ;prompt ...
ActivateString 0,1 ;actiavte string gadget
Repeat ;do ...

a.l=WaitEvent ; wait for something to happen!
If a=64 AND GadgetHit=1 ;string entry done?

ClearString 0,1 ;yup - clear text. ..
Redraw 0,1 ;re draw gadget ...
ActivateString 0,1 ;and re-activate string gadget

Endlf
Until a=64 AND GadgetHit=2

See Also:

StringGadget, ActivateString, ResetString

Statement: SetString
Syntax: SetString GadgetList#,ID,String$

Modes: Amiga/Blitz

Description:

SetString may be used to initialize the contents of a string gadget created with the StringGadget
command. If the string gadget specified by GadgetList# and Id is already displayed, you will also need
to exeucte ReDraw to display the change.

See also:

StringGadget, GadgetText$, ReDraw

Statement: PropGadget
Syntax: PropGadget GadgetList#,X, Y,Flags,ld, Width,Height

Modes: Amiga/Blitz

Description:

The PropGadget command is used to create a 'proportional gadget'. Proportional gadgets present a
program user with a 'slider bar', allowing them to adjust the slider to achieve a desired effect.

26-8

Proportional gadgets are commonly used for the 'R G B' sliders seen in many paint packages.

Proportional gadgets have 2 main qualities - a 'pot' (short for potentiometer) setting, and a 'body'
setting.

The pot setting refers to the current position of the slider bar, and is in the range 0 through 1. For
example, a proportional gadget which has been moved to 'half way' would have a pot setting of '.5'.
The body setting refers to the size of the units the proportional gadget represents, and is again in the
range 0 through 1. Again taking the RGB colour sliders as an example, each slider is intended to show
a particular value in the range 0 through 15 - giving a unit size, or body setting, of 1/16 or '.0625'.

Put simply, the pot setting describes 'where' the slider bar is, while the body setting describes 'how big'
it is.

Proportional gadgets may be be represented as either horizontal slider bars, vertical slider bars, or a
combination of both.

See the beginning of the chapter for relevant Flags settings for prop gadgets.

X and Y refer to the gadgets position, relative to the top left of the window it is opened in.

Width and Height refer to the size of the area the slider should be allowed to move in.

Id is a unique, non zero number which allows you to identify when the gadget is manipulated.

Proportional gadgets may be altered using the SetVProp and SetH Prop commands, and read using
the VPropPot, VPropBody, HPropPot and HPropBody functions.

Example:

,
; propgadget example
,
PropGadget 0,8,16,5,1,8,64
PropGadget 0,24,16,5,2,8,64
PropGadget 0,40,16,5,3,8,64
TextGadget 0,8,180,0,4," QUIT"

;add 'Red' slider to gadgetlist 0
;add 'green' slider
;add 'red' slider
;and, of course, a 'QUIT' button.

For k=l To 3
SetVProp O,k,O, 1/16

Next

;go through sliders ...

Screen 0,3
RGB 0,0,0,0

;set them all to pot=O, body= 7/76

;an intuition screen
;colour 0 to block (some as sliders)

Window 0,0,0,320,200,$ l00f,"R G B Sliders!", 1,3,0

WLocate 4,72
Print "R G B"

; label sliders ...

Repeat ;do ...
a.I=WaitEvent ; wait for something to happen.
Select a ;what happened?
Case 32 ;gadget down ;0 gadget was pressed ...

If GadgetHit<>4 ;if it wasn't quit ...
Repeat ;do ...

RGB ° ,VPropPot(O, 1) * 16 ,VPropPot(O,2) * 16 ,VPropPot(O ,3) * 16
Until Event=64 ; until slider released

26-9

Endlf
Case 64 ;a gadget was released ...

If GadgetHit=4 Then End ;if it was 'QUIT', then do so ..
RGB O,VPropPot(O, 1)* 16,VPropPot(O,2)* 16,VPropPot(O,3)* 16

End Select
Forever
MouseWait

See Also:

SetH Prop, SetVProp, HPropPot, HPropBody, VPropPot, VPropBody

Statement: SetHProp
Syntax: SetH Prop GadgetUst#,ld,Pot,Body

Modes: AmigalBlitz

Description:

SetH Prop is used to alter the horizontal slider qualities of a proportional gadget. Both Pot and Body
should be in the range 0 through 1.

If SetH Prop is executed while the specified gadget is already displayed, execution of the ReDraw
command will be necessary to display the changes.

For a full discussion on proportional gadgets, please refer to the PropGadget command.

See Also:

SetVPropPot, HPropPot, HPropBody, VPropPot, VPropBody

Statement: Set VProp
Syntax: SetVProp GadgetUst#,ld,Pot,Body

Modes: AmigalBlitz

Description:

SetVProp is used to alter the vertical slider qualities of a proportional gadget. Both Pot and Body
should be in the range 0 through 1.

If SetVProp is executed while the specified gadget is already displayed, execution of the ReDraw
command will be necessary to display the changes.

For a full discussion on proportional gadgets, please refer to the PropGadget command.

See Also:

SetHPropPot, HPropPot, HPropBody, VPropPot, VPropBody

26-10

Function: HPropPot
Syntax: HPropPot (GadgetList#,/d)

Modes: Amiga/Blitz

Description:

The HPropPot function allows you to determine the current 'pot' setting of a proportional gadget.
HPropPot will return a number from 0 up to, but not including, 1, reflecting the gadgets current
horizontal pot setting.

Please refer to the PropGadget command for a full discussion on proportional gadgets.

See Also:

VPropPot, HPropBody, VPropBody

Function: HPropBody
Syntax: HPropBody (GadgetList#,/d)

Modes: Amiga/Blitz

Description:

The HPropBody function allows you to determine the current 'body' setting of a proportional gadget.
HPropBody will return a number from 0 up to, but not including, 1, reflecting the gadgets current
horizontal body setting.

Please refer to the PropGadget command for a full discussion on proportional gadgets.

See Also:

VPropPot, HPropPot, VPropBody

Function: VPropPot
Syntax: VPropPot (GadgetList#,/d)

Modes: Amiga/Blitz

Description:

The VPropPot function allows you to determine the current 'pot' setting of a proportional gadget.
VPropPot will return a number from 0 up to, but not including, 1, reflecting the gadgets current vertical
pot setting.

Please refer to the PropGadget command for a full discussion on proportional gadgets.

See Also:

HPropPot, HPropBody, VPropBody

26-11

Function: VPropBody
Syntax: VPropBody (GadgetList#,1d)

Modes: Amiga/Blitz

Description:

The VPropBody function allows you to determine the current 'body' setting of a proportional gadget.

VPropBody will return a number from 0 up to, but not including, 1, reflecting the gadgets current
vertical body setting.

Please refer to the PropGadget command for a full discussion on proportional gadgets.

See Also:

VPropPot, H PropPot, H PropBody

Statement: ReDraw
Syntax: ReDraw Window#,id

Modes: Amiga/Blitz

Description:

ReDraw will redisplay the specified gadget in the specified window. This command is mainly of use
when a proportional gadget has been altered using SetH Prop or SetVProp and needs to be redrawn,
or when a string gadget has been cleared using ClearString, and, likewise, needs to be redrawn.

Statement: Borders
Syntax: Borders [anI Offj/ [Width,Height]

Modes: Amiga/Blitz

Description:

Borders serves 2 purposes. First, Borders may be used to turn on or off the automatic creation of
borders around text and string gadgets. Borders are created when either a Textgadget or
StringGadget command is executed. If you wish to disable this, Borders Off should be executed
before the appropriate TextGadget or StringGadget command.

Borders may also be used to specify the spacing between a gadget and it's border, Width referring to
the leWright spacing, and Height to the abovelbelow spacing.

Example:

; gadget borders example

26-12

Borders Off ;turn borders off ...
TextGadget 0,8,16,0,1 ,"NO BORDERS" ;add a gadget
Borders On ; turn borders on ...
TextGadget 0,8,32,0,2,"BORDERS" ; add a gadget
Borders 16,8 ;set border spacing ...
TextGadget 0,8,64,0,3,"BIG BORDERS!" ;add a gadget
Borders 8 A ; this is default border spacing
TextGadget 0,8, 180,OA," QUIT" ;add 'QUIT' gadget
Screen 0,3 ;open screen, and window ...
Window 0,0,0,320,200,$100f,"Select a gadget ... ",l,2,O
Repeat ; wait for 'QUIT'
Until WaitEvent=64 AND GadgetHit=4

Statement: BorderPens
Syntax: BorderPens Highlight Colour,Shadow Colour

Modes: Amiga/Blitz

Description:

BorderPens allows you to control the colours used when gadget borders are created. Gadget borders
may be created by the TextGadget, StringGadget and GadgetBorder commands.

HighLight Colour refers to the colour of the top and left edges of the border, while Shadow Colour
refers to the right and bottom edges.

The default value for HighLight Colour is 1. The default value for Shadow Colour is 2.

Example:

,
; borderpens example program

BorderPens 2,1 ;change gadget border colours
TextGadget 0,8,DispHeight-16,0, 1," OK"
TextGadget 0,320-88,DispHeight-16,0,2," CANCEL"

Screen 0,2
RGB 0,6,6,6
RGB 1.15,15,15
RGB 2,0,0,0
RGB 3,15,15,0

;open a screen
;set some colours

Window 0,0,0,320,DispHeight ,$1 OOf,"My Window" ,0,0,0
,
Repeat ;wait for gadget hit ...
Until WaitEvent=64

See Also:

Borders

26-13

Statement: GadgetBorder
Syntax: GadgetBorder X, Y, Width,Height

Modes: Amiga/Blitz

Description:

The GadgetBorder command may be used to draw a rectangular border into the currently used
window.

Proportional gadgets and shape gadgets do not have borders automatically created for them. The
GadgetBorder command may be used, once a window is opened, to render borders around these
gadgets.

X, Y, Width and Height refer to the position of the gadget a border is required around. GadgetBorder
will automatically insert sapces between the gadget and the border. The Borders command may be
used to alter the amount of spacing.

Of course, GadgetBorder may be used to draw a border around any arbitary area, regardless of
whether or not that area contains a gadget.

See Also:

Borders

26-14

27. Menus

Blitz 2 supports many commands for the creation and use of Intuition menus.

Menus are created through the use of MenuList objects. Each menulist contains an entire set of menu
titles, menu items and possibly sub menu items.

Menulists are attached to windows through the SetMenu command.

Each window may use a separate menulist, allowing you to attach relevant menus to different
windows.

Statement: MenuTitle
Syntax: MenuTitle Menulistff,Menu, Title$

Modes: Amiga/Blitz

Description:

MenuTitle is used to add a menu title to a menu list. Menu titles appear when the right mouse button is
held down, and usually have menuitems attached to them.

Menu specifies which menu the title should be used for. Higher numbered menus appear further to the
right along the menu bar, with 0 being the leftmost menu. Menutitles should be added in left to right
order, with menu 0 being the first created, then 1 and so on ...

Title$ is the actual text you want to appear when the right mouse button is pressed.

Example:

,
;simple menus example
,
MenuTitle O,O,"PROJECT" ;create a menu title
Menultem O,O,O,O,"QUIT" ;and an item ...
MenuTitle 0,1 ,"EDIT" ;create another menu title
Menultem 0,0,1 ,O,"CUT" ;and give it some items ...
Menultem 0,0,1,1 ,"COPY" ; ...

Screen 0,3,"Menus Example" ;an intuition screen, and below, a window

Window 0,0, 12,320,DispHeight-12,$ 1 OOf,"Hold Down the right mouse button ... ",O, 1

SetMenu ° ;attach menulist to currently used window

Repeat ; wait ... until 'QUIT' selected.
Until WaitEvent=256 AND MenuHit=O AND ItemHit=O

27-1

See Also:

Menultem, Shapeltem, Subltem, ShapeSub

Statement: MenuItem
Syntax: Menultem MenuList#,Flags,Menu,ltem,ltemtext$[,Shortcut$j

Modes: Amiga/Blitz

Description:

Menultem is used to create a text menu item. Menu items appear vertically below menu titles when
the mouse is moved over a menu title with the right mouse button held down.

Flags affects the operation of the menu item.

A value of 0 creates a stand 'seleect' menu item.

A value of 1 creates a 'toggle' menu item. Toggle menu items are used for 'on/off' type options. When
a toggle menu item is selected, it will change state between on and off. An 'on' toggle item is identified
by a 'tick' or check mark.

A value of 2 creates a special type of toggle menu item. Any menu items which appear under the same
menu with a Flags setting of 2 are said to be mutually exclusive. This means that only 1 of them may
be in the 'on' state at one time. If a menu item of this nature is toggled into the 'on' state, any other
mutually exclusive menu items which may have previously been 'on' will be automatically turned 'off'.

Flags values of 3 and 4 correspond to values 1 and 2, only the item will initially appear in the 'on' state.

Menu specifies the menu title under which the menu item should appear.

Item specifies the menu item number this menu item should be referenced as. Higher numbered items
appear further down a menu item list, with 0 being the topmost item. Menu items should be added in
'top down' order, with menu item 0 being the first item created.

Itemtext$ is the actual text for the menu item.

An optional S~ortcut$ string allows you to select a one character 'keyboard shortcut' for the menu item.

Example:

27-2

,
; toggle items in menu example
,
MenuTitle O,O,"Testing"
Menultem O,O,O,O,"Load ","L"
Menultem 0,0,0,1 ,"Save","S"
Menultem 0,1,0,2," ASCII?"
Menultem 0,0,0,3,"QUIT!!!!!"

;create a menu title
;and an item (with shortcut!)
; another item. ..
;this is a toggle item!

Screen 0,3 ;an intuition screen

Window 0,0, 1 2,320,DispHeight-l 2,$ 100f,"Select a Menu ... ",l ,2

SetMenu °

Repeat ; wait for 'QUlT' ...

;check for certain menus here ...

Until WaitEvent=256 AND MenuHit=O AND ItemHit=3

See Also:

MenuTitle, Shapeltem, Subltem, ShapeSub

Statement: Shapeltem
Syntax: Shapeltem MenuList#,Flags,Menu,ltem,Shape#

Modes: Amiga/Blitz

Description:

Shapeltem is used to create a graphical menu item.

Shape# refers to a previously initialized shape object to be used as the menu item's graphics.

All other parameters are identical to those for Menultem.

Example:

,
; shapeitem example
,
Screen 0,3 ;open an intuition screen
Screens BitMap 0,0 ;borrow it's bitmap
BitMapOutput ° ;send 'Print' to the bitmap
Cis ;c/ear bitmap
Print "LoadSaveQuit" ;write some text
GetaShape 0,0,0,32,8 ;get 'Load' as shape a
GetaShape 1,32,0,32,8 ;get 'Save' as shape 7
GetaShape 2,64,0,32,8 ;get 'Quit' as shape 2
Cis ;c/ear bitmap again
MenuTitle O,O,"PROJECT" ;make a menu title

For k=O To 2
Scale k,4,2
Shapeltem O,O,O,k,k

Next

;process all 3 shapes
;stretch 'em a bit

; use shape as a menu item

Window 0,0,0,320,DispHeight.SlOOf,"Select a menu!",l,2
SetMenu ° ; attach menulist to window

Repeat ; wait for' QUIT'
Until WaitEvent=256 AND MenuHit=O AND ItemHit=2

See Also:

MenuTitle, Menultem, Subltem, ShapeSub

27-3

Statement: SubItem
Syntax: Subltem MenuList#,Flags,Menu,ltem,Subitem,Subitemtext$[,Shortcut$J

Modes: AmigaIBlitz

Description:

All menu items may have an optional list of sub menu items attached to them. To attach a sub menu
item to a menu item, you use the Subltem command.

Item specifies the menu item to attach the sub item to.

Subitem refers to the number of the sub menu item to attach. Higher numbered sub items appear
further down a sub item list, with 0 being the topmost sub item. Sub items should be added in 'top
down' order, with sub item 0 being created first.

Subitemtext$ specifies the actual text for the sub item. As with menu items, sub items may have an
optional keyboard shortcut character, specified using the ShortcutS paramater.

All other parameters are identical to the Menultem command.

Example:

; subitems menu example
,
MenuTitle O,O,"PROJECT" ;make a menu title
Menultem O,O,O,O,"LOAD "+Chr$(l87) ;item. ..
Subltem O,O,O,O,O,"PICTURE" ;sub items ...
Subltem 0,0,0,0,1 ,"BRUSH"
Menultem 0,0,0,1 ,"QUIT"
Screen 0,3 ;open a screen and window

Window 0,0, 12,320,DispHeight-12,$lOOf,"Select a menu ... ", 1,2
SetMenu ° ;attach menu list

Repeat ; wait for 'QUIT'
Until WaitEvent=256 AND MenuHit=O AND ItemHit= 1

See Also:

MenuTitle, Menultem, Shapeltem, ShapeSub

Statement: ShapeSub
Syntax: ShapeSub MenuList#,Flags,Menu,ltem,Subitem,Shape#

Modes: Amiga/Blitz

Description:

ShapeSub allows you to create a graphic sub menu item. Shape# specifies a previously created
shape object to be used as the sub item's grpahics.

All other parameters are identical to those in Subltem.

27-4

Statement: SetMenu
Syntax: SetMenu MenuList#

Modes: Amiga/Blitz

Description:

SetMenu is used to attach a menulist to the currently used window. Each window may have only
one menulist attached to it.

Statement: MenuGap
Syntax: MenuGap X Gap, Y Gap

Modes: Amiga/Blitz

Description:

Executing MenuGap before creating any menu titles, items or sub items, allows you to control the
layout of the menu.
X Gap refers to an amount, specified in pixies, to be inserted to the left and right of all menu items and
sub menu items. Y Gap refers to an amount, again in pixels, to be inserted above and below all menu
items and sub menu items.

Example:

,
; menugap example
,
MenuGap 32,16 ;set a BIG gap
MenuTitle O,O,"PROJECT" ;set up MenuUst 0 ...
Menultem O,O,O,O,"LOAD"
Menultem 0,0,0,1 ,"SAVE"
Menultem O,O,O,2,"QUIT"
MenuTitle 0,1 ,"EDIT"
Menultem 0,0,1 ,O,"CUT"
Menultem 0,0,1,1 ,"COPY"
Menultem 0,0,1 ,2,"PASTE"
Screen 0,3 ;open an intuition screen and window ...
Window 0,0,0,320,DispHeight,$1 OOf,"Select a menu ... ", 1,2
SetMenu 0 ;attach menulist
Repeat ; wait for 'QUIT'
Until WaitEvent=256 AND MenuHit=O AND ItemHit=2

Statement: SubltemOff
Syntax: SubltemOff X Offset, Y Offset

Modes: Amiga/Blitz

Description:

27-5

SubltemOff allows you to control the relative position of the top of a list of sub menu items, in relation
to their associated menu item.

Whenver a menu item is created which is to have sub menu items, it's a good idea to append the
name of the menu item with the '»' character. This may be done using Chr$(187). This gives the user
a visual indication that more options are available. To position the sub menu items correctly so that
they appear after the '»' character, SubltemOff should be used.

Example:

,
; subitemoff example
,
MenuTitle O,O,"Test"
Menultem O,O,O,O,"More "+Chr$(187)+" "
SubltemOff 60,8
Subltem O,O,O,O,O,"One Sub Menu Item ... "
Subltem 0,0,0,0,1 ,'1wo Sub Menu Items .. "
Menultem 0,0,0,1 ,"QUIT"
Screen 0,3
Window 0,0,0,320,DispHeight,$100f,"Select a menu ... ",l ,2
SetMenu °
Repeat
Until WaitEvent=256 AND MenuHit=O AND ItemHit= 1

Statement: MenuState
Syntax: MenuState MenuUst#[,Menu[,ltem[,Subitem]JJ,Onl Off

Modes: Amiga/Blitz

Description:

The MenuState command allows you to turn menus, or sections of menus, on or off.

MenuState with just the MenuList# parameter may be used to turn an entire menu list on or off.

MenuState with MenuList# and Menu parameters may be used to turn a menu on or off.

Similarly, menu items and sub items may be turned on or off by specifying the appropriate parameters.

Statement: MenuColour
Syntax: MenuColour Colour

Modes: Amiga/Blitz

Description:

MenuColour allows you to determine what colour any menu item or sub item text is rendered in.
MenuColour should be executed before the approprate menu item commands.

27-6

Example:

,
;menucolour example
,
MenuTItle O,O,"COLOUR" ;set up menu title
MenuColour 1 ; next item made will be in colour 7 ...
Menultem O,O,O,O,"LOAD" ; this is it
MenuColour 2 ;now colour 2
Menultem 0,0,0,1 ,"SAVE" ;
MenuColour 3 ; and 3 ...
Menultem O,O,O,2,"QUIT"
Screen 0,3 ;open an intuition screen and window
Window 0,0,0,320,DispHeighf,$1 OOf,"Select a menu ... ", 1,2
SetMenu 0 ;attach our menus
Repeat ; wait for' QUIT'
Until WaitEvent=256 AND MenuHit=O AND ItemHit=2

Function: MenuChecked
Syntax: MenuChekced (MenuList#,Menu,ltem[,Subitem))

Modes: Amiga/Blitz

Description:

The MenuChecked function allows you to tell whether or not a 'toggle' type menu item or menu sub
item is currently 'checked' or 'on'. If the specified menu item or sub item is in fact checked,
MenuChecked will return 'true' (-1). If not, MenuChecked will return 'false' (O).

Example:

; enable checking on menus example using menuchecked

MenuTitle O,O,"TEST!" ;create menu title
Menultem 0,1,0,0," OK TO QUIT?" ;a toggle menu item
Menultem 0,0,0,1 ,"QUIT" ;an ordinary one.
Screen 0,3 ;open screen and window ...
Window 0,0,0,320,DispHeight,$140f,"Select a menu ... ",l,2

Repeat
a.I=WaitEvent ; wait for somthing to happen
If a=256 AND ItemHit= 1 ;is it 'QUIT' ?

If MenuChecked(O,O'o) ;is item 0 'on' (checked)?
End ; Yup - go ahead and quit

Else
WLocate O,O;else, tell user
Print "Quit Not Enabled!"

Endlf
Endlf

Forever

See Also:

Menultem, Shapeltem, Subltem, ShapeSub

27-7

27-8

28. BRexx • /1 .--
f~
,M~

The Blitz 2 BRexx commands allow you to take control of certain aspects of Intuition. Through BRexx,
your programs can 'fool' Intuition into thinking that the mouse has been played with, or the keyboard
has been used. This is ideal for giving your programs the ability to perform 'macros' - where one
keystroke can set off a chain of pre-defined events.

The BRexx commands support tape objects. These are predefined sequences of events which may be
played back at any time. The convenient Record command can be used to easily create tapes.
Using the MacroKey command, tapes may also be attached to any keystroke to be played back
instantly at the push of a button!

Please note that none of the BRexx commands are available in Blitz mode.

Statement: AbsMouse
Syntax: AbsMouse X, Y

Modes: Amiga

Description:

AbsMouse allows you to position the mouse pOinter at an absolute display location. The X parameter
specifies how far across the display the pOinter is to be positioned, while the Y parameter specifies
how far down the display. X must be in the range zero through 639. Y must be in the range zero
through 399 for NTSC machines, or zero through 511 for PAL machines.

Example:

,
; brex absmouse program example
,
AbsMouse 0,0 ; This will move the mouse pointer to

; the upper left of the display

AbsMouse 319,199 ; This will approximately' centre' the mouse
;pointer on the display

AbsMouse 639,399 ; This will move the mouse pointer to the lower
;right of the display

MouseWait

See Also:

RelMouse

28-1

Statement: RelMouse
Syntax: Rei Mouse X Offset, Y Offset

Modes: Amiga

Description:

Rei Mouse allows you to move the mouse pointer a relative distance from ifs current location. Positive
offset parameters will move the pOinter rightwards and downwards, while negative offset parameters
will move the pOinter leftwards and upwards.

Example:

,
; brex relmouse program example
,
AbsMouse 0,0

For k= 1 To 100
Rei Mouse 1 ,1

Next

MouseWait

See Also:

AbsMouse

;move pointer to upper left

;across and down 700 times

Statement: MouseButton
Syntax: MouseButton Button,Onl Off

Modes: Amiga

Description:

MouseButton allows you to alter the status of the Amiga's left or right mouse buttons. Button should
be set to zero to alter the left mouse button, or one to alter the right mouse button. On/Off refers to
whether the mouse button should be pressed (On) or released (Off).

Example:

; brex mousebutton program example

28-2

,
low=DispHeight*2-1
AbsMouse 639.1ow
MouseButton O,On
AbsMouse 319 .low /2
MouseButton O,Off
MouseWait

;al/ow for NTSC or PAL
;Move mouse pointer to lower right.
;Click down left button.

;move mouse pointer to middle
;Release left button.

See Also:

ClickButton

Statement: ClickButton
Syntax: ClickButton Button

Modes: Amiga

Description:

ClickButton is identical to executing two MouseButton commands - one for pressing the mouse
button down, and one for releasing it. This can be used for such things as gadget selection.

Example:

,
; brex clickbutton program example
,
TextGadget 0,32,32,0,1," CLICK ME "
Screen 0,3
Window 0,0,0,320.200,$1 OOf,"Magic!", 1 .2,0
AbsMouse 40,0
For k= 1 To 18
Rei Mouse 4,4
Next
ClickButton °
MouseWait

Statement: Type
Syntax: Type String$

Modes: Amiga

Description:

Type causes Intution to behave exactly as if a certain series of keyboard characters had been entered.
These are normally sent to the currently active window.

Example:

; brex recording program example

Type "Hello There!"
MouseWait

28-3

Statement: Record
Syntax: Record [Tape#]

Modes: Amiga

Description:

Record allows you to create a tape object. Tape objects are sequences of mouse and/or keyboard
events which may be played back at any time.

When a tape# parameter is supplied to the Record command, recording will begin. From that point on,
all mouse and keyboard activity will be recorded onto the specified tape.

The Record command with no parameters will cause any recording to finish.

Example:

,
; brex recording program example
,
Type "Hello There!"
MouseWait

NPrint "Play with the mouse, then hit the right mouse button."
AbsMouse 0,0
Record a ;begin recording.
While Joyb(0)<>2
Wend
Record ;finish recording
AbsMouse 0,0
PlayBack a
MouseWait

See Also:

PlayBack, TapeTrap

Statement: PlayBack
Syntax: PlayBack [Tape#]

Modes: Amiga

Description:

PlayBack begins playback of a previously created tape object. When a Tape# parameter is supplied,
playback of the specified tape will commence. If no parameter is supplied, any tape which may be in
the process of being played back will finish.

28-4

Example:

,
; brex program example
,
low=DispHeight*2-1
TapeTrap 0
QuletTrap On
AbsMouse 639,low
MouseBuHon O,On
AbsMouse 639 ,low /2
MouseBuHon O,Off
TapeTrap
PlayBack 0
MouseWait

See Also:

Record, TapeTrap, QuickPlay

;alJow for NTSC or PAL displays
;start creating a tape
;set recording mode to quiet.

;Turn off trapping.
;Play it Backl

Statement: QuickPlay
Syntax: QuickPlay OnlOff

Modes: Amiga

Description:

QuickPlay will alter the way tapes are played using the PlayBack command. If QuickPlay is enabled
by use of an On parameter, then all PlayBack commands will cause tapes to be played with no delays
between actions. This means any pauses which may be present in a tape (for instance, delays
between mouse movements) will be ignored when it is played back. QuickPlay Off will return
PlayBack to it's default mode of including all tape pauses. This is sometimes necessary when playing
back tapes which must at some point wait for disk access to finish before continuing.

See Also:

PlayBack

Statement: PlayWait
Syntax: PlayWait

Modes: Amiga

Description:

PlayWait may be used to halt program flow until a PlayBack of a tape has finished.

See Also:

PlayBack

28-5

Function: XStatus
Syntax: XStatus

Modes: Amiga

Description:

XStatus returns a value depending upon the current state of the BRexx system. Possible return values
and their meanings are as follows:

Value: Meaning:

0 BRexx is currently inactive. No tapes are either being recorded or played back.

1 BRexx is currently in the process of recording a tape.
This may be due to either the Record or TapeTrap commands.

2 BRexx is currently playing a tape back.

See Also:

Record, TapeTrap, PlayBack

Statement: SaveTape
Syntax: SaveTape TapeU,Filename$

Modes: Amiga

Description:

SaveTape allows you to save a previously created tape object out to disk. This tape may later be
reloaded using LoadTape.

See Also:

LoadTape

Statement: LoadTape
Syntax: LoadTape TapeU,Filename$

Modes: Amiga

Description:

LoadTape allows you to load a tape object previously saved with SaveTape for use with the
PlayBack command.

28-6

See Also:

SaveTape

Statement: TapeTrap
Syntax: TapeTrap [Tape#]

Modes: Amiga

Description:

TapeTrap allows you to record a sequence of AbsMouse, Rei Mouse, MouseButton and
ClickButton events to a tape object.

TapeTrap works similarly to Record, in that both commands are used to create a tape. However,
whereas Record receives information from the actual mouse and keyboard, TapeTrap receives
information from any AbsMouse, Rei Mouse, MouseButton and ClickButton commands which may
be executed.

TapeTrap with no parameter will finish tape creation.

See Also:

Record, PlayBack, QuietTrap

Statement: QuietTrap
Syntax: QuietTrap OnlOff

Modes: Amiga

Description:

QuietTrap determines the way in which any TapeTrapping wi" be executed.

QuietTrap On wi" cause any AbsMouse, RelMouse, MouseButton and ClickButton commands to
be recorded to tape, but not to actually have any effect on the porgram currently running.

QuietTrap Off wi" cause any AbsMouse, RelMouse, MouseButton and ClickButton commands to
be recorded to tape, AND to cause their usual effects.

QuietTrap Off is the default mode.

See Also:

TapeTrap

28-7

Statement: MacroKey
Syntax: MacroKey TapeU,Rawkey,Qualifier

Modes: Amiga

Description:

MacroKey causes a previously defined tape object to be attached to a particular keyboard key.
RawKeyand Qualifier define the key the tape should be attached to.

Example:

; brex macrokey program example .
TapeTrap 0
QuietTrap On
AbsMouse 0.0
AbsMouse 639.0
AbsMouse 639.399
AbsMouse 0.399
AbsMouse 0.0
TapeTrap
MacroKey 0.128.0
NPrint "Hit Fl ... "
MouseWait

Statement: FreeMacroKey
Syntax: MacroKey RawkeY,Qualifier

Modes: Amiga

Description:

FreeMacroKey causes a previously defined macro key to be removed so that a BRex tape is no
longer attatched to it.

See Also:

MacroKey

28-8

The Blitz 2 Objects

The following chapter covers the Blitz 2 objects. Objects are structures such as bitplanes and shapes
that Blitz dynamically allocates and controls.

The information included in the listing at the end of this chapter can be used to 'intimately' manipulate
Blitz 2 objects.

Firstly the adress of the structure in memory needs to be found. The following is an example of picking
up the address of the bitplane data from a shape:

INCLUDE "blitz2incs.bb" ;or use the resident file!

LoadShape O,"myshape"

*a.shape=Addr Shape(O) ;a is a pointer type to a shape type

;the long variable d now holds the shapes image location

Modules are sound-tracker compatible files used to sequence music.

NEWTYPE.module
_mCdata.l ;00: NULL if no module present

; else pointer to module data
_length.1 ;04: length of module data

;08: sizeof
End NEWTYPE

BlitzFonts are any 8x8 fonts able to be used to print in Blitz mode.

N EWTYPE. blitzfont
_font. I ;00: NULL if no font present,

End NEWTYPE

; else pOinter to GFX TextFont struct
;04: sizeof

Screens are simply pointers to Intuition screens.

NEWTYPE.screen
_screen.l ;00: NULL if no screen present,

; else pointer to INTUITION screen struct
;04: sizeof

End NEWTYPE

A1-1

Menus are simply pOinters to a list of Intuition menus.

NEWTYPE.menulist
_menu.1 ;00: NULL if no menu present,

; else pointer to linked INTUTIION
; menu items
;04: sizeof

End NEWTYPE

IntuiFonts are normal Amiga fonts used with windows and screens.

NEWTYPE.intuifont
_fontname.1 ;00: Pointer to name of font
_ysize.w ;04: height of font
_pad.w ;06:
_font. I ;08: NULL if no font present,

else pointer to GFX TextFont struct
_pad2.b(4) ; 72:

; 76: sizeof
End NEWTYPE

Shapes are used for all the blitting commands.

NEWTYPE.shape
_pixwidth.w ;00: NULL if no shape present,

else pixel width of shape
_pixheight.w ;02: pixel height of shape
_depth.w ;04: depth, in bit planes, of shape
_ebwidth.w ;06: even byte width of shape
_bltsize.w ;08: BLTSIZE of shape
_xhandle.w ; 70: horizontal handle of shape
_yhandle.w ; 72: vertical handle of shape
_data.1 ; 74: pointer to graphic data - Plane 7, Plane2 ...
_cookie.l ; 78: painter to one bitplane cookiecut
_onebpmem.w ;22: memory taken by one bitplane of shape
_onebpmemx.w ;24: memory taken by one bit plane of shape,

; plus an extra word per bitplane per
; vertical pixel

_allbpmem.w ;26: memory taken by entire shape.
_allbpmemx.w ;28: memory taken by entire shape, plus an

; extra word per bitplane per vertical
; pixel

_pad.b(2) ;30:
;32: sizeof

End NEWTYPE

Tapes are used by BRexx for recording a series of events that can 'drive' Intuition.

A1-2

NEWTYPE.tape
jelist.1 ;00: NULL if no tape present,

_timevalhi.l
_timevallo.l
_pad.b(4)

else painter to list of InputEvents
;04: high 4 bytes of time val of first event
;08: low 4 bytes of timeval of first event
; 72:

; 76: sizeof
End NEWTYPE

Stencils are used for Blits that need to go behind some things and infront of others

NEWTYPE.stencii
_ebwidth.w ;00: NULL if no stencil present,

; else even byte width
;02: height of stencil _height.w

_data.! ;04: pointer to one bit plane of stencil data
;08: sizeof

End NEWTYPE

A queue item holds information for the UnQueue command.

NEWTYPE.queueitem
_mod.w ;00: bliffer BLTDMOD value
_bltsize.w ;02: bliffer BLTSIZE value
_depth.w ;04: depth, in bit planes, of bitmap
_bitmap.! ;06: bitmap object QBLlT was made to
_offset. I ; 70: offset into bitmap QBLlT was made at
End NEWTYPE

Queues are like list headers that point to a series of queue items.

NEWTYPE.queue
* _current .queueitem ;00: pOinter to where to add next QBLlT

; Queueltem
* _first.queueitem ;04: NULL if no Queue present,

; else pointer to start of
; . Queueltem block

Jength.1
_pad.b(4)

;08: Length of allocated queue memory
; 72:

; 76: sizeof
End NEWTYPE

Fieldltems are used for Random Access files.

NEWTYPE.fielditem
* _next.fielditem ;00: For linked list.
_data.! ;04: pointer to where data comes from

; or goes to
Jenth.1 ;08: length of above data
End NEWTYPE

The file structure is used to control open DOS files in Blitz 2.

NEWTYPE.file
_handle.1 ;00: NULL if no file present,

else dos file handle of file
_reclen.1 ;04: Byte length of 'Fields' for this file
_pad.b(4) ;08:
* _fields.fielditem ; 72: list of field items
_buffer. I ; 76: buffer for my own read/write routines
_bufflen.w ;20: length of above buffer
_flags.w ;22: =0: buffer not altered,

<0 : buffer wriffen to,

_valid.w
_seekoff.w

>0 : seek necessary when buffer flushed
;24: number of valid bytes in buffer

;26: seek (position) offset into buffer

A1-3

_seek.1 ;28: dos seek of start of buffer
End NEWTYPE

The Palette structure is used to hold sets of colours for both Screens and Slices

NEWTYPE.palette
_numcols.w ;00: NULL if no palette present,

; else number of colours (0-31) in palette
_colours.w(32) ;02: Max of 32 RGB words.

Jowcol.w

_hicol.w
_speed.w

;66: low colour for cycling,
<0 = end of cycling table.
;68: high colour for cycling

; 70: speed of cycling - 16384 = max.
if speed = 0, then cycle downwards,
else cycle upwards.
;72: variable to add speed to.

(More possible cycling entries)

; 128: sizeof
End NEWTYPE

Buffers are used by the BBlit command to hold background information that a BBlit overwrites.

N EWTYPE. buffer
_current. I ;00: Pointer to current point in buffer

_length.1
_pad.b(4)

; to add BBLIT info to.
;04: NULL if no buffer present,

else pointer to beginning of buffer
; memory.

;08: length in bytes of buffer memory.
; 12:

; 16: sizeof
End NEWTYPE

A gadgetlist simply points to a list of Intuition gadgets.

NEWTYPE.gadgetlist
_gadgets.l ;00: NULL if no gadgetlist present,

; else pointer to first gadget
; in list of Intuition gadgets.
;04: sizeof

End NEWTYPE

Window objects hold information about the Intuition window they point to.

A1-4

NEWTYPE.window
_window. I ;00: NULL if no window present,

_cursx.w
_cursy.w
_pointer. I

Jength.1

else pointer to Intuition
window struct
;04: horizontal cursor position in window
;06: vertical cursor position in window
;08: pointer optional window pointer

sprite data.
; 12: length of window pointer sprite data.

; 76: sizeof
End NEWTYPE

Slices hold information concerning the copper lists used to create Blitz mode displays.

NEWTYPE.slice
_ypos.w ;00: NULL if no slice present,

; else vertical position of slice
_flags.w ;02: slice flags
_numbitplanes.w ;04: number of bit planes available in slice
_numsprites.w ;06: number of sprites available in slice
_numcolours.w ;08: number of colours available in slice
_bitplanes.1 ; 70: pointer to address, in copper list,

of bit plane MOVEs
_sprites. I ; 74: pOinter to address, in copper list,

of sprite MOVEs
_colours.l ; 78: pointer to address, in copper list,

of colour MOVEs
_BPLCON 1.1 ;22: pOinter to address, in copper list,

of word MOVEd to BPLCON 7
_BPLCON2.1 ;26: pointer to address, in copper list,

of word MOVEd to BPLCON2
_pad.b(2) ;30:

;32: sizeof
End NEWTYPE

BitMaps hold pointers and other information.

NEWTYPE.bitmap
_ebwidth.w ;00: even byte width of bitmap
_height.w ;02: pixel height of bitmap
_depth.w ;04: depth, in bit planes, of bitmap
_pad.b(2) ;06:
_data.I(8) ;08: Max of 8 pointers to bit planes
_pad2.b(22) ;40:
jsreal.w ;62: =0: no bitmap present

<0 : bitmap present
; >0 : bitmap present, but not ours
;64: sizeof

End NEWTYPE

Sound objects hold information concerning the noisier commands in Blitz 2.

NEWTYPE.sound
_data.l ;00: NULL if no sound present,

else pOinter to sound data
_period.w ;04: period of sound
Jength.w ;06: length, in words, of sound data
Joop.1 ;08: repeat to loop position of sound
Jooplength.w ; 72: length of looping section, in words
_pad.b(2) ; 74:

; 76: sizeof
End NEWTYPE

A1-5

Sprite objects contain the information required by the Blitz 2 sprite library.

A1-6

NEWTYPE.sprite
_data.1 ;00: NULL if no sprite present,

else pointer to sprite data
_height.w ;04: height of sprite, in pixels, plus

, an extra 7
_channels.w ;06: number of sprite channels required

to display sprite
_flags.w ;08: low byte = pix width of sprite,

hi bit = 7 if 76 colour sprite
_nextoff.w ; 70: difference, in bytes, between seperate

sprites for separate sprite channels
_xhandle.w ; 72: horizontal handle for sprite
_yhandle.w ; 74: vertical handle for sprite

; 76: sizeof
End NEWTYPE

Compile Time Errors

The following is a list of all the Blitz 2 compile time errors. Blitz 2 will print these messages when
unable to compile a line of your code and fails. The cursor will be placed on the line with the offending
error in most cases.

Sometimes the cause of the error will not be directly related to where Blitz 2 ceased compiling. Any
reference to an include file or a macro could mean the error is there and not on the line referenced.

The errors are grouped under the following headers:

General Syntax Errors

Procedure Related Errors

Constants Related Errors

Expression Evaluation Errors

Illegal Errors

Library Based Errors

Include Errors

Program Flow Based Errors

Type Based Errors

Conditional Compiling Errors

Resident Based Errors

Macro Based Errors

Array Errors

Interrupt Based Errors

Label Errors

Direct Mode Errors

Select ... End Select Errors

Blitz Mode / Amiga Mode Errors

Strange Beast Errors

A2-1

General Syntax Errors

Syntax Error

Check for typing mistakes and check your syntax with the reference manual.

Garbage at End of Line

A syntax error of sorts. Causes are usually typos and missing semi colons from the beginning of
Remarks. Also a .type suffix when accessing NewType items will generate this error.

Numeric Over Flow

The signed value is too large to fit in the variable space provided, if you need bytes to hold O .. 255
rather than -128 .. 127 etc turn off Overflow checking in the runtime errors section of the Options
requester.

Bad Data

The values following the Data.type statement are not of the same type as precedes the Data
statement.

Procedure Related Errors

Not Enough Parameters

The command, statement or function needs more paramaters. Use the HELP key for correct number
and meaning of parameters with Blitz][commands and check Statement and Function definitions in
your code.

Duplicate parameter variable

Parmaters listed in statements and functions must be unique.

Too many parameters

The statement or function was defined needing less parameters than supplied by the calling routine.

Illegal Parameter Type

NewTypes cannot be passed to procedures.

Illegal Procedure return

The statement or function return is syntatically incorrect.

Illegal End Procedure

A2-2

The statement or function end is syntatically incorrect.

Shared outside of Procedure

Shared variables are only applicable to procedures.

Variable already Shared

Shared variables must be unique in name.

Can't Nest Procedures

Procedures may NOT be defined within procedures, only from the primary code.

Can't Dim Globals in Procedures

Global arrays may only defined from the primary code.

Can't Goto/Gosub a Procedure

Goto and Gosub must always point to an existing part of the primary code.

Duplicate Procedure name

A procedure (statement or function) of the same name has been defined previously in the source.

Procedure not found

The statement or function has not previously been defined in the source code.

Unterminated Procedure

The End Function or End Statement commands must terminate a procedure definition.

Illegal Procedure Call

The statement or function call is syntatically incorrect.

Illegal Local Name

Not a valid variable name.

Constants Related Errors

Can't Assign Constant

A2-3

Constant values can only be assigned to constants, no variables please.

Constant not defined

A constant (such as #num) has been used in an expression without first being defined

Constant already defined

Constants can only be defined once, i.e. cannot change their value through the code.

Illegal Constant

Same as can't assign constant

Fractions Not allowed in Constants

Blitz 2 constants can only contain absolute values, they are usually rounded and no error is generated.

Can't Use Constant

Caused by a clash in constant name definitions.

Constant Not Found

The Constant has not been defined previously in the source code.

Illegal Constant Expression

A constant may only hold whole numbers, either a decimal place, text or a variable name has been
included in the constant definition.

Expression Evaluation Errors
Can't Assign Expression

The expression cannot be evaluated or the evaluation has generated a value that is incompatible with
the equate.

No Terminating Quote

Any text assigns should start and end with quotes.

Precedence Stack Overflow

You have attained an unprecedented level of complexity in your expression and the Blitz 2 evaluation
stack has overflowed. A rare beast indeed!

A2-4

Illegal Errors
Illegal Trap Vector

The 68000 has only 16 trap vectors.

Illegal Immediate Value

An immediate value must be a constant and must be in range. See the 68000 appendix for immediate
value ranges.

IIIgeal Absolute

The Absolute location specified must be defined and in range.

Illegal Displacement

The Displacement location specified must be defined and in range.

Illegal Assembler Instruction Size

The Intstruction size is not available, refer to the 68000 appendix for relevant instruction sizes.

Illegal Assembler Addressing Mode

The addressing mode is not available for that opcode, refer to the 68000 appendix for relevant
addressing modes.

Library Based Errors
Illegal TokeJsr token number

Blitz 2 cannot find the library routine referred to by the TokeJsr command, usually caused by the library
not being included in DefLibs, not present in the BlitzLibs: directory or the calculation being wrong
(token number = Iibnumber*128 + token offset).

Library not Found: 'library number'

Blitz][cannot find the library routine referred to by a Token, usually caused by the library not being
included in DefLibs or the library not present in the BlitzLibs: directories.

Token Not Found: 'token number'

When loading source, Blitz 2 replaces any unfound tokens with ?????, compiling your code with these
unknown tokens present will generate the above error.

A2-5

Include Errors
Already Included

The same source code has already been included previously in the code.

Can't open Include

Blitz 2 cannot find the include file, check the pathname.

Error Reading File

DOS has generated an error during an include.

Program Flow Based Errors
Illegal Else in While Block

See the reference section for the correct use of the Else command with While .. Wend blocks.

Until without Repeat

Repeat..Untii is a block directive and both must be present.

Repeat Block too large

A RepeaLUntil block is limited to 32000 bytes in length.

Repeat without Until

RepeaLUntil is a block directive and both must be present.

If Block too Large

Blitz 2 has a limit of 32K for any blocks of code such as IF .. ENDIF blocks.

If Without End If

The IF statement has two forms, if the THEN statement is not present then and END IF statment must
be present to specify the end of the block.

Duplicate For ... Next Error

The same variable has been used for a For .. Next loop that is nested within another For..Next loop.

A2-6

Bad Type for For ... Next

The For..Next variable must be of numeric type.

Next without For

FOR..NEXT is a block directive and both commands must be present.

For ... Next Block to Long

Blitz 2 restricts all blocks of code to 32K in size.

For Without Next

FOR .. NEXT is a block directive and both commands must be present.

Type Based Errors
Can't Exchange different types

The Exchange command can only swap two variables of the same type.

Can't Exchange NewTypes

The Exchange command can not handle NewTypes at present.

Type too Big

The unsigned value is too large to fit in the variable space provided.

Mismatched Types

Caused by mixing different types illegaly in an evaluation.

Type Mismatch

Same as Mismatched Types.

Can't Compare Types

Some Types are incompatible with operations such as compares.

Can't Convert Types

The two Types are incompatible and one can not be converted to the other.

A2-7

Duplicate Offset (Entry) Error

The NewType has two entries of the same name.

Duplicated Type

A Type already exists with the same name.

End NewType without NewType

The NewType .. End NewType is a block directive and both must be present.

Type Not Found

No Type definition exists for the type referred to.

Illegal Type

Not a legal type for that function or statement.

Offset not Found

The offset has not been defined in the NewType definition.

Element isn't a pointer

The variable used is not a *var type and so cannot point to another variable.

Illegal Operator for Type

The operator is not suited for the type used.

Too many comma's in Let

The NewType has less entries than the number of values listed after the Let.

Can't use comma in Let

The variable you are assigning multiple values is either not a NewType and cannot hold multiple
values or the NewType has only one entry.

Illegal Function Type

A function may not return a NewType.

A2-8

Conditional Compiling Errors
CNIF/CSIF without CEND

CNIF and CSIF are block directives and a CEND must conclude the block.

CEND without CNIF/CSIF ...

CNIF .. CEND is a block directive and both commands must be present.

Resident Based Errors
Clash in Residents

Residents being very unique animals, must not include the same Macro and Constant definitions.

Can't Load Resident

Blitz 2 cannot find the Resident file listed in the Options requester. Check the pathname.

Macro Based Errors
Macro Buffer Overflow

The Options requester in the Blitz 2 menu contains a macro buffer size, increase if this error is ever
reported. May also be caused by a recursive macro call which generates endless code.

Macro already Defined

Another macro with the same name has already been defined, may have been defined in one of the
included resident files as wellas somewhere in the source code.

Can't create Macro inside Macro

Macro definitions must occur in the primary code.

Macro without End Macro

End Macro must end a Macro definition.

Macro too Big

Macro's are limited to the buffer sizes defined in the Options requester.

Macros Nested too Deep

A2-9

Eight levels of macro nesting is available in Blitz 2. Should never happen!!

Macro not Found

The macro has not been defined previous to the !macroname{} call.

Array Errors
Illegal Array type

Should never happen.

Array not found

A variable name followed by parenthises has not been previously defined as an array. Other possible
mistakes may be the use of brackets instead of curly brackets for macro and procedure calls, Blitz 2
thinking instead you are referring to an array name.

Array is not a List

A List function has been used on an array that was not dimensioned as a List Array.

Illegal number of Dimensions

List arrays are limited to single dimensions.

Array already Dim'd

An array may not be re-dimensioned.

Can't Create Variable inside Dim

An undefined variable has been used for a dimension paramater with the Dim statement.

Array not yet Dim'd

See Array not found.

Array not Dim'd

See Array not found.

A2-10

Interupt Based Errors
End Setlnt without Setlnt

SetlnLSetlnt is a block directive and both commands must be present.

Setlnt without End Setlnt

SetlnLSetlnt is a block directive and both commands must be present.

Can't use Set/Clrlnt in Local Mode

Error handling can only be defined by the primary code.

SetErr not allowed in Procedures

Error handling can only be defined by the primary code.

Can't use Set/Clrlnt in Local Mode

Error handling can only be defined by the primary code.

End Setlnt without Setlnt

SetlnLSetlnt is a block directive and both commands must be present.

Setlnt without End Setlnt

SetlnLSetlnt is a block directive and both commands must be present.

Illegally nested Interrupts

Interrupt handlers can obviously not be nested.

Can't nest SetErr

Interrupt handlers can obviously not be nested.

End SetErr without SetErr

SetErr .. End SetErr is a block directive and both must be present.

Illegal Interrupt Number

Amiga interrupts are limited from 0 to 13. These interrupts are listed in
the Amiga Hardware reference appendix.

A2-11

Label Errors
Label reference out of context

Should never happen.

Label has been used as a Constant

Labels and constants cannot share the same name.

Illegal Label Name

Refer to the Programming in Slitzl[chapter for correct variable
nomenclature.

Duplicate Label

A label has been defined twice in the same source code. May also occur with macros where a label is
not preceded by a \@.

Label not Found

The label has not been defined anywhere in the source code.

Can't Access Label

The label has not been defined in the source code.

Direct Mode Errors
Cont Option Disabled

The Enable Continue option in the Runtime errors of the Options menu has been disabled.

Cont only Available in Direct Mode

Cont can not be called from your code only from the direct mode window.

Library not Available in Direct Mode

The library is only available from within your code.

Illegal direct mode command

Direct mode is unable to execute the command entered.

Direct Mode Buffer Overflow

A2-12

The Options menu contains sizes of all buffers, if make smallest code is in effect extra buffer memory
will not be available for direct mode.

Can't Create in Direct Mode

Variables cannot be created using direct mode, only ones defined by your code are available.

Select ... End Select Errors
Select without End Select

Select is a block directive and an End Select must conclude the block.

End Select without Select

SelecLEnd Select is a block directive and both must be present.

Default without Select

The Default command is only relevant to the SelecLEnd Select block directive.

Previous Case Block too Large

A Case section in a Select block is larger than 32K.

Case Without Select

The Case command is only relevant to the SelecLEnd Select block directive.

Blitz Mode / Amiga Mode Errors
Only Available in Blitz mode

The command is only available in Blitz mode, refer to the reference section for Blitz/Amiga valid
commands.

Only Available in Amiga mode

The command is only available in Amiga mode, refer to the reference section for BlitzlAmiga valid
commands.

A2-13

Strange Beast Errors

Optimizer Error! - $'

This should never happen. Please report.

Expression too Complex

Should never happen. Contact Mark directly.

Not Supported

Should never happen.

Illegal Token

Should never happen.

A2-14

Amiga Library Routines

BLlTZLlBS:AMIGALIBS currently supports the EXEC, DOS, GRAPHICS, INTUITION and DISKFONT
amiga libraries.

Parameter details for each command are given in brackets and are also available via the Blitz 2
keyboard help system.

Each call may be treated as either a command or a function.

Functions will always return a long either containing true or false (signifying if the command was
successful or failed) or a value relevant to the routine.

The relative offsets from the library base and 68000 register parameters are included for the
convenience of the assembler programmer.

When using library calls an underscore character U should follow the token name.

An asterisk (*) preceding routine names specifies that the calls are private and should not be called
from Blitz 2.

EXEC

-30 Supervisor(userFunction)(a5)

---- special patchable hooks to internal exec activity ---

-36 *execPrivate1 00
-42 *execPrivate200
-48 *execPrivate300 .
-54 *execPrivate400
-60 *execPrivate500
-66 *execPrivate600

--- module creation ---

-72 InitCode(startClass,version)(dO/d1)
-78 InitStruct(initTable,memory,size)(a1 1a2,dO)
-84 MakeLibrary(funcl nit,structlnit, libl nit,dataSize,segList)(aO/a 1 1a2,dO/d 1)
-90 MakeFunctions(target, functionArray, funcDispBase) (aO/a 1 la2)
-96 Find Resident(name)(a1)
-102 InitResident(resident,segList)(a1 ,d1)

--- diagnostics ---

-108 Alert(alertNum)(d7)
-114 Debug(flags)(dO)

--- interrupts ---

A3-1

-120 DisableOO
-126 EnableOO
-132 ForbidOO
-138 PermitOO
-144 SetSR(newSR,mask)(dO/d1}
-150 SuperStateOO
-156 UserState(sysStack)(dO}
-162 SetlntVector(intNumber,interrupt)(dO/a 1 }
-168 AddlntServer(intNumber,interrupt)(dO/a1}
-174 RemlntServer(intNumber,interrupt}(dO/a 1}
-180 Cause(interrupt)(a1}

--- memory allocation ---

-186 Aliocate(freeList,byteSize}(aO,dO}
-192 Dealiocate(freeList,memoryBlock,byteSize }(aO/a1 ,dO)
-198 AllocMem(byteSize,requirements}(dO/d1}
-204 AliocAbs(byteSize,location}(dO/a1}
-210 FreeMem(memoryBlock,byteSize)(a1 ,dO}
-216 AvailMem(requirements)(d1}
-222 AliocEntry(entry}(aO}
-228 FreeEntry(entry}(aO}

--- lists ---

-234 Insert(list,node,pred}(aO/a 1 1a2}
-240 AddHead(list,node}(aO/a1}
-246 AddTail(list,node}(aO/a1}
-252 Remove(node}(a1}
-258 RemHead(list}(aO}
-264 RemTail(list}(aO}
-270 Enqueue(list,node}(aO/a1}
-276 FindName(list,name}(aO/a1}

--- tasks ---

-282 AddTask(task,initPC,finaIPC}(a1/a2/a3}
-288 RemTask(task)(a1}
-294 FindTask(name}(a1}
-300 SetTaskPri(task,priority}(a1 ,dO}
-306 SetSignal(newSignals,signaISet)(dO/d1)
-312 SetExcept(newSignals,signaISet)(dO/d1)
-318 Wait(signaISet)(dO)
-324 Signal(task,signaISet)(a1 ,dO)
-330 AliocSignal(signaINum)(dO)
-336 FreeSignal(signaINum)(dO)
-342 AliocTrap(trapNum)(dO}
-348 FreeTrap(trapNum)(dO)

--- messages ---

-354 Add Port(port} (a 1)
-360 RemPort(port)(a 1}
-366 PutMsg(port,message)(aO/a1}
-372 GetMsg(port}(aO)
-378 ReplyMsg(message)(a1}
-384 WaitPort(port}(aO}
-390 FindPort(name)(a1)

A3-2

--- libraries ---

-396 AddLibrary(library)(a 1)
-402 RemLibrary(library)(a1)
-408 OldOpenLibrary(libName)(a1)
-414 CloseLibrary(library)(a 1)
-420 SetFunction(library,funcOffset,newFunction)(a1 ,aO,dO)
-426 SumLibrary(library)(a 1)

--- devices ---

-432 AddDevice(device)(a1)
-438 RemDevice(device)(a1)
-444 OpenDevice(devName,unit,ioRequest,flags)(aO,dO/a1 ,d1)
-450 CloseDevice(ioRequest)(a1)
-456 DoIO(ioRequest)(a 1)
-462 SendIO(ioRequest)(a 1)
-468 CheckIO(ioRequest)(a 1)
-474 WaitIO(ioRequest)(a1)
-480 AbortIO(ioRequest)(a1)

--- resources ---

-486 AddResource(resource)(a 1)
-492 RemResource(resource)(a1)
-498 OpenResource(resName)(a1)

--- private diagnostic support ---

-504 *execPrivate700
-510 *execPrivate800
-516 *execPrivate900

--- misc ---

-522 RawDoFmt(formatString,dataStream,putChProc,putCh Data) (aO/a 1 /a2/a3)
-528 GetCCOO
-534 TypeOfMem(address)(a1)
-540 Procure(semaport,bidMsg)(aO/a 1)
-546 Vacate(semaport)(aO)
-552 OpenLibrary(libName,version)(a1 ,dO)

*** functions in Release 1.2 or higher ***

--- signal semaphores (note funny registers found in 1.2 or higher)---

-558 InitSemaphore(sigSem)(aO)
-564 ObtainSemaphore(sigSem)(aO)
-570 ReleaseSemaphore(sigSem)(aO)
-576 AttemptSemaphore(sigSem)(aO)
-582 ObtainSemaphoreList(sigSem)(aO)
-588 ReleaseSemaphoreList(sigSem)(aO)
-594 FindSemaphore(sigSem)(a1)
-600 AddSemaphore(sigSem)(a1)
-606 RemSemaphore(sigSem)(a1)

--- kickmem support ---

A3-3

-612 SumKickDataOO

--- more memory support ---

-618 AddMemList(size,attributes,pri,base,name }(dO/d1 Id2/aOla 1)
-624 CopyMem(source,dest,size}(aOla1,dO}
-630 CopyMemQuick(source,dest,size}(aOla1,dO}

*** functions in Release 2.0 or higher ***

--- cache ---

-636 CacheClearUOO
-642 CacheClearE(address,length,caches}(aO,dO/d1}
-648 CacheControl(cacheBits,cacheMask}(dO/d1}

--- misc ---

-654 CreatelORequest(port,size }(aO,dO)
-660 DeleteIORequest(iorequest}(aO}
-666 CreateMsgPortOO
-672 DeleteMsgPort(port}(aO}
-678 ObtainSemaphoreShared(sigSem }(aO)

--- even more memory support ---

-684 AllocVec(byteSize,requirements}(dO/d1}
-690 FreeVec(memoryBlock}(a1}
-696 CreatePrivatePool(requirements,puddleSize,puddleThresh}(dO/d1/d2)
-702 DeletePrivatePool (pooIHeader}(aO)
-708 AllocPooled(memSize,pooIHeader}(dOlaO)
-714 FreePooled(memory,pooIHeader}(a1,aO}

--- misc ---

-720 AttemptSemaphoreShared(sigSem}(aO)
-726 ColdRebootOO
-732 StackSwap(newStack}(aO}

--- task trees ---

-738 ChildFree(tid)(dO)
-744 ChildOrphan(tid)(dO)
-750 ChiidStatus(tid}(dO)
-756 ChildWait(tid}(dO)

--- future expansion ---

-762 CachePreDMA(address,length,flags}(aOla1,d1}
-768 CachePostDMA(address,length,flags}(aOla1,d1}
-774 *execPrivate1000
-780 * execPrivate 11 00
-786 *execPrivate1200
-792 *execPrivate1300

A3-4

DOS

-300pen(name,accessMode)(d1/d2)
-36 Close(file)(d1)
-42 Read(file,buffer,length)(d1/d2/d3)
-48 Write(file,buffer,length)(d1/d2/d3)
-54lnputOO
-600utputOO
-66 Seek(file,position,offset)(d1/d2/d3)
-72 DeleteFile(name)(d1)
-78 Rename(oldName,newName)(d 1 /d2)
-84 Lock(name,type)(d1/d2)
-90 UnLock(lock)(d1)
-96 DupLock(lock)(d1)
-102 Examine(lock, filelnfoBlock)(d 1 /d2)
-108 ExNext(lock,filelnfoBlock)(d1/d2)
-114 I nfo(lock,parameterBlock)(d 1 /d2)
-120 CreateDir(name)(d1)
-126 CurrentDir(lock)(d1)
-132 loErrOO
-138 CreateProc(name,pri,segList,stackSize)(d1/d2/d3/d4)
-144 Exit(returnCode)(d1)
-150 LoadSeg(name)(d1)
-156 UnLoadSeg(seglist)(d1)
-162 *dosPrivate1 00
-168 *dosPrivate200
-174 DeviceProc(name)(d1)
-180 SetComment(name,comment)(d1/d2)
-186 SetProtection(name,protect)(d1/d2)
-192 DateStamp(date)(d1)
-198 Delay(timeout)(d1)
-204 WaitForChar(file,timeout)(d1/d2)
-210 ParentDir(lock)(d1)
-216 Islnteractive(file)(d1)
-222 Execute(string,file,file2)(d1/d2/d3)

*** functions in Release 2.0 or higher ***

---DOS Object creation/deletion---

-228 AllocDosObject(type,tags)(d1/d2)
-234 FreeDosObject(type,ptr)(d1/d2)

---Packet Level routines---

-240 DoPkt(port,action,arg 1 ,arg2,arg3,arg4,arg5)(d 1/d2/d3/d4/d5/d6/d7)
-246 Send Pkt(dp,port,replyport)(d 1/d2/d3)
-252 WaitPktOO
-258 ReplyPkt(dp,res1 ,res2)(d1/d2/d3)
-264 AbortPkt(port,pkt)(d 1/d2)

---Record Locking---

-270 LockRecord(fh,offset,length,mode, timeout)(d1/d2/d3/d4/d5)
-276 LockRecords(recArray ,timeout)(d 1/d2)
-282 UnLockRecord(fh,offset,length)(d1/d2/d3)
-288 UnLockRecords(recArray)(d1)

A3-5

---Buffered File 1/0---

-294 Selectlnput(fh)(d1)
-300 SelectOutput(fh)(d1)
-306 FGetC(fh)(d1)
-312 FPutC(fh,ch)(d1/d2)
-318 UnGetC(fh,character)(d 1 /d2)
-324 FRead(fh,block,blocklen,number)(d 1 /d2/d3/d4)
-330 FWrite(fh,block,blocklen,number)(d 1 /d2/d3/d4)
-336 FGets(fh,buf,buflen)(d1/d2/d3)
-342 FPuts(fh,str)(d1/d2)
-348 VFWritef(fh, format,argarray)(d 1 /d2/d3)
-354 VFPrintf(fh,format,argarray)(d1/d2/d3)
-360 Flush(fh)(d1)
-366 SetVBuf(fh, buff, type ,size)(d 1 /d2/d3/d4)

---DOS Object Management---

-372 DupLockFromFH(fh)(d1)
-378 Open FromLock(lock)(d1)
-384 ParentOfFH(fh)(d1)
-390 ExamineFH(fh,fib)(d1/d2)
-396 SetFileDate(name,date)(d1/d2)
-402 NameFromLock(lock,buffer,len)(d1 /d2/d3)
-408 NameFromFH(fh,buffer,len)(d1/d2/d3)
-414 SplitName(name,seperator,buf,oldpos,size)(d1/d2/d3/d4/d5)
-420 SameLock(lock1 ,lock2)(d1/d2)
-426 SetMode(fh,mode)(d1/d2)
-432 ExAIl (lock, buffer ,size ,data,control)(d 1 /d2/d3/d4/d5)
-438 ReadLink(port,lock,path,buffer,size)(d1/d2/d3/d4/d5)
-444 MakeLink(name,dest,soft)(d1/d2/d3)
-450 ChangeMode(type,fh,newmode)(d1/d2/d3)
-456 SetFileSize(fh,pos,mode)(d1/d2/d3)

---Error Handling---

-462 SetloErr(result)(d1)
-468 Fault(code,header,buffer,len)(d1/d2/d3/d4)
-474 PrintFault(code,header)(d 1 /d2)
-480 ErrorReport(code, type, arg 1 ,device)(d 1 /d2/d3/d4)
-486 RESERVED

---Process Management---

-492 CliOO
-498 CreateNewProc(tags)(d1)
-504 RunCommand(seg,stack,paramptr,paramlen)(d1/d2/d3/d4)
-510 GetConsoleTaskOO
-516 SetConsoleTask(task)(d1)
-522 GetFileSysTaskOO
-528 SetFileSysTask(task)(d1)
-534 GetArgStrOO
-540 SetArgStr(string)(d1)
-546 FindCliProc(num)(d1)
-552 MaxCIiOO
-558 SetCurrentDirName(name)(d1)
-564 GetCurrentDirName(buf,len)(d1/d2)
-570 SetProgramName(name)(d1)
-576 GetProgramName(buf,len)(d1/d2)

A3-6

-582 SetPrompt(name)(d1)
-588 GetPrompt(buf,len)(d1/d2)
-594 SetProgramDir(lock)(d1)
-600 GetProgramDirOO

---Device List Management---

-606 SystemTagList(command, tags)(d 1 Id2)
-612 AssignLock(name,lock)(d1/d2)
-618 AssignLate(name,path)(d1/d2)
-624 AssignPath(name,path)(d1/d2)
-630 AssignAdd(name,lock)(d1/d2)
-636 RemAssignList(name,lock)(d1/d2)
-642 GetDeviceProc(name,dp)(d1/d2)
-648 FreeDeviceProc(dp)(d1)
-654 LockDosList(flags)(d1)
-660 UnLockDosList(flags)(d1)
-666 AttemptLockDosList(flags)(d1)
-672 RemDosEntry(dlist)(d1)
-678 AddDosEntry(dlist)(d1)
-684 FindDosEntry(dlist,name,flags)(d1/d2/d3)
-690 NextDosEntry(dlist,flags)(d1/d2)
-696 MakeDosEntry(name,type)(d1/d2)
-702 FreeDosEntry(dlist)(d1)
-708IsFileSystem(name)(d1)

---Handler Interface---

-714 Format(filesystem,volumename,dostype)(d1/d2/d3)
-720 Relabel(drive,newname)(d1/d2)
-726 I nhibit(name,onoff)(d 1 Id2)
-732 AddBuffers(name,number)(d1/d2)

---Date, Time Routines---

-738 CompareDates(date1,date2)(d1/d2)
-744 DateToStr(datetime)(d1)
-750 StrToDate(datetime)(d1)

---Image Management---

-756 I nternalLoadSeg(fh, table,funcarray,stack)(dOlaOla 1 la2)
-762 I nternaIUnLoadSeg(seglist,freefunc)(d1 la1)
-768 NewLoadSeg(file,tags)(d1/d2)
-774 AddSegment(name,seg ,system) (d 1 Id2/d3)
-780 FindSegment(name,seg,system)(d1/d2/d3)
-786 RemSegment(seg)(d1)

---Command Support----

-792 CheckSignal(mask)(d1)
-798 ReadArgs(template ,arraY,args)(d 1 Id2/d3)
-804 FindArg(keyword, template)(d1 Id2)
-810 Readltem(name,maxchars,cSource)(d 1 Id2/d3)
-816 StrToLong(string,value)(d1/d2)
-822 MatchFi rst(pat,anchor)(d 1 Id2)
-828 MatchNext(anchor)(d1)
-834 MatchEnd(anchor)(d1)
-840 ParsePattern(pat,buf,buflen)(d 1 Id2/d3)

A3-7

-846 MatchPattern(pat,str)(d1/d2)
-852 * Not currently implemented.
-858 FreeArgs(args)(d1)
-864 *--- (1 function slot reserved here) ---
-870 FilePart(path)(d1)
-876 Path Part(path)(d 1)
-882 AddPart(dirname,filename,size)(d1 /d2/d3)

---Notification---
-888 StartNotify(notify)(d1)
-894 EndNotify(notify)(d1)

---Environment Variable functions---

-900 SetVar(name,buffer,size,flags)(d1/d2/d3/d4)
-906 GetVar(name, buffer ,size, flags)(d 1 /d2/d3/d4)
-912 DeleteVar(name,flags)(d1/d2)
-918 FindVar(name,type)(d1/d2)
-924 *dosPrivate400
-930 ClilnitNewcli(dp)(aO)
-936 ClilnitRun(dp)(aO)
-942 WriteChars(buf,buflen)(d1/d2)
-948 PutStr(str)(d1)
-954 VPrintf(format,argarray)(d 1 /d2)
-960 *--- (1 function slot reserved here) ---
-966 ParsePatternNoCase(pat,buf,buflen)(d1/d2/d3)
-972 MatchPatternNoCase(pat,str)(d 1 /d2)
-978 dosPrivate500
-984 SameDevice(lock1 ,lock2)(d1/d2)

GRAPHICS

-30 BltBitMap
(srcBitMap,xSrc,ySrc,destBitMap,xDest,yDest,xSize ,ySize ,minterm,mask, tempA)
(aO,dO/d1 /a 1 ,d2/d3/d4/d5/d6/d7/a2)

-36 BitT emplate(source,xSrc,srcMod,destRP ,xDest,yDest,xSize,ySize)(aO,dO/d 1 /a 1 ,d2/d3/d4/d5)

--- Text routines ---

-42 ClearEOL(rp)(a1)
-48 ClearScreen(rp)(a1)
-54 TextLength(rp,string,count)(a 1 ,aO,dO)
-60 Text(rp,string,count)(a1 ,aO,dO)
-66 SetFont(rp,textFont)(a1 ,aO)
-720penFont(textAttr)(aO)
-78 CloseFont(textFont)(a 1)
-84 AskSoftStyle(rp)(a1)
-90 SetSoftStyle(rp,style,enable)(a1 ,dO/d1)

Gels routines ---

-96 AddBob(bob,rp)(aO/a1)
-102 AddVSprite(vSprite,rp)(aO/a1)
-108 DoCollision(rp)(a1)
-114 DrawGList(rp,vp)(a1 ,aO)

A3-8

-120InitGels(head,tail,gelslnfo)(aOla1/a2)
-126InitMasks(vSprite)(aO)
-132 RemIBob(bob,rp,vp)(aOla1/a2)
-138 RemVSprite(vSprite)(aO)
-144 SetCollision(num,routine,gelslnfo)(dOlaOla1)
-150 SortGList(rp)(a1)
-156 AddAnimOb(anOb,anKey,rp)(aOla1/a2)
-162 Animate(anKey,rp)(aOla1)
-168 GetGBuffers(anOb,rp,flag)(aOla1 ,dO)
-174InitGMasks(anOb)(aO)

General graphics routines ---

-180 DrawEllipse(rp,xCenter,yCenter,a,b)(a1 ,dO/d1 Id2/d3)
-186 AreaEllipse(rp,xCenter,yCenter,a,b)(a1 ,dO/d1/d2/d3)
-192 LoadRGB4(vp,colors,count)(aOla 1 ,dO)
-198InitRastPort(rp)(a1)
-204InitVPort(vp)(aO)
-210 MrgCop(view)(a1)
-216 MakeVPort(view,vp)(aOla1)
-222 LoadView(view)(a1)
-228 WaitBlitOO
-234 SetRast(rp,pen)(a1 ,dO)
-240 Move(rp,x,y)(a1 ,dO/d1)
-246 Draw(rp,x,y)(a 1 ,dO/d1)
-252 AreaMove(rp,x,y)(a1 ,dO/d1)
-258 AreaDraw(rp,x,y)(a1 ,dO/d1)
-264 AreaEnd(rp)(a1)
-270 WaitTOFOO
-276 QBlit(blit)(a1)
-282 InitArea(arealnfo,vectorBuffer,maxVectors)(aOla1 ,dO)
-288 SetRGB4(vp,index,red,green,blue)(aO,dO/d1/d2/d3)
-294 QBSBlit(blit)(a1)
-300 BltClear(memBlock,byteCount,flags)(a1 ,dO/d1)
-306 RectFill(rp,xMin,yMin,xMax,yMax)(a1 ,dO/d1/d2/d3)
-312 BltPattern(rp,mask,xMin,yMin,xMax,yMax,maskBPR)(a 1 ,aO,dO/d1 Id2/d3/d4)
-318 ReadPixel(rp,x,y)(a1 ,dO/d1)
-324 WritePixel(rp,x,y)(a1 ,dO/d1)
-330 Flood(rp,mode,x,y)(a1 ,d2,dO/d1)
-336 PolyDraw(rp,count,polyTable)(a1 ,dOlaO)
-342 SetAPen(rp,pen)(a1 ,dO)
-348 SetBPen(rp,pen)(a1 ,dO)
-354 SetDrMd(rp,drawMode)(a1 ,dO)
-360 InitView(view)(a1)
-366 CBump(copList)(a1)
-372 CMove(copList,destination,data)(a1 ,dO/d1)
-378 CWait(copList,v,h)(a1 ,dO/d1)
-384 VBeamPosOO
-390 InitBitMap(bitMap,depth,width,height)(aO,dO/d1/d2)
-396 ScrollRaster(rp,dx,dy,xMin,yMin,xMax,yMax)(a1 ,dO/d1/d2/d3/d4/d5)
-402 WaitBOVP(vp)(aO)
-408 GetSprite(sprite,num)(aO,dO)
-414 FreeSprite(num)(dO)
-420 ChangeSprite(vp,sprite,newData)(aOla1/a2)
-426 MoveSprite(vp,sprite,x,y)(aOla1 ,dO/d1)
-432 LockLayerRom(layer)(a5)
-438 UnlockLayerRom(layer)(a5)
-444 SyncSBitMap(layer)(aO)
-450 CopySBitMap(layer)(aO)

A3-9

-456 OwnBlitterOO
-462 DisownBlitterOO
-468 InitTmpRas(tmpRas,buffer,size)(aO/a 1 ,dO)
-474 AskFont(rp,textAttr)(a1 ,aO)
-480 AddFont(textFont)(a 1)
-486 RemFont(textFont)(a 1)
-492 AliocRaster(width,height)(dO/d1)
-498 FreeRaster(p,width,height)(aO,dO/d1)
-504 AndRectRegion(region,rectangle)(aO/a1)
-510 OrRectRegion(region,rectangle)(aO/a 1)
-516 NewRegionOO
-522 ClearRectRegion(region,rectangle)(aO/a1)
-528 ClearRegion(region)(aO)
-534 DisposeRegion(region)(aO)
-540 FreeVPortCopLists(vp)(aO)
-546 FreeCopList(copList)(aO)
-552 ClipBlit(srcRP,xSrc,ySrc,destRP,xDest,yDest,xSize,ySize,minterm)(aO,dO/d1/a1 ,d2/d3/d4/d5/d6)
-558 XorRectRegion(region,rectangle)(aO/a1)
-564 FreeCprList(cprList)(aO)
-570 GetColorMap(entries)(dO)
-576 FreeColorMap(colorMap)(aO)
-582 GetRGB4(colorMap,entry)(aO,dO)
-588 ScroIlVPort(vp)(aO)
-594 UCopperListlnit(uCopList,n)(aO,dO)
-600 FreeGBuffers(anOb,rp,flag)(aO/a1 ,dO)
-606 BltBitMapRastPort(srcBM,x,y,destRP,x,y,Wld,Height,minterm)(aO,dO/d1/a1 ,d2/d3/d4/d5/d6)
-612 OrRegionRegion(srcRegion,destRegion)(aO/a1)
-618 XorRegion Region(srcRegion ,destRegion)(aO/a 1)
-624 AndRegionRegion(srcRegion,destRegion)(aO/a1)
-630 SetRGB4CM(colorMap,index, red, green, blue)(aO ,dO/d1 /d2/d3)
-636 BltMaskBitMapRastPort

(srcBM ,x, y,destRP ,x,y, Wid, High,mterm, Mask)(aO ,dO/d 1 /a 1 ,d2/d3/d4/d5/d6/a2)
-642 RESERVED
-648 RESERVED
-654 AttemptLockLayerRom(layer)(a5)

*** functions in Release 2.0 or higher ***

-660 GfxNew(gfxNode Type) (dO)
-666 GfxFree(gfxNodePtr)(aO)
-672 GfxAssociate(associateNode,gfxNodePtr)(aO/a 1)
-678 BitMapScale(bitScaleArgs)(aO)
-684 ScalerDiv(factor,numerator,denominator)(dO/d1/d2)
-690 T ext Fit
(rp,string,strLen,textExtent,constrainingExtent,strDirection,constrainingBitWidth,constrainingBitHeight)(
a1,aO,dO/a2)

INTUITION

-300penlntuitionOO
-36Intuition(iEvent)(aO)
-42 AddGadget(window,gadget,position)(aO/a1 ,dO)
-48 ClearDMRequest(window)(aO)
-54 ClearMenuStrip(window)(aO)
-60 ClearPointer(window)(aO)
-66 CloseScreen(screen)(aO)

A3-10

-72 CloseWindow(window}(aO)
-78 CloseWorkBenchOO
-84 CurrentTime(seconds,micros}(aO/a 1)
-90 DisplayAlert(alertNumber,string,height)(dO/aO,d1)
-96 DisplayBeep(screen)(aO)

-1 02 DoubleClick(sSeconds,sMicros,cSeconds,cMicros)(dO/d1/d2ld3)
-108 DrawBorder(rp,border,leftOffset,topOffset)(aO/a1 ,dO/d1)
-114 Drawlmage(rp,image,leftOffset,topOffset)(aO/a1 ,dO/d1)
-120 EndRequest(requester, window)(aO/a 1)
-126 GetDefPrefs(preferences,size)(aO,dO)
-132 GetPrefs(preferences,size)(aO,dO)
-138 InitRequester(requester)(aO)
-144 ItemAddress(menuStrip,menuNumber}(aO,dO)
-150 ModifyIDCMP(window,flags}(aO,dO)
-156 ModifyProp

(gadget,window,requester,flags,horizPot,vertPot,horizBody,vertBody)(aO/a1/a2,dO/d1/d2ld3/d4)
-162 MoveScreen(screen,dx,dy)(aO,dO/d 1)
-168 MoveWindow(window,dx,dy}(aO,dO/d1)
-174 OffGadget(gadget, window, requester)(aO/a 1 /a2)
-1800ffMenu(window,menuNumber)(aO,dO)
-186 OnGadget(gadget, window, requester)(aO/a 1 /a2)
-192 OnMenu(window,menuNumber)(aO,dO)
-198 OpenScreen(newScreen)(aO)
-204 OpenWindow(newWindow)(aO)
-210 OpenWorkBenchOO
-216 PrintIText(rp,iText,left,top)(aO/a1 ,dO/d1)
-222 RefreshGadgets(gadgets, window, requester)(aO/a 1 /a2)
-228 RemoveGadget(window,gadget)(aO/a 1)
-234 ReportMouse(flag, window)(dO/aO)
-240 Request(requester,window)(aO/a1)
-246 ScreenToBack(screen)(aO)
-252 ScreenToFront(screen)(aO)
-258 SetDMRequest(window,requester)(aO/a 1)
-264 SetMenuStrip(window,menu)(aO/a1)
-270 SetPointer(window ,pointer ,height, width,xOffset,yOffset)(aO/a 1 ,dO/d 1 /d2ld3)
-276 SetWindowTitles(window, windowTitle,screen Title) (aO/a 1 /a2)
-282 ShowTitle(screen,showlt)(aO,dO)
-288 SizeWindow(window,dx,dy)(aO,dO/d1)
-294 ViewAddressOO
-300 ViewPortAddress(window)(aO)
-306 WindowToBack(window)(aO)
-312 WindowToFront(window)(aO)
-318 WindowLimits(window, widthMin,heightMin, widthMax,heightMax)(aO ,dO/d 1 /d2/d3)
-324 SetPrefs(preferences,size,inform)(aO,dO/d1)

-330 IntuiTextLength(iText)(aO)
-336 WBenchToBackOO
-342 WBenchToFrontOO
-348 AutoRequest(window,body,posText,negText,pFlag,nFlag,width,height)(aO/a1/a2/a3,dO/d1/d2ld3)
-354 BeginRefresh(window)(aO)
-360 BuildSysRequest(window,body ,posT ext,negText, flags, width, height)(aO/a 1 /a2/a3,dO/d 1 /d2)
-366 EndRefresh(window ,complete)(aO,dO)
-372 FreeSysRequest(window)(aO)
-378 MakeScreen(screen)(aO)
-384 RemakeDisplayOO
-390 RethinkDisplayOO
-396 AliocRemember(rememberKey,size,flags)(aO,dO/d1)
-402 AlohaWorkbench(wbport)(aO)
-408 FreeRemember(rememberKey, reallyForget)(aO,dO)

A3-11

-414 LockIBase(dontknow)(dO)
-420 UnlockIBase(ibLock)(aO)

*** functions in Release 1.2 or higher ***

-426 GetScreen Data(buffer ,size, type ,screen) (aO ,dO/d 1 /a 1)
-432 RefreshGList(gadgets, window ,requester,numGad)(aO/a 1 /a2,dO)
-438 AddGList(window,gadget,position,numGad,requester)(aO/a1, dO/d1/a2)
-444 RemoveGList(remPtr,gadget,numGad)(aO/a 1 ,dO)
-450 ActivateWindow(window)(aO)
-456 RefreshWindowFrame(window)(aO)
-462 ActivateGadget(gadgets,window,requester)(aO/a1/a2)
-468 NewModifyProp

(gadget, window, requester, flags,horizPot, vertPot,horizBody, vertBody ,numGad)
(aO/a1/a2,dO/d1/d2ld3/d4/d5)

*** functions in Release 2.0 or higher ***

-474 QueryOverscan(displayID,rect,oScanType)(aO/a1,dO)
-480 MoveWindowl nFrontOf(window,behindWindow)(aO/a 1)
-486 ChangeWindowBox(window,left,top,width,height)(aO,dO/d1/d2ld3)
-492 SetEditHook(hook)(aO)
-498 SetMouseQueue(window ,queueLength)(aO ,dO)
-504 ZipWindow(window)(aO)

--- public screens ---

-510 LockPubScreen(name)(aO)
-516 UnlockPubScreen(name,screen)(aO/a1)
-522 LockPubScreenListOO
-528 UnlockPubScreenListOO
-534 NextPubScreen(screen,namebuf)(aO/a1)
-540 SetDefaultPubScreen(name)(aO)
-546 SetPubScreenModes(modes)(dO)
-552 PubScreenStatus(screen,statusFlags)(aO,dO)
-5580btainGIRPort(glnfo)(aO)
-564 ReleaseGI RPort(rp)(aO)
-570 GadgetMouse(gadget,glnfo,mousePoint)(aO/a 1 /a2)
-576 *intuitionPrivate1 00
-582 GetDefaultPubScreen(nameBuffer)(aO)
-588 EasyRequestArgs(window ,easyStruct,idcmpPtr,args)(aO/a 1 /a2/a3)
-594 BuildEasyRequestArgs(window ,easyStruct,idcmp,args)(aO/a 1,dO/a3)
-600 SysReqHandler(window,idcmpPtr,waitlnput)(aO/a1,dO)
-606 OpenWindowTagList(newWindow, tag List) (aO/a 1)
-612 Open Screen TagList(newScreen, tagList)(aO/a 1)

---new Image functions---

-618 DrawlmageState(rp,image,leftOffset,topOffset,state,drawlnfo)(aO/a1,dO/d1/d2la2)
-624 Pointlnlmage(point,image)(dO/aO)
-630 Eraselmage(rp,image,leftOffset,topOffset)(aO/a1,dO/d1)
-636 NewObjectA(classPtr,classl D, tag List) (aO/a 1 /a2)
-642 DisposeObject(object)(aO)
-648 SetAttrsA(object, tag Li st)(aO/a 1)
-654 GetAttr(attrID,object,storagePtr)(dO/aO/a1)

---special set attribute call for gadgets---

-660 SetGadgetAttrsA(gadget, wi ndow, requester, tagList) (aO/a 1 /a2la3)

A3-12

-666 NextObject(objectPtrPtr)(aO)
-672 *intuitionPrivate200
-678 MakeClass(classl D ,superClassl D ,superClassPtr,instanceSize,flags)(aOla 1 1a2,dO/d1)
-684 AddClass(classPtr)(aO)
-690 GetScreenDrawlnfo(screen)(aO)
-696 FreeScreenDrawlnfo(screen,drawlnfo)(aOla1)
-702 ResetMenuStrip(window,menu)(aOla 1)
-708 RemoveClass(classPtr)(aO)
-714 FreeClass(classPtr)(aO)
-720 *intuitionPrivate300
-726 *intuitionPrivate400

DISKFONT

-30 OpenDiskFont(textAttr)(aO)
-36 AvailFonts(buffer ,bufBytes, flags)(aO,dO/d 1)

*** functions in Release 1.2 or higher ***

-42 NewFontContents(fontsLock,fontName)(aOla1)
-48 DisposeFontContents(fontContentsHeader)(a1)

*** functions in Release 2.0 or higher ***

-54 NewScaledDiskFont(sourceFont,destTextAttr)(aOla1)

A3-13

A3-14

Amiga Hardware
Registers

The following are a list of memory locations where direct access to the Agnus, Denise and Paula chips
is possible. It is illegal to access any of these registers if you wish your program to behave correctly in
the Amiga environment. However in BlitzMode most of these registers may be accessed taking into
consideration the accompanying documentation.

An * next to any description states that the option is available only with the new ECS (Enhanced Chip
Set).

Also note that any reference to memory pointers MUST point to chip mem as the Amiga Chip Set is
NOT capable of accessing FAST memo This includes BitPlane data, copper lists, Sprite Data, Sound
DATA etc. etc.

BitPlane & Display Control
The Amiga has great flexibility in displaying graphics at different resolutions and positions on the
monitor. The hardware registers associated with the display are nearly always loaded by the copper
and not with the 68000 processor.

#BPLCONO=$lOO
#BPLCON 1 =$ 102
#BPLCON2=$104
#BPLCON3=$106 ; (ECS only)

BIT# BPLCONO

15 HIRES (70ns pixies)
14 BPU2 \
13 BPU1 I #BitPlanes(0-6)
12 BPUO I
11 HOMOD Hold & Modify
10 DBLPF DualPlayField
09 COLOR CompOSite Enable
08 GAUD GenlockAudio
07
06 *SHRES SuperHires
05 *BPLHWRM
04 *SPRHWRM
03 LPEN LightPenEnable
02 LACE Interlace
01 ERSY ExternalSync
00

BPLCON1 BPLCON2

PF2H3\
PF2H2 I Playfield 2 PF2PRI DBLPF Priority
PF2H1 I horizontal PF2P2
PF2HOI scroll PF2P1 Priority to sprites
PF1H3\ PF2PO
PF1 H2 I Playfield 1 PF1P2
PF1 H1 I Horizontal PF1P1 Priority to sprites
PF1 HOI scroll PF1PO

A4-1

IBPLOPTH=$EO ;BitPlane Pointer 0 High Word
IBPLOPTL=$E2 ;BitPlane Pointer 0 Low Word
IBPL 1 PTH=$E4
IBPL 1 PTL=$E6
IBPL2PTH=$E8
IBPL2PTL=$EA
IBPL3PTH=$EC
IBPL3PTL=$EE
IBPL4PTH=$FO
IBPL4PTL=$F2
IBPL5PTH=$F4
IBPL5PTL=$F6

Each pair of registers contain an 18 bit pointer to the address of BitPlanex data in chip memory. They
MUST be reset every frame usually by the copper.

IBPL 1 MOD=$1 08 ;Bitplane Modulo for Odd Planes
IBPL2MOD=$10A ;Bitplane Modulo for EvenPlanes

At the end of each display line, the BPLxMODs are added to the the BitPLane Pointers so they point to
the address of the next line.

IDIWSTOP=$090 ; display window stop
IDIWSTRT =$08E ; display window start

These two registers control the display window size and position. The
following bits are assigned

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1

00

HO

For DIWSTRT V8=0 & H8=0 restricting it to the upper left of the screen. For DIWSTOP V8=1 & H8=1
restricting it to the lower right of the screen.

IDDFSTOP= $094 ; data fetch stop
IDDFSTRT =$092 ; data fetch start

The two display data fetch registers control when and how many words are fetched from the bitplane
for each line of display.

Typical values are as follows:

lores 320 pixels, DDFSTRT & DDFSTOP = $38 & $DO
hires 640 pixels, DDFSTRT & DDFSTOP = $3C & $d4

If smooth scrolling is enabled DDFSTRT should be 2 less than above.

#BPL 1 DAT $110 ; BitPlane Data parallel to serial converters
#BPL2DAT $112
#BPL3DAT $114
IBPL4DAT $116
#BPL5DAT $118
#BPL6DAT $11A

A4-2

These 6 registers receive the DMA data fetched by the BitPlane engine, and output it serially to the
Amiga DACS, triggered by writing to BPL 1 OAT. Not intended for programmer access.

The Copper
The Copper is found on the Agnus chip, it's main job is to 'poke' values into the hardware registers in
sync with the video beam. The main registers it updates are BitPlane ptrs, Sprites and other control
words that HAVE to be reset every frame. It's also used to split the screen vertically as it is capable of
waiting for certain video beam positions before writing data. Its also capable of waiting for the blitter to
finish as well as skipping instructions if beam position is equal to certain values.

#COP 1 LCH=$080
#COP 1 LCL=$082

#COP2LCH=$084
#COP2LCL=$086

Each pair of registers contain an 18 bit pointer to the address of a Copper List in chip memo The
Copper will automatically jump to the address in COP1 at the beginning of the frame and is able to
jump to COP2 if the following strobe is written to.

#COPJMPl =$88
#COPJMP2=$8A

When written to these addresses cause the copper to jump to the locations held in COP1 LC &
COP2LC. The Copper can write to these registers itself causing its own indirect jump.

#COPCON=$2E

By setting bit 1 of this register the copper is allowed to access the blitter hardware.

The copper fetches two words for each instruction from its current copper list. The three instructions it
can perform and their relevant bits are as follows:

Bit# MOVE WAIT UNTIL SKIP IF

15 x RD15 VP7 BFD VP7 BFD
14 x RD14 VP6 VE6 VP6 VE6
13 x RD13 VP5 VE5 VP5 VE5
12 x RD12 VP4 VE4 VP4 VE4
11 x RD11 VP3 VE3 VP3 VE3
10 x RD10 VP2 VE2 VP2 VE2
09 x RD09 VP1 VE1 VP1 VE1
08 DA8 RD08 VPO VEO VPO VEO
07 DA7 RD07 HP8 HE8 HP8 HE8
06 DA6 RD06 HP7 HE7 HP7 HE7
05 DA5 RD05 HP6 HE6 HP6 HE6
04 DA4 RD04 HP5 HE5 HP5 HE5
03 DA3 RD03 HP4 HE4 HP4 HE4
02 DA2 RD02 HP3 HE3 HP3 HE3
01 DA1 RD01 HP2 HE2 HP2 HE2
00 0 RDOO 1 0 1 1

A4-3

The MOVE instruction shifts the value held in RD15-0 to the destination address calculated by
$DFFOOO +DA8-1.

The WAIT UNTIL instruction places the copper in a wait state until the video beam position is past
HP,VP (xy coordinates). The Copper first logical ANDS (masks) the video beam with HE,VE before
doing the comparison. If BFD is set then the blitter must also be finished before the copper will exit its
wait state.

The SKIP IF instruction is similar to the WAIT UNTIL instruction but instead of placing the copper in a
wait state if the video beam position fails the comparison test it skips the next MOVE instruction.

A detailed discussion of creating copper lists in included in the Blitz 2 user guide.

Colour Registers
The following 32 color registers can each represent one of 4096 colors.

#COLOROO=$180 #COLOR08=$190 #COLOR 16=$1 AO #COLOR24=$1 BO
#COLORO 1 =$182 #COLOR09=$192 #COLOR 17=$1 A2 #COLOR25=$1 B2
#COLOR02=$184 #COLOR 1 0=$194 #COLOR 18=$1 A4 #COLOR26=$1 B4
#COLOR03=$186 #COLOR 11 =$196 #COLOR 19=$1 A6 #COLOR27=$1 B6
#COLOR04=$188 #COLOR 12=$198 #COLOR20=$1 A8 #COLOR28=$1 B8
#COLOR05=$18A #COLOR13=$19A #COLOR21=$lAA #COLOR29=$lBA
#COLOR06=$18C #COLOR 14=$19C #COLOR22=$1 AC # COLOR30=$1 BC
#COLOR07=$18E #COLOR 15=$19E #COLOR23=$1 AE #COLOR31 =$1 BE

The bit usage for each of the 32 colors is:

BIT# 15 14 13 121 11 10 09 081 07 06 05 04 1 03 02 01 00

x x x x 1 R3 R2 R1 RO I G3 G2 G 1 GO 1 B3 B2 B 1 BO

This represents a combination of 16 shades of red, green and blue.

BUtter Control
The Blitter is located on the Agnus, it's main function is to move blocks of data around chip memo It
has 3 input channels A,B & C and 1 output channel D. A simple block move would use 1 input channel
and the 1 output channel, taking 4 clock ticks per cycle. A complex move such as a moving a shape to
a destination with a cookie cut would use all 3 input channels and the output channel taking 8 clock
ticks per cycle.

The main parameters of the blitter include the width and height of the
block to be moved (width is in multiples of words), a start address for each channel, a modulo for each
channel that is added to there address at the end of each line so they point to the next line, a logic
function that specifies which input channels data will be sent to the destination channel.

A4-4

Logic Function Calculation.

The following is a table to work out the logic function (known as the minterm) for a blitter operation.

A B C 0

0 0 0 LFO
0 0 1 LF1
0 1 0 LF2
0 1 1 LF3
1 0 0 LF4
1 0 1 LF5
1 1 0 LF6
1 1 1 LF7

If the Blitter is set up so that channel A pOints to the cookie, B points to the shape to be copied and
C&D point to the destination bitplane (such as how Blitz 2 uses the blitter) we would specify the
following conditions:

When A is 1 then make D=B
When A is 0 then make D=C

Using the above table we calculate the values of LFO-LF7 when these two conditions are met. The top
line has A=O so LFO becomes the value in the C column which is a O. A is 0 in the first 4 rows so LFO
LF3 all reflect the bits in the C column (0101) and A=1 in the lower 4 rows so LF4-LF7 reflect the bits in
the B column (0011).

This generates a minterm LFO-LF7 of % 10101100 or in hex $AC.

Note: read the values of LF7 to LFO from bottom to top to calculate the correct hexadecimal minterm.

#BLTAPTH=$50
#BLTAPTL=$52

#BLTBPTH=$4C
#BLTBPTL=$4E

#BLTCPTH=$48
#BLTCPTL=$4A

#BLTDPTH=$54
#BLTDPTL=$56

Each pair of registers contain an 18 bit pointer to the start address of the 4 blitter channels in chip
memo

#BLTAMOD=$64
#BLTBMOD=$62
#BLTCMOD=$60
#BLTDMOD=$66

The 4 modulo values are added to the blitter pointers at the end of each line.

#BLTADAT=$74
#BLTBDAT =$ 72
#BLTCDAT= $70

A4-5

If a blitter channel is disabled the BL TxDAT register can be loaded with a constant value which will
remain unchanged during the blit operation.

#BLT AFWM=$44 ; Blitter first word mask for source A
#BLTALWM=$46 ; Blitter last word mask for source A

During a Blitter operation these two registers are used to mask the contents of BLTADAT for the first
and last word of every line.

#BLTCONO=$loo
#BLTCON 1 =$1 02

The following bits in BLTCONO & BL TCON1 are as follows.

BIT# BLTCONO BLTCON1

15 ASH3 BSH3
14 ASH2 BSH2
13 ASH1 BSH1
12 ASHO BSHO
11 USEA x
10 USEB x
09 USEC x
08 USED x
07 LF7 x
06 LF6 x
05 LF5 x
04 LF4 EFE
03 LF3 IFE
02 LF2 FCI
01 LF1 DESC
00 LFO o (1=line mode)

ASH is the amount that source A is shifted (barrel rolled)
USEx enables each of the 4 blitter channels
LF holds the logic function as discussed previously in this section
BSH is the amount that source B is shifted (barrel rolled)
EFE is the Exclusive Fill Enable flag
IFE is the Inclusive Fill Enable flag
FCI is the Fill Carry InpL!t
DESC is the descending flag (blitter uses decreasing addressing)

#BLTSIZE=$S8

By writing the height and width of the blit operation to BL TSIZE the the blitter will start the operation.
Maximum size is 1024 high and 64 words (1024 bits) wide. The following defines bits in BLlTZSIZE

BIT# 1514131211 10 09080706105 04 0302 01 00

h9 h8 h7 h6 h5 h4 h3 h2 h1 hO I w5 w4 w3 w2 w1 wO

#BLTSIZV= $SC ;(ECS ONL Y)
#BLTSIZH =$SC ;(ECS ONL Y)

With the new ECS writing to BL TSIZV first and then BL TSZH the blitter can operate on blocks as large

A4-6

as 32K x 32K pixels in size.

The Blitter is also able to perform linedrawing and filled polygon functions. Details about using the
blitter for these functions can be found on the examples disk included with Blitz 2.

Audio Control
The Amiga has 4 channels of 8 bit audio, each with their own memory access, period and volume
control. The following are a list of the applicable hardware registers.

IAUDOLCH=$AO ;pairs of 24 bit memory pointers to audio data in chip mem
IAUDOLCL=$A2
lAUD 1 LCH=$BO
lAUD 1 LCL=$B2
IAUD2LCH=$CO
IAUD2LCL=$C2
IAUD3LCH=$DO
IAUD3LCL=$D2

IAUDOLEN=$A4 ;volume registers (0-63)
lAUD 1 LEN=$B4
IAUD2LEN=$C4
IAUD3LEN=$D4

IAUDOPER=$A6 ;period
lAUD 1 PER=$B6
IAUD2PER=$C6
IAUD3PER=$D6

IAUDOVOL=$A8
IAUD1VOL=$B8
IAUD2VOL=$C8
IAUD3VOL=$D8

IAUDODAT=$AA
IAUD1DAT=$BA
IAUD2DAT=$CA
IAUD3DAT=$DA

Sprite Control
The Amiga hardware is capable of displaying eight 4 colour sprites or four 16 colour sprites. Standard
control of sprites is done by using the copper to setup the 8 sprite pointers at the beginning of each
frame.

ISPROPTH=$120 ;pairs of 24 bit memory pointers to sprite data in chip mem
ISPROPTL=$122
ISPR 1 PTH=$124
ISPR 1 PTL=$126
ISPR2PTH=$128
ISPR2PTL=$12A
ISPR3PTH=$12C

A4-7

#SPR3PTL=$12E
#SPR4PTH=$130
#SPR4PTL=$132
#SPR5PTH=$134
#SPR5PTL=$136
#SPR6PTH=$138
#SPR6PTL=$13A
#SPR7PTH=$13C
#SPR7PTL=$13E

The pointers should point to data that is begins with two words containing the SPRPOS & SPRCTL
values for that sprite, followed by its image data and with two null words that terminate the data.

#SPROPOS = $140 #SPROCTL = $142 #SPRODATA = $144 #SPRODATB = $146
#SPR1POS = $148 #SPR1CTL = $14A #SPR1DATA = $14C #SPR1DATB = $14E
#SPR2POS = $150 #SPR2CTL = $152 #SPR2DATA = $154 #SPR2DATB = $156
#SPR3POS = $158 #SPR3CTL = $15A #SPR3DATA = $15C #SPR3DA TB = $15E
#SPR4POS = $160 #SPR4CTL = $162 #SPR4DATA = $164 #SPR4DATB = $166
#SPR5POS = $168 #SPR5CTL = $16A #SPR5DATA = $16C #SPR5DATB = $16E
#SPR6POS = $170 #SPR6CTL = $172 #SPR6DATA = $174 #SPR6DA TB = $176
#SPR7POS = $178 #SPR7CTL = $17 A #SPR7DATA = $17C #SPR7DA TB = $17E

Using standard sprite DMA the above registers are all loaded from the sprite data pointed to in chip
mem by the sprite pointers. These registers are only of interest to people wanting to 'multiplex' sprites
by using the copper to load these registers rather than sprite DMA.

The following is bit definitions of both SPRPOS and SPRCTL.

BIT# 15 14 13 12 11 10 09 08 07 06 05 04

SPRPOS SV7 SV6 SV5 SV4 SV3 SV2 SV1 SVO SH8 SH7 SH6 SH5

SPRCTL EV7 EV6 EV5 EV4 EV3 EV2 EV1 EVO ATT X

SV is the vertical start position of the sprite
SH is the horizontal position of the sprite (calulated in lores pixels only)
EV is the end vertical position

X

ATT is the sprite attached bit (connects odd sprites to their predecessors)

Interupt Control
#INTENA=$9A ;interupt enable write address
#INTENAR=$l C ;interupt enable read address

#INTREQ=$9C ;interupt request write address
#INTREQR=$9C ;interupt request read address

X

03 02 01 00

SH4 SH3 SH2 SH1

X SV8 EV8 SHO

INTENA is used to enable or disable interupts. If the value written to INTENA has bit 15 set any other
of the bits enable their corresponding interupts. If bit 15 is clear any of the other bits set will disable
their corresponding interupts.

A4-8

INTENAR will return which interupts are currently enabled.

INTREQ is used to initiate or clear an interupt. It is mostly used to clear the interupt by the interupt
handler. Again Bit# 15 states whether the corrsponding interupts will be requested or cleared.

INTREQR returns which interupts are currently requested.

The following bit definitions relate to the 4 interupt control registers.

BIT# NAME LEVEL DESCRIPTION

15 SET/CLR determines if bits written with 1 are set or cleared
14 INTEN master interupt enable
13 EXTER 6 external interupt
12 DSKSYN 5 disk sync register (same as DSKSYNC)
11 RBF 5 serial port Receive Buffer Full
10 AUD3 4 audio channel 3 finished
09 AUD2 4 audio channel 2 finished
08 AUD1 4 audio channel 1 finished
07 AUDO 4 audio channel 0 finished
06 BLiT 3 blitter finished
05 VERTB 3 start of vertical blank interupt
04 COPER 3 copper
03 PORTS 2 I/O ports and timers
02 SOFT 1 reserved for software initiated interupts
01 DSKBLK 1 disk block finished
00 TBE 1 serial port Transmit Buffer Empty

The following locations hold the address of the 68000 interupt handler code in memory for each level
of interupt.

LEVEL 68000 Address

6 $78
5 $74
4 $70
3 $6c
2 $68
1 $64

DMA Control
DMA stands for direct memory access. Chip mem can be accessed by the display, blitter, copper,
audio, sprites and diskdrive without using the 68000 processor. DMACON enables the user to lock out
any of these from having direct memory access (DMA) to chipmem.

As with INTENA bit 15 of DMACON signals whether the write opertaion should clear or set the relevant
bits of the DMA control.

DMACONR will not only return which channels have DMA access but has flags BBUSY which return
true if the blitter is in operation and BZERO which return if the Blitter has generated any 1 's from it
logic function (useful for collision detection etc.)

A4-9

#DMACON=$96 ;DMA control write (clear or set)
#DMACONR=$02 ;DMA control read (and blitter status) read

The following are the bits assigned to the two DMACON registers.

BIT# NAME DESCRIPTION

15 SET/CLR determines if bits written with 1 are set or cleared
14 BBUSY blitter busy flag
13 BZERO blitter logic zero
12 X
11 X
10 BLTPRI "blitter nasty" signals blitter has DMA priority over CPU
09 DMAEN enable all DMA below
08 BPLEN BitPlane DMA enable
07 COPEN Copper DMA enable
06 BLTEN Blitter DMA enable
05 SPREN Sprite DMA enable
04 DSKEN Disk DMA enable
03 AUD3EN Audio channel 3 DMA enable
02 AUD2EN Audio channel 2 DMA enable
01 AUD1EN Audio channel 1 DMA enable
00 AUDOEN Audio channel 0 DMA enable

Miscelaneous Amiga Chip Locations
The following is a list of the other $dffOOO addresses not covered by the previous sections. Because of
their complex nature other texts should be referred to for more information.

#ADKCON=$09E
#ADKCONR=$OlO
#BEAMCONO=$l DC
#CLXCON=$098
#C LX DAT =$OOE

#DENISEID=$07c
#DIWHIGH=$l E4
#DSKBYTER=$O 1 A
#DISKDAT =$026
#DISKDA TR=$008
#DSKLEN=$024
#DSKPTH=$020
#DSKPTL=$022
#DSKSYNC=$07 e

#HBSTOP=$l C6
#HBSTRT=$1C4
#HCENTER=$l E2
#HSSTOP=$1 C2
#HSSTRT =$1 DE
#HTOTAL=$lCO

A4-10

;Audio/Disk control write
;Audio/Disk control read
;ECS Beam Counter Control Register
;Collision control register (see Blitz) (collision commands)
;Collision data register (see Blitz) (collision commands)

;ECS Denise chip revsion level
;ECS display window high
;disk data byte and status read
;disk DMA data write
;disk DMA data read
;disk length
;disk pointer high
;disk pointer low
;disk sync register

;ECS horizontal line position for HBLANK stop
;ECS horizontal line position for HBLANK start
;ECS horizontal position for Vsync on interlace
;ECS horizontal line position for HSYNC stop
;ECS horizontal line position for HSYNC strt
;ECS highest number count for horizontal line

#JOYODAT=$OOA
#JOY1DAT=$OOC
#JOYTEST =$036

#POTODAT =$012
#POTlDAT=$014
#POTGO=$034
#POTGOR=$O 16
#REFPTR=$028
#SERDAT=$030
#SERDATR=$018
#SERPER=$032

#STREQU=$038
#STRHOR=$03C
#STRLONG=$03E
#STRVBL=$03A
#VBSTOP=$l CE
#VBSTRT =$1 CC

#VH POSR= $006
#VHPOSW=$02C
#VPOSR=$OO4
#VPOSW=$02A

#VSSTOP=$l CA
#VSSTRT=$lEO
#VTOTAL=$l C8

Amiga CIAs

;joystick mouse data left up/dwn
;joystick mouse data right up/dwn
;mouse counters write

;pot counter data left pair
;pot counter data right pair
;pot port data write and start
;pot port data read
;refresh pointer
;serial port data write (with stop bit)
;serial port data read and status bits
;baud rate and 9 bit word flag

;strobe for horizontal sync with VB and EQU
;strobe for horizontal sync
;ECS strobe for id of long horizontal line
;strobe for horizontal sync with VB
;ECS vertical line for vblank stop
;ECS vertical line for vblank start

;video beam position
;write vertical beam position
;video beam position (vertical most significant bit)
;write vertical beam position MSB

;ECS vertical line position for VSYNC stop
;ECS vertical line position for VSYNC start
;ECS highest numbered vertical line

The Amiga has two 8520 Complex Interface Adapter (CIA) which handle most of the Amiga I/O
activities. Note that each register should be accessed as a byte and NOT a word. The following is an
address map of both Amiga CIAs.

Byte Address Register

$BFE001
$BFE101
$BFE201
$BFE301
$BFE401
$BFE501
$BFE601
$BFE701
$BFE801
$BFE901
$BFEA01
$BFEB01
$BFEC01
$BFE001
$BFEE01
$BFEF01

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todlo
todmid
todhi

sdr
icr
cra
crb

b7 b6 b5 b4 b3 b2 b1 bO

FIR1 FIRO ROY TKO WPRO CHNG LEO OVL
Parallel Port
Direction for Port A (1=output)
Direction for Port B (1=output)
Timer A High Byte
Timer A High Byte
Timer B Low Byte
Timer B High Byte
50/60 Hz Event Counter bits 7-0
50/60 Hz Event Counter bits 15-8
50/60 Hz Event Counter bits 23-16
not used
Serial Data Register (connected to keyboard)
Interrupt Control Register
Control Register A
Control Register B

A4-11

CIAB

Address Register

$BFDOOO
$BFD100
$BFD200
$BFD300
$BFD400
$BFD500
$BFD600
$BFD700
$BFD800
$BFD900
$BFDAOO
$BFDBOO
$BFDCOO
$BFDDOO
$BFDEOO
$BFDFOO

A4-12

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todlo
todmid
todhi

sdr
icr
cra
crb

b7 b6 b5 b4 b3 b2 b1 bO

DTR RTS CD CTS DSR SEL POUT BUSY
MTR SEL3 SEL2 SEL 1 SELO SIDE DIR STEP
Direction for Port A (1=output)
Direction for Port B (1=output)
Timer A High Byte
Timer A High Byte
Timer B Low Byte
Timer B High Byte
Horizontal Sync Event Counter bits 7-0
Horizontal Sync Event Counter bits 15-8
Horizontal Sync Event Counter bits 23-16
not used
Serial Data Register (connected to keyboard)
Interrupt Control Register
Control Register A
Control Register B

68000 Assembly
Language

Although Blitz 2 is a BASIC compiler, it also has an 'inline assembler' and can be used as a fully
fledged assembler. Assembly language is the language of the microprocessor, in the case of the
Amiga, the 68000 microprocessor.

The following is a brief description of the Motorola 68000 microprocessor and its instruction set, for
more information we recommend the data books published by Motorola themselves as the best source
of reference material.

Registers
The 68000 has 16 internal registers, these may be thought of as high speed variables each capable of
storing a long word (32 bits). The 8 data registers are used mainly for calculations while the 8 address
registers are mostly used for pointing to locations in memory.

The registers are named 00-07 and AO-A7. The 68000 also has several specialised registers, the
program counter (PC) and the status register (SR). The program counter points to the current
instruction that the microprocessor is executing, while the status register is a bunch of flags with
various meanings.

Addressing
The main job of the microprocessor is to read information from memory, perform a calculation and then
write the result back to memory.

For the processor to access memory it has to generate a memory address for the location it wishes to
access (read or write to). The following are the different ways the 68000 can generate addresses.

Register Direct

MOVE dl,dO

The actual value in the register d1 is copied into dO

Address Register Indirect

MOVE (aO),dO

aO is a pointer to somewhere in memory. The value at at this location is copied into the register dO.

AS-1

Address Register Indirect with Postincrement

MOVE (aO)+,dO

The value at the location pOinted to by aO is copied into the register dO, then aO is incremented so it
pOints to the next memory location.

Address Register Indirect with Predecrement

MOVE -(aO),dO

aO is first decremented to point to the memory location before the one it currently points to then the
value at the new memory location is copied into dO.

Address Register Indirect with Displacement

MOVE 16(aO),dO

The memory location located 16 bytes after that which is pointed to by address register aO is copied to
dO.

Address Register Indirect with Index

MOVE 16(aO,dl),dO

The memory location is calculated by adding the contents of aO with d1 plus 16.

Absolute Address

MOVE $dff096,dO

The memory location $dff096 is used.

Program Counter with Displacement

MOVE label(pc),dO

This is the same as absolute addressing but because the memory address is an offset from the
program counter (no bigger than 32000 bytes) it is MUCH quicker.

Program Counter with Index

MOVE label(pc,dl),dO

The address is calulated as the location of label plus the contents of data register d1.

Immediate Data

MOVE #20 ,dO

The value 20 is moved to the data register.

AS-2

Program Flow
As mentioned previously the microprocessor has a special register known as the program counter that
points to the next instruction to be executed. By changing the value in the program counter a 'goto' can
be performed. The JMP instruction load the program counter with a new value, it supports most of the
addressing modes.

A branch is a program counter relative form of the JMP instruction. Branches can also be performed
on certain conditions such as BCC which will only cause the program flow to change if the Carry flag in
the status register is currently set.

A 'gosub' can be prformed using the JSR and BSR commands. The current value of the program
counter is remembered on the stack before the jump or branch is performed. The RTS command is
used to 'return' to the original program location.

The Stack
The Amiga sets aside a certain amount of memory for each task known as a stack. The address
register A7 is used to point to the stack and should never be used as a general purpose address
register.

The 68000 uses predecrement addressing to push data onto the stack and postincrement addressing
to pull information off the stack.

JSR is the same as MOVE.I pC,-(a7) and then JMP

RTS is the same as MOVE.! (a7)+,pc

The stack can be used to temporarily store internal registers. To save and restore all the 68000
registers the following code is often used

ASubroutine:
MOVEM.I dO-d7/00-06,-(07) ;push all register on stack
;main subroutine code here which can stuff up registers without worrying
MOVEM.I (07)+ ,dO-d7 /00-06 ;pull registers off stack
RTS ; return from subroutine

Condition Flags
The status register is a special 68000 register that holds, besides other things all the condition codes.
The following are a list of the condition flags:

Code Name Meaning

N negative reflects the most significant bit of the result of the last operation.
Z zero is set if the result is zero, cleared otherwise.
C carry is set when an add, subtract or compare operation generate a carry
X extend is a mirror of the carry flag, however its not affected by data movement.
V overflow is set when an aritmeitic operation causes an overflow, a situation where

the operand is not large enough to represent the result.

AS-3

Conditional Tests
Branches and Sets can be performed conditionally. The following is a list of the possible conditions
that can be tested before a branch or set is performed.

cc condition coding test

T true 0000 1
F false 0001 0
HI high 0010 not C & not Z
LS lowsam 0011 CIZ
CC carry clr 0100 notC
CS carry set 0101 C
NE ot equal 0110 notZ
EO equal 0111 Z
VC overflow elr 1000 not V
VS overflow set 1001 V
PL plus 1010 not N
MI minus 1011 N
GE greater equal 1100 N& V I notN¬V
LT less than 1101 N¬V I notN& V
GT greater than 1110 N&V¬Z I notN¬V¬C
LE less or equal 1111 Z I N¬V I notN& V

Operand Sizes
The 68000 can perform operations on bytes, words and long words. By adding a suffix .b .w or .I to the
opcode, the assembler knows which data size you wish to use, if no suffix is present the word size is
default. There is no speed increase using bytes instead of words as the 68000 is a 16 bit
microprocessor and so no overhead is needed for 16 bit operations. However 32 bit long words do
cause overhead with extra read and write cycles needed to perform operations on a bus that can only
handle 16 bits at a time.

The 68000 Instruction Set
The following is a brief description of the 68000 instruction set.

Included with each are the addrssing mode combinations available with each opcode. Their syntax are
as follows:

Dn data register
An address register
DY,Dx data registers source & destination
RX,Ry register source & destination (data & address registers)
<ea> effective address - a subset of addressing modes
#<data> numeric constant

Special notes:

The address register operands ADDA, CMPA, MOVEA and SUBA are only word and long word data
sizes. The last 'A' of the operand name is optional as it is with the immediate operands ADDI, CMPI,
MOVEI, SUBI, ORI, EORI and ANDI.

AS-4

The ADDO and SUBO are quick forms of their immediate cousins. The immediate data range is 1 to 8.

The MOVEO instruction has a data range of -128 to 127, the data is sign extended to 32 bits, and long
is the only data size available.

The <ea> denotes an effective address, not all addressing modes are available with each effective
address form of the instruction, as a rule program counter relative addressing is only available for the
sourse operand and not the destination.

The Blitz2 compiler will signal any illegal forms of the instruction during the compile stage.

ABCD Add with extend using Binary Coded
Decimal

ABCD Dy.Dx
ABCD -(Ay),-(Ax)

Data Size: byte

ADD Add binary

ADD <ea>.Dn
ADD Dn,<ea>
ADDA <ea>,An
ADDI #<data> ,<ea>
ADDQ #<data> ,<ea>

Data Size: byte, word & long

ADDX Add with Extend

ADDX Dy.Dx
ADDX -(Ay),-(Ax)

Data Size: byte word & long

AND AND logical

AND <ea>.Dn
AND Dn,<ea>
ANDI #<data> ,<ea>

Data Size: byte word & long

ASL Arithmetic Shift Left

ASL Dx.Dy
ASL #<data>,Dy
ASL<ea>

Data Size: byte word & long

ASR Arithmetic Shift Right

ASR Dx.Dy
ASR #<data>.Dy
ASR<ea>

Data Size: byte word & long

Bee Branch Conditionally

Bcd <label>

Data Size: byte & word

BCHG Test a Bit & Change

BCHG Dn,<ea>
BCHG #<data> ,<ea>

Data Size: byte & long

BCLR Test a Bit & Clear

BCLR Dn,<ea>
BCLR #<data> ,<ea>

Data Size: byte & long

BRA Branch Always

BRA <label>

Data Size: byte & word

BSET Test a Bit & Set

BSET Dn,<ea>
BSET #<data> ,<ea>

Data Size: byte & long

AS-S

BTST Test a Bit EOR Exclusive OR Logical

BTST Dn,<ea> EOR Dn,<ea>
BTST #<data> ,<ea> EORI #<data> ,<ea>

Data Size: byte & long Data Size: byte word & long

CHK Check Register Against Bounds and EXG Exchange Registers
TRAP

CHK<ea>,Dn

Data Size: word

CLR Clear an Operand

CLR<ea>

Data Size: byte word & long

CMP Compare

CMP <ea>,Dn
CMPA <ea>.An
CMPI #<data> ,<ea>

Data Size: byte word & long

CMPM Compare Memory

CMPM (Ay)+,(Ax)+

Data Size: byte word & long

DBee Test Condition, Decrement, and Branch

DBcc Dn,<label>

Data Size: word

DIVS Signed Divide

DIVS <ea>,Dn Data

Size: word

DIVU Unsigned Divide

DIVU <ea>,Dn

Data Size: word

AS-6

EXG Rx,Ry

Data Size: long

EXT Sign Extend

EXT Dn Data

Size: word & long

ILLEGAL Illegal Instruction

ILLEGAL

Data Size: none

JMP Jump

JMP<ea>

Data Size: long

JSR Jump to Subroutine

JSR <ea>

Data Size: long

LEA Load Effective Address

LEA <ea>.An

Data Size: long

LINK Link and Allocate

LINK An,#<displacement>

Data Size: word

LSL Logical Shift Left

LSL Dx'oy
LSL #<data> .Dy
LSL <ea>

Data Size: byte word & long

LSR Logical Shift Right

LSR Dx'oy
LSR #<data>,Oy
LSR <ea>

Data Size: byte word & long

MOVE Move Data from Source to Destination

MOVE <ea> .<ea>
MOVEA <ea>.An
MOVEQ #<data>,On

Data Size: byte word & long

MOVEM Move Multiple Registers

MOVEM <register list> .<ea>
MOVEM <ea>.<register list>

Data Size: word & long

MOVEP Move Peripheral

MOVEP Dx.d(Ay)
MOVEP d(Ay)'ox

Data Size: word & long

MULS Signed Multiple

MULS <ea>,On

Data Size: word

MULU Unsigned Multiple

MULU <ea>,On

Data Size: word

NBeD Negate Decimal with Extend

NBCD<ea>

Data Size: byte

NEG Negate

NEG <ea>

Data Size: byte word & long

NEGX Negate with Extend

NEGX <ea>

Data Size: byte word & long

NOP No Operation

NOP

Data Size: none

NOT Logical Complement

NOT <ea>

Data Size: byte word & long

OR Inclusice OR Logical

OR <ea>,On
OR Dn.<ea>
ORI #<data> .<ea>

Data Size: byte word & long

PEA Push Effective Address

PEA <ea>

Data Size: long

RESET Reset External Device

RESET

Data Size: none

AS-7

ROL Rotate Left (without Extend)

ROL Dx,Dy
ROL #<doto>,Dn
ROL<eo>

Data Size: byte word & long

ROR Rotate Right (without Extend)

ROR Dx,Dy
ROR #<doto>,Dn
ROR<eo>

Data Size: byte word & long

ROXL Rotate Left with Extend

ROXL Dx,Dy
ROXL #<doto>,Dn
ROXL<eo>

Data Size: byte word & long

ROXR Rotate Right with Extend

ROXR Dx,Dy
ROXR #<doto>,Dn
ROXR <eo>

Data Size: byte word & long

RTE Return from Exception

RTE Doto

Size: None

RTR Return and Restore Condition Codes

RTR

Data Size: None

RTS Return from Subroutine

RTS

Data Size: None

AS-8

SBeD Subtract Decimal with Extend

SBCD Dy,Dx
SBCD -(Ay),-(Ax)

Data Size: byte

Scc Set according to Condition

See <eo>

Data Size: byte

STOP Load Status Register and Stop

STOP #XXX

Data Size: None

SUB Subtract Binary

SUB <eo>,Dn
SUB Dn,<eo>
SUBA <eo>,An
SUBI #<doto> ,<eo>
SUBQ #<doto> ,<eo>

Data Size: byte word & long

SUBX Subtract with Extend

SUBX Dy,Dx
SUBX -(Ay),-(Ax)

Data Size: byte word & long

SWAP Swap Register Halves

SWAPDn

Data Size: long

T AS Test & Set an Operand

TAS <eo>

Data Size: byte

TRAP Trap

TRAP #<vector>

Data Size: None

TRAPV Trap an Overflow

TRAPV

Data Size: None

TST Test an Operand

TST <ea>

Data Size: byte word & long

UNLK Unlink

UNLKAn Data

Size: None

AS-9

Raw Key Codes
The following is a diagram of all the keycodes for the Amiga 500 and 2000 keyboard. They are all in
hexadecimal notation.

I.

A6-1

COMMAND INDEX
Abs 5-2 Clrlnt 1-15
AbsMouse 28-1 Cis 16-1
ACos 5-8 CNIF 8-4
Activate 25-22 Colour 23-8
ActivateString 26-6 ColSplit 19-7
AddFirst 2-7 Cont 1-5
AddlDCMP 25-5 CookieMode 21-3
Addltem 2-8 CopLen 19-10
Add Last 2-8 CopLoc 19-9
Addr 12-3 CopyBitMap 13-2
ALibJsr 9-3 CopyShape 14-4
AMIGA 8-2 Cos 5-6
Asc 6-3 CSIF 8-5
ASin 5-8 Cursor 25-17
ASyncFade 17-7 CursX 23-10
ATan 5-8 CursY 23-11
AutoCookie 14-4 CustomCop 19-8
BBlit 21-8 Cvi 6-5
BBlitMode 21-10 Cvl 6-6
Bin$ 6-2 Cvq 6-6
BitMap 13-1 Cycle 17-3
BitMaplnput 23-11 Data 2-1
BitMapOutput 23-8 Dc 9-1
BLibJsr 9-3 Dcb 9-1
Blit 21-1 Default 1-9
BlitMode 21-2 DefaultlDCMP 25-4
BlitzRepeat 23-1 Defaultlnput 4-5
BLITZ 8-1 DefaultOutput 4-5
BlitzKeys 23-1 DEFTYPE 2-4
Blue 17-5 Dim 2-6
BorderPens 26-13 DiskBuffer 18-6
Borders 26-12 DiskPlay 18-5
Box 16-3 DispHeight 5-1
Boxf 16-3 Display 19-10
Buffer 21-7 DoColl 22-3
Call 10-2 DoFade 17-8
Case 1-9 DosBuffLen 7-8
CaseSense 6-10 Os 9-2
CatchDosErrs 7-9 Edit 4-7
CELSE 8-6 Edit$ 4-6
CEND 8-5 Editat 25-17
Centre$ 6-9 EditExit 25-19
CERR 8-6 EditFrom 25-18
Chr$ 6-2 Else 1-6
Circle 16-4 EMouseX 25-25
Circlef 16-5 EMouseY 25-26
ClearList 2-7 End 1-4
ClearString 26-7 End Function 3-3
ClickButton 28-3 End Macro 8-7
CloseEd 11-2 End Select 1-9
CloseFile 7-3 End SetErr 1-16
ClrErr 1-17 End Setlnt 1-15

1-1

End Statement 3-1 ILBMDepth 15-1
Endlf 1-6 ILBMHeight 15-1
Eof 7-7 ILBMlnfo 15-1
EraseMode 21-3 ILBMWidth 15-1
ErrFail 1-17 IncBin 8-3
Even 9-2 INCDIR 8-4
Event 25-7 INCLUDE 8-2
EventWindow 25-8 InFront 20-3
Exchange 2-3 InFrontB 20-5
Exp 5-9 InFrontF 20-4
Fadeln 17-6 InitSound 18-3
FadeStatus 17-8 Inkey$ 4-8
FadeOut 17-7- InnerCls 25-16
Fields 7-3 InnerHeight 25-30
Filelnput 7-5 InnerWidth 25-29
FileOutput 7-5 Instr 6-3
FileSeek 7-6 Int 5-3
Filter 18-6 InvMode 21-4
FindScreen 24-2 ItemHit 25-10
Firstltem 2-11 ItemStackSize 2-14
FloatMode 4-3 Joyb 4-5
Flood Fill 16-6 Joyr 4-4
FlushBuffer 21-9 Joyx 4-3
FlushEvents 25-8 Joyy 4-4
FlushQueue 21-7 KiIIFile 7-8
For 1-10 Killitem 2-9
Forever 1-12 Lastltem 2-12
Format 4-2 LCase$ 6-9
Frac 5-3 Left$ 6-1
Free 12-1 Len 6-6
Free BitMap 13-2 Let 2-1
Free BlitzFont 23-7 Line 16-2
Free MacroKey 28-8 LoadBitMap 13-3
Free Palette 17-2 LoadBlitzFont 23-6
Free Window 25-3 LoadModule 18-7
FreeFili 16-6 LoadPalette 17-1
Free Module 18-7 LoadScreen 24-3
FreeSlices 19-5 LoadShape 14-1
Function 3-2 LoadShapes 14-2
Function Return 3-3 LoadSound 18-1
GadgetBorder 26-14 LoadSprites 20-6
GadgetHit 25-9 LoadTape 28-6
GadgetJam 26-3 Loc 7-8
GadgetPens 26-2 Locate 23-9
Get 7-5 Lof 7-7
GetaShape 14-3 Log 5-10
GetaSprite 20-2 Log10 5-10
Get Reg 9-2 LoopSound 18-2
Gosub 1-1 LSet$ 6-8
Goto 1-1 Macro 8-6
Green 17-5 MacroKey 28-8
Handle 14-5 MakeCookie 14-4
HCos 5-8 Maximum 12-3
Hex$ 6-2 Max Len 2-3
HPropBody 26-11 MButtons 25-11
HPropPot 26-11 MenuChecked 27-7
HSin 5-9 MenuColour 27-6
HTan 5-9 MenuGap 27-5
If 1-5 MenuHit 25-9

1-2

Menultem 27-2 rastport 25-31
Menus 25-23 Raw Key 25-12
MenuState 27-6 RawStatus 23-2
MenuTitle 27-1 Read 2-2
Mid$ 6-1 ReadFile 7-2
MidHandle 14-6 ReadMem 7-9
Mki$ 6-4 Record 28-4
Mkl$ 6-5 RectsHit 22-5
Mkq$ 6-5 Red 17-4
Mouse 23-3 Redraw 26-12
MouseArea 23-4 RelMouse 28-2
MouseButton 28-2 ReMap 16-6
MouseWait 1-3 Repeat 1-11
MouseX 23-4 Replace$ 6-4
MouseXSpeed 23-5 ResetList 2-6
MouseY 23-5 ResetString 26-7
MouseYSpeed 23-6 Return 1-2
NEWTYPE 2-4 Return 2-2
Next 1-10 RGB 17-4
Nextltem 2-11 Right$ 6-1
NoCIi 11-3 FileRequest$ 4-6
NPrint 4-1 Rnd 5-5
NTSC 5-1 Rotate 14-8
NumPars 11-1 RSet$ 6-8
On Gotol Gosub 1-2 SaveBitmap 13-3
OpenFile 7-1 SaveScreen 24-3
PalRGB 17-2 SaveShape 14-2
Par$ 11-2 SaveShapes 14-3
PColl 22-3 SaveSprites 20-6
Peek 10-1 SaveTape 28-6
Peek 5-2 SBlit 21-11
Peeks 10-2 SBlitMode 21-12
PeekSound 18-5 Scale 14-7
PlayBack 28-4 SColl 22-4
PlayModule 18-7 Screen 24-1
PlayWait 28-5 ScreenPens 24-5
Plot 16-1 ScreensBitMap 13-2
Point 16-2 Scroll 16-5
Pointer 23-3 Select 1-8
Poke 10-1 SetColl 22-1
Pop 1-12 SetColiHi 22-2
Popltem 2-14 SetColiOdd 22-2
Prevltem 2-10 SetCycle 17-3
Print 4-1 SetErr 1-16
PropGadget 26-8 SetHProp 26-10
Pushltem 2-13 Setlnt 1-13
Put 7-4 SetMenu 27-5
PutReg 9-2 SetString 26-8
QAbs 5-3 SetVProp 26-10
QAMIGA 8-2 Sgn 5-5
QBlit 21-6 ShapeGadget 26-3
QBlitMode 21-7 Shape Height 14-5
QFrac 5-4 Shapeltem 27-3
QLimit 5-4 ShapesHit 22-4
Qualifier 25-13 ShapeSpriteH it 22-4
Queue 21-4 ShapeSub 27-4
QuickPlay 28-5 ShapeWidth 14-5
QuietTrap 28-7 Shared 3-4
QWrap 5-4 Show 19-5

1-3

ShowB
ShowBlitz
ShowF
ShowScreen
ShowSprite
ShowStencii
Sin
SizeLimits
SizeOf
Slice
SMouseX
SMouseV
SolidMode
Sort
SortDown
SortUp
Sound
SoundData
SpritesHit
Sqr
Statement
Statement Return
Stencil
Stop
StopCycle
StopModule
Str$
String$
StringGadget
StringText$
StripLead$
StripTrail$
SubHit
SublDCMP
Subltem
SubltemOff
SysJsr
Tan
TapeTrap
TextGadget
Toggle
TokeJsr
Type
UCase$
UnBuffer
Un Left$
UnQueue
UnRight$
Until
Use
Use BitMap
Use BlitzFont
Use Palette
Use Slice
Use Window
Used
USEPATH
UStr$
Val

1-4

19-7
19-9
19-6
24-1
20-3
21-12
5-6
25-30
2-5
19-3
24-4
24-5
21-4
2-14
2-15
2-15
18-1
18-4
22-5
5-9
3-1
3-2
21-10
1-4
17-4
18-8
6-11
6-3
26-4
26-5
6-7
6-8
25-11
25-6
27-4
27-5
9-2
5-7
28-7
26-1
26-4
9-3
28-3
6-9
21-9
6-7
21-6
6-7
1-11
12-1
13-1
23-7
17-1
19-4
25-2
12-2
8-1
6-11
6-10

ViewPort
Volume
VPropBody
VPropPot
VWait
WaitEvent
WBox
WBStartup
WbToScreen
WCircle
WCls
WColour
WCursX
WCursV
WEllipse
Wend
While
Window
WindowFont
WindowHeight
Windowlnput
WindowOutput
WindowWidth
WindowX
WindowV
WJam
WLeftOff
Wline
WLocate
WMouseX
WMouseV
WMove
WPlot
WPointer
WriteFile
WriteMem
WScroll
WSize
WTopOff
XFlip
XINCLUDE
XStatus
YFlip

24-5
18-3
26-12
26-11
1-17
25-6
25-14
11-1
24-2
25-14
25-16
25-20
25-26
25-27
25-15
1-7
1-7
25-1
25-20
25-29
25-3
25-4
25-29
25-28
25-28
25-21
25-30
25-15
25-27
25-24
25-25
25-23
25-13
25-23
7-3
7-10
25-17
25-24
25-30
14-6
8-3
28-6
14-7

	BLITZ BASIC 2.1
	BLITZ BASIC 2 REFERENCE MANUAL

