Hands On DarkBASIC Pro

Volume 1

A Self-Study Guide to Games Programming

Alistair Stewart

Hands On DarkBASIC Pro

Volume 1

A Self-Study Guide to Games Programming

Alistair Stewart

DIGITAL SKILLS
Milton

Barr

Girvan

Ayrshire

KA26 9TY

www.digital-skills.co.uk

Copyright © Alistair Stewart 2005

All rights reserved.

No part of this work may be reproduced or used in any form
without the written permission of the author.

Although every effort has been made to ensure accuracy, the
author and publisher accept neither liability nor responsibility
for any loss or damage arising from the information in this book.

All brand names and product names are trademarks of their respective
companies and have been capitalised throughout the text.

DarkBASIC Professional is produced by The Game Creators Ltd

Printed September 2005
2nd Printing November 2005
3rd Printing January 2006

Title . Hands On DarkBASIC Pro Volume 1

ISBN : 1-874107-08-4

Other Titles Available:

Hands On Pascal
Hands On C++
Hands On Java
Hands On XHTML

Table Of Contents

Chapter 1 Designing Algorithms
Designing AIGONtRMSoviiiiiiiiieeeeeeeeeeee e ee e eeenrnenennes 2
Following Instructions oL, 2
Control Structures L 3
SequeNnCe e 3
Selection 4
Complex Conditions 9

lterationo 16

Data 21
OperationsonData 22
Levelsof Detail 24
Checking forErrorso 28
Summary e e 31

R To] 11 1o 1< SRR 34
Chapter 2 Starting DarkBASIC Pro
Programming @ COMPULETvviiiiiiiiiiiieiieieeeeeeee e eeeeeeeeeeananes 38
Introduction 38
The CompilationProcess 38
Starting DarkBASIC Pro........uuiiiiiiiiiie e 40
Introduction 40
DarkBASIC ProFiles 40
Getting Started with DarkBASIC 41
FirstStart-Up 41
Subsequent Start-Ups, 41
SpecifyingaProject 41
AFirstProgram 42
Saving Your Project 44

First Statements in DarkBASIC Pro ... 45
Introduction 45
EndingaProgram 45
The END Statement 45

The WAIT KEY Statement 45
AddingComments 46
Outputting t0 the SCreeNc..eiiiii e 48
Introduction 48
The PRINT Statement 48
Positioning Textonthe Screen 51
The SET CURSOR Statement 51

The TEXT Statement 52

The CENTER TEXT Command 53

Changing the OutputFont 54

The SET TEXT FONT Statement 54

The SET TEXT SIZE Statement 55

The SET TEXT TO Statement 55
ChangingColours, 56
How Colours are Displayed 56

The RGB Statement, 57

The INK Statement L. 58

The SET TEXT OPAQUE Statement 60

The SET TEXT TRANSPARENT Statement. 60

The CLS Statement 61
Summary 62
Some Display TEChNIQUESooiiiiiiiiiiiiieie e 64
ScreenResolution oL 64
The SET DISPLAY MODE Statement 64
Choosinga TextFont 65
Erasing Text 65
Shadow Text 67
Embossed Text 67
Summary 68

S To] 11 1o) 13RS 69
Chapter 3 Data
Program Data.........oooiiiiiiiiiiie e 74
Introduction L L 74
Constants 74
Variables 75
Integer Variables oo 75

Real Variables oo 76

String Variables o 76

Using MeaningfulNames 77
NamingRules 77
Summary 78
Allocating Values to Variables...........cccoiiiiiiiii e 79
Introduction 79
The Assignment Statement 79
AssigningaConstant 79
Copying a Variable’sValue 80
Copying the Result of an Arithmetic Expression 80
Operator Precedence 83
UsingParentheses 84
Variable Rangeo 85
String Operations 85
The PRINT StatementAgain 85

Other Ways to Store a Valueina Variable 87

The INPUT Statement 87

The READ and DATA Statements 88
The RESTORE Statement 91
The TimeandDate 91
The TIMER Statement 91
The GET TIMES$ Statement 92
The GET DATES$ Statement 93
Generating Random Numbers 93
The RND Statement 93
The RANDOMIZE Statement 94
Structured English and Programs 95
Using Variables to Store Colour Values 96
Named Constants, 96
Testing SequentialCode 97
Summary e 98
Determining Current SettiNgScvviviiiiiiiiiiiieeieeeeeeeeeeeeeeeeee v 100
Introduction 100
Screen Settings Lo 100
The SCREEN HEIGHT Statement 100
The SCREEN WIDTH Statement 100
The SCREEN DEPTH Statement 101
Colour Components 101
The RGBR Statement 101
The RGBG Statement 102
The RGBB Statement 102
TextSettings 103
The TEXT BACKGROUND TYPE Statement 103
The TEXT STYLE Statement 103
The TEXT SIZE Statement 104
The TEXT FONT$ Statement 104
The TEXT WIDTH Statement 104
The TEXT HEIGHT Statement 105
Summary 105
SOIULIONS . ..ttt nnnn 107
Chapter 4 Selection
BiNAry SEIECHONccieeiiiieie e 112
Introduction 112
The lF Statement 112
Condition 112
Compound Conditions - the AND and OR Operators 116
The NOT Operator 118
ELSE - Creating Two Alternative Actions 119
The Other IF Statement 120

Multi-Way Selection ... 122

Introductiono 122
Nested IF Statements 122
The SELECT Statement 124
Testing Selective Code 127
Summary 129
SOIULIONS . ..ttt s 130
Chapter 5 |teration
eration ... 134
Introduction 134
The WHILE .. ENDWHILE Construct 134
The REPEAT .. UNTIL Construct 136
The FOR.. NEXT Construct 138
Finding the Smallest Value ina Listof Values 142

Using FOR with READ and DATA 144

The EXIT Statement 145

The DO ..LOOP Construct 146
The WAIT milliseconds Statement 147

The SLEEP Statement 147
NestedLoops 148
Nested FORLoops 149
Testing lterative Code 150
Summary . ..o 151

IS To] 11 1o) 1< S 153
Chapter 6 Drawing Statements
Drawing ON The SCreENuuiiiiiiiiie e 160
Introduction 160
Basic Drawing Commands 160
The DOT Statement 160

The POINT Statement 161

The LINE Statement 162

The BOX Statement 163

The CIRCLE Statement 164

The ELLIPSE Statement 165
Summary ... 166
Demonstrating BasiC Shapes..........ccoiiuiiiiiiiiiieieiee e 167
Introduction 167

A First Look at Animation ... 169
BasicConcepts 169
How to Remove an Object fromthe Screen 169
How to Move anObject 170

ST (U1 10] o R 171

Chapter 7 Modular Programming

FUNCHONS e a e 176
Introduction 176
Functions 176

Designinga Function 176
CodingaFunction oL 177
CallingaFunction 177
AnotherExample 179
Parameters 180
Pre-conditions 182
The EXITFUNCTION Statement 182
Return Types 183
Local Variables 186
Global Variables 187
Designing Routines 188
Specifying a Post-Condition 188
The DrawTextLine Mini-Spec 188
Creating Modular Software 191
Top-Down Programming 195
Bottom-Up Programming 197
Structure Diagrams 198
Summary . ..o 199

IS T0 o] o 11 {1 1= 3OS 201
Introduction 201
Creating a Subroutine 201
Callinga Subroutine, 202

The GOSUB Statement 202

Variables ina Subroutine 202

Summary 203

SOIULIONS. ... 204
Chapter 8 String Functions

Standard String FUNCHONScooiiiiiiiiiiiiece e 210
Introduction 210
String Operations 210

The LEN Statement 210
The UPPERS Statement 211
The LOWERS Statement 212
The LEFT$ Statement 212
The RIGHTS Statement 213
The MID$ Statement 213
The ASC Statement 214
The CHR$ Statement 215

The STR$ Statement 215

The VAL Statement 216

The SPACES$ Statement 217
The BIN$ Statement 217
The HEX$ Statement 218
Summary 218
User-Defined String FUNCLONSooviiiiiiiiiiiee e 220
Introduction 220
Creating New String Functions 220
The Pos() Function 220
The Occurs() Function 221
The Insert$() Function 221
The Delete$() Function 222
The Replace$() Function 222
The Copy$() Function 222
Using Your Routines in Other Programs 223
The #INCLUDE Statement 223
Summary ... L 225
IS To] 111 o] 1< 3RS 227
Chapter 9 Hangman
Creating @ First Gameuuuuii s 230
Introduction 230
The RulesoftheGame 230
What Part the Computer Plays inthe Game 230
Designing the ScreenLayout 231
GameData 231
Game Logic 232
Game Documentation L. 233
ImplementingtheDesign, 237
Adding InitialiseGame() 238
Adding ThinkOfWord() 239
Adding DrawlnitialScreen() 241
Adding GetGuess() Lo 243
Adding CheckForLetter() 247
Adding DrawlLetter() 248
Adding AddToHangedMan() 249
Adding WordGuessed() 249
Adding HangedManComplete() 249
Adding GameOver() 249
KeepingaTestLog. 250
FlawsintheGame 250
Omissions fromthe Code 250
Deviating from the Original Specifications 251
Final Testing 252

Summary 252

SOIULIONS . ..ot e e e e e e e e e e 253

Chapter 10 Arrays
AATTAY'S ettt ettt et e bt e bt e e e b e n bt e e e anbaeeean 258
Introduction L 258
Creating Arrays 259
The DIM Statement 259
Accessing Array Elements 260
Variable Subscripts oL 261

Basic Algorithms that Use Arrays 264
Calculating the Sum of the ValuesinanArray 264

Finding the Smallest ValueinanArray 265
Searching Fora ValueinanArray 266
Keeping an Array’s ValuesinOrder 267

Using an Array for Counting 269
Associating Numbers with Strings 270

Card Shuffling 271
Choosing a Setof Unique Values 273
Dynamic Arrays 275
The UNDIM Statement 275

Using ArraysinaGame 276
Multi-Dimensional Arrays 276
Two Dimensional Arrays 276
Inputting Valuestoa2D Array 277

Even More Dimensions 277
Arraysand Functions 278
Summary 278

IS To] 11 1o) 1RSSR 279
Chapter 11 Bull and Touch
BUll @Nd TOUCK ... 284
Introduction 284
TheRules 284
The ScreenlLayout, 284
GameData 285
Gamelogic 285
Game Documentation 285

IS To] 11 1o) 1< SR 292
Chapter 12 Advanced Data Typesand Operators
(D= 1= IS (o] = o [U UET 298
Introduction 298
Declaring Variables 298

Boolean Variables 299

Type Definitions oo 300

The TYPE Definition 300
Declaring Variables of a Defined Type 301
Accessing the Fields in a Composite Variable 302
Nested Record Structures 303
Arraysof Records 304
Lists 305
The ARRAY INSERT AT BOTTOM Statement 306
The ARRAY INSERT AT TOP Statement 308
The ARRAY INSERT AT ELEMENT Statement 308
The ARRAY COUNT Statement 309
The EMPTY ARRAY Statement 310
The ARRAY DELETE ELEMENT Statement 310
The NEXT ARRAY INDEX Statement 311
The PREVIOUS ARRAY INDEX Statement 314
The ARRAY INDEX TO TOP Statement 314
The ARRAY INDEX TO BOTTOM Statement 314
The ARRAY INDEX VALID Statement 315
Queues 316
The ADD TO QUEUE Statement 318
The REMOVE FROM QUEUE Statement 319
The ARRAY INDEX TO QUEUE Statement 319
Stacks 320
The ADD TO STACK Statement 320
The REMOVE FROM STACK Statement 321
The ARRAY INDEX TO STACK Statement 321
Summary 322
Lists 322
Queues 323
Stacks 323
Data Manipulationc.ueeiiiiiii e 324
Introduction 324
Other Number Systems 324
Incrementing and Decrementing 325
The INC Statement 325
The DEC Statement 325
ShiftOperators 326
The Shift Left Operator (<<) 327
The Shift Right Operator (>>) 327
Bitwise Boolean Operators 328
The Bitwise NOT Operator (..) 328
The Bitwise AND Operator (&&) 329
The Bitwise OR Operator (||) 330
The Bitwise Exclusive OR Operator (~~) 331

A Practical Use For Bitwise Operations 331

Summary 334

SOIULIONS . ..ot e e e e e e e e e e 335

Chapter 13 Bitmaps
BitMapS BaSICS ... ueeiiieeiiiiiie e 340
Introduction 340
ColourPalette 341
FileSize 341
File Formats 341
Bitmaps in DarkBASIC Procooooiiiiiiii ettt 342
Introduction 342
The LOAD BITMAP Statement 342

The BITMAP WIDTH Statement 344

The BITMAP HEIGHT Statement 344

The BITMAP DEPTH Statement 345

The SET CURRENT BITMAP Statement 345

The CREATE BITMAP Statement 346

The COPY BITMAP Statement 347

The FLIP BITMAP Statement 348

The MIRROR BITMAP Statement 349

The BLUR BITMAP Statement 350

The FADE BITMAP Statement. 351
Copying Only PartofaBitmap 352
The COPY BITMAP Statement - Version2 352
ZOOMING . .« v v v o e e e 355

Bitmap Status Lo 356
The BITMAP EXIST Statement 356

The BITMAP MIRRORED Statement 356

The BITMAP FLIPPED Statement 357

The CURRENT BITMAP Statement 357

The DELETE BITMAP Statement 357

Placing More than One Image in the Same Area 358
Summary 359
SOIULIONS ..ttt aan 361
Chapter 14 Video Cards and the Screen
Video Cards and the Screen ... 364
Introduction 364
YourScreen 364
The PERFORM CHECKLIST FOR DISPLAY MODES Statement 364

The CHECKLIST QUANTITY Statement 364

The CHECKLIST STRINGS Statement 365

The CHECKLIST VALUE Statement. 366

The EMPTY CHECKLIST Statement 366

The CHECK DISPLAY MODE Statement 367

The SCREEN FPS Statement 368

The SCREEN INVALID Statement. 369
Your GraphicsCard, 370
The PERFORM CHECKLIST FOR GRAPHICS CARDS Statement . . 370
The SET GRAPHICS CARD Statement 370
The CURRENT GRAPHICS CARDS$ Statement 371
The SCREEN TYPE Statement 371
The SET GAMMA Statement 372
UsingaWindow 373
The SET WINDOW ON Statement 373
The SET WINDOW SIZE Statement 373
The SET WINDOW POSITION Statement. 373
The SET WINDOW LAYOUT Statement 374
The SET WINDOW TITLE Statement 374
The HIDE WINDOW Statement 375
The SHOW WINDOW Statement 376
Summary 376
SOIULIONS ...ttt 378
Chapter 15 File Handling
FIIES ettt et et atatatatabatntabababnrnrnrnrnrnrnrn 380
Introduction 380
Disk Housekeeping Statements 380
The DRIVELIST Statement 380
The GET DIR$ Statement 381
The CD Statement 381
The SET DIR Statement 382
The PATH EXIST Statement 383
The MAKE DIRECTORY Statement 383
The DELETE DIRECTORY Statement 384
The DIR Statement 385
The DELETE FILE Statement 385
The COPY FILE Statement 385
The MOVE FILE Statement 386
The FILE EXIST Statement 387
The RENAME FILE Statement. 387
The EXECUTE FILE Statement 388
The FIND FIRST Statement 389
The FIND NEXT Statement 389
The GET FILE NAMES$ Statement 389
The GET FILE DATES Statement 390
The GET FILE CREATIONS Statement 390
The GET FILE TYPE Statement 390
The FILE SIZE Statement 392

The WINDIRS$ Statement 392

The APPNAMES$ Statement 392

UsingDataFiles 393
The OPEN TO WRITE Statement 393
The WRITE Statement 394
The CLOSE FILE Statement 394
The WRITE FILE Statement 397
The OPEN TO READ Statement 397
The READ Statement 398
The READ FILE Statement 399

Random Access and File Updating 400
The SKIP BYTES Statement 400
The READ BYTE FROM FILE Statement 401
The WRITE BYTE TO FILE Statement 402

Pack Files 403
The WRITE FILEBLOCK Statement 403
The WRITE DIRBLOCK Statement 404
The READ FILEBLOCK Statement 405
The READ DIRBLOCK Statement 406

Creatingan Empty File 407
The MAKE FILE Statement 407

Arraysand Files oo 408
The SAVE ARRAY Statement 408
The LOAD ARRAY Statement 409

Checklists 410
The PERFORM CHECKLIST FOR DRIVES Statement 410
The PERFORM CHECKLIST FOR FILES Statement 410

Summary 411
WritingtoaDataFile 412
ReadingfromaDataFile 412
Random Access 412
PackFiles 412
Arraysand Files L oL 413
Checklists e 413

SOIULIONSttt nnnn 414
Chapter 16 Handling Music Files
HaNdliNG MUSIC FIlESeviiiiiiiiiiieieeeeeeee e eeeeenees 420

Introduction 420

PlayingaSound File 420
The LOAD MUSIC Statement 420
The PLAY MUSIC Statement 421
The LOOP MUSIC Statement 421
The PAUSE MUSIC Statement 422
The RESUME MUSIC Statement 422

The STOP MUSIC Statement 423

The SET MUSIC SPEED Statement 423

The SET MUSIC VOLUME Statement 424
The DELETE MUSIC Statement 424
Retrieving MusicFileData 425
The MUSIC EXIST Statement 425
The MUSIC PLAYING Statement 425
The MUSIC LOOPING Statement 426
The MUSIC PAUSED Statement 426
The MUSIC VOLUME Statement 427
The MUSIC SPEED Statement 428
Playing Multiple Music Files 429
Summary 429
[P2 oo 1 O I 1 PRSP 431
Introduction 431
CD Control Statements 431
The LOAD CDMUSIC Statement 431
The GET NUMBER OF CD TRACKS Statement 432
Summary 433
IS To] 111 o] 1< PR 434
Chapter 17 Displaying Video Files
Displaying Video Filesueiiiiiiiiie e 436
Introductiono 436
Playing Video Files 436
The LOAD ANIMATION Statement 436
The PLAY ANIMATION Statement 437
The LOOP ANIMATION Statement 439
The PAUSE ANIMATION Statement 440
The RESUME ANIMATION Statement 441
The STOP ANIMATION Statement 441
The PLACE ANIMATION Statement 442
The SET ANIMATION SPEED Statement 443
The SET ANIMATION VOLUME Statement 444
The DELETE ANIMATION Statement 444
RetrievingVideoData 444
The ANIMATION EXIST Statement 444
The ANIMATION POSITION Statement 445
The ANIMATION WIDTH Statement 446
The ANIMATION HEIGHT Statement 446
The ANIMATION PLAYING Statement 447
The ANIMATION LOOPING Statement 447
The ANIMATION PAUSED Statement 447
The ANIMATION VOLUME Statement 449
The ANIMATION SPEED Statement 449

Playing Multiple Videos 450

PlayingSound 450

Summary e 450
PIaYING DVDS ... 452
Introduction 452
DVD Handling Statements 452
The LOAD DVD ANIMATION Statement 452

The TOTAL DVD CHAPTERS Statement 452

The SET DVD CHAPTER Statement 453

A Sample Program 453
Summary 454
SOIULIONS ...ttt aan 455
Chapter 18 Accessing the Keyboard
Accessing the Keyboard ... 458
Introduction 458
ReadingaKey 458
The INKEY$ Statement 458
Checkingthe ArrowKeys 460
The UPKEY Statement 460

The DOWNKEY Statement 460

The LEFTKEY Statement 461

The RIGHTKEY Statement 461
Checking For Other SpecialKeys 461
ScanCodes 462
The SCANCODE Statement 462

The KEYSTATE Statement 463

The ENTRYS$ Statement 466

The CLEAR ENTRY BUFFER Statement 467

The SUSPEND FOR KEY Statement 467
sSummary 468
SOIULIONS ... e e e e e e e e 469
Chapter 19 Mathematical Functions
Mathematical FUNCLONSooviiiiiiiiiiiiieeeeeeeeeeeeeee s 472
Introduction 472
Coordinates 472
Mathematical Functions in DarkBASICPro 473
The COS Statement 473

The SIN Statement 475
Dealing with Longer Lines 476

The SQRT Statement 476

The ACOS Statement 477

The ASIN Statement 478

The TAN Statement 478

The ATAN Statement 479

The WRAPVALUE Statement 481

Other Mathematical Functions 481
The ABS Statement 481

The INT Statement 482

The EXP Statement 483

The HCOS Statement 483

The HSIN Statement 483

The HTAN Statement 484
Summary 484

1S To] 11 4o 1< 7SS 486
Chapter 20 | mages
IMAGES. e 488
Introduction 488
Image Handling Statements 488
The LOAD IMAGE Statement 488

The PASTE IMAGE Statement 489

The SET IMAGE COLORKEY Statement 490

The SAVE IMAGE Statement 490

The DELETE IMAGE Statement 491

The GET IMAGE Statement 492

The IMAGE EXIST Statement 493
Summary 493

Yo 1111 1SRRI 494
Chapter 21 Spritesl
Creating and MoVING SPriteSciiuiiiiiiiiiie it 496
Introduction 496
Loadinga Spritelmage L. 496
The SPRITE Statement 496
Translatinga Sprite oo 498
The PASTE SPRITE Statement 498

The MOVE SPRITE Statement 499

The ROTATE SPRITE Statement 500

How MOVE SPRITE Operates 502
Moving a Sprite’s Origin 503
The OFFSET SPRITE Statement 503

Sprite Reflection oo 505
The MIRROR SPRITE Statement 505

The FLIP SPRITE Statement 506
Reflectinga Tilted Sprite 507

Sprite Background Transparency 507

Giving the User ControlofaSprite 508

Vertical Movement 508

Horizontal Movement 508
Rotational Movement 509

Free Movement 510
Restricting Sprite Movement 511

Storing the Position of the SpriteinaRecord 512
Velocity 512
Sprites and the PRINT Statement 521
Summary 522
Yo 11 1o) 1< 523
Chapter 22 Sprites2
Changing a Sprite’s APPEArancCecc.ueeeieieeiiiiiiie e 528
Introduction 528
Resizing Sprites 528
The SCALE SPRITE Statement 528

The STRETCH SPRITE Statement 529

The SIZE SPRITE Statement 530
Changing Transparency and Colour Brightness 530
The SET SPRITE ALPHA Statement 530

The SET SPRITE DIFFUSE Statement 531
Showing and Hiding Sprites 532
The HIDE SPRITE Statement 532

The SHOW SPRITE Statement 533

The HIDE ALL SPRITES Statement 533

The SHOW ALL SPRITES Statement 533
Duplicatinga Sprite o 533
The CLONE SPRITE Statement 533
Summary 534
Adding a Background..............oooiiii 536
Introduction 536
Ways to Change the Background 536
The COLOR BACKDROP Statement 536

The BACKDROP ON Statement 536

The BACKDROP OFF Statement 537

Using a Sprite asaBackGround 537
SpriteOrder 538

The SET SPRITE PRIORITY Statement. 538

The SET SPRITE TEXTURE COORD Statement 539

The SET SPRITE Statement 542
Summary 543
Retrieving Data About SPrites........ccueeeiiiiiiee e 544
Introduction 544
Sprite Data Retrieval Statements 544

The SPRITE EXIST Statement 544

The SPRITE X Statement 544

The SPRITEY Statement 544
The SPRITE ANGLE Statement 545
The SPRITE OFFSET X Statement 545
The SPRITE OFFSET Y Statement 546
The SPRITE SCALE X Statement 546
The SPRITE SCALE Y Statement 546
The SPRITE WIDTH Statement 547
The SPRITE HEIGHT Statement 547
The SPRITE MIRRORED Statement 547
The SPRITE FLIPPED Statement 548
The SPRITE VISIBLE Statement 548
The SPRITE ALPHA Statement 548
The SPRITE RED Statement 549
The SPRITE GREEN Statement 549
The SPRITE BLUE Statement 549
Summary 550
SPrte COllISION ...t e 551
Introduction 551
Dealing With Sprite Collisions 551
The SPRITE HIT Statement 551
The SPRITE COLLISION Statement 553
ABasicBatandBallGame 553
Firing Projectiles L. 555
The DELETE SPRITE Statement 555
The Missile Game 556
Extendingthe Game 558
The SET SPRITE IMAGE Statement 559
The SPRITE IMAGE Statement 560
Updatingthe Screen o0 562
The SYNCON Statement 562
The SYNC Statement 562
The SYNC OFF Statement 563
The SYNC RATE Statement 563
The FASTSYNC Statement 564
Summary 564
SOIULIONS ... e e e a e 565
Chapter 23 Animated Sprites
Animated SPriteS ..o 572
Introduction 572
SettingUpthe Spriteo 572
The CREATE ANIMATED SPRITE Statement 572
The SET SPRITE FRAME Statement 573

The SPRITE FRAME Statement 574

ASimple Dice Game o 575

Creating a Sprite that Really is Animated 578
The PLAY SPRITE Statement 578
Changing the Transparent Colour 579
Moving the Sprite 580
Varyingthe Velocity 581
Multiple Asteroids 582

Controlling the Spaceship 584
The HandleKeyboard() Function 584
The HandleShip() Function 585
The LaunchMissile() Function 588
The HandleMissiles() Routine 590

Addingthe Asteroids 591

Summary 593

RS T0] U110 o 1= OSSPSR 595
Chapter 24 Sound
Mono and StEreo SOUNGcooiiiiiiiiiiii e 604

Introductiono 604

The Basics of Loading and Playing Sounds 604
The LOAD SOUND Statement 604
The PLAY SOUND Statement 604
The LOOP SOUND Statement 606
The PAUSE SOUND Statement 607
The RESUME SOUND Statement 607
The STOP SOUND Statement 608
The SET SOUND SPEED Statement 608
The SET SOUND VOLUME Statement 609
The CLONE SOUND Statement 609
The DELETE SOUND Statement 610

RecordingSound 611
The RECORD SOUND Statement 611
The STOP RECORDING SOUND Statement 611
The SAVE SOUND Statement 612

Retrieving Sound FileData 613
The SOUND EXIST Statement 613
The SOUND PLAYING Statement 613
The SOUND LOOPING Statement 614
The SOUND PAUSED Statement 614
The SOUND VOLUME Statement 616
The SOUND SPEED Statement 616

MovingaSound Lo 617
The SET SOUND PAN Statement 617
The SOUND PAN Statement 617

Playing Multiple Sound Files 618

Summary 618

3D SOUNA EffECLS ...vvviiiiie i 620
Introduction 620
Loadingand Playing3D Sounds 621

The LOAD 3DSOUND Statement 621

The POSITION SOUND Statement 621
Controlling the Listener 622
The POSITION LISTENER Statement 622

The ROTATE LISTENER Statement 623

The SCALE LISTENER Statement 623
Retrieving Data on 3D Sounds and the Listener 624
The SOUND POSITION X Statement 624

The SOUND POSITION Y Statement 624

The SOUND POSITION Z Statement 624

The LISTENER POSITION X Statement 625

The LISTENER POSITION Y Statement 625

The LISTENER POSITION Z Statement 625

The LISTENER ANGLE X Statement 625

The LISTENER ANGLE Y Statement 625

The LISTENER ANGLE Z Statement 626
Summary 626
SOIULIONS ... aan 628
Chapter 25 2D Vectors

2D VECIOIS. ... 632

Introduction 632
A Mathematical Description of Vectors 632
Vectorsin DarkBASICPro 633

Creatinga2D Vector 633
The MAKE VECTOR2 Statement 633
The SET VECTOR2 Statement 634
The XVECTOR2 Statement 635
The Y VECTOR2 Statement 635
The DELETE VECTOR2 Statement 636
The COPY VECTOR2 Statement 637
The MULTIPLY VECTOR2 Statement 638
The SCALE VECTOR2 Statement 638
The DIVIDE VECTOR2 Statement. 639
The LENGTH VECTOR2 Statement 639
The SQUARED LENGTH VECTOR2 Statement 640
The ADD VECTOR2 Statement 640
The SUBTRACT VECTOR2 Statement 643
The DOT PRODUCT VECTOR?2 Statement 644
The IS EQUAL VECTOR2 Statement 645

The MAXIMIZE VECTOR2 Statement 646

The MINIMIZE VECTORZ2 Statement 647

Summary e 648

In Mathematics, 648
InGeometry 648
InDarkBASICPro, 648

RS T0] U110 o 1= USRS 650
Chapter 26 Space Duel
Creating @ TWO-Player Game...........coccuvviiiiiee et 652
Introductiono 652
The RulesoftheGame 652
Winningo 652
BasicPlay 652
Controls 652

The ScreenLayout 652
GameData 653
Game Logic 654
Game Documentationo 654
Codingthe Program 659
Adding InitialiseGame() 660

Adding HandleKeyboard() 662

Adding HandleShip() L. 662

Adding HandleMissiles() 664

Adding GameOver()o 665

Space Duel - A Program LiStingcoouiuiiiiiiiiieeiieee e 666
RS T0] U110 o 1= SRR 672
Chapter 27 Using the Mouse
Controlling the MOUSEcoiiiiiiiiiie e 678
Introduction 678
Waiting foraMouse Click 678
The WAIT MOUSE Statement 678

The SUSPEND FOR MOUSE Statement 678

The MOUSECLICK Statement 678

The Mouse Pointer 680
The HIDE MOUSE Statement 680

The SHOW MOUSE Statement 680

The POSITION MOUSE Statement 681

The CHANGE MOUSE Statement 681
Reading the Mouse Position 683
The MOUSEX Statement 683

The MOUSEY Statement 683

Mouse Speed 684

The MOUSEMOVEX Statement 684

The MOUSEMOVEY Statement 684

The Mouse Wheel, 685
The MOUSEZ Statement 685

The MOUSEMOVEZ Statement 686
Summary 687
Mouse Handling TEChNIQUES...........oeviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 688
Rollovers 688

A Second Approach 689
Clicking On-ScreenButtons 690
BasicConcept 690
Reactingtoa Button Click 691
Controlling Program Flow 693
Summary 694
Yo 11 o) 13RS 695
Chapter 28 Pelmanism
The Game of PelmaniSm............oeiiiiiiiiiiee e 698
Rules 698
The Screenlayout 698
GameData 699
Constants 699
Structures Defined 0oL 699

Global Variables Lo 699

Game Logic 700
The Program Code 700
GettingStarted Lo o 700

Adding InitialiseGame() L. 701

Adding HandleMouse() 703

Adding GameOver()o 706
Pelmanism - Program LiStiNgoevviiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee e 707
RS T0] U110 o 1= RS 713
Chapter 29 Using a Joystick
USING @ JOYSHICK .ottt e e eenneenees 716
Introduction 716
Checking the System for a Joystick 716
The PERFORM CHECKLIST FOR CONTROL DEVICES Statement . 716
Reading the Position of the Joystick 717
The JOYSTICK Direction Statement 717

The JOYSTICK Position Statement 718
JoystickControls 721
The JOYSTICK FIRE Statement 721

The JOYSTICK FIRE X Statement 722

The JOYSTICK SLIDER Statement 723

The JOYSTICK TWIST Statement 723

The JOYSTICK HAT ANGLE Statement. 724
Feedback Effects, 725
The FORCE Direction Statement 726

The FORCE ANGLE Statement 727

The FORCE NO EFFECT Statement 728

The FORCE AUTO CENTER Statement 728

The FORCE WATER EFFECT Statement 728

The FORCE CHAINSAW Statement 729

The FORCE SHOOT Statement 730

The FORCE IMPACT Statement 731
Summary 731

A Joystick-Based Game............cooiuiiiiiiiii i 733
Introduction 733
The Rules Ofthe Game 733
The ScreenlLayout, 733
TheData 733
MediaUsed 734
The ProgramCode 734
Adding InitialiseGame() oL 735

Adding CreateAlien() 736

Adding HandledJoystick() 736

Adding CreateMissile() 736

Adding HandleAlien() 736

Adding WrapAlien() 737

Adding HandleMissile() 737
SOIULIONS ..ttt s 739
APPENTIX .o 743
The ASCII CharacterSet 743

AcCknowledgements

I would like to thank all those who helped me prepare the final draft of this book.

Inparticular, VirginiaMarshall who proof-read the original script and Michael Kerr
who did an excellent job of checking the technical contents.

Any errors that remain are probably due to the extrafew paragraphs | added after
all the proof-reading was compl ete!

Thanksalso to The Game Creators L td for producing an excellent piece of software
- DarkBASIC Professional - known as DarkBASIC Pro to its friends.

Finally, thank you to every one of you who has bought this book. Any constructive
comments would be most welcome.

Email me at alistair @digital-skills.co.uk.

Introduction

Welcometo abook that | hopeisalittledifferent from any other you'vecomeacross.
Instead of just telling you about software design and programming, it makes you
getinvolved. There's plenty of work for you to do since the book isfull of exercises
- most of them programming exercises - but you also get afull set of solutions, just
in case you get stuck!

Learn by Doing

The only way to become a programming expert is to practice. No one ever learned
any skill by just reading about it! Hence, thisis not atext book where you can just
sit back inapassiveway and read from cover to cover whilst sittinginyour favourite
chair. Rather it is designed as a teaching package in which you will do most of the
work.

Thetasks embedded in the text are included to test your understanding of what has
gone before and as amethod of helping you retain the knowledge you have gained.
It istherefore important that you tackle each task as you cometo it. Also, many of
the programming exercises are referred to, or expanded, in later pages so it is
important that you are familar with the code concerned.

What You Need
You'll obviously need a PC and a copy of DarkBASIC Pro.

Y ou don't need any experience of programming, but knowing your bits from your
bytes and understanding binary and hexadecimal number systems would be useful.

How to Get the M ost out of this Text

Experience has shown that readers derive most benefit from this material by
approachingitsstudy in an organised way. Thefollowing strategy for study ishighly
recommended:

1. Read achapter or section through without taking notes or worrying too
much about topics that are not immediately clear to you. Thiswill give
you an overview of the contents of that chapter/section.

2. Re-read the chapter. Thistime take things slowly; make notes and
summaries of the material you are reading (even if you understand the
material, making notes helpsto retain the factsin your long-term
memory); re-read any parts you are unclear about.

3. Embedded in the material are a series of activities. Do each task as you
reach it (on the second reading). These activities are designed to test
your knowledge and understanding of what has gone before. Do not be
tempted to skip over them, promise to come back to them later, or
to make only a half-hearted attempt at tackling them before looking up
the answer (there are solutions at the end of each chapter). Once you
have attempted a task, look at the solution given. Often there will be
important points emphasised in the solution which will aid higher
understanding.

4. Asyou progress through the book, go back and re-read earlier chapters,
since you will often get something new from them as your knowledge
increases.

L anguage Syntax Diagrams

The text contains many syntax diagrams which give avisual representation of the
format of various statements allowed in DarkBASIC Professional. These diagrams
make no attempt to be complete, but merely act asaguide to the format most likely
to be used. The accompanying text and example should highlight the more complex
options available. Below isatypical diagram:

Each tileinthe diagram holds atoken of the statement. Raised tiles represent fixed
terms in the statement, which must be entered exactly as shown. Sunken tiles
represent tokens whose exact value is decided by you, the programmer, but again
these values must conform to some stated rule.

Items enclosed in brackets may be omitted if not required. In this
example we can see that EL SE and all the terms that follow may be

_l’dquL\ omitted.

Where one or moretokensin adiagram may berepeated indefinitely,

J'“”“”' this is shown using the arrowed line. This example shows that any

number of statements can be used so long asacol on appears between
each statement.

Occasionally, asingle line of code will have to be printed over two or more lines
because of paper width restrictions; these lines are signified by a'% symbol. Enter
theselineswithout abreak when testing any of the programsinwhich they are used.
For example, the code

SPRI TE crosshairs, (JOYSTI CK X()+1000) *xpi xel s#,
%(JOYSTI CK Y()+1000) *ypi xel s#, 1

should be entered asasingle line.

Boolean expressions

Data Variables

Designing Algorithms
Desk Checking

IF Control Structure

FOR Control Structure
REPEAT Control Structure
Stepwise Refinement
Testing

WHILE Control Structure

DarkBASIC Pro: Designing Algorithms

Designing Algorithms

Following Instructions

Activity 1.1
Carry out the following set of instructionsin your head.

Think of a number between 1 and 10

Multiply that number by 9

Add up the individual digits of this new number

Subtract 5 from this total

Think of the letter at that position in the alphabet

Think of a country in Europe that starts with that letter

Think of a mammal that starts with the second letter of the country’s name
Think of the colour of that mammal

Congratulations! Y ou’ ve just become a human computer. Y ou were given a set of
instructions which you have carried out (by the way, did you think of the colour

grey?).

That's exactly what a computer does. You giveit a set of instructions,the machine
carries out those instructions, and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task is known as an algorithm.

There are afew points to note from the algorithm given above:

> Thereisoneinstruction per line
» Each instruction is unambiguous

» Eachinstruction is as short as possible

Activity 1.2
Thistime let’s seeif you can devise your own agorithm.

The task you need to solveisto measure out exactly 4 litres of water. You
have two containers. Container A, if filled, will hold exactly 5 litres of water,
while container B will hold 3 litres of water. Y ou have an unlimited supply of
water and adrain to get rid of any water you no longer need. It is not possible
to know how much water isin a container if you only partly fill it from the

A B supply.

If you managed to come up with asolution, seeif you can find a second way
of measuring out the 4 litres.

Asyou can see, there are at |east two ways to solve the problem given in Activity
1.2. Isone better than the other? Well, if we start by filling container A, the solution
needslessinstructions, so that might beagood guidelineat this point when choosing
which algorithm is best.

2 DarkBASIC Pro: Designing Algorithms

However, the algorithms that a computer carries out are not written in English like
the instructions shown above, but in a more stylised form using a computer
programminglanguage. DarkBASIC Proisonesuch language. Theset of program
language instructions which make up each algorithm is then known as acomputer
program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be madeto carry out any task for which aprogram
exists.

Computer programs are normally copied (or loaded) from amagnetic disk into the
computer’s memory and then executed (or run). Execution of a program involves
the computer performing each instruction in the program one after the other. This
it does at impressively high rates, possibly exceeding 2,000 million (or 2 billion)
instructions per second (2,000 mips).

Depending on the program being run, the computer may act as aword processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities.

Of course, as a programmer, you are required to design and write computer
programs rather than use them. And, more specifically, our programs in this text
will be mainly games-related; an area of programming for which DarkBASIC Pro
has been specifically designed.

Activity 1.3
1. A set of instructions that performs a specific task is known as what?

2. What term is used to describe a set of instructions used by a computer?

3. The speed of acomputer is measured in what units?

Control Structures

Sequence

Although writing algorithms and programming computers are certainly
complicated tasks, there are only a few basic concepts and statements which you
need to master before you are ready to start producing software. Luckily, the
concepts are aready familiar to you in everyday situations. If you examine any
a gorithm, no matter how complex, youwill find it consistsof threebasic structures:

» Sequence where one statement follows on from another.

> Selection where a choice is made between two or more alternative
actions.

> lteration where one or more instructions are carried out over and
over again.

These are explained in detail over the next few pages. All that is needed is to

formalise the use of these structures within an algorithm. This formalisation better
matches the structure of acomputer program.

A set of instructions designed to be carried out one after another, beginning at the

DarkBASIC Pro: Designing Algorithms 3

Selection

FIG-1.1

The IF Statement

first and continuing, without omitting any, until the final instruction is completed,
isknown asasequence. For example, instructions on how to play Monopoly might
begin with the sequence:

Choose your playing piece
Place your piece on the GO square
Get £1,500 from the bank

Theset of instructions given earlierin Activity 1.1 isalso an exampl e of asequence.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot
during a golf game:

Swing club forwards, attempting to hit ball
Take up correct stance beside ball

Grip club correctly

Swing club backwards

Choose club

Binary Selection

Oftenagroup of instructionsin an algorithm should only be carried out when certain
circumstances arise. For example, if we were playing a simple game with ayoung
child in which we hide a sweet in one hand and allow the child to have the sweet
if she can guess which hand the sweet is in, then we might explain the core idea
with an instruction such as

Give the sweet to the child if the child guesses which hand the sweet is in

Noticethat when wewrite asentence containing theword | F, it consists of two main
components:

acondition : the child guesses which hand the sweet isin
and
acommand : givethe sweet to the child

A condition (also known as aBoolean expression) isastatement that is either true
or false. The command given in the statement is only carried out if the conditionis
trueand hencethistypeof instructionisknown asan | F statement and the command
as a conditional instruction. Although we could rewrite the above instruction in
many different ways, when we produce a set of instructionsin aformal manner, as
we are required to do when writing algorithms, then we use a specific layout as
shown in FIG-1.1 aways beginning with the word IF.

IE condition THEN ..then command is carried out

command
ENDIF If condition is not true,
then command is ignored

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF

DarkBASIC Pro: Designing Algorithms

which marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the
structure of our instructions. Appropriate indentation is particularly valuable in
aiding readability once an algorithm becomeslong and complex. Using thislayout,
theinstruction for our game with the child would be written as:

IF the child guesses which hand the sweet is in THEN
Give the sweet to the child
ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe aturn as:

IF you can make a word THEN
Add the word to the board
Work out the points gained
Add the points to your total
Select more letter tiles

ENDIF

Of course, the conditional statement will almost certainly appear in a longer
sequence of instructions. For example, the instructions for playing our guessing
game with the young child may be given as.

Hide a sweet in one hand

Ask the child to guess which hand contains the sweet

IF the child guesses which hand the sweet is in THEN
Give the sweet to the child

ENDIF

Ask the child if they would like to play again

This longer sequence of instructions highlights the usefulness of the term ENDIF
in separating the conditional command, Give the sweet to the child, from subsequent
unconditional instructions, in this case, Ask the child if they would like to play again.

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player
1 responds to a correct guess by saying Correct. The game is then complete
and Player 1 states the value of the number.

Write the set of instructions necessary to play the game.
In your solution, include the statements:
Player 1 says “Correct”

Player 1 thinks of a number
IF guess matches number THEN

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the | F statement includes another formal
term, EL SE, and a second command. If the condition specified in the IF statement
is true, then the command following the term THEN is executed, otherwise that
following EL SE is carried out.

For instance, in our earlier example of playing aguessing gamewith achild, nothing

happened if the child guessed wrongly. If the person holding the sweet were to eat
it when the child's guess was incorrect, we could describe this setup with the

DarkBASIC Pro: Designing Algorithms 5

FIG-1.2

The IF ... ELSE Statement

following statement:

IF the child guesses which hand the sweet is in THEN
Give the sweet to the child

ELSE
Eat sweet yourself

ENDIF

The general form of this extended | F statement is shown in FIG-1.2.

If condition is true ...
TE condition THEN ..then command 1 is carried out
command 1
If condition is not true ...) EL SE ..then command 2 is carried out

command 2
ENDIF

Activity 1.6

Write an | F statement containing an EL SE section which describes the
aternative actions to be taken when playing Hangman and the player trying to
guess the word suggests a letter.

In the solution include the statements:
Add letter at appropriate position(s)
Add part to hanged man

Choosing between two alternative actionsis called binary selection.

When we have several independent selectionsto make, then we may use several |F
statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This
part of the game might be described using the following statements:

Throw the dice
Move your piece forward by the number indicated

This set of instructions is not IF you land on an unpurchased property THEN

complete and is shown here
only to illustrate the use of
multiple IF statementsin an
algorithm.

Buy the property
ENDIF
IF you threw doubles THEN
Throw the dice again
ELSE
Hand the dice to the next player
ENDIF

Multi-way Selection

Although asingle | F statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two aternatives (known as
multi-way selection). For example, imagine that the rules of the simple guessing
game mentioned in Activity 1.5 are changed so that there are three possible
responses to Player 2's guess, these being:

» Correct
> Too low

» Too high

DarkBASIC Pro: Designing Algorithms

One way to create an algorithm that describes this situation is just to employ three
separate | F statements:

IF the guess is equal to the number you thought of THEN
Say “Correct”

ENDIF

IF the guess is lower than the number you thought of THEN
Say “Too low”

ENDIF

IF the guess is higher than the number you thought of THEN
Say “Too high”

ENDIF

Thiswill work, but would not be considered a good design for an algorithm since,
when thefirst |F statement istrue, we still go on and check if the conditionsin the
second and third | statements are true. After al, only one of the three conditions
can be true at any onetime.

Where only one of the conditions being considered can be true at a given moment
in time, these conditions are known as mutually exclusive conditions.

The most effective way to deal with mutually exclusive conditionsis to check for
one condition, and only if thisis not true, are the other conditions tested. So, for
example, in our algorithm for guessing the number, we might begin by writing:

IF guess matches number THEN

Say “Correct”
ELSE

Check the other conditions
ENDIF

Of course a statement like *** Check the other conditions*** is too vague to be
much usein an algorithm (hencethe asterisks). But what are these other conditions?
They arethe guessislower than the number you thought of and the guessis higher
than the number you thought of.

We already know how to handle a situation where there are only two alternatives:
use an |F statement. So we can chose between Too low and Too high with the
statement

IF guess is less than number THEN
Say “Too low”

ELSE
Say “Too high”

ENDIF

Now, by replacing the phrase *** Check the other conditions*** in our origina
algorithm with our new |F statement we get:

IF guess matches number THEN
Say “Correct
ELSE
IF guess is less than number THEN
Say "Too low"
ELSE
Say “Too high”
ENDIF
ENDIF

Noticethat the second | F statement isnow total ly contained within the EL SE section
of the first IF statement. This situation is known as nested IF statements. Where
there are even more mutually exclusive alternatives, several |F statements may be
nested in thisway. However, in most cases, we're not likely to need more than two
nested | F statements.

DarkBASIC Pro: Designing Algorithms 7

Activity 1.7

Inanold TV programme called The Golden Shot, contestants had to direct a
crossbow in order to shoot an apple. The player sat at home and directed the
crossbow controller viathe phone. Directions were limited to the following
phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested | F statements that determine which of the above
statements should be issued.

Use statements such as:
IF the crossbow is pointing too high THEN

and
Say “Left a bit”

Asyou can see from the solution to Activity 1.7, although nested | F statements get
thejob done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually
exclusive, conditions can be declared in asingle | F statement along with the action
required for each of these conditions. This would allow us to rewrite the solution
to Activity 1.7 as:

IF
crossbow is too high:
Say “Down a bit”
crossbow is too low:
Say “Up a bit”
crossbow is too far right:
Say “Left a bit”
crossbow is too far left:
Say “Right a bit”
crossbow is on target:
Say “Fire”
ENDIF

Each option is explicitly named (ending with a colon) and only the one which is
true will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the
Situation requires.

When producing a program for a computer, al possibilities have to be taken into
account. Early adventure games, which were text based, allowed the player to type
a command such as Go East, Go West, Go North, Go South and this moved the
player’ scharacter to new positionsin theimaginary world of the computer program.
If the player typed in an unrecognised command such as Go North-East or Move
faster, then the game would issue an error message. This setup can be described by
adding an EL SE section to the structure as shown below:

IF
command is Go East:
Move player’'s character eastward
command is Go West:
Move player’s character westward
command is Go North:
Move player’s character northward
command is Go South:
Move player’s character southward
ELSE
Display an error message
ENDIF

DarkBASIC Pro: Designing Algorithms

FIG-1.3

The Third Version of the
IF Statement

The additional EL SE option will be chosen only if none of the other options are
applicable. In other words, it acts like a catch-all, handling all the possibilities not
explicitly mentioned in the earlier conditions.

This gives usthe final form of this style of the |F statement as shown in FIG-1.3:

IE If condition 1 is true ...
") ondition 1:
If condition 2 is true ... command
ondition 2: ... then command 1
2 is carried out

command
... then command 2
is carried out
A

s many conditions and
commands as required can
be added

If none of the condition
given above are true ...

ELSE
command x
ENDIF

... then command X
is carried out

Activity 1.8

Inthe TV game Wheel of Fortune (where you have to guess awell-known
phrase), you can, on your turn, either guess a consonant, buy avowel, or make
aguess at the whole phrase.

If you know the phrase, you should make aguess at what it is; if there are
still many unseen letters, you should guess a consonant; as alast resort you
can buy avowel.

Write an IF statement in the style given above describing how to choose from
the three options.

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example,
in the TV game Family Fortunes, you only win the star prize if you get 200 points
and guess the most popular answersto a series of questions. This can be described
in our more formal style as:

IF at least 200 points gained AND all most popular answers have been guessed THEN
winning team get the star prize
ENDIF

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as acomplex condition). The conditions on either side
of the AND are called the operands. Both operands must be true for the overall
result to be true. We can generalisethisto describe the AND operator as being used
inthe form:

condition 1 AND condition 2

DarkBASIC Pro: Designing Algorithms 9

FIG-1.4

Calculating the Result
of an AND Operation

TABLE-1.1

The AND Operator

10

The result of the AND operator is determined using the following rules:

-

Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF both conditions are true THEN
the overall result is true
ELSE
the overall result is false
ENDIF

For example, if we assume the group reaching the final of the game show Family
Fortunes has amassed 230 points but have not guessed al of the most popular
answers, then a computer would determine the overall result of the IF statement
given earlier as shown in FIG-1.4.

This condition is false

IF at least 200 points gained AND all most popular answers have been guessed THEN

l giving

IF (true AND false) THEN

reduces to
IF false THEN

With two conditions there are four possible combinations. The first possibility is
that both conditions are false; another possibility is that condition 1 is false but
condition 2 istrue.

Activity 1.9

What are the other two possible combinations of true and false?

The results of the AND operator are summarised in TABLE-1.1.

condition 1 | condition 2 | condition 1 AND condition 2

false false false
false true false
true false false
true true true

Activity 1.10

In the card game Snap, you win the cards on the table if you arefirst to place
your hand over those cards, and the last two cards laid down are of the same
value.

Write an | F statement, which includes the term AND, summarising this
situation.

The OR Operator
Simple conditions may also belinked by the Boolean OR operator. Using OR, only

one of the conditions needs to be true in order to carry out the action that follows.
For example, in the game of Monopoly you go to jail if you land on the GoTo Jail

DarkBASIC Pro: Designing Algorithms

square or if you throw three doublesin arow. This can be written as.

IF player lands on Go To Jail OR player has thrown 3 pairs in a row THEN
Player goes to jail
ENDIF

Like AND, the OR operator works on two operands:

condition 1 OR condition 2

When ORisused, only oneof the conditionsinvolved needsto betruefor theoverall
result to be true. Hence the results are determined by the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF any of the conditions are true THEN
the overall result is true
ELSE
the overall result is false
ENDIF

For example, if aplayer in the game of Monopoly has not landed on the Go To Jail

square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be determined as shown in FIG-1.5.

FIG-15 This condition is false

Calculating the Result of IF player lands on Go To Jail OR player has thrown 3 pairs in a row THEN
an OR Operation
l giving

IF (false OR true)THEN

reduces to

IF true THEN

The results of the OR operator are summarised in TABLE-1.2.

TABLE-1.2 condition 1 | condition 2 | condition 1 OR condition 2
The OR Operator false false false

false true true

true false true

true true true

Activity 1.11

In Monopoly, aplayer can get out of jail if he throws a double or pays a £50
fine.

Express thisinformation in an IF statement which makes use of the OR
operator.

The NOT Operator

The final Boolean operator which can be used as part of a condition is NOT. This
operator isused to reversethe meaning of acondition. Hence, if property mortgaged
istrue, then NOT property mortgaged is false.

DarkBASIC Pro: Designing Algorithms 1

FIG-1.6

Calculating the Result of
aNOT Operation

TABLE-1.3

The NOT Operator

12

Notice that the word NOT is always placed at the start of the condition and not
where it would appear in everyday English (property NOT mortgaged).

In Monopoly a player can charge rent on a property aslong as that property is not
mortgaged. This situation can be described with the statement:

IF NOT property mortgaged THEN
Rent can be charged
ENDIF

The NOT operator works on a single operand:
NOT condition

When NOT is used, the result given by the original condition is reversed. Hence
the results are determined by the following rules:

1. Determine the truth of the condition
2. Complement the result obtained in step 1

For example, if a player lands on a property that is not mortgaged, then the result
of the IF statement given above would be determined as shown in FIG-1.6.

This condition is false

IF NOT property mortgaged THEN

l giving

IF THEN

The original result, false,
is complemented by the
NOT operator

reduces to@ Q Q
IF true THEN

The results of the NOT operator are summarised in TABLE-1.3.

condition NOT condition

false true
true false

Complex conditions are not limited to a single occurrence of a Boolean operator,
henceitisvalid to have statements such as:

IF player lands on Go To Jail OR player has thrown 3 pairs in a row OR
player lifts a Go To Jail card
THEN
Player goes to jail
ENDIF

Although us humans might be ableto work all of thisout in our heads without even
a conscious thought, computers deal with such complex conditions in a slow, but
methodical way.

To calculate the final result of the condition given above, the computer requires
several operations to be performed. These are performed in two stages:

1. Determine the truth of each condition
2. Determine the result of each OR operation, starting with the left-most OR

DarkBASIC Pro: Designing Algorithms

For example, if aplayer liftsaGo To Jail card from the Chance pack, then the result
FIG-1.7 of the IF statement given above would be determined as shown in FIG-1.7.

Using More than One

OR Operator
This condition is false This condition is false

IF player lands on Go To Jail OR player throws 3 pairs in arow OR player lifts a Go To Jail card THEN

giving

OR true)THEN

reduces to

IF true THEN

That might seem a rather complicated way of achieving what was probably an
obvious result, but when the conditions become even more complex, this
methodical approach is necessary.

Noticethat when acomplex condition contains only asingle Boolean operator type
(OR in the example above), that the expression is worked out from left to right.
However, should the condition contain amixture of OR, AND and NOT operators,
NOT operations are performed first, ANDs second, and ORs last.

For example, if agame hasthe following rule

IF player has a magic sword AND player has magic armour OR
player has taken invisibility potion AND player possesses sleep spell
THEN

Player can kill dragon
ENDIF

and a player has magic armour and has drunk the invisibility potion, then to
determineif theplayer cankill the dragon, the processshownin FIG-1.8isfollowed.

FIG-1.8 This condition is false This condition is true
AND Operators have IF player has a magic sword AND player has magic armour
Priorit S .
y OR player has taken invisibility potion AND player possesses sleep spell THEN
This condition is true This condition is false
)
giving

IF

reduces to

IF false THEN
Thefinal result shows that the player cannot kill the dragon.

DarkBASIC Pro: Designing Algorithms 13

Activity 1.12
A game hasthe following rule:

IF a player has an Ace AND player has King OR player has two Knaves THEN
Player must pick up extra card
ENDIF

Using asimilar approach to that shown in FIG-1.8 above, show the steps
involved in deciding if the player should take an extra card assuming the
player aready has an Ace and one Knave.

Sometimes the priority of operators works against what we are trying to express.
For example, if aplayer receives abonus if he lands on ared, green or blue square
after throwing 7 on apair of dice, then we might be tempted to write;

IF landed on red OR landed on green OR landed on blue AND thrown 7 THEN
Add bonus to player’s score
ENDIF

We would not expect a player landing on a red square after throwing 9 to receive
the bonus. But, if we look at the calculation for such a situation, we get the result
shown in FIG-1.9 which means that the bonus is incorrectly added to the player’s
score.

FIG-19 This condition is false This condition is false This condition is false

gglvgutlt;?e';inal Resultis |£ janded onred OR landed on green OR landed on blue AND thrown7 THEN

)
giving

IF true OR false OR (false AND false) THEN

reduces to

IF(true OR false)OR false THEN

reduces to

IF THEN
reduces to

IF true THEN

To achievethe correct results, we need the OR operations to be performed first and
this can be done by giving the OR operators a higher priority than the AND.
Luckily, operator priority can be modified by using parentheses. Operationsin
parentheses are always performed first. So, by rewriting our instruction as

IF (landed on red OR landed on green OR landed on blue) AND thrown 7 THEN
Add bonus to player’s score
ENDIF

the condition is calculated as shown in FIG-1.10.

14 DarkBASIC Pro: Designing Algorithms

FIG-1.10

Using Parentheses to

Modify Operator
Priority

TABLE-1.4

Operator Priority

This condition is false;y (_This condition is faiseyp C_This condition is false

IF(landedonred OR landed on green OR landed on blue) AND thrown7 THEN

|
l giving

IF ((true OR false) OR false) AND false THEN

reduces to

The parentheses are removed IF (OR false)) AND false THEN

when their contents are reduced to

a single value reduces to

AND false

THEN

reduces to

IF false THEN

Boolean operator priority issummarised in TABLE-1.4.

Priority Operator
1 ()
2 NOT
8 AND
4 OR

Activity 1.13

Express these winning conditions as an | F statement.

The rules for winning a card game are that your hand of 5 cards must add up
to exactly 43 (faces =10, Ace = 11) or you must have four cards of the same
value. In addition, a player cannot win unless he has a Queen in his hand.

Activity 1.14

1. Name the three types of control structures.

2. Another term for condition is what?

3. Name the two types of selection.

4. What does the term mutually exclusive conditions mean?

5. Give an example of a Boolean operator.

which of these operators will be performed first?

6. If theterms AND and OR areincluded in a single complex condition,

7. How can the order in which operations in a complex condition be changed?

DarkBASIC Pro: Designing Algorithms

15

16

[teration

There are certain circumstances in which it is necessary to perform the same
sequence of instructions several times. For example, let's assume that a game
involves throwing a dice three times and adding up the total of the values thrown.
We could write instructions for such a game as follows:

Set the total to zero
Throw dice

Add dice value to total
Throw dice

Add dice value to total
Throw dice

Add dice value to total
Call out the value of total

Y ou can see from the above that two instructions,

Throw dice
Add dice value to total

are carried out three times, once for each turn taken by the player. Not only doesit
seem rather time-consuming to have to write the same pair of instructions three
times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be
repeated a fixed number of times. Carrying out one or more statements over and
over again is known aslooping or iteration. The statement or statements that we
want to perform over and over again are known as the loop body.

Activity 1.15

What statements make up the loop body in our dice problem given above?

FOR..ENDFOR

When writing aformal agorithm in which we wish to repeat a set of statements a
specific number of times, we use aFOR..ENDFOR structure.

There aretwo partsto this statement. Thefirst of theseis placed just beforetheloop
body and in it we state how often we want the statements in the loop body to be
carried out. For the dice problem our statement would be;

FOR 3 times DO
Generalising, we can say this statement takes the form
FOR value times DO
where value would be some positive number.
Next come the statements that make up the loop body. These are indented:

FOR 3 times DO
Throw dice
Add dice value to total

Finally, to mark the fact that we have reached the end of the loop body statements
we add the word ENDFOR:

DarkBASIC Pro: Designing Algorithms

Note that ENDFOR is FOR 3 times DO

|eft-aligned with the Throw dice
opening FOR statement. Add dice value to total
ENDFOR

Now we can rewrite our original algorithm as:

Set the total to zero
FOR 3 times DO
Throw dice
Add dice value to total
ENDFOR
Call out the value of total

The instructions between the terms FOR and ENDFOR are now carried out three
times.

Activity 1.16

Youcanfindtheaverage || |f the player was required to throw the dice 10 times rather than 3, what

of the 10 numbers by i ?
dividing the final total by changes would we need to make to the algorithm?

10.
If the player was required to call out the average of these 10 numbers, rather

than the total, show what other changes are required to the set of instructions.

We are free to place any statements we wish within the loop body. For example,
the last version of our number guessing game produced the following algorithm

Player 1 thinks of a number between 1 and 100
Player 2 makes an attempt at guessing the number
IF guess matches number THEN
Player 1 says “Correct
ELSE
IF guess is less than number THEN
Player 1 says “Too low”
ELSE
Player 1 says “Too high”
ENDIF
ENDIF

player 2 would have more chance of winning if he were allowed several chances at
guessing player 1's number. To allow several attempts at guessing the number,
some of the statements given above would have to be repeated.

Activity 1.17

What statements in the algorithm above need to be repeated?

To alow for 7 attempts our new algorithm becomes:

Player 1 thinks of a number between 1 and 100
FOR 7 times DO
Player 2 makes an attempt at guessing the number
IF guess matches number THEN
Player 1 says “Correct
ELSE
IF guess is less than number THEN
Player 1 says “Too low”
ELSE
Player 1 says “Too high”
ENDIF
ENDIF
ENDFOR

DarkBASIC Pro: Designing Algorithms 17

18

Activity 1.18
Can you see a practical problem with the algorithm?

If not, try playing the game afew times, playing exactly according to the
instructions in the algorithm.

Activity 1.19
During alottery draw, two actions are performed exactly 6 times. These are;

Pick out ball
Call out number on the ball

Add aFOR loop to the above statements to create an algorithm for the |ottery
draw process.

Occasionally, we may have to use a slightly different version of the FOR loop.
Imaginewe aretrying to write an algorithm explaining how to decide who goesfirst
in agame. In this game every player throws a dice and the player who throws the
highest value goesfirst. To describe this activity we know that each player doesthe
following task:

Player throws dice

But since we can’t know in advance how many players there will be, we write the
algorithm using the statement

FOR every player DO
to give the following algorithm

FOR every player DO
Throw dice
ENDFOR
Player with highest throw goes first

If we had to save the details of agame of chesswith the intention of going back to
the game later, we might write:

FOR each piece on the board DO
Write down the name and position of the piece
ENDFOR

Activity 1.20

A game uses cards with images of warriors. At one point in the game the
player has to remove from his hand every card with an image of aknight. To
do thisthe player must look through every card and, if it isaknight, remove
the card.

Write down a set of instructions which performs the task described above.
Y our solution should include the statements
FOR every card in player's hand DO

and
IF card is a knight THEN

DarkBASIC Pro: Designing Algorithms

FIG-1.11

The FOR Loop

FIG-1.12

The REPEAT Loop

The general form of the FOR statement is shown in FIG-1.11.

FOR _expression DO

Typical examples: loop body
5 times
every item NDFOR The statements which make

up the loop body will be executed
a number of times as defined
within expression

Although the FOR loop alows usto perform a set of statements a specific number
of times, this statement is not always suitablefor the problem we aretrying to solve.
For exampl e, inthe guessing game we stated that theloop body wasto be performed
7 times, but what if player 2 guesses the number after only three attempts? If we
were to follow the algorithm exactly (as a computer would), then we must make
four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

TheREPEAT .. UNTIL statement allowsusto specify that aset of statementsshould
be repeated until some condition becomes true, at which point iteration should
cease. Theword REPEAT is placed at the start of the loop body and, at its end, we
add the UNTIL statement. The UNTIL statement also contains a condition, which,
when true, causes iteration to stop. This is known as the terminating (or exit)
condition. For example, we could use the REPEAT.. UNTIL structure rather than
the FOR loop in our guessing game a gorithm. The new version would then be:

Player 1 thinks of a number between 1 and 100
REPEAT
Player 2 makes an attempt at guessing the number
IF guess matches number THEN
Player 1 says “Correct
ELSE
IF guess is less than number THEN
Player 1 says “Too low”
ELSE
Player 1 says “Too high”
ENDIF
ENDIF
UNTIL player 2 guesses correctly

We could aso use the REPEAT..UNTIL loop to describe how a slot machine
(one-armed bandit) is played:

REPEAT
Put coin in machine
Pull handle
IF you win THEN
Collect winnings
ENDIF
UNTIL you want to stop

The general form of this structure is shown in FIG-1.12.

REPEAT

loop body

UNTIL condition

The loop body statements
will be executed continuously
until condition is true

DarkBASIC Pro: Designing Algorithms 19

FIG-1.13

The WHILE Loop

20

The terminating condition may use the Boolean operators AND, OR and NOT as
well as parentheses, where necessary.

Activity 1.21

A one-armed bandit costs 50p per play. A player has several 50p piecesand is
determined to play until his coins are gone or until he wins at least £10.00.
Write an algorithm describing the stepsin this game. The algorithm should
make use of the following statements:

Collect winnings

Place coin in machine

Pull arm

UNTIL all coins are gone OR winnings are at least £10.00

Thereis still a problem with our number-guessing game. By using a REPEAT ..
UNTIL loop we are dlowing player 2 to have as many guesses as needed to
determine the correct number. That doesn’t lead to a very interesting game. Later
we' |l discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop,
isthe WHILE .. ENDWHILE structure which has an entry condition at the start
of theloop.

The aim of the card game of Pontoon is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dedlt two cardsinitialy
but can repeatedly ask for more cards by saying “twist”. One player is designated
the dealer. The dealer must twist while his cards have atotal value of less than 16.
So we might write the rules for the dealer as.

Calculate the sum of the initial two cards
REPEAT

Take another card

Add new card’s value to sum
UNTIL sum is greater than or equal to 16

But this solution implies that the dealer must take at least one card before deciding
to stop. Using the WHILE..ENDWHILE structure we could describe the logic as

Calculate sum of the initial two cards
WHILE sum is less than 16 DO
Take another card
Add new card’s value to sum
ENDWHILE

Now determining if the sum islessthan 16 is performed before Take another card
instruction. If the dealer’s two cards already add up to 16 or more, then the Take
another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.13.

WHILE condition

If condition is false
when first tested, the loop body
will be skipped completely

loop body

The loop body statements
will be executed continuously
until condition is true

NDWHILE

DarkBASIC Pro: Designing Algorithms

In what way does this differ from the REPEAT statement? There are two
differences:

» The condition is given at the beginning of the loop.

» Looping stops when the condition isfalse.

The main consequence of this is that it is possible to bypass the loop body of a
WHILE structure entirely without ever carrying out any of the instructions it
contains, whereas the loop body of a REPEAT structure will always be executed at
least once.

Activity 1.22

A gameinvolves throwing two dice. If the two values thrown are not the
same, then the dice showing the lower value must be rolled again. This
process is continued until both dice show the same value.

Write a set of instructions to perform this game.

Y our solution should contain the statements

Roll both dice
and

Choose dice with lower value
Activity 1.23

1. What isthe meaning of the term iteration?
2. Name the three types of looping structures.

3. What type of loop structure should be used when looping needs to occur an
exact number of times?

4. What type of loop structure can bypass its loop body without ever executing
it?

5. What type of loop contains an exit condition?

Data

Almost every game requires the players to remember or record some facts and
figures. In our number guessing game described earlier, the players needed to
remember the original number and the guesses made; in Hangman the word being
guessed and the letters guessed so far must be remembered.

These examples introduce the need to process facts and figures (known as data).
Every computer game hasto process data. This datamay bethe name of acharacter,
the speed of amissile, the strength of ablow, or some other factor.

Every item of data has two basic characteristics:

aname
and avalue

DarkBASIC Pro: Designing Algorithms 21

22

The name of a dataitem is a description of the type of information it represents.
Hence character’ s title, strength and charisma are names of dataitems; “Fred the
Invincible’, 3, and 9 areexamples of the actual valueswhich might be givento these
dataitems.

In programming, adataitemisoftenreferredto asavariable. Thisterm arisesfrom
thefact that, although the name assigned to adataitem cannot change, its value may
vary. For example, the value assigned to avariable called lives remaining, will be
reduced if the player’s character iskilled.

Activity 1.24

List the names of four dataitems that might be held about a player in agame
of Monopoly.

Operations on Data

There are four basic operations that acomputer can do with data. These are:

Input

This involves being given a vaue for a data item. For example, in our
number-guessing game, the player who has thought of the original number isgiven
the value of the guess from the second player. When playing Noughts and Crosses
adding an X (or O) changes the set up on the board. When using a computer, any
value entered at the keyboard, or any movement or action dictated by a mouse or
joystick would be considered as data entry.

Thistype of action is known as an input oper ation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work
out how much change to give a player buying a property. If a character in an
adventure game s hit, points must be deducted from his strength value.

Thistype of instruction is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two
numbers in our guessing game to find out if they are the same.

Thisisknown as a comparison oper ation.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game player 1
communicates with player 2 by saying either that the guessis Correct, Too high or
Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in aracing
game your speed and time will be displayed on the screen.

Thisis called an output operation.

DarkBASIC Pro: Designing Algorithms

Activity 1.25

Identify input, cal culation, comparison and output operations when playing
Hangman

For example, the algorithm needs to compare the | etter guessed by the player
with the lettersin the word.

When describing a calculation, it is common to use arithmetic operator symbols
rather than English. Hence, instead of writing the word subtract we use the minus
sign (-). A summary of the operators available are given in TABLE-1.5.

TABLE-15]
English Symbol
Mathematical Operators .
Multiply *
Divide /
Add +
Subtract -

Similarly, when we need to compare values, rather than use terms such asis less
than, we use the less than symbol (<). A summary of these relational operatorsis
givenin TABLE-1.6.

TABLE-16 English Symbol
Relational Operators Slesshhan <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to

As well as replacing the words used for arithmetic calculations and comparisons
with symbols, the term calculate or set is often replaced by the shorter but more
cryptic symbol := between the variable being assigned avalue and the value itself.

Using this abbreviated form, the instruction:

Calculate time to complete course as distance divided by speed
becomes

time := distance / speed

Although the long-winded English form is more readable, this more cryptic style
isbriefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in
English:

Player 1 thinks of a number between 1 and 100
REPEAT
Player 2 makes an attempt at guessing the number
IF guess matches number THEN
Player 1 says “Correct
ELSE
IF guess is less than number THEN
Player 1 says "Too low"
ELSE
Player 1 says “Too high”
ENDIF
ENDIF
UNTIL player 2 guesses correctly

DarkBASIC Pro: Designing Algorithms 23

Using some of the symbols described earlier, we can rewrite this as:

Player 1 thinks of a number between 1 and 100
REPEAT
Player 2 makes an attempt at guessing the number
IF guess = number THEN
Player 1 says “Correct
ELSE
IF guess < number THEN
Player 1 says "Too low"
ELSE
Player 1 says “Too high”
ENDIF
ENDIF
UNTIL guess = number

Activity 1.26
1. What are the two main characteristics of any dataitem?

2. When dataisinput, from where isits value obtained?

3. Give an example of arelational operator.

L evels of Detalil

24

Whenwestart towritean algorithmin English, one of thethingsweneed to consider
is exactly how much detail should be included. For example, we might describe
how to record a programme on a video recorder as.

Put new tape in video
Set timer details

However, this lacks enough detail for anyone unfamiliar with the operation of the
machine. We could replace the first statement with:

Press the eject button

IF there is a tape in the machine THEN
Remove it

ENDIF

Place the new tape in the machine

and the second statement could be substituted by:

Switch to timer mode
Enter start time
Enter finish time
Select channel

This approach of starting with a less detailed sequence of instructions and then,
wherenecessary, replacing each of thesewith moredetailed instructions can beused
to good effect when tackling long and complex problems.

By using this technique, we are defining the original problem as an equivaent
sequence of simpler tasks before going on to create a set of instructions to handle
each of these simpler problems. This divide-and-conquer strategy is known as
stepwise refinement. The following is afully worked example of this technique:

Problem:
Describe how to make a cup of tea.

DarkBASIC Pro: Designing Algorithms

Outline Solution:

. Fill kettle

. Boil water

. Put tea bag in teapot

. Add boiling water to teapot
. Wait 1 minute

. Pour tea into cup

. Add milk and sugar to taste

NO OB WN =

Thisistermed aLEVEL 1 solution.

As a guideline we should aim for a LEVEL 1 solution with between 5 and 12
instructions.

Notice that each instruction has been numbered. This is merely to help with
identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full
(though not detailed) description of al the steps required to tackle the origina
problem. If we are not happy with the solution, then changes must be made before
going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and
below it, givethe more detailed version. For example. Fill kettlewoul d be expanded
thus:

1. Fill kettle
1.1 Remove kettle lid
1.2 Put kettle under tap
1.3 Turn on tap
1.4 When kettle is full, turn off tap
1.5 Place lid back on kettle

The numbering of the new statement reflects that they are the detailed instructions
pertainingto statement 1. Also notethat the number systemisnot adecimal fraction
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9,1.10, 1.11, etc.

It isimportant that these sets of more detail ed instructions describe how to perform
only the original task being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Wherethisis the case, the whole structure must be included in
the detailed instructions for that task.

Having satisfied ourselves that the breakdown is correct, we proceed to the next
statement from the original solution.

2. Boil water
2.1 Plug in kettle
2.2 Switch on power at socket
2.3 Switch on power at kettle
2.4 When water boils switch off kettle

The next two statements expand as follows:

3. Put tea bag in teapot
3.1 Remove lid from teapot
3.2 Add tea bag to teapot

4. Add boiling water to teapot
4.1 Take kettle over to teapot

DarkBASIC Pro: Designing Algorithms 25

26

4.2 Add required quantity of water from kettle to teapot

But not every statement from alevel 1 solution needs to be expanded. In our case
there is no more detail to add to the statement

5. Wait 1 minute
and therefore, we leave it unchanged.

Thelast two statements expand as follows:

6. Pour tea into cup
6.1 Take teapot over to cup
6.2 Pour required quantity of tea from teapot into cup

7. Add milk and sugar as required
7.1 IF milk is required THEN
7.2 Add milk
7.3 ENDIF
7.4 IF sugar is required THEN
7.5 Add sugar
7.6 Stir tea
7.7 ENDIF

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an
algorithm.

Finally, we can describe the solution to the origina problem in more detail by
substituting the statements in our LEVEL 1 solution by their more detailed
equivalent:

1.1 Remove kettle lid

1.2 Put kettle under tap

1.3 Turn on tap

1.4 When kettle is full, turn off tap
1.5 Place lid back on kettle

2.1 Plug in kettle

2.2 Switch on power at socket

2.3 Switch on power at kettle

2.4 When water boils switch off kettle
3.1 Remove lid from teapot

3.2 Add tea bag to teapot

4.1 Take kettle over to teapot

4.2 Add required quantity of water from kettle to teapot
5. Wait 1 minute

6.1 Take teapot over to cup

6.2 Pour required quantity of tea from teapot into cup
7.1 IF milk is required THEN

7.2 Add milk

7.3 ENDIF

7.4 IF sugar is required THEN

7.5 Add sugar

7.6 Stir tea

7.7 ENDIF

Thisisa LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, the statement wait 1
minute).

For some more complex problemsit may be necessary to repeat thisprocessto more

levelsbefore sufficient detail isachieved. That is, statementsin LEVEL 2 may need
to be given more detail inaLEVEL 3 breakdown.

DarkBASIC Pro: Designing Algorithms

Activity 1.27

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10.
In the first grid each player marks squaresin the first grid to mark the
position of warships. Ships are added as follows

1 aircraft carrier 4 squares

2 destroyers 3 squares each

3 cruisers 2 squares each

4 submarines 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.

Thefirst player now calls out agrid reference. The second player responds to
the call by saying HIT or MISS. HIT iscalled if the grid reference corresponds
to aposition of aship. Thefirst player then marks this result on his second
grid using an o to signify amiss and x for a hit (see diagram below).

A B CDEFGHI J A B CDEFGHI J
1 1 o
2 2
3 AlA]lA|A 3 o
4 S 4
s|clc D 5
6 S D 6 XXX
7 p|p|D D 7 o
8 C S 8
9 S c 9
10 c|C 10

Vessels are positioned Results of guesses are
in the left-hand grid placed in the right-hand grid

If thefirst player achieves aHIT then he continues to call grid references until
MISSiscaled. Inresponseto aHIT or MISS call thefirst player marks the
second grid at the reference called: 0 for aMISS, X for aHIT.

When the second player responds with MISS the first player’ sturnis over,
and the second player has his turn.

Thefirst player to eliminate all segments of the opponent’ s shipsisthe
winner. However, each player must have an equal number of turns, and if both
sets of ships are eliminated in the same round the game is a draw.

The agorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 agorithm by assembling the lines in the correct
order, adding line numbers to the finished description.

Add ships to left grid

Call grid position(s)

REPEAT

Respond to other player's call(s)
Draw grids

UNTIL there is a winner

continued on next page

DarkBASIC Pro: Designing Algorithms 27

Activity 1.27 (continued)

To createa LEVEL 2 agorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below for
the statements Call grid position(s) and Respond to other player’s call(s). By
reordering and numbering the lines below create LEVEL 2 details for these
two statements

UNTIL other player misses

Mark position in second grid with X
Get other player’s call

Get reply

Get reply

ENDIF

Call HIT

Call MISS

Mark position in second grid with O
WHILE reply is HIT DO

Call grid reference

Call grid reference

IF other player’s call matches position of ship THEN
ENDWHILE

REPEAT

ELSE

Checking for Errors

TABLE-1.7

Test Data for the Number
Guessing Game Algorithm

28

Once we've created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find
any errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our agorithm is
attempting to solve. For example, let's assume we want to check our number
guessing game algorithm. In the last version of the game we allowed the second
player to make asmany guessesasrequired until hecameup with thecorrect answer.

Thefirst player responded to each guess by saying either “too low”, “too high” or
“correct”.

To check our algorithm for errors we must come up with typical values that might
be used when carrying out the set of instructions and those val ues should be chosen
S0 that each possible result is achieved at least once.

So, as well as making up vaues, we need to predict what response our algorithm
should give to each value used. Hence, if the first player thinks of the value 42 and
the second player guesses 75, thenthefirst player will respond to the guessby saying
“Too high”.

Our set of test values must evoke each of the possible results from our agorithm.
One possible set of values and the responses are shown in TABLE-1.7.

Test Data Expected Results
number = 42
guess =75 Says “Too high”
guess =15 Says “Too low”
guess =42 Says “Correct”

DarkBASIC Pro: Designing Algorithms

FIG-1.14

The Components of a
Trace Table

FIG-1.15

Tracing the First
Statement

FIG-1.16

Moving through the Trace

DarkBASIC Pro: Designing Algorithms

Oncewe' ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. The algorithm for the
number game is shown below, this time with instruction numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
Player 2 makes an attempt at guessing the number
IF guess = number THEN
Player 1 says “Correct"
ELSE
IF guess < number THEN
Player 1 says “Too low”
ELSE
Player 1 says “Too high”
11. ENDIF
12. ENDIF
13. UNTIL guess = number

©ONO oA

10.

Next we create a new table (called a trace table) with the headings as shown in
FIG-1.14.

Any condition contained in
the statement is written here

The value currently
stored in each variable
is given here

The result of the
condition is written
here as T or F

Contains the number
of the instruction which
has been executed

Any value displayed
(or spoken) is shown here

Instrl;ction Condition TIF Variables

number guess

Output

Now we work our way through the statements in the algorithm filling in aline of
the trace table for each instruction.

Instruction 1 isfor player 1 to think of anumber. Using our test data, that number
will be 42, so our trace table starts with the line shown in FIG-1.15.

Instruction| Condition TIF Variables Output
number guess
1 42

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace tableis as shown in FIG-1.16.

Instruction| Condition TIF Variables

number guess

Output

42

Instruction 4 isan | F statement containing acondition. This condition and itsresult
arewritten into columns 2 and 3 as shown in FIG-1.17.

29

FIG-1.17 Instruction| Condition TIF Variables Output

. . number guess
Tracing a Condition

42

75

A WN PR

guess = number F

Because the condition is false, we now jump to instruction 6 (the EL SE line) and
on to 7. This is another IF statement and our table now becomes that shown in

FIG-1.18.
FIG-1.18
Instruction| Condition T/IF Variables Output
Tracing a Second number guess
Condition
1 42
2
3 75
4 guess = number | F
6
7 guess < number | F
Since this second |F statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter thisin the final column
asshown in FIG-1.19.
FIG-1.19
) Instruction| Condition TIF Variables Output
Recording Output number guess
1 42
2
3 5
4 guess =number | F
6
7 guess < number F
9
10 Too high
Now we move on to statements 11,12 and 13 as shown in FIG-1.20.
FIG-1.20
Instruction| Condition TIF Variables Output
Reaching the end of the number guess
REPEAT .. UNTIL
Structure 1 42
2
3 75
4 guess = number | F
6
7 guess < number | F
9
10 Too high
11
12
13 guess = number | F

Since statement 13 contains acondition which isfalse, wereturn to statement 2 and
then onto 3 where we enter 15 as our second guess (see FIG-1.21).

30 DarkBASIC Pro: Designing Algorithms

FIG-1.21 Instruction| Condition TIF Variables Output
.) number guess
Showing Iteration
1 42
2
3 75
4 guess = number | F
6
7 guess < number | F
9
10 Too high
11
12
i3 guess = number | F

This method of checking is known as desk checking or dry running.

Activity 1.28

Create your own trace table for the number-guessing game and, using the
sametest data as given in TABLE-1.7 complete the testing of the algorithm.

Were the expected results obtained?

Summary

® Computers can perform many tasks by executing different programs.
® An agorithmis asequence of instructions which solves a specific problem.

® A program is a sequence of computer instructions which usually manipulates
data and produces results.

@ Three control structures are used in programs :
> Sequence
» Selection

> lteration
® A sequenceisalist of instructions which are performed one after the other.
® Sclection involves choosing between two or more alternative actions.
® Sclection is performed using the IF statement.

® There are three forms of |F statement:

IF condition THEN
instructions
ENDIF

IF condition THEN
instructions
ELSE
instructions
ENDIF

DarkBASIC Pro: Designing Algorithms 31

condition 1:
instructions
condition 2:
instructions
condition x :
instructions
ELSE
instructions
ENDIF

@ |[teration isthe repeated execution of one or more statements.

® |[teration is performed using one of three instructions:
FOR number of iterations required DO
instructions
ENDFOR
REPEAT
instructions
UNTIL condition
WHILE condition DO

instructions
ENDWHILE

® A condition isan expression which is either true or false.

® Simple conditions can be linked using AND or OR to produce a complex
condition.

® The meaning of a condition can be reversed by adding the word NOT.

® Dataitems (or variables) hold the information used by the algorithm.

® Dataitem values may be:
Input
Calculated
Compared
or Output
@ Cadlculations can be performed using the following arithmetic operators:

Multiplication *

Division /
Addition +
Subtraction -

® The order of priority of an operator may be overridden using parentheses.

@ Comparisons can be performed using the relational operators:

Lessthan <
Lessthan or equa to <=
Greater than >
Greater than or equal to >=
Equal to =
Not equal to <>

DarkBASIC Pro: Designing Algorithms

® The symbol :=is used to assign avalue to a data item. Read this symbol asis
assigned the value.

® |n programming, adataitemisreferred to asavariable.

® The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

® | EVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

® LEVEL 2 gives amore detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

® Not every statement needs to be broken down into more detail.

® Further levels of detail may be necessary when using stepwise refinement for
complex problems.

® Further refinement may not be required for every statement.

® An algorithm can be checked for errors or omissions using a trace table.

DarkBASIC Pro: Designing Algorithms 33

solutions

Activity 1.1 Activity 1.8
I F
No solution required. you know the phrase:
Make guess at phrase
L. there are nany unseen letters:
Activity 1.2 Guess a consonant
ELSE
One possible solution is: Buy a vowel
ENDI F
Fill A
Fill B fromA
Enpty B Activity 1.9
Enpty Ainto B
Fill A Other possibilities are:

Fill BfromA

Both conditions are true
condition 1 istrue and condition 2 isfalse

Activity 1.3
1. An dgorithm Activity 1.10
2. A Computer program
3. mips (millions of instructions per second) IF you are first to place your hand over
those cards AND the last two cards laid
o down are of the same val ue
Activity 1.4 THEN
You win the cards already played
Choose cl ub ENDI F

Take up correct stance beside ball
Gip club correctly
Swi ng cl ub backwar ds Ac'[i\/ity 1.11
Swing club forwards, attenpting to hit ball
IF double thrown OR fine paid THEN

The second and third statements could be interchanged. ENFI’D'ie":Yer gets out of jail
Activity 1.5 Activity 1.12
Pl ayer 1 thinks of a nunber
Pl ayer 2 nakes a guess at the nunber Assuming the player has one Ace and one Knave the
| F guess nat ches nunber THEN statement
Pl ayer 1 says “Correct”
ENDI F IF a player has an Ace AND pl ayer has
Pl ayer 1 states the value of the nunber King OR player has two Knaves
THEN
Activity 1.6 would reduce to
IF letter appears in word THEN
Add letter at appropriate position(s) IF true AND false OR false THEN
ELSE
Add part to hanged man The AND operation is then performed giving:
ENDI F
IF false OR fal se THEN
Activity 1.7 Next, the OR operation is completed giving afinal
IF the crossbow is on target THEN value of
Say “Fire”
ELSE IF fal se THEN
I F the crossbow is pointing too high THEN
Say “Down a bit” and, therefore the player does not pick up an extra card.
ELSE
I F the crossbow is pointing too | ow THEN
Say “Up a bit” Activity 1.13
ELSE
| F crossbow is too far left THEN IF (total of cards held is 43 OR hand has
Say “Right a bit” 4 cards of the same value) AND hand
ELSE contains a Queen THEN
Say “Left a bit"
ENDI F o
ENDI F Activity 1.14
ENDI F
ENDI F 1. Sequence
Selection
Iteration

34 DarkBASIC Pro: Designing Algorithms

2. Boolean expression

3. Binary selection
Multi-way selection

4. No more than one of the conditions can be true at any
giventime.

5. Boolean operators are: AND, OR, and NOT.
6. AND is performed before OR .

7. The order in which operations in a complex condition
are calculated can changed by using parentheses.

Activity 1.15

Throw di ce
Add dice value to total

Activity 1.16

Only one line, the FOR statement, would need to be
changed, the new version being:

FOR 10 times DO
To call out the average, the algorithm would change to

Set the total to zero
FOR 10 tines DO
Throw dice
Add dice value to total
ENDFOR
Cal cul ate average as total divided by 10
Call out the value of average

Activity 1.17

Infact, only thefirst line of our algorithm isnot repeated,
so the lines that need to be repeated are:

Pl ayer 2 nakes an attenpt at guessing the
nunber
| F guess matches nunmber THEN
Pl ayer 1 says “Correct *“
ELSE
I F guess is |ess than nunber THEN
Pl ayer 1 says “Too |ow
ELSE
Pl ayer 1 says “Too high”
ENDI F
ENDI F

Activity 1.18

The FOR loop forces the loop body to be executed
exactly 7 times. If the player guesses the number in
|ess attempts, the algorithm will nevertheless
continue to ask for the remainder of the 7 guesses.

Later, we'll see how to solve this problem.

Activity 1.19

FOR 6 tinmes DO

Pi ck out ball

Call out nunber on the ball
ENDFOR

DarkBASIC Pro: Designing Algorithms

Activity 1.20

FOR every card in player’'s hand DO
IF card is a knight THEN
Renove card from hand
ENDI F
ENDFOR

Activity 1.21

REPEAT

Pl ace coin in machine

Pull arm

IF a win THEN

Col I ect w nni ngs

ENDI F
UNTIL all coins are gone OR w nnings are
at |east £10.00

Activity 1.22

Rol | both dice

WHI LE both dice do not natch in value DO
Choose dice with | ower val ue
Rol I the chosen dice

ENDWHI LE

Activity 1.23

1. Iteration means executing a set of instructions over and
over again.

2. Thethreelooping structures are:

FOR .. ENDFOR
REPEAT .. UNTIL
VWHI LE .. ENDWHI LE

3. The FOR .. ENDFOR structure.
4, The WHILE .. ENDWHILE structure.

5. The REPEAT .. UNTIL structure.

Activity 1.24

Number of properties held
Amount of money held

The playing token being used
The position on the board

Activity 1.25

Input:
L etter guessed
Word guessed
Calculations:
Where to place a correctly guessed letter
The number of wrong guesses made
Comparisons:
The letter guessed with the letters in the word
The word guessed with the word to be guessed
The number of wrong guesses with the value 6
(6 wrong guesses completes the drawing of the
hanged man)
Output:
Hyphensindicating each letter in the word
Gallows
Body parts of the hanged man
Correctly guessed letters

35

Activity 1.26

1. Nameand value

2. From outside the system. In a computerised system thisis often viaa

keyboard.

3. Therelational operators are:

<! <=! >! >=!

Activity 1.27
The LEVEL 1iscoded as:

Draw grids

REPEAT

ouhrwhpE

=, and <>

Add ships to left grid

Call grid position(s)
Respond to other player’s call(s)
UNTIL there is a w nner

The expansion of statement 4 would become:

Call gridr
Get reply

ENDVHI LE

el Sk ek ok
ONOU A WN R

ef erence

VWHI LE reply is HT DO
Mark position in second grid with X
Call grid reference
Get reply

Mark position in second grid with 0

The expansion of statement 5 would become:

8 UNTIL other

5. 1. REPEAT

5.2 Get ot her
5.3

5.4 Cal
5.5 ELSE

5.6 Cal
5.7 ENDI F

5.

I HT

I MSs

pl ayer m sses

pl ayer’s call
| F other player’'s call

mat ches position of ship THEN

Activity 1.28
Instruction| Condition TIF Variables Output
number guess
1 42
2
3 75
4 guess =number| F
6
7 guess < number F
9
10 Too high
11
12
13 guess =number| F
2
3 15
4 guess = number F
6
7 guess <number| T
8 Too low
11
12
13 guess =number| F
2
3 42
4 guess =number| T
5 Correct
11
12
13 guess =number| T

36

The expected results were obtained.

DarkBASIC Pro: Designing Algorithms

Correcting Errors

Creating a Project in DarkBASIC Pro
Executing a Program

Screen Output

Text Colour, Size, Font, and Style
The Compilation Process
Transparent and Opaque Text

Using the DarkBASIC Pro Editor

DarkBASIC Pro: Starting DarkBASIC Pro

37

Drogramming a Computer

I ntroduction

In the last chapter we created algorithms written in a style of English known as
structured English. But if we want to create an algorithm that can be followed by a
computer, then we need to convert our structured English instructions into a
programming language.

There are many programming languages, C++, Java, C#, and Visua Basic being
amongst the most widely used. So how do we choose which programming language
to use? Probably the most important consideration is the area of programming that
isbest suited to agiven language. For example, Javais designed to create programs
that can be executed on avariety of different computers, while C++ was designed
for fast execution times.

We are going to use a language known as DarkBASIC Professional or just
DarkBASIC Pro, which was designed specifically for writing computer games.
Because of this, it has many unique commandsfor displaying graphics, controlling
joysticks, and creating three dimensional images.

The Compilation Process

Binary isamethod of
representing numbers
using only the digits 0
and 1.

38

Aswewill soon see, DarkBA SIC Pro uses statementsthat retain some English terms
and phrases, so we can look at the set of instructions and make some sense of what
is happening after only arelatively small amount of training.

Unfortunately, the computer itself only understands instructions givenin abinary
code known as machine code and has no capability of directly following a set of
instructionswritten in DarkBASIC Pro. But this need not be aproblem. If we were
given aset of instructions written in Russian we could easily have them translated
into English and then carry out the translated commands.

Thisis exactly the approach the computer uses. We begin the process of creating a
new piece of software by mentally converting our structured English into
DarkBASIC Pro commands. Thesecommandsare entered using atext editor which
is nothing more than a simple word-processor-like program allowing such basic
operations as inserting and deleting text. Once the complete program has been
entered, we get the machineitself to tranglate those instructions into machine code.
The origina code is known as the sour ce code; the machine code equivaent is
known as the object code.

The trandlator (known as a compiler) is simply another program installed in the
computer. After typing in our program instructions, we feed these to the compiler
which produces the equival ent instructions in machine code. Theseinstructionsare
then executed by the computer and we should see the results of our calculations
appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something
as simple as missing out a comma or misspelling a word, the translation process
will fail. When this happens in DarkBASIC Pro the incorrect command is
highlighted in red.

DarkBASIC Pro: Starting DarkBASIC Pro

FIG-2.1

Creating Software

A failure of thistypeisknown asasyntax error - amistakein the grammar of your
commands. Any syntax errors have to be corrected before you can try compiling
the program again.

Aswework on the computer entering a DarkBASIC Pro program, we need to save
this source codeto afile. Thisensuresthat we have acopy of our work should there
be apower cut or we accidentally del ete the program from the computer’ s memory.
DarkBASIC Pro refersto this as the sour cefile.

But a second file, known as the project file is also produced. This second file is
created automatically by DarkBASIC Pro and contains details of any images,
sounds or other resources that might be used by your program.

When we compile our program (translating it from source code to object code), yet
another file is produced. This third file, the executable file, contains the object
code and is, again, created automatically.

To run our program, the source code in the executable file is loaded into the
computer’s memory (RAM) and the instructions it contains are carried out.

The whole process is summarised in FIG-2.1.

Design
algorithm

A 4

Convert

to program code
Save source code

and project details

\ to disk

Compile
program

Save object code
to disk

B

4 object code

into memory

Run
program

If we want to make changesto the program, we load the source code into the editor,
make the necessary changes, then save and recompile our program, thereby
replacing the old version of all threefiles.

Activity 2.1
1. What type of instructions are understood by a computer?

2. What piece of softwareis used to translate a program from source code to
object code?

3. Misspelling aword in your program is an example of what type of error?

DarkBASIC Pro: Starting DarkBASIC Pro 39

Starting DarkiGASIC Dro

I ntroduction

DarkBASIC Pro is based on one of the earliest computer languages, BASIC, but
has been enhanced specifically to aid the creation of games programs.

The language was invented by Lee Bamber who formed a company to sell
DarkBASIC Pro. Over the last few years the company has grown in size and
expanded to sell other DarkBASIC related products, such as DarkMatter, which
contains many 3D objects that can be used in DarkBASIC programs.

In fact, there are two versions of the language: DarkBASIC and DarkBASIC
Professional. It’s this second, enhanced version of the language we will be using
here.

DarkBASIC Pro Files

FIG-2.2

The Two Files Created by a

DarkBASIC Pro Program

40

Because atypical program written in DarkBASIC Pro is likely to contain images,
sounds and even video, the DarkBASIC Pro package has to save much more than
the set of instructions that make up your program; it also needs to store details of
these images, sounds, etc.

TodothisDarkBASIC Pro createstwo filesevery timeyou produce anew program
(see FIG-2.2).

Thefirst of thesefiles, known asthe proj ect file, contains details of theimagesand
sounds used by your program, as well as other information such as the screen
resolution and number of colours used. This file has a.dbpro extension.

The second file, known asthe sour cefile, contains only the program’ s code written
inthe DarkBASIC Pro language. This file has a.dba extension.

Every DarkBASIC Pro program creates two files

Project File Source File
(.dbpro) (.dba)

T almilx)

[N

=) L)

DarkBASIC Pro: Starting DarkBASIC Pro

Getting Started with DarkBASIC Pro

When you first start up DarkBASIC Pro you should see one of the screens shown
in FIG-2.3. Exactly which one you see depends on how often DarkBASIC Pro has
been run on your computer. Thefirst timethe programisrun, thedisplay will match
that shown on the left of FIG-2.3; every other time your screen will match that
shown on the right.

FIG-2.3 PR rre e s ree— =
The Start-Up Screeniin %
DarkBASIC Pro
DarkBASIC Pro Start-Up Screen (First Start-Up Only) DarkBASIC Pro Start-Up Screen (Subsequent Start-Ups)
First Start-Up
If thisis the first time DarkBASIC Pro has been run on your machine, as well as
the main window, the Assistant Window also shows on the right-hand side.
If you close down the Assistant Window the display changes to match that shown
in FIG-2.4, showing the Project Dialog box.
FIG-24 APt P]

The Project Dialog Box

T .
S Remanie) e g il e

Subsequent Start-Ups

Click on this icon

to show the New Project

dialog

L

When DarkBASIC Pro is started up for the second (or subsequent) time, use the
FILE | NEW PROJECT option from the main menu, or click on the New Project icon
near the top left corner, to display the Project Dialog box.

Specifying a Project

The next stage is to create a project file by filling in the details required by the
Project Dialog box.

First the name to be given to the project is entered. This should be something
meaningful like Hangman or SpaceMonsters.

DarkBASIC Pro: Starting DarkBASIC Pro 41

FIG-2.5

Filling in the New
Project Dialog Box

Next the Specify a Folder radio button is selected and the folder in which the
DarkBASIC Pro projects are to be saved is entered. The folder specified must
already exist. See FIG-2.5 for asummary of these steps.

1
Enter the name of
the project here

Create a New DarkBASIC Professional Project

8
Use the Browse icon
to find the folder where the
project is to be stored

* Store it in the Projects Folder, or
Specify & Foldsr:

A sub-folder will be created
automatically to hold the three
DarkBASIC Pro files that will
be produced

Create a Hew, Blank Project

Use dssistant View Morde
= Lze Project Yiew Mode

Oncethe OK button in the Project Dial og box is clicked, the dialog box disappears
and you are left with the main edit area where the program code is entered. Line
numbers appear to the left of this area.

A First Program

LISTING-2.1

A First Program

DarkBASIC Pro alows
words to be givenin
either upper or lower case.

When you typeina
program, you' |l see that

theinstructions are
colour-coded with

keywords appearing in

blue.

42

Before we begin looking in detail at the commands available in DarkBASIC Pro,
we'll have aquick look at a simple program and show you how to typeitin, run it
and save the code.

Theprogram in LISTING-2.1 getsyou to enter your name at the keyboard and then
displays a greeting on the screen.

Rem Project: First
Rem Creat ed: 02/10/2004 07:35:27
Rem ***** Nain Source File ****x*

REM *** A programto read and display your name ***

I NPUT “Enter your name : ", nane$

PRINT “Hello " ,name$, “ welconme to DarkBASIC Pro.”
VWAI T KEY

END

An Explanation of the Code

REM Thisis short for REMARK and isused to indicate a
comment within the program. Comments are totally
ignored when the source code is translated into object code
and are only included for the benefit of anybody examining
the program code, giving an explanation of what the
program does.

I NPUT Thisisakeyword in DarkBASIC Pro. Keywords are words
recognised by the programming language as having a
specific meaning.

All keywords are shown throughout this text in uppercase,
but lowercase characters are also acceptable.

The INPUT keyword tells the computer to allow the user
to enter avalue from the keyboard.

DarkBASIC Pro: Starting DarkBASIC Pro

The need for aspace
after the colon will

become clear when you

run this program.

Click on this icon
to execute your
program

“Enter your name:” Thismessageis displayed on the screen as aprompt,
telling the user what information is to be entered.

Messages are always enclosed in double quotes (* ")
and are more generally known as strings.

name$ Thisisthe variable in which the value entered by the
user will be stored.

PRI NT This command is used to tell the computer to display
information on the screen.

“Hello ” Thisisthefirst piece of information to be displayed
Items of data are separated from each other by commas.

name$ The value held in the variable name$ is to be displayed.
Thiswill be whatever value the user typed in when the

earlier INPUT statement was executed.

“ wel come to DarkBASIC Pro.”
Another dataitem to be displayed.

WAI T KEY This command contains two key words which tell the
computer to wait for akey to be pressed before continuing
to the next instruction.

END Marks the end of the program.

Activity 2.2

In this Activity you are going to type in and run the program given in
LISTING-2.1.

Create afolder in the C: drive (or elsewhere) named DarkBasicProjects
Start up DarkBASIC Pro.
Bring up the Project Dialog box shown in FIG-2.4.

Name the project first.dbpro, select Specify a Folder; browse to your
DarkBAS CProjects folder and click OK.

Thefirst three lines of the program will appear automatically (only the date
and time will differ fromthat in LISTING-2.1).

Typein the remainder of the program as shown in LISTING-2.1.
Execute the program by pressing the F5 key or clicking on the Run icon.

When requested, type in your name. Y ou should then see a message including
your name displayed on the screen.

Finally, press any key to finish the program and return to the editor.

DarkBASIC Pro: Starting DarkBASIC Pro 43

FIG-2.6

Files Created by
DarkBASIC Pro

When opening the file

in Notepad, change the
File of Type entry to All
Files.

Activity 2.3
1. PRINT iswhat type of word?

2. Messages enclosed in quotes are known as what?

3. The WAIT KEY instruction causes what to happen?

If we use Windows Explorer to examine our DarkBasicProjects folder we'll see
that a new sub-folder called first has been created.

Inside that new folder are three files (see FIG-2.6).

&% C:\DarkBASIC Projects'\First ol x|
Ele Edt View Favortes Tools Help | "’z"
Qe - () - (¥ | /."-sEarch = ‘ EE
address [CADaBASIC PrajectsiFirst)~ L
Folders =] First.bs First.exe

e — =| | cearie DarkBASIC Pra Project

; j COR‘ELSD 1 KB n DarkBASIC Pro Project Ltd

1) DarkBAsIC Bock ~l T3 First.dbpro

BE %fgﬁ Eru]e:ts Fekp:adbrpup

B () Digal Shils &

first.dbpro Thisisthe project file.

first.dba Thisisthe file containing the source code.

first.exe Thisis the machine code version of your program.

It'sthe codein thisfile that is actually executed
when you run your program.

If you ever want to give away your completed programs to other people, you only
need to give them a copy of the .exefile. This contains everything they need to run
your program without allowing them to see your original DarkBASIC Pro code.

Activity 2.4

Without closing down DarkBASIC Pro, load up Notepad (it'sin Accessories)
and open up thefilefirst.dba.

Notice that the file only contains the three REM statements which were
generated automatically when you opened your new project. None of the
lines you typed in are present.

Saving Your Project

[ER) g gewdh e Qo
1 Hew Project Chrketd
Qe Project..

nnnnn

Whenyou’ vetyped inyour program you need to save both the project and the source
files. To do this, select FILE|SAVE PROJECT and then FILE|SAVE SOURCE.

44

Activity 2.5

Save your project and source files as described above.

DarkBASIC Pro: Starting DarkBASIC Pro

First Statements in DarkGASIC Dro

I ntroduction

Learningto programin DarkBASIC Proisvery simplecompared to other languages
such as C++ or Java. Unlike most other programming languages, it has no rigid
structure that must be adhered to. In fact, there are only two statements that you
should include at this stage. These are given below.

Ending a Program

The END Statement

FIG-2.7

The END Statement

Thefirst statement we examineistheonethat should comeat theend of any program
you write. It consists of the single keyword END and, as you might have guessed,
marks the end of your program.

We have already seen this statement in LISTING-2.1.

Some of the statements available in DarkBASIC Pro have quite a complex syntax
s0, to help show exactly what options are available when using a statement, we'll
use informal syntax diagrams. FIG-2.7 shows a syntax diagram for the END
statement.

These diagrams contain one or moretiles. A raisedtile (likethe one above) signifies
aDarkBASIC Pro keyword. The order of the tiles signifies the order in which the
keywords must be placed when using this statement in your program.

So the diagram above tells us that the END statement contains only the single word
END.

TheWAIT KEY Statement

FIG-2.8

The WAIT KEY
Statement

We can make a program pause until a key is pressed using the WAIT KEY
statement. The program will only continue after akey has been pressed. Any key
on the keyboard will do.

For example, in the program given in LISTING-2.1, the computer will pause after
the PRINT statement is executed.

For most simple programs, you need to include a WAIT KEY statement
immediately before the END statement, otherwise your program will finish and
close down before you get a chance to view what is being displayed on the screen.

The syntax for this statement is shown in FIG-2.8.

DarkBASIC Pro: Starting DarkBASIC Pro 45

Adding Comments

It isimportant that you add comments to any programs you write. These comments
should explain what each section of code is doing. It's also good practice, when
writing longer programs, to add comments giving details such as your name, date,
programming language being used, hardware requirements of the program, and
version number.

Comments aretotally ignored by thetranslation process asit turns DarkBASIC Pro
statementsinto machine code. The purpose of commentsisto makeaprogram more
readable to other people who may have to modify a program after you' ve moved
on to other things.

In DarkBASIC Pro there are three ways to add comments:

> Add the keyword REM. The remainder of the line becomes a comment
(see FIG-2.9).

FIG-2.9

N 4
The REM Comment
yr—— N

Notice that this syntax diagram introduces the sunken tile. Sunken tiles
signify details that are determined by the programmer. Hence, the
programmer gets to choose exactly what comment should be added after the
keyword REM. For example:

Adding asterisksto a
comment helpsit to stand out. REM *** Program to display nunbers ***

» Add an opening quote character (you'll find this on the top left key, just
next to the 1). Again the remainder of the lineistreated as a comment

(see FIG-2.10).
FIG-2.10 o
I
The * Comment . —
For example:
Get details from keyboard
» Add several lines of comments by starting with the term REMSTART
and ending with REMEND. Everything between these two wordsis
treated as a comment (see FIG-2.11).
FIG-2.11
l REMSTART
The REMSTART ..
REMEND Comment

N ——
l REMEND

This diagram introduces another symbol - alooping arrowed line. Thisis
used to indicate a section of the structure that may be repeated if required.
In the diagram aboveit is used to signify that any number of comment lines

46 DarkBASIC Pro: Starting DarkBASIC Pro

can be placed between the REMSTART and REMEND keywords.

For example, we can use this statement to create the following comment
which contains three comment lines:

REMSTART
This programis designed to play the gane of
battl eshi ps. Two peer-to-peer conputers are
required.

REMEND

Activity 2.6
1. How are keywords shown in a syntax diagram?
2. What does a sunken tile in a syntax diagram represent?

3. How is arepeatable element in a statement represented in a syntax diagram?

DarkBASIC Pro: Starting DarkBASIC Pro 47

Outputting to the Screen

I ntroduction

Even the simplest program will require information to be displayed on the screen.
In DarkBASIC Pro the simplest way to display information on the screen isto use
the PRINT statement. Other statements exist which allow changes to the colour,
font and style of displayed charactersto be specified.

A description of most of these statements are given over the next few pages

The PRINT Statement

Spaces are just strings -
like any other sequence
of characters - and must
be enclosed in double
quotes.

48

As we saw in LISTING-2.1, information can be displayed using the PRINT
statement.

To useit, we start with the keyword PRINT, followed by whatever information we
want to display. For example, the statement

PRINT “Hel |l 0"

displays the word Hello on the screen. The quotes themselves are not displayed.
Absolutely any set of characters can appear between the quotes, including spaces.

Although a set of characters, or strings, must be enclosed in double quotes, if you
want to display a number, quotes are not required. For example, the following are
valid statements:

PRI NT 12

PRI NT 3.1416
PRINT -7.0

It is possible to display severa pieces of information using a single PRINT
statement by separating each value to be displayed by acomma:

PRINT 12,7,1.2

Unfortunately, all the valuesin this statement will be displayed without any spaces
between them giving the impression of one large number (1271.2) rather than three
separate values.

To solve this problem we need to display some spaces between the numbers:

PRI NT 12," T ", 1.2

When several values are displayed by asingle PRINT statement they appear on a
single line of the screen, but by using several PRINT statements we can make the
data appear over severa lines:

PRI NT 12

PRI NT 1
PRINT 1.2

To turn thisinto acomplete program we just need to add the WAIT KEY and END
statements as shown in LISTING-2.2.

DarkBASIC Pro: Starting DarkBASIC Pro

LISTING-2.2
Displaying Numbers

REM statements
generated when you start a
new project have been
omitted from the listing.

REM *** Print some nunbers ***
PRI NT 12

PRI NT 7

PRINT 1.2

REM *** End program ***
WAI T KEY
END

Activity 2.7
Start up anew DarkBASIC Pro project.
To do this select File | New Project.

In the Project dialog box that appears, call the project printing.dbpro; select
Foecify a Folder; browse to your DarkBAS CProjects folder and click OK.

Typein and test the program given in LISTING-2.2.

Remember to save the Source and Project files when you have finished.

Creating Blank Lines

The PRINT statement can even be used without any datavalues being given, asin
theline

PRI NT

This has the effect of creating ablank line on the screen. Hence, the lines
PRINT 1

PRI NT
PRI NT 2

would display the values 1 and 2 with ablank line between them.

Activity 2.8

Modify your last program so that a blank line appears between each number
displayed.

Ending the PRINT Statement with a Semicolon

If you end a PRINT statement with a string and a semicolon, the output produced
by the next PRINT statement will be displayed on the same line. For example, the
lines:

PRINT 12,"";
PRI NT 7
PRINT 1.2

would produce the output

127
1.2

Asyou will seelater, this apparently useless option can be used to great effect.

DarkBASIC Pro: Starting DarkBASIC Pro 49

FIG-2.12

The PRINT Statement

50

Activity 2.9
Create a new project called Printing2.

Write a program which displays the numbers 1, 2 and 3 on the same line.
There should be asmall gap between each number.

Change your program so that the numbers 1, 2 and 3 are displayed on separate
lines.

Modify the code again so that the program pauses before each number is
shown. (HINT: You'll need to add aWAIT KEY statement after each PRINT
statement.)

Activity 2.10

Write a program (call the project Shapes) to display the following three
shapes (pause the program between each):

a) *khkkkkkkkx*k
* k k k k ok ok k k%
* k k k k ok ok k kx
b) *
* %
* % %
* % % %
* %k %k % %
c) *

* k%

* k *

* Kk k%

*k kK Kk

The format of the PRINT statement is shown in FIG-2.12.

N 4 N4
l PRINT data item;]
| AR
N4
-
This diagram introduces two new concepts. Items within the brackets are optional

and may be omitted. Any number of dataitems can be displayed, but each must be
separated from the next by a comma.

Activity 2.11

Using the information given in the PRINT statement’s syntax diagram, which
of the following PRINT statements areinvalid?

a) PRI NT

b) PRINT “Start gane”

C) PRINT 7;

d) PRINT "";

€) PRINT 6, 5, 4;

DarkBASIC Pro: Starting DarkBASIC Pro

Positioning T

ext on the Screen

FIG-2.13

The Screen isMade Up of
Pixels

In DarkBASIC Pro the screenistreated like apiece of paper divided into thousands
of small squares, as shown in FIG-2.13. These small invisible squares are known
as pixels (derived from the phrase picture elements). An individua pixel is
identified by giving its position on the screen.

A pixel’s position is given by the column number (also known as the position on
the x-axis) followed by the row number (the position on the y-axis) separated by a

comma.

Thetop left pixel isat position (0,0). This point is known as the origin.

The origin
0,0)
/.4 &) The x-axis (columns)
\t“‘L; H 1.1.1 3
) Position
A (62
0
3
o
9
g
>
]
e
'_
The Screen

Exactly how many pixelsare on the screen depends on the screen resolution (which
we will examine later) but there will be at least 640 columns by 480 rows.

The SET CURSOR Statement
Normally, the first text that we output to the screen will start at the origin, but we
can change this by using the SET CURSOR statement which allows us to specify
where on the screen the next PRINT statement will begin its output. For example,
the statements
SET CURSOR 350, 100
PRI NT “HELLO'
displays the word HELL O, with the top-left comer of the H starting at position
(350,100) (i.e. at column 350, row 100) as shown in FIG-2.14.
FI1G-2.14 The x-axis (columns)
=i The top-left corner of
Positioning Text Using the {_the text starts at position
SET CURSOR Statement (350'100).

DarkBASIC Pro:

The y-axis (rows)

SEETT The Screen

Starting DarkBASIC Pro 51

FIG-2.15

The SET CURSOR
Statement

The format for the SET CURSOR statement is shown in FIG-2.15.

o] s [L

In the diagram above:
X,y isapair of integer values specifying the
position to which the cursor is to be moved.
Activity 2.12

Create a new project (corners.dbpro) that displaystheletters A, B, C and D so
that one letter appears at each corner of the screen.

(You'll haveto usetria and error to find the correct positions)

Activity 2.13

Since we can output at any position on the screen, this allows us to display
different values at the same position on the screen.

Create a new project (overwrite.dbpro) containing the following code:

REM *** Qutput two strings at the same |ocation ***
SET CURSOR 100, 100

PRI NT “Hel | 0”

WAI T KEY

SET CURSOR 100, 100

PRI NT “ Goodbye”

REM *** End program ***

WAI T KEY

END

Check the output produced by running this program.

The TEXT Statement

Y our screen will almost
certainly use a different
resolution when using the
TEXT statement than it
did in previous programs.
Thismeansthat in this
Activity you'll haveto
change the coordinates
from those used in the
previous example.

52

The effectsof the SET CURSOR and PRINT statementsare combinedinthe TEXT
command which takes both the value to be displayed and the position at which the
dataisto be displayed. For example, the statement

TEXT 350, 100, "HELLC

has the same effect asthe SET CURSOR example given earlier, although you may
find that the program uses adifferent screen resol ution when theoutput isdisplayed.

Activity 2.14

Change your corners.dbpro project so that it usesthe TEXT command to
position the lettersin the corners of the screen.

There are afew differences between the PRINT and TEXT commands.

DarkBASIC Pro: Starting DarkBASIC Pro

FIG-2.16

The TEXT Statement

Firstly, TEXT makes use of agraphics display modeto create output, PRINT does
not. Because of this, the screen resolutionin Activity 2.14 may differ from that used
by the PRINT statement and how output is handled will change.

Activity 2.15

Change your overwrite.dbpro project replacing the SET CURSOR and PRINT
commands with equivalent TEXT statements.

How does the result differ from before?

The second difference is that the TEXT command will only display strings, so a
line such as

TEXT 100, 100, 12

wherethe statement attemptsto display thevalue 12 isnot acceptableand will cause
an error message to appear when you attempt to run the program. Of course, by
enclosing the 12 in quotes you turn it from a number into a string and this would
be accepted:

TEXT 100, 100, *“12"

A final differenceisthat the TEXT command can only be used to display asingle
value at atime. Hence, a statement such as

TEXT 100, 100, “Hello”, “again”

would fail since there are two strings in the command. Again, this could be
corrected, this time by joining the two strings:

TEXT 100, 100, “Hell o again”

The syntax for the TEXT statement is givenin FIG-2.16.

Jic | afje (e | ezl

In the diagram above:
X,y isapair of integer values specifying the
position to which the cursor is to be moved.
string isthe string value to be displayed on the screen.

All strings should be enclosed in double quotes.

The CENTER TEXT Command

Like most
programming
languages, DarkBASIC
Pro keywords use
American spelling.
Hence, CENTER and
not CENTRE.

Whereas the TEXT command starts output at the specified position, CENTER
TEXT, which usesthe sameformat as TEXT, centresthe output horizontally round
the value given for the x-axis. Hence, the statement

CENTER TEXT 350, 150, “Hello”

will display the word Hello as shown in FIG-2.17.

DarkBASIC Pro: Starting DarkBASIC Pro 53

FI1G-2.17 The x-axis (columns)

Positioning Text Using =T H447~ The horizontal centre
{ of the text is positioned at

CENTER TEXT Iy (350,150)

0

H

S

ES ' B

>

E 28

SEHT The Screen

Activity 2.16

Write a program (project centre.dbpro) to place the word MIDDLE at the
centre of the screen.

The format of the CENTER TEXT statement is given in FIG-2.18.

FIG-2.18
Jcentea] [zext | T LA s L e

Statement

In the diagram above:

X,y isapair of integer values specifying the position
where the horizontal centre of the string isto be
output.

string isthe string value to be displayed on the screen.

Changing the Output Font

When you display text on your computer, you can choose the size, style, and font
of that text.

We can change the font style and size used when outputting text by using the SET
TEXT FONT and SET TEXT SIZE commands. Once anew font and size has been
set, any subsequent output statements will be done in this style.

The SET TEXT FONT Statement

You have to add a font name in quotes to the end of this statement. Any values
output after thiswill be shown in that font. For example,

SET TEXT FONT “Courier New'
will result in the Courier New font being used by any subsequent output.

The format for thisinstruction is given in FIG-2.19.

FIG-2.19
The SET TEXT FONT SET| | | TEXT I FONT; I -IE:E
Statement U—I | ——

54 DarkBASIC Pro: Starting DarkBASIC Pro

In the diagram above:

font name isastring (enclosed in quotes) giving the name of
the font to be used for subsequent outpuit.

TheSET TEXT SIZE Statement

Thetext sizeisgivenin points (apoint being 1/72 of an inch). For example,

SET TEXT Sl ZE 20
will result in subsequent output using characters that are 20/72 of aninch tall.

The format of this statement is given in FIG-2.20.

FIG-2.20
The SET TEXT SIZE SE"'I R I SIZEI
In the diagram above:
point size is an integer value specifying the size of font

(in points) to be used for subsequent output.

The SET TEXT TO Statement

Y ou can also set the text styleto produceitalics, bold, or bold italics output aswell
asthe normal default style. Thisis achieved using the SET TEXT TO commands.
There are four options:

SET TEXT TO BOLD

SET TEXT TO I TALIC

SET TEXT TO BOLDI TALI C
SET TEXT TO NORVAL

The following program (LISTING-2.3) outputs the word HELLO in large, bold,
Courier New font:

LISTING-2.3 REM *** Use Courier New size 20 bold ***
_ _ SET TEXT FONT “Courier New

Setting Text Size, Font SET TEXT SI ZE 20

and Style SET TEXT TO BOLD

PRI NT “HELLO'

VAI T KEY

REM *** Change to italics ***
SET TEXT TO I TALIC

PRI NT “HELLO’

WAI T KEY

REM *** Change to bold italics ***
SET TEXT TO BOLDI TALIC

PRI NT “HELLO’

WAI T KEY

REM *** Change to normal ***
SET TEXT TO NORNAL

PRI NT “HELLO’

REM *** End the program ***
WAI T KEY

END

DarkBASIC Pro: Starting DarkBASIC Pro 55

FIG-2.21

The SET TEXT TO
Statement

Activity 2.17

Typein and test the program given in LISTING-2.3. Name the project
fonts.dbpro.

Change the code so that all of thetext is displayed in Times New Roman.

The format for this statement is shown in FIG-2.21.

This diagram introduces another new feature. The braces are used to enclose items
which are mutually exclusive aternatives. In other words, the statement is
completed by choosing one of the options given in the braces.

Changing Colours

So far we've had white text on a black background, but you' re free to choose any
colours you want for both the text and the background. Before we see how to do
that in DarkBASIC Pro, let’s start with some basic facts about colour.

How Coloursare Displayed

FIG-2.22

The Additive Colour
Process

56

Have a close look at your computer monitor. It's in full colour, showing almost
every colour and shade your eye is capable of seeing. And yet your screen can
generate only three basic colours: red, green and blue.

Every other colour that you see on the screen is made up from those three colours.
For example, to show the colour yellow, the screen combines the colours red and
green; red, green and blue together produce white; when all three basic colours are
switched off, we have black.

Thisis known as the additive colour process and the colours red, green and blue
areknown asthe primary colours. The basic colours that can be constructed from
these three primary colours are shown in FIG-2.22.

Yellow -~ Gy

As you can see from the figure above, green and blue combine to give a colour

DarkBASIC Pro: Starting DarkBASIC Pro

called cyan, while red and blue give magenta.

To create other colours and shades we need only to vary the brightness of the
primary colours. Hence, to create orange we use an intensered, alessintense green,
and no blue.

In computer systems the colour of any spot on the screen is recorded as a series of
three numbers. These numbers represent the intensities of the red, green and blue
(RGB) components (in that order) that make up the colour of the spot. Each number
can range between 0 and 255; 0 means that the colour is not used, while 255 means
that the colour is at full brightness. Hence, a bright yellow spot on the screen will
be recorded as 255, 255, 0, meaning that the red and green are at full intensity, and
the blue is switched off.

The RGB Statement

In DarkBASIC Pro we can define any colour using the RGB statement. This
statement takes three values, enclosed in parentheses. These values define the
intensities of the red, green and blue components that make up the required colour.
The RGB statement combines these three components into a single integer value
which it returns as aresult of calling this statement. For example, the statement

PRI NT RGB(255, 255, 0)

will display the integer value representing the colour yellow.

Activity 2.18

Create anew project (colours.dbpro) containing the following code:
PRINT RGB (255, 255, 0)
WAI T KEY
END

What valueis displayed?

Change the values in the RGB command to 255,0,255. What valueis
displayed this time?

The syntax for the RGB statement is shown in FIG-2.23.

FIG-2.23

S EEFHEIWE

integer
In the diagram:
red is an integer value between 0 and 255
green is an integer value between 0 and 255
blue isan integer value between 0 and 255.

DarkBASIC Pro: Starting DarkBASIC Pro 57

FIG-2.24

The DarkBASIC Pro
Editor’s Pop-Up Menu

FIG-2.25

The Colour Palette Box

The arrowed line and the term integer signify that this statement returns an integer

value.

How do you find out the red, green and blue values of some particularly nice shade
of orange? Luckily, the DarkBASIC Pro editor can help. If you are busy typingin
a program and suddenly need to supply the three values required by an RGB
statement, you can simply right-click in the edit window. The resulting pop-up
menu (see FIG-2.24) has an RGB Color Picker option which, when selected,

displays acolour palette (see FIG-2.25).

W@t Chrl+
Y Capy Chrl+C
| Paste Chrl+y
Select Al Chrl+a
) . Colour values
Toagle Breakpoint Shift+Ckrl+F2
o i can be selected
Convert File ko DATA Statements with the help of the
Insert Code Template RGB Color Picker option
Remaove Indentation
RiGE Color Picker
Basic colors
Il Nl Nl
HMrTEEENEN
ET NN
ENEEEEEN
ENEEEEEN
T .

Custam colars:

[Define Bustom Colars 3>

ok Cancel

Hueg: W Hed: IU_
sae[o Green [0
CobSgld | [a— pwefd

fdd to Custom Colors |

Selecting acolour from thispaletteand clicking OK automatically producesan RGB
statement in your program code with the appropriate values to match the colour
selected. We'll usethisin the next Activity.

TheINK Statement

FIG-2.26

The INK Statement

58

In DarkBASIC Pro we can change both the colour used when writing text onto the
screen (known as the foreground colour) and the colour behind that text (known as
the background colour) using the INK. command. This command takesthe general

form shown in FIG-2.26.

N— 4 N4
Jink { Freesown]| || Jeectgenne]

In the diagram:

foreground

background

isan integer value representing the colour to be
used for the foreground.

isan integer value representing the colour to be
used for the background.

The colour values themselves are created using the RGB command. So to have our
text output in yellow on ared background we would use the command:

DarkBASIC Pro: Starting DarkBASIC Pro

I NK RGB(255, 255, 0), RGB(255, 0, 0)

Where you want to use black, rather than use RGB (0, 0, 0) you may simply enter
the value zero. For example, to change the foreground to blue and the background
to black, we would use the statement

I NK RGB(0, 0, 255) ,0

Once you have set the ink colour, any output you do to the screen will be in that
colour. For example, we would expect the program in LISTING-2.4 to display the
word HELLO in yellow on ared background.

LISTING-24 REM *** Set yel |l ow foreground and red background ***
I NK RGB(255, 255,0) , RGB(255, 0, 0)

Setting Foreground and PRI NT “HELLO'

Background Colours
REM *** End program ***
VWAI T KEY

END

Activity 2.19
Type in and execute the program in LISTING-2.4 (project colours2.dbpro).
What colour is the background on the screen?

Delete the first RGB command within the INK statement and use the RGB
Color Picker option to replace it with a colour of your choice.

Notice that the background colour in the INK command was set to red and yet the
colour behind the lettersis till black. If you want to know why, read on!

There are two main areas to any text that appears on the computer screen: the text

and the text background (see FIG-2.27).
Text
background
Screen

The foreground colour setting determines the colour of the text itself while the
background colour setsthe colour used in the text background. However, normally
thetext background is transparent so setting the background col our appearsto have
no effect. Usually, atransparent background will be exactly what we want, sinceit
allows us to do things such as place text on top of an image, and have the image
still show through the text (see FIG-2.28) but, as we'll see in a moment, we can
change this transparent background setting.

FIG-2.27 4

Text Areas

Activity 2.20

Modify your previous program so that the word GOODBYE is displayed in
green after the existing word HELLO.

DarkBASIC Pro: Starting DarkBASIC Pro 59

FI1G-2.28

Text with a Transparent

Background

We'll see how to place
images on the screen later.

The Scottish Highlands

w - B --;__

The SET TEXT OPAQUE Statement

FIG-2.29

The SET TEXT
OPAQUE Statement

We can create ablock of colour around any text wedisplay by usingthe SET TEXT
OPAQUE command. The colour used in the text background will be that defined
as the background colour in your INK command. This statement has the format

shown in FIG-2.29.

For example, if aprogram contains the statements

SET TEXT OPAQUE
I NK RGB(0, 0, 255), RGB(255, 255, 0)
PRI NT “Hel | 0

the word Hello should appear in blue with ayellow background around the text.

Activity 2.21
Add the line SET TEXT OPAQUE to start of your previous program.

Change the program so that the word GOODBYE shows in cyan with a
magenta background.

The SET TEXT TRANSPARENT Statement

FI1G-2.30
The SET TEXT

TRANSPARENT
Statement

60

Although text normally has a transparent background, if you use the SET TEXT
OPAQUE command, every output statement executed later will have a coloured
background. To return to a transparent background you need to use the statement
SET TEXT TRANSPARENT which has the format shown in FIG-2.30.

For example, if a program contains the statements

SET TEXT OPAQUE

I NK RGB(O0, 0, 255), RGB(255, 255, 0)
PRI NT “Hel | 0”

SET TEXT TRANSPARENT

PRI NT “ Goodbye”

DarkBASIC Pro: Starting DarkBASIC Pro

Hellowill haveayellow background while theword Goodbye would be surrounded
by the black background of the screen.

The CLS Statement

FIG-2.31

The CLS Statement

LISTING-2.5

Using Transparent and
Opague Text

FIG-2.32

Changing Background
Transparency

Although when you first run your program it will start with ablank screen, you can
clear everything from the screen at any point in your program by using the CLS
statement (derived from CL ear Screen). To use the command, just write the term:

CLS

Thisgivesaempty black screen. However, if you don’t want the screen to be black,
you can clear the screen to another colour by specifying a colour setting in
conjunction with the CL S statement. For example, to create agreen screen, use the
line:

CLS RGB(0, 255, 0)

The format for this statement is shown in FIG-2.31.

N——24
LS colour; l
p—

In the diagram:

colour isan integer value representing a colour. The
screen will befilled with this colour after the CLS
statement has been executed.

The program in LISTING-2.5 displays the word HELL O several times using both
opaque and transparent modes. The screen colour is set to red.

REM *** c|l ear screen to red ***

CLS RGB(255, 0, 0)

REM *** Change text to yellow and the background to green ***
I NK RGB(255, 255, 0), RGB(0, 255, 0)

REM *** Qut put the word HELLO with a transparent background ***
PRI NT “HELLO’

REM *** Qut put the word HELLO twi ce with opaque background ***
SET TEXT OPAQUE

PRI NT “HELLO’

PRI NT “HELLO’

REM *** Return to transparent output ***
SET TEXT TRANSPARENT
PRI NT “HELLO'

REM *** End the program ***
WAI T KEY
END

The output from this program is shown in FIG-2.32.

DarkBASIC Pro: Starting DarkBASIC Pro 61

Activity 2.22

Typein the program in LISTING-2.5 (backgrounds.dbpro) and check out the
results you obtain.

Activity 2.23

Create a new project (Box) which produces the following output.

kkhkkkkhkkhkkkhkkkxk*k

* BOX *

*kkkkkkkkkkk*k
Use Courier New, size 20, bold for the text.

The screen background should be red.

The asterisks should be yellow and the word BOX in blue with a black
background.

Summary

62

® The CLS statement clears the screen using a given colour.
® The PRINT statement can be used to print any type of value.

® A single PRINT statement can display many values.

The PRINT statement moves the cursor to a new line unless it finishes with a
semicolon.

® The SET CURSOR statement moves the cursor to any position on the screen.
® The TEXT statement will output asingle string at any position on the screen.

® The CENTER TEXT statement will output a string centred round a specified

position.

® ThelINK statement sets the foreground and background colours used.

® The SET TEXT FONT statement sets the font to be used when displaying

information.

® The SET TEXT SIZE statement sets the size to be used in text output.
® Thetext sizeisgivenin points (1/72 of an inch).
® TheSET TEXT BOLD statement setsthetext styleto be used for output to bold.

® TheSET TEXT BOLDITALIC statement setsthetext styleto be used for output

to bold italics.

® The SET TEXT ITALIC statement setsthe style to be used for output to italics.

® The SET TEXT NORMAL statement sets the style to be used for output to

normal.

DarkBASIC Pro: Starting DarkBASIC Pro

® TheSET TEXT OPAQUE statement createsabackground colour round any text
that is output.

® The SET TEXT TRANSPARENT statement makes text background
transparent.

® The WAIT KEY statement causes the program to halt until any key is pressed.

® The END statement marks the end of the program.

DarkBASIC Pro: Starting DarkBASIC Pro 63

some Display Techniques

Screen Resolution

Earlier in this chapter you saw how the screen resolution changed when we started
using the TEXT command in place of PRINT and SET CURSOR.

Luckily, we can choose which resolution we want the program’s output to use by
clicking on the brown Settings button at the bottom right of screen. In the resulting
Configure EXE Settings window we can choose the resol ution we want to use (see

FIG-2.33).
FIG-2.33 R e
Setting the Screen
Resolution SET TEZT anApe Select the type

of display required

ELBenvamanun
TR RN <
F
g
O,

From the Dimensions
combobox, choose the
resolution required

|l

|
:

Commert. . :Im
|||||||||

- (o
st Y st vnnimana o [-

Y ou should consider the following when choosing a resolution.

» Output looks better in higher screen resolutions.
» Everything looks smaller in higher resolutions.
» The memory on your video card may limit what resolutions can be used.

> High resolutions take longer to update, so a visually complex game may
seem slower in higher resolutions.

The SET DISPLAY MODE Statement

It is also possible to set the screen resolution and colour depth from within your
program using the SET DISPLAY MODE statement which has the format shown
in FIG-2.34.

FIG-2.34

N4 N4
The SET DISPLAY I l
MODE Statement 4 -

64 DarkBASIC Pro: Starting DarkBASIC Pro

In the diagram:

width isan integer value representing the width of the
display mode required given in pixels.

height isan integer value representing the height of the
display mode required given in pixels.

depth isan integer value representing the number of
bits used to represent a single pixel on the screen.
Typical values are 16, 24 or 32.

To set the screen to aresolution of 1280 by 1024 using 32 bit pixels we would use
theline

SET DI SPLAY MODE 1280, 1024, 32

Itisonly valid to chose aresolution which can be achieved by your video card and
screen. Attempt to set an invalid resolution will produce an error message.

Choosing a Text Font

The SET TEXT FONT statement allows us to choose a font for any text that we
intend to output. However, that choice depends on what fonts are available on your
computer. You need to aso consider what fonts are available on any other
computersthat your final softwareisto be run on. If your game makes use of afont
such as Kidnap and that font is not available to someone who has bought your
program, then the Kidnap font will be missing when your game runs on the buyer’s
machine.

Most fonts are proportional fonts. That is, the horizontal width of a character
depends on what that character is. Hence, w’ stake up morewidth thani’s. Y ou can
seethisin the two lines below:

But some fonts are mono-spaced. In this style every character takes up the same
width, as you can see below:

When you're working in the DarkBASIC Pro editor entering the lines of your
program, the text is displayed in a mono-spaced font, but the default font used by
your program when outputting to the screen is a proportional font.

Erasing Text

BackinActivity 2.15, we saw that whenthe TEXT command is used to output more
than oneitem to the same area of the screen it created an unreadable blob. We need
some way of getting rid of the old text before outputting new text at the same
position.

There are two ways to erase text from the screen.

DarkBASIC Pro: Starting DarkBASIC Pro 65

LISTING-2.6

Erasing Text Using
Opaque Spaces

LISTING-2.7
Erasing Text Using The

Same Text in the
Background Colour

66

Thefirst of these is to overwrite the text with spaces with the text background set
to opaque. Thisis demonstrated in LISTING-2.6.

REM *** Set background col our ***
CLS RGB (126, 126, 126)

REM *** Set text font, size, and background col our ***
SET TEXT FONT “Arial”

SET TEXT SI ZE 36

I NK RGB(255, 0, 0), RGB(126, 126, 126)

REM *** Qut put Text ***
TEXT 100, 100, "Hel I 0"
WAI T KEY

REM *** Renpve text by witing opaque spaces ***

REM *** at the sane position as the original text ***
SET TEXT OPAQUE

TEXT 100, 100, " “

REM *** End program ***
WAI T KEY
END

Activity 2.24
Typein and test the program given above (TextGone).

There should be 5 spaces between the quotes in the second TEXT statement.

What problem arises? Try to cure the problem.

A second method of erasing text isto overwrite with exactly the sametext, but this
time in the background colour. The logic of our strategy is:

Clear screen in required background colour

Set text font, size and colour

Output text

Set foreground colour to match background colour
Output text at same position as before

Thislogicisimplemented in LISTING-2.7.

REM *** Set background col our ***
CLS RGB (126, 126, 126)

REM *** Set text font, size, and background col our ***
SET TEXT FONT “Arial”

SET TEXT SI ZE 36

I NK RGB(255,0,0),0

REM *** Qut put Text ***
TEXT 100, 100, "Hel | 0"
WAI T KEY

REM ** Renpve text by witing it again in background col our ***
I NK RGB(126, 126, 126), 0
TEXT 100, 100, "Hel | 0"

REM *** End program ***
VWAI T KEY
END

DarkBASIC Pro: Starting DarkBASIC Pro

Activity 2.25
Modify your previous project to match the code given above.
Run the program and check that the text (Hello) is correctly erased.

Modify the TEXT statementsin the program so that word Goodbye is erased
from position 100,80.

Shadow Text

We can create shadowed text by writing the sametext in different coloursat slightly
offset positions. This needs the following logic:

Set foreground colour to black

Output text

Set foreground colour to red (or some other colour)
Output text at a slightly different position from before

which is coded as:

REM *** Shadow Text ***
I NK RGB(0,0,0),0

TEXT 102, 102, “Hello”
I NK RGB(255,0,0) ,0
TEXT 100, 100, “Hello”

Activity 2.26

Add the code above to your existing program.
Try modifying the offset value of the black text and see what effect this has on

the display.

Embossed Text

By creating two versions of atext, we achieved shadowed text; by creating three
copies, we can produce an embossed effect.

I To do thiswe need the following logic:
Clear the screen to grey (or some other colour)
Set foreground to black

Output required text

Set foreground to white

Output required text at an offset position

Set foreground to match background

Output required text at a position between the black and white output.

The code for thisis:

CLS RGB(126, 126, 126)

REM *** Enbossed Text ***
I NK RGB(0,0,0),0

TEXT 201, 201, " Goodbye"

I NK RGB(255, 255, 255), 0
TEXT 199, 199, " Goodbye"

I NK RGB(126, 126, 126), 0
TEXT 200, 200, " Goodbye"

DarkBASIC Pro: Starting DarkBASIC Pro 67

Activity 2.27
Add the code above to your existing program.

Try modifying the font, size and colours used as well as the offset valuesto
create the best effect.

Summary

68

® The screen resolution used by your program can be set manually using the

Settings button.

® The screen resolution can be set from within your program using the SET

DISPLAY MODE statement.

® |n proportiona fonts the width of a character depends on the shape of the

character.

@ |n mono-spaced fonts all characters have the same width.
@® Text can be erased from the screen by overwriting it with opague spaces.

® Text can be removed from the screen by overwriting it with the same text in the

background colour.

@ Shadow text can be created by outputting a darker version of the text and then

overwriting it with the same text dlightly offset from the original and in a
different colour.

® Embossed text can be created by outputting dark, light, and background

coloured versions of the text. The dark version is written first, then the offset
light text and finally the background coloured text at a mid point between the
dark and light text.

DarkBASIC Pro: Starting DarkBASIC Pro

solutions

Activity 2.1
1. Machine code (or object code) instructions
2. Compiler
3. A syntax error

Activity 2.2

No solution required.

Activity 2.3

1. A keyword
2. Strings

3. Causes the program to pause until akey is pressed.

Activity 2.4

No solution required.

Activity 2.5

No solution required.

Activity 2.6
1. Keywords are shown inraised tiles

2. A sunken tile represent information whose exact

value is determined by the programmer.

3. Repeatable elements are shown using alooping

arrowed line.

Activity 2.7

No solution required.

Activity 2.8
The program code is:

REM *** Print some nunmbers ***
PRI NT 12

PRI NT

PRI NT 7

PRI NT

PRINT 1.2

REM *** End program ***

VWAI T KEY

END

Activity 2.9

Version 1:

REM *** Di spl ay nunbers on the sane |ine ***

PRINT 1, “ ", 2, “ ", 3
REM *** End program ***
WAI T KEY

END

DarkBASIC Pro: Starting DarkBASIC Pro

Version 2:

REM *** Di spl ay nunbers on the separate
l'i nes

PRINT 1

PRINT 2

PRI NT 3

REM *** End program ***

WAI T KEY

END

Version 3:

REM *** Di spl ay nunbers on the separate
lines ***

PRI NT 1

VAI T KEY

PRI NT 2

WAl T KEY

PRI NT 3

REM *** End program ***

VAI T KEY

END

Activity 2.10

Program code:

REM *** Shape 1 ***
PR' N'r LR EEEEEEEEE S
PRl N‘l’ Hkkkkhkkkkkx"
PRl N'I' Hhkkkkkkkkk*x"
PRl N'I' LR EEEEEEEEE S
WAI T KEY

REM *** Shape 2 ***
PRI NT "*"

PRI NT "**"

PRI NT "*x*n

PRI NT "x %

PRlN‘l’ Mhkkkkk"

WAI T KEY

REM *** Shape 3 ***
PRINT " *
PRINT " Fown
PRINT " *xxn

PRl N'I' w *k Kk k"

PRlN‘r Tk kkkk"

REM *** End program ***
WAI T KEY

END

The last shape may not be exact. See Choosing a Text
Font later in this chapter.

Activity 2.11

None of the PRINT statements areinvalid

Activity 2.12

The exact values will vary according to your screen
resolution.

The following code will fit a 1280 by 1024 screen

REM *** A top left ***
PRINT “A"

REM *** B top right ***
SET CURSOR 1260, 0

PRI NT “B"

69

REM *** C bottom|left ***
SET CURSOR 0, 990

PRINT “C’

REM *** D bottomright ***
SET CURSOR 1260, 990

PRINT “D’

REM *** End program ***
VWAI T KEY

END

Activity 2.13

The word Goodbye overwrites and removes the word

Hello from the screen.

Activity 2.14
The code for aresolution of 1280 by 1024 is:

REM *** A top left ***
TEXT 0,0, "A"

REM *** B top right ***
TEXT 1260, 0, "B"

REM *** C bottom | eft ***
TEXT 0, 990,"C"

REM *** D bottomright ***
TEXT 1260, 990, " D"

REM *** End program ***
WAI T KEY

END

Y ou may find that this program uses a different
resolution than the earlier version did.

Activity 2.15
The program code is:

REM *** Qut put two strings at sane
location ***

TEXT 100, 100, “Hello”

WAI T KEY

TEXT 100, 100, “Goodbye”

REM *** End program ***

VWAI T KEY

END

The second string writes on top of the first without
removing it. We'll see acure for thislater in the chapter.

Activity 2.16
For 1248 by 1024, the program code is:
CENTER TEXT 623, 500, “M DDLE’
REM *** End program ***

VWAI T KEY
END

Activity 2.17

The second line of the LISTING-2.3 should be changed

to

SET TEXT FONT “Ti mes New Rorman”

Activity 2.18
PRI NT RGB(255, 255, 0)

70

displays the value 4294967040
PRI NT RGB(255, 0, 255)

displays 4294902015

Activity 2.19

The background remains black.

Activity 2.20
The program codeiis:

I NK RGB(255, 255, 0), RGB(255, 0, 0)
PRINT “Hel | 0"

REM *** Set green foreground ***
I NK RGB(0, 255,0),0

PRI NT “Goodbye”

REM *** End program ***

VWAI T KEY

END

Activity 2.21

REM *** Yel | ow foreground and red background

* KKk

SET TEXT OPAQUE
I NK RGB(255, 255, 0), RGB(255, 0, 0)
PRI NT “Hel | 0”

REM *** Cyan foreg' nd & nagenta backg' nd ***

I NK RGB(0, 255, 255) , RGB(255, 0, 255)
PRI NT “ Goodbye”

REM *** End program ***

WAI T KEY

END

Activity 2.22

No solution required

Activity 2.23
The program codeiis:

REM *** Cl ear screen to red ***

CLS RGB(255,0,0)

REM *** Set text characteristics ***
SET TEXT FONT “Courier New’

SET TEXT TO BOLD

SET TEXT S| ZE 20

REM *** Set col ours (yellow and red)
I NK RGB(255, 255, 0) , RGB(255, 0, 0)

REM *** Qut put box ***

TEXT 0’ Ov Hhkkkkkhkkkkk*x?

TEXT 0,20, “* *

TEXT 0’ 40’ LR SRR EEEEEE S

REM *** Set opaque text ***

SET TEXT OPAQUE

REM *** Set col ours (blue and bl ack)
I NK RGB(0, 0, 255) , RGB(0, 0, 0)

REM *** Qut put text ***

TEXT 34,18, "BOX"

REM *** End program

VWAI T KEY

END

Activity 2.24

DarkBASIC Pro: Starting DarkBASIC Pro

The problem can be cured by adding more spaces to the REM *** Enbossed Text ***
P y 9 I NK RGB(0, 0,0), 0

second TEXT statement. TEXT 201, 201, Goodbye”
I NK RGB(255, 255, 255) , 0
Vi TEXT 199, 199, "CGoodbye"
Activity 2.25 I NK RGB(126, 126, 126) ,)6
REM *** Set background col our *** TEXT 200, 200, "Goodbye”
CLS RGB(126, 126, 126) REM *** End program ***
REM *** Set text font and size *** VWAI'T KEY
SET TEXT FONT “Arial” END

SET TEXT SI ZE 36

INK RGB (255, 0,0) ,0
REM *** Qut put Text ***
TEXT 100, 80, “Goodbye”
VWAI T KEY

REM ** Renpve text by witing it again in
background col our ***

I NK RGB(126, 126, 126), 0
TEXT 100, 80, “Goodbye”
REM *** End program ***
VWAI T KEY

END

Activity 2.26
Existing codeisin grey:

REM *** Set background col our ***
CLS RGB (126, 126, 126)

SET TEXT SI ZE 36

REM *** Set text font and size ***
SET TEXT FONT “Arial”

SET TEXT SI ZE 36

INK RGB (255, 0,0) ,0

REM *** Qut put Text ***

TEXT 100, 80, “CGoodbye”

WAI' T KEY

REM ** Renpve text by witing it again in
background col our ***

I NK RGB(126, 126, 126), 0

TEXT 100, 80, “Goodbye”

WAI T KEY

REM *** Shadow text ***

INK RGB (0,0,0) ,0

TEXT 102,102, “Hello”

INK RGB (255, 0,0) ,0

TEXT 100, 100, “Hello”

REM *** End program ***

VAI T KEY

END

Activity 2.27
Existing codeisin grey:

REM *** Set background col our ***
CLS RGB (126, 126, 126)

SET TEXT SI ZE 36

REM *** Set text font and size ***
SET TEXT FONT “Arial”

SET TEXT SI ZE 36

INK RGB (255, 0,0) ,0

REM *** Qut put Text ***

TEXT 100, 80, “Goodbye”

VWAI T KEY

REM ** Renpve text by witing it again in
background col our ***

I NK RGB(126, 126, 126), 0

TEXT 100, 80, “Goodbye”

VWAI T KEY

REM *** Shadow t ext ***

INK RGB (0,0,0) ,0

TEXT 102,102, “Hello”

INK RGB (255, 0,0) ,0

TEXT 100, 100, “Hello”

DarkBASIC Pro: Starting DarkBASIC Pro

72

DarkBASIC Pro: Starting DarkBASIC Pro

Arithmetic Operators

Assignment Statement

Constants

Creating Random Numbers

Input Statement

RANDOMIZE and RND Statements
READ, DATA and RESTORE Statements
String Operations

Testing Sequential Structures

Variables

Variable Names

DarkBASIC Pro: Selection

73

Drogram Data

I ntroduction

Every computer game has to store and manipulate facts and figures (more
commonly known asdata). For example, aprogram may store the name of aplayer,
the number of lives remaining or the time the player has remaining in which to
complete atask.

We group information like this into three basic types:

integer - any whole number, positive, negative or zero
real - any number containing adecimal point
strings - any collection of characters (may include numeric characters)

For example, if player Daniel McLaren had 3 lives and 10.6 minutesto completea
game, then:

3 isan example of an integer value,
10.6 isareal value,
and Daniel McLaren isan example of astring.

Activity 3.1

I dentify which type of value each of the followingis:

a -9 f)o
b) abc g)-3.0
c) 18 h) Mary had alittle lamb
d) 12.8 i) 4 minutes
e ? j) 0.023
Constants
When a specific value appears in a computer program’s code it is usually referred
to asaconstant. Hence, in the statement
PRI NT 7
the value 7 isa constant. More specifically, we may refer to constant’ stype. In the
line
PRINT “Charlotte”, 15, 42.7
Charlotteisastring constant, 15, aninteger constant, and 42.7, areal constant.
Notice that in DarkBASIC Pro, string constants always appear within double
quotes.
74 DarkBASIC Pro: Selection

Activity 3.2
Identify the constant typesin the following line of code:

PRINT “Mary is ", 12, “ years old”

Variables

Most programs not only need to display data, but also need to store data and
calculateresults. Todothisin DarkBASIC Proweneedtouseavariable. A variable
is simply somewhere to store a value. Every variable in a program is assigned a
unigue name and can store asingle value. That value might be an integer, areal or
a string but each variable is designed to store only one type of value. Hence, a
variable designed to store an integer value cannot store a string.

Integer Variables

FIG-3.1

Storing Dataina
Variable

FIG-3.2

Changing the Valueina
Variable

In DarkBASIC Pro variables are created automatically as soon aswe mention them
inour code. For example, let’ sassumewewant to storethe number of livesallocated

lives Value stored
. in the variable
Variable name 34

toagameplayer inavariablecalled lives. To do thisin DarkBASIC Pro we simply
writetheline:

lives = 3

This sets up a variable called lives and stores the value 3 in that variable (see
FIG-3.1)

Thisisknown as an assignment statement since we are assigning avalue (3) to a

variable (lives).
) The contents of
lives lives are changed

You are free to change the contents of a variable at any time by just assigning it a
different value. For example, we can change the contents of lives with aline such
as:

lives = 2

When we do this any previous value will be removed and the new value stored in
its place (see FIG-3.2).

The variable livesis designed to store an integer value. In the lines below, a, b, ¢,
d, and e are also integer variables. So the following assignments are correct

200
0
-8

a
b
c

DarkBASIC Pro: Selection 75

FIG-3.3
Trying to Copy a Real

Valueto an Integer
Variable

FIG-3.4

Creating Real Variables

Only the integral part of
each number is stored

but the lines below are wrong

d
e

3.14
-1.9

since they attempt to store real constants in variables designed to hold an integers.
DarkBASIC Prowon’t actually report anerror if youtry out theselast two examples,

it simply ignores the fractional part of the numbers and ends up storing 3ind and
line(seeFIG-3.3).

The complete
number is stored

Real Variables

FIG-3.5

Creating String
Variables

If you want to create a variable capable of storing areal number, then we must end
the variable name with the hash (#) symbol. For example, if we write

d#
e#

3.14
-1.9

we have created variables named d# and e#, both capable of storing real values(see
FIG-3.4).

Any number can be stored in areal variable, so we could al so write astatement such
as:
d# = 12

and this will be stored as 12.0.

If any value can be stored in a real variable, why bother with integer variables?
Actualy, you should always use integer values wherever possible because the
computer is much faster at handling integer values than reals which require much
more processing whenever you want to do any calculations. Also, real numbers can
be dlightly inaccurate because of rounding errors within the machine. For example,
the value 2.3 might be stored as 2.2999987.

player$

... is stored in
the variable

Everything within
the quotes...

String Variables

76

Finally, if you want to store astring value, you need to use astring variable. String

DarkBASIC Pro: Selection

variable names must end with a dollar ($) sign. The value to be stored must be
enclosed in double quotes. We could create a string variable named player$ and
store the name Liz Heron in it using the statement:

player$ = “Liz Heron”
The double quotes are not stored in the variable (see FIG-3.5).

Absolutely any value can be stored in a string variable as long as that value is
enclosed in double quotes. Below are afew examples:

a$ = “7>%
b$ = “Your spaceshi p has been destroyed”
c¢$ = “That costs $12.50"

Activity 3.3

Which of the following are valid DarkBASIC Pro statements that will store
the specified value in the named variable?

a)a=6 d) d# = 5
b) b = 12.89 €) e$ = ‘ Goodbye’
C) c$ = Hello fy t# = -12.5

Using M eaningful Names

It isimportant that you use meaningful names for your variables when you write a
program. This helps you remember what a variable is being used for when you go
back and look at your program a month or two after you wrote it.

So, rather than write statements such as

3
120
2000

a
b
c

a better set of statements would be
lives = 3
points = 120
timeremai ni ng = 2000

which give amuch clearer indication of what the variables are being used for.

Naming Rules

DarkBASIC Pro, like all other programming languages, demands that you follow
afew rules when you make up avariable name. Theserules are;

» The name should start with aletter.
» Subsequent charactersin the name can be a letter, number, or underscore

» Thefinal character can be a# (when creating real variables) or $ (when
creating string variables).

» Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

DarkBASIC Pro: Selection 77

» The name cannot be a DarkBASIC Pro keyword.

This means that variable names such as

a
bc

de_2

f gh$

i JKI mp#

are valid, while names such as

2a
time remaining

areinvalid.

The most common mistake people make isto have a space in their variable names
(e.g.fuel level). Thisisnot allowed. Asavalid aternative, you can replace the space
with an underscore (fuel_level) or jointhewordstogether (fuellevel). Using capital
letters for the joined words is also popular (FuelLevel).

Note that the names no, no# and no$ represent three different variables; one
designed to hold an integer value (no), one areal value (no#) and the last a string
(no$).

Activity 3.4

Which of the following are invalid variable names:

a) x €) total score
b) 5 f) ts#o

C) “total” g) end

d) al 2% h) @_F3

Summary

® Fixed vaues are known as constants.

® There are three types of constants: integer, real and string.

® String constants are always enclosed in double quotes.

® The double quotes are not part of the string constant.

® A variableisaspacewithinthe computer’ smemory where aval ue can be stored.
® Every variable must have aname.

® A variable's name determines which type of value it may hold.

® Variablesthat end with the # symbol can hold real values.

® Variablesthat end with the $ symbol can hold string values.

@ Other variables hold integer values.

78 DarkBASIC Pro: Selection

® The name given to avariable should reflect the value held in that variable.
@ \When naming a variable the following rules apply:

The name must start with aletter

Subsequent characters in the name can be numeric, a phabetic or the
underscore character.

The name may end with a# or $ symbol.

The name must not be a DarkBASIC Pro keyword.

FIG-3.6

N4
Statement

DarkBASIC Pro: Selection

Allocating Values to Variables

I ntroduction

There are severa ways to place a value in a variable. The DarkBASIC Pro
statements available to achieve this are described below.

The Assignment Statement

In the last few pages we' ve used DarkBASIC Pro’s assignment statement to store
avalueinavariable. Thisstatement allowsthe programmer to place aspecific value
inavariable, or to store the result of some calculation.

In its simplest form the assignment statement has the form shown in FIG-3.6.

The value copied into the variable may be one of the following types:

FIG-3.7 nol no2 nol

Copying One Variable's nol = 12 no2 = nol

Value to Another

Variable The value held in nol

is copied into no2

> aconstant
» another variable
» an arithmetic expression

Examples of each are shown below.

Assigning a Constant
Thisisthe type of assignment we've seen earlier, with examples such as
nane$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. Make sure that the
constant is the same type as the variable. For instance, the statement

desc = “tall”
isinvalid sinceit attemptsto copy astring constant (“tall”) into an integer variable
(desc). Not every mistake will be signalled by the compiler. For example, if wetry
to assign areal constant to an integer variable as in the statement

result = 12.79

the integer variable result stores only the integral part of the constant (i.e. 12), the
fractional part being lost.

However, an integer value may be copied into areal variable, asin theline:

80 DarkBASIC Pro: Selection

TABLE-3.1

Arithmetic Operators

result# = 33

The program deals with this by storing the value assigned to result# as 33.0.

Operator Function Example
+ Addition nol =no2 +5
- Subtraction nol =no2-9
* Multiplication | ans = nol * no2
/ Division ri# =nol/2
mod Remainder ans = no2 mod 3
N Power ans=2"24

Activity 3.5

What are the minimum changes required to make the following statements
correct?

1. desc = “tall”
2. result = 12.34

Copying aVariable'sValue

Once we' ve assigned avalue to avariable in a statement such as
nol = 12

we can copy the contents of that variable into another variable with a command
such as:

no2 = nol
The effect of these two statementsis shown in FIG-3.7.

As before, you must make sure the two variables are of the same type, although the
contents of an integer variable may be copied to area variable asin thelines:

ans# = nol
Although not invalid, trying this the other way round (real copied to integer) asin

ans# = 12.94
nol = ans#

will cause nol to store only theintegral part of ans# contents (i.e. 12).

DarkBASIC Pro: Selection 81

Activity 3.6

Assuming a program starts with the lines:

nol = 23
wei ght# = 125.8
description$ = “sword”

which of the following instructions would be invalid?

a) no2 = nol d) ans# = nol
b) no3 = wei ght# €) abc$ = wei ght #
C) result = description$ f) m# = description$

Copying the Result of an Arithmetic Expression

Another variation for the assignment statement isto perform acal culation and store
the result of that calculation. Hence we might write

nol =7 + 3
which would store the value 10 in the variable nol.

The example shows the use of the addition operator, but there are 5 possible
operators that may be used when performing a calculation. These are shown in
TABLE-3.1.

The result of most statements should be obvious. For example, if aprogram begins
with the statements

12
3

nol
no2

and then contains the line

total = nol - no2
then the variable total will contain the value 9, while the line
product = nol * no2

stores the value 36 in the variable product.

FIG-3.8
nol
édd;ngtto aVariable's nol s assigned N\ o Q O
ontents an initial value

nol = 20

nol = nol + 3

3is added to ...
... the current value of nol ...

... and the result stored in nol

nol

o
O
(2]

23

82 DarkBASIC Pro: Selection

The remainder operator (mod) is used to find the integer remainder after dividing
one integer into another. For example,

ans = 9 nod 5

assignsthe value 4 to the variable ans since 5 divides into 9 once with aremainder
of 4. Other examples are given below:

6 mod 3 gives 0
7 mod 9 gives 7
123 nod 10 gives 3

If thefirst valueis negative, then any remainder is also negative:

-11 nod 3 gives -2

Activity 3.7
What is the result of the following calculations:

a) 12 mod 5 C) 5 mod 11
b) -7 nod 2 d) -12 nod -8

The power operator (~) alows us to perform a calculation of the form x”. For
example, a 24-bit address bus on the microprocessor of your computer allows 2%
memory addresses. We could calculate this number with the statement:

addresses = 2724

However, the results of some statements are not quite so obvious. Theline

ans# = 19/ 4

will result in the value 4.0 being stored in ans# since the division operator always
returns an integer result if the two values involved are both integer. On the other
hand, if we write

ans# = 19/4.0
and thereby use areal value, then the result stored in ans# will be 4.75.

When areal valueis copied into an integer variable, the fractiona part of the value
being copiedislost. For example, thevariableresult would contain the value 4 after
executing theline

result = 19/4.0

When using the division operator, a second situation that you must guard against is
division by zero. In mathematics, dividing any number by zero gives an undefined
result, so computers get quite upset if you try to get them to perform such a
calculation. Hence, theline

ans = 10/ 0
would cause a program to crash when it attempted to perform that line in the

program. You might be tempted to think that you would never write such a
statement, but a more likely scenario isthat your program contains aline such as

DarkBASIC Pro: Selection 83

ans = nol / no2

and if no2 contains the value zero attempting to execute the line will till cause the
program to terminate.

Some statements may not appear to makesenseif you areusedtotraditional algebra.
For example, what is the meaning of aline such as:

nol = nol + 3
Infact, it meansadd 3 to nol. See FIG-3.8 for afull explanation.
Another unusual assignment statement is:

nol = -nol

The effect of this statement is to change the sign of the value held in nol. For
example, if nol contained thevalue 12, the above statement woul d changethat value
to-12. Alternatively, if nol started off containing the value-12, the above statement
would change nol's contents to 12.

Activity 3.8
Assuming a program starts with the lines:

nol = 2
v# = 41.09

what will be the result of the following instructions?

a) no2 = nol"4 d) no4 = no1 + 7
b) x# = v#*2 €) m# = nol/5
C) no3 = nol/5 f) vo# = v#t - 0.1

Of course, an arithmetic expression may have several partsto it asin the line

answer = nol - 3/ v# * 2

and, how the final result of such lines is calculated is determined by operator
precedence.

Operator Precedence

84

If we have a complex arithmetic expression such as

answer# = 12 + 18 / 372 - 6

then there’ s a potential problem about what should be done first. Will we start by
adding 12 and 18 or subtracting 6 from 2, raising 3 to the power 2, or even dividing
18 by 3. In fact, calculations are done in avery specific order according to afixed
set of rules. The rules are that the power operation (") is aways done first. After
that comes multiplication and division with addition and subtraction donelast. The
power operator () issaid to haveahigher priority than multiplicationand division;
they in turn having a higher priority than addition and subtraction.

So, to calculate the result of the statement above the computer begins by performing

DarkBASIC Pro: Selection

TABLE-3.2

Variable Range

the calculation 322 which leaves us with:
answer = 12 + 18/ 9 - 6
Next the division operation is performed (18/9) giving

answer = 12 + 2 - 6

The remaining operators, + and -, have the same priority, so the operations are
performed on aleft-to-right basis meaning that we next calculate 12+2 giving

answer = 14 - 6

Finally, the last calculation (14 -6) is performed leaving

Variable Type Range of Values
integer -2,147,483,648 to + 2,147,483,647
real +3.4E +38

answer = 8

and the value 8 stored in the variable answer .

Activity 3.9

Wheat istheresult of thecalculation 12 - 5 * 12/ 10 - 5

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always done
first. Therefore, if we write

answer = (12 + 18) / 9 - 6
then 12+18 will be calculated first, leaving:
answer =30/ 9 - 6

Thiswill continue as follows:

3.3333 - 6
-2.6667

answer
answer

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

Activity 3.10

Show the stepsinvolved in calculating the result of the expression
8 * (6-2) / (3-1)

If sets of parentheses are placed inside one another (this is known as nested
parentheses) , then the contents of the inner-most set is calculated first. Hence, in
the expression

DarkBASIC Pro: Selection 85

12/ (3 * (10 - 6) + 4)

the calculation is performed as follows:

(10 - 6) giving 12 / (3*4+4)
3* 4 giving 12 / (12 + 4)
12 + 4 giving 12 / 16

12 / 16 giving 0.75

Activity 3.11

Assuming a program begins with the lines
nol = 12
no2 = 3
no3 =5
what would be the value stored in answer as aresult of theline
answer = nol/ (4 + no2 - 1)*5 - no3"2?

Variable Range

When first learning to program, a favourite pastime is to see how large a number
the computer can handle, so people write lines such as:

nol = 1234567890
They are often disappointed when the program crashes at this point.

Thereisalimit to the value that can be stored in avariable. That limit isdetermined
by how much memory is allocated to a variable, and that differs from language to
language. The range of values that can be stored in DarkBASIC Pro variables is
shown in TABLE-3.2.

String Operations

The + operator can a so be used on string valuesto join them together. For example,
if wewrite

ag = “to” + “get”
then the value toget is stored in variable a$. If we then continue with the line
b$ = a$ + “her”

b$ will contain the value together, aresult obtained by joining the contents of a$to
the string constant “her”.

Activity 3.12

What value will be stored as aresult of the statement
ternd = “abc”+"123"+"xyz"

The PRINT Statement Again

We've already seen that the PRINT command can be used to display values on the

86 DarkBASIC Pro: Selection

FIG-3.9

The INPUT Statement

screen using lines such as:

PRI NT 12
PRI NT “Hel | 0”

We can also get the PRINT statement to display the answer to acal culation. Hence,
PRI NT 7+3

will display the value 10 on the screen, while the statement
PRINT “Hello ” + “again”

displays Hello again.

The PRINT statement can also be used to display the value held within avariable.
This meansthat if we follow the statement

nunber = 23
by the line
PRI NT nunber

our program will display the value 23 on the screen, this being the value held in
number. Real and string variables can be displayed in the sasmeway. Hencethelines

name$ = “Charlotte”
wei ght# = 95.3

PRI NT nane$

PRI NT wei ght #

will produce the output

Charlotte
95.3
N— 4 N4
IJJJPUT message.]
| A\ | A
Activity 3.13
A program contains the following lines of code:
nunmber = 23
PRI NT “nunber”
PRI NT nunber

What output will be produced by the two PRINT statements?

DarkBASIC Pro: Selection 87

Activity 3.14
Typein and test the following program (don’t bother to save the program):

nunber = 23
PRI NT nunber
WAI T KEY
END

Change the program by removing the first two lines and replacing this with
two statements which will assign the value Jessica McLaren to avariable
called name$ and then display the contents of name$ on the screen.

The PRINT statement can display more than one value at atime. For example, we
can get it to display the number 12 and the word Hello at the same time by writing

PRI NT 12, "Hel | o"

Each value we want displayed must be separated from the next by a comma. We
can usethisto display amessage alongside the contents of avariable. For example,
thelines

capital $ = “Washi ngton”
PRI NT “The capital of the USAis ", capital $

produce the following output on the screen:

The capital of the USA is Washington

Activity 3.15

Write a program (name.dbpro) that sets the contents of the variable name$ to
Jessica MacLaren and then uses a PRINT statement that displays the contents
of name$ in such away that the final message on the screen becomes:

Hello, Jessica MacLaren, how are you today?

Other Waysto Storea Valuein aVariable

88

The INPUT Statement

Therewill bemany valueswhich we cannot know when we arewriting the program.
For example, we can’t know the name of the player until someone sits down at the
computer and begins to play our game. The only way we can get accessto that sort
of information is to ask the player to type in the information the program requires.
Thisis done with the INPUT statement. In its simplest form the INPUT keyword
isfollowed by the name of the variable where we' d like to store the information the
player typesin. For example, we might write

I NPUT nane$

expecting the person at the keyboard to type in their name and then storing what
they type in the variable name$. Of course, the player has to be told what sort of
information they are expected to enter, so we could precede the INPUT statement
with a message telling them what to typein :

DarkBASIC Pro: Selection

PRI NT “Pl ease enter your nane ”
I NPUT nanme$

DarkBASIC Pro makes things simpler than this by alowing us to include the

message we want displayed as part of the INPUT statement. Hence, we can achieve
the same effect as the two statements above using the line;

I NPUT “Pl ease enter your nane ", nane$
This gives us the final format for the INPUT statement as shown in FIG-3.9.
In the diagram:

FIG-3.10

Using DATA and READ DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

The DATA statement contains
the values to be read

daysinmonth

READ daysi nnont h NS

Each READ statement causes
another value to be taken from
the DATA statement

READ daysi nnont hoo
daysinmonth

message isastring (enclosed in double quotes) which is
displayed before any data from the keyboard is
accepted.

variable isavariable name. The value entered by the user

at the keyboard will be assigned to this variable.
It isthe user’s responsihility to enter a value of
the correct type.

Activity 3.16
Which of the following are valid INPUT statements?
a) | NPUT age

b) I NPUT “Enter your height ”, height#
C) INPUT “Enter your salary " salary

Activity 3.17

Typein and run the following program (input01.dbpro):

INPUT “Player 1, enter your nane :”", nane$
PRINT “Hello, ", nane$

VWAI T KEY

END

We can use the INPUT statement anywhere in our program and as often as
necessary.

DarkBASIC Pro: Selection 89

Activity 3.18

Modify your last program so that it also reads in the age of the player and
displays a message of the form:

Hello, {name goes here}, | see you are {age goes here} years old.

The READ and DATA Statements

FIG-3.11

The DATA Statement

FIG-3.12

The READ Statement

90

There are times when we want to assign avalue to avariable, but we don’t want to
have to enter that value from the keyboard. For example, let's say a variable,
daysinmonth, is used to store how many days are in January. The contents of
daysinmonth is then to be displayed. After this the program stores within
daysinmonth the number of days in a normal February. Again, the contents of
daysinmonth is displayed. This continues until every month of the year has been
dealt with.

We could start the coding for this as:

LEJ

daysi nmonth = 31

PRI NT daysi nnont h
daysi nmonth = 28
PRI NT daysi nnont h
daysi nmonth = 31
PRI NT daysi nnont h

oo [T
LEJ

Alternatively, we can set up the values we intend to assign to daysinmonth in a
DATA statement:

DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

and then use a READ statement every time we want to assign a value to
daysinmonth.

READ daysi nmont h

Thevaluegiven to daysinmonth by the READ statement will bethefirst valuelisted
in the DATA statement. When another READ statement is executed, the second
value from the DATA statement will be used. We can therefore rewrite the
statements given earlier as.

DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
READ daysi nmont h

PRI NT daysi nnont h

READ daysi nnmont h

DarkBASIC Pro: Selection

FIG-3.13

The RESTORE Statement

FIG-3.14

The TIMER Statement

PRI NT daysi nnont h
READ daysi nmont h
PRI NT daysi nnont h

The operation of these statements is shown in FIG-3.10.

Is this second approach any better than the first? Y ou should have noticed that by
using the DATA/READ approach we repeat exactly the same statements over and
over again. In alater chapter we will see that this code can be shortened by using a
loop statement which would not be possible with the first approach.

Several DATA statements may be used by a program, so we might write:

DATA 31, 28
DATA 31, 30

The computer smply groupsthe valuesgiveninthe DATA statementsinto asingle
list, so the two DATA statements above have exactly the same effect as:

DATA 31, 28, 31, 30

The DATA statement can contain values of any type. The next example stores the

|resTone

names of the first three days of the week:

DATA “ Sunday”, “Monday”, " Tuesday"

Of course, when you read from this DATA statement, the variable being assigned
the value must be a string:

READ day$
The type of values in a DATA statement can even be mixed, containing integer,
real or string constantsin any order. It isonly important that READ statements use
thetype of variable appropriateto the next value coming fromthe DATA statement.
We might write

DATA 12, 2.7, “Hello”

followed by

READ nol
READ x#
READ wor d$

and this would be acceptable because variables and values being read are of

umlmm

integer

DarkBASIC Pro: Selection 91

matching types. That is, the first READ statement would assign the integer value
12 to the integer variable nol; the second READ would assign thereal value 2.7 to
thereal variablex# and thethird READ would assign the string “Hell0” to the string
variable word$. It's also possible to read the value of more than one variablein a
single READ statement. Hence, we could reduce the three statements above to the
singleline:

READ nol, x#, word$

A DATA statement can be placed anywhere in your program. Often it is placed at
the start or end of aprogram whereit can easily be found should the valuesit holds
need to be examined or changed.

The format for the DATA statement is shown in FIG-3.11 and the format of the
READ statement is shown in FIG-3.12.

In the diagram:
constant represents any fixed value. This value can be an
integer, real, or string.
In the diagram:
variable isany variable name. The variable named will

be assigned the next available value from the
DATA statement.

Anerror will bereportedif your program containsa READ statement but noDATA
statement. An error will also occur if a READ statement is executed after all the
vauesin the DATA statement have been used.

Activity 3.19

Write ashort program (days01.dbpro) which displays the names of the days of
the week. Start with Sunday.

The names should be set up in aDATA statement, then accessed using a series
of READ statements.

The RESTORE Statement

FIG-3.15

The GET TIMES$
Statement

92

DarkBASIC Pro knows which valueisto be used next from aDATA statement by
keeping a marker which indicates which value in the statement is to be used when
the next READ statement is executed.

mu%lmm

string

Initially thismarker pointsto thefirst valueinthefirst DATA statement. After each
READ the marker moves on one position. However, it is possible to return the
marker to the start of the DATA list by executing the RESTORE statement.

DarkBASIC Pro: Selection

FIG-3.16

The GET DATE$
Statement

For example, in the code

DATA 3,6, 9, 12

READ nol
READ no2
= e iy
string
RESTORE
READ no3

the variable no3 will be assigned the val ue 3 because the RESTORE statement will
have moved the DATA marker back to thefirst valuein thelist.

The RESTORE statement has the format shown in FIG-3.13.

Activity 3.20

Modify your last program so that after all the days of the week have been
displayed the word Sunday is displayed for a second time.

Y ou can achieve this result by adding a RESTORE statement, another READ
statement and a PRINT statement to your program.

The Time and Date

The TIMER Statement

FIG-3.17

The RND Statement

DarkBASIC Pro containsacommand that letsyou find out how long your computer
has been switched on. This is the TIMER statement which returns an integer
specifying the number of milliseconds that have passed since your machine was
last powered up. This information is actually maintained by the operating system
andthe DarkBA S| C Pro statement interrogatesthe areaof computer memory where
thisdatais held.

The TIMER statement has the format given in FIG-3.14.

Notice that the parentheses must be included in the statement even though no
information is placed within them. DarkBASIC Pro’s general syntax demands that
any statement that returns a value must always have parentheses.

Sothe TIMER statement could be used to display how long your machine has been

on with the singleline
[=
JEa

integer

DarkBASIC Pro: Selection 93

PRI NT TI MER ()

but thiswould bein milliseconds. Perhaps abetter option would beto savethevalue
returned by TIMER and convert that value to seconds, asin the lines:

m | |isecondsPassed = TI MER()
seconds = millisecondsPassed / 1000
PRI NT “Your conputer has been on for ”, seconds, “ seconds”

Activity 3.21

Create a project (minutes.dbpro) which displays how many minutes have

passed since your computer was last switched on.

By using TIMER before and after some event we can measure how long that event
lasts. For example, we could create a simple reaction time game by seeing how
quickly the user can press a key after being told to do so. Such a program requires
the following logic:

Display “Press any key”

Record the start time

Wait for a key press

Record the finish time

Calculate the duration as finish time minus the start time
Display the duration

Activity 3.22

Create a project (reaction.dbpro) that implements the logic given above.

The GET TIMES$ Statement

FIG-3.18

The RANDOMIZE
Statement

If we need to get the actual time of day then we can use the TIME$ statement which
returns a string giving the current time (as obtained from the system clock) in the
form HH:MM:SS, where HH is the hour (0 to 23), MM is the minutes, and SSthe
seconds.

The format for this statement is given in FIG-3.15.

For example, we could display the current time using the line:

PRI NT GET TI MES()

RANDOMIZE @
U—I P

The GET DATES$ Statement

94

The current date can be returned as astring using the GET DATES$ statement which
has the format shown in FIG-3.16.

The string returned isin the American form MM/DD/Y'Y . For example, when run
at the time of writing, the statement

PRI NT GET DATES()

DarkBASIC Pro: Selection

displayed the output 07/16/05.

Generating Random Numbers

Often in a game we need to throw a dice, choose a card or think of a number. All
of these are random events. That is to say, we cannot predict what value will be
thrown on the dice, what card will be chosen, or what number some other person
will think of.

The RND Statement

LISTING-3.1

Displaying a Random
Number

There is a need to get computer programs to emulate this randomness and this is
doneusing theRND statement. Infact, likeRGB, RND isafunction. It will generate
an integer value within a specified range and return that generated value. For
example, if we wanted to display a random number between 0 and 10, we could
write

PRI NT RND(10)

RND has to be supplied with a value enclosed in parentheses. This value lets the
command know what range of possible values may be generated. Notice that the
lowest value that can be generated is always zero, while the largest value is equal
to the number given in the brackets.

Activity 3.23

What expression would we use if we wanted to create arandom number in the
range O to 487

The format for the RND statement is given m FIG-3.17.
In the diagram:

max isany positive integer value. The command will
return an integer in the range 0 to max.

The value given within the parentheses can also be a variable or arithmetic
expression, asin the lines:

num = 25
PRI NT RND (num) ‘0 to 25
PRI NT RND (nunt2- 3) ‘0 to 47

Thevaluereturned by RND could be stored in avariable using a statement such as:

nunber = RND(10)
If RND(5) generates anumber between 0 and 5, how arewe going to emulate adice
throw which gives values 1 to 67 Often people suggest writing RND(6), but this
givesvaluesin therange 0 to 6, not 1 to 6.

Instead we have to generate avalue between 0 and 5 and then add 1 to that number.

We could do thiswith theline

DarkBASIC Pro: Selection 95

di ceThrow = RND(5) +1

and follow thiswith a PRINT statement displaying the contents of diceThrow:

PRI NT “You threw a ", di ceThrow

The RANDOMIZE Statement

FIG-3.19

The #CONSTANT
statement

96

Computers can't really think of arandom number all by themselves. Actually, they
cheat and use a mathematical formulato calculate an apparently random number.
Aslong asyou don’t know that formula, you won't be able to predict what number
the computer is going to come up with.

But to get the mathematics started correctly, we need to supply it with a start up
value or seed value. Effectively this seed value determines what numbers the
computer is going to generate when RND is used.

The seed value is set up using the RANDOMIZE statement which has the format
shown in FIG-3.18.

In the diagram:

seed isan integer value which is used as a start-up
value for the random number generator.

Exactly what seed valueyou use doesn’t really matter, but if you start with the same
seed value every time, you'll always get the same set of values from RND. For
example, if aprogram contained the lines

RANDOM ZE 12345
PRI NT RND(50)
PRI NT RND(12)

every time that program is executed, the same numbers would be displayed.

To stop this happening we need to make sure that the seed value is different every

| zeonsmant]] [= | =]

time we run a program. We can achieve this using the TIMER statement. So if we
write

nunmber = TI MER()
RANDOM ZE nunber

then, since TIMER will return a different value every time it's carried out
(remember the time in your computer is being updated 1000 times per second), the
seed value for RANDOMIZE will always be different. Actualy, we can combine
the two statements above into one:

RANDOM ZE TI MER()

Now we are ready to write a program using random numbers. The program in
LISTING-3.1 simulates adice throw and displays the number generated.

REM *** Generate random nunber ***
RANDOM ZE TI MER()

DarkBASIC Pro: Selection

nunber = RND(5)+1

REM *** Di spl ay nunber ***
PRI NT nunber

REM *** End program ***
VWAI T KEY
END

Activity 3.24

Typein and run the program given above (random.dbpro).
Modify the program so that it generates a number between 1 and 49.

Activity 3.25
Write a program (guessO1.dbpro) that performs the following logic:
Computer thinks of a number between 1 and 100

User (you) enters their guess at what the number is
The computer displays both the guess and the original number

Structured English and Programs

When we write a structured English algorithm with the intention of turning that
algorithm into a computer program, we always write the algorithm as if we are
telling the computer what it has to do. Therefore, the rather long winded algorithm
in the Activity above would be better written as:

Generate a random integer between 1 and 100
Get user's guess
Display number and guess

Using Variablesto Store Colour Values

We've seen how the value generated by the RND statement can be stored in a
variable with a statement such as:

nunmber = RND(5) +1

Sincethe RGB statement al so returns aval ue, we can use that same approach there.
So rather than write

I NK RGB(255, 0, 0), RGB(0, 255, 0)
we could write
col ourl = RGB(255,0,0)

col our2 = RGB(0, 255, 0)
I NK col our1, colour2

DarkBASIC Pro: Selection 97

LISTING-3.2

Calculating the Square
Root of aVaue

Activity 3.26
Write a program (colours03.dbpro) that performs the following operations

Assigns the colour red to avariable called scarlet;
Assigns the colour blue to avariable called sky;

Clears the screen to create red blank screen (use scarlet);
Writes the word Ocean in blue on the screen (use sky)

Named Constants

98

When a program uses a fixed value which has an important role (for example,
perhaps the value 1000 is the score a player must achieve to win agame), then we
havethe option of assigning anameto that value using the #CONSTANT statement.

The format of this statement is shown in FIG-3.19.

In the diagram:
name is the name to be assigned to the constant value.
value is the constant value being named.

For example, we can name the value 1000 WinningScore using the line:

#CONSTANT W nni ngScore = 1000
Since the equal sign (=) isoptional, it isalso valid to write:
#CONSTANT W nni ngScore 1000

Real and string constants can al so be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid

#CONSTANT Pi = 3.14159265
#CONSTANT Vowel s = “aei ou”

The value assigned to a name cannot be changed, so having written

#CONSTANT W nni ngScore = 1000
itisnot valid to try to assign anew value with aline such as:
W nni ngScore = 1900
The two main reasons for using named constants in a program are:

1) Aiding the readability of the program. For example, it is easier to
understand the meaning of the line

| F pl ayerscore >= W nni ngScor e
than

| F playerscore >= 1000

DarkBASIC Pro: Selection

2) If the same constant value is used in several places throughout a
program, it is easier to change its valueiif it is defined as anamed
constant. For example, if, when writing a second version of agame we
decide that the winning score has to be changed from 1000 to 2000,
then we need only change the line

#CONSTANT W nni ngScore = 1000

to
#CONSTANT W nni ngScore = 2000

On the other hand, if we've used lines such as
| F playerscore >= 1000

throughout our program, every one of those lineswill haveto be
changed so that the value within them is changed from 1000 to 2000.

Testing Sequential Code

The programs in this chapter are very simple ones, with the statements being
executed one after the other, starting with the first and ending with the last. In other
words, the programs are sequential in structure.

Every program we write needs to be tested. For a ssimple sequential program that
involves input, the minimum testing involves thinking of a value to be entered,
predicting what result this value should produce, and then running the program to
check that we do indeed obtain the expected result.

The program below (see LISTING-3.2) reads in a value from the keyboard and
displays the square root of that number.

I NPUT “Pl ease enter your nunber : 7, nunber#

squar er oot # = nunber #70.5

PRI NT “The square root of ", nunber#, “ is ”,squareroot#
WAI T KEY

END

To test this program we might decide to enter the value 16 with the expectation of
the result being 4.

Activity 3.27

Type in the program given above (root.dbpro) and test it by inputting the
value 16.

Perhaps that would seem sufficient to say that the program isfunctioning correctly.
However, a more cautious person might try a few more values just to make sure.
But what values should be chosen? Should we try 25 or 9, 3 or 77

Asageneral ruleit is best to think carefully about what values you choose as test
data. A few carefully chosen values may show up problems when many more

DarkBASIC Pro: Selection 99

FI1G-3.20

The SCREEN HEIGHT
Statement

randomly chosen values show nothing.

When the test datais numeric, the most obvious choices are to use atypical value
(in the case of the above program, 16 fallsinto this category), avery largevalue, a
negative value and zero. But in each case it is important that you work out the
expected result before entering your test datainto the program - otherwise you have
no way of knowing if the results you are seeing on the screen are correct.

Activity 3.28
What results would you expect from root.dbpro if your test datawas
401286
0
-9

Run the program with these test values and check that the expected results are
produced.

When entering string test values, an empty string (just press Enter when asked to
enter the data), a single character string, and a multicharacter string should do.

UMU%IEE

integer

These suggestions for creating test data may need to be modified depending on the
nature of the program you are testing.

Summary

FIG-3.21

The SCREEN WIDTH
Statement

100

® The assignment statement takes the form

variabl e = val ue

wu%lm

integer

@ value can be a constant, other variable, or an expression.
® The value assigned should be of the same type as the receiving variable.

® Arithmetic expressions can use the following operators:

ANx o+ - nod

® Calculations are performed on the basis of highest priority operator first and a

DarkBASIC Pro: Selection

LISTING-3.3

Centring Text

FIG-3.22

The SCREEN DEPTH
Statement

|eft-to-right basis.

The power operator has the highest priority; multiplication and division and the
mod operator the next highest, followed by addition and subtraction.

Terms enclosed in parentheses are always performed first.
The + operator can be used to join strings.

The INPUT statement reads a value from the keyboard and places that valuein
anamed variable.

The INPUT statement can display a message designed to inform the user what
has to be entered.

The DATA and READ statements can be used to assign a listed value to a
variable.

The RESTORE statement forcesareturnto the start of thefirst DATA statement.
The TIMER statement returns the time in milliseconds from switch on.

The GET TIMES$ statement returns the current time as a string.

The GET DATES statement returns the current date as a string.

The RND statement generates a random integer number in the range O to a

Uﬂlﬂ"iﬂlmm

integer

specified maximum.

The RANDOMIZE statement ensures that the numbers created by the RND are
truly random.

The value returned by statements such as RND and RGB can be assigned to a
variable.

A named constant can be created using the #CONSTANT statement.

The name assigned to a constant must not end with a# or $ symbol.

DarkBASIC Pro: Selection 101

FIG-3.23

N 4
B
boncoR S [[= 0]

integer

Determining Current Settings

I ntroduction

Let’ s say we want to place thetitle of our new gamein the centre of the screen. We
know that we can place text at any position using TEXT or CENTER TEXT, but
how are we to discover where the centre of the screen is? If we' re working in an
800 by 600 display mode, then the centreis at 400,300 - but how can we be sure
what display mode is being used? Luckily, DarkBASIC Pro has many statements
that allow usto find out this, and other, information. Some of these are given below,
otherswe'll discussin later chapters.

FIG-3.24

N— 4
s s [ass] o] =T o
| AN

integer

Screen Settings

The SCREEN HEIGHT Statement

The SCREEN HEIGHT statement returns the height of the output screen in pixels
and has the format shown in FIG-3.20.

For example, the statement

PRI NT SCREEN HEI GHT()

FIG-3.25

N— 4
encen suarer Jmces] [=1 o
N

integer

would display the value 600, assuming the screen resol ution was set to 800 by 600.

The SCREEN WIDTH Statement

This statement returns the width of the output screen in pixels. The statement has

102 DarkBASIC Pro: Selection

the format shown in FIG-3.21.
LISTING-3.4 For example, the statement

screenwi dth = SCREEN W DTH
Colour Component Values O

would assign the value 800 to the variable screenwidth, assuming the screen
resolution was set to 800 by 600.

The program in LISTING-3.3 displays the word WELCOME at the centre of the
screen.

REM *** Find centre of screen ***
centrex = SCREEN WDTH()/2
centrey = SCREEN HEI GHT()/2

REM *** Di splay text at centre ***
CENTER TEXT centrex, centrey, “WELCOWE"

REM *** End program ***
WAI T KEY
END

Activity 3.29

Typein and test the program above (centred.dbpro).

Isthe text correctly centred both vertically and horizontally?

The SCREEN DEPTH Statement

The number of bits used to represent a single pixel on the screen determines the
maximum number of colours that can be shown on the screen. For example, if a
single bit was used to represent apixel, that bit could have the value 0 or 1, hence
only two colours can be shown. With two bits per pixel, four colours are possible,
represented by the bit patterns 00, 01, 10, and 11.

The SCREEN DEPTH statement returns the number of bits used per pixel and has

FIG-3.26
TEXT I BACKGROUND I TYPE I m m
The TEXT

BACKGROUND l

Statement

integer

the format shown in FIG-3.22.

If acall to this statement returns the value 16, then the number of colours that can
be shown is calculated as 2. The code required to perform this calculationiis:

noof col ours = 2"SCREEN DEPTH()

Colour Components

If we were to generate arandom colour with the lines

DarkBASIC Pro: Selection 103

FIG-3.27

The TEXT STYLE
Statement

FI1G-3.28

The TEXT SIZE
Statement

l

integer

= == o

RANDOM ZE TI MER()

col our = RGB(RND(255), RND(255) , RND(255))

we could find out the settings of the red, green and blue components of that colour

using the following statements.

The RGBR Statement

FI1G-3.29

The TEXT FONT$
Statement

FIG-3.30

The TEXT WIDTH
Statement

104

The RGBR statement returns an integer specifying the red component of aspecified

l

string

= == i

colour. The statement has the format shown in FIG-3.23.

In the diagram:

colour is an integer value representing acolour. This
value will probably have been generated using the

RGB statement.

!

integer

N—4
== == =T
| AN

Hence, assuming the variable colour had been set using the line given earlier, we
could extract the red component of that colour with the line

redval ue = RGBR(col our)

DarkBASIC Pro: Selection

FIG-3.31

N—
=} e—

The RGBG Statement

The RGBG statement returns an integer specifying the green component of a

specified colour. The statement has the format shown in FIG-3.24.

!

LISTING 3.5

integer
In the diagram:
colour is an integer value representing a colour. This
value will probably have been generated using the
RGB statement.
The RGBB Statement

Display Text
Characteristics

specified colour. The statement has the format shown in FIG-3.25.

In the diagram:

colour isan integer value representing a colour. This

The RGBB statement returns an integer specifying the blue component of a

value will probably have been generated using the

RGB statement.

The three statements are used in LISTING-3.4 to display the component val ues of

arandomly generated colour.

REM *** Create random col our ***
RANDOM ZE TI MER()
col our = RGB(RND(255), RND(255), RND(255))

REM *** Extract conponents of this colour ***
red = RGBR(col our)

green = RGBE col our)

bl ue = RGBB(col our)

REM *** Use the new col our ***
I NK col our, 0

REM *** Di splay the colour details ***

PRI NT “The generated col our has the follow ng settings”
PRI NT “Red conponent : ", ,red

PRI NT “Green conponent : ”,green

PRI NT “Bl ue conponent : ", blue

REM *** End program ***
WAI T KEY
END

DarkBASIC Pro: Selection

105

Activity 3.30

Typein and test the program (colours03.dbpro) in LISTING-3.4.

Text Settings

106

Details of the text font, size and style currently being used by a program can be
retrieved using the following statements.

The TEXT BACKGROUND TYPE Statement

We can discover the current text background mode (opague or transparent) using
the TEXT BACKGROUND TYPE statement which has the format shown in
FIG-3.26.

The statement returnsthe value zero if atransparent background is being used; 1is
returned when the background setting is opague.

The TEXT STYLE Statement

The style of font, (bold, italic, etc.) can be determined using the TEXT STYLE
statement which has the format shown in FIG-3.27.

The integer value returned lies between 0 and 3 (0 - normal; 1 - italic; 2 - bold; 3 -
bold italic).

The TEXT SIZE Statement

The TEXT STYLE statement returns the current text size setting in points. This
statement has the format shown in FIG-3.28.

The TEXT FONT$ Statement

The TEXT FONTS$ statement returns a string giving the name of the font currently
being used. For example, it would return the string "Arial", assuming this font had
been selected earlier, using the SET TEXT FONT statement. The TEXT FONT$
statement has the format shown in FIG-3.29.

The TEXT WIDTH Statement

When placing text on the screen it can be very useful to know in advance just how
many pixels wide that piece of text is going to be. The exact width of the text will
obviously depend on the text itself, goodbye being wider than hello, but text font,
style and size settings are al so going to effect the width of the text. We can find out
the exact width of any text to bedisplayed using the TEXT WIDTH statement. This
has the format shown in FIG-3.30.

In the diagram:

string is the string whose width is to be determined.

The TEXT HEIGHT Statement

DarkBASIC Pro: Selection

Thenumber of pixelsfromthelowest point on apiece of text (typically at thebottom
of letterssuch asg andy) to the highest point (on letterssuch ast and |) can befound

Activity 3.1

a) Integer
b) String
c) Integer
d) Real

e) String
f) Integer
g) Red

h) String
i) String
i) Real

Activity 3.2

“Mary is’ - string
12 - integer
“ yearsold” - string

Activity 3.3

a) Vvdid

b) Invalid. Integer variable will store 12

¢) Invalid. Hello should be enclosed in double
quotes(“Hello")

d) valid

e) Invalid. Must be double quotes, not single quotes

f) vadid

Activity 3.4

a) Vvdid

b) Invalid. Must start with aletter

¢) Invalid. Names cannot be within quotes.
d) valid

€) Invalid. Spacesare not allowed in aname
f) valid

g) Invalid, end isaDarkBASIC Pro keyword
h) valid

Activity 3.5

1. desc$="tall"
2. resul t#= 12. 34

Activity 3.6

a) Vvalid

b) Invalid. Fraction part lost

c) Invalid. A string cannot be copied to an integer
variable

d) valid

e) Invalid. A real cannot be copied to a string variable
f) Invalid. A string cannot be copied to areal variable

Activity 3.7

a 2
b) -1
c)5
d) -4

DarkBASIC Pro: Selection

Activity 3.8

a) no2is16
b) x#is82.18
c) no3iszero
d) no4is9

e) m#is0.4

f) v2#is40.99

Activity 3.9

Theresultis1
The expression is calculated as follows:

12-5* 12/10-5
12-60/10-5
12-6-5

6-5

Activity 3.10

Steps

8*(6-2)/(3-1)
8*4/(3-1)
8*4/2

3212

16

Activity 3.11

answer - no3
answer
answer
answer
answer
answer
answer
answer

(4 + no2 - 1)
(4 +3 - 1)
(7 -1
6
6

[y
N
—_————

* % k% %k

- 25

oo oo G
[
a1

10 - 25

[T T TR TR TR TR
' =
N}

Activity 3.12

term$ will hold the string abcl23xyz

Activity 3.13

Output:

number
23

Activity 3.14

The final version of the program should read:

name$ = “Jessica MLaren”
PRI NT name$

WAI T KEY

END

> > > >

NN NN

107

Activity 3.15 PRI NT day$

REM *** Assign name to variable & display READ day$
[PRI NT day$
nane$ = “Jessica MlLaren” READ day$
PRINT “Hello, ”,nane$,", how are you today?" PRI NT day$
REM *** End program *** READ day$
VWAI T KEY PRI NT day$
END REM *** Go back to the start of the data ***
RESTORE
REM *** Read and display the first day ***
Activity 3.16 READ day$
PRI NT day$
a) valid REM *** End program ***
b) Valid \é\Q'DT KEY
¢) Invalid. The commais missing after the message.
Activity 3.17 Activity 3.21
. . m |l lisecondsPassed = TI MER()
No solution required. seconds = nillisecondsPassed / 1000

m nutes = seconds / 60
PRI NT “Your conputer has been on for

"

AC“V'ty 3.18 ,mnutes, “ mnutes”
REM *** Get nane *** \QQ:DT KEY
I NPUT “Player 1, enter your nane ", nane$
INPUT “Enter your age ", age . .
PRI NT “Hel | o, % , na?re& “ gI see you are This could be reduced to just
", age," years ol d"
REM *** End program *** mnutes = TIMER()/ 60000
WAI T KEY PRI NT “Your conputer has been on for ”
END ,mnutes, “ mnutes”
WAI T KEY
END
Activity 3.19
REM *** Set up names of days of the week *** Activity 3.22
DATA
“Sunday”, “ Monday”, “ Tuesday” , “Wednesday”, REM *** Di splay nessage ***
“Thursday”, “ Fri day”, “ Sat ur day” PRINT “Press any key”
REM *** Read and di splay each day *** REM *** Record start tine ***
READ day$ start = TIMER()
PRI NT day$ REM *** Wit for key press ***
READ day$ WAI T KEY
PRI NT day$ REM *** Record finish tine ***
READ day$ finish = TI MER()
PRI NT day$ REM *** Cal cul ate and di splay duration ***
READ day$ duration = finish - start
PRI NT day$ PRI NT “You took ", duration, “ mlliseconds”
READ day$ REM *** End program ***
PRI NT day$ VAT KEY
READ day$ END
PRI NT day$
READ day$.
PRI NT day$ Activity 3.23
REM *** End program ***
WAI T KEY RND(48)
END
Activity 3.24
Activity 3.20

The RND line needs to be changed to read:
Existing linesarein grey.

RND(48) + 1
REM *** Set up nanes of days of the week ***
DATA L.
“Sunday”, “Monday”, “ Tuesday”, “Wednesday”, ACthlty 3.25

“Thur sday”, “Friday”, “ Sat ur day”

REM *** Read and di splay each day *** REM *** Generate random val ue ***

RANDOM ZE TI NER()

SElAEdey$$ nunber = RND(99) +1

READ da% REM *** @uess the number ***

PRI NT day$ Iglsis Enter your guess (1 to 100)
Eﬁfﬁmdzé% REM *** Di spl ay both val ues

READ day$ PRINT “Nunber was ", nunber," CGuess was

, guess

108 DarkBASIC Pro: Selection

REM *** End program ***
WAI T KEY
END

Activity 3.26

REM *** Assign col ours ***
scarl et = RGB(255,0,0)

sky = RGB(O0, 0, 255)

CLS scarl et

I NK sky, scarl et

PRI NT “Ccean”

REM *** End program ***
WAI T KEY

END

Activity 3.27

No solution required.

Activity 3.28
Test Value Expected Result
401286 633.471
0 0
-9 Undefined
Activity 3.29

Thetext isnot centred vertically since the CENTER TEXT
statement positions the top of the text at the y-ordinate
specified. To be correctly centred, the middle of the text
would have to positioned at this y-ordinate.

Activity 3.30

No solution required

Activity 3.31

No solution required.

using the TEXT HEIGHT statement, which has the
format shown in FIG-3.31.

In the diagram:

string
determined.

The program in LISTING-3.5 demonstrates the use
of the statementsin this section.

REM *** Set text characteristics ***
SET TEXT FONT "Arial"

SET TEXT TO BOLD

SET TEXT S| ZE 20

SET TEXT OPAQUE

REM *** Read in text ***
INPUT "Enter text : ", text$

REM *** Di splay details ***
PRI NT "Font used is ", TEXT FONT$()
PRINT "Font style is ", TEXT STYLE()," O

- normal, 1 - italic, 2 %- bold, 3 -
bold italic"

PRINT "Font size is ", TEXT SIZE(),"

poi nts"

PRI NT "Text background ", TEXT BACKGROUND
TYPE()," O - transparent %1 - opaque"

PRINT text$," is ", TEXT WDTH(text$),"
pi xel s wi de"
PRINT text$," is ", TEXT HEI GHT(text$),"
pi xel s hi gh"

REM *** End program ***

WAI T KEY
END
Activity 3.31

Typein and test the program in LISTING-3.5
(textdetails.dbpro).

Summary

® Use SCREEN WIDTH to find the current screen

width setting.

® Use SCREEN HEIGHT tofind the current screen

height setting.

® Use SCREEN DEPTH to find how many bitsare

used to represent one screen pixel.

® Use RGBR to find the value of the red component in a specified colour.

® Use RGBG to find the value of the green component in a specified colour.

® Use RGBB to find the value of the blue component in a specified colour.

DarkBASIC Pro: Selection

109

isthe string whose |

® Use TEXT BACKGROUND TYPE to determine if transparent or opaque
backgrounds are being used with text output.

® Use TEXT STYLE to determine the current text style setting.

® Use TEXT SIZE to determine the current text size setting.

® Use TEXT FONTS$ to determine the current text font name.

® Use TEXT WIDTH to determine the width of a specified piece of text.

® Use TEXT HEIGHT to determine the height of a specified piece of text.

110 DarkBASIC Pro: Selection

solutions

DarkBASIC Pro: Selection 111

112 DarkBASIC Pro: Selection

AND, OR and NOT Operators
Boolean Conditions
IF..ENDIF Statement
IF.THEN Statement

Nested IF Statements
Relational Operators
SELECT Statement

Testing Selective Structures

DarkBASIC Pro: Selection 111

Linary Selection

I ntroduction

Aswe saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

IF condition THEN
action
ENDIF

Hence, in our guessing game we described the response to a correct guess as:

IF guess = number THEN
Say “Correct”
ENDIF

Aswe'll see, DarkBASIC Pro also makes use of an |IF statement to handle such
situations.

ThelF Statement

FIG-4.1

The Simple |F Statement

Notice that DarkBASIC
Pro’s | F statement does
not contain the word
THEN

Condition

112

Initssimplest form the IF statement in DarkBA SIC Pro takes the format shown in

FIG-4.1.
e
=,
In the diagram:
condition is any term which can be reduced to atrue or
false value.
statement isany executable DarkBASIC Pro statement.

If condition evaluatesto true, then the set of statements between the |F and ENDIF
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to the statements following the ENDIF term.

Anunlimited number of statements may be placed betweenthelFand ENDIFterms.

Generally, the condition will be an expression in which the relationship between
two quantitiesis compared. For example, the condition

no <0

will be trueif the content of the variable no isless than zero (i.e. negative).

DarkBASIC Pro: Selection

A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-4.2.

FIG-4.2
- Jistei] Jtainatpertr|Jste2]
In the diagram:
valuel and value2 may be constants, variables, or expressions
relational operator isone of the symbols givenin TABLE-4.1.
TABLE-4.1
English Symbol
Relational Operators)
is less than <
is less than or equal to ==
is greater than >
is greater than or equal to >=
is equal to =
is not equal to

The values being compared should be of the same type, but it is acceptable to mix
integer and real numeric values asin the conditions:

Vv > X#
t# < 12

However, numeric and string values cannot be compared. Therefore, conditions
such as

nane$ = 34
nol <> “16"

areinvalid.

Activity 4.1
Which of the following are not valid Boolean expressions?
a) nol < d) v# => 12.0

0
b) name$ = “Fred” €) total <> “Q"
C) nol * 3 >=no2 - 6 f) address$ = 14 High Street

When two strings are checked for equality asin the condition

I F nane$ = “Fred”

the condition will only be considered trueif the match isan exact one (see FIG-4.3),
even the slightest difference between the two strings will return afalse result.
FIG-4.3

“fred” " Fred” “br oadswor d” “broad sword”
Comparing Strings

Not equal
lower case f and upper case F

Not equal
single word two words
(i.e. one of the strings contains a space)

DarkBASIC Pro: Selection 113

114

Not only isit valid to test if two string values are equal, or not, asin the conditions

I F name$ = “Fred”
I'F village$ <> “Turok”

itisalsovalidtotest if onestring valueisgreater or less than another. For example,
it istrue that

“g s A

Such a condition is considered true not because B comes after A in the alphabet,
but becausethe coding used within the computer to storea“B” hasagreater numeric
value than the code used to store“A”.

The method of coding charactersisknown as ASCI | (American Standard Codefor
I nformation | nterchange). This coding system is given in Appendix A at the back
of the book.

If you are comparing strings which only contain letters, then one string isless than
another if that first string would appear first in an alphabetically ordered list. Hence,

“Aardvark” islessthan “Abolish”

But watch out for upper and lower case letters. All upper case |etters are less than
all lower case letters. Hence, the condition

“a < g
istrue.

If two strings differ in length, with the shorter matching the first part of the longer
as

“abc” < “abcd”

then the shorter string is considered to be less than the longer string. Also, because
the computer compares strings using their internal codes, it can make sense of a
condition such as

“ $n < won

whichisalso considered true sincethe $ sign hasasmaller valuethan the ? character
in the ASCII coding system.

Activity 4.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for part f).

a “wy” = “w xy” d) “cat” = “cat.”
b) “def” < “defg” €) “dog” = “Dog”
C) “AB’ < “BA’ f) wsr > vg

TABLE-4.2 shows some Structured English I F statements and the DarkBASIC Pro
equivalents.

DarkBASIC Pro: Selection

TABLE-4.2

Examples of Simple IF
Statements

LISTING-4.1

Using aSimple IF
Statement

LISTING-4.2

Placing Several
Statements within the
IF..ENDIF Structure

Structured English DarkBASIC Pro Code

IF no is negative THEN IFno<0
make no positive no = -no
ENDIF ENDIF
IF day is zero THEN IF day =0
Display “Sunday” PRINT “Sunday”
ENDIF ENDIF

IF value mod 2 =0
value = value - 1
ENDIF

IF value is even THEN
Subtract 1 from value
ENDIF

The program in LISTING-4.1 reads in two numbers and displays a message if the
numbers are equal. The program employs the following logic:

Get values for no1 and no2
IF no1 =no2 THEN

Display “Numbers are equal”
ENDIF

REM *** Read in two nunbers ***
INPUT “Enter first value : ",nol
I NPUT “Enter second val ue ", no2

REM *** | F both nunbers are the sane THEN Di spl ay nessage ***
I F nol = no2

PRI NT “Nunbers are equal”
ENDI F

REM *** End program ***
WAI T KEY

END

Notice the use of indentation in the program listings. DarkBASIC Pro does not
demand that this be done, but indentation makes a program easier to read - thisis
particularly true when more complex programs are written.

Activity 4.3
Typein and test the program in LISTING-4.1 (Call the project same.dbpro)
Modify the program you created for project guess.dbpro, so that, after the

player has typed in his guess, the program displays the word Correct if the
guess and number are equal.

In the next program (see LISTING-4.2) area value representing the radius of a
circleisread from the keyboard. Aslong as avalid value has been entered (i.e. a
value greater than zero) then the area of the circleis calculated and displayed.

Notice that this time we have more than one statement within the | F structure.

REM *** Read radius of circle ***
INPUT “Enter radius : ", radi us#

REM *** | F valid radi us THEN ***

IF radius# > 0
REM *** Cal cul ate and display area ***
area# = 3.14159 * radius# * radi us#
PRINT “Area of circle is ", area#

ENDI F

continued on next page

DarkBASIC Pro: Selection 115

LISTING-4.2
(continued)

Placing Several
Statements within the
IF..ENDIF Structure

REM *** End program ***
WAI T KEY
END

Activity 4.5

Write separate DarkBASIC Pro programs for each of the following tasks:
(Name the projects act4 5 1.dbpro, act4 5 2.dbpro, etc.)

1. Read in an integer number (nol) and display the message “ Negative value’
if the number is less than zero.

2. Read in area number representing the width and height of a square. If the
number is greater than zero, calculate and display the area of the square.

3. Readinaword. If theword is“yes’, display the message “ Access granted”.

4. Read in an integer value and display the word “Even” if it isan even
number (HINT: an even number gives no remainder when divided by 2).

Compound Conditions - the AND and OR Operators

TABLE-4.3

The AND Operator

116

Two or more simple conditions (like those given earlier) can be combined using
either theterm AND or theterm OR (just aswedid in structured English in Chapter
1).

The term AND should be used when we need two conditions to be true before an
action should be carried out. For example, if agamerequiresyou to throw two sixes
to win, this could be written as:

RANDOM ZE TI MER ()

dicel = RND(5) + 1

dice2 = RND(5) + 1

IF dicel = 6 AND dice2 = 6
PRI NT “You win!”

ENDI F

The statement PRI NT “ You wi n! 7 will only be executed if both conditions, dicel=
6 and dice2 = 6, aretrue.

Activity 4.6

Using the code given above, if dicel = 6 and dice2 = 5, will the statement
PRI NT “You win!” becarried out?

Y ou may recall from Chapter 1 that there are four possible combinations for an IF
statement containing two simple expressions. Because these two conditions are
linked by the AND operator, the overal result will only be true when both
conditions are true. These combinations are shown in TABLE-4.3.

condition 1 | condition 2 | condition 1 AND condition 2

false false false
false true false
true false false
true true true

DarkBASIC Pro: Selection

TABLE-4.4

The OR Operator

We link conditions using the OR operator when we require only one of the
conditions given to be true. For example, if a dice game produces awin when the
total of two diceiseither 7 or 11, we could write the code for this as:

RANDOM ZE TI MER ()

dicel = RND(5) + 1
dice2 = RND(5) + 1
total = dicel + dice2

IF total =7 ORtotal = 11
PRI NT “You win!”
ENDI F

Again, the computer reduces the individual Boolean expressions to either true or
false. If at least one of the individual conditions is true, then the overall result is
also true. This time the four possible combinations give the results shown in

condition 1 | condition 2 | condition 1 OR condition 2

false false false
false true true
true false true
true true true

TABLE-44

Activity 4.7

If nol =10 and no2 = 7, which of the following I F statements will evaluate to
true?

a) IFnol <no2 ORno2 =8

b) 1Fnol + no2 > 15 R nol < 9

C) IFno2- nol>0O0RnNol/ no2 >1
d) IFnol >= 10 OR no2 <= 10

Thereisno limit to the number of conditionsthat can belinked using AND and OR.
For example, a statement of the form

I F conditionl AND condition2 AND condition3

means that all three conditions must be true, while the statement

I'F conditionl OR condition2 OR condition3

means that at least one of the conditions must be true.

DarkBASIC Pro: Selection 117

Activity 4.8

A game requires 3 dice to be thrown. If at least two dice show the same value,
the player has won.

Write a program (dice.dbpro) which contains the following logic:

Throw all three dice

IF any two dice match THEN
Display “You win!”

ENDIF

Display the value of each dice

Activity 4.9

Modify your previous project Act4 5 3 so that the message “ Access granted”
isdisplayed if theword input is either “yes’ or “YES’.

Oncewe start to create conditions containing both AND and OR operators, we must
remember that the AND operator takes precedenceover the OR operator. Therefore,
the statement

IF dice = 5 ORdice = 2 AND card$ = “Ace”

means that throwing adicevalue of 5issufficient to give usan overal result of true
and it does not matter what value card$ is. However, it we don’t throw a5, then we
must throw a 2 and card$ must be equal to “Ace” to achieve an overall true resullt.

The normal rule of performing the AND operation before OR can be modified by
the use of parentheses. Expressions within parentheses are always evaluated first.
Hence, if we write

IF (dice =5 ORdice = 2) AND card$ = “Ace”

the expression will be calculated as follows:

(true OR false) AND false
true AND false
false

Activity 4.10
What is the overall result of the Boolean expression
(score > 20 OR lives > 2) AND (weaponpower < 1 OR ammunition >= 200)

when score =15, lives = 3, weaponpower = 1, and ammunition = 250

The NOT Operator

DarkBASIC Pro’s NOT operator works in exactly the same way as that described
in Chapter 1. It is used to negate the final result of a Boolean expression.

If we assume dice = 4, then the line

I'F NOT (dice =5 OR dice = 2)

118 DarkBASIC Pro: Selection

will evaluate as

NOT (false OR false)
NOT false
true

Activity 4.11

When money =100 and cards =21, what is the result of the condition:

NOT (money > 80 AND cards > 20)

EL SE - Creating Two Alter native Actions

FIG-44

The IF..EL SE Statement

In its present form the |F statement allows us to perform an action when a given
condition is met. But sometimes we need to perform an action only when the
conditionisnot met. For example, when the user hasto guess the number generated
by the computer, we use an IF statement to display the word “Correct” when the
user guesses the number correctly:

| F guess = nunber
PRI NT “Correct”
ENDI F

However, shouldn’t we display an alternative message when the player is wrong?

Oneway todothisistofollow thefirst I F statement with another testing the opposite
condition:

| F guess = nunber
PRI NT “Correct”
ENDI F
I'F NOT guess = nunber
PRI NT “W ong”
ENDI F

Although this will work, it’s not very efficient since we always have to test both
conditions - and the second condition can’t be true if the first oneis!

As an alternative, we can add the word EL SE to our IF statement and follow this
by the action we wish to have carried out when the stated condition isfalse:

| F guess = nunber
PRI NT “Correct”

Ne—
condition l
—

DarkBASIC Pro: Selection 119

FIG-4.5

The Alternative IF
Statement

Although the syntax
diagram showsthe IF
statement spread over
several lines, this statement
must be entered asasingle
linein your program.

ELSE
PRI NT “Wong”
ENDI F

Activity 4.12

Modify act4 5 1.dbpro to display the phrase “Positive number” if the
variable nol is greater than or equal to zero and displays the phrase “ Negative
number” if nol contains avalue less than zero.

This gives usthe longer version of the I F statement format as shown in FIG-4.4.

Activity 4.13

Modify your guess.dbpro project so that the message “Wrong” appearsif the
player guesses the wrong number.

N4 N 4
condition, l l THEN
P\

Activity 4.14

Create aproject (smaller.dbpro) which reads in two numbers from the
keyboard and displays the smaller of the two values.

Activity 4.15

Modify project act4 5 4.dbpro so that the program displays the word “ Odd”
if an odd valueis entered.

The Other |F Statement

120

DarkBASIC Pro actually offers asecond version of the I F statement which has the
format shown in FIG-4.5.

DarkBASIC Pro: Selection

Asyou can see from the diagram, this version uses the word THEN but omits the
ENDIF term. Y ou can have as many statements as you need in each section (after
THEN and EL SE) but these must be separated by colons.

A magjor restriction when using this version of the | F statement is that the keyword
EL SE, if used, must appear on the same line as the term |F. Hence, it isinvalid to
write:

IF nol < 0 THEN

PRI NT “Negative”
ELSE

PRI NT “Positive”

Instead you must write

IF nol < 0 THEN PRINT “Negative” ELSE PRI NT “Positive”

Activity 4.16

Rewrite the |F statement you created in Activity 4.12 to use this alternative
version of the |F statement.

Itis probably best to avoid this version of the |IF statement, since the requirement
to place the IF and EL SE terms on the same line does not allow a good layout for
the program code.

Activity 4.17
1. What isaBoolean expression?
2. How many relation operators are there?

3. If acondition contains both AND and OR operators, which will be
performed first?

Summary

@ Conditional statements are created using the | F statement.
® A Boolean expression is one which gives aresult of either true or false.

® Conditions linked by the AND operator must al be true for the overall result to

be true.

@ Only one of the conditions linked by the OR operator needs to be true for the

overall result to be true.

® When the NOT operation is applied to acondition, it reversesthe overall result.
® The statements following a condition are only executed if that condition istrue.
® Statements following the term EL SE are only executed if the conditionisfalse.

® A second version of the IF statement is available in DarkBASIC Pro in which

IF and EL SE must appear on the same line.

DarkBASIC Pro: Selection 121

122 DarkBASIC Pro: Selection

Multi=Way Selection

I ntroduction

A single IF statement isfineif all we want to do is perform one of two alternative
actions, but what if we need to perform one action from many possible actions? For
example, what if we need to select from three or more aternative actions? How can
we create codeto deal with such asituation?In structured English weuse amodified
| F statement of the form:

IF
condition 1:
action1
condition 2:
action 2
ELSE
action 3
ENDIF

However, this structureis not availablein DarkBASIC Pro and hence we must find
some other way to implement multi-way selection.

Nested | F Statements

Onemethod isto use nested | F statements - where one | F statement is placed within
another. For example, let’s assume in our number guessing game that we want to
display one of three messages: Correct, Your guessistoo high, or Your guessistoo
low. Our previous solution allowed for two alternative messages: Correct or Wrong
and was coded as:

| F guess = nunber
PRI NT “Correct”
ELSE
PRI NT “Wong”

LISTING-4.3 ENDI F

The Number Guessing |n this new problem the PRI NT “ W ong” statement needs to be replaced by the two
Game Again alternatives: Your guessistoo high, or Your guessistoo low. But we aready know
how to deal withtwo alternatives- usean | F statement. In thiscase, our | F statement

| F guess > nunber

PRI NT “Your guess is too high”
ELSE

PRI NT “Your guess is too |ow’
ENDI F

If wenow removethePRI NT “W ong” Statement from our earlier code and substitute
thefour lines given above, we get:

| F guess = nunber
PRI NT “Correct”
ELSE
| F guess > nunber
PRI NT “Your guess is too high”
ELSE
PRI NT “Your guess is too |ow
ENDI F
ENDI F

DarkBASIC Pro: Selection 123

124

Activity 4.18

Modify your guess.dbpro project so that the game will respond with one of
three messages as shown in the code given above.

Activity 4.19

Inact4 5 1.dbpro we created an | F statement which displayed one of two
messages. Positive Number or Negative number.

Technically, the number zero is neither positive nor negative, hence we should
really produce athird message: Zero when number = 0.

Modify your earlier solution to this previous task to achieve this requirement.

There is no limit to the number of IF statements that can be nested. Hence, if we
required four aternative actions, we might use three nested IF statements, while
four nested | F statements could handle five alternative actions. To demonstratethis
we'll take our number guessing game a stage further and display the message Your
guessis dightly too high if the guessis no more than 5 above the original number;
the message Your guessis slightly too low will be displayed if the guessis no more
than 5 below the original number.

We'll start by working out the difference between our guess and the computer’s
number using theline

di fference = guess - nunber

Now, if we' ve guessed the number correctly, then differencewill be zero. However,
if we' vegonetoo high, then differencewill beapositive number. On the other hand,
a low guess will result in difference being negative. When difference is a small
value (either positiveor negative) then guess must be closeto number. Thecomplete
programisgivenin LISTING-4.3.

REM *** Gener ate nunber ***
RANDOM ZE TI MER()
nunber = RND(99) +1
REM *** (CGet guess ***
I NPUT “Enter your guess (1 - 100) ", guess
REM *** Cal cul ate difference between the two val ues ***
di fference = guess - nunber
REM *** Di spl ay appropriate nmessage ***
IF difference = 0
PRI NT “Correct”
ELSE
IF difference > 0
IF difference <= 5
PRI NT “Your guess is slightly too high”
ELSE
PRI NT “Your guess is too high”
ENDI F
ELSE
IF difference >= -5
PRI NT “Your guess is slightly too | ow
ELSE
PRI NT " Your guess is too |ow'
ENDI F
ENDI F
ENDI F

DarkBASIC Pro: Selection

Activity 4.20

Modify your guess.dbpro program to match the code given in LISTING-4.3.

Test the program to check that it operates as expected.

FIG-4.6

1
expression is evaluated
and reduced to a single value

How the SELECT

statement operates)
SELECT expression

CASE val uel
action
ENDCASE

2 - option 1
The CASE statement whose
value matches expression has
its action executed...

CASE val ue
action
ENDCASE

2 - option 2
If expression matches none of

the values given, the o
DEFAULT action is executed... Q

If no DEFAULT option is given
CASE DEFAULT the whole SELECT structure is ignored
action

ENDCASE
ENDSELECT

Activity 4.21

In agame aplayer’s character carries the following items: a sword, awand, a
bag of dragon’steeth and awater skin.

Create a new project (items.dbpro) which reads in a number from the
keyboard and displays the name of the corresponding item. Hence, if 1is
entered, the phrase A sword is displayed, if 2 isentered, A wand is displayed,
etc. If aninvalid value is entered, the phrase Unknown itemis displayed.

The SELECT Statement

An aternative, and often clearer, way to deal with choosing one action from many
isto employ the SELECT statement. The simplest way to explain the operation of
the SELECT statement is simply to give you an example. In the code snippet given
below we display the name of the day of week corresponding to the number entered.
For example, entering 1 results in the word Sunday being displayed.

I NPUT “Enter a nunber between 1 and 7 ", day
SELECT day
CASE 1
PRI NT “Sunday”
ENDCASE
CASE 2
PRI NT “Monday”
ENDCASE
CASE 3

DarkBASIC Pro: Selection 125

FIG-4.7

The SELECT Statement

126

PRI NT “Tuesday”
ENDCASE
CASE 4

PRI NT “Wednesday”
ENDCASE
CASE 5

PRI NT “Thur sday”
ENDCASE
CASE 6

PRINT “Friday”
ENDCASE
CASE 7
PRI NT *Sat ur day”
ENDCASE
ENDSELECT

Once avaue for day has been entered, the SELECT statement chooses the CASE
statement that matches that value and executes the code given within that section.
All other CASE statements are ignored and the instruction following the END
SELECT statement (not shown above) is the next to be executed. For example, if
day = 3, then the statement given beside CASE 3 will be executed (i.e. PRI NT
“Tuesday”). If day were to be assigned a value not given in any of the CASE
statements (i.e. a value outside the range 1 to 7), the whole SELECT statement
would be ignored and no part of it executed.

Optionally, a special CASE statement can be added at the end of the SELECT
statement. This is the CASE DEFAULT option which is used to catch al other
valueswhich have not been mentioned in previous CASE statements. For example,
if we modified our SELECT statement above to end with the code

CASE 7
PRI NT “ Sat ur day”
ENDCASE
CASE DEFAULT
PRI NT “Invalid day”
ENDCASE
ENDSELECT

then, if avalue outside therange 1to 7 is entered, thislast CASE statement will be
executed. FIG-4.6 shows how the SELECT statement is executed.

DarkBASIC Pro: Selection

Several values can be specified for each CASE option. If the SELECT value
matches any of the values listed, then that CASE option will be executed. For
example, using thelines

I NPUT “Enter a nunber ” , num
SELECT num
CASE 1, 3, 5, 7, 9
PRI NT “Qdd”
ENDCASE
CASE 2, 4,6, 8,10
PRI NT “Even”
ENDCASE
ENDSELECT

theword Odd would be displayed if any odd number between 1 and 9 was entered.

The values given beside the CASE keyword may also be astring asin the example
below:

I NPUT “Enter your nane ", nane$ °
SELECT nane$
CASE “Liz”,"John"
PRINT “Hello friend”
ENDCASE
CASE DEFAULT
PRINT “1 do not know your nane”
ENDCASE
ENDSELECT

Although the value may also be areal value asin theline
CASE 1.52

it is a bad idea to use these since the machine cannot store real values accurately.
If areal variable contained the value 1.52000001 it would not match with the CASE
value given above.

The general format of the SELECT statement is given in FIG-4.7.

In the diagram:
expression isavariable or expression which reducesto a
singleinteger, real or string value.
value isaconstant of any type (integer, real or string).
statement isany valid DarkBASIC Pro statement
TABLE-4.5 dice1=6 | dice2=6 dicel = 6 AND dice2 = 6
Testing Complex false false false
Conditions false true false
true false false
true true true

(even another SELECT statement!).

DarkBASIC Pro: Selection 127

TABLE-4.6

Dealing with Impossible
Combinations

Activity 4.22

Rewrite the Items program so that it uses a SELECT structure when
determining which message is to be displayed.

Activity 4.23

Write a project (Grading) which accepts a score from the keyboard and
displays the grade assigned according to the following rules:

Score 0-99 grade: Pathetic
Score 100-199 grade: Beginner
Score200-299 grade: Apprentice
Score 300-399 grade: Competent
Score 400-499 grade: Master

Score 500-599 grade: Grand Master

Other values Invalid score
dice=5 | dice=2 card$="Ace” dice =5 OR dice = 2 AND card$="Ace”

false false false false
false false true false
false true false false
false true true true
true false false true
true false true true
true true false * true
true true true * true

Testing Selective Code

128

When a program contains IF or SELECT structures, our test strategy hasto change
to cope with these structures. In the case of an | F statement, we must create two test
values: onewhichresultsinthe I F statement being true, the other in the | F statement
being false. For example, if aprogram contained the lines

I NPUT no
IFno<=0

PRINT “This is a negative number”
ENDI F

then we need to have atest value for no which is less than zero and another which
is not less than zero. Perhaps the values -8 and 3.

Another important test is to find out what happens when the variable's value is
exactly equal to the value against which it is being tested. In the above case that
would mean testing the code with no set to 0. Very oftenthisisthe only valuewhich
will highlight a problem in the code.

Activity 4.24

If nois zero, will the message “ Thisis a negative number” be displayed by the
code given above?

Since zero is not a negative number we have discovered an error in our code. The
line

DarkBASIC Pro: Selection

IF no <=0

should actually read

IFno<O
We would not have detected this error if we hadn’t used zero as our test value.

When an IF statement contains more than one condition linked with AND or OR
operators, testing needs to check each possible combinations of true and false
settings. For example, if aprogram contained the line

IF dicel = 6 AND dice2 = 6

then our tests should include all possible combinations for the two conditions as
shownin TABLE-4.5.

So our test values, chosen to meet these combinations, might be

dicel=3 dice2=5
dicel=4 dice2=6
dicel=6 dice2=1
dicel=6 dice2=6

If the dice values are randomly generated in the program we would have to change
lines such as

dicel = RND(5) +1
to

I NPUT “Enter value for dice 1 : ",dicel

to alow thetest to take place. Once the tests have been completed, the INPUT lines
would be replaced by the original code.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and fal se combinations. For example, if aprogram containsthe
line

IF dice =5 ORdice = 2 AND card$ = “Ace”
then the combinations of true and false are shown in TABLE-4.6.

But the last two combinations in the table are impossible to achieve since the
variable dice cannot contain the values 5 and 2 at the same time. So our test data
will have test values which create only the remaining 6 combinations.

When testing nested | F statements, asin the lines

| F guess = nunber
PRI NT “Correct”
ELSE
| F guess > nunber
PRI NT “Your guess is too high”
ELSE
PRI NT “Your guess is too |ow’
ENDI F
ENDI F

DarkBASIC Pro: Selection 129

then each path through the structure must be tested. For the above code this means

that we must test for the following conditions being true:
REM *** End program ***

Activity 4.1

a) valid
b) Valid
o) valid

d) Invalid. => isnot arelational operator (should be >=)

€) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in double quotes.

Activity 4.2

Acti

a) False. Only the second string contains a space.

b) True. “def is shorter and matchesthe first three
characters of "defg".

c) True A comes before B.

d) False Only the second string contains afull stop.
e) False Only the second string contains a capital D.
f) True. * hasagreater ASCII coding than &

vity 4.3

No solution required.

Activity 4.4

REM *** Generate random val ue ***
RANDOM ZE TI MER ()
nunber = RND (99)+1
REM *** QCuess the nunber ***
INPUT “Enter your guess (1 to 100)
, guess
REM *** | F the guess is correct THEN ***
REM *** Display “Correct” ***
| F guess = nunber
PRI NT “Correct”
ENDI F
REM *** Dj spl ay both val ues ***
PRI NT “Nunmber was ”, nunber," Guess was
, guess
REM *** End program ***
WAI T KEY
END

Activity 4.5

130

1

REM *** Read in integer ***
INPUT “Enter a nunber : ", nol
REM *** | F neg THEN Di spl ay nessage ***
IF nol <0
PRI NT “Negative val ue”
ENDI F
REM *** End program ***
WAI T KEY
END

2.

REM *** Read in real ***
INPUT “Enter length of side : ", side#
REM *** | F greater than zero THEN ***
IF side# > 0
REM *** Cal cul ate and di splay area ***
area# = side# * side#
PRI NT “Area of square is
ENDI F

, ar ea#

WAI T KEY
END

3.

REM *** Read in word ***
INPUT “Enter a word : ”,word$
I'F word$ = “yes”

PRI NT “Access al | owed”

ENDI F
REM *** End program ***
VWAI T KEY
END
4.
REM *** Read in an integer ***
I NPUT “Enter a nunber : ”,nol
REM *** | F an even nunber THEN Di spl ay
“Even” ***
I'F nol nod 2=0
PRINT “Even”
ENDI F
REM *** End program ***
VWAI T KEY
END
Activity 4.6

No, the PRINT statement is not executed.
The condition
dicel =6 AND dice2 =6

reducesto
true AND false
which further reduces to
false
Activity 4.7
a) falseORfdse = fase
b) true ORfalse = true
c) falseORtrue = true
d) true ORtrue = true
Activity 4.8

REM *** Throw di ce ***
RANDOM ZE TI MER ()
RND(5) +1

RND(5) +1

RND(5) +1

dicel
di ce2
di ce3d
REM * k Kk

I F at

| east two dice match THEN

di spl ay nessage ***
IF dicel = dice2 OR dicel = dice3 OR dice2

= dice3

PRI NT “You win”

ENDI F

REM *** Di spl ay dice values ***
PRINT “Dice 1 was ", dicel
PRINT “Dice 2 was ", dice2
PRINT “Dice 3 was ", dice3

REM *** End program ***

WAI'T KEY
END

DarkBASIC Pro: Selection

uess = number

guess > number
guess < number

To test a SELECT structure, then every value mentioned in every CASE option
must be tested. Hence, the lines

I NPUT “Enter a nunber ” , num
SELECT num
CASE 1, 3, 5, 7, 9
PRI NT “Qdd”
ENDCASE
CASE 2, 4,6, 8,10
PRI NT “Even”
ENDCASE
ENDSELECT

need to be tested using the values 1, 2, 3, 4, 5, 6, 7, 8, and 9. In addition, at least
one test should specify avalue not given in any of the CASE statements. This will
check that the DEFAULT option is executed as expected (assuming there is a
DEFAULT option), or that the whole SELECT structure is bypassed as expected.

Summary

The term nested | F statements refers to the construct where one | F statement is
placed within the structure of another |F statement.

Multi-way selection can be achieved using either nested |IF statements or the
SELECT statement.

The SELECT statement can be based on integer, real or string values.
The CASE line can have any number of values, each separated by a comma.

The CASE DEFAULT option is executed when the value being searched for
matches none of those given in the CASE statements.

Testing a simple |F statement should ensure that both true and false results are
tested.

Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

When a condition contains AND or OR operators, every possible combination
of results should be tested.

Nested IF statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

SELECT structures should betested by using every value specified inthe CASE
statements.

SELECT should also be tested using a value that does not appear in any of the
CASE statements.

DarkBASIC Pro: Selection 131

132 DarkBASIC Pro: Selection

solutions

DarkBASIC Pro: Selection 133

Activity 4.9

REM *** Read in word ***

INPUT “Enter a word : ”,word$

IF word$ = “yes” OR word$ = “YES’
PRI NT “Access granted”

ENDI F

REM *** End program ***

VWAI T KEY

END

Activity 4.10
Substituting true and false we get:
(false OR true) AND (false OR true)
= true AND true
=true
Activity 4.11
Substituting true and false we get:

NOT (true AND true)
NOT true
fal se

Activity 4.12

IF nol >=0

PRI NT* “Positive nunber”
ELSE

PRI NT “Negative nunber”
ENDI F

Activity 4.13

REM *** Generate random val ue ***
RANDOM ZE TI MER ()

nunber = RND(99) +1

REM *** Cuess the nunber ***

I NPUT “Enter your guess (1 to 100)

", guess

REM *** | F the guess is correct THEN
Di spl ay

“Correct” ***
I F guess = nunber
PRI NT “Correct”
ELSE
PRI NT “Wong”
ENDI F
REM *** Di spl ay both val ues
PRI NT “Nunmber was ”, nunber," Guess was

“, guess
REM *** End program ***
VWAI T KEY
END
Activity 4.14
REM *** Read in two numbers ***
I NPUT “Enter first number : ", nol
I NPUT “Enter second nunber : ", no2

I F nol < no2

PRI NT “Smal | est nunber is ”, nol
ELSE

PRI NT “Snal | est nunber is ", no2
ENDI F
REM *** End program ***
WAI T KEY
END

134

Activity 4.15

REM *** Read in an integer ***
I NPUT “Enter a nunber : ”,nol
REM *** | F even THEN Di splay “Even” ***
IF nol md 2 =0

PRI NT “Even”
ELSE

PRI NT “Qdd”
ENDI F
REM *** End program ***
WAI T KEY
END

Activity 4.16

IF nol >= 0 THEN PRI NT “Positive nunber”
ELSE PRI NT “Negative nunber”

(thisisentered in asingle line)

Activity 4.17

1. A Boolean expression is an expression which reduces to
either true or false.

2. SiX (<, <=,>,>=,5,<>)

3. AND isaways performed first unlessthe OR is
enclosed in parentheses.

Activity 4.18

REM *** Cenerate random val ue ***
RANDOM ZE TI MER()
nunber = RND(99) +1
REM *** Quess the nunber ***
I NPUT “Enter your guess (1 to 100) : ", guess
REM *** Respond to guess ***
| F guess = nunber
PRI NT “Correct”
ELSE
| F guess > nunber
PRI NT “Your guess is too high”
ELSE
PRI NT “Your guess is too |ow’
ENDI F
ENDI F
REM *** Di spl ay both val ues ***
PRI NT “Nunmber was ”, nunber," Guess was
“, guess
REM *** End program ***
VWAI T KEY
END

Activity 4.19

REM *** Read in a nunber ***
I NPUT “Enter number ", nol
REM *** Di spl ay appropriate nessage ***
IF nol >0
PRI NT “Positive nunber”
ELSE
IF nol =0
PRI NT “Zero”
ELSE
PRI NT “Negative nunber”
ENDI F
ENDI F
REM *** End program ***
WAI T KEY
END

DarkBASIC Pro: Selection

Activity 4.20

No solution required.

Activity 4.21

REM *** Get
I NPUT “Ent er
IFno =1

nunber ***

item nunber (1 - 4)

PRI NT “A sword”

ELSE
IF no =2
PRI NT “
ELSE
IF no =

A wand”

3

no

PRI NT “A bag of dragon’s teeth”

ELSE

IF no =4

PRI NT “A water skin”

ELSE

ENDI
ENDI F
ENDI F
ENDI F

Activity 4.22

REM *** Get
I NPUT “Ent er

PRI NT “Unknown itent
F

*k

nunber

item nunber (1 - 4)

no

REM *** Di spl ay appropriate nessage ***

SELECT no
CASE 1
PRI NT “
ENDCASE
CASE 2
PRI NT “
ENDCASE
CASE 3

PRI NT “A bag of dragon’s teeth”

ENDCASE
CASE 4

PRI NT “
ENDCASE

A sword”

A wand”

A water skin”

CASE DEFAULT

PRI NT *
ENDCASE
ENDSELECT
REM *** End
WAI T KEY
END

Activity 4.23

REM *** Cet
I NPUT “Enter

Unknown itenf

program ***

nunber Read score
your score : ", score

REM *** Di spl ay appropriate nmessage ***

SELECT score
CASE 0
PRI NT “
ENDCASE
CASE 1
PRI NT “
ENDCASE
CASE 2
PRI NT “
ENDCASE
CASE 3
PRI NT “
ENDCASE
CASE 4
PRI NT “
ENDCASE
CASE 5
PRI NT “

DarkBASIC Pro

/ 100

Pat heti c”

Begi nner”

Apprentice”

Conpet ent

Mast er”

Grand master”

: Selection

ENDCASE
CASE DEFAULT
PRINT “Invalid score”
ENDCASE
ENDSELECT
REM *** End program ***
WAI T KEY
END

Activity 4.24

Y es. The condition no <= 0 is true and hence the
PRINT statement is executed.

135

