
Introduction to GFA-BASIC
32
After GFA-BASIC for MSDOS and GFA-BASIC for Windows
3.1 a 32-bits version of GFA-BASIC is available. These
versions of GFA-BASIC were divided in a an interpreter and
a separate compiler. Starting with GFA-BASIC 32 the
interpreter part is replaced by an in-memory compiler, the
same that is used to compile to external EXE files. When a
program is run from the IDE the code is first compiled to
machine code and then executed. The compiler is optimized
for producing (very) fast machine code, so that GFA-BASIC
32 programs execute at high speed. The command library
of GFA-BASIC 32 is partly compatible to GFA-BASIC 16-bit.
Much of the functionality of the 16-bit version is retained,
but due to an entirely new concept of creating and handling
of windows and dialog boxes, GFA-BASIC 32 is also quite
different and much more compatible to VB in that area.
Other incompatibilities are due to the 32 bits operating
system; an integer is now 32-bits wide instead of 16-bits in
GFA-BASIC 16-bit, for instance.

One project-file only

GFA-BASIC (32-bit) code files are single project files. This is
typical of GFA-BASIC since the very first version in 1985 for
the Atari ST. Code, forms (windows and dialog boxes), data,
resource info are all contained in one file; the .g32 source
code file. To create modular programs code can be compiled
in to a library file (.lg32) and included into the project file.

Editor

When possible GFA-BASIC 32 will automatically convert 16-
bit code to the new 32-bit syntax. An odd number of
parentheses in a code line are auto-completed to match all
required parenthesis.

The underscore character (_) can be used to split "logical"
lines of source code, across physical lines in the source code
file. The effect of using a line continuation character is for
"visual" appearance only - the compiler itself treats lines
split this way as only one contiguous line of code. The colon
character (:) can be used to separate multiple statements
on a single (logical) line of source code. Subs and functions
can be folded, of course. A rudimentary "intellisense: is
provided for OCX objects.

Procedural

GFA-BASIC 32 is a procedural language and looks much like
plain C, but it is syntax compatible with Visual Basic. GFA-
BASIC 32 supports both the VB compatible Sub and
FunctionVar statements, but it also provides the classical
Procedure/Function statements from earlier BASICs and C.

Procedures and functions can have optional parameters. You
can use GoSub and Return anywhere in a procedure, but
GoSub and the corresponding Return statement must be in
the same procedure.

New features

GFA-BASIC 32 has been greatly extended. Many new
commands and functions are added, like ReDim, Iif,
Choose, etc. New operators are included as well, like the
conditional operator ?:. It uses a question mark after the
condition to be tested, and specifies two alternatives, one to

be used if the condition is met and one if it is not. The
alternatives are separated by a colon.

New data types

New data types are Large (64-bit), Date, Currency, Variant,
Object, Pointer and Handle. Integer and Long data types are
now 32-bits. New is the full support of 64-bit integer
arithmetic. Variables declared without specifying a type
explicitly are a Variant data type by default.

Array, Hash and Collection

Arrays can be redimmed now. Array elements can be
inserted and deleted. The array can be sorted using quick
sort in every possible way. The Hash is a one dimensional
array or linked list whose (optional) index is of type string.
The Hash list can be of any type, Int/String/Date/etc. A
Hash is dynamic and is not dimensioned prior to its use.
Values are added or assigned to existing elements. A hash
can be examined, sorted, saved and loaded. Elements can
be accessed by numeric index as well. Access to hash
elements is very fast. The Hash is used with Split, Join, Eval
and the regular expression functions reMatch, reSub.

The Collection is an COM object (OCX). It is a kind of one
dimensional variant array whose index is of type variant. A
collection is dynamic and is not dimensioned prior to its use.
Values are added or assigned to existing elements. The
collection is mainly targeted at OLE objects.

Const and Enum

A constant is a variable whose value is fixed at compile-
time, and cannot change during program execution (hence,
it remains constant). A constant is defined using the Const

keyword. The Enum keyword is used to define a sequence
of constants whose values are incremented by one.

Strings

For string functions the $-postfix is no longer mandatory, as
in Chr$(0) which becomes Chr(0). The return value from a
$-free string functions is NOT a Variant as in VB, but a real
(ANSI) string. New are the Pascal compatible character
constants #number that can be used in place of
Chr(number). The following "Line1" #13#10 "Line2"
#13#10 is the same as "Line1" + Chr(13) + Chr(10) +
"Line2" + Chr(13, 10).

Besides + two new string concatenation operators are
included: $ and &.

Comparison and assignment operators

In contrast with 16 Bit GFA-BASIC the expression x == y is
now the same as x = y and x := y. The comparison
operator == from16 Bit GFA-BASIC should now be replaced
by NEAR. Alternatively, you can use a forced floating point
comparison like If a = 1!.

Direct memory access

For direct memory access a whole range of variants of Peek
and Poke are available (PeekCur, PokeStr, etc, etc.).

Memory move and manipulation commands are provided
(MemMove, MemOr, MemAnd, MemBFill, etc).

’Bits and bytes’ swap and make functions (BSwap8,
MakeHiLo, etc, etc).

Bits rotate and shift is supported (Shl, Shl8, Rol, etc).

Port access is supported (Port Out, Port In).

Matrix Arithmetic

Next to the normal arithmetic functions, GFA-BASIC 32
offers Matrix functions and many more (advanced)
mathematical functions.
For runtime expression evaluation GFA-BASIC 32 includes
Eval().

File functions

Special file functions are for checksums (Crc32, Crc16,
CheckSum, CheckXor, etc), file encryptions (Crypt), file
compression (Pack/UnPack). Others are
MimeEncode/MimeDecode, MemToMime/MimeToMem, and
UUToMem/MemToUU to convert between binary and plain
text formats.

Built-in Win32 API functions

GFA-BASIC 32 supports more than 1000 API-Functions,
functions that can be used as any other GFA-BASIC 32
function. Only the Standard-API-Functions from User, Kernel
and GDI are implemented, other not often used API-
Functions like for instance WinSock-Functions are to be
declared explicitly.

The type of the parameters of the built-in API-Functions are
not checked upon compiling. Each parameter is assumed to
be a 32-bit integer. A string can be passed to an API
function, but is always copied to one of the 32 internal
1030-Byte buffer BEFORE the address of the buffer is
passed. A user defined Type (As type) is always passed by

reference, so that its address is passed (automatically V:).
To be on the safe side, keep things in your own hand and
pass the addresses explicitly using VarPtr or V:.

These rules don’t apply to DLL functions introduced with the
Declare statement. Here GFA-BASIC 32 behaves like VB and
the rules for calling such APIs must be respected. Some API
function names are already in use by GFA-BASIC 32 and are
therefore renamed. GetObject() becomes GetGdiObject(),
LoadCursor becomes LoadResCursor. Obsolete functions
are not implemented, obviously.

Built-in Win32 API constants

As with the built-in API functions from User, Kernel and GDI,
their accompanying constants are built-in. (1400 API-
Constants from the 16 Bit-Version and more then 900
Constants from Win32-APIs are implemented. Obsolete
constants are not implemented, obviously.

Assembler and DisAssembler

GFA-BASIC 32 provides an inline assembler and a
disassembler object (DisAsm).

Graphics

Graphic commands take floating point values (Single) now.
After scaling (set with ScaleMode) the coordinates are
passed as integers to the GDI system. Scaling provides
much more flexibility and is VB compliant.

Most graphic commands can be used in VB format as well:
Line (x, y)-(z, t),, BF is identical to Pbox x, y, z, t.

The Color-command is now the same as RGBColor in 16 Bit
GFA-BASIC. Additionally, a table with the 16 standard colors
can be used: Color QBColor(i) or a shortcut QBColor i.

The windows now have an AutoRedraw property so that
output is captured (performance decrease) to a second
bitmap as well. A redraw of the window is then performed
by copying the contents of the bitmap to the screen.

Windows and dialogs

Windows and dialogs are all OLE - Forms now and their
events are handled the same way as in VB. All standard and
common controls are implemented using an OCX object
wrapper. In general, all GUI objects are now OCX objects
and are manipulated through properties, methods, and
events. The old GetEvent/Menu() structure is now obsolete.
You can still use third party controls by using the general
Control statement. The notification messages are then
handled in the window procedure of the parent, which is an
form event sub as well!

COM programming

With CreateObject you create and return a reference to an
ActiveX object. After the object reference is assigned to a
variable of type Object you can use the object's properties,
methods, and events.

Picture and Font Objects

OLE Object types to create and manipulate fonts and
pictures. Since these types are OLE-type compatible of a
Font or Picture instance can be assigned to a property of an
OCX control or form. Other objects are:

App
Object

The App specifies information about the
application's title, version information, the
path and name of its executable file and Help
files, and whether or not a previous instance
of the application is running. In addition it
provides methods to create shorcuts. It has
many properties returning information that
are otherwise hard to find.

Screen Returns the current capabilities of the display
screen your code is executing on. The Screen
object has much more properties than the VB
counterpart.

Err Contains information about runtime errors or
helps in generating useful errors.
Try/Catch/EndCatch error-handling.

CommDlg An OCX wrapper about the common dialog
box functions.

Printer Object that provides full printer support for
your application.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

An Overview of the
Integrated Environment
Starting GFA-BASIC from MS-Windows produces a standard
Windows window which is used for editor input.

When you start GFA-BASIC 32, you see the interface of the
integrated development environment, as shown below

The GFA-BASIC IDE consists of two parts; the code editor
and the Form Editor. When you first start GFA-BASIC 32 the
code editor is visible. You can easily switch between the
code and form editor using a toolbar button or the keyboard
shortcut Shift + F7.

Note The figure shows the GFA-BASIC 32 IDE after it has
been extended using the free available editor extension.

Menu Bar

Displays the commands you use to work with GFA-BASIC 32.
Besides the standard File, Edit, View, and Help menus, a
Project menu is provided to perform project specific tasks
along with an Extra menu which can be used extend the
environment with extensions or plug-ins, debugging and
other tasks. More …

Toolbar

Provides quick access to commonly used commands in the
programming environment. You click a button on the toolbar
once to carry out the action represented by that button. The
toolbar can be customized by double clicking on an empty
part of the toolbar.

Status bar

The bottom of the GFA-BASIC editor window contains a
status bar line with various information. The larger left part
is used for all kinds of information depending on the action
currently taken. For instance, it shows the error messages
which occur when the syntax control discovers an error.

Next to macro control panel, the time is shown. Then,
besides the time panel, you'll find the cursor position (line :
column). And finally, at right side you'll find the
overwrite/insert mode indicator. The mode is toggled using
the Insert key.

Code Editor

The GFA-BASIC editor is a program editor written especially
for the development of GFA-BASIC programs. It is a line
oriented editor, in that it performs a syntax check for each
line, and it automatically indents the loops and subroutines.
The syntax check means that the editor checks whether the
entered statements are syntactically correct for GFA-BASIC.
If not, a warning bell is sounded and the "Syntax error"
message box is displayed. This can be switched off in the
Properties window, though. In principle, a program line can
have any length, but in practice only 7999 pixels will be
displayed.

A comment can be placed in between statements or at the
end of a GFA-BASIC statement. More …

Sidebar

The Sidebar allows management of the program's inline data
resources, procedures and imported files and, in the Form
Editor, the properties and events associated with embedded
OCX objects.

To activate the Sidebar either use Alt+4 or the toolbar
button 'Split window'. The sidebar appears on the right and
initially displays three tabs: ':Files', 'Procs', and 'Imports';
when the environment is switched to the Form Editor an
additional 'Properties' tab window is created.

The Form Editor

The Form editor is a multiple document interface (MDI) that
serves as a place to create forms. Here you design the
interface of your application. You add controls and pictures
to a form to create the look you want. Each form in your
application has its own form designer window. More …

Toolbox

The toolbox in only visible in the form editor mode. It
provides a set of OCX tools that you use at design time to
place controls on a form. The toolbox lists all Windows
standard and common controls. More …

{Created by Sjouke Hamstra; Last updated: 25/02/2019 by James Gaite}

The Menu Bar
The menu bar of the IDE is divided in several sub menus.
Depending on the version of the IDE you are using, the
organization of the menu items might differ - the
description below is for version 2.54 onwards.

The File menu Show

Edit Menu Show

Project menu Show

Extra menu Show

View menu Show

Help menu Show

{Created by Sjouke Hamstra; Last updated: 26/02/2019 by James Gaite}

javascript:pr("FileMenuhl","FileMenu","Hide","Show","block")
javascript:pr("EditMenuhl","EditMenu","Hide","Show","block")
javascript:pr("ProjectMenuhl","ProjectMenu","Hide","Show","block")
javascript:pr("ExtraMenuhl","ExtraMenu","Hide","Show","block")
javascript:pr("ViewMenuhl","ViewMenu","Hide","Show","block")
javascript:pr("HelpMenuhl","HelpMenu","Hide","Show","block")

The Code Editor
The development environment includes an integrated Text
editor to manage, edit, and print source files. Most of the
procedures for using the editor will seem familiar if you
have used other Windows-based text editors. In addition,
GFA-BASIC 32 has enhanced the Text editor with several
new timesaving features such as statement completion,
dynamic syntax checking, and "intellisense" for OCX objects
and event subs.

You can change many of the default settings for the Text
Editor to conform to your preferences.

Folding

A particular feature of the GFA-BASIC editor is the ability to
fold whole subroutines. The contents of these subroutines
are then shown in the editor only by displaying the title line
of the Procedure or Function. To indicate that this is a folded
Procedure or Function the title line is prefixed with a
greater-than character ">". To fold a Procedure or Function
move the cursor into the subroutine (or its title line if
folded) and enter:

F11 folds a Procedure, Sub or Function which has the
cursor. Pressing F11 again unfolds the corresponding
Procedure, Sub, or Function.

F12 folds all Procedures, Subs and Functions. Pressing F12
again unfolds all Procedures, Subs, and Functions.

Recording keys

Next to the information panel in the status bar you'll find a
red dot and a grey arrow button. They provide the macro or
key recording facility. It is able to store commands and
characters. It stores most WM_COMMAND and WM_CHAR
messages. The internal buffer for saving IDs and characters
is 996 bytes long.

The status of the macro recording is reflected in the status
bar with two buttons. The red circle indicates that currently
nothing is being recorded. The arrow next to the circle is
either solid black or gray. When black a macro is available
and can be played back by clicking the arrow or by pressing
Alt + Ctrl + P.

To start recording either click on the red circle or press Alt +
Ctrl + R. Both Buttons will change, the red circle is replaced
by a black rectangle representing the stop button, and the
playback arrow is replaced by a pause button. Choosing
pause skips recording until pause is selected again or when
stop is selected. Selecting the stop button stops recording
and redraws the red circle and arrow buttons. The arrow is
now black filled: the macro can be replayed.

GLL Extension keyboard shortcuts.

GFA-BASIC 32 editor extension functions are often assigned
to keyboard shortcuts to make them easily available. GFA-
BASIC 32 has reserved 136 shortcuts to be assigned to a
custom GLL extension event. These keyboard events are
programmed by creating event subroutines with names that
identify the keyboard shortcuts they must respond to.
These keyboard subs have the fixed names Gfa_Ex_?,
Gfa_App_? or Gfa_App_S?, where ? is a placeholder for one
of the characters A-Z and the numbers 0-9. Thus, when you
want to create an extension procedure that is invoked after

pressing the combination Shift+Ctrl+X, the subroutine
should be named Gfa_Ex_X.

Next:Keyboard Accelerators

{Created by Sjouke Hamstra; Last updated: 27/02/2019 by James Gaite}

The :Files tab
General Description

GFA-BASIC 32 does not allow linking to Windows Resources,
due to the fact that the 'interpreter-part' of the IDE performs
in-memory compiling. For this reason, although the same
compiler is used for external EXE files and can link
resources, the in-memory compiler used in the Interpreter
can not.

As an alternative GFA-BASIC 32 supports Inline resources,
like it's predecessors have done since the early days of the
Atari ST, and the ':Files' window allows you to manage them.
You can add any kind of data file to this window and, later
on, open it in your application. The data is packed using the
GFA-BASIC 32 function Pack(), MimeEncode-d and then
stored as ASCII characters within the source code file.

Accessing & Viewing Inline Files

In GFA-BASIC 32 the Inline resources are accessed through
I/O commands like Open #, Input #, etc. To differentiate
the inline data from outside files, the names of the resources
must start with a colon ':'. This way the GFA-BASIC 32 I/O
commands recognize an inline file from an external file (a
filename never starts with a colon) - for example, to load the
graphic stored as 'ChkBox-3D' in the picture above, you
would use the following code:

Dim graphic As Picture
graphic = LoadPicture(":ChkBox-3D") // Note the :
before the filename

The ':Files' tab contains a ListView control and supports all
user-interface options of such a control. You can move from
one item to another using arrow, Page, Home, and End keys.

The information in the ListView control can be displayed in
the following ways:

Icon View - this dispalys the files as large icons with the
internal names underneath;
Small Icon View - the data files are listed using small
icons with the internal name to the right - the entries are
arranged from left to right, top to bottom;
List View - similar to Small Icon View with the small
icons and internal name to the right, but in this option
the entries are arranged one below the other; and
Detail View - this displays the internal name with the
original and compressed size of the data file to the right
of a small icon in a vertical list.

Switching between different view types is achieved by simply
clicking with the right button in an empty region of the
control and selecting the desired option from the right
context menu; the same menu can be used to sort the
chosen view by Name, Compressed Size, or Original Size.

Adding & Previewing Data

To add data, you can either drag and drop a file on to the
Files window, use the option "Load file" (accessed through
the right click menu), which opens a file-select dialog box to
select a file, or ": From Clipboard", which copies the contents
of the clipboard to the ":Files" tab. When you choose to add
data from the clipboard, a context menu pops up containing
a summary of all objects currently available on the system
clipboard. Select the format of the data you wish to add and
a dialog box pops up to specify a name for the ':Files'
resource. Although you could remove the colon at the
beginning of the string, it will be inserted when the name is
accepted and the data is added to the resource section.

If you hover your mouse over an entry, the bitmap, icon,
cursor, or enhanced meta file, is made visible after a second.

Deleting & Renaming Data

You can delete a resource object by selecting its name and
either press Delete, or right-click on it to get a context
menu. Select Delete from the menu.

To rename an object, right click its name and select Rename.

Known Issues

1. [Fixed in version 2.54]It has been reported that, very
rarely, if 'Detail View' is selected from the right click
menu, no file information is displayed. It has not been
possible to reproduce this bug or find out what causes it.
[Reported by James Gaite, 20/02/2019]

2. If the sort order is changed and then 'Small Icon View' is
selected, the spacing in between the files is not even.
This can be rectified by simply selecting a different
viewing option and then returning to 'Small Icon View'.
[Reported by James Gaite, 20/02/2019]

3. [Fixed in version 2.54] The original documentation
mentions the ability to drag and drop files into the Files
Window. At present, although the mouse cursor changes
while carrying out such an operation, this is not possible
and it is not known whether this was ever implemented.
[Reported by James Gaite, 23/02/2019]

See Also

The Procs tab, The Imports tab, The Properties Tab

{Created by Sjouke Hamstra; Last updated: 26/02/2019 by James Gaite}

The Procs tab
General Description

The 'Procs' window shows and gives quick access to all
procedures and functions of your application. For more
information on Procedures, see here.

As can be seen from the figure below, all sub routines are
represented by a cube, with functions being distinguished by
a blue arrow pointing to the left, signifying the fact that they
return a value, and subs by a small flash of lightning,
signifying that they are used for events.

The routine containing the caret is highlighted in red; left-
clicking on another one moves the caret to the first line of
that routine. In addition, as with all ListView objects, once
you have selected a routine it is possible to navigate using
the arrow keys, Home and End, and select using 'Enter'.

Grouping

Introduced in Version 2.5, it is now possible to group
routines in user-defined blocks: this greatly facilitates the
navigation of the Procs list, especially in large programs.

Creating a group is done by placing the statement $Group
Groupname immediately above the first line of the first
procedure you wish to include in the block. An example of
this can be seen in the picture above where the $Group
"Reindeer" statement immediately precedes the
Main_Menu procedure creating the group which you can see
in the Procs window to the right. This block will contain all
subsequent procedures until either another $Group
statement or the end of the program listing is reached.

Groups can be collapsed and expanded using the small
arrow to the right, as well as by double-clicking on the group
name. Also, once the caret enters a routine in a gropuping,

that group is automatically unfolded in the Procs window
and, if the 'Collapse Inactive' option is selected in the Right-
click menu, the other group is automatically folded. By
default, all groups except that containing the caret are
collapsed.

Due to the way GFABASIC handles the $Group command,
simply deleting the line containing the $Group statement will
not remove that group; instead, to permamently delete the
block, you must replace the whole $Group statement -
including the group name - with the $GroupOff command,
while it is possible to temporarily disable a group by
inserting a blank line between the $Group command and the
first line of the first routine. To temporarily disable all
groups, deselect 'GroupView' in the right-click menu.

IMPORTANT:

1. Grouping only works in 'Detail View'.
2. When grouping is used, it is necessary to add a $Group

statement immediately preceding the first routine; if this
is not done, all routines above the first $Group
statement are omitted from the list.

3. If a group is not created, check that the relevant $Group
statement is on the line immediately above the first
procedure you wish to include in the group.

4. If no groups are shown in the Procs window, ensure that
both 'Detail View' and 'GroupView' are selected in the
right-click menu.

PeekView

Another feature added in Version 2.5 is the ability to 'Peek'
at the code of a certain procedure by using the Procs
window. This is done by hovering the mouse pointer over the
routine's name and using the mousewheel to expand or

contract the listing, similar to the method used to view
coding in a folded procedure in the main edit window. Below
is example of PeekView in use:

Further Options

List View or Detail View - Accessed through the right-click
menu, there are two options available as to how to display
the routines in the Procs window. List View sorts them into
columns of names as tall as the open window while Detail
View displays them in one list of two columns, the first
containg the routine's name and the second the line number
of its first line. NOTE: Grouping does not work in List View.

Goto Proc/Select Proc - Once again, these options are
accessed through the right-click menu. Selecting either will
unfold the selected routine and display it in the Edit Window
- the latter option will then select or block the whole

procedure. This Goto Proc action can also be achieved by
double-clicking on the routine's name in the Procs window.

Print Proc - Also accessed through the right-click menu,
this option performs the same task as Select Proc and then
sends the code listing for that procedure to the printer.

See Also

The Files tab, The Imports tab, The Properties Tab

{Created by Sjouke Hamstra; Last updated: 02/03/2019 by James Gaite}

The Imports tab
The 'Imports' windows displays all elements that are
imported using the $Library command for compiled GFA-
BASIC 32 library files (.lg32).

General Description

As can be seen from the picture above, imported elements
are displayed in collapsible or foldable groups according to
their type which are:

Procs (including Functions);
Variables (including Hash Arrays);
Enums (and Constants);
Declares (APIs); and
Types

Initially the 'Procs' group, showing all the imported
Procedures and Functions, is the only 'unfolded' group.

More Information

More information can be gleaned from the Imports list by
both hovering over and clicking the relevant entry.

Clicking on the entry displays the name of the entry along
with any optinal description in the IDE's status; in addition,
when an 'Enum' entry is clicked, the value of the entry is
also displayed.

Hovering the mouse over an entry gives even more
information in a small pop-up box next to the item (see the
picture above). The information differs according to the
item type as follows:

Procs - The Procedure, Function or Sub declaration, the
description (if added in the Library) and finally the
name of the parent library.
Variables and Enums - The Varaible declaration
including Type and initial value, the description (if added
in the Library) and then the name of the parent library.

Declares - The API declaration, the description (if there
is one) and the parent library./LI>
Types - The full Type declaration showing element
names and types, the optional description (if any) and,
lastly, the parent library.

Known Issues

There are a few problems when displaying details of an item
when the mouse hovers over it:

1. [Fixed in version 2.54] With all import types (except
Types), if there is no optional description, the library
name is also omitted.

2. [Fixed in version 2.54] For a variable or a constant, the
library name is given twice, once after the variable
declaration line AND then again at the end.

3. [Fixed in version 2.54] For a Declare, the optional
description appears twice after the declaration line.
[Reported by James Gaite, 20/02/2019]

See Also

The Files tab, The Procs tab, The Properties Tab

{Created by Sjouke Hamstra; Last updated: 26/02/2019 by James Gaite}

The IDE Properties
The properties window is real system Properties Dialog box
and thus the window text is displayed in your language
(here Dutch).

The dialog box displays three or more tabs, depending on
the version you own. The Editor tab allows you to set code
editor options, the Printer tab provides settings for printing
a code listing, and the Compiler tab is used to set compiler
options.

The Editor Tab

Syntax Formatting

The top elements in the
Editor Tab all affect the
display of the syntax in
the Code Editor.

The long button at
the top decribes the
current font
attributes of the text
- clicking this opens
up a Font Select
window allowing you
to change the
appearance to suit
your taste.
Syntax Coloring -
If left unticked, the
syntax in the Code

Editor is displayed in black; if ticked, then elements of
the syntax are differentiated from one another by their
font colour. The listbox to the left of this check box
contains all the categories of syntax and shows their
current respective colours. These can be edited by
selecting one of the elements in the listbox then clicking
on either the Forecolor or Backcolor buttons to the
right, depending upon which aspect you wish to change;
a pop-up box of different colours is then displayed from
which a new colour can be selected.

IDE Language

Below the Syntax Coloring you are given the option to
change the Language in which elements of the IDE and
messages are displayed. Currently the only two options are
English and German - English is the default UNLESS
German is the default UI.

Save Options

In the Save frame are two options to alter IDE behaviour
when a file is saved:

Create Bak - When the option is selected the old
version of the file isn't deleted when you save a
program file. The existing file will be renamed (the
extension. "bak") before the file is saved. An already
existing .bak file will be deleted first.
Save Cursorline – When selected the cursor position is
stored in the file when it is saved.

Ctrl-Left and -Right

Using Ctrl with the left and right directional arrows allows
quick movement through a line a code. The default
behaviour is for the cursor to be moved in the direction of
the arrow used, skipping to the beginning of the
next/preceding word until the end of the line is reached
when you can move no further. Included in this section of
the Editor Properties are two options to alter this behaviour
as follows:

Ignore EOL - When selected the cursor doesn't stop at
the end of a line.
Stop at word end - When selected the cursor also
stops at the end of a word not the beginning of the next
(or preceding).

Miscellaneous Options

Along the right of the box below the Syntax Coloring
buttons are six miscellaneous options which affect the
Editor in the following ways:

Syntax error Message Box - When selected a Syntax
Error Message Box is displayed when a code line
contains a syntax error. The code must be repaired
before the line can be left. The cursor is placed at the
character that causes the error. When not selected a
line can be left even when it contains syntax errors. The
code line is then displayed using the error foreground
color. Afterwards a line with a syntax error can be
located by pressing (Shift+) F4.
Flat Toolbar - Makes the toolbar flat - in previous
version sof Windows, the toolbar buttons would appear
raised if this option was de-selected; however, the only
difference made in Windows 10 is that the dividing lines
between the different button groups disappear.

Convert ' to ` for Print - When selected in a code
statement starting with the command Print the '
(comment) character is converted to a ` (a space
character). When not selected the ' character is
interpreted as a comment.
Don't fold Comments - This option prevents that
comment lines at the end of a procedure are folded with
the subroutine. Lines, with ' or / at the start of a line,
immediately before the start of the next subroutine, are
then not folded. They remain visible between the folded
procedures. These comment lines are then used to
optically separate subroutines.
Register g32 & lg32 - Registers the document types
.g32 and .lg32 for the currently running GFA-BASIC 32
IDE instance. Icons for g32 and lg32 file types are
registered that are displayed in front of GFA-BASIC 32
files.
Windows provides file associations so that an
application can register the type of documents it
supports. The benefit of doing this is that it allows the
user to double-click or select a document in the
Explorer to edit it. Registering the file associations is
one step procedure performed by the user; GFA-BASIC
32 doesn't register the document types itself.
Right click for Lg32 names - Shows the name of the
LG32 filename when an imported name is clicked with
the right Mouse button (in the editor). The name of the
lg32 file can be displayed above or below the imported
name.

See Also

Printer Tab, Compiler Tab, The Extra Tab

{Created by Sjouke Hamstra; Last updated: 26/02/2019 by James Gaite}

The Form Editor
To create a window or dialog box, you must create a form to
contain controls, add controls to the form, set properties for
the controls, and write code that responds to form and
control events.

·To activate the Form Editor either use F7 or click the button
on the toolbar.

A new, empty Form is displayed. Use the Properties window
to set properties for the Form - that is, to change the name,
behavior, and appearance of the form. For example, to
change the caption on a form, set the Caption property.

Add a control

Use the Toolbox to add controls to the form. The Toolbox is
always visible in the Form Editor. To see the name of a
particular control in the Toolbox, position the mouse pointer
over that control.

To add a control, find the control you want to add in the
Toolbox, drag the control onto the form, and then drag one
or more of the control's adjustment handles until the control
is the size and shape you want. The element is placed with
a default size. However, to size a control while you add it,
place the pointer where you want the upper-left corner of
the control to be, then drag to the right and down until the
control is the size you want.

To copy a control hold down the Ctrl key and click the
control to be copied.

To delete a control or form simply select the control that
you wish to delete and then press the Delete-key. You can
also right-click on the control or form and select Kill
Ocx/Form from the context menu. A Message box will
appear to make sure whether you really want to delete the
item. Answering 'Yes' will delete the item permanently.

After you've added controls to the form, use the commands
in the context menu (right click) to adjust the alignment
and spacing of the controls. Hold down the Shift-key to
select multiple controls.

The context menu

The Form editor contains special tools for layout. These
tools help align and arrange controls in the correct place.
The Form editor tools are collected in a context menu,
which differs from situation to situation. The context menu
shows the tools applicable for the selected form, control, or
controls.

The first line of the context menu displays the form or
control(s) that are affected. This line is dimmed so that it
cannot be selected.

One of the options from the context menu is "Align to Grid".
When you are placing or arranging controls in a form, you
can use the layout grid (8 pixels) for more precise
positioning. When this option is turned on, controls appear
to “snap to” the dotted lines of the grid as if magnetized.
You can turn this “snap to grid” feature on and off and
change the size of the layout grid cells.

Tab order

Use the 'Ocx Overview' dialog box (View menu) to set the
tab order of the controls on the form. GFA-BASIC 32
determines the tab order by the order the controls are
placed on the form (there is no TabIndex property). The tab
order can be changed by dragging the controls in the 'Ocx
Overview' dialog box. If you want to prevent users from
tabbing to a particular control, you can set the TabStop
property to False for that control, but only in code.

Order of creation

The tab order determines order of creation. The last control
created has the topmost attribute, it is placed highest in the
Z-order and is drawn over other controls. The visibility or
the Z-order can be set using the context menu of the
selected control. A partly visible control can be put on top
by selecting "Put on Top", and a control at the top of the Z-
order can be placed behind another control by selecting

"Send Back". The tab order is immediately updated in the
"Ocx Overview" window. The control number (#) in the
context menu shows the creation order.

Ocx on Ocx

Some OCXs can be used as parent control. Assigning
controls to a parent makes sure that they are in the correct
Z-order and that they can be moved together with their
parent. To assign a control to a parent, select the parent
BEFORE adding a control to the form. Right-click
somewhere in the form and select from the context menu
the parent of the next control. In the figure above, the new
control will be added to Form frm1 directly. To add the
control to the Frame fr1 select "Ocx on (Frame) fr1". The
Ocx Overview window reflects the owner-child relationship
by adding a branch to the parent OCX. See also OcxOcx

Next:The Toolbox
Creating a Control
Setting OCX Properties

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The Toolbox
Use the Toolbox to add controls to the form. The Toolbox is
always visible in the Form Editor. To see the name of a
particular control in the Toolbox, position the mouse pointer
over that control.

The first icon in the Toolbox displays a mouse pointer. The
pointer is meant for resizing controls and changing their
attributes. To change the size of an element, simply click on
one of the corners of an element and resize the surrounding
box.

The toolbox contains the following OCX controls:

Ocx Control Description
Command A pushbutton is the best known button

available in Windows. It is just a button
where the user can click on. As long as
the mouse-key is not released, the
button's visible state is changed (it looks
'pressed' down).

Option Also known as Radio button. Option
buttons are normally 'grouped' together in
a Groupbox (Frame). Only one radio
button can be selected within one group.

Checkbox normally can be switched either off
(empty) or on (with an X-mark in it). Use
this control to give the user a True/False
or Yes/No option.

Label displays text that a user can't change

directly.
Image control can display a graphic from a

bitmap, icon, or metafile, as well as
enhanced metafile, JPEG, or GIF files.

Textbox displays information entered at design
time, entered by the user, or assigned to
the control in code

RichEdit enter and edit text while also providing
more advanced formatting features than
the conventional TextBox control.

ImageList a repository of images for use by other
OCXs and by controls with a Picture
property.

TreeView displays data in a hierarchical in nature
ListView displays data as ListItem objects. Each

ListItem object can have an optional icon
associated with the label of the object.

Timer execute code at regular intervals by
causing a Timer event to occur.

ProgressBar graphically represents the progress of a
transaction.

Scroll easy navigation through a long list of
items or a large amount of information.

Slider consists of a scale, defined by the Min and
Max properties, and a "thumb," which the
end user can manipulate using the mouse
or arrow keys.

ToolBar a frame containing a collection of Button
objects.

StatusBar a frame that can consist of several panels
which inform the user of the status of an
application.

ListBox displays a list of items from which the user

can select one or more.
ComboBox combines the features of a TextBox control

and a ListBox control-users can enter
information in the text box portion or
select an item from the list box portion of
the control.

Frame provides an identifiable grouping for
controls. You can also use a Frame to
subdivide a form functionally-for example,
to separate groups of Option controls.

CommDlg provides a standard set of dialog boxes for
operations such as opening and saving
files, setting print options, and selecting
colors and fonts. The control also has the
ability to display help by running the
Windows Help engine

Form(control) a control with the same features as a
Form (use as PictureBox for instance).

MonthView to view and set date information via a
calendar-like interface.

TabStrip acts like the dividers in a notebook or the
labels on a group of file folders. By using a
TabStrip control, you can define multiple
pages for the same area of a window or
dialog box in your application.

TrayIcon creates a taskbar notification icon.
Animation displays silent Audio Video Interleaved

(AVI) clips.
UpDown a pair of arrow buttons that the user can

click to increment or decrement a value,
such as a scroll position or a number
displayed in a buddy control.

Form New Form (or press Shift + F7 or select
the menu item 'New Form')

Several OCX controls can be used as parent OCX:

Image - A container with a small resource footprint. This
could be used instead of a Form, which uses more resources
(scaling, a DC, a Picture).

Form - A Form OCX can be used as a container (of course).

Frame - Particular useful for Option OCXs (Radio Buttons).
The .Transparent property of the Frame may not be
changed; otherwise, the embedded controls are invalid.

TabStrip - To embed (for instance) a Frame Ocx.

ToolBar - To embed (for instance) a ComboBox Ocx.

StatusBar - To embed (for instance) a Command Ocx

Next:Creating a Control

Setting OCX Properties

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Printer Properties
Page Setup

Allows the selection of
paper size, source,
page orientation and
margins.

Font ...

Allows selection of a
font for printing. If no
font is selected,
displays 'Font Edit';
otherwise is displays
the selected font name.

Options

Header - Enables a
page header of the print job.

Footer - Enables a page footer of the print job.
Linenumbers - Enables the printing of line numbers.
Print in Color - Printing in color mode is a bit slower,

and usually requires more space to spool. On monochrome
printers BASIC statements and function are printed bold,
comments in italics, error lines bold-underlined, and
declared DLL-Functions underlined.

Two columns - Two column printing. Useful with
(mainly) short lines of code (or possibly small fonts)

Fast Printing - Enables fast printing. The result is,
depending on the printer and driver, usually a little faster

than usual, and it produces smaller spooling files. In this
mode, the color and two-column modes are disabled. Page
and footer options are allowed.

See Also

Editor Tab, Compiler Tab, Extra Tab

{Created by Sjouke Hamstra; Last updated: 25/02/2019 by James Gaite}

Compiler Properties
Many of the properties
on this page relate to
optimizations relevant to
much older processors
than you will find in
modern computers
(386, 486 and early
Pentiums).

Branch
Optimizations

BranchOpt - The
optimization of branch
statements provides for
a slightly smaller
program size and
increases the
performance a little bit.
However, compile time increases, and therefore this option
can disabled partially or completely. Suggestion: Disable
(None)

Full Optimization for Exe, Gll & Lg32 - The time
consuming process of optimizing the branch statements can
be enabled for the creation of stand-alone EXEs only.
Compiling in memory in the IDE will not result in branch
optimization. Suggestion: Disable

Integer Multiplication

Here you can adjust how much code the BASIC must
generate, to the avoid the multiplication statement of the
80x86 processor when a value is multiplied by a constant.
GFA-BASIC 32 replaces the code through a series of Shl,
Add, Sub and Lea statements. This requires more code.
However, modern processors are already optimized.

The slider setting 1 = left allows only very short
replacement codes (10 bytes). This is the setting when you
need a smaller program. A slightly higher performance is
obtained with the second setting (up to 20 bytes increase)
on a Pentium 100. The third setting (up to 30 bytes) is on a
Pentium a little slower and the program a little larger,
however for a 486 bit this setting results in faster
execution. (The Pentium is, of course, still faster than the
486, but slower than the same Pentium with setting 2). The
fourth setting inserts sequences to 40 bytes.

The settings: 1 = space, 2 = optimization for Pentium, 3 =
optimization for 486, 4 = especially suitable for programs
that are often used on 486's.

Here with Pentium all Pentiums are meant, except the old
Pentium 60/66 Conventions, as well as the i486-DX4. These
processors have rapid multiplication built-in.
This setting only affects programs that are using many
integer multiplications with constants. Suggestion: Disable

Bswap for 80386

This option is for the rare case that a program uses the
Bswap function and the program is run on a 80386
computer. Normally, the processor is able to execute the
Bswap statement (the exchange of the four byte in an
integer) very quickly. However, for these the Bswap is
emulated using

xchg al, ah : . rol eax, 16 : . xchg al, ah.

Not only is this emulation longer in code size, but also
significantly slower. Note that 80386-computers running
Windows NT or Windows 95 are not numerous. Suggestion:
Disable

Don't autoconvert numeric strings to values

This option is for the not so rare case that a programmer
wants some more control over Type conversions. In the past
BASICs have always converted between different numeric
formats automatically (Double <-> Int etc.). VBA
introduced an automatic conversion of string values to
numeric (an OLE internal Val) and vice versa. This
automatic conversion can lead to difficulty in finding bugs,
and is in conflict with prior versions of GFA-BASIC. With this
optionselected the automatic conversion of strings in
numbers is disabled. This does not apply to operations with
Variants or Objects. Suggestion: Enable.

Check Array Bounds in IDE

Inserts code to check for every access to an array to
determine if the index is within the range of the array. If the
index is not within array bounds an error message is
displayed. Un-selecting this option turns off the array
bounds error checking and removes checks for the correct
number of dimension of the array. Note This may speed up
array manipulation but invalid memory locations may be
accessed and result in unexpected behavior or program
crashes.

FP Optimizations

Note Enabling these optimizations may prevent the correct
execution of your program.

Addition - If this option is chosen, floating-point additions,
or subtractions, are calculated at the compile level. For
example:

a = a + 100 - 99 is compiled to a = a + 1.

This usually has no influence on the result of calculations.
However, through the limited number of digits of the
internal floating-point values, there will be a small
divergence as the sum (a, 100 and -99) vary in magnitude.
So if a is smaller than _epsDbl*100, so a+100==100. But if
a is greater than _epsDbl, then a+1 is not equal to 1,
however mathematically correct. Without this optimization
only the first two digits of variable a are considered. Only
some mathematical calculation methods will be affected.
Almost all programs can have this optimization set.
Suggestion: Enable

Multiplication - Like the optimization option for floating-
point additions and subtractions, there is an optimization for
multiplication. Negative effects for this optimization should
be even less than that of the addition/subtraction, because
the multiplication is more insensitive to magnitude
differences. Suggestion: Enable

Division - This option optimizes floating-point division.
Division by a constant is replaced by a multiplication of the
reciprocal of the constant. For example:

a = a / 10 becomes a= a * 0.1

However, since the number of digits of a Double data type is
limited, and the computer works with binary values, the
value 0.1 cannot not accurately be represented, so that the

division by 10 and multiplying it by 0.1 returns slightly
different results (deviation around 1E-16). A reciprocal of
division of values of the power of two results in an exact
floating-point value (like /8 and *0125). The reason for this
optimization is, as almost always, the speed. Suggestion:
Disable

SinCos - The Intel processors (Pentium, 486, 387th ..)
have built-in functions for sine, cosine and tangent. The
values of these functions is to +- 2^63. Greater values (>
1E18) don't result in an error message from the processor,
and the return value is 0. A program must test this
explicitly. Using this setting uses the processor functions of
Sin / Cos / Tan, which are minimally faster (and minimally
shorter), but without this test. A value range overrun for
Tan leads then to a floating-point stack error and in the
case of Sin / Cos mostly to completely absurd errors,
because the argument is returned unchanged (Sin (1E40) =
1E40?) Suggestion: Disable

Improve Float Consistency

The Improve Float Consistency option improves the
consistency of floating-point tests for equality and inequality
by disabling optimizations that could change the precision of
floating-point calculations.

By default, the compiler uses the coprocessor’s 80-bit
registers to hold the intermediate results of floating-point
calculations. This increases program speed and decreases
program size. However, because the calculation involves
floating-point data types that are represented in memory by
less than 80 bits, carrying the extra bits of precision (80
bits minus the number of bits in a smaller floating-point
type) through a lengthy calculation can produce inconsistent
results.

With this option the compiler loads data from memory prior
to each floating-point operation and, if assignment occurs,
writes the results back to memory upon completion.
Loading the data prior to each operation guarantees that
the data does not retain any significance greater than the
capacity of its type.

When some other floating point instruction is executed
before the IF clause, the equality test is correct, though. To
force a reload you could use: ~0‘ some instruction.
Suggestion: Enable.

Report FP-errors early - This option results in a small
increase of the size and program execution time. If
checked, the compiler generates the fwait assembly
statement, in particularly with a conversion of floating-point
values to integer values. A floating-point error is not
reported before the next floating-point statement or in a
fwait. The impact of this option is that an (overflow) error is
reported a little earlier. Only in extreme cases, the
activation of this option is useful for finished programs.
Suggestion: Disable

Assert and Trace Level

Determines whether Assert, Trace or Debug.Print code is
inserted:

In IDE and Gll - Only when the program is compiled in
memory in the IDE or as a Gll.

In IDE, Gll, Exe and Lg32 - Inserts code for Assert / Trace
/ Debug.Print in both the IDE and in the EXE/GLL/LG32
output file.

Never (except Gll) - No insertion of Assert / Trace /
Debug.Print code at all except in Gll output files.

See Also:

The Editor Tab, The Printer Tab, The Extra Tab, Compile To
Exe Tab

{Created by Sjouke Hamstra; Last updated: 25/02/2019 by James Gaite}

IDE Extra Properties
The Extra Menu contains
miscellaneous options
which do not accurately
fit into the description of
the other three tabs.
These are:

Load MRU file at
startup

If selected, the last
program you were
working on will
automatically be loaded
at startup.

Show Tip of the Day

The first time the
program is started each day, a tip is shown. To stop this,
deselect this option.

Find & Replace

The first two options in the this frame set the default
behaviour for Find & Replace - Whole Word when selected
will only look for whole words that match the search syntax
and Match Case when selected will execute a case-
sensitive search - while the last option Keep dialogbox on
top allows the search box to remain visible and on top of
the Code window at all times.

Auto Complete Word

Auto Complete Word turns on the Auto-Complete function
in the Code Editor. As there are certain variables which can
not be added to the Auto-Complete list before a Compile is
performed due to the way that the IDE was originally
written - User-defined Types are one example - a second
option Init Auto Complete after loading by compiling
will force a compile immediately after the project is loaded
into the IDE so that all values are then available. Note that,
if there is a compile error during this procedure, any
variables defined after that point will still not be avaialble.

Librarypaths (lg32)

By default this text box lists the GFABASIC Include folder;
other folders containing user libraries can be added
separated by a semi-colon (;).

Explicitly delete old EXE before creating new file

When a compiled EXE file is created, GFABASIC overwrites
any existing EXE files of the same name by default. Very
rarely, this will force a 'File Write' error and this option is
included to get around this: if selected, instead of
overwriting the file, GFABASIC deletes the old EXE first
before creating the new one. There are no downsides to
having this optin selected.

{Created by James Gaite; Last updated: 28/02/2019 by James Gaite}

Creating an application
The first step to creating an application is to create the
interface, the visual part of the application with which the
user will interact. Forms and controls are the basic building
blocks used to create the interface; they are the OCX
objects that you will work with to build your application.

Note - In GFA-BASIC 16 bit the interface was created using
windows and dialog boxes that were created using special
commands like OpenW, ChildW, ParentW, and Dialog.
These commands are still available, but create Form
objects as well. GFA-BASIC 32 application windows are
always Form objects now.

OCX objects

Forms and controls are wrapped in OLE objects, called OCX
objects. OLE controls are also known as OCX controls or
ActiveX controls. However an OLE object doesn't need to
have a visible aspect; it may be invisible at run time. OCX is
a natural development of the older VBX extension that use
older technology and are found in applications written in
earlier versions of Visual Basic.

GFA-BASIC 32 implements all standard and custom
controls, forms (windows and dialog boxes), and many
other features in OCX objects. OCX objects are kind of
object-oriented objects wrapped using OLE techniques. OLE
controls are often provided in dynamic link libraries with an
.OCX extension. That's why the run-time library of GFA-
BASIC 32 is called GfaWin32.OCX.

Forms are OCX objects that expose properties which define
their appearance, methods which define their behavior, and
events which define their interaction with the user. By
setting the properties of the form and writing code to
respond to its events, you customize the object to meet the
requirements of your application.

Controls are OCX objects that are contained within form
objects. Each type of control has its own set of properties,
methods, and events that make it suitable for a particular
purpose. Some of the controls you can use in your
applications are best suited for entering or displaying text.
Other controls let you access other applications and process
data as if the remote application was part of your code.

You work with forms and controls, set their properties, and
write code for their events at design time, which is any time
you're building an application in the GFA-BASIC 32
environment. Run time is any time you are actually running
the application and interacting with the application as the
user would.

Next:Using Forms

Using OCX Controls

Using Event Procedures

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Using Forms
Forms are the foundation for creating the interface of an
application. You can use forms to add windows and dialog
boxes to your application. You can also use them as
containers for items that are not a visible part of the
application's interface. For example, you might have a form
in your application that serves as a container for graphics
that you plan to display in other forms.

Properties

Many of a form's properties affect its physical appearance.
The Caption property determines the text that is shown in
the form's title bar; the Icon property sets the icon that is
displayed when a form is minimized. The MaxButton and
MinButton properties determine whether the form can be
maximized or minimized. By changing the BorderStyle
property, you can control the resizing behavior of the form.

Height and Width properties determine the initial size of a
form; Left and Top properties determine the form's
location in relation to the upper left-hand corner of the
screen. The StartupMode property can be set to start the
form in a maximized, centered, or normal state.

The Name property sets the name by which you will refer
to the form in code. By default, when a form is first added
to a project, its name is set to frm1, frm2, and so forth. It's
a good idea to set the Name property to something more
meaningful.

Many form properties correspond with other control
properties that you can examine in Using OCX Controls. The

form, however, is unique in that it does not reside on a
form, but appears on the user's window. That is why the
form's Left, Top, Width, and Height properties all correspond
to the edge of the screen and not to a Form window.

In addition to the properties shared with the controls, the
form has - among others -the following properties:

BorderStyle This property determines how the Form
window responds to the user's efforts to
resize it. Some values you may need are
0-None, which offers a form without any
edge or title bar, 1-Fixed Single, which
offers a non-sizable window (the user
can close the window but not resize,
minimize, or maximize the window), and
2-Sizable (the default), which offers a
regular sizable window with maximize
and minimize buttons.

ControlBox This property's value of True or False
determines whether the form's Control
menu appears. A Control menu is the
menu that appears when you click a
window's icon in the upper-left corner of
the window. The Control menu enables
you to move, size, minimize, maximize,
and close a window.

Icon This property specifies an icon filename
for the Windows taskbar icon that
appears when the user minimizes the
form.

MaxButton This property determines whether the
form contains an active Maximize
window button.

MinButton This property determines whether the

form contains an active Minimize window
button. (If you set both the MaxButton
and MinButton properties to False,
neither appears on the form.)

Movable This property determines if the user can
move the form or if the form is to remain
in its displayed location.

Sizeable This property determines if the user can
size the form.

ShowInTaskbar This property's True or False value
determines whether the open form
appears on the user's Windows taskbar.

StartUpMode This property provides a quick way to
specify the starting position of the form
on the screen. One of the most useful
values is 2-Center that centers the form
on the user's screen when the form first
appears.

Load a form

To make a form visible and make your application run, you
would use the following piece of code:

LoadForm frm1
Do
Sleep

Until Me Is Nothing

This loads the form settings from the internal data and
brings it on the screen. The Do loop makes sure that it
stays active. When the form is closed the Me variable will
no longer reference a valid form and the loop will end. Me
always holds the current active form.

- Now, press F5 to run the program.

Forms can perform methods and respond to
events.

The Resize event of a form is triggered whenever a form is
resized, either by user interaction or through code. This
allows you to perform actions such as moving or resizing
controls on a form when its dimensions have changed.

The Activate event occurs whenever a form becomes the
active form; the Deactivate event occurs when another
form or application becomes active. These events are
convenient for initializing or finalizing the form's behavior.
For example, in the Activate event you might write code to
highlight the text in a particular text box; in the Deactivate
event you might save changes to a file or database.

Next:Using OCX Controls

Using Event Procedures

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Using OCX controls
Many of the controls require similar properties as forms.
The next table lists some common properties that most
controls support. All controls have a screen location
(indicated by the Left and Top properties) and a size
(indicated by the Width and Height properties), and most
have foreground and background colors as well as font
properties, if the controls display text.

Property Description
Alignment Determines whether text on the control,

such as a label or command button, is left-
justified, centered, or right-justified on the
control.

BackColor Specifies the color of the control's
background, which you select from a
palette of colors when you open the
property's drop-down list box of colors.

BorderStyle Determines whether the control has a
border around it.

Caption Lists the text displayed on the control.
Enabled Set by a drop-down list box, this property

is either True if you want the control to
respond to the user or False if you want
the control not to respond to the user. This
property is useful for turning on and off
controls when they are and are not
available during a program's execution.

Font Displays a Font dialog box from which you
can set various font properties, such as
size and style, for a control's text.

ForeColor Specifies the color of the control's

foreground, which you select from a
palette of colors when you open the
property's drop-down list box of colors.

Height Specifies the number of twips high the
control is.

Left Indicates the starting twip from the left
edge of the form where the control
appears. For a form, the Left property
specifies the number of twips from the left
edge of the screen.

MousePointer Determines the shape of the mouse cursor
when the user moves the mouse over the
control at runtime.

Name Specifies the name of the control. As you
saw in yesterday's lesson, the Properties
window displays the Name property in
parentheses so that it appears first in the
list of properties.

ToolTipText Holds the text that appears when the user
rests the mouse cursor over the control at
runtime.

Top Is the starting twip from the top edge of
the form where the control appears. For a
form, the Top property describes the
number of twips from the top edge of the
screen.

Visible Set by a drop-down list box, this property
is True if you want the control to be visible
on the form or False if you want the
control to be hidden from view.

Width Specifies the number of twips wide that
the control is.

Some control properties, such as the Alignment property
values, may look strange because their drop-down list
boxes display numbers to the left of their values. For
example, the Alignment property can take on one of these
three values: 0 'Left Justify, 1 'Right Justify, and 2 'Center.
You can use your mouse to select these values from the list
without worrying about the numbers in them, but you can
also, after opening the drop-down list box for a property,
type the number that corresponds to the value you want to
quickly set that value. The numbers also come in handy
when you assign property values to controls with code.

Control Focus

Only one control on a form can have the focus at any one
time. The first control with the focus is determined by the
order in which you placed the controls on the form or, more
accurately, the order determined by the creation order of
each control on your form. This can be modified using the
"Ocx Overview" window.

Not every control can receive focus. Only those controls the
user can interact with can receive the focus. For example, a
label control cannot receive the focus because the user
cannot interact with label controls. The focus, or control
focus, is the currently selected control. The control with the
focus is indicated by highlighting the control.

Next:Using Event Procedures

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Using Event Procedures
Event procedures sometimes challenge beginning GFA-
BASIC 32 programmers, but the concept of an event
procedure is very simple. When the user presses a
command button or enters text into a text box, something
has to happen that tells the application the user has just
made a move. Windows receives events from all kinds of
sources. Most events come directly from the user at the
keyboard and mouse running applications within Windows.

When Windows recognizes that the user triggered an event
and that the event is not a system event, such as a
Windows Start button click, but an event directly needed by
an application, Windows passes that the event to the
application. If you've written an event procedure to respond
to that exact event, your application will respond to the
event. If you haven't written an event procedure, the event
goes unhandled.

Creating Event Procedures

Code in a GFA-BASIC 32 application is divided into smaller
blocks called procedures. An event procedure contains code
that is executed when an event occurs (such as when a user
clicks a button). An event procedure for a control combines
the control's actual name (specified in the Name property),
an underscore (_), and the event name. For example, if you
want a form named frm1 to invoke an event procedure
when it is clicked, use the procedure Sub frm1_Click.

One way to create an event procedure, is to select the
name of a form in the Properties sidebar. The second half of
the sidebar window displays all event subs for the form.

Select the name of an event for the form. Note that a
template for the event procedure is now displayed in the
Code window.

Another way to create an event procedure is by typing the
Sub statement at the beginning of a line, and then type the
OCX name followed by an underscore. A list box with all
event names pops up and lists all available and already
used events (bold). A short description is displayed in the
status bar.

The underscore separates the OCX name from the event
name and is required. All event procedures are named this
way. Therefore, an event procedure named
cmdExit_DblClick () executes if and only if the command
button named cmdExit's event named DblClick occurs.

Common OCX Events

You should familiarize yourself with common events that
can occur for the controls that you know about. Both the
form and its controls can receive events. Here are some

common form events that can occur during an application's
execution:

Activate This event occurs when a form gets the
focus. If an application contains multiple
forms, the Activate event occurs when the
user changes to a different form by clicking
on the form or by selecting the form from a
menu.

Click This event occurs when the user clicks
anywhere on the form. If the user clicks a
form that's partially hidden from view
because another form has the focus, both a
Click and an Activate event take place.

DblClick This event occurs when the user double-clicks
the form.

Deactivate This event occurs when another form gets the
focus. Therefore, both the Activate and
Deactivate events occur when the user
selects a different form. You may choose to
write event procedures for both events for
each form, for only one event for one of the
forms, or a combination thereof depending on
the needs of your application.

Load This event occurs right as the form is loaded
into active memory (using LoadForm!)and
appears on the screen.

Paint This event occurs when Windows must
redraw the form because the user uncovered
part of the form from under another object,
such as an icon.

Resize This event occurs when the user changes the
size of the form.

Destroy This event occurs when the application

removes a form from the window using code.
When an application is terminated, all loaded
forms are first unloaded, so you must write
an Unload event procedure for each form if
you want to perform some kind of clean-up or
file-saving procedure at the end of an
application's session.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Debugging Described
Since the early days GFA-BASIC implements its own
debugging facilities by using a trace line concept (Tron).
This concept has proven its use, because it provides a quick
and direct way to inspect a piece of code or variables by
including a part of code in a Tron/Troff block.

When the Tron proc statement is included in a program,
the procedure proc is executed before each source code line
that is to be executed next. The redirection to proc, which
must be part of your program, starts as soon as the Tron
command is executed.

To facilitate the Tron functionality the 'call tronproc'
assembler instruction is compiled into a program. The
assembler instruction is inserted before each code line, but
only when the code isn't between the $StepOff and $Step
commands. The tron call instruction is not compiled into
external EXE files.

By default the tron call invokes an empty GFA-BASIC 32
library function that returns immediately, so does nothing.
As long as the Tron command isn't used, the overhead is
kept to a minimum this way. When the Tron proc is
executed, the empty library function is replaced by the
specified tron procedure and will be called before executing
of the next line(s).

The Tron procedure has access to information about the
running program through the following debugging functions:

TraceLnr returns the number of the line that is to be
executed next.

Trace$ returns the text of the current program line.

SrcCode$(line%) returns the text of the specified line.

ProcLnr(pname$) returns the line number of the first line
of the subroutine with the specified name.

ProcLineCnt (p$) returns the number of lines of the
specified subroutine

EdShowLine Lnr% shows the Tron-arrow in the margin of
the specified line and pauses 0.5 seconds.

adr%=TraceReg returns the address of the memory block
containing the stored processor registers. The registers are
saved on the stack just before invoking the Tron procedure
and are restored after leaving the Tron proc. The order in
which they are saved is:

edi esi esp ebp ebx edx ecx eax efl eip.

The value of ebp is obtained like this: Debug.Print
LPeek(adr+4*4)

TraceReg (reg) returns the contents of the specified
register from the TraceReg memory block. The argument
reg can be one of the 32-bit registers eax, ebx, ecx, edx,
ebp, esp, esi, edi, efl, and eip.
The 16 bit registers ax, ax, ax, ax, ap, ap, ai, ai, fl, as well
as the 8 bit registers al, bl, cl, dl, ah, bh, ch, dh.
Note When writing (LPoke) to the registers you should not
change esp and ebp.

With these commands a simple (or complex) debugger can
be created. The main disadvantage is that you must merge
the Tron procedure into your code each time you need it.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The built-in IDE debugger
With the editor extension commands for debugging, you can
manipulate the default debugger, which is started when a
program is run (F5). The debugger is implemented as an
invisible window that creates a tray icon and that responds
to the messages from the tray icon. Simultaneously, a
second thread is started to respond to the Ctrl-Break and
Shift-Ctrl-Break keyboard shortcuts, for which a system
wide keyboard hook is created. After the program is ended,
the invisible debug window is destroyed and so is the tray
icon. Unfortunately, the icon often remains visible, but this
is simply a 'Windows thing' and cannot be blamed on GFA-
BASIC 32. The thread responsible for the Ctrl-Break
shortcuts remains, but has no purpose any longer: the
system wide keyboard hook is removed. The next time a
program is run all debug settings are initialized to the GFA-
BASIC 32 default settings.

Using the tray icon

By default the debugger doesn't do very much. As soon as a
project is executed, GFA-BASIC 32 creates a second thread
to monitor a Ctrl-Break to stop the program and a tray icon
to provide some basic debugging facilities. It provides the
means to step through the code, either one line a time or
auto step (follow) where the line is marked a very short
time (100 ms). It allows to continue or to pause your
program. The tray icon menu is opened by right clicking the
tray icon. The menu also let you open the debug Output
window.

Starting to step through code is only possible by left clicking
the tray icon or selecting Step in the tray icon menu.

Unfortunately, the ability to click comes at a time the
program has already initialized and has come to its main
message loop. To start debugging from the beginning of a
program, a Stop or MsgBox is required to hold the
program and give you some time to activate the debugger.
Once the debugger is started, it allows stepping through the
code by clicking with the left mouse button on the tray icon.
Alternatively, the program flow can be 'followed', which is
the same as normal running, but with the debug arrow
visible.

Using the tray icon programmatically

An editor extension can invoke the debugger tray icon
commands as well. Gfa_DbStep enters stepping mode so
that you can step through the code. If you want to step
through the code starting from the beginning, put
Gfa_DbStep in the Gfa_OnRun event sub. If you would
like to start stepping on a 'breakpoint', use it in a
Gfa_TronBook event sub. GFA-BASIC 32 provides
commands for the other tray icon functions as well. To
pause an application you would use Gfa_DbOn and to
continue use Gfa_DbOff. When using these commands you
can still use the default meaning of the left mouse button,
namely stepping through the code.

Besides the commands to switch the debugger mode, GFA-
BASIC 32 provides the facility to intercept the tray icon
mouse clicks. To install a click event sub you would use the
Gfa_DebOn method.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The good old Tron
Another way to implement debugging in a GFA-BASIC
program is by using the Tron statement. Tron proc has been
available since the GFA-BASIC for MSDOS version. When
the Tron proc statement is included in a program, the
procedure proc is executed before each source code line
that is to be executed next. The redirection to proc starts as
soon as the Tron command is executed. As a programmer
you insert the Tron statement at the point the trace must
start. This command has proven its use, because it provides
a quick and direct way to inspect a piece of code or
variables.

The Tron facility is by default available to any program that
is run from within the IDE. GFA-BASIC 32 compiles the code
with calls to a Tron procedure. If Tron isn't used the call
returns immediately. The insertion of a Tron proc call takes
a few extra bytes before each code line. To disable the
insertion of Tron ready code, you must use $StepOff.

A GLL Tron

A GLL Tron gll_proc runs in the context of the IDE
(different thread and main message loop) and must
manipulated in a different manner. To start redirecting the
code to the tracing gll_proc you cannot put the Tron
statement in your code, because gll_proc is not visible to
the code in the program. To make use of a general GLL you
must go a different way.

To install a GLL Tron procedure you must use Gfa_Tron
proc, which installs a procedure (located inside the same

GLL) to be executed before each statement. There can only
be one Gfa_Tron registered with the IDE.

The question now is how to start the trace and start
invoking call proc_gll?

The Gfa_Tron proc statement is only useful after starting
(Run, F5) the program. One of the first steps GFA-BASIC 32
does when it compiles a program, is to clear all debugging
settings. when it is executed in the Gfa_OnRun event
sub. Before executing a project (Run) all internal debug
settings of the IDE are reset to default values, then
Gfa_OnRun is invoked. To start examining from the first
line, the Tron procedure must be set after this initializing
process.

To do something useful in tron procedure, the same
functionality is available as when the Tron command was
used in the source code itself.

TraceLnr holds the number of the line which will be
executed next.

Trace$ is a string variable containing the line which will be
executed next.

EdShowLine lnr% displays the debug arrow before the
specified line. Normally, this is combined with TraceLnr:

EdShowLine TraceLnr

SrcCode$(lnr%) returns a string with the source code text
of the specified line.

A program can only be inspected (trace on) when each
statement is preceded by a call to the debug handler. These
calls are inserted by default when a program is compiled to

be run, except after $StepOff or when a subroutine is
marked Naked. These calls are never inserted in external
compiled modules (exe, gll, lg32).

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Declaring Variables
To declare a variable is to tell the program about it in
advance. You declare a variable with the Dim statement,
supplying a name for the variable:

Dim varname [As type] [= Value]

Variables declared with the Dim statement within a
procedure exist only as long as the procedure is executing.
When the procedure finishes, the value of the variable
disappears. In addition, the value of a variable in a
procedure is local to that procedure - that is, you can't
access a variable in one procedure from another procedure.
These characteristics allow you to use the same variable
names in different procedures without worrying about
conflicts or accidental changes.

Names of variables, constants, procedures etc are made up
of letters (as well as the umlauts and the accented
characters), underscore _, and digits, but not at the
beginning of a name.

The optional As type clause in the Dim statement allows
you to define the data type or object type of the variable
you are declaring. Data types define the type of information
the variable stores. Some examples of data types include
String, Integer, and Currency.

Examples of GFA-BASIC 32 object types, include Object,
Form, and TextBox.

There are other ways to declare variables. Declaring a
variable using the Global or Public keyword makes it
available throughout your application. For instance

Global Dim x As Long

Public x&, y$, a As Double = 1.0

Global String str1, str2, g%

Name the data type first, force g to Int.

Variable scope

GFA-BASIC 32 programs consist of a main part and
subroutines. Any variable declared in the main part is a
global variable, unless the declaration is preceded with the
Local keyword. Declaring a variable with Dim in the main
part does not restrict its scope to the main section, but is
visible inside procedures as well. To make a variable local to
the main part use:

Local [Dim] variable

This is also true for Const variables, to use a constant
locally in the main part the Const keyword must be
preceded by Local.

Local Const name = value

Variables declared with Dim in procedures and functions are
local by default. To make a variable visible outside the
function use Global or Public in front of Dim.

Global [Dim] str1$

If the global variable is initialized when declared in
subroutine, the code to set the contents of the variable is
not executed before the subroutine is executed. Declaring
the variable public or global only tells the compiler to accept
the variable as a global name. It does assign the value at

runtime. (To assign a value to a global variable use Global
Const.)

Static variables are global variables that are visible only in
the procedure they are declared in.

Static String str1 = "Initial Value", str2

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Constants and Enumerations
Constants are a way to use meaningful names in place of a
value that does not change. Constants store values that, as
the name implies, remain constant throughout the
execution of an application. You can use constants to
provide meaningful names, instead of numbers, making
your code more readable.

Enumerations provide a convenient way to work with sets of
related constants, and to associate constant values with
names. For example, you can declare an enumeration for a
set of integer constants associated with the days of the
week, and then use the names of the days rather than their
integer values in your code.

Constants

[Global] Const name [As type] = value

Constants declared without Global or Public are local when
used inside a procedure and global when used in the main
part. Global constants can be declared anywhere in the
program and are public to the entire program. Const and
Dim are the same, except that Const prevents the variable
to be changed.

If you do not specify a type, the constant takes the data
type from the value. If you specify both type and initializer,
the data type of initializer must be convertible to type. If
neither data type nor initializer is present, the data type
defaults to a 32-bits integer (Int, Integer, Int32, and Long).

Const WM_USER = 0x400 ' a 32-bits constant

In the next example the constant takes the data type
String.

Const GFA = "Basic" ' a string constant

Or, more explicitly

Const GFA As String = "Basic"

As data type are all intrinsic GFA-BASIC 32 data types
allowed.

Const Updated = #12.07.1996# ' becomes a Date
data type

Const pi1 = 3.14 ' becomes a Double
data type

Const pi2 = 3.14! ' becomes a Single
data type

Const currV = 15.20@ ' @ forces a
Currency value

Const key As Short = $10 ' declared as
short

You can use an expression to be assigned to the constant.
The expression can be any combination of literals, other
constants that are already defined, and enumeration
members that are already defined. You can use arithmetic
and logical operators to combine such elements. You cannot
use variables or user defined functions in initializer.
However, you can use conversion functions such as CByte
and CShort, and GFA-BASIC 32 intrinsic functions.

Const WM_QUIT = WM_CLOSE + 2 ' 32-bits
Const Pi2 = PI / 2 ' Double
Const PiViertel = Atn(1) ' Double,
intrinsic function Atn

More than one constant can be listed

Const WM_USER = 0x400, WM_PAINT = 15, WM_CLOSE =
$10, WM_QUIT = WM_CLOSE + 2

With the types Short=Word=Int16, Card and Byte=Int8
GFA-BASIC 32 performs an overflow check at compile time.
Note When no type is specified GFA-BASIC 32 looks for the
best fitting type starting with Integer, followed by Large,
and when the value is still too large, a Double.

Enumerations

GFA-BASIC 32 lets you create enumerations. The use of
enumerations can simplify certain programming tasks and
make your program code easier to read. You create an
enumeration with the Enum keyword. The constants are
automatically assigned numerical values in order, starting
with 0.

[Global] Enum name [= value] [,name [= value]]

Public Enum flVanilla, flChocolate, flCoffee,
flStrawberry

This results in the constant flVanilla being equal to 0,
flClocolate being equal to 1, and so on. Usually the actual
numerical values of the constants in an enumeration do not
matter, but if you want to assign specific values you can:

Enum WM_NULL, WM_CREATE, WM_DESTROY, WM_MOVE,
WM_SIZE = 5, WM_ACTIVATE, WM_SETFOCUS,
WM_KILLFOCUS, _
WM_ENABLE = $A, WM_SETREDRAW, WM_SETTEXT,
WM_GETTEXT, WM_GETTEXTLENGTH, WM_PAINT,
WM_CLOSE, _

WM_QUERYENDSESSION, WM_QUIT, WM_QUERYOPEN,
WM_ERASEBKGND, WM_SYSCOLORCHANGE,
WM_ENDSESSION, _

WM_SHOWWINDOW = $18, WM_WININICHANGE = $1a

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Literals
Invariant program elements are called "literals" or
"constants." The terms "literal" and "constant" are used
interchangeably here. Literals fall into 5 major categories:
integer, floating-point (Single and Double), currency, date,
and string. It's not necessary to declare constants explicitly
with a data type, although typed code is easier to read and
maintain than un typed code.

GFA-BASIC 32 uses the type of the expression used to
initialize the constant. A numeric integer literal is cast by
default to the Integer (32-bit) data type. The default data
type for floating-point numbers is Double, and the keywords
True and False specify a Boolean constant.

String Literals

Numeric Literals

Date and time literals

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Date and Time literals
The compiler treats literals enclosed within number signs (#
#) as Date. (#5.7.95# or #5.7.95 12:42:30#). GFA-BASIC
32 provides three predefined formats for date/time literals.
These are not country dependent so a program can be used
in different languages.

#dd.mm.yyyy#

#mm/dd/yyyy#

#yyyy-mm-dd#

The recognition of the proper format Day.Month.Year,
Month/Day/Year, or Year-Month-Day depends on the
separation mark. The Val()-function accepts all three
formats, as well.

These formats are independent of your locale and your
computer's date and time format settings. The reason for
this restriction is that the meaning of your code should
never change depending on the locale in which your
application is running. Suppose you hard-code a Date literal
of #3/4/1998# and intend it to mean March 4, 1998. In a
locale that uses mm/dd/yyyy, 3/4/1998 compiles as you
intend. But suppose you pass the code on the users in other
countries. In a locale that uses dd/mm/yyyy, your hard-
coded literal would compile to April 3, 1998. In a locale that
uses yyyy/mm/dd, the literal would be invalid (April 1998,
0003) and cause a compiler error.

Despite the above, GFA-BASIC 32 allows date literals in
other locales by using CDate:

Dim d As Date = CDate("22 Nov 1995")

A Date type is internally interpreted as a Double type,
except with explicit or implicit conversion to string routines
(Print, Str, and Format). You can perform calculations on
date/time values. Adding or subtracting integers adds or
subtracts whole days; adding or subtracting fractions adds
or subtracts fractions of days (expressed in hours and
minutes). Thus, adding 20, adds 20 days, and subtracting
1/24 subtracts one hour.

Print Date + 8 // Returns the date in 8
days

Print #24.12.2008# + 8
Print DmyToDate(24, 12, Year(Date)) - Date //
Returns the remaining days to Christmas eve

Print DateSerial((Year(Date), 12, 24,)) - Date

Because the current year is appended automatically...

#24.12#

...is automatically converted by the IDE to the 24th
December of the current year.

Valid date values range from -647,434 (January 1, 100
A.D.) to 2,958,465 (December 31, 9999 A.D.). A date value
of 0 represents December 30, 1899. Dates prior to
December 30, 1899 are stored as negative numbers.
Valid time values range from .0 (00:00:00) to .99999
(23:59:59). The numeric value represents a fraction of one
day. You can convert the numeric value into hours, minutes,
and seconds by multiplying the numeric value by 24.

Since GFA-BASIC 32 tries to maintain compatibility to VB,
even when it is erroneous, you should use DateAdd and

DateDiff- functions when using dates before December
1899.

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Numeric literals
A numeric value consists primarily of the digits 0 through 9
and a decimal point. Negative values need a leading minus
sign (-); a plus sign (+) is optional for positive values.

If the value is an integer too large to fit in a 32-bit integer it
will be stored in Large (64-bit) integer. GFA-BASIC 32
inserts the keyword Large before the literal (see
examples). If the integer value is too large for a 64-bit
integer the value is widened to a Double.

If the value contains a decimal point or is specified in the
exponential format (e+-n) the value is assumed to be
Double.

You can also force a literal value to be stored with a given
precision by following the constant with one of the variable
type-specifiers #, !, @

A Double value can be represented by appending #
(3.14#, 3# ...).

A Single data type constant can be specified using ! (3.14!,
3!, ...).

A Currency data type constant is formatted by appending a
@ (19.99@). Constants with a '@' prefix are not interpreted
as octal, but as Currency constant.

Const DefaultInteger = 100 ' Default is
Integer.

Const DefaultDouble = 54.3342 ' Default is
Double.

Const MyString = "a"

Global Const MyDate = #01/15/2001# ' Date
constant

Global Const MyTime = #01:15:59#
Global Const MyLarge = Large 45 ' Forces data
type to be a Large.

Global Const MySingle = 45.55! ' Forces to be
a Single.

Hexadecimal, octal and binairy literals

The compiler normally constructs an integer literal to be in
the decimal (base 10) number system. You can force an
integer literal to be hexadecimal (base 16) with the &H
prefix, and you can force it to be octal (base 8) with the &O
prefix. The digits following the prefix must be appropriate
for the number system. The following table illustrates this.

Format Number system
$nnn Hexadecimal n=[0-9a-fA-F]
&Hnnn Hexadecimal n=[0-9A-F] (VB compatible)
&nnn Hexadecimal l n=[0-9A-F]
0xnnn Hexadecimal l n=[0-9A-F] (C/C++ compatible)
&Onnn Octal n=[0-7] (VB compatible)
0onnn Octal n=[0-7] (starts with digit 0 followed with

a letter o or O)
0bnnn Binary n=[0-1] (starts with digit 0 followed with

a letter b or B)
%nnn Binary n=[0-1]
&Xnnn Binary n=[0-1]
&X:nnn The X represents a number base [1-9A-Z].

When X= 1 (&1:nn) the following n’s are
interpreted as being binary.
When X= 7 (&7:nn) the value is octal.
When X= 9 (&9:nn) stands for decimal and
&F:nn for hexadecimal.

When X = Z (&Z:nn) the number has a base as
36 (10 digits + 26 letters)

Use Base$() with this unusual format. Base$(26467760
:Z) returns FRANK. The number base with Base$ can be
specified using :Z, but with 36 as well.
Base$(&Z:FRANK, 10) returns 26467760. Base$() is case
insensitive.

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

String Literals
You must enclose a String literal within quotation marks ("
"). If you need to include a quotation mark as one of the
characters in the string, you use two contiguous quotation
marks (""), for example

a$ = "1""2" // 1"2
a$ = "1" + Chr$(34) + "2" // The same: 1"2

Literal strings separated by spaces are treated as one
string:

a$ = "1234" "5678"// a$ = "12345678"

Single characters can be specified using their ANSI-Code
with # :

a$ = "This ia a test" #13#10 "Line 2" #13#10#0
// This ia a test
// Line 2
a$ = "This is a test" + Chr$(13, 10) + "Line 2" +
Chr$(13, 10, 0)

a$ = "This is a test" + Chr$(13) + Chr$(10) +
"Line 2" + _
Chr$(13) + Chr$(10) + Chr$(0)

a$ = "This is a multiple line text" #13 #10 _
"This is line 2" #13 #10 #0

The ANSI code specification is not limited to decimal values,
for instance you can use hexadecimal values:

CrLf$ = #x0A #x0D
CrLf$ = #$A #$D

In addition characters may be specified in octal and binary
values:

ChfromOctal$ = #o33

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Data Types
GFA-BASIC 32 supplies several numeric data types for
handling numbers in various representations. Integral types
represent only whole numbers (positive, negative, and
zero), and non-integral types represent numbers with both
integer and fractional parts.

Integral data types are those that represent only numbers
without fractional parts.

The signed integral data types are the Short data type (16-
bit), Integer data type (32-bit), and Large data type (64-
bit). If a variable always stores integers rather than
fractional numbers, declare it as one of these types.

The unsigned integral types are Byte (8-bit) and Card (16-
bit).

Double(#)Double precision floating-point data type, 64 bit
= 8 bytes with at least 15 digits of precision.

Minimum: _minDbl (-1.79769313486232e+308)

Maximum: _maxDbl (1.79769313486232e+308)

Epsilon: _eps or _epsDbl (2.22044604925031e-016)

Decadal Epsilon: _eps10 or _epsDbl10 (1.0e-014)

Smallest value: _smallDbl (2.2250738585072e-308)

Smallest value: _tinyDbl (4.94065645841247e-324)

Double is the most efficient of the fractional data types,
because the processors on current platforms perform
floating-point operations in double precision. However,
operations with Double are not as fast as with the integral
types such as Integer.

Single(!)Single precision floating-point , 32 bit = 4 bytes,
with at least 7 digits of precision.

Minimum: _minSng (-3.402823e+038!)

Maximum: _maxSng (3.402823e+038!)

Epsilon: _epsSng (1.192093e-007!)

Decadal Epsilon: _epsSng10 (1.0e-006!)

Smallest value: _smallSng (2.350989e-038!)

Smallest value: _tinySng (1.401298e-045!)

Integer (%),Integral value (Integer), 32 bits = 4 byte

Integer32,Range: -2147483648 to 2147483647

Int32, Int,

LongArithmetic operations are faster with integral types
than with other data types. They are fastest with the
Integer types. With calculations GFA-BASIC 32 does not
perform overflow checking. Obviously, _maxInt + _maxInt
is wrong when the result is stored in 32-bit integer.

Register IntThe register keyword specifies that the
variable is to be stored in a machine register (either edi or
esi). Dim name As Register Int declares Varname as a
variable, to be stored in a processor register. More than 2

register variable declarations per procedure are not allowed,
and only 32-bit integer variables can be placed in a register.

Note: Registers don't have memory addresses, so you
cannot obtain the variable's location (VarPtr, V:). Also,
register variables cannot be passed by reference (ByRef) to
subs. In case of an error (Try-Catch, On Error GoTo
Resume) the contents of the register variable is undefined.

Short(&),16 bit signed integral value.

Word, Int16Range: -32768 - 32767
Integer16

Card16 bit unsigned integral. Range: 0 - 65535

Byte(|)8 bit unsigned integral. Range: 0 - 255

Bool (?),False (0) or True (-1)

BooleanAssignments to a Boolean variable are stored as
either 0 or -1.

LargeIntegral data type, 64 Bit=8 Byte. Integer64 Range:
-9223372036854775808 to 9223372036854775807. Int64

Currency(@) fixed-point type, 8 bytes. Range:
-922337203685477.5808 to 922337203685477.5807. The
Currency data type supports up to four digits to the right of
the decimal separator and fifteen digits to the left; it is an
accurate fixed-point data type suitable for monetary
calculations. Floating-point (Single and Double) numbers
have much larger ranges than Currency, but can be subject
to small rounding errors.

DateDate and time, 64 bit Double format. Range:
#01.01.0100# to #31.12.9999 23.59.59#

HandleIdentification number (32 bit). Null = CHandle(0)

String ($)variable-length string

String * lenString with fixed length, maximum size 1
megabyte.

ObjectAutomation object data (IDispatch), 32 bit. A
variable declared as Object is one that can subsequently be
assigned (using the Set statement) to refer to any actual
object recognized by the application.

VariantA Variant variable is capable of storing all system-
defined types of data. You don't have to convert between
these types of data if you assign them to a Variant variable;
GFA-BASIC 32 automatically performs any necessary
conversion.

Converting Data Types

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Boolean Data Type
Purpose

The Boolean type represents the two logical values, True
and False.

Syntax

Dim name As Boolean | Bool

Dim Name?

Description

Type declaration character is ?. Range: -1 - 0.

False = 0

True = -1

Boolean values are stored in a Byte.

With an array of Bool the values are stored in a bit.

When other numeric types are converted to Boolean
values, 0 becomes False and all other values become True.
When Boolean values are converted to other data types,
False becomes 0, and True becomes -1.

Example

Dim d As Boolean = -1
Local Bool d1 = True
Global d2?

Dim f?(7) // occupies 1 Byte
Dim f2?(10) // occupies 2 bytes

Remarks

Note There is a compiler bug when setting the eighth Bool
in a row of 8 Booleans to False. The entire byte containing
the 8 Booleans is affected, because setting the eighth bit
generates an 'and a-byte, 8' assembler instruction.

Type BoolTrouble
a0 As Bool
a1 As Bool
a2 As Bool
a3 As Bool
a4 As Bool
a5 As Bool
a6 As Bool
a7 As Bool' <- 8th bool in a row

EndType
Dim bl As BoolTrouble
Message bl.a0
bl.a0 = True
Message bl.a0
bl.a7 = False ' and V:bl.a0, 8
Message bl.a0

You have a few options. You could use the eighth bit as a
dummy and don't use it. Or, you can explicitly set and clear
the bit:

Bset bl.a7, 1' bl.a7 = True
Bclr bl.a7, 1' bl.a7 = False

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Byte Data Type
Purpose

A 8 bit unsigned integral value.

Syntax

Dim name As Byte

Dim name|

Description

Type declaration character is |.

Range: 0 - 255

Arithmetic operations are faster with integral types than
with other data types. They are fastest with the 32-bit
Integer types.

Example

Dim d As Byte = 2
Local Byte d1
Global d2|

Remarks

The unsigned integral types are Byte (8-bit) and Card (16-
bit).

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Card Data Type
Purpose

A 16 bit unsigned integral value.

Syntax

Dim name1 As Card

Description

This data type does not have declaration character.

Range: 0 - 65535

Arithmetic operations are faster with integral types than
with other data types. They are fastest with the 32-bit
Integer types.

Example

Dim d As Card = 2
Local Card d1

Remarks

The unsigned integral types are Byte (8-bit) and Card (16-
bit).

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,

Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Currency Data Type
Purpose

Fixed-point floating-point data type.

Example

Dim name As Currency
Dim name@

Description

Type declaration character is @.

Currency variables are stored as 64-bit (8-byte) numbers in
an integer format, scaled by 10,000 to give a fixed-point
number with 15 digits to the left of the decimal point and 4
digits to the right. This representation provides a range of:

-922337203685477.5808 to 922337203685477.5807

The Currency data type supports up to four digits to the
right of the decimal separator and fifteen digits to the left;
it is an accurate fixed-point data type suitable for monetary
calculations. Floating-point (Single and Double) numbers
have much larger ranges than Currency, but can be
subject to small rounding errors.

A Currency occupies 64 bit = 8 bytes with at least 7 digits
of precision.

Use the Currency data type instead of Single or Double
for monetary values. If you specify more than four decimal

places in a currency expression, GFA-BASIC 32 rounds to
four places before evaluating the expression.

Example

Dim d As Currency = 2.10
Local Currency d1
Local d2@
Const DD = 1@

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Double Data Type
Purpose

Double precision floating-point data type.

Example

Dim name As Double
Dim name#

Description

Type declaration character is #.

Double is the most efficient of the fractional data types,
because the processors on current platforms perform
floating-point operations in double precision. However,
operations with Double are not as fast as with the integral
types such as Integer.

A Double occupies 64 bit = 8 bytes with at least 15 digits
of precision.

Minimum: _minDbl (-1.79769313486232e+308)

Maximum: _maxDbl (1.79769313486232e+308)

Epsilon: _eps or _epsDbl (2.22044604925031e-016)

Decades Epsilon: _eps10 or _epsDbl10 (1.0e-014)

Smallest value: _smallDbl = 2.2250738585072e-308)

Smallest value: _tinyDbl (4.94065645841247e-324)

Example

Dim d As Double = 2.10
Local Double d1, d2#
Const DD = 1#
Const DD_1 = _eps

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

Handle Data Type
Purpose

A 32-bit integral data type.

Example

Dim name As Handle

Description

A Handle occupies 32 bit (4 bytes). It doesn't have a type
declaration character.

The Handle data type is meant to store values that identify
an object; an indirect reference to an operating system
resource. Often a handle is a number assigned to a window
that is used by the operating system to keep track of the
attributes of the window. But a handle can also be a pointer
to memory, a number identifying an opened file, etc.

Although the Handle data type is a 32-bit integer, it cannot
be used in arithmetic operations. This provides some
security against writing. A Handle can be assigned to
another data type, however that would undo its purpose.

In the same way, a value can be assigned to a Handle. A
conversion is made using CHandle().

Example

Dim h As Handle
h = _File(# 1)

If h != Null
h ++ // Error: Operation not allowed on
Handle

EndIf

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Int16, Integer16, Word,
Short Data Type
Purpose

A 16 bit signed integral value.

Syntax

Dim name As Int16 | Word | Short | Integer16
Dim name&

Description

Type declaration character is &.

Int16, Integer16, Word, and Short are keywords for a
16-bits signed integer.

Range: -32768 to 32767

Arithmetic operations are faster with integral types than
with other data types. They are fastest with the 32-bit
Integer types.

Example

Dim d As Word = 2
Local Short d1
Local d2&

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Int, Int32, Integer32, Long
Data Type
Purpose

A 32 bit signed integral value.

Syntax

Dim name As Int | Int32 | Integer32 | Long
Dim name%

Description

Type declaration character is %.

Int, Int32, Integer32, and Long are keywords for a 32-
bits signed integer.

Range: -2147483648 to 2147483647

Defined constants:

_maxInt = 2147483647

_minInt = -2147483648

Arithmetic operations are faster with integral types than
with other data types. They are fastest with the 32-bit
Integer types.

Example

Dim d As Int = 2

Local Long d1, d2%
Const DD = 1
Const DD_1 = _maxInt

Remarks

With calculations GFA-BASIC 32 does not perform overflow
checking. Obviously, _maxInt + _maxInt is wrong when
the result is stored in 32-bit integer.

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Int64, Integer64, Large Data
Type
Purpose

A 64 bit signed integral value.

Syntax

Dim name As Int64 | Integer64 | Large

Description

This type does not have type declaration character.

Int64, Integer64 and Large are keywords for a 64-bits
signed integer.

Range: -9223372036854775808 to 9223372036854775807

Defined constants:

_maxLarge = 9223372036854775807

_minLarge = -9223372036854775808

Arithmetic operations are faster with integral types than
with other data types. They are fastest with the 32-bit
Integer types.

Example

Dim d As Large = 2
Local Int64 d1

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Object Data Type
Purpose

The Object data type is a 32-bit (4-byte) address that refer
to COM objects within an application or within some other
application.

Syntax

Dim name As Object

Description

When you create an application in GFA-BASIC 32, you work
with objects. You can use objects provided by GFA-BASIC
32 - such as controls, forms, and data access objects. You
can also control other applications' objects from within your
GFA-BASIC 32 application.

Declaring an object variable with the As Object clause
creates a variable that can contain a reference to any type
of (OLE) object. However, access to the object through that
variable is late bound; that is, the binding occurs when your
program is run. To create an object variable that results in
early binding, that is, binding when the program is
compiled, declare the object variable with a specific class
ID. For example, you can declare and create the following
Microsoft Excel references:

Dim xlApp As Object
Dim xlBook As Object
Dim xlSheet As Object
Set xlApp = CreateObject("Excel.Application")

Set xlBook = xlApp.Workbooks.Add
Set xlSheet = xlBook.Worksheets(1)

After you declare an object variable, you must assign an
object reference to the variable before you can use the
object's properties, methods, and events. You can assign a
reference to a new object in a Set statement by using the
CreateObject or GetObject function.

The Object data type stores a pointer to an IDispatch
interface, the late binding mechanism of COM. When a COM
object provides an IDispatch interface, the properties and
methods can be executed through a standard function
called Invoke. Rather than executing a property or method
directly, as with early binding, the Invoke function takes
numerous parameters describing the property or method to
call, the possible parameters converted to Variants, an
exception info block for returning error information, and
some more. Invoke itself must lookup the name of the
property or method in the COM library and then call it by its
address. Calling Invoke for a property or method is a time
consuming process, therefore.

Example

OpenW 1
Dim oForm As Object
Set oForm = Win_1.Object
Win_1.AutoRedraw = 1 ' Fast
oForm.AutoRedraw = 1 ' Slow
Do
Sleep

Until Me Is Nothing

Sub Win_1_OnCtrlHelp(Ctrl As Object, x%, y%)
' IDispatch reference to the control.

Print Ctrl.WhatsThisHelpID // Slow
EndSub

See Also

Set, CreateObject, GetObject

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Single Data Type
Purpose

Single precision floating-point data type.

Example

Dim name As Single
Dim name!

Description

Type declaration character is !.

A Single occupies 32 bit = 4 bytes with at least 7 digits of
precision.

Minimum: _minSng (-3.402823e+038!)

Maximum: _maxSng (3.402823e+038!)

Epsilon: _epsSng = 1.192093e-007!)

Decades Epsilon: _epsSng10 (1.0e-006!)

Smallest value: _smallSng = 2.350989e-038!)

Smallest value: _tinySng (1.401298e-045!)

Example

Dim d As Single = 2.10
Local Single d1, d2!
Const DD = 1!

Const DD_1 = _epsSng

See Also

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

String Data Type
Purpose

A String variable consists of a sequence of 8-bit characters.
There are two kinds of strings: variable-length (technically
capable of storing 2 billion (231) characters but are
generally limited to ±256 million (228)) and fixed-length
strings (±1 million (220 - 1) characters).

Syntax

Dim varname As String [= string-literal] (variable-length)

Dim varname As String * len (fixed-length)

Dim varname$

Description

The codes for String characters range from 0-255. The first
128 characters (0-127) of the character set correspond to
the letters and symbols on a standard U.S. keyboard. These
first 128 characters are the same as those defined by the
ASCII character set. The second 128 characters (128-255)
represent special characters, such as letters in international
alphabets, accents, currency symbols, and fractions and can
differ depending on the value of Mode(Lang) and the
current font face.

The type-declaration character for a variable length String
is the dollar sign ($).

Variable-length strings

A variable-length string has a 4 byte pointer (descriptor) to
a dynamically allocated memory block containing the string
characters; the four bytes prior to this block store a 32-bit
value containing the length of the string. For an empty
string this pointer is null (0), meaning that no memory is
allocated. Assigning data to a string will (re)allocate
memory for the string data. Each string is terminated with a
null character = Chr(0), but the terminating null is not
counted as part of the string. The total size of the allocated
string memory is 4 (length) + [the string itself] + 1 (#0).
Given a string s$, the following is true:

String descriptor: ArrPtr(s$) or *s$

String memory: VarPtr(s$) or V: s$ (calculated from the
descriptor: {*s$})

Length: Len(s$) (using the descriptor length = {{*s$} -
4}, or using the address length = {V: s$ - 4})

Fixed-length string

A fixed-length string is a piece of memory used to store a
string and is the only string variable type allowed within a
Type declaration (excepting strings in variants). This type
of string does not have a descriptor, the variable directly
addressing the memory allocated using the declaration
statement String*n (fixed strings can not use the string
literal ($)). The fixed-string is initialized with null
characters; if a smaller string is assigned to a fixed-string,
spaces will be added to the end of the string. However, if a
larger string is assigned, only the characters which fit into
the length of the string will be stored and any remaining
characters will be lost.

A fixed string is not terminated with a null character
(Chr(0)) and it has no length data field in front of it. The
length of the fixed-string is inserted at compile time and not
calculated at run time. The VarPtr and V: functions return
the address of its memory location while the ArrPtr (or *)
function returns the first four bytes of the fixed string;
hence, these functions have no practical meaning for a
fixed-string.

String literal

A constant string (string-literal) is a sequence of characters
surrounded by quotation marks (").

Dim sName As String = "Basic"
Const BASICNAME As String = "GFA-BASIC"

To place a quotation mark (") inside a string constant, you
must either place two quotes together or build a string
using the character code for a quote (34) either using
Chr(34) or #34:

sName = "A ""quoted"" constant." // sName now
holds: A "quoted" constant

sName = "A " & Chr$(34) & "quoted" #34 "
constant."

Strings in Variants

Strings stored in Variants are BSTR types in UNICODE or
'wide character' format. GFA-BASIC 32 takes care of
allocating and converting the ANSI string to UNICODE by
using a faster variant of the MultiByteToWideChar API
function that maps a character string to a wide-character
(Unicode) string. Some GFA-BASIC 32 string functions can

be used on strings in Variants, providing support for
UNICODE strings, although others, such as len do not.

A BSTR is more than a pointer to Unicode characters. The
string length is maintained in a long variable just before the
start address being pointed to, and the string always has an
extra null character after the last character of the string.
This null isn't part of the string, and you may have
additional nulls embedded in the string. The BSTR data type
is allocated using OLE Automation String functions, like
SysAllocString.

The VarPtr and V: functions return the address of the
Variant variable, not the string. To find the string data use:
StrPtr% = { V:Variant + 8}.

OLE Strings

Many OCX and Automation objects take a string value as a
parameter. These strings are always BSTRs. When GFA-
BASIC 32 comes to a point that it must pass or assign an
ANSI string to a COM object, it converts the string to a
BSTR first and passes the BSTR to the OLE property or
method.

The reverse is true also. When a string returned from a
COM object is assigned to a String data type, the BSTR is
converted to ANSI using the internal GFA-BASIC 32 function
mentioned above.

Strings in API functions

The way strings are passed to Windows API functions
depend on how the external functions are declared. For the
1000 or so built-in (ANSI) API functions, the function
arguments are not type checked at compile time. The

compiler is only aware of the number of parameters and
accepts 32-bits values only. Those API functions that expect
a (pointer to a) string must be provided with the address of
the GFA-BASIC 32 string using V:. For instance, the built-in
CharLower function converts a character string or a single
character to lowercase. The function takes only one
parameter: a LPTSTR pointer to a null-terminated string.
The string is converted in place, so that the return value is
equal to the passed value. The following code does the job:

Dim s$ = "GFA-BASIC 32"
Debug V:s$, CharLower(V:s$), s$ // [address1]
[address1] gfa-basic 32

What happens when s$ is passed, instead of its address?
GFA-BASIC 32 pulls in one of 32 string buffers of 1030
bytes and copies the contents of s$ to the temporary buffer
and passes the address of the buffer to the API function.
The string is converted in place and thus the temporary
buffer is modified and the memory location of the buffer is
returned. s$ remains unchanged.

Dim s$ = "GFA-BASIC 32"
Debug V:s$, CharLower(s$), s$ // [address1]
[address2] GFA-BASIC 32

By using Declare the API function can be introduced to
GFA-BASIC 32 and force type checking on the parameters.
A string parameter must always be declared using ByVal to
get its address (V:) passed to the API function. A ByRef
string parameter would obtain the address of the descriptor
(ArrPtr).

Dim s$ = "GFA-BASIC 32"
Debug V:s$, CharLowerA(s$), s$
Declare Function CharLowerA Lib "user32" (ByVal
lpsz As String) As Long

// [address1] [address1] gfa-basic 32

Remarks

The case functions UCase and LCase are ASCII functions.
The Upper and Lower functions convert the second 128
characters (128-255) also.

All string functions come in two versions, one with an
ending $ type declaration character and one without. In
contrast with VB, both version return a string data type. In
VB the function without the $ character returns a Variant.

See Also

Declare, UCase, LCase, Upper, Lower, Variant, ArrPtr,
VarPtr, V:, Left$, Right$, Mid, Mid$, SubStr, InStr, RinStr,
Mirror

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Variant Type
Purpose

The Variant data type is the data type for all variables that
are not explicitly declared as some other type (using
statements such as Dim, Local, Global, Public, or Static).
The Variant data type has no type-declaration character.

Syntax

Dim v As Variant

v:variable name

Description

A Variant is a special data type that can contain any kind
of data except fixed-length String data. (Variant types
don't support user-defined types.) A Variant can also
contain the special values Empty, Error, Missing,
Nothing, and Null. You can determine how the data in a
Variant is treated using the VarType and TypeName
functions.

Internal Representation of Values in Variants

Numeric Values Stored in Variants

Strings Stored in Variants

Date/Time Values Stored in Variants

Objects Stored in Variants

The Empty Value

The Missing Value

The Null Value

Variant Error Types

Supported Variable Types

A Variant cannot store a Large data type. When assigned,
a Large is converted to a Double.

A Handle is stored as a Long (VT_I4).

You can use the Variant data type in place of any data type
to work with data in a more flexible way. If the contents of
a Variant variable are digits, they may be either the string
representation of the digits or their actual value, depending
on the context. For example:

Dim Var As Variant = 98052

In the preceding example, Var contains a numeric
representation-the actual value 98052. Arithmetic operators
work as expected on Variant variables that contain numeric
values or string data that can be interpreted as numbers. If
you use the + operator to add Var to another Variant
containing a number or to a variable of a numeric type, the
result is an arithmetic sum.

Example

Dim v = Null ' declares and initializes a Variant
Dim va(1 .. 3)' declares a Variant array

Known Issues

There is an odd bug when passing Boolean values to an
optional variant parameter in a function IF the function is
called form a procedure containing a Gosub...Return
structure - an Access Violation Error is returned for no
apparent reason pointing to the line containing Return.
This is illustrated by the code examples below:

trial

Procedure trial
Local enb As Boolean = True
VarTrial(10, enb)
GoSub Here

Return
Here:
Print "Go to here"

EndProcedure

Function VarTrial(a%, Optional v As Variant)
Print a, v

EndFunction

This is an error within the compiler and, currently,
unfixable. If you experience this, simple workarounds are:
use a different varaible type in the calling procedure
(anything but Boolean seems to work); or change the
optional parameter in the called Function to type Boolean.
[Reported by James Gaite, 11/03/2018]

Remarks

Variants can be used very easily, due to their high
flexibility, but with a loss of performance. A counting loop...

Local a As Variant
For a = 1 To 100
Next a

...will be many times slower than the corresponding one
with an Integer loop:

Local a As Int
For a = 1 To 100
Next a

It should also be npted that automatic conversion of data to
a Variant does have its limits. What should be done when
two Variants are added (or concatenated) when one
contains a string and the other a numeric value? So, what
should the following mean:

vntC = CVar("123") + CVar(456)

1 - Add them as they were both numeric values, so convert
the string to a numeric value.

2 - Concatenate them as strings, resulting in the string
"123456".

3 - None of the above, but generates an error.

GFA-BASIC 32 performs as VB and takes option 1.

{Created by Sjouke Hamstra; Last updated: 13/03/2018 by James Gaite}

Internal Representation of
Values in Variants
Variant variables maintain an internal representation of the
values that they store. This representation determines how
GFA-BASIC 32 treats these values when performing
comparisons and other operations. When you assign a value
to a Variant variable, GFA-BASIC 32 uses the most
compact representation that accurately records the value.
Later operations may cause GFA-BASIC 32 to change the
representation it is using for a particular variable. (A
Variant variable is not a variable with no type; rather, it is
a variable that can freely change its type.)

A variant always takes up 16 bytes, no matter what you
store in it. The first two bytes store the information of the
current data or variable type stored in the Variant, while the
last eight bytes either store the data value or, in the case of
Objects, strings, and arrays which are not physically stored
in the Variant, four of these eight bytes are used to hold
either an object reference, or a pointer to the string or
array, with the actual data being stored elsewhere.

Most of the time, you don't have to be concerned with what
internal representation GFA-BASIC 32 is using for a
particular variable as GFA-BASIC 32 handles conversions
automatically. If you want to know what value GFA-BASIC
32 is using, however, you can use the VarType function.

For example, if you store values with decimal fractions in a
Variant variable, GFA-BASIC 32 always uses the Double
internal representation. If you know that your application
does not need the high accuracy (and slower speed) that a

Double value supplies, you can speed your calculations by
converting the values to Single, or even to Currency:

If VarType(X) = 5 Then X = CSng(X) ' Convert to
Single

With an array variable, the value of VarType is the sum of
the array and data type return values. For example, this
array contains Double values:

Sub Form_Click()
Dim dblSample(2) As Double
MsgBox VarType(dblSample)

End Sub

Variant

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Numeric Values Stored in
Variants
When you store whole numbers in Variant variables, GFA-
BASIC 32 uses the most compact representation possible.
For example, if you store a small number without a decimal
fraction, the Variant uses an Integer representation for
the value. If you then assign a larger number or a number
with a fractional component, a Double value.

Sometimes you want to use a specific representation for a
number. For example, you might want a Variant variable to
store a numeric value as Currency to avoid round-off
errors in later calculations. GFA-BASIC 32 provides several
conversion functions that you can use to convert values into
a specific type (see "Converting Data Types" earlier in this
chapter). To convert a value to Currency, for example, you
use the CCur function:

PayPerWeek = CCur(hours * hourlyPay)

An error occurs if you attempt to perform a mathematical
operation or function on a Variant that does not contain a
number or something that can be interpreted as a number.
For example, you cannot perform any arithmetic operations
on the value U2 even though it contains a numeric
character, because the entire value is not a valid number.
Likewise, you cannot perform any calculations on the value
1040EZ; however, you can perform calculations on the
values +10 or -1.7E6 because they are valid numbers. For
this reason, you often want to determine if a Variant
variable contains a value that can be used as a number. The
IsNumeric function performs this task:

Local anyNumber
Do
anyNumber = InputBox("Enter a number")

Loop Until IsNumeric(anyNumber)
MsgBox "The square root is: " & Sqr(anyNumber)

When GFA-BASIC 32 converts a representation that is not
numeric (such as a string containing a number) to a
numeric value, it uses the Regional settings (specified in the
Windows Control Panel) to interpret the thousands
separator, decimal separator, and currency symbol.

Thus, if the country setting in the Windows Control Panel is
set to United States, Canada, or Australia, these two
statements would return true:

Print IsNumeric("$100")
Print IsNumeric("1,560.50")

While these two statements would return false:

Print IsNumeric("DM100")
Print IsNumeric("1.560,50")

However, the reverse would be the case - the first two
would return false and the second two true - if the country
setting in the Windows Control Panel was set to Germany.

If you assign a Variant containing a number to a string
variable or property, GFA-BASIC 32 converts the
representation of the number to a string automatically. If
you want to explicitly convert a number to a string, use the
CStr function. You can also use the Format function to
convert a number to a string that includes formatting such
as currency, thousands separator, and decimal separator
symbols. The Format function automatically uses the

appropriate symbols according to the Regional Settings
Properties dialog box in the Windows Control Panel.

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Strings Stored in Variants
Strings are stored in the BSTR format within a variant
(actually the BSTR is stored separately and referenced from
the Variant) which is a version of 16-bit Unicode format,
while GFA-BASIC 32 stores strings as 8-bit characters (GFA-
BASIC 32 is based on 8-bit strings because Windows 95
didn't support Unicode (16 bit) functions). Therefore, each
time a string is assigned to a Variant or vice versa, a
conversion is performed automatically by GFA-BASIC32, as
shown in the example below:

Local a$, vnt As Variant
a$ = "String" // The word 'String' is stored in
8-bit format in the GFA string data type

vnt = a$ // GFA converts the 8-bit string
to BSTR 16-bit format and assigns it to a Variant

Print vnt // GFA then converts the value in
the BSTR back to 8-bit format before 'Print'-ing
to screen

Due to this automatic conversion performed by GFA-
BASIC32, strings in a Variant can use most of the
commands and functions designed for the 8-bit GFA-
BASIC32 string data type, as shown below:

Local a$ = "String" , vnt As Variant = a$
Print Len(a$), Len(vnt)
Print Mid(a$, 2, 2), Mid(vnt, 2, 2)
Print Mirror$(a$), Mirror$(vnt)
Print Upper(a$), Upper(vnt)

An example of a keyword that does not work with strings in
a Variant is the Mid$ command (not to be confused with the
Mid function shown above).

Generally, storing and using strings in Variant variables
poses few problems. However, sometimes the result of the
+ operator can be ambiguous when used with two Variant
values. If both of the Variants contain numbers, the +
operator performs addition. If both of the Variants contain
strings, then the + operator performs string concatenation.
But if one of the values is represented as a number and the
other is represented as a string, the situation becomes
more complicated. GFA-BASIC 32 first attempts to convert
the string into a number. If the conversion is successful, the
+ operator adds the two values; if unsuccessful, it
generates a Type mismatch error.

To make sure that concatenation occurs, regardless of the
representation of the value in the variables, use the &
operator. For example,

Form_Click

Sub Form_Click ()
Dim X, Y
X = "6"
Y = "7"
Print X + Y, X & Y // 67 67
X = 6
Print X + Y, X & Y // 13 67

End Sub

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Date/Time Values Stored in
Variants
Variant variables can also contain date/time values.
Several functions return date/time values. For example,
DateSerial can be used to return the number of days left
until a particular day in the year:

Dim xmas, rightnow, daysleft, hoursleft,
minutesleft ' As Variant by default

rightnow = Now ' Now returns the current
date/time.

xmas = DateSerial((Year(rightnow) +
Iif(Month(rightnow) = 12 And Day(rightnow) > 24,
1, 0), 12, 25,))

daysleft = Int(xmas - rightnow)
hoursleft = 24 - Hour(rightnow)
minutesleft = 60 - Minute(rightnow)
Print daysleft & " days, ";
Print hoursleft & " hours and ";
Print minutesleft & " minutes left until Christmas
Day."

You can also perform math on date/time values. Adding or
subtracting integers adds or subtracts days; adding or
subtracting fractions adds or subtracts time. Therefore,
adding 20, adds 20 days, while subtracting 1/24 subtracts
one hour.

The range for dates stored in Variant variables is January
1, 0100, to December 31, 9999. Calculations on dates don't
take into account the calendar revisions prior to the switch
to the Gregorian calendar, however, so calculations
producing date values earlier than the year in which the

Gregorian calendar was adopted (1752 in Britain and its
colonies at that time; earlier or later in other countries) will
be incorrect.

You can use date/time literals in your code by enclosing
them with the number sign (#), in the same way you
enclose string literals with double quotation marks (""). For
example, you can compare a Variant containing a
date/time value with a literal date:

If SomeDate > #03/06/1993# Then

Similarly, you can compare a date/time value with a
complete date/time literal:

If SomeDate > #03/06/1993 13:20:00# Then

If you do not include a time in a date/time literal, GFA-
BASIC 32 sets the time part of the value to midnight (the
start of the day).

GFA-BASIC 32 accepts a wide variety of date and time
formats in string-based literals as well (although not in true
literal form surrounded by #s). These are all valid date/time
values:

Print CDate("3-6-93 13:20")
Print CDate("March 27, 1993 1:20am")
Print CDate("Apr-2-93")
Print CDate("4 April 1993")

In the same way that you can use the IsNumeric function
to determine if a Variant variable contains a value that can
be considered a valid numeric value, you can use the
IsDate function to determine if a Variant contains a value
that can be considered a valid date/time value. You can

then use the CDate function to convert the value into a
date/time value.

For example, the following code tests the Text property of a
text box with IsDate. If the property contains text that can
be considered a valid date, GFA-BASIC 32 converts the text
into a date and computes the days left until the end of the
year:

Dim SomeDate, daysleft
Ocx Label lbl = "Enter Date:", 10, 10, 60, 14 :
lbl.BackColor = RGB(255, 255, 255)

Ocx TextBox Text1 = "", 70, 9, 100, 14 :
.BorderStyle = 1

Ocx Command cmd = "Calculate", 175, 7, 70, 18
Ocx Label Text2 = "", 10, 30, 200, 14 :
Text2.BackColor = RGB(255, 255, 255)

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
If IsDate(Text1.Text) Then
SomeDate = CDate(Text1.Text)
daysleft = Int(DateSerial((Year(SomeDate) + _
1, 1, 1,)) - SomeDate)

Text2.Text = daysleft & " days left in the
year."

Else
MsgBox Text1.Text & " is not a valid date."

End If
EndSub

Sub Text1_KeyPress(Ascii&)
Text2.Text = ""

EndSub

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Objects Stored in Variants
Objects can be stored in Variant variables. This can be
useful when you need to gracefully handle a variety of data
types, including objects. For example, all the elements in an
array must have the same data type. Setting the data type
of an array to Variant allows you to store objects alongside
other data types in an array.

The IsObject() function determines if a Variant holds an
OCX or IDispatch type value.

Ocx TextBox txt = "TextBox", 10, 40, 100, 100
Local vnt As Variant = txt
Print "vnt = "; vnt
Print "Is vnt as Object? ... " & IsObject(vnt)
Do : Sleep : Until IsNothing(Me)

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

The Empty Value
Syntax

Variant = Empty
Boolean = IsEmpty(Variant)

Description

Generally, when a variable is created, its value is
automatically initialised by GFA-BASIC32 (unlike C++) as a
zero for numerical values or a zero-length string ("") for
strings; however, when a Variant is created, it can not
always be initialised according to its variable type as that
may not be known until a value is assigned, so, instead, it is
considered to be Empty.

As every Variant must technically have a value, a special
Empty value is supported for Variants which have had no
other value assigned. This special value has a VarType of 0
and is really just a block of 16 bytes all containing the value
zero. One advantage to having this special value is that
Variants which have previously been initialised with a
value, and thus a variable type, can be 'uninitialised' by
assigning it the Empty value. Furthermore, if an
automation object held in a Variant is set to Empty, the
automation object is set to Nothing.

When you use a Variant in an expression which is
uninitialised and thus Empty, GFA-BASIC32 will substitute
either 0 or a zero-length string, depending on the
expression. Nevertheless, sometimes you may need to
know if a Variant variable has been initialised since the
variable was created and to do this, you can use the

IsEmpty function which will return TRUE if no value has
been assigned.

The Empty value disappears as soon as any value is
assigned to a Variant variable (including the value of 0, the
zero-length string, and the Null value).

Example

Local vnt As Variant
Print "Is vnt Empty? ... "; IsEmpty(vnt) //
Confirms that vnt is Empty

Print "2 + vnt = "; 2 + vnt //
If added to a number then GFA assumes a value of
0

Print "'Hello' + vnt = "; "Hello" + vnt //
If added to a string then GFA assumes a zero-
length string

If IsEmpty(vnt) Then vnt = 0
Print "Is vnt Empty? ... "; IsEmpty(vnt) //
Confirms that vnt is no longer Empty

vnt = Empty
Print "Is vnt Empty? ... "; IsEmpty(vnt) //
Confirms that vnt is once again Empty

Remarks

The Empty value should NOT be confused with either the
Null value, which indicates that the Variant variable
intentionally contains no valid data, or the Missing value,
which is generally used to indicate that an optional Variant
parameter to a function or procedure has not been passed.

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

The Missing Value
Syntax

Variant = Missing
Boolean = IsMissing(String | Variant)

Description

Generally, a String or Variant is marked as Missing if it is
an optional parameter in a sub routine and no value is
passed and this can be tested using the IsMissing function.

The Missing keyword is provided to allow a Variant (only)
to be set to this state if so required.

Example

Print Test(), IsMissing(Test())
Print Test(14), IsMissing(Test(14))
Print Test(Missing), IsMissing(Test(Missing))

FunctionVar Test(Optional var)
Test = var

EndFunction

Remarks

A String or Variant containing Missing has no value and
will generally cause an error if used in a function or
command. It should not be confused with Null or Empty.

In addition, as the value Missing is technically an Error
Variant Type, IsError will also return TRUE if it is assigned to

a Variant.

See Also

Empty, Nothing, Null

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

The Null Value
Purpose

The Null keyword is used with a:

1. Variant to indicate that it intentionally contains no valid
data.

2. Handle data type to indicate a null handle.
3. API function to pass a null value for ByRef parameters.

Syntax

Variant | Handle = Null
Boolean = IsNull(Variant | Handle)

Description

Variant variables are not set to Null unless you explicitly
assign Null to them, so if you don't use Null in your
application, you don't have to write code that tests for and
handles it. You can assign Null as follows:

Dim v As Variant = Null

You can use the variant function IsNull to test if a Variant
variable contains Null:

If IsNull(variant) Then Print "Variant contains
Null"

Data "#Null#" can be used with Data lines to initialize a
Variant.

A handle data type can simply be compared with Null. Here
Null is defined as CHandle(0).

If hWnd == Null Then Print "Handle is Null"

For API functions that have parameters declared as ByRef,
the Null value may be passed (if that API function can
handle a Null value), in contrast to the number 0.

Example

OpenW 1
Local a As Variant, b As Handle, x%
Print IsNull(b) // result True
a = ""
Print IsNull(a) // result 0
b = 2
Print IsNull(b) // result False
b = 0
Print IsNull(b) // result True
x% = Null
Print IsNull(x%) // result False
Print
Print "Press any key to close"
KeyGet x%
CloseW 1

Remarks

Null is commonly used in database applications to indicate
unknown or missing data. Because of the way it is used in
databases, Null has some unique characteristics:

- Expressions involving Null always result in Null. Thus,
Null is said to "propagate" through expressions; if any part
of the expression evaluates to Null, the entire expression
evaluates to Null.

- Passing Null, a Variant containing Null, or an expression
that evaluates to Null as an argument to most functions
causes the function to return Null.

- Null values propagate through intrinsic functions that
return Variant data types.

Null should not be confused with the Empty value which is
used to indicate an uninitialized Variant variable or Missing
which is used to indicate an optional Variant or String
parameter was not passed. Furthermore, a value of 0 (zero)
or a zero-length string in a Variant is not the same as
Null.

See Also

Nothing, IsNothing, Empty, IsEmpty, Missing, IsMissing

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Variant Error Type
Syntax

Boolean = IsError(Variant)

Description

Error values are created in Virtual Basic by converting real
numbers to error values using the CVErr function. The
IsError function is then used to determine if a numeric
expression represents an error. IsError returns True if the
expression argument indicates an error; otherwise, it
returns False.

GFA-BASIC 32 does not support CVErr, and thus a variant
can contain an error value (VT_ERROR) only when an
automation object returns such a value (theoretically) or
when an optional variant parameter is missing.

Therefore, to make full use of this keyword, you can create
a custom CVErr functions and use it as follows:

Print IsError(test("String"))
Print "Error Number: "; CVErrRead(test("String"))
Print IsError(test(6))
Print "Error Number: "; CVErrRead(test(6))
Print IsError(test())
Print "Error Number: $"; Hex(CVErrRead(test()),
8) // The Error Number of the Missing value

FunctionVar test(Optional param1)
If IsMissing(param1) : test = Missing
 // If no parameter passed, return Missing

Else If Not IsNumeric(param1) : test =
CVErr(2001) // Sets a custom error number 2001
to the return value

Else : test = param1
EndIf

EndFunction

Function CVErr(errno%)
Local vnt As Variant
DPoke V:vnt, 10
 // Sets the VarType to 10 (VT_ERROR)

LPoke V:vnt + 8, errno%
 // Sets the value to the error number

Return vnt
EndFunction

Function CVErrRead(errvnt As Variant)
If VarType(errvnt) <> 10 Then Return 0
 // If errvnt not an Error then return 0

Return LPeek(V:errvnt + 8)
 // Else read and return the error number

EndFunction

See Also

IsDate, IsEmpty, IsMissing, IsNull, IsNumeric, IsObject

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Accepted Variable Types for
Variants
GFA-BASIC32 supports a large number of variable types
that it is possible to enclose in a Variant, but by no means
all. The supported types, which largely mirror those
supported as standalone variable types (with the notable
exception of Large Integers and Fixed Strings), are listed
below:

VarType Value Description TypeName
basEmpty 0 Uninitialized "Empty"

basNull 1 Null (no valid
data) "Null"

basShort 2 Short, 16 Bit
Integer (&) "Short"

basLong
basInt 3

Integer, Long,
32 Bit-Integer
(%)

"Long"

basSingle 4

Single
precision
floating-point
number, 4
Byte (!)

"Single"

basDouble 5

Double
precision
floating-point
number, 8
Byte (#)

"Double"

basCurrency 6 Currency (@) "Currency"
basDate 7 Date "Date"

basVString 8 String in
Variant

basObject 9
OLE
Automation
object

"Object"

//basError 10 Error "Error"

basBoolean 11 Boolean value
(0 or -1) "Boolean"

basVariant 12

Variant (used
only with
arrays of
Variants)

"Variant"

//basDataObject 13
Non-OLE
Automation
object

basByte 17 Byte "Byte"
//basArray 8192 Array

The Missing value does not have its own variable type but
is stored as an Error with value $80020004 as shown by
the code below:

Local vnt As Variant = Missing
Print VarType(vnt), TypeName(vnt)
Print "Error Code for Missing: "; Hex(LPeek(V:vnt
+ 8))

As can be seen from the above example, the VarType
function can be used to return an integer value indicating
the type of a variable or the subtype of the variant variable,
while the TypeName function returns a String indicating
the type.

The VarType function never returns the value for Array by
itself. It is always added to some other value to indicate an

array of a particular type. The value for Variant is only
returned when it has been added to the value for Array to
indicate that the argument to the VarType function is an
array. For example, the value returned for an array of
integers is calculated as 2 + 8192, or 8194. Similarly,
Typename returns the name of the variable type followed
by a pair of brackets '()' to indicate that it is an array, as
shown by this example:

Local vnt As Variant = Array(1, 2, 3) As Int16
Print VarType(vnt), TypeName(vnt) // Prints
8194 and Short()

Variant Main Page

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Programming GFA-BASIC 32
Editor Extensions
The GFA Editor Extensions are a standardized interface for
the source code editor of GFA-BASIC 32 and extend the
editor with a set of special commands. The interface
consists of commands and functions to manipulate source
code text, file I/O, and many IDE issues. Meaningful
extensions could be an auto save function, automatic
minimizing the editor window before running the program
and restoring after the program ends, invoking the help file,
merging a large number of internal files (:Files) again and
again, and inserting code snippets.

Editor extensions are programmed in GFA BASIC 32, so you
use the development environment also for creating GLL
extensions. Consider however, that contrary to other GFA
BASIC 32 projects, the Editor Extensions cannot be run (F5)
from inside the IDE. Instead, an editor extension must be
compiled and installed before it can be used.

The Editor Extension Commands

Compiling and Installing

Restrictions and Features

The Structure of an Editor Extension

Using Dialogs in a GLL

Miscellaneous GLL Examples

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Editor Extension Reference
GFA-BASIC 32 enables you to automate development tasks
in the GFA-BASIC 32 development environment. To access
the IDE about 130 commands and functions are available.
This section describes each command and function

Keypress Event Subs

Cursor Movement

Text Selection

Clipboard Commands

Text Editing

Find & Replace

BookMarks

Ctrl + Key Shortcuts

New, Loading and Printing

Save Project File

Procedures

Syntax Checking

Running And Compiling

Menu bar

IDE Information

Register Functions

Debugging

Variables and Types

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Compiling and Installing
When a project is marked as a GLL project (.GLL is the
extension of a compiled GFA Editor Extension file) the
Compile-Dialog box displays an additional tab, called 'Create
editor gll'. The tab provides an easy way to initialize the
name of the GLL.

The Create Exe Dialog Box

Installing the GLL

Assigning the Keys

Testing a GLL

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The Create Exe dialog box

Initially the big button next to 'Gll Name' is empty. When
you click the 'Init Gll Name' button, the big button above it,
is initialized with the filename of the g32 file. In addition the
extension is changed to "Gll'. When you want the name to
be quite different from the suggested name, click the big
button. You can then specify a custom filename for the
compiled GLL.

You can still fill in the file version info in the 'Version Info'
tab (don't forget to press the small button with + to
increment the file version number once a day).

The Program tab can be used as well. The project can still
be compiled to an EXE, but all Gfa_ statements are
ignored. It is possible to create a project that combines the
functionality of a program and a GLL. For instance, a
program might contain the logic to search for text in files.
The project might then contain an interface to start the
search from within a normal program. Additionally, the
program may contain a GLL interface (keyboard shortcut or

menu event) that starts the search logic as an editor
extension.

Back to the compile process. After providing the file version
info and initializing the Gll filename click OK to start
compiling. In addition, the information provided in the
dialog box is saved in the project file. Note that because the
project is extended with the compile information it must be
saved again, it has become 'dirty' again (see Gfa_Dirty).

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Installing the GLL
Before the editor extension can be used, it must be installed
using the Extension Manager (in German "Gll
Laden+Config") which you can find in the Extra submenu.

The Extension Manager is a dialog box named "Gfa
Extension Link Libraries" and shows the currently loaded
GLLs. They are displayed in the order they are loaded.

To install a new GLL select the Add (or in German
"Hinzufügen") button and select the required GLL from the
File Open dialogbox. As soon as the GLL is added, it is
loaded into memory and, when available, the Gfa_Init sub is
executed.

At this point, the installation is not yet complete, though.
The keyboard shortcuts that the editor extension wants to
use, must be activated. This means that the keyboard
shortcut the extension wants to use must be assigned to
that sub. By naming the sub Gfa_App_2 we want to execute
the sub App + 2 is pressed, but what if this shortcut is
already in use by a previously loaded GLL? In that case, we
must assign another keyboard shortcut to the Gfa_App_2
subroutine.

The editor extension remains active until it is removed. To
remove a GLL use the Extension Manager and choose
Remove ("Entfernen"). Before the GLL is unloaded, the
Gfa_Exit sub is executed. This provides the opportunity to
cleanup resources the GLL used.

After an editor extension is successfully added to the IDE
(installed), it is entered in the registry in
HKCU\Software\GFA\Basic section. The next time GFA-
BASIC 32 is started all editor extensions that are present in
the registry are loaded automatically. They are loaded in the
order as they are displayed in the Extension Manager
dialog.

i When a GLL behaves badly when GFA-BASIC 32 starts,
you might want to remove it from the registry. The GLL
keys are named "Gll1", "Gll2", etc.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Assigning the keys
To manage the keyboard shortcuts for all loaded GLLs, click
the Assign Key button in the "Gfa Extension Link Libraries"
dialog box. Now you'll see the "GLL Key Assignments" dialog
box.

The dialog box lists all keyboard shortcuts subs in the
currently loaded GLLs.

The first column specifies the editor extension and the
second column the Sub (Func) that is contained in that
extension.

For instance, when the loaded GLL extension
"D:\GB32\Bin\Extensions\GfaEdExt.Gll" contains a sub
Gfa_Ex_F, then the column 'Func' specifies "sc+F". If it
contains a sub Gfa_CAF11 then the Func column shows
ca+F11, etc.

The third column 'Keys' specifies which keyboard shortcut is
actually assigned to the subroutine Func. Initially, the value
for 'Keys' is empty. By double clicking the entry in the list
box or by clicking the command button 'Change' you can
specify which keyboard shortcut is to execute the event.

In the picture, the Sub Gfa_App_2 uses App + 2 for
executing the sub. To override the default settings, select
the button Assign Key ("Tastatur") in the Extension Manager
dialog box.

To change a key assignment select the GLL sub (Func) you
want to re-assign and select Change ("Tastenbelegung
ändern"). The following dialog box is displayed.

In the Modify Key Assignments you can assign a new key
combination. Press the key combination you want to use for
the selected function and see if it is used. When the key
combination is already in use, the GLL it is assigned to is
displayed below. Choose a different keyboard shortcut and
close the dialog box.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Testing a GLL
During the development of an editor extension, you have
two options to load the newly compiled GLL. First, you must
make sure it is entered in the Extension Manager list. Since
this operation loads the GLL as well, you can test
immediately. All other times you could repeat this process
but remove the GLL first.

Unfortunately, replacing a GLL using the Extension Manager
requires quite some actions to perform the task. Another
way to load a GLL to test it is by restarting the IDE after
compiling a GLL. This takes two shortcuts: Alt-F4 to quit
GFA-BASIC 32 and a Windows shortcut key to start the
GFA-BASIC 32 IDE.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Restrictions and Features
Not all GFA-BASIC 32 commands and functions may be
used in an editor extension. A GLL differs in quite some
ways from a normal GFA-BASIC 32 application. GFA-BASIC
32 applications are constructed around the OLE wrappers
for windows, forms and controls. This means that
maintaining all GUI items is performed through COM calls.
The forms and windows are COM containers for the ActiveX
controls provided in the GfaWin23.OCX. The GFA-BASIC 32
application is able to communicate between the COM items
through the Sleep command, which is used in any normal
program.

The editor extension is an external compiled GFA-BASIC 32
program in a special format. The editor extensions are
programmed in GFA-BASIC 32 and make use of many
library functions provided by GFA-BASIC 32, but a GLL is
not a COM plug-in, it is not COM based. After loading a GLL
plug-in it will become part of the IDE, its functions are
called from inside the IDE, which is a regular WINAPI
program and not a COM program. The IDE has no
knowledge what so ever about COM containers and OCXs.
As a consequence a GLL cannot use Form, OpenW, Ocx,
Sleep, etc. The general rule is: don't use GFA-BASIC 32 GUI
commands and don't use GFA-BASIC 32 specific message
loops, not even GetEvent in a GLL.

Editor Extensions do not have a data segment, because
they are nothing more then a piece of compiled code that is
recognized by the IDE. Also, a GLL is not a DLL, it cannot
contain data and cannot contain resources. Therefore,
Read, Data, Restore, and LabelAddr() are not allowed.
Since a GLL has no data section, inline resource files (:Files)

are not allowed as well. (There is a workaround to include
data in a GLL. By encoding binary data in a MimeEncode$
format, the data can be assigned to a string variable and
later decoded.)

Allowed are mostly all other GFA-BASIC 32 functions. You
can open files, use the non GUI COM objects App, Screen,
Debug, Err, Printer, Collection, and DisAsm. All Windows
API functions may be used, there are hardly any limitations.

You can display (test) results using Debug.Print, Trace,
Assert, and MsgBox, or by inserting text into program text,
as well as by changing the status bar text Gfa_StatusText=.

Simple input for a GLL can take place with Gfa_KeyGet,
InputBox, Prompt, or Popup.

This manual contains many examples that clarify the usage
of GFA-BASIC 32 statements in GLLs.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The Structure of an Editor
Extension
GFA Editor Extensions have no main program and cannot be
executed (F5). Initializations, otherwise made in the main
part of a GFA BASIC 32 program, must take place in the
Sub with the name Gfa_Init. This sub is executed
automatically while loading the editor Extension of the GFA
BASIC 32. This sub is also the place for Gfa_AddMenu, in
order to add entries to the Extra submenu.

Global Enum LangEng = 0, LangGer ' values
CurrentLanguage

Sub Gfa_Init
Global CurrentLanguage As Int =
Gfa_IntSetting("Language")

If CurrentLanguage = LangEng // English
IdxMerge = Gfa_AddMenu("Insert file ...",
Gfa_MenuMerge)

Gfa_MenuDesc(IdxMerge) = "Inserts the contents
“ _"

Else
IdxMerge = Gfa_AddMenu("Merge Datei ...",
Gfa_MenuMerge)

Gfa_MenuDesc(IdxMerge) = "Merge Datei .."
EndIf
'
' Create a font resource …
Global Handle hMyFont = CreateMyFont("Arial")

End Sub

The menu entries are removed automatically when the GLL
is unloaded. Any resource allocation can be released in the

Gfa_Exit sub, which is automatically executed when the GLL
is unloaded from memory.

Sub Gfa_Exit
~DeleteObject(hMyFont)

EndSub

Using Keyboard Shortcuts

Using The Extra Menu

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Using Keyboard Shortcuts
To call an editor extension function you must create event
subroutines with names that identify the keyboard shortcuts
they must respond to. These keyboard subs have the fixed
names Gfa_Ex_?, Gfa_App_? or Gfa_App_S?, where ? is
a placeholder for one of the characters A-Z and the
numbers 0-9. Thus, when you want to create an extension
procedure that is invoked after pressing the combination
Shift+Ctrl+X, the subroutine should be named Gfa_Ex_X.

Sub Gfa_Ex_X ' Shift+Ctrl+X key event
' Todo: your extension code

EndSub

Combinations with the application key are allowed as well.
For App+X the sub Gfa_App_X is called. The App key is the
Windows application key (Application key), which sits next
to the right Windows Start key. Often this key is used to
display a context menu, which might also be a good
purpose for an editor extension.

Example: Insert Date and Time

Sub Gfa_App_D ' App+D - popup to insert Date &
Time
Dim i% = PopUp(" Date| Time| DateTime")
Gfa_Insert Choose(i% + 1, Date$, Time$, Now$)

EndSub

There are also some function keys available for shortcut
assignment: F2, F8, F9, and in shifted states for F11 and
F12.

Shift
keys

Subs

None Gfa_F2, Gfa_F8, Gfa_F9
Shift Gfa_SF2, Gfa_SF8, Gfa_SF9, Gfa_SF11,

Gfa_SF12
Ctrl Gfa_CF2, Gfa_CF8, Gfa_CF9, Gfa_CF11,

Gfa_CF12
Shift +
Ctrl

Gfa_SCF2, Gfa_SCF8, Gfa_SCF9, Gfa_SCF11,
Gfa_SCF12

Alt Gfa_AF2, Gfa_AF8, Gfa_AF9, Gfa_AF11,
Gfa_AF12

Shift + Alt Gfa_SAF2, Gfa_SAF8, Gfa_SAF9, Gfa_SAF11,
Gfa_SAF12

Ctrl + Alt Gfa_CAF2, Gfa_CAF8, Gfa_CAF9, Gfa_CAF11,
Gfa_CAF12

Shift +
Ctrl + Alt

Gfa_SCAF2, Gfa_SCAF8, Gfa_SCAF9,
Gfa_SCAF11, Gfa_SCAF12

Note: S = Shift, C = Ctrl, A = Alt, SCA = Shift + Ctrl + Alt

Example:

Sub Gfa_CF2 ' Ctrl+F2 - New
Gfa_New

End Sub

Using The Extra Menu

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Using The Extra Menu
Another possibility to invoke an editor extension function is
to respond to a menu event from a previously added menu
entry in the Extra submenu. This menu contains no entries
by default. The only possibility to add entries is through the
use of the Extensions.

Use the instruction Gfa_AddMenu to inserted new menu
entries into the extra menu. Gfa_AddMenu expects the
name of a Sub as the second parameter associated with the
menu option. When the menu entry is chosen this Sub is
executed. For instance:

Sub Gfa_MenuMerge(Idx%)
' handle menu event

EndSub

Event Subs

The third interface to the editor Extensions are the event-
controlled Subs. Comparably with the event Subs of Ocx
objects (see object manual), it concerns subroutines with a
descriptive name, when occurring a certain event to be
called automatically and executed.

For example when a procedure with the name Sub
Gfa_Minute is present in the editor Extension, this
procedure is called and executed every minute (the editor is
interrupted as long as it takes to carry out the steps in
timer event sub).

The following event subs are implemented:

Gfa_Init - Occurs when a GLL is loaded.

Gfa_Exit - Occurs when a GLL is unloaded.

Gfa_OnRun - Occurs when a g32 project is run.

Gfa_OnEnd - Occurs when a run program ends.

Gfa_Second - Occurs every second.

Gfa_Minute - Occurs every minute.

Gfa_OnDropInl - Occurs when files are dropped on the
:Files window.

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Using Dialogs in a GLL
Although the GFA Editor Extensions are programmed using
GFA-BASIC 32 statements and functions, they can not use
windows, forms, ocxs and normal message processing
commands like, for instance, Sleep. In fact, the editor
extensions do not allow any of the usual GFA-BASIC window
functions. There is one exception however. You can use the
Dialog/EndDialog structure to create modeless dialog
boxes as in GFA-BASIC 16 bit. These commands are
implemented by invoking functions inside the IDE, not by
compiling them to normal GFA-BASIC 32 application
instructions. The modeless dialog box is therefore part of
the IDE and its messages are retrieved in the IDE's main
message loop.

Ownerless and modeless

The Dialog Statements

Creating controls

Other Window Commands

Message Handling using Gfa_CB

Example: Using a Dialog

Problem with menu events

Error Handling

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Ownerless and modeless
The editor extension dialog boxes are both ownerless and
modeless. Two relationships that can exist between
windows are the owner-owned relationship and the parent-
child relationship. The owner-owned relationship determines
which other windows are automatically destroyed when a
window is destroyed. When window A is destroyed,
Windows automatically destroys all of the windows owned
by A. The parent-child relationship determines where a
window can be drawn on the screen. A child window (that
is, a window with a parent) is confined to its parent
window's client area.

The default window style of an editor extension dialog is
WS_POPUP | WS_CAPTION. The dialog is created using a
call to CreateWindowEx with hWndParent set to Null. The
dialog box is owned by the desktop and not by the IDE.
When the dialog box is being owned it would places several
constraints on the dialog box.

- An owned window is always above its owner in the Z
order.

- The system automatically destroys an owned window
when its owner is destroyed.

- An owned window is hidden when its owner is minimized.

By making the dialog box ownerless, these constraints are
now removed; there is no relation between the IDE main
window and the editor extension dialog boxes. To maintain
its visual view the extension must process window
messages and handle the appropriate message by its self.

A modeless dialog box does not disable its parent or owner
when it is displayed as modal dialog box would. A modal
dialog box must be closed before the parent is accessible
again. From the fact that the dialog isn't owned it is clear
that the dialog box is modeless.

By disabling the IDE window (Gfa_hWnd) you can simulate
a modal dialog box. However, when another application is
activated and the dialog box is set back in the Z-order it is
not very easy to make it visible again. You cannot click on
the IDE because it is disabled and the dialog box is not
visible in the taskbar. You must minimize other applications
before you can access the dialog box again. There is no
easy solution to this problem.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

The Dialog Statements
The following editor extension commands are syntactically
the same as the GFA-BASIC 16 bit commands, but operate
on a different level: inside the IDE.

Dialog #id, x%,y%,w%,h% [,title$ [,style%
[,fontheight%,fontname$]]]

EndDialog ShowDialog #id
CloseDialog #id

By default the coordinates specify the number of pixels, an
implicit DlgBase Pixel. By using DlgBase Unit the
interpretation of the dialog box and control coordinates is
changed.

The default style is WS_POPUP. When the title argument is
specified the WS_CAPTION is set as well. In most cases
only WS_SYSMENU is provided as the argument for style.

The default font is the font obtained using
GetStockObject(DEFAULT_ GUI_FONT), which will suffice in
most circumstances.

ShowDialog is implemented as
ShowWindow(Dlg(id),SW_SHOW).

The GWL_USERDATA index with the SetWindowLong API
function should not be used. GFA-BASIC 32 reserves the
value at this index to store a pointer to a dialog info block
for the dialog box.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Creating controls
Try to avoid the general Control statement to create a child
window, these controls use the system font, rather than the
DEFAULT_ GUI_FONT.

Instead use GFA-BASIC 32 control statements for the
different kinds of standard and common controls. For
instance, to create a simple left justified static text control:

LText text$, ID%, x%, y%, width%, height% [,style%]

All control statements use the same syntax:

CtrlName text$, ID%, x%, y%, width%, height% [,style%]

CtrlName Name of the GFA-BASIC 32 control
statement.

text$ Specifies text that is displayed with the
control. The text is positioned within the
control's specified dimensions or adjacent to
the control.

ID% Specifies the control identifier. This value
must be an integer in the range 0 through
65,535 or a simple arithmetic expression that
evaluates to a value in that range.

x%, y% Specifies the x- and y-coordinate of the left
top side of the control relative to the left top
side of the dialog box. The coordinate is in
dialog units and is relative to the origin of the
dialog box, window, or control containing the
specified control.

width% Specifies the width of the control.
height% Specifies the height of the control.

style% Specifies the control styles. Use the bitwise
OR (|) operator to combine styles.

Standard controls:
LText, RText, CText, Icon,
PushButton, DefPushButton, CheckBox, AutoCheckBox,
RadioButton, AutoRadioButton,
ListBox, ComboBox,
EditText, Scrollbar.

Common Controls:
AnimateCtrl,
TabCtrl,
HeaderCtrl, ListViewCtrl, TreeViewCtrl,
ProgressCtrl, TrackBarCtrl,
StatusCtrl, ToolBarCtrl,
UpDownCtrl.

Other: RichEditCtrl.

Note - There is no Static control command, Static is used
to declare static local variables. Use the general Control
statement instead.

Note - GFA-BASIC 32 also provides keywords like
ProgressBar, Toolbar, Header, etc. These keywords are not
statements to create controls, but they are OCX types. As
such these keywords are used to declare variables or to
create OCX controls. For instance:

Dim pb As ProgressBar ' declare a variable pb
Ocx ProgressBar pb1 ' create OCX & declare
global variable pb1

These OCX types are not allowed in a GLL.

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Other Window Commands in
GLLs
Everything that has to do with OpenW, LoadForm, OCX,
Sleep, GetEvent, MENU(), etc is not allowed. However, for
easy access, the following GFA-BASIC statements and
functions are implemented to be used in Gfa Editor
Extensions.

ExtensionImplementation

Dlg(id) - Obtains the window handle of the dialog with
number id (0 .. 31)

DlgItem(id,idc) - Obtains the window handle of the child
control idc in dialogbox id.

c$ = _Win$(h) - Returns a string with the window text of
the window with handle h.

_Win$(h) = c$ - Sets the window text of window h with the
contents of string c$.

MoveW id, x, y -
SetWindowPos(Dlg(id),0,x,y,0,0,SWP_NOZORDER |
SWP_NOSIZE)

SizeW id, w, h -
SetWindowPos(Dlg(id),0,0,0,w,h,SWP_NOZORDER |
SWP_NOMOVE)

CloseW id - DestroyWindow(Dlg(id))

ClearW id - InvalidateRect(Dlg(id),0,1) +
UpdateWindow(Dlg(id))

ShowW id,swf - ShowWindow(Dlg(id), swf)

EnableW id - EnableWindow(Dlg(id), 1)

DisableW id - EnableWindow(Dlg(id), 0)

Enabled?(id) - IsWindowEnabled(Dlg(id))

SetCheck id, n, f - SendMessage(Dlg(id,n),
BM_SETCHECK,f,0)

Check?(id, n) - f = SendMessage(Dlg(id,n),
BM_GETCHECK,0,0)

Zoomed?(id) - IsZoomed(Dlg(id))

Visible?(id) - IsWindowVisible(Dlg(id))

Iconic?(id) - IsIconic(Dlg(id))

Except for Dialog#, ShowDialog, and CloseDialog, all
functions take either a dialog number (between 0 and 31)
or a window handle.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Message Handling using
Gfa_CB
The message handling for the dialog does not take place
using PeekEvent, GetEvent, DoEvents, or Sleep. Instead
message processing is part of the main message loop of the
GFA-BASIC IDE program. Whenever a message for GFA
Editor Extension dialog box arrives it is dispatched to the
Gfa_CB sub which should handle your dialog box message.

The syntax for the dialog callback sub is:

Sub Gfa_CB(hDlg%, Msg%, wParam%, lParam%, RetVal%,
ValidRet?)

The hDlg% parameter is the window (dialog) to which the
message is sent. The Msg% parameter is the message
number, which is usually a constant such as WM_COMMAND
or WM_SIZE. The wParam% and lParam% parameters differ
for each message, as does the return value; you must look
up the specific message to see what they mean. Often,
wParam or the return value is ignored, but not always.

The Gfa_CB has two additional parameters (ByRef) that
allow you to return a value to default window procedure for
the dialog box. For instance, when you handled a certain
message you can set the ValidRet? variable to True and
provide a return value by setting the RetVal% variable.
What value RetVal must have is defined in the Windows API
SDK. It often says something like: "If you handle this
message return zero (or..)".

There can be only one Gfa_CB sub per editor extension.
So, inside the Gfa_CB sub you must determine which

dialog # the message is for. Note that a dialog box is
defined using an ID number (0..31) and that the dialog is
accessed using its ID number.

To obtain the target dialog box number you must obtain the
ID number from the hDlg% parameter, which specifies the
windows handle for the dialog box. The window handles for
the dialog boxes are retrieved using the Dlg() function.
Dlg(id) expects a number between 0 and 31 and returns
the window handle of that dialog box. The target dialog box
ID is determined by iterating over the dialog box ID values,
0 to 31, until hDlg% equals Dlg(id).

The following example illustrates the message handling
mechanism in a GFA Editor Extension for three dialogs:

Sub Gfa_CB(hDlg%, Msg%, wParam%, lParam%, RetVal%,
ValidRet?)
If hDlg% = Dlg(1)
Handle_Dlg1(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)

Else If hDlg% = Dlg(2)
Handle_Dlg2(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)

Else If hDlg% = Dlg(3)
Handle_Dlg3(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)

EndIf
EndSub

Sub Handle_Dlg1(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)
// Code

EndSub

Sub Handle_Dlg2(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)
// Code

EndSub

Sub Handle_Dlg3(hDlg%, Msg%, wParam%, lParam%,
RetVal%, ValidRet?)
// Code

EndSub

Once a message is arrived in the callback subroutine, there
are two alternatives in processing possible.

1. Create a large switch case branch based on the
Msg% variable and handle the message directly (preferred).

2. Store the parameters in global variables and process
the message in Gfa_Second. This is kind of the same as
messages were handled in GFA-BASIC for Windows 3.1
using MENU(). (This method is mentioned by GFA, but it is
not recommended.)

{Created by Sjouke Hamstra; Last updated: 07/07/2015 by James Gaite}

Example: Using a Dialog
In the following example a dialog box identified with
number # 1 is displayed when the editor extension
keyboard shortcut Shift+Ctrl+9 is pressed. Per editor
extension 31 dialogbox can be displayed simultaneously.
Their id numbers range from 1 to 31.

Sub Gfa_Ex_9
Dialog # 1, 10, 10, 100, 170, "TestDlg",
WS_SYSMENU
PushButton "but &A", 100, 10, 10, 50, 20
PushButton "but &B", 101, 10, 32, 50, 20
PushButton "but &C", 102, 10, 54, 50, 20
DefPushButton "Ok", IDOK, 10, 76, 50, 20
PushButton "Cancel", IDCANCEL, 10, 98, 50, 20
EditText "", 200, 10, 120, 50, 22

EndDialog
ShowDialog # 1
~SetFocus(Dlg(1, IDOK))

EndSub

Sub Gfa_CB(h%, m%, w%, l%, r%, f?)
If h% = Dlg(1)
Switch m
Case WM_COMMAND
Switch w
Case 100 : MsgBox "Button A pressed"#10 &
_Win$(Dlg(1, 200))

Case 101 : cmdB_Click
Case 102 : MsgBox "Button C pressed"
Case IDOK : MsgBox "Ok pressed" #10 &
_Win$(Dlg(1, 200)) : CloseDialog # 1

Case IDCANCEL : MsgBox "Cancel" : CloseDialog
1

EndSwitch
Case WM_CLOSE
MsgBox "Cancel - Close"

EndSwitch
EndIf

EndSub

Sub cmdB_Click
MsgBox "Button B pressed" #10 & _Win$(Dlg(1,
200))

EndSub

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Problem with menu events
When a dialog box is created and showed as a result of
processing a menu event, the dialog box is overlapped by
the GFA-BASIC 32 IDE immediately. The IDE is brought to
foreground after showing the dialog. This is a direct result
from the internal WM_COMMAND handling of the IDE: it
simply set the focus to the editor after handling the
WM_COMMAND message, e.g. the menu event. It doesn't
check for a visible dialog box. This problem only occurs
after a menu event, not with a keyboard event.

One workaround could be by posting the keyboard shortcut
that creates the dialog.

Sub menuDialog(i%)
SendKeys "^+9" 'calls Gfa_Ex_9 eventually

EndSub

This way the keyboard shortcut is placed in the message
queue and will not be retrieved before the menu event is
handled completely and the main message loop is re-
entered.

Another solution is to relocate the ShowDialog command to
the Gfa_CB procedure. Then, rather than invoke
ShowDialog and SetFocus post a WM_USER message to
display dialog. The advantage of this approach is that the
initialization of the dialog box can be done in the Gfa_CB as
well. The entire handling of the dialog box can be combined
in one procedure.

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Error Handling
Internally, the call to Gfa_CB is embedded in a Try/Catch
structure. An error inside the Gfa_CB is therefore trapped
and logged to the Debug Output window. Nevertheless, to
process error conditions properly, the GFA_CB should have
its own Try/Catch structure.

See Also

Try

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Miscellaneous Examples
Below a list with links to some GLL examples.

AutoSave

Change Case

Convert Characters

Using Eval()

Insert Snippet Code

Add a Resource

Jump to subroutine

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Arrays Keyword Summary
Action Keywords GB VB

6
Verify an array IsArray v v
Create an array in a
Variant

Array v v

Change default
lower limit

Option Base v v

Declare and initialize
an array

Dim, Private,
Public, ReDim,
Static

v v

Find the limits of an
array

LBound, Ubound v v

The number of
elements

Dim? v

The number of
indices

IndexCount v

Reinitialize an array Erase, ReDim v v
Insert and delete
elements

Insert, Delete v

Array address and
size

ArrayAddr,
ArraySize

v

Array initialize ArrayFill v
Sort array QSort v
Write/Read string
array

Recall, Store v

Note Private is a synonym to Local and Public is the same
as Global.

See Also

GFABasic32 Language Reference

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Bits and Byte Operators and
Keywords
Action Keywords GB VB6
Change and test
bits of 32-bits
integers

Bchg, Bclr, Bset,
Btst

v

Change and test
bits of 64-bit
integers

Bchg8, Bclr8,
Bset8, Btst8

v

Shift bits (32-
bits)

<<, >>

Shl, Shr, Sar

v

Rotate bits (32-
bits)

Rol, Ror v

Shift bits (64-
bits)

Shl8, Shr8, Sar8 v

Rotate bits (64-
bits)

Rol8, Ror8 v

Swap bytes Bswap v
Exchange bytes _Swab, _Swab8,

_SwabL
v

Swap bits Mirror, Mirror%,
Mirror&, Mirror|,
Mirror8

v

Extract high and
low bytes and
words

HiByte, HiCard,
HiWord, LoByte,
LoCard,LoWord,
LoLarge,HiLarge

v

Extract Card and Card,Byte v

Byte type
Sign extend Word, Short,

Ushort, Uword
v

Create integers
(16-bit, 24-bit,
32-bit, and 64-
bit)

MakeL2H,
MakeL2L,
MakeL3H,
MakeL3L,
MakeL4H,
MakeL4L,
MakeLarge,
MakeLargeHiLo,
MakeLargeLoHi,
MakeLong,
MakeLongHiLo,
MakeLongLoHi,
MakeWord,
MakeWordHiLo,
MakeWordLoHi,
MakeWParam

v

Peek numeric
values

Peek, CPeek,
CurPeek, DPeek,
DblPeek, LPeek,
Peek8, SngPeek

v

Poke numeric
values

Poke, CPoke,
CurPoke, DPoke,
DblPoke, LPoke,
Poke8, SngPoke

v

Network integer
conversions

htonl(), htons(),
ntohl(), ntohs()

v

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Conversion Keywords

Data Types Keywords

Memory Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Built-In API Functions
There are about 1000 most often used API functions built-
in. Some of these functions have reserved names, names
that are already in use by the BASIC language. Those
functions are renamed and are available under an alias.

A built-in function always uses the return value, either by
using it in an expression or by voiding the value. For
instance:

Dim p%

p% = CharLower("ABC") // expression

~CharLower("ABC") // ~ void

Void CharLower("ABC") // void

The Windows API supports both ANSI and UNICODE
functions. The GFA-BASIC 32 built-in functions are the ANSI
variant.

Passing strings

Many API functions take the C data type LPSTR (or LPTSTR,
LPCSTR, etc) as a parameter. This is a pointer to a null-
terminated string. When passing a string data type pass the
address of the character data using the VarPtr function or
the V: operator.

Dim api$ = "ABC"

~CharLower(V:api$) // address of the string

When a string is passed 'by value', as in the first example,
the string is first copied to an internal buffer of 1030 bytes.
Then the address of the buffer is passed to the API function.
This has two disadvantages. First any strings larger than
1029 characters are cut off. Secondly, API functions that
return text data to a LPSTR buffer are not received by the
program, because they are copied to the temporal buffer.

The built-in functions are not checked for a correct syntax,
only for the correct number of parameters. In fact, each
parameter of the built-in functions is simply a 32-bit integer.
What ever you pass to that integer is the responsibility of
the programmer.

Passing user-defined types

A user-defiined type can be passed by address using V: or
'by value', without the V:. GFA-BASIC 32 always passes the
address of the type variable.

Renamed API functions

The following API functions are renamed due to there use
as reserved keyword for a BASIC command or function.
Note some got two new names.

GetObject in GetGdiObject or apiGetObject

LoadCursor in LoadResCursor or apiLoadCursor

lstrcmpi in _lstrcmpi

lstrcmp in _lstrcmp

Removed API functions

The following 16-bit API functions are not included:

GetBitmapDimension, SetBrushOrg, GetBrushOrg,
GetCurrentPosition, PostAppMessage, SetConvertHook,
SetConvertParams, ConvertRequest, DefHookProc,
GetAspectRatioFilter, GetCurrentTask, GetNumTasks,
SetSysModalWindow, and UnlockResource

See Also

Declare

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Collection and Hash
Keywords
The Collection

Action Keywords GB VB6
Create a
Collection object

Collection v v

Add an object to
a collection

Add v v

Remove an
object from a
collection

Remove v v

Reference an
item in a
collection

Item v v

The Hash

Action Keywords GB VB6
Create a Hash Hash v
Add an element
to a Hash

Hash Add v

Remove an
element form a
Hash

Hash Remove v

Erase Hash Hash Erase v
Load/ Save a
Hash collection

Hash Input,
Hash Load, ,
Hash Save,
Hash Write

v

Sort a Hash by
keyword

Hash Sort v

See Also

Arrays Keywords

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Miscellaneous Keywords

OCX/OLE Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Control Flow Keywords
Action Keywords GB VB6
Branch GoSub…Return,

GoTo, On Error,
On..GoSub,
On..GoTo

v v

Exit or pause the
program

DoEvents, End,
Exit, Stop

v v

Exit or pause the
program

Sleep,
GetEvent,
PeekEvent, Quit

v

Loop Do…Loop, For…
Next, ForEach…
Next, While…
Wend, With

v v

Loop Repeat v
Make decisions Choose, If…

Then…Else,
Select, Switch,
Iif

v v

Use procedures Call, Function,
Sub

v v

Use procedures Procedure,
FunctionVar,

v

Properties Property Get,
Property Let,
Property Set

 v

Call a function
through a
pointer

C, LC, LP, Call,
CallX, Ccall,
LCCall, LpasCall,
StdCall, LstdCall

v

See Also

Compiler and Debug Keywords

Data Types Keywords

Errors Keywords

Memory Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Compiler and Debug
Keywords
Compiler directives and keywords

Action Keywords GB VB6
Use of variable
postfix

$AutoPost v

Check array
bounds

$ArrayChk v

Fast For…Next
code

$For v

Check OLE
errors

$Obj v

Insert debug
code

$Step v

Create exports $Export v
Load compiled
library

$Library v

Minimum
prologue and
epilogue code
for subroutines

Naked v

Auto declare
global variables

Auto v

Running as EXE? IsExe v
Set a hardware
breakpoint

Monitor v

Debug Keywords

Action Keywords GB VB6
Debug Object Debug v v
Assert Assert v
Dump call stack Calltree v
Trace lines Tron, Trace,

TraceLnr,
TraceReg,
SrcCode$,
ProcLnr,
ProcLineCnt

v

See Also

Errors Keywords

Miscellaneous Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Conversion Keywords
Action Keywords GB VB6
ANSI value to
string

Chr

#, Mk1$

v

v

v

Convert a string
to a numeric
data type.

Cv1, Cv2, Cv3,
Cv4, Cv5, Cv6,
Cv7, Cv8, Cvd,
CvdMbf, Cvi,
Cvl, Cvs,
CvsMbf, Cvw,
CvCur, CvLarge

v

Convert a data
type to a string

Mk1, Mk2, Mk3,
Mk4, Mk5, Mk6,
Mk7, Mk8,
MkCur, Mkd,
MkdMbf, Mki,
Mkl, MkLarge,
Mks, MksMbf,
Mkw

v

String to
lowercase or
uppercase

Format, Lcase,
Ucase

Upper, Lower

v

v

v

Date to serial
number

DateSerial,
DateValue

v v

Decimal number
to other bases

Hex$(), Oct$()

Bin$(), Dec$(),

Base

v

v

v

v

Number to string Format, Str

sprintf, Using

v

v

v

One data type to
another

Cbool, Cbyte,
Ccur, Cdate,
CDbl, Cint,
Clong, CSng,
CStr, Cvar, Fix,
Int

v v

CDec, CVErr v
Convert between
data types and
round to zero.

CByteRZ,
CIntRZ,
CLargeRZ,
CLongRZ,
CShortRZ

v

String to ASCII
value

Asc v v

String to number Val, CDbl

Val?

v

v

v

See Also

Data Types Keywords

Dates and Times Keywords

Math Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Crypting, Mime encoding,
Checksum Keywords
Action Keywords GB VB6
Crypt data Crypt v
Checksum Crc16, Crc32 v
Checksum CheckSumByte,

CheckSumLong,
CheckSumShort,
CheckXorByte,
CheckXorLong,
CheckXorShort

v

Pack data Pack, UnPack,
PackMem,
UnPackMem

v

Mime 64
encoding

MemToMiMe,
MiMeToMem,
MiMeDecode,
MiMeEncode,

v

Mime UU
encoding

MemToUU,
UUToMem,
UUDecode,
UUEncode

v

See Also

Collection and Hash Keywords

Conversion Keywords

Data Types Keywords

Directories and Files Keywords

Input and Output Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Data Types Keywords
Action Keywords GB VB6
Convert between
data types

Cbool, Cbyte,
Ccur, Cdate,
CDbl, Cint,
CLong, CSng,
CStr, Cvar,, Fix,
Int

v v

CDec, CVErr v
Convert between
data types and
round to zero.

CByteRZ,
CIntRZ,
CLargeRZ,
CLongRZ,
CShortRZ

v

Set intrinsic data
types

Boolean, Byte,
Currency, Date,
Integer, Long,
Object, Single,
Double, Variant
(default)

v v

Additional intrinsic
data types

Card, Short,
Word, Int16, Int,
Int32, Int64,
Large, Handle, ,
Hash

v

Verify data types IsArray, IsDate,
IsEmpty, IsError,
IsMissing, IsNull,
IsNumeric,
IsObject

v v

Object Type Is, TypeOf v

1 Not: Cdec and CVErr

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Collection and Hash Keywords

Conversion Keywords

Dates and Times Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Dates and Times Keywords
Action Keywords GB VB6
Get the current
date or time as
a date

Date, Now, Time v v

Get the current
date or time as
a string

Date$, Now$,
Time$

DateTime

v

v

Date to day,
month,
weekday, or
year

Day, DayNo,
Month,
Weekday, Year

v v

Time to hour,
minute, or
second

Hour, Minute,
Second

v v

Perform date
calculations

DateAdd,
DateDiff,
DatePart

v v

Return a date DateSerial,
DateValue

v v

Return a time TimeSerial,
TimeValue

v v

Extract Data and
Timer

DateToDmy,
DateToDmyHms
TimeToHms

v v

Set the date or
time

Date, Time v

Time a process Timer v v
Performance _TimerFreq, v

timer Timer, oTimer,
qTimer

Performance
processor timer

_RDTSC v

C-time functions _time, _ctime v

See Also

Conversion Keywords

Data Types Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Directories and Files
Keywords
Action Keywords GB VB6
Change
directory and
drive

ChDir, ChDrive v v

Return current
path

CurDir v v

Return current
directory and
drive

_Dir, _Drive v

Copy/Move a
file

FileCopy,

CopyFile,

MoveFile

v

v

v

v

Make/Remove
directory or
folder

MkDir, RmDir v v

Rename a file,
directory, or
folder

Name,

Rename

v

v

v

Return file
date/time
stamp

FileDateTime v v

Returns
date/time

FileDateTimeAcces
s,
FileDateTimeCreat
e

v

Set date/time SetFileDateTime,
SetFileDateTimeAc
cess,
SetFileDateTimeCr
eate, Touch

v

Return and
set file,
directory,
label
attributes.

GetAttr, SetAttr v v

Returns and
Set attribute
information
for a file

FGATTR, FSATTR v

File exists Exist v
Return file
length

FileLen,

FileLen%

v

v

v

Return file
name or
volume label

Dir v v

Dir stack DirPush, DirPop,
DirPopAll

v

Long and
short filename
conversion

LongFileName,
ShortFileName,
LongPathName,
ShortPathName,
ShortProgName

v

System
directories
and files

WinDir, SysDir,
TempDir,
TempFileName,
KillTempFile

v

See Also

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Input and Output Keywords

Miscellaneous Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Error Keywords
Action Keywords GB VB6
Generate run-
time errors

Clear, Error, Raise v v

Re-generate
error

Throw v

Get error
messages

Error$,

Err$

v

v

v

Get system
error
messages

SysErr v v

Provide error
information

Err v v

Return Error
variant

CVErr v

Trap errors
during run
time

On Error, Resume v v

Trap errors
during run
time

Try/Catch/EndCatc
h

v

Type
verification

IsError v v

Verify integer
value

Bound, BoundB,
BoundC

v

See Also

Compiler and Debug Keywords

Miscellaneous Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Graphical Keywords
In GFA-BASIC 32 graphical commands are performed
directly on the form's client area. VB uses a second 'layer'
to perform graphics methods like Line and Shape; they are
therefore named 'controls'.

The Graphical keywords can be used on a Form and on the
Printer objects.

Action Keywords GB VB6
Color Color, QBColor,

ForeColor,
BackColor

v v

Color BkColor, RGB,
_RGB, GetRValue,
GetGValue,
GetBValue,
PALETTEINDEX,
PALETTERGB

v

System colors SysCol v
Clear screen Cls v
Pen, brush DefLine, DefFill v
Mode and
background mode

DrawMode

GraphMode

v

v

v

Print Print

Locate, LocaYX,
LocaXY, Print At,
Vtab, Htab

v

v

v

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/palettergb.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/palettergb.htm

Text DrawText, Text,
TextXor, GrayText

v

Line, rectangle Line v v
(3d) Rectangles Box, Pbox, Rbox,

PRBox, Box3D,
Pbox3D

v

Circle, ellipse Circle, Pcircle,
Ellipse, Pellipse

v

Set and get point Pset, Plot, Draw,
Line, SetDraw,
Point, RGBPoint,
PTst

v

'Logo" drawing SetDraw, Draw,
QBDraw

v

Bezier curve Curve v
Polygon PolyLine, PolyFill v
Scaling ScaleMode,

ScaleHeight,
ScaleWidth,
ScaleLeft,
ScaleTop

v v

Scaling extended ScaleMMOO,
ScaleMode$,
ScaleMX, ScaleMY

v

Conversion
between scales

Scale(), ScaleX(),
ScaleY()

v

Drag rectangle RubberBox,
DragBox

v

Rectangle
intersection

rc_Intersect v

Clip Clip v
Bitmaps Get, Put, BitBlt,

PatBlt, Stretch,
v

FreeBmp
Fonts Font, Font To,

SetFont, GetFont,
Rfont, Dlg Font,
_hFont, _font$,
_font$=,
FreeFont, DelFont

v

GDI GdiFlush v
Himets, Pixel,
Twips conversion

HimetsToPixelX,
HimetsToPixelY,
PixelsToHimetX,
PixelsToHimetY,
PixelsToTwipX,
PixelsToTwipY,
TwipsToPixelX,
TwipsToPixelY

v

See Also

Miscellaneous Keywords

OCX/OLE Keywords

Window Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Input and Output Keywords
Action Keywords GB VB6
Access or create a
file

Open v v

Close files Close, Reset v v
Flush data Commit, Flush v
Control output
appearance

Format, Print, Print,
Spc, Tab

v v

Width # v
Copy/Move a file FileCopy

CopyFile, MoveFile

v

v

v

Get information
about a file

EOF, FileAttr,
FileDateTime,
FileLen, FreeFile,
GetAttr, Loc, LOF,
Seek

v v

Get information
about a file

_File, TextEOF,
RecordLOF

v

Get and set RelSeek, SeekEnd v
Get and set
date/time

FileDateTimeAccess,
FileDateTimeCreate,
SetFileDateTime,
SetFileDateTimeAcce
ss,
SetFileDateTimeCreat
e, Touch

v

Manage files Dir, Kill, Lock,
Unlock, Name

v v

Delete files and KillFile, DeleteFile v

folders
Manage files Files v
Read from a file Get, Input, Input#,

Input?, LineInput#,
Record

v v

Return length of a
file

FileLen v v

Set or get file
attributes

FileAttr, GetAttr,
SetAttr

v v

Set or get file
attributes

FSATTR, FGATTR v

Set read-write
position in a file

Seek

RelSeek, SeekEnd

v

v

v

Write to a file Print#, Put, , Record,
Write

v v

Block write/read
to a file

Bput, Bget v

Block write/read a
file

Bsave, Bload v

Read/write byte,
word, or integer

Inp, Out v

Read/write string
array

Recall, Store

Read/write to
PORT (byte,
word, or integer)

Inp(Port), Out(Port) v

VB compatible,
32-bits functions

FileLen%, Loc%,
LOF%, Seek%,
RelSeek%

v v

Note - All VB file functions operate with 32-bits integers, a
value between 1 and 2,147,483,647 (equivalent to

2^31 - 1), inclusive.

All GFA-BASIC 32 file functions operate with 64-bit integers,
by default. To use VB compatible commands use the
functions with % postfix.

See Also

Arrays Keywords

Collection and Hash Keywords

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Directories and Files Keywords

Miscellaneous Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 01/03/2017 by James Gaite}

Math Keywords
Action Keywords GB VB6
Integer arithmetic Add, Sub, Mod,

Mul, Div
v

Floating point
arithmetic

Fmod v

Derive
trigonometric
functions

Sin, Cos,Tan, Atn v v

Extended
trigonometric
functions

SinQ CosQ, Acos,
Atan, Atan2,
_hypot

v

General calculations Exp, Log, Sqr v v
GFA-BASIC 32
general calculations

Exp2, Exp10,
Log2, Log10, Sqrt,
Square, Pow, _j0,
_j1, _jn, _y0, _y1,
_yn

v

Mantisse LdExp, Mant,
GetExp

v

Generate random
numbers

Randomize, Rnd

Rand

v

v

v

Generate random
numbers C-style

_rand, _srand v

Get absolute value Abs v v
Get the sign of an
expression

Sgn v v

Perform numeric
conversions

Fix, Int v v

Additional numeric
conversions

Floor, Ceil, Trunc,
Frac

v

Statistics Variat, Combin,
Permut

v

Rounding Round, Fround,
Qround

v

Minimum and
maximum

Max, Min, MaxCur,
MinCur, MaxI,
MinI, iMax, iMin,
MaxLarge,
MinLarge

v

Odd and Even Odd, Even v
Incrementing and
decrementing

Inc, Dec, Incr,
Decr, Pred, Succ

v

See Also

Arrays Keywords

Bits, Byte, Word, Int, and Large Operators and Keywords

Collection and Hash Keywords

Conversion Keywords

Matrices Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Matrices Keywords
Action Keywords GB VB6
Arithmetic Mat Add, Mat Sub,

Mat Mul
v

Copy, move MatCpy, MatX Cpy,
Mat Trans

v

Initialize Mat Clr, Mat Set,
Mat One, Mat Neg

v

Perform operations Mat Det, Mat Qdet,
Mat Rank, Mat Inv

v

Read/write Mat Print, Mat
Read

v

Normalize Mat Norm v

See Also

Arrays Keywords

Bits, Byte, Word, Int, and Large Operators and Keywords

Data Types Keywords

Math Keywords

Operators Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Memory Keywords
Action Keywords GB VB6
Memory
management

cAlloc, mAlloc,
mFree, mShrink,
mReAlloc

v

Memory
initialization

MemBFill,
MemWFill,
MemLFill, MemSet,
MemZero, ArrayFill

v

Memory move/copy Bmove,
BlockMove,
MemMove,
MemCpy

v

Memory And, Or,
Xor

MemAnd, MemOr,
MemXor

v

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Conversion Keywords

Data Types Keywords

Math Keywords

Miscellaneous Keywords

Operators Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Miscellaneous Keywords
Action Keywords GB VB6
Process pending
events

DoEvents

Sleep,
PeekEvent,
GetEvent

v

v

v

Pause Pause, Delay v
Declare DLL
functions

Declare

FreeDll

v

v

v

Run other
programs

Shell

System, Exec,
WinExec,
ShellExec

v

v

v

Multimedia Mci$, Mci,
mciErr$, mciID

v

Send keystrokes
to an application

SendKeys v v

Sound Beep,

PlaySound

v

v

v

Joystick Stick, Strig v
System Environ

IsWinNT

v

v

v

Provide a Command, v v

command-line
string

_dosCmd v

Inline Assembler
and
Disassembler

Asm, DisAsm v

Processor GetRegs,
_CPUID,
_CPUID$,
_CPUIDD,
IsMMX

v

Thread GetCurrentFiber,
GetFiberData,
GetTIB

v

Call a function
through a
pointer

C, LC, LP, Call,
CallX, Ccall,
LCCall, LpasCall,
StdCall, LstdCall

v

See Also

Arrays Keywords

Bits, Byte, Word, Int, and Large Operators and Keywords

Collection and Hash Keywords

Control Flow Keywords

Compiler and Debug Keywords

Conversion Keywords

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Dates and Times Keywords

Directories and Files Keywords

Errors Keywords

Graphical Keywords

Input and Output Keywords

Math Keywords

Matrices Keywords

Memory Keywords

Miscellaneous Keywords

Operators Keywords

OCX/OLE Keywords

String Manipulation Keywords

Variables and Constants Keywords

Window Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Operators Keywords
Action Keywords GB VB6
Arithmetic ^, *, /, \, +, - v v1
Keywords Add, Sub, Mul, Div,

Fmod
v

Keywords Mod v v
Increment/decrement ++, --, Dec, Inc v
Assignment +=, -=, /=, *=,

%=, &=, |=, ^=
v

Comparison <, >, <>, ><, =<,
<=, >=., =>, !=, =,
==, Is

v v2

Floating point
comparison

NEAR v

Logical operations &&,, || ^^ v
Logical NOT ! v
One's complement ~ v
Bitwise operators %&, |, %|, ^^ v
32-bit Bitwise
operators

And, Or, Xor, Imp,
Eqv

v v

64-bit Bitwise
operators

And8, Or8, Xor8,
Eqv8, Imp8

v

Unary *, V:,

1 Not: ^

2 Not: ==; !=; ><; =<; =>

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Control Flow Keywords

Conversion Keywords

Data Types Keywords

Dates and Times Keywords

Miscellaneous Keywords

Variables and Constants Keywords

Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

OCX/OLE Keywords
Action Keywords GB VB6
Create OCX
Form

Form, LoadForm, OpenW,
ChildW, ParentW, Dialog

v

Create OCX
Controls

Ocx, OcxOcx, OcxScale v

Get OCX
reference

Form(),OCX(), Me v

OCX Types Form, Command, Option,
CheckBox, RichEdit,
ImageList, TreeView, ListView,
Timer, Slider, Scroll, Image,
Label, ProgressBar, TextBox,
StatusBar, ListBox,
ComboBox, Frame, CommDlg,
MonthView, TabStrip,
TrayIcon, Animation, UpDown

v v

Type of an
OLE object

TypeOf v

Set object
reference

Set, New, Me, Nothing,

Output

v

v

v

OCX Mouse MouseCursor, LoadCursor,
MouseIcon

v

OCX
Collections

Buttons, CoumnHeaders,
Panels, ListItems, Nodes,
ListImages, Tabs, MenuItems,
Forms, Controls

v v

Disassembler DisAsm v
Printer Printer v v

Standard
Objects

Font, StdFont, Picture,
StdPicture

v v

Picture
objects

CreatePicture,

LoadPicture, PaintPicture,
SavePicture

v

v
v

Informative
Objects

App, Screen v v

Automation CreateObject, GetObject v v
GUID GUID, GUID$

See Also

Collection and Hash Keywords

Conversion Keywords

Data Types Keywords

Errors Keywords

Miscellaneous Keywords

Variables and Constants Keywords

Window Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Registry Keywords
Action Keywords GB VB6
Delete program
settings (VB)

DeleteSetting (VB) =
vbDeleteSetting(GB)

v v

Read program
settings (VB)

GetSetting (VB) =
vbGetSetting(GB)

v v

Read all program
settings (VB)

GetAllSettings v

Save program
settings (VB)

SaveSetting (VB) =
vbSetSaving(GB)

v v

Delete program
settings (GB)

DeleteSetting v

Read program
settings (GB)

GetSetting v

Save program
settings (GB)

SaveSetting v

Open, create, and
close keys

CreateRegKey,
OpenRegKey,
CloseRegKey

v

Get value information GetRegVal,
GetRegValName,
GetRegValType,
GetRegValNameCount

v

Get sub key
information

GetRegSubKey,
GetRegSubKeyCount

v

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Conversion Keywords

Data Types Keywords

Memory Keywords

Miscellaneous Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

String Manipulation
Keywords
Action Keywords GB VB6
Compare two strings StrComp

StrCmp, StrCmpI,
LStrCmp, LStrCmpI

v

v

v

Concatenation $

+, &

v

v
v

Convert strings StrConv v
Convert to lowercase
or uppercase

Format, Lcase, Ucase

Upper, Lower

v

v

v

Create string of
repeating character.

Space, String v v

Find length of a
string.

Len v v

Format a string Format

sprintf, Using

v

v

v

Justify a string Lset, Rset v v
Manipulate strings InStr, Left, Ltrim,

Mid, Right, Rtrim,
Trim

v v

Manipulate strings RinStr, Mirror,
SubStr, Ztrim

v

Set string comparison
rules.

Mode v v

Work with ASCII and
ANSI values.

Asc, Chr v v

Translate Xlate v
Replace Replace v

reSub v
Regular expressions Split, Join, preMatch,

reMatch, ReSub
v

Read a null-
terminated string from
memory

Char{}, CharPeek,
Peek$, StrPeek

v

Write a null-
terminated string to
memory

Char{}=, CharPoke,
Poke$, StrPoke

v

See Also

Arrays Keywords

Collection and Hash Keywords

Conversion Keywords

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Dates and Times Keywords

Input and Output Keywords

Miscellaneous Keywords

Operators Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

Variables and Constants
Keywords
Action Keywords GB VB6
Assign value. Let, = v v
Clear variable Clr, Clear, Erase v
Declare variables or
constants.

Dim, Global, Local,
Static, Const, Enum

v v

Declare GUID
constant

GUID v

Read data Data, _Data, Read,
Restore

v

Get information
about a variant.

IsArray, IsDate,
IsEmpty, IsError,
IsMissing, IsNull,
IsNumeric,
IsObject,
TypeName, VarType

v v

Get information
about an OLE object

TypeOf v

Require explicit
variable declarations.

Option Explicit Always v

Set default data
type.

Deftype v v

Address of descriptor ArrPtr, * v
Address of variable VarPtr, V:, * v
Pointer Type Pointer v
Procedure, Label
address

ProcAddr, LabelAddr v

User-defined type Type, v v

Union v

Size and offset of
Type (elements)

SizeOf, BitSizeOf,
BitOffsetOf,
OffsetOf

v

See Also

Bits, Byte, Word, Int, and Large Operators and Keywords

Control Flow Keywords

Conversion Keywords

Data Types Keywords

Miscellaneous Keywords

Operators Keywords

String Manipulation Keywords

Variables and Constants Keywords

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Window Keywords
Action Keywords GB VB6
Windows
creation

Form, OpenW, ChildW,
ParentW, Dialog

v

Get message DoEvents

Sleep, GetEvent, PeekEvent

v

v

v

Control creation Control, AnimateCtrl,
AutoCheckBox,
AutoRadioButton,
CheckBox, ComboBox,
Ctext, Dialog,
DefPushButton, EditText,
GroupBox, HeaderCtrl,
ListBox, ListViewCtrl, Ltext,
ProgressCtrl, PushButton,
RadioButton, RichEditCtrl,
Rtext, ScrollBar, StatusCtrl,
TabCtrl, ToolBarCtrl,
TrackBarCtrl, TreeViewCtrl,
UpDownCtrl

v

Set window text TitleW, _Win$ v
Manage
Windows

MoveW, SizeW, FullW,
TopW, CloseW, ClearW,
AdjustW, ShowW,
DisableW, EnableW,
Zoomed?, Visible?, Iconic?,
ArrangeIcons

v

Menu bar
creation

Menu v

Menu bar MenuItem v v

management
Redirect output Win, Output v
Get/Set window
parameters

GetWinRect, WindGet,
WindSet

v

Menu() 16-bit
support

Menu(), GetEvent,
PeekEvent

v

API messages SendMessage,
PostMessage, MakeWParam

v

Information GetDevCaps, SysMetric v
Mouse MousePointer,

DefMouse, HideM, ShowM

v

v

v

Mouse capture ReleaseCapture, SetCapture v
Mouse Input Mouse, MouseX, MouseY,

MouseK, MouseKB,
MouseSX, MouseSY

v

Keyboard Input KeyGet, InKey, KeyTest v
Input dialog
boxes

Prompt, InputBox v

Message boxes Message, MsgBox,
MsgBox0, Alert, AlertBox

v

Context popup
menu

Popup v

Atom API _Atom$, Add, Atom Find,
Atom Delete

v

See Also

Graphical Keywords

Miscellaneous Keywords

OCX/OLE Keywords

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Functions, Procedures and
Subs
Purpose

Blocks of code to which paramters or arguments can be
passed and which perform one or more specific tasks; in the
case of Functions, the result of any calculations can then be
returned to the code that called it.

Evaluates an arithmetic expression which is repeatedly used
throughout the program, whereby the result of the
expression changes depending on the variables passed to it.

Syntax

Function[Var] name [(arglist)] [As type] [Naked]
[statements]
[Exit Func[tion] [If]]
[statements]
[name = expression | Return expression]
EndFunc[tion]

Proc[edure] name [(arglist)] [Naked]
[statements]
[Exit Proc[edure] [If]]
[statements]
EndProc[edure]

Sub name [(arglist)] [Naked]
[statements]
[Exit Sub [If]]

[statements]
EndSub

Description

Born of Procedural or structured programming introduced
with the C language, these three types of subroutines are
designed to perform specific tasks independent of other
subroutines as well as clones of themselves.

Although the structure of all subroutines is similar, each has
a specific purpose.

Procedures: A Procedure, or general procedure, is a
structure which tells the application how to perform a
specific task and these form the main building blocks of
the computational part of the program. Once a general
procedure is defined, it must be specifically invoked by
the application.
Subs: A Sub, though similar to a Procedure, is designed
to be an event procedure. This type of code usually has
fixed parameters or arguments and, once defined, lies
dormant until called upon to respond to events caused
by the user or triggered by the system.
Subs can also be used for porting VB sub routines and
for this reason the default variable type of parameters is
Variant; it is also possible to use Subs in a similar way
to Procedures, although care should be taken due to the
different default method of passing parameters (see
below).
Functions: Functions are considered by some to be the
most important components of structured
programming. They enable repeated evaluation of both
arithmetic and string expressions and, unlike
Procedures and Subs, Functions return the result of this
evaluation, can be incorporated into expressions and

are the only type of subroutine that can sit on the right
hand side of an operator (e.g. =, >=, !=, etc.).
GFA-BASIC 32 supports two kind of functions: the GFA-
BASIC 16, C/C++ compatible Function which takes
parameters by value with default type Double, and
FunctionVar, which is VB compatible, and, by default,
passes parameters of type Variant implicitly ByRef (see
below); both return a Variant unless otherwise
specified.

The body of a subroutine is composed of the declaration
(Function, FunctionVar, Procedure or Sub) with a name
and parameter list, definition of local variables (Local...),
the subroutine statements (with a return value for
Functions) and a corresponding end marker (EndFunction,
EndProcedure or EndSub).

name Required. Name of the subroutine. This
follows standard variable naming
conventions.

arglist
statements

Optional. List of variables representing
arguments that are passed to the subroutine
when it is called. Unless otherwise specified,
parameters passed to Function and
Procedure are Double and those passed to
FunctionVar and Sub are Variant. Multiple
variables are separated by commas and are
entered in the following format:

ByRef varname[()] [As Type]

Indicates that an argument is passed by
reference. This means that the pointer to
the argument is passed rather than the
value, so that any changes made to the

argument inside the subroutine also
affect the parent variable or array.
All variable types and arrays can be
passed ByRef, although to should be
noted that Hash Tables are passed as a
constant rather than a variable and can
not be altered within the subroutine.
Variables passed as arguments MUST
match the argument variable type,
otherwise an error is raised.

ByVal varname [As Type]

Indicates that an argument is passed by
value. This means that only the value of
the argument is passed rather than the
pointer, so that any changes made to the
argument inside the subroutine do not
affect the parent variable (see below
regarding arrays).
All variable types can be passed ByVal,
but not Arrays, User Defined Types and
Hash Tables; if you try and pass an array
ByVal, GFABASIC-32 will send it ByRef
instead; if you try and pass UDTs or
Hash Tables, an error will be raised.
Variables passed ByVal do not have to
match the argument type as GFABASIC-
32 will attempt to convert them;
however, if a conversion is not possible
(e.g. a String passed to a parameter of
type Double), an error will be raised.
In GFABASIC-32, this is the default state
for Function and Procedure and thus
the ByVal can be omitted.

Optional varname [As Type][=
defaultvalue]

Indicates that an argument is not
required and can be omitted without
raising an error. If no value is passed,
then the argument assumes the value of
defaultvalue if specified or, if not, zero
for all numeric variables, Missing for
Strings (see Known Issues) and Variants
and Nothing for an Object; the only valid
defaultvalue for an Object is Nothing.
All parameters passed using the
Optional keyword are considered to be
passed ByVal, even in subroutines
where parameters are ByRef by default.
All 'non-complex' variable types
(numeric, string, Variant and Object) can
be passed, but not User Defined Types,
Hash Tables nor Arrays of any type as
these can only be passed ByRef in
GFABASIC-32.

ParamArray varname()

An extenstion of the Optional keyword,
ParamArray allows the entry of an
arbitrary number of optional parameters
of any type that can be stored in as a
Variant.
ParamArray is an extremely flexible
device and effectively allows you to
customise the list of arguments to suit

different situations the subroutine may
be called upon to handle.
Due to the fact that there is no way of
limiting how many parameters
ParamArray is to pass, it should always
be the last argument listed.
All parameters passed using this method
are considered to be passed ByVal, even
in subroutines where parameters are
ByRef by default.
The array passed is technically an array
of Variant types, the length of which is
determined by the number of parameters
entered, and functions such as UBound,
LBound and Dim? can be used to
determine its size; however, it is an OLE,
not a GFABASIC-32, Array and can not
be passed to another subroutine in its
native form, only as an array in a variant
as shown below:

test(1, 2, 3, 4)

Proc test(ParamArray p())
Print "Dim?(p()) ="; Dim?(p())
Local a As Variant : a = p :
Print "a(1) ="; a(1)

Print "Dim?(a) ="; UBound(a) + 1
// Dim? does not always work
with Arrays in Variants

test2(a)
EndProc

Proc test2(ParamArray p())
Print : Print "Dim?(p()) ="; Dim?
(p())

Print "p(0)(1) = "; p(0)(1)
EndProc

Also worth noting is that the array
ignores the value of Option Base and has
a lower boundary of 0 (zero).
Note: There are two 'Known Issues' with
ParamArray:
1. Trying to pass a value from a

numeric array fails and the value is
passed as an Empty value instead;
furthermore, all subsequent
parameters are also passed as
Empty. To get around this bug, pass
any array values wrapped in an
explicit OLE conversion function like
CLong(), CDbl(), etc.

2. There is an occasional compiler error
(it happens sometimes but not
always) if handles or non-integers
are passed into the ParamArray
array; if you get strange compiler
errors, try changing all parameters
to integers or wrapping them in an
explicit OLE conversion function
(CLong(), CDbl(), etc.) and this
could well solve the problem.

statements Optional. Any group of statements to be
executed within the subroutine.

Naked See here.

[Function and FunctionVar only] There are the two
methods of returning a value from a Function:

name = expression - This method assigns a value to
the function name and any number of assignments can
be made anywhere within the subroutine; the actual
value returned is the last one to be assigned before the
end of the Function is reached.
The variable type of the returned value is determined by
the type assigned to the function itself (in the As Type
expression following the declaration of the Function) or
is Double for Function or Variant for FunctionVar. The
return type can also be determined by adding a postfix
to the end of the Function name (e.g. Func$ will return
a string, Func? a boolean) but keep in mind that
Functions postfix-ed with a $ do not work in LG32
Libraries.
Return expression - This method uses the Return
command along with an expression of the value to
return. Although many Return statements can be
included within the code of a Function, the program will
return a value on the first instance encountered and
terminate the Function.
The variable type of the return value is determined by
the contents of the expression UNLESS the Function has
been declared with a return type (see above), in which
case the return variable type must be at least
compatible with that type.

If no value is returned, the procedure returns a default
value: a numeric function returns 0, a string function
returns a zero-length string (""), a Variant function returns
Empty and an Object returns Nothing.

[FunctionVar and Sub only] The default method for
passing parameters for both these routines is implicitly by
reference, which differs both from GFABASIC-32's default of
ByVal and the explicit method of passing parameters by

reference using ByRef. Basically, passing values implicitly
by reference is a hybrid form used in VB: if the value being
passed is a variable AND the type of that variable matches
the declared type of the parameter, then the variable will be
passed ByRef; otherwise, it will be passed ByVal. (Actually a
copy is passed by reference, but the effect is similar to if it
was passed ByVal. For a more in-depth description of how
this all works, see here.)

It is important to keep this fact in mind when using these
commands as, otherwise, you may find variables you
intended to pass by value taking on changes made inside
the called routine as they are actually being passed by
reference; and, similarly, if you are passing a variable by
reference but GFABASIC-32 does not recognise it as being
exactly the same as that of the parameter, changes made
within the subroutine will not be passed back to calling
routine. Default behaviour can be changed - as with
GFABASIC routines - by using ByRef and ByVal, but it is
Strongly advised to use ByVal and/or ByRef explicitly or
otherwise to stick to Procedure/Function subroutines.

Note that implicit referencing does not work with Arrays,
User-Defined Types and Hash Tables: these are all sent by
reference, the last two needing this to be explicitly stated
by using ByRef, as with normal GFABASIC routines.

To better illustrate how implicit by referencing works, see
the following example:

' FunctionVar 'default' passing matching variable
Local a = "George"
Print hellof(a) // Prints "Hello George"
Print a : Print // Prints "Hello George"
' FunctionVar 'default' passing non-matching
variable

http://gfabasic32.blogspot.co.uk/2018/03/function-and-sub-parameters.html

Local a$ = "George"
Print hellof(a$) // Prints "Hello George"
Print a$: Print // Prints "George"
' FunctionVar 'default' passing literal
Print hellof("George") // Prints "Hello George"
Print
' Sub 'default' passing matching variable
a = "George"
hellos(a) // Prints "Hello George"
Print a : Print // Prints "Hello George"
' Sub 'default' passing non-matching variable
a$ = "George"
hellos(a$) // Prints "Hello George"
Print a$: Print // Prints "George"
' Sub 'default' passing literal
hellos("George") // Prints "Hello George"

FunctionVar hellof(a)
a = "Hello " & a
hellof = a

EndFunc

Sub hellos(a)
a = "Hello " & a
Print a

EndSub

To get a better idea of how this works, change the type of
the parameter in both subroutines to 'As String'.

The Exit... statements cause an immediate exit from a
subroutine and program execution continues with the
statement following that which called the subroutine. Any
number of Exit... statements can appear anywhere in a
subroutine and can be qualified with an optional If

expression which determines whether the exit occurs or
not.

Example

The following example asks you to select different shapes to
draw and counts how many of each type you select; it will,
however, not let you redraw the same shape you have just
drawn.

Global ct%(1 To 4), lastshape%
Local wh% = WinHeight(370), ww% = WinWidth(230)
OpenW Fixed 1, 10, 10, ww%, wh% : Win_1.AutoRedraw
= 1

Ocx Command cmd(1) = "Draw Circle", 10, 10, 100,
25

Ocx Command cmd(2) = "Draw Square", 120, 10, 100,
25

Ocx Command cmd(3) = "Draw Filled Circle", 10, 45,
100, 25

Ocx Command cmd(4) = "Draw Filled Square", 120,
45, 100, 25

DisplayCount(ct%())
Do : Sleep : Until Win_1 Is Nothing

Procedure DisplayCount(ByRef ct%(), Optional
shape%)
// ct%() - A pointer to the 32-bit Integer array
holding the current count stats - this is
incremented 'in-procedure', which updates the
parent array as well

// shape% - The array element to increment
dependent upon which shape was drawn; if not
passed, then it defaults to zero.

If shape% <> 0 Then Inc ct%(shape%)
Text 10, 300, "Circles:" : Text 85, 300, ct%(1)
Text 10, 315, "Squares:" : Text 85, 315, ct%(2)

Text 10, 330, "Filled Circles:" : Text 85, 330,
ct%(3)

Text 10, 345, "Filled Squares:" : Text 85, 345,
ct%(4)

EndProcedure

Procedure DrawShape(shape%, Optional filled? =
True, ParamArray coords())
// shape% - A ByVal Int32 parameter describing
the shape to be drawn

// filled? - An optional ByVal Boolean parameter
(defaults to TRUE (-1) if not passed)
determining whether the shape is filled or not

// coords() - An array of additional optional
parameters holding values for x%, y% and
possibly x1%, y1% and r% depending upon shape%

Local x%, y%, x1%, y1%, r%
x% = coords(0), y% = coords(1) //
Assign x% and y% from the first two values in
coords()

Select shape%
Case 1 // Circle
r% = coords(2) //
Assign r% from coord(2)

If filled? : PCircle x%, y%, r%
Else : Circle x%, y%, r%
EndIf

Case 2 // Square
If Dim?(coords()) = 4 //
If four parameters passed in coords()...
x1% = coords(2), y1% = coords(3) //
...then assign x1% and y1% from the third
and fourth values...

Else //
...else...
x1% = x% + 190 : y1% = y% + 190 //
...assume a width and height of 190 pixels.

EndIf
If filled? : PBox x%, y%, x1%, y1%
Else : Box x%, y%, x1%, y1%
EndIf

EndSelect
EndProcedure

Sub cmd_Click(Index%)
// An 'event procedure' which is activated when
one of the four command buttons is clicked

// Index% - An expected or mandatory parameter
which indicates which of the four command
buttons was clicked.

Exit Sub If Index% = lastshape% //
If selected shape the same as the last one, do
not redraw and count

Color $FFFFFF : DrawShape(2, , 20, 90, 210, 280)
: Color 0

Select Index%
Case 1 : DrawShape(1, False, 115, 185, 95)
Case 2 : DrawShape(2, False, 20, 90)
Case 3 : DrawShape(1, , 115, 185, 95)
Case 4 : DrawShape(2, , 20, 90)
EndSelect
lastshape% = Index
DisplayCount(ct%(), Index%)

EndSub

Function WinHeight(height%) As Int32
// This function assigns the 32-bit integer value
to the function name and returns this value
when the function is complete

WinHeight = height% + Screen.cyFixedFrame +
Screen.cyCaption

EndFunction

Function WinWidth(width%)

// This function uses the Return command to
return a 32-bit integer

Return width% + (Screen.cxFixedFrame * 2)
EndFunction

Remarks

Subrountines can be recursive; that is, they can call
themselves to perform a given task. However, recursion can
lead to stack overflow. For similar reasons, the Static
keyword usually isn't used with recursive subroutines.

Always use FunctionVar for VB functions. Once the
function works correctly, it is advisable to change it in a
normal Function and change the default types as
FunctionVar is time consuming due to the use of Variants.

Known Issues

Errors can occur when the function name is used as the
return value, as shown in the example below:

' Courtesy of 'Code Lab'
Type vector
x As Double
y As Double

EndType
Dim a As vector, b As vector, c As vector, d As
vector

Print "a:", a.x, a.y
c = tovector(a, 1) : Print "c:", c.x, c.y
Print "b:", b.x, b.y
d = tovector(b, 0) : Print "d:", d.x, d.y
Print "d.x shouldn't have this value"

Function tovector(ByRef v As vector, which) As
vector

If which = 1
tovector.x = 10

Else
tovector.y = 5

EndIf
EndFunction

To work around this problem, use a locally defined variable
as the return value instead as in the example below:

' Courtesy of Thomas Müller-Wirts
Type vector
x As Double
y As Double

EndType
Dim a As vector, b As vector, c As vector, d As
vector

Print "a:", a.x, a.y
c = tovector(a, 1) : Print "c:", c.x, c.y
Print "b:", b.x, b.y
d = tovector(b, 0) : Print "d:", d.x, d.y
Print "d.x is now zero as it should be"

Function tovector(ByRef v As vector, which) As
vector
Local vr As vector
If which = 1
vr.x = 10

Else
vr.y = 5

EndIf
Return vr

EndFunction

There is an obscure error involving a Boolean passed to
Variant parameters from procedures containing a
Gosub...Return construct. See here for more details.

With most Optional Parameters, if a value is not sent
then a temporary variable is created within the receiving
subroutine which can then be referenced and changed as
required; this, however, is not the case when the optional
parameter is a String: in that instance, only a Null pointer
is sent so any attempts to reference or change the variable
- barring checking its status with IsMissing - returns an
Access Error as shown by the example below:

Print Test(3)

Function Test(a, Optional s$)
If IsMissing(s$)
s$ = "No value" // Access Error on this line

EndIf
Return s$

EndFunction

The best way to get round this oddity is either by judicious
use of the IsMissing function as below...

Print Test(3)
Print Test(3, "A Value")

Function Test(a, Optional s$)
If IsMissing(s$) Return "No Value"
Return s$

EndFunction

or creating a temporary string within the subroutine and
using it as follows:

Print Test(3)
Print Test(3, "A Value")

Function Test(a, Optional s$)
Local sv$ = Iif(IsMissing(s$), "No Value", s$)

Return sv$
EndFunction

This last example also demonstrates how to get round the
inability to set a default value to an Optional String
parameter.
[Reported by James Gaite, 05/08/2019]

{Created by Sjouke Hamstra; Last updated: 05/08/2019 by James Gaite}

GoSub Command
Purpose

Branches to and returns from a subroutine within
procedure.

Syntax

GoSub label
...
label:
...
Return

Description

You can use GoSub and Return anywhere in a procedure,
but GoSub and the corresponding Return statement must
be in the same procedure. A subroutine can contain more
than one Return statement, but the first Return statement
encountered causes the flow of execution to branch back to
the statement immediately following the most recently
executed GoSub statement.

You can't enter or exit Sub procedures with
GoSub...Return.

Example

OpenW 1
test_mark // call Procedure
Do : Sleep : Until Me Is Nothing
CloseW # 1

Procedure test_mark
Text 50, 20, "Hallo"
GoSub mar1
GoSub mar2
GoSub mar3
Text 250, 50, "GmbH"

Return
mar1:
Text 50, 50, "GFA"

Return
mar2:
Text 80, 50, "Software"

Return
mar3:
Text 160, 50, "Technologies"

EndProc

Known Error

There is an obscure error involving a Boolean passed to
Variant parameters from procedures containing a
Gosub...Return construct. See here for more details.

Remarks

A label might consist of a number (10) or start with
alphanumeric character followed by more characters and
ended with a semi-colon (p2:).

The label has function scope and cannot be redeclared
within the function. However, the same name can be used
as a label in different functions.

See Also

On Gosub, Goto

{Created by Sjouke Hamstra; Last updated: 11/03/2018 by James Gaite}

ReDim Command
Purpose

Reallocates storage space for a dynamic array.

Syntax

ReDim varname(subscripts) [As type] [,
varname(subscripts) [As type]] . . .

varname : variable name
subscripts : dimensions of an array

Description

The ReDim statement is used to size or resize a dynamic
array that has already been formally declared using a
Global, Public, Local or Dim statement with or without
empty parentheses (without dimension subscripts).

You can use the ReDim statement repeatedly to change the
number of elements and dimensions in an array. However,
you can not declare an array of one data type and later use
ReDim to change the array to another data type.

ReDim does not clear the elements from the array, so data
will remain in the elements that exist before and after
redim-ing. To explicitly erase all elements use Erase before
redim-ing, then no old data will be passed to the new
redim-ed array.

Example

Dim MyArray() As Integer ' Declare dynamic
array.

ReDim MyArray(5) ' Allocate 5 elements.
Local a() As String
ReDim a(10 To 50)
Erase a() : ReDim a(10 .. 50)
ReDim a(10 ... 50, -1 To 9)

Remarks

Dim a() As Int : ReDim a(count) requires an additional 72
bytes of (stack) memory compared to Dim a(count).

GFA-BASIC 32 doesn't provide the Preserve keyword,
because the data of the array isn't erased.

An array in a Variant cannot be redimmed:

Dim v = Array(1, 2, "Hello") : ReDim v(5) // not
possible

Known Issues

An array, when first dimensioned, and unless otherwise
stated, takes its lower boundary (or LBound) from the
value of Option Base; however, when that array is
ReDim'ed, both the existing LBound value and the value of
Option Base are ignored and the lower boundary is set to
zero, unless explicitly set otherwise within the ReDim
statement. This is shown in the example below:

Option Base 1
Dim a%(10), b$(1 To 10), c&(-4 To 100)
Print LBound(a%()), LBound(b$()), LBound(c&()) //
Prints 1 1 -4

ReDim a%(10), b$(10), c&(100)

Print LBound(a%()), LBound(b$()), LBound(c&()) //
Prints 0 0 0

This can cause some odd effects, such as when sorting the
array in question. To get around this bug, if an array was
dimensioned with a lower boundary other than zero
(through Option Base or otherwise), then, when redim'ing,
explicitly specify the lower boundary in the ReDim
statement like this:

ReDim a%(1 To 10), b$(1 To 10), c&(-4 To 100)
Print LBound(a%()), LBound(b$()), LBound(c&()) //
Prints 1 1 -4

See Also

Dim, Dim?, Erase

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

Iif Function and ?: Operator
Returns one of two parts, depending on the evaluation of a
condition.

Syntax

result = Iif(condition, truepart, falsepart)

result = (condition ? truepart : falsepart)

condition : boolean expression
truepart : Value or expression returned if condition is

True.
falsepart : Value or expression returned if condition is

False.

Description

The Iif function and ?: operator are synonymous and can
be used as a shortcut for an If...Else statement. It is
typically used as part of a larger expression where an
If...Else statement would be awkward; however, both
constructs have limitations (see Known Issues below). .

Example

Local greeting$ = "Good" + Iif(Hour(Now) > 17, "
evening.", " day.")

Print greeting$

Or using the ?: operator:

Local greeting$ = "Good" + (Hour(Now) > 17 ? "
evening." : " day.")

Print greeting$

Both examples create a string containing "Good evening." if
it is after 6pm. The equivalent code using an If...Else
statement would look as follows:

Local greeting$ = "Good"
If Hour(Now) > 17
greeting += " evening."

Else
greeting += " day."

EndIf
Print greeting$

Known Issues

Using user-defined functions in the truepart and falsepart
elements of this expression can sometime return an
EdCodeGen error; use the If...Else construct if this occurs.
[Reported by James Gaite, 03/02/2015]

Alternatively, you could create a masking function to get
around the problem like so:

Function IifX(cond?, v1 As Variant, v2 As
Variant)
Return Iif(cond?, v1, v2)

EndFunction

See Also

If…Else

{Created by Sjouke Hamstra; Last updated: 18/10/2017 by James Gaite}

Choose Function
Purpose

Selects and returns a value from a list of arguments.

Syntax

Choose(index, choice-1[, choice-2, ... [, choice-n]])

Description

Choose returns a value from the list of choices based on
the value of index. If index is 1, Choose returns the first
choice in the list; if index is 2, it returns the second choice,
and so on.

You can use Choose to look up a value in a list of
possibilities. For example, if index evaluates to 3 and
choice-1 = "one", choice-2 = "two", and choice-3 = "three",
Choose returns "three". This capability is particularly useful
if index represents the value in an option group.

Choose evaluates only the choice of the given index!

The Choose function returns a Null if index is less than 1 or
greater than the number of choices listed.

If index is not a whole number, it is rounded to the nearest
whole number before being evaluated.

Example

Local Byte ch, n

For n = 1 To 3
Print "When ch = "; n; ", "; Choose(n, "First",
"Second", "Third"); " will be printed."

Next n

Remarks

The VB function Choose evaluates every choice, GFA-BASIC
32 only the specified one.

See Also

Iif

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Date Function
Purpose

Returns the system date as a Date type.

Syntax

d = Date

d: Date expression

Description

Example

Dim MyDate As Date

MyDate = Date ' MyDate contains the current system date.

Remarks

A comparison operation with Date is possible only when
both sides are of data type Date. When necessary cast the
left- or right side using a CDate.

Local datum$ = Format(Date, "dd/mm/yyyy")
Local datum% = CDate(datum$)
Debug.Show
Trace datum$
Trace datum%
Trace Date
Trace Date$(datum%)
Trace Date = datum%

Trace Date = CDate(datum%)
Trace Date = CDate(datum$)

See Also

Now, Time

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Pointer Keyword
Purpose

Pointer is a data type to declare variables as pointers.

Syntax

Dim p As [Register] Pointer [To] type

Pointer p = addr%

addr% = Pointer(p)

p:pointer variable
type:any data type
addr%:memory address

Description

The Pointer command and the Pointer() function apply to
a variable of the Pointer [To] data type. A pointer variable
can be declared for any type. The pointer variable then
behaves as a variable of that type, but not before the
pointer variable is assigned an address. Remember that
each variable denotes a memory address of a specific size.
An Integer variable holds the address of a 4 byte of
memory block to store a value. In the same way, a pointer
variable must be assigned a piece of memory to store the
data type's value. The assignment of an address is done
with the command Pointer p = addr%. The reverse, to get
the address of memory pointer p points to, is done using
the function addr% = Pointer(p).

In the next example a pointer to a Double data type is
declared and assigned a memory location of 8 bytes in size.
After the pointer assignment, the variable behaves like a
Double. To check it, the variable is assigned the value 3.14,
and then the memory location is peeked.

Dim addr% = mAlloc(8)
Local pdbl As Pointer Double
Pointer pdbl = addr%
pdbl = 3.14
Print DblPeek(addr%) // Prints 3.14
~mFree(addr%)

Pointers are more interesting used with user-defined types.
In particularly, pointers are inevitable with API functions
and messages that hand over pointers to structures (Type).
For example, the WM_NOTIFY message used with
notification messages from common controls specifies a
pointer to the NMHDR type in the lParam parameter of the
message. To get access to the type elements the address
must be assigned to a variable of Pointer To NMHDR. The
Example 1 shows how this is done.

Another use for pointers is for linked lists. A double linked
list might use the following user-defined type:

Type LLIST
pNext As Pointer To LLIST
pPrev As Pointer To LLIST
value As Int

EndType
Global MyList As LLIST
Global pList As Pointer To LLIST
Pointer(pList) = V:MyList

The pNext and pPrev elements should be assigned memory
addresses using Pointer pNext =.

Pointer(pList.pNext) = mAlloc(SizeOf(LLIST))
Pointer(pList.pPrev) = Pointer(pList)
Pointer(pList) = Pointer(pList.pNext)
pList.value = 2

Pointer arithmetic differs from C/C++, where the size of the
type of the pointer is automatically included. In GFA-BASIC
32 incrementing a pointer involves adding the size of the
type explicitly.

Pointer(p) = Pointer(p) + SizeOf(p) * 1

Example

Example 1

Sub frm_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Dim hdr As Pointer NMHDR
Switch Mess
Case WM_NOTIFY
Pointer(hdr) = lParam
Print hdr.idfrom

EndSwitch
EndSub
Type NMHDR
hwndFrom As Long
idfrom As Long
code As Long

EndType

Example 2

Debug.Show
Local a$ = "12345", x%
Local aa As Pointer To Int

' Assign a memory location to the Integer:
Pointer aa = V:a$
Trace Pointer(aa)
Trace V:a$
Trace V:aa
'************
Trace aa
'************
Trace a$
' Change the contents of a$
aa = $41424344
Trace a$
' Add one to the pointer
Pointer aa = Pointer(aa) + 1
' change the contents from the second position
aa = $41424344
Trace a$

Remarks

In GFA-BASIC 32 a user-defined variable may have the
same name as the Type name. In VB or C/C++ this not
allowed.

Note GFA-BASIC 32 provides s a double linked list with the
Hash data type.

See Also

Hash

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Hash Table
Purpose

Provides a hash table, which maps string keys to values.

Syntax

Dim ht As Hash Type

ht : varname
Type : simple type

Description

A Hash is a one dimensioned 'array' and its index is a
string. A Hash table has no size, just a number of elements.
For Example, with Dim ht As Hash Int declares a dynamic
table (array) ht of type Int, which has initially no elements.

Type specifies the data type of the values to be stored in
the hash table. Type may be Byte, Boolean, Card, Short,
Word, Integer, Long, Large, Currency, Single, Double,
Date, String (variable-length strings only) and Variant.

A hash table supports the creation, storage, and retrieval of
key/value pairs in memory. The hash table maps string keys
to values; the index for hash tables is a string. When the
type of the hash table is String, the hash table acts as a
dictionary (string/string pair).

After declaring a hash, you can add elements of appropriate
type to it, in one of two ways:

Hash Add ht["key"], value
ht["key"] = value

A Hash uses brackets to access an element. To access an
element stored in a hash table, you simply specify the key.

value = ht["key"]

To obtain the number of elements of the hash table you use
% as the key:

number_of_elements = ht[%]

To inquire if an element exists in the table prefix the key
with a question mark:

If Not ht[? "key"] Then Hash Add ht["key"], value

A key cannot be duplicated, all keys must be unique. When
you add a value with an already existing key, the value isn't
added and an error is generated.

Internally, the Hash is implemented as a double linked list.
Each element has its own position (index) in the list.
Therefore, a hash table can be accessed as if it were an
array using a number as the index starting at 1. To mark a
key as numeric value, rather than a string, precede the
numeric value with %.

value = ht[% 1]

In the same way you can iterate over a hash table using
For Next:

For i = 1 To ht[%]
Print ht[% i]

Next

Another way to iterate over a hash table is by using For
Each element In hashvar.

Dim e As Int // same type as Hash <type>
For Each e In ht
Print "Element = "; e; " at position "; Each; "
and Key = "; ht[$ Each]

Next

The variable e receives the value from that position and
must be of the same type as the type of the Hash. Each
returns the current position (index) in the hash table.

A hash table can also store values without a key. The Hash
is reduced to a double linked list, what it basically is. The
only way to add key-less elements to the list is by using
Hash Add. An advantage of Hash Add is that it gives
control on the position of the elements.

Hash Add ht[], value

Hash Add ht[] Before idx, value

Hash Add ht[] After idx, value

To iterate over the list you can use For Next or For Each.
The list variant of the hash table is used in quite some GFA-
BASIC 32 commands like Split, Join, Eval, reSub,
reMatch.

To remove an element use Hash Remove ht["key" | %
index]

A hash table can be sorted by its keys, saved, loaded, and
erased. The following commands are available:

Hash Deletes the entire hash table.

Erase
Hash
Sort

Sort the hash table by its keys using the
Mode Compare setting.

Hash
Write

Save a hash table as an ASCII file.

Hash
Input

Load a hash table from an ASCII file.

Hash
Save

Save a hash table in binary format.

Hash
Load

Load a hash table in binary format.

Other operations on a hash table are performed using the
subscription notation [].

Subscript Meaning
[%] returns the number of elements
[% i] accesses the element by index i (position)
[k$] accesses the element by key k$ (string)
[$ i] returns the key for the given index i.
[? k$] returns a Boolean indicating whether the key

k$ exists.
[?% i] returns a Boolean indicating whether the

index i exists.
[# k$] returns the index for the key k$.
[$$ k$] returns the correct key string (upper and

lower) for key k$.

Example

Example 1

Dim a As Hash String, e As String
Hash Add a[], "a"

Hash Add a[], "b"
Hash Add a[], "c"
Hash Add a[], "d"
a[% a[%]] = "e" // replace last element
a[% 1] = "1" // replace first element
a["Key"] = "f" // add element
Print a[$$ "key"] // prints Key
For Each e In a[] // iterate over table
Print "(Pos)" & Each, " (element) " & e

Next

Example 2

Dim ha As Hash Int
// The value 27 will be assigned to element 1 with
the key "a" and the index 1

ha["a"] = 27
// The value 29 will be assigned to element 2 with
the key "xyz" and the index 2

ha["xyz"] = 29
// Output of element with index number 1:
Trace ha[% 1] // Prints 27
// Output by using the key "a":
Trace ha["a"] // Prints 27
// Output of element with index number 2:
Trace ha[% 2] // Prints 29
// Output by using the key "xyz":
Trace ha["xyz"] // Prints 29
// To get the key for the second element:
Trace ha[$ 2] // Prints xyz
// The only way to add a value without using a key
Hash Add ha[], 100
// Call Proc dst to iterate through the Hash Table
dst(ha[])
// Check is key "a" exists:
Trace ha[? "a"] // Prints True
// Check the correct formatting of key "a":

Trace ha[$$ "A"] // Prints a
// Check to see if 3 is a valid index or not:
Trace ha[? % 3] // Prints True
// To get the index which corresponds to key "xyz"
Trace ha[# "xyz"] // Prints 2
// Request the number of elements in the Hash ha[]
Trace ha[%] // Prints 3
Debug.Show

Procedure dst(ByRef h As Hash Int)
// Remember h is read-only
Local i%, j%
For Each i% In h[]
Debug.Print i%, Each, h[$ Each]

Next
EndProc

Remarks

A Hash is passed ByRef to subroutines. Unfortunately, the
argument is a const variable, so that the Hash is read-only
and can't be modified.

Known Issues

Although the initial documentation says that it is possible to
create a Hash Table full of Objects, this does not seem to
be the case as there seems to be no way to assign the
objects to the table. If the code below is run, a Syntax Error
is thrown.

Dim a As Hash Object
Dim b As Object
Hash Add a["key"], b
[Reported by James Gaite, 15/02/2017]

In addition, although syntactically it is possible to add a
Hash Table as a property of a User-defined Type, there is no
means of accessing it and, as UDTs in GFABasic are static,
there is no room for the Hash to expand to accept new
values.
[Reported by Garibaldi, 16/11/2016]

See Also

Hash Add, Hash Erase, Hash Input, Hash Load, Hash
Remove, Hash Save, Hash Sort, Hash Write

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

Split Command
Purpose

Splits a string into a Hash String (array of strings) by
separating the string into substrings using regular
expressions.

Syntax

Split hs[] = sexp, pattern [, max]

hs[]:Hash String
sexp, pattern:sexp
max:iexp

Description

Split returns the substrings of sexp in a Hash String, a list
of strings. The Hash can be iterated over using For Each or
a simple For Next. pattern is the string used to identify
substring limits using a regular expression. The optional
argument max specifies the maximum number of substrings
to return. Although pattern can be a complex regular
expression, it can also be a simple string that defines where
the splits take place. For instance, the following example
splits a string at a space character:

Dim hs As Hash String, s As String
Split hs[] = "This is a test", " "
For Each s In hs[]
Debug Each ` s

Next
Debug.Show

This prints in the Output window:

1 This
2 is
3 a
4 test

Now, if the string contained a double space before the word
test, there would be five elements found of which the fourth
is an empty string.

Dim hs As Hash String
Split hs[] = "This is a test", " "
Debug hs[%]' prints 5
Debug.Show

Often, this is not wanted. In that case regular expressions
solve the problem elegantly. The pattern argument can be
changed to a group of spaces: "[]+". See reMatch for an
overview of the patterns.

Split hs[] = "This is a test", "[]+"

Example

Local h As Hash String, s As String
Split h[] =
"name,surname;street,12,"#9",Cologne,,Fax: 0111-
1234567 ", "\s*[,;]\s*"

For Each s In h[]
Debug Each`s

Next
Debug.Show

// this command splits the string into

h[% 1] = "name"
h[% 2] = "surname"
h[% 3] = "street"
h[% 4] = "12"
h[% 5] = ""
h[% 6] = "Cologne"
h[% 7] = ""
h[% 8] = "Fax: 0111-1234567"

The example shows a summary of personal information in a
string separated by spaces, commas, tabs, and other white
spaces. The search pattern is defined as: any number of
spaces and/or tabs, then a comma or a semicolon, then
again optional spaces or tabs. The string is separated with
empty strings for missing details (commas, succeeding one
another, with or without spaces or tabs between).

Remarks

The VB function ar$() = Split(sexp[, delimiter[, max[,
compare]]]) is easily converted to GFA-BASIC 32. Rather
than a string array, GFA-BASIC 32 uses a Hash String.

VB Split Function GFA-BASIC 32 Split
Command

Dim ar() As String
Dim sexp As String
Dim delim$ = " "
ar = Split(sexp, delim, ,0)
For i = 0 to UBound(ar())
Print ar(i)
Next

Dim hs As Hash String
Dim sexp As String
Dim delim$ = " "
Dim Cmp = Mode(Compare)
Mode Compare 0
Split hs[] = sexp, delim
Mode Compare Cmp
For i = 1 To hs[%]
Print hs[% i]
Next

The delimiter argument may contain only one character in
VB. The compare mode indicates the kind of comparison to
use when evaluating substrings. In GFA-BASIC 32 use the
Mode Compare before executing the Split command. After
executing the Mode Compare should be restored.

See Also

Join, reMatch, reSub, preMatch, Hash

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Join Command
Purpose

Returns a string created by joining a number of substrings
contained in a hash (array).

Syntax

Join strvar = hashvar[], delimiter

Description

With Join all elements of a Hash String are joined
together, separated with delimiter.

Delimiter is the string (character) used to separate the
substrings in the returned string. If delimiter is a zero-
length string, all items in the list are concatenated with no
delimiters.

Example

Dim h As Hash String
Dim s$ = "name,vor,str,12,,Köln,,Fax:0111-123467"
Split h[] = s$, ","
Clr s$
Join s$ = h[], ","
Print s$

This is the same as

Dim h As Hash String
Dim s$ = "name,vor,str,12,,Köln,,Fax:0111-123467"

Split h[] = s$, ","
Clr s$
Dim i%
s$ = ""
For i% = 1 To h[%]
s$ = s$ + h[% i]
If i != h[%] s$ = s$ + ","

Next
Print s$

See Also

Split, Hash

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Eval Function
Purpose

Evaluates an expression at runtime.

Syntax

= Eval(exp)

= Eval(exp, hash[])

= Eval(exp, [hash[]] , function)

exp: sexp
hash: Hash
function:Function

Description

Evaluates a formula or expression that is in the form of text
and returns the result as a Double.

Print Eval("1+2*3")
Print Eval("1.045 ^ 20")

Eval knows the basic mathematical rules. The function Eval
is performed by a small internal compiler. Eval accepts the
following numbers, operators, and functions:

numbers like with Val, also #date# or Hex with
$x or binary with %x.

brackets ()
addition +

subtraction -
multiplication *
division /
Modulo Mod
Integer division Div
leading sign -
leading sign +
raise to a higher
power

^

raise to a higher
power

**

Pi 3.1415..
goniometric
functions

Sin(x), Cos(x), Tan(x)

logarithm Log(x), Exp(x)
binary And And
binary Or Or
binary exclusive
Or

Xor

Extreme values Min(x, y), Max(x, y)
Diverse Int(x), Trunc(x), Frac(x), Fix(x)

Floor(x), Ceil(x), Abs(x), Sgn(x) Rnd,
Rnd(x), Random(x), Rnd(x) is exact like
Random(x), Sqr(x), Not, Fact(n),
Combin(n, k), Permut(n, k), Exp2(x),
Exp10(x), Log2(x) == Lb(x), Log10(x)
== Lg(x) Log(x) == Ln(x)

Comparison* < <= =< != <> >< = == >= => >
Not* !

* The return value of a comparison, and of the ! - operator,
are the floating point numbers -1.0 or 0.0.

Strings passed to the Eval function must be correctly
formatted, otherwise they will throw an error (see Known
Issue).

= Eval(exp, hash[])

The second form accepts a Hash Double which holds
variable values. The key of a Hash element is the variable
name and the Double a value. The Hash will be evaluated
before anything else, this excludes the usage of h["pi"],
h["Sin"] or h["Mod"] keys.

= Eval(exp, [hash[]], function)

The third form accepts, optionally, a Hash Double holding
variable values and a function name. The function is
executed for the string expression exp and the entire string
expression exp will be passed as the first argument,
followed by the number of parameters in exp, followed by
the parameters itself in a one dimensional array of type
double.

Function func(x$, n%, f#()) As Double

For example, suppose

Print Eval("new(1.3, 3*9)", , EvalFunc)

The Eval function executes EvalFunc passing "new" in x$, 2
in n%, and the arguments of new() in f(1) = 1.3, f(2) = 27.
The EvalFunc could look like this:

Function EvalFunc(x$, n%, f#()) As Double
Select Lower(x)
Case "new"
If n% = 2 Then Return Mul(f(1), f(1))

Err.Raise 1001, "EvalFunc", "New(x, y) expects
2 parameters, not " & n

EndSelect
Err.Raise 1000, "EvalFunc", " extension " & x$ &
" unknown."

EndFunc

The maximum number of parameters for a user-defined
function is 5. The parameter array is a 'global' array with a
dimension of (1..10).

Example

The use of a Hash

OpenW 1
Local h As Hash Double, x%
h["a"] = 123
h["rent"] = 1.075
Print Eval("a / 7", h[])
Print Eval("10000*rent^30", h[])

Remarks

The performance of the Eval function depends on the
parsing of the expression string and can hardly be
compared by normal calculations. The following example
shows the difference.

OpenW 1 : Win_1.FontName = "Courier New"
Local t#(3), d#, a#, b#, c#, i%
t(1) = Timer
For i = 1 To 100000
d = Eval("1*2+3")

Next
t(1) = Timer - t(1)
t(2) = Timer

a = 1 : b = 2 : c = 3
For i = 1 To 100000
d = a * b + c

Next
t(2) = Timer - t(2)
t(3) = Timer
For i = 1 To 100000
d = Val("1") * Val("2") + Val("3")

Next
t(3) = Timer - t(3)
Print "Time for Eval: "; t(1); Tab(45); " ~";
Int((t(1) / t(2)) + 0.5); "times slower than
variables"

Print "Time for Variables: "; t(2)
Print "Time for Val(): "; t(3); Tab(45); " ~";
Int((t(3) / t(2)) + 0.5); "times slower than
variables & ~"; Int((t(1) / t(3)) + 0.5); "times
faster than Eval"

Do
Sleep

Loop Until Me Is Nothing

The version with Eval is three times slower as the one with
Val, and 200 times slower as the version with the variables.

Known Issue

If a string passed to Eval contains an invalid symbol (such
as starting with an equals sign (=)), this will cause the
program to stop BUT an error will not necessarily be thrown
(sometimes an Invalid Parameter error appears, sometimes
not).

See Also

Val

{Created by Sjouke Hamstra; Last updated: 17/10/2017 by James Gaite}

reMatch Function
Purpose

Searches a string expression or string array for occurrence
of a substring using regular expressions.

Syntax

n = reMatch(sexp, pattern [, hash[] | address%])

n = reMatch(array$(), pattern ,from ,to [, hash[]])

sexp, pattern:string expression
address, from, to:iexp
hash[]:Hash String or Hash Int
array():string array
n:iexp

Description

In the simplest form reMatch searches a substring in a
string like InStr(). The return value gives the position of
the substring pattern within the string sexp. n = 0 when the
substring isn't found. However, using regular expression
patterns reMatch is capable of locating much more. For
instance, an A followed by a b or d, then an e, and maybe a
r. Next a point, comma, or a space, or an end-of-line.

"A[bd]er?([.,]|$)"

Special characters and sequences are used in writing
patterns for regular expressions. The following table

describes these characters and includes short examples
showing how the characters are used.

Character Description
\ Marks the next character as special. \. a

point; \\ a backslash; * star; \+ plus; \[; \];
\(; \); \^; \$. Any character that has a
special meaning for a pattern.

^ Matches the beginning of input or line.
$ Matches the end of input or line.
* Matches the preceding character zero or

more times. "zo*" matches either "z" or
"zoo."

+ Matches the preceding character one or more
times. "zo+" matches "zoo" but not "z."

? Matches the preceding character zero or one
time. "a?ve?" matches the "ve" in "never."

. Matches any single character except a
newline character.

(pattern) A group. To match parentheses characters (
), use "\(" or "\)".

x|y Matches either x or y. "z|food?" matches
"zoo" or "food."

[xyz] A character set. Matches any one of the
enclosed characters. "[abc]" matches the "a"
in "plain." The special characters (,), *, ., $
and ^ have no special meaning inside a set.

[^xyz] A negative character set. Matches any
character not enclosed. "[^abc]" matches the
"p" in "plain."

\A Matches the beginning of input or line, same
as ^.

\Z Matches the end of input or line, same as $

\e Matches a an escape character (Esc)
\cX Matches a control character \cA (control-A)
\d Matches a digit character. Equivalent to [0-

9].
\D Matches a nondigit character. Equivalent to

[^0-9].
\f Matches a form-feed character.
\n Matches a linefeed character.
\r Matches a carriage return character.
\s Matches any white space including space,

tab, form-feed, and so on. Equivalent to
[\f\n\r\t\v]

\S Matches any nonwhite space character.
Equivalent to [^ \f\n\r\t\v]

\t Matches a tab character.
\v Matches a vertical tab character.
\w Matches any word character including

underscore. Equivalent to [A-Za-z0-9_].
\W Matches any nonword character. Equivalent

to [^A-Za-z0-9_].
\num Matches num, where num is a positive

integer.
\xnn Matches nn, where nn is a hexadecimal

number, like \x1b
\onn Matches nn, where nn is a octal number, like

\0033

Some group examples for pattern:

"[abc]" An a, b, or c
"a|b|c" An a, b, or c
" Not a, b, c, but some other character

[^abc]"
"[A-F0-
9a-f]"

a hexadecimal number (0 to 9, or a word
character A-F, or a-f).

"[-A]" a Minus or an A
"[\dA-
Fa-f]"

another hexadecimal number

Combinations:

\d+a
number

at least one digit

\w+a
word

a sequence of word characters, digits, and _.

.* some character sequence

.+dito with at least one character
^a.*r\.$ A sentence starting with a and ending with r

and a point.
[A-Z][a-
z]*

A normal word starting with an uppercase
character and followed with any number of
lowercase characters.

^\w+\s+
(\w+)\s

The second word of a sentence.

Special sequences:

(?b) Binary sort, A-Z does not enclose Umlaute and
lowercase characters.

(?t) Text sort, [A-B] encloses Ä, and other
apostrophe A's (Á, À, Â, Å ..) , as well as
lowercase characters.

(?bi) Binary sort, ignores case: automatically
enclosure of uppercase and lowercase
characters.

n = reMatch(sexp, pattern, h[])

When h[] is a Hash String the first occurrence of the
search pattern is placed in h[1].

When h[] is a Hash Int the location of the first occurrence
of pattern is placed in h[1] and the length of the found
substring in h[2].

n = reMatch(sexp, pattern, V:i%(0))

When the third parameter is an array of 32-bit integers
(Dim i%(1)), then the start position of the substring is
placed in i%(0) and the length in i%(1).

n = reMatch(array$(), pattern, from, to [, hi[]])

Searches pattern in the string array elements array$(from)
to array$(to). The index of the first array element that
contains the searched pattern is returned.

However, when the Hash Int variable is used as fifth
parameter, the indices of all elements that contain the
pattern are added to the Hash list. This works like VB's
Filter function.

Example

Find a hexadecimal value

Debug.Show
Dim s$ = "zz 2a"
Trace reMatch(s$, "[A-F0-9a-f]+")
Dim hi As Hash Int
Trace reMatch(s$, "[A-F0-9a-f]+", hi[])
Debug.Print "hi[]-Found "; hi[% 1]; hi[% 2],
Mid(s$, hi[% 1], hi[% 2])

Local hs As Hash String
Trace reMatch(s$, "[A-F0-9a-f]+", hs[])

Debug.Print "hs[]-Found", hs[% 1]
Dim ii(1) As Int
Trace reMatch(s$, "[A-F0-9a-f]+", V:ii(0))
Debug.Print "ii()-Found "; ii(0); ii(1), Mid(s$,
ii(0), ii(1))

Locate in an array

Debug.Show
Dim a$() : Array a$() = "zz" #10 "zzz 3a " #10 "c
= 0xaa"

Dim i As Int, hi As Hash Int
Trace reMatch(a$(), "[A-F0-9a-f]+", 0, _maxInt,
hi[])

Debug.Print "a$()-Found at indices:"
For i = 1 To hi[%]
Debug hi[% i]

Next i

Remarks

The syntax of the regular expression patterns is strongly
linked to Perl's re. GFA-BASIC 32 does not support the more
exotic possibilities of Perl, like {n,m}, (?#), and *?. In
contrast with Perl GFA-BASIC 32 allows 8-bits ANSI
characters.

The internal handling of search patterns is simpler as in
Perl, the performance is a little better as well.

The preMatch function converts pattern into an internal
format for faster execution. This allows for more efficient
use of regular expressions in loops

See Also

preMatch, reSub, reStop, Hash

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

reSub Function
Purpose

Replaces a specified substring with another substring in a
string using regular expressions.

Syntax

n = reSub(strvar, pattern, subst [, max])

reSub strvar, pattern, subst [, max]

n = reSub(array$(), pattern, subst, from, to [, hi[] [,
max]])

reSub array$(), pattern, subst, from, to [, hi[] [, max]]

strvar:string variable
pattern, subst:string expression
from, to, max:iexp
hi[]:Hash Int
array$():string array
n:iexp

Description

reSub replaces occurrences of the regular expression
pattern in the string variable strvar or string array array$()
with subst. max specifies the maximum number of
replacements to make. For example, the following
statement replaces all spaces in a string:

reSub a$, " ", ""

If reSub is used as a function, then the return value
indicates the number of replacements made. The number of
spaces replaced in the following example is 3:

a$ = "This is a test"
n% = reSub(a$, " ", "")

The pattern "\s+" searches all spaces, tabs, #13, and #10.

a$ = "abc def ghi"
reSub a$, "\s+", "-" // result: "abc-def-ghi"

Like reMatch, reSub can replace in a one dimensional
string array. The first parameter is a string array, and the
second and third specify the search pattern and
replacement text (like a simple reSub). These parameters
are followed by the smallest and largest array indices to
process. When only these parameters are specified (from,
to), then only the first string at array$(from) is enclosed in
the search and replace. When used as a function, reSub
returns this index. An additional max limits the number of
replacements (bug, which see). The following replacement
affects only sa(0), the to parameter is redundant.

Debug.Show
Dim i As Integer
Dim sa$()
Array sa$() = "Turbo PasCall" #10 "MS C" #10 "MS
Cpp" _
#10 "Visual Basic" #10 "Unix Perl" #10 "MS
CSharp"

reSub sa(), " ", "-", 1, 1
For i = 0 To Dim?(sa()) - 1 : Trace sa(i) : Next

To replace a range of array elements a sixth parameter of
type Hash Int is mandatory. (Dim hi As Hash Int). Then all
string array elements between from and to are processed

and their index is placed in hi[]. The return value or reSub
is the number of replaced string elements (the same as
hi[%]). When the search string pattern isn't found, then the
Hash will not contain any entries, e.g. hi[%] = 0. Is hi[]
omitted, then the return value is $8000000 = _MinInt. Not
0, because the searched string may have index = 0, with
Dim x$(-9 .. 9) the index can even be negative.

Note: The parameter max seems to be erroneous. (see
Known Issues)

Example

Debug.Show
Dim i As Integer
Dim sa$(), hi As Hash Int
Array sa$() = "Turbo PasCall" #10 "MS C" #10 "Cpp"
_
#10 "Visual Basic" #10 "Unix Perl" #10 "MS
CSharp"

Trace reSub(sa(), " ", "-", 0, UBound(sa()), hi[])
Debug "The elements that are processed:"
For Each i In hi[]
Debug i

Next
Debug "The results:"
For i = 0 To Dim?(sa()) - 1
Trace sa(i)

Next

This prints in the Output window:

TRACE:(1):reSub(sa(), " ", "-", 0, UBound(sa()), hi[]) = 5

The elements that are processed:

0
1
3
4
5

The results:

TRACE:(2):sa(i) = Turbo-PasCall
TRACE:(2):sa(i) = MS-C
TRACE:(2):sa(i) = Cpp
TRACE:(2):sa(i) = Visual-Basic
TRACE:(2):sa(i) = Unix-Perl
TRACE:(2):sa(i) = MS-CSharp

Remarks

The VB function a$ = Replace$(sexp, find, replace [, start[,
count[, compare]]]) is easily converted to GFA-BASIC 32.

VB Replace Function

Dim sexp As String
sexp = Replace(sexp, "aa", "xx")
Print sexp

GFA-BASIC 32 reSub Command

Dim sexp As String
' Dim Cmp = Mode(Compare)
' Mode Compare 0
reSub sexp, "aa", "xx"
' Mode Compare Cmp
Print sexp

For an overview of the regular expressions in pattern see
reMatch.

Known Issues

1. Both the reSub function and command can NOT take a
non-variable string as their first parameter otherwise a
'Variable?' error will be raised; instead, the string needs to
be defined as a variable first, then put into the reSub
statement as below:

Local a$ = "This is a test"
reSub a$, " ", "-"

...instead of...

reSub "This is a test", " ", "-"

2. There have been reports that the max parameter does
not work as described: apparently it does limit the number
of replacements, but returns an incorrect result. However,
these reports may be historic as the error examples that
were listed now return the correct result.

See Also

Hash, preMatch, reMatch, reStop, Replace

{Created by Sjouke Hamstra; Last updated: 08/08/2019 by James Gaite}

Collection Object
Purpose

A Collection object is an ordered set of items that can be
referred to as a unit.

Syntax

Collection

Description

The Collection object provides a convenient way to refer to
a related group of items as a single object. The items, or
members, in a collection need only be related by the fact
that they exist in the collection. Members of a collection
don't have to share the same data type, because they are
converted to a Variant.

An instance of a collection can be created using the New
keyword. For example:

Dim X As New Collection

Once a collection is created, members can be added using
the Add method and removed using the Remove method.
Specific members can be returned from the collection using
the Item method, while the entire collection can be iterated
using the For Each...Next statement.

Properties

Count Long Returns the number of

objects

Methods

Add item[, key] [, before][, after]

item, key, before, after: Variant

Adds a member to a Collection

item An expression of any type to add.
key Optional. A unique string that specifies a key

string that can be used, instead of a positional
index, to access a member of the collection.

before Optional. An expression that specifies a relative
position in the collection. The member to be
added is placed in the collection before the
member identified by the before argument. If a
numeric expression, before must be a number
from 1 to the value of the collection's Count
property. If a string expression, before must
correspond to the key specified when the
member being referred to was added to the
collection. You can specify a before position or an
after position, but not both.

after Optional. An expression that specifies a relative
position in the collection. The member to be
added is placed in the collection after the member
identified by the after argument. If numeric,
after must be a number from 1 to the value of
the collection's Count property. If a string, after
must correspond to the key specified when the
member referred to was added to the collection.
You can specify a before position or an after
position, but not both.

Remove indexindex: Variant

Removes a member at the specified position (1 … .Count),
or when index is a string expression the key.

Item(index) index: Variant

Returns a member at the specified position (1 … .Count),
or when index is a string expression the key.

Item is the default method for a Collection and can be left
out, e.g.

col.Item(1) => col(1)

To refer to an individual member in a collection when you
know the key name, use the ! operator syntax, as shown in
the following example.

col.Add "String", Key := "str1"
Print col!str1

The ! operator increases the performance with 30%, but is
only applicable with literal keys (no variables) that start
with a letter (a..z). Keys are not case sensitive.

Example

Dim a%
OpenW 1
Coltest()

Proc Coltest()
Dim f As Form
Dim col As New Collection
col.Add Win_1, "Win1" // a form object
col.Add "a string", "s1" // a string

col.Add 1.0, Before := "Win1" // a double
Dim v As Variant // collection member
For Each v In col // show positions ...
Print TypeName(v) // ... their type

Next
Print "col(1) = "; col(1)
Print "col(""s1"") = "; col("s1")
Print "col!s1 = "; col!s1
Set f = col!Win1
Print "Caption Win_1: "; f.Caption
col.Remove 1
Set f = Nothing
Set col = Nothing

EndProc

Remarks

An object's position in the collection can change whenever a
change occurs in the collection; therefore, the position of
any specific object in the collection can vary.

Whether the before or after argument is a string
expression or numeric expression, it must refer to an
existing member of the collection, or an error occurs.

An error also occurs if a specified key duplicates the key
for an existing member of the collection.

Internally, the Collection type is built on the Hash type.
Collection is actually a special type of Hash: Hash
Variant. Since the Collection is an OLE compatible type,
the keys are UNICODE strings and strings must be
converted to OLE strings first. GFA-BASIC 32 doesn't call
the API conversion functions, but instead uses its own,
faster, conversion routines. Despite these optimizations the
Hash is much faster than the Collection and can be used
instead in most cases.

The ! operator increases the performance with 30%,
because the key isn't converted to a UNICODE string. In
this special case GFA-BASIC 32 uses a non-compatible
optimization to increase member access performance.

The ! operator is useful with OCX controls as well. Items
stored in collections like ListImages, Buttons, Panels, etc.,
can be accessed using ! as well and profit from the
performance increase.

See Also

Hash

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Const Command
Purpose

Declares constants for use in place of literal values.

Syntax

[Global | Local] Const name [As type] = v [, name1 [As
type] = v, …]

name: variable name
v: aexp

Description

A constant is a named item that retains a constant value
throughout the execution of a program. Constants can be
used anywhere in your code in place of actual values. A
constant can be a string or numeric literal, another
constant, or any combination that includes arithmetic or
logical operators.

Unless a Const is declared Global, it has local scope.

The default type of a constant is Long (32-bits integer).
However, simple types are allowed as well. Const accept
typed constants as Bool, Byte, Short, Integer, Double,
Single, Large, Currency, String, Date. When a type is
specified, GFA-BASIC 32 checks for a valid assignment at
compile time.

Without a type specifier, the type of the constant is
determined from the value. A string literal will create a

string constant and a date literal a Date constant. Some
types of a constant can be forced to a specific type by
adding a postfix to the value. By appending a @ a Currency
constant is declared, a ! forces a Single, a # forces a
Double.

Example

Const WM_USER = 0x400 ' hex literal
Const WM_PAINT = 15 ' decimal
Const WM_CLOSE = $10 ' hex literal
Const WM_USER = 0x400, WM_PAINT = 15, WM_CLOSE =
$10, WM_QUIT = WM_CLOSE + 2

Implicit types

Const PiQuarter = Atn(1) ' Double
Const GFAhometown = "Mönchengladbach" ' String

Explicit types

Global Const ACur = 2@ ' Currency
Global Const AFloat = 2! ' Single
Global Const ADouble = 2# ' Double
Const last_changing = #12.07.1996# ' Date type

Remarks

A constant can be given a type also by using a normal
variable postfix (?, !, @, #, $, %, &).

Global Const ADouble# = 2

See Also

Enum, Global, Local, Dim

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Enum Command
Purpose

Declares a set of 32-bit integer constants.

Syntax

Enum v1 [=value] [, v1 [=value]]…

v1, v2:variable name
value:iexp

Description

The elements of the Enum type are initialized to constant
values within the Enum statement. The assigned values
can't be modified at run time and can include both positive
and negative numbers.

By default, the first enumerator has a value of 0, and each
successive enumerator is one larger than the value of the
previous one, unless you explicitly specify a value for a
particular enumerator. Enumerators needn’t have unique
values.

An enumeration can be declared Local as well as Global.
Without indication an Enum is local when used inside a
subroutine. When used in the main part of the program, the
enumeration has global scope.

Example

Enum saturday, /* saturday = 0 by default
*/ _
sunday = 0, /* sunday = 0 as well */ _
monday, /* monday = 1 */ _
tuesday, /* tuesday = 2 */ _
wednesday, _
thursday, _
Friday

Remarks

See Also

Const

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

#nn and Chr() Function
Purpose

Return either a single or a string of character from the
extended ASCII table.

Syntax

$ = #m#$h#on

$ = Chr[$](m [,$h [,&on [,%b…]]])

m : Decimal integer
$h : hexadecimal integer
on, &on : Octal integer
%b : Binary integer

Description

Both these structures return a single character or a
character string, determined by the arguments passed. The
Pascal-type # can take values in decimal, hexadecimal and
octal, while the more traditional basic Chr() function can
accept all those plus binary.

Example

Global a$ = "Text 1" #13#10 "Text 2" #13#10
a$ = a$ & #50#$32#o62
Print a$

is equivalent to:

Global a$ = "Text 1" & Chr(13) & Chr(10) & "Text
2" & Chr(13, 10)

a$ = a$ & Chr(50, $32, &o62)
Print a$

Remarks

Print #123 causes an error as the program confuses the #
for a stream number and gives an error. However Print
#123#125 does work.

The # (hash) character has many other uses as well. It is
used with formatting strings, file channels (see Open), and
Date literals (#23.07.2000#).

See Also

Asc(), Mk1$(), Mki$(),Mkl$(), Mks$(), Mkd$()

{Created by Sjouke Hamstra; Last updated: 02/10/2017 by James Gaite}

$, & and + String
Concatenation Operators
Purpose

Used to force string concatenation of two expressions.

Syntax

$ = a $ b
$ = a & b
$ = c$ + d$

a, b:aexp
c$, d$:sexp
result: svar

Description

$ and & are synonymous and can be used with numeric,
string and variant (except 'Null' values) types to
concatenate two or more values into a string; +, when used
as a string concatenator (see here for more information),
works only with string and variant types.

The result of any concatenation is always a String UNLESS
all values are Variant Strings, when the result is a Variant.

Example

Dim w$
Dim x As Variant
Dim y As Variant = " Hallo"

Dim z As String = " GFA"
w$ = 20
x = (22 + 55) * (3 - 6 / 3)
z = w$ & x $ y + z
Print z // Prints " 2077
Hallo GFA"

Print VarType(w$ & x $ y + z) // Prints 255 (non-
Variant String)

Remarks

When the $ and & are used with numeric values to create a
String (not a Variant), a leading space is added by default;
to prevent this behaviour, use Mode StrSpace 0.

Care should be taken when using the + operator for
concatenation as shown in the example below:

Dim w$ = 20, x As Variant = 77
Print w$ + x // Prints 97
Print w$ & x // Prints 2077

For this, and other reasons, it is advised not to use the +
operator for string concatenation.

See Also

+, Operator Hierarchy, String Data Type

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

NEAR Operator
Purpose

Used to compare two floating-point values for approximate
equality.

Syntax

? = x NEAR y

x, y : avar

Description

NEAR can be used to reliably test whether two floating-
point variables or expressions are equal.

Calculations on IEEE floating-point format expressions are
performed in an internal 64-bit temporary register, which
has more bits of accuracy than are stored in single-precision
or double-precision variables. This often results in an IF
statement returning an error which states that the
intermediate calculation is not equal to the expression being
compared. For example:

Dim x#, y#
x = 25, y = 60.1
Debug.Print x * y ' result = 1502.5
If 1502.5 = (x * y) Then Debug.Print "equal"

Running the above code will NOT print "equal". In contrast,
the following method using a placeholder variable will print

"equal", but is still NOT a reliable technique as a test for
equality:

Dim z# = 25 * 60.1
If z = 1502.5 Then Debug.Print "equal"

Note that explicit numeric type casts (! for single precision,
for double precision) will affect the precision in which
calculations are stored and printed. Whichever type casting
you perform, you may still see unexpected rounding results:

Debug.Print 69.82! + 1 ' Single precision,
prints 70.8199996948242

Debug.Print 69.82# + 1 ' Double precision,
prints 70.82.

Most numbers in decimal (base 10) notation do NOT have
an exact representation in the binary (base 2) floating-point
storage format used in single-precision and double-precision
data types. The IEEE format cannot exactly represent (and
must round off) all numbers that are not of the form 1.x to
the power of y (where x and y are base 2 numbers). The
numbers that can be exactly represented are spread out
over a very wide range. A high density of representable
numbers is near 1.0 and -1.0, but fewer and fewer
representable numbers occur as the numbers go towards 0
or infinity. These limitations often cause Basic to return
floating-point results different than you might expect. In the
following example not even NEAR provides a solution:

Debug (69.82# + 1) - (69.82! + 1) '
3.0517577442879e-07

If (69.82! + 1) NEAR (69.82# + 1) Then Debug
"EQUAL"

The NEAR comparison compare too much bits.

Only an explicit typecast makes the floating point
comparison possible:

If (69.82! + 1) = CSng(69.82# + 1) Then Debug
"EQUAL"

Remarks

In GFA-BASIC 16 the 'near' comparison was performed
using the == operator. However, in GFA-BASIC 32 this
operator must be replaced by NEAR (in GFA-BASIC 32 the
== operator is equivalent to =).

See Also

=, <, >, <=, >=, !=

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Peek Functions
Purpose

Reads a value with the specified data type from an address.

Syntax

Byte = Peek(addr)

Card = CPeek(addr)

Currency = CurPeek(addr)

Short = DPeek(addr)

Double = DblPeek(addr)

Long = LPeek(addr)

Large = Peek8(addr)

Single = SngPeek(addr)

String = Peek$(addr, len)

String = StrPeek(addr, len)

String = CharPeek(addr)

addr : address len : length of required string

Example

Debug.Show
Local a$ = "1234567890123456" & Chr(0)

Local d As Double = 12345678.90, s As Single =
12345.67

Trace Hex(Peek(V:a$))
Trace Hex(CPeek(V:a$))
Trace Hex(CurPeek(V:a$))
Trace Hex(DPeek(V:a$))
Trace Hex(DblPeek(V:a$)) // Returns 0
Trace DblPeek(V:d)
Trace Hex(LPeek(V:a$))
Trace Hex(Peek8(V:a$))
Trace Hex(SngPeek(V:a$)) // Returns 0
Trace SngPeek(V:s)
Trace Peek$(V:a$, Len(a$))
Trace StrPeek(V:a$, Len(a$))
Trace CharPeek(V:a$)

Remarks

The Peek functions have corresponding {} functions and
they can be used instead.

CharPeek, like Char{}, is most useful when used with API
functions as it reads a string from an address until the next
zero byte.

OpenW 1
Print title(Win_1.hWnd)
Do : Sleep : Until Me Is Nothing

Function title(ByVal f As Handle) As String
Local s As String*256
~GetWindowText(f, V:s, SizeOf(s))
Return CharPeek(V:s)

EndFunc

See Also

xx{}

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Poke Commands
Purpose

Writes a value in the specified data type to an address.

Syntax

Poke addr, byte

CharPoke addr, string

CPoke addr, card

CurPoke addr, currency

DPoke addr, short

DblPoke addr, double

LPoke addr, long

Poke$ addr, string

Poke8 addr, large

SngPoke addr, single

StrPoke addr, string

addr:address

Description

Writes a value to an address.

CharPoke, Poke$, and StrPoke write a null-terminated
string to a memory address. Note that the memory must be
large enough to strore the additional null.

Example

Debug.Show
Local a$ = Space(16), b$ = "ABCDEFGHIJKLMNOP" &
Chr(0)

Trace b$
Poke V:a$, Byte{V:b$} : Debug "Poke V:a$,
Byte{V:b$} -> ";a$: a$ = Space(16)

CharPoke V:a$, CharPeek(V:b$) : Debug "CharPoke
V:a$, CharPeek(V:b$) -> ";a$: a$ = Space(16)

CPoke V:a$, Card{V:b$} : Debug "CPoke V:a$,
Card{V:b$} -> ";a$: a$ = Space(16)

CurPoke V:a$, Cur{V:b$} : Debug "CurPoke V:a$,
Cur{V:b$} -> ";a$: a$ = Space(16)

DPoke V:a$, Word{V:b$} : Debug "DPoke V:a$,
Word{V:b$} -> ";a$: a$ = Space(16)

DblPoke V:a$, Double{V:b$} : Debug "DblPoke V:a$,
Double{V:b$} -> ";a$: a$ = Space(16)

LPoke V:a$, Long{V:b$} : Debug "LPoke V:a$,
Long{V:b$} -> ";a$: a$ = Space(16)

Poke$ V:a$, b$: Debug "Poke$ V:a$, b$ -> ";a$:
a$ = Space(16)

Poke8 V:a$, Large{V:b$} : Debug "Poke8 V:a$,
Large{V:b$} -> ";a$: a$ = Space(16)

SngPoke V:a$, Single{V:b$} : Debug "SngPoke V:a$,
Single{V:b$} -> ";a$: a$ = Space(16)

StrPoke V:a$, b$: Debug "StrPoke V:a$, b$ -> ";a$

Remarks

The Poke functions have equivalent {}= versions, which
can be used instead.

See Also

xx{}=, Peek Functions

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

MemMove
Purpose

Copies a block of memory

Syntax

MemMove dst, src, count

MemMove(dst, src, count)

Description

The first parameter of MemMove is the address of the
destination and the second one the one of the source and
the third one can be a constant or, for example, the length
of the source to copy.

Example

Local a$ = "GFA Basic", b$ = Space(9)
MemMove V:b$, V:a$, 9 // This works as
described

Print a$, b$
a$ = "GFA Basic", b$ = Space(9)
MemMove V:b$, V:a$, Len(b$) // This doesn't
work this way...

Print a$, b$
Local a% = 1234, b%
MemMove V:b%, V:a%, SizeOf(a%)
Print a%, b%

Remarks

MemMove is equal to BlockMove which can be used
instead.

MemCpy is extremely efficient in copying Type variables.
MemCpy is one of the rare commands that is compiled
inline when count is a constant.

See Also

BMove, BlockMove, MemCpy

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

MemAnd, MemOr and
MemXor Commands
Purpose

Perform a logical bit-wise operation on two bit patterns in
memory.

Syntax

MemAnd [(] src_addr,dst_addr,count [)]

MemOr [(] scr_addr, dst_addr, count [)]

MemXor [(] scr_addr, dst_addr, count [)]

scr_addr,dst_addr : address
count : integer expression

Description

Each command performs a different logical bit-wise
operation on two bit patterns in memory:

MemAnd performs an AND, which results in the target
bits being set only when the corresponding bits are set
in both source and target area.
MemOr an OR, results in the target bits being set when
either the source or the target bits are also set.
MemXor an XOR, which results in the target bits being
set when the bits are set in either the source or target
but not both.

In all cases, scr_addr specifies the address of the source,
dst_addr the address of the destination location, and count
specifies the number of bytes to use at both locations. The
logical And results in the target bits being set only when the
corresponding bits are set in both source and target area.

Example

OpenW 1
Win_1.FontTransparent = True
// Needed to print properly on Win8/10

Local a%
Global a?(15), b?(15)
a?(9) = -1, b?(9) = -1, b?(10) = -1, b?(12) = -1
// Set initial flags

test("Before any operations:")
MemAnd V:a?(0), V:b?(0), (Dim?(a?()) + 7) >> 3
// Only b?(9) remains set

test("After MemAnd:")
b?(9) = -1, b?(10) = -1, b?(12) = -1
// Reset flags for MemOr

MemOr V:a?(0), V:b?(0), (Dim?(a?()) + 7) >> 3
// b?(9), b?(10) and b?(12) remain set

@test("After MemOr:")
b?(9) = -1, b?(10) = -1, b?(12) = -1
// Reset flags for MemXor

MemXor V:a?(0), V:b?(0), (Dim?(a?()) + 7) >> 3
// b?(9) is reset

@test("After MemXor:")

Procedure test(txt$)
Local i%
Print txt$
Print "a?() - ";
For i% = 0 To 15 : Print Str$(a?(i%), 2, 0)` :
Next : Print

Print "b?() - ";

For i% = 0 To 15 : Print Str$(b?(i%), 2, 0)` :
Next : Print

Print
EndProc

Remarks

This method of memory manipulation can be particularly
handy for use with databases. For example, if a database
contains variables which are used as flags to mark (-1) or
not to mark (0) an attribute, these method of memory
manipulation can be very helpful. Using MemAnd an
inquiry can be made to see if the markers apply to one or
both attributes, with MemOr to see if the markers apply to
either one or both attributes, while with MemXor an inquiry
can be made to see if the markers apply to one or the other
but not both attributes..

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

MemBFill, MemWFill,
MemLFill, MemSet and
MemZero Command
Purpose

Fills a memory area with a specified value.

Syntax

MemBFill[(] addr, count, value [)]
MemWFill[(] addr, count, value [)]
MemLFill[(] addr, count, value [)]

MemSet[(] addr, count, value [)]

MemZero[(] addr, count [)]

addr : address
count : Int32 expression
value : byte, Int16 or Int32 expression

Description

All these commands fill a memory area, starting from the
address addr, with count occurences of a particular value;
in the case of MemZero, this value is always zero, whereas
with the rest it can be specified in the value parameter.

MemBFill, MemSet and MemZero all write the value as a
byte, while MemWFill writes it as a 16-bit Integer and
MemLFill as a 32-bit Integer.

With all these commands, the parameters can be enclosed
in brackets or not as desired.

Example

Local addr% = mAlloc(200)
MemBFill addr%, 200, 2
MemSet addr%, 200, 1
MemZero addr%, 200
MemWFill addr%, 100, 102
MemLFill addr%, 50, 15677

Remarks

One use for all these commands is to fill an array, but
ArrayFill is much better suited, as shown below:

Local a%(1 To 200), n%, t#
t# = Timer
For n% = 1 To 10000 : MemLFill V:a%(1), 200, 2 :
Next n

Trace a%(1)
Debug "MemLFill time:" & Timer - t#
t# = Timer
For n% = 1 To 10000 : ArrayFill a%(), 2 : Next n
Debug "ArrayFill time:" & Timer - t#
Trace a%(1)
Debug.Show

{Created by Sjouke Hamstra; Last updated: 02/03/2017 by James Gaite}

Bswap Function
Purpose

The Bswap() functions change the byte order of integer
values.

Syntax

i% = Bswap[%](x)i, x : ivar

i& = Bswap&(x)i&: word, x : ivar

i% = Bswap3(x)i, x : ivar

i = Bswap8(x)i: Int64, x : ivar

Description

Bswap[%] changes the order of a 32 bit-Integer;
Bswap(0x12345678) returns 0x78563412 (0x means Hex-
literal).

Bswap& changes the order of a 16 bit-Integer; Bswap&
(iexp) = Rol&(iexp, 8).

Bswap3 changes the order of the lower 3 bytes. This could
be useful in converting BGR color values to (Blue-Green-
Red) in RGB-values.

Bswap8 changes the order of a 64 bit-integer or Large.

Example

Print Hex$(Bswap%(0x12345678)) // 78563412

Print Hex$(Bswap&(0x12345678)) // 7856
Print Hex$(Bswap3(0x12345678)) // 785634
Print Hex$(Bswap8(0x12345678)) // 7856341200000000

Remarks

Bswap and Bswap% are identical. Bswap is a shortcut
for:

MakeLongHiLo(Rol&(LoWord(i), 8), Rol&(HiWord(i),
8))

Bswap8 is a shortcut for:

Print MakeLargeHiLo(_
MakeLongHiLo(Rol&(LoWord(i64), 8), Rol&
(HiWord(i64), 8)), _

MakeLongHiLo(Rol&(LoWord(HiLarge(i64)), 8), Rol&
(HiWord(HiLarge(i64)), 8)) _

)

Alternatively (but slower):

Cv8(Mirror$(Mk8(i64)))

See Also

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

MakeWord Functions
Action

Makes a 16-bit integer from two bytes.

Syntax

z = MakeWord(hi, lo)

z = MakeWordHiLo(hi, lo)

z = MakeWordLoHi(lo, hi)

hi, lo:Byte
z:Short

Description

MakeWord and MakeWordHiLo() create a 16-bit integer
value form two unsigned 8-bit integers. The first value is
placed in the high order word of the word integer.

MakeWordLoHi() creates a 16-bit integer value form two
unsigned 8-bit integers. The first value is placed in the high
order word of the word integer.

Example

Debug.Show
Trace Hex(MakeWord(1, 2), 4) // 0201
Trace Hex(MakeWordHiLo(1, 2), 4) // 0201
Trace Hex(MakeWordLoHi(1, 2), 4) // 0102

See Also

MakeL2L(), MakeL2H(), MakeL3H(), MakeL3L(), MakeL4H(),
MakeL4L(), MakeLarge(), MakeLargeHiLo(),
MakeLargeLoHi(), MakeLong(), MakeLongHiLo(),
MakeLongLoHi(), MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Shl Function
Purpose

Shifts a bit pattern left.

Syntax

Shl(m, n)

Shl&(m, n)

Shl%(m, n)

Shl|(m, n)

Shl8(m, n)

m Shl n

m Shl8 n

Shl v, n

m, n:integer expression
v:variable

Description

Shl(m, n) and Shl% shifts the bit pattern of a 32-bit
integer expressions m, n places left (Shl = SHift Left) and,
optionally, stores the new value in a variable. Shl&(m, n)
and Shl|(m, n) shift the bit pattern of a 16-bit or an 8-bit
integer expression m respectively, n places left. Shl8 is
used to shift a Large integer.

The operators Shl and Shl8 perform a left shift on an
integer and Large, respectively.

Shl v, n assignment shifts the value in v by n and returns
the value in v. The type of the operation is determined by
the type of variable v.

Example

Local l%, l|
Debug.Show
Trace Bin$(202, 16) // Prints
0000000011001010

Trace Bin$(Shl(202, 4), 16) // Prints
0000110010100000

l% = Shl(202, 4)
Trace l% // Prints 3232
Trace Bin$(202, 16) // Prints
0000000011001010

Trace Bin$(Shl%(202, 4), 16) // Prints
0000110010100000

l% = Shl%(202, 4)
Trace l% // Prints 3232
Trace Bin$(202, 8) // Prints 11001010
Trace Bin$(Shl|(202, 4), 8) // Prints 10100000
l| = Shl|(202, 4)
Trace l| // Prints 160

Remarks

m<< n is synonymous with Shl(m, n) and can be used
instead.

As long as the result of the shift does not exceed the given
width, Shl(m, n) is equivalent to a multiplication of m with
2^n.

Example to shift bits

Shl(63, 2) or 63 Shl 2

63 it binary: 0000 0000 0000 0000 0000 0000 0011 1111

Shift left: 0000 0000 0000 0000 0000 0000 0111 1110

Shift left : 0000 0000 0000 0000 0000 0000 1111 1100

Result is 124 = 63 * 4 = 63 * 2^2

Shl(-1, 4) or -1 Shl 4

-1 is binary: 1111 1111 1111 1111 1111 1111 1111 1111

Shift: 1111 1111 1111 1111 1111 1111 1111 1110

Shift: 1111 1111 1111 1111 1111 1111 1111 1100

Shift: 1111 1111 1111 1111 1111 1111 1111 1000

Shift: 1111 1111 1111 1111 1111 1111 1111 0000

Result is -16 = -1 * 16 = -1 * 2^4

See Also

Shr Rol, Ror, <<, >>

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Rol Function
Purpose

Rotates a bit pattern left.

Syntax

Functions:Rol(m,n)

Rol|(m,n)

Rol&(m,n)

Rol%(m,n)

Rol8(m, n)

Operators:m Rol n

m Rol8 n

Assignment:Rol ivar, n

m, n:integer expression
ivar:integer variable

Description

Rol and Rol% shifts the bit pattern of a 32-bit integer
expressions m, n places left (Rol = ROtate Left) and "wraps
around" the bits moved off the left end to the right end
again. The resulting new value is, optionally, stored in a
variable. Rol&(m, n) and Rol|(m, n) rotate the bit pattern

of a 16-bit or an 8-bit integer expression m respectively, n
places left. Ror8 rotates a Large integer.

Rol and Rol8 can be used as operators as well.

Rol ivar, n rotates the value in ivar n places and stores the
value back in ivar.

Example

Debug.Show
Local a%, l%, v As Large
Local Int x, y
Trace Bin$(202, 16)
// prints 0000000011001010
Trace Bin$(202 Rol 4, 16)
// prints 0000110010100000
l% = 202 Rol 4
Trace l%
// prints 0000110010100000
Trace Bin(l%, 16)
x = 202, y = 4
Rol x, 4
Trace Bin(x, 16)
// prints 0000110010100000
v = Large 20222022222 Rol8 64
Trace v
// prints 20222022222

See Also

Sar, Shl, Shr, Ror

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Crc32 Function
Purpose

computes the Cyclic Redundancy Check checksum for a
range of bytes returning a 32-bit value.

Syntax

w = Crc32(addr, count, [old])

w = Crc32(str, [old])

w, old, addr, count:iexp
str:string

Description

The function Crc32() calculates a cyclic redundancy
checksum (32-bits value) for a block of data: count bytes
from the address addr. The optional parameter old is to be
used if you want to create a checksum for more than one
block, old must contain the checksum for the other block.

Example

Local a$ = "Dies ist eine Test“"
Dim a#(10), b#(10)
Dim b% = 923454545
Mat Set a#() = 120
Mat Set b#() = -234
Dim cha_xor% = Crc32(V:a#(0), ArraySize(a#()))
Dim ch_xor% = Crc32(V:b#(0), ArraySize(b#()),
cha_xor%)

Print Crc32(b%) // prints 2091025660
Print Crc32(a$) // 1965147545
Print cha_xor% // 1254148786
Print ch_xor% // 409962355

Remarks

The calculation of data with CheckXorByte,
CheckXorShort, CheckXorLong (or CheckSumxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Crc16 Function
Purpose

computes the Cyclic Redundancy Check checksum for a
range of bytes returning a 16-bit value.

Syntax

w = Crc16(addr, count, [old])

w = Crc16(str, [old])

w, old:16-bit integer
addr, count:iexp
str:string

Description

The function Crc() calculates a cyclic redundancy checksum
(16-bits value) for a block of data: count bytes from the
address addr. The optional parameter old is to be used if
you want to create a checksum for more than one block, old
must contain the checksum for the other block.

Example

Local a$ = "Dies ist eine Test“"
Dim a#(10), b#(10)
Mat Set a#() = 120
Mat Set b#() = -234
Dim cha_xor& = Crc16(V:a#(0), ArraySize(a#()))
Dim ch_xor& = Crc16(V:b#(0), ArraySize(b#()),
cha_xor&)

Print Crc16(a$) // -31370
Print cha_xor& // 432
Print ch_xor& // 1827

Remarks

The calculation of data with CheckXorByte,
CheckXorShort, CheckXorLong (or CheckSumxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

CheckSumByte Function
Purpose

Computes the checksum for a range of bytes

Syntax

b = CheckSumByte(addr%, count%, [old])

b, old: byte expression
addr, count: integer expression

Description

The function CheckSumByte() calculates a simple
checksum for a block of data: count bytes from the address
addr. The optional parameter old is to be used if you want
to create a checksum for more than one block, old must
contain the checksum for the other block.

The checksum is a simple adding of 8-bit values (bytes) in
the data.

Example

Local a$, b$, ch_a|
Debug.Show
a$ = "This is a test"
b$ = "another block"
ch_a| = CheckSumByte(V:a$, Len(a$))
Trace CheckSumByte(V:a$, Len(a$)) // 249
Trace CheckSumByte(V:b$, Len(b$)) // 33
Trace CheckSumByte(V:a$, Len(a$), ch_a|) // 243

Remarks

The calculation of data with CheckSumByte,
CheckSumShort, CheckSumLong (or CheckXorxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

CheckXorByte Function
Purpose

Computes the checksum for a range of bytes returning a
byte value

Syntax

b = CheckXorByte(addr, count, [old])

b, old:8-bit integer
addr, count:iexp

Description

The function CheckXorByte() calculates a simple checksum
(byte value) for a block of data: count bytes from the
address addr. The optional parameter old is to be used if
you want to create a checksum for more than one block, old
must contain the checksum for the other block.

The checksum is a simple XOR-ing of 8-bit values in the
data.

Example

Local a$ = "This is a Test"
Print CheckXorByte(V:a$, Len(a$)) // 75
Dim a#(10), b#(10)
Mat Set a#() = 120
Mat Set b#() = -234
Dim cha_xor| = CheckXorByte(V:a#(0), ArraySize(a#
()))

Dim ch_xor| = CheckXorByte(V:b#(0), ArraySize(b#
()), cha_xor|)

Print cha_xor|, ch_xor| // 30, 243

Remarks

The calculation of data with CheckXorByte,
CheckXorShort, CheckXorLong (or CheckSumxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Crypt Function
Purpose

The Crypt function is used to encrypt and decrypt data.

Syntax

Crypt[$] (Key$, Data$)

Key, Data: sexp

Description

Data$ is the buffer holding the data to be encrypted. Key$
specifies the key (max 116 characters = 924 bits) to be
used for encryption, which will be used to start the random
value generator. Crypt uses a symmetrical coding system,
which means that the same key is used to encrypt and to
decrypt the data.

Example

OpenW 1
Global secretData As Variant, a$, key$
key$ = "GFA Software"
secretData = "GFA Software GmbH"
Print "Key: " + key$
' Encrypt:
a$ = Crypt(key$, secretData)
Print "Encoded: " + a$
' Decrypt:
secretData = Crypt(key$, a$)
Print "Decode: " + secretData

While InKey = "" : Print AT(1, 5); "Press any key
to close." : Wend

CloseW 1

Remarks

Don't use a key more than once. Don't make it easy to
hack. One way to use the same key is to add the length of
the data to the key: Crypt(key$+Str(Len(dat$), dat$).

The length of the period of the internal random generator is
quite long, so that cracking will take a long time.

Crypt() can be used in many situations. But for really
important security issues, you should use a DES or RSA
encryption, like PGP. The result of Crypt can be hacked with
a brute attack by trying all keys and then scanning the
result for readable parts. Better computers also mean better
and faster ways to use brute attack possibilities. You can
increase the safety by using a checksum function
(Crc16/Crc32) after encrypting to validate the encrypted
data.

A general weakness with encrypting is the handling of a
sequence of bytes with the same value (0-bytes, or
spaces). Crypt hides these noticeable sequences, but it is
still a weakness. That is why encrypting often is performed
on packed data (Pack/UnPack)

Crypt("","") returns a random key of 128 characters.

See Also

Pack, Crc16, Crc32

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Pack, UnPack Function
Purpose

Compresses a string at byte level

Syntax

$ = Pack[$](string [,flag = 0])

$ = UnPack[$](string)

string:sexp
flag:iexp

Description

The function Pack function returns a compressed string
from a string. The function UnPack decompresses a string
compressed with Pack.

Pack will place a 12 byte label in front of a compressed
string. The first four signs are "PCK0" (PeCehKahZero),
after this, four more signs follow with the length of the
compressed data and last four with the original length:

"PCK0" + Mkl$(length_after_compression) + Mkl$(original
length) + packed data

When both the original data size as the compressed data
size are smaller than 65536, a header of 8 bytes is used,
with a lowercase k instead of K, and both lengths in a 16-bit
value. Data that cannot be compressed (random byte
sequences or a Crypt$) are marked with a lowercase c,

followed by only one length (k=16 bit, K=32 bit), so 6 or 8
bytes.

The optional flag can have a value of 0, 1, or 2. If flag = 1
an additional bit pack run is performed. This run will take a
bit of time, but as a result, you get a better compression
rate (1-10%, sometimes more). In addition, plain text
snippets are mostly removed from the compressed string.
Packing with default value of flag (= 0) often results in a
compressed string where words might be readable. A
packed string with flag is 1 is marked as PCK1 or PCk1
instead of PCK0.

flag = 2 forces a bit pack, whether or not the packed string
becomes longer.

Example

OpenW 1
Local a$, b$, c$, d$, b%, x%
Local e$, f$, g$
// Write 1000 times Hello
For b% = 0 To 9999
a$ = a$ + "Hello"

Next
// Pack with flag 0,1,2
b$ = Pack(a$, 0)
c$ = Pack(a$, 1)
d$ = Pack(a$, 2)
// Show the length of the strings
Print Len(a$), Len(b$), Len(c$), Len(d$)
// Unpack the strings
e$ = UnPack(b$)
f$ = UnPack(c$)
g$ = UnPack(d$)
Print Len(a$), Len(e$), Len(f$), Len(g$)
Print a$ = e$, a$ = f$, a$ = g$

Remarks

The compression rate of Pack compares to ARC, the grand
father of all compression programs, or Compress the
program from Microsoft.

See Also

PackMem

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

MiMeDecode and
MiMeEncode Functions
Purpose

Encodes and decodes a MiMe based64 encoded string.

Syntax

content$ = MiMeDecode(string)

content$ = MiMeEncode(string)

Description

Creates and reverses a mime based64 encoded string back.

Example

OpenW 1
Local a$, s_mime$, s$
a$ = "GFA Software Technologies GmbH"
Print "Original: "; a$: Print
s_mime$ = MiMeEncode(a$)
Print "Encoded: "; s_mime$
s$ = MiMeDecode(s_mime$)
Print "Decoded: "; s$

Remarks

There are also two keywords _MiMeEncode and
_MiMeDecode which seem to be unrelated but correlate
with each other as do MiMeEncode and MiMeDecode BUT

do not perform the same conversion with the latter being
the correct versions for MiMe64. The differences can be
seen better if you run the example below:

Debug.Show
Local a$ = "GFABasic32"
Trace MiMeEncode(a$)
Trace _MiMeEncode(a$)
Trace MiMeDecode(MiMeEncode(a$))
Trace _MiMeDecode(_MiMeEncode(a$))
Trace MiMeDecode(_MiMeEncode(a$))
Trace _MiMeDecode(MiMeEncode(a$))

See Also

MemToMiMe(), MemToUU(), MiMeToMem(), MiMeDecode(),
MiMeEncode(), UUToMem(), UUDecode(), UUEncode()

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MemToMiMe, MiMeToMem
Functions
Purpose

Encodes a memory block into the MiMe based64 format or
decodes a Mime based64 encoded string to memory.

Syntax

$ = MemToMiMe (addr, len)

len% = MiMeToMem(str$, addr%)

addr, len:iexp

Description

MemToMiMe() converts a memory block at address addr
and with a size of len into MIME format and returns it in a
string.

MiMeToMem() is the reverse function of MemToMime().
The function reverses a mime based64 encoded string and
copies it to the memory pointed to by addr%. The return
value is the length of the decoded data string.

Example

OpenW 1
Local a$, length%, s_mime$, x%, content$
a$ = "GFA Software Technologies GmbH"
s_mime$ = MemToMiMe(V:a$, Len(a$))
Print s_mime$

Lset a$ = ""
length% = MiMeToMem(s_mime$, V:a$)
Print length%
Print a$
content$ = MiMeDecode(s_mime$)
Print content$

Remarks

When a string is encoded/decoded the alternative functions
MimeEncode() and MimeDecode() can be used instead.

See Also

MemToUU(), MiMeDecode(), MiMeEncode(), UUToMem(),
UUDecode(), UUEncode()

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

MemToUU, UUToMem
Functions
Purpose

Encodes a memory block into the UUE format or decodes a
UUE encoded string to memory.

Syntax

str = MemToUU (addr, len)

len% = UUToMem(string, addr%)

addr, len:iexp

Description

MemToUU() converts a memory block at address addr and
with a size of len into UUE format and returns it in a string.

UUToMem() is the reverse function of MemToUU(). The
function reverses a UUE encoded string and copies it to the
memory pointed to by addr%. The return value is the
length of the decoded data string. When addr% = 0 the
function returns the required amount of memory to store
the decoded string.

Example

OpenW 1
Local a$, length%, s_mime$, x%, content$
a$ = "GFA Software Technologies GmbH"

s_mime$ = MemToUU(V:a$, Len(a$))
Print s_mime$
Lset a$ = ""
length% = UUToMem(s_mime$, V:a$)
Print length%
Print a$
content$ = uudecode(s_mime$)
Print content$

Remarks

When a string is encoded/decoded the alternative functions
UUEncode() and UUDecode() can be used instead.

See Also

MemToMiMe(), MiMeToMem(), MiMeDecode(),
MiMeEncode(), UUDecode(), UUEncode()

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

V: and VarPtr Functions
Purpose

Returns the address of a variable or an array element.

Syntax

% = V:x

% = VarPtr(x)

x:name of a variable of any type

Description

V: and VarPtr are synonymous and, in the case of strings,
return the address of the string itself (not the descriptor
address), in the case of arrays they return the address of an
array element and in the case of simple variables the
address of the variable.

Example

OpenW # 1
Local c%
Dim a(3) As Double
// prints the address of a(3)
Print VarPtr(a(3))
// prints the address of a%
Print VarPtr(c%)
Local b$ = "Test"
Print "Get the string using Char{addr} of b$: "; _
Char{V:b$}

Print "Address of b$: "; V:b$
Print "Descriptor of b$: "; * b$
Print "Length of b$: "; Int{V:b$ - 4}

Remarks

The descriptor of a string contains the length of the string,
is 4 bytes long, and is located right in front of the actual
data. The descriptor address is obtained using ArrPtr(a$)
or *a$.

See Also

ArrPtr, *

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Declare Command
Purpose

Declares a function in a DLL.

Syntax

Declare Function Name [CDecl] [Lib "libname"] [Alias
"aliasname"] ([paramlist]) [As RetType = Long]

Declare Sub Name [CDecl] [Lib "libname"] [Alias
"aliasname"] ([paramlist])

Declare SubA Name [CDecl] [Lib "libname"] ([paramlist])

Declare FunctionA Name [CDecl] [Lib "libname"]
([paramlist]) [As RetType = Long]

Declare LIB "libname"

Declare Function name BuiltIn "aliasname"

Description

The Declare command is used to declare references to
external procedures or functions in a dynamic-link library.
The Declare statement syntax has these parts:

Sub Optional (either Sub or Function must
appear). Indicates that the procedure doesn't
return a value.

Function Optional (either Sub or Function must
appear). Indicates that the procedure returns

a value that can be used in an expression.
CDecl Optional. Required when the DLL function is a

C/C++ function (see CCall). Default is
"StdCall".

Name Any valid procedure name. Note that DLL
entry points are case sensitive.

Lib Optional. Indicates that a DLL or code
resource contains the procedure being
declared. The Lib clause must be included or
set before using Declare LIB "libname".

libname Name of the DLL or code resource that
contains the declared procedure.

Alias Optional. Indicates that the procedure being
called has another name in the DLL. This is
useful when the external procedure name is
the same as a keyword. You can also use Alias
when a DLL procedure has the same name as
a variable, constant, or any other procedure.
Alias is also useful if any characters in the DLL
procedure name aren't allowed by the DLL
naming convention.

aliasname Optional. Name of the procedure in the DLL or
code resource. If the first character is not a
number sign (#), aliasname is the name of
the procedure's entry point in the DLL. If (#)
is the first character, all characters that follow
must indicate the ordinal number of the
procedure's entry point.

paramlist Optional. List of variables representing
arguments that are passed to the procedure
when it is called.

RetType Optional. Data type of the value returned by a
Function procedure; may be Byte, Boolean,
Integer, Long (default), Large, Currency,

Single, Double, Date, String (variable length
only), or Variant, a user-defined type, or an
object type.

The paramlist argument has the following syntax and parts:

[ByVal | ByRef] varname [As type = Long]

ByVal Optional. Indicates that the argument is passed
by value. Mandatory with dynamic String
parameters, even when they must receive a
return value. (ByRef would pass the address of
the string descriptor.) A fixed String may be
passed as ByRef.

ByRef Indicates that the argument is passed by
reference. ByRef is the default.

varname Name of the variable representing the
argument being passed to the procedure;
follows standard variable naming conventions.
The name is informational only.

type Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer,
Long (default), Currency, Single, Double, Date,
String (variable length only), Object, Variant, a
user-defined type, or an object type. When the
'As type' is omitted, Long is assumed.

The paramlist can not contain an array or a ParamArray
declaration. A user-defined type is to be passed as ByRef.
A String parameter has to be declared as ByVal.

SubA and FunctionA exclude the Alias clause; they are
used to use the ANSI version of the declared DLL
procedure. GFA-BASIC 32 generates the alias by itself by
appending the 'A' to the DLL procedure name.

Using all default settings a DLL function can be declared as:

Declare LIB "version"
Declare FunctionA GetFileVersionInfo(ByVal
Filename$, ByVal dwhandle, ByVal dwlen, ByVal
lpData)

The BuiltIn variant doesn't seem to work.

Example

Declare Function GetUserName Lib "advapi32.dll"
Alias "GetUserNameA" (ByVal lpBuffer As String,
nSize As Long) As Long

Declare FunctionA GetUserName Lib "advapi32.dll"
(ByVal lpBuffer As String, nSize As Long) As Long

'
Dim uname As String = String(30, 0)
GetUserName(uname, 30)
Print ZTrim(uname)

Remarks

A Declare'd DLL function is loaded when the function is
used the first time. In the background the API functions
LoadLibrary() and GetProcAddress() are invoked. A missing
DLL isn't noticed before the function is called, therefore.

FreeDll explicitly releases a DLL from memory. The
argument filename$ should be exactly the same as the DLL
name specified in the Declare statement. Filename$ may
contain a path.

The ~ (void operator) is no longer necessary to void the
return value of a DLL function. In addition, DLL functions
are no longer called using @@ or ^^, but simply by their
name as if they were common functions.

Note ~ is still necessary for built-in API functions.

Built in API functions

GFA-BASIC 32 supports more than 1000 API functions,
functions that can be used as any other GFA-BASIC 32
function. Only the standard API functions from User, Kernel
and GDI are implemented, other not often used API
functions like for instance WinSock functions are to be
declared explicitly.

The type of the parameters of the built-in API-Functions is
not checked upon compiling. Each parameter is assumed to
be a 32-bit integer. A string can be passed to an API
function, but is always copied to one of the 32 internal
1030-Byte buffer BEFORE the address of the buffer is
passed. See String Data type.

A user defined Type (As type) is always passed by
reference, so that its address is passed (automatically V:).

Note - These rules don’t apply to DLL functions introduced
with the Declare statement. Here GFA-BASIC 32 behaves
like VB and the rules for calling such APIs must be
respected.

Some API function names are already in use by GFA-BASIC
32 and are therefore renamed. GetObject() becomes
GetGdiObject(), LoadCursor becomes LoadResCursor.
Obsolete functions are not implemented, obviously.

The winapi32.inc.g32 contains the declarations that are not
included in GFA-BASIC 32 itself. This file also describes VB
to GB32 conversion tips. The often used "As Any" type
clause in VB is used to declare a void pointer, a pointer to
anything, a typeless parameter. The "As Any" type is not
supported in GFA-BASIC 32 (with reasons) and should be

replaced by ByVal … As Long. You then pass the address
of the variable to the DLL function.

The \Include folder contains more declaration files, both in
g32 source code format as well as compiled libraries.

See Also

FreeDll, V:, String, StdCall

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

DisAsm Object
Purpose

Disassembler for GFA-BASIC 32 code.

Syntax

Dim name As New DisAsm

name: variable name

Description

Like many other debug facilities of GFA-BASIC 32, the
disassembler is invoked at the code level. A new instance of
the disassembler object is created by using New with the
DisAsm type name. The DisAsm method of the
disassembler disassembles an instruction at a given
address, specified with the Addr property. After
disassembling the instruction, Addr is incremented with the
number of bytes occupied by the instruction. The next time
DisAsm is executed the next instruction is disassembled.

00D707E5: FF 55 B4 call dpt -76[ebp]

00D707E8: 68 C4 1F E8 00 push 15212484

00D707ED: B8 20 AA C3 00 mov eax,12823072

00D707F2: 50 push eax

00D707F3: FF 15 54 26 4D 00 scall DIMNEWOBJ

The first column contains the (virtual) memory address of
the command. The second column shows the code bytes
that are disassembled to the instruction in the third column.
The second column can be omitted when you set the
ByteFlag property to 0.

The HexDump property changes the output from
disassembly to a hex dump. A hex dump shows the
hexadecimal value of binary code and the ASCII
representation. This is useful when you want to examine a
piece of data memory. Here an example:

00D70965: FF 55 B4 68 C4 1F E8 00 ÿU´hÄ.è.

00D7096D: B8 20 AA C3 00 50 FF 15 ¸ ªÃ.Pÿ.

00D70975: 54 26 4D 00 FF 55 B4 FF T&M.ÿU´ÿ

00D7097D: 35 20 AA C3 00 6A FF 8B 5 ªÃ.jÿ‹

The first column contains the (virtual) memory address of
the hex dump. The second column contains 8 consecutive
bytes found at that address. The third column shows the
ASCII representation of those bytes. The number of bytes
to dump in one line can be set with the HexDumpCount
property (here: 8, default = 16).

Properties Addr |ByteFlag |HexDump
|HexDumpCount |PreferHex

Addr [= long] - Returns or sets the start address of the
binary code for the next disassembly or hex dump.

ByteFlag [= Bool] - Returns or sets a value determining
the display of the code bytes in a disassembly listing.

HexDump [= Bool] - Returns or sets a value determining
the function of the DisAsm method. When True a hex dump
is performed, when False (default) the DisAsm method
displays the disassembly.

HexDumpCount [= long] - Returns or sets a value
determining the number of bytes to dump in one line
(default = 16).

PreferHex [= Bool] - Returns or sets a value determining
the display format of addresses. If True the addresses are
formatted in hexadecimal format only, and if False (0 is
default) in decimal as well.

Methods DisAsm

DisAsm - Disassembles next instruction or displays the
next HexDumpCount number of bytes as a hex dump.
DisAsm is the default for the DisAsm object and can be
omitted.

Example

20
Dim dis As New DisAsm // a new instance of
disassembler

dis.ByteFlag = True // code bytes as Hex bytes
dis.HexDump = True // disassembly or a
HexDump

dis.HexDumpCount = 8 // bytes per line 1-32
(16=default)

dis.PreferHex = 1 // addresses in hex format
dis.Addr = LabelAddr(20)
21
Debug.Show
While dis.Addr < LabelAddr(21)

Debug.Print dis // dis.DisAsm (= default)
Wend

Remarks

The disassembler converts binary code into a sequence of
assembly commands. Thus, for analysis of the disassembled
code it is necessary to know machine commands, their
binary format, and their Assembly representation. Also, it is
important to understand the structure of data
representation in computer memory, as well as to know the
structure of programs written for the Windows operating
system.

The disassembler recognizes all standard 80x86, protected,
FPU, and MMX instructions.

Any disassembly lines containing

00D70B25: FF 55 B4 call dpt -76[ebp]

indicate a call to the GFA-BASIC 32 debugger. This call is
generated before each statement to invoke a Tron
procedure if it is enabled. It also allows a program to be
debugged using the tray debugger. These calls are not
generated when $StepOff is specified.

For more information on inline assembler see Asm

See Also

Asm, Debug, Tron, $Stepoff

{Created by Sjouke Hamstra; Last updated: 13/08/2019 by James Gaite}

Scaling in Forms
Description

In general, most properties of a form are stored and
returned in pixels (there are one or two oddities such as
Width and Height which are returned in Twips, but these are
rare), with coordinates starting from zero on the x- and y-
axes. However, this may not always suit how you wish to
display controls and GDI objects in a form and so, in
common with Visual Basic, GFABASIC32 offers the option to
create a customised coordinate system, or Scale, so the
form better suits what you, as the programmer, which to
achieve.

Scaling is implemented by the changing of the scaling factor
- the size of the standard unit of measurement - and of the
starting coordinates on one or both axes. In addition,
changes can be made to scaling at any point of the drawing
of the form: those objects drawn before the changes keep
their original scaling whilst those drawn afterwards adopt
the new attributes.

Note: For form scaling to affect OCX Controls, the OcxScale
property of the form must be set to True.

Changing Scaling Factors

ScaleMX, ScaleMY properties Show

ScaleWidth, ScaleHeight properties Show

ScaleMode property and ScaleMode$ function
Show

javascript:pr("ScaleMXhl","ScaleMX","Hide","Show","block")
javascript:pr("ScaleWidthhl","ScaleWidth","Hide","Show","block")
javascript:pr("ScaleModehl","ScaleMode","Hide","Show","block")

Changing Starting Coordinates

ScaleLeft, ScaleTop properties Show

javascript:pr("ScaleLefthl","ScaleLeft","Hide","Show","block")

Changing Both

Scale method Show

ScaleMMOO function Show

javascript:pr("Scalehl","Scale","Hide","Show","block")
javascript:pr("ScaleMMOOhl","ScaleMMOO","Hide","Show","block")

Manual Scaling & Conversion

If you do not wish to permanently affect the scaling factor
of a form, GFABASIC32 has numerous functions that allow
you to perform one-off conversion between different
measurement types, some of which are listed below:

ScaleX, ScaleY

These functions allow conversion
between Twips, Points, Pixels,
Characters, Inches, Millimetres,
Centimetres, and HiMetrics; in addition,
when used in a scaled form, they can
convert between the current user-
defined scaling and the standard
measurements listed above.

TwipsPerHimet,
HimetsPerTwips

Screen object properties, these allow
conversion between Twips and
HiMetrics.

HimetsToPixelX,
HimetsToPixelY,
PixelsToHimetX,
PixelsToHimetY

Built-in functions that convert between
HiMetrics and Pixels on both the X and Y
planes.

TwipsPerPixelX,
TwipsPerPixelY,
PixelsToTwipX,
PixelsToTwipY

The first two are Screen and Form
based properties, the last two built-in
functions: all allow conversion from
Pixels to Twips along the specified plane
or axis.

PixelsPerTwipX,
PixelsPerTwipY,
TwipsToPixelX,
TwipsToPixelY

As with those above but converting from
Twips to Pixels.

{Created by James Gaite; Last updated: 08/03/2018 by James Gaite}

Line Command
Purpose

Draws a line on the screen.

Syntax

Line x1, y1, x2, y2 [,[color] [[,B | BF]]

Line (x1, y1) - (x2, y2) [,[color] [[,B | BF]]

Line x1, y1 To x2, y2 [,[color] [[,B | BF]]

Line - (x2, y2) [[,color] [,[B | BF]]

Line To x2, y2[[,color] [,[B | BF]]

Line [Step] x1, y1, [Step] x2, y2 [,[color] [[,B | BF]]

x1, y1, x2, y2:Single exp
color:iexp

Description

Line x1, y1, x2, y2 draws a line on the screen from the
point with coordinates x1,y1 to the point with coordinates
x2,y2. The origins of the coordinate system are in the upper
left corner of the screen.

Step - Optional. Keyword specifying that the starting point
coordinates are relative to the current graphics position
given by the CurrentX and CurrentY properties

color - Optional. Long integer value indicating the RGB
color used to draw the line. If omitted, the ForeColor
property setting is used. You can use the RGB function or
QBColor function to specify the color.

B - Optional. If included, causes a box to be drawn using
the coordinates to specify opposite corners of the box.

F - Optional. If the B option is used, the F option specifies
that the box is filled with the same color used to draw the
box. You cannot use F without B. If B is used without F, the
box is filled with the current Color and DefFill. The default
value for F is transparent.

Example

OpenW # 1
Local i%
Color Rand(_C) - 1
For i% = 0 To 100 Step 2
Line 0, 0, Rand(_X), Rand(_Y)

Next i%

Draws lines as rays emanating from 0,0.

Remarks

The width, style, and color of the line can be defined using
DefLine and Color, RGBColor, QBColor, BkColor
commands.

Line (x1, y1) - (x2, y2) ,, BF is similar to PBox x1,y1, x2,
y2

When Line executes, the CurrentX and CurrentY
properties are set to the end point specified by the
arguments.

See Also

Draw, Color, RGBColor, QBColor, BkColor, PBox, Box

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Box, PBox Commands
Purpose

Draws a rectangle.

Syntax

Box x1,y1,x2,y2
Box x1,y1 To x2,y2
Box x1,y1, Step w,h

PBox x1,y1,x2,y2
PBox x1,y1 To x2,y2
PBox x1,y1, Step w,h

x1,y1,x2,y2,w,h : single exp

Description

Box x1,y1,x2,y2 and Box x1,y1 To x2,y2 both draw a
rectangle with the diagonally opposite corner coordinates at
x1,y1 (upper left) and x2,y2 (lower right), while Box x1,y1
Step w,h also draws a rectangle but with top left coordinate
x1,y1 and a width of w and height of h.

The width of the line drawn depends on the setting of the
DefLine command, while the way a line or box is drawn on
the background depends on the setting of the DrawMode
and BkColor properties.

The PBox command acts very much the same, except that
the boxes drawn are filled with a pattern defined using
Deffill.

Example

OpenW 1
Box 10, 10, 100, 100
DefLine 1
Box 110, 10, Step 90, 90
PBox 10, 110, 100, 200
DefFill 5 : DefLine 0
PBox 110, 110, Step 90, 90

See Also

BkColor, DefFill, DefLine, DrawMode, RBox, PRBox, Box3D,
PBox3D, PolyLine, PolyFill

{Created by Sjouke Hamstra; Last updated: 22/06/2017 by James Gaite}

Color Command
Purpose

Sets RGB value for the drawing and background color.

Syntax

Color f%, b%

f%, b%integer expression

Description

f% specifies the RGB color for the foreground and b% the
background color to be used for drawing.

Color is the same as ForeColor and BkColor.

Example

Local Int n
For n = 1 To 4
Print "GFABasic32"
Color Rand(_C) + 1, colBackGround

Next n

See Also

SysCol, RGBColor, QBColor, ForeColor, BkColor

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

QBColor Function
Purpose

Sets the foreground and background color of a Form.

Syntax

QBColor fore, back

rgb = QBColor(index)

fore, back, index, rgb:iexp

Description

QBColor sets a color from the standard 16 VGA colors. The
arguments fore and back must specify a value from 0 to 15.

The function QBColor(index) returns the RGB-value for the
specified VGA color with index.

The arguments fore, back and index can be one of:

0 - black

1 - dark red

2 - dark green

3 - yellow-green

4 - dark blue

5 - blue-red

6 - green-grey

7 - bright grey

8 - dark grey

9 - bright red

10 - bright green

11 - bright yellow

12 - bright blue

13 - magenta

14 - turquoise

15 - white

Example

// draw all 16 colors in a color table
OpenW 1
Local i%, a%, b%
a% = _X / 8
For i% = 0 To 7
QBColor i%
PBox i% * a%, 0, (i% + 1) * a%, _Y / 2

Next i%
For i% = 8 To 15
QBColor i%
PBox (i% - 8) * a%, _Y / 2, i% * a%, _Y

Next i%
Do
Sleep

Until Me Is Nothing

Remarks

In contrast to earlier GFABASIC versions, the Color
command takes rgb color values rather than an index in the
VGA color table. Instead of using the old Color index
statement, you can now use QBColor in either of two ways.

Color QBColor(7)
QBColor 7

See Also

Color, RGBColor, SysCol

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

AutoRedraw, Image
Properties
Purpose

AutoRedraw creates a persistent memory bitmap and sets
the output from graphic commands to the bitmap. The
Image property returns the bitmap as Picture object.

Syntax

[Form.]AutoRedraw [= iexp]

Set pic = Form.Image

pic:Picture Object

Description

Enables automatic repainting of a Form object. Graphics
and text drawn using GFA-BASIC 32 commands are written
to both the screen and to an image stored in memory.
Windows API functions should use the special memory
device context hDC2 handle to draw on the memory
bitmap.

AutoRedraw
= 0

disable

AutoRedraw
= 1

device dependent bitmap

AutoRedraw
= 2

device independent
bitmap (DIB)

In contrast with VB, the Form object does receive Paint
events when AutoRedraw is enabled. The client area is
repainted when necessary using the image stored in
memory, but additional drawing can take place in the Paint
event sub. The graphic output in the Paint event is, of
course, drawn in the AutoRedraw bitmap as well.

The AutoRedraw image can be obtained using the Image
property. The Image and Picture properties are normally
used when assigning values to other properties, when
saving with the SavePicture statement, or when placing
something on the Clipboard. You can't assign these to a
temporary variable, other than the Picture data type.
There is no image when AutoRedraw = 0.

Example

OpenW 1
AutoRedraw = 2 // a DIB
PBox 10, 10, _X - 20, _Y - 40
Print
Print HimetsToPixelX(Me.Image.Width)
Print HimetsToPixelY(Me.Image.Height)
Do
Sleep

Until IsNothing(Me)

Sub Win_1_Paint
Text 0, 0, "Paint"

EndSub

Remarks

AutoRedraw is a property of the Form object type. Used
without a Form object the current active form (Me) is
affected.

If AutoRedraw = 1 or 2, there exist a _DC2, a memory
device context. If AutoRedraw = 0 _DC2 = Null.

Note AutoRedraw does not have a Boolean type, you
should not test for AutoRedraw == True. True represents
-1 and not 1 or 2, which are valid values.

See Also

Form, Picture, _DC2

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

CreateObject Function
Purpose

Creates and returns a reference to an OLE object.

Syntax

Set objectvariable = CreateObject("progID",
["servername"])

Description

You can use the CreateObject function in a Set statement
to create a new object and assign an object reference to an
object variable. You must specify the object's programmatic
identifier as an argument to the function, and the object
you want to access must be externally creatable.

The progID argument is usually the fully qualified class
name of the object being created; for example,
Word.Document. However, progID can be different from the
class name. For example, the progID for a Microsoft Excel
object is "Sheet" rather than "Worksheet." The optional
servername argument can be specified to create an object
on a remote machine across a network. It takes the
Machine Name portion of a share name. For example, with a
network share named \\MyServer\Public, the servername
argument would be "MyServer."

The following code example starts Microsoft Excel (if
Microsoft Excel is not already running) and establishes the
variable xlApp to refer to an object of the Application class.

The argument "Excel.Application" fully qualifies Application
as a class defined by Microsoft Excel:

Dim xlApp As Object

Set xlApp = CreateObject("Excel.Application")

Example

' Declare an object variable to hold the object
' reference. Dim as Object causes late binding.
Dim ExcelSheet As Object
Set ExcelSheet = CreateObject("Excel.Sheet")
' Make Excel visible through the Application
object.

ExcelSheet.Application.Visible = True
' Place some text in the first cell of the sheet.
ExcelSheet.Worksheets("Sheet1").Range("A1").Value
= "This is column A, row 1"

' Save the sheet to test.xls in the application
directory.

ExcelSheet.SaveAs App.Path & "\TEST.xls"
' Close Excel with the Quit method on the
Application object.

ExcelSheet.Application.Quit
' Release the object variable.
Set ExcelSheet = Nothing
' Tidy up line
Kill App.Path & "\TEST.xls"

This code starts the application creating the object, in this
case, a Microsoft Excel spreadsheet. Once an object is
created, you reference it in code using the object variable
you defined. Then, you access properties and methods of
the new object using the object variable, ExcelSheet, and
other Microsoft Excel objects, including the Application
object and the Cells collection.

For those who do not have Microsoft Excel, the following
example invokes an instance of the ubiquitous Internet
Explorer:

// Dim a generic object variable
Dim ie As Object
// Assign a new occurence of Internet Explorer to
the object

Set ie =
CreateObject("InternetExplorer.Application")

// Use IE's in-built APIs to manipulate the object
ie.navigate
"http://www.gfabasic32.blogspot.co.uk/"

ie.visible = True
// Create an alternative means of closing Internet
Explorer

OpenW Center 1, , , 130, 90 : Win_1.ControlBox =
False

Ocx Command cmd = "Close IE", 10, 10, 100, 22
Do : Sleep : Until Win_1 Is Nothing

Sub cmd_Click
Try
ie.quit

Catch
// RPC Error - Internet Explorer already closed

EndCatch
CloseW 1
Set ie = Nothing

EndSub

Remarks

See Also

Automation, GetObject

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

App Object
Purpose

The App object is a global COM object accessed with the
App keyword.

Syntax

App

Description

App determines or specifies information about the
application's title, version information, the path, and name
of its executable file.

There can be one App object only. You cannot create
another App object like:

Dim MyApp As New App

You can however assign the App object to a variable of type
App. By setting another object variable to the same object,
the reference count for that object is incremented. After
using the object variable it should be set to Nothing to
decrement the reference count.

Dim MyApp As App ' a variable of Type App
Set MyApp = App ' set to global App
' use it
Set MyApp = Nothing

There would be little use for this, though.

Properties/Methods

Arguments | AvailPageFile | AvailPhys | AvailVirtual |
Comments | CompanyName | FileDescription | FileName |
FileVersion | Forms | hInstance | InternalName |
LegalCopyright | LegalTrademarks | Major | MajorRevision |
MemoryLoad | Minor | Name | OriginalFilename | Path |
PrivateBuild | ProdMajor | ProdMajorRevision | ProdMinor |
ProdRevision | ProductName | ProductVersion | Revision |
scArguments | scClear | scCommonPrograms |
scCommonStartMenu | scDescription | scDirectory |
scHotkey | scIconIndex | scIconPath | scPath | scPrograms
| scRead | scShowCmd | scSpecialDir | scStartMenu |
scWrite | SpecialBuild | TotalPageFile | TotalPhys |
TotalVirtual | WinCompany | WinUser

Known Issues

Similar to mAlloc(-1) through to mAlloc(-4),
AvailPageFile, AvailPhys, TotalPageFile and TotalPhys
are currently broken in most versions of Windows after XP
SP3. See the mAlloc() page for the workaround.

See Also

Screen, mAlloc()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Screen Object
Purpose

Returns information about the desktop and other OS
settings.

Syntax

Screen

Description

Screen retrieves various system metrics (widths and
heights of display elements) and system configuration
settings. Most of the properties conform to the
GetSystemMetrics API function or its GFA-BASIC 32
counterpart SysMetric(). However, these functions return
all values in pixels, where the Screen object returns some
properties in Twips. In addition, there are quite some
properties and methods (GetDC, Fonts) not found with the
SysMetric function.

Arrange Integer Specifies how the
system arranged
minimized windows

CleanBoot Integer Specifies how the
system was started: 0
Normal boot, 1 Fail-
safe boot, 2 Fail-safe
with network boot

cMetrics Integer Number value for the
parameter

GetSystemMetrics
cMouseButtons Integer Number of buttons on

mouse (2,3 or 0)
cxBorder, cyBorder Integer Width and height, in

pixels, of a window
border.

cxCursor, cyCursor Integer Width and height, in
pixels, of a cursor.

cxDlgFrame,
cyDlgFrame

Integer Thickness, in pixels, of
the frame around the
perimeter of a window
that has a caption but
is not sizable.

cxDoubleClk,
cyDoubleClk

Integer Width and height, in
pixels, of the rectangle
around the location of a
first click in a double-
click sequence. The
second click must occur
within this rectangle for
the system to consider
the two clicks a double-
click.

cxDrag, cyDrag Integer Width and height, in
pixels, of a rectangle
centered on a drag
point to allow for
limited movement of
the mouse pointer
before a drag operation
begins.

cxEdge, cyEdge Integer Dimensions, in pixels,
of a 3-D border.

cxFixedFrame, Integer Thickness, in pixels, of

cyFixedFrame the frame around the
perimeter of a window
that has a caption but
is not sizable.

cxFrame, cyFrame Integer Thickness, in pixels, of
the sizing border
around the perimeter of
a window that can be
resized.

cxFullScreen,
cyFullScreen

Integer Width and height of the
client area for a full-
screen

cxHScroll, cyHScroll Integer Width, in pixels, of the
arrow bitmap on a
horizontal scroll bar;
and height, in pixels, of
a horizontal scroll bar.

cxHThumb,
cyVThumb

Integer Width, in pixels, of the
thumb box in a
horizontal and vertical
scroll bar.

cxIcon, cyIcon Integer The default width and
height, in pixels, of an
icon.

cxIconSpacing,
cyIconSpacing

Integer Dimensions, in pixels,
of a grid cell for items
in large icon view.

cxsmIcon,
cysmIcon

Integer Recommended
dimensions, in pixels,
of a small icon. Small
icons typically appear
in window captions and
in small icon view.

cxMaximized, Integer Default dimensions, in

cyMaximized pixels, of a maximized
top-level window on the
primary display
monitor.

cxMaxTrack,
cyMaxTrack

Integer Default maximum
dimensions, in pixels,
of a window that has a
caption and sizing
borders.

cxMenuCheck,
cyMenuCheck

Integer Dimensions of the
default menu check-
mark bitmap, in pixels.

cxMenuSize,
cyMenuSize

Integer Dimensions of menu
bar buttons

cxMin, cyMin Integer Minimum width and
height of a window, in
pixels.

cxMinimized,
cyMinimized

Integer Dimensions of a
minimized window, in
pixels

cxMinSpacing,
cyMinSpacing

Integer Dimensions of a grid
cell for a minimized
window, in pixels.

cxMinTrack,
cyMinTrack

Integer Minimum tracking width
and height (size) of a
window, in pixels.

cxScreen, cyScreen Integer Width and height, in
pixels, of the screen of
the primary display
monitor (same as x, y).

cxSize, cySize Integer Width and height of a
button in a window's
caption or title bar, in
pixels.

cxSizeFrame,
cySizeFrame

Integer Thickness, in pixels, of
the sizing border
around the perimeter of
a window that can be
resized.

cxsmSize, cysmSize Integer Dimensions, in pixels,
of small caption
buttons.

cxVScroll, cyVScroll Integer Width, in pixels, of a
vertical scroll bar; and
height, in pixels, of the
arrow bitmap on a
vertical scroll bar.

cyCaption Integer The height of the
standard window
caption in pixels.

cyKanjiWindow Integer For double-byte
character set versions
of the system, this is
the height, in pixels, of
the Kanji window at the
bottom of the screen.

CommCtlVersion Double DLL version number of
CommCtl.dll

dbcsEnabled Boolean TRUE if User32.dll
supports DBCS

DEBUG Boolean TRUE if the debug
version of User.exe is
installed

FontCount Integer Number of installed
fonts

Fonts String Name of installed fonts,
i = 0 to
Screen.FontCount -1

GetDC, ReleaseDC Integer Returns and releases
DC of desktop window.
Call ReleaseDC when
ready.

Height, Width Integer Width and height, in
Twips (OCX
compatible), of the
screen of the primary
display monitor.

HimetsPerTwip,
TwipsPerHimet

Double Conversion factor for
Himets to twips.

hWnd Integer Desktop window handle
MenuDropAlignment Boolean TRUE if drop-down

menus are right-aligned
MidEastEnabled Boolean TRUE if the system is

enabled for Hebrew and
Arabic languages.

MouseCursor Object Sets and returns a
MouseCursor object.

MouseIcon Object Sets and returns a
MouseIcon object

MousePointer Integer Sets and returns the
mouse to use.

MousePresent Boolean True if mouse is
present

MouseX, MouseY Integer Mouse screen x, y
position in pixels

MouseK Integer Mouse button state (1
= left, 2 = right, 4 =
middle)

Network Integer Least significant bit is
set if a network is
present; otherwise, it is
cleared.

PenWindows Boolean TRUE the Microsoft
Windows for Pen
computing extensions
are installed.

PixelsPerTwipX,
PixelsPerTwipY

Double Conversion factor for
pixels to twips.

Secure Boolean TRUE if security is
present.

ShellVersion Double DLL version number of
Shell32.dll

ShiftKeys Integer Shift, Ctrl, and Alt
status. Returns a bit
mask meaning
 0 - 0x000001 - Shift
 1 - 0x000001 -
Control
 2 - 0x000001 - Alt
 3 - 0x000001 - Caps
Lock
 4 - 0x000020 -
Windows key left
 5 - 0x000020 -
Windows key right
 6 - 0x000040 - Menu
 8 - 0x000100 - Shift
left
 9 - 0x000200 -
Control left
 10 - 0x000400 - Alt
left
 12 - 0x001000 - Shift
right
 13 - 0x002000 -
Control Right
 14 - 0x004000 - Alt

right
 16 - 0x010000 -
Insert active
 17 - 0x020000 - Num
Lock active
 18 - 0x040000 -
Scroll Lock active
 19 - 0x080000 - Alt
active
 20 - 0x100000 -
Windows key left active
 21 - 0x200000 -
Windows key right
active
 22 - 0x400000 -
Application key active

ShowSounds Boolean TRUE to present
information visually in
situations where it
would otherwise
present the information
only in audible form.

SlowMachine Boolean TRUE if the computer
has a low-end (slow)
processor.

SwapButton Boolean Buttons swapped?
TwipsPerPixelX,
TwipsPerPixelY

Double Conversion factor for
twips to pixels.

WinVer String String containing
Windows version

WorkLeft, WorkTop,
WorkWidth ,
WorkHeight

Integer Screen work area in
pixels. (When Me =
Nothing, _X and _Y
return WorkWidth and

WorkHeight
respectively.)

x, y Integer Width and height, in
pixels, of the screen of
the primary display
monitor (same as
cxScreen, cyScreen).

Event

Screen_KeyPreview

Example

Screen.ShiftKeys

PrintScroll = 1
SetFont SYSTEM_FIXED_FONT
Local i%
Do
i = Screen.ShiftKeys
Print Bin$(i, 23); " ";
If Btst(i, 0) Then Print "Shift ";
If Btst(i, 1) Then Print "Control ";
If Btst(i, 2) Then Print "Alt+ ";
If Btst(i, 3) Then Print "CapsLock ";
If Btst(i, 4) Then Print "LWin+ ";
If Btst(i, 5) Then Print "RWin+ ";
If Btst(i, 6) Then Print "Appl+ ";
If Btst(i, 8) Then Print "LShift ";
If Btst(i, 9) Then Print "LControl ";
If Btst(i, 10) Then Print "LAlt ";
If Btst(i, 12) Then Print "RShift ";
If Btst(i, 13) Then Print "RControl ";
If Btst(i, 14) Then Print "RAlt ";
If Btst(i, 16) Then Print "Insert* ";

If Btst(i, 17) Then Print "NumLock* ";
If Btst(i, 18) Then Print "ScrollLock* ";
If Btst(i, 19) Then Print "Alt* ";
If Btst(i, 20) Then Print "LWin* ";
If Btst(i, 21) Then Print "RWin* ";
If Btst(i, 22) Then Print "Appl* ";
Print
DoEvents

Loop Until Me Is Nothing

See Also

MouseCursor, MouseIcon, MousePointer

{Created by Sjouke Hamstra; Last updated: 13/08/2019 by James Gaite}

Err Object
Purpose

Contains information about runtime errors. Accepts the
Raise and Clear methods for generating and clearing run-
time errors.

Syntax

Err [.{property | method}]

Description

The Err object is an intrinsic object with global scope, there
is no need to create an instance of it in your code. The
properties of the Err object are set by the generator of an
error - GFA-BASIC 32, an Automation object, or the
programmer.

The default property of the Err object is Number. Err
contains an integer.

See Err$ for a list of errors and exception codes.

When a run-time error occurs, the properties of the Err
object are filled with information that uniquely identifies the
error and information that can be used to handle it. To
generate a run-time error in your code, use the Raise
method.

Properties

Number | Description | HelpContext | HelpFile | Source |
LastDllError | HResult | Exception

Methods

Clear | Raise | Throw

Example

The following code shows how to handle error # 46 ("Error
with object"), which is often set after an error with an
automation object.

ObjectErr()

Sub ObjectErr()
Dim ObjectRef As Object, Msg$
' Try to start non existent object
Try
Set ObjectRef = GetObject("MyWord.Basic")

Catch
If Err.Number = 46
Msg = "There was an error attempting to open
the Automation object!" + _
#10 "Description: " + Err.Description + _
#10 "HResult: " + Hex(Err.HResult) + _
#10 "Source: " + Err.Source

MsgBox Msg
End If

EndCatch
End Sub

The next example shows two different ways how to 'throw'
custom or user-defined errors:

Try
CustomError1()

Catch
~MsgBox("Error" & Err & ": " & Err$, 0,
Err.Source)

EndCatch
Try
CustomError2()

Catch
~MsgBox("Error" & Err.Number & ": " &
Err.Description, 0, Err.Source)

EndCatch

Proc CustomError1()
Err.Number = 153
Err.Source = "Custom Error1"
Err.Description = "Random Error"
Err.Throw

EndProcedure

Proc CustomError2()
Err.Raise 153, "Custom Error2", "User Defined
Error"

EndProcedure

Remarks

The nature of the system Err object/value is one of the big
changes in GFA-BASIC 32. In previous version of GFA-
BASIC, the Err value was a global system variable of type
integer. In GFA-BASIC 32, it is a COM object with a default
Number property (a long integer). As a result, the Err
statement behaves exactly as in GFA-BASIC 16, because it
is a shortcut for Err.Number.

The GFA-BASIC 32 error numbers are in the range from 0-
152. See Err$ for a list of errors and exception codes and
strings.

See Also

Error, Err$(), Try

{Created by Sjouke Hamstra; Last updated: 11/01/2017 by James Gaite}

CommDlg Ocx
Purpose

The CommDlg Ocx provides a standard set of dialog boxes
for operations such as opening and saving files, setting print
options, and selecting colors and fonts. The control also has
the ability to display help.

Syntax

CommDlg

Description

The CommDlg object provides an interface to the routines
in the Microsoft Windows dynamic-link library Commdlg.dll.

You use the CommDlg object in your application by adding
it to a form and setting its properties. In code a CommDlg
object is created using the Ocx command or the As New
clause in a Dim statement.

Ocx CommDlg cd

Dim cd As New CommDlg

The dialog displayed by the Ocx control is determined by
the methods of the control. The CommDlg object can
display the following dialogs using the specified method.

ShowOpen Show Open Dialog Box
ShowSave Show Save As Dialog Box
ShowColor Show Color Dialog Box

ShowFont Show Font Dialog Box
ShowPageSetup Show Page Setup Dialog Box
ShowPrint Show Print or Print Options Dialog Box
ShowHelp Invokes the Windows Help Engine
ShowFolders Show Browse for Folders Dialog Box

There is no way to specify where a dialog box is displayed.

Properties

CancelError | Color | Colors | DefExt | DevNames | Enabled
| FileName | FileTitle | Filter | FilterIndex | Flags | Font |
FontBold | FontItalic | FontStrikethru | FontUnderline |
FontName | FontSize | FromPage | hDC | HelpCommand |
HelpContext | HelpFile | HelpKey | IniDir | Left | Max | Min |
Name | Parent | pgBottom | pgLeft | pgMinBottom |
pgMinLeft | pgMinRight | pgMinRight | pgMinTop | pgScale |
pgTop | PointSize | Tag | Title | Top | ToPage

Methods

AboutBox | ShowColor | ShowFolders | ShowFont |
ShowHelp | ShowOpen | ShowPageSetup | ShowPrint |
ShowSave

Events

OnHelp

Syntax:

Sub CommDlg_OnHelp

Occurs when the user selects the Help button on the
common dialog box. The Help button is displayed if the

Flags property includes the Help button flag bit.

Example

Ocx CommDlg cd

cd.Flags = cdfSHowHelp

cd.ShowFont

Sub cd_OnHelp

MsgBox "Help clicked"

EndSub

See Also

Dlg Open, Dlg Save, Dlg Color, Dlg Font, Dlg Print

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, Form, Frame,
Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/commdlg.htm

Printer Object
Purpose

The Printer object enables you to communicate with a
system printer (initially the default system printer).

Syntax

Printer

Description

The Printer object controls the current selected printer
through its properties and methods. By default, the Printer
object controls the default system printer, but this can be
changed by using the CommDlg methods
ShowPageSetup and ShowPrint, which allows the user to
select a printer, or by using the SetPrinterByName
command.

SetPrinterByName invokes a hidden Set Printer =
statement.

After selecting a printer with ShowPrint, the CommDlg
object must be assigned to the Printer object (see
example). Once the Printer object is setup the printer
options can be adjusted using the properties and methods.
However, this doesn't mean that the printer itself is
initialized. To initialize the printer and select the color, font,
and sizes, the print job must be started. The initialization
occurs when StartDoc is executed or when Lprint is
invoked. Lprint ""; initializes the printer without moving

the current output position (for an example see
PrintForm).

Note - To both read and write the properties of an individual
printer, you must first make that printer the default printer
for the application.

Example 1

// Select a printer and use landscape mode.
OpenW 1
Ocx CommDlg cd
cd.ShowPrint // Open Printer dialog box
Set Printer = cd // change Printer object
Printer.StartDoc "Test" // initialize
Printer.Orientation = 1 // portrait mode
Output = Printer // change output
Printer.StartPage
FontName = "courier new"// current output
FontSize = 72
Print "Hello"
Printer.EndPage
Printer.Orientation = 2 // landscape
Printer.StartPage
Print "Hello"
Printer.EndPage
Printer.EndDoc
Output = Win_1

Properties

BackColor | BkColor | CurrentX | CurrentY | DefHeight |
DefLeft | DefTop | DefWidth | DeviceName | dmCollate |
dmColor | dmCopies | dmPaperBin | dmPaperBinName |
dmPaperLength | dmPaperSize | dmPaperSizeName |
dmPaperSizeX | dmPaperSizeY | dmPaperWidth | dmQuality

| dmYRes | Duplex | DrawMode | DriverName | Font |
FontCount | FontBold | FontItalic | FontName | FontSize |
FontStrikethru | FontTransparent | FontUnderline | Fonts |
ForeColor | hDC | Height | Left | Name | Orientation | Page
| PageWidth | PageHeight | PaperWidth | PaperHeight |
PrintScroll | PrintWrap | PortName | ScaleHeight | ScaleLeft
| ScaleMode | ScaleTop | ScaleWidth | Tag | Top | Width |
Zoom

Methods

AbortDoc | EndDoc | EndPage | NewFrame | PaintPicture |
Scale | ScaleX | ScaleY | SetFont | StartPage | TextHeight |
TextWidth | TwipPerPixelX | TwipPerPixelY | TwipsPerPixelX |
TwipsPerPixelY | PixelsPerTwipX | PixelsPerTwipY

Events

AbortProc, AutoNewFrame

Remarks

To gather information about all the available printers on the
system use the PrinterCount, PrinterName, and
PrinterInfo properties of the App object.

See Also

Form, CommDlg, SetPrinterByName, PrinterCount,
PrinterName, PrinterInfo

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Comments
Purpose

Program comments.

Syntax

Rem[ark] Comment ° Comment
Code ' Comment
Code // Comment
Code (* Comment [*) Code]
Code /* Comment [*/ Code]

Description

Comments are used in programming to leave explanatory
notes within the program to help programmers (and maybe
yourself in the future) understand how the code works
and/or what it does.

There are three types of comments that can be used in
GFA-BASIC:

1. Rem, Remark - This group can only be used to remark
or comment an entire line (or section of a line enclosed
by colons). No syntax control is performed on this line
and all subsequent characters are no longer interpreted
as commands, function, or variables. These are classic
BASIC commands going back many years.

2. ', // - These comments can be inserted at the
beginning or in the middle of a line, and all text
following is considered part of the comment. ' is an old
BASIC and // a C form of commenting.

3. (*...*), /*...*/ - These two types can be used to
bracket comments, meaning that they can be used
either at the start or in the middle of a line and may
have code following them; however, unlike in other
languages, these are not multi-line comments (GFA-
BASIC does not have a mutli-line comment option). The
first element of both these types can also be used in the
same way as those in the second group. (*...*) comes
from Pascal and AppleScript and /*...*/ is used in C,
Java and SQL.

In addition to the above types, there is the GFA specific
comment marker - ° - which acts in a similar way to Rem
and Remark. This comment marker can be added manually
to the beginning of any line OR by blocking two or more
lines in the IDE (blocking just one line comments the whole
program) and pressing Ctrl-I.

Example

Remark This comment takes up an entire line...
Rem ...as does this shortened version.
Local n% ' These comments can be used after a
command...

n% = 1 // ...but can have not code after them.
Print (* This comment and... *) n% /* ...this one,
can be used mid-code */ + 10

{Created by Sjouke Hamstra; Last updated: 27/01/2016 by James Gaite}

Setting OCX Properties
The next step is to set properties for the objects you've
created. The Properties window provides an easy way to set
properties for all objects on a form. When the OCX
Properties window isn't visible, choose the Properties
command from the View menu, or use the context menu for
the control.

The Properties window consists of two parts:

Properties list - The left column displays all of the properties
for the selected object. You can edit and view settings in the

right column. See also Using OCX Controls

Events list - The lower part displays all event subs for the
OCX object. After changing the (Name) property the names
of the event subs are adjusted as well. Any implemented
event sub is displayed in bold. Double clicking an event will
add the procedure header at the end of the source code.

Mnemonic key

Normally, keyboard users move the input focus from one
control to another in a form or dialog box with the TAB and
ARROW keys. However, you can define a mnemonic key that
allows users to choose a control by pressing a single key.
(All the mnemonics within a form/dialog box should be
unique.)

To define a mnemonic key for a control with a visible
caption (pushbuttons, check boxes, and radio buttons)
select the control and in the Properties window in the
Caption box, type an ampersand (&) in front of the letter
you want as the mnemonic for that control. An underline
appears in the displayed caption to indicate the mnemonic
key.

To define a mnemonic for a control without a visible caption
make a caption for the control by using a static text control.
In the static text caption, type an ampersand (&) in front of
the letter you want as the mnemonic. Make sure the static
text control immediately precedes the control it labels in the
tab order.

Next

Using OCX Controls

See Also

The Files tab, The Procs tab, The Imports tab

{Created by Sjouke Hamstra; Last updated: 24/02/2019 by James Gaite}

Boomarks & Marks
{Created by James Gaite; Last updated: 24/02/2019 by James Gaite}

Keyboard Accelerators
Moving the cursor

The editing in the GFA-BASIC editor is supported by a whole
range of keyboard commands. Using the cursor block
results in the following:

Arrow left move cursor one character left
Arrow right move cursor one character right
Arrow up move cursor one line up
Arrow down move cursor one line down
End move cursor to line end
Home move cursor to the first character of

the line. Press twice to place the cursor
at the beginning of the line.

Pg up scroll one page up
Pg down scroll one page down
Ctrl + End move cursor to end of file
Ctrl + Home move cursor to start of file

Holding down Shift together with the keyboard shortcuts
above will result in selecting a range of characters, words,
and lines.

The cursor can also be moved by using the mouse. To do
this, move the mouse pointer to the desired position and
click the left mouse button once.

Unnamed bookmarks

Shift + Ctrl +
Up

Set unnamed bookmark

Shift + Ctrl +
Down

Set unnamed bookmark

Ctrl + Arrow
Up

move cursor up to line with bookmark

Ctrl + Arrow
Down

move cursor down to line with next
bookmark

Mouse click with left mouse button in the
margin in the editor to set or remove a
boomark.

Control Keys

A range of editor functions can be invoked by pressing
together the control key (Ctrl,^) and a character, without
having to open the corresponding menu first. Furthermore,
you can invoke editor functions which are not implemented
in the menus as follows:

Ctrl + Y deletes the line with the cursor.
Ctrl + U performs an "undelete line". The last deleted

line (Ctrl + Y) is inserted back into the text at
the current position.
After a Ctrl+U the recovered line remains in
the internal buffer. This means that after a
Ctrl+Y the function Ctrl+U can be invoked
repeatedly to perform a primitive copy of the
deleted line.

Ctrl + P deletes the remainder of the current line from
cursor position.

Ctrl + O inserts the last portion of a line previously
deleted with Ctrl+P at the current cursor
position.

Ctrl + N inserts a blank line above the line with the
cursor.

Ctrl + R Replace text. Use Ctrl+F3 to replace the next
occurrence of the text. Use Ctrl + Shift + F3 to
replace the previous occurrence.

Ctrl + A Selects all text
Ctrl + C Copy selection to clipboard.

(Ctrl + Delete)
Ctrl + X Cut selection to clipboard. (Shift + Delete)
Ctrl + V Paste clipboard contents (Shift + Insert)
Ctrl + F Search text. Use F3 to find the next occurrence

of the text. Use Shift + F3 to find the previous
occurrence.

Ctrl + Z Undo (Ctrl + Backspace).
Ctrl + K Invokes the set bookmarks context menu.
Ctrl + Q Invokes the bookmarks selection context

menu.
Ctrl + G invokes a Dialog box for entry or a line

number. The cursor then jumps to this line.
Ctrl + T Transpose characters (swaps the character at

the left with the character at the right).

Function keys

F1 Keyword Help
Shift + F1 Index Help
Alt + F2 New .chm version of the Help File (this

required the GfaNewHelpAF2.gll extension
to be added to the IDE)

F3 Next Find
Shift + F3 Previous Find
Ctrl + F3 Next Replace
Ctrl + Shift
+ F3

Previous Replace

F4 Next line containing a syntax error

Shift + F4 Previous line containing a syntax error
F5 Compile and Run
Shift + F5 Compile only (Test). This performs a full

compile to test whether all loops,
subroutines, and conditional statements of
the program are complete. It also collects
all variables and checks their correct use.

F6 Cycle through the sidebar tabs from left to
right. Activates the sidebar when it isn't
visible.

Shift + F6 Cycle through the sidebar tabs from right
to left. Activates the sidebar when it isn't
visible.

Ctrl + F6 1. Cycle through the sidebar and code
editor. Activates the sidebar when it isn't
visible.
2. Cycle through forms in the Form Editor.

Shift + Ctrl
+ F6

In the Form Editor cycles backwards
through the forms.

F7 Toggle between the code and form editor.
Activates the sidebar when it isn't visible.

Shift + F7 Creates a new form in the form editor.
Activates the sidebar when it isn't visible.

F10 Activate the menu bar
F11 Toggle folding of current procedure.
F12 Toggle folding of current procedure and all

below.

Alt keys

These key combinations are a shortcut for some of the
menu items.

Alt + 0 Switch to Code Editor (F7)

Alt + 1 Switch to Form Editor (F7)
Alt + 2 Enable OCX Properties sidebar
Alt + 3 Toggle Debug Output Window
Alt + 4 Split window
Alt + 5 OCX Overview for tab order (TreeView

overview of all Forms)
Alt +
Backspace

Undo (Ctrl +Z)

Alt +
Return

Properties dialog box.

Alt + Ctrl +
R

Record keys, or end recording when
recording has started.

Alt + Ctrl +
P

Play recorded keyboard macro, or pause
recording when recording has started.

Other keys

Insert Toggle between insert and overwrite
mode

Delete delete the character under cursor and
move the remainder of the line left.

Tab Indent the selected text one tab stop (8
spaces) to the right. In overwrite mode
Tab moves the cursor in multiples of 8 to
the end of the line.
TabWhen sidebar has the focus,resets
the focus to the editor window.

Ctrl + Tab Jump in multiples of 8 to the beginning
of the line.

Ctrl + Break Break program (Stop)
Ctrl + Shift +
Break

Break and continue using the debugger

Enter When in the sidebar jumps to the first

line of the selected procedure, or inserts
the text of the Import element.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

LG32 Libraries
Description

When writing programs, there are user-defined commands
and functions which may be used again and again in
different projects and, rather than having to copy and paste
the code into each new project you create that will use it (or
having to update all projects using that code when
revisions/bug fixes are made), it may be possible to put the
commands and functions in a Library which can be called
from each program that requires them.

Creating a Library Show

Loading a Library Show

Forms in a Library Show

Forms in a Library using APIs Show

Restrictions & Known Issues Show

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

javascript:pr("LG32-2hl","LG32-2","Hide","Show","block")
javascript:pr("LG32-3hl","LG32-3","Hide","Show","block")
javascript:pr("LG32-4hl","LG32-4","Hide","Show","block")
javascript:pr("LG32-5hl","LG32-5","Hide","Show","block")
javascript:pr("LG32-1hl","LG32-1","Hide","Show","block")

Creating a Control
Select a tool from the Toolbox. Then click on the position in
the form where you want the element to be placed. The
element is placed with a default size.

Sizing and moving

A small rectangular box called sizing handles appears at the
corners of the control; you'll use these sizing handles to
resize the control. You can also use the mouse, keyboard,
and menu commands to move controls, lock and unlock
control positions, and adjust their positions.

To resize a control select the control you intend to resize by
clicking it with the mouse. After the sizing handles have
appeared on the control, position the mouse pointer on a
sizing handle, and drag it until the control is the size you
choose.

To move a control use the mouse to drag the control to a
new location on the form. Or, use the Properties window to
change the Top and Left properties.

You can also use the keyboard;

Arrow keys Move OCX or Form one grid unit a time
(one grid unit is 8 pixels, or 120 or 96
twips).

Shift + Arrow
keys

Resize OCX or Form one pixel a time
(one pixel is 15 or 12 twips).

Ctrl +Shift +
Arrow keys

Resize OCX or Form one grid unit a
time.

Aligning controls

The Form editor provides layout tools that align and size
controls automatically. Many layout commands are available
only when more than one control is selected. When a
control is selected, it has a shaded border around it with
solid (active) or hollow (inactive) “sizing handles,” small
squares that appear in the selection border. When multiple
controls are selected, the dominant control has solid sizing
handles; all the other selected controls have hollow sizing
handles. You select multiple controls by holding down SHIFT
and then clicking the controls. When you are sizing or
aligning multiple controls, the Form editor uses the
“dominant control” to determine how the other controls are
sized or aligned. By default, the dominant control is the last
control selected, but you can change it.

After selecting right-click on the dominant control to display
the context menu with the tools to automatically size and
align the controls.

From the context menu, choose one of the Align-options:

Align all
to Grid

aligns the selected to the grid and will with
new movements.

Align all
not to
Grid

removes grid-alignment flag from the
selected controls.

Align left aligns the selected controls along their left
side.

Align
right

aligns the selected controls along their right
side.

Align top aligns the selected controls along their top
edges.

Align
bottom

aligns the selected controls along their
bottom edges.

You can resize a group of controls based on the size of the
dominant control. To make controls the same width, height,
or size select the controls you want to resize. Make sure the
correct dominant control is selected. The final size of the
controls in the group depends on the size of the dominant
control. From the context menu choose one of the following
commands:

Same
width

Makes them the same width as the dominant
control.

Same
height

Makes them same height.

Same
size

Makes the same size as the dominant control.

Locking

To lock all control positions, choose Lock all from the
context menu. This will lock all selected controls on the
form in their current positions so that you don't
inadvertently move them once you have them in the desired
location. This will lock controls only on the selected form;
controls on other forms are untouched. This is a toggle
command, so you can also use it to unlock control positions.
To adjust the position of locked controls, you can change
the control's Top and Left properties in the Property
window.

Tab order

Use the 'Ocx Overview' dialog box (View menu) to set the
tab order of the controls on the form. GFA-BASIC 32
determines the tab order by the order the controls are
placed on the form (there is no TabIndex property). The tab
order can be changed by dragging the controls in the 'Ocx
Overview' dialog box. If you want to prevent users from
tabbing to a particular control, you can set the TabStop
property to False for that control, but only in code.

Next:Setting OCX Properties

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Command Ocx
Purpose

Creates an Ocx Command control in the current active
form, window, or dialog.

Syntax

Ocx Command name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

Use a Command button control to begin, interrupt, or end
a process. When chosen, a Command button appears
pushed in and so is sometimes called a push button.

To display text on a Command button control, set its
Caption property. A user can always choose a Command
button by clicking it. To allow the user to choose it by
pressing ENTER, set the Default property to True. To allow
the user to choose the button by pressing ESC, set the
Cancel property of the Command button to True.

Properties

Align | Appearance | Cancel | Caption | Default | Enabled |
Font | FontBold | FontItalic | FontStrikethru | FontUnderline
| FontName | FontSize | Height, Width | HelpContextID |

hWnd | Index | Left | MouseCursor | MouseIcon |
MousePointer | Name | Picture | PushLike | TabStop | Tag |
Text | ToolTiptext | Top | Value | Visible | WhatsThisHelpID |
Width | WinStyle

Methods

DoClick | Move | Refresh | SetFocus | SetFont | TextHeight |
TextWidth | ZOrder

Events

Click | DblClick | GotFocus | LostFocus | KeyDown | KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, CommDlg, Form, Frame,
Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/_3.htm

Option Ocx
Purpose

Creates an Ocx Option control in the current active form,
window, or dialog.

Syntax

Ocx Option name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

An Option control displays an option that can be turned on
or off.

Usually, Option controls are used in an option group to
display options from which the user selects only one. You
group Option controls by drawing them inside a container
such as a Frame control, or a form. To group Option
controls in a Frame, draw the Frame first, and then draw
the Option controls inside. All Option controls within the
same container act as a single group.

The Option Ocx control has the following properties,
methods, and events.

Properties

Align | Appearance | Caption | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | Height | HelpContextID | hWnd | Index | Left |
Top | MouseCursor | MouseIcon | MousePointer | Name |
Picture | PushLike | TabStop | Tag | Text | ToolTiptext |
Value | Visible | WhatsThisHelpID | Width | WinStyle

Methods

DoClick | Move | Refresh | SetFocus | SetFont | TextHeight |
TextWidth | ZOrder

Events

Click | DblClick | GotFocus | LostFocus | KeyDown | KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove

Remarks

CheckBox and Option controls function similarly but with
an important difference: Any number of CheckBox controls
on a form can be selected at the same time. In contrast,
only one Option in a group can be selected at any given
time.

To display text next to the CheckBox, set the Caption
property. Use the Value property to determine the state of
the control-selected, cleared, or unavailable.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/option.htm

MonthView, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

CheckBox Ocx
Purpose

Creates an Ocx CheckBox control in the current active
form, window, or dialog.

Syntax

Ocx CheckBox name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A CheckBox control displays an X when selected; the X
disappears when the CheckBox is cleared. Use this control
to give the user a True/False or Yes/No option. You can use
CheckBox controls in groups to display multiple choices
from which the user can select one or more. You can also
set the value of a CheckBox programmatically with the
Value property.

The CheckBox Ocx control has the following properties,
methods, and events.

Properties

Align | Appearance | Caption | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | Height | HelpContextID | hWnd | Index | Left |

Top | MouseCursor | MouseIcon | MousePointer | Name |
Picture | PushLike | TabStop | Tag | Text | ThreeState |
ToolTiptext | Value | Visible | WhatsThisHelpID | Width |
WinStyle

Methods

DoClick | Move | Refresh | SetFocus | SetFont | TextHeight |
TextWidth | ZOrder

Events

Click | DblClick | GotFocus | LostFocus | KeyDown | KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove

Remarks

CheckBox and OptionButton controls function similarly
but with an important difference: Any number of CheckBox
controls on a form can be selected at the same time. In
contrast, only one OptionButton in a group can be
selected at any given time.

To display text next to the CheckBox, set the Caption
property. Use the Value property to determine the state of
the control-selected, cleared, or unavailable.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/checkbox.htm

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

Label Ocx
Purpose

Creates an Ocx Label control in the current active form,
window, or dialog.

Syntax

Ocx Label name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A Label control is a graphical control you can use to display
text that a user can't change directly.

You can write code that changes the text displayed by a
Label control in response to events at run time. For
example, if your application takes a few minutes to commit
a change, you can display a processing-status message in a
Label. You can also use a Label to identify a control, such
as a TextBox control, that doesn't have its own Caption
property.

You can define a character in the Caption property of the
Label as an access key. When you define an access key in a
Label control, the user can press and hold down ALT+ the
character you designate to move the focus to the next
control in the tab order.

Properties

Alignment | Appearance | BackColor | BorderStyle | Caption
| Enabled | Font | FontBold | FontItalic | FontStrikethru |
FontUnderline | FontName | FontSize | ForeColor | Height |
HelpContextID | hWnd | Index | Left | MouseCursor |
MouseIcon | MousePointer | MultiLine | Name | Parent |
TabStop | Tag | Top | ToolTiptext | Transparent | Visible |
WhatsThisHelpID | Width

Methods

HitTest | Move | Refresh | SetFont | TextHeight | TextWidth
| ZOrder

Events

Click | MouseDown | MouseUp | MouseMove

Example

OpenW Hidden 1
With Win_1
.ScaleMode = basTwips
.BackColor = colBtnFace
.Caption = "Label & TextBox"
.Height = 3900
.Left = 60
.Top = 345
.Width = 4150

EndWith
Win_1.Show
OcxScale = 1
Ocx Label lb1 = "Lbl&1:", 360, 90, 2000, 375
Ocx TextBox Text1 = "Text1", 360, 480, 3135, 375
Ocx Label lb2 = "Lbl&2:", 360, 900, 2000, 375

Ocx TextBox Text2 = "Text2", 360, 1200, 3135, 375
Ocx Label lb3 = "Lbl&3:", 360, 1700, 2000, 375
Ocx TextBox Text3 = "Text3", 360, 2040, 3135, 375
Ocx Command cmdClear = "&Clear Fields", 360, 2880,
1455, 375

.Default = True
Ocx Command cmdQuit = "&Quit", 2160, 2880, 1095,
375

.Cancel = True
Text1.SetFocus
Do
Sleep

Until Me Is Nothing

Sub cmdQuit_Click
PostMessage Win_1.hWnd, WM_CLOSE, 0, 0

End Sub

Sub cmdClear_Click
ClearTextboxes(cmdClear.Parent)

End Sub

Sub ClearTextboxes(frm As Form)
Local EditField As Control
For Each EditField In frm.Controls
If TypeOf(EditField) Is TextBox Then
EditField.Text = ""

End If
Next

End Sub

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, ListBox, ListView,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/label.htm

MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

Image Ocx
Purpose

Creates an Ocx Image control in the current active form,
window, or dialog.

Syntax

Ocx Image name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

An Image control can display a graphic. An Image control
can display a graphic from a bitmap, icon, or metafile, as
well as enhanced metafile, JPEG, or GIF files.

The Image control uses fewer system resources and
repaints faster than a Form Ocx control, but it supports
only a subset of the Form properties, events, and methods.
Use the Stretch property to determine whether the graphic
is scaled to fit the control or vice versa.

Properties

Appearance | AutoSize | BackColor | BorderStyle | Enabled
| Height | HelpContextID | hWnd | Index | Left |
MouseCursor | MouseIcon | MousePointer | Name | Parent |
Picture | Stretch | TabStop | TabStripIndex | Tag | Tile | Top

| ToolTiptext | Transparent | Visible | WhatsThisHelpID |
Width

Methods

Move | Refresh | SetFocus | ZOrder

Events

Click | GotFocus | LostFocus | KeyDown | Keyup | KeyPress
| MouseDown | MouseUp | MouseMove

Example

Local h As Handle, p As Picture
OpenW Hidden 1, , , 450, 500 : AutoRedraw = 1
BitBlt Screen.GetDC, 0, 0, 400, 400, Win_1.hDC2,
0, 0, SRCCOPY

Set Me = Win_1
Get 0, 0, 399, 399, h
Set p = CreatePicture(h, False)
Cls
Win_1.Show
Ocx Label lbl = "Partial Screenshot:", 10, 10,
100, 15

Ocx Image img = "", 10, 30, 400, 400 : Set
img.Picture = p

Do : Sleep : Until Win_1 Is Nothing

Remarks

An Image control can act as a container and can be used in
the OcxOcx command.

Note - GFA-BASIC 32 does not provide the PictureBox
control as an image container. Instead, the Form Ocx is

extended with a Picture property to act as a replacement.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/image.htm

TextBox Ocx
Purpose

Creates an Ocx TextBox control in the current active form,
window, or dialog.

Syntax

Ocx TextBox name [= text$] [, id] [, x, y, b, h] [, style%]

text$: control text
id% : control identifier
x, y, b, h : integer expression
style% : the control styles

Description

A TextBox control, sometimes called an edit field or edit
control, displays information entered at design time,
entered by the user, or assigned to the control in code at
run time.

To display multiple lines of text in a TextBox control, set
the MultiLine property to True. If a multiple-line TextBox
doesn't have a horizontal scroll bar, text wraps
automatically even when the TextBox is resized. To
customize the scroll bar combination on a TextBox, set the
ScrollBars property.

Scroll bars will always appear on the TextBox when its
MultiLine property is set to True, and its ScrollBars
property is set to anything except None (0).

If you set the MultiLine property to True, you can use the
Alignment property to set the alignment of text within the
TextBox. The text is left-justified by default. If the
MultiLine property is False, setting the Alignment
property has no effect.

Properties

Alignment | Appearance | BackColor | BorderStyle | Enabled
| Font | FontBold | FontItalic | FontStrikethru |
FontUnderline | FontName | FontSize | ForeColor | Height |
HelpContextID | HideSelection | hWnd | Index | Left |
MaxLength | MouseCursor | MouseIcon | MousePointer |
MultiLine | Name | Parent | PassWordChar | ReadOnly |
ScrollBars | SelLength | SelStart | SelText | TabStop | Tag |
Text | Top | ToolTiptext | Visible | WantSpecial |
WhatsThisHelpID | Width

Methods

DoClick | CharFromLine | ColFromChar | GetLineFromChar |
LineCount | LineFromChar | Move | Refresh | RowFromChar
| SetFont | Scroll | ScrollCaret | TextHeight | TextWidth |
ZOrder

Events

Change | Click | DblClick | GotFocus | LostFocus | KeyDown,
Keyup | KeyPress | MouseDown | MouseUp | MouseMove |
SelChange

Example

OpenW Hidden 1
With Win_1
.ScaleMode = basTwips

.BackColor = colBtnFace

.Caption = "Label & TextBox"

.Height = 3950

.Left = 60

.Top = 345

.Width = 4000
EndWith
Win_1.Show
OcxScale = 1
Ocx Label lb1 = "Lbl&1:", 360, 90, 2000, 375
Ocx TextBox Text1 = "Text1", 360, 480, 3135, 375
Ocx Label lb2 = "Lbl&2:", 360, 900, 2000, 375
Ocx TextBox Text2 = "Text2", 360, 1200, 3135, 375
Ocx Label lb3 = "Lbl&3:", 360, 1700, 2000, 375
Ocx TextBox Text3 = "Text3", 360, 2040, 3135, 375
Ocx Command cmdClear = "&Clear Fields", 360, 2880,
1455, 375

.Default = True
Ocx Command cmdQuit = "&Quit", 2160, 2880, 1095,
375

.Cancel = True
Text1.SetFocus
Do
Sleep

Until Me Is Nothing

Sub cmdQuit_Click
PostMessage Win_1.hWnd, WM_CLOSE, 0, 0

End Sub

Sub cmdClear_Click
ClearTextboxes(cmdClear.Parent)

End Sub

Sub ClearTextboxes(frm As Form)
Local EditField As Control
For Each EditField In frm.Controls

If TypeOf(EditField) Is TextBox Then
EditField.Text = ""

End If
Next

End Sub

Remarks

OCX Textboxes come with certain control key combinations
as default. These are:

Ctrl-C Copy
Ctrl-H Backspace
Ctrl-I Tab
Ctrl-J & Ctrl-M Carriage Return and Line Feed
Ctrl-V Paste
Ctrl-X Cut
Ctrl-Z Undo/Redo
Ctrl-Delete Deletes to the end of the line
Ctrl-End Bottom of the box
Ctrl-Home Top of the box

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/textbox.htm

RichEdit Ocx
Purpose

Creates an Ocx RichEdit control in the current active form, window,
or dialog.

Syntax

Ocx RichEdit name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The RichEdit control allows the user to enter and edit text while also
providing more advanced formatting features than the conventional
TextBox control.

The RichEdit control provides a number of properties you can use to
apply formatting to any portion of text within the control. To change
the formatting of text, it must first be selected. Only selected text
can be assigned character and paragraph formatting. Using these
properties, you can make text bold or italic, change the color, and
create superscripts and subscripts. You can also adjust paragraph
formatting by setting both left and right indents, as well as hanging
indents.

The RichEdit control opens and saves files in both the RTF format
and regular ASCII text format. You can use methods of the control
(LoadFile and SaveFile) to directly read and write files, or use
properties of the control such as SelRTF and TextRTF in conjunction
with GFA-BASIC 32's file input/output statements.

To print all or part of the text in a RichEdit control use the SelPrint
method.

The RichEdit control supports almost all of the properties, events,
and methods used with the standard TextBox control, such as
MaxLength, MultiLine, ScrollBars, SelLength, SelStart, and
SelText. Applications that already use TextBox controls can easily
be adapted to make use of RichEdit controls.

Note: With TextBox - in this instance, given the name tb - it is
possible to get the text by using the shortcut text$ = tb; similarly, it
is possible to manipulate and/or check the text using the functions
Len(), Left(), Right(), etc. This does not work with a RichEdit
control as the value returned contains all the RTF formatting as well
and may cause an error. To use the actual unformatted text, the
Text and TextLength properties should be used instead.

Properties

Appearance | BackColor | BorderStyle | BulletIndent | CharFormat |
DefCharFormat | DisableNoScroll | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName | FontSize |
ForeColor | FormatDC | FormatWidth | Height | HelpContextID |
HideSelection | hWnd | Index | Left | Locked | MaxLength |
MouseCursor | MouseIcon | MousePointer | MultiLine | Name |
ParaFormat | Parent | ReadOnly | ScrollBars | SelAlignment | SelBold
| SelBullet | SelCharOffset | SelColor | SelFontName | SelFontSize |
SelHangingIndent | SelIndent | SelItalic | SelLength | SelProtected |
SelRightIndent | SelRTF | SelStart | SelStrikeout | SelTabCount |
SelTabs | SelText | SelUnderLine | TabStop | Tag | Text | TextLength
| TextRTF | Top | ToolTiptext | Visible | WantSpecial |
WhatsThisHelpID | Width

Methods

DoClick | CharFromLine | ColFromChar | Find | GetLineFromChar |
LineCount | LineFromChar | LoadFile | Move | Refresh |
RowFromChar | SaveFile | SelLine | SelPrint | SelPrintRect | SetFont
| Scroll | ScrollCaret | Span | TextHeight | TextWidth | UpTo | ZOrder

SelLine method selects the current line and returns the line number.

Events

Change | Click | DblClick | GotFocus | LostFocus | KeyDown, Keyup |
KeyPress | MouseDown | MouseUp | MouseMove | Protected |
SelChange

Example

Ocx RichEdit rtf = "", 10, 10, 300, 200 : .BorderStyle = 3
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelBold = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 0
rtf.SelText = String(5, "GFA-BASIC 32 ")
Ocx RichEdit rtf_copy = "", 320, 10, 300, 200 :
.BorderStyle = 3

Do : Sleep : Until Me Is Nothing

Shortcut Keys

The RichEdit control comes with in-built shortcut keys which are
listed on the Microsoft website and a list of which are copied below. It
should be noted that not all keyboard configurations will support all
shortcuts, as it should also be noted that, on some keyboards, the
shortcut keys may be different due to different key layout (for
example, on some keyboards, Ctrl+# is used for acute accents and
Ctrl+' for grave, rather than Ctrl-' and Ctrl-` as noted below).

Keys Operations Comments

Shift+Backspace Generate a LRM/LRM on a
bidi keyboard BiDi specific

Ctrl+Tab Tab
Ctrl+Clear Select all
Ctrl+Number Pad 5 Select all
Ctrl+A Select all
Ctrl+E Center alignment
Ctrl+J Justify alignment
Ctrl+R Right alignment
Ctrl+L Left alignment
Ctrl+C Copy

Ctrl+V Paste
Ctrl+X Cut
Ctrl+Z Undo
Ctrl+Y Redo
Ctrl+'+'
(Ctrl+Shift+'=') Superscript

Ctrl+'=' Subscript
Ctrl+1 Line spacing = 1 line.
Ctrl+2 Line spacing = 2 lines.
Ctrl+5 Line spacing = 1.5 lines.

Ctrl+' (apostrophe) Accent acute

After pressing
the short cut
key, press the
appropriate
letter (for
example a, e, or
u). This applies
to English,
French,
German, Italian,
and Spanish
keyboards only.

Ctrl+` (grave) Accent grave See Ctrl+'
comments.

Ctrl+~ (tilde) Accent tilde See Ctrl+'
comments.

Ctrl+; (semicolon) Accent umlaut See Ctrl+'
comments.

Ctrl+Shift+6 Accent caret (circumflex) See Ctrl+'
comments.

Ctrl+, (comma) Accent cedilla See Ctrl+'
comments.

Ctrl+Shift+'
(apostrophe) Activate smart quotes

Backspace

If text is protected, beep
and do not delete it.
Otherwise, delete previous
character.

Ctrl+Backspace Delete previous word. This
generates a VK_F16 code.

F16 Same as Backspace.
Ctrl+Insert Copy
Shift+Insert Paste

Insert Overwrite DBCS does not
overwrite.

Ctrl+Left Arrow Move cursor one word to the
left.

On bidi
keyboard, this
depends on the
direction of the
text.

Ctrl+Right Arrow Move cursor one word to the
right.

See Ctrl+Left
Arrow
comments.

Ctrl+Left Shift Left alignment

In BiDi
documents, this
is for left-to-
right reading
order.

Ctrl+Right Shift Right alignment

In BiDi
documents, this
is for right-to-
left reading
order.

Ctrl+Up Arrow Move to the line above.
Ctrl+Down Arrow Move to the line below.

Ctrl+Home Move to the beginning of the
document.

Ctrl+End Move to the end of the
document.

Ctrl+Page Up Move one page up.

If in
SystemEditMode
and Single Line
control, do
nothing.

Ctrl+Page Down Move one page down. See Ctrl+Page
Up comments.

Ctrl+Delete Delete the next word or
selected characters.

Shift+Delete Cut the selected characters.

Esc Stop drag-drop.
While doing a
drag-drop of
text.

Alt+Esc Change the active
application.

Alt+X

Converts the Unicode
hexadecimal value
preceding the insertion point
to the corresponding
Unicode character.

Alt+Shift+X

Converts the Unicode
character preceding the
insertion point to the
corresponding Unicode
hexadecimal value.

Alt+0xxx (Number
Pad)

Inserts Unicode values if
xxx is greater than 255.
When xxx is less than 256,
ASCI range text is inserted
based on the current
keyboard.

Must enter
decimal values.

Alt+Shift+Ctrl+F12 Hex to Unicode.
In case Alt+X is
already taken
for another use.

Alt+Shift+Ctrl+F11

Selected text will be output
to the debugger window and
saved to
%temp%\DumpFontInfo.txt.

For Debug only
(need to set
Flag=8 in
Win.ini)

Ctrl+Shift+A Set all caps.
Ctrl+Shift+L Fiddle bullet style.
Ctrl+Shift+Right
Arrow

Increase font size. Font size
changes by 1
point in the
range 4pt-11pt;
by 2points for
12pt-28pt; it

changes from
28pt -> 36pt ->
48pt -> 72pt ->
80pt; it changes
by 10 points in
the range 80pt -
1630pt; the
maximum value
is 1638.

Ctrl+Shift+Left
Arrow Decrease font size.

See
Ctrl+Shift+Right
Arrow
comments.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg, Form,
Frame, Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, Scroll, Slider, StatusBar, TabStrip, TextBox,
Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/richedit.htm

ImageList Ocx
Purpose

Creates an Ocx ImageList control in the current active
form, window, or dialog.

Syntax

Ocx ImageList name [= text$] [, id] [, x, y, b, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

An ImageList control contains a collection of images of the
same type and size, referred to by its index. The
ImageList control is not meant to be used alone, but as a
central repository to conveniently supply other controls with
images. Specifically, the ListView, TreeView, TabStrip, and
Toolbar controls use an ImageList control to store their
images.

The ImageList control uses bitmap (.bmp, .dib), cursor
(.cur), icon (.ico), JPEG (.jpg), metafiles (.emf, .wmf), or
GIF (.gif) files in a ListImages collection of ListImage
items. You can add and remove images at design time or
run time.

The properties of the ImageList control define the size and
type of the images added to the ListImages collection. The
ImageHeight, ImageWidth, and ColorFormat properties
set the dimensions of each image, the type of the image
list, and whether to create a masked bitmap for the images.
These properties are set before hand, either at design time
in the 'ImageList Data' dialog box or in code. At design time
the ColorFormat combo box forces to select a color format
in combination with a mask.

A non-masked image list consists of a color bitmap that
contains one or more images. A masked image list consists
of two bitmaps of equal size. The first is a color bitmap that
contains the images, and the second is a monochrome
bitmap that contains a series of masks-one for each image
in the first bitmap. When a non-masked image is drawn, it
is simply copied into the target device context; that is, it is
drawn over the existing background color of the device
context. When a masked image is drawn, the bits of the
image are combined with the bits of the mask, typically
producing transparent areas in the bitmap where the
background color of the target device context shows
through.

The UseMaskColor property determines that for the next
image a masked image is added to the list. You specify a
color (MaskColor) that the system combines with the
image bitmap to automatically generate the masks. Each
pixel of the MaskColor color in the image bitmap is
changed to black, and the corresponding bit in the mask is
set to 1. As a result, any pixel in the image that matches
the specified mask color is transparent when the image is
drawn (using ListImage.Draw or ImageList.Overlay).

Images can be added one by one at design time and run
time. GFA-BASIC 32 also supports the AddPart method

that adds images from a larger bitmap strip to the
ImageList control in one step.

Properties

BackColor | ColorFormat | Enabled | ImageHeight |
ImageWidth | hImageList | Left | ListImage | ListImages |
MaskColor | Name | Parent | Tag | Top | UseMaskColor

hImageList returns the handle to the underlying
ImageList common control.

Methods

Add | AddItem | AddPart | Overlay

Events

None

Example

Local n As Int
OpenW 1, 30, 30, 300, 300
Cls colBtnFace
Ocx ImageList iml
iml.ImageWidth = 32
iml.ImageHeight = 32
iml.ColorFormat = 0
iml.MaskColor = colBtnFace
iml.UseMaskColor = True
iml.BackColor = colBtnFace
For n = 1 To 11 : iml.Add , "gfaicon" & n,
CreatePicture(LoadIcon(_INSTANCE, n), False) :
Next n

Ocx TreeView tv = "", 10, 10, 260, 240

tv.LineStyle = tvwRootLines : tv.ImageList = iml
For n = 1 To 11 : tv.AddItem , , , "GFA Icon" & n,
"gfaicon" & n : Next n

Do : Sleep : Until Win_1 Is Nothing

Remarks

The operating environment identifies an ImageList control
in an application by assigning it a handle, or hImageList.
Many ImageList-related API functions require the
hImageList of the active window as an argument. Because
the value of this property can change while a program is
running, never store the hImageList value in a variable.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/imagelist.htm

TreeView Ocx
Purpose

Creates an Ocx TreeView control in the current active
form, window, or dialog.

Syntax

Ocx TreeView name [= text$] [, id%] [, x, y, w, h] [,
style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

A TreeView control displays a hierarchical list of Node
objects, each of which consists of a label and an optional
bitmap. A TreeView is typically used to display the
headings in a document, the entries in an index, the files
and directories on a disk, or any other kind of information
that might usefully be displayed as a hierarchy.

After creating a TreeView control, you can add, remove,
arrange, and otherwise manipulate Node objects by setting
properties and invoking methods. You can programmatically
expand and collapse Node objects to display or hide all
child nodes. Three events, the Collapse, Expand, and
NodeClick event, also provide programming functionality.

You can navigate through a tree in code by retrieving a
reference to Node objects using Root, Parent, Child,
FirstSibling, Next, Previous, and LastSibling properties.
Several styles are available which alter the appearance of
the control. Node objects can appear in one of eight
combinations of text, bitmaps, lines, and plus/minus signs.

The TreeView control uses the ImageList control,
specified by the ImageList property, to store the bitmaps
and icons that are displayed in Node objects. A TreeView
control can use only one ImageList at a time. This means
that every item in the TreeView control will have an equal-
sized image next to it when the TreeView control's Style
property is set to a style which displays images.

The TreeView Ocx control has the following properties,
methods, and events.

Properties

Appearance | BackColor | BorderStyle | Count | Enabled |
Font | FontBold | FontItalic | FontStrikethru | FontUnderline
| FontName | FontSize | ForeColor | Height | HelpContextID
| HideSelection | hWnd | ImageList | Indentation | Index |
LabelEdit, | Left | LineStyle | MouseCursor | MouseIcon |
MousePointer | Name | Node | Nodes | Parent |
SelectedItem | Sorted | Style | TabStop | Tag | ToolTiptext |
Top | Visible | WhatsThisHelpID | Width

Methods

Add | AddItem | Clear | HitTest | Item | Move | Refresh |
Remove | SetFocus | SetFont | StartLabelEdit | TextHeight |
TextWidth | ZOrder

Events

AfterLabelEdit | BeforeLabelEdit | Click | Collapse | DblClick
| Expand | GotFocus | KeyDown, KeyUp | KeyPress |
LostFocus | MouseDown | MouseUp | MouseMove |
NodeClick

Example

Dim node As Node
Ocx TreeView tv = "", 10, 10, 230, 200
tv.Add , , , "Painters"
tv.Nodes.Add 1, tvwChild , , "Da Vinci"
tv.Add 1, tvwChild, , "Titian"
tv.AddItem 1, tvwChild, , "Rembrandt"
Set node = tv.Nodes.Add(1, tvwChild, , "Goya")
Set node = tv.Add(1, tvwChild, "David" , "David")
tv.LineStyle = tvwRootLines
tv.Style = tvwTreelinesText
tv.Indentation = 25
tv("David").Italic = True
tv.Node(3).Bold = True
tv.Nodes(4).Underline = True
tv!David.EnsureVisible ' Expand tree to see all
nodes.

tv.SetFocus
tv("David").Selected = 1
Do
Sleep

Until Me Is Nothing

Remarks

Users can navigate through a tree using the keyboard as
well. UP ARROW and DOWN ARROW keys cycle downward
through all expanded Node objects. Node objects are
selected from left to right, and top to bottom. At the bottom
of a tree, the selection jumps back to the top of the tree,

scrolling the window if necessary. RIGHT ARROW and LEFT
ARROW keys also tab through expanded Node objects, but
if the RIGHT ARROW key is pressed while an unexpanded
Node is selected, the Node expands; a second press will
move the selection to the next Node. Conversely, pressing
the LEFT ARROW key while an expanded Node has the
focus collapses the Node. If a user presses an ANSI key,
the focus will jump to the nearest Node that begins with
that letter. Subsequent pressings of the key will cause the
selection to cycle downward through all expanded nodes
that begin with that letter.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/treeview.htm

ListView Ocx
Purpose

Creates an Ocx ListView control in the current active form,
window, or dialog.

Syntax

Ocx ListView name = text$ [, id%], x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The ListView control displays items using one of four
different views. You can arrange items into columns with or
without column headings as well as display accompanying
icons and text.

With a ListView control, you can organize list entries,
called ListItem objects, into one of four different views:
Large (standard) Icons, Small Icons, List, and Report

The View property determines which view the control uses
to display the items in the list. You can also control whether
the items in the list are sorted and how selected items
appear.

The ListView control contains ListItem and
ColumnHeader objects. A ListItem object defines the

various characteristics of items in the ListView control,
such as:

- A brief description of the item.

- Icons that may appear with the item, supplied by an
ImageList control.

- Additional pieces of text, called subitems, associated with
a ListItem object that you can display in Report view.

You can choose to display column headings in the ListView
control using the Add method to add a ColumnHeader
object to the ColumnHeaders collection.

The ListView Ocx control has the following properties,
methods, and events.

Properties

Appearance | Arrange | BackColor | BorderStyle |
CheckBoxes | CheckedCount | CheckedItems |
ColumnHeaders | Count | DefaultWidth | Enabled | ExStyle
| Font | FontBold | FontItalic | FontStrikethru |
FontUnderline | FontName | FontSize | ForeColor |
FullRowSelect | Grid | GridLines | Height | HelpContextID |
HideSelection | hWnd | Icons | Index | LabelEdit | Left |
ListItems | MouseCursor | MouseIcon | MousePointer |
MultiSelect | Name | Parent | SelectedItem | SmallIcons |
TabStop | Tag | TextBackColor | ToolTiptext | Top | TopIndex
| View | Visible | WhatsThisHelpID | Width

Methods

Add | AddItem | Clear | GetFirstVisible | HitTest | Item, |
LineItem | ListItem | Move | Refresh | Remove |

SelectedCount | SelectedItems | SetFocus | SetFont |
SetGrid | SnapToGrid | Sort | StartLabelEdit | TextHeight |
TextWidth | VisibleCount | ZOrder

The VisibleCount method returns an integer from 0 to the
number of items visible in the control. An item is considered
visible even if only a portion of the text is visible.

Events

AfterLabelEdit | BeforeLabelEdit | Click | ColumnClick |
DblClick | GotFocus | ItemClick | KeyDown, KeyUp |
KeyPress | LostFocus | MouseDown | MouseUp | MouseMove

Example

OpenW 1, 20, 20, 500, 500
' View property
Global Enum lvwIcon = 0, lvwSmallIcon, lvwList,
lvwReport

' Arrange property (valid for lvwIcon,
lvwSmallIcon)

Global Enum lvwNone = 0, lvwAutoLeft, lvwAutoTop
' LabelEdit property
Global Enum lvwAutomatic = 0, lvwManual ' ListView
Dim lis As ListItems, li As ListItem
Dim chs As ColumnHeaders, ch As ColumnHeader
Ocx ImageList iml
iml.ListImages.Add , "comp",
CreatePicture(LoadIcon(Null, IDI_APPLICATION))

Ocx ListView lv = "", 10, 10, 230, 200
lv.View = lvwReport
lv.Icons = iml
lv.SmallIcons = iml
Set ch = lv.ColumnHeaders.Add(, "1" , "Column
#1")

ch.Width = 2000

lv.ColumnHeaders.Add , "2", "Column #2"
lv.ColumnHeaders.Add , "3" , "Column #3"
lv.Add , , "ListItem #1", "comp"
lv.ListItems.Add , , "ListItem #2", "comp"
lv.AddItem , , "ListItem #3", "comp"
lv.AddItem , , "ListItem #4", "comp"
lv.AddItem , , "ListItem #5", "comp"
lv.AddItem , , "ListItem #6", "comp"
lv.AddItem , , "ListItem #7", "comp"
lv.GridLines = True
'lv.Grid 1 // Does not work
Do
Sleep

Until Me Is Nothing

Remarks

Further control on the individual list items is performed with
ListItem objects of the ListItems collection.

The gfawinx library defines the following constants:

For use with the View property: lvwIcon, lvwSmallIcon,
lvwList, and lvwReport.
For use with the Arrange property: lvwNone, lvwAutoTop,
and lvwAutoLeft.
For use with the LabelEdit property: lvwAutomatic,
lvwManual.

See Also

ListItems, ListItem

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, MonthView,

Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 13/08/2019 by James Gaite}

Timer Ocx
Purpose

Creates an Ocx Timer control 'in' the current active form,
window, or dialog.

Syntax

Ocx Timer name [= text$] [, id%], [x, y, w, h] [, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

A Timer control can execute code at regular intervals by
causing a Timer event to occur. The Timer control, invisible
to the user, is useful for background processing.

The Interval property returns or sets the number of
milliseconds between calls to a Timer control's Timer event.
You can set a Timer control's Interval property at design
time or run time.

The Timer control's Enabled property determines whether
the control responds to the passage of time. Set Enabled
to False to turn a Timer control off, and to True to turn it
on. When a Timer control is enabled, its countdown always
starts from the value of its Interval property setting.

Create a Timer event procedure to handle the situation that
the time of Interval has passed.

Properties

Enabled | hWnd | Index | Interval | Name | Parent | Tag

Events

Timer

Syntax Events

Sub Timer_Timer

Occurs when a preset interval for a Timer control has
elapsed. The interval's frequency is stored in the control's
Interval property, which specifies the length of time in
milliseconds.

Example

OpenW 1
PrintScroll = 1
Ocx Timer tmr
tmr.Interval = 1000
tmr.Enabled = True
Do
Sleep

Until Me Is Nothing

Sub tmr_Timer
Static counter% = 0
counter++
Text 0, 0, "Timer Event " & counter

EndSub

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/timer.htm

ProgressBar Ocx
Purpose

Creates an Ocx ProgressBar control in the current active
form, window, or dialog.

Syntax

Ocx ProgressBar name [= text$] [, id] [, x, y, b, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The ProgressBar control shows the progress of a lengthy
operation by filling a rectangle with chunks from left to
right.

ProgressBar control has a range and a current position.
The range represents the entire duration of the operation.
The current position represents the progress the application
has made toward completing the operation. The Max and
Min properties set the limits of the range. The Value
property specifies the current position within that range.
Because chunks are used to fill in the control, the amount
filled in only approximates the Value property's current
setting. Based on the control's size, the Value property
determines when to display the next chunk.

The ProgressBar control's Height and Width properties
determine the number and size of the chunks that fill the
control. The more chunks, the more accurately the control
portrays an operation's progress. To increase the number of
chunks displayed, decrease the control's Height or increase
its Width. The BorderStyle property setting also affects
the number and size of the chunks. To accommodate a
border, the chunk size becomes smaller. Note that any
changes made to Width and Height will be negated if the
Align property is changed after those changes have been
made.

The Smooth property causes the control to display a
contiguous progress bar instead of a segmented bar.

You can use the Align property with the ProgressBar
control to automatically position it at the top or bottom of
the form (basTop, basLeft, basRight, basBottom).

The Orientation property sets a value (basHorizO or
basVertO) that determines whether the control is oriented
horizontally or vertically. The Align property always
overrules the Orientation property.

Properties

Align | Appearance | BorderStyle | Enabled | Height |
HelpContextID | hWnd | Index | Left | Max | Min |
MouseCursor | MouseIcon | MousePointer | Name |
Orientation | Parent | Smooth | TabStop | Tag | Top |
ToolTiptext | Value | Visible | WhatsThisHelpID | Width

Methods

Move | Refresh | ZOrder

Events

Click | MouseDown | MouseUp | MouseMove

Example

Local i As Int32
OpenW Center # 1, , , 400, 200
Ocx ProgressBar pro1 = "", 10, 10, 200, 40
pro1.Max = 100
pro1.Smooth = True
DoEvents
For i = 0 To 100
pro1.Value = i
Pause 1

Next
MsgBox "Ready!"
CloseW 1

Remarks

To shrink the chunk size until the progress increments most
closely match actual progress values, make the
ProgressBar control at least 12 times wider than its
height.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/progressbar.htm

Scroll Ocx
Purpose

Creates a (flat) Ocx Scroll scrollbar control in the current
active form, window, or dialog.

Syntax

Ocx Scroll name [= text$] [, id] [, x, y, b, h] [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The Scroll control is a rectangle that contains a scroll box
and has direction arrows at both ends. The scroll-bar
control sends a notification message to its parent whenever
the user clicks the mouse in the control. The parent is
responsible for updating the scroll-box position. Scroll-bar
controls can be positioned anywhere in a window and used
whenever needed to provide scrolling input.

Use the Max and Min properties to set the appropriate
range for the control. To specify the amount of change to
report in a scroll bar, use the LargeChange property for
clicking in the scroll bar, and the SmallChange property for
clicking the arrows at the ends of the scroll bar. The scroll
bar's Value property increases or decreases by the values
set for the LargeChange and SmallChange properties.

You can position the scroll box at run time by setting Value
between -32768 and 32,767, inclusive.

By setting the Appearance property, the scrollbar is
changed to a flat scroll bar (equivalent to the VB
FlatScrollBar control).

The Align property allows a Scroll control to be aligned to
a side of the parent (basTop, basLeft, basRight,
basBottom).

The Orientation property sets a value (basHorizO or
basVertO) that determines whether the Scroll control is
oriented horizontally or vertically. The Align property
always overrules the Orientation property.

Properties

Align | Appearance | BorderStyle | Enabled | Height |
HelpContextID | hWnd | Index | LargeChange, | Left | Max
| Min | MouseCursor | MouseIcon | MousePointer | Name |
Orientation | Parent | SmallChange | TabStop | Tag | Top |
TrackValue | ToolTiptext | Value | Visible | WhatsThisHelpID
| Width

Methods

Move | Refresh | SetFocus | ZOrder

Events

Change | Click | GotFocus | LostFocus | KeyDown | Keyup |
KeyPress | MouseDown | MouseUp | MouseMove | Scroll

Example

OpenW Center # 1, , , 400, 200
Me.BackColor = colBtnFace
Ocx Scroll sc1 = "", 10, 10, 370, 20
Ocx ProgressBar pb1 = "", 10, 50, 370, 20
With sc1
.Min = 0 : .Max = 600
.LargeChange = (.Max - .Min) / 10 : .SmallChange
= 10

End With
Do
Sleep

Loop Until Me Is Nothing

Sub sc1_Scroll()
pb1.Value = (sc1.TrackValue * 10 / 9) / ((sc1.Max
- sc1.Min) / 100)

EndSub

Sub sc1_Change()
pb1.Value = (sc1.Value * 10 / 9) / ((sc1.Max -
sc1.Min) / 100)

EndSub

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/scroll.htm

Slider Ocx
Purpose

Creates an Ocx Slider scrollbar control in the current active
form, window, or dialog.

Syntax

Ocx Slider name [= text$] [, id] [, x, y, b, h] [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A Slider control is a window containing a slider and optional
tick marks. You can move the slider by dragging it, clicking
the mouse to either side of the slider, or using the
keyboard.

Slider controls are useful when you want to select a
discrete value or a set of consecutive values in a range. For
example, you could use a Slider to set the size of a
displayed image by moving the slider to a given tick mark
rather than by typing a number. To select a range of values,
set the SelectRange property to True, and program the
control to select a range when the SHIFT key is down.

The Align property allows a Slider control to be aligned to
a side of the parent (basTop, basLeft, basRight,
basBottom).

The Orientation property sets a value (basHorizO or
basVertO) that determines whether the Slider control is
oriented horizontally or vertically. The Align property
always overrules the Orientation property.

Properties

Align | Appearance | BorderStyle | Enabled | Height |
HelpContextID | hWnd | Index | LargeChange | Left | Max |
Min | MouseCursor | MouseIcon | MousePointer | Name |
Orientation | Parent | SelectRange | SelStart | SelLength |
SmallChange | TabStop | Tag | TickFrequency | TickStyle |
Top | ToolTiptext | Value | Visible | WhatsThisHelpID | Width

Methods

ClearSel | GetNumTicks | Move | Refresh | SetFocus |
ZOrder

Events

Change | Click | GotFocus | LostFocus | KeyDown | Keyup |
KeyPress | MouseDown | MouseUp | MouseMove | Scroll

Example

OpenW Center # 1, , , 400, 200
Me.BackColor = colBtnFace
Ocx Slider sli1 = "", 0, 0, 200, 40
.SelectRange = True
.SelStart = 20
.SelLength = 70
.TickStyle = 2
Do
Sleep

Loop Until Me Is Nothing

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/slider.htm

ToolBar Ocx
Purpose

Creates an Ocx ToolBar control in the current active form,
window, or dialog.

Syntax

Ocx ToolBar name = text$ [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A Toolbar control contains a collection of Button objects
used to create a toolbar that is associated with an
application.

Typically, a toolbar contains buttons that correspond to
items in an application's menu, providing a graphic interface
for the user to access an application's most frequently used
functions and commands.

The Toolbar control allows you to create toolbars by adding
Button objects to a Buttons collection. Each Button object
can have optional text or an image, or both, supplied by an
associated ImageList control. You can display an image on
a button with the Image property, or display text with the
Caption property, or both, for each Button object. At run
time, you can add or remove buttons from the Buttons

collection using the Add and Remove methods (See
Remarks).

To program the Toolbar, add code to the ButtonClick event
to respond to the selected button. You can also determine
the behavior and appearance of each Button object using
the Style property. For example, if four buttons are
assigned the 'Button Group' style (2), only one button can
be pressed at any time and at least one button is always
pressed.

You can create space for other controls on the toolbar by
assigning a Button object the 'Place Holder' style (4), then
positioning a control over the placeholder. For example, to
place a drop-down combo box on a toolbar, add a Button
object with the 'Place Holder' style and size it as wide as a
ComboBox control. Then place a ComboBox control on
the placeholder with the OcxOcx command.

Usability is further enhanced by programming ToolTipText
descriptions of each Button object. To display ToolTips,
simply assign a value to the ToolTipText property.

The ToolBar Ocx control has the following properties,
methods, and events.

Properties

Appearance | BorderStyle | Button | Buttons | Count |
Enabled | Font | FontBold | FontItalic | FontStrikethru |
FontUnderline | FontName | FontSize | Height |
HelpContextID | hWnd | ImageList | Left | MouseCursor |
MouseIcon | MousePointer | Name | Tag | ToolTiptext | Top
| Visible | WhatsThisHelpID | Width

Methods

Add | AddItem | Clear | Item | Refresh | Remove | SetFont
| TextHeight | TextWidth

Events

Click | ButtonClick | ButtonDblClick | DblClick | MouseDown
| MouseUp | MouseMove

Example

Ocx ToolBar tb
tb.Buttons.Add , , "Save"
tb.Add , , "Load"
Do : Sleep : Until Me Is Nothing

Sub tb_ButtonClick(Btn As Button)
Select Btn.Index
Case 1 : Message "Save selected"
Case 2 : Message "Load selected"
EndSelect

EndSub

Remarks

The Toolbar and Buttons methods Clear and Remove
don't work correctly and will eventually crash GFA-BASIC
32.

The ToolBar Ocx control implicitly changes the origin of the
scaling mode. The origin is moved with SetViewportOrgEx
API. ScaleHeight is decremented with the height of the
toolbar. Mouse client coordinates are relative to the new
origin.

See Also

Form, Command, Option, CheckBox, RichEdit, ImageList,
TreeView, ListView, Timer, Slider, Scroll, Image, Label,
ProgressBar, TextBox, StatusBar, ListBox, ComboBox,
Frame, CommDlg, MonthView, TabStrip, TrayIcon,
Animation, UpDown

Ocx, OcxOcx, Buttons, Button

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

StatusBar Ocx
Purpose

Creates an Ocx StatusBar control in the current active
form, window, or dialog.

Syntax

Ocx StatusBar name [= text$] [, id] [, x, y, b, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A StatusBar control provides a window, usually at the
bottom of a parent form, through which an application can
display various kinds of status data. The StatusBar can be
divided up into a maximum of sixteen Panel objects that
are contained in a Panels collection.

A StatusBar control consists of Panel objects, each of
which can contain text and/or a picture. Properties to
control the appearance of individual panels include Width
and Alignment (of text and pictures). Additionally, you can
use one of seven values of the Style property to
automatically display common data such as date, time, and
keyboard states.

At run time, the Panel objects can be configured to reflect
different functions, depending on the state of the
application. For detailed information about the properties,
events, and methods of Panel objects, see the Panel
Object and Panels Collection topics.

A StatusBar control typically displays information about an
object being viewed on the form, the object's components,
or contextual information that relates to that object's
operation.

The StatusBar Ocx control has the following properties,
methods, and events.

Properties

Appearance | BorderStyle | Count | Enabled | Font |
FontBold | FontItalic | FontStrikethru | FontUnderline |
FontName | FontSize | Height | HelpContextID | hWnd |
ImageList | Left | MouseCursor | MouseIcon | MousePointer
| Name | Panel | Panels | SimpleText | Style | Tag |
ToolTiptext | Top | Visible | WhatsThisHelpID | Width

Methods

Add | AddItem | Clear | Item | Refresh | Remove | SetFont
| TextHeight | TextWidth

Events

Click | DblClick | MouseDown | MouseUp | MouseMove |
PanelClick | PanelDblClick

Example

Ocx ImageList iml : .ImageHeight = 16 :
.ImageWidth = 16

iml.Add , , CreatePicture(LoadIcon(Null,
IDI_WARNING))

Ocx StatusBar sb : '.ImageList = iml // Not
implemented

sb.Add , , "Scroll", 5
sb.Add , , "CAPS", 3
sb.Add , , ""
sb.Add , , "Panel..."
sb.Add , , "Warning" , , 1 // Can't show icons
Do : Sleep : Until Me Is Nothing

Remarks

The StatusBar Ocx control implicitly changes the height of
the scaling mode. ScaleHeight is decremented with the
height of the statusbar.

Known Issues

The ImageList property has not been implemented for this
object.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/statusbar.htm

ListBox Ocx
Purpose

Creates an Ocx ListBox control in the current active form,
window, or dialog.

Syntax

Ocx ListBox name = [text$] [, id], x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

The control is a rectangle containing a list of strings (such
as filenames) from which the user can select.

To add or delete items in a ListBox control, use the
AddItem or RemoveItem method. Set the List,
ListCount, and ListIndex properties to enable a user to
access items in the ListBox.

If no item is selected, the ListIndex property value is -1.
The first item in the list is ListIndex = 0, and the value of
the ListCount property is always one more than the largest
ListIndex value.

The ListBox Ocx control has the following properties,
methods, and events.

Properties

Appearance | BackColor | ForeColor | BorderStyle |
Columns | DisableNoScroll | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | Height, Width | HelpContextID | hWnd | Index |
IntegralHeight |ItemData | Left, Top | List | ListCount |
ListIndex | MouseCursor | MouseIcon | MousePointer |
MultiSelect | Name | NewIndex | Parent | Scrollbars |
Selected | Sorted | TabStop | Tag | Text | ToolTiptext |
TopIndex | Visible | WhatsThisHelpID

The SelCount property is missing. This property is
particularly useful when users can make multiple selections.
There is no alternative then to use the LB_GETSELCOUNT
message as shown in the example.

Methods

AddItem | Clear | Find | FindExact | FindNext | InsertItem |
Move | Refresh | RemoveItem | SetFocus | SetFont |
TextHeight | TextWidth | ZOrder

Events

Click | DblClick | GotFocus | LostFocus | KeyDown, KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove

Example

Form frm = "Listbox", , , 500, 400
Ocx ListBox lb1 = "", 0, 0, 250, 200
.MultiSelect = 1
Ocx ListBox lb2 = "", 250, 0, 250, 200
Ocx Command cmd1 = "Add to 2", 100, 220, 80, 24
cmd1.Enabled = False

Dim i%
For i = 0 To Screen.FontCount - 1
lb1.AddItem Screen.Fonts(i)

Next i
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click ()
Dim i%
lb2.Clear ' Clear all items from the list.
For i = 0 To lb1.ListCount - 1
If lb1.Selected(i) Then
lb2.AddItem lb1.List(i)

End If
Next i

End Sub

Sub lb1_Click
' The missing ListBox property: SelCount:
Dim SelCount% = SendMessage(lb1.hWnd,
LB_GETSELCOUNT, 0, 0)

If SelCount = 0 && cmd1.Enabled
cmd1.Enabled = False

Else If SelCount > 0 && cmd1.Enabled = False
cmd1.Enabled = True

EndIf
EndSub

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/listbox.htm

StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

ComboBox Ocx
Purpose

Creates an Ocx ComboBox control in the current active
form, window, or dialog.

Syntax

Ocx ComboBox name [= text$] [, id] [, x, y, b, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The control is a rectangle containing a list of strings (such
as filenames) from which the user can select.

The ComboBox Ocx control has the following properties,
methods, and events.

Properties

Appearance | BackColor | ForeColor | BorderStyle |
Columns | DisableNoScroll | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | Height, Width | HelpContextID | hWnd | Index |
IntegralHeight |ItemData | Left, Top | List | ListCount |
ListIndex | MouseCursor | MouseIcon | MousePointer |
Name | NewIndex | Parent | Scrollbars | Selected | Sorted |

Style | TabStop | Tag | Text | ToolTiptext | TopIndex |
Visible | WhatsThisHelpID

Methods

AddItem | Clear | Find | FindExact | FindNext | InsertItem |
Move | Refresh | RemoveItem | SetFocus | SetFont |
TextHeight | TextWidth | ZOrder

Events

Click | DblClick | GotFocus | LostFocus | KeyDown, KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove | Scroll

There is no event which covers every eventually of the
selected item being changed as the Click event only occurs
when an object in the dropdown list is selected by using the
mouse or by the up and down arrow keys, which means
that occurences of the selected item being changed by
physically typing in the value are missed. In the absence of
a dedicated Change event, you can embed a call to Click in
the KeyUp event which will effectively make the Click take
on this role.

Remarks

The ComboBox object lacks some of the functionality that
can be found in VB6 and most other programming
languages which use it as an object; this can be overcome
by using the SendMessage() API as follows:

To find the position of Selstart (the cursor position) and
SelEnd (the end of blocked text, if any) in the edit box,
use ~SendMessage(cmb.hWnd, CB_GETEDITSEL,
selstart, selend).

To set the position of Selstart and SelEnd, use:
~SendMessage(cmb.hWnd, CB_SETEDITSEL, 0,
MakeLong(selstart, selend)).

The editbox can be resized vertically by using
~SendMessage(cmb.hWnd, CB_SETITEMHEIGHT,
-1, newheight%).

The number of characters that can be entered into the
edit box can be limited by using
~SendMessage(cmb.hWnd, CB_LIMITTEXT,
limit, 0).

A 'cue banner' can be added to the edit box using the
code below:

Ocx ComboBox cmb = , 10, 10, 200, 22
Local cb$ = "[Cue Banner]"
Const CBM_FIRST = &1700
Const CB_SETCUEBANNER = (CBM_FIRST + 3)
~SendMessage(cmb.hWnd, CB_SETCUEBANNER, 0,
UNI$(cb$))

Do : Sleep : Until Me Is Nothing

Function UNI$(ansi$) // Acknowledgements to
Peter Heinzig
Local lUni As Variant = CVar(ansi) : Return
Peek$({V:lUni + 8}, Len(lUni) * 2) + #0

EndFunction

The dropdown list of the ComboBox can be opened
programmatically using ~SendMessage(cmb.hWnd,
CB_SHOWDROPDOWN, True, 0), closed using
~SendMessage(cmb.hWnd, CB_SHOWDROPDOWN,
False, 0), and the state of the dropdown list can be

obtained using ~SendMessage(cmb.hWnd,
CB_GETDROPPEDSTATE, 0, 0).

The number of items visible when the dropdown list is
shown can be altered using MessageProc event of the
parent window or form to catch the CBN_DROPDOWN
event of the ComboBox object as illustrated in the
example below. A variation of this code can also be
used to catch all the other ComboBox events as well.

// ComboBoxes which are to have full lists must
have 'Full' somewhere in their Tag property.

// To set a 'Minimum Visible' limit, the string
'MinVisxxx' (where xxx is the number of
entries to show) must be somewhere in the Tag
property.

// --- NB The value of the minimum visible
entries can only be greater than 8.

Type COMBOBOXINFO
- Long cbSize
rcItem As RECT
rcButton As RECT
- Long stateButton
- Long hwndCombo
- Long hwndItem
- Long hwndList

EndType
Type RECT
- Long Left, Top, Right, Bottom

EndType
Const CB_GETCOMBOBOXINFO = 0x0164
OpenW 1
Local n As Int32
Ocx ComboBox cmb = "", 10, 60, 100, 22 :
cmb.Tag = "Full" : For n = 1 To 20 :

cmb.AddItem "Item no " & Iif(n < 10, " ", "")
& Trim(n) : Next n

Ocx ComboBox cmb2 = "", 10, 120, 100, 22 :
cmb2.Tag = "MinVis012" : For n = 1 To 20 :
cmb2.AddItem "Item no " & Iif(n < 10, " ", "")
& Trim(n) : Next n

Ocx ComboBox cmb3 = "", 10, 180, 100, 22 : For
n = 1 To 20 : cmb3.AddItem "Item no " & Iif(n
< 10, " ", "") & Trim(n) : Next n

Do : Sleep : Until Win_1 Is Nothing

Sub Win_1_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Try
If Mess% = WM_COMMAND And HiWord(wParam%) =
CBN_DROPDOWN
// Check to see if control is a ComboBox
Local cn$ = Space(100) :
~GetClassName(lParam%, V:cn$, 100)

If ZTrim(Mid(cn$, 2)) = "ComboBox"
// Check to see if ComboBox list to be
shown in full

Local cb As Control : Set cb =
OCX(lParam%)

If InStr(Lower(cb.tag), "full") +
InStr(Lower(cb.tag), "minvis") <> 0
// Retrieve ComboBox Structure
Information

Local cbi As COMBOBOXINFO : cbi.cbSize
= SizeOf(COMBOBOXINFO) :
~SendMessage(lParam%,
CB_GETCOMBOBOXINFO, 0, cbi)

// Retrieve ListBox rectangle
coordinates

Local lbr As RECT :
~GetWindowRect(cbi.hwndList, lbr)

// Retrieve Item Count and Height
values

Local Int32 ct, h : h =
SendMessage(cbi.hwndList,
LB_GETITEMHEIGHT, 0, 0)

If InStr(Lower(cb.tag), "full") <> 0 :
ct = SendMessage(cbi.hwndList,
LB_GETCOUNT, 0, 0)

Else : ct = InStr(Lower(cb.tag),
"minvis") : cn$ = Mid(cb.tag, ct, 9) :
ct = Right(cn$, 3)

EndIf
If ct > 8 // If Item Count greater than
default 8 entries
// Calculate new height for ListBox
h = (h * ct) + (Screen.cyBorder * 2)
// Redraw ListBox
~MoveWindow(cbi.hwndList, lbr.Left,
lbr.Top, lbr.Right - lbr.Left, h, 1)

// Stop GB32 processing this message
ValidRet? = True
// Clear structures
Clr cbi, lbr

EndIf
EndIf

EndIf
EndIf

Catch
// Include error message here if required

EndCatch
EndSub

The CB_SETMINVISIBLE (&1701) and
CB_GETMINVISIBLE (&1702) messages are available
but GB32 overrides their actions when redrawing the
dropdown list.

See Also

Ocx, OcxOcx

Animation, CheckBox, Command, CommDlg, Form, Frame,
Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/combobox.htm

Frame Ocx
Purpose

Creates an Ocx Frame control in the current active form,
window, or dialog.

Syntax

Ocx Frame name [= text$] [, id], x, y, b, h [, style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

A Frame control provides an identifiable grouping for
controls. You can also use a Frame to subdivide a form
functionally-for example, to separate groups of Option
controls.

To group controls, first draw the Frame control, and then
draw the controls inside the Frame. In case of Option
buttons make sure they belong to the frame; right click on
the Option control and check 'Ocx on Frame'. By default,
the controls are owned by the form and all Option controls
on the form belong to the same group, event the controls
outside the Frame control.

Properties

BackColor | BorderStyle | Caption | Enabled | Font |
FontBold | FontItalic | FontStrikethru | FontUnderline |
FontName | FontSize | ForeColor | Height | HelpContextID |
hWnd | Index | Left | MouseCursor | MouseIcon |
MousePointer | Name | Parent | TabStop | TabStripIndex |
Tag | Text | Top | ToolTiptext | Transparent | Visible |
WhatsThisHelpID | Width

Methods

Move | Refresh | SetFont | TextHeight | TextWidth | ZOrder

Events

Click | DblClick | MouseDown | MouseUp | MouseMove

The mouse events occur when no other Ocx is positioned
under mouse cursor. When Transparent = True a mouse
event is only executed when the mouse is on a character
pixel.

Example

Form frm = "Frame", , , 300, 300
'.BackColor = colBtnFace
Ocx Frame fr = "abc", 10, 10, 200, 200
.Transparent = False ' default is True
.BackColor = RGB(128, 0, 0)
Ocx Option opt(0) = "Option 1", 20, 30, 140, 24
Ocx Option opt(1) = "Option 2", 20, 60, 140, 24
Ocx Option opt(2) = "Option 3", 20, 90, 140, 24
Do
Sleep

Loop Until Me Is Nothing

Remarks

A Frame is useful as a parent Ocx (OcxOcx) control. Other
Ocx controls that can be used a parents are Form, Image,
TabStrip, Toolbar.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView,
UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/frame.htm

Form Object
Purpose

A Form object is a window or dialog box that makes up part
of an application's user interface.

Syntax

Form

Description

Forms are the foundation for creating the interface of an
application. You can use forms to add windows and dialog
boxes to your application. You can also use them as
containers for items that are not a visible part of the
application's interface. For example, you might have a form
in your application that serves as a container for graphics
that you plan to display in other forms.

A design a form using the Form Editor or create them in
code. A form designed with the Form Editor is brought into
the program using the LoadForm command. In code, forms
are created by Form, OpenW, ParentW, ChildW, and
Dialog (which see).

Forms have properties that determine aspects of their
appearance, such as position, size, and color; and aspects
of their behavior, such as whether or not they are resizable.

Forms can also respond to events initiated by a user or
triggered by the system. For example, you could write code

in a form's Click event procedure that would enable the
user to change the color of a form by clicking it.

In addition to properties and events, you can use methods
to manipulate forms using code. For example, you can use
the Move method to change a form's location and size.

When designing forms, set the BorderStyle property to
define a form's border, and set the Caption property to put
text in the title bar. In code, you can use the Hide and
Show methods to make forms invisible or visible at run-
time.

Properties

Align | Appearance | AutoClose |AutoRedraw | BackColor |
BkColor | BorderStyle | Caption | ControlBox | Controls |
CurrentX | CurrentY | DrawMode | Enabled | Font | FontBold
| FontItalic | FontName | FontSize | FontStrikethru |
FontTransparent | FontUnderline | ForeColor | hDC~hDC2 |
Height | HelpButton | HelpContextID | hMdiClientWnd |
HScMax | HScMin | HScPage | HScPos | HScStep | HScTrack
| hWnd | Icon | Image | Index | IsDialog | Left | MaxButton
| MdiChild | MdiParent | MenuEnabled | MenuItem |
MenuText | MinButton | MouseCursor | MouseIcon |
MousePointer | Moveable | Name | OcxScale | OnTop |
PaintLeft | PaintTop | PaintWidth | PaintHeight | Parent |
Picture | PictureMode | PrintScroll | PrintWrap | ScaleHeight
| ScaleLeft | ScaleMode | ScaleTop | ScaleWidth | ScrollBars
| ShowInTaskBar | Sizeable | SmallIcon | StartUpMode |
TabStripIndex | TabStop | Tag | ToolTipText | Top | Visible |
VScMax | VScMin | VScPage | VScPos | VScStep | VScTrack
| WhatsThisHelpID | Width | WindowState

The PictureMode property determinates how the Form
picture is displayed (0 = default, 1 = Tile, 2 = stretched).

Methods

Activate | Adjust | Center | Close | Deactivate | Disable |
DoClick | Enable | FullW | Hide | Invalidate | InvalidateAll |
Maximize | MdiCascade | MdiGetActive | MdiActivate |
MdiIconArrange | MdiNext | MdiPrev | MdiSetMenu |
Minimize | Move | Owner | PixelsPerTwipX | PixelsPerTwipY |
PrintForm | PrintFormHeight | PrintFormWidth | PrintPicture,
PrintPicture2 | Refresh | Restore | Scale | ScaleX | ScaleY |
SetFocus | SetFont | Show | SysMenuText | TextHeight |
TextWidth | ToBack | ToTop | TwipsPerPixelX |
TwipsPerPixelY | Validate | ValidateAll | WhatsThisMode |
ZOrder

Events

Activate | Click | Close | DblClick | DDEWndProc |
Deactivate | Destroy | DisplayChange | EndSession |
GotFocus, LostFocus | HScroll | HScrolling | KeyDown,
Keyup | KeyPress | Load | MciNotify | MenuEvent |
MenuOver | Message | MessageProc | MonitorPower |
MouseDblClick | MouseDown, MouseUp | MouseMove |
MouseWheel | Moved | OnCtrlHelp | OnHelp | OnMenuHelp |
Paint | QueryEndSession | Resize | ScreenSave |
SysColorChange | SysMenuOver | VScroll | VScrolling |
WinIniChange

Some properties are only valid for an Ocx Form, a form
used as a control. For instance, a non-Ocx form cannot have
a Parent, but an Ocx can and does.

Remarks

Note Setting the BorderStyle to 0 removes the border. If
you want your form to have a border without the title bar or

Control-menu box, delete any text from the form's Caption
property and set the form's ControlBox properties to False.

See Also

Form, Form(), LoadForm, OpenW, ChildW, ParentW, Dialog

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

MonthView Ocx
Purpose

Creates an Ocx MonthView control 'in' the current active
form, window, or dialog.

Syntax

Ocx MonthView name [= text$] [, id%], [x, y, w, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The MonthView control enables you to create applications
that let users view and set date information via a calendar-
like interface.

The Value property of the MonthView control returns the
currently selected date.

You can allow end users to select a contiguous range of
dates by setting the MultiSelect property to True, and
specifying the number of selectable days with the
MaxSelProperty. The SelStart and SelEnd properties
return the start and end dates of a selection.

You can customize a MonthView control's appearance in
many ways. Various color attributes such as

MonthBackColor, TitleBackColor, TitleForeColor, and
TrailingForeColor enable you to create a unique color
scheme for the control.

You can display more than one month at a time (up to 12)
in a MonthView control by setting the MonthRows and
MonthColumns properties. The total of the MonthRows
and MonthColumns properties must be less than or equal
to 12.

The MonthView Ocx control has the following properties,
methods, and events.

Properties

Appearance | BackColor | BorderStyle | Day | DayBold |
DayOfWeek | DayVisible | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | ForeColor | Height | HelpContextID |
HideSelection | hWnd | Index | Left | MaxDate |
MaxSelCount | MinDate | Month | MonthBackColor |
MonthColumns | MonthRows | MouseCursor | MouseIcon |
MousePointer | MultiSelect | Name | Parent | ScrollRate |
SelEnd | SelStart | ShowToday | ShowWeekNumbers |
StartOfWeek | TabStop | Tag | TitleBackColor |
TitleForeColor | Today | ToolTiptext | Top | TrailingForeColor
| Value | Visible | VisibleDays | Week | WhatsThisHelpID |
Width | Year

Methods

AboutBox | ComputeControlSize | HitTest | Move | Refresh |
SetFocus | SetFont | ZOrder

Events

Click | DateClick | DateDblClick | DayClick | DblClick |
GetDayBold | GotFocus | KeyDown, KeyUp | KeyPress |
LostFocus | MouseDown | MouseUp | MouseMove |
SelChange

Example

Mode StrSpace 0
OpenW 1, , , 570, 450
Ocx MonthView mvw = "", 10, 90, 0, 0 /* Width and
Height are ignored

With mvw
.MonthColumns = 2 : .MonthRows = 2
.Value = Date
.ForeColor = RGB(0, 0, 255)
.MonthBackColor = colBtnFace
.StartOfWeek = 1 ' Sunday
.ShowToday = 1
.ShowWeekNumbers = True

EndWith
Ocx Command cmd1 = "Restrict", 200, 10, 150, 25
Ocx Command cmd2 = "Multi Select", 200, 40, 150,
25

Ocx Label lbl = mvw.Value , 200, 70, 80, 25
Ocx Label lblWeek = mvw.Week, 280, 70, 20, 25
Ocx Label lblWeekDay = mvw.DayOfWeek , 310, 70,
20, 25

Debug.Show
mvw.SetFocus
Trace mvw.DayVisible(mvw.Value)
Trace mvw.ScrollRate
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click
mvw.MinDate = #01.07.1998#

mvw.MaxDate = #01.07.1999#
mvw.Value = #17.04.1999#

Sub cmd2_Click
mvw.MultiSelect = True
mvw.MaxSelCount = 10
mvw.Value = #01.01.1999#

Sub mvw_Click
Debug.Print "Event _Click"

Sub mvw_DateClick(DateClicked As Date)
Trace DateClicked

Sub mvw_DateDblClick(DateDblClicked As Date)
Trace DateDblClicked

Sub mvw_DayClick(DayOfWeek%)
Trace DayOfWeek

Sub mvw_DblClick
Debug.Print "Event _DblClick"

Sub mvw_GetDayBold(StartDate As Date, Count%,
State?())
Debug.Print "Event _ GetDayBold"

Sub mvw_GotFocus
Debug.Print "Event _GotFocus"

Sub mvw_KeyDown(Code&, Shift&)
Debug.Print "Event _KeyDown (Param:
",Code&,":",Shift&,")"

Sub mvw_LostFocus
Debug.Print "Event _LostFocus"

Sub mvw_SelChange(StartDate As Date, EndDate As
Date)
Trace StartDate
Trace EndDate
lbl = mvw.Value
lblWeekDay = mvw.DayOfWeek
lblWeek = mvw.Week

Known Issues

As at the time of writing (Win8/10), DateDblClick does not
work; all that happens is that the DateClick event is called
twice. See the DateClick page for a workaround.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/monthview.htm

TabStrip Ocx
Purpose

Creates an Ocx TabStrip control in the current active form,
window, or dialog.

Syntax

Ocx TabStrip name [= text$] [, id%] [, x, y, w, h] [,
style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

A TabStrip control is like the dividers in a notebook or the
labels on a group of file folders. By using a TabStrip
control, you can define multiple pages for the same area of
a window or dialog box in your application.

The control consists of one or more Tab objects in a Tabs
collection. At run time, you can affect the Tab object's
appearance by setting properties. You can also add and
remove Tab objects at run time using methods.

The Style property determines whether the TabStrip
control looks like push buttons (Buttons or Flat-Buttons) or
notebook tabs (Tabs). At design time when you put a
TabStrip control on a form, it has two notebook tabs. If the
Style property is set to tabTabs, then there will be a

border around the TabStrip control's internal area. When
the Style property is set to tabButtons, no border is
displayed around the internal area of the control, however,
that area still exists.

To set the overall size of the TabStrip control, use its drag
handles and/or set the Top, Left, Height, and Width
properties. Based on the control's overall size at run time,
Visual Basic automatically determines the size and position
of the internal area and returns the Client-coordinate
properties - ClientLeft, ClientTop, ClientHeight, and
ClientWidth. The MultiRow property determines whether
the control can have more than one row of tabs, the
TabWidthStyle property determines the appearance of
each row, and, if TabWidthStyle is set to tabFixed, you
can use the TabFixedHeight and TabFixedWidth
properties to set the same height and width for all tabs in
the TabStrip control.

To contain the actual pages and their objects, you must use
Frame, Form, or Image controls that match the size of
the internal area which is shared by all Tab objects in the
control. When Frame is used as a container (OcxOcx tbs
Frame frm), it has the additional feature that BorderStyle
= 0 and Transparent = 0. The coordinates specified in the
OcxOcx command are ignored; the container is
automatically sized to the TabStrip client coordinates.

The Text/Caption property of the Frame and Form is
used as the title for the Tab. The Image control doesn't
have a Caption property, and is less useful.

The TabStrip Ocx control has the following properties,
methods, and events.

Properties

Appearance | BackColor | ClientHeight | ClientLeft |
ClientTop | ClientWidth | Enabled | Font | FontBold |
FontItalic | FontStrikethru | FontUnderline | FontName |
FontSize | HotTracking | Height | HelpContextID | hWnd |
ImageList | Index | Left | MouseCursor | MouseIcon |
MousePointer | MultiRow | Name | Parent | Placement |
ScrollOpposite | SelectedIndex | SelectedItem | Separators
| Style | Tab | TabCount | TabFixedHeight | TabFixedWidth |
TabMinWidth | Tabs | TabStop | TabWidthStyle | Tag | Top |
Visible | WhatsThisHelpID | Width

The TabCount property returns the number of tabs. Short
for .Tabs.Count.

Methods

Add | AddItem | Clear | HitTest | Item | Move | NextTab |
PrevTab | Refresh | Remove | SetFocus | SetFont |
TextHeight | TextWidth | ZOrder

Events

BeforeChange | Change | Click | KeyDown, KeyUp |
KeyPress | MouseDown | MouseUp | MouseMove

Example

Const USE_ADD = 1
Form Hidden Center frm1 = "TabStrip", , , 400, 300
Ocx TabStrip tbs = , 20, 20, ScaleWidth - 40,
ScaleHeight - 40

tbs.HotTracking = True
tbs.Placement = 1
If USE_ADD
Ocx Frame fr1 = "Tab #1"
Ocx Frame fr2 = "Tab #2"

Ocx Frame fr3 = "Tab #3"
Ocx Frame fr4 = "Tab #4"

Else
' See Remarks
OcxOcx tbs Frame fr1 = "Tab #1"
OcxOcx tbs Frame fr2 = "Tab #2"
OcxOcx tbs Frame fr3 = "Tab #3"
OcxOcx tbs Frame fr4 = "Tab #4"

EndIf
OcxOcx fr1 Option opt1 = "Option #1", 20, 20, 80,
24

OcxOcx fr1 Option opt2 = "Option #2", 20, 50, 80,
24

OcxOcx fr2 CheckBox chk1 = "Check #1", 20, 20, 80,
24

OcxOcx fr2 CheckBox chk2 = "Check #2", 20, 50, 80,
24

OcxOcx fr3 TextBox txt1 = "TextBox #1", 20, 20,
280, 40

OcxOcx fr3 TextBox txt2 = "TextBox #2", 20, 130,
280, 40

OcxOcx fr4 Command cmd1 = "NextTab", 90, 20, 80,
24

OcxOcx fr4 Command cmd2 = "PrevTab", 90, 50, 80,
24

If USE_ADD
Dim tab As Tab
tbs.Tabs.Add 1, , fr1.Caption , , fr1
tbs.AddItem 2, , fr2.Caption, , fr2
tbs.Add 3, , fr3.Caption, , fr3
Set tab = tbs.AddItem(4, , , , fr4)
tab.Caption = fr4.Caption

EndIf
' Creates ragged rows of tabs.
tbs.MultiRow = True
tbs.TabWidthStyle = tabNonJustified
frm1.Show

tbs(2).Selected = True
Do
Sleep

Until Me Is Nothing

Sub tbs_Change
Switch tbs.SelectedIndex
Case 1 : opt1.SetFocus
Case 2 : chk1.SetFocus
Case 3 : txt1.SetFocus
Case 4 : cmd1.SetFocus
EndSwitch

End Sub

Sub tbs_BeforeChange(Cancel?)
If MsgBox("Tab change allowed?", MB_OKCANCEL) =
IDCANCEL
Cancel? = True

EndIf

Sub cmd1_Click
tbs.NextTab

Sub cmd2_Click
tbs.PrevTab

Remarks

When using the OcxOcx command to associate a container
with a TabStrip control, the Add[Item] method is invoked
implicitly. Also, the caption of the container is used for the
Tab object Text.

A third way of creating TabStrip containers is by using the
Form Editor. First create a Form with a TabStrip and then
create a set of Forms that define the contents of each tab.
Then in code:

LoadForm frmTabStrip Hidden
Do
Sleep

Until Me Is Nothing

Sub frmTabStrip_Load
LoadForm frm2 Hidden
LoadForm frm3 Hidden
LoadForm frm4 Hidden
LoadForm frm5 Hidden
tbs1.AddItem , , "GFA" , , frm2
tbs1.AddItem , , "Software", , frm3
tbs1.AddItem , , "Technologies", , frm4
tbs1.AddItem , , "GmbH", , frm5
frmTabStrip.Show

EndSub

Sub tbs1_Change
Switch tbs1.SelectedIndex
Case 1 : chk2.SetFocus
Case 2 : cmd2.SetFocus
Case 3 : ed1.SetFocus
Case 4 : cmd5.SetFocus
EndSwitch

End Sub

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/tabstrip.htm

TrayIcon Ocx
Purpose

Creates an Ocx TrayIcon control 'in' the current active
form, window, or dialog.

Syntax

Ocx TrayIcon name [= text$] [, id%], [x, y, w, h] [,
style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

TrayIcon creates a taskbar notification icon. It places an
icon of your choice into the System Tray that most often will
display a ToolTip of your choice when the mouse is rested
over it, will restore the application when clicked, and will
display a popup menu when right-clicked.

Properties

Icon | Index | Name | Parent | Tag | ToolTipText | Visible

Events

MBDown | MBUp | MBDblClick | MMove

Syntax Events

Sub TrayIcon_MBDown(Button%)

Sub TrayIcon_MBUp(Button%)

These events occur when the user presses (MBDown) or
releases (MBUp) a mouse button. The Button% argument
is a bit field with bits corresponding to the left button (bit
0), right button (bit 1), and middle button (bit 2). These
bits correspond to the values 1, 2, and 4, respectively.

Sub TrayIcon_MBDblClick(Button%)

Occurs when the user presses and releases a mouse button,
then presses and releases it again over an object. The
Button% argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle
button (bit 2). These bits correspond to the values 1, 2, and
4, respectively.

Sub TrayIcon_MMove

Occurs when the user moves the mouse over the tray icon.

Example

OpenW 1
Ocx TrayIcon tic1
tic1.Icon = CreatePicture(LoadIcon(Null,
IDI_APPLICATION))

tic1.ToolTipText = "Demo Application"
tic1.Visible = True
Do
Sleep

Until Me Is Nothing
'

Sub Win_1_Moved

If Win_1.WindowState = basMinimized _
Win_1.Hide

Sub tic1_MBDown(Button%)
Debug.Trace Button%
If Button% = 2
Local ret%
DoEvents
ret% = PopUp("&Open|-|E&xit", 0, 0, -3)
Switch ret%
Case 0 ' Restore / Open
If Win_1.WindowState = basMinimized || _
Win_1.Visible = False Then Win_1.Restore

Case 2 ' Exit
PostMessage Win_1.hWnd, WM_CLOSE, 0, 0

EndSwitch
EndIf

End Sub

Sub tic1_MBDblClick(Button%)
Debug.Trace Button%
If Button% = 1 Then _
PostMessage Me.hWnd, WM_CLOSE, 0, 0

End Sub

Sub tic1_MBUp(Button%)
Debug.Trace Button%

End Sub

Remarks

To make PopUp (TrackPopupMenu API) work properly in
the context of a tray, you must first call
SetForegroundWindow on the window that owns the popup.
Otherwise, the menu will not disappear when the user
presses Escape or clicks the mouse outside the menu. To

find out more, search for Q135788 in MSDN. "This behavior
is by design."

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/trayicon.htm

Animation Ocx
Purpose

Creates an Ocx Animation control in the current active
form, window, or dialog.

Syntax

Ocx Animation name = [text$] [, id] [, x, y, b, h] [,
style%]

text$:control text
id%:control identifier
x, y, b, h:iexp
style%:the control styles

Description

The Animation control allows you to create buttons which
display animations, such as .avi files, when clicked. The
control can play only AVI files that have no sound. In
addition, the Animation control can display only
uncompressed .avi files or .avi files that have been
compressed using Run-Length Encoding (RLE).

An example of this control is the file copy progress bar in
Windows 95, which uses an Animation control. Pieces of
paper "fly" from one folder to another while the copy
operation executes. See example.

Properties

AutoPlay | BackColor | Enabled | Center | Height |
HelpContextID | hWnd | Index | Left | Name | Parent | Tag
| Top | ToolTiptext | Transparent | Visible | WhatsThisHelpID
| Width

Methods

Close | Move | Open | Play | Seek | Stop | Refresh | ZOrder

Events

Click | DblClick | MouseDown | MouseUp | MouseMove |
Start | Stop

Example

AnimOcx.g32 sample program.

Remarks

If you attempt to load an .avi file that includes sound data
or that is in a format not supported by the control, an error
is returned.

See Also

Ocx, OcxOcx

CheckBox, ComboBox, Command, CommDlg, Form, Frame,
Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/animation.htm

UpDown Ocx
Purpose

Creates an Ocx UpDown control in the current active form,
window, or dialog.

Syntax

Ocx UpDown name [= text$] [, id%] [, x, y, width, height]
[, style%]

text$:control text
id%:control identifier
x, y, width, height:iexp
style%:the control styles

Description

An UpDown control has a pair of arrow buttons which the
user can click to increment or decrement a value, such as a
scroll position or a value in an associated control, known as
a buddy control.

To the user, an UpDown control and its buddy control often
look like a single control. The buddy control can be any
control that can be linked to the UpDown control through
the BuddyControl property, and usually displays data,
such as a TextBox control or a Command control.

The text of the buddy control is determined by the UpDown
OCX using the Format property.

The UpDown control can be positioned to the right
(default) or left of its buddy control with the LeftAlign
property. The BuddyControl property sets or returns the
Ocx control used as the buddy control. The arrows may be
positioned vertically (default) or horizontally with the
Horizontal property.

The Increment, Min, Max, and Wrap properties specify
how the UpDown control's Value property changes when
the user clicks the buttons on the control. For example, if
you have values that are multiples of 10, and range from 20
to 80, you can set the Increment, Min, and Max
properties to 10, 20, and 80, respectively. The Wrap
property allows the Value property to increment past the
Max property and start again at the Min property, or vice
versa.

The Value property specifies the current value within the
range of the Min and Max properties. This property is
incremented or decremented when the arrow buttons are
clicked. The settings of the Min and Max properties
determine whether the value is incremented or
decremented when the arrow buttons are clicked.

The ArrowKeys property determines the purpose of the up
and down arrow keys in the buddy control. When
ArrowKeys is True, it causes the up-down control to
increment and decrement the position when the UP ARROW
and DOWN ARROW keys are pressed.

The Change event occurs whenever the Value property
changes. The Value property can change through code, or
by clicking the arrow buttons.

Properties

ArrowKeys | BuddyControl, | Enabled | Format | Height |
Width | HelpContextID | Horizontal | hWnd | Increment |
Index | Left | Top | LeftAlign | Max | Min | MouseCursor |
MouseIcon | MousePointer | Name | Parent | Tag |
ToolTiptext | Value | Visible | WhatsThisHelpID | Wrap

Methods

Move | Refresh | ZOrder

Events

Change | DownClick | MouseDown |MouseUp | MouseMove
|UpClick

Example

Form frm1 = "UpDown", , , 200, 200
Ocx TextBox tbu = "??", 5, 5, 150, 24
.Appearance = 1
Ocx UpDown updn
.BuddyControl = tbu
.Max = 10
.Increment = 0.5
.Format = "0.0"
.Value = 2.5
Do
Sleep

Until Me Is Nothing

See Also UpDownOcx.g32

Remarks

An UpDown control without a buddy control functions as a
sort of simplified scroll bar.

See Also

Ocx, OcxOcx

Animation, CheckBox, ComboBox, Command, CommDlg,
Form, Frame, Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll, Slider,
StatusBar, TabStrip, TextBox, Timer, TrayIcon, TreeView

{Created by Sjouke Hamstra; Last updated: 07/10/2017 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/updown.htm

Compile To Exe
After selecting Compile To Exe the following dialog box is
displayed. Depending on the type of the source code
(normal program, a GLL, or a library) two or three tabs are
showed.

After filling in the dialog box click OK to start compiling. In
addition, the information provided in the dialog box is saved
in the project file in memory. Now the project is extended
with the compile information, so it must be saved again to
make the compile information persistent.

Program tab

When compiling a normal program to a stand-alone
executable this dialog box is displayed. This is a system
property dialog box and shows the language of your
Windows installation.

Source – Shows the name of the file currently loaded.

Change Exe – Shows the name of the stand-alone
executable. To initialize the EXE name to the name of the
source code file name, click the 'Init Progname' button.
When you click the button displaying the EXE's name a file
selection dialog box pops up which you can use the provide
a different name.

Change Icon – Each EXE must contain an icon used to
show with the file name in the Explorer.

Init Progname - Initializes the EXE name to the name of
the source code file name.

Note – In case of compiling a GLL or LG32 library, you can
still use the Program tab. The project can still be compiled
to an EXE even if it is an editor extension or library. In case
of an extension all Gfa_ statements are ignored. It is
possible to create a project that combines the functionality
of a program and a GLL. For instance, a program might
contain the logic to search for text in files. The project
might then contain an interface to start the search from
within a normal program. Additionally, the program may
contain a GLL interface (keyboard shortcut or menu event)
that starts the search logic as an editor extension.

Version info tab

In the 'Version Info' tab don't forget to press the small
button with + to increment the file version number once a

day.

To obtain help on the Version Info tab elements use the
What's This Help button [?] in the title of the box.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Converting Data Types
GFA-BASIC 32 provides several conversion functions you
can use to convert values into a specific data type. To
convert a value to Currency, for example, you use the
CCur function:

PayPerWeek = CCur(hours * hourlyPay)

Functio
n

Converts an
expression to

CBool Boolean
CByte Byte
CCur Currency
CDate Date
CDbl Double

CShort Short
CInt Integer

CLong Long
CLarge Large
CSng Single
CFloat Single
CStr String
CVar Variant

CHandle Handle

Note Values passed to a conversion function must be valid
for the destination data type or an error occurs. For
example, if you attempt to convert a Large to an Integer,
the Large must be within the valid range for the Integer
data type.

Floating point data conversion rounding towards zero.

CByteRZ, CShortRZ(), CIntRZ(), CLongRZ(),
CLargeRZ().

See Also

CByte, etc...

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Set Command
Purpose

Assigns an object reference to a variable or property.

Syntax

Set objectvar = objectexp | Nothing

objectvar:name of variable or property
objectexp:any object expression

Description

When you use Set to assign an object reference to a
variable, no copy of the object is created for that variable.
Instead, a reference to the object is created. More than one
object variable can refer to the same object. Because such
variables are references to the object rather than copies of
the object, any change in the object is reflected in all
variables that refer to it.

objectexp is an expression consisting of the name of an
object, another declared variable of the same object type,
or a function or method that returns an object of the same
object type.

The Dim, Global, Public, Local, and Static statements
only declare a variable that refers to an object. No actual
object is referred to until you use the Set statement to
assign a specific object.

In GFA-BASIC 32 new instances of user interface Ocx
objects are created with Ocx, OcxOcx, LoadForm, Form,
and the window creation commands. OLE automation
objects are created using CreateObject and GetObject. A
mouse cursor object is created using LoadCursor, a
Picture object with CreatePicture or LoadPicture.

Local pic As Picture
Set pic = LoadPicture("c:\pict.bmp")

Other intrinsic Ocx objects, like DisAsm, Collection, are
created with the New keyword in the declaration. Set
together with New cannot be used in GFA-BASIC 32,
because GFA-BASIC 32 provides other means of creating
object instances.

When Nothing is assigned to an object variable, the
association of the object variable with the object is
discontinued. Assigning Nothing to the object variable
releases all the system and memory resources associated
with the previously referenced object when no other
variable refers to it.

Set pic = Nothing

Set Me is provided to assign a Form object to the Me
Form object. Set Me redirects the output to the specified
form without activating it.

Set Me = Win_1

Example

Dim dis As DisAsm
1
Set dis = CreateDisAsm()
2

dis.Addr = LabelAddr(1) // start address
Debug.Print dis.DisAsm // disassembly of
16 bytes

While dis.Addr < LabelAddr(2)
Debug.Print dis

Wend
Debug.Show

Function CreateDisAsm() As DisAsm
Dim dis As New DisAsm // a new instance of
disassembler

dis.ByteFlag = True // code bytes and Hex
bytes

dis.HexDump = False // disassembly or a
HexDump

dis.HexDumpCount = 16 // bytes per line 1-32
(16=default)

dis.PreferHex // addreses in hex format
Set CreateDisAsm = dis

EndFunc

Remarks

See Also

Form, Me, OutPut

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

GetObject Function
Purpose

Returns a reference to an OLE object.

Syntax

Set object = GetObject([pathname] [, class])

object:Object exp

Description

The GetObject function accesses an OLE object from a file
and assign the object to an object variable. Use the Set
statement to assign the object returned by GetObject to
the object variable. For example:

Global testobj As Object

Set testobj = GetObject("<path + file_name>",
"program_name.object")

pathname specifies the full path and name of the file
containing the object to retrieve. If pathname is omitted,
class is required.

If pathname is a zero-length string (""), GetObject returns
a new object instance of the specified type. If the pathname
argument is omitted, GetObject returns a currently active
object of the specified type. If no object of the specified
type exists, an error occurs.

Some applications allow you to activate part of a file. Add
an exclamation point (!) to the end of the file name and
follow it with a string that identifies the part of the file you
want to activate. For information on how to create this
string, see the documentation for the application that
created the object.

For example, in a drawing application you might have
multiple layers to a drawing stored in a file. You could use
the following code to activate a layer within a drawing called
SCHEMA.CAD:

Set LayerObject =
GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If you don't specify the object's class, Automation
determines the application to start and the object to
activate, based on the file name you provide. Some files,
however, may support more than one class of object. For
example, a drawing might support three different types of
objects: an Application object, a Drawing object, and a
Toolbar object, all of which are part of the same file. To
specify which object in a file you want to activate, use the
optional class argument. For example:

Dim MyObject As Object
Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW",
"FIGMENT.DRAWING")

In the example, FIGMENT is the name of a drawing
application and DRAWING is one of the object types it
supports.

Once an object is activated, you reference it in code using
the object variable you defined. In the preceding example,
you access properties and methods of the new object using
the object variable MyObject. For example:

MyObject.Line 9, 90
MyObject.InsertText 9, 100, "Hello, world."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"

Note Use the GetObject function when there is a current
instance of the object or if you want to create the object
with a file already loaded. If there is no current instance,
and you don't want the object started with a file loaded, use
the CreateObject function.

If an object has registered itself as a single-instance object,
only one instance of the object is created, no matter how
many times CreateObject is executed. With a single-
instance object, GetObject always returns the same
instance when called with the zero-length string ("") syntax,
and it causes an error if the pathname argument is omitted.
You can't use GetObject to obtain a reference to a class
created with GFA-BASIC 32.

Example

Using GetObject with Excel objects

Dim x As Object
Set x = GetObject(, "Excel.Application")
' Excel must be running, otherwise an OLE
Automation error occurs.

' The x refers to Excel.Application for the
youngest instance of Excel.

Set x = GetObject("", "Excel.Application")
' Behaves like: Set x =
CreateObject("Excel.Application").

Set x = GetObject("", "Excel.Sheet")
' Behaves like: Set x =
CreateObject("Excel.Sheet")

Set x = GetObject("c:\Excel\test.xls")

Set x = GetObject("c:\Excel\test.xls",
"Excel.Sheet")

' Each of these starts an invisible reference-
independent

' instance of Excel, if it's not running,
' otherwise it uses the youngest existing
instance.

' If the specified XLS file is not open, then it
' is opened as a hidden workbook, and is
' reference-dependent unless the command was
' executed as an Excel command. The x refers
' to the activesheet in the specified file.
Set s = GetObject("", "Excel.Chart")
' Behaves like: Set s =
CreateObject("Excel.Chart")

Set s = GetObject("c:\Excel\test.xls",
"Excel.Chart")

' Behaves like: GetObject("c:\Excel\test.xls")
' except that the workbook must contain at least
one chart sheet.

Remarks

These are ILLEGAL :

Set s = GetObject(, "Excel.Sheet")
Set s = GetObject("c:\Excel\test.xls",
"Excel.Application")

The built-in API function GetObject is renamed in
GetGdiObject or apiGetObject.

See Also

Automation, CreateObject

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Lower/LCase and
Upper/UCase Functions
Purpose

Converts a string to either upper or lower case

Syntax

$ = Lower[$](a$)

$ = LCase[$](a$)

$ = Upper[$](a$)

$ = UCase[$](a$)

a$:sexp

Description

Lower and Upper convert a string, including all accented
letters, to lower and upper cases respectively.

LCase and UCase do the same but only for unaccented
letters.

Non-letter characters are left unaffected by all of the above
functions.

Example

Local a$ =
"aàáâãäåæbcçdeèéêëfghiìíîïjklmnðñoòóôõöpqrstuvwxy

z1234567890"
Debug.Show
Trace a$
Trace Upper(a$)
Trace UCase(a$)
Debug.Print
a$ = Upper(a$)
Trace a$
Trace Lower(a$)
Trace LCase(a$)

See Also

Xlate$()

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

ArrPtr Function
Purpose

Returns the address of a variable of any type.

Syntax

% = ArrPtr(x)

x:variable or field name

Description

ArrPtr returns the address of all variable types, except for
arrays and string.

ArrPtr(a()) and ArrPtr(a$) return the addresses of array
and string descriptors respectively. For a fixed string ArrPtr
returns the first four bytes of the data. This function has no
meaning for a fixed-string.

Example

OpenW # 1
Dim a(1), a$, n%
Print ArrPtr(a()) // prints the address of a()
descriptor

Print *a$ // prints the address of a$
descriptor

Print ArrPtr(n%) // prints the address of n%
Print *n% // prints the address of n%

Remarks

* is synonymous with ArrPtr() and can be used instead.

See Also

Varptr(), V:

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Left Function
Purpose

Returns the first characters of a string expression.

Syntax

Left[$](a$ [,m [,fillchar]])

a$:sexp
m:integer expression
fillchar:iexp or sexp

Description

Left$(a$, m) returns the first m characters of the string
expression a$. If m not given, the first character of a$ is
returned. When m < 0 the string a$ is returned completely.

When m is greater than the number of characters in a$
(spaces and Chr$(0) are characters too!), the entire string
returned. When Left() it takes a third parameter fillchar, it
should specify the character to fill the return value when the
source string does not hold enough characters. The fillchar
might be ASCII value as well as a string containing the
character to fill the string with.

Example

Print Left$("Hello GFA", 5) // prints
Hello

Print Left$("Hello GFA", 20) // prints
Hello GFA

Print Left$("Hello GFA", -1) // prints
Hello GFA

Print Left$("Hello GFA", 16, ".") // prints
Hello GFA.......

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Right(), Mid(), SubStr(), Mid

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Right Function
Purpose

Returns the last m characters of a string expression.

Syntax

Right[$](a$ [,m [,fillchar]])

a$:sexp
m:integer expression
fillchar:iexp or sexp

Description

Right$(a$,m) returns the last m characters of the string
expression a$. If m not given, the lasst character of a$ is
returned. (m > 0)

When m is greater than the number of characters in a$
(spaces and Chr$(0) are characters too!), the entire string
returned. When Right it takes a third parameter fillchar, it
should specify the character to fill the return value when the
source string does not hold enough characters. The fillchar
might be ASCII value as well as a string containing the
character to fill the string with.

Example

Print Right$("Hello GFA", 5) // prints o GFA
Print Right$("Hello GFA", 20) // prints Hello
GFA

Print Right$("Hello GFA", -1) // prints

Print Right$("Hello GFA", 16, ".") // prints
.......Hello GFA

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Left$$, Mid$, SubStr

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Mid Command
Purpose

Moves a string expression of specified length to the chosen
place in a character string.

Syntax

Mid$(a$, p% [,l%]) = b$

a$:svar
b$:sexp
p%, l%:integer expression

Description

Mid$(a$, p%, l%)=b$ moves l% characters from b$, to
position p% (in a$) to a$. If l% is left out, again, as many
characters as possible are moved from b$ to a$. The length
and address of a$ are not changed.

Example

OpenW # 1 : Win_1.FontName = "courier new"
Local a$ = String$(15, "-")
Local b$ = "Hello GFA"
Print a$``Len(a$) // Prints --------------- 15
Print b$``Len(b$) // Prints Hello GFA 9
Mid$(a$, 3) = b$
Print a$``Len(a$) // Prints --Hello GFA---- 15
Mid$(a$, 9, 5) = b$
Print a$``Len(a$) // Prints --Hello Hello-- 15

See Also

Lset, Rset

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

Mid Function
Purpose

Starting from position p, returns the next m characters of a
string expression.

Syntax

Mid[$](a$, p% [,m%])

a$:sexp
m%, p%:integer expression

Description

Mid$(a$, p%, m%) returns, starting from position p%
(inclusive), up to m% characters of the string expression
a$. If m% is not given, the whole string from position p% is
returned.

Example

OpenW # 1
Print Mid$("Hello GFA", 7, 5) // Prints GFA
Print Mid$("Hello GFA", 1, 5) // Prints Hello
Print Mid$("Hello GFA", 3) // Prints llo GFA

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Left$(), Right$(), SubStr()

{Created by Sjouke Hamstra; Last updated: 20/06/2017 by James Gaite}

SubStr Function
Purpose

Starting from position p, returns the next m characters of a
string expression.

Syntax

SubStr[$](a$, p% [,m% [,char$]])

a$, char$:sexp
m%, p%:integer expression

Description

SubStr$(a$, p%, m%, char$) returns, starting from
position p% (inclusive), up to m% characters of the string
expression a$. If m% is not given, the whole string from
position p% is returned. If m% specifies more characters
than are present in a$, then the returned string is filled with
character char$.

Example

Debug.Show
Local a$
a$ = "GFA Software Technologies GmbH"
Trace SubStr$(a$, 5, 9) // Software
Trace SubStr(a$, 1, 3) // GFA
Trace SubStr(a$, 5) // Soft...
Trace SubStr(a$, 5, 35, "*") // Software
Technologies GmbH*********

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Left$(), Right$(), Mid()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

InStr Function
Purpose

Searches a string expression for occurrence of a substring

Syntax

i = InStr(a, b [,m%] [, compmode])

i = InStr([m%], a, b [, compmode])

a, b: string expression or Variant expression
m%, compmode: iexp

Description

InStr() searches through the string or string in Variant
expression a starting from position m% for the substring b.
If m% is not given, the search starts from the first
character in string a. The compare compmode indicates how
the search for b inside a is to be performed. The compmode
can take the same values as the Mode Compare
statement.

compmode meaning
0 binary compare (default)
1 case insensitive
-2 converts both strings to uppercase before

searching
-3 converts both strings to lowercase before

searching

If b isn't found or if b="" the command returns 0.

Example

Debug.Show
Trace InStr("Hello GFA", "ll", 2) //
Prints 3

Trace InStr("Hello GFA", "ll") //
Prints 3

Trace InStr("Hello GFA", "ll", 4) //
Prints 0

Trace InStr(0, "Hello GFABASIC", "LL", 1) // 3
Trace InStr(0, "Hello GFABASIC", "LL", 0) // 0
Trace InStr("Hello GFABASIC", "LL", 0, -2) // 3
Trace InStr("Hello GFABASIC", "LL", 0, -3) // 3

See Also

RInStr(), Mode

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

RInStr Function
Purpose

Searches a string expression for occurrence of a substring,
optionally from a given position. If the substring is found,
the position at which it begins is returned. If the substring
is not found a 0 is returned.

Syntax

i = RInStr(a$, b$ [,m%] [, compmode])

i = RInStr([m%], a$, b$ [, compmode])

a$, b$: sexp
m%, compmode: iexp

Description

RInStr() searches through the string expression a$ starting
from position m% for the substring b$. If m% is not given,
the search starts from the first character in string a$. The
compare compmode indicates how the search for b$ inside
a$ is to be performed.

compmode meaning
0 binary compare (default)
1 case insensitive
-2 converts both strings to uppercase before

searching
-3 converts both strings to lowercase before

searching

If b$="" the command returns 0.

Example

Debug.Show
Trace RInStr("Hello GFA", "ll", 2) //
prints 3

Trace RInStr("Hello GFA", "ll") //
prints 3

Trace RInStr("Hello GFA", "ll", 4) //
prints 0

Trace RInStr(0, "Hello GFABASIC", "LL", 1) // 3
Trace InStr(0, "Hello GFABASIC", "LL", 0) // 0
Trace RInStr("Hello GFABASIC", "LL", 0, -2)// 3
Trace RInStr("Hello GFABASIC", "LL", 0, -3)// 3

See Also

Instr(), Mode

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Mirror Function
Purpose

Generates a value which is a mirror image of the given
character expression.

Syntax

% = Mirror[%](x%)

% = Mirror&(x&)

% = Mirror|(x|)

% = Mirror3(x%)

l = Mirror8(xlarge)

$ = Mirror$(x$)

Description

Mirror[%] reverses the specified 32-bit integer value and
returns a 32-bit value.

Mirror& reverses the specified 16-bit integer value and
returns a 16-bit value.

Mirror| reverses the specified 8-bit integer value and
returns a 8-bit value.

Mirror3 reverses the lower 24-bits of an integer value and
returns a 32-bit value.

Mirror8 reverses the specified 64-bit integer value and
returns a 64-bit value.

Mirror$ reverses the specified string value and returns it as
a string

The arguments are converted to the expected type before
the mirror operation is performed.

Example

Print Bin(Mirror
(%11111111000000001111111100000011), 32)

Print Bin(Mirror%
(%11111111000000001111111100000011), 32)

Print Bin(Mirror&
(%11111111000000001111111100000011), 32)

Print Bin(Mirror|
(%11111111000000001111111100000011), 32)

Print
Bin(Mirror3(%11111111000000001111111100000011),
32)

Print
Bin(Mirror8(%11111111000000001111111100000011),
64)

Print Mirror$("GFABasic32")

Prints

11000000111111110000000011111111
11000000111111110000000011111111
11111111111111111100000011111111
00000000000000000000000011000000
00000000110000001111111100000000
110000001111111100000000111111111111111111111111
1111111111111111
23cisaBAFG

Remarks

Use _Swab to swap bytes.

See Also

_Swab, _Swab8, _SwabL

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

VarType Function
Purpose

Returns a value indicating the subtype of a variable.

Syntax

% = VarType(varname)

varname:any variable name

Description

VarType returns one of the following values

basEmpty = 0 not initializes, an empty Variant
basNull = 1 Variant with the contents Null
basShort = 2 16 bit Integer (in VB vbInteger)
basLong = 3 Integer, Long, %, 32 bit
basInt = 3 Integer, Long, %, 32 bit
basSingle = 4 Floating point, single precision
basDouble = 5 Floating point, double precision
basCurrency =
6

Currency

basDate = 7 Date/Time
basVString = 8 String in Variant
basObject = 9 Object
basError = 10 Error value
basBoolean =
11

Boolean (True/False)

basVariant = Variant (used only with arrays of

12 variants)
basByte = 17 Byte
basCard = 18 Integer, unsigned, 16 bit
basLarge = 20 Large, 64 Bit Integer
basType = 251 user-defiend type
basHash = 252 Hash
basFixedStr =
253

String with fixed length

basUnknown
= 254

unknown

basString =
255

String ($), not as Variant

basArray =
8192

Array

The VarType function never returns the value for basArray
by itself. It is always added to some other value to indicate
an array of a particular type. The constant basVariant is
only returned in conjunction with basArray to indicate that
the argument to the VarType function is an array of type
Variant. For example, the value returned for an array of
integers is calculated as basInt + basArray, or 8194.

NOTE: This function does NOT work with native GFA Arrays
and User-defined Types, despite the original documentation
stating otherwise.

Example

Debug.Show
Local a As Card : Trace VarType(a)
Local o As Object : Trace VarType(o)
Local b As String : Trace VarType(b)
Local c As Double : Trace VarType(c)

Local i As Integer : Trace VarType(i)
Debug.Print
//
Local dd As Variant
dd = Array(1, 2, 4, "aaa", 17, Array(1, 2))
Trace VarType(dd(5)(1))
Trace VarType(dd)
Trace VarType(dd) - basArray

Remarks

This function is designed primarily to identify variable types
in Variants and has been extended to do the same for
simple native GFA variables. As neither GFA Arrays nor
User-defined Types can be stored in a Variant, they can not
be identified by this function.

See Also

TypeName, TypeOf, Gfa_Type

{Created by Sjouke Hamstra; Last updated: 07/07/2019 by James Gaite}

TypeName Function
Purpose

Returns a String that provides information about a
variable.

Syntax

$ = TypeName[$](varname)

varname:variable

Description

TypeName returns a String naming the type of the variable,
in contrast with VarType which only returns a constant
representing the type.

Boolean Boolean (True/False)
Byte Byte
Card Integer, unsigned, 16 bit
Currency Currency
Date Date/Time
Double Floating point, double precision
Empty not initialized, an empty Variant
Hash[] Hash
Large Large, 64 Bit Integer
Long Integer, Long, %, 32 bit
Null Variant or Handle with the contents Null
Single Floating point, single precision
Short 16 bit Integer

String (Fixed) String ($) including String in
Variant

Variant Variant (used only with arrays of variants)

Objects, Arrays and User-defined Types

When varname is an Object, the return value is the object
type or, if no object has been assigned, then Nothing.
Objects stored using OCX variables, Variants, the Picture
and the Object variable types can be queried using this
function.

With arrays, the function only works with Arrays in
Variants and returns type() where type is the variable type
of the array, e.g. a Double array would return "Double()".

This function does not work with User-defined Types nor
elements of UDTs, despite advice otherwise in the original
documentation.

Example

OpenW Hidden 1
Debug "General Variables"
Local ca As Card : Trace TypeName(ca)
Local i% : Trace TypeName(i%)
Local st$: Trace TypeName(st$)
Local sh& : Trace TypeName(sh&)
Local e As Date : Trace TypeName(e)
//
Debug : Debug "Variants"
Local va As Variant : Trace TypeName(va)
va = 11122455.2255 : Trace TypeName(va)
va = "A string" : Trace TypeName(va)
va = Null : Trace TypeName(va)
//

Debug : Debug "Handles"
Local g As Handle : g = V:i% : Trace TypeName(g)
//
Debug : Debug "Objects"
Local f As Picture : Trace TypeName(f)
Set f = Win_1.PrintPicture : Trace TypeName(f) :
Set f = Nothing

Local lbl As Label : Trace TypeName(lbl)
Ocx Label lbl1 : Set lbl = lbl1 : Trace
TypeName(lbl)

Local obj As Object : Trace TypeName(obj)
Set obj =
CreateObject("InternetExplorer.Application") :
Trace TypeName(obj) : Set obj = Nothing

Local ova As Object : Trace TypeName(ova)
Ocx TextBox txt : Set ova = txt : Trace
TypeName(ova)

//
Debug : Debug "Arrays in Variants"
Local aiv As Variant : aiv = Array(1, 2, 3) As
Byte

Trace TypeName(aiv)
//
CloseW 1
Debug.Show

Remarks

This function is designed primarily to identify variable types
in Variants and has been extended to do the same for
simple native GFA variables. As neither GFA Arrays nor
User-defined Types can be stored in a Variant, they can not
be identified by this function.

See Also

TypeOf, VarType

{Created by Sjouke Hamstra; Last updated: 07/07/2019 by James Gaite}

Nothing Keyword
Purpose

The Nothing keyword is used to disassociate an object
variable from an actual object.

Syntax

Set Object = Nothing

? Object Is Nothing
Boolean = IsNothing(Object)

Description

Use the Set statement to assign Nothing to an object
variable.

Several object variables can refer to the same actual object.
When Nothing is assigned to an object variable, that
variable no longer refers to an actual object. When several
object variables refer to the same object, memory and
system resources associated with the object to which the
variables refer are released only after all of them have been
set to Nothing, either explicitly using Set, or implicitly
after the last object variable set to Nothing goes out of
scope.

All object variables are automatically cleared when they go
out of scope. If you want the variable to retain its value
across procedures, use a global variable, or create functions
that return the object.

To check if an object has been set to Nothing, either the
Object Is Nothing statement or IsNothing function can be
used (they are interchangeable).

Example

OpenW 1
Dim dis As New DisAsm // a new instance of
disassembler object

// use the Disassembler
Set dis = Nothing // release object
Print (dis Is Nothing) // True
Print IsNothing(dis) // True
Do
Sleep

Until Win_1 Is Nothing // [Or] Until
IsNothing(Win_1)

Remarks

A reference to an OLE object can be stored in a an Object-
type, which in fact is an IDispatch reference type, or a
Variant.

See Also

Empty, Missing, Is, Null, Object, Set, Variant

{Created by Sjouke Hamstra; Last updated: 23/06/2017 by James Gaite}

IsDate Function
Purpose

Returns a Boolean value indicating whether an argument
contains a Date type.

Syntax

Bool = IsDate(exp)

exp: Variant, Date, or String expression

Description

IsDate returns True if the expression is a date or is
recognizable as a valid date; otherwise, it returns False. In
Microsoft Windows, the range of valid dates is January 1,
100 A.D. through December 31, 9999 A.D.; the ranges vary
among operating systems.

Example

Local z As Date = HmsToTime(110000, 20, 4000)
Print IsDate(z) // True
Print IsDate(#16.12.1912#) // True
Local b$ = "31/12/2000"
Print IsDate(b$) // -1 -> True
Local c As Variant = "23/25/1943"
Print IsDate(c) // 0 -> False

See Also

IsDate, IsEmpty, IsError, IsMissing, IsNull, IsNumeric,
IsObject

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

IsNumeric Function
Purpose

Returns a Boolean value indicating whether an expression
can be evaluated as a number.

Syntax

Bool = IsNumeric(exp)

exp: any expression

Description

IsNumeric returns True if the expression is a Variant
containing a numeric expression, a numeric expression, or a
string expression.

IsNumeric returns False if expression is a date expression.

Example

Debug.Show
Local a As Variant, b#, c$
a = #22.12.1900#
Trace IsNumeric(a) // 0
b = 2222
Trace IsNumeric(b) // True
c = "10000"
Trace IsNumeric(c) // -1
c = "Hallo"
Trace IsNumeric(c) // 0

Remarks

IsNumeric tests whether the expression can be converted
using OLE functions, which are language dependent
(slower).

See Also

Val?, IsDate, IsEmpty, IsError, IsMissing, IsNull, IsNumeric,
IsObject

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

IsObject Function
Purpose

Returns a Boolean value indicating whether a variable
represents an Object.

Syntax

Bool = IsObject(varname)

Description

IsObject is useful in determining whether a Variant is of
VarType basObject. This could occur if the Variant
actually references (or once referenced) an object, or if it
contains Nothing.

IsObject returns True if identifier is a variable declared
with Object type, or if identifier is a OCX variable. IsObject
returns True even if the variable has been set to Nothing.

Use error trapping to be sure that an object reference is
valid.

Example

OpenW 1
Ocx TextBox tb2
Local a As Variant, b$
Print IsObject(tb2)// True
a = tb2
Print IsObject(a) // -1
b$ = tb2

Print IsObject(b$) // False

See Also

IsDate, IsEmpty, IsError, IsMissing, IsNull, IsNumeric,
IsObject

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

The Editor Extension
Commands
There are approx. 130 special editor extension commands
and functions to manipulate the IDE and source code. These
commands begin with the prefix 'Gfa_' and have in a
normal program no effect. They are syntactically
recognized; behave however like dummy commands. A
project is marked as an editor extension when it contains at
least one event Sub that starts with Gfa_Ex_, Gfa_App, or
Gfa_Run, etc. The following sample shows a typical editor
extension subroutine. The subroutine heading defines the
keyboard shortcut invokes this routine: Gfa_App_2. The
keyboard combination application key + 2 executes the
Sub, because it starts with 'Gfa_'. The heading is not case
sensitive.

Example: Switch quickly between two files

Sub Gfa_App_2 ' load MRU file #2
If Gfa_Dirty Then Gfa_Save
Gfa_LoadMRU 2

EndSub

The example is actually very useful, because it allows you
to switch between the current project and the second
project very quickly. First, the dirty status of the current
project is checked and it is saved when the project has been
changed. Then the second file from the most recently used
(MRU) files list is loaded into the editor, making itself
number one in the MRU list. The project that has been
removed has now become number 2. Pressing App + 2 now

will save the current project if dirty and reload the one just
removed and has become #2.

If you've not created an extension before, you could copy
the code above into a new project and then compile and
install it.

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

GLL Keypress Event Subs
Syntax

Sub Gfa_Ex_?

Sub Gfa_App_?

Sub Gfa_App_S?

Sub Gfa_[S][C][A]F*

Description

Sub Gfa_Ex_? (? as a placeholder for a alphanumeric key)

When a sub's name starts with Gfa_Ex_ it is considered a
Shift + Ctrl + key press event sub. The placeholder ?
identifies an alphanumeric key (A-Z, 0-9). A GLL can
contain up to 36 Gfa_Ex_? event subs.

Sub Gfa_App_? (? as a placeholder for a alphanumeric
key)

When a sub's name starts with Gfa_App_ it is considered a
App + key press event sub. The placeholder ? identifies an
alphanumeric key (A-Z, 0-9). A GLL can contain up to 36
Gfa_App_? event subs.

Sub Gfa_App_S? (* as a placeholder for a alphanumeric
key)

When a sub's name starts with Gfa_App_S it is considered
a App + Shift + key press event sub. The placeholder ?

identifies an alphanumeric key (A-Z, 0-9). A GLL can
contain up to 36 Gfa_App_S? event subs.

Sub Gfa_F* (* = 2,8,9 for function keys F2, F8, and F9)

Sub Gfa_SF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_CF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_AF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_SCF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_SAF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_CAF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Sub Gfa_SCAF* (* = 2,8,9,11,12 for function keys F2, F8,
F9, F11, F12)

Function key sub events. The following sub names identify
the valid key combinations.

Gfa_F2, Gfa_F8, Gfa_F9, Gfa_SF2, Gfa_SF8, Gfa_SF9,
Gfa_SF11, Gfa_SF12, Gfa_CF2, Gfa_CF8, Gfa_CF9,
Gfa_CF11, Gfa_CF12, Gfa_SCF2, Gfa_SCF8, Gfa_SCF9,
Gfa_SCF11, Gfa_SCF12, Gfa_AF2, Gfa_AF8, Gfa_AF9,
Gfa_AF11, Gfa_AF12, Gfa_SAF2, Gfa_SAF8, Gfa_SAF9,
Gfa_SAF11, Gfa_SAF12, Gfa_CAF2, Gfa_CAF8, Gfa_CAF9,
Gfa_CAF11, Gfa_CAF12, Gfa_SCAF2, Gfa_SCAF8,
Gfa_SCAF9, Gfa_SCAF11, and Gfa_SCAF12.

S = Shift, C = Ctrl, A = Alt, SCA = Shift + Ctrl + Alt

See Also

Gfa_Key, Gfa_KeyGet, Gfa_AddMenu

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

GLL Cursor Movement
Syntax

Gfa_Col [= c%]
Gfa_Line [= %]
Gfa_Left [n% = 1]
Gfa_Right [n% = 1]
Gfa_Down [n% = 1]
Gfa_Up [n% = 1]
Gfa_PageDown
Gfa_PageUp

Description

Gfa_Col [= c%] returns or sets the current column
position.

Gfa_Col= moves the cursor to the column n (0 <= n <=
line length) When n < 0, then 0 will be used, when n > line
length, the line length will be used.

To set the cursor at the end of the line use Gfa_Col =
_maxInt.

Gfa_Line [= %] returns or sets the current line. Moves the
cursor to the specified line.

Gfa_Left [n% = 1] moves the cursor one or more
characters to the left. The movement is not stopped at the
beginning of the line. The parameter value can be negative,
in which case the movement is in the opposite direction.

Gfa_Right [n% = 1] moves the cursor one or more
characters to the right. The movement is not stopped at the
end of the line. The parameter value can be negative, in
which case the movement is in the opposite direction.

Gfa_Down [n% = 1] moves the cursor one or more lines
down. The parameter value can be negative, in which case
the movement is in the opposite direction.

Gfa_Up [n% = 1] moves the cursor one or more lines up.
The parameter value can be negative, in which case the
movement is in the opposite direction.

Gfa_PageDown moves the cursor one page down. When
the cursor is in the bottom line the text is scrolled,
otherwise the cursor is placed in the line at the bottom of
the editor.

Gfa_PageUp moves the cursor one page up. When the
cursor is in the top line (Gfa_TopLine) the text is scrolled,
otherwise the cursor is placed in the top line.

Remarks

Note With Gfa_Col= the position is automatically clipped to
the line length, in contrast with Gfa_Right and Gfa_Left
that wrap the cursor to the next or previous line.

Gfa_Left, Gfa_Right, Gfa_Down, Gfa_Up is used to
cancel a selection. The selection is canceled and the cursor
is set at the beginning or the end of the selection, without
moving the cursor out of the selection area. Gfa_Left and
Gfa_Up set the cursor at the beginning. Gfa_Right and
Gfa_Down ste the cursor at the end.

See Also

Gfa_Goto, Gfa_SelCol, Gfa_SelLine, Gfa_SelectAll,
Gfa_IsSelection

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_SelCol, Gfa_SelLine,
Gfa_SelectAll,
Gfa_IsSelection
GLL Text Selection

Syntax

Gfa_SelCol [= c%]
Gfa_SelLine [= l%]
Gfa_SelectAll
? = Gfa_IsSelection

Description

The selection is the area between Gfa_Line/Gfa_Col and
Gfa_SelLine/Gfa_SelCol. Every change made to
Gfa_Line or Gfa_Col automatically resets Gfa_SelLine
and Gfa_SelCol to the value in Gfa_Line and Gfa_Col. So,
invoking Gfa_Left on a selection will remove the selection.
When after changing Gfa_Line and/or Gfa_Col the range
values Gfa_SelLine and/or Gfa_SelCol are newly set, the
range between them is the new selection.

Gfa_SelCol [=] returns or sets the column at the start or
the end of the selection.

col% = Gfa_SelCol

Gfa_SelCol = col%

Gfa_Col = _maxInt ' select entire line

Gfa_SelCol = 0

Gfa_SelLine [=] returns or sets the specified line as the
end of the selection.

line% = Gfa_SelLine

Gfa_SelLine = line%

Gfa_SelectAll Selects all text.

Gfa_SelectAll

Gfa_IsSelection returns True when a selection is
available. Gfa_IsSelection is much faster then
Len(Gfa_Selection). Internally, Gfa_IsSelection is the
same as (Gfa_SelLine != Gfa_Line || Gfa_SelCol !=
Gfa_Col).

f? = Gfa_IsSelection

Gfa_Selection returns a string with the currently selected
text, if any.

sel$ = Gfa_Selection

Example

// Get the selected text.
If Gfa_IsSelection Then sel$ = Gfa_Selection

Remarks

When Gfa_SelCol is greater than Gfa_Col, then the
selection starts at Gfa_Col and ends at Gfa_SelCol.
Gfa_SelCol can be smaller as Gfa_Col, so that the
selection starts at Gfa_SelCol and ends at Gfa_Col.

See Also

Gfa_Cut, Gfa_Copy, Gfa_CopyRtf, Gfa_CopyPre

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Cut, Gfa_Paste,
Gfa_Copy, Gfa_CopyRtf,
Gfa_CopyPre
GLL Clipboard commands

Syntax

Gfa_Cut

Gfa_Paste

Gfa_Copy

Gfa_CopyRtf

Gfa_CopyPre [head$, tail$, flag]

Description

Gfa_Cut copies the selected text to the clipboard and
deletes it from its original location.

Gfa_Paste inserts the clipboard contents at the current
location.

Gfa_Copy copies the selected text to the clipboard.

Gfa_CopyRtf copies the selection in RTF format preserving
syntax colouring, font, and indention. The contents of the
clipboard can be pasted in a RTF compatible word processor.

Gfa_CopyPre [head$, tail$, flag] copies the source code in
CF_TEXT format with HTML-coding to the clipboard. When a
selection is available, the selection is copied, otherwise the
entire source code text.

The optional parameter Head$ may contain HTML code that
is inserted before the <pre> tag.

The optional parameter Tail$ may contain HTML code that is
appended to the closing <\pre> tag. (For instance, "
</BODY></HTML>", when the source code is added at the
end of a HTML page).

The optional integer flag% species whether to include the
procedure separation line which is used in the editor to
visually separate procedures. When flag = 1 adds </pre>
<hr><pre> (a HTML-dividing line). When flag = 0 there will
be no dividing line.

Sub Gfa_App_P
Gfa_CopyPre

EndSub

When this piece of code is selected and copied to the
clipboard it is placed between <pre> tags and font tags are
inserted. GFA-BASIC 32 puts the following string on the
clipboard:

"<pre>Sub Gfa_App_P" #13#10 _

" Gfa_CopyPre" + #13#10 _

"EndSub" #13#10 "</pre>"

The string starts with the <pre> tag followed by the Sub
keyword. Since the procedure name is colored in red, the

 tag is inserted. The font coloring is
disabled after the CRLF and the rest of the code is colored
in the default color. The snippet is ended with the <\pre>
tag.

Example

Sub Gfa_App_P
Dim head$ = "<HTML><HEAD><META HTTP-EQUIV" _
"=""Content-Type"" content=""text/html;" _
" charset=iso-8859-1"">" #13#10 _
"<TITLE>" & App.Name & "</TITLE></HEAD>
<BODY>"#13#10 _

"<H1 align=Center>//" & App.Name & "</h1><hr>"
Dim tail$ = "</BODY></HTML>"#13#10
Gfa_CopyPre head$, tail$, 1

End Sub

Remarks

To save the entire source code use Gfa_SaveFile.

See Also

Gfa_SelCol, Gfa_SelLine, Gfa_SelectAll, Gfa_IsSelection,
Gfa_SavePreFile

Gfa_Undo, Gfa_CommentBlock

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Gfa_Text
Syntax

s$ = Gfa_Text

Gfa_Text = s$

s$ = Gfa_Text(n)

Description

Gfa_Text Returns or sets the text of the current line,
previous text will be deleted and leading spaces are
ignored. Gfa_Text is more or less equivalent to Gfa_Col =
_maxInt : Gfa_SelCol = 0 : Gfa_Replace s$.

Gfa_Text(n) returns the text of line n. The text is returned
without leading spaces, even when the line is displayed
indented. The indenting is performed dynamically when a
line is written to the screen. The code text is reformatted
continuously while editing. There is no Gfa_Text(n)=
command.

See Also

Gfa_Insert, Gfa_Replace, Gfa_DeleteLines, Gfa_InsertLines

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Find & Replace
Syntax

Gfa_FindDlg
Gfa_FindNext
Gfa_FindPrev
Gfa_FindText [= $]
Gfa_ReplaceDlg
Gfa_ReplaceText [= $]
Gfa_ReplaceNext
Gfa_ReplaceAll

Description

Gfa_FindDlg displays the Find dialog box. The dialog
always defaults the search text to the word the cursor is
currently in.

Gfa_FindNext searches for a text string from the selected
text's end to the end of the text document. If the text is
found, the edit point is moved to the beginning of the
match. Otherwise, the edit location is unchanged. This
function is equivalent to <Find Next> in the IDE Edit menu.
When the text to search for isn’t set prior, either by use of
the Find dialog box or by Gfa_FindText=, the Find dialog
box is displayed. By default, the search is not case sensitive
and does not search for whole words.

Gfa_FindPrev searches for a text string from the current
position towards the start of the text document. There is no
menu entry for Gfa_FindPrev, the only way to invoke this
command by using Shift+F3.

Gfa_FindText [=] returns or sets the text to search. Sets
the text to search used with Gfa_FindNext and
Gfa_FindPrev (max. 256 characters). The search is not
case sensitive and does not search for whole words.

Gfa_ReplaceDlg displays the Find and Replace dialog box.
The dialog always defaults the search text to the word the
cursor is currently in. The search direction is always towards
the end of the text document. The text to search for can be
obtained using Gfa_FindText and the replacement text
with Gfa_ReplaceText.

Gfa_ReplaceText [=] returns or sets the replacement text
used with Gfa_ReplaceNext (max. 256 characters).

Gfa_ReplaceNext searches and replaces a text string.
Gfa_ReplaceNext searches for a text string
(Gfa_FindText) from the current text position to the end of
the text document. If the search text is found, the edit point
is moved to the beginning of the match and the text is
replaced with the replacement text (Gfa_ReplaceText). If
no replacement text is specified the Find and replace dialog
box is displayed.

Gfa_ReplaceNext is equivalent to pressing Ctrl+F3. The
inverse operation; search and replace towards the start of
the text document is possible with Shift+Ctrl+F3, but has
no equivalent editor extension command. However, there is
an easy workaround by sending the command ID value for
the accelerator key.

' Search & Replace Previous
'
Const accCtrlShiftF3 = 0x432
SendMessage Gfa_hWnd, WM_COMMAND,
MakeWParam(accCtrlShiftF3, 1), 0

Gfa_ReplaceAll searches and replaces all occurrences of a
text string. Searches and replaces all occurrences of a text
string. The text to search for can be set using the Find and
Replace dialog box or by assigning it to Gfa_FindText. The
replacement text is either provided in the dialog box or set
with Gfa_ReplaceText.

Example

Remarks

See Also

{Created by Sjouke Hamstra; Last updated: 22/10/2017 by James Gaite}

Bookmarks
You can set named or unnamed bookmarks to mark
frequently accessed lines in your source file. Once a
bookmark is set, you can use menu or keyboard commands
to move to it. You can remove a bookmark when you no
longer need it.

From inside the editor a bookmark is toggled with Shift +
Ctrl + Up or Shift + Ctrl + Down. To move to an unnamed
bookmark use Ctrl + Up or Ctrl + Down to jump to the
previous or next bookmark respectively.

To set numbered bookmarks in the IDE use Ctrl + K to
display a popup menu or click in the left margin of the
editor. Even so, to go to a numbered bookmark use Ctrl + Q
to invoke the GoTo Mark popup menu or right click in the
editor’s margin.

Syntax

set? = Gfa_BookMark[(line%)] Gfa_BookMark(line%) =
set?
Gfa_BookMark [n]

Gfa_NextBookMark [f% = 0]
line% = Gfa_NextBookMark([start%] [,f%=0])

line% = Gfa_Mark(i%) (i in 0..9)
Gfa_Mark(i%) = line%

Description

Gfa_BookMark function tests if a bookmark is set in the
current line.

Gfa_BookMark(line) function tests if a bookmark is set in
the specified line. When line=-1, the current line is
assumed: Gfa_BookMark ó Gfa_BookMark(-1).

Gfa_BookMark(line)= sets or clears a bookmark in the
specified line. When line% = -1, the current line is
assumed.

// Toggle a bookmark

Sub Gfa_Ex_B //Shift+Ctrl+B
Gfa_BookMark(-1) = Not Gfa_BookMark

EndSub

The Gfa_BookMark command jumps to the next or
previous bookmark.

Gfa_BookMark [0] jump to next book mark
Gfa_BookMark -1 jump to previous book mark

Gfa_NextBookMark jumps to the next or previous
unnamed bookmark. When the parameter f is specified and
its value <> 0 the editor jumps to the previous bookmark.
This command is circular, so that when the first bookmark is
reached the search is restarted from the end of the source
text.

Gfa_NextBookMark() function returns the line number
with the next unnamed bookmark. When start is omitted or
start <= 0 then the next bookmark is searched starting
from the current position.
When the parameter f is specified and its value <> 0 the
previous bookmark is searched.
This function is circular, so that when the first bookmark is

reached the search is restarted from the end of the source
text.
The result is 0 when no bookmark is set at all, except for
the current line.

Gfa_Mark(i) [=] returns or sets the line that contains the
numbered bookmark. The return value of Gfa_Mark(i) is
negative when the mark number i is out of range. A
numbered mark is removed by assigning a negative value
to the numbered mark.

Example

See Also

Gfa_CtrlK, Gfa_CtrlQ

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Gfa Ctrl + Key Shortcuts
Syntax

Gfa_CtrlK
Gfa_CtrlQ
Gfa_CtrlN
Gfa_CtrlP
Gfa_CtrlO
Gfa_CtrlY
Gfa_CtrlU

Description

Gfa_CtrlK emulates a Ctrl + K key press, which brings up
the Set Bookmark popup menu.

Gfa_CtrlQ emulates a Control + Q key press, which brings
up the Goto bookmark popup menu.

Gfa_CtrlN emulates a Control + N key press, which inserts
a new line above the current line. This is the same as
Gfa_InsertLines 1.

Gfa_CtrlP emulates a Control + P key press, which deletes
the text from to current position to the end of the line.

Gfa_CtrlO emulates a Control + O key press, which inserts
previously deleted text with Ctrl + P at the current position.

Gfa_CtrlY emulates a Control + Y key press, which deletes
the current line.

Gfa_CtrlU emulates a Control + U key press, which inserts
a previously deleted line with Ctrl + Y above the current

line.

Example

See Also

Gfa_InsertLines, Gfa_BookMark

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

New, Loading, and Printing
Syntax

Gfa_New

Gfa_DoNew

Gfa_Print

Gfa_Load

Gfa_LoadFile filename$ [,fMru% = 0] (filename As String,
fMru as Int)

Gfa_LoadMRU n% (n in 1..9)

Gfa_MergeFile filename$

Description

Gfa_New executes the File | New menu item creating a
new project. The current project is removed and the new
project gets the name 'noname.g32'. When the current
project has the Gfa_Dirty status the project can be saved
first.

Gfa_DoNew creates a new project without checking the
Gfa_Dirty status. There is no correspondence menu item
for this command.

Gfa_Print starts printing the selection or, when no text has
been selected, the entire source code using the settings
from the Properties dialog box.

Gfa_Load invokes the menu command <File | Load>.
Gfa_Load displays a file-open dialog box, showing the
current active directory.

Gfa_LoadFile loads the specified file without displaying a
file-open dialog box and without providing a save option
when the current project has changed.
When the optional parameter fMru% species a value other
than zero (fMru <> 0) the filename is added to MRU list.
When fMru = 0 or when the parameter is omitted the
filename is not added to MRU list. In addition, the name of
the file is not shown in the caption of the IDE and
Gfa_FileName is "Noname.g32" or "OhneName.g32".

Gfa_LoadMRU loads the file with the specified MRU
number. Loading the file updates the MRU list and puts the
file at the top of the MRU list. The MRU list consists of the 9
menu entries in the File submenu that reflects the MRU file
list in the register. In HKCU\Software\GFA\Basic the keys
file1 to file9 specify the MRU list. The IDE updates the File
submenu not before the File submenu is activated, in which
case the IDE receives the WM_INITMENUPOPUP message.

Gfa_LoadMRU gets the filename from the <File> menu
with the GetMenuString API function, not from the register.
It turns out the File menu is not always up to date, for
instance just after the start of the IDE when the File
submenu isn't activated yet. The next example shows a
modified MRU load.

Gfa_MergeFile inserts a GFA-BASIC 32 (g32) file or an
ASCII file at the current position. When the file is a GFA-
BASIC 32 project file, the form data and ‘:Files’ resources
are inserted as well.
The IDE does not provide any means to invoke this

command. The example shows how to add the file insertion
functionality.

Example

Sub LoadMRU(Optional FileNo As Int = 1)
' The Gfa_loadMRU command gets the filename from
the menu entries

' in the File submenu. However, the submenu items
are not updated

' before the File submenu is actually selected,
in which case

' the MRU filelist is read from the registry.
Occasionally, the

' file to load isn't added to the submenu yet.
Instead we must get the

' MRU file name from register directly.
Local String MRU = Gfa_Setting("File" $
Dec(FileNo))

If Exist(MRU)
Gfa_LoadFile MRU, 1 ' 1=add to MRU,
0=don't

EndIf
EndSub

The following example adds a menu item to the Extra menu
to create an event sub to insert a file using Gfa_MergeFile:

Sub Gfa_Init
Global Int IdxMerge = Gfa_AddMenu("Insert file
...", menuMerge)

Gfa_MenuDesc(IdxMerge) = "Inserts the contents of
the specified file at the current location."

End Sub

Sub menuMerge(i%)
Local fname As String
FileSelect # "Insert file", CurDir + "*.*", "",
fname

If Exist(fname)
Gfa_MergeFile fname

EndIf
EndSub

Remarks

See Also

Gfa_Save

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Save Project File
Syntax

Gfa_Save

Gfa_SaveAs

Gfa_SaveFile filename$ [,f% = 0]

Gfa_SaveRtf

Gfa_SaveRtfFile filename$

Gfa_SavePreFile filename$ [,head$, tail$, flag]

Description

Gfa_Save saves the current project. If it hasn’t been saved
before the Save dialog box is displayed to give the project a
filename. Internally Gfa_SaveAs is invoked.

Gfa_SaveAs displays the Save As dialog box to save the
project a (different) filename. The new filename is reflected
in the title bar if the GFA-BASIC 32 IDE. The GFA-BASIC 32
most recent used files list in the register is updated with the
new name.

Gfa_SaveFile saves the current project under the specified
filename. The default behavior (f = 0) is not to update the
MRU list, meaning the current project is not renamed. This
allows for automating a backup saving at regular time
intervals without disturbing the current settings. In
particular, the current line is not parsed before the file is
saved.

When f <> 0 the project is given the specified name and
the MRU list is updated. Nothing happens when the filename
argument is an empty string.

Gfa_SaveRtf displays the Saves As dialog box to save the
source code text in RTF format. Displays the Save As dialog
box to give the project a (different) filename to save the
code text in RTF-format. When a selection is available, only
the selection is saved, otherwise the entire code. This
function is also available in the Edit menu.

Gfa_SaveRtfFile filename$ saves source code text in RTF
format in the specified file. Saves the source code RTF-
formatted in the specified file. When a selection is
available, the selection is saved, otherwise the entire code.

Gfa_SavePreFile filename$ Saves the source code HTML-
formatted in the specified file. When a selection is available,
the selection is saved, otherwise the entire code. This saves
the source code text in HTML code between <pre> …
<\pre> tags.

- The optional parameter Head$ may contain HTML
formatted text that is inserted before the <pre> tag.

- The optional parameter Tail$ may contain HTML code that
is appended to the closing <\pre> tag. (For instance, "
</BODY></HTML>", when the source code is added at the
end of a HTML page).

- The optional integer flag% species whether to include the
procedure separation line which is used in the editor to
visually separate procedures. When flag = 1 adds </pre>
<hr><pre> (a HTML-dividing line). When flag = 0 there will
be no dividing line.

See Gfa_CopyPre for an example.

Example

// Save before Test (syntax check)

Sub Gfa_F2
Const ID_ShiftF5 = 0x429
If Gfa_Dirty Then Gfa_Save
PostMessage Gfa_hWnd, WM_COMMAND,
MakeWParam(ID_ShiftF5, 1), 0

EndSub

Here the file is saved if it has been changed since the last
saving. Then WM_COMMAND with the accelerator ID of Shift
+ F5 is posted to the message queue of the IDE.

Sub Gfa_Minute
'autosave
Const Delay1 = 10 ' ten minutes timer
Static Int Timer1 = Delay1
If Timer1 = 0
If Gfa_Dirty
Local t$ = TempDir & "temp.g32"
Gfa_StatusText = "Autosaved to " + t$
Gfa_SaveFile t$ ' no filename change

EndIf
Timer1 = Delay1

EndIf
If Timer1 > 0 Then Timer1--

EndSub

Remarks

Before executing Gfa_Save, Gfa_SaveAs, or
Gfa_SaveFile "Name", 1, the current line, when changed,
is parsed (by invoking Gfa_Update). In case of a syntax
error, the saving process is aborted. This is not the case

when using Gfa_SaveFile "name", 0. When currently a line
is being edited, the original line is saved, not the new edits.

See Also

Gfa_Dirty, Gfa_Load, Gfa_LoadMRU

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Gfa_Fold & Gfa_ProcLine
GFA-BASIC 32 is a procedure oriented language as C is. The
IDE keeps record of the procedures and allows them to be
collapsed. The information and status of the current
procedure (the procedure containing Gfa_Line) can be
obtained using the procedure functions.

Syntax

procname$ = Gfa_Proc

line% = Gfa_ProcLine

lines% = Gfa_ProcLineCnt

folded? = Gfa_IsFold [(n <= 0)]

Gfa_Fold [n = 1]

Description

Gfa_Proc returns the name of the current subroutine.
When the current line is part of the main the program,
Gfa_Proc returns an empty string.

Gfa_ProcLine returns the number of the first line of the
current procedure.

Gfa_ProcLineCnt returns the number of the lines of the
current procedure.

Gfa_IsFold tests whether the current line is located in a
folded procedure. When n<=0 or is omitted the current line
is tested, otherwise the specified line is tested.

Gfa_Fold folds or unfolds a procedure.

Gfa_Fold (or Gfa_Fold 1) folds the current procedure
(collapse). Gfa_Line is reset to the first line of the
procedure.

Gfa_Fold 0 unfolds the current procedure.

Gfa_Fold -1 toggles the current folding state of the
procedure (same as F11).

Example

// Folding Procedures

Sub Gfa_Ex_F ' Shift+Ctrl+F
Gfa_Fold -1 ' Toggle folding
If Gfa_IsFold
Debug Gfa_Line & " in folded sub"

EndIf
EndSub

Remarks

There is no editor extension function to fold all procedures.

See Also

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Changed, Gfa_Update
Syntax

changed? = Gfa_Changed

Gfa_Changed = set?

Gfa_Update

Description

Gfa_Changed, Gfa_Changed= gets the current status of
the current line. When True the line is currently being
edited, otherwise nothing is changed in the current line.

Sets the change status of the current line.

When set to True the line will be parsed (Gfa_Update)
when the cursor leaves the line. Updating can be prevented
by setting Gfa_Error = True.

Setting Gfa_Changed to False will restore the old contents
of the line.

Gfa_Update invokes the line parser responsible for error
checking, syntax coloring and reformatting the code. When
the line contains an error, depending on the setting in the
properties dialog box for the editor, a message box is
displayed. Otherwise, the line is marked as erroneous by
invoking Gfa_Error. The line is then displayed in the error
syntax color (red).

Example

Remarks

Syntax Checking Explained - As soon as you start editing a
line, the line is copied to a temporary edit buffer, which
replaces the original line on the screen. This process is
visualized by switching the syntax coloring of the line to
black (usually, but it can be changed in Properties dialog
box). Internally a flag is set to indicate that the current line
is being changed or edited. The function Gfa_Changed
reflects the editing state of the current line.

When the cursor leaves a line that has been edited, the
Gfa_Update statement is executed to parse the line and to
look for errors. When there are syntax errors the line is
marked as erroneous and is displayed in the error color red
(usually, but this can be changed in Properties dialog box).

See Also

Gfa_Error, Gfa_NextError, Gfa_PrevError

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_Run, Gfa_IsRun,
Gfa_Cleanup
Syntax

Gfa_Run

? = Gfa_IsRun

Gfa_Cleanup

Description

Gfa_Run should start the current loaded project (F5).
Compiles the project first and executes it when no errors
are found. GLL and Library projects cannot be executed.
Due to a bug this command doesn't work

Gfa_IsRun the function Gfa_IsRun returns true when a
program is running.

Gfa_Cleanup Cleanups still active resources after ending
the program. Useful after a sudden break down of the
program when there are still windows or files open.
Gfa_Cleanup closes all handles and files that are created
using GFA-BASIC 32 commands (not WINAPI).

Example

See Also

Gfa_OnRun, Gfa_OnEnd

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_DbStep,
Gfa_DbOn/Gfa_DbOff
Syntax

Gfa_DbStep

Gfa_DbOn

Gfa_DbOff

Description

Gfa_DbStep advances the program to the next statement.
Gfa_DbStep is necessary for a custom debugger to step
through a program. This command should be used in the
Gfa_DebOn 1 and 2 procedure.

When using the tray icon debugger Gfa_DbStep is
automatically invoked when the tray icon is clicked with the
left mouse button.

Gfa_DbOn shows the debug arrow in the edit window.
Gfa_DbOff hides the debug arrow in the edit window.

See Also

Gfa_DebMenu,Gfa_DebMenu

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/gfa_DbOn.htm

Gfa_Var Object
Syntax

Dim v As Gfa_Var

Description

A Gfa_Var item provides read-only properties that allow
you to get information about the variable like its name,
type, location, and value. Changing a variable's value during
runtime must be accomplished by using direct memory
access using Poke and its variants.

Property Description
Name The name of the variable
Pname The name of the procedure the variable is

declared.
Type A value indicating the variable type

(basInt, basFixedStr, etc)[1]
TypeName A string describing the variables type

(Integer, String, user-defined). For ByRef
parameters or Pointer variables a Ref
precedes the type name ("Ref Integer").
With constants "Const Int".

Value The current value of the variable.
VarPtr The address of the variable. In contrast

with Addr with ByRef and Pointer
variables, the physical address of the
variable is returned.

Addr The address of the variable. For Ref
variables the address of the pointer.

Size Returns the memory size of the variable
(Integer: 4 bytes, Double: 8 bytes).

Len Same as Size, but returns the length for a
string.

IsArray Returns True when the variable is an array.
ArrayAddr The address of the first byte of the array.
ArraySize The allocated memory for the array.
IndexCount The number dimensions (See IndexCount

in the Help).
LBound(n) Returns the smallest available subscript for

the specified dimension n of the array.
UBound(n) Returns the largest available subscript for

the specified dimension n of the array.
IsObject Returns True when the variable is of type

Object.
IsHash Returns True when the variable is a Hash

type.
Count Returns the number of elements of the

Hash variable.
IsTyped Returns True when the variable is a user

defined type.
TypeObj Returns a Gfa_Type object for the variable

when IsTyped is True.

Note: For ParamArray parameter .Type returns 250,
.TypeName "ParamArray()", and .IsArray returns False,
because a ParamArray isn't a normal array. The .Value
property returns a variant array, so that the elements of the
ParamArray are accessed using .Value(Idx).

The .Type property returns a 32-bit value indicating the
type of variable. For the basic data types, these values are
represented with a constant starting with 'bas'.

Constant Value TypeName
basEmpty 0 Empty
basNull 1 Null
basShort 2 Short (16-bit Integer (&))
basLong 3 Long (32 bit integer (%))
basInt 3 Long (32 bit integer (%))
basSingle 4 Single (4 byte floating point (!))
basDouble 5 Double (8 byte floating point (#))
basCurrency 6 Currency (@)
basDate 7 Date
basVString 8 String (in Variant)
basObject 9 Type of Object ("Command",

"Font", "Collection", etc., but also
"Nothing")

basError 10 Error
basBoolean 11 Boolean (Value 0 or -1 (?))
basVariant 12 Variant (used only with arrays of

Variants)
basByte 17 Byte (|)
basLarge 20 Large

243 Const Int
244 Const Double
245 Const Single
246 Const Date
247 Const Large
248 Const Currency
249 Const String
250 ParamArray()

basType 251 user defined Type
basHash 252 Hash
basFixedStr 253 Fixed String

basUnknown 254 unknown
basString 255 String ($)
basArray 8192 Array

When .Type is basObject and the object refers to a late
binding object, .TypeName returns the name of the server.

Example:

Dim o As Object
Set o = CreateObject("Word.Basic")
Print TypeName(o) // returns "wordbasic".

Note Individual variables can be examined within a 'normal'
program as well. A GLL isn't required to inspect variables, a
Tron proc may display additional information also. The
required GFA-BASIC 32 functions are identical to the
Gfa_Var properties. For instance, to obtain a variable's type
you would use VarType(var), to get a named description
use TypeName(var), when a variable is an array, its
characteristics are obtained using ArrayAddr, Dim?, etc.

See Also

Gfa_Vars, Gfa_Types, Gfa_Type

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Dirty
Syntax

f? = Gfa_Dirty

Gfa_Dirty = f?

Description

Gfa_Dirty, Gfa_Dirty= gets or sets the program's saved
status, indicating whether a project has changed since it
was last saved. The function has the Boolean type and gets
one of the following values:
True Indicates that the program has been changed since it
was created or last saved.
False Indicates that the program has not been changed
since it was last saved.

Setting the dirty status of the program indicates that the
program has been changed and needs saving. The dirty
status is marked by a * in the caption of the IDE window.

The following example gets the saved status and saves the
program when it has been changed.

Example

Sub Gfa_Ex_S // Shift+Ctrl+S
If Gfa_Dirty Then Gfa_Save

End Sub

Remarks

The dirty status is set when as soon the source code text is
changed, but also when the :Files section is updated or
when a form in the form editor is modified. In particular, the
Gfa_Dirty might be set when a program is compiled to
create an exe, gll, or lg32. A change in any of the fields of
the Compile dialog box changes the project that contains
the compiler settings. So, after compiling the project must
be resaved.

See Also

Gfa_Save, Gfa_Compile

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Init and Gfa_Exit Events
Syntax

Sub Gfa_Init

Sub Gfa_Exit

Description

The Sub Gfa_Init is executed immediately after loading the
Editor Extension. It is used to declare and initialize global
variables, add menu entries to the Extra menu, and any
other initialization required for the editor extension.

The Sub Gfa_Exit is executed just before unloading the
Editor Extension. It is used to release resource that were
used or allocated by the editor extension. Menu entries are
automatically removed.

Remarks

Each editor extension may contain a number of event subs.
When more than one GLL is loaded and each defines the
same event sub they will be executed in the order that they
are loaded into memory.

There are event subs to initialize and finalize the editor
extension, a set event subs that is executed when a
program is started and closed, two different timer events,
and an event sub to handle the drag and drop functionality
of the :Files tab.

See Also

Gfa_Minute, Gfa_Second, Gfa_OnRun, Gfa_OnEnd

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Sleep Command
Purpose

Sleep waits for occurrence of a message and invokes an
event sub.

Syntax

Sleep [n]

n:iexp

Description

Sleep handles all pending messages for the application and
switches control to the operating-environment kernel.
Control returns to your application as soon as all other
applications in the environment have had a chance to
respond to pending events. This doesn't cause the current
application to give up the focus, but it does enable
background events to be processed.

The main message loop of a GFA-BASIC 32 application
should always use Sleep, never DoEvents. Sleep is
especially created to handle the OLE based user interface.

Sleep can be used with a parameter, which specifies the
number of milliseconds to wait before returning to the
application. Sleep 0 returns immediately to the application
and behaves more like DoEvents.

Note: Sleep waits for a message, but in the IDE it returns
after a short delay. This is due to a WM_TIMER message for

the IDE itself, which allows intercepting the Ctrl-Break keys
to stop the program. Without a WM_TIMER Sleep could
wait forever, especially when all windows have been closed.
A compiled program doesn't behave like this.

Example

OpenW 1
PrintWrap = 1
PrintScroll = 1
Do
Sleep
'DoEvents
// to see the difference with DoEvents
// remove the comment
Print "*";

Until MouseK = 2
// Using Until Win_1 Is Nothing does not work here
// due to the inclusion of the Print "*"; line
inside

// the loop

Remarks

By using DoEvents instead of Sleep, all simultaneous
running programs (also server activities, printer spooler,
etc.) will slow down. A loop with DoEvents prevents energy
saving of a notebook. DoEvents was created only to use
during long arithmetical calculation operations.

GetEvent and Sleep are alike. Both wait for a message
before going on. Sleep handles all pending messages,
where GetEvent only handles one message and uses the
Menu() array to store messages. Sleep doesn't use the
Menu() array at all.

When porting a GFA-BASIC 16 program you shouldn't use
DoEvents or Sleep, but GetEvent or PeekEvent. By
using GetEvent or PeekEvent you can get problems, when
you use Ocx controls in your program simultaneously.

As a rule: Don’t mix the Menu() array handling and Ocx
controls. Use GetEvent/PeekEvent only in programs, that
use the Menu() array. A program that uses Ocxs has to use
Sleep (and DoEvents).

See Also

DoEvents, GetEvent, PeekEvent

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

OpenW Command
Purpose

Creates a (MDI) window form.

Syntax

OpenW [options] [#]n [, x, y, w, h][, attr]

OpenW [options] Owner form, [#]n [, x, y, w, h][, attr]

OpenW [options] MdiParent [#]n [, x, y, w, h][, attr]

OpenW [options] MdiChild Owner | Parent form, [#]n [,
x, y, w, h][, attr]

n, x, y, w, h, attr:iexp
options:[Tool] [Center] [Full] [Hidden] [Client3D]
[Help] [Top] [Palette] [NoCaption] [NoTitle] [Fixed]
[Default]

Description

The GFA-BASIC 16 compatible command OpenW [#]n, x,
y, w, h, attr opens the window with number n, where n can
assume any value. When n specifies the values 0 to 31,
GFA-BASIC 32 automatically provides a global Form
variable named Win_n. When the number is greater than
31 the window gets the object name Form(n).

NOTE: Using windows with a number greater than 31 can
lead to some odd 'Access Violation' errors; sometimes these
will disappear if the program is re-run, sometimes if

GFABasic is closed down and restarted and sometimes they
persist. Closing down the Debug window has also been
known to help; sometimes by using them with the windows
numbered below 32 can cause a problem. Why this happens
is currently unknown and there is no known workaround.

The upper left corner of the window is anchored at the
coordinates specified with x and y. The window has the
width w and the height h. By using attr the following
window attributes can be specified:

Bit Value Meaning
0,1 1,2 vertical scrollbar
2,3 4,8 horizontal scrollbar
4 16 title line
5 32 close box
6 64 minimize box
7 128 maximize box
9 512 size box

attr =-1 draws all attributes.
attr = 0 draws a window with a single border and no
attributes.

Without the attr parameter, the window gets all attributes
except the scrollbars. (In GFA-BASIC 16 you would have
used attr = ~15.)

OpenW creates a Form object named Win_n, where n is a
number between 0 and 31. The GFA-BASIC 16 window
management commands like MoveW, SizeW, etc. are still
present, and can be used to manage the windows using
pixel coordinates. When managing the Form using
properties and methods the measurements are in twips.

Messages should be handled using event subs, like
Win_1_Activate. For an overview of all properties,
methods, and event subs see Form object.

When OpenW specifies a number > 31, then the properties
and methods are accessed using Form(n).property and the
event subs are like Sub Form_Activate(Index%). The
window number is passed as the first argument in the sub
parameter list. See also Name for more information on
using window numbers beyond 31.

OpenW [option] Owner name creates a window that is to
be owned by the form object name. The Owner option
permits you to specify the parent form of the form being
shown. When you use this option, you achieve two
interesting effects: the owned form is always shown in front
of its owner (parent), even if the parent has the focus, and
when the parent form is closed or minimized, all forms it
owns are also automatically closed or minimized. You can
take advantage of this feature to create floating forms that
host a toolbar, a palette of tools, a group of icons, and so
on. This technique is most effective if combine it with the
window state options Fixed and/or Tool/Palette.

The options argument specifies additional window state
settings.

Center - centers the form.

Full - creates a maximized window, excludes Hidden (full
windows are always visible).

Hidden - opens invisible

Client3D - sets WS_EX_CLIENTEDGE

Tool - creates a WS_EX_TOOLWINDOW

Help - includes a Help button in the window caption,
excludes minimize an maximize buttons

Top - creates a topmost window

Palette - creates a WS_EX_PALETTEWINDOW

Fixed - a non-sizable window

NoCaption - no title bar

NoTitle - no title bar, alias

Default - uses Windows default values

You can create MDI parent and child windows with OpenW
as well. To create a parent window use:

OpenW [options] MdiParent n (identical to ParentW n).

To create a MDI child window of MDI parent form
parentform, use (Owner and Parent are identical):

OpenW [options] MdiChild Parent parentform, n

OpenW [options] MdiChild Owner parentform, n

These OpenW commands are identical to ChildW n, np)

OpenW MdiParent 1 , , , 300, 300
OpenW MdiChild Parent Me, 2, 0, 0

Example

OpenW # 1, 10, 10, 200, 100, -1//opens the window
#1

Win_1.Moveable = 0
OpenW Tool Client3D Center Owner Win_1, 40

Form(40).Sizeable = 0
Do
Sleep

Until Me Is Nothing

Sub Win_1_Activate
EndSub

Sub Form_Activate(Index%)
If Index% = 40
// code ..

EndIf
EndSub

Remarks

The rules for windows numbered larger than 31 apply for
ChildW as well. The number of simultaneous open windows
is limited by the OS.

In contrast with LoadForm, the OpenW, ChildW,
ParentW, and Form commands don't generate a Load
event.

See Also

Form Object, Form, LoadForm, ParentW, ChildW, Dialog

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Ocx Command
Purpose

Creates an Ocx control in the current active form, window,
or dialog.

Syntax

Ocx type name[(idx)] [[= text$] [,ID][, x, y, w, h] [, style]]

type:object typename
name:variable name (global)
idx:iexp, control array index
text$:sexp, caption (optional)
ID:iexp, identifier value for the control
x, y, w, h:iexp, position and dimension of the object
style:iexp, additional windows style constants

Description

Ocx is used to create an Ocx control in the source code,
rather than in the Form Editor. Ocx takes at least two
arguments: an Ocx type (OLE Control CoClass), and a
variable name to which the object is assigned. The name
represents the control in code and is a global variable of the
given Ocx-type. For example, the following statement
creates a Button control (Ocx type is Command) at position
10, 10 and with width = 80 and height = 24 pixels.

Ocx Command cmd = "Ok", 10, 10, 80, 24

The coordinates and size measurement are set with
OcxScale. By default, the Ocx and OcxOcx commands use

pixel coordinates. Setting OcxScale = 1 determines that
the Ocx and OcxOcx commands use the ScaleMode
setting of the form.

Some Ocx controls have a default position and size, either
because they have a fixed position (ToolBar, StatusBar,
TrayIcon) or they are invisible (ImageList, Timer,
CommDlg). For instance:

Ocx ToolBar tb // Aligned at top
Ocx StatusBar st // Aligned at bottom
.SimpleText = "Ready"
Do : Sleep : Until Me Is Nothing

After an Ocx or OcxOcx command a hidden With
command is active with the Ocx object just created. The
With is valid until the next With or a new Ocx is created.

Once a global Ocx variable is entered in code its name is
used for a kind of IntelliSense. By typing in the name
followed by a dot, a context menu with possible properties
and methods for that Ocx type is presented. By browsing
through the list, the syntax of the property or method is
displayed in the statusbar of the IDE. A selection is made by
pressing ENTER, any other key closes the list. In the same
way an event name can be selected. After typing 'Sub
name_' a list pops up showing the possible event names for
that control.

GFA-BASIC 32 supports all standard and common controls.
The Ocx control types are: Animation, CheckBox,
ComboBox, Command, CommDlg, Form, Frame,
Image, ImageList, Label, ListBox, ListView,
MonthView, Option, ProgressBar, RichEdit, Scroll,
Slider, StatusBar, TabStrip, TextBox, Timer, ToolBar,
TrayIcon, TreeView, UpDown.

A control array is a group of controls that share the same
name and type. They also share the same event
procedures. A control array has at least one element and
can grow to as many elements as your system resources
and memory permit. The maximum index you can use in a
control array is 32767. Elements of the same control array
have their own property settings.

Each control is referred to with the syntax object(index).
You specify the index of a control when you create it. The
Index property distinguishes one element of the control
array from another. When one of the controls in the array
recognizes an event, a common event procedure is invoked
and the value of the Index property is passed to identify
which control actually triggered the event.

Example

Form frm1 = "GFA-Test", 10, 10, 250, 170
Ocx Command cmd(1) = "OK", 30, 100, 45, 25
cmd(1).Default = True ' implicit With
Ocx Command cmd(2) = "Cancel", 80, 100, 45, 25
cmd(2).Cancel = True ' explicit reference
Ocx Command cmd(3) = "But_3", 130, 100, 45, 25
Do
Sleep

Until Me Is Nothing

Sub cmd_Click(Index%)
Local a$ = "Command Button " & Index% & #13#10 &
Iif(Index% <> 3, "Click OK to close main
window", "")

Message a$
If Index% <> 3 Then Me.Close

EndSub

Remarks

Normally, GFA-BASIC 32 assigns a control a unique
identifier, but when porting GFA-BASIC 16 code to GFA-
BASIC 32 it might be useful to assign a custom ID-value.
For instance, porting the Button command to GFA-BASIC 32
requires at least the replacement of the 'Button' keyword
with 'Ocx Command name ='. The ID argument may
remain in the statement and used further down the
program.

The order of control creation determines their Z-order and
tab position. The last control created has the highest Z-
order position. To bring other controls to the front when
they ar overlapped by others, use the ZOrder method.

More complex Forms are to be created with the Form Editor,
due to its finer tuning possibilities.

See Also

OcxOcx, OcxScale, OCX(), Form, Command, Option,
CheckBox, RichEdit, ImageList, TreeView, ListView, Timer,
Slider, Scroll, Image, Label, ProgressBar, TextBox,
StatusBar, ListBox, ComboBox, Frame, CommDlg,
MonthView, TabStrip, TrayIcon, Animation, UpDown

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

GetEvent Command
Purpose

Monitors menu and window events

Syntax

GetEvent

Get_Event

Description

GetEvent is implemented for compatibility reasons with
GFA-BASIC 16. GetEvent monitors the occurrence of
events in menu bars, pop-up menus, and windows.
GetEvent waits a maximum of 0.5 seconds. The message
parameters are copied to the Menu() array. A message is
handled by responding to corresponding values in the
Menu() array.

GetEvent is not OLE compatible, and cannot be used with
Ocxs.

Example

Global i%
Dim m$(20)
Data Lissajous , Figure 1 , Figure 2 , Figure 3
Data Figure 4
Data End ,"", Names , Robert , Piere , Gustav
Data Emile , Hugo ,!!
i% = -1

Do
i%++
Read m$(i%) //read in the menu entries

Loop Until m$(i%) = "!!"//marks the end
m$(i%) = " "//terminates a menu
OpenW # 1
Color 8
PBox 0, 0, 639, 349
Menu m$() //activates the menu bar
Do
GetEvent
Exit If MouseK = 2
Trace MENU(1)
Switch MENU(1)
Case 0 // nothing happened for half a
second

Case 1 // keypress
Case 2, 3 // mouse click
Case 4 To 19 // windows message
Case 20 // menu selection
Case 21 // redraw
EndSwitch

Loop
CloseW # 1

Sub Win_1_Close(Cancel?)
// Don't allow Win_1 to be closed using the close
button

// only by right clicking
Cancel? = True

EndSub

Remarks

The GFA-BASIC 16 functionality is fully supported when
using GetEvent and Menu(). Sleep does not copy the
message parameters to the Menu() array.

See Also

Sleep, DoEvents, PeekEvent, Menu()

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Debug Object
Purpose

This object is used to debug a program.

Syntax

Debug

Description

The Debug object sends output to the debug output
window at run time.

Properties

BackColor | ForeColor | Left | Top | Height | Width | hWnd |
OnTop | Visible

Methods

Assert | Clear | Hide | Print | Show | Trace

Example

Dim i As Int = 9
Debug.Show
Debug.OnTop = True
Debug "A debug message"
Debug.Trace i
Debug.Assert i > 10 ' This comment is displayed in
the message box!

Remarks

By default the Debug commands will be ignored by the
compiler. However, optionally, these commands may be kept
in an executable (EXE) by setting the appropriate option in
the compiler tab of the GFA-BASIC 32 Properties dialog box.

Debug is a shortcut for Debug.Print and can be used
instead.

See Also

Assert, Trace, CallTree

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Trace$ Variable
Purpose

Returns the command line to be executed next.

Syntax

Trace$

Description

Trace$ is a string variable which, inside the Tron
procedurename, contains the command which will be
executed next. Tron procedurename, specifies a subroutine
which will be invoked before execution of every command.
The combination of Tron procedurename and Trace$ is a
very efficient way of looking for errors.

Example

Local mk%, mx%, my%
OpenW # 1 : Debug.Show
GraphMode R2_XORPEN
QBColor 11
Line 0, _Y - 20, _X, _Y - 20
Tron debug
Do
Exit If Len(InKey$)
Mouse mx%, my%, mk%
If mk% %& 1
If my% < _Y - 55
Box mx%, my%, mx% + 30, my% + 30

EndIf

EndIf
Loop
CloseW # 1
End

Procedure debug
If MouseK = 2 Then Debug.Print Trace$

EndProc

Return

Draws rectangles on the screen when the left mouse button
is held down. When the right mouse button is hel down
Trace$ shows the commands in debug output window.

Remarks

In a stand-alone program (EXE) the Tron command is
ignored. TraceLnr, ProcLnr(p) and ProcLineCnt(p) are 0,
Trace$ and SrcCode(%) are "".

See Also

Tron, Debug, Trace, TraceLnr, TraceReg, SrcCode$, ProcLnr,
ProcLineCnt

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Assert Command
Purpose

Debugging command that halts program execution if an
expression is not true.

Syntax

[Debug].Assert boolexp

boolexp:Any valid Boolean expression that evaluates to true
(nonzero) or false (0).

Description

The Assert command is intended for use in debugging and
by default works only in the IDE and it stops the program
execution if the expression evaluates to 0.
Its normal use is to check the correct value of the variables
during debugging.

When the expression evaluates to False (0) a message box
is displayed showing the entire line of code.

Assert x! <> 0 ' 0 not allowed for x!
Assert i >= 9 && i <= 27 ' i can not be between
9 and 27 inclusive

Assert DllVersion("") = 2.2 ' Wrong GfaWin23.OCX
runtime

The title of the message box is 'Assert:<ProgName>'.
The message box text is the entire Assert code line,
including the comments, and the name of the procedure.

Remarks

Assert can not be used to display the contents of a
variable.

Assert is a shortcut for Debug.Assert, a method of the
Debug object like Trace and Print. By default the Debug
object is disabled for final executables, but it can be
enabled through the Compiler tab in the Properties dialog.

See Also

Debug, Trace

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Message, MsgBox & MsgBox0
Commands and Functions
Purpose

Displays a message in a dialog box, waits for the user to
click a button, and returns a value indicating which button
the user clicked.

Syntax

retval = MsgBox[0](prompt)

retval = MsgBox(prompt[, flags][, title][, helpfile,
context])

MsgBox[0] prompt[, flags][, title][, helpfile, context][,
retval]

Message prompt[, title][, flags][, retval]

[retval =] Message(prompt)

retval = Message(prompt, title, flags)

prompt, title, helpfile : sexp
retval, flags, context : iexp

Description

MsgBox displays a message dialog box which is owned by
the current active Form while MsgBox0 doesn't have an
owner, the handle of the parent being set to 0. MsgBox0 is

particularly useful when the owner-owned relationship isn't
wanted and the message box is not forced in the foreground
of the form. Whether by design or error, GFA Basic only
supports the MsgBox0 function with a single parameter,
but it does support the MsgBox0 command in full.

The MsgBox[0] syntax has these arguments:

prompt - String expression displayed as the message in
the dialog box. The maximum length of prompt is
approximately 1024 characters, depending on the width
of the characters used. If prompt consists of more than
one line, you can separate the lines using a carriage
return character (Chr(13)), a linefeed character
(Chr(10)), or carriage return-linefeed character
combination (Chr(13) & Chr(10)) between each line.

flags - Numeric expression that is the sum of values
specifying the number and type of buttons to display,
the icon style to use, the identity of the default button,
the modality of the message box and other settings
which effect display and behaviour. See the Formatting
& Button Options section for values. If omitted, the
default value for flags is 0.

title - String expression displayed in the title bar of the
dialog box. If you omit title, the application name is
placed in the title bar.

helpfile - String expression that identifies the Help file
to use to provide context-sensitive Help for the dialog
box. If helpfile is provided, context must also be
provided.

context - Numeric expression that identifies the Help
context number assigned by the Help author to the

appropriate Help topic. If context is provided, helpfile
must also be provided.

retval - This is the return value of the button selected.

When both helpfile and context are provided a Help button
is added and context-sensitive Help is provided for the
dialog box. However, no value is returned until one of the
other buttons is clicked. In addition, when the Help button
is visible, the user can press F1 to view the Help topic
(WinHlp) corresponding to the context.

NOTE: With the demise of the Winhlp (.hlp) file format,
helpfile and context will not work on Windows Vista (2007)
onwards (unless you have installed a older version of
WinHlp32.exe). To add help to a message box, see the
examples in Known Issues below.

If the dialog box displays a Cancel button, pressing the ESC
key has the same effect as clicking Cancel.

Message is similar to MsgBox and uses the same
parameter values with the main difference being the
omission of a link to a WinHlp help file through helpfile and
context; instead, add MB_HELP to flags and catch the
returned WM_HELP message in the parent window's
_Message event - the pointer to the HELPINFO structure is
stored in wParam. (Note: As with MsgBox, from Windows
Vista onwards, trying to access a WinHlp file can cause a
fatal error - see below for workarounds.)

Formatting & Button Options

Any constant marked with an asterisk (*) is not recognised
as an internal value and will need to be either added as a

constant with your program or used as a numerical value
with the MsgBox function and/or command.

Button Options

The following set the array of buttons used in the message
box (See example 1 in Known Issues to see how to
customise the button captions):

MB_OK = $0000 - the message box contains an "OK"
push button.

MB_OKCANCEL = $0001 - the message box contains
two push buttons, "OK" and "Cancel".

MB_ABORTRETRYIGNORE = $0002 - message box with
three buttons Abort, Retry, Ignore

MB_YESNOCANCEL = $0003 - the message box
contains three push buttons "Yes", "No" and "Cancel".

MB_YESNO = $0004 - the message box contains two
push buttons "Yes" and "No".

MB_RETRYCANCEL = $0005 - the message box contains
two push buttons "Retry" and "Cancel".

MB_CANCELTRYCONTINUE* = $0006 - the message box
contains three push buttons "Cancel", "Try Again" and
"Continue" (needs to be declared).

It is possible to specify is the default (has focus) with one of
the following:

MB_DEFBUTTON1 = $0000 - the first button is selected
(default).

MB_DEFBUTTON2 = $0100 - the second button is
selected.

MB_DEFBUTTON3 = $0200 - the third button is
selected.

MB_DEFBUTTON4 = $0300 - the fourth button is
selected.

If the button specified as default is not present, focus is
shifted to first Button

Icon Options

The icon to be displayed in the mesage box is determined
by:

MB_ICONERROR or
MB_ICONHAND or
MB_ICONSTOP = $0010 - the box contains a stop sign
icon.

MB_ICONQUESTION = $0020 - the box contains a
question mark icon.

MB_ICONEXCLAMATION or
MB_ICONWARNING = $0030 - the box contains an
exclamation mark icon.

MB_ICONASTERISK or
MB_ICONINFORMATION= $0040 - the box contains an
icon with an "i" in a circle.

Modal Settings

The following constants allow you to change to Modal status
of the window:

MB_APPLMODAL = $0000 - the user must respond to a
message before being able to continue working in the
window which created the message.

MB_SYSTEMMODAL = $1000 - used to indicate a
serious error in the program (for example "out of
memory"). As a rule the program must subsequently be
terminated.

MB_TASKMODAL = $2000 - same as MF_APPLMODAL.
In addition all Top Level windows which belong to the
current program are inactivated.

Miscellaneous Settings

Below are more settings that can be combined with those
above:

MB_DEFAULT_DESKTOP_ONLY = $20000 - If the current
input desktop is not the default desktop, MsgBox does
not return until the user switches to the default
desktop.

MB_HELP = $40000 - Add a help button to a message
box. This has no effect on the MsgBox function if
helpfile and context are not defined, and has been
included in this list for use with the MessageBox()
function which is dealt with above..

MB_RIGHT = $80000 - Right-aligns all text

MB_RTLREADING = $100000 - Prints text from right to
left for languages that are written that way.

MB_SETFOREGROUND = $10000 - The message box
becomes the foreground (or active) window.

MB_TOPMOST = $40000 - The message box is created
with the WS_EX_TOPMOST (or system) window style.

MB_SERVICE_NOTIFICATION = $200000 - The caller is
a service notifying the user of an event. The function
displays a message box on the current active desktop,
even if there is no user logged on to the computer.

Return values

The following are accepted return values:

IDABORT = $3 - The Abort button was pressed.

IDCANCEL = $2 - The Cancel button was pressed.

IDCONTINUE* = $11 - The Continue button was
pressed (needs to be declared).

IDIGNORE = $5 - The Ignore button was pressed.

IDNO = $7 - The Nobutton was pressed.

IDOK = $10 - The OK button was pressed.

IDRETRY = $4 - The Retry button was pressed.

IDTRYAGAIN* = $11 - The Try Again button was
pressed (needs to be declared).

IDYES = $6 - The Yes button was pressed.

Example

Local a%, b$, c$, n%
a% = MB_ABORTRETRYIGNORE
b$ = "This is a message"

c$ = "GFA-BASIC 32"
n% = MsgBox(b$, a%, c$)
MsgBox c$, , , , , n%
Message b$, "", a%, n%

Remarks

For an alternative style of message box, see GFA Basic's
own version called Alert.

It is possible to display a message box with a check box
which gives the option not to show the message again by
using the SHMessageBoxCheck() API. A quick example is
below:

Declare Function SHMessageBoxCheck Lib "Shlwapi"
Alias "SHMessageBoxCheckA" (ByVal hwnd As Handle,
ByVal Prompt As String, _
ByVal Title As String, ByVal Flags As Long, ByVal
DefaultID As Long, ByVal RegVal As String)

OpenW 1
Local r% = SHMessageBoxCheck(Win_1.hWnd, "Do you
want to save this file?", "Save File?", MB_YESNO,
IDYES, "Test")

Message "Return Value was" & r% & #13#10 & "Do you
want to see the new registry value?", "",
MB_YESNO, r%

If r% = IDYES
SaveSetting
"HKCU\software\microsoft\windows\currentversion
\applets\regedit", "", "lastkey", Str, _
"HKCU\Software\Microsoft\Windows\CurrentVersion
\Explorer\DontShowMeThisDialogAgain"

~ShellExec("regedit.exe")
EndIf

If the checkbox is ticked when the message box closes, a
Registry key named after RegVal is added to the
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer
\DontShowMeThisDialogAgain key with the value 'NO'. To
show the message again, either delete this key or change
the value to 'YES'.

For more details on SHMessageBoxCheck, see MSDN.

MsgBox (and MsgBox0) uses Me as a parent and is
displayed on Me’s (usually the curernt) monitor, except in
GLLs, where Me is unavailable, when MsgBox0 alone should
used instead.

Known Issues

As noted above, with MsgBox[0] from Windows Vista
onwards, the helpfile and context parameters no longer link
to the deprecated WinHlp32.exe help files. Similarly, neither
does using Message or the internally declared
MessageBox() with the MB_HELP flag; in fact, this should
not be used as, in certain circumstances, it can cause
serious errors.

There are two alternatives to this problem:

1. The first is a workaround which converts one of the
other buttons into a Help button and uses the return
value to branch off to the help page. This example is
especially interesting as it also shows how to customise
the button names.

// Acknowledgements to Peter Heinzig
Form F0 = , , , 400, 300 : DoEvents
RedrawMsgBox:
Ocx Timer Tim : Tim.Interval = 3 : Tim.Enabled
= 1

https://msdn.microsoft.com/en-us/library/windows/desktop/bb773836(v=vs.85).aspx

If MsgBox("Tralala", MB_OKCANCEL, " ") =
IDCANCEL // Cancel is now Help
// Call your helpfile/page.
GoTo RedrawMsgBox

EndIf
F0.Close

Sub Tim_Timer // Use to Change text in
messagebox
~SendDlgItemMessage(GetActiveWindow(),
IDCANCEL, WM_SETTEXT, 0, "Help") // "Cancel"
=> "Help"

Set Tim = Nothing // Cancel Timer as task done
EndSub

2. The second method is longer and uses the
MessageBoxIndirect() API:

Type MSGBOXPARAMS
- Long Size, Owner, hInstance
- Long Text, Caption, Style, Icon,
ContextHelpId

- Long MsgBoxCallBack, LanguageId
EndType
OpenW 1 : Debug.Show
Local mbp As MSGBOXPARAMS, a$ = "This is a
trial MessageBox", b$ = "Trial Help"

mbp.Size = SizeOf(MSGBOXPARAMS)
mbp.Owner = Win_1.hWnd
mbp.hInstance = Null
mbp.Text = V:a$
mbp.Caption = V:b$
mbp.Style = MB_OK | MB_HELP
mbp.Icon = Null
mbp.ContextHelpId = 12
mbp.MsgBoxCallBack = ProcAddr(HelpRoutine)
Print MessageBoxIndirect(mbp)

Do : Sleep : Until Win_1 Is Nothing

Procedure HelpRoutine(helpptr%)
Local hi As HELPINFO
MemCpy V:hi, helpptr%, SizeOf(HELPINFO)
Debug hi.ContextId
Type HELPINFO
- Long Size, ContextType, CtrlId
- Long ItemHandle, ContextId
MousePos As POINT

EndType
Type POINT
- Long x, y

EndType
EndProcedure

For more information on the possible values in the
MSGBOXPARAMS structure, see MSDN.

For more information on linking to HTML Help Files, see
Accessing HTML Help Files.

See Also

Alert

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645402(v=vs.85).aspx

Gfa_StatusText
Return or set the status bar text.

Syntax

$ = Gfa_StatusText

Gfa_StatusText [= text$]

Description

Gfa_StatusText [=] returns or sets the text of the status
bar of the IDE. The text is not permanent, because it is
overwritten by GFA-BASIC 32 when it displays information
like menu item description, OCX properties and methods,
import descriptions, etc.

Example

Gfa_StatusText = "Ready"

See Also

Gfa_hWnd, Gfa_hWndEd

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_KeyGet
Syntax

vkkeycode% = Gfa_KeyGet

Description

Returns the virtual key code for a pressed key. This function
could be used for various purposes, but can be invoked not
before an editor extension is invoked. It is safely
implemented as a PeekMessage loop filtering keyboard
messages. Once executed the Gfa_KeyGet function exits
and returns 0 after a time out of 60 seconds when no
keyboard message has arrived. It also returns 0 when one
of the mouse buttons is clicked, a menu is selected, Alt is
pressed, or when a WM_APPACTIVATE is received.

Gfa_KeyGet ignores the shift state of the Shift keys, it
returns the codes 8, 9, 13, 27, and greater than 31 that are
in the low order word of the wParam of the WM_KEYDOWN
message.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

InputBox Function
Purpose

Displays a prompt in a dialog box, waits for the user to
input text or click a button, and returns the contents of the
text box.

Syntax

string = InputBox(prompt[, title][, default][, x][, y][,
helpfile, context])

prompt, title, default : sexp
x, y, context : iexp
helpfile : path to .hlp help file

Description

prompt: String expression displayed as the message in the
dialog box. The maximum length of prompt is
approximately 1024 characters, depending on the width of
the characters used. If prompt consists of more than one
line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or
carriage return-linefeed character combination (Chr(13) &
Chr(10)) between each line.

title: String expression displayed in the title bar of the
dialog box. If you omit title, the application name
(App.Name) is placed in the title bar.

default: String expression displayed in the text box as the
default response if no other input is provided. If you omit

default, the text box is displayed empty.

x: Numeric expression that specifies, in twips, the
horizontal distance of the left edge of the dialog box from
the left edge of the screen. If x is omitted, the dialog box is
horizontally centered.

y: Numeric expression that specifies, in twips, the vertical
distance of the upper edge of the dialog box from the top of
the screen. If y is omitted, the dialog box is vertically
positioned approximately one-third of the way down the
screen.

helpfile: String expression that identifies the Help file to use
to provide context-sensitive Help for the dialog box. If
helpfile is provided, context must also be provided.

context: Numeric expression that identifies the Help context
number assigned by the Help author to the appropriate Help
topic. If context is provided, helpfile must also be provided.

When both helpfile and context are supplied, a Help button
is automatically added to the dialog box. NOTE The help
button on an InputBox will attempt to open WinHlp32.exe
(used for .hlp files); it will not work with HTMLHelp files.
Unfortunately, as InputBox is an internally created Dialog
box rather than a Windows API, the only workaround is to
create a custom Dialog Box and direct the call to the help
file in a similar manner as shown in this example.

If the user clicks OK or presses ENTER, the InputBox
function returns whatever is in the text box. If the user
clicks Cancel, the function returns a zero-length string ("").

Example

OpenW 1

Local x%, value$
value$ = InputBox("Hallo", "Title", "Mr.")
Print value$

Remarks

In contrast to VB the coordinates will be corrected
automatically by GFA-BASIC 32, so that the InputBox
remains on the screen.

Input Boxes are useful inside LG32 Libraries as, unlike OCX
objects, their events can be handled internally.

InputBox uses Me as a parent and is displayed on Me’s
(usually the curernt) monitor, except in GLLs, where Me is
unavailable, when MsgBox0 should used instead.

See Also

Prompt, Input

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

Prompt Command
Purpose

Displays an input Dialog Box

Syntax

Prompt title$, message$, strvar$

Description

Prompt will provide the user with a "standard" dialog box
that has an input-field in it. Basically this can be used
instead of Input or Form Input to prompt the user for
input, because Input is not very suited for Message-based
multi-tasking systems like MS-Windows.

Example

Local a$ = "Anonymous"
Prompt "A Prompt example", "Do you want to give
your name ?", a$

Print a$

This example prompts the user with a Dialog-box, asking to
type in your name. The default text in the edit field will be
"Anonymous".

After response of the user, the string A$ will be filled with
the text of the edit field at the moment of exiting the
Dialog.

Remarks

Basically, the same can be done using Dialog and EditText
statements. Of course, the Prompt command is easier to
use and provides a kind of standard-Dialog for user input.

Prompt uses Me as a parent and is displayed on Me’s
(usually the curernt) monitor, except in GLLs, where Me is
unavailable, when MsgBox0 should used instead.

See Also

Dialog, Form Input

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

PopUp Menus
Purpose

Creates a pop-up menu.

Syntax

r = PopUp(entries$, x, y, i)

PopUp entries$, x, y, i, (OUT) r

entries$: string
r, x, y, i : integer

Description

As opposed to Menu Bars, pop-up menus are not
permanent, have one main column and can be deployed
anywhere within a form - the best example of a pop-up
menu is one that is produced when you use the right mouse
button to click on a certain object to get further options.

Similar to Menu Bars, pop-up menus can be created either
through a GB32 command - in this instance PopUp - or
through calling Windows' internal APIs, which has the added
advantages of allowing sub-menus to be created and
custom ID numbers to be assigned to menu items; unlike
Menu Bars, due to its brief existence and the structure of
the PopUp command/function, a pop-up menu can not be
created by using both methods.

Creating Pop-Up Menus using PopUp Show

javascript:pr("sect1hl","sect1","Hide","Show","block")

Creating Pop-Up Menus using APIs Show

See Also

Menus

{Created by Sjouke Hamstra; Last updated: 20/12/2015 by James Gaite}

javascript:pr("sect2hl","sect2","Hide","Show","block")

Gfa_Exit and Gfa_DoExit
Commands
Quit IDE.

Syntax

Gfa_Exit

Gfa_DoExit

Description

Gfa_Exit executes the File | Exit menu item to close GFA-
BASIC 32. When the current project has the Gfa_Dirty
status the project can be saved first.

Gfa_DoExit closes GFA-BASIC 32 without checking the
Gfa_Dirty status. There is no correspondence menu item
for this command.

Example

Sub Gfa_Ex_X
Gfa_DoExit

EndSub

See Also

Gfa_Dirty

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_OnRun and Gfa_OnEnd
Events
Syntax

Sub Gfa_OnRun

Sub Gfa_OnEnd

Description

The Sub Gfa_OnRun is called directly before the start of a
program. This event could be used to save the latest
changes before running. This event might also be used to
start the execution of a Gfa_Tron proc for debugging
purposes.

The Sub Gfa_OnEnd is called directly after the end of a
program. Gfa_OnRun and Gfa_OnEnd subs could be used
to minimize the IDE when a program is started.

Example

// Use Gfa_OnRun to backup file in system's
temporary directory.

Sub Gfa_OnRun //Backup before program start
Debug "Starting Program"
If Gfa_Dirty Then Gfa_SaveFile TempDir &
"run.g32"

ShowW Gfa_hWnd, SW_MINIMIZE
End Sub

Sub Gfa_OnEnd

ShowW Gfa_hWnd, SW_RESTORE
End Sub

See Also

Gfa_Run, Gfa_Init, Gfa_Exit, Gfa_Minute, Gfa_Second

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Minute and Gfa_Second
Events
Syntax

Sub Gfa_Minute

Sub Gfa_Second

Description

The Gfa_Minute sub is called every minute
(approximately), except if the program is running. Although
it isn’t advised to perform complex and lengthy actions
because this could slow down the editor, there is quite some
room here to create useful extensions. The GFA-BASIC 32
editor uses the same timer interrupt to clock in the status
bar.

The Gfa_Second sub is called every second
(approximately), except if the program is running. Although
it isn’t advised to perform complex and lengthy actions
because this could slow down the editor, there is quite some
room here to create useful extensions. The GFA-BASIC 32
editor uses the same timer interrupt to update the title of
the IDE when the dirty status of program has been
changed.

Example 1

// Changing the timer interrupts
Global Const tMinuteId = $14D
Global Const tSecondId = $14E

~KillTimer(Gfa_hWnd, tSecondId) 'Set the
Gfa_Second timer to

~SetTimer(Gfa_hWnd, tSecondId, 500, 0) '500
milliseconds, rather than 1000ms

Example 2

//Show current procedure in the status bar each
second.

Sub Gfa_Second
Gfa_StatusText = Gfa_Proc

End Sub

The second example of Gfa_Second is changed somewhat,
and behaves more reservedly. Thus the Gfa_StatusText is
changed only when the current procedure’s top line
changes.

Example 3

// Display current procedure in status bar.

Sub Gfa_Second
Static Int procline
If procline != Gfa_ProcLine
procline = Gfa_ProcLine
Gfa_StatusText = Gfa_Proc

EndIf
EndSub

See Also

Gfa_OnRun, Gfa_OnEnd, Gfa_Init, Gfa_Exit

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_OnDropInl Event
Syntax

Sub Gfa_OnDropInl(ParamArray p())

Description

When the Sub Gfa_OnDropInl(ParamArray p()) exists the
':Files' tab in the sidebar will become a drag and drop
window. When one or more files are dragged from the
Explorer to the ':Files' window the Gfa_OnDropInl sub is
invoked. The ParamArray p() contains the strings with
filenames that are dropped in the operation.

Example

Add resources using drag 'n drop.

When a GLL contains the Gfa_OnDropInl sub, the drag
and drop facility of the :Files tab is enabled. The
Gfa_OnDropInl takes one parameter: a ParamArray
containing the list of files to add.

Sub Gfa_OnDropInl(ParamArray p())
Local Int i
For i = LBound(p) To UBound(p)
dropfile p(i)

Next
End Sub

Sub dropfile(f$)
Debug "Dropped file " + f

Local a$, i%
Try
a = f
If(FileLen(f) > 8192)
If MsgBox("File length " & f & " =" &
FileLen(f$) & "Bytes"#10"Copy anyway?", _
MB_YESNO) == IDNO Then Exit Sub

EndIf
i% = RInStr(f$, "\")
If i%
a = Mid(f, i + 1)
i% = RInStr(a, ".")
If i > 1 Then a = Left(a, i - 1)
a = ":" & a
If Exist(a)
//iiiFile is exiting
i = MsgBox("InlFile " & a & " exists" #10
"Overwrite " & f & "?", MB_YESNOCANCEL)

If i = IDCANCEL Then Exit Sub // nothing to
do

If i = IDYES Then Gfa_CopyFile "", a :
Gfa_CopyFile f, a : Exit Sub

For i = 0 To 99
If !Exist(a & Dec(i))
Gfa_CopyFile f, a & Dec(i)
Exit Sub

EndIf
Next
MsgBox "Too much copies."
Exit Sub

EndIf
Gfa_CopyFile f, a

EndIf
Catch
MsgBox "Error creating a copy of " & f

EndCatch
End Sub

The dropfile sub is called for each file in the ParamArray.
First the size of the file is tested, because including
resources larger then 8192 bytes might not be advisable. A
confirmation is asked, therefore. Then the filename is
obtained from the full path name and section without the
extension is used as the ':File' name. When the ':File' exists
in the inline section, you'll be asked to delete it first. If OK
the resource is deleted from memory and the new file is
added.

Remarks

See Also

Gfa_CopyFile, Gfa_InlFileName

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Dialog Command
Purpose

creates a Form or dialog box in a GLL using a dialog box
syntax.

Syntax

Dialog hd%,x%,y%,w%,h%,tit$ [,flag% [,height%,font$]]

EndDialog

hd%,x%,y%,w%,h%,flag%,height%:integer expression
tit$, font$:sexp

Description

Dialog boxes are used for interaction between the program
and the user. In contrast with GFA-BASIC 16 dialog boxes
created with the Dialog command are OCX Forms. As such
it is easier to create a dialog as a Form using the Form
editor.

The Dialog command is a hold over from GFA-BASIC 16.
The way they are used in GFA-BASIC 32 is the same as in
GFA-BASIC 16. In particular, when a dialog box is created in
a GLL the syntax and message handling is the same.

Formally, a Dialog structure has the following layout:

Dialog
Dialog control elements
EndDialog

The Dialog structure control elements are specified within
the Dialog-EndDialog definition. The Dialog structure
header marks the Dialog definition. It is followed by six
parameters:

hd%: Dialog structure number (0 to 31)
x%,y%: X, Y coordinates of upper left corner of Dialog

box
w%: Dialog box width in pixels
h%: Dialog box height in pixels
tit$: Dialog structure title

Optionally three other parameters can be defined:

flags%: WS_Style flags to be used by the Dialog
height%: Font-height (normally negative)
font$: Typeface name of the font

flags% can be a combination (binary Or) of the following
values:

WS_BORDER ($00800000) window with a border
WS_CAPTION
($00C00000)

creates a window with a title.
To make a system menu
visible in such a window the
WS_CAPTION and
WS_POPUPWINDOW style
elements must be combined.

WS_CHILD ($40000000) a window with child windows
WS_CHILDWINDOW a child window
WS_CLIPCHILDREN
($02000000)

clips all window output to the
area outside of a child
window.

WS_CLIPSIBLINGS clips all window output within

($04000000) a child window to its client
area.

WS_DISABLED
($08000000)

a window, which is initially
inactive.

WS_DGLFRAME
($00400000)

a window with a double
border but without a title.

WS_GROUP ($00020000) marks the first control
element within a group of
control elements (used only
in dialog boxes).

WS_HSCROLL
($00100000)

a window with a horizontal
scroll bar.

WS_ICONIC ($20000000) a window which is initially
displayed as an icon.

WS_MAXIMIZE
($01000000)

a window with maximum
dimensions

WS_MAXIMIZEBOX
($00010000)

a window with a maximize
box.

WS_MINIMIZE
($20000000)

a window with minimal
dimensions.

WS_MINIMIZEBOX
($00020000)

a window with a minimize
box.

WS_OVERLAPPED
($00000000)

an overlapping window. The
window contains a border
and a title. The client area
overlaps with window border
and title.

WS_OVERLAPPEDWINDOW
(0xCF0000)

an overlapping window with
following style elements:
WS_OVERLAPPED
WS_CAPTION
WS_SYSMENU
WS_THICKFRAME

WS_MINIMIZEBOX
WS_MAXIMIZEBOX

WS_POPUP ($80000000) a popup window. Such
window can't have the
WS_CHILD attribute.

WS_POPUPWINDOW
(0x80880000)

a popup window with
following style elements:
WS_BORDER
WS_POPUP
WS_SYSMENU

WS_SYSMENU
($00080000)

a window with a system
menu in the title bar. Used
only in windows with a title
bar.

WS_TABSTOP
($00010000)

a window with a number of
control elements which the
user can arrive at by tapping
the tab key. Used only in
dialog boxes.

WS_THICKFRAME
($00040000)

a window with a thick border
which is used to "size" the
window.

WS_VISIBLE ($10000000) a window which is initially
visible, i.e. is displayed as a
top window.

WS_VSCROLL
($00200000)

a window with a vertical
scroll bar.

DS_LOCALEDIT Specifies that edit controls in
the Dialog box will use
memory in the application's
data segment. By default, all
edit controls in Dialog boxes
use memory outside the
application's data segment.

This feature can be
suppressed by adding the
DS_LOCALEDIT flag to the
STYLE command for the
Dialog box. If this flag is not
used, EM_GETHANDLE and
EM_SETHANDLE messages
must not be used since the
storage for the control is not
in the application's data
segment. This feature does
not affect edit controls
created outside of Dialog
boxes.

DS_MODALFRAME Creates a Dialog box with a
modal Dialog box frame that
can be combined with a title
bar and System menu by
specifying the WS_CAPTION
and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE
messages that Windows
would otherwise send to the
owner of the Dialog box
while the Dialog box is
displayed.

DS_SYSMODAL Creates a system-modal
Dialog box.

A Dialog is a Form object and does not have the
WS_POPUP style as a normal API dialog box. As any other
Form a Dialog box is a WS_OVERLAPPED window. It is
simply another way to

A program can define several Dialog structures, which are
referred to by their Dialog number. After a dialog structure
has been defined it can be displayed by using the
ShowDialog command, where only the number of the
dialog structure must be specified.

A dialog box is a Form object, unless used in a GLL. In a
GLL the dialog box is plain API dialog box that is to be filled
with plain controls. You can still use plain controls in a
dialog, but you cannot respond to event subs.

Because the dialog is a Form, they need an object name.
The Dialog command accepts a unique number in the
range from 0 to 31. The dialog box with number #0 is
named Dlg_0, the dialog box with #1 is called Dlg_1, etc.
Properties and methods are invoked as Dlg_1.Property and
Dlg_1.Method. The events for the dialog box are the same
as for a form and have the form of Dlg_n_event. For
instance, the event sub to handle posted messages, which
are retrieved from the message queue:

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
' Code

EndSub

As with any Form, controls may be created the API way or
the OLE way, using the OCX command. An advantage of
using OCX controls is the way notification messages from
the control are handled, because messages from the OCX
controls are handled in OCX event subs.

OCX Controls

OCX type name

OCX type name = "Caption", x, y, w, h

OCX type name = "Caption", id, x, y, w, h

OCX type name = "Caption", id, x, y, w, h, style

type Name of the GFA-BASIC 32 OCX type:
Command, Option, CheckBox, RichEdit,
ImageList, Label, ListBox, TreeView,
ListView, TextBox, Image, Timer, Scroll,
Slider, ProgressBar, ToolBar, StatusBar,
ComboBox, Frame, TabStrip, Animation,
UpDown, Form.

name name of the global variable for the OCX.
Defines the names for the event subs:
name_event

Caption Specifies text that is displayed with the control.
ID% Optional. Specifies the control identifier.

(0through 65,535). Normally, GFA-BASIC 32
assigns OCX controls an identifier, but for GFA-
BASIC 16 programs it may be handy to keep
the identifier value.

x%, y% Specifies the x- and y-coordinate of the left top
side of the control relative to the left top side of
the dialog box. The coordinate is in dialog units
and is relative to the origin of the dialog box,
window, or control containing the specified
control.

width% Specifies the width of the control.
height% Specifies the height of the control.
style% Optional. Specifies the control styles. Use the

bitwise OR (|) operator to combine styles.

Plain Controls

The dialog box can also contain plain controls. In a GLL only
plain controls can be used. For instance, to create a simple
left justified static text control:

LText text$, ID%, x%, y%, width%, height% [,style%]

All control statements use the same syntax:

CtrlName text$, ID%, x%, y%, width%, height% [,style%]

CtrlName Name of the GFA-BASIC 32 control statement:
LText, RText, CText, Icon,
PushButton, DefPushButton, CheckBox,
AutoCheckBox, RadioButton,
AutoRadioButton,
ListBox, ComboBox,
EditText, Scrollbar,
AnimateCtrl,
TabCtrl,
HeaderCtrl, ListViewCtrl, TreeViewCtrl,
ProgressCtrl, TrackBarCtrl,
StatusCtrl, ToolBarCtrl,
UpDownCtrl.
RichEditCtrl.

text$ Specifies text that is displayed with the
control.

ID% Specifies the control identifier. (0through
65,535)

x%, y% Specifies the x- and y-coordinate of the left
top side of the control relative to the left top
side of the dialog box. The coordinate is in
dialog units and is relative to the origin of the
dialog box, window, or control containing the
specified control.

width% Specifies the width of the control.

height% Specifies the height of the control.
style% Specifies the control styles. Use the bitwise OR

(|) operator to combine styles.

Note - There is no Static control command, Static is used
to declare static local variables. Use the general Control
statement instead.

In a normal program the messages from plain controls are
handled in the parent's event sub _Message() (for posted
messages) or _MessageProc() (for all messages). In a GLL
the messages are handled in the Gfa_CB() callback sub.

The Control statement

The Control statement is used to create a plain control. In
a GLL try to avoid the general Control statement to create
a child window, these controls use the system font, rather
than the DEFAULT_ GUI_FONT.

Control text$,ID%,class$,style%,x%,y%,w%,h%,

Control creates a program defined control window with
width w% and height h% at coordinates specified in x% and
y%. The window shows the text specified in text$ and can
be referred to with the value specified in ID%.
class$ specifies the class of the control elements which the
control window can assign.

Example

Call demodialog() // dialog structure
// activate DefPushButton
~SetFocus(DlgItem(1, 103))
Do
Sleep // to wait of a message

Until MouseK = 2 // till left mouse key pressed
CloseDialog # 1 // close dialog

Procedure demodialog() // to build the dialog
Local i%, a%
Local dlgf&, s%, style1%, style2%
Local style3%, style4%, style5%
Local style6%, style7%, style8%, v%
DlgBase Pixel // dialog in pixels
Dialog # 1, 10, 100, 600, 360, "Demo Dialog"
DlgBase Unit
// rest of it in UNITS (1/4 sign width, 1/8
sign height

style1% = WS_TABSTOP
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
style3% = BS_GROUPBOX | WS_TABSTOP
style4% = BS_AUTORADIOBUTTON | WS_TABSTOP
style5% = BS_AUTOCHECKBOX | WS_TABSTOP
style6% = ES_UPPERCASE | WS_BORDER | _
WS_TABSTOP

style7% = LBS_NOTIFY | LBS_SORT | _
LBS_STANDARD _
| WS_BORDER | WS_VSCROLL

style8% = CBS_DROPDOWN | CBS_SORT | _
CBS_HASSTRINGS | WS_VSCROLL

// type title / contents Id x y w h style
PushButton "Pushbutton 1", 100, 12, 14, 72, 14,
_
style1%

PushButton "Pushbutton 2", 101, 12, 32, 72, 14,
_
style1%

PushButton "Pushbutton 3", 102, 12, 50, 72, 14,
_
style1%

DefPushButton "DefPushbutton", 103, 12, 68, 72,
14, _

style2%
ScrollBar "", 104, 0, 143, 283, 9, SBS_HORZ
ScrollBar "", 105, 283, 0, 9, 152, SBS_VERT
GroupBox "Radiobuttons", 106, 89, 14, 56, 53,
style3%

RadioButton "Radio 1", 107, 93, 25, 39, 12,
style4%

RadioButton "Radio 2", 108, 93, 36, 39, 12,
style4%

RadioButton "Radio 3", 109, 93, 47, 39, 12,
style4%

CheckBox "Checkbox 1", 110, 17, 94, 61, 12,
style5%

CheckBox "Checkbox 2", 111, 17, 107, 61, 12,
style5%

CheckBox "AutoCheckbox", 112, 17, 120, 61, 12,
_
style5%

EditText "", 113, 89, 94, 59, 12, style6%
EditText "", 114, 89, 107, 59, 12, style6%
EditText "", 115, 89, 120, 59, 12, style6%
ListBox "", 116, 154, 16, 64, 113, style7%

EndDialog
// Fill List- and Combobox
For i% = 1 To 50
s% = LB_ADDSTRING
v% = Rand(100)
~SendMessage(DlgItem(1, 116), s%, 0, Str$(v%,
2) _
+ ".String")

s% = CB_ADDSTRING
v% = Rand(500)
~SendMessage(DlgItem(1, 117), s%, 0, Str$(v%,
4) _
+ ".String")

Next i%
// Init Scrollbars

~SetScrollRange(DlgItem(1, 104), SB_CTL, 0, 200,
1)

~SetScrollPos(DlgItem(1, 104), SB_CTL, 100, 1)
~SetScrollRange(DlgItem(1, 105), SB_CTL, 0, 200,
1)

~SetScrollPos(DlgItem(1, 105), SB_CTL, 100, 1)
ShowDialog # 1

EndProc

Remarks

Note - GFA-BASIC 32 also provides keywords like
ProgressBar, Toolbar, Header, etc. These keywords are not
statements to create controls, but they are OCX types. As
such these keywords are used to declare variables or to
create OCX controls. For instance:

Dim pb1 As ProgressBar ' declare a variable pb
Ocx ProgressBar pb1 ' create OCX & declare
global variable pb1

Note - The Dialog command is useful for converting GFA-
BASIC 16 programs and in GLL extensions. In a normal
program use Form instead.

OCX types are not allowed in a GLL.

See Also

ShowDialog, CloseDialog, PushButton, DefPushButton,
EditText, CText, RText, LText, Static, ScrollBar, ComboBox,
ListBox

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

ShowDialog Command
Purpose

Displays a Dialog structure on the screen.

Syntax

ShowDialog id%

id%:integer expression

Description

ShowDialog displays a dialog structure created with
Dialog....EndDialog on the screen. id% is the ID number
which you used during the creation to identify the dialog.

Example

See Dialog

Remarks

If the command EndDialog wasn't used the ShowDialog
contains the structure of the current Dialog.

See Also

Dialog, EndDialog, CloseDialog

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

CloseDialog Command
Purpose

Deletes a Dialog box shown with ShowDialog from the
screen.

Syntax

CloseDialog n

Description

n is a value between 0 and 31.

Example

Dlg 3D On
Dialog # 1, 10, 10, 200, 100, "Trial Dialog",
WS_SYSMENU
PushButton "Close", 11, 50, 20, 80, 25, 0

EndDialog
ShowDialog # 1
Do : Sleep : Until Me Is Nothing
Dlg 3D Off

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Switch Mess
Case WM_COMMAND
Trace wParam
If wParam = 11 Then CloseDialog # 1

EndSwitch
EndSub

See Also

Dialog, ShowDialog

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

DlgBase Command
Purpose

scales the measurements of Dialog boxes and Dialog
Controls.

Syntax

DlgBase Pixel

DlgBase Unit

DlgBase InSide

DlgBase OutSide

DlgBase Font font$

DlgBase Bold

DlgBase Bold Off

Description

When creating Dialog boxes with the GFA-BASIC structure
Dialog...EndDialog, their position, width and height can be
specified either in pixels (DlgBase Pixel) or in Dialog Units
(DlgBase Unit). Units are 1/4 character wide and 1/8
character high. If a Dialog has been created using the MS-
Windows SDK editor, you should always scale using
DlgBase Unit to avoid unnecessary calculations.

DlgBase InSide and DlgBase OutSide determine the
meaning of the rectangle coordinates specified with the

Dialog #n, x, y, w, h command. DlgBase InSide forces
the dialog to use the rectangle as the client size. The
outside coordinates are calculated using the Windows
system settings. This way the client area of the dialog is the
same on each Windows system. DlgBase OutSide switches
back to the default setting: the coordinates are the
dimensions of the bounding rectangle of the dialog box.

DlgBase Font font$ and DlgBase Bold affect the font
used in the controls in the dialog box. The format of font$ is
according the format in _font$. DlgBase Bold is only used
when the Dialog command includes a font description, for
instance

Dialog #n, x, y, w, h, "Title", style, font_height,
"Fontname".

The font activated this way is a normal (not bold) version.
The command DlgBase Bold forces the use of a bold font.

The different parameters can be combined, such as:

DlgBase Inside, Font "Ms Sans Serif,-8, 8"

Example

DlgBase OutSide, Font "Arial,-12,7" // This works
if …

// you remove ',-12,"ARIAL"' in the next line
Dialog # 1, 50, 50, 200, 110, "DlgBase Outside",
$80 ', -12, "ARIAL"
LText "This should be bold!", 3, 32, 16, 350, 16,
$0

PushButton "Close", IDOK, 55, 45, 80, 20
EndDialog
Dlg_1.AutoClose = 1
Dlg Fill 1, SysCol(COLOR_BTNFACE)

ShowDialog # 1
DlgBase InSide
Dialog # 2, 260, 50, 200, 110, "DlgBase inside",
$80, -12, "ARIAL"
LText "This is normal", 3, 32, 16, 350, 16, $0
PushButton "Close", IDOK, 55, 45, 80, 20

EndDialog
Dlg_2.AutoClose = 1
Dlg Fill 2, SysCol(COLOR_BTNFACE)
ShowDialog # 2
Repeat
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND And wParam% = IDOK Then
CloseDialog # 1 : CloseDialog # 2

EndSub

Sub Dlg_2_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND And wParam% = IDOK Then
CloseDialog # 1 : CloseDialog # 2

EndSub

Remarks

Bug - DlgBase Bold doesn't work properly. Instead use
DlgBase Font with a bold parameter. Defining a font this
way excludes the use of font parameters in the Dialog
command.

These commands are only implemented for compatibility
with GFA-BASIC 16 bit. They are however, useful in dialog
boxes in a GLL.

See Also

Dialog, Font, Font To, SetFont, GetFont, RFont, Dlg Font,
_hFont, _font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

LText Control
Purpose

Creates a left justified-text static control in the current
active form, window, or dialog.

Syntax

LText text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

LText creates a rectangle with width w% and height h%,
whose upper left corner is at the coordinates specified in
x% and y%. The text specified in text$ is displayed in this
rectangle left justified. WS_TABSTOP and WS_GROUP are
available as style elements.

style Specifies the control styles. This value can be any
combination of the following styles: SS_LEFT, WS_TABSTOP,
and WS_GROUP. If you do not specify a style, the default
style is SS_LEFT | WS_GROUP.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _MessageProc
sub.

Example

LText "Filename", 101, 10, 10, 100, 100
Do : Sleep : Until Me Is Nothing

creates a left-text control that is labeled 'Filename'.

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

RText Control
Purpose

Creates a right justified text static control in the current
active form, window, or dialog.

Syntax

RText text$, id%, x, y, width, height[, style%]

text$:control text
id%:control identifier
x,y,b,h:iexp
style%:the control styles

Description

RText creates a rectangle with width w% and height h%,
whose upper left corner is at the coordinates specified in
x% and y%. The text specified in text$ is displayed in this
rectangle right justified. ID% is an integer value used to
refer to (inquire about) an element. WS_TABSTOP and
WS_GROUP are available as style elements.

style Specifies the control styles. This value can be any
combination of the following styles: SS_RIGHT,
WS_TABSTOP, and WS_GROUP. If you do not specify a style,
the default style is SS_RIGHT | WS_GROUP.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY

messages should be handled in the form's _MessageProc
sub.

Example

RText "Filename", 101, 10, 10, 100, 100

creates a right justified text control that is labeled
'Filename'.

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

CText Control
Purpose

Creates a centered-text static control in the current active
form, window, or dialog.

Syntax

CText text$, id%, x, y, width, height[, style%]

text$:control text
id%:control identifier
x,y,b,h:iexp
style%:the control styles

Description

The control is a simple rectangle displaying the given text
centered in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line
are automatically wrapped to the beginning of the next line.

style Specifies the control styles. This value can be any
combination of the following styles: SS_CENTER,
WS_TABSTOP, and WS_GROUP. If you do not specify a style,
the default style is SS_CENTER | WS_GROUP.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _MessageProc
sub.

Example

CText "Filename", 101, 10, 10, 100, 100

creates a centered-text control that is labeled 'Filename'.

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Icon, SmallIcon Properties
(ListItem, Form, TrayIcon)
Purpose

Returns or sets the index value of an icon or small icon
associated with a ListItem object in an ImageList control.

Returns or sets the icon for a Form's title bar or a
TrayIcon's taskbar icon.

Syntax

Listitem.Icon [= index%]

ListItem.SmallIcon [= index%]

Form.Icon [= pic]

TrayIcon.Icon [= pic]

Form.SmallIcon [= pic]

ListItem:ListItem Object
Form:Form Object
index:iexp or sexp
pic:Picture Object

Description

For a ListItem object index specifies an integer that
identifies an icon or small icon in an associated ImageList
control. An ImageList control is associated by setting the
ListView's Icons or SmallIcons property.

For a Form the Icon is 32x32 pixel bitmap and SmallIcon
a 16x16 bitmap. The small icon is displayed in the title bar
of the Form and the large icon when <Alt-Tab> is pressed.
Only one needs to be set. See LoadPicture on how to load
an icon file. Icon and SmallIcon can be set at design time,
as well at run time.

For the TrayIcon property Icon the picture must be an
ICO-picture. The taskbar supports 16x16 icons only. When
the Icon property is assigned a picture at design time a
32x32 icon is loaded. The icon is then shrinked when placed
in the taskbar. It is advised to load a 16x16 icon in code
using:

Set tic1.Icon = LoadPicture(":ticSym", 16, 16, 16)

Example

// Pre-save required icon
Dim p As Picture
Set p = CreatePicture(LoadIcon(Null,
IDI_APPLICATION), False)

SavePicture p, App.Path & "\app.ico"
// The example
OpenW 1
Print "Press any key to change the Window icon"
While InKey = "" : Wend
Cls
Set p = Win_1.Icon
Win_1.Icon = LoadPicture(App.Path & "\app.ico")
Print "Press any key to change it back"
While InKey <> "" : Wend : While InKey = "" : Wend
Cls
Win_1.SmallIcon = p
Print "Please close window to end example"
Do : Sleep : Until Win_1 Is Nothing

See Also

Form, ListItem, LoadPicture, TrayIcon

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

PushButton Control
Purpose

Creates a pushbutton with width, height and upper left
corner is at the coordinates specified

Syntax

PushButton text$,ID%,x%,y%,w%,h%[,style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

A PushButton contains the text specified in text$ within
the rectangle. When a mouse click occurs within a
PushButton, it sends a message to its window.
PUSHBUTTONs can contain the WS_TABSTOP,
WS_DISABLED, and WS_GROUP style elements.

BS_PUSHBUTTON ($0000) - A button defined in this way
sends a message to the parent window when clicked on.

BS_DEFPUSHBUTTON ($0001) - defines a button which is
preselected as default (thick border; selection by pressing
the Return key, mostly the OK button). A message is sent to
the parent window when a click occurs on the button or the
Return key is pressed.

BS_CHECKBOX ($0002) - a small rectangular button which
can be marked as checked by clicking on it.

BS_AUTOCHECKBOX ($0003) - identical to BS_CHECKBOX.
However, when clicked on it changes its status.

BS_RADIOBUTTON ($0004) - specifies a small round button
which can be selected by clicking. Normally several radio
buttons are grouped together and can be selected
exclusively. Selecting one of them inactivates the remaining
buttons in the same group.

BS_3STATE ($0005) - identical to BS_CHECKBOX. However,
it also offers the possibility of displaying the button as gray.
The graying means that button can't be selected.

BS_AUTO3STATE ($0006) - identical to BS_3STATE.
However, it changes its status when clicked on.

BS_GROUPBOX ($0007) - specifies a rectangle inside which
several buttons (such as radio buttons) can be grouped.

BS_AUTORADIOBUTTON $0009) - identical to
BS_RADIOBUTTON. However, when activated it is
automatically marked as checked and all other buttons in
the same group are cleared.

BS_OWNERDRAW ($000B) - specifies a rectangle whose
display is performed by a special procedure.

BS_LEFTTEXT ($0020) - displays the text left justified for
check boxes and radio buttons.

In GFA-BASIC you can easily modify the appearance of
buttons using the BS_OWNERDRAW style. The first
character of the buttons text (given in the Button-Command

or with _Win$()= or a system- function) determines the
appearance of the button.

If it is a digit, a minus sign, or a hash sign, then the string
(ignoring the hash) is taken as the decimal Handle of a
bitmap. This bitmap is then used to draw the button.
optionally a second bitmap handle after a comma can be
given to display the button as selected. The usual windows
shortcuts (as &A) can be given additionally, but are not
displayed.

A leading "S" gives a softer three dimensional appearance,
without the usual black border. This can be used to group
buttons very close (as in the GFA-BASIC editor). The
contents of the buttons title starting from the second
character is diaplyed as usual.

A leading "R" displays a rounded button.

Example

Dialog # 1, 0, 0, 400, 300, "GFA", WS_SYSMENU
PushButton "Command", 1, 10, 10, 140, 22,
BS_DEFPUSHBUTTON

PushButton "Check Box", 2, 10, 40, 140, 14,
BS_AUTOCHECKBOX

PushButton "Option Button 1", 3, 10, 60, 140, 14,
BS_AUTORADIOBUTTON

PushButton "Option Button 2", 4, 10, 75, 140, 14,
BS_AUTORADIOBUTTON

EndDialog
ShowDialog # 1
Do : Sleep : Until Dlg_1 Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND
Select wParam

Case 1 : Message "Command Button Pressed" &
#13#10 & "Option Button 2 Activated"
SetCheck 1, 4, 1 : If Check?(1, 3) Then
SetCheck 1, 3, 0

Case 2 : Message "Check Box Clicked" & #13#10 &
"Option Button 1 Activated"
SetCheck 1, 3, 1 : If Check?(1, 4) Then
SetCheck 1, 4, 0

Case 3, 4 : Message "Option Button" & wParam -
2 & " Clicked"

EndSelect
EndIf

EndSub

Sub Dlg_1_Close(Cancel?)
Cancel? = False

EndSub

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

DefPushButton Control
Purpose

Creates a default push button control in the current active
form, window, or dialog.

Syntax

DefPushbutton text$, id%, x, y, width, height[, style%]

text$:control text
id%:control identifier
x,y,b,h:iexp
style%:the control styles

Description

The control is a small rectangle with a bold outline that
represents the default response for the user. The given text
is displayed inside the button. The control highlights the
button in the usual way when the user clicks the mouse in it
and sends a message to its parent window.

style Specifies the control styles. This value can be a
combination of the following styles: BS_DEFPUSHBUTTON,
WS_TABSTOP, WS_GROUP, and WS_DISABLED. If you do
not specify a style, the default style is BS_DEFPUSHBUTTON
| WS_TABSTOP.

The command creates a control without an OCX wrapper; so
it and cannot be handled using properties, methods, and
event subs. When used in a form the WM_COMMAND and

WM_NOTIFY messages should be handled in the form's
_Message sub.

Example

Dlg 3D On
Local x%
Dialog # 1, 10, 10, 310, 170, "Name of the dialog"
DefPushButton "&OK", IDOK, 10, 10, 280, 120

EndDialog
ShowDialog # 1
Do : Sleep : Until Dlg_1 Is Nothing
Dlg 3D Off

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND And wParam% = IDOK Then
CloseDialog # 1

EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

AutoCheckBox Control
Purpose

Creates a control in the current active form, window, or
dialog.

Syntax

AutoCheckBox text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

The AutoCheckBox statement creates an automatic check
box control. The control is a small rectangle (check box)
that has the specified text displayed next to it (typically, to
the right). When the user chooses the control, the control
highlights the rectangle and sends a message to its parent
window.

style Specifies the styles of the control. This value can be a
combination of the button class style BS_AUTOCHECKBOX
and the WS_TABSTOP and WS_GROUP styles. If you do not
specify a style, the default style is BS_AUTOCHECKBOX |
WS_TABSTOP.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY

messages should be handled in the form's _Message event
sub.

Example

See CheckBox

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

RadioButton Control
Purpose

Creates a control in the current active form, window, or
dialog.

Syntax

RadioButton text$, id%, x, y, width, height[, style%]

text$:control text
id%:control identifier
x,y,b,h:iexp
style%:the control styles

Description

The RadioButton statement creates an radio button
control. The control is a small circle that has the given text
displayed next to it, typically to its right. The control
highlights the circle and sends a message to its parent
window when the user selects the button. The control
removes the highlight and sends a message when the
button is next selected.

style Specifies styles for the automatic radio button, which
can be a combination of BUTTON-class styles and the
following styles: WS_TABSTOP, WS_DISABLED, and
WS_GROUP. If you do not specify a style, the default style is
BS_RADIOBUTTON | WS_TABSTOP.

Creates a control without an OCX wrapper; so it cannot be
handled using properties, methods, and event subs. When

used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _Message sub.

Example

Dialog # 1, 0, 0, 400, 300, "GFA", WS_SYSMENU
RadioButton "Command", 1, 10, 10, 140, 22,
BS_DEFPUSHBUTTON

RadioButton "Check Box", 2, 10, 40, 140, 14,
BS_AUTOCHECKBOX

RadioButton "Option Button 1", 3, 10, 60, 140,
14, BS_AUTORADIOBUTTON

RadioButton "Option Button 2", 4, 10, 75, 140,
14, BS_AUTORADIOBUTTON

EndDialog
ShowDialog # 1
Do : Sleep : Until Dlg_1 Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND
Select wParam
Case 1 : Message "Command Button Pressed" &
#13#10 & "Option Button 2 Activated"
SetCheck 1, 4, 1 : If Check?(1, 3) Then
SetCheck 1, 3, 0

Case 2 : Message "Check Box Clicked" & #13#10 &
"Option Button 1 Activated"
SetCheck 1, 3, 1 : If Check?(1, 4) Then
SetCheck 1, 4, 0

Case 3, 4 : Message "Option Button" & wParam -
2 & " Clicked"

EndSelect
EndIf

EndSub

Sub Dlg_1_Close(Cancel?)
Cancel? = False

EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

AutoRadioButton Control
Purpose

Creates a control in the current active form, window, or
dialog.

Syntax

AutoRadioButton text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

The AutoRadioButton statement creates an automatic
radio button control. This control automatically performs
mutual exclusion with the other AutoRadioButton controls
in the same group. When the button is chosen, the
application is notified with BN_CLICKED.

style Specifies styles for the automatic radio button, which
can be a combination of BUTTON-class styles and the
following styles: WS_TABSTOP, WS_DISABLED, and
WS_GROUP. If you do not specify a style, the default style is
BS_AUTORADIOBUTTON | WS_TABSTOP.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _Message sub.

Example

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Controll, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

EditText Control
Purpose

Creates an edit field control for user input.

Syntax

EditText text$, ID%, x%, y%, w%, h%[,style%]

Description

An EditText element is a rectangular area inside which text
can be entered and edited (using Backspace and Delete).
Clicking on an EditText element displays a text cursor
within the rectangle. EditText can contain the WS_TABSTOP,
WS_GROUP, WS_VSCROLL, WS_HSCROLL and
WS_DISABLED style elements.

Other styles:

EDITES_LEFT ($0000) sets the text left justified in
the edit field

ES_CENTER ($0001) centers the text within a
multi-line edit field.

ES_RIGHT ($0002) sets the text right justified
within a multi-line edit
field.

ES_MULTILINE ($0004) defines a multi-line edit
field.

ES_UPPERCASE ($0008) converts all characters in
the IBM US character set to
uppercase.

ES_LOWERCASE ($0010) converts all characters in
the IBM US character set to
lowercase.

ES_PASSWORD ($0020) displays all entered
characters as asterisk.

ES_AUTOVSCROLL ($0040) scrolls the text one page up
when the user presses the
Return key on the last line.

ES_AUTOHSCROLL ($0080) when further characters are
entered at the end of the
line, scrolls the text ten
characters to the left.
Pressing the Return key
sets the text back to
position zero.

ES_NOHIDESEL ($0100) makes the selected entry in
an edit field permanently
visible.

ES_OEMCONVERT ($0400) converts characters from
ANSI into OEM and back
(for example using your
own character table).

Example

Dlg 3D On
Global style%, style2%, file$
Dlg Base Unit
style% = WS_BORDER | WS_TABSTOP
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
Dialog # 1, 10, 10, 150, 100, "Test-Dialog"
EditText "", 101, 50, 10, 80, 14, style%
PushButton "OK", IDOK, 10, 60, 40, 14, style2%
PushButton "CANCEL", IDCANCEL, 80, 60, 40, 14,
style2%

EndDialog
ShowDialog # 1
// to fill the edit field
file$ = "GFA-User"
_Win$(Dlg(1, 101)) = file$
Do
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Select Mess
Case WM_COMMAND
Select wParam
Case IDOK
file$ = _Win$(Dlg(1, 101))
CloseDialog # 1
OpenW 1
Print file$: Print
Print "End with Alt + F4"

EndSelect
EndSelect

EndSub

Remarks

You can only type text into the edit field if it has the focus.
The text can be read by using the _Win$() function and set
by using _Win$()=.

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

ScrollBar Control
Purpose

Creates a scroll-bar control in the current active form or
dialog box.

Syntax

ScrollBar text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

The ScrollBar statement creates a scroll-bar control. The
control is a rectangle that contains a scroll box and has
direction arrows at both ends. The scroll-bar control sends a
notification message to its parent whenever the user clicks
the mouse in the control. The parent is responsible for
updating the scroll-box position. Scroll-bar controls can be
positioned anywhere in a window and used whenever
needed to provide scrolling input.

style% specifies a combination (or none) of the following
styles: WS_TABSTOP, WS_GROUP, and WS_DISABLED. In
addition to these styles, the style parameter may contain a
combination (or none) of the SCROLLBAR-class styles. If
you do not specify a style, the default style is SBS_HORZ.

SBS_HORZ($0000) specifies a horizontal scroll bar.

SBS_VERT($0001) specifies a vertical scroll bar.

SBS_TOPALIGN($0002) used together with SBS_HORZ, to
set the scroll bar to the top of the rectangle specified in
CreateWindowEx().

SBS_LEFTALIGN($0002) used together with SBS_VERT to
set the scroll bars to the left side in the parent window.

SBS_BOTTOMALIGN($0004) used together with SBS_HORZ,
to set the scroll bar to the bottom of the parent window.

SBS_RIGHTALIGN ($0004) used together with SBS_VERT to
set the scroll bars to the right side in the parent window.

SBS_SIZEBOXTOPLEFTALIGN ($0002) used together with
SBS_SIZEBOX to align the upper left corner of the Sizebox
with the upper left corner of the parent window.

SBS_SIZEBOXBOTTOMRIGHTALIGN ($0004) used together
with SBS_SIZEBOX to align the upper left corner of the
Sizebox with the bottom right corner of the parent window.

SBS_SIZEBOX($0008) creates a Sizebox, which - as long as
no SBS_SIZEBOXTOPLEFTALIGN and
SBS_SIZEBOXBOTTOMRIGHTALIGN are given - has the
dimensions specified in the parent window.

A scrollbar's state is set using SetScrollRange and
SetScrollPos Windows API functions.

A scrollbar control doesn't post a notification to the queue,
so the parent's _Message() event sub cannot be used to
respond to scrollbar messages. Instead, the scrollbar
control sends WM_HSCROLL or WM_VSCROLL messages,
which are handled in the parent's _MessageProc event
sub.

Consult the MS Windows SDK or WinApi32.Hlp for more
information about the ScrollBar control.

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

AnimateCtrl Control
Purpose

Creates an Animation control in the current active form,
window, or dialog.

Syntax

AnimateCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

The AnimateCtrl control allows you to create buttons
which display animations, such as .avi files, when clicked.
The control can play only AVI files that have no sound. In
addition, the Animation control can display only
uncompressed .avi files or .avi files that have been
compressed using Run-Length Encoding (RLE).

An example of this control is the file copy progress bar in
Windows 95, which uses an AnimateCtrl control. Pieces of
paper "fly" from one folder to another while the copy
operation executes.

style Specifies the styles of the control.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.

When used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _Message event
sub.

Example

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

TabCtrl Control
Purpose

Creates a Tab control in the current active form, window, or
dialog.

Syntax

TabCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

A tab control is analogous to the dividers in a notebook or
the labels in a file cabinet. By using a tab control, an
application can define multiple pages for the same area of a
window or dialog box. Each page consists of a certain type
of information or a group of controls that the application
displays when the user selects the corresponding tab.

When the user selects a tab, a tab control sends its parent
window notification messages in the form of WM_NOTIFY
messages, which should be handled in the _Message or
_MessageProc event sub of the parent Form.

Example

This example is very basic: for more information of TabStrip
controls see this Windows Dev Centre page.

Const TCM_FIRST = &H1300
Const TCM_SETITEM = TCM_FIRST + 6
Const TCM_INSERTITEM = TCM_FIRST + 7
Const TCM_GETITEMCOUNT = TCM_FIRST + 4
Const TCIF_TEXT = 1
Const TCIF_IMAGE = 2
'
Dialog # 1, 10, 10, 400, 400, "Dialog", WS_SYSMENU
TabCtrl "", 10, 20, 20, 150, 150

EndDialog
Dim tc1 As TCITEM, tc$ = "Tab 1"
tc1.mask = TCIF_TEXT
tc1.pszText = V:tc$
~SendMessage(DlgItem(1, 10), TCM_INSERTITEM, 1,
tc1)

tc$ = "Tab 2"
~SendMessage(DlgItem(1, 10), TCM_INSERTITEM, 2,
tc1)

ShowDialog # 1
'
Do
Sleep

Until Dlg_1 Is Nothing

Sub Dlg_1_Close(Cancel?)
Cancel? = False

EndSub

Sub frm_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Dim hdr As Pointer NMHDR
Switch Mess
Case WM_NOTIFY
Pointer(hdr) = lParam
Print hdr.idfrom

EndSwitch
EndSub

// Type Declarations
Type NMHDR
hwndFrom As Long
idfrom As Long
code As Long

EndType
Type TCITEM
- Long mask, dwState, dwStateMask, pszText,
cchTextMax, iImage, lParam

EndType

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

HeaderCtrl Control
Purpose

Creates a control in the current active form, window, or
dialog.

Syntax

HeaderCtrl text$, id%, x, y, width, height[, style%]

text$:control text
id%:control identifier
x,y,b,h:iexp
style%:the control styles

Description

A header control is a window that is usually positioned
above columns of text or numbers. It contains a title for
each column, and it can be divided into parts. The user can
drag the dividers that separate the parts to set the width of
each column.

Creates a control without an OCX wrapper; so it and cannot
be handled using properties, methods, and event subs.
When used in a form the WM_COMMAND and WM_NOTIFY
messages should be handled in the form's _Message sub.

Example

Note the requirement for the commctrl.inc.lg32 library to
run the following example.

'
' HeaderCtrl Example
'
$Library "..\..\Include\commctrl.inc.lg32"
Dlg 3D On
Global style%, style2%, file$
Local phdi As HD_ITEM, hdl As HDLAYOUT, rcParent
As RECT

Static hdrt$() : Array hdrt$() = "Column1" #10
"Column2" #10 "Column3" #10

Dlg Base Unit
style% = WS_BORDER | HDS_BUTTONS | HDS_HORZ
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
Dialog # 1, 10, 10, 150, 100, "Test-Dialog",
WS_SYSMENU | WS_THICKFRAME
Dlg Base Pixel
HeaderCtrl "", 101, 0, 0, _X, 24, style%
phdi.Mask = HDI_FORMAT | HDI_WIDTH
phdi.fmt = HDF_LEFT | HDF_STRING // Left-
justify the item

phdi.Mask |= HDI_TEXT // The
.pszText member is valid

phdi.pszText = V:hdrt$(0) // The text
for the item

phdi.cxy = 75 // The initial
width

phdi.cchTextMax = lstrlen(phdi.pszText)
SendMessage Dlg(1, 101), HDM_INSERTITEM, 0,
V:phdi

phdi.pszText = V:hdrt$(1) // The text
for the 1 item

phdi.cchTextMax = lstrlen(phdi.pszText)
SendMessage Dlg(1, 101), HDM_INSERTITEM, 1,
V:phdi

DlgBase Unit
PushButton "OK", IDOK, 10, 60, 40, 14, style2%

PushButton "CANCEL", IDCANCEL, 80, 60, 40, 14,
style2%

EndDialog
ShowDialog # 1
Me.AutoClose = 1
Trace Dlg_1.IsDialog
Do
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Dim nmhdr As Pointer NMHDR
Select Mess
Case WM_SIZE
If wParam != SIZE_MINIMIZED _
SizeW Dlg(1, 101), LoWord(lParam), 24

Case WM_COMMAND
Select wParam
Case IDOK
file$ = _Win$(Dlg(1, 101))
CloseDialog # 1

Case IDCANCEL
CloseDialog # 1

EndSelect
Case WM_NOTIFY
Pointer nmhdr = lParam

EndSelect
EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

ListViewCtrl Control
Purpose

Creates a list view control in the current active form,
window, or dialog.

Syntax

ListViewCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

The control is a rectangle containing a list of strings (such
as filenames) from which the user can select. The ListView
control displays items using one of four different views. You
can arrange items into columns with or without column
headings as well as display accompanying icons and text.

The command creates a control without an OCX wrapper; so
it and cannot be handled using properties, methods, and
event subs. When used in a form the WM_COMMAND and
WM_NOTIFY messages should be handled in the form's
_MessageProc sub.

Example

Form frm
ListViewCtrl "Listbox", 10, 20, 20, 150, 200

Do
Sleep

Until Me Is Nothing

Sub frm_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Dim hdr As Pointer NMHDR
Switch Mess
Case WM_NOTIFY
Pointer(hdr) = lParam
Print hdr.idfrom

EndSwitch
EndSub
Type NMHDR
hwndFrom As Long
idfrom As Long
code As Long

EndType

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

The ListView control is too complex to covered in full; for
more information, loom at the following section of the
MSDN website:

ListView

ListView Controls

With the general Control statement any control type can be
created.

See Also

http://msdn.microsoft.com/en-us/library/windows/desktop/bb774737(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff485973(v=vs.85).aspx

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

TreeViewCtrl Control
Purpose

Creates a TreeView control in the current active form,
window, or dialog.

Syntax

TreeViewCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

The TreeView control is designed to display data that is
hierarchical in nature, such as organization trees, the
entries in an index, the files and directories on a disk. Each
item consists of a label and an optional bitmapped image,
and each item can have a list of subitems associated with it.
By clicking an item, the user can expand or collapse the
associated list of subitems.

The command creates a control without an OCX wrapper; so
it and cannot be handled using properties, methods, and
event subs. When used in a form the WM_NOTIFY message
should be handled in the form's _MessageProc sub.

Example

Form frm

TreeViewCtrl "", 10, 20, 20, 150, 200
Do
Sleep

Until Me Is Nothing

Sub frm_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Dim hdr As Pointer NMHDR
Switch Mess
Case WM_NOTIFY
Pointer(hdr) = lParam
Print hdr.idfrom

EndSwitch
EndSub
Type NMHDR
hwndFrom As Long
idfrom As Long
code As Long

EndType

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

ProgressCtrl Control
Purpose

Creates a Progress Bar control in the current active form,
window, or dialog.

Syntax

ProgressCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

A progress bar is a window that an application can use to
indicate the progress of a lengthy operation. It consists of a
rectangle that is gradually filled with the system highlight
color as an operation progresses.

A progress bar's range represents the entire duration of the
operation, and the current position represents the progress
that the application has made toward completing the
operation.

The minimum value in the range can be from 0 to 65,535.
Likewise, the maximum value can be from 0 to 65,535. If
you do not set the range values, the system sets the
minimum value to 0 and the maximum value to 100.

The PBM_SETPOS message sets the position to a given
value. The PBM_DELTAPOS message advances the position
by adding a specified value to the current position.

The PBM_SETSTEP message allows you to specify a step
increment for a progress bar. Subsequently, whenever you
send the PBM_STEPIT message to the progress bar, the
current position advances by the specified increment. By
default, the step increment is set to 10.

Example

Dlg 3D On // 16 bit 3D effect
Global Enum PBM_SETRANGE = WM_USER + 1, _
PBM_SETPOS, PBM_DELTAPOS, _
PBM_SETSTEP, PBM_STEPIT, _
PBM_SETRANGE32, PBM_GETRANGE, _
PBM_GETPOS, PBM_SETBARCOLOR

Local a$ = "Test", i%, j%, x%
Dialog # 1, 10, 10, 400, 200, a$
ProgressCtrl "Hello", 10, 10, 30, _
375, 100, WS_CHILD | WS_BORDER

EndDialog
ShowDialog # 1
SendMessage Dlg(1, 10), PBM_SETRANGE, 0,
MakeLong(100, 0)

// PBM_SETRANGE32 only > 65536 => only for NT/2000
'SendMessage Dlg(1, 10), PBM_SETRANGE32, 0, 100
SendMessage Dlg(1, 10), PBM_SETBARCOLOR, 0,
RGB(255, 0, 0)

DoEvents
For i% = 0 To 100
SendMessage Dlg(1, 10), PBM_SETPOS, i%, 0
DoEvents
Delay 0.1 // a bit slower display

Next
Print "Please press a key"

KeyGet x%
Dlg 3D Off
CloseDialog # 1

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

TrackBarCtrl Control
Purpose

Creates a track bar control in the current active form,
window, or dialog.

Syntax

TrackBarCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

A TrackBarCtrl is a window that contains a slider and
optional tick marks. When the user moves the slider, using
either the mouse or the direction keys, the trackbar sends
notification messages to indicate the change.

A track bar notifies its parent window of user actions by
sending the parent WM_HSCROLL or WM_VSCROLL
messages that should be handled in the form's
_MessageProc sub.

Example

Public Const TB_LINEUP = 0
Public Const TB_LINEDOWN = 1
Public Const TB_PAGEUP = 2
Public Const TB_PAGEDOWN = 3

Public Const TB_THUMBPOSITION = 4
Public Const TB_THUMBTRACK = 5
Public Const TB_TOP = 6
Public Const TB_BOTTOM = 7
Public Const TB_ENDTRACK = 8
Form frm
TrackBarCtrl "", 10, 20, 20, 150, 30
Global Handle hWndTrack = GetDlgItem(frm.hWnd, 10)
Do
Sleep

Until Me Is Nothing

Sub frm_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Switch Mess
Case WM_HSCROLL, WM_VSCROLL
If lParam = hWndTrack
'Trace LoWord(wParam)
Switch LoWord(wParam) 'Notification Message
(Reason, sent)

Case TB_BOTTOM 'VK_END
Case TB_ENDTRACK 'WM_KEYUP (the user
released a key that sent a relevant virtual
key code)

Case TB_LINEDOWN 'VK_RIGHT Or VK_DOWN
Case TB_LINEUP 'VK_LEFT Or VK_UP
Case TB_PAGEDOWN 'VK_NEXT (the user
clicked the channel below or to the right of
the slider)

Case TB_PAGEUP 'VK_PRIOR (the user
clicked the channel above or to the left of
the slider)

Case TB_THUMBPOSITION 'WM_LBUTTONUP following
a TB_THUMBTRACK notification message

Case TB_THUMBTRACK 'Slider movement (the
user dragged the slider)

Case TB_TOP 'VK_HOME

EndSwitch
EndIf

EndSwitch
EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

StatusCtrl Control
Purpose

Creates a Status bar control in the current active form,
window, or dialog.

Syntax

StatusCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

A status bar is a horizontal window at the bottom of a
parent window in which an application can display various
kinds of status information. The status bar can be divided
into parts to display more than one type of information.

If your application uses a status bar that has only one part,
you can use the _Win$()= function to perform text
operations.

Example

Form frm
StatusCtrl "", 10, 0, 20, _X, 30
_Win$(Dlg(frm.hWnd, 10)) = "Ready"
Do
Sleep

Until Me Is Nothing

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ToolBarCtrl Control
Purpose

Creates a ToolBar control in the current active form,
window, or dialog.

Syntax

ToolBarCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

A toolbar is a control window that contains one or more
buttons. Each button sends a command message to the
parent window when the user clicks it.

Each button has a command identifier associated with it.
When the user selects a button, the toolbar sends the
parent window a WM_COMMAND message that includes the
command identifier of the button. The parent window
examines the command identifier and carries out the
command associated with the button. The WM_COMMAND
message can be handled in the _Message or
_MessageProc sub.

Example

Dialog # 1, 10, 10, 400, 200, "ToolBar",
WS_SYSMENU
ToolBarCtrl "", 10, 20, 20, 150, 30

EndDialog
Local tbbut As TBBUTTON, tbs$
tbbut.cbSize = 200
tbbut.pszText = Len(tbs$)
tbbut.cchText = V:tbs$
// For some reason, this fails to print a
button...

tbs$ = "Button 1" : ~SendMessage(DlgItem(1, 10),
TB_INSERTBUTTON, 1, V:tbbut)

ShowDialog # 1
Do
Sleep

Until Dlg_1 Is Nothing

Sub Dlg_1_Close(Cancel?)
Cancel? = False

EndSub
Global Const TB_INSERTBUTTON = (WM_USER + 21)
Type TBBUTTON2
- Int iBitmap, idCommand
- Byte fsState, fsStyle, bReserved
- Long dwData, iString

EndType
Type TBBUTTON
cbSize As Long
dwMask As Long
idCommand As Long
iImage As Long
fsState As Byte
fsStyle As Byte
cx As Word
lParam As Long
pszText As Long
cchText As Long

End Type

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

For the full range of Windows messages and constants, see
this page; the constant values (some of which are not
declared in GB32) are listed below:

Toolbar button styles
Const TBSTYLE_BUTTON = $0000
Const TBSTYLE_SEP = $0001
Const TBSTYLE_CHECK = $0002
Const TBSTYLE_GROUP = $0004
Const TBSTYLE_CHECKGROUP = (TBSTYLE_GROUP Or
TBSTYLE_CHECK)
Const TBSTYLE_DROPDOWN = $0008
Const TBSTYLE_AUTOSIZE = $0010
Const TBSTYLE_NOPREFIX = $0020
Const TBSTYLE_TOOLTIPS = $0100
Const TBSTYLE_WRAPABLE = $0200
Const TBSTYLE_ALTDRAG = $0400
Const TBSTYLE_FLAT = $0800
Const TBSTYLE_LIST = $1000
Const TBSTYLE_CUSTOMERASE = $2000
Const TBSTYLE_REGISTERDROP = $4000
Const TBSTYLE_TRANSPARENT = $8000
Const TBSTYLE_DRAWDDARROWS = $00000001

ToolBar Ex Styles
Const TBSTYLE_EX_DRAWDDARROWS = $1

http://msdn.microsoft.com/en-us/library/windows/desktop/bb760435(v=vs.85).aspx

Const TBSTYLE_EX_HIDECLIPPEDBUTTONS = $10
Const TBSTYLE_EX_DOUBLEBUFFER = $80

ToolBar Messages (where Const WM_USER = $0400)
Const TB_ENABLEBUTTON = (WM_USER + 1)
Const TB_CHECKBUTTON = (WM_USER + 2)
Const TB_PRESSBUTTON = (WM_USER + 3)
Const TB_HIDEBUTTON = (WM_USER + 4)
Const TB_INDETERMINATE = (WM_USER + 5)
Const TB_MARKBUTTON = (WM_USER + 6)
Const TB_ISBUTTONENABLED = (WM_USER + 9)
Const TB_ISBUTTONCHECKED = (WM_USER + 10)
Const TB_ISBUTTONPRESSED = (WM_USER + 11)
Const TB_ISBUTTONHIDDEN = (WM_USER + 12)
Const TB_ISBUTTONINDETERMINATE= (WM_USER + 13)
Const TB_ISBUTTONHIGHLIGHTED = (WM_USER + 14)
Const TB_SETSTATE = (WM_USER + 17)
Const TB_GETSTATE = (WM_USER + 18)
Const TB_ADDBITMAP = (WM_USER + 19)
Const TB_ADDBUTTONSA = (WM_USER + 20)
Const TB_INSERTBUTTONA = (WM_USER + 21)
Const TB_ADDBUTTONS = (WM_USER + 20)
Const TB_INSERTBUTTON = (WM_USER + 21)
Const TB_DELETEBUTTON = (WM_USER + 22)
Const TB_GETBUTTON = (WM_USER + 23)
Const TB_BUTTONCOUNT = (WM_USER + 24)
Const TB_COMMANDTOINDEX = (WM_USER + 25)
Const TB_SAVERESTOREA = (WM_USER + 26)
Const TB_CUSTOMIZE = (WM_USER + 27)
Const TB_ADDSTRINGA = (WM_USER + 28)
Const TB_GETITEMRECT = (WM_USER + 29)
Const TB_BUTTONSTRUCTSIZE = (WM_USER + 30)
Const TB_SETBUTTONSIZE = (WM_USER + 31)
Const TB_SETBITMAPSIZE = (WM_USER + 32)
Const TB_AUTOSIZE = (WM_USER + 33)
Const TB_GETTOOLTIPS = (WM_USER + 35)

Const TB_SETTOOLTIPS = (WM_USER + 36)
Const TB_SETPARENT = (WM_USER + 37)
Const TB_SETROWS = (WM_USER + 39)
Const TB_GETROWS = (WM_USER + 40)
Const TB_GETBITMAPFLAGS = (WM_USER + 41)
Const TB_SETCMDID = (WM_USER + 42)
Const TB_CHANGEBITMAP = (WM_USER + 43)
Const TB_GETBITMAP = (WM_USER + 44)
Const TB_GETBUTTONTEXTA = (WM_USER + 45)
Const TB_GETBUTTONTEXTW = (WM_USER + 75)
Const TB_REPLACEBITMAP = (WM_USER + 46)
Const TB_SETINDENT = (WM_USER + 47)
Const TB_SETIMAGELIST = (WM_USER + 48)
Const TB_GETIMAGELIST = (WM_USER + 49)
Const TB_LOADIMAGES = (WM_USER + 50)
Const TB_GETRECT = (WM_USER + 51)
Const TB_SETHOTIMAGELIST = (WM_USER + 52)
Const TB_GETHOTIMAGELIST = (WM_USER + 53)
Const TB_SETDISABLEDIMAGELIST = (WM_USER + 54)
Const TB_GETDISABLEDIMAGELIST = (WM_USER + 55)
Const TB_SETSTYLE = (WM_USER + 56)
Const TB_GETSTYLE = (WM_USER + 57)
Const TB_GETBUTTONSIZE = (WM_USER + 58)
Const TB_SETBUTTONWIDTH = (WM_USER + 59)
Const TB_SETMAXTEXTROWS = (WM_USER + 60)
Const TB_GETTEXTROWS = (WM_USER + 61)
Const TB_GETOBJECT = (WM_USER + 62)
Const TB_GETBUTTONINFOW = (WM_USER + 63)
Const TB_SETBUTTONINFOW = (WM_USER + 64)
Const TB_GETBUTTONINFOA = (WM_USER + 65)
Const TB_SETBUTTONINFOA = (WM_USER + 66)
Const TB_INSERTBUTTONW = (WM_USER + 67)
Const TB_ADDBUTTONSW = (WM_USER + 68)
Const TB_HITTEST = (WM_USER + 69)
Const TB_SETDRAWTEXTFLAGS = (WM_USER + 70)
Const TB_GETHOTITEM = (WM_USER + 71)

Const TB_SETHOTITEM = (WM_USER + 72)
Const TB_SETANCHORHIGHLIGHT = (WM_USER + 73)
Const TB_GETANCHORHIGHLIGHT = (WM_USER + 74)
Const TB_SAVERESTOREW = (WM_USER + 76)
Const TB_ADDSTRINGW = (WM_USER + 77)
Const TB_MAPACCELERATORA = (WM_USER + 78)
Const TB_GETINSERTMARK = (WM_USER + 79)
Const TB_SETINSERTMARK = (WM_USER + 80)
Const TB_INSERTMARKHITTEST = (WM_USER + 81)
Const TB_MOVEBUTTON = (WM_USER + 82)
Const TB_GETMAXSIZE = (WM_USER + 83)
Const TB_SETEXTENDEDSTYLE = (WM_USER + 84)
Const TB_GETEXTENDEDSTYLE = (WM_USER + 85)
Const TB_GETPADDING = (WM_USER + 86)
Const TB_SETPADDING = (WM_USER + 87)
Const TB_SETINSERTMARKCOLOR = (WM_USER + 88)
Const TB_GETINSERTMARKCOLOR = (WM_USER + 89)

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

UpDownCtrl Control
Purpose

Creates an UpDown common control in the current active
form, window, or dialog.

Syntax

UpDownCtrl text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x,y,w,h:iexp
style%:the control styles

Description

An UpDown control has a pair of arrow buttons which the
user can click to increment or decrement a value, such as a
scroll position or a value in an associated control, known as
a buddy control.

The command creates a control without an OCX wrapper; so
it and cannot be handled using properties, methods, and
event subs. When used in a form the WM_COMMAND and
WM_NOTIFY messages should be handled in the form's
_MessageProc sub.

Example

/* Styles for the UpDown Control
Global Enum UDS_WRAP = 1, _
UDS_SETBUDDYINT, UDS_ALIGNRIGHT=4, _

UDS_ALIGNLEFT=8, UDS_AUTOBUDDY=10, _
UDS_ARROWKEYS=$20, UDS_HORZ =$40, _
UDS_NOTHOUSANDS=$80, UDS_HOTTRACK =$100

/* Messages to Control the animation
Global Enum UDM_SETRANGE=WM_USER + 101, _
UDM_GETRANGE, UDM_SETPOS, UDM_GETPOS, _
UDM_SETBUDDY, UDM_GETBUDDY, UDM_SETACCEL, _
UDM_GETACCEL, UDM_SETBASE, UDM_GETBASE, _
UDM_SETRANGE32, UDM_GETRANGE32, _
UDM_SETUNICODEFORMAT=$2005, _
UDM_GETUNICODEFORMAT=$2006

OpenW 1
Ocx TextBox ed1 = "", 10, 10, 100, 20
ed1.Appearance = 1
UpDownCtrl"", 1010, 10, 10, 100, 20, _
UDS_ARROWKEYS | UDS_WRAP | UDS_SETBUDDYINT |
UDS_ALIGNLEFT | WS_TABSTOP

Local hUpDown As Handle = Dlg(Win_1.hWnd, 1010)
SendMessage hUpDown, UDM_SETBUDDY, ed1.hWnd, 0
SendMessage hUpDown, UDM_SETRANGE, 0,
MakeLong(1000, 990)

SendMessage hUpDown, UDM_SETPOS, 0, MakeLong(0,
993)

~SetFocus(Dlg(Win_1.hWnd, 10))
Do
Sleep

Until Me Is Nothing

Sub Win_1_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)
Dim hdr As Pointer NMHDR
Switch Mess
Case WM_NOTIFY
Pointer(hdr) = lParam

EndSwitch
EndSub
Type NMHDR

hwndFrom As Long
idfrom As Long
code As Long

EndType

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

RichEditCtrl Control
Purpose

Creates a rich edit control.

Syntax

RichEditCtrl text$, ID%, x%, y%, w%, h%[,style%]

Description

A “rich edit control” is a window in which the user can enter
and edit text. The text can be assigned character and
paragraph formatting, and can include embedded OLE
objects. Rich edit controls provide a programming interface
for formatting text. However, an application must
implement any user interface components necessary to
make formatting operations available to the user.

Rich edit controls support almost all of the operations and
notification messages used with multiline edit controls.
Thus, applications that already use edit controls can be
easily changed to use rich edit controls. Additional
messages and notifications enable applications to access the
functionality unique to rich edit controls. For information
about edit controls, see EditText control.

style%:

ES_LEFT - sets the text left justified in the edit field

ES_CENTER - centers the text within a multi-line edit field.

ES_RIGHT - sets the text right justified within a multi-line
edit field.

ES_MULTILINE - defines a multi-line edit field.

ES_AUTOVSCROLL - scrolls the text one page up when the
user presses the Return key on the last line.

ES_AUTOHSCROLL - when further characters are entered at
the end of the line, scrolls the text ten characters to the
left. Pressing the Return key sets the text back to position
zero.

ES_NOHIDESEL - makes the selected entry in an edit field
permanently visible.

ES_DISABLENOSCROLL - Disables scrollbars instead of
hiding them when they are not needed.

ES_EX_NOCALLOLEINIT - Prevents the control from calling
theOleInitialize function when created. Useful only in dialog
templates because CreateWindowEx does not accept this
style.

ES_NOIME - Disables the input method editor (IME)
operation. Available for Asian-languages only.

ES_SAVESEL - Preserves the selection when the control
loses the focus. By default, the entire contents of the
control are selected when it regains the focus.

ES_SELFIME - Directs the rich edit control to allow the
application to handle all IME operations. Available for Asian-
languages only.

ES_SUNKEN - Displays the control with a sunken border
style so that the rich edit control appears recessed into its

parent window.
Windows 95: Applications developed for Windows 95 should
use WS_EX_CLIENTEDGE instead of ES_SUNKEN.

ES_VERTICAL - Draws text and objects in a vertical
direction. Available for Asian-languages only.

Rich edit controls support most of the notification messages
used with edit controls, plus some more. Use the
WinApi32.Hlp or MS Windows SDK to get more information
about Rich edit controls.

Example

Dlg 3D On
Global style%, style2%, file$
Dlg Base Unit
style% = WS_BORDER | WS_TABSTOP
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
Dialog # 1, 10, 10, 150, 100, "Test-Dialog"
RichEditCtrl "", 101, 50, 10, 80, 14, style%
PushButton "OK", IDOK, 10, 60, 40, 14, style2%
PushButton "CANCEL", IDCANCEL, 80, 60, 40, 14,
style2%

EndDialog
ShowDialog # 1
// to fill the edit field
file$ = "GFA-User"
_Win$(Dlg(1, 101)) = file$
Do
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Select Mess
Case WM_COMMAND
Select wParam

Case IDOK
file$ = _Win$(Dlg(1, 101))
CloseDialog # 1
OpenW 1
Print file$: Print
Print "End with Alt + F4"

EndSelect
EndSelect

EndSub

Remarks

You can only type text into the edit field if it has the focus.
The text can be read by using the _Win$() function and set
by using _Win$()=.

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Static Command
Purpose

Defines local variables in a subroutine and main program.
Variables declared with the Static statement retain their
values as long as the code is running.

Syntax

Static [Dim] varname[()] [As [New] type] [= value], …

Static type varname1 [= value], varname2 [= value], …

Static varname1$ [= value], varname2% [= value], …

varname: name of variable

type: Optional. Data type of the variable; may be Byte,
Boolean, Card, Short, Word, Integer, Long, Large,
Currency, Single, Double, Date, String, (for variable-
length strings), String * length (for fixed-length strings),
Object, Variant, a user-defined type, or an object type.
Use a separate As type clause for each variable being
defined.

Description

Static declares local variables. When used in the main
program, the variable's scope is limited to the main part
and isn't known in subroutines. In this respect, Static and
Local work the same.

The New keyword enables implicit creation of a few GFA-
BASIC 32 objects, like DisAsm, Collection, StdFont,
Font, StdPicture, Picture, CommDlg, and ImageList. If
you use New when declaring the object variable, a new
instance of the object is created on first reference to it, so
you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to
declare variables of any intrinsic data type.

If you don't specify a data type or object type and there is
no Deftype statement in the module, the variable is
Variant by default.

Variables can be initialized while they are declared.

When a variable isn't explicitly initialized, a numeric variable
is initialized to 0, a variable-length string is initialized to a
zero-length string (""), and a fixed-length string is filled
with zeros. Variant variables are initialized to Empty. Each
element of a user-defined type variable is initialized as if it
were a separate variable.

Example

OpenW 1
AutoRedraw = 1
Local a%, x%, i%' scope in main program
For i% = 1 To 10
a% += i%
Print KeepTotal(a%)

Next i%

Function KeepTotal(Number As Double)
' Only the variable Accumulate preserves its
value between calls.

Static Accumulate As Double
Accumulate = Accumulate + Number

KeepTotal = Accumulate
End Function

See Also

Global, Dim, Local

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

LoadForm Command, Load
Event
Action:

LoadForm loads a Form designed in the Form Editor, which
initiates a Load event.

Syntax

LoadForm frm [options] [, x, y]

frm:Form object
options:[Center | Client3D | Full | Default | Hidden |
Tool | Help | Top | Palette | Fixed | NoCaption |
NoTitle]
x, y:iexp

Sub Form_Load [(Index%)]

Description

LoadForm name loads a Form which was designed earlier
in the GFA-BASIC 32 Form editor. The name must be the
name given in properties window. Eventually, the Load
event sub is invoked.

At design time the initial layout of the form can be
determined using the Form's StartUpMode and Visible
properties. However not all the attributes of a window can
be set at design time. To overcome this limitation a number
of flags can be specified in the LoadForm command. These
flags allow you to initially center the window or create full
screen window.

At design time you can set the Owned property
determining that the form is to be loaded as an owned
window. When set and when executing LoadForm, the
form will be owned by the current active window (Me).
When Me = Nothing at the time of execution of LoadForm
the Owned property is ignored.

The Owned property permits you to specify that the form
being shown is to be owned by the current active form.
When you use this option, you achieve two interesting
effects: the owned form is always shown in front of its
owner (parent), even if the parent has the focus, and when
the parent form is closed or minimized, all forms it owns are
also automatically closed or minimized. You can take
advantage of this feature to create floating forms that host
a toolbar, a palette of tools, a group of icons, and so on.
This technique is most effective if combine it with the
window state options Fixed and/or Tool/Palette.

Options Meaning
Center centers the form, overrules StartUpMode

property
Full creates a maximized window, overrules

StartUpMode, excludes Hidden (full
windows are always visible).

Default default, overrules StartUpMode
Hidden invisible, overrules Visible property
Client3D set WS_EX_CLIENTEDGE, overrules

Appearance
Tool creates a WS_EX_TOOLWINDOW
Help includes a Help button in the window caption
Top creates a top window
Palette creates a WS_EX_PALETTEWINDOW
Fixed a non-sizable window

NoCaption no title bar
NoTitle no title bar, alias

Using any of the additional parameters ignore the design
time property Visible.

When the optional x and y are specified, the design time
properties Left and Top are ignored.

The LoadForm command generates a Load event, which is
not invoked immediately! The event sub is called when the
form is made visible, which is not before a DoEvents or
Sleep handles the events. The Load event sub can be used
to perform initialization tasks like creating a menu, toolbar,
and statusbar.

To load a MdiChild form, you must make sure to activate
its owner/parent, the window/form with its property
MdiParent set to True. Since LoadForm sets Me, and child
windows are loaded after the parent window is created, this
would hardly cause any problem.

Example

// To run this example you must first create a
Form...

// ... using the Form Editor and name that form
frm1

LoadForm frm1
Do
Sleep

Loop Until Me Is Nothing

Sub frm1_Load
' Initialization code
Global Dim mnu$()

Array mnu$() = "&File"#10 "&New"#10 "&Open"#10
"&Save"#10 _
"Save &As"#10 "-"#10 "E&xit"#10 #10 _
"&Edit"#10 "&Undo"#10 "-"#10 "Copy"#10 "Cut"#10
"Paste"#10 #10 _

"&Help"#10 "&About"#10 #10
Menu mnu$()

EndSub

Remarks

To create a form in code use the Form statement or the
GFA-BASIC 16 commands OpenW, ChildW, ParentW, and
Dialog, they create forms as well. However, these
commands do not generate a Load event, though.

See Also

Form Object, Form, OpenW, ChildW, ParentW, Dialog

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Menu() Array
Purpose

Array containing window events. Implemented for
compatibility with GFA-BASIC 16. Should not be used in
GFA-BASIC 32 with OCX controls.

Syntax

Menu(index)

index:iexp

Description

The Menu() array contains window messages from the
message queue when used with GetEvent, PeekEvent, or
DoEvents. (GFA-BASIC 16 compatible). The GFA-BASIC 32
COM/OCX Sleep command doesn't copy the messages to
the Menu() array. Sleep dispatches the messages
according COM rules.

About the Menu() array.

The menu bar created with the Menu m$() command
contains the pop-up menus with the various menu entries.
Such pop-up menus can be invoked in GFA-BASIC even
outside of the menu bar by using the Popup command. The
Menu() function receives the pop-up menus and windows
created with GFA-BASIC commands like OpenW. Menu(m)
returns a value indicating which event has occurred. The
values are assigned as follows:

Menu(1)=1 Keyboard: NOT IMPLEMENTED in GFA-
BASIC 32
Menu(5) - Used to get information about
the pressed key - use Screen_Preview
instead.

Menu(1)=4 The close box of a window was activated
Menu(1)=5 The minimum size field in a window was

activated
Menu(7) - New width
Menu(8) - New height
Menu(9) - SIZEICONC

Menu(1)=6 The maximum size field in a window was
activated.
Menu(7) - New width
Menu(8) - New height
Menu(9) - SIZEFULLSCREEN

Menu(1)=7 The arrow up box in a window was
activated

Menu(1)=8 The arrow down box in a window was
activated

Menu(1)=9 The arrow left box in a window was
activated

Menu(1)=10 The arrow right box in a window was
activated

Menu(1)=11 The area above the vertical scroll bar was
activated; Page up

Menu(1)=12 The area below the vertical scroll bar was
activated; Page down

Menu(1)=13 The area to the left of the horizontal scroll
bar was activated; Page left

Menu(1)=14 The area to the right of the scroll bar was
activated; Page right

Menu(1)=15 The vertical scroll bar was moved
Menu(7) - Position in the range from 0 to

1000
Menu(1)=16 The horizontal scroll bar was moved

Menu(7) - Position in the range from 0 to
1000

Menu(1)=17 he title bar in a window was activated. If
the window was moved,
Menu(7) - Returns the new x-position.
Menu(8) - Returns the new y-position of the
upper left corner of the window.

Menu(1)=18 The size box of a window was activated. If
the size of the window was changed,
Menu(7) - Returns the new width.
Menu(8) - Returns the new height of the
window.
Menu(9) - TYPEofSIZE

Menu(1)=20 A menu or a pop-up entry was selected.
Menu(0) returns the index of the menu
entry in the entry field or the number of the
entry in a pop-up menu.

Menu(1)=21 WM_PAINT. A rectangular segment of a
window must be redrawn; Redraw Message
Menu(7) - Returns the left x-coordinate of
the window rectangle
Menu(8) - Returns the upper y-coordinate
of the window rectangle
Menu(9) - Returns the width of the window
rectangle
Menu(10) - Returns the height of the
window rectangle

Menu(1)=30 Control message. A message from a
Control element was sent.
Menu(5) - Number of the Dialog window
Menu(6) - Number of the item (ItemID)
Menu(13) - The high word of lParam of the

message, e.g. LB_SELECTSTRING for a
Select box, or BN_CLICK for a button.

The following always applies:

Menu(0) The index number of the menu item selected
in the current active window.

Menu(2) Mouse x-position (corresponds to the
MOUSESX function)

Menu(3) Mouse y-position (corresponds to the
MOUSESY function)

Menu(4) The status of the mouse keys:
Menu(4)=0 - No mouse key was pressed
Menu(4)=1 - The left mouse button was
pressed
Menu(4)=2 - The right mouse button was
pressed

Menu(7) Returns the number of the GFA-BASIC window
above which the mouse was located when the
mouse button was pressed.

Menu(11) Mess (message number). Same as _Mess.
Menu(12) wParam. Same as _wParam
Menu(13) lParam. Same as _lParam
Menu(14) GFA-BASIC window handle(0-31). Same as

_winId.
Menu(15) Windows window handle. Same as _hWnd.
Menu(16) Time in ms since booting

Example

Global a$, ch%, i%
Data Title &1, Entry &1, Entry &2, &End,
Data Title &2, Entry &1, Entry &2, ...,
Data Title &3, Entry &1, Entry &2, ..., , */

Dim m$(20)
i% = -1
Do
i% ++
Read m$(i%)

Until InStr(m$(i%), "*/")
OpenW # 1, , , , , -1
Menu m$()
Do
DoEvents
EvalMenu() /* MENU(1) = 20
EvalKey() /* MENU(1) = 1
EvalMess() /* MENU(1) = Rest

Loop

Procedure EvalMenu()
Local e% = MENU(0)
Local t$ = Trim$(m$(e%))
Local p% = InStr(t$, "&")
If e% = 3
CloseW # 1
End

EndIf
t$ = Left$(t$, p% - 1) + Mid$(t$, p% + 1)
Cls
Text 0, _Y / 2, t$ + " was selected"

EndProc

Procedure EvalKey
// Does not work in GFABasic32
Local e%, ee%
e% = Byte(MENU(5))
ee% = Byte(Shr(MENU(5), 8))
WindGet 14, ch%
Cls
Text 0, _Y / 2, "Keyboard input"
Text 0, _Y / 2 + ch%, "ASCII-CODE : " + Str$(e%)

Text 0, _Y / 2 + 2 * ch%, "Scan-CODE : " +
Str$(ee%)

EndProc 'Return

Procedure EvalMess()
Local e%
e% = MENU(1)
If e%
Cls
Switch e%
Case 4 : CloseW # 1 : End
Case 5 /* Minimizer
Case 6 /* Maximizer
Case 7, 8, 11, 12, 15
a$ = "vert. slider "

Case 9, 10, 13, 14, 16
a$ = "horz. slider "

Case 17
a$ = "Title line "

Case 18
a$ = "Sizer "

Case 21
a$ = "WM_PAINT message "

EndSwitch
If !e% = 21
Text 0, _Y / 2, a$ + "activated"

Else
WindGet 14, ch%
Text 0, _Y / 2 + ch%, a$

EndIf
EndIf

Return

See Also

MenuItem, Menu, GetEvent, PeekEvent, DoEvents

{Created by Sjouke Hamstra; Last updated: 17/10/2014 by James Gaite}

Dlg Function
Purpose

returns the window handle of a Dialog box.

Syntax

h = Dlg(DialogID)

h = Dlg(DialogID,ItemID)

DialogID, ItemID: iexp
h: Handle

Description

Dlg(DialogID) returns the window handle of a previously
opened Dialog box. The parameter is the number used in
the Dialog # command.

If DialogID contains a number of a Dialog window
previously opened with Dialog # and ItemID is the number
of a Dialog item DlgItem(DialogID,ItemID) returns the
Windows handle of the item.

Example

Dialog # 1, 10, 10, 100, 150, "This is a Dialog",
128
PushButton "Ok", IDOK, 10, 10, 80, 20
PushButton "Cancel", IDCANCEL, 10, 30, 80, 20
LText "Cancel", 21, 10, 50, 80, 40

EndDialog

_Win$(Dlg(1, 21)) = "Label"
_Win$(Dlg(1)) = "Dialog box title"
ShowDialog # 1

Remarks

DlgItem(DialogID,ItemID) is a synonym for
Dlg(DialogID,ItemID) and can be used instead.

See Also

Dialog, DlgItem()

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

DlgItem Function
Purpose

returns the handle of a Dialog item.

Syntax

h = DlgItem(DialogID,ItemID)

DialogID, ItemID:aexp
h:iexp

Description

If DialogID contains a number of a Dialog window
previously opened with Dialog and ItemID is the number of
a Dialog item DlgItem(DialogID,ItemID) returns the
Windows handle of the item.

Example

Dialog # 1, 10, 10, 100, 150, "This is a Dialog",
128
PushButton "Ok", IDOK, 10, 10, 80, 20
PushButton "", IDCANCEL, 10, 30, 80, 20
LText "Cancel", 21, 10, 50, 80, 40

EndDialog
_Win$(DlgItem(1, IDCANCEL)) = "Cancel"
_Win$(DlgItem(1, 21)) = "Label"
ShowDialog # 1

Remarks

Dlg(DialogID,ItemID) is a shortcut for
DlgItem(DialogID,ItemID) and can be used instead.

See Also

Dlg(), Dialog

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

_Win$ Function
Purpose

Returns or changes the text of a window or control

Syntax

_Win$(hWnd)=x$

x$ = _Win$(hWnd)

hWnd:window handle
x$:svar

Description

Corresponds somewhat to TitleW, but instead of a window
number you must specify a window handle (e.g. Win(1) or
Win_1.hWnd). In contrast to TitleW, you can also change
the title/contents of Controls (e.g. EditText).

Example

OpenW # 1
Dim x$ = _Win$(Win_1.hWnd)
If x$!= "Win #1"
_Win$(Win(1)) = "Win #1"
Print _Win$(Win(1))

EndIf
Do
Sleep

Loop Until Me Is Nothing

Remarks

The OCX forms and controls have a property to set the text
or caption. _Win$() is a shortcut for the APIs
SetWindowText and GetWindowText.

See Also

TitleW, Caption

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

MoveW Command
Purpose

Moves a window.

Syntax

MoveW #n, x, y

Description

MoveW #n, x, y moves the window specified in n (0 to
_maxInt) so that its upper left corner is at coordinates x, y
in pixels. When the window doesn't have a number, the
handle can be specified.

Example

Local a%
OpenW # 200, 15, 15, 200, 100, -1
Print "Press any key to move this window"
KeyGet a%
MoveW 200, 50, 50 ' pixels
Print AT(1, 1); "Press any key to close this
window"

KeyGet a%
CloseW # 200

Draws two windows on the screen and waits for a key press.
The second window is then moved.

Remarks

Any window or control can be moved. For Ocx objects you
can also use the Move method, but for forms this method
takes the coordinates in twips.

See Also

OpenW, SizeW, Move

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

SizeW Command
Purpose

Changes the size of a window.

Syntax

SizeW [#]n, w, h

n, w, h:integer expression

Description

SizeW #n, w, h changes the size of the window specified in
n (0 to _maxInt). w specifies the new width and h the new
height in pixels. The position of the window (upper left
corner) remains unchanged. When the window doesn't have
a number, the handle can be specified.

Example

Local a%
OpenW # 1, 10, 10, 240, 100, -1
Print "Press any key to increase the window size"
KeyGet a%
SizeW # 1, 400, 200

Draws a window on the screen and waits for a key press.
The window size is then changed.

Remarks

Any window or control can be sized. For Ocx objects you
can also use the Move method, but for forms this method
takes the coordinates in twips.

See Also

OpenW, CloseW, MoveW

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

CloseW Command
Purpose

Closes a window.

Syntax

CloseW [#]wh

wh:integer expression

Description

Closes a window with window number wh (0 to _maxInt). If
the window doesn't have a number, a window handle can be
passed.

Example

Local a%
OpenW # 100, 10, 10, 200, 100, -1
KeyGet a%
CloseW 100
Debug.Show

Sub Form_Destroy(Index%)
Debug "Destroy event"

EndSub

Draws a window on the screen. When a key is pressed, the
window is closed again.

Remarks

Unlike the Close method used with forms, if the window
being closed with CloseW has already been closed, does
not exist or has in some other way been set to Nothing, the
command is ignored - no error is raised - and the program
operation is not interrupted.

See Also

FullW, ClearW, OpenW, TitleW, SizeW, TopW

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

ClearW Command
Purpose

Deletes the contents of a window.

Syntax

ClearW [#]n

Description

ClearW n deletes the contents of the window with number
n (0 to _maxInt). If the window doesn't have a number, the
handle can be passed.

Example

OpenW 1
Local a%, i%, x%
For i% = 1 To 500
Color Rand(_C)
Line Rand(300), Rand(300), Rand(300), Rand(300)
Circle Rand(300), Rand(300), Rand(300)

Next
Color 0 : FontSize = 40
Text 50, _Y - 150, "Please press a key"
KeyGet a%
ClearW 1
FontSize = 20
Text _X / 2 - _X / 3, _Y / 2 - 20, "Window
contents will be deleted"

KeyGet a%
CloseW 1

Draws a window with lines and circles. After pressing a key
the window is cleared and the text "Window contents will be
deleted..." is written in the window. When a key is pressed
again the window is closed.

Remarks

ClearW doesn't work in the event sub Form_Paint. It
generates a WM_PAINT causing an endless loop.

See Also

FullW, CloseW, OpenW, TitleW, SizeW, TopW

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

ShowW Command
Purpose

Displays a window with a certain status.

Syntax

ShowW w, stat%

w%, stat%:integer expression

Description

The ShowW command is used to display a window with a
particular status. This includes for example not displaying
the window at all - i.e. show it as an icon or "invisible". The
command requires two parameters: The first (w) specifies
the window number or window handle (frm1.hWnd), the
second (stat%) gives the status for the window to be
displayed with. stat% must take one of the following
values:

SW_HIDE (0) - hides a window and redirects its input to the
next one.

SW_MINIMIZE (6) - minimizes (iconizes) a window and
activates the Top Level window from the window manager
list.

SW_RESTORE (9) - same as SW_SHOWNORMAL

SW_SHOW (5) - activates a window and places it at the
current position using the current dimensions.

SW_SHOWMAXIMIZED (3) - activates a window and uses its
maximum dimensions.

SW_SHOWMINIMIZED (2) - activates the window and
displays it as an icon.

SW_SHOWMINNOACTIVE (7) - displays a window as an icon
but keeps the current window active.

SW_SHOWNA (8) - displays a window using its current
status but keeps the current window active.

SW_SHOWNOACTIVATE (4) - displays a window at its last
position and in latest dimension but keeps the current
window active.

SW_SHOWNORMAL (1) - activates a window and displays it.
For maximized and minimized windows Windows restores
the previous position and dimension.

Example

OpenW # 1
OpenW # 2
ShowW 1, SW_SHOWMINIMIZED
Do
GetEvent

Until MouseK %& 2
CloseW # 2
CloseW # 1

Opens window 1 and minimizes it...

Remarks

The command ShowW corresponds to Windows function
ShowWindow().

See Also

Iconic?(), Visible?(), Zoomed?()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

EnableW Command
Purpose

Enables mouse and keyboard input for a window.

Syntax

EnableW wh%

wh%:integer expression

Description

The mouse and keyboard input for windows can be
controlled separately. EnableW enables these inputs for the
window specified in wh%, DisableW disables them.

wh% is a value between 0 and 31 to identify a window, or a
window handle.

Example

OpenW 1
Ocx Command cmd = "Click Me", 100, 50, 100, 22
DisableW 1
Print "Window Disabled - Status = "; Enabled?(1)
Local t As Double = Timer
While Timer - t < 5
Print AT(1, 2); "Window disabled for "; Int(5.99
- (Timer - t)); " seconds"

Wend
EnableW 1
Print "Window Re-enabled - Status = "; Enabled?(1)

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Message "Button Clicked"

EndSub

Now input (mouse & keyboard) is possible again. The input
for window 1 is first deactivated and the reactivated.

See Also

DisableW, Enabled?()

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

DisableW Command
Purpose

disables mouse and keyboard input for a window.

Syntax

DisableW wh%

wh%:integer expression

Description

Disables mouse and keyboard input for the window
specified in wh%, EnableW enables them.

wh% can be a window number (OpenW, ChildW,
ParentW) or an API window handle.

Example

OpenW 1
Ocx Command cmd = "Click Me", 100, 50, 100, 22
DisableW 1
Print "Window Disabled - Status = "; Enabled?(1)
Local t As Double = Timer
While Timer - t < 5
Print AT(1, 2); "Window disabled for "; Int(5.99
- (Timer - t)); " seconds"

Wend
EnableW 1
Print "Window Re-enabled - Status = "; Enabled?(1)
Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Message "Button Clicked"

EndSub

See Also

EnableW, Enabled?()

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Enabled? Function
Purpose

ReturnsTrue if the window or Ocx object is enabled.

Syntax

Enabled?(wh%)

wh%:integer expression

Description

The single parameter (wh%) in this function specifies the
number of the window whose status is to be returned.
When 0 <= wh% <= 31, wh% specifies a window number,
otherwise is holds a window or Ocx object handle.

Example

OpenW 1, 0, 0, 200, 200 : Win_1.Caption = "Win_1"
Ocx Command cmd1 = "Enabled", 10, 10, 100, 22
OpenW 2, 250, 0, 200, 200 : Win_2.Caption =
"Win_2"

Print "Disabled" : Win_2.Enabled = False
Debug.Show
~SetWindowPos(Debug.hWnd, 0, 500, 0, 300, 200, 0)
Trace Enabled?(cmd1.hWnd) // Prints True
Trace Enabled?(2) // Prints False
Do : Sleep : Until Win_1 Is Nothing
CloseW 2
Debug.Hide

Remarks

Enabled? corresponds to Windows function IsEnabled().

See Also

Iconic?(), Visible?(), Zoomed?(), WindowState

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

SetCheck Command
Purpose

Marks a checkbox or radio button

Syntax

SetCheck dlg, item, flag

dlg, item, flag:integer expression

Description

SetCheck is the opposite of Check?(). With SetCheck
1,40,1 the checkbox or radio button in the Dialog box #1
with ID=40 is marked 1.

Example

Dialog # 1, 10, 10, 200, 100, "Testdialog",
WS_SYSMENU
AutoCheckBox "Checkbox", 100, 10, 10, 100, 20
LText "Checked", 101, 10, 40, 70, 16

EndDialog
ShowDialog # 1
// mark the CheckBox with the ID 100
// in the Dialog # 1
SetCheck 1, 100, 1
Do
Sleep

Until Dlg_1 Is Nothing

Sub Dlg_1_Close(Cancel?)

Cancel? = False
EndSub

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess% = WM_COMMAND And wParam% = 100
_Win$(Dlg(1, 101)) = (Check?(1, 100) ?
"Checked" : "Unchecked")

EndIf
EndSub

See Also

Checkbox, RadioButton, Check?

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Check? Function
Purpose

Interrogates a (Auto)CheckBox, a (Auto)RadioButton, or
a BS_3STATEBOX button.

Syntax

a%=Check?(Dlg, item)

Dlg: ivar
item: ivar

Description

When a 0 is returned, it is not marked. When a 1 is
returned, it is marked with a check mark or a cross. In case
of a 3STATEBOX , a 2 is returned when it is filled.

Dlg is the number of the Dialog box or a window handle.
item is the number (ID) of the button/checkbox.

Example

Dialog # 1, 10, 10, 200, 100, "Testdialog"
AutoCheckBox "Checkbox", 100, 10, 10, 100, 20

EndDialog
ShowDialog # 1
SetCheck 1, 100, 1 ' check Checkbox ID = 100 in
Dialog #1

Do
Sleep

Until Check?(1, 100) = 0

Message "Selected"
CloseDialog # 1

Remarks

This command is most useful in a GFA Editor Extension
when creating a user interface with the Dialog command.

See Also

SetCheck

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Zoomed? Function
Purpose

Returns True if the window is maximized.

Syntax

Zoomed?(wh%)

wh%:integer expression

Description

The single parameter (wh%) in this function specifies the
number of the window whose status is to be returned.
When 0 <= wh% <= 31, wh% specifies a window number,
otherwise is holds a window handle.

Example

OpenW # 1 : AutoRedraw = 1
ShowW 1, SW_SHOWMAXIMIZED
OpenW # 2, 200, 200, 400, 200
Win 2
Print Zoomed?(2)// False
Win 1
Print Zoomed?(1)// True

Remarks

Zoomed? corresponds to Windows function IsZoomed().

See Also

Enabled?(), Iconic?(), Visible?(), WindowState

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/enabled?.htm

Visible? Function
Purpose

Returns True if the window/Form is visible.

Syntax

? = Visible?(wh%)

wh%:integer expression

Description

The only parameter wh% for this function specifies the
number or the handle of the window for which the status is
to be returned.

Example

OpenW 1, 10, 10, 300, 200 : TitleW 1, "Window 1"
Ocx CheckBox chk = "Show Window 2", 10, 10, 120,
14

Ocx Label lbl = "Window 2 is Invisible", 10, 30,
120, 14

OpenW Hidden 2, 320, 10, 300, 200 : TitleW 2,
"Window 2"

Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1 : CloseW 2

Sub chk_Click
Win_2.Visible = -chk.Value

lbl.Caption = "Window 2 is " & (Visible?
(Win_2.hWnd) ? "Visible" : "Invisible")

EndSub

Remarks

For forms it is easier to inspect the Visible property.

Visible?() corresponds to the Windows function
IsWindowVisible()

See Also

Enabled?(), Iconic?(), Zoomed?(), WindowState

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/enabled?.htm

Iconic? Function
Purpose

Returns True if the window is iconized.

Syntax

Bool = Iconic?(wh%)

wh%:integer expression

Description

The single parameter (wh%) in this function specifies the
number of the window whose status is to be reported.

Example

Debug.Show
OpenW # 1
ShowW 1, SW_SHOWMINIMIZED
OpenW # 2
Trace Iconic?(1) // True
Trace Iconic?(2) // False
Trace IsIconic(Win_1.hWnd) // 1 (True)
Trace IsIconic(Win_2.hWnd) // 0 (False)
Trace Me.WindowState // basNormal (0)
CloseW 2
CloseW 1

Remarks

Iconic?() corresponds to Windows function IsIconic() which
is implemented as an API and takes the windows handle as
in the example above.

See Also

Enabled?(), Visible?(), Zoomed?(), WindowState

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/enabled?.htm

True Variable
Purpose

Constant keyword for logical true = -1.

Syntax

True

Description

Contains the value for logical true.

Example

Auto a!, i%
OpenW # 1
i% = 20
If i%
a! = True
Print "i% is not equal to 0; a!="; a!

EndIf
i% = 0
If !i%
a! = False
Print "i% is equal to 0; a!="; a!

EndIf

Prints:

i% is not equal to 0; a!=-1
i% is equal to 0; a!=0

See Also

False

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Try Command
Purpose

Local error handling

Syntax

Try

// code

Catch

// error handler

EndCatch

Description

Try and Catch/EndCatch appears always as a pair inside a
procedure or function. The statements after Try are
executed as usual, and the part between Catch/EndCatch
an error occurs, otherwise execution is transferred to the
first statement after EndCatch.

Try/Catch/EndCatch constructions cannot be nested;
otherwise there can be more than one error handler per
subroutine. This differs from the GFA-BASIC 16 where the
Catch functions as a return from subroutine.

Example

test
Me.Close

Procedure test
Local i, a%
Try
For i = -9 To 9
Print @Rezip(i); ", ";

Next i
Catch
Print "There is an error occured in Procedure
test"

Print Err$(Err)
Print "Press any key to continue"
KeyGet a%

EndCatch
Return

Function Rezip(x)
Return 1 / x

EndFunc

The above program will print -0.11.., -0.125, -0.14..,
-0.16..,-0.2,-0.25,-0.33..,-0.5,-1, and then it will print the
message and the error text, wait for a keystroke and return.

A simple change in the function, using Try/Catch again,
permits to supply an error value (1/0 is not defined, but one
divided by very small numbers gives a very high result, now
lets supply one,catching overflows as well).

Function Rezip(x)
Try
Return 1 / x

Catch
Return 1E99

EndCatch
EndFunc

This changed program will continue after -1 with 1E+99, 1,
0.5, 0.3.. ... And because the Try/Catch does work locally,
other errors in test would be handled there.

A second example is a procedure reading a configuration
value from a file

Local size% = 10
ReadValue("CONFIG.CFG", 1000, size%)
Print size%

Procedure ReadValue(File$, Def%, ByRef Ret%)
Try
Open File$ for Input As # 1
Input # 1, Ret%
Close # 1

Catch
Ret% = Def% // Return default value

EndCatch
Close # 1

Return

A third example, just displaying a graph of the function
Sin(x)/x. This function is defined and gives good results,
except for zero, giving no result at all. Very small numbers,
positive and negative, approach 1.0, so let's put this value
there (Sin(0.0)/0.0 = 0.0/0.0 could give 1.0?).

Local Int a, i, y0, ys
Local ix As Double
OpenW # 1, 0, 0, _X, _Y, 0
y0 = _Y / 2, ys = _Y / 2
Color 8
For i = 0 To _X Step 2
ix = (i - _X / 2) / 20
Plot i, y0 - sinx_by_x(ix) * ys

Next i

KeyGet a
CloseW 1

Function sinx_by_x(x)
Try
sinx_by_x = Sin(x) / x

Catch
sinx_by_x = 1

EndCatch
EndFunc

This modified program does display a simple three
dimensional view.

Local Int a, i, j, y0, ys
Local Double ix, jx, jx2, f, z
OpenW # 1, 0, 0, _X, _Y, 0
y0 = _Y / 2, ys = _Y / 2
Color RGB(255, 0, 0)
For j = 0 To _Y Step 4
jx = (j - _Y / 2) / 20, jx2 = jx * jx
For i = 0 To _X Step 2
ix = (i - _X / 2) / 20
f = Sqr(ix ^ 2 + jx2)
z = y0 - sinx_by_x(f) * ys
Pset i, z, RGB(192, 192, 192)
Line i, z + 1, i, _Y

Next i
y0++

Next j
KeyGet a
CloseW 1

Function sinx_by_x(x)
Try
sinx_by_x = Sin(x) / x

Catch

sinx_by_x = 1
EndCatch

EndFunc

Remarks

See On Error for more information on error trapping.

Known Issues

Problems can arise when using Ocx objects when an error
occurs in a procedure with no Try/Catch construction which
is called from another procedure with one, as shown in the
example below:

Ocx Command cmd = "Hello", 10, 10, 100, 22
Try
SubRoutine

Catch
Message Err$

EndCatch
Do : Sleep : Until Me Is Nothing

Procedure SubRoutine
Local n As Int32
n = 2 / 0

EndProcedure

Sub cmd_Click
Message "Hello"

EndSub

An error is called when the the 'Divide by Zero' error is
encountered as it is captured by the main Try/Catch
construct; however, the Ocx Command button is now
inoperative, as would be any other Ocx objects, eventhough
the program is still technically running.

To overcome this problem, simply insert a Try/Catch
construct inside the called procedure as well. As can be
seen if you run the amended version of the previous
example below, following the error message, the Ocx
Command Button is still functional and the program will
continue running as designed.

Ocx Command cmd = "Hello", 10, 10, 100, 22
Try
SubRoutine

Catch
Message Err$

EndCatch
Do : Sleep : Until Me Is Nothing

Procedure SubRoutine
Local n As Int32
Try
n = 2 / 0

Catch
Message Err$

EndCatch
EndProcedure

Sub cmd_Click
Message "Hello"

EndSub

See Also

On Error

{Created by Sjouke Hamstra; Last updated: 31/08/2015 by James Gaite}

GLL Example: AutoSave
The original GFA implementation of the auto save feature.

Sub Gfa_Init
'
' Add menu item for AutoSave
'
Global Int IdxAutosave = Gfa_AddMenu("&AutoSave",
Menu_Autosave)

Gfa_MenuCheck(idxautosave) =
Gfa_IntSetting("Auto_Save") And 1

Gfa_MenuDesc(idxautosave) = "Autosave every 5
minutes"

EndSub

Sub Menu_Autosave(idx%)
Gfa_MenuCheck(idx) = !Gfa_MenuCheck(idx)
Gfa_IntSetting("Auto_Save") = -Gfa_MenuCheck(Idx)

EndSub

Sub Gfa_Minute // autosave every 5
Minutes
Local Date d
Local st_old$
// Don't save if not wanted
If !Gfa_MenuCheck(IdxAutosave) Then Exit Sub
// Don't save empty program
If Gfa_LineCnt == 0 Then Exit Sub
// Changes have bee saved before
If !Gfa_Dirty Then Exit Sub
// Get filetime of the autosave file
Try
d = FileDateTime(TempDir & "temp.g32")

Catch
d = 0.0

EndCatch
// When not older then 4.5 Minuten
// (1 day / 24 (hours) / 60 (Minutes)) * 4.5
// so 5 minutes or older is
If d > Now - (1 / 24 / 60) * 4.5
Exit Sub //do nothing

EndIf
// Change statusbar
st_old = Gfa_StatusText
Gfa_StatusText = "Autosave as " & TempDir &
"temp.g32"

Gfa_SaveFile TempDir & "temp.g32"
Gfa_StatusText = st_old

End Sub

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Change Case
Change character case using Gfa_Replace. Replace the
character at the cursor position to lowercase.

Sub Gfa_Ex_L
Gfa_Replace Lower(Mid(Gfa_Text, Gfa_Col + 1, 1))

EndSub

Replace multiple characters to uppercase.

Sub Gfa_Ex_U
Local Int l, c
Exit Proc If (Gfa_SelLine != Gfa_Line)
c = Gfa_Col
l = Gfa_SelCol - c
If (l == 0)
l = 1

Else If l < 0
c = Gfa_SelCol
l = -l
Gfa_Col = c

EndIf
Gfa_Replace Upper(Mid(Gfa_Text, c + 1, l))

EndSub

Because Gfa_Replace command doesn't cross line
boundaries, the subroutine makes sure that selection to
convert is at one line only. It then figures out the character
to start with and length of the selection. Do not expect that
the Gfa_SelCol is at the right of Gfa_Col (Gfa_SelCol >
Gfa_Col).

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Convert
Characters
Convert characters to uppercase using Gfa_Insert.

Convert one or more characters on one or more lines to
uppercase. When there is no selection the character on the
right of the cursor is selected and changed to uppercase.
Since Gfa_Insert is used to replace the selection, the
conversion can cross line boundaries. Gfa_Right and
Gfa_Insert are both actions that are stored in the Undo
buffer, which can take 64 actions. As such, Gfa_Ex_V can
only be undone 32 times.

Sub Gfa_Ex_V
Local Int ln, c
If Gfa_IsSelection
Gfa_Insert Upper(Gfa_Selection)

Else
ln = Gfa_Line : c = Gfa_Col
Gfa_Right
Gfa_SelLine = ln : Gfa_SelCol = c
Gfa_Insert Upper(Gfa_Selection)

EndIf
EndSub

The difference with the previous example is that when no
selection is available there is no temporary selection set as
well. This reduces the number of undo actions.

Sub Gfa_App_U
If Gfa_IsSelection

Gfa_Insert Upper(Gfa_Selection)
Else
Gfa_Right
If Gfa_Col
Gfa_Replace Upper(Mid(Gfa_Text, Gfa_Col - 1,
1))

EndIf
EndIf

EndSub

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Using Eval()
Evaluate an expression using Eval().

Input from inside a GLL routine can be performed with
InputBox() or Prompt. This example uses the GFA-BASIC
32-Function Eval to calculate a mathematical expression.
The result is then displayed in a message box.

Sub Gfa_Ex_Y ' SHIFT+CTRL+Y
Local a$, x#
a = InputBox("Give an expression")
If Len(a)
//Try
x = Eval(a)
MsgBox "The result is" & x
//Catch
// MsgBox "error"
//EndCatch

EndIf
EndSub

Rather than use an input box you could use selected text
and then replace the selection with the evaluation result

' SHIFT+CTRL+Z

Sub Gfa_Ex_Z
Try
Gfa_Insert Eval(Gfa_Selection)

Catch
EndCatch

EndSub

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Insert Snippet
Code
The following, often used, snippet is required to create a
program that uses a form created in the form editor. The
default name of the form is frm1.

LoadForm frm1 Hidden
Do
Sleep

Until Me Is Nothing

Sub frm1_Load
/* Todo: initialise controls */
frm1.Show

EndSub

Additionally, code for the event Sub frm1_Load is attached
to perform initialization of the controls the form contains. To
prevent flicker the form is loaded invisible and displayed
after the initializations.

Sub Gfa_Init
Gfa_AddMenu "Load Form Snippet",
Gfa_Menu_CreateBasic

End Sub

Sub Gfa_Menu_CreateBasic(i%)
Local a$
a = InputBox("Enter name of form", "", "frm1")
If Len(a)
' Insert main program
Gfa_Insert #10#10

Gfa_Insert "LoadForm " & a & " Hidden"#10#10
Gfa_Insert "Do" #10 "Sleep" #10 "Until Me Is
Nothing"

Gfa_Insert #10#10
' Insert _Load event sub
Gfa_Line = Gfa_LineCnt
Gfa_Insert #10#10 "Sub " & a & "_Load" #10
Gfa_Insert "/* Todo: initialize controls " +
"#10#10"

Gfa_Insert a & ".Show"#10#10
Gfa_Insert "End Sub"#10

EndIf
End Sub

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Add a
Resource
Add a resource to :Files section using Gfa_CopyFile.

This example shows a way to add a resource file to the
inline section on the :Files tab. It assumes you put the
filename of the resource in the source code in the following
format.

//:icodeb = e:\cparse\icodeb.ico
// The GLL sub (Shift + Ctrl + C) to handle the
copy process is here.

Sub Gfa_Ex_C
Local a$, b$, i%
a = Trim(Gfa_Text)
If Left(a, 3) != "//:" Then Exit Sub
a = Mid(a, 3)
i = InStr(a, "=")
If !i Then Exit Sub
b = LTrim(Mid(a, i + 1))
a = RTrim(Left(a, i - 1))
If Len(b) == 0 || Len(a) <= 1 Then Exit Sub
If Exist(a)
MsgBox a & " exists"
Exit Sub

EndIf
Try
Gfa_CopyFile b, a

Catch
MsgBox "Error while copying"#10"from " & b & "
to " & a

EndCatch

End Sub

When the cursor is located in the line starting with a //:
comment, the comment is analyzed to look for a resource to
be added to the inline section. The name of the inline
resource is specified with the string starting with the colon
(:icon1). Then the line searched for the name of the file to
load, which must be preceded with ' = '. If the file doesn't
exist a message is displayed, otherwise the file is copied to
the inline section using Gfa_CopyFile.

This example can be extended by overriding the previous
inline entry. However, the inline resource must de deleted
first. To delete the :File use Gfa_CopyFile "", when
Exist(a) is true.

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GLL Example: Jump to
subroutine
Jump between procedure headers quickly.

Sub GotoProcHeader(Optional Direction As Int =
CurrentProcHeader)
Global Enum CurrentProcHeader,
PreviousProcHeader, NextProcHeader,
FirstProcHeader, LastProcHeader

Local Int i
Switch Direction
Case CurrentProcHeader
Gfa_Line = Gfa_ProcLine

Case PreviousProcHeader
Gfa_Up
If Gfa_Proc <> ""
Gfa_Line = Gfa_ProcLine

Else
Gfa_Down
Gfa_StatusText = "Reached first procedure."

EndIf
Case NextProcHeader
Local String curProc = Gfa_Proc
i = Gfa_Line + 1
While i < Gfa_LineCnt
Gfa_Line = i
If Gfa_Proc <> curProc
Gfa_Line = Gfa_ProcLine
Exit Do

EndIf
i ++

Wend

If i = Gfa_LineCnt Then
Gfa_Line = Gfa_ProcLine
Gfa_StatusText = "Reached last procedure."

EndIf
Case FirstProcHeader
Gfa_Line = 1
GotoProcHeader (NextProcHeader)

Case LastProcHeader
Gfa_Line = Gfa_LineCnt
Gfa_Line = Gfa_ProcLine

EndSwitch
End Sub

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

IsArray Function
Purpose

Returns a Boolean value indicating whether a variant holds
an array.

Syntax

Bool = IsArray(varname)

Description

IsArray returns True if the variable is an array; otherwise,
it returns False. IsArray is especially useful with variants
containing arrays.

Example

Local a As Variant, x
a = Array(1, 2, 3)
Print a(1)
Print IsArray(a)
Local b%(10)
Print IsArray(b%(1))

See Also

Array, IsDate, IsEmpty, IsError, IsMissing, IsNull,
IsNumeric, IsObject

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Array Function
Purpose

Returns a Variant SafeArray containing a one-dimensional
array.

Syntax

variant = Array([parameter list]) [As Type]

parameter : any expression

Description

The required parameter list argument is a comma-delimited
list of values that are assigned to the elements of the array
contained within the Variant. If no arguments are specified,
an array of zero length is created. Note: The lower bound
of an array created using the Array function is always 0,
regardless of the value of Option Base.

In addition, the varType of the array can be specified using
the optional As Type statement: hence, a ByteArray is
created by adding As Byte after the parenthesized
parameter list.

Finally, the boundaries of the array can be returned using
LBound (always 0) and UBound; however, bar those listed
in this section, no other Array-specific commands and
functions work with this type of array.

Example

Debug.Show
Global V As Variant = Array(1, 2, 3, "GFA32")
Dim Va As Variant
Va = Array(1, 2, Array(15, 20) As Byte)
// To refer to an element of the array in the
array:

Trace V(2) // output: 3
Trace IsArray(Va(2)) // output: True
Trace Va(2)(1) // output: 20
Trace TypeName(Va(2)) // output: Byte()

Known Issues

GFA-BASIC32 support for dynamic arrays inside Variants is
very poor.

Unlike VB and VB.NET, it does not support ReDim on a
Variant containing an array. The only way to resize an array
is to re-use the Array function as below:

Local v2 As Variant = Array(1, 15, "Last one")
Print v2(0), v2(1), v2(2)
v2 = Array(v2(0), v2(1), v2(2), "And now this
one")

Print v2(0), v2(1), v2(2), v2(3)

It also only allows elements to be amended if the index is a
constant not a variable:

Local v2 As Variant = Array(10, 12, 108, "Hello")
Local Const elem = 2 : Local Int32 elem% = 2
v2(2) = 20 : Print v2(2) // Prints 20
v2(elem) = 30 : Print v2(elem) // Prints 30
v2(elem%) = 40 : Print v2(elem%) // Throws an
'Object is Nothing' error

[Reported by James Gaite. 22/02/17]

Another problem with trying to set values in this type of
array is found when the element is part of an array within
another array. When typing in array(1)(2) = "Hello"
for example, the error 'No compare string <=> number' is
thrown; alternatively, if you try passing a numerical value
auch as 5 to the same element, the editor rewrites the line
as array(1), (2) = 5 and the message 'Error
0x80004003 Invalid pointer' is displayed.

The only way to get around this is to 'step' up to the desired
array in which you want to make the change, alter it, then
'step' down again to reset the parent array, something like
this:

Local v2 As Variant = Array(10, 12, 108, Array(5,
"Hello"))

Local Variant a, b
a = v2(3)
a(0) = "Goodbye"
v2(3) = a
Print v2(3)(0)

[Reported by James Gaite. 22/02/17]

See Also

IsArray(), Array ()=

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

Option Base Command
Purpose

Sets the starting offset for row/column indexing of arrays.

Sets the starting offset for random I/O files to 0 or 1.

Syntax

Option Base [an] [, rb]

an, rb:iexp

Description

The Option Base an command sets the starting offset for
row/column indexing of arrays. In case of Option Base 0
the indexing starts with element 0, and in case of Option
Base 1 with element 1. Option Base 0 is the default.

Option Base ,rb will set the default base for random I/O
files to 0 or 1.

A note of caution: if an array is dimensioned under Option
Base 0 and then ReDim'ed under Option Base 1, the
array retains its original starting element of 0; the same
happens the other way around.

Example

Option Base 1
Print "Option Base is"; CheckOptionBase
Option Base 0

Print "Option Base is"; CheckOptionBase

Function CheckOptionBase
Local a%(2), rv% = LBound(a%())
Return rv%

EndFunction

Remarks

Option Base also sets the starting index of the Mat
commands.

Known Issues

There are issue when Option Base 1 is set with a number
of different commands, including ReDim and Array()=. See
the relevant pages for more information.

In addition, you may find problems when using Option
Base 1 when passing arrays using ByRef to another
procedure and, on occasions, if the array was not created
using Dim (i.e. the array was dimensioned using just Local
or Global): in both these instances, an element '0' (zero)
may be added. However, this error does not happen all the
time and is one of the few 'random' errors that occur in
GB32 from time to time. If these problem arise, you can
generally get around them by either adding Dim to the
original declaration or creating a local array within the
procedure to which the array is to be passed and copying
the global array into it.

See Also

Open

{Created by Sjouke Hamstra; Last updated: 17/12/2015 by James Gaite}

Dim Command
Purpose

declares a variable of any kind.

Syntax

[Local | Global | Static] Dim varname[([subscripts])] [As
[New] type] [, varname[([subscripts])]] [As [New] type]

Description

In GFA-BASIC 32 it is mandatory to declare variables before
they can be used. Dim is the general command to declare a
variable. Others are Global, Local, and Static. A variable
declared with Dim has local scope inside a subroutine and
global scope when it is declared in the main part of the
program. Optionally, Global, Local, and Static may be
used together with Dim, but when used these commands
may do without the Dim part. The following is allowed:

Dim a%, b&, s$, v

Global Dim a As Long, b As Short, s As String, v As Variant

Global a As Long, b As Short, s As String, v

If you don't specify a data type or object type, and there is
no Deftype statement, the variable is Variant by default.

Arrays can have up to 7 dimensions. The subscripts
argument uses the following syntax:

[lower To] upper [, [lower ..] upper] . . .

When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The
lower bound is zero if no Option Base statement is
present.

You can also use the Dim statement with empty
parentheses to declare a dynamic array. After declaring a
dynamic array, use the ReDim statement within a
procedure to define the number of dimensions and elements
in the array. If you try to re-declare a dimension for an
array variable whose size was explicitly specified in a Dim
statement, an error occurs.

If you use New when declaring the object variable, a new
instance of the object is created on first reference to it, so
you don't have to use the Set statement to assign the
object reference. The New keyword can be used only on
the following object types: Picture, Font, StdPicture,
StdFont, Collection, DisAsm, CommDlg and ImageList.

Example

Dim Names(9) ' Declare an array
with 10 elements.

Dim Names(1 To 9) ' Declare an array
with 9 elements.

Dim Names(0 .. 9, 0 .. 1) ' Declare an array
with 2 dimensions.

Dim Names() ' Declare a dynamic
array

Dim MyVar, MyNum ' Declare two
variables

Dim dis As New DisAsm ' Declare a new
instance of the object

Remarks

Allowed are Types in arrays, arrays in Types, or Ocx-array‘s.

A local array doesn't need to be erased (Erase) at the end
of a subroutine, this is done automatically.

If an array is dimensioned under Option Base 0 and then
ReDim'ed under Option Base 1, the array retains its
original starting element of 0; the same happens the other
way around.

See Also

Global, Local, Static, Dim(), IndexCount, LBound, UBound,
Erase, ReDim, Clr

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

Private and Public commands
Purpose

Used to declare local and global variables and constants.

Syntax

Private [Dim] [Const | Enum] varname [As Type] [,..]

Public [Dim] [Const | Enum] varname [As Type] [,..]

Description

Private and Public are implemented to make porting VB
code easier. In fact, Public is the same as Global and
Private is the same as Local.

NOTE: GFABasic only accepts Private and Public in
relation to variables and constants, not declared APIs. If the
latter are imported, the IDE will flag them up as errors.

Remarks

In VB subroutines are declared Private or Public often. VB
divides the source code about multiple files and need to
know which procedures are to be used inside the file only,
or outside the file as well. Hence the keywords Private and
Public. In GFA-BASIC 32 all subroutines are equal and
cannot be qualified as either local or global. When porting
VB code to GFA-BASIC 32, you must remove these qualifiers
from the code.

Known Issues

When using local private arrays, you may develop a
memory leak problem. This stems from the fact that the
compiler forgets to add destruction code for local arrays
when an explicit local declaration of a string variable is
absent. As a workaround, in any procedure, function or sub
which declares a local array, add a local string variable
dummy$ if none other is present.

See Also

Dim, Global, Local, Static, Const, Enum

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

LBound, UBound and
IndexCount Functions
Purpose

Returns details of either the indicated dimension or the
whole of an array.

Syntax

LBound[(] array[, dimension] [)]

UBound[(] array[, dimension] [)]

IndexCount[(] array() [)]

array : varname
dimension : iexp

Description

The LBound function is used with the UBound function to
determine the size of an array. Use the UBound function to
find the upper limit and LBound the lower limit of an array
dimension.

By default, the lower bound for any dimension is always 0.
This can be changed using Option Base n.

dimension is a whole number indicating which dimension's
lower bound is returned. Use 1 for the first dimension, 2 for
the second, and so on. If dimension is omitted, 1 is
assumed.

IndexCount() returns the number of array dimensions.

Example

Option Base 1
Debug.Show
Dim MyArray(1 To 10, 5 To 15, 10 To 20)
Dim AnyArray(10)
Trace IndexCount(MyArray())
Trace LBound(MyArray(), 1)
Trace UBound(MyArray(), 1)
Trace LBound MyArray(), 2 // All three
functions can be entered ...

Trace UBound MyArray(), 2 // ...without the
brackets enclosing the parameters

Trace LBound(MyArray(), 3)
Trace UBound(MyArray(), 3)
Trace IndexCount MyArray()
Debug.Print
Trace IndexCount(AnyArray())
Trace LBound(AnyArray()) // Returns 0 or 1,
depending on setting of Option Base.

Trace UBound(AnyArray())

Remarks

See Also

Dim?

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

Dim? Function
Purpose

Returns the total number of elements in an array.

Syntax

Dim? [(] x() [)]

x() : array of any variable type

Example

OpenW # 1
Dim a%(19, 9, 2, 13)
Print Dim?(a%()) // Prints 8400
Print IndexCount(a%()) // Prints 4
Print ArraySize(a%()) // Prints 33600
Do
Sleep

Until Me Is Nothing

See Also

Dim, Erase, LBound, UBound, IndexCount, ArraySize

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

Erase Command
Purpose

Deletes all arrays listed after it.

Syntax

Erase x1() [,x2(),...]

x1(),x2(),...:arrays of any type

Description

The arrays in the list after Erase must be separated by
commas.

Example

OpenW # 1
Dim a#(5), b%(3), i%
ArrayFill a(), PI
ArrayFill b%(), 42
Mat Print a()
Print
For i% = 1 To 3
Print b%(i%)

Next i%
Erase a(), b%()
Try
Print b%(2) // Array bounds exceed error

Catch
Print "Array Bounds Error - b%(2) no longer
exists"

EndCatch

Remarks

Erase clears all elements of the array from memory but
does not delete the array reference; this is cleared for local
variables when the procedure is exited, and for global
variables when the program ends. For this reason, Erase
can be used to clear all values from an array before ReDim-
ing it.

See Also

Clr, Dim, Redim

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Insert Command
Purpose

Inserts a numeric or a string expression at the specified
place in a one-dimensional array of corresponding variable
type.

Syntax

Insert x(m) [=y]

y:aexp, if x() is a numeric array or sexp, if x() is a string
array
x():a one-dimensional array of any type

Description

Insert x(m)=y inserts y in array x() at position m. In other
words all items in array x() whose indices are greater than
or equal to m are moved one position down. The last
element in x() is deleted with each Insert.

Insert x(m) inserts an empty element at position m.

Example

OpenW # 1
Dim a$(4), i%
a$(1) = "String #1"
a$(2) = "String #2"
a$(3) = "String #3"
a$(4) = "String #4"
Insert a$(3) = "New String"

For i% = 1 To 4
Print a$(i%)

Next i%
// prints
// String #1
// String #2
// New String
// String #3

See Also

Delete

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Delete Command
Purpose

deletes an element from a one-dimensional array of any
variable type.

Syntax

Delete x(m)

m:integer expression

x():one-dimensional array of any variable type

Description

Delete x(m) deletes the element indexed by m from the
array x(). In other words all array items whose indices are
greater than or equal to m are shifted one position up. The
last element in the array is deleted (with 0 or "" depending
on type).

Example

OpenW # 1
Dim a$(4), i%
a$(1) = "Text 1"
a$(2) = "Text 2"
a$(3) = "Text 3"
a$(4) = "Text 4"
Delete a$(3)
For i% = 1 To 4
Print a$(i%)

Next i%
// prints
// Text 1
// Text 2
// Text 4

See Also

Insert

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

ArrayAddr Function
Purpose

Returns the memory address of an array

Syntax

x = ArrayAddr[(] array() [)]

x : avar

Description

ArrayAddr() returns the memory location of the first byte
of the array data. (Not string array.)

Example

Debug.Show
Dim a|(100), b$(4)
Trace ArrayAddr(a|())
Trace V:a|(0)
b$(0) = "GFA"
Trace ArrayAddr b$()
Trace V:b$(0)

See Also

ArraySize()

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

ArraySize Function
Purpose

Returns the size of the array in bytes

Syntax

x = ArraySize[(] array() [)]

Description

ArraySize returns the number bytes occupied by the entire
array (not string array).

Example

Debug.Show
Dim a(10), b%(3, 4), c&(2, 3, 4)
Dim d|(1, 2, 3, 4), e!(5)
Trace ArraySize(a()) // prints 176
Trace ArraySize b%() // prints 80
Trace ArraySize(c&()) // prints 120
Trace ArraySize d|() // prints 120
Trace ArraySize(e!()) // prints 24

See Also

ArrayAddr(), ArrayFill

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

ArrayFill Command
Purpose

Initializes a numerical array of any type with a value.

Syntax

ArrayFill a(),x

a():any numeric or Boolean array

x:aexp

Description

The ArrayFill a(),x command can be used on all numeric
and Boolean arrays. The complete array a(), including all
dimensions, is filled with the expression x. By default, all
dimensioned numeric arrays are cleared with 0, while all
Boolean arrays are initialized with False - which is also 0.

Example

OpenW # 1
Dim a(10), b%(3, 4), c%(2, 3, 4), d|(1, 2, 3, 4),
e!(5)

ArrayFill a(), 17.4
ArrayFill b%(), 13
ArrayFill c%(), 17
ArrayFill d|(), 9
ArrayFill e!(), True
Print a(1) // Prints 17.4

See Also

Mat Set

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

QSort Function
Purpose

Sorts the elements in an array by its size using the
Quicksort algorithm.

Syntax

QSort x(s) [,n] [,m%()]

QSort x$(s) [Compare c][With n()] [,n [,m%()]]

s : + or - for ascending or descending order
c, n : integer expression
x() : one dimensional floating point or integer array
x$() : one dimensional sting array
n() : one dimensional integer array with 8-, 16- or 32-

bit integer variables
m%
()

: one dimensional integer array with 32-bit integer
variables

Description

The s enclosed in round brackets can be replaced with a
"+", a "-" or may be left out. "+" or no specification results
in arrays x() and m%() being sorted in ascending order. In
this case, after the sorting, the smallest array element
assumes the smallest index (0 for Option Base 0 or 1 for
Option Base 1). "-" results in the array being sorted in
descending order. In this case, after the sorting, the biggest
array element assumes the smallest index.

The parameter n specifies that only the first n elements of
the array should be sorted. For Option Base 0 these are the
elements with indices 0 to "n"-1, and for Option Base 1 the
elements with indices 1 to "n". If n is given explicitly, it can
be followed by a Long integer array, which will be sorted
together with the array x(), that is to say, each swap in
array x() will also be performed in array m%(). This is
particularly useful when the sorted array x() contains the
sort key (for example the postal code), while other arrays
contain additional information that must maintain the same
order as the keys.

When sorting string arrays (x$()) a sort criterion can be
specified with With, in the form of an array n() with at least
256 elements. If With is not given the normal ASCII table
is used as the sort criterion.

Another option when sorting string arrays is to use
Compare c: this allows you to specify different comparison
methods locally - case sensitive or insensitive, the sorting of
accented characters, etc. - without changing the global
Mode Comapre setting. The comparison method is
determined by the value entered in c which corresponds to
the values used with Mode Compare so for a case
sensitive search c = -1, for a case insensitive search with
correct sorting of accented characters c = 1, and so on.

Examples

This first example shows a sort with a dependant array:

Local i%, n% = 3
Dim a(n%), b%(n%), c$(n%), d$(n%)
Restore m1 : For i% = 0 To n% : Read a(i%) : Next
i%

m1: : Data 10,-3,5,21

Restore m2 : For i% = 0 To n% : Read c$(i%) : b%
(i%) = i% : Next i%

m2: : Data A,B,C,D
Restore m3 : For i% = 0 To n% : Read d$(i%) : Next
i%

m3: : Data Who,How,What,Where
OpenW # 1 : GraphMode , TRANSPARENT :
Win_1.FontName = "Courier"

For i% = 0 To n%
Print Str$(a(i%), 5, 2)``
Print Str$(b%(i%), 5, 2)``
Print c$(i%)``
Print d$(i%)

Next i%
Print
QSort a(), n%, b%()
For i% = 0 To n%
Print Str$(a(i%), 5, 2)``
Print Str$(b%(i%), 5, 2)``
Print c$(b%(i%))``
Print d$(b%(i%))

Next i%

Prints first of all (unsorted)

10.00 1.00 A Who
-3.00 2.00 B How
 5.00 3.00 C What
20.00 4.00 D Where

then (sorted)

-3.00 2.00 B How
 5.00 3.00 C What
10.00 1.00 A Who
20.00 4.00 D Where

This second example shows a sort using the With keyword:

// Create array to be sorted
Local a$() : Array a$() =
"D"#10"H"#10"A"#10"z"#10"c"

// RUN 1: populate the With array d%() with
character codes in descending order

Local d%(255), n% : For n% = 0 To 255 : d%(n%) =
255 - n% : Next n%

// Show the array to be sorted before the sort
For n% = 0 To 4 : Print a$(n%), : Next n% : Print
// Sort in descending order which, as d%() is also
descending will result in an ascending sort by
ANSI code

QSort a$(-) With d%()
// The result of the sort
For n% = 0 To 4 : Print a$(n%), : Next n% : Print
// RUN 2: populate the With array d%() with a
'Text' sort to ignore capital letters

Local b$ = " !" & #34 & "#$%&'()*+,-./0123456789:;
<=>?
@AaÀàÁáÂâÃãÄäÅåÆæBbCcÇçDdÐðEeÈèÉéÊêËëFfGgHhIiÌìÍí
ÎîÏïJjKkLlMmNnÑñOoÒòÓóÔôÕõÖöØøŒœPpQqRrSsßŠšTt" &
_
"UuÙùÚúÛûÜüVvWwXxYyÝýŸÿÞþZzŽž[\]^_`{|}~€�‚ƒ„…
†‡ˆ‰‹���‘’“”•–—™̃›� ¡¢£¤¥¦§¨©ª«¬ ®¯°±²³
´µ¶·¸¹º»¼½¾¿×÷"

For n% = 0 To 31 : d%(n%) = n% : Next n%
For n% = 32 To 255 : d%(n%) = Asc(Mid(b$, n% - 31,
1)) : Next n%

// Sort the array in ascending order
QSort a$(+) With d%(), 4 // <--- Without the
'count' variable, this does not work properly.

// And print the result
For n% = 0 To 4 : Print a$(n%), : Next n% : Print

The final example illustrates how to use of the Compare
keyword:

Local Int32 m%(10), n%, x$(10)
For n% = 0 To 10 : m%(n%) = 10 - n% : Read x$(n%)
: Next n%

// Descending Case Sensitive sort of the first 7
elements only

QSort x$(-) Compare -1, 7, m%()
For n% = 0 To 10 : Print n%, m%(n%), x$(n%) :
Next n%

Data "A","c","D","e","f","J","K","m","N","p","Z"

Remarks

Interestingly, running a sort with dependant array to be
sorted at the same time seems to be quicker than if the the
second array is omitted as the following code snippet
shows:

Dim a$(120), a%(120), n%, t#
For n% = 1 To 120 : a$(n%) = Chr(65 + (Rnd * 26))
: a%(n%) = n% : Next n

t# = Timer
For n% = 1 To 10000
QSort a$()

Next n%
Print Timer - t#
t# = Timer
For n% = 1 To 10000
QSort a$(), 120, a%()

Next n%
Print Timer - t#
[Reported by James Gaite. 24/01/17]

Known Issues

Using the With keyword can sometimes lead to inaccurate
results: to see this, copy the second of the two examples
and remove the count variable from the second QSort

statement - the 'z' will now be ordered as the second
character, not the last. Then replace the count variable and
change the 'H' in the array to be sorted to 'h'; now 'h' is the
second character listed.

A second problem can occur when using With if not all of
the 256 ANSI values are included - this leads to results
similar to those highlighted above.

General advice is not to use the With keyword unless
necesary and use the Mode Compare settings where
possible in its place.
[Reported by James Gaite. 16/01/17 & 26/02/17]

If you sort a string array in descending order where all the
strings are null or blank(""), then an Access-Violation
Exception error message will be thrown. This does not
happen if the sort is in ascending order.
[Reported by James Gaite. 17/01/17]

{Created by Sjouke Hamstra; Last updated: 27/01/2019 by James Gaite}

Store and Recall Commands
Purpose

Fast save and load of text files.

Syntax

Store #n, a$() [,m]

Recall #n, a$(),m,j

n:integer expression; channel number
a$():one dimensional string array
m:iexp
j:ivar

Description

Store saves the complete string array through the opened
channel n (from 0 to 511) to a file. The individual strings in
the file saved with Store are separated by a CR/LF. The
parameter m is optional and defines how many strings from
a$() should be written to the text file.

Recall #n,a$(),m,j reads through an already opened
channel n (from 0 to 511) m lines from a text file, into the
string array a$(). If m is greater than the number of
elements in the string array, the number of reads is
automatically limited (m=-1 fills the whole array). If during
reading an EOF is reached the reading is stopped without
reporting an error. At the end of the read the variable j
contains the number of strings actually read in.

Recall expects that the single character strings are
separated by CR/LF within the text file. If the text file
follows this structure, Recall also can be applied to files
which haven't been produced with Store. It should also be
noted that, although Store can save string elements of any
legal length, Recall can only retrieve upto 9999 characters
- see below.

Example

' Create a text file
Local a$(6999), i%, x%
Local fn$ = App.Path + "\Test.txt"
For i% = LBound(a$()) To UBound(a$())
a$(i%) = "Hello world" & Str(i% + 1)

Next i%
Open fn$ for Output As # 1
Store # 1, a$(), UBound(a$()) + 1
Close # 1
' Load text file
' Erase a$() : Dim a$(10000) // This causes an
error as Recall can not recognise a$, so use the
following...

ReDim a$(10000)
Try
Open fn$ for Input As # 1
Recall # 1, a$(), -1, x%
Close # 1
Message "Lines read in by Recall: " & Str(x%)
OpenW 1
Ocx ListBox lb1 = , 50, 50, _X - 100, _Y - 100
lb1.Sorted = False
For i% = LBound(a$()) To UBound(a$())
If a$(i%) <> "" Then lb1.AddItem a$(i%)

Next i%
Do
Sleep

Until Me Is Nothing
Catch
Message Err.Description

EndCatch
Kill App.Path + "\Test.txt"

Reads the complete text file TEST.TXT in the local folder into
the string array a$() and, when finished, prints how many
strings have been read in and then loads all elements into a
listbox.

Remarks

Store and Recall are for strings what BSave/BLoad or
BPut/Bget are for general arrays and memory areas.

Known Issues

1. As shown in the example above, you can not use an
array that has been Erase-d in a Recall statement as GFA
reads the array as null, does not import any values and
returns an error if you try and interrogate the array. Rather
than Erase, use Redim instead.

2. As explained in the Description, Recall can only retrieve
9999 bytes for each string element; the remainder of the
bytes (or the next 9999) it places in the next string
element, nudging all the other elements up one. This is
illustrated by the code below:

Local a$(100), n As Int32
For n = 1 To 100 : a$(n) = String(12000, "A") :
Next n

Open App.Path & "\store.tmp" for Output As # 1
Store # 1, a$()

Close # 1
For n = 1 To 100 : a$(n) = "" : Next n
Open App.Path & "\store.tmp" for Input As # 1
Recall # 1, a$(), -1, n
Close # 1
Print Len(a$(1))
Print Len(a$(2))
Kill App.Path & "\store.tmp"

To fix this problem, use the RecallX function included in the
example below. Also note the StoreX procedure which, even
though it is not used in this example, allows you to use
customised element dividers.

// Note: Unlike Recall, RecallX() has an optional
parameter which,...

// ...if set, redimensions the string array to fit
all requested...

// ...elements if the original string is too small
// Both StoreX() and RecallX() allow for a
customised element divider

Option Base 0
Local a$(10), n As Int32
For n = 1 To 10 : a$(n) = String(120000, "A") :
Next n

Open App.Path & "\store.tmp" for Output As # 1
Store # 1, a$()
Store # 1, a$()
Close # 1
ReDim a$(5)
Open App.Path & "\store.tmp" for Input As # 1
Print "No of elements: "; RecallX(1, a$(), 5, n)
For n = 1 To UBound(a$()) : Print Len(a$(n)) :
Next n

Print "No of elements: "; RecallX(1, a$(), -1, n,
True)

For n = 1 To UBound(a$()) : Print Len(a$(n)) :
Next n

Close # 1

Procedure StoreX(filenumber%, ByRef a$(), Optional
ct%= -1, Optional elemdiv As Variant)
// Store works exactly as required
// This replacement is only included for if you
wish to change the end markers...

// ...of each string from CRLF to something else
to allow Store/Recall...

// ...to work with string elements which contain
CRLF markers for line breaks...

// ...or when the array is used to save picture
and/or file information which...

// ...may have the pairing #13#10 numerous times
within one element.

Dim b$(1), c$, ed$, ob| = LBound(b$()), n%
// ob| is used to adjust for Option Base
ed$ = Iif(IsMissing(elemdiv), #13#10, elemdiv)
If ct% <> -1 : If ob| = 0 Then Inc ct%
Else : ct% = UBound(a$()) - Iif(ob| = 0, 1, 0)
EndIf
For n = ob| To ct%
c$ = a$(n) & ed$: BPut # 1, V:c$, Len(c$)

Next n
EndProcedure

Function RecallX(filenumber%, ByRef a$(), ct%,
ByRef retval%, Optional redim?, Optional elemdiv
As Variant)
// Inspired by an example by Roger Cabo
Local b$, bsize%, c$, ed$, ended?, p1%, rec%,
redimmed?

ed$ = Iif(IsMissing(elemdiv), #13#10, elemdiv)
// If End of File or file is empty, return
everything as it was

If EOF(# filenumber%) Then Return 0
// Set Start Element to match Option Base
Dim t%(1) : rec% = LBound(t%()) : retval% = 1
// Clear First Element of Array
a$(rec%) = ""
// Start Retrieving file date
While Not EOF(# filenumber%) And Not ended?
// Calculate size of block to retrieve
bsize% = Min(64000, LOF(# filenumber) - Loc(#
filenumber))

// Retrieve String block
b$ = Input$(bsize%, # filenumber%)
// Search for CRLF...
p1% = InStr(b$, ed$)
// ...and split records when found
While p1% <> 0 And Not ended?
a$(rec%) = a$(rec%) & Left(b$, p1% - 1) : b$ =
Mid(b$, p1% + Len(ed$))

// If reached predetermined file limit then
end...

If ct% <> -1 And retval% = ct% : ended? = True
Else // ...otherwise increase a$() and carry
on
If rec% = UBound(a$()) And redim? : ReDim
a$(UBound(a$()) + 100) : redimmed? = True
Inc rec% : Inc retval% : a$(rec) = ""

ElseIf rec% = UBound(a$()) : ended? = True
Else : Inc rec% : Inc retval% : a$(rec) = ""
EndIf

EndIf
p1% = InStr(b$, ed$)

Wend
// If End of File reached, add what remains of
b$ to the last a$() record...

If Not ended? : a$(rec%) = a$(rec%) & b$
// ...otherwise, b$ may be part of another
data block to move file pointer back

Else : Seek # filenumber%, Loc(# 1) - Len(b$)
EndIf

Wend
If Not ended? Then Dec retval% : Dec rec%
If redimmed? Then ReDim a$(rec%)
Return retval%

EndFunction

See Also

Open

{Created by Sjouke Hamstra; Last updated: 16/07/2015 by James Gaite}

GFABASIC 32 Language
Reference
This information title contains reference material on the
GFA-BASIC 32 language:

Arrays Keywords

Bits, Byte, Word, Int, and Large Operators and Keywords

Collection and Hash Keywords

Control Flow Keywords

Compiler and Debug Keywords

Conversion Keywords

Crypting, Mime encoding, Checksum Keywords

Data Types Keywords

Dates and Times Keywords

Directories and Files Keywords

Errors Keywords

Graphical Keywords

Input and Output Keywords

Math Keywords

Matrices Keywords

Memory Keywords

Miscellaneous Keywords

Operators Keywords

OCX/OLE Keywords

Registry Keywords

String Manipulation Keywords

Variables and Constants Keywords

Window Keywords

Built-in API Functions

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Bclr Function
Purpose

clears one bit in an integer expression.

Syntax

i = Bclr(m, n) (function)

Bclr v, n (command)

m, niexp
v:ivar

Description

Bclr(m, n) clears the n-th bit in the integer expression m
(the bit is set to 0) and returns a 32-bit integer.

Bclr ivar, n clears the n-th bit in an integer variable.

Example

OpenW # 1
Dim i% = 11 // 11 =>
1011

i% = Bclr(i%, 0) : Print Bin$(i%, 4) // Prints
1010

Bclr i%, 1 : Print Bin$(i%, 4) // Prints
1000

See Also

Bset(), Btst(), Bchg()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Bset Function
Purpose

Sets one bit in an integer expression or variable.

Syntax

I = Bset(m, n)

Bset ivar, n

m, n:iexp
ivar:ivar

Description

Bset(m, n) sets the n-th bit in the integer expression m
and returns the new value.

Example

OpenW # 1
Dim i% = 10 // 10 =>
1010

i% = Bset(i%, 0) : Print Bin$(i%, 4) // Prints
1011

Bset i%, 2 : Print Bin$(i%, 4) // Prints
1111

See Also

Bclr(), Btst(), Bchg()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Btst Function
Purpose

Tests the bit status in an integer expression.

Syntax

Bool = Btst(m, n)

m, n:iexp

Description

Btst(m, n) returns -1(true) when the n-th bit in the integer
expression m is set, and 0 (false) if it's not.

Example

Local i% = 10 // 10 => 1010
Print Btst(i%, 3) // Prints True

See Also

Bclr(), Bset(), Bchg()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Bclr8 Function
Purpose

Clears one bit in a 64-bit integer expression.

Syntax

i64 = Bclr8(m, n)(function)

Bclr8 i64var, n(command)

m : i64var

n : iexp

Description

Bclr8(m, n) clears the nth bit of a 64-bit integer m and
returns a 64-bit value.

Bclr8 i64var,n clears the nth bit of a 64-bit variable.

Example

OpenW # 1
Dim i64 As Large = 11 // 11
=> 1011

i64 = Bclr8(i64, 0) : Print Bin$(i64, 4) //
Prints 1010

Remarks

Although listed in the original help file as a command - i.e.
Bclr8 v64, n - it seems never to have been implemented as
such.

See Also

Bset8, Btst8, Bchg8

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Bset8 Function
Purpose

Sets one bit in an integer expression or variable.

Syntax

Large = Bset8(m, n)

Bset8 var64, n

n:iexp m,

var64:int64 exp

Description

Bset8(m, n) function sets the n-th bit in the integer
expression m and returns the new 64 bit integer value.

Bset8 var64,n command sets the n-th bit in the integer
variable var64.

Example

OpenW # 1
Dim i64 As Large = 10 // 10
=> 1010

i64 = Bset8(i64, 0) : Print Bin$(i64, 4) //
Prints 1011

Remarks

Although listed in the original help file as a command - i.e.
Bset8 v64, n - it seems never to have been implemented as
such.

See Also

Bclr8(), Btst8(), Bchg8()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Btst8 Function
Purpose

Tests the bit status in a 64-bit integer expression.

Syntax

Bool = Btst8(i64,n)

i64:int64 exp
n:iexp

Description

Btst8(m, n) returns -1(true) when the n-th bit in the 64-bit
integer expression m is set, and 0 (false) if it's not.

Example

Local i As Large = 1000 // 10000 => 1111101000
Print Btst8(i, 8) // Prints True

See Also

Bclr8(), Bset8(), Bchg8()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

<< Operator
Purpose

Shifts a bit pattern left.

Syntax

i = m << n

Description

m<<n shifts the bit pattern of a 32-bit integer expression
m, n places left and thereby changes the value in m.

Example

Print Bin$(202, 16) // Prints
0000000011001010

Print Bin$(202 << 4, 16) // Prints
0000110010100000

Remarks

Shl(m, n) is synonymous with m<<n and can be used
instead. As long as the result of the shift does not exceed
the given width, m<<n is equivalent to a multiplication of m
with 2^n.

See Also

Shl, Shr, Sar, Rol, Ror, >>, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

>> Operator
Purpose

Shifts a bit pattern right.

Syntax

i = m >> n

Description

m>>n shifts the bit pattern of a 32-bit integer expressions
m, n places right and thereby changes the value in m.

Example

OpenW # 1
Print Bin$(202, 16) // Prints
0000000011001010

Print Bin$(202 >> 4, 16) // Prints
0000000000001100

Remarks

Shr(m, n) is synonymous with m>>n and can be used
instead. As long as the result of the shift does not exceed
the given width, m>>n is equivalent to a division of m by
2^n.

See Also

<<, Shl, Shr, Sar, Rol, Ror, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Shr Function
Purpose

Shifts a bit pattern right. Shr can be used as a function, as
an operator, and as an assignment operator.

Syntax

Shr(m, n)

Shr%(m, n)

Shr&(m, n)n

Shr|(m, n)

Shr8(m, n)

m Shr n

m Shr8 n

Shr v, n

m, n:integer expression
v:ivar

Description

Shr(m, n) and Shr% shifts the bit pattern of a 32-bit
integer expressions m, n places right (Shr = SHift Right)
and, optionally, stores the new value in a variable. Shr&(m,
n) and Shr|(m, n) shift the bit pattern of a 16-bit or an 8-

bit integer expression m respectively, n places right. Shr8
is used to shift a Large integer.

The operators Shr and Shr8 perform a right shift on an
integer and Large, respectively.

Shr v, n assignment shifts the value in v by n and returns
the value in v. The type of the operation is determined by
the type of variable v.

Example

Debug.Show
Dim l|, l%
Trace Bin$(202, 16) // Prints
0000000011001010

Trace Bin$(Shr(202, 4), 16) // Prints
0000000000001100

l% = Shr(202, 4)
Trace Bin$(Shr%(202, 4), 16) // Prints
0000000000001100

l% = Shr%(202, 4)
Trace Bin$(Shr|(202, 4), 8) // Prints 00001100
l| = Shr(202, 4)
Trace l| // Prints 12

Remarks

m >> n is synonymous with Shr(m, n) and can be used
instead. As long as the result of the shift does not exceed
the given width, Shr(m, n) is equivalent to a division of m
by 2^n.

x = 100 : 100 Shr 3 or Shr(100, 3)

100 in binary: 0000 0000 0000 0000 0000 0000 0110 0100
Shift: 0000 0000 0000 0000 0000 0000 0011 0010

Shift: 0000 0000 0000 0000 0000 0000 0001 1001
Shift: 0000 0000 0000 0000 0000 0000 0000 1100

Result is 12 = CInt(100 / 8) = CInt(100 / 2^3)

x = -8 : -8 Shr 4 or Shr(-8, 4)

-8 in binary: 1111 1111 1111 1111 1111 1111 1111 0111
Shift: 0111 1111 1111 1111 1111 1111 1111 1011
Shift: 0011 1111 1111 1111 1111 1111 1111 1101
Shift: 0001 1111 1111 1111 1111 1111 1111 1110
Shift: 0000 1111 1111 1111 1111 1111 1111 1111

Result is 258435455.

See Also

Shl, Rol, Ror, <<, >>

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Sar Command
Purpose

Shifts a bit pattern to the right.

Syntax

Sar m, n

m:integer variable
n:iexp

Description

Sar m, n shifts a bit pattern of an integer variable m n
steps to the right (Sar = Shift Right), in which the highest
bit is copied (and not replaced with zero like with Shr). Each
bit shift right is a division by two.

The shift operation to be performed is determined from the
data type of the variable.

Example

Dim m% = 8, m8 As Large = 8
Sar m%, 2
Print m% // = 2
Sar m8, 2
Print m8 // = 2

Remarks

See Sar() for a demonstration of how the bits are shifted.

See Also

Sar(), Shr, Shl, Ror, Rol

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Ror Function
Purpose

Rotates a bit pattern right.

Syntax

Functions:Ror(m, n)

Ror|(m, n)

Ror&(m, n)

Ror%(m, n)

Ror8(m, n)

Operators:m Ror n

m Ror8 n

Assignment:Ror, ivar, n

m, n:integer expression
ivar:integer variable

Description

Ror(m, n) and Ror% shifts the bit pattern of a 32-bit
integer expressions m, n places right (Ror = ROtate Right)
and "wraps around" the bits moved off the right end to the
left end again. The resulting new value is, optionally, stored
in a variable. Ror&(m, n) and Ror|(m, n) rotate the bit

pattern of a 16-bit or an 8-bit integer expression m
respectively, n places right. Ror8 rotates a Large integer.

Ror and Ror8 can be used as operators as well.

Ror ivar, n rotates the value in ivar n places and stores the
value back in ivar.

Example

Debug.Show
Local a%, l%, l&, l|
Trace Bin$(202, 32)
// prints 00000000000000000000000011001010
Trace Bin$(Ror(202, 4), 32)
// prints 10100000000000000000000000000100
l% = Ror(202, 4)
Trace l%
// prints -1610612724
Trace Bin$(202, 16)
// prints 0000000011001010
Trace Bin$(Ror&(202, 4), 16)
// prints 1010000000001100
l& = Ror&(202, 4)
Trace l&
// prints -24564
//
Trace Bin$(202, 8)
// prints 11001010
Trace Bin$(Ror|(202, 4), 16)
// prints 10101100
l| = Ror|(202, 4)
Trace l|// prints 172

See Also

Sar, Shl, Shr, Rol

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

_Swab Command
Purpose

Exchanges pairs of bytes

Syntax

_Swab src, dest, count

Src, dest, count: ivar

Description

The _Swab function copies n byte from src, swaps each
pair of adjacent bytes, and stores the result at dest. The
integer n should be an even number to allow for swapping.
_Swab is typically used to prepare binary data for transfer
to a machine that uses a different byte order.

Example

OpenW 1
Local a$
a = "AbCdEfGhIjKlMnOpQrStUvWxYz"
_Swab V:a, V:a, Len(a)
Print a //Result: bAdCfEhGjIlKnMpOrQtSvUxWzY
Do : Sleep : Until Me Is Nothing

Remarks

Use Mirror to swap at the bit-level.

See Also

_Swab8, _SwabL, Mirror

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

_Swab8 Command
Purpose

Exchanges pairs of 8 adjacent bytes

Syntax

_Swab8 src, dest, count

src, dest, count: ivar

Description

The _Swab8 function copies n bytes from src, swaps each
pair of 8 adjacent bytes, and stores the result at dest. The
integer n should be a multiple of 8 to allow for swapping.
_Swab8 is typically used to prepare binary data for transfer
to a machine that uses a different byte order.

Example

OpenW 1
Local a$
a = "AbCdEfGhIjKlMnOpQrStUvWx"
_Swab8 V:a, V:a, Len(a)
Print a // Result: hGfEdCbApOnMlKjIxWvUtSrQ
Do : Sleep : Until Me Is Nothing

Remarks

Use Mirror8 to swap at the bit-level.

See Also

_Swab, _SwabL, Mirror8

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

_SwabL Command
Purpose

Exchanges pairs of 4 adjacent bytes

Syntax

_SwabL src, dest, count

src, dest, count: ivar

Description

The _SwabL function copies n bytes from src, swaps each
pair of 4 adjacent bytes, and stores the result at dest. The
integer n should be a multiple of 4 to allow for swapping.
_SwabL is typically used to prepare binary data for transfer
to a machine that uses a different byte order.

Example

OpenW 1
Local a$
a = "AbCdEfGhIjKlMnOpQrStUvWxYz12"
_SwabL V:a, V:a, Len(a)
Print a //Result: dCbAhGfElKjIpOnMtSrQxWvU21zY
Do : Sleep : Until Me Is Nothing

Remarks

Use Mirror to swap at the bit-level.

See Also

_Swab, _Swab8, Mirror

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

HiByte, LoByte Functions
Purpose

Returns the high or low byte of an expression.

Syntax

a| = HiByte(x%)

a| = LoByte(x%)

a|:8 bits integer

x%:16/32/64 bits integer expression

Example

Debug.Show
Local a As Short
a = MakeWord(15, 155)
Trace HiByte(a) // to read bit 8-15
Trace GetGValue(a) // the same with GetGValue
Trace GetByte2(a) // the same with GetByte2
Trace TypeName(HiByte(a))
Debug.Print
Trace LoByte(a) // to read bit 8-15
Trace GetRValue(a) // the same with GetGValue
Trace GetByte3(a) // the same with GetByte2
Trace TypeName(LoByte(a))

Remarks

a| = HiByte(x&) is identical to a| = GetGValue(x%) and
a| = GetByte2(x%), while a| = LoByte(x&) is identical to

a| = GetRValue(x%) and a| = GetByte3(x%)

a| = HiByte(x%) is identical to a| = Byte(Shr(x%,8)) and
a| = LoByte(x%) is the same as a| = Byte(x%), but the
second expressions are compatible with the MS-DOS
version of GFA-BASIC.

See Also

GetByte2, HiCard(), HiWord(), HiLarge(), LoCard(),
LoWord(), LoLarge()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

HiCard, LoCard Functions
Purpose

Returns the high or low word in a Long expression. The
expression is treated as unsigned.

Syntax

a% = HiCard(x%)

a% = LoCard(x%)

a%:16 bits unsigned integer
x%:32 bits integer expression

Description

HiCard returns the higher 16 bits and LoCard returns the
lower 16 bits of a value as an unsigned 16-bit expression.

Example

Debug.Show
Local a As Int32 = MakeLong(12345, 678)
Trace HiCard(a)
Trace TypeName(HiCard(a))
Trace LoCard(a)
Trace TypeName(LoCard(a))
Trace Card(a)

The following example is written as a 16 bit GFA-BASIC for
Windows program, only the declaration Local a| is new in. It

opens a window and returns the scan code of a pressed
function key.

OpenW # 1
Dim a|
Do
GetEvent
If MENU(11) = WM_KEYDOWN
a| = LoByte(HiCard(MENU(13)))
Text 0, 16, Str$(a|) + Space$(1000)

EndIf
Until MENU(1) = 4
CloseW # 1

Remarks

a% = HiCard(x%) is identical to a% = Card(Shr(x%,16))
and a% = LoCard(x%) is the same as a% = Card(x%),
but the second expressions are compatible with the MS-
DOS version of GFA-BASIC.

See Also

HiByte(), HiWord(), HiLarge(), LoByte(), LoCard(),
LoWord(), LoLarge()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/locard.htm

HiWord, LoWord Functions
Purpose

Returns the high or low word in a Long expression.

Syntax

a& = HiWord(x%)

a& = LoWord(x%)

a&:16 bits integer x%:32 bits integer expression

Description

HiWord() and LoWord() are used to return the higher and
lower 16 bits of a value.

Example

Debug.Show
Dim a% = MakeLong(1234, 4321)
Trace HiWord(a%)
Trace TypeName(HiWord(a%))
Trace LoWord(a%)
Trace TypeName(LoWord(a%))
Trace Word(a%)

Remarks

a% = HiWord(x%) is identical to a% =
Word(Shr(x%,16)), but the second expression is
compatible with the MS-DOS version of GFA-BASIC.

LoWord Word SWord Short: These functions are the
same and load the value into the eax register and performs
a CDWE assembler instruction to extend the lower 16 bits to
the upper 16 bits.

See Also

HiByte(), HiCard(), HiLarge(), LoByte(), LoCard(), LoLarge()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

HiLarge, LoLarge Functions
Purpose

Returns the high and low long word in a Large expression.

Syntax

a% = HiLarge(x)

a% = LoLarge(x)

a%:32 bits integer
x:64 bits integer expression

Example

Debug.Show
Local a As Large = MakeLarge(123456789, 987654321)
Trace HiLarge(a)
Trace LoLarge(a)

Remarks

a% = HiLarge(x) is identical to a% = Shr8(x,32)

See Also

HiByte(), HiCard(), HiWord(), LoByte(), LoCard(), LoWord()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Card, UShort and UWord
Functions
Purpose

Performs an And 65535

Syntax

card = Card(m%)

card = UShort(m%)

card = UWord(m%)

card : card expression
m% : 32-bit integer expression

Description

All three functions perform the same task, namely limiting a
32-bit integer to 16 bits by clearing the bits 16 to 31.

Example

OpenW 1 : Win_1.FontName = "Courier"
Dim a% = 100000, m% = 67631, s% = 32
Print Bin$(m%, s%) //
00000000000000010000100000110000

Print Bin$(Card(m%), s%) //
00000000000000000000100000110000

Print String$(s%, "-") // -------------------

Print Bin$(a%, s%) //
00000000000000011000011010100000

Print Bin$(UShort(a), s%) //
00000000000000001000011010100000

Print Bin$(a And 65535, s%) //
00000000000000001000011010100000

Print UWord(a) // 34464

Remarks

LoCard() is synonymous with these three functions and can
be used instead.

See Also

LoCard, Byte(), Word(), Short()

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

Short & Word Functions
Purpose

Sign extension

Syntax

%= Short(m&)

%= Word(m&)

% : 32-bit long word expression
m& : 16-bit word expression

Description

Extends a Word to a Long word. An And 65535
($0000FFFF) is performed first on the Word. If the result is
greater than 32767 (bit 15 is set), 65535 is subtracted from
it. This is equivalent to copying the value of bit 15 to bits 16
to 31.

Example

AutoRedraw = 1
FontName = "Courier"
Local s% = 32, m% = 2096, a As Double = 100000
Print Bin(m%, s%) //
00000000000000000000100000110000

Print Bin(Word(m%), s%) //
00000000000000000000100000110000

Print String(s%, "-") // -------

Print Bin(a, s%) //
00000000000000011000011010100000

Print Bin(Word(a), s%) //
11111111111111111000011010100000

Print Bin((a And 65535) - 65536, s%) //
11111111111111111000011010100000

Print Bin((a Mod 65536) - 65536, s%) //
11111111111111111000011010100000

Print Word(a) // -31072

Remarks

These functions load the value into the eax register and
performs a CDWE assembler instruction to extend the lower
16 bits to the upper 16 bits.

See Also

Byte(), Card(), SWord, UShort(), UWord()

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

MakeL2H, MakeL2L Functions
Action

Makes a Long from 2 bytes

Syntax

z% = MakeL2H(byte1, byte0)

z% = MakeL2L(byte0, byte1)

byte0, byte1:Byte
z%:Integer

Description

MakeL2H() and MakeL2L create a 32-bit integer value
form two bytes.

Example

OpenW 1
Local p%, x%, y%, z%
x% = 10, y% = 20
z% = MakeL2H(x%, y%) // => $0A14
p% = MakeL2L(x%, y%) // => $140A
Print Hex(z%, 4), Hex(p%, 4)

See Also

MakeL3H(), MakeL3L(), MakeL4H(), MakeL4L(),
MakeLarge(), MakeLargeHiLo(), MakeLargeLoHi(),
MakeLong(), MakeLongHiLo(), MakeLongLoHi(),

MakeWord(), MakeWordHiLo(), MakeWordLoHi(),
MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MakeL3H, MakeL3L Functions
Action

Makes a Long from 3 bytest

Syntax

z% = MakeL3H(byte2, byte1, lo)

z% = MakeL3L(lo, byte1, byte2)

lo:Byte
byte1, byte2:Byte
z%:Integer

Description

MakeL3H and MakeL3L create a 32-bit integer value form
three bytes. The high order byte of the long integer is 0.

Example

OpenW 1
Local p%, w%, x%, y%, z%
x% = 10, y% = 20, w% = 150
z% = MakeL3H(w%, x%, y%) // => $00960A14
p% = MakeL3L(w%, x%, y%) // => $00140A96
Print Hex(z%, 8), Hex(p%, 8)

Remarks

MakeL3L() is the same as RGB().

See Also

MakeL2L(), MakeL2H(), MakeL4H(), MakeL4L(),
MakeLarge(), MakeLargeHiLo(), MakeLargeLoHi(),
MakeLong(), MakeLongHiLo(), MakeLongLoHi(),
MakeWord(), MakeWordHiLo(), MakeWordLoHi(),
MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MakeL4H, MakeL4L Functions
Action

Makes a Long from 4 bytes

Syntax

z% = MakeL4H(hi, byte2, byte1, lo)

z% = MakeL4L(lo, byte1, byte2, hi)

hi, lo:Byte
byte1, byte:Byte
z%:Integer

Description

MakeL4H() creates a 32-bit integer value form four bytes.
The first byte is placed in the high order byte of the long
integer.

MakeL4L() creates a 32-bit integer value form four bytes.
The first byte is placed in the low order byte of the long
integer.

Example

OpenW 1
Local p%, w%, x%, y%, z%
x% = 10, y% = 20, w% = 150
z% = MakeL4H(1, 2, 3, 4) // 01020304
p% = MakeL4L(1, 2, 3, 4) // 04030201
Print Hex(z%, 8)
Print Hex(p%, 8)

See Also

MakeL2L(), MakeL2H(), MakeL3H(), MakeL3L(),
MakeLarge(), MakeLargeHiLo(), MakeLargeLoHi(),
MakeLong(), MakeLongHiLo(), MakeLongLoHi(),
MakeWord(), MakeWordHiLo(), MakeWordLoHi(),
MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MakeLarge Functions
Action

Makes a Large from two 32-bit integers

Syntax

z% = MakeLarge(hi, lo)

z% = MakeLargeHiLo(hi, lo)

z% = MakeLargeLoHi(lo, hi)

hi, lo:Short
z%:Integer

Description

MakeLarge and MakeLargeHiLo() create a 64-bit integer
value form two 32-bit integers. The first value is placed in
the high order longword of the large integer.

MakeLargeLoHi() creates a 64-bit integer value form two
32-bit integers. The first value is placed in the low order
longword of the large integer.

Example

OpenW 1
Print Hex(MakeLarge(1, 2)) // $100000002
Print Hex(MakeLargeHiLo(1, 2)) // $100000002
Print Hex(MakeLargeLoHi(1, 2)) // $200000001

Remarks

See Also

MakeL2L(), MakeL2H(), MakeL3H(), MakeL3L(), MakeL4H(),
MakeL4L(), MakeLong(), MakeLongHiLo(), MakeLongLoHi(),
MakeWord(), MakeWordHiLo(), MakeWordLoHi(),
MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MakeLong Functions
Action

Makes a Long from two 16-bit integers

Syntax

z% = MakeLong(hi, lo)

z% = MakeLongHiLo(hi, lo)

z% = MakeLongLoHi(lo, hi)

hi, lo:Short
z%:Integer

Description

Make Long and MakeLongHiLo() create a 32-bit integer
value form two unsigned 16-bit integers. The first value is
placed in the high order word of the long integer.

MakeLongLoHi() creates a 32-bit integer value form two
unsigned 16-bit integers. The first value is placed in the low
order word of the long integer.

Example

Debug.Show
Trace Hex(MakeLong(1, 2)) // $10002
Trace Hex(MakeLongHiLo(1, 2)) // $10002
Trace Hex(MakeLongLoHi(1, 2)) // $20001

See Also

MakeL2L(), MakeL2H(), MakeL3H(), MakeL3L(), MakeL4H(),
MakeL4L(), MakeLarge(), MakeLargeHiLo(),
MakeLargeLoHi(), MakeWord(), MakeWordHiLo(),
MakeWordLoHi(), MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MakeWParam Function
Action

Makes a 32-bit value from two 16-bit values.

Syntax

z% = MakeWParam(lo, hi)

hi, lo:Short
z%:Integer

Description

MakeWParam() creates a 32-bit integer value form two
16-bit integers. The first value is placed in the low order
word of the long integer.

Example

Debug.Show
Trace Hex(MakeWParam(1, 2), 8) // 20001
Trace Hex(MakeLongLoHi(1, 2), 8) // 20001

Remarks

This command is the same as the C macros MAKEWPARAM
and MAKELPARAM.

MakeWParam is not the same as MakeLong.

See Also

MakeL2L(), MakeL2H(), MakeL3H(), MakeL3L(), MakeL4H(),
MakeL4L(), MakeLarge(), MakeLargeHiLo(),
MakeLargeLoHi(), MakeLong(), MakeLongHiLo(),
MakeLongLoHi(), MakeWord(), MakeWordHiLo(),
MakeWordLoHi(), MakeWParam()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

htonl Function
Purpose

The htonl function returns the value in TCP/IP network byte
order.

Syntax

Card = htonl (host-long)

host-long: A 32-bit number in host byte order.

Description

The Windows Sockets htonl function converts a unsigned
long from host to TCP/IP network byte order (which is big-
endian).

The htonl function takes a 32-bit number in host byte order
and returns a 32-bit number in network byte order used in
TCP/IP networks.

See Also

htonl(), htons(), ntohl(), ntohs()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

htons Function
Purpose

The htons function returns the value in TCP/IP network
byte order.

Syntax

Card = htons (host-short)

host-short: A 16-bit number in host byte order.

Description

The Windows Sockets htons function converts a unsigned
short (Card) from host to TCP/IP network byte order (which
is big-endian).

The htons function takes a 16-bit number in host byte
order and returns a 16-bit number in network byte order
used in TCP/IP networks.

See Also

htonl(), htons(), ntohl(), ntohs()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ntohl Function
Purpose

The ntohl function converts a unsigned long from TCP/IP
network order to host byte order (which is big-endian).

Syntax

long = ntohl (long)

long: A 32-bit number in TCP/IP network order.

Description

The Windows Sockets ntohl function converts a unsigned
long from TCP/IP network order to host byte order (which is
big-endian).

The ntohl function takes a 32-bit number in TCP/IP network
byte order and returns a 32-bit number in host byte order.

Remarks

The ntohl function always returns a value in host byte
order. If the netlong parameter was already in host byte
order, then no operation is performed.

See Also

htonl(), htons(), ntohl(), ntohs()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ntohs Function
Purpose

The ntohs function converts a unsigned short from TCP/IP
network order to host byte order (which is big-endian).

Syntax

card = ntohs (short)

short: A 16-bit number in TCP/IP network order.

Description

The Windows Sockets ntohs function converts a unsigned
short (Card) from TCP/IP network order to host byte order
(which is big-endian).

The ntohs function takes a 16-bit number in TCP/IP
network byte order and returns a 16-bit number in host
byte order.

Remarks

The ntohs function always returns a value in host byte
order. If the short parameter was already in host byte order,
then no operation is performed.

See Also

htonl(), htons(), ntohl(), ntohs()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Add Command, Operator,
Function
Purpose

Adds a numeric expression to a numeric variable.

Syntax

Add x, y(assignment command)
% = x Add y(operator)
% = Add(i, j[,m,...])(function)

x:numeric variable
y:any numeric expression
i, j, m:integer expression

Description

Add x, y adds the expression y to the value in variable x.

The operator i Add j and the function Add(i, j, …) return
the sum of integer expressions. In case one of the
parameters isn't an integer, it is converted to a 32-bit value
first (using CInt).

Example

Debug.Show
Dim b# = 1.5
Trace b# Add 3 // CInt(b#) + 3 = 5
Trace Add(b#, 3) // CInt(b#) + 3 = 5
Add b#, 3 : Trace b# // b# = 4.5

b# = 2.5
Trace b# Add 3 // CInt(b#) + 3 = 5
Trace Add(b#, 3) // CInt(b#) + 3 = 5
Add b#, 3 : Trace b# // b# = 5.5

Remarks

Although the assignment command Add can be used with
any numeric variable, the usage of integer variables is
recommended in order to achieve the maximum
optimization for speed.

Instead of Add x, y, you can use x = x + y, x := x + y, or x
+= y. When using integer variables Add doesn't test for
overflow!

The Add(), Sub(), Mul() and Div() functions can be mixed
freely with each other. For example

l% = Add(5 ^ 3, 4 * 20 - 3)

can be written

l% = Add(5 ^ 3, Sub(Mul(4, 20), 3))

See Also

+, -, *, /F, \, Add, Sub, Mul, Div, ++, --, +=, -=, /= , *=,
Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Item, Count, Clear, Remove,
Add Methods
Purpose

These methods are provided for each collection. In addition,
these methods exist for each Ocx control that contains a
collection.

Syntax

object.Item(index)

object.Count

object.Clear

object.Remove(index)

object.Add [index], [key], [text], […]

object:Buttons, ListImages, Panels, ListItems,
ColumnHeaders, Nodes, Tabs

object:ToolBar, ImageList, StatusBar, ListView, TreeView,
TabStrip

index:Variant

Description

These methods and properties exist for the named
collections that are a property of Ocx controls. As a
shortcut, these properties and methods exist for the Ocx

controls themselves as well. For instance, the ToolBar Ocx
control contains a Buttons collection of Button objects.
The members in the collection can either be accessed
through the Buttons collection, but they are also available
directly from the ToolBar Ocx. To clear the collection you
can invoke the Clear method from Buttons, but also the
Clear method from ToolBar; ToolBar.Buttons.Clear is
identical to ToolBar.Clear.

Item(index)Specifies the position of a member of the
collection. If a numeric expression, index must be a number
from 1 to the value of the collection's Count property. If a
string expression, index must correspond to the key
argument specified when the member referred to was
added to the collection. If the value provided as index
doesn’t match any existing member of the collection, an
error occurs. Item is the default property for a collection.
Therefore, the statements are equivalent:
MyCollection(1) MyCollection.Item(1)

Count Returns a Long containing the number of items in a
collection. Read-only.

ClearRemoves all objects in a collection.

Remove(index)Removes the specified item from a
collection. index specifies the name or index in the
collection of the object to be accessed.

AddAdds a member to a collection object. The syntax for
the Add method is different for each Ocx collection.

Example

Global li As ListItem, n As Int32
OpenW 1

Ocx ListView lv = "", 10, 10, 200, 300 : .View = 3
: .GridLines = True : .FullRowSelect = True

lv.ColumnHeaders.Add , , "Column1" :
lv.ColumnHeaders.Add , , "Column2"

For n = 1 To 20
lv.ListItems.Add , n , "" // Can be shortened to
lv.Add ...

lv.ListItems.Item(n).AllText = "Item " &
Format(n, "00") & ";" & Chr(64 + n) // Can be
shortened to lv(n).AllText ...

Next n
Ocx Command cmd1 = "Remove Selected Item", 220,
10, 140, 22

Ocx Command cmd2 = "Remove all Even Items", 220,
35, 140, 22

Do : Sleep : Until IsNothing(Win_1)

Sub cmd1_Click
If lv.SelectedCount <> 0 // Make sure an item is
selected
Set li = lv.SelectedItem
lv.ListItems.Remove li.Index

EndIf
EndSub

Sub cmd2_Click
Static Int32 cycle = 1
Select cycle
Case 1 // Remove Even
For n = lv.ListItems.Count DownTo 1
Set li = lv.ListItems(n) : Debug li.Key
If Even(Val(li.Key)) = True Then
lv.ListItems.Remove li.Index

Next n
cmd2.Caption = "Delete remaining Items"

Case 2
lv.ListItems.Clear

EndSelect
Inc cycle

EndSub

Remarks

GFA-BASIC 32 supports the following Ocx collections:
Buttons, ListImages, Panels, ColumnHeaders,
ListItems, Nodes, and Tabs.

See Also

Buttons, ListImages, Panels, ColumnHeaders, ListItems,
Nodes, Tabs

ToolBar, ImageList, StatusBar, ListView, TreeView, TabStrip

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Hash Add
Purpose

Adds an element to a hash table.

Syntax

Hash Add name[[key$]] [Before | After idx] , element

Description

Hash Add adds an element to the hash table name.
Optionally, the element can be inserted before or after a
specified index idx.

Hash Add ht[[key$]] Before idx, value

Hash Add ht[[key$]] After idx, value

An element can also be added without a key. Unless Before
or After is used, the element is placed at the end (tail) of
the table.

Hash Add ht[], value adds a value at the tail of the hash
table.

Example

Dim ha As Hash Variant, v As Variant
Hash Add ha["new"], 2.3
Hash Add ha[], " a string"
Hash Add ha["Time"] Before 2, Now
Hash Add ha[] After 2, PI
For Each v In ha[]

Print ha[$ Each], v
Next

Remarks

See Hash for more information on the Hash table.

See Also

Hash Erase, Hash Input, Hash Load, Hash Remove, Hash
Save, Hash Sort, Hash Write

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Hash Remove
Purpose

Removes an element from a hash table.

Syntax

Hash Remove name[key$ | % idx]

Description

Hash Remove deletes a single element from a hash table.
The element is either indicated by key or by index.

Example

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Remove ha["new"]
Print ha[%]

or by index:

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Remove ha[% 1] // Delete the first element
Print ha[%]

...or...

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Remove ha[% ha[%]] // Delete the last element
Print ha[%]

Remarks

See Hash for more information on the Hash table.

See Also

Hash Add, Hash Erase, Hash Input, Hash Load, Hash Save,
Hash Sort, Hash Write

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Hash Erase
Purpose

Deletes the entire hash table.

Syntax

Hash Erase name[]

Description

Hash Erase deletes the entire hash table name from
memory.

Example

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Erase ha[]
Print ha[%] // Prints 0

Remarks

See Hash for more information on the Hash table.

See Also

Hash Add, Hash Input, Hash Load, Hash Remove, Hash
Save, Hash Sort, Hash Write

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Hash Input, Hash Write
Purpose

Loads a hash table from an ASCII file.

Syntax

Hash Input name[] , file$ | #n

Description

Hash Write saves a hash table in the file file$ or in a file
with channel #n, which is previously opened with Open.
The hash table is stored in ASCII format and is be reloaded
using Hash Input.

Example

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Write ha[], App.Path & "\hash_ha.dat"
Hash Erase ha[]
Hash Input ha[], App.Path & "\hash_ha.dat"
Print ha["new"]
Kill App.Path & "\hash_ha.dat" // Tidy-up line

or

Dim ha As Hash Variant
ha["new"] = 2.3
Hash Write ha[], App.Path & "\hash_ha.dat"
Hash Erase ha[]
Open "hash_ha.dat" for Input As # 1

Hash Input ha[], # 1
Close # 1
Print ha["new"]
Kill App.Path & "\hash_ha.dat" // Tidy-up line

Remarks

See Hash for more information on the Hash table.

See Also

Hash Add, Hash Erase, Hash Load, Hash Remove, Hash
Save, Hash Sort

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Hash Load, Hash Save
Purpose

Loads or saves a hash table from a file.

Syntax

Hash Load name[] , file$ | #n

Hash Save name[] , file$ | #n

Description

Hash Save saves a hash table in the file file$ or in a file
with channel #n, which is previously opened with Open.
The hash table is stored in a fast binary format and is
reloaded using Hash Load.

Example

Dim ha As Hash Double // If this is variant, Hash
Save/Load does not work

ha["new"] = 2.3
Hash Save ha[], App.Path & "\hash_ha.dat"
Hash Erase ha[]
Hash Load ha[], App.Path & "\hash_ha.dat"
Print ha["new"]
Kill App.Path & "\hash_ha.dat" // Tidy-up line

or

Dim ha As Hash Double // If this is variant, Hash
Save/Load does not work

ha["new"] = 2.3

Hash Save ha[], App.Path & "\hash_ha.dat"
Hash Erase ha[]
Open "hash_ha.dat" for Input As # 1
Hash Load ha[], # 1
Close # 1
Print ha["new"]
Kill App.Path & "\hash_ha.dat" // Tidy-up line

Remarks

See Hash for more information on the Hash table.

Hash Save/Load does not seem to work with Variants; use
Hash Write/Input instead.

See Also

Hash Add, Hash Erase, Hash Input, Hash Remove, Hash
Sort, Hash Write

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Hash Sort
Purpose

Sorts a hash table by its keys.

Syntax

Hash Sort name[] , [Asc | Desc] [, compmode]

Description

Hash Sort sorts a hash table in ascending Asc or
descending Desc order. The ascending order is the default.

By default, the sort is performed according to the current
Mode Compare setting. However, it is possible to force the
command to sort according to a different mode by
specifying the numerical (not string) value of this mode in
the compmode parameter; the possible values for
compmode are the same as for Mode Compare.

Example

Dim ha As Hash Variant, v As Variant
ha["new"] = 2.3
ha["Old"] = 2
// ascending
Hash Sort ha[]
Hash_Print("Ascending order")
// descending
Hash Sort ha [] Desc
Hash_Print("Descending order")
// ascending, sorted by using uppercase conversion

Hash Sort ha [] Asc , -1
Hash_Print("Ascending order using Uppercase
Conversion")

// or (does the same)
Hash Sort ha [] , -1
Hash_Print("...and the same again")

Sub Hash_Print(t$)
Print t$: Print
For Each v In ha[]
Print ha[$ Each], v

Next
Print

EndSub

Remarks

The hash table isn't sorted by the values of the elements
like an array, but by its keys!

See Hash for more information on the Hash table.

See Also

Hash Add, Hash Erase, Hash Input, Hash Load, Hash
Remove, Hash Save, Hash Write

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

GoTo Command
Purpose

Unconditional branch

Syntax

GoTo label

label:user defined label

Description

Markers are positions within the GFA-BASIC program, used
by Restore and GoTo. Restore mar is always used together
with the Data lines. GoTo label is an unconditional jump to a
previously defined marker label.

GoTo can jump either to a label within the main program or
within a procedure. A GoTo between PROCEDUREs and/or
FUNCTIONs is not allowed, and jumps in or out of loops are
also forbidden.

Example

OpenW # 1
Print "Goto example"
Print
Print "The program is at position 1"
GoTo p2
Print "The program is at position 2"
p2:
Print "The program is at position 3"

Remarks

A label might consist of a number (10) or start with
alphanumeric character followed by more characters and
ended with a semi-colon (p2:).

The label has function scope and cannot be redeclared
within the function. However, the same name can be used
as a label in different functions.

See Also

Gosub, Exit If

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

On Error Command
Purpose

Turns on the reporting of error messages by the operating
system or GFA-BASIC.

Syntax

On Error GoTo label

On Error Resume Next

On Error GoTo 0

label:label

Description

On Error is used to install an error trap in a Sub,
Function, or Procedure. The error information can be
obtained form the Err object. On Error is implemented for
compatibility reasons with VB, although the On Error
Resume Next is particular useful to trap errors from OLE
(Automation) objects. The preferred way in GFA-BASIC 32
of trapping errors is by using Try/Catch.

On Error GoTo label - Enables the error-handling routine
that starts at label specified in the required argument. The
label argument is any line label or line number. If a run-
time error occurs, control branches to the label, making the
error handler active. The specified line must be in the same
procedure as the On Error statement; otherwise, a
compile-time error occurs.

On Error Resume Next - Specifies that when a run-time
error occurs, control goes to the statement immediately
following the statement where the error occurred where
execution continues. Use this form rather than On Error
GoTo when accessing OLE objects.

On Error GoTo 0 - Disables any enabled error handler in
the current procedure.

Example

OnErrorStatementDemo()

Sub OnErrorStatementDemo()
Dim ObjectRef As Object, Msg$
On Error Resume Next ' Defer error trapping.
' Try to start non existent
' object, then test for
' Check for likely Automation errors.
Set ObjectRef = GetObject("MyWord.Basic")
Trace Hex(Err.HResult)
If Err.Number = 46
Msg = "There was an error attempting to open
the Automation object!" + _
Err.Description

MsgBox Msg, , "Deferred Error Test"
End If

End Sub

Remarks

In case of an error On Error Resume Next statement
continues to execute the next line as if the line is enclosed
in a Try: line : Catch : EndCatch block. In fact, GFA-BASIC
32 generates code like this, although optimized, to support
the VB error trap mechanism. The generated code is

therefore incremented with 8 bytes for each line in code
guarded with On Error Resume Next. This is true until the
trap is disabled using On Error Goto 0.

It is advised to use the Try / Catch method of error
trapping as much as possible. The resulting code is smaller
and it provides a better overview. In addition, a block
guarded with On Error Resume Next might easily catch
errors originating from a situation that should be handled,
not continued.

Additional background information

One of the assembler instructions generated for Try and On
Error is the floating-point command fwait to wait for the
FPU to complete the current operation. In case of a floating
point error an exception is not generated immediately, but
instead deferred to the next floating point operation or a
fwait. With slow FPUs, fwait leads to a performance
decrease, although, fwait always needs some time to
execute. In addition, implicitly GFA-BASIC 32 invokes
Err.Clear with each Try and On Error Resume Next
statement.

See Also

Try, Err

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

On GoSub Command
Purpose

Performs a branch to a local subroutine specified after
GoSub, depending on the value of the expression after On.

Syntax

On n GoSub label1, label2, …

n:integer expression
label1,label2, …:label names

Description

A branch to a local subroutine starting with a label is
performed, depending on the value of n. If the value of n is
less than 1 or greater than the number of labels specified
after GoSub, no branch will be invoked. If n is not an
integer, a Trunc(n) will be performed first and, if needed, a
branch will then be taken. After a local subroutine invoked
using On...GoSub is executed the program continues with
the first statement after On...GoSub. If a local subroutine
is not invoked, the execution immediately continues with
the first statement after On...GoSub.

No parameters can be passed to a subroutine invoked with
On...GoSub.

Example

ColorPrint("Happy Birthday", 1)
ColorPrint("To Me", 2)

Procedure ColorPrint(a$, opt)
On opt GoSub pr, pr1
pr:
Color 0
Print a$

Return
pr1:
Color 255
Print a$

Return
EndProc

Known Issues

Only one On...Gosub statement can be used in any one
procedure, function or sub-routine as that particular
program section stops on returning from the statement
called. This is shown in this alternative version of the
above-listed On-Gosub example below:

Tron dbshow // Gives a record of program execution
in the debug window

ColorPrint("Happy Birthday", 1, "To Me", 2)

Procedure ColorPrint(a$, opt, b$, opt2)
On opt GoSub pr, pr1
a$ = b$: opt = opt2
On opt GoSub pr, pr1
pr:
Color 0
Print a$

Return
pr1:
Color 255
Print a$

Return

EndProc

Proc dbshow
Debug Trace$

EndProc

An alternative would be either to embed the On...Gosub
command within a separate function (as is done in the
original example) or to use Select...EndSelect (or
Switch...EndSwitch) instead of the On part of the
statement as shown below:

ColorPrint("Happy Birthday", 1, "To Me", 2)

Procedure ColorPrint(a$, opt, b$, opt2)
Select opt
Case 1 : GoSub pr
Case 2 : GoSub pr1
EndSelect
a$ = b$
Select opt2
Case 1 : GoSub pr
Case 2 : GoSub pr1
EndSelect

Return
pr:
Color 0
Print a$

Return
pr1:
Color 255
Print a$

Return
EndProc

See Also

On GoTo, On Call, GoTo, If, Select

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

On GoTo Command
Purpose

Performs a branch to a local label specified after GoSub,
depending on the value of the expression after On.

Syntax

On n GoTo label1, label2, …

n:integer expression
label1,label2, …:label names

Description

A branch to a local subroutine starting with a label is
performed, depending on the value of n. If the value of n is
less than 1 or greater than the number of labels specified
after GoSub, no branch will be invoked. If n is not an
integer, a Trunc(n) will be performed first and, if needed, a
branch will then be taken. After a local subroutine invoked
using On...GoTo is executed the program continues with
the first statement after On...GoTo. If a local subroutine is
not invoked, the execution immediately continues with the
first statement after On...GoTo.

Example

OpenW 1
Local a%, n%
n% = 3
On n% GoTo p1, p2, p3, p4, p5, p6
p1:

Print "Mark p1:"
GoTo p7 :
p2:
Print "Mark p2:"
GoTo p7 :
p3:
Print "Mark p3:"
GoTo p7 :
p4:
Print "Mark p4:"
GoTo p7 :
p5:
Print "Mark p5:"
GoTo p7 :
p6:
Print "Mark p6:"
p7:
End

Remarks

See Also

On GoSub, On Call, GoTo, If, Select

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

DoEvents Function
Purpose

Yields execution so that the operating system can process
other events.

Syntax

n = DoEvents()

n : ivar

Description

DoEvents switches control to the operating-environment
kernel. Control returns to your application as soon as all
other applications in the environment have had a chance to
respond to pending events. This doesn't cause the current
application to give up the focus, but it does enable
background events to be processed.

This function is extremely useful for programs that are
constantly performing operations rather than waiting for
user input for refreshing output to a specific window which
Windows would otherwise report as being 'Non-Responsive'
until the operations stopped for user input and a Sleep
command was reached.

The DoEvents function returns (also when no message is
pending) the number of the received messages.

By using DoEvents instead of Sleep, all simultaneous
running programs (also server activities, printer spooler,

etc.) will slow down. A loop with DoEvents prevents energy
saving of a notebook. DoEvents was created only to use
during long arithmetical calculation operations. The main
message loop shouldn't use DoEvents, but instead use
Sleep.

Example

OpenW 1
Local n%
n = DoEvents()
Print n // Prints 1
Do : Sleep : Until Me Is Nothing

Remarks

The essential difference between PeekEvent, which reads
only one message a time and DoEvents, which handles all
pending messages, is that PeekEvent stores all messages
in the Menu() array and DoEvents only partially. Sleep
doesn't use the Menu() array at all.

GetEvent and Sleep are more alike. Both wait for a
message before going on. Sleep handles all pending
messages, where GetEvent only handles one message.

When porting a GFA-BASIC 16 program you shouldn't use
DoEvents or Sleep, but GetEvent or PeekEvent. By
using GetEvent or PeekEvent you can get problems, if you
use Ocx controls in your program.

As a rule: Don’t mix the Menu() array handling and Ocx
controls. Use GetEvent/PeekEvent only in programs, that
use the Menu() array. A program that uses OCXs has to
use Sleep (and DoEvents).

OpenW 1
Do
Plot Rand(_X), Rand(_Y), Rand(_C)
DoEvents
// to see the difference with DoEvents
// remove the comment before Sleep
'Sleep

Until Me Is Nothing

Never use an empty loop like the following one

Do
DoEvents

Until Me Is Nothing

See Also

Sleep, PeekEvent, GetEvent

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

End Command
Purpose

Terminates a GFA-BASIC program.

Syntax

End

Description

End terminates a GFA-BASIC program.

Example

Local i%
OpenW # 1 : Win_1.PrintWrap = True
For i% = 1 To 100
Print i%`

Next i%
End
Print 220

Opens a window and prints the digits from 1 to 100. The
program then ends. The last line Print 220 is not executed.

OpenW 1 , 10, 10, 235, 255
Ocx Command but1 = "click me", 10, 10, 200, 200
Do
Sleep

Until Me Is Nothing

Sub but1_Click
CloseW 1

End
EndSub

Known Issues

If End is used in the IDE, the IDE can suddenly freeze.

For more information, see here for more details.

See Also

Quit

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

http://gfabasic32.blogspot.co.uk/2011/10/don-use-end-to-terminate-your.html

Exit Command
Purpose

Exits a loop.

Syntax

Exit [Do | For]

Description

The Exit command makes it possible to exit any loop
(For...Next, While...Wend, Repeat...Until and Do...Loop). In
contrast to the GoTo command, a loop is terminated in an
"orderly" fashion by using Exit.

In other words, Exit always jumps to the first programming
statement after the last line of the loop, while GoTo can
jump anywhere within a Procedure or Function.

Exit Do and Exit For help to distinguish between the loops
and helps in preventing errors.

Example

OpenW # 1
Dim e% = 1
Dim i% = 1
Do
e% *= i%
Print Str$(i%) + "! = "; Str$(e%, 5)
If e% > 32000 Then Exit Do
i% ++

Loop

Calculates the factorial and stores the result in the variable
e%. The calculation is terminated if the result exceeds
32000.

Remarks

The If condition Then Exit Do (or Loop) command
common to other dialects of BASIC can also be used.

See Also

Goto, Exit If, Exit Sub

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/exitsub.htm

Stop Command
Purpose

Halts a GFA-BASIC program.

Syntax

Stop

Description

The Stop command halts the program on the line with the
Stop command.

When a program reaches this line GFA-BASIC 32 will show a
Message Box with the question: "Really stop?" and you can
choose yes or no. This provides the time to select Step
mode in the debug tray-icon.

Example

Local i%
OpenW # 1, 10, 10, 100, 100, -1
AutoRedraw = 1
For i% = 1 To 100
If Mod(i%, 10) = 0
Print i%
Stop

EndIf
Next i%

Performs a Stop whenever the counter i% is a multiple of
10.

See Also

End

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

PeekEvent Command
Purpose

Monitors menu and window events

Syntax

PeekEvent

Peek_Event

Description

PeekEvent monitors the occurrence of events in menu
bars, pop-up menus, and windows. PeekEvent stores the
messages read from the message queue in the Menu()
array. PeekEvent is not OLE compatible and will not execute
event subs.

The relevant tests must be performed by the programmer.
In contrast to GetEvent, PeekEvent does not wait.

Example

Local i%
OpenW # 1
Dim m$(20)
Data Lissajous , Figure 1 , Figure 2 , Figure 3
Data Figure 4
Data End ,"", Names , Robert , Piere , Gustav
Data Emile , Hugo ,!!
i% = -1
Do

i%++
Read m$(i%)//read in the menu entries

Until m$(i%) = "!!"//marks the end
m$(i%) = ""//terminates a menu
Menu m$()//activates the menu bar
//
Do
PeekEvent
If MENU(1) = 1
Print "A key was pressed"

Else If MENU(1) = 20
Print "A menu entry was selected"

EndIf
Until MouseK = 2 Or Win_1 Is Nothing
CloseW # 1

Remarks

PeekEvent is implemented for compatibility with GFA-
BASIC 16, but should not be used in OLE programs.

See DoEvents for a discussion on PeekEvent and
DoEvents.

See Also

DoEvents, Sleep, GetEvent

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Quit Command
Purpose

Terminates a GFA-BASIC program and returns back to the
calling program.

Syntax

Quit [i]

i:integer expression

Description

The Quit command terminates the current GFA-BASIC
program and returns to the calling program. Optionally, a
16 bit integer value can be returned to the calling program.
The following convention applies:

i = 0 the program was executed without error.

i > 0 an internal program error has occurred.

i < 0 an operating system error has occurred.

Example

OpenW # 1, 10, 10, 200, 100, -1
Quit

Remarks

Compiled programs are terminated with Quit as well.

Known Issues

Using Quit in the IDE with or without the optional 16-bit
integer can lead to an 'Access Violation' error as shown in
the example below:

Local i As Int16 = 0
OpenW # 1, 10, 10, 200, 100, -1
Try
Quit i

Catch
Print Err.Description

EndCatch

Of more concern is, if you re-run this program, it will quit,
along with the GB32 application running it resulting in any
unsaved work being lost.

For more information, see here

See Also

End

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

http://gfabasic32.blogspot.co.uk/2011/10/don-use-end-to-terminate-your.html

Do...Loop Structure
Purpose

Declares an infinite programming loop.

Syntax

Do

// program segment

Loop

Description

Do...Loop is an endless loop which can only be terminated
by the conditional command Exit If or unconditional
command Exit Do.

Example

OpenW # 1
Local r
Do
r = 0
Input "Enter radius";r
If r < 0 Then Exit Do
Print "The circumference of the circle is: "; 2 *
PI * r

Print
Loop
Print
Print "End of program!"

The program requests the user to enter the radius of a
circle. If the entered value is greater than or equal to zero,
the circumference of the circle is calculated and displayed.

You are then requested to enter another value. If you enter
a negative value the loop is terminated and "End of
program!" is displayed.

Remarks

The Do...Loop statement is the most universal
programming loop and it can be used to emulate all other
loops:

Example

i% = 0 For i%=1 To n%
Do //

programsegment
If i% > n% Then Exit Do
// programsegment
Loop Next

Do While Inkey$ <>

"A"
If Inkey$ = "A" Then Exit
Do

//
programsegment

// programsegment
Loop Wend

Do Repeat
// programsegment //

programsegment
If Inkey$ = "A" Then Exit Until Inkey$ = "A"

Do
Loop

Even more powerful loop conditions can be created by
combining the Do...Loop with the evaluation part of the
While...Wend and/or Repeat...Until loops:

Local a$ = "ABCDE...Z", b$, n%
Do Until n% > Len(a$)
Inc n%
b$ = Mid$(Trim$(a$), n%, 1)
Print b$;

Loop While Upper$(b$) <> "."

Reads a sequential character from string a$, until the end of
the string is reached and while the character string starts
with something other than a full stop.

OpenW 1
Do While MouseK = 0 : Loop
Do While (MouseK And 1)
Box MouseX, MouseY, Add(MouseX, 10), Add(MouseY,
10)

Loop Until Upper$(InKey$) = "A"

When the left mouse button is pressed it draws a rectangle
at the current mouse position, until a lowercase or
uppercase "a" is typed on the key-board.

The following loop combinations are possible:

Do ... Loop
Do ... Loop Until
Do ... Loop While
Do ... Wend
Do ... Until

While ... LoopDo While ... Loop
While ... Loop UntilDo While ... Loop Until
While ... Loop WhileDo While ... Loop While
While ... WendDo While ... Wend
While ... UntilDo While ... Until

Repeat ... LoopDo Until ... Loop
Repeat ... Loop UntilDo Until ... Loop Until
Repeat ... Loop WhileDo Until ... Loop While
Repeat ... WendDo Until ... Wend
Repeat ... UntilDo Until ... Until

Do ... Loop
Do ... Loop Until
Do ... Loop While
Do ... Wend
Do ... Until

See Also

For Next, While Wend, Repeat Until

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

For Next Command
Purpose

a programming loop which is executed the specified number
of times.

Syntax

For i=x To | UpTo | DownTo y [Step z]

// program-segment

[condition] Exit For

Exit For If [condition]

Next [i] | EndFor [i]

i:avar; any numeric variable

x, y, z:aexp; arithmetic expression

Description

A For...Next loop begins by initializing the loop counter i to
the specified starting value. With each run the loop counter
is incremented or decremented by the specified amount (in
case of default by 1, otherwise by the step value in z).
When the counter over- or underflows the loop criterion in
y, the command after the next Next is unconditionally
branched to.

In the following structure:

For i = x To y
// program segment

Next i

the loop counter i is incremented by 1 every time the loop
runs through Next i. The loop ends when i overflows the
loop criterion value y.

In the following structure:

For i = x To y Step z
// program segment

Next i

Every time the loop runs through Next i, the loop counter i
is incremented by step amount in z, if this amount is
positive, or is decremented by step amount in z, if this
amount is negative.

The loop ends when i, for Sgn(z)=1, overflows the loop
criterion value y or, for Sgn(z)=-1, underflows the loop
criterion value y.

The following structure:

For i = x DownTo y
// program segment

Next i

is a special case of:

For i=x To y Step z, where z=-1.

The loop counter i is decremented by 1 every time the loop
runs through Next i. The loop ends when i underflows the
loop criterion value in y. Step can also be used with

DownTo to decrement the count by values greater than 1,
but it must always have a negative value.

If, at the very beginning of the loop, the loop counter i is
already greater than (for For...To) or less than (for
For...DownTo or For...To...Step z, when z<0) the loop
criterion y, the loop is not executed.

In the following structure:

For i = x To i + y
// program segment

Next i

... the (i + y) loop criterion is calculated before the loop
is started, rather then re-evaluated with every increase in
i.

Only integers should be used with For...Next loops NOT
decimal/floating point numbers, as with the latter the count
may fail to reach the end of the loop - sometimes because
the Single or Double accumulated value is actually larger
the the end of loop criterion, sometimes because if a
combination of variable types is used, one may not exactly
match the others. For more information, see the Remarks
section below.

By using an Exit For command, the For...Next loop can be
terminated regardless of whether the loop condition is
fulfilled.

Finally, EndFor can be used in place of Next.

Do note, that the loop criterion in the For...Next loop must
always be numeric!

For loop criteria which are not numeric the While…Wend,
Repeat...Until or Do...Loop loops must be used.

Example

Local n As Int32, s As Double
// Prints 1 to 7 then exits loop
For n = 1 To 10
Print n`
Exit For If n = 7

EndFor n
Print
// Prints 10 down to 1
For n = 10 DownTo 1
Print n`

Next n
Print
// Print 1.1 to 1.8 then exits loop
For s = 1.1 UpTo 2.2 Step 0.1
Print s`
If s NEAR 1.8 Then Exit For

Next s

Remarks

As long as different loop counter variables are used the
For...Next loops can be embedded to any number of levels.

As noted above, only Integers should be used in a For...Next
loop as, otherwise, the loop may not complete. This, and a
workaround, are shown below:

looperror(4.2, 4)
newloop(4.2, 4)
Debug.Show

Proc newloop(vm As Double, s As Double)

// Alternative by James Gaite 28th March 2018
Debug "Alternative loop from 0 to" & vm & "
through" & s & " iterations."

Local Int32 ct = Round(vm / (vm / s)), v
For v = 0 To ct : Debug (vm / s) * v : Next v

EndProc

Proc looperror(vm As Double, s As Double)
// Bug report by Code Labs 28th March 2018
Debug "BUG double: missing 4.2"
Local Double v
For v = 0.0 To CDbl(vm) Step CDbl(vm / s) : Debug
v : Next v

EndProc

See Also

For Each, While Wend, Repeat Until, Do Loop, ExitFor

{Created by Sjouke Hamstra; Last updated: 28/03/2018 by James Gaite}

For Each Command
Purpose

Repeats a group of statements for each element in a
collection or hash.

Syntax

For Each element In group [statements]
[Exit For]
[statements]
Next [element]

element:variable
group:collection or hash

Description

The For...Each block is entered if there is at least one
element in group. Once the loop has been entered, all the
statements in the loop are executed for the first element in
group. If there are more elements in group, the statements
in the loop continue to execute for each element. When
there are no more elements in group, the loop is exited and
execution continues with the statement following the Next
statement.

Any number of Exit For statements may be placed
anywhere in the loop as an alternative way to exit. Exit For
is often used after evaluating some condition, for example
If…Then, and transfers control to the statement
immediately following Next.

You can nest For...Each...Next loops by placing one
For...Each...Next loop within another. However, each loop
element must be unique.

Note If you omit element in a Next statement, execution
continues as if element is included. If a Next statement is
encountered before its corresponding For statement, an
error occurs.

Example

Dim Hi As Hash Int, i%
Hash Add Hi["David"], 3
Hash Add Hi["Paul"], 7
Hash Add Hi["Simon"], 5
For Each i In Hi[]
Print i, Each, Hi[$ Each]

Next

or

Local f As Form
AutoRedraw = True
OpenW 1 : OpenW 2 : OpenW 3
For Each f In Forms
Print "Form 1 Name: "; f.Name

Next
Do : Sleep : Until Win_3 Is Nothing
CloseW 2 : CloseW 1

Remarks

See Also

For Next, Hash

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

While...Wend Structure
Purpose

A terminal program loop which runs until the condition at
the beginning of the loop is logically "true".

Syntax

While condition
...
// programsegmemt
...
[Exit Do | Exit If... | EndDo]
Wend | EndWhile

condition : any numeric, logical or string condition

Description

The start of a While...Wend loop must contain a numeric,
logical or string condition, which is evaluated before each
execution of the body of the loop. If the condition is
logically "true", the body of the loop is executed. Otherwise,
a branch is taken to the program statement immediately
after Wend.

The While...Wend loop is an entry tested loop. This means
that the loop executes only when the condition at the
beginning of the loop is logically "true". By using an Exit
If... or Exit Do command, the While...Wend loop can be
terminated regardless of whether the loop condition is
fulfilled. EndDo can be used as well.

EndWhile is synoymous with Wend

Example

While Not Upper$(InKey$) = "A"
Exit If MouseK = 2

Wend // or EndWhile if you prefer

A loop which runs as long as no lowercase or uppercase "a"
is entered from the keyboard or the right mouse button is
not pressed.

Remarks

The While...Wend loop can be seen as a logical negation of
the Repeat...Until loop, whereby a While Not corresponds
to an Until.

See Also

For, Repeat, Do, For Each

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

With Command
Purpose

Executes a series of statements on a single object or a
user-defined type.

Syntax

With object [statements]

End With

object: Name of an object or a user-defined type.

Description

The With statement allows you to perform a series of
statements on a specified object without requalifying the
name of the object. For example, to change a number of
different properties on a single object, place the property
assignment statements within the With control structure,
referring to the object once instead of referring to it with
each property assignment.

With can be used up to 64 levels deep. However, there is
no way to access a higher leveled object, unless the object
is fully named.

A With structure is closed with End With.

After executing the Ocx or OcxOcx command, With is
implicitly invoked and the properties and methods of the

Ocx are accessible without naming the object. The With is
valid until the next Ocx or OcxOcx command.

Example

Ocx Label MyLabel = "", 10, 10
With MyLabel
.Height = 18
.Width = 200
.Caption = "This is MyLabel"

End With
Do : Sleep : Until Me Is Nothing

The example illustrates use of the With statement to assign
values to several properties of the same object.

Ocx StatusBar StatusBar1
Dim tmpP As Panels
Set tmpP = StatusBar1.Panels
With StatusBar1
Print .Width
With .Panels
Print .Count

EndWith
EndWith
Set tmpP = Nothing
Do : Sleep : Until Me Is Nothing

Remarks

See Also

Type, Ocx, OcxOcx

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Repeat Until Command
Purpose

A terminal program loop which runs until the condition at
the end of the loop is logically "true".

Syntax

Repeat ...
// programsegmemt
...
[EndDo | Exit Do | Exit If...]
Until condition

condition : any numeric, logical or string condition

Description

The end of a Repeat...Until loop must contain a numeric,
logical or string condition, which is evaluated after each
execution of the body of the loop. If the condition is
logically "true", a branch is taken to the program statement
immediately after Until. Otherwise, the body of the loop is
executed again.

The Repeat...Until loop is an exit tested loop. This means
that the loop executes at least once and the test, whether
or not, the condition is fulfilled is first performed at the end
of the loop.

By using an Exit If... or Exit Do command, the
Repeat...Until loop can be terminated regardless of

whether the loop condition is fulfilled. EndDo can be used
as well.

Example

Dim a$
OpenW # 1
Repeat
a$ = Upper$(InKey$)

Until a$ = "A"
CloseW # 1

A loop which runs until lowercase or uppercase "a" is
entered from the keyboard.

See Also

For Next, While Wend, Do Loop

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

If...EndIf Command
Purpose

A conditional branch statement allowing for execution of
specific program segments only when a condition is logically
"true".

See Remarks for comparisons of floating-point values.

Syntax

If condition [Then]
// program segment
[Else If condition
// program segment]
[Else
// program segment]
>EndIf

Condition:any numeric, logic or string condition

Description

The If...EndIf statement is, in addition to Select...Case,
the most important command for controlling the program
flow. The program segment after an If...EndIf statement
will be executed if, and only if, the condition immediately
following the If is logically True. Otherwise, the control is
passed to an Else...If or Else within the same If...EndIf
structure. If there are no Else...If or Else, a branch is
performed to the statement immediately after the next
EndIf. The following structure is an exclusive structure.

Dim a% = 10
If a% <> 0 Then
Print "a% <> 0"

Else
Print "a% = 0"

EndIf

This means that the test, if the condition a% <> 0 is
logically true, will be performed first. If it is, the first
program segment is executed and a branch to the
statement following the EndIf is taken. If the condition is
logically false, the program segment after Else is executed
and a branch to the statement following the EndIf is taken.
In no case will both program segments be executed.

This can be extended to an array of exclusive tests:

If Mod(42, 4) <> 0
Print "42 is not fully divisible by 4"

Else If Mod(42, 5) // means: <> 0
Print "42 is not fully divisible by 5"

Else If Mod(42, 8)
Print "42 is not fully divisible by 8"

Else If Mod(42, 9)
Print "42 is not fully divisible by 9"

Else
Print "42 is fully divisible by 4,5,8 and 9"

EndIf

Gives only '42 is not fully divisible by 4', because the very
first condition is logically true. The first condition in the
condition list is logically true causes the execution of the
first program segment, and then a branch to the statement
immediately after EndIf. This is irrespective of whether
only one, several or all conditions in the condition list are
logically true.

True and false

To GFA-BASIC 32 any value that is not 0, is true. Likewise,
the value 0 represents false. The condition If 1, therefore,
will always evaluate to true, and If 0 always evaluate to
false. When you want to test if a condition is true, you can
simply include the expression:

If a$ [Then]

This expression evaluates to nonzero (true) when Len(a$)
> 0, that is, when a$ contains any data.

Multiple conditions

If you want to test whether two conditions are true, you can
use the logical AND operator &&. The condition is evaluated
form left to right. To evaluate to true both conditions must
be true. When the first condition is false, the second isn't
evaluated.

If Len(a$) && height => 100

This expression evaluates to true when a$ contains data
and the height variable is greater or equal to 100.

Note Do not confuse GFA-BASIC 32's logical AND operator
&& with the bitwise AND operator And or %&. The &&
operator evaluates two Boolean (true or false) expressions
to produce a true or false result. The bitwise %& (And)
operator, on the other hand, works bits (1's and 0's). Would
the && operator be replaced by And, then both expression
are evaluated to be And-ed. Then the result of the bitwise
And operation is tested for true or false.

Dim a% = 10

If a% = 0 && ff() Then Print "Only one evaluated"
If a% = 0 And ff() Then Print "Both evaluated"

Function ff() As Int
Debug "ff"
Return 1

EndFunction

To test whether either of two conditions is true (or if both
are true), use GFA-BASIC 32's logical OR operator ||. The
condition is evaluated form left to right. To evaluate to true
only one of the conditions must be true. When the first
condition is true, the second isn't evaluated.

If a% = 0 || ff() Then Print "Both evaluated"
If a% || ff() Then Print "Only one evaluated"

The logical OR operator || is not the same as the bitwise
OR operator Or, |, or %|. Replacing || with Or would first
evaluate both conditions, which are then bitwise Or-ed.
Then the result of the bitwise or operation is tested for true
or false.

If a% Or ff() Then Print "Both evaluated"

Remarks

Floating-point consistency when comparing floating-
point values.

You might want to select the "Improve Floating-point
consistency" checkbox in the Compiler tab of the Properties
dialog. This options makes sure that before the CPU
processes a floating-point value, the value is (re)read from
memory (= variable). This is important, because the CPU
works with 80-bit floating point values, where variables hold
64-bit values. Out of efficiency reasons the compiler always

tries to use current value in the processor register in the
next step as well (speed optimization). The following
example demonstrates this. The If condition uses the result
of d# = a#/b# that is currently in the CPU, which is a 80-
bit value. The comparison with the value in c# is always
false, because this is 64-bit floating-point value.

Dim a# = 2, b# = 3, c#, d#
c# = a# / b#
d# = a# / b#
If d# = c# Then Print "Eq"

It is important to get the correct value in the CPU registers
before making a comparison. Checking the "Improve
floating-point consistency" box is one option. However this
influences all floating-point operations and might decrease
efficiency.

Another option is to force a reload of the value from d# in
the comparison. This loads a 64-bit value into the register
and the comparison with c# will be correctly evaluated. To
force a reload the processor must be cleared, which is easily
done with ~0.

Dim a# = 2, b# = 3, c#, d#
c# = a# / b#
d# = a# / b#
~0 ' clear processor
If d# = c# Then Print "Eq"

~0 is translated in the assembler instruction sub eax, eax.
The value is reloaded from d#.

Known Issues

It is sometimes possible to include the If...Then...Else
combination on one line as follows:

Local a% = 10, b% = 5
If a% = 9 Then a% = 20, b% = 10 Else a% = 9, b% =
15

Print a%, b%

In this case, Endif is superfluous to requirements and
should not be used.

However, with some commands such as Print and when
Functions are invloved, this structure throws up an error.
Hence...

Local a% = 10, b% = 5
If a% = 9 Then Print "TRUE" Else Print "FALSE"

...will be reformatted by the IDE and result in an error. To
get around this, you can use the ':' separator as follows:

Local a% = 10, b% = 5
If a% = 9 Then Print "TRUE" : Else : Print "FALSE"

These errors occur as the 'Then' keyword is a late addition
to GFA and the IDE seems not to have been fully edited to
accomodate it.

See Also

Select...EndSelect, NEAR

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Select and Switch Commands
Purpose

A conditional command which enables execution of specified
program segments depending on an integer expression.

Syntax

Select [Case] x
[Case value1[,value2,...]]
[statements]
[Case To value1]
[Case value1 To [value2]]
[Default | Otherwise | Case Else]
[statements]
EndSelect

Switch [Case] x
[Case value1[,value2,...]]
[statements]
[Case To value1]
[Case value1 To [value2]]
[Default | Otherwise | Case Else]
[statements]
EndSwitch

x:integer expression or a string - only the first four
characters of which are significant.
value1,value2,...an integer or string constant of up to four
characters

Description

In all instances below the commands Switch and Select
are interchangeable, as are their end statements
EndSwitch and EndSelect. This is shown best by the
following statement:

Local Int32 a = 4
Select a
Case <3 : Print "Less than three"
Otherwise : Print "More than three"
EndSwitch

Select takes one of the Case conditional branches
depending on the value of "x". The process begins by
selecting and evaluating the first Case conditional branch,
to test if "x" corresponds to at least one of the values after
Case. If it does, the program segment following this Case
is executed and a branch is taken to the program line
following the EndSelect.

If "x" does not correspond to any values in the first Case
conditional branch the next Case is selected. Every Case
must be followed by at least one value. When entering a list
of values its elements must be separated by commas.
Furthermore, GFA-BASIC will also accept a range of values.

Case To value corresponds to a range of whole numbers
whose elements are less than or equal to value.

Case value To corresponds to the range of whole numbers
whose elements are greater than or equal to value.

Case value1 To value2 corresponds to the range of whole
numbers whose elements are greater than or equal to
value1 and less than or equal to value2.

If no Case conditional statement is satisfied the program
segment after the optional Default is executed and a

branch is taken to the program line following the
EndSelect; if there is no Default, a branch to the program
line following the EndSelect is taken immediately.

The Select...Case conditional statement can therefore
assume the following structures:

x = value Case value
x <= value Case To value
x => value Case value To
(x => value1) And (x<=
value2)

Case value1 To value2

Example

OpenW 1
PrintScroll = 1
Ocx Timer tmr1
tmr1.Enabled = True
tmr1.Interval = 50
Do
Sleep

Until Me Is Nothing

Sub tmr1_Timer
Local a%
a% = Rand(101)
Select a%
Case 1 To 50
Print "Number between 1 and 50"

Case 51 To 99
Print "Number between 51 and 99"

Case 0, 100
Print "Number is either 0 ro 100"

EndSelect
EndSub

Remarks

Otherwise or Case Else can be used instead of Default.

Notice that the Select Case structure evaluates an
expression once at the top of the structure. In contrast, the
If...Then...Else structure can evaluate a different expression
for each ElseIf statement. You can replace an
If...Then...Else structure with a Select Case structure only
if the If statement and each ElseIf statement evaluates the
same expression. The Select...Case if often considerably
faster than If...ElseIf.

Despite previous documentation stating otherwise,
Select...Case can be used with strings but only up to a
maximum length of four characters. This is because, by
default, Select...Case assumes an integer result to any
evaluation and, if a string is passed, it simply copies in up
to the first four characters of that string into the memory
area reserved for the integer. This can be best shown in the
following example:

test("a")
test("AB")

Procedure test(a$)
// Due to the way Select works, the Case
statements can either use the string value...

Select a$
Case "A" : Print "That was an A (select by string
value - upper case)"

Case "AB" : Print "That was AB (select by string
value - upper case)"

EndSelect
// ...or an integer made from the ASCII values of
the string...

Select a$

Case $41 : Print "That was an A (selected by
numerical value)"

Case $4241 : Print "That was AB (selected by
numerical value)"

EndSelect
// ...BUT any strings used must be case specific.
Select a$
Case "a" : Print "That was an 'a' (select by
string value - lower case)"

Case "ab" : Print "That was 'ab' (select by
string value - lower case)"

EndSelect
EndProcedure

Known Issues

It is possible within the IDE to leave a 'blank' Case section
as below:

OpenW 1
Local Int32 a = 1
Select a
Case 1 // 'Blank' Case section
Case 2 : Print "Not 1"
Default : Print "Not 1 or 2"
EndSelect
Do : Sleep : Until Win_1 Is Nothing

This is useful if no action is to be taken for a certain value
or range of values: the above example prints nothing in the
IDE. HOWEVER, when the above code is compiled, any
blank Case sections are ignored and any value or action
contained in the next Case section or, if there are no more,
the Default or Otherwise section is performed instead;
hence the above example, if compiled, prints 'Not 1'. This is
a known error to which there is a simple workaround: for
the Case section that would normally be left blank, add a

piece of code that does nothing; e.g. in the above example,
rather then leave the case blank, the expression a = a can
be used.

See Also

If...EndIf

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

Call command
Purpose

Transfers control to a Sub, Procedure, Function, or DLL
procedure.

Syntax

[Call] subroutine [paramlist]

Description

You are not required to use the Call keyword when calling a
procedure. The parameters in the paramlist may be
enclosed in parentheses.

Example

Global a$
a$ = "GFA"
Call test_it(a$)
Do
Sleep

Until Me Is Nothing

Sub test_it(a$)
OpenW 1
Text 10, 10, "Hallo " + a$

EndSub

See Also

@

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

C:()(), CCall() Function
Purpose

Executes a subroutine at a specified address and returns a
32-bit integer value.

Syntax

x = C:(addr)([parameters])

x = CCall(addr)([parameters])

x, addr:iexp
parameters:aexp

Description

The C:()() and CCall()() functions call a C or an assembler
subroutine at address addr%. The parameters are placed in
from right to left on the stack. The last parameter is the
first on the stack.

C:()() returns with a simple ret instruction. The caller must
correct the stack.

The parameters can be coerced to a specific format by
preceding the value with one of the following designators:

Dbl: double
Sng: float, single
Large: Large integer
Cur: Currency value
L: Long

Int: Integer
Var: Variant

Example

Remarks

The stack:

a% = CCall(addr%)(1, 2, 3) or a% = C:(addr%)(1, 2, 3)

12[esp]3

8[esp]2

4[esp]1

[esp]Return address

The routine that is called doesn't correct the stack pointer.

See Also

LC:(), P:(), LP:(), Call(), CallX(), LCCall(), PasCall(),
LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

LC:()(), LCCall()() Function
Purpose

Executes a subroutine at a specified address and returns a
64-bit integer (Large) value.

Syntax

x = LC:(addr)([parameters])

x = LCCall(addr)([parameters])

x:64-bit integer
addr:iexp
parameters:aexp

Description

The LC:()() and LCCall()() functions call a C or an
assembler subroutine at address addr%. The parameters
are placed in from right to left on the stack. The last
parameter is the first on the stack.

LC:()() return with a simple ret instruction. The caller must
correct the stack.

The parameters can be coerced to a specific format by
preceding the value with one of the following designators:

Dbl: double

Sng: float, single

Large: Large integer

Cur: Currency value

L: Long

Int: Integer

Var: Variant

Example

Remarks

See Also

C:(), P:(), LP:(), Call(), CallX(), CCall(), PasCall(),
LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

LP:()(), LPasCall() Function
Purpose

Executes a subroutine at a specified address and returns a
Large value.

Syntax

x = LP:(addr)([parameters])

x = LPasCall(addr)([parameters])

x:Large
addr:iexp
parameters:aexp

Description

The parameters are placed in reverse order on the stack.

LP:()() and LPasCall()() expects the subroutine to clear
the stack.

The parameters can be coerced to a specific format using by
preceding the value with one of the following designators:

Dbl: double

Sng: float, single

Large: Large integer

Cur: Currency value

L: Long

Int: Integer

Var: Variant

Example

Dim a% = ProcAddr(test)
~LP:(a%)(Large:2, 3)
' or
~LPasCall(a%)(Large:2, 3)

Procedure test(i%, la As Large)
Print la, i%

EndProc

Remarks

A Procedure takes it parameters by value using the StdCall
convention.

See Also

C:(), LC:(), P:(), LP:(), Call(), CallX(), CCall(), LCCall(),
PasCall(), LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Call()(),CallX()() Command
Purpose

Executes a subroutine at a specified address.

Syntax

Call(addr)([parameters])

CallX(addr)([parameters])

x, addr:iexp
parameters:registers

Description

The Call()() and CallX()() functions call a C or an
assembler subroutine at address addr%. Any arguments are
passed through the pseudo registers _EAX, _ECX, etc.
CallX allows passing segment registers - _DS, _ES, _FS,
and _GS - as well.

Example

Debug.Show
Dim a$ = Space$(30)
Call (LabelAddr(xMemClr)) (_EDI = V:a$, _ECX =
30)

Trace a$
If 0
xMemClr: . mov al, 67 : . rep stosb : . ret

EndIf

Remarks

Call()() and CallX()() don't use the stack. A subroutine
should return with a simple ret instruction.

See Also

LC:(), P:(), LP:(), CCall(), LCCall(), PasCall(), LPasCall(),
StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

StdCall() Function
Purpose

Executes a subroutine at a specified address and returns a
Long value.

Syntax

x = StdCall(addr)([parameters])

x:Long
addr:iexp
parameters:aexp

Description

StdCall()() expects the subroutine to clear the stack. The
parameters (when 4 bytes in size) are placed ont the stack
as follows:

a% = StdCall(addr%)(1, 2, 3)

12[esp] 3

8[esp] 2

4[esp] 1

[esp] return address

The called routine should end with 'ret 12' correcting the
stack.

The parameters can be coerced to a specific format by
preceding the value with one of the following designators:

Dbl: double
Sng: float, single
Large: Large integer
Cur: Currency value
L: Long
Int: Integer
Var: Variant

Example

Dim a% = ProcAddr(test)
~StdCall(a%)(Large:2, 3)

Procedure test(la As Large, i%)
Print la, i%

EndProc

Remarks

A Procedure takes it parameters by value using the StdCall
convention. StdCall is the default calling convention for
GFA-BASIC 32 and Windows.

See Also

C:(), LC:(), P:(), LP:(), Call(), CallX(), CCall(), LCCall(),
PasCall(), LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

LStdCall() Function
Purpose

Executes a subroutine at a specified address and returns a
Large value.

Syntax

x = LStdCall(addr)([parameters])

x:Large
addr:iexp
parameters:aexp

Description

LStdCall()() expects the subroutine to clear the stack.

The parameters can be coerced to a specific format using by
preceding the value with one of the following designators:

Dbl: double

Sng: float, single

Large: Large integer

Cur: Currency value

L: Long

Int: Integer

Var: Variant

Example

Dim a% = ProcAddr(test)
~LStdCall(a%)(Large:2, 3)

Procedure test(la As Large, i%)
Print la, i%

EndProc

Remarks

A Procedure takes it parameters by value using the StdCall
convention. StdCall is the default calling convention for
GFA-BASIC 32 and Windows.

See Also

C:(), LC:(), P:(), LP:(), Call(), CallX(), CCall(), LCCall(),
PasCall(), LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

$AutoPost directive
Purpose

Enables automatic recognition of variable name postfixes.

Syntax

$AutoPost[fix][On|Off]
$NoAutoPost[fix]

Description

$AutoPost enables - and $NoAutoPost disables - the
automatic recognition of postfixes with variable names.

By default, GFA-BASIC 32 recognizes variables without a
postfix after they are declared with a postfix (Local i% : i =
12). This is only possible when the name is used with one
type; if the variable name is used for an integer it cannot
then be used for a string at the same time.

$AutoPost is synonymous with $AutoPostOn,
$AutoPostfix and $AutoPostfixOn

$NoAutoPost is synonymous with $NoAutoPostfix,
$AutoPostOff and $AutoPostfixOff

Example

Dim a$
$AutoPostOn ' Postfix recognition enabled
a = "GFA" ' a is recognised as a$
$NoAutoPost ' Disable postfix recognition

a = "GFA" ' Does not compile - IDE Error:
"Variable a?"

Remarks

The default setting differs from the default behaviour of
GFA-BASIC for Windows 16-bit. In the 16-bit version, a
name could be used many times, but each occurence would
still be different because of the use of a postfix (Local i%,
i$). When a 16-bit program is ported to 32-bit the compiler
might be instructed to use the postfix to differentiate
between the variables. To make sure that the variables are
used with a postfix explicitly use $NoAutoPost.

In addition, $NoAutoPost only works when variables are
declared with a postfix; if a variable is declared using the
Dim variable As vartype format, it is unaffected by the
$AutoPost settings and takes precedence over any
variables declared using a postfix as shown in the example
below:

Dim a& = 3, a% = 4, a As Int32
$AutoPost
a = 5 // Assigns value to a not a&
or a%

$NoAutoPost
a = 7 // Again assigns value to a
not a& or a%

Print a&, a%, a // Prints 3 4 7

$ObjCheck or $Obj re-enables auto post recognition as
well.

See Also

$ArrayChk, $For, $Obj, $Step

{Created by Sjouke Hamstra; Last updated: 23/06/2015 by James Gaite}

$ArrayCheck directive
Purpose

A code optimization directive which can be used to switch
off or turn back on array boundary checking.

Syntax

$ArrayCheck[On | Off]
$ArrayChk[On | Off]

Description

This directive can be used to temporarily disable the
checking in a portion of the code. $ArrayCheckOff disables
the checking of array boundaries. $ArrayCheckOn enables
the checking again. The code in between these two
directives will not protected against array boundary
overflow.

For finished programs, checking of array boundaries with
each array access may not be considered necessary and, as
it takes additional code steps and requires extra execution
time to provide array index checking, it may be beneficial to
switch it off. The default setting for array index checking is
controlled in the Compiler Properties dialog box but always
keep in mind that the ArrayCheck directive overrides this
default setting.

Example

$ArrayCheckOff ' Disable boundary checking
Dim arInt%(1)

' Assign a value to the third element (array
starts at element 0)

' Since error checking is disabled the program
doesn't report an error.

arInt%(2) = 1 : Print "No Error"
$ArrayChkOn ' Enable checking again
' The following code uses array checking once
again

arInt%(2) = 1 ' Causes an 'Array-Bounds-
Exceeded' error

Remarks

ArrayCheckOn is synonymous with ArrayChkOn, as
ArrayCheckOff is with ArrayChkOff.

See Also

$AutoPost, $For, $Obj, $Step

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

$For directive
Purpose

Disables overflow checking for For...Next statements

Syntax

$ForFast
$ForNoOver[flow[Check]]
$ForNoCheck[Over[flow]]

$ForSlow
$ForOver[flow[Check]]
$ForCheck[Over[flow]]

Description

$ForFast, or any one of the $ForNo.. variants, disables
overflow checking of the count variable within a For...Next
loop while $ForSlow, or any one of the $For.. variants,
enables it again; the default state is enabled.

Overflow checking disabling is only possible with integer
count variables. The performance gain is about 30% for an
empty loop.

Example

Dim a$, i%, t As Double
$ForFast ' Disable overflow checking
t = Timer
For i% = 0 To 1000000 : a$ = Str(i) : Next i%
Print "ForFast: "; Timer - t

$ForSlow ' Enable overflow checking again
t = Timer
For i% = 0 To 1000000 : a$ = Str(i) : Next i%
Print "ForSlow: "; Timer - t

Remarks

For...Next loops until _maxInt are only possible with
overflow check enabled. The following example would
normally loop 101 times before the count variable i% will
overflow (_maxInt to _minInt, 2147483647 to
-2147483648, 0x7fffffff to 0x80000000). Normally, the loop
is ended, however with $ForFast no overflow check is
performed and results in an infinite loop.

Local i%, j%
j% = _maxInt
$ForFast
For i% = j% - 100 To j% // Loop using $ForFast
Print i

Next

See Also

$AutoPost, $ArrayChk, For...Next, $Obj, $Step

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

$Obj directive
Purpose

Error checking for OLE-Object types.

Syntax

$ObjNoErr | $ObjectNoErr

$ObjCheck | $ObjectCheck

Description

$ObjNoErr or $ObjectNoErr disables (temporarily) the
error checking for OLE object types. Similar to array access,
each object access is encapsulated in error checking code
and every method call or property access is guarded. This
requires some additional code and execution time (the
default setting). Without the checking you will save some
code (4 bytes) per OLE property or method call and as a
result the code will execute faster because no checks are
performed.

With $ObjCheck the error checking is re-enabled. See
HResult for more information.

Example

$ObjNoErr
OpenW 1
Ocx CommDlg cd
cd.Flags = cdfScreenFonts | cdfShowHelp
cd.ShowFont

cd.Flags = cdcShowHelp
cd.ShowColor

Sub cd_OnHelp
Me.Caption = "Help Requested"

EndSub

Remarks

Normally object calls don't return error values; however it is
advisbale to still use $ObjNoErr with caution.

See Also

HResult, $AutoPost, $ArrayChk, $For, $Step

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

$Step
Purpose

Option to set single step (debug) mode at subroutine level.

Syntax

$Step[On | Off]

Description

$StepOff switches off the insertion of single step code
before each code line. The code affected can no longer be
debugged using the debug icon in the tray. In addition Ctrl-
Break is disabled as well. This setting only affects code
running inside the IDE.

$StepOff is used at the procedure level. Once a procedure
is fully tested and error free the $StepOff directive speeds
up the execution time and reduces the size of the
subroutine. It'll save 5 bytes before each code line and
reduces the speed about 18 cycles per line.

$StepOn re-enables the insertion of debug code before
each line.

$Step (without On or Off) enables a single insertion of
debug code, without disturbing the global setting. This could
be useful for guarding a loop, so that the program can be
stopped using Ctrl-Break.

Example

$StepOff
Print Trial(1750000)
$StepOn
Print Trial(1750000)

Function Trial(value%)
Dim i As Int, t As Double = Timer
For i = 0 To 2000000
If i = value% Then Return Timer - t
$Step

Next i
Return Timer - t

EndFunc

NOTE: As with any timed example, other background routines may
distort the results. In general, the second time value shown should
always be higher than the first.

Remarks

When the program is compiled to an executable all $Step
code is removed. This directive is of use only in the IDE.

Naked procedures have the $StepOff directive by default.

See Also

$AutoPost, $ArrayChk, $For, $Obj, Naked

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

Naked Modifier
Purpose

Faster execution of subroutines.

Syntax

Sub | Proc[edure] | Function[Var] name () [As Type]
Naked

Description

It is important to understand that the GFA-BASIC 32 Naked
modifier isn't the same as the naked keyword in MSVC. In
GFA-BASIC 32 Naked instructs the compiler to generate a
minimum of prologue and epilogue code, in MSVC naked
doesn't generate prologue and epilogue at all. In fact, the
GFA-BASIC 32 Naked attribute generates the same
prologue and epilogue code MSVC does for a normal
function. Naked instructs the compiler to generate code
much like C. In GFA-BASIC 32 Naked results in the fastest
possible code (assembler excluded).

Using Naked comes with a severe penalty, though. All
safety nets are removed and an exception definitely crashes
the program. Try/Catch cannot be applied to Naked
subroutines, as well as debugging. Naked implicitly implies
$StepOff for the entire subroutine. Local variables that
require additional memory of the heap are to be released
explicitly. For a local string, variant, and array, the
descriptors are placed on the stack and will be removed, but
the allocated memory isn't. A string must be released by
setting it to "" and an array must be erased (Erase). A

Variant must be assigned a safe value (Int, Float, whatever
as long as it doesn't require additional memory). Any
objects that are referenced must be set to Nothing
explicitly.

From the above it is clear that a normal subroutine
performs quite some housekeeping. The normal prologue
code of a GFA-BASIC 32 routine sets up a table for all local
variables and releases their contents at the end of the
routine (EndSub, Exit Proc, Return, etc). It also includes
code to step through the code line by line and keeps record
of the current executing line so that in case of an error the
line can be marked in the editor. Finally, it includes code to
create an error trap using Try/Catch or On Error.
Everything that makes BASIC programming easy is left out
when Naked is applied. Naked is for advanced
programmers only, although some subroutines might be
naked without much background knowledge. See example.

Example

Local t1#, t2#, n As Int32, a$ = "A", res?
t1# = Timer : For n = 1 To 100000 : res? =
IsAlpha(Asc(a$)) : Next n : t1# = Timer - t1#

t2# = Timer : For n = 1 To 100000 : res? =
IsAlpha_nn(Asc(a$)) : Next n : t2# = Timer - t2#

Print "Time Test for IsAlpha:"
Print "Naked version: "; Format(t1#, "0.######");
" secs"

Print "Normal version: "; Format(t2#, "0.######");
" secs"

Print "Performance Increase: "; Format((t2# / t1#)
- 1, "###%")

Print
t1# = Timer : For n = 1 To 100000 : res? =
IsAlnum_(Asc(a$)) : Next n : t1# = Timer - t1#

t2# = Timer : For n = 1 To 100000 : res? =
IsAlnum_nn(Asc(a$)) : Next n : t2# = Timer - t2#

Print "Time Test for IsAlnum:"
Print "Naked version: "; Format(t1#, "0.######");
" secs"

Print "Normal version: "; Format(t2#, "0.######");
" secs"

Print "Performance Increase: "; Format((t2# / t1#)
- 1, "###%")

Print
t1# = Timer : For n = 1 To 100000 : res? =
IsUpper(Asc(a$)) : Next n : t1# = Timer - t1#

t2# = Timer : For n = 1 To 100000 : res? =
IsUpper_nn(Asc(a$)) : Next n : t2# = Timer - t2#

Print "Time Test for IsUpper:"
Print "Naked version: "; Format(t1#, "0.######");
" secs"

Print "Normal version: "; Format(t2#, "0.######");
" secs"

Print "Performance Increase: "; Format((t2# / t1#)
- 1, "###%")

Function IsAlpha(a As Int) As Bool Naked
// Alphabetic (A - Z or a - z)
IsAlpha := (a >= 65 && a <= 90) || (a >= 97 && a
<= 122)

EndFunction

Function IsAlpha_nn(a As Int) As Bool
// Alphabetic (A - Z or a - z)
IsAlpha_nn := (a >= 65 && a <= 90) || (a >= 97
&& a <= 122)

EndFunction

Function IsAlnum_(a As Int) As Bool Naked
// Alphanumeric (A - Z, a - z, or 0 - 9)
IsAlnum_ := (a = 95) || (a >= 48 && a <= 57) _

|| (a >= 65 && a <= 90) || (a >= 97 && a <=
122)

EndFunction

Function IsAlnum_nn(a As Int) As Bool
// Alphanumeric (A - Z, a - z, or 0 - 9)
IsAlnum_nn := (a = 95) || (a >= 48 && a <= 57) _
|| (a >= 65 && a <= 90) || (a >= 97 && a <=
122)

EndFunction

Function IsUpper(a As Int) As Bool Naked
IsUpper := (a = Asc(Upper(Chr(a))))

EndFunction

Function IsUpper_nn(a As Int) As Bool
IsUpper_nn := (a = Asc(Upper(Chr(a))))

EndFunction

Remarks

A normal GFA-BASIC 32 subroutine does not guarantee
anything about the contents of processor registers when
exiting and returning to the caller. Just before returning
GFA-BASIC 32 calls a library function that clears the local
variables and resets the stack. In the process register
variables are used and any value assigned to the register is
deleted. This is why a Procedure used as a call back
function that returns a value through the eax register must
be Naked; the library call to release the local variables is
not made. Therefore, you will see procedures like these:

Proc WndProc(hWnd As Handle, msg As Int, wParam As
Int, lParam As Int) Naked
Local RetVal
//... Code ...

Asm mov eax, [RetVal]
EndProc

However, when a Function is used as a call back
subroutine, you can simply use the Return statement to
return a value to the caller. Values returned from a
Function are always passed in the eax register. Now the
subroutine doesn't need to be Naked and Try/Catch error
trapping can be implemented.

Naked must be used when porting _fastcall functions.
Without Naked GFA-BASIC 32 puts prologue and epilogue
code in the function that obscures the registers used for
parameter passing and returning.

The next sample shows the amount of stack memory for a
recursive function. Note that the string is allocated in the
caller. A special string optimizing feature of the compiler
allows this construction.

Print // OpenW 1
Print abc("test", 9)
Do
Sleep

Loop Until Me Is Nothing

Function abc(a$, c%) As Int Naked
Local r%
Static p% = V:r
Print V:r - p
If c% > 0
abc = abc(a$, c% - 1) + 1

EndIf
EndFunc

See Also

Sub, Procedure, Function, $StepOff

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Auto Command
Purpose

automatic collection and declaration of undeclared variables
as global variables

Syntax

Auto

Description

Auto is mainly implemented to convert GFABASIC 16
source codes (LST files) which don't contain explicit
declarations of variables. In GFA-BASIC 32 global variables
must be declared before they are used. To comfort and
collect all undeclared variables Auto should be used at the
top of the program. Auto collects undeclared variables and
appends them to the Auto code line when Shift+F5 is
pressed (test compile).

By replacing Auto with Global the variables are declared
more permanently. Any Auto command instructs the
compiler to make an extra pass. All variables after Auto are
deleted and comments and changes will disappear. Then the
variables are collected, sorted, and inserted in the code
after the Auto command. Variables that are followed with a
parenthesis are generated as Auto x() As Double, an array
without elements.

After collecting the variables they must be carefully
examined to make sure their type is correct. String

variables may be declared as Variant, and integers as
Large, when Long suffices.

Variables without postfix default to Double.

Example

Auto
a% = 1
a$(0) = 1
test(b)

Sub test(tst$)
EndSub

becomes after Shift+F5:

Auto a$(), a%, b As Double
a% = 1
a$(0) = 1
test(b)

Sub test(tst$)
EndSub

Note that b has gotten a wrong type!

Also note that the a$() array is undefined and will result in
an 'Array Bounds Exceeded' error.

Remarks

In 16 Bit GFA-BASIC it was allowed to use the same
variable name for different types: a, a%, a$, a%() and a().
In GFA-BASIC 32 variables and function names must be
different, as well as simple variables and array names.

VB has a greater limitation, each name must be unique. In
GFA-BASIC 32 a$ is different than a#, but in VB this isn't
allowed.

See Also

Sub, Procedure, Function, Global, Dim

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

IsExe Function
Purpose

Returns a Boolean value indicating a whether a
programming is running as a standalone EXE or inside the
IDE.

Syntax

Bool = IsExe

Description

Example

MsgBox0 "I'm running" & Iif(IsExe, " as a stand-
alone EXE!", " inside the IDE.")

Remarks

See Also

App

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Monitor Command
Purpose

Sets a debugger breakpoint for an external debugger.

Syntax

Monitor[n]

n:integer expression

Description

Monitor [n] calls interrupt $3 and passes the value n in
processor registers AX and DX. The command is intended
for inserting of breakpoints in compiled programs.

See Also

-

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

CallTree Function
Purpose

Returns a string containing called subroutines.

Syntax

$ = CallTree [(start% [,end%])]

Description

CallTree returns a string with a list of procedure calls up to
the position CallTree is invoked, this is called procedure call
tree hierarchy.

The number of entries that CallTree must return can be
limited by using the optional parameters start% and end%.
If start% < end% one entry is returned: entry start%.
CallTree(1, 3) will return the first three entries of the call
tree hierarchy (list). CallTree(3, 3) or CallTree(3, 0)
return entry 3 of the list. If start% <= 0, then end% will be
ignored. Slicing a part of the list is mainly interesting within
recursively called functions.

CallTree(-1) returns the approximate number of entries in
the list

CallTree(0) same as CallTree

CallTree(1) returns the name and the parameter of the
actual called Procedure, Sub, or Function.

CallTree(2) returns the name and parameters that calls the
actual Procedure, Sub, or Function.

CallTree(3) returns the name and the parameters that has
called the one returned from CallTree(2).

CallTree is to be used for debugging purposes. It is a
feature independent of other debugging facilities of GFA-
BASIC 32. CallTree is used at the start a subroutine body
to find out which subroutines called it and which routines
called the caller. This list provides a kind of cross reference
of calling procedures. The example shows the CallTree for
the function rt() each time it is called.

Example

Ocx ToolBar tb1
tb1.AddItem
Me.BackColor = colBtnFace
t(1, 12, tb1.Button(1), , Me)
Do
Sleep

Loop Until Me Is Nothing

Sub t(a#, b%, c , Optional ox, d)
Local j% = 9 // dummy
Print rt(4) // calculate faculty

EndSub

Function rt(ByVal i|) As Double // Faculty
Print CallTree // show in Win_1
Local h As Hash String
Split h[] = CallTree, "\r\n"
qq(h[]) // another way
MsgBox "levels: " & CallTree(-1) _
& #13#10 & CallTree(1, 3) // in a msgbox

Debug.Print "CallTree" // in the
output...

Debug.Print CallTree // ...window
If(i > 1) Then Return rt(i - 1) * i
Return 1

End Func

Sub qq(hs As Hash String)
Local a$
For Each a In hs[]
' Print a // Copies CallTree output to screen

Next
EndSub

This program calculates the faculty of a value by recursively
calling rt(). The Function rt() shows 4 possible ways of
inspecting the call tree hierarchy. First it prints the call list
in the client area of the window. Then the list is split in to a
Hash array and then the Hash is 'printed' into the client
area as well. Third, the list is displayed using a Message
Box. Finally, the tree is printed in the Debug output window.

The first time in function rt() CallTree returns:

CallTree
Function rt(4)
Sub t 1, 12, ToolBar(tb1) - Button, , Form(Win_1)

The program is executing function rt() with the parameter
4. The function was called from Sub t, which was called with
the parameters 1, 12, an object - the Toolbar.Button object
owned by Toolbar(tb1) -, empty (optional parameter
declared As Variant), and the last parameter, a Form object
with the name Win_1.

The next message box shows:

CallTree
Function rt(3)
Function rt(4)
Sub t 1, 12, ToolBar(tb1) - Button, , Form(Win_1)

Again, the program is currently executing the function rt(),
now recursively called with parameter 3 from rt(), which
itself was called earlier with parameter 4 from Sub t.

The third time:

CallTree
Function rt(2)
Function rt(3)
Function rt(4)
Sub t 1, 12, ToolBar(tb1) - Button, , Form(Win_1)

The last time:

CallTree
Function rt(1)
Function rt(2)
Function rt(3)
Function rt(4)
Sub t 1, 12, ToolBar(tb1) - Button, , Form(Win_1)

Remarks

Especially for recursive subroutines CallTree occupies much
stack memory, because of the nature of information; names
and parameters as plain text. This could lead to a stack
overflow. However, a stack overflow with CallTree will
almost certainly create a stack overflow without CallTree,
only some time later. Note that the performance decrease
when using CallTree is significant.

In an EXE CallTree returns "".

A Naked subroutine is not included in the list. This is also
true for code compiled with the $StepOff directive.

See Also

Naked, $StepOff

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Tron, Troff Command
Purpose

Lists commands during program execution.

Syntax

Tron procedure

Troff

Description

The Tron command (TRACE On) causes each command that
follows it to be redirected to the specified procedure. The
procedure is executed before each command. Troff
switches the redirection off. In the Tron procedure the
following variables are available to inspect the program.

TraceLnr Returns the current program
line.

Trace$ Returns the source code text of
the current line

TraceReg Returns the procedssor register
in the pseudo register variables
_EAX, _ECX, etc. (8 registers)

SrcCode$(n) Returns the specified source
code line n.

ProcLnr(procname) Returns the first line number of
the specified subroutine
(Procedure/Sub/Function).

ProcLineCnt(procname Returns the number of lines of

) the specified psubroutine.

Example

Local i%
OpenW # 1 : Debug.Show
Print "Test program"
Tron db
For i% = 1 To 5
Print Sin(i%)

Next i%
Troff
Print "Program end"

Proc db
Debug.Print Trace$
// In the Debug output window each line (Trace$)
is displayed.

EndProc

Remarks

The Troff turns the Tron off.

See Also

Debug, Trace, TraceLnr, TraceReg, SrcCode$, ProcLnr,
ProcLineCnt

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

TraceLnr Function
Purpose

Returns the number of the command line to be executed
next.

Syntax

% = TraceLnr

Description

TraceLnr returns an integer, inside the Tron
procedurename, that contains the line number of the
program line to be executed next. Tron procedurename,
specifies a subroutine which will be invoked before
execution of every command. The combination of Tron
procedurename and TraceLnr is a very efficient way of
looking for errors.

Example

See Trace$

Remarks

In a stand-alone program (EXE) the Tron command is
ignored. TraceLnr, ProcLnr(p) and ProcLineCnt(p) are 0,
Trace$ and SrcCode(%) are "".

See Also

Tron, Debug, Trace, TraceLnr, TraceReg, SrcCode$, ProcLnr,
ProcLineCnt, $StepOff

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

TraceReg
Purpose

Returns the address of memory block containing the
processor register values.

Syntax

addr% = TraceReg

value = TraceReg(reg)

TraceReg(reg) = value

addr, value:iexp

reg: a register, one of Eax, Ebx, Ecx, Edx, Ebp, Esp, Esi,
Edi, Efl, Eip and the 16 bit register parts Ax, Bx, Cx, Dx, Bp,
Sp, Si, Di, Fl, and the 8 bit register parts Al, Bl, Cl, Dl, Ah,
Bh, Ch, Dh.

Description

TraceReg returns the address of a memory block
containing the value of all processor register in the order edi
esi esp ebp ebx edx ecx eax efl eip. To inspect the eax
register you would use LPeek(TraceReg + 7*4), because
eax is the seventh register in a row.

TraceReg(reg) only returns the value of one register in an
appropriate pseudo variable. For instance Dim eax% =
TraceReg(Eax).

TraceReg is used a Tron procedure, which is invoked
before the next commandwill be executed next. Tron
procedurename, specifies a subroutine which will be invoked
before execution of every command.

Example

OpenW 1, 0, 0, 600, 500
Local j%
Global i1% = mAlloc(1000), i% = i1%
Tron p
. mov eax, 10
. mov [i%], eax
~1
Troff
~mFree(i1%)

Sub p
Local d As New DisAsm
d.ByteFlag = 1
Local j%
SetFont "courier new", 8
Print Trace$
d.Addr = TraceReg(Eip)
For j = 1 To 5
Exit If LPeek(d.Addr) %& 0xffffff == 0xb455ff
Print d

Next
SetFont "Arial", 8, , 1
Print "i ="; i; TraceLnr`Trace$
EdShowLine TraceLnr - 1 : Delay .5
If InStr(Trace$, "[i]") Then
For j = 0 To 7
Print {TraceReg + j * 4};

Next
Print
Print "Eax ="; TraceReg(Eax)

TraceReg(Eax) = 123
EndIf

EndSub

The main program consists of two assembler instructions.
The first one moves the value 10 to the register eax, the
second moves the contents of eax to the variable i% (the
~1 makes sure, that the last used floating point register is
cleared, not relevant here, though.)

The Tron procedure p prints the contents of the variable i%
followed by the current line number and source code text of
that line. The command EdShowLine shows the normal
Tron arrow in front of the actual line. A small delay makes
it possible to notice the current line.

Finally, if the source code line contains "[i%]", the value
123 is written as integer into memory, which address is
obtained using TraceReg+7*4.
As a complete debugger, Tron needs access to the
processor registers. TraceReg returns the address of the
memory range, where for the actual processor registers are
placed in. With TraceReg+7*4 the seventh register
(0,1,2,3,4,5,6,eax) will be changed. As a result, 123 will
placed in eax and thus in i%.

This example has been changed a little compared to the one
presented in EdShowLine. In the Tron subroutine a
DisAsm object is created and used to display the
disassembly of the current line. After selecting a non-
proportional font ("Courier New" 8 points) the next program
line Trace$ is displayed followed by a maximum of five
lines of disassembly. The 'strange' Exit If compares the
next assembler instruction to 'call dpt -76[ebp]'. This 3 byte
instruction is generated between each program line when
$Step is on. As a result, only the assembler code for the

next to execute line is showed. The irrelevant code is
ignored.

Remarks

In a stand-alone program (EXE) the Tron command is
ignored. TraceLnr, ProcLnr(p) and ProcLineCnt(p) are 0,
Trace$ and SrcCode(%) are "".

See Also

Tron, Debug, Trace, TraceLnr, TraceReg, SrcCode$, ProcLnr,
ProcLineCnt, $StepOff

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

SrcCode$ Function
Purpose

Returns the text of a source code line.

Syntax

$ = SrcCode$(line)

line:iexp

Description

Useable in a Tron procedure only.

Example

See Tron

Remarks

In Exe-Files Tron and Troff are ignored (no code will be
generated), TraceLnr, ProcLnr(p) and ProcLineCnt(p)
are 0, Trace$ and SrcCode(%) are "".

See Also

Tron, EdShowLine, ProcLineCnt(), ProcLnr(), Trace TraceLnr,
TraceReg

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ProcLnr, ProcLineCnt
Functions
Purpose

Return the starting line number and number of lines of a
subroutine.

Syntax

% = ProcLnr(procname)

% = ProcLineCnt(procname)

Description

ProcLnr(procname)Returns the first line number of the
specified subroutine (Procedure/Sub/Function).

ProcLineCnt(procname)Returns the number of lines of the
specified subroutine.

Example

See Trace

Remarks

Used together with Tron.

See Also

Tron, EdShowLine, Trace, TraceLnr, TraceReg

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Mkn Functions
Purpose

Convert an integer to a string.

Syntax

string = Mk1[$](v, [,v1,..])

string = Mk2[$](v, [,v1,..])

string = Mk3[$](v, [,v1,..])

string = Mk4[$](v, [,v1,..])

string = Mk5[$](v, [,v1,..])

string = Mk6[$](v, [,v1,..])

string = Mk7[$](v, [,v1,..])

string = Mk8[$](v, [,v1,..])

Description

Mk1 converts one or more values in to string. Mk2 converts
one or more 2-byte (16-bit) values in a string, Mk3
converts one or three-bytes of a value into a string, and so
on.

Example

Print Mk1($41424344) // D
Print Mk2($41424344) // DC

Print Mk3($41424344) // DCB
Print Mk4($41424344) // DCBA
Print Mk5(Large $4142434445464748) // HGFED
Print Mk6(Large $4142434445464748) // HGFEDC
Print Mk7(Large $4142434445464748) // HGFEDCB
Print Mk8(Large $4142434445464748) // HGFEDCBA

Remarks

Mk1$() is the same as Chr$(), Mk4$() is the same as
Mkl$(), and Mk8$() is the same as MkLarge$()

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Cvn Functions
Purpose

Convert part of string to an integer.

Syntax

byte = Cv1(s$ [,offset% = 1])

short = Cv2(s$ [,offset% = 1])

long = Cv3(s$ [,offset% = 1])

long = Cv4(s$ [,offset% = 1])

large = Cv5(s$ [,offset% = 1])

large = Cv6(s$ [,offset% = 1])

large = Cv7(s$ [,offset% = 1])

large = Cv8(s$ [,offset% = 1])

Description

Cv1 converts one character form s$ into a byte. Cv2
converts 2 characters, Cv3 three characters, and so on. The
offset parameter specifies the position within the string to
use for converting. The default is 1, which is the start of the
string.

The data type of the variable that holds the return value
must be large enough to hold the value.

Example

Print Cv1("Hello GFA") // Prints 72, 72 is the
ASCII code of H

Print Cv2("Hello GFA") // Prints 25928
Print Cv3("Hello GFA") // Prints 7103816
Print Cv4("Hello GFA") // Prints 18190443144
Print Cv5("Hello GFA") // Prints 47856041300
Print Cv6("Hello GFA") // Prints 35662932501832
Print Cv7("Hello GFA") // Prints
20020386278958408

Print Cv8("Hello GFA, 2") // Prints
5064051968933913928

Remarks

Other functions convert (part of) a string to Currency
(CvCur), Double (Cvd), Single (Cvs), Int32 (Cvi), and
Word (Cvw).

The reverse of the Cvn functions are the Mkn functions
(Mk1…Mk8)

See Also

Mkn Functions

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Cvd Function
Purpose

Converts the first eight characters in a string from binary to
IEEE double format.

Syntax

double = Cvd(a$ [,offset%])

Description

Cvd() convert eight characters of a string into the IEEE
Double format. Cvd() returns 0, if the length of the string is
smaller than eight characters.

Example

OpenW 1
Local a$, a%, b$, c$, d$, e$
Open "Test.dat" for Random As # 1, Len = 21
Field # 1, 1 As a$, 4 As b$, 4 As c$, _
4 As d$, 8 As e$

a$ = Chr$(123)
b$ = Mki$(1234)
c$ = Mkl$(12345678)
d$ = Mks$(1.23)
e$ = Mkd$(1.23)
Put # 1, 1
Get # 1, 1
Print Asc(a$)`Cvi(b$)`Cvl(c$)`Cvs(d$)`Cvd(e$)
// Prints: 123 1234 12345678 1.23 1.23

Remarks

Cvd() is the reverse function of Mkd().

See Also

Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

CvdMbf Function
Purpose

Converts eight characters in a string from Microsoft Binary
Format to IEEE double format.

Syntax

double = CvdMbf(a$ [,offset% = 1])

Description

As CvsMbf but only eight bytes and MBF-Double (In
GWBASIC the four additional bytes are only filled with zero,
i. e. the same 6 digits)

Remarks

CvdMbf() is the reverse function of MkdMbf().

Example

Print CvdMbf("GFABasic") // Prints
1.69857741858609e-09

See Also

CvsMbf(), MkdMbf()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Cvi Function
Purpose

Converts four characters in a string to a 32 bit integer.

Syntax

int32 = Cvi(a$ [,offset% = 1])

Description

Cvi takes four characters starting at offset in a string as a
number. Cvi(a$) is equivalent to LPeek(V:a$). Cvi returns
0 if the string length is less than four.

Example

OpenW 1
Print Cvi("Hello GFA")
// prints 1819043144
Print Cvi(Mki$(24))
// Prints 24
Local a$ = Mki(100, 200, 300, 400)
Print Cvi(Mid$(a$, 1)), Cvi(Mid$(a$, 5)),
Cvi(Mid$(a$, 9)) , Cvi(Mid$(a$, 13))

// Prints 100 200 300 400
Print Cvi(a$, 5) // prints 200

Remarks

The order of the bytes depends on the processor. For
80x86/8 or 8088 processors LSB (least significant byte) is

converted first and MSB (most significant byte) is converted
last.

Cvi() is the reverse function of Mki$().

Cvi() is the same as Cv4() and Cvl()

See Also

Asc(), Cvl(), Cvs(), Cvd(), Chr$(), Mki$(), Mkl$(), Mks$(),
Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Cvl Function
Purpose

Converts four characters in a string to a 32 bit integer.

Syntax

long = Cvl(a$ [,offset% = 1])

Description

Cvl takes four characters starting at offset in a string as a
number. Cvl(a$) is equivalent to LPeek(V:a$). Cvl returns 0
if the string length is less than four.

Example

OpenW 1
Print Cvl("Hello GFA") // 1819043144
Print Cvl("Hello GFA", 2) // 1869376613

Remarks

Cvl() is the reverse function of Mkl$(). Cvl() is the same as
Cv4() and Cvi().

See Also

Asc(), Cvi(), Cvs(), Cvd(), Chr$(), Mki$(), Mkl$(), Mks$(),
Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Cvs Function
Purpose

Converts four characters in a string from binary to IEEE
single format.

Syntax

Single = Cvs(a$ [,offset% = 1])

Description

Cvs takes four characters starting at offset in a string as a
number. Cvs(a$) is equivalent to Single{V:a$}. Cvs
returns 0 if the string length is less than four.

Example

OpenW # 1
Print Cvs(Mks$(12.25)) // Prints 12.25
Local a$ = Chr$(123)
Local b$ = Mki$((1234))
Local c$ = Mkl$(12345678)
Local d$ = Mks$(1.23)
Local e$ = Mkd$(1.23)
Print Asc(a$)`Cvi(b$)`Cvl(c$)`Cvs(d$)`Cvd(e$)
// Prints 123 1234 12345678 1.23 1.23

Remarks

Cvs() is the reverse function of Mks$().

See Also

Asc(), Cvi(), Cvl(), Cvd(), Chr$(), Mki$(), Mkl$(), Mks$(),
Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

CvsMbf Function
Purpose

converts the four characters in a string from Microsoft
Binary Float to IEEE single format.

Syntax

Single = CvsMbf(s$ [,offset% = 1])

Description

As an aid to read old GWBASIC Files containing binary
floating point numbers - written with GWBASIC's Mks$() -
in the Microsoft Binary Float (MBF) format there is now the
Function CvsMbf() corresponding to Cvs()

Exmaple

Print CvsMbf("GFABasic") // Prints
1.63709887045087e-19

Print Cvs("GFABasic") // Prints 48.31863

Converts a number from a four byte string in MBF-Single
format. (it has about 6 accurate digits, the rest are
random).

See Also

Cvs, MksMbf$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Cvw Function
Purpose

Converts two characters in a string to a 16 bit integer
(word).

Syntax

word = Cvw(a$ [,offset% = 1])

Description

Cvw takes four characters starting at offset in a string as a
number. Cvw(a$) is equivalent to DPeek(V:a$). Cvw
returns 0 if the string length is less than two.

Example

OpenW 1
Print Cvw("Hello GFA") // Prints 25928
Print Cvw("Hello GFA, 3") // Prints 25928

Remarks

Cvw() is the reverse function of Mkw$(). Cvw() is the
same as Cv2().

See Also

Asc(), Cvi(), Cvs(), Cvd(), Chr$(), Mki$(), Mkl$(), Mks$(),
Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

CvCur Function
Purpose

Converts eight characters in a string to a Currency value.

Syntax

Currency = CvCur(s$ [,offset%])

Description

The offset parameter specifies the position within the string
to use for converting. The default is 1, which is the start of
the string.

Example

Print CvCur("Hello GFA") // prints
506405196893391.3928

Remarks

Other functions convert (part of) a string to integer (Cvn),
Double (Cvd), Single (Cvs), Int32 (Cvi), and Word (Cvw).

The reverse of the CvCur is MkCur

See Also

MkCur

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

CvLarge Function
Purpose

Converts eight characters in a string to a 64 bit integer.

Syntax

large = CvLarge(a$ [,offset% = 1])

Description

CvLarge takes eight characters starting at offset in a string
as a number. CvLarge is equivalent to Cv8. CvLarge
returns 0 if the string length is less than eight.

Example

OpenW 1
Print CvLarge("Hello GFA") //
5064051968933913928

Print CvLarge("Hello GFA", 2) //
4703525065468963941

Remarks

CvLarge() is the reverse function of MkLarge$().

See Also

Asc(), Cvi(), Cvs(), Cvd(), Chr$(), Mki$(), Mkl$(), Mks$(),
Mkd$()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

MkCur Function
Purpose

converts a Currency (64-bit) expression to eight characters.

Syntax

$ = MkCur[$](x [,x1,..])

x, x1,..: Currency

Description

Creates an eight characters long string from a number
internally stored in IEEE double format.

Example

OpenW # 1
Print MkCur$(2.1, 3.4)

Remarks

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Mkd$ Function
Purpose

converts a 64-bit floating point expression to eight
characters.

Syntax

$ = Mkd[$](x [,x1,..])

x, x1, …: Double

Description

Creates an eight characters long string from a number
internally stored in IEEE double format.

Example

OpenW 1
Print MkdMbf$(2.1)
Print MkdMbf$(2.1, 6.4)
Print Mkd(2.1)
Print Mkd(2.1, 6.4)

Remarks

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MkdMbf$ Function
Purpose

This function is used to convert floating point numbers in
Microsoft Binary Float (MBF) into an 8-byte string.

Syntax

$ = MkdMbf$(x [, x1,..])

x,x1,..floating point value in Microsoft Binary Float format

Description

As an aid to real old GWBASIC files containing binary
floating point numbers written with GWBASIC this function
is provided to convert an MBF-floating point number into an
8-byte string.

Remarks

This is the reverse of the function CvdMbf()

Example

OpenW 1
Print MkdMbf$(2.1)
Print MkdMbf$(2.1, 6.4)
Print Mkd(2.1)
Print Mkd(2.1, 6.4)

See Also

CvsMbf, CvdMbf, MksMbf$

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Mki Function
Purpose

converts a 32-bit integer expression to a four character
string.

Syntax

$ = Mki[$](x [,x1,..])

x, x1,..: Integer

Description

Creates a four character long string from an integer.
Additional arguments increases the size of the string with a
multiple of four.

Example

Local a$, b$, c$, d$, e$
OpenW # 1
Open "C:\Test.DAT" for Random As # 1, Len = 19
Field # 1, 1 As a$, 2 As b$, 4 As c$, 4 As d$, 8
As e$

a$ = Chr$(123)
b$ = Mkw$(1234)
c$ = Mki$(12345678)
d$ = Mks$(1.23)
e$ = Mkd$(1.23)
Put # 1, 1
//
Get # 1, 1

Print Asc(a$)`Cvi(b$)`Cvl(c$)`Cvs(d$)`Cvd(e$)
Close # 1
Kill "c:\test.dat"

prints 123 1234 12345678 1.23000019.. 1.23

Remarks

Mki$() is the reverse function of Cvi().

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Mkl Function
Purpose

converts a 32-bit integer expression to a four character
string.

Syntax

$ = Mkl[$](x [,x1,..])

x, x1,..: Integer

Description

Creates a four character long string from an integer.
Additional arguments increases the size of the string with a
multiple of four.

Example

Local a$, b$, c$, d$, e$
OpenW # 1
Open "C:\Test.DAT" for Random As # 1, Len = 19
Field # 1, 1 As a$, 2 As b$, 4 As c$, 4 As d$, 8
As e$

a$ = Chr$(123)
b$ = Mkw$(1234)
c$ = Mki$(12345678)
d$ = Mks$(1.23)
e$ = Mkd$(1.23)
Put # 1, 1
//
Get # 1, 1

Print Asc(a$)`Cvi(b$)`Cvl(c$)`Cvs(d$)`Cvd(e$)
Close # 1
Kill "c:\test.dat"

prints 123 1234 12345678 1.23000019.. 1.23

Remarks

Mkl$() is the reverse function of Cvl().

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MkLarge Function
Purpose

converts a 64-bit integer expression to a eight character
string.

Syntax

$ = MkLarge[$](x [,x1,..])

x, x1,..: Integer

Description

Creates a eight character long string from a large integer.
Additional arguments increases the size of the string with a
multiple of eight.

Example

Dim s As Large = CvLarge("abcdefgh")
Print MkLarge(s, s)

Prints abcdefghabcdefgh

Remarks

MkLarge$() is the reverse function of CvLarge().

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Mks Function
Purpose

converts a 32-bit floating point (Single) expression into a
four characters string.

Syntax

$ = Mks[$](x [,x1,..])

x, x1, ..: Single

Description

Creates a four character long string from a number
internally stored in IEEE single format.

Example

Dim s1 As Single = Cvs("abcd")
Dim s2 As Single = CvsMbf("abcd")
Print s1, Hex(LPeek(V:s1), 4)
Print s2, Hex(LPeek(V:s2), 4)
Print Mks(s1, s1)
Print MksMbf$(s2, s2)

Remarks

Mks() is the reverse function of Cvs().

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MksMbf$ Function
Purpose

This function is used to convert floating point numbers in
Microsoft Binary Float (MBF) into an 4-byte string.

Syntax

$ = MksMbf$(x [, x1,..])

x,x1,... :floating point value in Microsoft Binary Float
format

Description

As an aid to real old GWBASIC files containing binary
floating point numbers written with GWBASIC this function
is provided to convert an MBF-floating point number into an
8-byte string.

Remarks

This is the reverse of the function CvsMbf()

Example

Dim s1 As Single = Cvs("abcd")
Dim s2 As Single = CvsMbf("abcd")
Print s1, Hex(LPeek(V:s1), 4)
Print s2, Hex(LPeek(V:s2), 4)
Print Mks(s1, s1)
Print MksMbf$(s2, s2)

See Also

CvsMbf, CvdMbf, MksMbf$

{Created by Sjouke Hamstra; Last updated: 28/02/2017 by James Gaite}

Mkw Function
Purpose

converts a 16-bit integer expression into a two characters
string.

Syntax

$ = Mkw[$](x [,x1,..])

x, x1, ..: Single

Description

Creates a two character long string from a number.

Example

Dim s As Short = Cvw("ab")
Print Mkw(s, s)

Prints: abab

Remarks

Mkw() is the reverse function of Cvw().

See Also

Cvn Functions, Mkl, Mki, Mkw, Mkd, Mks, MkCur, MkLarge

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Format Function
Purpose

Returns a String containing an expression formatted
according to instructions contained in a format expression.

Syntax

$ = Format(expression[, format])

Description

Format() is a general conversion function for which you
have almost total domination of its behavior. Format can
format numerical, string, and date expressions. Other
expressions are first converted to double or string using the
regional settings dependent functions CDbl() and CStr().

Sections - A user-defined format expression can have
several sections separated by semicolons (;). A format
expression for strings can have one section or two sections
separated by a semicolon. If you use one section inly, the
format applies to all string data. If you use two sections,
the first section applies to string data, the second to Null
values and zero-length strings ("").

General

The following characters apply to all user-defined formats.

- + $ (
)

Display a literal character. To display a character
other than one of those listed, precede it with a

backslash (\) or enclose it in double quotation
marks (" ").

(\) Display the next character in the format string.
To display a character that has special meaning
as a literal character, precede it with a backslash
(\). The backslash itself isn't displayed. Using a
backslash is the same as enclosing the next
character in double quotation marks. To display
a backslash, use two backslashes (\\).Examples
of characters that can't be displayed as literal
characters are the date-formatting and time-
formatting characters (a, c, d, h, m, n, p, q, s, t,
w, y, / and :), the numeric-formatting characters
(#, 0, %, E, e, comma, and period), and the
string-formatting characters (@, &, <, >, and !).

("ABC") Display the string inside the double quotation
marks (" "). To include a string in format from
within code, you must use Chr(34) to enclose
the text (34 is the character code for a
quotation mark (")).

Numbers

A user-defined format expression for numbers can have
from one to four sections separated by semicolons. If the
format argument contains one of the named numeric
formats, only one section is allowed. With one section only,
the format expression applies to all values. With multiple
sections, the first section applies to positive values and
zeros, the second to negative values, and the third to zeros.
With four sections the fourth is reserved for Null values
(Variant).

The following example has two sections: the first defines
the format for positive values and zeros; the second section

defines the format for negative values "$#,##0;($#,##0)".

If you include semicolons with nothing between them, the
missing section is printed using the format of the positive
value. For example, the following format displays positive
and negative values using the format in the first section and
displays "Zero" if the value is zero "$#,##0;;\Z\e\r\o".

Create user-defined numeric formats using any of the
following characters.

0 Digit placeholder. Display a digit or a zero. If the
expression has a digit in the position where the 0
appears in the format string, display it;
otherwise, display a zero in that position. If the
number has fewer digits than there are zeros (on
either side of the decimal) in the format
expression, display leading, or trailing zeros. If
the number has more digits to the right of the
decimal separator than there are zeros to the
right of the decimal separator in the format
expression, round the number to as many
decimal places as there are zeros. If the number
has more digits to the left of the decimal
separator than there are zeros to the left of the
decimal separator in the format expression,
display the extra digits without modification.

Digit placeholder. Display a digit or nothing. This
symbol works like the 0 digit placeholder, except
that leading and trailing zeros aren't displayed if
the number has the same or fewer digits than
there are # characters on either side of the
decimal separator.
Print Format$(3.14, "###.###;;") // "
3,14"

Print Format$(3.14, "###.##0;;") // "
3,140"

Print Format$(3.14, "###.###**;;") //
"**3,14*"

Print Format(0.14, "###.###;;") //
" ,14"

Print Format(0.14, "##0.##0;;") // "
0,140"

Print Format(0.14, "###.###**;;") //
"***,14*"

. Decimal placeholder. In some locales, a comma is
used as the decimal separator. The decimal
placeholder determines how many digits are
displayed to the left and right of the decimal
separator. If the format expression contains only
number signs to the left of this symbol, numbers
smaller than 1 begin with a decimal separator. To
display a leading zero displayed with fractional
numbers, use 0 as the first digit placeholder to
the left of the decimal separator. The actual
character used as a decimal placeholder in the
formatted output depends on the Mode Format
setting, regional system setting, or Mode Lang.

, Thousand separator. In some locales, a period is
used as a thousand separator. The thousand
separator separates thousands from hundreds
within a number that has four or more places to
the left of the decimal separator. Standard use of
the thousand separator is specified if the format
contains a thousand separator surrounded by
digit placeholders (0 or #). Two adjacent
thousand separators or a thousand separator
immediately to the left of the decimal separator
(whether or not a decimal is specified) means
"scale the number by dividing it by 1000,
rounding as needed." For example, you can use

the format string "##0,," to represent 100
million as 100. Numbers smaller than 1 million
are displayed as 0. Two adjacent thousand
separators in any position other than immediately
to the left of the decimal separator are treated
simply as specifying the use of a thousand
separator. The actual character used as the
thousand separator in the formatted output
depends on the Number Format recognized by
your system.

% Percentage placeholder. The expression is
multiplied by 100. The percent character (%) is
inserted in the position where it appears in the
format string.

E- E+
e- e+

Scientific format. If the format expression
contains at least one digit placeholder (0 or #) to
the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is
inserted between the number and its exponent.
The number of digit placeholders to the right
determines the number of digits in the exponent.
Use E- or e- to place a minus sign next to
negative exponents. Use E+ or e+ to place a
minus sign next to negative exponents and a plus
sign next to positive exponents.

Predefined named number formats.

General
Number

Display number with no thousand separator.

Currency Display number with thousand separator, if
appropriate; display two digits to the right
of the decimal separator. Output is based on
system locale settings.

Fixed Display at least one digit to the left and two
digits to the right of the decimal separator.

Standard Display number with thousand separator, at
least one digit to the left and two digits to
the right of the decimal separator.

Percent Display number multiplied by 100 with a
percent sign (%) appended to the right;
always display two digits to the right of the
decimal separator.

Scientific Use standard scientific notation.
Yes/No Display No if number is 0; otherwise,

display Yes.
True/False Display False if number is 0; otherwise,

display True.
On/Off Display Off if number is 0; otherwise,

display On.

Date and Time

User-defined date and time formats. Use any of the
following characters.

: Time separator. In some locales, other
characters may be used to represent the time
separator. The time separator separates hours,
minutes, and seconds when time values are
formatted. The actual character used as the
time separator in formatted output is
determined by Mode Format or your system
settings.

/ Date separator. In some locales, other
characters may be used to represent the date
separator. The date separator separates the
day, month, and year when date values are

formatted. The actual character used as the
date separator in formatted output is
determined by Mode Format or your system
settings.

c Display the date as ddddd and display the time
as ttttt, in that order. Display only date
information if there is no fractional part to the
date serial number; display only time
information if there is no integer portion.

d Display the day as a number without a leading
zero (1 - 31).

dd Display the day as a number with a leading zero
(01 - 31).

ddd Display the day as an abbreviation (Sun - Sat).
dddd Display the day as a full name (Sunday -

Saturday).
ddddd Display the date as a complete date (including

day, month, and year), formatted according to
your system's short date format setting. For
Microsoft Windows, the default short date
format is m/d/yy.

dddddd Display a date serial number as a complete
date (including day, month, and year)
formatted according to the long date setting
recognized by your system. For Microsoft
Windows, the default long date format is
mmmm dd, yyyy.

w Display the day of the week as a number (1 for
Sunday through 7 for Saturday).

ww Display the week of the year as a number (1 -
53).

m Display the month as a number without a
leading zero (1 - 12). If m immediately follows

h or hh, the minute rather than the month is
displayed.

mm Display the month as a number with a leading
zero (01 - 12). If m immediately follows h or
hh, the minute rather than the month is
displayed.

M Display the month as a number without a
leading zero (1 - 12).

MM Display the month as a number with a leading
zero (01 - 12).

mmm Display the month as an abbreviation (Jan -
Dec) (also MMM).

mmmm Display the month as a full month name
(January - December) (also MMMM).

q Display the quarter of the year as a number (1
- 4).

y Display the day of the year as a number
(1 - 366).

yy Display the year as a 2-digit number (00 - 99).
yyyy Display the year as a 4-digit number (100 -

9999).
h Display the hour as a number without leading

zeros (0 - 23) (also H).
hh Display the hour as a number with leading

zeros (00 - 23) (also HH).
n Display the minute as a number without leading

zeros (0 - 59).
nn Display the minute as a number with leading

zeros (00 - 59).
s Display the second as a number without leading

zeros (0 - 59).
ss Display the second as a number with leading

zeros (00 - 59).

ttttt Display a time as a complete time (including
hour, minute, and second), formatted using the
time separator defined by the time format
recognized by your system. A leading zero is
displayed if the leading zero option is selected
and the time is before 10:00 A.M. or P.M. For
Microsoft Windows, the default time format is
h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase
AM with any hour before noon; display an
uppercase PM with any hour between noon and
11:59 P.M.

am/pm Use the 12-hour clock and display a lowercase
AM with any hour before noon; display a
lowercase PM with any hour between noon and
11:59 P.M.

A/P Use the 12-hour clock and display an uppercase
A with any hour before noon; display an
uppercase P with any hour between noon and
11:59 P.M.

a/p Use the 12-hour clock and display a lowercase
A with any hour before noon; display a
lowercase P with any hour between noon and
11:59 P.M.

AMPM Use the 12-hour clock and display the AM string
literal as defined by your system with any hour
before noon; display the PM string literal as
defined by your system with any hour between
noon and 11:59 P.M. AMPM can be either
uppercase or lowercase, but the case of the
string displayed matches the string as defined
by your system settings. For Microsoft
Windows, the default format is AM/PM.

Predefined named date/time formats.

General
Date

Display a date and/or time. For real numbers,
display a date and time, for example, 4/3/93
05:34 PM. If there is no fractional part, display
only a date, for example, 4/3/93. If there is no
integer part, display time only, for example,
05:34 PM. Date display is determined by your
system settings (not Mode Format).

Long
Date

Display a date according to your system's long
date format.

Medium
Date

Display a date using the medium date format
appropriate for the language version of the
host application.

Short
Date

Display a date using your system's short date
format.

Long
Time

Display a time using your system's long time
format; includes hours, minutes, seconds.

Medium
Time

Display time in 12-hour format using hours and
minutes and the AM/PM designator.

Short
Time

Display a time using the 24-hour format, for
example, 17:45.

Note - Format(date) without a format string returns the
"General Date" or "c".

Strings

User-defined string formats. Use any of the following
characters.

@ Character placeholder. Display a character or a
space. If the string has a character in the
position where the at symbol (@) appears in the

format string, display it; otherwise, display a
space in that position. Placeholders are filled
from right to left unless there is an exclamation
point character (!) in the format string.

& Character placeholder. Display a character or
nothing. If the string has a character in the
position where the ampersand (&) appears,
display it; otherwise, display nothing.
Placeholders are filled from right to left unless
there is an exclamation point character (!) in the
format string.

< Force lowercase. Display all characters in
lowercase format.

> Force uppercase. Display all characters in
uppercase format.

! Force left to right fill of placeholders. The default
is to fill placeholders from right to left.

Print Format("GFA BASIC32", "&&&") // GFA
Print Format("GFA BASIC32", "&&&<") // gfa basic32
Print Format("Test", "**&&&&&&&&") // Test****
Print Format("Test", "**&&&&&&&&!") // ****Test

Example

Debug.Show
Local Date MyTime, MyDate
MyTime = #17:04:23#
MyDate = #04/10/2008#
' Returns current system time in the system-
defined long time format.

Trace Format(Time, "Long Time")
' Returns current system date in the system-
defined long date format.

Trace Format(Date, "Long Date")

Trace Format(MyTime, "h:m:s") //
"17:4:23".

Trace Format(MyTime, "hh:mm:ss AM/PM") //
"05:04:23 PM".

Trace Format(MyDate, "dddd, mmm d yyyy")//
"Thursday, Apr 10 2008".

' If format is not supplied, a string is returned.
Trace Format(23) //"23"
' User-defined formats.
Trace Format(5459.4, "##,##0.00") // "5.459,40".
Trace Format(334.9, "###0.00") // "334.90".
Trace Format(5, "0.00%") // "500.00%".

Remarks

If you try to format a number without specifying format,
Format provides functionality similar to the Str function,
although it is internationally aware. However, positive
numbers formatted as strings using Format don’t include a
leading space reserved for the sign of the value; those
converted using Str retain the leading space.

The format string can not exceed 1023 characters.

See Also

Str, CStr, CDbl, Mode

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

DateSerial Function
Purpose

Returns a Variant (Date) for a specified year, month, and
day.

Syntax

v = DateSerial(year, month, day)

NOTE: The DateSerial function can be entered as above
but will automatically be converted into
DateSerial((year,month,day,)). The parameter after the
final comma appears to serve no purpose and a Syntax
Error is returned if a value is entered.

v: Variant
year, month, day: iexp

Description

To specify a date, such as December 31, 1991, the range of
numbers for each DateSerial argument should be in the
accepted range for the unit; that is, 1-31 for days and 1-12
for months. However, you can also specify relative dates for
each argument using any numeric expression that
represents some number of days, months, or years before
or after a certain date.

The following example uses numeric expressions instead of
absolute date numbers. Here the DateSerial function
returns a date that is the day before the first day (1 - 1),

two months before August (8 - 2), 10 years before 1990
(1990 - 10); in other words, May 31, 1980.

DateSerial((1990 - 10, 8 - 2, 1 - 1,))

For the year argument, values range from 100 to 9999,
inclusive.

When any argument exceeds the accepted range for that
argument, it increments to the next larger unit as
appropriate. For example, if you specify 35 days, it is
evaluated as one month and some number of days,
depending on where in the year it is applied.

Example

Print DateSerial((1999 - 40, 10 - 12., 30 - 44,))
// prints 16/09/58

Remarks

The output of the DateSerial function is not affected by
Mode Date or Mode Time and separates the date
elements with the '/' symbol. To get around this problem
and standardise your date format, put the DateSerial
function inside Date$() or DateTime$() as below:

Mode Date "."
Print DateSerial((1900, 10, 1,))
Print Date$(DateSerial((1900, 10, 1,)))

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),

DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DateValue Function
Purpose

Returns the passed time since 1 January 1899.

Syntax

var = DateValue(exp)

var : variable
exp : aexp

Description

This function converts exp and returns a date value in var.
The conversion uses the VarDateFromString API and so
takes into account the Regional settings of the system
rather than the current GB Mode setting (for a GB Mode
compliant function, see ValDate).

The expression exp can be a string, date, or date literal.
The date literal must use a period (or full stop) separator
for date (25.12.2018) regardless of Mode settings.

The value returned to var depends on the variable type for
the return value but is Date by default: when var is a
Single or Double the number of days since 1 January 1899
is returned; where var is of type Integer, the date part
without the time is returned (see Known Issues below); and
if var is a String, the date and time are returned as a
string.

Example

Local da As Date, db As Double, i As Int, s As
String

da = DateValue("25 Jan 2019 11:42") : Print da //
25/01/2019 11:42:00

db = DateValue("25 Jan 2019 11:42") : Print db //
43490.4875

i = DateValue("25 Jan 2019 11:42") : Print i //
43490 - See Known Issues re Integers

s = DateValue("25 Jan 2019 11:42") : Print s //
25/01/2019 11:42:00

Print DateValue(#25.01.2019 11:42:00#) //
25/01/2019 11:42:00

Print VarType(DateValue(#25.01.2019 11:42:00#)) //
7 = Date

Remarks

The base year, at least for Windows 98, is 1930. This means
that years specified with only two digits are interpreted a
based to 1930. A year of "29" means 2029, and "31" means
1931. Since this is OLE dependent, located in oleaut32.dll, it
cannot be adjusted.

The output of the DateValue function is not affected by
Mode Date or Mode Time and separates the date
elements with the '/' symbol. To get around this problem
and standardise your date format, put the DateValue
function inside Date$() or DateTime$() as below:

Mode Date "."
Print DateValue(Date)
Print Date$(DateValue(Date))

Known Issues

When using DateValue to return a converted value to an
Integer, if the Time element is greater than 12:00 noon

then the date value is rounded up rather than truncated,
resulting in the wrong date being returned. To get around
this, you can use the Trunc function as shown in the
example below:

Local i As Integer
i = DateValue("25 Jan 2019 11.42") : Print i
 // 43490

i = DateValue("25 Jan 2019 12.42") : Print i
 // 43491

i = Trunc(DateValue("25 Jan 2019 12.42")) : Print
i // 43490

[Reported by Sjouke Hamstra, 30/01/2019]

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
Day(), DayNo(), DmyHmsToDate(), DmyToDate(),
HmsToTime(), Hour(), IsDate(), Minute(), Month(), Now,
Now$(), TimeSerial(), TimeToHms, TimeValue(), Second(),
Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 02/02/2019 by James Gaite}

Hex$ Function
Purpose

Converts an integer expression to hexadecimal
representation.

Syntax

string = Hex[$](m[,n])

Description

After conversion the hexadecimal representation of integer
expression m is returned as a plain string.

The parameter n is optional and determines how many
places should be used to represent the number. If n is
greater than the number of places needed to represent m
the converted number is padded with leading zeros.

Example

Debug.Show
Trace Hex$(25) // Prints 19
Trace Hex$(1001, 6) // Prints 0003E9

See Also

Bin$(), Oct$(), Dec$()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Oct Function
Purpose

Converts an integer expression to octal representation.

Syntax

$ = Oct[$](m[,n])

m, n:integer expression

Description

After conversion the octal representation of integer
expression m is returned as a plain string. The parameter n
is optional and determines how many places should be
used. If n is greater than the number of places needed to
represent m the converted number is padded with leading
zeros.

Example

Debug.Show
Trace Oct$(17) //prints 21
Trace Oct$(25, 6) //prints 000031

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Bin$(), Hex$(), Dec$()

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Bin Function
Purpose

Converts an integer expression to a binary string
representation.

Syntax

Bin[$](m[,n])

Description

After conversion the binary representation of integer
expression m is returned as a plain string.

The parameter n is optional and determines how many
places (1 to 33) should be used to represent the number. If
n is greater than the number of places needed to represent
m the converted number is padded with leading zeros.

Example

OpenW # 1
Print Bin$(17) // Prints 10001
Print Bin$(25, 6) // Prints 011001

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Oct$(), Hex$(), Dec$()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Dec$ Function
Purpose

converts an integer expression to decimal representation.

Syntax

Dec[$](m[,n]

Description

Dec[$](m[,n] converts the integer expression m into
decimal representation. This is a base 10 number system
with digits from 0 to 9. The optional parameter n specifies
how many places should be used. If n is greater than the
number of places needed by m, the number is padded with
leading zeros.

Example

OpenW # 1
Print Dec$(25) // Prints 25
Print Dec(123, 6) // Prints 000123

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Bin$(), Hex$(), Oct$()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Base Function
Purpose

Returns a string representing a number using a specific
base.

Syntax

string = Base[$](value [, :] radix)

value: iexp
radix: character (0 - 9, A - Z)

string = Base$(& radix : value, newradix)

value: word
radix, newradix: character (0 - 9, A - Z)

Description

Base$() converts the digits of value to a character string
and stores the result (up to 33 bytes) in string. The radix
argument specifies the base of value, which must be a
character in the range 0 - 9 and A - Z. For example:

Print Base$(21286:Z) // prints GFA
Print Base$(21286:9) // prints 21286

When used in this way, where a numeric value is separated
with a colon and followed with a radix, the radix is limited to
2-9 and A-Z.

When used with comma, radix may be chosen from 2-36.
For example

Print Base$(21286, 2) // prints 101001100100110
Print Base$(21286, 8) // prints 51446
Print Base$(21286, 10) // prints 21286
Print Base$(21286, 16) // prints 5326

These are the general forms for Bin$(), Oct$() Dec$(), and
Hex$().

To convert a word into a number the following format is
used:

Base$(& radix : word, newradix)

radix specifies the base of the word that is to be converted
to newradix. newradix can be any character between 0-9
and A-Z, but it can also be a number in the range from 0-
36. For instance, the radix Z equals ',36'.

Example

OpenW # 1
Print Base$(21286:Z) // prints GFA
// The inverse...
Print Base$(&Z:GFA, 10) // prints 21286

See Also

Bin$, Oct$, Dec$, Hex$

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Str Function
Purpose

Converts a numeric expression into a string.

Syntax

$ = Str[$](x [,m, n])

x:aexp

m, n:integer expression

Description

Str$(x, m) converts x into a string of m length. If m is
greater than the number of characters needed to represent
x, the string is padded with leading spaces. If m is smaller
than the number of characters needed to represent x, the
string is truncated from the right.

Str$(x, m, n) converts x into a string of m length with n
decimal places. The last decimal place is rounded off. Out of
the total length m, n+1 places are reserved (n places for
the decimal part and one place for the decimal point).

With positive expressions Str adds a space in front of the
number. With negative values a minus is added. The
additional space in front of positive values is a VB quirk and
is mimicked by GFA-BASIC 32. To prevent the space for
positive numbers use Mode StrSpace 0.

Example

Debug.Show
Trace Str$(3 * 4 + 2) // Prints " 14"
Local a$ = Str$(3 * 4 + 2)
Mode StrSpace 0
Trace a$ // Prints "14"
Trace Str$(123.456, 7) // Prints 123.456
Trace Str$(123.456, 9) // Prints 123.456
Trace Str$(123.456, 5) // Prints 123.4
Trace Str$(123.456, 7, 3) // Prints 123.456
Trace Str$(123.456, 7, 5) // Prints 3.45600
Trace Str$(123.456, 7, 2) // Prints 123.46
Trace Str$(123.456, 9, 3) // Prints 123.456

Remarks

The Print [#] commands use the Str() function internally
to convert a numeric expression to a printable string.
Therefore, Print adds a space in front of a positive value as
well. The Mode StrSpace 0 prevents the adding of a space.

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Dec$(), Hex$(), Oct$(), CStr, Using, Mode, Format,
sprintf

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

sprintf Function
Purpose

Returns a string with formatted data.

Syntax

$ = sprintf[$](format$ [, argument] ...)

format:sexp
argument, …:aexp

Description

The sprintf function formats and stores a series of
characters and values in string. Each argument (if any) is
converted and output according to the corresponding format
specification in format.

Character combinations consisting of a backslash (\)
followed by a letter or by a combination of digits are called
“escape sequences.” To represent a newline character, single
quotation mark, or certain other characters in a character
constant, you must use escape sequences. An escape
sequence is regarded as a single character and is therefore
valid as a character constant. Escape sequences are
typically used to specify actions such as carriage returns
and tab movements on terminals and printers. They are
also used to provide literal representations of nonprinting
characters and characters that usually have special
meanings, such as the double quotation mark (").

Escape sequence for sprintf are:

"\a" Chr(7) Bell alert
"\b" Chr(8) Backspace
"\e" Chr(27) Escape
"\t" Chr(9) Vertical tab
"\n" Chr(10) New line
"\r" Chr(13) Carriage return
"\f" Chr(12) Formfeed
"\v" Chr(11) Vertical tab.
"\\" Backslash
"\%" % an expansion
"\#nnn" ASCII character in decimal notation (\#27 is

similar to Chr(27)).
"\ooo" ASCII character in octal notation (\033 is similar

to Chr(0o033); each o represents only one
octal digit (0..7)).

"\xhhh" ASCII character in hexadecimal notation (\x1b
is similar to Chr(0x1b), each h represents one
hexadecimal digit (0..9a..fA..F)).

"\ " \Space: this is no sequence like the others
before, its purpose is to end \character codes:
"\10\ 33" "\b33", but "\1033" results in "C3".

Format specifications

Format specifications always begin with a percent sign (%)
and are read left to right. When sprintf encounters the first
format specification (if any), it converts the value of the
first argument after format and outputs it accordingly. The
second format specification causes the second argument to
be converted and output, and so on. If there are more
arguments than there are format specifications, the extra
arguments are ignored. The results are undefined if there
are not enough arguments for all the format specifications.

A format specification, which consists of optional and
required fields, has the following form:

%[flags] [width] [. precision] [{h | l | L}]type

h | l | L Optional prefixes to type-that specify the size of
argument

h - short

I - long int

L - Large, int64

Print sprintf("%Li", Large 120986754678) //
120986754678

Print sprintf("%Ii", Large 120986754678) //
727670390

Type Meaning
%d Signed decimal integer (Int)
%i Signed decimal integer (Int)
%x Unsigned hexadecimal integer, using "abcdef".

(Int)
%X Unsigned hexadecimal integer, using "ABCDEF".

(Int)
%o Unsigned octal integer (Int)
%f Signed value having the form [-]dddd.dddd,

where dddd is one or more decimal digits. The
number of digits before the decimal point depends
on the magnitude of the number, and the number
of digits after the decimal point depends on the
requested precision. (Double)

%e Signed value having the form [-]d.dddd e
[sign]ddd where d is a single decimal digit, dddd is

one or more decimal digits, ddd is exactly three
decimal digits, and sign is + or -. (Double)

%E Identical to the e format except that E rather than
e introduces the exponent. (Double)

%g Signed value printed in f or e format, whichever is
more compact for the given value and precision.
The e format is used only when the exponent of
the value is less than -4 or greater than or equal
to the precision argument. Trailing zeros are
truncated, and the decimal point appears only if
one or more digits follow it. (Double)

%G Identical to the g format, except that E, rather
than e, introduces the exponent (where
appropriate). (Double)

%s String. Characters are printed up to the first null
character or until the precision value is reached.

%c Character

Flags

The first optional field of the format specification is flags. A
flag directive is a character that justifies output and prints
signs, blanks, decimal points, and octal and hexadecimal
prefixes. More than one flag directive may appear in a
format specification.

Specification Meaning
- Left align the result within the given field

width. Right align.
+ Prefix the output value with a sign (+ or

-) if the output value is of a signed type.
Sign appears only for negative signed
values (-).

0 If width is prefixed with 0, zeros are

added until the minimum width is
reached. If 0 and - appear, the 0 is
ignored. If 0 is specified with an integer
format (i, u, x, X, o, d) the 0 is ignored.
No padding.

blank (' ') Prefix the output value with a blank if the
output value is signed and positive; the
blank is ignored if both the blank and +
flags appear. No blank appears.

When used with the o, x, or X format, the
flag prefixes any nonzero output value
with 0, 0x, or 0X, respectively. No blank
appears.
When used with the e, E, or f format, the
flag forces the output value to contain a
decimal point in all cases. Decimal point
appears only if digits follow it.
When used with the g or G format, the #
flag forces the output value to contain a
decimal point in all cases and prevents
the truncation of trailing zeros.
Ignored when used with c, d, i, u, or s.
Decimal point appears only if digits follow
it. Trailing zeros are truncated.

Print sprintf("%+i", -255) // Prints -255

Width

The second optional field of the format specification is the
width specification. The width argument is a nonnegative
decimal integer controlling the minimum number of
characters printed. If the number of characters in the
output value is less than the specified width, blanks are
added to the left or the right of the values - depending on
whether the - flag (for left alignment) is specified - until the

minimum width is reached. If width is prefixed with 0, zeros
are added until the minimum width is reached (not useful
for left-aligned numbers).

The width specification never causes a value to be
truncated. If the number of characters in the output value is
greater than the specified width, or if width is not given, all
characters of the value are printed (subject to the precision
specification).

Debug.Show
Debug.Print sprintf("%6i", 0) // " 0"
Debug.Print sprintf("%6s", "xx")// " xx"

Precision

The third optional field of the format specification is the
precision specification. It specifies a nonnegative decimal
integer, preceded by a period (.), which specifies the
number of characters to be printed, the number of decimal
places, or the number of significant digits. Unlike the width
specification, the precision specification can cause either
truncation of the output value or rounding of a floating-
point value.

Type Meaning
c, C The precision has no effect. Character is printed.
d, i,
o, x,

X

The precision specifies the minimum number of
digits to be printed. If the number of digits in the
argument is less than precision, the output value is
padded on the left with zeros. The value is not
truncated when the number of digits exceeds
precision. Default precision is 1.

e, E The precision specifies the number of digits to be
printed after the decimal point. The last printed
digit is rounded. Default precision is 6; if precision

is 0 or the period (.) appears without a number
following it, no decimal point is printed.

f The precision value specifies the number of digits
after the decimal point. If a decimal point appears,
at least one digit appears before it. The value is
rounded to the appropriate number of digits.
Default precision is 6; if precision is 0, or if the
period (.) appears without a number following it,
no decimal point is printed.

g, G The precision specifies the maximum number of
significant digits printed. Six significant digits are
printed, with any trailing zeros truncated.

s, S The precision specifies the maximum number of
characters to be printed. Characters in excess of
precision are not printed. Characters are printed
until a null character is encountered.

Print sprintf("%+.8i", -255) // "-00000255"
Print sprintf("%+.4e", -255) // "2.5500e+002"

Example

Print sprintf("%d is in octal %o", 255, 255)
Print sprintf("%d is in int %i", 255, 255)
Print sprintf("%d is in hexadecimal %x", 255, 255)
Print sprintf("%d is in hexadecimal %X", 255, 255)
Print sprintf("%d is in double %f", 255, 255)
Print sprintf("%d is in double %e", 255, 255)
Print sprintf("%d is in double %E", 255, 255)
Print sprintf("%d is in compact double %g", 255,
255)

Prints:

255 is in octal 377
255 is in int 255
255 is in hexadecimal ff

255 is in hexadecimal FF
255 is in double 255.000000
255 is in double 2.550000e+002
255 is in double 2.550000E+002
255 is in compact double 255

Remarks

If precision is specified as 0 and the value to be converted
is 0, the result is no characters output, as shown below:

Print sprintf("%.0i", 0) // no output

sprintf is C-compatible function. The GFA-BASIC 32
functions Format(), Dec() are easier to use.

See Also

Format, Hex$(), Oct$(), Dec$(), Using

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Using Function
Purpose

Formats an expression according to instructions contained
in a format expression.

Syntax

$ = Using[$](format$, a)

format$:sex
a:aexp or sexp

Description

Using is the third function available to format an expression
given a format-template. The others are Format() and
sprintf(). Using is often used together with Print; in older
BASICs Using was exclusively reserved for Print. In GFA-
BASIC 32 Using is a separate function and can be used in a
Print expression as in the old days.

f$ = Using("###.##", 2.1)

Print Using("###.##", 2.1)

The following characters are available for formatting of
numerical expressions:

Place holder for a digit. When this digit is the last digit
in the format template it is rounded off before output.
This is used to indicate the decimal point in between
the # characters.

. Breaks decimal numbers in several # characters.
, Inserts a comma at the corresponding place between

the # characters and can, for example, be used to
separate the thousands.

- Reserves a place for the minus sign. If the number is
positive a space is printed instead. This format
character is only allowed before or after the
formatting template.

+ Similar to the - character only a plus sign is displayed
before of after a positive number. The plus and the
minus characters cannot be combined.

* An alternative to #, the leading zeros are replaced by
spaces.

$ When placed immediately before the very first #, it
performs the printing of a $ sign in front of the
number.

^ Sets the exponential format (E+000). In this format
the # character specifies the length of the mantissa,
while the ^ character specifies the length of the
exponents including the E+ or E-. If there are several
characters before the decimal point, the exponent is
adjusted so that it's divisible by the count of these
characters. The negative numbers must contain the
sign character.

The following characters are available for formatting of
string expressions:

& Performs the output of the whole string.
! Limits the output to the first character in the string.

\..\ Specifies the number of characters to be printed
from a string. The count includes both \ characters.

_ An underline performs the output of the next
character in template as a literal.

Example

OpenW 1
Local a%, f1$, f2$, f3$, f4$
f1$ = "#,###"
f2$ = "#,###_._._."
f3$ = "\...\"
f4$ = "###.###^^^^"
//
Print Using(f1$, PI)// prints 3.142
Print Using(f2$, PI)// prints 3.142...
Print Using(f3$, "Hallo GFA")// prints Hallo
Print Using(f4$, 2 ^ 10)// prints 1.024E+03

Remarks

The decimal point and comma can be swapped using the
Mode Using ".," or ",." command.

See Also

Str(), Print, Format, sprintf, Mode

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

CByte, CBool, CCur, CDate,
CDbl, CShort, CInt, CLong,
CHandle, CLarge, CSng,
CFloat, CStr, CVar Functions
Purpose

Each function coerces an expression to a specific data type.

Syntax

Bool = CBool(expression)

Byte = CByte(expression)

Currency = CCur(expression)

Date = CDate(expression)

Double = CDbl(expression)

Short = CShort(expression)

Integer = CInt(expression)

Long = CLong(expression)

Handle = CHandle(expression)

Large = CLarge(expression)

Single = CSng(expression)

Single = CFloat(expression)

String = CStr(expression)

Variant = CVar(expression)

expression : string expression or numeric expression

Description

If the expression passed to the function is outside the range
of the data type being converted to, an error occurs.

In general, you can document your code using the data-
type conversion functions to show that the result of some
operation should be expressed as a particular data type
rather than the default data type. For example, use CCur to
force currency arithmetic in cases where single-precision,
double-precision, or integer arithmetic normally would
occur.

You should use the data-type conversion functions instead
of Val to provide internationally aware conversions from
one data type to another. For example, when you use CCur,
different decimal separators, different thousand separators,
and various currency options are properly recognized
depending on the locale setting of your computer.

Use the IsDate function to determine if date can be
converted to a date or time. CDate recognizes date literals
and time literals as well as some numbers that fall within
the range of acceptable dates. When converting a number
to a date, the whole number portion is converted to a date.
Any fractional part of the number is converted to a time of
day, starting at midnight.

CDate recognizes date formats according to the locale
setting of your system. The correct order of day, month,
and year may not be determined if it is provided in a format
other than one of the recognized date settings. In addition,
a long date format is not recognized if it also contains the
day-of-the-week string.

The base year, at least for Windows 98, is 1930. This means
that years specified with only two digits are interpreted a
based to 1930. A year of "29" means 2029, and "31" means
1931. Since this is OLE dependent, located in oleaut32.dll, it
cannot be adjusted.

! The integer type conversion functions always round to the
nearest even number! When the fractional part is exactly
0.5, CByte, CShort, CInt, CLong, and CLarge always
round it to the nearest even number. For example, 0.5
rounds to 0, and 1.5 rounds to 2.

Print CInt(1.5) // 2
Print CByte(0.5) // 0

CByte, CShort, CInt, CLong, and CLarge differ from the
Fix and Int functions, which truncate, rather than round,
the fractional part of a number. Also, Fix and Int always
return a value of the same type as is passed in.

Note CByte is the only function that returns an unsigned
value (0 .. 256). A negative parameter is converted to a
positive value.

CStr returns a string depending on the type of the
argument passed:

Boolean 0 or -1
Number string containing the number

Date short date format
Empty zero-length string ("")
Null run-time error
Array byte copy to string, see CStr(a()).

Example

Print CBool(25 < 24 < 30) //result: True
Print CBool(25 > 24 > 30) //result: False
Print CByte(0.49999) //result: 0
Print CByte(0.50001) //result: 1
Print CByte(-1.6) //result: 254
Dim v '= Null
Print CStr(12.2) //result: 12.2
Print CStr(1 > 0) //result: -1
Print CStr(v) //result:
Print CStr(Date) //result: today's date

Remarks

GFABasic does not support the Visual Basic functions CDec
and CVErr (see this page for a workaround for the latter).

Integer conversions use the Gauss rule that if you are in an
perfect half case, you must round to the nearest digit that
can be divided by 2 (0,2,4,6,and 8). This rule is important
to obtain more accurate results with rounded numbers after
operation.

An example:

Value Standard
rounding

"Gaussian"
rounding

54.1754 54.18 54.18
343.2050 343.21 343.20

106.2038 106.20 106.20
Sum503.5842 503.59 503.58

The "Gaussian" sum is nearer to the unrounded sum
(difference of 0.0042 with Gaussian and 0.0058 with
Standard rounding.)

Another example with half-round cases only:

Unrounded Standard
rounding

"Gaussian
rounding"

27.25 27.3 27.2
27.45 27.5 27.4
27.55 27.6 27.6

Sum82.25 82.4 82.2

Again, the "Gaussian" rounding result is nearer from the
unrounded result than the "Standard" one.

See Also

Fix(), Int(), Round(), CByteRZ(), CIntRZ(), CLargeRZ(),
CLongRZ(), CShortRZ()

{Created by Sjouke Hamstra; Last updated: 05/04/2018 by James Gaite}

Fix, Int, Floor & Ceil and
Trunc & Frac Functions
Purpose

Return the integer or fractional portion of a numeric
expression.

Syntax

n = Ceil(x)
n = Floor(x)

n = Fix(x)
n = Int(x)

n = Trunc(x)
f = Frac(x)

f : floating point variable
x : any numeric variable
n : integer

Description

Ceil rounds up x to the next largest integer, while Floor
rounds it down to the next smallest integer.

Trunc removes the fractional element of x and returns the
integer, while Frac does the opposite and returns the
fraction.

Finally, Int acts like Floor and rounds x down, while Fix is
synonymous with Trunc and simply returns its integer
element.

Example

Debug.Show
Debug "-- With Positive Numbers --"
Trace Ceil(3.4) // Output: 4
Trace Floor(3.4) // Output: 3
Trace Trunc(3.4) // Output: 3
Trace Frac(3.4) // Output: 0.4
Trace Int(3.4) // Output: 3
Trace Fix(3.4) // Output: 3
Debug
Debug "-- With Positive Numbers --"
Trace Ceil(-3.4) // Output: -3
Trace Floor(-3.4) // Output: -4
Trace Trunc(-3.4) // Output: -3
Trace Frac(-3.4) // Output: -0.4
Trace Int(-3.4) // Output: -4
Trace Fix(-3.4) // Output: -3

Remarks

CInt, or any of the integer Cxxx functions, acts differently
to Int as it rounds the passed number to the nearest
integer, as does Round.

See Also

CInt, FRound(), QRound(), Round()

{Created by Sjouke Hamstra; Last updated: 27/01/2016 by James Gaite}

CByteRZ, CShortRZ, CIntRZ,
CLongRZ, CLargeRZ
Functions
Purpose

Each function coerces an expression to a specific integer
data type rounding towards zero.

Syntax

Byte = CByteRZ(expression)

Short = CShortRZ(expression)

Integer = CIntRZ(expression)

Long = CLongRZ(expression)

Large = CLargeRZ(expression)

expression: aexp

Description

Converts a numeric or string expression to a specific integer
data type rounding towards zero (RZ).

When expression is a string the value in the string is
converted to a value using the regional settings. You should
use the data-type conversion functions instead of Val to
provide internationally aware conversions from one data
type to another. For example, when you use CLongRZ,

different decimal separators, different thousand separators,
and various currency options are properly recognized
depending on the locale setting of your computer.

In general, you can document your code using the data-
type conversion functions to show that the result of some
operation should be expressed as a particular data type
rather than the default data type.

Note CByteRZ is the only function that returns an unsigned
value (0 .. 256). A negative parameter is converted to a
positive value.

Example

Print CByteRZ(1.999) //result: 1
Print CByteRZ("2,1") //result: 21 (UK or USA) or 2
(European)

Print CByteRZ(-1.6) //result: 255

See Also

CByte, CShort, CInt, CLong, CLarge

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Asc Function
Purpose

Determines the ASCII value of a character in a string.

Syntax

% = Asc(a$ [, offset = 1])

a$:sexp

offset:numeric expression

Description

Asc(a$) returns the ASCII code of the first character in a$.
If a$ is blank a 0 is returned. Asc(a$, n) returns the ASCII
code of the n-the character in a$.

Example

OpenW # 1
Print Asc("TEST") //prints 84 since 84 is the
ASCII code for T.

Print Asc("TEST", 2) //prints 69 since 69 is the
ASCII code for E.

See Also

Mid$()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Val Functions
Purpose

converts a string expression into a number.

Syntax

= Val(value) - Floating point conversion

= ValDbl(value) - Floating point conversion

cvar = ValCur(value) - Currency conversion

dvar = ValD(value) - Floating point and/or Date conversion

dvar = ValDate(value) - Floating point and/or Date
conversion

% = ValInt(value) - Integer (32 Bit)

Large = ValLarge(value) - Integer (64 Bit)

value:sexp or Date

Description

These functions convert a string or a Date in a numeric
value. The type of the return value depends on the Val
function used.

Val() and ValDbl() return a floating point value of type
Double. ValCur() returns a Currency-value. ValD() and
ValDate() return a Date-value (note that the date must be
in dd.mm.yy[yy] rather than dd/mm/yyyy format), and

ValInt and ValLarge return 32-bit and 64-bit integers
respectively.

If during conversion Val() encounters a character which
cannot be interpreted as a part of a number ("1234a" for
example), the evaluation of the string expression is
terminated and the number obtained up until this point
(1234 in the above example) is then returned; if the string
expression begins with a character which cannot be
interpreted as a part of a number, Val() returns 0. The Val?
() function can be used to discover how many characters
will be converted and, thus, whether all the characters or
just some are eligible.

The Val function recognizes the period (.) as a valid decimal
separator. However this can be influenced by setting the
decimal separator with Mode Val. Using Mode Val the
comma can be used as a decimal separator as well.

If the string expression begins with &X or %, then binary
conversion takes place. &O or &Q converts to octal, while
&H, & or $ converts to hexadecimal.

Mode BaseYear sexp sets the year used as base for dates
enetered with ValD and ValDate. The default (1930)
defines annual numbers between "30" and "99" and the
values are interpreted as being from 1930 to 1999. The
values between "00" and "29" are according to the years
2000 to 2029.

Example

Debug.Show
Trace Val("-.123") // Prints -0.123
Local a$ = Str$(12345) : Trace a$
Trace Val(a$) // Prints 12345

Trace Val("&H" + "AF") // Prints 175
Trace Val("$AA") // Prints 170
Trace Val("%10101011") // Prints 171
Trace ValD("16.09.15") // Prints 12.10.2015
Trace ValD("16/09/15") // Prints 00:00:00 (Only
works with German date format)

For examples on using Mode BaseYear and Mode Val see
here.

Remarks

The Val and ValDbl functions don't convert string to
numeric values according the regional settings. Instead, Val
and ValDbl use the internal GFA-BASIC 32 Mode Val
setting. To make sure a program acts according the regional
settings use CDbl().

See Also

CDbl, Val?

{Created by Sjouke Hamstra; Last updated: 16/09/2015 by James Gaite}

Val? Function
Purpose

Determines the size of a string expression containing a
number when using Val().

Syntax

% = Val?(a$)

Description

Val?(a$) returns 0, if a$ contains no characters that can be
interpreted as numbers.

Example

Debug.Show
Trace Val?("12345") // Prints 5
Trace Val?("3.00 DM") // Prints 4
Trace Val?("Hallo GFA") // Prints 0

See Also

Val, Format, CDbl

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

CheckSumLong Function
Purpose

Computes the checksum for a range of bytes returning a
32-bit integer.

Syntax

sum = CheckSumLong(addr, count, [old])

sum, addr, count, old: iexp

Description

The function CheckSumLong() calculates a simple
checksum (Long value) for a block of data: count bytes
from the address addr. The optional parameter old is to be
used if you want to create a checksum for more than one
block, old must contain the checksum for the other block.

The checksum is a simple adding of 32-bit values in the
data.

Example

Local a$, b$, ch_a%
Debug.Show
a$ = "This is a test"
b$ = "another block"
ch_a% = CheckSumLong(V:a$, Len(a$))
Trace CheckSumLong(V:a$, Len(a$)) //
-112105912

Trace CheckSumLong(V:b$, Len(b$)) //
-128892778

Trace CheckSumLong(V:a$, Len(a$), ch_a%) //
-224211823

Remarks

The calculation of data with CheckSumByte,
CheckSumShort, CheckSumLong (or CheckXorxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

CheckSumShort Function
Purpose

computes the checksum for a range of bytes returning a 16-
bit integer.

Syntax

w = CheckSumShort(addr, count, [old])

w, old:16-bit integer
addr, count:iexp

Description

The function CheckSumShort() calculates a simple
checksum (16-bit integer value) for a block of data: count
bytes from the address addr. The optional parameter old is
to be used if you want to create a checksum for more than
one block, old must contain the checksum for the other
block.

The checksum is a simple adding of 16-bit values in the
data.

Example

Local a$, b$, ch_a&
Debug.Show
a$ = "This is a test"
b$ = "another block"
ch_a& = CheckSumShort(V:a$, Len(a$))

Trace CheckSumShort(V:a$, Len(a$)) //
24474

Trace CheckSumShort(V:b$, Len(b$)) //
14568

Trace CheckSumShort(V:a$, Len(a$), ch_a&) //
-16588

Remarks

The calculation of data with CheckSumByte,
CheckSumShort, CheckSumLong (or CheckXorxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

CheckXorLong Function
Purpose

Computes the checksum for a range of bytes returning a
32-bit value.

Syntax

l = CheckXorLong(addr, count, [old])

l, addr, count, old:iexp

Description

The function CheckXorLong() calculates a simple
checksum (Long value) for a block of data: count bytes
from the address addr. The optional parameter old is to be
used if you want to create a checksum for more than one
block, old must contain the checksum for the other block.

The checksum is a simple XOR-ing of 32-bit values (4
bytes) in the data.

Example

Local a$ = "This is a Test"
Print CheckXorLong(V:a$, Len(a$)) // 911103334
Dim a#(10), b#(10)
Mat Set a#() = 120
Mat Set b#() = -234
Dim cha_xor% = CheckXorLong(V:a#(0), ArraySize(a#
()))

Dim ch_xor% = CheckXorLong(V:b#(0), ArraySize(b#
()), cha_xor%)

Print cha_xor%, ch_xor% // 1079902208, -2144124928

Remarks

The calculation of data with CheckXorByte,
CheckXorShort, CheckXorLong (or CheckSumxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

CheckXorShort Function
Purpose

Computes the checksum for a range of bytes returning a
16-bit value.

Syntax

w = CheckXorShort(addr, count, [old])

w, old:16-bit integer
addr, count:iexp

Description

The function CheckXorLong() calculates a simple
checksum (Long value) for a block of data: count bytes
from the address addr. The optional parameter old is to be
used if you want to create a checksum for more than one
block, old must contain the checksum for the other block.

The checksum is a simple XOR-ing of 16-bit (2 bytes)
values in the data.

Example

Local a$ = "This is a Test"
Print CheckXorShort(V:a$, Len(a$)) // 25384
Dim a#(10), b#(10)
Mat Set a#() = 120
Mat Set b#() = -234
Dim cha_xor& = CheckXorShort(V:a#(0), ArraySize(a#
()))

Dim ch_xor& = CheckXorShort(V:b#(0), ArraySize(b#
()), cha_xor&)

Print cha_xor&, ch_xor& // 16478, -16333

Remarks

The calculation of data with CheckXorByte,
CheckXorShort, CheckXorLong (or CheckSumxxx()) is
very fast (up to 10 times faster than Crc16() or Crc32()).

A checksum is a form of redundancy check, a simple way to
protect the integrity of data by detecting errors in data that
are sent through space (telecommunications) or time
(storage). It works by adding up the basic components of
the data, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same
operation on the data, compare the result to the authentic
checksum, and (assuming that the sums match) conclude
that the data was probably not corrupted.

See Also

CheckSumByte(), CheckSumLong(), CheckSumShort(),
CheckXorByte(), CheckXorLong(), CheckXorShort(),
Crc16(), Crc32()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

PackMem, UnPackMem
Function
Purpose

Compresses a block of memory into a string.

Syntax

$ = PackMem(address, length [,flag = 0])

$ = UnPackMem(string, length)

address, length: iexp
string:sexp
flag:iexp

Description

The function PackMem returns a compressed string from a
block of memory at the specified address and length. The
function UnPackMem decompresses a string compressed
with PackMem.

PackMem will place a 12 byte label in front of a
compressed string. The first four signs are "PCK0"
(PeCehKahZero), after this, four more signs follow with the
length of the compressed data and last four with the
original length:

"PCK0" + Mkl$(length_after_compression) + Mkl$(original
length) + packed data

When both the original data size as the compressed data
size are smaller than 65536, a header of 8 bytes is used,
with a lowercase k instead of K, and both lengths in a 16-bit
value. Data that cannot be compressed (random byte
sequences or a Crypt$) are marked with a lowercase c,
followed by only one length (k=16 bit, K=32 bit), so 6 or 8
bytes.

The optional flag can have a value of 0, 1, or 2. If flag = 1
an additional bit pack run is performed. This run will take a
bit of time, but as a result, you get a better compression
rate (1-10%, sometimes more). In addition, plain text
snippets are mostly removed from the compressed string.
Packing with default value of flag (= 0) often results in a
compressed string where words might be readable. A
packed string with flag is 1 is marked as PCK1 or PCk1
instead of PCK0.

flag = 2 forces a bit pack, whether or not the packed string
becomes longer.

Example

OpenW 1
Local a$, b$, c$, d$, e%, x%, b1$
// read
a$ = Peek$(4096 * 1024, 60000)
// pack the first part into b$, and
// the rest into c$
b$ = PackMem(V:a$, 30000)
c$ = PackMem(V:a$ + 30000, 30000)
// unpack
d$ = UnPackMem(V:b$, Len(b$)) + UnPackMem(V:c$,
Len(c$))

// display: before, packed 2 x times, after
Print Len(a$), Len(b$), Len(c$), Len(d$)

// comparison: before - after
Print a$ = d$
// all with flag 1
b$ = PackMem(V:a$, 30000, 1)
c$ = PackMem(V:a$ + 30000, 30000, 1)
d$ = UnPackMem(V:b$, Len(b$)) + _
UnPackMem(V:c$, Len(c$))

Print Len(a$), Len(b$), Len(c$), Len(d$)
Print a$ = d$
//all with flag 2
b$ = PackMem(V:a$, 30000, 2)
c$ = PackMem(V:a$ + 30000, 30000, 2)
d$ = UnPackMem(V:b$, Len(b$)) + _
UnPackMem(V:c$, Len(c$))

Print Len(a$), Len(b$), Len(c$), Len(d$)
Print a$ = d$

Remarks

The compression rate of PackMem compares to ARC, the
grand father of all compression programs, or Compress the
program from Microsoft.

See Also

Pack$

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

UUEncode and UUDecode
Functions
Purpose

Encodes and decodes a string using UUE encoding.

Syntax

uustring$ = UUEncode(string$)

string$ = UUDecode(uustring$)

Description

UUEncode converts a string to the UUE format. This a
relative old format used for mailboxes, where special
characters are being replaced by printable characters.

UUDecode decodes the UUE encoded string.

Example

OpenW 1
Local a$, s_mime$, x%, s$
a$ = "GFA Software Technologies GmbH"
s_mime$ = uuencode(a$)
Print s_mime$
s$ = uudecode(s_mime$)
Print s$

Remarks

See Also

MemToMiMe(), MemToUU(), MiMeToMem(), MiMeDecode(),
MiMeEncode(), UUToMem()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Is Operator
Purpose

Used to compare two object reference variables

Syntax

Bool = object1 Is object2

Bool = TypeOf(object1) Is typename

Description

If object1 and object2 both refer to the same object, result
is True; if they do not, result is False. Two variables can be
made to refer to the same object in several ways.

In the following example, A has been set to refer to the
same object as B:

Set A = B

The Is operator is an object reference comparison operator.
It does not compare objects or their values; it checks only
to determine if two object references refer to the same
object.

The Is operator is also used together with TypeOf. In this
case Is compares two OCX or OLE types.

Example

OpenW 1
Ocx TextBox tb1

Ocx TextBox tb2
Ocx Command bt1
Ocx Command bt2
Ocx Command bt3
Print tb1 Is tb2 // False
Set tb1 = tb2
Print tb1 Is tb2 // True
Set bt1 = bt3
Print bt2 Is bt1 // False
Print TypeOf(bt2) Is Command //True

Remarks

When expressions contain operators from more than one
category, arithmetic operators are evaluated first,
comparison operators are evaluated next, and logical
operators are evaluated last. The Is operator is evaluated
last.

See Also

Set, TypeOf

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

TypeOf Function
Purpose

Queries the type of an object

Syntax

If TypeOf(object) Is objecttype

If TypeOf object Is objecttype

object:OLE object
objectname:OLE type name

Description

TypeOf is always part of an If expression, of the form
TypeOf objectname Is objecttype. The object is any object
reference and objecttype is any valid object type. The
expression is True if objectname is of the object type
specified by objecttype; otherwise it is False.

Example

OpenW 1
Local obj As Object
Ocx Command cmd1
Set obj = cmd1 : result(obj)
Set obj = Win_1 : result(obj)
Set obj = Nothing : result(obj)

Function result(obj As Object)
Try

If TypeOf(obj) Is Command
Print obj.name & " is a Command Button"

Else
Print obj.name & " is not a Command Button. It
is a " & TypeName(obj) & "."

EndIf
Catch
Print "The Object is set to Nothing"

EndCatch
EndFunc

Remarks

Select Case may be more useful when evaluating a single
expression that has several possible actions. However, the
TypeOf objectname Is objecttype clause can't be used with
the Select Case statement.

TypeOf can only be used with Objects but, as seen in the
example above, does not recognise when the object is set
to Nothing and returns an error. Therefore, it should always
be contained within a Try/Catch construct if there is even
the remotest possibility of the object being queried not
having been defined and this is especially true if you are
querying the edit box of a ComboBox which returns Nothing
eventhough it has been defined. TypeName could be used
instead as it recognises both Objects and the Nothing state
of undefined objects. This is shown best by the following
example:

Type COMBOBOXINFO
- Long cbsize
rcItem As RECT
rcButton As RECT
- Long stateButton, hwndCombo, hwndItem, hwndList

EndType
Type RECT

- Long Left, Top, Right, Bottom
EndType
Global Const CB_GETCOMBOBOXINFO = 0x0164
Ocx ComboBox cb = "", 10, 10, 100, 22
Local a$, ci As COMBOBOXINFO : ci.cbsize =
SizeOf(COMBOBOXINFO)

~SendMessage(cb.hWnd, CB_GETCOMBOBOXINFO, 0, V:ci)
Text 10, 50, "ComboBox Edit BoxHandle: " &
ci.hwndItem

Try
If TypeOf(cb) Is ComboBox Then a$ = a$ & "TypeOf
recognises the ComboBox"

If TypeOf(OCX(ci.hwndItem)) Is TextBox Then a$ =
a$ & " and the Edit Box"

Catch
a$ = a$ & " but not the Edit Box as it is not an
OCX object and returns Nothing, "

a$ = a$ & "as is shown by
TypeName(OCX(ci.hwndItem)) = " & #34 &
"Nothing" & #34 & " being returned as" &
(TypeName(OCX(ci.hwndItem)) = "Nothing")

EndCatch
Text 10, 65, a$
Do : Sleep : Until Me Is Nothing

See Also

TypeName, VarType

{Created by Sjouke Hamstra; Last updated: 14/09/2015 by James Gaite}

Now, Now$ Function
Purpose

Returns a Date specifying the current date and time
according your computer's system date and time.

Syntax

d = Now

$ = Now$[(d)]

d: Date expression

Description

Now returns a Date specifying the current date and time
according your computer's system date and time.

Now$ returns the current date and time as a string
formatted according Mode Date setting (dd.mm.yyyy
HH:mm:ss). Now$(date) returns the specified Date as a
string in the same format.

Example

Dim MyDate As Date
MyDate = Now ' MyDate contains the current
system date/time.

Dim s$ = Now$
Print "Now = "; MyDate
Print "Now$ = "; s$

Remarks

Now$[()] is identical to DateTime$[()]

See Also

DateTime$, Date, Date$, Time, Time$

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

_time Function
Purpose

Gets the system time

Syntax

int = _time [(V: x%)]

x : ivar

Description

The _time function returns the number of seconds elapsed
since midnight (00:00:00), January 1, 1970, coordinated
universal time, according to the system clock. The return
value is stored in the location given by x%. This parameter
may be zero, in which case the return value is not stored.

Example

Dim a%
Print _time(V:a%) // Number of seconds elapsed
Print a% // - ditto -
Print _time(0) // - ditto -
Print _time // - ditto -
Print _ctime(0) // Date in C Format
Print _ctime(V:a%) // - ditto -
Print _ctime // - ditto -

Remarks

_ctime and _time are implemented for compatibility
reasons with C. These functions are restricted to dates
between 1970 and 2038 and will result in the 2K38 bug….

_time is the same as ((Now + #1.1.1970#) *24*60*60).

See Also

_ctime, Now

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Date$ Function
Purpose

Returns string for a given date or the system date.

Syntax

Date$[(date)]

date: Date expression

Description

Date$ returns the system date in the following format:

DD.MM.YYYY (Day.Month.Year)

MM.DD.YYYY (Month.Day.Year; US format)

YYYY-MM-TT (Year-Month-Day, international format)

The format is set with the Mode command.

Example

OpenW # 1
Print Date$
// Change to US Date mode
// Mode Format does not work with Date$
Mode Date "/"
Print Date$(Date - 30)
// For UK Date style use...
Print Format(Date, "dd/mm/yyyy")

Remarks

There is no command to set the system time, because
setting the time requires the SE_SYSTEMTIME_NAME
privilege.

Time$() returns the time part of a date. DateTime$()
returns both the date and the time.

Use Format to convert a Date to a different format.

See Also

Format, Time$, DateTime$, Date, Time, Now, Mode

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Time$ Function
Purpose

Returns a string for the specified time.

Syntax

$ = Time$[(date])

date:optional, date exp

Description

Time$ returns the specified time, or when not used the
system time, in the following format: HH:MM:SS
(Hours:Minutes:Seconds)

Example

OpenW # 1
Print Time$
Local x As Date = #12.12.2001 18:42:16#
Print Time$(x)
' a simple calculation
Print Time$(x + #03:00:00#)

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),

Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

DateTime$ Function
Purpose

Converts a Date to a string.

Syntax

$ = DateTime$(date)

date: Date expression

Description

Together with Date$() and Time$() the function Now$ and
DateTime$() converts a date to a printable string. The
output format is set with Mode Date and Mode Time.
DateTime$ includes both the date and the time part.

Example

Debug.Show
Trace DateTime$(Now)
Trace Now$
// Prints the actual date and time
Trace DateTime$(Date)
// Prints only the actual date
Trace DateTime$(11111.1111)
// Prints 06/02/1930 02:34:59
Local d As Date = 31344.55
Trace d
Trace DateTime$(d / 4 - 2 * 3)
// Prints 06/08/1921 03:18:00
Trace DateTime$(d)

// Prints 10/24/1985 13:12:00

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Day Function
Purpose

Returns a whole number between 1 and 31, inclusive,
representing the day of the month.

Syntax

Day(time)

Description

The time argument is any expression that can represent a
time.

Example

Debug.Show
Local z As Date = HmsToTime(110000, 20, 4000)
Trace Day(z)
Trace Day(Now)
Trace Day(Date)
Trace Day(#12:12:12#)
Trace FileDateTime("c:\windows\notepad.exe")
Trace Day(FileDateTime("c:\windows\notepad.exe"))

Remarks

You can indicate a time in hours, minutes and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically
add “:00“ for the seconds. When using AM or PM the editor

automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DayNo Function
Purpose

Returns a whole number between 1 and 365 (366 for leap
years), inclusive, representing the day of the year.

Syntax

DayNo(time)

Description

The time argument is any expression that can represent a
time.

Example

Debug.Show
Local z = HmsToTime(110000, 20, 4000)
Trace z
Trace DayNo(z)
Trace DayNo(Now)
Trace DayNo(Date)
Trace DayNo(#12:12:12#)
Trace
DayNo(FileDateTime("c:\windows\notepad.exe"))

Remarks

You can indicate a time in hours, minutes and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically

add “:00“ for the seconds. When using AM or PM the editor
automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Month Function
Purpose

Returns an Integer specifying a whole number between 1
and 12, inclusive, representing the month of the year.

Syntax

Month(date)

date:Date exp

Description

The function Month() retunrs the month of a Date.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, Month(z)
Print Now, Month(Now)
Print Date, " ", Month(Date)
Print "12/12/1912", " ", Month(#12.12.1912#)
Print FileDateTime("c:\windows\notepad.exe"),
Month(FileDateTime("c:\windows\notepad.exe"))

Remarks

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

WeekDay Function
Purpose

Returns an Integer specifying a whole number (1-6)
containing the day of the week,

Syntax

WeekDay(date)

date:Date exp

Description

The function WeekDay() returns the day of the week,
relative to Sunday.

Sunday = 1, Monday = 2, Tuesday = 3, Wednesday = 4,
Thursday = 5, Friday = 6, Saturday = 7

The Mode Lang command determines use of the regional
settings.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, WeekDay(z), Format(WeekDay(z), "dddd")
Print Now, WeekDay(Now), Format(WeekDay(Now),
"dddd")

Print Date, " ", WeekDay(Date),
Format(WeekDay(Date), "dddd")

Print "12/12/1912", " ", WeekDay(#12.12.1912#),
Format(WeekDay(#12.12.1912#), "dddd")

Print FileDateTime("c:\windows\notepad.exe"),
WeekDay(FileDateTime("c:\windows\notepad.exe")),

Print
Format(WeekDay(FileDateTime("c:\windows\notepad.e
xe")), "dddd")

Remarks

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Year Function
Purpose

Returns an Integer specifying a whole number representing
the year.

Syntax

Year(date)

date:Date exp

Description

The function Year() returns the year a Date. The result is a
two digit or a four digit number, depending on the Mode
Lang setting.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, Year(z)
Print Now, Year(Now)
Print Date, " ", Year(Date)
Print "12/12/1912", " ", Year(#12.12.1912#)
Print FileDateTime("c:\windows\notepad.exe"),
Year(FileDateTime("c:\windows\notepad.exe"))

Remarks

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Hour Function
Purpose

Returns a whole number between 0 and 23, inclusive,
representing the hour of the day.

Syntax

Hour(time)

time: Date, Variant, or String

Description

The time argument is any expression that can represent a
time. If time contains Null, Null is returned.

The following example uses the Hour function to obtain the
hour from the current time:

Example

Debug.Show
Local z As Date, x%
z = HmsToTime(110000, 20, 4000)
Trace z
Trace Hour(z)
Trace Hour(#16:24:12#)
Trace Hour(Now)
Trace Hour(Time)
Trace Hour(FileDateTime("c:\windows\notepad.exe"))

Remarks

The format of the output can be changed with the using of
Mode Date..., Mode Format..., Format....

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Minute Function
Purpose

Returns a whole number between 0 and 59, inclusive,
representing the minute of the hour.

Syntax

Minute(time)

Description

The time argument is any expression that can represent a
time.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, Minute(z)
Print Now, Minute(Now)
Print Date, Minute(Date)
Print "12:12:12", Minute(#12:12:12#)
Print FileDateTime("c:\windows\notepad.exe"),
Minute(FileDateTime("c:\windows\notepad.exe"))

Remarks

You can indicate a time in hours, minutes, and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically

add “:00“ for the seconds. When using AM or PM the editor
automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Second Function
Purpose

Returns an Integer specifying a whole number between 0
and 59, inclusive, representing the second of a minute.

Syntax

Second(time)

time:Date exp

Description

The function Second() returns the second of a Date.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, Second(z)
Print Now, Second(Now)
Print Date, " ", Second(Date)
Print "12:12:12", " ", Second(#12:12:12#)
Print FileDateTime("c:\windows\notepad.exe"),
Second(FileDateTime("c:\windows\notepad.exe"))

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),

DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

DateAdd Function
Purpose

Returns a Date containing a date to which a specified time
interval has been added.

Syntax

DateAdd(interval, number, date)

interval:sexp
number:iexp
date:any date exp

Description

You can use the DateAdd function to add or subtract a
specified time interval from a date. For example, you can
use DateAdd to calculate a date 30 days from today.

The interval argument can have the following values:

"yyyy" Year
"q" Quarter
"m" Month
"y" Day of year
"d" Day
"w" Weekday (1 = Sunday, … , 7 = Saturday)
"ww" Week

The DateAdd function won't return an invalid date. The
following example adds one month to January 31:

DateAdd("m", 1, "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If
date is 31-Jan-96, it returns 29-Feb-96 because 1996 is a
leap year.

If the calculated date would precede the year 100 (that is,
you subtract more years than are in date), an error occurs.

Example

Global x As Date, a%
x = DateAdd("ww", 4, Date) : Print x
// the actual date plus 4 weeks
x = DateAdd("yyyy", -9, Date) : Print x
// the year minus 9
x = DateAdd("m", -6, #12/31/1920#) : Print x
// the given date minus 6 month
// results 30/06/1920

Remarks

You can indicate a time in hours, minutes and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically
add “:00“ for the seconds. When using AM or PM the editor
automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),

DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DateDiff Function
Purpose

Returns a Long specifying the number of time intervals
between two specified dates.

Syntax

DateDiff(interval, date1, date2)

interval: sexp

date1, date2: date exp

Description

You can use the DateDiff function to determine how many
specified time intervals exist between two dates. For
example, you might use DateDiff to calculate the number
of days between two dates, or the number of weeks
between today and the end of the year.

The interval argument can have the following values:

"yyyy" Year
"q" Quarter
"m" Month
"y" Day of year
"d" Day
"w" Weekday (1 = Sunday, … , 7 = Saturday)
"ww" Week

To calculate the number of days between date1 and date2,
you can use either day of year ("y") or day ("d"). When
interval is weekday ("w"), DateDiff returns the number of
weeks between the two dates. If date1 falls on a Monday,
DateDiff counts the number of Mondays until date2. It
counts date2 but not date1. If interval is Week ("ww"),
however, the DateDiff function returns the number of
calendar weeks between the two dates. It counts the
number of Sundays between date1 and date2. DateDiff
counts date2 if it falls on a Sunday; but it doesn't count
date1, even if it does fall on a Sunday.

If date1 refers to a later point in time than date2, the
DateDiff function returns a negative number.

Example

OpenW 1
Print DateDiff("ww", #12/31/1999#, Now)
// returns the number of full weeks from
// today till the date
Print DateDiff("m", #01/01/1800#, Date)
// returns the numbers of month till ...
Print DateDiff("w", #01/01/1800#, Date)
// returns then numbers of weekends
Print DateDiff("ww", #01/01/1800#, Date)
// return the numbers of full weeks
Do : Sleep : Until Win_1 Is Nothing

Remarks

You can indicate a time in hours, minutes and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically
add “:00“ for the seconds. When using AM or PM the editor

automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DatePart Function
Purpose

Returns an integer containing the specified part of a given
date.

Syntax

DatePart(interval, date)

interval: sexp

date: date exp

Description

You can use the DatePart function to evaluate a date and
return a specific interval of time. For example, you might
use DatePart to calculate the day of the week or the
current hour.

The interval argument of time you want to return can have
the following values:

"yyyy" Year
"q" Quarter
"m" Month
"y" Day of year
"d" Day
"w" Weekday (1 = Sunday, … , 7 = Saturday)
"ww" Week
"h" Hour

"n" Minute
"s" Second

Example

Debug.Show
Trace DatePart("d", #03/29/1997 23:44:45#)
// Prints 29
Trace DatePart("m", #03/29/1997 23:44:45#)
// Prints 3
Trace DatePart("yyyy", #03/29/1997 23:44:45#)
// Prints 1997
Trace DatePart("y", #03/29/1997 23:44:45#)
// Prints 260
Trace DatePart("q", #03/29/1997 23:44:45#)
// Prints 1
Trace DatePart("w", #03/29/1997 23:44:45#)
// Prints 7
Trace DatePart("ww", #03/29/1997 23:44:45#)
// Prints 13
Trace DatePart("h", #03/29/1997 23:44:45#)
// Prints 23
Trace DatePart("n", #03/29/1997 23:44:45#)
// Prints 44
Trace DatePart("s", #03/29/1997 23:44:45#)
// Prints 45
// or
Trace DatePart("h", 3.5)
// Prints 12
Trace DatePart("yyyy", 3.5 + 1500)
// Prints 1904
// or
Debug
Dim d As Date = 36525.9999
Trace d
Trace DatePart("yyyy", d) // 1999
Trace DatePart("m", d) // 12

Trace DatePart("d", d) // 31
Trace DatePart("h", d) // 23
Trace DatePart("n", d) // 59
Trace DatePart("s", d) // 51
// but
Trace DatePart("yyyy", Time) // 1899 (starting
point)

Remarks

You can indicate a time in hours, minutes and seconds,
separated by “ : “; or only with four numbers for hours and
minutes (with or without the using of AM or PM). Using only
4 characters forces the GFABASIC 32 editor to automatically
add “:00“ for the seconds. When using AM or PM the editor
automatically converts to 24 hour mode. For instance,
"#2:24#" will automatically convert to #14:24:00#, and
(#2:24AM#) => (#02:24:00#).

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

TimeSerial Function
Purpose

Returns a Date for a specified hour, minute, and second.

Syntax

dt = TimeSerial(hour, minute, second)

dt: Date exp
hour, minute, second: iexp

Description

To specify a time, such as 11:59:59, the range of numbers
for each TimeSerial argument should be in the normal
range for the unit; that is, 0-23 for hours and 0-59 for
minutes and seconds. However, you can also specify relative
times for each argument using any numeric expression that
represents some number of hours, minutes, or seconds
before or after a certain time. The following example uses
expressions instead of absolute time numbers. The
TimeSerial function returns a time for 15 minutes before
(-15) six hours before noon (12 - 6), or 5:45:00 A.M.

TimeSerial(12 - 6, -15, 0)

When any argument exceeds the normal range for that
argument, it increments to the next larger unit as
appropriate. For example, if you specify 75 minutes, it is
evaluated as one hour and 15 minutes. If any single
argument is outside the range -32,768 to 32,767, an error
occurs. If the time specified by the three arguments causes

the date to fall outside the acceptable range of dates, an
error occurs.

Example

OpenW 1
Local a As Date, x%
a = TimeSerial(1000000, 120000, 33000)
Print a
// prints : 16.03.78 21:18:16

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

TimeValue Function
Purpose

Returns a value containing the time.

Syntax

var = TimeValue(exp)

var : variable
exp : aexp

Description

This function converts exp and returns a time value in var.
The conversion uses the VarDateFromString API and so
takes into account the Regional settings of the system
rather than the current GB Mode setting (for a GB Mode
compliant function, see ValDate).

The expression exp can be a string, date, or date literal. If
there is a date element then any date literal must use a
period (or full stop) separator for date (25.12.2018 12:54)
regardless of Mode settings.

The value returned to var depends on the variable type for
the return value but is Date by default: when var is a
Single or Double a decimal representation of the time
element is returned; if var is a String, the time is returned
as a string. If var is an integer then 0 (upto 12:00) or 1
(after 12:00) will be returned.

Example

Local da As Date, db As Double, i As Int, s As
String

da = TimeValue("25 Jan 2019 11:42") : Print da //
11:42:00

db = TimeValue("25 Jan 2019 11:42") : Print db //
0.4875

i = TimeValue("25 Jan 2019 11:42") : Print i //
0 - Upto 12:00

s = TimeValue("25 Jan 2019 11:42") : Print s //
11:42:00

Print TimeValue(#25.01.2019 11:42:00#) //
11:42:00

Print VarType(TimeValue(#25.01.2019 11:42:00#)) //
7 = Date

This example uses the DateTime function to convert a
string to a date.

Dim X As Date, Y As Double
X = TimeValue(Now)
Y = TimeValue(Now)
Print X, Y, TimeValue(Now)
Print TimeValue(FileDateTime(ProgName))

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 02/02/2019 by James Gaite}

DateToDmy, DateToDmyHms
and TimeToHms Commands
Purpose

Returns the day, month, year and/or hour, minute, and
seconds of a Date/Time value.

Syntax

DateToDmy date, day, month, year
DateToDmyHms date, day, month, year, hour, minute,
second
TimeToHms date, hour, minute, second

date : date expression
day, month, year,
hour, minute, second : integer expressions

Description

These commands are shortcuts for Day(), Month(),
Year(), Hour(), Minute(), and Second() functions and
assign the specified part of a Date/Time value to a pre-
defined integer variable. See the example below for how to
use them.

Example

OpenW 1
Global Int d, m, y, h, mn, s
DateToDmy Date - 25, d, m, y // Returns
the date 25 days ago

PrintResult(1)
DateToDmyHms Now, d, m , y, h, mn, s // Returns
the date and time now

PrintResult(3)
TimeToHms Now - (1 / 24), h, mn, s // Returns
the time one hour ago

PrintResult(2)
Do : Sleep : Until Me Is Nothing

Sub PrintResult(part%)
If Btst(part%, 0) Then Print "Day: "; d, "Month:
"; m, "Year: "; y;

If Btst(part%, 1) Then Print Tab(45); "Hour: ";
h, "Minute: "; mn, "Second: "; s

If Not Btst(part%, 1) Then Print
EndSub

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateValue(), Day(), DayNo(),
DmyHmsToDate(), DmyToDate(), HmsToTime(), Hour(),
IsDate(), Minute(), Month(), Now, Now$(), TimeSerial(),
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 13/02/2016 by James Gaite}

_TimerCount and _TimerFreq
Functions
Purpose

Combined, they return the time since Windows started and
form the basis of the Timer function.

Syntax

x = _TimerCount

x = _TimerFreq

x : i64var

Description

_TimerFreq returns the frequency with which the timer is
counted (1/1193190 - resolution, better as microseconds).

_TimerCount returns the number of counts since Windows
began, the rate of the counts being determined by the
frequency stored in _TimerFreq: hence, the value of Tmer
- or the seconds elapsed since Windows began - is
theoretically _TimerCount / _TimerFreq.

Example

OpenW 1
Dim a, b As Large, c As Double
a = _TimerCount
b = _TimerFreq
c = Timer

Print a // Result
Print b
Print Round(a / b, 5), Round(c, 5) // equal to
Timer

Do
Sleep

Until Me Is Nothing

Remarks

When Timer is compared to (_TimerCount /
_TimerFreq), the values aren't identical. This isn't a flaw in
GFA-BASIC 32, but is due to fact that both functions aren't
invoked at the same time.

See Also

Timer, oTimer, qTimer

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Timer, oTimer and qTimer
Functions
Purpose

Return a value of the time elapsed since Windows started in
varying time intervals.

Syntax

= Timer

% = oTimer

= qTimer

Description

Timer returns the time as a Double in seconds. The internal
resolution is _TimerFreq.

oTimer is compatible to GFA-BASIC 16 Timer and returns
the time since the Windows start in milliseconds as a 32-bit
integer value with a resolution of this timer of 1 millisecond.
oTimer is slower than Timer and the resolution of oTimer
(milliseconds as an Integer value) is also smaller than that
of Timer (1/1.2 million (_TimerFreq)).

Finally, qTimer returns the time as a Double like Timer but
has a frequency of approximately 55 milliseconds (the
18.2hz of the Timer Interrupt); qTimer corresponds to the
VB function Timer.

Example

FullW 1 : AutoRedraw = 1
Global f1# = .4, f2# = .85, _
w1# = 35, w2# = 5

f1 = .4, f2 = .85
Color RGB(0, 255, 0)
Local t# = Timer, qt# = qTimer, ot% = oTimer
xdraw 100, 130, 160, 100
t# = Timer - t#, qt# = qTimer - qt#, ot% = oTimer
- ot%

Color 0
Print AT(1, 1); "Time according to Timer function:
"; Format(t#, "0.###"); " secs"

Print AT(1, 2); "Time according to oTimer
function: "; Format(ot% / 1000, "0.###"); " secs"

Print AT(1, 3); "Time according to qTimer
function: "; Format(qt# * 10, "0.###"); " secs"

Do
Sleep

Loop Until Me Is Nothing

Proc xdraw(x, y, l, r)
Local x1#, y1#
RGBColor RGB(0, 255 - l, 0)
Draw "ma" x, y, "tt" r, "fd", l
x1 = Draw(0), y1 = Draw(1)
If l > .5
xdraw x1, y1, l * f1, r + w1
xdraw x1, y1, l * f1, r - w1
xdraw x1, y1, l * f2, r + w2

EndIf
EndProc

Displays the time taken to draw the graphical image.

Remarks

Timer is not compatible with GFA-BASIC 16, because it now
returns seconds, instead of milliseconds. oTimer is
compatible with GFA-BASIC 16.

See Also

_TimerCount, _TimerFreq

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

_RDTSC Function
Purpose

Returns the number of processor cycles.

Syntax

x = _RDTSC

x : int64

Description

With the function _RDTSC it is possible to determine how
many cycles your program needs to do something by calling
the state of the Time Stamp Counter (TSC). In the following
for a For-Next

Example

OpenW 1
Local Large l1, l2, l3, l4
Local i As Large, x%
For i = 1 To 20
l1 = _RDTSC : l2 = _RDTSC
l3 = _RDTSC : l4 = _RDTSC
Print l2 - l1; l3 - l2; l4 - l3

Next
KeyGet x%
CloseW 1

Remarks

Since the introduction of the Pentium the processor
provides the cycle counter in an internal 64-bit register. The
counter is reset each time the computer is switched on.

Example

$StepOff
OpenW 1
Global Double t
Dim l As Large
Global s$
Local i As Register Int
Global sum As Int
Local a$
Print
s$ = Space$(100000)
t = Timer : l = _RDTSC : sum = 0
For i = 1 To Len(s$)
a$ = Mid$(s$, i, 1)
sum += Asc(a$)

Next
l = _RDTSC - l : t = Timer - t
Print "Number of cycles: "; l
Print "Time in seconds: "; t
Do : Sleep : Until Me Is Nothing

See Also

Timer, $StepOff, Naked

{Created by Sjouke Hamstra; Last updated: 22/09/2014 by James Gaite}

_ctime Function
Purpose

Converts a _time value to a string and adjust for local time
zone settings.

Syntax

int = _ctime [(V: x%)]

Description

The _ctime function converts a time value stored as a
_time 32-bit integer into a character string. The timer value
is usually obtained from a call to _time(), which returns the
number of seconds elapsed since midnight (00:00:00),
January 1, 1970, coordinated universal time (UTC). The
string result produced by ctime contains exactly 26
characters and has the form:

"Wed Jan 02 02:03:55 1980"#10

A 24-hour clock is used. All fields have a constant width.
The new line character ('\n' or #10) occupies the last two
positions of the string.

The converted character string is also adjusted according to
the local time zone settings.

Examples

OpenW 1
Local a%, b%, x%

b% = _time(V:a%) // or: ~_time(V:a%)
Print _ctime(V:a%)
KeyGet x%
CloseW 1

And

OpenW 1
Local a%, x%
a% = 200000000 // 200 million
Print _ctime(V:a%)
KeyGet x%
CloseW 1

Remarks

_ctime and _time are implemented for compatibility
reasons with C. These functions are restricted to dates
between 1970 and 2038.

See Also

_time. Now$

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

ChDir Command
Purpose

sets the current directory.

Syntax

ChDir a$

a$:sexp; name of current directory

Description

ChDir sets the current directory. Since it is impossible to
change the drive with ChDir, this command always defaults
to the current drive. ChDir must be followed by the path
name. If a$ contains only the backslash ("\"), the change to
the root directory of the current drive is performed.

There are two special abbreviations for ChDir: "." and "..".
"." is an alternative way to define the current subdirectory
and ".." for the parent directory. Let's assume that the
current subdirectory contains the directory Test, which in
turn contains directories A1 and A2. \Test\A1 is the current
path. In this case ChDir "..\A2" will change the current path
to \Test\A2.

Example

ChDrive 1 // Drive A is the current drive
ChDir "\Test" // A:\Test
ChDir "A1" // A:\Test\A1
ChDir "..\A2" // A:\Test\A2

See Also

ChDrive, CurDir

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

ChDrive Command
Purpose

Sets the current drive.

Syntax

ChDrive n or n$

n:integer expression
n$:sexp

Description

ChDrive (change drive) sets the current drive. If an input
or output command does not contain a drive, all inputs and
outputs default to the current drive. n can assume the
values from 1 to 16, and these values correspond to drives
A to P. Instead of a drive number, ChDrive can also take a
string whose first character is the drive letter.

Example

ChDrive 1 // Drive A is the current drive
ChDir "\Test" // A:\Test
ChDir "A1" // A:\Test\A1
ChDir "..\A2" // A:\Test\A2

Remarks

ChDrive and _Drive should be used with much care,
because through the increasing use of network drives other
notations are used as well. For instance ..//Hallo\.. etc).

See Also

_Drive

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

CurDir Function
Purpose

Returns a String representing the current path.

Syntax

CurDir[$]()

Description

Returns the current path for the application. For a network
drive the return value won't contain a drive
("\\server\test\test").

Example

OpenW 1
Print "Current Directory: "; CurDir()

Remarks

Don't use commands or function that require a hard coded
drive.

See Also

ChDir, _Drive

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

_Dc2 Function
Purpose

Returns the handle of the Device Context for the
AutoRedraw window area.

Syntax

h=_DC2([w])

h: Handle
w: iexp

Description

_DC2() is available only when AutoRedraw = True.
AutoRedraw uses the second device context to repaint the
window. The argument can be a value between 0 and 31
representing a window opened using OpenW, ParentW,
and ChildW. Other forms should use the .hDC2 property of
the object.

Example

OpenW 1 : AutoRedraw = 1
Print Me.hDC2
Print _DC2(1)

Remarks

Implemented for compatibility reasons.

_Dc2(1) is equivalent to Win_1.hDC2.

_Dc2() is equivalent to Me.hDC2.

See Also

_Dc(), AutoRedraw, hDC, hDC2

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

_Drive Function
Purpose

Specifies the current drive as an integer.

Syntax

% = _Drive

%: integer expression

Description

_Drive specifies the current drive as a numeric, e.g. 67 for
drive "C". This is the opposite of ChDrive d%.
Chr$(_Drive) returns the drive as a letter. The following
program will determine all available drives:

Example

Local i%
For i% = Asc("C") To Asc("Z")
ChDrive Chr(i%)
If i% = _Drive
Print "Drive "; Chr$(_Drive)

EndIf
Next i%

See Also

ChDrive

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

CopyFile, FileCopy
Commands
Purpose

The CopyFile function copies an existing file to a new file,
with the option of returning an error if the new filename
already exists; the FileCopy function copies an existing file
to a new file without checking the existence of the
destination file.

Syntax

CopyFile "source" [Over [To]] "dest" [,
subname[,ident%]]

FileCopy "source" [To] "dest" [, subname [, ident%]]

"dest", "source" : file names paths.
subname : the name of linked procedure.
ident% : 32-bit Integer

Description

CopyFile and FileCopy copy an existing file "source" to the
destination file "dest" in 32KB blocks. By default, CopyFile
checks first to see if the destination file exists, but this
check can be over-ridden by the inclusion of the Over or
Over To clauses; FileCopy carries out no such check and
will overwrite the destination file if it exists.

To use long filenames (in excess of MAX_PATH length of
260), add "\\?\" before the source and destination

filenames.

When specified, subname is the name of a Sub procedure
that is invoked after each copied block (32KB). The Sub
takes two parameters:

Sub copyfile(bytes_copied, ident)

bytes_copied : 32-bit Integer.
ident : 32-bit Integer

The bytes_copied argument specifies the number of bytes
copied at that moment; for file sizes in excess of _MaxInt,
see the third example below. The ident variable identifies
the CopyFile/FileCopy command (through the value of
ident%), allowing the procedure to be used for more than
one type of copy operation and, thus, allowing some
element of customsation; it is also useful if it is planned to
carry out more than one copy operation at any one time.
Finally, note that if the program is ended by End or Stop in
the midst of copying a file, the copyfile Sub is not always
halted at the same time and may continue working
afterwards.

Example

Open "c:\test.dat" for Output As # 1 : Close # 1
Try
CopyFile "c:\test.dat" To "c:\backup.dat"
 // Will cause error if c:\backup.dat
exists

Catch
If Exist("c:\backup.dat") Then Kill
"c:\backup.dat" // Override safety feature
(if needed)

CopyFile "c:\test.dat" To "c:\backup.dat"

EndCatch
CopyFile "c:\test.dat" Over To "c:\backup.dat"
 // 'Over' prevents an error if
c:\backup.dat exists

FileCopy "c:\test.dat" To "c:\backup.dat"
 // 'Over' prevents an error if c:\backup.dat
exists

Kill "c:\test.dat" : Kill "c:\backup.dat"
 // Tidy up line

or

Dim a(200000) As Int32
BSave "c:\test.dat", V:a(0), 800004
Ocx Label lbl = "Save Progress", 10, 10, 180, 14 :
lbl.BackColor = RGB(255, 255, 255)

Ocx ProgressBar prg = "", 10, 25, 200, 30
// If c:\backup.dat exists, CopyFile will raise an
error message

If Exist("c:\backup.dat")
FileCopy "c:\test.dat" To "c:\backup.dat",
check_it, 1

Else
CopyFile "c:\test.dat" To "c:\backup.dat",
check_it, 2

EndIf
prg.Value = 100
Ocx Command cmd = "Close", 60, 65, 100, 22
Do : Sleep : Until Me Is Nothing
Kill "c:\test.dat" : Kill "c:\backup.dat" // Tidy
up line

Sub check_it(bytes_copied%, ident%)
If ident% = 1
lbl.Caption = "Save Progress using FileCopy:"

Else If ident% = 2
lbl.Caption = "Save Progress using CopyFile:"

EndIf
prg.Value = 100 * (bytes_copied% / 800004)
Pause 1 // Included purely to lengthen the time
the program runs to allow you to see the
effects of this Sub

EndSub

Sub cmd_Click
Me.Close

EndSub

When the file size is greater than _MaxInt, the following
workaround can be used:

Dim a(200000) As Int32
BSave "c:\test.dat", V:a(0), 800004
// If c:\backup.dat exists, CopyFile will raise an
error message

If Exist("c:\backup.dat") Then Kill
"c:\backup.dat"

check_it(0, -1) // Set bytes_count to zero
CopyFile "c:\test.dat" To "c:\backup.dat",
check_it, 1

check_it(0, -1) // Set bytes_count to zero
FileCopy "c:\test.dat" To "c:\backup.dat",
check_it, 2

Ocx Command cmd = "Close", 60, 65, 100, 22
Do : Sleep : Until Me Is Nothing
Kill "c:\test.dat" : Kill "c:\backup.dat" // Tidy
up line

Sub check_it(bytes_copied%, ident%)
Static bytes_count As Large
If ident% = -1
bytes_count = 0

Else
bytes_count = bytes_count + (32 * 1024)

Print AT(1, ident%); "Bytes copied: ";
bytes_count; " "

Pause 1 // Included purely to lengthen the time
the program runs to allow you to see the
effects of this Sub

EndIf
EndSub

Sub cmd_Click
Me.Close

EndSub

Remarks

CopyFile and FileCopy can take ':Files' resource file as an
argument.

CopyFile is not a GFA-BASIC 32 implementation of the API
function CopyFileEx(), because it is available only from NT
onwards.

See Also

MoveFile

{Created by Sjouke Hamstra; Last updated: 15/01/2016 by James Gaite}

MoveFile Command
Purpose

Moves or renames an existing file.

Syntax

MoveFile source To destination

source, destination:sexp

Description

If source contains wildcards or destination ends with a path
separator (\), it is assumed that destination specifies an
existing folder in which to move the matching files.
Otherwise, destination is assumed to be the name of a
destination file to create. In either case, three things can
happen when an individual file is moved:

If destination does not exist, the file gets moved. This is the
usual case.

If destination is an existing file, an error occurs.

If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in
source doesn't match any files. The MoveFile method stops
on the first error it encounters. No attempt is made to roll
back any changes made before the error occurs.

The destination argument can't contain wildcard characters.

Example

// Create test file
Open "c:\test.dat" for Output As # 1
Close # 1
// Move to Windows Folder
MoveFile "c:\test.dat" To WinDir$ & "\test.dat"
// Trying to move it a second time will result in
an error

'
// Tidy up test file
Kill WinDir$ & "\test.dat"

Remarks

MoveFile conforms to the MSDOS command Move.

See Also

CopyFile

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

MkDir Command
Purpose

creates a directory.

Syntax

MkDir path$ [Like template$]

path$:sexp; directory name

Description

MkDir path$ (make directory) creates a directory with
name path$.

MkDir path$ Like template$ creates a new directory with a
specified path that retains the attributes of a specified
template directory. If the underlying file system supports
security on files and directories, the function applies a
specified security descriptor to the new directory. The new
directory retains the other attributes of the specified
template directory.

Example

MkDir "C:\TEST"

Creates a directory called TEST on drive C

Remarks

The MkDir...Like command uses the API function
CreateDirectoryEx, which allows you to create directories
that inherit stream information from other directories. This
function is useful, for example, when dealing with Macintosh
directories, which have a resource stream that is needed to
properly identify directory contents as an attribute.

Some file systems, such as NTFS, support compression or
encryption for individual files and directories. On volumes
formatted for such a file system, a new directory inherits
the compression and encryption attributes of its parent
directory.

See Also

RmDir

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

RmDir Command
Purpose

Deletes a directory.

Syntax

RmDir path$

path$:sexp; directory name

Description

RmDir a$ (remove directory) deletes the directory with the
name a$, assuming it does not contain any subdirectories.

Example

MkDir "c:\TEST"
Print "Directory made: "; Dir("c:\TEST", 16)
RmDir "C:\TEST" //Deletes the directory TEST on
drive C.

Print
Print "Directory deleted: "; Dir("c:\TEST", 16)

See Also

MkDir

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Name Property
Purpose

Returns the name used in code to identify a form or Ocx
control.

Syntax

$ = object.Name

object:Ocx Object

Description

The default name for new objects is the kind of object plus
a unique integer. For example, the first new Form object is
frm1, a new Command object is cmd1, and the third
TextBox control you create on a form is txt3.

An object's Name property must start with a letter and can
be a maximum of 40 characters. It can include numbers
and underline (_) characters but can't include punctuation
or spaces. Forms can't have the same name as another
public variable. Although the Name property setting can be
a keyword, property name, or the name of another object,
this can create conflicts in your code.

Note Although GFA-BASIC 32 often uses the Name
property setting as the default value for the Caption and
Text properties, changing one of these properties doesn't
affect the others.

Example

Print Me.Name

Remarks

The names of from created with OpenW and Dialog are
predefined as Win_n and Dlg_n respectively, where n is a
number between 0 and 31. The name is introduced in the
global variable list and is accessible throughout the
program. These variable names can be used in accessing
properties, methods, and events. For instance,
Win_1.Name returns "Win_1". Windows created with a
number greater than 31 don't declare global variable names
implicitly and can only be accessed using Form(n).Name.
However, there is no variable name introduced but their
name still consists of "Win_n", where n is the window
number.

OpenW 100
Print Form(100).Name // Win_100
Do : Sleep : Until Me Is Nothing

Sub Form_Click(index%)
Print Me.Name, index% // Win_100 100

EndSub

See Also

Form

{Created by Sjouke Hamstra; Last updated: 19/09/2016 by James Gaite}

Name...As and Rename...As
Commands
Purpose

Renames a file.

Syntax

Name old$ As new$

P>Rename old$ As new$

old$, new$:sexp; old and new file names

Description

Name...As is synonymous with Rename...As, and both
rename the specified file.

Example

Dim old$ = "C:\TEST.DAT", new$ = "C:\TEST.TXT"
// Create "c:\test.dat"
BSave old$, 100000, 100
Print "Directory showing "; old$
Dir "c:*.*"
Print
// Rename "c:\test.dat" as "c:\test.txt"
If Exist(new$) Then Kill new$ (* If Test.txt
exists, Name will cause an error *)

Name old$ As new$
Print "Directory showing "; new$
Dir "c:*.*"

Print
// Change "c:\test.txt" back to "c:\test.date"
If Exist(old$) Then Kill old$ (* If Test.txt
exists, Name will cause an error *)

Rename new$ As old$
Print "Directory showing "; old$
Dir "c:*.*"

Remarks

See Also

Rename As

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

FileDateTime Functions
Purpose

Returns a Date that indicates the date and time when a file
was created, accessed or last modified.

Syntax

dt = FileDateTime ([Pathname$])

dt = FileDateTimeAccess ([Pathname$])

dt = FileDateTimeCreate ([Pathname$])

dt:Date

Description

The optional pathname argument is a string expression that
specifies a file name. The pathname may include the
directory or folder.

Without an argument the function returns the Date for the
last file accessed using Dir().

Example

OpenW 1
Global d$, p1 As Int32
// Get the path for GfaWin32.exe
Local d$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\GfaW
in32.exe\shell\open\command", , "")

If Left(d$, 1) = #34 Then d$ = Mid(d$, 2)

p1 = InStr(d$, #34) : If p1 <> 0 Then d$ =
Left(d$, p1 - 1)

// Display File Date information
Print "GfaWin32.exe was created: ";
FileDateTimeCreate(d$)

Print "The last time that GfaWin32.exe was
modified or moved was: "; FileDateTime(d$)

Print "The last time that GfaWin32.exe was
accessed was: "; FileDateTimeAccess(d$)

Print
// The same results can be achieved through the
FileSystemObject

Global Object f, fs
Set fs =
CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(d$)
Print "GfaWin32.exe was created: "; f.DateCreated
Print "The last time that GfaWin32.exe was
modified or moved was: "; f.DateLastModified

Print "The last time that GfaWin32.exe was
accessed was: "; f.DateLastAccessed

Do : Sleep : Until Me Is Nothing
Set f = Nothing : Set fs = Nothing
CloseW 1

Remarks

Known Issues

FileDateTimeAccess doesn't always return a time when
querying FAT32 files; this bug does not seem to affect
FileDateTimeCreate or FileDateTime.

See Also

FileLen(), SetFileDateTime, SetFileDateTimeAccess,
SetFileDateTimeCreate

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

SetFileDateTime,
SetFileDateTimeAccess,
SetFileDateTimeCreate
Command
Purpose

Sets the date and time of the last access of a file.

Syntax

SetFileDateTime file$, date

SetFileDateTimeAccess file$, date

SetFileDateTimeCreate file$, date

file$:sexp
date:Date exp

Description

The SetFileDateTime changes the last access time and/or
date information assigned to a file. The command doesn't
work on write protected files. Internally, it performs an
Open, which might be blocked by some other application.

The SetFileDateTimeAccess changes the access time
and/or date information assigned to a file. The command
doesn't work on write protected files. Internally, it performs
an Open, which might be blocked by some other
application.

The SetFileDateTimeCreate changes the create time
and/or date information assigned to a file. The command
doesn't work on write protected files. Internally, it performs
an Open, which might be blocked by some other
application.

Example

// Create Test file
BSave App.Path & "\Test.Dat", 100000, 100
Debug.Show
// Set file times
SetFileDateTime App.Path & "\Test.Dat",
#20.12.2006#

SetFileDateTimeCreate App.Path & "\Test.Dat",
#20.12.2001#

SetFileDateTimeAccess App.Path & "\Test.Dat",
#20.12.2003#

// Show file times
Trace FileDateTime(App.Path & "\Test.Dat")
Trace FileDateTimeCreate(App.Path & "\Test.Dat")
Trace FileDateTimeAccess(App.Path & "\Test.Dat")
// Tidy Up
Kill App.Path & "\Test.Dat"

Remarks

Windows 95 ignores the time part.

See Also

Touch

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Touch Command
Purpose

Updates the time and date stamps of a file with current
values.

Syntax

Touch #n

n:iexp, channel

Description

Touch[#]n works only on files already opened with Open
by making their time and date stamps current. The time
and date stamps of the open file are set to values obtained
from the system clock.

Example

Local f$ = App.Path + "\Test.temp"
Local a%, i%
OpenW # 1
Open f$ for Output As # 1
For i% = 1 To 20
Print # 1, Format(i%)

Next i%
Close # 1
Files f$
//
For i% = 1 To 9 '9 Second Pause

Print AT(1, 3); "A short pause -"; 10 - i%; "
seconds to go"

Delay 1
Next i%
Print AT(1, 3); "Pause over" & Space(100) : Print
//
Open f$ for Update As # 1
Touch # 1
Close # 1
Files f$
Kill f$

Opens the Test.temp file and writes the numbers from 1 to
20 to it. The Files is then used to print, among others, the
time and date stamps.

A 10 second pause follows next. The time and date stamp
of the Test.temp file are then updated with Touch and
printed again using Files.

See Also

SetAttr, SetFileDateTime, SetFileDateTimeAcces,
SetFileDateTimeCreate

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

GetAttr, SetAttr Functions
Syntax

% = GetAttr(pathname)

success% = SetAttr(pathname, attr) (function)

SetAttr pathname, attr (command)

Included for compatibilty with GFA-BASIC 16:

% = FGATTR (pathname) (same as GetAttr)

success& = FSATTR (pathname, attr&) (same as SetAttr
function)

Description

The function GetAttr returns the attributes of a file or a
directory while SetAttr sets them. Following constants
(values) are predefined:

FILE_ATTRIBUTE_NORMAL (0) - Normal file

FILE_ATTRIBUTE_READONLY(1) - Read-Only (write
protected)

FILE_ATTRIBUTE_HIDDEN (2) - Hidden

FILE_ATTRIBUTE_SYSTEM (4) - System

FILE_ATTRIBUTE_DIRECTORY (16) - Directory

FILE_ATTRIBUTE_ARCHIVE (32) - Archive (reserved for
Backups).

FILE_ATTRIBUTE_TEMPORARY (256) - Temporary file

FILE_ATTRIBUTE_OFFLINE (4096) - Offline

More values may be returned. These values can not be set
using SetAttr, though.

64 encrypted file, set by EncryptFile
512 Joke file (file with holes)
1024 Reparse
2048 compressed
8192 Not contended index

If either of the functions fail, the return value is -1; the
command version of SetAttr should be used within a Try-
Catch block to catch any possible errors.

With GetAttr, to determine which attributes are set, use
the And operator to perform a bitwise comparison of the
value returned by the GetAttr function and the value of the
individual file attribute you want. If the result is not zero,
that attribute is set for the named file. For example, the
return value of the following And expression is 16 if the
directory exists:

If GetAttr("directory") And 16 Then // Directory
exist!

GetAttr() returns the attributes of the last Dir[$].

Example

OpenW 1

// Read the contents of the current path
// and show: attribute,
// size of a file in KB, date, time, name
FullW 1
PrintScroll = True ' activate scrolling
Local file$, a$, b$
Local Attr As Integer
file$ = Dir$("*", &H16)
While Len(file$) : a$ = ""
Attr = GetAttr(file$)
a$ = a$ + Iif(Attr And 32, "A", "-")
a$ = a$ + Iif(Attr And 16, "D", "-")
a$ = a$ + Iif(Attr And 4, "S", "-")
a$ = a$ + Iif(Attr And 2, "H", "-")
a$ = a$ + Iif(Attr And 1, "R", "-")
If Attr And 16 Then
a$ = a$ + " <Dir>"

Else
b$ = Str$(FileLen(file$))
b$ = Space$(8 - Len(b$)) + b$
a$ = a$ + Format(FileLen(file$), "* #######0")
a$ = a$ + b$

End If
a$ = a$ + " "
If file$ <> "." And file$ <> ".." Then
a$ = a$ + Format(FileDateTime(file$),
"dd.mm.yyyy hh:nn:ss ")

End If
b$ = ShortFileName()
If b$ = "" : b$ = file$: EndIf
a$ = a$ + Str$(b$, 14) + " "
Print a$
file$ = Dir

Wend
Do : Sleep : Until Me Is Nothing

Set the write protecting of the file "Test1.Dat"

Local a% = 25
Print App.Path & "\Test1.Dat"
BSave App.Path & "\Test1.Dat", V:a%, 4
SetAttr App.Path & "\Test1.Dat", GetAttr(App.Path
& "\Test1.Dat") | 1

If GetAttr(App.Path & "\Test1.Dat") And 1
Print "write protected"

Else
Print "not write protected!"

EndIf
SetAttr App.Path & "\Test1.Dat", GetAttr(App.Path
& "\Test1.Dat") Xor 1

If GetAttr(App.Path & "\Test1.Dat") And 1
Print "write protected"

Else
Print " not write protected!"

EndIf
Kill App.Path & "\Test1.Dat" // Tidy up line

Remarks

To remove and set a write protection of a backup:

SetAttr "important.Bak", 0
CopyFile "important.Dat" Over To "important.Bak"
SetAttr "important.Bak", 1 ' activate write
protection

The GetAttr function corresponds to the GetFileAttributes
API function.

The SetAttr command corresponds to the SetFileAttributes
API function

See Also

Dir, FileAttr, SetFileDateTime, SetFileDateTimeAcces,
SetFileDateTimeCreate, Touch.

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

Exist Function
Purpose

Determines if a particular file exists.

Syntax

Exist(a$)

a$:sexp; path name of a file

Description

The Exist(a$) function determines if a particular file exists
in the path name specified in a$. Exist() returns -1 (True) if
this file exists or 0 (False) if not.

Example

OpenW 1
Global a$, c$, a%, d%, x%
a$ = "C:\TEST.DAT"
If Exist(a$)
Open a$ for Input As # 1
Do Until EOF(# 1)
Input # 1, c$
Print c$

Loop
Close # 1

Else
Alert 1, "File not found", 1, "ok", d%

EndIf

Determines if the file TEST.DAT exists on drive C and, if it
does, reads the file in.

Remarks

To test for a directory use GetAttr("dir") And 16 == 16

See Also

GetAttr

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

FileLen Function
Purpose

Returns a Long or a Large specifying the length of a file.

Syntax

sizeLarge = FileLen ([Pathname$]) *

sizeInt = FileLen% ([Pathname$])

sizeLarge:int64
sizeInt:int32

* actually returns a 32-bit Integer - see Known Issues
below

Description

The optional pathname argument is a string expression that
specifies a file name. The pathname may include the
directory or folder.

Without an argument the function returns the Date for the
last file accessed using Dir().

Example

OpenW 1
Global d$, p1 As Int32
// Get the path for GfaWin32.exe
Local d$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\GfaW
in32.exe\shell\open\command", , "")

If Left(d$, 1) = #34 Then d$ = Mid(d$, 2)
p1 = InStr(d$, #34) : If p1 <> 0 Then d$ =
Left(d$, p1 - 1)

// Display File Date information
Print "The length of GfaWin32.exe in bytes is: ";
FileLen(d$)

Print
// The same results can be achieved through the
FileSystemObject

Global Object f, fs
Set fs =
CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(d$)
Print "The length of GfaWin32.exe in bytes is: ";
f.size

Do : Sleep : Until Me Is Nothing
Set f = Nothing : Set fs = Nothing
CloseW 1

Remarks

FileLen% is GFA-BASIC 16 compatible, because it returns
a 32-bit integer. However, it will return the wrong result for
files larger than 2 GB.

Known Issues

It has been reported that, on some computers, FileLen
returns a 32-bit Integer, not a Large 64-bit integer; it has
also been reported that this behaviour can be intermittent,
even on the same computer. What appears to be happening
is GB32 uses FindFirstFile() to retrieve the file length,
namely through the FileSizeHi and FileSizeLo DWord (or
Long) properties of the Win32_Find_Data object: when
FileSizeLo is returned as a positive value, then GB32 returns
the correct file length; however, when FileSizeLo is

negative, GB32 ignores the FileSizeHi and just returns the
negative FileSizeLo value.

If you encounter this problem, use the Windows
FileSystemObject as shown below as a workaround to get
the file length of large files:

Dim myFSO As Object, myFile As Object
Set myFSO =
CreateObject("Scripting.FileSystemObject")

Set myFile = myFSO.getfile("[Full_File_Path]")
Print myFile.size

See Also

FileDateTime(), FileDateTimeAccess(),
FileDateTimeCreate(), SetFileDateTime,
SetFileDateTimeAccess, SetFileDateTimeCreate

{Created by Sjouke Hamstra; Last updated: 15/12/2014 by James Gaite}

Dir Function
Purpose

Returns a String representing the name of a file, directory
or folder that matches a specified file attribute(s), or the
volume label of a drive.

Syntax

Dir[$][(fname$ [,attr])

fname : svar
attr : ivar

Description

The fname specifies a file name - this may include a
directory (folder) and drive letter. A zero-length string ("")
is returned if fname is not found. Dir supports the use of
multiple character (*) and single character (?) wildcards to
specify multiple files.

The attr parameter specifies the file attribute(s) of the files
to include. If omitted, Dir returns files that match
pathname but have no attributes. Normally, if attr is not
used or attr is 0 or 1, only all non-hidden files and read only
one are shown.

Following constants (values) are predefined:

FILE_ATTRIBUTE_NORMAL (0) normal file
FILE_ATTRIBUTE_READONLY(1) Read-Only (write

protected)

FILE_ATTRIBUTE_HIDDEN (2) Hidden
FILE_ATTRIBUTE_SYSTEM (4) System
FILE_ATTRIBUTE_DIRECTORY
(16)

Directory

FILE_ATTRIBUTE_ARCHIVE
(32)

Archive (reserved for
Backups).

FILE_ATTRIBUTE_TEMPORARY
(256)

temporary file

FILE_ATTRIBUTE_OFFLINE
(4096)

offline

If you require the hidden and/or the system files, you have
to add 2, 4 or 6 to the attr value. For example; Dir$("*",
6) shows the hidden files also.

Dir without parameters gets the next file. When the last file
is reached Dir returns an empty string.

Example

To display the first file in a directory:

OpenW 1
Local a%
PrintScroll = True
Print Dir("c:\Windows*.dll")

Display all files in a directory (comparable to the MSDOS dir
/a/b command):

OpenW 1
Local contents$, a%
PrintScroll = True
contents$ = Dir("c:\windows*", $16)
While Len(contents$)
Print contents$

contents$ = Dir$
Wend

Remarks

It is possible to combine the attributes with a binary Or. In
this way Dir$("*", 16 | 6) lists all normal and hidden files,
and names of (hidden) directories, including "." and ".."“.

// Directory - example

Global file$, a$, b$, Attr As Int
file$ = Dir$("*", $16)
While Len(file$) : a$ = "" : Attr = GetAttr()
a$ = a$ + (Attr And 32 ? "A" : "-")
a$ = a$ + (Attr And 16 ? "D" : "-")
a$ = a$ + (Attr And 4 ? "S" : "-")
a$ = a$ + (Attr And 2 ? "H" : "-")
a$ = a$ + (Attr And 1 ? "R" : "-")
If Attr And 16 Then
a$ = a$ + " <Dir>"

Else
a$ = a$ + Str$(FileLen(), 8)

EndIf
a$ = a$ + " "
a$ = a$ + Date$(FileDateTime()) + _
" " + Time$(FileDateTime()) + " "

// extension: time of the last access(date)
//a$ = a$ + Date$(FileDateTimeAccess() + " "
b$ = ShortFileName()
If b$ = "" : b$ = file$: EndIf
a$ = a$ + Str$(b$, 14) + " "
// Str$(string, cnt) returns a string which will
filled with

// spaces, same like: Right$(string, cnt, 32)
// a$=a$+str$(ShortFileName(), 14) + " "

// ShortFileName() returns an empty string if
file$ will

// fit to the MS-DOS name
a$ = a$ + file$
Print a$
file$ = Dir

Wend

This program creates the same output as the MS-DOS
command DIR /a, similar to that shown below:

A---- 1000 30.10.1995 00:00:00 TEST.DAT Test.Dat

Description:

A the archive bit is set (identification for PKZIP, ARJ,
RAR, BACKUP etc.)

- no directory (not D)
- no hidden file (not H)
- no system file (not S)
- not Read-Only (write protected) (not R)
1000 the length of the file is 1000 bytes
30.10.1995 date of the file
00:00:00 mid night
TEST.DAT name of he file - MS-DOS convention (8.3)
Test.Dat name of the file - Windows 32 bit file name

(small/large, long......)

// The same program now for VB,
// it works both in GFA-BASIC 32 and VB
Global file$, a$, b$, Attr As Int
file$ = Dir$("*", &H16)
While Len(file$)
a$ = "" : Attr = GetAttr(file$)
a$ = a$ + Iif(Attr And 32, "A", "-")
a$ = a$ + Iif(Attr And 16, "D", "-")
a$ = a$ + Iif(Attr And 4, "S", "-")

a$ = a$ + Iif(Attr And 2, "H", "-")
a$ = a$ + Iif(Attr And 1, "R", "-")
If Attr And 16 Then
a$ = a$ + " <Dir>"

Else
b$ = Str$(FileLen(file$))
b$ = Space$(8 - Len(b$)) + b$
'a$ = a$ + Format(FileLen(file$), _
' "* #######0")

a$ = a$ + b$
EndIf
a$ = a$ + " "
If file$ <> "." And file$ <> ".." Then _
a$ = a$ + Format(FileDateTime(file$), _
"dd.mm.yyyy hh:nn:ss ")

'b$ = ShortFileName()
'If b$ = "" : b$ = file$: EndIf
'a$ = a$ + Str$(b$, 14) + " "
a$ = a$ + file$
Print a$
file$ = Dir

Wend

To list the contents of the subdirectories as well use
DirPush and DirPop.

See Also

DirPush, DirPop, DirPopAll, LongFileName() ,
ShortFileName(), FileDateTime$(), GetAttr(),
FileLen(),ChDir, CurDir(), Dir To

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

DirPush, DirPop and
DirPopAll Commands
Purpose

Moves the current Dir() settings onto and from the stack.

Syntax

DirPop DirPopAll
DirPush

Description

When moving from a folder into a sub-folder using the Dir
command, rather than having to recreate the original
settings (and then navigate to the current folder again)
when returning to the parent folder, it is possible to use
DirPush to store them on the stack, and DirPop to retrieve
them when required. Once you have finished, you can use
DirPopAll to remove any remaining settings and clear the
stack.

Example

See the sample program "RecurseDir2.g32" in
GFABASIC32\gb32\Samples\Files

Remark

A stack is a LIFO system, where the last element stored is
retrieved first (last-in-first-out). So, if you have saved the

path 20 times with DirPush you can go back to the
eleventh instance by invoking DirPop 10 times.

See Also

Dir()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Long/ShortFileName,
Long/ShortPathName
Functions
Action

Return a long filename and long path name of a file.

Syntax

LongFileName[$]([file$])

LongPathName[$]([file$])

ShortFileName[$]([file$])

ShortPathName[$]([file$])

file$:filename

Description

With the function LongFileName() you can determine a
long filename or directory from a short name, for example:
"StartMenu" instead of its short name "STARTM~1".
ShortFileName does the reverse (see Known Issues).

LongFileName() also returns the pathname of the last call
of Dir[$].

With the function LongPathName() you determine the
long path name of a file, for example: "c:\example-

folder\test“ instead of "c:\exam~1\test" (see Known
Issues); ShortPathName does the reverse.

Example

// Create two test files
// Files must exist or the functions return a File
Name error

Local f1$ = App.scSpecialDir(39) & "\tinyname.bmp"
Local f2$ = App.scSpecialDir(39) &
"\reallylongfilename.bmp"

BSave f1$, 100000, 100 : BSave f2$, 100000, 100
Local f3$ = ShortPathName(f2$)
// Show the results in the Debug screen
Debug.Show
Trace f1$
Trace LongFileName(f1$)
Trace ShortFileName(f1$) // Error: Returns a blank
- see known issues below

Trace LongPathName(f1$)
Trace ShortPathName(f1$)
Debug.Print
Trace f2$
Trace ShortFileName(f2$) // Acts correctly - see
known issues below

Trace ShortPathName(f2$)
Debug.Print
Trace f3$
Trace LongFileName(f3$)
Trace LongPathName(f3$) // Error: Returns the
Short Path - see known issues below

// Remove test files
Kill f1$
Kill f2$

Known Issues

If the filename in file$ fits within the old 8.3 format
(filename <=8; extension <=3) then ShortFileName
returns a blank rather than the filename. There are two
possible workarounds for this:

1. Create a function such as the one below which reverts
to the original filename if ShortFileName returns a
blank.
Local f1$ = App.scSpecialDir(39) &
"\tinyname.bmp"

Local f2$ = App.scSpecialDir(39) &
"\reallylongfilename.bmp"

BSave f1$, 100000, 100 : BSave f2$, 100000, 100
Print GetShortName(f1$)
Print GetShortName(f2$)
Kill f1$: Kill f2$

Function GetShortName(file$)
If ShortFileName(file$) = "" Then Return
Upper(file$)

Return ShortFileName(file$)
EndFunc

2. Use the result from ShortPathName() as in the example
below:

Local f1$ = App.scSpecialDir(39) &
"\tinyname.bmp"

Local f2$ = App.scSpecialDir(39) &
"\reallylongfilename.bmp"

BSave f1$, 100000, 100 : BSave f2$, 100000, 100
Print GetShortName(f1$)
Print GetShortName(f2$)
Kill f1$: Kill f2$

Function GetShortName(file$)
Local slen As Byte, sf$

sf$ = ShortPathName(file$)
slen = RInStr(sf$, "\")
Return Upper(Mid(sf$, slen + 1))

EndFunc

LongPathName does not return the long path name as
stated; an example of this and a workaround using the
GetLongPathName() API is below:

Local f2$ = App.scSpecialDir(39) &
"\reallylongfilename.bmp"

BSave f2$, 100000, 100
Local f3$ = ShortPathName(f2$), f4$ = Space(255)
Print LongPathName(f3$) // Error
Print GetLongPath(f3$)
Kill f2$

Function GetLongPath(file$)
Declare Function GetLongPathName Lib "kernel32"
Alias "GetLongPathNameA" (ByVal lpszShortPath
As String, ByVal lpszLongPath As String, ByVal
cchBuffer As Long) As Long

'
Local fp$ = Space(255), flen =
GetLongPathName(file$, fp$, 255)

Return Left(fp$, flen)
EndFunc

See Also

Dir, ShortProgName(), App

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

ShortProgName and
ProgName Function
Purpose

Returns the 'short' name of the current program.

Syntax

$ = ShortProgName[$]()

$ = ProgName[$]

Description

ProgName[$] returns the directory of the current running
application. In the IDE the name of GFA-BASIC 32 is
returned.

ShortProgName returns the 'short' MSDOS name (8.3
characters) name of the program.

Example

Debug.Show
Trace ProgName()
Trace ShortProgName()

Remarks

See Also

LongFileName(), LongPathName(), ShortFileName(),
ShortPathName(), ShortProgName(), App

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

WinDir Function
Purpose

Returns the Windows directory.

Syntax

$ = WinDir[$]

Description

Returns the Windows directory without an ending backslash.

Example

Message WinDir

Remarks

The system directories have different names on different
machines and OSs. For often used directories GFA-BASIC 32
provides WinDir, SysDir, and TempDir to return the
specific directories. Other Shell related directories can be
obtained using the App object properties like scPrograms
and scSpecialDir.

See Also

SysDir, TempDir, scSpecialDir

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

SysDir Function
Purpose

Returns the Windows system directory.

Syntax

$ = SysDir[$]

Description

Returns the Windows directory without an ending backslash.

Example

Message SysDir

Remarks

The system directories have different names on different
machines and OSs. For often used directories GFA-BASIC 32
provides WinDir, SysDir, and TempDir to return the
specific directories.

See Also

WinDir, TempDir, scSpecialDir

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

TempDir Function
Purpose

Returns the path of the directory designated for temporary
files.

Syntax

$ = TempDir[$]

Description

Returns a string specifying the temporary file path. The
returned string ends with a backslash, for example,
C:\TEMP\.

The TempDir function checks for the existence of
environment variables in the following order and uses the
first path found:

The path specified by the TMP environment variable
(%TMP%).

The path specified by the TEMP environment variable
(%TEMP%).

The path specified by the USERPROFILE environment
variable (%USERPROFILE%).

The Windows directory.

Note that the function does not verify that the path exists.

Windows Me/98/95: If TMP and TEMP are not set to a
valid path, TempDir uses the current directory.

Example

Message TempDir

Remarks

The system directories have different names on different
machines and OSs. For often used directories GFA-BASIC 32
provides WinDir, SysDir, and TempDir to return the
specific directories.

See Also

SysDir, WinDir, TempFileName, scSpecialDir

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

TempFileName Function
Purpose

Creates a name for a temporary file.

Syntax

file$ = TempFileName(prefix$ [, extension$])

Description

TempFileName tries to create a temporary file in the
user's %TEMP% directory and returns the name in file$ - if
file$ is empty (""), then the operation failed.

The TempFileName function is a shortcut for the
GetTempFileName API function which will only create the
temporary file if it has a unique filename. Through the API,
GFA Basic creates a temporary filename which is a
concatenation of a prefix string (if prefix$ <> ""), a
hexadecimal string derived from the current system time,
and a specified extension (or .tmp if none is supplied in
extension$).

The prefix$ argument may be left empty ("") so that the
filename part is entirely made up of a unique hexadecimal
value.

Example

Trace TempFileName("")
Trace TempFileName("~", "dat")
Trace TempFileName("gfa")

Global Handle hCur =
InlLoadCursor("C:\Windows\Cursors\aero_busy.ani")

Function InlLoadCursor(fname$) As Handle
Dim path$ = TempFileName("gfa")
Trace fname$: Trace path$
CopyFile fname$ Over To path$
InlLoadCursor = LoadCursorFromFile(path$)
KillTempFile path$

EndFunc

Remarks

File systems attempt to keep all of the data in memory for
quicker access rather than flushing the data back to mass
storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

A file created with the TempFileName function is
automatically deleted when the programs exits.
KillTempFile is used when a temporary file is to be deleted
explicitly.

See Also

KillTempFile, LoadBmp

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

KillTempFile Command
Purpose

Deletes a temporary file generated with TempFileName()

Syntax

KillTempFile path$

path$:sexp; path name

Description

KillTempFile path$ deletes the file whose pathname is
given in path$.

Example

Local path$ = TempFileName("")
Print path$
KillTempFile path$
Print Exist(path$)

Remarks

A file created with the TempFileName function is
automatically deleted when the programs exits.
KillTempFile is used when a temporary file is to be deleted
explicitly.

See Also

TempFileName

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Raise, Throw, Clear Methods
Purpose

Methods and property to cause a runtime error to be
thrown.

Syntax

Err.Raise Number[, Source[, Description[, HelpFile[,
HelpContext]]]]

Err.Throw

Err.Clear

Description

The Raise method allows you to generate an user-defined
error in your code.

number - A Long integer that identifies the nature of the
error. GFA-BASIC 32 errors are in the range 0-141.

source - A string expression naming the object or
application that originally generated the error.

description - A string expression describing the error. If
unspecified, the value in number is examined. If it can be
mapped to a GFA-BASIC 32 run-time error code, a string
provided by GFA-BASIC 32 is used as description. If there is
no GFA-BASIC 32 error corresponding to number, a generic
error message is used.

helpfile - The fully qualified path to the Help file in which
help on this error can be found.

helpcontext - The context ID identifying a topic within
helpfile that provides help for the error.

Note that only the first parameter, Number, is required. If
you use Raise, however, without specifying some
arguments, and the property settings of the Err object
contain values that have not been cleared, those values
become the values for your error.

When setting the Number property to your own error code,
you may add your error code number to the constant
basObjectError ($800A0000) to simulate a COM error. For
example, to generate the error number 10, assign
basObjectError + 10 to the Number property.

Use Clear to explicitly clear the Err object after an error
has been handled, for example, when you use deferred
error handling with On Error Resume. The Clear method
is called automatically whenever any of the following
statements is executed: Try, Resume, Exit Sub, Exit
Function, On Error statement

The Throw method throws the error back to the next
Try/Catch block. This method allows you to throw a locally
created exception in a subroutine. If you try to throw an
error that you have just caught, it will normally go out of
scope and be deleted. With Throw, the error is passed
correctly to the calling subroutine.

Note - Throw doesn't work as documented. It does
generate an error, but the content of Err is cleared (which
isn't strange in the context of the implicitly invoked Clear
method on subroutine exit!).

Example

OpenW # 1
Try
RaiseMe

Catch
MsgBox Err & " - " & Err.Description, MB_OK,
"Error in " & Err.Source

EndCatch
CloseW 1

Procedure RaiseMe
Dim a$ = "1"
Prompt "Raise an Error", "Which error should be
shown?", a$

Try
Err.Raise Val(a$), "RaiseMe"

Catch
MsgBox Err & " - " & Err.Description & #10 _
"Throw again.", , "Error in " & Err.Source

Err.Throw
EndCatch

EndProc

Remarks

The Source property returns or sets a string specifying the
name of the object or application that originally generated
the error. For GFA-BASIC 32 runtime errors it is "GFA-BASIC
32", for OLE Automation errors it is the COM program
name. When generating an error from code, Source is your
application’s program name.

See Err$ for a list of errors and exception codes.

See HResult for a list of COM error codes.

Err.Raise number is identical to Error number.

See Also

Err Object, Source, Error, Err$, HResult

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Error Command
Purpose

Triggers an error.

Syntax

Error n

n:integer expression

Description

Error n raises an error with the number n (see the list of
error messages in Err$).

Example

Dim a%
OpenW # 1
Input "Which error should be shown";a%
Try
Error a%

Catch
Print "This was the error "; Err, Error$

EndCatch

Remarks

Error n is a short form for Err.Raise n. The usage of the
Err object will offer the equivalent way to handle errors
under GFA-BASIC 32.

See Also

Err Object, Error$, Err$, SysErr

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Err$, Error$ Functions
Purpose

Returns the error number and text.

Syntax

Err$ [(i)]

Error$ [(i)]

i: integer expression

Description

The Err$(i) function returns the string containing the GFA-
BASIC error message for code number i. Without an
argument Err$ returns the string for the last error.

The first 152 error numbers are reserved by GFA-BASIC 32.
Hardware exceptions are mostly translated to GFA-BASIC 32
errors. When a GFA-BASIC 32 error results from an
exception, the exception number constant and the meaning
is mentioned as well.

Error$ is a synonym of Err$ and the two are
interchangeable.

Err Err$
1 Divide by zero
2 Overflow
3 Parameter invalid
4 Error at Power

5 Error at Sin
6 Error at Cos
7 Error at Tan
8 Error at Fact
9 Error at Combin
10 Error at Variant
11 Error at Bessel function
12 Out of memory
13 Out of string memory
14 String len too big or negative
15 File name
16 File number
17 File not open
18 File number in use
19 File read error
20 File write error
21 File write error (partial written)
22 End Of File reached
23 Open...for Random...Len= mismatch
24 SEEK: no seek allowed
25 LOCK: can't lock
26 UNLOCK: can't unlock (param mismatch?)
27 Parameter SPC: 0 < x < 1000
28 Parameter TAB: 0 < x < 256
29 Declare: library not found
30 Declare: dll not found
31 Error at Kill(File)
32 Error at (Re)Name/ MoveFile
33 Error at CopyFile, FileCopy
34 Error at ChDir

35 Error at MkDir
36 Error at RmDir
37 Error at DFree
38 Array already DIMed
39 Array Index (DIM) too big
40 Arraysize (DIM) too big
41 Parameter at (Q)ROUNDC
42 Bad Format
43 Bad data for Unpack
44 Problem with Joystick-window
45 Error with variant
46 Error with object

Check HResult for detailed information on the
error.

47 Variant is not an Object
48 Object is not a Control
49 Object is not a Font
50 Object is not a Picture
51 Object is not a Form
52 Variant type?
53 Stackpointer at PasCall

Might be the result of a wrong ret instruction in
assembler code. A call through a function pointer is
guarded with a structured exception handling
mechanism, so that an error in the called function is
trapped. GFA-BASIC 32 then generates error 53.
This error can also come up when the function is
called using StdCall and others.

54 Address for mFree()
55 Address for mShrink()
56 Error at DatePart
57 Parameter missing

58 Recursion
59 QBDraw?
60 Internal Error
61 Unknown char in Unicode string

GFA-BASIC 32 uses its own (faster) Unicode char
conversion functions. An error with conversion
results in the error. The conversion functions are
heavily used throughout the runtime.

62 Index out of range (array in variant)
63 Array() in Variant not one dimensional
64 No Array() in Variant
65 VT_UNKNOWN not supported now
66 The object is Nothing
67 Field needs Random File
68 Field bad size (0)
69 Field: bad size (too big)
70 Field total size not matches random len
71 Put #/Get # without Field and without variable
72 Field string len changed
73 The Hash[] is empty
74 Hash[% i starts at 1]
75 Hash[% index too big]
76 Hash["key not found"]
77 Hash[] Internal Error 1 (Version?)
78 Hash[] Internal Error 2 (Memory?)
79 Hash["key already exists"]
80 Hash["empty key not allowed"]
81 Null not allowed
82 (R)InStr startpos must be a simple number
83 (R)InStr 1st and 3rd parameter are simple numbers
84 Parameter mismatch for Mat op

85 Matrix size mismatch
86 Matrix type mismatch (Single and Double)
87 The matrix is not square
88 The inverse matrix could not be determined
89 Type mismatch
90 Not Implemented (now?), probably to be done
91 Read: out of data
92 Read: no data
93 Guard-Page-Violation (Stack Error)
94 Datatype-Misalignment

EXCEPTION_DATATYPE_MISALIGNMENT: The thread
tried to read or write data that is misaligned on
hardware that does not provide alignment. For
example, 16-bit values must be aligned on 2-byte
boundaries; 32-bit values on 4-byte boundaries, and
so on.

95 Breakpoint (Int 3 = Monitor)
EXCEPTION_BREAKPOINT: A breakpoint was
encountered.

96 Single-Step (Debugger)
EXCEPTION_SINGLE_STEP: A trace trap or other
single-instruction mechanism signaled that one
instruction has been executed.

97 Access-Violation
EXCEPTION_ACCESS_VIOLATION: The thread tried
to read from or write to a virtual address for which
it does not have the appropriate access.

98 In-Page-Error
EXCEPTION_IN_PAGE_ERROR: The thread tried to
access a page that was not present, and the system
was unable to load the page. For example, this
exception might occur if a network connection is lost
while running a program over the network.

99 No-Memory
100 Invalid Assembler Instruction (Illegal-Instruction)

EXCEPTION_ILLEGAL_INSTRUCTION: The thread
tried to execute an invalid instruction.

101 Noncontinuable-Exception
EXCEPTION_NONCONTINUABLE_EXCEPTION : The
thread tried to continue execution after a non-
continuable exception occurred.

102 Invalid-Disposition
EXCEPTION_INVALID_DISPOSITION: An exception
handler returned an invalid disposition to the
exception dispatcher. Programmers using a high-
level language such as C (and GFA-BASIC 32)
should never encounter this exception.

103 Array-Bounds-Exceeded
EXCEPTION_ARRAY_BOUNDS_EXCEEDED: The
thread tried to access an array element that is out
of bounds and the underlying hardware supports
bounds checking.

104 Float-Denormal-Operand
EXCEPTION_FLT_DENORMAL_OPERAND: One of the
operands in a floating-point operation is denormal.
A denormal value is one that is too small to
represent as a standard floating-point value.

105 Float-Divide-By-Zero
EXCEPTION_FLT_DIVIDE_BY_ZERO: The thread
tried to divide a floating-point value by a floating-
point divisor of zero.

106 Float-Inexact-Result
EXCEPTION_FLT_INEXACT_RESULT: The result of a
floating-point operation cannot be represented
exactly as a decimal fraction.

107 Float-Invalid-Operation
EXCEPTION_FLT_INVALID_OPERATION: This

exception represents any floating-point exception
not included in this list.

108 Float-Overflow
EXCEPTION_FLT_OVERFLOW: The exponent of a
floating-point operation is greater than the
magnitude allowed by the corresponding type.

109 Float-Stack-Check
EXCEPTION_FLT_STACK_CHECK: The stack
overflowed or underflowed as the result of a
floating-point operation.

110 Float-Underflow
EXCEPTION_FLT_UNDERFLOW: The exponent of a
floating-point operation is less than the magnitude
allowed by the corresponding type.

111 Integer-Divide-By-Zero
EXCEPTION_INT_DIVIDE_BY_ZERO: The thread
tried to divide an integer value by an integer divisor
of zero.

112 Integer-Overflow
EXCEPTION_INT_OVERFLOW: The result of an
integer operation caused a carry out of the most
significant bit of the result.

113 Privileged-Instruction (I/O Ports for NT)
EXCEPTION_PRIV_INSTRUCTION: The thread tried
to execute an instruction whose operation is not
allowed in the current machine mode.

114 Stack-Overflow
EXCEPTION_STACK_OVERFLOW: The thread used
up its stack.

115 Control-C-Exit
DBG_CONTROL_C: ctrl+c is input to a console
process that handles ctrl+c signals and is being
debugged. This exception code is not meant to be
handled by applications. It is raised only for the

benefit of the debugger, and is raised only when a
debugger is attached to the console process.

116 For Each: this object is not a collection
117 Object type mismatch
118 Wrong type of object for Dim .. As New Type
119 Error on FreeBmp
120 MiMeTo format error
121 No Tool help functions, Windows 95/98/NT 5.0

required
122 Index out of range (ParamArray)
123 Cannot create OCX/Form
124 Owner change not allowed
125 No shell32.dll found
126 Insert/Delete: array not one dimension
127 Insert/Delete: array bound exceeded
128 Insert/Delete: not for boolean array
129 MCI error message
130 uudecode format error
131 Array type error (matrix only double/single)
132 Array dim error (matrix - only 1 and 2 dim)
133 FileOp not for CON:
134 FileOp not for LPT:
135 PolyLine/PolyFill not for Variant/Boolean Arrays
136 The Ocx array is empty
137 Ocx(Index bad)
138 MdiChildWindow needs MdiParentWindow
139 Error on System
140 reStop
141 This API function exists in 16 Bit only
142 Error when writing to the registry
143 Error creating registry key

144 Error opening registry key
145 Recursiv Deletion of Registry Keys attempted
146 CodeBase: Code4Init not called
147 CodeBase: Code4Init error
148 CodeBase: error: can't load library
149 CodeBase warning: locking (r4locked)
150 The corresponding CodeBase database/object has

been closed
151 SendKeys string error
152 SendKeys recursiv

Example

Local a$, i%
Debug.Show
For i% = 1 To 152
Trace i%
If Odd(i%) : Trace Err$(i%)
Else : Trace Error$(i%)
EndIf

Next i%

Returns the strings with GFA-BASIC error messages for
codes 1 to 152.

See Also

Err Object, SysErr

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

SysErr Function
Purpose

Returns error message strings for the system error codes
returned by Err.LastDLLError.

Syntax

$ = SysErr[$](error)

error:win32 error number

Description

SysErr$ returns the message string for an operating
system error number.

Err$ returns the message string for a GFA-BASIC 32 error.

Example

OpenW 1
// error text for the error no. 3 of the
// used operating system
Print SysErr(3)
// error text for GFA-BASIC 32 error 3
Print Err$(3)

Remarks

Only part of the system errors have corresponding message
strings.

See Also

Err Object, Err$

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Resume Command
Purpose

Resumes execution after an error-handling routine is
finished.

Syntax

Resume [Next | 0 | label]

Description

The Resume statements can only be used in an error-
handling routine defined with On Error GoTo.

The Resume or Resume 0 are identical and (should) re-
execute the line that caused the error. The Resume [0]
command is useful when the error trap can fix the error
situation. The program may retry to execute that line again
and might continue without errors. However, Resume [0]
doesn't work and generates an exception.

Resume Next (should) resume executing with the line
immediately following the line that caused the error.
However, Resume Next doesn't work and generates an
exception. Resume Next command is only meaningful with
On Error Resume Next.

The only working Resume statement is Resume label.
Execution resumes at the label specified in the required
argument. The label argument is a line label or line number
and must be in the same procedure as the error handler.
Actually, this is nothing else than GoTo label. The only

difference is that Resume label re-initializes the On Error
trap. Any new error following the label is catched in the
same error trap, which might cause an infinite loop when an
error occurs.

Inside the error trap the On Error mechanism is disabled.

Example

ResumeStatementDemo()
Close # 1
Kill "TESTFILE"

Sub ResumeStatementDemo()
On Error GoTo errtrap
Open "TESTFILE" for Output As # 1 ' Open file
for output.

Kill "TESTFILE" ' Attempt to delete open file.
labelx:
Exit Sub
errtrap:
MsgBox Err.Number & Err.Description
Resume labelx

End Sub

Remarks

A Resume [Next | 0] command instructs the compiler to
create code to hold the current executing line (4 bytes per
line for subroutines smaller than 250 lines, and 7 bytes for
larger routines). The code to maintain the position is
generated between On Error GoTo label and On Error
GoTo 0 or the error trap staring with label. It seems the
compiler generates faulty code for this process and halts
with an exception.

On Error Resume Next instructs the compiler to generate
optimized Try/Catch code around each code line (8 bytes
extra per line). To prevent code bloat, you better use
Try/Catch.

See Also

On Error, Try

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Bound Function
Purpose

Bounds test.

Syntax

n = Bound(n, lo, hi)

n, lo, hi:iexp

Description

The Bound(n, lo, hi) function tests whether the parameter
n lies within the bounds of lo and hi (inclusive). This means
that when n < lo or n > hi an error message is reported.
Otherwise n is returned unchanged.

Example

OpenW # 1
Local i%, q%
Dim a%(49)
For i% = 1 To 20
q% = Rand(49) + 1
While a%(q%)
q%++

Wend
Inc a%(q%)

Next i%
CloseW # 1

This programs selects 20 random numbers between 1 and
49 without repetition. The frequency of the number (zero or
once) is noted in array a%().If Rand() returns a number for
the second time the next higher number is taken instead.
After many test runs an error (array index too big) appears
several times.

To locate this error the line q%++ can, for example, be
changed to

q% = Bound(q% + 1, 1, 49)

This will cause an error (Bound Error) on the line where q%
is modified (q%++). In this way the place where the range
is exceeded is easier to find.

Remarks

The Bound() function serves to find program errors by
early discovery of any range violations.

See Also

BoundB(), BoundW(), BoundC()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

BoundB Function
Purpose

bounds test

Syntax

byte = BoundB(n)

byte = BoundByte(n)

n: integer expression

Description

The BoundB(n) function tests if the parameter n fits in a
Byte. This means that when n < 0 or n > 255 an error
message is reported. Otherwise n is returned unchanged.

Example

Local a| = 5, b| = 45, c|
c| = BoundB(a| * b|) // 5 * 45 = 225 - No Error
c| = BoundB(c| * 2) // 225 * 2 = 450 - Array
Bounds Error

// or...
c| = BoundByte(c| * 2)

Remarks

The BoundB() function serves to find program errors by
early discovery of any range violations. BoundByte is a
synonym.

See Also

Bound(), BoundW(), BoundC()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

BoundC Function
Purpose

bounds test

Syntax

Card = BoundC(n)

Card = BoundCard(n)

n: integer expression

Description

The BoundC(n) function tests if the parameter n fits in an
unsigned word (Card). This means that when n < 0 or n >
65535 an error message is reported. Otherwise n is
returned unchanged.

Example

Local a&, b% = 20000, addr% = V:a&
DPoke V:a&, BoundC(b%) // Checks that b% will fit
in a Card/Word

Print a& // Prints 20000
b% = 212000
DPoke V:a&, b% // Not checking size of b%
leads to...

Print a& // ... a& = 15392 as only
first 16 bits passed

DPoke V:a&, BoundC(b%) // This will flag up the
error

// or simply..
~BoundCard(b%)

Remarks

The BoundC() function serves to find program errors by
early discovery of any range violations. BoundCard is a
synonym.

See Also

BoundB(), BoundW(), Bound()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

BackColor, ForeColor
Properties
Purpose

BackColor returns or sets the background color of an Ocx
object. ForeColor returns or sets foreground color used to
display text and graphics in an Ocx object.

Syntax

[Object.]BackColor [= rgb]

[Object.]ForeColor [= rgb]

Object:Ocx Object
rgb:ivar

Description

When used without an object, the BackColor and
ForeColor properties set the colors of the current active
form object (Form, LoadForm, Dialog, and OpenW). The
current active form is the one that is stored in Me. Me is
set automatically after creating a form or by explicitly
invoking Set Me = form Object.

As an alternative the colors can be set using the form
properties .BackColor and .ForeColor.

For all forms and controls, the default settings are
BackColor = colBtnFace and ForeColor =
colWindowText.

Note: When using Common Controls version 6, it is NOT
possible to change the text colour by setting the ForeColor
property of any object of the 'Button' family: these include
CheckBoxes, Command buttons, Frames and Option
Boxes. In the case of Command buttons, this is also not
possible using Common Controls version 5.

Example

OpenW # 1 // Me = Win_1
ForeColor = QBColor(3) // refers to Me
implicitly

ForeColor = &H808080 // refers to Me
implicitly

Me.ForeColor = RGB(92, 92, 92) // use Me
explicitly

Win_1.ForeColor = colBtnFace // use the form's
name

There are several methods to define the RGB color value for
the form. The RGB()function is one way to define colors,
and the QBColor function another. In most cases, it’s much
easier to enter these numbers in hexadecimal.

The valid range for a normal RGB color is 0 to 16,777,215
($FFFFFF). Each color setting (property or argument) is a 4-
byte integer. The high byte of a number in this range equals
0. The lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively.
The red, green, and blue components are each represented
by a number between 0 and 255 ($FF).

Consequently, you can specify a color as a hexadecimal
number using this syntax: $BBGGRR. The BB specifies the
amount of blue, GG the amount of green, and RR the
amount of red. Each of these fragments is a two-digit
hexadecimal number from 00 to FF. The median value is 80.

Thus, the following number specifies gray, which has the
median amount of all three colors: $808080

For RGB colors, the high byte equals 0 whereas for system
colors the high byte equals 8. Setting the most significant
bit to 1 changes the meaning of the color value: It no
longer represents an RGB color, but an environment-wide
color specified through the Windows Control Panel. The
values that correspond to these system-wide colors range
from &H80000000 to &H80000015. For example, the
hexadecimal number used to represent the color of an
active window caption is &H80000002. The following
constants are predefined:

colScrollBar; colBackGround; colDesktop;
colActiveCaption; colInactiveCaption; colMenu;
colWindow; colWindowFrame colMenuText;
colWindowText; colCaptionText; colActiveBorder;
colInactiveBorder; colAppWorkSpace; colHighLight;
colHighLightText; col3DFace; col3DShadow;
colBtnFace; colBtnShadow; colGrayText; colBtnText;
colInactiveCaptionText; colBtnHighLight;
colBtnHiLight; col3DHighLight; col3DHiLight;
col3DDkShadow; col3DLight; colInfoText; colInfoBk

These color constants define system colors that are
recognized by the system by the high order byte value
($80). The translation to a RGB color value happens at
system level. A property set to a system color constant
remains having the index value! See also GetRValue().

Example

OpenW 1
BackColor = &H80000007
Ocx ListBox lb = , 10, 10, 100, 100

lb.AddItem "Text 1"
.BackColor = colAppWorkSpace
.ForeColor = _minInt + COLOR_HIGHLIGHTTEXT
Do
Sleep

Until Me Is Nothing

Remarks

As an alternative for BackColor and ForeColor for forms
you can use the Color, RGBColor, or QBColor commands.
The [RGB]Color command takes RGB values (contrary to
GFA-BASIC 16).

Color RGB(255, 0, 0), RGB(99, 99, 99)

If you set the BackColor property on a Form object, all
text, and graphics, including the persistent graphics, are
erased. This does not happen if you use the other color
commands. Setting the ForeColor property doesn't affect
graphics or print output already drawn. On all other
controls, the screen color changes immediately.

See Also

Form, Color, RGBColor, QBColor, GetBValue

{Created by Sjouke Hamstra; Last updated: 03/03/2018 by James Gaite}

BkColor Property
Purpose

Returns or sets the background color for graphic
commands.

Syntax

object.BkColor = [value]

object:Form Object
valueiexp

Description

Sets the background color for graphic commands. If you set
the BackColor property on a Form object, all text, and
graphics, including the persistent graphics (AutoRedraw),
are erased. BkColor only sets the color, but doesn't erase
the client area.

Initially, BkColor and BackColor have the same value.

Example

Form test
AutoRedraw = 1
Print "Backcolor: "; Hex(BackColor)
Print "BkColor: "; Hex(.BkColor)
DefFill 9
PBox 10, 35, 100, 125
.BkColor = RGB(0, 255, 255)
Text 0, 135, "New BkColor: " & Hex(.BkColor)

PBox 10, 150, 100, 240
Do
Sleep

Until Me Is Nothing

Remarks

ForeColor sets the foreground color.

See Also

ForeColor, BackColor

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

RGB Function
Purpose

Returns a single color value from a set of red, green, and
blue color components.

Syntax

x% = RGB(r, g, b)

x% : iexp
r, g, b : iexp

Description

Specifies the intensity of the red, green, and blue color
components. The values can range from 0 to 255. Zero is
the minimum color intensity; 255 is the maximum colour
intensity.

RGB doesn't perform overflow checking. For instance, the
value 256 is converted to 1.

Example

OpenW 1
Local col%
Line 10, 10, 10, 150
Auto
col% = RGB(150, 150, 150)
Color col%
Circle 30, 30, 100
Color RGB(-3, 510, -10)

Circle 100, 100, 150

Remarks

The other function to create a RGB color value _RGB() clips
the passed values to the range 0 .. 255. Wrong values are
corrected automatically. For instance, the value 257 is set to
255, and for negative values the colour value is rounded to
zero.

RGB() is a bit faster, but doesn't perform overflow checking.
Incrementing the color value will not result in an end color
of white (255, 255, 255) like _RGB().

Another way to create the RGB value is by using the
function MakeL3L().

See Also

_RGB, RGBColor, Color, RGBPoint

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

_RGB Function
Purpose

Returns a single color value from a set of red, green, and
blue color components.

Syntax

x% = _RGB(r, g, b)

x% : iexp
r, g, b : iexp

Description

Specifies the intensity of the red, green, and blue color
components. The values can range from 0 to 255. Zero is
the minimum color intensity; 255 is the maximum color
intensity.

_RGB() clips the passed values to the range 0 .. 255.
Wrong values are corrected automatically. For instance, the
value 257 is set to 255, and for negative values the color
value is rounded to zero.

Example

OpenW 1
Local a%, col%
Line 10, 10, 10, 150
Auto
col% = _RGB(150, 150, 150)
Color col%

Circle 30, 30, 100
col% = _RGB(-3, 510, -10)
Color col%
Circle 100, 100, 150
KeyGet a
CloseW 1

Remarks

_RGB(250 + 20, 100 + 20, 80 + 20) results in RGB(255,
120, 100), not RGB(14, 120, 100) [14 == (270 And 255)].
_RGB is implemented as an optimized library function; it is
not in-lined due to its complexity. As an illustration, the
following code is required (more or less):

Function RGBAdd(ByVal Rgb1 As Int, ByVal hue As
Int) As Int
Dim tR As Int, tG As Int, tB As Int
tR = GetRValue(Rgb1) + hue
tG = GetGValue(Rgb1) + hue
tB = GetBValue(Rgb1) + hue
If tR > 255 Then tR = 255
If tG > 255 Then tG = 255
If tB > 255 Then tB = 255
If tR < 0 Then tR = 0
If tG < 0 Then tG = 0
If tB < 0 Then tB = 0
Return RGB(tR, tG, tB)

EndFunction

GFA-BASIC 32 brings it back to:

Function RGBAdd2(ByVal Rgb1 As Int, ByVal hue As
Int) As Int

Return _RGB(GetRValue(Rgb1) + hue,
GetGValue(Rgb1) + hue, GetBValue(Rgb1) + hue)

EndFunction

By incrementing the r-g-b values using _RGB will eventually
result in white (255,255,255).

The other function to create a RGB colour value RGB() is a
bit faster, but doesn't perform overflow checking. For
instance, the value 256 is converted to 1. Incrementing the
colors using RGB() does not result in the end color white.

See Also

RGB, RGBColor, RGBPoint

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

GetBValue, GetGValue,
GetRValue Function
Purpose

The GetBValue, GetGValue, and GetRValue function
retrieves an intensity value for a color component of a 32-
bit red, green, blue (RGB) value.

Syntax

Byte = GetBValue(rgb)

Byte = GetGValue(rgb)

Byte = GetRValue(rgb)

rgb: 32-bit RGB value

Description

The return value of GetBValue is the intensity of the blue
component of the specified RGB color.

The return value of GetGValue is the intensity of the green
component of the specified RGB color.

The return value of GetRValue is the intensity of the red
component of the specified RGB color.

The intensity value is in the range 0 through 255.

Example

OpenW # 1
Local col%, nBlue%, nGreen%, nRed%, x%
// background color for a window
Win_1.BackColor = RGB(120, 250, 120)
// to get the whole color value
col% = Win_1.BackColor
// or for one pixel
// col% = GetPixel(Win_1.hDC , 380, 280)
Text 75, 10, "red"
Text 110, 10, "green"
Text 150, 10, "blue"
If col% > 0
nRed% = GetRValue(col)
nBlue% = GetBValue(col)
nGreen% = GetGValue(col)
Text 70, 40, nRed%
Text 110, 40, nGreen%
Text 150, 40, nBlue%

EndIf

Remarks

The GetBValue, GetGValue, and GetRValue functions are
actually simple byte shift functions. Whatever you put in the
parameter it will return. For example, when you assign a
predefined color constant like colBtnFace (= $8000000F)
you won't get the RGB-values of the color, but
GetBValue(colBtnFace) = 0, GetGValue(colBtnFace) = 0,
and GetRValue(colBtnFace) = $0F.

In addition, these functions do not work with the ARGB
colours used with GDI+; to get the individual colour
components you can use the GetByten() functions as in
the following example:

Local ARGB_Aquamarine = &HFF7FFFD4

Print Hex$(GetByte0(ARGB_Aquamarine)) // Alpha
Value

Print Hex$(GetByte1(ARGB_Aquamarine)) // Red
Value

Print Hex$(GetByte2(ARGB_Aquamarine)) // Green
Value

Print Hex$(GetByte3(ARGB_Aquamarine)) // Blue
Value

Print Hex$(GetRValue(ARGB_Aquamarine)) // Gets the
Blue, not Red, Value

Print Hex$(GetBValue(ARGB_Aquamarine)) // Gets the
Red, not Blue, Value

Print Hex$(GetGValue(ARGB_Aquamarine)) // Still
gets the Green Value

See Also

GetByte0, GetByte1, GetByte2, GetByte3

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

SysCol Function
Purpose

Returns the system color of a specific element.

Syntax

c% = SysCol(e%)

e%:integer expression

Description

The SysCol() function returns the RGB value for the
element specified in e%.

COLOR_ACTIVEBORDER(10) - active window

COLOR_ACTIVECAPTION(2) - active window caption

COLOR_APPWORKSPACE(12) - background of "multiple

COLOR_BACKGROUND(1) - desktop

COLOR_BTNFACE(15) - button surface

COLOR_BTNSHADOW(16) - button shadow

COLOR_BTNTEXT(18) - button text

COLOR_CAPTIONTEXT(9) - caption text

COLOR_GRAYTEXT(17) - gray (inactive) text field

COLOR_HIGHLIGHT(13) - selected items

COLOR_HIGHLIGHTTEXT(14) - text in selected items

COLOR_INACTIVATEBORDER(11) - inactive window frame

COLOR_INACTIVATECAPTION(3) - inactive caption

COLOR_MENU(4) - menu background color

COLOR_MENUTEXT(7) - menu text

COLOR_SCROLLBAR(0) - gray area in scroll bars

COLOR_WINDOW(5) - window background

COLOR_WINDOWFRAME(6) - window frames

COLOR_WINDOWTEXT(8) - color of text in windows

Example

OpenW 1
// to open a windows with the same
// background color as the surface color
// of the push button (Command)
Win_1.BackColor = SysCol(COLOR_BTNFACE)
Win_1.BackColor = GetSysColor(COLOR_BTNFACE)
' alternative, more conform MS Windows:
Win_1.BackColor = colBtnFace
Win_1.BackColor = &H8000000F
Win_1.BackColor = _minInt + COLOR_BTNFACE

The following code shows the system colours as they are
manifested on your system,

OpenW Full 1
Global Int colour = $80000000, n, y

Local a$
For n = 0 To 24
Color colour + n
PBox 10, y, 20, y + 10
Color 0
Read a$: Text 25, y, a$ & ": " & Hex(Point(11, y
+ 1), 6) & " "

Add y, 20
Next n
Data
"Scrollbars","Desktop","ActiveTitleBar","Inactive
TitleBar","MenuBar"

Data
"WindowBackground","WindowFrame","MenuText","Wind
owText","TitleBarText"

Data
"ActiveBorder","InactiveBorder","ApplicationWorkS
pace","Highlight","HighlightText"

Data
"ButtonFace","ButtonShadow","GrayText","ButtonTex
t","InactiveCaptionText"

Data
"3DHighlight","3DDKShadow","3DLight","InfoText","
InfoBackground"

Remarks

SysCol is short for the Windows API function
GetSysColor().

See Also

Color, RGBColor, BkColor, ForeColor, BackColor

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Cls Command
Purpose

Clears the screen.

Syntax

Cls [color]

Description

Deletes the contents of the actual window. The window is
deleted with the background color set with BackColor.

When AutoRedraw is used and the argument color is
specified, a VGA color is used when color is in the range
0..15. Other wise the color is interpreted as RGB value.

Example

Local a%
OpenW # 1
AutoRedraw = 1
Print "Press any key"
KeyGet a%
Cls 5
// Cls doesn't reset BackColor or BkColor
Win_1.BkColor = QBColor(5)
Print "Press any key"
KeyGet a%
CloseW 1

See Also

BackColor

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

DefLine Command
Purpose

defines the line type.

Syntax

DefLine [style] [, thickness]

style, thickness:integer expression

Description

DefLine defines the appearance of a line drawn using the
Line, Box, RBox, Circle, Ellipse and Polyline commands.

The first parameter determines the appearance of the line
as follows:

style = 0 or PS_SOLID solid line
style = 1 or PS_DASH dashed line
style = 2 or PS_DOT dotted line
style = 3 or PS_DASHDOT dash-dot line
style = 4 or
PS_DASHDOTDOT

-..-..- line

style = 5 or PS_NULL invisible border
style = 6 or
PS_INSIDEFRAME

dithered, e.g., color
emulation

style = 7 or PS_USERSTYLE an array with user defined
styles.

style = 8 or PS_ALTERNATE each other pixel will be set,
only useable with

PS_COSMETIC
style = 15 or
PS_STYLE_MASK

can have one of the styles
above

style = 0 or
PS_ENDCAP_ROUND

end of the line will be
rounded

style = 256 or
PS_ENDCAP_SQUARE

end of the line will be
square

style = 512 or
PS_ENDCAP_FLAT

end of the line is flat

style = 3840 or
PS_ENDCAP_MASK

can get one value of the
three possible (0, 256, 512)

style = 0 or
PS_JOIN_ROUND

join is round

style = 4096 or
PS_JOIN_BEVEL

join is bevel

style = 8192 or
PS_JOIN_MITER

join is miter

style = 0xF000 or
PS_JOIN_MASK

can get one of the three
possible values (0, 4096,
8192)

style = 0 or PS_COSMETIC fixed width and fixed height
of a used line, very quick

style = 0x10000 or
PS_GEOMETRIC

scaleable line with fixed are
variable style, and with the
width of more as one pixel

style = 0xF0000 or
PS_TYPE_MASK

can contents PS_COSMETIC
or PS_GEOMETRIC

thickness specifies the line thickness in pixels.

Warning! When thickness is over 1, a solid line is always
drawn.

Example

Example 1

OpenW 1
Local a%, i%
Color RGB(0, 255, 0)
For i% = 0 To 4
DefLine i%, 1
Line 0, (i% + 1) * _Y / 6, _X, (i% + 1) * _Y / 6

Next
KeyGet a% // Press any key
For i% = 0 To 4
DefLine i%, i%
Line 0, (i% + 1) * _Y / 6, _X, (i% + 1) * _Y / 6

Next
Do : Sleep : Until Win_1 Is Nothing

Example 2

OpenW 1
Local i&, j&, stp&
DefLine PS_INSIDEFRAME, 99
stp& = 20
For i& = 0 To _X Step stp&
j& = i& * 255 / _X
RGBColor RGB(255 - j&, 0, j&)
PBox i&, 0, i& + stp& - 1, _Y

Next i&
Do : Sleep : Until Win_1 Is Nothing

Remarks

DefLine internally uses the Windows function CreatePen().
The line color must be set beforehand with BkColor, Color,
RGBColor, or QBColor.

See Also

DefFill

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DefFill Command
Purpose

defines a fill pattern.

Syntax

DefFill pattern

DefFill p$

pattern: integer expression
p$: string

Description

DefFill pattern defines a fill pattern for PBox, PCircle,
PEllipse, Polyfill and Fill graphic commands. One the 48
available dot or line patterns can be selected using the
pattern option. (see Fill pattern table).

DefFill p$ defines a custom monochrome fill pattern. The
string is 8 bytes long, where each byte specifies the 8-bits
pattern for a row. Together the 8 bytes define a 8 x 8 bit
pattern.

Example

// Fill pattern table

Local h%, i%, j%, w%, ye%, ys%
OpenW # 1
w% = _X / 12, h% = _Y / 4

For i% = 1 To 48
Switch i%
Case To 12
j% = i%
ys% = 0, ye% = _Y / 4

Case 13 To 24
j% = Sub(i%, 12)
ys% = _Y / 4, ye% = _Y / 2

Case 25 To 36
j% = Sub(i%, 24)
ys% = _Y / 2, ye% = _Y * 3 / 4

Case 37 To 48
j% = Sub(i%, 36)
ys% = _Y * 3 / 4, ye% = _Y

EndSwitch
DefFill i%
PBox (j% - 1) * w%, ys%, (j% - 1) * w% + w%, ye%

Next i%

draws 48 rectangles using various fill patterns.

Local x$ = Chr$(0, $FF, 0, $FF, 0, $FF, 0, $FF)
DefFill x$
PBox 8, 8, 100, 100

See Also

DefLine

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DrawMode Property
Purpose

Returns or sets a value that determines the appearance of
output.

Syntax

[object.]DrawMode [= n]

object:Form or Printer object
n:iexp

Description

Use this property to produce visual effects with the graphic
output commands (Line, Circle, etc). Each pixel in the
draw pattern is compared to the corresponding pixel in the
existing background and then applies bit-wise operations.

R2_BLACK points are always black.
R2_WHITE sets white points.
R2_NOP points are not changed.
R2_NOT point corresponds to the inverse of

the screen color.
R2_COPYPEN color set with Color.
R2_NOTCOPYPEN inverse of color in Color
R2_MERGEPENNOT set point corresponds to the pen

color "or-ed" with the inverse screen
color.

R2_MASKPENNOT set points corresponds to pen color
"and-ed" with inverse pen color.

R2_MERGENOTPEN set point corresponds to screen color
"and-ed" with the inverse pen color.

R2_MERGEPEN point color corresponds to the pen
color "or-ed" with the screen color.

R2_NOTMERGEPEN inverse R2-MERGEPEN color.
R2_MASKPEN point corresponds to colors in screen

and pen (logical And).
R2_NOTMASKPEN point corresponds to inverse R2-

MASKPEN color.

Using DrawMode without an object will affect the current
active output object, usually Me (unless Output = Printer is
used).

DrawMode is a get/put property and can be read as well.

Example

OpenW 1
Local a%
RGBColor RGB(125, 125, 125), RGB(150, 100, 150)
DefFill 8
PBox 10, 10, 100, 200
// Graphmode 1 is Default
PBox 15, 15, 105, 205
KeyGet a%
// waiting of a key
Cls
DrawMode = R2_MERGEPENNOT // Or operation
PBox 10, 10, 100, 200
PBox 15, 15, 105, 205
KeyGet a%
// waiting of a key
Cls
DrawMode = R2_XORPEN // Xor op
PBox 10, 10, 100, 200

PBox 15, 15, 105, 205
KeyGet a%
// waiting of a key
Cls
DrawMode = R2_MASKPEN // And op
PBox 10, 10, 100, 200
PBox 15, 15, 105, 205
KeyGet a%
// waiting of a key
CloseW 1

Draws two rectangular, one over the other.

Remarks

DrawMode is the VB compatible implementation of the
GFA-BASIC GraphMode command. In addition, DrawMode
is a property.

See Also

GraphMode

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

GraphMode Command
Purpose

Control of graphic output on bit level

Syntax

GraphMode n [,m]

Description

GraphMode n defines the relationship between the graphic
output and the screen. This relationship involves the bit-
wise combination of the current screen contents and the
new graphic which is to be drawn. The parameter n
specifies how this combination is to be performed. Following
modes are possible:

R2_BLACK points are always black.
R2_WHITE sets white points.
R2_NOP points are not changed.
R2_NOT point corresponds to the inverse of

the screen color.
R2_COPYPEN color set with Color.
R2_NOTCOPYPEN inverse of color in Color
R2_MERGEPENNOT set point corresponds to the pen

color "or-ed" with the inverse screen
color.

R2_MASKPENNOT set points corresponds to pen color
"and-ed" with inverse pen color.

R2_MERGENOTPEN set point corresponds to screen color

"and-ed" with the inverse pen color.
R2_MERGEPEN point color corresponds to the pen

color "or-ed" with the screen color.
R2_NOTMERGEPEN inverse R2-MERGEPEN color
R2_MASKPEN point corresponds to colors in screen

and pen (logical And).
R2_NOTMASKPEN point corresponds to inverse R2-

MASKPEN color.
R2_XORPEN set point is either in screen color or

pen color but not in both (logical
Xor).

R2_NOTXORPEN point color corresponds to the
inverse R2_XORPEN color.

GraphMode 1 (R2_BLACK) is default.

The second optional parameter GraphMode ,m can take on
the values OPAQUE and TRANSPARENT. OPAQUE
overwrites the background and is the default.

Example

Dim a%
OpenW # 1
DefFill 4
PBox 10, 10, 100, 200 //Graphmode 1 default
PBox 15, 15, 105, 205
Delay 1
Cls
GraphMode R2_MERGEPEN //logical Or
PBox 10, 10, 100, 200
PBox 15, 15, 105, 205
Delay 1
PBox 10, 10, 100, 200
PBox 15, 15, 105, 205

Delay 1
Cls
GraphMode R2_MASKPEN //logical And
PBox 10, 10, 100, 200
PBox 15, 15, 105, 205
Delay 1
CloseW # 1

draws two overlapping rectangles.

Remarks

GraphMode n conforms to the DrawMode property of the
window/form.

GraphMode ,m conforms to the FontTransparent
property of the window/form.

See Also

DrawMode, FontTransparent

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Print Command
Purpose

Prints text into the current active Form or Printer object.

Syntax

Print x[,y,a$,...][;]

x,y:aexp
a$:sexp

Description

A Print without any parameters performs a line feed. If
PrintScroll = 1 and the cursor is on the last line, the whole
screen is moved up by one line. A Print followed by an
expression prints this expression at the current cursor
position.

Print At, Locate, VTab, and HTab can be used to position
the cursor. The strings must be enclosed in quotation
marks. Print can be followed by several (different)
expressions which must be separated by a comma, a semi-
colon, or an apostrophe.

The comma moves the cursor to the next tab position - a
column fully divisible by 16. When the last column is
reached the cursor is moved to column 17 on the next line.
The semi-colon performs the output of expressions without
any spaces between them. The apostrophe, however,
inserts a space between the expressions. A line feed is
performed after each Print except when the last expression

is followed by a semi-colon. In such a case the next Print
output resumes from the end of the previous one.

All data printed is formatted using the decimal separator
according the Mode Using setting. Use the Using function
to format the output before printing.

For Boolean data, either True or False is printed. The True
and False keywords are translated according to the locale
setting for the host application.

A Date is written according the Mode Date setting.

Example

OpenW 1
Local a$, b$
Print 3 * 4 + 12
Print "3 * 4 + 12 = "; 3 * 4 + 12
a$ = "GFA Software Technologies"
b$ = "-BASIC 32"
Print Left$(a$, 3) + b$
Print "A"``Chr$(66)``"C"
Print "a$,b$: "; a$, b$

Remarks

Because the Print method typically prints with
proportionally-spaced characters, there is no correlation
between the number of characters printed and the number
of fixed-width columns those characters occupy. For
example, a wide letter, such as a "W", occupies more than
one fixed-width column, and a narrow letter, such as an "i",
occupies less. To allow for cases where wider than average
characters are used, your tabular columns must be
positioned far enough apart. Alternatively, you can print

using a fixed-pitch font (such as Courier) to ensure that
each character uses only one column. Use the Font object
to adjust the font settings.

See Also

PrintAt, Using, Write, Text, Mode

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Locate, LocaXY and LocaYX
Commands
Purpose

Cursor positioning

Syntax

Locate row, column

LocaXY column, row

LocaYX row, column

row, column:ivar

Description

Places the cursor at position x (column) and y (row). The
exact location depends on the size of the font selected in
the Form.

Example

OpenW # 1
Print "Hello GFA"
Locate 12, 4
Print "Hello GFA with Locate"
LocaXY 15, 8
Print "Hello GFA with LocaXY"
LocaYX 15, 8
Print "Hello GFA with LocaYX"

Remarks

Print AT() combines the functions of Locate and the
subsequent Print commands.

See Also

Print At, VTab, HTab, LocaXY, LocaYX

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/locaxy.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/locaxy.htm#locayx

Print At Commands
Purpose

Prints text at a specific position on the current active Form
or Printer object.

Syntax

Print At(column,row);exp1 [,[At(column,row;] exp2,...]

Print ATXY(column, row);exp[,[ATXY(column,
row);]exp2,...]

Print ATYX(row, column);exp[,[ATYX(row,
column);]exp2,...]

column, row:iexp, cursor position
exp1, exp2:aexp or sexp

Description

Print At(column, row) followed by an expression, performs
the output of this expression at the cursor position defined
by column and row. Print At() without any parameters
performs a line feed. The list of parameters after Print At()
can contain other At() instructions which then apply to
printing of expressions following after them. i.e. at the
corresponding column and row.

Print ATXY(column, row) is the same as Print At(column,
row) and Print ATYX(row, column) different only in the
order of the parameters - it states the row first, not the
column.

Example

Local a%
OpenW # 1
Print AT(7, 12); "What do you get";
Print AT(7, 13); "when you multiply"
Print AT(7, 14); "6 by 7"; AT(7, 16); " 42!!! "
Print ATXY(4, 6); "What do you get";
Print ATXY(4, 7); "when you multiply"
Print ATXY(4, 8); "6 by 8"; ATXY(4, 10); " 48!!! "
Print ATYX(1, 1); "What do you get";
Print ATYX(2, 1); "when you multiply"
Print ATYX(3, 1); "6 by 9"; ATYX(4, 1); " 54!!! "

Remarks

The Text command is recommended for output. It is
considerably faster.

See Also

Print, Mode, Text

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

HTab, VTab Commands
Purpose

Positions the cursor positioning in either the vertical or
horizontal planes.

Syntax

HTab column

VTab row

column, row:integer expression

Description

Places the cursor in the column or row specified in
respective integer variable.

Example

OpenW # 1
Print AT(1, 1); "Hello GFA"
HTab 20
VTab 20
Print "Hello GFA"

Prints Hello GFA from the first column on the first line, and
then prints the same string again only from the 20th row
and 20th column.

The same:

Print AT(20, 20); "Hello GFA"

See Also

Locate, PrintAt, Tab

{Created by Sjouke Hamstra; Last updated: 01/03/2017 by James Gaite}

DrawText Command
Purpose

Displays formatted text.

Syntax

DrawText x1, y1, x2, y2, t$, mode

x1, y1, x2, y2:floating-point exp
t$:sexp
mode:iexp

Description

DrawText works in principle like Text; however the text
can be formatted by using the last parameter mode. It must
be taken into account that Windows can clip text output to a
rectangle. This occurs for example in multi-line Combo
boxes. The formatted output is therefore limited to a
rectangular area whose height (in case of single line text) is
determined by the font height. The text specified in t$ is
displayed at the output coordinates x and y. mode can
assume the following values for a formatting with a logical
Or:

DT_BOTTOM ($0008) draws a single line of text at the
bottom of a rectangular area.
This only works with single line
text and must have the
DT_SINGLELINE mode specified
as well.

DT_CALCRECT ($0400) determines the width and height

of a rectangular area.
DT_CENTER ($0001) centers text within a rectangular

area.
DT_EXPANDTABS
($0040)

expands the tab stops.

DT_EXTERNALLEADING
($0200)

expands the height of a text line
by the distance between two
lines.

DT_LEFT($0000) draws text left justified.
DT_NOCLIP ($0100) turns the clipping to a

rectangular area off.
DT_NOPREFIX ($0800) disables the default function of

the "&" character (display the
following characters as
underlined.

DT_RIGHT ($0002) draws text right justified.
DT_SINGLELINE
($0020)

specifies a single line of text.

DT_TABSTOP ($0080) sets tab stops. The high byte of
attr% contains the number of
characters per tab.

DT_TOP ($0000) draws a single line of text at the
top edge of a rectangular area.

DT_VCENTER ($0004) displays a single line of text
vertically centered. This only
works with single line text and
must have the DT_SINGLELINE
mode specified as well.

DT_WORDBREAK
($0010)

turns on word wrap.

DT_EDITCONTROL Duplicates the characteristics of
a multi line edit control

DT_PATH_ELLIPSIS or Replaces part of the given string

DT_END_ELLIPSIS with ellipses, if necessary, so
that the result fits in the
specified rectangle. The given
string is not modified unless the
DT_MODIFYSTRING flag is
specified.

DT_MODIFYSTRING Modifies the given string to
match the displayed text. This
flag has no effect unless the
DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS flag is
specified.

DT_RTLREADING Layout in right to left reading
order for bi-directional text when
the font selected into the hDC is
a Hebrew or Arabic font. The
default reading order for all text
is left to right.

DT_WORD_ELLIPSIS Truncates text that does not fit
in the rectangle and adds
ellipses.

Note The DT_CALCRECT, DT_EXTERNALLEADING,
DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX values
cannot be used with the DT_TABSTOP value.

Example

OpenW # 1
Local a$ = "Hello" + Chr$(13) + "Bye..."
DrawText 10, 20, 110, 120, a$, DT_NOCLIP |
DT_WORDBREAK

Prints "Hello" and then on the next line "Bye", ignoring the
clipping rectangle.

Remarks

DrawText corresponds to Windows function DrawText.

See Also

Text, GrayText

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

Text Command
Purpose

Output of an expression as graphic text

Syntax

Text x!, y!, sexp

x!, y!:Single
sexp:svar or sexp

Description

Text x, y, sexp prints expression exp as graphic text at
coordinates x, y. The ScaleMode property determines the
unit of measure used. The point defined with x, y is aligned
with the left corner of the base line of the first character in
exp. The color of the text is set using RGBColor, Color, or
QBColor. When FontTransparent = True or GraphMode
,TRANSPARENT the background is not overwritten with the
the background color (2nd parameter of (RGB)Color and
QBColor. Otherwise the background of the text is filled.

Example

OpenW # 1
Dim i%, s$ = "Test Test Test"
For i% = 0 To 10
Text 50, Add(Shl(i%, 4), 16), s$

Next i%

Writes "Test Test Test" in different positions down the
screen.

Remarks

Text is considerably faster than Print.

How the text is aligned can be altered by the
SetTextAlign() API as shown by the following example:

OpenW 1
// Default 'Top' text alignment
Text 60, 20, "Hello" : FontSize = 12 : Text 90,
20, "Hello" : FontName = "Courier" : Text 135,
20, "Hello"

Text 60, 40, "Hello"
// Outputting Text to align along the base line
~SetTextAlign(Win_1.hDC, 24)
' 24 = TextOut y-coordinate = baseline;
SetTextAlign set to 0 or top by default

' SetTextAlign affects Text as the latter uses the
TextOut API

FontName = "MS Shell Dlg" : FontSize = 8
Text 60, 80, "Hello" : FontSize = 12 : Text 90,
80, "Hello" : FontName = "Courier" : Text 135,
80, "Hello"

Text 60, 100, "Hello"
' Note: SetTextAlign also affects Print statements
as follows:

Print "Line 1" // is printed above the top of the
work area of the window

Print "Line 2"
Print "Line 3"

SetTextAlign() can be used with the following constants

TA_BASELINE = 24 - The reference point will be on the
baseline of the text.

TA_BOTTOM = 8 - The reference point will be on the bottom
edge of the bounding rectangle of the text.

TA_CENTER = 6 - The reference point will be horizontally
centered along the bounding rectangle of the text.

TA_LEFT = 0 - The reference point will be on the left edge
of the bounding rectangle of the text.

TA_NOUPDATECP = 0 - Do not set the current point to the
reference point.

TA_RIGHT = 2 - The reference point will be on the right
edge of the bounding rectangle of the text.

TA_RTLREADING = 256 - Win 95/98 only:Display the text
right-to-left (if the font is designed for right-to-left reading).

TA_TOP = 0 - The reference point will be on the top edge of
the bounding rectangle of the text.

TA_UPDATECP = 1 - Set the current point to the reference
point.

See Also

Print, Print At, TextXor, GrayText, ScaleMode, Color,
RGBColor, QBColor

{Created by Sjouke Hamstra; Last updated: 14/01/2015 by James Gaite}

TextXor Command
Purpose

Output of an expression as graphic text with a bitwise
exclusive OR of the destination and source.

Syntax

TextXor x!,y!, exp

x!,y!:Single
exp:svar or sexp

Description

TextXor x, y, exp prints expression exp as graphic text at
coordinates x, y. The ScaleMode property determines the
unit of measure used. The foreground color of the text is set
using RGBColor, Color, or QBColor.

TextXor allows to place text on the background without
disturbing the background. Under Windows 3.1 often used
construction GraphMode R2_XORPEN : Text x, y, exp is
ignored under Windows 95. This makes it impossible to
restore the background when the text is displayed twice in
the R2_XORPEN grahpmode.

Example

OpenW 1
Dim x As Int, y As Int, k As Int
Dim xo As Int, yo As Int
For x = 0 To _X Step 40

Line x, 0, x, _Y
Next x
For y = 0 To _Y Step 40
Line 0, y, _X, y

Next y
y = -80, yo = y
Global doexit As Boolean = False
Do
Sleep
If !doexit
Mouse x, y, k
If x != xo || y != yo || k = 1
TextXor xo, yo, xo & yo
If k = 1 Then QBColor Rand(16) : _
Circle x, y, 24

xo = x : yo = y
TextXor x, y, x & y

EndIf
EndIf

Until Me Is Nothing

Sub Win_1_Close(Cancel?)
doexit = True

EndSub

Writes "Test Test Test" in different ways to the screen.

Remarks

GrayText is another variant on Text.

See Also

Print, Print At, Text, GrayText, ScaleMode, Color, RGBColor,
QBColor

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

GrayText Command
Purpose

Displays given text in gray.

Syntax

GrayText x, y, t$

x, y:Single

Description

GrayText works in principle like Text, however, the string
expression is shown in gray. As a rule Windows uses gray to
indicate when an entry is not selectable.

The command requires three parameters. The first two x
and y set the X and Y coordinates for the origin of the string
specified in t$.

Example

OpenW 1
FontSize = 40
Text 10, 20, "Hello GFA"
GrayText 10, 40, "Hello GFA"

prints "Hello GFA", first in default color and then in gray.

See Also

Text, DrawText

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

RBox, PRBox Commands
Purpose

Draws a rectangle with rounded corners.

Syntax

RBox x1,y1,x2,y2
RBox x1,y1 To x2,y2
RBox x1,y1, Step w,h

PRBox x1,y1,x2,y2
PRBox x1,y1 To x2,y2
PRBox x1,y1, Step w,h

x1,y1,x2,y2,w,h : single exp

Description

RBox x1,y1,x2,y2 and RBox x1,y1 To x2,y2 both draw a
rectangle with rounded corners, with the diagonally
opposite corner coordinates at x1,y1 (upper left) and x2,y2
(lower right), while RBox x1,y1 Step w,h also draws a
similar rectangle but with top left coordinate x1,y1 and a
width of w and height of h.

The width of the line drawn depends on the setting of the
DefLine command and the way a line or box is drawn on
the background depends on the setting of the DrawMode
and BkColor properties.

The PRBox command acts very much the same, except
that the boxes drawn are filled with a pattern defined using

Deffill.

Example

OpenW 1
RBox 10, 10, 100, 100
DefLine 1
RBox 110, 10, Step 90, 90
PRBox 10, 110, 100, 200
DefFill 5 : DefLine 0
PRBox 110, 110, Step 90, 90

See Also

BkColor, DefFill, DefLine, DrawMode, Box, PBox, Box3D,
PBox3D, PolyLine, PolyFill

{Created by Sjouke Hamstra; Last updated: 22/06/2017 by James Gaite}

Box3D, PBox3D Commands
Purpose

Draws a 3D rectangle

Syntax

Box3D x1, y1, x2, y2 [, [edge][,bf]]
Box3D x1, y1 To x2, y2 [, [edge][,bf]]
Box3D x1, y1, Step w, h [, [edge][,bf]]

PBox3D x1, y1, x2, y2 [, [edge][,bf]]
PBox3D x1, y1 To x2, y2 [, [edge][,bf]]
PBox3D x1, y1, Step w, h [, [edge][,bf]]

h, w, x1, x2, y1, y2 : single
edge : EDGE_ constants
bf : BF_ constants

Description

Box3D x1,y1,x2,y2 and Box3D x1, y1 To x2, y2 draw a 3D
rectangle with diagonal corner coordinates x1,y1 (upper
left) and x2,y2 (lower right), while B>Box3D x1,y1, Step
x2,y2 draws a similar rectangle but with upper left
coordinates x1,y1 and a width of w and a height of h. The
optical effect is specified by using the constants edge and bf
(default: edge= EDGE_RAISED and bf = BF_RECT).

The Edge constants come in three forms:

1. Those that affect the inner edge only:

BDR_RAISEDINNER ($4) - Draws a raised inner edge.
BDR_SUNKENINNER ($8) - Draws a sunken inner
edge.

2. Those that affect the outer edge only:

BDR_RAISEDOUTER ($1) - Draws a raised outer edge.
BDR_SUNKENOUTER ($2) - Draws a sunken outer
edge.

3. Those that affect the both edges:

EDGE_BUMP ($9) - Combination of
BDR_RAISEDOUTER and BDR_SUNKENINNER.
EDGE_ETCHED ($6) - Combination of
BDR_SUNKENOUTER and BDR_RAISEDINNER.
EDGE_RAISED ($5) - Combination of
BDR_RAISEDOUTER and BDR_RAISEDINNER.
EDGE_SUNKEN ($A) - Combination of
BDR_SUNKENOUTER and BDR_SUNKENINNER

The Border (BF) constants determine which borders are
affected and are as follows:

BF_ADJUST ($2000) - Shrink the rectangle to exclude
the edges that were drawn.
BF_BOTTOM ($0008) - Draw bottom of border
rectangle only.
BF_BOTTOMLEFT ($0009) - Draw bottom and left side
of border rectangle.
BF_BOTTOMRIGHT ($000A) - Draw bottom and right
side of border rectangle.
BF_DIAGONAL ($0010) - Diagonal border.
BF_DIAGONAL_ENDBOTTOMLEFT ($0019) -
Diagonal border. The end point is the lower-left corner
of the rectangle; the origin is top-right corner.
BF_DIAGONAL_ENDBOTTOMRIGHT ($001A) -

Diagonal border. The end point is the lower-right corner
of the rectangle; the origin is top-left corner.
BF_DIAGONAL_ENDTOPLEFT ($0013) - Diagonal
border. The end point is the top-left corner of the
rectangle; the origin is lower-right corner.
BF_DIAGONAL_ENDTOPRIGHT ($0016) - Diagonal
border. The end point is the top-right corner of the
rectangle; the origin is lower-left corner.
BF_FLAT ($4000) - Flat border.
BF_LEFT ($0001) - Left side of border rectangle.
BF_MIDDLE ($0800) - Interior of rectangle to be filled.
BF_MONO ($8000) - One-dimensional border.
BF_RECT ($000F) - Entire border rectangle.
BF_RIGHT ($0004) - Right side of border rectangle.
BF_SOFT ($1000) - Soft buttons instead of tiles.
BF_TOP ($0002) - Top of border rectangle.
BF_TOPLEFT ($0003) - Top and left side of border
rectangle.
BF_TOPRIGHT ($0006) - Top and right side of border
rectangle.

Example

OpenW 1, , , 370, 465
TitleW 1, "Example: GFA-BASIC 32 Border Box3D +
PBox3D"

FontSize = 9
FontBold = True
Text 10, 5, "EDGE"
Text 10, 40, "EDGE_RAISED"
Text 10, 90, "EDGE_ETCHED"
Text 10, 140, "EDGE_BUMP"
Text 10, 190, "EDGE_SUNKEN"
Text 10, 240, "BDR_RAISEDOUTER"
Text 10, 290, "BDR_SUNKENOUTER"
Text 10, 340, "BDR_RAISEDINNER"

Text 10, 390, "BDR_SUNKENINNER"
Text 160, 5, "Box3D"
Box3D 160, 30, Step 40, 40// Default
Box3D 160, 80, Step 40, 40, EDGE_ETCHED
Box3D 160, 130, Step 40, 40, EDGE_BUMP
Box3D 160, 180, Step 40, 40, EDGE_SUNKEN
Box3D 160, 230, Step 40, 40, BDR_RAISEDOUTER
Box3D 160, 280, Step 40, 40, BDR_SUNKENOUTER
Box3D 160, 330, Step 40, 40, BDR_RAISEDINNER
Box3D 160, 380, Step 40, 40, BDR_SUNKENINNER
Box3D 160, 380, Step 40, 40, BDR_OUTER, BF_MIDDLE
Text 205, 5, "BF_SOFT"
Box3D 205, 30, Step 40, 40, EDGE_RAISED, BF_SOFT
Box3D 205, 80, Step 40, 40, EDGE_ETCHED, BF_SOFT
Box3D 205, 130, Step 40, 40, EDGE_BUMP, BF_SOFT
Box3D 205, 180, Step 40, 40, EDGE_SUNKEN, BF_SOFT
Box3D 205, 230, Step 40, 40, BDR_RAISEDOUTER,
BF_SOFT

Box3D 205, 280, Step 40, 40, BDR_SUNKENOUTER,
BF_SOFT

Box3D 205, 330, Step 40, 40, BDR_RAISEDINNER,
BF_SOFT

Box3D 205, 380, Step 40, 40, BDR_SUNKENINNER,
BF_SOFT

Text 280, 5, "PBox3D"
PBox3D 280, 30, Step 40, 40, EDGE_RAISED
PBox3D 280, 80, Step 40, 40, EDGE_ETCHED
PBox3D 280, 130, Step 40, 40, EDGE_BUMP
PBox3D 280, 180, Step 40, 40, EDGE_SUNKEN
PBox3D 280, 230, Step 40, 40, BDR_RAISEDOUTER
PBox3D 280, 280, Step 40, 40, BDR_SUNKENOUTER
PBox3D 280, 330, Step 40, 40, BDR_RAISEDINNER
PBox3D 280, 380, Step 40, 40, BDR_SUNKENINNER
Do
Sleep

Until Me Is Nothing

Remarks

Box3D and PBox3D use the DrawEdge API function.

See Also

Box, PBox, RBox, PRBox, PolyLine, PolyFill

{Created by Sjouke Hamstra; Last updated: 22/06/2017 by James Gaite}

Circle, PCircle Commands
Purpose

Draws a circle.

Syntax

Circle x, y, r [,w1, w2]

PCircle x, y, r [,w1, w2]

x, y, r, w1, w2 : Single expression

Description

Circle x, y, r[,w1,w2] draws a circle with
the radius r around the centre with the
coordinates x and y. In addition, by using
the start (w1) and end (w2) angles, you
can draw just an arc rather than the full
circle - the angles w1 and w2 are given in
whole degree steps as per Figure 1, with
any arc being drawn in an anti-clockwise
direction.

The width of the line drawn depends on the setting of the
DefLine command, while the way a line or box is drawn on
the background depends on the setting of the DrawMode
and BkColor properties.

The PCircle command acts very much the same, except
that the circles drawn are filled with a pattern defined using
Deffill.

Example

OpenW 1
Circle 100, 100, 20, 90, 180 // Draws a quarter
arc...

DefLine 0, 10
Circle 100, 100, 60 // ...inside a full
circle.

DefLine 0, 1 : DefFill 5
PCircle 250, 100, 60 // Draws a filled
circle...

DefLine 2 : DefFill 48
PCircle 250, 100, 60, 45, 90 // ...with a pie
section.

Remarks

The current scaling depends of the form's ScaleMode
setting.

The Circle and PCircle commands use the old GDI library.
For a smoother circle drawn using anti-aliasing, you can use
Windows GDI+ library instead.

Known Issues

Note: When the radius r is declared as a Byte or
Short/Word the circle isn't drawn; this can be got around
by using CSng(r). Double, Int32 and Int64 variables are
unaffected.

See Also

Ellipse, PEllipse, ScaleMode

{Created by Sjouke Hamstra; Last updated: 17/12/2015 by James Gaite}

Ellipse, PEllipse Commands
Purpose

Draws an ellipse.

Syntax

Ellipse x, y, rx, ry [,w1, w2]

PEllipse x, y, rx, ry [,w1, w2]

x, y, rx, ry, w1, w2 : single exp

Description

Ellipse x, y, rx, ry[,w1,w2]
draws an ellipse with the
horizontal radius rx and the
vertical radius ry, around the
centre point with coordinates x
and y. In addition, by using the
start (w1) and end (w2) angles,
you can draw just an arc rather
than the full ellipse - the angles w1 and w2 are given in
whole degree steps as per Figure 1, with any arc being
drawn in an anti-clockwise direction.

The width of the line drawn depends on the setting of the
DefLine command, while the way a line or box is drawn on
the background depends on the setting of the DrawMode
and BkColor properties.

The PEllipse command acts very much the same, except
that the ellipses drawn are filled with a pattern defined
using Deffill.

Example

OpenW 1
Ellipse 100, 100, 40, 20, 90, 180 // Draws a
quarter arc...

DefLine 0, 10
Ellipse 100, 100, 80, 40 // ...inside a
full ellipse.

DefLine 0, 1 : DefFill 5
PEllipse 100, 200, 80, 40 // Draws a
filled ellipse...

DefLine 2 : DefFill 48
PEllipse 100, 200, 80, 40, 45, 90 // ...with a
pie section.

Remarks

The current scaling depends of the form's ScaleMode
setting.

The Ellipse and PEllipse commands use the old GDI
library. For a smoother ellipse drawn using anti-aliasing, you
can use Windows GDI+ library instead.

Known Issues

Note: When the radius r is declared as a Byte or
Short/Word the ellipse isn't drawn; this can be got around
by using CSng(r). Double, Int32 and Int64 variables are
unaffected.

See Also

Circle, PCircle, ScaleMode

{Created by Sjouke Hamstra; Last updated: 17/12/2015 by James Gaite}

Pset Command
Purpose

Sets a graphic point.

Syntax

Pset x, y [, color]

Pset [Step] (x, y) [, color]

x,y:Single exp
color:iexp

Description

Pset x, y, color sets a graphic point at the coordinates x
and y in color color. Pset can be used as an alternative to:

Color RGB(r, g, b) : Plot x, y

however, it will not change the current color.

Pset x, y or Pset(x, y) sets a point in the current
foreground color.

Pset Step (dx, dy) sets a point in the current foreground
color at a distance of dx, dy from the current position.

Pset Step (dx, dy), color sets a point in the color at a
distance of dx, dy from the current position.

Example

OpenW # 1
Do
Pset Rand(_X), Rand(_Y), Rand(_C) - 1

Until MouseK && 2
CloseW # 1

Fills the screen slowly with many multicolored points.

Remarks

In Windows the last point of a line isn't drawn. The following
fixes this:

Line x0, y0, x1, y1 : Pset(x1, y1)

See Also

Color, Plot, Draw, Line, SetDraw, Point, PTst

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Plot Command
Purpose

Draws a point on the screen.

Syntax

Plot x, y

x, y:floating-point expression

Description

Plot x, y draws a point with coordinates x, y on the screen.
The coordinate system depends on the ScaleMode setting.

Example

OpenW # 1
Local mk%, mx%, my%
DefMouse 2
Do
Mouse mx%, my%, mk%
If mk% & 1
Color Rand (_C) - 1
Plot mx%, my%

EndIf
Until mk% %& 2
CloseW # 1

An infinite loop which draws a point at the current mouse
position after each mouse button click.

See Also

Draw, Line, PolyLine, Preset, Pset, QBDraw, SetDraw

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Draw Command
Purpose

Draws a point or a line between two points on the screen.

Syntax

Draw [To] [x, y]

Draw [x1, y1] [To x2, y2][To x3, y3]...

Draw exp

Draw(i)

SetDraw

x,y,x1,y1,x2,y2,i:floating-point expression

exp: a mixture of sexp and aexp, whereby the first
expression must be a sexp. The individual expressions are
separated by a comma, semi-colon o apostrophe.

Description

Draw x, y is equivalent to the Plot command, that is, a
point with the coordinates x, y is drawn on the screen.
Draw To x, y draws a line between the point with the
coordinates x, y and the last set point. It is irrelevant
whether this point was set with Plot, Line or Draw.

Draw x1, y1 To x2,y2 is equivalent to the Line command.
However, additional coordinates can also be added. It is
therefore possible to draw polygons in this manner.

Draw exp enables definition of commands similar to certain
LOGO graphic commands (turtle graphics) or HPGL Hewlett-
Packard standard plotter language commands. It is
possible, in this way, to move an imaginary pencil across
the screen, drawing as needed. The parameters for
individual commands are floating point numbers which can
also be specified using strings. The following commands are
available:

FD
n

moves the 'pencil' n pixels 'forward'.

BK
n

moves the 'pencil' n pixels 'backwards'.

SX
x
SY y

scales the 'pencil movement' for FD
or BK by the factor given in x or y.
The scaling can be turned off with SX 0 or SY 0.

LT
w

turns the 'pencil' left by the angle w (in degrees).

RT
w

the same to the right

TT
w

moves the 'pencil' to an absolute angle (in
degrees). The assignment for w is as follows:
w = 0: up or north
w = 90: right or east
w = 180: down or south
w = 270: left or west

MA
x, y

moves the 'pencil' to absolute coordinates x and y.

DA
x, y

moves the 'pencil' to absolute coordinates x and y,
and then draws a line in current color from the last
set position to point (x, y).

MR
x, y

like MA, except that it moves relative to last
position.

DR like MR, except that it moves relative to last

x, y position.
CO
n

defines color n as drawing color.

PU lifts the 'pencil' up.
PD lowers the 'pencil' down.

Draw(i) is a function which, depending on i, returns the
following values:

i =
0

x coordinate (floating point number)

i =
1

y coordinate (floating point number)

i =
2

angle in degrees (floating point number)

i =
3

scaling on the x axis (floating point number)

i =
4

scaling on the y axis (floating point number)

i =
5

pen status (-1 for PD and 0 for PU)

SetDraw sets various values in the Draw exp command.
For example, SetDraw x, y, w is equivalent to Draw "MA",
x, y"TT",w command.

Example

Dim a%, i%
OpenW # 1
Draw 100, 100
// sets a point at 100,100
//
Draw To 10, 10
// draws a line from 100,00 to 10,10

//
Draw 10, 10 To 20, 20 To 30, 30
// draws a line line from 10,10 to 20,20 and from
// 20,20 to 30,30

//
Draw "ma 160,200 tt0"
// starts at 160,200 with angle 0
//
Print AT(40, 1); "Press any key"
KeyGet a%
Cls
For i% = 3 To 10
corner(i%, 90) //raws a polygon with i corners

Next i%
Print AT(1, 1); "Press any key"
KeyGet a%
Cls
For i% = 0 To 359
SetDraw 320, 200, i%
Draw "fd 45 rt 90 fd 45 rt 90 fd 45 rt 90 fd 45"
Draw "bk 90 rt 90 bk 90 rt 90 bk 90 rt 90 bk 90"
Draw "fd 45 rt 90 fd 45 rt 90 fd 45 rt 90 fd 45"
Draw "bk 90 rt 90 bk 90 rt 90 bk 90 rt 90 bk 90"

Next
Print AT(1, 1); "Close the Window"
Do : Sleep : Until Me Is Nothing

Procedure corner(n%, r%)
Local i%
For i% = 1 To n%
Draw "fd", r%, "rt", 360 / n%

Next i%
Return

Draws a small and a large rectangle which both rotate
around their own axis.

Remarks

ScaleMode determines the coordinate units.

See Also

Plot, Line, ScaleMode, QBDraw, Preset, Pset, SetDraw

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

SetDraw Command
Purpose

Sets the start position of the command Draw.

Syntax

SetDraw x, y, angle

x, y:Single exp
angle:iexp

Description

SetDraw x, y sets the initial position (x, y) and angle
(degrees) to start drawing using Draw.

Example

Example 1:

OpenW 1
Local x%
SetDraw 100, 100, 0
'Draw "MA100,100,TT90"
// a little square
Draw"fd10rt90fd10rt90fd10rt90fd10rt90"

Example 2:

OpenW 1
Local x%, i%
SetDraw 100, 100, 0
For i% = 0 To 180

SetDraw 320, 200, i%
Draw "fd45rt90fd45rt90fd45rt90fd45"
Draw "bk90rt90bk90rt90bk90rt90bk90"
Draw "fd45rt90fd45rt90fd45rt90fd45"
Draw "bk90rt90bk90rt90bk90rt90bk90"
If i% = 180 Then i% = 0
If i% = 0 Then Cls
If i% = 0 Then x%++
If x% > 80 Then Exit For

Next

Remarks

SetDraw 100, 100, 90 is a shortcut for Draw
"MA100,100,TT90".

See Also

Draw, Line, Plot, PolyLine, Preset, Pset, QBDraw

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Point, RGBPoint and PTst
Functions
Purpose

Returns the color of a point.

Syntax

rgb% = Point(x,y)

rgb% = PTst(x,y)

rgb% = RGBPoint(x,y)

x, y :floating point expression

Description

PTst(x, y), RGBPoint(x, y) and Point(x, y) are identical
and all return the color of a point with the coordinates x, y,
except the computer works from a palette (unlikely these
days) where Point returns the palette number rather the
colour itself.

Example

OpenW # 1
Local col%
Do
If MouseK = 1
Color Rand(_C) - 1
Plot 100, 100

Print AT(1, 1); Hex(Point(100, 100), 6);
Space(2)//prints the color code of a set point

col% = RGBPoint(100, 100) // or PTst(100,100)
if you prefer

Color 0
Print AT(1, 2); "Red: "; Hex(GetRValue(col%),
2); " "

Print AT(1, 3); "Green: "; Hex(GetGValue(col%),
2); " "

Print AT(1, 4); "Blue: "; Hex(GetBValue(col%),
2); " "

While MouseK = 1 : Wend
EndIf
DoEvents

Until MouseK = 2 Or Win_1 Is Nothing
CloseW # 1

Remarks

See Also

-

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

QBDraw Command
Purpose

Draws a line or point with current graphics settings.

Syntax

QBDraw sexp

Description

QBDraw is a Quick Basic compatible Draw command.

Command strings are:

Un - Up, draws a line up around n units

Ln - Left, draws a line around n units to the left

Rn - Right, draws a line around n units to the rigth

Dn - Down, draws a line down around n units

En - draws a line around n units to the right above

Fn - draws a line around n units to the right below

Gn - draws a line around n units to the left below

Hn - draws a line around n units to the left above

Mi,,j - draw a line to i, j

M+n, m - with sign a relative line is drawn,

M-n, m - e.g.: M-9,0 = U9

B Prefix - next command (ULRDEFGHM) doesn’t draw

N Prefix - next command (ULRDEFGHM) draws, but doesn‘t
change the saved position

An -Turn, A0 = normally, A1 = turn to the left, A2 = turn on
the head, A3 = turn to the right.

TAn - Turn in angle, units are given in degree, (A2 =
TA180). With TA you are being able to turn the graphics
created with the QBDraw command in degree steps.

Sn - Scaling. The given step width in (n, m) are multiplied
with the scaling factor and after this diveded by four.
S4 (or S) are represent the normal or default condition, S8
correspond to a size doubling, S2 one bisection.

QBDraw uses integer coordinates.

Example

Draw 100, 100 //Position set
// draw a star with eight corners
// the 6 with e f g h is approximate Sin(Deg(45))
* 8

QBDraw "nu8nl8nd8nr8ne6nf6ng6nh6"
Dim i As Integer, n As Integer, x As Double
Draw "ma100,100tt0"
n = 20
x = 360 / n
For i = 1 To n
Draw "fd9rt"; x

Next i

See Also

Draw, SetDraw, Plot

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Curve Command
Purpose

draws a Bezier curve.

Syntax

Curve x0,y0,x1,y1,x2,y2,x3,y3

x0,y0,x1,y1,x2,y2,x3,y3: Single exp

Description

Curve x0,y0,x1,y1,x2,y2,x3,y3 draws a Bezier curve. The
Bezier curve starts at x0,y0 and ends at x3,y3. At x0,y0 the
curve is a tangent to the line from x0,y0 to x1,y1 and at
x3,y3 a tangent to the line from x3,x3 to x2,y2.

If points x0,y0,...,x3,y3 are viewed as corners of a
rectangle, the curve lies fully within this rectangle. (The
curve can also be seen as a line between x0,y0 and x3,y3
which is pushed away from the points x1,y1 and x2,y2).

Example

OpenW # 1
Curve 10, 10, 10, 100, 100, 100, 100, 100

See Also

-

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

PolyLine, PolyFill Commands
Purpose

Draws connected lines with an arbitrary number of corners.

Syntax

PolyFill n, x(), y() [OffSet x0,y0]

PolyLine n, x(), y() [OffSet x0,y0]

niexp
x0, y0:floating-point expression
x(), y():avar floating-point array

Description

PolyLine n, x(),y() [OffSet x0,y0] draws connected lines
with n corners. The x,y coordinates of the corner points are
in arrays x() and y(). The first corner point is defined in
x(0),y(0) and the last in x(n-1),y(n-1). The first and last
corner points are automatically connected. Optionally, a
horizontal and/or vertical offset (x0 or y0) can be added to
these coordinates.

Polyfill works in the same way and fills the drawn polygon
with the colour and/or pattern defined by DefFill.

Use caution when using Option Base 1; if an array has
been defined to start at element one, then the first corner
will be stored in x(1), y(1) rather than x(0), y(0) and the
last corner in x(n), y(n).

Example

Option Base 0
OpenW # 1
Dim x!(3), y!(3), a%, i%
// Draws a triangle
Data 120,120,170,170,70,170,120,120
For i% = 0 To 3
Read x(i%), y(i%)

Next i%
PolyLine 4, x(), y()
// Draw two filled stars, offset horizontally and
vertically

Option Base 1
Data -59,-81,0,100,59,-81,-95,31,95,31
Dim x1!(5), y1!(5)
For i% = 1 To 5
Read x1(i%), y1(i%)

Next i%
DefFill 5
QBColor 0
DefFill 10
PolyFill 5, x1(), y1() Offset ScaleWidth / 4,
ScaleHeight * 2 / 3

DefFill 2
PolyFill 5, x1(), y1() Offset 3 * ScaleWidth / 4,
ScaleHeight * 2 / 3

Do : Sleep : Until Me Is Nothing

See Also

Box, RBox, BkColor, DefFill, DefLine, DrawMode, RBox,
PRBox, Box3D, PBox3D

{Created by Sjouke Hamstra; Last updated: 10/01/2016 by James Gaite}

OcxScale Property (Form
Object)
Purpose

Sets or returns a value that determines the scaling units for
Ocx controls.

Syntax

[Form.]OcxScale [= True | False]

Description

When OcxScale = True the coordinates of the Ocx controls
are expected to be in the current ScaleMode. When
OcxScale = 0 (False) the Ocx coordinates are expected in
pixels (default).

Example

OpenW 1
Ocx Command cmd0 = "Normal", 10, 10, 80, 24
ScaleMode = basTwips
OcxScale = True
Ocx Command cmd1 = "Very Small", 10, 10, 180, 124
Do
Sleep

Until Me Is Nothing

See Also

Form

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

ScaleX, ScaleY Functions
Purpose

Converts the value for the width or height of a Form or
Printer from one of the ScaleMode property's unit of
measure to another. Named arguments are not supported.

Syntax

x! = [object.]ScaleX (width [, from] [, to])

y! = [object.]ScaleY (height, [, from] [, to])

x!, y! : Single exp
width, height : Single exp
from, to : iexp, ScaleMode constant

Description

The ScaleX and ScaleY methods take a value (width or
height), with its unit of measure specified by from, and
convert it to the corresponding value for the unit of
measure specified by to.

The height and width parameters specify the number of
units to be converted. The optional parameter from is a
constant or value specifying the coordinate system from
which width or height of object is to be converted. The
optional parameter to is a constant or value specifying the
coordinate system to which width or height of object is to
be converted.

The possible values of from and to are the same as for the
ScaleMode property: basUser, basTwips, basPoints,
basPixels, basCharacters, basInches, basMillimeters,
basCentimeters, and basHiMetric.

When from or to is omitted then the defaults are: from =
basHiMetric and to = basUser. If one of the parameters
basUser, then the value is converted using the current
active Scale or ScaleMode setting of the Form or Printer.

Example

Local a$, i As Int, j As Int
AutoRedraw = 1
QBColor 0, 15
Cls
Restore
FontBold = True : Print "FROM \ TO"; : FontBold =
False

For i = 1 To 8 : Read a$: Print _Tab(i * 13); :
FontBold = True : Print a$; : FontBold = False :
Next i : Print

Restore
For i = 1 To 8 : Read a$
FontBold = True : Print a$; : FontBold = False
For j = 1 To 8
QBColor i = j ? 13 : 0
If i = 3 Or j = 3 : QBColor , 7
a$ = Space(25) : Lset a$ = ScaleX(1, i, j)

Else : QBColor , 15 : a$ = ScaleX(1, i, j)
EndIf
Print _Tab(j * 13); a$;
QBColor , 15

Next
Print

Next

Data
"Twips","Points","Pixels","Characters","Inches","
Millimeters","Centimeters","HiMetric"

Do
Sleep

Until Me Is Nothing

See Also

Form, Printer, ScaleMode, ScaleMode$, Scale, ScaleWidth,
ScaleHeight, OcxScale

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

RubberBox Command
Purpose

Cuts out a rectangular segment of the screen.

Syntax

RubberBox x, y, minw, minh, varw, varh

x, y, minw, minhSingle exp
varw, varh:Single variables

Description

RubberBox can only be used by pressing the left mouse
button.

Given are the coordinates of the upper left corner as well as
the minimal width and height. By moving the mouse the
size of the rectangle can be changed (rubber band effect) as
long as the left mouse button is held down. When the
mouse button is released the width and height are returned.

By specifying the negative width and height the rectangle
can be drawn in the upper left direction.

Example

OpenW 1
Local Single a, b, x, y
Local k%
DefFill 4
Scale 0, 0, .5, .5

Do
DoEvents
Repeat
Mouse x, y, k%

Until k%
Exit Do If k% = 2
RubberBox x, y, 0, 0, a, b
Color Rand(_C), Rand(_C)
PBox x, y, x + a, y + b

Loop
CloseW # 1

This program enables drawing of rectangles in different
colors with the mouse.

See Also

DragBox

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

DragBox Command
Purpose

Moves a sizing rectangle around the screen.

Syntax

DragBox x1,y1,w1,h1 [,x2,y2,w2,h2], x3,y3

x1,y1,w1,h1,x2,y2,w2,h2,x3,y3: single exp

Description

DragBox creates a rectangular cut-out with the width w1
and height h1, whose upper left corner is specified with x1
and y1. This rectangle can be moved within another
rectangle by holding down the left mouse button and
moving the mouse. The upper left corner of the second
rectangle is given in x2 and y2, the width in w2 and the
height in h2. When the movement is finished, x3 and y3
contain the coordinates of the upper left corner of moved
rectangle.

Example

OpenW Full 1 : Win_1.AutoRedraw = 1
Global Single x1, y1, x2, y2, w1, h1, w2, h2, x3,
y3

x1 = 20
y1 = 20
w1 = 100
h1 = 100
x2 = 10

y2 = 10
w2 = _X // horizontal width in pixels
h2 = _Y // vertical height in pixels
Do
If MouseK And 1
DragBox 20, 20, 100, 100, x3, y3
// same as
// DragBox 20, 20, 100, 100, x2, y2, w2, h2,
x3, y3

x1 = x3
y1 = y3
Box x1, y1, Add(x1, w1), Add(y1, h1)
Print "ok"

EndIf
Until MouseK And 2
CloseW 1

See Also

RubberBox

{Created by Sjouke Hamstra; Last updated: 28/11/2015 by James Gaite}

rc_InterSect Function
Purpose

Determines the overlapping area between two rectangles.

Syntax

fl! = rc_InterSect(x1,y1,w1,h1,x2,y2,w2,h2)

fl!:Boolean variable
x1,y1,w1,h1:integer expression;
x2,y2,w2,h2:variable names; return values

Description

The rc_InterSect() function tests if two rectangles overlap.
The upper left corner of the first rectangle is specified in x1
and y1, the width in w1 and the height in h1.

The upper left corner of the second rectangle is specified in
x2 and y2, the width in w2 and the height in h2. If the two
rectangles overlap the function returns True (-1), otherwise
it returns a False (0).

The upper left corner of the overlapping area between the
two rectangles is returned in x2 and y2, the width in w2 and
the height in h2. Because of this the last four parameters in
the rc_InterSect function must always be integer variables
(ByRef parameter).

If the two rectangles do not overlap, the x2, y2, w2, and h2
variables contain the coordinates of a rectangle between the

two given rectangles. The width and height are then either
negative or 0.

The first four parameters can also be specified with
expressions. The last four parameters must be given as
variables. They are changed by rc_InterSect.

Example

Auto a%, h%, w%, x%, y%
OpenW # 1
Box 10, 10, 400, 200
x% = 50 : y% = 50 : w% = 400 : h% = 400
Box x%, y%, x% + w%, y% + h%
If rc_InterSect(10, 10, 400, 200, x%, _
y%, w%, h%)
DefFill 4
PBox x%, y%, x% + w% - 10, y% + h% - 10

EndIf

Draws two rectangles and fills the overlappingarea with a
pattern.

See Also

-

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Clip Command
Purpose

Sets the bounds for graphic output.

Syntax

Clip x, y, w, h

Clip x1,y1 To x2,y2

Clip Off

x, y, w, h, x1,y1, x2,y2: floating point expression

Description

Clip x, y, w, h limits the graphic output to a defined
rectangle.

Clip x1,y1 To x2,y2 defines the upper left corner of the
clipping rectangle with x1 and y1, and the lower right
corner with x2 and y2.

Clip Off turns the clipping off.

Clipping applies to the AutoRedraw bitmap as well.
Clipping affects output in the Paint event, so that in case of
an AutoRedraw the memory device context bitmap is copied
for the clipping only. Make sure the clipping is off in this
case.

Example

OpenW # 1 : Win_1.AutoRedraw = 1
PCircle 80, 80, 70 // Draws a full black circle
Clip 10, 10, 70, 70
// limits the graphic output to a window with the
following coordinates:

// 10,10 upper left
// 80,10 upper right
// 10,80 lower left
// 80,80 lower right
Color 255
PCircle 80, 80, 70 // Draws a red top left
quadrant

Clip Off // turns the clipping off.

Remarks

The clipping does not apply to the Get and Put commands.

In contrast to GFA-BASIC for Windows (16 Bit) version the
OffSet of the Clip function is gone. In the GFA-BASIC 32
the offset in set using ScaleLeft and ScaleTop.

See Also

Scale, ScaleLeft, ScaleTop

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Get Command
Purpose

saves a portion of the screen in a string variable or a GDI
bitmap.

Syntax

Get x1,y1,x2,y2, screensegment$

Get x1,y1,x2,y2, hbitmap

screensegment$:svar
hbitmap:Handle, ivar

Description

Get x1,y1,x2,y2, screensegment$ copies a portion of the
screen with coordinates x1,y1 (upper left corner) and x2,y2
(lower right corner) to the string variable screensegment$.

Get x1,y1,x2,y2, hbitmap creates a device dependent
bitmap with handle hbitmap.

Example

FullW 1
AutoRedraw = True
Local a$, a%, s%
BackColor = RGB(0, 255, 255)
ForeColor = RGB(255, 0, 0)
DefFill 5
PBox 10, 10, 100, 100

Get 10, 10, 100, 100, a$
FontTransparent = True
FontSize = 30
Text 20, 40, "Get"
Text 40, _Y - 300, "Please press key 'w'"
KeyGet s%
For a% = 1 To 700 Step 100
Put 100 + a%, 100, a$
Text 120 + a%, 140, "Put"
Text 40, _Y - 300, "Please press key 'w'"
KeyGet s%

Next
Cls
FontSize = 50 : FontBold = True
Text 20, _Y - 200, "End with Alt + F4"
Do : Sleep : Until Me Is Nothing
CloseW # 1

Draws a filled rectangle and copies a portion of this
rectangle to a$. Using Put the rectangle is then returned to
the window.

Remarks

The screen segments obtained with Get can be copied back
to the screen by using Put.

When Get ,,,, hbitmap is used the bitmap must be released
with FreeBmp; however, if that handle has been used to
create a picture object by using CreatePicture, then the
handle should not be freed until after you have finished with
the picture object; otherwise, the handle which forms the
source of the picture object will be destroyed and, thus, the
picture will no longer be displayed.

GFA-BASIC 32 also supports the conversion of normal API
bitmaps to an OLE Picture object with the CreatePicture

function.

See Also

Put, FreeBmp, CreatePicture

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Put Command
Purpose

Copies a bitmap to the current output device.

Syntax

Put x, y, screensegment$[,mode]

Put x, y, hbitmap%[,mode]

x, y:Single expression
screensegment$:svar
hbitmap:Handle
mode:iexp

Description

Put x, y copies a portion of the screen saved with, for
instance, Get back to screen memory, so that the upper left
corner of the segment is aligned with the x,y coordinates on
the screen.

By specifying the optional parameter mode it can be
determined how the raster operation is to be performed.
Raster operation codes define how the system combines
colors in output operations that involve a brush, a source
bitmap, and a destination bitmap. See BitBlt for a list of
common raster operations.

Example

Auto a$, mk%, mx%, my%

OpenW # 1
DefFill 2
PBox 10, 10, 20, 20
Get 10, 10, 20, 20, a$
Repeat
Mouse mx%, my%, mk%
If mk% = 1
Put mx%, my%, a$

EndIf
Until mk% = 2
CloseW # 1

Draws a filled rectangle and saves it in the variables a$.
When the left mouse button is pressed, the rectangle is
moved to the current mouse position on the screen.

See Also

Get, Bitblt

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

BitBlt Command
Purpose

Copies a source raster (Bitmap) to a destination raster.

Syntax

BitBlt srcdc%,srcx%,srcy%,srcw%,srch%,
dstdc%,dstx%,dsty%,mode%

Description

BitBlt performs a fast copy of a source raster to a
destination raster. To do this it requires the Device Context
(srcdc%) of the source raster , the coordinates of the upper
left corner (srcx%,srcy%), the width (srcw%), the height
(srch%) and the Device Context (dstdc%) of the destination
raster. The source raster is then moved to the location
dstx%, dsty% whereby the source and destination raster as
well as the current pattern specified in mode% can logically
be combined. mode% must assume one of the following
values:

BLACKNESS $00000042 All bits are set to black
DSTINVERT $00550009 The destination raster bits

are inverted.
MERGECOPY $00C000CA The fill pattern is logically

"And-ed" with the source
raster.

MERGEPAINT $00BB0226 The inverted source raster
is logically "Or-ed" with
the destination raster.

NOTSRCCOPY $00330008 The inverted source raster
is copied to the
destination raster.

NOTSRCERASE $001100A6 The source and
destination raster are first
"Or-ed". The resulting bit
pattern is then inverted.

PATCOPY $00F00021 The fill pattern is copied to
the destination raster.

PATINVERT $005A0049 The fill pattern is "Xor-ed"
with the destination raster.

PATPAINT $00FB0A09 The inverted source raster
is first "Or-ed" with the fill
pattern. The resulting bit
pattern is then "Or-ed"
with the destination raster.

SCRAND $008800C6 The source and
destination raster are
"And-ed".

SRCCOPY $00CC0020 The source raster is copied
to the destination raster.

SRCERASE $00440328 The source raster is "And-
ed" with the inverted
destination raster.

SRCINVERT $00660046 The source and
destination raster are
"Xor-ed".

SRCPAINT $00EE0086 The source and
destination raster are "Or-
ed".

WHITENESS $00FF0062 All "white" bits are set.

Example

OpenW 3, 600, 0, 300, 300
OpenW 2, 300, 0, 300, 300
OpenW 1, 0, 0, 300, 300
AutoRedraw = True
Local pic As Picture, x%, b%, bmp%
b% = 300
For x% = 0 To 500
Color Rand(_C)
Line Rand(b%), Rand(b%), Rand(b%), Rand(b%)

Next
BitBlt Win_1.hDC, 0, 0, 300, 300, Win_2.hDC, 0, 0,
SRCCOPY

// An alternative method...
Get 0, 0, 300, 300, bmp%
Set pic = CreatePicture(bmp%, 1)
Win_3.Picture = pic
Do : Sleep : Until MouseK = 2 /* Right-click to
close windows

CloseW 1
CloseW 2
CloseW 3

Remarks

BitBlt corresponds to Windows function BitBlt().

Warning: BitBlt gets the Source-DC first and then the Dest-
DC. This order is different from the order in operating
system calls BitBlt(), StretchBlt(), and PatBlt().

If you got problems with BitBlt on a PC under Windows 98,
you can solve it with an empty loop to insert a small delay.
This problem comes from the driver of your graphic adapter.

See Also

FreeBmp, Patblt, Stretch

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

PatBlt Command
Purpose

Combines the given rectangle with the current fill pattern.

Syntax

PatBlt x, y, w, h, mode%

x, y, w, h:floating-point exp
mode%:integer expression

Description

PatBlt x, y, w, h combines the given rectangle with the
current fill pattern. mode specifies the type of operation and
must take one of the following values:

BLACKNESS ($00000042) all "black" bits are set.
DSTINVERT ($00550009) the destination raster bits

are inverted.
PATCOPY ($00F00021) the fill pattern is copied to

the destination raster.
PATINVERT ($005A0049) the fill pattern is "Xor-ed"

with the destination raster.
WHITENESS ($00FF0062) all "white" bits are set.

Example

OpenW # 1
Local a%
DefFill 30

// a canvas of 50x50
Win_1.ScaleWidth = 50
Win_1.ScaleHeight = 50
// PatBlt uses Me (or Output)
PatBlt 1, 2, 16, 16, PATCOPY

PatBlt is used here to copy the current fill pattern (defined
with DefFill) to the screen. The upper left corner is located
at (1,2) and the right corner at 17, 18. The PATCOPY mode
copies the pattern without any logical operations (And, Or,
Xor ...).

Remarks

PatBlt corresponds to Windows function PatBlt().

See Also

BitBlt, Stretch, DefFill

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Stretch Command
Purpose

Copies a bitmap into a destination rectangle, stretching or
compressing the bitmap to fit the dimensions of the
destination rectangle, if necessary.

Syntax

Stretch x, y, a$, w, h [, Mod]

Stretch x, y, hBmp, w, h [, Mod]

x, y, w, h, Mod:integer expression
a$:svar; bitmap
hBmp:integer expression; bitmap handle

Description

Stretch copies the bitmap specified in a$ to the coordinates
specified in x and y. The bitmap must first be read into the
variable a$ by using Get.

hBmp can be used instead of a$. In this case a handle,
obtained from Get or LoadImage, or a handle from a
Picture object, is passed.

w and h specify the width and height of the destination
area. If the dimensions of the source area are greater than
the destination area the bitmap is correspondingly shrunk.
In the reverse case, i.e. the dimensions of the source area
are smaller than that of the destination area the bitmap is
correspondingly stretched.

During the copy the source raster, the destination raster
and the current fill pattern can be combined with each
other. Mod must then take of the following values:

BLACKNESS($00000042)

DSTINVERT($00550009)

MERGECOPY($00C000CA)

MERGEPAINT($00BB0226)

NOTSRCCOPY($00330008)

NOTSRCERASE($001100A6)

PATCOPY($00F00021)

PATINVERT($005A0049)

PATPAINT($00FB0A09)

SCRAND($008800C6)

SRCCOPY($00CC0020)

SRCERASE($00440328)

SRCINVERT($00660046)

SRCPAINT($00EE0086)

WHITENESS($00FF0062)

For Description of the values see command BitBlt

Example

Local a$, a%, n%
Local x%(5), y%(5)
For n% = 0 To 4
Read x%(n%), y%(n%)

Next n%
OpenW 1
PolyFill 5, x%(), y%() Offset _X / 2, _Y / 2
Message "Click OK to continue"
Get _X / 2 - 96, _Y / 2 - 82, _X / 2 + 96, _Y / 2
+ 100, a$

Stretch 0, 0, a$, 96, 91
Data -59,-81,0,100,59,-81,-95,31,95,31

Draws a star, gets it in a string (a$) and puts it back using
Stretch at position (0,0), using half of the width and half of
the size. The picture is really sized to size 96x91 instead of
the original 192x182.

AutoRedraw = 1
Ocx CommDlg cd
With cd
.Filter = "*.bmp;*.gif;*.jpg"
.FileName = "*.bmp;*.gif;*.jpg"
.IniDir = WinDir
.ShowOpen

EndWith
Dim pic As Picture
If Exist(cd.FileName)
Set pic = LoadPicture(cd.FileName)
Stretch 0, 0, pic.Handle, _X, _Y
Set pic = Nothing

EndIf

Remarks

Stretch corresponds to Windows function StretchBlt().

See Also

CreatePicture, LoadPicture, PaintPicture, FreeBmp, BitBlt,
PatBlt

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

FreeBmp Command
Purpose

Deletes from memory a bitmap created with Get or the API
function CreateDIBSection.

Syntax

FreeBmp hBmp

hBmp:Handle, integer expression

Description

With Get or the Windows API function CreateDIBSection
you can create a bitmap and retrieve its handle. This is a
good way to place many pictures in memory. However, once
a bitmap is no longer needed, you must free its handle with
FreeBmp. Note: Each use of the Get command which
returns a handle requires a matching FreeBmp statement
to free the memory, otherwise you will get a Memory leak.

However, if the handle produced with Get is then used,
through CreatePicture, to create a picture object,
FreeBmp should not be used until after you have finished
with the picture object; otherwise, it will delete the handle
which forms the source of the picture and, thus, the picture
will not be shown.

Example

OpenW 1
Global pict%, i%

Ocx Command cmd1 = "Exit", 10, 10, 100, 40
Win_1.AutoClose = False
For i% = 1 To 30
Circle 200, 200, 10 + i% * 2
Color i% * 1000

Next
Get 120, 120, 280, 280, pict%
Line 0, 119, _X, 119
Line 0, 281, _X, 281
Put 300, 120, pict%
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click
PostMessage Win_1.hWnd, WM_CLOSE, 0, 0

EndSub

Sub Win_1_Close(Cancel?)
If Message("Really Quit??", , MB_YESNO) = IDYES
Cancel? = False
FreeBmp(pict%)

EndIf
EndSub

See Also

Get, Put

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Font, StdFont Object
Purpose

The Font object contains information needed to format text
for display in the interface of an application or for printed
output.

Syntax

Dim name As Font

Dim name As [New] StdFont

Description

You frequently identify a Font object using the Font
property of an object that displays text (such as a Form
object or the Printer object).

You cannot create a Font object using code like Dim X As
New Font. If you want to create a Font object, you must
use the StdFont object like this:

Dim X As New StdFont

Properties

Bold Bool get/put Returns or sets the font
style to either bold or
non bold.

CharSet Short get/put Sets or returns the
character set used in
the font.

0 - Standard Windows
characters
2 - The symbol
character set.
128 - Double-byte
character set (DBCS)
unique to the Japanese
version of Windows
255 - Extended
characters normally
displayed by DOS
applications.

Italic Bool get/put Returns or sets the font
style to either italic or
non-italic.

Name String get/put Returns or sets the
name of a font.

Size Currency get/put Returns or sets the font
size used in points.

Strikethro
ugh

Bool get/put Returns or sets the font
style to either
strikethrough or non-
strikethrough

Underline Bool get/put Returns or sets the font
style to either
underlined or non-
underlined

Weight Short get/put Returns or sets the
weight of the
characters. The weight
refers to the thickness
of the characters, or
the “boldness factor”.
The higher the value,

the bolder the
character.

_hFont Handle Get Returns the font
handle.

Example

If you put a TextBox control named Text1 on a form, you
can dynamically change its Font object to another using the
Set statement, as in the following example:

Ocx TextBox Text1 = "Hello", 10, 10, 150, 35 :
Text1.BorderStyle = 1

Dim X As New StdFont
X.Bold = True
X.Name = "Arial"
X.Size = 16
X.Strikethrough = True
Set Text1.Font = X
Do : Sleep : Until Me Is Nothing

Remarks

As an alternative, the following can be used:

Text1.FontBold = True
Text1.FontStrikeThrough = True
Text1.FontSize = 16

More information about fonts can be gleaned through using
the GetTextMetrics() API as shown below:

Type TEXTMETRIC
tmHeight As Long
tmAscent As Long
tmDescent As Long
tmInternalLeading As Long

tmExternalLeading As Long
tmAveCharWidth As Long
tmMaxCharWidth As Long
tmWeight As Long
tmOverhang As Long
tmDigitizedAspectX As Long
tmDigitizedAspectY As Long
tmFirstChar As Byte
tmLastChar As Byte
tmDefaultChar As Byte
tmBreakChar As Byte
tmItalic As Byte
tmUnderlined As Byte
tmStruckOut As Byte
tmPitchAndFamily As Byte
tmCharSet As Byte

End Type
Local tm As TEXTMETRIC
OpenW 1 : Win_1.FontName = "Courier New"
~GetTextMetrics(Win_1.hDC, tm)
Print "TextHeight: "; tm.tmHeight
Print "Font Ascent (above baseline):"; tm.tmAscent
Print "Font Descent (below baseline):";
tm.tmDescent

See Also

Font Property, Setfont, Freefont, RFont, _Font$

{Created by Sjouke Hamstra; Last updated: 14/01/2015 by James Gaite}

Font To Command
Purpose

Generates font parameters for SetFont

Syntax

Font keyword value [To hFont]

keyword:font attribute name
value:attribute setting
hFont:Handle

Description

By using the Font command a font other than the standard
Windows font can be generated for SetFont (e.g.
SYSTEM_FIXED_FONT). The parameters are quite numerous
and the syntax is fairly flexible. Font is followed, in addition
to many programming lines, by a number of keywords
which are themselves followed by a parameter:

ITALIC n n = 0 normal font
n <> 0 italic font

UNDERLINE n n = 0 normal font
n <> 0 underlined

STRIKEOUT n n = 0 normal font
n <> 0 strikeout

CHARSET n n = 0 ANSI_CHARSET - Windows char
set
n = 2 SYMBOL_CHARSET - symbol
character set (Greek, mathematical or

dingbats)
n = 128 SHIFTJIS_CHARSET - Japanese
n = 255 OEM_CHARSET - IBM character
set

OUTPRECISION
n

At this time not implemented in
Windows
n = 0 OUT_DEFAULT_PRECIS
n = 1 OUT_STRING_PRECIS
n = 2 OUT_CHARACTER_PRECIS
n = 3 OUT_STROKE_PRECIS

CLIPPRECISION
n

regulates the clipping of characters
which are partially outside of the
Clipping area.
n = 0 CLIP_DEFAULT_PRECIS
n = 1 OUT_CHARACTER_PRECIS
n = 2 OUT_STROKE_PRECIS

QUALITY n determines whether the Windows
bitmaps are scaledin order to generate
other font sizes.
n = 0 DEFAULT_QUALITY
n = 1 DRAFT_QUALITY
n = 2 PROOF_QUALITY (letter quality,

PITCH n specifies proportional (i.e., the "i"
occupies asmaller character width than
the "m".)
n = 0 DEFAULT_PITCH
n = 1 FIXED_PITCH
n = 2 VARIABLE_PITCH

FAMILY n font family:
n = 0 FF_DONTCARE doesn't matter, like
SYSTEM_FIXED_FONT
n = 16 FF_ROMAN a font with serifs,
small hooks
n = 32 FF_SWISS a simple font without
decorations

n = 48 FF_MORN COURIER, PICA etc.,
similar to a typewriter font, fixed pitch,
or OEM_FIXED_FONT
n = 64 FF_SCRIPT longhand font
n = 80 FF_DECORATIVE symbols,
dingbats, Greek

WEIGHT n light, normal or bold
n = 0 FW_DONTCARE
n = 100 FW_THIN
n = 200 FW_EXTRALIGHT
n = 300 FW_LIGHT
n = 400 FW_NORMAL normal
n = 500 FW_MEDIUM
n = 600 FW_SEMIBOLD
n = 700 FW_BOLDBOLD
n = 800 FW_EXTRABOLD
n = 900 FW_HEAVY

WIDTH n character width
HEIGHT n character height
ORIENTATION
n

rotation angle of individual characters in
10ths of a degree, so for n = 1800 they
are upside down

ESCAPEMENT n character rotation again in 10ths of a
degree, Orientation and Escapement are
only available for vector fonts. "Morn",
"Roman", and "Script".

Font To hFontTo then follows as the last variable. It
determines the creation of a logical font according the
setting specified. This variable returns as a result a font
handle. This font can then be used anywhere, where a font
handle is required, for instance with SetFont. Afterwards,
the font must be released with FreeFont or DelFont.

The parameters can span several lines (all starting with
Font...) and may optionally be separated with commas.

Example

OpenW 1
Local fnt As Handle
Font "roman"
Font Italic 0, Weight 1000 , Width 20, Height 40
Font Orientation 0, StrikeOut 0, Underline 0,
Escapement 450

Font Family FF_ROMAN, CharSet OEM_CHARSET , Pitch
FIXED_PITCH

Font To fnt
SetFont fnt
Text 100, 100, "Hello"
SetFont SYSTEM_FONT
FreeFont fnt

Remarks

_Font$ returns a string with the parameters set with the
Font command.

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

SetFont Method/Command
Purpose

Changes the font in the current Form or Printer.

Syntax

SetFont hFont (Command)

[Object].SetFont Name, Size, Bold, Italic, Underline,
StrikeThru, CharSet (Method)

hFont:Handle
Object:Ocx Object
CharSet:Integer
Size:Single
Name:String
Bold, Italic, Underline, StrikeThru: Bool

Description

SetFont hFont selects a font using a font handle or a
system constant. A font handle can be obtained using Font
To, Dlg Font, _font$, or CreateFontIndirect(). SetFont
hFont is a 16-bit compatible command.

ConstantDESCRIPTION

SYSTEM_FONT(13) - standard proportional font

SYSTEM_FIXED_FONT(16) - a similar non-proportional font

ANSI_VAR_FONT(12) - a Helvetica or Times font,
SYSTEM_FONT, but a little smaller.

ANSI_FIXED_FONT(11) - a typewriter font (like Courier), a
little smaller than SYSTEM_FIXED_FONT

DEVICE_DEFAULT_FONT(14) - can be any font, mostly
SYSTEM_FONT, selected by the driver.

OEM_FIXED_FONT(10) - DOS window character set.
However, instead of ANSI (WINDOWS) character set the
OEM (read IBM) character set is used.

The second variant [Object.]SetFont is an Ocx method and
supports a compact way of changing the current Font
object. In contrast with the first variant, SetFont hFont, the
SetFont method manipulates the current Font object of an
Ocx object, or the current active Form or Printer.

Example

' AutoRedraw also opens the window Me
AutoRedraw = 1
Dim fnt As Handle, i As Int, s$
' Select a screen font
Dlg Font Me, 0, 1
' Create a handle
Font To fnt
' Read the name of a font
RFont Name s$
' Activate the font
SetFont fnt
' Test it
Print "test", s$
' Activate the SYSTEM_FONT
SetFont 13
' another test
Print "test"
' Give the used memory free
DelFont fnt

Remarks

The font handling for Form and Printer objects is very
different from each other. API font handles (Font To, Dlg
Font) should not be mixed with Font objects.

In contrast with GFA-BASIC 16 SetFont 0 is not allowed
(crash).

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

GetFont
Purpose

Reads the parameters for the given font.

Syntax

GetFont hFont

hFont: Handle

Description

This function reads the parameters for the font with the
given font handle similar to the Font...To under the Font
Command.

Example

Debug.Show
Debug
// prints only the font number
Trace SYSTEM_FONT
Debug
// prints all information, if different
Trace _Font$
GetFont SYSTEM_FONT
Trace _Font$
GetFont SYSTEM_FIXED_FONT
Trace _Font$
GetFont DEVICE_DEFAULT_FONT
Trace _Font$
GetFont OEM_FIXED_FONT

Trace _Font$
GetFont ANSI_FIXED_FONT
Trace _Font$

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

RFont Command
Purpose

Reads the current font parameters returned by GetFont
Command.

Syntax

RFont name var [, name var, …]

name:font attribute name
var:variable

Description

This command is the opposite of the Font Command. It
allows the current font parameters or the ones returned by
GetFont to be read. The following alternatives are allowed:

RFont CharSet c|

RFont ClipPrecision c|

RFont Escapement c%

RFont Family c|

RFont Height c%

RFont Italic c|

RFont Name c$

RFont Orientation c%

RFont OutPrecision c|

RFont Pitch c|

RFont Quality c|

RFont StrikeOut c|

RFont Underline c|

RFont Weight c%

RFont Width c%

c|:Byte variable
c%:Integer variable
c$:String variable

For example, RFont Italic a| returns the Italic value for the
font. You can use the same parameters as for the Font
command, of course, followed by a variable after the
keyword e.g. ITALIC. Instead of specifying a string variable
for the name you can also use addr%. Char{addr%} will
then read the name.

The preferred way to handle fonts in Forms and Ocx
controls is by using the Font property of the objects.

Example

OpenW 1
Local a%, fnt_b%, fnt_i%, fnt_s%
Local fnt_u%, h&, org%, p$, p%, w&
org% = OEM_FIXED_FONT
'org% = SYSTEM_FONT
SetFont org%
GetFont org%

RFont Name p$ //Font Name
Font Italic 1
Font To fnt_i%
Font Underline 1, Italic 0
Font To fnt_u%
Font Underline 0
RFont Height h&, Width w&
Font Height h& / 4, Width w& / 4
Font To fnt_s%
Font Height h& * 7, Width w& * 7
Font To fnt_b%
Print p$; " font"; //Print example
SetFont fnt_i%
Print p$; " font italic ";
SetFont fnt_u%
Print p$; " font underline";
SetFont fnt_s%
Print p$; " font small"
Print
Print
SetFont fnt_b%
Print p$; " font big";
SetFont SYSTEM_FONT
FreeFont fnt_i%
FreeFont fnt_u%
FreeFont fnt_s%
FreeFont fnt_b%

Remarks

Internally, GFA-BASIC 32 maintains a LOGFONT structure
which is filled using the Font command and read with
RFont. The internal LOGFONT contains the values for the
font of the current Form. The members of the LOGFONT
reflect the settings of the Font object of the Form. After
changing a Font property (FontItalic = True), the
LOGFONT is updated to reflect the new settings.

The current LOGFONT settings can be saved using logfont$
= _font$ and later reselected using _font$ = logfont$. The
Font object of the Form is then updated with the saved font
settings.

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Dlg Font Command
Purpose

Invokes the common font selecting dialog box.

Syntax

Dlg Font form, hDC, Flags[,Color[,Min, Max[,"Style"]]]

form:Form object
Dc, Flags, Color, Min, Max:integer expression

Description

This command calls the common font-selector Dialog in
COMMDLG.DLL.

form is a form object, like Me, Win_1, Dlg_1, frm1.

Dc is a device context of a printer, will be used only when declared
with corresponding flags. When using screen fonts only, Dc should
beset to a Null.

Flags is a long integer, which gives the bit-wise parameter for the font
selection. These bits are:

CF_SCREENFONTS $000001 Indicates Screen font.
CF_PRINTERFONTS $000002 Indicates Printer font.
CF_BOTH $000003 Indicates Screen and

Printer fonts.
CF_INITTOLOGFONTSTRUCT $000040 Use the form's LOGFONT

structure
CF_EFFECTS $000100 Permits effects like:

underlined, crossed out and
color selections.

CF_APPLY $000200 enables APPLY-button, with
which the actual style and
point size will be

represented in the example
field .

CF_ANSIONLY $000400 Only enable fonts with the
ANSI Characters set.

CF_NOVECTORFONTS $000800 Only non-vectored fonts.
CF_NOSIMULATIONS $001000 No GDI font simulations.
CF_LIMITSIZE $002000 type-size limitation uses

Min and Max parameters.
CF_FIXEDPITCHONLY $004000 Only moonscape fonts.
CF_WYSIWYG $008000 Only fonts that are

available on the screen and
the printer. Use with
CF_BOTH and
F_SCALABLEONLY.

CF_FORCEFONTEXIST $010000 Show only fonts with a
corresponding file.
CF_SCALABLEONLY$020000
Only fonts which can
assume any size (as
vectored or TrueType)

CF_TTONLY $040000 Only TrueType fonts
(available in Windows 3.1
and higher)

CF_NOFACESEL $080000 No Font selection. Used for
selecting multiple fonts.

CF_NOSTYLESEL $100000 No style selection. (i.e.:
bold, italic...)

CF_NOSIZESEL $200000 No size selection. This bit is
automatically set, if "Style"
is declared.

CF_USESTYLE $000080

These bits are not allowed in GFA-Basic:

CF_SHOWHELP $000004
CF_ENABLEHOOK $000008
CF_ENABLETEMPLATE $000010
CF_ENABLETEMPLATEHANDLE $000020

Color declares the color for the selected font. CF_EFFECTS must be
set. Color value is must be stored in _ECX.

Min and Max are minimum and maximum point sizes. CF_LIMITSIZE
must be set.

"Style" notes that the font style name is to be returned. If "Style" or
"" is declared, the pointer to the style name is placed in _EBX. (i.e.
Print (Char{_EBX}) may display Bold Italic.) _DX holds the size of a
font in tenths of a point. _SI holds the type of the selected fonts. The
possible values can any combination of:

SIMULATED_FONTTYPE $8000 GDI Simulated Font.
PRINTER_FONTTYPE $4000 Printer Font.
SCREEN_FONTTYPE $2000 Screen Font
BOLD_FONTTYPE $0100 TrueType Bold Font.
ITALIC_FONTTYPE $0200 TrueType Italic Font.
REGULAR_FONTTYPE $0400 TrueType Regular Font.

In the font field, normal (Windows 3.0) Fonts will not be marked.
TrueType Fonts will be marked with a double T and printer fonts with a
small printer symbol.

_AX is a null if there is an error.

Example

OpenW 1
Global col%, fnt%
Dim a%(16), hfnt As Handle, s$
Dlg Font Win_1, 1, cdfScreenFonts, a%(1), col%
Font To hfnt // create font handle
RFont Name s$ // obtain font name
SetFont hfnt // select font
Print "test", s$ // test
SetFont 13 // select SystemFont
Print "test" // test
DelFont fnt // delete font object

Remarks

This command is implemented for compatibility reasons only. Use
CommDlg object instead.

See Also

CommDlg, Dlg Color, Dlg Open, Dlg Print, Font, Font To, SetFont,
GetFont, RFont, Dlg Font, _hFont, _font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

_hfont Function
Purpose

Returns the handle of the font currently selected in the
active Form (OpenW, Dialog, Form)

Syntax

x = _hfont

x : Handle

Description

Using _hfont the handle of the current font of the current
active window can be obtained. It could then be used to set
the font of some custom, non-OCX, control using
WM_SETFONT.

In case of a Form, OpenW, ChildW, and ParentW the
_hfont returns the handle of a StdFont object. When this
font object is destroyed the font handle is no longer valid.

Example

OpenW 1
AutoRedraw = 1
Print _hFont
Print Me.Font._hFont
Do
Sleep

Until Me Is Nothing

Remarks

_hFont is a shortcut for Me.Font._hFont.

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

_font$ Function
Purpose

Returns the font parameters of the internal font info set
with Font, GetFont, Dlg Font and _font$= in a String.

Syntax

$ = _font$

Description

See description in _font$=

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

_font$=
Purpose

Fills the internal font information with the contents of a
string.

Syntax

_font$= a$

a$: svar

Description

Used to fill the internal LOGFONT structure with a previously
saved string using _font$.

The contents of the _font$ string could look like this:

SYSTEM_FONT "System,16,w7,7,q2,f34,p513"
SYSTEM_FIXED_FONT "Fixedsys,15,w8,4,q2,f49,p513"
ANSI_FIXED_FONT "Courier,12,w9,q2,f1,p512"
ANSI_VAR_FONT "MS Sans Serif,12,w9,q2,f2,p512"
OEM_FIXED_FONT "Terminal,12,w8,c255,q2,f1,p512"
DEVICE_DEFAULT_FONT ",0,f1"

The string is build according the following format. First the
name of the font followed by the character height (if
necessary with sign). Then, optional and separated with
commas the rest of the LOGFONT members. Zero values are
left out, so ",i0" for ITALIC 0 is not included. Almost all
values are prefixed with a character (i for ITALIC, w for
WIDTH, etc), only WEIGHT and HEIGHT are not preceded

with a character. Their position in the _font$ string
determines their value.

Overview of the characters

w WIDTH
e ESCAPEMENT
o ORIENTATION

WEIGHT
i ITALIC
u UNDERLINE
s STRIKEOUT
c CHARSET
q QUALITY
f FAMILY+PITCH
p PRECISION (OUTPRECISION +

CLIPPRECISION*256)

Using _font$= all font parameters can be set in one
instruction.

_font$="" clears all font parameters.

Example

OpenW 1
Print
GetFont SYSTEM_FONT
SetFont SYSTEM_FONT
Print "SYSTEM_Font", _Font$
GetFont SYSTEM_FIXED_FONT
SetFont SYSTEM_FIXED_FONT
Print "SYSTEM_FIXED_Font", _Font$
Do : Sleep : Until Me Is Nothing

CloseW 1
_Font$ = "Arial,48,7" /* Bold Arial in 48 Pixel
high

_Font$ = "Arial,48,700" /* Bold Arial in 48 Pixel
high

_Font$ = ",48,7,f34" /* Bold, Swiss-Family,
/* Variable-Pitch: Arial, Helvetica..., in 48 pixels
high

_Font$ = ",-48,f49" /* Morn fixed font
/* (usually Courier New), Text-Height 48 Pixel
_Font$ = ",0,c1" /* some Font
_Font$ = ",0,c0" /* some ANSI Font
_Font$ = ",0" /* some ANSI font
_Font$ = ",0,c255" /* some IBM-PC font
(Terminal?)

The order of the parameters is not relevant, except for the
font-name and the character height. White spaces are
ignored.

After setting the font parameters the font can be selected
into the current window using "Font To var%" and "SetFont
var%"

Remarks

The Windows API function GetTextFace() may be used to
determine the name of the actual used font:

_Font$ = "Arial,48,7"
SetFont _Font$
Local a$ = Space$(80)
~GetTextFace(_DC(), 80, V:a$)
Print a$

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

FreeFont Command
Purpose

Releases a GDI font.

Syntax

FreeFont hFont

hFont:Handle

Description

Releases a font from memory. However, you MUST make
sure that the font is not selected in a DC (Device Context)
so be sure to perform a SetFont SYSTEM_FONT
beforehand.

Example

OpenW 1
Global fnt1%, fnt2%, fnt3%, fnt4%, fnt5%, x%
fonts
Text 10, 10, "GFA Software Technologies 0"
SetFont fnt1%
Text 10, 30, "GFA Software Technologies 1"
SetFont fnt2%
Text 10, 80, "GFA Software Technologies 2"
SetFont fnt3%
Text 10, 120, "GFA Software Technologies 3"
SetFont fnt4%
Text 10, 160, "GFA Software Technologies 4"
SetFont fnt5%

Text 10, 200, "GFA Software Technologies 5"
SetFont SYSTEM_FONT
Text 10, 240, "GFA Software Technologies 6"
FreeFont fnt1%
FreeFont fnt2%
FreeFont fnt3%
FreeFont fnt4%
FreeFont fnt5%
Do : Sleep : Until Me Is Nothing

Procedure fonts
Font Family 0, Quality 0
Font "roman", Height 40, Width 0
Font Weight FW_BOLD, Orientation 0
Font Escapement 0, Italic 0, Underline 0
Font StrikeOut 0, CharSet OEM_CHARSET
Font To fnt1%
Font Quality PROOF_QUALITY, Height 25
Font CharSet ANSI_CHARSET, "Helv"
Font To fnt2%
Font CharSet OEM_CHARSET, "Script", Height 30
Font To fnt3%
Font "Morn", Height 50
Font To fnt4%
Font "symbol", Italic 0, Weight 1000, Width 25
Font Height 40, Orientation 0
Font StrikeOut 0, Underline 0, Escapement -150
Font Family FF_ROMAN, CharSet OEM_CHARSET
Font To fnt5%

EndProc

Remarks

DelFont is synonym to FreeFont.

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

DelFont Command
Purpose

Deletes a logical font.

Syntax

DelFont hFont

hFont: Handle

Description

DelFont frees all system resources associated with the
object. After the object is deleted, the specified handle is no
longer valid. DelFont invokes DeleteObject API.

Example

Local fnt%
AutoRedraw = True
_Font$ = "Arial"
Font To fnt
SetFont fnt
Print "Hello World"
DelFont fnt
Do // to end press Alt + F4
Sleep

Until Me Is Nothing

Remarks

DelFont is synonym to FreeFont.

See Also

Font, Font To, SetFont, GetFont, RFont, Dlg Font, _hFont,
_font$, _font$=, FreeFont, DelFont

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

GdiFlush Command
Purpose

The GdiFlush function flushes the GDI graphical output
that has been cached (batch).

Syntax

GdiFlush

Description

GDI batches drawing functions to enhances drawing
performance by minimizing the amount of time needed to
call GDI drawing functions that return Boolean values. The
system accumulates the parameters for calls to these
functions in the current batch and then calls the functions
when the batch is flushed by any of the following means:

Calling the GdiFlush function

Reaching or exceeding the batch limit set by the
GdiSetBatchLimit API function

Filling the batching buffers.

Calling any GDI function that does not return a Boolean
value.

An application should call GdiFlush before a thread goes
away if there is a possibility that there are pending function
calls in the graphics batch queue. The system does not
execute such batched functions when a thread goes away.

Remarks

See Also

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

HimetsToPixelX,
HimetsToPixelY,
PixelsToHimetX,
PixelsToHimetY Function
Purpose

Converts between pixel and Himetric units.

Syntax

p# = HimetsToPixelX(h#)
p# = HimetsToPixelY(h#)

h# = PixelsToHimetX(p#)
h# = PixelsToHimetY(p#)

h, p : Double expression

Description

HimetsToPixelX and PixelsToHimetX convert on the
horizontal plane.

HimetsToPixelY and PixelsToHimetY convert on the
vertical plane.

A Himet (Himetric Unit - the internal OLE- base coordinates
unit) is 1/100 mm. 1 Twips (the base unit of GFA-BASIC 32
OLE) is 1/20 Point = 1 /1440 inch. The conversion factor
between Twips and Himets are constants: n Twips = n *
2540/1440 Himets.

Example

Debug.Show
Trace _X
Trace HimetsToPixelX(1) // Pixels to Himets
(horizontally)

Trace PixelsToHimetX(_X) // Width in Himets
Trace _Y
Trace HimetsToPixelY(1) // Pixels to Himets
(vertically)

Trace PixelsToHimetY(_Y) // Height in Himets

See Also

PixelsToTwipX(), PixelsToTwipY(), TwipsToPixelX(),
TwipsToPixelY()

{Created by Sjouke Hamstra; Last updated: 03/03/2018 by James Gaite}

PixelsToTwipX,
PixelsToTwipY,
TwipsToPixelX,
TwipsToPixelY Function
Purpose

Converts between pixels and twips.

Syntax

t# = PixelsToTwipX(p#)
t# = PixelsToTwipY (p#)

p# = TwipsToPixelX(t#)
p# = TwipsToPixelY(t#)

p, t : Double numeric expression

Description

With PixelsToTwipX and TwipsToPixelX values can be
converted on the horizontal plane.

With PixelsToTwipY and TwipsToPixelY values can be
converted on the vertical plane.

The Pixel to Twip and Twip to Pixel properties of the Screen
property contain the conversion factors for these functions.

Example

Debug.Show
Trace _X
Trace TwipsToPixelX(1) // Pixel to Twips
(horizontally)

Trace PixelsToTwipX(_X) // Width in Twips
Trace _Y
Trace TwipsToPixelY(1) // Pixel to Twips
(vertically)

Trace PixelsToTwipY(_Y) // Height in Twips

See Also

HimetsToPixelX(), HimetsToPixelY(), PixelsToHimetX(),
PixelsToHimetY(), Screen

{Created by Sjouke Hamstra; Last updated: 03/03/2018 by James Gaite}

Open Command
Purpose

Enables input/output (I/O) to a file or a peripheral device.

Syntax

Open pathname [For mode] [Access access] [share]
[Commit] [Based 0/1] As [#]filenumber [Len=reclength]

Description

You must open a file before any I/O operation can be
performed on it. Open allocates a buffer for I/O to the file
and determines the mode of access to use with the buffer.

If the file specified by pathname doesn't exist, it is created
when a file is opened for Append, Binary, Output, or
Random modes.

If the file is already opened by another process and the
specified type of access is not allowed, the Open operation
fails and an error occurs.

pathname Required. String expression that specifies a
file name - may include directory or folder,
and drive.

mode Optional. Keyword specifying the file mode:
 Append - Opens a file for sequential
writing and sets the file pointer at the end of
file.
 Binary - Opens a file for sequential
reading and writing.

 Input - Opens file for sequential reading.
 Output - Opens a file for sequential
writing.
 Update - Opens a file for sequential
reading and writing. Better optimized for
(Rel)Seek then Binary.
 Random - Opens a file for random reading
and writing. See Field for more information.
If unspecified, the file is opened for Random
access.

access Optional. Keyword specifying the operations
permitted on the open file:
 Access Read - Read access only, even
when a file is Lock Write.
 Access Write - Write access only, even
when a file is Lock Read.
 Access Read Write - Read/Write access,
but file is not accessible when it is locked.
Note: Access cannot be combined with For
Input, For Output, and For Update. For
these modes, Access is automatically Access
Read, Access Write, Access Read Write,
respectively

share Optional. Keyword specifying the operations
restricted on the open file by other
processes:
 Shared - Other programs have access.
 Lock Read - Other programs have no
Read Access.
 Lock Write - Other programs have no
Write Access.
 Lock Read Write - Other programs have
no Read or Write Access. This is the default.

Commit Optional. Writes data to the file immediately
without buffering by GFA-BASIC 32 or the

system.
Based Optional. Based 1 is default. Determines the

number of the first record (0 or 1) to be
used by Record#, Get#, and Put#.

filenumber Required. A valid file number in the range 1
to 511, inclusive. Use the FreeFile function
to obtain the next available file number.

Len Optional. Number less than or equal to
32,767 (bytes). For files opened for random
access, this value is the record length. For
sequential files, this value is the number of
characters buffered. Len <= 1 disables GFA-
BASIC 32 buffering, default is 2048 bytes.
The Len clause is ignored if mode is Binary.

Example

Dim fileno% = FreeFile
Open "C:\TEST.DAT" for Output As # fileno%
' …
Close # fileno%
Open "C:\TEST.DAT" for Input As # fileno%
' …
Close # fileno%
' Open for reading only
Open "C:\TEST.DAT" for Binary Access Read As # 1
' -
Close # 1
' Tidy up
Kill "C:\TEST.DAT"

Console: CONIN$ and CONOUT$

There are two reserved pathnames for console input (the
keyboard) and console output: "CONIN$" and "CONOUT$".

Initially, standard input, output, and error are assigned to
the console. It is possible to use the console regardless of
any redirection to these standard devices; just open
handles to "CONIN$" or "CONOUT$" using Open
(CreateFile.) Console I/O can then easily be performed with
Input # and Print #, letting GFA-BASIC 32 take
responsibility for the correct input.

A process can have only one console at a time. GFA-BASIC
32 applications are GUI programs and are not initialized
with a console like DOS-applications. If you need a console
(to display status or debugging information), you must first
create one. There are two simple parameterless functions
for this purpose.

Declare Function AllocConsole Lib "kernel32" () As
Int

Declare Function FreeConsole Lib "kernel32" () As
Int

Before opening "CONIN$" or "CONOUT$" a console must be
obtained:

Declare Function AllocConsole Lib "kernel32" () As
Int

Declare Function FreeConsole Lib "kernel32" () As
Int

Declare Function SetConsoleTitle Lib "kernel32"
Alias "SetConsoleTitleA" (ByVal lpConsoleTitle As
String) As Long

Declare Function WriteConsole Lib "kernel32" Alias
"WriteConsoleA" (ByVal hConsoleOutput As Long,
lpBuffer As Long, _
ByVal nNumberOfCharsToWrite As Long,
lpNumberOfCharsWritten As Long, lpReserved As
Long) As Long

Dim a$

If AllocConsole()
~SetConsoleTitle("Win32 Console API Demo")
Open "conout$" for Update As # 1, Len = 1
Open "conin$" for Input As # 2, Len = 1
Print # 1, "Test"
Print # 1, _File(# 1)
Print # 1, _File(# 2)
Input # 2, a$
WriteConsole(_File(# 1), V:a$, Len(a$), Null,
Null)

Input # 2, a$
Close
~FreeConsole()

EndIf

The Len = 1 clause disables the internal buffering of GFA-
BASIC 32.

The handle returned from _File(#) can be used in the
console API functions taking a handle to the console like
WriteConsole and ReadConsole.

Console: StdIn and StdOut

A console process uses handles to access the input and
screen buffers of its console. A GUI process must create a
console before it can use these standard handles (STDIN,
STDOUT, and STDERR). Prevously, these handles had
standard values 0, 1, and 2. In Win32 however, the (file)
handles must be obtained using the GetStdHandle() API
function. The return value is a file handle that can be used
with API functions for I/O and for console read/write.

GFA-BASIC 32 supports the use of these standard handles
without using API functions. Opening a file named "std:" will
force GFA-BASIC 32 to use one of the standard handles.

The For Output and For Input clause determine which
standard handle is used.

Open "std:" for Input As # 1, Len = 1 //
STD_INPUT_HANDLE

Open "std:" for Output As # 2, Len = 1 //
STD_OUTPUT_HANDLE

GFA-BASIC 32 redirects the standard devices to its own file
handling mechanism. As a result, the normal BASIC I/O
commands can be used to access the console.

Note: Regardless of any redirection to these standard
devices, the console can still be used by opening handles to
"CONIN$" or "CONOUT$".

Remarks

You can specify a hardware port in pathname$, although
only supported by Windows 95/98/Me. Starting with NT,
reading and writing ports using file handles is no longer
allowed. The following names are defined:

LPT1:,...LPT4: parallel port (Centronics)
COM1:,...COM4: serial port (RS232)
CON: keyboard/screen

See Also

Close, _File(), Field, Record, RelSeek, Seek, Lof, Eof, Loc

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Close Command
Purpose

Closes a I/O channel.

Syntax

Close [#n]

n:integer expression

Description

Close [#n] closes a channel to a file or peripheral device,
previously opened with Open. The parameter n contains
the number of the channel to close.

If no channel number is given all open file channels are
closed.

See Also

Open

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Reset Command
Purpose

Closes all disk files opened using the Open statement.

Syntax

Reset

Description

The Reset statement closes all active files opened by the
Open statement and writes the contents of all file buffers to
disk.

Example

Dim FileNumber%
For FileNumber = 1 To 5 ' Loop 5 times.
' Open file for output. FileNumber is
concatenated into the string

' TEST for the file name, but is a number
following a #.

Open App.Path & "\TEST" & FileNumber for Output
As # FileNumber

Write # FileNumber, "Hello World" ' Write data
to file.

Next FileNumber
Reset ' Close files and write contents to disk.
// Tidy up
For FileNumber = 1 To 5 : Kill App.Path & "\TEST"
& FileNumber : Next FileNumber

Remarks

Close without an argument performs the same action.
Reset is VB compatible.

See Also

Open, Close, Flush, Commit

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Commit Command
Purpose

Flushes a file directly to disk.

Syntax

Commit #file

Description

The Commit command forces the GFA-BASIC 32 file buffer
to write to the operating system. The operating system
writes the data as well. Commit ensures that the specified
file is flushed immediately, not at the operating system’s
discretion.

Example

Local Int32 n, a(10)
For n = 0 To 10 : a(n) = Rand(10) : Print a(n) :
Next n

Open "c:\Test.dat" for Output As # 1
BPut # 1, V:a(0), 44
Commit # 1 // Forces the OS to save the
file to HDD

Close # 1
Print
ArrayFill a(), 0
Open "c:\Test.dat" for Input As # 1
BGet # 1, V:a(0), 44
Close # 1
Kill "c:\Test.dat" // Tidy up line

For n = 0 To 10 : Print a(n) : Next n

Remarks

See Also

Flush, Open

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Flush Command
Purpose

Clears the buffers for this file and causes all buffered data
to be written to the file.

Syntax

Flush #n

n: iexp

Description

The command Flush writes the contents of a GFA-BASIC 32
file buffer to the file. This does not mean, that the data will
be written to disk immediately, the data is buffered by the
OS. It will (probably) be transferred through the cable to
the other networked computer.

The Commit (to-disk) command lets you ensure that
critical data is written directly to disk rather than to the
operating system buffers.

Example

Open App.Path & "\test.sav" for Output As # 1
Print # 1; "Save Data"
Flush # 1
Close # 1
Kill App.Path & "\test.sav" // Tidy-up line

Remarks

Flush is automatically called for Lock and Unlock.

See Also

Commit, Open, Lock

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

Print # Command
Purpose

Writes display-formatted data to a sequential file.

Syntax

Print #n[, y, a$,...]

x, y:aexp
a$:sexp

Description

Print # outputs data to a previously opened channel. n is a
channel number in the range from 0 to 511. Other than
that, Print # is equivalent to Print.

Example

OpenW 1
Local a$, x%, ch%, i%
a$ = "Writing a file"
Text 0, 20, a$
Open "C:\TEST.DAT" for Output As # 1
Print # 1, "Hallo GFA"
Print # 1, "GFA-"
Print # 1, "BASIC 32"
Close # 1
Text 0, 40, "Press any key"
KeyGet x%
a$ = "Reading a file"
WindGet 14, ch%

Text 0, 60, a$
Open "C:\TEST.DAT" for Input As # 1
For i% = 1 To 3
Input # 1, a$
Text 0, 60 + i% * ch%, a$

Next i%
Close # 1
// Tidy-up line
Kill "c:\TEST.DAT"

Opens the file TEST.DAT on drive C and writes the strings
Hello GFA, GFA-, and BASIC to it. The file then read back in
again.

Remarks

Input # reads a line until the next comma. German
numbers are often printed using a comma to separate the
fractional part. To prevent problems, write numbers using
Write#, or change the number format with Mode Using.

See Also

Print, Using, Write#, Mode

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Spc and Tab Commands
Purpose

Affects the position of the next output in a Print statement.

Syntax

Spc(n)

Tab(n)

_Tab(n)

n:integer expression

Description

Both of these commands can only be used as part of a
Print statement and not as standalone commands. When
included in a Print statement, they affect the position
where the next string is to be placed in slightly different
ways: Spc inserts n spaces, moving the cursor that many
places to the right while overwriting any characters in-
between; Tab and _Tab move the cursor to the column
defined by n, which means it is possible to move the cursor
back before the last printed statement. (The Tab command
treats the left hand column as column number 1, while
_Tab treats it as column number 0 - therefore, _Tab(9) is
equivalent to Tab(10).)

Example

Local a%

OpenW 1 : Win_1.FontName = "Courier" :
Win_1.AutoRedraw = 1

// Prints 'HelloHelloHelloHello' starting at
column 22

Print Tab(22); "HelloHelloHelloHello";
Text 1, 40, "Press a key" : KeyGet a% // Press a
key

// Moves cursor back to column 27, overwrites with
text...

Print Tab(27); " and Goodbye";
Text 1, 40, "And another key..." : KeyGet a% //
Press a key

// ...and then uses Spc to blank out the remaining
letters

Print Spc(3);
Text 1, 40, "And yet another..." : KeyGet a% //
Press a key

// Inserts this text before to complete the
statement

Print _Tab(9); "I shall say"
Text 1, 40, "And now close the Window"
Do : Sleep : Until Win_1 Is Nothing

Note the use of the semi-colon at the end of each statement
to keep the text all on one line.

See Also

Locate, VTab, HTab

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

EOF Function
Purpose

Tests if the data pointer points to the end of a file.

Syntax

EOF(#n)

Description

EOF(#n) always acts on the file on the previously opened
channel n, and returns -1 if the data pointer points to the
end of this file or 0 if not.

Example

Auto a$, i%
OpenW 1 : Win_1.PrintWrap = True
Open App.Path & "\TEST.DAT" for Output As # 1
For i% = 1 To 100
Print # 1, Str$(i%, 3)`

Next i%
Close # 1
Open App.Path & "\TEST.DAT" for Input As # 1
Do Until EOF(# 1)
Input # 1, a$
Print ""; a$`

Loop
Close # 1
Kill App.Path & "\TEST.DAT" // Tidy up line

Opens TEST.DAT file in the application folder and reads its
contents until the end of file.

Known Issues

In earlier versions, EOF() didn't work correctly with text
files as "internal resource files" (those files that are included
in the source code and which name begins with ":"): EOF()
was true after reading the first line even if there are many
more text-lines in the "internal resource file" (it is the
required function of TextEOF to test for an end-of-text
marker, not EOF). As of gfawin23.ocx version 2.341, this
issue has been fixed.

The only workaround for this old error was to set up a
Try...Catch structure around the file processing and use
this in conjunction with the 'End of File reached' error
message to emulate the function of EOF.

See Also

Loc(), Lof(), TextEOF

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

FileAttr Function
Purpose

Returns a Long representing the GFA-BASIC 32 file mode
settings for files opened using the Open statement.

Syntax

FileAttr(#file, attr)

file: integer expression (0..511)
attr:iexp

Description

FileAttr returns the I/O settings of the files created or
opened with the GFA-BASIC 32 command Open.

attr indicates the type of information to return.

FileAttr(#,
1)

file mode:
1 = Input
2 = Output
4 = Random
8 = Append
32 = Binary

FileAttr(#,
2)

the file handle (if necessary for System
calls), same as _File(#)

FileAttr(#,
3)

the size of the GFA-BASIC 32 file buffer
(set with Len = n)

FileAttr(#,
4)

Based 1 or Based 0 (set with Option Base
, 0 | 1)

FileAttr(#,
5)

non-zero (-1): the file is not seekable; you
cannot use: Seek, RelSeek, Record, Lof,
EOF etc. (LPT:, CON:).

FileAttr(#,
6)

record size, random files = size of buffer,
otherwise 1

Example

Open App.Path & "\Test.Dat" for Output As # 1
Print FileAttr(# 1, 1) // Prints 2
Close # 1
Kill App.Path & "\Test.Dat" // Tidy-up line

Remarks

GFA-BASIC 32 manages a file record for each opened file.
FileAttr allows retrieving the record fields.

GetAttr and SetAttr retrieve and set the file type
attributes at the system level.

See Also

_File(), FileLen(), GetAttr, SetAttr

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

FreeFile Function
Purpose

Returns the next free file number.

Syntax

n = FreeFile

n:iexp

Description

Returns the next free file number to be used with the Open
statement. The return value is an integer in the range 0 ..
511.

Example

Debug.Show
Trace FreeFile

Remarks

If working with more complex programs, it is recommend to
use a variable, rather than a fixed number.

Local Dat% = FreeFile
Open App.Path & "\test.dat" for Output As # Dat%
Close # Dat%
Kill App.Path & "\test.dat" // Tidy-up line

See Also

Open

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Loc Function
Purpose

Returns the current position of the file data pointer.

Syntax

large = Loc(#n)

% = Loc%(#n)

Description

Loc[%](#n) works only on files previously opened with
Open using channel n (0 <= n <= 511) and returns the
current position of the data pointer (locate).

Loc() returns a 64-bit integer and is suited for files sizes of
4 GB.

Loc%() returns a 32-bit integer and is suited for files sizes
with a maximum of 2 GB.

Example

Local a$, n As Int32
OpenW # 1
Open "c:\TEST.DAT" for Output As # 1
For n = 1 To 7
Write # 1, Format(n, "dddd")

Next n
Close # 1
Open "C:\TEST.DAT" for Input As # 1

Do Until EOF(# 1)
Input # 1, a$
Print " "; a$, Loc(# 1)

Loop
Close # 1
Kill "c:\test.dat" // Tidy-up Line

Opens the file TEST.DAT in current directory andreads its
contents as well as the position of the data pointer until end
of file.

Remarks

The functions Loc%(), Lof%(), Record%#, Seek%#,
RelSeek%# etc. always use 32 bits integers and are
therefore limited to files with a maximum size of 2 GB

See Also

Eof(), Lof(), Record#, Seek#, RelSeek#

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Lof Function
Purpose

Determines the length of a file.

Syntax

large = Lof(#n)

long = Lof%(#n)

Description

Lof[%](#n) works only on a file previously opened with
Open though the channel n and returns its length in bytes
(length of file).

Lof() returns a 64-bit integer and is suited for files sizes of
4 GB.

Lof%() returns a 32-bit integer and is suited for files sizes
with a maximum size of 2 GB.

Example

OpenW # 1
Open "c:\Test.Dat" for Output As # 1
Print # 1, String$(200, "A")
Close # 1
Open "c:\Test.Dat" for Input As # 1
Print "File length in bytes: "; LOF(# 1) // Prints
200

Close # 1

Opens file TEST.DAT in current directory and returns its
size.

Remarks

The functions Loc%(), Lof%(), Record%#, Seek%#,
RelSeek%# etc. always use 32 bits integers and are
therefore limited to files with a maximum size of 2 GB. (VB
compatibility)

See Also

Eof(), Loc(), Record#, Seek#, RelSeek#

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Seek, RelSeek and SeekEnd
Commands
Purpose

Relative positioning of the data pointer

Syntax

Seek[%] #n, lpos (command)

RelSeek[%] #n, lpos

SeekEnd #n

lpos = Seek[%](#n) (function)

n:integer expression; channel number
lpos:Large expression (or integer for xxx% commands)

Description

Seek, RelSeek and SeekEnd enable access to index
sequential files with channel numbers from 0 to 511
previously opened with Open; they can not be used with
peripheral devices.

The Seek command moves the file data pointer to the
position specfied in the lpos value; RelSeek performs a
similar task but moves the pointer lpos places further on (or
back if lpos is negative - RelSeek only) from the pointer's
current position. Care should be taken with both these
commands not to move the pointer beyond either the start
or the end of file as this will result in an error.

SeekEnd has but one task and that is to move the file data
pointer to the end of the file.

Finally, the position of the file data pointer can be returned
by using the Seek function.

With all the above commands and functions, when the suffix
% is used, it restricts their use to files no greater than 2GB
and returns values as 32-bit integers; these variants are
included for compatibility reasons.

Example

// Create Test File
Local a$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", b&
BSave App.Path & "\Test.Dat", V:a$, 26
// Open Test File
Open App.Path & "\test.dat" for Binary As # 1
// Reading a byte moves the pointer one place
on...

a$ = Chr(Inp|(# 1)) : Print Seek(# 1)
// ...while reading a word moves the pointer two
places on...

b& = Inp&(# 1) : Print Seek(# 1)
// .. and so on.
// To move to the tenth byte...
Seek # 1, 10 : Print Seek(# 1)
// ...and to move it six bytes further on...
RelSeek # 1, 6 : Print Seek(# 1)
// ...and then two bytes back...
RelSeek # 1, -3 : Print Seek(# 1)
// ...which brings us to position 13 which prints
N

Print Chr(Inp|(# 1))
// Then, off to the end of the file...
SeekEnd # 1 : Print Seek(# 1)
// ...then back to the beginning using either...

RelSeek # 1, -26 : Print Seek(# 1)
// ...or...
Seek # 1, 0
// Finally, some changes to the file...
// ... replacing F with an asterisk...
Seek # 1, 6 : Out| # 1, Asc("*")
// ... and P (pos 15) with an underscore...
RelSeek # 1, 8 : Out| # 1, Asc("_")
// ...and then read and print the file contents...
Seek # 1, 0 : Input # 1;a$: Print a$
//...and then show the pointer
Print Seek(# 1)
Close # 1
Kill App.Path & "\Test.Dat"

Remarks

The Seek function is synonymous with Loc.

Known Issues

Sometimes, Relseek does not work well in large files and
can cause the file pointer to move to the wrong place. In
these circumstances, use Seek #n, Loc(#n) + bytes
where n is the file number and bytes is the number of bytes
you wish to move. This workaround works for backward
moves as well: just replace the plus sign with a minus.

See Also

Seek, SeekEnd, Loc

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

_File Function
Purpose

Returns the MS-DOS or MS-Windows file handle of the
opened file #n. If file #n is not opened a 0 is returned, or in
case of devices (LPT1:...) a negative number is returned.

Syntax

x = _File(n%)

x: Handle

Description

n% must be in the range between 0 and 511 to correspond
to available channel numbers.

Example

OpenW # 1
Open "lpt1:" for Output As # 1
Open "test1" for Output As # 2
Open "test2" for Output As # 3
Local i%
For i% = 1 To 5
Print _File(# i%)
Close # i%

Next i%

Prints the corresponding MS-DOS handles.

See Also

Open

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

TextEOF Function
Purpose

Tests for end-of-file.

Syntax

? = TextEOF(#n)

n:iexp

Description

Like EOF() this function returns True when the end of file is
reached. In addition, this function returns True when the
next byte in the stream has value #26 (Control-Z).

TextEOF is required for text files in internal resource files,
those files that are included in the source code and which
name begins with ":").

Example

The long way of doing it.

// Create dummy file
Local a$, a1$ = "This is record 1", a2$ = "This is
a dummy file", a3$ = #26"This part won't be
copied"

Open App.Path & "Dummy.Txt" for Binary As # 1
Print # 1; a1$
Print # 1; a2$
'Print # 1; a3$

Seek # 1, 0
// Copy file up to #26
Open App.Path & "Dummy.Tx2" for Output As # 2
While Not EOF(# 1)
Line Input # 1, a$
If EOF(# 1)
Exit If Left(a$, 1) = #26
If InStr(a$, #26) <> 0
a$ = Left$(a$, InStr(a$, #26) - 1)

EndIf
EndIf
Trace a$
Print # 2, a$

Wend
Close # 1 : Close # 2
// Tidy Up
Kill App.Path & "Dummy.Txt"
Kill App.Path & "Dummy.Tx2"

Now with TextEOF...

// Create dummy file
Local a$, a1$ = "This is record 1", a2$ = "This is
a dummy file", a3$ = #26"This part won't be
copied"

Open App.Path & "Dummy.Txt" for Binary As # 1
Print # 1; a1$
Print # 1; a2$
Print # 1; a3$
Seek # 1, 0
// Copy file up to #26
Open App.Path & "Dummy.Tx2" for Output As # 2
While Not TextEOF(# 1)
Line Input # 1, a$
Trace a$
Print # 2, a$

Wend

Close # 1
Close # 2

Remarks

Input and Line Input test for a TextEOF as well.

See Also

Eof, Loc, Lof, RecordLOF

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

RecordLOF Function
Purpose

Returns the number of record in a file.

Syntax

nr = RecordLOF[%](# n)

n:iexp
nr:large or integer exp

Description

RecordLOF returns a Large containing the number of
records in a random-access file and the number of bytes in
normal file.

RecordLOF% returns a 32-bit integer and is only usable
for file size < 2GB.

Example

Global age%, firstname$, ct|(5), i%, n1$, n2$,
nr|, secondname$

OpenW # 1
Open App.Path & "\Musicians.DAT" for Random As #
1, Len = 52

Field # 1, 24 As firstname$, 24 As secondname$, 4
At(V:age%)

//
For i% = 1 To 5
Read n1$, n2$, age%

Lset firstname$ = n1$
Lset secondname$ = n2$
Put # 1, i%
ct|(i%) = i%

Next i%
Close # 1
Data
Harold,Faltemeyer,56,Robin,Williams,32,Barry,Mani
low,78,Bryan,Adams,52,Demi,Lovato,21

//
Open App.Path & "\Musicians.DAT" for Random As #
1, Len = 52

Field # 1, 24 As firstname$, 24 As secondname$, 4
At(V:age%)

Print "No of Records in File ="; RecordLOF(# 1)
Close # 1
Kill App.Path & "\Musicians.DAT" // Tidy-up line

Remarks

See Also

Lof

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Kill Command
Purpose

Deletes a file.

Syntax

Kill filename$

Kill [Yes | Prompt | Undo | NoUndo | Silent | Files | ,]
filename$

filename$:sexp; path name

Description

Kill filename$ deletes the specified file. Without a path the
file is searched in the current directory. When the file isn't
found an error is displayed. Kill deletes one file only.

Kill can be extended using the same options as
KillFile/DeleteFile and delete complete folders and can
use wildcards.

Yes Disable confirmation dialog box.
Prompt Inquiry before deleting (default).
Undo Don't permanently delete file.
NoUndo The files are deleted irretrievable (default).
Silent Deletes the file without feedback.
Files Only files will be deleted, no directories

(Kill Files "C:\temp*" deletes all files in the folder temp
but not any subdirectory in temp.) This you can do with
KillFile "C:\temp*".

To prevent deleting the file(s) permanently use additional
keywords (Prompt, Undo).

Example

Local path$ = "C:\TEST.TXT"
Open path$ for Output As # 1 : Close # 1
If Exist(path$) Then Kill Silent Files path$

Checks if the file with the name TEST.TXT exists on drive C
and deletes it.

Remarks

Leading commas in front of the file name are ignored, like

Kill Undo, Files, Prompt,,,, "c:\temp*"

In contrast with Kill, the commands KillFile and
DeleteFile don't delete files permanently by default.

See Also

KillFile, DeleteFile

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Lock, UnLock
Purpose

Controls access by other processes to all or part of a file
opened using the Open statement.

Syntax

Lock # n [, recordrange]
Unlock # n[, recordrange]

err = Lock(# n [, recordrange])
err = Unlock(# n[, recordrange])

n:iexp (0..511)
recordrange:recnumber | [start] To end
err:iexp

Description

The Lock and Unlock statements/functions are used in
environments where several processes might need access to
the same file. With the command Lock you can lock a part
(i.e. one record of a file) of a previously opened file. Lock
and Unlock statements are always used in pairs. The
arguments to Lock and Unlock must match exactly.

The following applies to both Lock and UnLock (Random
files start counting at 1, unless the file was opened with
Based 0. For sequential files recnumber is the byte
number.):

Lock #n
locks the entire file.

Lock #n, offset, count
offset is the first byte from which count start to lock till the
end of the number of bytes, specified in count.

Lock #n, recnumber
locks a record with the specified number of a random file.
Random files start counting at 1, unless the file was opened
with Based 0. For sequential files recnumber is the byte
number.

Lock #n, recnumstart To recnumend
locks a range of records or bytes.

Lock #n, To recnumend
all records from the first record to the end of the range
(end) are locked (or unlocked).

When a locked file is accessed by another process, the
(Un)Lock commands generate a runtime error. To prevent
your application from crashing these statements should be
enclosed in a Try/Catch block. The runtime errors are
returned as function return values when (Un)Lock is used
as a function.

Example

Local a$, ret%
Open "c:\Test.Dat" for Output As # 1
Write # 1, String$(200, "A")
Close # 1
Open "c:\Test.Dat" for Input Shared As # 1
ret% = Lock(# 1, 0, 100) // no runtime error
OpenW 1
If ret% = 0

Print "This file has exclusive access"
Flush # 1
a$ = Input$(100, # 1)
Print "Extracted info: "; a$
Unlock # 1, 0, 100 // now: no error handling!!
Print "Now everyone can connect again."

Else
Print "Error #"; ret%; " during locking"

EndIf
Close # 1

Remarks

In a multitasking environment often problems arise with
simultaneous access of the same file. To solve this problem
easily, open a file with the command Open, but without the
option Shared. This will open the file exclusively, and all
other applications have to wait until the file is closed.

Otherwise, to allow multiple applications access to a file it
should be opened with the Shared flag. Using (Un)Lock an
application can lock the part of the file that it should access
and not longer than necessary.

See Also

Open

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

KillFile Command
Purpose

Deletes a file, files, or subdirectories.

Syntax

KillFile filename$

KillFile [Yes | Prompt | Undo | NoUndo | Silent | Files | ,]
filename$

filename$:sexp; path name

Description

KillFile filename$ deletes the specified file. Without a path
the file is searched in the current directory. When the file
isn't found an error is displayed. KillFile can delete
complete folders and can use wildcards.

KillFile deletes files with the default settings Prompt and
Undo; the files are deleted by moving them to the Recycle
Bin. Other keywords are:

Yes Disable confirmation dialog box.
Prompt Inquiry before deleting (default).
Undo Don't permanently delete file.
NoUndo The files are deleted irretrievable (default).
Silent Deletes the file without feedback.
Files Only files will be deleted, no directories

For instance, KillFile Files "C:\temp*" deletes all files in
the folder temp but not any subdirectory in temp. This you
can do with KillFile "C:\temp*".

Note The wildcard for all files is "*", not "*.*".

Example

Local path$ = "C:\TEST.TXT"
Open path$ for Output As # 1 : Close # 1
If Exist(path$) Then KillFile Silent Files path$

Remarks

Leading commas in front of the file name are ignored, like

KillFile Undo, Files, Prompt, , , , "c:\temp*"
KillFile Undo, Files, Prompt "c:\temp*"

DeleteFile is a synonym for KillFile.

See Also

Kill, DeleteFile

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

DeleteFile Command
Purpose

deletes a file or subdirectories

Syntax

DeleteFile filename$

DeleteFile [Yes | Prompt | Undo | NoUndo | Silent | Files |
,] filename$

filename$:sexp; path name

Description

DeleteFile filename$ deletes the specified file. Without a
path the file is searched in the current directory. When the
file isn't found an error is displayed. DeleteFile can delete
complete folders and can use wildcards.

DeleteFile deletes files with the default settings Prompt
and Undo. Other keywords are:

Yes Disable confirmation dialog box.
Prompt Inquiry before deleting (default).
Undo Don't permanently delete file.(default).
NoUndo The files are deleted irretrievable.
Silent Deletes the file without feedback.
Files Only files will be deleted, no directories

DeleteFile Files "C:\temp*" deletes all files in the folder
temp but not any subdirectory in temp. This you can do
with DeleteFile "C:\temp*".

Example

Local path$ = "C:\TEST.TXT"
Open path$ for Output As # 1 : Close # 1
If Exist(path$) Then DeleteFile Silent Files path$

Remarks

Leading commas in front of the file name are ignored, like

DeleteFile Undo, Files, Prompt, , , , "c:\temp*"

KillFile is a synonym for DeleteFile.

See Also

Kill, KillFile

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

Files Command
Purpose

Prints the directories in the current path name.

Syntax

Files path$ [To file$]

path$:sexp; current path name

file$:sexp; optional file name

Description

Files path$ returns the contents of the directories in
pathname specified in path$. If path$ ends with a ":" or "\",
GFA-BASIC automatically appends "*.*". The default
destination for the output of the directory is the screen.
Wildcards are allowed.

The specification of To file$ is optional. It can be used to
divert the directory output to a file or a peripheral device.

In contrast to Dir To each file in Files To is first listed in its
MSDOS name (8.3), followed by file size (character position
14 to 24), date and time (position 25 to 44), and ends with
the Windows name (position 45).

Example

OpenW # 1
FontName = "terminal"

PrintScroll = 1
Files

See Also

Dir

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

Get# Command
Purpose

reads a record from a random access file.

Syntax

Get #n [[,record], varname]

Get% #n [[,record], varname]

n:integer expression; channel number
record:integer expression; record number
varname:variable aexp

Description

Get # reads a record from an Random Access file through
the channel n (from 0 to 511), previously opened with
Open. record is an optional parameter and contains a value
between 1 and the number of records within the file. If
record is not specified the next record in file is always read.
Otherwise the record specified in record is read.

The first record or byte in a file is at position 1, the second
record or byte is at position 2, and so on. This can be
changed using Option Base ,n

The second optional parameter varname is a variable of any
type into which data is read. This syntax allows to use Get
without a Field command, in a VB compatible manner. The
length of this variable should be enough to hold a record
(Len=).

Get% # reads from a file with a maximum size 2GB.

Example

Global city$, i%, n$, name$, o$, postcode%, s$,
strt$

OpenW # 1
Open App.Path & "\Addresses.DAT" for Random As #
1, Len = 64

Field # 1, 24 As name$, 24 As strt$, 4
At(V:postcode%), 12 As city$

//
For i% = 1 To 5
Input "NAME : ";n$
Input "Street : ";s$
Input "Postcode: ";postcode%
Input "City : ";o$
Lset name$ = n$
Lset strt$ = s$
Lset city$ = o$
Put # 1, i%
Cls

Next i%
Close # 1
//
Open App.Path & "\Addresses.DAT" for Random As #
1, Len = 64

Field # 1, 24 As name$, 24 As strt$, 4
At(V:postcode%), 12 As city$

//
For i% = 1 To 5
Get # 1, i%
Print "Record number: "; Str$(i%, 3)
Print "NAME : "; name$
Print "Street : "; strt$
Print "Postcode: "; postcode%
Print "City : "; city$

Next i%
Close # 1
Kill App.Path & "\Addresses.DAT" // Tidy-up line

A channel for the random access file is opened first. Next,
the record is divided with Field into: 24 bytes for the name,
24 bytes for the street, four bytes for the postal code and
12 bytes for the city, which all together totals 64 bytes. The
For...Next loop writes five records to the file
ADDRESSES.DAT on drive C. And finally, these records are
read in using Get and displayed on the screen again.

Remarks

The functions Loc%(), Lof%(), Record%#, Seek%# etc.
internally use 32 bits integers and are therefore limited to
files with a file size upto 2 GB. The versions without % use
64-bit integers and allow access to larger files.

See Also

Field, Put#IO, Record##

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Input, Form Input and Line
Input Commands
Purpose

Allows the input of one or more variables, with or without
the prompt.

Syntax

Input ["Text",] x [,y,...]
Input ["Text";] x [,y,...]

Line Input ["Text",] a$ [,b$,...]
Line Input ["Text";] a$ [,b$,...]

Form Input n, var
Form Input n As var

Text: any text as prompt
a$, b$: string variable
n : integer
var: variant or string
x, y: any variable type

Description

All the above commands always start from the last cursor
position. To define the location where the input should take
place, the cursor can be positioned using Print At followed
by a semicolon, Locate, VTab or HTab.

Both Line Input and Input contain an optional prompt
which is separated from the following variables by a comma
or a semicolon and both can receive multiple variables,
strings only for Line Input or any variable type for Input.
It is advised that Line Input is used for inputting strings as
it's entries can contain commas, whereas a string entered
with Input can not. The maximum input length for strings
is 10000 characters and special characters can be entered
by typing numbers on the numeric key block while holding
down the alternate key <Alt>.

If only one variable is requested, its input must be ended by
pressing the <Return> or the <Enter> key. If Input
contains a list of variables the entry of each individual
variable is terminated by pressing the <Return> or the
<Enter> key. Any corrections within the variable list are
made by using the <Backspace>, <Delete> and <Insert>
keys, as well as the cursor keys. Unfortunately, unlike in
GFABASIC16, it is no longer possible to separate individual
variables in the list with commas and confirm them all with
one single press of the <Return> or the <Enter> key (see
examples for a workaround).

Form Input differs in that it can only accept a single string
(or variant) and that any value input is restricted to the
number of letters specified by the n integer value.

Example

OpenW 1
Local a$, a%, b$
Local Double x, y
HTab 10 : VTab 9
Print "First Name:"; : Form Input 20 As a$
HTab 10 : VTab 10
Line Input "Surname:", b$

Print AT(40, 20);
Input "Enter two numbers: ";x, y
Print a$`b$`x`y
Do : Sleep : Until Win_1 Is Nothing

In GFABASIC16, it was possible to input a list of variables in
one input box by separating them with commas; sadly, this
no longer works in GFABASIC32, although it is quite easy to
replicate this action, as the following code shows:

Local a$, p As Int32, x As Double, y As Double
Input "Enter two values:";a$
p = InStr(a$, ",")
If p = 0 // No commas
x = Val(a$)
Input "...and the second value:";y

Else
x = Val(Left(a$, p - 1))
y = Val(Mid(a$, p + 1))

EndIf
Print x, y

Another possible workaround uses InputBox as shown
below:

// Courtesy of Factor23
Local Int16 a, b
entree("a,b", *a, *b)

Proc entree(t$, ParamArray p())
Local h As Hash String, l$, i = LBound(p())
l$ = InputBox(t$)
Split h[] = l$, ","
For i = LBound(p()) To UBound(p())
DblPoke p(i) , Val(h[% i + 1])

Next i
Print t$; " : "; l$

End Proc

Remarks

Input, Line Input and Form Input date from the days
before forms and text boxes and are included for backwards
compatibility. Better results can be achieved using either
InputBox, OCX Richedit, Prompt and OCX TextBox controls.

LineInput and Input can both be used to retrieve data
from files - see here

See Also

{Created by Sjouke Hamstra; Last updated: 30/03/2016 by James Gaite}

Input #,Input$, Input? and
Line Input #
Purpose

Reads data from a previously opened file.

Syntax

Input #n,v1[,v2,...]

Line Input #n,s1[,s2...]

$ = Input$(count, #n)
$ = Input?(count, #n)

n: integer expression; channel number
count: number of characters
#n : channel number
s1, s2,...: strings
v1,v2,...: any variable type

Description

All these commands read data from a file, accessed with the
channel number n (from 0 to 511).

For Line Input and Input, either individual values or whole
variable lists can be read, the latter being separated by
commas; Line Input is optimised to accept string variables
and does not read a mid-line comma as a data separator;
Input is also capable of reading strings (and sometimes
does it better), as well as being suited to reading numeric

values; both are restricted to inputting ±1,000 character
strings and both internally use TextEOF to test for an end-
of-file situation.

The Input$() and Input?() are synonymous and read the
specified number of characters from #n into a string
variable which is automatically expanded or contracted to
fit. Unlike the Input and Line Input commands, these
functions are only limited to the legal size of a string
(roughly 228 characters long); however, also unlike the two
commands, when reading the full length of a string written
by a Print # statement, these functions do not then
remove the record separator at the end of the string and so,
to read the next record, the separator needs to be cleared
by using a dummy Input# call.

Example

Local a$, b$, c$, d$, e$, f$, g$, n%, txt$ =
"'Hello, how are you?', 'I am fine,
thanks'"#13#10"'That's good to hear.'"

Open App.Path & "\temp.dat" for Output As # 1
Write # 1, txt$
Print # 1, txt$
Print # 1; Len(txt$) : Print # 1, txt$
Close # 1
Open App.Path & "\temp.dat" for Input As # 1
Line Input # 1;a$ // a$ reads the first
iteration of txt$

Line Input # 1;b$, c$ // but both b$ and c$ are
required to read the second due to the commas

Close # 1
Print "Line Input:" : Print "a$ = "; a$: Print
"b$ = "; b$: Print "c$ = "; c$: Print

Open App.Path & "\temp.dat" for Input As # 1

Input # 1;a$ // a$ reads the
first iteration of txt$

Input # 1;b$, c$, d$, e$, f$ // but b$, c$, d$,
e$ and f$ are required to read the second due to
the commas

Input # 1;n% : g$ = Input$(n, # 1)
Print "Input:" : Print "a$ = "; a$: Print "b$ =
"; b$: Print "c$ = "; c$

Print "d$ = "; d$: Print "e$ = "; e$: Print "f$
= "; f$: Print

Print "Input$:" : Print "g$ = "; g$
Print "EOF? = "; EOF(# 1) // There is still the
record separator remaining at the end of the file

Input # 1;a$
Print "EOF? = "; EOF(# 1) // Now the end of the
file is reached

Close # 1
Kill App.Path & "\temp.dat"

Remarks

None of these functions and commands were implemented
to work with a "COM:" port or any other interface, but are
built to work only with files and are optimized in that
direction. If you want to read in through a different
interface, please use the ReadFile() Windows API Function
instead.

However, Input and Line Input (without the file number) are
able to receive input from the keyboard (see here).

Finally, to deal with large string arrays, it is sometimes
better to use

See Also

{Created by Sjouke Hamstra; Last updated: 14/07/2015 by James Gaite}

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx

Record Command
Purpose

Specifies the next record to be read with Get # or written
with Put #.

Syntax

Record[%] #n, record

Record[%](#n)

n:integer expression; channel number
record:integer expression

Description

The command Record #n, record specifies the next record
to be read with Get # or written with Put #.

Record% can be used for file sizes less then 2GB.

The function Record() returns the current record or byte
number.

Example

Global age%, firstname$, ct|(5), i%, n1$, n2$,
nr|, secondname$

OpenW # 1
Open App.Path & "\Musicians.DAT" for Random As #
1, Len = 52

Field # 1, 24 As firstname$, 24 As secondname$, 4
At(V:age%)

//
For i% = 1 To 5
Read n1$, n2$, age%
Lset firstname$ = n1$
Lset secondname$ = n2$
Put # 1, i%
ct|(i%) = i%

Next i%
Close # 1
Data
Harold,Faltemeyer,56,Robin,Williams,32,Barry,Mani
low,78,Bryan,Adams,52,Demi,Lovato,21

//
Open App.Path & "\Musicians.DAT" for Random As #
1, Len = 52

Field # 1, 24 As firstname$, 24 As secondname$, 4
At(V:age%)

For i% = 5 DownTo 1
nr| = Rand(i%) + 1
Record # 1, ct|(nr|)
Get # 1
Print "Record" & ct|(nr|) & ": " &
Trim(firstname$) & " " & Trim(secondname$) & "
aged" & age%

Delete ct|(nr)
Next i%
Close # 1
Kill App.Path & "\Musicians.DAT" // Tidy-up line

Remarks

The function Record() is the reverse function to the
command Record.

Record(# i) = Loc(# i) \ FileAttr(# i, 6) + FileAttr(# i, 4)

See Also

Field, Get#, Put#, Seek, FileAttr

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Put# Command
Purpose

Writes a record to a random access file.

Syntax

Put[%] #n [[,record], variable]

n:integer expression; channel
record:integer expression
variable:variable name

Description

Put # writes a record to an R-file through the channel n
(from 0 to 511), previously opened with Open. record is an
optional parameter and contains a value between 0 or 1
depending on Option Base, and the number of records
within the file. If record is not specified the next record in
file is always written out.

Put #n, variable writes the contents of the variable to the
file.

Put% internally uses 32-bit access and writes records to a
file with a maximum size of 2GB.

Example

See Get #.

Remarks

Put # can only add one record to a file. To add several
records to an R-file a loop containing a Put # must be
created.

See Also

Field, Get#, Record

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Write Command
Purpose

Saves data to sequential files for later read with Input #.

Syntax

Write [#n,]a[,a$, b,...]

n:integer expression, channel
a, b:aexp
a$:sexp

Description

The Write [#n] command is followed by numerical and
string expressions which must be separated by commas.
Write #n writes these expressions sequentially. The
characters are enclosed in quotation marks and commas are
generally used as separators.

Note that Write can be used to print to the Form as well.

Example

Local f$ = App.Path + "\Test.Dat", a$, i%
AutoRedraw = 1
Open f$ for Output As # 1
Write # 1, 2 * PI, "Hello GFA", _
Sin(PI ^ 2 / 4)

Close # 1
Open f$ for Input As # 1
For i% = 1 To 3

Input # 1, a$
Print a$

Next i%
Close # 1
Open f$ for Input As # 1
Print "Format of the file: "; _
Input?(LOF(# 1), # 1)

Close # 1
// Tidy-up line
Kill f$

See Also

Print#, Input#

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Bput Command
Purpose

Fast save of an area of memory to a file.

Syntax

Bput #n, addr, count

n, addr, count:integer expression

Description

An area of memory can be saved to disk (RAM disk, hard
disk etc.) using Bput (block put) and loaded back in with
Bget (block get). The channel #n must be opened first with
Open names$ for Output As #. The integer expression
addr contains the start address of the memory to be saved.
In addition, count must specify the length of the file.

Example

' Save and Load an array
OpenW # 1
Dim a%(999), addr%, b%(200), count%, i%
For i% = 0 To 999
a%(i%) = Rand(1000)

Next i%
addr% = V:a%(0)
count% = (V:a%(1) - V:a%(0)) * 1000
Open "C:\TEST.DAT" for Output As # 1
BPut # 1, addr%, count%
Close # 1

Open "C:\TEST.DAT" for Input As # 1
addr% = V:b%(0)
count% = (V:b%(1) - V:b%(0)) * 200
BGet # 1, addr%, count%
Close # 1
Kill "c:\TEST.DAT" // Tidy up line
For i% = 1 To 10
Print b%(i%)

Next i%

Remarks

The saving of memory with Bput is similar to BSave. In
contrast to BSave, Bput saves the data through a
previously opened channel under a previously defined file
name.

See Also

Bload, BSave, Bget, Open

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Bget Command
Purpose

Fast read of files saved with Bput.

Syntax

Bget #n, addr, count

n, addr, count:integer expression

Description

Bget (block get) is used to read files stored with Bput
(block put). A channel for the file must be opened first with
Open. addr contains the address where in memory the file
should be loaded. count defines how much data should Bget
read from the file.

Example

' Save and Load an array
OpenW # 1
Dim a%(999), addr%, b%(200), count%, i%
For i% = 0 To 999
a%(i%) = Rand(1000)

Next i%
addr% = V:a%(0)
count% = (V:a%(1) - V:a%(0)) * 1000
Open "C:\TEST.DAT" for Output As # 1
BPut # 1, addr%, count%
Close # 1
Open "C:\TEST.DAT" for Input As # 1

addr% = V:b%(0)
count% = (V:b%(1) - V:b%(0)) * 200
BGet # 1, addr%, count%
Close # 1
Kill "c:\TEST.DAT"
For i% = 1 To 10
Print b%(i%)

Next i%

Reads the first 200 values from the file TEST.DAT on drive C
from the address V: b%(0) into array b%().

Remarks

Bget and Bput can also be used to save and read parts of a
file.

See Also

BSave, Bload, Bput, Open

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

BSave Command
Purpose

Fast save of an area of memory to a file.

Syntax

BSave a$, addr, count

a$:sexp; file name

addr, count:integer expression

Description

An area of memory can be saved to disk (RAM disk, hard
disk etc.) using BSave (block save) and loaded back in with
BLoad (block load). The integer expression addr contains
the start address of the memory to be saved. In addition,
count must specify the length of the file a$.

Example

OpenW # 1
Local addr%, count%, i%
Dim a%(999), b%(999)
For i% = 0 To 999
a%(i%) = Rand(1000)

Next i%
addr% = V:a%(0)
count% = (V:a%(1) - V:a%(0)) * 1000
BSave "C:\TEST.DAT", addr%, count%
addr% = V:b%(0)

count% = (V:b%(1) - V:b%(0)) * 1000
BLoad "C:\TEST.DAT", addr%
Kill "C:\TEST.DAT" // Tidy up line
For i% = 1 To 10
Print b%(600 + i%)

Next i%

Remarks

The saving of files using BSave is - depending on the
medium - 5 to 10 times faster than with Open...Print#
...Close. Even the memory needed by BSave is -
depending on the file - up to three times smaller.

BSave and BLoad access files in a non-sharing mode.

See Also

Bload, Bput, Bget

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

BLoad Command
Purpose

Fast load of files.

Syntax

BLoad filename$, addr

filename$:sexp; file name

addr:integer expression

Description

BLoad (block load) is used to read the file previously stored
with BSave (block save). The parameter addr contains the
address where in memory the file should be loaded.

Example

OpenW # 1
Local addr%, count%, i%
Dim a%(999), b%(999)
For i% = 0 To 999
a%(i%) = Rand(1000)

Next i%
addr% = V:a%(0)
count% = (V:a%(1) - V:a%(0)) * 1000
BSave "C:\TEST.DAT", addr%, count%
addr% = V:b%(0)
count% = (V:b%(1) - V:b%(0)) * 1000
BLoad "C:\TEST.DAT", addr%

Kill "C:\TEST.DAT" // Tidy up line
For i% = 1 To 10
Print b%(600 + i%)

Next i%

Remarks

BSave and BLoad access the file in a non-sharing mode;
they do not work with internal filenames starting with ':'.

See Also

BSave, Bput, Bget

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Inp(#n) Function
Purpose

Reads one or more bytes from a previously opened file.

Syntax

i = Inp(#n)

i = Inp|(#n)

i = Inp&(#n)

i = Inp%(#n)

n: integer expression; channel number

Description

Inp(#n) or Inp|() reads a byte from a previously opened
file. The numerical expression n contains the channel
number (from 0 to 511), with which the file is being
accessed.

Inp&(#n) reads 2 bytes (16-bit integer) from a previously
opened file.

Inp%(#n) reads 4 bytes (32-bit integer) from a previously
opened file.

Example

OpenW 1
Local i%, a&, b%

Open App.Path & "\TEST.DAT" for Output As # 1
For i% = 1 To 50
Print # 1, Str$(i%, 3)

Next
Close # 1
Open App.Path & "\TEST.DAT" for Input As # 1
For i% = 1 To 20
a& = Inp|(# 1) ' or Inp()
Print a&, Chr(a&)

Next i%
Close # 1
Kill App.Path & "\TEST.DAT" // Tidy-up line

opens the file TEST.DAT on drive C and reads in a For...Next
loop one byte from this file 20 times and prints the values
to the screen.

Remarks

Inp|(#) is synonym with Inp(#) and can be used
instead.

See Also

Out

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Out # Command
Purpose

Writes a value to an already opened file.

Syntax

Out # n, a [,b,c...]

Out| # n, a [,b,c...]

Out& # n, a [,b,c...]

Out% # n, a [,b,c...]

n:integer expression; channel number

a,b,c...:aexp

Description

Out # n writes one or more bytes to a previously opened
file. The numerical expression n contains the channel
number (from 0 to 511) used to access the file.

Out| # is synonym with Out #. Out& # writes a 16-bit
integer (word) and Out% # writes a 32-bit integer.

Example

OpenW 1
Local a%, b&, i%
Open "C:\TEST.DAT" for Output As # 1
For i% = 1 To 20

Out& # 1, 128
Next i%
Close # 1
OpenW # 1
Print "The file C:\TEST.DAT was written using only
Out& #n ()" _
+ "out and will be read back now."

Print
Open "C:\TEST.DAT" for Input As # 1
For i% = 1 To 20
b& = Inp&(# 1)
Print b&`

Next i%
Close # 1
// Now use Out|, Out and Out% to produce the same
result

Open "C:\TEST.DAT" for Output As # 1
For i% = 1 To 5
Out| # 1, 128
Out # 1, 0
Out% # 1, $00800080
Out& # 1, 128

Next i%
Close # 1
Print : Print
Print "The file C:\TEST.DAT was written using all
four versions of Out #n ()" _
+ " and will be read back now."

Print
Open "C:\TEST.DAT" for Input As # 1
For i% = 1 To 20
b& = Inp&(# 1)
Print b&`

Next i%
Close # 1
// Tidy up line
Kill "c:\test.dat"

Opens the file TEST.DAT on drive C and writes the word
value 128 to it 20 times from inside a For...Next loop.

See Also

Inp

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Inp(PORT) Function
Purpose

Reads a byte from a port.

Syntax

Inp(PORT n)

Description

Inp(PORT n) reads a byte from a hardware port register,
RTC for example.

Example

This command implies an intimate knowledge of the
hardware and is not portable.

Remarks

INP(^ n), INP|(PORT n) and INP|(^ n) are synonymous
with INP(PORT n) and can be used instead.

INP&(^ n) can be used to read a word (two bytes) and
INP%(PORT n) a long (four bytes) from successive port
addresses.

See Also

Out(PORT)

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Out Port Command
Purpose

Hardware access. Obsolete.

Syntax

Out Port n, m

n:integer expression; port number

m:integer expression

Description

Out Port n, m writes a byte to a hardware port register,
RTC for example.

Under NT, 2000, XP, Vista all hardware access is blocked by
the operating system, although it should be possible under
95/98/ME.

Therefore, this command is hardly usable.

Remarks

Out ^ n, m or Out| Port n, m or Out| ^n, m are
synonymous with Out Port n, m and can be used instead.
Out& ^n can be used to write a word (two bytes), Out%
Port n, m to write a long word (four bytes) to successive
port addresses.

See Also

Inp(Port)

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Sub Function
Purpose

Subtracts two numeric (integer) expressions.

Syntax

Sub x, y(command)
% = i Sub j)(operator)
% = Sub(i, j [,m, …)(function)

x:any numeric variable
y:any numeric expression
i, j:integer expression

Description

Sub x, y subtracts the expression y from value in variable
x.

The operator i Sub j and function Sub(i, j, …) return the
difference between integer expressions. In case one of the
parameters isn't an integer, it is converted to a 32-bit value
first (using CInt).

Example

Debug.Show
Dim b# = 1.5
Trace b# Sub 3 // CInt(b#) - 3 = -1
Trace Sub(b#, 3) // CInt(b#) - 3 = -1
Sub b#, 3 : Trace b# // b# = -1.5
b# = 2.5

Trace b# Sub 3 // CInt(b#) - 3 = -1
Trace Sub(b#, 3) // CInt(b#) * 3 = -1
Sub b#, 3 : Trace b# // b# = -0.5

Remarks

Although the command Sub can be used with any numeric
variable, the usage of integer variables is recommended in
order to achieve the maximum optimization for speed.

Instead of Sub x, y, you can use:

x = x - y
x := x - y
x -= y

When integer variables are used Sub doesn't test for
overflow!

The Add(), Sub(), Mul() and Div() functions can be mixed
freely with each other. For example

l% = Sub(5 ^ 3, 4 * 20 + 3)
// ...or...
l% = Sub(5 ^ 3, Add(Mul(4, 20), 3))

See Also

+, -, *, /F, \, Add, Mul, Div, ++, --, +=, -=, /= , *=,
Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Mod Command, Operator,
and Function
Purpose

Calculates the modulo of an integer expression based on a
second integer expression.

Syntax

Mod v, y(assignment)
% = i Mod j(operator)
% = Mod(i, j [,m,…])(function)

v:any numeric variable
y:any number expression
i, j, m:integer expression

Description

Mod v, y calculates the modulo of the value in variable v
based on the expression y.

The operator i Mod j and the function Mod(i, j, …) return an
integer value. In case one of the parameters isn't an
integer, it is converted to a 32-bit value first (using CInt).

Example

Debug.Show
Dim b As Double = 7.1, c%
Trace b Mod 3 // CInt(b) Mod 3 = 1
Trace Mod(b, 3) // CInt(b) Mod 3 = 1

Trace b : c% = b
' Mod Command requires an integer variable
Mod b, 3 : Trace b // b = 3 - NOT CORRECT
Mod c%, 3 : Trace c% // c% = 1 - CORRECT
b = 2
Trace b Mod 3.1 // CInt(b) + CInt(3.1) = 2
Trace Mod(b, 3) // CInt(b) + 3 = 2
Trace Mod(7, 4, 3) // 0

Known Issues

The Mod v, y assignment command doesn't work correctly
when v is not an integer.

See Also

Add, Sub, Mul, Div, FMod, Dec, Inc, Pred, ++, --, +=, -=,
/= , *=

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Mul and Mul8 Command,
Operator & Functions
Purpose

Multiplies a numeric variable with a numeric expression.

Syntax

Mul x, y(command)
% = i Mul j(operator)
% = Mul(i, j[,m,...])(function)

l = xl Mul8 yl(operator)
l = Mul8(xl, yl [,zl,…])(function)

x:any numeric variable
y:any numeric expression
i, j, m...:integer expression
l,xl,yl,zl...:large expression

Description

The command Mul x, j multiplies the value in the numeric
variable x (integer or floating-point) with the expression j.
The return value type depends on the type of the variable x.

The operator i Mul j and function Mul(i, j, …) multiply 32-
bit integers and return a 32-bit integer value.

Similarly, the operator i Mul8 j and function Mul8(i, j, …)
multiply 64-bit integers and return a 64-bit integer value.

Example

Debug.Show
Dim b# = 1.5, c As Large = 8
Trace b#
Trace b# Mul 3 // CInt(b#) * 3 = 6
Trace Mul(b#, 3) // CInt(b#) * 3 = 6
Mul b#, 3 : Trace b# // b# = 4.5
b# = 2.5 : Trace b#
Trace b# Mul 3 // CInt(b#) * 3 = 6
Trace Mul(b#, 3) // CInt(b#) * 3 = 6
Mul b#, 3 : Trace b# // b# = 7.5
Trace c
Trace c Mul8 3 // 24
Trace Mul8(c, 3) // 24
Mul c, 3 : Trace c // 24

Remarks

Although the command Mul can be used with any numeric
variable, the usage of integer variables is recommended in
order to achieve the maximum optimization for speed.

Instead of Mul x, y, you can use:

x = x * y
x := x * y
x *= y

When integer variables are used Mul doesn't test for
overflow!

See Also

+, -, *, /F, \, Add, Sub, Mod, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Div Command
Purpose

Divides a numeric variable by a numeric expression.

Syntax

Div x, y(command)

% = i Div j)(operator)

% = Div(i, j)(function)

x:numeric variable
y:any numeric expression
i, j:integer expression

Description

Div x, y divides the expression y into the value in variable
x. It depends on the type of the variable x which whether
the division is an integer or a floating-point division.

The operator i Div j and function Div(i, j, …) return an
integer value. In case one of the parameters isn't an
integer, it is converted to a 32-bit values first (using CInt).

Example

Debug.Show
Dim b# = 7.5
Trace b# Div 3 // CInt(b#) \ 3 = 2
Trace Div(b#, 3) // CInt(b#) \ 3 = 2

Div b#, 3 : Trace b# // b# = 2.5
b# = 8.5
Trace b# Div 3 // CInt(b#) \ 3 = 2
Trace Div(b#, 3) // CInt(b#) \ 3 = 2
Div b#, 3 : Trace b# // b# = 2.833333333333

Remarks

The following can be used instead of Div x, y:

x = x / y
x := x / y
x /= y

See Also

+, -, *, /F, \, Add, Sub, Mul, Div, ++, --, +=, -=, /= , *=,
Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Fmod Operator
Purpose

Calculates the modulo of a floating point expression based
on a second floating point or integer expression.

Syntax

fp = f Fmod x

fp, f:floating-point exp
x:any numeric exp

Description

Fmod calculates the modulo of a floating point expression
based on a second floating point or an integer expression.

Example

Debug.Show
Local vDbl As Double = 142.8544
Trace Mod(142.8544, 15)
Trace 142.8544 Fmod 15
Trace vDbl
Trace vDbl Fmod 15
Trace 142 Fmod 2.6

Remarks

The assignment command Mod v, y calculates the modulo
of the value in variable v based on the expression y. The
Mod v, y assignment command doesn't work correctly when

v is not an integer. To work with floating-point variables use
v = v Fmod y.

Note The operator i Mod j and the function Mod(i, j, …)
return an integer value. In case one of the parameters isn't
an integer, it is converted to a 32-bit value first (using
CInt).

See Also

Add, Sub, Mul, Div, Mod, Dec, Inc, Pred, ++, --, +=, -=, /=
, *=

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

Sin Function
Purpose

Returns the sine of a numeric expression.

Syntax

= Sin(x)

x:aexp; angle in radians

Description

The sine of an angle in a right-angled triangle corresponds
to a quotient between the hypotenuse and the side opposite
the angle.

Example

Debug.Show
Trace Sin(0) // Prints 0
Trace Sin(PI / 2) // Prints 1
Trace Sin(PI) // Prints
1.22460635382238e-16 (== 0)

Trace Sin(3 * PI / 2) // Prints -1
Trace Sin(2 * PI) // Prints
-2.44921270764475e-16 (== 0)

Remarks

Sin() is the reverse function of ASin().

See Also

SinQ(), Cos(), CosQ(), Tan(), ASin(), ACos(), Atn(), ATan()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Cos Function
Purpose

Returns the cosine of a numeric expression.

Syntax

Cos(x)

x:aexp; angle in radians

Description

The cosine of an angle in a right-angled triangle
corresponds to a quotient between the hypotenuse and the
side forming the angle. When calculating Cos(x) it is
assumed that the value of x is given in radians.

Example

Debug.Show
Trace Cos(0) // Prints 1
Trace Cos(PI / 2) // Prints 6.12303176911189e-
17

Trace Cos(PI) // Prints -1
Trace Cos(3 * PI / 2) // Prints
-1.83690953073357e-16

Remarks

Cos() is the reverse function of ACos().

See Also

Sin(), SinQ(), CosQ(), Tan(), ASin(), ACos(), Atn(), Atan()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Tan Function
Purpose

Returns the tangent of a numeric expression.

Syntax

= Tan(x)

x:aexp; angle in radians

Description

The tangent of an angle corresponds to the quotient of two
short sides in a right-angled triangle. The value of x is given
in radians.

Example

Debug.Show
Trace Tan(PI / 4) // Prints 1
Trace Tan(PI) // Prints
-1.22460635382238e-16 (== 0)

Remarks

Tan() is the reverse function of Atn() or Atan().

See Also

Atn(), Atan() Cos(), CosQ(),(), ASin(), ACos(), Sin(), SinQ()

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Atn Function
Purpose

Returns the arc tangent of a numeric expression.

Syntax

Atn(x)

x:aexp

Description

Atn(x) expects as function argument x the quotient
between the two short sides in a right-angled triangle and
returns the angle in radians.

Example

OpenW # 1
Print Atn(-PI) // Prints -1.26...
Print Atn(1) // Prints 0.78...
Print Atn(PI / 4) // Prints 0.66...
Print Atn(Tan(PI / 4)) // Prints 0.78...

Remarks

Atn() is the reverse function of Tan(). Atn() is synonymous
with ATan() and can be used instead.

See Also

Sin(), SinQ(), Cos(), CosQ(), Tan(), Acos(), Atn(), Atan(),
Atan2()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

SinQ Function
Purpose

Returns the extrapolated sine of a numeric expression.

Syntax

= SinQ(x)

x:aexp; angle in degrees

Description

For SinQ() GFA-BASIC 32 uses an internal table with sine
values in one degree steps. SinQ(x) expects, therefore, the
expression x to be in degrees. The intermediate values of
function x are extrapolated in 1/16- degree steps. This
accuracy is sufficient for plotting of graphs on the screen,
particularly when there is no co-processor, since this
function is several times faster than Sin(x).

Example

Debug.Show
Trace SinQ(0) // Prints 0
Trace SinQ(90) // Prints 1
Trace SinQ(180) // Prints 1.22460635382238e-16 (==
0)

Trace Sin(PI) // Prints 1.22460635382238e-16 (==
0)

Trace SinQ(270) // Prints -1
Trace SinQ(360) // Prints -2.44921270764475e-16
(== 0)

See Also

Sin(), Cos(), CosQ(), Tan(), ASin(), ACos(), Atn(), ATan()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

CosQ Function
Purpose

Returns the interpolated cosine of a numeric expression.

Syntax

CosQ(x)

x:aexp; angle in degrees

Description

For CosQ() GFA-BASIC uses an internal table with cosine
values in one degree steps. CosQ(x) expects, therefore, the
expression x to be in degrees. The intermediate values of
function x are interpolated in 1/16- degree steps. This
accuracy is sufficient for plotting of graphs on the screen,
particularly when there is no co-processor, since this
function is several times faster than Cos(x).

Example

Debug.Show
Trace CosQ(180) // Prints -1
Trace Cos(PI) // Prints -1

See Also

Sin(), SinQ(), Cos(), Tan(), ASin(), ACos(), Atn(), Atan()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

ACos() Trigonometrical
Function
Purpose

Returns the arc cosine of a numeric expression.

Syntax

ACos(x)

Description

ACos(x) expects as function argument x the quotient
between hypotenuse and the side forming the angle (in a
right-angled triangle) and returns the angle in radians. It
follows, therefore, that the value of x ranges between -1
(equivalent to Cos(PI)) and 1 (equivalent to Cos(0)).

Example

OpenW # 1
Print Acos(-1) // Prints 3.14...
Print Acos(0) // Prints 1.57...
Print Acos(1) // Prints 0
Print Acos(Cos(PI)) // Prints 3.14...

Remarks

ACos() is the reverse function of Cos().

See Also

Sin(), Cos(), SinQ(), CosQ() Tan(), ASin(), Atn(), ATan()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ATan Function
Purpose

Returns the arc tangent of a numeric expression.

Syntax

ATan(x)

Description

ATan(x) expects as function argument x the quotient
between the two short sides in a right-angled triangle and
returns the angle in radians.

Example

OpenW 1
Print Atan(90)

Remarks

ATan() is the reverse function of Tan().

Atn() is synonymous with ATan() and can be used instead.

See Also

Sin(), SinQ(), Cos(), CosQ(), Tan(), Acos(), Atn(), Atan(),
Atan2()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ATan2 Function
Purpose

Returns the arc tangent of the quotient of two numeric
expressions.

Syntax

ATan2(x, y)

Description

ATan2 returns the arc tangent the quotient of two numeric
expressions, without the explicit calculation of the quotient,
in case, that a division by zero will not possible. In the
contrast to the function ATan the results of the function
Atan2 can be placed in all as 0 in all 4 square of the
system of coordinates. This will be possible because there
will be a way to difference between x > 0 and y < 0 just as
x < 0 and y > 0, etc.. With the division of two numeric
characters the information, which of both parameters was <
0 are gone (or lost). ATan(x) real will be Atan2(x,1) and
not Atan2((-x,-1).

Example

OpenW 1
Local x%
Print Atan2(7, 24)
' is the same as:
Print Atan(7 / 24)
'or
Print Atan2(7 / 24, 1)

KeyGet x%
CloseW # 1

Remarks

Converts rectangular coordinates (b, a) to polar (r, theta).

See Also

Sin(), SinQ(), Cos(), CosQ(), Tan(), Acos(), Atn(), Atan(),
Atan2()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

_hypot Function
Purpose

Calculates the hypotenuse.

Syntax

_hypot(x,y)

x,y: aexp

The _hypot function calculates the length of the
hypotenuse of a right triangle, given the length of the two
sides x and y. A call to _hypot is equivalent to the square
root of x2 + y2.

Example

OpenW 1
Global a#
a# = _hypot(5, 6)
Print a# // Result: 7.8102496.....
Do
Sleep

Until Me Is Nothing
CloseW 1

Remarks

An example to use it for: to convert Cartesian coordinates
(normal rectangle coordinates) into polar coordinates: angle
= Atan2(x, y) : radius = _hypot(x, y)

See Also

Tanh(), ArSinH(), ArCosH(), ArTanH(), Deg(), Rad(), Sin(),
SinQ(), Cos(), CosQ(), Tan(), ASin(), ACos(), ATn(), Atan()

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

Exp, Exp2 and Exp10
Functions
Purpose

Returns the Euler's number e (= 2.178...) to the power of a
numeric expression.

Syntax

Exp(x)

Exp2(x)

Exp10(x)

Description

Exp(x) calculates the x-th power of Euler's number e =
2.178...., Exp2(x) calculates 2 ^ x, while Exp10(x)
calculates 10 ^ x.

In all of these functions, x can be positive, negative or zero.

Example

Debug.Show
Trace Exp(Sqr(2))
Trace Exp2(8)
Trace Exp10(5)

Remarks

Exp(x) is the reverse function of Log(x), which means:

Exp(Log(PI)) = PI = 3.14...

Similarly, Log2(x) and Log10(x) are the reverse functions
of Exp2(x) and Exp10(x) respectively.

OpenW 1
Local a% = 4
a% = Exp(a%) : Print "Exp(a%) = "; a%
a% = Log(a%) : Print "Log(a%) = "; a%
a% = Exp2(a%) : Print "Exp2(a%) = "; a%
a% = Log2(a%) : Print "Log2(a%) = "; a%
a% = Exp10(a%) : Print "Exp10(a%) = "; a%
a% = Log10(a%) : Print "Log10(a%) = "; a%
<NOTE: Assigning too high - such as Exp2(10000) will
result in an overrun error; assigning too low a number -
such as Exp2(-10000) - will result in an inaccurate result:
in the latter example, zero is returned.

See Also

Log(), Log2(), Log10()

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

Log, Log2 and Log10
Numeric Functions
Purpose

Returns a natural, base 2 or base10 logarithm of a numeric
expression.

Syntax

Log(x)

Log2(x)

Log10(x)

Description

Log(x) calculates the logarithm of x to the base of Euler's
number e (= 2.178....), Log2(x) to the base of 2 and
Log10(x) to the base of 10.

Example

Debug.Show
Trace Log(Sqr(2)) // Prints 0.34657
Trace Log2(42) // Prints 5.392...
Trace Log10(100) // Prints 2

Remarks

Log(x) is the reverse function of Exp(x), which means:

Log(Exp(PI)) = PI = 3.14....

Similarly, Log2(x) and Log10(x) are the reverse functions
of Exp2(x) and Exp10(x) respectively.

The following function is used to calculate the logarithm of
any base:

Print LogBasis(8, 2)

Function LogBasis(x, LogBase)
Return Log(x) / Log(LogBase)

EndFunc

See Also

Exp(), Exp2, Exp10

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Sqr, Sqrt Function
Purpose

Returns the positive square root of a numeric expression.

Syntax

= Sqr(x)

= Sqrt(x)

x:aexp

Description

Sqr and Sqrt are synonyms and calculate the square root
of x.

Example

OpenW # 1
Print Sqrt(16) // prints 4
Print Sqr(PI * 5.3 + 1) // prints 4.20124...

Remarks

If the function argument x is less than 0, Sqr(x) reports an
error.

See Also

Square

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Square Function
Purpose

Returns the square of a numeric expression.

Syntax

= Square(x)

x:aexp

Description

Square multiplies a numeric expression with itself.

Example

Debug.Show
Trace Square(FRound(4 * 4 + 4 / 8))
Trace Square(-5.5)

Remarks

See Also

Sqr

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Pow Function
Purpose

Returns the value of a base expression taken to a specified
power.

Syntax

Pow(x, y)

x, y: aexp

Description

Pow(x, y) is the same as x^y.

Example

OpenW 1
Local a%, b%, c%, d%, y%, x%, e%
x% = 2, y% = 5
a% = x ^ y
b% = Pow(x, y)
c% = Exp(y * Log(x))
d% = Exp2(y * Log2(x))
e% = Exp10(y * Log10(x))
Print a%, b%, c%, d%, e%

See Also

^

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

_y0(),_y1(),_yn(),_j0(),_j1(
),_jn Functions
Purpose

Compute the Bessel-function

Syntax

Double = _y0(x As Double)

Double = _y1(x As Double)

Double = _yn(n As Int, x As Double)

Double = _j0(x As Double)

Double = _j1(x As Double)

Double = _jn(n As Int, x As Double)

Description

The Bessel functions are commonly used in the
mathematics of electromagnetic wave theory.

The _y0, _y1, and _yn routines return Bessel functions of
the second kind: orders 0, 1, and n, respectively.

The _j0, _j1, and _jn routines return Bessel functions of
the first kind: orders 0, 1, and n, respectively.

Example

Print _y0(0.2) // Same as _yn(0, 0.2)
Print _y1(0.2) // Same as _yn(1, 0.2)
Print _yn(2, 0.2)
// .. and so on
Print _j0(0.5) // Same as _jn(0, 0.5)
Print _j1(0.5) // Same as _jn(1, 0.5)
Print _jn(2, 0.5)
// .. and so on

See Also

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

LdExp Function
Purpose

Computes a real number from the mantissa and exponent.

Syntax

int = LdExp(x, exp)

x: double expression
exp: iexp

Description

LdExp(x, exp) computes a real number from the mantissa
and exponent. It is part of a set of three functions,
GetExp(), LdExp() and Mant(), that break down a
floating-point value.

The LdExp function returns the value of x * 2exp if
successful.

The GetExp() and Mant() correspond to the frexp C-
function, which breaks down the floating-point value (exp)
into a mantissa (m) and an exponent (n), such that the
absolute value of m is greater than or equal to 0.5 and less
than 1.0, and x = m*2n. The integer exponent n is obtained
using GetExp() and m with Mant().

Example

OpenW 1
Local Double a, b, i, c, x

Print GetExp(197)
a = GetExp(197)
Print Mant(197)
b = Mant(197)
c = LdExp(a, b)
Print c // prints 197
x = 111
Print 2 ^ GetExp(x) * Mant(x) // prints 111

Remarks

See Also

GetExp(), Mant()

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Mant()
Purpose

Determines the mantissa of a floating-point value

Syntax

int = Mant(fexp)

Description

Mant() determines the mantissa of a floating point value. It
is part of a set of three functions, GetExp(), LdExp() and
Mant(), that break down a floating-point value.

The GetExp() and Mant() correspond to the frexp C-
function, which breaks down the floating-point value (fexp)
into a mantissa (m) and an exponent (n), such that the
absolute value of m is greater than or equal to 0.5 and less
than 1.0, and x = m*2n. The integer exponent n is obtained
using GetExp() and m with Mant().

LdExp(m, exp) computes a real number from the mantissa
and exponent.

Example

OpenW 1
Local Double a, b, i, c, x
Print GetExp(197) // Prints 8
a = GetExp(197)
Print Mant(197) // Prints
0.76953125

b = Mant(197)
c = LdExp(a, b)
Print c // Prints 197
x = 111
Print 2 ^ GetExp(x) * Mant(x) // Prints 111

Remarks

See Also

LdExp(), GetExp()

{Created by Sjouke Hamstra; Last updated: 13/10/2014 by James Gaite}

GetExp Function
Purpose

Determines the exponent of the base of two

Syntax

int = GetExp(exp)

exp:floating-point expresssion

Description

GetExp() determines the exponent of the base of two. It is
part of a set of three functions, GetExp(), LdExp() and
Mant(), that break down a floating-point value.

The GetExp() and Mant() correspond to the frexp C-
function, which breaks down the floating-point value (exp)
into a mantissa (m) and an exponent (n), such that the
absolute value of m is greater than or equal to 0.5 and less
than 1.0, and x = m*2n. The integer exponent n is obtained
using GetExp() and m with Mant().

LdExp(m, exp) computes a real number from the mantissa
and exponent.

Example

Debug.Show
Local Double a, b, i, c, x
Trace GetExp(197) // Prints 8
a = GetExp(197)

Trace Mant(197) // Prints
0.76953125

b = Mant(197)
c = LdExp(a, b)
Trace c // Prints 197
x = 111
Trace 2 ^ GetExp(x) * Mant(x) // Prints 111

Remarks

See Also

LdExp(), Mant()

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Randomize Command
Purpose

Seeds the random number generators.

Syntax

Randomize [n]

Description

Randomize [n] seeds the random number generators with
the value n. If the random number generator is seeded
several times with the same n <> 0, the same sequence of
"random numbers" is generated.

Every time a program is run the random number generators
are seeded with a "random" number. Therefore, if
Randomize is not used, each program run will result in
Rnd, Random, or Rand producing different random
numbers.

Randomize (without parameters) or Randomize 0 seeds
the random number generator with the value of Timer, a
random number just like when a program starts up.

See Also

Rnd, Rand, Random

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Rnd Function
Purpose

Generates a random number between 0 (inclusive) and 1
(exclusive).

Syntax

r# = Rnd[(x)]

r! = Rnd![(x)]

r#:Double expression
r!:Single expression
x:aexp

Description

The parameter x is optional and has the effect described
below. The result of Rnd is a Double. The result of Rnd! is
a Single.

Rnd(0) returns tha last random number, Rnd(positive
number) returns, like Rnd, a new random number.
Rnd(negative number) returns always the same random
number and executes Randomize negative number.

Example

Local i%
OpenW # 1
For i% = 1 To 10
Print Rnd

Next i%

Prints a random number between 0 and 1.

See Also

Random, Rand, Randomize

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

_rand Function
Purpose

Generates a 32-bit integer pseudo random number.

Syntax

x = _rand[()]

x : ivar

Description

_rand returns a random integer value between 0 and
32767.

_rand and its seed function _srand are C-compatible
functions and are offered as an alternative to Rnd, Rand,
Random and their seed function Randomize.

Example

Global x%
x = _rand()
MsgBox x

Remarks

To create a random value GFA-BASIC 32 uses the 'C'-
randomizer, which doesn't need the Randomize command
to initialize the generator, but instead uses _srand.

_rand() is faster than Rand(), but doesn't have the longer
period as Rand().

See Also

_rand, _srand, Rand, Randomize, Random, Rnd

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

_srand Function
Purpose

Sets a random starting point.

Syntax

_srand(seed)

seed : ivar

Description

The C-compatible _srand function sets the starting point
for generating a series of pseudorandom integers. To
reinitialize the generator, use 1 as the seed argument. Any
other value for seed sets the generator to a random starting
point. _rand retrieves the pseudorandom numbers that are
generated. Calling _rand before any call to _srand
generates the same sequence as calling _srand with seed
passed as 1.

_srand(qTimer) or _srand(oTimer) give good random
starting values.

Example

Global x
~_srand(oTimer) // seed
x = _rand()
MsgBox x

Remarks

To create a random value GFA-BASIC 32 uses the 'C'-
randomizer, which doesn't need the Randomize command
to initialize the generator, but instead uses _srand.

_rand() is faster than Rand(), but doesn't have the longer
period as Rand().

See Also

_rand, _srand, Rand, Randomize, Random, Rnd, qTimer,
oTimer

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Abs() Numeric Function
Purpose

Returns the absolute value of a numeric expression.

Syntax

Abs(x)

x:aexp

Description

The number argument can be any valid numeric expression.
The return value has the same type as the argument x.

Example

Print Abs(-210) // Prints 210
Print Abs(5 - 10) // Prints 5
Print Abs(-0.3) // Prints 0.3

Remarks

The returned value from Abs() depends on the sign of the x
argument:

for x < 0 returns -x,

for x = 0 returns 0 and

for x > 0 returns x.

See Also

Sgn

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Sgn Function
Purpose

Returns the sign of a numeric expression.

Syntax

iexp = Sgn(x)

x:aexp

Example

Debug.Show
Trace Sgn(-210) // Prints -1
Trace Sgn(Abs(5 - 10)) // Prints 1
Trace Sgn(0) // Prints 0

Remarks

The value returned by the Sgn() function depends on the
sign of the argument x:

x < 0 returns -1,

x = 0 returns 0 and

x > 0 returns 1.

See Also

Abs()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Variat Function
Purpose

Returns the number of permutations of n elements to k-th
order without repetition.

Syntax

= Variat(n, k)

Description

Variat(n,k) is defined as:

Variat(n,k)=n!/(n-k)!.

Example

OpenW # 1
Print Variat(6, 2) // Prints 30

Remarks

If k > n an error is reported.

See Also

Fact, Combin, Permut

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Combin Function
Purpose

Returns the number of combinations of n elements to k-th
order without repetition.

Syntax

Combin(n, k)

Description

Combin(n, k) is defined as: Combin(n, k)=n!/((n-k)!*k!)

Example

OpenW # 1
Print Combin(6, 2) // Prints 15

Remarks

When k > n an error is reported.

See Also

Fact(), Variat()

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Permut Function
Purpose

Returns the number of permutations of n elements to k-th
order without repetition.

Syntax

Permut(n, k)

n,k:integer expression

Description

Permut is defined as

Permut(n,k) = n!/(n-k)!.

Example

OpenW # 1
Print Permut(6, 2) // Prints 30

Remarks

If k > n an error is reported.

See Also

Fact(), Combin(), Variat

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Round, FRound and QRound
Functions
Purpose

Rounding the numeric expression x.

Syntax

f = Round(x [,n])
f = FRound(x [,n])
f = QRound(x [, n])

f : floating point variable
x : any numeric variable
n : integer

Description

In all aspects of operation, Round and FRound are
identical: when the optional parameter n is omitted, they
round x to the nearest whole integer, with the decimal 0.5
rounded up; where n is positive, they round to n decimal
points, usually rounding up if the next decimal is a '5', but
sometimes rounding down (see example); and where n is
negative, to the nearest integer multiple of 10-n, rounded
up once again if the next digit is a '5'.

QRound uses the 80x87 coprocessor instruction for
rounding and, thus, acts like so: when the optional
parameter n is omitted, it rounds x to the nearest EVEN
integer; where n is positive, it acts like Round and rounds

to n decimal points, usually rounding up if the next decimal
is a '5', but sometimes rounding down (see example); and
where n is negative, to the nearest integer multiple of 10-n

where the pertinent digit is EVEN.

The differences are illustrated in the example below
(remember Round acts in the same way as FRound).

Example

Debug.Show
Trace QRound(100.5) // Output: 100
Trace FRound(100.5) // Output: 101
Debug
Trace QRound(101.5) // Output: 102
Trace FRound(101.5) // Output: 102
Debug
Trace QRound(100.55, 1) // Output: 100.5 (next 5
rounded down)

Trace FRound(100.55, 1) // Output: 100.5 (next 5
rounded down)

Debug
Trace QRound(100.555, 2) // Output: 101.5 (next 5
rounded up)

Trace FRound(100.555, 2) // Output: 101.5 (next 5
rounded up)

Debug
Trace QRound(105, -1) // Output: 100
Trace FRound(105, -1) // Output: 110
Debug
Trace QRound(115, -1) // Output: 120
Trace FRound(115, -1) // Output: 120

Remarks

The behaviour of Round/FRound when dealing with
rounding to decimal places is odd and inconsistent: it should

follow the pattern set and round up if the next digit is a '5',
which it usually does, but not always. To get around this
problem, you can use the following rather complicated
workaround below to ensure these functions always round
up in this situation:

Debug.Show
Local Int32 n = 1
Trace FRound(100.55, n) //
Output: 100.5 (next 5 rounded down)

Trace FRound(100.55 + (1 * 10 ^ -(n + 1)), n) //
Output: 100.6 (next 5 rounded up)

See Also

Ceil(), CInt, Frac(), Fix(), Floor(), Int(), Trunc()

{Created by Sjouke Hamstra; Last updated: 05/08/2019 by James Gaite}

Max and Min Functions
Purpose

These functions return the highest or lowest value among
their parameters.

Syntax

int = iMax | MaxI(i1,i2 [,i3,..., in])

int = iMin | MinI(i1,i2 [,i3,..., in])

double = Max(x1,x2 [,x3,..., xn])

$ = Min(x1$,x2$ [,x3$,..., xn$])

$ = Max(x1$,x2$ [,x3$,..., xn$])

double = Min(x1,x2 [,x3,..., xn])

currency = MaxCur(c1,c2 [,c3,..., cn])

currency = MinCur(c1,c2 [,c3,..., cn])

int64 = MaxLarge(i1,i2 [,i3,..., in])

int64 = MinLarge(i1,i2 [,i3,..., in])

c1,c2,...:currency value i1,i2,...:integer (32- or 64-bit)
value
x1,x2,...:numerical expression
x1$,x2$,...:numerical expression

Description

Max() return the highest and Min() the lowest in a series of
numbers or string values given as parameters.

iMax() and iMin() do the same but with 32-bit integers
(MaxLarge and MinLarge for 64-bit integers) and are
therefore faster; MaxI and MinI are synonymous with
iMax and iMIn respectively.

Finally, MaxCur and MinCur return the highest and lowest
values from a list of currencies; integers, single and double
values can also be used but Variants and Strings will cause
errors.

Example

Local a% = 5, b# = 5.4
Debug.Show
Trace Max(1, a%, b#, 0.9)
Trace Min(1, a%, b#, 0.9)
Trace iMax(1, a%, b#, 0.9)
Trace iMin(1, a%, b#, 0.9) // 0.9 is rounded up to
1

An example with Currency values:

Debug.Show
Local a# = 7.45, a@ = 7.45, b@ = 2.45
Trace MaxCur(3.50, a#, b@)
Trace MaxCur(3.50, CCur(a#), b@)
Trace MinCur(3.50, a@, b@)

And an example with String values:

Debug.Show
Trace Max("ABC", "BBC", "ABX", "BD")
Trace Min("ABC", "BBC", "ABX", "BD")

Remarks

The integer functions (iMax, etc) round non-integer
parameters using CInt() which rounds them to the nearest
whole number EXCEPT with decimals of n.5 which it rounds
to the nearest even number: therefore, both 3.5 and 4.5
will be rounded to 4, as shown by the example below:

For fastest performance it is advisable to adhere strictly to
the variable type particular to the function. Variants and
Strings should only be used with Max and Min.

Debug.Show
Trace iMin(3.5, 4.5)
Trace MinI(3.5, 4.5)
Trace iMax(3.5, 4.5)
Trace MaxI(3.5, 4.5)

See Also

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Even, Odd Functions
Purpose

Even tests if a numeric expression is even and returns -1
(true) if it is, or 0 if the expression is odd, while Odd tests
if a numeric expression is odd and returns -1 (true) if it is,
or 0 if the expression is even.

Syntax

Even(x)

Odd(x)

x:aexp

Example

OpenW # 1
Local x = 6
Print "The value of x is "; x; "which is " &
(Even(x) ? "even." : "odd.")

x = 3
Print "The value of x is "; x; "which is " &
(Odd(x) ? "odd." : "even.")

See Also

Odd()

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Inc, Incr Command
Purpose

Increments a numeric variable.

Syntax

Inc v

Incr v [, n = 1]

v:numeric variable
n:numeric exp

Description

Inc v increments the variable v by 1.

Incr v, n increments the variable v by n (default 1).

Example

OpenW # 1
Local x = 2.7
Inc x
Print x // Prints 3.7
Incr x, 2.5
Print x // Prints 6.2

Remarks

Although Inc can be used with any numeric variable, the
usage of integer variables is recommended in order to

achieve the maximum optimization for speed. Alternatives
to Inc are:

x = x + 1
x := x + 1
x += 1
x++
Sub x, -1
Add x, 1

When integer variables are used Inc doesn't test for
overflow!

See Also

Add, Sub, Dec, Succ, Pred, ++, --, +=, -=

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Dec Command
Purpose

Decrements a numeric variable.

Syntax

Dec x

Description

Dec x decrements the value of x by 1.

Example

OpenW # 1
Local x = 2.7
Dec x
Print x // Prints 1.7

Remarks

Although Dec can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimisation for speed.

Instead of Dec

x = x - 1
x := x - 1
x -= 1
x--
Sub x, 1

Add x, -1

can be used instead.

When integer variables are used Dec doesn't test for
overflow!

See Also

Inc, Add, Sub, Mul, Div, ++, --, +=, -=, /= , *=

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Decr Command
Purpose

decrements a numeric variable

Syntax

Decr x [, y]

x:avar
y:aexp

Description

With the command Decr you decrements the vale of the
variable x by 1 or by the given value of y.

Example

OpenW 1
Local a%
a = 10000
Decr a
Print a // Prints 9999
Decr a, 1500
Print a // Prints 8499

See Also

Add, Inc, Incr

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

Pred Function
Purpose

Calculates the first whole number smaller than an integer
expression.

Syntax

x = Pred(n)

$ = Pred[$](a$)

x, n:integer expression

Description

Pred(n) returns the first whole number smaller than the
integer expression n.

Pred(a$) returns a character whose ASCII value is one less
than the first character of a string expression.

Example

OpenW # 1
Print Pred(4 * 11 - 1) // Prints 42
Local l% = Pred(4 * 11 - 1)
Print l% // Prints 42
Print Pred("Hello World") // Prints G

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Add(), Sub(), Mul(), Div(), Mod(), Succ()

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

Succ Function
Purpose

Calculates the first natural number greater than an integer
expression.

Returns a character whose ASCII value is one greater than
the first character of a string expression.

Syntax

% = Succ(n)

$ = Succ[$](a$)

Description

Succ(n) returns the first natural number greater than the
integer expression n.

Example

Debug.Show
Trace Succ(4 * 10 + 1) // Prints 42
Trace Succ("Hello world") // Prints I

Remarks

Succ(a$) corresponds to Chr$(Succ(Asc(a$))).

Without the optional $ character the function still returns a
String data type and not a Variant.

See Also

String, Pred()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Mat Add Command
Purpose

Adds all elements in two (one- or two-dimensional) floating
point arrays.

Syntax

Mat Add a() = b() + c() or

Mat Add a(), b() or

Mat Add a(), x

a(), b(), c():names of one- or two-dimensional floating
point (Double) arrays

x:aexp

Description

Mat Add a()= b() + c() is only valid for floating point
arrays of the same order, such as Dim a(n, m),b(n, m),c(n,
m) or Dim a(n),b(n),c(n). The contents of elements in array
c() are added to the contents of elements in array b() and
the result is written to array a().

Mat Add a(), b() adds the contents of elements in array b()
to the elements in array a() and writes the result to array
a(). The original array a() is thereby lost.

Mat Add a(), x adds the expression x to the contents of all
elements in array a() and writes the result to array a(). The
original array a() is thereby lost.

Example

OpenW # 1 : FontName = "courier new"
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 3, 1 .. 5)
Global Double c(1 .. 3, 1 .. 5)
Local x%
Mat Set b() = 3
Mat Set c() = 4
Mat Print b()
Print String$(9, "-")
Mat Print c()
Print String$(9, "-")
Mat Add a() = b()+c()
Mat Print a()
Erase a(), b(), c()

...or...

OpenW 1 : FontName = "courier new"
Global Double a(1 .. 3, 1 .. 5)
Global b#(1 .. 3, 1 .. 5), x%
Mat Set a() = 1
Mat Set b() = 3
Mat Print a()
Print String$(10, "-")
Mat Print b()
Print String$(10, "-")
Mat Add a(), b()
Mat Print a()
Erase a(), b()

...or...

OpenW 1 : FontName = "courier new"
Global Double a(1 .. 3, 1 .. 5)
Mat Set a() = 1

Mat Print a()
Print String$(10, "-")
Mat Add a(), 5
Mat Print a()
Erase a()

Remarks

Use the format of dimensioning Dim v#(1..n, 1..m) so the
indexing doesn't depend on the Option Base setting.

Mat Base is no longer supported.

See Also

Mat Sub, Mat Mul

{Created by Sjouke Hamstra; Last updated: 13/10/2014 by James Gaite}

Mat Sub Command
Purpose

Subtracts all elements in two (one- or two-dimensional)
floating point arrays.

Syntax

Mat Sub a()=b()-c()or

Mat Sub a(),b() or

Mat Sub a(),x

a(), b(), c():names of one- or two-dimensional floating
point arrays
x:aexp

Description

Mat Sub a()=b()-c() is only valid for floating point arrays of
the same order, such as Dim a(n, m),b(n, m),c(n, m) or
Dim a(n),b(n),c(n). The contents of elements in array c()
are subtracted from the contents of elements in array b()
and the result is written to array a().

Mat Sub a(),b() subtracts the contents of elements in array
b() from the elements in array a() and writes the result to
array a(). The original array a() is thereby lost.

Mat Sub a(),x subtracts the expression x from the contents
of all elements in array a() and writes the result to array
a(). The original array a() is thereby lost.

Example

OpenW 1 : Win_1.FontName = "terminal"
Global Double a(1 To 3, 1 To 5)
Global Double b(1 To 3, 1 To 5)
Global Double c(1 To 3, 1 To 5)
Mat Set b() = 3
Mat Set c() = 4
Mat Print b(), 2, 0
divide(14, "Minus")
Mat Print c(), 2, 0
divide(14, "Equals")
Mat Sub a() = b()-c()
Mat Print a(), 2, 0
Print : Print : Print
Erase a(), b(), c()
Dim a(3, 5), b(3, 5), c(3, 5)
Mat Set b() = 3
Mat Set c() = 4
Mat Print b(), 2, 0
divide(17, "Minus")
Mat Print c(), 2, 0
divide(17, "Equals")
Mat Sub a() = b()-c()
Mat Print a(), 2, 0
Erase a(), b(), c()

Sub divide(n%, n$)
Print
Print String(n%, "-"); : Trace Win_1.CurrentX
Text (CurrentX - TextWidth(n$ & " ")) / 2,
CurrentY, " " & n$ & " "

Print : Print
EndSub

Example 2

OpenW 1 : Win_1.FontName = "terminal"
Global Double a(1 To 3, 1 To 5), x%
Global Double b(1 To 3, 1 To 5)
Mat Set a() = 1
Mat Set b() = 3
Mat Print a(), 2, 0
divide(14, "Minus")
Mat Print b(), 2, 0
divide(14, "Equals")
Mat Sub a(), b()
Mat Print a()
Erase a(), b()

Sub divide(n%, n$)
Print
Print String(n%, "-"); : Trace Win_1.CurrentX
Text (CurrentX - TextWidth(n$ & " ")) / 2,
CurrentY, " " & n$ & " "

Print : Print
EndSub

Example 3:

OpenW 1
Win_1.FontName = "Terminal"
Global Double a(1 To 3, 1 To 5), x%
Mat Set a() = 1
Mat Print a(), 2, 0
Print String$(14, "-")
Mat Sub a(), 5
Mat Print a()

Remark

-

See Also

Mat Add, Mat Mul

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Mul Command
Purpose

Multiplies one- or two-dimensional floating point arrays
which are interpreted as matrices.

Syntax

Mat Mul a()=b()*c() or

Mat Mul x=a()*b() or

Mat Mul a(),x

a(),b(),c():names of one- or two-dimensional floating point
arrays

x:aexp

Description

Mat Mul a()=b()*c() is intended for 'related' matrices of
the same order. Matrices b() and c() are multiplied. The
result of this multiplication is written to matrix a(). In order
to get a product of a matrix multiplication, the matrix on
the left (in this case matrix b()) must have the same
number of columns as the matrix on the right (in this case
c()) has rows.

The matrix a() must, in this example, have the same
number of rows as b() and the same number of columns as
c(), i.e. Dim a(2,2),b(2,3),c(3,2)

Matrices are multiplied using the formula 'rows times
columns'. I.e. the elements in a(i,j) are obtained by
multiplying the elements of the i-th row in matrix b() with
the j-th column in matrix c() and the individual products are
added up. If vectors are used instead of matrices, Mat Mul
a()=b()*c() produces the dyadic product of two vectors.

Mat Mul x=a()*b() is intended for vectors with the same
number of elements. The result x is the scalar product of
vectors a() and b(). The scalar product of two vectors is
defined as the sum of n products a(i)*b(i), i=1,...,n.

Mat Mul a(),x multiplies the matrix or vector a() with the
expression x.

Example

OpenW # 1
Global Double a(1 .. 2, 1 .. 2)
Global Double b(1 .. 2, 1 .. 3)
Global Double c(1 .. 3, 1 .. 2)
Mat Set b() = 1
Data 1,2,-3,4,5,-1
Mat Read c()
Mat Print b(), 5, 1
Print String$(18, "-")
Mat Print c(), 5, 1
Print String$(18, "-")
Mat Mul a() = b()*c()
Mat Print a(), 5, 1
Erase a(), b(), c()

...and...

Global Double a(1 .. 3, 1 .. 3
Global Double b(1 .. 3), c(1 .. 3)
Data 1,2,-3,4,5,-1

Mat Read b()
Mat Read c()
Mat Print b(), 5, 1
Print String$(18, "-")
Mat Print c(), 5, 1
Print String$(18, "-")
Mat Mul a() = b()*c()
Mat Print a(), 5, 1
Erase a(), b(), c()

...and...

OpenW 1 // Mat Mul x = a()*b()
Global Double b(1 .. 3), c(1 .. 3), x%
Data 1,2,-3,4,5,-1
Mat Read b()
Mat Read c()
Mat Print b(), 5, 1
Print String$(18, "-")
Mat Print c(), 5, 1
Print String$(18, "-")
Mat Mul x = b()*c()
Print x
Erase b(), c()

Remarks

-

See Also

Mat Add, Mat Sub

{Created by Sjouke Hamstra; Last updated: 14/10/2014 by James Gaite}

Mat Cpy Command
Purpose

copies a number of rows with a number of elements, from
row/column offset in the source matrix to row/column offset
in the target matrix.

Syntax

Mat Cpy a([i, j])=b([k, l])[,h, w]

i, j, k, l, w, h:integer expression

a(), b():one or two dimensional floating point arrays

Description

Mat Cpy a([i, j])=b([k, l])[,h, w] copies h rows with w
elements in matrix b(), from l and k row/column offset in
matrix b() to i and j row/column offset in matrix a(). The
maximum number of elements copied is equivalent to the
minimum number allowed when dimensioning the matrices,
the number of rows (h) and the number of elements per
row (w).

If Mat Cpy is used on vectors j and l are ignored. Following
a Dim a(n),b(m) the a() and b() are interpreted as row
vectors, that is to say as matrices of type (1,n) and (1,m).

To handle a() and b() as column vectors, they must be
dimension as matrices of type (n,1) and (m,1), that is to
say as Dim a(n,1),b(m,1).

Mat Cpy always handles vectors as column vectors,
regardless of their type, so in order to use the correct Mat
Cpy syntax with vectors Mat Cpy a(n,1)=b(m,1) must
always be used.

If the h and w parameters in Mat Cpy are given explicitly,
the following rules apply when copying vectors:

When w => 1 only the h parameter is taken into account.
When w=0 no copying takes place.

When h =>1, the w is taken into account only when b() is a
row vector and a() is a column vector. Here too, no copying
takes place when h=0.

Example

OpenW 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set a() = 1
Mat Set b() = 5
Mat Cpy a(2, 2) = b(3, 4), 3, 3
Mat Print a()

Prints:

1,1,1,1,1
1,5,5,5,1
1,5,5,5,1

Remarks

If some indices are dropped - due to the given width (w) or
height (h) - Mat Cpy can result in the following special
cases:

Mat Cpy a() = b()

copies into matrix a() all elements of matrix b() for which
there are identical indices in matrix a() as in the following
example:

OpenW 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set b() = 5
Mat Cpy a() = b()
Mat Print a()

prints

5,5,5,5,5
5,5,5,5,5
5,5,5,5,5

Mat Cpy a(i, j)=b()

copies all elements in matrix b(), from row/column offset
defined with Mat BASE, to row/column offset defined with i
and j in matrix a(). The maximum number of elements
copied is equivalent to the minimum number allowed when
dimensioning the matrices, the number of rows (h) and the
number of elements per row (w). Example:

OpenW 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set a() = 1
Mat Set b() = 5
Mat Cpy a(2, 2) = b()
Mat Print a()

Prints:

1,1,1,1,1
1,5,5,5,5
1,5,5,5,5

Mat Cpy a() = b(k, l)

copies all elements in matrix b(), from row/column offset
defined with k and l, to row/column offset defined with Mat
BASE in matrix a(). The maximum number of elements
copied is equivalent to the minimum number allowed when
dimensioning the matrices, the number of rows (h) and the
number of elements per row (w). Example:

OpenW 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set a() = 1
Mat Set b() = 5
Mat Cpy a() = b(4, 4)
Mat Print a()

Prints:

5,5,5,1,1
5,5,5,1,1
5,5,5,1,1

Mat Cpy a(i, j) = b(k, l)

copies all elements in matrix b(), from row/column offset
defined with k and l, to row/column offset defined with i and
j in matrix a(). The maximum number of elements copied is
equivalent to the minimum number allowed when

dimensioning the matrices, the number of rows (h) and the
number of elements per row (w). Example:

OpenW # 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set a() = 1
Mat Set b() = 5
Mat Cpy a(2, 2) = b(4, 4)
Mat Print a()

Prints:

1,1,1,1,1
1,5,5,5,1
1,5,5,5,1

Mat Cpy a()=b(), h, w

copies h rows and w elements in matrix b(), from
row/column offset defined with Mat BASE, to row/column
offset matrix a(). The maximum number of elements copied
is equivalent to the minimum number allowed when
dimensioning the matrices, the number of rows (h) and the
number of elements per row (w). Example:

OpenW # 1
Global Double a(1 .. 3, 1 .. 5)
Global Double b(1 .. 6, 1 .. 6)
Mat Set a() = 1
Mat Set b() = 5
Mat Cpy a() = b(), 3, 3
Mat Print a()

Prints:

5,5,5,1,1
5,5,5,1,1
5,5,5,1,1

See Also

MatX Cpy, Mat Trans

{Created by Sjouke Hamstra; Last updated: 14/10/2014 by James Gaite}

Mat XCpy Command
Purpose

Copies a specified number of rows containing a specified
number of elements, from the given row/column offset in
source matrix to the given row/column offset in target
matrix. The source matrix, or the relevant part of it, are
internally transposed before copying.

Syntax

Mat XCpy a([i, j])=b([k, l])[,h, w]

i, j, k, l, w, h:integer expression

a(),b():one- or two-dimensional floating point array

Description

Mat XCpy a([i, j])=b([k, l])[,h, w] copies h rows with w
elements, from row/column offset defined with l and k in
matrix b(), to row/column offset defined with i and j in
matrix a(). The maximum number of elements copied is
equivalent to the minimum number allowed when
dimensioning the matrices, the number of rows (h) and the
number of elements per row (w). The matrix b(), or the
relevant part of it, are internally transposed before copying,
that is to say the rows and column are swapped. This
change affects only the copy and not the matrix b() itself.

If Mat XCpy is used on vectors j and l are ignored.
Following a Dim a(n),b(m) the a() and b() are interpreted

as row vectors, that is to say as matrices of type (1,n) and
(1,m).

To handle a() and b() as column vectors, they must be
dimension as matrices of type (n,1) and (m,1), that is to
say as Dim a(n,1),b(m,1).

If both vectors are of the same type, that is to say they are
both rows or columns, Mat Cpy must be used.

If the h and w parameters in Mat XCpy are given explicitly,
the following rules apply when copying vectors:

When w => 1, the h parameter is taken into account only
when b() is a column vector and a() is a row vector. When
w=0 no copying takes place.

When h => 1 the w parameter is taken into account only
when b() is a row vector and a() is a column vector. When
h=0 no copying takes place.

Example

OpenW # 1
Global Double a(1 To 3, 1 To 5), x%
Global Double b(1 To 7, 1 To 2)
Mat Set a() = -1
Mat Set b() = 5
Mat Print a(), 2, 0
Print
Mat Print b(), 2, 0
Print
Mat XCpy a(1, 2) = b(3, 2)
Mat Print a(), 2, 0

Remarks

If some indices are dropped - due to the given width (w) or
height (h) - the following special cases can result just like
with Mat Cpy:

Mat XCpy a()=b()

Mat XCpy a([i,j])=b()

Mat XCpy a()=b([k, l])

Mat XCpy a()=b(),w, h

These act the same as the corresponding Mat Cpy
commands, except for the transposition of relevant areas of
matrix b() before copying to matrix a(). The b() matrix
remains unchanged!

See Also

Mat Cpy, Mat Trans

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Trans Command
Purpose

Copies a transposed source matrix into a target matrix.

Syntax

Mat Trans a()=b()

a(),b():one- or two-dimensional floating point array

Description

Mat Trans a()=b() copies the transposed matrix b() into
matrix a(), assuming that both a() and b() are dimensioned
appropriately, that is to say the number of rows in a() must
correspond to the number of columns in b(), and the
number of columns in a() must correspond to the number of
rows in b() (for example Dim a(n,m),b(m,n)).

Example

Global Double a(1 To 4, 1 To 3)
Global Double b(1 To 3, 1 To 4)
Mat Set a() = 2
Mat Set b() = 5
Mat Print a()
Print
Mat Print b()
Print
Mat Trans a() = b()
Mat Print a()

Remarks

Defines a square matrix, that is to say, a matrix with the
same number of rows and columns so that Mat Trans a()
can be used. This command swaps the rows and columns in
matrix a() and writes the modified matrix back to a(). The
original matrix a() is thereby lost. (However, it can be
restored by performing Mat Trans a() again.)

See Also

Mat Cpy, Mat XCpy

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Clr Command
Purpose

Sets all elements in a one- or two-dimensional floating point
array to 0.

Syntax

Mat Clr a()

a():name of a one- or two-dimensional floating point
(Double) array

Description

Mat Clr a() is equivalent to ArrayFill a(),0, that is to say
the command sets all elements of array a() to 0.

Example

OpenW 1
Global Double a(1 .. 3, 1 .. 3)
Data 1,2,3,4,5,6,7,8,9
Mat Read a()
Mat Print a()
Print "--------"
Mat Clr a()
Mat Print a()

First it prints 1 to 9, and then all 0s.

See Also

ArrayFill, Mat Set, Mat One, Mat Neg

{Created by Sjouke Hamstra; Last updated: 14/10/2014 by James Gaite}

MatSet Command
Purpose

Assigns a value to all elements of a one- or two-dimensional
floating point array.

Syntax

Mat Set a()=x

a():name of a one- or two-dimensional floating point array

x:aexp

Description

Mat Set a()=x is equivalent to an ArrayFill a(),x, i.e. the
command sets all elements of the array a() to value x.

Example

OpenW # 1
PrintScroll = True
Global Double a(1 To 5, 1 To 7), i%, j%, x%
For i% = 1 To 5
For j% = 1 To 7
a(i%, j%) = Rand(10)

Next j%
Next i%
Mat Set a() = 5.3
For i% = 1 To 5
For j% = 1 To 7
Print a(i%, j%)

Next j%
Next i%//prints the value 5.3 35 times

See Also

ArrayFill, Mat Clr, Mat One, Mat Neg

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat One Command
Purpose

Creates a unitary matrix.

Syntax

Mat One a()

a():name of a two-dimensional floating point array with the
same numberof rows and columns

Description

Mat One a() creates, from a two dimensional floating point
array a() with the same number of rows and columns, an
array in which the elements a(1,1), a(2,2), ...,a(n,n) are
equal to 1 and all other elements are equal to 0.

Example

OpenW # 1
Global Double a(1 ... 3, 1 ... 3)
Mat One a()
Mat Print a()

prints:

1,0,0
0,1,0
0,0,1

See Also

ArrayFill, Mat Clr, Mat Set, Mat Neg

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Neg Command
Purpose

Negates all elements in a one- or two-dimensional floating
point array

Syntax

Mat Neg a()

a():name of a one- or two-dimensional floating point array

Description

Mat Neg a() multiplies all elements of a one or two
dimensional floating point array a() with -1.

Example

OpenW 1
Global Double a(1 .. 3, 1 .. 3)
Mat One a()
Mat Print a()
Print
Mat Neg a()
Mat Print a()

Remarks

-

See Also

Mat Clr, Mat Set, Mat One

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Det Command
Purpose

Calculates the determinant of a two-dimensional floating
point array which is interpreted as a matrix.

Syntax

Mat Det x=a([i, j])[,n]

a():name of a two-dimensional floating point array

x:aexp

i, j, n:integer expression

Description

Mat Det x=a([i, j])[,n] calculates the determinant of a
square matrix of type (n,n). A determinant of a square
section of a matrix can also be calculated. This matrix
section is defined by i and j for row and column offsets in
a() and by n for the number of elements. An internal matrix
of (n,n) type is thereby created at i-th row and j-th column.

Example

OpenW # 1
Data 2,4.5,6,3.2,7,1.7,-4,12
Data -3,5,9,-2.1,6,9,11,3
Data 11.4,2.3,6,3.2,6,1.2,-5,7
Data 3,5,6,8.2,4.1,-5.2,6.2,7.9
Data 1,2.3,9,8.1,0,4.2,5,3.7

Data 4.2,7.1,8.3,9.1,-5,-3,-1,0
Data 2.0,3,9.1,0,0,7.1,-3,8.8
Data 2.1,9,3.3,4,5,-1,-2,0
Global Double a(1 .. 8, 1 .. 8), x, y, z
Global Double b(1 .. 4, 1 .. 4), k%
Mat Read a()
Mat Print a(), 5, 2 // original matrix
Print
//to calculate the determinant
Mat Det x = a()
Print "Determinant = "; x
Print
Print "Press any Key"
KeyGet k%
Cls
Mat Det y = a(3, 2), 4//calculates the determinant
//of a matrix segment
Print "Segment determinant= "; y
Print
Mat Cpy b() = a(3, 2), 4, 4
Mat Print b(), 5, 2
Print
Mat Det z = b()
Print "Determinant = "; z

See Also

Mat QDet, Mat Rank, Mat Inv

{Created by Sjouke Hamstra; Last updated: 14/10/2014 by James Gaite}

Mat QDet Command
Purpose

calculates the determinant of a two-dimensional floating
point array which is interpreted as a matrix.

Syntax

Mat QDet x=a([i, j])[,n]

a():name of a two dimensional floating point array

x:aexp

i, j, n:integer expression

Description

Mat QDet x=a([i, j])[,n] is equivalent to Mat Det x = a([i,
j])[,n] except that it's optimized for speed not accuracy. As
a rule both methods deliver the same result. However, Mat
Det should always be used in case of 'critical' matrices
whose determinant is close to 0.

Example

OpenW # 1
Data 2,4.5,6,3.2,7,1.7,-4,12
Data -3,5,9,-2.1,6,9,11,3
Data 11.4,2.3,6,3.2,6,1.2,-5,7
Data 3,5,6,8.2,4.1,-5.2,6.2,7.9
Data 1,2.3,9,8.1,0,4.2,5,3.7
Data 4.2,7.1,8.3,9.1,-5,-3,-1,0

Data 2.0,3,9.1,0,0,7.1,-3,8.8
Data 2.1,9,3.3,4,5,-1,-2,0
Global Double a(1 To 8, 1 To 8), x, y, k%
Mat Read a()
Mat Print a(), 4, 1
Print
Mat Det x = a()//calculate the determinant
Print "Determinant with Mat Det = "; x
Print
Mat QDet y = a()//calculate the determinant
Print "Determinant with Mat QDet = "; y
Print
Print "Deviation = "; x - y
End

See Also

Mat Det, Mat Rank, Mat Inv

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Rank Command
Purpose

Returns the rank of a two-dimensional floating point array
which is interpreted as a matrix.

Syntax

Mat Rank x=a([i, j])[,n]

Mat Rang x=a([i, j])[,n]

a():name of a two-dimensional floating point array
x:aexp
i, j, n:integer expression

Description

Mat Rank x=a([i, j])[,n] prints the rank of a square matrix.
Analogous to Mat Det and Mat QDet an arbitrary row and
column offset can be specified.

To process a section of a matrix, a number of elements is
specified in n. An internal matrix of (n, n) type is thereby
created at row i and column j.

Example

OpenW # 1 : Win_1.FontName = "courier new"
Data 2,4.5,6,3.2,7,1.7,-4,12
Data -3,5,9,-2.1,6,9,11,3
Data 11.4,2.3,6,3.2,6,1.2,-5,7
Data 3,5,6,8.2,4.1,-5.2,6.2,7.9

Data 1,2.3,9,8.1,0,4.2,5,3.7
Data 4.2,7.1,8.3,9.1,-5,-3,-1,0
Data 2.0,3,9.1,0,0,7.1,-3,8.8
Data 2.1,9,3.3,4,5,-1,-2,0
Global Double a(1 ... 8, 1 ... 8), x
Mat Read a()
Mat Print a(), 2, 0
Print
Mat Rank x = a()//calculate the rank
Print "Rank = "; x

See Also

Mat Det, Mat QDet, Mat Inv

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Inv Command
Purpose

Calculates an inverse of a two-dimensional floating point
array which is interpreted as a matrix.

Syntax

Mat Inv a()=b()

a(),b():names of two-dimensional floating point arrays with
the same number of rows and columns.

Description

Mat Inv a()=b() returns the inverse of a square matrix.
The inverse of matrix b() is written to matrix a(). a() must,
therefore, be of the same type as b().

Example

Data 2,4.5,6,3.2,7,1.7,-4,12
Data -3,5,9,-2.1,6,9,11,3
Data 11.4,2.3,6,3.2,6,1.2,-5,7
Data 3,5,6,8.2,4.1,-5.2,6.2,7.9
Data 1,2.3,9,8.1,0,4.2,5,3.7
Data 4.2,7.1,8.3,9.1,-5,-3,-1,0
Data 2.0,3,9.1,0,0,7.1,-3,8.8
Data 2.1,9,3.3,4,5,-1,-2,0
OpenW # 1
Global Double a(1 .. 8, 1 .. 8)
Global Double b(1 .. 8, 1 .. 8)
Global Double c(1 .. 8, 1 .. 8)

Global Double d(1 .. 8, 1 .. 8), a%
Mat Read b()
Mat Print b(), 6, 3
Print
Print "Inverse:"
Print
Mat Inv a() = b() //calculate the inverse
Mat Print a(), 6, 3
Print
Print "Press any key"
KeyGet a%
Cls
Print "Original matrix * Inverse "
Print
Mat Mul d() = b() * a()
Mat Print d(), 6, 3

See Also

Mat Det, Mat QDet, Mat Rank

{Created by Sjouke Hamstra; Last updated: 14/10/2014 by James Gaite}

Mat Print Command
Purpose

Prints the elements of an array to screen or a channel.

Syntax

Mat Print [#i,]a()[, g, n]

a():name of a floating point array
i, g, n:integer expression

Description

Mat Print [#i,]a()[,g,n] prints a floating point array to
screen. One-dimensional floating point arrays are printed on
one line with individual elements separated by commas. For
two-dimensional arrays a line feed is performed after each
row. Similar to the Print command, the output can
optionally be redirected with #i. g and n cause the
formatting of the numbers similar to Str$(x,g,n).

Example

OpenW # 1
Data 1,2.33333,3
Data 7,5.25873,9.376
Data 3.23,7.2,8.999
Global Double a(1 To 3, 1 To 3)
Mat Read a()
Mat Print a()
Print
Mat Print a(), 5, 3

Print
Mat Print a(), 6, 3

See Also

Mat Read

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Read Command
Purpose

Reads values from Data lines into a floating point array.

Syntax

Mat Read a()

a():name of a floating point array

Description

-

Example

Option Base 1
OpenW # 1
Data 1,2,3,4,5,6,7,8,9,10
Dim a(2, 5) As Double
Mat Read a()
Mat Print a(), 2, 0
Print
Print a(2, 4) //prints 9

See Also

Mat Print

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Mat Norm Command
Purpose

Row- or column-wise normalizing of a two-dimensional
floating point array which is interpreted as a matrix.

Syntax

Mat Norm a(),i

a():name of a two-dimensional floating point array

i:ivar; i=0 for row-wise and i=1 for column-wise
normalizing

Description

Mat Norm a(),0 and Mat Norm a(),1 are used for both
matrices and vectors. Mat Norm a(),0 normalizes a matrix
(or a vector) row-wise and Mat Norm a(),1 normalizes a
matrix (or a vector) column-wise. This means that in case
of row-wise (column-wise) normalizing the sum of squares
of all elements in each row (column) is equal to 1.

Example

OpenW 1
Global a%, n% = 8, k%, i%
Global Double a(1 To n%, 1 To n%)
Global Double b(1 To n%, 1 To n%)
Global Double v(1 To n%), v(), x
Data 1,2,3,4,5,6,7,8
Data 3.2,4,-5,2.4,5.1,6.2,7.2,8.1

Data -2,-5,-6,-1.2,-1.5,-6.7,4.5,8.1
Data 5,-2.3,4,5.6,12.2,18.2,14.1,16
Data 4.1,5.2,16.7,18.4,19.1,20.2,13.6,14.8
Data 15.2,-1.8,13.6,-4.9,5.4,19.8,16.4,-20.9
Data -3.6,6,-8.2,-9.1,4,-2.5,2,3.4
Data 4.7,8.3,9.4,10.5,11,19,15.4,18.9
//
Mat Read a()
//save the original matrix
Mat Cpy b() = a()
Print "Original Matrix"
Print
Mat Print a(), 7, 2
KeyPress
//
// row-wise normalising
//
Mat Norm a(), 0
Print "Row-wise normalised: "
Print
Mat Print a(), 7, 2
KeyPress
//
// testing of the row-wise normalising
//
Print "Test: "
Print
For i% = 1 To n%
Mat XCpy v() = a(i%, 1) // copies a() row-wise
into vector v()

Mat Mul x = v()*v() // calculates the scalar
product of v() and v()

Print x`
Next i%
KeyPress
// column-wise normalising
Mat Cpy a() = b()//copy the original matrix

Mat Norm a(), 1
Print "Column-wise normalised: "
Print
Mat Print a(), 7, 2
KeyPress
// testing of column-wise normalising
Print "Probe : "
Print
For i% = 1 To n%
Mat Cpy v() = a(1, i%) // copies a() column-wise
into vector v()

Mat Mul x = v()*v()// calculates the scalar
product of v() and v()

Print x`
Next i%
KeyPress
CloseW 1

Sub KeyPress
Local a%
Print
Print "Press any key"
KeyGet a%
Cls

EndSub

See Also

-

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

cAlloc Function
Purpose

Allocates an array in memory with elements initialized to 0.

Syntax

long = cAlloc(num, size)

num, size:iexp

Description

cAlloc() returns a pointer to the allocated space. num
specifies the number of elements and size specifies the
length in bytes of each element. The reserved memory
block is initialized with 0.

cAlloc() is implemented to easily port C-source code.
Compare the internal implementation in both C and GFA-
BASIC 32:

The allocated memory can be resized using mReAlloc or
mShrink and released with MFree.

The C- implementation

void *calloc(int a, int b)
{
 void *p = malloc(a * b);
 if(p) memset(p, 0, a * b);
 return p;
}

The GFA-BASIC 32 implementation

Function cAlloc(a As Int, b As Int) As Int
Local p As Int = mAlloc(a * b)
If(p) Then MemSet(p, 0, a * b)
Return p

End Func

Example

Dim p As Long = cAlloc(10, SizeOf(Int))

Allocates 40 bytes (10 * 4), because the size of an Int data
type is 4 bytes.

Remarks

C GFA-BASIC 32
malloc mAlloc
calloc cAlloc
realloc mReAlloc or mShrink
free mFree
memset(a, v, n) MemSet(a, v, n) or MemBFill a,

n, v
memcpy(d, s, n) MemCpy(d, s, n)

See Also

mAlloc(), mFree(), mShrink(), mReAlloc()

{Created by Sjouke Hamstra; Last updated: 03/03/2017 by James Gaite}

Memory Allocation
Much of the memory allocation required within a program is
handled by GFABasic's commands and functions. However,
every now and again, an occasion will arise when having
direct access to reserved memory is preferable or the only
way to carry out a task, and for that reason the following
commands and their Window API equivalents have been
included in GFABasic's list of commands and functions.

Using GFABasic Show

Using Windows APIs Show

Remarks & Comparisons Show

See Also

cAlloc

{Created by James Gaite; Last updated: 06/03/2017 by James Gaite}

javascript:pr("mem01hl","mem01","Hide","Show","block")
javascript:pr("mem02hl","mem02","Hide","Show","block")
javascript:pr("mem03hl","mem03","Hide","Show","block")

Bmove and BlockMove
Commands
Purpose

Copies an area of memory.

Syntax

BMove from%, to%, count%
BlockMove from%, to%, count%

from%, to%:address
count:integer expression

Description

BMove and BlockMove are synonymous and are used to
copy memory areas. The copy is performed from address
from% to the address to%. The number of bytes to copy is
specified in count%.

Example

OpenW # 1
Local i%, j%
Local Double a(3, 3), b(3, 3)
For i% = 0 To 3
For j% = 0 To 3
a(i%, j%) = Random(2000 - 1000)

Next j%
Next i%
Print "BEFORE:"

Print
Print "Array a()"
Print
Mat Print a()
Print "-----------------"
Print "Array b()"
Print
Mat Print b()
Print
BMove V:a(0, 0), V:b(0, 0), Dim?(a()) * 8
Print "AFTER BMove:"
Print
Print "Array a()"
Print
Mat Print a()
Print "-----------------"
Print "Array b()"
Print
Mat Print b()

First, two arrays are dimensioned. Array a() is then filled
with random numbers. V: a(0,0) returns the address of the
first element in a(), V: b(0,0) the first element in b(). Each
floating point variable requires eight bytes of memory. The
number of elements in a() is deter-mined with Dim?(a()).
Dim?(a())*8 returns then the number of bytes to be copied.

Remarks

The copying of array a() into array b() in the above example
can also be done with

For i% = 0 To 3
For j% = 0 To 3
b(i%, j%) = a(i%, j%)

Next j%
Next i%

The BMove and BlockMove commands, however, requires
less memory and are - depending on the contents being
copied - up to 100 times faster.

See Also

MemCpy

{Created by Sjouke Hamstra; Last updated: 11/01/2017 by James Gaite}

MemCpy
Purpose

Copies a block of memory in fastest possible way.

Syntax

MemCpy dst, src, cnt

MemCpy(dst, src, cnt)

Description

The first parameter of MemCpy is the address of the
destination and the second one the one of the source and
the third one can be a constant or, for example, the length
of the source to copy.

MemCpy is extremely efficient in copying Type variables.
MemCpy is one of the rare commands that is compiled
inline when cnt is a constant (not a function).

Example

Local a$ = "GFA Basic", b$ = Space(9)
MemCpy V:b$, V:a$, 9 // This works as
described

Print a$, b$
a$ = "GFA Basic", b$ = Space(9)
MemCpy V:b$, V:a$, Len(b$) // This doesn't
work this way...

Print a$, b$
a$ = "GFA Basic", b$ = Space(9)

MemCpy V:a$, V:b$, Len(b$) // ..but for some
reason, does this way

Print a$, b$
a$ = "GFA Basic", b$ = Space(9)
MemCpy V:b$, V:a$, 9 // Once again,
this one works fine

Print a$, b$

Remarks

MemCpy is highly compatible to the C function memcpy().
If the source and destination overlap, this function does not
ensure that the original source bytes in the overlapping
region are copied before being overwritten. Use MemMove,
Bmove, or BlockMove to handle overlapping regions.

See Also

BMove, BlockMove, MemMove

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

Pause Command
Purpose

Interrupts a program.

Syntax

Pause n

n:integer expression

Description

Pause n interrupts a program for n/18.2 seconds.

Example

OpenW # 1 : AutoRedraw = 1
Print "Coffee break!"
Pause 182 //a ten second pause
Print "Coffee break is over"

See Also

Delay

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Delay Command
Purpose

interrupts a program for a number of seconds.

Syntax

Delay a

a:aexp

Description

Delay a interrupts a program for 'a' seconds.

Example

OpenW 1
Print "This window will stay open for 5 seconds
only"

Delay 5
CloseW 1

Remarks

In contrast to Pause (dependent on the operating system)
the time specified with Delay is portable. Delay uses the
system clock.

See Also

Pause

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

FreeDll Command
Purpose

releases a DLL (dynamic link library)

Syntax

FreeDll filename$

Description

FreeDll explicitly releases a DLL from memory. The
argument filename$ should be exactly the same as the DLL
name specified in the Declare statement. Filename$ may
contain a path.

Example

Declare FunctionA WNetAddConnection Lib "mpr.dll"
(ByVal lpszNetPath As String, ByVal lpszPassword
As String, ByVal lpszLocalName As String) As Long

// Use Dll
// release DLL
FreeDll "mpr.dll"

Remarks

When a DLL function is invoked after its DLL has been
released, the DLL is reloaded. This due to the nature of
Declare, which instructs the compiler to generate code to
check for a valid DLL before calling a DLL function.

See Also

Declare

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Shell Command
Purpose

Invokes the command interpreter

Syntax

Shell t

x% = Shell(t)

t:sexp
x%iexp, return value

Description

Shell runs the command interpreter and so enables
execution of DOS commands from within a GFA-BASIC 32
program.

Example

Shell "CHKDSK a: /f" //tests the disk in
drive A:

Shell "command.com" // invokes Command.Com
(Windows 9.x)

Shell "cmd" // calls cmd NT, 2000, XP
Dim x% = Shell("Dir /4 | More")
Debug.Show
Debug.Print "Return value of Shell = ";x%

Remarks

With Open "CONOUT$" For Output As and AllocConsole()
a command console can be opened and gives the
application access to the input and output in the console.
See Open.

See Also

Exec, ShellExec, System, WinExec

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

System Command
Purpose

Loads and runs a program.

Syntax

System "file$ [parameters]" [, options]

ret_large = System("file$ [parameters]")

file$:sexp

Description

The System command invokes the program file$. The file$
expression contains the name of the called program. The
program name includes the full pathname and the
command line which is inserted in the program segment
prefix of the called program.

The System(file$) function return a 64-bit integer, which is
0 in case of an error. Otherwise, the low order 32 bits
contain the process handle of the program, and the high 32
bits the process ID. The first example shows how to start an
external program and wait for it to end.

System is based on the API function CreateProcess, which
can take quite some options. Many of these options are
implemented in GFA-BASIC 32. There is an option to wait
for a program to end, like: System "notepad", Wait. The
return values of CreateProcess can be retrieved using the

options as well. System "notepad", ProcessID pid%
returns the process identification in pid%.

System supports the following options.

Dir "path" specifies the current drive and directory
for the child process.

App
"programname"

Statement for the name of the program
to start; mostly the usage of a
command line will make more sense,
but nevertheless, may be useful for
someone.

Show
SW_const

One of the SW_ constants. For GUI
processes this specifies the default value
the first time ShowWindow is called.

Pos x, y Specifies the x and y offsets, in pixels,
of the upper left corner of a window if a
new window is created.

Size w, h Specifies the width and height, in pixels,
of the window if a new window is
created.

Full Full DOS-BOX
Fill attrib Specifies the initial text and background

colors if a new console window is
created in a console application. This
value can be any combination of the
following values: FOREGROUND_BLUE,
FOREGROUND_GREEN,
FOREGROUND_RED,
FOREGROUND_INTENSITY,
BACKGROUND_BLUE,
BACKGROUND_GREEN,
BACKGROUND_RED, and
BACKGROUND_INTENSITY.

Count cx, cy For console processes, if a new console

window is created, cx specifies the
screen buffer width in character
columns, and cy specifies the screen
buffer height in character rows. These
values are ignored in GUI processes.

Title sexp For console processes, this is the title
displayed in the title bar if a new
console window is created.

Desktop sexp string that specifies either the name of
the desktop only or the name of both
the desktop and window station for this
process. A backslash in the string
indicates that the string includes both
desktop and window station names.

FeedOn Use application starting cursor.
FeedOff Don't use application starting cursor.
Wait The command System waits in a loop

with MsgWaitForMultipleObjects(...,
1000,...) until the end of the started
process and executes, if necessary
DoEvents in such a way that the
program remains accessible.

ForceWait Like Wait, but waiting cannot be
interrupted. The calling program is
actually disabled.

hProcess var Copy the return value of the process
handle into var% (the variable var is
Long/Int or Handle).

hThread var Copy the primary thread handle into var
(Long/Int or Handle).

ProcessID var Copy the process ID into var (Long/Int).
ThreadID var Copy the thread ID into var (Long/Int).
ExitCode var Copy the exit code into var (Long/Int).

Without Wait or ForceWait mostly

STATUS_PENDING (0x103)
StdIn h Specifies a handle that will be used as

the standard input handle to the
process.

StdOut h Specifies a handle that will be used as
the standard output handle to the
process

StdErr h Specifies a handle that will be used as
the standard error handle to the process

Inherit Inherits handles from the calling
process. Each inheritable open handle in
the calling process is inherited by the
new process. Inherited handles have the
same value and access privileges as the
original handles.

Advanced
options

Debug The caller is a debugger, the new
process is a process being debugged.

DebugThis If not specified and the calling process is
being debugged, the new process
becomes another process being
debugged by the calling process's
debugger. If the calling process is not a
process being debugged, no debugging-
related actions occur.

Suspend The called program is waiting for the
ResumeThread (for debugger).

Detached For console processes, the new process
does not have access to the console of
the parent process.

NewConsole The new process has a new console,
instead of inheriting the parent's

console. This flag cannot be used with
the Detached option.

Normal, Idle,
High,
RealTime

Controls the new process's priority
class, which is used in determining the
scheduling priorities of the process's
threads. (Idle = background process,
like a screen saver; High = the process
will get 'all' processor time; RealTime =
process can get all available processor
time.

NewPGroup The new process is the root process of a
new process group.

Separate,
Shared

Only valid when starting a 16-bit
Windows-based application. The
disadvantage of running Separate is
that it takes significantly more memory
to do so. You should use this flag only if
the user requests that 16-bit
applications should run in them own
VDM. Shared overrides the system
default setting and runs the new process
in the shared Virtual DOS Machine.

DOS Starts the program a real MSDOS
application (not Win 95/98/Me).

DefErr The default error mode is valid (not Win
95, 98, Me).

ProfUser,
ProfKernel,
ProfServer

The program is a user program, a
kernel, or a server application and
should use the appropriate profiles.

The use of hProcess and hThread require a CloseHandle.
ProcessID, ThreadId, hProcess, and hThread aren't
very useful together with Wait or ForceWait.

Dim id%, h%

System "notepad", ProcessID id%, hProcess h%

In case of an error (System returns 0) a message box is
displayed.

Example

1 - Start notepad and wait.

OpenW Center 1
Local pHdl As Handle, pID As Int
Local l As Large, e%, h%
l = System("Notepad")
If !l Then Message _
"Can't start Notepad" : End

pHdl = LoLarge(l) ' process handle
pID = HiLarge(l) ' process ID
~GetExitCodeProcess(pHdl, V:e)
While e = STATUS_PENDING
~MsgWaitForMultipleObjects(1, V:pHdl, _
0, 1000, QS_ALLINPUT)

Beep -1
DoEvents
~GetExitCodeProcess(pHdl, V:e)

Wend
~CloseHandle(pHdl)

Example 2

OpenW 1
Global a As Large, b$
b$ = " c:\test.dat"
If Exist(WinDir + "\notepad.exe")
a = System(WinDir + "\notepad.exe" & b$)
Message "Return value: " & Format(a)

Else
Message "Program not found"

EndIf
Do
Sleep

Until Me Is Nothing

Remarks

See Also

Shell, ShellExec, Exec, WinExec

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Exec Function
Purpose

Loads and runs a program.

Syntax

% = Exec(file$, CmdLine)(function)

Exec file$, CmdLine(command)

file$, CmdLine:sexp

Description

The Exec(file$, CmdLine) function invokes program file$
and gives it the command line CmdLine.

The file$ expression contains the name of the called
program. The program name includes the full pathname.

The CmdLine expression contains the command line which
is inserted in the program segment prefix of the called
program.

Example

Global a%
If Exist(WinDir + "\notepad.exe")
a% = Exec(WinDir + "\notepad.exe", "")
Message "return value: " & Format(a%)

Else
Message "Program not found"

EndIf

Do
Sleep

Until Me Is Nothing

Remarks

Exec internally uses the function WinExec(). If you want to
determine, if the called program is still active or not, you
must use System instead, which returns the handle of the
process and allows controlling it. Also, System allows, by
using the parameter Wait, to wait until the program has
finished.

See Also

Shell, ShellExec, System, WinExec

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

WinExec Function
Purpose

Loads and runs a program.

Syntax

% = WinExec(file, CmdShow)(function)

WinExec file, CmdShow(command)

file:sexp
CmdShow:iexp

Description

The WinExec(file, CmdShow) function invokes program file.

The file expression contains the name of the called
program. The program name includes the full pathname and
the command line which is inserted in the program segment
prefix of the called program.

CmdShow specifies the visual aspect of the window and is
one of the SW_ constants SW_NORMAL, SW_HIDE,
SW_SHOW, See ShowW.

Example

Global a%
If Exist(WinDir + "\notepad.exe")
a% = WinExec(WinDir + "\notepad.exe", SW_NORMAL)
Message "return value: " & Format(a%)

Else
Message "Program not found"

EndIf
Do
Sleep

Until Me Is Nothing

Remarks

If you want to determine, if the called program is still active
or not, you must use System instead, which returns the
handle of the process and allows controlling it. Also,
System allows, by using the parameter Wait, to wait until
the program has finished.

See Also

Shell, ShellExec, System, WinExec

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

ShellExec Function
Purpose

Opens, explores, or prints a specified file or folder.

Syntax

x% = ShellExec(file$ [, parameters$][, directory$])

x% = ShellExec([operation$][, file$][, parameters$][,
directory$] [,show%])

ShellExec file$ [, parameters$][, directory$]

ShellExec [operation$][, file$][, parameters$][, directory$]
[,show%]

Description

Returns a value greater than 32 if successful, or an error
value that is less than or equal to 32 otherwise.

ShellExec uses the Window handle of the current active
Form. This window receives any message boxes that an
application produces. For example, an application may
report an error by producing a message box. Null is passed
when IsNothing(Me) is true.

All arguments are optional, but to differentiate between the
three parameter and the five parameter version the five
parameters version must be made explicit, by including
enough (3) comma's. To use the five parameter version,
you could use:

ShellExec ,file$, , [,]

operation$ specifies the operation to perform. The following
operation strings are valid:

"open" - The function opens the file specified by the
File$ parameter. The file can be an executable file or a
document file. It can also be a folder.
"print" - The function prints the file specified by File$.
The file should be a document file. If the file is an
executable file, the function opens the file, as if "open"
had been specified.
"explore" - The function explores the folder specified
by File$.

When this parameter is omitted, NULL is passed. In that
case, the function opens the file specified by File$. To open
the Window Explorer use the five parameter version:
ShellExec "explore", ".", ,.

file$ specifies the file to open or print or the folder to open
or explore. The function can open an executable file or a
document file. The function can print a document file. If
file$ specifies a document file, show should be zero. Use the
three parameter version.

parameters$ specifies the parameters to be passed to the
application, when the File$ parameter specifies an
executable file. If File$ specifies a document file,
Parameters$ should omitted.

directory$ specifies the default directory.

show specifies how the application is to be shown when it is
opened. This is one of the SW_ constants, see ShowW.

Example

ShellExec "", "notepad", , , SW_MAXIMIZE
~ShellExec("explore", "d:", , ,)

Remarks

See Also

Exec, Shell, System, WinExec

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Mci$ Function
Purpose

Executes a Mci (Multimedia Control Interface) command.

Syntax

err = Mci[$](cmd$ [, formvar])

cmd$sexp
wininteger expression

Description

Mci$(cmd$) executes a Mci command (as Mci$("status id
mode")). An error (in the command string, or any other
error) is not reported with a message box, but returned as
result err. (-1 if the mmsystem could not be found).

With mciErr$(err) you get the descriptive error text which
would have been displayed for the Mci command.

Mci$(cmd$, formvar) Does the same as Mci$(sexp). The
window (form object) given in integer expression (Win_1)
gets a MM_MCINOTIFY message ($3b9) when the mci
command finished execution (dummy$=Mci$("play id
notify",Win_1)).

The MM_MCINOTIFY message can be handled in
Win_1_MciNotify(devID%, Code%) event sub.

Remarks

The MM_MCINOTIFY message ($3b9). The Code% is
returned in wParam.

wParam=1 - Mci command aborted

wParam=2 - Mci command successful

wParam=4 - Mci superseded by a new notify command

wParam=8 - Mci error, not reported when using Mci$()

LoWord(lParam) = Device ID (devID%) sending the
message.

(the notify message is not sent, if the Mci returned an error
in _EAX.)

See Also

Mci, mciErr$, mciID

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Mci Command
Purpose

Executes a Mci (Multimedia Control Interface) command.

Syntax

Mci cmd$

cmd$sexp

Description

Executes a Mci command (as Mci "close all"). An error (in
the command string, or any other error) is reported with a
message box. Error free execution set _EAX to 1. GFA-
BASIC sets _EAX to -1 if the mmsystem could not be found.

Remarks

Multimedia is supported in Windows 3.x as a
MMSYSTEM.DLL. It allows the handling of sound cards,
audio CD-ROMs, videodisks, overlay video and animation
etc. The lowest system of multimedia programming is by
directly calling the device drivers for each device. Even the
device independent programming interface of the
multimedia system is quite complicated. There are different
layers of multimedia support routines inside the mmsystem.
The mmio system is a low level system for accessing
multimedia files, it can only be used if the file structure is
very well known, and is intended to be used in low level
recording and manipulation systems and, as such, provides
little help for standard presentation programs. Above this is

the Mci system. This Multimedia Control Interface provides
all the routines to access the devices in an orderly way. It's
possible to use a message based system, with
mciSendMessage, but this leads to hard to read code. The
Mci provides a string based system, with mciExecute and
mciSendString, which allows readable strings to be used for
communication with the devices (as in "play tune", "seek to
start"). This is the system chosen for GFA-BASIC.
Multimedia is supported in GFA-BASIC for Windows version
4.22 upwards.

The command Mci and the function Mci$ handle all the Mci
operations, supported by mciErr$ and mciID for error text
and a device id used for the notification message.

The Mci command strings are all used as "cmd id param",
optional followed by "notify" or "wait".

cmd is one of the command words as open, play, record ...

id is the ID of a device. That can be one of the following:

Dummy Sequencer MIDI or AdLib-Sound (build into
virtually all sound cards)

WaveAudio The usual sampled sound (voice,
digital sound effects ...)

CDAudio A Sound playing CD-ROM (attached
to a sound card)

Videodisc A Video CD
Overlay An overlay of video images onto the

computer screen
Animation The Movie, similar to overlay, but

the "video" is computer generated
as well, from a (compressed) file.
There is plenty of expansion

possible, like mmmovie for
microsoft's animation. Most of the
time, the device name is only used
with the "capability" and "info"
verbs to get information on the
device without opening it. The
"open" does support an "alias
name". This let's you define a name
to reference the device (and files)
in a more abstract way. It allows to
reference different files with the
same, short identification.

param is an, often optional, parameter, or list of
parameters. For open this is usually at least the "alias id".

notify optional following all commands is notify. If used,
usually in a play, record or seek, a message (_Mess =
$3b9) is send to a window The Handle has to be given as
the optional second parameter to Mci$()

wait optional following all commands is wait. If used, the
Mci function waits for completion.

The functions returning some value, as "capability", "info",
"status", "sysinfo" or "where" are always used in Mci$().
There is exactly one parameter (as "status id length"), it
returns a string (as "12340", "12:59:30:72", "true").
Commands, as "set", usually accept several parameters in
one call (as "set id samplespersec 11025 bitspersample 8
time format ms channels 1"). The commands may be used
with the GFA-BASIC command Mci or the function Mci$().

MCI Commands

In the list the character "{", "}", "[", "]" and "|" have a
special meaning.

A string in [] is optional (without the []).

A | marks alternatives (one of a group of strings).

A string group in {}, separated by | means one of the
strings in the {} is required, but only one..

Examples:

[insert | overwrite]:-> "insert" or "overwrite", or "".

{ to end | to start }:-> "to start" or "to end"

[a] [b] [c]:-> "", "a", "b", "a b", "c b a" or "c" or ...

A % is a place holder for a number (123) or a time
(depending on time format). A group of four % % % % is a
rectangle (example: "100 80 400 120" := left 100, top=80,
width=400, height=120). A $ is a string, a series of
characters (TestTitel). Optionally it can be enclosed in
quotation marks ("Test Title") to allow spaces in the string.

Time formats are used in position, to % or from%. There
are several time formats defined, to be selected with "set id
time format $".

 time format Position is
millisecon
d

2000 2 seconds

ms 2000 2 seconds
msf 23:40:23 minute :

second :
frame

0-99:0-59:0-74

tmsf 3:23:40:
23

track :
minute :
second :
frame

0-99:0-99:0-59:0-74)

hms 23:59:59 hour :
minute :
second

frames 2728 frame 2728
bytes 2700 byte no 2700
samples 2700 sample no 2700
track 3 track 3
song
pointer

32 sixteenth
notes

note 2

SMPTE x 02:12:0:
08

hour :
minute :
second :
frame
(MIDI

specific)

System Commands

break id { on % | off }

sysinfo id { installname | quantity | quantity open | name
% | name % open }

Required Commands

capability id { can eject | can play | can record | can save |
uses files }

capability id { compound device | device type | has audio |
has video }

close { id | all }

info id product

open device[!file] [alias $id] [shareable] [type
$device_type]

status id mode

Basic Commands

load dev [filename]

pause id

play id [from %] [to %]

record id [insert | overwrite] [from %] [to %]

resume id

save id [filename]

seek id { to % | to start | to end }

set id { audio all off | audio all on | audio left off | audio left
on }

set id { audio right off | audio right on | door closed | door
open }

set id { video off | video on | time format millisecond | time
format ms }

status id { current track | length | length track % | ready |
start position}

status id { number of tracks | position | position track % |
time format }

stop id

Animation Commands

capability id { can reverse | can save | can stretch | fast
play rate }

capability id { normal play rate | slow play rate | uses
palette | windows }

info id { file | window text }

open id [nostatic] [parent %] [style { % | child |
overlapped | popup }]

play id [fast] [reverse] [scan] [slow] [speed %]

put id { destination | source } [at % % % %]

realize id { background | normal }

set id time format frames

status id { forward | media present | palette handle | speed
| stretch }

status id { time format | window handle }

step id [by %] [reverse]

update id hdc % [at % % % %]

where { destination | source }

window id [fixed] [handle %] [handle default] [state hide]
[state iconic] [state maximized]

window id [state minimize] [state minimized] [state no
Purpose] [state no activate]

window id [state normal] [state show] [stretch] [text $]

Cdaudio Commands

set id time format { msf | tmsf }

Sequencer Commands (midi)

info id file

save id [filename]

set id [master MIDI] [master none] [master SMPTE] [offset
%] [port %] [port mapper]

set id [port none] [slave file] [slave MIDI] [slave none]
[slave SMPTE] [tempo %]

set id [time format song pointer] [time format SMPTE 24]
[time format SMPTE 25]

set if [time format SMPTE 30] [time format SMPTE 30 drop]

status id { division type | master | offset | port | slave |
tempo }

Videodisc Commands

capability id { CAV | CLV }

escape id $

seek id reverse

set id [time format hms] [time format track]

spin id { up | down }

status id { disc size | forward | media type | side }

set id [by % | by % reverse | | reverse | by -%]

Overlay Commands

capability id windows

freeze id [at % % % %]

info id window text

load id [filename] [at % % % %]

put id [video [at % % % %]] [frame [at % % % %]]

put id [source [at % % % %]] [destination [at % % % %]]

save id filename [at % % % %]

unfreeze id [at % % % %]

where id { video | frame }

Waveaudio Commands

capability id { inputs | outputs }

cue id { input | output }

delete id [from %] [to %]

info id { input | output }

open ... [buffer %]

open new type waveaudio ...

set id [alignment %] [any input] [any output]
[bitspersample %]

set id [bytespersec %] [channels %] [format tag $] [format
tag pcm]

set id [input %] [output %] [time format bytes] [time
format samples]

status id { alignment | bitspersample | bytespersec |
channels | format tag }

status id { evel | input | output | samplespersec }

Important: The Mci does not work for a synchronous wave
device. That is the PC speaker driver from Microsoft. The
speaker driver does only work with PlaySound.

Example

// play alarm01.wav three times
// first version checks for end of sound playing
with the "status id mode" function.

// second version checks using the notify flag,
and is about 30 times faster.

// If MCI can not find the above files, change the
addresses to files on your local machine.

Auto i%, q%
OpenW # 1

Mci "open c:\windows\media\alarm01.wav alias bong"
For i% = 1 To 3
Mci "play bong from 1"
q% = 0
Do
PeekEvent
q%++

Loop Until Mci$("status bong mode") != "playing"
Print q%

Next i%
Mci "close bong"
Mci "open c:\windows\media\alarm01.wav alias bong"
For i% = 1 To 3
~Len(Mci$("play bong from 1 notify"))
If _EAX = 0 //simple error check
q% = 0
Do
PeekEvent
q%++

Loop Until _Mess = $3b9
Print q%

EndIf
Next i%
Mci "close bong"

See Also

Mci$, mciErr$, mciID

Microsoft Developer Network

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

http://msdn.microsoft.com/en-us/library/ms709461(VS.85).aspx

mciErr$ Function
Purpose

Gets the descriptive text for a Mci error.

Syntax

mciErr$(errno)

errnointeger expression

Description

Gets a Description of an Mci error as text. This is the text
which is displayed when using the Mci command in a
message box. The error code (integer expression) is
returned from Mci$().

Example

// prints the Mci error message
// are in the range of 0 till 32767
Debug.Show
Local a$, a%, i&
// only a part are filled with usable error
messages

// please test it by yurself, if necessary
For i& = 0 To 32767
a$ = mciErr$(i&)
If Len(a$) <> 0 // if error i& exist
Debug "Error:";i&, a$ // print Mci error

EndIf
Next i&

See Also

Mci, Mci$, mciErr$, mciID

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

mciID Function
Purpose

Returns the ID for an opened Mci device

Syntax

mciID(name$)

name$sexp

Description

This function returns the ID for an opened device. Usually
used with an alias name. Used to get the device id for the
notify message.

Example

Debug.Show
Mci "open c:\windows\media\alarm01.wav alias bong"
Trace mciID("bong")
Mci "close bong"
Trace mciID("bong")

See Also

Mci, Mci$, mciID

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

SelPrint, SelPrintRect
Methods
Purpose

Sends formatted text in a RichEdit control to a device for
printing.

Syntax

RichEdit.SelPrint(hDc)

RichEdit.SelPrintRect(hDc, l, t, w, h)

hDc:Handle
l, t, w, h:Single exp

Description

If text is selected in the RichEdit control, the SelPrint
method sends only the selected text to the target device. If
no text is selected, the entire contents of the RichEdit are
sent to the target device.

The SelPrint method does not print text from the RichEdit
control. Rather, it sends a copy of formatted text to a device
which can print the text.

SelPrintRect(hDc, l, t, w, h) prints a portion of a rich edit
control's contents, as previously formatted for a device hDc,
to a rectangle area of that device. The rectangle is specified
in twips with l (left), t (top), w (width), and h (height)

parameters. The returns value of SelPrintRect is the index
of the first character that doesn't fit the rectangle.

Example

Lprint "";
rtf1.SelPrint(Printer.hDC)

Example 2

StartDoc "Test"
StartPage
rtf1.SelPrintRect(Printer.hDC, 0, 0, 2000, 2000)
EndPage
EndDoc

Remarks

If you use the Printer object as the destination of the text
from the RichEdit control, you must first initialize the
device context of the Printer object by printing something
like a zero-length string.

Known Issues

Problems have been reported with both SelPrint and
SelPrintRect either just not printing or, more seriously,
causing the program to freeze. There are currently no
workarounds to these problems.

See Also

RichEdit, FormatDC, Printer

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Beep Command
Purpose

Sounds a warning.

Syntax

Beep

Description

Sounds a short beep on the system speaker

Example

Beep

Remarks

This command corresponds to the Windows function
MessageBeep().

See Also

PlaySound

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

PlaySound Command
Purpose

Play a WAV-file.

Syntax

PlaySound wav$ [, flag = 0]

wav$sexp
flagiexp

Description

The PlaySound command plays the WAV (-file) requested
by the user. wav$ may specify a filename or a string
containing WAV data. If wav$ = "", any currently playing
waveform sound is stopped.

flag Meaning
SND_SYNC (0) the sound plays synchronously and

waits untill the playing event ends.
SND_ASYNC (1) The sound starts asynchronously and

immediately returns to the program
(doesn't wait).

SND_NODEFAULT
(2)

when the sound file cannot be found,
the function returns to the program
without playing a predefined default
sound (usually a warning)

SND_MEMORY
(4)

A sound is started whose file is loaded
in string memory.

SND_LOOP (8) The sound plays repeatedly until

PlaySound "" is called You must also
specify the SND_ASYNC flag to
indicate an asynchronous sound event.

SND_NOSTOP
(16)

if another song is just being played;
the new sound is put in a queue and
will be played after completion of the
current sound.

If it cannot find the specified sound, PlaySound uses the
default system event sound entry instead.

Example

OpenW 1
Print "Playing Tada.wav"
PlaySound WinDir + "\media\tada.wav", SND_SYNC
Print "Playing Notify.wav"
PlaySound WinDir + "\media\notify.wav", SND_NOSTOP

Remarks

The PlaySound command uses the installed sound-driver.

See Also

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Stick Function
Purpose

Reads joystick or touch screen position.

Syntax

% = Stick(n)

Description

Stick returns the position of the multi-media input device in
pixels. The range is from 0 to 65535, from the left-top to
the right-bottom.

Stick(0) - Reads the horizontal position (x-coordinate) of
the joystick #1

Stick(1) - Reads the vertical position (y-coordinate) of the
joystick #1

Stick(2) - Reads the horizontal position (x-coordinate) of
the joystick #2

Stick(3) - Reads the vertical position (y-coordinate) of the
joystick #2

Stick(1) .. Stick(3) are the positions stored at the time of
the last Stick(0). That means that a Stick(0) is needed to
really read both sticks positions.

Example

~Stick(0)
Print Stick(2), Stick(3)

See Also

Strig

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Strig Function
Purpose

Reads joystick buttons or other multi-media input devices.

Syntax

Bool = Strig(n)

Description

Strig(0) - Checks if the first button of the first joystick has
been pressed.

Strig(1) - Checks if the first button of the first joystick is
currently being pressed

Strig(2) - Checks if the first button of second joystick has
been pressed.

Strig(3) - Checks if the first button of the second joystick is
currently being pressed.

Strig(4) - Checks if the second button of the first joystick
has been pressed.

Strig(5) - Checks if the second button of the first joystick is
currently being pressed

Strig(6) - Checks if the second button of second joystick
has been pressed.

Strig(7) - Checks if the second button of the second
joystick is currently being pressed.

The odd numbers return -1 if the corresponding buttons are
held down. The even numbers return -1 only once if the
buttons are just pressed down, then they return 0.

Example

// Mousek added to prevent infintie loops...
// ...if no joystick plugged in or...
// ...joystick not working correctly.
Auto x_bot%, x_mid%, x_top%, y_bot%, y_mid%,
y_top%

Print "Centre and Click:"
Repeat
x_mid% = Stick(0), y_mid% = Stick(1)

Until Strig(0) Or MouseK = 1
Print "Top/Left And Click:"
Repeat
x_top% = Stick(0), y_top% = Stick(1)

Until Strig(0) Or MouseK = 2
Print "Bottom/Right And Click:"
Repeat
x_bot% = Stick(0), y_bot% = Stick(1)

Until Strig(0) Or MouseK = 1

Remarks

The Joystick functions use the Windows multi media
functions (joyGetPos) to read the joystick, not the
interrupts as in GFA-BASIC 16.

See Also

Stick

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Environ Function
Purpose

Returns and sets the value of an operating system
environment variable.

Syntax

Environ[$]("name" | number) [= value$]

Description

Environment variables define the environment in which a
process executes (for example, the default search path for
libraries to be linked with a program).

If "name" can't be found in the environment-string table, a
zero-length string ("") is returned. Otherwise, Environ
returns the text assigned to the specified "name"; that is,
the text following the equal sign (=) in the environment-
string table for that environment variable.

If you specify number, the string occupying that numeric
position in the environment-string table is returned. In this
case, Environ returns all of the text, including the name. If
there is no environment string in the specified position,
Environ returns a zero-length string.

Environ("name" | number) = creates new environment
variables; modifies or removes existing ones.

Example

Environ("CopyOfPath") = Environ("Path")
Environ("Dircmd") = "/4"
Debug.Show
// path out of the Autoexec.dos
Trace Environ("path")
Trace Environ("comspec")
// more
Trace Environ("TEMP")
Trace Environ("TMP")
Trace Environ(1)
Trace Environ(2)
Trace Environ(14)
Trace Environ(15)

Remarks

See Also

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

IsWinNT Function
Purpose

Helps in differentiating between Windows 95, 98, and Me
versus Windows NT, 2000, and XP.

Syntax

Bool = IsWinNT

Description

The main difference between Windows 95, 98, and Me and
the real 32 bit versions NT, 2000, and XP is the Win API
version. The 32-bits version support the Win API 4.0.

Example

Print IsWinNT

Remarks

IsWinNT is the same as GetVersion() >= 0.

The Windows API function GetVersion() returns a positive
number for Windows NT, and a negative for Windows 95/98.

See Also

WinVersion

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

_CmdLine Function
Purpose

Returns the command line.

Syntax

$ =_CmdLine[$]

Description

_CmdLine returns the MS-DOS or Windows command line;
the filename and the command line parameters passed
when the program is started. Used in the IDE the
_CmdLine returns the IDE name including its full path.

Example

Print _CmdLine

Remarks

_CmdLine is equivalent with Print
Char{GetCommandLine()}

_CmdLine is the only function that includes the program's
filename (full path).

See Also

_DosCmd$, Arguments

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

_DosCmd$ Function,
Arguments Property (App)
Purpose

Returns the MS-DOS or MS-Windows command string (from
the command line).

Syntax

$ = _DosCmd$

$ = App.Arguments

Description

These functions return the arguments of the program
without the name of the program.

Example

Global Const __argmax = 50
Global __argc As Int
Global __argv() As String
Local Int32 n
ConvertCMDLine()
Print __argc
Print __argv(0)
For n = 1 To __argc : Print __argv(n) : Next n
Do : Sleep : Until Me Is Nothing

Procedure ConvertCMDLine()
// The global variable __argc holds the

// number of commandline arguments after
executing ConvertCMDLine().

// Arguments are separated by space(s)
// __argv() is an Array with the split arguments.
// Only __argmax arguments are returned.
// __argv(0) holds the complete path, filename
included.

// Note: This routine can not differentiate
between spaces in filenames

// and spaces separating arguments.
Local i As Int = 0, j As Int = 0
Local cmd$
Local LargeArg As Boolean = False
Local a$
ReDim __argv(__argmax)
__argv(0) = App.FileName
// Remove quotes
If Left$(__argv(0), 1) = #34
__argv(0) = Mid(__argv(0), 2)

EndIf
If Right$(__argv(0), 1) = #34
__argv(0) = Left(__argv(0), Len(__argv(0)) - 1)

EndIf
cmd$ = Trim(_DosCmd$) + #32
If Left$(cmd$, 1) <> """"
i = InStr(cmd$, #32)

Else
Debug.Print InStr(cmd$, """", 2)
i = InStr(cmd$, #34, 2) : LargeArg = True
cmd$ = Mid$(cmd$, 2) // remove space at start

EndIf
While i > 0
j++
If LargeArg
// remove space at end
a$ = Left$(cmd$, i - 2)
If Len(a)

__argv(j) = Left$(cmd$, i - 2)
Else
j--

EndIf
LargeArg = False

Else
// only remove space at end
a$ = Left$(cmd$, i - 1)
If Len(a)
__argv(j) = Left$(cmd$, i - 1)

Else
j--

EndIf
EndIf
Exit If (i + 1) > Len(cmd$)
cmd$ = Mid$(cmd$, i + 1)
If Left$(cmd$, 1) <> """"
i = InStr(cmd$, #32)

Else
i = InStr(cmd$, #34, 2) : LargeArg = True
cmd$ = Mid$(cmd$, 2) // remove space at
beginning

EndIf
Wend
// Return number of arguments
__argc = j

EndProcedure

The above routine only works if the path does not contain
spaces.

Remarks

_DosCmd and App.Arguments only provide the command
line parameters. In contrast, _CmdLine also includes the
program's full path name.

See Also

_CmdLine

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

Asm Command
Purpose

Invokes the inline assembler.

Syntax

. | Asm mnemonic destination, source

Description

The inline assembler lets you embed assembly-language instructions directly in
your GFA programs without extra assembly and link steps. The inline assembler
is built into the compiler - you don’t need a separate assembler such as the
Microsoft Macro Assembler (MASM).

Because the inline assembler doesn’t require separate assembly and link steps,
it is more convenient than a separate assembler. Inline assembly code can use
any GFABASIC32 variable or functionname that is in scope, so it is easy to
integrate it with your program’s code. And because the assembly code can be
mixed with other statements, it can do tasks that are cumbersome or impossible
in GFABASIC alone.

The dot is a shortcut for the Asm keyword and invokes the inline assembler and
can appear wherever a GFA-BASIC 32 statement is legal. It cannot appear by
itself. It must be followed by an assembly instruction.

The assembler commands use the INTEL parameter sequence, for example:

. mov dest, source

The following code consists of simple Asm block. (The code is a custom function
prolog sequence.)

Asm push ebp
Asm mov ebp, esp
Asm sub esp, __LOCAL_SIZE

Alternatively, you can use a 'dot - space' in front of each assembly instruction:

. push ebp

. mov ebp, esp

. sub esp, __LOCAL_SIZE

You can also put assembly instructions on the same line using the statement
separator:

. nop : . inc eax
Asm nop : Asm inc eax

Assembler labels

A label inside an assembler block differs from the rules above. A label always
starts with dot directly followed by its name, and directly followed by a
semicolon (:). However the semicolon is not used in the jump or call instruction.

. cmp eax, 0

. je .next

. jmp .exit

.next:

. cmp eax, 65

Like an ordinary GFA-BASIC 32 label, an assembler label has scope throughout
the function in which it is defined. Both assembly instructions and GoTo/GoSub
statements can jump to labels inside or outside the assembler instructions. GoTo
and GoSub refer to the assembler labels without the preceding dot.

To jump to an ordinary label using an assembler instruction, the label is
preceded with a dot when used as an argument in the instruction.

Dim i As Int
test:' GFA-BASIC 32 label
Print "Hallo" : i --
. mov eax, [i]
. test eax, eax
. je .test; note the dot in front of the label

To jump to an assembler label using GoTo or GoSub leave out the starting dot.

GoTo 00Assem' note the missing dot

// assembler code
.00Assem: Print "Hallo"

Because assembler label names start with a dot, GFA-BASIC 32 allows the use
keywords for label names, this in contrast to C/C++ inline assembler. This
feature allow you to choose meaningful label names like .next, .try, .exit, .end,
that would otherwise impossible.

Using variables

To move the contents of a variable to a register use mov reg, [varname]. For
instance

Dim i As Int, j%
. mov eax, [i]
. mov [j%], eax ; $AutoPost has no meaning

$AutoPost settings are not obliged in assembler instructions. This can be a
point for confusion; in assembler i As Int is different from i%.

The variable name is a place holder for the address of the variable; the
instruction mov eax, [i] is the same operation as DPeek(*i).

The compiler directly inserts the address of the variable for the second
argument [i]

. mov eax, [$00EEDD11]

For local variables, the address of the variable is compiled as an offset from ebx.

. movzx eax, [localvar]

. movzx eax, wpt [ebx + 124] ; if it is the first local variable

Using the form mov reg,[var] to get access to the value of the variable is only
true for simple types like integers and floating-point data types. The address of
the variable is the place where the data is kept. To access variables this way the
following must be valid: *var = ArrPtr(var) = V: var

The fixed string and UDT data types are accessible through *, as well. For
example a fixed string can be indexed as follows

Debug.Show
f()

Sub f()
Dim sFixed As String * 26
. xor ecx, ecx
. mov al, 65
.l:
. mov sFixed[ecx], al
. inc ecx
. inc eax
. cmp ecx, 25
. jle .l
Trace sFixed

More complex type variables like strings and arrays are managed through their
descriptor (*str <> V: str). The variable name is placeholder for a reference to
their descriptor and not to the bytes where the actual data reside. For these
types the starting address of the data bytes must be stored in a temporarily
long integer (variable or register) and accordingly used.

The following example illustrates how to use variables by calling API functions
with assembler.

' By John Findlay
Type RECT

Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
Global rc As RECT, hUser32 As Handle, i As Int
Global lpGetClientRect As Int, lpGetWindowRect As Int
' Find the addresses of the two functions
hUser32 = LoadLibrary("user32.dll")
lpGetClientRect = GetProcAddress(hUser32, "GetClientRect")
lpGetWindowRect = GetProcAddress(hUser32, "GetWindowRect")
OpenW 1
Print "Example of calling the GetClientRect() and GetWindowRect()
API's with assembler."

Print
Print "Client Coords"
Print MyGetClientRect(Win_1.hWnd, *rc), "Return value from asm call"
Print rc.Left, "Left"
Print rc.Top, "Top"
Print rc.Right, "Right"
Print rc.Bottom, "Bottom"
Print
Print "Window Coords"
Print MyGetWindowRect(Win_1.hWnd, rc), "Return value from asm call"
Print rc.Left, "Left"
Print rc.Top, "Top"
Print rc.Right, "Right"
Print rc.Bottom, "Bottom"
Print
Print "Press a key to exit."
~FreeLibrary(hUser32)
KeyGet i
CloseW 1

Function MyGetClientRect(hWnd As Int, lpRect As Int) As Int Naked
. push [lpRect] : . push [hWnd]
. call [lpGetClientRect]
. mov [MyGetClientRect], eax ' Return

EndFunc

Function MyGetWindowRect(hWnd As Int, ByRef lpRect As RECT) As Int
. push [lpRect] : . push [hWnd]
. call [lpGetWindowRect]
. mov [MyGetWindowRect], eax ' Return

EndFunc

Note The mov instructions in both functions are redundant. Return values from
functions (API or GFA-BASIC 32) are always placed in eax. Returning a value
through a temporary variable with the same name as the function name is a VB

quirk, which simply results in a move back to eax, which then holds the return
value of the function.

Assembler data

To define constant values the following assembler statements are available

. db const - byte constants and Strings (values -128 to +255)

. dw const - 2 byte integer (-32768 to + 65535)

. dd const - 4 byte integer (possible to store label address)

. dl const - 8 byte (large) integer

. dq const - 8 byte (double) floating-point (. dq 12.34 or . dq PI/180*23.5)

. ds const - 4 byte (single) floating point (. ds 12.34 or . ds 12.34!)

In contrast with other assemblers . dd 1.0 is not the same as . ds 1.0!

Examples:

.text:

. db "This is a Text", 0

. dd "This is a Text", 0

Shortcuts

Out of efficiency reasons, there are shortcuts for byte ptr, word ptr, dword ptr,
qword ptr, tbyte ptr, and fword ptr. The shortcuts are respectively, bpt, wpt,
dpt, qpt, tpt, and fpt. The following instructions are equivalent.

. mov bpt [i], 1

. mov byte ptr [i], 1

The disassembler uses the shortcuts by default (cannot be changed).

Jumping and calling

The jump statements (jcc, jmp, loopx, jcxz, etc) only accept a relative offset or
a label:

. jc $+nn; addresss relative to $ (= eip)

. jmp $+ 2

. jc .label; a label (use .)

As in MASM programs, the dollar symbol ($) serves as the current location
counter. It is a label for the instruction currently being assembled.

With call and jmp other addressing modes are possible as well:

. call ecx

. jmp .tab[eax*4]

Calling GFA-BASIC 32 functions

A special assembler command - scall - is required to call a GFA-BASIC 32
function by its name. For instance, to call the GFA-BASIC 32-internal function
MessageBeep(0) the following is used:

. push 0

. scall MessageBeep

Internally, scall is implemented as call dword ptr [] , where the name is known
to the compiler only.

Floating-point extensions

GFA-BASIC 32 extents the normal INTEL x86 floating-point assembler
instructions that works with a constant. For instance, there is no command like
fadd 0.125, instead (external) assembler requires the following construction:

'data
Kon0_125: . dd 0.125
'text
. fadd [Kon0_125]

The GFA-BASIC 32 inline assembler allows simple additions like this:

. fadd 0.125

The management of the memory for the constants is done by the assembler.

The floating-point instructions fld, fadd, fsub, etc. support both Double (default)
and Single arguments. To force single floating-point operations the argument
must be converted to a single value explicitly like

. fadd 12.4!

. fadd CSng(PI)

The floating-point extensions apply to fadd, fsub, fmul, fdiv, fsubr, fdivr, fcom,
fcomp, fldcw, fld, fild, fbld, fiadd, fisub, fisubr, fimul, fidiv, fidivr, ficom, ficomp.

(The integer statement bound (bound eax, [addr] or bound eax, lo, hi) also
accepts a constant.)

Math with labels

The difference between two labels can be obtained indirectly only:

. mov ecx, .label2

. sub ecx, .label1

Since math with label addresses is forbidden, the following is not allowed:

. mov ecx, .label2 - .label1; not possible

. mov al,[.label][3]

Rather than:

.tmp: . dd 1234

. mov al,[.tmp][3]; not allowed

you should use:

.tmp: . db GetByte0(1234)

.1tmp: . db GetByte1(1234)

.2tmp: . db GetByte2(1234)

.3tmp: . db GetByte3(1234)

. mov al,[.3tmp]

or better:

.tmp: . dd 1234

. lea eax,[.tmp]

. mov al, 3[eax]

This restriction applies to labels only and not to variables:

Dim iTmp As Int
. mov al, 3[iTmp]

Assembler Opcodes

To identify commands that require a 80486-processor the first character is
uppercase (this is automatically set by the editor). For instance .Xadd and
.Cmpxchg require processors with at least a 80486 processor and are visually
identified by their uppercase.

. Xadd [i], eax

. Cmpxchg [eax], ecx

To identify Pentium statements the first two characters are converted to
uppercase. For instance, the GFA-BASIC 32 function _Rdtsc requires a Pentium
and should it used in assembler it is visually differentiated.

. RDtsc

. Cmpxchg qpt [i]

Finally, MMX commands like PADD are entirely uppercase.

Assembler statements

aaa aad *10 aam
*10

aas Adc add

align † N and arpl bound Bsf bsr
Bswap bt btc btr Bts call
cbw cdq clc cld Cli clts
cmc cmp cmps cmpsb°° Cmpsd°° cmpsw°°
Cmpxchg CMpxchg8

b
CPuid cwd Cwde daa

das db † N dd † N dec Div dl † N
dq † N ds † N dw † N enter f2xm1 fabs
fadd faddp fbld fbstp Fchs fclex
fcom fcomp fcompp fcos fdecstp fdisi
fdiv fdivp fdivr fdivrp Feni ffree
fiadd ficom ficomp fidiv Fidivr fild
fimul fincstp finit fist Fistp fisub
fisubr fld fld1 fldcw Fldenv fldl2e
fldl2t fldlg2 fldln2 fldpi Fldz fmul
fmulp fnclex fninit fnop fnsave fnstcw
fnstenv fnstsw fpatan fprem Fprem1 fptan
frndint frstor fsave fscale fsetpm fsin
fsincos fsqrt fst fstcw Fstenv fstp
fstsw fsub fsubp fsubr Fsubrp ftst
fucom fucomp fucompp fwait Fxam fxch
fxtract fyl2x fyl2xp1 hlt Idiv imul
in inc ins insb Insd insw
int into Invd Invlpg Iret ja
jae jb jbe jc jcxz¹ jcxzd³²
je jecxz³² jg jge Jl jle
jmp jna jnae jnb Jnbe jnc
jne jng jnge jnl Jnle jno
jnp jns jnz jo Jp jpe
jpo js jz lahf Lar lds
lea leave les lfs Lgdt lgs
lidt lldt lmsw lock Lods lodsb°°
lodsd°° lodsw°° loop³² loopd³² loopde³² loopdne³²
loopdnz³² loopdz³² loope³² looped³² loopew¹ loopne³²
loopned³² loopnew¹ loopnz³² loopnzd³² loopnzw¹ loopw¹
loopwe¹ loopwne¹ loopwnz¹ loopwz¹ loopz ³² loopzd³²
loopzw¹ lsl lss ltr Mov movb°°

movl°° movs movsb°° movsd°° movsw°° movsx
movsxb°° movsxw°° movw°° movzx movzxb°

°
movzxw°
°

mul neg nop not Or out
outs outsb °° outsd °° outsw °° Pop popa¹
popad³² popf¹ popfd³² popw¹ Push pusha¹
pushad³² pushf¹ pushfd³² pushw¹ Rcl rcr
RDmsr RDtsc rep repe Repne ret
retf retn rol ror RSm sahf
sal sar sbb scall Scas scasb °°
scasd°° scasw°° seta setae Setb setbe
setc sete setg setge Setl setle
setna setnae setnb setnbe Setnc setne
setng setnge setnl setnle Steno setnp
setns setnz seto setp Setpe setpo
sets setz sgdt shl Shld shr
shrd sidt sldt smsw Stc std
sti stos stosb°° stosd°° Stosw°° str
sub test verr verw Wait Wb_invd
WRmsr Xadd xchg xlat Xlatb xor

MMX statements

EMMS MOVD MOVQ PACKSSD
W

PACKSSW
B

PACKUSW
B

PADDB PADDD PADDSB PADDSW PADDUSB PADDUSW
PADDW PAND PANDN PCMPCGD PCMPEQB PCMPEQD
PCMPEQD PCMPEQW PCMPGTB PCMPGTW PMADDWD PMULHW
PMULLW POR PSLLD PSLLQ PSLLW PSRAD
PSRAW PSRLD PSRLQ PSRLW PSUBB PSUBD
PSUBSB PSUBSW PSUBUSB PSUBUSW PSUBW PUNPCKHB

W
PUNPCKHD
Q

PUNPCKH
WD

PUNPCKLB
W

PUNPCKLD
Q

PUNPCKUL
WD

PXOR

Pentium specific assembler and disassembler statements

For Pentium Pro/II/III... an additional set of move statements is added. The
presence of these statements is indicated by bit #15 in _CPUIDD.

cMOVo cMOVn
o

CMOVb cMOVc CMOVn
ae

cMOVn
b

CMOVn
c

cMOVd
ae

cMOVz cMOVe CMOVnz cMOVne CMOVb cMOVna CMOVnb cMOVa

e e
cMOVs cMOVns CMOVp cMOVpe CMOVn

p
cMOVpo cMOVl cMOVng

e
cMOVnl cMOVge CMOVle cMOVng cMOVnl

e
cMOVg

These move statements move bytes when a condition is met (o, no, b, etc.), like
jcc or setcc. As destination only one of the eight possible general registers is
allowed (esp included). Also allowed are the 16 bit registers (and addresses).
The source operand cannot be a constant.

Explanation

¹ This is the 16 bit statement, loopw.

With pushw/popw: pushw ds is a 16 bit push of the ds register, push ds a 32 bit
push. Instructions using segment registers, not allowed in flat mode, are
handled as pseudo-32 bit registers by the processor. Therefore, a far call in 32
bit mode requires 8 bytes for a return address (4 bytes offset, 2 byte cs and 2
byte dummy to pad to 32 bit).

³² This is 32 bit instruction: loop, loopd

°° With instructions taking multiple data types (like movs) the size of data type
can be specified by using a postfix character (b, w, or d). Saves a bit of typing:

. movsd

. movs dword ptr es:[edi], dword ptr [esi]

Other shortcuts for mov and movsx/movzx:

. MOVD 8[ebp], 12

. mov dword ptr 8[ebp], 12

. movzxb eax,[eax]

. movzx eax, byte ptr [eax]

† Pseudo instructions using constants as parameter:

align 2 - Alignment at word border (or a nop)

align 4 - Alignment on DWORD border (or some nops or other instructions that
don't modify registers: mov ecx, ecx or lea edx, 0[edx])

align 8 - Alignment on 8 byte border (useful together with dq)

align 16 - Alignment on 16 byte border

See Also

. Assembler Instruction

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

GetRegsCommand
Purpose

Copies the processor registers.

Syntax

GetRegs

Description

GetRegs copies the content of the processor registers to
the pseudo register variables _EAX, _EBX, etc.

The pseudo register variables are used to inspect processor
registers and to pass values to assembler routines.

_EAX, _EBX, _ECX, _EDX, _ESI, _EDI, _EBP, _ESP,
_EFL, _EIP

_AX, _BX, _CX, _DX, _SI, _DI, _BP, _SP, _FL, _IP

_CS, _DS, _ES, _FS, _GS, _SS

_AH, _AL, _BH, _BL, _CH, _CL, _DH, _DL

The top eight are the pseudo register variables of GFA-
BASIC 32. They can be filled using the GetRegs command.
GetRegs copies the values and state of each register
processor in its corresponding variable. The value of the eax
register is copied to _EAX, the ecx register to _ECX, etc.

For four registers, eax, ebx, ecx, and edx, the LoWord, and
the LoByte and HiByte of the LoWord can be read and set

individually. The table below shows the meaning and the
relationship of the pseudo register variables.

Register Lo
Byte
8 bit

Hi
Byte
8 bit

Lo
Word

16
bit

Regist
er 32

bit

accumulations
register

_AL _AH _AX _EAX

base register _BL _BH _BX _EBX
count register _CL _CH _CX _ECX
data register _DL _DH _DX _EDX
source index
register

 _SI _ESI

destination index
register

 _DI _EDI

base pointer
register

 _BP _EBP

stack register _SP _ESP
flag register _FL _EFL
extended
instruction
pointer

 _EIP

only for the 16
bit operating

 _IP

code segment
register

 _CS

daten segment
register

 _DS

extra segment
register

 _ES

extra segment
register

 _FS

extra segment
register

 _GS

stack segment
register

 _SS

carry flag _CY

When an assembler routine is invoked, the registers can be
initialized at the calling. The Call(X) command allows
passing values by pseudo register variable.

Call(addr) (_EAX = 1, _ECX = 2)

Further more, some GFA-BASIC 32 commands return values
in a pseudo variable. For instance Dlg Font returns the size
in point in _DX and the font type in _SI. All Dlg-common
dialog commands return an error condition in _AX.

Example

Dim cur As Currency
cur = 1000
GetRegs : Print _EAX, _EDX

output of two register after addition to one Currency
variable

Remarks

You are free to use the pseudo variables as (global)
variables to store temporarily information.

See Also

Tron, Call, CallX

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

_CPUID Function
Purpose

Returns processor information.

Syntax

a = _CPUID

a: large ivar

Description

Every processor has an internal register containing
information about its type and manufacturer. The
information block is 128 bits (16 bytes) in size.

Example

Print the _CPUID.

Message Hex$(_CPUID)
// prints a key for the processor type, for
instance 52c

// in case of a normal Pentium
MsgBox (_CPUID And $f00) = $500 ? "Pentium" : "
Other processor"

// prints Pentium in case of a Pentium, otherwise
Other processor

Print Choose((_CPUID >> 8) And 15, "", "", "386",
"486", _
"Pentium", "Pentium2", "Pentium III")

// or

Print Btst(_CPUIDD, 15) // Pentium II or Pentium
Pro by checking "fcmove..."

Do : Sleep : Until Me Is Nothing

Remarks

The 14 lowest bits of _CPUID return the CPU type. The
following is true:

_CPUID %& 0x3000

0 Normal CPU
1 Overdrive CPU
2 Dual

processor
3 Intel Reserved

_CPUID %& 0x0fff

300
300 386 (no CPUID-assembler instruction)
4XX
400 486 (no Cpuid-assembler instruction)
44x 486SL
47x 486DX2, WriteBack Enhanced
48x 486DX4 (or Overdrive)
5XX
51x Pentium 60 or 66 (or Overdrive)
52x Pentium 75, 90, 100, 120, 133, 150, 166 or 200 (or

Overdrive)
53x Pentium Overdrive 486
54x Pentium MMX 166/200
54x Pentium MMX Overdrive 75/90/100/120/133
6XX

61x Pentium Pro
63x Pentium II, Model 3
63x Pentium II Overdrive
65x Pentium II-5, Celeron-5, Pentium II-Xeon
66x Celeron-6
67x Pentium III, Pentium III-Xeon

The Pentium II, Model 5, and the Celerons, or Pentium II-
Xeon can be separated by the 2nd Level Cache Information.
The same is true for Pentium III and Pentium III-Xeon.

See Also

_CPUIDD, _CPUID$

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

_CPUID$ Function
Purpose

Returns the processor type as name.

Syntax

$ = _CPUID$

Description

The name of the CPU in plain text.

Example

MsgBox _CPUID$ // Returns "GenuineIntel"

See Also

_CPUID, _CPUIDD

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

_CPUIDD Function
Purpose

Returns processor information

Syntax

a = hex$(_CPUIDD)

Description

Every processor has an internal register containing
information about its type and manufacturer. The
information block is 128 bits (16 bytes) in size.

Example

Check Pentium type and if if MMX is supported.

OpenW 1
Print Btst(_CPUIDD, 15) // Pentium II or Pentium
Pro by checking if "fcmove....." is available

// or
Print Btst(_CPUIDD, 23) // IsMMX
Do : Sleep : Until Me Is Nothing

Remarks:Since the Pentium III processor each has its own
ID. The name and description of the _CPUIDD bits for Intel
processors until Pentium III.

Bit Name Description
0 FPU Floating-point unit on-chip - The

processor contains an FPU that supports the

Intel 387 floating-point instruction set.
If Btst(_CPUIDD, 0) Then Print "FPU
available"

1 VME Virtual Mode Extension - The processor
supports extensions to virtual-8086 mode.

2 DE Debugging Extension - The processor
supports I/O breakpoints, including the
CR4.DE bit for enabling debug extensions
and optional trapping of access to the DR4
and DR5 registers.

3 PSE Page Size Extension - The processor
supports 4-Mbyte pages.

4 TSC Time Stamp Counter - The RDTSC
instruction is supported including the
CR4.TSD bit for access/privilege Control.
If Btst(_CPUIDD, 4) Then _RDTSC possible.

5 MSR Model Specific Registers - Model Specific
Registers are implemented with the RDMSR,
WRMSR instructions

6 PAE Physical Address Extension
7 MCE Machine Check Exception, Exception 18,

and the CR4.MCE enable bit are supported
8 CX8 CMPXCHG8 Instruction Supported
9 APIC On-chip APIC Hardware Supported
10 Reserved
11 SEP Fast System Call Indicates whether the

processor supports the Fast System Call
instructions, SYSENTER and SYSEXIT.
(Erratum in Pentium Pro, needs to examine
_CPUID (Family 6, Model < 3, Stepping < 3:
Not supported)

12 MTRR Memory Type Range Registers supported
(MTRR_CAP)

13 PGE Page Global Enable - The global bit in the
PDEs and PTEs and the CR4.PGE enable bit
are supported.

14 MCA Machine Check Architecture supported,
specifically the MCG_CAP register.

15 CMOV The processor supports CMOVcc, and if the
FPU feature flag (bit 0) is also set, supports
the FCMOVCC and FCOMI instructions.
Pentium II+ and many Pentium Pro support
somewhat faster Min and Max operations.

16 PAT Page Attribute Table - Indicates whether
the processor supports the Page Attribute
Table. This feature augments the Memory
Type Range Registers (MTRRs), allowing an
operating system to specify attributes of
memory on a 4K granularity through a linear
address.

17 PSE-
36

36-bit Page Size Extension - Indicates
whether the processor supports 4-Mbyte
pages that are capable of addressing
physical memory beyond 4GB. This feature
indicates that the upper four bits of the
physical address of the 4-Mbyte page is
encoded by bits 13-16 of the page directory
entry.

18 Processor serial number is present and
enabled. The processor supports the 96-bit
processor serial number. feature, and the
feature is enabled.

19 Reserved
20 Reserved
21 Reserved
22 Reserved
23 Intel Architecture MMX Technology supported

If Btst(_CPUIDD, 23) or If IsMMX
24 FXSR Fast floating point save and restore -

Indicates whether the processor supports
the FXSAVE and FXRSTOR instructions for
fast save and restore of the floating point
context. Presence of this bit also indicates
that CR4.OSFXSR is available for an
operating system to indicate that it uses the
fast save/restore instructions.

25 Streaming SIMD Extensions supported
(Pentium III+) (3D-Katmai command)

26 Reserved
27 Reserved
28 Reserved
29 Reserved
30 Reserved

The processor serial number for Pentium III processors can
be obtained using Btst(_CPUIDD, 18) or _CPUID 3 in HEX
in _CPUID and _ECX and _EDX (according Intel to show as
6 times 4 Hex characters in uppercase).

See the cpuid.g32 example

See Also

_CPUID$, _CPUID

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

IsMMX
Purpose

Returns a Boolean value indicating a whether the CPU
supports MMX instructions.

Syntax

Bool = IsMMX

Description

Implemented for older CPUs (lower as Pentium 200). All
newer CPUs support MMX.

Example

Print IsMMX

See Also

_CPUID

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

GetCurrentFiber Function
Purpose

Returns an identification value for the current running fiber.

Syntax

addr% = GetCurrentFiber()

Description

The return value is the address of the currently running
fiber. A fiber is 'lightweight' thread, with less overhead and
easier to maintain. A fiber uses less resources and the time
to activate a fiber is lesser than for a thread.

The CreateFiber and ConvertThreadToFiber functions return
the fiber address when the fiber is created. The
GetCurrentFiber function allows you to retrieve the
address at any other time.

The functions GetTIB, GetCurrentFiber, and
GetFiberData are generated using inline code and are for
this reason implemented in GFABASIC 32.

GetCurrentFiber . mov eax, fs:[16]

GetFiberData . mov eax, fs:[16] : . mov eax, [eax]

GetTIB . mov eax, fs:[24]

Example

Remarks

GetCurrrentFiber() and GetFiberData() are supported for
Windows NT and later. These functions are used together
with corresponding API functions like:
ConvertThreadToFiber, CreateFiber, SwitchToFiber, etc..

See Also

GetFiberData, GetTIB

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

GetFiberData Function
Purpose

Reads the fiber data (data value) associated with the
current fiber.

Syntax

x% = GetFiberData()

Description

The fiber data is the value passed to the CreateFiber or
ConvertThreadToFiber API functions in the lpParameter
parameter. This value is also received as the parameter to
the fiber function. It is stored as part of the fiber state
information.

This function is part of three fiber functions that are
generated inline, GetCurrentFiber, GetFiberData, and
GetTIB. These functions allow to connect to the base
structure of the multitasking of Windows 95/98/NT/2000.
For more information see GetCurrentFiber.

See Also

GetCurrentFiber, GetTIB

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

GetTIB Function
Purpose

Returns the linear address of a thread information block.

Syntax

x% = GetTIB()

Description

GetTIB() is generated as inline code and used to determine
the linear address of a thread information block. A TIB
contains the internal multitasking information of a thread.
Because of the multitasking, a TIB cannot be stored in a
Global (Public) or Static variable, only in a Local (register)
variable is allowed. The structure of a TIB is almost
undocumented, however the following variables of these
block can be used.

{GetTIB()} is the address of the needed head of the list for
the internal error handling. Used for Try/Catch/EndCatch in
GFA-BASIC 32 respectively __try, __except/__finally in C.

{GetTIB() + 4} and {GetTIB() + 8} contain the maximum
and minimum addresses of the stack.

{GetTIB() + 16} is GetCurrentFiber() and

{GetTIB() + 24} is a pointer to GetTIB() itself.

One possibility usage of GetTIB() is to check, if a program
is running under a debugger. Under Windows 95/98

{GetTIB() + 32} is always zero if it runs under a debugger.
To find out if Windows 95 or 98 is running use GetVersion().
Both highest bits of the return value are set, if it runs under
Windows 95/98 (under Windows NT the highest bit is
cleared).

Example

// This program was designed for OSs prior to
WinMe & Win2000

If GetVersion() %& $c0000000 == $c0000000
If {GetTIB() + 32}
MsgBox "The program is running under a
debugger"

Else
MsgBox "The program doesn’t run not under a
debugger"

EndIf
Else
MsgBox "The program doesn’t run under Windows
95/98"

EndIf

Remarks

Since Windows NT 4.0 and Windows 98 there exists a
function named IsDebuggerPresent, which offers exact this
functionality.

Declare Function IsDebuggerPresent Lib "kernel32"
() As Int

Try
If IsDebuggerPresent()
MsgBox "The program is running under" _
" a debugger"

Else
MsgBox "The program doesn’t run under" _

" a debugger"
EndIf

Catch // for Windows 95 and NT 3.51
If GetVersion() %& $c0000000 == $c0000000
If {GetTIB() + 32}
MsgBox "The program is running" _
"under a debugger"

Else
MsgBox "The program doesn’t run" _
" under a debugger"

EndIf
Else
MsgBox "Can’t find the function" _
" IsDebuggerPresent and the" _
"program doesn’t run under Windows 95"

EndIf
End Catch

See Also

GetCurrentFiber, GetFiberData

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

^ Operator
Purpose

Raises a number to the power of another number.

Syntax

= x ^ y

x : iexp
y :avar

Description

The result is number raised to the power of exponent,
always as a Double value. The value of exponent can be
fractional, negative, or both.

Example

Global Int32 x, y
OpenW 1
x = 2
y = 8
Print x ^ y // prints 256
Print (y - 2 * x) ^ 4 // prints 256

Remarks

When more than one exponentiation is performed in a
single expression, the ^ operator is evaluated as it is
encountered from left to right.

See Also

Pow, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

* Operator
Purpose

Used to multiply two numbers.

Syntax

x * y

Description

The * operator is the arithmetic multiplication operator used
to multiply an arithmetic expression.

Example

OpenW 1
Global x%, y%, a%
x% = 30
y% = 17
Print x * y // Prints 510
KeyGet a% // Press any key to close
CloseW 1

Remarks

When used with integers the compiler will optimize for
integer math.

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

/ Operator, \ Operator
Purpose

Used to divide two numbers. The result is a double.

Syntax

= exp1 / exp2

int = exp1 \ exp2

Description

The / operator always performs floating-point division. To
force integer division use the \ operator or use Div.

Example

OpenW 1
Global x%, y%, a%
x = 36
y = 3
Print x / y /* Result: 12
KeyGet a%
CloseW 1

See Also

+, -, ^, *, /F, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /=
, *=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

+ Operator
Purpose

Used to add/concatenate two expressions.

Syntax

r = x + y

Description

The + operator is the arithmetic addition operator when:

- Both expressions are numeric data types.
- One expression is numeric and the other is a Variant
(except Null).
- Both Variant expressions are numeric.
- One Variant expression is numeric and the other is a
string.

The + operator is a concatenation operator when:

- Both expressions are String data types.
- One expression is a String and the other is a Variant
(except Null).
- Both Variant expressions are strings.

If either expression is Null, the result is Null.

For simple arithmetic addition involving only expressions of
numeric data types, the data type of result is usually the
same as that of the most precise expression. The order of
precision, from least to most precise, is Byte, Integer,

Long, Single, Double, Currency, and Large. The
following are exceptions to this order

- A Single added to a Long added results in a Double.
- A Date added to any data type results in a Date.

For Variants these exceptions apply:

- When the data type of result is a Long, Single, or Date
variant that overflows its legal range, result is converted to
a Double variant.

- When the data type of result is a Byte variant that
overflows its legal range, result is converted to an Integer
variant.

- When the data type of result is a Short variant that
overflows its legal range, result is converted to a Long
variant.

Example

OpenW 1
Global x% = 30, y# = 17 , a%
Print x + y
KeyGet a%
CloseW 1

Remarks

When used with integers the compiler will optimize for
integer math.

When you use the + operator, you may not be able to
determine whether addition or string concatenation will
occur. Use the & or $ operator for concatenation to
eliminate ambiguity and provide self-documenting code.

See Also

$, & and +, -, ^, *, /, \, %, Dec, Inc, Add, Sub, Mul, Div,
++, --, +=, -=, /= , *=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

- Operator
Purpose

Used to subtract numeric expressions or to indicate the
negative value of a numeric expression.

Syntax 1

r = x - y

Syntax 2

- y

Description

The - operator is the arithmetic subtraction operator used to
find the difference between two numbers. In Syntax 2, the -
operator is used as the unary negation operator (or sign) to
indicate the negative value of an expression.

Example

Dim a% = 1, b! = 1
OpenW 1
Debug.Show : Debug.OnTop
Debug.Print a - b
Debug.Print a + -b
Do : Sleep : Until Win_1 Is Nothing
Debug.Hide
CloseW 1

Remarks

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

++ Command
Purpose

Increments a numeric variable.

Syntax

x++

x:numeric variable

Description

x ++ increments the value of x by 1.

Example

OpenW # 1
Dim x# = 2.7
x ++
Print x // Prints 3.7

Remarks

Although ++ can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

Instead of x++ the following can be used instead:

x = x + 1
x := x + 1
x += 1

Inc x
Sub x, -1
Add x, 1

When integer variables are used ++ doesn't test for
overflow!

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

-- Command
Purpose

Decrements a numeric variable.

Syntax

x--

x:avar

Description

x-- decrements the value of x by 1.

Example

OpenW # 1
Dim x# = 2.7
x--
Print x // Prints 1.7

Remarks

Although -- can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

Instead of x--, the following can be used instead:

x = x - 1
x -= 1
Dec x

Sub x, 1
Add x, -1

NOTE: When integer variables are used, -- doesn't test for
overflow!

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

+= Assignment
Purpose

Adds a numeric expression to a numeric variable.

Syntax

x += y

x:variable
y:aexp

Description

x += y adds the expression y to the value in variable x.

Example

OpenW # 1
Dim x# = 17
x += 5 * 5
Print x // Prints 42

Remarks

Although += can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

Instead of x += y the following can be used instead:

x = x + y
x := x + y

Add x, y

When integer variables are used += doesn't test for
overflow!

See Also

+, -, ^, *, /, \, %, Dec, (dec,popfont,9,9,-1,-1)">Dec, Inc,
Add, Sub, Mul, Div, ++, --, +=, -=, /= , *=, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

-= Assignment
Purpose

Subtracts a numeric expression from a numeric variable.

Syntax

x -= y

x:variable
y:aexp

Description

x -= y subtracts the expression y from the value in variable
x.

Example

OpenW # 1
Dim x = 57
x -= 3 * 5
Print x // Prints 42

Remarks

Although -= can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

Instead of x-=y

x = x - y

x := x - y
Sub x, y

can be used also. When integer variables are used -=
doesn't test for overflow!

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

/= Assignment
Purpose

Divides the value of a variable or property by the value of
an expression and assigns the result to the variable or
property.

Syntax

x /= y

x:variable
y:aexp

Description

x /= y divides the expression y into the value in variable x.
The type of the operation is determined by the data type of
the variable x. For integer variables GFA-BASIC 32
generates integer division code.

Example

Local x% = 126
x% /= 2 + 1
Print x% // Prints 42

Remarks

Although /= can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

See Also

+, -, ^, *, /F, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /=
, *=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

*= Assignment
Purpose

Multiplies a numeric variable with a numeric expression.

Syntax

x *= y

x:numeric variable
y:aexp

Description

x *= y multiplies the value in variable x with the expression
y.

Example

OpenW # 1
Dim x# = 6
x *= 9
Print x // Prints 54

Remarks

Although *= can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

The following can be used instead of x*=y:

x = x * y

x := x * y
Mul x, y

When integer variables are used *= doesn't test for
overflow!

See Also

+, -, ^, *, /, \, %, Add, Sub, Mul, Div, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 24/06/2017 by James Gaite}

%= Assignment Operator
Purpose

Take modulus of the first operand specified by the value of
the second operand; store the result in the object specified
by the first operand.

Syntax

i %= j
i : avar
j : avar

Description

Using this operator is almost the same as specifying result
= result % expression, except that result is only evaluated
once.

Example

Global l As Long
l = 42
l %= 5 // l = 42 Mod 5
Print l // Prints 2

See Also

%, FMod, Mod, Mod(), Mod8, Mod8(), Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

&= Assignment Operator
Purpose

A logical bit-wise AND of two bit patterns, whereby the first
pattern must be in an integer variable.

Syntax

i &= j

i: ivar

j: integer expression

Description

i &= j sets, in the integer variable i, only the bits which are
set in both i and j.

Example

Print Bin$(3, 4) // Prints 0011
Print Bin$(10, 4) // Prints 1010
Local i% = 3
i% &= 10
Print Bin$(i%, 4) // Prints 0010

Remarks

i = i %& j or i = i And j are synonymous with i &= j and
can be used instead.

See Also

^=, |=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

|= Assignment
Purpose

Performs a logical bit-wise Or on two bit patterns, whereby
the first pattern must be in an integer variable.

Syntax

i |= j

i:ivar

j:integer expression

Description

I |= j sets in the integer variable i, only the bits which are
set in either i or j.

Example

Print Bin$(3, 4) // Prints 0011
Print Bin$(10, 4) // Prints 1010
Local i% = 3
i% |= 10
Print Bin$(i%, 4) // Prints 1011

Remarks

i = i | j and i = i Or j are synonymous with i |= j and can
be used instead.

See Also

&=, ^=

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

^= Assignment
Purpose

Performs an exclusive bit-wise OR on two bit patterns,
whereby the first pattern must be in an integer variable.

Syntax

i ^= j

i:ivar
j:integer expression

Description

i ^= j sets in the integer variable i only the bits which are
set in i but are clear in j and vice versa.

The type of the operation is determined by the data type of
the variable x. For integer variables GFA-BASIC 32
generates integer code.

Example

Local i%
OpenW # 1
Print Bin$(3, 4) // Prints 0011
Print Bin$(10, 4) // Prints 1010
i% = 3
i% ^= 10
Print Bin$(i%, 4) // Prints 1001

Remarks

i=i Xor j is synonymous with i ^= j and can be used
instead.

See Also

&=, |=, ^=, ^, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

< Comparison-Operator
Purpose

Less than comparison operator.

Syntax

? = exp1 < exp2

Description

The result of a relational expression is True if the tested
relationship is true and False if it is false.

Example

OpenW # 1
Global Int x , y
x = 10, y = 12
If x < y Then Print "True"

See Also

<, >, <>, ><, =<, <=, >=., =>, !=, =, ==, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

> Comparison Operator
Purpose

Greater than comparison operator.

Syntax

? = exp1 > exp2

Description

The result of a relational expression is True if the tested
relationship is true and False if it is false.

Example

OpenW # 1
Global x , y
x = 17, y = 12
Print (x > y ? "True" : "False")

See Also

<, >, <>, ><, =<, <=, >=., =>, !=, =, ==, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

!=, <> and >< Inequality
Operators
Purpose

An inequality operator returns false if its operands are
equal, true otherwise.

Syntax

? = exp1 != exp2

? = exp1 <> exp2

? = exp1 >< exp2

exp1, exp2: aexp

Description

For primitive and value types, an inequality operator will
return true if the values of its operands are different, false
otherwise. For the String type, it compares the values of the
strings and returns false if they are identical (see Mode
Compare for more information on comparing strings).

Example

OpenW # 1
Global Int32 i = 32, b = 30
Print b != i // Prints True
i = 30
Print b <> i // Prints False
Print (2 <> 1) != (2 >< 2) // Prints True

Do
Sleep

Until Win_1 Is Nothing

Remarks

The <>, >< and != operators are synonymous, the former
coming from classic BASIC, the latter from C.

See Also

<, >, =<, <=, >=, =>, =, ==, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

<=, =< Comparison-
Operators
Purpose

Less than or equal to comparison operator.

Syntax

? = exp1 <= exp2

? = exp1 =< exp2

Description

The result of a relational expression is True if the tested
relationship is true and False if it is false.

Example

OpenW # 1
Global Int x , y
x = 17, y = 12
Print (x =< y ? "True" : "False")

See Also

<, >, <>, ><, =<, <=, >=., =>, !=, =, ==, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

>=, => Comparison
Operators
Purpose

Greater than or equal to operator.

Syntax

? = exp1 >= exp2

? = exp1 => exp2

Description

The result of a relational expression is True if the tested
relationship is true and False if it is false.

Example

OpenW # 1
Global x , y
x = 17, y = 12
Print (x >= y ? "True" : "False")

See Also

<, >, <>, ><, =<, <=, >=, =>, !=, =, ==, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

=, == Comparison Operators
Purpose

Equality comparison operators.

Syntax

? = exp1 = exp2

? = exp1 == exp2

Description

The result of a relational expression is True if both
expression are equal, otherwise tested relationship is False.

Example

OpenW # 1
Global x , y
x = 17, y = 12
Print(x = y ? "True" : "False")

Remarks

As an alternative the C equality comparison operator ==
can be used.

See Also

<, >, <>, ><, =<, <=, >=., =>, !=, =, ==, Operator
Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

&& Logical operator
Purpose

Logical AND of a true/false status of two or more values

Syntax

i && j

i, j:arguments

Description

If you want to test whether two or more conditions are true,
you can use the logical AND operator &&. This function is
optimised for performance as it evaluates all conditions
from left to right and if it comes across a false condition,
any further conditions are not evaluated.

Example

ff("String", 150) // Prints True
ff("", 150) // Prints False
ff("String", 75) // Prints False
ff("", 75) // Prints False

Function ff(a$, height)
Print Len(a$) && height => 100
(* Prints True only if both conditions are True
and/or non-zero *)

EndFunction

Remarks

The logical operator And can be used to perform a similar
task but does not have the speed optimization of && and
can occasionally produce an odd result.

Local Byte a = 1, b = 2
Print a = 2 && b = 2 // Prints False (quick)
Print a = 2 And b = 2 // Prints 0 (slow)

This logical operator should not be confused with the bitwise
AND operator %& which returns erroneous results if used
in this way, as can be seen below:

Local Byte a = 1, b = 2
Print a = 1 && b = 2 // Prints True
Print a = 1 And b = 2 // Prints -1
Print a = 1 %& b = 2 // Prints False

See Also

If, ||, ^^, !, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

|| Logical operator
Purpose

Logical OR of a true/false status of two values

Syntax

i || j

i, j:function arguments

Description

To test whether either of two conditions is true (or if both
are true), use GFA-BASIC 32's logical OR operator ||. The
condition is evaluated form left to right. To evaluate to true
only one of the conditions must be true. When the first
condition is true, the second isn't evaluated.

Example

Dim a% = 10
If a% = 0 || ff() Then Print "Both evaluated"
If a% || ff() Then Print "Only one evaluated"

Function ff() As Int
Return 1

EndFunction

|| is a logical OR operator (and can be replaced by OR) but
is not the same as the bitwise OR operators |, or %|.
Replacing || with either of these would first evaluate both
conditions, which are then bitwise Or-ed. Then the result of

the bitwise or operation is tested for true or false, as shown
below:

Dim a% = 10, b% = 2
Print a% = 10 Or b% = 5 // Prints -1 (True)
Print a% = 10 || b% = 5 // Prints True
Print a% = 10 %| b% = 5 // Prints False
Print a% = 10 | b% = 5 // Prints False

See Also

If, &&, ^^, !

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

^^ Logical operator
Purpose

Logical Xor of true/false status of two values

Syntax

? = exp1 ^^ exp2

Description

If you want to test whether one - and only one - of the
expression is logically true (either-or), you can use the
logical XOR operator ^^. The condition is evaluated form
left to right. To evaluate to true only one of the conditions
must be true.

If Len(a$) ^^ height => 100

This expression evaluates to true when a$ contains data
and the height variable is less than 100, or when a$ is
empty and height is greater or equal to 100.

Example

Dim a% = 10, ff% = 5
Print "a% = 3 XOR ff = 5 " & (a% = 3 ^^ ff = 5 ?
"is true" : "is false") /* Returns True

Print "a% = 10 XOR ff = 5 " & (a% = 10 ^^ ff = 5 ?
"is true" : "is false") /* Returns False

See Also

&&, ||, !, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

! Logical Negation
Purpose

Logical negation of a Boolean value

Syntax

! i

i:function argument

Description

! i returns 0 when i is not zero and -1 when i equals 0.

Example

OpenW # 1
Local i#
i = 32
Print ! i // Prints False
i = 0
Print ! i // Prints True

See Also

&&,, || ^^, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

~ Command
Purpose

Voids a numeric expression.

Syntax

~a

Description

~ causes a calculated value or an integer expression
returned from a function not to be put on stack or in a
register. This means that the value is indeed calculated but
because of ~ it's immediately "forgotten".

Example

This example performs a delay by calculating a complex
expression which makes it very dependant on both
computer and clock rate. It is much better to use Pause 1
here.

OpenW 1
Local i%, x%
For i% = 0 To _X - 1
Plot i%, (SinQ (i%) + 1) * _Y / 2 // Plots the
Sine Curve

~Sin(Cos(Tan(Log(2.3)))) // Is
calculated but not used

Next
KeyGet x%
CloseW 1

The following example creates a PopUp menu called POP-
UP Menu with entries L1, L2 and L3, without monitoring
which entry was selected.

Local xo% = 100
Local yo% = 20
Local a$ = "POP-UP Menu | L _1 | L _2| L _3"
~PopUp(a$, xo%, yo%, 1)

Finally, this example produces a Message Box for which you
do not need a return value.

~MsgBox("Press 'OK' to continue", MB_OK, "MsgBox")

Remarks

~x and Void x are equivalent to dummy% = x

New. ~ is also used to void a return value from a user
defined function. However, in GFA-BASIC 32 the ~ is no
longer needed.

Local d# = DoFunc(1) // call function and store
return value

~DoFunc(2) // call function and void
the return value

Print DoFunc(3) // call function and print
return value

Function DoFunc(a#)
Return a# * 1.0

EndFunc

New. This is also true for DLL functions declared with
Declare. The ~ is no longer necessary to void the return
value. In addition, DLL functions are no longer called using

@@ or ^^, but simply by their name as if they were
common functions.

However, ~ is still necessary for built-in API functions.

Declare Function GetUserName Lib "advapi32.dll"
Alias "GetUserNameA" (ByVal lpBuffer As String,
nSize As Long) As Long

OpenW 1
Dim n$ = String$(30, #0)
GetUserName(n$, 30) ' New Syntax
Print "User Name: "; n$
~GetWindowText(Win_1.hWnd, V:n$, 30) ' Old Style:
still uses ~

Print "Window Title: "; n$

See Also

Void

{Created by Sjouke Hamstra; Last updated: 20/09/2017 by James Gaite}

%& Operator
Purpose

Performs a logical bit-wise AND of two bit patterns.

Syntax

i %& j

i, j:integer expression

Description

i %& j sets in the result only the bits which are set in both i
and j.

Example

Print Bin$(3 %& 7, 4) // prints 0011

Remarks

And is synonymous with %& and can be used instead:

Print Bin$(3 And 7, 4) // prints 0011

See Also

And, Or, Xor, Imp, Eqv, |, %|, ^^, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

|, %| Function
Purpose

Performs a logical bit-wise Or on two bit patterns.

Syntax

i | j

i %| j

i, j:integer expression

Description

i | j sets only the bits which are set in at least one of the
two operands i or j. For completeness with %& (which
replaces the & - And operator), the %| operator is added
as a replacement for |.

Example

Print Bin$(3, 4) // Prints 0011
Print Bin$(3 | 10, 4) // Prints 1011
Print Bin$(5 %| 10, 4) // Prints 1111

Remarks

Or is synonymous with | and can be used instead:

Print Bin$(3 Or 10, 4) // Prints 1011

See Also

And, Or, Xor, Imp, Eqv, %&, ~

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

%| Operator
Purpose

Performs a logical bit-wise Or of two bit patterns.

Syntax

i %| j

i, j:integer expression

Description

I %| j sets in the result only the bits which are set in both i
and j. The %| bitwise operator is equivalent as the 'older' |
operator. The %| operator is provided in complement of the
new %& bitwise and operator.

Example

Print Bin$(3 %| 2, 4) // Prints 0011

Remarks

Or is synonymous with %| and can be used instead:

Print Bin$(3 Or 10, 4) // Prints 1011

See Also

And, Or, Xor, Imp, Eqv, %&, ^^, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

%^ Operator
Purpose

Performs a bitwise exclusive OR operation between two
integer values.

Syntax

i %^ j

Description

The bitwise-exclusive-OR operator %^ compares each bit
of its first operand to the corresponding bit of its second
operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

Bit
1

Bit
2

Res
ult

0 0 0
1 0 1
0 1 1
1 1 0

%^ is equivalent to the ^ operator. For more information
see %&.

Example

Print Bin$(3, 4) // prints 0011
Print Bin$(3 %^ 10, 4) // prints 1001

Remarks

x Xor y is synonymous with x %^ y and can be used
instead.

See Also

Xor, And, %&, Or(),%|, Imp(), Eqv(), Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

And Command, Function and
Operator
Purpose

And can be used as a command, an operator, or as a
function. It performs a logical bitwise And of two bit
patterns

Syntax

And ivar, j(command)

int = i And j(operator)

int = And(i, j)(function)

ivar:integer variable

i, j:integer expression

Description

And ivar, j sets in the variable ivar the bits which are set in
both ivar and value j.

i And j and(i, j) set in the result only the bits which are set
in both i and j.

Example

Print Bin$(3, 4) // Prints 0011
Print Bin$(10, 4) // Prints 1010
Print Bin$(3 And 10, 4) // Prints 0010

Print Bin$(And(3, 10), 4) // Prints 0010
Local a% = 3
And a%, 4
Print Bin$(a%, 4) // Prints 0011

Remarks

The operator And is synonymous with %& and can be used
instead:

Print Bin$(3 %& 10, 4) // Prints 0010

See Also

Or, Xor, Imp, Eqv, %&, |, ~, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Or, Or8 Functions
Purpose

It performs a logical bitwise OR of two bit patterns

Syntax

Or ivar, j(command)
int = i Or j(operator)
int = Or(i, j [,m,…])(function)

large =x Or8 y(operator)
large = Or8(x, y [,z,…])(function)

ivar:integer variable
i, j:integer expression
x,y,z...:64-bit integer expression

Description

Or can be used as a command, an operator, and as a
function, Or8 only as an operator and function.

Or sets only the bits which are set in at least one of the two
operands i or j.

Bit 1 Bit 2 Result
0 0 0
0 1 1
1 0 1
1 1 1

Example

Local a As Int32 = 3, b As Large = 2 ^ 45
Print a Or 6
Print b Or8 2 ^ 19
Print Or(a, 6)
Print Or8(b, 2 ^ 19)
Or a, 6 : Print a
Or b, 2 ^ 19 : Print b

Remarks

The operator Or is synonymous with %| (or |) and can be
used instead:

Print Bin$(3 Or 10, 4) // Prints 1011
Print Bin$(3 %| 10, 4) // Prints 1011
Print Bin$(3 | 10, 4) // Prints 1011

See Also

<Xor, Imp, Eqv, %&, |, ~, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Xor and Xor8 Functions
Purpose

Xor can be used as a command, an operator, and as a
function, Xor8 just as operator and function. They both
perform an exclusive bit-wise Or on two bit patterns.

Syntax

Xor ivar, j(command)
int = i Xor j(operator)
int = Xor(i, j [,m,…])(function)

int64 = i Xor8 j(operator)
int64 = Xor8(i, j)(function)

int:32-bit integer variable
int64:64-bit integer variable
i,j:integer expression

Description

i Xor j sets only the bits which are set in one - and only one
- of the operands.

Bit 1 Bit 2 Result
0 0 0
0 1 1
1 0 1
1 1 0

The arguments are converted to Long (or Large for Xor8)
before the operation is performed (using CLong).

Example

Debug.Show
Trace Bin$(3, 4) // Prints 0011
Trace Bin$(10, 4) // Prints 1010
Trace Bin$(Xor(3, 10), 4) // Prints 1001
Local a% = 3
Xor a%, 4
Trace Bin$(a%, 4) // Prints 0111
Trace Bin$(Xor8(3, 10), 4) // Prints 1001

Remarks

See Also

And ,Or, Xor, Imp, Eqv, %&, |, ~, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Imp and Imp8 Functions
Purpose

Used to perform a logical implication on two expressions.

Syntax

int = i Imp j(operator)
int = Imp(i, j [,m,…])(function)

int64 = i Imp8 j(operator)
int64 = Imp8(i, j [,m,…])(function)

i, j, m:integer expression

Description

i Imp j combines the expressions i and j based on their
order. The result is equivalent to a logical sequence. This
means that something is false only when a true statement
is followed by a false one. For expressions i and j this
applies to their binary representation, i.e. the resulting bit
will be 0 only when the corresponding bit in the first
argument (i) is 1 and in the second argument (j) is 0.

Bit 1 Bit 2 Result
0 0 1
0 1 1
1 0 0
1 1 1

Imp8 should be used for 64-bit integers.

Example

OpenW # 1
Print 3 Imp 10 // Prints -2

3 Imp 10 returns -2. To understand this all 32 bits must be
examined:

Bin$(3,32) = 00000000000000000000000000000011

Bin$(10,32) = 00000000000000000000000000001010

Bin$(3 Imp 10),32) =
11111111111111111111111111111110

The result of 3 Imp 10 is therefore -2.

Remarks

Imp is the only bit-wise operator for which the order of the
arguments is important. This is because the result will
produce a 0 only when, at the same position, a "true" (1) in
the first argument is followed by a "false" (0) in the second
argument.

This is why Imp(3,10) returns the value -2 (see above), but
10 Imp 3 returns -9:

Bin$(10,32) = 00000000000000000000000000001010

Bin$(3,32) = 00000000000000000000000000000011

Bin$((10 Imp 3),32)=
11111111111111111111111111110111

10 Imp 3 = -9

See Also

And ,Or, Xor, Imp, Eqv, %&, |, ~, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Eqv Function
Purpose

Returns the bit-wise equivalent of two bit patterns.

Syntax

int = i Eqv j(operator)
int = Eqv(i, j [,m,…])(function)

i, j, m:integer expression

Description

Eqv(i, j) sets in the result only the bits which are the same
in both i and j. The arguments are converted to Integer
before the operation is performed (using CInt).

Bit 1 Bit 2 Result
0 0 0
0 1 0
1 0 0
1 1 1

Example

Debug.Show
Trace Bin$(3, 4) // prints 0011
Trace Bin$(3 Eqv 10, 4)// prints 0110
Trace Bin$(Not (3 Xor 10), 4) // prints 0110

3 Eqv 10 returns the value -10. This result is easier to
understand when all 32 bits are shown:

Debug.Show
Trace Bin$(3, 32) //
00000000000000000000000000000011

Trace Bin$(10, 32) //
00000000000000000000000000001010

Trace Bin$(3 Eqv 10, 32) //
11111111111111111111111111110110

Remarks

This function is equivalent to Not(Xor(i, j)).

See Also

And ,Or, Xor, Imp, Eqv, %&, |, ~, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

And8 Operator and Function
Purpose

And8 can be used as an operator and as a function. It
performs a logical bitwise And of two bit patterns and puts
the result in a 64-bit integer.

Syntax

int64 = i And8 j(operator)

int64 = And8(i, j)(function)

int64:64-bit integer variable
i, j:any numeric expression

Description

i And8 j and And8(i, j) set in the result only the bits which
are set in both i and j. Before the operation is applied, the
arguments are converted to Large (using CLarge).

Example

Print Bin$(3 And8 10, 4) // Prints 0010
Print Bin$(And8(3, 10), 4) // Prints 0010

See Also

Or8, Xor8, Eqv8, Imp8, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Eqv8 Function
Purpose

Returns the bit-wise equivalent of two 64-bit patterns.

Syntax

large = i Eqv8 j(operator)
large = Eqv8(i, j [,m, …])(function)

i, j, m:64-bit integer expression

Description

Eqv8(i, j) sets in the result only the bits which are the
same in both i and j. The arguments are converted to Large
before the operation is performed (using CLarge).

Bit 1 Bit 2 Result
0 0 0
0 1 0
1 0 0
1 1 1

Example

Debug.Show
Local a As Large, b As Currency, x%
a = Random(10000), b = Random(10000)
Trace Bin$(a, 64)
Trace Bin$(b, 64)
Trace Bin$(Xor8(a, b), 64)

Trace Bin$(Eqv8(a, b), 64)
Trace Bin$(Not (Xor8(a, b)), 64)
Local Large x, y, xx, a%
x = Large 12345678909
y = Large 10015432101
xx = x Eqv8 y
Trace xx

Remarks

This function is equivalent to Not(Xor8(i, j)).

See Also

And8, Or8, Xor8, Imp8, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

* AddressOf Operator
Purpose

Used to obtain the memory/descriptor address of a variable.

Syntax

% = *var

var: variable

Description

The * operator is used as the address-of operator like V:
(and VarPtr) and ArrPtr.

For variable-length strings and arrays * returns the address
of the descriptor and behaves as ArrPtr(). For all other
variables the * operator returns the memory address of
data contained in that variable.

For a fixed string * returns the first four bytes of the data.
This function has no meaning for a fixed-string.

Example

OpenW 1
Global x%, y$
Print *x%
KeyGet y$ // Press a key to end
CloseW 1

Remarks

The * operator is synonym to ArrPtr for strings and arrays,
and VarPtr() and V: for other variables, fixed strings
excluded.

See Also

ArrPtr, Varptr, V:

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

Operator Hierarchy
() parenthesis
+ - | ! unary plus, unary minus, bitwise NOT,

logical NOT
$ & explicit string addition
^ the power of
* / multiply, divide (floating-point)
\ Div Mul integer division, integer multiplication
% Mod Fmod integer and the floating point modulo
+ - Add Sub addition (the string addition, too) and

subtraction
<< >> Shl Shr
Rol Ror

all shift and rotate operators (also:
Shl%, Rol|, Sar8, etc.)

%& bitwise And
%| | the bitwise Or
= == < > <=
>= !=

all comparisons (also: NEAR ...)

And bitwise And
Or bitwise Or
Xor Imp Eqv bitwise exclusive Or, implication and

equivalence
&& logical And
|| logical Or
^^ logical exclusive Or
Not bitwise complement
? : conditional expression
=, := assignment
*=, /=, %=,
+=, -=, <<=,

compound assignment

>>=, &=, ^=,
|=

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ChildW Command
Purpose

Creates a MDI Child window within a MDI parent window.

Syntax

ChildW [options] n, ph [,x, y, w, h, style]

ChildW [options] Owner form, n [,x, y, w, h, style]

ChildW [options] Parent form, n [,x, y, w, h, style]

n, ph, x ,y, w, h, style:integer expression
form:Form object name
options:[Tool] [Center] [Full] [Hidden] [Client3D] [Help]
[Top] [Palette] [NoCaption] [NoTitle] [Fixed][Default]
[MdiChild]

Description

ChildW creates the child window specified in n within the
window specified in ph. The upper left corner coordinates of
the Child window are given x and y, while the width and the
height are given in w and h. The last parameter style is
used to configure the window and can take WS_ window
style constants. For an overview of the window styles see
ParentW.

Alternative ChildW can take a Form object as parent using
the syntax Child Owner form or Child Parent form.

ChildW creates a Form object named Win_n, where n is a
number between 0 and 31. Although the GFA-BASIC 16
window management commands like MoveW, SizeW, etc.
are still present, the window should be managed using the
Form properties and methods. In the same tradition
messages should be handled using event subs, like
Win_1_Activate.

When ChildW specifies a number > 31, then the properties
and methods are accessed using Form(n).property and the
event sub are like Sub Form_Activate(Index%). The window
number is passed as the first argument in the sub
parameter list.

The options argument specifies additional window state
settings.

Center centers the form.
Full creates a maximized window, excludes

Hidden (full windows are always visible).
Hidden invisible
Client3D set WS_EX_CLIENTEDGE
Tool creates a WS_EX_TOOLWINDOW
Help includes a Help button in the window

caption, excludes minimize an maximize
buttons

Top creates a topmost window
Palette creates a WS_EX_PALETTEWINDOW
Fixed a non-sizable window
NoCaption no title bar
NoTitle no title bar, alias
Default uses Windows default values

Not all options are relevant for a MDI child window.

Example

ParentW 1
Local s% = WS_CAPTION | WS_OVERLAPPED | WS_VISIBLE
ChildW 2, 1, 20, 20, _X / 2, _Y / 2, s%
ChildW 44, 1
ChildW Owner Win_1, 3
Do
Sleep

Until Win_1 Is Nothing

Opens a parent window (1) and within it two child windows
(2 and 3). The position and size of the first child window are
given while the second window (3) corresponds to the
Windows position and size.

Remarks

In code MDI parent and child windows can also be created
using the Form command.

Form MdiParent frmp
Form MdiChild Parent frmp, frmc
Form MdiChild Parent frmp, frmc1
Form MdiChild Parent frmp, frmc2
Form MdiChild Parent frmp, frmc3
//ChildW Owner frmp, 1
//ChildW Parent frmp, # 1
Set Me = frmc
Me.SetFocus
//frmp.MdiTile //Demo
Print frmp.Name
Print frmc.Name
Print "Child? ="; Me.MdiChild
Print "Parent? ="; Me.MdiParent
Print "Parent.Parent? ="; Me.Parent.MdiParent
Print "hMdiClientWnd ="; Me.Parent.hMdiClientWnd

Do
Sleep

Loop Until Me Is Nothing

See Also

Form, Iconic?(), Parent(), Visible?(), Zoomed?(), ShowW,
ParentW, OpenW

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

ParentW Command
Purpose

Creates a MDI parent window using API style flags to
configure the window.

Syntax

ParentW [options] [#]n [, x, y, w, h][, style]

n, x, y, w, h, style:iexp
options:[Tool] [Center] [Full] [Hidden] [Client3D] [Help]
[Top] [Palette] [NoCaption] [NoTitle] [Fixed][Default]

Description

ParentW n creates the window specified in n (between 0
and 31), whose upper left corner is given in x and y
coordinates, the width in w and the height in h. The last
parameter style is used to configure the window. style can
take the following values which are "Or-ed":

WS_BORDER ($00800000) window with a border
WS_CAPTION
($00C00000)

creates a window with a title.
To make a system menu
visible in such a window the
WS_CAPTION and
WS_POPUPWINDOW style
elements must be combined.

WS_CLIPCHILDREN
($02000000)

clips all window output to the
area outside of a child
window.

WS_CLIPSIBLINGS
($04000000)

clips all window output within
a child window to its client
area.

WS_DISABLED
($08000000)

a window, which is initially
inactive.

WS_DGLFRAME
($00400000)

a window with a double
border but without a title.

WS_HSCROLL
($00100000)

a window with a horizontal
scroll bar.

WS_ICONIC ($20000000) a window which is initially
displayed as an icon.

WS_MAXIMIZE
($01000000)

a window with maximum
dimensions

WS_MAXIMIZEBOX
($00010000)

a window with a maximize
box.

WS_MINIMIZE
($20000000)

a window with minimal
dimensions.

WS_MINIMIZEBOX
($00020000)

a window with a minimize
box.

WS_OVERLAPPED
($00000000)

an overlapping window. The
window contains a border
and a title. The client area
overlaps with window border
and title.

WS_OVERLAPPEDWINDOW
(0xCF0000)

an overlapping window with
following style elements:
WS_OVERLAPPED |
WS_CAPTION |
WS_SYSMENU |
WS_THICKFRAME |
WS_MINIMIZEBOX |
WS_MAXIMIZEBOX

WS_POPUP ($80000000) a popup window. Such
window can't have the

WS_CHILD attribute.
WS_POPUPWINDOW
(0x80880000)

a popup window with
following style elements:
WS_BORDER | WS_POPUP |
WS_SYSMENU

WS_SYSMENU
($00080000)

a window with a system
menu in the title bar. Used
only in windows with a title
bar.

WS_TABSTOP
($00010000)

a window with a number of
control elements which the
user can arrive at by tapping
the tab key. Used only in
dialog boxes.

WS_THICKFRAME
($00040000)

a window with a thick border
which is used to "size" the
window.

WS_TILED (0x00000000)
WS_VISIBLE ($10000000) a window which is initially

visible.
WS_VSCROLL
($00200000)

a window with a vertical
scroll bar.

The ParentW command isn't the only way to create a
parent MDI window in code. The alternative is to create a
Form using the Form editor and setting MdiParent = True.
At runtime MdiParent is read-only.

A MDI parent window can also be created using Form
MdiParent or OpenW MdiParent, or by setting the
MdiParent property in the Form Editor.

The options argument specifies additional window state
settings.

Center - centers the form.

Full - creates a maximized window, excludes Hidden (full
windows are always visible).

Hidden - opens invisible

Client3D - sets WS_EX_CLIENTEDGE

Tool - creates a WS_EX_TOOLWINDOW

Help - includes a Help button in the window caption,
excludes minimize an maximize buttons

Top - creates a topmost window

Palette - creates a WS_EX_PALETTEWINDOW

Fixed - a non-sizable window

NoCaption - no title bar

NoTitle - no title bar, alias

Default - uses Windows default values

Example

' Ocx Form left aligned in a MDI parent window
' only way to create MDI parent in code:
ParentW 1, 20, 20, _X / 2, _Y / 2
Dim m$(80) : Local i%
For i = 0 To 60
m(i) = i

Next
For i = 20 To 60 Step 20
m(i) = ""

Next

m(61) = "&Window"
m(62) = "#1000#Cascade"
m(63) = "#1001#&Tile"
m(64) = "#1002#Tile 1"
m(65) = "#1003#Next"
m(66) = "#1004#&Previous"
Menu m()
Me.MenuItem(1004).Default = 1
Me.MdiSetMenu 3
Dim stpanel As Panel ' create statusbar ocx
Ocx StatusBar stBar
.Panels.Add
Set stpanel = .Panels.Add : stpanel.AutoSize = 1
.Panels(1).ToolTipText = "Panel #1"
.Panels(2).ToolTipText = "Panel #2"
Ocx Form cld ' create form ocx
.Width = 32 * Screen.TwipsPerPixelX
.Align = basLeft
.BackColor = RGB(192, 64, 64)
Me.ToolTipText = "ToolTip(ParentW)"
For i = 2 To 17 ' create mdi-child windows
ChildW i, 1
Me.Caption = Format(i, "'Window #'0")
Me.ToolTipText = Format(i, "'This is a ToolTip
for Window #'0")

Next
Do ' message loop
Sleep

Loop Until Me Is Nothing

Sub Win_1_MenuOver(Idx%)
'Trace "ov" & Idx
If Idx < 0
stBar.SimpleText = ""

Else
stBar.SimpleText = "MenuOver" & Idx

End If

EndSub

Sub Win_1_MenuEvent(Idx%)
'Trace "Ev" & Idx
Switch Idx
Case 1000 : Win_1.MdiCascade
Case 1001 : Win_1.MdiTile
Case 1002 : Win_1.MdiTile 1
Case 1003 : Win_1.MdiNext
Case 1004 : Win_1.MdiPrev
Default : stpanel.Text = "MenuEvent" & Idx
EndSwitch

End Sub

Sub cld_Paint
Local i%
Set Me = cld
Color Me.ForeColor, Me.BackColor
For i = 0 To 15
Box 0, i * 16, _X, i * 16 + 16
DrawText 1, i * 16, _X, i * 16 + 16, Format(i),
_
DT_CENTER | DT_VCENTER | DT_SINGLELINE

Next
End Sub

Sub cld_MouseDown(Button&, Shift&, x!, y!)
Local i%
If Button == 1
i = Int(y / 16)
stpanel.Text = "red click" & i

End If
End Sub

Sub cld_MouseMove(Button&, Shift&, x!, y!)
Static Int lastI = -1
Local i%

i = Int(y / 16)
If(i >= 16) i = 999
If lastI != i
lastI = i
If i = 999
cld.ToolTipText = "free"

Else
cld.ToolTipText = "red(Button)" & i

End If
End If

End Sub

Opens a parent window at position 20,20 with width _X/2
and height _Y/2, with a default style.

See Also

Form Object, Form, OpenW, ChildW

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

OcxOcx Command
Purpose

Creates an Ocx control with an Ocx parent in the current
Form.

Syntax

OcxOcx parocx[(c_idx)] ocxtype name[(idx)] [[= text$]
[,ID][, x, y, w, h] [, style]]

parocx:object variable name for the parent Ocx
c_idx:const iexp, control array index number
ocxtype:object typename
name:variable name (global)
idx:iexp, control array index number
text$:sexp, caption (optional)
ID:iexp, identifier value for the control
x, y, w, h:iexp, position and dimension of the object
style:iexp, additional windows style constants

Description

OcxOcx is used to create an Ocx control with some other
Ocx control as its parent. OcxOcx is used in source code,
rather than in the Form Editor. OcxOcx takes at least three
arguments: an Ocx variable name, an Ocx type (OLE
Control CoClass), and a variable name to which the new
Ocx object is assigned.

parocx:object variable name for the parent Ocx
ocxtype:Ocx typename
name:Ocx variable name (global)

The parocx name represents the Ocx control that is to be
the parent and name is the global variable name for the Ocx
control in code. The parent Ocx parocx can be one of the
following types:

parocx Meaning
Form A Form ocx can be used as a container (of

course).
Image A container with a small resource footprint.

This could be used instead of a Form, which
uses more resources (scaling, a DC, a
Picture).

Frame Particularly useful for Option Ocxes
(RadioButtons). The Transparent property
of the Frame may not be changed;
otherwise, the embedded controls are
invalid.

TabStrip To embed (for instance) a Frame Ocx.
ToolBar To embed (for instance) a ComboBox Ocx.
StatusBar To embed (for instance) a Command Ocx

The ocxtype specifies the control to create. OcxOcx can be
used to create all supported Ocx types: Animation,
CheckBox, ComboBox, Command, CommDlg, Form, Frame,
Image, ImageList, Label, ListBox, ListView, MonthView,
Option, ProgressBar, RichEdit, Scroll, Slider, StatusBar,
TabStrip, TextBox, Timer, ToolBar, TrayIcon, TreeView,
UpDown.

The following statement creates a Button control (Ocx type
is Command) at position 10, 10 and with width = 80 and
height = 24 pixels in an (Ocx) Form.

OpenW 1
OcxOcx Win_1 Command cmd1 = "OK", 10, 10, 80, 24

.Default = True

.FontBold = True
Do : Sleep : Until Win_1 Is Nothing

After an Ocx or OcxOcx command has been executed, a
hidden With command is active with the Ocx object just
created. The With is valid to the next With or to the place
a new Ocx is created.

Note: The OcxOcx command is also present in the context
menu the Form Editor (right button click on the control).

Example

OpenW 1
' Load a bitmap
Ocx ImageList iml
.ListImages.Add , "I",
CreatePicture(LoadIcon(Null, IDI_WARNING))

Ocx ToolBar tb
.ImageList = iml
// The first button is normal button, with picture
"I"

Local btn As Button
Set btn = .Buttons.Add(, , , , "I")
Set btn = .Buttons.Add(,"cb", , 4)
.Buttons("cb").Width = 100
OcxOcx tb ComboBox cb = , btn.Left, _
btn.Top, btn.Width, btn.Height * 8

Local i%
For i = 0 To 99
cb.AddItem Rnd, i

Next
Ocx ListBox lb = , 300, 0, 100, btn.Height * 8
For i = 0 To 99
lb.AddItem Rnd, i

Next

lb.Top = 0 ' Move the ListBox vertical below
the ToolBar

Do
Sleep

Loop Until Me Is Nothing

Sub cb_Click
Print "cb_Click"
Print cb.ItemData(cb.ListIndex)
Print cb.Text

End Sub

Sub tb_Click
Print "tb_Click"

End Sub

Sub lb_Click
Print "lb_Click"
Print lb.ItemData(lb.ListIndex)
Print lb.Text

End Sub

Example – Using a control array.

OpenW 1
Const id_frame = 400 ' MUST BE A CONST!
Ocx Frame fra(id_frame) = "Colors" , 110, 40, 156,
164

Local Int idx = id_frame + 1
OcxOcx fra(id_frame) Option opt(idx) = "Border",
8, 020, 60, 20 : Inc idx

OcxOcx fra(id_frame) Option opt(idx) = "Label", 8,
040, 60, 20 : Inc idx

OcxOcx fra(id_frame) Option opt(idx) = "Fore", 8,
060, 60, 20 : Inc idx

Do
Sleep

Until Me Is Nothing

Remarks

When using the control array syntax for the OcxOcx parent,
the index must be of type Const Int, see the example
above.

Ocx creates a control whose parent is Me. Therefore, Ocx
is the same as OcxOcx Me.

OpenW 1 : TitleW 1, " Win 1"
OpenW 2 : TitleW 2, " Win 2"
' create a button in Win 1:
Set Me = Win_1 :
OcxOcx Me Command cmd1 = "GFA", 10, 10, 50, 20
' Button in current active window (Me)
Ocx Command cmd2 = "GFA2", 10, 40, 50, 20
Do
Sleep

Loop Until Win_1 Is Nothing
CloseW 2

See Also

Ocx, OCX(), Me, Form, Command, Option, CheckBox,
RichEdit, ImageList, TreeView, ListView, Timer, Slider,
Scroll, Image, Label, ProgressBar, TextBox, StatusBar,
ListBox, ComboBox, Frame, CommDlg, MonthView,
TabStrip, TrayIcon, Animation, UpDown

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Form Function
Purpose

Returns a Form object for a given window handle or
window number.

Syntax

Set form = Form(wh%)

form:Form Object
wh%:iexp

Description

Form(handle) returns a Form object for a given window
handle. When the handle can't be found the return value is
Nothing. This type of function Form() is in particular
useful in the event subs _MessageProc and
Screen_KeyPreview.

Form(n) designates the window-form created with OpenW
or ChildW. Where n is a number between 0 and 31, the
name of froms is predefined as Win_n, where n is a
number between 0 and 31. This name is introduced in the
global variable list and is accessible throughout the
program. These variable names can be used in accessing
properties, methods, and events. For instance,
Win_1.Name returns "Win_1". Windows created with a
number greater than 31 don't declare global variable names
implicitly and can only be accessed using Form(n).Name.
However, there is no variable name introduced, but their

name still consists of "Win_n", where n is the window
number.

Example 1:

Dim frm As Form
OpenW 1
Set frm = Form(Win_1.hWnd)
frm.Caption = "Window 1"
Form(1).BackColor = $8000000f
Win_1.FontTransparent = True
Print frm.Name
Do : Sleep : Until Win_1 Is Nothing
// Using frm is the Do...Until statement will
cause the program into an infinite loop

// ...as closing Win_1 does not set frm to Nothing
but does delete the object so

// ...that frm can no longer be accessed.
Trace IsNothing(frm)
Set frm = Nothing

Example 2:

Global key$, i%
Form test = , 0, 0, _X / 2, _Y / 2
For i% = 1 To 15 : OpenW i% : Next
PrintScroll = True
Do
Try
Print Form(GetActiveWindow()).Name

Catch
EndCatch
Sleep

Until key$ <> ""
For i% = 1 To 15 : CloseW i% : Next
test.Close

Sub Screen_KeyPreview(hWnd%, uMsg%, wParam%,
lParam%, Cancel?)
If uMsg% = WM_CHAR Then key$ = wParam%

EndSub

Remarks

The OCX(handle) function does the same as Form(Handle)
for an Ocx control by returning a general Control object for
a given window handle.

See Also

OCX(), Ocx, OcxOcx, Form, Screen_KeyPreview

{Created by Sjouke Hamstra; Last updated: 15/07/2015 by James Gaite}

OCX() Function
Purpose

Returns a Control object for a given window handle.

Syntax

Set co = OCX(hWnd)

co:Control Object
hWnd:Handle

Description

OCX() returns the general Ocx Control object for a given
window handle. When the handle can't be found the return
value is Nothing. The exact type of the Ocx can be
obtained using the TypeOf(co) or TypeName() function.
An alternative is to check for the name of the control using
the Name property.

The function OCX() is in particular useful in the event subs
_MessageProc and Screen_KeyPreview.

Example

Form frm1 = "GFA-Test", 10, 10, 250, 170
Ocx Command cmd1 = "But_1", 30, 100, 45, 25
Ocx Command cmd2 = "But_2", 80, 100, 45, 25
Ocx Command cmd3 = "But_3", 130, 100, 45, 25
Local ho As Int, co As Control, h As Int
Do
Sleep

h = GetFocus()
If h <> ho
ho = h
Set co = OCX(h)
If ! IsNothing(co)
Print co.name

EndIf
EndIf

Loop Until Me Is Nothing
CloseW 1

Remarks

The Form() function does the same for a form window; it
returns a Form object for a given window handle.

It is not possible to destroy an object created using OCX();
to get around this problem, simply set the Width property
to 0 (zero).

See Also

Ocx, OcxOcx, Form, Form()

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Me Variable
Implicit declared Form variable containing the currently
active form.

Syntax

Set Me = frm

Set frm = Me

Me.[property | method]

frm:Form object

Description

Me, at all times, holds the currently active Form object.
When all forms are closed Me = Nothing. Me is often used
in the main message loop to test for a valid Form object. As
long as Me contains a valid object messages should be
processed and the loop must continue.

Example

OpenW 1
Print "Me = "; Me.Name
OpenW 2
Print "Me = "; Me.Name
Do
Sleep

Loop Until IsNothing(Me)

In GFA-BASIC 32 the message loop must be inserted
explicitly. The Sleep command is responsible for retrieving

the messages from the queue and for dispatching them to
the Forms and OCX controls. The example above shows a
minimal application.

See Also

Form, LoadForm, OpenW, Sleep, Ocx

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

Output Command
Purpose

Redirects the output to a Form or Printer object.

Syntax

Output = object

object:Form or Printer

Description

With Output the output from GFA-BASIC 32 graphic
commands is redirected. The output can be redirected to a
Printer object or to a Form object. The output can also be
temporarily redirected to a Form which isn't currently
active, for instance, to draw in the client area of a non-
active window.

Example

Dim bmp As Picture
// please choose and set a file with path
Local d$ = Left(ProgName$, RInStr(ProgName$, "\"))
& "gfawintb.bmp", h As Handle

Set bmp = LoadPicture(d$)
// to choose a printer and switch output
Dlg Print Me, 0, h
If h <> 0
SetPrinterHDC h
Output = Printer
Printer.StartDoc "Test"

Printer.StartPage
Printer.PaintPicture bmp, 0, 0
Printer.EndPage
Printer.EndDoc

EndIf

Remarks

Set Me returns the output to a Form.

See Also

Me, Form, Printer

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

MouseCursor Property
Purpose

Returns or sets a value indicating the type of mouse pointer
displayed when the mouse is over a particular part of an
object at run-time.

Syntax

Object.MouseCursor [= CValue]

Object:Ocx Object
cvalue:MouseCursor Object

Description

The MouseCursor property takes a MouseCursor object,
which is returned by LoadCursor for instance. The
MouseCursor property provides a custom icon that is used
when the MousePointer property is set to 98
(basCursor).

The MouseCursor object only has one property.

Handle - getHandle - Returns the hCursor handle of the
cursor.

Example

OpenW 1
Local mc As MouseCursor
If Exist(WinDir & "\Cursors\hourglas.ani") // Only
included up to WinXP

Set mc = LoadCursor(WinDir &
"\Cursors\hourglas.Ani")

Else
Set mc = LoadCursor(WinDir &
"\Cursors\aero_busy.ani")

EndIf
Set Win_1.MouseCursor = mc
Win_1.MousePointer = 98 // basCursor
Print Win_1.MouseCursor.Handle
Do
Sleep

Until IsNothing(Me)
Set mc = Nothing

Remarks

See Also

LoadCursor, MouseIcon, MousePointer, DefMouse

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

LoadCursor Function
Purpose

Creates a MouseCursor object based on data contained in
a file. The file is specified by its name and containing cursor
data in either cursor (.CUR) or animated cursor (.ANI)
format.

Syntax

Set mc = LoadCursor(file$)

mc:MouseCursor object
file$sexp

Description

LoadCursor loads a cursor file either from disk or from the
':Files' section. The return value is a MouseCursor object
that can be assigned to MouseCursor properties of Ocx
objects (for instance Form.MouseCursor). The
MouseCursor object is activated when the MousePointer
property of the Ocx object is set to basCursor (98).

Example

OpenW 1
Local mc As MouseCursor
If Exist(WinDir & "\Cursors\hourglas.ani") // Only
included up to WinXP
Set mc = LoadCursor(WinDir &
"\Cursors\hourglas.Ani")

Else

Set mc = LoadCursor(WinDir &
"\Cursors\aero_busy.ani")

EndIf
Set Win_1.MouseCursor = mc
Win_1.MousePointer = 98 // basCursor
Do
Sleep

Until IsNothing(Me)
Set mc = Nothing

Remarks

Since GFA-BASIC 32 uses the LoadCursor as a reserved
name, the API function LoadCursor() has been renamed to
LoadResCursor or apiLoadCursor.

See Also

MouseCursor

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MouseIcon Property
Purpose

Returns or sets a custom mouse icon.

Syntax

Object.MouseIcon [= picture]

Object:Ocx Object
value:Picture Object

Description

The MouseIcon property provides a custom icon that is
used when the MousePointer property is set to 99.

The MouseIcon property provides your program with easy
access to custom cursors of any size, with any desired hot
spot location. Visual Basic does not load animated cursor
(.ani) files, even though 32-bit versions of Windows support
these cursors.

Example

OpenW 1
Local mc As Picture
Set mc = CreatePicture(LoadIcon(Null,
IDI_WARNING))

Set Win_1.MouseIcon = mc
Win_1.MousePointer = 99 // basIcon
Do
Sleep

Until IsNothing(Me)
Set mc = Nothing

Remarks

See Also

MouseCursor, MouseIcon, MousePointer, DefMouse

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

Buttons, Button Objects
Purpose

A Buttons object is a collection of Button objects. A
Button object represents an individual button in the
Buttons collection of a Toolbar control.

Syntax

ToolBar.Buttons

ToolBar.Buttons(index)

ToolBar.Button(index)

index:Variant

Description

The ToolBar.Buttons property returns a reference to the
Buttons object, a collection of Button objects.

ToolBar.Buttons(index) or Button(index) returns a
reference to the Button with the given index (integer or
string).

For each Button object, you can add text or a bitmap
image, or both, from an ImageList control, and set
properties to change its state and style. You can manipulate
Button objects using standard collection methods (for
example, the Add and Remove methods). Each element in
the collection can be accessed by its index, the value of the

Index property, or by a unique key, the value of the Key
property.

The Buttons properties and methods:

Add | Clear | Count | Item | Remove

The Button properties and methods:

Caption | Checked | Enabled | Height | Hidden | Image |
Indeterminate | Index | Key | Left | Pressed | Style | Tag |
ToolTipText | Top | Value | Width

Example

Ocx ToolBar tlb
tlb.Add , "open" , "Open"
tlb.Add , "save" , "Save"
Debug.Show
Trace tlb.Button(1).Caption
Trace tlb.Buttons(2).Key
Trace tlb("open").Index
Do : Sleep : Until Me Is Nothing

Known Issues

1. The Toolbar and Buttons methods Clear and Remove
don't work correctly and will eventually crash GFA-
BASIC 32.

2. Although the text of the Button caption can be
retrieved using Button.Caption, the ability to set the
caption after it has been created has never been
implemented in GB32. There is no known workaround to
this.

See Also

ToolBar

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

ColumnHeader,
ColumnHeaders Objects
Purpose

A ColumnHeaders object is a collection of ColumnHeader
objects.

A ColumnHeader object represents an individual column
header in the ColumnHeaders collection of a ListView
control.

Syntax

ListView.ColumnHeaders

ListView.ColumnHeaders[.Item](index)]

index:Variant

Description

The syntax above refers to the collection and to individual
elements in the collection, respectively, according to the
standard collection syntax.

The ListView.ColumnHeaders property returns a reference
to the ColumnHeaders object, a collection of
ColumnHeader objects.

ListView.ColumnHeaders.Item(index) returns a reference
to the ColumnHeader with the given index (integer or
string). Since Item is the default property it can be left out.

For each ColumnHeader object, you can add text, and set
properties to change its alignment and width. You can
manipulate ColumnHeader objects using standard
collection methods (for example, the Add and Remove
methods). Each element in the collection can be accessed
by its index, the value of the Index property, or by a
unique key, the value of the Key property.

The ColumnHeaders properties and methods:

Add | Clear | Count | Item | Remove

The ColumnHeader properties and methods:

Alignment | Index | Key | Left | ListViewName |
SubItemIndex | Tag | Text | Width

Example

Dim ch As ColumnHeader
Ocx ListView lv1 = "", 10, 10, 400, 200 : .View =
3

Set ch = lv1.ColumnHeaders.Add(, , "Column1") :
ch.Width = TextWidth(" Column1 ") *
Screen.TwipsPerPixelX

Set ch = lv1.ColumnHeaders.Add(, , "Column2") :
ch.Width = TextWidth(" Column2 ") *
Screen.TwipsPerPixelX

Set ch = lv1.ColumnHeaders.Add(, , "Column3") :
ch.Alignment = 2

Set ch = lv1.ColumnHeaders.Add(, , "Column4") :
ch.Alignment = 1

Do : Sleep : Until Me Is Nothing

See Also

ListView

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Panel, Panels Objects
Purpose

A Panels object is a collection of Panel objects. A Panel
object represents an individual panel in the Panels
collection of a StatusBar control.

Syntax

StatusBar.Panels

StatusBar.Panels.Panel(index)

StatusBar.Panel(index)

index:Variant

Description

Use the Panels collection to retrieve, add, or remove an
individual Panel object.

The StatusBar.Panels property returns a reference to the
Panels object, a collection of Panel objects.

StatusBar.Panels.Panel(index) returns a reference to the
Panel with the given index (integer or string).

StatusBar.Panel(index) is a shortcut for the above.

A Panel object can contain text and a bitmap which may be
used to reflect the status of an application.

To change the look of a panel, change the properties of the
Panel object. To modify the properties at run-time, you can
change the Panel object properties in code.

The Panels properties and methods:

Add | Clear | Count | Item | Remove

The Panel properties and methods:

Alignment | AutoSize | Index | Key | Left | MinWidth | Text
| Style | Tag | ToolTipText | Top | Value | Width

Panel only properties

AutoSize returns or sets a value that determines the width
of a Panel object after the StatusBar control has been
resized.

0 (Default) None. No autosizing occurs. The width of
the Panel is always and exactly that specified by the
Width property.

1 Spring. When the parent form resizes and there is
extra space available, all panels with this setting
divide the space and grow accordingly. However,
the panels' width never falls below that specified by
the MinWidth property.

2 Content. The Panel is resized to fit its contents,
however, the width will never fall below the width
specified by the MinWidth property. Panel objects
with the Content style have precedence over those
with the Spring style. This means that a Spring-
style Panel is shortened if a Panel with the
Contents style requires that space.

MinWidth returns or sets the minimum width of a
StatusBar control's Panel object. The MinWidth property
is used when the AutoSize property is set to Contents or
Spring, to prevent the panel from autosizing to a width that
is too small. When the AutoSize property is set to 0, the
MinWidth property is always set to the same value as the
Width property.

The default value is the same as the default of the Width
property. The value argument uses the same scale units as
the scale mode of the parent form.

Example

Global Enum sbrNoAutoSize = 0, sbrSpring,
sbrContents

Ocx StatusBar sb
sb.Panels.Add , , "Hello" : sb.Panel(1).AutoSize =
sbrNoAutoSize

sb.Add , , "Hello" : sb.Panel(2).AutoSize =
sbrSpring

sb.Panels.Add , , "Hello" : sb.Panel(3).AutoSize =
sbrContents

sb.Add , , "Hello" : sb(4).MinWidth = 50 :
sb(4).AutoSize = sbrContents

Do : Sleep : Until Me Is Nothing

See Also

StatusBar

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

ListItem, ListItems Objects
Purpose

A ListItem consists of text, the index of an associated icon
(ListImage object), and, in Report view, an array of strings
representing subitems.

A ListItems object is a collection of ListItem objects.

Syntax

ListView.ListItems

ListView.ListItems[.Item](index)

index:Variant

Description

The syntax above refers to the collection and to individual
elements in the collection, respectively, according to the
standard collection syntax.

The ListView.ListItems property returns a reference to the
ListItems object, a collection of ListItem objects.

ListView.ListItems.Item(index) returns a reference to the
ListItem with the given index (integer or string). Since
Item is the default property it can be left out.

For each ListItem object, you can add text and pictures.
However, to use pictures, you must reference an ImageList
control using the Icons and SmallIcons properties of the
ListView Ocx.

You can also change the image by using the Icon or
SmallIcon properties of the ListItem object.

You can manipulate ListItem objects using standard
collection methods (for example, the Add and Remove
methods). Each element in the collection can be accessed
by its index, the value of the Index property, or by a
unique key, the value of the Key property.

The ListItems collection properties and methods:

Add | Clear | Count | Item | Remove

The ListItem properties and methods:

AllText | BackColor | Bold | Checked | CreateDragImage |
EnsureVisible | ForeColor | Ghosted | Icon | Index | Italic |
Key | ListViewName | Selected | SmallIcon | SubItems | Tag
| Text | Underline | Visible

The CreateDragImage is not implemented

Example

Dim li As ListItem
Ocx ListView lv = "", 10, 10, 300, 300 : .View = 3
: .FullRowSelect = True

lv.ColumnHeaders.Add , , "Column1" :
lv.ColumnHeaders.Add , , "Column 2"

Local n : For n = 1 To 26 : lv.Add , , ""
Set li = lv.ListItems(n)
li.AllText = "Item" & n & ";" & Chr(64 + n)
If Odd(n) Then li.Bold = True
If n / 3 = Int(n / 3) Then li.ForeColor =
RGB(255, 0, 0)

If n / 4 = Int(n / 4) Then li.BackColor =
RGB(192, 192, 192)

Next n
Do : Sleep : Until Me Is Nothing

Sub lv_Click
If lv.SelectedCount <> 0
Set li = lv.SelectedItem
Message "Selected Row has the following
items:"#13#10 & li.SubItems(0) & #13#10 &
li.SubItems(1)

EndIf
EndSub

Remarks

See Also

ListView

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Node, Nodes Objects
(TreeView)
Purpose

A Node object is an item in a TreeView control that can
contain images and text.

A Nodes object is a collection of Node objects.

Syntax

TreeView.Nodes

TreeView.Nodes[.Item](index)

index : Variant

Description

The syntax above refers to the collection and to individual
elements in the collection, respectively, according to the
standard collection syntax.

The TreeView.Nodes property returns a reference to the
Nodes object, a collection of Node objects.

TreeView.Nodes.Item(index) returns a reference to the
Node with the given index (integer or string). Since Item is
the default property it can be left out.

For each Node object, you can add text and pictures.
However, to use pictures, you must reference an ImageList

control using the ImageList property of the TreeView
Ocx.

Pictures can change depending on the state of the node; for
example, a selected node can have a different picture from
an unselected node if you set the SelectedImage property
to an image from the associated ImageList.

You can manipulate Node objects using standard collection
methods (for example, the Add and Remove methods).
Each element in the collection can be accessed by its index,
the value of the Index property, or by a unique key, the
value of the Key property.

The Nodes collection properties and methods:

Add | AddFirst | AddLast | AddNext | AddPrev |AddChild |
Clear | Count | Item | Remove

The Node properties and methods:

BackColor | Bold | Child | Children | CreateDragImage |
EnsureVisible | Expanded | ExpandedImage | FirstSibling |
ForeColor | FullPath | Index | Image | Italic | Key |
LastSibling | Next | Parent | Previous | Root | Selected |
SelectedImage | Sorted | Tag | Text | TreeViewName |
Underline | Visible

Node only properties:

% = Children Returns the number of child Node
objects contained in a Node
object.

CreateDragI
mage

Not implemented

Example

Dim node As Node
Ocx TreeView tv = "", 250, 10, 230, 200
tv.Add , , , "Painters"
tv.Nodes.Add 1, tvwChild , , "Da Vinci"
tv.Add 1, tvwChild, , "Titian"
tv.AddItem 1, tvwChild, , "Rembrandt"
Set node = tv.Nodes.Add(1, tvwChild, , "Goya")
Set node = tv.Add(1, tvwChild, "David" , "David")
tv.LineStyle = tvwRootLines
tv.Style = tvwTreelinesText
tv.Indentation = 25
tv("David").Italic = True
tv.Node(3).Bold = True
tv.Nodes(4).Underline = True
tv!David.EnsureVisible ' Expand tree to see all
nodes.

tv.SetFocus
tv("David").Selected = 1
Do
Sleep

Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the Nodes collection to access a
Node element, you can use a shorter notation. First, the
TreeView supports an Item property:

tv.Item(idx)tv.Nodes.Item(idx)

Like the Item method of tv.Nodes, Item is the default
method of TreeView. Therefore, a Node can be accessed
as follows:

tv(idx)tv.Nodes(idx)

tv!idxtv.Nodes!idx

Each dot saves about 30 bytes of code.

To enumerate over the Nodes collection of a TreeView
Ocx, use For Each on the Ocx control directly, like:

Local nod As Node
For Each nod In tv : DoSomething(nod) : Next

See Also

ListView

{Created by Sjouke Hamstra; Last updated: 22/10/2017 by James Gaite}

ListImages Collection,
ListImage Object
Purpose

A ListImages collection is a collection of ListImage
objects. A ListImage object is a bitmap of any size
(Picture object).

Syntax

imagelist.ListImages

imagelist.ListImages.ListImage(index)

imagelist.ListImages(index)

imagelist.ListImage(index)

index:Variant

Description

The ListImages and ListImage are a property of the
ImageList Ocx control. The ListImages collection holds all
the images, wrapped in a ListImage object, for the
ImageList control.

The ListImages collection is a 1-based collection. index is
an integer or string that uniquely identifies the object in the
collection. The integer is the value of the Index property;
the string is the value of the Key property.

You can add and remove a ListImage at design time using
the 'ImageList Data' dialog box of the ImageList
Properties, or at run time using the Add method for
ListImage objects.

ListImages Properties and Methods

Add | Clear | Count | Item | Remove

ListImage Properties and Methods

Draw, | ExtractIcon | Index | Key | Picture | Tag

Note The ImageList control is an Ocx object for a
ListImages collection of ListImage objects, where
ListImage object is a holder of a Picture object.
Therefore, the ImageList Ocx control holds a collection of
Picture objects.

Example

OpenW Full 1
Dim pic As Picture
Local Int32 n, p1
// Find picture file
Local d$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\GfaW
in32.exe\shell\open\command", , "")

If Left(d$, 1) = #34 Then d$ = Mid(d$, 2)
n = RInStr(d$, "\") : If n <> 0 Then d$ = Left(d$,
n - 1)

If Not Exist(d$ & "\gfawintb.bmp") Then _
MsgBox("Can not locate gfawintb.bmp
file"#13#10#13#10"Please manually place it in
the GFABASIC32\Bin folder and try again.") :
End

Set pic = LoadPicture(d$ & "\gfawintb.bmp")

// Create ImageList and split picture up into
separate icons

Ocx ImageList iml : .ImageHeight = 16 :
.ImageWidth = 16

For n = 0 To 21 : iml.AddPart , , pic, (n * 16), 1
: Next n

// Add icons to TreeView object
Ocx TreeView tv = "", 10, 10, 100, 400 :
.ImageList = iml

For n = 1 To 22 : tv.Add , , , "Icon" & n, n :
Next n

// Draw the icons as pictures using PaintPicture
(reproduces exact size of 16x16)

For n = 0 To 21 : Set pic = iml(n +
1).ExtractIcon : PaintPicture pic, 130, (n *
18) : Next n

// Draw the icons as pictures using DrawIcon
(reproduces enlarged size of 32x32)

For n = 0 To 21 : Set pic = iml(n + 1).ExtractIcon
: ~DrawIcon(Me.hDC, 160, (n * 34), pic.Handle) :
Next n

Do : Sleep : Until Me Is Nothing

Remarks

Images can also be inserted by using the ImageList
Control methods Add and AddItem. This is a bit shorter,
both in code and in executable instructions.

Dim img As ListImage
iml.Add , "open", LoadPicture(":open")
iml.AddItem , "save", LoadPicture(":save")
Set img = iml.Add(, "print1",
LoadPicture(":print1"))

In the same way, items can be obtained in a shorter way.
Use the ImageList control's ListImages or ListImage

property.

Set img = iml.ListImages("open")
Set img = iml.ListImage("open")

See Also

ImageList

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Tabs Collection, Tab Object
Purpose

A Tab object represents an individual tab in the Tabs
collection of a TabStrip control.

A Tabs collection contains a collection of Tab objects.

Syntax

tabstrip.Tabs(index)

tabstrip.Tabs.Item(index)

index:Variant. A value that identifies a Tab object in the
Tabs collection. This may either be the Index property or
the Key property of the desired Tab object.

Description

The Tabs collection can be accessed by using the standard
collection methods, such as the Item method.

At run time, use the TabStrip control to insert and remove
tabs, and use Tab object to specify any of these properties
for a Tab object: Caption, Image, ToolTipText, Tag,
Index, and/or Key.

Use the Caption and Image properties, separately or
together, to label or put an icon on a tab.

To use the Image property, put an ImageList control on
the form and fill the ListImages collection with ListImage
objects, each of which has an index number and an optional

key, if you add one. Set the ImageList property of the
TabStrip control to associate it with the TabStrip control.

Use the ToolTipText property to temporarily display a
string of text in a small rectangular box at run time when
the user's cursor hovers over the tab.

To return a reference to a Tab object a user has selected,
use the SelectedItem or SelectedIndex properties; to
determine whether a specific tab is selected, use the
Selected property. These properties are useful in
conjunction with the BeforeClick event to verify or record
data associated with the currently-selected tab before
displaying the next tab the user selects.

Each Tab object also has read-only properties you can use
to reference a single Tab object in the Tabs collection:
Left, Top, Height and Width.

The Tabs collection properties and methods:

Add | Clear | Count | Item | Remove

The Tab properties and methods:

Caption | Height | Index | Image | Key | Left | hWnd | Ocx
| Selected | TabStripName | Tag | Text | ToolTipText | Top |
Width

Tab only properties:

OcxReturns an Object reference to the object that is
attached to the Tab.

Example

Form Hidden Center frm1 = "TabStrip", , , 400, 300

Ocx TabStrip tbs = , 20, 20, ScaleWidth - 40,
ScaleHeight - 40

Ocx Frame fr1 = "Tab #1"
Ocx Frame fr2 = "Tab #2"
Ocx Frame fr3 = "Tab #3"
Ocx Frame fr4 = "Tab #4"
OcxOcx fr1 Option opt1 = "Option #1", 20, 20, 80,
24

OcxOcx fr1 Option opt2 = "Option #2", 20, 50, 80,
24

OcxOcx fr2 CheckBox chk1 = "Check #1", 20, 20, 80,
24

OcxOcx fr2 CheckBox chk2 = "Check #2", 20, 50, 80,
24

OcxOcx fr3 TextBox txt1 = "TextBox #1", 20, 20,
280, 40

OcxOcx fr3 TextBox txt2 = "TextBox #2", 20, 130,
280, 40

OcxOcx fr4 Command cmd1 = "Command #1", 90, 20,
80, 24

OcxOcx fr4 Command cmd2 = "Command #2", 90, 50,
80, 24

tbs.Tabs.Add 1, , fr1.Caption , , fr1
tbs.AddItem 2, , fr2.Caption, , fr2
tbs.Add 3, , fr3.Caption, , fr3
tbs.AddItem 4, , fr4.Caption , , fr4
frm1.Show
tbs(2).Selected = True
Do
Sleep

Until Me Is Nothing

Sub tbs_Change
Switch tbs.SelectedIndex
Case 1 : opt1.SetFocus
Case 2 : chk1.SetFocus
Case 3 : txt1.SetFocus

Case 4 : cmd1.SetFocus
EndSwitch
Trace tbs.SelectedItem.Ocx

End Sub

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the Tabs collection to access a
Tab element, you can use a shorter notation. First, the
TabStrip Ocx supports an Item property:

tbs.Item(idx)tbs.Tabs.Item(idx)

Like the Item method of tbs.Tabs, Item is the default
method of TabStrip. Therefore, a Tab object can be
accessed as follows:

tbs(idx)tbs.Tabs(idx)

tbs!idxtbs.Tabs!idx

Each dot saves about 30 bytes of code.

To enumerate over the Tabs collection of a TabStrip Ocx,
use For Each on the Ocx control directly, like:

Local tab As Tab

For Each tab In tbs : DoSomething(tab) : Next

See Also

TabStrip

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Menus
Purpose

To create, edit and delete window specific bar menus.

Syntax

Menu m$()

Menu idx, flags, txt$

state = Form.MenuEnabled
Form.MenuEnabled = state

retval = Form.MenuItem(idx)
Form.MenuItem(idx) = setval

Menu Kill

txt$ = Form.MenuText(idx)
Form.MenuText(idx) = txt$

Sub Form_MenuEvent([index%,] idx%)

Sub Form_MenuOver([index%,] idx%)

m$() : the string array containing the menu
entries

flags, idx,
index

: integer

retval, setval : boolean, integer or string
state : boolean
txt$: string

Description

Menu bars can be created in a window by using Menu m$()
and, subsequently, edited using the Menu idx, flags, txt$
command or the MenuItem and MenuText properties of
the window itself. The enabled status of the menu itself
(rather than the individual items) can be controlled using
the MenuEnabled property, all menu events are handled
by MenuEvent and MenuOver and the menu in the
current window can be destroyed by the command Menu
Kill.

Creating Menus using Menu m$() Show

Adding Items and Sub-Menus to Existing Menus Show

Editing Menu Item Properties using Menu idx, flags,
txt$ Show

Viewing and Setting Menu Item Properties using
MenuItem(idx) Show

Viewing and Setting Menu Item Properties using APIs
Show

Viewing and Setting Menu Labels using MenuText(idx)
Show

Handling Menu Events Show

Removing Items from Menus Show

Disabling, Enabling and Destroying Menus Show

Examples

javascript:pr("menu1hl","menu1","Hide","Show","block")
javascript:pr("menu4hl","menu4","Hide","Show","block")
javascript:pr("menu2hl","menu2","Hide","Show","block")
javascript:pr("menu3hl","menu3","Hide","Show","block")
javascript:pr("menu6hl","menu6","Hide","Show","block")
javascript:pr("menu7hl","menu7","Hide","Show","block")
javascript:pr("menu9hl","menu9","Hide","Show","block")
javascript:pr("menu5hl","menu5","Hide","Show","block")
javascript:pr("menu8hl","menu8","Hide","Show","block")

The example below creates a basic Menu and shows how
items can be changed and events handled using standard
GB32 commands. Show

This second example from the original German GFA help
file, is a good illustration of how to mix standard GB32
commands and Windows APIs to create and alter menus.
Show

Known Issues

As noted above, the MenuItem property of the Form
hosting the menu does not work with menu items added
through Windows APIs and this is because the MenuItem
collection is an internal collection formed by GFA Basic
which is created at the same time as the Menu and there is
no programmatical means available to add to this collection
once it has been created. See this article on Sjouke
Hamstra's blog for a more detailed and technical
explanation of this issue.

See Also

Popup

{Created by Sjouke Hamstra; Last updated: 20/12/2015 by James Gaite}

javascript:pr("ex1hl","ex1","Hide","Show","block")
javascript:pr("ex2hl","ex2","Hide","Show","block")
http://www.gfabasic32.blogspot.co.uk/2015/10/the-non-existing-menuitems-collection.html

Forms Property (App)
Purpose

Returns a Forms collection, which is a collection whose
elements represent each loaded form in an application.

Syntax

App.Forms

Description

The collection includes the application's MDI form, MDI child
forms, and non-MDI forms. The Forms collection has a one
method, Item, and a single property, Count, that specifies
the number of elements in the collection.

Item(Index As Variant) is the default and returns a Form
object.

Example

Debug.Show
OpenW 1
OpenW 33
Trace App.Forms.Count
Trace App.Forms(1).Name
Trace App.Forms.Item(2).Name
Trace App.Forms.Item(2).Caption
CloseW 1
CloseW 33

Remarks

You can also use For Each to enumerate over all forms.

Dim f As Form, n As Int
For n = 1 To 15 : OpenW Hidden n : Me.Caption =
"Window " & n : Next n

Debug.Show
For Each f In App.Forms
Trace f.Name
Trace f.Caption

Next
For n = 1 To 15 : CloseW n : Next n

See Also

App, Controls

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Controls Property, Control
Ocx
Purpose

Returns a reference to a collection of Control objects on a
Form.

Syntax

Form.Controls

Control

Description

A collection of type Control. The collection can be iterated
over using For Each. Furthermore, it provides the Count
property.

The Control type as a generic variable type for controls.
When you declare a variable As Control, you can assign it
a reference to any control. You cannot create an instance of
the Control class.

Example

Form frm1 = , 0, 0, 150, 200
// Populate Form
Ocx Command cmd = "Command", 10, 10, 100, 22
Ocx Option opt(1) = "Option 1", 10, 40, 100, 14
Ocx Option opt(2) = "Option 2", 10, 60, 100, 14

Ocx CheckBox checkbox = "Checkbox", 10, 85, 100,
14

// Display Control properties in Debug screen
Debug.Show
~SetWindowPos(Debug.hWnd, 0, 250, 0, 500, 500, 0)
Dim o As Control
Trace frm1.Controls.Count
Debug.Print
For Each o In frm1.Controls
Trace o.Name
Try
Trace o.Index

Catch
EndCatch
Debug

Next
Do : Sleep : Until frm1 Is Nothing
Debug.Hide

Remarks

Accessing properties and methods of a control is faster if
you use a variable declared with the same type as the
control (for example, As TreeView or As Command),
because GFA-BASIC 32 can use early binding. GFA-BASIC
32 must use late binding to access properties and methods
of a control assigned to a variable declared As Control.

See Also

Form, Forms

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Picture, StdPicture Object,
Picture Property
Purpose

The Picture object enables you to manipulate bitmaps,
icons, metafiles enhanced metafiles, GIF, and JPEG images
assigned to objects having a Picture property. The Picture
property returns or sets a graphic to be displayed in an Ocx
object.

Syntax

Picture

StdPicture

object.Picture [= picture]

object:Ocx object
picture:Picture object

Description

You frequently identify a Picture object using the Picture
property of an object that displays graphics (such as a
Form or Image control). If you have a Form control
named frm1, you can set one Picture object equal to
another using the Set statement, as shown in the example.

There are several ways to load a picture object:

- Use LoadPicture to load from disk. Specifically, you can
load a bitmap from a BMP or DIB file. You can load an icon

from an ICO file or load a metafile from a WMF file. You can
load a cursor from an ICO file or a CUR file.

- Use LoadPicture with no argument to clear a picture file.

- Use CreatePicture with a GDI object handle from a
Windows API function.

- Assign one Picture property from another Picture
property, from an Image property, or from any other
property with StdPicture or Picture type.

Dim X As New StdPicture

The StdPicture and Picture objects behave identical.
StdPicture is a (co)class, while Picture is an interface. You
can never create from an interface directly.

Properties

Name Type Meaning
Handle Handle Returns the handle to the graphic

(bitmap, metafile, icon handle).
hPal Handle Returns the palette handle if available.
Height Single Returns the height of the picture in

twips.
Width Single Returns the width of the picture in

twips.
Type Short Returns the type of the picture

(0=none, 1=bitmap, 2=metafile,
3=icon or cursor, 4=enhanced
metafile).

Methods

Render hDC As Handle, x, y, cx, cy As Long, xSrc, ySrc,
cxSrc, cySrc As Single, lprcBounds As Handle

hdc The handle to the destination object's device
context.

x, y The x- and y-coordinate of upper left corner
of the drawing region in the destination
object. This coordinate is in the scale units of
the destination object.

cx, cy The width and height of drawing region in the
destination object, expressed in the scale
units of the destination object.

xSrc, ySrc The x- and y-coordinate of upper left corner
of the drawing region in the source object.
This coordinate is in HIMETRIC units.

cxSrc,
cySrc

The width and height of drawing region in the
source object, expressed in HIMETRIC units.

lprcbounds The world bounds of a metafile. This
argument should be passed a value of Null
unless drawing to a metafile, in which case
the argument is passed a user-defined type
corresponding to a RECT structure.

The recommended way to paint part of a graphic into a
destination is through the PaintPicture method.

Example

Dim X As Picture
OpenW 1, 0, 0, 300, 300
OpenW 2, 300, 0, 300, 300 : AutoRedraw = 1
Color 255 : PCircle 100, 100, 50
Ocx Command cmd = "Transfer circle to Window 1",
10, 200, 160, 22

Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1 : CloseW 2

Sub cmd_Click
cmd.Visible = False
Set X = Win_2.PrintPicture
Win_1.Picture = X

EndSub

Remarks

When setting the Picture property at design time, the
graphic is saved and loaded with the form. If you create an
executable file, the file contains the image. When you load a
graphic at run time, the graphic isn't saved with the
application. Use the SavePicture statement to save a
graphic from a form or picture box into a file.

See Also

LoadPicture, CreatePicture, PaintPicture, SavePicture

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

CreatePicture Function
Purpose

Creates a new picture object initialized with a GDI bitmap or
icon handle.

Syntax

Set p = CreatePicture(hBmp, Owner)

p:Picture
hBmp:Handle
Owner:Bool

Description

The hBmp parameter specifies the GDI handle for a bitmap
(BMP or DIB) or a icon.

The Owner parameter indicates whether the picture is to
own the GDI picture handle for the picture it contains, so
that the picture object will destroy its picture when the
object itself is destroyed. When Owner = 1 the Picture
object takes ownership.

Example

Example - Icon

Dim p As Picture
Dim h% = LoadIcon(_INSTANCE, 1)
Set p = CreatePicture(h, 1)
PaintPicture p, 1, 1

Example - Bitmap

OpenW 1
Local i%, h%, p As Picture
For i = 0 To 255 Step 2
Color RGB(i, i * 2, i * 3)
Circle 100, 100, i / 2

Next i
Get 0, 0, 200, 200, h// get the bitmap
Color 0
Set p = CreatePicture(h, 1)
Set Win_1.Picture = p
Win_1.PictureMode = 1
Win_1.Refresh

Remarks

See Also

Picture, PaintPicture, SavePicture

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

LoadPicture Function
Purpose

Loads a graphic and returns a Picture object

Syntax

LoadPicture([filename$] [, x, y, c])

filename$:sexp
x, y, c:iexp

Description

LoadPicture loads a picture file indicated by filename$ and
returns a Picture object. The return value can be assigned
directly to object properties that take a .Picture reference,
using Set =. Examples are Form.Picture, Ocx.MouseIcon,
Command.Picture, etc.

Graphics formats recognized by LoadPicture include
bitmap (.bmp) files, icon (.ico) files, run-length encoded
(.rle) files, metafile (.wmf) files, enhanced metafiles (.emf),
GIF (.gif) files, and JPEG (.jpg) files.

Graphics are cleared from forms, picture boxes, and image
controls by assigning LoadPicture with no argument.

To assign an icon to a form, set the return value of the
LoadPicture function to the Icon property of the Form
object: Set Form.Icon = LoadPicture(icon$).

The optional arguments x, y, and c are used only with icon
and cursor files. These icon files often contain several
images with different size and color formats. To get the
required icon from several different ones, the LoadPicture
takes size and color arguments:

Set Form.SmallIcon = LoadPicture("ico-name.ico", x, y, c)

If filename is a cursor or icon file, and either x or y is
specified, the x and y specify the width or height desired. In
a file containing multiple separate images, the best possible
match is used if an image of that size is not available. X and
y values are only used when c (color depth) is > 1. For icon
files 255 is the maximum possible value.

If both x =0 and y = 0, a small icon will be loaded (mostly
16x16).
If x or y is equal 0 and y or x = 1, the default 32x32 large
icon will be loaded (actually determined by the video
driver).

If c = 0 the default colors are used and a best available
match is made.
If c = 1 a monochrome image is searched and loaded.
If c => 2 searches for an image with the specified number
of colors.

Example

Local bmp As Picture, n As Int32
Ocx Form test
AutoRedraw = True
// Find picture file
Local d$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\GfaW
in32.exe\shell\open\command", , "")

If Left(d$, 1) = #34 Then d$ = Mid(d$, 2)

n = RInStr(d$, "\") : If n <> 0 Then d$ = Left(d$,
n - 1)

d$ = d$ & "\..\samples\bitmaps\splash.bmp"
Print d$
If Not Exist(d$) Then _
MsgBox("Can not locate Splash.bmp
file"#13#10#13#10"Please manually place it in
the GFABASIC32\Samples\Bitmaps folder and try
again.") : End

// Load the picture
Set bmp = LoadPicture(d$)
// Show the picture and stretch it over the whole
form

PaintPicture bmp, 0, 0, _X, _Y
Do
Sleep

Until Me Is Nothing // Alt + F4
Set bmp = Nothing

Remarks

Pictures stored in the :File section can be loaded with
LoadPicture but it should be noted that, to achieve this,
GFABasic copies it to the temporary directory first and then
loads it into memory from this newly created physical file.
This is due to the fact that LoadPicture can not handle the
'unpacking' of the file. When loading big files (BMP, JPEG,
GIF) this will increase the load time, although with
technology as it is, this may not be either significant or
noticeable.

GFA-BASIC 32 also supports the conversion of normal API
bitmaps to an OLE Picture object with the CreatePicture
function.

See Also

PaintPicture, SavePicture, CreatePicture

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

PaintPicture Method
Purpose

Draws the contents of a graphics file (.bmp, .wmf, .emf,
.cur, .ico, or .dib) on a Form or Printer.

Syntax

[object.]PaintPicture pict, x1, y1, w1, h1, x2, y2, w2, h2,
opcode

x1, y1, w1, h1, x2, y2, w2, h2:floating-point exp
opcode:iexp

Description

object. - The name of the Form or Printer object where
the picture is to be placed. This argument is optional. If it's
omitted, the form with the focus (Me) is assumed.

pict - The Picture object to paint.

x1, y1 - Single-precision values indicating the destination
coordinates (in other words, the location on the destination
object where the top-left corner of the image is to be
drawn). The ScaleMode property of the object determines
the unit of measure used.

w1, h1 - Single-precision values indicating the destination
width and height of the picture, using units specified by the
ScaleMode property of the destination object. If the
destination width and/or height is larger or smaller than the
source width (w2) or height (h2), the picture is stretched or

compressed to fit. These arguments are optional; if you
omit them, the source width (w1) and height (h1) are used
with no stretching or compression.

x2, y2 - Single-precision values indicating the source
coordinates of the region in the source object that is to be
copied (in units specified by the source object's ScaleMode
property). These arguments are optional; if you omit them,
0 is assumed (indicating the top-left corner of the source
image).

w2, h2 - Single-precision values indicating the width and
height of the region within the source that is to be copied
(in units specified by the source object's ScaleMode
property). These arguments are optional; if you omit them,
the entire source width and height are used.

opcode - A type Long value that defines the bit-wise
operation that is performed between the pixels of the
source picture and the pixels of any existing image on the
destination. This argument, which is optional, is useful only
with bitmaps. If you omit the argument, the source is
copied onto the destination, replacing anything that is
there.

For a complete list of bit-wise operator constants, see the
BitBlt RasterOp Constants

PaintPicture without an object identifier is executed on the
current output device (Me or OutPut =)

Example

OpenW # 1 : AutoRedraw = 1
Local pic As Picture, h As Handle, n As Int32
For n = 1 To 601 Step 50
Line 0, n, 601, n

Line n, 0, n, 601
Next n
Set pic = Win_1.PrintPicture
Dlg Print Win_1, 0, h
If h <> 0
Local Int32 ht = HimetsToPixelY(pic.Height), wd =
HimetsToPixelX(pic.Width)

SetPrinterHDC h
Output = Printer
'Lprint ""; // Causes an error with some printers
if used to force start the print process

Printer.StartDoc "test"
Printer.StartPage
PaintPicture pic, 0, 0, wd * 2, ht * 2
Printer.EndPage
Printer.EndDoc
Output = Me

EndIf

This prints a hardcopy of a form (Me) as small as a stamp
on the printer, but you can scale it by changing the wd*2
and ht*2 parameters as you wish.

Remarks

See Also

Bitblt

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

SavePicture Command
Purpose

Saves a Picture object to a file.

Syntax

SavePicture picture, file$

picture:Picture Object
file$:sexp, filename

Description

Saves a graphic from the Picture or Image property of an
object or control (if one is associated with it) to a file.

If a graphic was loaded from a file to the Picture property of
an object, either at design time or at run time, and it’s a
bitmap, icon, metafile, or enhanced metafile, it's saved
using the same format as the original file. If it is a GIF or
JPEG file, it is saved as a bitmap file.

Graphics in an Image property are always saved as bitmap
(.bmp) files regardless of their original format.

Interesting, is the possibility to save the AutoRedraw
bitmap, because the Picture object is returned with the
Image property.

Example

OpenW 1, 0, 0, 200, 200

AdjustW 1, 200, 200
AutoRedraw = 1
For i = 0 To 500
Color RGB(i * 5, i * 6, i * 7)
Circle 100, 100, i

Next
Global i%
SavePicture Me.Image, "c:\Test.Bmp"
Do
Sleep

Until Me Is Nothing
Kill "c:\test.bmp" // Tidy-up line

See Also

Picture, Form

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

GUID Command
Purpose

Declares or generates a GUID value literal (constant).

Syntax

GUID name = value

GUID name = new

Description

Like Const the GUID command declares a constant GUID
value, where name specifies the name for the constant
variable. A GUID constant points to an address, the actual
value is located at *name or V:name.

GFA-BASIC 32 can also generate a unique GUID when new
is used, rather than a value. After leaving the code line,
GFA-BASIC 32 adds a new GUID name in the place of the
keyword new.

Example

// by typing in GUID test = new you get
immediately:

'
GUID test = d6f0dbc0-11d3-bdd1-9f15-0000e85cfc38
'
Type GUID
D1 As Int
D2 As Card

D3 As Card
D4(7) As Byte

EndType
Local f As GUID
// convert to string for output
Print GUID$(V:f)
Print GUID$(V:test)
// Format of a 'clear text' GUID (128 bit)
// 8characters-4characters-4characters-
// 4characters-12characters
Do
Sleep

Until Me Is Nothing

See Also

GUID$

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

GUID$ Function
Purpose

Converts a binary GUID into a string.

Syntax

$ = GUID$(addr%)

Description

With the function GUID$(addr) you convert a binary GUID
into a string. The parameter addr is the address of a 16
byte value. The result will be a string without "{}",
converted to lowercase (0-9a-f), in the usual GUID format.

Example

GUID test = d6f0dbc0-11d3-bdd1-9f15-0000e85cfc38
Print GUID$(V:test)
// result: d6f0dbc0-11d3-bdd1-9f15-0000e85cfc38
// Format of a 'clear text' GUID (128 bit)
// 8characters-4characters-4characters-
// 4characters-12characters

See Also

GUID

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

vbDeleteSetting Command
Purpose

Deletes a section or a key setting from an entry in the
Windows registry using VB compatible registry commands.

Syntax

vbDeleteSetting appName$, [section$] [, key$]

Description

Deletes a section or key setting in the Visual Basic standard
registry location for storing program information for
applications created in Visual Basic:

HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\appName\section\key

The registry stores data in a hierarchically structured tree.
Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values.

The vbDeleteSetting function syntax has these
arguments:

appName - Required. String expression containing the name
of the application or project to which the section or key
setting applies. May include section in GFA-BASIC 32.

section - Optional. String expression containing the name of
the section where the key setting is found. If only appName

and section are provided, the specified section is deleted
along with all related key settings.

key - Optional. String expression containing the name of
the key setting to return.

Example

vbSaveSetting "MyApp", "Startup", "Top", 75
vbSaveSetting "MyApp", "Startup", "Left", 50
Debug vbGetSetting("MyApp", "Startup", "Left", ,
25)

vbDeleteSetting "MyApp", "Startup"
vbDeleteSetting "MyApp"

Remarks

vbDeleteSetting does not work in the same fashion as
they do with non-nested keys. This means that the
command won't delete subkeys recursively. Use more than
one vbDeleteSetting statement to remove sections of the
nested keys before removing the top level key, rather than
attempting to remove the top key in isolation. See example.

See Also

vbDeleteSetting, vbGetSetting, vbGetSettingType,
GetSetting, GetSettingType, SaveSetting, DeleteSetting,
CreateRegKey, OpenRegKey, CloseRegKey, GetRegVal,
GetRegValName, GetRegValType, GetRegValNameCount,
GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

vbGetSetting,
vbGetSettingType Function
Purpose

Returns a key setting value or type from an entry in the
Windows registry using VB compatible registry commands.

Syntax

$ = vbGetSetting(appName$, [section$], key$ [,
,default$])

% = vbGetSettingType(appName$, [section$], [key$])

Description

These functions are VB compatible and return registry
entries. The registry stores data in a hierarchically
structured tree. Each node in the tree is called a key. Each
key can contain both subkeys and data entries called
values.

Visual Basic applications are required to store their registry
settings under the entry called
HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\appName\ section.

The vbGetSetting, vbGetSettingType, vbSaveSetting,
vbDeleteSetting functions take appName and section as
parameters to access the required entry in the
HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\ registry key.

The vbGetSetting function syntax has these arguments:

appName - Required. String expression containing the name
of the application or project whose key setting is requested.
May include section in GFA-BASIC 32.

section - Optional. String expression containing the name of
the section where the key setting is found.

key - Required. String expression containing the name of
the key setting to return.

,default - Optional. Expression containing the value to
return if no value is set in the key setting. If omitted,
default is assumed to be a zero-length string ("").

If any of the items named in the vbGetSetting arguments
do not exist, vbGetSetting returns the value of default.

The vbGetSettingType can be used to obtain the data
type of the value of key$. Normally, the counter part of
vbGetSetting, the VB compatible command
vbSaveSetting saves data always in the string (REG_SZ)
format.

Example

vbSaveSetting "MyApp", "Startup", "Top", 75
vbSaveSetting "MyApp", "Startup", "Left", 50
Debug vbGetSetting("MyApp", "Startup", "Left", ,
25)

Debug vbGetSettingType("MyApp", "Startup", "Left")
vbDeleteSetting "MyApp", "Startup"
vbDeleteSetting "MyApp"

Remarks

It is possible to use the vbGetSetting statement to retrieve
values form nested levels of keys and values in the Registry.
This behavior is desirable in some cases.

For example, when receiving the location of a SYSTEM.MDA
file, the Access engine expects the SystemDB value to exist
in a subkey of Engines\Jet, like this:

HKEY_CURRENT_USER
\Software
\VB and VBA Program Settings
\MyApp
\Engines
\Jet
SystemDB = c:\access\system.mda

You can obtain nested levels in the Registry by using this
syntax:

f$ = vbGetSetting("MyApp", "Engines\Jet",
"SystemDB")

vbDeleteSetting does not work in the same fashion as
they do with non-nested keys.

See Also

vbSaveSetting, vbDeleteSetting, GetSetting,
GetSettingType, SaveSetting, DeleteSetting, CreateRegKey,
OpenRegKey, CloseRegKey, GetRegVal, GetRegValName,
GetRegValType, GetRegValNameCount, GetRegSubKey,
GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

vbSaveSetting Command
Purpose

Saves or creates an application entry in the Windows
registry entry using a VB compatible registry command.

Syntax

vbSaveSetting appName$, [section$], key$, value

Description

This VB compatible command saves a value under the key
setting in the registry. The registry stores data in a
hierarchically structured tree. Each node in the tree is called
a key. Each key can contain both subkeys and data entries
called values.

Visual Basic applications are required to store their registry
settings under the entry called
HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\appName\ section.

The vbGetSetting, vbGetSettingType, vbSaveSetting,
vbDeleteSetting functions take appName and section as
parameters to access the required entry in the
HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\ registry key.

The vbSaveSetting command syntax has these
arguments:

appName - Required. String expression containing the name
of the application or project whose key setting is requested.
May include section in GFA-BASIC 32.

section - Optional. String expression containing the name of
the section where the key setting is found.

key - Required. String expression containing the name of
the key setting to return.

value - Expression containing the value that key is being set
to.

vbSaveSetting saves data always in the string (REG_SZ)
format.

Example

vbSaveSetting "MyApp", "Startup", "Top", 75
vbSaveSetting "MyApp", "Startup", "Left", 50
Debug vbGetSetting("MyApp", "Startup", "Left", ,
25)

vbDeleteSetting "MyApp", "Startup"
vbDeleteSetting "MyApp"

Remarks

It is possible to use the vbSaveSetting statement to create
nested levels of keys and values in the Registry. This
behavior is desirable in some cases.

For example, when receiving the location of a SYSTEM.MDA
file, the Access engine expects the SystemDB value to exist
in a subkey of Engines\Jet, like this:

HKEY_CURRENT_USER
\Software

\VB and VBA Program Settings
\MyApp
\Engines
\Jet
SystemDB = c:\access\system.mda

You can create nested levels in the Registry by using this
syntax:

SaveSetting "TestApp", "Test2\Test3", "TestVal",
"TestSetting"

This will create a section of the Registry that looks like:

HKEY_CURRENT_USER
\Software
\VB and VBA Program Settings
\TestApp
\Test2
\Test3
TestVal = TestSetting

To retrieve values stored in the Registry like this, use the
same syntax with the vbGetSetting function. Some
restrictions are inherited when creating nested keys with
vbSaveSetting.

vbDeleteSetting does not work in the same fashion as
they do with non-nested keys.

See Also

vbDeleteSetting, vbGetSetting, vbGetSettingType,
vbDeleteSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

DeleteSetting Command
Purpose

Deletes a subkey or a value in the Registry.

Syntax

DeleteSetting hkey$, [subkey$] [,value$]

Description

Deletes a key, subkey or value.

The registry stores data in a hierarchically structured tree.
Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values.

The DeleteSetting command syntax has these arguments:

hkey$ Required. String expression containing the
name of the application or project to which the
section or key setting applies. The value is
saved under "\\hkcu\Software\" + hkey$. May
include subkey$.

subkey$ Optional. String expression containing the name
of the section where the key setting is stored.
By default the value is saved under
"\\hkcu\Software\" + hkey$ + "\" + subkey$.
hkey$ may include subkey$; subkey$ is then
omitted.

value$ Optional. String expression containing the name
of the key setting to delete.

When value$ = "" or when the value$ parameter is omitted
the subkey will be deleted, however it must not have
subkeys. GFA-BASIC 32 checks for the existence of
descendants before deleting a subkey and a run time error
occurs if there are.

Example

SaveSetting "MyApp", "Startup\New", "Top", 75
SaveSetting "MyApp", "Startup\New", "Left", 50
DeleteSetting "MyApp", "Startup\New"
DeleteSetting "MyApp", "Startup"
DeleteSetting "MyApp"

This example first creates nested levels in
\\HKCU\Software\MyApp and then deletes the nested levels
one by one.

Remarks

DeleteSetting conforms to the API function
RegDeleteKey().

Windows NT and later have a built-in protection against
deleting a subkey containing subkeys, Windows 95, 98, Me
don't. The protection in DeleteSetting is necessary
because recursive deletion of keys may cause disaster in
case of an error in the parameters.

See Also

vbDeleteSetting, vbGetSetting, vbGetSettingType,
vbDeleteSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

GetSetting, GetSettingType
Function
Purpose

Returns a key setting value or type from an entry in the
Windows registry.

Syntax

$ = GetSetting(hkey$, [subkey$], [name$] [, Str | Int |
Bin] [,default])

% = GetSettingType(hkey$, [subkey$], [name$])

Description

The registry stores data in a hierarchically structured tree.
Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values.

The GetSetting function syntax has these arguments:

hkey$ Required. String expression containing the
name of the application or project to which the
section or key setting applies. The value is
saved under "\\hkcu\Software\" + hkey$. May
include subkey$.

subkey$ Optional. String expression containing the name
of the section where the key setting is stored.
By default the value is saved under
"\\hkcu\Software\" + hkey$ + "\" + subkey$.

hkey$ may include subkey$; subkey$ is then
omitted.

name$ Optional. String expression containing the name
of the key setting to return. If omitted the
default value (Standard) is returned.

type Optional. Besides the default type Str, the Int
and Bin data types are allowed. In case of Bin,
the data is returned in a string. To restore the
data to a user-defined type copy the string data
to the udt using:
Poke$ V: udt, value$

default Optional. Expression containing the value to
return if no value is set in the key setting.

When an integer value is read as a Str, the integer is
converted using Dec$, internally. Reading an integer as Bin
will convert the 4 bytes to a string using Mkl$(). When a
Str is read as an Int, Val() is applied. When a Bin value is
read as an integer, only the first 4 bytes ar read as numeric
value. Str and Bin are equivalent.

In case of an error, the default value is returned. If omitted,
default is assumed to be a zero-length string ("") or 0.

GetSetting can also be used to read other keys than
\\hkcu\Software only.

Print GetSetting("\\hkcr\.g32", , "")

Returns value for the "Standard" entry: "G32File"

When hkey$ starts with "\\" a predefined reserved handle
must follow:

"\\HKEY_CLASSES_ROOT" or "\\hkcr" or "\\80000000"
"\\HKEY_CURRENT_CONFIG"

"\\HKEY_CURRENT_USER" or "\\hkcu"
"\\HKEY_LOCAL_MACHINE" or "\\hklm"
"\\HKEY_USERS"
"\\HKEY_PERFORMANCE_DATA" (Windows NT)
"\\HKEY_DYN_DATA" (Windows 95 and Windows 98)

The hkey$ parameter can be assembled using "\\" &
Hex(HKEY_CLASSES_ROOT)

Print GetSetting("\\" & Hex(HKEY_CLASSES_ROOT) &
"\.g32", , "")

When hkey$ starts with "\" it must be followed with a valid
key for HKEY_CURRENT_USER, because "\" determines a
descendant of hkcu. For instance, the following statements
return the same value

a$ = GetSetting("\Software\Firma\prog", , "name")
a$ = GetSetting("Firma", "prog", "name")

The hkey$ parameter may also specify the handle to a
registry key obtained using OpenRegKey, see example.

GetSettingType returns the data type for the registry
value. The returns value is 1 (REG_SZ) for a string, 3
(REG_BINARY) for binary data, 4 (REG_DWORD) for an Int-
value, or 0 (REG_NONE) in case of an error.

Print GetSettingType("\\hkcr\.g32", , "") //
returns the Standard name data type: 1 (REG_SZ)

Example

PrintWrap = 1
Local hkey$, value$, i%, t#
// this selects all values in the key and returns
first the time

// for the access with OpenRegKey, after without
Local key$ = "\\HKEY_LOCAL_MACHINE\Software" _
"\Microsoft\Windows\CurrentVersion"

If IsWinNT // GetVersion() > 0
key$ = "\\HKEY_LOCAL_MACHINE\Software" _
"\Microsoft\Windows NT\CurrentVersion"

End If
Print "OpenRegKey + GetSetting"
t = Timer
Restore
hkey$ = OpenRegKey(key$)
For i% = 1 To 50
Read value$
Exit If value$ = "@"
Write GetSetting(hkey$, , value$);
Print ", ";

Next
~CloseRegKey(hkey$)
Print : Print Timer - t
Print "GetSetting only"
t = Timer
Restore
hkey$ = key$
For i% = 1 To 50
Read value$
Exit If value$ = "@"
Write GetSetting(hkey$, , value$);
Print ", ";

Next
Print : Print Timer - t
Print "OpenRegKey + GetRegValCount + GetRegVal"
t = Timer
hkey$ = OpenRegKey(key$)
For i% = 1 To GetRegValCount(hkey$)
Write GetRegVal(hkey$, i);
Print ", ";

Next

CloseRegKey hkey$
Print : Print Timer - t
// This is a list of the value names for the
Registry

// directory on a Windows 98 computer.
Data InstallType,SetupFlags,DevicePath, _
ProductType,RegisteredOwner

Data RegisteredOrganization,ProductId, _
LicensingInfo,DVD_Region,BPC_Region

Data OldWinVer,SubVersionNumber, _
ProgramFilesDir,CommonFilesDir,WallPaperDir

Data MediaPath,ConfigPath,SystemRoot, _
OldWinDir,ProductName,Registration _ ExtDLL

Data RegDone,FirstInstallDateTime,Version, _
VersionNumber,PiFirstTime Only,ProductKey

Data DigitalProductId,AuditMode, _
ProgramFilesPath,SM_AccessoriesName, _
PF_AccessoriesName

Data HWID,OtherDevicePath,ChannelFolderName, _
LinkFolderName,Plus! VersionNumber

Data BootCount,@

See Also

vbDeleteSetting, vbGetSetting, vbGetSettingType,
vbDeleteSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

SaveSetting Command
Purpose

Saves or creates an application entry in the Windows
registry.

Syntax

SaveSetting hkey$, [subkey$], name$, [Int | Bin | Str,]
value

Description

Saves a value in the registry under
\\HKEY_CURRENT_USER\Software or any other node.

The registry stores data in a hierarchically structured tree.
Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values.

The SaveSetting command syntax has these arguments:

hkey$ Required. String expression containing the
name of the application or project to which the
section or key setting applies. The value is
saved under "\\hkcu\Software\" + hkey$. May
include subkey$.

subkey$ Optional. String expression containing the name
of the section where the key setting is stored.
By default the value is saved under
"\\hkcu\Software\" + hkey$ + "\" + subkey$.
hkey$ may include subkey$; subkey$ is then
omitted.

name$ Required. String expression containing the
name of the key setting to set. If set to "" the
default value (Standard) is written.

type Optional. Besides the default type Str, the Int
and Bin data types are allowed. In case of Bin,
the data must be stored in a string. To save a
user-defined type copy the binary data to a
string using:
value$ = Peek$(V:udt, SizeOf(udt))

value Expression containing the value that key is
being set to.

SaveSetting can also be used to write to other keys than
\\hkcu only. When hkey$ starts with "\\" a predefined
reserved handle must follow.

"\\HKEY_CLASSES_ROOT" or "\\hkcr" or "\\80000000" (see
Known Issues)
"\\HKEY_CURRENT_CONFIG"
"\\HKEY_CURRENT_USER" or "\\hkcu"
"\\HKEY_LOCAL_MACHINE" or "\\hklm"
"\\HKEY_USERS"
"\\HKEY_PERFORMANCE_DATA" (Windows NT)
"\\HKEY_DYN_DATA" (Windows 95 and Windows 98)

The key$ parameter can be assembled using "\\" &
Hex(HKEY_CLASSES_ROOT)

When hkey$ starts with "\" it must be followed with a valid
key for HKEY_CURRENT_USER, because "\" determines a
descendant of hkcu. For instance, SaveSetting
"\Software\Company\prog", , "name", "123" writes the
same value as SaveSetting "Company", "prog", "name",
"123".

Example

1. Save, get, and delete application settings.

SaveSetting "MyApp", "Startup\New", "Top", 75
SaveSetting "MyApp", "Startup\New", "Left", 50
Debug.Print GetSetting("MyApp", "Startup\New",
"Left")

MsgBox "Open Registry to verify settings."
DeleteSetting "MyApp", "Startup\New"
DeleteSetting "MyApp", "Startup"
DeleteSetting "MyApp"

2. Create and delete a file association

Dim ext$ = ".zzz"
Dim cmdkey$ = "MyGFA32App.Document"
Dim descr$ = "MyGFA32App Document"
Dim appPath$ = App.FileName & " %1"
SaveSetting
"\\HKEY_CURRENT_USER\Software\Classes", ext$, ""
, cmdkey$

SaveSetting
"\\HKEY_CURRENT_USER\Software\Classes", cmdkey$,
"", descr$

SaveSetting
"\\HKEY_CURRENT_USER\Software\Classes\" +
cmdkey$, "shell\open\command", "", appPath$

MsgBox "Open Registry to verify settings."
'Remove File Association
DeleteSetting "\\hkcr", ext$
DeleteSetting "\\hkcr\" + cmdkey$,
"shell\open\command"

DeleteSetting "\\hkcr\" + cmdkey$, "shell\open"
DeleteSetting "\\hkcr\" + cmdkey$, "shell"
DeleteSetting "\\hkcr", cmdkey$

Remarks

Note - SaveSetting creates a key when it doesn't exist,
even in HKEY_CLASSES_ROOT or "\\hkcr". It is not
necessary to use the GFA-BASIC 32 CreateRegKey
function to first create the key.

DeleteSetting conforms to the Api function
RegDeleteKey(). It removes subkeys only, i.e. you must
specify the parent key if you want to remove a key. Always
delete keys step by step, because Windows NT does not
support removing of nested keys.

Known Issues

In later versions of Windows (certainly from Windows 8
onwards), you can get an error saving a setting directly to
\\hkcr or \\HKEY_CURRENT_ROOT if the key does not exist.
This is due to changes in Windows security protocols.

To get around this problem, instead of using \\hkcr, use the
longer \\HKEY_CURRENT_USER\Software\Classes instead.
The latter is actually the source of the former in any one
user account and any changes made will be reflected in
\\hkcr.

See Also

vbDeleteSetting, vbGetSetting, vbGetSettingType,
vbSaveSetting, GetSetting, GetSettingType, DeleteSetting,
CreateRegKey, OpenRegKey, CloseRegKey, GetRegVal,
GetRegValName, GetRegValType, GetRegValNameCount,
GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

CreateRegKey, OpenRegKey,
CloseRegKey Functions
Purpose

Create, open and close a registry entry.

Syntax

hkey$ = CreateRegKey(key$[, subkey$])

hkey$ = OpenRegKey(key$[, subkey$])

r% = CloseRegKey(hkey$)

CloseRegKey hkey$

Description

Before an application can add data to the registry, it must
create or open a key. To create or open a key, an application
always refers to the key as a subkey of a currently open
key. A GFA-BASIC 32 application can use the OpenRegKey
function to open a key and the CreateRegKey to create a
key. The return value hkey$ contains the handle to the
opened or created key\subkey and is used as the first
parameter in GFA-BASIC's other low-level registry functions.

To close a key and write the data it contains into the
registry you can use the GFA-BASIC 32 function
CloseRegKey, which is also available as a command.
CloseRegKey takes the return value of CreateRegKey or
OpenRegKey.

The key$ must specify one of the following predefined
reserved handle values (note three of them can be
shortened):

"\\HKEY_CLASSES_ROOT" or "\\hkcr" or "\\80000000"
"\\HKEY_CURRENT_CONFIG"
"\\HKEY_CURRENT_USER" or "\\hkcu"
"\\HKEY_LOCAL_MACHINE" or "\\hklm"
"\\HKEY_USERS"
"\\HKEY_PERFORMANCE_DATA" (Windows NT)
"\\HKEY_DYN_DATA" (Windows 95 and Windows 98)

The key$ parameter can be assembled using "\\" &
Hex(HKEY_CLASSES_ROOT)

The key$ may be concatenated with the subkey$.

The subkey$ parameter is optional (because it may be
combined with key$) specifies the name of a key that is to
be opened or created. This key must be a subkey of the key
identified by the key$ parameter.

The return value is a key handle as a hexadecimal string
preceded with \\, for instance "\\80000000".

Example

PrintWrap = 1
Local hkey$, i%
Print "Installed software:"
hkey$ = OpenRegKey("\\HKEY_CURRENT_USER\Software")
For i% = 1 To GetRegSubKeyCount(hkey$)
Write GetRegSubKey(hkey$, i);
Print ", ";

Next
CloseRegKey hkey$

Remarks

The GFA-BASIC 32 functions CreateRegKey,
OpenRegKey, and CloseRegKey conform to the API
functions RegCreateKey(),RegOpenKey(), and
RegCloseKey(), respectively.

See Also

vbSaveSetting, vbDeleteSetting, vbGetSettingType,
vbGetSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

GetRegVal, GetRegValName,
GetRegValType,
GetRegValNameCount
Functions
Purpose

These functions enumerates the values for the specified
open registry key.

Syntax

$ = GetRegVal(hkey$, idx% [, Int | Bin | Str])

$ = GetRegValName(hkey$, idx%)

% = GetRegValType(hkey$, idx%)

% = GetRegValNameCount(hkey$)

Description

The GetRegVal- functions are used to enumerate the
values for the specified open registry key.

The first parameter hkey$ of all functions specifies a key
handle obtained with the GFA-BASIC 32 function
OpenRegKey.

The idx% parameter specifies the index of the value to
retrieve. This parameter should be one (1) for the first call
to any of the GetRegVal functions and then be

incremented for subsequent calls, until
GetRegValNameCount is reached.

GetRegValName obtains the name of the value with index
idx%. GetRegValType obtains the type code for the value
entry with index idx%. GetRegVal obtains the data for the
value entry with index idx%.

Example

DisplayCurrWinVerReg

Sub DisplayCurrWinVerReg
Local x$, i%, j%, hkey$
Local key$ = "\\HKEY_LOCAL_MACHINE\Software" _
"\Microsoft\Windows\CurrentVersion"

If IsWinNT // GetVersion() > 0
key$ = "\\HKEY_LOCAL_MACHINE\Software" _
"\Microsoft\Windows NT\CurrentVersion"

End If
hkey$ = OpenRegKey(key$)
For i% = 1 To GetRegValCount(hkey$)
Print i; Tab(5);
Print GetRegValName(hkey$, i); Tab(30);
Switch GetRegValType(hkey$, i)
Case REG_SZ
Print "Str"; Tab(36);
Write GetRegVal(hkey$, i)

Case REG_DWORD
Print "Int"; Tab(36);
Write GetRegVal(hkey$, i, Int)

Case REG_BINARY
x$ = GetRegVal(hkey$, i, Bin)
Print "Bin"; Tab(36);
For j = 1 To Min(Len(x$), 32)
Print Hex(Asc(x$, j), 2); " ";

Next

Print
Default
Print "Type="; GetRegValType(hkey$, i);
Tab(36); _
GetRegVal(hkey$, i)

EndSwitch
Next
CloseRegKey hkey$

EndSub

Remarks

The GetRegVal, GetRegValName, GetRegValType
conform to the API function RegEnumValue(). Because this
API function is called separately for each function, a little
overhead is created, however this is only minimal.

GetRegValNameCount(hkey$) conforms to the API
function RegQueryInfoKey(,,,lpcSubKeys,..), which retrieves
information about a specified registry key.

See Also

vbSaveSetting, vbDeleteSetting, vbGetSettingType,
vbGetSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

GetRegSubKey,
GetRegSubKeyCount
Functions
Purpose

To enumerate subkeys.

Syntax

$ = GetRegSubKey(hkey$, idx%)

% = GetRegSubKeyCount(hkey$)

Description

To enumerate subkeys, an application should initially call
the GetRegSubKeyCount to obtain the number of subkeys
for a specified hkey$. The application should call
GetRegSubKey setting idx% to 1 and then increment the
idx% parameter and call GetRegSubKey until the number
of subkeys is reached.

Example

PrintWrap = 1
Local hkey$, i%
Print "Installed software:"
hkey$ = OpenRegKey("\\HKEY_CURRENT_USER\Software")
For i% = 1 To GetRegSubKeyCount(hkey$)
Write GetRegSubKey(hkey$, i);
Print ", ";

Next

CloseRegKey hkey$

Remarks

To retrieve the index of the last subkey,
GetRegSubKeyCount uses the RegQueryInfoKey API
function.

GetRegSubKey invokes the RegEnumKeyEx API function
which enumerates subkeys of the specified open registry
key. The function retrieves information about one subkey
each time it is called. RegEnumKeyEx API also retrieves the
time it was last modified.

See Also

vbSaveSetting, vbDeleteSetting, vbGetSettingType,
vbGetSetting, GetSetting, GetSettingType, SaveSetting,
DeleteSetting, CreateRegKey, OpenRegKey, CloseRegKey,
GetRegVal, GetRegValName, GetRegValType,
GetRegValNameCount, GetRegSubKey, GetRegSubKeyCount

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

StrComp, StrCmp, StrCmpI,
LStrCmp and LStrCmpI
Functions
Purpose

Compares two strings using either the Mode Compare or
Windows Regional setting.

Syntax

% = StrComp(string1, string2 [, mode])

% = StrCmp(string1, string2)
% = StrCmpI(string1, string2)

%= LStrCmp(string1, string2)
%= LStrCmpI(string1, string2)

string1, string2 : string values
%, mode : integer values

Description

All these functions compare two strings and return a value
accordingly to whether they are greater, lesser or equal to
each other.

StrComp returns an integer value to indicate the result of a
string comparison. If string1 is less than string2, the return
value is -1, greater than string2, the return value is +1, or
equal, the return value is zero. The default comparison is

according the current Mode Compare setting; however,
StrComp has a third parameter into which a 'one-time only'
comparison mode can be entered and this can take any
numeric (not string) value Mode Compare can take.

Trace StrComp("Hello", "hallo") // With Current
Mode Compare Setting

Trace StrComp("Hello", "hallo", 0) // Binary
Compare

Trace StrComp("Hello", "hallo", 1) // Text Compare
Debug.Show

LStrCmp and LStrCmpI work in a very similar way to
StrComp with the same return values, the main difference
being that these function will sort according to Windows
Regional settings rather than the Mode Compare setting.
LStrCmp carries out a case-sensitive comparison, while
LStrCmpI is non case-senstive and converts all letters to
lower case before comparing the two strings. Note: in
reality, on standard Windows settings, both of these
functions provide the same result regardless of case; the
same seems to be true of their built-in Window API
equivalents, _lstrcmp and _lstrcmpi.

Trace LStrCmp("K", "j") // Returns 1
but -1 is expected here...

Trace LStrCmpI("K", "j")
Trace _lstrcmp("K", "j") // ...but it is
the same with the Windows function as well

Trace _lstrcmpi("K", "j")
Debug.Show

Finally, StrCmp and StrCmpI perform the same task - the
comparison made by StrCmp being case-sensitive and by
StrCmpI non case-sensitive - with the main difference
being that the result, which uses the current Mode
Compare setting, is not restricted to -1, 0 or 1, but is the

distance in between the first characters which do not match
in the compared strings according to the ANSI table.

Trace StrCmp("Hello", "hallo")
Trace StrCmpI("Hello", "hallo")
Trace StrCmp("C", "*")
Trace StrCmpI("C", "*") // Note:
StrCmpI converts the 'C' to 'c' before the
comparison

Debug.Show

Remarks

These functions perform the same tasks as the <, > and =
operators and can, in some instances, be much faster, while
in others, not so (GFA Basic uses these functions internally
to parse these operators, so speed differences on straight
comparisons should be negligible), as shown in the
following example:

Local n%, r%, r1?, t#
t# = Timer
For n% = 1 To 10000 : r% = StrComp("Hello",
"hallo") : Next n%

Debug "StrComp time:" & Timer - t#
t# = Timer
For n% = 1 To 10000 : r% = Iif("Hello" > "hallo",
1, Iif("Hello" < "hallo", -1, 0)) : Next n%

Debug "Iif Comparison time:" & Timer - t#
Debug.Print
t# = Timer
For n% = 1 To 10000 : r1? = (StrComp("Hello",
"hallo") = 1) : Next n%

Debug "StrComp time:" & Timer - t#
t# = Timer
For n% = 1 To 10000 : r1? = ("Hello" > "hallo") :
Next n%

Debug "Straight Comparison time:" & Timer - t#
Debug.Show

The first comparison should always be up to twice as fast,
whereas the second is sometimes just faster and sometimes
just slower.

{Created by Sjouke Hamstra; Last updated: 02/03/2017 by James Gaite}

Space and String[$]
Functions
Purpose

Creates a string consisting of a string expression or space
repeated a specified number of spaces.

Syntax

$ = Space[$](m%)
$ = String[$](m%, a$)
$ = String[$](m%, n%)

m%, n% : integer expression
a$: string

Description

Each of these functions create a string composed of another
string repeated a certain number of times: with
Space(m%), the result is a string of spaces m% characters
long; with String(m%,a$) a string composed of a$
repeated m% times; and String(m%, n%) results in a
string of length m% made up of Chr(n%).

Example

Debug.Show
Local b$ = "This is", c$ = "GFA"
Trace b$ & Space(10) & c$ // In both
expressions

Trace String$(10, 65) // the '$ on the
end

Trace String(5, c$) // is optional.

Known Issues

If the value of m% in either the Space or String function is
zero or negative, an 'Access-Violation Exception' error can
be thrown (this error was fixed in OCX version 2.342 build
1901).
[Reported by Jean-Marie Melanson. 17/02/17]

Remarks

Without the optional $ character the function still returns a
String data type and not a Variant.

{Created by Sjouke Hamstra; Last updated: 27/01/2019 by James Gaite}

Len Function
Purpose

Determines the length of a character string or the size of a
user defined type.

Syntax

Len(a$ | udt)

a$:sexp
udt:user-defined type, udtvar

Description

Determines the number of characters contained within a
string expression and returns this value.

For user defined types and their variables, Len(Type) and
Len(var) return the length of the Types and the Type
variable respectively.

Example

OpenW # 1
Print Len("Hello world") //prints 11
Print Len(" Hello world ") //prints 13

Remarks

Len returns the wrong value for a string in a Variant array.

Global Variant x = "abcdefghijklmnopqrstuvwxyz"

Global z(3) As Variant
z(0) = "abcdefghijklmnopqrstuvwxyz"
z(1) = "abc"
Print x `Len(x) // Is okay because no array
Print z(0)`Len(z(0)) // Shows 16, is 26
Print z(1)`Len(z(1)) // Shows 16, is 3

Len acts as SizeOf for Variant arrays and will always return
16, the size of a Variant.

The address of the UNICODE string in a Variant is obtained
with:

Print "Address Of string data:"`{V:z(1) + 8}

The length is placed in the 4 bytes preceding the array of
UNICODE bytes and returns the length in bytes. To convert
to characters the result must be divided by 2.

Global z(3) As Variant
z(1) = "abc"
Print "Len in bytes:"`{{V:z(1) + 8} - 4}
Print "Len in chars:"`{{V:z(1) + 8} - 4} / 2

See Also

SizeOf, Variant

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Lset Command
Purpose

1. Moves a string expression, left justified, to a string.

2. Moves the contents of one type variable to another.

Syntax

Lset a$ = b$

Lset t1 = t2

a$: svar, b$: sexp
t1, t2 : typevars

Description

Lset a$=b$ will, first of all, replace all characters in a$ with
spaces. Next, b$ is moved into a$ left justified. If b$
contains more characters than a$, then only as many
characters as there are "places" for in a$ are moved.

Similar to VB Lset also moves the contents of one type
variable to another.

Example

Lset with strings.

OpenW # 1
Local a$ = String$(15, "-")
Local b$ = "Hello GFA"

Print a$, Len(a$) // prints --------------- 15
Print b$, Len(b$) // prints HelloGFA 9
Lset a$ = b$
Print a$, Len(a$) // prints Hello GFA 15

Lset with a user defined type.

Type a : - Long a : End Type
Type b : - Single b : End Type
Local a As a, b As b
b.b = 1.0
Print LPeek(V:b.b), Hex(LPeek(V:b.b), 16)
Lset a = b
Print a.a, Hex(a.a, 16)

All bytes of the Type variable b are copied into the Type
variable a.

Remarks

Lset for types is similar to a = b, but also works with
different Type’s. An alternative would be to copy the
contents using a memory copy instruction like MemCpy or
Bmove. For instance:

MemCpy(V:a, V:b, Min(Len(a), Len(b)))

There exists no implemented command to copy a String
variable and a Type variable together (Lset itself works only
with String or only with Type’s, not in mixed case).
Nevertheless, it’s very simple to copy a Type variable to a
string:

Local t As User_defined_Type
Local a$
a$ = Peek$(V:t, SizeOf(t))

or, when a$ has the correct length:

BMove V:t, V:a$, Len(a$)

To move the string contents back to a type variable use
Poke$:

Poke$ V:t, SizeOf(t)

See Also

Rset, Mid

{Created by Sjouke Hamstra; Last updated: 16/10/2017 by James Gaite}

Rset Command
Purpose

Moves a string expression, right justified, to a string.

Syntax

Rset a$=b$

a$:svar
b$:sexp

Description

Rset a$=b$ will, first of all, replace all characters in a$ with
spaces. Next, b$ is moved into a$ right justified. If b$
contains more characters than a$, then only as many
characters as there are "places" for in a$ are moved.

Example

OpenW # 1
Local a$ = String$(15, "-")
Local b$ = "Hello GFA"
Print a$``Len(a$) //prints ---------------
15

Print b$``Len(b$) //prints Hello GFA 9
Rset a$ = b$
Print a$``Len(a$) //prints Hello GFA 15

See Also

Lset, Mid

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

LTrim, RTrim and Trim
Function
Action

Removes spaces at the beginning and/or end of a string
expression.

Syntax

Trim[$](x$)

LTrim[$](x$)

RTrim[$](x$)

x$: svar

Description

With the function LTrim() you can removeempty spaces
from the beginning string, with RTrim from the end and
with Trim from both sides.

Example

OpenW 1 : Color , RGB(220, 220, 220)
Local a$ = " GFA", b$ = " Software ", x%
Print a$ + b$
Print LTrim(a$) + RTrim(b$)
Print Trim(a$ & b$)

Remarks

See Also

ZTrim

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

ZTrim Function
Purpose

Copies a string until the first null-byte.

Syntax

$ = ZTrim[$](a$)

a$:sexp

Description

ZTrim(a$) scans the string for the first occurrence of a null-
byte, a Chr(0) or #0. It then returns the contents up to the
null-byte. When the string doesn't contain a null-byte the
entire string is returned.

The function a$ = ZTrim(a$) is similar with

If InStr(a$, #0) Then a$ = Left(a$, InStr(a$, #0))

and

a$ = Char{V:a$}

ZTrim most useful with Windows API functions that return
strings in a fixed length buffer.

Example

Local buf As String*32
Local iLen As Int = 32
~GetComputerName(V:buf, V:iLen)

buf = ZTrim(buf)
'or:
'buf = Left(buf, iLen)
Message buf, iLen

Remarks

See Also

Char{}, LTrim(), RTrim(), Trim()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Mode Command
Purpose

Sets different options for string conversions and
comparisons.

Syntax

Mode [All | BaseYear | Compare | Date | Format |
Lang | StrSpace | Using | Val] exp

exp : all variable types

Description

Mode sets a global option for converting values to strings
and comparising strings.

- Mode All svar Show

- Mode BaseYear sexp Show

- Mode Compare iexp | sexp Show

- Mode Date sexp Show

- Mode Format sexp Show

- Mode Lang sexp Show

- Mode StrSpace flag Show

- Mode Using sexp Show

javascript:pr("sect1hl","sect1","Hide","Show","block")
javascript:pr("sect2hl","sect2","Hide","Show","block")
javascript:pr("sect3hl","sect3","Hide","Show","block")
javascript:pr("sect4hl","sect4","Hide","Show","block")
javascript:pr("sect5hl","sect5","Hide","Show","block")
javascript:pr("sect6hl","sect6","Hide","Show","block")
javascript:pr("sect7hl","sect7","Hide","Show","block")
javascript:pr("sect8hl","sect8","Hide","Show","block")

- Mode Val sexp Show

Remarks

The Mode() function returns the current settings for the
options.

See Also

Mode, Using, Format, Str, Date$, Time$, Val

{Created by Sjouke Hamstra; Last updated: 16/09/2015 by James Gaite}

javascript:pr("sect9hl","sect9","Hide","Show","block")

Xlate$ Function
Purpose

Replaces all characters of a string expression with values
from a table.

Syntax

$ = Xlate[$](a$, mi())

$ = Xlate[$](a$, m$())

$ = Xlate[$](a$, addr)

a$:sexp
mi():integer array variable (%,&,|)
m$():string array variable
addr:iexp

Description

Xlate$(a$, m()) converts each character in the string
expression a$ using the user-created table in m(). The
array can be of any integer type (Byte, Short, Card or
Integer/Long).

The character of the string is replaced with value in the
array at the index which corresponds with the ASCII code of
the character. For instance, when the string a$ contains the
character 'A', then it is replaced with the character value at
index = 65 in the array, because the ASCII code of 'A' is 65.

XLate() can also take an address of a byte array of 256
characters. This provides a way to use a string as a
replacement table. See the example.

GFA-BASIC 32 extends the XLate function by using a string
array rather than an integer array which only contains one
character value. By using a 256 elements string array each
character in a$ can be replaced by an entire string, instead
of only one character. See example 2.

Example

Local a$, b$, i%
For i% = 0 To 255 ' Create a table
b$ = Chr$(i%)
If b$ = Upper$(b$)
b$ = Lower$(b$)

Else
b$ = Upper$(b$)

EndIf
a$ = a$ + b$

Next i%
Message XLate$("Hallo World abcABCäöüÄÖÜ", V:a$)

prints: hALLO wORLD ABCabcÄÖÜäöü

Local a$, b$
InitEscape
Local i%, j%, t#
t = Timer
For i = 1 To 100
b = XLate(String(500, "This is a test äöüÄÖÜ"),
htmlEscape())

Next
Print Timer - t, b
Do
Sleep

Loop Until Me Is Nothing

Sub InitEscape
Local out$, i%, c%
Global Dim htmlEscape$(0 .. 255)
For c = 0 To 255
Switch c
Case ">" : out$ = ">"
Case "<" : out$ = "<"
Case "&" : out$ = "&"
Case "ä" : out$ = "ä"
Case "Ä" : out$ = "Ä"
Case "ö" : out$ = "ö"
Case "Ö" : out$ = "Ö"
Case "ü" : out$ = "ü"
Case "Ü" : out$ = "Ü"
Case "ß" : out$ = "ß"
Case 0 To 31, 128 To :
out$ = "&#" & Dec$(c) & ";"

Default : out$ = Chr(c)
EndSelect
htmlEscape(c) = out

Next
End Sub

Remarks

Xlate$(a$, m%()) corresponds to

For i% = 1 To Len(a$)
Mid$(a$, i%) = Chr(m%(Asc(Mid$(a$, i%, 1))))

Next i%

See Also

Upper$(), Lower$(), UCase$(), LCase$()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

preMatch Function
Purpose

Compiles a regular expression into an internal format.

Syntax

x$ = preMatch(pattern$)

x$:svar
pattern$: Regular expression

Description

The preMatch function converts pattern into an internal
format for faster execution. This allows for more efficient
use of regular expressions in loops. The string containing
the internal format is used as a pattern in reMatch, reSub,
or Split. The internal format is identified by four leading
bytes "]"#4#2"]".

Example

OpenW 1
Local a$, p$
p$ = preMatch(" ?ieter")
While _Data
Read a$
If reMatch(a$, p$)
Print a$

End If
Wend

Data
"Harold","Dieter","Wolfgang","Erhard","Pieter"

Remarks

An overview of the regular expression pattern can be found
in the topic reMatch.

Known Issues

preMatch("?ieter") causes an error as the function does
not seem to like the '?' to be the first character; you can get
round this by placing a space (which is then ignored) in
front of the leading '?' as in the example above.

See Also

reMatch, reSub, Split

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

{}, Byte{}, SByte{},
Word{}, Int{}, Long{},
Large{}, Single{}, Double{},
Short{}, Card{}, UShort{},
Uword{}, Cur{}, Char{}
Functions
Purpose

Reads a value from an address.

Syntax

int = { address }

byte = Byte{ address }

int = SByte{ address }

word = Word{ address }

integer = Int{ address }

long = Long{ address }

large = Large{ address }

single = Single{ address }

double = Double{ address }

short = Short{ address }

card = Card{ address}

card = Ushort{ address}

card = Uword{ address }

currency = Cur{ address }

string = Char{address}

address:address

Description

Reads the specified data type from address.

Example

OpenW # 1
Dim a As Double = 1.2345, x%, i%
Print Hex$({*a}, 8)``Hex$({*a + 4}, 8)
Print
For i% = 0 To 7
Print Hex$(Peek(*a + i%), 2);

Next i%
Print : Print a

Prints first 126E978D 3FF3C083, which is the internal
representation of variable a as a long word and then
8D976E1283C0F33F, which is the internal representation of
a read in as bytes.

See Also

Peek() Functions

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

{}= Command
Purpose

Writes a value in a specified data type to an address.

Syntax

{addr} = exp

Byte{ address } = exp

SByte{ address } = exp

Word{ address } = exp

Int{ address } = exp

Long{ address } = exp

Large{ address } = exp

Single{ address } = exp

Double{ address } = exp

Short{ address } = exp

Card{ address} = exp

Ushort{ address} = exp

Uword{ address } = exp

Cur{ address } = exp

Char{address} = exp

address:address
expaexp

Description

Writes a value in the specified data type to an address.

{}= writes a 32-bit value.

Example

Dim a% = 5
{*a%} = Int{*a%} + 1 // a slow a%++
Print a%

And...

Dim a@, b@, c@, f@
a = 22222222222.56
b = 11111111111.66
c = Cur{V:a} + Cur{V:b}
Print c
Cur{V:f}= 65000
Print Cur{V:f} // reads the buffer

Remarks

The {}= commands have corresponding Poke commands,
which can be used instead.

See Also

Poke Commands

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Let Command
Purpose

Assignment of variables

Syntax

Let x=y

x:avar or svar
y:aexp or sexp

Description

Let x = y command assigns the variable x with the value in
expression y. x and y must either be both numeric or both
strings.

Let x=y is normally not necessary, but is used when one of
the reserved GFA-BASIC variables (for example Data) needs
to be assigned a value.

Example

Local data As String
Let data = Str$(PI, 9)

See Also

Lset

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

:=, = Assignment operators
Purpose

Assigns an expression or value to a variable.

Syntax

varname := value

varname = value

Description

Assignment operator := is often used with assignment of
arguments of OLE object properties, this is called passing
named arguments. Using named arguments are provided as
a shortcut for typing argument values. With named
arguments, you can provide any or all of the arguments, in
any order, by assigning a value to the named argument. You
do this by typing the argument name plus a colon followed
by an equal sign and the value (Argument := Value) and
placing that assignment in any sequence delimited by
commas.

Example

Local a$
a$:= "Hello"
a$ = "Hello"

Named arguments with objects. Notice that the arguments
in the following example are in the reverse order of the
expected arguments:

// Raises the error: "Put #/Get # without field
and without variable"

Err.Raise Description := "", Number := 71

See Also

+=, -=, /= , *=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 18/09/2014 by James Gaite}

Clr Command
Purpose

Deletes all variables listed after this command.

Syntax

Clr x1[,x2,...]

x1,x2,...:variables of any type

Description

The variables in the list to be deleted with Clr must be
separated by commas. The arrays cannot be deleted using
Clr.

Example

Dim a$ = "Init"
Dim ar$(100)
Print a$ // "Init"
Clr a$
Erase ar$()
Print a$ // ""

See Also

Clear, Erase

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Global Command
Purpose

Used to declare global variables and allocate storage space.

Syntax

Global [Dim] varname[()] [As [New] type] [= value], …

Global type varname1 [= value], varname2 [= value], …

Global varname1$ [= value], varname2% [= value], …

varname: name of variable

type: Optional. Data type of the variable; may be Byte,
Boolean, Card, Short, Word, Integer, Long, Large,
Currency, Single, Double, Date, String, (for variable-
length strings), String * length (for fixed-length strings),
Object, Variant, a user-defined type, or an object type.
Use a separate As type clause for each variable being
defined.

Description

The New keyword enables implicit creation of a few GFA-
BASIC 32 objects, like DisAsm, Collection, StdFont,
Font, StdPicture, Picture, CommDlg, and ImageList. If
you use New when declaring the object variable, a new
instance of the object is created on first reference to it, so
you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to
declare variables of any intrinsic data type.

Variables declared using the Global (or Public) statement
are available to all procedures in the program.

If you don't specify a data type or object type and there is
no Deftype statement in the module, the variable is
Variant by default.

Variables can be initialized while they are declared.

When a variable isn't explicitly initialized, a numeric variable
is initialized to 0, a variable-length string is initialized to a
zero-length string (""), and a fixed-length string is filled
with zeros. Variant variables are initialized to Empty. Each
element of a user-defined type variable is initialized as if it
were a separate variable.

Example

Global a As Int, b%, d As Handle, e$
Global Double a, b, c, d, e
Dim a As Int, b%
Global Dim a(100) As String
Global a(100) As String
Dim a$(100)
Global dis As New DisAsm
Dim col As New Collection

Remarks

If you use Dim in the main part of a program, the variables
will be declared Global. When Dim is used in a sub the
variables are local.

See Also

Dim, Local, Static

Boolean, Byte, Card, Short, Word, Int16, Long, Int, Integer,
Int32, Int64, Large, Single, Double, Currency, Date,
Handle, String, Variant, Object

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Local Command
Purpose

Declares local variables in a subroutine or main program.

Syntax

Local [Dim] varname[()] [As [New] type] [= value], …

Local type varname1 [= value], varname2 [= value], …

Local varname1$ [= value], varname2% [= value], …

varname: name of variable

type: Optional. Data type of the variable; may be Byte,
Boolean, Card, Short, Word, Integer, Long, Large,
Currency, Single, Double, Date, String, (for variable-
length strings), String * length (for fixed-length strings),
Object, Variant, a user-defined type, or an object type.
Use a separate As type clause for each variable being
defined.

Description

Local declares local variables. When used in the main
program, the variable's scope is limited to the main part
and isn't known in subroutines. In this respect, Dim and
Local differ. Dim declares local variables as well, but when
declared in the main program they are considered global.

The New keyword enables implicit creation of a few GFA-
BASIC 32 objects, like DisAsm, Collection, StdFont,

Font, StdPicture, Picture, CommDlg, and ImageList. If
you use New when declaring the object variable, a new
instance of the object is created on first reference to it, so
you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to
declare variables of any intrinsic data type.

Variables declared using the Global (or Public) statement
are available to all procedures in the program.

If you don't specify a data type or object type and there is
no Deftype statement in the module, the variable is
Variant by default.

Variables can be initialized while they are declared.

When a variable isn't explicitly initialized, a numeric variable
is initialized to 0, a variable-length string is initialized to a
zero-length string (""), and a fixed-length string is filled
with zeros. Variant variables are initialized to Empty. Each
element of a user-defined type variable is initialized as if it
were a separate variable.

Example

OpenW 1
AutoRedraw = 1
Global a%, x%, i%
a% = 0
For i% = 1 To 10
a% += i%
test (a%)

Next i%
Print a% // Prints; 205

Procedure test(ByRef a%)
Local i%

For i% = 1 To 5
a% += i%

Next i%
EndProc

The For...Next loop counter i% is defined both as a global
and a local variable.

Remarks

See Global for a more detailed description.

Known Issues

When using local arrays, you may get a memory leak
problem. This stems from the fact that the compiler forgets
to add destruction code for local arrays when an explicit
local declaration of a string variable is absent. As a
workaround, in any procedure, function or sub which
declares a local array, add a local string variable dummy$ if
none other is present.

See Also

Global, Dim, Static

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Using Data Statements
Purpose

To populate variables and arrays with pre-defined constants.

Syntax

Restore [label]
Read k1[,k2,k3,...]
Data k1[,k2,k3,...]

_Data = x%
x% = _Data

label : user defined label
k1, k2,k3... : numerical and/or string literals
x% : integer

Description

By using Data statements, it is possible to read in pre-
defined numerical, date and string values into variables or
arrays in an economical fashion.

The data itself is stored in statements prefaced with the
Data command, and this is read into the desired variables
by using the Read command, as shown below:

Local a%(2)
Read a%(0), a%(1), a%(2)
Print a%(0), a%(1), a%(2)
Data 1,2,3

Data is added to a data statement separated by commas,
and different types of variable types are added in the
following way:

Numbers - in plain form i.e. 1, 2, 3.01, etc; also
recognised literals can used, such as %1010 for binary,
$FF for hexadecimal, etc.
Strings - in plain form or inside inverted commas
(strings which contain a comma should be in inverted
commas).
Dates - in the form "#dd.mm.yyyy#" or
"#mm/dd/yyyy#".
Null - as "#Null#" (this allows the initialisation of
variants).

Hence, a data statement could look like this:

Data 1,1.456,%1010,$FF,&O12,String,"Another
string","String, with a
comma","#09/10/1980#","#Null#"

// Integer, Decimal, Integer in Binary, ...in Hex,
...in Octal, String, String, String, Date, Null

When a program is run which contains a data statement, an
internal data pointer is set to the first item of data within
the whole program. When that item of data is read from a
Data statement, the internal data counter is incremented
so that the Read command knows the position of the next
data item to be read in. The value (or position) of this data
pointer can be retrieved using the _Data function like so:

Local a$(2), n%
Print , _Data // Prints the initial position of
the data pointer

For n% = 0 To 2
Read a$(n%)
Print a$(n%), // Shows the read data...

Print _Data // ...and the position of the next
item of data

Next n%
Data "Record 1","Record 2","Record 3"

_Data can also be used as a command to set the position
of the data pointer like this:

Dim a%, dp%(10), n%
For n% = 1 To 10
dp%(n%) = _Data // Store the data pointer
Read a% // Use Read to move the
pointer along

Next n%
For n% = 10 DownTo 1 // Run backwards through
dp%()...
_Data = dp%(n%) // ...and set the pointer
so that...

Read a% : Print a% // ...the data is read
backwards

Next n%
Data 1,2,3,4,5,6,7,8,9,10

Generally, data in statements will be grouped together in
memory and so, if you know the start position of the first
item, you can work out the position of others. To illustrate
this: in the last example, all the data was an integer lower
than 65536 and thus was stored as a 16-bit integer. With
this knowledge, the above example could be shortened to
this:

Dim a%, dp%, n%
// Set dp% to the last 16-bit integer which means
moving...

// ... past 9 other 16-bit or 2-byte values
dp% = _Data + (9 * 2)

// Now read through the data, decreasing the data
pointer by...

// ...2 for each 16-bit integer
For n% = 1 To 10
_Data = dp% : Sub dp%, 2
Read a% : Print a%

Next n%
Data 1,2,3,4,5,6,7,8,9,10

When the Read command has read the last data item in a
program, then _Data is set to zero. In this way, it is
possible to determine whether the last item has been read,
as in the next example:

Local a As Variant
While _Data
Read a : Print a

Wend
Data 1,1.456,%1010,$FF,&O12,String,"Another
string"

Data "String, with a
comma","#09/10/1980#","#Null#"

Where there are numerous different blocks of data to be
read in, it is possible that the data to be passed to a specific
variable or array is not the first in the list. In this case, the
data pointer can be repositioned using the Restore
command. If used with a label, then the data pointer is
moved to first data item after that label (the label must be
in the same procedure as the Restore command); however,
if no label is used, the pointer is moved back to the first
item of data in the program listing.

Local a(3) As Variant, b$(3), n%
Restore variants // Jump to the last data
group to read in variant values

For n = 0 To 3 : Read a(n%) : Print a(n%) : Next
n%

Restore // Place data pointer back
at start to read strings.

For n = 0 To 2 : Read b$(n%) : Print b$(n%) : Next
n%

strings:
Data "String1",String2,String3
integers:
Data 1,2,3,4,5
variants:
Data "#Null#",String,5,5.6

NOTE: Data statements are NOT procedure-specific but can
be read from anywhere within the program; hence if you
Read more items than are in the Data statements in the
current procedure, the data pointer will move to the next
Data statement it finds and continue to read from there
until there are none further, when an error will be thrown.
In addition, if a Restore command is not used, the data
pointer starts from the first data statement it finds in the
program listing, regardless of whether it is in the current
procedure. This behaviour is possibly a throwback and/or
compatibility measure to when procedures where not so
'stand alone'. The following examples illustrates this
behaviour:

DataRead2 // Reads 8 items of data from DataRead1
DataRead1 // Reads the remaining 2 items of data
from DataRead1 and then the first 6 from
DataRead2

Procedure DataRead1
Local n%, a$
For n% = 1 To 8 : Read a$: Print a$; " "; : Next
n% : Print

Data A,B,C,D,E,F,G,H,I,J

EndProcedure

Procedure DataRead2
Restore
Local n%, a$
For n% = 1 To 8 : Read a$: Print a$; " "; : Next
n% : Print

Data K,L,M,N,O,P,Q,R,S,T
EndProcedure

Remarks

1. Another way to initialize an array is by using the
Array()= command. This command doesn't require Data
lines, but instead assigns data as part of a string.

2. Read and Data statements can not be used in lg32
Libraries.

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

DefType Statements
Purpose

set the default data type for variables and arguments.

Syntax

DefType letterrange$[, letterrange$] . . .

letterrange$: "letter1[-letter2]"

Description

The DefType commands simplify variable declaration. The
letter1 and letter2 arguments specify the name range for
which you can set a default data type. Each argument
represents the first letter of the variable, argument,
Function procedure, or Property Get procedure name and
can be any letter of the alphabet. The case of letters in
letterrange$ isn't significant.

letterrange$ Variables that start with
"b" 'b' (or 'B')
"bo" 'b' or 'o'
"x-z" 'x', 'y' or 'z'

"b-d,x-z" 'b' to 'd' and 'x' to 'z'.

The statement name determines the data type:

Statement Data Type
DefBool, DefBit Boolean
DefByte Byte

DefCrd Card
DefInt16, DefWrd 16-bit Integer
DefInt, DefInt32 32-bit Integer
DefLng Long
DefLar, DefInt64 Large integer (64-bit)

(synonym:)
DefCur Currency
DefSng, DefFlt Single
DefDbl Double
DefDate Date
DefStr String
DefVar Variant

Example

DefCrd "bo"
Dim b = 2
Print TypeName(b) // Card

Remarks

Once the range A-Z has been specified, you can't further
redefine any sub ranges of variables using Deftype
statements. Once a range has been specified, if you include
a previously defined letter in another Deftype statement, an
error occurs. However, you can explicitly specify the data
type of any variable, defined or not, using a Dim statement
with an As type clause. For example, you can use the
following code at module level to define a variable as a
Double even though the default data type is Integer:

DefInt "A-Z"
Dim TaxRate As Double

Deftype statements don't affect elements of user-defined
types because the elements must be explicitly declared.
Variable types can also be declared by appending the
relevant postfix characters !, |, &, %, # or $.

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

ProcAddr Function
Purpose

Returns the memory address of a subroutine.

Syntax

a% = ProcAddr(procname)

a% : iexp
procname : proceedure name

Description

With the function ProcAddr() you determine the address of
a Sub, Procedure, Function, or FunctionVar. The return
is an Integer value.

ProcAddr permits the address of the procedure to be
passed to a Windows API function in a dynamic-link library
(DLL), rather passing the procedure's return value. The API
function can then use the address to call the Basic
procedure, a process known as a callback.

For example, the EnumWindows function from the Win32
API (built-in)

Function EnumWindows(lpEnumFunc as Long, lParam as
Long) As Long

EnumWindows is an enumeration function, which means
that it can list the handle of every open window on your
system. EnumWindows works by repeatedly calling the

function you pass to its first argument (lpEnumFunc). Each
time EnumWindows calls the function, EnumWindows
passes it the handle of an open window.

When you call EnumWindows from your code, you pass a
user-defined function to this first argument to handle the
stream of values. For example, you might write a function
to add the values to a list box, convert the hWnd values to
window names, or take whatever action you choose.

To specify that you're passing a user-defined function as an
argument, you first obtain the address of the function with
the ProcAddr, and then pass that address to the first
parameter of EnumWindows. Any suitable value can be
passed to the second argument. The user-defined function
you specify when you call the procedure is referred to as
the callback function. Callback functions (or "callbacks," as
they are commonly called) can perform any action you
specify with the data supplied by the procedure. See
example.

A callback function must have a specific set of arguments,
as determined by the API from which the callback is
referenced. Refer to your API documentation for information
on the necessary arguments and how to call them.

In the same way the ProcAddr function can be used to
obtain the address of a window function when registering a
window class. Hook function can be implemented as
anything that requires a function pointer.

Example

OpenW 1, , , 300, 300
Ocx ListBox lb = , 10, 10, 280, 200
Dim cnt%

Trace EnumWindows(ProcAddr(EnumWndProc), V:cnt)
MsgBox "Window count: " & Dec(cnt)
Do
Sleep

Until Me Is Nothing

Function EnumWndProc(hWnd As Long, lParam As Long)
As Long
' Increment count
{lParam} = {lParam} + 1
' Get window title and insert into ListBox
Dim s As String = _Win$(hWnd)
If s Then
lb.AddItem s
lb.ItemData(lb.NewIndex) = hWnd

End If
EnumWndProc = True ' keep enumerating

End Function

Remarks

You can use ProcAddr to call a function or procedure
through such a pointer from within Basic using the
StdCall(ProcAddr(subname))().

See Also

LabelAddr, DisAsm, StdCall

{Created by Sjouke Hamstra; Last updated: 17/05/2017 by James Gaite}

LabelAddr Function
Purpose

Returns the memory address of a label.

Syntax

a% = LabelAddr(name)

a%:iexp
name:label name

Description

With the function LabelAddr(name) you determine the
address of a named label. The return is an Integer value.

A label can be number or alphanumeric name followed by a
semicolon.

Example

OpenW 1
Print LabelAddr(test)
Print LabelAddr(5)
5 // numeric label (without :)
'
test: // alphnumeric label (with :)

Remarks

The address of a label can be obtained for a label that is in
scope. Labels can be used locally only.

See Also

ProcAddr, DisAsm

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

SizeOf Function
Purpose

Returns the size of a variable or a user-defined type.

Syntax

SizeOf(a)

a:variable or user-defined type

Description

SizeOf returns the number of bytes a variable or user-
defined type occupies.

String variables always return 4, and Variant variables
always return 16.

For an array only the size of an element can be determined.

Example

Strings

OpenW 1
Local a$, x%, b As String*10000
a$ = Space$(1000)
Print SizeOf(a$) // prints 4
Print SizeOf(b) // prints 10000
Print Len(a$), Len(b) // prints 1000, 10000

Type variables

OpenW 1
Type test // Packed 1
- String*10 a$
- Byte b(5)
- String*5 c(5)
- UByte d(5)
- Variant e(5)
- Double f(5)
- Word g(5)
- Currency h(5)
- Large j(5)
- Int k(5)
- Float l(5)
- String*10 m$

EndType
Global R As test
Print "b()-Byte", SizeOf(R.b(1))
Print "c()-String*5", SizeOf(R.c(1))
Print "d()-UByte", SizeOf(R.d(1))
Print "j()-Large", SizeOf(R.j(1))
Print "k()-Int", SizeOf(R.k(1))
Print "l()-Float", SizeOf(R.l(1))
Print "m-String*10", SizeOf(R.m$)

Remarks

SizeOf is compatible with C.

See Also

BitSizeOf, Len

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

BitSizeOf Function
Purpose

Returns the size of a fixed or a numeric variable in bits

Syntax

% = BitSizeOf(variable)

variable: avar

Description

With the function BitSizeOf you get the size of a numeric
variable, a fixed string, type elements, array’s, etc..

Example

OpenW 1
Type atest
- Byte a
- Int b
- Double c
- Byte d

EndType
Dim a As atest
a.a = 1 : a.b = 2 : a.c = 3 : a.d = 4
Print " Size of the element in bit"
Print "BitSizeOf of a: ", BitSizeOf(a.a)
Print "BitSizeOf of b: ", BitSizeOf(a.b)
Print "BitSizeOf of c: ", BitSizeOf(a.c)
Print "BitSizeOf of d: ", BitSizeOf(a.d)
Print

Print " Size of the element's in byte"
Print "SizeOf of a: ", SizeOf(a.a)
Print "SizeOf of b: ", SizeOf(a.b)
Print "SizeOf of c: ", SizeOf(a.c)
Print "SizeOf of d: ", SizeOf(a.d)
Do
Sleep

Until Me Is Nothing

Remarks

See Also

SizeOf, BitOffsetOf, OffsetOf

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

BitOffsetOf, OffSetOf
Function
Purpose

Retrieves the offset of a member from the beginning of its
parent structure.

Syntax

% = BitOffsetOf(Type.Member)

% = OffsetOf(Type.Member)

Description

BitOffsetOf and OffsetOf return the start position of an
element of a Type by using its name in bits and bytes
respectively.

Example

OpenW # 1, 10, 10, 300, 450, $030
// $030 => Window with caption & close box
TitleW # 1, "Demo BitOffsetOf()"
Type atest
- Byte a
- Int b
- Double c
- Byte d

EndType
Dim a As atest
a.a = 1 : a.b = 2

a.c = 3 : a.d = 4
Print " Which element's are used?"
Print "element a = Byte : ", a.a
Print "element b = Int : ", a.b
Print "element c = Double: ", a.c
Print "element d = Byte : ", a.d
Print " start address of an element"
Print "start address ->Type: ", V:a
Print "start address a: ", V:a.a
Print "start address b: ", V:a.b
Print "start address c: ", V:a.c
Print "start address d: ", V:a.d
Print " Where begins an element in" " the Type in
byte?"

Print "OffSetOf of a: ", Space$(20), OffsetOf(a.a)
Print "OffSetOf of b: ", Space$(20), OffsetOf(a.b)
Print "OffSetOf of c: ", Space$(20), OffsetOf(a.c)
Print "OffSetOf of d: ", Space$(20), OffsetOf(a.d)
Print " Start of type elements in bit:"
Print "BitOffsetOf of a: ", BitOffsetOf(a.a)
Print "BitOffsetOf of b: ", BitOffsetOf(a.b)
Print "BitOffsetOf of c: ", BitOffsetOf(a.c)
Print "BitOffsetOf of d: ", BitOffsetOf(a.d)
Print " Size of the element's in byte"
Print "SizeOf of a: ", Space$(20), SizeOf(a.a)
Print "SizeOf of b: ", Space$(20), SizeOf(a.b)
Print "SizeOf of c: ", Space$(20), SizeOf(a.c)
Print "SizeOf of d: ", Space$(20), SizeOf(a.d)
Print " Size of the element's in bit"
Print "BitSizeOf of a: ", BitSizeOf(a.a)
Print "BitSizeOf of b: ", BitSizeOf(a.b)
Print "BitSizeOf of c: ", BitSizeOf(a.c)
Print "BitSizeOf of d: ", BitSizeOf(a.d)
Do
Sleep

Until Me Is Nothing
CloseW 1

Remarks

Also it’s possible to determine the BitOffsetOf an element
of an array, or of an array in a Type or of a Type in Type and
also of a Type in an array.

See Also

BitSizeOf, SizeOf, V:

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Control Command
Purpose

Creates a control in the current active form, window, or
dialog.

Syntax

Control text$, id%, class$, x, y, w, h[, style%]

text$:control text
id%:control identifier
class$:class name
x,y,w,h:iexp
style%:the control styles

Description

Control creates a program defined control window with
width w% and height h% at coordinates specified in x% and
y%. The window shows the text specified in text$ and can
be referred to with the value specified in ID%. class$
specifies the class of the control elements which the control
window can assign.

The command creates a control without an OCX wrapper; so
it and cannot be handled using properties, methods, and
event subs. When used in a form the WM_COMMAND and
WM_NOTIFY messages should be handled in the form's
_MessageProc sub.

Example

/* Styles for the UpDown Control
Global Enum UDS_WRAP = 1, _
UDS_SETBUDDYINT, UDS_ALIGNRIGHT=4, _
UDS_ALIGNLEFT=8, UDS_AUTOBUDDY=10, _
UDS_ARROWKEYS=$20, UDS_HORZ =$40, _
UDS_NOTHOUSANDS=$80, UDS_HOTTRACK =$100

/* Messages to Control the animation
Global Enum UDM_SETRANGE=WM_USER + 101, _
UDM_GETRANGE, UDM_SETPOS, UDM_GETPOS, _
UDM_SETBUDDY, UDM_GETBUDDY, UDM_SETACCEL, _
UDM_GETACCEL, UDM_SETBASE, UDM_GETBASE, _
UDM_SETRANGE32, UDM_GETRANGE32, _
UDM_SETUNICODEFORMAT=$2005, _
UDM_GETUNICODEFORMAT=$2006

OpenW 1
Ocx TextBox ed1 = "", 10, 10, 100, 20
ed1.Appearance = 1
Control "", 1010, "msctls_updown32", _
UDS_ARROWKEYS | UDS_WRAP | UDS_SETBUDDYINT |
UDS_ALIGNLEFT | _

WS_TABSTOP, 10, 10, 100, 20
Local hUpDown As Handle = Dlg(Win_1.hWnd, 1010)
SendMessage hUpDown, UDM_SETBUDDY, ed1.hWnd, 0
SendMessage hUpDown, UDM_SETRANGE, 0,
MakeLong(1000, 990)

SendMessage hUpDown, UDM_SETPOS, 0, MakeLong(0,
993)

~SetFocus(Dlg(Win_1.hWnd, 10))
Do
Sleep

Until Me Is Nothing

Remarks

With the general Control statement any control type can be
created.

See Also

AutoCheckBox, AnimateCtrl, AutoRadioButton, CheckBox,
ComboBox, CText, Dialog, DefPushButton, EditText,
GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

CheckBox Control
Purpose

Creates a checkbox.

Syntax

CheckBox text$, ID%, x%, y%, w%, h%[,style%]

Description

A CheckBox is a rectangle which has diagonals drawn in it
when clicked on with the mouse. The text specified in text$
is displayed right justified next to the rectangle. A CheckBox
can contain the WS_TABSTOP and WS_GROUP style
elements.

Messages from the CheckBox are handled in the _Message
event sub of the parent

Example

Dlg 3D On
Local style1%, style2%, x%
style1% = BS_AUTOCHECKBOX | WS_TABSTOP | WS_BORDER
style2% = BS_GROUPBOX | WS_GROUP
Dialog # 1, 10, 10, 310, 170, "Dialog 2",
WS_SYSMENU
CheckBox "Check1", 11, 50, 50, 80, 30, style1%
CheckBox "Check2", 12, 50, 100, 80, 30, style1%
GroupBox "Test field1", 13, 10, 10, 140, 130,
style2%

AutoCheckBox "Check3", 13, 170, 50, 80, 30,
style1%

AutoCheckBox "Check4", 14, 170, 100, 80, 30,
style1%

GroupBox "Test field2", 23, 160, 10, 140, 130,
style2%

EndDialog
SetCheck 1, 11, 1
SetCheck 1, 14, 1
ShowDialog # 1
Do
Sleep

Until Me Is Nothing
Dlg 3D Off

Sub Dlg_1_Close(Cancel?)
Cancel? = False ' don't cancel close

EndSub

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Switch Mess
Case WM_COMMAND
Trace wParam
If wParam >= 11 And wParam <= 14
If Check?(1, wParam) Then Message "Checkbox" &
wParam - 10 & " Checked"

If Check?(1, wParam) = 0 Then Message
"Checkbox" & wParam - 10 & " Unchecked"

EndIf
EndSwitch

EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

ComboBox Control
Purpose

Creates a ComboBox control.

Syntax

ComboBox ID%, x%, y%, w%, h%[,style%]

Description

A ComboBox is a combination of a ListBox with a static text
field or with an EditText element. If the ComboBox contains
a static text field, the selected entry from the ListBox is
shown in it. Additional style elements for a ComboBox are
WS_TABSTOP, WS_GROUP, WS_VSCROLL and
WS_DISABLED.

style%:

CBS_SIMPLE ($0001) - specifies a ListBox, which is always
shown.

CBS_DROPDOWN ($0002) - similar to CBS_SIMPLE.
However, the ListBox is only displayed when the user
performs the relevant selection (for example open or
change).

CBS_DROPDOWNLIST ($0003) - similar to
CBS_DROPDOWN. The difference is that the selection
window (edit control) contains the predefined text until the
user makes the selection.

CBS_OWNERDRAWFIXED ($0010) - specifies a ListBox,
whose input must be performed by the calling task. All
items within this ListBox have the same height.

CBS_OWNERDRAWVARIABLE ($0020) - similar to
CBS_OWNERDRAWFIXED, except that the items can here
have a variable height.

CBS_AUTOHSCROLL ($0040) - when the user enters text
which goes beyond the windows or editfield edge the text is
automatically scrolled within the output window (edit
control).

CBS_OEMCONVERT ($0080) - converts characters from
ANSI into OEM and back (for example using your own
character table).

CBS_SORT ($0100) - automatically sorts all inputs in a
ListBox.

CBS_HASSTRINGS ($0200) - used when items within a
ComboBox are composed of strings. The ComboBox refers
items to strings by using pointers.

Example

Local i%, sel$
Debug .Show
Dlg 3D On : Local x%
Dialog # 1, 20, 20, 300, 200, "Test"
ComboBox "Combobox", 20, 40, 50, 200, 120,
CBS_DROPDOWN | _
CBS_SORT | 2048 | WS_TABSTOP

PushButton "OK", IDOK, 60, 140, 80, 25,
BS_DEFPUSHBUTTON | WS_TABSTOP

PushButton "CANCEL", IDCANCEL, 150, 140, 64, 24,
BS_DEFPUSHBUTTON | WS_TABSTOP

EndDialog
Data "GFA-BASIC 32"
Data "GFA-BASIC for MS-DOS"
Data "GFA-BASIC for Windows"
Data "GFA-BASIC for Atari"
Data "GFA-BASIC for Amiga"
Data ""
For i% = 0 To 5
Read sel$
~SendMessage(Dlg(1, 20), CB_ADDSTRING, 0, sel$)
_Win$(DlgItem(1, 20)) = sel$

Next
ShowDialog # 1
Do
Sleep

Until Me Is Nothing
Dlg 3D Off

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Switch Mess
Case WM_COMMAND
Switch LoWord(wParam)
Case 20
Trace "Notification code: " & HiWord(wParam)

Case IDOK, IDCANCEL
CloseDialog # 1

EndSwitch
EndSwitch

EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl, Ocx

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Groupbox Control
Purpose

Creates a group box with the defined text and coordinates.

Syntax

GroupBox text$, ID%,x%,y%,w%,h%[,style%]

Description

A GroupBox is a rectangle which can contain several
additional control elements (for example Radio buttons).
The text specified in text$ is shown in the upper left corner
of the Groupbox. A GroupBox can contain the
WS_TABSTOP and WS_DISABLED style elements.

Example

// only a module to show how..
Local style1%, style2%, style3%, style4%
Local style5%, style6%, x%
style1% = WS_TABSTOP
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
style3% = BS_GROUPBOX | WS_TABSTOP
style4% = BS_AUTORADIOBUTTON | WS_TABSTOP
style5% = BS_AUTOCHECKBOX | WS_TABSTOP
style6% = ES_UPPERCASE | WS_BORDER | _
WS_TABSTOP

Dlg 3D On
DlgBase Unit
// in Unit (1/4 sign width, 1/8 Zeichen height
Dialog # 1, 50, 50, 300, 200, "Dies ist ein Test"

PushButton "Pushbutton 1", 100, 12, 14, 72, 14,
style1%

PushButton "Pushbutton 2", 101, 12, 32, 72, 14,
style1%

PushButton "Pushbutton 3", 102, 12, 50, 72, 14,
style1%

DefPushButton "DefPushbutton", IDOK, 12, 68, 72,
14, style2%

GroupBox "Radiobuttons", 106, 89, 14, 56, 53,
style3%

RadioButton "Radio 1", 107, 93, 25, 39, 12,
style4%

RadioButton "Radio 2", 108, 93, 36, 39, 12,
style4%

RadioButton "Radio 3", 109, 93, 47, 39, 12,
style4%

CheckBox "Checkbox 1", 110, 17, 94, 61, 12,
style5%

CheckBox "Checkbox 2", 111, 17, 107, 61, 12,
style5%

CheckBox "AutoCheckbox", 112, 17, 120, 61, 12,
style5%

EditText "", 113, 89, 94, 59, 12, style6%
EndDialog
SetCheck 1, 109, 1
SetCheck 1, 112, 1
ShowDialog # 1
Do
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
If Mess = WM_COMMAND
Switch wParam
Case 100, 101, 102
_Win$(Dlg(1, 113)) = "Pushbutton " &
Str(wParam)

Case IDOK
CloseDialog # 1

Case 107, 108, 109
_Win$(Dlg(1, 113)) = "Radiobutton " &
Str(wParam)

Case 110, 111, 112
_Win$(Dlg(1, 113)) = "Checkbox " & Str(wParam)

EndSwitch
EndIf

EndSub

Remarks

The preferred way to implement a user interface is by using
OCX controls rather than standard window controls. Replace
GroupBox with the Frame OCX control. However, Ocx
controls cannot be used in editor extension Dialog boxes.

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton,
EditText, GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText,
ProgressCtrl, PushButton, RadioButton, RichEditCtrl, RText,
ScrollBar, StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl,
TreeViewCtrl, UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

ListBox Control
Purpose

Creates a ListBox control in the current active form, window, or
dialog.

Syntax

ListBox text$, id%, x, y, w, h[, style%]

text$:control text
id%:control identifier
x, y, w, h:iexp
style%:the control styles

Description

The control is a rectangle containing a list of strings (such as
filenames) from which the user can select.

Style Meaning
LBS_NOTIFY ($0001) sends a message to the

parent window when the
user selects an entry by
clicking.

LBS_SORT ($0002) performs an alphabetical
sort of several
alternatives.

LBS_NOREDRAW ($0004) prevents ListBox redraw
after receiving changes.

LBS_MULTIPLESEL($0008) after an initial selection
(the entry is displayed in
reverse) enables
additional selections. The

number of selections is
not limited.

LBS_OWNERDRAWFIXED($0010) specifies a ListBox,
whose input must be
performed by the calling
task. All items within this
ListBox have the same
height.

LBS_OWNERDRAWVARIABLE
($0020)

similar to
LBS_OWNERDRAWFIXED,
except that the items can
have a variable height.

LBS_HASSTRINGS ($0040) used when items within a
ListBox are composed of
strings. The ListBox
refers items to strings by
using pointers.

LBS_USETABSTOPS ($0080) displays a multi-column
ListBox, whereby the
individual columns are
located at predefined tab
positions.

LBS_NOINTEGRALHEIGHT($0100) makes the size of the
ListBox the size specified
by application.

LBS_MULTICOLUMN($0200) specifies a multi-line
ListBox, which can scroll
horizontally.

LBS_WANTKEYBOARDINPUT($0400) allows for assignment of
special keys or key
combinations (Hotkeys)
to entries in a Listbox.

LBS_EXTENDEDSEL($0800) specifies a ListBox,
whereby multiple entries
can be selected by using
the Shift key and mouse
clicks.

LBS_STANDARD creates a ListBox with
the following attributes:
LBS_NOTIFY | LBS_SORT
| WS_VSCROLL |
WS_BORDER

If you do not specify a style, the default style is LBS_NOTIFY |
WS_BORDER.

The command creates a control without an OCX wrapper; so it
and cannot be handled using properties, methods, and event
subs. When used in a form the WM_COMMAND message should
be handled in the form's _Message sub.

Example

Dlg 3D On
Local x%, sel$
Dialog # 1, 10, 10, 200, 310, "Test"
ListBox "Listbox", 10, 20, 20, 150, 200
DefPushButton "OK", IDOK, 10, 250, 80, 25, WS_TABSTOP
PushButton "CANCEL", IDCANCEL, 110, 250, 64, 24,
WS_TABSTOP

EndDialog
Data "GFA-BASIC 32"
Data "GFA-BASIC for MS-DOS"
Data "GFA-BASIC for Windows"
Data "GFA-BASIC for Atari"
Data "GFA-BASIC for Amiga"
For x% = 0 To 4
Read sel$
~SendMessage(Dlg(1, 10), LB_ADDSTRING, 0, sel$)
_Win$(DlgItem(1, 10)) = sel$

Next
ShowDialog # 1
Do
Sleep

Until Me Is Nothing
Dlg 3D Off

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Switch Mess
Case WM_COMMAND
Switch LoWord(wParam)
Case 10
Trace "Notification code: " & HiWord(wParam)

Case IDOK, IDCANCEL
CloseDialog # 1

EndSwitch
EndSwitch

EndSub

Remarks

This command is particular useful for a dialog box in a GLL,
because a GLL doesn't support OCX controls.

With the general Control statement any control type can be
created.

See Also

Control, AnimateCtrl, AutoCheckBox, AutoRadioButton,
CheckBox, ComboBox, CText, Dialog, DefPushButton, EditText,
GroupBox, HeaderCtrl, ListBox, ListViewCtrl, LText, ProgressCtrl,
PushButton, RadioButton, RichEditCtrl, RText, ScrollBar,
StatusCtrl, TabCtrl, ToolBarCtrl, TrackBarCtrl, TreeViewCtrl,
UpDownCtrl

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

TitleW Command
Purpose

Writes a string on the title line of a window.

Syntax

TitleW [#] n, txt$

wh:integer or Handle expression
txt$:sexp

Description

TitleW #n writes the string txt$ on the title line of the
window n. n can have the values of 0 to _maxInt.

For a form created without a window number, TitleW takes
its window handle from the hWnd property.

Example

TitleW # 1, " GFA-BASIC window "
OpenW # 1, 10, 10, 200, 100, -1
OpenW 2, 10, 120, 300, 100, -1
Win_2.Caption = " GFA-BASIC window "

Remarks

Windows opened with a number above 31 are accessed
using the name Form(number). For instance, OpenW 40 is
used as Form(40).Activate and the events have the format

Sub Form_Activated(Index%) where Index% the number
of the form specifies.

See Also

SizeW, CloseW, MoveW, TopW, FullW, ClearW, OpenW

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

FullW Method
Purpose

Expands a Form or window to its maximum size

Syntax

FullW #n

Form.FullW

n:iexp

Description

Form.FullW expands a Form to full screen size.

FullW #n expands a window with given number (0 to
_maxInt) to full screen size or opens such a window. When
the window doesn't have number, the window handle can be
specified as well.

Example

OpenW 1, 10, 10, 200, 100, -1 : Win_1.AutoRedraw =
1

Local a%
FontSize = 10
Text 20, 20, "Please press a key"
KeyGet a%
Win_1.FullW // or FullW #1
KeyGet a%
CloseW # 1

opens a small window, and after a key press maximizes it

See Also

Maximize, Minimize, OpenW, ChildW, ParentW

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

TopW Command
Purpose

Activates a window.

Syntax

TopW wh

wh:integer or Handle expression

Description

When several windows are opened, #n activates the window
(0 to _maxInt) specified in n. If this window is covered by
another, it is brought up to the front.

For a form created without a window number, TopW takes
its window handle from the hWnd property.

The output is not redirected after a TopW. The output
continues to go to the current active object (Form or
Printer). The output can be redirected by Output =, Set Me
=, or to a form using the Activate property.

TopW is synonym to the Form method ToTop.

A form brought to the top using TopW or ToTop will not be
brought before a Form that has the OnTop property set.

Example

OpenW 1, 0, 0, 200, 100
Win_1.Caption = "Win/Form 1"

OpenW 2, 200, 0, 200, 100
Win_2.Caption = "Win/Form 2"
Win_2.AutoRedraw = 1
OpenW 3, 0, 100, 200, 100
Win_3.Caption = "Win/Form 3"
OpenW 40, 200, 100, 200, 100
Form(40).AutoRedraw = 1
Form(40).Caption = "Win/Form 40"
TopW # 2
Print "Result in Win 400"
Output = Win_2 ' or Win_2.Activate
Print "Result in Win 2"
Local a% : KeyGet a%
CloseW # 2
CloseW # 40
CloseW # 3
CloseW # 1

Remarks

Windows opened with a number above 31 are accessed
using the name Form(number). For instance, OpenW 40 is
used as Form(40).Activate and the events have the format
Sub Form_Activated(Index%) where Index% specifies the
number of the form.

See Also

SizeW, CloseW, MoveW, TitleW, FullW, ClearW, OpenW

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

AdjustW Command, Adjust
Method
Purpose

Adjusts the window/Form size based on the given window
client area.

Syntax

AdjustW wh, w, h

Form.Adjust w, h

wh, w ,h:integer expression

Description

A Windows window is composed of a number of elements
(scroll bars, close box, minimize box, window client area,
window rectangle, ...), which determine the window
appearance and, as a rule, are used by Windows. An
application program must simply configure the window with
various attributes.

The point of reference for window manipulation, such as
size change, is frequently the window client area. The GFA-
BASIC command AdjustW and the Form method Adjust
change the dimensions of the window. Two parameters are
used for this purpose: the first specifies the width and the
second the height of the client area in pixels.

Example

OpenW # 1, 10, 10, 400, 300, -1
Print "Press key to adjust Window"
Do : Sleep : Until Win_1 Is Nothing

Sub Win_1_KeyPress(Ascii&)
AdjustW 1, 200, 150
' or Me.Adjust 200, 150
' or Win_1.Adjust 200, 150
Cls : Print "Close Window"

EndSub

Changes the window size so that the work area becomes
200 pixels wide and 150 pixels high.

Remarks

AdjustW corresponds to the Windows function
AdjustWindowRect().

See Also

Form, SizeW, MoveW, GetWinRect

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ArrangeIcons Command
Purpose

Arranges iconized MDI Child windows (minimized Child
windows) within a given window in rows.

Syntax

ArrangeIcons wh%

wh%:integer expression

Description

When a (Child-) window is iconized by clicking on the
minimize box, the window icon frequently does not appear
at the desired spot. Such icons can be moved by using the
mouse. A convenient arrangement of icons consists of
ordering them next to each other along the full window
width.

When the window edge is reached the remaining icons are
placed on the second, third, etc... row. The GFA-BASIC
command ArrangeIcons performs such a placement and
the only parameter it requires (wh%) is the number of the
parent window.

Example

ParentW 1
ChildW 2, 1
ChildW 3, 1
Do

Sleep //move the iconized window
Until MouseK = 2
ShowW 2, SW_MINIMIZE
ShowW 3, SW_MINIMIZE
ArrangeIcons 1
Do : Sleep : Until Me Is Nothing
CloseW 1 : CloseW 2 : CloseW 3

Opens a parent window (1) and sets two child windows (2
and 3) within it. The child windows are minimized
(iconized). The program then waits for a right mouse button
click. Please move an icon in the parent window. Following
the mouse click the command ArrangeIcons "rearranges"
the icons.

Remarks

Instead of using this old command, you could use the Form
method Win_1.MdiArrangeIcons. Other MDI Form
methods are MdiCascade and MdiTile.

ArrangeIcons corresponds to the Windows function
ArrangeIconicWindows().

See Also

ParentW, ChildW, Form

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Win Command
Purpose

Selects a window for output.

Syntax

Win n

n:iexp

Description

Win n selects window n for output, without activating it.
The only parameter is a window number (0..31) as specified
in OpenW, ChildW, and ParentW, or a window handle.
Internally, GFA-BASIC 32 performs Set Me = Form(n)

For a form created using Form or LoadForm, you should
pass the hWnd property.

Example

OpenW 1
Win_1.AutoRedraw = 1
Win_1.Caption = "#1"
OpenW 2 : TitleW 2, "#2"
Win 1 ' or Win Win_1.hWnd
Print "Hi"
Do
Sleep

Until Win_1 Is Nothing Or Win_2 Is Nothing
CloseW 1 : CloseW 2

Remarks

Win is implemented for compatibility reasons and should be
replaced with Set Me =, or Output =.

See Also

Win, Me, Form, Output

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

GetWinRect Command
Purpose

Returns the origin as well as the width and height of a
window including its border.

Syntax

GetWinRect wh%, x%, y%, w%, h%

Description

The command GetWinRect returns in variables x% and y%
the X and Y coordinates of the upper left window corner.
w% contains the width and h% the height of the window in
pixels. The window number (0 .. 31) is specified in wh%,
any other value is considered a window handle.

Example

OpenW 1
Local h%, w%, x%, y%
GetWinRect 1, x%, y%, w%, h%
Print x%, y%, w%, h%

Remarks

GetWinRect corresponds in part to the GFA-BASIC
command WINDGET 0,x%,y%,w%,h%. However, WindGet
requires the output to be first redirected to a window by
using Win(wh%).

See Also

WindGet

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

WindGet and WindSet
Commands
Purpose

Returns and sets window parameters. Only for porting of
GFA-BASIC 16 programs.

Syntax

WindGet i, a[,b[,c...]]

a = Wind_Get(i)

WindSet i, a[,b[,c...]]

i:integer expression;

a, b, c:variables;

Description

WindGet i, a, .. reads various window related parameters.
The first parameter specifies the position to start reading.
The number of variables that follow, determine the number
window parameters to read. Wind_Get() only returns one
parameter.

In addition to retrieving window information, WindSet can
be used to set a number (marked with * in the list below).

>position of horizontal slider (0..1000)
i Parameter
0 outer X-coordinate

1 outer Y-coordinate
2 outer width
3 outer height
4 inner X-coordinate
5 inner Y-coordinate
6 inner width
7 inner height
8* position of vertical slider (0..1000)
9* size of slider area
10*
11* size of slider area
12 reads the window attributes (as set with OpenW)
13* reads the attributes of the pressed window button

(from WINDSET)
14 character height (for example 8, 14, 16)
15 not available, was: character set address
16 not available, was: number of top window
17 not available, was: number of second to top window
18 not available, was: number of second to bottom

window
19 not available, was: number of bottom window
20 text width

The asterisk indicates which parameters can be changed
with WindSet.

Example

Local Int ha, hi, wa, wi, xa, xi, ya, yi
OpenW 1, 0, 0, 400, 300, -1
Win_1.AutoRedraw = 1
WindGet 0, xa, ya, wa, ha

WindGet 4, xi, yi, wi, hi
Print xa`ya`wa`ha
Print xi`yi`wi`hi
Print Wind_Get(8)``Wind_Get(9)
Print Wind_Get(10)``Wind_Get(11)
Print Hex(Wind_Get(12), 8)
Print Wind_Get(14)
Print Wind_Get(20)
Print
WindSet 9, 2000 : WindSet 11, 1500
Print Wind_Get(9), Wind_Get(11)
Do
Sleep

Until Me Is Nothing

Remarks

The position and size of a window can be modified with
MoveW and SizeW.

See Also

Form, WindSet

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

SendMessage Command
Purpose

Sends a message to one or more windows. The
SendMessage command does not return before the
message has been processed. After receiving a
SendMessage call Windows immediately calls the relevant
window function.

Syntax

SendMessage hWnd, Mess, wParam, lParam [,RetVal]

RetVal = SendMessage(hWnd, Mess, wParam, lParam)

hWnd, Mess, wParam, lParam, RetVal: integer expressions

Description

Windows uses messages to communicate between different
parts of a program and/or different programs. They either
contain the information about the current operation of the
program or pass information from other applications. Such
messages are managed by Windows in a buffer which is
called the message queue.

The SendMessage command contains four parameters.
The first parameter (hWnd) specifies the window handle to
be included in the message or, if a GFA-BASIC window, the
GFA-BASIC 32 window number. If hWnd contains
HWND_BROADCAST the message is posted to all
overlapping windows in the system.

The second parameter (Mess) contains the message (for
example WM_SYSKEYUP). The two last parameters contain
additional message information. The first one (wParam) is
an unsigned 32 bit value, the second (lParam) an unsigned
32 bit value. The final parameter [RetVal] is an optional
return value coming from the window that the send
message was addressed to.

For example, in case of WM_SYSKEYUP wParam contains
the virtual key code and lParam the scan code, repeat
counter, the original keyboard state and other additional
information (for example whether the key is a function
key). The message sent with the SendMessage command
is processed immediately and is not posted in the message
queue.

SendMessage command is processed instantly and is not
put in the message queue.

Example

// activate the Help mode, simulates a press
// on the Help [?]-button
OpenW 1
CenterMouse Win_1
SendMessage Me.hWnd, WM_SYSCOMMAND,
SC_CONTEXTHELP, 0

Do
Sleep

Until Me Is Nothing

Remarks

The GFA-BASIC command SendMessage corresponds to
Windows function call SendMessage().

See Also

PostMessage

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

PostMessage Command
Purpose

Posts a message to the message queue of an application
program (window). The function does not wait (like
SendMessage) for the message to be processed. The posted
message is retrieved by calling the Windows functions
GetMessage() or PeekMessage().

Syntax

PostMessage hWnd, Msg, wParam, lParam

hWnd, Msg, wParam, lParam:integer expression

Description

Windows uses messages to communicate between different
parts of a program and/or different programs. They either
contain the information about the current operation of the
program or pass information from other applications. Such
messages are managed by Windows in a buffer which is
called the message queue.

The PostMessage command contains four parameters. The
first parameter (hWnd) specifies the window handle to be
included in the message. If hWnd = HWND_BROADCAST
($FFFF) the message is posted to all overlapping windows in
the system. The second parameter (Msg) contains the
message (for example WM_SYSKEYUP). The two last 32-bit
parameters wParam and lParam contain additional message
information.

For example, in case of WM_SYSKEYUP wParam contains
the virtual key code and lParam the scan code, repeat
counter, the original keyboard state, and other additional
information (for example whether the key is a function
key). The message sent with the PostMessage command
is posted in the message buffer (Queue) of the application
(window) specified in hWnd and is not processed
immediately (as is the case for SendMessage).

Example

OpenW # 1, 100, 100, 200, 200, ~15
DefFill 5
PRBox 0, 0, _X, _Y
Do
Sleep

Until Me Is Nothing

Sub Win_1_KeyPress(Ascii&)
PostMessage Me.hWnd, WM_CLOSE, 0, 0

EndSub

Remarks

The GFA-BASIC command PostMessage corresponds to
built-in Windows function call PostMessage().

See Also

SendMessage

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

GetDevCaps Function
Purpose

Returns information about the current output device.

Syntax

% = GetDevCaps(n%)

n%:integer expression

Description

GetDevCaps returns information such as the screen
resolution, number of colors etc. After the function call the
information is returned in c%. The type of desired
information is specified in n%, where n% can assume one
of the following values:

n% = 0 or DRIVERVERSION - returns the driver version
number

n% = 2 or TECHNOLOGY - returns the type of output device
as follows:

c% = 1 or
DT_RASDISPLAY

Raster display (screen)

c% = 2 or
DT_RASPRINTER

Raster printer (dot matrix
printer)

c% = 3 or
DT_RASCAMERA

Raster camera (screen photo or
similar)

c% = 4 or
DT_CHARSTREAM

Character stream (e.g. file)

c% = 5 or
DT_METAFILE

Metafile (.WMF)

c% = 6 or
DT_DISPFILE

Display file (cards ??)

n% = 4 or HORZSIZE - Width of physical display in mm

n% = 6 or VERTSIZE - Height of physical display in mm

n% = 8 or HORZRES - Width of physical display in pixels

n% = 10 or VERTRES - Height of physical display in pixels

n% = 88 or LOGPIXELSX - Number of pixels per logical inch
on the x-axis (horizontal DPI resolution)

n% = 90 or LOGPIXELSY - Number of pixels per logical inch
on the y-axis (vertical DPI resolution)

n% = 12 or BITSPIXEL - Number of bits per pixel

n% = 14 or PLANES - Number or color planes

n% = 16 or NUMBRUSHES - Number of device specific fill
patterns (Brushes)

n% = 18 or NUMPENS - Number of device specific line
styles (Pens)

n% = 22 or NUMFONTS - Number of device specific fonts

n% = 24 or NUMCOLORS - Number of available colors

n% = 40 or ASPECTX - relative width of a pixel for lines

n% = 42 or ASPECTY - relative height of a pixel for lines

n% = 44 or ASPECTXY - diagonal size of a pixel for lines

n% = 26 or PDEVICESIZE - size of internal data structure
(PDEVICE)

n% = 36 or CLIPCAPS - indicates if the output device can
perform rectangle clipping. c% = 1 for yes or 0 for no

n% = 104 or SIZEPALETTE - Number of colors in the system
palette

n% = 106 or NUMRESERVED - Number of reserved entries
in the system palette

n% = 108 or COLORRES - Color resolution in bits per pixel

n% = 38 or RASTERCAPS - A word of information about the
capabilities of the output device to display raster graphics.
The following values are possible:

c% = 2 or
RC_BANDING

requires banding (printer -
Escape NEWBAND)

c% = 4 or
RC_SCALING

allows scaling

c% = 8 or
RC_BITMAP64

allows bitmaps of more than
64 KBytes

c% = $0010 or
RC_GDI20_OUTPUT

allows Windows 2.0 functions

c% = $0080 or
RC_DI_BITMAP

allows GetDIBits and SetDIBits

c% = $0100 or
RC_PALETTE

contains a palette

c% = $0200 or
RC_DIBTODEV

allows DIBitsToDevice

c% = $0800 or
RC_STRETCHBLT

allows StretchBlt

c% = $2000 or allows StretchDIBits

RC_STRETCHDIB

n% = 28 or CURVECAPS - A word of information about the
capabilities of output devices to display curves. A set bit
indicates the following:

0 - Circle
1 - Arc
2 - Arc
3 - Ellipse
4 - Wide lines
5 - Line style
6 - Wide line
style

n% = 30 or LINECAPS - A word of information about the
capabilities of output devices to display line styles. A set bit
indicates the following:

1 - Polylines
4 - Wide Lines
5 - Line styles
6 - Wide line styles
7 - Solid area (Plotters can't do
this)

Bit 0, 2 and 3 are reserved.

n% = 32 or POLYGONALCAPS - A word of information about
the capabilities of output devices to display polygons. A set
bit indicates the following:

0 - Alternating fill
mode
1 - Rectangle
2 - Winding fill mode
3 - Scan line

4 - Wide line
5 - Line style
6 - Wide line style
7 - Internal area

n% = 34 or TEXTCAPS - A word of information about the
capabilities of output devices to display text. A set bit
indicates the following:

0 - Character positioning
1 - Stroke positioning (exact)
2 - Stroke clipping (exact)
3 - Character rotation in 90°
steps
4 - Arbitrary character rotation
5 - Separate x and y scaling
6 - Double characters for scaling
7 - Integer scaling
8 - Arbitrary scaling
9 - Double width characters
10 - Italics
11 - Underline
12 - Strike out
13 - Bitmap fonts (Raster fonts)
14 - Vector fonts
15 - reserved 0

Example

OpenW # 1
Print GetDevCaps(HORZRES)
Print GetDevCaps(VERTRES)

prints the horizontal and vertical screen resolution in pixels.

Remarks

GetDevCaps() corresponds to the Windows API function
GetDeviceCaps().

Most of the information can be obtained using the Screen
object or App object.

See Also

Screen, App

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

SysMetric Function
Purpose

Returns the dimensions of a specified element.

Syntax

% = SysMetric(e%)

e%:integer expression

Description

The SysMetric() function returns the dimensions of the
element specified in e% in pixels. e% must take one of the
following values:

SM_CXSCREEN (0) - screen width

SM_CYSCREEN (1) - screen height

SM_CXFRAME (32) - window rectangle width, for "sizing"

SM_CYFRAME (33) - window rectangle height, for "sizing"

SM_CXVSCROLL (2) - width of arrow fields in vertical
scrollbars

SM_CYVSCROLL (20) - height of arrow fields in vertical
scroll bars

SM_CXHSCROLL (21) - width of arrow fields in horizontal
scroll bars

SM_CYHSCROLL (3) - height of arrow fields in horizontal
scroll bars

SM_CYCAPTION (4) - title list height

SM_CXBORDER (5) - window rectangle width

SM_CYBORDER (6) - window rectangle height

SM_CXDLGFRAME (7) - width of a Dialog box frame

SM_CYDLGFRAME (8) - height of a Dialog box frame

SM_CXHTHUMB (10) - width of the vertical scroll bar

SM_CYVTHUMB (9) - height of the vertical scroll bar

SM_CXICON (11) - icon width

SM_CYICON (12) - icon height

SM_CXCURSOR (13) - cursor width

SM_CYCURSOR (14) - cursor height

SM_CYMENU (15) - height of a single line menu bar

SM_CXFULLSCREEN (16) - maximum width of the
window client area

SM_CYFULLSCREEN (17) - maximum height of the
window client area

SM_CYKANJIWINDOW (18) - height of a Kanji window

SM_CXMINTRACK (34) - minimum tracking width of a
window

SM_CYMINTRACK (35) - minimum tracking height of a
window

SM_CXMIN (28) - minimum width of a window

SM_CYMIN (29) - minimum height of a window

SM_CXSIZE (30) - width of bitmap in the title bar

SM_CYSIZE (31) - height of bitmap in the title bar

SM_MOUSEPRESENT (19) - not zero if mouse is installed.

SM_MOUSEWHEELPRESENT (75) - not zero if mouse
wheel is present.

SM_DEBUG (22) - not zero in case of Windows debugging
version.

SM_SWAPBUTTON (23) - not zero if the left and right
mouse buttons are swapped.

SM_CXDOUBLECLK (36) - width in pixels, for double
clicking sequence.

SM_CYDOUBLECLK (37) - height in pixels, for double
clicking sequence.

SM_CXICONSPACING (38) - distance width between the
icons, in pixels

SM_CYICONSPACING (39) - distance height between the
icons, in pixels

SM_MENUDROPALIGNMENT (40) - true if right aligned
menus are in use

SM_PENWINDOWS (41) - true, if a Pen Windows is in use

SM_DBCSENABLED (42) - true, if a double byte character
is in use (far east - actually GB32 doesn’t work correct in
this direction).

SM_CMOUSEBUTTONS (43) - number of mouse buttons
(2, 3, or 0).

SM_CXDLGFRAMEThe width of a frame of a non-sizeable
window with title.

SM_CXSIZEFRAME (32) - SM_CXFRAME window rectangle
width, for "sizing".

SM_CYSIZEFRAME (33) - SM_CYFRAME window rectangle
height, for "sizing".

SM_SECURE (44) - true is the security package is
available.

SM_CXEDGE (45) - the dimension of a 3D border in pixels

SM_CYEDGE (46) - the dimension of a 3D border in pixels

SM_CXMINSPACING (47) - width of the distance between
symbols (NT 3.51)

SM_CYMINSPACING (48) - height of the distance between
symbols (NT 3.51)

SM_CXSMICON (49) - the width of a small icon

SM_CYSMICON (50) - the height of a small icon

SM_CYSMCAPTION (51) - the height of a small title in
pixels.

SM_CXSMSIZE (52) - the width of the buttons in the title
of windows, given in pixels.

SM_CYSMSIZE (53) - the height of the buttons in the title
of windows, given in pixels.

SM_CXMENUSIZE (54) - the width of the buttons, etc. in
the title of a MDI child window, in pixels

SM_CYMENUSIZE (55) - the height of the buttons, etc. in
the title of a MDI child window, in pixels

SM_ARRANGE (56) - the minimizing position of windows
0 starts left hand below (Default Position).
1 starts right hand below
2 starts top left
3 starts top right
0+4 starts left below and forward in vertical direction to the
top
1+4 starts right below and forward in vertical direction to
the top
2+4 starts top left, vertical
3+4 starts top right, vertical
8 during minimizing the window is hidden

SM_CXMINIMIZED (57) - width of a minimized window in
pixels.

SM_CYMINIMIZED (58) - height of a minimized window in
pixels.

SM_CXMAXTRACK (59) - maximum width of a window
during changing it’s size (with the mouse).

SM_CYMAXTRACK (60) - maximum height of a window
during changing it’s size (with the mouse).

SM_CXMAZIMIZED (61) - width of a maximized window in
pixels.

SM_CYMAXIMIZED (62) - height of a maximized window
in pixels.

SM_NETWORK (63) - true, if a Windows network is active.
An odd value for a known on, otherwise an even one.

SM_CLEANBOOT (67) - 0 = normal,1 = protected mode, 2
= protected with network.

SM_CXDRAG (68) - the width of a range which will be used
to allow a minimum movement of the mouse while double
clicking, without a drag (to start the movement with the
mouse) is happend.

SM_CYDRAG (69) - the height of a range which will be
used to allow a minimum movement of the mouse while
double clicking, without a drag (to start the movement with
the mouse) is happend.

SM_SHOWSOUNDS (70) - true, if Windows use optical
messages instead of acoustic ones; for people with a
hearing damage and circumstances permitting for the usage
in an open plain office (can be controlled from the system
control).

SM_CXMENUCHECK (71) - width of the hook let in pixels
for corresponding menu entries.

SM_CYMENUCHECK (72) - height of the hook let in pixels
for corresponding menu entries.

SM_SLOWMACHINE (73) - true, it the computer is slow
(subjective scoring of the operating system).

SM_MIDEASTENABLED (74) - true in the far east.

SM_CMETRICS (76) - value of numbers for the parameter
GetSystemMetrics.

Example

Debug.Show
Trace SysMetric(SM_CXCURSOR)

Returns the width of the cursor

Remarks

The Screen Object returns the same values and more.

See Also

Screen Object, App Object

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

MousePointer Property
Purpose

Returns or sets a value indicating the type of mouse pointer
displayed when the mouse is over a particular part of an
object at run-time.

Syntax

Object.MousePointer [= value]

Object:Ocx Object
value:iexp

Description

The settings for value, which are NOT declared by GFA, are:

Constant Value Description
basDefault 0 (Default) Shape

determined by the object.
basArrow 1 Arrow.
basCross 2 Cross (crosshair pointer).
basIbeam 3 I beam.
basIcon 4 Icon (small square within

a square).
basSize 5 Size (four-pointed arrow

pointing north, south,
east, and west).

basSizeNESW 6 Size NE SW (double arrow
pointing northeast and
southwest).

basSizeNS 7 Size N S (double arrow
pointing north and south).

basSizeNWSE 8 Size NW SE (double arrow
pointing northwest and
southeast).

basSizeWE 9 Size W E (double arrow
pointing west and east).

basUpArrow 10 Up Arrow.
basHourglass or
basWait

11 Hourglass (wait).

basNoDrop 12 No Drop.
basArrowHourglass 13 Arrow and hourglass.
basArrowQuestion
or basHelp

14 Arrow and question mark.

basSizeAll 15 Size all.
basCursor 98 Custom icon specified by

the MouseCursor
(LoadCursor) property.

basCustom 99 Custom icon specified by
the MouseIcon (Picture)
property.

Example

OpenW 1
MousePointer = 11 // basHourClass
Do
Sleep

Until Me Is Nothing

Remarks

See Also

MouseCursor, MouseIcon, MousePointer, DefMouse

{Created by Sjouke Hamstra; Last updated: 24/01/2019 by James Gaite}

DefMouse Command
Purpose

sets the mouse shape and appearance.

Syntax

DefMouse a%

a%:integer expression

Description

The possible values are synonymous to the mouse pointer
objects, as follows:

0 Default whatever is active will be used
1 Arrow normal arrow
2 Cross a little cross
3 IBeam text cursor (looks like a big i with head

line and under score)
4 Icon don’t use, compatible Windows 3.1 icon
5 Size general sizing exp. with the system

menu (for windows)
6 SizeNESW general sizing; double arrow from left

down to upper right(cursor pointing
northeast and southwest)

7 Size NS general sizing; double arrow below to top
(cursor pointing north and south)

8 Size
NWSE

general sizing; double arrow from right
down to upper left (cursor pointing

northwest and southeast)
9 Size WE general sizing, double arrow from right

hand to left hand (cursor pointing west
and east)

10 Up-Arrow arrow up (cursor)
11 Hourglass hourglass cursor
12 No Drop prohibition sign (like under Windows

explorer and copying: not allowed to
place something there)

13 Arrow
Hourglass

arrow with hourglass (cursor)

14 Help arrow with question mark (help)
15 Size All size all (cursor), four fold arrow
98 Cursor Use the mouse set with the

Form.MouseCursor property
99 Custom Use the mouse set with the

Form.MouseIcon property

DefMouse 0 is the default.

It makes more sense to use the Form properties
.MouseIcon or .MousePointer to set the mouse pointer
for a form, window, or dialog. Rather than DefMouse 11,
you would use Form.MousePointer = 11.

Example

OpenW 1
Local mk%, mx%, my%
Do
Mouse mx%, my%, mk%
Exit If mk% = 2
/* quarter top left
If mx% <= _X / 2
If my% <= _Y / 2

DefMouse 2
/* mouse symbol = Cross

Else
/* quarter left down
DefMouse 3
/* mouse symbol = IBeam

EndIf
Else
/* quarter upper right
If my% <= _Y / 2
DefMouse 11
/* mouse symbol = hourglass

Else
/* quarter right down
DefMouse 10
/* mouse symbol = arrow up

EndIf
EndIf

Loop
CloseW 1

See Also

Mouse, MouseX, MouseY, MouseK, HideM, ShowM

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

HideM, ShowM Commands
Purpose

Hides and unhides (shows) the mouse pointer.

Syntax

HideM

ShowM

Example

OpenW 1
HideM
Delay 2
ShowM
Delay 1
CloseW 1

16 bit example:

OpenW # 1
Print "To end press a mouse key"
Local border%, hidden?, mk%, mx%, my%
border% = _Y >> 1
hidden? = False
Do
Sleep
Mouse mx%, my%, mk%
If my% > border%
HideM
hidden? = True

Else If (my% <= border%) %& (hidden?)

ShowM
hidden? = False

EndIf
Loop Until mk%
If hidden? Then ShowM
CloseW # 1

Hides the mouse pointer as long as it moves within in the
window, outside it’s still visible.

See Also

DefMouse, Mouse, MouseX, MouseK

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

SetCapture and
ReleaseCapture Command
Purpose

Sets and releases exclusive mouse input which can be
limited to a specific window.

Syntax

ReleaseCapture

SetCapture wh%

wh%:integer expression

Description

SetCapture redirects all mouse events - regardless of how
many windows are currently open - to the window with the
number wh% (0..31) or API handle. For a Form object use
the hWnd property.

SetCapture can only be invoked for one single window at
any one time. If the mouse input is to be redirected to
another window, the command ReleaseCapture must first
be called for the current (mouse) window and then
SetCapture for the new window.

ReleaseCapture redirects the mouse input back to the
corresponding window (the window with the mouse
pointer).

Example

OpenW 1 : Win_1.Caption = Win_1.Name
OpenW 2 : Win_2.Caption = Win_2.Name
SetCapture 1// or Win_1.hWnd
Do
Sleep
If MouseK %& 1
Print MouseX, MouseY

EndIf
Until MouseK %& 2 'press right mouse button
ReleaseCapture
CloseW 2
CloseW 1

Causes all mouse-input to be sent only to window 1 until
right mouse button is pressed

Remarks

SetCapture and ReleaseCapture correspond to Windows
function SetCapture() and ReleaseCapture respectively.

See Also

-

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Mouse Command
Purpose

Returns the current X and Y coordinates of the mouse
pointer, the status of the mouse buttons and (optionally)
the status of the keyboard shift keys (KB shift).

Syntax

Mouse mx%, my%, mk% [, kb%]

mx%, my%, mk%, kb%:ivar

Description

The Mouse command is a combination of GFA-BASIC
functions MouseX, MouseY, MouseK, and MouseKB. In
addition, by supplying the fourth optional parameter the
status of the keyboard shift keys can also be interrogated.

Example

OpenW 1
Local a$, ak%, ax%, ay%, mk%
Local b%, mx%, my%, t$, title$, ab%
Do
t$ = InKey$
// to end press ESC
Exit Do If Asc(t$) = 27
title$ = "X-direction" + Space(10)
title$ = title$ + "Y-direction"
title$ = title$ + Space(10)
title$ = title$ + "Mouse Key" + Space(10)

title$ = title$ + "Shift-Key"
Text 8, 16, title$
ax% = mx%, ay% = my%, ak% = mk%, ab% = b%
Mouse mx%, my%, mk%, b%
// only new, if something will change
If (ax% <> mx%) || (ay% <> my%) _
|| (ak% <> mk%) || (ab% <> b%)
// delete a line
Text 8, 46, Space$(999)
a$ = Str$(mx%, 4, 0) + Space(25)
a$ = a$ + Str$(my%, 4, 0) + Space(20)
a$ = a$ + Str$(mk%, 8, 0) + Space(20)
a$ = a$ + Str$(b%)
Text 8, 46, a$

EndIf
Loop
CloseW 1

See Also

DefMouse, MouseK, MouseKB, MouseX

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MouseX, MouseY Function
Purpose

Returns the current X coordinate of the mouse pointer.

Syntax

mx% = MouseX

my% = MouseY

mx%, my%:ivar

Description

Returns the mouse position relative to the client area of the
window.

Ocx controls that are aligned at the border of the parent
form (using Align) change the Scale settings of the parent.
ScaleLeft and ScaleTop are set to the top-left pixel of the
uncovered client area of the form. ScaleWidth and
ScaleHeight are set to width and height of the uncovered
area. The mouse coordinates returned from MouseX,
MouseY and that are passed in the forms MouseMove,
MouseUp, and MouseDown events are relative to the new
origin.

Example

OpenW 1, 100, 100, 200, 200, 0
Local ax%, ay%, mx%, my%
Do

Sleep
ax% = mx%, ay% = my%
mx% = MouseSX, my% = MouseSY
If (ax% <> mx%) || (ay% <> my%)
Text 10, 10, "Mouse moving on the screen in"
Text 10, 30, "X-direction" + Space(20) + "Y-
direction"

Text 10, 50, Space$(999)
Text 20, 50, Str$(mx%) + Space(30) + Str$(my%)
If mx% - 2 < TwipsToPixelX(Win_1.Left) Or mx% +
2 > TwipsToPixelX(Win_1.Left + Win_1.Width) Or
_
my% - 2 < TwipsToPixelY(Win_1.Top) Or my% + 2
> TwipsToPixelY(Win_1.Top + Win_1.Height)

Text 10, 90, Space$(999)
Text 10, 110, Space$(999)
Text 10, 130, Space$(999)

EndIf
EndIf

Loop Until MouseK = 2
CloseW 1

Sub Win_1_MouseMove(Button&, Shift&, x!, y!)
Text 10, 90, "Mouse moving in the window at"
Text 10, 110, "X-direction" + Space(20) + "Y-
direction"

Text 10, 130, Space$(999)
Text 20, 130, Str$(x!) + Space(30) + Str$(y!)

EndSub

Remarks

A real application would use the _MouseMove event sub.

See Also

DefMouse, Mouse, MouseSX, MouseK

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

MouseK (Property), MouseKB
Function
Purpose

Returns the current status of the mouse buttons and shift
keys.

Syntax

mk% = [Screen.]MouseK

ms% = MouseKB

mk%, ms%:ivar

Description

The MouseK function returns the status of the mouse
buttons.

1 - Left button pressed

2 - Right button pressed

3 - Both pressed

The MouseKB function returns the current status of the
shift keys of your keyboard.

1 - Left and/or Right Shift

2 - Left and/or Right Ctrl

4 - Left Alt key

6 - Right Alt key

Example

OpenW 1
Local a$
a$ = "please press Shift key + mousekey"
TitleW 1, a$
PrintScroll = True
Do
Do
Loop Until MouseK
Print MouseK, MouseKB
Print "to end with mouse + Escape-key"

Loop Until GetAsyncKeyState(27) < 0
CloseW 1

Remarks

MouseKB uses the GetAsyncKeyState() API function.

Known Issues

Pressing the right Alt key is the same as pressing Ctrl and
the left Alt key so the two key combinations can not be told
apart using MouseKB. To get a more accurate result use
the Screen.ShiftKeys value.

Pressing the right Alt key, on occasions either a 2 or 4 will
be returned by MouseKB rather than or as well as the
expected 6. This can seen by running the example below
and contunally pressing the right Alt key.

Local Int mk, ms, oms

Debug.Show
Do
mk = MouseK
ms = MouseKB
If ms = 0 : oms = 0
ElseIf ms <> 0 And ms <> oms : Debug ms;" - "; :
oms = ms
If ms >= 6 Then Debug.Print "Right Alt key"; :
Xor ms, 6 : If ms <> 0 Then Debug.Print " & ";

If Btst(ms, 0) Then Debug.Print "Shift key"; :
If ms <> 1 Then Debug.Print " & "; : Xor ms, 1

If Btst(ms, 1) Then Debug.Print "Ctrl key"; :
If ms <> 2 Then Debug.Print " & "; : Xor ms, 2

If Btst(ms, 2) Then Debug.Print "Left Alt key";
Debug.Print

EndIf
Loop Until mk <> 0
Debug.Hide

To get around this problem, use the Screen.ShiftKeys
value.

See Also

Screen, Mouse, MouseX, MouseSY

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

MouseSX, MouseSY
Functions, MouseX, MouseY
Properties
Purpose

Returns the current x and y position of the mouse in pixels
relative to the upper left corner of the current form and/or
Desktop.

Syntax

x% = MouseSX
y% = MouseSY

x% = Screen.MouseX
y% = Screen.MouseY

x%, y%:ivar

Description

MouseSX and MouseSY are shortcuts for the Screen
properties MouseX, MouseY and return the mouse
coordinates within the desktop.

Example

OpenW 1, 100, 100, 200, 200, 0
Local ax%, ay%, mx%, my%
Do
Sleep
ax% = mx%, ay% = my%

mx% = MouseSX, my% = MouseSY
If (ax% <> mx%) || (ay% <> my%)
Text 10, 10, "Mouse moving on the screen in"
Text 10, 30, "X-direction" + Space(20) + "Y-
direction"

Text 10, 50, Space$(999)
Text 20, 50, Str$(mx%) + Space(30) + Str$(my%)
If mx% - 2 < TwipsToPixelX(Win_1.Left) Or mx% +
2 > TwipsToPixelX(Win_1.Left + Win_1.Width) Or
_
my% - 2 < TwipsToPixelY(Win_1.Top) Or my% + 2
> TwipsToPixelY(Win_1.Top + Win_1.Height)

Text 10, 90, Space$(999)
Text 10, 110, Space$(999)
Text 10, 130, Space$(999)

EndIf
EndIf

Loop Until MouseK = 2
CloseW 1

Sub Win_1_MouseMove(Button&, Shift&, x!, y!)
Text 10, 90, "Mouse moving in the window at"
Text 10, 110, "X-direction" + Space(20) + "Y-
direction"

Text 10, 130, Space$(999)
Text 20, 130, Str$(x!) + Space(30) + Str$(y!)

EndSub

Remarks

The MouseSX and MouseSY internally call the Windows
function GetCursorPos() and therefore require no
PeekEvent, GetEvent or Sleep.

See Also

MouseX, Mouse, MouseK, Screen

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

Keyget Command
Purpose

Gets the first character in the keyboard buffer.

Syntax

Keyget n

Description

Keyget n% waits for a key press and returns in n% a long
word with the following layout:

Bit 0 to 7 - ASCII code

Bit 8 to 15 - Scan code

For a list of Scan and ASCII codes, see Key Codes and
ASCII Values.

Example

Local n%
OpenW # 1
Print "Press any key"
KeyGet n%
Print Hex$(n%, 4)

Waits for key entry and then returns the codes of the
pressed key.

Remarks

https://calibre-pdf-anchor.n/#Key%20Codes.htm

During the waiting period for a key to hit, GFA-BASIC 32
doesn't block other programs, but performs a DoEvents.

See Also

Inkey$, KeyTest

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

InKey$ Function
Purpose

Reads a character from the keyboard (excluding special
keys like Shift, Alt, Alt Gr, Ctrl...).

Syntax

string = InKey[$]

Description

InKey$ does not wait for a key press but, if no keys were
pressed since the last keyboard request (by the processor),
it returns an empty string. Otherwise, InKey$ reports the
ASCII code of the pressed key.

If the pressed key has no ASCII code (the special keys, for
example), the scan code of the pressed key is returned
instead. If this is this case a two character string is
returned, the first of which is a Chr$(0) and the second the
corresponding key code.

For a list of Scan and ASCII codes, see Key Codes and
ASCII Values.

Example

Local t$
OpenW # 1
Do
t$ = InKey$
Exit If Cvi(t$) = 6912 // Press Esc to quit

https://calibre-pdf-anchor.n/#Key%20Codes.htm

If t$ <> ""
If Len(t$) = 1 //normal key
Print "Key: "; t$; Spc(3);
Print "ASCII code : "; Asc(t$)

Else
Print "Chr$(0), Scan code : "; Cvi(t$)

EndIf
EndIf

Loop
CloseW # 1

This example displays the ASCII or scan code for each
pressed key.

Remarks

Instead of InKey you should use the Ocx event subs:

Sub Form_KeyDown(Code&, Shift&)

Sub Form_KeyPress(Ascii&)

Sub Form_KeyUp(Code&, Shift&)

Sub Screen_KeyPreview(hWnd%, uMsg%, wParam%,
lParam%, Cancel?)

See Also

Keyget, KeyTest

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

KeyTest Command
Purpose

Reads the first character in the keyboard buffer.

Syntax

KeyTest n

Description

KeyTest n is similar to InKey$, that is to say, it reads a
character from the keyboard when a key - other than Alt,
Ctrl, Shift or Caps Lock - is pressed. If no key was pressed
a 0 is returned. Otherwise the ASCII and scan code of the
character is returned

Bit 0 to 7 - ASCII-Code

Bit 8 to 15 - Scan-Code.

For a list of Scan and ASCII codes, see Key Codes and
ASCII Values.

KeyTest returns immediately; it doesn't wait for a
keyboard hit. You should never use KeyTest in a serious
program. KeyTest was built in to offer an easy function to
use in simple test programs to get a character of the
keyboard.

Example

OpenW 1

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Local n%
Repeat
KeyTest n%
If Byte(n%)
Print Byte(n%),
Print LoByte(n%),
Print HiByte(n%)

EndIf
Until Byte(n%) = 27
CloseW # 1

The program loops until the ESCAPE key is pressed.

Remarks

See Also

Inkey$, Keyget

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Alert Function
Purpose

Draws a message box on the screen.

Syntax

Alert IconAndFlag, MainText$, DefButton, ButtonText$
[,RetVal]

RetVal = Alert(IconAndFlag, MainText$, DefButton,
ButtonText$)

IconAndFlag, DefButton : iexp
RetVal : ivar
MainText$, ButtonText$: sexp

Description

An Alert box is a special form of a message box. It is used
when a point in a program is reached where the program is
to be cancelled, a certain branch is to be taken, or some
other user decision is to be made.

The first integer expression, IconAndFlag, determines which
symbol will be included in the Alert box together with the
message. The following symbols are available:

IconAndFlag Meaning
0 mark symbol
1 stop mark
2 question mark

3 exclamation mark
4 information mark
5 windows flag
6 application mark
7 information mark
16 buttons are placed at the right border
32 shadow
64 text is right aligned
128 text is centered

MainText$ contains the message which is to be displayed in
the Alert Box. If the text is too long for one line it can be
split in up to 4 lines by using "|".

ButtonText$ contains up to five possible alternatives for
user response.

DefButton indicates which of these alternatives the default
is. This alternative is then selected by pressing the Return
key. The alternatives are numbered from 1 to 5 and are
separated from each other by a "|".

RetVal contains the number of the alternative which was
actually selected.

Example

Auto a$, b$, i%, j%, retval%
OpenW # 1
i% = 2
a$ = "Which procedure should|be executed next"
j% = 1
b$ = "Input | Calculate | Print | File output |
CANCEL"

retval% = 0

Alert 2 | 16, a$, j%, b$, retval%
CloseW # 1

Creates an Alert Box with a question mark as symbol and
the message: "Which procedure should be executed next".
The default alternative is "Input". The alternatives are:

Input, Calculate, Print, File output, and CANCEL.

retval% contains the number of the selected alternative.

Remarks

AlertBox is a synonym to Alert and can be used instead.

In addition to the menu bar and pop-up menus, the
Alert[Box] is a third possible way of communication
between the program and the user. Furthermore, it can
prove useful when incorporated inside LG32 libraries as a
customised messagebox, where OCX objects and Dialogs
can not be used.

Known Issues

In Windows 8, 8.1 and 10, the static text box (which
holds MainText) and the icon image holder are drawn
with white backgrounds; a patch has been created to
solve this problem by Sjouke Hamstra and will be
released in the near future.
[Reported by James Gaite, 09/03/2017]

Alert box does not recognise of multiple monitors and is
always displayed on the main monitor. Use Prompt,
InputBox or MsgBox instead or, in a GLL, use MsgBox0.
[Reported by Sjouke Hamstra, 03/04/2018]

See Also

Menu, Popup, Message, MsgBox, Prompt

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

_Atom$ Function
Purpose

Returns the global name of a given atom.

Syntax

$ = _Atom$(id)

Description

Returns the String associated with an atom (a handle) in
windows global atom table. This Function is just a wrapper
around the Windows API function GlobalGetAtomName().

See Also

Atom Add, Atom Find, Atom Delete

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Atom Add Command
Purpose

Same as API function x%=GlobalAddAtom("name")

Syntax

Atom Add string, atom%

Description

The Atom Add function adds a character string to the
global atom table and returns a unique value (an atom)
identifying the string.

Example

Local atomApp%
Atom Add App.Name, atomApp%
Print atomApp%

See Also

Atom Delete, Atom Find, Atom$

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Atom Find Command
Purpose

Same as API function x%=GlobalFindAtom("name")

Syntax

Atom Find "name", atom%

Description

The Atom Find function searches the global atom table for
the specified character string and retrieves the atom
associated with that string.

Example

Local atomApp%
Atom Add App.Name, atomApp%
// ...other commands...
Atom Find App.Name, atomApp%
Print atomApp%

See Also

Atom Add, Atom Delete, Atom$

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Atom Delete Command
Purpose

Same as API function GlobalDeleteAtom("name")

Syntax

Atom Delete x%

Description

The Atom Delete function decrements the reference count
of a global string atom. If the atom's reference count
reaches zero, GlobalDeleteAtom removes the string
associated with the atom from the global atom table.

Example

Local atomApp%
Atom Add App.Name, atomApp%
Atom Delete atomApp%

See Also

Atom Find, Atom Add, Atom$

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

reStop Command
Purpose

Ends a thread that is performing a regular expression
operation (used in a Try/Catch structure)

Syntax

reStop

Description

reStop is used within a thread auxiliary to the main
program to stop that thread when it is performing a regular
expression operation. reStop itself must always be used in
a Try/Catch guarded code block.

NOTE: The reStop command is just one method of ending
a thread and should be used with caution if at all. See
Creating and Terminating Threads for more information on
threads and how to close them.

Example

Local i%, j%, t#, m$(100000)
Global ti%, End?
// Create a random string array
For i% = 1 To 100000 : m$(i%) = RandomString :
Next i%

Local h As Hash Int
// Create the Thread
Debug.Print "Thread Handle =";CreateThread(0, 0,
ProcAddr(Thread), 0, 0, V:ti%) & " "

Debug.Print "Thread ID =";ti%
// Perform the match
Try
t# = Timer
j% = reMatch(m$(), "[a-z]+n", 0, i% - 1, h[])

Catch
Debug.Print Err.Description
j% = -1

EndCatch
// Close the thread and print results
t# = Timer - t#
End? = True
While ti% : Sleep 30 : Wend : Sleep 0
Debug.Print h[%]; " Matches in"; t#; "s"
If j% < 0 Then Print "Aborted"
For Each j% In h[]
Debug.Print m$(j%)

Next
Debug.Show
Message "Results are on the Debug Screen"

Function RandomString
Local n As Int32, txt$
For n = 1 To Int(Rnd * 10) + 4 : txt$ = txt$ &
Chr(Int(Rnd * 93) + 31) : Next n

Return txt$
EndFunction

Sub Thread(p%)
Debug.Print "Thread Started"
Do
If(GetAsyncKeyState(VK_ESCAPE) < 0)
reStop
Exit

EndIf
Sleep 100

Loop Until End?

ti% = 0
EndSub

The example program creates a random string array then
searches the text for any succession of letters followed by
the letter n.

Just before reMatch is executed - it should be placed in a
Try/Catch/EndCatch construction - a second thread is
created. The Debug.Print statement is unimportant; the
only important thing is that the return value of the
CreateThread() function non-zero.

When the regular expression search has ended, the global
variable End? is set to True. This variable is inspected in the
second thread and will cause the thread to end.

Meanwhile, inside the loop the thread tests for a key press
(Esc key) and when it is pressed invokes the reStop
command. reStop brings up an error message box
(Err.Description = "reStop", Err.Number = 140). The error is
trapped in the Try/Catch block in the main part of the
program.

Remarks

NOTE: Breaking (pressing Ctrl-Break) a program which is
using more than one thread or process will most likely
result in an error in the IDE which will see GB32 closed
down by Windows. Therefore, if you are testing such a
program, always save it first.

See Also

Multithreading, preMatch, reMatch, reSub, Hash

{Created by Sjouke Hamstra; Last updated: 14/07/2015 by James Gaite}

Replace Funcrion
Requires: gfawinx.lg32

Purpose

Returns a string in which a specified substring has been
replaced with another substring a specified number of
times.

Syntax

str = Replace(src, find, replaceby [, start] [, count] [,
compare])

str, find, replaceby : string expression
src : string variable
start, count, compare : integer expression

Description

The src argument should be a string variable containing the
string to be found that you wish to replace, find is the
substring being searched for and replaceby the string that is
inserted in its place. The optional start argument specifies
the position within src where the search is to begin; if it is
omitted, 1 or the first character of the string is assumed.
The optional count argument specifies the number of
substring substitutions to perform; if this is omitted, the
default value is -1, which tells the function to make all
possible substitutions. Finally, the optional compare is a
numeric value indicating the kind of comparison to use
when evaluating substrings and if this is omitted, the

default value is 0 is assumed, which instructs the function
to perform a binary comparison - the number for this last
argument can be any value from Mode Compare.

The return value of the Replace function is a string in which
the substitutions have been made.

Example

$Library "gfawinx"
Dim txt As String = "GFABasic32GFABasic32"
' Case insensitive replacement
Debug Replace(txt, "a", "xx", 4, 2, 1)
Debug.Show

The general instruction passed to the Replace function is to
change all lower-case 'a' characters to 'xx'; however, this
operation is expanded by the final compare argument of 1
which specifies that the search should be case INsensitive
so all upper-case 'A' characters are to be replaced as well.
Without any further arguments, this would result in four
substitutions; however, the inclusion of the value 4 in the
start argument means the first 'A' is excluded from the
replacement process and the passing of the value 2 in the
count argument means that only two substitutions are
made, resulting in the final 'a' remaining unconverted.
Hence, the output of this example is
GFABxxsic32GFxxBasic32.

Remarks

Replace is defined using FunctionVar because this type
takes implicit ByRef parameters (each parameter without an
explicit ByVal is implicit ByRef). Consequently, when a literal
string is passed – like “a” and “xx” - the compiler inserts
code to copy the literal strings in hidden local variables that

are then passed by reference. However, if the parameter is
a string variable the variable is passed by reference without
first making a copy.

See Also

reSub

{Created by Sjouke Hamstra; Last updated: 08/08/2019 by James Gaite}

DllVersion and DllVersion$
Functions, CommCtlVersion,
ShellVersion Properties
Purpose

Return the version number of a DLL

Syntax

v! = DllVersion([fname])
v$ = DllVersion$([fname])

v! = Screen. CommCtlVersion
v! = Screen. ShellVersion

v! : single expression
v$, fname : string expressions

Description

DllVersion(fname) returns the version number of a given
DLL fname, if the DLL supports the version info function,
otherwise it returns 0; if the DLL isn't located, the function
returns -1. All values are returned as Single variables.

In a similar way, DllVersion$(fname) returns a string
containing extended version information of a given DLL
fname. When the DLL doesn't support the version info
function, it returns an empty string, and when the DLL can't
be found, the function returns "Error".

DllVersion() or DllVersion("") return the version number
of the gfawin32.ocx runtime, while DllVersion$() or
DllVersion$("") return the version information in the form
of a string.

CommCtlVersion returns the DLL version number of
CommCtl.dll, while ShellVersion returns the DLL version
number of Shell32.dll.

Example

Trace DllVersion("shell32.dll")
// or, using the Screen object
Trace Screen.ShellVersion
// or using DllVersion$
Trace DllVersion$("shell32.dll")
Trace Screen.CommCtlVersion
Trace DllVersion() // Prints the GFA runtime
version...

Trace DllVersion$("") // ...as does this.
Debug.Show

Known Issues

GFABASIC sometimes has problems processing comparisons
involving DllVersion because DllVersion returns a floating
point/single variable and all 'magic numbers' are assumed
by GFABASIC to be double. The workaround for this is to
place a ! after the comparison 'magic number' (to make it a
single) as shown below:

// Run using GfaWin23 v2.32
Print DllVersion > 2.31 // Sometimes TRUE,
sometimes not

Print DllVersion > 2.31! // Always TRUE
[Reported by James Gaite, 23/10/2017; Solution updated by Sjouke Hamstra
05/11/2017]

{Created by Sjouke Hamstra; Last updated: 05/11/2017 by James Gaite}

PixelsPerTwipX,
PixelsPerTwipY,
TwipsPerPixelX,
TwipsPerPixelY Properties
Purpose

Returns the number of pixels per twip or twips per pixel for
Screen, Form and Printer object.

Syntax

= object.PixelsPerTwipX
= object.PixelsPerTwipY

= form.TwipsPerPixelX
= form.TwipsPerPixelY
= Printer.TwipPerPixelX
= Printer.TwipPerPixelY

object : Screen, Form, Printer
form : Screen, Form

Description

These properties return the number of pixels per twip or
twips per pixel for the device of the Screen, a Form, or a
Printer. For instance, for a Printer object, twips per pixel
are 4.8 for 300dpi (1440/300), 2.4 for 600dpi (1440/600),
2.0 for 720 dpi (1440/720), 0.5 for 2880 dpi (1440/2880)

Note: For the Printer object the last two properties are
TwipPerPixelX and TwipPerPixelY (the 's' after Twip is
omitted) but they perform the same function.

Example

Debug.Show
OpenW 1
Trace Me.PixelsPerTwipX
Trace Me.PixelsPerTwipY
Trace Me.TwipsPerPixelX
Trace Me.TwipsPerPixelY
Trace Screen.PixelsPerTwipX
Trace Screen.PixelsPerTwipY
Trace Screen.TwipsPerPixelX
Trace Screen.TwipsPerPixelY
SetPrinterHDC Printer.hDC
Trace Printer.PixelsPerTwipX
Trace Printer.PixelsPerTwipY
Trace Printer.TwipPerPixelX
Trace Printer.TwipPerPixelY

Remarks

A form is part of the screen, and is actually a property of
the Screen object (Screen.Forms), and thus returns the
same values.

1 Twip (the base unit of GFA-BASIC 32 OLE) is 1/20 Point =
1 /1440 inch.

See Also

Screen, Form, Printer

{Created by Sjouke Hamstra; Last updated: 03/03/2018 by James Gaite}

RGBColor Command
Purpose

Sets the foreground and background color for graphic
output.

Syntax

RGBColor fore [, back]

fore, back:integer expression

Description

RGBColor sets the foreground or background color (or
both) using a RGB-Value. A RGB value is composed using
the RGB function, which takes three byte values, each
specifying a color tint red = 0..255, green = 0..255, and
blue = 0..255.

When the system uses a palette the parameters specify a
palette index.

Example

OpenW 1
Local b&, g&, i&, j&, r&
DefLine 6, 4
For i& = 0 To _X Step 4
For j& = 0 To _Y Step 4
r& = SinQ((i& + j&) / 4) * 127 + 128
g& = SinQ(j& / 2) * 127 + 128
b& = SinQ(i& / 2) * 127 + 128

RGBColor RGB(r&, g&, b&)
Line i&, j&, i&, j&

Next j&
Next i&
DefLine 0, 1

Usage of the SysCol function:

OpenW 1
Local a%, b%
a% = SysCol(COLOR_BTNFACE)
b% = SysCol(COLOR_BTNTEXT)
RGBColor a%, b%
Text 10, 10, "HALLO GFA"

Remarks

Color internally uses RGBColor, so Color is a short form of
RGBColor.

See Also

Color, QBColor, ForeColor, BkColor

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Automation
Introduction

Automation is a process by which one program may open,
control and close a second through the use of a dedicated
COM library. The purpose of such an action is to use the
resources of that second program to execute a task and, if
necessary, return one or more values to the calling
program.

For the purpose of this article, we shall automate Internet
Explorer as it is, currently, a program available to all
Windows users. Other applications that can be automated
include Word, Excel and Powerpoint and virtually any other
program with an associated COM library.

Creating and Using Automated Objects

The principle of Automation is relatively simple.

To facilitate Automation you can either create a COM object
using CreateObject, which causes an occurence of the called
program to open in a new process, or use GetObject to try
and take control of an occurence of the program which is
already running.

Once you have access to the second program, you may
then use its predefined Properties and Methods to navigate
through the program, read, edit and extract content and
perform whatever tasks specific to that application that the
Methods allow.

Finally, once you have no further use for the called
program, you can force it to exit (or leave it running if you
wish) and then destroy the COM object.

Below is a very quick example of this process in practice.
Firstly, a control window is drawn which allows for remote
exiting of Internet Explorer; then the COM Object itself is
created and used to start an occurence of Internet Explorer
which, in turn, is used to navigate to Google to search for
references to 'GFABasic'. Internet Explorer can be closed
normally or remotely but the running program will not cease
until the control window is closed.

// Draw Control Window
OpenW 1, 10, 10, 100, 100
Ocx Command cmd = "Close IE", 10, 10, (90 -
(Screen.cxFrame * 2)), (90 - Screen.cyCaption -
(2 * Screen.cyFrame))

// Create the COM Object
Global ie As Object
Set ie =
CreateObject("InternetExplorer.Application")

If Not IsNothing(ie)
 // If COM Object is created
ie.Visible = True
 // Show Internet Explorer

~ie.navigate("http://www.google.com/#hl=en&q=" &
"GFABasic") // Navigate to Google and Search
for 'GFABasic'

While ie.busy : DoEvents : Wend
 // Wait for the page to finish
loading

While Not IsNothing(ie) : Sleep : Wend
 // DoEvents until Internet Explorer
or Control Window is closed

EndIf

CloseW 1
 // Close Control Window

Sub cmd_Click
If Not IsNothing(ie)
// Try and close Internet Explorer
Try
ie.quit

Catch
// Internet Explorer has been closed by user

EndCatch
Set ie = Nothing

EndIf
EndSub

Sub Win_1_Close(Cancel?)
// Make sure Internet Explorer is closed and ie
is Nothing

cmd_Click
EndSub

It is beyond the scope of this article to list all the properties
and methods that can be used but the following links may
prove useful:

MSDN - The Internet Explorer Object
Automating Microsoft Office 97 and Microsoft Office
2000

_DispID and .{}

GFABasic has two functions which can be used when
determining and returning values of Automation object
properties: _DispID and .{}. These are discussed in detail
on Sjouke Hamstra's blog but a quick precis of the details
are as follows.

https://msdn.microsoft.com/en-us/library/aa752084(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/office/aa155776(v=office.10).aspx
http://www.gfabasic32.blogspot.co.uk/2013/12/using-methods-and-properties-through.html

Generally, most properties related to a COM object can be
accessed using the property's name: hence, to check that
Internet Explorer is visible, ie.Visible is queried and
returns either a True or False value accordingly.

Sometimes, a COM property may not be available to a
program as a named property (usually because it is new):
this is where _DispID(Object, PropertyName) and Object.
{IDispatchID} come in useful. _DispID queries the Object
for the PropertyName which returns the IDispatchID (if the
property exists) which can then be used by .{} to retrieve
the relevant value. Hence, for the Internet Explorer Visible
property, the following procedure could be followed:

Debug.Show
Dim ie As Object
Set ie =
CreateObject("InternetExplorer.Application")

Trace ie.visible
Local idisp As Int32 = _DispID(ie, "Visible")
Trace idisp
Trace ie.{idisp}
~ie.quit
Set ie = Nothing

Unfortunately, at the time of writing, the .{} function can
not be used to set the property due to a compiler error;
when it is used in the logical fashion ie.{402} = True,
an 'Internal: Set Prop value' error message is displayed.

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

AvailPhys, TotalPhys,
AvailPageFile, TotalPageFile,
AvailVirtual, TotalVirtual,
MemoryLoad Properties
(App)
Purpose

Return information about the physical and virtual memory
size.

Syntax

App.AvailPhys
App.TotalPhys
App.AvailPageFile
App.TotalPageFile
App.AvailVirtual
App.TotalVirtual
App.MemoryLoad

Return type:Long

Description

AvailPhys Available physical global memory
TotalPhys Total physical global memory
AvailPageFile Available page file size
TotalPageFile Total page file size
AvailVirtual Available virtual memory

TotalVirtual Total available virtual memory
MemoryLoad Percentage of memory used.

Example

Debug.Show
Trace App.AvailPhys
Trace App.TotalPhys
Trace App.AvailPageFile
Trace App.TotalPageFile
Trace App.AvailVirtual
Trace App.TotalVirtual
Trace App.MemoryLoad

Known Issues

Similar to mAlloc(-1) through to mAlloc(-4),
AvailPageFile, AvailPhys, TotalPageFile and TotalPhys
are currently broken in most versions of Windows after XP
SP3. See the mAlloc() page for the workaround.

Remarks

Same results can be obtained from mAlloc().

See Also

App, mAlloc

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

FileVersion Properties (App)
Purpose

Return the version information about the current running
application.

Syntax

% = App.Major
% = App.Minor
% = App.MajorRevision
% = App.Revision
% = App.ProdMajor
% = App.ProdMinor
% = App.ProdMajorRevision
% = App.ProdRevision
$ = App.Comments
$ = App.CompanyName
$ = App.FileDescription
$ = App.FileVersion
$ = App.InternalName
$ = App.LegalCopyright
$ = App.LegalTrademarks
$ = App.OriginalFilename
$ = App.PrivateBuild
$ = App.ProductName
$ = App.ProductVersion
$ = App.SpecialBuild

Description

These properties return the file information as they are
specified in the FileVersion tab of the Compile To Exe dialog

box.

Properties Meaning
Major The major release

number.
Minor The minor release

number.
MajorRevision The major revision

number.
Revision The revision number.
ProdMajor The major product

version number.
ProdMinor The minor product

version number.
ProdMajorRevi
sion

The major product
revision number.

ProdRevision The product revision
number.

Comments Comments
CompanyName CompanyName
FileDescription FileDescription
FileVersion FileVersion
InternalName Internal name
LegalCopyright LegalCopyright
LegalTrademar
ks

Legal Trademarks

OriginalFilena
me

Original filename

PrivateBuild Private build
ProductName ProductName
ProductVersio
n

Product version

SpecialBuild SpecialBuild

Example

Debug.Show
Trace App.Major
Trace App.Minor
Trace App.MajorRevision
Trace App.Revision
Trace App.ProdMajor
Trace App.ProdMinor
Trace App.ProdMajorRevision
Trace App.ProdRevision
Trace App.Comments
Trace App.CompanyName
Trace App.FileDescription
Trace App.FileVersion
Trace App.InternalName
Trace App.LegalCopyright
Trace App.LegalTrademarks
Trace App.OriginalFilename
Trace App.PrivateBuild
Trace App.ProductName
Trace App.ProductVersion
Trace App.SpecialBuild

See Also

App

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

FileName, Name, Path
Properties (App)
Purpose

Return or set the filename and path of the current running
application.

Syntax

$ = App.FileName

$ = App.Name

$ = App.Path

Description

FileName gets or sets (current) complete filename.

Name gets or sets (current) application name.

Path gets or sets (current) application path.

Example

Debug.Show
Trace App.FileName
Trace App.Name
Trace App.Path

Remarks

The complete path name can also be obtained from
_CmdLine.

ProgName[$] returns the directory of the current running
application. In the IDE the name of GFA-BASIC 32 is
returned.

See Also

App, _CmdLine, ProgName

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

_Instance Variable,
hInstance Property (App)
Purpose

Return the instance handle of the running program.

Syntax

Handle = _Instance

Handle = App.hInstance

Description

For 'interpreted' programs, the instance of the GFA-BASIC
32 IDE is returned. For a compiled program, the instance of
the program is returned. Some Windows's API functions
need this handle.

Example

Dim h As Handle
h = _INSTANCE : Print h
h = App.hInstance : Print h

Remarks

Within GFA-BASIC 32 there are no interpreted programs,
only compiled. However, when a program is run in the
context of the IDE, the instance handle determines the GFA-
BASIC 32 IDE.

See Also

App

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

scClear, scRead, scWrite,
scPath, scDescription,
scShowCmd, scDirectory,
scArguments, scHotkey,
scIconPath, scIconIndex
(App)
Purpose

Properties and methods to manage shell links or shortcuts.

Syntax

App.scClear
App.scRead(f$)
App.scWrite(f$)

App.scPath [= string]
App.scDescription [= string]
App.scShowCmd [= long]
App.scDirectory [= string]
App.scArguments [= string]
App.scHotkey [= long]
App.scIconPath [= string]
App.scIconIndex [= Long]

Description

Usually, an user creates a shell link by choosing the Create
Shortcut command from an object's context menu. The

system automatically creates an icon for the shell link by
combining the object's icon with a small arrow (known as
the system-defined link overlay icon) that appears in the
lower left corner of the icon. A shell link that has an icon is
called a shortcut; however, the terms shell link and shortcut
are often used interchangeably.

GFA-BASIC 32 applications can also create and use shell
links and shortcuts. For example, a word processing
application might create a shell link to implement a list of
the most recently used documents. In GFA-BASIC 32 you
create a shell link by using the methods and properties of
the App object.

Methods:

The scClear method clears all App.scXXX shell link related
properties. These are the properties listed in the Syntax
part.

The scRead(f$) method gets the settings from an external
.lnk file f$.

The scWrite(f$) method creates and saves the shortcut file
f$.

Properties:

scPath - Specifies the location (path) of the object
referenced by the shortcut.

scDescription - Specifies the shortcut's description string,
which the user never sees.

scShowCmd - Specifies the initial show state of the
application (SW_xxx constant).

scDirectory - Specifies the working directory of the
corresponding object, where files are loaded and saved
when the user does not identify a specific directory.

scArguments - Specifies the arguments to pass to the
object specified in scPath.

scHotkey - Global windows key to run the shortcut. The
virtual key code is in the low-order byte, and the modifier
flags are in the high-order byte. Bits 8, 9, and 10 represent
Shift, Control, and Alt, respectively.

scIconPath - Icon file to use for the shortcut.

scIconIndex - Index to icon in the icon file specified in
scIconPath.

The shortcut's name, which is a string that appears below
the shell link icon, is actually the file name of the shortcut
itself and which is specified in scWrite. The user can edit
the description string by selecting it and entering a new
string.

Example

App.scClear
App.scDirectory = SysDir
App.scIconIndex = 2
App.scIconPath = WinDir & "\Winfile.exe"
App.scArguments = #34 & SysDir & #34
App.scDescription = "System Folder"
App.scPath = WinDir & "\Explorer.Exe"
App.scWrite App.scPrograms & "\GFA32\System-
Folder.lnk" // Change this to an appropriate file
in your Program Files folder

See Also

App, scPrograms

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

scCommonStartMenu,
scCommonPrograms,
scStartMenu, scPrograms,
scSpecialDir Properties
Purpose

Return the path of special folders.

Syntax

$ = App.scCommonStartMenu
$ = App.scCommonPrograms
$ = App.scStartMenu
$ = App.scPrograms
$ = App.scSpecialDir(csidl%)

Description

scCommonStartMenu returns the file system directory
that contains the programs and folders that appear on the
Start menu for all users (CSIDL_COMMON_STARTMENU).

scCommonPrograms returns the file system directory that
contains the directories for the common program groups
that appear on the Start menu for all users
(CSIDL_COMMON_PROGRAMS).

scStartMenu returns the file system directory that
corresponds to the user's Startup program group. The
system starts these programs whenever any user logs onto
Windows NT or starts Windows 95 (CSIDL_STARTMENU).

scPrograms returns the file system directory that contains
the user's program groups, which are also file system
directories (CSIDL_PROGRAMS).

scSpecialDir(csidl%) returns the file system directory
name for the special folders for the current user.

n ConstantDirectory
0 CSIDL_DESKTOP\Documents and

Settings\User\Desktop
2 CSIDL_PROGRAMS\Documents and

Settings\User\Menu Start\Programs (
scPrograms)

5 CSIDL_PERSONAL\Documents and
Settings\User\My Documents

6 CSIDL_FAVORITES\Documents and
Settings\User\Favourites

7 CSIDL_STARTUP\Documents and
Settings\User\Menu Start\Programs\Start Up

8 CSIDL_RECENT\Documents and
Settings\User\Recently Opened

9 CSIDL_SENDTO\Documents and
Settings\User\SendTo

11 CSIDL_STARTMENU\Documents and
Settings\User\Menu Start (scStartMenu)

16 CSIDL_DESKTOPDIRECTORY\Documents and
Settings\User\Desktop

19 CSIDL_NETHOOD\Documents and
Settings\User\NetHood

20 CSIDL_FONTS\Windows\Fonts
21 CSIDL_TEMPLATES\Documents and

Settings\User\Templates
26 CSIDL_APPDATA\Documents and

Settings\User\Application Data

27 CSIDL_PRINTHOOD\Documents and
Settings\User\Networkprinters

32 CSIDL_INTERNET_CACHE\Documents and
Settings\User\Local Settings\Temporary Internet
Files

33 CSIDL_COOKIES\Documents and
Settings\User\Cookies

34 CSIDL_HISTORY\Documents and
Settings\User\Local Settings\History

35 CSIDL_COMMON_APPDATA\Documents and
Settings\All Users\Application Data

36 CSIDL_WINDOWS\Windows (WinDir$)
37 CSIDL_SYSTEM\Windows\System32 (SysDir$)
38 CSIDL_PROGRAM_FILES\Program Files
39 CSIDL_MYPICTURES\Documents and

Settings\User\My Documents\My Pictures
43 CSIDL_PROGRAM_FILES_COMMON\Program

Files\Common Files
32768 CSIDL_FLAG_CREATE\Documents and

Settings\User\Desktop
47 CSIDL_COMMON_ADMINTOOLS\Documents and

Settings\All Users\Menu
Start\Programs\Accessories\Admin

48 CSIDL_ADMINTOOLS\Documents and
Settings\User\Menu Start\Programs\Admin

Example

Debug.Show
Trace App.scSpecialDir(CSIDL_DESKTOP)
Trace App.scSpecialDir(CSIDL_INTERNET)
Trace App.scSpecialDir(CSIDL_PROGRAMS)
Trace App.scSpecialDir(CSIDL_CONTROLS)
Trace App.scSpecialDir(CSIDL_PRINTERS)

Trace App.scSpecialDir(CSIDL_PERSONAL)
Trace App.scSpecialDir(CSIDL_FAVORITES)
Trace App.scSpecialDir(CSIDL_STARTUP)
Trace App.scSpecialDir(CSIDL_RECENT)
Trace App.scSpecialDir(CSIDL_SENDTO)
Trace App.scSpecialDir(CSIDL_BITBUCKET)
Trace App.scSpecialDir(CSIDL_STARTMENU)
Trace App.scSpecialDir(CSIDL_DESKTOPDIRECTORY)
Trace App.scSpecialDir(CSIDL_DRIVES)
Trace App.scSpecialDir(CSIDL_NETWORK)
Trace App.scSpecialDir(CSIDL_NETHOOD)
Trace App.scSpecialDir(CSIDL_FONTS)
Trace App.scSpecialDir(CSIDL_TEMPLATES)
Trace App.scSpecialDir(CSIDL_COMMON_STARTMENU)
Trace App.scSpecialDir(CSIDL_COMMON_PROGRAMS)
Trace App.scSpecialDir(CSIDL_COMMON_STARTUP)
Trace
App.scSpecialDir(CSIDL_COMMON_DESKTOPDIRECTORY)

Trace App.scSpecialDir(CSIDL_APPDATA)
Trace App.scSpecialDir(CSIDL_PRINTHOOD)
Trace App.scSpecialDir(CSIDL_ALTSTARTUP)
Trace App.scSpecialDir(CSIDL_COMMON_ALTSTARTUP)
Trace App.scSpecialDir(CSIDL_COMMON_FAVORITES)
Trace App.scSpecialDir(CSIDL_INTERNET_CACHE)
Trace App.scSpecialDir(CSIDL_COOKIES)
Trace App.scSpecialDir(CSIDL_HISTORY)
Debug.Print
Trace App.scPrograms // CSIDL_PROGRAMS
Trace App.scStartMenu // CSIDL_STARTMENU
Do
Sleep

Until Me Is Nothing

Sub CSIDL
Global Const CSIDL_DESKTOP =
0x0000

Global Const CSIDL_INTERNET =
0x0001

Global Const CSIDL_PROGRAMS =
0x0002

Global Const CSIDL_CONTROLS =
0x0003

Global Const CSIDL_PRINTERS =
0x0004

Global Const CSIDL_PERSONAL =
0x0005

Global Const CSIDL_FAVORITES =
0x0006

Global Const CSIDL_STARTUP =
0x0007

Global Const CSIDL_RECENT =
0x0008

Global Const CSIDL_SENDTO =
0x0009

Global Const CSIDL_BITBUCKET =
0x000a

Global Const CSIDL_STARTMENU =
0x000b

Global Const CSIDL_DESKTOPDIRECTORY =
0x0010

Global Const CSIDL_DRIVES =
0x0011

Global Const CSIDL_NETWORK =
0x0012

Global Const CSIDL_NETHOOD =
0x0013

Global Const CSIDL_FONTS =
0x0014

Global Const CSIDL_TEMPLATES =
0x0015

Global Const CSIDL_COMMON_STARTMENU =
0x0016

Global Const CSIDL_COMMON_PROGRAMS =
0X0017

Global Const CSIDL_COMMON_STARTUP =
0x0018

Global Const CSIDL_COMMON_DESKTOPDIRECTORY =
0x0019

Global Const CSIDL_APPDATA =
0x001a

Global Const CSIDL_PRINTHOOD =
0x001b

Global Const CSIDL_ALTSTARTUP =
0x001d // DBCS

Global Const CSIDL_COMMON_ALTSTARTUP =
0x001e // DBCS

Global Const CSIDL_COMMON_FAVORITES =
0x001f

Global Const CSIDL_INTERNET_CACHE =
0x0020

Global Const CSIDL_COOKIES =
0x0021

Global Const CSIDL_HISTORY =
0x0022

Remarks

scSpecialDir doesn't return the path for all CSIDL
constants. For those not supported, an API call must be
invoked.

Dim Path$ = Space(260)
If SHGetFolderPath(0, csidl%, 0, 0, Path$) = 0
Path$ = ZTrim(Path$)

EndIf
Declare Function SHGetFolderPath Lib "shell32.dll"
Alias "SHGetFolderPathA" (ByVal hwnd As Long,
ByVal csidl As Long, ByVal hToken As Long, ByVal
dwFlags As Long, ByVal pszPath As String) As Long

See Also

App

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

_Name$ and ComputerName,
UserName, WinCompany,
WinUser Properties (App)
Purpose

Returns the name of the client PC and the login name.

Syntax

$ = _Name$

$ = App.ComputerName
$ = App.UserName
$ = App.WinCompany
$ = App.WinUser

Description

Returns the name of the PC as it is known on a LAN.
Without a network installation _Name$ returns an empty
string. The App.ComputerName property is identical.

App.UserName returns the user that is currently logged on
to the system.

The App properties WinCompany and WinUser return the
company and user owning the Windows system.

Example

Print "The name of the PC is: "; _Name$

Print "The App name of the PC is: ";
App.ComputerName

Print "The App login name is: "; App.UserName
Print "The Company owning Windows is: ";
App.WinCompany

Print "The User owning Windows is: "; App.WinUser

See Also

App Object

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

FontCount, Fonts Properties
(Screen, Printer)
Purpose

Returns the number of fonts, and all names, available for
the current display device or active printer.

Syntax

% = object.FontCount

$ = object.Fonts(i%)

object:Screen, Printer Ocx

Description

The Fonts property works in conjunction with the
FontCount property, which returns the number of font
names available for the object. The parameter i% is an
integer from 0 to FontCount -1.

Example

Dim i%
Debug.Show
Debug.Print "PRINTER FONTS" : Debug
For i = 0 To Printer.FontCount - 1
Debug.Print Printer.Fonts(i)

Next
Debug : Debug.Print "SCREEN FONTS" : Debug
For i = 0 To Screen.FontCount - 1
Debug.Print Screen.Fonts(i)

Next

Remarks

Fonts available vary according to your system configuration,
display devices, and printing devices.

See Also

Printer, Screen

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

hWnd Property
Purpose

Returns a handle to a form or control.

Syntax

h = object.hWnd

object:Ocx Object
h:Handle

Description

The Microsoft Windows operating environment identifies
each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with
Windows API calls. Many Windows operating environment
functions require the hWnd of the active window as an
argument.

For the Screen object hWnd returns the handle of the
desktop window.

Example

OpenW 1
Print Win_1.hWnd

Remarks

Because the value of this property can change while a
program is running, never store the hWnd value in a

variable.

See Also

hDC, hDC2

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

WinVersion Function, WinVer
Property
Purpose

Return a string specifying the running Windows version.

Syntax

$ = WinVersion

$ = Screen.WinVer

Description

WinVersion and WinVer should both return the version of
the currently running windows. WinVersion doesn't work
correctly on XP.

Example

Debug.Show
Trace WinVersion
Trace Screen.WinVer

Remarks

-

See Also

Screen, WinVer Function

{Created by Sjouke Hamstra; Last updated: 13/08/2019 by James Gaite}

Screen_KeyPreview Event
Purpose

Intercepts keyboard events before they are dispatched to
the target form or control.

Syntax

Sub Screen_KeyPreview(hWnd%, uMsg%, wParam%,
lParam%, Cancel?)

Description

The event is invoked before GFA-BASIC 32 or Windows
handles the key press. The event provides a central place to
filter key events or to handle keyboard events in a custom
manner (to create an editor, or something similar).

You can use this event to create a keyboard-handling
procedure for an application. For example, when an
application uses function keys, you'll want to process the
keystrokes at the application level rather than writing code
for each form or control that might receive keystroke
events.

The event parameters:

hWnd% Windows handle of the message
uMsg% The window message number (WM_CHAR,

WM_DEADCHAR, WM_KEYDOWN, WM_KEYUP,
WM_SYSCHAR, WM_SYSDEADCHAR,
WM_SYSKEYDOWN or WM_SYSKEYUP).

wParam% The key code or ASCII value, dependant upon

the window message (see Key Codes and
ASCII Values).

lParam% Extended key information dependant upon the
window message.

Cancel? Return value. Set to True when the keyboard
message is to be ignored.

Example

Debug.Show
OpenW 1, 0, 0, 200, 200
Do
Sleep

Until Win_1 Is Nothing

Sub Screen_KeyPreview(hWnd%, Msg%, wParam%,
lParam%, Cancel?)
' Display keyboard message values.
' Don't use a MsgBox or the like.
Debug Hex(hWnd)` Hex(Msg)` Hex(wParam)`
Hex(lParam)

' Determine the (child) window the message is
for.

If hWnd = Win_1.hWnd
' Do your thing
If Msg = WM_KEYDOWN && wParam = VK_F1
Debug "Filtering F1 for Win_1"
Cancel? = True

EndIf
' or alternative:

Else If Form(hWnd) Is Win_1
Else
Local Object Obj
Set Obj = OCX(hWnd)
' Test for Nothing or use Try/Catch
If IsNothing(Obj) Then

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Exit Sub
EndIf
' Filter TAB for all TextBoxes (Example)
If TypeOf(Obj) Is TextBox && _
Msg = WM_KEYDOWN && wParam = VK_TAB
Cancel? = True

EndIf
' Test for a message for a child control
If Obj.Parent Is Win_1
Debug "ChildOcx of Win_1"

End If
EndIf

End Sub

If the control receiving the key press is a ComboBox, the
return value for Typename(OCX(hWnd%)) in this example
will return 'Nothing' as the handle refers to the edit box
within the ComboBox; to get the actual ComboBox, use
OCX(GetParent(hWnd%)) instead. However, if OCX()
produces a recognised type, GetParent() can invoke a Type
Error so it is advisable to use the obj.Parent property in
that instance.

Remarks

Don't use a MsgBox, Alert, Input or some other dialog
box inside the Screen_KeyPreview event sub. All keyboard
events arrive in this sub, so that a recursive call of
Screen_KeyPreview is more than likely.

Also, don't respond to messages in this event sub. The only
thing that is allowed is to cancel a keyboard message by
setting Cancel? to True. SetFocus is allowed, but only with
one of the corresponding messages, for instance with
WM_KEYDOWN, but not with WM_KEYUP, or the other way
round.

When the Shift, Control, Alt and/or Alt Gr keys are pressed,
a new event is created; however, any charcter keys entered
while they are pressed do not always carry details of the
state of these keys. It is possible to set up Static booleans
to track the shift key state although it is more reliable to
query the Screen.ShiftKeys property when necessary.

See Also

Screen, KeyPress, KeyUp, KeyDown

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Number, Description,
Exception Properties
Purpose

Return or set a numeric value and a short description of an
error.

Syntax

Err.Number [= integer]

Err.Description [= string]

Err.Exception

Description

In case of a runtime error, GFA-BASIC 32 returns the value
of the error in the Number property. The Description
property returns a short description of the error. The
numbers 0 to 141 are reserved for GFA-BASIC 32 errors.
Other numbers can be used to generate user-defined errors.
A list of error numbers and description are found here.

Number is the Err object's default property. Err is identical
to Err.Number.

When Err = 46 an OLE object is the source of the error and
you must inspect the HResult property for more details.

When Err is between 93 and 115, a system hardware or
system software problem is responsible for the error. These
events normally terminate program execution. Such events

are called exceptions, and the mechanism that deals with
exceptions is called structured exception handling.
Normally, GFA-BASIC 32 reports these runtime errors with a
message box and then terminates the program. By using
structured exception handling you can handle both
hardware and software exceptions. Therefore, your code will
handle hardware and software exceptions identically. GFA-
BASIC 32 supports structured exception handling with the
Try/Catch/EndCatch statements. GFA-BASIC 32 translates
the exception code into one of its own error numbers (93 to
115), but you can use the Exception property to retrieve a
code that identifies the reason for the exception. For
instance, an "Object is Nothing" error might be the result of
an access violation, in which case Exception = $c0000005.

Inspecting and handling an error condition is only possible
when the error is trapped. The preferred way in GFA-BASIC
32 is by using Try/Catch/EndCatch. However for
compatibility reasons the VB structure On Error Goto can
be used as well.

Example

Debug.Show
Local a
Try
Monitor ' a breakpoint

Catch
Debug Err.Number, Err$
Debug Hex(Err.Exception)

EndCatch
Try
a = (1 \ 0) ' integer division

Catch
Debug Err.Number, Err$
Debug Hex(Err.Exception)

EndCatch
Try
a = (1 / 0) ' floating point division

Catch
Debug Err.Number, Err$
Debug Hex(Err.Exception)

EndCatch

Try the all three error conditions by commenting the
different lines. They are all the result of an exception.

See Also

Err Object, Err$, Try

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

HelpContext, HelpFile,
Source Properties (Err)
Purpose

Return or set the help properties for the Err object.

Syntax

Err.HelpContext [= long]

Err.HelpFile [= string]

Err.Source [= string]

Description

The HelpContext, HelpFile, and Source properties are set
in conjunction with the Raise method. The Raise method
allows you to create and generate user-defined errors for
your application. When the application error is described in
a help file, the context ID and the name of the file can be
specified in these properties or as parameters in the Raise
method.

If you are calling an older WinHlp32 (.hlp) help file, then the
MsgBox statement is particularly useful to present the error
information to the end user and if you a calling a newer
HTMLHelp file type, a different message box structure
detailed here can perform the same task. Alternatively, you
can create your own display or message box using the
Dialog object.

The Source property returns or sets a string specifying the
name of the object or application that originally generated
the error. For GFA-BASIC 32 runtime errors it is "GFA-BASIC
32", for OLE Automation errors it is the COM program
name. When generating an error from code, Source is your
application’s program name.

Example

You can use the following code to launch a message box:

Try
Err.Raise 1, "Quick Example", "This is a
manufactured error", "HelpFilepath", 25

Catch
~MsgBox(Err.Description & #13#10#13#10 & "Help
File: " & Err.HelpFile & #13#10 & "Help
Context:" & Err.HelpContext, MB_OK, Err.Source)

EndCatch

Remarks

The Source property specifies a string expression
representing the object that generated the error; the
expression is usually the object's class name, program
name, or programmatic ID. Use Source to provide
information when your code is unable to handle an error
generated in an accessed object. For example, if you access
Microsoft Excel and it generates a Division by zero error,
Microsoft Excel sets Err.Number to its error code for that
error and sets Source to Excel.Application.

See Also

Err object, Raise, Err$

{Created by Sjouke Hamstra; Last updated: 17/07/2015 by James Gaite}

LastDLLError Property
Purpose

Returns the last error code of a Win32 function.

Syntax

% = Err.LastDLLError

Description

The LastDLLError property invokes the GetLastError API
function to obtain the calling thread's last-error code value.
Note that the LastDLLError is read-only.

When an error occurs, most Win32 functions return an error
code, usually False, Null, 0xFFFFFFFF, or -1. Many functions
also set an internal error code called the last-error code.
When a function succeeds, the last-error code is not reset.
The error code is maintained separately for each running
thread; an error in one thread does not overwrite the last-
error code in another thread. An application can retrieve the
last-error code by using the GetLastError function; the error
code may tell more about what actually occurred to make
the function fail.

You should call the GetLastError function immediately when
a function's return value indicates that such a call will return
useful data. That is because some functions call
SetLastError(0) when they succeed, wiping out the error
code set by the most recently failed function.

Whenever the failure code is returned, the GFA-BASIC 32
application should immediately check the LastDLLError
property. No exception is raised when the LastDLLError
property is set.

To obtain an error string for system error codes, use the
SysErr$ function and pas the value returned by
LastDLLError.

Example

' The following lines behave identically
Print SysErr(Err.LastDllError)
Print SysErr(GetLastError())

Remarks

Some (older) VB documentation wrongly suggest that
LastDLLError contains the return value of the last invoked
Win32 API function. This is untrue both in VB and GFA-
BASIC 32.

See Also

Err Object, SysErr

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

HResult Property (Err)
Purpose

Return value of COM methods and properties.

Syntax

Err.HResult

Description

An HRESULT is defined in COM as a result handle that can
be used for determining the success of failure of a function.
However, rather than a handle the HRESULT returns a 32-
bits error value. The HRESULT value of properties and
methods is examined by GFA-BASIC 32 and in case of
failure GFA-BASIC 32 generates an error. GFA-BASIC 32
stores the COM (automation) error in the HResult property
of the Err object.

The errors are mostly between $80040000 and $8004FFFF,
but not always. Even for automation objects that don't
confirm to MS convention (MS Word), GFA-BASIC 32 sets
the high word to $8004 to provide a way to identify object
errors and normal GFA-BASIC 32 errors. In addition, in case
of an OLE-error, the GFA-BASIC 32 documentation says,
that the Number property is set to 46 (= Error with
object). This might be true (?) for errors with late-binding
objects (Object data type), but certainly not with the GFA-
BASIC 32 Ocx objects, as we will see.

When an error trap (Try/Catch or On Error GoTo) wants
to differentiate between the a BASIC error and a COM error,

the best way to go is by checking for a non-null value in
HResult.

If Err.HResult Then OLE-error Else GFA-BASIC 32 - error

The HRESULT value can be used to determine the cause of
the COM error. The lower word (16-bits) describes what
actually took place, error or otherwise. Bits 15 to 30
indicate to which group of status codes the HRESULT value
belongs, the so called facility codes. Actually, the facility
codes range from 0 to 10 and can be obtained by reading
the second byte using GetByte1(). See Remarks for a list
of facility codes.

Example

The following example invokes the Node method
CreateDragImage, which isn't implemented so far. The
returned HRESULT value is examined by GFA-BASIC 32 and
an error is generated and trapped. Both, HResult and
Number, contain the value E_NOTIMPL ($80004001). The
Description property returns a user-readable message for
the HRESULT, localized to the user's language as
appropriate.

Print
Dim node As Node, p As Picture
Ocx TreeView tv = "", 250, 10, 230, 200
tv.Add , , , "Painters"
Set node = tv.Add(1, tvwChild, "David" , "David")
' invoke a non-implemented method
Try
Set p = node.CreateDragImage

Catch
Debug.Show
Debug Hex(Err.HResult)
Debug Hex(Err), Err.Description

Debug "Facility code: ";GetByte1(Err.HResult)
EndCatch

The Try statement resets the Err object to default values (0
and "").

Note - Actually, the missing CreateDragImage method
doesn't generate an error itself like a BASIC error or
exception is generated. The method of the Node object is
available and the program actually gets inside the
CreateDragImage function. However, the COM method
immediately returns with E_NOTIMPL, which becomes the
HRESULT return value for the method. It is up to the client
of CreateDragImage how to handle the return value. By
default, GFA-BASIC 32 generates an error. After each call of
a property or method GFA-BASIC 32 inserts code to check
the return value (HRESULT). If it is not S_OK (0) the Err
object is filled and the program comes to a halt. This
behavior can be disabled by putting $ObjNoErr into the
code.

Remarks

The following table lists the values of common HRESULT
values. (These constants are not implemented in GFA-
BASIC 32.)

Name Value Description
S_OK 0x00000000 Operation successful
E_UNEXPECTED 0x8000FFFF Unexpected failure
E_NOTIMPL 0x80004001 Not implemented
E_OUTOFMEMORY 0x8007000E Failed to allocate

necessary memory
E_INVALIDARG 0x80070057 One or more

arguments are invalid

E_NOINTERFACE 0x80004002 No such interface
supported

E_POINTER 0x80004003 Invalid pointer
E_HANDLE 0x80070006 Invalid handle
E_ABORT 0x80004004 Operation aborted
E_FAIL 0x80004005 Unspecified failure
E_ACCESSDENIED 0x80070005 General access denied

error
E_NOTIMPL 0x80000001 Not implemented

The following table describes the various facility fields:

FACILITY_NULL (0) - For broadly applicable common status
codes such as S_OK.

FACILITY_RPC (1) - For status codes returned from remote
procedure calls.

FACILITY_DISPATCH (2) - For late-binding IDispatch
interface errors.

FACILITY_STORAGE (3) - For status codes returned from
IStorage or IStream method calls relating to structured
storage. Status codes whose code (lower 16 bits) value is in
the range of DOS error codes (that is, less than 256) have
the same meaning as the corresponding DOS error.

FACILITY_ITF (4) - Most commonly specified code, returned
from interface methods, value is defined by the interface.

FACILITY_WIN32 (7) - Used to provide a means of handling
error codes from functions in the Win32 API as an HRESULT.

FACILITY_WINDOWS (8) - Used for additional error codes
from Microsoft-defined interfaces.

FACILITY_CONTROL (10) - Result related to OLE controls.

Note that a number of HRESULT codes are related to Win32
API functions, because the facility code is 7.

If GetByte1(Err.HResult) = 10 ' an Ocx related
error

For more information on COM see the MS SDK.

See Also

Err Object

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

CancelError Property
(CommDlg)
Purpose

Returns or sets a value indicating whether an error is
generated when the user chooses the Cancel button.

Syntax

CommDlg.CancelError [= Bool]

Description

To prevent errors from occurring in your application, such as
specifying a nonexistent color in the Color dialog box, you
can use the CancelError property. This property lets you
know if the user clicked the Cancel button on the dialog
box. Each of the six dialog boxes uses the CancelError
property. The CancelError property lets you set a trap
(Try/Catch) for the Cancel button. When this property is set
to True, GFA-BASIC 32 generates an error (CDERR_CANCEL
or 32755) that you can trap in your program. If
CancelError is set to False, no error occurs-the dialog box
simply closes and returns a NULL value.

Example

Global Enum CC_RGBINIT =1, CC_FULLOPEN
OpenW Hidden 1
Ocx CommDlg cd
cd.CancelError = True
cd.Flags = CC_RGBINIT Or CC_FULLOPEN

Try
cd.ShowColor

Catch
Message "Cancel clicked"

EndCatch
CloseW 1

See Also

CommDlg

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

ShowColor Method, Color,
Colors
Purpose

Displays the CommDlg control's Color dialog box.

Syntax

CommDlg.ShowColor

CommDlg.Color [= rgb%]
CommDlg.Colors(0..15) [= rgb%]

Description

The Color property returns or sets the selected color.

If the cdcRgbInit flag is set, the value set with Color
specifies the color initially selected when the dialog box is
created. If the specified color value is not among the
available colors, the system selects the nearest solid color
available. If Color is zero or cdcRgbInit is not set, the
initially selected color is black. If the user clicks the OK
button, Color specifies the user's color selection.

The Colors(0..15) property is an array of integers of 16
RGB color values that contain red, green, blue (RGB) values
for the custom color boxes in the dialog box.

The Flags property can be used to set the options for a
Color dialog box.

cdcFullOpen (2) Entire dialog box is displayed,

including the Define Custom
Colors section.

cdcShowHelp (8) Causes the dialog box to display a
Help button.

cdcPreventFullOpen
(4)

Disables the Define Custom
Colors command button and
prevents the user from defining
custom colors.

cdcRgbInit (1) Sets the initial color value for the
dialog box.

cdcSolidColor (128) Causes the dialog box to display
only solid colors in the set of
basic colors.

cdcAnyColor (256) Causes the dialog box to display
all available colors in the set of
basic colors.

Example

Print
Ocx CommDlg cd
Dim i As Int
For i = 0 To 15
cd.Colors(i) = QBColor(i) //custom colors

Next
cd.Color = colBtnFace
cd.Flags = cdcRgbInit | cdcShowHelp
cd.CancelError = True
cd.ShowColor

Sub cd_OnHelp
Me.Caption = "Help Requested"

EndSub

EndSub

See Also

CommDlg, Dlg Color

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ShowOpen, ShowSave
Methods, FileName, IniDir,
FileTitle, DefExt, Filter,
FilterIndex, Title Properties
Purpose

Display the CommDlg control's Open and Save As dialog
box.

Syntax

CommDlg.ShowOpen
CommDlg.ShowSave

CommDlg.FileName [= string]
CommDlg.IniDir [= string]
CommDlg.FileTitle [= string]
CommDlg.DefExt [= string]
CommDlg.Filter [= string]
CommDlg.FilterIndex [= integer]
CommDlg.Title [= string]

Description

The FileName property returns or sets the path and
filename of a selected file. In the CommDlg object, you can
set the FileName property before opening a dialog box to
set an initial filename.

The IniDir property is used to specify the initial directory
for an Open or Save As dialog. If this property isn't

specified, the current directory is used.

FileTitle returns or sets the name (without the path) of the
file to open or save.

DefExt returns or sets the default filename extension for
the dialog box, such as .txt or .doc. When a file with no
extension is saved, the extension specified by this property
is automatically appended to the filename.

Filter specifies the type of files that are displayed in the
dialog box's file list box. For example, selecting the filter
*.txt displays all text files. Use the pipe (|) symbol (ASCII
124) to separate the description and filter values. Don't
include spaces before or after the pipe symbol, because
these spaces will be displayed with the description and filter
values. The following code shows an example of a filter that
enables the user to select text files or graphic files that
include bitmaps and icons:

Text (*.txt)|*.txt|Pictures (*.bmp;*.ico)|*.bmp;*.ico

When you specify more than one filter for an Open or Save
As dialog box, use the FilterIndex property to determine
which filter is displayed as the default. The index for the
first defined filter is 1.

The Title property returns or sets the string displayed in
the title bar of the dialog box. The default title for an Open
dialog box is Open; the default title for a Save As dialog box
is Save As.

The Flags property for ShowOpen and ShowSave can be:

cdoReadOnly $1 Causes the Read Only check
box to be initially checked
when the dialog box is

created. This flag also
indicates the state of the
Read Only check box when
the dialog box is closed.

cdoOverwritePrompt
$2

Causes the Save As dialog
box to generate a message
box if the selected file
already exists. The user must
confirm whether to overwrite
the file.

cdoHideReadOnly $4 Hides the Read Only check
box.

cdoNoChangeDir $8 Forces the dialog box to set
the current directory to what
it was when the dialog box
was opened.

cdoShowHelp $10 Displays the Help button.
cdoNoValidate $100 Allows invalid characters in

the returned Filename.
cdoAllowMultiselect
&H200

Allows multiple selections.
The user can select more
than one file at run time by
pressing the SHIFT key and
using the UP ARROW and
DOWN ARROW keys to select
the desired files. When this is
done, the FileName
property returns a string
containing the names of all
selected files. The names in
the string are delimited by
spaces.

cdoExtensionDifferent
$400

Indicates that the extension
is different from DefExt

property.
cdoPathMustExist
$800

Only valid paths. If the user
enters an invalid path, a
warning message is
displayed.

cdoFileMustExist
$1000

Allows only names of existing
files. If the user enters an
invalid filename, a warning is
displayed. This flag
automatically sets the
cdoPathMustExist flag.

cdoCreatePrompt
$2000

Prompts the user to create a
file that doesn't currently
exist. This flag automatically
sets the cdoPathMustExist
and cdoFileMustExist flags.

cdoNoReadOnlyReturn
$8000

The returned file won't have
the Read Only attribute set
and won't be in a write-
protected directory.

cdoNoTestFileCreate
$10000

Specifies that the file is not
created before the dialog box
is closed. This flag should be
specified if the application
saves the file on a create-
non-modify network share.
When an application specifies
this flag, the library does not
check for write protection, a
full disk, an open drive door,
or network protection.
Applications using this flag
must perform file operations
carefully, because a file

cannot be reopened once it is
closed.

cdoNoNetworkButton
$20000

Hides and disables the
Network button.

cdoNoLongNames
$40000

No long file names.

cdoExplorer $80000 Use the Explorer-like Open A
File dialog box template.
Works with Windows 95 and
Windows NT 4.0.

cdoNorefLinks
$100000

Do not dereference shell links
(also known as shortcuts).
By default, choosing a shell
link causes it to be
dereferenced by the shell.

Example

Ocx CommDlg cd
cd.FileName = "test.file"
cd.FileTitle = ""
cd.DefExt = "FILE"
cd.Filter = "Files (*.FILE)|*.FILE|All Files
(*)|*"

cd.Title = "Select a File"
cd.Flags = cdoHideReadOnly + cdoFileMustExist
cd.ShowOpen
Message cd.FileName

See Also

CommDlg, Dlg Open, Dlg Save

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ShowPrint Method, Copies,
FromPage, ToPage, Min, Max,
hDC, DevNames
Purpose

Creates a Printer dialog box that enables the user to
specify the attributes of a printed page. These attributes
include the paper size and source, the page orientation
(portrait or landscape), and the width of the page margins.

Syntax

CommDlg.ShowPrint

CommDlg.Copies [= long] CommDlg.FromPage [= long
]
CommDlg.ToPage [= long]
CommDlg.Min [= long]
CommDlg.Max [= long]
CommDlg.hDC [= long]

CommDlg.DevNames [= string]

Description

The ShowPrint common dialog box allows the user to
choose any printer and change the various settings. The
controls of the dialog box are initialized using the associated
CommDlg properties.

The Copies property specifies the initial number of copies
to print.

The FromPage property specifies the page to start printing
and the ToPage property the page to stop printing.

The Min and Max properties return or set the minimum and
maximum allowed values for the print range.

The hDC property returns a device context for the printer
selected in the Print dialog box when the cdpReturnDC flag
is set or an information context when the cdpReturnIC flag
is set.

The DevNames property returns the selected printer as a
string with, comma delimited, Driver, Device, and Output
Port. For example "WINSPOOL,HP Laserjet 4,LPT1:".

The Flags property values for ShowPrint indicate what
services are requested in the dialog box.

Flags Meaning
cdpAllPages $0 The default flag that indicates

that the All radio button is
initially selected.

cdpSelection $1 The Selection radio button is
selected.

cdpPageNums $2 The Pages radio button is
selected.

cdpNoSelection $4 Disables the Selection radio
button.

cdpNoPageNums $8 Disables the Pages radio
button and the associated edit
controls.

cdpCollate $10 The Collate check box is
checked.

cdpPrintToFile $20 The Print to File check box is
selected.

cdpPrintSetup $40 Display the Print Setup
dialog box rather than the
Print dialog box.

cdpNoWarning $80 Prevents the system from
displaying a warning message
when there is no default
printer.

cdpReturnDC $100 Returns a device context
matching the selections the
user made in the dialog box.
The device context is returned
in hDC.

cdpReturnIC $200 Returns an information
context matching the
selections the user made in
the dialog box. The device
context is returned in hDC.

cdpReturnDefault $400 Returns the standard printer
in DevNames without
showing the dialog box.

cdpShowHelp $800 Displays the Help button
cdpUseDevmodeCopies
$40000

Indicates whether your
application supports multiple
copies and collation.

cdpDisablePrintToFile
$80000

Disables the Print to File
check box.

cdpHidePrintToFile
$100000

Hides the Print to File check
box.

cdpNoNetworkButton
$2000000

Hides and disables the
Network button.

This dialog box does not send data to the printer but lets
the user specify how they want data printed. The following

properties contain information about the user's selection:
Copies, FromPage, and ToPage.

The printer device settings selected using the dialog box are
made active when you make that printer the default printer
for the application. This is accomplished by setting the
Printer object to the CommDlg object.

Example

OpenW 1
Ocx CommDlg cd
cd.Flags = 0
cd.ShowPrint' change printer settings
' the user wants:
Trace cd.Copies
Trace cd.FromPage
Trace cd.ToPage
Try
Set Printer = cd ' initialize the Printer object
Trace Printer.hDC
Trace Printer.Width
Trace Printer.DeviceName
Trace Printer.Orientation
Trace Printer.dmPaperSize

Catch
// Printer not set

EndCatch
CloseW 1
Debug.Show

Remarks

The device mode settings for the printer are stored in the
DEVMODE structure, which is a shared object between the
ShowPrint and ShowPageSetup dialog box. The Printer
object needs to be initialized with the DEVMODE structure

before it can be changed using Printer properties. By
default, the Printer object is initialized with the device
mode settings from the Windows standard printer. When
you change the DEVMODE structure through the use of the
ShowPrint (or ShowPageSetup) dialog box, the Printer
object needs to be re-initialized. This is accomplished by
assigning the CommDlg object to the Printer object using
Set.

Known Issues

In some builds of GB32, the 'Pages..to..from' section is
disabled regardless of whether flag cdpPageNums is set or
not; if you require this function, use Dlg Print instead.

See Also

CommDlg, ShowPageSetup, Dlg Print, dm-Properties

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Enabled Property
Purpose

Returns or sets a value that determines whether a form or
control can respond to user-generated events.

Syntax

Object.Enabled [= Boolean]

Object:Ocx object
Boolean:True or False

Description

The Enabled property allows forms and controls to be
enabled or disabled at run time. For example, you can
disable objects that don't apply to the current state of the
application. You can also disable a control used purely for
display purposes, such as a text box that provides read-only
information.

The default setting is True, which allows object to respond
to events. Setting it to False prevents it from responding to
events.

Disabling a Timer control by setting Enabled to False
cancels the countdown set up by the control's Interval
property.

For a MenuItem object, Enabled is normally read/write at
run time.

Example

Form frm1
Ocx TextBox txt1 = "", 10, 10, 100, 14 :
.BorderStyle = 1

Ocx Command cmd1 = "Save", 20, 35, 80, 22 :
cmd1.Enabled = False

txt1.SetFocus
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click
frm1.Close

EndSub

Sub txt1_Change ()
If txt1.Text = "" Then ' See if text box is
empty.
cmd1.Enabled = False ' Disable button.

Else
cmd1.Enabled = True ' Enable button.

End If
End Sub

See Also

Form, Ocx

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Flags Property (CommDlg)
Purpose

Returns or sets the options for a common dialog box.

Syntax

CommDlg.Flags [= long]

Description

The Flags property specifies the options for a common
dialog box. The Flags property is shared by all common
dialog boxes. Each dialog box has its own set of predefined
flags. These flag values are listed in the Show methods of
the CommDlg object.

ShowOpen Show Open Dialog Box
ShowSave Show Save As Dialog Box
ShowColor Show Color Dialog Box
ShowFont Show Font Dialog Box
ShowPageSetup Show Page Setup Dialog Box
ShowPrint Show Print or Print Options Dialog Box
ShowHelp Invokes the Windows Help Engine for

.hlp files only; see Accessing HTMLHelp
Files for how to access .chm help files.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ShowFont Method,
FontName, FontItalic,
FontBold, FontUnderline,
FontStrikethru, FontSize,
Font, PointSize, FontStyle,
Min, Max Properties
Purpose

Displays the CommDlg control's Font dialog box.

Syntax

CommDlg.ShowFont

CommDlg.FontName [= string]
CommDlg.FontItalic [= Bool]
CommDlg.FontBold [= Bool]
CommDlg.FontUnderline [= Bool]
CommDlg.FontStrikethru [= Bool]
CommDlg.FontSize [= single]
CommDlg.Font [= Font]

CommDlg.PointSize [= integer]
CommDlg.FontStyle [= string]
CommDlg.Min [= integer]
CommDlg.Max [= integer]

Description

Before you use the ShowFont method, you must set the
Flags property of the CommDlg object to one of three
constants or values: cdfBoth (3), cdfPrinterFonts (2), or
cdfScreenFonts (1).

The Flags property returns or sets the options for the Font
dialog box and can have one or more of the following
values.

cdfAnsiOnly $400 - Only fonts that use the Windows
character set (no symbol font).

cdfApply $200 - Enables the Apply button on the dialog
box.

cdfBoth $3 - Both printer and screen fonts. The hDC
property identifies the device context associated with the
printer.

cdfEffects $100 - Enables strikethrough, underline, and
color effects.

cdfFixedPitch $400 - 0Only fixed-pitch fonts.

cdfForceFontExists $10000 - An error message box is
displayed if the user attempts to select a font or style that
doesn't exist.

cdfInitFont $40 - Use GFA-BASIC 32 internal LOGFONT
structure to initialize the dialog box controls.

cdfShowHelp $4 - Causes the dialog box to display a Help
button.

cdfLimitSize $2000 - Only font with sizes within the range
specified by the Min and Max properties.

cdfNoOEMFonts $800 - Don't allow OEM font selections

cdfNoScriptSel $800000 - Disables the Script combo box
(only used to initialize the dialog box).

cdfNoFaceSel $80000 - No font name selected.

cdfNoSimulations $1000 - Don't allow graphic device
interface (GDI) font simulations.

cdfNoSizeSel $200000 - No font size selected.

cdfNoStyleSel $100000 - No style was selected.

cdfNoVector $800 - Don't allow vector-font selections.

cdfNoVertFonts $1000000 - Don't allow vertical fonts
selections.

cdfPrinterFonts $2 - Only the fonts supported by the
printer, specified by the hDC property.

cdfScalableOnly $20000 - Only fonts that can be scaled.

cdfScriptsOnly $400 - Allow selection of fonts for all non-
OEM and Symbol character sets, as well as the ANSI
character set. This supersedes the cdfAnsiOnly value.

cdfScreenFonts $1 - Only the screen fonts supported by
the system.

cdfTTOnly $40000 - Only TrueType fonts.

cdfSelectScript $400000 - Only fonts with the character
set identified in the lfCharSet member of the internal
LOGFONT structure are displayed.

cdfWysiwyg $8000 - Only fonts that are available on both
the printer and on screen. If this flag is set, the cdfBoth
and cdfScalableOnly flags should also be set.

cdfUseStyle $80 - Use the data in the FontStyle property
to initialize the font style combo box. When the dialog is
closed the combobox data is copied to FontStyle.

In general, you should change FontName before setting
size and style attributes with the FontSize, FontBold,
FontItalic, FontStrikethru, and FontUnderline
properties. For detailed information: See Also.

The FontStyle [= string] property contains the style data
("Bold", "Normal") for the Style combobox of the dialog.
The string is a regional setting name.

The PointSize [= integer] property specifies the size of
the selected font, in units of 1/10 of a point.

The Min property specifies the minimum point size a user
can select. The Max property specifies the maximum point
size a user can select. ShowFont recognizes this member
only if the cdfLimitSize flag is specified.

Example

Print
Ocx CommDlg cd
cd.Flags = cdfScreenFonts | cdfUseStyle |
cdfEffects

cd.CancelError = True
Try
cd.ShowFont
ForeColor = cd.Color
Set Me.Font = cd.Font // select font
Print "1234", Me.FontName

Catch
Print "Common dialog box canceled!"

EndCatch
Do
Sleep

Until Me Is Nothing

See Also

CommDlg, Dlg Font, Font, FontSize, FontBold, FontItalic,
FontStrikethru, FontUnderline

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ShowHelp Method, HelpFile,
HelpContext, HelpKey,
HelpCommand Property
Purpose

The CommDlg method ShowHelp invokes WinHelp and
displays the .hlp Help file you specify; for .chm Help files,
see Accessing HTMLHelp files.

Syntax

CommDlg.ShowHelp

CommDlg_HelpFile [= string]
CommDlg_HelpContext [= integer]
CommDlg_HelpKey [= string]
CommDlg_HelpCommand [= integer]

Description

The ShowHelp method calls Winhlp32.exe for the help file
specified in the HelpFile property and in the mode specified
HelpCommand.

The HelpFile property specifies the path and filename of
the Help file to display with ShowHelp.

HelpContext returns or sets the context ID of the
requested Help topic.

HelpKey returns or sets the keyword that identifies the
requested Help topic.

The HelpCommand property returns or sets the type of
online Help requested. This value should be one of the
following constants.

cdhCommand
(258)

Executes a Help macro.

cdhContents (3) Displays the Help contents topic as
defined by the Contents option in
the [OPTION] section of the .hpj
file. See Remarks below for
information on Help files created
with Microsoft Help Workshop
4.0X.

cdhContext (1) Displays Help for a particular
context. When using this setting,
you must also specify a context
using the HelpContext property.

CdhContextPopup
(8)

Displays in a pop-up window a
particular Help topic identified by a
context number defined in the
[MAP] section of the .hpj file.

cdhFinder (11) Displays the Help Topics dialog
box.

cdhForceFile (9) Ensures WinHelp displays the
correct Help file. If the correct
Help file is currently displayed, no
action occurs. If the incorrect Help
file is displayed, WinHelp opens
the correct file.

cdhHelpOnHelp
(4)

Displays Help for using the Help
application itself.

cdhIndex (3) Displays the index of the specified
Help file. An application should use

this value only for a Help file with
a single index.

cdhKey (257) Displays Help for a particular
keyword. When using this setting,
you must also specify a keyword
using the HelpKey property.

cdhMultiKey (513) Displays the topic specified by a
keyword in an alternative keyword
table. HelpContext must contain
the ASCII code of a single
character that identifies the
keyword table to search and
HelpKey should specify the text
string that specifies the keyword
to locate in the keyword table.

cdhPartialKey
(261)

Displays the topic found in the
keyword list that matches the
keyword passed in the HelpKey
property if there is one exact
match.

cdhQuit (2) Notifies the Help application that
the specified Help file is no longer
in use.

cdhSetContents
(5)

Determines which contents topic is
displayed when a user presses the
F1 key.

cdhPopupPos
(13)

Sets the context specified by the
HelpContext property as the
current index for the Help file
specified by the HelpFile
property. This index remains
current until the user accesses a
different Help file. Use this value
only for Help files with more than
one index.

Example

Print
Local d$ = Left(ProgName$, RInStr(ProgName$, "\"))
& "GfaWin32.hlp"

Ocx CommDlg cd
cd.HelpFile = d$
cd.HelpKey = "Form"
cd.HelpCommand = cdhKey
cd.ShowHelp
CloseW 1

See Also

CommDlg

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Left, Top Properties
Purpose

Return or set the position of an Ocx object.

Syntax

object.Left [= value]

object.Top [= value]

object:Ocx objects
value:Single exp

Description

The Left and Top properties set the position of an OCX
control or Form. The value is specified in pixels. For OCX
controls, the units can be adjusted to the current scaling of
the parent Form. The Form property OcxScale = True sets
the coordinate scheme for the Ocx controls to the
ScaleMode of the Form. By default the ScaleMode =
basPixels (in VB mostly twips).

Example

Form Frm
Print "Click to centre the form"
Do
Sleep

Until Me Is Nothing

Sub Frm_Click ()

With Frm
.Width = Screen.Width * .75 ' Set
width of form.

.Height = Screen.Height * .75 ' Set
height of form.

.Left = (Screen.Width - .Width) / 2 ' Center
form horizontally.

.Top = (Screen.Height - .Height) / 2 ' Center
form vertically.

End With
Cls
Print "Now close the form"

End Sub

This example sets the size of a form to 75 percent of screen
size and centers the form when it is loaded.

See Also

Form, Left, Top, Move, OcxScale, ScaleMode

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

Parent Property
Purpose

Returns the parent Form object for the given OCX.

Syntax

Set f = object.Parent

object:Ocx Object
f:Form Object

Description

Parent is used to get the parent window for an Ocx. Use
the Parent property to access the properties, methods, or
controls of an object's parent.

Example

OpenW 1
Ocx Command cmd1 = "Move Parent", 10, 10, 100, 40
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click
MoveParent(cmd1)

EndSub

Sub MoveParent(o As Object)
' Move Parent to a random position
If TypeOf(o.parent) Is Form

o.Parent.Move PixelsToTwipX(Random(300)),
PixelsToTwipY(Random(200))

EndIf
EndSub

Remarks

The Parent property is useful in an application in which you
pass objects as arguments. For example, you could pass a
control variable to a general procedure, and use the Parent
property to access its parent form.

There is no relationship between the Parent property and
the MdiChild property. There is, however, a parent-child
relationship between an MdiParent object and any Form
object that has its MdiChild property set to True.

See Also

Form, MdiParent

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

ShowPageSetup Method,
pgBottom, pgLeft, pgRight,
pgTop, pgMinBottom,
pgMinLeft, pgMinRight,
pgMinTop, pgScale
Purpose

Creates a Page Setup dialog box that enables the user to
specify the attributes of a printed page. These attributes
include the paper size and source, the page orientation
(portrait or landscape), and the width of the page margins.

Syntax

CommDlg.ShowPageSetup

CommDlg.pgBottom [= long]
CommDlg.pgLeft [= long]
CommDlg.pgRight [= long]
CommDlg.pgTop [= long]
CommDlg.pgMinBottom [= long]
CommDlg.pgMinLeft [= long]
CommDlg.pgMinRight [= long]
CommDlg.pgMinTop [= long]
CommDlg.pgScale [= long]

CommDlg.DevNames [= string]

Description

The ShowPageSetup method enables to set printer page
attributes, including the paper size and source, the page
orientation (portrait or landscape), and the width of the
page margins.

The pgBottom, pgLeft, pgRight, and pgTop properties
return or set the widths of the left, top, right, and bottom
margins for your document. The Flags property must
include the cdpsMargins. The margin units are determined
by pgScale. pgScale = 1 indicates that hundredths of
millimeters (1/100 mm) are the unit of measurement for
margins and paper size. When pgScale = 2 thousandths of
inches (1/1000 inch) is the measurement unit. Setting the
property implicitly modifies Flags with either $4 or $8.

The pgMinBottom, pgMinLeft, pgMinRight, and
pgMinTop properties set the minimum allowable values for
the left, top, right, and bottom margin input boxes of the
dialog box. Input below these values is reset to the
minimum settings specified. The Flags property must
include the cdpsMinMargins.

The DevNames property returns the selected printer as a
string with, comma delimited, Driver, Device, and Output
Port. For example "WINSPOOL,HP Laserjet 4,LPT1:".

The Flags property values for ShowPageSetup are:

Flags Meaning
cdpsMinMargins $1 The pgMinBottom,

pgMinLeft, pgMinRight,
and pgMinTop properties
are used to initialize the
dialog box.

cdpsMargins $2 The pgBottom, pgLeft,
pgRight, and pgTop

properties are used to
initialize the dialog box.

$4 Hundredths of millimeters
are the unit of
measurement for margins
and paper size (set by
pgScale = 1).

$8 Thousandths of inches are
the unit of measurement for
margins and paper size (set
by pgScale = 2).

cdpsDisableMargins $10 Disables the margin
controls, preventing the
user from setting the
margins.

cdpsDisablePrinter $20 Disables the Printer button,
preventing the user from
invoking a dialog box that
contains additional printer
setup information.

cdpsNoWarning $80 Prevents the system from
displaying a warning
message when there is no
default printer.

cdpsDisableOrientation
$100

Disables the orientation
controls, preventing the
user from setting the page
orientation.

cdpsReturnDefault $400 Returns the standard printer
in DevNames without
showing the dialog box.

cdpsDisablePaper $200 Disables the paper controls,
preventing the user from
setting page parameters

such as the paper size and
source.

cdpsShowHelp $800 Displays the Help button
cdpsDisablePagePainting
$80000

Prevents the dialog box
from drawing the contents
of the sample page.

cdpsNoNetworkButton
$2000000

Hides and disables the
Network button.

Example

Ocx CommDlg cd
cd.Flags = cdpsMargins | cdpsMinMargins
cd.pgScale = 1 ' 1/100 mm
cd.pgBottom = 1000 ' 10 mm
cd.pgLeft = 1000 ' 10 mm
cd.pgRight = 1000 ' 10 mm
cd.pgTop = 1000 ' 10 mm
cd.pgMinBottom = cd.pgBottom
cd.pgMinLeft = cd.pgLeft
cd.pgMinRight = cd.pgRight
cd.pgMinTop = cd.pgTop
cd.ShowPageSetup
Debug.Show
Trace cd.pgBottom ' use for the documents
Trace cd.pgLeft
Trace cd.pgRight
Trace cd.pgTop
Trace cd.DevNames ' The selected device
Set Printer = cd ' Assign to Printer object
' Show the new Printer settings for the device …
Trace Printer.DefLeft
Trace Printer.Width
Trace Printer.DeviceName
Trace Printer.Orientation
Trace Printer.dmPaperSize

Me.Close

Remarks

The return values in pgBottom, pgLeft, pgRight, and
pgTop return margin settings for your documents. They
have no relation whatsoever with the capabilities of the
printer. Other settings made with ShowPageSetup
common dialog box are available only when you make the
selection the default for the application. This accomplished
by setting the CommDlg object as the new Printer object.
The Printer object is then initialized using the DEVMODE
structure which is a shared object between the Print and
PageSetup dialog box. The DEVMODE fields set with the
ShowPageSetup dialog box are then available through the
Printer's (device mode dm) properties.

When the ShowPrint dialog box is displayed it uses the
shared DEVMODE structure, which might have been
changed through the use of the Printer properties, to fill in
the controls of the dialog box. Changing printing attributes
in the ShowPrint dialog box doesn't make the effective
until you re-assign the CommDlg object to the Printer
object.

See Also

CommDlg, ShowPrint, Dlg Print, dm-Properties

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Tag Property
Purpose

Returns or sets an expression that stores any extra data
(string) needed for your program. Unlike other properties,
the value of the Tag property isn't used by GFA-BASIC 32;
you can use this property to identify objects.

Syntax

object.Tag [= exp]

object:Ocx object
exp:String expression

Description

You can use this property to assign an identification string
to an object without affecting any of its other property
settings or causing side effects. The Tag property is useful
when you need to check the identity of a control or MDI
Form object that is passed as a variable to a procedure.

Example

Ocx Command cmd = "This is the Caption Text", 10,
10, 140, 22 : cmd.Tag = "This is the Tag Text"

Ocx CheckBox chk = "Show Tag Text in Caption", 10,
40, 160, 14

Do : Sleep : Until Me Is Nothing

Sub chk_Click
Select chk.Value

Case 0 : cmd.Caption = "This is the Caption Text"
Case 1 : cmd.Caption = cmd.Tag
EndSelect

EndSub

Remarks

As an alternative, the HelpContextID property can be used
as a place to store additional data. This property is an
Integer and therefore it's performance much better.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

AboutBox Method (Ocx
controls)
Purpose

Displays the About box for the control.

Syntax

object.AboutBox

object:Ocx object

Description

Only some of the Ocx controls support an AboutBox.
According to MS documentation all ActiveX controls should
support an AboutBox.

Example

Ocx MonthView mvw = "", 10, 10, 0, 0
mvw.AboutBox

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ShowFolders Method
Purpose

Creates a dialog box that allows the user to select a folder.

Syntax

CommDlg.FileName [= string]

CommDlg.ShowFolders[(flag)]

CommDlg.Title [= string]

Description

Displays a dialog box that enables the user to select a shell
folder. The optional flag (Variant) specifies the style for the
dialog box.

The Title property can be used to set a customized dialog
box title, while the FileName property serves both as a
receptable for the default folder beforehand and the file
path once a folder has been chosen.

Example

Public Const BIF_RETURNONLYFSDIRS = $1
Public Const BIF_DONTGOBELOWDOMAIN = $2
Public Const BIF_STATUSTEXT = $4
Public Const BIF_RETURNFSANCESTORS = $8
Public Const BIF_EDITBOX = 0x0010
Public Const BIF_VALIDATE = 0x0020 // insist on
valid result (or CANCEL)

Public Const BIF_NEWDIALOGSTYLE = 0x0040 // Use
the new dialog layout with the ability to resize.

Public Const BIF_USENEWUI = (BIF_NEWDIALOGSTYLE |
BIF_EDITBOX)

Public Const BIF_NONEWFOLDERBUTTON = 0x0200 //
Do not add the "New Folder" button to the
dialog. Only applicable with
BIF_NEWDIALOGSTYLE."

Public Const BIF_BROWSEFORCOMPUTER = $1000
Public Const BIF_BROWSEFORPRINTER = $2000
Public Const BIF_BROWSEINCLUDEFILES = 0x4000 //
Browsing for Everything

Ocx CommDlg cd
cd.Title = "Select directory"
cd.FileName = "F:\James Documents\My Games" //
Use cd.Filename to set the default Folder

cd.ShowFolders BIF_USENEWUI
Print cd.FileName

Remarks

To be used in GB32, the folder path returned by
cd.FileName needs to be converted using ZTrim, as is
shown by the example below:

Ocx CommDlg cd
cd.FileName = "c:\windows"
cd.ShowFolders
If cd.FileName <> ""
Print cd.FileName & "\"
Print ZTrim(cd.FileName) & "\"

EndIf

Known Issues

Noted recently is what could be described as the 'renamed
folder' error: if you rename a folder in the Commdlg

ShowFolders window and click 'OK' before finishing the edit
(before pressing Enter or clicking on another folder), the
folder will be renamed, but the value returned in
cd.FileName will be that of the name of the folder before it
was renamed, which will cause an error if you then try to
access it; this happens even if you use the BIF_VALIDATE
flag. This is not truly a GFA bug, but something to be aware
of.
[Reported by James Gaite, 01/03/2017]

This Ocx object has had a very on/off performance with it
working well sometimes and not at all at other times.
Tested on Win8.1 using GFA IDE build 1169 with OCX build
1185, the above example works - this has not always been
the case.

If you run into problems with ShowFolders, there are two
available workarounds:

Function COMBrowseForFolder(Flags As Long) As
String
// Courtesy of Sjouke Hamstra
Local Object oShell, oFolder, oFolderItem
Const ssfDRIVES = &H11 ' from
ShellSpecialFolderConstants

Try
' Create a shell object like it is done in
VBScript

Set oShell =
CreateObject("Shell.Application")

' BrowseForFolder returns an object of the
Folder data type

' The Shell object model's Folder object is the
COM representation of a Windows folder.

' The Folder object contains a collection of
child objects, each representing an

' item in the folder. Hence, these child
objects are called FolderItem objects.

Set oFolder = oShell.BrowseForFolder(Null, _
"Select or type the folder where you want to
begin the search.", Flags, ssfDRIVES)

' oFolder.Title is the default property and
returns a

' a string that is exactly the text you
highlighted

Trace oFolder.Title 'the title of the folder.
If (Not oFolder Is Nothing) Then
' Transform the folder into a FolderItem
object

Set oFolderItem = oFolder.Items.Item
EndIf
COMBrowseForFolder = oFolderItem.path
' Trace oFolderItem.path

Catch
EndCatch
Set oFolderItem = Nothing
Set oFolder = Nothing
Set oShell = Nothing

EndFunc

...or...

Declare Function SHGetPathFromIDList Lib
"shell32.dll" (ByVal pidl As Long, _
ByVal pszBuffer As String) As Long

Declare Function SHBrowseForFolder Lib
"shell32.dll" (lpBrowseInfo As _
BROWSEINFO) As Long

Type BROWSEINFO
hOwner As Long
pidlRoot As Long

pszDisplayName As Long
lpszTitle As Long
ulFlags As Long
lpfn As Long
lParam As Long
iImage As Long

EndType
Const BIF_RETURNONLYFSDIRS As Long = &H1
Const BIF_DONTGOBELOWDOMAIN As Long = &H2
Const BIF_RETURNFSANCESTORS As Long = &H8
Const BIF_EDITBOX = &H10
Const BIF_VALIDATE = &H20
Const BIF_NEWDIALOGSTYLE = &H40
Const BIF_USENEWUI = (BIF_NEWDIALOGSTYLE |
BIF_EDITBOX)

Const BIF_NONEWFOLDERBUTTON = &H200
Const BIF_BROWSEFORCOMPUTER As Long = &H1000
Const BIF_BROWSEFORPRINTER As Long = &H2000
Const BIF_BROWSEINCLUDEFILES As Long = &H4000
Const BFFM_SETSELECTION = (WM_USER + 102)
Dim foldir$ = App.Path & "\" : Print foldir$
OpenW 1
Print BrowseForFolder(Win_1.hWnd, "Title") : Print
foldir$

Print BrowseForFolder(Win_1.hWnd, "Title") : Print
foldir$

Function BrowseForFolder(hnd%, Title As String,
Optional Flags%) As String
Local bi As BROWSEINFO
Local Int pidl
Local path$ = Space$(512) + #0, buf$ =
Space$(512) + #0

If Flags <= 0 Then Flags = BIF_RETURNONLYFSDIRS |
BIF_USENEWUI

Title = Title + #0
bi.hOwner = hnd

bi.pidlRoot = 0
bi.lpszTitle = V:Title
buf = Space$(512) + #0
bi.pszDisplayName = V:buf
bi.ulFlags = Flags
bi.lpfn = ProcAddr(BrowseCallbackProc)
pidl = SHBrowseForFolder(bi)
If pidl
If SHGetPathFromIDList(pidl, path)
path = ZTrim$(path)
If Right$(path, 1) <> "\" Then path = path +
"\"

foldir$ = path$
Else
path = "Error"

EndIf
Else
path = ""

EndIf
BrowseForFolder = path
~CoTaskMemFree(pidl)

EndFunc

Function BrowseCallbackProc(hwnd As Handle, uMsg
As Int, lp%, pData%) As Int
Switch(uMsg)
Case 1 'BFFM_INITIALIZED :
~SendMessage(hwnd, BFFM_SETSELECTION, True,
V:foldir$)

Case 2
Print "This is option 2"

EndSelect
Return 0

EndFunction

See Also

CommDlg

{Created by Sjouke Hamstra; Last updated: 01/03/2017 by James Gaite}

Dlg Open, Dlg Save
Command
Purpose

Calls the common file selecting dialog box.

Syntax

Dlg Open form, Flags%, Title$, Dir$, DefExt$, Filter$[()],
Ret$

Dlg Save form, Flags%, Title$, Dir$, DefExt$, Filter$[()],
Ret$

Description

Dlg Open and Dlg Save call, like the command FileSelect,
the common file selecting dialog. However, in contrast with
FileSelect, Dlg Open and Dlg Save can be configured.

form is a Form object, like Me, Win_1, Dlg_1, frm1

Title$ is the title of the file dialog box.

Dir$ is the default directory (a string).

DefExt$ is a file name extension of three characters, which
will automatically be appended if no extension is given.

Filter$ is a either a string array or a string declaring the file
search filter. Two strings apply to each selection: the first
contains descriptive text which appears in the ComboBox.
The next one determines the file mask (filter) which applies

to it. (It can hold multiple examples each separated by a
semicolon ";"). When using an array terminate the array
with an empty string, see example. Filter$ may also be a
string. Use the pipe (|) symbol (ASCII 124) to separate
the description and filter values. Don't include spaces before
or after the pipe symbol, because these spaces will be
displayed with the description and filter values. For
instance:

flit$ = "Text (*.txt)|*.txt|Pictures
(*.bmp;*.ico)|*.bmp;*.ico"

Ret$ is a string variable which receives the file name. The
string will contain the full path. When the dialog box is
canceled the return value is an empty string.

Flags can contain the following values:

OFN_READONLY $00001 The Read-Only
check box will be
activated. Return
value in _EBX.

OFN_OVERWRITEPROMPT $00002 If a file already
exists a warning
appears.

OFN_HIDEREADONLY $00004 Hide the Read-
Only checkbox.

OFN_NOCHANGEDIR $00008 Resets back to the
same directory as
when the Dialog
was created.

OFN_NOVALIDATE $00100 Invalid characters
in the filename
are allowed

OFN_EXTENSINODIFFERENT $00400 Returns a value in

_EBX if extension
is different than
specified.

OFN_PATHMUSTEXIST $00800 Selected path is
verified.

OFN_FILEMUSTEXIST $01000 Selected file is
verified.

OFN_CREATEPROMPT $02000 If a file does not
exist, a warning is
displayed.

OFN_NOREADONLYRETURN $08000 Does not return
names of write-
protected files.

OFN_NOTESTFILECREATE $10000 With Open SAVE,
the file will not be
created and
cancelled for the
purposes of
testing. This
option was
conceived for
WORM (WriteOnce
Read Many)
drives, create-no-
modify networks,
and the like.

These bits are not allowed in GFA-BASIC:

OFN_SHOWHELP $00010
OFN_ENABLEHOOK $00020
OFN_ENABLETEMPLATE $00040
OFN_ENABLETEMPLATEHANDLE $00080
OFN_ALLOWMULTISELECT $00200

OFN_SHAREAWARE $04000

_AX is a null if there is an error.

File$ is selected filename and path.

_EBX is the new value for Flags.

Example

OpenW 1
Auto file$
Dim filt$(20)
filt$(0) = "BMP-Files", filt$(1) = "*.BMP;*.RLE"
filt$(2) = "PCX-Files", filt$(3) = "*.PCX"
filt$(4) = ""
file$ = "NONAME.BMP"
Dlg Open Me, 0, "This is a test", "d:\pcx", "BMP",
filt$(), file$

Dlg Open Me, 0, "", "", "BMP", "BMP-
Files|*.BMP;*.RLE|PCX files|*.PCX", file$

This code fragment specifies two filters. The filter with the
"BMP-Files" description has two patterns. If the user selects
this filter, the dialog box displays only files that have the
.BMP and .RLE extensions.

Remarks

This command is implemented for compatibility reasons
only. Use CommDlg object instead.

See Also

CommDlg, Dlg Font, Dlg Color, Dlg Print

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

Dlg Color Command
Purpose

calls the common color selecting dialog box for a form.

Syntax

Dlg Color form, Flags , custcol(), color

formForm object
Flagsiexp (CC_ constants)
cust()ivar
color:ivar

Description

form - A Form object, for instance Me, Win_1, Dlg_1, frm1,
etc.

Flags - Sets several options of the Dialog box.

CC_RGBINIT ($1) color will be used as default.
CC_FULLOPEN ($2) The whole Dialog box appears

immediately, otherwise just
the left side with pre-defined
Custom Colors appears.

CC_PREVENTFULLOPEN($4) The right side of the Dialog
box is switched off,
preventing the creation of
new Custom Colors.

Not allowed are: CC_SHOWHELP ($8)
CC_ENABLEHOOK ($16)
CC_ENABLETEMPLATE ($32)

CC_ENABLETEMPLATEHANDLE
($64)

custcol() - A long integer field, holds the Custom Colors in
first 16 elements.

color - A long integer variable, holds a default color-
selection. In this command, colors are always RGB values.

_AX is a null if there is an error. Otherwise, color% is the
newly selected color. cust%() is filled with the new Custom
Colors.

Example

Print // Open window #1
Dim col(0 .. 15) As Int, c As Int, i As Int
For i = 0 To 15
col(i) = QBColor(i) // Custom colors

Next
Dlg Color Me, 0, col(), c // Dialog
If _AX
Color c : Print (Hex(c)) // Print in color
For i = 0 To 15
Color col(i) : Print Hex(col(i), 8),
If i Mod 4 = 0 Then Print

Next
Color 0 : Print (Hex(c)) // Print in black
For i = 0 To 15
Print Hex(col(i), 8),
If i Mod 4 = 0 Then Print

Next
EndIf

This small program produces a color-selector and evaluates
the selection.

Remarks

This command is implemented for compatibility reasons only.
Use CommDlg object instead.

See Also

CommDlg, Color, Dlg Font, Dlg Open, Dlg Print, Rgb(),
RGBColor

{Created by Sjouke Hamstra; Last updated: 02/10/2014 by James Gaite}

Dlg Print Command
Purpose

calls the common printer selecting dialog box. Implemented
for compatibility reasons only. It is advised not to use this
command and instead use CommDlg object.

Syntax

Dlg Print form, Flags%, hDC

Description

form is a Form object like me, Win_1, Dlg_1, frm1.

Flags% declares some bit-wise settings:

PD_ALLPAGES $000000 Sets all Radio
Buttons On.

PD_SELECTION $000001 Sets the selection
Radio Button to On.

PD_PAGENUMS $000002 Sets the pages
Radio Button to On.

PD_NOSELECTION $000004 Print selection
disabled.

PD_NOPAGENUMS $000008 Page numbers
disabled.

PD_COLLATE $000010 Sets the Collate
Copies check box to
On.

PD_PRINTTOFILE $000020 Sets the Print to
File check box to

On.
PD_PRINTSETUP $000040 Calls the Setup

Dialog. (The Setup
Button also allows
the user to call up
the Setup Dialog
directly.)

PD_NOWARNING $000080 Warnings about
errors in the
Default Printer are
suppressed.

PD_USEDEVMODECOPIES $040000 If a printer driver
can make copies
itself it is used
instead of the Print
Manager.

PD_DISABLEPRINTTOFILE $080000 Print to File is
disabled.

PD_HIDEPRINTTOFILE $100000 The Print to File
check box is
hidden.

GFA-BASIC does not allow the following:

PD_RETURNDC $000100 always
returns a DC.

PD_RETURNIC $000200
PD_RETURNDEFAULT $000400
PD_SHOWHELP $000800
PD_ENABLEPRINTHOOK $001000
PD_ENABLESETUPHOOK $002000
PD_ENABLEPRINTTEMPLATE $004000
PD_ENABLESETUPTEMPLATE $008000

PD_ENABLEPRINTTEMPLATEHANDLE $010000
PD_ENABLESETUPTEMPLATEHANDLE $020000

hDC is the return value, this is a device context like
PrinterDC().

_AX is null, if an error has occurred. Otherwise, _BX is the
"from page(i.e.: Starting Page).

_CX is the "to" page(i.e.: Ending Page).

_EX is the number of copies.

_EFL holds the new values for the flags:

_EFL %& PD_PAGEENUMS is not equal to zero when a
range of page number button is chosen

_EFL %& PD_SELECTION is not equal to zero when
selection button is chosen, and so forth.

_SI is the handle of the internal hDevMode structure.

_DI is the handle of the internal hDevNames structure.

Special: When _AX = $1234 some parameters can be set
prior to the call from Dlg Print.

_BX beginning page;
_CX ending page,
_DX number of copies;
_SI smallest page number;
_DI largest page number (without these settings, the

page numbers lie between 0 and 100).

Example

OpenW 1
Local h As Handle
Dlg Print Win_1, 0, h
If Not IsNull(h)
SetPrinterHDC h
Output = Printer
Printer.FontSize = 12 : Printer.FontName =
"Arial"

Printer.StartDoc "GFA Test"
Printer.StartPage
Print "Hello World"
Printer.FontName = "courier new"
Text 200, 400, "Hello World 2"
Printer.EndPage
Printer.EndDoc
Output = Win_1

EndIf
CloseW 1

Alternatively, you can use CommDlg Print as in the following
example:"

OpenW 1
Print " Start printing"
//
// to use the Ocx Commdlg with the name cd
Ocx CommDlg cd
// to make Cancel possible
cd.CancelError = True
// to show the printer dialog
cd.ShowPrint
//to choose the printer and to activate it in the
following

Set Printer = cd
// to set one flag
cd.Flags = cdpDisablePrintToFile
// all output to the printer

Output = Printer
// to start the print job
Printer.StartDoc "Text"
// 1. start page of your printing
Printer.StartPage
// to use a font
Printer.FontName = "Arial"
// to use a font size
Printer.FontSize = 16
Print "Hello GFA"
DefLine 10, 2
Circle 100, 100, 300
Box 150, 150, 240, 240
// end ot the page
Printer.EndPage
// end of the print job
Printer.EndDoc
// output back into the actual window
Output = Win_1
Print "printing is finished"
Print
Print "press Alt F4 to end"
Do : Sleep : Until Me Is Nothing

See Also

CommDlg, Printer

{Created by Sjouke Hamstra; Last updated: 24/11/2015 by James Gaite}

CurrentX, CurrentY
Properties
Purpose

Returns or sets the horizontal (CurrentX) or vertical
(CurrentY) coordinates for the next drawing method.

Syntax

[Object.]CurrentX [= value]

[Object.]CurrentY [= value]

Object:Form or Printer object
value: Single expression

Description

Coordinates are measured from the upper-left corner of an
object. The CurrentX property setting is 0 at an object's
left edge, and the CurrentY property setting is 0 at its top
edge. Coordinates are expressed in pixels, or the current
unit of measurement defined by the ScaleHeight,
ScaleWidth, ScaleLeft, ScaleTop, and ScaleMode
properties.

When you use the following graphics methods, the
CurrentX and CurrentY settings are changed as indicated:

[P]Circle The center of the object.
[P]Box The right bottom corner of the object.
[Gray]Text The right bottom corner of the text.

Cls 0, 0.
Draw/Line The end point of the line.
Point/Pset The point drawn.
EndDoc 0, 0
NewPage 0, 0
[L]Print The next print position

Example

OpenW 1
Local a%, xx, yy
Win_1.CurrentX = 150
Win_1.CurrentY = 50
xx = CurrentX
yy = CurrentY
Text CurrentX, CurrentY, "Press any key"
KeyGet a%
Cls
Text xx, yy, "GFA"
Circle 100, 100, 50
Text CurrentX, CurrentY, "X"
Do : Sleep : Until Me Is Nothing

Remarks

Usually, CurrentX and CurrentY are use with an object,
like Me.CurrentX, or Printer.CurrentX. Without an object,
the current Output device is used.

See Also

Output, Form, Printer

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

DefHeight, DefLeft, DefTop,
DefWidth, Height, Left, Top,
Width Properties (Printer)
Purpose

The Defxx properties return the printer's default left, top,
height and width settings.

Syntax

Printer.DefHeight
Printer.DefLeft
Printer.DefTop
Printer.DefWidth

Printer.Height [= single]
Printer.Left [= single]
Printer.Top [= single]
Printer.Width [= single]

Description

The printable area of a page is returned in the DefHeight,
DefLeft, DefTop, and DefWidth properties. The return
value is of type Single.

By default, the DefHeight, DefLeft, DefTop, and
DefWidth properties are identical to the Height, Left,
Top, and Width properties. However the Height, Left,
Top, and Width properties can be used to set the physical
dimensions of the paper.

The coordinates are in ScaleMode units.

Example

Debug.Show
Trace Printer.ScaleMode
Trace Printer.DefLeft
Trace Printer.DefTop
Trace Printer.DefHeight
Trace Printer.DefWidth
Trace Printer.Left
Trace Printer.Top
Trace Printer.Height
Trace Printer.Width

See Also

Printer, ShowPrint, ShowPageSetup, Height, Left, Top,
Width

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DriverName, DeviceName,
PortName Properties
(Printer)
Purpose

Returns the name of the driver for a Printer object, the
name of the device a driver supports, and the name of the
port through which a document is sent to a printer.

Syntax

Printer.DeviceName
Printer.DriverName
Printer.PortName

Description

Each driver has a unique name. For example, the
DriverName for several of the Hewlett-Packard printers is
HPPCL5MS. The DriverName is typically the driver's
filename without an extension.

The DeviceName property contains the name of the device
the driver supports. For Example, "PCL/HP LaserJet" is the
name of one driver. You can use this to indicate the printer
you're printing on.

The PortName returns the name of the port which is
determined by the operating system determines, such as
LPT1: or LPT2:.

Example

Ocx CommDlg cd
cd.Flags = 0
cd.ShowPageSetup
Set Printer = cd
Debug.Show
Trace cd.DevNames
Trace Printer.DeviceName
Trace Printer.DriverName
Trace Printer.PortName

Remarks

The properties of the Printer object initially match those of
the default printer set in the Windows Control Panel.

See Also

Printer, ShowPageSetup, ShowPrint, SetPrinterByName

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

dmCollate, dmColor,
dmCopies, dmPaperBin,
dmPaperBinName,
dmPaperLength,
dmPaperSize,
dmPaperSizeName,
dmPaperSizeX,
dmPaperSizeY,
dmPaperWidth, dmQuality,
dmYRes Properties
Purpose

Return or set device mode properties of the Printer object.

Syntax

Printer.dmCollate [= long]
Printer.dmColor [= long]
Printer.dmCopies [= long]
Printer.dmPaperBin [= string]
Printer.dmPaperBinName(i%)
Printer.dmPaperSize [= long]
Printer.dmPaperSizeName(i%)
Printer.dmPaperSizeX(i%)
Printer.dmPaperSizeY(i%)

Printer.dmPaperLength [= long]
Printer.dmPaperWidth [= long]
Printer.dmQuality [= long]
Printer.dmYRes [= long]

Description

To inquire the Printer object for device-dependent
information, use the dm-properties. These properties
correspond to the DEVMODE structure, which is internally
read by GFA-BASIC 32. By default, these properties return
information on the system standard printer.

dmCollate = r/w, %) Determines whether document
collation should be done when printing multiple copies: 0 -
disabled, 1 - enabled.

dmColor = r/w, %) Determines whether a color printer
prints output in color (2) or monochrome (1).

dmCopies = r/w, %) Specifies the number of copies on
printers that support multiple-page copies (most laser
printers).

dmPaperBin = r/w, $) Indicates the default paper bin on
the printer from which paper is fed when printing. To set a
paper bin by number use "#1" for upper bin, "#2" for lower
bin, "#3" for middle bin, "#4" for manual, "#5" for
envelope, "#6" for envelope manual, "#7" for Auto, "#8" for
tractor feed, "#9" for small paper feeder, "#10" for large
paper bin, "#11" for large capacity feeder, "#14" for
attached cassette cartridge.

dmPaperBinName(i) = r, $) Returns the paper bin name
for the given number. i% starts at 1, i% = 0 is current
printer.

dmPaperSize = r/w, $) Returns or selects the size of the
paper to print on. This member can be set to an empty
string if the length and width of the paper are both set by
the dmPaperLength and dmPaperWidth properties.
Otherwise, the dmPaperSize member can be set to a
string containing the name of a paper format, like "A4", "A4
(210 x 297 mm)", "Letter 8 1 / 2 x 11", etc. Rather than
specifying a name, the size can also set using a number
with a leading "#"; "#1" for "Letter", "#9" for DIN-A4, or
"#69" for "Japanese Double Postcard 200 x 148 mm" or
"#118" for " PRC Envelope #10 Rotated 458 x 324 mm"
(PRC = Peoples Republic of China)

dmPaperSizeName(i) = r, $) Returns the name of the size
of the paper for the given number. i% starts at 1, i% = 0 is
current printer.

dmPaperSizeX(i) = r, %) Returns the horizontal size in
tenth of a millimeter for the specified paper format. i%
starts at 1, i% = 0 is current printer.

dmPaperSizeY(i) = r, %) Returns the vertical size in tenth
of a millimeter for the specified paper format. i% starts at
1, i% = 0 is current printer.

dmPaperLength = r/w, %) Overrides the length of the
paper specified by the dmPaperSize property, either for
custom paper sizes or for devices such as dot-matrix
printers, which can print on a page of arbitrary length.
These values, along with all other values in this structure
that specify a physical length, are in tenths of a millimeter.
To initiate, invoke dmPaperSize = "" after setting
dmPaperLength.

dmPaperWidthOverrides the width of the paper specified
by the dmPaperSize member. To initiate, invoke

dmPaperSize = "" after setting dmPaperWidth.

dmQuality = r/w, %) Indicating the printer resolution. -1
= Draft resolution, -2 = Low resolution, -3 = Medium
resolution, -4 = High resolution. In addition to the
predefined negative values, you can also set value to a
positive dots per inch (dpi) value, such as 300.

dmYRes = r/w, %) Indicating the printer resolution in y-
direction. Some printer drivers allow separate resolutions
for horizontal and vertical directions. When a driver
supports this, the dmQuality sets the x-resolution and
dmYRes the y-resolution. Values are the same as with
dmQuality.

Example

OpenW 1, 0, 0, 200, 200
Debug.Show
~SetWindowPos(Debug.hWnd, 0, 300, 0, 400, 700,
$40)

Dim i As Int
Debug "-- PaperBins --" : Print "Paper Bins"
Trace Printer.dmPaperBin
For i = 1 To 14
Print AT(1, 2); "Processing Bin "; i ; " / 14"
If Len(Printer.dmPaperBinName(i)) _
Debug "#";i` Printer.dmPaperBinName(i)

Next
Debug "-- PaperSizes --" : Print AT(1, 4); "Paper
Sizes"

Trace Printer.dmPaperSize ' "A4"
Trace Printer.dmPaperSizeX(0) ' 2100 (x 0.1 mm)
Trace Printer.dmPaperSizeY(0) ' 2970 (x 0.1 mm)
For i = 1 To 256
Print AT(1, 5); "Processing Size "; i ; " / 256"
If Len(Printer.dmPaperSizeName(i)) _

Debug "#";i` Printer.dmPaperSizeName(i)
Next

Example 2

Debug.Show
Trace Printer.hDC
Trace Printer.dmCollate
Trace Printer.dmCopies
Trace Printer.dmColor
Trace Printer.dmPaperSize
Trace Printer.dmPaperLength
Trace Printer.dmPaperWidth
Trace Printer.Orientation
Trace Printer.Zoom
Trace Printer.Duplex
Trace Printer.PaperHeight // ScaleMode; units
Trace Printer.PaperWidth // ScaleMode; units

Remarks

Setting a printer's Height or Width property automatically
sets dmPaperSize to "#256" (user-defined").

The PaperWidth and PaperHeight properties (read-only)
return the size of the paper in ScaleMode units.

Other related device mode properties are Orientation,
Zoom, Duplex.

To gather printer information before setting the Printer
object, use App.PrintInfo.

See Also

Printer, ShowPageSetup, ShowPrint, SetPrinterByName,
PrinterInfo (App), PrinterName (App), Orientation, Zoom,

Duplex

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

Duplex, Orientation, Zoom
Properties (Printer)
Purpose

Return or set device mode properties Duplex, Orientation,
and Zoom.

Syntax

Printer.Duplex [= long] Printer.Orientation [= long]
Printer.Zoom [= long]

Description

The Duplex property returns or sets a value that
determines whether a page is printed on both sides (if the
printer supports this feature, if not Duplex returns 0).

1 (Simplex) - Single-sided printing with the current
orientation setting.

2 (Horizontal) - Double-sided printing using a horizontal
page turn.

3 (Vertical) - Double-sided printing using a vertical page
turn.

The Orientation property returns or sets a value indicating
whether documents are printed in portrait or landscape
mode.

1 (Portrait) - Documents are printed with the top at the
narrow side of the paper.

2 (Landscape) - Documents are printed with the top at the
wide side of the paper.

The Zoom property returns or sets the percentage by which
printed output is to be scaled up or down. The default is 0,
which specifies that the printed page appears at its normal
size. 50 means shrink the output to 50%.

Example

Ocx CommDlg cd
cd.Flags = 0
cd.ShowPageSetup
Set Printer = cd
Debug.Show
Trace Printer.Duplex
Trace Printer.Orientation
Trace Printer.Zoom

Remarks

The device mode properties Duplex, Orientation, and
Zoom are in fact dm-properties, like dmCollate,
dmPaperSize, etc. They could have been named
dmDuplex, dmOrientation, and dmZoom, as well. However,
for compatibility reasons (VB) they don't.

See Also

Printer, ShowPageSetup, ShowPrint, SetPrinterByName,
dm-Properties

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

FontBold, FontItalic,
FontName, FontSize,
FontStrikethru,
FontTransparent,
FontUnderline Properties
Purpose

Return or set font styles in the following formats: Bold,
Italic, Strikethru, and Underline.

Syntax

[object.]FontBold [= boolean]

[object.]FontItalic [= boolean]

[object.]FontName [= string]

[object.]FontSize [= short]

[object.]FontStikethru [= boolean]

[object.]FontTransparent [= boolean]

[object.]FontUnderline [= boolean]

object:Ocx Object (controls, Form, and Printer)

Description

Use these font properties to format text, either at design
time using the Properties window or at run time using code.
For Form and Printer objects, setting these properties
doesn't affect graphics or text already drawn on the control
or object. For all other controls, font changes take effect on
screen immediately.

FontSize takes a Short specifying the size of the font in
dots/inch.

FontTransparent returns or sets a Boolean value that
determines whether background text and graphics on a
Form or Printer object are displayed in the spaces around
characters.

Example

Ocx Label lbl = "Example Text", 10, 10, 100, 20
Ocx Command bld = "Bold", 10, 40, 80, 22
Ocx Command itl = "Italic", 100, 40, 80, 22
Ocx Command und = "Underline", 190, 40, 80, 22
Do : Sleep : Until Me Is Nothing

Sub bld_Click
If bld.Caption = "Bold"
bld.Caption = "Not Bold" : lbl.FontBold = True

Else
bld.Caption = "Bold" : lbl.FontBold = False

EndIf
EndSub

Sub itl_Click
If itl.Caption = "Italic"
itl.Caption = "Not Italic" : lbl.FontItalic =
True

Else
itl.Caption = "Italic" : lbl.FontItalic = False

EndIf
EndSub

Sub und_Click
If und.Caption = "Underline"
und.Caption = "No Underline" :
lbl.FontUnderline = True

Else
und.Caption = "Underline" : lbl.FontUnderline =
False

EndIf
EndSub

Remarks

FontTransparent is the same a GraphMode:

GraphMode , TRANSPARENT FontTransparent = True
GraphMode, OPAQUE FontTransparent = False

Note: When changing FontName, you may inadvertantly
change the FontSize as well if the new font does not
support the current size: when this happens, GFA-BASIC32
will automatically change FontSize to the closest legal for
the new font. To prevent any nasty surprises, it is thus
advisable to assign the FontName first and then specify
the FontSize.

See Also

Font Object, Font, GraphMode

{Created by Sjouke Hamstra; Last updated: 22/06/2017 by James Gaite}

hDC Property
Purpose

Returns a handle provided by the Microsoft Windows
operating environment to the device context of an object.

Syntax

object.hDC

object:Form, Printer, CommDlg

Description

This property is a Windows operating environment device
context handle. The Windows operating environment
manages the system display by assigning a device context
for the Printer object and for each form in your application.
You can use the hDC property to refer to the handle for an
object's device context. This provides a value to pass to
Windows API calls.

With a CommDlg object, this property returns a device
context for the printer selected in the Print dialog box when
the cdpReturnDCflag is set or an information context
when the cdpReturnIC flag is set.

Example

The following routine copies an area from the Screen.DC
and copies it to the hDC of Window 1.

// Courtesy of Juergen

OpenW 1, 0, 0, 402, 402, 0
Win_1.AutoRedraw = 1
BitBlt Screen.GetDC, 400, 400, 400, 400,
Win_1.hDC, 0, 0, &H00CC0020

Remarks

The value of the hDC property can change while a program
is running, so don't store the value in a variable; instead,
use the hDC property each time you need it.

See Also

Form, hDC2, hWnd, _DC(), _DC2

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Page Property (Printer)
Purpose

Returns the current page number when printing.

Syntax

% = Printer.Page

Description

GFA-BASIC 32 keeps a count of pages that have been
printed since your application started or since the last time
the EndDoc statement was used on the Printer object.
This count starts at one and increases by one if:

You use the StartPage method.

You use Print or Lprint and the text you want to print
doesn't fit on the current page.

Example

Dim h As Handle : Global Int32 ct, x, y
Dlg Print Me, 0, h
If h <> 0
SetPrinterHDC h
Output = Printer
FontSize = 12
StartDoc "test"
StartPage
PrintPage()
EndPage

StartPage
PrintPage
EndPage
EndDoc

EndIf

Proc PrintPage
Local p$ = "Page " & Printer.Page
x = (Printer.Width - TextWidth(p$)) / 2
y = Printer.Height - TextHeight(p$)
Text x, y, p$

EndProc

See Also

Printer, StartPage, StartDoc, EndDoc

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

PageWidth, PageHeight,
PaperWidth, PaperHeight
Properties
Purpose

Return the page and paper size in ScaleMode units.

Syntax

Printer.PageWidth

Printer.PageHeight

Printer.PaperWidth

Printer.PaperHeight

Description

The return type of these properties is Single.

PageWidth and PageHeight return the size of printable
area in ScaleMode units.

PaperWidth and PaperHeight return the size of the paper
in ScaleMode units.

Example

Debug.Show
SetPrinterHDC Printer.hDC
Trace Printer.ScaleMode

Trace Printer.PageHeight
Trace Printer.PageWidth
Trace Printer.PaperHeight
Trace Printer.PaperWidth
Trace Printer.dmPaperSize ' A4
Trace Printer.dmPaperSizeX(0) ' 2100 (x 0.1 mm)
Trace Printer.dmPaperSizeY(0) ' 2970 (x 0,1 mm)

Remarks

The device mode properties dmPaperSizeX and
dmPaperSizeY return the size in tenths of a millimeter.

See Also

Printer

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

PrintScroll Property
Purpose

Returns or sets the scrolling behaviour of a Form or
Printer.

Syntax

[object.]PrintScroll [= value]

object:Form or Printer
value:Boolean exp

Description

Determines the scrolling behaviour of the output device
when the current output position has reached the bottom of
the output area. Used without an object will change the
current output object.

Example

OpenW 1
PrintScroll = 1
AutoRedraw = 1
Local i As Int
For i = 0 To 100
Print i
Pause 0.5

Next i

See Also

Form, Printer

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

PrintWrap Property
Purpose

Returns or sets line wrapping with Print of a Form or
Printer.

Syntax

[object.]PrintWrap [= value]

object:Form or Printer
value:Boolean exp

Description

Determines the wrapping of a string on the output device
when the string is about to cross the right boundary. The
string is checked to fit in the rest of the line. When the
string doesn't fit it will be completely printed on the next
line. First a CRLF is invoked, and maybe a NewPage on the
Printer, and then the string is printed.

Example

OpenW Full 1
PrintWrap = 1
Local n As Int32
For n = 1 To 3000
Print n; " ";

Next n

Remarks

With PrintWrap = True and a string a to be printed, the
check is like:

If CurrentX + TextWidth(a) > ScaleWidth Then Print
Print a

See Also

Form, Printer

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

AbortDoc Command
Purpose

Cancels a printer job.

Syntax

[Printer.]AbortDoc

Description

AbortDoc stops the current print job and erases everything
drawn since the last call to the StartDoc function.

Applications should call the AbortDoc function to stop a
print job if an error occurs, or to stop a print job after the
user cancels that job. To end a successful print job, an
application should call the EndDoc function.

Example

OpenW 1
Local x%, o
Output = Printer
StartDoc "GFA32 Test"
StartPage
Print "GFA"
Circle 200, 200, 150
Box 350, 200, 450, 300
EndPage
StartPage
Print "GFA2"
EndPage

AbortDoc
EndDoc
Output = Win_1 : Print "finished"
KeyGet x% : CloseW 1 : End

Remarks

A printer job is most often finished before it is even started
and is mostly canceled through the printer tray icon. Maybe
AbortDoc has some use, though.

Another way of aborting a printer job from a program is by
using the Printer object event sub Printer_AbortProc.

See Also

Printer StartDoc, EndDoc, NewFrame, StartPage

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

StartDoc, EndDoc Commands
Purpose

Starts a new printer job on a printer device.

Syntax

[Printer.]StartDoc name [, o]

[Printer.]EndDoc

name:sexp
o:Variant variable

Description

StartDoc is a method of the Printer object. StartDoc
must be invoked to start a printer job and is used before
StartPage. name can be any text string used to identify
the job. This name will be shown in the Printer Manager of
the operation system during the output. A printer job is
closed by invoking EndDoc.

When used without the Printer object the output must be
redirected first to the printer using Output = .

An output device can be a printer, a fax, a copy machine,
etc. any device, the operating system allow to use as a
printer.

The optional Variant variable o is undocumented and is not
mirrored in the GDI Printer API function of the same name.

Example

OpenW 1
Local h As Handle
Dlg Print Win_1, 40, h
If h <> 0
SetPrinterHDC h
// output to the standard device
Output = Printer : FontSize = 12
StartDoc "test" : StartPage
Print "GFA"
Circle 200, 200, 150
Box 350, 200, 450, 300
EndPage : StartPage
Print "GFA2"
EndPage : EndDoc
Output = Win_1 : Print "Printing finished"

Else
Print "Printing Cancelled"

EndIf

Remarks

StartDoc starts a print job. StartPage prepares the printer
driver to accept data. EndPage informs the device that the
application has finished writing to a page. The printer
spooler realizes the output on the printer. Repeat
StartPage/EndPage for the next page. EndDoc ends a
print job.

When the printer is used a line printer with Lprint, the
printer job is automatically created. Therefore, Lprint ""; is
the same as StartDoc ""/StartPage.

See Also

Printer, StartDoc, EndPage, StartPage

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

StartPage, EndPage
Commands
Purpose

Starts a new page on a printer device.

Syntax

[Printer.]StartPage

[Printer.]EndPage

Description

StartPage is a method of the Printer object. StartPage
must be invoked before printing and is used after a previous
EndPage. An output device can be a printer, a fax, a copy
machine, etc. any device, the operating system allow to use
as a printer.

EndPage is used to mark the end of the page.

Example

OpenW 1
Local h As Handle
Dlg Print Win_1, 40, h
If h <> 0
SetPrinterHDC h
// output to the standard device
Output = Printer : FontSize = 12
StartDoc "test" : StartPage
Print "GFA"

Circle 200, 200, 150
Box 350, 200, 450, 300
EndPage : StartPage
Print "GFA2"
EndPage : EndDoc
Output = Win_1 : Print "Printing finished"

Else
Print "Printing Cancelled"

EndIf

Remarks

StartDoc starts a print job. StartPage prepares the printer
driver to accept data. EndPage informs the device that the
application has finished writing to a page. The printer
spooler realizes the output on the printer. Repeat
StartPage/EndPage for the next page. EndDoc ends a
print job.

See Also

Printer, Page, EndDoc, StartDoc, StartPage

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

NewFrame Command
Purpose

Ends and starts a new page on a printer device.

Syntax

[Printer.]NewFrame

Description

NewFrame is a method of the Printer object. NewFrame
is an old form for EndPage & StartPage. It is advised to
use EndPage/StartPage, rather than NewFrame.

Example

OpenW 1
Local h As Handle
Dlg Print Win_1, 0, h
SetPrinterHDC h
Output = Printer : FontSize = 12
StartDoc "test" : StartPage
Print "GFA"
Circle 200, 200, 150
Box 350, 200, 450, 300
NewFrame ' EndPage : StartPage
Print "GFA2"
EndPage : EndDoc
Output = Win_1

Remarks

StartDoc starts a print job. StartPage prepares the printer
driver to accept data. EndPage informs the device that the
application has finished writing to a page. The printer
spooler realizes the output on the printer. Repeat
StartPage/EndPage for the next page. EndDoc ends a
print job. The Page property returns the current page
number.

See Also

Printer, EndDoc, StartDoc, EndPage, Page, StartPage

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

TextHeight, TextWidth
Method
Purpose

Determines a string's height and width in ScaleMode units.

Syntax

x! = [Object.]TextHeight(a$)

x! = [Object.]TextWidth(a$)

Object:Ocx Object
x!: Single
a$: sexp

Description

Returns the height and width of a character expression with
respect to the average character width for the font of Ocx
object Object. Without a specified Object the current active
output object is used (Form or Printer).

Example

Local a$ = "Hello World", tx%(2, 2)
OpenW 1, , , 400, 200
AutoRedraw = 1
FontName = "Arial" : FontSize = 20
tx(1, 1) = TextHeight(a$), tx(1, 2) =
TextWidth(a$)

ScaleMode = basTwips

tx(2, 1) = TextHeight(a$), tx(2, 2) =
TextWidth(a$)

FontSize = 9
Print "Height in Pixels: "; tx(1, 1)
Print "Width in Pixels: "; tx(1, 2)
Print "Height in Twips: "; tx(2, 1)
Print "Width in Twips: "; tx(2, 2)
FontSize = 20
ScaleMode = basPixels
Line 0, 100, 300, 100
Text 50, 100 - TextHeight(a$) / 2, a$

Remarks

See Also

Form, ScaleMode

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

AbortProc Event (Printer)
Purpose

Sets the application-defined abort function that allows a
print job to be canceled during spooling.

Syntax

Sub Printer_AbortProc(hDC%, error%, Cancel?)

Description

Before you start a print job, you can establish an abort
procedure simply by including Printer_AbortProc sub
event into your GFA-BASIC 32 application. All the necessary
initialization is performed automatically by GFA-BASIC 32..

GDI calls the AbortProc every 2 seconds during a print job
to inform the application of spooler errors and to allow the
application to abort the job when desired. GDI calls the
AbortProc function with information about why it is being
called; this value is either an error code from the spooler or
zero, which indicates that the function is being called simply
to allow an abort.

hDC% Handle to the device context for the print job.

error% Specifies whether an error has occurred. This
parameter is zero if no error has occurred; it is
SP_OUTOFDISK if Print Manager is currently out of disk
space and more disk space will become available if the
application waits.

Cancel?Return TRUE to cancel the print job, or False to
continue.

Example

Lprint
Printer.EndPage ' Error condition
Printer.EndDoc
Do
Sleep

Loop

Sub Printer_AbortProc(hDC%, iError%, Cancel?)
Debug hDC%; iError%
Cancel = 1

EndSub

Remarks

Most applications give the user an opportunity to abort a
print job by providing a dialog box with a cancel button or a
variation on that theme. An application can use several time
slices during a print job to check for a user cancellation of
the printing. When GDI calls the AbortProc function, the
printing process is yielding to the application for exactly
such purposes; this is a good opportunity to check for user
input. When the application itself is performing a time-
intensive operation, it can yield to the abort-checking code
when desired.

When using a Cancel dialog box add DoEvents to the
Printer_AbortProc so that the application can process the
mouse message.

See Also

Printer, AbortDoc

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

AutoNewFrame Event
(Printer)
Purpose

Occurs when the printer needs a form feed as a result of
Lprint, or Print (also Dir, Files) when Output = Printer.

Syntax

Function Printer_AutoNewFrame() As Int

Description

This event is a Function, rather than a Sub. The function
return value (<> 0) can be used to suppress the auto form
feed. The function AutoNewFrame can be used to print
multiple columns by setting Printer.Left and
Printer.Width.

Within this function the Output = Printer.

Example

Print Dir in multiple columns:

Lprint "";
Global Int PrintColumns
Global Int PrintColIndex
Global Float PrintColWidth
PrintColWidth = Printer.TextWidth("XXXXXXXXX.XXX")
PrintColumns = Printer.DefWidth Div PrintColWidth
PrintColIndex = 0

Debug.Print PrintColumns
Printer.Width = PrintColWidth - 4
Local i%
Output = Printer
Dir
Output = Me

Function Printer_AutoNewFrame() As Int
PrintColIndex++
If PrintColIndex >= PrintColumns
PrintColIndex = 0
Printer.Left = Printer.DefLeft
Printer.Width = PrintColWidth - 4
Printer.CurrentY = 0
Printer.CurrentX = 0
Return 0

End If
Printer.Left = PrintColWidth * (PrintColIndex -
1) + Printer.DefLeft

Printer.Width = PrintColWidth - 4
Printer.CurrentY = 0
Printer.CurrentX = 0
Return 1

EndFunc

Print Dir in multiple columns with a page header.

Lprint "";
Global Int PrintColumns
Global Int PrintColIndex
Global Float PrintColWidth
PrintColumns = 5
PrintColWidth = Printer.DefWidth / PrintColumns
PrintColIndex = 0
Printer.Width = PrintColWidth - 4
Printer.Height = 200
Local i%

Output = Printer
For i = 0 To 90 Step 10
Line 0, 0, Printer.Width, i

Next i
CurrentY = 0 : CurrentX = 0
Dir
Output = Me

Function Printer_AutoNewFrame() As Int
Local i%
PrintColIndex++
If PrintColIndex >= PrintColumns
PrintColIndex = 0
NewFrame
Printer.Left = Printer.DefLeft
Printer.Width = PrintColWidth - 4
For i = 0 To 90 Step 10
Line 0, 0, Printer.Width, i

Next i
Printer.CurrentY = 0
Printer.CurrentX = 0
Return 1

End If
Printer.Left = PrintColWidth * PrintColIndex +
Printer.DefLeft

Printer.Width = PrintColWidth - 4
For i = 0 To 90 Step 10
Line 0, 0, Printer.Width, i

Next i
Printer.CurrentY = 0
Printer.CurrentX = 0
Return 1

EndFunc

The automatic Form feed is disabled (always Return 1) and
replaced by a hard coded NewFrame when the number of
columns is exceeds 5.

Remarks

Note The print job should be ended with EndPage/EndDoc
otherwise the spooler file isn't closed before the end of the
program.

The Page property returns the current page number.

See Also

Printer, StartDoc, StartPage, EndPage, Page, EndDoc,
NewFrame

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

SetPrinterHDC and
SetPrinterByName
Commands
Purpose

Sets a printer by its HDC or name.

Syntax

SetPrinterByName p$

SetPrinterHDC h

p$: sexp
h : handle

Description

SetPrinterHDC allows the printer to be set using a printer
object's DC handle. This is particularly useful with the Dlg
Print command.

SetPrinterByName allows for selecting a printer without
using a common dialog box. The printer name p$ must
exist, if not an error is generated. To be sure, use this
command in a Try/Catch structure.

A list of existing printers can be obtained using
App.PrinterCount and App.PrinterName().

Example

Local h As Handle, n As Int32
OpenW 1
FontBold = True : Text 10, 10, "Select a Printer:"
: FontBold = False

Ocx ListBox lb = "", 10, 25, 250, 100
For n = 1 To App.PrinterCount
lb.AddItem App.PrinterName(n), n

Next n
Ocx Command cmd = "Select", 85, 140, 100, 22 :
cmd.Enabled = False

Do : Sleep : Until Win_1 Is Nothing
OpenW Hidden 1
Dlg Print Win_1, 0, h
If h <> 0
SetPrinterHDC h
// For some reason, DeviceName is returned as
blank

Message "Printer Selected:" & #13#10 &
Printer.DeviceName

PrintOut
EndIf
CloseW 1

Sub cmd_Click
SetPrinterByName lb.List(lb.ListIndex)
Message lb.List(lb.ListIndex) & " selected as
current printer"

PrintOut
Win_1.Close

EndSub

Sub lb_Click
If lb.ListIndex <> -1 Then cmd.Enabled = True

EndSub

Sub PrintOut
Output = Printer

StartDoc "Test"
StartPage
FontSize = 12
Print "Success!"
EndPage
EndDoc
Output = Win_1

EndSub

Remarks

The SetPrinter... commands only temporarily select a printer
and do not change which printer is considered default. If
the aim is to change to permamently change the default
printer, a variation on the following code can be used:

Local obj As Object
Set obj = CreateObject("WScript.Network")
~obj.SetDefaultPrinter("EPSON BX305 Plus Series")
Set obj = Nothing

Known Issues

Prior to OCX v2.33/2.34, using SetPrinterByName could
cause a buffer overflow as GFA BASIC 32 did not reserve
enough memory for the information received from some
more modern printers; there is no workaround for this
(barring using Try/Catch to catch the error) so the only fix
is to download the latest version of GfaWin23.ocx.

See Also

Printer, CommDlg, App

{Created by Sjouke Hamstra; Last updated: 04/03/2018 by James Gaite}

PrinterCount, PrinterName,
PrinterInfo Properties (App)
Purpose

These properties enable you to gather information about all
the available printers on the system.

Syntax

%= App.PrinterCount

$ = App.PrinterName(i%)

v = App.PrinterInfo(Printer$, What$)

v:Variant

Description

The PrinterCount property returns the number of printers
available.

The PrinterName(i) property returns the name of the
printer with index i%.

The PrinterInfo(Printer$, What$) property returns the
device mode information What$ of the printer with name
Printer$. Many printer features are device dependent, For
example, not all printers support all paper sizes or support
landscape printing. You have to actually check the
parameters. This device-dependent information is found in
the DEVMODE structure. The What$ parameter takes (some
of) the DEVMODE members as a string and PrinterInfo

returns the value as a Variant. The following entries can be
used for What$:

Dim p$ = App.PrinterName(1)
Trace App.PrinterInfo(p$, "Driver")
Trace App.PrinterInfo(p$, "Orientation")
Trace App.PrinterInfo(p$, "PaperSize")
Trace App.PrinterInfo(p$, "PaperLength")
Trace App.PrinterInfo(p$, "PaperWidth")
Trace App.PrinterInfo(p$, "Copies")
Trace App.PrinterInfo(p$, "Quality")
Trace App.PrinterInfo(p$, "Color")
Trace App.PrinterInfo(p$, "Duplex")
Trace App.PrinterInfo(p$, "PaperBin")

Example

The following code searches all available printers to locate
the first printer with its page orientation set to portrait, then
sets it as the default printer:

Dim pr$, i%
For i = 0 To App.PrinterCount - 1
pr$ = App.PrinterName(i)
Print pr$
If App.PrinterInfo(pr$, "Orientation") = 1
SetPrinterByName pr$
Exit For

EndIf
Next

Remarks

SetPrinterByName implicitly invokes Set Printer =.

GFA-BASIC 32 does not provide a Printers collection,
instead you should use the App properties to enumerate

the printers attached to system.

See Also

App, Printer, SetPrinterByName

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Align, Orientation Property
Purpose

Returns or sets a value that determines whether an object
is displayed in any size anywhere on a form or whether it's
displayed at the top, bottom, left, or right of the form and is
automatically sized to fit the form's width.

Syntax

object.Align [= number]

object2.Orientation [= number]

object:Toolbar, StatusBar, Scroll, Slider, ProgressBar, Form
Ocx Object
object2:Scroll, Slider, ProgressBar
number:iexp

Description

Use the Align property to position an Ocx control or Ocx
Form at the border of its parent. The Orientation property
sets a value (basHorizO or basVertO) that determines
whether the control is oriented horizontally or vertically. The
Align property always overrules the Orientation property,
as well as reseting any changes previously made to Width
or Height.

An Ocx Form can be used in a MDI parent (ParentW),
which only allows Ocx controls that can align themselves to
a border. These are Toolbar, StatusBar, Scroll, Slider,
ProgressBar, and Form Ocx.

The following AlignBarConst values are allowed:

Value AlignBarConst Meaning
0 basNoAlign None - size and location can be

set at design time or in code.
1 basTop Top - object is at the top of the

form, and its width is equal to
the form's ScaleWidth property
setting.

2 basBottom Bottom - object is at the bottom
of the form, and its width is
equal to the form's ScaleWidth
property setting.

3 basLeft Left - object is at the left of the
form, and its width is equal to
the form's ScaleWidth property
setting.

4 basRight Right - object is at the right of
the form, and its width is equal
to the form's ScaleWidth
property setting.

Ocx controls that are aligned at the border of the parent
form (using Align) change the Scale settings of the parent.
ScaleLeft = 0 and ScaleTop = 0 are set to the top-left
pixel of the uncovered client area of the form using
SetViewportOrgEx API. ScaleWidth and ScaleHeight are
set to width and height of the uncovered area. The mouse
coordinates returned from MouseX, MouseY and that are
passed in the forms MouseMove, MouseUp, and
MouseDown events are relative to the new origin.

Example

Debug.Show

ParentW 1
Ocx ToolBar tb
Ocx StatusBar st
Ocx Form ofrm = , , , 200, 10
ofrm.Align = basLeft
Set Me = Win_1
Trace Me.ScaleTop
Trace Me.ScaleLeft
Trace Me.ScaleHeight : Trace _Y
Trace Me.ScaleWidth : Trace _X
Do
Sleep

Until Me Is Nothing

Remarks

The Align property overrules the Orientation property
(Slider).

See Also

Form, ToolBar, StatusBar, Scroll, Slider, ProgressBar

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Appearance Property
Purpose

Returns or sets the paint style of Ocx controls or Form.

Syntax

Object.Appearance [= value]

Object:Ocx Object
value:iexp (0..15)

Description

The Appearance property influences the border of the form
and Ocx controls. The value ranges from 0 to 15, which
represents a combination of 4 bits. Effectively, the following
WS_EX window styles are applied.

Value Bit Style Effect
0 -- Flat
11 WS_EX_CLIENTEDGE Specifies that a

window has a 3D look
- that is, a border
with a sunken edge.

22 WS_EX_WINDOWEDGE Specifies that a
window has a border
with a raised edge.

43 WS_EX_STATICEDGE Creates a window
with a three-
dimensional border
style intended to be

used for items that
do not accept user
input.

84 WS_EX_DLGMODALFRAME Designates a window
with a double border
that may (optionally)
be created with a title
bar when you specify
the WS_CAPTION
style.

The appearance of the OCX can be adjusted further by
setting the BorderStyle property. BorderStyle = 2 draws
a thick border.

For a Label Ocx the Appearance property simply applies
optical effects. Setting the BorderStyle to 2 doubles the
border line.

For a Checkbox Ocx only basFlat (0) and basThreeD (1)
are allowed values for Appearance.

Flat Scroll Bar

By setting the Appearance property, the Scroll OCX is
changed to a flat scroll bar (equivalent to the VB
FlatScrollBar control). The flat scrollbar control is a
mouse-sensitive version of the standard Windows scroll bar
that offers two-dimensional formatting options. It can also
replace the standard Windows three-dimensional scroll bar.
With the FlatScrollBar you can disable either of the scroll
arrows, this provides additional feedback to the user as an
indication to scroll in a particular direction based on other
factors in the program.

Appearance can have following values:

0A normal, non flat scroll bar is displayed. No special visual
effects will be applied (FSB_REGULAR_MODE).

1A standard flat scroll bar is displayed. When the mouse
moves over a direction button or the thumb, that portion of
the scroll bar will be displayed in 3-D
(FSB_ENCARTA_MODE).

2A standard flat scroll bar is displayed. When the mouse
moves over a direction button or the thumb, that portion of
the scroll bar will be displayed in inverted colors
(FSB_FLAT_MODE).

Example

Form test
Me.Appearance = 15
Do : Sleep : Until Me Is Nothing

See Also

Form, BorderStyle

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Cancel, Default Property
(Command)
Purpose

Returns or sets a value indicating whether a command
button is the Cancel or Default button on a form.

Syntax

Command.Cancel [= Boolean]

Command.Default [= Boolean]

Description

Only one Command button on any one form can be the
Cancel button so, when the Cancel property is set to True
for one Command, it's automatically set to False for all
other Command controls on the same form. Similarly with
the Default property: only one Command can have the
Default property set. However, it is possible that one
button can be both the Cancel AND Default control.

A Command button with either of these properties set can
be selected just like any other button: by clicking it or
pressing ENTER when the control has focus. However, in
addition, these Command controls can be activated even
when they do not have the focus by pressing ESC for the
Cancel button and ENTER (if no other Command has the
focus) for the Default.

Example

OpenW 1
Ocx Command cmdOk = "OK", 20, 20, 50 * 2, 14 * 2
.Default = True
Ocx Command cmdCancel = "Cancel", 20, 50, 50 * 2,
14 * 2

.Cancel = True
Do
Sleep

Until Me Is Nothing

Sub cmdOk_Click
MsgBox "OK button selected"

EndSub

Sub cmdCancel_Click
MsgBox "Cancel button selected"
Win_1.Close

EndSub

Remarks

When you have a dialog box with an OK and/or Cancel
button, do not give the keys accelerators. The dialog
manager already has those buttons covered. The hotkey for
the OK button is Enter (since it is the default pushbutton),
and the hotkey for the Cancel button is ESC (since its ID is
IDCANCEL).

Of course that during the lifetime of a dialog box, the
default pushbutton may change, but the principle still
stands: Do not give the OK button a keyboard accelerator.

Finally, don't forget that the recommended minimum size
for pushbuttons is 50 dialog units by 14 dialog units.

See Also

Command

{Created by Sjouke Hamstra; Last updated: 11/10/2017 by James Gaite}

Caption Property
Purpose

Determines the text displayed in the Ocx object.

Syntax

object.Caption [= string]

Description

For a Form, determines the text displayed in the Form's title
bar. When the form is minimized, this text is displayed
below the form's icon.

For a control Caption determines the text displayed in or
next to a control.

You can use the Caption property to assign an access key
to a control. In the caption, include an ampersand (&)
immediately preceding the character you want to designate
as an access key. The character is underlined. Press the ALT
key plus the underlined character to move the focus to that
control. To include an ampersand in a caption without
creating an access key, include two ampersands (&&). A
single ampersand is displayed in the caption and no
characters are underlined.

Example

Ocx Command cmd = "OK", 10, 10, 80, 22
Do : Sleep : Until Me Is Nothing

Sub cmd_Click
cmd.Caption = (cmd.Caption = "OK" ? "Not OK" :
"OK")

EndSub

Remarks

When you create a new object, its default caption is the
default Name property setting. This default caption includes
the object name and an integer, such as Command1 or
Form1. For a more descriptive label, set the Caption
property.

See Also

Form, Text

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Font Property
Purpose

Returns or sets a Font object.

Syntax

object.Font [= font]

object: visible OCX objects

Description

Use the Font property of an object to identify a specific
Font object whose properties you want to use. The Font
property can also be used to assign a new Font object to
the Ocx object. Usually, assigning a new object to an object
variable requires the Set command.

For example, the following code changes the Bold property
setting of a Font object identified by the Font property of a
TextBox object.

Example

OpenW 1 ': Win_1.Font.Name = "Courier New"
Text 10, 10, "This is the native Window font"
Ocx Label lbl = "This is the Label font", 10, 25,
200, 15 : lbl.Font.Name = "Times New Roman"

Ocx Command cmd1 = "Match Font to that of Window",
15, 45, 90, 36 : cmd1.Font.Name = "Arial" :
cmd1.WinStyle = cmd1.WinStyle | BS_MULTILINE

Ocx Command cmd2 = "Make Label Bold", 115, 45, 90,
36 : cmd2.Font.Name = "Arial" : cmd2.WinStyle =
cmd2.WinStyle | BS_MULTILINE

Do : Sleep : Until Win_1 Is Nothing

Sub cmd1_Click
If lbl.FontName = "Times New Roman" //
lbl.Font.Name and lbl.FontName are
interchangeable
Set lbl.Font = Win_1.Font // this copies all
Font characteristics, not just Name and resets
Bold if set, so...

cmd2.Caption = "Make Label Bold"
cmd1.Caption = "Restore original font to Label"

Else
lbl.FontName = "Times New Roman"
cmd1.Caption = "Match Font to that of Window"

EndIf
EndSub

Sub cmd2_Click
If lbl.Font.Bold = True
lbl.FontBold = False // lbl.Font.Bold and lbl.
FontBold are interchangeable

cmd2.Caption = "Make Label Bold"
Else
lbl.Font.Bold = True
cmd2.Caption = "Make Label Normal Weight"

EndIf
EndSub

Remarks

The preferred way to setting font attributes is by using a
particular font attribute property, like FontBold. The
generated code is smaller and faster for each saved dot.

See Also

Font Object, FontBold, FontItalic, FontName, FontSize,
FontStrikethru, FontTransparent, FontUnderline, SetFont.

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

Height, Width Properties
Purpose

Return or set the dimensions of an Ocx object.

Syntax

object.Height [= value]

object.Width [= value]

object:Ocx objects
value:Single exp

Description

The Height and Width properties set the outer dimensions
of an OCX control or Form. The value is specified in pixels.
For OCX controls, the units can be adjusted to the current
scaling of the parent Form. The Form property OcxScale =
True sets the coordinate scheme for the Ocx controls to the
ScaleMode of the Form. By default the ScaleMode =
basPixels (in VB mostly twips).

For the Screen object they return the height and width of
the screen.

For the Printer object the physical dimensions of the paper
set up for the printing device. If set, values in these
properties are used instead of the setting of the PaperSize
property

Example

Form Frm
Do
Sleep

Until Me Is Nothing

Sub Frm_Click ()
With Frm
.Width = Screen.Width * .75 ' Set width
of form.

.Height = Screen.Height * .75 ' Set
height of form.

.Left = (Screen.Width - .Width) / 2 ' Center
form horizontally.

.Top = (Screen.Height - .Height) / 2 ' Center
form vertically.

End With
End Sub

This example sets the size of a form to 75 percent of screen
size and centers the form when it is loaded.

Remarks

See Also

Form, Left, Top, Move, OcxScale, ScaleMode

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

HelpContextID,
WhatsThisHelpID Properties
Purpose

Both properties return or set an associated context number
for an object. Use HelpContextID to provide context-
sensitive Help for your application and use
WhatsThisHelpID to provide context-sensitive Help for
your application using the What's This pop-up in Windows
Help.

Syntax

object.HelpContextID [= number]

object.WhatsThisHelpID [= number]

object:Any Ocx object, except ImageList, Timer and
CommDlg
number:Long exp

Description

The HelpContextID property is used to link a user
interface element (such as a control, form, or menu) to a
related topic in a Help file. The HelpContextID property
must be a Long that matches the Context ID of a topic in a
WinHelp (.hlp) or HTML Help (.chm) file.

The WhatsThisHelpID property stores a value that is used
to provide context-sensitive Help for your application using
the What's This pop-up. What's This Help provides quick

access to Help text in a popup window without the need to
open the Help viewer. It is typically used to provide simple
assistance for user interface elements such as controls. The
property can be used in the OnCtrlHelp event sub which is
invoked when the What's This mouse cursor [?] is clicked on
an Ocx object.

If an object does not have either the HelpContextID or the
WhatsThisHelpID property - all non-Ocx Control objects
for example - then you can try to attach one using retval =
SetWindowContextHelpId(hWnd, HelpContextID), where
hWnd is the handle for the control or object; retval is True if
the API succeeded.

Setting the HelpButton property of a form to True enables
What's This Help.

For displaying help derived from an older WinHelp32.exe
(.hlp) file, you can use the ShowHelp method of the
CommDlg object to execute Windows Help; to access a
newer HTMLHelp file, see the example in Accessing HTML
Help Files.

Example

See the example for OnHelp.

Remarks

When these properties aren't used for a help file IDs, they
can be used as custom 32-bit integer values, like Tag. Tag
is a string property and as such is more time consuming
than a 32-bit integer.

See Also

Form, OnCtrlHelp, Tag, ShowHelp

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Index, Key Property
Purpose

Returns or sets the number or string that uniquely identifies
an object in a collection.

Index returns or sets the number that uniquely identifies a
control or form in an array. Available only if the control or
form is part of a control or form array.

Syntax

Object.Index [= value]

Object.Key [= value]

Object:Form, Animation, Button, CheckBox, ColumnHeader,
ComboBox, Command, Frame, Image, Label, ListBox,
ListImage, ListItem, ListView, MenuItem, MonthView, Node,
Option, Panel, Progress, RichEdit, Scroll, Slider, Tab,
TabStrip, Textbox, Timer, TrayIcon, TreeView, UpDown
Object

Description

Ocx Array - For an Ocx control or form the Index property
returns a number that uniquely identifies the object in a
control or form array.

The control or form array is a group of controls or forms
that share common names, types, and event procedures.
Each control or form has a unique index. When a control or
form in the array recognizes an event, it calls the event

procedure for the group and passes the index as an
argument, allowing your code to determine which control or
form recognized the event. For example:

OpenW 44
Ocx Command cmd(1) = "But1", 10, 10, 50, 20
Ocx Command cmd(289) = "But289", 10, 40, 50, 20
Print Form(44).Index // = 0 Doesn't return 44 as
expected

Print cmd(289).Index // = 289
Do : Sleep : Until Form(44) Is Nothing

Sub cmd_Click(Index%)
Message "Index No:" & Index% & #13#10 & "Form
Index:" & Me.Index

EndSub

Collections - For collections the Index property returns the
value of the order of the object in the collection. The Index
property is set by default to the order of the creation of
objects in a collection. The index for the first object in a
collection will always be one (1). The order of an object can
change when objects in the collection are reordered, such
as when you set the Sorted property to True. If you expect
the Index property to change dynamically, it may be more
useful to refer to objects in a collection by using the Key
property.

The Key property returns or sets a string that uniquely
identifies a member in a collection. You can set the Key
property when you use the Add method to add an object to
a collection, but you can change the name afterwards.

Example

Global Enum sbrText = 0, sbrFlat, sbrRaise,
sbrCaps, sbrNum, sbrScroll, sbrIns, sbrDate

Dim p As Panel
Ocx StatusBar sb
sb.Panels.Add , "Part1", "Part 1", sbrText
sb.Panels.Add , "Caps", "Caps", sbrCaps
sb.Panels.Add , "Num", "Num", sbrNum
sb.Panels.Add , "Scroll", "Scroll", sbrScroll
sb.Panels.Add , "INS", "INS", sbrIns
sb.Panels.Add , "Date", "c", sbrDate
sb.Item("Date").Text = "AM/PM"
For Each p In sb
Print p.Key, p.Index

Next

See Also

Form, Animation, Button, CheckBox, ColumnHeader,
ComboBox, Command, Frame, Image, Label, ListBox,
ListImage, ListItem, ListView, MenuItem, MonthView, Node,
Option, Panel, Progress, RichEdit, Scroll, Slider, Tab,
TabStrip, Textbox, Timer, TrayIcon, TreeView, UpDown

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

WinStyle, PushLike,
ThreeState, Value Properties
Purpose

WinStyle returns or sets the window style of a Command,
Option, and CheckBox.

PushLike returns or sets the pushed style state of a
Command, Option, or CheckBox.

ThreeState returns or sets the BS_3STATE of a CheckBox.

Value returns or sets the state of the control.

Syntax

object.WinStyle [= value]

object.PushLike [= boolean]

object.ThreeState [= boolean]

object.Value [= long]

object:Ocx object

Description

Returns or sets the actual windows style of the control. For
Command, Option, and CheckBox controls the WS_*
window style API constants and the BS_* button styles can
be used.

The PushLike property sets the BS_PUSHLIKE style and
makes a button (such as a check box, three-state check
box, or radio button) look and act like a push button. The
button looks raised when it isn't pushed or checked, and
sunken when it is pushed or checked.

The ThreeState property sets the BS_3STATE button style
and creates a check box that can be grayed as well as
checked or unchecked. Use the grayed state to show that
the state of the check box is not determined.

The Value property can have the following values:

- CheckBox control - 0 is Unchecked (default), 1 is
Checked, and 2 is Grayed (dimmed).

- Command control - 1 indicates the button is chosen; 0
(default) indicates the button isn't chosen. Setting the
Value property to 1 in code invokes the button's Click
event.

- Option control - 1 indicates the button is selected; 0
(default) indicates the button isn't selected

Example

Ocx Command cmd = "This is a"#10"Multiline
Button", 10, 10, 140, 40 : cmd.WinStyle =
cmd.WinStyle | BS_MULTILINE

Ocx CheckBox chk = "This is a 3-State CheckBox",
10, 60, 200, 14 : chk.ThreeState = True :
chk.Value = 2

Ocx Option opt1 = "This is a normal Option
control", 10, 90, 200, 14 : .Value = 1

Ocx Option opt2 = "This is a PushLike Option
control", 10, 105, 200, 22 : opt2.PushLike = True

Do : Sleep : Until Me Is Nothing

Remarks

Be careful, changing window styles is not always without
errors.

See Also

Command, CheckBox, Option

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

TabStop Property
Purpose

Returns or sets a value indicating whether a user can use
the TAB key to give the focus to an object.

Syntax

object.TabStop [= boolean]

object:Ocx object

Description

Designates the object as a tab stop (default). When set to
False the object is bypassed when the user is tabbing,
although the object still holds its place in the actual tab
order, as determined by Ocx View window.

Example

Ocx Command cmd1 = "Tab Stop", 10, 10, 120, 22
Ocx Command cmd2 = "No Tab Stop", 140, 10, 120, 22
: .TabStop = False

Ocx Command cmd3 = "Tab Stop Again", 270, 10, 120,
22

Ocx Command cmd4 = "Close Window"#10"No Tab Stop",
140, 50, 120, 40 : .TabStop = False : .WinStyle =
.WinStyle | BS_MULTILINE

Do : Sleep : Until Me Is Nothing

Sub cmd4_Click
Me.Close

EndSub

See Also

Form

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Text, TextLength Property
Purpose

Text returns or sets the text contained in an object.
TextLength returns the number of characters in a
RichEdit control.

Syntax

Object.Text [= a$]

% = RichEdit.TextLength

Object:Ocx Object
x!: Single
a$: sexp

Description

RichEdit and TextBox control the value specifies the
text appearing in the control.

ComboBox control (Style property set to 0 [Dropdown
Combo] or to 1 [Simple Combo]) - returns or sets the
text contained in the edit area. ComboBox control
(Style property set to 2 [Dropdown List]) and ListBox
control - returns the selected item in the list box; the
value returned is always equivalent to the value
returned by the expression List(ListIndex).

The TextLength is a RichEdit property returning the
current number (Long) of characters in the control.

Example

OpenW 1 : AutoRedraw = 1
Ocx RichEdit red = "", 10, 10, 300, 400 :
.MultiLine = True : .BorderStyle = 1

red.SelColor = 255 : red.SelText = "Hello " :
red.SelColor = 0 : red.SelText = "World"

Text 320, 10, "Text Length: " & red.TextLength
Text 320, 30, "Plain Text:"
Ocx Label lbl = "", 320, 45, 300, 300 : .MultiLine
= True : lbl.Text = red.Text

Do : Sleep : Until Me Is Nothing

Sub red_Change
Text 320, 10, "Text Length: " & red.TextLength &
Space(5)

If Not lbl Is Nothing Then lbl.Text = red.Text
EndSub

See Also

ComboBox, ListBox, TextBox, RichEdit, Command,
Option, CheckBox, Frame, Label, MenuItem, Node,
Panel, ListItem, ColumnHeader, Tab

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

ToolTipText Property
Purpose

Specifies the text that appears as a ToolTip for an Ocx
control. Available at design time and run time.

Syntax

Object.ToolTipText = Txt

Object:Ocx Object
Txt:sexp

Description

Specifies the text to use for the ToolTip. When the
ToolTipText is assigned a value, a tooltip will be displayed
when the mouse hovers over the object. The maximum
number of characters you can specify for Txt$ is 79.

Example

OpenW Center 1, , , 300, 120
Local Int32 x = (300 - (Screen.cxFrame * 2) - 120)
/ 2, y = (120 - (Screen.cyFrame * 2) -
Screen.cyCaption - 22) / 2

Ocx Command cmd = "OK", x, y, 120, 22 :
cmd.ToolTipText = "Press to close window"

Do : Sleep : Until Win_1 Is Nothing

Sub cmd_Click
Win_1.Close

EndSub

Remarks

You can use this property to explain each object with a few
words.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Visible Property
Purpose

Returns or sets a value indicating whether an object is
visible or hidden.

Syntax

object.Visible [= boolean]

object:Ocx object

Description

To hide an object at startup, set the Visible property to
False at design time. Setting this property in code enables
you to hide and later redisplay a control at run time in
response to a particular event.

Example

OpenW 1, 10, 10, 300, 200 : TitleW 1, "Window 1"
Ocx CheckBox chk = "Show Window 2", 10, 10, 120,
14

Ocx Label lbl = "Window 2 is Invisible", 10, 30,
120, 14

OpenW Hidden 2, 320, 10, 300, 200 : TitleW 2,
"Window 2"

Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1 : CloseW 2

Sub chk_Click

Win_2.Visible = -chk.Value
lbl.Caption = "Window 2 is " & (Visible?
(Win_2.hWnd) ? "Visible" : "Invisible")

EndSub

Remarks

Using the Show or Hide method on a form is the same as
setting the form's Visible property in code to True or
False, respectively.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

DoClick Method
Purpose

The DoClick method emulates a mouse click.

Syntax

object.DoClick

Object:Form, Command, Option, CheckBox, RichEdit,
TextBox Ocx

Description

Emulates a mouse click in the named Ocx objects.

Example

Ocx Command cmd1 = "Click Me...", 10, 10, 100, 22
Ocx Command cmd2 = "...to Activate Me", 120, 10,
100, 22

Global cmdclick As Byte
Do : Sleep : Until Me Is Nothing

Sub cmd1_Click
cmdclick = 1 : cmd2.DoClick

EndSub

Sub cmd2_Click
If cmdclick = 1 Then Message "Button 2 activated
by Button 1"

cmdclick = 0
EndSub

See Also

Form, Command, Option, CheckBox, RichEdit, TextBox

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

Move and Center Methods
Purpose

Moves a Form or Ocx control.

Syntax

Object.Move [left] [, top] [, width] [, height]

Object.Center [hWnd]

left, top, width, height:Single exp
hWnd:Handle exp

Description

For Forms the coordinate system is always in twips. Moving
a form on the screen is always relative to the origin (0,0),
which is the upper-left corner. When moving a control on a
Form object (or an MDI child form on an MDI Form object),
the coordinate system of the container object is used. The
coordinate system or unit of measure is set with the
ScaleMode property at design time. You can change the
coordinate system at run time with the Scale method.

The Center method centers the form on the screen, or
when specified in the center of another window hWnd. In
the Form Editor a form can be centered by setting the
StartupMode = 1.

Example

Form frm1 = "SDI", 20, 20, 300, 300

frm1_Load ' Only LoadForm executes _Load
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click
frm1.Center Screen.hWnd

EndSub

Sub frm1_Load
ScaleMode = basPixels
BackColor = col3DFace
Ocx TreeView tv1
.BackColor = frm1.BackColor
Ocx ListView lvw1
.BackColor = frm1.BackColor
Ocx Command cmd1 = "Centre"
frm1_ReSize

EndSub

Sub frm1_ReSize
If IsNothing(tv1) Then Exit Sub
tv1.Move 0, 0, ScaleWidth / 3, ScaleHeight
lvw1.Move ScaleWidth / 3 , 40, ScaleWidth -
ScaleWidth / 3, ScaleHeight

cmd1.Move ScaleWidth / 3 + 10, 10, 100, 22
EndSub

Draws two Ocx controls inside a Form, a TreeView covering
1/3 of the client area and a ListView 2/3 with a command
button towards the top of the screen. The ScaleMode is set
to pixels. The Resize event sub is responsible for placing the
controls using the current scaling mode and by clicking the
command button, you can centre the form within the
desktop.

Remarks

The coordinate system or unit of measure is set with the
ScaleMode property at design time. You can change the
coordinate system at run time with the Scale or
ScaleMode method. For forms it is always twips.

Note on Center: Using Form.Center Screen.hWnd centres
the object within the screen regardless of where the taskbar
is; this is different to the Center parameter used with
OpenW which centres a form within the area of the screen
not covered by the taskbar. This is shown better by the
example below:

OpenW 1, 10, 10, 160, 140
Ocx Command cmd = "Open centred window", 10, 10,
125, 36 : cmd.WinStyle = cmd.WinStyle |
BS_MULTILINE

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Static act
Select act
Case 0 : OpenW Center 2, , , 100, 100 :
cmd.Caption = "Open new window and Centre
manually"

Case 1 : OpenW 3, 0, 0, 100, 100 : Win_3.Center
Screen.hWnd : cmd.Caption = "Close all windows"

Case 2 : CloseW 3 : CloseW 2 : CloseW 1
EndSelect
Inc act

EndSub

See Also

Form, Left, Top, Width, Height

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

Refresh Method
Purpose

Forces a complete repaint of a form or control.

Syntax

Object.Refresh

Object:Ocx Object

Description

Generally, painting a form or control is handled
automatically while no events are occurring. However, there
may be situations where you want the form or control
updated immediately.

Refresh invokes the UpdateWindow API function to send the
object a WM_PAINT message if the window's update region
is not empty. The function sends a WM_PAINT message
directly to the window procedure of the specified window,
bypassing the application queue. If the update region is
empty, no message is sent.

Example

OpenW 1
Box 10, 10, 100, 100
Win_1.Refresh

Remarks

See Also

Form

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

SetFocus Method
Purpose

Moves the focus to the specified control or form.

Syntax

object.SetFocus

object:Ocx Object

Description

The object must be a Form object, or an Ocx control that
can receive the focus. After invoking the SetFocus method,
any user input is directed to the specified form or control.

You can only move the focus to a visible form or control.
Because a form and controls on a form aren't visible until
the form's Load event has finished, you can't use the
SetFocus method to move the focus to the form being
loaded in its own Load event unless you first use the Show
method to show the form before the Form_Load event
procedure is finished.

You also can't move the focus to a form or control if the
Enabled property is set to False. If the Enabled property
has been set to False at design time, you must first set it
to True before it can receive the focus using the SetFocus
method.

Example

Ocx TextBox tb = "", 10, 10, 140, 14 :
.BorderStyle = 1 : .Text = "TextBox" : .ReadOnly
= True

Ocx Command cmd = "Command Button", 160, 10, 140,
22

Ocx Option opt(0) = "Give Focus to TextBox", 10,
40, 180, 14 : opt(0).Value = 1

Ocx Option opt(1) = "Give Focus to Command
Button", 10, 56, 180, 14

tb.SetFocus
Do : Sleep : Until Me Is Nothing

Sub opt_Click(Index%)
If Index% = 0 : tb.SetFocus
Else : cmd.SetFocus
EndIf

EndSub

See Also

Form

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ZOrder Method
Purpose

Places a specified Form, or Ocx control at the front or back
of the z-order within its graphical level.

Syntax

object.ZOrder [position = 0]

object:Ocx Object
position:iexp

Description

The position parameter is optional, it indicates the position
of object relative to other instances of the same object. If
position is 0 or omitted, object is positioned at the front of
the z-order. If position is 1, object is positioned at the back
of the z-order.

Example

OpenW 1, 10, 10, 300, 200 : TitleW 1, Win_1.Name :
Win_1.AutoRedraw = 1

Ocx Command cmd(1) = "Put to Back", 10, 10, 120,
22

OpenW 2, 100, 100, 300, 200 : TitleW 2, Win_2.Name
: Win_2.AutoRedraw = 1

Ocx Command cmd(2) = "Put to Back", 10, 10, 120,
22

Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1 : CloseW 2

Sub cmd_Click(Index%)
If Index% = 1 Then Win_1.ZOrder 1
If Index% = 2 Then Win_1.ZOrder 0

EndSub

Remarks

The z-order of objects can be set at design time by
choosing the Bring To Front or Send To Back context menu
commands. (Right click on an object)

See Also

Form, Arrange

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Click Event
Purpose

Occurs when the user presses and then releases a mouse
button over an object. It can also occur when the value of a
control is changed.

Syntax

Sub object_Click([index As Integer])

object:Ocx Object
index:iexp

Description

For a Form object, this event occurs when the user clicks
either a blank area or a disabled control. For a control, this
event occurs when the user:

- Clicks a control with the left or right mouse button. With a
CheckBox, Command, ListBox, or Option control, the
Click event occurs only when the user clicks the left mouse
button.

- Selects an item in a ComboBox or ListBox control, either
by pressing the arrow keys or by clicking the mouse button.

- Presses the SPACEBAR when a Command, Option, or
CheckBox control has the focus.

- Presses ENTER when a form has a Command control with
its Default property set to True.

- Presses ESC when a form has a Cancel button - a
Command control with its Cancel property set to True.

- Presses an access key for a control. For example, if the
caption of a Command control is "&Go", pressing ALT+G
triggers the event.

You can also trigger the Click event in code by:

- Setting a Command control's Value property to True.

- Setting an Option control's Value property to True.

- Changing a CheckBox control's Value property setting.

You can use a control's Value property to test the state of
the control from code. Clicking a control generates
MouseDown and MouseUp events in addition to the Click
event. The order in which these three events occur varies
from control to control. For example, for ListBox and
Command controls, the events occur in this order:
MouseDown, Click, and MouseUp. But for a Label control,
the events occur in this order: MouseDown, MouseUp, and
Click.

Example

Form frm1 = "(Dbl)Click Event", 20, 20, 300, 300
Ocx Command cmd(1) = "cmd1", 10, 10, 80, 24
Ocx Command cmd(2) = "cmd2", 10, 40, 80, 24
Ocx Command cmd(3) = "cmd3", 10, 70, 80, 24
Do
Sleep

Until Me Is Nothing

Sub cmd_Click(Index%)
Text 100, 30, "Click at " + Str(Index)

EndSub

Sub cmd_DblClick(Index%)
Text 100, 30, "DblClick at " + Str(Index)

EndSub

Remarks

When you're attaching event procedures for these related
events, be sure that their actions don't conflict. If the order
of events is important in your application, test the control to
determine the event order.

If there is code in the Click event, the DblClick event will
never trigger, because the Click event is the first event to
trigger between the two. As a result, the mouse click is
intercepted by the Click event, so the DblClick event doesn't
occur.

To distinguish between the left, right, and middle mouse
buttons, use the MouseDown and MouseUp events.

See Also

Form, DblClick, MouseDown, MouseDblClick

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

DblClick Event
Purpose

Occurs when the user presses and releases a mouse button
and then presses and releases it again over an object.

Syntax

Sub object_DblClick ([index As Integer])

object:Ocx Object
index:iexp

Description

For a form, the DblClick event occurs when the user double-
clicks a disabled control or a blank area of a form. For a
control, it occurs when the user:

Double-clicks a control with the left mouse button.
Double-clicks an item in a ComboBox control whose

Style property is set to 1 (Simple) or in a ListBox.

The argument Index uniquely identifies a form or control if
it's in a form or control array. You can use a DblClick event
procedure for an implied action, such as double-clicking an
icon to open a window or document. You can also use this
type of procedure to carry out multiple steps with a single
action, such as double-clicking to select an item in a list box
and to close the dialog box.

Example

Form frm1 = "(Dbl)Click Event", 20, 20, 300, 300
Ocx Command cmd(1) = "cmd1", 10, 10, 80, 24
Ocx Command cmd(2) = "cmd2", 10, 40, 80, 24
Ocx Command cmd(3) = "cmd3", 10, 70, 80, 24
Do
Sleep

Until Me Is Nothing

Sub cmd_Click(Index%)
Text 100, 30, "Click at " + Str(Index)

EndSub

Sub cmd_DblClick(Index%)
Text 100, 30, "DblClick at " + Str(Index)

EndSub

Remarks

For those objects that receive Mouse events, the events
occur in this order: MouseDown, MouseUp, Click, DblClick,
and MouseUp.

To distinguish between the left, right, and middle mouse
buttons, use the MouseDblClick event.

See Also

Form, MouseDown, MouseDblClick, Click

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

GotFocus, LostFocus Events
Purpose

Occurs when an object receives or loses the focus
respectively. The focus is shifted either by user action, such
as tabbing to or clicking the object, or by changing the
focus in code using the SetFocus method. A form receives
the focus only when all visible controls are disabled or when
it is explicitly given the focus.

Syntax

Sub object_GotFocus([index%])

Sub object_LostFocus([index%])

object:Ocx Object
index%iexp

Description

Typically, you use a GotFocus event procedure to specify
the actions that occur when a control or form first receives
the focus. For example, by attaching a GotFocus event
procedure to each control on a form, you can guide the user
by displaying brief instructions or status bar messages. You
can also provide visual cues by enabling, disabling, or
showing other controls that depend on the control that has
the focus.

A LostFocus event procedure is primarily useful for
verification and validation updates. Using LostFocus can
cause validation to take place as the user moves the focus

from the control. Another use for this type of event
procedure is enabling, disabling, hiding, and displaying
other objects as in a GotFocus event procedure. You can
also reverse or change conditions that you set up in the
object's GotFocus event procedure.

index% - An integer that uniquely identifies a form or
control if it's in a form or control array.

Example

Form frm1 = "Key Events", 20, 20, 300, 300
Ocx TextBox txt(1) = , 10, 10, 150, 40
txt(1).BorderStyle = 1
Ocx TextBox txt(2) = , 10, 70, 150, 40
txt(2).BorderStyle = 1
Do
Sleep

Until Me Is Nothing

Sub txt_GotFocus(Index%)
' Show focus with red.
txt(Index).BackColor = RGB(255, 0, 0)

End Sub

Sub txt_LostFocus(Index%)
' Show loss of focus with blue.
txt(Index).BackColor = RGB(0, 0, 255)

End Sub

Remarks

An object can receive the focus only if it's Enabled and
Visible properties are set to True. To customize the
keyboard interface in GFA-BASIC 32 for moving the focus,
set the tab order by rearranging the controls using the 'Ocx

Overview' window or specify access keys for controls on a
form.

See Also

Form, Activate, Enabled, SetFocus

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

KeyDown, KeyUp Events
Purpose

Occur when the user presses (KeyDown) or releases
(KeyUp) a key while an object has the focus.

Syntax

Sub object_KeyDown([index%,] Code&, Shift&)

Sub object_KeyUp([index%,] Code&, Shift&)

object :Ocx Object
index :iexp
Code&, Shift& :Short exp

Description

The KeyDown and KeyUp event syntaxes have these parts:

index% - An integer that uniquely identifies a control or
form if it's in an array.

Code& - A key code, such as VK_F1 (the F1 key) or
VK_HOME (the HOME key). To specify key codes, use the
API VK_* constants. For a comprehensive list of key codes,
see Key Codes and ASCII Values.

shift& - An integer that corresponds to the state of the
SHIFT, CTRL, and ALT keys at the time of the event. The
shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2).

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Shift 1
Control 2
Alt 4

These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are pressed.
For example, if both CTRL and ALT are pressed, the value of
shift is 6.

KeyDown and KeyUp aren't invoked for:

- The ENTER key if the form has a Command control with
the Default property set to True.

- The ESC key if the form has a Command control with the
Cancel property set to True.

- The TAB key.

KeyDown and KeyUp interpret the uppercase and
lowercase of each character by means of two arguments:
keycode, which indicates the physical key (thus returning A
and a as the same key) and shift, which indicates the state
of shift + key and therefore returns either A or a.

Example

Form frm1 = "KeyDown, KeyUp Events", 20, 20, 300,
300

Do
Sleep

Until Me Is Nothing

Sub frm1_KeyDown(Code&, Shift&)
Print "KeyDown - Code& = "; Code&

If Shift& And 1
Print "Shift pressed"

Else If Shift& And 2
Print "Ctrl pressed"

Else If Shift& And 4
Print "Alt pressed"

EndIf
EndSub

Sub frm1_KeyUp(Code&, Shift&)
Print "KeyUp - Code& = "; Code&
If Shift& And 1
Print "Shift pressed"

Else If Shift& And 2
Print "Ctrl pressed"

Else If Shift& And 4
Print "Alt pressed"

EndIf
EndSub

Remarks

Use the Screen_KeyPreview event to create global
keyboard-handling routines. This event sub receives these
events before controls or the form receives the events.

Known Issues

According to previous documentation, by setting Code& to
0, the keypress would then be ignored; this does not
happen.

To cancel the input from the keyboard, there are two
methods available:

1. Use the Screen_KeyPreview event to catch the key
combination early. Then, once you have processed it,

set Cancel? to True.
2. To cancel a simple keypress - let's say you want to

disable the letter 'A' on the keyboard - use the older
Keypress event as below:

OpenW 1 : Win_1.PrintWrap = True : FontName =
"courier new"

Do : Sleep : Until Win_1 Is Nothing

Sub Win_1_KeyPress(Ascii&)
If Chr(Ascii&) = "A" Or Chr(Ascii&) = "a"
Ascii& = 0

Else
Print Chr(Ascii&);

EndIf
EndSub

3. However, to intercept and cancel a more complex
combination such as Ctrl-V (which is used to paste text
in textboxes), a combination of KeyDown and
Keypress is required as shown below.

Global diskey?, disv?
OpenW 1
Ocx TextBox tb = "", 10, 10, 200, 150 :
.MultiLine = True : .BorderStyle = 1

Ocx Command cmd = "Disable Ctrl-V", 230, 10,
100, 22

Clipboard.SetText "GFA Basic "
tb.SetFocus
Do : Sleep : Until Win_1 Is Nothing

Sub cmd_Click
Local tbss As Int32 = tb.SelStart // Stores
Textbox Caret position

If disv? Then cmd.Caption = "Disable Ctrl-V"

If Not disv? Then cmd.Caption = "Enable Ctrl-
V"

disv? = Not disv?
tb.SetFocus // Returns
focus to Textbox

tb.SelStart = tbss // Replaces
the caret where it was

EndSub

Sub tb_KeyDown(Code&, Shift&)
Debug Code&
If disv? // If Ctrl-V is
disabled
If Shift& = 2 And Code& = 86 // If Ctrl-V
pressed
diskey? = True // Disable
Keypress

EndIf
EndIf

EndSub

Sub tb_KeyPress(Ascii&)
If diskey?
Ascii& = 0 // Cancels the keypress
diskey? = False // Resets the diskey?
flag

EndIf
EndSub

On occasions when using the example above with
different 'shift key' combinations, the key press after
the disqualified key combination may be ignored or not
printed; if this happens, insert 'diskey? =
False' as the first line of the KeyDown sub.

See Also

Form, KeyPress, Screen_KeyPreview

{Created by Sjouke Hamstra; Last updated: 01/03/2017 by James Gaite}

KeyPress Event
Purpose

Occur when the user presses and releases an ANSI key.

Syntax

Sub object_KeyPress([index%,] Ascii&)

object:Ocx Object
index:iexp
Ascii&Short exp

Description

The KeyPress event syntax has these parts:

index%An integer that uniquely identifies a control or form
if it's in an array.

Ascii&An integer that returns a standard numeric ANSI
keycode. Ascii& is passed by reference; changing it sends a
different character to the object. For a full list of ASCII and
ANSI (Windows 1252) values, see Key Codes and ASCII
Values.

Changing Ascii& to 0 cancels the keystroke so the object
receives no character.

Changing the value of the Ascii& argument changes the
character displayed.

Example

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Form frm1 = "Key Press", 20, 20, 300, 300 :
.FontName = "courier new"

Do
Sleep

Until Me Is Nothing

Sub frm1_KeyPress(Ascii&)
// Converts any key pressed to upper case
Local ch$ = Upper(Chr(Ascii&))
Ascii& = Asc(ch$)
Print ch$;

EndSub

Remarks

Use KeyDown and KeyUp event procedures to handle any
keystroke not recognized by KeyPress, such as function
keys, editing keys, navigation keys, and any combinations
of these with keyboard modifiers. Unlike the KeyDown and
KeyUp events, KeyPress doesn't indicate the physical state
of the keyboard; instead, it passes a character.

Use the Screen_KeyPreview event to create global
keyboard-handling routines. This event sub receives these
events before controls or the form receives the events.

See Also

Form, KeyUp, KeyDown, Screen_KeyPreview

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

MouseDown, MouseUp
Events
Purpose

Occur when the user presses (MouseDown) or releases
(MouseUp) a mouse button.

Syntax

Sub Object_MouseDown([index%,] button&, shift&, x!,
y!)

Sub Object_MouseUp([index%,] button&, shift&, x!, y!)

Object : Ocx Object
button&, shift& : Short integer exp
x!, y! : Single exp

Description

ObjectReturns an Ocx object expression.

index% Returns an integer that uniquely identifies a
form or control if it's in a form or control array.

button& Returns an integer that identifies the button
that was pressed (MouseDown) or released
(MouseUp) to cause the event. The button
argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to
the values 1, 2, and 4, respectively. Only one of

the bits is set, indicating the button that caused
the event.

shift& Returns an integer that corresponds to the state
of the SHIFT, CTRL, and ALT keys when the
button specified in the button argument is
pressed or released. A bit is set if the key is
down. The shift argument is a bit field with the
least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT
key (bit 2). These bits correspond to the values
1, 2, and 4, respectively. The shift argument
indicates the state of these keys. Some, all, or
none of the bits can be set, indicating that
some, all, or none of the keys are pressed. For
example, if both CTRL and ALT were pressed,
the value of shift would be 6.

x!, y! Returns a number that specifies the current
location of the mouse pointer. The x and y
values are always expressed in terms of the
coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop
properties of the object.

Use a MouseDown or MouseUp event procedure to
specify actions that will occur when a given mouse button is
pressed or released. Unlike the Click and DblClick events,
MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse
buttons. You can also write code for mouse-keyboard
combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Ocx controls that are aligned at the border of the parent
form (using Align) change the Scale settings of the parent.
ScaleLeft and ScaleTop are set to the top-left pixel of the

uncovered client area of the form. ScaleWidth and
ScaleHeight are set to width and height of the uncovered
area. The mouse coordinates returned from MouseX,
MouseY and that are passed in the forms MouseMove,
MouseUp, and MouseDown events are relative to the new
origin.

Example

OpenW # 1 : FontName = "courier new"
Do
Sleep

Until Win_1 Is Nothing

Sub Win_1_MouseDown(Button&, Shift&, x!, y!)
Print AT(1, 1); "Mouse Down"

EndSub

Sub Win_1_MouseUp(Button&, Shift&, x!, y!)
Print AT(1, 1); Space(10)

EndSub

Remarks

The following applies to both Click and DblClick events:

If a mouse button is pressed while the pointer is over a
form or control, that object "captures" the mouse and
receives all mouse events up to and including the last
MouseUp event. This implies that the x, y mouse-
pointer coordinates returned by a mouse event may not
always be in the internal area of the object that receives
them.
If mouse buttons are pressed in succession, the object
that captures the mouse after the first press receives all
mouse events until all buttons are released.

See Also

Form, Click, DblClick, MouseMove

{Created by Sjouke Hamstra; Last updated: 02/03/2018 by James Gaite}

MouseMove Event
Purpose

Occurs when the user moves the mouse.

Syntax

Sub Object_MouseMove([index%,] button&, shift&, x!, y!)

Object:Ocx Object
button&, shift&:Short integer exp
x!, y!:Single exp

Description

Object - Returns an Ocx object expression.

index% - Returns an integer that uniquely identifies a form
or control if it's in a form or control array.

button - Returns an integer that identifies the button that
was pressed (MouseDown) or released (MouseUp) to cause
the event. The button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1),
and middle button (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift - Returns an integer that corresponds to the state of
the SHIFT, CTRL, and ALT keys when the button specified in
the button argument is pressed or released. A bit is set if
the key is down. The shift argument is a bit field with the
least-significant bits corresponding to the SHIFT key (bit 0),

the CTRL key (bit 1), and the ALT key (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. The shift
argument indicates the state of these keys. Some, all, or
none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL
and ALT were pressed, the value of shift would be 6.

x, y - Returns a number that specifies the current location
of the mouse pointer. The x and y values are always
expressed in terms of the coordinate system set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties of the object.

The MouseMove event is generated continually as the
mouse pointer moves across objects. Unless another object
has captured the mouse, an object recognizes a
MouseMove event whenever the mouse position is within
its borders.

Ocx controls that are aligned at the border of the parent
form (using Align) change the Scale settings of the parent.
ScaleLeft and ScaleTop are set to the top-left pixel of the
uncovered client area of the form. ScaleWidth and
ScaleHeight are set to width and height of the uncovered
area. The mouse coordinates returned from MouseX,
MouseY and that are passed in the forms MouseMove,
MouseUp, and MouseDown events are relative to the new
origin.

Example

OpenW # 1 : FontName = "courier new"
// This next line replaces the mouse position co-
ordinates ...

// ...printed in the default font when win_1 was
opened and before...

// ...the fontname setting was enacted.
Win_1_MouseMove(0, 0, MouseX, MouseY)
Do
Sleep

Until Me Is Nothing

Sub Win_1_MouseMove(Button&, Shift&, x!, y!)
Print AT(1, 1); "Mouse Position: "; x!; " : ";
y!; Space(10)

EndSub

Remarks

See Also

Form, Click, DblClick, MouseDown

{Created by Sjouke Hamstra; Last updated: 19/10/2014 by James Gaite}

Alignment Property
Purpose

Returns or sets a value that determines the text alignment
in an object.

Syntax

object.Alignment [= number]

object:Label, TextBox, Panel Ocx Object
number:iexp

Description

For Label, TextBox, and Panel objects, the settings for
number are:

Constant Setting Description
basLeftJustify 0 (Default) Text is left-aligned.
basRightJustify 1 Text is right-aligned.
basCenter 2 Text is centered.

Example

lbl1.Alignment = basCenter

See Also

Label, TextBox, Panel

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

BorderStyle Property
Purpose

Returns or sets the border style for an object.

Syntax

object.BorderStyle = [value]

object:Ocx Object
valueBorderStyleConst

Description

For a form, the BorderStyle property determines key
characteristics that visually identify a form as either a
general-purpose window or a dialog box. The value can be
one of the following BorderStyleConst:

basNone (0) no border and no caption (Form
only)

basFixedSingle (1) simple border (WS_BORDER)
basThick (2) double border (WS_THICKFRAME)

The form's SizeAble property affects the BorderStyle
property and sets it to basThick.

Example

Ocx Label lbl = "No Border", 10, 10, 100, 16
Ocx Command cmd = "Add Single Border", 10, 35,
100, 22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Static Byte cond = 0
Inc cond : If cond = 3 Then cond = 0
lbl.BorderStyle = cond
Select cond
Case 0 : cmd.Caption = "Add Single Border"
Case 1 : cmd.Caption = "Add Double Border"
Case 2 : cmd.Caption = "Remove Border"
EndSelect

EndSub

Remarks

The BorderStyle is a property for all visible Ocx objects.

Known Issues

With TextBoxes, the positioning of the BorderStyle
property is important. In the example below, clicking the
command button will set the border to double width
(incorrect behaviour).

Ocx TextBox tb = "", 10, 10, 300, 32 :
tb.BorderStyle = 1 : tb.MultiLine = True

Ocx Command chk = "Set TextBox border to 1", 10,
50, 150, 22

Do : Sleep : Until Me Is Nothing

Sub chk_Click
tb.BorderStyle = 1

EndSub

However, if you place the BorderStyle property change
AFTER Multiline, then clicking the command button no
longer doubles the width of the border.

See Also

Form, Appearance, SizeAble

{Created by Sjouke Hamstra; Last updated: 19/03/2015 by James Gaite}

MultiLine, MaxLength
Properties
Purpose

MultiLine returns or sets a value indicating whether a
TextBox or RichEdit control can accept and display
multiple lines of text. MaxLength sets maximum number of
character the control accepts.

Syntax

object.MultiLine [= boolean]

object.MaxLength [= value]

object:TextBox, RichEdit

Description

The default is 0, so that the edit control ignores carriage
returns and restricts data to a single line.

A multiple-line TextBox control wraps text as the user
types text extending beyond the text box. You can also add
scroll bars to larger TextBox controls using the ScrollBars
property. If no horizontal scroll bar is specified, the text in a
multiple-line TextBox automatically wraps.

Maxlength specifies a long integer with the maximum
number of characters a user can enter in the control. The
default for the MaxLength property is 0, indicating no
maximum other than that created by memory constraints

on the user's system. Any number greater than 0 indicates
the maximum number of characters.

Example

Ocx Label lbl = "Length of Text:", 10, 10,
TextWidth("Length of Text:"), 14 : lbl.BackColor
= $FFFFFF

Ocx TextBox tb1 = "", 15 + TextWidth("Length of
Text:"), 10, 30, 14 : tb1.BorderStyle = 1 :
tb1.MaxLength = 3

Ocx CheckBox chk = "Allow Multiline Text?", 10,
30, 115, 14 : chk.BackColor = $FFFFFF

Ocx TextBox tb2 = "", 10, 50, 200, 60 :
tb2.BorderStyle = 1

Do : Sleep : Until Me Is Nothing

Sub chk_Click
// Changing the state of Multiline clears the
text from the textbox

Local t$ = tb2.Text (* Store the value in tb2 *)
tb2.MultiLine = - chk.Value
// It can, on occasion, change the Borderstyle
setting too

// Resetting using tb2.BorderStyle = 1 actually
gives Borderstyle 2

// although the BorderStyle property still
returns a value of 1

// This is known bug
Trace tb2.BorderStyle
tb2.BorderStyle = 1
tb2.Text = t$

EndSub

Sub tb1_LostFocus
If Not tb1 Is Nothing
tb2.MaxLength = Val(tb1.Text)

EndIf
EndSub

Remarks

On a form with a default button, pressing ENTER in a
multiple-line TextBox control moves the focus to the next
button and executes the button. To prevent this behaviour
set WantSpecial = True or use the Ctrl-Enter key
combination when entering the data.

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Transparent Property
Purpose

Returns or sets the coloring mode for a control.

Syntax

object.Transparent [= Boolean]

object:Label, Frame, Image Ocx object

Description

The Transparent property enables coloring of the
background when it is set to 0. When set to 1 the control is
not filled.

Transparent does not generate a redraw.

Together with BackColor an Image control can be given a
transparent color.

A Frame created in code has the Transparent property set
to 1 (True), but in the Form Editor the default value is 0
(False).

Example

OpenW 1 : Win_1.BackColor = $00FFFF
Ocx Label lbl1 = "Non-transparent", 10, 10, 140,
14

Ocx Label lbl2 = "Transparent", 10, 30, 140, 14 :
lbl2.Transparent = True

Do : Sleep : Until Win_1 Is Nothing

Remarks

It is often necessary to invoke ZOrder to actually draw the
Transparent control at the top of other controls.

See Also

Frame, Label, Image

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

HitTest Method
Purpose

Returns a value when the mouse is located at the
coordinates of x and y.

Syntax

value = Object.HitTest(x!, y!)

value = MonthView.HitTest(x!, y!, Date As Date)

Object:Label, ListView, TreeView
x!, y!:Single exp

Description

The coordinates should be in the Form's ScaleMode units.

Label - HitTest returns a Boolean = True if the mouse
pointer is over a character pixel.

ListView - Returns a reference to a ListItem when the
coordinate is over a ListView element. If no object exists at
the specified coordinates, the HitTest method returns
Nothing.

TreeView - Returns a reference to a Node object located
at the coordinates x and y. If no object exists at the
specified coordinates, the HitTest method returns
Nothing.

MonthView - Returns a date located at the set of
coordinates x!, y! in the ByRef variable Date. Most often

used with drag-and-drop operations to determine if a drop
target item is available at the present location. (x!, y!) are
the coordinates of a target date in Twips and Date is the
variable which receives the date under the mouse.

The HitTest method returns the following values which
specify the part of the calendar over which the mouse
pointer is hovering:

mvwCalendarBack(0) - The calendar background.

mvwCalendarDate(1) - Calendar date.

mvwCalendarDateNext(2) - When this area is clicked, the
calendar displays the following month.

mvwCalendarDatePrev(3) - When this area is clicked, the
calendar displays the previous month.

mvwCalendarDay(4) - The day labels above the dates.

mvwCalendarWeekNum(5) - The week number, if
ShowWeekNumbers is set to True.

mvwNoWhere(6) - Bottom edge of the calendar.

mvwTitleBack(7) - Background of the calendar.

mvwTitleBtnNext(8) - The Next button in the title area.

mvwTitleBtnPrev(9) - The Previous button in the title
area.

mvwTitleMonth(10) - The month string in the title.

mvwTitleYear(11) - The year string in the title.

mvwTodayLink(12) - When this area is clicked, the
calendar displays the current month and day. Only available
if ShowToday is set to True.

Example

An example with ListView

OpenW 1 : Set Me = Win_1
Global a$, m As Int, n As Int
Dim li As ListItem
Ocx ListView lv1 = , 10, 10, 500, 150 : lv1.View =
3

For n = 1 To 5 : lv1.ColumnHeaders.Add , ,
"Column" & n : Next n

For n = 1 To 5 :
a$ = "" : For m = 1 To 5 : a$ = a$ & "Item " &
((n - 1) * 5) + m & Iif(m <> 5, ";", "") : Next
m

lv1.Add , , "" : lv1(n).AllText = a$: If n = 2
Then lv1(n).Ghosted = True

Next n
lv1.FullRowSelect = True // If this is omitted
then HitTest only works on the first column

Ocx Label res = "", 10, 200, 150, 15 :
res.BackColor = RGB(255, 255, 255)

Do : Sleep : Until Me Is Nothing

Sub lv1_MouseMove(Button&, Shift&, x!, y!)
// This is not called if you are hovering over a
column header

x! = TwipsToPixelX(x!) : y! = TwipsToPixelY(y!)
If lv1.HitTest(x!, y!) Is Nothing
res.Caption = ""

Else
Set li = lv1.HitTest(x!, y!)
res.Caption = "Result: Line" & li.Index

EndIf
EndSub

Known Issues

The HitTest method does not appear to work with labels.
There is a workaround (listed below), although it only works
for single line labels:

OpenW 1
Ocx Label lbl = "A plain old label", 10, 10, 150,
15

Ocx Label res = "", 10, 30, 150, 15 :
res.BackColor = RGB(255, 255, 255)

Do : Sleep : Until Me Is Nothing

Sub lbl_MouseMove(Button&, Shift&, x!, y!)
x! = TwipsToPixelX(x!) : y! = TwipsToPixelY(y!)
If x! < TwipsToPixelX(lbl.TextWidth(lbl.Text))
And y! <
TwipsToPixelY(lbl.TextHeight(lbl.Text))
// instead of: If lbl.HitTest(x!, y!)
res.Caption = "Hovering over label text"

Else
res.Caption = ""

EndIf
EndSub

Sub Win_1_MouseMove(Button&, Shift&, x!, y!)
If Not res Is Nothing Then res.Caption = ""

EndSub

A crude option for labels with more than one line is to check
that the pixel under the mousepointer is not the BackColor
of the label. In this case, the lbl_MouseMove sub-routine
would look like this:

Sub lbl_MouseMove(Button&, Shift&, x!, y!)
x! = TwipsToPixelX(x!) : y! = TwipsToPixelY(y!)
Local hdc As Long = GetWindowDC(lbl.hWnd), bcol
As Int32 = lbl.BackColor, col As Int32 =
GetPixel(hdc, x!, y!)

// Check to see if bcol is a system colour and,
if so, convert

If (bcol And $FF000000) = $80000000 Then bcol =
SysCol(bcol And $FF)

If col <> bcol // instead of: If lbl.HitTest(x!,
y!)
res.Caption = "Hovering over label text"

Else
res.Caption = ""

EndIf
EndSub

See Also

Label, ListView, ListItem, TreeView, Node

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

AutoSize, Stretch, Tile
Properties
Purpose

Control how a graphic is displayed in an Image control.

Syntax

Image.AutoSize [= Boolean]

Image.Stretch [= Boolean]

Image.Tile [= Boolean]

Description

AutoSize =
True

The Image control resizes to fit the
image.

AutoSize =
False

(Default) The Image control does not
resize.

Stretch = True The graphic resizes to fit the control.
Resizing the control also resizes the
graphic it contains.

Stretch = False (Default) The graphic keeps it original
size.

Tile = True The graphic is tiled across the Image
control.

Tile = False (Default) The graphic keeps it original
size and position.

Remarks

A Form OCX control can also be used to display a picture. A
Form OCX is the GFA-BASIC 32 implementation of a VB
PictureBox.

See Also

Image, Form

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

TabStripName and
TabStripIndex properties
Purpose

The TabStripIndex property returns whether the Frame is
part of a TabStrip Ocx.

Syntax

% = object. TabStripIndex

Tab.TabStripName

object:Frame, Form, Image

Description

The TabStripIndex property returns the index of the Tab
if it is owned by a TabStrip Ocx. If it is not part of a
TabStrip it returns 0.

TabStripName returns a string containing the Ocx name of
the TabStrip parent the Tab belongs to.

Example

Form Hidden Center frm1 = "TabStrip", , , 400, 300
Ocx TabStrip tbs = , 20, 20, ScaleWidth - 40,
ScaleHeight - 40

Ocx Frame fr1 = "Tab #1"
Ocx Frame fr2 = "Tab #2"
Ocx Frame fr3 = "Tab #3"
Ocx Frame fr4 = "Tab #4"

OcxOcx fr1 Option opt1 = "Option #1", 20, 20, 80,
24

OcxOcx fr1 Option opt2 = "Option #2", 20, 50, 80,
24

OcxOcx fr2 CheckBox chk1 = "Check #1", 20, 20, 80,
24

OcxOcx fr2 CheckBox chk2 = "Check #2", 20, 50, 80,
24

OcxOcx fr3 TextBox txt1 = "TextBox #1", 20, 20,
280, 40

OcxOcx fr3 TextBox txt2 = "TextBox #2", 20, 130,
280, 40

OcxOcx fr4 Command cmd1 = "Command #1", 90, 20,
80, 24

OcxOcx fr4 Command cmd2 = "Command #2", 90, 50,
80, 24

tbs.Tabs.Add 1, , fr1.Caption , , fr1
tbs.AddItem 2, , fr2.Caption, , fr2
tbs.Add 3, , fr3.Caption, , fr3
tbs.AddItem 4, , fr4.Caption , , fr4
frm1.Show
Text 0, 0, "TabStripIndex: " & fr2.TabStripIndex &
" name: " & tbs(2).TabStripName

frm1.Refresh
tbs(2).Selected = True
Do
Sleep

Until Me Is Nothing

Sub tbs_Change
Local tsi As Int32
Switch tbs.SelectedIndex
Case 1 : opt1.SetFocus : tsi = fr1.TabStripIndex
Case 2 : chk1.SetFocus : tsi = fr2.TabStripIndex
Case 3 : txt1.SetFocus : tsi = fr3.TabStripIndex
Case 4 : cmd1.SetFocus : tsi = fr4.TabStripIndex
EndSwitch

Text 0, 0, "TabStripIndex: " & tsi & " Name: " &
tbs(tbs.SelectedIndex).TabStripName

End Sub

See Also

TabStrip, Frame, Form, Image

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

HideSelection Property
Purpose

Returns a value that determines whether selected text
appears highlighted when a control loses the focus.

Syntax

object.HideSelection [= True | False]

object:Textbox, RichEdit, ListView Ocx

Description

Normally, an edit control hides the selection when the
control loses the input focus and inverts the selection when
the control receives the input focus. Specifying
HideSelection = 0 deletes this default action.

Example

Ocx TextBox txt1 = "", 10, 10, 100, 14 :
txt1.BorderStyle = 1 : txt1.HideSelection = 0 :
txt1 = "TextBox 1"

Ocx TextBox txt2 = "", 10, 30, 100, 14 :
txt2.BorderStyle = 1 : txt2 = "TextBox 2"

Do : Sleep : Until Me Is Nothing

See Also

TextBox, RichEdit, ListView

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

PassWordChar Property
Purpose

Returns or sets a character to be used as a password
character.

Syntax

object.PassWordChar [= chr$]

object:Textbox, RichEdit Ocx
chr$:sexp

Description

Displays all characters as an asterisk (*) as they are typed
into the edit control. An application can use the
PassWordChar property to change the character that is
displayed.

Setting PassWordChar = "" disables the password mode.

Example

Global tpos As Int32
Text 10, 10, "Password: "
Ocx TextBox tb = "", 65, 10, 100, 14 :
tb.BorderStyle = 1 : tb.PassWordChar = "*"

Ocx Command cmd = "Show", 170, 8, 60, 20
Ocx CheckBox chk = "Use '#' character instead of '
* '", 10, 40, 175, 14

tb.SetFocus
Do : Sleep : Until Me Is Nothing

Sub chk_Click
Select chk.Value
Case 0 : tb.PassWordChar = "*"
Case 1 : tb.PassWordChar = "#"
EndSelect
tb.SetFocus

EndSub

Sub cmd_MouseDown(Button&, Shift&, x!, y!)
tb.PassWordChar = ""

EndSub

Sub cmd_MouseUp(Button&, Shift&, x!, y!)
chk_Click

EndSub

Sub tb_GotFocus
tb.SelStart = tpos

EndSub

Sub tb_LostFocus
If Not tb Is Nothing Then tpos = tb.SelStart

EndSub

Known Issues

tb.PassWordChar works like tb.PassWordChar="" rather
than tb.PassWordChar="*" as it should.

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

ReadOnly, Locked,
SelProtected Property,
Protected event
Purpose

Returns or sets the read-only style of (part of) the text of
an edit control.

Syntax

Object.ReadOnly [= Boolean]

RichEdit.Locked [= boolean]

RichEdit.SelProtected [= variant]

Sub RichEdit_Protected(Start&, End&, Cancel?)

Object: TextBox, RichEdit Ocx

Description

ReadOnly returns or sets the read-only style
(ES_READONLY) of an edit control. With this style you
cannot change the text within the edit control.

Locked returns or sets a value indicating whether the
contents in a RichEdit control can be edited. You can scroll
and highlight the text in the control, but you can't edit it.
The program can still modify the text by changing the Text
property.

SelProtected returns or sets a value which determines if
the current selection is protected. Protected text looks the
same a regular text, but cannot be modified by the end-
user. That is, the text cannot be changed during run time.
This allows you to create forms with the RichRdit control,
and have areas that cannot be modified by the end user.
SelProtected can return Null meaning that the selection
contains a mix of protected and non-protected characters.
It can be assigned a Boolean, meaning (True) that all the
characters in the selection are protected, or (False) none of
the characters in the selection are protected.

The Protected event notifies that the user is taking an
action that would change a protected range of text. The
Cancel? parameter provides the event the means to allow or
prevent the change. Set Cancel? = False to accept the
change.

Example

Local n As Int32
Ocx RichEdit rtb = "", 10, 10, 200, 300 :
rtb.MultiLine = True : rtb.BorderStyle = 1 :
rtb.ScrollBars = 2

For n = 1 To 100 : rtb.Text = rtb.Text & "This is
a rich text edit box" & #13#10 : Next n

Ocx CheckBox chk(1) = "Locked", 230, 10, 100, 14
Ocx CheckBox chk(2) = "Read Only", 230, 30, 100,
14

Ocx Command cmd = "Protect Selection", 230, 50,
100, 22 : cmd.Enabled = False

Do : Sleep : Until Me Is Nothing

Sub chk_Click(Index%)
rtb.Locked = -chk(1).Value
rtb.ReadOnly = -chk(2).Value

EndSub

Sub cmd_Click
rtb.SelProtected = True

EndSub

Sub rtb_MouseUp(Button&, Shift&, x!, y!)
If Not cmd Is Nothing
cmd.Enabled = (rtb.SelLength = 0 ? False :
True)

EndIf
EndSub

Sub rtb_Protected(Start%, End%, Cancel?)
If MsgBox("An attempt was made to edit or access
Protected text"#13#10#13#10 & _
"Do you wish to continue with the deletion?",
MB_YESNO, "Confirm Delete") = IDNO

Cancel? = True
EndIf

EndSub

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

ScrollBars Property
Purpose

Returns or sets a value indicating whether an object has
horizontal or vertical scroll bars.

Syntax

object.ScrollBars [= value]

object:Form, TextBox object
value:iexp

Description

The following values are allowed:

basNoScroll (0) (Default) None
basHorizontal
(1)

Horizontal

basVertical (2) Vertical
basBoth (3) Both scrollbars

For a TextBox control with setting 1 (Horizontal), 2
(Vertical), or 3 (Both), you must set the MultiLine property
to True.

Example

OpenW 1
Ocx CheckBox chk(0) = "Show Horizontal Scroll
Bar", 10, 10, 200, 14

Ocx CheckBox chk(1) = "Show Vertical Scroll Bar",
10, 30, 200, 14

Do : Sleep : Until Win_1 Is Nothing

Sub chk_Click(Index%)
If chk(Index%).Value = 0
Win_1.ScrollBars = Bclr(Win_1.ScrollBars,
Index%)

Else
Win_1.ScrollBars = Bset(Win_1.ScrollBars,
Index%)

EndIf
EndSub

Remarks

The scrollbar minimum, maximum, step size, and current
position can be set with HSc* and VSc* properties.

The scrolling events are handled with HScroll, HScrolling,
VScroll, and VScrolling event subs.

Known Issue

If you wish the scroll bar(s) to be visible only when your
work area grows bigger than the window area, toggling the
ScrollBar property between 0, 1, 2 and 3 has been known
to cause a fatal error. Instead, it is advised to use the
HScMax and VScMax properties to achieve the same end
as setting these properties to zero causes the respective
scroll bar to disappear. It is also possible to use the
EnableScrollBar() API to disable the scroll bars but keep
them visible. The example below illustrates how this works:

OpenW 1 : Win_1.ScrollBars = 3 : Win_1.BackColor =
$8000000f

Ocx Option opt(1) = "Enable Horizontal Scrollbar",
10, 10, 200, 15 : opt(1).Value = 1

Ocx Option opt(2) = "Disable Horizontal
Scrollbar", 10, 25, 200, 15

Ocx Command cmd // Breaks option groups
Ocx Option opt(3) = "Show Horizontal Scrollbar",
10, 50, 200, 15 : opt(3).Value = 1

Ocx Option opt(4) = "Hide Horizontal Scrollbar",
10, 65, 200, 15

Do : Sleep : Until Win_1 Is Nothing

Sub opt_Click(Index%)
Select Index%
Case 1 : ~EnableScrollBar(Win_1.hWnd, SB_HORZ,
ESB_ENABLE_BOTH)

Case 2 : ~EnableScrollBar(Win_1.hWnd, SB_HORZ,
ESB_DISABLE_BOTH)

Case 3 : Win_1.HScMax = 1000
Case 4 : Win_1.HScMax = 0
EndSelect

EndSub

The same can be done for the vertical scroll bar by
substituting SB_VERT and VScMax for SB_HORZ and
HScMax respectively.

See Also

Form, TextBox, HScroll, HScrolling, VScroll, VScrolling,
VScMax, VScMin, VScPos, VScPage, VScStep, VScTrack,
HScMax, HScMin, HScPos, HScPage, HScStep, HScTrack

{Created by Sjouke Hamstra; Last updated: 02/07/2015 by James Gaite}

SelLength, SelStart, SelText
Properties
Purpose

SelLength returns or sets the number of characters
selected. SelStart returns or sets the starting point of text
selected; indicates the position of the insertion point if no
text is selected. SelText and SelRTF return or set the
string containing the currently selected text.

Syntax

object.SelLength [= number]

object.SelStart [= index]

object.SelText [= string]

object:TextBox,RichEdit

Description

SelLength = number specifies the number of characters
selected. For SelLength and SelStart, the valid range of
settings is 0 to text length - the total number of characters
in the edit area of a TextBox control.

SelStart = index specifies the starting point of the selected
text.

Use these properties for tasks such as setting the insertion
point, establishing an insertion range, selecting substrings
in a control, or clearing text. Used in conjunction with the

Clipboard object, these properties are useful for copy, cut,
and paste operations.

Setting SelStart greater than the text length sets the
property to the existing text length; changing SelStart
changes the selection to an insertion point and sets
SelLength to 0.

SelText returns or sets plain text. Setting new selected text
sets SelLength to 0 and replaces the selected text with the
new string.

Example

Ocx TextBox TBox1 = "", 100, 10, 100, 24
TBox1.BorderStyle = 1
TBox1 = "This is a Test"
TBox1.FontBold = 0
TBox1.BackColor = RGB(224, 224, 224)
TBox1.ForeColor = RGB(255, 0, 0)
TBox1.SelStart = 3
TBox1.SelLength = 4
TBox1.SetFocus
Do : Sleep : Until Me Is Nothing

See Also

TextBox, RichEdit, Ocx

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

WantSpecial Property
Purpose

Changes the actions of the ENTER and/or TAB keys within a
multiline TextBox or RichEdit control.

Syntax

object.WantSpecial [= value]

object:Textbox, RichEdit Ocx

Description

WantSpecial = 1 specifies that a Carriage Return and Line
Feed (CRLF) be inserted when the user presses the ENTER
key while entering text into a multiple-line edit control in a
form rather than activating the form’s default pushbutton.
Note that if there is no default command button, then
ENTER automatically enters a CRLF within the object;
similarly, the use of Ctrl+ENTER always enters a CRLF
within the object, regardless of whether there is a default
command button or not. This style has no effect on a
single-line edit control.

WantSpecial = 2 prevents the TAB key moving the focus
to the next control in a TextBox or RichEdit control; this
setting also converts any Shift+TAB key combination, which
would normally move the focus to the previous control, into
a tab. Note that the Ctrl+TAB key combination always
inserts a tab regardless of this setting.

WantSpecial = 3 enables both options (TAB & ENTER).

Example

Ocx TextBox txt = "", 10, 10, 200, 80 : .MultiLine
= True : .BorderStyle = 1

Ocx CheckBox chk(1) = "Allow TAB within TextBox",
220, 10, 160, 14 : chk(1).TabStop = False

Ocx CheckBox chk(0) = "Restrict ENTER to TextBox",
220, 25, 160, 14 : chk(0).TabStop = False

Ocx Command cmd = "Close", 60, 100, 100, 22 :
cmd.Default = True

Do : Sleep : Until Me Is Nothing

Sub chk_Click(Index%)
Local Int ws = txt.WantSpecial
Bchg ws, Index%
txt.WantSpecial = ws

EndSub

Sub cmd_Click
Me.Close

EndSub

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 29/06/2015 by James Gaite}

LineCount, LineFromChar,
CharFromLine,
RowFromChar, ColFromChar,
GetLineFromChar Methods
Purpose

These TextBox and RichEdit control methods return
information about positions in the text.

Syntax

% = Object.LineCount (or RichEdit.LineCnt)

% = Object.LineFromChar(index%)

% = Object.CharFromLine(index%)

% = Object.RowFromChar(index%)

% = Object.ColFromChar(index%)

% = Object.GetLineFromChar(index%)

Object:TextBox, RichEdit Ocx

Description

LineCount (property of both objects) and LineCnt
(RichEdit only) retrieve the number of lines in a multiline
edit control. If the edit control is empty, the return value is
1.

LineFromChar() retrieves the index of the line that
contains the specified character index in a multiline edit
control. CharFromLine() retrieves the character index of a
line in a multiline edit control. The character index is the
number of characters from the beginning of the edit control
to the specified line.

RowFromChar() retrieves the y-coordinate of the specified
character in an edit control. ColFromChar() retrieves the
x-coordinate of the specified character in an edit control.
The coordinates are relative to the left-top corner of the
control.

GetLineFromChar()retrieves the index of the line that
contains the specified character index in a multiline edit
control. Same as LineFromChar().

Example

Global n As Int32
AutoRedraw = 1
Ocx TextBox tb = "", 10, 10, 210, 200 : .MultiLine
= True : .BorderStyle = 1 : .ScrollBars = 2

For n = 1 To 100 : tb.Text = tb.Text & "Box" & n &
", " : Next n

Ocx Command cmd = "Add another box", 230, 10, 100,
22

tb_Stats
Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Local tbss = tb.SelStart
tb.Text = tb.Text & "Box" & n & "," : Inc n
tb.SetFocus : tb.SelStart = tbss
tb_Stats

EndSub

Sub tb_KeyUp(Code&, Shift&)
tb_Stats

EndSub

Sub tb_MouseUp(Button&, Shift&, x!, y!)
tb_Stats

EndSub

Sub tb_Stats
Local tl = tb.LineFromChar(tb.SelStart)
Text 230, 40, "Number of Lines:" & tb.LineCount &
" "

Text 230, 56, "Line Position of Caret:" &
tb.LineFromChar(tb.SelStart) & " "

Text 230, 72, "Character Position of Caret:" &
tb.SelStart & " "

Text 230, 88, "Character No at Start of Caret
Line:" & tb.CharFromLine(tl) & " "

Text 230, 104, "X Position of Caret:" &
tb.ColFromChar(tb.SelStart) & " "

Text 230, 120, "Y Position of Caret:" &
tb.RowFromChar(tb.SelStart) & " "

EndSub

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Scroll, ScrollCaret Methods
Purpose

Scrolls the text in a TextBox vertically or horizontally.

Syntax

object.Scroll(x , y)

object.ScrollCaret()

object:TextBox, RichEdit

Description

Scroll(x, y) scrolls the text vertically or horizontally in a
multi-line edit control where:

xSpecifies the number of characters to scroll horizontally.

y Specifies the number of lines to scroll vertically.

Scroll(x, y) works like a function and returns an Empty
value; similar to in-built APIs, Scroll must be prefaced with
~ or Void, otherwise the 'Something Missing' error will be
raised.

ScrollCaret scrolls the caret into view in the control.

Example

OpenW 1
Ocx TextBox tb = "", 10, 10, 300, 300 : .MultiLine
= True : .ScrollBars = 2 : .BorderStyle = 1

Global Int32 n, tbpos
For n = 0 To Screen.FontCount - 1
tb.Text = tb.Text & Screen.Fonts(n) & ", "

Next n
Ocx Command cmd(1) = "Scroll Up", 320, 10, 100, 22
Ocx Command cmd(3) = "Scroll Down", 320, 40, 100,
22

Ocx Command cmd(4) = "Scroll to Caret", 320, 70,
100, 22

Do : Sleep : Until Win_1 Is Nothing

Sub cmd_Click(Index%)
tb.SetFocus
If Index% = 4 Then tb.ScrollCaret : Exit Sub
~tb.Scroll(0, (Index% - 2) * 3)

EndSub

Sub tb_GotFocus
tb.SelStart = tbpos

EndSub

Sub tb_LostFocus
If Not tb Is Nothing Then tbpos = tb.SelStart

EndSub

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Change, SelChange Event
Purpose

Indicates the contents of the current selection of a TextBox
or RichEdit control have changed.

Syntax

Sub object_Change([index%])

Sub object_SelChange([index%])

object:TextBox, RichEdit Ocx
index:iexp (identifies a form or control if it's in a form or
control array)

Description

The Change event procedure can synchronize or coordinate
data display among controls. For example, you can use a
Change event procedure to update the contents of another
control. Or you can use a Change event procedure to
display data and formulas in a work area and results in
another area.

You can use the SelChange event to check the various
properties that give information about the current selection
(such as SelBold) so you can update buttons in a toolbar,
for example.

Example

OpenW 1

Ocx TextBox TBox1 = "", 100, 10, 100, 24
TBox1.BorderStyle = 1
TBox1 = "This is a Test"
TBox1.FontBold = 0
TBox1.BackColor = RGB(224, 224, 224)
TBox1.ForeColor = RGB(255, 0, 0)
TBox1.SelStart = 3
TBox1.SelLength = 4
Do
Sleep

Loop Until Me Is Nothing

Sub TBox1_Change
Print "Change "; TBox1

EndSub

Sub TBox1_SelChange
Print "SelChange "; TBox1.SelText

EndSub

Remarks

A Change event procedure can sometimes cause a
cascading event. This occurs when the control's Change
event alters the control's contents, for example, by setting
a property in code that determines the control's value, such
as the Text property setting for a TextBox control. To
prevent a cascading event avoid creating two or more
controls whose Change event procedures affect each other,
for example, two TextBox controls that update each other
during their Change events.

See Also

TextBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

SelAlignment, SelBullet,
BulletIndent Property
Purpose

SelAlignment returns or sets a value that controls the
alignment of the paragraphs in a RichEdit control.

SelBullet returns or sets a value that determines if a
paragraph in the RichEdit control containing the current
selection or insertion point has the bullet style.
BulletIndent returns or sets the amount of indent used
when SelBullet is set to True.

Syntax

object.SelAlignment [= variant]

object.SelBullet [= variant]

object.BulletIndent [= variant]

object:RichEdit

Description

The SelAlignment property determines paragraph
alignment for all paragraphs that have text in the current
selection or for the paragraph containing the insertion point
if no text is selected. SelAlignment can be set to
basLeftJustify (0), basRightJustify (1), and basCenter
(2).

Use the SelBullet property to build a list of bulleted items
in a RichEdit control. SelBullet returns and sets a Variant
(Long) that determines the bullet style of the paragraph(s).
The value is True when the paragraphs in the selection have
the bullet style, it is False when not.

The BulletIndent property determines the amount of
indent when SelBullet = True. Note, though, that the bullet
point does not move with SelBullet, just the text following
the bullet point; the bullet point itself is controlled by
SelIndent - this is the intended behaviour and not a bug.

These properties returns Null if the selection spans more
than one paragraph with different alignments or contains a
mixture of bullet and non-bullet styles

Example

OpenW 1 : AutoRedraw = 1
Global Int32 n, rdpos
Ocx RichEdit red = "", 10, 10, 200, 200 :
.MultiLine = True : .BorderStyle = 1 :
.BulletIndent = 100

Ocx CheckBox chk(0) = "Bullet Points on", 230, 10,
140, 14

Ocx TextBox tb = "", 230, 30, 60, 14 :
.BorderStyle = 1 : .ReadOnly = True : Text 297,
31, "Bullet Indent"

Ocx UpDown up : .BuddyControl = tb : .Increment =
200 : .Min = 0 : .Max = 1000 : .Value =
red.BulletIndent

Text 230, 54, "Alignment:"
Ocx ComboBox cmb = "", 280, 50, 100, 14 : .Style =
2

cmb.AddItem "Left", 0 : cmb.AddItem "Centre", 2 :
cmb.AddItem "Right", 1

For n = 0 To 2

If red.SelAlignment = cmb.ItemData(n) Then
cmb.ListIndex = n

Next n
Do : Sleep : Until Me Is Nothing

Sub chk_Click(Index%)
red.SelBullet = chk(0).Value
red.SetFocus

EndSub

Sub cmb_Click
red.SelAlignment = cmb.ItemData(cmb.ListIndex)
red.SetFocus

EndSub

Sub red_Change
If Not IsNothing(chk(0)) Then chk(0).Value =
red.SelBullet

EndSub

Sub red_GotFocus
red.SelStart = rdpos

EndSub

Sub red_LostFocus
If Not red Is Nothing Then rdpos = red.SelStart

EndSub

Sub up_Change
red.SetFocus
' red.BulletIndent = up.Value
// BulletIndent just moves the text but not the
bullet point

red.SelIndent = up.Value
// SelIndent moved both the bullet point and
text.

EndSub

To find if the current selection contains some (but not all)
bulleted text, use the following code:

If IsNull(RichEdit1.SelBullet) = True
' Code selection has mixed style.

ElseIf RichEdit1.SelBullet = True
RichEdit1.BulletIndent = 1000

End If

Remarks

Null differs from zero, these properties can only be queried
with IsNull().

See Also

RichEdit, SelHangingIndent, SelIndent, SelRightIndent,
IsNull

{Created by Sjouke Hamstra; Last updated: 18/12/2015 by James Gaite}

CharFormat, DefCharFormat,
ParaFormat Property
Purpose

Return or set formatting for a RichEdit control.

Syntax

object.CharFormat [= format$]

object.DefCharFormat [= format$]

object.ParaFormat [= format$]

object:RichEdit

Description

The format$ value for CharFormat and DefCharFormat
contains the setting for the character formatting. Each
attribute is identified with a character and when necessary
followed by a value.

The DefCharFormat property is used to set and retrieve
the default character formatting, which is the formatting
applied to any subsequently inserted characters. For
example, if an application sets the default character
formatting to bold and the user then types a character, that
character is bold. Initially, DefCharFormat returns:

"biuspC0Y165O0T0F0'MS Sans Serif"

A capital enables the attribute, a lowercase character
disables it. The following settings can be used:

"B/b" - Bold; "I/i" - Italic; "U/u" - UnderLine; "S/s" -
Strikeout; "P/p" - Protected; "C" & Dec$(RGB()) - Color; "Y"
& Dec(t) - Character height in twips; "O" & Dec(t) -
Character offset, in twips, from the baseline; "T" - CharSet;
"F" - PitchAndFamily; "'"&fontname - Font face name.

format$ = ParaFormat returns the current paragraph
formatting for the selected text. This property is used to
specify paragraph formatting attributes. The default value is
"A0N0O0+0R0S0", meaning.

"A" - Alignment; N - Numbering; "O" - Offset; "+" - relative
indenting; "R" - RightIndent; "S" - StartIndent ; "T" -
Tabstops. All attributes are followed by a decimal value
specifying the attributes setting in twips.

Example

Ocx RichEdit rtf = "", 10, 10, 400, 150 :
rtf.BorderStyle = 1 : rtf.SetFocus

Ocx Command cmd(1) = "18pt Text (Italic)", 10,
170, 80, 22

Ocx Command cmd(2) = "36pt Text (Bold)", 100, 170,
80, 22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click(Index%)
Local rs = rtf.SelStart
Select Index%
Case 1 : rtf.CharFormat = "bIY360"
Case 2 : rtf.CharFormat = "iBY720"
EndSelect
rtf.SetFocus
rtf.SelStart = rs

EndSub

Remarks

These properties retrieve and set Sel* properties in one
step.

See Also

RichEdit

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

DisableNoScroll Property
Purpose

Returns or sets a value that determines whether scroll bars
in a ListBox, ComboBox, or RichEdit control are disabled
(for other controls, see Remarks below).

Syntax

object.DisableNoScroll [= boolean]

Description

DisableNoScroll determines whether or not the scroll bars
are enabled.

False = (Default) Scroll bars appear normally when
displayed.

True = Scroll bars appear dimmed when displayed.

Example

Ocx ListBox lb = "", 10, 10, 100, 100
Local n : For n = 1 To 9 : lb.AddItem "Item " & n
: Next n

Ocx Command cmd = "Disable Scroll", 20, 120, 80,
22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
lb.DisableNoScroll = (cmd.Caption = "Disable
Scroll")

cmd.Caption = (lb.DisableNoScroll ? "Enable
Scroll" : "Disable Scroll")

If Not lb.DisableNoScroll Then Local n : For n =
1 To 9 : lb.AddItem "Item " & n : Next n

EndSub

Remarks

In RichEdit the DisableNoScroll property is ignored when
the ScrollBars property is set to 0 (None). However, when
ScrollBars is set to 1 (Horizontal), 2 (Vertical), or 3 (Both),
individual scroll bars are disabled when there are too few
lines of text to scroll vertically or too few characters of text
to scroll horizontally.

To reproduce this function in other objects, such as a Form,
you can use the built-in EnableScrollBar() API, which has
the added advantage of allowing you to disable (or enable)
only part of the scroll bar if that is what you wish. An
example of how to use the API is below (the constants listed
are also 'built-in' and are included in this example only for
illustrative purposes):

Const SB_HORZ = 0 ' horizontal scrollbar
Const SB_VERT = 1 ' vertical scrollbar
Const SB_CTL = 2 ' scollbar control
Const SB_BOTH = 3 ' both horiz & vert scrollbars
Const ESB_ENABLE_BOTH = &H0 ' enable both arrows
Const ESB_DISABLE_LTUP = &H1 ' disable left/up
arrows

Const ESB_DISABLE_RTDN = &H2 ' disable right/down
arrows

Const ESB_DISABLE_BOTH = &H3 ' disable both
arrows

OpenW 1 : Win_1.ScrollBars = 2
~EnableScrollBar(Win_1.hWnd, SB_VERT,
ESB_DISABLE_BOTH)

See Also

ListBox, ComboBox, RichEdit

{Created by Sjouke Hamstra; Last updated: 17/11/2014 by James Gaite}

FormatDC, FormatWidth
Properties
Purpose

Returns or sets the information that a RichEdit control uses
to format its output for a particular device.

Syntax

RichEdit.FormatDC [= hDC]

RichEdit.FormatWidth [= width]

hDC:Handle
width:Long, in twips

Description

The FormatDC property sets the target device to format
for. It uses the paper width to format a rich edit control's
contents for that device, such as a printer. This is useful for
WYSIWYG (what you see is what you get) formatting, in
which an application positions text using the printer's font
metrics instead of the screen's.

FormatWidth allows you to specify the line width for which
a rich edit control formats its text.

Example

Ocx RichEdit rtf = "", 10, 10, 300, 200
rtf.SelText = String(5, "GFA-BASIC 32 ")

rtf.SelItalic = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelBold = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 0
rtf.SelText = String(5, "GFA-BASIC 32 ")
Message "Click here' to effect changes"
rtf.FormatDC = Printer.hDC
rtf.FormatWidth = Printer.Width
Do : Sleep : Until Me Is Nothing

See Also

RichEdit, SelPrint

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

SelBold, SelItalic,
SelFontName, SelFontSize,
SelStrikeout, SelUnderline,
SelColor, SelCharOffset
Properties
Purpose

Return or set font color and styles for a RichEdit control in
the following formats: Bold, Italic, Strikethru, and
Underline. SelCharOffset determines the superscript or
subscript distance from the baseline.

Syntax

object.SelBold [= variant]

object.SelItalic [= variant]

object.SelFontName [= variant]

object.SelFontSize [= variant]

object.SelStrikeout [= variant]

object.SelUnderline [= variant]

object.SelColor [= variant]

object.SelCharOffset [= variant]

object:RichEdit Ocx Object

Description

Use these font properties to format the selected text in a
RichEdit control.

The settings for variant are:

NullThe selection or character following the insertion point
contains characters that have a mix of the appropriate font
styles.

valueTrue or name for SelFontName, size in points for
SelFontSize, and RGB-value for SelColor. All the
characters in the selection, or character following the
insertion point, have the appropriate font style.

False (Default) or empty string for SelFontName and size
in points for SelFontSize. None of the characters in the
selection or character following the insertion point have the
appropriate font style.

To distinguish between the values of Null and False when
reading these properties at run time, use the IsNull
function with the If...Then...Else statement. See example.

SelCharOffset returns or sets a value that determines
whether text appears on the baseline (normal), as a
superscript above the baseline, or as a subscript below the
baseline. The value can be 0 indicating that the characters
appear on the baseline, positive indicating above the
baseline, and negative indicating below the baseline (in
twips).

Example

Global Int32 rdpos

Ocx RichEdit red = "", 10, 10, 200, 200 :
.MultiLine = True : .BorderStyle = 1

Ocx Command cmd1 = "Change Font", 230, 10, 120, 22
Ocx Command cmd2 = "Change Colour", 230, 40, 120,
22

Ocx Option opt(0) = "Subscript", 230, 70, 120, 14
Ocx Option opt(1) = "Normal", 230, 85, 120, 14 :
opt(1).Value = 1

Ocx Option opt(2) = "Superscript", 230, 100, 120,
14

red.SetFocus
Do : Sleep : Until Me Is Nothing

Sub cmd1_Click
Ocx CommDlg cd
cd.Flags = cdfBoth
cd.ShowFont
With red
.SelFontName = cd.FontName
.SelFontSize = cd.FontSize
.SelBold = cd.FontBold
.SelItalic = cd.FontItalic
.SelStrikeout = cd.FontStrikethru
.SelUnderline = cd.FontUnderline

End With
red.SetFocus

EndSub

Sub cmd2_Click
Ocx CommDlg cd
cd.Flags = cdcFullOpen | cdcRgbInit
cd.Color = red.SelColor
cd.ShowColor
red.SelColor = cd.Color
red.SetFocus

EndSub

Sub opt_Click(Index%)
red.SelCharOffset = 90 * (Index% - 1)
red.SetFocus

EndSub

Sub red_GotFocus
red.SelStart = rdpos

EndSub

Sub red_LostFocus
If Not red Is Nothing Then rdpos = red.SelStart

EndSub

To find if some or all of the selected text matches a certain
criteria, use the following code:

If IsNull(RichEdit1.SelBold) = True Then
' Code to run when selection is mixed.

ElseIf RichEdit1.SelBold = False Then
' Code to run when selection is not bold.

End If

Remarks

Null differs from zero, these properties can only be queried
with IsNull().

See Also

RichEdit, IsNull

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

SelHangingIndent,
SelIndent, SelRightIndent
Properties
Purpose

Returns or sets the margin settings for the paragraph(s) in
a RichEdit control that either contain the current selection
or are added at the current insertion point.

Syntax

object.SelHangingIndent [= variant]

object.SelIndent [=variant]

object.SelRightIndent [= variant]

object:RichEdit

Description

These properties return and set a Variant (Long) that
determines the amount of indent. These properties use the
Twips scale mode units.

These properties return Null if the selection spans multiple
paragraphs with different margin settings.

Example

OpenW 1 : AutoRedraw = 1
Global Int32 n, rdpos

Ocx RichEdit red = "", 10, 10, 200, 200 :
.MultiLine = True : .BorderStyle = 1

Ocx TextBox tb(1) = "", 230, 10, 60, 14 :
tb(1).ReadOnly = True : tb(1).BorderStyle = 1 :
Text 297, 11, "Hanging Indent"

Ocx UpDown up(1) : With up(1) : .BuddyControl =
tb(1) : .Increment = 50 : .Min = -1000 : .Max =
1000 : .Value = red.SelHangingIndent : End With

Ocx TextBox tb(2) = "", 230, 30, 60, 14 :
tb(2).ReadOnly = True : tb(2).BorderStyle = 1 :
Text 297, 31, "Left Indent"

Ocx UpDown up(2) : With up(2) : .BuddyControl =
tb(2) : .Increment = 50 : .Min = 0 : .Max = 1000
: .Value = red.SelIndent : End With

Ocx TextBox tb(3) = "", 230, 50, 60, 14 :
tb(3).ReadOnly = True : tb(3).BorderStyle = 1 :
Text 297, 51, "Right Indent"

Ocx UpDown up(3) : With up(3) : .BuddyControl =
tb(3) : .Increment = 50 : .Min = 0 : .Max = 1000
: .Value = red.SelRightIndent : End With

For n = 1 To 40 : red.Text = red.Text & "GFA BASIC
is great " : Next n

Do : Sleep : Until Me Is Nothing

Sub red_GotFocus
red.SelStart = rdpos

EndSub

Sub red_LostFocus
If Not red Is Nothing Then rdpos = red.SelStart

EndSub

Sub up_Change(Index%)
Select Index%
Case 1 : red.SelHangingIndent = up(1).Value
Case 2 : red.SelIndent = up(2).Value
Case 3 : red.SelRightIndent = up(3).Value

EndSelect
red.SetFocus

EndSub

To find if the current selection contains some (but not all)
indented text, use the following code:

If IsNull(RichEdit1.SelIndent) = True Then
' Code to run when selection is mixed.

Else ' RichEdit1.SelIndent > 0
' Code to run when selection is not mixed.

End If

Known Issues

[Fixed OCX v2.36 Build 1905] When you update either
SelHangingIndent or SelIndent, the other assumes the
same value. Additionally, the value in either only seems to
create a standard left indent - it is not possible to get a
hanging indent. There is currently no workaround for this
problem.

See Also

RichEdit

{Created by Sjouke Hamstra; Last updated: 20/05/2019 by James Gaite}

TextRTF, SelRTF Properties
Purpose

Returns or sets (selection of) the text of a RichEdit control,
including all .rtf code.

Syntax

RichEdit.TextRTF [= string]

RichEdit.SelRTF [= string]

Description

TextRTF returns or sets the text (in .rtf format).

SelRTF returns or sets the text (in .rtf format) in the
current selection. SelText returns or sets plain text. Setting
new selected text sets SelLength to 0 and replaces the
selected text with the new string.

Example

Global Int32 rdpos
Ocx RichEdit red = "", 10, 10, 200, 200 :
.MultiLine = True : .BorderStyle = 1

Ocx Command cmd1 = "Change Font", 230, 10, 140, 22
Ocx Command cmd2 = "Change Colour", 230, 40, 140,
22

Ocx Option opt(0) = "Subscript", 230, 70, 120, 14
Ocx Option opt(1) = "Normal", 230, 85, 120, 14 :
opt(1).Value = 1

Ocx Option opt(2) = "Superscript", 230, 100, 120,
14

Ocx Command cmd3 = "Save Selection to File", 230,
130, 140, 22

Ocx Command cmd4 = "Save Whole Text to File", 230,
160, 140, 22

red.SetFocus
Do : Sleep : Until Me Is Nothing
If Exist(App.Path & "\AllText.rtf") Then Kill
App.Path & "\AllText.rtf"

If Exist(App.Path & "\Select.rtf") Then Kill
App.Path & "\Select.rtf"

Sub cmd1_Click
Ocx CommDlg cd
cd.Flags = cdfBoth
cd.ShowFont
With red
.SelFontName = cd.FontName
.SelFontSize = cd.FontSize
.SelBold = cd.FontBold
.SelItalic = cd.FontItalic
.SelStrikeout = cd.FontStrikethru
.SelUnderline = cd.FontUnderline

End With
red.SetFocus

EndSub

Sub cmd2_Click
Ocx CommDlg cd
cd.Flags = cdcFullOpen | cdcRgbInit
cd.Color = red.SelColor
cd.ShowColor
red.SelColor = cd.Color
red.SetFocus

EndSub

Sub cmd3_Click
If red.SelLength = 0 Then Message "No text has
been selected" : Exit Sub

Local t$ = red.SelRTF : BSave App.Path &
"\Select.rtf", V:t$, Len(t$)

Message "Selected text saved as Select.rtf"
EndSub

Sub cmd4_Click
Local t$ = red.TextRTF : BSave App.Path &
"\AllText.rtf", V:t$, Len(t$)

Message "Selected text saved as AllText.rtf"
EndSub

Sub opt_Click(Index%)
red.SelCharOffset = 90 * (Index% - 1)
red.SetFocus

EndSub

Sub red_GotFocus
red.SelStart = rdpos

EndSub

Sub red_LostFocus
If Not red Is Nothing Then rdpos = red.SelStart

EndSub

Remarks

You can use the TextRTF and SelRTF properties along with
Open/Print # to write .rtf files.

See Also

RichEdit

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

SelTabCount, SelTabs
Properties
Purpose

Returns or sets the number of tabs and the absolute tab
positions of text in a RichEdit control.

Syntax

object.SelTabCount [= variant]

object.SelTabs(index%) [=variant]

object:RichEdit

Description

The SelTabCount property determines the number of tab
positions in the selected paragraph(s) or in those
paragraph(s) following the insertion point.

SelTabs(index%) identifies a specific tab. The first tab
location has an index of zero (0). The last tab location has
an index equal to SelTabCount minus 1.

These properties return Null if the selection spans multiple
paragraphs with different tab settings.

Example

Local i%
Ocx RichEdit red = "", 10, 10, 300, 300 :
.MultiLine = True : .BorderStyle = 1 :

.WantSpecial = True
red.SelTabCount = 5
For i% = 0 To .SelTabCount - 1
red.SelTabs(i%) = 3 * i%

Next
Do : Sleep : Until Me Is Nothing

Remarks

Null differs from zero, these properties can only be queried
with IsNull().

By default, pressing TAB when typing in a RichEdit control
causes focus to move to the next control in the tab order, as
specified by the TabIndex property. One way to insert a
tab in the text is by pressing CTRL+TAB. However, users
who are accustomed to working with word processors may
find the CTRL+TAB key combination contrary to their
experience. You can enable use of the TAB key to insert a
tab in a RichEdit control by setting WantSpecial = 1.

See Also

RichEdit, IsNull

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Find Method
Purpose

Searches the text in a RichEdit control for a given string.

Syntax

RichEdit.Find(search$,start [,end = -1] [, options])

Description

The Find method searches for a string. The start parameter
(optional) is an integer character index that determines
where to begin the search. Each character in the control has
an integer index that uniquely identifies it. The first
character of text in the control has an index of 0. The
optional end parameter determines where to end the
search. The options parameter specifies how to perform the
search:

rtfUp(1) Searches upwards. Only supported
with RichEd20.Dll, not with
RichEd32.Dll which was part of the
first Windows 95.

rtfWholeWord(2) Find whole word.
rtfMatchCase(4) Only exact match
rtfFindNext(8) Searches the next match.

If the text searched for is found, the Find method highlights
the specified text and returns the index of the first
character highlighted. If the specified text is not found, the
Find method returns -1.

Example

OpenW 1
Me.Sizeable = 0
Ocx Timer tmr : .Interval = 500 : .Enabled = 1
Ocx RichEdit rtf = , 0, _Y / 2, _X, _Y / 2
rtf.HideSelection = 0
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelBold = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelStart = 1 : rtf.SelLength = 0
Do
Sleep

Loop Until Me Is Nothing

Sub tmr_Timer
Local Int l
Static Int direction = 0
l = rtf.Find("BASIC", rtf.SelStart + 1, -1,
direction)

If l < 0 Then direction = (direction == 0 ? 1 :
0)

End Sub

Remarks

See Also

RichEdit

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

LoadFile, SaveFile Methods
(RichEdit)
Purpose

Loads and saves an .rtf file or text file into a RichEdit
control.

Syntax

RichEdit.LoadFile filename [, filetype]

RichEdit.SaveFile(filename[, filetype])

filename:sexp
filetype:iexp

Description

LoadFile loads an .rtf file (default) or text file specified in
filename and replaces the entire contents of the rich edit
control. The optional filetype can be rtfRTF (0) or rtfText
(1).

SaveFile saves the contents (as an rtf file by default) of a
RichEdit control to a file filename. The optional filetype can
be rtfRTF (0) or rtfText (1) to save it as a text file.

Example

Ocx RichEdit rtf = "", 10, 10, 300, 200 :
.BorderStyle = 3

rtf.SelText = String(5, "GFA-BASIC 32 ")

rtf.SelItalic = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelBold = 1
rtf.SelText = String(5, "GFA-BASIC 32 ")
rtf.SelItalic = 0
rtf.SelText = String(5, "GFA-BASIC 32 ")
Ocx RichEdit rtf_copy = "", 320, 10, 300, 200 :
.BorderStyle = 3

Ocx Command cmd = "Save RichEdit object", 50, 220,
200, 22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click
Static opt|, f$
Inc opt|
Switch opt|
Case 1
Ocx CommDlg cd
cd.ShowSave
f$ = cd.FileName
rtf.SaveFile f$, rtfRTF
cmd.Caption = "Load into second RichEdit
object"

Case 2
rtf_copy.LoadFile f$
cmd.Caption = "Close window"

Case 3
Kill f$
Me.Close

EndSwitch
EndSub

Remarks

You can also use Input and the TextRTF and SelRTF
properties to read .rtf files. For example:

Open "mytext.rtf" For Input As #1

rft1.TextRTF = Input$(LOF(1), 1)

Close #1

See Also

RichEdit, TextRTF, SelRTF

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Span, UpTo Methods
Purpose

Span selects text in a RichEdit control based on a set of
specified characters. UpTo moves the insertion point up to,
but not including, the first character that is a member of the
specified character set.

Syntax

RichEdit.Span(characterset[,forward = 1] [,negate = 0])

RichEdit.UpTo(characterset [,forward = 1] [,negate = 0])

characterset:sexp
forward, negate:Boolean exp

Description

The characterset specifies the set of characters to look for
when extending the selection (Span) or moving the
selection point (UpTo), based on the optional value of
negate.

By default negate = False and Span selects the characters
which appear in the characterset argument. The selection
stops at the first character found that does not appear in
the characterset argument.
Setting negate = True will select the characters which do
not appear in the characterset argument. The selection
stops at the first character found that appears in the
characterset argument.

For UpTo (negate = 0) the characters specified in the
characterset argument are used to move the insertion
point. Setting negate = True will use the characters
specified in the characterset argument to move the
insertion point.

Example

Sub rtf1_KeyUp(Code&, Shift&)
Select Code
Case Asc("S") ' Alt+S or Ctrl+S
' Move insertion point to the end of the
sentence.

If Shift = 4 rtf1.UpTo ".?!:"
' Select to the end of the sentence.
If Shift = 2 rtf1.Span ".?!:", True, True

Case Asc("W") ' Alt+W or Ctrl+S
' Move insertion point to the end of the word.
If Shift = 4 rtf1.UpTo " ,;:.?!"
' Select to the end of the word.
If Shift = 2 rtf1.Span " ,;:.?!", True, True

End Select
End If

See Also

RichEdit

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ColorFormat, ImageHeight,
ImageWidth Properties
Purpose

These properties define the ImageList creation
parameters.

Syntax

ImageList.ColorFormat [= flags]

ImageList.ImageHeight [= h]

ImageList.ImageWidth [= w]

flags, h, w:iexp

Description

The properties describe the type of image list to create.
After adding the first image to the control, these properties
are read-only. The ImageList control is not created before
the first item is added.

ColorFormat = flags specifies a value how to create the
image list. This can be one of the following flags:

0 Device dependent bitmap with a mask.
4 Use 4-bpp (bits-per-pixel) DIB Section.
8 Use 8-bpp DIB Section.
16 Use 16-bpp DIB Section.
24 Use 24-bpp DIB Section.

32 Use 32-bpp DIB Section.

By adding 1 to the flags value the respective image list is
created without a mask; flags = 1, 5, 9, 17, 25, 33 do
create a mask.

When the first image added contains a palette, the
ImageList control creates a list with a palette.

The ImageHeight and ImageWidth properties define the
height and width of the images in pixels.

Example

OpenW 1, 30, 30, 300, 300
Cls colBtnFace
Ocx ImageList iml
iml.ImageWidth = 32
iml.ImageHeight = 32
iml.ColorFormat = 1
iml.MaskColor = $0c0c0c
iml.UseMaskColor = True
//iml.ListImages.Add , "new", LoadPicture(":new")
- Requires an inline picture titled ":new"

iml.ListImages.Add , "app",
CreatePicture(LoadIcon(Null, IDI_APPLICATION))

Dim p As Picture : Set p =
iml.ListImage(1).ExtractIcon

PaintPicture p, 0, 0
Do : Sleep : Until Win_1 Is Nothing

Remarks

When the ImageList control is bound to another Ocx
control, all images in the ListImages collection - no matter
what their size - will be displayed in the second (bound

control) at the size specified by the ImageHeight and
ImageWidth properties.

See Also

ImageList, ListImages

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

MaskColor, UseMaskColor
Properties (ImageList)
Purpose

Determines how and if a masked bitmap is created for the
next image of an ImageList control.

Syntax

ImageList.MaskColor [= rgb]

ImageList.UseMaskColor [= Boolean]

rgb:iexp

Description

When UseMaskColor is set, new images have their mask
added to the list as well. Of course, the ImageList control
must be created using the correct ColorFormat value to
have masked images in the first place.

With MaskColor you specify a color to be combined with
the image bitmap to generate the masks. When you do this,
each pixel of the specified color in the image bitmap is
changed to black, and the corresponding bit in the mask is
set to one. This results in transparency for any pixel in the
image that matches the specified color when the image is
drawn. That is to say, transparency is only obtained in a
ListImage.Draw or ImageList.Overlay operation.

Example

OpenW 1, 30, 30, 300, 300 : Win_1.AutoRedraw = 1
Cls colBtnFace
Ocx ImageList iml : .ImageWidth = 32 :
.ImageHeight = 32

iml.ColorFormat = 1
iml.MaskColor = $0c0c0c
iml.UseMaskColor = True
iml.ListImages.Add , "new",
CreatePicture(LoadIcon(Null, IDI_WARNING), False)

iml.ListImages(1).Draw Me.hDC, 0, 30, 0
iml.ListImages.Item(1).Draw Me.hDC, 50, 30, 1
iml.ListImage(1).Draw Me.hDC, 100, 30, 2
Dim lim As ListImage
Set lim = iml.ListImage(1)
lim.Draw Me.hDC, 150, 30, 3

Remarks

The UseMaskColor and MaskColor properties can only be
modified before a single image is added to the image list, it
is not a general setting.

The UseMaskColor and MaskColor properties have no
proper function when the ImageList is used as an image
repository for ToolBar buttons. The ToolBar control simply
draws the non-masked images on the button surface.

See Also

ImageList, ListImage

{Created by Sjouke Hamstra; Last updated: 13/10/2014 by James Gaite}

Add, AddItem, AddPart
Method (ImageList,
ListImages)
Purpose

Adds a ListImage to a ListImages collection in an
ImageList control and returns a reference to the newly
created ListImage object.

Syntax

ImageList.Add[Item]([index], [key], picture)

ListImages.Add([index], [key], picture)

ImageList.AddPart [index], [key], [picture], [X], [Y]

index, key, picture: Variant exp
x, y:iexp

Description

Add, AddItem, ListImages.Add, and AddPart perform the
same task; they add a single image to the ListImages
collection owned by the ImageList control.

You can load either bitmaps, cursors, or icons into a
ListImage object. To load a bitmap or icon, you can use
the LoadPicture function.

index Optional. An integer specifying the position
where you want to insert the ListImage. If no

index is specified, the ListImage is added to the
end of the ListImages collection.

key Optional. A unique string expression that can be
used to access a member of the collection.

picture Specifies the picture to be added to the
collection.

AddPart adds a part of an image to the collection. The x, y
coordinate specify the location of the piece to be grabbed
from a picture. The width and the height are determined by
the dimensions of the ImageList control.

Example

Const IDI_SHIELD = 32518
Global Int32 m, n, x, y
Dim h As Handle, p As Picture
Ocx ImageList iml
iml.ImageWidth = 32
iml.ImageHeight = 32
Dim lim As ListImage
iml.ListImages.Add , "app",
CreatePicture(LoadIcon(Null, IDI_APPLICATION))

iml.ListImages.Add , "info",
CreatePicture(LoadIcon(Null, IDI_INFORMATION))

Set lim = iml.ListImages.Add(, "error",
CreatePicture(LoadIcon(Null, IDI_ERROR)))

iml.Add , "query", CreatePicture(LoadIcon(Null,
IDI_QUESTION))

iml.AddItem , "security",
CreatePicture(LoadIcon(Null, IDI_SHIELD))

iml.AddPart , "winlogo",
CreatePicture(LoadIcon(Null, IDI_WINLOGO))

For m = 0 To 5 : x = (m * 32) : y = (m * 32)
For n = 1 To 6

Set p = iml(n).ExtractIcon : PaintPicture p, x,
y

Add y, 32 : If y > 191 Then y = 0
Next n

Next m
'
// AddPart example
'
// Loads the 36 icons in reverse order into a new
ImageList...

// ...and displays them to the right of the
originals

Get 0, 0, 191, 191, h
Set p = CreatePicture(h, False)
Ocx ImageList iml1
iml1.ImageHeight = 32
iml1.ImageWidth = 32
// or could be calculated like this:
// iml1.ImageHeight = HimetsToPixelX(p.Height) / 6
// iml1.ImageWidth = HimetsToPixelX(p.Width) / 6
For n = 5 To 0 Step -1
For m = 5 To 0 Step -1
iml1.AddPart , , p, (n * 32), (m * 32)

Next m
Next n
For m = 0 To 5 : x = (m * 32) + 300 : y = 0
For n = 1 To 6
Set p = iml1((m * 6) + n).ExtractIcon :
PaintPicture p, x, y

Add y, 32 : If y > 200 Then y = 0
Next n

Next m
Set p = Nothing
Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the ListImages collection to
access a ListImage element, you can use a shorter
notation. First, the ImageList supports an Item property:

iml.Item(idx)iml.ListImages.Item(idx)

Like the Item method of iml.ListImages, Item is the
default method of ImageList. Therefore, a ListImage can
be accessed as follows:

iml(idx)iml.ListImages(idx)

iml!idximl.ListImages!idx

Each dot saves about 30 bytes of code.

To enumerate over the ListImages collection of an
ImageList Ocx, use For Each on the Ocx control directly,
like:

Local lim As ListImage, iml As ImageList
For Each lim In iml : DoSomething(lim) : Next

See Also

ImageList, ListImages, ListImage

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

OverLay Method (ImageList)
Purpose

Draws one image from a ListImages collection over
another, and returns the result.

Syntax

ImageList.Overlay (index1, index2)

index1, index2:Variant

Description

The Overlay method combines two images and returns a
new Picture object. index1 is an integer (Index property)
or unique string (Key property) that specifies the image to
be overlaid. index2 specifies the image to be drawn over the
object specified in index1. The color of the image that
matches the MaskColor property is made transparent. If
no color matches, the image is drawn opaquely over the
other image.

Example

// Create two pictures to be overlaid
OpenW 1 : Win_1.AutoRedraw = 1
Color 255 : Draw 0, 0 To 100, 0 To 0, 100 To 0, 0
: Fill 10, 10

Color RGB(255, 255, 255), 255 : Text 10, 10,
"GFABasic"

Color RGB(0, 255, 0) : Draw 201, 0 To 201, 100 To
101, 100 To 201, 0 : Fill 190, 90

Color RGB(255, 255, 0), RGB(255, 255, 255) : Text
111, 10, "GFABasic"

Local Handle h1, h2 : Local Picture p1, p2, p3, p4
Get 0, 0, 100, 100, h1 : Set p1 =
CreatePicture(h1, False)

Get 101, 0, 200, 100, h2 : Set p2 =
CreatePicture(h2, False)

Cls
// Create Imagelist
Ocx ImageList iml
iml.MaskColor = RGB(255, 255, 255)
iml.UseMaskColor = True
iml.Add , "First", p1
iml.Add , "Second", p2
// Draw the two listimages
// (Note the 'greyed' transparent area)
iml(1).Draw Win_1.hDC, 0, 0
iml(2).Draw Win_1.hDC, 105, 0
// Create the composite image, first by using the
index...

Set p3 = iml.Overlay(1, 2)
// ...and then by using the unique Key.
Set p4 = iml.Overlay("First", "Second")
// Display the two composite images
PaintPicture p3, 0, 150
PaintPicture p4, 105, 150

Remarks

Use the Overlay method in conjunction with the
MaskColor property to create a single image from two
disparate images. The Overlay method imposes one bitmap
over another to create a third, composite image. The
MaskColor property determines which color of the
overlaying image is transparent.

See Also

ImageList, ListImages, Picture

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Style, LineStyle, Indentation
Property (TreeView)
Purpose

Style returns or sets the type of graphics (images, text,
plus/minus, and lines) and text that appear for each Node
object in a TreeView control.

LineStyle returns or sets the style of lines displayed
between Node objects.

Indentation returns or sets the width of the indentation of
the Node objects.

Syntax

TreeView.Style [= value%]

TreeView.LineStyle [= value%]

TreeView.Indentation [= single]

Description

The Style property can take one of the tvw-constant
values.

tvwTextOnly (0) - Text only.

tvwPictureText (1) - Image and text.

tvwPlusMinusText (2) - Plus/minus and text.

tvwPlusPictureText (3) - Plus/minus, image, and text.

tvwTreeLinesText (4) - Lines and text.

tvwTreeLinesPictureText (5) - Lines, image, and text.

tvwTreeLinesPlusMinusText (6) - Lines, plus/minus, and
text.

tvwTreeLinesPlusMinusPictureText (7) - (Default)
Lines, plus/minus, image, and text.

If the Style property is set to a value that includes lines,
the LineStyle property determines the appearance of the
lines. If the Style property is set to a value that does not
include lines, the LineStyle property will be ignored.

The LineStyle property can take one of the tvw-constant
values.

tvwTreeLines (0) - (Default) Tree lines. Displays lines
between Node siblings and their parent Node.

tvwRootLines (1) - Root Lines. In addition to displaying
lines between Node siblings and their parent Node, also
displays lines between the root nodes.

You must set the Style property to a style that includes tree
lines.

The Indentation property specifies the width (in pixels)
that each object is indented. If you change the
Indentation property at run time, the TreeView is
redrawn to reflect the new width. The property value cannot
be negative.

Example

Global a$, n As Int32
Ocx ImageList iml : iml.ImageHeight = 16 :
iml.ImageWidth = 16

For n = 1 To 7 : iml.Add , ,
CreatePicture(LoadIcon(Null, 32511 + n)) : Next n

Ocx TreeView tv = "", 10, 10, 200, 300 :
tv.ImageList = iml

For n = 1 To 7
If Odd(n)
tv.Add , , , "Icon" & n, n, n

Else
tv.Add n - 1, tvwChild, , "Icon" & n, n :
tv(n).EnsureVisible

EndIf
Next n
Text 220, 13, "Style:" : Ocx ComboBox cb1 = "",
280, 10, 200, 22 : cb1.Sorted = False

For n = 0 To 7 : Read a$: cb1.AddItem a$, n :
Next n

cb1.ListIndex = tv.Style
Text 220, 43, "Line Style:" : Ocx ComboBox cb2 =
"", 280, 40, 200, 22 : cb2.Sorted = False

For n = 0 To 1 : Read a$: cb2.AddItem a$, n :
Next n

cb2.ListIndex = tv.LineStyle
Text 220, 73, "Indentation:" : Ocx TextBox tb =
"", 280, 72, 40, 14 : tb.BorderStyle = 1 :
tb.ReadOnly = True

Ocx UpDown up : up.BuddyControl = tb : .Max = 40
: .Value = tv.Indentation

Do : Sleep : Until Me Is Nothing

Sub cb1_Click
If tv.Style <> cb1.ItemData(cb1.ListIndex) Then
tv_Redraw

EndSub

Sub cb2_Click
If tv.LineStyle = cb2.ItemData(cb2.ListIndex)
Then tv_Redraw

EndSub

Sub up_Change
tv.Indentation = up.Value

EndSub

Sub tv_Redraw
// Changing the Style and LineStyle values once
the treeview has...

// ...been drawn can lead to some odd results, so
it is necesaary...

// ...to redraw it upon every change to show it
correctly.

Set tv = Nothing
Ocx TreeView tv = "", 10, 10, 200, 300 :
tv.ImageList = iml

tv.Style = cb1.ItemData(cb1.ListIndex)
tv.LineStyle = cb2.ItemData(cb2.ListIndex)
For n = 1 To 7
If Odd(n)
tv.Add , , , "Icon" & n, n, n

Else
tv.Add n - 1, tvwChild, , "Icon" & n, n :
tv(n).EnsureVisible

EndIf
Next n

EndSub
Data
tvwTextOnly,tvwPictureText,tvwPlusMinusText,tvwPl
usPictureText,tvwTreeLinesText

Data
tvwTreeLinesPictureText,tvwTreeLinesPlusMinusText
,tvwTreeLinesPlusMinusPictureText

Data tvwTreeLines,tvwRootLines

See Also

TreeView

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

LabelEdit Property,
StartLabelEdit Method
Purpose

Returns or sets a value that determines if a user can edit
labels of ListItem or Node objects in a ListView or
TreeView control.

Syntax

object.LabelEdit [= integer]

object.StartLabelEdit

object:ListView, TreeView

Description

Label editing of an object is initiated when a selected object
is clicked (if the LabelEdit property is set to Automatic).
That is, the first click on an object will select it; a second
(single) click on the object will initiate the label editing
operation.

LabelEdit can have the following values:

0 - Automatic (Default). The BeforeLabelEdit event is
generated when the user clicks the label of a selected node.

1 - Manual. The BeforeLabelEdit event is generated only
when the StartLabelEdit method is invoked.

The LabelEdit property, in combination with the
StartLabelEdit method, allows you to programmatically
determine when and which labels can be edited. When the
LabelEdit property is set to 1, no label can be edited unless
the StartLabelEdit method is invoked.

Example

Global li As ListItem, n As Int32
OpenW 1
Ocx ListView lv = "", 10, 10, 200, 300 : .View = 3
: .GridLines = True : .FullRowSelect = True

lv.ColumnHeaders.Add , , "Column1" :
lv.ColumnHeaders.Add , , "Column2"

For n = 1 To 20
lv.ListItems.Add , n , "Item " & Format(n, "00")

Next n
Ocx Command cmd1 = "Disable Label Editing", 220,
10, 140, 22

Ocx Command cmd2 = "Manually Edit Selected Item",
220, 35, 140, 22

Do : Sleep : Until IsNothing(Win_1)

Sub cmd1_Click
cmd1.Caption = (lv.LabelEdit = 1 ? "Disable" :
"Enable") & " Label Editing"

lv.LabelEdit = 1 - lv.LabelEdit
EndSub

Sub cmd2_Click
If lv.SelectedCount <> 0
lv.SetFocus
lv.StartLabelEdit // Error: Only works when
LabelEdit = 0

EndIf
EndSub

Known Issues

Rather than opening a label for editing for all values of
LabelEdit as happens in VB6, StartLabelEdit only seems
to work when LabelEdit = 0.

See Also

ListView, TreeView, BeforeLabelEdit, AfterLabelEdit

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

SelectedItem Property,
SelectedIndex Property
(TabStrip)
Purpose

Returns a reference to a selected ListItem, Node, or Tab
object.

Syntax

object.SelectedItem [= item]

TabStrip.SelectedIndex [= integer]

object:TreeView, ListView, TabStrip
item:ListItem, Node, Tab

Description

SelectedItem returns a reference to a selected ListItem,
Node, or Tab object, or sets a specified ListItem, Node,
or Tab to a selected state.

This property is typically used to return a reference to a
ListItem, Node, or Tab or object that the user has clicked
or selected. With this reference, you can validate an object
before allowing any further action, as demonstrated in the
example.

To programmatically select a ListItem object, you can
(optionally) use the Set statement with the SelectedItem
property, as follows:

Set ListView.SelectedItem = ListView.ListItems(1)

ListView.SelectedItem = ListView.ListItems(1)

GFA-BASIC 32 allows both versions.

The TabStrip control property SelectedIndex returns or
sets the Tab object by index (number). See
TabStrip_Change event for an example.

Example

Global Int32 n
OpenW 1 : AutoRedraw = 1
Ocx TabStrip tbs = "", 0, 10,
TwipsToPixelX(Win_1.Width) - 20, 40

Text 10, 70, "Select: "
Ocx ComboBox cmb = "", 50, 67, 100, 22 : .Sorted =
False

For n = 1 To 20 : tbs.Add n, "Key " & Chr(64 + n),
"Tab" & n : cmb.AddItem "Tab" & n, n : Next n

cmb.ListIndex = 0
Do : Sleep : Until Win_1 Is Nothing

Sub cmb_Click
tbs.Tab(cmb.ItemData(cmb.ListIndex)).Selected =
True

EndSub

Sub tbs_Change
cmb.ListIndex = tbs.SelectedIndex - 1
Text 10, 90, "Current Key: " &
tbs.SelectedItem.Key & " "

EndSub

See Also

TreeView, ListView, TabStrip, ListItem, Node, Tab

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Sorted Property (TreeView,
Node)
Purpose

Returns or sets a value that determines whether the child
nodes of a Node object are sorted alphabetically.

Returns or sets a value that determines whether the root
level nodes of a TreeView control are sorted alphabetically.

Syntax

TreeView.Sorted [= boolean]

Node.Sorted [= boolean]

Description

When set to True, the Node objects are sorted
alphabetically by their Text property. Node objects whose
Text property begins with a number are sorted as strings,
with the first digit determining the initial position in the
sort, and subsequent digits determining sub-sorting. If
False, the Node objects are not sorted.

The Sorted property can be used in two ways: first, to sort
the Node objects at the root (top) level of a TreeView
control and, second, to sort the immediate children of any
individual Node object.

Setting the Sorted property to True sorts the current
Nodes collection only. When you add new Node objects to

a TreeView control, you must set the Sorted property to
True again to sort the added Node objects.

Example

Ocx TreeView tv1 = "", 250, 10, 230, 200

Dim node As Node

Set node = tv1.Nodes.Add(,,,"Parent Node")

node.Sorted = True

tv1.Sorted = True ' Top level Node objects are sorted.

See Also

TreeView, Nodes, Node

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Add, AddItem Method
(TreeView, Nodes)
Purpose

Adds a Node to a Nodes collection in a TreeView control
and returns a reference to the newly created Node object.

Syntax

TreeView.Add[Item](relative, relationship, key, text,
image, selectedimage)

Nodes.Add(relative, relationship, key, text, image,
selectedimage)

relative, relationship, key, text, image, selectedimage:
Variant exp

Description

The TreeView Ocx has the AddItem and Add methods,
which act exactly the same. The Nodes object supports the
Add method only.

relative Optional. The index number or key of a
pre-existing Node object. The relationship
between the new node and this pre-
existing node is found in the next
argument, relationship.

relationship Optional. Specifies the relative placement
of the Node object:
tvwFirst (0) First. The Node is placed

before all other nodes at the same level of
the node named in relative.
tvwLast (1) Last. The Node is placed
after all other nodes at the same level of
the node named in relative. Any Node
added subsequently may be placed after
one added as Last.
tvwNext (2) (Default) Next. The Node is
placed after the node named in relative.
tvwPrevious (3) Previous. The Node is
placed before the node named in relative.
tvwChild (4) Child. The Node becomes a
child node of the node named in relative.

key Optional. A unique string that can be used
to retrieve the Node with the Item
method.

text Required. The string that appears in the
Node.

image Optional. The index of an image in an
associated ImageList control.

selectedimage Optional. The index of an image in an
associated ImageList control that is
shown when the Node is selected.

Use the Key property to reference a member of the Nodes
collection if you expect the value of an object's Index
property to change, such as by dynamically adding objects
to or removing objects from the collection. The Nodes
collection is a 1-based collection.

As a Node object is added it is assigned an index number,
which is stored in the Node object's Index property. This
value of the newest member is the value of the Node
collection's Count property.

Because the Add method returns a reference to the newly
created Node object, it is most convenient to set properties
of the new Node using this reference. The following
example adds several Node objects with identical
properties:

Example

Dim node As Node
Ocx TreeView tv = "", 10, 10, 100, 200
Set node = tv.Add(, tvwChild, "David" , "David")
Set node = tv.Add(1, tvwChild, "Peter", "Peter")
Set node = tv.Add("David", tvwChild, "Angela",
"Angela")

Set node = tv.Add(, , "Arthur", "Arthur")
tv.Item("Peter").EnsureVisible ' Expand tree to
see all nodes.

Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the Nodes collection to access a
Node element, you can use a shorter notation. First, the
TreeView supports an Item property:

tv.Item(idx)tv.Nodes.Item(idx)

Like the Item method of tv.Nodes, Item is the default
method of TreeView. Therefore, a Node can be accessed
as follows:

tv(idx)tv.Nodes(idx)

tv!idxtv.Nodes!idx

Each dot saves about 30 bytes of code.

To enumerate over the Nodes collection of a TreeView
Ocx, use For Each on the Ocx control directly, like:

Local node1 As Node
For Each node1 In tv : DoSomething(node1) : Next

See Also

TreeView, Node, Nodes

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

BeforeLabelEdit,
AfterLabelEdit Events
Purpose

BeforeLabelEdit occurs when a user attempts to edit the
label of the currently selected ListItem or Node object.
AfterLabelEdit occurs after a user edits the label of the
currently selected Node or ListItem object.

Syntax

Sub object_AfterLabelEdit(Cancel?, NewString As Variant)

Sub object_BeforeLabelEdit(Cancel?)

object:ListView, TreeView

Description

Both the AfterLabelEdit and the BeforeLabelEdit events are
generated only if the LabelEdit property is set to 0
(Automatic), or if the StartLabelEdit method is invoked.

The BeforeLabelEdit event occurs after the standard Click
event.

To begin editing a label, the user must first click the object
to select it, and click it a second time to begin the
operation. The BeforeLabelEdit event occurs after the
second click. To determine which object's label is being
edited, use the SelectedItem property.

The AfterLabelEdit event is generated after the user finishes
the editing operation, which occurs when the user clicks on
another Node or ListItem or presses the ENTER key.

To cancel a label editing operation, set cancel to any
nonzero number or to True. If a label editing operation is
canceled, the previously existing label is restored.

The newstring argument can be used to test for a condition
before canceling an operation. The newstring Variant is Null
if the user canceled the operation.

Example

Ocx TreeView tv = "", 10, 10, 100, 200
tv.Add , , , "Fred"
tv.Add , , , "Harry"
tv.Add , , , "Archie"
Do : Sleep : Until Me Is Nothing

Sub tv_BeforeLabelEdit(Cancel?)
If tv.SelectedItem.Index = 1 Then
MsgBox("This node cannot be edited")
Cancel = True ' Cancel the operation

End If
EndSub

Sub tv_AfterLabelEdit(Cancel?, NewString As
Variant)
If IsNumeric(NewString) Then
MsgBox "No numbers allowed"
Cancel = True

End If
EndSub

The code checks the index of a selected Node before
allowing an edit. If the index is 1, the operation is cancelled.

Then the edit is cancelled when if newstring is a number.

See Also

ListView, TreeView, LabelEdit, StartLabelEdit

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Expand, Collapse, NodeClick
Event (TreeView)
Purpose

The Expand event occurs when a Node object in a
TreeView control is expanded, that is, when its child nodes
become visible.

The Collapse event is generated when any Node object in
a TreeView control is collapsed.

Syntax

Sub TreeView_Expand(Node As Node)

Sub TreeView_Collapse(Node As Node)

Sub TreeView_NodeClick(Node As Node)

Description

The Expand event occurs after the Click and DblClick
events.

The Expand event is generated in three ways: when the
user double-clicks a Node object that has child nodes;
when the Expanded property for a Node object is set to
True; and when the plus/minus image is clicked.

The Collapse event occurs before the standard Click event.

There are three methods of collapsing a Node: by setting
the Node object's Expanded property to False, by double-

clicking a Node object, and by clicking a plus/minus image
when the TreeView control's Style property is set to a
style that includes plus/minus images. All of these methods
generate the Collapse event.

The NodeClick event occurs when a Node object is first
clicked; if you continue to click it, this event does not re-
occur, until you click another node and then return to it. The
NodeClick event occurs before the standard Click event.

The standard Click event is generated when the user clicks
any part of the TreeView control outside a node object.
The NodeClick event is generated when the user clicks a
particular Node object; the NodeClick event also returns a
reference to a particular Node object which can be used to
validate the Node before further action is taken.

Example

Ocx TreeView tv = "", 10, 10, 200, 400
tv.LineStyle = tvwRootLines
tv.Style = tvwPlusMinusText
tv.Add , , , "David"
tv.Add 1, tvwChild, , "Mary"
tv.Add 1, tvwChild, , "Harold"
tv.Add 1, tvwNext, , "Mildred"
tv.Add 4, tvwChild, , "Jennifer"
Do : Sleep : Until Me Is Nothing

Sub tv_Expand(Node As Node)
If Node.Index <> 1 Then
Node.Expanded = False ' Prevent expand.

EndIf
EndSub

Sub tv_Collapse(Node As Node)
If Node.Index = 1 Then

Node.Expanded = True ' Marks it as still
expanded but does not show children.

EndIf
EndSub

Sub tv_NodeClick(Node As Node)
If Node.Index = 1 Then
Message "Node 1 Clicked"

EndIf
EndSub

The above example causes some odd behaviour which can
eventually result in branches disappearing altogether, so
use with care.

See Also

TreeView, Expand, Style

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

NodeClick Event
Purpose

Occurs when a Node object is clicked.

Syntax

Sub TreeView_NodeClick(Node As Node)

Description

The NodeClick event passes a reference to the Node object
that is clicked.

The standard Click event is generated when the user clicks
any part of the TreeView control outside a node object.
The NodeClick event is generated when the user clicks a
particular Node object; the NodeClick event also returns a
reference to a particular Node object which can be used to
validate the Node before further action is taken.

The NodeClick event occurs before the standard Click event.

Example

Ocx TreeView tv1 = "", 10, 10, 150, 200
Local n
For n = 1 To 10 : tv1.Add , , Chr(64 + n) , "Node
" & n : Next n

Do : Sleep : Until Me Is Nothing

Sub tv1_NodeClick(Node As Node)

MsgBox "Index: " & Node.Index & #13#10 & "Key: "
& Node.Key & #13#10 & "Text: " & Node.Text

EndSub

See Also

TreeView

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Arrange, View Property
Purpose

Arrange and SnapToGrid returns or sets a value that
determines how the icons in a ListView control's Icon or
SmallIcon View are arranged. View returns or sets the
appearance of the ListItem objects in a ListView control.

Syntax

ListView.Arrange [= value]

ListView.View [= value]

value:iexp

Description

The Arrange settings for value are:

0 None (Default)
1 Left Items are aligned automatically along the left

side of the control.
2 Top Items are aligned automatically along the top

of the control.

The View property values are:

0 Icon (Default) Each ListItem object is
represented by a full-sized (standard) icon
and a text label.

1 SmallIcon Each ListItem object is represented by a
small icon and a text label that appears to

the right of the icon. The items appear
horizontally.

2 List Each ListItem object is represented by a
small icon and a text label that appears to
the right of the icon. The ListItem objects
are arranged vertically, each on its own
line with information arranged in columns.

3 Report Each ListItem object is displayed with its
small icon and text labels. You can provide
additional information about each
ListItem object in a subitem. The icons,
text labels, and information appear in
columns with the leftmost column
containing the small icon, followed by the
text label. Additional columns display the
text for each of the item's subitems.

Example

OpenW 1
' View property
Global Enum lvwIcon = 0, lvwSmallIcon, lvwList,
lvwReport

' Arrange property (valid for lvwIcon,
lvwSmallIcon)

Global Enum lvwNone = 0, lvwAutoLeft, lvwAutoTop
Ocx ImageList iml
iml.ListImages.Add , "comp",
CreatePicture(LoadIcon(_INSTANCE, 1), False)

Ocx ListView lv = "", 100, 10, 140, 250, 200
lv.ColumnHeaders.Add , , "Column #1"
lv.ColumnHeaders.Add , , "Column #2"
lv.View = lvwSmallIcon
lv.Arrange = lvwAutoTop
lv.Icons = iml
lv.SmallIcons = iml

lv.Add , , "ListItem #1", "comp"
lv.ListItems.Add , , "ListItem #2", "comp"
lv.AddItem , , "ListItem #3", "comp"
Do
Sleep

Until Me Is Nothing

See Also

ListView, Icons, SmallIcons

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

CheckBoxes, CheckedCount,
CheckedItems Properties
(ListView), Checked
(ListItem)
Purpose

Returns or sets a value that determines if checkboxes
appear, the number of boxes checked, and a collection of
selected items.

Syntax

ListView.CheckBoxes [= Boolean]

ListView.CheckedCount

ListView.CheckedItems

ListItem.Checked

Description

When CheckBoxes = True, checkboxes will appear. By
default, they don't appear.

The CheckedCount returns the number of checkboxes that
are checked.

CheckedItems returns a reference to a ListItems
collection containing all checked items.

ListItem.Checked returns or sets a Boolean that
determines the checked state of the list item's check
button.

Example

Local ch As ColumnHeader, li As ListItem
Ocx ListView lv = "", 10, 10, 300, 200
.View = 3 : .FullRowSelect = True
Set ch = lv.ColumnHeaders.Add(,"1", "Checkbox") :
ch.Width = 900

lv.ColumnHeaders.Add , "2", "Description" :
lv.ColumnHeaders(2).Width = 2500

lv.CheckBoxes = True
lv.Add , , "" : lv.ListItem(1).AllText =
";Checkbox 1" : lv.ListItem(1).Checked = True

lv.Add , , "" : lv.ListItem(2).AllText =
";Checkbox 2"

lv.Add , , "" : lv.ListItem(3).AllText =
";Checkbox 3"

Do : Sleep : Until Me Is Nothing

Sub lv_ItemClick(Item As ListItem)
lv_Report

EndSub

Sub lv_MouseUp(Button&, Shift&, x!, y!)
lv_Report

EndSub

Sub lv_Report
Local li As ListItem, a$
If lv.CheckedItems.Count = 0 // lv.CheckedCount
can be used instead
a$ = "No CheckBoxes are checked."

Else

a$ = "The following items are
checked:"#13#10#13#10

For Each li In lv.CheckedItems
a$ = a$ & "Checkbox " & li.Index & #13#10

Next
EndIf
Message a$

EndSub

Remarks

CheckedCount is equivalent to CheckedItems.Count.

See Also

ListView, ListItems, ListItem

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Add Method
(ColumnHeaders),
DefaultWidth (ListView)
Purpose

Adds a ColumnHeader object to a ColumnHeaders
collection.

The DefaultWidth property of the ListView parent control
determines the default width of the column.

Syntax

ListView.ColumnHeaders.Add([index], [key] , [caption])

ListView.DefaultWidth [= value]

index, key, caption:Variant
value:Single

Description

The ColumnHeaders.Add method, adds or inserts a
ColumnHeader object to the ColumnHeaders collection
of the tool bar. The width of the column is preset with the
Listview.DefaultWidth property.

index Optional. An integer specifying the position
where you want to insert the ColumnHeader
object. If no index is specified, the
ColumnHeader is added to the end of the
ColumnHeaders collection.

key Optional. A unique string that identifies the
ColumnHeader object. Use this value to
retrieve a specific ColumnHeader object.

caption Optional. A string that will appear in the column
header.

By default, the DefaultWidth property has the value 1440
Twips.

The width of the individual columns is modifies with Width
property of the Column object returned from the Add
method.

Example

' View property
Global Enum lvwIcon = 0, lvwSmallIcon, lvwList,
lvwReport

Ocx ListView lv = "", 10, 10, 230, 200
lv.View = lvwReport
Dim col As ColumnHeader
lv.ColumnHeaders.Add , "1", "Column #1"
lv.ColumnHeaders.Add , "2", "Column #2"
Set col = lv.ColumnHeaders.Add(, "3", "Column
#3")

col.Width = 2000
Do : Sleep : Until Me Is Nothing

See Also

ListView, ColumnHeaders, ColumnHeader

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ExStyle Property (ListView)
Purpose

Returns or sets extended window styles for a ListView
control.

Syntax

ListView.ExStyle [= value%]

Description

List view control styles have been extended. Not all styles
have corresponding properties, but have to be set using the
ExStyle property. This value can be a combination of
LVS_EX_XXX style flags.

LVS_EX_CHECKBOXES Version 4.70. Enables check boxes
for items in a list view control.

LVS_EX_FLATSB Version 4.71. Enables flat scroll bars in the
list view. If you need more control over the appearance of
the list view's scroll bars, you should manipulate the list
view's scroll bars directly using the Flat Scroll Bar APIs.

LVS_EX_FULLROWSELECT Version 4.70. When an item is
selected, the item and all its subitems are highlighted. This
style is available only in conjunction with the LVS_REPORT
style.

LVS_EX_GRIDLINES Version 4.70. Displays gridlines around
items and subitems. This style is available only in
conjunction with the LVS_REPORT style.

LVS_EX_HEADERDRAGDROP Version 4.70. Enables drag-
and-drop reordering of columns in a list view control. This
style is only available to list view controls that use the
LVS_REPORT style.

LVS_EX_INFOTIP Version 4.71. The list view control sends
an LVN_GETINFOTIP notification message to the parent
window before displaying an item's tooltip. This style is only
available to list view controls that use the LVS_ICON style.

LVS_EX_MULTIWORKAREAS Version 4.71. If the list view
control has the LVS_AUTOARRANGE style, the control will
not auto arrange its icons until one or more work areas are
defined (see LVM_SETWORKAREAS). To be effective, this
style must be set before any work areas are defined and
any items have been added to the control.

LVS_EX_ONECLICKACTIVATE Version 4.70. The list view
control sends an LVN_ITEMACTIVATE notification message
to the parent window when the user clicks an item. This
style also enables hot tracking in the list view control. Hot
tracking means that when the cursor moves over an item, it
is highlighted but not selected.

LVS_EX_REGIONAL Version 4.71. The list view will create a
region that includes only the item icons and text and set its
window region to that using SetWindowRgn. This will
exclude any area that is not part of an item from the
window region. This style is only available to list view
controls that use the LVS_ICON style.

LVS_EX_SUBITEMIMAGES Version 4.70. Allows images to be
displayed for subitems. This style is available only in
conjunction with the LVS_REPORT style.

LVS_EX_TRACKSELECT Version 4.70. Enables hover
selection in a list view control. Hover selection (also called

track selection) means that an item is automatically
selected when the cursor remains over the item for a
certain period of time. The delay can be changed from the
default system setting with the LVM_SETHOVERTIME
message. This style applies to all styles of list view control.

LVS_EX_TWOCLICKACTIVATE Version 4.70. The list view
control sends an LVN_ITEMACTIVATE notification message
to the parent window when the user double-clicks an item.
This style also enables hot tracking in the list view control.
Hot tracking means that when the cursor moves over an
item, it is highlighted but not selected.

LVS_EX_UNDERLINECOLD Version 4.71. Causes non-hot
items to be displayed with underlined text. This style is
ignored if LVS_EX_ONECLICKACTIVATE is not set.

LVS_EX_UNDERLINEHOT Version 4.71. Causes hot items to
be displayed with underlined text. This style is ignored if
LVS_EX_ONECLICKACTIVATE or
LVS_EX_TWOCLICKACTIVATE is not set.

To fully exploit these styles see the MS SDK documentation.

Example

See Also

ListView

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

http://msdn.microsoft.com/en-us/library/windows/desktop/bb774732(v=vs.85).aspx

FullRowSelect, MultiSelect
Properties, and
SelectedCount,
SelectedItems Methods
(ListView)
Purpose

Returns or sets a value that determines if checkboxes
appear, the number of boxes checked, and a collection of
selected items.

Syntax

ListView.FullRowSelect [= Boolean]

ListView.MultiSelect [= Boolean]

ListView.SelectedCount

ListView.SelectedItems

object: ListView, TreeView

Description

FullRowSelect returns or sets a value that specifies if the
entire row is selected. This property is only valid when the
View property is set to lvwReport (3).

MultiSelect returns or sets a value indicating whether a
user can select multiple objects or items. (Pressing SHIFT
and clicking the mouse or pressing SHIFT and one of the
arrow keys (UP ARROW, DOWN ARROW, LEFT ARROW, and
RIGHT ARROW) extends the selection from the previously
selected ListItem to the current ListItem. Pressing CTRL
and clicking the mouse selects or deselects a ListItem in
the list.)

The SelectedCount property returns the number of
selected list items.

SelectedItems returns a reference to a ListItems
collection containing all selected items.

Example

Global a$, m As Int, n As Int
Dim li As ListItem
Ocx ListView lv1 = , 10, 10, 500, 150 : lv1.View =
3

Ocx Label lbl1 = "Selected Lines: 0", 10, 170,
100, 14 : lbl1.BackColor = RGB(255, 255, 255)

Ocx Label lbl2 = "Selected Items:", 10, 185, 100,
14 : lbl2.BackColor = RGB(255, 255, 255)

Ocx TextBox tx = "", 10, 200, 100, 200 :
tx.BorderStyle = 1 : tx.MultiLine = True

For n = 1 To 5 : lv1.ColumnHeaders.Add , ,
"Column" & n : Next n

For n = 1 To 5 :
a$ = "" : For m = 1 To 5 : a$ = a$ & "Item " &
((n - 1) * 5) + m & Iif(m <> 5, ";", "") : Next
m

lv1.Add , , "" : lv1(n).AllText = a$
Next n
lv1.FullRowSelect = True
lv1.MultiSelect = True

Do : Sleep : Until Me Is Nothing

Sub lv1_Click
lbl1.Caption = "Selected Lines: " &
lv1.SelectedCount

tx.Text = ""
For Each li In lv1.SelectedItems
a$ = li.AllText
For n = 1 To 5 : m = InStr(a$, ";") : If m = 0
Then m = Len(a$) + 1
tx.Text = tx.Text & Left(a$, m - 1) & #13#10 :
a$ = Mid(a$, m + 1)

Next n
Next

EndSub

Remarks

SelectedCount is equivalent to SelectedItems.Count.

SelectedItem is used in conjunction with BeforeLabelEdit
event.

See Also

ListView, ListItems, ListItem

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Grid, GridLines Properties
(ListView)
Purpose

Determine the use of a gridlines in a ListView control.

Syntax

% = ListView.Grid(integer)

ListView.GridLines [= Bool]

Description

Grid - No longer seems to enable gridlines in report view
mode; the integer must be present and must be a value
between 0 and 3; the return value can be ignored.

GridLines = True displays gridlines around items and
subitems. This style is available only in conjunction with the
lvsReport style (View = 3).

Example

Global a$, m As Int, n As Int
Dim li As ListItem
Ocx ListView lv1 = , 10, 10, 500, 150 : lv1.View =
3

For n = 1 To 5 : lv1.ColumnHeaders.Add , ,
"Column" & n : Next n

For n = 1 To 5 :
a$ = "" : For m = 1 To 5 : a$ = a$ & "Item " &
((n - 1) * 5) + m & Iif(m <> 5, ";", "") : Next

m
lv1.Add , , "" : lv1(n).AllText = a$: If n = 2
Then lv1(n).Ghosted = True

Next n
lv1.FullRowSelect = True
lv1.GridLines = True
Do : Sleep : Until Me Is Nothing

Remarks

See Also

ListView, View

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Icons, SmallIcons Properties
Purpose

Returns or sets the ImageList controls associated with the
Icon and SmallIcon views in a ListView control.

Syntax

[Set =] ListView.Icons [= imagelist]

[Set =] ListView.SmallIcons [= imagelist]

imagelist:ImageList Object

Description

To associate an ImageList control with a ListView control
at run time, set these properties to the desired ImageList
control.

Each ListItem object in the ListView control also has Icon
and SmallIcon properties, which index the ListImage
objects and determine which image is displayed.

Once you associate an ImageList with the ListView control,
you can use the value of either the Index property to refer
to a ListImage object in a procedure.

Example

Ocx ImageList iml
Ocx ListView lv = "", 100, 10, 140, 250, 200

iml.ListImages.Add , ,
CreatePicture(LoadIcon(_INSTANCE, 1), False)

lv.Icons = iml
// or..
Set lv.SmallIcons = iml // Set is optional
lv.Add , , "Icon", 1
Do : Sleep : Until Me Is Nothing

See Also

ListView, ListItem

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

TextBackColor Properties
(ListView)
Purpose

TextBackColor returns or sets a value that determines a
ListItem object's text background color.

Syntax

ListView.TextBackColor [= value%]

Description

The value% argument specifies the background color of an
object. The color value is a RGB value or a color constant
colxxx. See BackColor.

When the BackColor property is adjusted, the
TextbackColor is reset to the BackColor property value.

Example

Local n As Int32
Ocx ListView lv = , 10, 10, 200, 300
lv.TextBackColor = $c0c0
For n = 1 To 20 : lv.Add , , "Item" & n : Next n
Ocx Command cmd1 = "Change Back Color", 230, 10,
140, 22

Ocx Command cmd2 = "Change Fore Color", 230, 40,
140, 22

Do : Sleep : Until Me Is Nothing

Sub cmd1_Click
Ocx CommDlg cd
cd.ShowColor
lv.TextBackColor = cd.Color

EndSub

Sub cmd2_Click
Ocx CommDlg cd
cd.ShowColor
lv.ForeColor = cd.Color

EndSub

See Also

ListView

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Sorted, TopIndex Properties
(ComboBox, ListBox,
ListView)
Purpose

Sorted returns a value indicating whether the elements of a
ComboBox and ListBox are automatically sorted
alphabetically.

TopIndex returns or sets a value that specifies which item
in a ComboBox, ListBox, or a ListView control is
displayed in the topmost position.

Syntax

object.Sorted [= boolean]

object.TopIndex [= value]

object:ListBox, ComboBox, ListView, TreeView

Description

ComboBox and ListBox

When Sorted is True, GFA-BASIC 32 handles almost all
necessary string processing to maintain alphabetic order,
including changing the index numbers for items as required
by the addition or removal of items. Using the InsertItem
method to add an element to a specific location in the list
may violate the sort order, and subsequent additions may
not be correctly sorted.

TopIndex = value sets the number of the list item that is
displayed in the topmost position. The default is 0, or the
first item in the list.

If the Columns property is set to 0 for the ListBox control,
the item is displayed at the topmost position if there are
enough items below it to fill the visible portion of the list. If
the Columns property setting is greater than 0 for the
ListBox control, the item's column moves to the leftmost
position without changing its position within the column.

ListView

For a ListView control the TopIndex property is read-only
and returns the number of the topmost ListItem.

Example

Global Int32 n
AutoRedraw = 1
Ocx ListBox lb = "", 10, 10, 100, 200 : lb.Sorted
= False

For n = 40 DownTo 1 : lb.AddItem "Item " &
Format(n, "00") : Next n

Ocx TextBox tb = "", 120, 10, 40, 14 :
.BorderStyle = 1 : .ReadOnly = True : Text 170,
11, "ListBox TopIndex Value"

Ocx UpDown up : .BuddyControl = tb : .Min = 0 :
.Max = 40 : .Increment = 1 : .Value = lb.TopIndex

Ocx CheckBox chk = "Sort ListBox Entries", 120,
30, 120, 14

Do : Sleep : Until Me Is Nothing

Sub chk_Click
Local ti As Int32 = lb.TopIndex
lb.Sorted = -chk.Value

For n = 40 DownTo 1 : lb.AddItem "Item " &
Format(n, "00") : Next n

lb.TopIndex = ti
EndSub

Sub up_Change
lb.TopIndex = up.Value

EndSub

See Also

ListBox, ComboBox, ListView, ListItem

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Add, AddItem Method
(ListView, ListItems)
Purpose

Adds an ListItem to a ListItems collection in a ListView
control and returns a reference to the newly created
ListItem object.

Syntax

ListView.Add[Item]([index], [key], [text], [icon] [,
smallicon])

ListItems.Add([index], [key], [text], [icon] [, smallicon])

object:ListView, ListItems
Index, Key, Text, Icon, smallicon: Variant exp

Description

The ListView Ocx has the AddItem and Add methods,
which act exactly the same. The ListItems object supports
the Add method only.

index Optional. An integer specifying the position
where you want to insert the ListItem. If no
index is specified, the ListItem is added to
the end of the ListItems collection.

key Optional. A unique string expression that can
be used to access a member of the collection.

text Optional. A string that is associated with the
ListItem object control.

icon Optional. An integer that sets the icon to be
displayed from an ImageList control, when the
ListView control is set to Icon view.

smallicon Optional. An integer that sets the icon to be
displayed from an ImageList control, when
the ListView control is set to SmallIcon view.

Before setting either the Icons or SmallIcons properties,
you must first initialize them. You can do this at design time
by specifying an ImageList object, or at run time with the
following code:

listview1.Icons = iml1 'Assuming the
Imagelist is iml1.

listview1.SmallIcons = iml2

If the list is not currently sorted, a ListItem object can be
inserted in any position by using the index argument. If the
list is sorted, the index argument is ignored and the
ListItem object is inserted in the appropriate position
based upon the sort order.

If index is not supplied, the ListItem object is added with
an index that is equal to the number of ListItem objects in
the collection + 1.

Use the Key property to reference a member of the
ListItems collection if you expect the value of an object's
Index property to change, such as by dynamically adding
objects to or removing objects from the collection.

Example

Dim li As ListItem
OpenW 1, 20, 20 , 300, 300
Ocx ListView lvw = , 10, 10, 100, 100

lvw.View = 2
lvw.AddItem 1, , "First"
lvw.Add 2, , "Second"
lvw.ListItems.Add 3, , "Third"
Set li = lvw.Add(, , "Fourth")
Do
Sleep

Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the ListItems collection to
access a ListItem element, you can use a shorter notation.
First, the ListView supports an Item property:

lvw.Item(idx), lvw.ListItems.Item(idx)

Like the Item method of lvw.ListItems, Item is the
default method of ListView. Therefore, a ListItem can be
accessed as follows:

lvw(idx) , lvw.ListItems(idx)

lvw!idx, lvw.ListItems!idx

Each dot saves about 30 bytes of code.

To enumerate over the ListItems collection of a ListView
Ocx, use For Each on the Ocx control directly, like:

Local li As ListItem
For Each li In lvw : DoSomething(li) : Next

See Also

ListView, ListItem, ListItems

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

AddItem, InsertItem,
RemoveItem, Clear Method,
NewIndex Property
Purpose

ListBox or ComboBox: AddItem adds an item.
RemoveItem removes an item NewIndex returns the
index of the item most recently added.

Syntax

object.AddItem item$ [, itemdata%]

object.InsertItem index%, item$ [, itemdata]

object.RemoveItem index%

object.Clear

object.NewIndex

object:ListBox, ComboBox
item$:sexp
itemdata:iexp

Description

AddItem adds an item to the ListBox or ComboBox. It
takes the text for the item and optional the itemdata, a long
integer value linked to the item. InsertItem inserts an
item at the specified position. Both AddItem and
InsertItem return the actual position of the list item.

NewIndex returns the index of most recently added. You
can use the NewIndex property with sorted lists when you
need a list of values that correspond to each item in the
ItemData property array. As you add an item in a sorted
list, GFA-BASIC 32 inserts the item in the list in alphabetic
order. This property tells you where the item was inserted
so that you can insert a corresponding value in the
ItemData property at the same index.

RemoveItem removes a specified item from the list. Clear
removes all items from the ListBox or ComboBox.

Example

Dim i As Int
OpenW 1, 20, 20 , 300, 300
Ocx ListBox lb1 = , 10, 10, 100, 100
For i = 1 To 100 ' Count from 1 to 100.
lb1.AddItem Dec(i, 3) & "Entry "

Next
MsgBox "Choose OK to remove every other entry."
For i = 1 To 50
lb1.RemoveItem i

Next
MsgBox "Choose OK to remove all items from the
list box."

lb1.Clear ' Clear list box.
Do
Sleep

Until Me Is Nothing

Remarks

If you supply a valid value for index, item is placed at that
position within the object. If index is omitted, item is added

at the proper sorted position (if the Sorted property is set
to True) or to the end of the list (if Sorted is set to False).

See Also

ListBox, ComboBox

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

LineItem, ListItem, Item,
GetFirstVisible Methods
(ListView)
Purpose

These ListView methods return a reference to a ListItem
object.

Syntax

ListView.LineItem(index%)

ListView.ListItem(index%)

ListView.Item(variant)

ListView.GetFirstVisible

Description

LineItem and ListItem return a reference to the specified
index of the list item object (index starts with 1).

Item returns an item from the ListItems collection of the
ListView control by either name or index.

GetFirstVisible returns a reference to the first object
visible in the internal area of a control. A ListView control
can contain more ListItem objects than can be seen in the
internal area of the ListView control. You can use the
reference returned by the GetFirstVisible method to

determine the first visible ListItem object in List or Report
view.

Example

Debug.Show
~SetWindowPos(Debug.hWnd, 0, 205, 10, 600, 500, 0)
OpenW 1, 10, 10, 185, 300
Local n As Int32
Dim li As ListItem
Ocx ListView lv = "", 10, 10, 150, 200 : lv.View =
3

lv.ColumnHeaders.Add , , "Column1" :
lv.ColumnHeaders(1).Width = PixelsToTwipX(130)

For n = 1 To 20
lv.ListItems.Add , "p" & Trim(n) , "Item " & n
Set li = lv.ListItem(n)
If Odd(n) Then li.Bold = True Else li.Italic =
True

Next n
Ocx Timer lv_tim : lv_tim.Interval = 100 :
lv_tim.Enabled = True

For n = 1 To 20 Step 5
// All the following produce the same result
Trace lv.LineItem(n).Text
Trace lv.ListItem(n + 1).Text
Trace lv.ListItems.Item("p" & Trim(n + 2)).Text
// Item can take the Key string

Trace lv.Item(n + 3).Text
// ...or the Index number

Trace lv(n + 4).Text
Next n
Do : Sleep : Until Me Is Nothing
Debug.Hide

Sub lv_tim_Timer

// In place of a 'Scroll' event which ListView is
missing

Static Int32 sp : Local Int32 nsp
nsp = GetScrollPos(lv.hWnd, SBS_VERT)
If sp <> nsp
sp = nsp
Set li = lv.GetFirstVisible // - If this
doesn't work see Known Issues below

' Const LVM_GETTOPINDEX = 4135
' Set li = lv(SendMessage(lv.hWnd,
LVM_GETTOPINDEX, 0, 0) + 1)

Debug "Top Item: ";li.Text
EndIf

EndSub

Known Issues

Prior to OCX v2.33/2.34, GetFirstVisible returned
Nothing (bug). If you experience this problem, you should
download the latest version of GfaWin23.ocx; otherwise,
use LVM_GETTOPINDEX instead as follows:

Const LVM_GETTOPINDEX = 4135
Set li = lv(SendMessage(lv.hWnd, LVM_GETTOPINDEX,
0, 0) + 1)

See Also

ListView, ListItem

{Created by Sjouke Hamstra; Last updated: 04/03/2018 by James Gaite}

SetGrid, SnapToGrid Method
(ListView)
Purpose

Moves an item to a specified position in a list view control
(must be in icon or small icon view).

Syntax

ListView.SetGrid(index, x, y)

ListView.SnapToGrid

index, x, y:iexp

Description

The index parameter specifies the index of the list view
item, which should be an Icon or SmallIcon. The x and y
parameters specify the new position of the item's upper-left
corner, in view coordinates.

If the Arrange property = 0 (no auto arrange) the items in
the list view control are arranged when invoking
SnapToGrid.

The SnapToGrid method snaps all icons to the nearest grid
position.

Example

Local Int32 n

Ocx ImageList iml : .ImageHeight = 32 :
.ImageWidth = 32

For n = 32512 To 32518 : iml.Add , "Img " & n,
CreatePicture(LoadIcon(Null, n)) : Next n

Ocx ListView lv = "", 10, 10, 400, 300 : .Icons =
iml : .SmallIcons = iml : .Arrange = 1

For n = 1 To 7 : lv.Add , , "Icon" & n, n, n :
Next n

~lv.SetGrid(2, 90, 100)
lv.SnapToGrid
Do : Sleep : Until Me Is Nothing

Remarks

Rather than just influencing the position of one icon,
SetGrid seems to affect the positioning of all.

See Also

ListView, Arrange

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Sort Method (ListView)
Purpose

Sorts the items in a ListItems collection.

Syntax

ListView.Sort column%, compare%

Description

Sorts the ListView control using the specified column% as
sort key. The value for column% starts with 0, where the
ColumnHeader indices start with 1.

It is common to sort a list when the column header is
clicked. For this reason, the Sort property is commonly
included in the ColumnClick event to sort the list using the
clicked column. It is also common to sort the list in
ascending order first and when the column header is clicked
again in descending order.

compare% specifies a value that determines whether
ListItem objects in a ListView control are sorted in
ascending or descending order and which compare mode to
use. The value for compare% is the same as for Mode
Compare (0 = Binary, 1 = Text - case insensitive, etc). The
descending sort order is specified by setting the appropriate
bit in the compare% value ($10000)

$0 - Ascending order. Sorts from the beginning of the
alphabet (A-Z) or the earliest date. Numbers are sorted as

strings, with the first digit determining the initial position in
the sort, and subsequent digits determining sub-sorting.

$10000 - Descending order. Sorts from the end of the
alphabet (Z-A) or the latest date. Numbers are sorted as
strings, with the first digit determining the initial position in
the sort, and subsequent digits determining sub-sorting.

Example

Global a$, n As Int32
Ocx ListView lv = "", 10, 10, 400, 200 : .View = 3
: .FullRowSelect = True : .GridLines = True

For n = 1 To 4 : lv.ColumnHeaders.Add , , "Column"
& n : lv.ColumnHeaders(n).Alignment = 2 : Next n

For n = 1 To 4
lv.Add , , ""
a$ = Rand(10) & ";" & Rand(10) & ";" & Rand(10) &
";" & Rand(10)

lv(n).AllText = a$
Next n
Do : Sleep : Until Me Is Nothing

Sub lv_ColumnClick(ColumnHeader As ColumnHeader)
// ColumnHeader objects do not store their sort
direction...

// ...so you can use Tag instead
If Val(ColumnHeader.Tag) = 0 Or
Val(ColumnHeader.Tag) = 1
lv.Sort ColumnHeader.Index - 1, $1
ColumnHeader.Tag = 2

Else
lv.Sort ColumnHeader.Index - 1, $10000
ColumnHeader.Tag = 1

EndIf
EndSub

The ListView lv1 is sorted case-insensitive (compare% =
1) and the sort order is toggled when the column is clicked
again.

Remarks

For the possible values for Mode Compare see here.

See Also

ListView, ColumnClick

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

ColumnClick, ItemClick
Events (ListView)
Purpose

ColumnClick occurs when a ColumnHeader object in a
ListView control is clicked. Only available in Report view
(3).

ItemClick occurs when a ListItem object in a ListView
control is clicked.

Syntax

Sub ListView_ColumnClick(ColumnHeader As
ColumnHeader)

Sub ListView_ItemClick(Item As ListItem)

Description

The ColumnClick(ColumnHeader As ColumnHeader) event
commonly use the Sort property to sort the ListItem
objects in the clicked column.

Use the ItemClick(Item As ListItem) event to determine
which ListItem was clicked. This event is triggered before
the Click event. The standard Click event is generated if
the mouse is clicked on any part of the ListView control.
The ItemClick event is generated only when the mouse is
clicked on the text or image of a ListItem object.

Example

Ocx ListView lv1 = "", 10, 10, 200, 200
.View = 3 : .FullRowSelect = True
lv1.ColumnHeaders.Add , , "Column1" :
lv1.ColumnHeaders.Add , , "Column2"

lv1.Add , , "" : lv1.ListItem(1).AllText =
"Bobby;Moore"

lv1.Add , , "" : lv1.ListItem(2).AllText =
"Jack;Charlton"

lv1.Add , , "" : lv1.ListItem(3).AllText =
"Bobby;Charlton"

Do : Sleep : Until Me Is Nothing

Sub lv1_ItemClick(Item As ListItem)
Message(Item.SubItems(0) & " " &
Item.SubItems(1))

EndSub

Sub lv1_ColumnClick(ColumnHeader As ColumnHeader)
Global lv1IsSorted As Int
Const lvwDescending = $10000
If ColumnHeader.Index == lv1IsSorted
lv1.Sort lv1IsSorted - 1, 1 + lvwDescending
lv1IsSorted = 0

Else
lv1IsSorted = ColumnHeader.Index
lv1.Sort lv1IsSorted - 1, 1

EndIf
End Sub

The ListView lv1 is sorted case-insensitive (compare% =
1) and the sort order is toggled when the column is clicked
again.

To recognize a second click a global variable IsSorted is
used (here lv1IsSorted to identify the control). The IsSorted
variable holds the latest clicked column. When a column is
clicked for a second time lv1IsSorted is equal to the Index

of the column. But, of course the Tag property of the
ColumnHeader item can also be used to store the current
sort order.

See Also

ListView, ColumnHeader, ListItem, Sort

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Max, Min, LargeChange,
SmallChange, Value
Properties
Purpose

Returns or set the minimum, maximum, and the amount of
change to the Value property.

Syntax

object.Max [= value%]

object.Min [= value%]

object.Value [= value%]

objects.LargeChange [= value%]

objects.SmallChange [= value%]

object:Scroll, Slider, ProgressBar Ocx
objects:Scroll, Slider Ocx

Description

Min and Max return or set the minimum and maximum for
the Value property for the specified control. The Value
property returns or sets the current position control. For
each property, you can specify an integer between -32,768
and 32,767, inclusive. For all Ocx control types the default
setting for Min is 0. For a Scroll control Max = 1000, for a

Slider and ProgressBar control Max = 100. But these can
be changed.

Slider - The LargeChange property sets the number of
ticks the slider will move when you press the PAGEUP or
PAGEDOWN keys, or when you click the mouse to the left or
right of the slider, default = 20. The SmallChange property
sets the number of ticks the slider will move when you
press the left or right arrow keys, default = 1.

Scroll - The LargeChange returns or sets the amount of
change to the Value property setting in a scroll bar control
when the user clicks the area between the scroll box and
scroll arrow, default = 100. The SmallChange returns or
sets the amount of change to the Value property setting in
a scroll bar control when the user clicks a scroll arrow,
default = 1.

Example

OpenW Center # 1, , , 400, 200
Me.BackColor = colBtnFace
Ocx Scroll sc1 = "", 10, 10, 370, 20
Ocx ProgressBar pb1 = "", 10, 50, 370, 20
With sc1
.Min = 0 : .Max = 600
.LargeChange = (.Max - .Min) / 10 : .SmallChange
= 10

End With
Do
Sleep

Loop Until Me Is Nothing

Sub sc1_Scroll()
pb1.Value = (sc1.TrackValue * 10 / 9) / ((sc1.Max
- sc1.Min) / 100)

Sub sc1_Change()
pb1.Value = (sc1.Value * 10 / 9) / ((sc1.Max -
sc1.Min) / 100)

See Also

Scroll, Slider, ProgressBar

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

Scroll, Change Events,
TrackValue Property (Slider,
Scroll)
Purpose

Occurs when you move the slider on a Slider control or the
scroll box on a Scroll control, either by clicking on the
control or using keyboard commands.

Syntax

Sub object_Scroll([index%])

Sub object_Change([index%])

Scroll.TrackValue [= value]

object:Scroll, Slider Ocx
index%:iexp, index when control is part of control array
value:iexp

Description

The Change event indicates the contents of a control have
changed. In fact, the Change event is triggered when the
Value property has changed. The event is triggered after
the Scroll or Slider control has changed. By contrast, the
Scroll event is continually triggered during the dragging.
During the Scroll event the value of the scroll box can be
obtained using the TrackValue property. The TrackValue
property is a Scroll Ocx property valid only in the Scroll

event sub, and is not shared with the Slider control. The
current value for the Slider is simply obtained using Value.

A Scroll event is always followed by a Change event.

Example

OpenW Center # 1, , , 400, 200
Me.BackColor = colBtnFace
Ocx Scroll sc1 = "", 10, 10, 370, 20
Ocx Label lb0 = "Value:", 10, 50, 100, 20
.Alignment = basRightJustify
Ocx Label lb1 = Str(sc1.Value), 120, 50, 50, 20
Ocx Slider sl1 = "", 10, 90, 370, 20
Ocx Label lb01 = "Value:", 10, 130, 100, 20
.Alignment = basRightJustify
Ocx Label lb2 = Str(sl1.Value), 120, 130, 50, 20
Do
Sleep

Loop Until Me Is Nothing

Sub sc1_Scroll()
lb1.Text = Str$(sc1.TrackValue)

EndSub

Sub sc1_Change()
lb1.Text = Str$(sc1.Value)

EndSub

Sub sl1_Scroll
lb2.Text = Str$(sl1.Value)

EndSub

Sub sl1_Change
lb2.Text = Str$(sl1.Value)

EndSub

Remarks

The Scroll and Change events can be compared to the
Form Scrollbars as follows:

_HScrolling, _VScrolling events_Scroll event

HScTrack, VScTrack propertiesTrackValue property

_HScroll, _VScroll events _Change event

HScPos, VScPos properties Value property (Default)

See Also

Scroll, Slider

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

SelectRange, SelLength,
SelStart Properties, ClearSel
(Slider Ocx)
Purpose

Returns or set the selection state of a Slider control.

Syntax

Slider.SelectRange = boolean

Slider.SelLength [= value%]

Slider.SelStart [= value%]

Slider.ClearSel

Description

SelectRange determines whether or not the Slider can
have a selected range.

SelLength returns or sets the length of a selected range,
and SelStart returns or sets the start of a selected range in
a Slider control. The value falls within the Min and Max
properties.

The SelLength and SelStart properties are used together
to select a range of contiguous values on a Slider control.
The Slider control then has the additional advantage of
being a visual analog of the range of possible values.

The SelLength property can't be less than 0, and the sum
of SelLength and SelStart can't be greater than the Max
property.

If SelectRange is set to False, then the SelStart property
setting is the same as the Value property setting. Setting
the SelStart property also changes the Value property, and
vice-versa, which will be reflected in the position of the
slider on the control. Setting SelLength when the
SelectRange property is False has no effect.

The ClearSel method cears the current selection range in a
slider.

Example

Global sldclr?
Ocx Slider sld = "", 10, 10, 400, 20 : .Min = 10 :
.Max = 200 : .TickFrequency = 10 : .LargeChange =
10

Ocx CheckBox chk = "Allow Range Selection", 10,
40, 130, 14

sld_Scroll
Do : Sleep : Until Me Is Nothing

Sub chk_Click
sld.SelectRange = -chk.Value

EndSub

Sub sld_Change
sldclr? = True

EndSub

Sub sld_MouseDown(Button&, Shift&, x!, y!)
If sldclr? Then sld.ClearSel : sldclr? = False

EndSub

Sub sld_Scroll
Local fn$ = FontName : FontName = "courier new"
If sld.SelectRange And sld.SelLength > 0
Text 10, 60, "Slider Start Position: " &
sld.SelStart & Space(2)

Text 10, 75, "Slider Range Length: " &
sld.SelLength & Space(2)

Else
Text 10, 60, "Slider Position: " & sld.Value &
Space(20)

Text 10, 75, Space(40)
EndIf
FontName = fn$

EndSub

See Also

Slider

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

TickFrequency, TickStyle
Properties, GetNumTicks
Method
Purpose

Returns or sets (the frequency of) tick marks on a Slider
control.

Syntax

object.TickFrequency [= number%]

object.GetNumTicks

object.TickStyle [= number%]

object:Slider Ocx

Description

TickFrequency returns or sets the frequency of tick marks
on a Slider control in relation to its range. For example, if
the range is 100, and the TickFrequency property is set to
2, there will be one tick for every 2 increments in the range.
To change the number of ticks, reset the Min or Max
properties or the TickFrequency property.

GetNumTicks returns the number of ticks between the Min
and Max properties.

TickStyle returns or sets the style (or positioning) of the
tick marks displayed on the Slider control.

TickStyle = 0 - ticks at the bottom or at the right
TickStyle = 1 - ticks at the top or at the left
TickStyle = 2 - ticks at the both sides
TickStyle = 3 - none. no ticks

Example

Local a$, n%
OpenW Center # 1, , , 400, 200
Me.BackColor = colBtnFace
Ocx Slider sli1 = "", 0, 0, 350, 45
.TickStyle = 0
.TickFrequency = 20
.Appearance = 3
Text 10, 50, "Minimum Value:" : Ocx TextBox tb(1)
= "", 90, 49, 45, 15 : tb(1).BorderStyle = 1 :
tb(1).Text = sli1.Min

Text 10, 68, "Maximum Value:" : Ocx TextBox tb(2)
= "", 90, 67, 45, 15 : tb(2).BorderStyle = 1 :
tb(2).Text = sli1.Max

Text 10, 86, "TickFrequency:" : Ocx TextBox tb(3)
= "", 90, 85, 45, 15 : tb(3).BorderStyle = 1 :
tb(3).Text = sli1.TickFrequency

Text 10, 104, "Tick Style:" : Ocx ComboBox cmb =
"", 90, 101, 120, 22 : cmb.Style = 2

For n% = 0 To 3 : Read a$: cmb.AddItem a$, n% :
Next n% : cmb.ListIndex = 3

Data Ticks Top/Left,Ticks Bottom/Right,Ticks Both
Sides,No Ticks

Do
Sleep

Loop Until Me Is Nothing

Sub cmb_Click
sli1.TickStyle = cmb.ItemData(cmb.ListIndex)

EndSub

Sub tb_Change(Index%)
Select Index%
Case 1 : sli1.Min = Val(tb(1).Text)
Case 2 : sli1.Max = Val(tb(2).Text)
Case 3 : sli1.TickFrequency = Val(tb(3).Text)
EndSelect

EndSub

See Also

Slider

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Add, AddItem Method
(ToolBar, Buttons)
Purpose

Add a Button object to a Buttons collection.

Syntax

ToolBar.Add[Item] ([index], [key] , [caption], [style],
[image])

Buttons.Add([index], [key] , [caption], [style], [image])

index, key, caption, style, image:Variant

Description

The ToolBar methods Add and AddItem, and
Buttons.Add method, add or insert a Button object to the
Buttons collection of the tool bar.

index Optional. An integer specifying the position
where you want to insert the Button object. If
no index is specified, the Button is added to the
end of the Buttons collection.

key Optional. A unique string that identifies the
Button object. Use this value to retrieve a
specific Button object.

caption Optional. A string that will appear beneath the
Button object.

style Optional. The style of the Button object.
0Default. The button is a regular push button.

1Checked. The button is a check button, which
can be checked or unchecked.
2Button group. The button remains pressed until
another button in the group is pressed. Exactly
one button in the group can be pressed at any
one moment.
3Separator. The button functions as a separator
with a fixed width of 8 pixels.
4Place Holder. The button is like a separator in
appearance and functionality, but has a settable
width.

image Optional. An integer or unique key that specifies
a ListImage object in an associated ImageList
control.

Buttons that have the Button Group (2) style must be
grouped. To distinguish a group, place all Button objects
with the same style (Button Group) between two Button
objects with the Separator (3) style.

When a Button object is assigned the Place Holder (4)
style, you can set the value of the Width property to
accommodate another control placed on the Button. If a
Button object has the Button, Check, or Button Group
style, the height and width are determined by the Height
and Width properties.

Example

AutoRedraw = 1
Ocx ToolBar tb
Dim btn As Button
Set btn = tb.Buttons.Add(, "open", "Open" , 0)
tb.Add , , , 3 ' Separator
tb.AddItem 1, , "New" , 0

OcxOcx tb ComboBox cb = , tb.Button(3).Left, 0,
100, 1

' The height of the ComboBox depends on the Font.
cb.Top = -cb.Height - 3
Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the Buttons collection to access
a Button element, you can use a shorter notation. First,
the ToolBar Ocx supports an Item property:

tb.Item(idx)tb.Buttons.Item(idx)

Like the Item method of tb.Buttons, Item is the default
method of ToolBar. Therefore, a Button can be accessed
as follows:

tb(idx)tb.Buttons(idx)

tb!idxtb.Buttons!idx

Each dot saves about 30 bytes of code.

To enumerate over the Buttons collection of a ToolBar
Ocx, use For Each on the Ocx control directly, like:

Local btn As Button
For Each btn In tb : DoSomething(btn) : Next

See Also

ToolBar, Buttons

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ButtonClick, ButtonDblClick
Events
Purpose

Occurs when the user clicks or double clicks on a Button
object in a Toolbar control.

Syntax

Sub object_ButtonClick(btn As Button)

Sub object_ButtonDblClick(btn As Button)

object: ToolBar Ocx

Description

To program an individual Button object's response to the
ButtonClick event, use the value of the btn argument. For
example, use the Key property of the Button object to
determine the appropriate action.

Example

Ocx ToolBar tlb
tlb.Add , "open" , "Open"
tlb.Add , "save" , "Save"
Do : Sleep : Until Me Is Nothing

Sub tlb_ButtonClick(Btn As Button)
Switch Btn.Index
Case 1 : Message("Open Button") // open
Case 2 : Message("Save Button") // save

EndSwitch
EndSub

Sub tlb_ButtonDblClick(Btn As Button)
Trace Btn
Switch Btn.Key
Case "open" : Message("Open DClick")
Case "save" : Message("Save DClick")
EndSwitch

EndSub

Remarks

When afterwards a Button is inserted, the Index property
might lose its original value. Therefore, it is often better to
use the Key property, which uniquely identifies a button.

See Also

ToolBar

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

SimpleText, Style Properties
(StatusBar)
Purpose

Control the style and text of the StatusBar control.

Syntax

StatusBar.SimpleText [= string]

StatusBar.Style [= number]

Description

The Style property returns or sets the style of a StatusBar
control. When Style = 0 the status bar shows all panels, but
when Style = 1 the control display only one large panel.

Use the SimpleText property to set the text of the string to
be displayed when the Style property is set to 1. NOTE
giving a value to SimpleText automatically sets Style = 1.

Example

Ocx StatusBar sb : .SimpleText = "Style is 1" :
.Style = 0

sb.Add , , "Panel 1"
sb.Add , , "Style is 0"
sb.Add , , "CAPS" , 3
Ocx CheckBox chk = "Change Style to 1", 10, 10,
120, 14

Do : Sleep : Until Me Is Nothing

Sub chk_Click
sb.Style = chk.Value

EndSub

See Also

StatusBar

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Add, AddItem Method
(StatusBar, Panels)
Purpose

Add a Panel object to a Panels collection.

Syntax

StatusBar.Add[Item] ([index], [key], [caption], [style],
[picture])

StausBar.Panels.Add([index], [key], [caption], [style],
[picture])

index, key, caption, style, image:Variant

Description

The StatusBar methods Add and AddItem, and the
Panels.Add method, add or insert a Panel object to the
Panels collection of the status bar.

index Optional. An integer specifying the position
where you want to insert the Panel object. If no
index is specified, the Panel is added to the end
of the Panels collection.

key Optional. A unique string that identifies the
Panel object. Use this value to retrieve a
specific Panel object.

caption Optional. A string that will appear in the Panel
object.

style Optional. The style of the Panel object.

0 - Default. Text and/or a bitmap. Set text with
the Text property. The Panel appears to be
sunk into the status bar.
1 - Flat. The Panel displays no bevel, and text
looks like it is displayed right on the status bar.
2 - Raised. The Panel appears to be raised
above the status bar.
3 - Caps Lock key. Displays the letters CAPS in
bold when Caps Lock is enabled, and dimmed
when disabled.
4 - Number Lock. Displays the letters NUM in
bold when the number lock key is enabled, and
dimmed when disabled.
5 - Scroll Lock key. Displays the letters SCRL in
bold when scroll lock is enabled, and dimmed
when disabled.
6 - Insert key. Displays the letters INS in bold
when the insert key is enabled, and dimmed
when disabled.
7 - Date. Displays the current date and time in
the system format or in the format specified in
caption. The custom format used has to be the
same as specified in Format().

image Optional. An integer or unique key that specifies
a ListImage object in an associated ImageList
control.

GFA-BASIC 32 omits the Style constants for a Panel,
instead you could use the following Enum.

Example

' Constants for the StatusBar Panel Styles

Global Enum sbrText = 0, sbrFlat, sbrRaise,
sbrCaps, sbrNum, sbrScroll, sbrIns, sbrDate

' Constants for Text alignment in StatusBar Panels
Global Enum sbrLeft = 0, sbrCenter, sbrRight
Ocx StatusBar sb
sb.Panels.Add , , "Part 1", sbrText
sb.Panels.Add , , "Part 2", sbrFlat
sb.Panels.Add , , "Part 3", sbrRaise
sb.Panels.Add , , "Caps", sbrCaps
sb.Panels.Add , , "Num", sbrNum
sb.Panels.Add , , "Scroll", sbrScroll
sb.Panels.Add , , "INS", sbrIns
sb.Panels.Add , , "c", sbrDate
Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 specific

Instead of explicitly using the Panels collection to access a
Panel element, you can use a shorter notation. First, the
StatusBar supports an Item property:

sb.Item(idx)sb.Panels.Item(idx)

Like the Item method of sb.Panels, Item is the default
method of StatusBar. Therefore, a Panel can be accessed
as follows:

sb(idx)sb.Panels(idx)

sb!idxsb.Panels!idx

Each dot saves about 30 bytes of code.

To enumerate over the Panels collection of a StatusBar
Ocx, use For Each on the Ocx control directly, like:

Local p As Panel
For Each p In sb : DoSomething(p) : Next

Known Issues

The index property of Add[Item] works inconsistently:
most of the time, it will do as desired, but sometimes the
panel position will not be affected it by it and, on others, an
'Illegal Function Call' error is thrown.

The following example will throw the 'Illegal Function Call'
error; this usually only happens if the index is the same as
the panel number being created, below one or greater than
the number of panels:

Ocx StatusBar sb
sb.AddItem , , "Panel 1"
sb.AddItem 2, , "Panel 2"
sb.AddItem , , "Panel 3"
Do : Sleep : Until Me Is Nothing

The following example, trying to set Panel 2 to be the first
panel just does nothing...

Ocx StatusBar sb
sb.AddItem , , "Panel 1"
sb.AddItem 1, , "Panel 2"
sb.AddItem , , "Panel 3"
Do : Sleep : Until Me Is Nothing

...while this one setting Panel 3 to the first position does
work.

Ocx StatusBar sb
sb.AddItem , , "Panel 1"
sb.AddItem , , "Panel 2"
sb.AddItem 1, , "Panel 3"

Do : Sleep : Until Me Is Nothing

There is no workaround for this and the best advice is to
use caution when setting the index parameter.
[Reported by Jean-Marie Melanson, 26/02/2017]

See Also

StatusBar, Panels

{Created by Sjouke Hamstra; Last updated: 02/03/2017 by James Gaite}

PanelClick, PanelDblClick
Events
Purpose

Occurs when the user clicks or double clicks on a Panel
object in a StatusBar control.

Syntax

Sub object_PanelClick(p As Panel)

Sub object_PanelDblClick(p As Panel)

object: StatusBar Ocx

Description

The PanelClick event is similar to the standard Click event
but occurs when a user presses and then releases a mouse
button over any of the StatusBar control's Panel objects.
The standard Click event also occurs when a Panel object
is clicked.

The PanelClick event is only generated when the click
occurs over a Panel object. When the StatusBar control's
Style property is set to Simple style, panels are hidden,
and therefore the PanelClick event is not generated.

Example

Global Enum sbrNoAutoSize = 0, sbrSpring,
sbrContents

Ocx StatusBar sb
sb.Panels.Add , , "Hello" : sb.Panel(1).AutoSize =
sbrNoAutoSize

sb.Add , , "Hello" : sb.Panel(2).AutoSize =
sbrSpring

sb.Panels.Add , , "Hello" : sb.Panel(3).AutoSize =
sbrContents

sb.Add , , "Hello" : sb(4).MinWidth = 50 :
sb(4).AutoSize = sbrContents

Do : Sleep : Until Me Is Nothing

Sub sb_PanelClick(Panel As Panel)
Message "Single Click on:" & sb_Report(Panel)

EndSub

Sub sb_PanelDblClick(Panel As Panel)
Message "Double Click on:" & sb_Report(Panel)

EndSub

Function sb_Report(Panel As Panel)
Local a$ = " " & Panel.Text & #13#10 & "AutoSize
state: "

Select Panel.AutoSize
Case sbrNoAutoSize : a$ = a$ & "sbrNoAutoSize(0)"
Case sbrSpring : a$ = a$ & "sbrSpring(1)"
Case sbrContents : a$ = a$ & "sbrContents(2)"
EndSelect
Return a$

EndFunction

See Also

StatusBar

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Columns Property
Purpose

Returns or sets a value that determines whether a ListBox
control scrolls vertically or horizontally and how the items in
the columns are displayed. If it scrolls horizontally, the
Columns property determines how many columns are
displayed.

Syntax

object.Columns [= number]

Description

The settings for number are:

0(Default) Items are arranged in a single column and the
ListBox scrolls vertically.

1 to n Items are arranged in snaking columns, filling the
first column, then the second column, and so on. The
ListBox scrolls horizontally and displays the specified
number of columns.

Example

Local Int32 m, n
For n = 0 To 4
Ocx Label lbl(n) = "Columns =" & n, 10, (n * 70)
+ 10, 60, 60

Ocx ListBox lb(n) = n & " columns", 70, (n * 70)
+ 10, 200, 60 : lb(n).Columns = n

For m = 1 To 20 : lb(n).AddItem "Item " &
Format(m, "00") : Next m

Next n
Do : Sleep : Until Me Is Nothing

Remarks

See Also

ListBox

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

IntegralHeight Property
Purpose

Returns or sets a value indicating if the control displays
partial items in a ListBox or ComboBox.

Syntax

object.IntegralHeight [= Boolean]

object:ComboBox, ListBox Ocx

Description

The IntegralHeight property is False by default, the list
doesn't resize itself even if the item is too tall to display
completely. When set to True the list resizes itself to display
only complete items.

If the number of items in a list exceeds what can be
displayed, a scroll bar is automatically added to the control.
You can prevent partial rows from being displayed by
setting the IntegralHeight property to True.

Example

Local Int32 n
OpenW 1 : AutoRedraw = 1 : FontSize = 10
Debug FontSize
Text 10, 10, "IntegralHeight = True"
Ocx ListBox lb1 = "", 10, 30, 150, 200
Text 170, 10, "IntegralHeight = False"
Ocx ListBox lb2 = "", 170, 30, 150, 200

lb1.IntegralHeight = True
For n = 1 To 15 : lb1.AddItem "Item " & Format(n,
"00") : lb2.AddItem "Item " & Format(n, "00") :
Next n

Do : Sleep : Until Me Is Nothing

See Also

ListBox, ComboBox

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

ItemData Property
Purpose

Returns or sets a specific number for each item in a
ComboBox or ListBox control.

Syntax

object.ItemData(index) [= number]

number:iexp

Description

The ItemData property is an array of long integer values
with the same number of items as a control's List property.
You can use the numbers associated with each item to
identify the items. For example, you can use an employee's
identification number to identify each employee name in a
ListBox control. When you fill the ListBox, also fill the
corresponding elements in the ItemData array with the
employee numbers.

The ItemData property is often used as an index for an
array of data structures associated with items in a ListBox
control.

Example

Global a$, n As Int32
Ocx ListBox lb = "", 10, 10, 100, 200
For n = 1 To 26 : a$ = "Letter " & (n < 10 ? " " :
"") & Trim(n) : lb.AddItem a$, n + 64 : Next n

Do : Sleep : Until Me Is Nothing

Sub lb_Click
If lb.ListIndex <> -1
Message lb.List(lb.ListIndex) & " is " &
Chr(lb.ItemData(lb.ListIndex))

EndIf
EndSub

Remarks

When you insert an item into a list with the AddItem
method, an item is automatically inserted in the ItemData
array as well. However, the value isn't reinitialized to zero;
it retains the value that was in that position before you
added the item to the list. When you use the ItemData
property, be sure to set its value when adding new items to
a list.

See Also

ListBox, ComboBox, Item, AddItem

{Created by Sjouke Hamstra; Last updated: 11/10/2014 by James Gaite}

List, ListCount, ListIndex
Properties
Purpose

List returns or sets the items contained in a ComboBox or
ListBox object's list portion. ListCount returns the number
of items in the list portion of a control. ListIndex returns or
sets the index of the currently selected item in the control.

Syntax

object.List(index) [= string]

object.ListIndex [= index%]

object.ListCount

object:ComboBox or ListBox Ocx

Description

The list is a string array in which each element is a list item.
List(0) returns the first entry. The List property works in
conjunction with the ListCount and ListIndex properties.
Enumerating a list from 0 to ListCount -1 returns all items
in the list.

ListIndex returns or sets the currently selected list item, it
takes an index from 0 to ListCount - 1. When no item is
selected, ListIndex returns -1.

Example

Debug.Show
~SetWindowPos(Debug.hWnd, 0, 205, 10, 300, 500, 0)
OpenW 1, 10, 10, 185, 350
Local n As Int32
Ocx ListBox lb = "", 10, 10, 150, 300 : .Sorted =
False : .IntegralHeight = True

For n = 1 To 30 : lb.AddItem "List Item" & n :
Next n

//Enumerate the list in Debug window
For n = 1 To lb.ListCount : Debug "List(" & Trim(n
- 1) & ") = " & lb.List(n - 1) : Next n

Debug.Print
Do : Sleep : Until Me Is Nothing
Debug.Hide

Sub lb_Click
If lb.ListIndex <> -1 // An item has been
selected
Debug "Selected Item: "; lb.ListIndex; " -
";#34;lb.List(lb.ListIndex);#34

EndIf
EndSub

Remarks

To specify items you want to display in a ComboBox or
ListBox control, use the AddItem method. To remove
items, use the RemoveItem method. To keep items in
alphabetic order, set the control's Sorted property to True
before adding items to the list.

See Also

ListBox, ComboBox

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

MultiSelect, Selected
Properties (ListBox,
ListView)
Purpose

MultiSelect returns or sets a Boolean value indicating
whether a user can make multiple selections in a ListBox.
The Selected property returns or sets the selection status
of an item in a ListBox control.

Syntax

object.MultiSelect [= boolean]

object.Selected(index) [= boolean]

object:ListBox, ListView

Description

The Selected() property is an array of Boolean values with
the same number of items as the List property.

Example

Form frm = "Listbox", , , 500, 400
Ocx ListBox lb1 = "", 0, 0, 250, 200
.MultiSelect = 1
.TabStop = True
Ocx ListBox lb2 = "", 250, 0, 250, 200
.TabStop = True
Ocx Command cmd1 = "Add to 2", 100, 220, 80, 24

cmd1.Enabled = False
Dim i%
For i = 0 To Screen.FontCount - 1
lb1.AddItem Screen.Fonts(i)

Next i
lb1.SetFocus
Do
Sleep

Until Me Is Nothing

Sub cmd1_Click ()
Dim i%
lb2.Clear ' Clear all items from the list.
For i = 0 To lb1.ListCount - 1
If lb1.Selected(i) Then
lb2.AddItem lb1.List(i)

End If
Next i

End Sub

Sub lb1_Click
' The missing ListBox property: SelCount:
Dim SelCount% = SendMessage(lb1.hWnd,
LB_GETSELCOUNT, 0, 0)

If SelCount = 0 && cmd1.Enabled
cmd1.Enabled = False

Else If SelCount > 0 && cmd1.Enabled = False
cmd1.Enabled = True

EndIf
EndSub

See Also

ListBox, ListView

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Find, FindExact, FindNext
Method
Purpose

Searches a string in a ListBox or ComboBox Ocx control.

Syntax

i = object.Find(search$)

i = object.FindNext(start, search$)

i = object.FindExact(search$)

I, start:iexp
object:ListBox or ComboBox

Description

Find searches for a string and FindNext the next match of
that string, as part of a list item in a ListBox or
ComboBox Ocx control. With FindNext, if the string is not
found in the remainder of the list, it will start again from the
beginning of the list until a match is made or the start item
is reached.

FindExact searches for an exact (but non-case-sensitive)
match of a string with the whole of a list item in a ListBox
or ComboBox Ocx control.

The return value is the index of the item.

Example

Dim list As Variant, n As Int32
list = Array("Matthew", "Mark", "Luke", "John",
"Paul")

Ocx ListBox lbx = "", 10, 10, 150, 400 :
lbx.Sorted = False

For n = 1 To 40 : lbx.AddItem list(Random(5)) &
Iif(Random(2) = 0, " 2", "") : Next n

Ocx Label lbl = "String to Find:", 220, 10, 150,
15 : lbl.BackColor = RGB(255, 255, 255)

Ocx ComboBox cmb = "", 220, 30, 150, 22 :
cmb.Style = 2

For n = 0 To 4 : cmb.AddItem list(n) : Next n :
cmb.ListIndex = 0

Ocx Command cmd1 = "Find", 190, 60, 60, 22
Ocx Command cmd2 = "Find Next", 260, 60, 60, 22
Ocx Command cmd3 = "Find Exact", 330, 60, 60, 22
Do : Sleep : Until Me Is Nothing

Sub cmd1_Click
// lbx.ListIndex =
lbx.Find(cmb.List(cmb.ListIndex)) does not seem
to work

Local a$ = cmb.List(cmb.ListIndex)
lbx.ListIndex = lbx.Find(a$)

EndSub

Sub cmd2_Click
Local a$ = cmb.List(cmb.ListIndex)
lbx.ListIndex = lbx.FindNext(lbx.ListIndex, a$)

EndSub

Sub cmd3_Click
Local a$ = cmb.List(cmb.ListIndex)
lbx.ListIndex = lbx.FindExact(a$)

EndSub

Remarks

See Also

ListBox, ComboBox

{Created by Sjouke Hamstra; Last updated: 17/11/2017 by James Gaite}

Style Property (ComboBox)
Purpose

Returns or sets a value indicating the display type and
behavior of the control.

Syntax

Object.Style [= value%]

Object:ComboBox

Description

The Style property settings for the ComboBox control are:

Value Description

0 (Default) Dropdown Combo. Includes a drop-down list and
a text box. The user can select from the list or type in the
text box.

1 Simple Combo. Includes a text box and a list, which
doesn't drop down. The user can select from the list or type
in the text box. The size of a Simple combo box includes
both the edit and list portions. By default, a Simple combo
box is sized so that none of the list is displayed. Increase
the Height property to display more of the list.

2 Dropdown List. This style allows selection only from the
drop-down list.

Example

Local a$, n As Int32
Ocx ComboBox cb1 = "", 10, 10, 150, 22 : .Style =
0

Ocx ComboBox cb2 = "", 200, 10, 150, 150 : .Style
= 1 : cb2.Height = 10 * TextHeight("A")

Ocx ComboBox cb3 = "", 390, 10, 150, 22 : .Style =
2

For n = 1 To 20 : a$ = "Item " & Format(n, "00")
cb1.AddItem a$
cb2.AddItem a$
cb3.AddItem a$

Next n
Do : Sleep : Until Me Is Nothing

Remarks

Use setting 0 (Dropdown Combo) or setting 1 (Simple
Combo) to give the user a list of choices. Either style
enables the user to enter a choice in the text box. Setting 0
saves space on the form because the list portion closes
when the user selects an item.

Use setting 2 (Dropdown List) to display a fixed list of
choices from which the user can select one. The list portion
closes when the user selects an item.

See Also

ComboBox

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Scroll Event (ComboBox)
Purpose

Occurs after a scrollbar event.

Syntax

Sub ComboBox_Scroll()

Description

For a ComboBox control, this event occurs only when the
scrollbars in the dropdown portion of the control are
manipulated.

Example

Ocx ComboBox cmb = "", 10, 10, 100, 22 :
cmb.Sorted = False

Local Int32 n
For n = 1 To 60 : cmb.AddItem "Item" & n : Next n
Do : Sleep : Until Me Is Nothing

Sub cmb_Scroll
Message "Scrollbar moved"

EndSub

Known Issues

This event does not seem to work, as shown by the above
example.

See Also

ComboBox

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Close Method, AutoClose
Property , Close Event,
Destroy Event
Purpose

The Close method closes a Form window. The Close event
occurs when a window is about to close. The AutoClose
property prevents automatic closure of a Form.

Syntax

Form.Close

Form.AutoClose [= value]

Sub Form_Close([index%,] Cancel?)

Sub Form_Destroy([index%])

value:Bool exp
index%:iexp, form number
Cancel?:boolean ByRef

Description

When AutoClose = 0 the form is not automatically closed
when Alt-F4 is pressed, or when the close button in the
caption is clicked. Instead, the program must handle the
Form_Close(Cancel?) sub event to close the window by
setting Cancel? = False. The ByRef parameter Cancel? is
True by default, so that without changing it, the window
isn't closed.

To explicitly close a window the Close method is available.
This method will not result in invoking the Close event sub.
A window can also be closed by setting its object variable to
Nothing (Set Win_1 = Nothing).

After closing a window/form/dialog the Destroy event is
invoked. This is the place to release resources and finalize
the Form. The Destroy event is generated when
DestroyWindow is called. Windows doesn't send WM_CLOSE
and WM_DESTROY messages when the user logs off. The
QueryEndSession event is the time to do the final things.

Example

OpenW 1
Me.AutoClose = 0
Do
Sleep

Until Me Is Nothing

Sub Win_1_Close(Cancel?)
If MsgBox("Close Form?", MB_YESNO) = IDYES Then C
ancel? = False

EndSub

Sub Win_1_Destroy
' release resources

EndSub

Remarks

For all forms AutoClose = True by default, except for
Dialogs, where Dlg_n.AutoClose = False.

In addition, unlike CloseW, if Form.Close is used for a form
which does not exist or has been set to Nothing, an error is

returned.

See Also

Form, QueryEndSession

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

ControlBox Property
Purpose

Returns or sets a value indicating whether a Control-menu
box is displayed on a form.

Syntax

object.ControlBox [= True | False]

Description

To display a Control-menu box, you must also set the form's
BorderStyle property to 1 (basFixed), or 2 (basThick).

When ControlBox = 0 the MinButton, MaxButton, and
HelpButton are removed as well. These properties depend
on each other. When Caption = "" as well, no title bar is
drawn.

Example

OpenW 1
Print "Press any key to remove ControlBox"
Local a% : KeyGet a%
Win_1.ControlBox = False
Cls
Print "Press any key to close"
KeyGet a%
CloseW 1

Remarks

Although ControlBox = False disables the system menu, a
Form can still be moved when it has caption by clicking and
holding the mouse button in the title bar. Also, by double
clicking the title bar the form is maximized or minimized,
respectively.

See Also

Form, MinButton, MaxButton, HelpButton, BorderStyle

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

Controls Property, Control
Ocx
Purpose

Returns a reference to a collection of Control objects on a
Form.

Syntax

Form.Controls

Control

Description

A collection of type Control. The collection can be iterated
over using For Each. Furthermore, it provides the Count
property.

The Control type as a generic variable type for controls.
When you declare a variable As Control, you can assign it
a reference to any control. You cannot create an instance of
the Control class.

Example

Form frm1 = , 0, 0, 150, 200
// Populate Form
Ocx Command cmd = "Command", 10, 10, 100, 22
Ocx Option opt(1) = "Option 1", 10, 40, 100, 14
Ocx Option opt(2) = "Option 2", 10, 60, 100, 14

Ocx CheckBox checkbox = "Checkbox", 10, 85, 100,
14

// Display Control properties in Debug screen
Debug.Show
~SetWindowPos(Debug.hWnd, 0, 250, 0, 500, 500, 0)
Dim o As Control
Trace frm1.Controls.Count
Debug.Print
For Each o In frm1.Controls
Trace o.Name
Try
Trace o.Index

Catch
EndCatch
Debug

Next
Do : Sleep : Until frm1 Is Nothing
Debug.Hide

Remarks

Accessing properties and methods of a control is faster if
you use a variable declared with the same type as the
control (for example, As TreeView or As Command),
because GFA-BASIC 32 can use early binding. GFA-BASIC
32 must use late binding to access properties and methods
of a control assigned to a variable declared As Control.

See Also

Form, Forms

{Created by Sjouke Hamstra; Last updated: 26/09/2014 by James Gaite}

hDC2 Property
Purpose

Returns a handle provided by the Microsoft Windows
operating environment to memory device context of the
AutoRedraw image of a Form.

Syntax

Form.hDC2

Form:Form Object

Description

This property is a Windows operating environment device
context handle. The Windows operating environment
manages the system display by assigning a device context
for each form in your application. The AutoRedraw
property requires another DC; a memory device context to
draw the graphic output in a memory bitmap. You can use
the hDC2 property to refer to the handle for the Form's
memory device context. This provides a value to pass to
Windows API calls.

The memory graphic image can be obtained with the
Image property of the Form.

Example

OpenW 1, 0, 0, 400, 400
AutoRedraw = 1
Print "This is window 1"

OpenW 2, 401, 0, 400, 400
BitBlt Win_1.hDC2, 0, 0, 400, 400, Win_2.hDC, 0,
0, &H00CC0020

Remarks

The value of the hDC2 property can change while a
program is running, so don't store the value in a variable;
instead, use the hDC2 property each time you need it.

See Also

Form, hDC, AutoRedraw, Image, _DC(), _DC2

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

MaxButton, MinButton,
HelpButton Property
Purpose

Sets the minimize, maximize and help button of a Form.

Syntax

Form.MaxButton [= True | False]

Form.MaxButton [= True | False]

Form.HelpButton [= True | False]

Description

When set to True the form has a Maximize or Minimize
button (default).

A Maximize button enables users to enlarge a form window
to full-screen size. To display a Maximize button, you must
also set the form's BorderStyle property to either 1 (Fixed
Single), 2 (Sizable), or 3 (Fixed Double).

The settings you specify for the MaxButton, MinButton,
BorderStyle, and ControlBox properties are related with
each other. When ControlBox = False the MinButton and
MaxButton aren't visible.

HelpButton removes or sets the help button in the title bar
of a Form. To get the What's This question mark button in
the title bar of the window, the properties of both
MinButton and MaxButton must be set to False. The

OnCtrlHelp event occurs when the help button cursor is
clicked on an Ocx control or F1 is pressed. Set the
WhatsThisHelpID of a control to identify the help content.

Instead of using HelpButton, it is possible to create the
same effectby using a pushbutton/command control which
can toggle the window's WhatsThisMode.

Example

OpenW 1
Me.MinButton = 0
Me.MaxButton = 0
Me.HelpButton = True
Ocx Command cmd = "Show Max && Min buttons", 10,
40, 140, 24

cmd.WhatsThisHelpID = 1001
Do
Sleep

Until Me Is Nothing

Sub cmd_Click
Me.MaxButton = Not Me.MaxButton
Me.MinButton = Not Me.MinButton
cmd.Caption = (Me.MaxButton ? "Hide" : "Show") &
" Max && Min buttons"

EndSub

Sub Win_1_OnCtrlHelp(Ctrl As Object, x%, y%)
Trace Ctrl.WhatsThisHelpID

EndSub

Remarks

See Also

Form

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

hMdiClientWnd Property
Purpose

Returns the handle of the MDICLIENT window of the MDI
parent window.

Syntax

h = Form.hMdiClientWnd

h:Handle

Description

Only valid when the window is a MDI parent window.

Example

ParentW 1
Dim hMdiClient As Handle
hMdiClient = Win_1.hMdiClientWnd
Debug.Show
Trace Hex(hMdiClient)
Do
Sleep

Until Me Is Nothing

See Also

Form, hWnd, MdiParent, MdiChild, ChildW, ParentW

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

HScMax, HScMin, HScPos,
HScPage, HScStep, HScTrack
Properties
Purpose

Sets and returns the horizontal scrollbar values for a Form.

Syntax

Form.HScMax [= value]

Form.HScMin [= value]

Form.HScPos [= value]

Form.HScPage [= value]

Form.HScStep [= value]

Form.HScTrack [= value]

value : Long exp

Description

Properties used to the horizontal scrollbar of a Form object.

HScPos is the value of the control, and can range from
HScMin to HScMax, inclusive. It designates where the
scroll bar button is positioned along the scroll bar.

HScMin is a number specifying the minimum value that the
scroll bar can have. This number ranges from 0 to 30,000,
but cannot be greater than the maximum value given in
HScMax.

HScMax is a number specifying the maximum value that
the scroll bar can have. This number ranges from 0 to
30,000. Setting HScMax to 0 makes the scroll bar
disappear. To disable the scroll bar but keep it visible use
~EnableScrollBar(hWnd, SB_HORZ,
ESB_DISABLE_BOTH) and to enable it again use
~EnableScrollBar(hWnd, SB_HORZ,
ESB_ENABLE_BOTH).

HScStep is a number specifying the increment that the
value is adjusted by when the scrollbar arrow is clicked.

HScPage is a number specifying the increment that the
value is adjusted by when the page scroll region of a scroll
bar is clicked.

HScTrack returns the current position of the scrollbar in
the _HScrolling event sub. This sub called only when the
thumb is being moved. The _HScroll event sub is called
after the scrolling is complete.

Note: If you manually change either HScPos or HScTrack,
you MUST adjust the value of the other; if not, the
scrollbars will display odd and incorrect behaviour. Also,
using the SetFocus method will reset both of these values
to zero.

Default values: .HScPos = 0, .HScTrack = 0, .HScMin =
0, .HScStep = 1, HScPage = 100, .HScMax = 1000.

Example

Global Int32 a = 160, b = a / 2, n
Global Int32 iw = (5 * a) + 100 // Width of the
actual work area

Global Int32 vw = (2 * a) + b // Width of visible
area within window

OpenW Fixed 1, , , vw + (Screen.cxFixedFrame * 2),
500 : Win_1.ControlBox = False

For n = 0 To 4 : Ocx Command cmd(n) = "Close
Button " & n, ((n * a) + b), 200, 100, 22 : Next
n

Me.ScrollBars = basHorizontal
Me.HScMin = 0
Me.HScStep = b / 2
Me.HScPage = a / 2
Me.HScMax = iw - vw + Me.HScPage // Width of Work
Area - Width of Visible Area + HScPage

Do
Sleep

Until Me Is Nothing

Sub Win_1_HScroll
For n = 0 To 4 : cmd(n).Left = (((n * 200) + 100)
- Me.HScPos) : Next n

EndSub

Sub Win_1_HScrolling
For n = 0 To 4 : cmd(n).Left = (((n * 200) + 100)
- Me.HScTrack) : Next n

EndSub

Sub cmd_Click(Index%)
Win_1.Close

EndSub

Remarks

See Also

Form, _HScrolling, _HScroll, VScMax, VScMin, VScPos,
VScPage, VScStep, VScTrack, _VScrolling, _VScroll

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

IsDialog Property
Purpose

Returns True when a Form is created using the Dialog
command.

Syntax

? = Form.IsDialog

Description

Returns true when a Form is created using the Dialog
command. This is useful because of different management
of dialogs as forms.

For a dialog-form AutoClose = 0 and the background color
is white.

Example

Dialog # 1, 50, 50, 200, 110, "DlgBase Outside",
$80 ', -12, "ARIAL"
LText "This is should be bold!", 3, 32, 16, 350,
16, $0

PushButton "Close", IDOK, 55, 45, 80, 20
EndDialog
ShowDialog # 1
Trace Dlg_1.IsDialog // returns False

Remarks

This property doesn't seem to work.

See Also

Dialog, Form

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

MdiChild, MdiParent
Properties
Purpose

For MDI windows return True when a Form is a MdiChild or
a MdiParent Form.

Syntax

? = Form.MdiChild

? = Form.MdiParent

Description

A Form can only have one of these properties set. These
properties can only be set in the Form Editor. At run time
they can be inquired only.

Example

ParentW 1
ChildW 2, 1
Print Me.MdiChild
Print Me.MdiParent

Remarks

The Owned and MdiChild properties cannot be combined.

See Also

ChildW, ParentW, Form

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

Moveable, Sizeable
Properties
Purpose

Returns or sets a value which specifies if the Form can be
moved or be resized.

Syntax

Form.Moveable = boolean

Form.Sizeable = boolean

Description

When Moveable = False the Form cannot be moved. Be
aware, when there are a Caption, a ControlBox, or a
MinButton or MaxButton a window should be moveable.

When Sizeable is True the BorderStyle is changed to 2,
and when Sizeable is set to False the BorderStyle is set to
1.

Example

OpenW 1, 10, 10, 300, 300
Ocx CheckBox chk(1) = "Fix Window Position", 10,
10, 140, 22

Ocx CheckBox chk(2) = "Window Resizable", 10, 40,
140, 22 : chk(2).Value = 1

Do
Sleep

Until Win_1 Is Nothing

Sub chk_Click(Index%)
Win_1.Moveable = Not (-chk(1).Value)
Win_1.Sizeable = - chk(2).Value

EndSub

See Also

Form, Sizeable, Caption, ControlBox, MinButton, MaxButton

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

ToTop, ToBack Methods,
OnTop Property
Purpose

ToTop places the Form at the top of the Z order. ToBack
places the Form at the bottom of the Z order.

Syntax

Form.ToBack

Form.ToTop

Form.OnTop [= Boolean]

Description

The ToTop and ToBack methods use the SetWindowPos
function to change the Z order of Form. Child, pop-up, and
top-level windows are ordered according to their
appearance on the screen. The topmost window receives
the highest rank and is the first window in the Z order. If a
Form identifies a topmost window, with ToBack the window
loses its topmost status and is placed at the bottom of all
other windows.

The OnTop property sets the topmost state of a window.
OnTop places the window above all non-topmost windows.
The window maintains its topmost position even when it is
deactivated; using the ToTop method does NOT set the
corresponding OnTop property to True.

Example

OpenW 1 : Win_1.Caption = "Window 1"
Ocx Command cmd(1) = "Send to Back", 10, 10, 120,
22

Ocx Label lbl(1) = "", 10, 40, 120, 14
OpenW 2 : Win_2.Caption = "Window 2"
Ocx Command cmd(2) = "Send to Back", 10, 10, 120,
22

Ocx Label lbl(2) = "", 10, 40, 120, 14
Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1 : CloseW 2

Sub cmd_Click(Index%)
If Index% = 1 Then Win_2.ToTop // or Win_2.OnTop
= True

If Index% = 2 Then Win_2.ToBack (* or Win_1.OnTop
= True *) : Win_1.ToTop

EndSub

Sub Win_1_Activate
cmd(2).Caption = ""
cmd(1).Caption = "Send to Back"
lbl(1).Caption = "Window 1 on Top"

EndSub

Sub Win_2_Activate
cmd(1).Caption = ""
cmd(2).Caption = "Send to Back"
lbl(2).Caption = "Window 2 on Top"

EndSub

Remarks

The ZOrder method changes the z-order as well.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Paint Event; PaintLeft,
PaintTop, PaintWidth, and
PaintHeight Properties
Purpose

The Paint event occurs when a Form is first displayed or
when part or all of a Form is exposed after being moved or
enlarged, or after a window that was covering the object
has been moved.

Syntax

Sub Form_Paint([index%])

x! = Form.PaintLeft
x! = Form.PaintTop
x! = Form.PaintWidth
x! = Form.PaintHeight

index%:iexp, Form number
x!Single exp

Description

A Paint event procedure is useful if you have output from
graphics methods in your code. With a Paint procedure,
you can ensure that such output is repainted when
necessary. The Paint event is also invoked when the
AutoRedraw property is set to True.

The Paint event is invoked when part or all of the client
area has been invalidated and/or the Refresh method is

used.

The PaintLeft, PaintTop, PaintWidth, and PaintHeight
properties specify the invalidated area, the area that needs
updated. These properties are only valid inside the Paint
event.

Example

OpenW 1, 10, 10, 300, 300
Ocx CheckBox chk = "Invalidate area 10,10 to
110,110", 10, 10, 180, 14

Do
Sleep

Until Win_1 Is Nothing

Sub chk_Click
If chk.Value = 1
Win_1.Invalidate 10, 10, 100, 100

Else
Win_1.InvalidateAll

EndIf
EndSub

Sub Win_1_Paint
Print AT(1, 4); "PaintLeft "; Me.PaintLeft;
Space(10)

Print AT(1, 5); "PaintTop "; Me.PaintTop;
Space(10)

Print AT(1, 6); "PaintWidth "; Me.PaintWidth;
Space(10)

Print AT(1, 7); "PaintHeight "; Me.PaintHeight;
Space(10)

EndSub

Sub Win_1_ReSize
// Resizing the Window invokes InvalidateAll

chk.Value = 0
EndSub

Resize the window and watch the changes in the Paint area
dimensions.

Note that when you Invalidate the area 10, 10 to 110, 110
then PaintTop actually reads 24 and PaintHeight 86; this
is due to the position of the checkbox area which is not
included in the Invalidate statement.

Remarks

A ClearW command is not allowed in a Paint event,
because it generates a WM_PAINT message.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

ShowInTaskbar,
StartupMode Properties
Purpose

ShowInTaskbar returns or sets a value that determines
whether a Form object appears in the Windows taskbar.
Read-only at run time.

StartupMode returns or sets a value specifying the
position of a Form object when it first appears with
LoadForm. Not available at run time.

Syntax

Form.ShowInTaskbar

% = Form. StartupMode

Description

Use the ShowInTaskbar property to keep dialog boxes in
your application from appearing in the taskbar. Only
available at design time in the Form Editor. (It is a hidden
property in the code editor.)

Use the StartupMode property to specify the position of
the Form object at design time in the Form Editor. The
StartupMode property can take the following values:

0 - no initial setting

1 - centered on the screen

2 - maximized

The optional parameters of the LoadForm command can
overrule the StartupMode setting.

Example

// Design a form in the Form Editor and title it
frm1

// Then run the following code.
LoadForm frm1
AutoRedraw = 1
Print Me.StartupMode
Do : Sleep : Until frm1 Is Nothing

Remarks

Methods of recreating the StartupMode settings for forms
created 'in-program' are:

frm1.StartupMode = 1 (Centred) => Form Center
frm1

frm1.StartupMode = 2 (Maximized) => Form Full frm1

See Also

LoadForm, Form

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

VScMax, VScMin, VScPos,
VScPage, VScStep, VScTrack
Properties
Purpose

Sets and returns the vertical scrollbar values for a Form.

Syntax

Form.VScMax [= value]

Form.VScMin [= value]

Form.VScPos [= value]

Form.VScPage [= value]

Form.VScStep [= value]

Form.VScTrack [= value]

value : Long exp

Description

Properties used to set the vertical scrollbar of a Form
object.

VScPos is the value of the control, and can range from
VScMin to VScMax, inclusive. It designates where the
scroll bar button is positioned along the scroll bar.

VScMin is a number specifying the minimum value that the
scroll bar can have. This number ranges from 0 to 30,000,
but cannot be greater than the maximum value given in
VScMax.

VScMax is a number specifying the maximum value that
the scroll bar can have. This number ranges from 0 to
30,000. Setting VScMax to 0 makes the scroll bar
disappear. To disable the scroll bar but keep it visible use
~EnableScrollBar(hWnd, SB_VERT,
ESB_DISABLE_BOTH) and to enable it again use
~EnableScrollBar(hWnd, SB_VERT,
ESB_ENABLE_BOTH).

VScStep is a number specifying the increment that the
value is adjusted by when the scrollbar arrow is clicked.

VScPage is a number specifying the increment that the
value is adjusted by when the page scroll region of a scroll
bar is clicked.

VScTrack returns the current position of the scrollbar in the
_VScrolling event sub. This sub called only when the
thumb is being moved. The _VScroll event sub is called
after the scrolling is complete.

Note: If you manually change either VScPos or VScTrack,
you MUST adjust the value of the other; if not, the
scrollbars will display odd and incorrect behaviour. Also,
using the SetFocus method will reset both of these values
to zero.

Default values: .VScPos = 0, .VScTrack = 0, .VScMin =
0, .VScStep = 1, VScPage = 100, .VScMax = 1000.

Example

Global Int32 a = 160, b = a / 2, n
Global Int32 ih = (5 * a) + 22 // Height of the
actual work area

Global Int32 vh = (2 * a) + b // Height of
visible area within window

OpenW Fixed 1, , , 500, vh + (Screen.cyFixedFrame
* 2) + Screen.cyCaption : Win_1.ControlBox =
False

For n = 0 To 4 : Ocx Command cmd(n) = "Close
Button " & n, 200, ((n * a) + b), 100, 22 : Next
n

Me.ScrollBars = basVertical
Me.VScMin = 0
Me.VScStep = b / 2
Me.VScPage = a / 2
Me.VScMax = ih - vh + Me.VScPage // Height of Work
Area - Height of Visible Area + VScPage

Do
Sleep

Until Me Is Nothing

Sub Win_1_VScroll
For n = 0 To 4 : cmd(n).Top = (((n * a) + b) -
Me.VScPos) : Next n

EndSub

Sub Win_1_VScrolling
For n = 0 To 4 : cmd(n).Top = (((n * a) + b) -
Me.VScTrack) : Next n

EndSub

Sub cmd_Click(Index%)
Win_1.Close

EndSub

Remarks

See Also

Form, _HScrolling, _HScroll, HScMax, HScMin, HScPos,
HScPage, HScStep, HScTrack, _VScrolling, _VScroll

{Created by Sjouke Hamstra; Last updated: 08/03/2018 by James Gaite}

WindowState Property
Purpose

Returns or sets a value indicating the visual state of a form
window at run time.

Syntax

Form.WindowState [= value]

value:iexp

Description

value is a constant (an integer) specifying the state of the
object. The Form can be minimized, maximized, or normal.
The constants are:

basNormal = 0, when set is equal to Form.Restore

basMinimized = 1, when set is equal to Form.Minimize

basMaximized = 2, when set is equal to Form.Maximize

When WindowState is set, the state of the window is
immediately updated.

Example

OpenW 1 : AutoRedraw = 1
Me.WindowState = basMaximized
Print Win_1.WindowState

See Also

Form, Iconic?, Zoomed?

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Activate, Deactivate Events
Purpose

Activate - occurs when an object becomes the active
window.

Deactivate - occurs when an object is no longer the active
window.

Syntax

Sub Form_Activate([Index%])

Sub Form_Deactivate([Index%])

Description

An object can become active by user action, such as clicking
it, or by using the Show or SetFocus methods in code.

The Activate event can occur only when an object is visible

The Activate and Deactivate events occur only when moving
the focus within an application. Moving the focus to or from
an object in another application doesn't trigger either event.
The Deactivate event doesn't occur when unloading an
object.

The Activate event occurs before the GotFocus event; the
LostFocus event occurs before the Deactivate event.

These events occur for MDI child forms only when the focus
changes from one child form to another. In an MdiParent
form object with two child forms, for example, the child

forms receive these events when the focus moves between
them. However, when the focus changes between a child
form and a non-MDI child form, the parent MDI Form
receives the Activate and Deactivate events.

Example

Form frm1 = "Activate, Deactivate Events", 20, 20,
300, 300

Do
Sleep

Until Me Is Nothing

Sub frm1_Activate
Print "Form Activated"

EndSub

Sub frm1_Deactivate
Print "Form Deactivated"

EndSub

See Also

Form, GotFocus, LostFocus, SetFocus, Activate

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Enable, Disable Methods
Purpose

Enables or disables mouse and keyboard input for a Form.

Syntax

[Form.]Enable

[Form.]Disable

Description

The mouse and keyboard input for windows can be
controlled separately. Enable enables these inputs for the
form, Disable disables them.

Example

OpenW # 1
Win_1.Disable
Print Me.Enabled // prints 0 (False)
// ... Now no input (mouse & keyboard) possible
Me.Enable
Print Me.Enabled // prints -1 (True)

Now input (mouse & keyboard) is possible again. The input
for window 1 is first deactivated and the reactivated.

See Also

Form, Enabled

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Hide, Show Methods
Purpose

Hides or shows an object.

Syntax

object.Hide

object.Show

object:Ocx object

Description

The Hide method hides an object at run time. Show makes
it visible again. Invoking these methods in code enables you
to hide and later redisplay an Ocx object at run time in
response to a particular event.

At design time, to set the visibility at startup, set the
Visible property to False.

Example

OpenW Center 100, , , 140, 100
Ocx Command cmd = "Hide this window", 10, 20, 100,
22

Do : Sleep : Until Form(100) Is Nothing

Sub cmd_Click
If Left(cmd.Caption, 4) = "Hide"
Form(100).Hide

cmd.Caption = "Close this window"
Message "Click OK to show the window again"
Form(100).Show

Else
Form(100).Close

EndIf
EndSub

Remarks

Using the Show or Hide method on a form is the same as
setting the form's Visible property in code to True or
False, respectively.

See Also

Form, Visible

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Invalidate, InvalidateAll
method
Purpose

Marks a specified rectangle of a Form for redraw.

Syntax

Form.Invalidate [x!, y!, w!, h!]

Form.InvalidateAll

x! ,y! ,w! ,h!:single expression

Description

The Invalidate method is used when a rectangular area of
form is to be redrawn. The upper left corner of the rectangle
is specified in x! and y!, the width in w!, and the height in
h!. The coordinates are in reference to form's scale mode.

The system sends a WM_PAINT message to a window
whenever its update region is not empty and there are no
other messages in the application queue for that window.
The message is processed in the next Sleep command,
which then invokes the Paint event sub.

InvalidateAll invalidates the entire client area and is equal
to Invalidate without parameters, but a bit faster, though.

Example

OpenW 1 , , , 400, 400

// Without AutoRedraw, the window does not store
the printed rectangle

' Win_1.AutoRedraw = 1
Ocx Command cmd1 = "Invalidate Top && Left", 20,
10, 120, 22

Ocx Command cmd2 = "Invalidate Everything", 20,
50, 120, 22

Ocx Command cmd3 = "Redraw Rectangle", 20, 80,
120, 22

Box 10, 40, 200, 200
Do : Sleep : Until Win_1 Is Nothing

Sub cmd1_Click
// Repaints an area covering the top and left of
the rectangle...

// ...from an image which doesn't contain the
rectangle

Win_1.Invalidate 10, 40, 189, 159
EndSub

Sub cmd2_Click
// Repaints the whole window from an image...
// ...which doesn't contain the rectangle
Win_1.InvalidateAll

EndSub

Sub cmd3_Click
Box 10, 40, 200, 200

EndSub

Example 2

OpenW 1, 10, 10, 200, 200
OpenW 2, 220, 10, 200, 200
Print "Text to be copied"
Ocx Command cmd = "Copy Text", 10, 40, 100, 22

Do : Sleep : Until Win_1 Is Nothing Or Win_2 Is
Nothing

CloseW 1
CloseW 2

Sub cmd_Click
// AutoRedraw for Window 1 can be switched on
here or when the window is opened

Win_1.AutoRedraw = 1
// Coies the contents of Window 2 to the hDC2 of
Window 1

BitBlt Win_2.hDC, 0, 0, 200, 200, Win_1.hDC2, 0,
0, SRCCOPY

// Forces Window 1 to repaint from the bitmap
image copied to hDC2

Win_1.Invalidate
EndSub

Remarks

Invalidate[All] sends a redraw message for a rectangular
area. Invalidate corresponds to Windows function
InvalidateRect().

See Also

Form, Validate, Scale, _Paint

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Maximize, Minimize, Restore
Methods
Purpose

Causes the Form to be maximized or minimized.

Syntax

Form.Maximize

Form.Minimize

Form.Restore

Description

The Maximize and FullW methods maximize the form and
are identical. Minimize minimizes the form.

Restore brings the window back to the size before
Maximize, Minimize, or FullW brought it.

Example

OpenW 1
Message "Click OK to Maximize Window"
Win_1.Maximize
Message "Click OK to Restore Window"
Win_1.Restore
Message "Click OK to Minimize Window"
Win_1.Minimize
Message "Click OK to Restore Window again"
Win_1.Restore

Message "Click OK to Close Window"
CloseW 1

See Also

Form

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

MdiCascade, MdiTile,
MdiIconArrange Methods
Purpose

Arrange the MDI child windows in the MDI parent form.

Syntax

Form.MdiCascade [flag%]

Form.MdiTile [flag%]

Form.MdiIconArrange

Form:Parent MDI Form

Description

To arrange child windows in the cascade format, use the
MdiCascade method on the parent form. Typically, the
application uses the method when the user clicks Cascade
on the Window menu. The optional parameter flag
specifies a cascade flag. The only flag currently available,
MDITILE_SKIPDISABLED, prevents disabled MDI child
windows from being cascaded.

To arrange child windows in the tile format, use the MdiTile
method on the parent form. Typically, the application sends
this message when the user clicks Tile on the Window
menu. The optional parameter specifies a tiling flag. This
parameter can be one of the following values:

ValueMeaning

MDITILE_VERTICAL (0) - Tiles MDI child windows so that
they are tall rather than wide.

MDITILE_HORIZONTAL (1) - Tiles MDI child windows so that
they are wide rather than tall.

MDITILE_SKIPDISABLED (2) - Prevents disabled MDI child
windows from being tiled.

The system automatically displays a child window's icon in
the lower portion of the client window when the child
window is minimized. Use the MdiIconArrange method on
the parent form. Typically, the application sends this
message when the user clicks Arrange Icons on the
Window menu.

Example

ParentW 1
Ocx StatusBar stb
Dim m$(), i%
Array m$() = "File"#10 "New"#10 "-"#10
"Exit"#10#10 _
"Edit"#10#10 "Window"#10 "#1000#Cascade"#10 _
"#1001#&Tile Vertical"#10 "#1002#Tile
Horizontal"#10 _

"#1003#Next Window"#10 "#1004#&Previous
Window"#10#10 _

"Help"#10 "#1005#About"#10#10
Menu m()
Me.MdiSetMenu 2
For i = 2 To 7
ChildW i, 1
Me.Caption = "MDI Child #" & Format(i)

Next
Do
Sleep

Loop Until Me Is Nothing

Sub Win_1_MenuOver(Idx%)
stb.SimpleText = Idx < 0 ? "" : Dec(Idx)

EndSub

Sub Win_1_MenuEvent(Idx%)
Switch Idx
Case 3
If MsgBox("Quit Program?", MB_YESNO) = IDYES _
Win_1.Close

Case 1000 : Win_1.MdiCascade
Case 1001 : Win_1.MdiTile
Case 1002 : Win_1.MdiTile 1
Case 1003 : Win_1.MdiNext
Case 1004 : Win_1.MdiPrev
Case 1005 : MsgBox "GFA-BASIC 32 MDI Demo"
EndSwitch

End Sub

Remarks

An MDI application can arrange its child windows in either a
cascade or tile format. When the child windows are
cascaded, the windows appear in a stack. The window on
the bottom of the stack occupies the upper left corner of the
screen, and the remaining windows are offset vertically and
horizontally so that the left border and title bar of each child
window is visible.

When the child windows are tiled, the system displays each
child window in its entirety - overlapping none of the
windows. All of the windows are sized, as necessary, to fit
within the client window. An MDI application should provide
a different icon for each type of child window it supports.

The application specifies an icon when registering the child
window class.

See Also

Form, ParentW, ChildW, OpenW, MdiSetMenu, MdiNext,
MdiPrev, MdiActivate, MdiGetActive

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

MdiGetActive, MdiActivate,
MdiNext, MdiPrev Methods
Purpose

MdiActivate, MdiNext, and MdiPrev activate a MDI child
window. MdiGetActive returns the current active child
window.

Syntax

ChildForm.MdiActivate

MDIForm.MdiGetActive

MDIForm.MdiNext

MDIForm.MdiPrev

ChildForm:MdiChild Form
MDIForm:MdiParent Form

Description

MdiActivate is a method to be used with a MdiChild form.
It activates the child window and brings it to the front.
MdiGetActive returns the current active child window.

MdiNext and MdiPrev activate the next (Ctrl+F6) or
previous child window. These methods are to be performed
on the parent window.

Example

See MdiCascade example.

Remarks

The menu entries for the child windows have identifier
values starting from 64000.

See Also

MdiCascade, Form, ParentW, ChildW, OpenW

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

MdiSetMenu Method
Purpose

Inserts a special MDI parent window menu.

Syntax

Form.MdiSetMenu [n%]

Form:Parent window
n%:iexp

Description

The MDI window menu handles the list of open child
windows. The parameter n% specifies the submenu to
append the MDI window list. Normally, this is the Window
submenu which offers options to arrange the child windows.
MdiSetMenu without a parameter or when n < 0 will
disable the automatic handling of the child windows.

Example

See MdiCascade example.

Remarks

The menu entries for the child windows have identifier
values starting from 64000.

See Also

MdiCascade, Form, ParentW, ChildW, OpenW

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Owned Property, Owner
Method
Purpose

The Owned property determines that a form is to be owned
and is only available in the Form Editor.

Owner returns the Form object for the owner of a form.

Syntax

Set f = Form.Owner

Description

The Owned property can only be set in Form Editor. At
design time you can set the Owned property determining
that the form is to be loaded as an owned window. When
set and when executing LoadForm, the form will be owned
by the current active window (Me). When Me = Nothing at
the time of execution of LoadForm the Owned property is
ignored.

When you use this option, you achieve two interesting
effects: the owned form is always shown in front of its
owner (parent), even if the parent has the focus, and when
the parent form is closed or minimized, all forms it owns are
also automatically closed or minimized. You can take
advantage of this feature to create floating forms that host
a toolbar, a palette of tools, a group of icons, and so on.
This technique is most effective if it is combined with the

window state options Fixed and/or Tool/Palette. These
option are specified with the LoadForm statement.

When a form is created with an owner, the owner object can
be obtained with the Owner method.

Example

OpenW 1
OpenW Owner Me, 2
AutoRedraw = 1
Dim f As Form
Set f = Win_2.Owner
Trace f ' Form(Win_1)
Do
Sleep

Until Win_1 Is Nothing Or Win_2 Is Nothing
CloseW 1 : CloseW 2
Debug.Show

Remarks

Owned is a hidden property and not available in code.

A form can be created as being owned in code, when the
Owner frm clause is used.

See Also

Form Object, Form, LoadForm, OpenW

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

PrintForm Method,
PrintFormWidth,
PrintFormHeight Properties
Purpose

PrintForm prints a Form object using the current printer.
The PrintFormWidth and PrintFormHeight properties
return the size of the image.

Syntax

Form.PrintForm[(f%)]

w! = Form.PrintFormWidth[(f%)]

h! = Form.PrintFormHeight[(f%)]

f%:iexp, 0 or 1
w!, h!:Single exp

Description

PrintForm prints all visible objects and bitmaps of the
Form object. PrintForm also prints graphics added to a
Form object at run time if the AutoRedraw property is True
when the graphics are drawn.

The printer used by PrintForm is determined by the
Printer object. The image is printed without taking the
borders into account. A StartDoc is automatically executed
when currently no print job is opened. The image is printed
at Printer.CurrentX = 0 and Printer.CurrentY. The size of

the image is proportional (formwidth/screenwidth =
printwidth/printerwidth). The printwidth is calculated from
the Printer.Width and Printer.Height properties. However,
when the optional flag f% = 1, the width is calculated using
Printer.PageWidth and Printer.PageHeight.

Multiple forms can be printed next to each other by setting
Printer.Left.

Once the Printer is initialized, the PrintFormWidth and
PrintFormHeight properties can be used to obtain the size
of the image. The printer gets initialized after a StartDoc
command, or a Lprint command (invokes StartDoc and
StartPage implicitly).

Example

OpenW 1
AutoRedraw = 1
Local h As Handle, n As Int32
For n = 1 To 601 Step 100 : Line 0, n, 601, n :
Line n, 0, n, 601 : Next n

' A StartDoc is only necessary for
' PrintFormWidth and PrintFormHeight.
Dlg Print Win_1, 0, h
If h <> 0
SetPrinterHDC h
Printer.StartDoc "Text"
Trace Win_1.PrintFormHeight
Trace Win_1.PrintFormWidth
Trace Win_1.PrintFormHeight(1)
Trace Win_1.PrintFormWidth(1)
Me.PrintForm 1
Printer.EndDoc
Debug.Show

EndIf
CloseW 1

Remarks

The PrintForm method creates a Picture object from the
Form. This Picture object is also obtainable using the
PrintPicture or PrintPicture2 properties.

See Also

Form, Printer, PrintPicture

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

PrintPicture, PrintPicture2
Properties
Purpose

Returns the Picture object created with PrintForm.

Syntax

Set p1 = Form.PrintPicture

Set p1 = Form.PrintPicture2

p1:Picture Object

Description

The PrintForm method creates a Picture object from the
Form. This Picture object is also obtainable using the
PrintPicture or PrintPicture2 properties. PrintPicture
returns an image of the client area with all visible objects
and bitmaps of the Form object. PrintPicture2 returns the
same, including the window borders.

Example

Global Picture p1, p2 : Global h As Handle
OpenW 1 : AutoRedraw = 1
Color QBColor(2) : PCircle 200, 200, 100, 35, 220
Set p1 = Me.PrintPicture
Set p2 = Me.PrintPicture2
Dlg Print Win_1, 0, h
If h <> 0

SetPrinterHDC h
Output = Printer
Printer.StartDoc "Test"
Printer.StartPage
PaintPicture p1, 0, 0
Printer.NewFrame
PaintPicture p2, 0, 0
Printer.EndPage
Printer.EndDoc
Output = Me

EndIf
CloseW 1

This prints the form in the size of a stamp. Use the other
parameters of PaintPicture to scale the bitmap.

See Also

Form, Printer, PrintForm, Lprint, StartDoc

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

SysMenuText Property,
SysMenuOver Event
Purpose

Returns or sets the text displayed for the system menu of a
Form.

Syntax

Form.SysMenuText(idx%) [= txt]

Sub Form_SysMenuOver([index%,] idx%)

txt:sexp
index%:iexp, Form number
idx%:iexp, menu item identifier

Description

The window menu (also known as the System menu or
Control menu) is a pop-up menu defined and managed
almost exclusively by the operating system. The user can
open the window menu by clicking the application icon on
the title bar or by right-clicking anywhere on the title bar.

The window menu provides a standard set of menu items
that the user can choose to change a window's size or
position, or close the application. Items on the window
menu can be added, deleted, and modified, but most
applications just use the standard set of menu items.

The window menu initially contains items with various
identifier values, such as SC_CLOSE, SC_MOVE, and
SC_SIZE. These command identifiers are used as the
parameter in SysMenuText() to modify the text.

When the mouse hovers over the items in the window
menu, GFA-BASIC 32 invokes the SysMenuOver event
passing the identifier in the idx% argument.

This parameter can be one of the following values:

SC_CLOSE Closes the window.
SC_CONTEXTHELP Changes the cursor to a

question mark with a pointer. If
the user then clicks a control in
the dialog box, the control
receives a WM_HELP message.

SC_DEFAULT Selects the default item; the
user double-clicked the
window menu.

SC_HOTKEY Activates the window
associated with the application-
specified hot key. The low-
order word of lParam identifies
the window to activate.

SC_HSCROLL Scrolls horizontally.
SC_KEYMENU Retrieves the window menu as

a result of a keystroke.
SC_MAXIMIZE Maximizes the window.
SC_MINIMIZE Minimizes the window.
SC_MONITORPOWER Sets the state of the display.

This command supports
devices that have power-saving
features, such as a battery-
powered personal computer.

lParam can have the following
values:
1 means the display is going to
low power.
2 means the display is being
shut off.

SC_MOUSEMENU Retrieves the window menu as
a result of a mouse click.

SC_MOVE Moves the window.
SC_NEXTWINDOW Moves to the next window.
SC_PREVWINDOW Moves to the previous window.
SC_RESTORE Restores the window to its

normal position and size.
SC_SCREENSAVE Executes the screen saver

application specified in the
[boot] section of the
SYSTEM.INI file.

SC_SIZE Sizes the window.
SC_TASKLIST Activates the Start menu.
SC_VSCROLL Scrolls vertically.

All predefined window menu items have identifier numbers
greater than 0xF000. If an application adds commands to
the window menu, it should use identifier numbers less
than 0xF000.

Example

OpenW 1, 10, 10, 300, 300
Ocx StatusBar stb
Win_1.SysMenuText(SC_MINIMIZE) = "Hello"
Do
Sleep

Until Win_1 Is Nothing

Sub Win_1_SysMenuOver(idx%)
If idx% = 0
stb.SimpleText = ""

Else
stb.SimpleText = "System menu idx = 0x" &
Hex(idx)

EndIf
EndSub

Replaces Minimize by Hello and shows the identifier in the
status bar.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Validate, ValidateAll Method
Purpose

Validates the client area of a Form within a rectangle by
removing the rectangle from the update region of the
specified window.

Syntax

Form.Validate [left],[top],[width],[height]

Form.ValidateAll

left, top, width, height:Single exp

Description

Validate is used to prevent redrawing of a rectangle. The
upper left corner of the rectangle is given in left and top,
the width in width and the height in height.

ValidateAll is used to prevent redrawing of the entire
client-area rectangle.

Remarks

Validate suppresses a redraw message aimed at a specific
rectangle. Validate corresponds to the Windows function
ValidateRect().ValidateAll corresponds to the Windows
function ValidateRect(,Null).

Example

See Also

Form

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

WhatsThisMode Method
Purpose

Causes the mouse pointer to change into the What's This
pointer and prepares the application to display What's This
Help on the selected object.

Syntax

Form.WhatsThisMode

Description

Executing the WhatsThisMode method places the
application in the same state you get by clicking the What's
This button in the title bar. The mouse pointer changes to
the What's This pointer. When the user clicks an object, the
WhatsThisHelpID property of the clicked object is used to
invoke context-sensitive Help. This method is especially
useful when invoking Help from a menu in the menu bar of
your application.

Example

OpenW 1
Ocx Command cmd = "Activate WhatsThis Mode", 10,
10, 140, 22

Do : Sleep : Until Win_1 Is Nothing

Sub cmd_Click
Win_1.WhatsThisMode

EndSub

For a fuller example dealing with WhatsThisHelpID, see
Form

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

MessageProc, DDEWndProc
Events
Purpose

Call back procedures for window messages of a Form.

Syntax

Sub Form_MessageProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)

Sub Form_DDEWndProc(hWnd%, Mess%, wParam%,
lParam%, retval%, ValidRet?)

Description

With the MessageProc event sub you can actually filter or
influence the behaviour of the form/window procedure for
the Form window class. The MessageProc is called before
gb32 handles the message itself. The sub obtains six
parameters. The first four are the same as defined for any
Windows API window procedure: hWnd%, Mess%,
wParam%, and lParam%. Every message, whether it is
obtained from the message queue (the posted messages) or
by a direct call from any other source (SendMessage), is
handled in the window procedure. The hWnd parameter is
the window to which the message is sent (because the
MessageProc is attached to a Form, we already know the
objects name) The Mess parameter is the message number-
which is usually a constant such as WM_ACTIVATEAPP or
WM_PAINT. The wParam and lParam parameters differ for
each message, as does the return value; you must look up

the specific message to see what they mean. Often,
wParam and the return value is ignored, but not always.

The MessageProc event sub has two additional parameters
(ByRef) that allow you to return a value. For instance, when
you don't want GB32 to handle a certain message you can
set the ValidRet? variable to True and provide a return value
by setting RetVal%. What value RetVal must have is defined
in the Windows API SDK. It often says something like: "If
you handle this message return zero (or..)".

The DDEWndProc is a call back procedure as well. It is
invoked from inside the window procedure for the
form/window. However, the DDEWndProc is only invoked
for DDE messages: WM_DDE_ACK, WM_DDE_POKE,
WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE,
WM_DDE_UNADVISE, or WM_DDE_INITIATE, and
WM_DDE_REQUEST. The RetVal% and ValidRet? variables
are used to return values.

Example

Now let us look at an example. Suppose you want to store
the window coordinates of OpenW #1 in the register so the
application can use these value to open at the same place.
In GB32 you could handle the sub events ReSize and
Moved to store the coordinates. As an alternative, you
could use MessageProc and handle the
WM_EXITSIZEMOVE message.

Sub Win_1_MessageProc(hWnd%, Mess%, wParam%,
lParam%, Retval%, ValidRet?)
Local Int x, y, w, h
Switch Mess
Case WM_EXITSIZEMOVE

GetWinRect hwnd, x, y, w, h
SaveSetting "MyComp", "ThisApp", "Position",
Mkl$(x, y, w, h)

ValiRet? = True
RetVal = 0

EndSwitch
EndSub

Remarks

The MessageProc event sub actually _is_ the subclass
procedure for the GB32 OpenW, Form, and Dialog
windows. Subclassing is a built-in feature of GFA-BASIC 32.
The OCX Form is perfectly suited to write custom controls.

When OpenW uses a number > 31, the window is accessed
using Form(n) and the event subs as Form_event(index%,
…).

See Also

Form, MessageE

{Created by Sjouke Hamstra; Last updated: 17/10/2014 by James Gaite}

DisplayChange,
SysColorChange,
WinIniChange Events
Purpose

These events occur when a system setting changes.

Syntax

Sub Form_DisplayChange [(index%)]

Sub Form_SysColorChange [(index%)]

Sub Form_WinIniChange [(index%)]

Description

The DisplayChange event occurs when the display
resolution has changed. The new image depth of the display
in bits per pixel can be obtained with _C. The
Screen.cxScreen specifies the new horizontal resolution of
the screen. The Screen.cyScreen property specifies the
new vertical resolution of the screen.

The SysColorChange event occurs when a change is made
to a system color setting. The system sends a WM_PAINT
message to any window that is affected by a system color
change. Applications that have brushes using the existing
system colors should delete those brushes and recreate
them using the new system colors.

The WinIniChange event occurs when the
SystemParametersInfo function changes a system-wide
setting. The system sends this message only if the
SystemParametersInfo caller specifies the
SPIF_SENDCHANGE flag.

Example

Sub Win_1_DisplayChange
Print _C , Screen.cxScreen, Screen.cyScreen

EndSub

Sub Win_1_WinIniChange
Print Screen.WorkLeft; Screen.WorkTop; _
Screen.WorkWidth; Screen.WorkHeight

EndSub

See Also

Form

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

EndSession,
QueryEndSession Events
Purpose

The EndSession event informs the application whether the
session is ending. The EndSession event occurs after the
system processes the results of the QueryEndSession
event. QueryEndSession event occurs when the user
chooses to end the session or when an application calls the
ExitWindows function.

Syntax

Sub Form_ QueryEndSession(Cancel?)

Sub Form_ EndSession

Description

The WM_QUERYENDSESSION message, which is responsible
for the QueryEndSession event, is sent when the user
chooses to end the Windows session or when an application
calls the ExitWindows function. If any application returns
zero, the session is not ended. The system stops sending
WM_QUERYENDSESSION messages as soon as one
application returns halts the process. To prevent the system
from ending the session, set the Cancel? variable of the
QueryEndSession event to True.

After processing this message, the system sends the
WM_ENDSESSION message, which leads to the
EndSession event. The EndSession event sub should be

as clean as possible, graphics output is not possible and file
I/O should be minimized.

Cleaning up should be performed in the QueryEndSession
event.

Example

OpenW 1
Do
Sleep

Until Me Is Nothing

Sub Win_1_QueryEndSession(Cancel?)
MsgBox "Save data?"

EndSub

Sub Win_1_EndSession
EndSub

Remarks

Windows doesn't send WM_CLOSE and WM_DESTROY
messages when the user logs off. WM_QUERYENDSESSION
is the time to do the final things.

See Also

Form, Close, Destroy

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

HScroll, HScrolling, VScroll,
VScrolling Events
Purpose

These events occur when a horizontal or vertical Form
scrollbar is scrolling the scroll box or after a scroll event.

Syntax

Sub Form_HScroll [(index%)]

Sub Form_HScrolling [(index%)]

Sub Form_VScroll [(index%)]

Sub Form_VScrolling [(index%)]

Description

The HScroll event occurs when a scroll event occurs in the
window's standard horizontal scroll bar. The HScrolling
event occurs when a user is scrolling the scroll box in the
window's standard horizontal scroll bar.

The VScroll event occurs when a scroll event occurs in the
window's standard vertical scroll bar. The VScrolling event
occurs when a user is scrolling the scroll box in the
window's standard vertical scroll bar.

A scroll event is invoked only when the scrollbars are
visible. Use the Scrollbars property to determine which
scrollbars to set:

basNoScroll - None

basHorizontal - Horizontal scrollbar only.

basVertical - Vertical scrollbar only

basBoth - Both

This property can be set at run time and at design time.

Example

Debug.Show
OpenW 100
Form(100).ScrollBars = basBoth
Do
Sleep

Until Me Is Nothing

Sub Form_HScrolling(index%)
Trace Me.HScTrack

EndSub

Sub Form_HScroll(index%)
Trace Me.HScPos

EndSub

Sub Form_VScrolling(index%)
Trace Me.VScTrack

EndSub

Sub Form_VScroll(index%)
Trace Me.VScPos

EndSub

See Also

Form, Scrollbars, VScMax, VScMin, VScPos, VScPage,
VScStep, VScTrack, HScMax, HScMin, HScPos, HScPage,
HScStep, HScTrack

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

MciNotify Event
Purpose

Occurs when the MM_MCINOTIFY message is received form
a Mci device.

Syntax

Sub Form_MciNotify(devID%, Code%)

Description

Use this event to handle the MM_MCINOTIFY message
($3b9).

The Code% is returned in wParam.

wParam=1 - Mci command aborted

wParam=2 - Mci command successful

wParam=4 - Mci superseded by a new notify command

wParam=8 - Mci error, not reported when using Mci$()

The devID% is the device ID (devID%) sending the
message, it is returned in the loword of the lParam.

LoWord(lParam) = Device ID

Example

OpenW 1
Local t As Double = Timer

Mci "open c:\windows\media\alarm01.wav alias bong"
~Mci$("play bong from 1 notify")
Do
PeekEvent
Print AT(1, 1); "Playing Track: "; Format(Timer -
t, "0.000"); " secs"

Loop Until Mci$("status bong mode") != "playing"
Mci "close bong"
CloseW 1

Sub Win_1_MciNotify(devID%, Code%)
Debug.Show
Trace Code%
Trace devID%
Trace mciID("bong")

EndSub

See Also

Form, Mci$, Mci

{Created by Sjouke Hamstra; Last updated: 16/10/2014 by James Gaite}

MonitorPower, ScreenSave
Events
Purpose

Occurs when a screensaver starts or monitor goes to low
power.

Syntax

Sub Form_MonitorPower(lParam%, Cancel?)

Sub Form_ScreenSave(Cancel?)

Description

The ScreenSave(Cancel?) occurs when the screensaver is
starting. Set Cancel? = True to prevent the start of the
screensaver.

The MonitorPower(lParam%, Cancel?) occurs when the
display is going to low-power. The lParam can have the
following values:

1 means the display is going to low power.

2 means the display is being shut off.

Set Cancel? = True to prevent monitor power mode.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

MouseDblClick Event
Purpose

Occur when the user double clicks a mouse button in a
Form.

Syntax

Sub Form_MouseDblClick([index%,] button&, shift&, x!,
y!)

Form:Form Object
button&, shift&:Short integer exp
x!, y!:Single exp

Description

Object - Returns an Form Ocx object expression.

index% - Returns an integer that uniquely identifies a Form
if it's in an array.

button - Returns an integer that identifies the button that
was pressed. The button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1),
and middle button (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift - Returns an integer that corresponds to the state of
the SHIFT, CTRL, and ALT keys when the button specified in
the button argument is pressed or released. A bit is set if
the key is down. The shift argument is a bit field with the

least-significant bits corresponding to the SHIFT key (bit 0),
the CTRL key (bit 1), and the ALT key (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. The shift
argument indicates the state of these keys. Some, all, or
none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL
and ALT were pressed, the value of shift would be 6.

x, y - Returns a number that specifies the current location
of the mouse pointer. The x and y values are always
expressed in terms of the coordinate system set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties of the object.

Use a MouseDblClick event for a better response of a
double click event in a Form. Unlike the DblClick event, the
MouseDblClick event enable you to distinguish between
the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the
SHIFT, CTRL, and ALT keyboard modifiers.

Example

OpenW # 1
Do
Sleep

Until Me Is Nothing

Sub Win_1_MouseDblClick(Button&, Shift&, x!, y!)
Print "Mouse Double Click - Button: "; Button&

EndSub

Sub Win_1_DblClick()
Print "Double Click"

EndSub

Remarks

The following applies to both Click and DblClick events:

·If a mouse button is pressed while the pointer is over a
form or control, that object "captures" the mouse and
receives all mouse events up to and including the last
MouseUp event. This implies that the x, y mouse-pointer
coordinates returned by a mouse event may not always be
in the internal area of the object that receives them.

·If mouse buttons are pressed in succession, the object that
captures the mouse after the first press receives all mouse
events until all buttons are released.

See Also

Form, Click, DblClick, MouseMove

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

MouseWheel Event
Purpose

Occurs when the user moves the mousewheel in a Form.

Syntax

Sub Form_MouseWheel([index,] Buttons&, Delta%,
MseX%, MseY%)

Form:Form Object
Buttons&:Short integer exp
Delta%, MseX, MseY:iexp

Description

FormReturns a Form object expression.

index - Returns an integer that uniquely identifies a Form if
it's in a Form() array.

Button - Indicates whether various virtual keys are down.
This parameter can be any combination of the following
values:

MK_CONTROL Set if the ctrl key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the shift key is down.

Delta - Indicates the distance that the wheel is rotated,
expressed in multiples or divisions of WHEEL_DELTA, which

is 120. A positive value indicates that the wheel was rotated
forward, away from the user; a negative value indicates
that the wheel was rotated backward, toward the user.

MseX, MseY - Returns a number that specifies the current
location of the mouse pointer in pixels - this is relative to
the desktop rather than the window/form over which the
mouse is hovering.

Example

Global Int x = ((Screen.x - 100) / 2), y =
((Screen.y - 14) / 2)

OpenW Full 1
Ocx Label lb = "***---***", x, y, 100, 14 :
lb.Alignment = 2

Do
Sleep

Until Me Is Nothing

Sub Win_1_MouseWheel(Buttons&, Delta%, MseX%,
MseY%)
If Buttons& = 0 // Vertical
movement
y = y - (Delta% / 4)

Else If Buttons& = MK_SHIFT // Horizontal
movement
x = x - (Delta% / 4)

EndIf
// Keep label in-screen (although it does go
behind the taskbar)

x = Max(0, Min(x, Screen.x - 100))
y = Max(0, Min(y, Screen.y - 14 -
Screen.cyCaption))

lb.Move x, y
EndSub

Remarks

See Also

Form, Click, DblClick, MouseDown

{Created by Sjouke Hamstra; Last updated: 02/03/2018 by James Gaite}

ReSize and Moved Event
Purpose

The ReSize event occurs when the window state of a Form
changes. (For example, a form is maximized, minimized, or
restored.)

The Moved event occurs when a Form is moved or being
moved to a new position or a Form's Top or Left property
settings have been changed programmatically.

Syntax

Sub Form_Resize([index%])

Sub Form_Moved([index%])

index%:iexp, Form number

Description

These events occurs when an object is sized, (being) moved
to a new position, or when the settings for the Top, Left,
Width, or Height properties have been changed in code.

Example

Debug.Show
OpenW 1, 10, 10, 300, 300
Do
Sleep

Until Win_1 Is Nothing

Sub Win_1_ReSize
Debug "Resize"

Sub Win_1_Paint
Debug "Paint"

Sub Win_1_Moved
Debug Me.Left' in twips
Debug Me.Top' in twips

Remarks

Use a ReSize event procedure to move or resize controls
when the parent form is resized. You can also use this event
procedure to recalculate variables or properties, such as
ScaleHeight and ScaleWidth that may depend on the size
of the form. If you want graphics to maintain sizes
proportional to the form when it's resized, use the Paint
event, which follows the ReSize event.

For a Form, the Left and Top properties are in twips. For
Ocx controls in the client the new cooridnates are in
ScaleMode units if OcxScale = 1.

See Also

Form

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

OnHelp, OnCtrlHelp,
OnMenuHelp Events (Form)
Purpose

These Form events occur when F1 is pressed or when the
What's This mouse cursor [?] is clicked.

Syntax

Sub Form_OnHelp([index%,] Flg%, ID%, hWnd%, Ctx%,
x%, y%)

Sub Form_OnCtrlHelp([index%,] Ctrl As Object, x%, y%)

Sub Form_OnMenuHelp([index%,] idx%, x%, y%)

Description

These events occur when F1 is pressed or when the What's
This mouse cursor [?] is clicked. The OnHelp event is called
for non-Ocx objects and OnCtrlHelp for Ocx objects. The
OnMenuHelp event occurs when the mouse is over a menu
entry and F1 is pressed. It is also possible to use an on
screen control or program code to switch on the What's This
mouse cursor by setting the the WhatsThisMode property of
the window itself.

If the help is required for an Ocx child window, the Form
receives an OnCtrlHelp event specifying the Ocx control
and the mouse coordinates in the arguments of the event.
To identify the help associated with the Ocx object set the

WhatsThisHelpID or the HelpContextID properties with
a value.

When the help is required for a normal control the OnHelp
event is executed passing the following arguments:

Flg% Type of context for which Help is requested. This
can be one of
HELPINFO_MENUITEM - Help requested for a
menu item.
HELPINFO_WINDOW - Help requested for a
control or window.

ID% Identifier of the child window or control.
hWnd% Window handle of the control.
Ctx% Help context identifier of the window or control

set with SetWindowContextHelpId(h, id) API
function.

x%,
y%

The screen coordinates of the mouse cursor.
This is useful for providing Help based on the
position of the mouse cursor.

To identify the help associated with a control object set a
value using SetWindowContextHelpId(h, id) API function
(equivalent to the WhatsThisHelpID or the
HelpContextID properties).

When the mouse is over a menu entry and F1 is pressed,
the OnMenuHelp event sub is invoked, identifying the
currently selected menu item in idx% and the mouse
coordinates in x% and y%.

To show the relevant help page in a WinHelp (.hlp) file use
the ShowHelp; for a HTMLHelp (.chm) file, see Accessing
HTML Help Files.

Example

// If you a calling the WinHelp (.hlp) file, set
winhelp? to True

Dim winhelp? = False
OpenW 1
Win_1.MinButton = False : Win_1.MaxButton = False
: Win_1.HelpButton = True

If winhelp?
Ocx CommDlg cd : cd.HelpFile = "gfawin32.hlp"

Else
Declare Function HTMLHelpTopic Lib "hhctrl.ocx"
Alias "HtmlHelpA" (ByVal hwndCaller As Long,
ByVal pszFile As String, ByVal uCommand As
Long, ByVal dwData As String) As Long

Global helpdir$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\Gf
aWin32.exe\shell\open\command", , "")

helpdir$ = Left(helpdir$, RInStr(helpdir$, "\"))
& "GFAWin32.chm" : If Left(helpdir$, 1) = #34
Then helpdir$ = Mid(helpdir$, 2)

Global Const HH_DISPLAY_INDEX = &H2
EndIf
Dim m$()
Array m$() = "File"#10 "Exit"#10#10
Menu m$()
Ocx Command cmd = "Push", 10, 10, 80, 24
cmd.WhatsThisHelpID = 1002
PushButton "Button", 100, 10, 40, 80, 24
// Give a normal control a WhatsThisHelpID:
~SetWindowContextHelpId(Dlg(-1, 100), 1003)
LocaXY 1, 10
Do
Sleep

Until Me Is Nothing

Sub Win_1_OnCtrlHelp(Ctrl As Object, x%, y%)

Debug.Print "OnCtrlHelp: WhatsThisHelpID = ";
Ctrl.WhatsThisHelpID

If winhelp?
cd.HelpContext = Ctrl.WhatsThisHelpID
cd.HelpCommand = cdhContext
cd.ShowHelp

Else
HTMLHelpDisplay(Ctrl.WhatsThisHelpID)

EndIf
EndSub

Sub Win_1_OnHelp(Flg%, ID%, hWnd%, Ctx%, x%, y%)
Debug.Print "OnHelp: Ctx = "; Ctx
If winhelp?
cd.HelpContext = Ctx
cd.HelpCommand = cdhContext
cd.ShowHelp

Else
HTMLHelpDisplay(Ctx%)

EndIf
EndSub

Sub Win_1_OnMenuHelp(idx%, x%, y%)
Debug.Print "OnMenuHelp: idx% = "; idx `
Me.MenuItem(idx).Text

If winhelp?
cd.HelpContext = idx%
cd.HelpCommand = cdhContext
cd.ShowHelp

Else
HTMLHelpDisplay(idx%)

EndIf
EndSub

Sub HTMLHelpDisplay(helpvalue%)
Local HHhWnd As Int32

// At the time of writing, this help file does
not have ContextIDs

// Use the returned WhatsThisHelpID as a pointer
as below

Select helpvalue%
Case 1
HHhWnd = HTMLHelpTopic(Null, helpdir$,
HH_DISPLAY_INDEX, "menu")

Case 1002
HHhWnd = HTMLHelpTopic(Null, helpdir$,
HH_DISPLAY_INDEX, "command")

Case 1003
HHhWnd = HTMLHelpTopic(Null, helpdir$,
HH_DISPLAY_INDEX, "pushbutton")

EndSelect
~SetForegroundWindow(HHhWnd) : SendKeys #13

EndSub

See Also

Form, ShowHelp

{Created by Sjouke Hamstra; Last updated: 17/07/2015 by James Gaite}

Form Command
Purpose

Creates a (MDI) form.

Syntax

Form [options] fname [= [title$],[x],[y],[w, h]]

Form [options] MdiParent fname [= [title$],[x],[y],[w, h]
]

Form [options] MdiChild Parent form, fname [= [title$],
[x],[y],[w, h]]

Form [options] Owner form, fname [= [title$],[x],[y],[w,
h]]

options: [Tool] [Center] [Full] [Hidden] [Client3D] [Help]
[Top] [Palette] [NoCaption] [NoTitle] [Fixed][Default]

fname, form:Form Object variable
title$:sexp, optional
x, y:iexp, optional
w, h:iexp, optional

Description

A Form is a window or dialog box that makes up part of an
application's user interface. The Form command creates a
Form object with the specified name. The name is used in
code to identify the form. The name property must start
with a letter and can be a maximum of 40 characters. It can

include numbers and underline (_) characters but cannot
include punctuation or spaces.

The options argument specifies additional window state
settings.

Center centers the form.

Full creates a maximized window, excludes Hidden (full
windows are always visible).

Hidden opens invisible

Client3D sets WS_EX_CLIENTEDGE

Tool creates a WS_EX_TOOLWINDOW

Help includes a Help button in the window caption,
excludes minimize an maximize buttons

Top creates a topmost window

Palette creates a WS_EX_PALETTEWINDOW

Fixed a non-sizable window

NoCaption no title bar

NoTitle no title bar, alias

Default uses Windows default values

The Form command can also be used to create MDI parent
and child windows.

Form [options] MdiParent form creates a parent MDI
window (like ParentW).

Form [options] MdiChild Parent form, name creates a
MDI child window name of MDI parent form (like ChildW).

Form MdiParent test = , , 20 , 300 , 300
Form MdiChild Parent test, ch2
Form Hidden MdiChild Parent test, ch1 = "ChildW
ch1", , , 10, 10

An Ocx Form is control with all the attributes of a Form. An
Ocx Form is used as a child form inside a parent form. Ocx
Form is equivalent to VB's PictureBox.

Example

Form ftest = "Test Form", , , 300, 300
// to create a form
Local a%
Print "GFA-BASIC 32"
Print
Print "Press any key"
KeyGet a%
ftest.Close
//or
Form ftest = "GFA", 10, 10, 200, 300
// center it in the middle of the desktop
ftest.Center 0
// OpenW 1, 10, 10, 300, 400
// if used for a windows with it's handle
// Win_1.hWnd
// test.Center Win_1.hWnd
Print "Press any key"
KeyGet a%
ftest.Close

Remarks

OpenW #n, ChildW #n, and ParentW #n are commands
that create a Form, whose name is predestined by GFA-
BASIC 32. These commands take a number n in the range
from 0 to 31 to be identified by. These commands get the
Form name Win_n, where n is the window number (Win_0
.. Win_31). A value greater than 31 will provide the
window with the Form object name Form(n).

The same is true for the Dialog command, which takes a
number from 0 to 31 as well. The Form object for the dialog
boxes is Dlg_0 .. Dlg_31.

For an example of ParentW, ChildW, and Ocx Form see
ParentW.

See Also

Form Object, OpenW, ChildW, ParentW, Dialog

{Created by Sjouke Hamstra; Last updated: 06/10/2014 by James Gaite}

DayBold, DayVisible,
VisibleDays Properties,
GetDayBold Event
(MonthView)
Purpose

DayBold returns or sets a value that determines if a
displayed day is bold. DayVisible returns a Boolean
indicating whether the date is visible. The VisibleDays
property returns an array containing the dates that are
currently visible.

Syntax

MonthView.DayBold(date) [= Boolean]

MonthView.DayVisible(date)

MonthView.VisibleDays(index%)

Sub MonthView_GetDayBold(StartDate As Date, Count%,
State?())

Description

The date parameter in the DayBold(date) property
specifies a date found in the VisibleDays property and
DayBold specifies whether or not the date is bolded (True).

The DayBold property is an array that corresponds to the
VisibleDays property. Each Boolean element indicates

whether its corresponding date should be displayed in bold.
Only dates that are currently displayed are valid. Valid dates
can be found by looking in the VisibleDays property.

The index parameter in the VisibleDays(index) is an
integer which specifies a displayed date on the calendar.
Index can be any value from 1 to 41. A value of 1 indicates
the first date that is currently displayed.

Only dates that are currently displayed can be found in the
VisibleDays property. In addition, the number of visible
days can changes depending on the settings of the
MonthColumns and MonthRows properties. As you move
from month to month, the information in this property is
not preserved.

The DayVisible(date) property returns a Boolean indicating
if the specified date is currently visible in the MonthView
Ocx.

The GetDayBold event occurs when the control needs to
display a date, in order to get bold information. The event
can be used to set the boldness of days as they are brought
into view. The event has three parameters. StartDate
specifies the first date that is displayed, count the number
of days that are displayed, and State?() is an array of
Boolean values that specify if a date is bold.

Example

OpenW 1, , , 260, 220
Ocx MonthView mvw = "", 10, 10, 0, 0 /* Width and
Height are ignored

.DayBold(.VisibleDays(1)) = True

.DayBold(.VisibleDays(41)) = True
Print .DayVisible(Date)

Local n
For n = 1 To 41 : Debug mvw.VisibleDays(n) : Next
n

Do : Sleep : Until Win_1 Is Nothing

Sub mvw_GetDayBold(StartDate As Date, Count%,
State?())

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

DayOfWeek, StartOfWeek,
Week Properties
Purpose

DayOfWeek returns or sets a value that specifies the
current day of week. StartOfWeek specifies the starting
day of the week. Week specifies the current week number.

Syntax

MonthView.DayOfWeek [= number]

MonthView.StartOfWeek [= number]

MonthView.Week [= number]

Description

The DayOfWeek property specifies the day of the week (1
to 7). Sunday = 1, Monday = 2, etc.

The StartOfWeek property specifies the starting day of the
week (1 to 7). Sunday = 1, Monday = 2, etc.

The Week property evaluates to an integer indicating the
week number (1 to 52).

Example

OpenW 1, 100, 100, 260, 220
Ocx MonthView mvw = "", 10, 10, 0, 0
mvw.StartOfWeek = 1 ' Sunday
OpenW 2, 400, 100, 200, 300

Do : Sleep : Until Win_1 Is Nothing
CloseW 2

Sub mvw_MouseUp(Button&, Shift&, x!, y!)
Local a$ = "Week No: " & mvw.Week & " Day of
Week: " & mvw.DayOfWeek

Set Me = Win_2 : Print a$: Set Me = Win_1
EndSub

Sub Win_2_Close(Cancel?)
CloseW 1

EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 28/09/2014 by James Gaite}

MaxDate, MinDate, Today,
Value Properties
Purpose

Returns or sets the first and last date allowed by the
calendar. Today sets a new current date, and Value
returns the current selection.

Syntax

MonthView.MaxDate [= date]

MonthView.MinDate [= date]

MonthView.Value [= date]

date = MonthView.ToDay

Description

MinDate and MaxDate return or set the minimum and
maximum for the Value property for the specified control.
The Value property returns or sets the current date of the
control. The Value property is the default property of the
control.

Today retrieves the date for the date specified as "today".

Example

OpenW Fixed 1, 10, 10, 225 + (Screen.cxFixedFrame
* 2), 159 + (Screen.cyCaption +
(Screen.cyFixedFrame * 2))

Ocx MonthView mvw
mvw.MinDate = #01.07.1998#
mvw.MaxDate = #01.07.1999#
mvw.Value = #17.04.1999#
OpenW Fixed 2, 260, 10, 225 + (Screen.cxFixedFrame
* 2), 159 + (Screen.cyCaption +
(Screen.cyFixedFrame * 2))

Ocx MonthView mvw2
Debug.Show
~SetWindowPos(Debug.hWnd, 0, 510, 5, 400, 300, 0)
Trace mvw2.MinDate
Trace mvw2.MaxDate
Trace mvw2.Value
Trace mvw2.Today
Do : Sleep : Until (Win_1 Is Nothing) Or (Win_2 Is
Nothing)

CloseW 1 : CloseW 2 : Debug.Hide

Sub mvw2_MouseUp(Button&, Shift&, x!, y!)
Debug.Print
Trace mvw2.Value

EndSub

Remarks

If the Today selection is set to any date other than the
default, the following conditions apply:

- The control will not automatically update the "today"
selection when the time passes midnight for the current
day.

- The control will not automatically update its display based
on locale changes.

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 15/10/2014 by James Gaite}

MultiSelect, MaxSelCount,
SelEnd, SelStart Properties
(MonthView)
Purpose

MultiSelect returns or sets a value that determines if
multiple dates can be selected at once. MaxSelCount
returns or sets the maximum number of contiguous days
that can be selected at once. SelEnd and SelStart returns
or sets the upper and lower bounds of the date range that is
selected.

Syntax

object.MultiSelect [= boolean]

object.MaxSelCount [= number%]

object.SelEnd [= date]

object.SelStart [= date]

object: MonthView
date:Date exp

Description

The MultiSelect property allows the user to select multiple
days (True = Default). When set to False, the user is not
allowed to select multiple days. By default, the control
allows the user to select a range of dates. The default
maximum range is one week (7 days). You can change the

maximum selectable range by setting the MaxSelCount
property. The Value property will be in this range,
indicating which date has focus.

The MaxSelCount property is valid only when the
MultiSelect property is to True. Additionally, the
MaxSelCount property must be set to a value that is
greater than the difference between the SelStart and
SelEnd properties. For example, given a selection of 9/15
to 9/18, MonthView.SelEnd - MonthView.SelStart = 3.
However, four days are actually selected; thus
MaxSelCount must be set to 4. The default of the property
is one week (7 days).

The SelStart property defines the lower bound of the date
range that is selected. The SelEnd property defines the
upper bound of the date range that is selected.

The range of selected dates can span multiple months. It
can include dates that are not currently displayed.

In order for multiple date selection to work properly, the
MaxSelCount property must be set to a value that is
greater than the difference between the SelStart and
SelEnd properties.

The SelStart and SelEnd settings are only valid if the
MultiSelect property is set to True. In addition, if the date
range you are trying to select is not visible then an error
will be raised - to get around this, set Value first to show
the required month (or months if you have more than one
shown) and then enter the values to define the required
selection.

Example

// This example highlights the week encompassing
the selected date...

// ...running from Sunday to Saturday
Ocx MonthView mvw : mvw.MultiSelect = True
Do : Sleep : Until Me Is Nothing

Sub mvw_MouseUp(Button&, Shift&, x!, y!)
Local dateclicked As Date = mvw.Value, wd| =
WeekDay(dateclicked), se As Date, ss As Date

se = DateAdd("d", -(wd| - 1), dateclicked) //
Find preceding Sunday

ss = DateAdd("d", (7 - wd|), dateclicked) //
Find next Saturday

Trace wd| : Trace dateclicked : Trace se : Trace
ss

mvw.Value = ss : mvw.SelStart = ss : mvw.SelEnd =
se

EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

TitleBackColor,
TitleForeColor,
TrailingForeColor,
MonthBackColor Properties
(MonthView)
Purpose

These properties returns or sets a value that specifies the
color displayed within a several areas of the MonthView
Ocx control.

Syntax

MonthView.TitleBackColor [= color]

MonthView.TitleForeColor [= color]

MonthView.TrailingForeColor [= color]

MonthView.MonthBackColor [= color]

color:iexp; RGB color

Description

The TitleBackColor and TitleForeColor properties specify
the background and foreground colors of the title area of
the control.

The TrailingForeColor property determines the color of
trailing dates. Trailing dates are day numbers that are
displayed which precede and follow day numbers of the
currently selected month. By default, trailing dates are
displayed in white.

The MonthBackColor property determines the background
color displayed within a month.

On later versions of Windows (especially Windows 8), these
properties have no effect as they are fixed by the OS.

Example

// On later versions of Windows, these properties
have no effect

Ocx MonthView mvw
With mvw
.TitleBackColor = QBColor(2)
.TitleForeColor = QBColor(15)
.TrailingForeColor = QBColor(2)
.MonthBackColor = QBColor(8)

End With
Ocx Command cmd(1) = "Change TitleBackColor",
mvw.Width + 10, 10, 140, 22

Ocx Command cmd(2) = "Change TitleForeColor",
mvw.Width + 10, 40, 140, 22

Ocx Command cmd(3) = "Change TrailingForeColor",
mvw.Width + 10, 70, 140, 22

Ocx Command cmd(4) = "Change MonthBackColor",
mvw.Width + 10, 100, 140, 22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click(Index%)
Ocx CommDlg cd
Select Index%
Case 1 : cd.Color = mvw.TitleBackColor

Case 2 : cd.Color = mvw.TitleForeColor
Case 3 : cd.Color = mvw.TrailingForeColor
Case 4 : cd.Color = mvw.MonthBackColor
EndSelect
cd.ShowColor
Trace cd.Color
Select Index%
Case 1 : mvw.TitleBackColor = cd.Color
Case 2 : mvw.TitleForeColor = cd.Color
Case 3 : mvw.TrailingForeColor = cd.Color
Case 4 : mvw.MonthBackColor = cd.Color
EndSelect

EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

MonthColumns, MonthRows
Properties,
ComputeControlSize Method
Purpose

Returns or sets a value that specifies the number of months
to be displayed horizontally and vertically.
ComputeControlSize returns the width and height of a
MonthView control for a given number of rows and
columns.

Syntax

MonthView.MonthColumns [= number]

MonthView.MonthRows [= number]

MonthView.ComputeControlSize(Rows%, Columns%,
Width!, Height!)

Description

The MonthColumns and MonthRows give you the ability
to display more than one month at a time.

The MonthColumns property allows you to specify the
number of months that will be displayed horizontally. The
MonthRows property allows you to specify the number of
months that will be displayed vertically.

The control can display up to twelve months.

The ComputeControlSize method is used to calculate the
width and the height of the MonthView control. It takes the
Rows% and Columns% as input parameters and returns the
calculated size in the Width! and Height! variables.

Example

OpenW 1, 0, 0
Ocx MonthView mvw
mvw.MonthColumns = 2
mvw.MonthRows = 2
Local Single h, w
~mvw.ComputeControlSize(2, 2, w, h)
// Use of reserved words as below results in an
error

// Dim Width As Single, Height As Single
// ~mvw.ComputeControlSize(2, 2, Width, Height)
Debug "Width = "; w
Debug "Height = "; h
Win_1.Width = PixelsToTwipX(w + (2 *
Screen.cxFrame))

Win_1.Height = PixelsToTwipY(h + (2 *
Screen.cyFrame) + Screen.cyCaption)

Debug.Show
~SetWindowPos(Debug.hWnd, 0, w + 60, 0, 200, 200,
0)

Do : Sleep : Until Me Is Nothing
Debug.Hide

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

ScrollRate Property
Purpose

Returns or sets a value that specifies the number of months
that are scrolled when the user clicks one of the scroll
buttons in a MonthView Ocx.

Syntax

MonthView.ScrollRate [= number]

Description

The ScrollRate property specifies the number of months
that are scrolled at once. The ScrollRate property allows
the user to scroll more than one month at a time.

Example

Local Int32 h, w, w1
OpenW 1
Ocx MonthView mvw
~mvw.ComputeControlSize(1, 1, w, h) : w1 =
TextWidth("Scroll Rate: ")

Ocx Label lbl = "Scroll Rate:", w + 20, 10, w1, 14
Ocx TextBox tb = "", w + w1 + 20, 10, 60, 14 :
.BorderStyle = 1 ': .ReadOnly = True

Ocx UpDown up : up.BuddyControl = tb : .Increment
= 1 : .Min = 1 : .Max = 12 : .Value =
mvw.ScrollRate

Do : Sleep : Until Win_1 Is Nothing

Sub up_Change

mvw.ScrollRate = up.Value
EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

ShowToday,
ShowWeekNumbers
Properties (MonthView)
Purpose

ShowToday returns or sets a value that determines if the
current date is displayed at the bottom of the control.

ShowWeekNumbers returns or sets a value that
determines if the week numbers are displayed next to each
week.

Syntax

MonthView.ShowToday [= boolean]

MonthView.ShowWeekNumbers [= boolean]

Description

When the ShowToday property is True the current date is
displayed.

The ShowWeekNumbers property determines whether
week numbers are displayed. When False, (Default) week
numbers are not displayed.

Week numbers are displayed to the left of the week, and
start from the first week of the calendar year.

Example

Ocx MonthView mvw : .ShowToday = 0
Ocx CheckBox chk(0) = "Show Today", mvw.Width +
10, 10, 120, 14

Ocx CheckBox chk(1) = "Show Week Numbers",
mvw.Width + 10, 27, 120, 14

Do : Sleep : Until Me Is Nothing

Sub chk_Click(Index%)
mvw.ShowToday = chk(0).Value
mvw.ShowWeekNumbers = -chk(1).Value
chk(0).Move mvw.Width + 10
chk(1).Move mvw.Width + 10

EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

DateClick, DateDblClick,
DayClick, SelChange Events
Purpose

Occurs when a date or day on the control is clicked or
double clicked.

Syntax

Sub MonthView_DateClick([index%], DateClicked As
Date)

Sub MonthView_DateDblClick([index%], DateClicked As
Date)

Sub MonthView_DayClick([index%], DayOfWeek%)

Sub MonthView_SelChange([index%], StartDate As Date,
EndDate As Date)

index:An integer that uniquely identifies a form or control if
it's in a form or control array.

Description

The DateClick event and DateDblClick event can be used
to respond to the user clicking on a particular date. The
DateClicked or DateDblClicked can be used to determine
which date was clicked. Note: As at the time of writing
(Win8/10), DateDblClick does not work; all that happens
is that the DateClick event is called twice. A workaround
has been included in the example below.

DayClick occurs when a day of the week is clicked, which is
passed in the parameter DayOfWeek.

The SelChange event occurs when the user selects a new
date or range of dates and has these parameters:

StartDate - The first date in the selection.

EndDate - The last date in the selection.

Example

OpenW 1, 0, 0, 242, 200 : Win_1.Caption =
"Monthview"

Debug.Show
~SetWindowPos(Debug.hWnd, 0, 300, 0, 400, 400, 0)
Ocx MonthView mvw : mvw.MultiSelect = True
Do : Sleep : Until Me Is Nothing
Debug.Hide

Sub mvw_DateClick(DateClicked As Date)
// Workaround for DateDblClick
Static tim#
If Timer - tim# < 0.2 Then
mvw_DateDblClick(DateClicked) : Exit Sub

tim# = Timer
Trace DateClicked

EndSub

Sub mvw_DateDblClick(DateDblClicked As Date)
Trace DateDblClicked

EndSub

Sub mvw_DayClick(DayOfWeek%)
Trace DayOfWeek

EndSub

Sub mvw_SelChange(StartDate As Date, EndDate As
Date)
Trace StartDate : Trace EndDate
Trace mvw.Value

EndSub

See Also

MonthView

{Created by Sjouke Hamstra; Last updated: 17/12/2015 by James Gaite}

ClientHeight, ClientWidth,
ClientLeft, ClientTop
Properties (TabStrip)
Purpose

Return the coordinates of the internal area (display area) of
the TabStrip control. Read-only

Syntax

object.ClientHeight

object.ClientWidth

object.ClientLeft

object.ClientTop

object:TabStrip Ocx

Description

At run time, the client-coordinate properties - ClientLeft,
ClientTop, ClientHeight, and ClientWidth - automatically
store the coordinates of the TabStrip control's internal
area, which is shared by all Tab objects in the control. So
that the controls associated with a specific Tab appear
when that Tab object is selected, place the Tab object's
controls inside a container, such as a Frame control, whose
size and position match the client-coordinate properties. To
associate a container (and its controls) with a Tab object,
create a control array, such as a Frame control array.

All client-coordinate properties use the scale mode of the
parent form. To place a Frame control so it fits perfectly in
the internal area, use the following code:

Example

Ocx TabStrip tbs1 = "Tab1", 10, 10, 500, 300
Ocx Frame fr1
fr1.Left = tbs1.ClientLeft
fr1.Top = tbs1.ClientTop
fr1.Width = tbs1.ClientWidth
fr1.Height = tbs1.ClientHeight
tbs1.Add , , "Frame" , , fr1
tbs1.Add , , "No Frame"
Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 automatically takes care of activating the
container after it is associated with the TabStrip Ocx.

See Also

TabStrip, Tabs, Tab

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Style, Separators, MultiRow,
HotTracking Property
(TabStrip)
Purpose

The Style property returns or sets the appearance - tabs or
buttons - of a TabStrip control.

The Separators property returns or sets a value that
determines whether separators are drawn between buttons
on a TabStrip control that has the tabButton or
tabFlatButton styles.

The MultiRow property returns or sets a value indicating
whether a TabStrip control can display more than one row
of tabs.

HotTracking returns a value that determines whether
mouse-sensitive highlighting is enabled.

Syntax

TabStrip.Style [= integer]

TabStrip.Separators [= boolean]

TabStrip.MultiRow [= boolean]

TabStrip.HotTracking [= boolean]

Description

The Style property determines the appearance of the tabs.

tabTabs (0) (Default) Tabs. The tabs appear as notebook
tabs, and the internal area has a three-dimensional border
around it.

tabButtons (1) Buttons. The tabs appear as regular push
buttons, and the internal area has no border around it.

tabFlatButtons (2)Flat buttons. The selected tab appears
as pressed into the background. Unselected tabs appear
flat.

The Separators property specifies if separators are drawn
(True). To see the separators, the TabStrip control's Style
property must be set to either tabButton or
tabFlatButton.

The MultiRow property specifies whether the control has
more than one row of tabs. The number of rows is
automatically set by the width and number of the tabs. The
number of rows can change if the control is resized, which
ensures that the tab wraps to the next row. If MultiRow is
set to False, and the last tab exceeds the width of the
control, a horizontal spin control is added at the right end of
the TabStrip control.

The HotTracking property specifies whether hot tracking is
enabled or off. Hot tracking is a feature that provides
feedback to the user when the mouse pointer passes over
the control. With HotTracking set to True, the control
responds to mouse movement by highlighting the header
over which the mouse pointer is positioned.

Example

Local n As Int32

Ocx TabStrip tbs = "", 10, 10, 400, 80
For n = 1 To 25 : tbs.Add , , "Tab" & n : Next n
Ocx TabStrip tbt = "", 10, 100, 400, 40
For n = 1 To 25 : tbt.Add , , "Tab" & n : Next n
Ocx TabStrip tbu = "", 10, 160, 400, 100
For n = 1 To 25 : tbu.Add , , "Tab" & n : Next n
' Style property set to the Tabs style.
tbs.Style = tabTabs
' Style property set to the Buttons style:
tbt.Style = tabButtons
tbu.Style = tabFlatButtons
tbu.Separators = True // Only has an effect on
tabFlatButtons

' Allow more than one row
tbs.MultiRow = True
tbu.MultiRow = True
' Allow hottracking
// Doesn't seem to have an effect on any type
// Hottracking seems automatic on tabTabs and...
// ...non-existant on the rest.
tbs.HotTracking = False
tbt.HotTracking = True
tbu.HotTracking = True
Do : Sleep : Until Me Is Nothing

See Also

TabStrip

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Placement, ScrollOpposite
Properties (TabStrip)
Purpose

The Placement property returns or sets a value that
specifies the placement of tabs-top, bottom, left, or right.

ScrollOpposite returns or sets a boolean that determines
how remaining rows of tabs in front of a selected tab are
repositioned.

Syntax

TabStrip.Placement [= integer]

TabStrip. ScrollOpposite [= boolean]

Description

The Placement property specifies the tabs' location:

0 or 1 - (Default) The tabs appear at the top of the control.

2 - The tabs appears at the bottom of the control.

3 - The tabs appears at the control's left.

4 - The tabs appears at the control's right.

The ScrollOpposite property specifies how the remaining
tabs will be repositioned. When False (default), the
remaining tabs remain on the same side of the control.

When True, The row of tabs in front of the selected tab are
repositioned at the opposite side of the control.

ScrollOpposite only works correctly with Style =
tabTabs, not with buttons.

Example

OpenW Fixed 1
Global Int32 n, h, w
h = TwipsToPixelY(Win_1.Height) - (2 *
Screen.cyFixedFrame) - (Screen.cyCaption)

w = TwipsToPixelX(Win_1.Width) - (2 *
Screen.cxFixedFrame) + 1

Ocx TabStrip tbs
tbs.Style = tabTabs
tbs.ScrollOpposite = False
cmd_Click(0)
For n = 1 To 10 : tbs.Add , , "Tab " & n : Next n
Ocx Command cmd(1) = "Top", (w - 60) / 2, (h / 2)
- 40, 60, 22

Ocx Command cmd(2) = "Bottom", (w - 60) / 2, (h /
2) + 18, 60, 22

Ocx Command cmd(3) = "Left", (w / 2) - 80, (h -
22) / 2, 60, 22

Ocx Command cmd(4) = "Right", (w / 2) + 20, (h -
22) / 2, 60, 22

Ocx CheckBox chk = "ScrollOpposite", (w - 100) /
2, (h / 2) + 60, 100, 14 : chk.BackColor =
RGB(255, 255, 255)

Do : Sleep : Until Me Is Nothing

Sub chk_Click
tbs.ScrollOpposite = 1 - chk.Value

EndSub

Sub cmd_Click(Index%)

Select Index%
Case 0, 1 : tbs.Move 0, 0, w, 40
Case 2 : tbs.Move 0, h - 40, w, 40
Case 3 : tbs.Move 0, 0, 40, h
Case 4 : tbs.Move w - 40, 0, 40, h
EndSelect
tbs.Placement = Index%

EndSub

Known Issues

ScrollOpposite doesn't seem to work at all,

See Also

TabStrip

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

TabFixedHeight,
TabFixedWidth,
TabWidthStyle, TabMinWidth
Properties (TabStrip)
Purpose

Return or set the fixed height and width of all Tab objects
in a TabStrip control, but only if the TabWidthStyle
property is set to tabFixed.

TabWidthStyle returns or sets a value that determines the
justification or width of all Tab objects in a TabStrip
control.

The TabMinWidth property returns or sets the minimum
allowable width of a tab.

Syntax

TabStrip.TabFixedHeight [= integer]

TabStrip.TabFixedWidth [= integer]

TabStrip.TabWidthStyle [= integer]

TabStrip.TabMinWidth [= integer]

Description

The TabFixedHeight and TabFixedWidth properties
specify the number of pixels or twips of the height or width

of a TabStrip control. The scale used for integer is
dependent on the ScaleMode of the container.

The TabFixedHeight property applies to all Tab objects in
the TabStrip control. It defaults either to the height of the
font as specified in the Font property, or the height of the
ListImage object specified by the Image property,
whichever is higher, plus a few extra pixels as a border. If
the TabWidthStyle property is set to tabFixed, and the
value of the TabFixedWidth property is set, the width of
each Tab object remains the same whether you add or
delete Tab objects in the control.

The TabWidthStyle property determines whether tabs are
justified or set to a fixed width, it can take the following
values:

tabJustified (0) (Default) Justified. If the MultiRow
property is set to True, each tab is
wide enough to accommodate its
contents and, if needed, the width of
each tab is increased so that each row
of tabs spans the width of the control.
If the MultiRow property is set to
False, or if there is only a single row of
tabs, this setting has no effect.

tabNonJustified
(1)

Non-justified. Each tab is just wide
enough to accommodate its contents.
The rows are not justified, so multiple
rows of tabs are jagged.

tabFixed (2) Fixed. All tabs have an identical width,
which is determined by the
TabFixedWidth property.

At design time, you can set the TabWidthStyle property
on the Properties Page of the TabStrip control. The setting

of the TabWidthStyle property affects how wide each Tab
object appears at run time.

The TabMinWidth property specifies the minimum width of
a Tab object. The scale used for number is determined by
the ScaleMode property of the container. The
TabMinWidth property has no effect if the TabWidthStyle
property is set to tabFixed.

Example

Ocx TabStrip ts(1) = "", 10, 10, 700, 110 :
ts(1).MultiRow = True : ts(1).TabWidthStyle =
tabJustified

Ocx TabStrip ts(2) = "", 10, 140, 700, 110 :
ts(2).MultiRow = True : ts(2).TabWidthStyle =
tabNonJustified

Ocx TabStrip ts(3) = "", 10, 270, 700, 40 :
ts(3).TabWidthStyle = tabFixed :
ts(3).TabFixedWidth = 90

Ocx TabStrip ts(4) = "", 10, 330, 700, 40 :
ts(4).TabWidthStyle = tabFixed :
ts(4).TabFixedWidth = 120 : ts(4).TabFixedHeight
= 35

Ocx TabStrip ts(5) = "", 10, 390, 700, 40 :
ts(5).TabMinWidth = 50

Local Int32 m, n
For m = 1 To 5
For n = 1 To 40
If Odd(n) Then ts(m).Add , , "Tab" & n
If Even(n) Then ts(m).Add , , "Tab" & n & "
(Even)"

Next n
Next m
Do : Sleep : Until Me Is Nothing

See Also

TabStrip

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

Add, AddItem Method
(TabStrip, Tabs)
Purpose

Adds a Tab to a Tabs collection in a TreeView control and
returns a reference to the newly created Tab object.

Syntax

TabStrip.Add[Item](index, key, text, image, ocx)

Tabs.Add(index, key, text, image, ocx)

index, key, text, image, ocx: Variant exp

Description

The TreeView Ocx has the AddItem and Add methods,
which act exactly the same. The Tabs object supports the
Add method only.

index An integer specifying the position where you want
to insert the Tab. If you don't specify an index,
the Tab is added to the end of the Tabs
collection.

key Optional. A unique string that can be used to
retrieve the Tab with the Item method.

text Optional. The string that appears on the Tab. This
is equivalent to setting the Caption property of
the new Tab object after the object has been
added to the Tabs collection.

image Optional. The index of an image in an associated

ImageList control. This is equivalent to setting the
Image property of the new Tab object after the
object has been added to the Tabs collection.

ocx Optional. The container Ocx control to display in
the client area of the TabStrip.

Use the Key property to reference a member of the Tabs
collection if you expect the value of an object's Index
property to change, such as by dynamically adding objects
to or removing objects from the collection. The Tabs
collection is a 1-based collection.

As a Tab object is added it is assigned an index number,
which is stored in the Tab object's Index property. This
value of the newest member is the value of the Tab
collection's Count property.

Because the Add method returns a reference to the newly
created Tab object, it is most convenient to set properties
of the new Tab using this reference.

Example

Form Hidden Center frm1 = "TabStrip", , , 400, 300
Ocx TabStrip tbs = , 20, 20, ScaleWidth - 40,
ScaleHeight - 40

Ocx Frame fr1 = "Tab #1"
Ocx Frame fr2 = "Tab #2"
Ocx Frame fr3 = "Tab #3"
Ocx Frame fr4 = "Tab #4"
Dim tab As Tab
tbs.Tabs.Add 1, , fr1.Caption , , fr1
tbs.AddItem 2, , fr2.Caption, , fr2
tbs.Add 3, , fr3.Caption, , fr3
Set tab = tbs.AddItem(4, , , , fr4)
tab.Caption = fr4.Caption

frm1.Show
tbs(2).Selected = True
Do
Sleep

Until Me Is Nothing

This example shows just one way to add Frame OCXs as
containers to the Tabs collection.

Remarks

Note - There are several ways to add containers to a
TabStrip Ocx control. See the description of the TabStrip
control.

GFA-BASIC 32 specific

Instead of explicitly using the Tabs collection to access a
Tab element, you can use a shorter notation. First, the
TabStrip Ocx supports an Item property:

tbs.Item(idx)tbs.Tabs.Item(idx)

Like the Item method of tbs.Tabs, Item is the default
method of TabStrip. Therefore, a Tab object can be
accessed as follows:

tbs(idx)tbs.Tabs(idx)

tbs!idxtbs.Tabs!idx

Each dot saves about 30 bytes of code.

To enumerate over the Tabs collection of a TabStrip Ocx,
use For Each on the Ocx control directly, like:

Local tab1 As Tab

For Each tab1 In tbs
DoSomething(tab1)

Next

See Also

TabStrip, Tab, Tabs

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

NextTab, PrevTab Methods
(TabStrip)
Purpose

Activates the next or previous Tab in a TabStrip control.

Syntax

TabStrip.NextTab

TabStrip.PrevTab

Description

NextTab activates the next Tab in TabStrip control.
PrevTab selects the previous Tab. Both methods are
circular. A Change event is generated.

Example

Local n As Int32
OpenW Fixed 1
Ocx TabStrip tbs = "", 0, 10,
TwipsToPixelX(Win_1.Width), 40

tbs.TabFixedWidth = TwipsToPixelX(Win_1.Width) /
11 : tbs.TabWidthStyle = tabFixed

For n = 1 To 10 : tbs.Add , , "Tab " & n : Next n
Ocx Command cmd(1) = "<<< Previous Tab", 10, 70,
120, 22

Ocx Command cmd(2) = "Next Tab >>>", 150, 70, 120,
22

Do : Sleep : Until Me Is Nothing

Sub cmd_Click(Index%)
Select Index%
Case 1 : tbs.PrevTab
Case 2 : tbs.NextTab
EndSelect

EndSub

See Also

TabStrip, Change

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Change, BeforeChange Event
(TabStrip)
Purpose

The Change event occurs when the currently selected tab
has changed. The BeforeChange event occurs when the
currently selected tab is about to change.

Syntax

Sub TabStrip_Change

Sub TabStrip_BeforeChange(Cancel?)

Description

BeforeChange is generated before Change and can be
used to cancel the tab change by setting Cancel? to True.
Inside BeforeChange the SelectedItem property (or
SelectedIndex) still specifies the current tab.

When a new tab is selected Change is invoked. Use
SelectedItem or SelectedIndex to obtain the current Tab
object.

Example

Ocx TabStrip tbs = "", 0, 0, 220, 25
Ocx Option opt(1) = "Option Box 1", 10, 40, 100,
14 : tbs.Add 1, , "Option 1"

Ocx Option opt(2) = "Option Box 2", 10, 60, 100,
14 : tbs.Add 2, , "Option 2"

Ocx Option opt(3) = "Option Box 3", 10, 80, 100,
14 : tbs.Add 3, , "Option 3"

Ocx Option opt(4) = "Option Box 4", 10, 100, 100,
14 : tbs.Add 4, , "Option 4"

opt(1).Value = 1
Do : Sleep : Until Me Is Nothing

Sub tbs_Change
opt(tbs.SelectedIndex).Value = 1

End Sub

Sub tbs_BeforeChange(Cancel?)
If MsgBox("Tab change allowed?", MB_OKCANCEL) =
IDCANCEL
Cancel? = True

EndIf
EndSub

See Also

TabStrip, Tabs, Tab

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

AutoPlay, Center,
Transparent Properties
(Animation)
Purpose

Define the window styles used with the Animation object.

Syntax

Animation.AutoPlay [= boolean]

Animation.Center [= boolean]

Animation.Transparent [= boolean]

Description

AutoPlay starts playing the animation as soon as the AVI
clip is opened.

Center centers the animation in the animation control's
window.

Transparent draws the animation using a transparent
background rather than the background color specified in
the animation clip.

Example

See Also

Animation

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Close, Open, Play, Seek, Stop
Methods (Animation)
Purpose

Methods to control the Animation Ocx.

Syntax

Animation.Close

Animation.Open file$

Animation.Play [repeat, start, end]

Animation.Seek

Animation.Stop frame%

repeat, start, end:Variant

Description

The Close method causes the Animation control to close
the currently open AVI file. If there was no file loaded,
Close does nothing, and no error is generated.

Open opens an .avi file to play. If the AutoPlay property is
set to True, then the clip will start playing as soon as it is
loaded. It will continue to repeat until the .avi file is closed
or the Autoplay property is set to False.

Play [repeat, start, end] plays an .avi file.

repeatOptional. Integer that specifies the number of times
the clip will be repeated. The default is -1, which causes the
clip to repeat indefinitely.

startOptional. Integer that specifies the starting frame. The
default value is 0, which starts the clip on the first frame.
The maximum value is 65535.

endOptional. Integer that specifies the ending frame. The
default value is -1, which indicates the last frame of the
clip. The maximum value is 65535.

Seek directs an animation control to display a particular
frame of an AVI clip. The control displays the clip in the
background while the thread continues executing. frame%
is a zero-based index of the frame to display.

Stop stops the play of an .avi file in the Animation control.
The Stop method stops only an animation that was started
with the Play method. Attempting to use the Stop method
when the Autoplay property is set to True returns an error

Example

Remarks

To stop a file from playing, use the Stop method. However,
if the Autoplay property is set to True, set Autoplay to
False to stop the file from playing.

See Also

Animation

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Start, Stop Events
(Animation)
Purpose

Occur when an Animation control has started or stopped
playing.

Syntax

Sub Animation_Start

Sub Animation_Stop

Description

Start is generated when the associated AVI clip has started
playing.

Stop is generated when the associated AVI clip has stopped
playing.

Example

Sub ani1_Start
Me.Caption = "Start"
Trace "Start"

End Sub

Sub ani1_Stop
Me.Caption = "Stop"
Trace "Stop"

End Sub

See Also

Animation

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

BuddyControl, LeftAlign, and
Horizontal Properties
(UpDown)
Purpose

Sets or returns information determining the connection with
a buddy control.

Syntax

UpDown.BuddyControl [= Ocx]

UpDown.LeftAlign [= Boolean]

UpDown.Horizontal [= Boolean]

Description

An UpDown control has a pair of arrow buttons which the
user can click to increment or decrement a value, such as a
scroll position or a value in an associated control, known as
a buddy control.

To the user, an UpDown control and its buddy control often
look like a single control. The buddy control can be any
control that can be linked to the UpDown control through
the BuddyControl property, and usually displays data,
such as a TextBox control or a Command control.

The UpDown control can be positioned to the right
(default) or left of its buddy control with the LeftAlign
property. The BuddyControl property sets or returns the

Ocx control used as the buddy control. The arrows may be
positioned vertically (default) or horizontally with the
Horizontal property.

Example

Ocx UpDown up = "", 99, 10, 15, 18
Ocx TextBox tb = "0", 70, 11, 40, 16 :
tb.BorderStyle = 1

up.LeftAlign = True // Moves it to the left of the
Textbox

up.Horizontal = True // Converts UpDown to virtual
Left/Right

up.BuddyControl = tb // Combines the UpDown OCX
with the Textbox

Do : Sleep : Until Me Is Nothing

Remarks

Changing anyone of the these properties has an effect on
the assigned Buddy Control, usually foreshortening it. To
see the effect, move the BuddyControl line up two and
you will notice that the textbox all but disappears.

See Also

UpDown

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Format Method (UpDown)
Purpose

Sets or gets a format string specifying the format
instructions for the numeric value for the buddy control.

Syntax

UpDown.Format = [format]

format:sexp

Description

The Format property specifies the string to display in the
buddy control. The text for the buddy control is not set with
the Text or Caption property of the buddy control itself.

The Format property uses the same format string as is
used with the Format function. The type of data in the
buddy control is not limited to integer values only. The
Format property can specify a Date format as well.

Example

Form frm1 = "UpDown", , , 200, 200
Ocx TextBox tbu = "??", 5, 5, 150, 24
.Appearance = 1
Ocx UpDown updn
updn.BuddyControl = tbu
updn.Max = #12/31/2999#
updn.Value = Date
updn.Format = "Long Date"

Do
Sleep

Until Me Is Nothing

Remarks

The text "??" of the TextBox OCX is not displayed.

The Value for the UpDown OCX is set to the current date.

The text displayed in the TextBox is formated using the
format specification in the Format property of the UpDown
OCX.

See Also

UpDown, Format()

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Value, Increment, Max, Min,
Wrap Property (UpDown)
Purpose

Returns or sets the value of an object.

Syntax

UpDown.Value [= Double]

UpDown.Min [= Double]

UpDown.Max [= Double]

UpDown.Increment [= Double]

UpDown.Wrap [= boolean]

Description

The Value property sets or returns the current position of
the scroll value. The Value property specifies the current
value within the range of the Min and Max properties
(default is 0). This property is incremented or decremented
when the arrow buttons are clicked.

The Min and Max properties sets or returns the maximum
value of the scroll range for the UpDown control. The
default value for Min is 0 and for Max is 100. The settings
of the Min and Max properties determine whether the value
is incremented or decremented when the arrow buttons are
clicked. If the Max property is less than the Min property,
the UpDown control operates in the reverse direction.

Pressing the up or right arrow always causes the Value
property to approach the Max value. Pressing the down or
left arrow always causes the Value property to approach the
Min value.

The Wrap property sets or returns a value that determines
whether the control's Value property wraps around to the
beginning or end once it reaches the Max or Min value.

The Increment property determines the amount the Value
property changes when you click the arrow buttons on the
UpDown control. The default value is 1. Clicking the up or
right arrow, causes Value to approach the Max property by
the amount specified by the Increment property. Clicking
the down or left arrow, causes Value to approach the Min
property by the amount specified by the Increment
property.

Example

Ocx TextBox tb = "", 10, 10, 45, 15 : .BorderStyle
= 1 : .ReadOnly = True

Ocx UpDown up : .BuddyControl = tb : .Min = -3 :
.Max = 10 : .Increment = 3 : .Wrap = True :
.Value = 4

Ocx Label lbl = "up.Value = 4", 10, 40, 100, 14
Do : Sleep : Until Me Is Nothing

Sub up_Change
lbl.Text = "up.Value = " & up.Value

EndSub

See Also

UpDown

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

UpClick, DownClick, and
Change events (UpDown)
Purpose

This events occurs when the down or left arrow button is
clicked.

Syntax

Sub UpDown_UpClick()

Sub UpDown_DownClick()

Sub UpDown_Change()

Description

Using the UpClick and DownClick events, you can control
exactly how the UpDown control scrolls through a series of
values.

The Change event occurs whenever the Value property
changes. The Value property can change through code, by
clicking the arrow buttons, or by changing the value in a
buddy control when the BuddyControl property is set.

For example, if you want to allow the end user to scroll
rapidly upward through the values, but slower going down
through the values, you can set reset the Increment
property to different values, as shown below:

Example

Ocx TextBox tb = "", 10, 10, 50, 15 : .BorderStyle
= 1 : .ReadOnly = True

Ocx UpDown upd : .BuddyControl = tb : .Max = 100 :
.Value = 10

Ocx Label upl = "<= upd", 65, 10, 120, 15
Ocx TextBox tb1 = "", 10, 30, 50, 15 :
.BorderStyle = 1 : .ReadOnly = True

Ocx UpDown up1 : .BuddyControl = tb1 : .Max = 5 :
.Value = 1

Ocx Label up1l = "Increment Value of upd", 65, 30,
120, 15

Ocx Label lbl = "", 10, 50, 140, 15
Do : Sleep : Until Me Is Nothing

Sub upd_UpClick
lbl.Caption = "upd Up Button Clicked"

EndSub

Sub upd_DownClick
lbl.Caption = "upd Down Button Clicked"

EndSub

Sub up1_Change
upd.Increment = up1.Value

EndSub

See Also

UpDown

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Gfa_Type and Gfa_Types
Syntax

Dim type As Gfa_Type

Dim types As Gfa_Types

Description

A Gfa_Type item contains the properties that allow you to
get information about a user-defined type like its name,
elements, and their type.

Property Description
Count Returns the number of elements of the

type.
Name(n) The name of the element n in the user-

defined type. Name(0) returns the name
of the Type itself.

Index(e$) Returns the index of element e$.
Size(n) Returns the memory size of element n in

bytes.
Type(n) A value indicating the type of element n

(basInt, basFixedString, etc)
TypeName(n) A string describing the type of element n

(Integer, String)
Offset(n) Returns the offset from the start of

element n in bytes
BitSize(n) Returns the memory size element n in

bits
BitOffset(n) Returns the offset of element n from the

beginning of the type in bits.
TypeObj(n) Returns a Gfa_Type object for the

element when Type(n) > 65535.
IsArray(n) Returns True when the element is an

array. False for a Variant containing an
array.

LBound(n) Returns the smallest available subscript
for the specified dimension of the array

UBound(n) Returns the largest available subscript for
the specified dimension of the array

ArrSize(n) The allocated memory for the array in
bytes.

Obtaining type information is important when you develop a
custom debugger. However, the type information can be
obtained at design time as well. The following example
shows all user defined types currently in use in your
program. If you perform a syntax check before pressing App
+ T, the Gfa_Types collection provides the type elements as
well.

Gfa_Types is a collection containing Gfa_Type items. A
Gfa_Type item contains information about a user-defined
type.

The Gfa_Types collection allows you to enumerate over all
types defined in the program.

Dim t As Gfa_Type
For Each t In Gfa_Types
Debug t.Name(0)

Next

Example

Enumerate all Types in a program.

Sub Gfa_App_T
Debug.Show
Dim udt As Gfa_Type, i%
For Each udt In Gfa_Types
Try
Debug "Type ";udt.Name(0)
For i = 1 To udt.Count
Debug " ";udt.Name(i);
If udt.IsArray(i) Then
Debug "
(";udt.LBound(i);"..";udt.UBound(i);")";

EndIf
Debug " As ";udt.TypeName(i);#9;" // Type:
";udt.Type(i)

Next
Debug "EndType"

Catch
Debug "Error in Print_type ";Err;Err$

EndCatch
Next
Debug "- Did you perform a syntax check first?"
' Sample
Type test
tstl(6 .. 7) As Long
tsts As String*20
rc(2) As RECT

EndType
Type RECT
- Int32 left, top, right, bottom

EndType
EndSub

Remarks

According to German documentation the .Type property
returns a variant-type constant. When .Type = VT_I4 the
variable is an integer and when .Type is VT_I4 | VT_BYREF
a ByRef Integer Parameter.
VT_I4 | VT_ARRAY is a global or static Integer array, VT_I4
| VT_BYREF | VT_ARRAY a local Integer array or a ByRef
Integer array parameter.
The same is true for VT_I2 (Short) VT_UI2 (Card), VT_UI1
(Byte), VT_BOOL (Boolean), VT_R4 (Single), VT_R8
(Double), VT_DATE (Date), VT_VARIANT (Variant), VT_CY
(Currency) and VT_I8 (Large). With user-defined types the
property is a value greater than 4 billion, with ByRef a user-
defined type parameter is odd, otherwise even.

See Also

Gfa_Var, Gfa_Vars

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Key Function
Syntax

shortcut$ = Gfa_Key(x)

x: as predefined constant representing a sub

Description

Returns the assigned shortcut for the given keyboard event
sub (Func) in the current GLL. This is an informational
function only that provides current keyboard assignments of
the subs in the GLL where this function is used. Gfa_Key
does not provide information of the keyboard assignments
of other currently loaded GLLs.

The parameter x is not a variable and it has no type; it is
simply a strange GFA-BASIC 32 constant that identifies a
keyboard sub event. For instance, the parameter sc+A
represents the sub Gfa_Ex_A, and sc+F11 specifies the
event sub Gfa_SCF11. Valid values are sc+0, App+A,
App+s+I, SCF11, etc. The constant is best looked up in the
Key Assignment dialog box. The parameter is not a string,
but the return value is!

Example

Dim ActiveKey$ = Gfa_Key(sc+A)
If Len(ActiveKey$)
MsgBox "The Gfa_Ex_A sub is executed with the
keyboard shortcut " & ActiveKey$

Else

MsgBox "There is no Gfa_Ex_A sub in this GLL, or"
#10 _
"Gfa_Ex_A has been disabled because it's
shortcut has been removed, or" #10 _

"it has been disabled because another GLL uses
the keyboard shortcut."

EndIf

Remarks

If the return value is an empty string, then

1. There is no event sub with that name, or

2. There is no key assigned to the Gfa_ event sub, or

3. The key assignment is disabled, because another
GLL, loaded earlier, uses the keyboard shortcut.

See Also

Gfa_Ex_

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Menu Commands and
Functions
The GFA-BASIC 32 editor extension functions can be
executed through the use of a set of predefined keystrokes
or by selecting a menu item from the Extra submenu. To
connect some functionality to a keyboard shortcut the name
of the procedure should conform to a special format that
describes the shortcut to use (Gfa_Ex_, Gfa_App_, etc).

Another way of invoking an extensibility function is to select
a menu item from the Extra menu. To provide a menu entry
the GLL must add a menu entry to the Extra menu in
Gfa_Init sub using Gfa_AddMenu. This function adds an
item to the menu and specifies a menu event sub that
handles the menu entry when it is selected. Other
commands are available to modify an appended menu
entry. An item can be enabled or disabled, gets a
checkmark in front of it, or its text can be changed
afterwards.

Syntax

[id =]Gfa_AddMenu("Entry", eventsub)
f = Gfa_MenuCheck(id) (id As Int, f? as Boolean)
Gfa_MenuCheck(id) = f (id As Int, f? As Boolean)
d = Gfa_MenuDesc(id) (id As Int, d As String)
Gfa_MenuDesc(id) = d (id As Int, d As String)
f = Gfa_MenuEnable(id) (id As Int, f As Boolean)
Gfa_MenuEnable(id) = f (id As Int, f As Boolean)
t = Gfa_MenuText(id) (id As Int, t$ as String)
Gfa_MenuText(id) = t (id As Int, t$ as String)

Description

Gfa_AddMenu this appends the menu item "Entry" to the
Extra-Menu of the GFA-BASIC 32 IDE. The text may contain
an ampersand (&) to provide keyboard shortcut. The
Gfa_AddMenu is usually invoked in the Gfa_Init sub.

Gfa_MenuCheck(id) [=] returns or sets a value that
determines whether a check mark is displayed next to a
menu item.

Gfa_MenuDesc(id) [=] returns or sets the descriptive text
displayed in the status bar for a menu item. The text is
limited to 159 bytes.

Gfa_MenuEnable(id) [=] returns or sets a value that
determines whether the specified menu item can respond to
user-generated events.

Gfa_MenuText(id) [=] returns or sets the text displayed
for a menu item. The text is limited to 159 bytes.

Example

Sub Gfa_Init
Global IdxCreateCode% ' Declare Globals
in Gfa_Init

IdxCreateCode = Gfa_AddMenu("&Create
code"#9"Ctrl+Shift+C", MenuCreateCode)

Gfa_MenuDesc(IdxCreateCode) = "Inserts a code
snippet at current cursor position"

EndSub

Sub MenuCreateCode(i%) ' a ByRef integer
parameter
Debug "Menu selection ID "; i%

End Sub

Remarks

The Sub MenuCreateCode is invoked when the menu entry
is selected. The event sub must contain one Integer
parameter (not ByVal). The integer parameter is a value
between 1 and 50 (the maximum number of entries)
representing its "position" in the Extra submenu. The
numbers are given to the entries automatically when they
are appended using Gfa_AddMenu. This value is returned
when the function version of Gfa_AddMenu is used
instead. Keeping this value in a global variable is necessary
when the menu entry is later manipulated with
Gfa_MenuDesc, Gfa_MenuEnable, or Gfa_MenuText.

Another use of saving the menu ID value is to use it later in
a general menu event subroutine to differentiate between
the menu items in a Switch statement. However, this is not
encouraged because the execution of a menu event sub for
one entry is faster.

The Win API menu ID is calculated by adding 2499 to the
value returned by Gfa_AddMenu.

Note Multiple editor extensions can add menu entries to the
Extra menu. Later, when a GLL is unloaded, their entries are
unloaded as well. This will not lead to renumbering the ID
values of the menu entries that are currently in the Extra
menu.

See Also

Gfa_Ex_, Gfa_Init

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Goto Command
Syntax

Gfa_Goto

Description

Displays the GoTo dialog box with the current line as default
value. Relative jumps are possible by specifying the number
of lines to jump. A positive value will jump forwards a
negative value backwards.

See Also

Gfa_TopLine, Gfa_Line

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_Undo
Syntax

Gfa_Undo

Description

Gfa_Undo reverses previous editing actions on the text.
The undo stack can hold only 64 actions.

See Also

Gfa_Copy

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_CommentBlock,
Gfa_UnCommentBlock
Commands
Syntax

Gfa_CommentBlock

Gfa_UnCommentBlock

Description

Gfa_CommentBlock comments of a block of selected lines
with the ° comment mark to differentiate the comments
from a normal commented line. After commenting the line
indention is removed.

Gfa_UnCommentBlock removes °comments of a block of
selected lines. Only lines starting with °comments are
affected, other lines are not processed. The IDE does not
define keyboard shortcuts.

Example

// Define keyboard shortcuts for block commenting

Sub Gfa_Ex_C // Shift+Ctrl+C - CommentBlock
If GfaLine <> Gfa_SelLine
Gfa_CommentBlock

EndIf
EndSub

Sub Gfa_Ex_U // Shift+Ctrl+U - UnCommentBlock

Gfa_UncommentBlock
EndSub

See Also

Gfa_SelLine

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Gfa_Insert, Gfa_Replace
Commands
Syntax

Gfa_Insert s$

Gfa_Replace s$

Description

Gfa_Insert inserts a string at the current position as if it is
pasted from the clipboard. In case of selected text, the
selection is replaced.

The string may contain end of line markers (#10 (Line
Feed)). A Carriage Return (#13) is ignored, so that MS-DOS
typical end of line markers (#13#10) can be used.

The insertion does not take the current overwrite modus
into account, Gfa_Insert always inserts the text. To do a
destructive insertion, either select the text to destroy before
using Gfa_Insert, or use Gfa_Replace. A disadvantage of
Gfa_Replace is its limitation in that it doesn’t replace
across line boundaries.

Gfa_Replace - The contents of the string s$ replaces
Len(s$) characters in the text of the current line starting at
Gfa_Col. When the line contains a selection, the selection
is replaced.

Line boundaries can not be crossed, replacement is stopped
at the first LF (or any ASCII code < 32). So, the

replacement string should not contain control characters,
use Gfa_Insert instead.

Gfa_Replace s$ is equivalent to

Txt$ = Gfa_Text
Mid(Txt$, Gfa_Col) = s$
Gfa_Text = Txt$

Bug: When the replacement string overwrites the length of
the current line, random characters are added.

Remarks

This command has nothing to do with the Replace menu
item in the Edit menu.

See Also

Gfa_Text, Gfa_DeleteLines, Gfa_InsertLines

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_DeleteLines,
Gfa_InsertLines Command
Syntax

Gfa_DeleteLines [n = 1]

Gfa_InsertLines [n = 1]

Description

Gfa_DeleteLines [n = 1] deletes one or more lines. When
n is specified then, for n>0 the current line (Gfa_Line) and
n - 1 following lines will be deleted.

Gfa_InsertLines [n = 1] inserts one or more empty lines
above the current line (Gfa_Line). When n is used, then for
n>0 n empty lines are inserted. Gfa_InsertLines 1 is
equivalent to Gfa_CtrlN.

See Also

Gfa_Insert, Gfa_Replace, Gfa_Text, Gfa_CtrlN

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_Error, Gfa_NextError,
Gfa_PrevError
Syntax

syntaxerr? = Gfa_Error

Gfa_Error = syntaxerr?

Gfa_NextError

Gfa_PrevError

Description

Gfa_Error returns True when the current line (Gfa_Line)
contains (syntax) errors.

Using Gfa_Error= True marks the current line as having a
syntax error and the line can then be left without letting
GFA-BASIC 32 parse the line (Gfa_Update). The line is
then displayed in the syntax-error color.

When changing an erroneous line to False, so when
Gfa_Error for the current line is True, the line is marked as
Gfa_Changed = True. Consequently, the line is parsed
(Gfa_Update) when the cursor leaves the line.

Gfa_NextError jumps to the next line marked as
erroneous.

Gfa_PrevError jumps to the previous line marked as
erroneous.

Example

Remarks

See Gfa_Changed for an explanation on syntax checking.

See Also

Gfa_Changed, Gfa_Update

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_DebMenu, Gfa_DebOn
Syntax

Gfa_DebMenu [= menutext$]

Gfa_DebOn n%, procname (n in 0 … 4, procname
as name of sub)

Description

Appends a new menu item to the tray icon popup menu.
This is the popup menu that is displayed when the debug
tray icon is activated with a right button click. To set an
event sub for the new entry use a special version of
Gfa_DebOn.

Sub Gfa_OnRun
Gfa_DebMenu = "Show local variables"
Gfa_DebOn 0, My_DebMenu ' Defines the event
sub for the menu item

EndSub

Note The Gfa_DebOn method is otherwise used to set
event subs for clicking on the tray icon.

Gfa_DebOn n%, procname set event subs for mouse clicks
on the debug tray icon. This command is usually invoked in
the Gfa_OnRun event sub, that is, this procedure offers
the first opportunity to set debugging events and variables.

This command allows you to setup an additional 5 event
subs to help you in creating a custom debugger. The first
event sub you might add is a sub to respond to the

selection of the new menu item from the Gfa_DebMenu
method. To do so, use n% = 0 and specify the name of the
sub to call in case the menu item is selected.

The other events you can respond to are the left and middle
button click events. For n% = 1 you can define the event
sub for a click with the left mouse button, for n% = 2 a left
double click.

When n% = 3 and n% = 4 you can do the same for the
middle mouse button (if available).

Example

' Left Button clicks
Gfa_DebOn 1, Deb_LClick ' pick a name
Gfa_DebOn 2, Deb_LDblClick ' what's in a
name?

' Middle Button clicks
Gfa_DebOn 3, Deb_MClick '
Gfa_DebOn 4, Deb_MDblClick ' middle button
double click on the tray icon.

Sub Deb_LClick
MsgBox "Left button click on the debug tray
icon!"

Gfa_DbStep
EndSub

Sub Deb_LDblClick
MsgBox "Left button double click on the debug
tray icon!"

Gfa_DbStep
EndSub

Sub Deb_MClick
MsgBox " Middle button click on the tray icon."

Gfa_DbStep
EndSub

Sub Deb_MDblClick
MsgBox " Middle button double click on the tray
icon."

Gfa_DbStep
EndSub

See Also

Gfa_DbStep, Gfa_DbOn, Gfa_DbOff

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Vars Collection
Syntax

Dim vs As Gfa_Vars

Set vs = Gfa_Vars(subcol$)

Description

The Gfa_Vars collection object represents all or part of the
variables used in an application. A Gfa_Vars collection
consists of Gfa_Var items. A Gfa_Var item contains the
properties that allow you to get information about the
variable like its name, type, location, and value.

The only way to obtain a Gfa_Vars collection object, is by
invoking the function Gfa_Vars(subcol$) that returns a
Gfa_Vars collection as specified in the function's parameter
value. For instance

Dim globalvars As Gfa_Vars
Set globalvars = Gfa_Vars("") ' the global
variables

The parameter designates the sub collection of variables.
The parameter is of type Variant and can be one of the
following values:

Parame
ter

Returns a Gfa_Vars
collection object with

Alias

"" All global variables.. Gfa_Globals
"-" All local and static

variables of the main

program.
"Procna
me"

All local and static
variables of the specified
procedure. The name is
case sensitive!

Gfa_Vars!Procna
me

"1" or 1 All local and static
variables of the current
procedure. Available in
Gfa_Tron and
Gfa_TronBook proc only.

Gfa_Vars1 or
Gfa_Vars!1

"2" or 2 All local and static
variables of the caller of
the current procedure.
Available in Gfa_Tron and
Gfa_TronBook proc only.

Gfa_Vars2 or
Gfa_Vars!2

"3" or 2
… n

All local and static
variables of the caller (of
the caller …) of the caller
of the current procedure.
Available in Gfa_Tron and
Gfa_TronBook proc only.

Gfa_Vars3,
Gfa_Vars4, …,
Gfa_Vars9 or
Gfa_Vars!n

When the parameter is the empty string "", a dash "-", or
an explicit procedure name, the collection of variables can
be created anywhere in the GLL. However, the numbered
Gfa_Vars collections are relative to the stack and are
available only in the Gfa_Tron or Gfa_TronBook
procedures.

Note: To obtain variables at a depth level of more than 9,
then you must use the variant that takes a parameter:
Gfa_Vars("12").

Each instance of a Gfa_Vars collection has the following
properties:

Proper
ty

Description

PName The name of the procedure that is specified as
the parameter in the Gfa_Vars() function. This
property most interesting for the stack based
collections to obtain the name of the procedure
that is being executed.

Count The number of items in the collection.
Item() A Gfa_Var object for the specified variable.

Availability at design-time

After compiling or performing a syntax-check the Gfa_Vars
collection is available, as well. The syntax-check (or Run
command) collect all variables and the variables are
available in the non-stack based Gfa_Vars() function. The
following piece of code displays the name and type of all
global variables in the Debug Output window (don't forget
to compile your program first).

Example

Sub Gfa_App_V
Dim v As Gfa_Var, GlobVars As Gfa_Vars
Set GlobVars = Gfa_Vars("")
For Each v In GlobVars
Debug v.Name & #32 & v.Type & #32 & v.TypeName

Next
EndSub

To access the variables of a procedure specify the name
(case sensitive) of the procedure as the parameter of
Gfa_Vars().

Set vs = Gfa_Vars!Gfa_App_V ' using ! notation

The name of function may contain a type modifier %, $, &,
@, or |. Only ! is forbidden.

Set vs = Gfa_Vars!Calculate@ ' variables of
function Calculate@()

See Also

Gfa_Var, Gfa_Types, Gfa_Type

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_Compile and
Gfa_DoCompile
Syntax

Gfa_Compile

Gfa_DoCompile

Description

Gfa_Compile compiles and then saves the project as a
stand-alone executable (exe), a GFA Editor Extension (.gll),
or a GFA-BASIC library (lg32).

Gfa_Compile displays the Compile dialog box to obtain the
name of the compiled project, version information and in
case of a stand-alone exe its icon.

Gfa_DoCompile compiles the project without displaying
the dialog box. However, when a project isn’t compiled
before (Gfa_ExeName = ""), the Compile dialog box is
shown, like in Gfa_Compile.

Example

Sub Gfa_Ex_C
Gfa_DoCompile

EndSub

Remarks

A change in any of the fields of the Compile dialog box
changes the project that contains the compiler settings. The
Gfa_Dirty flag is set. So, after compiling the project must
be resaved.

See Also

Gfa_ExeName, Gfa_ExeTime, Gfa_Dirty

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

Trace
Purpose

Debugging command that displays variable values on the
output window.

Syntax

[Debug].Trace exp

exp:Any evaluation expression.

Description

The Trace command is intended for use in debugging and
by default works only in the IDE.
Its normal use is to check the value of the variables during
debugging.

Example

// All output sent to Debug Window
Debug.Show
Local a As Int32, b As Variant
a = 12 : b = 12
Trace a = b // Prints a = b = True
Trace a // Prints a = 12
b = Missing
Trace b // Prints b = (missing)
Trace IsMissing(b) // Prints IsMissing(b) = True

Remarks

Trace is a shortcut for Debug.Trace, a method of the
Debug object like Assert and Print. By default the Debug
object is disabled for final executables, but it can be
enabled through the Compiler tab in the Properties dialog.

See Also

Assert, Debug

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

Alert Function
Purpose

Draws a message box on the screen.

Syntax

Alert IconAndFlag, MainText$, DefButton, ButtonText$
[,RetVal]

RetVal = Alert(IconAndFlag, MainText$, DefButton,
ButtonText$)

IconAndFlag, DefButton : iexp
RetVal : ivar
MainText$, ButtonText$: sexp

Description

An Alert box is a special form of a message box. It is used
when a point in a program is reached where the program is
to be cancelled, a certain branch is to be taken, or some
other user decision is to be made.

The first integer expression, IconAndFlag, determines which
symbol will be included in the Alert box together with the
message. The following symbols are available:

IconAndFlag Meaning
0 mark symbol
1 stop mark
2 question mark

3 exclamation mark
4 information mark
5 windows flag
6 application mark
7 information mark
16 buttons are placed at the right border
32 shadow
64 text is right aligned
128 text is centered

MainText$ contains the message which is to be displayed in
the Alert Box. If the text is too long for one line it can be
split in up to 4 lines by using "|".

ButtonText$ contains up to five possible alternatives for
user response.

DefButton indicates which of these alternatives the default
is. This alternative is then selected by pressing the Return
key. The alternatives are numbered from 1 to 5 and are
separated from each other by a "|".

RetVal contains the number of the alternative which was
actually selected.

Example

Auto a$, b$, i%, j%, retval%
OpenW # 1
i% = 2
a$ = "Which procedure should|be executed next"
j% = 1
b$ = "Input | Calculate | Print | File output |
CANCEL"

retval% = 0

Alert 2 | 16, a$, j%, b$, retval%
CloseW # 1

Creates an Alert Box with a question mark as symbol and
the message: "Which procedure should be executed next".
The default alternative is "Input". The alternatives are:

Input, Calculate, Print, File output, and CANCEL.

retval% contains the number of the selected alternative.

Remarks

AlertBox is a synonym to Alert and can be used instead.

In addition to the menu bar and pop-up menus, the
Alert[Box] is a third possible way of communication
between the program and the user. Furthermore, it can
prove useful when incorporated inside LG32 libraries as a
customised messagebox, where OCX objects and Dialogs
can not be used.

Known Issues

In Windows 8, 8.1 and 10, the static text box (which
holds MainText) and the icon image holder are drawn
with white backgrounds; a patch has been created to
solve this problem by Sjouke Hamstra and will be
released in the near future.
[Reported by James Gaite, 09/03/2017]

Alert box does not recognise of multiple monitors and is
always displayed on the main monitor. Use Prompt,
InputBox or MsgBox instead or, in a GLL, use MsgBox0.
[Reported by Sjouke Hamstra, 03/04/2018]

See Also

Menu, Popup, Message, MsgBox, Prompt

{Created by Sjouke Hamstra; Last updated: 04/04/2018 by James Gaite}

Accessing HTML Help Files
Introduction

Since the demise of WinHlp32.exe with the advent of
Windows Vista, (as of 2015, it was still possible to get a cut-
down version of WinHlp32.exe from the Microsoft website
for all versions up to and including Windows 8), all Help files
have been written using the HTML Help (.chm) format.
Unfortunately, many of GFABasic's internal Help calling
seems to be hard-wired to direct any WM_HELP message to
seek WinHlp32.exe - for example, ShowHelp and the help
button added through Message Boxes.

Therefore, this page is dedicated to explain how to call
HTML Help files and how to workaround some of the
intransigencies of GFABasic in this regard.

APIs, Constants and UDTs Show

Calling the Help File Show

Calling the Help File using the Help Data Type
Show

Limitations to Using HTMLHelp Files Show

HTMLHelp Files and Visual Styles Show

javascript:pr("html1hl","html1","Hide","Show","block")
javascript:pr("html2hl","html2","Hide","Show","block")
javascript:pr("html3hl","html3","Hide","Show","block")
javascript:pr("html4hl","html4","Hide","Show","block")
javascript:pr("html5hl","html5","Hide","Show","block")

Additional Resources Show

{Created by James Gaite; Last updated: 18/03/2018 by James Gaite}

javascript:pr("html7hl","html7","Hide","Show","block")

Gfa_hWnd, Gfa_hWndEd,
Gfa_Refresh
Window API functions.

Syntax

handle% = Gfa_hWnd

handle% = Gfa_hWndEd

Gfa_Refresh

Description

Gfa_hWnd returns the window handle of the GFA-BASIC 32
IDE as Long.

Gfa_hWndEd returns the window handle of GFA-BASIC 32
source code editor as Long.

Gfa_Refresh immediate redraw of the client area of the
editor. Sometimes it is necessary to redraw the source text
before an event sub has finished and the invalidated regions
are redrawn.

Example

Dim h As Handle = Gfa_hWnd

Remarks

Gfa_Refresh is internally implemented as
UpdateWindow(Gfa_hWndEd). A WM_PAINT message is

send to the window only if the window's update region (the
portion of the window's client area that must be redrawn) is
not empty. Normally, when a line is changed, GFA-BASIC 32
adds the area occupied by a line to the Gfa_hWndEd
window's update region with the InvalidateRect function.
Eventually, Windows sends the WM_PAINT message when
there are no other messages in the application queue for
that window.

See Also

Gfa_StatusText

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

Gfa_CopyFile Command and
Gfa_InlFileName Function
Syntax

Gfa_CopyFile src$, dest$

$ = Gfa_InlFileName(n%)

Description

Copies a (normal) file src$ to a new ':Files' inline resource
with its name specified in dest$. The destination name must
start with the semi colon : to prevent errors.

Gfa_CopyFile "e:\cparse\icodeb.ico", ":icodeb"

To delete an entry in the ":Files" tab specify the empty
string for src$ and its resource name is dest$.

Gfa_CopyFile "", ":icodeb"

To copy the data from the inline resource section to a
normal file use CopyFile.

CopyFile ":icodeb", "e:\cparse\icodeb.ico"

Note Most GFA-BASIC 32 functions that perform file I/O are
capable of loading resources from the inline section directly.
These commands and functions parse the filename for a
starting colon, and assume an inline resource when found.
For instance

PlaySound ":dingwav"

or

Open ":menutext" for Input As # 1

Gfa_InlFileName(n%) returns the :File name with
specified index n%. When n% (1, 2, …, n) is larger than the
number resources the function returns the empty string.

Remarks

GFA-BASIC 32 supports so called inline files or, otherwise
put, it allows for including raw data into the project file.
These raw data entities are placed in a packed, mime-
encoded data format at the end of the project file.

The inline resources are maintained in the ":Files" tab in the
sidebar. When you right click in the client area of the ':Files'
tab, a context menu will popup to allow for data insertion by
loading a file or by pasting from the clipboard. In addition,
when one of the loaded GFA Editor Extensions includes the
Gfa_OnDropInl event sub, the ':Files' tab will become a
drag and drop window and one or more file may be
dropped. Inline files can not be used in GLL and Library
projects.

The inline files are accessed through the GFA-BASIC 32
Open For Input As # statement. Once opened the
resources can be read as any other file, GFA-BASIC 32 will
decode and unpack on the fly.

When a resource must be used in other functions (API
functions for instance), the resource must be copied to disk
before it can be used. To copy the file you should use
CopyFile or FileCopy. Usually, the file is copied to a
temporary directory and killed after it is used.

Other functions that can load inline resources are
LoadPicture and LoadCursor. Inline resources that are
used without GFA-BASIC 32 commands must first be copied
out of the inline section to a temporary file on disk before
they can be accessed. After using the external file it is then
deleted (most often). See LoadBmp.

See Also

Gfa_OnDropInl, CopyFile

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

False Variable
Purpose

0 constant for logical false

Syntax

a? = False

Example

Local a?, i%
OpenW # 1
i% = 20
If i%
a? = True
Print "i% is not equal to 0; a?="; a?

EndIf
i% = 0
If !i%
a? = False
Print "i% is equal to 0; a?="; a?

EndIf

Prints:

i% is not equal to 0; a?=True

i% is equal to 0; a?=False

See Also

True

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

Array ()= Command
Purpose

Initializes an array from a string.

Syntax

Array ar() = string

ar():any array
string:string expression

Description

This command initializes an integer, floating point, string, or
user-defined type array with the contents of a string with
elements starting at 0 regardless of whether Option Base is
set to 0 or 1; for a string array the input string is split at LF
and CRLF characters. (LF = Chr(10) CRLF = Chr(13,10)).

Option Base 0
Dim fp$()
Array fp$() = "element 1"#10"element 2"#10"element
3"#10"element 4"

Print fp$(3) // Prints "element 4"
Option Base 1
Array fp$() = "element 1"#10"element 2"#10"element
3"#10"element 4"

Print fp$(3) // Also prints "element 4"

For a Byte array, Array ()= creates a one dimensional
array with the same number of elements as the length of

the string: each character is copied to an array element and
the array has 0..Len(string) - 1 elements.

Dim b() As Byte
Array b() = "Testing"
Print CStr(b()) // Prints "Testing"

Before any array is created with Array ()=, it must first be
declared using Dim or a similar command; note, however,
that it is pointless defining the number of elements through
this action as the Array ()= automatically re-dimensions
the array to accomodate the data you allocate to it.

Dim f%(10)
Print Dim?(f()) // Prints 11
Array f() = Mki$(10, 4, 9)
Print Dim?(f()) // Prints 3

A user defined type array can also be initialized using this
method, although the Type must be defined using Packed
1.

Type TestType Packed 1
by As Byte
in As Int
by2 As Byte
db As Double

EndType
Dim ar() As TestType
Array ar() = Mk1(1) + Mki(2) + Mk1(3) + Mkd(2.1) +
Mk1(4) + Mki(5) + Mk1(6) + Mkd(7.1)

Print ar(0).by // prints 1
Print ar(1).db // prints 7.1

Example

OpenW 1

Global Dim mnu$()
Array mnu$() = "&File"#10 "&New"#10 "&Open"#10
"&Save"#10 _
"Save &As"#10 "-"#10 "E&xit"#10 #10 _
"&Edit"#10 "&Undo"#10 "-"#10 "Copy"#10 "Cut"#10
"Paste"#10 #10 _

"&Help"#10 "&About"#10 #10
Menu mnu$()
Do
Sleep

Until IsNothing(Me)

Remarks

Using Array()= to initialize an array or user-defined type is
particularly useful with editor extensions, because the data
can not be stored in Data lines.

$ = CStr(a())is the reverse of Array a()= $.

If a() is a byte array, CStr() creates a string of length Dim?
(a|()) with the values of the elements of the array.

If a() is a string array, CStr() creates a string by adding all
elements of the array and separating them with #13#10
(CRLF).

See Also

CStr()

{Created by Sjouke Hamstra; Last updated: 05/08/2019 by James Gaite}

Object Property
Purpose

Returns an IDispatch reference to a control.

Syntax

object.Object

object:OLE Automation, Ocx

Description

The GFA-BASIC 32 Ocx controls provide the Object
property to obtain an IDispatch interface to the control. The
GFA-BASIC 32 Ocx controls support dual interfaces for both
early and late binding. When a COM object supports late
binding it supports a so called IDispatch interface. When a
COM object provides an IDispatch interface, the properties
and methods can be executed through a standard function
called Invoke. Rather than executing a property or method
directly, as with early binding, the Invoke function takes
numerous parameters describing the property or method to
call, the possible parameters converted to Variants, an
exception info block for returning error information, and
some more. Invoke itself must lookup the name of the
property or method in the COM library and then call it by its
address. Calling Invoke for a property or method is a time
consuming process, therefore.

Example

OpenW 1

Dim oForm As Object
Set oForm = Win_1.Object
Win_1.AutoRedraw = 1 ' Fast
oForm.AutoRedraw = 1 ' Slow
Do
Sleep

Until Me Is Nothing

Sub Win_1_OnCtrlHelp(Ctrl As Object, x%, y%)
' IDispatch reference to the control.
Print Ctrl.WhatsThisHelpID // Slow

EndSub

Remarks

The Control data type is an IDispatch interface as well.

Ocx ToolBar tb
Dim ctrl As Control
Set ctrl = tb

See Also

Object, _DispId

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

Bchg Function
Purpose

Changes the status of a bit in an integer expression.

Syntax

i = Bchg(m, n)(function)

Bchg v, n(command)

m, niexp
v:ivar

Description

Bchg(m, n) sets the n-th bit in the integer expression m to
1 (if this bit is 0), or to 0 (if this bit is 1).

Example

OpenW # 1
Dim i% = 10 // 10 =>
1010

i% = Bchg(i%, 0) : Print Bin$(i%, 4) // Prints
1011

Bchg i%, 1 : Print Bin$(i%, 4) // Prints
1001

See Also

Bclr(), Bset(), Btst()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Bchg8 Function
Purpose

Changes the status of a bit in a 64 bit integer expression.

Syntax

I = Bchg8(m64, n)(function)

Bchg8 v64, n(command)

m, niexp
v64:Large var

Description

Bchg8(m, n) sets the n-th bit in the 64-bit integer
expression m to 1 (if this bit is 0), or to 0 (if this bit is 1).

Example

Print Bin$(10, 4) // Prints 1010
Print Bin$(Bchg8(10, 0), 4) // Prints 1011
Dim i64 As Large = 10
i64 = Bchg8(i64, 0)
Print i64 // Prints 11

Remarks

Although listed in the original help file as a command - i.e.
Bchg8 v64, n - it seems never to have been implemented as
such.

See Also

Bclr8(), Bset8(), Btst8()

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

Sar Function
Purpose

Shifts a bit pattern to the right.

Syntax

% = Sar(m, n)32 bit operation

% = Sar%(m, n)32 bit operation

Large = Sar8(m, n)64 bit operation

&=Sar&(m, n)16 bit operation

Word = Sarw(m, n) 16 bit operation

| = Sar|(m, n)8 bit operation

Description

Sar(m, n) shifts a bit pattern of an integer expression m n
steps to the right (Sar = Shift Right), in which the highest
bit is copied (and not replaced with zero like with Shr). Each
bit shift right is a division by two. An example:

x = -8 : Sar x, 3 or -8 Sar 3 or Sar(-8, 3)

-8 as binary: 1111 1111 1111 1111 1111 1111 1111 0111

Shift: 1111 1111 1111 1111 1111 1111 1111 1011

Shift: 1011 1111 1111 1111 1111 1111 1111 1101

Shift: 1001 1111 1111 1111 1111 1111 1111 1110

Example

Debug.Show
Trace Sar(-8, 1) // = -4
Trace Sar(-8, 2) // = -2
Trace Sar(-8, 3) // = -1
Trace -8 Sar 3 // = -1

Remarks

Sar can also be used as an operator:

m Sar n32-bits operation

m Sar8 n64 bits operation

See Also

Shr, Shl, Ror, Rol

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

GetByte0, GetByte1,
GetByte2, GetByte3 Function
Purpose

The GetByte functions read a byte from a 32-bits value.

Syntax

Byte = GetByte0(value)

Byte = GetByte1(value)

Byte = GetByte2(value)

Byte = GetByte3(value)

value:aexp of 4-bytes

Description

GetByte0 reads the first byte (MSB - most significant byte)
of a value of a 32-bits data type.

GetByte1 reads the second byte of a value (2nd MSB).

GetByte2 reads the third byte of a value (3rd MSB).

GetByte3 reads the fourth byte of a value (LSB - least
significant byte).

Dim a% = $01020304
Debug.Show
Trace GetByte0(a%) ' 1

Trace GetByte1(a%) ' 2
Trace GetByte2(a%) ' 3
Trace GetByte3(a%) ' 4

Example

Example 1

OpenW 1
Local a As Single, byte0%, byte1%, x%
Local byte2%, byte3%
a = 222266 * 456 + 97 * 35786
byte0% = GetByte0(a)
byte1% = GetByte1(a)
byte2% = GetByte2(a)
byte3% = GetByte3(a)
Print a, byte0%, byte1%, byte2%, byte3%

Example 2

OpenW 1
Local byte_hi0%, byte_hi1%, byte_hi2%, x%
Local byte_hi3%, byte2%, byte3%, a_int%
Local a As Large, byte0%, byte1%
a = _maxLarge
a_int% = HiLarge(a)
byte0% = GetByte0(a)
byte1% = GetByte1(a)
byte2% = GetByte2(a)
byte3% = GetByte3(a)
Print a, byte0%, byte1%, byte2%, byte3%
byte_hi0% = GetByte0(a_int%)
byte_hi1% = GetByte1(a_int%)
byte_hi2% = GetByte2(a_int%)
byte_hi3% = GetByte3(a_int%)
Print a_int%, byte_hi0%, byte_hi1%, byte_hi2%,
byte_hi3%

Print Hex$(a)

Remarks

GetByte1 is synonymous with GetBValue, GetByte2 with
GetGValue and GetByte3 with GetRValue.

See Also

GetBValue, GetGValue, GetRValue

{Created by Sjouke Hamstra; Last updated: 07/10/2014 by James Gaite}

SWord Function
Purpose

Sign extension of an unsigned word (Card).

Syntax

% = SWord(value)

% : signed 32-bit integer
value : card expression

Description

Expansion of a Card to a Long. The output value is in the
range -32768 to +32767. This will be carried out by the
copying of bit 15 (=sign bit) into the bits 16 to 31.

Example

OpenW 1
Local a As Card
a = 12345 - 28784
Print Bin$(a, 32) //
00000000000000001011111111001001

Print Bin$(SWord(a), 32) //
11111111111111111011111111001001

Remarks

This function loads the value into the eax register and
performs a CDWE assembler instruction to extend the lower
16 bits to the upper 16 bits.

See Also

Byte(), Card(), Short(), UShort(), UWord(), Word()

{Created by Sjouke Hamstra; Last updated: 04/03/2017 by James Gaite}

Exit If Command
Purpose

Serves to terminate a loop when the condition following
Exit...If is logically "true".

Syntax

Exit [Do | For] If condition

Condition:any numerical, logical or string condition

Description

The Exit If command makes it possible to test and exit any
loop for a condition other than the one specified in the loop
itself (see For...Next, While...Wend, Repeat...Until and
Do...Loop). In contrast to the GoTo command, a loop is
terminated in an "orderly" fashion by using Exit If.

In other words, Exit If always jumps to the first
programming statement after the last line of the loop, while
GoTo can jump anywhere within a Procedure or Function.

Example

OpenW # 1
Dim e% = 1
Dim i% = 1
Do
e% *= i%
Print Str$(i%) + "! = "; Str$(e%, 5)
Exit If e% > 32000

i% ++
Loop

calculates the factorial and stores the result in the variable
e%. The calculation is terminated if the result exceeds
32000.

Remarks

The If condition Then Exit Do (or Loop) command
common to other dialects of BASIC can also be used.

See Also

Goto, Exit, Exit Sub

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/exitsub.htm

On Call Command
Purpose

Branch to one of several specified subroutines, depending
on the value of an expression.

Syntax

On n Call proc0, proc1, …

n:iexp
proc0, proc1, …:name of a Procedure or Sub to jump to

Description

The value of n determines which subroutine is branched to
in the procedure list. If the value of n is less than 1 or
greater than the number of items in the list, then control
drops to the statement following On Call.

Example

OpenW 1
Local a%, n%
n% = 3
On n% Call p1, p2, p3, p4, p5, p6
n% *= 2
On n% Call p1, p2, p3, p4, p5, p6

Procedure p1
Print "PROCEDURE P1"

Return

Procedure p2
Print "PROCEDURE P2"

Return

Procedure p3
Print "PROCEDURE P3"

Return

Procedure p4
Print "PROCEDURE P4"

Return

Procedure p5
Print "PROCEDURE P5"

Return

Procedure p6
Print "PROCEDURE P6"

Return

Remarks

Select Case provides a more structured and flexible way to
perform multiple branching.

See Also

SelectCase, On GoTo, On GoSub

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

P:()(), PasCall() Function
Purpose

executes a subroutine at a specified address and returns a
Long value.

Syntax

x = P:(addr)([parameters])

x = PasCall(addr)([parameters])

x:iexp
addr:iexp
parameters:aexp

Description

The parameters are placed in reverse order on the stack. P:
()() and PasCall()() expects the subroutine to clear the
stack.

a% = P:(addr%)(1, 2, 3)

12[esp] 1

8[esp] 2

4[esp] 3

[esp] Return address

the called routine must end with ret 12, correcting the stack
pointer.

The parameters can be coerced to a specific format using by
preceding the value with one of the following designators:

Dbl: double
Sng: float, single
Large: Large integer
Cur: Currency value
L: Long
Int: Integer
Var: Variant

Example

Dim a% = ProcAddr(test)
~P:(a%)(Large:2, 3)
' or
~PasCall(a%)(Large:2, 3)

Procedure test(i%, la As Large)
Print la, i%

EndProc

Remarks

A Procedure takes it parameters by value using the
StdCall convention.

See Also

C:(), LC:(), LP:(), Call(), CallX(), CCall(), LCCall(),
LPasCall(), StdCall(), LStdCall()

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

EdShowLine Command
Purpose

Shows an arrow in front of a code line.

Syntax

EdShowLine n

Description

EdShowLine can only be used in a subroutine declared
with Tron procname. Although EdShowLine can display the
arrow before any line, it is most useful when the current
executed line - returned in TraceLnr - is marked.
Therefore, EdShowLine is mostly used together with
TraceLnr.

Example

OpenW 1, 0, 0, 400, 500
Global i%
Tron p
. mov eax, 10
. mov [i%], eax
~1
Troff
CloseW 1

Sub p
Local j%
Print "i ="; i; TraceLnr // Trace$
EdShowLine TraceLnr : Delay .5

If InStr(Trace$, "[i%]") Then {TraceReg + 7 * 4}
= 123

EndSub

The main program consists of two assembler instructions.
The first one moves the value 10 to the register eax, the
second moves the contents of eax to the variable i% (the
~1 makes sure, that the last used floating point register is
cleared, not relevant here, though.)

The Tron procedure p prints the contents of the variable i%
followed by the current line number and source code text of
that line. The command EdShowLine shows the normal
Tron arrow in front of the actual line. A small delay makes
it possible to notice the current line.

Finally, if the source code line contains "[i%]", the value
123 is written as integer into memory, which address is
obtained using TraceReg+7*4.
As a complete debugger, Tron needs access to the
processor registers. TraceReg returns the address of the
memory range, where for the actual processor registers are
placed in. With TraceReg+7*4 the seventh register
(0,1,2,3,4,5,6,eax) will be changed. As a result, 123 will
placed in eax and thus in i%.

Remarks

In a compiled program the debugging commands are
removed.

See Also

ProcLineCnt(), ProcLnr(), SrcCode$(), Trace, Trace()
TraceLnr, TraceReg, Tron, Troff

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

DmyHmsToDate Function
Purpose

Returns the date for the given day, month, year, hour,
minute, and second.

Syntax

dt = DmyHmsToDate(d, m, y, h, m, s)

dt: Date expression
d, m, y, h, m, s: iexp

Description

Returns the date for the given day, month, year, hour,
minute, and second.

Example

OpenW 1
Local x%, dt As Date
dt = DmyHmsToDate(20, 12, 99, 12, 12, 12)
Print dt // prints: 20.12.99 12:12:12

See Also

DmyToDate, HmsToTime

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

DmyToDate Function
Purpose

Returns the date for the given day, month, year.

Syntax

dt = DmyToDate(d, m, y)

dt: Date expression
d, m, y: iexp

Description

Example

OpenW 1
Local x%, dt As Date
dt = DmyToDate(20, 12, 99)
Print dt // prints: 20.12.99

See Also

DmyHmsToDate, HmsToTime

{Created by Sjouke Hamstra; Last updated: 03/10/2014 by James Gaite}

HmsToTime Function
Purpose

Returns a date for a specified hour, minute, and second.

Syntax

Date = HmsToTime (hours, minutes, seconds)

hours, minutes, seconds: iexp

Description

To specify a time, such as 11:59:59, the range of numbers
for each HmsToTime argument should be in the accepted
range for the unit; that is, 0-23 for hours and 0-59 for
minutes and seconds. However, you can also specify relative
times for each argument using any numeric expression that
represents some number of hours, minutes, or seconds
before or after a certain time.

Example

OpenW 1
Local a As Date, x%
a = HmsToTime(1000000, 120000, 33000)
Print a
// prints: 03/16/78 21:18:16 or 16/03/1878
21:18:16

Remarks

The format of the output can be changed with the using of
Mode Date..., Mode Format..., Format....

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 09/10/2014 by James Gaite}

Week Function
Purpose

Returns an Integer specifying a whole number between 1
and 52, inclusive, representing the week of the year.

Syntax

Week(date)

date:Date exp

Description

The function Week() returns the week of a Date.

Example

OpenW 1
Local z As Date
z = HmsToTime(110000, 20, 4000)
Print z, Week(z)
Print Now, Week(Now)
Print Date, " ", Week(Date)
Print "12/12/1912", " ", Week(#12.12.1912#)
Print FileDateTime("c:\windows\notepad.exe"),
Week(FileDateTime("c:\windows\notepad.exe"))

Remarks

If the date of the last day of the year (or two days in a leap
year) is put into this function, the value 1 is returned rather
than 53.

See Also

CDate(), Date, Date$, DateAdd(), DateDiff(), DatePart(),
DateSerial(), DateTime$(), DateToDmy, DateToDmyHms,
DateValue(), Day(), DayNo(), DmyHmsToDate(),
DmyToDate(), HmsToTime(), Hour(), IsDate(), Minute(),
Month(), Now, Now$(), TimeSerial(), TimeToHms,
TimeValue(), Second(), Week(), WeekDay(), Year()

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

CStr(array()) Function
Purpose

Converts a Byte or String array to a string.

Syntax

$ = CStr(a())

a():array of any type

Description

If a() is a byte array, CStr() creates a string of length Dim?
(a|()) with the values of the elements of the array.

If a() is a string array, CStr() creates a string by adding all
elements of the array and separating them with #13#10
(CRLF).

If a() is of any other type, the length of the string is Dim?
(a()) * SizeOf(type).

Example

Dim b(0 .. 6) As Byte
b(0) = Asc("T")
b(1) = Asc("e")
b(2) = Asc("s")
b(3) = Asc("t")
b(4) = Asc("i")
b(5) = Asc("n")
b(6) = Asc("g")

Print CStr(b()) // Prints "Testing"

or

Dim bw() As Word
Array bw() = "Testing_"
Print Dim?(bw()) // Prints 4
Print CStr(bw()) // Prints "Testing_"

Remarks

Array a()= $ is the reverse of $ = CStr(a())

See Also

Array ()=

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

_Dc Function
Purpose

Returns the handle of the Device Context for a window
area.

Syntax

h=_Dc([w%])

h:Handle
w%:integer expression

Description

During its software emulation of multitasking, Windows
separates the entire screen into various Device Contexts.
These Device Contexts are accessed with handles. If a
program is to draw in a particular area of the screen it
requires first the handle of the area in question. Various
display areas are reordered whenever a new window is
opened. For each window a handle can be obtained for the
internal display area of the window and another handle for
the total window area. _Dc(w%) returns the handle of the
display area of the internal window area (Client Area). w%
is thereby the window number.

Example

OpenW # 1
Print _DC(1) // Device Context of Win_1

Remarks

Implemented for compatibility reasons.

_Dc(1) is equivalent to Win_1.hDC.

_Dc() is equivalent to Me.hDC.

See Also

AutoRedraw, hDC, hDC2

{Created by Sjouke Hamstra; Last updated: 20/09/2014 by James Gaite}

Dir Command
Purpose

Prints the contents of a directory.

Syntax

Dir path$ [To file$]

path$:sexp;
file$:sexp; optional file name

Description

Dir path$ returns the directories in path name specified in
path$. If path$ ends with a ":" or "\", GFA-BASIC
automatically appends "*.*". The default destination for the
output of the directory is to screen. The specification of To
file$ is optional. It can be used to redirect the directory
output to a file or a peripheral device.

Example

OpenW 1
Local x%
Dir "c:\windows\?a.*" To "test.dat"
// if not exist a file will be created and therein
all file

// names are placed in, which will be found by
using the

// last pattern.
Dir "c:\windows*.?st" To "test2.dat"
// or

Dir "c:\windows*.lst" To "Test3.dat"

See Also

Files[To]

{Created by Sjouke Hamstra; Last updated: 30/09/2014 by James Gaite}

LoadBmp Function
Purpose

Loads a bitmap from file and returns a handle.

LoadBmp() has been superseded by the LoadImage()
API.

Syntax

h%= LoadImage(0, file$, IMAGE_BITMAP, 0, 0,
LR_LOADFROMFILE)

h%:bitmap handle
file$:sexp

Description

LoadImage() loads the bitmap specified in file$ into
memory. h% is then the handle of the bitmap and can, for
example, be used for the Put and Stretch commands.

The application must call the FreeBmp h or the Windows
API DeleteObject() function to delete each bitmap handle
returned by the LoadImage function.

Example

OpenW 1
Local h As Handle, n As Int32
// Find picture file
Local d$ =
GetSetting("\\HKEY_CLASSES_ROOT\Applications\GfaW

in32.exe\shell\open\command", , "")
If Left(d$, 1) = #34 Then d$ = Mid(d$, 2)
n = RInStr(d$, "\") : If n <> 0 Then d$ = Left(d$,
n - 1)

If Not Exist(d$ & "\gfawintb.bmp") Then _
MsgBox("Can not locate gfawintb.bmp
file"#13#10#13#10"Please manually place it in
the GFABASIC32\Bin folder and try again.") :
End

// Create Image OCX and load picture into object
Ocx Image img = "", 10, 10, 356, 16
h = LoadImage(0, d$ & "\gfawintb.bmp",
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE)

Set img.Picture = CreatePicture(h, False)
FreeBmp h
Do : Sleep : Until Me Is Nothing

Remarks

GFA-BASIC 32 I/O routines are able to read ":Files",
because they are implemented to recognize the leading
colon as a resource or inline file. API functions don't know
about this peculiar GFA-BASIC 32 feature. To use API I/O
functions the resource must first copied to a temporary file
as in the function below:

Function LoadBmp(ByVal FName As String) As Handle
Try
If Left$(FName) <> ":" ' Load from normal file
LoadBmp = LoadImage(0, FName, IMAGE_BITMAP, 0,
0, LR_LOADFROMFILE)

Else ' copy to Temp directory
Local path$ = TempFileName("")
CopyFile FName Over To path$
LoadBmp = LoadImage(0, path$, IMAGE_BITMAP, 0,
0, LR_LOADFROMFILE)

KillTempFile path$

EndIf
Catch
MsgBox "LoadBmp Error #" & Err.Number & #10 &
Err.Description

EndCatch
EndFunction

File systems attempt to keep all of the data in memory for
quicker access rather than flushing the data back to mass
storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

Another way of loading in a Bitmap from file is to use
LoadPicture.

See Also

TempFileName, FreeBmp, LoadPicture, Put, Stretch

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

BoundW Function
Purpose

bounds test

Syntax

BoundW[ord](n)

n: integer expression

Description

The BoundW(n) function tests if the parameter n fits in a
word. This means that when n < -32768 or n >32767 an
error message is reported.

Otherwise n is returned unchanged.

Example

Try
Print BoundW(12345)
Print BoundWord(123456)

Catch
Print "123456 exceeds capacity"
MsgBox(Err$)

EndCatch

Remarks

The BoundW() function serves to find program errors by
early discovery of any range violations. BoundWord() is a

synonym.

See Also

BoundC(), BoundB(), Bound()

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Preset Command
Purpose

Sets a graphic point using the background color.

Syntax

Preset x, y [, color]

Preset [Step] (x, y) [, color]

x, y:Single exp
color:iexp

Description

Preset x, y, color sets a graphic point at the coordinates x
and y in color color. When color is omitted the current
background color is used. Preset can be used as an
alternative to:

Color ,RGB(r, g, b) : Plot x, y

however, Preset will not change the current background
color.

Preset x, y or Preset(x, y) sets a point in the current
foreground color.

Preset Step (x, y) sets a point in the current background
color at a distance of x, y from the current position.

Preset Step (x, y), color sets a point in the color at a
distance of x, y from the current position.

Example

OpenW # 1
Do
DoEvents
Preset Rand(_X), Rand(_Y), Rand(_C) - 1

Until MouseK %& 2
CloseW # 1
Cls
Color RGB(0, 0, 0), RGB(255, 0, 0)
Do
DoEvents
Preset Rand(_X), Rand(_Y)

Until MouseK = 1
CloseW 1

Fills the screen slowly with many multicolored points. The
second part fills it with red points.

Remarks

Pset sets a point, Preset wipes it

See Also

Color, Plot, Draw, Line, SetDraw, Pset, Point, PTst

{Created by Sjouke Hamstra; Last updated: 21/10/2014 by James Gaite}

Field # ...As...At Command
Purpose

Random access file management

Syntax

Field #n, count As set$ [, count As set$...]

Field #n, count At(x) [, count At(x), ...]

n:integer expression; channel number
count:integer expression
set$:svar, but not an array variable
x:addr

Description

RANDOM ACCESS files are composed of records and fields.
A record is a collection of data, for example an address. A
record contains a mixture of fields (the record Address can,
for example, be divided into fields: Name, Street, Postcode,
and City). Both records and fields have a set size.

Field #n divides records into fields. n is the channel
number (from 0 to 511) of a file previously opened with
Open. The integer count defines the corresponding field
length. The string variable set$ always refers to one field in
a record. If a record is divided into several fields, each must
be separated with a comma (count As set$). The sum of
individual field sizes must be equal to the length of the
record. To save individual fields with length given in count,
the commands Lset, Rset and Mid$ should be used. Using

Field At numerical variables can be written to an R-file
(random access) without having to convert them to strings.
The pointer to numerical variables which are to be saved is
given in brackets after At and the number of bytes to read
from this address is given before At. A mixture of As and
At is allowed.

The Field command can span across several program lines.

The Field statement can use a TYPE variable a. The address
of the TYPE variable is used.

Field #1, Len(a) At V:a

Example

OpenW 1
// a simple declaration
Global i%, name$, town$, zip%, ss$, x%
// to open the file
// Open App.Path & "\addresses.dat" for Random As
1, Len = 64

// Field construct
// Field #1,24 As name$,24 As ss$,4 At (V:zip&)
// Field #1, 12 As town$
//
// or direct with Option Base
Open App.Path & "\addresses.dat" for Random Based
1 As # 1, Len = 64

Field # 1, 24 As name$
Field # 1, 24 As ss$
Field # 1, 4 At (V:zip%)
Field # 1, 12 As town$
//
For i% = 1 To 5
Lset name$ = "NAME: " + Str$(i%)
Lset ss$ = "STREET: " + Str$(i%)

zip% = i%
Lset town$ = "TOWN: " + Str$(i%)
Put # 1, i%

Next
For i% = 1 To 5
Get # 1, i%
Print "record_number : "; Str$(i%, 3)
Print name$
Print ss$
Print zip%
Print town$

Next
Close # 1
Kill App.Path & "\addresses.dat" // Tidy up line

See Also

Get#, Put#, Record#

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

ASin Function
Purpose

Returns the arc sine of a numeric expression.

Syntax

= ASin(x#)

Description

ASin(x) expects as function argument x the quotient
between the hypotenuse and the side opposite the angle (in
a right-angled triangle) and returns the angle in radians. It
follows from this that the value of "x" ranges between -1
(equivalent to Sin(-PI/2)) and 1 (equivalent to Sin(PI/2)).

Example

OpenW # 1
Print Asin(-1) //prints -1.57...
Print Asin(1) //prints 0.57...
Print Asin(Sin(PI)) //prints 1.22460...

Remarks

ASin() is the reverse function of Sin() in the range [-
pi/2,pi/2].

See Also

Sin(), SinQ(), Cos(), CosQ(), Tan(), Acos(), Atn(), Atan(),
Atan2()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Tanh Function
Purpose

Returns the hyperbolic tangent of a numeric expression.

Syntax

= Tanh(x)

x:aexp

Description

The hyperbolic tangent is defined as the function:

Tanh(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x)) = (1-
Exp(-2*x))/(1+Exp(-2*x))

The function y= Tanh(x) returns values between -1 and
+1.

Example

Debug.Show
Trace Tanh(2.14) // Prints 0.97269...
Trace Tanh(ArTanH(-0.5))// Prints -0.5

Remarks

Tanh() is the reverse function of ArTanH().

The hyperbolic cotangent area is obtained with:

CotH(x) = 1 / Tanh(x)

CotH(x) = CosH(x) / SinH(x)

See Also

ArTanH(), SinH(), CosH(), ArSinH(), ArCosH()

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

ArSinH Function
Purpose

Returns the hyperbolic sine area of a numeric expression.

Syntax

= ArSinH(x#)

Description

The hyperbolic sine area is obtained with the function:

ArSinH(x) = Log(x+Sqr(x^2+1))

Example

OpenW 1
Local x%
Print ArSinH(2.14) // prints
1.50454...

Print ArSinH(SinH(2.14)) // prints 2.14
Print Log(2.14 + Sqr(2.14 ^ 2 + 1)) // prints
1.50454...

KeyGet x%
CloseW 1

Remarks

ArSinH() is the reverse function of SinH().

See Also

SinH(), CosH(), TanH(), ArCosh(), ArTanh()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ArCosH Function
Purpose

Returns the hyperbolic cosine area of a numeric expression.

Syntax

= ArCosH(x#)

x:aexp

Description

The hyperbolic cosine area is obtained with the function:

ArCosH(x) = Log(x+Sqr(x^2-1))

The function y = ArCosH(x) returns in y a real number
greater than or equal to 0.

Example

OpenW # 1
Print ArCosH(2.14) // Prints 1.39425...
Print ArCosH(CosH(2.14)) // Prints 2.14

Remarks

ArCosH() is the reverse function of CosH().

See Also

ArSinh(), ArTanh()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

ArTanH Function
Purpose

Returns the hyperbolic tangent area of a numeric
expression.

Syntax

= ArTanH(x#)

Description

The hyperbolic tangent area is obtained with the function:

ArTanH(x) = Log((1+x)/(1-x))/2

Example

OpenW 1
Local x%
Print ArTanH(-0.5) //
prints -0.54930...

Print ArTanH(Tanh(-0.5)) //
prints -0.5

Print Log((1 + (-0.5)) / (1 - (-0.5))) / 2 //
prints -0.54930...

KeyGet x%
CloseW 1

Remarks

ArTanH() is the reverse function of TanH(). The hyperbolic
cotangent area is obtained with:

ArCosH(x) = 1/ArTanH(x)

See Also

SinH(), CosH(), TanH(), ArSinh(), ArCosh()

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Deg, Rad Functions
Purpose

Used to convert between radians and degrees.

Syntax

d = Deg(r)

r = Rad(d)

d : aexp; angle in degrees r : aexp; angle in radians

Description

Deg() converts radians to degrees and Rad() converts
degrees to radians.

Example

Debug.Show
Trace Deg(PI / 2) // Traces 90
Trace Deg(PI) // Traces 180
Trace Deg(3 * PI / 2) // Traces 270
Trace Deg(2 * PI) // Traces 360
Trace (Rad(90) = PI / 2) // Traces True
Trace (Rad(180) = PI) // Traces True
Trace (Rad(270) = 3 * PI / 2) // Traces True
Trace (Rad(360) = 2 * PI) // Traces True

Remarks

Deg(x) is the reverse function of Rad(x), which means:

Deg(Rad(PI)) = PI = 3.14...

{Created by Sjouke Hamstra; Last updated: 27/01/2016 by James Gaite}

Random Function
Purpose

Returns a Double random number.

Syntax

= Random(n)

n:Double expression

Description

Returns a 64-bit floating point random number between 0
(inclusive) and n (exclusive). Random is a floating-point
operation and takes some more time to execute than Rand.

When the numeric expression n is an integer, all numbers
have the same probability of being selected, and vice versa.
Random(n) is equivalent to Trunc(Rnd*n).

Example

OpenW # 1
Print Random(10)

Prints a random number between 0 and 10.

See Also

Rnd, Rand, Randomize

{Created by Sjouke Hamstra; Last updated: 22/10/2014 by James Gaite}

Fact Function
Purpose

Returns the factorial of a natural number.

Syntax

Fact (n)

n:integer expression

Description

Fact (n) returns the factorial of a natural number n (n!). A
factorial is the product of the first n natural numbers, where
0! = 1.

Example

OpenW # 1
Print Fact(6) // 6! is 720

See Also

Combin(), Variat()

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

. Assembler instruction
Purpose

Invokes the GFA-BASIC 32 Inline Assembler

Syntax

. | Asm mnemonic destination, source

Description

The dot is a shortcut for the Asm keyword and invokes the
inline assembler and can appear wherever a GFA-BASIC 32
statement is legal. It cannot appear by itself. It must be
followed by an assembly instruction.

The assembler commands use the INTEL parameter
sequence, for example:

. mov dest, source

The inline assembler lets you embed assembly-language
instructions in your GFA-BASIC 32 programs. The inline
assembler is built into the compiler. Inline assembly code
can use any variable or function name that is in scope, so it
is easy to integrate it with your program’s code.

Example

GetRegs
Print _EAX
. mov eax, 1
. inc eax

GetRegs
Print _EAX

The middle two lines can also be written like:

Asm mov eax, 1
Asm inc eax

Remarks

More about the inline assembler you'll find with Asm.

See Also

Asm

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_i2rx8g/wkzkdk_pdf_out/asm1.htm

% Operator
Purpose

Divides the value of one expression by the value of another,
and returns the remainder (modulus).

Syntax

i % j

i : avar
j : avar

Description

The modulus, or remainder, operator divides integer
number1 by integer number2 and returns only the
remainder. The sign of the result is the same as the sign of
number1. The value of the result is between 0 and the
absolute value of number2.

Example

Global l%
Print (42 % 6) // prints 0
l% = 42 % 5
Print l% // prints 2

Remarks

% is identical to Mod.

See Also

Mod, Fmod, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 17/09/2014 by James Gaite}

Mod8 Operator and Function
Purpose

Calculates the modulo of an integer expression based on a
second integer expression.

Syntax

l = i Mod8 j(operator)
l = Mod8(i, j [,m,…])(function)

i, j, m, l:64-bit integer expression

Description

The operator i Mod8 j and the function Mod8(i, j, …) return
a 64-bit integer value. In case one of the parameters isn't
an Int64, it is converted to a 64-bit value first (using
CLarge).

Example

Debug.Show
Dim b As Double = 7.1, c As Large, d As Int
Trace b Mod 3 // CLarge(b) Mod 3 = 1
Trace Mod(b, 3) // CLarge(b) Mod 3 = 1
Trace b Mod8 3.1 // 2 + CLarge(3.1) = 1
Trace b Mod8 4 // 3
Trace Mod8(b, 3) // b Mod8 3 = 3 - Not
Correct

Trace Mod8(7, 4, 3) // 3 - Not Correct
' Mod Command requires an integer variable
c = 42, d = 42

Mod c, 5 : Trace c // 5 - Not Correct
Mod d, 5 : Trace d // 2 - Correct

Known Issues

The Mod8() function does not appear to work correctly;
where possible, use the Mod8 operator instead.

The type independent Mod v, y assignment command
doesn't work correctly when v is not an integer.

See Also

Add8, Sub8, Mul8, Div8, +, -, *, /F, \, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

~ Operator
Purpose

a bitwise Not

Syntax

x% = ~ i

i:integer expression

Description

~ i inverts the bit pattern in i.

The one's complement operator, sometimes called the
"bitwise complement" or "bitwise NOT" operator, produces
the bitwise one's complement of its operand. The operand
must be of integral type. This operator performs usual
arithmetic conversions; the result has the type of the
operand after conversion.

Example

Print Bin$(3, 32) // Prints
00000000000000000000000000000011

Print Bin$(10, 32) // Prints
00000000000000000000000000001010

Print Bin$(~3, 32) // Prints
11111111111111111111111111111100

Print Bin$(~10, 32) // Prints
11111111111111111111111111110101

Remarks

Not is synonymous with ~ and can be used instead.
However, ~ has higher priority so

a% = ~b% + 4 = (Not b%) + 4

a% = ~(b% + 4) = Not b% + 4

See Also

And, Or, Xor, Not, Imp, Eqv, %&, |

{Created by Sjouke Hamstra; Last updated: 20/09/2017 by James Gaite}

Checked, Hidden,
Indeterminate, Pressed
Properties (Button)
Purpose

Return or set the Button object state.

Syntax

Button.Checked [= Boolean]

Button.Hidden [= Boolean]

Button.Indeterminate [= Boolean]

Button.Pressed [= Boolean]

Description

Checked [= ?
]

Returns or sets a Boolean that
determines the checked state of the
button.

Hidden [= ?] Returns or sets a Boolean that
determines the visibility of the button.

Indeterminate
[= ?]

Returns or sets a Boolean that
determines the indeterminate state of
the button (dimmed background).

Pressed [= ?] Returns or sets a Boolean that
determines the pressed state of the
button.

Example

Ocx ToolBar tb
tb.Add , , "Checked", 1 : tb.Add , , "Hide" :
tb.Add , , "Indeterminate" : tb.Add , , "Pressed"

tb(1).Checked = True // Sets the button
as Checked. Click to uncheck

tb(3).Indeterminate = True
tb(4).Pressed = True // Highlights the
button until clicked.

Do : Sleep : Until Me Is Nothing

Sub tb_ButtonClick(Btn As Button)
Select Btn.Index
Case 1
' Btn.Caption = (Btn.Checked ? "Checked" :
"Unchecked") // Returns 'Not implemented'
error

Case 2
Btn.Hidden = True

EndSelect
EndSub

Remarks

An indeterminate state is a combination of two or more
states. For example, if the user selects text in a RichEdit
textbox, and some of the text is italicized, the button that
represents italicized text cannot be either checked or
unchecked; the text in the selection is both. To signify this
indeterminate state, set the Indeterminate property to
True. This dithers the image on the button to create a third
state of the button's image.

See Also

Button, ToolBar

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Image, SelectedImage,
ExpandedImage Property
Purpose

Returns or sets a value that specifies which ListImage
object in an ImageList control to use with another object.

Syntax

object.Image [= index]

object.SelectedImage[= index]

object.ExpandedImage[= index]

object: Node, Button, Tab

index:An integer or unique string specifying the ListImage
object to use with object. The integer is the value of the
Index property; the string is the value of the Key property.

Description

Before setting the Image property, you must associate an
ImageList control with a Toolbar, TreeView, or TabStrip
control by setting each control's ImageList property to an
ImageList control.

The SelectedImage property returns or sets the index or
key value of a ListImage object in an associated
ImageList control; the ListImage is displayed when a
Node object is selected. If this property is set to Null, the

mask of the default image specified by the Image property
is used.

The ExpandedImage property allows you to change the
image associated with a Node object when the user double-
clicks the node or when the Node object's Expanded
property is set to True.

Example

Local Int m, n
Ocx ImageList iml
iml.ImageHeight = 16 : iml.ImageWidth = 16
iml.Add , "image",
CreatePicture(LoadIcon(_INSTANCE, 7))

iml.Add , "selimage",
CreatePicture(LoadIcon(_INSTANCE, 1))

iml.Add , "expimage",
CreatePicture(LoadIcon(_INSTANCE, 9))

Ocx TreeView tv = "", 10, 10, 200, 300
tv.LineStyle = tvwRootLines
tv.Style = tvwTreelinesPlusMinusPictureText
tv.ImageList = iml
For n = 1 To 10 : Read m
If m = 0 : tv.Add , , , "Project" & n
Else : tv.Add m, tvwChild, , "Project" & n
EndIf
tv.Node(n).Image = 1
tv.Node(n).SelectedImage = 2
tv.Node(n).ExpandedImage = 3

Next n
Data 0,1,1,2,0,0,5,5,6,9
Do : Sleep : Until Me Is Nothing

See Also

Node, Button, Tab

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Value Property
Purpose

Returns or sets the value of an object.

Syntax

object.Value [= integer]

object:Ocx object

Description

Returns the current Value of a Button or Panel object. When
Value is set a mouse click is executed.

Button - Returns True when the button is pressed. Value =
True invokes a mouse click.

Panel - Returns True when the Panel is clicked. Value =
True invokes a mouse click.

Example

Ocx TextBox tb = "", 10, 10, 45, 15 : .BorderStyle
= 1 : .ReadOnly = True

Ocx UpDown up : .BuddyControl = tb : .Max = 1000
: .Increment = 3 : .Value = 4

Ocx Label lbl = "up.Value = 4", 10, 40, 100, 14
Do : Sleep : Until Me Is Nothing

Sub up_Change
lbl.Text = "up.Value = " & up.Value

EndSub

See Also

Button, Panel

{Created by Sjouke Hamstra; Last updated: 25/10/2014 by James Gaite}

TreeViewName,
ListViewName Properties
Purpose

Return the parent Ocx name of a collection item (Tab, Node,
and ListItem).

Syntax

Node.TreeViewName

ListItem.ListViewName

returnvalue: string

Description

TreeViewName returns a string containing the Ocx name
of the TreeView parent the Node belongs to.

ListViewName returns a string containing the Ocx name of
the ListView parent the ListItem belongs to.

Example

Local n As Int32
Ocx TreeView tv = "", 10, 10, 200, 300
For n = 1 To 5 : tv.Add , , , "Item" & n : Next n
Ocx ListView lv = "", 220, 10, 200, 300
For n = 1 To 5 : lv.Add , , "Item" & n : Next n
Color 0, RGB(255, 255, 0)
Text 10, 320, "TreeViewName: " &
tv(1).TreeViewName

Text 220, 320, "ListViewName: " &
lv(1).ListViewName

Do : Sleep : Until Me Is Nothing

See Also

Node, ListItem, TreeView, ListView

{Created by Sjouke Hamstra; Last updated: 24/10/2014 by James Gaite}

SubItemIndex Property
Purpose

Returns an integer representing the index of the sub item
associated with a ColumnHeader object in a ListView
control.

Syntax

ColumnHeader.SubItemIndex [= index%]

Description

Subitems are arrays of strings representing the ListItem
object's data when displayed in Report view.

The SubItemIndex is used to associate the SubItems
string with the correct ColumnHeader object.

The first column header always has a SubItemIndex
property set to 0 because the small icon and the ListItem
object's text always appear in the first column and are
considered ListItem objects rather than subitems.

The number of column headers dictates the number of
subitems. There is always exactly one more column header
than there are subitems.

Example

Global a$, n As Int32
Ocx ListView lv = "", 10, 10, 400, 200 : .View = 3
: .FullRowSelect = True : .GridLines = True

For n = 1 To 4 : lv.ColumnHeaders.Add , , "Column"
& n : lv.ColumnHeaders(n).Alignment = 2 : Trace
lv.ColumnHeaders(n).SubItemIndex : Next n

For n = 1 To 4
lv.Add , , ""
a$ = Rand(10) & ";" & Rand(10) & ";" & Rand(10) &
";" & Rand(10)

lv(n).AllText = a$
Next n
Do : Sleep : Until Me Is Nothing

Sub lv_ColumnClick(ColumnHeader As ColumnHeader)
// ColumnHeader.SubItemIndex returns 0; use
ColumnHeader.Index - 1 instead

Local chi As Int = ColumnHeader.Index - 1, li As
ListItem

If lv.SelectedCount <> 0
Set li = lv.SelectedItem
Message "Contents of Column" & (chi + 1) & "
and Row" & li.Index & #13#10 & "is " &
li.SubItems(chi)

Else
Message "Select a row first"

EndIf
EndSub

Known Issues

As shown in the example above, SubItemIndex appears to
return 0 regardless of the ColumnHeader selected. As a
workaround, use ColumnHeader.Index - 1 instead; this will
work as long as the ColumnHeaders appear in the order
they were first added to the listview.

See Also

ColumnHeader, ListView

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

SubItems, AllText Property
Purpose

Returns or sets an array of strings (a subitem) representing
the ListItem object's data in a ListView control.

Syntax

ListItem.SubItems(index%) [= string]

ListItem.AllText [= string]

Description

The index% parameter identifies a subitem for the specified
ListItem.

Subitems are arrays of strings representing the ListItem
object's data that are displayed in Report view. For
example, you could show the file size and the date last
modified for a file.

A ListItem object can have any number of associated item
data strings (subitems) but each ListItem object must
have the same number of subitems.

There are corresponding column headers defined for each
subitem.

You cannot add elements directly to the subitems array. Use
the Add method of the ColumnHeaders collection to add
subitems.

AllText returns or sets the text for all subitems of a
ListItem. The text for each subitem is to be separated by a
semicolon.

Example

Global a$, n As Int32
Ocx ListView lv = "", 10, 10, 400, 200 : .View = 3
: .FullRowSelect = True : .GridLines = True

For n = 1 To 4 : lv.ColumnHeaders.Add , , "Column"
& n : lv.ColumnHeaders(n).Alignment = 2 : Trace
lv.ColumnHeaders(n).SubItemIndex : Next n

For n = 1 To 4
lv.Add , , ""
a$ = Rand(10) & ";" & Rand(10) & ";" & Rand(10) &
";" & Rand(10)

lv(n).AllText = a$
Next n
Do : Sleep : Until Me Is Nothing

Sub lv_ColumnClick(ColumnHeader As ColumnHeader)
Local chi As Int = ColumnHeader.Index - 1, li As
ListItem

If lv.SelectedCount <> 0
Set li = lv.SelectedItem
Message "Contents of Column" & (chi + 1) & "
and Row" & li.Index & #13#10 & "is " &
li.SubItems(chi)

Else
Message "Select a row first"

EndIf
EndSub

See Also

ListItem, ColumnHeaders, ListView

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Bold, Italic, Underline
Properties (ListItem, Node)
Purpose

Returns or set the font attribute of the text of the node.

Syntax

object.Bold [= Boolean]

object.Italic [= Boolean]

object.Underline [= Boolean]

object:ListItem, Node object

Description

True sets the attribute and False removes it.

Example

Ocx TreeView tv = "", 10, 10, 150, 200
tv.Add , , "Bold" , "Bold"
tv.Add , , "Italic", "Italicised"
tv.Add , , "Underline", "Underlined"
tv("Bold").Bold = True
tv.Node(2).Italic = True
tv.Nodes(3).Underline = True
Do : Sleep : Until Me Is Nothing

See Also

ListItem, Node, TreeView, ListView

{Created by Sjouke Hamstra; Last updated: 24/09/2014 by James Gaite}

EnsureVisible Method
(ListView, TreeView)
Purpose

Ensures a specified ListItem or Node object is visible. If
necessary, this method expands Node objects and scrolls
the TreeView control. The method only scrolls the
ListView control.

Syntax

object.EnsureVisible

object:ListItem, Node

Description

Use the EnsureVisible method when you want a particular
Node or ListItem object, which might be hidden deep in a
TreeView or ListView control, to be visible.

The method returns True if the ListView or TreeView control
must scroll and/or expand to expose the object. The
method returns False if no scrolling and/or expansion is
required.

Example

Ocx TreeView tv = "", 10, 10, 100, 300
Dim node As Node
Set node = tv.Add(, , , "David")
Set node = tv.Add(1, tvwChild, , "Mary")

node.EnsureVisible ' Expand tree to see all nodes.
Do : Sleep : Until Me Is Nothing

See Also

Node, ListItem, ListView, TreeView

{Created by Sjouke Hamstra; Last updated: 04/10/2014 by James Gaite}

Ghosted Property
Purpose

Returns or sets a Boolean that determines whether a
ListItem object in a ListView control is unavailable (it
appears dimmed).

Syntax

ListItem.Ghosted [= Boolean]

Description

The Ghosted property is typically used to show when a
ListItem is cut, or disabled for some reason.

When a ghosted ListItem is selected, the label is
highlighted but its image is not.

Example

Global a$, m As Int, n As Int
Dim li As ListItem
Ocx ListView lv1 = , 10, 10, 500, 150 : lv1.View =
3

For n = 1 To 5 : lv1.ColumnHeaders.Add , ,
"Column" & n : Next n

For n = 1 To 5 :
a$ = "" : For m = 1 To 5 : a$ = a$ & "Item " &
((n - 1) * 5) + m & Iif(m <> 5, ";", "") : Next
m

lv1.Add , , "" : lv1(n).AllText = a$: If n = 2
Then lv1(n).Ghosted = True

Next n
lv1.FullRowSelect = True
Debug.Show
For Each li In lv1
Debug li.Text,li.Ghosted

Next
Do : Sleep : Until Me Is Nothing

See Also

ListItem, ListView

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

AddFirst, AddLast, AddNext,
AddPrev, AddChild Methods
(Nodes)
Purpose

Add a Node to a Nodes collection in a TreeView control
and returns a reference to the newly created Node object.

Syntax

Nodes.AddFirst(relative, key, text, image, selectedimage)

Nodes.AddLast(relative, key, text, image, selectedimage)

Nodes.AddNext(relative, key, text, image, selectedimage)

Nodes.AddPrev(relative, key, text, image, selectedimage)

Nodes.AddChild(relative, key, text, image, selectedimage)

relative, key, text, image, selectedimage: Variant exp

Description

The Nodes object supports the Add method to add a Node
to the collection. The Add method requires the speciation of
a relationship with the relative node. Rather than using the
general Add object, GFA-BASIC 32 offers a series of
methods that implicitly includes the relationship.

AddFirst The Node is placed before all other nodes at
the same level of the node named in relative.

AddLast The Node is placed after all other nodes at the
same level of the node named in relative. Any
Node added subsequently may be placed after
one added as Last.

AddNext The Node is placed after the node named in
relative.

AddPrev The Node is placed before the node named in
relative.

AddChild The Node becomes a child node of the node
named in relative.

The arguments of the methods are:

relative Optional. The index number or key of a
pre-existing Node object. The relationship
between the new node and this pre-
existing node is found in the next
argument, relationship.

key Optional. A unique string that can be used
to retrieve the Node with the Item
method.

text Required. The string that appears in the
Node.

image Optional. The index of an image in an
associated ImageList control.

selectedimage Optional. The index of an image in an
associated ImageList control that is
shown when the Node is selected.

As a Node object is added it is assigned an index number,
which is stored in the Node object's Index property. This
value of the newest member is the value of the Node
collection's Count property.

Because the Addxx methods return a reference to the
newly created Node object, you can set properties of the
new Node using this reference.

Example

Dim n As Node, nd As Nodes
Ocx TreeView tv = "", 0, 0, 200, 300
.Style = tvwTreelinesPlusMinusText : .LineStyle =
tvwRootLines

Set n = tv.AddItem(, , "Bert" , "Bert")
 // Node 1

Set nd = tv.Nodes
// Below are numerous ways to add a Child...
Set n = nd.AddChild("Bert" , "Harry" , "Harry")
 // Node 2

Set n = tv.Nodes.AddChild("Bert", "Charlie",
"Charlie") // Node 3

Set n = tv.Nodes.Add(2, tvwChild , "Mary" ,
"Mary") // Node 4

nd.AddChild "Mary", "Bertha" , "Bertha"
 // Node 5

// Set n = nd.AddFirst("Bert", "Gerald" ,
"Gerald") doesn't work

/* Use the following instead:
nd.Add "Bert", tvwFirst, , "Gerald" ' or Set n =
nd.Add("Bert", tvwFirst, , "Gerald")

// Similarly, AddLast, AddNext, AddPrevious do not
appear to work either

/* Instead use: nd.Add [Relative], [Type], [Key],
[Text]

tv.Node(5).EnsureVisible
Do : Sleep : Until Me Is Nothing

Remarks

As shown in the example above, the AddFirst, AddLast,
and AddPrev methods all trigger the 'Invalid Property
Value' error report regardless of what values are entered;
AddChild doesn't seem to be affected by this problem.

GFA-BASIC 32 specific

Instead of explicitly using the Nodes collection to access a
Node element, you can use a shorter notation. First, the
TreeView supports an Item property:

tv.Item(idx)tv.Nodes.Item(idx)

Like the Item method of tv.Nodes, Item is the default
method of TreeView. Therefore, a Node can be accessed
as follows:

tv(idx)tv.Nodes(idx)

tv!idxtv.Nodes!idx

Each dot saves about 30 bytes of code.

To enumerate over the Nodes collection of a TreeView
Ocx, use For Each on the Ocx control directly, like:

Local node1 As Node
For Each node1 In tv : DoSomething(node1) : Next

See Also

TreeView, Node, Nodes

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Child, FirstSibling,
LastSibling, Previous, Parent,
Next, and Root Properties
(Node)
Purpose

The Child, FirstSibling, LastSibling, Previous, Parent,
Next, and Root properties all return a reference to another
Node object.

Syntax

Node.Child

Node.FirstSibling

Node.LastSibling

Node.Previous

Node.Parent

Node.Next

Node.Root

Description

Child - Returns a reference to the first child of a Node
object in a TreeView control.

FirstSibling - Returns a reference to the first sibling of a
Node object in a TreeView control. The first sibling is the
Node that appears in the first position in one level of a
hierarchy of nodes. Which Node actually appears in the first
position depends on whether or not the Node objects at
that level are sorted, which is determined by the Sorted
property.

LastSibling - Returns a reference to the last sibling of a
Node object in a TreeView control. The last sibling is the
Node that appears in the last position in one level of a
hierarchy of nodes. Which Node actually appears in the last
position depends on whether or not the Node objects at
that level are sorted, which is determined by the Sorted
property. To sort the Node objects at one level, set the
Sorted property of the Parent node to True.

Previous - Returns a reference to the previous sibling of a
Node object.

Parent - Returns or sets the parent object of a Node
object. An error occurs if you set this property to an object
that creates a loop. For example, you cannot set any Node
to become a child Node of its own descendants.

Next - Returns a reference to the next sibling Node of a
TreeView control's Node object.

Root - Returns a reference to the root Node object of a
selected Node.

Example

Dim n As Node, nd As Nodes
Ocx TreeView tv = "", 0, 0, 200, 300
.Style = tvwTreelinesPlusMinusText : .LineStyle =
tvwRootLines

Set n = tv.AddItem(, , "Bert" , "Bert")
 // Node 1

Set nd = tv.Nodes
Set n = nd.AddChild("Bert" , "Harry" , "Harry")
 // Node 2

Set n = tv.Nodes.AddChild("Bert", "Charlie",
"Charlie") // Node 3

Set n = tv.Nodes.Add(3, tvwChild , "Mary" ,
"Mary") // Node 4

nd.AddChild "Mary", "Bertha" , "Bertha"
 // Node 5

nd.AddChild "Bert", "Arthur" , "Arthur"
 // Node 6

tv.Node(5).EnsureVisible
'
Debug.Show
Trace tv!Charlie.Child.Text
Trace tv.Nodes("Charlie").FirstSibling.Text
Trace tv.Nodes("Charlie").Next.Text
Trace tv!Charlie.LastSibling.Text
Trace tv!Charlie.Previous.Text
Trace tv(3).Parent.Text
Trace tv!Charlie.Root.Text
Do : Sleep : Until Me Is Nothing

Remarks

There are many ways to access a Node element.

NOTE: Caution should be exercised when interrogating the
Child, Previous and Next properties: if a referenced node
does not exist, a 'Object is Nothing' error is triggered as can
be seen if the following line is added to the example above:

Trace tv!Harry.Previous.Text

See Also

TreeView, Node, Nodes

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Expanded, FullPath
Properties (Node)
Purpose

Returns or sets a value that determines whether a Node
object in a TreeView control is currently expanded or
collapsed.

Returns the fully qualified path of the referenced Node
object in a TreeView control. When you assign this
property to a string variable, the string is set to the
FullPath of the node with the specified index.

Syntax

Node.Expanded[= boolean]

Node.FullPath

Description

You can use the Expanded property to programmatically
expand a Node object. The following code has the same
effect as double-clicking the first Node:

When a Node object is expanded, the Expand event is
generated.

If a Node object has no child nodes, the property value is
ignored.

The fully qualified path is the concatenation of the text in
the referenced Node object's Text property with the Text

property values of all its ancestors. The value of the
PathSeparator property determines the delimiter.

Example

Ocx TreeView tv = "", 10, 10, 200, 400
tv.LineStyle = tvwRootLines
tv.Style = tvwPlusMinusText
tv.Add , , , "David"
tv.Add 1, tvwChild, , "Mary"
tv.Add 1, tvwChild, , "Harold"
tv.Add 1, tvwNext, , "Mildred"
tv.Add 4, tvwChild, , "Jennifer"
tv.Nodes(1).Expanded = True
tv(4).Expanded = True
Print AT(40, 1); "Harold's path: "; tv(3).FullPath
Do : Sleep : Until Me Is Nothing

Remarks

A Node can be accessed in several different ways.

See Also

Node, TreeView, Expand

{Created by Sjouke Hamstra; Last updated: 05/10/2014 by James Gaite}

Draw Method
Purpose

Draws an image into a destination device context, after
performing a graphical operation on the image.

Syntax

ListImage.Draw(hDC [,x] [,y] [,style])

x, y, style:Variant

Description

Draws an image into a destination device context hDC , at
x, y, and with style.

Style Meaning
0 (Default) Normal. Draws the image with no

change.
1 Transparent. Draws the image using the

MaskColor property to determine which
color of the image will be transparent.

2 Selected. Draws the image dithered with
the system highlight color.

3 Focus. Draws the image dithered and
striped with the highlight color creating a
hatched effect to indicate the image has
the focus.

Example

OpenW 1, 30, 30, 300, 300 : AutoRedraw = 1
Cls 2
Ocx ImageList iml
iml.ImageWidth = 32
iml.ImageHeight = 32
iml.ColorFormat = 0
iml.MaskColor = colBtnFace
iml.UseMaskColor = True
iml.BackColor = colBtnFace
iml.ListImages.Add , "GFA",
CreatePicture(LoadIcon(_INSTANCE, 1), False)

iml.ListImage(1).Draw Win_1.hDC, 40, 40, 1
Do : Sleep : Until Win_1 Is Nothing

See Also

ImageList, ListImages

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

ExtractIcon Method
Purpose

Creates an icon from the bitmap in the ListImage object.

Syntax

ListImage.ExtractIcon()

Description

Creates an icon from the bitmap in the ListImage object
and returns a reference to the newly created icon as a
Picture object.

Example

Dim p As Picture
Ocx ImageList iml
iml.ImageHeight = 32 : iml.ImageWidth = 32 :
iml.MaskColor = $0c0c0c

iml.Add , "warning", CreatePicture(LoadIcon(Null,
IDI_WARNING), False)

OpenW 1
Ocx Label lbl = "This is a no-go area", 10, 10,
100, 100 : lbl.Alignment = 2

Ocx Image img = "", 15, 15, 32, 32 :
img.Transparent = True

Set img.Picture = iml.ListImages(1).ExtractIcon
Ocx Command cmd = "Do not click", 10, 120, 100, 22
cmd.MousePointer = basCustom : Set cmd.MouseIcon =
iml.ListImages(1).ExtractIcon

lbl.MousePointer = 99 : Set lbl.MouseIcon =
iml.ListImages(1).ExtractIcon

Do : Sleep : Until Win_1 Is Nothing

See Also

ListImage, ListImages, ImageList

{Created by Sjouke Hamstra; Last updated: 10/10/2014 by James Gaite}

Mode Function
Purpose

Returns the different options for string conversions and
comparisons.

Syntax

$ = Mode(option)

Description

Returns the current Mode settings.

Mode(BaseYear) - A 4 character string, default "1930".

Mode(Format) - A 4 character string with the Format
settings.

Mode(Val) - A 1 character string with the decimal
separation character.

Mode(Using) - A 2 character string with the Using
settings.

Mode(Date) - A 1 character string with the Date$()
separation character.

Mode(Compare) - A string with the Compare setting
("Text","Binary", or a number).

Mode(All) - A string with all Mode option settings. Internal
format is undocumented.

Mode(StrSpace) - A 1 character string with the StrSpace
settings ("0" or "1").

Mode(Lang) - A 3 character string with the language
setting.

Mode also returns some operating settings.

Mode(Language) - OS language (in the Netherlands:
"Nederlands (Nederland)").

Mode(Language Eng) - OS language in English (in the
Netherlands: "Dutch").

Mode(Language Native) - OS language in native (in the
Netherlands: "Nederland").

Mode(Country) - OS country (in the Netherlands:
"Nederland").

Mode(Country Eng) - OS country in English (in the
Netherlands: "Netherlands").

Mode(Country Native) - OS country (in the Netherlands:
"Nederland").

Mode(Ctry) - OS country in short (in the Netherlands:
"NLD").

Mode(Ctry Code) - OS country code (in the Netherlands:
"31").

Mode(Lang List) - Lists the short name for the available
countries for the OS.

Example

Display all Mode settings:

Debug.Show
Trace Mode(Format)
Trace Mode(Val)
Trace Mode(Using)
Trace Mode(Date)
Trace Mode(Compare)
Trace Mode(All)
Trace Mode(StrSpace)
Trace Mode(Lang)
Trace Mode(Language)
Trace Mode(Language Eng)
Trace Mode(Language Native)
Trace Mode(Country)
Trace Mode(Country Eng)
Trace Mode(Country Native)
Trace Mode(Ctry)
Trace Mode(Ctry Code)

A list of the available countries:

Local a As String, i As Int, x%
a = Mode(Lang List)
For i = 1 To Len(a) Step 4
Mode Lang (Mid$(a, i))
Debug.Print Left$(Mode(Lang), 3); #9, Mode(
Language)

Next
Debug.Show

See Also

Mode, Using, Format, Str, Date$, Time$, Val

{Created by Sjouke Hamstra; Last updated: 18/10/2014 by James Gaite}

Clear Command
Purpose

Deletes all variables.

Syntax

Clear v1[,v2,…]

v1, v2, … : variables

Description

This command cannot be used inside loops or subroutines.
A Clear is performed automatically when the program
starts up. For arrays use Erase.

Example

Local Int32 x = 2, y = 2
OpenW # 1
Print x, y // Prints 2 2
Clear x, y
Print x, y // Prints 0 0

Remarks

Synonymous with Clear you can use Clr.

See Also

Clr, Erase

{Created by Sjouke Hamstra; Last updated: 25/09/2014 by James Gaite}

Key Codes and ASCII Values
The following list includes values for the most common Key
Codes (also known as Scan or Virtual Key Codes) used with
KeyDown, KeyUp and Screen_KeyPreview events and
ASCII/ANSI codes for the first 256 characters (used with
KeyPress).

For a full list of Virtual Key Codes see MSDN.

Control Characters

Show

Other Non-Character Keys

Show

NumPad Codes

Show

Characters in the ASCII table

Show

Windows 1252 ANSI Codes

Show

Conversion Code

The following simple but clever bit of code converts virtual
key codes to ASCII and comes from this page on Sjouke

https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
javascript:pr("menu1hl","menu1","Hide","Show","block")
javascript:pr("menu2hl","menu2","Hide","Show","block")
javascript:pr("menu3hl","menu3","Hide","Show","block")
javascript:pr("menu4hl","menu4","Hide","Show","block")
javascript:pr("menu5hl","menu5","Hide","Show","block")
http://www.gfabasic32.blogspot.co.uk/2010/05/virtual-key-code-to-ansi-character.html

Hamstra's blog.

' Press shift-key than click mouse
Debug.Show
Trace Chr(VkKeyToAscii(65))
Trace Chr(VkKeyToAscii(Asc("8"))) ' –> *

Function VkKeyToAscii(keycode As Int) As Int
// Sjouke Hamstra
Dim sb As String * 4
Static Dim keyboardState(256) As Byte
~GetKeyboardState(ArrayAddr(keyboardState()))
If ToAscii(keycode, 0,
ArrayAddr(keyboardState()), sb, 0) == 1
Return Asc(sb)

Else
Return 0

EndIf
EndFunc

{Created by Sjouke Hamstra; Last updated: 15/12/2015 by James Gaite}

Multithreading with GB32
Introduction Show

What is a Thread? Show

When to use Multithreading Show

How Many Threads? Show

Creating and Terminating Threads Show

Passing Values using Parameters Show

Suspending and Resuming Threads Show

Passing Messages Between Threads Show

Assigning a Thread to a Specific Core Show

Creating a Timer Thread Show

Restricting and Controlling Thread Access Show

Help with Debugging Show

{Created by James Gaite; Last updated: 08/03/2018 by James Gaite}

javascript:pr("sect0hl","sect0","Hide","Show","block")
javascript:pr("sect1hl","sect1","Hide","Show","block")
javascript:pr("sect2hl","sect2","Hide","Show","block")
javascript:pr("sect3hl","sect3","Hide","Show","block")
javascript:pr("sect4hl","sect4","Hide","Show","block")
javascript:pr("sect5hl","sect5","Hide","Show","block")
javascript:pr("sect6hl","sect6","Hide","Show","block")
javascript:pr("sect7hl","sect7","Hide","Show","block")
javascript:pr("sect8hl","sect8","Hide","Show","block")
javascript:pr("sect9hl","sect9","Hide","Show","block")
javascript:pr("sect10hl","sect10","Hide","Show","block")
javascript:pr("sect14hl","sect14","Hide","Show","block")

WinVer Function
Requires: gfawinx.lg32

Purpose

Retrieves version information about the currently running
operating system.

Syntax

ret = WinVer([IsWindows])

ret : integer or boolean value

Description

When WinVer does not specify a value in its argument,
WinVer returns a Long with the OS version in hexadecimal
format. The return value can be displayed using the Hex()
function. The following values are possible.

0x0400 // Windows NT 4.0
0x0500 // Windows 2000
0x0501 // Windows XP
0x0502 // Windows Server 2003
0x0600 // Windows Vista
0x0600 // Windows Server 2008
0x0601 // Windows 7
0x0602 // Windows 8
0x0603 // Windows 8.1
0x0A00 // Windows 10

However, Microsoft wants us to abandon the old way of
obtaining the OS version and wants us to use the newer
version-helpers from the VersionHelpers.h SDK file. WinVer
implements the version helper functions and wraps them
into a single function. To identify the current OS use one of
the following self-explanatory constants for the parameter
of WinVer:

IsWindowsXPOrGreater
IsWindowsXPSP1OrGreater
IsWindowsXPSP2OrGreater
IsWindowsXPSP3OrGreater
IsWindowsVistaOrGreater
IsWindowsVistaSP1OrGreater
IsWindowsVistaSP2OrGreater
IsWindows7OrGreater
IsWindows7SP1OrGreater
IsWindows8OrGreater
IsWindows8Point1OrGreater
IsWindowsThresholdOrGreater
IsWindows10OrGreater
IsWindowsServer

With the above constants, WinVer returns 0 (False) if the
application isn’t running on the requested OS (or greate if
applicabler) and –1 (True) if it is.

Example

$Library "gfawinx"
Debug.Show
Debug Hex(WinVer())
If WinVer(IsWindows10OrGreater) Then Debug.Print
"Running on Windows 10"

Remarks

WinVer returns false (0) when called by applications that
do not have a compatibility manifest for Windows 8.1 or
Windows 10 even if the application is running on one of
these OSes. The GFA-BASIC 32 version 2.57 includes a
compatibility manifest so that functionality of Windows 8.1
and Windows 10 are ‘unlocked’ and WinVer will return True.

For more information see here

See Also

WinVersion.

{Created by Sjouke Hamstra; Last updated: 13/08/2019 by James Gaite}

https://docs.microsoft.com/en-us/windows/win32/sysinfo/version-helper-apis

Window Messages -
Keyboard Input
The following Window Messages (WM_) are raised as a
result of input through the keyboard (or, sometimes, the
mouse).

WM_CHAR | WM_DEADCHAR | WM_HOTKEY |
WM_KEYDOWN | WM_KEYUP | WM_SYSCHAR |
WM_SYSDEADCHAR | WM_SYSKEYDOWN | WM_SYSKEYUP

WM_CHAR $0102 (258)

Posted to the window with the keyboard focus when a
WM_KEYDOWN message is translated by the
TranslateMessage function.

wparam value:
The character ASCII Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Set if this is a repeat of a previous key press.

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Bit 31 Set if the key is being released.

WM_DEADCHAR $0103 (259)

A character code generated by a dead key which is posted
to the window with the keyboard focus when a WM_KEYUP
message is translated by the TranslateMessage function. A
dead key is a key that generates a character, such as the
umlaut (double-dot), that is combined with another
character to form a composite character. For example, the
umlaut-O character (Ö) is generated by typing the dead key
for the umlaut character, and then typing the O key.

wparam value:
The character ASCII Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Set if this is a repeat of a previous key press.
Bit 31 Set if the key is being released.

WM_HOTKEY $0312 (786)

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Posted when the user presses a hot key registered by the
RegisterHotKey function.

wparam value:
The identifier of the hot key that generated the message. If
the message was generated by a system-defined hot key,
this parameter will be one of the following values:
IDHOT_SNAPDESKTOP (-2) or IDHOT_SNAPWINDOW (-1).

lparam value:

Bits 0-15 The Scan Code‡ of the non-'hotkey' pressed.
Bits 16-31 The hotkey(s) defined as:

 MOD_ALT($0001) - Either of the Alt keys
was pressed.
 MOD_CONTROL($0002) - Either of the
Ctrl keys was pressed.
 MOD_SHIFT($0004) - Either of the Shift
keys was pressed.
 MOD_WIN($0008) - Either of the
Windows keys was pressed.

WM_KEYDOWN $0100 (256)

Posted to a window when a non-system key† is pressed.
WM_CHAR can be used instead to return the character
ASCII/ANSI code.

wparam value:
The character Key Code of the key pressed.

lparam value:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms646309(v=vs.85).aspx
https://calibre-pdf-anchor.n/#Key%20Codes.htm

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Always reset or 0.
Bit 30 Set if this is a repeat of a previous key press.
Bit 31 Always reset or 0.

WM_KEYUP $0101 (257)

Posted to a window when a non-system key† is released.

wparam value:
The character Key Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Always reset or 0.
Bit 30 Always set or 1.
Bit 31 Always set or 1.

https://calibre-pdf-anchor.n/#Key%20Codes.htm

WM_SYSCHAR $0106 (262)

The product of WM_SYSKEYDOWN being passed through
the TranslateMessage function, this returns details of the
system key† which was pressed.

wparam value:
The character ASCII Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Set if this is a repeat of a previous key press.
Bit 31 Set if the key is being released.

WM_SYSDEADCHAR $0107 (263)

Sent to the window with the keyboard focus when a
WM_SYSKEYDOWN message is translated by the
TranslateMessage function. WM_SYSDEADCHAR specifies
the character code of a system dead key — that is, a dead
key that is pressed while holding down the ALT key.

wparam value:
The character ASCII Code of the key pressed.

https://calibre-pdf-anchor.n/#Key%20Codes.htm
https://calibre-pdf-anchor.n/#Key%20Codes.htm

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Set if this is a repeat of a previous key press.
Bit 31 Set if the key is being released.

WM_SYSKEYDOWN $0104 (260)

Posted to a window when a system key† is pressed.
WM_SYSCHAR can be used instead to return the character
ASCII/ANSI code.

wparam value:
The character Key Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Set if this is a repeat of a previous key press.

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Bit 31 Always reset or 0.

WM_SYSKEYUP $0105 (261)

Posted to a window when a system key† is released.

wparam value:
The character Key Code of the key pressed.

lparam value:

Bits 0-15 The Repeat Count - the number of times the
keystroke is repeated due to the user keeping
the key depressed.

Bits 16-23 The Scan Code‡ of the key pressed.
Bit 24 Set if Extended Key* is pressed.
Bits 25-28 Reserved.
Bit 29 Set if ALT key pressed at the same time.
Bit 30 Always set or 1.
Bit 31 Always set or 1.

* Extended Keys are: the right ALT and the right CTRL keys
on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN and arrow keys in the clusters
to the left of the numeric keypad; and the divide (/) and
ENTER keys in the numeric keypad.

† A system key event is triggered either by pressing F10,
having the Alt key held down while pressing another key or
when no window currently has the keyboard focus.

‡ The code for the actual key, not character, pressed on the
keyboard which is then translated into a key code or ASCII

https://calibre-pdf-anchor.n/#Key%20Codes.htm
https://calibre-pdf-anchor.n/#Key%20Codes.htm

value.

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

https://calibre-pdf-anchor.n/#Key%20Codes.htm

Activate, Deactivate Methods
Purpose

Activate - activates a form, bringing it to the foreground

Deactivate - deactivates a form, bringing it to the
background.

Syntax

Form.Activate()

Form.Deactivate()

Description

Activate causes the currently selected component to be
activated as if it were clicked.

Example

Form test
Ocx Command cd = "Deactivate", 10, 10, 100, 22
Do
Sleep

Until Me Is Nothing

Sub cd_Click
test.Deactivate

EndSub

See Also

Form, GotFocus, LostFocus, SetFocus, Activate, Deactivate

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

LPrint Command and LPos
Function
Purpose

Prints a string on the current active printer and returns the
current virtual column number within the printer object.

Syntax

Lprint p$

x = LPos(y)

x:integer y:dummy value

Description

Prints the string plus a CRLF on the printer of the Printer
object. This command allows the printer to be used as a line
printer.

A new page is automatically generated at the end of the
printable area.

Example

SetPrinterByName "Microsoft XPS Document Writer"
Output = Printer
FontSize = 12
FontName = "courier new"
Printer.StartDoc "Test"
Printer.StartPage
Lprint "Hello"

Trace LPos(0) // Returns 1 due to the implied
CRLF added by LPrint

Lprint "Hello ";
Trace LPos(0) // Returns 7 due to the semi-colon
cancelling the CRLF

Lprint "John"
Trace LPos(0) // Returns 1 again due to the
implied CRLF added by LPrint

Printer.EndPage
Printer.EndDoc
Debug.Show

Remarks

Lprint is synonymous to

Output = Printer
Print

You can use Lprint without the using of StartDoc and
StartPage; if needed Lprint creates itself, as well as
EndPage and EndDoc.

SetPrinterByName "Microsoft XPS Document Writer"
Lprint "This is a test"
Printer.ForeColor = RGB(255, 0, 0)
Lprint "This is a test"
Printer.ForeColor = RGB(0, 255, 0)
Lprint "This is a test"
Printer.ForeColor = RGB(0, 0, 255)
Lprint "This is a test"
Printer.ForeColor = RGB(255, 255, 0)
Lprint "This is a test"
Printer.ForeColor = RGB(255, 0, 255)
Lprint "This is a test"
Printer.ForeColor = RGB(0, 255, 255)
Lprint "This is a test"

The printer is not initialized before StartDoc. Since Lprint
implicitly executes a StartDoc, the printer can be initialized
by Lprint "";

However, as can be seen from the above example, by
initialising the printer with LPrint, the fontsize to pixel ratio
remains as per the screen rather than the printer and the
resulting print is miniscule. This can only be remedied by
inserting Printer.Fontsize statement which can not be
done before the output has been switched to the printer
(otherwise an 'Unspecified Error' is raised). To get around
this problem, the following lines should be placed before the
first LPrint statement:

Lprint ""; // The semi-colon keeps the vitual
cursor at the top-left of the screen

// or just use Output = Printer
Printer.FontSize = 10

See Also

Printer

{Created by Sjouke Hamstra; Last updated: 12/10/2014 by James Gaite}

Message Event
Purpose

Occurs when a message for a Form is retrieved from the
message queue.

Syntax

Sub Form_Message(hWnd%, Mess%, wParam%, lParam%)

Description

Sleep and DoEvents, but GetEvent and PeekEvent also,
retrieve messages from the application message queue.
Before the retrieved message is handled and dispatched to
the window procedure of a window, the Message event sub
is invoked. The Message event sub is only executed for the
messages that are posted to the message queue, these
include WM_PAINT, WM_MOVE, WM_SIZE, WM_COMMAND,
WM_SYSCOMMAND, WM_CHAR, and WM_KEY*. Most of
these messages have an accompanying sub event
(Form_Paint, Form_Moved, Form_ReSize, Form_MenuEvent,
Form_SysMenuOver, Form_Key*, etc. Before these event
subs are executed GFA-BASIC 32 invokes the Message
event sub passing the message number and its parameters.

One of the messages that is of interest is the
WM_COMMAND message from standard (non-ocx) controls.
This is message specifies exactly what happened with a
control. The WM_COMMAND message is a good candidate to
process in a Message event sub. It could also be handled
in the MessageProc event sub, but this is a real callback
subroutine allowing to handle messages at the lowest level.

A big disadvantage of a call back procedure is the lack of
debug capabilities. A Try/Catch handler is necessary to
catch errors. The Message event sub is more robust.

Example

Dlg 3D On
Global style%, style2%, File$
Dlg Base Unit
style% = WS_BORDER | WS_TABSTOP
style2% = BS_DEFPUSHBUTTON | WS_TABSTOP
Dialog # 1, 10, 10, 150, 100, "Test-Dialog"
RichEditCtrl "", 101, 50, 10, 80, 14, style%
PushButton "OK", IDOK, 10, 60, 40, 14, style2%
PushButton "CANCEL", IDCANCEL, 80, 60, 40, 14,
style2%

EndDialog
ShowDialog # 1
// to fill the edit field
File$ = "GFA-User"
_Win$(Dlg(1, 101)) = File$
Do
Sleep

Until Me Is Nothing

Sub Dlg_1_Message(hWnd%, Mess%, wParam%, lParam%)
Select Mess
Case WM_COMMAND
Select wParam
Case IDOK
File$ = _Win$(Dlg(1, 101))
CloseDialog # 1
OpenW 1
Print File$: Print
Print "End with Alt + F4"

EndSelect
EndSelect

EndSub

Remarks

You can easily test in which order the sub events are called.
For posted messages, those that are retrieved from the
message queue using Sleep, the Message event is called
before any other sub. Then the message is dispatched to
the window procedure and the MessageProc is called. And
finally, the event sub is invoked. For a WM_SIZE message
the sequence is:

Win_1_Message()
Win_1_MessageProc()
Win_1_ReSize

See Also

MessageProc, DDEWndProc, Form

{Created by Sjouke Hamstra; Last updated: 17/10/2014 by James Gaite}

Gfa_LineCnt and Gfa_TopLine
Function
Syntax

n% = Gfa_LineCnt

line% = Gfa_TopLine

Description

Gfa_LineCnt Returns the number of lines of the program.

line% = Gfa_TopLine returns the line currently at the top
of the editor window.

Although the code for the Gfa_TopLine= assignment is
present, a bug prevents its use.

Example

An easy workaround is

' emulate Gfa_TopLine=

Gfa_Line = 1

Gfa_Line line%

See Also

Gfa_Line

{Created by Sjouke Hamstra; Last updated: 12/05/14 by James Gaite}

Gfa_ExeName and
Gfa_ExeTime
Project file information.

Syntax

$ = Gfa_FileName

date = Gfa_FileTime

$ = Gfa_ExeName

date = Gfa_ExeTime

Description

Gfa_FileName returns the full path and filename of the
current project. If the project has no name, when it isn't
saved before, this function returns an empty string.

Gfa_FileTime returns the file date of the latest save action
of the project currently loaded. The return value is of type
Date. In case of an error the return value is CDate(0.0).

Gfa_ExeName returns the name of the compiled project
currently loaded in the IDE. This function can be used to
determine whether a program is compiled before, if it isn't
the function returns an empty string.

Gfa_ExeTime returns the file date of the compile Exe, GLL,
or lg32. The return value is of type Date. In case of an error
the return value is CDate(0.0).

Example

Insert the filename and time, exe name, and time.

Sub Gfa_App_F
Dim i% = PopUp(" FileName| FileTime| Exe
FileName| Exe FileTime")

Gfa_Insert Choose(i% + 1, Gfa_FileName,
Gfa_FileTime, Gfa_ExeName, Gfa_ExeTime)

EndSub

See Also

Gfa_Compile, Gfa_DoCompile

{Created by Sjouke Hamstra; Last updated: 08/10/2014 by James Gaite}

OnHelp Event (CommDlg)
Purpose

Occurs when the Help button on a common dialog is
selected.

Syntax

Sub CommDlg_OnHelp

Description

If you've created a Help file for your application you can use
ShowHelp to invoke WinHelp, or use the example in
Acessing HTMLHelp Files for .chm files, to display help.

Example

OpenW 1
Ocx CommDlg cd
cd.Flags = cdfScreenFonts | cdfShowHelp
cd.ShowFont
CloseW 1

Sub cd_OnHelp
Me.Caption = "Help Requested"

EndSub

See Also

CommDlg, ShowHelp

{Created by Sjouke Hamstra; Last updated: 16/07/2015 by James Gaite}

The Manifest File and
Common Controls
Common Controls

GFABASIC32 comes with many OCX Controls to allow input
and output and these controls are underpinned by Windows'
Common Controls library.

From Windows XP onwards, Microsoft allowed access to two
versions of its Common Controls library: version 5 which
retained the appearance and functionality found in Windows
98/ME; and version 6, originally termed as XP Styles, which
matches the controls to the themes and styles of whichever
version of Windows a program is run on, as well as adding
additional functionality.

By default, Windows assumes any program will run using
version 5, and GFABASIC32 is no different. If either the IDE
or any program compiled by GFABASIC32 is run, all OCX
controls will appear as they did in Windows 98/ME.

Manifest Files

To change the styles to those of Common Controls version
6, it is necessary to use a Manifest File. Manifest files can
perform numerous tasks, but the file which is supplied with
GFABASIC32 (see GfaWin32.exe.manifest) has only one
task: to tell Windows to use Coomon Controls version 6
rather than the default version 5.

To effect this, the Manifest file can either be in stand-alone
form or embedded in the executable program itself.

To create a stand-alone file, simply make a copy of the
GFABASIC32's Manifest file, paste it into the folder which
contains the executable file you wish to affect and change
the Manifest's name to suit. For example, if you compile a
program called 'program.exe', you would copy the
GfaWin32.exe.manifest file into the same file as the
compiled file and rename it 'program.exe.manifest'.

From IDE version 2.40 onwards, there is an option on the
Compile form (Project -> Compile/Build) to 'Add Manifest
Resource'; this embeds a Manifest file into the executable,
doing away with the need to create a stand-alone file. For
those with earlier versions of the IDE, Peter Heinzig created
a program here which does exactly the same thing.

Known Issues

There are a number of known issues where using a Manifest
file does not make the desired transition from version 5 to
version 6 of the Common Controls library. Some of the
more common ones are:

1. [Stand-alone only] If there a spaces in the filename of
the executable - and thus in the accompanying stand-
alone Manifest file - this can cause a failure; replacing
the spaces in both files with underscores ('_') usually
fixes this problem.

2. Occasionally after a change to a compiled file or a
Windows Update, controls can return to version 5;
simply restarting the computer can, occasionally fix this
problem.

There are other issues which can arise with using Manifest
files - they are generally Windows-wide rather than just
GFABASIC32-specific - and they are dealt with in more
detail in Sjouke Hamstra's blog here and here.

http://www.peterheinzig.de/dat/xp_style.zip
http://gfabasic32.blogspot.co.uk/2018/02/update-doesnt-load-manifest-file.html
http://gfabasic32.blogspot.co.uk/2018/02/manifest-file-does-not-guarantee-visual.html

{Created by James Gaite; Last updated: 03/03/2018 by James Gaite}

SinH Function
Purpose

Returns the hyperbolic sine of a numeric expression.

Syntax

= SinH(x)

x:aexp

Description

The hyperbolic sine is defined with the function:

Sin(x) = (Exp(x)-Exp(-x))/2

Example

Debug.Show
Trace SinH(0) // Prints 0
Trace SinH(PI / 2) // Prints
2.30129890230729

Trace SinH(PI) // Prints
11.5487393572577

Trace SinH(2 * PI) // Prints
267.744894041016

Trace SinH(2.14) // Prints 4.19089...
Trace SinH(ArSinH(2.14)) // Prints 2.14

Remarks

SinH() is the reverse function of ArSinH().

See Also

CosH(), TanH(), ArSinH(), ArCosH(), ArTanH()

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

CosH Function
Purpose

Returns the hyperbolic cosine of a numeric expression.

Syntax

CosH(x)

Description

The hyperbolic cosine applies to all real numbers greater
than or equal to 0. It is obtained with the function:

CosH(x) = (Exp(x)+Exp(-x))/2

The function y=CosH(x) returns in y a real number greater
than or equal to 1.

Example

Debug.Show
Trace CosH(2.14) // Prints
4.30854623595395

Trace CosH(ArCosH(2.14)) // Prints 2.14

Remarks

CosH() is the reverse function of ArCosH().

See Also

SinH(), TanH(), ArSinH(), ArCosH(), ArTanH()

{Created by Sjouke Hamstra; Last updated: 27/09/2014 by James Gaite}

Add8 Operator and Function
Purpose

Adds a numeric expression to a numeric variable of type
Large.

Syntax

l = x Add8 y(operator)

l = Add8(i, j[,m,...])(function)

x:Large numeric variable
y:any numeric expression
i, j, m, l:Large integer expression

Description

The operator i Add8 j and function Add8(i, j, …) return the
sum of 64-bit integer expressions. In case one of the
parameters isn't a Large, it is converted to 64-bit values
first (using CLarge).

Note There is no 64-bit version of the Add command to add
an expression to a variable, because Add is type
independent and works with Large types as well.

Example

Debug.Show
Dim b# = 1.5, i64 As Large
Trace b# Add8 3 // CInt(b#) + 3 = 5
Trace Add8(b#, 3) // CInt(b#) + 3 = 5

Add i64, 3 : Trace i64 // b# = 3
b# = 2.5
Trace b# Add8 3 // CInt(b#) + 3 = 5
Trace Add8(b#, 3) // CInt(b#) + 3 = 5

Remarks

Although Add can be used with any numeric variable, the
usage of integer variables is recommended in order to
achieve the maximum optimization for speed.

Instead of Add x, y, you can use x = x + y, x := x + y, or x
+= y. When using integer variables Add doesn't test for
overflow!

See Also

Add8, Sub8, Mul8, Div8, Mod8

{Created by Sjouke Hamstra; Last updated: 23/09/2014 by James Gaite}

Sub8 Function
Purpose

Subtracts two Large integer expressions.

Syntax

large = i Sub8 j(operator)

large = Sub8(i, j [, m, …])(function)

i, j, m: = Large integer) expression

Description

Sub8 returns the difference between two Large integer
expressions i and j. The values i and j are converted to 64-
bit integer values before the function is applied.

Note There is no 64-bit version of the Sub command to add
an expression to a variable, because Sub is type
independent and works with Large types as well.

Example

OpenW # 1
Print Sub8(5 ^ 3, 4 * 20 + 3)// prints 42

Remarks

The Add8(), Sub8(), Mul8() and Div8() functions can be
mixed freely with each other. For example

l% = Sub8(5 ^ 3, 4 * 20 + 3)
// or
l% = Sub8(5 ^ 3, Add8(Mul8(4, 20), 3))

See Also

Add8, Sub8, Mul8, Div8, Mod8, +, -, *, /F, \, ++, --, +=, -
=, /= , *=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 23/10/2014 by James Gaite}

Div8 Function
Purpose

Divides two or more 64-bit integer (Large) expressions.

Syntax

l = x Div8 y(operator)
l = Div8(x, y [,m,…])(function)

x, y, m , l:large exp

Description

Div8 is a Large integer division function. Values are
converted to 64-bit integers before the division is
performed. Internally, GFA-BASIC 32 uses CLarge() for the
conversion (which isn't the same as Round).

Note There is no 64-bit version of the Div command to add
an expression to a variable, because Div is type
independent and works with Large types as well.

Example

' Div as operator
Print 2 Div8 2.50 // Prints 1
Print 2 Div8 2.51 // Prints 0
' Div as a function
Print Div8(126, Succ(2))// Prints 42

Remarks

Although Div8 can be used with any numeric data type
variable, the usage of integer variables is recommended in
order to achieve the maximum optimization for speed (no
coercion to 32 bit before the operation is performed).

Div8 doesn't test for overflow!

See Also

Add8, Sub8, Mul8, Mod8, +, -, *, /F, \, ++, --, +=, -=, /= ,
*=, Operator Hierarchy

{Created by Sjouke Hamstra; Last updated: 01/10/2014 by James Gaite}

Not Function
Purpose

Performs a logical bit-wise Not.

Syntax

Not i

i:integer expression

Description

Not i inverts the bit pattern i.

Example

Debug.Show
Trace Bin$(3, 32)
Trace Bin$(10, 32)
Trace Bin$(Not 3, 32)
Trace Bin$(Not 10, 32)

Prints:

00000000000000000000000000000011
00000000000000000000000000001010
11111111111111111111111111111100
11111111111111111111111111110101

Remarks

~ is synonymous with Not and can be used instead.

See Also

And, Or, Xor, Imp, Eqv, %&, |, ~

{Created by Sjouke Hamstra; Last updated: 20/10/2014 by James Gaite}

	Introduction
	An Overview of the Integrated Development Environment
	The Menu Bar
	The File Menu
	The Edit Menu
	The Project Menu
	The Extra Menu
	The View Menu
	The Help Menu
	The Toolbar & Status Bar
	The Code Editor
	The Sidebar
	The :Files tab
	The Procs tab
	The Imports tab
	The Properties Tab

	The Form Editor
	The Toolbox
	The IDE Properties
	The Editor Tab
	The Printer Tab
	The Compiler Tab
	The Extra Tab

	Creating an Application
	Creating an Application
	Using Forms
	Using OCX Controls
	Using Event Procedures

	Debugging
	Debugging Described
	The Built-in IDE Debugger
	The Good Old Tron

	Data Types, Variables and Constants
	Variables
	Constants and Enumerations
	Literals
	Date and Time Literals
	Numeric Literals
	String Literals
	Data Types
	Boolean
	Byte
	Card
	Currency
	Date
	Double
	Handle
	Int16
	Int32 (or Int)
	Int64
	Large
	Long
	Object
	Register
	Short
	Single
	String (Fixed & Variable)
	Variant
	Variant Data Type
	Internal Representation of Values in Variants
	Numeric Values Stored in Variants
	Strings Stored in Variants
	Date/Time Values Stored in Variants
	Objects Stored in Variants
	The Empty Value
	The Missing Value
	The Null Value
	Variant Error Type
	Accepted Variable Types for Variants

	Word

	Programming GFABASIC32 Editor Extensions
	Editor Extension Reference
	Compiling and Installing
	The Create Exe Dialog Box
	Installing the GLL
	Assigning the Keys
	Testing a GLL
	Restrictions and Features
	The Structure of an Editor Extension
	Using Keyboard Shortcuts
	Using The Extra Menu
	Using Dialogs in a GLL
	Ownerless and Modeless
	The Dialog Statements
	Creating Controls
	Other Window Commands in GLLs
	Message Handling using Gfa_CB
	Example: Using a Dialog
	Problems with Menu Events
	Error Handling
	Miscellaneous GLL Examples
	GFABASIC32 Language Reference
	Array Keywords
	Bits, Bytes, Word, Int and Large Operators and Keywords
	Built-In API Functions
	Collection and Hash Keywords
	Control Flow Keywords
	Compiler and Debug Keywords
	Conversion Keywords
	Crypting, Mime encoding and Checksum Keywords
	Data Type Keywords
	Date and Time Keywords
	Directory and File Keywords
	Error Keywords
	Graphical Keywords
	Input and Output Keywords
	Math Keywords
	Matrices Keywords
	Memory Keywords
	Miscellaneous Keywords
	Operator Keywords
	OCX/OLE Keywords
	Registry Keywords
	String Manipulation Keywords
	Variable and Constant Keywords
	Window Keywords

