
Hands On DarkBASIC Pro

Alistair Stewart

A Self-Study Guide to Games Programming

Volume 1



Hands On DarkBASIC Pro
Volume 1

A Self-Study Guide to Games Programming

Alistair Stewart

Digital Skills

Milton
Barr
Girvan
Ayrshire
KA26 9TY

www.digital-skills.co.uk



Copyright © Alistair Stewart 2005

All rights reserved.

No part of this work may be reproduced or used in any form
without the written permission of the author.

Although every effort has been made to ensure accuracy, the
author and publisher accept neither liability nor responsibility
for any loss or damage arising from the information in this book.

All brand names and product names are trademarks of their respective
companies and have been capitalised throughout the text.

DarkBASIC Professional is produced by The Game Creators Ltd

Printed September 2005
2nd Printing November 2005
3rd Printing January 2006

Title : Hands On DarkBASIC Pro Volume 1

ISBN : 1-874107-08-4

Other Titles Available:

Hands On Pascal
Hands On C++
Hands On Java
Hands On XHTML



Table Of Contents

Chapter 1 Designing Algorithms
Designing Algorithms .......................................................................................2

Following Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Complex Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 9

Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Operations on Data . . . . . . . . . . . . . . . . . . . . . . . . 22

Levels of Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Checking for Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Solutions.........................................................................................................34

Chapter 2 Starting DarkBASIC Pro
Programming a Computer ..............................................................................38

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

The Compilation Process . . . . . . . . . . . . . . . . . . . . . . . . 38

Starting DarkBASIC Pro.................................................................................40

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

DarkBASIC Pro Files . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Getting Started with DarkBASIC . . . . . . . . . . . . . . . . . . . . 41

First Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Subsequent Start-Ups . . . . . . . . . . . . . . . . . . . . . . . 41

Specifying a Project . . . . . . . . . . . . . . . . . . . . . . . . 41

A First Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Saving Your Project . . . . . . . . . . . . . . . . . . . . . . . . 44

First Statements in DarkBASIC Pro ..............................................................45

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Ending a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

The END Statement . . . . . . . . . . . . . . . . . . . . . . . . 45

The WAIT KEY Statement . . . . . . . . . . . . . . . . . . . . . 45

Adding Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Outputting to the Screen ................................................................................48

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

The PRINT Statement . . . . . . . . . . . . . . . . . . . . . . . 48

Positioning Text on the Screen . . . . . . . . . . . . . . . . . . . . . 51

The SET CURSOR Statement . . . . . . . . . . . . . . . . . . . 51

The TEXT Statement . . . . . . . . . . . . . . . . . . . . . . . 52

The CENTER TEXT Command . . . . . . . . . . . . . . . . . . 53



Changing the Output Font . . . . . . . . . . . . . . . . . . . . . . . 54

The SET TEXT FONT Statement . . . . . . . . . . . . . . . . . 54

The SET TEXT SIZE Statement . . . . . . . . . . . . . . . . . . 55

The SET TEXT TO Statement . . . . . . . . . . . . . . . . . . . 55

Changing Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

How Colours are Displayed . . . . . . . . . . . . . . . . . . . 56

The RGB Statement . . . . . . . . . . . . . . . . . . . . . . . . 57

The INK Statement . . . . . . . . . . . . . . . . . . . . . . . . . 58

The SET TEXT OPAQUE Statement . . . . . . . . . . . . . . . 60

The SET TEXT TRANSPARENT Statement . . . . . . . . . . . . 60

The CLS Statement . . . . . . . . . . . . . . . . . . . . . . . . 61

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Some Display Techniques ............................................................................64

Screen Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

The SET DISPLAY MODE Statement . . . . . . . . . . . . . . . 64

Choosing a Text Font . . . . . . . . . . . . . . . . . . . . . . . . . 65

Erasing Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Shadow Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Embossed Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Solutions.........................................................................................................69

Chapter 3 Data
Program Data .................................................................................................74

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Integer Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Real Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

String Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Using Meaningful Names . . . . . . . . . . . . . . . . . . . . . 77

Naming Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Allocating Values to Variables........................................................................79

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

The Assignment Statement . . . . . . . . . . . . . . . . . . . . . . 79

Assigning a Constant . . . . . . . . . . . . . . . . . . . . . . . 79

Copying a Variable’s Value . . . . . . . . . . . . . . . . . . . . 80

Copying the Result of an Arithmetic Expression . . . . . . . . . . 80

Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . 83

Using Parentheses . . . . . . . . . . . . . . . . . . . . . . . . . 84

Variable Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

String Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

The PRINT Statement Again . . . . . . . . . . . . . . . . . . . . . . 85

Other Ways to Store a Value in a Variable . . . . . . . . . . . . . . . 87



The INPUT Statement . . . . . . . . . . . . . . . . . . . . . . . 87

The READ and DATA Statements . . . . . . . . . . . . . . . . . 88

The RESTORE Statement . . . . . . . . . . . . . . . . . . . . . 91

The Time and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

The TIMER Statement . . . . . . . . . . . . . . . . . . . . . . . 91

The GET TIME$ Statement . . . . . . . . . . . . . . . . . . . . 92

The GET DATE$ Statement . . . . . . . . . . . . . . . . . . . . 93

Generating Random Numbers . . . . . . . . . . . . . . . . . . . . . 93

The RND Statement . . . . . . . . . . . . . . . . . . . . . . . . 93

The RANDOMIZE Statement . . . . . . . . . . . . . . . . . . . 94

Structured English and Programs . . . . . . . . . . . . . . . . . . . 95

Using Variables to Store Colour Values . . . . . . . . . . . . . . . . 96

Named Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Testing Sequential Code . . . . . . . . . . . . . . . . . . . . . . . . 97

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Determining Current Settings .......................................................................100

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Screen Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

The SCREEN HEIGHT Statement . . . . . . . . . . . . . . . . 100

The SCREEN WIDTH Statement . . . . . . . . . . . . . . . . 100

The SCREEN DEPTH Statement . . . . . . . . . . . . . . . . 101

Colour Components . . . . . . . . . . . . . . . . . . . . . . . . . 101

The RGBR Statement . . . . . . . . . . . . . . . . . . . . . . 101

The RGBG Statement . . . . . . . . . . . . . . . . . . . . . . 102

The RGBB Statement . . . . . . . . . . . . . . . . . . . . . . 102

Text Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

The TEXT BACKGROUND TYPE Statement . . . . . . . . . . 103

The TEXT STYLE Statement . . . . . . . . . . . . . . . . . . 103

The TEXT SIZE Statement . . . . . . . . . . . . . . . . . . . 104

The TEXT FONT$ Statement . . . . . . . . . . . . . . . . . . 104

The TEXT WIDTH Statement . . . . . . . . . . . . . . . . . . 104

The TEXT HEIGHT Statement . . . . . . . . . . . . . . . . . . 105

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Solutions.......................................................................................................107

Chapter 4 Selection
Binary Selection ...........................................................................................112

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

The IF Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Compound Conditions - the AND and OR Operators . . . . . . 116

The NOT Operator . . . . . . . . . . . . . . . . . . . . . . . . 118

ELSE - Creating Two Alternative Actions . . . . . . . . . . . . 119

The Other IF Statement . . . . . . . . . . . . . . . . . . . . . . . 120

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Multi-Way Selection .....................................................................................122

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Nested IF Statements . . . . . . . . . . . . . . . . . . . . . . . . 122

The SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . 124

Testing Selective Code . . . . . . . . . . . . . . . . . . . . . . . . 127

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Solutions.......................................................................................................130

Chapter 5 Iteration
Iteration ........................................................................................................134

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

The WHILE .. ENDWHILE Construct . . . . . . . . . . . . . . . . . 134

The REPEAT .. UNTIL Construct . . . . . . . . . . . . . . . . . . 136

The FOR.. NEXT Construct . . . . . . . . . . . . . . . . . . . . . 138

Finding the Smallest Value in a List of Values . . . . . . . . . . 142

Using FOR with READ and DATA . . . . . . . . . . . . . . . . 144

The EXIT Statement . . . . . . . . . . . . . . . . . . . . . . . 145

The DO .. LOOP Construct . . . . . . . . . . . . . . . . . . . . . . 146

The WAIT milliseconds Statement . . . . . . . . . . . . . . . . 147

The SLEEP Statement . . . . . . . . . . . . . . . . . . . . . . 147

Nested Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Nested FOR Loops . . . . . . . . . . . . . . . . . . . . . . . 149

Testing Iterative Code . . . . . . . . . . . . . . . . . . . . . . . . 150

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Solutions ......................................................................................................153

Chapter 6 Drawing Statements
Drawing On The Screen...............................................................................160

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Basic Drawing Commands . . . . . . . . . . . . . . . . . . . . . . 160

The DOT Statement . . . . . . . . . . . . . . . . . . . . . . . 160

The POINT Statement . . . . . . . . . . . . . . . . . . . . . . 161

The LINE Statement . . . . . . . . . . . . . . . . . . . . . . . 162

The BOX Statement . . . . . . . . . . . . . . . . . . . . . . . 163

The CIRCLE Statement . . . . . . . . . . . . . . . . . . . . . 164

The ELLIPSE Statement . . . . . . . . . . . . . . . . . . . . . 165

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Demonstrating Basic Shapes.......................................................................167

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A First Look at Animation ............................................................................169

Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

How to Remove an Object from the Screen . . . . . . . . . . . . . 169

How to Move an Object . . . . . . . . . . . . . . . . . . . . . . . 170

Solutions.......................................................................................................171



Chapter 7 Modular Programming
Functions......................................................................................................176

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Designing a Function . . . . . . . . . . . . . . . . . . . . . . 176

Coding a Function . . . . . . . . . . . . . . . . . . . . . . . . 177

Calling a Function . . . . . . . . . . . . . . . . . . . . . . . . 177

Another Example . . . . . . . . . . . . . . . . . . . . . . . . . 179

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Pre-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 182

The EXITFUNCTION Statement . . . . . . . . . . . . . . . . . 182

Return Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . 187

Designing Routines . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Specifying a Post-Condition . . . . . . . . . . . . . . . . . . . 188

The DrawTextLine Mini-Spec . . . . . . . . . . . . . . . . . . 188

Creating Modular Software . . . . . . . . . . . . . . . . . . . . . . 191

Top-Down Programming . . . . . . . . . . . . . . . . . . . . . . . 195

Bottom-Up Programming . . . . . . . . . . . . . . . . . . . . . . . 197

Structure Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Subroutines ..................................................................................................201

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Creating a Subroutine . . . . . . . . . . . . . . . . . . . . . . . . 201

Calling a Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . 202

The GOSUB Statement . . . . . . . . . . . . . . . . . . . . . 202

Variables in a Subroutine . . . . . . . . . . . . . . . . . . . . 202

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Solutions.......................................................................................................204

Chapter 8 String Functions
Standard String Functions............................................................................210

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

String Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

The LEN Statement . . . . . . . . . . . . . . . . . . . . . . . 210

The UPPER$ Statement . . . . . . . . . . . . . . . . . . . . . 211

The LOWER$ Statement . . . . . . . . . . . . . . . . . . . . 212

The LEFT$ Statement . . . . . . . . . . . . . . . . . . . . . . 212

The RIGHT$ Statement . . . . . . . . . . . . . . . . . . . . . 213

The MID$ Statement . . . . . . . . . . . . . . . . . . . . . . . 213

The ASC Statement . . . . . . . . . . . . . . . . . . . . . . . 214

The CHR$ Statement . . . . . . . . . . . . . . . . . . . . . . 215

The STR$ Statement . . . . . . . . . . . . . . . . . . . . . . 215



The VAL Statement . . . . . . . . . . . . . . . . . . . . . . . 216

The SPACE$ Statement . . . . . . . . . . . . . . . . . . . . . 217

The BIN$ Statement . . . . . . . . . . . . . . . . . . . . . . . 217

The HEX$ Statement . . . . . . . . . . . . . . . . . . . . . . 218

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

User-Defined String Functions .....................................................................220

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Creating New String Functions . . . . . . . . . . . . . . . . . . . . 220

The Pos() Function . . . . . . . . . . . . . . . . . . . . . . . . 220

The Occurs() Function . . . . . . . . . . . . . . . . . . . . . . 221

The Insert$() Function . . . . . . . . . . . . . . . . . . . . . . 221

The Delete$() Function . . . . . . . . . . . . . . . . . . . . . 222

The Replace$() Function . . . . . . . . . . . . . . . . . . . . . 222

The Copy$() Function . . . . . . . . . . . . . . . . . . . . . . 222

Using Your Routines in Other Programs . . . . . . . . . . . . . . . 223

The #INCLUDE Statement . . . . . . . . . . . . . . . . . . . . 223

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Solutions.......................................................................................................227

Chapter 9 Hangman
Creating a First Game..................................................................................230

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

The Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . 230

What Part the Computer Plays in the Game . . . . . . . . . . . . . 230

Designing the Screen Layout . . . . . . . . . . . . . . . . . . . . . 231

Game Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Game Documentation . . . . . . . . . . . . . . . . . . . . . . . . 233

Implementing the Design . . . . . . . . . . . . . . . . . . . . . . . 237

Adding InitialiseGame() . . . . . . . . . . . . . . . . . . . . . 238

Adding ThinkOfWord() . . . . . . . . . . . . . . . . . . . . . . 239

Adding DrawInitialScreen() . . . . . . . . . . . . . . . . . . . 241

Adding GetGuess() . . . . . . . . . . . . . . . . . . . . . . . 243

Adding CheckForLetter() . . . . . . . . . . . . . . . . . . . . . 247

Adding DrawLetter() . . . . . . . . . . . . . . . . . . . . . . . 248

Adding AddToHangedMan() . . . . . . . . . . . . . . . . . . . 249

Adding WordGuessed() . . . . . . . . . . . . . . . . . . . . . 249

Adding HangedManComplete() . . . . . . . . . . . . . . . . . 249

Adding GameOver() . . . . . . . . . . . . . . . . . . . . . . . 249

Keeping a Test Log . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Flaws in the Game . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Omissions from the Code . . . . . . . . . . . . . . . . . . . . 250

Deviating from the Original Specifications . . . . . . . . . . . . 251

Final Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



Solutions.......................................................................................................253

Chapter 10 Arrays
Arrays...........................................................................................................258

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Creating Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

The DIM Statement . . . . . . . . . . . . . . . . . . . . . . . 259

Accessing Array Elements . . . . . . . . . . . . . . . . . . . . . . 260

Variable Subscripts . . . . . . . . . . . . . . . . . . . . . . . 261

Basic Algorithms that Use Arrays . . . . . . . . . . . . . . . . . . 264

Calculating the Sum of the Values in an Array . . . . . . . . . . 264

Finding the Smallest Value in an Array . . . . . . . . . . . . . 265

Searching For a Value in an Array . . . . . . . . . . . . . . . . 266

Keeping an Array’s Values in Order . . . . . . . . . . . . . . . 267

Using an Array for Counting . . . . . . . . . . . . . . . . . . . 269

Associating Numbers with Strings . . . . . . . . . . . . . . . . 270

Card Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Choosing a Set of Unique Values . . . . . . . . . . . . . . . . 273

Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

The UNDIM Statement . . . . . . . . . . . . . . . . . . . . . . 275

Using Arrays in a Game . . . . . . . . . . . . . . . . . . . . . . . 276

Multi-Dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . 276

Two Dimensional Arrays . . . . . . . . . . . . . . . . . . . . . 276

Inputting Values to a 2D Array . . . . . . . . . . . . . . . . . . 277

Even More Dimensions . . . . . . . . . . . . . . . . . . . . . 277

Arrays and Functions . . . . . . . . . . . . . . . . . . . . . . . . . 278

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Solutions.......................................................................................................279

Chapter 11 Bull and Touch
Bull and Touch .............................................................................................284

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

The Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

The Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Game Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Game Documentation . . . . . . . . . . . . . . . . . . . . . . . . 285

Solutions.......................................................................................................292

Chapter 12 Advanced Data Types and Operators
Data Storage ................................................................................................298

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Declaring Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Boolean Variables . . . . . . . . . . . . . . . . . . . . . . . . 299



Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

The TYPE Definition . . . . . . . . . . . . . . . . . . . . . . . 300

Declaring Variables of a Defined Type . . . . . . . . . . . . . . 301

Accessing the Fields in a Composite Variable . . . . . . . . . . 302

Nested Record Structures . . . . . . . . . . . . . . . . . . . . 303

Arrays of Records . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

The ARRAY INSERT AT BOTTOM Statement . . . . . . . . . 306

The ARRAY INSERT AT TOP Statement . . . . . . . . . . . . 308

The ARRAY INSERT AT ELEMENT Statement . . . . . . . . . 308

The ARRAY COUNT Statement . . . . . . . . . . . . . . . . . 309

The EMPTY ARRAY Statement . . . . . . . . . . . . . . . . . 310

The ARRAY DELETE ELEMENT Statement . . . . . . . . . . 310

The NEXT ARRAY INDEX Statement . . . . . . . . . . . . . . 311

The PREVIOUS ARRAY INDEX Statement . . . . . . . . . . . 314

The ARRAY INDEX TO TOP Statement . . . . . . . . . . . . . 314

The ARRAY INDEX TO BOTTOM Statement . . . . . . . . . . 314

The ARRAY INDEX VALID Statement . . . . . . . . . . . . . . 315

Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

The ADD TO QUEUE Statement . . . . . . . . . . . . . . . . 318

The REMOVE FROM QUEUE Statement . . . . . . . . . . . . 319

The ARRAY INDEX TO QUEUE Statement . . . . . . . . . . . 319

Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

The ADD TO STACK Statement . . . . . . . . . . . . . . . . . 320

The REMOVE FROM STACK Statement . . . . . . . . . . . . 321

The ARRAY INDEX TO STACK Statement . . . . . . . . . . . 321

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Data Manipulation ........................................................................................324

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Other Number Systems . . . . . . . . . . . . . . . . . . . . . . . 324

Incrementing and Decrementing . . . . . . . . . . . . . . . . . . . 325

The INC Statement . . . . . . . . . . . . . . . . . . . . . . . 325

The DEC Statement . . . . . . . . . . . . . . . . . . . . . . . 325

Shift Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

The Shift Left Operator (<<) . . . . . . . . . . . . . . . . . . . 327

The Shift Right Operator (>>) . . . . . . . . . . . . . . . . . . 327

Bitwise Boolean Operators . . . . . . . . . . . . . . . . . . . . . . 328

The Bitwise NOT Operator (..) . . . . . . . . . . . . . . . . . . 328

The Bitwise AND Operator (&&) . . . . . . . . . . . . . . . . . 329

The Bitwise OR Operator (||) . . . . . . . . . . . . . . . . . . . 330

The Bitwise Exclusive OR Operator (~~) . . . . . . . . . . . . 331

A Practical Use For Bitwise Operations . . . . . . . . . . . . . 331

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334



Solutions.......................................................................................................335

Chapter 13 Bitmaps
Bitmaps Basics.............................................................................................340

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Colour Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Bitmaps in DarkBASIC Pro ..........................................................................342

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

The LOAD BITMAP Statement . . . . . . . . . . . . . . . . . 342

The BITMAP WIDTH Statement . . . . . . . . . . . . . . . . . 344

The BITMAP HEIGHT Statement . . . . . . . . . . . . . . . . 344

The BITMAP DEPTH Statement . . . . . . . . . . . . . . . . . 345

The SET CURRENT BITMAP Statement . . . . . . . . . . . . 345

The CREATE BITMAP Statement . . . . . . . . . . . . . . . . 346

The COPY BITMAP Statement . . . . . . . . . . . . . . . . . 347

The FLIP BITMAP Statement . . . . . . . . . . . . . . . . . . 348

The MIRROR BITMAP Statement . . . . . . . . . . . . . . . . 349

The BLUR BITMAP Statement . . . . . . . . . . . . . . . . . . 350

The FADE BITMAP Statement . . . . . . . . . . . . . . . . . . 351

Copying Only Part of a Bitmap . . . . . . . . . . . . . . . . . . . . 352

The COPY BITMAP Statement - Version 2 . . . . . . . . . . . 352

Zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Bitmap Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

The BITMAP EXIST Statement . . . . . . . . . . . . . . . . . 356

The BITMAP MIRRORED Statement . . . . . . . . . . . . . . 356

The BITMAP FLIPPED Statement . . . . . . . . . . . . . . . . 357

The CURRENT BITMAP Statement . . . . . . . . . . . . . . . 357

The DELETE BITMAP Statement . . . . . . . . . . . . . . . . 357

Placing More than One Image in the Same Area . . . . . . . . . . 358

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Solutions.......................................................................................................361

Chapter 14 Video Cards and the Screen
Video Cards and the Screen ........................................................................364

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Your Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

The PERFORM CHECKLIST FOR DISPLAY MODES Statement 364

The CHECKLIST QUANTITY Statement . . . . . . . . . . . . 364

The CHECKLIST STRING$ Statement . . . . . . . . . . . . . 365

The CHECKLIST VALUE Statement . . . . . . . . . . . . . . . 366

The EMPTY CHECKLIST Statement . . . . . . . . . . . . . . 366

The CHECK DISPLAY MODE Statement . . . . . . . . . . . . 367



The SCREEN FPS Statement . . . . . . . . . . . . . . . . . . 368

The SCREEN INVALID Statement . . . . . . . . . . . . . . . . 369

Your Graphics Card . . . . . . . . . . . . . . . . . . . . . . . . . 370

��� ������	 
��
���� ��� ������
� 
���� ��������� � � �70

The SET GRAPHICS CARD Statement . . . . . . . . . . . . . 370

The CURRENT GRAPHICS CARD$ Statement . . . . . . . . . 371

The SCREEN TYPE Statement . . . . . . . . . . . . . . . . . 371

The SET GAMMA Statement . . . . . . . . . . . . . . . . . . 372

Using a Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

The SET WINDOW ON Statement . . . . . . . . . . . . . . . 373

The SET WINDOW SIZE Statement . . . . . . . . . . . . . . . 373

The SET WINDOW POSITION Statement . . . . . . . . . . . . 373

The SET WINDOW LAYOUT Statement . . . . . . . . . . . . 374

The SET WINDOW TITLE Statement . . . . . . . . . . . . . . 374

The HIDE WINDOW Statement . . . . . . . . . . . . . . . . . 375

The SHOW WINDOW Statement . . . . . . . . . . . . . . . . 376

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Solutions.......................................................................................................378

Chapter 15 File Handling
Files..............................................................................................................380

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Disk Housekeeping Statements . . . . . . . . . . . . . . . . . . . 380

The DRIVELIST Statement . . . . . . . . . . . . . . . . . . . 380

The GET DIR$ Statement . . . . . . . . . . . . . . . . . . . . 381

The CD Statement . . . . . . . . . . . . . . . . . . . . . . . . 381

The SET DIR Statement . . . . . . . . . . . . . . . . . . . . . 382

The PATH EXIST Statement . . . . . . . . . . . . . . . . . . . 383

The MAKE DIRECTORY Statement . . . . . . . . . . . . . . . 383

The DELETE DIRECTORY Statement . . . . . . . . . . . . . 384

The DIR Statement . . . . . . . . . . . . . . . . . . . . . . . 385

The DELETE FILE Statement . . . . . . . . . . . . . . . . . . 385

The COPY FILE Statement . . . . . . . . . . . . . . . . . . . 385

The MOVE FILE Statement . . . . . . . . . . . . . . . . . . . 386

The FILE EXIST Statement . . . . . . . . . . . . . . . . . . . 387

The RENAME FILE Statement . . . . . . . . . . . . . . . . . . 387

The EXECUTE FILE Statement . . . . . . . . . . . . . . . . . 388

The FIND FIRST Statement . . . . . . . . . . . . . . . . . . . 389

The FIND NEXT Statement . . . . . . . . . . . . . . . . . . . 389

The GET FILE NAME$ Statement . . . . . . . . . . . . . . . . 389

The GET FILE DATE$ Statement . . . . . . . . . . . . . . . . 390

The GET FILE CREATION$ Statement . . . . . . . . . . . . . 390

The GET FILE TYPE Statement . . . . . . . . . . . . . . . . . 390

The FILE SIZE Statement . . . . . . . . . . . . . . . . . . . . 392

The WINDIR$ Statement . . . . . . . . . . . . . . . . . . . . 392



The APPNAME$ Statement . . . . . . . . . . . . . . . . . . . 392

Using Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

The OPEN TO WRITE Statement . . . . . . . . . . . . . . . . 393

The WRITE Statement . . . . . . . . . . . . . . . . . . . . . . 394

The CLOSE FILE Statement . . . . . . . . . . . . . . . . . . . 394

The WRITE FILE Statement . . . . . . . . . . . . . . . . . . . 397

The OPEN TO READ Statement . . . . . . . . . . . . . . . . 397

The READ Statement . . . . . . . . . . . . . . . . . . . . . . 398

The READ FILE Statement . . . . . . . . . . . . . . . . . . . 399

Random Access and File Updating . . . . . . . . . . . . . . . . . 400

The SKIP BYTES Statement . . . . . . . . . . . . . . . . . . . 400

The READ BYTE FROM FILE Statement . . . . . . . . . . . . 401

The WRITE BYTE TO FILE Statement . . . . . . . . . . . . . 402

Pack Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

The WRITE FILEBLOCK Statement . . . . . . . . . . . . . . . 403

The WRITE DIRBLOCK Statement . . . . . . . . . . . . . . . 404

The READ FILEBLOCK Statement . . . . . . . . . . . . . . . 405

The READ DIRBLOCK Statement . . . . . . . . . . . . . . . . 406

Creating an Empty File . . . . . . . . . . . . . . . . . . . . . . . . 407

The MAKE FILE Statement . . . . . . . . . . . . . . . . . . . 407

Arrays and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

The SAVE ARRAY Statement . . . . . . . . . . . . . . . . . . 408

The LOAD ARRAY Statement . . . . . . . . . . . . . . . . . . 409

Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

The PERFORM CHECKLIST FOR DRIVES Statement . . . . . 410

The PERFORM CHECKLIST FOR FILES Statement . . . . . . 410

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Writing to a Data File . . . . . . . . . . . . . . . . . . . . . . . 412

Reading from a Data File . . . . . . . . . . . . . . . . . . . . 412

Random Access . . . . . . . . . . . . . . . . . . . . . . . . . 412

Pack Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Arrays and Files . . . . . . . . . . . . . . . . . . . . . . . . . 413

Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Solutions.......................................................................................................414

Chapter 16 Handling Music Files
Handling Music Files ....................................................................................420

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Playing a Sound File . . . . . . . . . . . . . . . . . . . . . . . . . 420

The LOAD MUSIC Statement . . . . . . . . . . . . . . . . . . 420

The PLAY MUSIC Statement . . . . . . . . . . . . . . . . . . 421

The LOOP MUSIC Statement . . . . . . . . . . . . . . . . . . 421

The PAUSE MUSIC Statement . . . . . . . . . . . . . . . . . 422

The RESUME MUSIC Statement . . . . . . . . . . . . . . . . 422

The STOP MUSIC Statement . . . . . . . . . . . . . . . . . . 423



The SET MUSIC SPEED Statement . . . . . . . . . . . . . . . 423

The SET MUSIC VOLUME Statement . . . . . . . . . . . . . . 424

The DELETE MUSIC Statement . . . . . . . . . . . . . . . . . 424

Retrieving Music File Data . . . . . . . . . . . . . . . . . . . . . . 425

The MUSIC EXIST Statement . . . . . . . . . . . . . . . . . . 425

The MUSIC PLAYING Statement . . . . . . . . . . . . . . . . 425

The MUSIC LOOPING Statement . . . . . . . . . . . . . . . . 426

The MUSIC PAUSED Statement . . . . . . . . . . . . . . . . 426

The MUSIC VOLUME Statement . . . . . . . . . . . . . . . . 427

The MUSIC SPEED Statement . . . . . . . . . . . . . . . . . 428

Playing Multiple Music Files . . . . . . . . . . . . . . . . . . . . . 429

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Playing CDs .................................................................................................431

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

CD Control Statements . . . . . . . . . . . . . . . . . . . . . . . . 431

The LOAD CDMUSIC Statement . . . . . . . . . . . . . . . . 431

The GET NUMBER OF CD TRACKS Statement . . . . . . . . 432

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Solutions.......................................................................................................434

Chapter 17 Displaying Video Files
Displaying Video Files ..................................................................................436

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Playing Video Files . . . . . . . . . . . . . . . . . . . . . . . . . . 436

The LOAD ANIMATION Statement . . . . . . . . . . . . . . . 436

The PLAY ANIMATION Statement . . . . . . . . . . . . . . . 437

The LOOP ANIMATION Statement . . . . . . . . . . . . . . . 439

The PAUSE ANIMATION Statement . . . . . . . . . . . . . . 440

The RESUME ANIMATION Statement . . . . . . . . . . . . . 441

The STOP ANIMATION Statement . . . . . . . . . . . . . . . 441

The PLACE ANIMATION Statement . . . . . . . . . . . . . . . 442

The SET ANIMATION SPEED Statement . . . . . . . . . . . . 443

The SET ANIMATION VOLUME Statement . . . . . . . . . . . 444

The DELETE ANIMATION Statement . . . . . . . . . . . . . . 444

Retrieving Video Data . . . . . . . . . . . . . . . . . . . . . . . . 444

The ANIMATION EXIST Statement . . . . . . . . . . . . . . . 444

The ANIMATION POSITION Statement . . . . . . . . . . . . . 445

The ANIMATION WIDTH Statement . . . . . . . . . . . . . . . 446

The ANIMATION HEIGHT Statement . . . . . . . . . . . . . . 446

The ANIMATION PLAYING Statement . . . . . . . . . . . . . 447

The ANIMATION LOOPING Statement . . . . . . . . . . . . . 447

The ANIMATION PAUSED Statement . . . . . . . . . . . . . . 447

The ANIMATION VOLUME Statement . . . . . . . . . . . . . 449

The ANIMATION SPEED Statement . . . . . . . . . . . . . . 449

Playing Multiple Videos . . . . . . . . . . . . . . . . . . . . . . . . 450



Playing Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Playing DVDs ...............................................................................................452

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

DVD Handling Statements . . . . . . . . . . . . . . . . . . . . . . 452

The LOAD DVD ANIMATION Statement . . . . . . . . . . . . 452

The TOTAL DVD CHAPTERS Statement . . . . . . . . . . . . 452

The SET DVD CHAPTER Statement . . . . . . . . . . . . . . 453

A Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Solutions.......................................................................................................455

Chapter 18 Accessing the Keyboard
Accessing the Keyboard ..............................................................................458

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Reading a Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

The INKEY$ Statement . . . . . . . . . . . . . . . . . . . . . 458

Checking the Arrow Keys . . . . . . . . . . . . . . . . . . . . . . 460

The UPKEY Statement . . . . . . . . . . . . . . . . . . . . . 460

The DOWNKEY Statement . . . . . . . . . . . . . . . . . . . 460

The LEFTKEY Statement . . . . . . . . . . . . . . . . . . . . 461

The RIGHTKEY Statement . . . . . . . . . . . . . . . . . . . 461

Checking For Other Special Keys . . . . . . . . . . . . . . . . . . 461

Scan Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

The SCANCODE Statement . . . . . . . . . . . . . . . . . . . 462

The KEYSTATE Statement . . . . . . . . . . . . . . . . . . . 463

The ENTRY$ Statement . . . . . . . . . . . . . . . . . . . . . 466

The CLEAR ENTRY BUFFER Statement . . . . . . . . . . . . 467

The SUSPEND FOR KEY Statement . . . . . . . . . . . . . . 467

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Solutions.......................................................................................................469

Chapter 19 Mathematical Functions
Mathematical Functions ...............................................................................472

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Mathematical Functions in DarkBASIC Pro . . . . . . . . . . . . . 473

The COS Statement . . . . . . . . . . . . . . . . . . . . . . . 473

The SIN Statement . . . . . . . . . . . . . . . . . . . . . . . . 475

Dealing with Longer Lines . . . . . . . . . . . . . . . . . . . . 476

The SQRT Statement . . . . . . . . . . . . . . . . . . . . . . 476

The ACOS Statement . . . . . . . . . . . . . . . . . . . . . . 477

The ASIN Statement . . . . . . . . . . . . . . . . . . . . . . . 478

The TAN Statement . . . . . . . . . . . . . . . . . . . . . . . 478



The ATAN Statement . . . . . . . . . . . . . . . . . . . . . . 479

The WRAPVALUE Statement . . . . . . . . . . . . . . . . . . 481

Other Mathematical Functions . . . . . . . . . . . . . . . . . . . . 481

The ABS Statement . . . . . . . . . . . . . . . . . . . . . . . 481

The INT Statement . . . . . . . . . . . . . . . . . . . . . . . . 482

The EXP Statement . . . . . . . . . . . . . . . . . . . . . . . 483

The HCOS Statement . . . . . . . . . . . . . . . . . . . . . . 483

The HSIN Statement . . . . . . . . . . . . . . . . . . . . . . . 483

The HTAN Statement . . . . . . . . . . . . . . . . . . . . . . 484

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Solutions.......................................................................................................486

Chapter 20 Images
Images..........................................................................................................488

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Image Handling Statements . . . . . . . . . . . . . . . . . . . . . 488

The LOAD IMAGE Statement . . . . . . . . . . . . . . . . . . 488

The PASTE IMAGE Statement . . . . . . . . . . . . . . . . . 489

The SET IMAGE COLORKEY Statement . . . . . . . . . . . . 490

The SAVE IMAGE Statement . . . . . . . . . . . . . . . . . . 490

The DELETE IMAGE Statement . . . . . . . . . . . . . . . . . 491

The GET IMAGE Statement . . . . . . . . . . . . . . . . . . . 492

The IMAGE EXIST Statement . . . . . . . . . . . . . . . . . . 493

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Solutions......................................................................................................494

Chapter 21 Sprites1
Creating and Moving Sprites ........................................................................496

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Loading a Sprite Image . . . . . . . . . . . . . . . . . . . . . . . . 496

The SPRITE Statement . . . . . . . . . . . . . . . . . . . . . 496

Translating a Sprite . . . . . . . . . . . . . . . . . . . . . . . . . . 498

The PASTE SPRITE Statement . . . . . . . . . . . . . . . . . 498

The MOVE SPRITE Statement . . . . . . . . . . . . . . . . . 499

The ROTATE SPRITE Statement . . . . . . . . . . . . . . . . 500

How MOVE SPRITE Operates . . . . . . . . . . . . . . . . . . . . 502

Moving a Sprite’s Origin . . . . . . . . . . . . . . . . . . . . . . . 503

The OFFSET SPRITE Statement . . . . . . . . . . . . . . . . 503

Sprite Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

The MIRROR SPRITE Statement . . . . . . . . . . . . . . . . 505

The FLIP SPRITE Statement . . . . . . . . . . . . . . . . . . 506

Reflecting a Tilted Sprite . . . . . . . . . . . . . . . . . . . . . 507

Sprite Background Transparency . . . . . . . . . . . . . . . . . . 507

Giving the User Control of a Sprite . . . . . . . . . . . . . . . . . . 508



Vertical Movement . . . . . . . . . . . . . . . . . . . . . . . . 508

Horizontal Movement . . . . . . . . . . . . . . . . . . . . . . 508

Rotational Movement . . . . . . . . . . . . . . . . . . . . . . 509

Free Movement . . . . . . . . . . . . . . . . . . . . . . . . . 510

Restricting Sprite Movement . . . . . . . . . . . . . . . . . . . 511

Storing the Position of the Sprite in a Record . . . . . . . . . . 512

Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Sprites and the PRINT Statement . . . . . . . . . . . . . . . . . . 521

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Solutions ......................................................................................................523

Chapter 22 Sprites 2
Changing a Sprite’s Appearance .................................................................528

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Resizing Sprites . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

The SCALE SPRITE Statement . . . . . . . . . . . . . . . . . 528

The STRETCH SPRITE Statement . . . . . . . . . . . . . . . 529

The SIZE SPRITE Statement . . . . . . . . . . . . . . . . . . 530

Changing Transparency and Colour Brightness . . . . . . . . . . . 530

The SET SPRITE ALPHA Statement . . . . . . . . . . . . . . 530

The SET SPRITE DIFFUSE Statement . . . . . . . . . . . . . 531

Showing and Hiding Sprites . . . . . . . . . . . . . . . . . . . . . 532

The HIDE SPRITE Statement . . . . . . . . . . . . . . . . . . 532

The SHOW SPRITE Statement . . . . . . . . . . . . . . . . . 533

The HIDE ALL SPRITES Statement . . . . . . . . . . . . . . . 533

The SHOW ALL SPRITES Statement . . . . . . . . . . . . . . 533

Duplicating a Sprite . . . . . . . . . . . . . . . . . . . . . . . . . . 533

The CLONE SPRITE Statement . . . . . . . . . . . . . . . . . 533

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

Adding a Background...................................................................................536

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Ways to Change the Background . . . . . . . . . . . . . . . . . . 536

The COLOR BACKDROP Statement . . . . . . . . . . . . . . 536

The BACKDROP ON Statement . . . . . . . . . . . . . . . . . 536

The BACKDROP OFF Statement . . . . . . . . . . . . . . . . 537

Using a Sprite as a BackGround . . . . . . . . . . . . . . . . . 537

Sprite Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

The SET SPRITE PRIORITY Statement . . . . . . . . . . . . . 538

The SET SPRITE TEXTURE COORD Statement . . . . . . . . 539

The SET SPRITE Statement . . . . . . . . . . . . . . . . . . . 542

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Retrieving Data About Sprites ......................................................................544

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Sprite Data Retrieval Statements . . . . . . . . . . . . . . . . . . 544

The SPRITE EXIST Statement . . . . . . . . . . . . . . . . . 544



The SPRITE X Statement . . . . . . . . . . . . . . . . . . . . 544

The SPRITE Y Statement . . . . . . . . . . . . . . . . . . . . 544

The SPRITE ANGLE Statement . . . . . . . . . . . . . . . . . 545

The SPRITE OFFSET X Statement . . . . . . . . . . . . . . . 545

The SPRITE OFFSET Y Statement . . . . . . . . . . . . . . . 546

The SPRITE SCALE X Statement . . . . . . . . . . . . . . . . 546

The SPRITE SCALE Y Statement . . . . . . . . . . . . . . . . 546

The SPRITE WIDTH Statement . . . . . . . . . . . . . . . . . 547

The SPRITE HEIGHT Statement . . . . . . . . . . . . . . . . 547

The SPRITE MIRRORED Statement . . . . . . . . . . . . . . 547

The SPRITE FLIPPED Statement . . . . . . . . . . . . . . . . 548

The SPRITE VISIBLE Statement . . . . . . . . . . . . . . . . 548

The SPRITE ALPHA Statement . . . . . . . . . . . . . . . . . 548

The SPRITE RED Statement . . . . . . . . . . . . . . . . . . 549

The SPRITE GREEN Statement . . . . . . . . . . . . . . . . . 549

The SPRITE BLUE Statement . . . . . . . . . . . . . . . . . . 549

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Sprite Collision .............................................................................................551

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Dealing With Sprite Collisions . . . . . . . . . . . . . . . . . . . . 551

The SPRITE HIT Statement . . . . . . . . . . . . . . . . . . . 551

The SPRITE COLLISION Statement . . . . . . . . . . . . . . 553

A Basic Bat and Ball Game . . . . . . . . . . . . . . . . . . . . . 553

Firing Projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

The DELETE SPRITE Statement . . . . . . . . . . . . . . . . 555

The Missile Game . . . . . . . . . . . . . . . . . . . . . . . . 556

Extending the Game . . . . . . . . . . . . . . . . . . . . . . . 558

The SET SPRITE IMAGE Statement . . . . . . . . . . . . . . 559

The SPRITE IMAGE Statement . . . . . . . . . . . . . . . . . 560

Updating the Screen . . . . . . . . . . . . . . . . . . . . . . . . . 562

The SYNC ON Statement . . . . . . . . . . . . . . . . . . . . 562

The SYNC Statement . . . . . . . . . . . . . . . . . . . . . . 562

The SYNC OFF Statement . . . . . . . . . . . . . . . . . . . 563

The SYNC RATE Statement . . . . . . . . . . . . . . . . . . . 563

The FASTSYNC Statement . . . . . . . . . . . . . . . . . . . 564

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Solutions.......................................................................................................565

Chapter 23 Animated Sprites
Animated Sprites ..........................................................................................572

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

Setting Up the Sprite . . . . . . . . . . . . . . . . . . . . . . . . . 572

The CREATE ANIMATED SPRITE Statement . . . . . . . . . 572

The SET SPRITE FRAME Statement . . . . . . . . . . . . . . 573

The SPRITE FRAME Statement . . . . . . . . . . . . . . . . . 574



A Simple Dice Game . . . . . . . . . . . . . . . . . . . . . . . . . 575

Creating a Sprite that Really is Animated . . . . . . . . . . . . . . 578

The PLAY SPRITE Statement . . . . . . . . . . . . . . . . . . 578

Changing the Transparent Colour . . . . . . . . . . . . . . . . 579

Moving the Sprite . . . . . . . . . . . . . . . . . . . . . . . . 580

Varying the Velocity . . . . . . . . . . . . . . . . . . . . . . . 581

Multiple Asteroids . . . . . . . . . . . . . . . . . . . . . . . . 582

Controlling the Spaceship . . . . . . . . . . . . . . . . . . . . . . 584

The HandleKeyboard() Function . . . . . . . . . . . . . . . . . 584

The HandleShip() Function . . . . . . . . . . . . . . . . . . . 585

The LaunchMissile() Function . . . . . . . . . . . . . . . . . . 588

The HandleMissiles() Routine . . . . . . . . . . . . . . . . . . 590

Adding the Asteroids . . . . . . . . . . . . . . . . . . . . . . . . . 591

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Solutions.......................................................................................................595

Chapter 24 Sound
Mono and Stereo Sound ..............................................................................604

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

The Basics of Loading and Playing Sounds . . . . . . . . . . . . . 604

The LOAD SOUND Statement . . . . . . . . . . . . . . . . . . 604

The PLAY SOUND Statement . . . . . . . . . . . . . . . . . . 604

The LOOP SOUND Statement . . . . . . . . . . . . . . . . . . 606

The PAUSE SOUND Statement . . . . . . . . . . . . . . . . . 607

The RESUME SOUND Statement . . . . . . . . . . . . . . . . 607

The STOP SOUND Statement . . . . . . . . . . . . . . . . . . 608

The SET SOUND SPEED Statement . . . . . . . . . . . . . . 608

The SET SOUND VOLUME Statement . . . . . . . . . . . . . 609

The CLONE SOUND Statement . . . . . . . . . . . . . . . . . 609

The DELETE SOUND Statement . . . . . . . . . . . . . . . . 610

Recording Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

The RECORD SOUND Statement . . . . . . . . . . . . . . . . 611

The STOP RECORDING SOUND Statement . . . . . . . . . . 611

The SAVE SOUND Statement . . . . . . . . . . . . . . . . . . 612

Retrieving Sound File Data . . . . . . . . . . . . . . . . . . . . . . 613

The SOUND EXIST Statement . . . . . . . . . . . . . . . . . 613

The SOUND PLAYING Statement . . . . . . . . . . . . . . . . 613

The SOUND LOOPING Statement . . . . . . . . . . . . . . . 614

The SOUND PAUSED Statement . . . . . . . . . . . . . . . . 614

The SOUND VOLUME Statement . . . . . . . . . . . . . . . . 616

The SOUND SPEED Statement . . . . . . . . . . . . . . . . . 616

Moving a Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

The SET SOUND PAN Statement . . . . . . . . . . . . . . . . 617

The SOUND PAN Statement . . . . . . . . . . . . . . . . . . 617

Playing Multiple Sound Files . . . . . . . . . . . . . . . . . . . . . 618



Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

3D Sound Effects .........................................................................................620

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Loading and Playing 3D Sounds . . . . . . . . . . . . . . . . . . . 621

The LOAD 3DSOUND Statement . . . . . . . . . . . . . . . . 621

The POSITION SOUND Statement . . . . . . . . . . . . . . . 621

Controlling the Listener . . . . . . . . . . . . . . . . . . . . . . . . 622

The POSITION LISTENER Statement . . . . . . . . . . . . . . 622

The ROTATE LISTENER Statement . . . . . . . . . . . . . . 623

The SCALE LISTENER Statement . . . . . . . . . . . . . . . 623

Retrieving Data on 3D Sounds and the Listener . . . . . . . . . . . 624

The SOUND POSITION X Statement . . . . . . . . . . . . . . 624

The SOUND POSITION Y Statement . . . . . . . . . . . . . . 624

The SOUND POSITION Z Statement . . . . . . . . . . . . . . 624

The LISTENER POSITION X Statement . . . . . . . . . . . . 625

The LISTENER POSITION Y Statement . . . . . . . . . . . . 625

The LISTENER POSITION Z Statement . . . . . . . . . . . . . 625

The LISTENER ANGLE X Statement . . . . . . . . . . . . . . 625

The LISTENER ANGLE Y Statement . . . . . . . . . . . . . . 625

The LISTENER ANGLE Z Statement . . . . . . . . . . . . . . 626

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

Solutions......................................................................................................628

Chapter 25 2D Vectors
2D Vectors....................................................................................................632

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

A Mathematical Description of Vectors . . . . . . . . . . . . . 632

Vectors in DarkBASIC Pro . . . . . . . . . . . . . . . . . . . . 633

Creating a 2D Vector . . . . . . . . . . . . . . . . . . . . . . . . . 633

The MAKE VECTOR2 Statement . . . . . . . . . . . . . . . . 633

The SET VECTOR2 Statement . . . . . . . . . . . . . . . . . 634

The X VECTOR2 Statement . . . . . . . . . . . . . . . . . . . 635

The Y VECTOR2 Statement . . . . . . . . . . . . . . . . . . . 635

The DELETE VECTOR2 Statement . . . . . . . . . . . . . . . 636

The COPY VECTOR2 Statement . . . . . . . . . . . . . . . . 637

The MULTIPLY VECTOR2 Statement . . . . . . . . . . . . . . 638

The SCALE VECTOR2 Statement . . . . . . . . . . . . . . . . 638

The DIVIDE VECTOR2 Statement . . . . . . . . . . . . . . . . 639

The LENGTH VECTOR2 Statement . . . . . . . . . . . . . . . 639

The SQUARED LENGTH VECTOR2 Statement . . . . . . . . 640

The ADD VECTOR2 Statement . . . . . . . . . . . . . . . . . 640

The SUBTRACT VECTOR2 Statement . . . . . . . . . . . . . 643

The DOT PRODUCT VECTOR2 Statement . . . . . . . . . . . 644

The IS EQUAL VECTOR2 Statement . . . . . . . . . . . . . . 645

The MAXIMIZE VECTOR2 Statement . . . . . . . . . . . . . . 646



The MINIMIZE VECTOR2 Statement . . . . . . . . . . . . . . 647

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

In Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 648

In Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

In DarkBASIC Pro . . . . . . . . . . . . . . . . . . . . . . . . 648

Solutions.......................................................................................................650

Chapter 26 Space Duel
Creating a Two-Player Game.......................................................................652

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

The Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . 652

Winning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Basic Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

The Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Game Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

Game Documentation . . . . . . . . . . . . . . . . . . . . . . . . 654

Coding the Program . . . . . . . . . . . . . . . . . . . . . . . . . 659

Adding InitialiseGame() . . . . . . . . . . . . . . . . . . . . . 660

Adding HandleKeyboard() . . . . . . . . . . . . . . . . . . . . 662

Adding HandleShip() . . . . . . . . . . . . . . . . . . . . . . . 662

Adding HandleMissiles() . . . . . . . . . . . . . . . . . . . . . 664

Adding GameOver() . . . . . . . . . . . . . . . . . . . . . . . 665

Space Duel - A Program Listing...................................................................666

Solutions.......................................................................................................672

Chapter 27 Using the Mouse
Controlling the Mouse ..................................................................................678

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Waiting for a Mouse Click . . . . . . . . . . . . . . . . . . . . . . 678

The WAIT MOUSE Statement . . . . . . . . . . . . . . . . . . 678

The SUSPEND FOR MOUSE Statement . . . . . . . . . . . . 678

The MOUSECLICK Statement . . . . . . . . . . . . . . . . . . 678

The Mouse Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 680

The HIDE MOUSE Statement . . . . . . . . . . . . . . . . . . 680

The SHOW MOUSE Statement . . . . . . . . . . . . . . . . . 680

The POSITION MOUSE Statement . . . . . . . . . . . . . . . 681

The CHANGE MOUSE Statement . . . . . . . . . . . . . . . . 681

Reading the Mouse Position . . . . . . . . . . . . . . . . . . . . . 683

The MOUSEX Statement . . . . . . . . . . . . . . . . . . . . 683

The MOUSEY Statement . . . . . . . . . . . . . . . . . . . . 683

Mouse Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

The MOUSEMOVEX Statement . . . . . . . . . . . . . . . . . 684



The MOUSEMOVEY Statement . . . . . . . . . . . . . . . . . 684

The Mouse Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . 685

The MOUSEZ Statement . . . . . . . . . . . . . . . . . . . . 685

The MOUSEMOVEZ Statement . . . . . . . . . . . . . . . . . 686

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

Mouse Handling Techniques........................................................................688

Rollovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

A Second Approach . . . . . . . . . . . . . . . . . . . . . . . 689

Clicking On-Screen Buttons . . . . . . . . . . . . . . . . . . . . . 690

Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 690

Reacting to a Button Click . . . . . . . . . . . . . . . . . . . . 691

Controlling Program Flow . . . . . . . . . . . . . . . . . . . . 693

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Solutions.......................................................................................................695

Chapter 28 Pelmanism
The Game of Pelmanism..............................................................................698

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

The Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 698

Game Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Structures Defined . . . . . . . . . . . . . . . . . . . . . . . . 699

Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . 699

Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

The Program Code . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Adding InitialiseGame() . . . . . . . . . . . . . . . . . . . . . 701

Adding HandleMouse() . . . . . . . . . . . . . . . . . . . . . 703

Adding GameOver() . . . . . . . . . . . . . . . . . . . . . . . 706

Pelmanism - Program Listing .......................................................................707

Solutions.......................................................................................................713

Chapter 29 Using a Joystick
Using a Joystick ...........................................................................................716

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Checking the System for a Joystick . . . . . . . . . . . . . . . . . 716

��� ������	 
��
���� ��� 
����� ����
�� ��������� . 716

Reading the Position of the Joystick . . . . . . . . . . . . . . . . . 717

The JOYSTICK Direction Statement . . . . . . . . . . . . . . . 717

The JOYSTICK Position Statement . . . . . . . . . . . . . . . 718

Joystick Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

The JOYSTICK FIRE Statement . . . . . . . . . . . . . . . . . 721

The JOYSTICK FIRE X Statement . . . . . . . . . . . . . . . 722

The JOYSTICK SLIDER Statement . . . . . . . . . . . . . . . 723



The JOYSTICK TWIST Statement . . . . . . . . . . . . . . . . 723

The JOYSTICK HAT ANGLE Statement . . . . . . . . . . . . . 724

Feedback Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

The FORCE Direction Statement . . . . . . . . . . . . . . . . 726

The FORCE ANGLE Statement . . . . . . . . . . . . . . . . . 727

The FORCE NO EFFECT Statement . . . . . . . . . . . . . . 728

The FORCE AUTO CENTER Statement . . . . . . . . . . . . 728

The FORCE WATER EFFECT Statement . . . . . . . . . . . . 728

The FORCE CHAINSAW Statement . . . . . . . . . . . . . . . 729

The FORCE SHOOT Statement . . . . . . . . . . . . . . . . . 730

The FORCE IMPACT Statement . . . . . . . . . . . . . . . . 731

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

A Joystick-Based Game...............................................................................733

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

The Rules Of the Game . . . . . . . . . . . . . . . . . . . . . . . 733

The Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 733

The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Media Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

The Program Code . . . . . . . . . . . . . . . . . . . . . . . . . . 734

Adding InitialiseGame() . . . . . . . . . . . . . . . . . . . . . 735

Adding CreateAlien() . . . . . . . . . . . . . . . . . . . . . . . 736

Adding HandleJoystick() . . . . . . . . . . . . . . . . . . . . . 736

Adding CreateMissile() . . . . . . . . . . . . . . . . . . . . . . 736

Adding HandleAlien() . . . . . . . . . . . . . . . . . . . . . . 736

Adding WrapAlien() . . . . . . . . . . . . . . . . . . . . . . . 737

Adding HandleMissile() . . . . . . . . . . . . . . . . . . . . . 737

Solutions.......................................................................................................739

Appendix ......................................................................................................743

The ASCII Character Set . . . . . . . . . . . . . . . . . . . . . . . 743

Index.............................................................................................................744



Acknowledgements

I would like to thank all those who helped me prepare the final draft of this book.

In particular, Virginia Marshall who proof-read the original script and Michael Kerr
who did an excellent job of checking the technical contents.

Any errors that remain are probably due to the extra few paragraphs I added after
all the proof-reading was complete!

Thanks also to The Game Creators Ltd for producing an excellent piece of software
- DarkBASIC Professional - known as DarkBASIC Pro to its friends.

Finally, thank you to every one of you who has bought this book. Any constructive
comments would be most welcome.

Email me at alistair@digital-skills.co.uk.



Introduction

Welcome to a book that I hope is a little different from any other you've come across.
Instead of just telling you about software design and programming, it makes you
get involved. There's plenty of work for you to do since the book is full of exercises
- most of them programming exercises - but you also get a full set of solutions, just
in case you get stuck!

Learn by Doing

The only way to become a programming expert is to practice. No one ever learned
any skill by just reading about it! Hence, this is not a text book where you can just
sit back in a passive way and read from cover to cover whilst sitting in your favourite
chair. Rather it is designed as a teaching package in which you will do most of the
work.

The tasks embedded in the text are included to test your understanding of what has
gone before and as a method of helping you retain the knowledge you have gained.
It is therefore important that you tackle each task as you come to it. Also, many of
the programming exercises are referred to, or expanded, in later pages so it is
important that you are familar with the code concerned.

What You Need

You'll obviously need a PC and a copy of DarkBASIC Pro.

You don't need any experience of programming, but knowing your bits from your
bytes and understanding binary and hexadecimal number systems would be useful.

How to Get the Most out of this Text

Experience has shown that readers derive most benefit from this material by
approaching its study in an organised way. The following strategy for study is highly
recommended:

1. Read a chapter or section through without taking notes or worrying too
much about topics that are not immediately clear to you. This will give
you an overview of the contents of that chapter/section.

2. Re-read the chapter. This time take things slowly; make notes and
summaries of the material you are reading (even if you understand the
material, making notes helps to retain the facts in your long-term
memory); re-read any parts you are unclear about.

3. Embedded in the material are a series of activities. Do each task as you
reach it (on the second reading). These activities are designed to test
your knowledge and understanding of what has gone before. Do not be
tempted to skip over them, promise to come back to them later, or
to make only a half-hearted attempt at tackling them before looking up
the answer (there are solutions at the end of each chapter). Once you
have attempted a task, look at the solution given. Often there will be
important points emphasised in the solution which will aid higher
understanding.



4. As you progress through the book, go back and re-read earlier chapters,
since you will often get something new from them as your knowledge
increases.

Language Syntax Diagrams

The text contains many syntax diagrams which give a visual representation of the
format of various statements allowed in DarkBASIC Professional. These diagrams
make no attempt to be complete, but merely act as a guide to the format most likely
to be used. The accompanying text and example should highlight the more complex
options available. Below is a typical diagram:

Each tile in the diagram holds a token of the statement. Raised tiles represent fixed
terms in the statement, which must be entered exactly as shown. Sunken tiles
represent tokens whose exact value is decided by you, the programmer, but again
these values must conform to some stated rule.

Items enclosed in brackets may be omitted if not required. In this
example we can see that ELSE and all the terms that follow may be
omitted.

Where one or more tokens in a diagram may be repeated indefinitely,
this is shown using the arrowed line. This example shows that any
number of statements can be used so long as a colon appears between
each statement.

Occasionally, a single line of code will have to be printed over two or more lines
because of paper width restrictions; these lines are signified by a� symbol. Enter
these lines without a break when testing any of the programs in which they are used.
For example, the code

SPRITE crosshairs,(JOYSTICK X()+1000)*xpixels#,
�(JOYSTICK Y()+1000)*ypixels#,1

should be entered as a single line.

statement

statement

condition

statement

statement

conditionIF

:

:

THEN

ELSE

IF

:

:

THEN

ELSE

statementstatement

:

ELSE

:

ELSE

statementstatement

::



1

Boolean expressions

Data Variables

Designing Algorithms

Desk Checking

IF Control Structure

FOR Control Structure

REPEAT Control Structure

Stepwise Refinement

Testing

WHILE Control Structure

DarkBASIC Pro: Designing Algorithms 1



Designing Algorithms

Following Instructions

Activity 1.1

Carry out the following set of instructions in your head.

����� �� � �	
�� ������� � ��� ��

�	������ ���� �	
�� �� �

��� 	� ��� �������	�� ������ �� ���� ��� �	
��

�	����� � ��
 ���� �����

����� �� ��� ����� �� ���� �������� �� ��� ��������

����� �� � ��	��� �� �	��� ���� ����� ���� ���� �����

����� �� � 
�

�� ���� ����� ���� ��� ������ ����� �� ��� ��	��� � ��
�

����� �� ��� ����	 �� ���� 
�

��

Congratulations! You’ve just become a human computer. You were given a set of
instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. You give it a set of instructions,the machine
carries out those instructions, and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task is known as an algorithm.

There are a few points to note from the algorithm given above:

� There is one instruction per line

� Each instruction is unambiguous

� Each instruction is as short as possible

Activity 1.2

This time let’s see if you can devise your own algorithm.

The task you need to solve is to measure out exactly 4 litres of water. You
have two containers. Container A, if filled, will hold exactly 5 litres of water,
while container B will hold 3 litres of water. You have an unlimited supply of
water and a drain to get rid of any water you no longer need. It is not possible
to know how much water is in a container if you only partly fill it from the
supply.

If you managed to come up with a solution, see if you can find a second way
of measuring out the 4 litres.

As you can see, there are at least two ways to solve the problem given in Activity
1.2. Is one better than the other? Well, if we start by filling container A, the solution
needs less instructions, so that might be a good guideline at this point when choosing
which algorithm is best.

A B

2 DarkBASIC Pro: Designing Algorithms



However, the algorithms that a computer carries out are not written in English like
the instructions shown above, but in a more stylised form using a computer
programming language. DarkBASIC Pro is one such language. The set of program
language instructions which make up each algorithm is then known as a computer
program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a magnetic disk into the
computer’s memory and then executed (or run). Execution of a program involves
the computer performing each instruction in the program one after the other. This
it does at impressively high rates, possibly exceeding 2,000 million (or 2 billion)
instructions per second (2,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities.

Of course, as a programmer, you are required to design and write computer
programs rather than use them. And, more specifically, our programs in this text
will be mainly games-related; an area of programming for which DarkBASIC Pro
has been specifically designed.

Activity 1.3

1. A set of instructions that performs a specific task is known as what?

2. What term is used to describe a set of instructions used by a computer?

3. The speed of a computer is measured in what units?

Control Structures
Although writing algorithms and programming computers are certainly
complicated tasks, there are only a few basic concepts and statements which you
need to master before you are ready to start producing software. Luckily, the
concepts are already familiar to you in everyday situations. If you examine any
algorithm, no matter how complex, you will find it consists of three basic structures:

� Sequence where one statement follows on from another.

� Selection where a choice is made between two or more alternative
actions.

� Iteration where one or more instructions are carried out over and
over again.

These are explained in detail over the next few pages. All that is needed is to
formalise the use of these structures within an algorithm. This formalisation better
matches the structure of a computer program.

Sequence

A set of instructions designed to be carried out one after another, beginning at the

DarkBASIC Pro: Designing Algorithms 3



first and continuing, without omitting any, until the final instruction is completed,
is known as a sequence. For example, instructions on how to play Monopoly might
begin with the sequence:

!����� ��	 ������� �����
"���� ��	 ����� �� ��� #$ �%	��
#�� &�'��� ��
 ��� ����

The set of instructions given earlier in Activity 1.1 is also an example of a sequence.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot
during a golf game:

����� ��	� ������' ����
����� �� ��� ����

���� 	� ����� ������ ������ ����

#�� ��	� �������

����� ��	� ��������

!����� ��	�

Selection

Binary Selection

Often a group of instructions in an algorithm should only be carried out when certain
circumstances arise. For example, if we were playing a simple game with a young
child in which we hide a sweet in one hand and allow the child to have the sweet
if she can guess which hand the sweet is in, then we might explain the core idea
with an instruction such as

#��� ��� ����� �� ��� ����� �� ��� ����� �	����� ����� ���� ��� ����� �� ��

Notice that when we write a sentence containing the word IF, it consists of two main
components:

a condition : the child guesses which hand the sweet is in
and

a command : give the sweet to the child

A condition (also known as a Boolean expression) is a statement that is either true
or false. The command given in the statement is only carried out if the condition is
true and hence this type of instruction is known as an IF statement and the command
as a conditional instruction. Although we could rewrite the above instruction in
many different ways, when we produce a set of instructions in a formal manner, as
we are required to do when writing algorithms, then we use a specific layout as
shown in FIG-1.1 always beginning with the word IF.

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF

FIG-1.1

The IF Statement IF THEN

ENDIF

condition
command

If is true ...condition

..then is carried outcommand

If is not true,
then is ignored

condition
command

4 DarkBASIC Pro: Designing Algorithms



which marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the
structure of our instructions. Appropriate indentation is particularly valuable in
aiding readability once an algorithm becomes long and complex. Using this layout,
the instruction for our game with the child would be written as:

() ��� ����� �	����� ����� ���� ��� ����� �� �� �*�+
#��� ��� ����� �� ��� �����

�+,()

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

() ��	 ��� 
��� � ��� �*�+
��� ��� ��� �� ��� ����
-�� �	� ��� ������ ������
��� ��� ������ �� ��	 �����
������ 
�� ����� �����

�+,()

Of course, the conditional statement will almost certainly appear in a longer
sequence of instructions. For example, the instructions for playing our guessing
game with the young child may be given as:

*��� � ����� �� ��� ����
��� ��� ����� �� �	��� ����� ���� �������� ��� �����
() ��� ����� �	����� ����� ���� ��� ����� �� �� �*�+

#��� ��� ����� �� ��� �����
�+,()
��� ��� ����� �� ���� ��	�� ���� �� ���� �����

This longer sequence of instructions highlights the usefulness of the term ENDIF
in separating the conditional command, #��� ��� ����� �� ��� �����, from subsequent
unconditional instructions, in this case, ��� ��� ����� �� ���� ��	�� ���� �� ���� �����.

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player
1 responds to a correct guess by saying Correct. The game is then complete
and Player 1 states the value of the number.

Write the set of instructions necessary to play the game.

In your solution, include the statements:

"���� � ���� .!����/

"���� � ������ �� � �	
��

() �	��� 
������ �	
�� �*�+

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement
is true, then the command following the term THEN is executed, otherwise that
following ELSE is carried out.

For instance, in our earlier example of playing a guessing game with a child, nothing
happened if the child guessed wrongly. If the person holding the sweet were to eat
it when the child’s guess was incorrect, we could describe this setup with the

DarkBASIC Pro: Designing Algorithms 5



following statement:

() ��� ����� �	����� ����� ���� ��� ����� �� �� �*�+
#��� ��� ����� �� ��� �����

�0��
��� ����� ��	����

�+,()

The general form of this extended IF statement is shown in FIG-1.2.

Activity 1.6

Write an IF statement containing an ELSE section which describes the
alternative actions to be taken when playing Hangman and the player trying to
guess the word suggests a letter.

In the solution include the statements:
��� ����� �� ��������� ��������1�2

��� ��� �� ������ 
��

Choosing between two alternative actions is called binary selection.

When we have several independent selections to make, then we may use several IF
statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This
part of the game might be described using the following statements:

���� ��� ����
���� ��	 ����� ����� �� ��� �	
�� ���������
() ��	 ���� �� �� 	��	������ ������ �*�+

3	� ��� ������
�+,()
() ��	 ���� ��	���� �*�+

���� ��� ���� �����
�0��

*��� ��� ���� �� ��� ��4� �����
�+,()

Multi-way Selection

Although a single IF statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two alternatives (known as
multi-way selection). For example, imagine that the rules of the simple guessing
game mentioned in Activity 1.5 are changed so that there are three possible
responses to Player 2’s guess; these being:

� Correct

� Too low

� Too high

FIG-1.2

The IF ... ELSE Statement IF THEN

ELSE

ENDIF

condition
command 1

command 2

If is true ...condition

If is not true ...condition

..then is carried outcommand 1

..then is carried outcommand 2

This set of instructions is not
complete and is shown here
only to illustrate the use of
multiple IF statements in an
algorithm.

6 DarkBASIC Pro: Designing Algorithms



One way to create an algorithm that describes this situation is just to employ three
separate IF statements:

() ��� �	��� �� �%	�� �� ��� �	
�� ��	 ���	��� �� �*�+
��� .!����/

�+,()
() ��� �	��� �� ���� ���� ��� �	
�� ��	 ���	��� �� �*�+

��� .��� ���/
�+,()
() ��� �	��� �� ����� ���� ��� �	
�� ��	 ���	��� �� �*�+

��� .��� ����/
�+,()

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the
second and third IF statements are true. After all, only one of the three conditions
can be true at any one time.

Where only one of the conditions being considered can be true at a given moment
in time, these conditions are known as mutually exclusive conditions.

The most effective way to deal with mutually exclusive conditions is to check for
one condition, and only if this is not true, are the other conditions tested. So, for
example, in our algorithm for guessing the number, we might begin by writing:

() �	��� 
������ �	
�� �*�+
��� .!����/

�0��
555!���� ��� ���� ����������555

�+,()

Of course a statement like ***Check the other conditions*** is too vague to be
much use in an algorithm (hence the asterisks). But what are these other conditions?
They are the guess is lower than the number you thought of and the guess is higher
than the number you thought of.

We already know how to handle a situation where there are only two alternatives:
use an IF statement. So we can chose between Too low and Too high with the
statement

() �	��� �� ���� ���� �	
�� �*�+
��� .��� ���/

�0��
��� .��� ����/

�+,()

Now, by replacing the phrase ***Check the other conditions*** in our original
algorithm with our new IF statement we get:

() �	��� 
������ �	
�� �*�+
��� .!����

�0��
() �	��� �� ���� ���� �	
�� �*�+

��� /��� ���6
�0��

��� .��� ����/
�+,()

�+,()

Notice that the second IF statement is now totally contained within the ELSE section
of the first IF statement. This situation is known as nested IF statements. Where
there are even more mutually exclusive alternatives, several IF statements may be
nested in this way. However, in most cases, we’re not likely to need more than two
nested IF statements.

DarkBASIC Pro: Designing Algorithms 7



Activity 1.7

In an old TV programme called The Golden Shot, contestants had to direct a
crossbow in order to shoot an apple. The player sat at home and directed the
crossbow controller via the phone. Directions were limited to the following
phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested IF statements that determine which of the above
statements should be issued.

Use statements such as:

() ��� ������� �� �������� ��� ���� �*�+

and
��� .0��� � ���/

As you can see from the solution to Activity 1.7, although nested IF statements get
the job done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually
exclusive, conditions can be declared in a single IF statement along with the action
required for each of these conditions. This would allow us to rewrite the solution
to Activity 1.7 as:

()
������� �� ��� ����7

��� .,��� � ���/
������� �� ��� ���7

��� .8� � ���/
������� �� ��� �� ����7

��� .0��� � ���/
������� �� ��� �� ����7

��� . 9���� � ���/
������� �� �� �����7

��� .)��/
�+,()

Each option is explicitly named (ending with a colon) and only the one which is
true will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the
situation requires.

When producing a program for a computer, all possibilities have to be taken into
account. Early adventure games, which were text based, allowed the player to type
a command such as Go East, Go West, Go North, Go South and this moved the
player’s character to new positions in the imaginary world of the computer program.
If the player typed in an unrecognised command such as Go North-East or Move
faster, then the game would issue an error message. This setup can be described by
adding an ELSE section to the structure as shown below:

()
��

��� �� #� ����7

���� ����� � ������� �������
��

��� �� #� -���7

���� ����� � ������� �������
��

��� �� #� +���7

���� ����� � ������� �������
��

��� �� #� ��	��7

���� ����� � ������� ��	�����
�0��

,������ �� �� 
������
�+,()

8 DarkBASIC Pro: Designing Algorithms



The additional ELSE option will be chosen only if none of the other options are
applicable. In other words, it acts like a catch-all, handling all the possibilities not
explicitly mentioned in the earlier conditions.

This gives us the final form of this style of the IF statement as shown in FIG-1.3:

Activity 1.8

In the TV game Wheel of Fortune (where you have to guess a well-known
phrase), you can, on your turn, either guess a consonant, buy a vowel, or make
a guess at the whole phrase.

If you know the phrase, you should make a guess at what it is; if there are
still many unseen letters, you should guess a consonant; as a last resort you
can buy a vowel.

Write an IF statement in the style given above describing how to choose from
the three options.

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example,
in the TV game Family Fortunes, you only win the star prize if you get 200 points
and guess the most popular answers to a series of questions. This can be described
in our more formal style as:

() �� ����� :�� ������ ������ �+, ��� 
��� ���	�� ������ ���� ���� �	����� �*�+
������� ���
 ��� ��� ��� ��;�

�+,()

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as a complex condition). The conditions on either side
of the AND are called the operands. Both operands must be true for the overall
result to be true. We can generalise this to describe the AND operator as being used
in the form:

��������� � �+, ��������� :

FIG-1.3

The Third Version of the
IF Statement

IF

ELSE

ENDIF

condition 1:
command 1

condition 2:
command 2

command x

If is true ...condition 1

If none of the condition
given above are true ...

As many conditions and
commands as required can

be added

If is true ...condition 2

... then
is carried out

command 1

... then
is carried out

command X

... then
is carried out

command 2

DarkBASIC Pro: Designing Algorithms 9



The result of the AND operator is determined using the following rules:

�< ,���
��� ��� �	�� �� ��������� �
:< ,���
��� ��� �	�� �� ��������� :
=< () ���� ���������� �� �	� �*�+

��� ������ ��	�� �� �	�
�0��

��� ������ ��	�� �� �����
�+,()

For example, if we assume the group reaching the final of the game show Family
Fortunes has amassed 230 points but have not guessed all of the most popular
answers, then a computer would determine the overall result of the IF statement
given earlier as shown in FIG-1.4.

With two conditions there are four possible combinations. The first possibility is
that both conditions are false; another possibility is that condition 1 is false but
condition 2 is true.

Activity 1.9

What are the other two possible combinations of true and false?

The results of the AND operator are summarised in TABLE-1.1.

Activity 1.10

In the card game Snap, you win the cards on the table if you are first to place
your hand over those cards, and the last two cards laid down are of the same
value.

Write an IF statement, which includes the term AND, summarising this
situation.

The OR Operator

Simple conditions may also be linked by the Boolean OR operator. Using OR, only
one of the conditions needs to be true in order to carry out the action that follows.
For example, in the game of Monopoly you go to jail if you land on the GoTo Jail

TABLE-1.1

The AND Operator

FIG-1.4

Calculating the Result
of an AND Operation

IF AND THENat least 200 points gained all most popular answers have been guessed

This condition is true This condition is false

IF AND THENtrue false

IF THENfalse

giving

reduces to

condition 1 condition 2      condition 1 AND condition 2

false false false
false true false
true false false
true true true

10 DarkBASIC Pro: Designing Algorithms



square or if you throw three doubles in a row. This can be written as:

() ����� ����� �� #� �� >��� $9 ����� ��� ����� = ���� �� � �� �*�+
"(��� ���� �� ?���

�+,()

Like AND, the OR operator works on two operands:

��������� � $9 ��������� :

When OR is used, only one of the conditions involved needs to be true for the overall
result to be true. Hence the results are determined by the following rules:

�< ,���
��� ��� �	�� �� ��������� �
:< ,���
��� ��� �	�� �� ��������� :
=< () ��� �� ��� ���������� �� �	� �*�+

��� ������ ��	�� �� �	�
�0��

��� ������ ��	�� �� �����
�+,()

For example, if a player in the game of Monopoly has not landed on the Go To Jail
square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be determined as shown in FIG-1.5.

The results of the OR operator are summarised in TABLE-1.2.

Activity 1.11

In Monopoly, a player can get out of jail if he throws a double or pays a £50
fine.

Express this information in an IF statement which makes use of the OR
operator.

The NOT Operator

The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. Hence, if property mortgaged
is true, then NOT property mortgaged is false.

FIG-1.5

Calculating the Result of
an OR Operation

IF OR THENplayer lands on player has thrown 3 pairs in a rowGo To Jail

This condition is false This condition is true

IF OR THENfalse true

IF THENtrue

giving

reduces to

TABLE-1.2

The OR Operator

condition 1 condition 2 condition 1 OR condition 2

false false false
false true true
true false true
true true true

DarkBASIC Pro: Designing Algorithms 11



Notice that the word NOT is always placed at the start of the condition and not
where it would appear in everyday English (property NOT mortgaged).

In Monopoly a player can charge rent on a property as long as that property is not
mortgaged. This situation can be described with the statement:

() +$� ������ 
������� �*�+
9��� ��� �� ������

�+,()

The NOT operator works on a single operand:

+$� ���������

When NOT is used, the result given by the original condition is reversed. Hence
the results are determined by the following rules:

�< ,���
��� ��� �	�� �� ��� ���������
:< !�
���
��� ��� ��	�� �������� �� ���� �

For example, if a player lands on a property that is not mortgaged, then the result
of the IF statement given above would be determined as shown in FIG-1.6.

The results of the NOT operator are summarised in TABLE-1.3.

Complex conditions are not limited to a single occurrence of a Boolean operator,
hence it is valid to have statements such as:

() ����� ����� �� #� �� >��� $9 ����� ��� ����� = ���� �� � �� $9
����� ����� � #� �� >��� ���

�*�+
"���� ���� �� ?���

�+,()

Although us humans might be able to work all of this out in our heads without even
a conscious thought, computers deal with such complex conditions in a slow, but
methodical way.

To calculate the final result of the condition given above, the computer requires
several operations to be performed. These are performed in two stages:

�< ,���
��� ��� �	�� �� ���� ���������
:< ,���
��� ��� ��	�� �� ���� $9 ��������' ������� ���� ��� ����@
��� $9

FIG-1.6

Calculating the Result of
a NOT Operation

IF NOT THENproperty mortgaged

This condition is false

IF NOT THENfalse

IF THENtrue

giving

reduces to

The original result, false,
is complemented by the

NOT operator

TABLE-1.3

The NOT Operator

condition NOT condition

false true
true false

12 DarkBASIC Pro: Designing Algorithms



For example, if a player lifts a Go To Jail card from the Chance pack, then the result
of the IF statement given above would be determined as shown in FIG-1.7.

That might seem a rather complicated way of achieving what was probably an
obvious result, but when the conditions become even more complex, this
methodical approach is necessary.

Notice that when a complex condition contains only a single Boolean operator type
(OR in the example above), that the expression is worked out from left to right.
However, should the condition contain a mixture of OR, AND and NOT operators,
NOT operations are performed first, ANDs second, and ORs last.

For example, if a game has the following rule

() ����� ��� � 
���� ���� �+, ����� ��� 
���� �
�	 $9
����� ��� ����� ������������ ������ �+, ����� ��������� ����� �����
�*�+

"���� ��� ���� �����
�+,()

and a player has magic armour and has drunk the invisibility potion, then to
determine if the player can kill the dragon, the process shown in FIG-1.8 is followed.

The final result shows that the player cannot kill the dragon.

FIG-1.7

Using More than One
OR Operator

IF THENplayer lands on OR player throws 3 pairs in a row OR player lifts a cardGo To Jail Go To Jail

This condition is false This condition is false This condition is true

IF OR OR THENfalse false true

IF OR THENfalse true

IF THENtrue

giving

reduces to

reduces to

FIG-1.8

AND Operators have
Priority

IF AND

OR AND THEN

player has a magic sword player has magic armour

player has taken invisibility potion player possesses sleep spell

This condition is false

This condition is falseThis condition is true

This condition is true

IF AND OR AND THENfalse true true false

IF OR AND THENfalse true false

IF OR THENfalse false

IF THENfalse

giving

reduces to

reduces to

reduces to

DarkBASIC Pro: Designing Algorithms 13



Activity 1.12

A game has the following rule:

() � ����� ��� �� ��� �+, ����� ��� A��� $9 ����� ��� ��� A����� �*�+

"���� 
	�� ���� 	� �4�� ���

�+,()

Using a similar approach to that shown in FIG-1.8 above, show the steps
involved in deciding if the player should take an extra card assuming the
player already has an Ace and one Knave.

Sometimes the priority of operators works against what we are trying to express.
For example, if a player receives a bonus if he lands on a red, green or blue square
after throwing 7 on a pair of dice, then we might be tempted to write:

() ������ �� �� $9 ������ �� ���� $9 ������ �� ��	� �+, ����� B �*�+
��� ���	� �� ����� � ����

�+,()

We would not expect a player landing on a red square after throwing 9 to receive
the bonus. But, if we look at the calculation for such a situation, we get the result
shown in FIG-1.9 which means that the bonus is incorrectly added to the player’s
score.

To achieve the correct results, we need the OR operations to be performed first and
this can be done by giving the OR operators a higher priority than the AND.
Luckily, operator priority can be modified by using parentheses. Operations in
parentheses are always performed first. So, by rewriting our instruction as

() 1������ �� �� $9 ������ �� ���� $9 ������ �� ��	�2 �+, ����� B �*�+
��� ���	� �� ����� � ����

�+,()

the condition is calculated as shown in FIG-1.10.

FIG-1.9

How the Final Result is
Calculated

IF OR OR AND                    THENlanded on red landed on green landed on blue thrown 7

This condition is falseThis condition is false This condition is falseThis condition is true

IF OR OR AND THENtrue false false false

IF OR OR THENtrue false false

IF OR THENtrue false

IF THENtrue

giving

reduces to

reduces to

reduces to

14 DarkBASIC Pro: Designing Algorithms



Boolean operator priority is summarised in TABLE-1.4.

Activity 1.13

The rules for winning a card game are that your hand of 5 cards must add up
to exactly 43 (faces =10, Ace = 11) or you must have four cards of the same
value. In addition, a player cannot win unless he has a Queen in his hand.

Express these winning conditions as an IF statement.

Activity 1.14

1. Name the three types of control structures.

2. Another term for condition is what?

3. Name the two types of selection.

4. What does the term mutually exclusive conditions mean?

5. Give an example of a Boolean operator.

6. If the terms AND and OR are included in a single complex condition,
which of these operators will be performed first?

7. How can the order in which operations in a complex condition be changed?

FIG-1.10

Using Parentheses to
Modify Operator
Priority IF ( OR OR ) AND THENlanded on red landed on green landed on blue thrown 7

This condition is falseThis condition is false This condition is falseThis condition is true

IF ( OR OR ) AND THENtrue false false false

IF ( OR ) AND THENtrue false              false

IF AND THENtrue                            false

IF THENfalse

giving

reduces to

reduces to

reduces to

The parentheses are removed
when their contents are reduced to

a single value

TABLE-1.4

Operator Priority

Priority Operator

1 ( )
2 NOT
3 AND
4 OR

DarkBASIC Pro: Designing Algorithms 15



Iteration

There are certain circumstances in which it is necessary to perform the same
sequence of instructions several times. For example, let’s assume that a game
involves throwing a dice three times and adding up the total of the values thrown.
We could write instructions for such a game as follows:

��� ��� ����� �� ;��
���� ����
��� ���� ���	� �� �����
���� ����
��� ���� ���	� �� �����
���� ����
��� ���� ���	� �� �����
!��� �	� ��� ���	� �� �����

You can see from the above that two instructions,

���� ����
��� ���� ���	� �� �����

are carried out three times, once for each turn taken by the player. Not only does it
seem rather time-consuming to have to write the same pair of instructions three
times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be
repeated a fixed number of times. Carrying out one or more statements over and
over again is known as looping or iteration. The statement or statements that we
want to perform over and over again are known as the loop body.

Activity 1.15

What statements make up the loop body in our dice problem given above?

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a
specific number of times, we use a FOR..ENDFOR structure.

There are two parts to this statement. The first of these is placed just before the loop
body and in it we state how often we want the statements in the loop body to be
carried out. For the dice problem our statement would be:

)$9 = ��
�� ,$

Generalising, we can say this statement takes the form

)$9 ����� ��
�� ,$

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

)$9 = ��
�� ,$
���� ����
��� ���� ���	� �� �����

Finally, to mark the fact that we have reached the end of the loop body statements
we add the word ENDFOR:

16 DarkBASIC Pro: Designing Algorithms



)$9 = ��
�� ,$
���� ����
��� ���� ���	� �� �����

�+,)$9

Now we can rewrite our original algorithm as:

��� ��� ����� �� ;��
)$9 = ��
�� ,$

���� ����
��� ���� ���	� �� �����

�+,)$9
!��� �	� ��� ���	� �� �����

The instructions between the terms FOR and ENDFOR are now carried out three
times.

Activity 1.16

If the player was required to throw the dice 10 times rather than 3, what
changes would we need to make to the algorithm?

If the player was required to call out the average of these 10 numbers, rather
than the total, show what other changes are required to the set of instructions.

We are free to place any statements we wish within the loop body. For example,
the last version of our number guessing game produced the following algorithm

"���� � ������ �� � �	
�� ������� � ��� ���
"���� : 
���� �� ����
�� �� �	������ ��� �	
��
() �	��� 
������ �	
�� �*�+

"���� � ���� .!����
�0��

() �	��� �� ���� ���� �	
�� �*�+
"���� � ���� .��� ���/

�0��
"���� � ���� .��� ����/

�+,()
�+,()

player 2 would have more chance of winning if he were allowed several chances at
guessing player 1’s number. To allow several attempts at guessing the number,
some of the statements given above would have to be repeated.

Activity 1.17

What statements in the algorithm above need to be repeated?

To allow for 7 attempts our new algorithm becomes:

"���� � ������ �� � �	
�� ������� � ��� ���
)$9 B ��
�� ,$

"���� : 
���� �� ����
�� �� �	������ ��� �	
��
() �	��� 
������ �	
�� �*�+

"���� � ���� .!����
�0��

() �	��� �� ���� ���� �	
�� �*�+
"���� � ���� .��� ���/

�0��
"���� � ���� .��� ����/

�+,()
�+,()

�+,)$9

Note that ENDFOR is
left-aligned with the
opening FOR statement.

You can find the average
of the 10 numbers by
dividing the final total by
10.

DarkBASIC Pro: Designing Algorithms 17



Activity 1.18

Can you see a practical problem with the algorithm?

If not, try playing the game a few times, playing exactly according to the
instructions in the algorithm.

Activity 1.19

During a lottery draw, two actions are performed exactly 6 times. These are:

"��� �	� ����

!��� �	� �	
�� �� ��� ����

Add a FOR loop to the above statements to create an algorithm for the lottery
draw process.

Occasionally, we may have to use a slightly different version of the FOR loop.
Imagine we are trying to write an algorithm explaining how to decide who goes first
in a game. In this game every player throws a dice and the player who throws the
highest value goes first. To describe this activity we know that each player does the
following task:

"���� ����� ����

But since we can’t know in advance how many players there will be, we write the
algorithm using the statement

)$9 ���� ����� ,$

to give the following algorithm

)$9 ���� ����� ,$
���� ����

�+,)$9
"���� ���� ������� ���� ���� ����

If we had to save the details of a game of chess with the intention of going back to
the game later, we might write:

)$9 ���� ����� �� ��� ���� ,$
-��� ���� ��� ��
� ��� �������� �� ��� �����

�+,)$9

Activity 1.20

A game uses cards with images of warriors. At one point in the game the
player has to remove from his hand every card with an image of a knight. To
do this the player must look through every card and, if it is a knight, remove
the card.

Write down a set of instructions which performs the task described above.

Your solution should include the statements

)$9 ���� ��� �� ����� � ���� ,$

and
() ��� �� � ������ �*�+

18 DarkBASIC Pro: Designing Algorithms



The general form of the FOR statement is shown in FIG-1.11.

Although the FOR loop allows us to perform a set of statements a specific number
of times, this statement is not always suitable for the problem we are trying to solve.
For example, in the guessing game we stated that the loop body was to be performed
7 times, but what if player 2 guesses the number after only three attempts? If we
were to follow the algorithm exactly (as a computer would), then we must make
four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should
be repeated until some condition becomes true, at which point iteration should
cease. The word REPEAT is placed at the start of the loop body and, at its end, we
add the UNTIL statement. The UNTIL statement also contains a condition, which,
when true, causes iteration to stop. This is known as the terminating (or exit)
condition. For example, we could use the REPEAT.. UNTIL structure rather than
the FOR loop in our guessing game algorithm. The new version would then be:

"���� � ������ �� � �	
�� ������� � ��� ���
9�"���

"���� : 
���� �� ����
�� �� �	������ ��� �	
��
() �	��� 
������ �	
�� �*�+

"���� � ���� .!����
�0��

() �	��� �� ���� ���� �	
�� �*�+
"���� � ���� .��� ���/

�0��
"���� � ���� .��� ����/

�+,()
�+,()

8+�(0 ����� : �	����� �������

We could also use the REPEAT..UNTIL loop to describe how a slot machine
(one-armed bandit) is played:

9�"���
"	� ���� �� 
������
"	�� ������
() ��	 ��� �*�+

!������ ��������
�+,()

8+�(0 ��	 ���� �� ����

The general form of this structure is shown in FIG-1.12.

FIG-1.11

The FOR Loop

FOR DO

ENDFOR

expression

loop bodyTypical examples:
5 times

every item The statements which make
up the will be executed

a number of times as defined
within

loop body

expression

FIG-1.12

The REPEAT Loop

REPEAT

UNTIL

loop body

condition The statements
will be executed continuously

until is true

loop body

condition

DarkBASIC Pro: Designing Algorithms 19



The terminating condition may use the Boolean operators AND, OR and NOT as
well as parentheses, where necessary.

Activity 1.21

A one-armed bandit costs 50p per play. A player has several 50p pieces and is
determined to play until his coins are gone or until he wins at least £10.00.
Write an algorithm describing the steps in this game. The algorithm should
make use of the following statements:

!������ ��������

"���� ���� �� 
������

"	�� �


8+�(0 ��� ����� �� ���� $9 �������� �� �� ����� &��<��

There is still a problem with our number-guessing game. By using a REPEAT ..
UNTIL loop we are allowing player 2 to have as many guesses as needed to
determine the correct number. That doesn’t lead to a very interesting game. Later
we’ll discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop,
is the WHILE .. ENDWHILE structure which has an entry condition at the start
of the loop.

The aim of the card game of Pontoon is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for more cards by saying “twist”. One player is designated
the dealer. The dealer must twist while his cards have a total value of less than 16.
So we might write the rules for the dealer as:

!���	���� ��� �	
 �� ��� ������� ��� ����
9�"���

���� ������ ���
��� ��� ��� � ���	� �� �	


8+�(0 �	
 �� ����� ���� � �%	�� �� �C

But this solution implies that the dealer must take at least one card before deciding
to stop. Using the WHILE..ENDWHILE structure we could describe the logic as

!���	���� �	
 �� ��� ������� ��� ����
-*(0� �	
 �� ���� ���� �C ,$

���� ������ ���
��� ��� ��� � ���	� �� �	


�+,-*(0�

Now determining if the sum is less than 16 is performed before Take another card
instruction. If the dealer’s two cards already add up to 16 or more, then the Take
another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.13.

FIG-1.13

The WHILE Loop
WHILE

ENDWHILE

condition

loop body

The statements
will be executed continuously

until is true

loop body

condition

If is false
when first tested, the loop body

will be skipped completely

condition

20 DarkBASIC Pro: Designing Algorithms



In what way does this differ from the REPEAT statement? There are two
differences:

� The condition is given at the beginning of the loop.

� Looping stops when the condition is false.

The main consequence of this is that it is possible to bypass the loop body of a
WHILE structure entirely without ever carrying out any of the instructions it
contains, whereas the loop body of a REPEAT structure will always be executed at
least once.

Activity 1.22

A game involves throwing two dice. If the two values thrown are not the
same, then the dice showing the lower value must be rolled again. This
process is continued until both dice show the same value.

Write a set of instructions to perform this game.

Your solution should contain the statements

9��� ���� ����

and
!����� ���� ���� ���� ���	�

Activity 1.23

1. What is the meaning of the term iteration?

2. Name the three types of looping structures.

3. What type of loop structure should be used when looping needs to occur an
exact number of times?

4. What type of loop structure can bypass its loop body without ever executing
it?

5. What type of loop contains an exit condition?

Data
Almost every game requires the players to remember or record some facts and
figures. In our number guessing game described earlier, the players needed to
remember the original number and the guesses made; in Hangman the word being
guessed and the letters guessed so far must be remembered.

These examples introduce the need to process facts and figures (known as data).
Every computer game has to process data. This data may be the name of a character,
the speed of a missile, the strength of a blow, or some other factor.

Every item of data has two basic characteristics :

a name
and a value

DarkBASIC Pro: Designing Algorithms 21



The name of a data item is a description of the type of information it represents.
Hence character’s title, strength and charisma are names of data items; “Fred the
Invincible”, 3, and 9 are examples of the actual values which might be given to these
data items.

In programming, a data item is often referred to as a variable. This term arises from
the fact that, although the name assigned to a data item cannot change, its value may
vary. For example, the value assigned to a variable called lives remaining, will be
reduced if the player’s character is killed.

Activity 1.24

List the names of four data items that might be held about a player in a game
of Monopoly.

Operations on Data

There are four basic operations that a computer can do with data. These are:

Input

This involves being given a value for a data item. For example, in our
number-guessing game, the player who has thought of the original number is given
the value of the guess from the second player. When playing Noughts and Crosses
adding an X (or O) changes the set up on the board. When using a computer, any
value entered at the keyboard, or any movement or action dictated by a mouse or
joystick would be considered as data entry.

This type of action is known as an input operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work
out how much change to give a player buying a property. If a character in an
adventure game is hit, points must be deducted from his strength value.

This type of instruction is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two
numbers in our guessing game to find out if they are the same.

This is known as a comparison operation.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game player 1
communicates with player 2 by saying either that the guess is Correct, Too high or
Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing
game your speed and time will be displayed on the screen.

This is called an output operation.

22 DarkBASIC Pro: Designing Algorithms



Activity 1.25

Identify input, calculation, comparison and output operations when playing
Hangman
For example, the algorithm needs to compare the letter guessed by the player
with the letters in the word.

When describing a calculation, it is common to use arithmetic operator symbols
rather than English. Hence, instead of writing the word subtract we use the minus
sign (-). A summary of the operators available are given in TABLE-1.5.

Similarly, when we need to compare values, rather than use terms such as is less
than, we use the less than symbol (<). A summary of these relational operators is
given in TABLE-1.6.

As well as replacing the words used for arithmetic calculations and comparisons
with symbols, the term calculate or set is often replaced by the shorter but more
cryptic symbol := between the variable being assigned a value and the value itself.

Using this abbreviated form, the instruction:

!���	���� ��
� �� ��
����� ��	�� �� �������� ������� �� �����

becomes

��
� 7D �������� E �����

Although the long-winded English form is more readable, this more cryptic style
is briefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in
English:

"���� � ������ �� � �	
�� ������� � ��� ���
9�"���

"���� : 
���� �� ����
�� �� �	������ ��� �	
��
() �	��� 
������ �	
�� �*�+

"���� � ���� .!����
�0��

() �	��� �� ���� ���� �	
�� �*�+
"���� � ���� /��� ���6

�0��
"���� � ���� .��� ����/

�+,()
�+,()

8+�(0 ����� : �	����� �������

TABLE-1.5

Mathematical Operators

TABLE-1.6

Relational Operators

English Symbol

Multiply *
Divide /
Add +
Subtract -

English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

DarkBASIC Pro: Designing Algorithms 23



Using some of the symbols described earlier, we can rewrite this as:

"���� � ������ �� � �	
�� ������� � ��� ���
9�"���

"���� : 
���� �� ����
�� �� �	������ ��� �	
��
() �	��� D �	
�� �*�+

"���� � ���� .!����
�0��

() �	��� F �	
�� �*�+
"���� � ���� /��� ���6

�0��
"���� � ���� .��� ����/

�+,()
�+,()

8+�(0 �	��� D �	
��

Activity 1.26

1. What are the two main characteristics of any data item?

2. When data is input, from where is its value obtained?

3. Give an example of a relational operator.

Levels of Detail
When we start to write an algorithm in English, one of the things we need to consider
is exactly how much detail should be included. For example, we might describe
how to record a programme on a video recorder as:

"	� ��� ���� �� �����
��� ��
� �������

However, this lacks enough detail for anyone unfamiliar with the operation of the
machine. We could replace the first statement with:

"��� ��� �?��� �	����
() ���� �� � ���� �� ��� 
������ �*�+

9�
��� ��
�+,()
"���� ��� ��� ���� �� ��� 
������

and the second statement could be substituted by:

������ �� ��
� 
���
���� ���� ��
�
���� ������ ��
�
������ �������

This approach of starting with a less detailed sequence of instructions and then,
where necessary, replacing each of these with more detailed instructions can be used
to good effect when tackling long and complex problems.

By using this technique, we are defining the original problem as an equivalent
sequence of simpler tasks before going on to create a set of instructions to handle
each of these simpler problems. This divide-and-conquer strategy is known as
stepwise refinement. The following is a fully worked example of this technique:

Problem:
Describe how to make a cup of tea.

24 DarkBASIC Pro: Designing Algorithms



Outline Solution:

�< )��� ������
:< 3��� ����
=< "	� ��� ��� �� ������
G< ��� ������� ���� �� ������
�< -��� � 
��	��
C< "�	 ��� ���� �	�
B< ��� 
��� ��� �	�� �� �����

This is termed a LEVEL 1 solution.

As a guideline we should aim for a LEVEL 1 solution with between 5 and 12
instructions.

Notice that each instruction has been numbered. This is merely to help with
identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full
(though not detailed) description of all the steps required to tackle the original
problem. If we are not happy with the solution, then changes must be made before
going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and
below it, give the more detailed version. For example. Fill kettle would be expanded
thus:

�< )��� ������
�<� 9�
��� ������ ���
�<: "	� ������ 	��� ���
�<= �	� �� ���
�<G -��� ������ �� �	��' �	� ��� ���
�<� "���� ��� ���� �� ������

The numbering of the new statement reflects that they are the detailed instructions
pertaining to statement 1. Also note that the number system is not a decimal fraction
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform
only the original task being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Where this is the case, the whole structure must be included in
the detailed instructions for that task.

Having satisfied ourselves that the breakdown is correct, we proceed to the next
statement from the original solution.

:< 3��� ����
:<� "�	� �� ������
:<: ������ �� ���� �� ������
:<= ������ �� ���� �� ������
:<G -��� ���� ����� ������ ��� ������

The next two statements expand as follows:

=< "	� ��� ��� �� ������
=<� 9�
��� ��� ��
 ������
=<: ��� ��� ��� �� ������

G< ��� ������� ���� �� ������
G<� ���� ������ ��� �� ������

DarkBASIC Pro: Designing Algorithms 25



G<: ��� �%	��� %	������ �� ���� ��
 ������ �� ������

But not every statement from a level 1 solution needs to be expanded. In our case
there is no more detail to add to the statement

�< -��� � 
��	��

and therefore, we leave it unchanged.

The last two statements expand as follows:

C< "�	 ��� ���� �	�
C<� ���� ������ ��� �� �	�
C<: "�	 �%	��� %	������ �� ��� ��
 ������ ���� �	�

B< ��� 
��� ��� �	�� �� �%	���
B<� () 
��� �� �%	��� �*�+
B<: ��� 
���
B<= �+,()
B<G () �	�� �� �%	��� �*�+
B<� ��� �	��
B<C ��� ���
B<B �+,()

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an
algorithm.

Finally, we can describe the solution to the original problem in more detail by
substituting  the statements  in our  LEVEL 1  solution by their  more  detailed
equivalent:

�<� 9�
��� ������ ���
�<: "	� ������ 	��� ���
�<= �	� �� ���
�<G -��� ������ �� �	��' �	� ��� ���
�<� "���� ��� ���� �� ������
:<� "�	� �� ������
:<: ������ �� ���� �� ������
:<= ������ �� ���� �� ������
:<G -��� ���� ����� ������ ��� ������
=<� 9�
��� ��� ��
 ������
=<: ��� ��� ��� �� ������
G<� ���� ������ ��� �� ������
G<: ��� �%	��� %	������ �� ���� ��
 ������ �� ������
�< -��� � 
��	��
C<� ���� ������ ��� �� �	�
C<: "�	 �%	��� %	������ �� ��� ��
 ������ ���� �	�
B<� () 
��� �� �%	��� �*�+
B<: ��� 
���
B<= �+,()
B<G () �	�� �� �%	��� �*�+
B<� ��� �	��
B<C ��� ���
B<B �+,()

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, the statement -��� �


��	��).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. That is, statements in LEVEL 2 may need
to be given more detail in a LEVEL 3 breakdown.

26 DarkBASIC Pro: Designing Algorithms



Activity 1.27

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10.
In the first grid each player marks squares in the first grid to mark the
position of warships. Ships are added as follows

1 aircraft carrier 4 squares
2 destroyers 3 squares each
3 cruisers 2 squares each
4 submarines 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.

The first player now calls out a grid reference. The second player responds to
the call by saying HIT or MISS. HIT is called if the grid reference corresponds
to a position of a ship. The first player then marks this result on his second
grid using an o to signify a miss and x for a hit (see diagram below).

If the first player achieves a HIT then he continues to call grid references until
MISS is called. In response to a HIT or MISS call the first player marks the
second grid at the reference called: 0 for a MISS, X for a HIT.

When the second player responds with MISS the first player’s turn is over,
and the second player has his turn.

The first player to eliminate all segments of the opponent’s ships is the
winner. However, each player must have an equal number of turns, and if both
sets of ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 algorithm by assembling the lines in the correct
order, adding line numbers to the finished description.

��� ����� �� ���� ���

!��� ��� ��������1�2

9�"���

9������ �� ���� ����� � ����1�2

,�� ����

8+�(0 ���� �� � �����

continued on next page

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

DarkBASIC Pro: Designing Algorithms 27



Activity 1.27 (continued)

To create a LEVEL 2 algorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below for
the statements Call grid position(s) and Respond to other player’s call(s). By
reordering and numbering the lines below create LEVEL 2 details for these
two statements

8+�(0 ���� ����� 
�����

��� �������� �� ������ ��� ���� H

#�� ���� ����� � ����

#�� ����

#�� ����

�+,()

!��� *(�

!��� �(��

��� �������� �� ������ ��� ���� �

-*(0� ���� �� *(� ,$

!��� ��� �������

!��� ��� �������

() ���� ����� � ���� 
������ �������� �� ���� �*�+

�+,-*(0�

9�"���

�0��

Checking for Errors
Once we’ve created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find
any errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our algorithm is
attempting to solve. For example, let’s assume we want to check our number
guessing game algorithm. In the last version of the game we allowed the second
player to make as many guesses as required until he came up with the correct answer.
The first player responded to each guess by saying either “too low”, “too high” or
“correct”.

To check our algorithm for errors we must come up with typical values that might
be used when carrying out the set of instructions and those values should be chosen
so that each possible result is achieved at least once.

So, as well as making up values, we need to predict what response our algorithm
should give to each value used. Hence, if the first player thinks of the value 42 and
the second player guesses 75, then the first player will respond to the guess by saying
“Too high”.

Our set of test values must evoke each of the possible results from our algorithm.
One possible set of values and the responses are shown in TABLE-1.7.

TABLE-1.7

Test Data for the Number
Guessing Game Algorithm

Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

28 DarkBASIC Pro: Designing Algorithms



Once we’ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. The algorithm for the
number game is shown below, this time with instruction numbers added.

�< "���� � ������ �� � �	
�� ������� � ��� ���
:< 9�"���
=< "���� : 
���� �� ����
�� �� �	������ ��� �	
��
G< () �	��� D �	
�� �*�+
�< "���� � ���� .!����6
C< �0��
B< () �	��� F �	
�� �*�+
I< "���� � ���� .��� ���/
�< �0��
��< "���� � ���� .��� ����/
��< �+,()
�:< �+,()
�=< 8+�(0 �	��� D �	
��

Next we create a new table (called a trace table) with the headings as shown in
FIG-1.14.

Now we work our way through the statements in the algorithm filling in a line of
the trace table for each instruction.

Instruction 1 is for player 1 to think of a number. Using our test data, that number
will be 42, so our trace table starts with the line shown in FIG-1.15.

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace table is as shown in FIG-1.16.

Instruction 4 is an IF statement containing a condition. This condition and its result
are written into columns 2 and 3 as shown in FIG-1.17.

FIG-1.14

The Components of a
Trace Table

Instruction    Condition T/F Variables Output
number guess

Contains the number
of the instruction which

has been executed

Any condition contained in
the statement is written here

The result of the
condition is written

here as T or F

The value currently
stored in each variable

is given here

Any value displayed
(or spoken) is shown here

FIG-1.15

Tracing the First
Statement

Instruction Condition T/F Variables Output

1 42

number guess

FIG-1.16

Moving through the Trace

Instruction Condition T/F Variables Output

1 42
2
3 75

number guess

DarkBASIC Pro: Designing Algorithms 29



Because the condition is false, we now jump to instruction 6 (the ELSE line) and
on to 7. This is another IF statement and our table now becomes that shown in
FIG-1.18.

Since this second IF statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter this in the final column
as shown in FIG-1.19.

Now we move on to statements 11,12 and 13 as shown in FIG-1.20.

Since statement 13 contains a condition which is false, we return to statement 2 and
then onto 3 where we enter 15 as our second guess (see FIG-1.21).

FIG-1.17

Tracing a Condition

Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

FIG-1.18

Tracing a Second
Condition

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

guess < number

FIG-1.19

Recording Output
Instruction    Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

guess < number

FIG-1.20

Reaching the end of the
REPEAT .. UNTIL
Structure

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

guess < number

guess = number

30 DarkBASIC Pro: Designing Algorithms



This method of checking is known as desk checking or dry running.

Activity 1.28

Create your own trace table for the number-guessing game and, using the
same test data as given in TABLE-1.7 complete the testing of the algorithm.

Were the expected results obtained?

Summary
� Computers can perform many tasks by executing different programs.

� An algorithm is a sequence of instructions which solves a specific problem.

� A program is a sequence of computer instructions which usually manipulates
data and produces results.

� Three control structures are used in programs :

� Sequence

� Selection

� Iteration

� A sequence is a list of instructions which are performed one after the other.

� Selection involves choosing between two or more alternative actions.

� Selection is performed using the IF statement.

� There are three forms of IF statement:

() ��������� �*�+
����	������

�+,()

() ��������� �*�+
����	������

�0��
����	������

�+,()

FIG-1.21

Showing Iteration

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

guess < number

guess = number

DarkBASIC Pro: Designing Algorithms 31



()
��������� �7

����	������
��������� :7

����	������
��������� 4 7

����	������
�0��

����	������
�+,()

� Iteration is the repeated execution of one or more statements.

� Iteration is performed using one of three instructions:

)$9 �	
�� �� ��������� �%	��� ,$
����	������

�+,)$9

9�"���
����	������

8+�(0 ���������

-*(0� ��������� ,$
����	������

�+,-*(0�

� A condition is an expression which is either true or false.

� Simple conditions can be linked using AND or OR to produce a complex
condition.

� The meaning of a condition can be reversed by adding the word NOT.

� Data items (or variables) hold the information used by the algorithm.

� Data item values may be:

Input
Calculated
Compared

or Output

� Calculations can be performed using the following arithmetic operators:

Multiplication *
Division /
Addition +
Subtraction -

� The order of priority of an operator may be overridden using parentheses.

� Comparisons can be performed using the relational operators:

Less than <
Less than or equal to <=
Greater than >
Greater than or equal to >=
Equal to =
Not equal to <>

32 DarkBASIC Pro: Designing Algorithms



� The symbol := is used to assign a value to a data item. Read this symbol as is
assigned the value.

� In programming, a data item is referred to as a variable.

� The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

� LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

� LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

� Not every statement needs to be broken down into more detail.

� Further levels of detail may be necessary when using stepwise refinement for
complex problems.

� Further refinement may not be required for every statement.

� An algorithm can be checked for errors or omissions using a trace table.

DarkBASIC Pro: Designing Algorithms 33



Solutions
Activity 1.1

No solution required.

Activity 1.2

One possible solution is:

Fill A
Fill B from A
Empty B
Empty A into B
Fill A
Fill B from A

Activity 1.3

1. An algorithm
2. A Computer program
3. mips (millions of instructions per second)

Activity 1.4
Choose club
Take up correct stance beside ball
Grip club correctly
Swing club backwards
Swing club forwards, attempting to hit ball

The second and third statements could be interchanged.

Activity 1.5
Player 1 thinks of a number
Player 2 makes a guess at the number
IF guess matches number THEN
Player 1 says “Correct”

ENDIF
Player 1 states the value of the number

Activity 1.6
IF letter appears in word THEN
Add letter at appropriate position(s)

ELSE
Add part to hanged man

ENDIF

Activity 1.7
IF the crossbow is on target THEN
Say “Fire”

ELSE
IF the crossbow is pointing too high THEN

Say “Down a bit”
ELSE

IF the crossbow is pointing too low THEN
Say “Up a bit”

ELSE
IF crossbow is too far left THEN

Say “Right a bit”
ELSE

Say “Left a bit"
ENDIF

ENDIF
ENDIF

ENDIF

Activity 1.8
IF
you know the phrase:

Make guess at phrase
there are many unseen letters:

Guess a consonant
ELSE

Buy a vowel
ENDIF

Activity 1.9

Other possibilities are:

Both conditions are true
condition 1 is true and condition 2 is false

Activity 1.10
IF you are first to place your hand over
those cards AND the last two cards laid
down are of the same value
THEN
You win the cards already played

ENDIF

Activity 1.11
IF double thrown OR fine paid THEN
Player gets out of jail

ENDIF

Activity 1.12

Assuming the player has one Ace and one Knave the
statement

IF a player has an Ace AND player has
King OR player has two Knaves
THEN

would reduce to

IF true AND false OR false THEN

The AND operation is then performed giving:

IF false OR false THEN

Next, the OR operation is completed giving a final
value of

IF false THEN

and, therefore the player does not pick up an extra card.

Activity 1.13
IF (total of cards held is 43 OR hand has
4 cards of the same value ) AND hand
contains a Queen THEN

Activity 1.14

1. Sequence
Selection
Iteration

34 DarkBASIC Pro: Designing Algorithms



2. Boolean expression

3. Binary selection
Multi-way selection

4. No more than one of the conditions can be true at any
given time.

5. Boolean operators are: AND, OR, and NOT.

6. AND is performed before OR .

7. The order in which operations in a complex condition
are calculated can changed by using parentheses.

Activity 1.15
Throw dice
Add dice value to total

Activity 1.16

Only one line, the FOR statement, would need to be
changed, the new version being:

FOR 10 times DO

To call out the average, the algorithm would change to

Set the total to zero
FOR 10 times DO
Throw dice
Add dice value to total

ENDFOR
Calculate average as total divided by 10
Call out the value of average

Activity 1.17

In fact, only the first line of our algorithm is not repeated,
so the lines that need to be repeated are:

Player 2 makes an attempt at guessing the
number
IF guess matches number THEN
Player 1 says “Correct “

ELSE
IF guess is less than number THEN

Player 1 says “Too low”
ELSE

Player 1 says “Too high”
ENDIF

ENDIF

Activity 1.18

The FOR loop forces the loop body to be executed
exactly 7 times. If the player guesses the number in
less attempts, the algorithm will nevertheless
continue to ask for the remainder of the 7 guesses.

Later, we’ll see how to solve this problem.

Activity 1.19
FOR 6 times DO
Pick out ball
Call out number on the ball

ENDFOR

Activity 1.20
FOR every card in player’s hand DO
IF card is a knight THEN

Remove card from hand
ENDIF

ENDFOR

Activity 1.21
REPEAT
Place coin in machine
Pull arm
IF a win THEN

Collect winnings
ENDIF

UNTIL all coins are gone OR winnings are
at least £10.00

Activity 1.22
Roll both dice
WHILE both dice do not match in value DO
Choose dice with lower value
Roll the chosen dice

ENDWHILE

Activity 1.23

1. Iteration means executing a set of instructions over and
over again.

2. The three looping structures are:

FOR .. ENDFOR
REPEAT .. UNTIL
WHILE .. ENDWHILE

3. The FOR .. ENDFOR structure.

4. The WHILE .. ENDWHILE structure.

5. The REPEAT .. UNTIL structure.

Activity 1.24

Number of properties held
Amount of money held
The playing token being used
The position on the board

Activity 1.25

Input:
Letter guessed
Word guessed

Calculations:
Where to place a correctly guessed letter
The number of wrong guesses made

Comparisons:
The letter guessed with the letters in the word
The word guessed with the word to be guessed
The number of wrong guesses with the value 6
(6 wrong guesses completes the drawing of the
hanged man)

Output:
Hyphens indicating each letter in the word
Gallows
Body parts of the hanged man
Correctly guessed letters

DarkBASIC Pro: Designing Algorithms 35



Activity 1.26

1. Name and value
2. From outside the system. In a computerised system this is often via a

keyboard.
3. The relational operators are:

<, <=, >, >=, =, and <>

Activity 1.27

The LEVEL 1 is coded as:

1. Draw grids
2. Add ships to left grid
3. REPEAT
4. Call grid position(s)
5. Respond to other player’s call(s)
6. UNTIL there is a winner

The expansion of statement 4 would become:

4.1 Call grid reference
4.2 Get reply
4.3 WHILE reply is HIT DO
4.4 Mark position in second grid with X
4.5 Call grid reference
4.6 Get reply
4.7 ENDWHILE
4.8 Mark position in second grid with 0

The expansion of statement 5 would become:

5.1.REPEAT
5.2 Get other player’s call
5.3 IF other player’s call matches position of ship THEN
5.4 Call HIT
5.5 ELSE
5.6 Call MISS
5.7 ENDIF
5.8 UNTIL other player misses

Activity 1.28

The expected results were obtained.

Instruction    Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
11
12
13

number guess

guess = number

guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

36 DarkBASIC Pro: Designing Algorithms



2

Correcting Errors

Creating a Project in DarkBASIC Pro

Executing a Program

Screen Output

Text Colour, Size, Font, and Style

The Compilation Process

Transparent and Opaque Text

Using the DarkBASIC Pro Editor

DarkBASIC Pro: Starting DarkBASIC Pro 37



Programming a Computer

Introduction
In the last chapter we created algorithms written in a style of English known as
structured English. But if we want to create an algorithm that can be followed by a
computer, then we need to convert our structured English instructions into a
programming language.

There are many programming languages; C++, Java, C#, and Visual Basic being
amongst the most widely used. So how do we choose which programming language
to use? Probably the most important consideration is the area of programming that
is best suited to a given language. For example, Java is designed to create programs
that can be executed on a variety of different computers, while C++ was designed
for fast execution times.

We  are going  to  use a language known as DarkBASIC Professional or just
DarkBASIC Pro, which was designed specifically for writing computer games.
Because of this, it has many unique commands for displaying graphics, controlling
joysticks, and creating three dimensional images.

The Compilation Process
As we will soon see, DarkBASIC Pro uses statements that retain some English terms
and phrases, so we can look at the set of instructions and make some sense of what
is happening after only a relatively small amount of training.

Unfortunately, the computer itself only understands instructions given in a binary
code known as machine code and has no capability of directly following a set of
instructions written in DarkBASIC Pro. But this need not be a problem. If we were
given a set of instructions written in Russian we could easily have them translated
into English and then carry out the translated commands.

This is exactly the approach the computer uses. We begin the process of creating a
new piece of software by mentally converting our structured English into
DarkBASIC Pro commands. These commands are entered using a text editor which
is nothing more than a simple word-processor-like program allowing such basic
operations as inserting and deleting text. Once the complete program has been
entered, we get the machine itself to translate those instructions into machine code.
The original code is known as the source code; the machine code equivalent is
known as the object code.

The translator (known as a compiler) is simply another program installed in the
computer. After typing in our program instructions, we feed these to the compiler
which produces the equivalent instructions in machine code. These instructions are
then executed by the computer and we should see the results of our calculations
appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something
as simple as missing out a comma or misspelling a word, the translation process
will fail. When this happens in DarkBASIC Pro the incorrect command is
highlighted in red.

Binary is a method of
representing numbers
using only the digits 0
and 1.

38 DarkBASIC Pro: Starting DarkBASIC Pro



A failure of this type is known as a syntax error - a mistake in the grammar of your
commands. Any syntax errors have to be corrected before you can try compiling
the program again.

As we work on the computer entering a DarkBASIC Pro program, we need to save
this source code to a file. This ensures that we have a copy of our work should there
be a power cut or we accidentally delete the program from the computer’s memory.
DarkBASIC Pro refers to this as the source file.

But a second file, known as the project file is also produced. This second file is
created automatically by DarkBASIC Pro and contains details of any images,
sounds or other resources that might be used by your program.

When we compile our program (translating it from source code to object code), yet
another file is produced. This third file, the executable file, contains the object
code and is, again, created automatically.

To run our program, the source code in the executable file is loaded into the
computer’s memory (RAM) and the instructions it contains are carried out.

The whole process is summarised in FIG-2.1.

If we want to make changes to the program, we load the source code into the editor,
make the necessary changes,  then save and recompile our program,  thereby
replacing the old version of all three files.

Activity 2.1

1. What type of instructions are understood by a computer?

2. What piece of software is used to translate a program from source code to
object code?

3. Misspelling a word in your program is an example of what type of error?

FIG-2.1

Creating Software

Design
algorithm

Save source code
and project details

to disk

Save object code
to disk

Load object code
into memory

Convert
to program code

Compile
program

Run
program

DarkBASIC Pro: Starting DarkBASIC Pro 39



Starting DarkBASIC Pro

Introduction
DarkBASIC Pro is based on one of the earliest computer languages, BASIC, but
has been enhanced specifically to aid the creation of games programs.

The  language  was  invented by Lee Bamber who  formed a company to  sell
DarkBASIC Pro. Over the last few years the company has grown in size and
expanded to sell other DarkBASIC related products, such as DarkMatter, which
contains many 3D objects that can be used in DarkBASIC programs.

In fact, there are two versions of the language: DarkBASIC and DarkBASIC
Professional. It’s this second, enhanced version of the language we will be using
here.

DarkBASIC Pro Files
Because a typical program written in DarkBASIC Pro is likely to contain images,
sounds and even video, the DarkBASIC Pro package has to save much more than
the set of instructions that make up your program; it also needs to store details of
these images, sounds, etc.

To do this DarkBASIC Pro creates two files every time you produce a new program
(see FIG-2.2).

The first of these files, known as the project file, contains details of the images and
sounds used by your program, as well as other information such as the screen
resolution and number of colours used. This file has a .dbpro extension.

The second file, known as the source file, contains only the program’s code written
in the DarkBASIC Pro language. This file has a .dba extension.

FIG-2.2

The Two Files Created by a
DarkBASIC Pro Program

Every DarkBASIC Pro program creates two files

Project File
(.dbpro)

Source File
(.dba)

40 DarkBASIC Pro: Starting DarkBASIC Pro



Getting Started with DarkBASIC Pro
When you first start up DarkBASIC Pro you should see one of the screens shown
in FIG-2.3. Exactly which one you see depends on how often DarkBASIC Pro has
been run on your computer. The first time the program is run, the display will match
that shown on the left of FIG-2.3; every other time your screen will match that
shown on the right.

First Start-Up

If this is the first time DarkBASIC Pro has been run on your machine, as well as
the main window, the Assistant Window also shows on the right-hand side.

If you close down the Assistant Window the display changes to match that shown
in FIG-2.4, showing the Project Dialog box.

Subsequent Start-Ups

When DarkBASIC Pro is started up for the second (or subsequent) time, use the
���� � ��� �	
��� option from the main menu, or click on the New Project icon
near the top left corner, to display the Project Dialog box.

Specifying a Project

The next stage is to create a project file by filling in the details required by the
Project Dialog box.

First the name to be given to the project is entered. This should be something
meaningful like Hangman or SpaceMonsters.

FIG-2.3

The Start-Up Screen in
DarkBASIC Pro

DarkBASIC Pro Start-Up Screen (First Start-Up Only) DarkBASIC Pro Start-Up Screen (Subsequent Start-Ups)

FIG-2.4

The Project Dialog Box

Click on this icon
to show the

dialog
New Project

DarkBASIC Pro: Starting DarkBASIC Pro 41



Next the Specify a Folder radio button is selected and the folder in which the
DarkBASIC Pro projects are to be saved is entered. The folder specified must
already exist. See FIG-2.5 for a summary of these steps.

Once the OK button in the Project Dialog box is clicked, the dialog box disappears
and you are left with the main edit area where the program code is entered. Line
numbers appear to the left of this area.

A First Program
Before we begin looking in detail at the commands available in DarkBASIC Pro,
we’ll have a quick look at a simple program and show you how to type it in, run it
and save the code.

The program in LISTING-2.1 gets you to enter your name at the keyboard and then
displays a greeting on the screen.

Rem Project: First
Rem Created: 02/10/2004 07:35:27
Rem ***** Main Source File *****

REM *** A program to read and display your name ***
INPUT “Enter your name : ”,name$
PRINT “Hello ” ,name$, “ welcome to DarkBASIC Pro.”
WAIT KEY
END

An Explanation of the Code

REM This is short for REMARK and is used to indicate a
comment within the program. Comments are totally
ignored when the source code is translated into object code
and are only included for the benefit of anybody examining
the program code, giving an explanation of what the
program does.

INPUT This is a keyword in DarkBASIC Pro. Keywords are words
recognised by the programming language as having a
specific meaning.

All keywords are shown throughout this text in uppercase,
but lowercase characters are also acceptable.

The INPUT keyword tells the computer to allow the user
to enter a value from the keyboard.

FIG-2.5

Filling in the New
Project Dialog Box

1
Enter the name of
the project here 3

Use the Browse icon
to find the folder where the

project is to be stored

A sub-folder will be created
automatically to hold the three
DarkBASIC Pro files that will

be produced

2
Select

Specify a Folder

DarkBASIC Pro allows
words to be given in
either upper or lower case.

When you type in a
program, you’ll see that
the instructions are
colour-coded with
keywords appearing in
blue.

LISTING-2.1

A First Program

42 DarkBASIC Pro: Starting DarkBASIC Pro



“Enter your name:” This message is displayed on the screen as a prompt,
telling the user what information is to be entered.

Messages are always enclosed in double quotes (“ ”)
and are more generally known as strings.

name$ This is the variable in which the value entered by the
user will be stored.

PRINT This command is used to tell the computer to display
information on the screen.

“Hello ” This is the first piece of information to be displayed

, Items of data are separated from each other by commas.

name$ The value held in the variable name$ is to be displayed.
This will be whatever value the user typed in when the
earlier INPUT statement was executed.

“ welcome to DarkBASIC Pro.”

Another data item to be displayed.

WAIT KEY This command contains two key words which tell the
computer to wait for a key to be pressed before continuing
to the next instruction.

END Marks the end of the program.

Activity 2.2

In this Activity you are going to type in and run the program given in
LISTING-2.1.

Create a folder in the C: drive (or elsewhere) named DarkBasicProjects

Start up DarkBASIC Pro.

Bring up the Project Dialog box shown in FIG-2.4.

Name the project first.dbpro, select Specify a Folder; browse to your
DarkBASICProjects folder and click OK.

The first three lines of the program will appear automatically (only the date
and time will differ from that in LISTING-2.1).

Type in the remainder of the program as shown in LISTING-2.1.

Execute the program by pressing the F5 key or clicking on the Run icon.

When requested, type in your name. You should then see a message including
your name displayed on the screen.

Finally, press any key to finish the program and return to the editor.

The need for a space
after the colon will
become clear when you
run this program.

Click on this icon
to execute your

program

DarkBASIC Pro: Starting DarkBASIC Pro 43



Activity 2.3

1. PRINT is what type of word?

2. Messages enclosed in quotes are known as what?

3. The WAIT KEY instruction causes what to happen?

If we use Windows Explorer to examine our DarkBasicProjects folder we’ll see
that a new sub-folder called first has been created.

Inside that new folder are three files (see FIG-2.6).

first.dbpro This is the project file.

first.dba This is the file containing the source code.

first.exe This is the machine code version of your program.
It’s the code in this file that is actually executed
when you run your program.

If you ever want to give away your completed programs to other people, you only
need to give them a copy of the .exe file. This contains everything they need to run
your program without allowing them to see your original DarkBASIC Pro code.

Activity 2.4

Without closing down DarkBASIC Pro, load up Notepad (it’s in Accessories)
and open up the file first.dba.

Notice that the file only contains the three REM statements which were
generated automatically when you opened your new project. None of the
lines you typed in are present.

Saving Your Project

When you’ve typed in your program you need to save both the project and the source
files. To do this, select ��������� �	
��� and then ��������� �
�	��.

Activity 2.5

Save your project and source files as described above.

FIG-2.6

Files Created by
DarkBASIC Pro

When opening the file
in Notepad, change the
File of Type entry to All
Files.

44 DarkBASIC Pro: Starting DarkBASIC Pro



First Statements in DarkBASIC Pro

Introduction
Learning to program in DarkBASIC Pro is very simple compared to other languages
such as C++ or Java. Unlike most other programming languages, it has no rigid
structure that must be adhered to. In fact, there are only two statements that you
should include at this stage. These are given below.

Ending a Program

The END Statement

The first statement we examine is the one that should come at the end of any program
you write. It consists of the single keyword END and, as you might have guessed,
marks the end of your program.

We have already seen this statement in LISTING-2.1.

Some of the statements available in DarkBASIC Pro have quite a complex syntax
so, to help show exactly what options are available when using a statement, we’ll
use informal syntax diagrams. FIG-2.7 shows a syntax diagram for the END
statement.

These diagrams contain one or more tiles. A raised tile (like the one above) signifies
a DarkBASIC Pro keyword. The order of the tiles signifies the order in which the
keywords must be placed when using this statement in your program.

So the diagram above tells us that the END statement contains only the single word
END.

The WAIT KEY Statement

We can make a program pause until a key is pressed using the WAIT KEY
statement. The program will only continue after a key has been pressed. Any key
on the keyboard will do.

For example, in the program given in LISTING-2.1, the computer will pause after
the PRINT statement is executed.

For most simple programs, you need to include a WAIT KEY statement
immediately before the END statement, otherwise your program will finish and
close down before you get a chance to view what is being displayed on the screen.

The syntax for this statement is shown in FIG-2.8.

FIG-2.7

The END Statement

FIG-2.8

The WAIT KEY
Statement

WAITWAIT KEYKEY

ENDEND

DarkBASIC Pro: Starting DarkBASIC Pro 45



Adding Comments
It is important that you add comments to any programs you write. These comments
should explain what each section of code is doing. It’s also good practice, when
writing longer programs, to add comments giving details such as your name, date,
programming language being used, hardware requirements of the program, and
version number.

Comments are totally ignored by the translation process as it turns DarkBASIC Pro
statements into machine code. The purpose of comments is to make a program more
readable to other people who may have to modify a program after you’ve moved
on to other things.

In DarkBASIC Pro there are three ways to add comments:

� Add the keyword REM. The remainder of the line becomes a comment
(see FIG-2.9).

Notice that this syntax diagram introduces the sunken tile. Sunken tiles
signify details that are determined by the programmer. Hence, the
programmer gets to choose exactly what comment should be added after the
keyword REM. For example:

REM *** Program to display numbers ***

� Add an opening quote character (you’ll find this on the top left key, just
next to the 1). Again the remainder of the line is treated as a comment
(see FIG-2.10).

For example:

‘ Get details from keyboard

� Add several lines of comments by starting with the term REMSTART
and ending with REMEND. Everything between these two words is
treated as a comment (see FIG-2.11).

This diagram introduces another symbol - a looping arrowed line. This is
used to indicate a section of the structure that may be repeated if required.
In the diagram above it is used to signify that any number of comment lines

FIG-2.9

The REM Comment REMREM commentcomment

FIG-2.10

The ‘ Comment `̀ commentcomment

FIG-2.11

The REMSTART ..
REMEND Comment

comment linecomment line

REMSTART

REMEND

REMSTART

REMEND

Adding asterisks to a
comment helps it to stand out.

46 DarkBASIC Pro: Starting DarkBASIC Pro



can be placed between the REMSTART and REMEND keywords.

For example, we can use this statement to create the following comment
which contains three comment lines:

REMSTART
This program is designed to play the game of
battleships. Two peer-to-peer computers are
required.

REMEND

Activity 2.6

1. How are keywords shown in a syntax diagram?

2. What does a sunken tile in a syntax diagram represent?

3. How is a repeatable element in a statement represented in a syntax diagram?

DarkBASIC Pro: Starting DarkBASIC Pro 47



Outputting to the Screen

Introduction
Even the simplest program will require information to be displayed on the screen.

In DarkBASIC Pro the simplest way to display information on the screen is to use
the PRINT statement. Other statements exist which allow changes to the colour,
font and style of displayed characters to be specified.

A description of most of these statements are given over the next few pages

The PRINT Statement

As we saw in LISTING-2.1, information can be displayed using the PRINT
statement.

To use it, we start with the keyword PRINT, followed by whatever information we
want to display. For example, the statement

PRINT “Hello”

displays the word Hello on the screen. The quotes themselves are not displayed.
Absolutely any set of characters can appear between the quotes, including spaces.

Although a set of characters, or strings, must be enclosed in double quotes, if you
want to display a number, quotes are not required. For example, the following are
valid statements:

PRINT 12
PRINT 3.1416
PRINT -7.0

It is possible to display several pieces of information using a single PRINT
statement by separating each value to be displayed by a comma:

PRINT 12,7,1.2

Unfortunately, all the values in this statement will be displayed without any spaces
between them giving the impression of one large number (1271.2) rather than three
separate values.

To solve this problem we need to display some spaces between the numbers:

PRINT 12," ",7," ",1.2

When several values are displayed by a single PRINT statement they appear on a
single line of the screen, but by using several PRINT statements we can make the
data appear over several lines:

PRINT 12
PRINT 1
PRINT 1.2

To turn this into a complete program we just need to add the WAIT KEY and END
statements as shown in LISTING-2.2.

Spaces are just strings -
like any other sequence
of characters - and must
be enclosed in double
quotes.

48 DarkBASIC Pro: Starting DarkBASIC Pro



REM *** Print some numbers ***
PRINT 12
PRINT 7
PRINT 1.2

REM *** End program ***
WAIT KEY
END

Activity 2.7

Start up a new DarkBASIC Pro project.

To do this select ���� � ��� �������.

In the Project dialog box that appears, call the project printing.dbpro; select
Specify a Folder; browse to your DarkBASICProjects folder and click OK.

Type in and test the program given in LISTING-2.2.

Remember to save the Source and Project files when you have finished.

Creating Blank Lines

The PRINT statement can even be used without any data values being given, as in
the line

PRINT

This has the effect of creating a blank line on the screen. Hence, the lines

PRINT 1
PRINT
PRINT 2

would display the values 1 and 2 with a blank line between them.

Activity 2.8

Modify your last program so that a blank line appears between each number
displayed.

Ending the PRINT Statement with a Semicolon

If you end a PRINT statement with a string and a semicolon, the output produced
by the next PRINT statement will be displayed on the same line. For example, the
lines:

PRINT 12,"";
PRINT 7
PRINT 1.2

would produce the output

���
���

As you will see later, this apparently useless option can be used to great effect.

LISTING-2.2

Displaying Numbers

REM statements
generated when you start a
new project have been
omitted from the listing.

DarkBASIC Pro: Starting DarkBASIC Pro 49



Activity 2.9

Create a new project called Printing2.

Write a program which displays the numbers 1, 2 and 3 on the same line.
There should be a small gap between each number.

Change your program so that the numbers 1, 2 and 3 are displayed on separate
lines.

Modify the code again so that the program pauses before each number is
shown. (HINT: You’ll need to add a WAIT KEY statement after each PRINT
statement.)

Activity 2.10

Write a program (call the project Shapes) to display the following three
shapes (pause the program between each):

a) **********
**********
**********

b) *
**
***
****
*****

c) *
**

***
****

*****

The format of the PRINT statement is shown in FIG-2.12.

This diagram introduces two new concepts. Items within the brackets are optional
and may be omitted. Any number of data items can be displayed, but each must be
separated from the next by a comma.

Activity 2.11

Using the information given in the PRINT statement’s syntax diagram, which
of the following PRINT statements are invalid?

a) PRINT
b) PRINT “Start game”

c) PRINT 7;

d) PRINT "";
e) PRINT 6,5,4;

FIG-2.12

The PRINT Statement data itemdata itemPRINTPRINT [ [
,

;

,

;

50 DarkBASIC Pro: Starting DarkBASIC Pro



Positioning Text on the Screen
In DarkBASIC Pro the screen is treated like a piece of paper divided into thousands
of small squares, as shown in FIG-2.13. These small invisible squares are known
as pixels (derived from the phrase picture elements). An individual pixel is
identified by giving its position on the screen.

A pixel’s position is given by the column number (also known as the position on
the x-axis) followed by the row number (the position on the y-axis) separated by a
comma.

The top left pixel is at position (0,0). This point is known as the origin.

Exactly how many pixels are on the screen depends on the screen resolution (which
we will examine later) but there will be at least 640 columns by 480 rows.

The SET CURSOR Statement

Normally, the first text that we output to the screen will start at the origin, but we
can change this by using the SET CURSOR statement which allows us to specify
where on the screen the next PRINT statement will begin its output. For example,
the statements

SET CURSOR 350, 100
PRINT “HELLO”

displays the word HELLO, with the top-left comer of the H starting at position
(350,100) (i.e. at column 350, row 100) as shown in FIG-2.14.

FIG-2.13

The Screen is Made Up of
Pixels

FIG-2.14

Positioning Text Using the
SET CURSOR Statement

The x-axis (columns)

T
he

y-
ax

is
(r

ow
s)

0 1 2 3 4 5 6
0
1
2
3
4
5
6

The origin
(0,0)

The Screen

Position
(6,2)

0 1 2 3 4 5 6
0
1
2
3
4
5
6

T
he

y-
ax

is
(r

ow
s)

The x-axis (columns)

The top-left corner of
the text starts at position

(350,100)

The Screen

DarkBASIC Pro: Starting DarkBASIC Pro 51



The format for the SET CURSOR statement is shown in FIG-2.15.

In the diagram above:

x,y is a pair of integer values specifying the
position to which the cursor is to be moved.

Activity 2.12

Create a new project (corners.dbpro) that displays the letters A, B, C and D so
that one letter appears at each corner of the screen.

(You’ll have to use trial and error to find the correct positions)

Activity 2.13

Since we can output at any position on the screen, this allows us to display
different values at the same position on the screen.

Create a new project (overwrite.dbpro) containing the following code:

REM *** Output two strings at the same location ***

SET CURSOR 100,100

PRINT “Hello”

WAIT KEY

SET CURSOR 100,100

PRINT “Goodbye”

REM *** End program ***

WAIT KEY

END

Check the output produced by running this program.

The TEXT Statement

The effects of the SET CURSOR and PRINT statements are combined in the TEXT
command which takes both the value to be displayed and the position at which the
data is to be displayed. For example, the statement

TEXT 350, 100, “HELLO”

has the same effect as the SET CURSOR example given earlier, although you may
find that the program uses a different screen resolution when the output is displayed.

Activity 2.14

Change your corners.dbpro project so that it uses the TEXT command to
position the letters in the corners of the screen.

There are a few differences between the PRINT and TEXT commands.

FIG-2.15

The SET CURSOR
Statement

x yx yCURSORSET CURSORSET ,,

Your screen will almost
certainly use a different
resolution when using the
TEXT statement than it
did in previous programs.
This means that in this
Activity you’ll have to
change the coordinates
from those used in the
previous example.

52 DarkBASIC Pro: Starting DarkBASIC Pro



Firstly, TEXT makes use of a graphics display mode to create output, PRINT does
not. Because of this, the screen resolution in Activity 2.14 may differ from that used
by the PRINT statement and how output is handled will change.

Activity 2.15

Change your overwrite.dbpro project replacing the SET CURSOR and PRINT
commands with equivalent TEXT statements.

How does the result differ from before?

The second difference is that the TEXT command will only display strings, so a
line such as

TEXT 100, 100, 12

where the statement attempts to display the value 12 is not acceptable and will cause
an error message to appear when you attempt to run the program. Of course, by
enclosing the 12 in quotes you turn it from a number into a string and this would
be accepted:

TEXT 100, 100, “12"

A final difference is that the TEXT command can only be used to display a single
value at a time. Hence, a statement such as

TEXT 100, 100, “Hello”, “again”

would fail since there are two strings in the command. Again, this could be
corrected, this time by joining the two strings:

TEXT 100, 100, “Hello again”

The syntax for the TEXT statement is given in FIG-2.16.

In the diagram above:

x,y is a pair of integer values specifying the
position to which the cursor is to be moved.

string is the string value to be displayed on the screen.
All strings should be enclosed in double quotes.

The CENTER TEXT Command

Whereas the TEXT command starts output at the specified position, CENTER
TEXT, which uses the same format as TEXT, centres the output horizontally round
the value given for the x-axis. Hence, the statement

CENTER TEXT 350, 150, “Hello”

will display the word Hello as shown in FIG-2.17.

FIG-2.16

The TEXT Statement x y stringx y stringTEXTTEXT , ,, ,

Like most
programming
languages, DarkBASIC
Pro keywords use
American spelling.
Hence, CENTER and
not CENTRE.

DarkBASIC Pro: Starting DarkBASIC Pro 53



Activity 2.16

Write a program (project centre.dbpro) to place the word MIDDLE at the
centre of the screen.

The format of the CENTER TEXT statement is given in FIG-2.18.

In the diagram above:

x,y is a pair of integer values specifying the position
where the horizontal centre of the string is to be
output.

string is the string value to be displayed on the screen.

Changing the Output Font
When you display text on your computer, you can choose the size, style, and font
of that text.

We can change the font style and size used when outputting text by using the SET
TEXT FONT and SET TEXT SIZE commands. Once a new font and size has been
set, any subsequent output statements will be done in this style.

The SET TEXT FONT Statement

You have to add a font name in quotes to the end of this statement. Any values
output after this will be shown in that font. For example,

SET TEXT FONT “Courier New”

will result in the Courier New font being used by any subsequent output.

The format for this instruction is given in FIG-2.19.

FIG-2.18

The CENTER TEXT
Statement

x y stringx y stringTEXTCENTER TEXTCENTER , ,, ,

FIG-2.19

The SET TEXT FONT
Statement

FIG-2.17

Positioning Text Using
CENTER TEXT

0 1 2 3 4 5 6
0
1
2
3
4
5
6

T
he

y-
ax

is
(r

ow
s)

The x-axis (columns)

The horizontal centre
of the text is positioned at

(350,150)

The Screen

font namefont nameSETSET TEXT FONTTEXT FONT

54 DarkBASIC Pro: Starting DarkBASIC Pro



In the diagram above:

font name is a string (enclosed in quotes) giving the name of
the font to be used for subsequent output.

The SET TEXT SIZE Statement

The text size is given in points (a point being 1/72 of an inch). For example,

SET TEXT SIZE 20

will result in subsequent output using characters that are 20/72 of an inch tall.

The format of this statement is given in FIG-2.20.

In the diagram above:

point size is an integer value specifying the size of font
(in points) to be used for subsequent output.

The SET TEXT TO Statement

You can also set the text style to produce italics, bold, or bold italics output as well
as the normal default style. This is achieved using the SET TEXT TO commands.
There are four options:

SET TEXT TO BOLD
SET TEXT TO ITALIC
SET TEXT TO BOLDITALIC
SET TEXT TO NORMAL

The following program (LISTING-2.3) outputs the word HELLO in large, bold,
Courier New font:

REM *** Use Courier New size 20 bold ***
SET TEXT FONT “Courier New”
SET TEXT SIZE 20
SET TEXT TO BOLD
PRINT “HELLO”
WAIT KEY

REM *** Change to italics ***
SET TEXT TO ITALIC
PRINT “HELLO”
WAIT KEY

REM *** Change to bold italics ***
SET TEXT TO BOLDITALIC
PRINT “HELLO”
WAIT KEY

REM *** Change to normal ***
SET TEXT TO NORMAL
PRINT “HELLO”
REM *** End the program ***
WAIT KEY
END

FIG-2.20

The SET TEXT SIZE
Statement

point sizepoint sizeSETSET TEXT SIZETEXT SIZE

LISTING-2.3

Setting Text Size, Font
and Style

DarkBASIC Pro: Starting DarkBASIC Pro 55



Activity 2.17

Type in and test the program given in LISTING-2.3. Name the project
fonts.dbpro.

Change the code so that all of the text is displayed in Times New Roman.

The format for this statement is shown in FIG-2.21.

This diagram introduces another new feature. The braces are used to enclose items
which are mutually exclusive alternatives. In other words, the statement is
completed by choosing one of the options given in the braces.

Changing Colours
So far we’ve had white text on a black background, but you’re free to choose any
colours you want for both the text and the background. Before we see how to do
that in DarkBASIC Pro, let’s start with some basic facts about colour.

How Colours are Displayed

Have a close look at your computer monitor. It’s in full colour, showing almost
every colour and shade your eye is capable of seeing. And yet your screen can
generate only three basic colours: red, green and blue.

Every other colour that you see on the screen is made up from those three colours.
For example, to show the colour yellow, the screen combines the colours red and
green; red, green and blue together produce white; when all three basic colours are
switched off, we have black.

This is known as the additive colour process and the colours red, green and blue
are known as the primary colours. The basic colours that can be constructed from
these three primary colours are shown in FIG-2.22.

As you can see from the figure above, green and blue combine to give a colour

FIG-2.21

The SET TEXT TO
Statement

FIG-2.22

The Additive Colour
Process

56 DarkBASIC Pro: Starting DarkBASIC Pro



called cyan, while red and blue give magenta.

To create other colours and shades we need only to vary the brightness of the
primary colours. Hence, to create orange we use an intense red, a less intense green,
and no blue.

In computer systems the colour of any spot on the screen is recorded as a series of
three numbers. These numbers represent the intensities of the red, green and blue
(RGB) components (in that order) that make up the colour of the spot. Each number
can range between 0 and 255; 0 means that the colour is not used, while 255 means
that the colour is at full brightness. Hence, a bright yellow spot on the screen will
be recorded as 255, 255, 0, meaning that the red and green are at full intensity, and
the blue is switched off.

The RGB Statement

In DarkBASIC Pro we can define any colour using the RGB statement. This
statement takes three values, enclosed in parentheses. These values define the
intensities of the red, green and blue components that make up the required colour.
The RGB statement combines these three components into a single integer value
which it returns as a result of calling this statement. For example, the statement

PRINT RGB(255,255,0)

will display the integer value representing the colour yellow.

Activity 2.18

Create a new project (colours.dbpro) containing the following code:

PRINT RGB (255,255,0)

WAIT KEY

END

What value is displayed?

Change the values in the RGB command to 255,0,255. What value is
displayed this time?

The syntax for the RGB statement is shown in FIG-2.23.

In the diagram:

red is an integer value between 0 and 255

green is an integer value between 0 and 255

blue is an integer value between 0 and 255.

FIG-2.23

The RGB Statement
red( )red( )RGBRGB

integer

green bluegreen blue,, ,,

DarkBASIC Pro: Starting DarkBASIC Pro 57



The arrowed line and the term integer signify that this statement returns an integer
value.

How do you find out the red, green and blue values of some particularly nice shade
of orange? Luckily, the DarkBASIC Pro editor can help. If you are busy typing in
a program and suddenly need to supply the three values required by an RGB
statement, you can simply right-click in the edit window. The resulting pop-up
menu (see FIG-2.24) has an RGB Color Picker option which, when selected,
displays a colour palette (see FIG-2.25).

Selecting a colour from this palette and clicking OK automatically produces an RGB
statement in your program code with the appropriate values to match the colour
selected. We’ll use this in the next Activity.

The INK Statement

In DarkBASIC Pro we can change both the colour used when writing text onto the
screen (known as the foreground colour) and the colour behind that text (known as
the background colour) using the INK. command. This command takes the general
form shown in FIG-2.26.

In the diagram:

foreground is an integer value representing the colour to be
used for the foreground.

background is an integer value representing the colour to be
used for the background.

The colour values themselves are created using the RGB command. So to have our
text output in yellow on a red background we would use the command:

FIG-2.26

The INK Statement foreground backgroundforeground background,,INKINK

FIG-2.24

The DarkBASIC Pro
Editor’s Pop-Up Menu

Colour values
can be selected

with the help of the
RGB Color Picker option

FIG-2.25

The Colour Palette Box

58 DarkBASIC Pro: Starting DarkBASIC Pro



INK RGB(255,255,0), RGB(255,0,0)

Where you want to use black, rather than use RGB (0, 0, 0) you may simply enter
the value zero. For example, to change the foreground to blue and the background
to black, we would use the statement

INK RGB(0,0,255) ,0

Once you have set the ink colour, any output you do to the screen will be in that
colour. For example, we would expect the program in LISTING-2.4 to display the
word HELLO in yellow on a red background.

REM *** Set yellow foreground and red background ***
INK RGB(255,255,0) , RGB(255,0,0)
PRINT “HELLO”

REM *** End program ***
WAIT KEY
END

Activity 2.19

Type in and execute the program in LISTING-2.4 (project colours2.dbpro).

What colour is the background on the screen?

Delete the first RGB command within the INK statement and use the RGB
Color Picker option to replace it with a colour of your choice.

Notice that the background colour in the INK command was set to red and yet the
colour behind the letters is still black. If you want to know why, read on!

There are two main areas to any text that appears on the computer screen: the text
and the text background (see FIG-2.27).

The foreground colour setting determines the colour of the text itself while the
background colour sets the colour used in the text background. However, normally
the text background is transparent so setting the background colour appears to have
no effect. Usually, a transparent background will be exactly what we want, since it
allows us to do things such as place text on top of an image, and have the image
still show through the text (see FIG-2.28) but, as we’ll see in a moment, we can
change this transparent background setting.

Activity 2.20

Modify your previous program so that the word GOODBYE is displayed in
green after the existing word HELLO.

LISTING-2.4

Setting Foreground and
Background Colours

FIG-2.27

Text Areas

Hello

Screen

Text
Text

background

Screen
background

DarkBASIC Pro: Starting DarkBASIC Pro 59



The SET TEXT OPAQUE Statement

We can create a block of colour around any text we display by using the SET TEXT
OPAQUE command. The colour used in the text background will be that defined
as the background colour in your INK command. This statement has the format
shown in FIG-2.29.

For example, if a program contains the statements

SET TEXT OPAQUE
INK RGB(0,0,255), RGB(255,255,0)
PRINT “Hello”

the word Hello should appear in blue with a yellow background around the text.

Activity 2.21

Add the line SET TEXT OPAQUE to start of your previous program.

Change the program so that the word GOODBYE shows in cyan with a
magenta background.

The SET TEXT TRANSPARENT Statement

Although text normally has a transparent background, if you use the SET TEXT
OPAQUE command, every output statement executed later will have a coloured
background. To return to a transparent background you need to use the statement
SET TEXT TRANSPARENT which has the format shown in FIG-2.30.

For example, if a program contains the statements

SET TEXT OPAQUE
INK RGB(0,0,255), RGB(255,255,0)
PRINT “Hello”
SET TEXT TRANSPARENT
PRINT “Goodbye”

FIG-2.28

Text with a Transparent
Background

We’ll see how to place
images on the screen later.

FIG-2.29

The SET TEXT
OPAQUE Statement

SETSET TEXT OPAQUETEXT OPAQUE

FIG-2.30

The SET TEXT
TRANSPARENT
Statement

SETSET TEXT TRANSPARENTTEXT TRANSPARENT

60 DarkBASIC Pro: Starting DarkBASIC Pro



Hello will have a yellow background while the word Goodbye would be surrounded
by the black background of the screen.

The CLS Statement

Although when you first run your program it will start with a blank screen, you can
clear everything from the screen at any point in your program by using the CLS
statement (derived from CLear Screen). To use the command, just write the term:

CLS

This gives a empty black screen. However, if you don’t want the screen to be black,
you can clear the screen to another colour by specifying a colour setting in
conjunction with the CLS statement. For example, to create a green screen, use the
line:

CLS RGB(0,255,0)

The format for this statement is shown in FIG-2.31.

In the diagram:

colour is an integer value representing a colour. The
screen will be filled with this colour after the CLS
statement has been executed.

The program in LISTING-2.5 displays the word HELLO several times using both
opaque and transparent modes. The screen colour is set to red.

REM *** clear screen to red ***
CLS RGB(255,0,0)
REM *** Change text to yellow and the background to green ***
INK RGB(255,255,0), RGB(0,255,0)

REM *** Output the word HELLO with a transparent background ***
PRINT “HELLO”

REM *** Output the word HELLO twice with opaque background ***
SET TEXT OPAQUE
PRINT “HELLO”
PRINT “HELLO”

REM *** Return to transparent output ***
SET TEXT TRANSPARENT
PRINT “HELLO”

REM *** End the program ***
WAIT KEY
END

The output from this program is shown in FIG-2.32.

FIG-2.31

The CLS Statement CLSCLS colourcolour

FIG-2.32

Changing Background
Transparency

LISTING-2.5

Using Transparent and
Opaque Text

DarkBASIC Pro: Starting DarkBASIC Pro 61



Activity 2.22

Type in the program in LISTING-2.5 (backgrounds.dbpro) and check out the
results you obtain.

Activity 2.23

Create a new project (Box) which produces the following output.

*************
* BOX *
*************

Use Courier New, size 20, bold for the text.

The screen background should be red.

The asterisks should be yellow and the word BOX in blue with a black
background.

Summary
� The CLS statement clears the screen using a given colour.

� The PRINT statement can be used to print any type of value.

� A single PRINT statement can display many values.

� The PRINT statement moves the cursor to a new line unless it finishes with a
semicolon.

� The SET CURSOR statement moves the cursor to any position on the screen.

� The TEXT statement will output a single string at any position on the screen.

� The CENTER TEXT statement will output a string centred round a specified
position.

� The INK statement sets the foreground and background colours used.

� The SET TEXT FONT statement sets the font to be used when displaying
information.

� The SET TEXT SIZE statement sets the size to be used in text output.

� The text size is given in points (1/72 of an inch).

� The SET TEXT BOLD statement sets the text style to be used for output to bold.

� The SET TEXT BOLDITALIC statement sets the text style to be used for output
to bold italics.

� The SET TEXT ITALIC statement sets the style to be used for output to italics.

� The SET TEXT NORMAL statement sets the style to be used for output to
normal.

62 DarkBASIC Pro: Starting DarkBASIC Pro



� The SET TEXT OPAQUE statement creates a background colour round any text
that is output.

� The SET TEXT TRANSPARENT statement makes text background
transparent.

� The WAIT KEY statement causes the program to halt until any key is pressed.

� The END statement marks the end of the program.

DarkBASIC Pro: Starting DarkBASIC Pro 63



Some Display Techniques

Screen Resolution
Earlier in this chapter you saw how the screen resolution changed when we started
using the TEXT command in place of PRINT and SET CURSOR.

Luckily, we can choose which resolution we want the program’s output to use by
clicking on the brown Settings button at the bottom right of screen. In the resulting
Configure EXE Settings window we can choose the resolution we want to use (see
FIG-2.33).

You should consider the following when choosing a resolution.

� Output looks better in higher screen resolutions.

� Everything looks smaller in higher resolutions.

� The memory on your video card may limit what resolutions can be used.

� High resolutions take longer to update, so a visually complex game may
seem slower in higher resolutions.

The SET DISPLAY MODE Statement

It is also possible to set the screen resolution and colour depth from within your
program using the SET DISPLAY MODE statement which has the format shown
in FIG-2.34.

FIG-2.33

Setting the Screen
Resolution

1
Select the type

of display required

2
Click on the

buttonPick

3
From the

combobox, choose the
resolution required

Dimensions

Here it is
Fullscreen Exclusive Mode

FIG-2.34

The SET DISPLAY
MODE Statement

DISPLAYDISPLAY width height depthwidth height depthSET MODESET MODE ,, ,,

64 DarkBASIC Pro: Starting DarkBASIC Pro



In the diagram:

width is an integer value representing the width of the
display mode required given in pixels.

height is an integer value representing the height of the
display mode required given in pixels.

depth is an integer value representing the number of
bits used to represent a single pixel on the screen.
Typical values are 16, 24 or 32.

To set the screen to a resolution of 1280 by 1024 using 32 bit pixels we would use
the line

SET DISPLAY MODE 1280,1024,32

It is only valid to chose a resolution which can be achieved by your video card and
screen. Attempt to set an invalid resolution will produce an error message.

Choosing a Text Font
The SET TEXT FONT statement allows us to choose a font for any text that we
intend to output. However, that choice depends on what fonts are available on your
computer. You  need  to  also consider  what fonts are  available on  any other
computers that your final software is to be run on. If your game makes use of a font
such as Kidnap and that font is not available to someone who has bought your
program, then the Kidnap font will be missing when your game runs on the buyer’s
machine.

Most fonts are proportional fonts. That is, the horizontal width of a character
depends on what that character is. Hence, w’s take up more width than i’s. You can
see this in the two lines below:

wwwwww
iiiiii

But some fonts are mono-spaced. In this style every character takes up the same
width, as you can see below:

wwwwww
iiiiii

When you’re working in the DarkBASIC Pro editor entering the lines of your
program, the text is displayed in a mono-spaced font, but the default font used by
your program when outputting to the screen is a proportional font.

Erasing Text
Back in Activity 2.15, we saw that when the TEXT command is used to output more
than one item to the same area of the screen it created an unreadable blob. We need
some way of getting rid of the old text before outputting new text at the same
position.

There are two ways to erase text from the screen.

DarkBASIC Pro: Starting DarkBASIC Pro 65



The first of these is to overwrite the text with spaces with the text background set
to opaque. This is demonstrated in LISTING-2.6.

REM *** Set background colour ***
CLS RGB (126,126,126)

REM *** Set text font, size, and background colour ***
SET TEXT FONT “Arial”
SET TEXT SIZE 36
INK RGB(255,0,0),RGB(126,126,126)

REM *** Output Text ***
TEXT 100,100,"Hello"
WAIT KEY

REM *** Remove text by writing opaque spaces ***
REM *** at the same position as the original text ***
SET TEXT OPAQUE
TEXT 100,100," “

REM *** End program ***
WAIT KEY
END

Activity 2.24

Type in and test the program given above (TextGone).

There should be 5 spaces between the quotes in the second TEXT statement.

What problem arises? Try to cure the problem.

A second method of erasing text is to overwrite with exactly the same text, but this
time in the background colour. The logic of our strategy is:

����	 
�	��� � 	���	�� �����	���� �����	
��� ���� ����� 
�� ��� �����	
������ ����
��� ��	��	���� �����	 �� ����� �����	���� �����	
������ ���� �� 
��� ��
��� �
 ����	�

This logic is implemented in LISTING-2.7.

REM *** Set background colour ***
CLS RGB (126,126,126)

REM *** Set text font, size, and background colour ***
SET TEXT FONT “Arial”
SET TEXT SIZE 36
INK RGB(255,0,0),0

REM *** Output Text ***
TEXT 100,100,"Hello"
WAIT KEY

REM ** Remove text by writing it again in background colour ***
INK RGB(126,126,126),0
TEXT 100,100,"Hello"

REM *** End program ***
WAIT KEY
END

LISTING-2.7

Erasing Text Using The
Same Text in the
Background Colour

LISTING-2.6

Erasing Text Using
Opaque Spaces

66 DarkBASIC Pro: Starting DarkBASIC Pro



Activity 2.25

Modify your previous project to match the code given above.

Run the program and check that the text (Hello) is correctly erased.

Modify the TEXT statements in the program so that word Goodbye is erased
from position 100,80.

Shadow Text
We can create shadowed text by writing the same text in different colours at slightly
offset positions. This needs the following logic:

��� ��	��	���� �����	 �� �����
������ ����
��� ��	��	���� �����	 �� 	�� ��	 
��� ����	 �����	 
������ ���� �� � 
�����! ����	��� ��
��� �	�� ����	�

which is coded as:

REM *** Shadow Text ***
INK RGB(0,0,0),0
TEXT 102, 102, “Hello”
INK RGB(255,0,0) ,0
TEXT 100, 100, “Hello”

Activity 2.26

Add the code above to your existing program.
Try modifying the offset value of the black text and see what effect this has on
the display.

Embossed Text
By creating two versions of a text, we achieved shadowed text; by creating three
copies, we can produce an embossed effect.

To do this we need the following logic:

����	 ��� 
�	��� �� �	�! ��	 
��� ����	 �����	 
��� ��	��	���� �� �����
������ 	���	�� ����
��� ��	��	���� �� "���
������ 	���	�� ���� �� �� ���
�� ��
���
��� ��	��	���� �� ����� �����	����
������ 	���	�� ���� �� � ��
��� ���"��� ��� ����� ��� "��� �������

The code for this is:

CLS RGB(126,126,126)
REM *** Embossed Text ***
INK RGB(0,0,0),0
TEXT 201,201,"Goodbye"
INK RGB(255,255,255),0
TEXT 199,199,"Goodbye"
INK RGB(126,126,126),0
TEXT 200,200,"Goodbye"

RRR

RR

DarkBASIC Pro: Starting DarkBASIC Pro 67



Activity 2.27

Add the code above to your existing program.

Try modifying the font, size and colours used as well as the offset values to
create the best effect.

Summary
� The screen resolution used by your program can be set manually using the

Settings button.

� The screen resolution can be set from within your program using the SET
DISPLAY MODE statement.

� In proportional fonts the width of a character depends on the shape of the
character.

� In mono-spaced fonts all characters have the same width.

� Text can be erased from the screen by overwriting it with opaque spaces.

� Text can be removed from the screen by overwriting it with the same text in the
background colour.

� Shadow text can be created by outputting a darker version of the text and then
overwriting it with the same text slightly offset from the original and in a
different colour.

� Embossed text can be created by outputting dark, light, and background
coloured versions of the text. The dark version is written first, then the offset
light text and finally the background coloured text at a mid point between the
dark and light text.

68 DarkBASIC Pro: Starting DarkBASIC Pro



Solutions
Activity 2.1

1. Machine code (or object code) instructions
2. Compiler
3. A syntax error

Activity 2.2

No solution required.

Activity 2.3

1. A keyword
2. Strings
3. Causes the program to pause until a key is pressed.

Activity 2.4

No solution required.

Activity 2.5

No solution required.

Activity 2.6

1. Keywords are shown in raised tiles

2. A sunken tile represent information whose exact
value is determined by the programmer.

3. Repeatable elements are shown using a looping
arrowed line.

Activity 2.7

No solution required.

Activity 2.8

The program code is:

REM *** Print some numbers ***
PRINT 12
PRINT
PRINT 7
PRINT
PRINT 1.2
REM *** End program ***
WAIT KEY
END

Activity 2.9

Version 1:

REM *** Display numbers on the same line ***
PRINT 1, “ ”, 2, “ ”, 3
REM *** End program ***
WAIT KEY
END

Version 2:

REM *** Display numbers on the separate
lines
PRINT 1
PRINT 2
PRINT 3
REM *** End program ***
WAIT KEY
END

Version 3:

REM *** Display numbers on the separate
lines ***
PRINT 1
WAIT KEY
PRINT 2
WAIT KEY
PRINT 3
REM *** End program ***
WAIT KEY
END

Activity 2.10

Program code:

REM *** Shape 1 ***
PRINT “**********”
PRINT “**********”
PRINT “**********”
PRINT “**********”
WAIT KEY
REM *** Shape 2 ***
PRINT "*"
PRINT "**"
PRINT "***"
PRINT "****"
PRINT "*****"
WAIT KEY
REM *** Shape 3 ***
PRINT " *"
PRINT " **"
PRINT " ***"
PRINT " ****"
PRINT "*****"
REM *** End program ***
WAIT KEY
END

The last shape may not be exact. See Choosing a Text
Font later in this chapter.

Activity 2.11

None of the PRINT statements are invalid

Activity 2.12

The exact values will vary according to your screen
resolution.

The following code will fit a 1280 by 1024 screen

REM *** A top left ***
PRINT “A”
REM *** B top right ***
SET CURSOR 1260,0
PRINT “B”

DarkBASIC Pro: Starting DarkBASIC Pro 69



REM *** C bottom left ***
SET CURSOR 0,990
PRINT “C”
REM *** D bottom right ***
SET CURSOR 1260,990
PRINT “D”
REM *** End program ***
WAIT KEY
END

Activity 2.13

The word Goodbye overwrites and removes the word
Hello from the screen.

Activity 2.14

The code for a resolution of 1280 by 1024 is:

REM *** A top left ***
TEXT 0,0,"A"
REM *** B top right ***
TEXT 1260,0,"B"
REM *** C bottom left ***
TEXT 0,990,"C"
REM *** D bottom right ***
TEXT 1260,990,"D"
REM *** End program ***
WAIT KEY
END

You may find that this program uses a different
resolution than the earlier version did.

Activity 2.15

The program code is:

REM *** Output two strings at same
location ***
TEXT 100, 100, “Hello”
WAIT KEY
TEXT 100, 100, “Goodbye”
REM *** End program ***
WAIT KEY
END

The second string writes on top of the first without
removing it. We'll see a cure for this later in the chapter.

Activity 2.16

For 1248 by 1024, the program code is:

CENTER TEXT 623,500, “MIDDLE”
REM *** End program ***
WAIT KEY
END

Activity 2.17

The second line of the LISTING-2.3 should be changed
to

SET TEXT FONT “Times New Roman”

Activity 2.18
PRINT RGB(255,255,0)

displays the value 4294967040

PRINT RGB(255,0,255)

displays 4294902015

Activity 2.19

The background remains black.

Activity 2.20

The program code is:

INK RGB(255,255,0), RGB(255,0,0)
PRINT “Hello”
REM *** Set green foreground ***
INK RGB(0,255,0),0
PRINT “Goodbye”
REM *** End program ***
WAIT KEY
END

Activity 2.21
REM *** Yellow foreground and red background
***
SET TEXT OPAQUE
INK RGB(255,255,0), RGB(255,0,0)
PRINT “Hello”
REM *** Cyan foreg'nd & magenta backg'nd ***
INK RGB(0,255,255),RGB(255,0,255)
PRINT “Goodbye”
REM *** End program ***
WAIT KEY
END

Activity 2.22

No solution required

Activity 2.23

The program code is:

REM *** Clear screen to red ***
CLS RGB(255,0,0)
REM *** Set text characteristics ***
SET TEXT FONT “Courier New”
SET TEXT TO BOLD
SET TEXT SIZE 20
REM *** Set colours (yellow and red) ***
INK RGB(255,255,0),RGB(255,0,0)
REM *** Output box ***
TEXT 0, 0, “**********”
TEXT 0,20, “* *”
TEXT 0,40, “**********”
REM *** Set opaque text ***
SET TEXT OPAQUE
REM *** Set colours (blue and black) ***
INK RGB(0,0,255),RGB(0,0,0)
REM *** Output text ***
TEXT 34,18,"BOX"
REM *** End program
WAIT KEY
END

Activity 2.24

70 DarkBASIC Pro: Starting DarkBASIC Pro



The problem can be cured by adding more spaces to the
second TEXT statement.

Activity 2.25
REM *** Set background colour ***
CLS RGB(126,126,126)
REM *** Set text font and size ***
SET TEXT FONT “Arial”
SET TEXT SIZE 36
INK RGB (255, 0,0) ,0
REM *** Output Text ***
TEXT 100,80, “Goodbye”
WAIT KEY
REM ** Remove text by writing it again in
background colour ***
INK RGB(126,126,126),0
TEXT 100,80, “Goodbye”
REM *** End program ***
WAIT KEY
END

Activity 2.26

Existing code is in grey:

REM *** Set background colour ***
CLS RGB (126,126,126)
SET TEXT SIZE 36
REM *** Set text font and size ***
SET TEXT FONT “Arial”
SET TEXT SIZE 36
INK RGB (255, 0,0) ,0
REM *** Output Text ***
TEXT 100,80, “Goodbye”
WAIT KEY
REM ** Remove text by writing it again in
background colour ***
INK RGB(126,126,126),0
TEXT 100,80, “Goodbye”
WAIT KEY
REM *** Shadow text ***
INK RGB (0,0,0) ,0
TEXT 102,102, “Hello”
INK RGB (255, 0,0) ,0
TEXT 100, 100, “Hello”
REM *** End program ***
WAIT KEY
END

Activity 2.27

Existing code is in grey:

REM *** Set background colour ***
CLS RGB (126,126,126)
SET TEXT SIZE 36
REM *** Set text font and size ***
SET TEXT FONT “Arial”
SET TEXT SIZE 36
INK RGB (255, 0,0) ,0
REM *** Output Text ***
TEXT 100,80, “Goodbye”
WAIT KEY
REM ** Remove text by writing it again in
background colour ***
INK RGB(126,126,126),0
TEXT 100,80, “Goodbye”
WAIT KEY
REM *** Shadow text ***
INK RGB (0,0,0) ,0
TEXT 102,102, “Hello”
INK RGB (255, 0,0) ,0
TEXT 100, 100, “Hello”

REM *** Embossed Text ***
INK RGB(0,0,0),0
TEXT 201, 201, “Goodbye”
INK RGB(255,255,255),0
TEXT 199, 199, "Goodbye"
INK RGB(126,126,126),0
TEXT 200, 200, "Goodbye"
REM *** End program ***
WAIT KEY
END

DarkBASIC Pro: Starting DarkBASIC Pro 71



72 DarkBASIC Pro: Starting DarkBASIC Pro



3

Arithmetic Operators

Assignment Statement

Constants

Creating Random Numbers

Input Statement

RANDOMIZE and RND Statements

READ, DATA and RESTORE Statements

String Operations

Testing Sequential Structures

Variables

Variable Names

DarkBASIC Pro: Selection 73



Program Data

Introduction
Every computer game has to store and manipulate facts and figures (more
commonly known as data). For example, a program may store the name of a player,
the number of lives remaining or the time the player has remaining in which to
complete a task.

We group information like this into three basic types:

integer - any whole number, positive, negative or zero
real - any number containing a decimal point
strings - any collection of characters (may include numeric characters)

For example, if player Daniel McLaren had 3 lives and 10.6 minutes to complete a
game, then:

3 is an example of an integer value,
10.6 is a real value,

and Daniel McLaren is an example of a string.

Activity 3.1

Identify which type of value each of the following is:

a) -9 f) 0
b) abc g) -3.0
c) 18 h) Mary had a little lamb
d) 12.8 i) 4 minutes
e) ? j) 0.023

Constants
When a specific value appears in a computer program’s code it is usually referred
to as a constant. Hence, in the statement

PRINT 7

the value 7 is a constant. More specifically, we may refer to constant’s type. In the
line

PRINT “Charlotte”, 15, 42.7

Charlotte is a string constant, 15, an integer constant, and 42.7, a real constant.
Notice that in DarkBASIC Pro, string constants always appear within double
quotes.

74 DarkBASIC Pro: Selection



Activity 3.2

Identify the constant types in the following line of code:

PRINT “Mary is ”, 12, “ years old”

Variables
Most programs not only need to display data, but also need to store data and
calculate results. To do this in DarkBASIC Pro we need to use a variable. A variable
is simply somewhere to store a value. Every variable in a program is assigned a
unique name and can store a single value. That value might be an integer, a real or
a string but each variable is designed to store only one type of value. Hence, a
variable designed to store an integer value cannot store a string.

Integer Variables

In DarkBASIC Pro variables are created automatically as soon as we mention them
in our code. For example, let’s assume we want to store the number of lives allocated

to a game player in a variable called lives. To do this in DarkBASIC Pro we simply
write the line:

lives = 3

This sets up a variable called lives and stores the value 3 in that variable (see
FIG-3.1)

This is known as an assignment statement since we are assigning a value (3) to a
variable (lives).

You are free to change the contents of a variable at any time by just assigning it a
different value. For example, we can change the contents of lives with a line such
as:

lives = 2

When we do this any previous value will be removed and the new value stored in
its place (see FIG-3.2).

The variable lives is designed to store an integer value. In the lines below, a, b, c,
d, and e are also integer variables. So the following assignments are correct

a = 200
b = 0
c = -8

FIG-3.1

Storing Data in a
Variable 3

lives

Variable name

Value stored
in the variable

FIG-3.2

Changing the Value in a
Variable 2

lives
The contents of

are changedlives

DarkBASIC Pro: Selection 75



but the lines below are wrong

d = 3.14
e = -1.9

since they attempt to store real constants in variables designed to hold an integers.
DarkBASIC Pro won’t actually report an error if you try out these last two examples,
it simply ignores the fractional part of the numbers and ends up storing 3 in d and
1 in e (see FIG-3.3).

Real Variables

If you want to create a variable capable of storing a real number, then we must end
the variable name with the hash (#) symbol. For example, if we write

d# = 3.14
e# = -1.9

we have created variables named d# and e#, both capable of storing real values(see
FIG-3.4).

Any number can be stored in a real variable, so we could also write a statement such
as:

d# = 12

and this will be stored as 12.0.

If any value can be stored in a real variable, why bother with integer variables?
Actually, you should always use integer values wherever possible because the
computer is much faster at handling integer values than reals which require much
more processing whenever you want to do any calculations. Also, real numbers can
be slightly inaccurate because of rounding errors within the machine. For example,
the value 2.3 might be stored as 2.2999987.

String Variables

Finally, if you want to store a string value, you need to use a string variable. String

FIG-3.4

Creating Real Variables 3.14 -1.9

d# e#

The complete
number is stored

d# = 3.14 e# = -1.9

FIG-3.5

Creating String
Variables

player$ = “Liz Heron” Liz Heron

Everything within
the quotes...

... is stored in
the variable

player$

FIG-3.3

Trying to Copy a Real
Value to an Integer
Variable

3 -1

d e

Only the integral part of
each number is stored

d = 3.14 e = -1.9

76 DarkBASIC Pro: Selection



variable names must end with a dollar ($) sign. The value to be stored must be
enclosed in double quotes. We could create a string variable named player$ and
store the name Liz Heron in it using the statement:

player$ = “Liz Heron”

The double quotes are not stored in the variable (see FIG-3.5).

Absolutely any value can be stored in a string variable as long as that value is
enclosed in double quotes. Below are a few examples:

a$ = “?>%”
b$ = “Your spaceship has been destroyed”
c$ = “That costs $12.50"

Activity 3.3

Which of the following are valid DarkBASIC Pro statements that will store
the specified value in the named variable?

a) a = 6 d) d# = 5

b) b = 12.89 e) e$ = ‘Goodbye’

c) c$ = Hello f) f# = -12.5

Using Meaningful Names

It is important that you use meaningful names for your variables when you write a
program. This helps you remember what a variable is being used for when you go
back and look at your program a month or two after you wrote it.

So, rather than write statements such as

a = 3
b = 120
c = 2000

a better set of statements would be

lives = 3
points = 120
timeremaining = 2000

which give a much clearer indication of what the variables are being used for.

Naming Rules

DarkBASIC Pro, like all other programming languages, demands that you follow
a few rules when you make up a variable name. These rules are:

� The name should start with a letter.

� Subsequent characters in the name can be a letter, number, or underscore

� The final character can be a # (when creating real variables) or $ (when
creating string variables).

� Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

DarkBASIC Pro: Selection 77



� The name cannot be a DarkBASIC Pro keyword.

This means that variable names such as

a
bc
de_2
fgh$
iJKlmnp#

are valid, while names such as

2a
time remaining

are invalid.

The most common mistake people make is to have a space in their variable names
(e.g. fuel level). This is not allowed. As a valid alternative, you can replace the space
with an underscore (fuel_level) or join the words together (fuellevel). Using capital
letters for the joined words is also popular (FuelLevel).

Note that the names no, no# and no$ represent three different variables; one
designed to hold an integer value (no), one a real value (no#) and the last a string
(no$).

Activity 3.4

Which of the following are invalid variable names:

a) x e) total score

b) 5 f) ts#o

c) “total” g) end

d) al2$ h) G2_F3

Summary
� Fixed values are known as constants.

� There are three types of constants: integer, real and string.

� String constants are always enclosed in double quotes.

� The double quotes are not part of the string constant.

� A variable is a space within the computer’s memory where a value can be stored.

� Every variable must have a name.

� A variable’s name determines which type of value it may hold.

� Variables that end with the # symbol can hold real values.

� Variables that end with the $ symbol can hold string values.

� Other variables hold integer values.

78 DarkBASIC Pro: Selection



� The name given to a variable should reflect the value held in that variable.

� When naming a variable the following rules apply:

The name must start with a letter
Subsequent characters in the name can be numeric, alphabetic or the

underscore character.
The name may end with a # or $ symbol.
The name must not be a DarkBASIC Pro keyword.

FIG-3.6

The Assignment
Statement

valuevariable valuevariable ==

DarkBASIC Pro: Selection 79



Allocating Values to Variables

Introduction
There are several ways to place a value in a variable. The DarkBASIC Pro
statements available to achieve this are described below.

The Assignment Statement
In the last few pages we’ve used DarkBASIC Pro’s assignment statement to store
a value in a variable. This statement allows the programmer to place a specific value
in a variable, or to store the result of some calculation.

In its simplest form the assignment statement has the form shown in FIG-3.6.

The value copied into the variable may be one of the following types:

� a constant

� another variable

� an arithmetic expression

Examples of each are shown below.

Assigning a Constant

This is the type of assignment we’ve seen earlier, with examples such as

name$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. Make sure that the
constant is the same type as the variable. For instance, the statement

desc = “tall”

is invalid since it attempts to copy a string constant (“tall”) into an integer variable
(desc). Not every mistake will be signalled by the compiler. For example, if we try
to assign a real constant to an integer variable as in the statement

result = 12.79

the integer variable result stores only the integral part of the constant (i.e. 12), the
fractional part being lost.

However, an integer value may be copied into a real variable, as in the line:

FIG-3.7

Copying One Variable’s
Value to Another
Variable

12 1212

no1 no1no2

The value held in
is copied into

no1
no2

no1 = 12 no2 = no1

80 DarkBASIC Pro: Selection



result# = 33

The program deals with this by storing the value assigned to result# as 33.0.

Activity 3.5

What are the minimum changes required to make the following statements
correct?

1. desc = “tall”

2. result = 12.34

Copying a Variable’s Value

Once we’ve assigned a value to a variable in a statement such as

no1 = 12

we can copy the contents of that variable into another variable with a command
such as:

no2 = no1

The effect of these two statements is shown in FIG-3.7.

As before, you must make sure the two variables are of the same type, although the
contents of an integer variable may be copied to a real variable as in the lines:

ans# = no1

Although not invalid, trying this the other way round (real copied to integer) as in

ans# = 12.94
no1 = ans#

will cause no1 to store only the integral part of ans# contents (i.e. 12).

TABLE-3.1

Arithmetic Operators

Operator Function Example

+ Addition no1 = no2 + 5
- Subtraction no1 = no2 - 9
* Multiplication ans = no1 * no2
/ Division r1# = no1 / 2

mod Remainder ans = no2 mod 3
^ Power ans = 2 ^ 24

DarkBASIC Pro: Selection 81



Activity 3.6

Assuming a program starts with the lines:

no1 = 23

weight# = 125.8

description$ = “sword”

which of the following instructions would be invalid?

a) no2 = no1 d) ans# = no1

b) no3 = weight# e) abc$ = weight#

c) result = description$ f) m# = description$

Copying the Result of an Arithmetic Expression

Another variation for the assignment statement is to perform a calculation and store
the result of that calculation. Hence we might write

no1 = 7 + 3

which would store the value 10 in the variable no1.

The example shows the use of the addition operator, but there are 5 possible
operators that may be used when performing a calculation. These are shown in
TABLE-3.1.

The result of most statements should be obvious. For example, if a program begins
with the statements

no1 = 12
no2 = 3

and then contains the line

total = no1 - no2

then the variable total will contain the value 9, while the line

product = no1 * no2

stores the value 36 in the variable product.

FIG-3.8

Adding to a Variable’s
Contents

20

23

no1

no1

3 is added to ...

... the current value of ...no1

... and the result stored in no1

no1 is assigned
an initial value

no1 = 20

no1 = no1 + 3

82 DarkBASIC Pro: Selection



The remainder operator (mod) is used to find the integer remainder after dividing
one integer into another. For example,

ans = 9 mod 5

assigns the value 4 to the variable ans since 5 divides into 9 once with a remainder
of 4. Other examples  are given below:

6 mod 3 gives 0
7 mod 9 gives 7
123 mod 10 gives 3

If the first value is negative, then any remainder is also negative:

-11 mod 3 gives -2

Activity 3.7

What is the result of the following calculations:

a) 12 mod 5 c) 5 mod 11

b) -7 mod 2 d) -12 mod -8

The power operator ( ^ ) allows us to perform a calculation of the form xy. For
example, a 24-bit address bus on the microprocessor of your computer allows 224

memory addresses. We could calculate this number with the statement:

addresses = 2^24

However, the results of some statements are not quite so obvious. The line

ans# = 19/4

will result in the value 4.0 being stored in ans# since the division operator always
returns an integer result if the two values involved are both integer. On the other
hand, if we write

ans# = 19/4.0

and thereby use a real value, then the result stored in ans# will be 4.75.

When a real value is copied into an integer variable, the fractional part of the value
being copied is lost. For example, the variable result would contain the value 4 after
executing the line

result = 19/4.0

When using the division operator, a second situation that you must guard against is
division by zero. In mathematics, dividing any number by zero gives an undefined
result, so computers get quite upset if you try to get them to perform such a
calculation. Hence, the line

ans = 10/0

would cause a program to crash when it attempted to perform that line in the
program. You might be tempted to think that you would never write such a
statement, but a more likely scenario is that your program contains a line such as

DarkBASIC Pro: Selection 83



ans = no1 / no2

and if no2 contains the value zero attempting to execute the line will still cause the
program to terminate.

Some statements may not appear to make sense if you are used to traditional algebra.
For example, what is the meaning of a line such as:

no1 = no1 + 3

In fact, it means add 3 to no1. See FIG-3.8 for a full explanation.

Another unusual assignment statement is:

no1 = -no1

The effect of this statement is to change the sign of the value held in no1. For
example, if no1 contained the value 12, the above statement would change that value
to -12. Alternatively, if no1 started off containing the value -12, the above statement
would change no1‘s contents to 12.

Activity 3.8

Assuming a program starts with the lines:

no1 = 2

v# = 41.09

what will be the result of the following instructions?

a) no2 = no1^4 d) no4 = no1 + 7

b) x# = v#*2 e) m# = no1/5

c) no3 = no1/5 f) v2# = v# - 0.1

Of course, an arithmetic expression may have several parts to it as in the line

answer = no1 - 3 / v# * 2

and, how the final result of such lines is calculated is determined by operator
precedence.

Operator Precedence
If we have a complex arithmetic expression such as

answer# = 12 + 18 / 3^2 - 6

then there’s a potential problem about what should be done first. Will we start by
adding 12 and 18 or subtracting 6 from 2, raising 3 to the power 2, or even dividing
18 by 3. In fact, calculations are done in a very specific order according to a fixed
set of rules. The rules are that the power operation (^ ) is always done first. After
that comes multiplication and division with addition and subtraction done last. The
power operator ( ^ ) is said to have a higher priority than multiplication and division;
they in turn having a higher priority than addition and subtraction.

So, to calculate the result of the statement above the computer begins by performing

84 DarkBASIC Pro: Selection



the calculation 3^2 which leaves us with:

answer = 12 + 18 / 9 - 6

Next the division operation is performed (18/9) giving

answer = 12 + 2 - 6

The remaining operators, + and -, have the same priority, so the operations are
performed on a left-to-right basis meaning that we next calculate 12+2 giving

answer = 14 - 6

Finally, the last calculation (14 -6) is performed leaving

answer = 8

and the value 8 stored in the variable answer.

Activity 3.9

What is the result of the calculation 12 - 5 * 12 / 10 - 5

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always done
first. Therefore, if we write

answer = (12 + 18) / 9 - 6

then 12+18 will be calculated first, leaving:

answer = 30 / 9 - 6

This will continue as follows:

answer = 3.3333 - 6
answer = -2.6667

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

Activity 3.10

Show the steps involved in calculating the result of the expression
8 * (6-2) / (3-1)

If sets of parentheses are placed inside one another (this is known as nested
parentheses) , then the contents of the inner-most set is calculated first. Hence, in
the expression

TABLE-3.2

Variable Range

Variable Type Range of Values

integer -2,147,483,648 to + 2,147,483,647
real 3.4 E 38± ±

DarkBASIC Pro: Selection 85



12 / (3 * (10 - 6) + 4)

the calculation is performed as follows:

(10 - 6) giving 12 / (3*4+4)
3 * 4 giving 12 / (12 + 4)
12 + 4 giving 12 / 16
12 / 16 giving 0.75

Activity 3.11

Assuming a program begins with the lines
no1 = 12

no2 = 3

no3 = 5

what would be the value stored in answer as a result of the line
answer = no1/(4 + no2 - 1)*5 - no3^2 ?

Variable Range
When first learning to program, a favourite pastime is to see how large a number
the computer can handle, so people write lines such as:

no1 = 1234567890

They are often disappointed when the program crashes at this point.

There is a limit to the value that can be stored in a variable. That limit is determined
by how much memory is allocated to a variable, and that differs from language to
language. The range of values that can be stored in DarkBASIC Pro variables is
shown in TABLE-3.2.

String Operations
The + operator can also be used on string values to join them together. For example,
if we write

a$ = “to” + “get”

then the value toget is stored in variable a$. If we then continue with the line

b$ = a$ + “her”

b$ will contain the value together, a result obtained by joining the contents of a$ to
the string constant “her”.

Activity 3.12

What value will be stored as a result of the statement
term$ = “abc”+"123"+"xyz"

The PRINT Statement Again
We’ve already seen that the PRINT command can be used to display values on the

86 DarkBASIC Pro: Selection



screen using lines such as:

PRINT 12
PRINT “Hello”

We can also get the PRINT statement to display the answer to a calculation. Hence,

PRINT 7+3

will display the value 10 on the screen, while the statement

PRINT “Hello ” + “again”

displays Hello again.

The PRINT statement can also be used to display the value held within a variable.
This means that if we follow the statement

number = 23

by the line

PRINT number

our program will display the value 23 on the screen, this being the value held in
number. Real and string variables can be displayed in the same way. Hence the lines

name$ = “Charlotte”
weight# = 95.3
PRINT name$
PRINT weight#

will produce the output

���������
	
��

Activity 3.13

A program contains the following lines of code:
number = 23

PRINT “number”

PRINT number

What output will be produced by the two PRINT statements?

FIG-3.9

The INPUT Statement messagemessageINPUTINPUT [ ,, variablevariable

DarkBASIC Pro: Selection 87



Activity 3.14

Type in and test the following program (don’t bother to save the program):

number = 23

PRINT number

WAIT KEY

END

Change the program by removing the first two lines and replacing this with
two statements which will assign the value Jessica McLaren to a variable
called name$ and then display the contents of name$ on the screen.

The PRINT statement can display more than one value at a time. For example, we
can get it to display the number 12 and the word Hello at the same time by writing

PRINT 12,"Hello"

Each value we want displayed must be separated from the next by a comma. We
can use this to display a message alongside the contents of a variable. For example,
the lines

capital$ = “Washington”
PRINT “The capital of the USA is ”, capital$

produce the following output on the screen:

�� ������� �� ��� ��� �� ����������

Activity 3.15

Write a program (name.dbpro) that sets the contents of the variable name$ to
Jessica MacLaren and then uses a PRINT statement that displays the contents
of name$ in such a way that the final message on the screen becomes:

������ ������� ��������� ��� ��� �� ��!��"

Other Ways to Store a Value in a Variable

The INPUT Statement

There will be many values which we cannot know when we are writing the program.
For example, we can’t know the name of the player until someone sits down at the
computer and begins to play our game. The only way we can get access to that sort
of information is to ask the player to type in the information the program requires.
This is done with the INPUT statement. In its simplest form the INPUT keyword
is followed by the name of the variable where we’d like to store the information the
player types in. For example, we might write

INPUT name$

expecting the person at the keyboard to type in their name and then storing what
they type in the variable name$. Of course, the player has to be told what sort of
information they are expected to enter, so we could precede the INPUT statement
with a message telling them what to type in :

88 DarkBASIC Pro: Selection



PRINT “Please enter your name ”
INPUT name$

DarkBASIC Pro makes things simpler than this by allowing us to include the
message we want displayed as part of the INPUT statement. Hence, we can achieve
the same effect as the two statements above using the line:

INPUT “Please enter your name ”, name$

This gives us the final format for the INPUT statement as shown in FIG-3.9.

In the diagram:

message is a string (enclosed in double quotes) which is
displayed before any data from the keyboard is
accepted.

variable is a variable name. The value entered by the user
at the keyboard will be assigned to this variable.
It is the user’s responsibility to enter a value of
the correct type.

Activity 3.16

Which of the following are valid INPUT statements?

a) INPUT age

b) INPUT “Enter your height ”, height#

c) INPUT “Enter your salary ” salary

Activity 3.17

Type in and run the following program (input01.dbpro):

INPUT “Player 1, enter your name :”,name$

PRINT “Hello, ”,name$

WAIT KEY

END

We can use the INPUT statement anywhere in our program and as often as
necessary.

FIG-3.10

Using DATA and READ

31

28

daysinmonth

daysinmonth

DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

READ daysinmonth

READ daysinmonth

The DATA statement contains
the values to be read

Each READ statement causes
another value to be taken from

the DATA statement

DarkBASIC Pro: Selection 89



Activity 3.18

Modify your last program so that it also reads in the age of the player and
displays a message of the form:

������ #��$� ���� ����%� & ��� �� ��� #��� ���� ����% ����� ��!�

The READ and DATA Statements

There are times when we want to assign a value to a variable, but we don’t want to
have to enter that value from the keyboard. For example, let’s say a variable,
daysinmonth, is used to store how many days are in January. The contents of
daysinmonth is then to be displayed. After this the program stores within
daysinmonth the number of days in a normal February. Again, the contents of
daysinmonth is displayed. This continues until every month of the year has been
dealt with.

We could start the coding for this as:

daysinmonth = 31

PRINT daysinmonth
daysinmonth = 28
PRINT daysinmonth
daysinmonth = 31
PRINT daysinmonth

Alternatively, we can set up the values we intend to assign to daysinmonth in a
DATA statement:

DATA 31,28,31,30,31,30,31,31,30,31,30,31

and then use a READ statement every time we want to assign a value to
daysinmonth.

READ daysinmonth

The value given to daysinmonth by the READ statement will be the first value listed
in the DATA statement. When another READ statement is executed, the second
value from  the DATA statement will be used. We can therefore rewrite the
statements given earlier as:

DATA 31,28,31,30,31,30,31,31,30,31,30,31
READ daysinmonth
PRINT daysinmonth
READ daysinmonth

FIG-3.11

The DATA Statement constantconstantDATADATA

,,

FIG-3.12

The READ Statement variablevariableREADREAD

,,

90 DarkBASIC Pro: Selection



PRINT daysinmonth
READ daysinmonth
PRINT daysinmonth

The operation of these statements is shown in FIG-3.10.

Is this second approach any better than the first? You should have noticed that by
using the DATA/READ approach we repeat exactly the same statements over and
over again. In a later chapter we will see that this code can be shortened by using a
loop statement which would not be possible with the first approach.

Several DATA statements may be used by a program, so we might write:

DATA 31, 28
DATA 31, 30

The computer simply groups the values given in the DATA statements into a single
list, so the two DATA statements above have exactly the same effect as:

DATA 31,28,31,30

The DATA statement can contain values of any type. The next example stores the

names of the first three days of the week:

DATA “Sunday”, “Monday”,"Tuesday"

Of course, when you read from this DATA statement, the variable being assigned
the value must be a string:

READ day$

The type of values in a DATA statement can even be mixed, containing integer,
real or string constants in any order. It is only important that READ statements use
the type of variable appropriate to the next value coming from the DATA statement.

We might write

DATA 12, 2.7, “Hello”

followed by

READ no1
READ x#
READ word$

and this would be acceptable because variables and values being read are of

FIG-3.13

The RESTORE Statement RESTORERESTORE

FIG-3.14

The TIMER Statement
( )( )TIMERTIMER

integer

DarkBASIC Pro: Selection 91



matching types. That is, the first READ statement would assign the integer value
12 to the integer variable no1; the second READ would assign the real value 2.7 to
the real variable x# and the third READ would assign the string “Hello” to the string
variable word$. It’s also possible to read the value of more than one variable in a
single READ statement. Hence, we could reduce the three statements above to the
single line:

READ no1, x#, word$

A DATA statement can be placed anywhere in your program. Often it is placed at
the start or end of a program where it can easily be found should the values it holds
need to be examined or changed.

The format for the DATA statement is shown in FIG-3.11 and the format of the
READ statement is shown in FIG-3.12.

In the diagram:

constant represents any fixed value. This value can be an
integer, real, or string.

In the diagram:

variable is any variable name. The variable named will
be assigned the next available value from the
DATA statement.

An error will be reported if your program contains a READ statement but no DATA
statement. An error will also occur if a READ statement is executed after all the
values in the DATA statement have been used.

Activity 3.19

Write a short program (days01.dbpro) which displays the names of the days of
the week. Start with Sunday.

The names should be set up in a DATA statement, then accessed using a series
of READ statements.

The RESTORE Statement

DarkBASIC Pro knows which value is to be used next from a DATA statement by
keeping a marker which indicates which value in the statement is to be used when
the next READ statement is executed.

Initially this marker points to the first value in the first DATA statement. After each
READ the marker moves on one position. However, it is possible to return the
marker to the start of the DATA list by executing the RESTORE statement.

FIG-3.15

The GET TIME$
Statement

( )( )TIME$GET TIME$GET

string

92 DarkBASIC Pro: Selection



For example, in the code

DATA 3,6,9,12
READ no1
READ no2

RESTORE
READ no3

the variable no3 will be assigned the value 3 because the RESTORE statement will
have moved the DATA marker back to the first value in the list.

The RESTORE statement has the format shown in FIG-3.13.

Activity 3.20

Modify your last program so that after all the days of the week have been
displayed the word Sunday is displayed for a second time.

You can achieve this result by adding a RESTORE statement, another READ
statement and a PRINT statement to your program.

The Time and Date

The TIMER Statement

DarkBASIC Pro contains a command that lets you find out how long your computer
has been switched on. This is the TIMER statement which returns an integer
specifying the number of milliseconds that have passed since your machine was
last powered up. This information is actually maintained by the operating system
and the DarkBASIC Pro statement interrogates the area of computer memory where
this data is held.

The TIMER statement has the format given in FIG-3.14.

Notice that the parentheses must be included in the statement even though no
information is placed within them. DarkBASIC Pro’s general syntax demands that
any statement that returns a value must always have parentheses.

So the TIMER statement could be used to display how long your machine has been
on with the single line

FIG-3.17

The RND Statement ( )( )RNDRND

integer

maxmax

FIG-3.16

The GET DATE$
Statement

( )( )DATE$GET DATE$GET

string

DarkBASIC Pro: Selection 93



PRINT TIMER ()

but this would be in milliseconds. Perhaps a better option would be to save the value
returned by TIMER and convert that value to seconds, as in the lines:

millisecondsPassed = TIMER()
seconds = millisecondsPassed / 1000
PRINT “Your computer has been on for ”, seconds, “ seconds”

Activity 3.21

Create a project (minutes.dbpro) which displays how many minutes have
passed since your computer was last switched on.

By using TIMER before and after some event we can measure how long that event
lasts. For example, we could create a simple reaction time game by seeing how
quickly the user can press a key after being told to do so. Such a program requires
the following logic:

'������ ()���� ��� *��+
,����! ��� ����� ��$�
���� ��� � *�� �����
,����! ��� ������ ��$�
���� ���� ��� ! ������ �� ������ ��$� $�� � ��� ����� ��$�
'������ ��� ! ������

Activity 3.22

Create a project (reaction.dbpro) that implements the logic given above.

The GET TIME$ Statement

If we need to get the actual time of day then we can use the TIME$ statement which
returns a string giving the current time (as obtained from the system clock) in the
form HH:MM:SS, where HH is the hour (0 to 23), MM is the minutes, and SS the
seconds.

The format for this statement is given in FIG-3.15.

For example, we could display the current time using the line:

PRINT GET TIME$()

The GET DATE$ Statement

The current date can be returned as a string using the GET DATE$ statement which
has the format shown in FIG-3.16.

The string returned is in the American form MM/DD/YY. For example, when run
at the time of writing, the statement

PRINT GET DATE$()

FIG-3.18

The RANDOMIZE
Statement RANDOMIZERANDOMIZE seedseed

94 DarkBASIC Pro: Selection



displayed the output -./01/-
.

Generating Random Numbers
Often in a game we need to throw a dice, choose a card or think of a number. All
of these are random events. That is to say, we cannot predict what value will be
thrown on the dice, what card will be chosen, or what number some other person
will think of.

The RND Statement

There is a need to get computer programs to emulate this randomness and this is
done using the RND statement. In fact, like RGB, RND is a function. It will generate
an integer value within a specified range and return that generated value. For
example, if we wanted to display a random number between 0 and 10, we could
write

PRINT RND(10)

RND has to be supplied with a value enclosed in parentheses. This value lets the
command know what range of possible values may be generated. Notice that the
lowest value that can be generated is always zero, while the largest value is equal
to the number given in the brackets.

Activity 3.23

What expression would we use if we wanted to create a random number in the
range 0 to 48?

The format for the RND statement is given m FIG-3.17.

In the diagram:

max is any positive integer value. The command will
return an integer in the range 0 to max.

The value given within the parentheses can also be a variable or arithmetic
expression, as in the lines:

num = 25
PRINT RND (num) ‘0 to 25
PRINT RND (num*2-3) ‘0 to 47

The value returned by RND could be stored in a variable using a statement such as:

number = RND(10)

If RND(5) generates a number between 0 and 5, how are we going to emulate a dice
throw which gives values 1 to 6? Often people suggest writing RND(6), but this
gives values in the range 0 to 6, not 1 to 6.

Instead we have to generate a value between 0 and 5 and then add 1 to that number.

We could do this with the line

LISTING-3.1

Displaying a Random
Number

DarkBASIC Pro: Selection 95



diceThrow = RND(5)+1

and follow this with a PRINT statement displaying the contents of diceThrow:

PRINT “You threw a ”,diceThrow

The RANDOMIZE Statement

Computers can’t really think of a random number all by themselves. Actually, they
cheat and use a mathematical formula to calculate an apparently random number.
As long as you don’t know that formula, you won’t be able to predict what number
the computer is going to come up with.

But to get the mathematics started correctly, we need to supply it with a start up
value or seed value. Effectively this seed value determines what numbers the
computer is going to generate when RND is used.

The seed value is set up using the RANDOMIZE statement which has the format
shown in FIG-3.18.

In the diagram:

seed is an integer value which is used as a start-up
value for the random number generator.

Exactly what seed value you use doesn’t really matter, but if you start with the same
seed value every time, you’ll always get the same set of values from RND. For
example, if a program contained the lines

RANDOMIZE 12345
PRINT RND(50)
PRINT RND(12)

every time that program is executed, the same numbers would be displayed.

To stop this happening we need to make sure that the seed value is different every

time we run a program. We can achieve this using the TIMER statement. So if we
write

number = TIMER()
RANDOMIZE number

then, since TIMER will return a different value every time it’s carried out
(remember the time in your computer is being updated 1000 times per second), the
seed value for RANDOMIZE will always be different. Actually, we can combine
the two statements above into one:

RANDOMIZE TIMER()

Now we are ready to write a program using random numbers. The program in
LISTING-3.1 simulates a dice throw and displays the number generated.

REM *** Generate random number ***
RANDOMIZE TIMER()

FIG-3.19

The #CONSTANT
statement

#CONSTANT =#CONSTANT =name valuename value[

96 DarkBASIC Pro: Selection



number = RND(5)+1

REM *** Display number ***
PRINT number

REM *** End program ***
WAIT KEY
END

Activity 3.24

Type in and run the program given above (random.dbpro).
Modify the program so that it generates a number between 1 and 49.

Activity 3.25

Write a program (guess01.dbpro) that performs the following logic:

��$� ��� ����*� �� � � $2�� 2������ 0 ��! 0--

���� 3�� 4 ������ ����� � ��� �� ���� ��� � $2�� ��

�� ��$� ��� !������� 2��� ��� � ��� ��! ��� �������� � $2��

Structured English and Programs
When we write a structured English algorithm with the intention of turning that
algorithm into a computer program, we always write the algorithm as if we are
telling the computer what it has to do. Therefore, the rather long winded algorithm
in the Activity above would be better written as:

5������� � ���!�$ ������� 2������ 0 ��! 0--
5��  ���6� � ���
'������ � $2�� ��! � ���

Using Variables to Store Colour Values
We’ve seen how the value generated by the RND statement can be stored in a
variable with a statement such as:

number = RND(5)+1

Since the RGB statement also returns a value, we can use that same approach there.
So rather than write

INK RGB(255,0,0),RGB(0,255,0)

we could write

colour1 = RGB(255,0,0)
colour2 = RGB(0,255,0)
INK colour1, colour2

DarkBASIC Pro: Selection 97



Activity 3.26

Write a program (colours03.dbpro) that performs the following operations

Assigns the colour red to a variable called scarlet;
Assigns the colour blue to a variable called sky;
Clears the screen to create red blank screen (use scarlet);
Writes the word Ocean in blue on the screen (use sky)

Named Constants
When a program uses a fixed value which has an important role (for example,
perhaps the value 1000 is the score a player must achieve to win a game), then we
have the option of assigning a name to that value using the #CONSTANT statement.

The format of this statement is shown in FIG-3.19.

In the diagram:

name is the name to be assigned to the constant value.

value is the constant value being named.

For example, we can name the value 1000 WinningScore using the line:

#CONSTANT WinningScore = 1000

Since the equal sign ( = ) is optional, it is also valid to write:

#CONSTANT WinningScore 1000

Real and string constants can also be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid

#CONSTANT Pi = 3.14159265
#CONSTANT Vowels = “aeiou”

The value assigned to a name cannot be changed, so having written

#CONSTANT WinningScore = 1000

it is not valid to try to assign a new value with a line such as:

WinningScore = 1900

The two main reasons for using named constants in a program are:

1) Aiding the readability of the program. For example, it is easier to
understand the meaning of the line

IF playerscore >= WinningScore

than

IF playerscore >= 1000

LISTING-3.2

Calculating the Square
Root of a Value

98 DarkBASIC Pro: Selection



2) If the same constant value is used in several places throughout a
program, it is easier to change its value if it is defined as a named
constant. For example, if, when writing a second version of a game we
decide that the winning score has to be changed from 1000 to 2000,
then we need only change the line

#CONSTANT WinningScore = 1000

to

#CONSTANT WinningScore = 2000

On the other hand, if we’ve used lines such as

IF playerscore >= 1000

throughout our program, every one of those lines will have to be
changed so that the value within them is changed from 1000 to 2000.

Testing Sequential Code
The programs in this chapter are very simple ones, with the statements being
executed one after the other, starting with the first and ending with the last. In other
words, the programs are sequential in structure.

Every program we write needs to be tested. For a simple sequential program that
involves input, the minimum testing involves thinking of a value to be entered,
predicting what result this value should produce, and then running the program to
check that we do indeed obtain the expected result.

The program below (see LISTING-3.2) reads in a value from the keyboard and
displays the square root of that number.

INPUT “Please enter your number : ”, number#
squareroot# = number#^0.5
PRINT “The square root of ”, number#, “ is ”,squareroot#
WAIT KEY
END

To test this program we might decide to enter the value 16 with the expectation of
the result being 4.

Activity 3.27

Type in the program given above (root.dbpro) and test it by inputting the
value 16.

Perhaps that would seem sufficient to say that the program is functioning correctly.
However, a more cautious person might try a few more values just to make sure.
But what values should be chosen? Should we try 25 or 9, 3 or 7?

As a general rule it is best to think carefully about what values you choose as test
data. A few carefully chosen values may show up problems when many more

DarkBASIC Pro: Selection 99



randomly chosen values show nothing.

When the test data is numeric, the most obvious choices are to use a typical value
(in the case of the above program, 16 falls into this category), a very large value, a
negative value and zero. But in each case it is important that you work out the
expected result before entering your test data into the program - otherwise you have
no way of knowing if the results you are seeing on the screen are correct.

Activity 3.28

What results would you expect from root.dbpro if your test data was

401286
0

-9

Run the program with these test values and check that the expected results are
produced.

When entering string test values, an empty string (just press Enter when asked to
enter the data), a single character string, and a multicharacter string should do.

These suggestions for creating test data may need to be modified depending on the
nature of the program you are testing.

Summary
� The assignment statement takes the form

variable = value

� value can be a constant, other variable, or an expression.

� The value assigned should be of the same type as the receiving variable.

� Arithmetic expressions can use the following operators:

^ * / + - mod

� Calculations are performed on the basis of highest priority operator first and a

FIG-3.20

The SCREEN HEIGHT
Statement

( )( )SCREEN HEIGHTSCREEN HEIGHT

integer

FIG-3.21

The SCREEN WIDTH
Statement

( )( )SCREEN WIDTHSCREEN WIDTH

integer

100 DarkBASIC Pro: Selection



left-to-right basis.

� The power operator has the highest priority; multiplication and division and the
mod operator the next highest, followed by addition and subtraction.

� Terms enclosed in parentheses are always performed first.

� The + operator can be used to join strings.

� The INPUT statement reads a value from the keyboard and places that value in
a named variable.

� The INPUT statement can display a message designed to inform the user what
has to be entered.

� The DATA and READ statements can be used to assign a listed value to a
variable.

� The RESTORE statement forces a return to the start of the first DATA statement.

� The TIMER statement returns the time in milliseconds from switch on.

� The GET TIME$ statement returns the current time as a string.

� The GET DATE$ statement returns the current date as a string.

� The RND statement generates a random integer number in the range 0 to a

specified maximum.

� The RANDOMIZE statement ensures that the numbers created by the RND are
truly random.

� The value returned by statements such as RND and RGB can be assigned to a
variable.

� A named constant can be created using the #CONSTANT statement.

� The name assigned to a constant must not end with a # or $ symbol.

LISTING-3.3

Centring Text

FIG-3.22

The SCREEN DEPTH
Statement

( )( )SCREEN DEPTHSCREEN DEPTH

integer

DarkBASIC Pro: Selection 101



Determining Current Settings

Introduction
Let’s say we want to place the title of our new game in the centre of the screen. We
know that we can place text at any position using TEXT or CENTER TEXT, but
how are we to discover where the centre of the screen is? If we’re working in an
800 by 600 display mode, then the centre is at 400,300 - but how can we be sure
what display mode is being used? Luckily, DarkBASIC Pro has many statements
that allow us to find out this, and other, information. Some of these are given below,
others we’ll discuss in later chapters.

Screen Settings

The SCREEN HEIGHT Statement

The SCREEN HEIGHT statement returns the height of the output screen in pixels
and has the format shown in FIG-3.20.

For example, the statement

PRINT SCREEN HEIGHT()

would display the value 600, assuming the screen resolution was set to 800 by 600.

The SCREEN WIDTH Statement

This statement returns the width of the output screen in pixels. The statement has

FIG-3.25

The RGBB Statement ( )( )RGBBRGBB

integer

colourcolour

FIG-3.24

The RGBG Statement ( )( )RGBGRGBG

integer

colourcolour

FIG-3.23

The RGBR Statement
( )( )RGBRRGBR

integer

colourcolour

102 DarkBASIC Pro: Selection



the format shown in FIG-3.21.

For example, the statement

screenwidth = SCREEN WIDTH()

would assign the value 800 to the variable screenwidth, assuming the screen
resolution was set to 800 by 600.

The program in LISTING-3.3 displays the word WELCOME at the centre of the
screen.

REM *** Find centre of screen ***
centrex = SCREEN WIDTH()/2
centrey = SCREEN HEIGHT()/2

REM *** Display text at centre ***
CENTER TEXT centrex, centrey, “WELCOME”

REM *** End program ***
WAIT KEY
END

Activity 3.29

Type in and test the program above (centred.dbpro).

Is the text correctly centred both vertically and horizontally?

The SCREEN DEPTH Statement

The number of bits used to represent a single pixel on the screen determines the
maximum number of colours that can be shown on the screen. For example, if a
single bit was used to represent a pixel, that bit could have the value 0 or 1, hence
only two colours can be shown. With two bits per pixel, four colours are possible,
represented by the bit patterns 00, 01, 10, and 11.

The SCREEN DEPTH statement returns the number of bits used per pixel and has

the format shown in FIG-3.22.

If a call to this statement returns the value 16, then the number of colours that can
be shown is calculated as 216. The code required to perform this calculation is:

noofcolours = 2^SCREEN DEPTH()

Colour Components
If we were to generate a random colour with the lines

LISTING-3.4

Colour Component Values

FIG-3.26

The TEXT
BACKGROUND
Statement

( )( )TEXT TYPEBACKGROUNDTEXT TYPEBACKGROUND

integer

DarkBASIC Pro: Selection 103



RANDOMIZE TIMER()
colour = RGB(RND(255),RND(255),RND(255))

we could find out the settings of the red, green and blue components of that colour

using the following statements.

The RGBR Statement

The RGBR statement returns an integer specifying the red component of a specified

colour. The statement has the format shown in FIG-3.23.

In the diagram:

colour is an integer value representing a colour. This
value will probably have been generated using the
RGB statement.

Hence, assuming the variable colour had been set using the line given earlier, we
could extract the red component of that colour with the line

redvalue = RGBR(colour)

FIG-3.27

The TEXT STYLE
Statement

( )( )TEXT STYLETEXT STYLE

integer

FIG-3.28

The TEXT SIZE
Statement

FIG-3.29

The TEXT FONT$
Statement

( )( )TEXT FONT$TEXT FONT$

string

FIG-3.30

The TEXT WIDTH
Statement

( )( )TEXT WIDTHTEXT WIDTH

integer

stringstring

104 DarkBASIC Pro: Selection



The RGBG Statement

The RGBG statement returns an integer specifying the green component of a
specified colour. The statement has the format shown in FIG-3.24.

In the diagram:

colour is an integer value representing a colour. This
value will probably have been generated using the
RGB statement.

The RGBB Statement

The RGBB statement returns an integer specifying the blue component of a
specified colour. The statement has the format shown in FIG-3.25.

In the diagram:

colour is an integer value representing a colour. This
value will probably have been generated using the
RGB statement.

The three statements are used in LISTING-3.4 to display the component values of
a randomly generated colour.

REM *** Create random colour ***
RANDOMIZE TIMER()
colour = RGB(RND(255),RND(255),RND(255))

REM *** Extract components of this colour ***
red = RGBR(colour)
green = RGBG(colour)
blue = RGBB(colour)

REM *** Use the new colour ***
INK colour,0

REM *** Display the colour details ***
PRINT “The generated colour has the following settings”
PRINT “Red component : ”,red
PRINT “Green component : ”,green
PRINT “Blue component : ”,blue

REM *** End program ***
WAIT KEY
END

FIG-3.31

The TEXT HEIGHT
Statement

( )( )TEXT HEIGHTTEXT HEIGHT

integer

stringstring

LISTING 3.5

Display Text
Characteristics

DarkBASIC Pro: Selection 105



Activity 3.30

Type in and test the program (colours03.dbpro) in LISTING-3.4.

Text Settings
Details of the text font, size and style currently being used by a program can be
retrieved using the following statements.

The TEXT BACKGROUND TYPE Statement

We can discover the current text background mode (opaque or transparent) using
the TEXT BACKGROUND TYPE statement which has the format shown in
FIG-3.26.

The statement returns the value zero if a transparent background is being used; 1 is
returned when the background setting is opaque.

The TEXT STYLE Statement

The style of font, (bold, italic, etc.) can be determined using the TEXT STYLE
statement which has the format shown in FIG-3.27.

The integer value returned lies between 0 and 3 (0 - normal; 1 - italic; 2 - bold; 3 -
bold italic).

The TEXT SIZE Statement

The TEXT STYLE statement returns the current text size setting in points. This
statement has the format shown in FIG-3.28.

The TEXT FONT$ Statement

The TEXT FONT$ statement returns a string giving the name of the font currently
being used. For example, it would return the string "Arial", assuming this font had
been selected earlier, using the SET TEXT FONT statement. The TEXT FONT$
statement has the format shown in FIG-3.29.

The TEXT WIDTH Statement

When placing text on the screen it can be very useful to know in advance just how
many pixels wide that piece of text is going to be. The exact width of the text will
obviously depend on the text itself, goodbye being wider than hello, but text font,
style and size settings are also going to effect the width of the text. We can find out
the exact width of any text to be displayed using the TEXT WIDTH statement. This
has the format shown in FIG-3.30.

In the diagram:

string is the string whose width is to be determined.

The TEXT HEIGHT Statement

106 DarkBASIC Pro: Selection



The number of pixels from the lowest point on a piece of text (typically at the bottom
of letters such as g and y) to the highest point (on letters such as t and l) can be found

Activity 3.1

a) Integer
b) String
c) Integer
d) Real
e) String
f) Integer
g) Real
h) String
i) String
j) Real

Activity 3.2

“Mary is” - string
12 - integer
“ years old” - string

Activity 3.3

a) Valid
b) Invalid. Integer variable will store 12
c) Invalid. Hello should be enclosed in double

quotes(“Hello”)
d) Valid
e) Invalid. Must be double quotes, not single quotes
f) Valid

Activity 3.4

a) Valid
b) Invalid. Must start with a letter
c) Invalid. Names cannot be within quotes.
d) Valid
e) Invalid. Spaces are not allowed in a name
f) Valid
g) Invalid, end is a DarkBASIC Pro keyword
h) Valid

Activity 3.5
1. desc$="tall"
2. result#= 12.34

Activity 3.6

a) Valid
b) Invalid. Fraction part lost
c) Invalid. A string cannot be copied to an integer

variable
d) Valid
e) Invalid. A real cannot be copied to a string variable
f) Invalid. A string cannot be copied to a real variable

Activity 3.7

a) 2
b) -1
c) 5
d) -4

Activity 3.8

a) no2 is 16
b) x# is 82.18
c) no3 is zero
d) no4 is 9
e) m# is 0.4
f) v2# is 40.99

Activity 3.9

The result is 1

The expression is calculated as follows:

12-5* 12/10-5
12-60/10-5
12-6-5
6-5

Activity 3.10

Steps

8*(6-2)/(3-1)
8*4/(3-1)
8*4/2
32/2
16

Activity 3.11
answer = no1 / (4 + no2 - 1) * 5 - no3 ^ 2
answer = 12 / (4 + 3 - 1) * 5 - 5 ^ 2
answer = 12 / (7 - 1) * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 25
answer = 2 * 5 - 25
answer = 10 - 25
answer = -15

Activity 3.12

term$ will hold the string abcl23xyz

Activity 3.13

Output:

number
23

Activity 3.14

The final version of the program should read:

name$ = “Jessica McLaren”
PRINT name$
WAIT KEY
END

DarkBASIC Pro: Selection 107



Activity 3.15
REM *** Assign name to variable & display
it ***
name$ = “Jessica McLaren”
PRINT “Hello, ”,name$,", how are you today?"
REM *** End program ***
WAIT KEY
END

Activity 3.16

a) Valid
b) Valid
c) Invalid. The comma is missing after the message.

Activity 3.17

No solution required.

Activity 3.18
REM *** Get name ***
INPUT “Player 1, enter your name ”, name$
INPUT “Enter your age ”, age
PRINT “Hello, ”, name$, “, I see you are
”,age," years old"
REM *** End program ***
WAIT KEY
END

Activity 3.19
REM *** Set up names of days of the week ***
DATA
“Sunday”,“Monday”,“Tuesday”,“Wednesday”,
“Thursday”,“Friday”,“Saturday”
REM *** Read and display each day ***
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
REM *** End program ***
WAIT KEY
END

Activity 3.20

Existing lines are in grey.

REM *** Set up names of days of the week ***
DATA
“Sunday”,“Monday”,“Tuesday”,“Wednesday”,
“Thursday”,“Friday”,“Saturday”
REM *** Read and display each day ***
READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
READ day$

PRINT day$

READ day$
PRINT day$
READ day$
PRINT day$
READ day$
PRINT day$
REM *** Go back to the start of the data ***
RESTORE
REM *** Read and display the first day ***
READ day$
PRINT day$
REM *** End program ***
WAIT KEY
END

Activity 3.21
millisecondsPassed = TIMER()
seconds = millisecondsPassed / 1000
minutes = seconds / 60
PRINT “Your computer has been on for ”
,minutes, “ minutes”
WAIT KEY
END

This could be reduced to just

minutes = TIMER()/60000
PRINT “Your computer has been on for ”
,minutes, “ minutes”
WAIT KEY
END

Activity 3.22
REM *** Display message ***
PRINT “Press any key”
REM *** Record start time ***
start = TIMER()
REM *** Wait for key press ***
WAIT KEY
REM *** Record finish time ***
finish = TIMER()
REM *** Calculate and display duration ***
duration = finish - start
PRINT “You took ”, duration, “ milliseconds”
REM *** End program ***
WAIT KEY
END

Activity 3.23
RND(48)

Activity 3.24

The RND line needs to be changed to read:

RND(48) + 1

Activity 3.25
REM *** Generate random value ***
RANDOMIZE TIMER()
number = RND(99)+1
REM *** Guess the number ***
INPUT “Enter your guess (1 to 100) : ”
,guess
REM *** Display both values
PRINT “Number was ”, number," Guess was “
,guess

108 DarkBASIC Pro: Selection



using the TEXT HEIGHT statement, which has the
format shown in FIG-3.31.

In the diagram:

string is the string whose h
determined.

The program in LISTING-3.5 demonstrates the use
of the statements in this section.

REM *** Set text characteristics ***
SET TEXT FONT "Arial"
SET TEXT TO BOLD
SET TEXT SIZE 20
SET TEXT OPAQUE

REM *** Read in text ***
INPUT "Enter text : ", text$

REM *** Display details ***
PRINT "Font used is ",TEXT FONT$()
PRINT "Font style is ",TEXT STYLE()," 0
- normal, 1 - italic, 2 �- bold, 3 -
bold italic"
PRINT "Font size is ", TEXT SIZE(),"
points"
PRINT "Text background ",TEXT BACKGROUND
TYPE()," 0 - transparent �1 - opaque"
PRINT text$," is ",TEXT WIDTH(text$),"
pixels wide"
PRINT text$," is ",TEXT HEIGHT(text$),"
pixels high"

REM *** End program ***
WAIT KEY
END

Activity 3.31

Type in and test the program in LISTING-3.5
(textdetails.dbpro).

Summary
� Use SCREEN WIDTH to find the current screen

width setting.

� Use SCREEN HEIGHT to find the current screen
height setting.

� Use SCREEN DEPTH to find how many bits are
used to represent one screen pixel.

� Use RGBR to find the value of the red component in a specified colour.

� Use RGBG to find the value of the green component in a specified colour.

� Use RGBB to find the value of the blue component in a specified colour.

REM *** End program ***
WAIT KEY
END

Activity 3.26
REM *** Assign colours ***
scarlet = RGB(255,0,0)
sky = RGB(0,0,255)
CLS scarlet
INK sky, scarlet
PRINT “Ocean”
REM *** End program ***
WAIT KEY
END

Activity 3.27

No solution required.

Activity 3.28

Test Value Expected Result

401286 633.471
0 0

-9 Undefined

Activity 3.29

The text is not centred vertically since the CENTER TEXT
statement positions the top of the text at the y-ordinate
specified. To be correctly centred, the middle of the text
would have to positioned at this y-ordinate.

Activity 3.30

No solution required

Activity 3.31

No solution required.

DarkBASIC Pro: Selection 109



� Use TEXT BACKGROUND TYPE to determine if transparent or opaque
backgrounds are being used with text output.

� Use TEXT STYLE to determine the current text style setting.

� Use TEXT SIZE to determine the current text size setting.

� Use TEXT FONT$ to determine the current text font name.

� Use TEXT WIDTH to determine the width of a specified piece of text.

� Use TEXT HEIGHT to determine the height of a specified piece of text.

110 DarkBASIC Pro: Selection



Solutions

DarkBASIC Pro: Selection 111



112 DarkBASIC Pro: Selection



4

AND, OR and NOT Operators

Boolean Conditions

IF..ENDIF Statement

IF..THEN Statement

Nested IF Statements

Relational Operators

SELECT Statement

Testing Selective Structures

DarkBASIC Pro: Selection 111



Binary Selection

Introduction
As we saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

�� ��������� 	
��
�����

�����

Hence, in our guessing game we described the response to a correct guess as:

�� ����� � ������ 	
��
�� ���������

�����

As we’ll see, DarkBASIC Pro also makes use of an IF statement to handle such
situations.

The IF Statement
In its simplest form the IF statement in DarkBASIC Pro takes the format shown in
FIG-4.1.

In the diagram:

condition is any term which can be reduced to a true or
false value.

statement is any executable DarkBASIC Pro statement.

If condition evaluates to true, then the set of statements between the IF and ENDIF
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to the statements following the ENDIF term.

An unlimited number of statements may be placed between the IF and ENDIF terms.

Condition

Generally, the condition will be an expression in which the relationship between
two quantities is compared. For example, the condition

no < 0

will be true if the content of the variable no is less than zero (i.e. negative).

FIG-4.1

The Simple IF Statement

statement

condition

statement

conditionIF

ENDIF

IF

ENDIF

Notice that DarkBASIC
Pro’s IF statement does
not contain the word
THEN

112 DarkBASIC Pro: Selection



A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-4.2.

In the diagram:

value1 and value2 may be constants, variables, or expressions

relational operator is one of the symbols given in TABLE-4.1.

The values being compared should be of the same type, but it is acceptable to mix
integer and real numeric values as in the conditions:

v > x#
t# < 12

However, numeric and string values cannot be compared. Therefore, conditions
such as

name$ = 34
no1 <> “16"

are invalid.

Activity 4.1

Which of the following are not valid Boolean expressions?

a) no1 < 0 d) v# => 12.0

b) name$ = “Fred” e) total <> “0"

c) no1 * 3 >= no2 - 6 f) address$ = 14 High Street

When two strings are checked for equality as in the condition

IF name$ = “Fred”

the condition will only be considered true if the match is an exact one (see FIG-4.3),
even the slightest difference between the two strings will return a false result.

value 1 value 2relational operatorvalue 1 value 2relational operator

TABLE-4.1

Relational Operators

English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

FIG-4.3

Comparing Strings
“fred” ”Fred” “broadsword” “broad sword”

Not equal
lower case f and upper case F

Not equal
single word two words

(i.e. one of the strings contains a space)

FIG-4.2

A Boolean Expression

DarkBASIC Pro: Selection 113



Not only is it valid to test if two string values are equal, or not, as in the conditions

IF name$ = “Fred”
IF village$ <> “Turok”

it is also valid to test if one string value is greater or less than another. For example,
it is true that

“B” > “A”

Such a condition is considered true not because B comes after A in the alphabet,
but because the coding used within the computer to store a “B” has a greater numeric
value than the code used to store “A”.

The method of coding characters is known as ASCII (American Standard Code for
Information Interchange). This coding system is given in Appendix A at the back
of the book.

If you are comparing strings which only contain letters, then one string is less than
another if that first string would appear first in an alphabetically ordered list. Hence,

“Aardvark” is less than “Abolish”

But watch out for upper and lower case letters. All upper case letters are less than
all lower case letters. Hence, the condition

“A” < “a”

is true.

If two strings differ in length, with the shorter matching the first part of the longer
as

“abc” < “abcd”

then the shorter string is considered to be less than the longer string. Also, because
the computer compares strings using their internal codes, it can make sense of a
condition such as

“$” < “?”

which is also considered true since the $ sign has a smaller value than the ? character
in the ASCII coding system.

Activity 4.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for part f).

a) “wxy” = “w xy” d) “cat” = “cat.”

b) “def” < “defg” e) “dog” = “Dog”

c) “AB” < “BA” f) “*” > “&”

TABLE-4.2 shows some Structured English IF statements and the DarkBASIC Pro
equivalents.

114 DarkBASIC Pro: Selection



The program in LISTING-4.1 reads in two numbers and displays a message if the
numbers are equal. The program employs the following logic:

��� ����� ��� �� �� ��!
�� �� � ��! 	
��

���"�� �������� �� �#���
�����

REM *** Read in two numbers ***
INPUT “Enter first value : ”,no1
INPUT “Enter second value ”,no2

REM *** IF both numbers are the same THEN Display message ***
IF no1 = no2

PRINT “Numbers are equal”
ENDIF

REM *** End program ***
WAIT KEY
END

Notice the use of indentation in the program listings. DarkBASIC Pro does not
demand that this be done, but indentation makes a program easier to read - this is
particularly true when more complex programs are written.

Activity 4.3

Type in and test the program in LISTING-4.1 (Call the project same.dbpro)

Modify the program you created for project guess.dbpro, so that, after the
player has typed in his guess, the program displays the word Correct if the
guess and number are equal.

In the next program (see LISTING-4.2) a real value representing the radius of a
circle is read from the keyboard. As long as a valid value has been entered (i.e. a
value greater than zero) then the area of the circle is calculated and displayed.

Notice that this time we have more than one statement within the IF structure.

REM *** Read radius of circle ***
INPUT “Enter radius : ”, radius#

REM *** IF valid radius THEN ***
IF radius# > 0

REM *** Calculate and display area ***
area# = 3.14159 * radius# * radius#
PRINT “Area of circle is ”,area#

ENDIF

continued on next page

TABLE-4.2

Examples of Simple IF
Statements

Structured English DarkBASIC Pro Code

IF is negative THEN IF no < 0
make positive no = -no

ENDIF ENDIF

IF is zero THEN IF day = 0
Display “Sunday” PRINT “Sunday”

ENDIF ENDIF

IF is even THEN IF value mod 2 = 0
Subtract 1 from value = value - 1

ENDIF ENDIF

no
no

day

value
value

LISTING-4.1

Using a Simple IF
Statement

LISTING-4.2

Placing Several
Statements within the
IF..ENDIF Structure

DarkBASIC Pro: Selection 115



REM *** End program ***
WAIT KEY
END

Activity 4.5

Write separate DarkBASIC Pro programs for each of the following tasks:
(Name the projects act4_5_1.dbpro, act4_5_2.dbpro, etc.)

1. Read in an integer number (no1) and display the message “Negative value”
if the number is less than zero.

2. Read in a real number representing the width and height of a square. If the
number is greater than zero, calculate and display the area of the square.

3. Read in a word. If the word is “yes”, display the message “Access granted".

4. Read in an integer value and display the word “Even” if it is an even
number (HINT: an even number gives no remainder when divided by 2).

Compound Conditions - the AND and OR Operators

Two or more simple conditions (like those given earlier) can be combined using
either the term AND or the term OR (just as we did in structured English in Chapter
1).

The term AND should be used when we need two conditions to be true before an
action should be carried out. For example, if a game requires you to throw two sixes
to win, this could be written as:

RANDOMIZE TIMER ()
dice1 = RND(5) + 1
dice2 = RND(5) + 1
IF dice1 = 6 AND dice2 = 6

PRINT “You win!”
ENDIF

The statement PRINT “You win!” will only be executed if both conditions, dice1=
6 and dice2 = 6, are true.

Activity 4.6

Using the code given above, if dice1 = 6 and dice2 = 5, will the statement
PRINT “You win!” be carried out?

You may recall from Chapter 1 that there are four possible combinations for an IF
statement containing two simple expressions. Because these two conditions are
linked by the AND operator, the overall result will only be true when both
conditions are true. These combinations are shown in TABLE-4.3.

TABLE-4.3

The AND Operator
condition 1 condition 2 condition 1 AND condition 2

false false false
false true false
true false false
true true true

LISTING-4.2
(continued)

Placing Several
Statements within the
IF..ENDIF Structure

116 DarkBASIC Pro: Selection



We link conditions using the OR operator when we require only one of the
conditions given to be true. For example, if a dice game produces a win when the
total of two dice is either 7 or 11, we could write the code for this as:

RANDOMIZE TIMER ()
dice1 = RND(5) + 1
dice2 = RND(5) + 1
total = dice1 + dice2
IF total = 7 OR total = 11

PRINT “You win!”
ENDIF

Again, the computer reduces the individual Boolean expressions to either true or
false. If at least one of the individual conditions is true, then the overall result is
also true. This time the four possible combinations give the results shown in

TABLE-4.4

Activity 4.7

If no1 =10 and no2 = 7, which of the following IF statements will evaluate to
true?

a) IF no1 < no2 OR no2 = 8

b) IF no1 + no2 > 15 OR no1 < 9

c) IF no2 - no1 > 0 OR no1 / no2 > 1

d) IF no1 >= 10 OR no2 <= 10

There is no limit to the number of conditions that can be linked using AND and OR.
For example, a statement of the form

IF condition1 AND condition2 AND condition3

means that all three conditions must be true, while the statement

IF condition1 OR condition2 OR condition3

means that at least one of the conditions must be true.

TABLE-4.4

The OR Operator
condition 1 condition 2 condition 1 OR condition 2

false false false
false true true
true false true
true true true

DarkBASIC Pro: Selection 117



Activity 4.8

A game requires 3 dice to be thrown. If at least two dice show the same value,
the player has won.

Write a program (dice.dbpro) which contains the following logic:

	$��% �� �$��� ����

�� �� �%� ���� ���$ 	
��

���"�� �&�� %��'�

�����

���"�� �$� ���� �� ��$ ����

Activity 4.9

Modify your previous project Act4_5_3 so that the message “Access granted"
is displayed if the word input is either “yes” or “YES”.

Once we start to create conditions containing both AND and OR operators, we must
remember that the AND operator takes precedence over the OR operator. Therefore,
the statement

IF dice = 5 OR dice = 2 AND card$ = “Ace”

means that throwing a dice value of 5 is sufficient to give us an overall result of true
and it does not matter what value card$ is. However, it we don’t throw a 5, then we
must throw a 2 and card$ must be equal to “Ace” to achieve an overall true result.

The normal rule of performing the AND operation before OR can be modified by
the use of parentheses. Expressions within parentheses are always evaluated first.
Hence, if we write

IF (dice = 5 OR dice = 2) AND card$ = “Ace”

the expression will be calculated as follows:

(���� )* ����+ ,�� ����
� ���� ,�� ����
� ����

Activity 4.10

What is the overall result of the Boolean expression

(����� - !. )* ����� - !+ ,�� (%�"��"�%�� /  )* ��������� -� !..+

when score =15, lives = 3, weaponpower = 1, and ammunition = 250

The NOT Operator

DarkBASIC Pro’s NOT operator works in exactly the same way as that described
in Chapter 1. It is used to negate the final result of a Boolean expression.

If we assume dice = 4, then the line

IF NOT (dice = 5 OR dice = 2)

118 DarkBASIC Pro: Selection



will evaluate as

�)	 (���� )* ����+
� �)	 ����
� ����

Activity 4.11

When money =100 and cards =21, what is the result of the condition:

�)	 (����� - 0. ,�� ���� - !.+

ELSE - Creating Two Alternative Actions

In its present form the IF statement allows us to perform an action when a given
condition is met. But sometimes we need to perform an action only when the
condition is not met. For example, when the user has to guess the number generated
by the computer, we use an IF statement to display the word “Correct” when the
user guesses the number correctly:

IF guess = number
PRINT “Correct”

ENDIF

However, shouldn’t we display an alternative message when the player is wrong?

One way to do this is to follow the first IF statement with another testing the opposite
condition:

IF guess = number
PRINT “Correct”

ENDIF
IF NOT guess = number

PRINT “Wrong”
ENDIF

Although this will work, it’s not very efficient since we always have to test both
conditions - and the second condition can’t be true if the first one is!

As an alternative, we can add the word ELSE to our IF statement and follow this
by the action we wish to have carried out when the stated condition is false:

IF guess = number
PRINT “Correct”

FIG-4.4

The IF..ELSE Statement

statement

statement

condition

statement

statement

conditionIF

ENDIF

ELSE

IF

ENDIF

ELSE

DarkBASIC Pro: Selection 119



ELSE
PRINT “Wrong”

ENDIF

Activity 4.12

Modify act4_5_1.dbpro to display the phrase “Positive number” if the
variable no1 is greater than or equal to zero and displays the phrase “Negative
number” if no1 contains a value less than zero.

This gives us the longer version of the IF statement format as shown in FIG-4.4.

Activity 4.13

Modify your guess.dbpro project so that the message “Wrong” appears if the
player guesses the wrong number.

Activity 4.14

Create a project (smaller.dbpro) which reads in two numbers from the
keyboard and displays the smaller of the two values.

Activity 4.15

Modify project act4_5_4.dbpro so that the program displays the word “Odd”
if an odd value is entered.

The Other IF Statement
DarkBASIC Pro actually offers a second version of the IF statement which has the
format shown in FIG-4.5.

FIG-4.5

The Alternative IF
Statement

Although the syntax
diagram shows the IF
statement spread over
several lines, this statement
must be entered as a single
line in your program.

statement

statement

condition

statement

statement

conditionIF

:

:

THEN

ELSE

IF

:

:

THEN

ELSE

120 DarkBASIC Pro: Selection



As you can see from the diagram, this version uses the word THEN but omits the
ENDIF term. You can have as many statements as you need in each section (after
THEN and ELSE) but these must be separated by colons.

A major restriction when using this version of the IF statement is that the keyword
ELSE, if used, must appear on the same line as the term IF. Hence, it is invalid to
write:

IF no1 < 0 THEN
PRINT “Negative”

ELSE
PRINT “Positive”

Instead you must write

IF no1 < 0 THEN PRINT “Negative” ELSE PRINT “Positive”

Activity 4.16

Rewrite the IF statement you created in Activity 4.12 to use this alternative
version of the IF statement.

It is probably best to avoid this version of the IF statement, since the requirement
to place the IF and ELSE terms on the same line does not allow a good layout for
the program code.

Activity 4.17

1. What is a Boolean expression?

2. How many relation operators are there?

3. If a condition contains both AND and OR operators, which will be
performed first?

Summary
� Conditional statements are created using the IF statement.

� A Boolean expression is one which gives a result of either true or false.

� Conditions linked by the AND operator must all be true for the overall result to
be true.

� Only one of the conditions linked by the OR operator needs to be true for the
overall result to be true.

� When the NOT operation is applied to a condition, it reverses the overall result.

� The statements following a condition are only executed if that condition is true.

� Statements following the term ELSE are only executed if the condition is false.

� A second version of the IF statement is available in DarkBASIC Pro in which
IF and ELSE must appear on the same line.

DarkBASIC Pro: Selection 121



122 DarkBASIC Pro: Selection



Multi-Way Selection

Introduction
A single IF statement is fine if all we want to do is perform one of two alternative
actions, but what if we need to perform one action from many possible actions? For
example, what if we need to select from three or more alternative actions? How can
we create code to deal with such a situation? In structured English we use a modified
IF statement of the form:

��
���������  1

����� 
��������� !1

����� !
�2��

����� 3
�����

However, this structure is not available in DarkBASIC Pro and hence we must find
some other way to implement multi-way selection.

Nested IF Statements
One method is to use nested IF statements - where one IF statement is placed within
another. For example, let’s assume in our number guessing game that we want to
display one of three messages: Correct, Your guess is too high, or Your guess is too
low. Our previous solution allowed for two alternative messages: Correct or Wrong
and was coded as:

IF guess = number
PRINT “Correct”

ELSE
PRINT “Wrong”

ENDIF

In this new problem the PRINT “Wrong” statement needs to be replaced by the two
alternatives: Your guess is too high, or Your guess is too low. But we already know
how to deal with two alternatives - use an IF statement. In this case, our IF statement

IF guess > number
PRINT “Your guess is too high”

ELSE
PRINT “Your guess is too low”

ENDIF

If we now remove the PRINT “Wrong” statement from our earlier code and substitute
the four lines given above, we get:

IF guess = number
PRINT “Correct”

ELSE
IF guess > number

PRINT “Your guess is too high”
ELSE

PRINT “Your guess is too low”
ENDIF

ENDIF

LISTING-4.3

The Number Guessing
Game Again

DarkBASIC Pro: Selection 123



Activity 4.18

Modify your guess.dbpro project so that the game will respond with one of
three messages as shown in the code given above.

Activity 4.19

In act4_5_1.dbpro we created an IF statement which displayed one of two
messages: Positive Number or Negative number.

Technically, the number zero is neither positive nor negative, hence we should
really produce a third message: Zero when number = 0.

Modify your earlier solution to this previous task to achieve this requirement.

There is no limit to the number of IF statements that can be nested. Hence, if we
required four alternative actions, we might use three nested IF statements, while
four nested IF statements could handle five alternative actions. To demonstrate this
we’ll take our number guessing game a stage further and display the message Your
guess is slightly too high if the guess is no more than 5 above the original number;
the message Your guess is slightly too low will be displayed if the guess is no more
than 5 below the original number.

We’ll start by working out the difference between our guess and the computer’s
number using the line

difference = guess - number

Now, if we’ve guessed the number correctly, then difference will be zero. However,
if we’ve gone too high, then difference will be a positive number. On the other hand,
a low guess will result in difference being negative. When difference is a small
value (either positive or negative) then guess must be close to number. The complete
program is given in LISTING-4.3.

REM *** Generate number ***
RANDOMIZE TIMER()
number = RND(99)+1
REM *** Get guess ***
INPUT “Enter your guess (1 - 100) ”, guess
REM *** Calculate difference between the two values ***
difference = guess - number
REM *** Display appropriate message ***
IF difference = 0

PRINT “Correct”
ELSE

IF difference > 0
IF difference <= 5

PRINT “Your guess is slightly too high”
ELSE

PRINT “Your guess is too high”
ENDIF

ELSE
IF difference >= -5

PRINT “Your guess is slightly too low”
ELSE

PRINT ”Your guess is too low"
ENDIF

ENDIF
ENDIF

124 DarkBASIC Pro: Selection



Activity 4.20

Modify your guess.dbpro program to match the code given in LISTING-4.3.

Test the program to check that it operates as expected.

Activity 4.21

In a game a player’s character carries the following items: a sword, a wand, a
bag of dragon’s teeth and a water skin.

Create a new project (items.dbpro) which reads in a number from the
keyboard and displays the name of the corresponding item. Hence, if 1 is
entered, the phrase A sword is displayed, if 2 is entered, A wand is displayed,
etc. If an invalid value is entered, the phrase Unknown item is displayed.

The SELECT Statement
An alternative, and often clearer, way to deal with choosing one action from many
is to employ the SELECT statement. The simplest way to explain the operation of
the SELECT statement is simply to give you an example. In the code snippet given
below we display the name of the day of week corresponding to the number entered.
For example, entering 1 results in the word Sunday being displayed.

INPUT “Enter a number between 1 and 7 ”, day
SELECT day

CASE 1
PRINT “Sunday”

ENDCASE
CASE 2

PRINT “Monday”
ENDCASE
CASE 3

FIG-4.6

How the SELECT
statement operates

SELECT expression

CASE value1
action

ENDCASE

CASE value2
action

ENDCASE

.

.

CASE DEFAULT
action

ENDCASE
ENDSELECT

1
is evaluated

and reduced to a single value
expression

2 - option 1
The CASE statement whose

value matches has
its action executed...

expression

2 - option 2
If expression matches none of

the values given, the
DEFAULT action is executed...

If no DEFAULT option is given
the whole SELECT structure is ignored

DarkBASIC Pro: Selection 125



PRINT “Tuesday”
ENDCASE
CASE 4

PRINT “Wednesday”
ENDCASE
CASE 5

PRINT “Thursday”
ENDCASE
CASE 6

PRINT “Friday”
ENDCASE
CASE 7

PRINT “Saturday”
ENDCASE

ENDSELECT

Once a value for day has been entered, the SELECT statement chooses the CASE
statement that matches that value and executes the code given within that section.
All other CASE statements are ignored and the instruction following the END
SELECT statement (not shown above) is the next to be executed. For example, if
day = 3, then the statement given beside CASE 3 will be executed (i.e. PRINT
“Tuesday” ). If day were to be assigned a value not given in any of the CASE
statements (i.e. a value outside the range 1 to 7), the whole SELECT statement
would be ignored and no part of it executed.

Optionally, a special CASE statement can be added at the end of the SELECT
statement. This is the CASE DEFAULT option which is used to catch all other
values which have not been mentioned in previous CASE statements. For example,
if we modified our SELECT statement above to end with the code

CASE 7
PRINT “Saturday”

ENDCASE
CASE DEFAULT

PRINT “Invalid day”
ENDCASE

ENDSELECT

then, if a value outside the range 1 to 7 is entered, this last CASE statement will be
executed. FIG-4.6 shows how the SELECT statement is executed.

FIG-4.7

The SELECT Statement

statement

value

statement

expression

statement

value

statement

expressionSELECT

DEFAULT

CASE

CASE

ENDCASE

ENDCASE

ENDSELECT

SELECT

DEFAULT

CASE

CASE

ENDCASE

ENDCASE

ENDSELECT

[

,,

126 DarkBASIC Pro: Selection



Several values can be specified for each CASE option. If the SELECT value
matches any of the values listed, then that CASE option will be executed. For
example, using the lines

INPUT “Enter a number ” , num
SELECT num

CASE 1, 3, 5, 7, 9
PRINT “Odd”

ENDCASE
CASE 2,4,6,8,10

PRINT “Even”
ENDCASE

ENDSELECT

the word Odd would be displayed if any odd number between 1 and 9 was entered.

The values given beside the CASE keyword may also be a string as in the example
below:

INPUT “Enter your name ”, name$ ‘
SELECT name$

CASE “Liz”,"John"
PRINT “Hello friend”

ENDCASE
CASE DEFAULT

PRINT “I do not know your name”
ENDCASE

ENDSELECT

Although the value may also be a real value as in the line

CASE 1.52

it is a bad idea to use these since the machine cannot store real values accurately.
If a real variable contained the value 1.52000001 it would not match with the CASE
value given above.

The general format of the SELECT statement is given in FIG-4.7.

In the diagram:

expression is a variable or expression which reduces to a
single integer, real or string value.

value is a constant of any type (integer, real or string).

statement is any valid DarkBASIC Pro statement

(even another SELECT statement!).

TABLE-4.5

Testing Complex
Conditions

dice1 = 6 dice2 = 6 dice1 = 6 AND dice2 = 6

false false false
false true false
true false false
true true true

DarkBASIC Pro: Selection 127



Activity 4.22

Rewrite the Items program so that it uses a SELECT structure when
determining which message is to be displayed.

Activity 4.23

Write a project (Grading) which accepts a score from the keyboard and
displays the grade assigned according to the following rules:

Score 0-99 grade: Pathetic
Score 100-199 grade: Beginner
Score 200 - 299 grade: Apprentice
Score 300-399 grade: Competent
Score 400-499 grade: Master
Score 500-599 grade: Grand Master
Other values Invalid score

Testing Selective Code
When a program contains IF or SELECT structures, our test strategy has to change
to cope with these structures. In the case of an IF statement, we must create two test
values: one which results in the IF statement being true, the other in the IF statement
being false. For example, if a program contained the lines

INPUT no
IF no <= 0

PRINT “This is a negative number”
ENDIF

then we need to have a test value for no which is less than zero and another which
is not less than zero. Perhaps the values -8 and 3.

Another important test is to find out what happens when the variable’s value is
exactly equal to the value against which it is being tested. In the above case that
would mean testing the code with no set to 0. Very often this is the only value which
will highlight a problem in the code.

Activity 4.24

If no is zero, will the message “This is a negative number” be displayed by the
code given above?

Since zero is not a negative number we have discovered an error in our code. The
line

TABLE-4.6

Dealing with Impossible
Combinations

dice = 5 dice = 2 card$=”Ace” dice = 5 OR dice = 2 AND card$=”Ace”

false false false false
false false true false
false true false false
false true true true
true false false true
true false true true
true true false * true
true true true * true

128 DarkBASIC Pro: Selection



IF no <= 0

should actually read

IF no < 0

We would not have detected this error if we hadn’t used zero as our test value.

When an IF statement contains more than one condition linked with AND or OR
operators, testing needs to check each possible combinations of true and false
settings. For example, if a program contained the line

IF dice1 = 6 AND dice2 = 6

then our tests should include all possible combinations for the two conditions as
shown in TABLE-4.5.

So our test values, chosen to meet these combinations, might be

dice1 = 3 dice2 = 5
dice1 = 4 dice2 = 6
dice1 = 6 dice2 = 1
dice1 = 6 dice2 = 6

If the dice values are randomly generated in the program we would have to change
lines such as

dice1 = RND(5) +1

to

INPUT “Enter value for dice 1 : ”,dice1

to allow the test to take place. Once the tests have been completed, the INPUT lines
would be replaced by the original code.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and false combinations. For example, if a program contains the
line

IF dice = 5 OR dice = 2 AND card$ = “Ace”

then the combinations of true and false are shown in TABLE-4.6.

But the last two combinations in the table are impossible to achieve since the
variable dice cannot contain the values 5 and 2 at the same time. So our test data
will have test values which create only the remaining 6 combinations.

When testing nested IF statements, as in the lines

IF guess = number
PRINT “Correct”

ELSE
IF guess > number

PRINT “Your guess is too high”
ELSE

PRINT “Your guess is too low”
ENDIF

ENDIF

DarkBASIC Pro: Selection 129



then each path through the structure must be tested. For the above code this means
that we must test for the following conditions being true:

Activity 4.1

a) Valid
b) Valid
c) Valid
d) Invalid. => is not a relational operator (should be >=)
e) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in double quotes.

Activity 4.2

a) False. Only the second string contains a space.
b) True. “def is shorter and matches the first three
characters of "defg".
c) True A comes before B.
d) False Only the second string contains a full stop.
e) False Only the second string contains a capital D.
f) True. * has a greater ASCII coding than &

Activity 4.3

No solution required.

Activity 4.4
REM *** Generate random value ***
RANDOMIZE TIMER ()
number = RND (99)+1
REM *** Guess the number ***
INPUT “Enter your guess (1 to 100) : ”
,guess
REM *** IF the guess is correct THEN ***
REM *** Display “Correct” ***
IF guess = number
PRINT “Correct”

ENDIF
REM *** Display both values ***
PRINT “Number was ”, number," Guess was “
,guess
REM *** End program ***
WAIT KEY
END

Activity 4.5

1.

REM *** Read in integer ***
INPUT “Enter a number : ”, no1
REM *** IF neg THEN Display message ***
IF no1 < 0
PRINT “Negative value”

ENDIF
REM *** End program ***
WAIT KEY
END

2.

REM *** Read in real ***
INPUT “Enter length of side : ”, side#
REM *** IF greater than zero THEN ***
IF side# > 0
REM *** Calculate and display area ***
area# = side# * side#
PRINT “Area of square is ”,area#

ENDIF

REM *** End program ***
WAIT KEY
END

3.

REM *** Read in word ***
INPUT “Enter a word : ”,word$
IF word$ = “yes”
PRINT “Access allowed”

ENDIF
REM *** End program ***
WAIT KEY
END

4.

REM *** Read in an integer ***
INPUT “Enter a number : ”,no1
REM *** IF an even number THEN Display
“Even” ***
IF no1 mod 2=0
PRINT “Even”

ENDIF
REM *** End program ***
WAIT KEY
END

Activity 4.6

No, the PRINT statement is not executed.
The condition

dice1 = 6 AND dice2 = 6
reduces to

true AND false
which further reduces to

false

Activity 4.7

a) false OR false = false
b) true OR false = true
c) false OR true = true
d) true OR true = true

Activity 4.8
REM *** Throw dice ***
RANDOMIZE TIMER ()
dice1 = RND(5)+1
dice2 = RND(5)+1
dice3 = RND(5)+1
REM *** IF at least two dice match THEN
display message ***
IF dice1 = dice2 OR dice1 = dice3 OR dice2
= dice3
PRINT “You win”

ENDIF
REM *** Display dice values ***
PRINT “Dice 1 was ”, dice1
PRINT “Dice 2 was ”, dice2
PRINT “Dice 3 was ”, dice3
REM *** End program ***
WAIT KEY
END

130 DarkBASIC Pro: Selection



uess = number
guess > number
guess < number

To test a SELECT structure, then every value mentioned in every CASE option
must be tested. Hence, the lines

INPUT “Enter a number ” , num
SELECT num

CASE 1, 3, 5, 7, 9
PRINT “Odd”

ENDCASE
CASE 2,4,6,8,10

PRINT “Even”
ENDCASE

ENDSELECT

need to be tested using the values 1, 2, 3, 4, 5, 6, 7, 8, and 9. In addition, at least
one test should specify a value not given in any of the CASE statements. This will
check that the DEFAULT option is executed as expected (assuming there is a
DEFAULT option), or that the whole SELECT structure is bypassed as expected.

Summary
� The term nested IF statements refers to the construct where one IF statement is

placed within the structure of another IF statement.

� Multi-way selection can be achieved using either nested IF statements or the
SELECT statement.

� The SELECT statement can be based on integer, real or string values.

� The CASE line can have any number of values, each separated by a comma.

� The CASE DEFAULT option is executed when the value being searched for
matches none of those given in the CASE statements.

� Testing a simple IF statement should ensure that both true and false results are
tested.

� Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

� When a condition contains AND or OR operators, every possible combination
of results should be tested.

� Nested IF statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

� SELECT structures should be tested by using every value specified in the CASE
statements.

� SELECT should also be tested using a value that does not appear in any of the
CASE statements.

DarkBASIC Pro: Selection 131



132 DarkBASIC Pro: Selection



Solutions

DarkBASIC Pro: Selection 133



Activity 4.9
REM *** Read in word ***
INPUT “Enter a word : ”,word$
IF word$ = “yes” OR word$ = “YES”
PRINT “Access granted”

ENDIF
REM *** End program ***
WAIT KEY
END

Activity 4.10

Substituting true and false we get:

(false OR true) AND (false OR true)
= true AND true

=true

Activity 4.11

Substituting true and false we get:

NOT (true AND true)
= NOT true
= false

Activity 4.12
IF no1 >= 0
PRINT* “Positive number”

ELSE
PRINT “Negative number”

ENDIF

Activity 4.13
REM *** Generate random value ***
RANDOMIZE TIMER ()
number = RND(99)+1
REM *** Guess the number ***
INPUT “Enter your guess (1 to 100) :
”,guess
REM *** IF the guess is correct THEN
Display

“Correct” ***
IF guess = number
PRINT “Correct”

ELSE
PRINT “Wrong”

ENDIF
REM *** Display both values
PRINT “Number was ”, number," Guess was
“,guess
REM *** End program ***
WAIT KEY
END

Activity 4.14
REM *** Read in two numbers ***
INPUT “Enter first number : ”, no1
INPUT “Enter second number : ”, no2
IF no1 < no2
PRINT “Smallest number is ”, no1

ELSE
PRINT “Smallest number is ”,no2

ENDIF
REM *** End program ***
WAIT KEY
END

Activity 4.15
REM *** Read in an integer ***
INPUT “Enter a number : ”,no1
REM *** IF even THEN Display “Even” ***
IF no1 mod 2 = 0
PRINT “Even”

ELSE
PRINT “Odd”

ENDIF
REM *** End program ***
WAIT KEY
END

Activity 4.16
IF no1 >= 0 THEN PRINT “Positive number”
ELSE PRINT “Negative number”

(this is entered in a single line)

Activity 4.17

1. A Boolean expression is an expression which reduces to
either true or false.

2. Six (<, <=, >, >=, =, <>)

3. AND is always performed first unless the OR is
enclosed in parentheses.

Activity 4.18
REM *** Generate random value ***
RANDOMIZE TIMER()
number = RND(99)+1
REM *** Guess the number ***
INPUT “Enter your guess (1 to 100) : ”,guess
REM *** Respond to guess ***
IF guess = number
PRINT “Correct”

ELSE
IF guess > number

PRINT “Your guess is too high”
ELSE

PRINT “Your guess is too low”
ENDIF

ENDIF
REM *** Display both values ***
PRINT “Number was ”, number," Guess was
“,guess
REM *** End program ***
WAIT KEY
END

Activity 4.19
REM *** Read in a number ***
INPUT “Enter number ”, no1
REM *** Display appropriate message ***
IF no1 > 0
PRINT “Positive number”

ELSE
IF no1 = 0

PRINT “Zero”
ELSE

PRINT “Negative number”
ENDIF

ENDIF
REM *** End program ***
WAIT KEY
END

134 DarkBASIC Pro: Selection



Activity 4.20

No solution required.

Activity 4.21
REM *** Get number ***
INPUT “Enter item number (1 - 4) : ”, no
IF no = 1
PRINT “A sword”

ELSE
IF no = 2

PRINT “A wand”
ELSE

IF no = 3
PRINT “A bag of dragon’s teeth”

ELSE
IF no = 4

PRINT “A water skin”
ELSE

PRINT “Unknown item”
ENDIF

ENDIF
ENDIF

ENDIF

Activity 4.22
REM *** Get number ***
INPUT “Enter item number (1 - 4) : ”, no
REM *** Display appropriate message ***
SELECT no
CASE 1

PRINT “A sword”
ENDCASE
CASE 2

PRINT “A wand”
ENDCASE
CASE 3

PRINT “A bag of dragon’s teeth”
ENDCASE
CASE 4

PRINT “A water skin”
ENDCASE
CASE DEFAULT

PRINT “Unknown item”
ENDCASE

ENDSELECT
REM *** End program ***
WAIT KEY
END

Activity 4.23
REM *** Get numberRead score
INPUT “Enter your score : ”, score
REM *** Display appropriate message ***
SELECT score / 100
CASE 0

PRINT “Pathetic”
ENDCASE
CASE 1

PRINT “Beginner”
ENDCASE
CASE 2

PRINT “Apprentice”
ENDCASE
CASE 3

PRINT “Competent
ENDCASE
CASE 4

PRINT “Master”
ENDCASE
CASE 5

PRINT “Grand master”

ENDCASE
CASE DEFAULT

PRINT “Invalid score”
ENDCASE

ENDSELECT
REM *** End program ***
WAIT KEY
END

Activity 4.24

Yes. The condition no <= 0 is true and hence the
PRINT statement is executed.

DarkBASIC Pro: Selection 135


