

 programming manual
 version 2.0

 www.tinybasic.de

TinyBasic

Programming Manual

Version 2.0
April 2008

altenburg

© 2006-2008 by U. Altenburg

TinyBasic Programming www.tinybasic.de 5

CHAPTER 1
Introduction...8

EDITOR, COMPILER, DOWNLOAD, CONSOLE, SCOPE

CHAPTER 2
Preprocessor………...12

#TARGET, #INCLUDE, #DEFINE, #UNDEF, #IFDEF, #IFNDEF,
#ELSE, #ENDIF

CHAPTER 3
Variables and Types.......................................14

CHAR, BYTE, WORD, INTEGER, LONG, FLOAT, DATA, READ,
RESTORE, LOAD, STORE, INC, DEC

CHAPTER 4
Maths and Expressions..................................19

+, -, *, /, <, >, <=, >=, <>, <<, >>, (), [], NOT, AND, OR, XOR, MOD

CHAPTER 5
Control Flow...22

IF, THEN, ELSE, ELSIF, ENDIF, DO, LOOP, FOR, NEXT, WHILE,
WEND, EXIT, ON, GOTO, GOSUB, RETURN, WAIT, PAUSE

TinyBasic Programming www.tinybasic.de 6

CHAPTER 6
Functions...28

LO, HI, MIN, MAX, LEN, POS, VAL, PI, SIN, COS, TAN, ATN, DEG,
RAD, SQR, EXP, LOG, POW, ABS, INT, ROUND, POINT, PEEK,
EOF

CHAPTER 7
Input and Output...33

PUT, GET, PRINT, INPUT, OPEN, CLOSE, FLUSH, FIND, INITGSM,
SENDSMS, RECVSMS, ERR, CR, NL, CHR, HEX, SPC, TAB, USING

CHAPTER 8
Date and Time..40

SETCLOCK, DATE, TIME, HOUR, MINUTE, SECOND, DAY,
MONTH, YEAR

CHAPTER 9
Displays and Graphics...................................42

SETDISPLAY, SETSYMBOL, CLS, FONT, COLOR, PLOT, MOVE,
DRAW, FRAME, CIRCLE, SCROLL, PICTURE, BARGRAPH

CHAPTER 10
Networking...46

SETNETWORK, SEND, RECV, MSG

CHAPTER 11
Hardware...48

SETCOM, SETPORT, SETPWM, SETCOUNTER, SETSTEPPER,
SETKEYPAD, I2CIN, I2COUT, SPISHIFT, ADCn, PWMn, PORTn,

TinyBasic Programming www.tinybasic.de 7

TIMERn, COUNTERn, STEPPERn, RXD, KEYCODE, IRCODE,
SOUND, POKE, STANDBY, END

APPENDIX

Pin assignment and description…….………………....57

TinyBasic Programming www.tinybasic.de 8

working
directory

output
panel

menu
buttons

multiple
files editor

Introduction

TINYBASIC

TinyBasic is a very simple and easy to learn programming language
designed for embedded microcontroller systems. Especially low
volume applications and single solutions are suitable for TinyBasic.

Common applications are:

• home automation,
• temperature control,
• data logging and display,
• measurement and diagnostics,
• GSM- or modem communication.

EDITOR

TinyBasic comes with a full featured source code editor. The editor supports
multiple files in workbook mode. It also has a working directory view and, of
course, an output window for compiler messages.

TinyBasic Programming www.tinybasic.de 9

serial
settings

The working directory view as well as the output panel can be
hidden by selecting the menu item ’View/Output Panel’ or
’View/Working Directory’ respectively. This allows the use of the
entire screen for source code editing.

COMPILER

The currently shown source file can be compiled by pressing F9 or
by selecting the appropriate menu item ’Program/Compile’. In case
of errors in any of the compiled files (a source file can include
further files by using the #include directive) the output panel shows
a message. Error messages can be double clicked to open the file
and directly go to the appropriate source line.

If no errors were found the compiler generates two more files within
the directory of the source file. These are a listfile (*.lst) and the
codefile (*.hex) in Intel-Hex-File format. The listfile is needed in case
of a runtime error which is reported according to a specific address.
This address can be found in the listfile together with the
appropriate source line.

DOWNLOAD

Prior to the first download, it is recommended to ensure a proper
serial connection to the target controller. In order to do so, connect
the host PC with the microcontroller first, then select
’Controller/Connect’ from the menu and finally power up the
controller or press the reset button.

TinyBasic Programming www.tinybasic.de 10

download
progress

compiled
codefile

select file
button

controller
output

The target always sends a message string: TinyBASIC Vx.x OK
after coming out of the reset. If this message string is shown in the
console window, then the connection will be established.

By pressing F10 or via the menu item ’Program/Download...’ the
previously compiled Intel-Hex-File (*.hex) can be transferred to the
target controller.

The download itself is performed at 9600 baud, 8 data bits, 1 stop
bit and no parity (9600,8,N,1). This is a very common setting for
UART communication.

Normally, the name of the compiled Intel-Hex-File is already copied
to the ‘Filename’ edit box within the download dialog, when it
opens. In order to select a different file for the download, there is a
select file button on the right side of the ‘Filename’ edit box.

CONSOLE

To test an application program the console window automatically
appears after the download has been finished. All outputs serially
sent from the controller are shown in this window. Normally, these
are all PRINT statements not redirected to other output devices like
the display.

TinyBasic Programming www.tinybasic.de 11

The console window can also write to a logfile. To begin a logging
session select ‘Logging…’ from the context menu and choose an
existing logfile or enter a new file name. All subsequent messages
from the controller will be written to the selected logfile. To stop
logging select the ‘Logging…’ menu again.

SCOPE

The TinyEditor includes a virtual 4 channel oscilloscope, which can
be used to scope analog as well as digital values from a TinyBasic
application.

To send values to one of the four channels of the scope the following
PRINT syntax schould be used:

 PRINT ”#<channel>”,<value>,…

Where <channel> is in the range 0..3 and <value> is a variable or
expression. Note the final comma to suppress the <CR/LF>. Of
course more than one channel can be set with a single PRINT
statement.

Samples:

PRINT ”#0”,x,
PRINT ”#0”,x,”#1”,y,”#2”,z,

 PRINT ”#0”,x,”#1”,sin(x),”#2”,cos(x),
 PRINT ”#0”,x,”#1”,sin(x),”#2”,y,”#3”,sin(y),

TinyBasic Programming www.tinybasic.de 12

Preprocessor

#TARGET <target>

The #TARGET directive tells the compiler for which target it has to
compile. Even though the basic commands are identical for all
targets there are different memory sizes and limitations concerning
the maximum array length. The following targets are supported by
now: TINYBRICK8, TINYBRICK16 and TINYDISPLAY.
Note: A program compiled for TINYBRICK8 will also run on a
TINYBRICK16 or a TINYDISPLAY, but not necessarily vice versa.

#INCLUDE ”<filename>”

An application can consist of more than one file. In this case a file
can include another file by using the #INCLUDE directive. The given
file name can be absolute (e.g. ”c:\programs\test.bas”) or relative to
the location of the file (e.g. ”\includes\test.bas”).

#DEFINE <macro>(<paramlist>) <replacement>
#DEFINE <macro> <replacement>
#DEFINE <macro>
#UNDEF <macro>

Macros are textual replacements within the source code. They are
very useful to define named constants, e.g.: #DEFINE Timeout
1000. Every occurrence of Timeout will then be replaced by 1000,
e.g.: PAUSE Timeout will be replaced to PAUSE 1000.
It is also possible to replace default variable names with more
sophisticated identifiers. If, for instance, a motor is connected to
Port2.0 then the program would be easier to read by using the
following replacement: #DEFINE Motor Port2.0, because it is then

TinyBasic Programming www.tinybasic.de 13

#DEFINE GRAPHIC_LCD ‘ compile for graphic display

#IFDEF GRAPHIC_LCD
 SETDISPLAY LCD_DOGM128x64
#ELSE
 SETDISPLAY LCD_DOGM16x3
#ENDIF

#DEFINE VALUE(x) ”Value = ”,x
#DEFINE VALUES(x,y) ”Value1 = ”,x,” Value2 = ”,y

PRINT VALUE(1+1) ‘ PRINT ”Value = ”,1+1
PRINT VALUE(ADC0) ‘ PRINT ”Value = ”,ADC0
PRINT VALUES(1,2) ‘ PRINT ”Value1 = ”,1,” Value2 = ”,2

possible to write Motor = 1 resp. Motor = 0 to switch the motor on
or off.
Macros can also have parameters. A single parameter or even a list
of parameters separated by commas is given in parentheses
following the macro name (without any space). Each occurrence of a
parameter within the replacement will then be replaced by its actual
parameter given whenever the macro is evaluated.

The directive #UNDEF can be used to remove a macro definition.

#IFDEF <macro>
#IFNDEF <macro>
#ELSE
#ENDIF

The directives #IF(N)DEF, #ELSE and #ENDIF are used
for conditional compilation. Different versions of the
same source code can be compiled depending on the
definition of switches (simple macros without a
replacement text).

TinyBasic Programming www.tinybasic.de 14

 BYTE bValue,bTemp
 WORD wValue,wMask
 INTEGER nPos,nLength,i,j
 LONG lCounter,lNumbers
 FLOAT fDistance,fScaleFactor

Variables and Types

TYPES

TinyBasic supports several integral data types as well as a floating
point type.

 CHAR 0..255 (1 byte)
 BYTE 0..255 (1 byte)
 WORD 0..65535 (2 bytes)
 INTEGER -32768..32767 (2 bytes)
 LONG -2147483648..2147483647 (4 bytes)
 FLOAT approx. 6 digits precision (4 bytes)

In order to save variable memory it is recommended to use always
the smallest possible data type. The TinyBasic variable memory is
limited to 1024 bytes (TinyBrick8) or 2048 bytes (TinyBrick16/
TinyDisplay). Floating point operations take more time than integral
operations. Therefore floation point types should be preserved for
numeric calculations only.

VARIABLES

Variables are used to store temporary values during program
execution. Up to 52 different variables can be used inside a
TinyBasic program (26 with TinyBrick8). This seems to be very
restrictive, but it is enough for many applications. Variables must
be declared prior to their first use. Although this is different to

many other basic
implementations, it
helps to keep the
needed memory
amount as small as
possible. Each
variable must have

an unique name – its identifier. A variable identifier must start with

TinyBasic Programming www.tinybasic.de 15

 BYTE b[8]
 CHAR strText[20]
 FLOAT fSum[10],fAverage

a letter or an underscore followed by letters or even numbers.
MyVariable, Temp, Temp_1, Value, _help or even __12345 are valid
variable identifiers. There is no limitation to the length of identifiers
and they are case-insensitive. It is helpful to begin each identifier
with a prefix according to its type. This makes the source code more
readable, but it is not required.

ARRAYS

Arrays are collections of single variables in a vector addressable
manner. They will be declared by simply adding a number in

brackets to a simple
variable. It is allowed to
declare array variables
together with simple
variables in the same
line.

A special data type is a character array – it will be treated as a
string. A string is terminated by a null character. Therefore a string
declaration needs to be at least one character longer than the
longest text it will contain during program execution.

 Note: BYTE b[8] declares b[0]..b[7], b[8] is out of range!

Arrays can be initialized with a single assignment. This is quite
comfortable and, of course, the fastest way to do so. The line: b =
[0,1,2,3,4,5,6,7] initializes the elements b[0] with 0, b[1] with 1 and
so on. Character arrays can also be initialized with text constants:
strText = "Hello World!", which is a short form of: strText =
["H","e","l","l","o"," ","W","o","r","l","d","!",0]. Note: It is not required to
initialize all elements of an array.

There are some special statements which support other ways to
initialize variables from DATA lines or from the controller’s flash
memory. It is also possible to store variables into the controller's
flash memory. These statements will be discussed now.

b[3]b[2]b[1]b[0] b[7]b[6]b[5]b[4]

TinyBasic Programming www.tinybasic.de 16

Table:
 DATA 1,2,3,1.0,2.0,3.0,”Hello World!”
 DATA 2.1*f,2.3*f,2.5*f,2.7*f

RESTORE Const
READ x,y ’declared as FLOAT x,y
READ a ’declared as BYTE a[5]
READ c ’declared as CHAR c[15]

Const:
 DATA 1.0,2.0
 DATA 1,2,3,4,5
 DATA ”Hello World!”

DATA <item>,<item>,..

The DATA statement provides a convenient way to insert constants
into programs. One or more DATA statements can be grouped
together to form a whole set of data elements. The data can be read
at any time and as often as needed. DATA lines can contain a list of
simple constant values as well as string constants and can be
placed anywhere in the program. According to the variable type,
which is used to read the data, a suitable conversion will be

performed. As
it is also
allowed to use

expressions
instead of
simple values

any calculation can be performed to scale or normalize values.

READ <var>,<var>,..

To read the values stored in DATA lines the READ statement must
be used. Following the keyword READ a single variable or a list of
variables is required. The READ statement fetches as many items as
needed to fill up each variable. The values fetched will be converted
to fit the variable type. In case an array variable is given to the
READ statement
each field will be
fetched. This
results in a very
short way to
initialize an
array. This is
especially useful
for character
arrays, which
can be initialized with strings, too.

TinyBasic Programming www.tinybasic.de 17

DO
 RESTORE Block1 ’use data block 1

 READ a ’declared as BYTE a[5]
 READ c ’declared as CHAR c[15]

 PRINT ”a=”,a,” c=”,c

 RESTORE Block2 ’use data block 2

 READ a ’declared as BYTE a[5]
 READ c ’declared as CHAR c[15]

 PRINT ”a=”,a,” c=”,c
LOOP

Block1:
 DATA 1,2,3,4,5
 DATA ”Hello World!”

Block2:
 DATA 6,7,8,9,10
 DATA ”Crazy World!”

BYTE b
WORD w
LONG l

STORE $F000,b,w,l ’store variables

RESTORE <label>

A RESTORE statement is required to specify the DATA set to be
used by the next READ. Note: The RESTORE statement is always
required even prior to the first use of READ.

STORE <addr>,<varlist>

The STORE state-
ment saves a given
list of variables into
the flash memory
of the controller.
Each variable can
be of any type -
even arrays are supported. The address value can be in the range
$2400..$2BFF (TinyBrick8) or in the range $F000..$FFFF

TinyBasic Programming www.tinybasic.de 18

BYTE b
WORD w
LONG l

LOAD $F000,b,w,l ’reload a variable list

(TinyBrick16/TinyDisplay). These memory ranges are devided into
two separated blocks. Block A starts at address $2400 (TinyBrick8)
resp. $F000 (TinyBrick16/TinyDisplay) while Block B starts at
address $2800 (TinyBrick8) resp. $F800 (TinyBrick16/TinyDisplay).
If the STORE statement is called with one of these two block
addresses the according block will be erased first.

LOAD <addr>,<varlist>

The LOAD statement loads values, previously stored into the flash
memory of the controller, into a given list of variables. As with the
STORE statement the variable list can contain any data type even
arrays. A combination of STORE and LOAD statements allows to

save and restore
profile settings
or data loggings.

TinyBasic Programming www.tinybasic.de 19

Maths and Expressions

CONSTANTS

The following number systems and their notations are supported for
numeric constants:

Number system Notation
binary %0101010101010101010
hexadecimal $0123456789ABCDEF
decimal 0123456789
floating point 0.123456789

Note: There is no scientific notation for floating point values.

EXPRESSIONS

Expressions are combinations of numeric values with their
operations. Common operations are addition, subtraction,
multiplication and division. TinyBasic also supports shift-,
compare- and logical operations. The following table gives an
overview of all supported operations together with their according
priority level (operator precedence).

 Operator Priority level
 () unary + - not 1 (highest)
 * / << >> mod and 2
 + - or xor 3
 < <= > >= <> 4 (lowest)

The order in which expressions are evaluated depends on the
priority of the used operations. An operation with a higher priority
level is performed prior to an operation with a lower priority. This is
exactly the same as with mathematical equations: 2+3*4=14. By
using parentheses the default order can be changed: (2+3)*4=20.

TinyBasic Programming www.tinybasic.de 20

Embedded control applications often need to modify or test values
on a bit-level. By applying the logical operations: NOT, AND, OR or
XOR to integral values any possible bit manipulation can be
achieved.

NOT AND OR XOR

0 1
1 0

0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

0 0 0
0 1 1
1 0 1
1 1 0

Additionally there are two bit-shift operations: shift left (<<) and
shift right (>>). As all integral types are internally represented as
32bit signed values, a shift operation also shifts the sign bit (bit
number 31). Note: To preserve negative values a right shifted sign
bit will be set afterwards, but if it is shifted to the left it will be lost.
This behavior is also known as arithmetic shift. A shift right
operation can be seen as a division by two, while a shift left
operation can be seen as a multiplication by two.

Finally, there is a modulo division operator MOD, which calculates
the rest of a division, e.g. 10 MOD 3 is 1.

CONDITIONS

Control flow statements like: IF, ELSIF and WHILE expect a
conditional expression – shorter a condition. A condition results
either to null, which is seen as FALSE, or to any other value, which
is seen as TRUE. In addition to numeric expressions a condition
can also contain relational operations. Therefore, a simple condition
can be: IF x<10 THEN..., but it is also possible and, of course, a
very common practice to build more complex conditions by using
logical operations: IF (x>0) and (x<10) THEN....

How does it work inside? The relational operations (<, <=, >, >=, <>)
return to 0 or –1, if the relation is fulfilled. As mentioned earlier,
any nonzero value is seen as TRUE. Furthermore, the value –1 has
set all of its bits, so bitwise logical operations with other
subexpressions are always valid.

TinyBasic Programming www.tinybasic.de 21

Note: To combine relations with logical operations it is required to
use parentheses, because the relational operators are of lower
priority.

MATHS

Integral data types are preferred for embedded applications,
because of their accuracy and faster speed. TinyBasic also supports
a 32bit floating point type with single precision (approx. 6 digits).
Attention must be paid, when combining integral and floating point
types in one expression. TinyBasic expressions are calculated
integral as long as possible. Therefore, a subexpression consisting
of integral types only will be calculated with LONG type. As soon as
one operand is of floating point type the calculation will be
performed with FLOAT type.

Note: A division 3/4 results to 0, but 3.0/4 or 3/4.0 results to 0.75.
This behavior is very common to higher programming languages,
even though other basic implementations always apply floating
point division. It is simple to force a subexpression to be calculated
with float type by multiplication with 1.0, but it is more difficult to
cast a float value down to a long type while maintaining its
accuracy.

TinyBasic Programming www.tinybasic.de 22

IF a>10 THEN a=0 : b=1
IF a>10 THEN a=0 : GOTO lab1
IF a>10 THEN GOSUB sub1 : a=0

IF a>b THEN ’first check a>b
 a=b
ELSIF a>c THEN ’then check a>c
 a=c
ELSE ’else
 a=1
ENDIF

Control Flow

IF..THEN..

Conditional execution of a sequence of statements can be achieved
by using the IF..THEN.. statement. In case the condition following
the keyword IF
results to zero all
statements
following the
keyword THEN in
this line will be
skipped over. The statements are separated by colons.

IF..THEN
 ...
[ELSIF..THEN]
 ...
[ELSE]
 ...
ENDIF

Conditional execution of two or more alternative code sequences
can be achieved by using the IF..ENDIF statement. The condition
following the keyword IF will be evaluated first. If the result is not
zero then the statements following the keyword THEN will be

executed. If the first
condition results to zero
and one or more optional
keywords ELSIF are given,
all conditions following
these keywords will be
evaluated consecutively. If
any of these conditions
results to a non zero

TinyBasic Programming www.tinybasic.de 23

IF a>10 RETURN ’conditional return
IF a>10 GOSUB sub2 ’conditional gosub

DO ’the main loop
 GOSUB ReadSerial
 GOSUB SendAnswer
LOOP

value, then the following statements will be executed. If all results
of all conditions are zero, then the statements following the optional
keyword ELSE will be executed, otherwise all statements between
THEN and ENDIF will be skipped.

IF..GOTO <label>
IF..GOSUB <label>
IF..EXIT
IF..RETURN

The IF statement has some special short forms regarding branches.
It is allowed to use the keywords EXIT, GOTO, GOSUB and
RETURN instead of
THEN. This kind of
statement is called
‘conditional jumps’.

DO
 ...
LOOP

Normally, an endless loop is used in any TinyBasic program – the so
called ‘main loop’. The fastest way to do so, is to use the DO..LOOP
statement. It is possible to leave this loop by using an EXIT

statement within
the loop.

Note: It is not allowed to jump into or out of any loop in TinyBasic.
Always use the keyword EXIT to skip a loop.

TinyBasic Programming www.tinybasic.de 24

WHILE a<10 ’test condition
 PRINT ”a=”,a
 a=a+1
WEND ’go to condition

FOR i=0 TO 100 STEP 2 ’iterate up integer
 PRINT ”i=”,i
NEXT

FOR x=100.0 TO 0.0 STEP -2.0 ’iterate down float
 PRINT ”x=”,x
NEXT

WHILE..
 ...
WEND

The WHILE..WEND statement is a conditional loop. All statements
between WHILE and WEND are repetitively executed as long as the
condition
following the
keyword WHILE
results in a
nonzero value.

FOR..TO..[STEP..]
 ...
NEXT

A counting loop is represented by the FOR..NEXT statement. In
TinyBasic the FOR statement can count all data types including
FLOAT values. This is quite comfortable and makes mathematical
calculations much easier. Note: The loop counter must be a simple
variable. Array indexes are not allowed. The expressions following
the keywords TO and STEP are evaluated only once.

If the expression, following the keyword STEP, results in a negative
value, the loop will count down, otherwise the loop will count up.
The statements between FOR and NEXT will be executed as long as
the loop counter value is less or equal to the limit, when counting
up or the loop counter value is greater or equal to the limit, when
counting down.
Note: It is possible to modify the loop counter variable during
execution of the loop.

TinyBasic Programming www.tinybasic.de 25

FOR i=0 TO 100
 IF i>5 EXIT ’exit loop, if i>5
NEXT

GOTO L1 ’branch to label L1
 ...
L1:

GOSUB Welcome ’branch to subroutine
...

Welcome:
 PRINT ”Hello World!”
 RETURN ’return to caller

EXIT

To leave a loop
statement use the
EXIT statement. The
EXIT statement can
be used within a FOR,

WHILE or DO statement. In conjunction with an IF the EXIT
statement can also be used as a conditional exit.

GOTO <label>

An unconditional jump to a specific program location can be
performed by using the GOTO statement. The jump target can be
any label in the
program.

Note: Jumps into or out of a loop are not allowed.

GOSUB <label>

A call to a subroutine can be performed by using the GOSUB
statement. The subroutine can begin at any label in the program

and must be finished by
a RETURN statement.

Note: Up to 5 nested subroutines are possible.

TinyBasic Programming www.tinybasic.de 26

ON Msg-1 GOSUB Msg1,Msg2,Msg3

Msg1:
 PRINT ”Msg 1 received.”
 RETURN
Msg2:
 PRINT ”Msg 2 received.”
 RETURN
Msg3:
 PRINT ”Msg 3 received.”
 RETURN

main:
 GOSUB sub1 : GOSUB sub2 ’note the colon
 GOTO main
sub1:
 PRINT ”Sub 1 called.”
 RETURN ’return to caller
sub2:
 PRINT ”Sub 2 called.”
 RETURN ’return to caller

ON..GOTO <label0>,<label1>,..
ON..GOSUB <label0>,<label1>,..

In conjunction with ON, the GOTO or GOSUB statement extends to
a calculated branch. The result of the expression following the

keyword ON is taken as an
index in the list of labels
following the keyword
GOTO or GOSUB. The first
label will be taken, if the
expression results to zero,
the second label will be
taken, if the expression
results to one and so on. If
the expression is below zero
or above the number of
labels in the list no branch
will be performed.

RETURN

The RETURN statement restores the program execution just behind
the end of the last GOSUB or ON..GOSUB call. Each subroutine
must finally execute the RETURN statement.

TinyBasic Programming www.tinybasic.de 27

receive:
 WAIT Rxd > 5,1000,timeout ’wait max. 1 sec for 5 chars
 GET String,5,CR ’read short string
 PRINT String
 RETURN ’return to caller
timeout:
 PRINT ”Nothing received.”
 RETURN ’return to caller

WAIT <condition>
WAIT <condition>,<timeout>
WAIT <condition>,<timeout>,<label>

The WAIT statement halts the program execution until the given
condition results to a nonzero value. In case a timeout value is
given the WAIT statement continues if this time is elapsed. If also a
label is specified, the WAIT statement branches to that location in
case the timeout is elapsed. The maximum timeout value is 65535
milliseconds.

PAUSE <1/1000 sec>

To slow down program execution the PAUSE statement can be used.
The given time is measured in milliseconds. The statement PAUSE
1000 delays execution for 1 second. The maximum time value is
65535.

TinyBasic Programming www.tinybasic.de 28

Functions

LO(<word>)

LO() returns the lowest byte of the given word value. For example,
LO(257) returns 1, because the internal representation of 257 is
$00000101 and therefore the lowest byte is $01.

HI(<word>)

HI() returns the high byte of the given word value. For example, the
result of HI(512) is 2, because the hexadecimal value of 512 is
$00000200 and the second byte is $02.

MIN(<long>,<long>)
MIN(<float>,<float>)

The MIN() function compares two values and returns the lower one.
The values may be of integral or of floating point type. In case that
both values are integral then the result is also integral. If at least
one value is of floating point type, then the result will also be of
floating point type.

MAX(<long>,<long>)
MAX(<float>,<float>)

The MAX() function compares two values and returns the larger
one. As with the MIN() function the parameters may be of integral or
of floating point types. If both types are integral, then the result will
be integral, too.

TinyBasic Programming www.tinybasic.de 29

SIN(<float>)

The SIN() function calculates the sinus value according to the given
angle. The angle parameter must be given in radians. The result is a
floating point value in the range: -1.0..1.0. Some interesting points
are: SIN(0) is 0, so is SIN(PI), SIN(2*PI) and so on.
Note: PI is a predefined constant with the value: 3.1415927.

COS(<float>)

The cosinus function is the counterpart to the sinus function. The
parameter must be given in radians. To change values given in
degrees to radians the RAD() function can be used.

TAN(<float>)

The tangens function calculates the quotient: sinus/cosinus.

ATN(<float>)

The arcus tangens function is calculated by calling the ATN()
function. Arcus tangens is useful for triangulation.

DEG(<float>)
RAD(<float>)

To convert between degrees (0..360°) and radians (0..2*PI) two
functions can be used: DEG(), which converts into degrees and
RAD, which converts into radians. For example, DEG(PI) is 180,
while RAD(180) is PI.

SQR(<float>)

The SQR() function calculates the square root of a given parameter.

TinyBasic Programming www.tinybasic.de 30

EXP(<float>)

The EXP() function calculates the exponentiation of x to the base e,
exp(x) = ex .

LOG(<float>)

The LOG() function calculates the natural logarithm to the base e.
This function is the inverse function of EXP() – therefore
LOG(EXP(3)) = 3 and EXP(LOG(3)) is also 3.

POW(<long>,<int>)
POW(<float>,<float>)

The POW() function calculates the exponentiation pow(x,y) = xy.
There are two versions of this function. If both parameters are of
integral types then the result will also be an integral, otherwise the
result is a floating point value.

ABS(<long>)
ABS(<float>)

The ABS() function calculates the absolute (the positive) value to a
given parameter. If the parameter is integral, then the result will
also be an integral, otherwise the result is a floating point value.

INT(<float>)

The INT() function returns the integral part of a floating point value
as an integral type. The function just removes the fractional part
from the given value, e.g. INT(3.6) = 3 and INT(-3.6) = -3.
Note: In other basic implementations the function call int(-3.6)
would return –4 (the next lower integral value).

TinyBasic Programming www.tinybasic.de 31

ROUND(<float>)

The ROUND() function returns the intergal value next to the given
float parameter, e.g. ROUND(-3.4) = -3 while ROUND(-3.5) = -4.

LEN(<stringvar>)

To get the current length of a string variable (declared as an array of
char) the LEN() function should be used. A string value stored in a
character array is terminated by a trailing zero. The LEN() function
counts the characters up to the delimiter (not included) and returns
the number.

POS(<stringvar>,<substring>)
POS(<stringvar>,<substring>,<index>)

The POS function finds a substring within a string variable and
returns its start position. As with all arrays index counting starts
with zero, so the first possible position of the substring is 0. If the
substring was not found, then the result value will be –1.
If an additional start index is given, then the search will start at this
index of the string variable. This will be especially useful if more
than one substring is expected and each should be found in an
iteration.
Note: The substring must be a text constant – variables are not
allowed.

VAL(<stringvar>)
VAL(<stringvar>,<index>)

As strings can contain numeric values, e.g. ”Pi = 3.1416”, the VAL()
function can be used to read such strings and return the numeric
value. If no start index is given, the VAL() function will start to read
at index 0, otherwise it will start at the given index. Especially, a
combination of the VAL() function together with the POS() function
allows a flexible string parsing.
Note: The result value returned by the VAL() function is always of
floating point type.

TinyBasic Programming www.tinybasic.de 32

POINT(<xpos>,<ypos>)

The POINT() function returns the color value of the pixel given by
the two parameters, e.g. POINT(10,20) = 0 when the pixel is cleared.

PEEK(<addr>)

The PEEK() function allows direct memory access. Any address in
the range $0000..$FFFF may be used. As a result the byte value at
this memory location is returned.

EOF(<file>)

The EOF() function returns -1 (TRUE) if the file specified by the
device parameter is read to the end 0 (FALSE) otherwise.

TinyBasic Programming www.tinybasic.de 33

Input and Output

DEVICES

TinyBasic handles standard input and output via device numbers.
A device number is like a logical channel. The following device
numbers are supported by now:

 Device number Output channel
 #0 (optional) first serial interface (download)
 #1 second serial interface
 #2 display and keypad
 #3 first file handle
 #4 second file

Note: In all input and output statements the device number is
optional. If no device is specified, the default device (#0) will be
selected, which is the first serial interface.

PUT #<device>,<value>
PUT #<device>,<value>,<length>

The PUT statement sends one or more characters to the given
device. If an array variable is used as second parameter the number
of characters to send can be specified with the optional length
parameter. Note: If no length parameter is given only one character
will be sent, even if an array is used as value.

GET #<device>,<variable>
GET #<device>,<variable>,<length>
GET #<device>,<variable>,<length>,<delimiter>

The GET statement reads one or more characters from the specified
input device to the given variable. If an array variable is given, the

TinyBasic Programming www.tinybasic.de 34

optional length parameter will limit the number of characters to
read. If no length is given just one character will be read, even if an
array variable is used.
Additionally an optional delimiter can be specified. If either the
given number of characters or the delimiter is read then the GET
statement will return. The delimiter itself is not placed into the
array variable – instead the null character is used.
Note: The GET statement is blocking. If no input characters are
available, the GET statement will not return.

INPUT #<device>,<variable>,...
INPUT #<device>,<text>,<variable>,...

Numeric value inputs can be requested by using the INPUT
statement. The program is halted until a CR (carriage return) or an
ESC (escape) character is received. As it is possible to request more
than one variable with a single INPUT statement (e.g. INPUT a,b,c),
the different values can be separated by CR or , (comma). If a given
variable is an array, one value for each field in the array will be
expected. An optional text is sent prior to the input procedure.

PRINT #<device>
PRINT #<device>,<text>,...
PRINT #<device>,<text>,<value>,...
PRINT #<device>,<text>,<format>(<value>),...

The simple PRINT statement sends an optional text or the result of
an expression followed by CR (carriage return) and NL (new line)
characters to the given device. To suppress the CR, NL characters a
trailing , (comma) can be used (e.g. PRINT ”Hello”,). It is, of course,
possible, to send multiple text constants as well as multiple
expressions in one single PRINT statement (e.g. PRINT
”a=”,a,”b=”,b,”c=”,c) all separated by commas. If an array variable is
given all fields of the array will be printed out. This is especially
good for debugging purposes. If the array is of char type then a
string will be printed out.

Additional specifiers can be used to format the output properly.
These format specifiers are discussed in the following sections.

TinyBasic Programming www.tinybasic.de 35

NL
CR

The format specifiers CR and NL are simple constants, which can be
used to send the character codes 13 and 10 (decimal) respectively.
CR sets the output position back to the beginning of the current
line, while NL sets the output cursor to the current position in the
next line.

HEX(<value>)

The HEX format specifier forces the value given in parentheses to
send with hexadecimal notation. The width of the hex string is a
multiple of 2. Hexadecimal values in the range from 0..F are emitted
as 00..0F. Values in the range from 100..FFF are emitted as
0100..0FFF and so on. Note: There is no leading ”$” or trailing ”h”
character in this notation. This can be easily added to the PRINT
statement.

CHR(<value>)

The CHR specifier forces a numeric value given in parentheses to be
emitted as its corresponding character code, e.g. PRINT CHR(13) is
the same as PRINT CR.

SPC(<number>)
TAB(<position>)

The SPC specifier emits as many spaces as given in parentheses,
while the TAB specifier sets the cursor to the position which is given
as parameter, if it is not yet behind this position.

USING(<format>,<value>)

To format a numeric value explicitely the USING specifier can be
used. The two parameters are a format string and a value which is
then formatted according to place holders inserted in the format

TinyBasic Programming www.tinybasic.de 36

string. The place holders can consist of a decimal dot and a number
of digits (#) in front of and behind.

 PRINT USING(”Price ##.## $”,3.5) ‘ Price 3.50 $
 PRINT USING(”Fuel ##### lit”,100) ‘ Fuel 100 lit

If no dot is given, floating point values will be truncated – only the
integral part will be shown. If a dot is given, integral values will be
formatted as floating point values. Unused leading place holders are
replaced by spaces, therefore the values appear right aligned.

OPEN <filename> AS #<device>
OPEN <filename> FOR INPUT AS #<device>
OPEN <filename> FOR OUTPUT AS #<device>

Opens a file on a connected SD card. Under development!

CLOSE #<device>

Closes a file. Under development!

FLUSH #<device>

The FLUSH statement clears the receive buffer of the selected
device. The first serial interface (device #0) has a buffer of 32
characters. With the system variable RXD the current number of
pending characters in the buffer can be checked. The second serial
interface can only hold one pending character.

FIND #<device>,<text>
FIND #<device>,<text>,<timeout>
FIND #<device>,<text>,<timeout>,<label>

The FIND statement can be used to skip characters in an input
stream (serial buffer or file) until a match with the given text
parameter accures. The text parameter must be a constant. As the
statement stops the program execution a timeout parameter can be
added. If the given time is elapsed, then the program execution

TinyBasic Programming www.tinybasic.de 37

continues. There are two possible ways to handle an error. In case
the text is not found the ERR variable is set to 31 (see error codes).
This can be evaluated by a following condition statement. The
alternative way is to add a jump label as last parameter to the FIND
statement. In case the search text could not be found the program
execution continues at the given label. The maximum timeout value
is 65535 measured in ms.

INITGSM #<device>,<pin>
INITGSM #<device>,<pin>,<initstring>
INITGSM #<device>,<pin>,<initstring>,<time>

To init a connected GSM modem after starting it up this statement
should be used. The device parameter is optional and can be one of
the two serial interfaces. The second parameter is the 4 digit pin
number required by the modem. The statement checks if the pin
must be entered. The optional initstring parameter allows a user
defined initialization sequence according to the requirements of the
specific modem (e.g. to set the internal message storage memory).
As a user initialization can take a few seconds the last parameter is
the maximum time the statement has to wait for the final OK from
the modem. If not specified the default timeout is 2 seconds. After a
completed initialization the ERR variable should be checked. If ERR
is not zero the initialization should be retried (see error codes).

Note: The INITGSM statement tries to setup the SMS text mode
(AT+CMGF=1). If this mode is not supported by the modem (see
error codes), the SENDSMS and RECVSMS commands can not be
used.

SENDSMS #<device>,<phone>,<text>,...
SENDSMS #<device>,<phone>,<text>,<value>,...
SENDSMS #<device>,<phone>,<text>,<format>(<value>),...

One of the features provided by all GSM modems is the receive and
transmit of short text messages, also known as Short Message
Service (SMS). The SENDSMS statement handles the complete
communication sequence with a connected modem to transmit such
a text message. The optional device parameter specifies one of the
two serial interfaces. By default the first serial interface (device #0)

TinyBasic Programming www.tinybasic.de 38

will be used. The second parameter specifies the destination phone
number. This can be a text constant or an character array. Finally a
sequence of text constants in combination with numeric values or
expressions can be send. The SENDSMS statement excepts the
same format options as the PRINT statement does.

Note: As the SMS transmission process can take up to 10 seconds
the SENDSMS statement does not wait for the final OK from the
modem. If this is needed a FIND statement can be used.

RECVSMS #<device>,<phone>,<message>

To receive text messages from a connected GSM modem the
RECVSMS command can be used. The optional device parameter
specifies the serial interface to be used. The second parameter must
be a character array. The phone number of the sender will be stored
to this parameter. Finally a message buffer (also a character array)
must be given. The received message text will be stored to this
buffer. The maximum length of a SMS message is 160 characters. If
the message buffer is shorter, than the message will be truncated to
this size. In case an error occurred the ERR variable will be set (see
error codes). If no message was received both the phone number as
well as the message buffer are empty. This can be check easily with
then LEN() function.

Note: A received message will be deleted from the internal message
storage area of the modem (AT+CMGD). As this can take several
seconds the RECVSMS command does not wait for the final OK
from the modem. This can be done with a following FIND statement.

Note: Some modems require a special command (AT+CPMS) to set
the internal storage memory for incoming text messages. This
setting can be done with the initstring parameter of the INITGSM
command.

ERR

Some of the input/output statements assign a dedicated error code
to the ERR variable, if an error occured. Otherwise this variable will

TinyBasic Programming www.tinybasic.de 39

be cleared to zero. It is also possible to change the variable by a
normal assignment. The following error codes can occur:

Error Description
 0 OK - no error condition occured

 Fatal errors (program execution stops!)

 1 out of data (READ statement)
 2 out of range (array index access)
 3 out of memory (too many variables)
 4 too many nested DO loops
 5 too many nested FOR loops
 6 too many nested WHILE loops
 7 too many nested GOSUB subroutine
 8 LOOP without DO
 9 NEXT without FOR
10 WEND without WHILE
11 RETURN without GOSUB

 GSM errors (INITGSM,SENDSMS,RECVSMS)

20 GSM_NO_RESPONSE
21 GSM_INVALID_PIN
22 GSM_INIT_FAILED
23 GSM_NO_TEXTMODE
24 GSM_SEND_FAILED
25 GSM_RECV_FAILED

 Filesystem errors (OPEN,PUT,GET,…)

30 FILE_OPEN_ERROR
31 FILE_FIND_ERROR
32 FILE_READ_ERROR
33 FILE_WRITE_ERROR

TinyBasic Programming www.tinybasic.de 40

Date and Time

SETCLOCK <mode>

The SETCLOCK command enables date and time counting in one of
the following modes.

Mode Description
0 Clock is disabled at all
1 SoftClock mode (no external crystal is needed)
2 RealClock mode (external 32.768kHz crystal needed)

TIME
TIME.HOUR
TIME.MINUTE
TIME.SECOND

TinyBasic uses date and time variables to access the clock. It will
depend on the special hardware if both variables are supported, but
at least the time structure can always be used. If the variable TIME
is read itself, the current day time in seconds is returned. Therefore,
at 6:00am the TIME variable holds the value: 6 * 3600 = 21600
seconds, at 12:00am the value is 43200 seconds and so on.
As the TIME variable has read and write access, the realtime clock
can also be set by writing the day time in seconds to this variable.

To get the current hour, minute or the current seconds the
appropriate identifier must be specified and separated by a .(dot).
These values also have read and write access, e.g. TIME.SECONDS
= 0 will clear the seconds.

Note: Care must be taken, when setting the realtime clock by
changing hours, minutes and seconds separately. This could lead to
an unintended carry over.

TinyBasic Programming www.tinybasic.de 41

DAY

By using the DAY variable the day of the week can be read and also
be written. DAY variable is 0 for Sunday, 1 for Monday and so on.

DATE
DATE.DAY
DATE.MONTH
DATE.YEAR

When reading the variable DATE the returned value is the current
date calculated in seconds:

 YEAR * 31556952 + (MONTH - 1) * 2629746 + (DAY - 1) * 86400.

The reason for that calculation is that an absolute time stamp can
easily be generated as: TimeStamp = DATE + TIME, due to the
equivalent time base of DATE and TIME. Therefore, a complete date
and time information can be packed into a long variable either for
sending it over network/radio or for storing it into memory (e.g.
data logger application).

As the DATE variable has read and write access it is also possible to
set the current date as once by writing the appropriate value.

To get the current day, month or year the appropriate identifier
must be specified and separated by a .(dot). These values also have
read and write access, e.g. DATE.YEAR = 6. Note: The years are
counted with two digits only.

Note: The date variable will be available only with TinyBrick16 or
TinyDisplay.

TinyBasic Programming www.tinybasic.de 42

Displays and Graphics

SETDISPLAY <display>

TinyBasic supports different display types ranging from simple 7-
segment LED displays with up to 8 digits via 1x8, 2x16 or 3x16
alphanumeric character LCDs up to a fully graphic display with
128x64 pixels.

 Electronic Assembly
 DOGM-16x Series DOGM-128x64 Series

The following table shows the supported displays.

Display Description
0 7-segment displays (driver MAX7219)
1 1x8 characters text display (DOGM-1x8)
2 2x16 characters text display (DOGM-2x16)
3 3x16 characters text display (DOGM-3x16)
4 128x64 pixels graphic display (DOGM-128x64)

SETSYMBOL <charcode>,<data>,…

The alphanumeric text displays support up to 8 user defineable
characters/symbols. The command SETSYMBOL expects the
character code (0..7) as the first parameter. The following 5 data
bytes define the pixels of the 5x7 symbol.

3x16 character
LCD with color

backlight

 by u.altenburg

TinyBasic

TinyBasic Programming www.tinybasic.de 43

CLS

The CLS command clears the screen and sets the cursor to the
home position (0,0 = top left corner). The graphic display screeen
will be filled with the current background color.

FONT

The alphanumeric text display has a built-in character set with a
fixed size, therefore this command is ignored. The graphic display
has one font with two possible sizes – FONT 0 (small font 6x8 pixels)
and FONT 1 (large font 12x16 pixels). By default the small font is
selected.

COLOR <ink>
COLOR <ink>,<paper>

The COLOR command sets the foreground color and optionally the
background color. Valid color values are 0 or 1 (resp. black or
white).
Note: This command is ignored by the alphanumeric display.

PLOT <xpos>,<ypos>

The PLOT command sets one single pixel at the location (xpos,ypos)
with the current foreground color. The given point is kept as the
new cursor location.
Note: This command is ignored by the alphanumeric display.

MOVE <xpos>,<ypos>

The MOVE command sets the cursor to location (xpos,ypos). The
values are given in pixels with the graphic display and in characters
with the alphanumeric display.

TinyBasic Programming www.tinybasic.de 44

DRAW <xpos>,<ypos>
DRAW <xpos>,<ypos>,<mode>

The DRAW command draws a line with the current color from the
current cursor position to the location specified by the parameters
xpos and ypos. The last point of the line is set as the new location,
therefore multiple DRAW commands can be used to draw a curve.
The mode parameter specifies the drawing mode: 0=solid, 1=dotted.
Note: This command is ignored by the alphanumeric display.

FRAME <xpos>,<ypos>,<xrec>,<yrec>
FRAME <xpos>,<ypos>,<xrec>,<yrec>,<fillcolor>

The FRAME command draws a rectangle from the top left corner
(xpos,ypos) to the point (xrec,yrec) with the current foreground
color. If the fillcolor value is specified the rectangle will be filled,
otherwise only a frame will be drawn.
Note: This command is ignored by the alphanumeric display.

SCROLL <xpos>,<ypos>,<xrec>,<yrec>,<dx>
SCROLL <xpos>,<ypos>,<xrec>,<yrec>,<dx>,<dy>

With the SCROLL command a rectangular area of the display can
be scrolled. The top left corner of the area is point (xpos,ypos) while
the bottom right corner is point (xrec,yrec). The parameter dx is the
scroll width of the area contents. If dx is a positive value the area
will be scrolled to the right, while negative values scroll the area to
the left. The block, which is empty after the scrolling will be filled
with the background color.
Note: This command is ignored by the alphanumeric display.

CIRCLE <xpos>,<ypos>,<rad>
CIRCLE <xpos>,<ypos>,<xrad>,<yrad>
CIRCLE <xpos>,<ypos>,<xrad>,<yrad>,<fillcolor>

With the CIRCLE command a circle or an ellipsis can be drawn. The
point (xpos,ypos) is the midpoint of the circle or ellipse. The simple
rad parameter is the radius of a circle, while the two parameters

TinyBasic Programming www.tinybasic.de 45

 BYTE Icon[18]

Main:
 READ Icon : PICTURE 75,40,Icon ’draw icon
 GOTO Main

Symbols:
 DATA 16,8 ’width,height
 DATA %00000110,%00000000 ’ **
 DATA %00001001,%00000000 ’ * *
 DATA %00010000,%10000000 ’ * *
 DATA %00100000,%01000000 ’ * *
 DATA %01100000,%01100000 ’ ** **
 DATA %00100000,%01000000 ’ * *
 DATA %00111111,%11000000 ’ ********
 DATA %00000000,%00000000 ’

xrad and yrad specify the dimension of an ellipse. If a fillcolor is
specified then the circle or ellipsis will be filled.
Note: This command is ignored by the alphanumeric display.

PICTURE <xpos>,<ypos>,<picture>
PICTURE <xpos>,<ypos>,<picture>,<mode>

With the PICTURE command a symbol or an icon can be drawn on
the graphic screen at the position given by xpos and ypos. The icon
data is stored in a byte array given as the picture parameter. The
first two bytes in the picture array are the width and the height of
the icon. Width and Height have to be multiples of 8.
Note: This command is ignored by the alphanumeric display.

BARGRAPH <xpos>,<ypos>,<xbar>,<ybar>,<value>
BARGRAPH <xpos>,<ypos>,<xbar>,<ybar>,<value>,<mode>

The BARGRAPH command allows to draw a sizeable bar. The
position and maximum size of the bar is defined by the points
(xpos,ypos) and (xbar,ybar). The actual size is set by the value
parameter in the range 0..100 percent. Depending on the relative
position of the two corners and according to the given mode the bar
can be drawn in horizontal (mode=0) or vertical (mode=1) direction.
Note: This command is ignored by the alphanumeric display.

TinyBasic Programming www.tinybasic.de 46

Networking

SETNETWORK <net>
SETNETWORK <net>,<baudrate>

TinyBrick modules as well as TinyDisplays can be connected to
simple networks. All modules are equipped with a RS485
transceiver. Alternatively, the second serial interface (device #1) can
be used in combination with other transceivers, e.g. wireless easy
radio modules.

The SETNETWORK command enables transfer of messages with up
to 32 bytes in length. The first parameter is the network type – this
should be set to null for RS485. The optional baudrate parameter
can be specified – otherwise the default baudrate will be 9600 baud.

SEND <id>,<var>,…

To send a message via the network the SEND command can be
used. Basically, all messages have an ID (1..255). This ID must be
given as the first parameter of the SEND command. A single
variable or even a list of variables of any type can be added. If an
array variable is used then all fields of the array will be send. Take
care, that the size of all variables does not exceed 32 bytes.
Note: By default, there is no address information – all messages are
send broadcast.

MSG

How can a receiver detect an incomming message? By reading the
MSG variable. The MSG variable holds the ID of the last received
message. According to this ID a dedicated RECV command can be
used to read the contents of the message. If the receiver is not

TinyBasic Programming www.tinybasic.de 47

 BYTE nSender ’ sender
 WORD wWindSpeed ’ wind speed
 FLOAT fTemperature ’ temperature

Main:
 DO ’ main loop
 IF Msg THEN ’ any message
 ON Msg - 1 GOSUB OnTempMsg,OnWindMsg
 Msg = 0 ’ delete message
 ENDIF
 LOOP

OnTempMsg: ’ recv temperature…
 RECV nSender,fTemperature ’ read byte,float
 RETURN

OnWindMsg: ’ recv wind speed…
 RECV nSender,wWindSpeed ’ read byte,word
 RETURN

interested in some messages these message can be discarded by
setting MSG back to null.
Note: MSG can be set to any value, but only a null value will delete
a received message.

RECV <var>,…

According to the ID of the last received message a dedicated RECV
command should be used to read out the contents of the message.
Therefore, the ID can also be seen as a kind of type describtion.

TinyBasic Programming www.tinybasic.de 48

Hardware

SETPORT <port>,<config>
SETPORT <port>,<config>,<pull-up>

All ports of the controller are initialized as inputs with no pullups
by default. To change the configuration of a port the SETPORT
command can be used. The first parameter is the port number and
may be in the range 0..9 (depending on the controller). The
configuration of each port pin is set by the second parameter. This
parameter is a byte value, where each bit belongs to a port pin
direction: SETPORT 2, %01000001 initializes Port2.0 and Port2.6
as output. Note: The most right bit is pin 0 while the most left bit is
pin 7.
Each pin initialized as input (config bit set to 0) can also have a
pull-up resistor. To activate the resistor set the appropriate bit in
the third parameter: SETPORT 2, %01000001, %00000010.
Note: Depending on the controller not each pin can have a pull-up
resistor or some pull-ups must be activated together.

PORTn
PORTn.b

Access to the controller ports is provided by the variables
PORT0..PORT9 (depending on the controller). Each port can be set
or read back. Additionally each port pin can be set and read by
appending the appropriate pin number to the port variable
separated by .(dot). The value of a port variable may be 0..255 (8
bits) while the value of a port pin may only be 0..1.

Note: If a value is assigned to a pin variable, only the lowest bit will
be written to the port pin. Therefore, the expression PORT2.0 = NOT
PORT2.0 is valid, even though the NOT operator inverts all bits.

TinyBasic Programming www.tinybasic.de 49

Note: As TinyBasic only supports PORT0..9 the port 10 of the M16C
microcontroller used for TinyBrick16 and TinyDisplay is mapped to
the variable PORT0.

SETCOM <com>,<baudrate>

There are two supported serial interfaces #0 and #1. The first serial
interface (download interface, device #0) is initialized by default with
9600 baud, 8 data bits, no parity and one stop bit (9600,8,N,1). To
change the baudrate of this serial interface the command SETCOM
0,<baud> can be used at any time in the program. The baudrate
parameters can be: 300, 600, 1200, 2400, 4800, 9600, 19200 and
38400 with TinyBrick8 and also 57600 and 115200 with
TinyBrick16 and TinyDisplay.
The second serial interface is not initialized by default, but can be
initialized and set to a specific baudrate by using the command
SETCOM 1,<baud>.

RXD

The variable RXD holds the number of pending characters in the
receive buffer of device #0. Up to 32 characters will be buffered. To
clear this buffer use the FLUSH #0 command.
Note: The second serial interface (device #1) is not buffered.

SETKEYPAD <type>

With the SETKEYPAD command one of two possible keypads can be

 (type=0)

 (type=1)

 TinyBrick

7 8 9 ESC
4 5 6 COR
1 2 3 2nd
- 0 , ENT

1 2 3
4 5 6
7 8 9
* 0 #

TinyBasic Programming www.tinybasic.de 50

selected. Type=0 sets a phone keypad and type=1 sets a numeric
keypad with four funktion keys: ESC=escape, COR=correct,
2nd=second function and ENT=enter.

KEYCODE

The KEYCODE variable holds the actual pressed key or keys.
KEYCODE is a 16bit variable – each bit represents one key.

IRCODE

TinyBasic can receive infrared signals from a television remote
control. The remote control must use the RC5 code from Philips.
Almost all universal remote controls can be used. The IRCODE
variable holds the last received code.
Note: To restart a new receive a null has to be written to the
IRCODE variable.

SETPWM <channel>,<divider>,<period>

The SETPWM command initializes and starts a hardware PWM
(Pulse Width Modulation). Refer to the hardware manual to check
how many PWM channels are supported by the controller. The
channel parameter specifies the channel to be initialized. The
divider is used to select the appropriate clock source for the internal
16bit timer used to generate the PWM. The period is the length of
one cycle in counter ticks.

 period

 pwm

 source
 clock
 0 65535

Function: When the internal 16bit timer starts, the output pin is set
high. When the PWM time is reached, the output pin is set low.
When the period time is reached the timer is restarted.

TinyBasic Programming www.tinybasic.de 51

As the timer is 16bit wide the maximum range for both times is
0..65535 timer ticks. Depending on the source clock almost any
frequency is possible: e.g. SETPWM 0,0,1000 generates a frequency
of 20kHz and a pulse width of 0..50µs in 1000 steps, while
SETPWM 0,4,60000 results in a frequency of 10Hz and a pulse
width of 0..100ms in 60000 steps.

Note: TinyBrick16 and TinyDisplay require the same divider for all
channels. TinyBrick8 supports 2 deviders – one for channels 0..2
and one for channels 3..5.

PWMn

After initialization of a PWM channel the current pulse width may
be changed and also read back via the variables PWM0..PWM7. The
range of each variable depends on the initialization and can be
0..<period> (refer to command SETPWM).

 PWM outputs

SETCOUNTER <channel>,<mode>

Two external interrupt pins INT0 and INT1 can be used to work as
counters. The SETCOUNTER command configures each channel
0..1 to count either the raising edge, the falling edge or even both
edges.

Mode 0 count raising edge only
Mode 1 count falling edge only
Mode 2 count both edges
Mode 3 count both edges up-down (direction pin)
Mode 4 count both edges up-down (quadrature pin)

 TinyBrick

TinyBasic Programming www.tinybasic.de 52

 Counters

 Direction-/Phase-Pins

Note: The counter inputs can also be used to restart the controller
after executing the END command.

COUNTERn

After initialization of one or both counters the variables COUNTER0
and COUNTER1 hold the current counter value. The counters can
be read and written at any time. Normally, the counters have to be
nulled, e.g. COUNTER0 = 0, but it is also possible to set the counter
values to a specific reference value, e.g. COUNTER0 = 1000. Both
counters are 16bit wide (0..65535).

SETSTEPPER <motor>,<mode>

TinyBasic can control up to 3 stepper motors. Each motor has a
step- and a direction output pin. By now only the start/stop-mode
(mode=0) is implemented.

 Stepper0
 Stepper1
 Stepper2

 TinyBrick

 TinyBrick

TinyBasic Programming www.tinybasic.de 53

STEPPERn
STEPPERn.SPEED
STEPPERn.STEPS

The STEPPERn variable holds the absolute position of the stepper
motor and can be read and written at any time. Its 16bit value can
be in the range 0..65535 steps.
To move a stepper set STEPPERn.SPEED first and then the
STEPPERn.STEPS. The speed is set in steps/second and can be in
the range 50..2000 steps/sec. The steps value can be in the range
-65535..65535. If the value is negative the direction pin becomes
high. The steps and the speed values can be read at any time. As
long as the motor is moving the steps value counts down. If the
steps value is set to null while the motor is moving it will be stopped
immediately.

TIMERn

There are 4 software count down timers TIMER0..TIMER3, each
31bit wide (0..2147483647). The timer tick is one millisecond, this
leads to a maximum time span of approx. 24 days.
As soon as a time value is assigned to one of these variables, e.g.
TIMER0 = 100, the variable counts down to 0. If the 0 is reached
the timer will be stopped. The rest time can always be read, but the
safe way to use these timers is to check if the 0 is already reached.

ADCn

Analog input pins can be read via variables: ADC0..ADC7. No
further pin initialization is required – each time a variable is read
the appropriate input pin is configured as analog input. Refer to the
pin assignment section which pins of the controller are used for
analog input.

TinyBasic Programming www.tinybasic.de 54

SPISHIFT <mode>,<direction>,<variables>

The SPI (Serial Peripheral Interface) is a 3 wire connection between
a master and one or more slaves. TinyBasic always works as master
and therefore it provides the clock signal. There are four clock
modes, due to the combination of clock polarity and clock phase.

Mode 0 positive clock pulse, first latch then shift
Mode 1 positive clock pulse, shift first then latch
Mode 2 negative clock pulse, first latch then shift
Mode 3 negative clock pulse, shift first then latch

The clock mode is selected with the first parameter. The second
parameter sets the data direction: 0=output, 1=input and
2=bidirectional data exchange. During data exchange the values of
the given variables are replaced by the incomming data.
The number of clock cycles generated results from the variable type.
If a byte variable is given only 8 clock pulses will be generated. If a
word variable is given 16 clock pulses will be generated and so on. If
more than one variable is given then all variables will be clocked
out. It is also possible to use array variables then all fields of the
array are sent.
Note: Transmission is always performed with MSB (Most Significant
Bit) first.

I2CIN <chip>,,<variables>
I2CIN <chip>,<address>,<variables>
I2COUT <chip>,<address>,<variables>

The I2C interface connects multiple ICs via two wires. TinyBasic can
be used as an I2C bus master. In order to send the values of one or
more variables to one of the connected slaves the I2COUT command
can be used. The first parameter is the chip identification – an 8 bit
value. I2C slaves only need the upper 7 bits as their address. The
lowest bit of the chip identification is used to specify if the slave
uses 8 bit or 16 bit adressing mode. The second parameter is the
address itself, which depends on the connected slave (EEPROM,
RTC...). Finally, a list of variables can be specified. Each variable
will be sent via the I2C bus according to its type – bytes with 8 clock
pulses, words with 16 clock pulses and so on. Even array variables

TinyBasic Programming www.tinybasic.de 55

are supported. This allows to store data set into an external eeprom
or serial flash.

To read data from a connected I2C slave the I2CIN command can be
used. The chip identification and the address are used in the same
way as with the I2COUT command. Some I2C slaves do not need an
address therefore the address parameter can be skipped.

SOUND <frequency>
SOUND <frequency>,<duration>

TinyBasic also supports a SOUND statement, to alert the user or
even to play a melody. The frequency, given in Hz, is expected as
the first parameter. Frequencies in the range 20..20000Hz can be
generated. If no duration is given the sound will be very short,
approx. 25ms. The duration can be set in the range 1..63, which are
steps of 25ms. Therefore, the maximum duration of a sound is
63*25ms approx. 1.5 seconds.
Note: While the SOUND statement is executed the internal soft
timer interrupt is halted to avoid distorsions. Therefore, the timer
variables TIMER0..TIMER3 are temporarily stopped.

POKE <addr>,<value>

The POKE command allows direct access to all registers of the
controller. The registers are mapped into the memory area and can
be written as single bytes. Refer to the hardware manual or to the
data sheet of the controller to find out the right register address.

STANDBY

To reduce power consumption the easiest way to do so is to use the
STANDBY command inside the main loop. STANDBY powers down
the controller until the next interrupt occurs. The soft timers are
clocked by a 10ms interrupt. That means the maximum time the
controller is powerd down is 10ms, but any other interrupt, e.g. the
serial receive interrupt or an incoming network message also wake
up the controller. Therefore, the main advantage of using STANDBY

TinyBasic Programming www.tinybasic.de 56

is, that the program is still fully functioning, while the power
consumption is reduced.

END

The most dramatically reduction of power consumption is reached
by using the END command anywhere in the program. This results
in shutting down the controllers clock and therefore reduces the
supply current to some µA (microampere). The controller restarts
again if either the reset signal is drawn or one of the counter edges
is detected.

Note: The counters must be initialized prior to the END command in
order to use an external interrupt source (INT0 or INT1) to restart
the controller. The program restarts always at the first line.

Note: As this command is shutting down the controller a
subsequent program download sequence needs to restart the
controller manually.

TinyBasic Programming www.tinybasic.de 57

PIN ASSIGNMENT

RXD(V24) +5V
TXD(V24) P0.0/ADC7
DTR(V24) P0.1/ADC6
LCD_CS/P1.0 P0.2/ADC5
LCD_RES/P1.1 P0.3/ADC4
LCD_MODE/P1.2 P0.4/ADC3/COL0
SOUT/P3.7 P0.5/ADC2/COL1
SIN/SCL /P3.3 P0.6/ADC1/COL2
SCLK/P3.5 P0.7/ADC0/COL3
SDA/P3.4 VREF
RXD1(TTL)/P1.5 P3.0
TXD1(TTL)/P1.4 P3.1/SOUND
CLK1/P1.6 P2.0
INT0/CNT0/P4.5 P2.1/PWM0
INT1/CNT1/IRIN/P1.7 P2.2/PWM1
TX+ P2.3/PWM2
TX- P2.4/ROW0
RESET P2.5/PWM3/ROW1
NMI P2.6/PWM4/ROW2/DIR0
GND TinyBrick8 P2.7/PWM5/ROW3/DIR1

RXD(V24) +5V
TXD(V24) P0.0/ADC0
DTR(V24) P0.1/ADC1
LCD_CS/P1.5 P0.2/ADC2
LCD_RES/P1.6 P0.3/ADC3
LCD_MODE/P1.7 P0.4/ADC4/COL0
SOUT/P3.2 P0.5/ADC5/COL1
SIN/SCL /P3.1 P0.6/ADC6/COL2
SCLK/P3.0 P0.7/ADC7/COL3
CARD/SDA/P3.3 VREF
RXD1(TTL)/P7.1 P7.4
TXD1(TTL)/P7.0 P7.6/SOUND
CLK1(TTL)/P7.2 P2.0/PWM0
INT0/CNT0/P8.2 P2.1/PWM1
INT1/CNT1/IRIN/P8.3 P2.2/PWM2
TX+ P2.3/PWM3
TX- P2.4/PWM4/ROW0
RESET P2.5/PWM5/ROW1
NMI P2.6/PWM6/ROW2/DIR0
GND TinyBrick16 P2.7/PWM7/ROW3/DIR1

 TinyBrick8

TinyBrick16

TinyBasic Programming www.tinybasic.de 58

 +5V
 TXD(V24)
 RXD(V24)
 P3.1/SCL
 P3.3/SDA
 P8.2/INT0/CNT0
 P8.3/INT1/CNT1/IRIN
 P0.0/ADC0
 P0.1/ADC1
 P0.2/ADC2
 P0.3/ADC3
 P0.4/ADC4/COL0
 P0.5/ADC5/COL1
 P0.6/ADC6/COL2
 P0.7/ADC7/COL3
 P2.0/PWM0
 P2.1/PWM1
 P2.2/PWM2
 P2.3/PWM3
 P2.4/PWM4/ROW0
 P2.5/PWM5/ROW1
 P2.6/PWM6/ROW2/DIR0
 P2.7/PWM7/ROW3/DIR1
 TX+/TXD1(TTL)/P7.0
 TX-/RXD1(TTL)/P7.1
 NMI TinyDisplay
 RESET
 GND

 TinyDisplay

TinyBasic Programming www.tinybasic.de 59

PIN DESCRIPTION

The following table gives a brief overview about the port pins used
by TinyBasic special functions.

Pin Pin description
TXD, RXD, DTR RS232 interface signals with V24 level,

access as device #0
LCD_CS, LCD_RES,
LCD_MODE

LCD control signals for chip select, reset and
data/ctrl-mode, these pins also control a 7
segment LED display via MAX7219 (LOAD,
DATA, CLK resp.)

SIN, SOUT, SCLK SPI interface, SOUT and SCLK also used for
LCD display, also used for SD card

SCL, SDA (CARD) I2C interface, pull up with 100kΩ, CARD
signal is used as SD card chip select

TXD1, RXD1, CLK1 RS232 interface with TTL level, access as
device #1 (check jumper settings)

TX+, TX- RS485 interface (check jumper settings)

INT0/CNT0,
INT1/CNT1

Interrupt signals used as counters or
wakeup

DIR0, DIR1 Counter direction/phase input pins
IRIN Infrared receiver input (RC5 code only)

PWM0..PWM7 Pulse width modulation (PWM) outputs
ADC0..ADC7 Analog input channels
VREF Analog reference voltage input

COL0..COL3,
ROW0..ROW3,

Columns and rows for a 3x4 telephone or a
4x4 numeric keypad (use rectifiers in
column lines)

P2.0..P2.6 Stepper motor control pins

P0.0..P0.7 General purpose in/out pins
P2.0..P2.7 General purpose in/out pins
P1.0..P1.7 General purpose in/out pins
P3.0, P3.1, P7.4, P7.6 General purpose in/out pins

NMI Non maskable interrupt input pin
RESET Reset input pin

TinyBasic Programming www.tinybasic.de 60

